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Titre: Les schémas d’ordonnancement asymptotiquement optimaux pour les grands réseaux

Mots clés: allocation des resources, Temps d’attente, Age de l’information, indice de Whittle, Relax-
ation Lagrangian, optimalité asymptotique

Résumé: Au courant de la dernière décennie, le
nombre de machines connectées aux réseaux sans
fils, a connu une croissance exponentielle à cause
de l’apparition de l’Internet des Objets. Ainsi,
le réseau sans fils 5G, est apparu pour accompa-
gner cette grande évolution technologique. Parmi
les exigences de la 5G est d’optimiser certaines
métriques qui permettent une communication fi-
able et fluide, à savoir la latence des paquets et
l’âge de l’information. Dans ce cadre, un prob-
lème majeur consiste à savoir comment partager
les ressources disponibles entre le nombre massif
des utilisateurs dans le réseau de telle façon à op-
timiser ces métriques en question. Pour répondre à
cette problématique, nous étudions dans cette thèse
le problème d’allocation des canaux où le nombre
d’utilisateurs dans le système est supérieur à celui
des canaux. Notre but est de trouver une solution qui
permet d’allouer les canaux disponibles à un sous-
ensemble d’utilisateurs à chaque instant, de manière
à minimiser l’espérance de la moyenne à long terme
du temps d’attente des paquets avant la transmission
ou bien l’espérance de la moyenne à long terme de
l’âge de l’information. Puisque le problème étudié
entre dans le cadre des problèmes de Restless ban-
dits, la solution optimale est hors de portée. Néan-
moins, pour contourner cette difficulté, nous adop-
tons une approche basée sur les indices de Whit-
tle pour obtenir une méthode d’allocation appelée
"Whittle Index Policy" (WIP) qui qui est très perfor-
mante avec une complexité faible, surtout lorsque le
nombre d’utilisateurs et des canaux est suffisamment
grand. Dans cettemesure, nous expliquons en détail,
au chapitre 2, l’approche pour obtenir les indices
de Whittle. Ensuite, nous étudions au chapitre 3 le
problème d’allocation des canaux dans un système
de files d’attente avec pour objectif de minimiser
le temps d’attente des paquets dans les files. Nous

adoptons une méthode basée sur la Relaxation La-
grangienne et nous démontrons que la solution opti-
male de l’équation de Bellman du problème dual est
de type solution à seuils (threshold-based solution).
Ensuite, nous prouvons que ce problème est index-
able trouvons par la suite l’expression des indices de
Whittle, en distinguant si la taille maximale des files
est finie ou infinie. Puis, nous prouvons par une dé-
monstration mathématique rigoureuse que notre so-
lution est effectivement optimale dans le cas où le
nombre d’utilisateurs est infiniment grand. Enfin,
nous donnons des résultats numériques qui mettent
en évidence la bonne performance de notre solution
proposée et qui confirment nos résultats théoriques.
Dans le chapitre 4, nous examinons le problème
d’allocation des canaux dans un réseau sans fil avec
pour objectif de minimiser l’âge de l’information
moyen. Comme le problème étudié dans le chapitre
3 et de façon similaire, trouver une solution optimale
n’est pas évident. De ce fait, nous adoptons égale-
ment l’approche basée sur les indices de Whittle
pour développer une politique d’allocation simple et
performante. Notre principale contribution dans ce
chapitre consiste d’une part à donner des résultats
rigoureux sur l’optimalité asymptotique de la poli-
tique de Whittle (WIP) dans un régime où le nom-
bre d’utilisateurs et des canaux tend vers l’infini.
En effet, nous présentons une nouvelle approche
mathématique pour établir l’optimalité lorsque l’âge
de l’information n’est pas borné par une certaine
valeur. Cette nouvelle approche est basée sur des
techniques complexes (critères de Cauchy, etc.), et
contrairement aux travaux précédents, la démonstra-
tion n’exige aucune hypothèse simplificatrice sur le
système considéré. Finalement, nous présentons des
résultats numériques qui montrent l’optimalité de la
politique de Whittle et qui confirment nos résultats
théoriques.
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Title: Asymptotically Optimal Scheduling Schemes for Large Networks
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Abstract: In this thesis, we investigate a gen-
eral channel allocation problem where the number
of channels is less than that of users. The aim is to
find a policy that schedules the channels to a given
subset of users at each time slot in such a way to
minimize two different objectives functions namely,
the long-run expected average queuing delay (chap-
ter 3) and the long-run expected average age of in-
formation (Chapter 4). We show that our problems
fall in the framework of Restless Bandit Problems
(RBP), for which obtaining the optimal solution is
known to be out of reach. To circumvent this diffi-
culty, we tackle the problem by adopting a Whittle
index approach. In Chapter 2, we explain the La-
grangian relaxation, the steady-state and discounted
cost approaches used to obtain the expressions of
Whittle indices. The structure of each subproblem’s
optimal solution is provided in chapter 3 and 4 de-
pending on the system models and the considered
metrics (queue length or Age of Information).

In Chapter 3, the objective of the scheduling
problem is to minimize the total average backlog
queues of the network in question. We apply the La-
grangian relaxation approach detailed in Chapter 2
for the present model, and we prove that the opti-
mal solution of the one-dimensional problem is of
type threshold policy. After that, we establish that
the aforementioned problem is indexable. Armed

with that, we apply the discounted cost approach
when the queue size is infinite and the steady-state
approach when the queue size is tight to obtain the
Whittle indices expressions. We then provide rig-
orous mathematical proof that our policy is optimal
in the infinitely many users regime. Finally, we pro-
vide numerical results that showcase the remarkable
good performance of our proposed policy and that
corroborate the theoretical findings.

In Chapter 4, we examine the average age min-
imization problem where users transmit over unre-
liable channels. Similarly to the problem studied in
Chapter 3, finding the optimal scheduling scheme is
known to be challenging. Accordingly, we adopt the
Whittle index approach to derive theWhittle indices.
Our main contribution is to provide rigorous results
on the asymptotic optimality of Whittle Index Pol-
icy (WIP) in the many-users regime when the state
space of the age of information is finite. However,
when the state space of the Age of Information is in-
finite, we provide a new mathematical approach to
establish the optimality of WIP for specific network
settings. This novel approach is based on intricate
techniques, and unlike previous works in the litera-
ture, it is free of any mathematical assumptions. Fi-
nally, we lay out numerical results that corroborate
our theoretical findings and demonstrate the policy’s
notable performance in the many-users regime.

Maison du doctorat de l’Université Paris-Saclay

2ème étage aile ouest, Ecole normale supérieure Paris-Saclay

4 avenue des Sciences, 91190 Gif sur Yvette, France 3





Acknowledgements

First and foremost, I would like to thank God for all his blessings and for providing me
the opportunity to work in a research field that I appreciate.
I would like to express my sincere gratitude to my advisor Prof. Mohamad Assaad
for the continuous support of my Ph.D. study and research, for his motivation, for his
encouragement during my thesis. He offered me generously his time and gave me relevant
advice about technical and non-technical issues regarding my thesis and its development.
He always had faith in me and encouraged me to move forward with my research and my
studies. His guidance helped me in all the time of research and writing of this thesis.
I also express my deepest thanks to Doctor Larranaga Maialen for giving me the necessary
advice and guidance, which were extremely valuable for my progress concerning my work
during my internship, which is an initiation of my thesis.
I would also like to express my appreciation to the jury committee members: Nikkos
Pappas, Rachid El Azouzi, Inbar Fijalkow, Omur Ozel, and Samson Lasaulce for the
time spent reading this work and for all their valuable feedback on it.
Thanks also go out to my office colleague Ali Maatouk with whom I try to solve some
issues confronted in our collaborative works. I thank him also for his valuable assistance
in writing articles.
I would also like to thanks the professors who helped me through skills training to improve
my professional attitude. I thank all my friends who support me during my time in
French. I would also like to express my gratitude to my brother Yassine for his constant
support during my thesis, and all my brothers and sisters who always encouraged me.
I am extremely grateful to my beloved parents in Morocco for their unlimited support
during my years in France and all my life. Thank you for your sacrifices, your love, your
encouragement, and your trust. Special thanks to my mother for her crucial role and
invaluable assistance. I am forever indebted to her.

i





Contents

Contents

1 Introduction en français 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Ordonnancement basé sur le temps d’attente . . . . . . . . . . . . . . . . . 8
1.3 Ordonnancement basé sur l’âge . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Etat de l’Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Problème d’ordonnancement: Minimisation du temps d’attente . . . 13
1.4.2 Problème d’ordonnancement: Minimisation de l’Age . . . . . . . . . 15

1.5 Contributions et Aperçu de la thèse . . . . . . . . . . . . . . . . . . . . . . 16

2 Introduction 19
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Delay-based Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Age-based Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Scheduling Problem: Delay Minimization . . . . . . . . . . . . . . . 25
2.4.2 Scheduling Problem: Age Minimization . . . . . . . . . . . . . . . . 26

2.5 Contributions and overview of the thesis . . . . . . . . . . . . . . . . . . . 28

3 Methodology 29
3.1 Restless Bandit Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 System model of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Lagrangian approach and Whittle index policy . . . . . . . . . . . . . . . . 30

3.3.1 Relaxed Problem and Dual Problem . . . . . . . . . . . . . . . . . 31
3.3.2 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Whittle’s Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Asymptotic Optimality of Whittle Index Policy . . . . . . . . . . . . . . . 36
3.4.1 Local Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Global Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Whittle’s index policy for minimizing the Delay in Queuing systems 39
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Relaxed Problem and Threshold-based Policy . . . . . . . . . . . . . . . . 41

4.3.1 Relaxed Problem and Dual Problem . . . . . . . . . . . . . . . . . 41
4.3.2 Problem Decomposition and Threshold-based Policy . . . . . . . . . 41

4.4 Whittle’s Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Steady State approach (L < R) . . . . . . . . . . . . . . . . . . . . 47

1



Contents

4.4.2 Discounted Cost approach (L = +∞) . . . . . . . . . . . . . . . . . 51
4.5 Further analysis of the optimal solution of the relaxed problem . . . . . . . 54
4.6 Local asymptotic optimality (L < R) . . . . . . . . . . . . . . . . . . . . . 55
4.7 Global asymptotic optimality (L < R) . . . . . . . . . . . . . . . . . . . . 59
4.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8.1 Numerical Results for finite buffer size . . . . . . . . . . . . . . . . 60
4.8.2 Numerical Results for infinite buffer size . . . . . . . . . . . . . . . 62

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Whittle’s index policy for minimizing the Age of Information 65
5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Network description . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Adopted age metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Local optimality: Finite L . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Global Optimality: Infinite L . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions and Outlook 91
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Appendix: Methodology 101
A.1 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Appendix: Whittle’s index policy for minimizing the Delay in Queuing system 107
B.1 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.3 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.4 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.5 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.6 Proof of Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.7 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.8 Proof of Proposition 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.9 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.10 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.11 Proof of Proposition 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.12 Proof of Proposition 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.13 Proof of Proposition 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.14 Proof of Proposition 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.15 Proof of Lemma 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.16 Proof of Proposition 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.17 Proof of Lemma 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.18 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2



Contents

C Appendix: Whittle’s index policy for minimizing the Age of Information 127
C.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.2 Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.3 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.4 Proof of Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.5 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.6 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.7 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.8 Proof of Proposition 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.9 Proof of Proposition 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.10 Proof of Lemma C.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.11 Proof of Proposition 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.12 Proof of Proposition 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.13 Proof of Proposition 5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.14 Proof of Proposition 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.15 Proof of Proposition 5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.16 Proof of Proposition 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.17 Proof of Proposition 5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.18 Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.19 Proof of Proposition 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3



List of Figures

List of Figures

1.1 Illustration du temps d’attente et du délai de propagation . . . . . . . . . 9
1.2 Modèle de files d’attente . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Illustration de l’évolution de l’AdI . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Illustration de l’évolution de l’AdI adaptée au problème d’ordonnancement

étudié . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Modèle du système d’âge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Illustration of Queuing and Propagation Delay . . . . . . . . . . . . . . . . 21
2.2 Queuing System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Illustration of the AoI evolution . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Illustration of the AoI evolution adapted to the scheduling problem of interest 24
2.5 Age system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 yn(W ) in function of W for different values of n (L = 5 and R = 10): W (i)

indicates the Whittle index at state i . . . . . . . . . . . . . . . . . . . . . 50
4.3 Hitting Time of Ωε(z

∗) in function of N : (a) ZN(0) = x, (b) ZN(0) = y . 61
4.4 Performance evaluation of Whittle’s Index policy . . . . . . . . . . . . . . 61
4.5 Evaluation of Cπ,N

1 and Cπ,N
2 in function of N under Policy Θ and Whittle’s

Index policy WIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Performance evaluation of Whittle’s Index policy . . . . . . . . . . . . . . 63

5.1 The states transitions under a threshold policy n when L < +∞ . . . . . . 67
5.2 The states transitions under a threshold policy n when L = +∞ . . . . . . 67
5.3 Evolution of zki (·) for different states i in function of α1(t) and α2(t) under

the Whittle Index Policy (the green and the yellow colors refer to class 1
and 2 respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 The proportions of users at different states at time t+Tt when γ(t+Tt) = 1
and 0 < β(t+ Tt) ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 The proportions of users at different states at time t+Tt when β(t+Tt) = 1
and 0 < γ(t+ Tt) ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Graphical representation of Tmax . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8 Average age per user under Whittle Index Policy . . . . . . . . . . . . . . . 89

4



List of Tables

List of Tables

5.1 Evaluation of Bα under wide range of channel statistics . . . . . . . . . . . 88

C.1 The expressions of the matrices Qk for k 6= m and Qm . . . . . . . . . . . . 130
C.2 The expressions of the characteristic polynomials of Qk . . . . . . . . . . . 131
C.3 The expressions of the characteristic polynomials of Qm . . . . . . . . . . . 135

5





Chapter 1. Introduction en français

Chapter 1

Introduction en français

1.1 Motivation

Au cours du siècle dernier, le monde a assisté à un changement radical dans la communi-
cation grâce à l’apparition de technologies électriques et électromagnétiques telles que les
téléphones, les télévisions et les ordinateurs. Cette transformation stupéfiante trouve son
origine dans les développements pionniers des communications sans fil de Nikola Tesla,
connu pour être l’inventeur de la radio. Les technologies de télécommunication ont dès
lors connu une progression exponentielle en termes de performance, d’accessibilité et de
quantité, au point qu’aujourd’hui, nous vivons dans un monde entièrement connecté où
chaque être humain peut communiquer avec un autre être humain, quel que soit son
endroit.
Par ailleurs, selon les données d’intelligence en temps réel de GSMA, le nombre d’utilisateurs
d’appareils mobiles dans le monde dépasse aujourd’hui les 5 milliards. Cela représente
66.5% de la population mondiale. D’autre part, grâce à l’émergence de l’IA (intelligence
artificielle), les appareils sont devenus plus autonomes et conscients d’eux-mêmes. Cela
conduit à l’apparition d’un grand nombre de machines dotées d’identifiants uniques et ca-
pables de transférer des données sur un réseau sans nécessiter d’interaction entre humains
ou entre ordinateurs. Ce phénomène est mieux connu sous le nom d’IdO (Internet des
Objets).
En fait, d’ici la fin de l’année 2030, environ 50 milliards de ces dispositifs IdO seront util-
isés dans le monde [1], créant ainsi un réseau massif de dispositifs interconnectés couvrant
plusieurs domaines tels que les réseaux de véhicules, les maisons intelligentes, la surveil-
lance de l’environnement, les soins médicaux et de santé, la sécurité et les transports.
D’autre part, pour assurer une communication fiable entre deux hôtes finaux distants,
nous devons disposer de ressources telles que la bande de fréquences. Cependant, ces
ressources radio sont limitées par rapport au nombre massif de dispositifs dans le sys-
tème de réseau actuel. Dans cette mesure, il faut partager efficacement ces ressources
disponibles entre les appareils des utilisateurs et les objets connectés pour répondre aux
exigences de service de chaque appareil connecté. Les exigences de chaque dispositif
peuvent se manifester différemment : Par exemple, certains appareils implémentent des
logiciels qui nécessitent un débit de données élevé (le nombre de paquets transmis par
unité de temps). D’autres applications sont plus sensibles aux temps d’attente, comme
les jeux vidéo et les vidéoconférences, et exigent alors une faible latence, c’est-à-dire que
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le temps entre l’envoi de données par un hôte final et la réception de données par l’autre
hôte final doit être aussi faible que possible.
Par ailleurs, d’autres applications de surveillance deviennent populaires et attirent l’attention
des chercheurs de nos jours. Dans ces applications, certaines entités centrales ont besoin
de recevoir des mises à jour fréquentes d’une information d’intérêt telle que la tempéra-
ture, la vitesse et ou la position dans les réseaux de véhicules, pour exécuter une tâche
donnée. Néanmoins, pour effectuer l’action appropriée, elle doit acquérir l’information
la plus récente et la plus fraîche transmise par les capteurs. Cette notion de fraîcheur
peut être quantifiée par l’âge de l’information (AdI). Afin d’offrir les services susmention-
nés dans les systèmes sans fil, une branche bien connue des problèmes d’optimisation,
à savoir les problèmes d’ordonnancement et d’allocation de ressources, a été développée
permettant ainsi de répondre aux exigences de tels services.
Le problème de l’ordonnancement a été largement étudié dans le passé, et plusieurs poli-
tiques d’allocation ont été développées pour différents contextes dans différents domaines.
Plus précisément, dans le domaine des Télécommunications et en particulier dans le do-
maine des réseaux sans fil, plusieurs politiques d’ordonnancement sont proposées pour
obtenir une bonne performance des réseaux et répondre aux exigences de service. En
outre, comme il a été mentionné précédemment, l’émergence de l’IdO et la croissance con-
sidérable des appareils des utilisateurs dans les réseaux 5G nécessitent le développement
des politiques d’allocation des ressources pour optimiser certaines métriques pertinentes
telles que le débit, la latence, le temps d’attente et l’âge de l’information lorsqu’il y a
un nombre massif de machines. Dans ce contexte, nous abordons dans notre thèse les
problèmes d’ordonnancement des utilisateurs et des canaux et nous nous focalisons sur
la minimisation du temps d’attente moyen dans les files d’attente et de l’âge moyen de
l’information. Plus précisément, nous étudions le problème suivant : Comment allouer K
ressources à N utilisateurs de manière à minimiser une certaine métrique, en particulier
Age de l’information et Temps d’attente.

1.2 Ordonnancement basé sur le temps d’attente
Aujourd’hui, surtout après les perturbations sociales et économiques généralisées causées
par la pandémie mondiale COVID-19, une solution alternative a été mise en place pour
éviter l’interruption de la communication entre les personnes, notamment dans les en-
treprises et les institutions publiques. En effet, des technologies telles que la VoIP, la
téléconférence et la télé-présence robotique ont été adoptées pour assurer une communi-
cation en temps réel entre les collaborateurs et les membres de la famille. Ces technologies
permettent un échange quasi simultané d’informations entre l’émetteur et le récepteur.
Dans cette mesure, comme nous vivons dans un monde où un nombre massif de machines
sont connectées, il s’avère pertinent de partager la bande passante du canal entre les
utilisateurs de manière optimale afin de réduire la latence. Cette métrique peut être
décomposée en deux variables : le temps d’attente dans la file d’attente et le délai de
propagation. La première concerne la couche logique, elle correspond au temps entre
l’arrivée du paquet dans la file d’attente de l’utilisateur et sa sortie de celle-ci. Quant au
délai de propagation, il correspond au temps que met le signal pour arriver au récepteur.
Dans cette thèse, nous nous concentrons davantage sur le contexte d’ordonnancement qui
minimisent la longueur moyenne de la file d’attente (et donc le temps d’attente moyen
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Figure 1.1 – Illustration du temps d’attente et du délai de propagation

de la file) dans un modèle de réseau en temps discret. Ceci dit, le délai de propagation
sera normalisé à l’unité de temps. Plus précisément, notre objectif est de trouver une
politique d’ordonnancement qui alloue les canaux disponibles à un sous-ensemble donné
d’utilisateurs de manière à minimiser la longueur moyenne des files d’attente des utilisa-
teurs, ce qui résulte, selon la loi de Little [2] en la minimisation du temps d’attente moyen.
Par conséquent, pour traiter ce problème, nous devons d’abord étudier l’évolution de la
file d’attente pour chaque utilisateur. Pour cela, nous donnons dans ce qui suit un bref
aperçu du modèle de file d’attente discrète considéré dans notre thèse en relation avec le
problème qui nous intéresse :
Notre système de files d’attente est composé de N files d’attente et de K canaux. Le nom-
bre de canaux est inférieur au nombre de files d’attente. De plus, chaque file d’attente a un
processus d’entrée et de sortie. Le processus d’entrée indique l’arrivée des paquets dans la
file, tandis que le processus de sortie désigne le départ des paquets de la file. Dans le cas
discret, le processus d’arrivée suit un processus discret iid (indépendant et identiquement
distribué). Plus précisément, le nombre de paquets arrivés à l’instant actuel ne dépend
pas de celui de l’instant précédent. De même, le processus de départ est un processus iid
discret dans le temps. Dans cette mesure, en désignant par Q(t), A(t), D(t), la longueur
de la file d’attente, le processus d’arrivée, et le processus de départ respectivement au
temps t, la longueur de la file d’attente évolue de façon stochastique comme suit :

Q(t+ 1) = max{Q(t)−D(t), 0}+ A(t)

En se basant sur l’équation ci-dessus, le processus Q(t) peut être modélisé comme une
chaîne de Markov puisque la valeur de Q(.) à l’instant suivant ne dépend que de l’état
actuel. Cette propriété est mieux connue comme loi sans mémoire. Dans cette mesure,
notre objectif est de sélectionner à chaque instant, K parmi N utilisateurs auxquels les
K canaux sont alloués de manière à minimiser l’expectation de la moyenne totale des
files d’attente de tous les utilisateurs (Figure 1.2). L’expression explicite du problème
susmentionné est fournie dans le chapitre 4.

1.3 Ordonnancement basé sur l’âge
Il est largement reconnu que l’IdO apportera une amélioration impressionnante dans
divers domaines et secteurs de nos activités quotidiennes. Dans cette mesure, il est en-
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Figure 1.2 – Modèle de files d’attente

visagé qu’un monde numérique futur soit composé de nombreux capteurs et dispositifs
connectés sans fil et à faible coût. Cela permettra aux moniteurs d’exécuter certaines
opérations en exploitant les informations acquises par des capteurs distants. Cependant,
l’information du côté des moniteurs doit être aussi fraîche que possible pour effectuer les
opérations appropriées. Cette notion de fraîcheur peut être capturée, comme il a été men-
tionné précédemment, par la notion d’âge de l’information. En effet, le concept d’âge de
l’information (AdI) a été introduit pour la première fois en 2011 dans le but de quantifier
la fraîcheur des informations dont nous disposons sur l’état d’une donnée d’intérêt. Plus
précisément, l’AdI peut être considérée comme la durée qui sépare l’instant de généra-
tion du dernier paquet reçu avec succès et l’heure actuelle. L’AdI a attiré de nombreux
chercheurs (par exemple, [3–6]) avec plus de 50 publications à ce jour en raison de sa
bonne adéquation avec le concept de fraîcheur de l’information. En effet, on peut remar-
quer que les métriques de débit, temps d’attente et la latence ne capturent pas la notion
d’intemporalité ou de fraîcheur de l’information comme le fait l’AdI. Pour souligner ce
fait, nous expliquons les deux approches suivantes où la source transmet des paquets sous
forme des mises à jour d’une certaine information.

• Maximisation du débit:
Pour maximiser le débit d’un hôte final donné, ou explicitement pour maximiser la
quantité de données envoyées par la source dans une unité de temps, nous devons
augmenter autant que possible le taux de génération de paquets pour tirer le meilleur
parti de la capacité du canal. L’inconvénient de cette méthode est qu’un délai de
retard sera encouru dans la file du canal. Par conséquent, le moniteur recevra des
paquets pour lesquels le temps de livraison est considérablement plus grand que leur
temps de génération. Donc, cette approche ne permet pas de satisfaire la propriété
de ponctualité du système de mise à jour
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Figure 1.3 – Illustration de l’évolution de l’AdI

• Minimisation du délai de transmission:
Nous expliquons maintenant pourquoi la minimisation du temps d’attente ne peut
pas capturer la notion de fraîcheur de l’information. En fait, la minimisation du
temps d’attente des paquets peut être obtenue en diminuant le taux de génération
des paquets pour alléger la charge du système. De cette façon, le temps entre la
génération de la mise à jour de l’état et sa réception par le moniteur sera réduit.
Cependant, le moniteur recevra des informations obsolètes sur l’état du système
puisque le taux de génération des mises à jour est faible.

C’est pour cette raison que la métrique de l’âge de l’information a été créée pour optimiser
le système de mise à jour des statuts. Mathématiquement, l’AdI est formulé comme suit:

δ(t) = t−max
i
{si : di ≤ t}

où si et di désignent respectivement le temps de génération du i-ième paquet de mise à
jour de l’information en question et son temps de livraison au moniteur. D’après cette
définition, on peut remarquer qu’effectivement δ(t) capture bien la notion de fraîcheur
puisqu’une petite valeur de δ(t) signifie que le moniteur possède une mise à jour récente,
et si δ(t) est grand, le moniteur possède une mise à jour obsolète.
Ces mises à jour peuvent être générées soit à la volonté de la source-capteur, soit spon-
tanément en fonction des facteurs externes tels que les changements climatiques ou les
variations de vitesse.
Dans cette mesure, en considérant le cadre du problème d’ordonnancement, dans le scé-
nario où la source distante peut générer des mises à jour à n’importe quel moment, il
semble que pour éviter une perte inutile d’énergie, la source ou le capteur ne devrait pas
générer de mise à jour s’il n’est pas autorisé à transmettre. Par conséquent, la manière
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pertinente et optimale de minimiser autant que possible l’énergie consommée par les cap-
teurs est de produire des paquets uniquement à la demande du moniteur, c’est-à-dire
lorsque celui-ci alloue le canal au capteur en question. Cela conduit également à réduire
l’AdI moyen, puisque le délai entre la génération et la réception du paquet transportant
l’information sur le processus d’intérêt est limité uniquement au délai encouru dans la
file du canal. De plus, en supposant qu’il n’y a pas de délai supplémentaire causé par le
canal, à l’exception de celui de la propagation du signal qui est normalisé à un, alors si et
di qui désignent le temps de génération et le temps de livraison du i-ième paquet de mise
à jour reçu avec succès par le moniteur respectivement, vérifient :

di = si + 1

Si le paquet est perdu pendant la transmission, la mise à jour correspondante est rejetée.
Par conséquent, il faut donner une nouvelle formulation mathématique qui correspond
au problème d’ordonnancement étudié dans notre thèse au chapitre 5. qui sera décrit en
détail dans le chapitre 5.1.2. L’évolution de l’AdI est :

δ(t) = t−max
i
{si : si ≤ t− 1} (1.1)

À la lumière de ce fait, on peut observer sur la figure 1.4 que lorsque une nouvelle mises à
jour de l’information en question est générée, ou de manière équivalente, lorsque le canal
est alloué au capteur concerné, la valeur de l’âge passe à 1 à l’instant suivant en supposant
que la transmission est réussie.

Figure 1.4 – Illustration de l’évolution de l’AdI adaptée au problème d’ordonnancement
étudié

Comme le nombre d’hôtes finaux connectés dans les réseaux a considérablement augmenté
alors que les ressources disponibles telles que les canaux de transmission sont toujours lim-
itées, il est intéressant d’étudier les problèmes d’allocation des ressources pour minimiser
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Figure 1.5 – Modèle du système d’âge

la métrique AdI dans un grand système de réseau. Dans cette optique, nous étudions
dans notre thèse le problème suivant : comment allouer les K canaux aux N utilisateurs
de manière à minimiser l’âge moyen total de l’information de tous les utilisateurs du sys-
tème (Figure 1.5). La dérivation mathématique du problème susmentionné est donnée au
chapitre 5.

1.4 Etat de l’Art

1.4.1 Problème d’ordonnancement: Minimisation du temps d’attente

Plusieurs travaux ont étudié les problèmes d’ordonnancement pour minimiser la métrique
de temps d’attente(par exemple : [7–12]). Dans la suite, nous citons quelques travaux
pertinents dans ce domaine particulier.

Ordonnancement tenant compte de l’énergie

L’économie d’énergie fait l’objet d’une grande attention dans les réseaux 5G. Cependant,
nous savons qu’il existe un compromis entre l’économie d’énergie et les garanties de per-
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formance, notamment les délais de bout en bout.
Dans cette optique, [13] étudie la transmission à puissance minimale sur des canaux sans
fil avec des contraintes sur le temps d’attente moyen. Ils proposent un ordonnanceur à
faible complexité qui a une performance quasi-optimale.
Concernant l’énergie qui permet à une machine de rester active, qu’elle soit en mode
transmission ou en mode veille, on peut considérer que la meilleure façon d’économiser
cette énergie consommée est d’éteindre les machines. Cependant, la transition entre les
modes actif et passive consomme une énergie considérable et augmente le délai. [14] étudie
ce problème dans un réseau multi-sauts et propose pour une topologie de ligne ainsi que
pour une topologie arbitraire, une politique d’ordonnancement qui est quasi-optimale en
ce qui concerne la métrique du délai pour une période active minimale par élément du
réseau.

Algorithmes d’apprentissage stochastiques

Un nombre important de travaux dans la littérature développent des stratégies d’allocation
à l’aide d’algorithmes d’apprentissage stochastiques [15–21] afin d’optimiser le temps
d’attente dans les files des utilisateurs dans le contexte de problèmes d’ordonnancement.
Cependant, les cadres des processus de décision de Markov (PDM) souffrent du fléau
de la dimensionnalité, ce qui conduit à des stratégies d’allocation des ressources com-
plexes. Par exemple, [12] étudie l’ordonnancement des ressources pour la minimisation
du temps d’attente dans les systèmes informatiques cellulaires multi-serveurs en périphérie
de réseau. Les auteurs proposent une solution basée sur une nouvelle fonction de Lya-
punov appelée fonction de Lyapunov basée sur le temps d’attente. Plus précisément,
ils conçoivent un algorithme d’ordonnancement basé sur cette nouvelle fonction afin de
dériver une solution approximative qui minimise à la fois la file d’attente et le délai de
propagation. Ils établissent ensuite que l’algorithme proposé donne de bonnes perfor-
mances par rapport à l’algorithme d’ordonnancement traditionnel basé sur la méthode
de Lyapunov. Cependant, l’algorithme dérivé reste sous optimal et sa complexité est
considérablement élevée.
Dans [18, 22], les auteurs tentent de minimiser le temps d’attente moyen dans les files
des utilisateurs en utilisant le processus de décision de Markov (PDM) et des outils
d’apprentissage stochastique. Cette méthode a également été adopté dans [15] pour traiter
le problème de l’allocation de puissance dans un système OFDM (Orthogonal Frequency
Division Multiplexing) avec pour objectif de minimiser le temps d’attente moyen des pa-
quets des utilisateurs dans les files d’attente. Cependant, la solution développée nécessite
une mémoire et une complexité de calcul élevées.

Politique de Whittle index pour minimiser le temps d’attente

Les politiques basées sur l’indice de Whittle ont été utilisées/développées dans les réseaux
sans fil dans le cadre de problèmes d’ordonnancement en raison de leur faible complexité
et de leurs bonnes performances dans la plupart des cas : [23–36]. Dans [24], une dériva-
tion des valeurs de l’indice de Whittle pour un modèle M/M/1 multi-classe simple a été
considérée (où un seul utilisateur peut être servi). Cependant, l’optimalité de la politique
d’indice de Whittle obtenue n’a pas été prouvée. Les auteurs dans [37] ont considéré le
problème de l’ordonnancement des projets/travaux dans lequel un effort est alloué à un
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nombre fixe de projets. La performance d’une politique basée sur l’indice de Whittle a
été analysée dans un modèle à temps continu.
Dans [38], une politique basée sur l’indice de Whittle a été dérivée pour un système de
file d’attente composé de plusieurs classes et serveurs où l’arrivé et le départ des paquets
évoluent selon un processus de naissance et de mort. Dans [39], une politique d’indexation
optimale appelée loi cµ généralisée (Gcµ) est développée dans le contexte d’un régime de
trafic intense avec un coût de temps d’attente convexe. En outre, contrairement à la
politique de la règle cµ, [40] établit l’optimalité de la règle cµ-généralisée (Gcµ) même
avec plusieurs serveurs.
Dans [24], les auteurs calculent la politique d’indexation de Whittle pour un système de
file d’attente comportant plusieurs classes avec des fonctions de coût générales. Nous
notons que pour ces travaux cités, contrairement à notre modèle, le temps a été considéré
comme étant continu.

1.4.2 Problème d’ordonnancement: Minimisation de l’Age

Parmi les premiers travaux qui étudient le problème de minimisation de l’AdI, on trouve
celui de Kaul, Gruteser et Yates [4]. Ils considèrent un modèle de système où une source
transmet des paquets contenant des mises à jour d’une information particulière à une
destination. Le canal est représenté par une simple file d’attente. Dans ce travail, les
auteurs montrent que ni l’envoi de mises à jour à une forte cadence ni l’envoi de mises
à jour à une faible cadence ne permettent d’avoir une livraison opportune des paquets
transmis. En effet, la solution optimale n’est pas triviale, comme on peut le prévoir.
Dans [41], les auteurs étudient l’impact de la salle d’attente sur l’AdI dans un système de
file d’attente où plusieurs flux d’information partagent un service commun avec une seule
salle d’attente qui peut accueillir au plus un paquet. Ces flux ont des priorités différentes.
Les auteurs ont trouvé le taux d’arrivée optimal des mises à jour qui minimise l’âge moyen
de chaque flux.
Dans le cadre des problèmes d’ordonnancement, de nombreux travaux (par exemple,
[42–48]) ont étudié ce type de problèmes afin de minimiser l’âge de l’information dans
des contextes variés. Dans cette optique, nous citons dans ce qui suit quelques travaux
intéressants liés à notre domaine d’études.

Ordonnancement tenant compte de l’énergie

[47] étudie un scénario de détection en temps réel sous contraintes d’énergie et de batterie.
Les auteurs trouvent une politique de seuil optimale en terme d’AdI en fonction de l’énergie
et des états d’âge actuels estimés. Un autre travail intéressant dans ce domaine est [48], où
les auteurs étudient un problème d’ordonnancement pour minimiser l’AdI en considérant
que le taux de mise à jour de la source ne peut pas dépasser une certaine limite prédéfinie
en raison de limitations énergétiques. Ils fournissent une dérivation analytique de la
solution optimale lorsque les statistiques du canal sont connues.

Algorithmes d’apprentissage stochastiques

De nombreux algorithmes ont été développés pour trouver l’ordonnancement optimal par
rapport à l’AdI en se basant sur des outils d’apprentissage stochastiques. Par exemple, [49]
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propose un algorithme d’apprentissage par renforcement à coût moyen qui apprend les
paramètres du système, à savoir les statistiques de canal et de récolte d’énergie, afin
d’obtenir la politique optimale.
Dans [50], les auteurs considèrent le problème de l’ordonnancement de plusieurs flux
desservis par un seul serveur. Ils utilisent des méthodes de gradients et de Q-Learning
pour obtenir des décisions d’ordonnancement qui résistent aux conditions du réseau et
aux processus d’arrivée des paquets.
D’autre part, une approche d’approximation du processus de décision de Markov (PDM)
a été adoptée pour proposer des algorithmes d’ordonnancement en ligne et hors ligne dans
le cas asymétrique dans [44], qui s’avèrent asymptotiquement optimaux.

Politique de Whittle index pour minimiser AdI

Comme indiqué dans le chapitre 1.4.1, la politique de l’indice de Whittle a été large-
ment appliquée au traitement des problèmes d’ordonnancement en raison de ses avantages
par rapport aux autres politiques d’ordonnancement, à savoir sa faible complexité et ses
bonnes performances. Plus précisément, la politique de l’indice de Whittle est utilisée
dans le cadre du problème du bandit sans repos qui sera détaillé au chapitre 3. L’une
des instances les plus connues de ce problème est : Comment allouer M ressources à N
utilisateurs (M inférieur à N) de manière à minimiser une métrique donnée qui évolue de
manière stochastique. [43] traite ce problème susmentionné. Sachant que le RBP (Rest-
less Bandit Problem) est un cas particulier de PDM (Problème de décision de Markov)
dont la solution est connue pour être inatteignable dans de nombreux cas, [43] ont prouvé
qu’un algorithme glouton est optimal lorsque les utilisateurs ont des statistiques de canal
identiques, tandis que pour le cas asymétrique, ils proposent comme solution la politique
d’indexation de Whittle qui reste sous-optimale. Dans [45], les auteurs cherchent à min-
imiser l’AdI moyen total, sous des arrivées aléatoires en adoptant une politique basée
sur l’indice de Whittle. En conséquence, ils dérivent une forme explicite et simple de la
politique de l’indice de Whittle. Ils donnent en outre quelques résultats numériques pour
montrer la performance de la politique proposée. Cependant, ils ne prouvent pas son
optimalité. Dans cette mesure, nous adoptons dans notre travail, cette politique perfor-
mante, et nous établissons en outre son optimalité dans le régime asymptotique lorsque
le nombre d’utilisateurs augmente.

1.5 Contributions et Aperçu de la thèse
Cette thèse est structurée en trois chapitres. Plus précisément :

• Chapitre 3: Dans ce chapitre, nous expliquons en détail la méthodologie appliquée
pour obtenir la politique de l’indice de Whittle (WIP). Plus précisément, nous ex-
pliquons en détail les étapes pour obtenir les indices de Whittle et nous exposons la
méthode utilisée pour montrer l’optimalité de WIP dans le régime multi-utilisateurs.

• Chapitre 4: Contrairement à [24,37–40], nous abordons dans ce chapitre un problème
d’ordonnancement en considérant un modèle en temps discret. Plus précisément,
nous étudions le problème de minimisation de temps d’attente dans un modèle
de système de file d’attente en temps discret. Dans cette mesure, nous étudions
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un problème d’allocation de ressources dans lequel une station de base alloue M
canaux à N files d’attente d’utilisateurs à chaque instant en fonction de la politique
d’ordonnancement considérée. Les files d’attente évoluent selon un processus de
Markov. En outre, les utilisateurs ou les files d’attente 1 sont divisés en classes
en fonction des paramètres du système, à savoir le taux d’arrivée des paquets et
le taux de transmission des paquets, qui diffèrent d’une classe à l’autre. Notre
objectif est de trouver la politique adéquate qui minimise la longueur moyenne totale
attendue de la file d’attente de tous les utilisateurs sur le long terme. Le problème
susmentionné peut être considéré comme un problème de bandit sans repos dont la
solution est connue pour être inaccessible. Pour cela, nous appliquons la politique
peu complexe et très performante, la politique de l’indice de Whittle (WIP) à notre
modèle spécifique. Nous pouvons résumer nos contributions en deux points :

– Nous dérivons la politique de l’indice de Whittle pour deux scénarios : files
d’attente de taille infinie, et files d’attente de taille restreinte (inférieure au
taux de transmission).

– Nous établissons l’optimalité locale et globale du WIP dans le régime asymp-
totique lorsque le nombre d’utilisateurs est très grand.

• Chapitre 5: Dans ce chapitre, nous appliquons la politique de l’indice de Whittle
dans le contexte de l’âge de l’information (AdI). Nous considérons un problème
d’ordonnancement avec des canaux non fiables. Nous considérons plusieurs classes
d’utilisateurs telles que chaque classe est caractérisée par ses propres statistiques de
canal. Par conséquent, notre objectif est de minimiser l’âge moyen total attendu à
long terme de tous les utilisateurs. Notre principale contribution dans ce travail est
la preuve de l’optimalité asymptotique pour les deux scénarios :

– AdI évolue dans un espace d’état fini.
– AdI évolue dans un espace d’état infini.

Pour le premier scénario, nous fournissons une analyse rigoureuse afin d’établir
l’optimalité locale asymptotique basée sur certaines techniques mathématiques. Pour
le second scénario, nous adoptons une approche innovante et originale pour établir
l’optimalité globale asymptotique de la politique de l’indice de Whittle. Cette ap-
proche repose essentiellement sur le critère de Cauchy : au lieu de prouver qu’une
fonction donnée f(·) converge vers un point fixe, nous montrons que les termes de
f(·) se rapprochent lorsque t croît. Cette méthode sera détaillée dans le chapitre 5.
Enfin, nous fournissons quelques résultats numériques qui confirment notre analyse
technique.

1Les termes utilisateurs et files d’attente sont interchangeables dans ce chapitre

17





Chapter 2. Introduction

Chapter 2

Introduction

2.1 Motivation

In the last century, the world has witnessed a radical change in communication thanks to
the apparition of electrical and electromagnetic technologies such as phones, televisions,
and computers. This astounding transformation has its origin in the pioneering develop-
ments in wireless communications by Nikola Tesla, who is known to be the inventor of
the radio. The telecommunication technologies have thenceforth known an exponential
advancement in terms of performance, reachability, and quantity to the extent that today,
we live in a fully connected world where each human-being can communicate with the
other human being regardless of their locations. Besides, according to GSMA real-time
intelligence data, the number of mobile device users worldwide today surpasses 5 billion.
That is 66.5% of the world’s population.
On the other side, due to the emergence of AI (Artificial Intelligence), the devices became
more autonomous and self-aware. That leads to the apparition of a huge number of
machines provided with unique identifiers and can transfer data over a network without
requiring human-to-human or human-to-computer interaction. This is better known by
IoT (Internet of Things). In fact, by the end of 2030, around 50 billion of these IoT
devices will be in use around the world [1], creating a massive web of interconnected
devices covering several domains such as vehicular network, smart homes, environmental
Monitoring, Medical and health-care, security, transportation.
On the other hand, to ensure reliable communication between two distant end-hosts, we
need to afford resources such as frequency band. However, these radio resources are limited
compared to the massive number of devices in the network system nowadays. To that
extent, one should effectively share these available resources between users’ devices and
connected objects to meet the service requirement for each connected device. Each device’s
requirements can be manifested differently: For instance, some devices implement software
that needs a high data rate (the number of transmitted packets per time unit). Other
applications are more delay sensitives, such as video games and video conferencing, and
then require low latency, i.e., the time between sending data by one end-host and receiving
data by the other end-host should be as low as possible. Besides, other monitoring
applications are becoming popular and attract the attention of researchers nowadays.
In such applications, some central entities need to receive frequent updates about an
information of interest such as temperature, velocity and position in vehicular networks,
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to execute a given task. Nevertheless, to perform the appropriate action, it needs to
acquire the up-to-date and the freshest information from the sensors. This notion of
freshness can be captured by Age of Information (AoI).
In order to offer the aforementioned services in wireless systems, a well known branch
of optimization problems, namely scheduling and resource allocation problems, has been
developed allowing thus to meet the requirements of such services.
The scheduling problem has been widely studied in the past, and several allocation poli-
cies have been developed for various contexts in different fields. Specifically, in the field of
Telecommunication and precisely in wireless network domain, several scheduling policies
are proposed to achieve a good performance of networks and meet the service require-
ments. Moreover, as it was mentioned before, the emergence of IoT and the considerable
growth of users’ handsets in 5G networks requires the development of resource allocation
frameworks to optimize some relevant metrics such as throughput, latency, queuing delay,
and age of information when there are a massive number of machines. In this context, we
tackle in our thesis users and channels scheduling problems and we focus on minimizing
the average delay and the average age of informaion. More precisely, we study the follow-
ing problem: How to allocate K resources to N users in such a way to minimize a certain
metrics, in particular Age Of Information and Queuing Delay.

2.2 Delay-based Scheduling

Today, especially after the widespread social and economic disruption caused by the global
pandemic COVID-19, an alternative solution has taken place to avoid interruption of
communication between people, particularly in companies and state institutions. Indeed,
technologies such as VoIP, teleconferencing, and robotic telepresence have been adopted
to ensure real-time communication between the collaborators and family members. These
technologies allow a near simultaneous exchange of information from the sender to the
receiver in a connection with negligible latency. To that extent, as we live in a world
where a massive number of machines are connected, it turns out to be relevant to share
the channel bandwidth between users in an optimal way in order to reduce the latency.
This metric can be decomposed into two variables: queuing delay and propagation delay.
The first one concerns the logical layer, it refers to the time between the packet arrival
in user’s queue and its departure from it. As for the propagation delay, it refers to the
amount of time it takes for the signal to travel from the sender to the receiver. In this
thesis, we focus more on scheduling frameworks that minimize the average queuing length
(and hence the average queuing delay) in a discrete time network model. Having said that,
the propagation delay will be normalized to the time unit. Specifically, our objective is
to find a scheduling policy that allocates the available channels to a given subset of users
in such a way to minimize the average queue length of the users which results, according
to Little’s Law [2] in the minimization of the average delay. Therefore, to deal with this
problem, we need first to investigate the evolution of the queue for each user. To proceed
so, we give in the following a brief insight about the discrete queuing model considered
in our thesis related to our problem of interest:
Our queueing system is composed byN queues andK channels. The number of channels is
less than the number of queues. Furthermore, each queue has an input and output process.
The input process indicates the packets’ arrival to the queue, while the output process
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Figure 2.1 – Illustration of Queuing and Propagation Delay

designates the packets’ departure from the queue. In the discrete case, the arrival process
follows a discrete iid (independent and identically distributed) process. Specifically, the
number of arrived packets at the current time doesn’t depend on that at the previous time
slot. Likewise, the departure process is a discrete iid process over time. To that extent,
denoting by Q(t), A(t), D(t), the queue length, the arrival process, and the departure
process respectively at time t, the queue or the buffer length evolves stochastically as
follows:

Q(t+ 1) = max{Q(t)−D(t), 0}+ A(t)

Figure 2.2 – Queuing System Model

Based on the above equation, the process Q(t) can be modeled as a Markov chain since
the value of Q(.) at the next time slot depends only on the current state. This property
is better known as memoryless. To that extent, our goal is to select per each time slot
K among N users to which the K channels are allocated in such a way to minimize the
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total expected average queues of all users. The explicit expression of the aforementioned
problem is provided in Chapter 4.

2.3 Age-based Scheduling
It is widely recognized that IoT will bring an impressive enhancement in various areas
and domains of our daily activities. To that extent, it is envisioned that a future digital
world will be composed of numerous wireless low-cost connected sensors and devices. This
will allow to the monitors to execute some operations exploiting the information acquired
remotely from the sensors. Meanwhile, the information at the monitors side should be as
fresh as possible to perform the appropriate and convenient operations. Accordingly, as it
was mentioned previously, the notion of freshness can be captured by the notion of AoI.
Indeed, the concept of Age of Information (AoI) was introduced the first time in 2011
in [51] to quantify the freshness of the information that we have about the status of a given
data of interest. More specifically, AoI can be viewed as the duration which separates the
generation of the last successfully received packet’s time-stamp and the current time.
AoI has attracted many researchers (for instance, [3–6]) due to its well-fitting with the
concept of freshness of information. Indeed, one can remark that the metrics of through-
put, delay, and latency don’t capture the notion of timeless or freshness of the information
as AoI does. To highlight this fact, we explain the two following approaches where the
source transmits packets as status updates.

• Throughput maximization:
To maximize the throughput of a given end-host, or explicitly to maximize the
amount of data sent by the source within a unit of time, we need to increase as much
as possible the generation rate of packets to make the most of the canal capacity.
The shortcomings of this is high delays will be incurred in channel buffer. Therefore,
the monitor will receive packets for which the delivery time is considerably larger
than their generation time. As a consequence, this approach falls short in satisfying
the timeliness property of the status updates system.

• Delay minimization:
We now explain why the delay minimization cannot capture the notion of freshness
of information. In fact, minimizing the packets’ delay can be achieved by decreasing
the generation rate of packets to alleviate the burden on the system. By doing so, the
time between the generation of the status update and its reception by the monitor
will be reduced. However, the monitor will receive outdated status information
about the system since the updates generation rate is low.

For this reason, the Age of Information metric was arisen to optimize the status updates
system. Mathematically, AoI is formulated as follows:

δ(t) = t−max
i
{si : di ≤ t}

where si and di refer to the generation time of the i-th status update packet and the
delivery time to the monitor respectively. From this definition, one can notice that ef-
fectively δ(t) captures well the notion of the freshness since a small value of δ(t) implies
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that the monitor possess a fresh status update, and if δ(t) is large, the monitor possess
an outdated status update.

Figure 2.3 – Illustration of the AoI evolution

These status updates can be either generated at the will of the source-sensor or sponta-
neously depending on external factors such as climate change or velocity variation.
To that extent, considering the scheduling problem’s framework, in the scenario where the
remote source can generate status updates at any desired time instance, it sounds that
to avoid a useless waste of energy, the source or the sensor should not generate a status
update if it is not allowed to transmit. Subsequently, the pertinent and the optimum
way to minimize as possible the energy consumed by sensors is to produce packets only
at the request of the monitor, i.e., when this later allocates the channel to the sensor in
question. This leads also to reduce the average AoI, since the delay between the generation
and the reception of the packet carrying the information about the process of interest is
restricted only to the delay incurred in the channel buffer. Moreover, assuming that there
is no additional delay caused by the channel except that of signal’s propagation which is
normalized to one, then si and di that refer to the generation time slot and delivery time
slot of the i-th status update packet successfully received by the monitor respectively,
verify:

di = si + 1

If the packet is lost during the transmission, then the corresponding status update is
discarded.
Therefore, one should give a new mathematical formulation that fits with the scheduling
problem studied in our thesis in Chapter 5. Accordingly, the evolution of AoI is:

δ(t) = t−max
i
{si : si ≤ t− 1} (2.1)

23



Chapter 2. Introduction

In light of that fact, one can observe in figure 2.4 that when the new status updates is
generated, or equivalently, when the channel is allocated to the concerned sensor, the value
of the age goes to 1 at the next time slot assuming that the transmission is successful.

Figure 2.4 – Illustration of the AoI evolution adapted to the scheduling problem of interest

As the number of connected end-hosts in the networks has significantly increased while
the available resources such as transmission channels are still limited, it is worthwhile to
study the resource allocation problems to minimize AoI metric in a large network system.
To that extent, we study in our thesis the following problem: how to allocate the K
channels to the N users in such a way to minimize the total average age of information
of all users of the system. The mathematical derivation of the aforementioned problem is
given in Chapter 5.
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Figure 2.5 – Age system model

2.4 State of the Art

2.4.1 Scheduling Problem: Delay Minimization

Several works have studied the scheduling problems for minimizing the delay metric (for
instance [7–12]). In the sequel, we cite some relevant works in this particular area.

Energy-aware scheduling

Energy conservation is getting great attention in 5G networks; however, as we know
that there is a trade-off between saving energy and provisioning performance guarantees,
especially end-to-end delays.
To that extent, [13] studies minimal power transmission of bursty sources over wireless
channels with constraints on mean queuing delay. They propose a low-complexity sched-
uler that has a near-optimal performance.
Regarding the energy that allows a machine to stay active whether it is in a transmit
mode or idle mode, on can consider that the best way to save this power consumed is
to turn off the machines. However, transitioning between the active and sleeping modes
consumes considerable power and increases the delay. [14] investigates this problem in a
multi-hop network and proposes for a line topology as well as for an arbitrary topology, a
scheduling policy that is near-optimal with regards to delay metric for a minimum active
period per element of the network.

Stochastic learning algorithms

Significant number of works in the literature use Markov Decision Process (MDP) frame-
works and develop allocation strategies using stochastic learning algorithms [15–21], (e.g.,
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by using value iteration, policy iteration, etc.) in order to optimize the delay in users’
queues in scheduling problem backgrounds. However, MDP frameworks suffer from the
curse of dimensionality, which leads to complex resource allocation strategies. For in-
stance, [12] studies resource scheduling for delay minimization in multi-server cellular
edge computing systems. The authors propose a solution based on a new Lyapunov
function called the delay-based Lyapunov function. Specifically, they design a scheduling
algorithm based on this new function to derive an approximate solution that minimizes
both queuing and propagation delay. They further establish that the proposed algorithm
gives good performance compared to the traditional Lyapunov method based schedul-
ing algorithm. However, the algorithm derived still sup-optimal and its computational
complexity is considerably high.
In [18, 22], the authors try to minimize the average delay in users’ queues using Markov
Decision Process (MDP) and stochastic learning tools. It has been also adopted in [15]
to deal with the problem of power allocation in an OFDM (Orthogonal Frequency Di-
vision Multiplexing) system with the goal being to minimize the average delay of the
users’ packets in the queues. However, the developed solution requires high memory and
computational complexity.

Whittle index for minimizing delay

Whittle index-based policies have been used/developed in wireless networks in the frame-
work of scheduling problems due to its low complexity and its good performance in most
cases [23–36]. In [24], a derivation of the Whittle index values for a simple multiclass
M/M/1 model has been considered (where only one user can be served). However, the
optimality of the obtained Whittle index policy has not been proved. The authors in [37]
have considered the problem of project/job scheduling in which an effort is allocated to a
fixed number of projects. The performance of a Whittle index-based policy was analyzed
under a continuous time model.
Whittle index policy has been derived for a birth-and-death multi-class multi servers queue
in [38]. In [39], an optimal index policy called Generalizedcµ-rule (Gcµ) is developed in
the context of heavy-traffic regime with convex delay cost. Furthermore, in contrast to cµ
rule policy, [40] establishes the optimality of Generalizedcµ-rule (Gcµ) even with multiple
servers.

2.4.2 Scheduling Problem: Age Minimization

Among the earliest works that study the AoI minimization problem is that of Kaul,
Gruteser, and Yates [4]. They consider a system model where a source is transmitting
packets containing status updates to a destination. The channel is represented by a simple
queue. In that work, the authors show that neither sending updates as fast as possible
nor as low as possible can achieve timeliness goal. Indeed, the optimal solution is not
trivial, as one can predict.
In [41], the authors investigate the impact of the waiting room on AoI in a priority-based
queuing system where multiple information streams share a common service facility with
null or one waiting room. These streams have different priorities. The authors found the
optimal arrival rate of status updates that minimizes the average age of each stream.
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In scheduling problems, a wide range of works (for instance, [42–48]) have studied these
types of problems in order to minimize the age of information in various contexts. To
that extent, we cite in the following some interesting works related to our field of studies.

Energy-aware scheduling

[47] studies a real-time sensing scenario under energy constraints and battery limitations.
The authors find an age-optimal threshold policy in function of the energy and the esti-
mated current age states. Another interesting work in this field is [48], where the authors
study a scheduling problem for minimizing AoI considering that the source’s update rate
cannot exceed a certain predefined limit due to energy limitations. They provide the
analytical derivation for the optimal solution when the channel statistics are known.

Stochastic learning algorithm

Many algorithms have been developed to find the optimal scheduling with respect to AoI
based on stochastic learning tools. For instance, [49] proposes an average-cost reinforce-
ment learning algorithm that learns the system parameters, namely channel and energy
harvesting statistics, in order to get the optimal policy.
In [50], the authors consider the problem of AoI-optimal scheduling of multiple flows
served by a single server. They employ Policy Gradients and Deep Q-Learning methods
to achieve scheduling decisions that are resilient to network conditions and packet arrival
processes.
On the other hands, a Markov Decision Process (MDP) approximation approach was
adopted to propose both off-line and on-line scheduling algorithms in the asymmetric
case in [44], which turns out to be asymptotically optimal.

Whittle index policy for minimizing AoI

As it was indicated in 2.4.1, Whittle index policy has been widely applied when dealing
with scheduling problem due to its advantages comparing with other scheduling policies,
namely its low complexity and its well performance. Precisely, Whittle index policy is
used in Restless Bandit Problem framework which will be detailed in Chapter 3. One of
the most known instance of this problem is: How to allocate M resources to N users (M
less than N) in a such a way to minimize a given metric that evolves stochastically.
[43] tackles this aforementioned problem. Given that RBP is a special case of MDP
(Markov decision problem) whose solution is known to be unreachable for many cases, [43]
have proved that a greedy algorithm is optimal when the users have identical channel
statistics, while for the asymmetric case, they propose as solution Whittle’s index policy
which remains sub-optimal. In [45], the authors aim to minimize the total average AoI,
under random arrivals by adopting a Whittle’s index-based policy. Accordingly, they
derive a simple closed form of the Whittle index policy. They give in addition some
numerical results to showcase the performance of the proposed policy. Meanwhile, they
don’t prove its optimality. To that extent, we adopt in our work, this well-performing
policy, and we further establish its otpimality in the asymptotic regime when the number
of users scales.
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2.5 Contributions and overview of the thesis
The remainder of this thesis is structured in tree chapters. Specifically:

• Chapter 3: In this chapter, we explain in depth the methodology applied to get the
Whittle index policy (WIP). Specifically, we explain in details the steps to get the
Whittle indices and we lay out the method used to show the optimality of WIP in
the the many-users regime.

• Chapter 4: Unlike [24,37–40], we tackle in this Chapter a scheduling problem consid-
ering a discrete time model. Specifically, we study the delay minimization problem
in discrete time queuing system model. To that extent, we investigate a resource al-
location problem in which a base station allocatesM channels to N users’ queues at
each time slot depending on the scheduling policy considered. The queues evolves
according to a Markov process. Furthermore, the users or queues 1 are divided
into classes depending on the system parameters namely, packet’s arrival rate and
packet’s transmission rate which differ from one class to another one. Our goal is to
find the adequate policy that minimize the long-run total expected average queue
length of all users. This aforementioned problem can be cast as Restless Bandit
Problem whose solution is known to be unreachable. For that purpose, we apply
the low-complex and the well-performing policy, Whittle index policy (WIP) to our
specific system model. In a nutshell, we can summarize our contributions into two
following points:

– We derive the Whittle index policy for two scenarios: large buffer size (infinite
size), and tight buffer size (less than the transmission rate).

– We establish the local and the global optimality of WIP in the asymptotic
regime when the number of users is very large.

• Chapter 5: In this chapter, we apply Whittle index policy in the context of the
age of information (AoI). We consider a scheduling problem with unreliable chan-
nels. We consider several classes of users such that each class is characterized by
its own channel statistics. Accordingly, our aim is to minimize the long-run total
expected average age of all users. Our main contribution in this work, is the proof
of asymptotic optimality for both scenarios which are:

– AoI evolves in finite state’s space.
– AoI evolves in infinite state’s space

For the first scenario, we provide the rigorous analysis in order to establish the
asymptotic local optimality based on some mathematical techniques. Whilst for
the second scenario, we adopt an innovative and original approach to make out the
asymptotic global optimality of Whittle index policy. This approach relies essen-
tially on Cauchy criterion: instead of proving that a given function f(·) converges to
a fixed point, we show that the terms of f(·) are getting closer when t grows. This
method will be detailed in Chapter 5. Finally, we provide some numerical results
that bear out our technical analysis.

1The terms users and queues will be used interchangeably in this Chapter
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Chapter 3

Methodology

In this thesis, we tackle users and channels scheduling problems related to wireless com-
munication, and we aim to develop a policy called Whittle Index Policy (WIP) that turns
out to be optimal under some conditions regarding our metrics of interest, which are
Queuing Delay and AoI. Our problem consists of how to allocate channels to a given
subset of users in such a way to optimize the considered metric.
Specifically, from a mathematical point of view, we consider a discrete-time model and
an MDP (Markov decision problem) since the system evolves stochastically depending
on the system parameters and the policy implemented. Therefore, our purpose will be
to minimize the metric of interest that can be viewed as a stochastic objective function,
precisely, penalty or cost function that takes discrete values, by adopting the suitable
allocation policy. We develop a low complex heuristic policy called Whittle Index Policy,
which is optimal when the number of users is large. To that extent, in this chapter, we
introduce first the Restless Bandit Problem, then we show that our problem in question is
a Restless Bandit Problem (RPB). After that, we give in details the steps to get Whittle’s
index policy for this kind of problems. Finally, we explain the procedure used to establish
the optimality of Whittle’s index policy.

3.1 Restless Bandit Problem

The Multi-armed problem (MAP) models an agent that attempts to acquire knowledge
and share or allocates the available resources among the competing bandits in way to
optimize certain value function. The mathematical model can be described as follows:
There are N bandits and only one bandit can be activated at each time slot. A bandit k
is characterized by: the state space Sk, an action ak that equals to 0 or 1; 0 and 1 refer
to the passive and the active action respectively, the transition probability pk(s, s′) where
(s, s′) belongs to Sk × Sk, and the cost function Ck(s, a) that depends on the state of
bandit k which is s as well as the action taken a. Therefore, the role of a given policy
φ is to prescribe the active action to one of the bandits while prescribing the passive
action to others. We denote by Φ, the broad class of scheduling policies that make a
scheduling decision based on the history of observed bandit states and scheduling actions.
We let sφk(t) be the state of bandit k under policy φ at time slot t. We denote further
by aφk(t) the action taken with respect to bandit k under policy φ. Given an initial state
s(0) = (s1(0), . . . , sK(0)), the optimal policy φ aims to minimize the long-run expected
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average cost incurred by the system:

min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

N∑
k=1

Ck(s
φ
k(t), aφk(t)) | s(0)

]
(3.1)

Under the following constraint that must be satisfied per each time slot:
N∑
k=1

aφk(t) ≤ 1, for all t (3.2)

MAP has been originally considered by scientists in the second world war, and it has
getting more attention after the breakthrough result of Gittin. This later found an optimal
policy called Gittin index policy for the MAP problem [52]. However, the shortcoming
of the MAP is that M=1 and the bandits for which the action prescribed is the passive
action, stay idle, which is not often the case in practice. Thus, Whittle introduces RBP
whereM can be higher than one, and all bandits evolve whether the action taken is active
or not. That is, the constraint on the available resources per each time slot has a more
general expression:

N∑
k=1

aφk(t) ≤M, for all t (3.3)

3.2 System model of interest
In this thesis, as we have already explained in the Introduction, we are interested in
minimizing the average delay and the average age. For both cases, we considerM channels
that must be allocated to N users in such a way to minimize the long-run expected average
cost. The action of assigning channel to a given user is the active action. Regarding the
first metric, the cost function will be the queue state that evolves stochastically depending
on the system’s parameters and the action taken. For the second metric AoI, the cost
function will be the age of information that also evolves stochastically depending on the
system’s parameters and the chosen action. After all, we end up with RBP for both
metrics.

3.3 Lagrangian approach and Whittle index policy
RBPs are PSPACE-Hard (see Papadimitriou et al. [53]), and hence their optimal solution
is out of reach. One should, therefore, proposes sub-optimal policies when dealing with
such problems. In this thesis, we approach the considered RBP problem using the La-
grangian relaxation technique, which consists of relaxing the constraint on the available
resources. Instead of having the constraint on the number of available channels satisfied
in every time slot, we consider that it has to be met on average. This relaxation allows us
to decompose the large relaxed optimization problem into much simpler one-dimensional
problems. Based on the optimal solution of the one-dimensional relaxed problems, we de-
velop a heuristic for the original (i.e., non-relaxed) optimization problem. This heuristic
is known as the Whittle’s index policy (WIP). In this section, we will explain the La-
grangian relaxation method. Then we expose some techniques used to solve RBP based
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on the Lagrangian relaxation approach, and we see why these techniques are not feasible
in practice. After that, we lay out the steps that allow us to get the Whittle’s index
Policy.

3.3.1 Relaxed Problem and Dual Problem

The Lagrangian relaxation consists of relaxing the constraint of the available resources.
Namely, we consider that the constraint in Equation (3.3), has to be satisfied on average
and not in every decision epoch, that is,

lim sup
T→∞

1

T
E

[
N∑
k=1

aφk(t)

]
≤ αN. (3.4)

where α is the proportion of users that are scheduled (αN = M). Note that, contrary
to the strict constraint in Equation (3.3), the relaxed constraint allows the activation of
more than α fraction of users in each time slot. If we note W the Lagrangian multiplier
for the constrained problem, then the Lagrange function equals to:

f(W,φ) = lim sup
T→∞

1

T
E

[
T−1∑
t=0

N∑
k=1

(Ck(s
φ
k(t), aφk(t)) +Waφk(t)) | s(0)

]
−WαN,

where W can be seen as a subsidy for not transmitting. Therefore, the dual problem for
a given W is

min
φ∈Φ

f(W,φ). (3.5)

3.3.2 Problem Decomposition

In this section, we show that the relaxed problem can be decomposed into N one-
dimensional subproblems. To do that, we first get rid of the constants that do not depend
on φ and reformulate the problem as follows,

min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

N∑
k=1

(Ck(s
φ
k(t), aφk(t)) +Waφk(t)) | s(0)

]
. (3.6)

One can see that the solution of this problem is the solution of the well known Bellman
equation, see Ross [54], namely,

V̄ (s) + θ = min
a
{
N∑
k=1

C ′k(sk, ak) +
∑
s′

Pr(s′|s,a)V̄ (s′)}, (3.7)

for all s = (s1, . . . , sN), and a = (a1, . . . , aN), with ak ∈ {0, 1} the action taken with
respect to bandit k. In Equation (3.7), V (·) represents the Value Function, θ is the optimal
average cost and C ′k(sk, ak) = Ck(sk, ak) +Wak is the holding cost. The optimal decision
for each state s can be obtained by minimizing the right hand side of Equation (3.7).
We now show that the problem can be decomposed into N independent subproblems
by decomposing V̄ (·) into Value Functions for bandit k, i.e., Vk(·). In other words, the

31



Chapter 3. Methodology

optimal decision a to Problem (3.7) is a vector composed of elements ak, where each ak
is nothing but the optimal decision that solves the one-dimensional Bellman equation:

Vk(sk) + θk = min
ak
{C ′k(sk, ak) +

∑
s′k

Pr(s′k|sk, ak)Vk(s′k)}. (3.8)

This is proven in the next proposition.

Proposition 3.1. Let Vk(·) be the optimal value function that solves Equation (3.8), and
let V̄ (·) be the optimal value function that solves Equation (3.7), then:

V̄ (·) =
N∑
k=1

Vk(·)

Proof. See appendix A.1

In that sense, resolving (3.8) is equivalent to find an optimal solution of the following
problem:

min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

(Ck(s
φ
k(t), aφk(t)) +Waφk(t)) | sk(0)

]
. (3.9)

Since we deal with the one-dimensional problem, we drop the bandit’s index for ease of
notation until section 3.4. The solution of Bellman equation (3.8) V (·), can be obtained
by the well known Value iteration algorithm, which consists in updating Vt(·) using the
following equation:

Vt+1(s) = min
a
{C ′(s, a) +

∑
s′

Pr(s′|s, a)Vt(s
′)} − θ (3.10)

We consider that the initial value function V0 equals to 0 for any s, (i.e. for all s V0(s) = 0).
In fact, after many iteration Vt(·) will converge to the unique fixed point of the equation
(3.8) called V (·) under some conditions (see Puterman [55]). To that extent, the Value
iteration algorithm stops when the number of iteration is large enough (when Vt(·) is
nearly constant). We consider that tinf is the stopping time. As a result, the optimal
solution φ∗ using Value iteration algorithm, verifies for all state s:

φ∗(s) = arg min
a
{C ′(s, a) +

∑
s′

Pr(s′|s, a)Vtinf (s
′)} (3.11)

Dynamic programming solutions and particularly, Value iteration algorithm described
above, have been adopted by many existing works that deal with Markov Decision Prob-
lem. However these techniques suffer from the curse of dimensionality, which leads to
complex resource allocation strategies. In most cases, the developed solutions based on
Dynamic Programming require high memory and computational complexity which make
them unfeasible. For this reason, we will be limited to give some structural properties of
the value function Vt(·) for any t to conclude for V (·). Based on this, we then establish the
structure of the optimal policy of (3.9). Indeed, in our case, after studying the structure
of V (·), we end up with an optimal solution of type threshold-based policy in function of
the state s:
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Definition 3.1. An increasing threshold policy is a policy φ ∈ Φ for which there exists
n ∈ Sk such that when the bandit k is in state s ≤ n, the prescribed action is a = 0, and
when the bandit is in state s > n, the prescribed action is a = 1.

In light of that, we derive the indices of Whittle for each state s, then we express our
heuristic policy Whittle Index Policy (WIP). To that end, we provide and explain the
steps followed to get the Whittle indices in the next section under the assumption that
the optimal solution of Problem (3.8) is threshold-based increasing policy.

3.3.3 Whittle’s Index

In this section, we provide the derivation of the Whittle indices, which are values that
depend on the state n and system parameters. Although this derivation is made using the
relaxed problem, it allows us to develop a heuristic for the original problem. It is worth
mentioning that the Whittle’s index at a given state, say n, represents the Lagrange
multiplier for which the optimal decision of the one-dimensional dual relaxed problem
at this state is indifferent (passive and active decision are both optimal). However, the
Whittle index is well defined only if the property of indexability is satisfied. This property
requires establishing that as the Lagrange multiplier (or equivalently the subsidy for
passivity W ) increases, the collection of states in which the optimal action is passive
increases. In this section, we consider a given bandit k, and we present two approaches
that can be applied to get the Whittle indices. Now, we formalize the indexability and
the Whittle’s index in the following definitions.

Definition 3.2. Considering problem (3.9) for a given W , we define D(W ) as the set of
states in which the optimal action (with respect to the optimal solution of Problem (3.9))
is the passive one. In other words, n ∈ D(W ) if and only if the optimal action at state n
is the passive one.

D(W ) is well defined as the optimal solution of Problem (3.9) is a stationary policy, more
precisely, a threshold-based policy by assumption.

Definition 3.3. A class is indexable if the set of states in which the passive action is the
optimal action increases in W , that is, W ′ < W ⇒ D(W ′) ⊆ D(W ). When the class is
indexable, the Whittle’s index in state n is defined as:

W (n) = min{W |n ∈ D(W )} (3.12)

In the following, we provide two approaches that can be used to compute the Whittle
index values.

Discounted Cost Approach

This approach consists in introducing a new expected discounted cost function and de-
riving the Whittle’s index values with respect to the discount parameter β < 1. We then
deduce the Whittle’s indices for the original problem (i.e., with the total average cost
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minimization) by taking the limit β → 1. We start by formulating the original problem
with the expected discounted cost:

min
φ∈Φ

E

[
+∞∑
t=0

N∑
k=1

βtCk(sk(t), ak(t)) | s(0), φ

]
,

s.t.
N∑
k=1

ak(t) ≤ αN, ∀t.

(3.13)

Following the same steps as in 3.3.1, we relax the problem and give the dual relaxed
problem for a given W :

min
φ∈Φ

+∞∑
t=0

E[
N∑
k=1

βt(Ck(sk(t), ak(t)) +Wak(t)) | φ, s(0)]. (3.14)

Then, we decompose it into N one-dimensional problems since the Bellman equation that
resolves the dual problem is decomposable. The Bellman equation for an one-dimensional
problem is [54].

Vβ(s) = min
a
{C ′(s, a) + β

∑
s′

Pr(s′|s, a)Vβ(s
′
)}. (3.15)

In fact, Vβ(s) is no more than the discounted cost when the initial state is s, Vβ(s) =∑+∞
t=0 E[βt(C ′(s(t), a(t))) | φ, s(0) = s].

Unlike the steady-state approach, we can only work with the Bellman equation to derive
the Whittle index thanks to the parameter β.
In fact, for most cases, especially for our models, the optimal solution of the Bellman
equation (3.15), is of type threshold based policy. On the other hand, under a given
threshold policy n, we are able to give the explicit expression of Vβ(s) in function of the
system parameters as well as the lagrangian parameterW for all states s. According to the
definition of Whittle index, we need to check first that the bandit is indexable. This can
be verified by showing that the optimal threshold of the problem (3.8) is increasing with
subsidy W . Given that, the Whittle index of state s denoted by Wβ(s) is the langrangian
parameterW that satisfies V 0

β (s) = V 1
β (s), where V 0

β (s) = C ′(s, 0)+β
∑

s′ Pr(s
′|s, 0)Vβ(s

′
)

and V 1
β (s) = C ′(s, 1) +β

∑
s′ Pr(s

′|s, 1)Vβ(s
′
). Hence, resolving this later equation allows

us to find Wβ(s) in function of s, β and the system parameters. Then under certain
conditions on Vβ(·) (see [56] and [54]), the Whittle index of state s under average cost
criterion is W (s) = lim

β→1
Wβ(s).

Steady State Approach

Let us define n as the threshold of the bandit k, i.e., if s ≤ n, then the bandit will not be
scheduled, and else, the bandit will be selected. To that extent, the Steady-State Approach
consists in the first place of deriving the stationary distribution of the Markov process
s(t) that refers to the state of the bandit k at time slot t under the threshold increasing
policy n. Then, we provide a closed-form expression of the Whittle index values based on
the steady-state form of the Problem (3.9). Denoting by pn(i, j) the transition probability
from state i to j, by un the stationary distribution under the threshold policy n, and by S
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the state space of bandit k, then finding un requires to resolve the full balance equation,
i.e.:

un(i) =
∑
j∈S

pn(j, i)un(j) (3.16)

With that in mind, we reformulate the dual of the relaxed problem using the stationary
distribution. Since the solution of the one-dimensional dual of the relaxed problem (3.9)
(given a constant W ) is a threshold-based policy, we can reformulate the problem as
follows:

min
n∈S

E[Cn(s, a) +Wan] = min
n∈S
{Cn(s, a) − W

n∑
s=0

un(s) +W} (3.17)

with n and un being the threshold and the stationary distribution under the threshold
policy n respectively, Cn(s, a) being the mean cost under threshold policy n
The new formulation of the problem turns out to be useful to derive the Whittle indices
since, for any W , we can find the minimizer of the expression in equation (3.17).

In the literature, several works have been conducted to find Whittle index values. For
example, an interesting iterative algorithm has been provided in [57]. In the following, we
provide a more general algorithm that can be applied in both cases that we have studied
in this thesis (AoI and Queuing Delay) up to some modifications. In the next chapters,
further analysis will be provided to derive a closed-form expression of the Whittle index
values based on this algorithm. To that extent, we will first present this algorithm and
then prove that it allows the Whittle’s index values’ computation.

Algorithm 1 Whittle Index Computation
1: Init. Let j be initialized to 0

2: Find W0 = inf
n∈N

Cn(s,a)−C−1(s,a)∑n
s=0 u

n(s)

3: Define n0 as the largest minimizer of the above expression
4: Let W (k) = W0 for all k ≤ n0

5: while nj 6= max{S} do
6: j = j + 1
7: Define Mj the set {n :

∑n
s=0 u

n(s) =
∑nj−1

s=0 unj−1(s)} ∪ {0, · · · , nj−1}
8: Find Wj = inf

n∈N\Mj

Cn(s,a)−Cnj−1 (s,a)∑n
s=0 u

n(s)−
∑nj−1
s=0 unj−1 (s)

9: Define nj as the largest minimizer of the above expression
10: Let W (k) = Wj for all nj−1 < k ≤ nj

11: Output The Whittle index of state k which is given by W (k)

Proposition 3.2. Assuming that the optimal solution is a threshold policy, and that
bn =

∑n
s=0 u

n(s) is increasing, then the class is indexable. Moreover, if an = Cn(s, a)

is increasing with n and for all i and j such that i < j
∑i

s=0 u
i(s) =

∑j
s=0 u

j(s) =⇒
Ci(s, a) < Cj(s, a), then the Whittle’s index values are computed by applying Algorithm 1.

Proof. For the proof, see appendix A.2.

35



Chapter 3. Methodology

In chapters 4 and 5, we prove that in our context, the two conditions of Proposition 3.2
are satisfied. Thereby, the algorithm is applicable.

Whittle’s Index Policy

Considering the original Problem (3.8), Whittle’s Index Policy, denoted by WIP, will
consist simply of allocating the channels to the M bandits that have the highest Whittle
indices at time t computed using the algorithm 1. As one can remark, Whittle index
policy is less complex than the Value iteration algorithm.

3.4 Asymptotic Optimality of Whittle Index Policy

The Whittle index policy’s performance has been investigated by many works in literature
( [30], [32], [23], [58], [34], [35], [29]). This policy turns out to be effectively asymptotically
optimal, i.e., it is optimal when the number of bandits and the number of available
resources (the number of scheduled bandits per time slot t, M) scale. In this thesis, we
discuss two types of optimality: local and global asymptotic optimality. The Whittle
index policy’s local optimality means that WIP is asymptotically optimal if the initial
state s(0) belongs to a fixed and restricted set of states. It is often feasible to establish
it when the number of bandits is finite. While the global optimality doesn’t require
any condition of the initial state, it is often hard to be established and needs to take
into account some assumptions. In both cases, we show that the long-run average cost
under Whittle index policy converges to the optimal cost of the Relaxed problem (the
problem (3.1) under the constraint (3.4)) denoted by CRP,N . The reason behind that is
that CRP,N is a lower bound of all expected average cost obtained by any policy that
resolves the original Problem (the problem (3.1) under the constraint (3.3)). Hence, it is
sufficient to show that 1

T
E
[∑T−1

t=0

∑N
k=1 Ck(s

φ
k(t), aφk(t)) | s(0)

]
converges to CRP,N under

Whittle Index policy when the number of bandits N and T grows. In asymmetric cases
(the bandits have not the same characteristics), we put together the bandits with the
same characteristics in one class. As a consequence, we end up with many classes such
that each class contains identical bandits. To that extent, we define Zk,N

i the proportion
of bandits at state i in class k over all the system’s bandits. In other words, it denotes
the number of bandits at state i in class k over the number of all bandits, which is N .
If the number of states is finite, then we define the vector ZN = (Z1,N

1 , · · · , ZK,N
maxS). In

this section, we present briefly the steps followed to prove the asymptotic local and global
optimality of Whittle Index Policy when the number of bandit’s states is finite.

3.4.1 Local Optimality

The local optimality is mainly based on the fluid approximation technique that consists
of analyzing the evolution of the expectation of ZN(t) under Whittle’s Index policy. For
that, we define the vector z(t) as follows:

z(t+ 1)− z(t)|z(t)=z = E
[
ZN(t+ 1)−ZN(t)|ZN(t) = z

]
(3.18)

In the followings we give the proof outline:
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• Showing that z(t) converges to the optimal proportion vector of the Relaxed Prob-
lem z∗, when z(0) is within a neighborhood of z∗.

• We then connect the fluid approximation model z(t) to the discrete-time stochastic
system state ZN(t) by using a discrete-time extension of Kurtz’s Theorem. Essen-
tially, it states that, over any finite time duration [0, T ], the actual system evolution
ZN(t) can be made arbitrarily close to the above fluid approximation z(t) by in-
creasing the number of bandits N

• Provided that the initial state is within a neighborhood of z∗, we conclude for the
convergence of the long-run expected average cost under Whittle index policy to
CRP,N when N is very large.

3.4.2 Global Optimality

We give the proof outline:

• Establishing the existence of a steady-state distribution associated with ZN(t) by
demonstrating that ZN(t) under Whittle’s index policy evolves in one recurrent
class in finite state space.

• Under the assumption that the expected time of reaching a neighborhood of z∗

doesn’t scale with N , we establish the asymptotic global optimality by adopting the
steady-state expression of the long-run expected average cost under Whittle’s index
policy.

When the number of bandits is infinite, as we have mentioned in Section 2.5, we adopt a
new method to prove the global optimality. This method is well explained in Chapter 5.
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Chapter 4

Whittle’s index policy for minimizing
the Delay in Queuing systems

In this chapter, we apply the Whittle index policy in a discrete queuing system model.
Precisely, we adopt theWIP as solution to the scheduling problem that consists of selecting
M queues among N queues such that the average queue length of all users is minimized.
In the first section, we present our system model. As for the next section, we analyze two
scenarios in parallel: The first one is about the case where the buffer size is very small.
That is, for each user, the departure rate is greater than the buffer size. While in the
second one, the queue length is considered infinite. After that, we express the scheduling
problem of interest, then we give the steps of the Lagrangian Relaxation method for our
particular problem. Then, we prove that the optimal solution of the Bellman equation
that corresponds to the one-dimensional dual relaxed problem, is effectively a threshold
policy. Armed with that, and adopting the Steady State approach when the buffer size is
finite, we derive Whittle’s index policy in closed-form expression in function of the system
parameters namely the Buffer length and the departure rate. Whereas, for the infinite
buffer size’s case, the approach used for the first case when the buffer size is tight fails
to give us the expression of Whittle index for all states. To circumvent this difficulty, we
handle the problem by applying a new approach named Discounted Cost approach in
order to get an approximated Whittle index policy for the original problem. Similarly to
the first case, we use the Lagrangian Relaxation technique and show that the optimal
solution of the one-dimensional discounted Bellman equation is a threshold-based policy.
Then, we obtain the Whittle index expressions by manipulating the Value function Vβ
under the discounted parameter β. We conclude for the original problem by tending β
to one. Next, we show that Whittle index policy is asymptotically locally optimal using
the fluid approximation technique, and globally optimal under a recurrence assumption
that is verified numerically for our problem. Finally, we give some numerical results that
showcase the remarkable good performance of our proposed policy and that corroborate
our theoretical findings.

4.1 System Model

We consider a time-slotted system with one central scheduler, N users/queues and M
uncorrelated channels (or servers) with (N > M). The terms "server" and "channel" will
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Figure 4.1 – System Model

be used interchangeably throughout this chapter, as well as the terms "user" and "queue".
A channel can be allocated to at most one user, hence onlyM users will be able to transmit
(i.e. send packets) at time slot t. We consider K different classes of users and we assume
that each user in class-k, if scheduled, transmits at most Rk packets per time slot. We
will refer to Rk as the maximum transmission rate for every user in class k and we assume
that mink{Rk} ≥ 2. We denote by γk the proportion of class-k users in the system. We
further denote by Aki (t) ∈ {0, . . . , Rk − 1} the number of packets that arrive to queue
i in class k at time slot t which is independent and identically distributed (i.i.d.) over
time. We also let qk,φi (t) denote the number of packets in queue i in class k. Furthermore,
sk,φi (qφ(t)) will denote the transmission action under a decision policy φ for user i in class
k and qφ(t) the vector of all queue lengths (q1,φ

1 (t), . . . , q1,φ
Nγ1

(t), . . . , qK,φ1 (t), . . . , qK,φNγK
(t)).

For the sake of clarity, we define sk,φi (t) := sk,φi (qφ(t)). If policy φ prescribes to schedule
user i in class k at time t, then sk,φi (t) = 1, and sk,φi (t) = 0 otherwise. We denote by L
the buffer capacity, which is considered to be the same for all queues and can be infinite.
The general system model is presented in Figure 4.1. Based on our system model, the
number of packets in queue i of class k evolves as follows:

qk,φi (t+ 1) = min{(qk,φi (t)−Rks
k,φ
i (t))+ + Aki (t), L}, (4.1)

where (x)+ = max{x, 0}.
The objective of the present work is to find a scheduling policy φ that minimizes the
average queue length of the users which results, according to Little’s Law [2] in the
minimization of the average delay.

4.2 Problem formulation
The cost incurred by user i in class k, at time t is equal to akqk,φi (t) for all i ∈ {1, . . . , γkN}
where ak is a predefined weight. One can see that the model described in Section 4.1
belongs to the family of Restless Bandit Problems (RBP). We consider the broad class Φ
of scheduling policies in which a scheduling decision depends on the history of observed
queue states and scheduling actions. Our user and channel allocation problem therefore
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consists of identifying the policy φ ∈ Φ that minimizes the infinite horizon expected
average queues, subject to the constraint on the number of users selected at each time slot.
Given the initial state q(0) = (q1

1(0), . . . , q1
Nγ1

(0), ..., qK1 (0), . . . , qKNγK (0)), the problem can
be formulated as follows:

min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

akq
k,φ
i (t) | q(0)

]
,

s.t.
K∑
k=1

γkN∑
i=1

sk,φi (t) ≤ αN, for all t, (4.2)

where α = M/N is the fraction of users that can be scheduled.

4.3 Relaxed Problem and Threshold-based Policy
As it has been discussed in Section 3.3, RBPs are PSPACE-Hard and therefore one should
develop well performing sub-optimal policies to solve these problems. Accordingly, we have
proposed as solution Whittle’s index policy for this type of problem. Hence, to derive
a closed-form expression of Whittle’s index for each state, we apply the methodology
explained in Chapter 3. To that extent, in the following, we give briefly the main results
for this particular system model.

4.3.1 Relaxed Problem and Dual Problem

The Lagrangian relaxation consists of relaxing the constraint on the available resources.
Namely, we consider that the constraint in Equation (4.2), has to be satisfied on average
and not in every decision epoch, that is,

lim sup
T→∞

1

T
E

[
K∑
k=1

γkN∑
i=1

sk,φi (t)

]
≤ αN. (4.3)

If we note W the Lagrangian multiplier for the constrained problem, then the Lagrange
function equals to:

f(W,φ) = lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

(akq
k,φ
i (t) +Wsk,φi (t)) | q(0)

]
−WαN, (4.4)

where W can be seen as a subsidy for not transmitting. Therefore, the dual problem for
a given W is

min
φ∈Φ

f(W,φ). (4.5)

4.3.2 Problem Decomposition and Threshold-based Policy

After getting rid of the constants that do not depend on φ, the problem (4.5) can be
reformulated as follows:

min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

(akq
k,φ
i (t) +Wsk,φi (t)) | q(0)

]
. (4.6)
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The Bellman equation that corresponds to this problem:

V (q) + θ = min
s
{
K∑
k=1

γkN∑
i=1

Ck(q
k
i , s

k
i ) +

∑
q′

Pr(q′|q, s)V (q′)}, (4.7)

for all q = (q1
1, . . . , q

1
γ1N

, . . . , qK1 , . . . , q
K
γkN

), with qki ∈ {1, . . . , L} being the queue length
of class-k user i, and s = (s1

1, . . . , s
1
γ1N

, . . . , sK1 , . . . , s
K
γkN

), with ski ∈ {0, 1} being the
action taken with respect to user i in class k. In equation (4.7), V (·) represents the
Value Function, θ is the optimal average cost and Ck(q

k
i , s

k
i ) is the holding cost akqki +

Wski . According to the Chapter 3, section 3.3.2, the problem can be decomposed into
N independent sub-problems, one for each user i in class k. Accordingly, resolving the
Bellman equation (4.7) is equivalent to resolve the following Bellman equation for each
user i in class k.

V k
i (qki ) + θki = min

ski

{Ck(qki , ski ) +
∑
q
′k
i

Pr(q
′k
i |qki , ski )V k

i (q
′k
i )}. (4.8)

In the following, for both cases of buffer size L (L < Rk for all k, or L is infinite), we show
that the solution to each one-dimensional problem (for each user i) follows the structure
of a threshold policy. For ease of notation, we drop the indices k and i and consider that
V (·) is the value function for a given user. From this perspective, we let A be the random
variable that indicates the number of arrival packets at each time slot.
As it has been indicated in Chapter 3 Section 3.3.2, the solution of the Bellman equa-
tion (4.8), V (·) can be obtained by the well known Value iteration algorithm:

Vt+1(q) = min
s
{C(q, s) +

∑
q′

Pr(q′|q, s)Vt(q′)} − θ (4.9)

Providing that lim
t→+∞

Vt(·) = V (·), we give some structural properties of the value function
Vt(·) for any t and conclude for V (·). Then we give the structure of the optimal solution.
To that end, we distinguish between two cases of L:

Remark 4.1. It is worth to emphasize that when L is less than R, if the arrival packets
plus the current queue length overflow on the buffer capacity, the user retain only the L
packets and get rid of the surplus of the packets. Subsequently, from the state q, we can
reach the state L when the number of arrival packets A can be either L−q or plus. Having
said that, nor Pr(L|q, 1) = Pr(A = L − (q − R)+) = Pr(A = L) neither Pr(L|q, 0) =
Pr(A = L− q), rather Pr(L|q, 1) =

∑R−1
A=L Pr(A = L) and Pr(L|q, 0) =

∑R−1
A=L−q Pr(A =

L − q). While if L is infinite, since there is no overflow on the buffer capacity, for all
queue sates q and q′, we have that Pr(q′|q, 1) = Pr(A = q′ − (q −R)+) and Pr(q′|q, 0) =
Pr(A = q′ − q).

L < R

To tackle this case, we proceed with these following steps:

• We prove that V (·) is increasing with q
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• We establish that V 1(q)−V 0(q) is decreasing with q where V 0(q) and V 1(q) are the
value functions when the action prescribed at state q is s = 0 and s = 1 respectively

• Finally, we show that the optimal solution is an increasing threshold policy

Regarding the first point, we show that Vt(·) is increasing with q for all t by induction.
Precisely, we establish that:

• V0(·) increases with q.

• If Vt(·) is increasing with q, Vt+1(·) is also increasing with q.

Given that V0(·) = 0, then V0(·) is increasing with q.
Considering Vt(·) is increasing with q, then

∑
q′ Pr(q

′|·, s)Vt(q′) grows with q (see Puter-
man [55]). We have by construction, C(·, s) increases with q. Since θ is just a constant,
Vt+1(·) will be as well an increasing function with q.
As consequence, we show that Vt(·) is increasing with q for all t. Leveraging the fact that
V (·) is the limit of Vt(·) when t grows, then V (·) is also increasing with q.
As for the second point, one can see that for any q, we have that q ≤ L < R. Then
the next state before the arrival of the packets will be q = 0 if the action prescribed is
the active action since all packet in the buffer will be transmitted. Consequently, the
probability to transit to the state q′ from a given state q under the active action is the
probability to have A = q′ if q′ < L, or L ≤ A ≤ R− 1 if q′ = L (according to the remark
4.1). Hence Pr(q′|q, 1) doesn’t depend on q. Likewise for

∑L
q′=0 Pr(q

′|q, 1)V (q′).
We have that:

V 1(q)− V 0(q) = W +
∑
q′

Pr(q′|q, 1)V (q′)−
∑
q′

Pr(q′|q, 0)V (q′)

Bearing in mind that V (·) is increasing with q, then again according to Puterman [55],∑
q′ Pr(q

′|q, 0)V (q′) is increasing with q. Leveraging the above result,
∑L

q′=0 Pr(q
′|q, 1)V (q′)

is constant with respect to q. Consequently, V 1(q)− V 0(q) decreases with q.
To prove the last point, we recall that the optimal action s(q) at state q according to
Equation (4.7), is the one that minimizes V s(q). Explicitly, s(q) = argmin{V 0(q), V 1(q)}.
Moreover, exploiting the fact that V 1(q)−V 0(q) is decreasing with q, then there exists q0

(can be infinite) such that for all q ≤ q0, V 1(q) ≥ V 0(q) and for all q > q0, V 1(q) ≤ V 0(q).
Consequently, we deduce that for all q ≤ q0, the optimal decision is to stay idle, and for all
q > q0, the optimal decision is to transmit. Thereby, we prove that the optimal solution
of Problem (4.5) is of type threshold increasing policy.

L = +∞

We consider the operator TO such that for each (q, s) ∈ N× {0, 1}

(TO(V ))(q, s) = C(q, s) +
∑
q′

Pr(q′|q, s)V (q′)− θ (4.10)

We first provide some useful definitions and preliminary results before proving the desired
results.
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Definition 4.1. We say that a function f is R-convex in X = N, if for any x and y in
X such that x < y, we have:

f(y +R)− f(x+R) ≥ f(y)− f(x) (4.11)

Lemma 4.1. If for a given function f , there exists R such that for any integer x, f(x+
1 +R)− f(x+R) ≥ f(x+ 1)− f(x), then f is R-convex

Proof. Considering y and x in N, with y > x, we have:

f(y +R)− f(x+R) =

y−1∑
k=x

[f(k + 1 +R)− f(k +R)] (4.12)

≥
y−1∑
k=x

[f(k + 1)− f(k)] (4.13)

= f(y)− f(x) (4.14)

which concludes the proof.

Definition 4.2. Let g(q, s) be a real valued function defined on X × S, with S = {0, 1},
and X = N. We say that g is submodular if g(q+ 1, 1)− g(q+ 1, 0) ≤ g(q, 1)− g(q, 0) for
all q on X.

Theorem 4.1. min
s
TO(·)(·, s) conserves the R-convexity and the increase properties. In

other words, if the input of the operator TO, i.e. a given V (·), is R-convex and increasing
function with q then min

s
TO(V )(·, s) is R-convex and increasing function with q.

Proof. Let us consider that the input of TO(V )(·, s), i.e. a given V (·), is R-convex and
increasing function with q. For the increase property of min

s
TO(V )(·, s), we have by

definition that C(·, s) is increasing with q. We also have that V (·) is increasing with
q, then

∑
q′ Pr(q

′|·, s)V (q′) grows with q (see Puterman [55]). Since θ is a constant,
TO(V )(·, s) increases with q and therefore min

s
TO(V )(·, s) is increasing with q.

For R-convexity, we should first prove the following lemma.

Lemma 4.2. If V (·) is R-convex and increasing with q, C(q, s) and
∑

q′ Pr(q
′|q, s)V (q′)

are submodular functions.

Proof. The proof is given in appendix B.1. �

This demonstrates that the function TO(V )(·, ·) is submodular since it is the sum of two
submodular functions. Let us now show that min

s
TO(V )(·, s) is R-convex. For that, we

consider the function ∆TO(V )(q) = TO(V )(q, 1)− TO(V )(q, 0) which is decreasing with
q since TO(V )(·, ·) is submodular. Therefore, there exists r ∈ R ∪ {+∞} such that for
q ≤ r, ∆TO(V )(q) ≥ 0 and for q ≥ r, ∆TO(V )(q) ≤ 0. In the remainder of the proof,
we consider all possible cases of q and r.
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If q +R + 1, q +R, q, q + 1 ≥ r:

min
s
TO(V )(q + 1 +R, s)−min

s
TO(V )(q +R, s) =TO(V )(q + 1 +R, 1)− TO(V )(q +R, 1)

(4.15)
=TO(V )(q + 1, 0)− TO(V )(q, 0)

(4.16)
≥TO(V )(q + 1, 1)− TO(V )(q, 1)

(4.17)
=min

s
TO(V )(q + 1, s)−min

s
TO(V )(q, s)

(4.18)

where the inequality is due to the sub-modularity of TO(V )(·, ·).
If q ≤ r ≤ q + 1, q +R, q + 1 +R:

min
s
TO(V )(q + 1 +R, s)−min

s
TO(V )(q +R, s) =TO(V )(q + 1 +R, 1)− TO(V )(q +R, 1)

(4.19)
=TO(V )(q + 1, 0)− TO(V )(q, 0)

(4.20)
≥TO(V )(q + 1, 1)− TO(V )(q, 0)

(4.21)
=min

s
TO(V )(q + 1, s)−min

s
TO(V )(q, s)

(4.22)

if q, q + 1 ≤ r ≤ q +R, q +R + 1:

min
s
TO(V )(q + 1 +R, s)−min

s
TO(V )(q +R, s) =TO(V )(q + 1 +R, 1)− TO(V )(q +R, 1)

(4.23)
=TO(V )(q + 1, 0)− TO(V )(q, 0)

(4.24)
=min

s
TO(V )(q + 1, s)−min

s
TO(V )(q, s)

(4.25)

if q, q + 1, q +R ≤ r ≤ q +R + 1:
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min
s
TO(V )(q + 1 +R, s)−min

s
TO(V )(q +R, s) =TO(V )(q + 1 +R, 1)− TO(V )(q +R, 0)

(4.26)
≥TO(V )(q + 1 +R, 1)− TO(V )(q +R, 1)

(4.27)
=TO(V )(q + 1, 0)− TO(V )(q, 0)

(4.28)
=min

s
TO(V )(q + 1, s)−min

s
TO(V )(q, s)

(4.29)

If q, q + 1, q +R; q +R + 1 ≤ r:

min
s
TO(V )(q + 1 +R, s)−min

s
TO(V )(q +R, s) =TO(V )(q + 1 +R, 0)− TO(V )(q +R, 0)

(4.30)
≥TO(V )(q + 1 +R, 1)− TO(V )(q +R, 1)

(4.31)
=TO(V )(q + 1, 0)− TO(V )(q, 0)

(4.32)
=min

s
TO(V )(q + 1, s)−min

s
TO(V )(q, s)

(4.33)

Using Lemma 4.1, min
s
TO(V )(·, s) is R-convex with q, i.e., we can conclude the R-

convexity conservation.

Remark 4.2. Theorem 1 means that if the value function Vt is increasing and R-convex,
then the value function Vt+1 in equation (4.9), which is computed with the operator TO,
is increasing and R-convex.
Thus, as V0 is increasing and R-convex, all Vt are increasing and R-convex and therefore
we can conclude that the value function V will be also R-convex and increasing with q.

Corollary 4.1. The optimal policy φ∗ of each one-dimensional relaxed subproblem is a
threshold-based policy.

Proof. Since we have only two possible actions, a policy is of the form threshold policy
if and only if it is monotone with q. Therefore, it is sufficient to prove that the optimal
policy φ∗ is monotone with q. For that, we consider q1 ≤ q2. According to Remark 4.2,
V (.) is increasing and R-convex, then using Lemma 4.2, TO(V ) is submodular. Therefore,
we have:

(TO(V ))(q1, 1)− (TO(V ))(q1, 0) ≥ (TO(V ))(q2, 1)− (TO(V ))(q2, 0) (4.34)
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If φ∗(q2) = argmin
s

(TO(V ))(q2, s) = 0

Hence, (TO(V ))(q2, 1)− (TO(V ))(q2, 0) ≥ 0. Consequently, we get:

(TO(V ))(q1, 1)− (TO(V ))(q1, 0) ≥ 0 (4.35)

Which leads to:
argmin

s
(TO(V ))(q1, s) = 0 (4.36)

i.e.
φ∗(q1) ≤ φ∗(q2) (4.37)

If φ∗(q2) = argmin
s

(TO(V ))(q2, s) = 1, obviously we have that:

φ∗(q1) ≤ φ∗(q2) (4.38)

Therefore, we can conclude that the optimal solution is monotone and increasing with q,
then it is a threshold-based policy.

4.4 Whittle’s Index
For L < R, we apply the Steady State approach described in Chapter 3, Section 3.3.3 to
find the Whittle’s indices.

4.4.1 Steady State approach (L < R)

Let us define n as the threshold for users in a given class, i.e. if the queue state is q
such that q ≤ n, then the user will not be scheduled, and else, the user will be selected
for transmission. The objective of this section is to derive the stationary distribution of
the users’ states. We assume here that the packets arrive according to a discrete uniform
distribution, that is, P(A(t) = x) = ρ for all 0 ≤ x ≤ R − 1 and 0 otherwise, where
ρ = 1/R.
We denote by pn(i, j) the transition probability from state i to j, by u the stationary
distribution under the threshold policy n, and by R the maximum rate (ρ = 1/R). One
can notice that u verifies the full balance equation, i.e.:

u(i) =
L∑
j=0

pn(j, i)u(j) =
n∑
j=0

pn(j, i)u(j) +
L∑

j=n+1

pn(j, i)u(j) (4.39)

Definition 4.3. We define πi as:

πi =

{
ρ if 0 ≤ i ≤ R− 1
0 else

(4.40)

Proposition 4.1. The expressions of pn(j, i) are given by:
If 0 ≤ i < L and j ≤ n

pn(j, i) = πi−j =

{
ρ if 0 ≤ i− j ≤ R− 1
0 else

(4.41)

47



Chapter 4. Whittle’s index policy for minimizing the Delay in Queuing systems

if 0 ≤ i < L and n < j ≤ L

pn(j, i) = πi =

{
ρ if 0 ≤ i ≤ R− 1
0 else

(4.42)

if i = L and j ≤ n

pn(j, L) = (R− L+ j)πL−j = (R− L+ j)ρ (4.43)

if i = L and n < j ≤ L

pn(j, L) = (R− L)πL = (R− L)ρ (4.44)

Proof. See appendix B.2.

Proposition 4.2. The expressions of the stationary distribution is:

u(i) =


ρ(1− ρ)n−i if 0 ≤ i ≤ n
ρ if n+ 1 ≤ i ≤ L− 1
(1− ρ)n+1 − (L− n− 1)ρ if i = L

(4.45)

2) n = L:

u(i) =

{
0 if 0 ≤ i ≤ L− 1
1 if i = L

(4.46)

Proof. See appendix B.3.

We reformulate the dual of the relaxed problem using the stationary distribution derived
above, i.e.,

min
n∈[−1,L]

E[aqn +Wsn] = min
n∈[−1,L]

{
L∑
q=0

aun(q)q − W

n∑
q=0

un(q) +W} (4.47)

with n and un being the threshold and the stationary distribution under the threshold
policy n.
We first give the expression of the mean cost in equation (4.47) given threshold n when
L < R.
If −1 ≤ n ≤ L− 1:

L∑
q=0

aun(q)q = a[(L+R)(1− ρ)n+1 + n−R + 1 +
(L− 1− n)(n− L)

2R
] (4.48)

If n = L:
L∑
q=0

aun(q)q = aL (4.49)
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Secondly, we provide the expression of the passive decision’s average time in equation (4.47)
given a threshold n.
If −1 ≤ n ≤ L− 1:

n∑
q=0

un(q) = 1− (1− ρ)n+1 (4.50)

If n = L:
n∑
q=0

un(q) = 1 (4.51)

According to Chapter 3 Section 3.3.3, to get the values of Whittle’s indices, we apply the
algorithm 1. Nevertheless, we need to adapt it to this case before using it. To that extent,
the adapted algorithm will be:

Algorithm 2 Whittle Index Computation
1: Init. Let j be initialized to 0

2: Find W0 = inf
n∈N

∑L
q=0 au

n(q)q−
∑L
q=0 au

−1(q)q∑n
q=0 u

n(q)

3: Define n0 as the largest minimizer of the above expression
4: Let W (k) = W0 for all k ≤ n0

5: while nj 6= L do
6: j = j + 1
7: Define Mj the set {0, · · · , nj−1}
8: Find Wj = inf

n∈N\Mj

∑L
q=0 au

n(q)q−
∑L
q=0 au

nj−1 (q)∑n
q=0 u

n(q)−
∑nj−1
q=0 unj−1 (q)

9: Define nj as the largest minimizer of the above expression
10: Let W (k) = Wj for all nj−1 < k ≤ nj

11: Output The Whittle index of state k which is given by W (k)

Remark 4.3. In order to simplify the notation in the sequel, we denote
∑L

q=0 au
n(q)q by

an and
∑n

q=0 u
n(q) by bn.

However, in order to apply Algorithm 2 that allows to obtain the Whittle’s index for each
state, we need to check that the conditions given in Proposition 3.2 are satisfied. We start
first by establishing the indexability.

Theorem 4.2. For each k, the class-k is indexable.

Proof. According to Proposition 3.2, we just need to prove that
∑n

q=0 u
n(q) is increasing

with n. It is clear that from (4.50),
∑n

q=0 u
n(q) is increasing with n. Hence, the class is

indexable.

We prove the two others conditions of Proposition 3.2 which are the increase property of∑L
q=0 au

n(q)q with n, and that for all i and j such that i < j,
∑i

q=0 u
i(q) =

∑j
q=0 u

j(q) =⇒∑L
q=0 au

i(q)q <
∑L

q=0 au
j(q)q. The second property for this case is meaningless since∑i

q=0 u
i(q) is strictly increasing with i. While for the first one, one should demonstrate

that an is increasing with n.

Proposition 4.3. an =
∑L

q=0 au
n(q)q is increasing with n.
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Proof. See appendix B.4.

As the indexability is satisfied and the two conditions of Proposition 3.2 are verified,
then we can apply Algorithm 2 to get the Whittle’s index for each state. However, the
complexity of this algorithm is L2. In order to overcome this complexity issue, we will
provide further analysis and derive simple expressions of the Whittle indices.
We first proceed by laying out the following definitions and lemmas.

Definition 4.4. For any given increasing threshold policy n, we define yn as a function
of the subsidy W , such that yn(W ) =

∑L
q=0 au

n(q)q − W
∑n

q=0 u
n(q) = an −Wbn.

Lemma 4.3. The intersection point W = xi,j between yi(W ) and yj(W ) is equal to:

xi,j =

∑L
q=0 au

i(q)q −
∑L

q=0 au
j(q)∑i

q=0 u
i(q)−

∑j
q=0 u

j(q)
(4.52)

Theorem 4.3. The Whittle index of state n ∈ [0, L]:

W (n) = xn,n−1 =
a[ρ[(L− n)− (L+R)(1− ρ)n] + 1]

ρ(1− ρ)n

Proof. See appendix B.5

Figure 4.2 – yn(W ) in function of W for different values of n (L = 5 and R = 10): W (i)
indicates the Whittle index at state i
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Whittle’s Index policy for the original problem

We now consider the original optimization problem (4.2) and propose a simple Whittle’s
Index policy. This policy consists of simply allocating the channels to the M users that
have the highest Whittle indices at time t, denoted by WIP , and computed using the
simple expressions in Theorem 4.3.

Now, we tackle the second case: when L is infinite. For that, we use the Discounted Cost
approach detailed in Chapter 3 Section 3.3.3.

4.4.2 Discounted Cost approach (L = +∞)

In this section, we will adopt the Discounted Cost approach to get the Whittle indices.
We will also explain the limitation of the steady state approach, and why it cannot be
used to find the Whittle index values if the queues have an unlimited capacity.
Applying the steady state approach in the unlimited capacity framework, we get the
following results:

• Computing the stationary distribution under a given threshold policy n, we end
up with an increasing average passive time with n, i.e.,

∑n
i=0 u

n(i) grows with n.
Therefore, according to Proposition 3.2, the problem is indexable.

• The Whittle’s indices expressions are defined only for states in [0, Rk − 1] and are
given by:
For 0 ≤ n ≤ Rk − 1: Wk(n) = akRkn

Rk−n

As one can see, the above result is limited to the case where the states are in [0, Rk − 1].
For this reason, we rely on another method which allows us to find the Whittle index
values for all possible states. To do so, we formulate a discounted cost problem in which
β is a discount factor. We analyze this discounted problem and find the Whittle index
expressions (that depends on β). Then by taking β → 1, we obtain the Whittle index for
our original problem. Similarly, since the Discounted Cost approach is already explained
in Chapter 3 Section 3.3.3, we give briefly the main theoretical findings.
The original problem with the expected discounted cost is:

min
φ∈Φ

E

[
+∞∑
t=0

K∑
k=1

γkN∑
i=1

βtakq
k
i (t) | q(0), φ

]
,

s.t.
K∑
k=1

γkN∑
i=1

ski (t) ≤ αN, ∀t.

(4.53)

The dual of the relaxed problem for a given W is:

min
φ∈Φ

+∞∑
t=0

E[
K∑
k=1

γkN∑
i=1

βt(akq
k
i (t) +Wski (t)) | φ, q(0)]. (4.54)

The Bellman equation for an one-dimensional problem is:

V (qki ) = min
ski

{C(qki , s
k
i ) + β

∑
q
′k
i

Pr(q
′k
i |qki , ski )V (q

′k
i )}. (4.55)
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Following the same method in 4.3.2 but with a parameter β instead of θ, we can prove that
the optimal solution that satisfies this Bellman equation is a threshold policy, by proving
that the function TO(V ) is submodular. We can also conclude that the value function has
the same structural property as in Section 4.3.2, especially, the submodularity and Rk-
convexity. However, contrary to the method applying when L is finite, finding the steady-
state distribution will not give an explicit expression of Problem (4.54). Nevertheless,
we can work only with the Bellman equation to derive the Whittle index thanks to the
parameter β which helps us to find the Whittle index for all states.
From now on, we detail the procedure followed to obtain the Whittle index policy for the
discounted Cost problem (4.54).
To prove that the Whittle index for a given state n in class k is a given Wk(n), according
to the definition of the Whittle’s index, we have to demonstrate that for all W ≤ Wk(n),
at state n the optimal decision of the Bellman equation (4.55) must be the active action.
And for all W > Wk(n), at state n the optimal decision of (4.55) must be the passive
action. In other terms, since the optimal solution of (4.55) is a threshold-based policy, it
is sufficient to show that for allW ≤ Wk(n), the optimal threshold policy must be strictly
less than n, and for all W > Wk(n), the optimal threshold policy must be greater than
n. Accordingly, if we can find a function that links a given state n to the corresponding
lagrangian parameter W for which n is the optimal threshold policy with respect to the
problem (4.55), then we will be able to characterize the Whittle’s index of state n by
investigating the variation of this function with respect to n. To that end, we proceed in
two steps: finding this aforementioned function, and studying its evolution. Regarding
the first step, we start by giving these two following definitions.

Definition 4.5. We define Cn
0 (qki ,W ) and Cn

1 (qki ,W ) in class k as the discounted costs
starting at the initial queue state qki at which the decision taken is to not be scheduled
(ski = 0) or to be scheduled (ski = 1) respectively and when the policy considered is threshold
n, explicitly:

Cn
0 (qki ,W ) , akq

k
i + β

∑
q
′k
i

Pr(q
′k
i |qki , 0)V n(q

′k
i ,W ),

Cn
1 (qki ,W ) , akq

k
i +W + β

∑
q
′k
i

Pr(q
′k
i |qki , 1)V n(q

′k
i ,W ),

where V n(·,W ) is the value function under threshold policy n and lagrangian parameter
W .

Definition 4.6. We define gk(n,W ) as a function defined in [0,+∞[×R, such that for
all (n,W ) ∈ [0,+∞[×R, gk(n,W ) = Cn

1 (n,W )− Cn
0 (n,W )

Proposition 4.4. For 0 ≤ n ≤ Rk − 1:

gk(n,W ) = W (1− nβρk)− aknβ

For n ≥ Rk:

gk(n,W ) =
W (1− β)− akRkβ

1− ρkβ
Proof. See Appendix B.6.
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We emphasize that to prove that for a fixed W , in class k, a given state n is indeed an
optimal threshold (i.e. if qki ≤ n the queue is not scheduled and otherwise it is scheduled),
we just need to prove that it satisfies for all states qki ≤ n, Cn

0 (qki ,W ) ≤ Cn
1 (qki ,W ) and

for qki > n, Cn
0 (qki ,W ) ≥ Cn

1 (qki ,W ) (according to Bellman equation). In other words, we
suppose that n is a threshold (i.e. if qki ≤ n the queue is not scheduled and otherwise
it is scheduled), and we show that for all states qki ≤ n, Cn

0 (qki ,W ) ≤ Cn
1 (qki ,W ) and

for qki > n, Cn
0 (qki ,W ) ≥ Cn

1 (qki ,W ). We note that for a given value of W , the optimal
threshold might not be unique.
Proposition 4.5. For a given lagrangian parameter W and class k, if there exists n such
that Cn

0 (n,W ) = Cn
1 (n,W ), then n is an optimal threshold.

Proof. See Appendix B.7.

According to the proposition above, the lagrangian parameter W for which n is the
optimal threshold is the one that verifies, gk(n,W ) = 0. Subsequently, as we have already
derived the explicit expression of gk(·, ·), we can find the expression of the parameter W
in question in function of n. For that purpose, we provide this following proposition.
Proposition 4.6. If n ≤ Rk − 1, then for W = βakRkn

Rk−βn
, n is an optimal threshold.

If n ≥ Rk, then for W = akRkβ
1−β , n is an optimal threshold.

Proof. See Appendix B.8.

As for the second step, we study the function gk defined in Definition 4.6.
Lemma 4.4. gk is strictly increasing with W , and decreasing with n.
Proof. gk is clearly strictly increasing with W and decreasing with n from its expression.

Leveraging the above result, we lay out our desired result in this following Theorem.
Theorem 4.4. For each queue state n in class k, the Whittle index expression is given
by:
For 0 ≤ n ≤ Rk − 1, Wk(n) = βakRkn

Rk−βn
.

For n ≥ Rk, Wk(n) = akRkβ
1−β .

Proof. See Appendix B.9.

We know that for β → 1, the solution for Problem (4.54) is the same as Problem (4.6),
see [54]. Hence, to derive the Whittle index for the expected average cost’s case, we must
compute the limit as β tends to 1. However, for states greater or equal than Rk, the
Whittle indices tend to +∞. On the other hand, by looking at our policy which consists
on selecting the users at states with the M highest Whittle’s index values, we can notice
that this policy is the same if the order of the Whittle indices from the biggest to the
smallest one is not affected even if the Whittle index values are modified.
Theorem 4.5. For any β > 1 − min{ajRj}

max{ajR2
j}
, the Whittle index policy where the Whittle

indices in each class k are given by:
For 0 ≤ n < Rk: Wk(n) = βakRkn

Rk−βn
For Rk ≤ n: Wk(n) = akRk max{ajR2

j}
is exactly the Whittle index policy when the Whittle indices are given by Theorem 4.4.
Proof. See Appendix B.10.
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Whittle’s Index policy for the original problem

When β → 1, the condition given in Theorem 4.5 still true. Hence, we get the Whittle
index policy for our original problem with the expected average cost given by Theorem 4.5.
We can notice that the Whittle index of states greater than the maximum transmission
rate are different only by ak and Rk (Wk(n) = akRk max{ajR2

j}). Thereby, it is worth
mentioning that the obtained policy can be seen as cµ rule when all states are greater
than Rk, since we choose M users with the highest akRk.

4.5 Further analysis of the optimal solution of the re-
laxed problem

As it has been mentioned in 3 Section 3.4, to establish the asymptotic optimality, we
compare the average cost under Whittle’s index policy with the optimal cost of the relaxed
problem denoted CRP,N . For this reason, we should provide further analysis and give the
structure of the optimal solution for the relaxed problem. From now on, we focus only on
the case where L is finite. As we have seen in Section 4.3, for any given W , the optimal
solution for the dual relaxed problem (4.6) is a threshold-based policy for each user. By
using the Whittle index expressions derived in Theorem 4.3, we provide a derivation of
the optimal threshold for each class as a function of the Lagrange parameter W . In
this section, we denote by W k

i the Whittle index at state i in class k. We denote by
l = (l1, l2, · · · , lK) the vector which represents the set of thresholds for each class k. We
denote by unk , the stationary distribution for class k under threshold policy n.

Proposition 4.7. For a givenW , the optimal threshold vector l = (l1(W ), l2(W ), · · · , lK(W ))
for the dual problem satisfies:
For each k:

lk(W ) = argmax
i
{W k

i |W k
i ≤ W} (4.56)

or
lk(W ) = argmax

i
{W k

i |W k
i < W} (4.57)

We note that the solution can also be a linear combination between the threshold policies
argmax

i
{W k

i |W k
i ≤ W} and argmax

i
{W k

i |W k
i < W}.

Proof. See appendix B.11.

Now, we give the structure of the optimal solution of the constrained relaxed problem.

Proposition 4.8. The solution of the constrained relaxed problem is of type threshold
policy l(W ∗), with l being the function vector defined in Proposition 4.7 and W ∗ satisfies
α =

∑K
k=1 γk

∑L
i=lk(W ∗)+1 u

lk(W ∗)
k (i).

Proof. See appendix B.12.

However, W ∗ that satisfies the above constraint may not exist since α is a real number
that can take any value in [0, 1], and

∑K
k=1 γk

∑L
i=lk+1(W ) u

lk(W )
k (i) is discrete, since the

vector l(W ) can only take discrete values in [−1, L]K . To deal with this issue, we use the
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fact that for some values of W , the optimal solution of the dual problem can be a linear
combination or more precisely a randomized policy between two threshold policies for a
given class as it has been mentioned in Proposition 4.7. To that extent, our task is to find
among these values of W , the one for which there exists a randomized parameter θ such
that the constraint is satisfied with equality. To that end, we introduce this following
proposition.

Proposition 4.9. There exists a class m, state p, and a randomization parameter θ∗
such that the optimal solution of the dual problem when the langrangian parameter W =
Wm
p = W ∗ is characterized by:

• For k 6= m, the optimal threshold is lk(Wm
p ) = argmax

i
{W k

i |W k
i ≤ Wm

p }

• For k = m, the optimal solution is randomized policy between two threshold policies
lm(Wm

p ) = argmax
i
{Wm

i |Wm
i ≤ Wm

p } and lm(Wm
p )−1 = argmax

i
{Wm

i |Wm
i < Wm

p },
where the factor of randomization θ∗ is the probability of adopting the policy lm(Wm

p )
and 1− θ∗, the probability of adopting the policy lm(Wm

p )− 1.

• The constraint (4.3) is satisfied with equality, i.e.

α =
∑
k 6=m

L∑
i=lk(Wm

p )+1

γku
lk(Wm

p )

k (i) +
L∑

i=lm(Wm
p )+1

γmu
∗
m(i) + (1− θ∗)γmu

lm(Wm
p )−1

m (lm(Wm
p ))

Where u∗m = θ∗ulm(Wm
p ) + (1− θ∗)ulm(Wm

p )−1.

Proof. See appendix B.13

The solution of the dual problem described in Proposition 4.9 satisfies the constraint
(4.3) with equality, then according to Proposition 4.8, this solution is indeed the optimal
solution of the constrained problem. In that regard, the optimal cost of the relaxed
problem CRP,N , is expressed as following:

CRP,N =
∑
k 6=m

L∑
i=0

Nγkaku
lk(Wm

p )

k (i)i+
L∑
i=0

Nγmamu
∗
m(i)i (4.58)

4.6 Local asymptotic optimality (L < R)
In this section, we will show that the performance of the Whittle’s Index policy is asymp-
totically locally optimal when L is finite. As we have clarified in Chapter 3 Section 3.4,
we will compare the average cost obtained by the Whittle’s Index policy; WIP; with the
one obtained for the relaxed problem RP to establish the optimality of WIP. Explicitly,
denoting by CN

T (x) the average cost obtained over the time duration 0 ≤ t ≤ T under
Whittle’s Index policy conditioned on the initial state x ,we show that CN

T (x) tends to
CRP,N when N and T scale. For that, we will be in need of the relaxed problem’s optimal
cost’s expression, CRP,N derived in Section 4.5.
We reconsider the notion of the proportion defined in Chapter 3 Section 3.4 that repre-
sents the number of queues at state i in class k over the number of all users which is N .

55



Chapter 4. Whittle’s index policy for minimizing the Delay in Queuing systems

We have that ZN = (Z1,N , .....,ZK,N) with Zk,N = (Zk,N
1 , ......, Zk,N

L ) and
∑L

i=0 Z
k,N
i = γk

for each class k.
The expression of CN

T (x) in function ofZN is 1
T
E
[∑T−1

t=0

∑K
k=1

∑L
i=1 akZ

k,N
i (t)iN | ZN(0) = x

]
,

where ZN(t) evolves under Whittle’s Index policy. Denoting by z∗ the optimal proportion
of the relaxed problem, we say that the Whittle’s Index policy is asymptotically locally
optimal if there exists δ > 0 such that the initial proportion vector ZN(0) is within Ωδ(z

∗)
(i.e. ||ZN(0)− z∗|| < δ), then CN

T (x) converges to CRP,N when T and N scale.
In order to prove that, we use the fluid limit technique introduced in Chapter 3, i.e., we
investigate the evolution of the expectation of ZN(t) under the Whittle’s Index policy.
The expectation of ZN(t) denoted by z(t), verifies:

z(t+ 1)− z(t)|z(t)=z = E
[
ZN(t+ 1)−ZN(t)|ZN(t) = z

]
(4.59)

If we denote by whj the Whittle index for class h at state j and by pki (z) the probability
that a user is selected randomly among zki to transmit, one can easily show that [37]:

pki (z) = min{zki ,max(0, α−
∑

whj >w
k
i

zhj )}/zki (4.60)

We denote by qk,0i,j and qk,1i,j the probabilities of transition from state i to state j in a class-k
if the queue is not scheduled and if the queue is scheduled for transmission respectively.
Then, the probability of transition from state i to state j in class k is:

qki,j(z) = pki (z)qk,1i,j + (1− pki (z))qk,0i,j (4.61)

Accordingly, we have that for each i and k:

zki (t+ 1)− zki (t) =
∑
j 6=i

qkj,i(z(t))zkj (t)−
∑
i 6=j

qki,j(z(t))zki (t) (4.62)

Let w∗ be the Lagrangian parameter that gives the optimal solution of the relaxed prob-
lem. Then, according to Proposition 4.9, there exists a given class m such that wmlm = w∗

for which the corresponding optimal solution of the relaxed problem is of type threshold
policy for class k 6= m denoted lk, and a randomized policy between two threshold policies
lm and lm − 1 for class m.
We define w∗ as the set of states such that at any system state z ∈ w∗ , if we use the
Whittle’s Index policy, all users with the Whittle index value higher than w∗ are sched-
uled, while the users with Whittle index value smaller than w∗ stay idle and the users
with Whittle index value w∗ are scheduled with a certain randomization. Specifically,
w∗ = {z :

∑
wki >w

∗ zki < α,
∑

wki ≥w∗
zki ≥ α}.

Providing that for all k and t:
L∑
j=0

zkj (t) = γk (4.63)

Therefore, the following equation always holds for z(t) ∈ w∗ :
1) k 6= m:

zki (t+ 1) =

lk−1∑
j=0

(qk,0j,i − q
k,0
lk,i

)zkj (t) +
L∑

j=lk+1

(qk,1j,i − q
k,0
lk,i

)zkj (t) + γkq
k,0
lk,i

(4.64)
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2) k = m

zmi (t+ 1) =
lm−1∑
j=0

(qm,0j,i − q
m,0
lm,i

)zmj (t) +
L∑

j=lm+1

(qm,1j,i − q
m,1
lm,i

)zmj (t) + (1− α)qm,0lm,i
+ αqm,1lm,i

−
( ∑

whj >w
m
lm

h6=m,j 6=lh

zhj (t)
)
qm,1lm,i
−
( ∑

whj ≤wmlm
h6=m,j 6=lh

zhj (t)
)
qm,0lm,i

+
( K∑
h=1
h6=m

L∑
j=0
j 6=lh

1{whlh>w
m
lm
}z
h
j (t)

)
qm,1lm,i

+
( K∑
h=1
h6=m

L∑
j=0
j 6=lh

1{whlh≤w
m
lm
}z
h
j (t)

)
qm,0lm,i
−

K∑
h=1
h6=m

γh(1{whlh>w
m
lm
}q
m,1
lm,i

+ 1{whlh≤w
m
lm
}q
m,0
lm,i

)

(4.65)

Let gmi =
∑K

h=1
h6=m

γh(1{whlh>w
m
lm
}q
m,1
lm,i

+ 1{whlh≤w
m
lm
}q
m,0
lm,i

) ∀ i ∈ [0, L], and C = (c1, · · · , cK)

such that ck = (γkq
k,0
lk,0
, · · · , γkqk,0lk,L) and cm = ((1−α)qm,0lm,0

+αqm,1lm,0
−gm0 , · · · , (1−α)qm,0lm,L

+

αqm,1lm,L
− gmL ) for each k 6= m.

Then,
1) k 6= m:

zki (t+ 1) =

lk−1∑
j=0

(qk,0j,i − q
k,0
lk,i

)zkj (t) +
L∑

j=lk+1

(qk,1j,i − q
k,0
lk,i

)zkj (t) + cki (4.66)

2) k = m:

zmi (t+ 1) =
lm−1∑
j=0

(qm,0j,i − q
m,0
lm,i

)zmj (t) +
L∑

j=lm+1

(qm,1j,i − q
m,1
lm,i

)zmj (t) + cmi

−
( ∑

whj >w
m
lm

h6=m,j 6=lh

zhj (t)
)
qm,1lm,i
−
( ∑

whj ≤wmlm
h6=m,j 6=lh

zhj (t)
)
qm,0lm,i

+
( K∑
h=1
h6=m

L∑
j=0
j 6=lh

1{whlh>w
m
lm
}z
h
j (t)

)
qm,1lm,i

+
( K∑
h=1
h6=m

L∑
j=0
j 6=lh

1{whlh≤w
m
lm
}z
h
j (t)

)
qm,0lm,i

(4.67)

Then, by replacing in the equation above for all k zklk(t) with γk−
∑L

j=0,j 6=lk z
k
j (t), we obtain

the following linear relation in w∗ between z̃(t + 1) and z̃(t) where z̃ is the proportion
vector in which the elements zklk for different k are eliminated.

z̃(t+ 1) = Qz̃(t) + C (4.68)

where C is a constant matrix and the expression of matrix Q is given in Appendix B.14.
The vector solution of the relaxed problem, denoted by z̃∗, is the fixed point of the
aforementioned linear equation. By definition of z̃∗, z̃∗ ∈ w∗ . Thus, if z̃(0) = z̃∗+ e and
z̃(t) ∈ w∗ , we obtain for t:

z̃(t)− z̃∗ = Qte (4.69)

57



Chapter 4. Whittle’s index policy for minimizing the Delay in Queuing systems

The analysis of the above linear system is therefore important to prove the local optimality.
We first provide the following lemma.

Lemma 4.5. If for all eigenvalues λ of Q, |λ| < 1, then there exists a neighborhood
Ωσ(z̃∗) ⊆ w∗ such that if z̃(0) ∈ Ωσ(z̃∗), we have the following:
1) For all t ≥ 0, ||z̃(t)− z̃∗|| < σ (z̃(t) ∈ w∗).
2) z̃(t) converges to z̃∗.

Proof. The proof follows from the convergence of the linear system.

Proposition 4.10. For all eigenvalue λ of Q, |λ| < 1

Proof. See the proof in appendix B.14.

The aforementioned result, combined with Lemma 4.5, proves the convergence of the
fluid limit system. Consequently, z(t) converges to the fixed point of Equation (4.59), z∗.
However, the above result is not enough to prove the local optimality, as we have to show
that the stochastic vector ZN(t) converges to z∗ in probability. For that, we introduce
the discrete-time version of Kurtz Theorem applied to our problem (see [59]):

Proposition 4.11. There exists a neighborhood Ωδ(z
∗) of z∗ such that if ZN(0) = z(0) =

x ∈ Ωδ(z
∗), then for any µ > 0 and finite time horizon T , there exist positive constants

C1 and C2 such that

Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ) ≤ C1exp(−NC2) (4.70)

where δ < σ, and Px denotes the probability conditioned on the initial state ZN(0) =
z(0) = x. Furthermore, C1 and C2 are independent of x and N .

According to the above proposition, the system state ZN(t) behaves very closely to the
fluid approximation model z(t) when the number of users N is large. Since we have shown
the convergence of z(t) to within Ωσ(z∗), we are ready to establish the local convergence
of the system state ZN(t) to z∗.

Lemma 4.6. If ZN(0) = x ∈ Ωδ(z
∗), then for any µ > 0, there exists a time T0 such

that for any T > T0, there exists positive constants s1 and s2 with,

Px( sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ) ≤ s1exp(−Ns2) (4.71)

Proof. See appendix B.15.

Now we are ready to prove the asymptotic local optimality of the proposed scheduling
policy.

Proposition 4.12. If the initial state is in the set Ωδ(z
∗), then

lim
T→∞

lim
N→∞

CN
T (x)

N
=
CRP,N

N
(4.72)

Proof. See appendix B.16
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4.7 Global asymptotic optimality (L < R)
In this section, we prove that from any initial state x, the long-run expected average cost
obtained with the Whittle’s Index policy is optimal when N is very large. In contrast
to the method used to prove the local optimality, we work here with the steady state
distribution of the stochastic process ZN(t). To ensure that such a stationary distribution
exists, we need to show that there is at least one recurrent state. Since the states evolve
according to a finite state Markov chain, we just need to prove that there exists a state
reachable from any other states.

Lemma 4.7. The state defined as for each class k, zk = (1, 0, · · · , 0) and denoted by z0
1,

is reachable from any initial state using the Whittle’s Index policy.

Proof. See appendix B.17

This lemma is stronger than proving the existence of a recurrent state. Indeed, this allows
us to deduce that ZN(t) evolves in one recurrent aperiodic class, and that there exists a
stationary distribution for ZN(t) denoted by ZN(∞). We still need to check if for a fixed
N , there exists at least one recurrent state within Ωε(z

∗), as otherwise Ωε(z
∗) will be a

transient class. If such a state exists, surely ZN(t) will evolve in one recurrent class that
contains this recurrent state. To that end, we demonstrate here that z∗ is reachable from
any state for a fixed N . Since z0 is reachable from any state, we just need to find a path
from z0 to z∗.

Lemma 4.8. By applying the Whittle’s Index policy, the steady state z∗ is reachable from
the state z0.

Proof. Since L < R, the probability of transitioning from queue state 0 to any other
state whether the action is active or passive is strictly positive. Thereby, there exists a
trajectory from z0 to z∗ which lasts only one time slot. Consequently, z∗ is reachable
from z0.

From this lemma above, the state z∗ is reachable from any state, which means that z∗ is
a recurrent state. However, the considered actions schedule a proportion of users (i.e. not
an integer value). This is not feasible and unrealistic for some (small) values of N since
the queues are not splittable. In fact, for some values of N , the state z∗ may not exist.
On the other hand, we can say that for enough large N , and for any ε > 0, there exists
at least one recurrent state within the neighborhood Ωε(z

∗). This will ensure that there
is a path to enter a neighborhood Ωε(z

∗) from any initial state. However, it is important
to ensure that the time to enter Ωε(z

∗) should not scale up with N . For that, we give the
following assumption which will be later justified via numerical studies in Section 4.8.

Assumption 4.1. We assume that the expected time to enter a neighborhood of z∗ from
any initial state x does not depend on the number of queues N . In other words, for all N
the time to enter a neighborhood Ωε(z

∗) denoted by ΓNx (ε) is bounded by a constant Tbε.

Now we provide a useful lemma that allows us to demonstrate the global asymptotic
optimality.

1z0 can be seen as the system’s state where all queues are in the queue state 0
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Lemma 4.9. Under assumption 4.1, and for any ε, we have that:

lim
N→+∞

P (ZN(∞) ∈ Ωε(z
∗)) = 1 (4.73)

Proof. See Lemma 6 in [32].

Since we have found a stationary distribution of ZN(t) under Whittle’s Index policy, the
expected average cost under Whittle’s Index policy for a fixed N can be written as follows:

lim
T→∞

CN
T (x)

N
=

K∑
k=1

L∑
i=0

akE
[
Zk,N
i (∞)

]
iN (4.74)

Theorem 4.6. Under assumption 4.1, and for any initial state, we have that:

lim
N→+∞

lim
T→∞

CN
T (x)

N
=
CRP,N

N
(4.75)

Proof. See appendix B.18

4.8 Numerical Results

In this section, we provide numerical results that confirms the asymptotic optimality of
the developed Whittle index policy. To that extent, we study two scenarios depending on
the buffer size L:

• L 6= +∞

• L = +∞

4.8.1 Numerical Results for finite buffer size

We consider 2 classes having a respective rate of R1 = 15 and R2 = 20. Moreover, we
suppose that α = 1/2, L = 10, γ1 = γ2 = 1/2, and a1 = a2 = a = 1. We also consider
two initial states x and y such that all the queues are equal to 0 and L respectively.

Verification of Assumption 4.1

We plot in Figure 4.3, the evolution of the time needed to enter a neighborhood Ωε(z
∗)

(i.e. hitting time of Ωε(z
∗)) with respect to N , given that ε is small enough.

One can see that for large values of N , the hitting time can be considered as a constant
and does not diverge for both initial states x and y. This implies that the hitting time is
bounded for large values of N which consolidates Assumption 4.1.
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Figure 4.3 – Hitting Time of Ωε(z
∗) in function of N : (a) ZN(0) = x, (b) ZN(0) = y

Figure 4.4 – Performance evaluation of Whittle’s Index policy
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Performance of the Whittle’s Index policy

In this section, we compare the long-run expected average cost per user under theWhittle’s
Index policy, i.e. limT→∞C

N
T (x)/N = CWIP,N/N , with the one obtained by applying the

Max-Weight policy MWP , CMWP,N/N . The policy MWP schedules, at each time t, the
M weighted longest queues (equivalently the M highest akqki (t)). We also compare the
performance of these two policies with the optimal cost per user obtained by using the
optimal solution of the relaxed problem, i.e. CRP,N/N . The results are plotted in Figures
(4.4.a) and (4.4.b) respectively for the initial states x and y (defined above).
One can see that for large N , regardless of the initial state, the cost incurred by adopting
the Whittle’s Index policy tends to the optimal cost of the relaxed problem, which proves
that it asymptotically converges to the optimal solution of the original problem. One can
also remark that the optimal cost of the relaxed problem per user is constant and does
not depend on N (see section 4.5). Lastly, we remark that the solution given by MWP
is suboptimal and lacks behind our proposed scheduling scheme.

Fairness among users

In order to improve the fairness among the users in the network, one can use the developed
Whittle index policy up to some modifications. To that extent, we introduce in this
section a new policy Θ which works as follows: at each time slot t, we schedule the
users with the highest Wk(q

k
i (t))Dk(q

k
i (t)), where qki (t) is the queue state of user i in

class k, Wk is the Whittle index of state qki (t) when the transmission rate is Rk and
Dk(q

k
i (t)) =

∑t
u=1 akq

k
i (u)

t
. To evaluate numerically the performance of this policy, we

consider the following two costs Cπ,N
1 and Cπ,N

2 incurred respectively by users of class 1 and
users of class 2 under policy π, specifically Cπ,N

1 = limT→∞
1
T
E
[∑T−1

t=0

∑γ1N
i=1 a1q

1
i (t) | x, π

]
and Cπ,N

2 = limT→∞
1
T
E
[∑T−1

t=0

∑γ2N
i=1 a2q

2
i (t) | x, π

]
. We plot these quantities over N

when π = WIP and when π = Θ with respect to N in figure 4.5. We conclude that
the new policy gives a better performance in terms of fairness, since it reduces the gap
between the costs of the two classes of users.

4.8.2 Numerical Results for infinite buffer size

For this scenario, we compare the average cost given by our policy WIP with the one
given by the myopic policy or the Max-Weight policy. We plot the results on Figures
where we consider two classes of users with their respective transmission rate R1 and R2,
and the number of servers is equal to N/2 where N is the number of users. In Figure
(4.6.a), we take R1 = 5 and R2 = 20, while in Figure (4.6.b), the values of R1 and R2 are
respectively 10 and 45. According to these figures, one can show that our policy WIP is
asymptotically optimal even with L = +∞, and performs much better than the myopic
policy. This confirms our main motivation behind developing the Whittle index policy
when L is infinite.
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Figure 4.5 – Evaluation of Cπ,N
1 and Cπ,N

2 in function of N under Policy Θ and Whittle’s
Index policy WIP

Figure 4.6 – Performance evaluation of Whittle’s Index policy
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4.9 Conclusion
In this chapter, we have studied the problem of users and channels scheduling under
bursty traffic arrivals. At each time slot, only M channels can be allocated to the users
knowing that a user can be allocated one channel at most. For both scenarios (L < +∞
and L = +∞), we have formulated a Lagrangian relaxation of the optimization problem
and have provided a characterization of the optimal solution of this relaxed problem. We
have then developed a simple Whittle’s Index policy to allocate the channels to the users
and have proved its asymptotic local and global optimality when the numbers of users and
channels are large enough and when the buffer size L is finite. This result is of interest as
the developed Whittle’s Index policy has a low complexity and is near optimal for large
number of users. We have then provided numerical results that corroborate our claims.
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Chapter 5

Whittle’s index policy for minimizing
the Age of Information

In this chapter, we apply Whittle index policy (WIP) for minimizing the age of information
(AoI) in the framework of scheduling problems. For that purpose, we start by showcasing
our system model in the context of AoI minimization problem and in RBP framework.
Then, following the same methodology detailed in Chapter 3, we derive the corresponding
Whittle’s index policy. Afterwards, we provide the rigorous analytical proof of the local
and the global optimality of WIP. Lastly, we give some numerical results that put into
perspective the exactitude of our theoretical findings. We emphasize that in this chapter,
we show the local optimality of Whittle’s index policy for a system containing several
classes. Whereas, we prove the global optimality for a system containing two different
classes. We note that to establish the last result, we proceed with a novel and original
approach completely different from that used in the previous chapter and in the literature.
Essentially, this new method doesn’t require that assumption 4.1 be taken into account.

5.1 System Model

5.1.1 Network description

We consider N users that send status updates to a monitor. Due to the limited amount
of channels, only M < N users can transmit simultaneously. Let α = M

N
∈]0, 1[ be the

portion of the N users that can tansmit. Time is considered to be discrete. We recall
that in our system model, neither the users nor the channels are equipped with buffers,
but instead, the channel is considered to be unreliable, which means that: at time slot t,
if user i is scheduled, then the channel is good, i.e., the transmitted packet is successfully
received by the monitor at time t+ 1 with a probability pi. Otherwise, the packet fails to
reach the destination. Moreover, we suppose that users are divided into K classes such
that the probability of successful transmission for users in class k is pk. Each class k has
γkN users and, consequently, the following holds:

∑K
k=1 γk = 1. Our goal is to let the

monitor to have the freshest information carried by the users. To that end, we need first
to introduce the AoI metric adapted to our system model.
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5.1.2 Adopted age metric

At each time instant t ≥ 0, we let gki (t) be the time-stamp of the freshest packet by user
i of class k that has been delivered to the monitor. Subsequently, the age of information
of this user is defined as:

Ski (t) = min(t− gki (t), L) (5.1)

where L is in N∗∪{+∞}. To that extent, we study in the sequel the problem of channels
allocation with two different metrics depending on L:

1. L is finite

2. L is infinite

To do so, we adapt the methodology given in Chapter 3 for this particular model and
similarly to the chapter 4, we derive the theoretical results for both metrics in parallel.

5.1.3 Problem formulation

We let the age vector at time t be S(t) = (S1
1(t), . . . , SKγKN(t)) where Ski (t) is the age

at the monitor of user i of class k at time slot t. A scheduling policy π is defined as a
sequence of actions π = (aπ(0),aπ(1), . . .) where aπ(t) = (a1,π

1 (t), a1,π
2 (t), . . . , aK,πγKN

(t)) is
a binary vector such that ak,πi (t) = 1 if user i of class k is scheduled at time t. We let
ck,πi (t) ∈ {0, 1} be an i.i.d. Bernoulli random variable that indicates if the transmitted
packet by the scheduled user is successfully received (value ck,πi (t) = 1) or not (value
ck,πi (t) = 0). Hence, by definition of ck,πi (t), we have that Pr(ck,πi (t) = 1) = pk and
Pr(ck,πi (t) = 0) = 1 − pk. Therefore, the evolution of the age of user i of class k under
policy π can be summarized in the following:

Ski (t+ 1) =

{
1 if ak,πi (t) = 1, ck,πi (t) = 1

min(Ski (t) + 1, L) otherwise
(5.2)

Denoting by Π, the set of all causal scheduling policies, our scheduling problem can
formulated as follows:

minimize
π∈Π

lim
T→+∞

sup 1

T
Eπ
( T−1∑
t=0

K∑
k=1

γkN∑
i=1

Sk,πi (t)|S(0)
)

subject to
K∑
k=1

γkN∑
i=1

ak,πi (t) ≤ αN t = 1, 2, . . .

(5.3)

According to Chapter 3, the problem in (5.3) belongs to the family of RMAB problems,
then, the optimal solution is out of reach. For this reason, we derive the Whittle’s index
policy due to its low complexity and good performance. To that end, we follow the
same steps explained in Chapter 3. However, in order to avoid redundancy, we skip the
part about the Lagrangian Relaxation approach, and we will be limited to give only the
important results in the form of Propositions and Theorems.
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1. The Bellman equation that corresponds to the dual relaxed problem for a given user
after decomposition is:

θ + V (S) = min
a∈{0,1}

{
S +Wa+

∑
S′∈{1,...,L}

Pr(S → S ′|a)V (S ′)
}

(5.4)

where Pr(S → S ′) is the transition probability from the age state S to S ′, θ is the
optimal value of the problem and V (S) is the differential cost-to-go function.

2. Since we are not able to find the explicit solution of the Bellman equation for a given
W , we focus only on studying the structure of the optimal scheduling policy. By
doing so, the following results can be obtained. First of all, we recall the definition
of an increasing threshold policy.

Definition 5.1. An increasing threshold policy is a policy πn ∈ Π such that when
the age of information is larger or equal 1 to n, the user is scheduled. Otherwise,
it is not scheduled.

Theorem 5.1. The optimal solution of the problem in (5.4) is an increasing thresh-
old policy.

Proof. The proof can be found in Appendix C.1.

3. In order to establish the indexability of the problem and find the Whittle’s index
expressions, we tackle in more depth the behavior of the MDP that characterize the
evolution of the age when a threshold policy is adopted. In fact, under a threshold
policy n, the MDP can be modeled through a Discrete Time Markov Chain (DTMC)
as seen in Fig. 5.1 and in Fig. 5.2.

Figure 5.1 – The states transitions under a threshold policy n when L < +∞

Figure 5.2 – The states transitions under a threshold policy n when L = +∞
1Unlike the definition of threshold policy given in Chapter 4, here we suppose that under threshold

policy πn, even at state n, the action prescribed is the active action
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To that extent, we derive in the next proposition, the stationary distribution of the
DTMC in question for both cases of L.

Proposition 5.1. For any given threshold n ∈ {1, . . . , L}, the DTMC is irreducible
and admits un(i) for i = 1, . . . , L as its stationary distribution:

• Finite L:

(a) n ≤ L

un(i) =


p

np+1−p if 1 ≤ i ≤ n

(1− p)i−n p
np+1−p if i ≥ n

(1−p)L−n
np+1−p if i = L

(5.5)

(b) n ≥ L+ 1

un(i) =

{
0 if 1 ≤ i ≤ L− 1
1 if n = L

(5.6)

• Infinite L:

un(i) =

{ p
np+1−p if 1 ≤ i ≤ n

(1− p)i−n p
np+1−p if i ≥ n

(5.7)

Proof. The expressions results from solving the full balance equation satisfied by
un(·) while bearing mind that

∑L
i=1 u

n(i) = 1.

Based on the stationary distribution under a threshold policy n, we can give the
steady-state form of the one-dimensional dual relaxed problem that corresponds to
the Bellman equation (5.4) as follows:

min
n∈[1,L]

[
L∑
i=1

iun(i) +W
L∑
i=n

un(i)

]
(5.8)

where W is the Lagrangian parameter,
∑L

i=1 iu
n(i) = lim sup

T→∞

1
T
Eπn

[∑T−1
t=0 s

πn(t)
]

refers to the long run expected average age under threshold policy πn, and
∑L

i=n u
n(i) =

lim sup
T→∞

1
T
Eπn

[∑T−1
t=0 a

πn(t)
]
indicates the long run expected average time when the

active action is prescribed to the user of interest under threshold policy πn.
As it was mentioned in Chapter 3, this closed form of the one-dimensional dual
relaxed problem turns out to be crucial to derive the Whittle index values as we
will see in the sequel.
By leveraging the above results, we can now proceed with finding a closed-form of
the average age as well as the average active time under a given threshold policy πn
for both cases of L.

Theorem 5.2. For any given threshold n, the explicit expressions of
∑L

i=1 iu
n(i)

and
∑L

i=n u
n(i) are:

• Finite L:
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(a) n ∈ [0, L]:

L∑
i=1

iun(i) =
[(n− 1)2 + (n− 1)]p2 + 2p(n− 1)

2p((n− 1)p+ 1)
+

2[1− (1− p)L−n+1]

2p((n− 1)p+ 1)

(5.9)
L∑
i=n

un(i) =
1

np+ 1− p
(5.10)

(b) n ≥ L+ 1:

L∑
i=1

iun(i) =L (5.11)

L∑
i=n

un(i) =1 (5.12)

• Infinite L:

L∑
i=1

iun(i) =
[(n− 1)2 + (n− 1)]p2 + 2p(n− 1)

2p((n− 1)p+ 1)
+

2

2p((n− 1)p+ 1)
(5.13)

L∑
i=n

un(i) =
1

np+ 1− p
(5.14)

4. Based on the above results, we establish the indexability property of the problem
for all users, which ensures the existence of the Whittle’s indices and allows us to
establish our index policy as it was explained in Chapter 3.

Proposition 5.2. For both cases of L, and for each user belonging to any class
k = 1, . . . , K, the one-dimensional problem is indexable.

Proof. The proof can be found in Appendix C.2.

As the indexability property has been established in the above proposition, we can
now affirm the existence of the Whittle’s index. To that extent, we provide the
expressions of Whittle’s indices in the following theorem.

Theorem 5.3. The Whittle’s index of state i ∈ [1, L] in class k is defined as:

• Finite L:
W k
i =

i(i− 1)pk
2

+ i− i(1− pk)L−i (5.15)

• Infinite L:

W k
i =

i(i− 1)pk
2

+ i (5.16)
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Proof. The proof can be found in Appendix C.3.

5. In light of the last result, we summarize in the following the Whittle’s index schedul-
ing policy for the original problem (5.3).

Algorithm 3 Whittle’s index scheduling policy
1: At each time slot t, calculate the Whittle’s index of all users using Theorem 5.3.
2: Schedule the M users having the highest Whittle’s index values at time t.

Although the above scheduling policy is easy to implement, it remains sub-optimal. Sub-
sequently, characterizing its performance compared to the optimal policy is important.

5.2 Local optimality: Finite L

In this section, we study the local optimality properties of the Whittle’s index policy when
L is finite. To that end, we reintroduce the state space {Zk,N

i (t), 1 ≤ i ≤ γkN, 1 ≤ k ≤ K}
defined in Chapter 3, Section 3.4 over which the local optimality will be established.
Analogously to the method used in the previous chapter with regard to the optimality of
WIP, we proceed with the fluid approximation technique to establish the desired result.
Accordingly, the deterministic vector z(t) evolves as:

z(t+ 1)− z(t)|z(t)=z = E[ZN(t+ 1)−ZN(t)|ZN(t) = z] (5.17)

In order to obtain the linear relation between z(t + 1) and z(t) when the Whittle’s
index policy is implemented, we should first determine the transition probability from a
given state of age to another state for a given z(t) = z. To that end, we reintroduce
the probability that a user of class k in state i is selected among the proportion zki for
transmission:

pki (z) = min{zki ,max(0, α−
∑

Wh
j >W

k
i

zhj )}/zki , (5.18)

Next, as it was done in Chapter 4, Section 4.6, we denote by qk,0i,j and qk,1i,j the probability
of transition from state i to state j in a class k if the user is left to idle or is scheduled
for transmission respectively. The expressions of qk,0i,j and qk,1i,j can be easily derived from
the age dynamics detailed in (5.2). Specifically:

qk,0i,j =

{
1 if j = min(i+ 1, L)

0 otherwise

qk,1i,j =


pk if j = 1

1− pk if j = min(i+ 1, L)

0 otherwise
(5.19)
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Therefore, given z, the probability of transition between state i and j in class k, qki,j(z)
which can be also seen as the output stream from the state i to the state j given z for a
user at state i, is as follows:

qki,j(z) = pki (z)qk,1i,j + (1− pki (z))qk,0i,j . (5.20)

Given that, we can summarize the evolution of z(t) as follows:

zki (t+ 1)− zki (t) =
∑
j 6=i

qkj,i(z(t))zkj (t)−
∑
i 6=j

qki,j(z(t))zki (t) (5.21)

This can be rewritten in the following manner:

z(t+ 1) = Q(z(t))z(t) + z(t) (5.22)

We recall that to establish the asymptotic optimality of Whittle’s index policy, according
to 3.4, we compare its performance to the average age of the relaxed problem. Precisely,
we show that CN

T (x) converges to CRP,N when N and T grows where CRP,N and CN
T (x)

are the optimal total average age of the relaxed problem and the total expected average
age over time duration 0 ≤ t ≤ T starting from the initial proportion vector z(0) = x
when the Whittle’s index policy is adopted respectively. For that, we need to have the
expression of CRP,N . To proceed in that direction, we rewrite the Proposition 4.9 adapted
for our specific case.
Proposition 5.3. There exists a class m, state p, and a randomization parameter θ∗
such that the optimal solution of the dual problem when the langrangian parameter W =
Wm
p = W ∗ is characterized by:

• For k 6= m, the optimal threshold is lk(W ∗) = argmax
i
{W k

i |W k
i ≤ Wm

p }+ 1

• For k = m, the optimal solution is randomized policy between two threshold policies
lm(W ∗) = argmax

i
{Wm

i |Wm
i ≤ Wm

p } + 1 and lm(W ∗) − 1 = argmax
i
{Wm

i |Wm
i ≤

Wm
p }, where the factor of randomization θ∗ is the probability of adopting the policy

lm(W ∗) and 1− θ∗, the probability of adopting the policy lm(W ∗)− 1.

• The relaxed constraint is satisfied with equality, i.e.

α =
∑
k 6=m

L∑
i=lk(W ∗)

γku
lk(W ∗)
k (i) +

L∑
i=lm(W ∗)

γmu
∗
m(i) + (1− θ∗)γmulm(W ∗)−1

m (lm(W ∗)− 1)

Where u∗m = θ∗ulm(W ∗) + (1− θ∗)ulm(W ∗)−1.

Remark 5.1. In the above proposition, one can notice that the thresholds are differed by
one compared with that of Proposition 4.9. This comes from the fact that the definition
of a threshold policy is not the same for both chapters 4 and 5.

According to Proposition 5.3, the optimal solution of the relaxed problem is a threshold
policy characterized by W ∗ and θ∗ defined in the above proposition, Accordingly,

CRP,N =
K∑
k=1
k 6=m

γkN
L∑
i=1

u
lk(W ∗)
k (i)i+ γmNθ

∗
L∑
i=1

ulm(W ∗)
m (i)i+ γmN(1− θ∗)

L∑
i=1

ulm(W ∗)−1
m (i)i

(5.23)

71



Chapter 5. Whittle’s index policy for minimizing the Age of Information

For ease of notations we denote lk(W ∗) by l∗k. For the local optimality, we restrict our
analysis to a specific set in Z which is a subset of W ∗ defined in Section 4.6, Chapter 4. In
fact, in this aforementioned set, Q(z(t)) doesn’t depend on z(t). This will be confirmed
in the sequel by establishing the link between z(t+ 1) and z(t) within this set.
1) k 6= m: In this case, we can replace zkl∗k−1(t) by γk−

∑L
j=1,j 6=l∗k−1 z

k
j (t). Therefore, there is

no need to track the evolution of zkl∗k−1(t) with time as it can be deduced from the evolution
of zkj (t) for j 6= l∗k − 1. Accordingly, we let z̃k(t) = [zk1 (t), . . . , zkl∗k−2(t), zkl∗k(t), . . . , z

k
L(t)].

Next, by replacing qkj,i(z(t)) with its value in (5.21), we can obtain the following expression
of zki (t+ 1) in function of zk(t):∑L

j=l∗k
pkz

k
j (t) if i = 1

zki−1(t) if 1 < i < l∗k − 1

−
∑l∗k−2

j=1 z
k
j (t)−

∑L
j=l∗k

zkj (t) + γk if i = l∗k
(1− pk)zki−1(t) if l∗k < i < L
(1− pk)zkL−1(t) + (1− pk)zkL(t) if i = L

(5.24)

2) k = m: To tackle this case, we first replace zml∗m(t) by γm −
∑L

j=1,j 6=l∗m
zmj (t) . Similarly

to the first case, there is no need to track the evolution of zml∗m(t) with time. Accordingly,
we let z̃m = [zm1 , . . . , z

m
l∗m−1(t), zml∗m+1(t), . . . , zmL (t)]. The difference between this case and

the above one is that there exists a given set of users in class m whose Whittle’s index
equals to W ∗. That implies that, as z(t) ∈ W ∗ , there is a group of users among this
aforementioned set which will be scheduled, while the remaining group will be in the idle
mode. Thus, unlike the previous case, the relation between zm1 (t + 1) and zm(t + 1) will
not be easy to express. Nevertheless, we recall that the portion of scheduled users is
always equal to α. Hence, the portion of scheduled users of class m can be always written
as the difference α −

∑
k 6=m

∑L
j=l∗k

zkj (t). With that in mind, we can write the evolution
of zmi (t+ 1) for any i 6= l∗m in function of z(t) as follows:

(α−
∑

k 6=m
∑L

j=l∗k
zkj (t))pm if i = 1

zmi−1(t) if 1 < i < l∗m
−
∑l∗m−1

j=1 zmj (t)−
∑L

j=l∗m+1(1− pm)zkj (t) + γm − pm(α−
∑

k 6=m
∑L

j=l∗k
zkj (t)) if i = l∗m + 1

(1− pm)zmi−1(t) if l∗m + 1 < i < L
(1− pm)zmL−1(t) + (1− pm)zmL (t) if i = L

(5.25)
Based on this, we can conclude that when z(t) ∈ W ∗ , z̃(t+1) and z̃(t) are related through
the simpler linear equation:

z̃(t+ 1) = Qz̃(t) + c, (5.26)

Where the expression of Q has the following form:

Q =



Q1 0 · · · · · · · · · · · · 0
0 Q2 · · · · · · · · · · · · 0
... . . .
A1 A2 · · · Qm · · · AK−1 AK
... . . . ...
0 0 · · · · · · · · · QK−1 0
0 0 · · · · · · · · · 0 QK


. (5.27)
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Let us define z∗ ∈ Z as the system state vector that results from adopting the optimal
policy of the relaxed problem. By exploiting the results of Propositions 5.1 and 5.3, and
using the definition of z∗, one can find the exact expression of z∗. Specifically:

z∗,ki = γku
l∗k
k (i)

z∗,mi = γm[θul
∗
m
m (i) + (1− θ)ul∗m−1

m (i)] (5.28)

To prove that CN
T (x) converges to CRP,N when T and N scale, we should first demonstrate

that z(t), when theWhittle’s index policy is adopted, converges to z∗ within a given subset
of W ∗ . In fact, z∗ is not simply a system state that belongs to the set W ∗ , but beyond
that, it is the fixed point of the fluid approximation equation (5.17). Bearing that in
mind, we have this following always holds when z(t) ∈ W ∗ :

z̃(t)− z̃∗ = Qe (5.29)

where e = z̃(0) − z̃∗. As consequence, as it was depicted in Section 4.6 Chapter 4, we
must set out that all eigenvalues of Q are strictly less than one to establish our desired
result. The proof of this statement is elaborated in C.4.

Proposition 5.4. For all eigenvalue λ of Q, |λ| < 1

Proof. See appendix C.4.

Accordingly, there exists σ > 0 such that, if z(0) ∈ Ωσ(z∗) ⊆ W ∗ , we have z(t) ∈ W ∗
and z(t) converges to z∗. Leveraging these above results, we prove that ZN(t) evolves
closely to z∗ when N is large.

Proposition 5.5. There exists a neighborhood Ωδ(z
∗) such that, for any T, µ > 0, if

ZN(0) = x ∈ Ωδ(z
∗), there exists a constant C1 independent of N and x such that:

Prx( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ) ≤ C1

N
(5.30)

where Prx denotes the probability conditioned on the initial state ZN(0) = x.

Providing that z(t) converges to z∗ within a neighborhood Ωδ(z
∗), we get the following

corollary based on the previous proposition.

Corollary 5.1. There exists a neighborhood Ωδ(z
∗) such that, for any µ > 0, if ZN(0) =

x ∈ Ωδ(z
∗), then there exists a time T0 such that for any time instant T > T0, there exists

a constant Cf independent of N and x such that:

Prx( sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ) ≤ Cf
N

(5.31)

Proof. The proof is identical to that of Lemma 4.6.

Based on this corollary, we are ready now to establish the local optimality of the Whittle’s
index policy.
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Proposition 5.6. If the initial state x is in the set Ωδ(z
∗), then

lim
T→∞

lim
N→∞

CN
T (x)

N
=
CRP,N

N
(5.32)

Proof. The proof is identical to that of Proposition 4.12. Accordingly, it will be skipped
for sake of shortness.

5.3 Global Optimality: Infinite L

In this section, we will show that the Whittle Index Policy is asymptotically globally
optimal when L is infinite. Specifically, we show that the Whittle index Policy is optimal
for a large number of users N and a large number of channels M , the ratio α = M

N
being

constant and starting from any initial state. For that, we will compare the average cost
obtained by the Whittle Index Policy with the optimal cost of the original problem.
Providing that the number of states of the age is infinite, we denote by mk(t), the highest
state at time t in class k. Without loss of generality, we have that

∑mk(t)
i=0 Zk,N

i (t) = γk
for each class k.

We establish the global optimality for two different classes of users where p1 and p2 are
the successful transmission probabilities of the class 1 and 2 respectively (p1 > p2). As it
has been proven in 5.2, we prove likewise that ZN(t), evolving under the Whittle index
policy, converges in probability to z∗ when N and t are very large. To that extent, we
start by showing that the fluid approximation of ZN(t) denoted by z(t) converges to z∗.
To that end, for a sake of clarity, we give in the sequel an insight into the theoretical
analysis developed to demonstrate this desired result:
Recalling that the relation that links z(t + 1) to z(t) is not linear in general as it was
reported in Section 5.2, then establishing the convergence of z(t) requires a new method
involving terms of α1(t) and α2(t) where these two users’ proportions refer to the scheduled
users’ proportion at time t of the class 1 and 2 respectively (α1(t) + α2(t) = α). To that
extent, we give in the following the outlines of the proof:

1. For a large enough time t, based on Lemma 5.1, we show that there exists Tt such
that we can find a partial relation between each element of the vector z(t+ Tt) and
terms of the sequence {αk(t′)} k=1,2

t′≤t+Tt
. More precisely, we prove that for Tt, we can

express each proportion of users that are not scheduled at time t+Tt in function of
one term of {αk(t′)} k=1,2

t′≤t+Tt
. This allows us to obtain 1− α as a linear combination

between the terms of {αk(t′)} k=1,2
t′≤t+Tt

at time t+ Tt.

2. We define in Definition 5.3, Tmax that satisfies these two following properties proven
in Propositions 5.8 and 5.9 using Lemma 5.2:

• The Whittle index alternates between the two classes from state 1 to Tmax + 1
under a given assumption on α.

• The instantaneous thresholds l1(.) and l2(.) are bounded by Tmax at time t+Tt.
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3. Based on the above result, we derive the relation between the instantaneous thresh-
olds at time t+ Tt in Proposition 5.10.

4. Taking as an initial time t + Tt = T0, we show by induction in Proposition 5.11,
that for all T ≥ T0, the instantaneous thresholds are less than Tmax and that all
proportions containing the non scheduled users can be expressed in function of terms
of the sequence {αk(t′)}k=1,2

t′≤T
.

5. We define for each class k a vector Ak(T ) composed by αk(T ) (the scheduled users’
proportion at time T ) plus the finite subset of the sequence {αk(t′)}t′≤T such that
for all proportion of users in class k at a given state at time T that is not scheduled
can be expressed by one element belonging to this subset. Then, we provide the
relation between the elements of the vectors Ak(T ) and Ak(T + 1) in Propositions
5.12 and 5.13

6. We conclude the convergence of the highest and the smallest element of Ak(T ) when
T grows in Theorem 5.4.

7. We demonstrate by contradiction that the highest and the smallest element ofAk(T )
must converge to the same limit in Proposition 5.14. This last result implies that
αk(t) converges when t scales.

8. In light of that fact, we prove that z(t) converges to z∗ in Proposition 5.15.

9. Using Kurth theorem, we show in Proposition 4.11 that ZN(t) converges to z∗ in
probability.

10. Finally we establish in Proposition 5.17, the convergence of CN
T (x) to CRP,N as N

and T grow starting from any initial point x.

Remark 5.2. We highly emphasize that the proportion αk(t) and 1 − α refer to the
scheduled users’ proportion at time t in class k and the non scheduled users’ proportion
either for class 1 or 2 respectively. Meanwhile, for any other proportion A, it refers only to
the number of users in this proportion over the total users’ number of the system whatever
the different states of users that contains. Having said that, A = B means that they are
equal in terms of proportion, while they can contain users in different states.

We remind that the fluid limit technique consists of analyzing the evolution of the ex-
pectation of ZN(t) under the Whittle Index Policy. For ease of reading, we rewrite the
equation (5.17):

z(t+ 1)− z(t)|z(t)=z = E
[
ZN(t+ 1)−ZN(t)|ZN(t) = z

]
(5.33)

This above equation reveals to us that we have a sequence z(t) defined by recurrence for
a fixed initial state z(0) that we should study its behavior when t is very large. Hence,
we end up with a function z(t) that depends on two variables, t and the initial value
z(0). To that extent, our aim is to prove that z(t) converges to z∗ regardless of the
initial state z(0) where z∗ denotes the users’ proportion corresponding to the optimal
policy of the relaxed problem when L is infinite. We let z(t) = (z1(t), .....,zK(t)) with
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zk(t) = (zk1 (t), ......, zk
mk(t)

(t)) where zki (t) is the expected proportion of users at state
i in class k at time t with respect to the equation (5.33). Accordingly we have that∑mk(t)

i=0 zki (t) = γk for each class k.

One can notice that z∗ is a particular vector with respect to the equation (5.33).
Proposition 5.7. z∗ is the unique fixed point of the fluid approximation equation. In
other words, z(t) = z(t+ 1), if and only if z(t) = z∗.

Proof. The proof follows the same methodology of the paper [32, Lemma 9]

According to this proposition, it is sufficient to show that z(t) converges starting from
any initial state z(0), as the only eventual finite limit of z(t) when t tends to +∞ is the
fixed point of the equation (5.33), z∗.

In the following, we prove that the fluid approximation vector of ZN(t), z(t) under the
Whittle Index Policy converges starting from any initial state. We prove this result for 2
different classes of users where p1 and p2 are the successful transmission probabilities of
the class 1 and 2 respectively (p1 > p2), given a sufficient condition on α. Throughout this
section, we denote by w1(n) and w2(n), the Whittle’s index, whose expression is given in
Proposition 5.3, of state n in class 1 and class 2 respectively. We need to prove that zki (t)
converges for each state i in class k.

Now, focusing on the Whittle index policy, we can see it as an instantaneous threshold
policy for each class, where the thresholds vary over time t. Moreover, under the Whittle
index policy, the proportion of users that are scheduled at each time slot t is fixed and
equals to α since the number of scheduled users at each time slot t is αN . This proportion
α contains the users with the highest Whittle index values. In that respect, we define
α1(t) and α2(t) the proportion of users in class 1 and class 2 respectively at time t with
the highest Whittle index values such that α1(t) + α2(t) = α. The remaining proportion
of users which are not scheduled at each time slot t, which is equal to 1−α, contains the
users with the smallest Whittle index values. Now, regarding this proportion, we give its
decomposition into proportions of users at different states in different classes. Denoting
by l1(t) and l2(t) at time t the instantaneous threshold integers under Whittle index
policy, then there exists two real values between 0 and 1, β(t) and γ(t), with γ(t) = 1
and 0 < β(t) ≤ 1, or 0 < γ(t) ≤ 1 and β(t) = 1, such that:

l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (5.34)

and {z1
i (t)}1≤i≤l1(t)∪{z2

i (t)}1≤i≤l2(t) is exactly the set {zki : wk(i) ≤ max(w1(l1(t), w2(l2(t))}.
For the case where L is finite, we have assumed that z(0) is within a neighborhood of z∗.
This assumption has allowed us to find an easy linear relation between z(t) and z(t+ 1)
(z(t+ 1) = Qz(t) + c), and then deduce the convergence of z(·) by establishing that the
spectral value of Q is strictly less than one as it was depicted in Proposition 5.4. Whereas
for this case, when L is infinite, since we aim to prove the convergence of z(·) from any
initial state, the general relation between z(t+ 1) and z(t) is as follows:

z(t+ 1) = Q(z(t))z(t) + c(t) (5.35)
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This equation is not linear which makes studying the evolution of z(·) a hard task. More-
over, as the number of state is infinite, then the dimensions of z(t) varies per time.
Therefore, the matrix Q(z(t)) is not square. Hence we can not apply the same method as
in Section 5.2 since the spectral values are not defined for a non square matrix. For these
reasons, we proceed differently than 5.2. Our method consists in fact on expressing each
proportion zki (t) that belongs to a non scheduled users’ proportion at time t in function
of a term of αk(·) at a given time less than t. By this way, we will obtain a part of the
vector z(t) in function of {αk(t′)} t′≤t,

k∈{0,1}
, and the sum of the other part equal to α. Then,

we show that αk(·) converges for k = 1, 2. We will see later that it is sufficient to show
that αk(·) converges in order to conclude for the convergence of z(·). To find the partial
relation between z(t) and {αk(t′)} t′≤t

k∈{0,1}
, we prove the following lemma.

Lemma 5.1. Knowing zk(t), αk(t) and lk(t), we have that:
For i = 1:
zk1 (t+ 1) = pkαk(t).
For 1 ≤ i < lk(t):
zki+1(t+ 1) = zki (t).

Proof. See appendix C.5.

According to Lemma 5.1, after scheduling under the Whittle’s Index Policy, we get at
time t + 1, a proportion of p1α1(t) of users at state 1 in class 1 and p2α2(t) of users at
state 1 in class 2 respectively (i.e. z1

1(t+ 1) = p1α1(t) and z2
1(t+ 1) = p2α2(t)).

According to the same lemma, at time t+ 2, a proportion of p1α1(t) and p2α2(t) of users
will go to state 2 in class 1 and class 2 respectively and p1α1(t + 1), p2α2(t + 1) of users
will move to state 1 in class 1 and class 2 respectively (i.e. z1

1(t + 2) = p1α1(t + 1),
z2

1(t+ 2) = p2α2(t+ 1), z1
2(t+ 2) = p1α1(t) and z2

2(t+ 2) = p2α2(t)).
At time t+ 3, a proportion of p1α1(t) and p2α2(t) of users will go to state 3 in class 1 and
class 2 respectively, p1α1(t+1), p2α2(t+1) of users will move to state 2 in class 1 and class
2 respectively, p1α1(t+ 2) and p2α2(t+ 2) of users will move to state 1 in class 1 and class
2 respectively, (i.e. z1

1(t+ 3) = p1α1(t+ 2), z2
1(t+ 3) = p2α2(t+ 2), z1

2(t+ 3) = p1α1(t+ 1)
and z2

2(t+ 3) = p2α2(t+ 1), z1
3(t+ 3) = p1α1(t), z2

3(t+ 3) = p2α2(t))
Thereby, at time t+ t0 where the instantaneous threshold lk(t+ t0) ≥ t0, we get a set of
proportions
{p1α1(t), p2α2(t), · · · , p1α1(t+ t0−1), p2α2(t+ t0−1)} that belong to the proportion 1−α
of users with the lowest Whittle index values, such that z1

1(t + t0) = p1α1(t + t0 − 1),
z2

1(t + t0) = p2α2(t + t0 − 1), · · · , z1
t0

(t + t0) = p1α1(t) and z2
t0

(t + t0) = p2α2(t). Hence,
we obtain a zki (t + 1) which is well expressed in function of terms of αk(·) (k = 1, 2) for
i ∈ [1, t0], k = 1, 2.

Remark 5.3. Considering Whittle index policy framework, the order of the different
users’ proportions with respect to their Whittle index values must be taking into account
throughout this analysis. In fact, as we have already mentioned, we need to give the
expression of the non scheduled users’ proportions in function of the terms of αk(·) for
k = 1, 2, which can not be done only if we consider the order of the Whittle index values.
To that extent, since the set of the non scheduled users’ proportions, according to the
Whittle’s index policy, is exactly the set of users’ proportions with the lowest Whittle
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Figure 5.3 – Evolution of zki (·) for different states i in function of α1(t) and α2(t) under the
Whittle Index Policy (the green and the yellow colors refer to class 1 and 2 respectively)

index values among all the different users’ proportions of the system, then the form at
time t of this specific set will be {zki (t) : wk(i) ≤ wm(n)} for a given m and n that vary
with t.

Based on this remark above, we need to find at time t+ t0, a set of the form {zki (t+ t0) :
wk(i) ≤ wm(n)} for a given class m and state n, such all the elements of this set are well
expressed in function of αk(·). We show in the sequel that the highest Whittle index of
this set could be w2(t0).
Indeed, given that the Whittle index function is increasing with n where n refers to
a given age of information state, then for any state in class 2 with Whittle index less
than w2(t0), belongs to [1, t0]. Moreover, considering the state q in class 1 such that
w1(q) ≤ w2(t0) ≤ w1(t0) (p1 > p2), then w1(q) ≤ w1(t0), which means that q ∈ [1, t0].
Hence, for any element in {zki (t + t0) : wk(i) ≤ w2(t0)}, can be expressed in function of
terms of αk(·) (k = 1, 2). Accordingly, {zki (t + t0) : wk(i) ≤ w2(t0)} equals to the set
{p2α2(t), · · · , p2α2(t+ t0− 1), p1α1(t+ t0− l(t+ t0)), · · · , p1α1(t+ t0− 1)}, where l(t+ t0)
is the greatest state q in class 1 such that w1(q) ≤ w2(t0). We note that l(t + t0) ≤ t0
because w2(l(t+ t0)) ≤ w1(l(t+ t0)) ≤ w2(t0).
Therefore, in that regards, for a fixed t, we associate for each t0 the corresponding sum∑l(t+t0)

j=1 z1
j (t+ t0) +

∑t0
j=1 z

2
j (t+ t0) =

∑l(t+t0)
j=1 p1α1(t+ t0− j) +

∑t0
j=1 p2α2(t+ t0− j). To

that extent, we define in the following the time t0 when this aforementioned sum exceeds
1− α.

Definition 5.2. Starting at time t, we define Tt such that t + Tt is the first time that
verifies:

l(t+Tt)∑
j=1

p1α1(t+ Tt − j) +
Tt∑
i=1

p2α2(t+ Tt − j) ≥ 1− α (5.36)

In other words, the first time when
∑l(t+t0)

j=1 p1α1(t+ t0− j) +
∑t0

i=1 p2α2(t+ t0− j) exceeds
1− α is t+ t0 = t+ Tt.
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Then, at time t + Tt, there exists l′1(t + Tt) ≤ l(t + Tt), l′2(t + Tt) ≤ Tt, such that
the set {z1

i (t + Tt)}1≤i≤l′1(t+Tt) ∪ {z2
i (t + Tt)}1≤i≤l′2(t+Tt) is exactly the set {zki (t + Tt) :

wk(i) ≤ max(w1(l′1(t + Tt), w2(l′2(t + Tt))}2, and γ(t + Tt) = 1 and 0 < β(t + Tt) ≤ 1, or
0 < γ(t+ Tt) ≤ 1 and β(t+ Tt) = 1 such that:

l′1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l′2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l′1(t+ Tt)) + γ(t+ Tt)p2α2(t+ Tt − l′2(t+ Tt)) = 1− α,
(5.37)

with l′1(t+Tt) and l′2(t+Tt) being the instantaneous thresholds in class 1 and 2 respectively
at time t + Tt. α1(t + Tt) and α2(t + Tt) are the users’ proportions with the highest
Whittle index values, and their sum is equal to α. Without loss of generality, we let
l′k(t+ Tt) = lk(t+ Tt).
As we can see, at time t+ Tt, all the expressions of the users’ proportions that belong to
the 1−α of users with the smallest Whittle index values, are in function of α1(t) or α2(t)
at various time. In fact, at time t + Tt, we end up with z1

1(t + Tt) = p1α1(t + Tt − 1),
z2

1(t+Tt) = p2α2(t+Tt−1), · · · , z1
l1(t+Tt)

(t+Tt) = p1α1(t+Tt− l1(t+Tt)) and z2
l2(t+Tt)

(t+

Tt) = p2α2(t + Tt − l2(t + Tt)), and the rest of the proportions belongs to α1(t + Tt) for
class 1 and α2(t + Tt) for class 2. For this reason, we work only with α1(·) and α2(·) in
order to prove the convergence. As we have mentioned earlier, the proof of the optimality
is valid under an assumption on α. This later relies on the maximum value that can take
the instantaneous thresholds lk(t + Tt) at time t + Tt for k = 1, 2. To that extent, we
start by defining and bounding a certain constant Tmax. Then under an assumption on
α, we show that the order of Whittle index alternates between the two classes in the set
[1, Tmax +1] (this will be detailed later). Based on this, we establish that Tmax is an upper
bound of lk(t+ Tt).
First of all, we give a lemma which will be useful to prove the propositions 5.9, 5.10 and
5.11.

Lemma 5.2. There exists a time tf such that for all t ≥ tf , α1(t) > 0.

Proof. See appendix C.6.

In this following definition, we define Tmax, and we check later that it coincides with the
upper bound of lk(t+ Tt) for k = 1, 2.

Definition 5.3. Starting at time t, we define Tmax as Tt defined in Definition 5.2, that
verifies the following:

•
∑l(t+Tt)

j=1 p1α1(t+ Tt − j) +
∑Tt

j=1 p2α2(t+ Tt − j) ≥ 1− α

• α1(t+ i) = 0 for all i ∈ [0, Tmax − 1]

In the next lemma, we determine the upper and the lower bound of Tmax.

Lemma 5.3. Tmax doesn’t depend on t and satisfies: 1−α
p2α
≤ Tmax ≤ 1−α

p2α
+ 1.

2According to Remark 5.3, the form of this set means that it contains the users’ proportions with the
lowest Whittle index values among all users’ proportions of the system
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.

.

.

𝑝1𝛼1(𝑡 + 𝑇𝑡 − 1)

𝑝2𝛼1(𝑡 + 𝑇𝑡 − 1)

𝛼1(𝑡 + 𝑇𝑡)

𝛼2(𝑡 + 𝑇𝑡)

𝛽(𝑡 + 𝑇𝑡)𝑝1𝛼1(𝑡 + 𝑇𝑡 − 𝑙1 𝑡 + 𝑇𝑡 )

𝑝2𝛼2(𝑡 + 𝑇𝑡 − 𝑙2 𝑡 + 𝑇𝑡 )

𝑝1𝛼1(𝑡 + 𝑇𝑡 − 𝑙1 𝑡 + 𝑇𝑡 + 1)

𝛼

1 −α

𝑠𝑡𝑎𝑡𝑒 1

𝑠𝑡𝑎𝑡𝑒 1

𝑙2 𝑡 + 𝑇𝑡

𝑙1 𝑡 + 𝑇𝑡 − 1

𝑙1 𝑡 + 𝑇𝑡

Figure 5.4 – The proportions of users at different states at time t+ Tt when γ(t+ Tt) = 1
and 0 < β(t+ Tt) ≤ 1
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.

.

.

𝑝1𝛼1(𝑡 + 𝑇𝑡 − 1)

𝑝2𝛼1(𝑡 + 𝑇𝑡 − 1)

𝛼1(𝑡 + 𝑇𝑡)

𝛼2(𝑡 + 𝑇𝑡)

γ(𝑡 + 𝑇𝑡)𝑝2𝛼2 (𝑡 + 𝑇𝑡 − 𝑙2 𝑡 + 𝑇𝑡 )

𝑝1𝛼1(𝑡 + 𝑇𝑡 − 𝑙1 𝑡 + 𝑇𝑡 )

𝑝2𝛼2(𝑡 + 𝑇𝑡 − 𝑙2 𝑡 + 𝑇𝑡 + 1)

𝛼

1 −α

𝑙1 𝑡 + 𝑇𝑡

𝑙2 𝑡 + 𝑇𝑡 − 1

𝑙2 𝑡 + 𝑇𝑡

𝑠𝑡𝑎𝑡𝑒 1

𝑠𝑡𝑎𝑡𝑒 1

Figure 5.5 – The proportions of users at different states at time t+Tt when β(t+Tt) = 1
and 0 < γ(t+ Tt) ≤ 1
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.

.

.

𝑝2𝛼

𝑝2𝛼

𝑝2𝛼

1 − 𝛼

𝑝2𝛼

𝑝2𝛼

1

2

3

𝑇𝑚𝑎𝑥

.

.

.

.

.

.

.

.

𝑝2𝛼

Figure 5.6 – Graphical representation of Tmax
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Proof. See appendix C.7.

We say that the order of the Whittle index strictly alternates between the two classes
in [1, n] or from state 1 to n, if we have w2(1) < w1(1) < w2(2) < w1(2) < w2(3) <
w1(3) < · · · < w2(n) < w1(n). To that extent, the proof of αk(·) convergence is feasible
when the alternation condition is satisfied from 1 to lk(t+ Tt) + 1 for all t. We note that
this condition will be relevant in the proof of the proposition 5.13. To that end, we start
by introducing the assumption on α. Then, we demonstrate effectively that under this
assumption the condition of alternation is satisfied from 1 to lk(t+ Tt) + 1.

Assumption 5.1. Denoting 1
p1−p2 (p1+p2

2
+
√

2(p1 − p2) + (p1+p2)2

4
) by D. Then, the users’

proportion scheduled at each time α satisfies:

α >
1

1 + (D − 2)p2

(5.38)

If Tmax is the highest value that lk(t+Tt) can take, (this will be shown later in proposition
5.9), then it is sufficient to prove that the hypothesis of the Whittle index alternation is
satisfied from 1 to Tmax + 1. This will be shown in the next proposition.

Proposition 5.8. Under Assumption (5.1), the order of the Whittle index alternates
between the two classes from state 1 to state to Tmax + 1.

Proof. See appendix C.8.

Now we prove that the instantaneous thresholds of the two classes can not exceed Tmax.

Proposition 5.9. Denoting by lmax the highest instantaneous threshold in the sense that
∀t ≥ tf ,max(l1(t+ Tt), l2(t+ Tt)) ≤ lmax, then Tmax = lmax.

Proof. See appendix C.9

According to the last proposition, Tmax is truly the upper bound of lk(t + Tt) for all t
and k = 1, 2. As consequence, the order of the Whittle index alternates between the two
classes in the set [1, lk(t + Tt) + 1]. The next goal is to find a relation between l1(t + Tt)
and l1(t+ Tt). To do so, we recall that we have at time t:

l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (5.39)

with l1(t) and l2(t) being the thresholds in class 1 and 2 respectively at time t, and β(t) = 1
and 0 < γ(t) ≤ 1, or γ(t) = 1 and 0 < β(t) ≤ 1. Thereby, the first step consists of estab-
lishing the relationship between l1(t) and l2(t) when max(l1(t), l2(t)) ≤ Tmax depending on
two different cases that we will explain thereafter in order to give a generalized expression
of the aforementioned equation (5.39) where the index of the class is not specified in the
expressions of the thresholds l1(t) and l2(t).
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Remark 5.4. It is worth mentioning that, as we have defined lmax in Proposition 5.9,
it refers to the highest value that can be attained by the thresholds of the class 1 or 2 at
time t + Tt for t > tf where tf is a given in Lemma 5.2. Whereas, at any time t > tf ,
max(l1(t), l2(t)) ≤ lmax might not be true since we don’t have necessary a given t′ such
that t′ + Tt′ = t for any t > tf .

Proposition 5.10. At any time t > tf , if max(l1(t), l2(t)) ≤ Tmax = lmax, then there
exists l(t) ≤ lmax and, β(t) = 0 and 0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and γ(t) = 1 such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1− α (5.40)

Proof. See appendix C.11.

Starting at time t ≥ tf , we have that at time t+Tt, the thresholds l1(t+Tt) and l2(t+Tt)
are less than lmax. Hence, according to Proposition (5.10), there exists l(t+Tt) such that:

l(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l(t+ Tt)) + γ(t+ Tt)p2α2(t+ Tt − l(t+ Tt)) = 1− α
(5.41)

where β(t+ Tt) = 0 and 0 ≤ γ(t+ Tt) < 1, or 0 ≤ β(t+ Tt) < 1 and γ(t+ Tt) = 1.
Denoting t+ Tt by T0, we obtain:

l(T0)−1∑
j=1

p1α1(T0−j)+
l(T0)−1∑
j=1

p2α2(T0−j)+β(T0)p1α1(T0−l(T0))+γ(T0)p2α2(T0−l(T0)) = 1−α

(5.42)
where β(T0) = 0 and 0 < γ(T0) ≤ 1, or 0 < β(T0) ≤ 1 and γ(T0) = 1.

Now, we prove by induction that this latter expression is valid for all T ≥ T0, and that
l(T ), the instantaneous threshold at time T , is less than lmax.

Proposition 5.11. For all T ≥ T0, there exists l(T ) ≤ lmax, β(T ) and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) +β(T )p1α1(T − l(T )) +γ(T )p2α2(T − l(T )) = 1−α

(5.43)
where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1.

Proof. See appendix C.12.

According to the latter proposition, we can now define at each time T ≥ T0, for each class
k, the vector Ak(T ) = (αk(T ), αk(T − 1), · · · , αk(T − l(T ))), such that, there exists β(T )

84



Chapter 5. Whittle’s index policy for minimizing the Age of Information

and γ(T ):

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) +β(T )p1α1(T − l(T )) +γ(T )p2α2(T − l(T )) = 1−α

(5.44)
where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1. We note that as
we have explained previously, the relation between Ak(T ) and zk(T ) is: pkαk(T − 1) =
zk1 (T ), pkαk(T − 2) = zk2 (T ), · · · , pkαk(T − l(T )) = zkl(T )(T ).

Remark 5.5. We emphasize that in the following analysis, T is always considered greater
than T0.

We prove in the sequel that maxAk(T ) is decreasing and minAk(T ) is increasing (with
the max and min referring to the element of the vector with the greatest value, and the
smallest value respectively). After that, we conclude the convergence of maxAk(T ) and
minAk(T ) when T tends to +∞. Then, we prove that they must converge to the same
real number. In order to prove that maxAk(T ) is decreasing and minAk(T ) is increasing,
we first demonstrate this following proposition.

Proposition 5.12. All the elements of the vector Ak(T + 1) belong to the elements of
the vector Ak(T ) except αk(T + 1).

Proof. See appendix C.13

With the intention of proving the monotony of maxA1(T ) and minA1(T ), we still need
to prove that the value of α1(T + 1) must be less than maxA1(T ) and greater than
minAk(T ). For that, we introduce the following proposition.
Before doing that, we note that, as α1(t) + α2(t) = α at each time slot t, then it is suf-
ficient for us to prove that α1(·) is converging. To that extent, we study only the vector
function A1(T ) in order to prove the convergence.

Proposition 5.13. Under assumption 5.1, for a given vector A1(T ) = (α1(T ), α1(T −
1), · · · , α1(T − l(T )))(T ≥ T0), we have four possible cases of inequalities:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ))

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T )

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T )

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1)

Moreover: If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T ))

If α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )))
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If α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T ))

Proof. See appendix C.14.

Theorem 5.4. minA1(T ) and maxA1(T ) converge and we denote their limits respec-
tively by l1 and l2.

Proof. According to Proposition 5.12, the elements of the vector A1(T+1) except the first
element which is α1(T+1) belong to the elements of the vectorA1(T ). Hence, the values of
these elements (except the first element of A1(T + 1)) is less than maxA1(T ) and greater
than minA1(T ). According to the first result of Proposition 5.13, we deduce that α1(T+1)
is between two values of two elements of the vectorA1(T ). Hence, combining the results of
Proposition 5.12 and 5.13, maxA1(T +1) ≤ maxA1(T ) and minA1(T +1) ≥ minA1(T ).
Then maxA1(T ) is decreasing with T and minA1(T ) is increasing with T . Given that for
all T , 0 ≤ α1(T ) ≤ α, then maxA1(T ) and minA1(T ) are bounded by 0 and α. Therefore,
we can conclude that minA1(T ) and maxA1(T ) converge and we denote their limits by l1
and l2 respectively. Moreover maxA1(T ) is lower bounded by l2 and minA1(T ) is upper
bounded by l1.

However, in order to have α1(T ) converges to a unique point, we need to establish that
maxA1(T ) and minA1(T ) converge to the same limit. In other words, we need to prove
that l1 = l2. For that, we will use the second result of Proposition 5.13. To that extent,
we proceed by contradiction, i.e. we suppose that l1 6= l2. More specifically, given that
l1 ≤ l2 by definition, the two possible cases satisfied by l1 and l2 are: l1 < l2 or l1 = l2,
then to show that l1 = l2, it is sufficient to find a contradiction considering l1 < l2.
In fact, we prove that if l1 < l2, there exists Td such that all the elements of A1(Td) are
strictly less than l2, that contradicts with the fact that maxA1(T ) is lower bounded by
l2.
As maxA1(T ) converges to l2, then for a given ε > 0, there exists a given time slot that
we denote by Tε ≥ T0 such that for all T ≥ Tε, maxA1(T ) < l2 + ε. Our proof consists
of showing that for a small enough ε, there exists T ≥ Tε, maxA1(T ) is strictly less than
l2. We need first to determine an upper bound of the number of the elements of the
vector A1(T ) whatever T . In fact, as we have demonstrated that at each time T , the
instantaneous threshold l(T ) is less than lmax. Then the number of the elements of A1(T )
will not exceed lmax + 1. In the following proof, we denote lmax by L.

Proposition 5.14. If l1 < l2, for ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
, there exist Td ≥ Tε such that all

the elements of A1(Td) are strictly less than l2.

Proof. See appendix C.15.

86



Chapter 5. Whittle’s index policy for minimizing the Age of Information

Providing that l2 is a lower bound of maxA1(T ) which contradicts with the result of the
above proposition. Hence, the supposition of l1 6= l2 is not valid.
Therefore, l1 = l2. Consequently, maxA1(T ) and minA1(T ) converge to the same limit
denoted α∗1. Given that minA1(T ) ≤ α1(T ) ≤ maxA1(T ) for all T , then α1(T ) also
converges to α∗1. Similarly, α2(T ) converges to α− α∗1 = α∗2. In the following proposition,
we prove that z(t) converges.

Proposition 5.15. If αk(t) converges to α∗k, then for each state i and class k, zki (t)
converges to zk,∗i .

Proof. See appendix C.16.

However, we still have to establish that the stochastic vector ZN(t) converges to z∗ in
probability when N scales. For that, we introduce the following proposition inspired
from the discrete-time version of Kurtz Theorem in [59]. Before that, knowing that the
norms on the infinite dimension vector space are not equivalents, we work only with a
specific norm which will be useful to show the optimality of the Whittle index’s policy.
Accordingly, we define || · || as follows:

||v|| =
+∞∑
i=1

|v1
i |i+

+∞∑
i=1

|v2
i |i (5.45)

where vki is the i-th component in the class k of the vector v. The reason behind chosen
a such norm will be revealed in the proof of Proposition 5.17.

Proposition 5.16. For any µ > 0 and finite time horizon T , there exists positive constant
C such that

Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ) ≤ C

N

where Px denotes the probability conditioned on the initial state ZN(0) = z(0) = x.
Furthermore, C is independent of N .

Proof. See appendix C.17.

According to the Proposition above, the system state ZN(t) behaves very close to the
fluid approximation model z(t) when the number of users N is large and starting from
any initial state. To that extent, in order to establish the optimality of Whittle’s index
policy, we give first this following lemma which is a consequence of the Proposition 5.16.

Lemma 5.4. For any µ > 0, there exists a time T0 such that for each T > T0, there
exists a positive constant s with,

Px( sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ) ≤ s

N

Proof. See appendix C.18
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We remind that starting from an initial state x, our objective is to compare the total
expected average age per user under Whittle index policy which can be expressed as
1
T
Ewi

[∑T−1
t=0

∑K
k=1

∑+∞
i=1 Z

k,N
i (t)i | ZN(0) = x

]
where ZN(t) evolves under Whittle index

policy, with the optimal age of the relaxed problem per user whose expression in function
of z∗ is, CRP = CRP,N

N
=
∑K

1

∑+∞
i=1 z

k,∗
i i, when the number of users N as well as the time

duration T grow.
According to Lemma 5.4, we are ready now to establish the asymptotic optimality of the
Whittle index policy.

Proposition 5.17. Starting from a given initial state ZN(0) = z(0) = x, then:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i | ZN(0) = x

]
=

K∑
k=1

+∞∑
i=1

zk,∗i i (5.46)

Proof. See appendix C.19.

5.4 Numerical Results
Verification of Assumption 5.1

In this section, we compute the value of the lower bound on α given in Assumption 5.1.
We denote this lower bound by Bα. For a wide range of parameters p1 and p2, we provide
an exhaustive table that represents the lower bound on α in function of p1 and p2. As can
be seen, the lower bound decreases when p1 and p2 are close one to the other. Moreover,
it grows even smaller when p1 and p2 have relatively high values. According to table 5.1,
we can notice that in most cases of (p1, p2), the lower bound Bα doesn’t exceed 0.5. This
implies that the interval of α where the assumption 5.1 is satisfied, is enough wide for
different values of p1 and p2.

p1 0.1 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.8
p2 0.2 0.4 0.5 0.6 0.8 0.8 1 0.9 0.9 0.9
Bα 0.7034 0.6250 0.4711 0.3556 0.5328 0.3612 0.5 0.2893 0.1675 0.1351

Table 5.1 – Evaluation of Bα under wide range of channel statistics

Implementation of the Whittle’s index policy

In this section, we evaluate the performance of the Whittle’s index policy by comparing
the per user average age of the Whittle’s index policy to the optimal per user average age
of the relaxed problem CRP,N/N . For that purpose, we consider two scenarios, when L
is finite, and precisely equal to 100 and when L is infinite3. We further consider for both
scenarios that N

2
is the number of users of the class 1 and class 2 where N is the total

number of users. Accordingly, γ1 = γ2 = 1
2
. The probability of a successful transmission

of class 1 and class 2 are respectively p1 = 0.8 and p2 = 0.5. At each time slot t, at most,
M = N

2
of users can be scheduled per each time slot, therefore α = M

N
= 1

2
.

3We adopt the Whittle’s index policy derived in Theorem 5.3 for both scenarios.
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(a) L = 100 (b) L = +∞

Figure 5.8 – Average age per user under Whittle Index Policy

As seen in Figure 5.8, the performance gap between the Whittle’s index policy and the
lower-bound CRP,N/N shrinks as the number of users increases and vanishes for high
values of N for both cases (a) and (b). These results showcase that, besides its optimality
in the symmetric case as shown in [43] (i.e., when pk = p for k = 1, . . . , K), the Whittle’s
index policy is also optimal for the general asymmetric case in the many-users regime.

5.5 Conclusion
In this paper, we have examined the average age minimization problem where only a
fraction of the network users can transmit simultaneously over unreliable channels. We
have provided analytical results on the local optimality of the Whittle’s index policy in
the many-users regime for finite L. While for infinite L, we presented and derived a novel
method based on Cauchy criterion to prove the Whittle’s index policy’s global optimal-
ity. Numerical results were then presented that corroborate our theoretical findings and
showcase the optimal performance of the policy when N grows.
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Chapter 6

Conclusions and Outlook

6.1 Conclusion
In this thesis, we have focused on user scheduling frameworks that minimize the aver-
age age of information and average delay. Specifically, we have studied in Chapter 4, a
scheduling problem in which one base station allocates the available channels to a subset
of users in such a way to minimize the expected total average delay metric incurred in the
users’ queues. Based on Lagrangian relaxation approach, we derive the Whittle indices
for the case where the queue size is finite and the case where the queue size is infinite.
We also provide rigorous analysis to establish the asymptotic optimality of Whittle’s in-
dex policy when the queue size is finite. To that extent, we prove the local asymptotic
optimality using fluid approximation techniques, and the global asymptotic optimality
under a recurrence assumption. To highlight the performance of Whittle’s index policy,
we give some numerical results that effectively affirm our theoretical findings, i.e., WIP is
asymptotically optimal and in addition, it performs much better that the myopic policy.
In Chapter 5, we have examined a resource allocation problem in the context of AoI where
one base station allocates the unreliable channels to a subset of users or sensors in such a
way to minimize the expected total average age incurred in the sensors. Similarly to the
chapter 4, we follows the Lagrangian relaxation approach to derive the Whittle’s index
policy for two different cases: the first one is when the age value can not exceed a certain
upper bound, while the second one is when the age value can take any integer value. Our
main contributions reside in showing the optimality of Whittle index policy. Indeed, we
prove that WIP is asymptotically locally optimal for a system model composed of several
classes when the age is bounded. Whereas, when the age is unbounded, we prove that WIP
is asymptotically globally optimal for a system model composed of two classes using an
original and novel method. As for numerical results, we have evaluated the performance
of WIP by comparing it with the optimal solution of the relaxed problem. Our obtained
simulations show that WIP is definitively optimal for a network system with high density,
i.e., when the number of users and channels grows.

6.2 Future Works
For future works, there exists several scheduling problems with various system settings
that can be examined for which we can derive the low-complex and the asymptotically
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optimal policy: WIP.
In Chapter 4, we have investigated a multi-class system where the packets arrival follows
an uniform distribution and the departure rate is constant over time. The model and
analysis of this chapter can be extended by considering:

• General packets arrival distribution.

• Unreliable channels: the transmission rate process is a sequence of an i.i.d (inde-
pendent and identically distributed) Bernoulli random variables.

Another interesting case to be examined is the Poissonian packet arrival distribution when
the buffer size is infinite. The ultimate question arises when dealing with these type of
scenarios is whether a closed-form expressions of Whittle indices can be obtained or not.
Indeed, deriving WIP is not always feasible for any system model and requires considering
assumptions on the parameters of the system. Meanwhile, for a general system model,
one can at least look for an algorithm with low complexity that allows to obtain a general
expressions of Whittle indices.
Regarding the method applied to prove the global asymptotic optimality of WIP in the
chapter 5, one can apply it for different contexts and system models, namely the one
studied in the chapter 4. Furthermore, one can extend the proof for several classes instead
of two classes and where the assumption 5.1 is violated.
Moreover, in our thesis we consider a linear objective function of delay or age. One can
derive the Whittle indices for a nonlinear objective function, specially, convex or concave
function.
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A.1 Proof of Proposition 3.1
We consider the Bellman Equation (3.8). By summing the RHS and the LHS of Equa-
tion (3.8), for all i we obtain:

N∑
k=1

[Vk(sk) + θk] =
N∑
k=1

min
ak
{Ck(sk, ak) +

∑
s′k

Pr(s′k|sk, ak)Vk(s′k)} (A.1)

=min
a
{
N∑
k=1

[Ck(sk, ak) +
∑
s′k

Pr(s
′

k|sk, ak)Vk(s
′

k)]}, (A.2)

where a = (a1, . . . , aN). We also have that:

Pr(s′|s,a) =
∑
s
′
k

Pr(s′|s,a, a′k)Pr(s
′

k|s,a) =
∑
s
′
k

Pr(s′|s,a, s′k)Pr(s
′

k|sk, ak), (A.3)

for all s = (s1, . . . , sN) and s
′

= (s
′
1, . . . , s

′
N). Since Pr(sk|s,a) only depends on the

decision taken with respect to user i, we obtain:

N∑
k=1

∑
s
′
k

Pr(s
′

k|sk, ak)Vk(s
′

k) =
N∑
k=1

∑
s′

∑
s
′
k

Pr(s′|s,a, s′k)Pr(s
′

k|sk, ak)Vk(s
′

k) (A.4)

=
∑
s′

Pr(s′|s,a)
N∑
k=1

Vk(s
′

k) (A.5)

From the previous equations we obtain:

N∑
k=1

Vk(sk) +
N∑
k=1

θk =min
a

[
N∑
k=1

Ck(sk, ak) +
N∑
k=1

∑
s
′
k

Pr(s
′

k|sk, ak)Vk(s
′

k)] (A.6)

=min
a

[
N∑
k=1

C(sk, ak) +
∑
s′

Pr(s′|s,a)
N∑
k=1

Vk(s
′

k)] (A.7)
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According to Theorem 2.1 Chapter 2, [54], it exists a unique function V̄ and a con-
stant θ that resolves Equation (3.7). Subsequently, since we have found a bounded
function

∑N
k=1 Vk(sk), and a constant

∑N
k=1 θk that satisfy also Equation (3.7), then

V̄ (s) =
∑N

k=1 Vk(sk) and θ =
∑N

k=1 θk. This is equivalent to find for each user the
decision that minimizes the right hand side of each individual Bellman equation. This
concludes the proof.

A.2 Proof of Proposition 3.2

Before proving the proposition, we give two useful lemmas.

Lemma A.1. Considering aj−1, aj, aj+1 and bj−1, bj, bj+1, such that bj−1 < bj < bj+1.

1. If aj−aj−1

bj−bj−1
≤ aj+1−aj

bj+1−bj
Then:

aj − aj−1

bj − bj−1

≤ aj+1 − aj−1

bj+1 − bj−1

≤ aj+1 − aj
bj+1 − bj

(A.8)

2. If aj−aj−1

bj−bj−1
≥ aj+1−aj

bj+1−bj Then:

aj − aj−1

bj − bj−1

≥ aj+1 − aj−1

bj+1 − bj−1

≥ aj+1 − aj
bj+1 − bj

(A.9)

3. If aj−aj−1

bj−bj−1
≤ aj+1−aj−1

bj+1−bj−1

Then:
aj − aj−1

bj − bj−1

≤ aj+1 − aj−1

bj+1 − bj−1

≤ aj+1 − aj
bj+1 − bj

(A.10)

4. If aj−aj−1

bj−bj−1
≥ aj+1−aj−1

bj+1−bj−1
Then:

aj − aj−1

bj − bj−1

≥ aj+1 − aj−1

bj+1 − bj−1

≥ aj+1 − aj
bj+1 − bj

(A.11)

5. If aj+1−aj−1

bj+1−bj−1
≤ aj+1−aj

bj+1−bj Then:

aj − aj−1

bj − bj−1

≤ aj+1 − aj−1

bj+1 − bj−1

≤ aj+1 − aj
bj+1 − bj

(A.12)

6. If aj+1−aj−1

bj+1−bj−1
≥ aj+1−aj

bj+1−bj Then:

aj − aj−1

bj − bj−1

≥ aj+1 − aj−1

bj+1 − bj−1

≥ aj+1 − aj
bj+1 − bj

(A.13)
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Proof. We will just prove the first case. For the other cases, the proof is similar.
First case:aj−aj−1

bj−bj−1
≤ aj+1−aj

bj+1−bj =⇒ aj−aj−1

bj−bj−1
≤ aj+1−aj−1

bj+1−bj−1
≤ aj+1−aj

bj+1−bj :
For the LHS inequality:

aj+1 − aj−1

bj+1 − bj−1

=
aj+1 − aj
bj+1 − bj−1

+
aj − aj−1

bj+1 − bj−1

(A.14)

≥ (aj − aj−1)(bj+1 − bj)
(bj − bj−1)(bj+1 − bj−1)

+
aj − aj−1

bj+1 − bj−1

(A.15)

The inequality above comes from the fact that bj−1 < bj < bj+1 and aj−aj−1

bj−bj−1
≤ aj+1−aj

bj+1−bj
Then

aj+1 − aj−1

bj+1 − bj−1

≥ aj − aj−1

bj − bj−1

[
bj+1 − bj + bj − bj−1

bj+1 − bj−1

] (A.16)

=
aj − aj−1

bj − bj−1

(A.17)

For the RHS inequality:

aj+1 − aj−1

bj+1 − bj−1

=
aj+1 − aj
bj+1 − bj−1

+
aj − aj−1

bj+1 − bj−1

(A.18)

≤ aj+1 − aj
bj+1 − bj−1

+
(aj+1 − aj)(bj − bj−1)

(bj+1 − bj)(bj+1 − bj−1)
(A.19)

where the above inequality comes from the fact that bj−1 < bj < bj+1 and
aj−aj−1

bj−bj−1
≤ aj+1−aj

bj+1−bj
Then

aj+1 − aj−1

bj+1 − bj−1

≤ aj+1 − aj
bj+1 − bj

[
bj+1 − bj + bj − bj−1

bj+1 − bj−1

] (A.20)

=
aj+1 − aj
bj+1 − bj

(A.21)

�

Lemma A.2. The largest minimizer at step j in algorithm 1 satisfies nj = min{k : bk =
bnj}

Proof. We consider i such that bi = bnj and we prove that nj ≤ i:
By construction of nj, bnj−1

6= bnj and nj−1 < nj. Hence, by increase of bk, bnj ≥ bnj−1
.

Therefore bi = bnj > bnj−1
, and i > nj−1. Consequently, according to definition of nj:

anj − anj−1

bnj − bnj−1

≤
ai − anj−1

bi − bnj−1

(A.22)

anj − anj−1

bnj − bnj−1

≤
ai − anj−1

bnj − bnj−1

(A.23)

This implies that anj ≤ ai.
If i < nj, as bi = bnj , then ai < anj which contradicts with anj ≤ ai.
Therefore nj ≤ i. This concludes the proof. �
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We start by the indexability then we show that the expressions given by algorithm 1 are
effectively the Whittle’s indices.

• Indexability:
We consider n1 and n2 the optimal thresholds of the problem (3.17) when the la-
grangian parameter W is equal to W1 and W2 respectively, such that W1 < W2. To
that extent, we show that n1 is less that n2. In fact, establishing the aforementioned
result is sufficient to show the indexability since by proving it, we can say that the
set of states for which the optimal decision is passive action when W = W1, is
included in the set of states for which the optimal decision is passive action when
W = W2, specifically [0, n1] ⊆ [0, n2]. Subsequently: D(W1) ⊆ D(W2).
In order to prove that, we just need to demonstrate that bn1 ≤ bn2 since n1 ≤ n2 is
equivalent to bn1 ≤ bn2 , due to the increase of bn with n.
As n1 and n2 are the minimizers of Equation (4.6) when W = W1 and W = W2

respectively, then:
an1 −W1bn1 ≤ an2 −W1bn2 (A.24)

an1 −W2bn1 ≥ an2 −W2bn2 (A.25)

This implies:
W2(bn1 − bn2) ≤ an1 − an2 ≤ W1(bn1 − bn2) (A.26)

Therefore: (W2 −W1)(bn1 − bn2) ≤ 0. Since W2 −W1 > 0, thus bn1 ≤ bn2 . Conse-
quently, n1 ≤ n2.
Thereby, we conclude the indexability.

• Whittle’s index expressions:
For the Whittle’s index expressions, we should demonstrate that, for k ∈]nj−1, nj],
Wj = min{W,k ∈ D(W )}.
For that, we prove first that for W < Wj, k /∈ D(W ).
If k > nj−1, W < Wj, and bk 6= bnj−1

, then W < Wj ≤
ak−anj−1

bk−bnj−1
. Therefore,

ak − bkW > anj−1
− bnj−1

W .
If k > nj−1, W < Wj and bk = bnj−1

, given that ak > anj−1
, then ak − bkW >

anj−1
− bnj−1

W
Hence we have proved that, for W < Wj and k > nj−1, ak− bkW > anj−1

− bnj−1
W .

That means for W < Wj, the optimal threshold is nj−1 or even less. Therefore, for
k ∈]nj−1, nj], the optimal action is the active one, i.e. k /∈ D(W ).
We still have to prove that k ∈ D(Wj).
For that, we prove that the optimal threshold is at least nj when W = Wj. In other
words, for all k < nj, ak − bkWj ≥ anj − bnjWj. We demonstrate this result by
induction in j:

– j = 0
By definition, W0 ≤ ak−a−1

bk
∀k ≥ 0. Furthermore, as bn is increasing with n,

then bk ≤ bn0 for 0 ≤ k < n0. However, according to Lemma A.2, bk is neces-
sarily strictly less than bn0 . Thus, by using Lemma A.1 (fourth case), we can
deduce that an0−ak

bn0−bk
≤ W0. That means, as b−1 = 0, we have for k ∈ [−1, n0[,
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an0−ak
bn0−bk

≤ W0, which implies that ak − bkW0 ≥ an0 − bn0W0.

– We suppose at step j, ak − bkWj ≥ anj − bnjWj i.e. anj−ak
bnj−bk

≤ Wj for k < nj

(this remains true since bk < bnj according to Lemma A.2).
We show that ak − bkWj+1 ≥ anj+1

− bnj+1
Wj+1 for k < nj+1, i.e.:

When nj ≤ k < nj+1, then if bk 6= bnj ,
ak−anj
bk−bnj

≥ Wj+1. Thus, by using Lemma

A.1 (fourth case), we get anj+1−ak
bnj+1−bk

≤ Wj+1 (bnj < bk < bnj+1
). If bk = bnj ,

anj+1−ak
bnj+1−bk

=
anj+1−ak
bnj+1−bnj

≤ anj+1−anj
bnj+1−bnj

= Wj+1 since ak ≥ anj .

When k < nj, we have that
anj−ak
bnj−bk

≤ Wj (induction assumption). By definition

of nj in Algorithm 1, we have Wj <
anj+1−anj−1

bnj+1−bnj−1
. Then according to Lemma

A.1 (third case), Wj ≤ Wj+1 ( bnj−1
< bnj < bnj+1

). Therefore anj−ak
bnj−bk

≤ Wj+1

and by using again Lemma A.1 (first case), anj+1−ak
bnj+1−bk

≤ Wj+1. Therefore, for
all k ≤ nj+1, ak − bkWj+1 ≥ anj+1

− bnj+1
Wj.

As consequence, we have proved by induction that at any step j, for k < nj, ak −
bkWj ≥ anj − bnjWj.
Then when W = Wj, the optimal threshold is at least nj. This means that if
k ∈]nj−1, nj], then k is surely less or equal than the optimal threshold whenW = Wj,
which implies that the optimal decision at state k is passive action, i.e. k ∈ D(Wj).
Combining the two results for k ∈]nj−1, nj]:

– For W < Wj, k /∈ D(W ).
– k ∈ D(Wj).

Then Wj = min{W,k ∈ D(W )}. This concludes the proof.
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Appendix: Whittle’s index policy for
minimizing the Delay in Queuing
system

B.1 Proof of Lemma 4.2

We first prove that C(·, ·) is submodular. That is, (C(q+ 1, 1)−C(q+ 1, 0))− (C(q, 1)−
C(q, 0)) = a(q + 1) + W − a(q + 1) − (aq + W − aq) = 0 ≤ 0. The latter is obtained by
substituting the values of C(q′, s) for s ∈ {0, 1} and q′ ∈ {q, q+ 1}. In order to prove that∑

q′ Pr(q
′|q, s)V (q′) is submodular, we distinguish between two cases:

Case 1) q < R, then:

∑
q′

Pr(q′|q + 1, 1)V (q′)−
∑
q′

Pr(q′|q + 1, 0)V (q′)

=
∑
q′=0

Pr(A = q′)V (q′)−
∑
q′=q+1

Pr(A = q′ − q − 1)V (q′)

=
∑
q′=0

Pr(A = q′)V (q′)−
∑
q′=q

Pr(A = q′ − q)V (q′ + 1)

≤
∑
q′=0

Pr(A = q′)V (q′)−
∑
q′=q

Pr(A = q′ − q)V (q′)

=
∑
q′

Pr(q′|q, 1)V (q′)−
∑
q′

Pr(q′|q, 0)V (q′) (B.1)

The inequality follows from the fact that V (·) is increasing. This concludes the proof for
q < R.
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Case 2) q ≥ R, then:∑
q′

Pr(q′|q + 1, 1)V (q′)−
∑
q′

Pr(q′|q + 1, 0)V (q′)

=
∑
q′

Pr(A = q′ − q − 1 +R)V (q′)−
∑
q′

Pr(A = q′ − q − 1)V (q′)

=
∑

q′=q+1−R

Pr(A = q′ − q − 1 +R)V (q′)−
∑
q′=q+1

Pr(A = q′ − q − 1)V (q′)

=
∑
q′=q

Pr(A = q′ − q)V (q′ −R + 1)−
∑
q′=q

Pr(A = q′ − q)V (q′ + 1)

(B.2)

Moreover, we have:∑
q′

Pr(q′|q, 1)V (q′)−
∑
q′

Pr(q′|q, 0)V (q′) =
∑
q′=q

Pr(A = q′ − q)V (q′ −R)−
∑
q′=q

Pr(A = q′ − q)V (q′).

(B.3)

Subtracting Equation (B.2) and (B.3) (i.e., (B.2)-(B.3)), we obtain:∑
q′=q

Pr(A = q′ − q)[(V (q′ −R + 1)− V (q′ −R))− (V (q′ + 1)− V (q′))] ≤ 0, (B.4)

which follows from the R-convexity of V (·). Therefore,
∑

q′ Pr(q
′|q, s)V (q′) is submodular.

B.2 Proof of Proposition 4.1
When i < L:
1) j ≤ n:
Since j ≤ n, the optimal decision is to stay idle, that means if A denotes the number
of arrival packets, in the next time slot the number of packets will be i = j + A with
A ≤ R − 1, then A = i− j. Therefore, the probability to transit from state j to i is the
probability that A = i− j, which is exactly πi−j.
2) j > n:
The optimal decision in this case is to transmit. As j ≤ L < R, then all j packets will be
transmitted. Taking into account the A arrival packets, then the new state for the next
time slot will be i = A. This explains that the probability to transit from state j to i is
the probability that A is equal to i which is equal to πi.
When i = L:
1) j ≤ n:
The optimal decision is the passive action. Then, A arriving packets are added to the
j packets present in the queue. At the next time slot, the number of packets is j + A.
According to Equation (4.1), since we cannot exceed the buffer length L, we reach the
state L if j+A ≥ L. Since A ≤ R−1, then the probability of this event or equivalently the
probability to transit from state j to state L is Pr(L−j ≤ A ≤ R−1) =

∑R−1
k=L−j Pr(A =

k) = (R− L+ j)πL−j = (R− L+ j)ρ.
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2) j > n:
The optimal decision is the active action. Subsequently, the next state is 0 as j < R.
Thus to reach the state L, the arrival packet number A must be in the set [L,R − 1].
Therefore, the probability to transit from 0 to L is Pr(L ≤ A ≤ R− 1) =

∑R−1
k=L Pr(A =

k) = (R− L)πL = (R− L)ρ.

B.3 Proof of Proposition 4.2
We have that:

u(i) =
n∑
j=0

pn(j, i)u(j) +
L∑

j=n+1

pn(j, i)u(j) (B.5)

We distinguish between two cases: n < L and n = L. We analyze each case separately.

1. n < L:
We first give the expression of u(i) when i < L based on Proposition 4.1:

u(i) =
n∑
j=0

πi−ju(j) +
L∑

j=n+1

πiu(j) (B.6)

By definition of π given in Definition 4.3, we have that:

u(i) =

min(i,n)∑
j=0

ρu(j) +
L∑

j=n+1

ρu(j) (B.7)

Now, in order to prove Proposition 4.2 for this case, we will distinguish between
tree sub-cases:
a) n+ 1 ≤ i ≤ L− 1
b) 0 ≤ i ≤ n
c) i = L

a) Proof of u(i) = ρ for n+ 1 ≤ i ≤ L− 1:
We have min(i, n) = n, then:

u(i) =
n∑
0

ρu(j) +
L∑
n+1

ρu(j) (B.8)

Knowing that
∑L

0 u(j) = 1, thus
∑n

0 ρu(j) +
∑L

n+1 ρu(j) = ρ. Hence, u(i) = ρ.
b) Proof of u(i) = ρ(1− ρ)n−i for 0 ≤ i ≤ n:
We prove this result by induction, i.e., we start by proving that the statement
P (i) = {u(i) = ρ(1− ρ)n−i} holds for i = n, then we show that it holds for i− 1, if
P (i− 1) is true.

• i = n:
We have that: u(n) =

∑n
0 ρu(j) +

∑L
n+1 ρu(j) = ρ = ρ(1 − ρ)n−n. Thereby,

P (n) is true.
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• P (i)⇒ P (i− 1):
We have that min(i− 1, n) = i− 1, then:

u(i− 1) =
i−1∑

0

ρu(j) +
L∑
n+1

ρu(j)

u(i− 1) =
i∑
0

ρu(j) +
L∑
n+1

ρu(j)− ρu(i)

u(i− 1) = u(i)− ρu(i) (B.9)

By induction assumption, we have that u(i) = ρ(1 − ρ)n−i. To that extent,
replacing the expression of u(i) in (B.9), we obtain:

u(i− 1) = (1− ρ)u(i) = ρ(1− ρ)n−(i−1)

That concludes the proof.

As for i = L, u(L) is nothing but the subtraction of the
∑L−1

j=0 u(j) from 1. By doing
so, we get:

u(L) = (1− ρ)n+1 − (L− n− 1)ρ

2. n = L:

u(i) =
L∑
j=0

pL(j, i)u(j) (B.10)

For i ≤ L− 1:
According to Proposition 4.1, we have:

u(i) =
L∑
j=0

πi−ju(j) (B.11)

By definition of π, we get:

u(i) =
i∑
0

ρu(j) (B.12)

We prove by induction that for 0 ≤ i < L, u(i) = 0
We have u(0) = ρu(0) = 0.
We suppose that u(j) = 0 for all 0 ≤ j ≤ i, then:

u(i+ 1) =
i+1∑

0

ρu(j) (B.13)

=
i∑
0

ρu(j) + ρu(i+ 1) (B.14)

= 0 + ρu(i+ 1) (B.15)
u(i+ 1) = 0 (B.16)

Then, for all i ∈ [0, L− 1], u(i) = 0.
Since

∑L
j=0 u(j) = 1, we have u(L) = 1−

∑L−1
j=0 u(j) = 1− 0 = 1.

This ends the proof.
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B.4 Proof of Proposition 4.3

When n ∈ [0, L − 1], we have an − an−1 = a[ρ[(L − n) − (L + R)(1 − ρ)n] + 1]. To that
extent, we denote by f(n) the function: a[ρ[(L− n)− (L+R)(1− ρ)n] + 1] and we show
that f(.) is positive for n ∈ [0, L]. To that end, we give the second derivative of f(.):

f ′′(n) = a[−ρ(ln(1− ρ))2(L+R)(1− ρ)n] (B.17)

It is clear from the above equation that f ′′(.) is non positive. Hence, f(.) is concave
function with n. That is, for all n ∈ [0, L], f(n) ≥ min{f(0), f(L)}. Thereby, our task
will be to demonstrate that f(0) and f(L) are both positive. In fact, f(0) = 0 ≥ 0. While
for n = L, it requires more technical analysis to establish the desired result. Computing
f(L), we get:

f(L) = a[1− ρ(L+R)(1− ρ)L]

We have f(L) − f(0) = f(L) =
∑L−1

n=0 f(n + 1) − f(n). To that extent, we give the
expression of v(n) = f(n+ 1)− f(n), i.e,:

v(n) = a[ρ[−1 + ρ(L+R)(1− ρ)n]] (B.18)

knowing that v(n) is lower bounded by a[ρ[−1 + ρ(L + R)(1 − ρ)L]] for n ∈ [0, L − 1],
then:

f(L) ≥
L−1∑
n=0

a[ρ[−1 + ρ(L+R)(1− ρ)L]]

= a[Lρ[−1 + ρ(L+R)(1− ρ)L]] (B.19)

Therefore:

f(L) = a[1− ρ(L+R)(1− ρ)L] ≥ a[−Lρ[1− ρ(L+R)(1− ρ)L]] (B.20)

From the above inequality, 1−ρ(L+R)(1−ρ)L should be positive otherwise, we will have
a non positive term higher than a positive term. Consequently, f(L) is positive. Providing
that f(n) ≥ min{f(0), f(L)} for n ∈ [0, L], then f(n) ≥ 0. Hence for n ∈ [0, L− 1],

an ≥ an−1 (B.21)

We still have to show that aL − aL−1 ≥ 0. In fact:

aL − aL−1 = a[R− (L+R)(1− ρ)L] = a[R(1− ρ(L+R)(1− ρ)L)] ≥ 0 (B.22)

Thus, combining the two results (B.21) and (B.22), we end up with the desired result.

B.5 Proof of Theorem 4.3

In order to prove this theorem, we introduce the following useful lemmas.

Lemma B.1. xn,n−1 is strictly increasing with n
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Proof. We have for all n ∈ [0, L− 1]:

xn+1,n − xn,n−1 = W (n+ 1)−W (n) =
aρ2(L− n)

ρ(1− ρ)n+1
> 0

That concludes the proof. �

Lemma B.2. If for any k ∈ [0, L − 1], we have that: bk−1 < bk < bk+1 and ak−ak−1

bk−bk−1
<

ak+1−ak
bk+1−bk

.
Then for any k ∈ [0, L− 1], we have for each k < s ≤ L:

as − ak−1

bs − bk−1

>
ak − ak−1

bk − bk−1

(B.23)

Proof. We fix certain k ∈ [0, L− 1], we prove the result by induction:
for s = k + 1

ak+1 − ak−1

bk+1 − bk−1

=
ak+1 − ak−1 − ak + ak

bk+1 − bk−1

(B.24)

=
ak+1 − ak
bk+1 − bk−1

+
ak − ak−1

bk+1 − bk−1

(B.25)

>
(ak − ak−1)(bk+1 − bk)

(bk − bk−1)(bk+1 − bk−1)
+

(ak − ak−1)(bk − bk−1)

(bk − bk−1)(bk+1 − bk−1)
(B.26)

where the strict inequality comes from the lemma’s assumptions. Therefore, we have that:

ak+1 − ak−1

bk+1 − bk−1

>
ak − ak−1

bk − bk−1

[
bk+1 − bk
bk+1 − bk−1

+
bk − bk−1

bk+1 − bk−1

] (B.27)

=
ak − ak−1

bk − bk−1

(B.28)

By induction, we consider that the inequality (B.23) is true for certain s strictly higher
than k. The inequality below is then verified for s+ 1:

as+1 − ak−1

bs+1 − bk−1

=
as+1 − ak−1 − as + as

bs+1 − bk−1

(B.29)

=
as+1 − as
bs+1 − bk−1

+
as − ak−1

bs+1 − bk−1

(B.30)

>
(ak − ak−1)(bs+1 − bs)

(bk − bk−1)(bs+1 − bk−1)
+

(ak − ak−1)(bs − bk−1)

(bk − bk−1)(bs+1 − bk−1)
(B.31)

=
ak − ak−1

bk − bk−1

[
bs+1 − bs
bs+1 − bk−1

+
bs − bk−1

bs+1 − bk−1

] (B.32)

=
ak − ak−1

bk − bk−1

. (B.33)

So the inequality is also true for s+ 1. This concludes the proof of the lemma. �

Referring to Algorithm 1 that allows us to obtain the Whittle indices, we denote by j the
step j described in the algorithm.
According to the same algorithm, to establish that xj,j−1 is the Whittle’s index at the
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state j, we need to prove that for all n ∈ [j + 1, L], an−aj−1

bn−bj−1
>

aj−aj−1

bj−bj−1
.

Indeed, using Lemma B.1,W (j) < W (j+1) < .... < W (L). Therefore, for all k ∈ [j, L−1],
ak−ak−1

bk−bk−1
< ak+1−ak

bk+1−bk
. Hence, according to Lemma B.2, for all n ∈ [j+1, L], an−aj−1

bn−bj−1
>

aj−aj−1

bj−bj−1
.

Thus, the minimizer of an−aj−1

bn−bj−1
at step j is j. As consequence, the Whittle index of state

j according to Algorithm 2 is effectively W (j) =
aj−aj−1

bj−bj−1
= xj,j−1.

B.6 Proof of Proposition 4.4

1) n ≤ Rk − 1:
We start first by giving an useful lemma

Lemma B.3. For all 0 ≤ i ≤ p ≤ Rk − 1,

V p(Rk + i,W )− V p(i,W ) = akRk +W

Proof. We decompose the discounted cost V p(i+Rk,W ) in the cost incurred at first time
slot plus the discounted cost starting at the next time slot. At state i+ Rk, the decision
taken is to transmit since i + Rk ≥ Rk > p, and at state i, the decision taken is passive
action since i ≤ p, hence,

V p(i+Rk,W ) = ak(i+Rk) +W + ρkβ

Rk−1∑
j=0

V p(i+ j,W ) (B.34)

V p(i,W ) = aki+ ρkβ

Rk−1∑
j=0

V p(i+ j,W ) (B.35)

Subtracting the second term from the first term,

V p(i+Rk,W )− V p(i,W ) = akRk +W (B.36)

We have:

Cn
1 (n,W ) = akn+W + βρk

Rk−1∑
i=0

V n(i,W ) (B.37)

Cn
0 (n,W ) = akn+ βρk

Rk−1∑
i=0

V n(i+ n,W ) (B.38)
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That means,

Cn
1 (n,W )− Cn

0 (n,W ) = W + βρk

Rk−1∑
i=0

V n(i,W )− βρk
Rk−1∑
i=0

V n(i+ n,W ) (B.39)

= W + βρk

Rk−1∑
i=0

V n(i,W )− βρk
Rk−1+n∑
i=n

V n(i,W ) (B.40)

= W + βρk

n−1∑
i=0

V n(i,W )− βρk
Rk−1+n∑
i=Rk

V n(i,W ) (B.41)

= W + βρk

n−1∑
i=0

V n(i,W )− βρk
n−1∑
i=0

V n(i+Rk,W ) (B.42)

Applying the Lemma B.3,

Cn
1 (n,W )− Cn

0 (n,W ) = W − βρkn(akRk +W ) (B.43)
Cn

1 (n,W )− Cn
0 (n,W ) = W (1− βρkn)− βnak (B.44)

2) n ≥ Rk:
We consider a given threshold n ≥ Rk, i.e., for states less than n, we don’t transmit
otherwise we transmit. At state n if we decide to transmit then the next possible states
are n− Rk + i (i varies from 0 to Rk − 1) with the probability to reach each state is ρk,
hence, we have,

Cn
1 (n,W ) = akn+W + βρk

Rk−1∑
i=0

V n(n−Rk + i,W )

At state n + i − Rk, since n − Rk + i < n then, the decision taken is passive action
(n is threshold), thus if we decompose again V n(n − Rk + i,W ), V n(n + i − Rk,W ) =
ak(n + i− Rk) + βρk

∑Rk−1
j=0 V n(n− Rk + i + j,W ), Replacing V n(n + i− Rk,W ) by its

value,

Cn
1 (n,W ) = akn+W +βρk

Rk−1∑
i=0

[ak(n+ i−Rk) + ρkβ

Rk−1∑
j=0

V n(n−Rk + i+ j,W )] (B.45)

Cn
1 (n,W ) =akn+W + βρk

Rk−1∑
i=1

[ak(n+ i−Rk) + ρkβ

Rk−1∑
j=0

V n(n−Rk + i+ j,W )]

+ βρk[ak(n−Rk) + ρkβ

Rk−1∑
j=0

V n(n−Rk + j,W )] (B.46)

We know that,

Cn
1 (n,W ) = akn+W + βρk

Rk−1∑
j=0

V n(n−Rk + j,W ) (B.47)
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Hence,

Cn
1 (n,W ) =akn+W + βρk

Rk−1∑
i=1

[ak(n+ i−Rk) + ρkβ

Rk−1∑
j=0

V n(n−Rk + i+ j,W )]

+ βρkC
n
1 (n,W )− ρkβW − akβ (B.48)

That means,

Cn
1 (n,W ) =

1

1− ρkβ
[akn+W + βρk

Rk−1∑
i=1

[ak(n+ i−Rk) + ρkβ

Rk−1∑
j=0

V n(n−Rk + i+ j,W )]

− ρkβW − akβ] (B.49)

Cn
1 (n,W ) =

1

1− ρkβ
[akn+W + βρk

Rk−1∑
i=1

ak(n+ i−Rk) + ρ2
kβ

2

Rk−1∑
i=1

Rk−1∑
j=0

V n(n−Rk + i+ j,W )

− ρkβW − akβ] (B.50)

At state n if we decide to not transmit then the next possible states are n + i with the
probability to reach each state is ρk. Thus, we have, Cn

0 (n,W ) = an+βρk
∑Rk−1

i=0 V n(n+
i,W ) At state n+ i for i > 0, since n+ i > n then, the decision taken is active action (n
is threshold), thus if we decompose again V n(n+ i,W ), V n(n+ i,W ) = ak(n+ i) +W +
βρk

∑Rk−1
j=0 V n(n−Rk + i+ j,W ), Replacing V n(n+ i,W ) when i > 0 by its value,

Cn
0 (n,W ) = akn+βρk

Rk−1∑
i=1

[ak(n+ i)+W +ρkβ

Rk−1∑
j=0

V n(n−Rk+ i+j,W )]+βρkV
n(n,W )

(B.51)
However V n(n,W ) is no more than Cn

0 (n,W ), hence,

Cn
0 (n,W ) = akn+βρk

Rk−1∑
i=1

[ak(n+ i)+W +ρkβ

Rk−1∑
j=0

V n(n−Rk+ i+j,W )]+βρkC
n
0 (n,W )

(B.52)
That means,

Cn
0 (n,W ) =

1

1− ρkβ
[akn+ βρk

Rk−1∑
i=1

[ak(n+ i) +W + ρkβ

Rk−1∑
j=0

V n(n−Rk + i+ j,W )]]

(B.53)

Cn
0 (n,W ) =

1

1− ρkβ
[an+ βρk

Rk−1∑
i=1

[ak(n+ i) +W ] + ρ2
kβ

2

Rk−1∑
i=1

Rk−1∑
j=0

V n(n−Rk + i+ j,W )]

(B.54)
Then,

(Cn
1 (n,W )− Cn

0 (n,W ))(1− ρkβ) =W − βρk
Rk−1∑
i=1

[akRk +W ]− ρkβW − akβ

=W − β(Rk − 1)ak − βρk(Rk − 1)W − ρkβW − akβ
=W − βakRk − βW
=W (1− β)− βakRk (B.55)
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Hence, Cn
1 (n,W )− Cn

0 (n,W ) = W (1−β)−βakRk
1−ρkβ

B.7 Proof of Proposition 4.5
As the function TO(V n) is submodular, then for all qki ≤ n, we have Cn

0 (qki ,W ) −
Cn

1 (qki ,W ) ≤ Cn
0 (n,W ) − Cn

1 (n,W ) = 0, and for all qki > n, we have Cn
0 (qki ,W ) −

Cn
1 (qki ,W ) ≥ Cn

0 (n,W )− Cn
1 (n,W ) = 0. That means n is indeed an optimal threshold.

B.8 Proof of Proposition 4.6
1) n ≤ Rk − 1:
According to Proposition 4.4 for n ≤ Rk − 1, Cn

1 (n,W ) − Cn
0 (n,W ) = gk(n,W ) =

W (1 − nβρk) − akβn. Knowing that gk(n,W ) = 0 ⇔ W = βakRkn
Rk−βn

. That means, for
W = βakRkn

Rk−βn
, Cn

1 (n,W ) − Cn
0 (n,W ) = 0 Hence, using Proposition 4.5, n is indeed an

optimal threshold.
2) n ≥ Rk:
According to Proposition 4.4 for n ≥ Rk, Cn

1 (n,W )−Cn
0 (n,W ) = gk(n,W ) = W (1−β)−akβRk

1−ρkβ
.

Knowing that gk(n,W ) = 0⇔ W = βakRk
1−β . Hence, Cn

1 (n,W ) = Cn
0 (n,W )⇔ W = akRkβ

1−β .
Applying Proposition 4.5, the threshold n is indeed an optimal solution when W = akRkβ

1−β .
That is true for all n ≥ Rk, which concludes the proof.

B.9 Proof of Theorem 4.4
Before proving the Theorem, we give an useful proposition.

Proposition B.1. If W < akRkβ
1−β , then the optimal threshold is surely finite.

Proof. We consider that the infinite threshold policy denoted by∞ is the optimal solution,
and its respective Value function is V ∞.

Lemma B.4. For all qki , V ∞(qki +Rk,W )− V ∞(qki ,W ) ≥ akRk
1−β .

Proof. Under the infinite threshold, since the decision taken for all states is passive action,
then we have for all qki ≥ 0,

V ∞(qki +Rk,W ) = ak(q
k
i +Rk) + βρk

Rk−1∑
i=1

V ∞(qki +Rk + i,W )

and

V ∞(qki ,W ) = akq
k
i + βρk

Rk−1∑
i=1

V ∞(qki + i,W )

Hence,

V ∞(qki +Rk,W )− V ∞(qki ,W ) = akRk + βρk

Rk−1∑
i=1

[V ∞(qki +Rk + i,W )− V ∞(qki + i,W )]

(B.56)
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Due to the Rk-convexity of V ∞, then V ∞(qki + Rk + i,W ) − V ∞(qki + i,W ) > V ∞(qki +
Rk,W ) − V ∞(qki ,W ). Therefore, V ∞(qki + Rk,W ) − V ∞(qki ,W ) ≥ akRk + β[V ∞(qki +
Rk,W )− V ∞(qki ,W )]. That implies V ∞(qki +Rk,W )− V ∞(qki ,W ) ≥ akRk

1−β .

We have the difference between C∞1 (qki ,W ) and C∞0 (qki ,W ) for qki ≥ Rk,

C∞1 (qki ,W )− C∞0 (qki ,W ) = W + βρk

Rk−1∑
i=0

[V ∞(qki + i−Rk,W )− V ∞(qki + i,W )] (B.57)

Applying Lemma B.4

C∞1 (qki ,W )− C∞0 (qki ,W ) ≤ W + βρk

Rk−1∑
i=0

[− akRk

1− β
] (B.58)

According to Proposition’s assumption, we have that W < akRkβ
1−β , therefore,

C∞1 (qki ,W )− C∞0 (qki ,W ) <
akRkβ

1− β
− akRkβ

1− β
= 0 (B.59)

Thus, at state qki , the optimal decision is to transmit which contradict with the fact that
the threshold is infinite. That concludes the proof of the present proposition.

1) 0 ≤ n ≤ Rk − 1:
We fix a state n less than Rk − 1. For W < akRknβ

Rk−βn
, as gk(.) is strictly increasing with

W , then gk(n,W ) is strictly less than gk(n,
akRknβ
Rk−βn

) = 0. As gk is decreasing with n,
then for all qki ≥ n, gk(qki ,W ) ≤ gk(n,W ) < 0. That implies for all qki ≥ n, qki can not
be threshold (otherwise there exists qki ≥ n such that gk(qki ,W ) ≥ 0). Moreover, since
W < akRknβ

Rk−βn
≤ aRkβ

1−β , then according to Proposition B.1, the optimal threshold must be
finite. Thereby, surely the optimal threshold is strictly less than n. That means at state n
the optimal decision is the active action. Hence, when W < akRknβ

Rk−βn
, n /∈ D(W ). Applying

Proposition 4.6, forW = akRknβ
Rk−βn

, the threshold n is an optimal solution. Then n ∈ D(W ).
Consequently, we conclude the result for the first case.
2) n ≥ Rk: For this case, we need to prove that for all n ≥ Rk, akRkβ

1−β = min{W,n ∈
D(W )}. In other words, for all W < akRkβ

1−β , n /∈ D(W ), and n ∈ D(akRkβ
1−β ). When

W < akRkβ
1−β , as gk(·) is strictly increasing with W , then gk(n,W ) is strictly less than

gk(n,
akRkβ
1−β ) = 0 for all n ≥ Rk. That implies for all n ≥ Rk, n can not be the optimal

threshold. Moreover according to Proposition B.1, the optimal threshold must be finite.
Hence, the optimal threshold is surely strictly less than Rk. That means at state n ≥ Rk,
the optimal decision is the active action, i.e., when W < akRkβ

1−β , n /∈ D(W ). Applying
Proposition 4.6, for W = akRkβ

1−β , the threshold n is an optimal solution, then n ∈ D(W ).
Hence, we conclude the result.

B.10 Proof of Theorem 4.5
In order to prove this result, we need to show that the order from the biggest Whittle
index to the smallest one is the same.
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First of all, we give the order of the Whittle indices given by Theorem 4.4, when β >
1− min{ajRj}

max{ajR2
j}
.

Due to the indexability of all classes, it’s obvious that the Whittle index is increasing with
n for a given class k. Moreover, considering any two classes k and m, then, the Whittle
index of any state nk in class k and greater than Rk is larger than the Whittle index of
any state nm in class m less than Rm. In fact we have β > 1 − min{ajRj}

max{ajR2
j}
, that means

1 − β <
min{ajRj}
max{ajR2

j}
. Hence, 1

1−β >
max{ajR2

j}
min{ajRj} . Then, Wk(nk) = akRk

1−β >
akRk max{ajR2

j}
min{ajRj} ≥

max{ajR2
j} ≥ amR

2
m ≥ amRm(Rm − 1) ≥ βamRm(Rm − 1) ≥ βamRm(Rm−1)

Rm−β(Rm−1)
(because

Rm − β(Rm − 1) ≥ 1) = Wm(Rm − 1) ≥ Wm(nm).
For the new form of Whittle index where we get rid of β for states greater than maximum
transmission rate, the order is not affected for the states less than Rk−1, since the Whittle
indices are the same. For the states greater than Rk, the Whittle index akRk max{ajR2

j}
is higher than akRkamRm(Rm − 1) ≥ amRm(Rm − 1) ≥ βamRm(Rm−1)

Rm−β(Rm−1)
= Wm(Rm − 1).

Furthermore, the order between the Whittle indices greater than the transmission rate
doesn’t change since we just multiply by a constant which is 1−β

max{ajR2
j}

to go from akRk
1−β

to akRk max{ajR2
j}. Hence, the order of these new expressions of Whittle indices is not

affected. That means, by adopting this policy, we end up with the same Whittle index
policy in Theorem 4.4.

B.11 Proof of Proposition 4.7
In order to prove this proposition, we distinguish between two types of classes:
1) Class k in which W is different from all W k

i .
2) Class k such that there exists a given state j that satisfies W k

j = W .
First type of classes: For the class k in whichW is different from allW k

i , we prove that the
optimal threshold verifies lk(W ) = lk = argmax

i
{W k

i |W k
i ≤ W} = argmax

i
{W k

i )|W k
i <

W}. First we have argmax
i
{W k

i |W k
i ≤ W} = argmax

i
{W k

i )|W k
i < W} since W k

i is dif-
ferent from W for all state i. For state i less than lk, given that W k

i is increasing with
i, then W k

i ≤ W k
lk
< W . Hence, due to the indexability of the class, D(W k

i ) ⊆ D(W ),
which implies that the optimal decision at state i is the passive action. For the state i
strictly greater than lk, by definition of lk, W k

i must be strictly greater than W since lk
is the integer that gives the highest Whittle index less than W . Then, according to the
definition of Whittle index, W < min{W, i ∈ D(W )}, that means W 6∈ {W, i ∈ D(W )}.
Therefore i 6∈ D(W ). Thus, the optimal decision at state i > lk is the active decision.
Hence lk = argmax

i
{W k

i |W k
i ≤ W} = argmax

i
{W k

i )|W k
i < W} is effectively the optimal

threshold lk(W ).

Now, we tackle the case when there exists j, W k
j = W :

We know that according to Theorem 4.3, W k
j = xkj,j−1 which is the point for which ifW =

xkj,j−1, we have
∑L

q=0 aku
j
k(q)q − W

∑j
q=0 u

j
k(q) =

∑L
q=0 aku

j−1
k (q)q − W

∑j−1
q=0 u

j−1
k (q).

That means, according to Equation (4.47), for W = xkj,j−1, if j is a minimizer of this
equation (j is the optimal threshold), then j− 1 is also a minimizer of this equation. Due
to the indexability of the class k, for all states less or equal than j, the optimal decision
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is to stay passive. Besides, according to the definition of Whittle index, for all states
strictly higher than j, the optimal decision is to be active. Then, j is indeed an optimal
threshold, so as for j − 1.
Hence, the optimal threshold can be either j or j − 1.
In fact, since W k

0 < · · · < W k
j−1 < W k

j = W , then j = argmax
i
{W k

i |W k
i ≤ W}, and

j − 1 = argmax
i
{W k

i |W k
i < W}.

This proves the proposition.

B.12 Proof of Proposition 4.8

From optimization theory, it is known that the optimal solution of the dual problem is
less or equal than the primal problem’s solution when the constraint is satisfied, i.e:

max
W

min
φ∈Φ

f(W,φ) ≤ min
φ∈Φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

akq
k
i (t) | q(0), φ

]
(B.60)

As the optimal solution for a fixed W is a threshold-based policy, we use the steady state
form and the expression of the LHS of the above inequality becomes:

max
W

min
φ
f(W,φ) = max

W
{
K∑
k=1

γkN∑
i=1

[ min
lk∈[−1,L]

{
L∑
q=0

aku
lk
k (q)q −W

lk∑
q=0

ulkk (q)}] +W (1− α)N}

(B.61)
with φ being the threshold policy that corresponds to l(W ) computed using Proposi-
tion 4.7 for a fixed W . For W ∗ that satisfies the constraint with equality (i.e. αN =∑K

k=1 γkN
∑L

i=lk+1(W ∗) u
lk(W ∗)
k (i), which is in fact true for all N , and then we can get rid

of N), we have:
∑K

k=1

∑γkN
i=1 [−W

∑lk(W ∗)
q=0 u

lk(W ∗)
k (q)] +W (1−α)N =

∑K
k=1 γkN [−W (1−∑L

i=lk+1(W ∗) u
lk(W ∗)
k (i))] + W (1 − α)N = −NW +

∑K
k=1 γkNW

∑L
i=lk+1(W ∗) u

lk(W ∗)
k (i) +

W (1− α)N = −NW + αN +WN − αN = 0. Hence, we get:

min
φ
f(W ∗, φ) = f(W ∗, l(W ∗)) =

K∑
k=1

γkN∑
i=1

[
L∑
q=0

aku
lk(W ∗)
k (q)q]

= lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

akq
k
i (t) | q(0), l(W ∗)

]
(B.62)

Therefore, we obtain a threshold vector l(W ∗) that gives us a solution for the constrained
relaxed problem (primal problem) that satisfies the constraint (4.3). Moreover, according
to the inequality (B.60), we have that for all policy φ that satisfies the constraint and
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belong to Φ:

f(W ∗, l(W ∗)) =
K∑
k=1

γkN∑
i=1

[
L∑
q=0

aku
lk(W ∗)
k (q)q] = lim sup

T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

akq
k
i (t) | q(0), l(W ∗)

]
=min

φ
f(W ∗, φ)

≤max
W

min
φ
f(W,φ)

≤min
φ

lim sup
T→∞

1

T
E

[
T−1∑
t=0

K∑
k=1

γkN∑
i=1

akq
k
i (t) | q(0), φ

]
.

(B.63)

We deduce that the solution of the relaxed problem is of type threshold-based policy
l(W ∗) with W ∗ satisfies α =

∑K
k=1 γk

∑L
i=lk+1(W ∗) u

lk(W ∗)
k (i).

B.13 Proof of Proposition 4.9

We define the following order relation in RK such that for any two vectors l1 and l2,
l1 ≤ l2 ⇐⇒ for each element of vector of index k, we have l1k ≤ l2k. Recall that according
to Proposition 4.7, we can directly deduce that for W1 ≤ W2 l(W1) ≤ l(W2).
Without loss of generality, whenW ∈ R+, the corresponding set of threshold vectors l(W )

is perfectly ordered. Then,
∑K

k=1 γk
∑L

i=lk(W )+1 u
lk(W )
k (i) is strictly decreasing in l(W ), and

take discrete values from 1 to 0. According to Proposition 4.7, we have for each class k
and state i, if W = W k

i then there is two possible optimal thresholds vectors l1(W ) and
l2(W ) with l1(W ) < l2(W ). Hence we can deduce that there exists a class m and state p
such that

∑K
k=1 γk

∑L
i=l1k(Wm

p )+1 u
l1k(Wm

p )

k (i) ≥ α and
∑K

k=1 γk
∑L

i=l2k(Wm
p )+1 u

l2k(Wm
p )

k (i) ≤ α.
According to Proposition 4.7, when W = Wm

p , lm(Wm
p ) = l2m(Wm

p ) and l1m(Wm
p ) =

l2m(Wm
p ) − 1 = lm(Wm

p ) − 1 can be both the optimal thresholds for class m. As for
the other classes, l1k(Wm

p ) = l2k(W
m
p ) = lk(W

m
p ).

If we force W ∗ to be equal to Wm
p , the optimal threshold vector can be either l1(Wm

p ) or
l2(Wm

p ), then we can introduce some randomization between the two policies. In other
words, we use the threshold policy l1(Wm

p ) with probability θ and l2(Wm
p ) with probabil-

ity 1− θ. The new stationary distribution for the class m is then a linear combination of
these two threshold policies lm(Wm

p ) and lm(Wm
p )−1: u∗m = θu

lm(Wm
p )

m + (1− θ)ulm(Wm
p )−1

m .
Hence, in the class m, at state strictly less than lm(Wm

p ), the queues will not trans-
mit, whereas in a state strictly greater than lm(Wm

p ), they will transmit with prob-
ability one. If the queues are in state lm(Wm

p ), they will transmit with probability
(1−θ)u

lm(Wm
p )−1

m (lm(Wm
p ))

θu
lm(Wm

p )
m (lm(Wm

p ))+(1−θ)u
lm(Wm

p )−1
m (lm(Wm

p ))
=

(1−θ)u
lm(Wm

p )−1
m (lm(Wm

p ))

u∗m(lm(Wm
p ))

. Since the probability to

be in this state lm(Wm
p ) is u∗m(lm(Wm

p )), the proportion of time that the queues will be
in active mode is:

∑
k 6=m

L∑
i=lk(Wm

p )+1

γku
lk(Wm

p )

k (i) +
L∑

i=lm(Wm
p )+1

γmu
∗
m(i) + (1− θ)γmu

lm(Wm
p )−1

m (lm(Wm
p ))
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When θ = 0, the threshold policy is lm(Wm
p )−1 and the total average time in active mode

is higher than α. When θ = 1, the threshold policy is lm(Wm
p ) and the total average time

in active mode is less than α.
Given that

∑
k 6=m

∑L
i=lk(Wm

p )+1 γku
lk(Wm

p )

k (i)+
∑L

i=lm(Wm
p )+1 γmu

∗
m(i)+(1−θ)γmu

lm(Wm
p )−1

m (lm(Wm
p ))

is continuous with θ, then there exists θ∗ which verifies the equality. Hence, forW ∗ = Wm
p ,

we get a threshold policy for all classes except for class m where the optimal solution is a
linear combination of two threshold policies. Moreover for a given randomized parameter
θ∗, the constraint (4.3) is satisfied with equality:

α =
∑
k 6=m

L∑
i=lk(Wm

p )+1

γku
lk(Wm

p )

k (i) +
L∑

i=lm(Wm
p )+1

γmu
∗
m(i) + (1− θ∗)γmu

lm(Wm
p )−1

m (lm(Wm
p ))

B.14 Proof of Proposition 4.10

We derive the eigenvalues of Q.
The matrix Q is of the form:



Q1 0 · · · · · · · · · · · · 0
0 Q2 · · · · · · · · · · · · 0
... . . .
A1 A2 · · · Qm · · · AK−1 AK
... . . . ...
0 0 · · · · · · · · · QK−1 0
0 0 · · · · · · · · · 0 QK


(B.64)

The characteristic polynomial of Q is the product of the characteristic polynomial of each
matrix Qk:

χQ(λ) =
K∏
k=1

χQk(λ) (B.65)

Therefore, the set of Q’s eigenvalues denoted by Sp(Q) is composed by the eigenvalues
of the matrices Qk. Specifically: Sp(Q) = ∪

k
Sp(Q) .

1)The case k 6= m:

Qk =
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0 1 · · · lk − 2 lk − 1 lk + 1 lk + 2 · · · L− 1 L



0 ρk 0 · · · 0 0 ρk · · · · · · ρk ρk

1 ρk ρk
. . . 0 0 ρk · · · · · · ρk ρk

... ... . . . . . . . . . ... ... ρk ρk
... ...

lk − 2
... . . . ρk 0

... ... ...
lk − 1 ρk · · · · · · ρk ρk ρk · · · · · · ρk ρk
lk + 1 0 · · · · · · 0 0 0 · · · · · · 0 0

... ... 0 0
... ... ... 0 0

... ...
L− 1 0 · · · · · · 0 0 0 · · · · · · 0 0
L −lkρk (1− lk)ρk · · · −2ρk −ρk −lkρk · · · · · · −lkρk −lkρk

After computations and some algebraic manipulations, we get, χQk(λ) = (−λ)L

2)The case k = m:

Qm =

0 1 · · · lm − 2 lm − 1 lm + 1 lm + 2 · · · L− 1 L



0 ρm 0 · · · 0 0 0 · · · · · · 0 0

1 ρm ρm
. . . 0 0 0 · · · · · · 0 0

... ... . . . . . . . . . ... ... 0 0
... ...

lm − 2
... . . . ρm 0

... ... ...
lm − 1 ρm · · · · · · ρm ρm 0 · · · · · · 0 0
lm + 1 0 · · · · · · 0 0 0 · · · · · · 0 0

... ... 0 0
... ... ... 0 0

... ...
L− 1 0 · · · · · · 0 0 0 · · · · · · 0 0
L −lmρm (1− lm)ρm · · · −2ρm −ρm 0 · · · · · · 0 0

After computations and some algebraic manipulations, we get:
χQm(λ) = (−λ)L−lm(ρm − λ)lm

For k 6= m, Qk has only 0 as eigenvalue.
For k = m, χQm(λ) = 0 ⇔ λ = 0 or λ = ρm. Hence, Qm has two eigenvalues: 0 and ρm
which are strictly less than 1.
Consequently, in both cases, the norms of all eigenvalues of Qk are strictly less than 1.
Hence, for λ ∈ Sp(Q)⇒ |λ| < 1.
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B.15 Proof of Lemma 4.6

We take 0 < ε < µ, z(t) converges to z∗, i.e. there exists T0 such that for all t ≥ T0,
||z(t)− z∗|| ≤ ε. Hence:

Px( sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ) ≤ Px( sup
T0≤t<T

||ZN(t)− z(t)||+ ||z(t)− z∗|| ≥ µ) (B.66)

≤ Px( sup
T0≤t<T

||ZN(t)− z(t)|| ≥ µ− ε) (B.67)

≤ Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ− ε) (B.68)

Using Proposition 4.11, there exists s1 and s2 such that:

Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ− ε) ≤ s1exp(−Ns2). (B.69)

Therefore:
Px( sup

T0≤t<T
||ZN(t)− z∗|| ≥ µ) ≤ s1exp(−Ns2). (B.70)

B.16 Proof of Proposition 4.12

We recall that ZN(t) represents the proportion vector at time t under Whittle’s Index
policy.
Replacing CRP,N by its expression given in Section 4.5 and knowing that zk,∗i = γku

lk
k (i)

for k 6= m and zm,∗i = γmu
∗
m(i) = θ∗γmu

lm
m (i) + (1 − θ∗)γmulm−1

m (i) (by definition of z∗),
then the difference between CN

T (x) and CRP,N can be expressed as:

CN
T (x)− CRP,N =

∣∣ 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akZ
k,N
i (t)iN | x

]
− 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akz
k,∗
i iN

] ∣∣
(B.71)

We divide all by N

CN
T (x)

N
− CRP,N

N
=
∣∣ 1

T

T−1∑
t=0

K∑
k=1

L∑
i=1

E(akZ
k,N
i (t)i)− akzk,∗i i

∣∣
≤
∣∣ 1

T

T0−1∑
t=0

K∑
k=1

L∑
i=1

E(akZ
k,N
i (t)i)− akzk,∗i i

∣∣+
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

L∑
i=1

E(akZ
k,N
i (t)i)− akzk,∗i i

∣∣
≤T0L(L+ 1)

T

K∑
k=1

akγk +
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

L∑
i=1

E(akZ
k,N
i (t)i)− akzk,∗i i

∣∣
(B.72)

We have that the function f : z →
∑K

k=1

∑L
i=0 akz

k
i i is lipchitz and continuous, then for

an arbitrary small ε, there exists µ such that if
∣∣|z − z∗|| < µ, then |f(z)− f(z∗)| < ε.
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We denote YN the event sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ, we proceed to bound the second term:

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

L∑
i=1

E(akZ
k,N
i (t)i)− akzk,∗i i

∣∣ ≤Px(YN)
1

T

T−1∑
t=T0

E

[∣∣ K∑
k=1

L∑
i=1

(akZ
k,N
i (t)i)− akzk,∗i i

∣∣∣∣YN ∣∣]

+ (1− Px(YN))
1

T
E

[∣∣ T−1∑
t=T0

K∑
k=1

L∑
i=1

(akZ
k,N
i (t)i)− akzk,∗i i

∣∣∣∣YN]

≤(T − T0)L(L+ 1)

T

K∑
k=1

akγkPx(YN) + (1− Px(YN))ε.

(B.73)

where the above inequality comes from the fact that |akZk,N
i (t)i − akz

k,∗
i i| ≤ 2γkaki.

According to Lemma 5.4, we have limN→∞ Px(YN) = 0, then:

lim
N→∞

∣∣ 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akZ
k,N
i (t)iN | x

]
− 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akz
k,∗
i iN

] ∣∣ ≤ T0L(L+ 1)

T

K∑
k=1

akγk + ε

(B.74)

This inequality is true ∀ε > 0, then:

lim
N→∞

∣∣ 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akZ
k,N
i (t)iN | x

]
− 1

T
E

[
T−1∑
t=0

K∑
k=1

L∑
i=1

akz
k,∗
i iN

] ∣∣ ≤ T0L(L+ 1)

T

K∑
k=1

akγk

(B.75)

Finally we have:

lim
T→∞

lim
N→∞

CN
T (x)

N
− CRP,N

N
= 0 (B.76)

B.17 Proof of Lemma 4.7
We consider any initial state (z1, z2, · · · , zK), and we consider only the following possible
event (that arises with strictly positive probability): whatever the transmission decision
taken, there is no arrivals for all classes up to time T = 1

α
(Ak(t) = 0 from t = 0 up till

T = 1
α
for all 1 ≤ k ≤ K).

To that extent, we show that at time T , we reach the state z0. For that purpose, we divide
the queues into 1

α
groups denoted by G1, · · · , Gα such that Gk contains a proportion α of

queues with the highest Whittle indices among all queues of the system excluding those of
the groups G1, G2, · · · , Gk−1 at time t = 0. Based on this, at time slot t = 0, the queues
in G1 will be scheduled and will transit to state 0 as the number of arrival packets is equal
to 0. According to the expressions given in Proposition 4.3, the Whittle index of state 0
is equal to 0 whatever the value of the class. While according to the same Proposition,
the Whittle index of state n strictly higher than 0 is strictly greater than 0 for any class
k. Therefore, regardless of the class, The Whittle index of state n strictly higher than 0 is
greater than that of 0. Bearing that in mind, at time slot t = 1, the queues in G2 at state
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different than 0 have the highest Whittle’s indices among all system’s queues. Therefore,
these aforementioned queues will be scheduled, and subsequently, all queues in G2 will
be at state 0. In this way, at time slot 1

α
, we get all the queues of the system in state 0.

Consequently, at time T = 1
α
, we attain the desired state which is z0. That concludes the

proof.

B.18 Proof of Theorem 4.6

lim
T→∞

CN
T (x)

N
− CRP,N

N
=

K∑
k=1

L∑
i=0

akE
[
Zk,N
i (∞)

]
i−

K∑
k=1

L∑
i=0

akz
k,∗
i i (B.77)

We have the function f : z →
∑K

k=1

∑L
i=0 akz

k
i i is lipchitz and continuous, then for an

arbitrary small ε, there exists µ such that if ||z − z∗|| < µ, then |f(z)− f(z∗)| < ε.
We denote UN the event sup||ZN(∞)− z∗|| ≥ µ, then :

∣∣ K∑
k=1

L∑
i=0

akE
[
Zk,N
i (∞)

]
i−

K∑
k=1

L∑
i=0

akz
k,∗
i i
∣∣ ≤P (UN)E

[∣∣ K∑
k=1

L∑
i=0

(akZ
k,N
i (∞)i)− akzk,∗i i

∣∣∣∣UN]

+ (1− P (UN))E

[∣∣ K∑
k=1

L∑
i=0

(akZ
k,N
i (∞)i)− akzk,∗i i

∣∣∣∣UN]

≤L(L+ 1)
K∑
k=1

akγkP (UN) + (1− P (UN))ε

(B.78)

According to Lemma 4.9, we have limN→∞ P (UN) = 0, then:

lim
N→∞

∣∣ K∑
k=1

L∑
i=0

akE
[
Zk,N
i (∞)

]
i−

K∑
k=1

L∑
i=0

akz
k,∗
i i
∣∣ ≤ ε (B.79)

This is true for any ε. Finally we have:

lim
N→∞

∣∣ lim
T→∞

CN
T (x)

N
− CRP,N

N

∣∣ = 0 (B.80)

That completes the proof.
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Appendix C

Appendix: Whittle’s index policy for
minimizing the Age of Information

C.1 Proof of Theorem 5.1

Lemma C.1. V (·) is increasing with the age.

Proof. The proof is based on the Value iteration algorithm. This algorithm consists of
computing by iteration Vt+1(s) for all states s defined by induction as follows:

Vt+1(s) = min
a
{C(s, a) +

∑
s′

Pr(s′ | s, a)Vt(s
′)} − θ (C.1)

In fact, regardless of the initial value V0(.), Vt(.) will converge to the function V (.), the
solution of the Bellman equation (5.4). Then, the structural properties of V (.) are the
same as Vt(.). In this case, it is sufficient for us to show that, for all t, Vt(.) is increasing
with the age in order to conclude the same for V (.). To that extent, we prove that Vt(.) is
increasing with s for all t by induction. In other words, we prove the following property:

Vt(s+ 1) > Vt(s), t = 0, 1, · · · (C.2)

Without loss of generality, taking V0(s) = 0 for all s, then V0(.) is clearly increasing with
s.
If Vt(.) is increasing with s, i.e. (C.2) holds for t, we prove that it holds for t+ 1. In this
regard, we compare between Vt+1(s+ 1) and Vt+1(s). For that purpose, we define V 0

t+1(s)
as the value function at state s when the action prescribed is a passive one (the user stays
idle), and V 1

t+1(s) the value function at state s when the action prescribed is an active
one (the user is granted the channel). Therefore:

• If L is finite:

– For s < L

V 0
t+1(s) = s+ Vt(s+ 1)− θ (C.3)

– For s = L

V 0
t+1(L) = L+ Vt(L)− θ (C.4)
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and

– For s < L

V 1
t+1(s) = s+ λ+ pVt(1) + (1− p)Vt(s+ 1)− θ (C.5)

– For s = L

V 1
t+1(L) = L+ λ+ pVt(1) + (1− p)Vt(L)− θ (C.6)

• If L is infinite, we have for all s:

V 0
t+1(s) = s+ Vt(s+ 1)− θ (C.7)

and
V 1
t+1(s) = s+ λ+ pVt(1) + (1− p)Vt(s+ 1)− θ (C.8)

We have that:
Vt+1(s) = min(V 0

t+1(s), V 1
t+1(s))− θ (C.9)

Accordingly, when L is finite, we have for all 1 ≤ s ≤ L − 2, Vt(s + 1) ≤ Vt(s + 2)
since Vt(·) is increasing in [1, L]. Therefore, V 0

t+1(.) and V 1
t+1(.) are increasing with s in

[1, L − 1]. Furthermore, we have V 0
t+1(L − 1) = V 0

t+1(L) and V 1
t+1(L − 1) = V 1

t+1(L).
Consequently, V 0

t+1(.) and V 1
t+1(.) are increasing with s in [1, L]. This implies that,

Vt+1(s) = min(V 0
t+1(s), V 1

t+1(s)) is less than min(V 0
t+1(s + 1), V 1

t+1(s + 1)) = Vt+1(s + 1).
Hence, Vt+1(s + 1) ≥ Vt+1(s) for s ∈ [1, L − 1]. Analogously to the case above, when
L is infinite, as Vt(.) is increasing with s, then V 0

t+1(.) and V 1
t+1(.) are increasing with s.

Hence, Vt+1(s + 1) ≥ Vt+1(s). Thus, we have shown by induction that Vt(.) is increasing
with s for both cases. Consequently, we can deduce that V (.) will be also increasing with
s. Hence, the proof is complete.

In the sequel, we focus only on the case when L is infinite, since the demonstration for
the other case is practically the same. For that, let us define ∆Vt+1(s) as:

∆Vt+1(s) = V 1
t+1(s)− V 0

t+1(s) (C.10)

Then, by substituting the equations (C.7) and (C.8) in (C.10), we have that:

∆Vt+1(s) = λ+ pVt(1)− pVt(s+ 1) (C.11)

As it was previously discussed, ∆Vt+1(s) will converge to ∆V (s) that equals to λ+pV (1)−
pV (s+ 1). According to Lemma C.1, V (.) is increasing with s, then, ∆V (.) is decreasing
with s. This means that there exists a certain state s∗ ∈ [0,+∞] such that for all s < s∗,
V 1(s) ≥ V 0(s) (the optimal action is a passive one) and for all s ≥ s∗, V 1(s) ≤ V 0(s)
(the optimal action is an active one). In other words, there exists a given state s∗ such
that for all s < s∗, remaining idle is more beneficial than transmitting, and for all s ≥ s∗,
transmitting is more gainful than staying idle. Consequently, the optimal solution of the
Bellman equation (5.4) is an increasing threshold-based policy.
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C.2 Proof of Proposition 5.2
According to Proposition 3.2, we just need to prove that

∑n−1
i=1 u

n(i) is increasing with n.
In fact, one can check easily from equations (5.10), (5.12) and (5.14), that

∑L
i=n u

n(i) is
decreasing with n for both cases of L. Thereby,

∑n−1
i=1 u

n(i) = 1−
∑L

i=n u
n(i) is increasing

with n. That concludes the proof.

C.3 Proof of Theorem 5.3
Given that

∑L
i=1 u

n(i)i is strictly increasing with n, then the Whittle’s index of state s is
effectively the one given by the algorithm 1. Moreover W k

i in nothing but xki+1,i defined
in Lemma 4.3. Subsequently, according to the proof of Theorem 4.3 in Chapter 4, it is
sufficient to show that W k

i is increasing with i to establish the desired result.

Lemma C.2. W k
i is increasing with i for both cases of L.

Proof. We have these following outcomes:
If L < +∞:

W k
i+1 −W k

i = (ipk + 1)(1− (1− pk)L−i−1) ≥ 0 (C.12)

If L =∞:
W k
i+1 −W k

i = ipk + 1 ≥ 0 (C.13)

That concludes the proof.

Leveraging the above result, W k
i is genuinely the Whittle’s index of state i in the class k.

C.4 Proof of Proposition 5.4
Our proof is based on finding the characteristic polynomial of Q, and investigating the
norm of its roots. By examining the expression of Q, we can deduce that the characteristic
polynomial of Q is the product of the characteristic polynomial of each matrix Qk:

χQ(λ) =
K∏
k=1

χQk(λ) (C.14)

Therefore, it is sufficient to find the eigenvalues of each matrix Qk to conclude those of
Q. To do so, we distinguish between two cases:

k 6= m

The characteristic polynomial of the matrix Qk is defined as follows:

χQk = det(Qk − λI) (C.15)

The characteristic polynomial of Qk is reported in Table C.2. In order to get a closed-form
of this determinant, we apply elementary row and column operations. More specifically,
let us denote by ri the row i of the determinant. We also denote by ai,j the element in row
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Qk =

1 2 · · · l∗k − 3 l∗k − 2 l∗k l∗k + 1 · · · L− 1 L



1 0 0 · · · 0 0 pk pk · · · · · · pk

2 1
. . . ... 0 0 0

... 0
. . . . . . ...

...
...

l∗k − 3 0
. . . 1

. . . ...
...

...
...

l∗k − 2 0 · · · 0 1 0 0 0 · · · · · · 0
l∗k −1 · · · · · · · · · −1 −1 · · · · · · · · · −1

l∗k + 1 0 0 · · · · · · 0 1− pk 0 0 0
...

...
... 0

. . . . . . 0

L− 1
...

... . . . . . . 0 0
L 0 · · · · · · · · · 0 0 0 0 1− pk 1− pk

Qm =

1 2 · · · lm − 2 lm − 1 lm + 1 lm + 2 · · · L− 1 L



1 0 0 · · · 0 0 0 0 · · · · · · 0

2 1
. . . ... 0 0 0

... 0
. . . . . . ...

...
...

lm − 2 0
. . . 1

. . . ...
...

...
...

lm − 1 0 · · · 0 1 0 0 0 · · · · · · 0
lm + 1 −1 · · · · · · · · · −1 pm − 1 · · · · · · · · · pm − 1
lm + 2 0 0 · · · · · · 0 1− pm 0 0 0

...
...

... 0
. . . . . . 0

L− 1
...

... . . . . . . 0 0
L 0 · · · · · · · · · 0 0 0 0 1− pm 1− pm

Table C.1 – The expressions of the matrices Qk for k 6= m and Qm

i and column j of the matrix Qk. For i = 2 till l∗k − 2, we add to each row the previous
row multiplied by 1

λ
. In other words:

ri =
ri−1

λ
+ ri i = 2, . . . , l∗k − 2 (C.16)

Note that these operations are not done simultaneously but rather successively. In other
words, in the increasing order of the rows, and at each iteration i, we add to ri the
updated row ri−1 at iteration i − 1 multiplied by 1

λ
. After doing so, we execute the

following operation in order to have zeros for the elements al∗k,1 to al∗k,l∗k−2:

rl∗k = −
l∗k−2∑
i=1

ri
λ

+ rl∗k (C.17)

As a result, χQk(λ) will be the determinant of the matrix G reported in the same table.
Since G is an upper triangular block matrix, we will not be interested in the expression
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χQk(λ) =

1 2 · · · l∗k − 3 l∗k − 2 l∗k l∗k + 1 · · · L− 1 L
1 −λ 0 · · · 0 0 pk pk · · · · · · pk

2 1 −λ ... 0 0 0
... 0

. . . . . . ...
...

...

l∗k − 3 0
. . . 1

. . . ...
...

...
...

l∗k − 2 0 · · · 0 1 −λ 0 0 · · · · · · 0
l∗k −1 · · · · · · · · · −1 −1− λ · · · · · · · · · −1

l∗k + 1 0 0 · · · · · · 0 1− pk −λ 0 0
...

...
... 0

. . . . . . 0

L− 1
...

... . . . . . . −λ 0
L 0 · · · · · · · · · 0 0 0 0 1− pk 1− pk − λ

G =



−λ 0 · · · 0 0

0 −λ ...

0
. . . . . . ...

0
. . . 0

. . . ...
0 · · · 0 0 −λ

B

0

−λ− 1− 1
λ

∑l∗k−2
i=0

pk
λi
−1− 1

λ

∑l∗k−2
i=0

pk
λi
· · · · · · · · · −1− 1

λ

∑l∗k−2
i=0

pk
λi

1− pk −λ 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . ...

... −λ 0
0 · · · · · · · · · 1− pk 1− pk − λ


Table C.2 – The expressions of the characteristic polynomials of Qk
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of B as the determinant will be independent of it. By letting A = 1 + 1
λ

∑l∗k−2
i=0

pk
λi
, the

determinant of G will be equal to (−λ)l
∗
k−2 (the determinant of the upper left block) times

the following determinant:

Sk =

−λ− A −A · · · · · · · · · −A
1− pk −λ 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . ...

... −λ 0
0 · · · · · · · · · 1− pk 1− pk − λ

which originates from the lower right block matrix of G, and of dimension (L− l∗k + 1)×
(L− l∗k+1). Now, we need to find an explicit expression of this determinant, which we will
denote by Sk. To achieve this goal, we first start by developing the determinant through
the last column. By doing so, we end up with:

Sk = (−1)L−l
∗
k(−A)(1− pk)L−l

∗
k + (−λ+ 1− pk)DL−l∗k (C.18)

where Dn is determinant of the following matrix:

1 2 · · · · · · n


1 −λ− A −A · · · · · · −A
2 1− pk −λ 0 · · · 0
... 0

. . . . . . ...
... . . . . . . 0
n 0 · · · · · · 1− pk −λ

We need to find the expression of Dn for any fixed integer value n in order to conclude it
for DL−l∗k . To do so, we define ∆n as:

∆n =

−λ− A −A · · · · · · −A
1 − λ

1−pk
0 · · · 0

0
. . . . . . ...
. . . . . . 0

0 · · · · · · 1 − λ
1−pk

Hence, Dn = (1− pk)n−1∆n.
The second step consists of computing ∆n for all n. To that end, we provide the following
lemma.

Lemma C.3. The determinant ∆n can be expressed for any integer value n as:

∆n = (−1)n
n−2∑
j=0

(
λ

1− pk
)jA+ (−1)n+1(

λ

1− pk
)n−1∆1 n ≥ 2 (C.19)

where ∆1 = −λ− A.
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Proof. The proof follows a mathematical induction. For n = 1, we can easily check that
∆1 is indeed −λ − A by replacing n by 1. Next, we suppose that (C.19) holds up till n
and we aim to prove that it holds for n+ 1. By developing ∆n+1 through the last column,
we get:

∆n+1 = (−1)n+2(−A)− λ

1− pk
∆n (C.20)

By replacing ∆n with its value, we end up with:

∆n+1 = (−1)n+2(−A)− λ

1− pk
[(−1)n

n−2∑
j=0

(
λ

1− pk
)jA+ (−1)n+1(

λ

1− pk
)n−1∆1]

= (−1)n+2(−A) + (−1)n+1

n−2∑
j=0

(
λ

1− pk
)j+1A+ (−1)n(

λ

1− pk
)n∆1

= (−1)n+2(−A) + (−1)n+1

n−1∑
j=1

(
λ

1− pk
)jA+ (−1)n(

λ

1− pk
)n∆1

= (−1)n+1A+ (−1)n+1

n−1∑
j=1

(
λ

1− pk
)jA+ (−1)n(

λ

1− pk
)n∆1

= (−1)n+1

n−1∑
j=0

(
λ

1− pk
)jA+ (−1)n+2(

λ

1− pk
)n∆1

Therefore, (C.19) holds for n+ 1 which concludes our proof.

By leveraging the above lemma, we can conclude the expression of DL−l∗k :

DL−l∗k = (1− pk)L−l
∗
k−1[(−1)L−l

∗
k

L−l∗k−2∑
j=0

(
λ

1− pk
)jA+ (−1)L−l

∗
k+1(

λ

1− pk
)L−l

∗
k−1∆1]

(C.21)

As a consequence, we are able to find Sk in function of λ and pk, as well as the expression
of χQk(λ). In fact, after computations, we get:

χQk(λ) = (−1)L+1λL−l
∗
k(λl

∗
k−1 +

l∗k−2∑
i=0

pkλ
i) (C.22)

Now, based on the expression of the characteristic polynomial χQk , we prove that all
the eigenvalues of Qk have a modulus strictly less than one. We prove this result by
contradiction. More specifically, we suppose there exists a given eigenvalue of the matrix
Qk that satisfies |λ| ≥ 1. As λ is an eigenvalue of Qk, it is therefore a root of χQk(λ).
Hence, it verifies:

λl
∗
k−1 = −

l∗k−2∑
i=0

pkλ
i = −pk

1− λl∗k−1

1− λ
(C.23)
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By factorizing the element λl∗k , and by using the modulus on both sides, we get:

pk = |λ|l∗k−1|pk − 1 + λ|
≥(a) |λ|l∗k−1(|λ| − |1− pk|)
≥(b) |λ|(|λ| − |1− pk|)
= |λ|2 − |λ|(1− pk)

where (a) and (b) originate from the reverse triangular inequality and the fact that |λ| ≥ 1
respectively. Hence:

|λ|2 − |λ|(1− pk)− pk ≤ 0 (C.24)

By employing standard real functions analysis, it can be shown that the polynomial:

x2 − (1− pk)x− pk (C.25)

is negative if and only if x ∈ [−pk, 1]. However, |λ| ≥ 1 by assumption. Accordingly, |λ|
can only be equal to 1. Next, we prove that, in this case, the imaginary part of λ is equal
to zero. To that end, let us consider λ = x+ iy. Therefore, we have:

pk = |λ|l∗k−1|pk − 1 + x+ iy| = |pk − 1 + x+ iy| (C.26)

By using the definition of the modulus, and by squaring both sides, we get:

p2
k = (1− x− pk)2 + y2 (C.27)

Knowing that x2 + y2 = 1, we can deduce:

2− 2pk
2(1− pk)

= x (C.28)

Hence, x = 1, i.e. y = 0, and we can deduce that λ = 1. However, 1 is not eigenvalue
of matrix Qk. This can be seen by replacing λ with 1 in the characteristic polynomial of
Qk. Accordingly, the hypothesis that |λ| ≥ 1 fails and all the eigenvalues of Qk for any
k 6= m have a modulus strictly less than 1.

k = m

The characteristic polynomial of the matrix Qm is reported in Table C.3. We follow the
same steps of the previous case. For i = 2 till l∗m − 1, we sequentially add to each row,
the previous row multiplied by 1

λ
. In other words:

ri =
ri−1

λ
+ ri i = 2, . . . , l∗m − 1 (C.29)

Then, we execute the following operation in order to have zeros for the elements al∗m+1,1

to al∗m+1,l∗m−1:

rl∗m+1 = −
l∗m−1∑
i=1

ri
λ

+ rl∗m+1 (C.30)
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χQm(λ) =

1 2 · · · l∗m − 2 l∗m − 1 l∗m + 1 l∗m + 2 · · · L− 1 L
1 −λ 0 · · · 0 0 0 0 · · · · · · 0

2 1 −λ ... 0 0 0
... 0

. . . . . . ...
...

...

l∗m − 2 0
. . . 1

. . . ...
...

...
...

l∗m − 1 0 · · · 0 1 −λ 0 0 · · · · · · 0
l∗m + 1 −1 · · · · · · · · · −1 pm − 1− λ · · · · · · · · · pm − 1
l∗m + 2 0 0 · · · · · · 0 1− pm −λ 0 0

...
...

... 0
. . . . . . 0

L− 1
...

... . . . . . . −λ 0
L 0 · · · · · · · · · 0 0 0 0 1− pm 1− pm − λ

H =



−λ 0 · · · 0 0

0 −λ ...

0
. . . . . . ...

0
. . . 0

. . . ...
0 · · · 0 0 −λ

C

0

−λ− 1 + pm −1 + pm · · · · · · · · · −1 + pm
1− pm −λ 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . ...

... −λ 0
0 · · · · · · · · · 1− pm 1− pm − λ


Table C.3 – The expressions of the characteristic polynomials of Qm

As a result, χQm(λ) will be the determinant of the matrix H reported in the same table.
By replacing 1 − pm with A, the determinant of H will be equal to (−λ)l

∗
m−1 multiplied

by the following determinant:

−λ− A −A · · · · · · · · · −A
1− pm −λ 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . ...

... −λ 0
0 · · · · · · · · · 1− pm 1− pm − λ

Therefore, we end up with the same determinant Sk defined previously but with A =
1−pm. Fortunately, we have already computed this determinant for any k and regardless
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of the value of A. Given that, we can find the expression of Sm in function of λ and pm
as well as the expression of χQm(λ). After extensive computations, we obtain:

χQm(λ) = (−λ)L−1 (C.31)

Hence, the only eigenvalue of Qm is 0 that has a multiplicity of L− 1.
By combining all these results, we can conclude that the eigenvalues of the matrix Q have
a modulus strictly less than one, which concludes our proof.

C.5 Proof of Lemma 5.1
We can formulate the fluid limit equation (5.33) as follows:

z(t+ 1) = E
[
ZN(t+ 1)

∣∣∣ZN(t) = z(t)
]

At time t+ 1, applying Whittle index policy, in average exactly a proportion of pkαk(t) of
users will be at state one since αk(t) refers to the proportion of users in class k that are
scheduled. Accordingly, zk1 (t+1) = pkαk(t). While for 1 ≤ i < lk(t), the users’ proportion
zki (t) is not scheduled. Therefore at time t + 1, since prescribing idle action to a given
user implies that its state will be increased by 1, the proportion zki (t) at state i in class k
will be at state i+ 1. Thus, E

[
ZN,k
i+1 (t+ 1)

∣∣∣ZN(t) = z(t)
]

= zki+1(t+ 1) = zki (t).

C.6 Proof of Lemma 5.2
First of all, we provide an useful lemma.

Lemma C.4. We have for all integer i and for k = 1, 2:

wk(i+ 1)− wk(i) = ipk + 1

Proof. The result can be obtained directly by replacing wk(i) by its expression.

In order to prove the present lemma, we proceed in two steps:

• We prove first by contradiction that there exists a given time tf such that α1(tf ) > 0.

• We prove that if α1(tf ) > 0, then α1(t) > 0 for all t ≥ tf .

1. For the first point, we suppose that for all t, we have that α1(t) = 0. Consequently,
we get that z1

1(t+ Tt) = 0, · · · , z1
l1(t+Tt)

(t+ Tt) = 0, and α1(t+ Tt) = 0. This means
that, the proportion of all users in class 1 is equal to 0. However, the users’ propor-
tion of class 1 is γ1 6= 0. That is, there exists a given time tf such α1(tf ) > 0.

2. Before addressing the second point, we recall that α1(t) refers to the scheduled users’
proportion in the class 1. Thereby, α1(t) contains all users with the highest Whittle
index values among all users in class 1. To that extent, at time tf , the Whittle index
of α1(tf ) is greater than the Whittle index of the users’ proportion 1 − α that we
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denote by C. We let Stf (C) be the set of pair (state,class) at time tf in the users’
proportion C. Denoting by q the smallest state of α1(tf ), n and m a given state
and class respectively such that zmn (t) belongs to C at time tf , then wm(n) ≤ w1(q).
Under the Whittle index policy, at time tf +1, the states of a users’ proportion that
equals to (1−p1)α1(tf ) among the users’ proportion α1(tf ), will be increased by one
in comparison with the time slot tf , as well as the users’ proportion C. Accordingly,
the smallest state of the proportion (1−p1)α1(tf ), is q+1. Stf+1(C) is shifted of one
with respect to Stf (C), i.e., (n,m) ∈ Stf (C)⇔ (n+1,m) ∈ Stf+1(C). We compare
w1(q + 1) with the Whittle index of n in class m such that (n,m) ∈ Stf+1(C). In
that direction, we let (n,m) ∈ Stf+1(C), and we distinguish between two cases:

• m = 1: Leveraging the fact that (n− 1,m) ∈ Stf (C), then w1(q) ≥ w1(n− 1).
That implies that n − 1 ≤ q since wk(.) is increasing. Hence n ≤ q + 1. As
consequence, w1(n) ≤ w1(q + 1)

• m = 2: Again we distinguish between two case:

– If n− 1 ≤ q, then w2(n) < w1(n) ≤ w1(q + 1).
Therefore, we obtain our desired result for the first case.

– If n− 1 > q:
We have that:

w1(q+1)−w2(n) = (w1(q+1)−w1(q))−(w2(n)−w2(n−1))+w1(q)−w2(n−1)

Applying Lemma C.4, we obtain: (w1(q+1)−w1(q))−(w2(n)−w2(n−1)) =
qp1− (n−1)p2. Given that w2(n−1) ≤ w1(q), therefore replacing by their
expressions we get:

(n− 2)(n− 1)p2/2 + n− 1 ≤ (q − 1)qp1/2 + q

As n− 1 > q, then:

(n− 2)(n− 1)p2/2 ≤ (q − 1)qp1/2

Hence:
(n− 1)p2 ≤ qp1

Therefore, (w1(q+ 1)−w1(q))− (w2(n)−w2(n− 1)) ≥ 0. Hence, knowing
that w1(q)−w2(n− 1) ≥ 0 we end up with our desired result for this case,
i.e. w1(q + 1)− w2(n) ≥ 0.

Thus, we have proved that at time tf + 1, all the users’ proportions in C whose sum
is equal to 1−α have a Whittle index less than that of (1− p1)α1(tf ) defined in the
beginning of this proof. That means that there exists at least a users’ proportion
that equals to 1 − α with Whittle index values less than those of the states of the
users’ proportion (1 − p1)α1(tf ). Then surely, the users’ proportion (1 − p1)α1(tf )
that is different from 0 belongs to the users’ proportion α with the highest Whittle
index values. This implies that surely at time tf +1, there will be at least one queue
in class 1 belonging to α with the highest Whittle index values. Therefore, we have
that α1(tf + 1) > 0. This result can be generalized for all t ≥ tf . In other words,
we have for all t ≥ tf , α1(t) > 0.
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C.7 Proof of Lemma 5.3
As α1(j)+α2(j) = α for all integers j, then, if α1(t+i) = 0, α2(t+i) = α. For j ∈ [1, Tmax],
we have that Tmax − j ∈ [0, Tmax − 1]. This means that α1(t + Tmax − j) is equal to 0,
which implies that α2(t+Tmax− j) = α. Moreover, knowing that l(t+Tmax) ≤ Tmax, then
for all j ∈ [1, l(t+ Tmax)], Tmax− j ∈ [Tmax− l(t+ Tmax), Tmax− 1] ⊂ [0, Tmax− 1]. Hence,
we get that α1(t+ Tmax − j) = 0, for all j ∈ [1, l(t+ Tmax)].
Therefore, according to the definition 5.2, Tmax satisfies:

Tmaxp2α ≥ 1− α (C.32)

Tmax ≥
1− α
p2α

(C.33)

Providing that Tmax by definition is the first time when
∑l(t+Tmax)

j=1 p1α1(t + Tmax − j) +∑Tmax

j=1 p2α2(t+ Tmax − j) exceeds 1− α, then at time t+ Tmax − 1,
∑l(t+Tmax−1)

j=1 p1α1(t+

Tmax − 1 − j) +
∑Tmax−1

j=1 p2α2(t + Tmax − 1 − j) < 1 − α. This latter sum is equal to
(Tmax− 1)p2α which is less than 1−α. Therefore, we have as result that Tmax <

1−α
p2α

+ 1.
As there is one integer value between 1−α

p2α
and 1−α

p2α
+ 1, then Tmax doesn’t depend on t,

and satisfies: 1−α
p2α
≤ Tmax <

1−α
p2α

+ 1.

C.8 Proof of Proposition 5.8

We have that w1(n) = (n−1)p1n
2

+n, and w2(n) = (n−1)p2n
2

+n. We start first by finding the
set of states for which the Whittle index alternate between the two classes. As we can see
from the expression of the Whittle index, for a given state n, w2(n) < w1(n) as p2 < p1.
In order to have the condition of alternation strictly satisfied for any given state n, we
must have w1(n) < w2(n+ 1). Hence, denoting by f(n) the difference w2(n+ 1)−w1(n),
we study the sign of f(n) to see for which n f is strictly positive.

Lemma C.5. For all n ∈ [1, D[, f(n) > 0

Proof. We have that:

f(n) =
n2

2
(p2 − p1) +

n

2
(p1 + p2) + 1 (C.34)

Hence:
f ′(n) = n(p2 − p1) +

p1 + p2

2
(C.35)

The derivative is equal to zero for n = p1+p2
2(p1−p2)

, which is strictly greater than 0. This
means that f is strictly increasing in [0, p1+p2

2(p1−p2)
] since f ′(n) > 0 in [0, p1+p2

2(p1−p2)
[. Providing

that f(0) = 1, then surely f is strictly positive in [0, p1+p2
2(p1−p2)

]. This means that, the unique
positive solution for f(n) = 0 must be in the interval [ p1+p2

2(p1−p2)
,+∞[, as lim

n→+∞
f(n) = −∞.

Indeed, the unique solution n0 of f(n) = 0 in [ p1+p2
2(p1−p2)

,+∞[ is the biggest root of the
polynomial (C.34) which is exactly the value D introduced in Assumption 5.1. As the
function f is decreasing in [ p1+p2

2(p1−p2)
,+∞[, then f is strictly positive in [0, D[. Therefore,

f(n) > 0 for n ∈ [1, D[, which concludes the proof. �
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According to Lemma C.5, the order of the Whittle index strictly alternates between the
two states when n ∈ [1, D[. Therefore, we need to prove that Tmax + 1 is upper bounded
by D in order to prove that the alternation condition is satisfied from state 1 to Tmax + 1.
Indeed, as we have found an upper bound of Tmax which is equal to 1−α

p2α
+ 1 (according to

Lemma 5.3), we just need to prove that 1−α
p2α

+ 2 is strictly less than D.
Under assumption (5.1), we have that:

α >
1

1 + (D − 2)p2

(C.36)

α(1 + p2(D − 2)) > 1 (C.37)
αp2(D − 2) > 1− α (C.38)

D − 2 >
1− α
p2α

(C.39)

D >
1− α
p2α

+ 2 (C.40)

Hence, from state 1 to Tmax +1, the order of the Whittle index strictly alternates between
the two classes. Accordingly, the proof is concluded.

C.9 Proof of Proposition 5.9

We present first a lemma which will be helpful in proving this proposition as well as the
next ones.

Lemma C.6. For any state q, at any time t, we have that:

w1(q) ≤ w2(l2(t))⇒ w1(q) ≤ w1(l1(t))

and
w2(q) ≤ w1(l1(t))⇒ w2(q) ≤ w2(l2(t))

Proof. See appendix C.10 �

We consider t ≥ tf . After time Tt, we have that:

l(t+Tt)∑
j=1

p1α1(t+ Tt − j) +
Tt∑
j=1

p2α2(t+ Tt − j) ≥ 1− α (C.41)

Then, as it has been showcased, at time t+Tt, there exists l1(t+Tt) ≤ l(t+Tt), l2(t+Tt) ≤
Tt, γ(t+ Tt) = 1 and 0 < β(t+ Tt) ≤ 1; or 0 < γ(t+ Tt) ≤ 1 and β(t+ Tt) = 1 such that:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt)) + γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt)) = 1− α
(C.42)
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with l1(t+Tt) and l2(t+Tt) being the instantaneous thresholds in class 1 and 2 respectively
at time t+ Tt.
Now, we prove by contradiction that max(l1(t+ Tt), l2(t+ Tt)) ≤ Tmax.
We prove first that l2(t+ Tt) is greater than l1(t+ Tt).
As we have that w2(l1(t + Tt)) < w1(l1(t + Tt)), then according to lemma C.6, w2(l1(t +
Tt)) ≤ w2(l2(t+ Tt)). This implies that l2(t+ Tt) is greater than l1(t+ Tt).
Reasoning by contradiction, we suppose that l2(t + Tt) > Tmax (l2(t + Tt) = max(l1(t +
Tt), l2(t + Tt)) > Tmax). Based on this, we have that w1(Tmax) < w2(l2(t + Tt)) because
w1(Tmax) < w2(Tmax + 1) ≤ w2(l2(t+ Tt)) since the order of the Whittle index alternates
between the two classes as it has been proved in Proposition 5.9. To that extent, we
distinguish between two cases:
1) First case: If β(t+ Tt) = 1:
We have that w1(Tmax) < w2(l2(t + Tt)). Then, according to Lemma C.6, we have that
w1(Tmax) ≤ w1(l1(t + Tt)). Hence, we can conclude that Tmax ≤ l1(t + Tt) as w1 is an
increasing function with the age of information.
Moreover, since we have that p1α1(t+Tt−j)+p2α2(t+Tt−j) > p2α (the strict inequality
is due to the fact that α1(t) > 0 as t ≥ tf according to Lemma 5.2), then according to
Lemma 5.3, we obtain:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt)) + γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt)) = 1− α

=

l1(t+Tt)∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j) + γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt))

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +
Tmax∑
j=1

p2α2(t+ Tt − j) > Tmaxp2α ≥ 1− α (C.43)

The last inequality comes from the fact that Tmax ≥ 1−α
p2α

. This implies that:

1− α > 1− α (C.44)

This gives us an illogical statement. Consequently, in this case, the assumption l2(t+Tt) >
Tmax is not true.
2) Second case: If β(t+ Tt) < 1:
As we have that β(t+Tt) < 1, then γ(t+Tt) should be equal to 1. Therefore, all users at
state l2(t+Tt) in class 2 are in the users’ proportion 1−α with the smallest Whittle index
values. However, there exists users in state l1(t+ Tt) in class 1 in the users’ proportion α
that has the highest Whittle index values. That is, we have w1(l1(t+Tt)) ≥ w2(l2(t+Tt)).
As it has been established before tackling the first case, w1(Tmax) < w2(l2(t + Tt)), then
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w1(Tmax) < w1(l1(t+ Tt)). This means that l1(t+ Tt) > Tmax. Therefore, we have that:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt)) + γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt)) = 1− α

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +
Tmax∑
j=1

p2α2(t+ Tt − j) > Tmaxp2α ≥ 1− α (C.45)

This implies that:
1− α > 1− α (C.46)

Consequently, in this case, the assumption l2(t+ Tt) > Tmax is not true.
Hence, in both cases, l2(t+Tt) must be less than Tmax, i.e. max(l1(t+Tt), l2(t+Tt)) ≤ Tmax

for all t.
Thus, we end up with Tmax = lmax, which concludes our proof.

C.10 Proof of Lemma C.6
We prove only the first statement as the proof steps for both cases are exactly the same.
By definition of l1(t) and l2(t), we have that {z1

i (t)}1≤i≤l1(t) ∪ {z2
i (t)}1≤i≤l2(t) is exactly

the set {zki (t) : wk(i) ≤ max(w1(l1(t), w2(l1(t))}. Hence, if a given q verifies w1(q) ≤
w2(l2(t)), then w1(q) ≤ max(w1(l1(t), w2(l2(t)), that implies that z1

q (t) ∈ {zki (t) : wk(i) ≤
max(w1(l1(t), w2(l2(t))} = {z1

i (t)}1≤i≤l1(t) ∪ {z2
i (t)}1≤i≤l2(t). Knowing that the highest

users’ proportion’s state of the aforementioned set in class 1 is l1(t), then q ≤ l1(t).
Therefore as w1(.) is increasing, w1(q) ≤ w1(l1(t)).

C.11 Proof of Proposition 5.10
We have that:

l1(t)−1∑
i=1

z1
i (t) +

l2(t)−1∑
i=1

z2
i (t) + β(t)z1

l1(t)(t) + γ(t)z2
l2(t)(t) = 1− α (C.47)

with l1(t) and l2(t) being the thresholds in class 1 and 2 respectively at time t, and
β(t) = 1 and 0 < γ(t) ≤ 1, or γ(t) = 1 and 0 < β(t) ≤ 1.
Our aim in this proof is to show that there is a link between l1(t) and l2(t) when they are
less than Tmax. By doing so, we find a general form of the aforementioned equation. To
that end, we prove first that l1(t) is less than l2(t).
Indeed, as we have w2(l1(t)) < w1(l1(t)), then according to lemma C.6, w2(l1(t)) ≤
w2(l2(t)). Consequently, we can conclude that l1(t) ≤ l2(t).
Secondly, we prove that l2(t) ≤ l1(t) + 1. As the order of the Whittle indices alternates
between the two classes from state 1 to state Tmax + 1, w1(l2(t)− 1) < w2(l2(t)). Hence,
according to lemma C.6, we have that w1(l2(t)−1) ≤ w1(l1(t)). Consequently, l2(t)−1 ≤
l1(t).
Given that l1(t) ≤ l2(t) ≤ l1(t) + 1, then l1(t) can be either l2(t) or l2(t)− 1.
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The second step consists of deriving the value of β(t) or γ(t) depending on the value of
l1(t) and l2(t).

• If l1(t)) = l2(t):
We prove that γ(t) = 1 if z2

l2(t) > 0. Indeed, if γ(t) 6= 1 and z2
l2(t) > 0, thus there

is at least a non empty set of users in class 2 at state l2(t) that belongs to the
users’ proportion α with the highest Whittle index values. However there exists
always a non empty set of queues in class 1 at state l1(t) that belong to 1−α users’
proportion with the least Whittle index values, since β(t) > 0. Then, we have that
w2(l2(t)) ≥ w1(l1(t)). However, we know that w2(l2(t)) = w2(l1(t)) < w1(l1(t)).
This later inequality contradicts with what precedes. Thus, the statement that
γ(t) 6= 1 is not true, i.e. γ(t) = 1.
In this case we denote l(t) = l1(t) = l2(t).
We end up:

l(t)−1∑
j=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + z2
l(t)(t) = 1− α (C.48)

If z2
l2(t) = 0, the last equation still valid since z2

l2(t) = 0 whatever the value of γ(t),
namely when γ(t) = 1.

• If l1(t) + 1 = l2(t):
We prove that β(t) = 1 if z1

l1(t) > 0. Indeed, if β(t) 6= 1 and z1
l1(t) > 0, there is at

least a set of users in class 1 in state l1(t) that belongs to the users’ proportion α
with the highest Whittle index values. However there is always a set of queues in
class 2 at state l2(t) that belong to 1 − α users’ proportion with the least Whittle
index values, since γ(t) > 0. Then, we have that w1(l1(t)) ≥ w2(l2(t)). However,
we know that w2(l2(t)) = w2(l1(t) + 1) > w1(l1(t)) since the order of Whittle index
alternates between the two classes from state 1 to Tmax +1 according to Proposition
5.9. Thus, w2(l1(t) + 1) > w1(l1(t)) ≥ w2(l1(t) + 1), which gives us an obvious
contradiction. Therefore, we can assert that β(t) = 1.
In this case, we consider that l(t) = l1(t) + 1 = l2(t) and we get:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + γ(t)z2

l(t)(t) = 1− α (C.49)

Similarly to the first case, if z1
l1(t) = 0, the last equation still valid since z1

l1(t) = 0 whatever
the value of β(t), namely when β(t) = 1. Subsequently, combining the two cases, there
exists l(t) such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1− α (C.50)

where β(t) = 0 and 0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and γ(t) = 1
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C.12 Proof of Proposition 5.11

We prove the Proposition by induction:

• For T = T0, we have already proved our claim.

• We suppose that the statement is valid for a given T , i.e. there exists l(T ), β(T )
and γ(T ) such that:

l(T )−1∑
j=1

p1α1(T−j)+
l(T )−1∑
j=1

p2α2(T−j)+β(T )p1α1(T−l(T ))+γ(T )p2α2(T−l(T )) = 1−α

(C.51)
where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1. Then, at
the next time slot, among the users’ proportion scheduled, α, exactly p1α1(T ) and
p2α2(T ) will go to state one for each class, while for the rest, their states will be
incremented by one. Likewise, for the other users for which the action taken is
passive, their states will be incremented by one. As consequence, the decreasing
order according to the Whittle index value for these proportions of users at the
next slot is β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T −
l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) + 3), p2α2(T − l(T ) +
3), · · · , p1α1(T ), p2α2(T ) (As we have mentioned before, the order of the Whittle
indices alternates between the two classes because l(T ) + 1 ≤ lmax + 1). Moreover,
the states of the users’ proportion (1−p1)α1(t) and (1−p2)α2(t); which are scheduled
but they don’t transit to the state 1 with respect to their classes; will be increased
by one. Leveraging the above results, we provide the decreasing order of all users’
proportions according to the Whittle index value depending on two cases of β(t).
If β(T ) = 0, then the smallest state’s value among the users’ proportions (1−p1)α1(t)
and (1−p2)α2(t) at time T +1 is l(T )+1. Hence, their Whittle index values will be
higher than w2(l(T ) + 1), and consequently, they will be higher than those of users’
proportion of γ(T )p2α2(T − l(T )) at state l(T ) + 1 in class 2.
If β(T ) 6= 1, the smallest state value among the users’ proportions (1 − p1)α1(t)
and (1 − p2)α2(t) at time T + 1 is respectively l(T ) + 1 and l(T ) + 2. Then, their
Whittle index values will be higher than w1(l(T ) + 1) (w1(l(T ) + 1) < w2(l(T ) + 2)
as the alternation condition is satisfied from 1 until lmax + 1). Consequently, their
Whittle index values will be higher than the Whittle index of users’ proportion
β(T )p1α1(T − l(T )) at state l(T ) + 1 in class 1.
Thus, the decreasing order of all users’ proportions according to the Whittle index
value whatever the value of β(T ) at T+1 is: (1−p1)α1(t), (1−p2)α2(t), β(T )p1α1(T−
l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) +
2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) + 3), p2α2(T − l(T ) + 3), · · · , p1α1(T ), p2α2(T ).
As we have that (1 − p1)α1(t) + (1 − p2)α2(t) ≤ α, then surely the thresholds at
time T + 1 in class 1 and in class 2 are less than the state of the users’ proportion
β(T )p1α1(T − l(T )) and γ(T )p2α2(T − l(T )) respectively. Therefore, there exists
l1(T + 1), l2(T + 1), β(T + 1) and γ(T + 1) such that 0 < β(T + 1) ≤ 1 and
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γ(T + 1) = 1, or β(T + 1) = 1 and 0 < γ(T + 1) ≤ 1:

l1(T+1)−1∑
j=1

p1α1(T + 1− j) +

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1)) + γ(T )p2α2(T + 1− l2(T + 1)) = 1− α
(C.52)

Now we prove by contradiction that max(l1(T + 1), l2(T + 1)) ≤ Tmax.
We prove first that l2(T + 1) is greater than l1(T + 1).
As w2(l1(T + 1)) < w1(l1(T + 1)), that means according to lemma C.6, l2(T + 1) is
greater than l1(T + 1) (w2(l1(T + 1)) < w2(l2(T + 1))).
Reasoning by contradiction, if l2(T + 1) > Tmax, then we distinguish between two
cases:

– First case: If β(T + 1) = 1:
we have that w1(Tmax) < w2(l2(T + 1)) (w1(Tmax) < w2(Tmax + 1) as the
alternation condition is satisfied in [1, Tmax + 1]), i.e., according to lemma C.6,
we have that lmax ≤ l1(T + 1). Hence, according to lemmas 5.2 and 5.3, we
have that:

l1(T+1)−1∑
j=1

p1α1(T + 1− j) +

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1)) + γ(T + 1)p2α2(T + 1− l2(T + 1))

= 1− α ≥
Tmax∑
j=1

p1α1(T + 1− j) +
Tmax∑
j=1

p2α2(T + 1− j) > Tmaxp2α ≥ 1− α

(C.53)

Therefore we end up with:

1− α > 1− α (C.54)

Hence, the assumption that l2(T +1) > Tmax leads us to an illogical statement.
Consequently, the hypothesis of l2(T + 1) > lmax is not valid for the first case.

– Second case: If β(T + 1) < 1:
Then we have that γ(T + 1) = 1. Therefore, all users at state l2(T + 1) in class
2 are in the proportion 1−α with the smallest Whittle index values. However,
there are users in state l1(T +1) in class 1 of the α proportion with the highest
Whittle index values. In other words, w1(l1(T+1)) ≥ w2(l2(T+1)) > w1(Tmax).
This means that l1(T + 1) > Tmax. Therefore, according to lemmas 5.2 and
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5.3:

l1(T+1)−1∑
j=1

p1α1(T + 1− j) +

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1)) + γ(T + 1)p2α2(T + 1− l2(T + 1))

= 1− α ≥
Tmax∑
j=1

p1α1(T + 1− j) +
Tmax∑
j=1

p2α2(T + 1− j) > Tmaxp2α ≥ 1− α

(C.55)

Hence,
1− α > 1− α (C.56)

Therefore, the hypothesis of l2(T + 1) > Tmax is not valid for the second case.

Consequently, we have that l2(T + 1) ≤ Tmax, i.e. max(l1(T + 1), l2(T + 1)) ≤ Tmax.
Then, according to Proposition 5.10, there exists l(T+1), and γ(T+1) and β(T+1)
such that:

l(T+1)−1∑
j=1

p1α1(T + 1− j) +

l(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l(T + 1)) + γ(T + 1)p2α2(T + 1− l(T + 1)) = 1− α
(C.57)

where β(T + 1) = 0 and 0 < γ(T + 1) ≤ 1, or 0 < β(T + 1) ≤ 1 and γ(T + 1) = 1.

To conclude, we have proved by induction, that for all T ≥ T0, there exists l(T ), β(T )
and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) +β(T )p1α1(T − l(T )) +γ(T )p2α2(T − l(T )) = 1−α

(C.58)
where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and γ(T ) = 1, which concludes our
proof.

C.13 Proof of Proposition 5.12

We proceed by the same method used to prove the Proposition 5.11.
We consider at time T :

l(T )−1∑
j=1

p1α1(T − j)+

l(T )−1∑
j=1

p2α2(T − j)+β(T )p1α1(T − l(T ))+γ(T )p2α2(T − l(T )) = 1−α,

(C.59)
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where β(T ) = 0 and 0 ≤ γ(T ) < 1, or 0 ≤ β(T ) < 1 and γ(T ) = 1. Among the users’
proportion scheduled α, exactly p1α1(T ) and p2α2(T ) will go to state one for each classes,
and (1− p1)α1(T ) and (1− p2)α2(T ) will go to the next state.
For the other users for which the action taken is passive, their states will be increased by
one, then the decreasing order according to the Whittle index value at the next time slot
is β(T )p1α1(T−l(T )), γ(T )p2α2(T−l(T )), p1α1(T−l(T )+1), p2α2(T−l(T )+1), p1α1(T−
l(T ) + 2), p2α2(T − l(T ) + 2) · · · p1α1(T ), p2α2(T ) (As we said before that the order based
on the value of the Whittle indices, alternate between the two classes from state 1 to
l(T ) ≤ lmax+1). Moreover, the users’ proportion scheduled (1−p1)α1(T ) and (1−p2)α2(T )
will be at states that have Whittle index values higher than those of β(T )p1α1(T − l(T ))
and γ(T )p2α2(T − l(T )) (as we have explained in the proof of Proposition 5.11).
Hence, the global decreasing order according to theWhittle index value is (1−p1)α1(T ), (1−
p1)α2(T ), β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) +
1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2) · · · p1α1(T ), p2α2(T ).
Providing that (1− p1)α1(t) + (1− p2)α2(t) ≤ α, then at time T + 1:

l(T )−1∑
j=1

p1α1(T−j)+
l(T )−1∑
j=1

p2α2(T−j)+β(T )p1α1(T−l(T ))+γ(T )p2α2(T−l(T ))+p1α1(T )+p2α2(T ) ≥ 1−α

(C.60)
Then, there exists β = 0 and 0 < γ ≤ 1, or 0 < β ≤ 1 and γ = 1, and sub-set
{α1(T ), α2(T ), α1(T − 1), α2(T − 1) · · ·α1(T −m), α2(T −m)} ⊂ {α1(T − l(T )), α2(T −
l(T )), α1(T−l(T )+1), α2(T−l(T )+1), α1(T−l(T )+2), α2(T−l(T )+2) · · ·α1(T ), α2(T )},
such that:
(m+1)−1∑
j=1

p1α1(T+1−j)+
(m+1)−1∑
j=1

p2α2(T+1−j)+βp1α1(T+1−(m+1))+γp2α2(T+1−(m+1)) = 1−α

(C.61)
Indeed, m + 1 is effectively l(T + 1), β = β(T + 1), γ = γ(T + 1), and the elements
of the set {α1(T ), α1(T − 1), · · ·α1(T − m)} ∪ {α1(T + 1)} and the set {α2(T ), α2(T −
1), · · · , α2(T −m)} ∪ {α2(T + 1)} are exactly the elements of the vectors A1(T + 1) and
A2(T + 1) respectively. Given that {α1(T ), α1(T − 1), · · ·α1(T −m)} and {α2(T ), α2(T −
1), · · · , α2(T − m)} are included in the set of elements of the vector A1(T ) and A2(T )
respectively, then for k = 1, 2, all the elements of the vector Ak(T + 1) except αk(T + 1)
belong to the elements of vector Ak(T ).

C.14 Proof of Proposition 5.13
According to Proposition 5.11, the elements of the vectors A1(T ) and A2(T ) satisfy:

l(T )−1∑
j=1

p1α1(T − j)+

l(T )−1∑
j=1

p2α2(T − j)+β(T )p1α1(T − l(T ))+γ(T )p2α2(T − l(T )) = 1−α,

(C.62)
where 0 < β(T ) ≤ 1 and γ(T ) = 1, or β(T ) = 0 and 0 < γ(T ) ≤ 1. We distinguish
between two cases depending on the values of β and γ (we drop the index T on β(T ) and
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γ(T ) to ease the notation):

• First case: 0 < β ≤ 1, and γ = 1:
Hence:
l(T )−1∑
j=1

p1α1(T −j)+

l(T )−1∑
j=1

p2α2(T −j)+β(T )p1α1(T − l(T ))+p2α2(T − l(T )) = 1−α

(C.63)
Our aim is to derive the expression of αk(T + 1) for class 1 and class 2. Among the
users’ proportion scheduled α, exactly p1α1(T ) and p2α2(T ) will go to state one for
each class, and the rest will go to the next state. Hence:

α1(T + 1) = (1− p1)α1(T ) +B1(T ) (C.64)

α2(T + 1) = (1− p2)α2(T ) +B2(T ) (C.65)

such that B1(T ) +B2(T ) = p1α1(T ) + p2α2(T ).
At time T + 1, the decreasing order according to the Whittle index value is (1 −
p1)α1(T ), (1−p2)α2(T ), βp1α1(T−l(T )), p2α2(T−l(T )), p1α1(T−l(T )+1), p2α2(T−
l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2), · · · , p1α1(T ), p2α2(T ).
In order to get B1(T ) and B2(T ), we sum the users’ proportions at different states
starting from the users’ proportion βp1α1(T − l(T )) following the decreasing order
of the Whittle index until we get the sum that equals to p1α1(T ) + p2α2(T ). We
distinguish between six sub-cases and for each sub-case, we prove that αk(T + 1) is
surely between two elements of the vector Ak(T ). In fact, if we prove it just for one
class, the result will be true for the other one, since α1(T ) + α2(T ) = α for all T .
In the following, we derive the expression of αk(T + 1) for k = 1, 2, in function of
the elements of the vector A1(T ) and A2(T ) and we show that α1(T + 1) is surely
between two elements of the vector A1(T ).
1) If p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T )):
In this case p1α1(T ) + p2α2(T ) is less than p1βα1(T − l(T )). Therefore, we will
take a proportion of users from p1βα1(T − l(T )) that equals to p1α1(T ) + p2α2(T )
denoted by C. This users’ proportion exactly equals to B1(T ) +B2(T ) that we add
to (1− p1)α1(T ) and (1− p2)α2(T ). Thus, B1(T ) + B2(T ) = C. However, since all
the users of the proportion C belong to p1βα1(T − l(T )), then C contains only the
users of the class 1. Consequently, B1(T ) = C and B2(T ) = 0. Hence:

α2(T + 1) = (1− p2)α2(T ) (C.66)

As α1(T + 1) + α(T + 1) = α, then:

α1(T + 1) = α− α2(T + 1) (C.67)

Now we find the upper bound of α2(T )− α2(T + 1):

α2(T )− α2(T + 1) =p2α(T ) (C.68)
≤βα1(T − l(T ))p1 − α1(T )p1 (C.69)
≤p1(α1(T − l(T ))− α1(T )) (C.70)
=p1(α2(T )− α2(T − l(T ))) (C.71)
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The first inequality comes from the fact that p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T ))
and the second one comes from the fact that β ≤ 1.
Given that α2(i)− α2(j) = α1(j)− α1(i) for all integers i and j, thus:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (C.72)

Moreover, we have that α1(T + 1) − α1(T ) ≥ 0 because α2(T + 1) − α2(T ) ≤ 0.
Therefore, α1(T ) ≤ α1(T + 1). On the other hands, as p1(α1(T − l(T ))− α1(T )) ≥
α1(T + 1)−α1(T ) ≥ 0 then α1(T − l(T ))−α1(T ) ≥ α1(T + 1)−α1(T ). This means
that α1(T − l(T )) ≥ α1(T + 1). Consequently, we end up with:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (C.73)

2) If βα1(T − l(T ))p1 ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2:
Hence:

α1(T + 1) =(1− p1)α1(T ) + βp1α1(T − l(T )) (C.74)
α2(T + 1) =α− α1(T + 1) (C.75)

Then:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T ) (C.76)
≤p1(α1(T − l(T )− α1(T )) (C.77)

On the other hand, we have according to the right inequality of sub-case’s assump-
tion:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T ) (C.78)
≥p2α2(T )− p2α2(T − l(T )) (C.79)
=p2(α1(T − l(T ))− α1(T )) (C.80)

Hence :

p2(α1(T − l(T ))− α1(T )) ≤ α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T ))
(C.81)

Knowing that p2 < p1, the later inequalities imply that α1(T − l(T ))− α1(T ) ≥ 0.
As a result we have that:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (C.82)

And
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (C.83)

3) If βα1(T − l(T ))p1 + α2(T − l(T ))p2 ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 +
α2(T − l(T ))p2 + p1α1(T − l(T ) + 1):
Hence:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) (C.84)
α1(T + 1) =α− α2(T + 1) (C.85)
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Therefore:
α2(T + 1)− α2(T ) = p2(α2(T − l(T ))− α2(T )) (C.86)

And:
α1(T )− α1(T + 1) = p2(α1(T )− α1(T − l(T ))) (C.87)

This means that if α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (C.88)

And
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (C.89)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (C.90)

And
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))) (C.91)

4) If βα1(T − l(T ))p1 +α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) ≤ p1α1(T ) + p2α2(T ) ≤
βα1(T − l(T ))p1 + α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + p2α2(T − l(T ) + 1) :
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (C.92)
α2(T + 1) =α− α1(T + 1) (C.93)

Therefore:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (C.94)
(C.95)

According to the left inequality of the assumption of this case, we have that:

α1(T + 1)− α1(T ) ≤p2α2(T )− p2α2(T − l(T )) (C.96)
=p2(α1(T − l(T ))− α1(T )) (C.97)

On the other hand, we have that:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1) (C.98)
≥p1(α1(T − l(T ) + 1) + α1(T ) (C.99)

(C.100)

Hence:

p1(α1(T−l(T )+1)−α1(T )) ≤ α1(T+1)−α1(T ) ≤ p2(α1(T−l(T ))−α1(T )) (C.101)

Thus:
If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (C.102)
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And

α1(T + 1)− α1(T ) ≤p2(α1(T − l(T ))− α1(T )) (C.103)
≤p1(α1(T − l(T ))− α1(T )) (C.104)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.105)

And

α1(T )− α1(T + 1) ≤p1(α1(T )− α1(T − l(T ) + 1)) (C.106)

5) If there exists m ≥ 1 such that:
βα1(T − l(T ))p1 +α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m) +
p2α2(T − l(T ) + m) ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2 +
p1α1(T − l(T ) + 1) + · · · + p1α1(T − l(T ) + m) + p2α2(T − l(T ) + m) + p1α1(T −
l(T ) +m+ 1) :
This means that:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) + · · ·+ p2α2(T − l(T ) +m) (C.107)
α1(T + 1) =α− α2(T + 1) (C.108)

We have that:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2α2(T − l(T )) + p2α1(T − l(T ) + 1)

+ · · ·+ p2α2(T − l(T ) +m) (C.109)
≥p2(α2(T − l(T ) + 1)− α2(T )) (C.110)

On the other hand:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2α2(T − l(T )) + p2α2(T − l(T ) + 1)

+ · · ·+ p2α2(T − l(T ) +m) (C.111)

≤p1α1(T )− βp1α1(T − l(T ))−
m∑
i=1

p1α1(T − l(T ) + i)

(C.112)
≤p1(α1(T )− α1(T − l(T ) + 1)) (C.113)
=p1(α2(T − l(T ) + 1)− α2(T ) (C.114)

Thus:

p2(α1(T )− α1(T − l(T ) + 1) ≤ α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(C.115)

Therefore:
α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.116)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (C.117)
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6) If there exists m ≥ 1 such that:
βα1(T − l(T ))p1 +α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + p2α2(T − l(T ) + 1) + · · ·+
p1α1(T−l(T )+m)+p2α2(T−l(T )+m)+p1α1(T−l(T )+m+1) ≤ p1α1(T )+p2α2(T ) ≤
βα1(T − l(T ))p1 +α2(T − l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m) +
p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) + p2α2(T − l(T ) +m+ 1) :
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T )) + · · ·+ p1α1(T − l(T ) +m+ 1)
(C.118)

α2(T + 1) =α− α1(T + 1) (C.119)

We have that:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1)

+ · · ·+ p1α1(T − l(T ) +m+ 1) (C.120)
≥p1(α1(T − l(T ) + 1)− α1(T )) (C.121)

On the other hand:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T )) + p1α1(T − l(T ) + 1)

+ · · ·+ p1α1(T − l(T ) +m+ 1) (C.122)

≤p2α2(T )−
m∑
i=0

p2α2(T − l(T ) + i) (C.123)

≤p2(α2(T )− α2(T − l(T ) + 1)) (C.124)
=p2(α1(T − l(T ) + 1)− α1(T )) (C.125)

Thus:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T ) ≤ p2(α1(T − l(T ) + 1)− α1(T ))
(C.126)

Therefore:
α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.127)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (C.128)

• Second case: β = 0 and 0 < γ ≤ 1:
Hence, we have that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + γp2α2(T − l(T )) = 1− α (C.129)

Then, at time T + 1, the decreasing order according to the Whittle index value is
(1− p1)α1(T ), (1− p2)α2(T ), γp2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T − l(T ) +
1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) + 2), · · · , p1α1(T ), p2α2(T ). In order to obtain
B1(T ) and B2(T ), we sum the users’ proportions at different states starting from
the users’ proportion γp2α2(T − l(T )) following the decreasing order of the Whittle
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index until we get the sum that equals to p1α1(T ) + p2α2(T ). For this case, we
distinguish between five sub-cases, and for each sub-case, we prove that α1(T + 1)
is surely between two elements of the vector A1(T ).

1) If p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2:
Hence:

α1(T + 1) = (1− p1)α1(T ) (C.130)

α2(T + 1) = α− α1(T + 1) (C.131)

We have that:

α1(T )− α1(T + 1) =p1α1(T ) (C.132)
≤γα2(T − l(T ))p2 − α2(T )p2 (C.133)
≤p2(α2(T − l(T ))− α2(T )) (C.134)
=p2(α1(T )− α1(T − l(T ))) (C.135)

Thus:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )) (C.136)

And:
α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (C.137)

2) If γα2(T − l(T ))p2 ≤ p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2 +α1(T − l(T ) + 1)p1

Consequently:

α2(T + 1) =(1− p2)α2(T ) + γp2α2(T − l(T )) (C.138)
α1(T + 1) =α− α2(T + 1) (C.139)

Hence:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T )) (C.140)
≤p2(α2(T − l(T ))− α2(T )) (C.141)

(C.142)

On the other hand, according to the right inequality of the assumption of this case,
we have that:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T )) (C.143)
≥p1(α1(T )− α1(T − l(T ) + 1)) (C.144)
=p1(α2(T − l(T ) + 1)− α2(T )) (C.145)

That means:

p1(α2(T−l(T )+1)−α2(T )) ≤ α2(T+1)−α2(T ) ≤ p2(α2(T−l(T ))−α2(T )) (C.146)
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i.e.

p1(α1(T )−α1(T−l(T )+1)) ≤ α1(T )−α1(T+1) ≤ p2(α1(T )−α1(T−l(T ))) (C.147)

Therefore:
If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (C.148)

And:
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (C.149)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (C.150)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))) (C.151)

3) If γα2(T − l(T ))p2 +α1(T − l(T )+1)p1 ≤ p1α1(T )+p2α2(T ) ≤ γα2(T − l(T ))p2 +
α1(T − l(T ) + 1)p1 + p2α2(T − l(T ) + 1).
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1α1(T − l(T ) + 1) (C.152)
α2(T + 1) =α− α1(T + 1) (C.153)

We have that:

α1(T + 1)− α1(T ) = p1(α1(T − l(T ) + 1)− α1(T ) (C.154)

If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (C.155)

And:
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (C.156)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.157)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (C.158)

4) If there exists m ≥ 1 such that:
γα2(T−l(T ))p2+· · ·+α1(T−l(T )+m)p1+p2α2(T−l(T )+m) ≤ p1α1(T )+p2α2(T ) ≤
γα2(T−l(T ))p2+· · ·+α1(T−l(T )+m)p1+p2α2(T−l(T )+m)+p1α1(T−l(T )+m+1):
Hence:

α2(T + 1) =(1− p2)α2(T ) + p2γα2(T − l(T )) + · · ·+ p2α2(T − l(T ) +m) (C.159)
α1(T + 1) =α− α2(T + 1) (C.160)
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α2(T + 1)− α2(T ) =− p2α2(T ) + p2γα2(T − l(T )) + p2α2(T − l(T ) + 1)

+ · · ·+ p2α2(T − l(T ) +m) (C.161)
≥p2(α2(T − l(T ) + 1)− α2(T )) (C.162)

On the other hand:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2γα2(T − l(T )) + p2α2(T − l(T ) + 1)

+ · · ·+ p2α2(T − l(T ) +m) (C.163)

≤p1α1(T )−
m∑
i=1

p1α1(T − l(T ) + i) (C.164)

≤p1(α1(T )− α1(T − l(T ) + 1)) (C.165)
=p1(α2(T − l(T ) + 1)− α2(T )) (C.166)

Thus:

p2(α1(T )− α1(T − l(T ) + 1) ≤ α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(C.167)

Therefore:
α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.168)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (C.169)

5) If there exists m ≥ 1 such that:
γα2(T − l(T ))p2 + · · ·+α1(T − l(T ) +m)p1 + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +
m+1) ≤ p1α1(T )+p2α2(T ) ≤ γα2(T− l(T ))p2 + · · ·+α1(T− l(T )+m)p1 +p2α2(T−
l(T ) +m) + p1α1(T − l(T ) +m+ 1) + p2α2(T − l(T ) +m+ 1):
That implies that:

α1(T + 1) =(1− p1)α1(T ) + · · ·+ p1α1(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1)
(C.170)

α2(T + 1) =α− α1(T + 1) (C.171)

α1(T + 1)− α1(T ) = −p1α1(T ) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1)
(C.172)

≥ p1(α1(T − l(T ) + 1)− α1(T )) (C.173)

On the other hand:

α1(T + 1)− α1(T ) = −p1α1(T ) + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m+ 1)

(C.174)

≤ p2α2(T )− γp2α2(T − l(T ))−
m∑
i=1

p2α2(T − l(T ) + i)

(C.175)
≤ p2(α2(T )− α2(T − l(T ) + 1)) (C.176)
= p2(α1(T − l(T ) + 1)− α1(T )) (C.177)
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Thus:

p1(α1(T − l(T ) + 1)− α1(T ) ≤ α1(T + 1)− α1(T ) ≤ p2(α1(T − l(T ) + 1)− α1(T ))
(C.178)

Therefore:
α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.179)

And:
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)) (C.180)

In conclusion, all these six sub-cases when γ = 1 and 0 < β ≤ 1, plus the five sub-cases
when β = 0 and 0 < γ ≤ 1, can be summarized in four cases:

1) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), and α1(T + 1)−α1(T ) ≤ p1(α1(T − l(T ))−α1(T )).

2) α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), and α1(T )−α1(T + 1) ≤ p1(α1(T )−α1(T − l(T ))).

3) α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), and α1(T ) − α1(T + 1) ≤ p1(α1(T ) − α1(T −
l(T ) + 1)).

4) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), and α1(T + 1)−α1(T ) ≤ p1(α1(T − l(T ) + 1)−
α1(T )).

Thus, the proof is concluded.

C.15 Proof of Proposition 5.14

In all the proof, we consider that ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
.

Before tackling the proof, we give a brief insight about the procedure adopted to establish
the desired result: We start by finding a given time denoted T2 ≥ Tε where α1(T2) is less
than l1. Then, we show that α1(T2), · · · , α1(T2 + L) are strictly less than l2. To that
end, we start first by defining a relevant sequence un in function of ε, l1, l2 and p1 when
n ∈ [0, L]. After that, we prove that un is increasing with n and strictly less than l2. Next,
we establish that un is an upper bound of α1(·) in [T2, T2 + L]. More precisely, we show
that α1(T2 +n) ≤ un for n ∈ [0, L]. For that purpose, we proceed with two following steps:
The first one consists of deriving an inequality verified by two consecutive terms of the
sequence α1(·), namely α1(T ) and α1(T +1) using the Proposition 5.13 given that T ≥ Tε.
As for the second step, we use essentially the aforementioned result to demonstrate by
induction that un is indeed an upper bound of α1(T2 +n). Finally, based on these results,
we show that there exists Td such that maxA1(Td) < l2.

To find a time T2 ≥ Tε such that α1(T2) is less than l1, we use the fact that minA1(t) ≤ l1
for all t. At time Tε + L, we have the vector A1(Tε + L) = (α1(Tε + L), α1(Tε + L −
1), · · · , α1(Tε + L − l(Tε + L))). Providing that minA1(Tε + L) ≤ l1, then there exists
an element from the vector A1(Tε + L) less than l1 denoted by α1(T2). According to
Proposition 5.11, we have for all T ≥ T0, l(T ) ≤ lmax = L, then l(Tε+L) ≤ L. That is, T2

is greater than Tε since T2 ≥ Tε+L− l(Tε+L) ≥ Tε. Therefore, we find an element of the
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sequence α1(·) at time T2 ≥ Tε such that α1(T2) ≤ l1. To that extent, we are interested
in proving that α1(T2), · · · , α1(T2 + L) are strictly less than l2.
To do so, we define a sequence un which will constitute an upper bound of the function
α1(T ).

Definition C.1. We define a sequence un by induction:{
u0 = l1 ifn = 0
un+1 = p1(l2 + ε) + (1− p1)un ifn > 0

(C.181)

Next, we prove that the L first terms of this sequence are strictly less than l2. We detail
this in the following.

Lemma C.7. For n ∈ [0, L], un < l2

Proof. In fact, the sequence un satisfies for all n:

un = λ(1− p1)n + (l2 + ε) (C.182)

where λ = −(ε+ l2 − l1).
un is clearly increasing with n, then for all n ∈ [0, L]:

un ≤ uL = λ(1− p1)L + (l2 + ε) = ε(1− (1− p1)L) + l2 − (l2 − l1)(1− p1)L (C.183)

We have that:

ε < (l2 − l1)(
(1− p1)L

1− (1− p)L
) (C.184)

Given that 1− (1− p1)L ≥ 0, then:

(1− (1− p1)L)ε < (l2 − l1)(1− p1)L (C.185)

(1− (1− p1)L)ε+ l2 − (l2 − l1)(1− p1)L < l2 (C.186)

Therefore, uL < l2.

Based on the lemma above, we prove that for any element of the set {α1(T2), · · · , α1(T2 +
L)} must be less than uL.
For that, we introduce a useful Lemma:

Lemma C.8. If for T ∈ [T2, T2 + L− 1], we have that:

α1(T ) ≤ α1(T + 1) (C.187)

Then, we have that:
α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (C.188)
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Proof. Before starting the proof, we recall that, according to the first result of Proposition
5.13, the four possible inequalities satisfied by α1(T ), α1(T + 1), α1(T − l(T )), α1(T −
l(T ) + 1) are:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (C.189)

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (C.190)

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (C.191)

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (C.192)

Therefore, the two cases for which α1(T ) ≤ α1(T + 1) are:

• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )).

• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1).

Hence, according to the results of Proposition 5.13, the inequalities satisfied by α1(T +
1)− α1(T ) are:
If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (C.193)

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )) (C.194)

Since, by assumption of the Lemma, T ≥ T2 ≥ Tε, then maxA1(T ) ≤ l2 + ε. As a
consequence, α1(T − l(T ) + 1) and α1(T − l(T )) which are elements of the vector A1(T ),
are less than l2 + ε.
Hence, for T ∈ [T2, T2 + L− 1]:

α1(T + 1)− α1(T ) ≤ p1(l2 + ε− α1(T )) (C.195)

Therefore:
α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (C.196)

�

Now we should prove that for all possible sequences of α1 in [T2, T2 +L], their values can
not exceed λ(1− p1)L + (l2 + ε2) = uL.

Lemma C.9. For all sequences of α1 when T ∈ [T2, T2 + L], α1(T ) ≤ uT−T2

Proof. We prove this result by induction.
For T = T2, we have that:

α1(T2) ≤ l1 = u0 (C.197)

We suppose that at time T , α1(T ) ≤ uT−T2 , then at time T + 1:
If α1(T + 1) ≤ α1(T ):
Then as uT−T2 is increasing in T :

α1(T + 1) ≤ uT−T2 ≤ uT−T2+1 (C.198)
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If α1(T + 1) ≥ α1(T ):
Then, according to Lemma C.8:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (C.199)
≤ p1(l2 + ε) + (1− p1)uT−T2 (C.200)
= uT−T2+1 (C.201)

Therefore, α1(T + 1) ≤ uT−T2+1.
Hence, we have proved by induction that for all T ∈ [T2, T2 + L], α1(T ) ≤ uT−T2 �

As uT−T2 is less than uL for T ∈ [T2, T2 +L], then according to Lemma C.9, the elements
α1(T2 + 1), · · · , α1(T2 + L) are less than uL < l2.
Thus, we have found T2 ≥ Tε such that α1(T2), α1(T2 + 1), · · · , α1(T2 + lmax) are strictly
less than l2. We denote T2 + lmax by Td and we verify that maxA1(Td) < l2. Indeed, we
know that Td− l(Td) ≥ Td− lmax = T2, then the elements of the vector A1(Td) are included
in the set of elements {α1(T2), α1(T2 + 1), · · · , α1(T2 + lmax)}. That is maxA1(Td) < l2.
Hence, we have found Td ≥ Tε, such that maxA1(Td) < l2

C.16 Proof of Proposition 5.15

In this proof, we show that for each state i in class k, zki (t) converges. To that end, we
start first by specifying the eventual limit of zki (t) for each i. To do so, we decompose
1− α as follows:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 + βp1α

∗
1 = 1− α (C.202)

where l is the biggest integer such that: l(p1α
∗
1 +p2α

∗
2) < 1−α, and 0 < γ ≤ 1 and β = 0;

or γ = 1 and 0 < β ≤ 1. Then, we proceed with these following steps:

• We prove by induction that for all states 1 ≤ i ≤ l + 1, zki (t) converges to pkα∗k.

• Based on the theoretical findings of the first step, we prove that z1
l+2(t) converges

to (β + (1− p1)(1− β))p1α
∗
1 and z2

l+2(t) converges to (γ + (1− p2)(1− γ))p2α
∗
2.

• Finally, we show that for all states i > l + 2, z1
i (t) converges to (1 − p1)i−l−2(β +

(1− p1)(1− β))p1α
∗
1 and z2

i (t) converges to (1− p2)i−l−2(γ + (1− p2)(1− γ))p2α
∗
2

1. For all states 1 ≤ i ≤ l + 1, zki (t)→ pkα
∗
k:

We prove this result by induction

• For i = 1, we have that zk1 (t) = pkαk(t− 1). Therefore, zk1 (t) converge to pkα∗k
as αk(t) converges to α∗k.

• We consider that for a certain j ≤ l, for each 1 ≤ i ≤ j, zki (t) converges to
pkα

∗
k and we show that zkj+1(t) converges also to pkα∗k.

Given that j ≤ l:
j(p1α

∗
1 + p2α

∗
2) < 1− α
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We consider 0 < ε ≤ 1 − α − j(p1α
∗
1 + p2α

∗
2). Providing that zki (t) converges

to pkα∗k for all 1 ≤ i ≤ j, that means there exists tj such that for t ≥ tj, for
1 ≤ i ≤ j:

|zki (t)− pkα∗k| <
ε

2j

Hence:
j∑
i=1

|z1
i (t)− p1α

∗
1|+

j∑
i=1

|z2
i (t)− p2α

∗
2| < ε

That is,
j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < ε+ j(p1α

∗
1 + p2α

∗
2)

As consequence, for all t ≥ tj, we have that:
j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < 1− α

Thus, for all t ≥ tj, the action prescribed to the users’ proportion zkj (t) is the
passive action 1. Then, for all t ≥ tj:

zkj+1(t+ 1) = zkj (t)

Therefore, zkj+1(t) converges to pkα∗k.

Consequently, we prove by induction that for all 1 ≤ i ≤ l + 1, zki (t) converges to
pkα

∗
k.

2. z1
l+2(t)→ (β + (1− p1)(1− β))p1α

∗
1 and z2

l+2(t)→ (γ + (1− p2)(1− γ))p2α
∗
2.

To avoid redundancy , we will be limited to the first case when 0 < γ ≤ 1 and
β = 0, since the proof’s steps for both cases are exactly the same. We have that:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 = 1− α

As
∑l

i=1 z
1
i (t) +

∑l
i=1 z

2
i (t) converges to l(p1α

∗
1 + p2α

∗
2) which is strictly less than

1− α, then there exists tl such that for all t ≥ tl, we have that:
l∑

i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α

As
∑l+1

i=1 z
1
i (t)+

∑l+1
i=1 z

2
i (t) converges to (l+1)(p1α

∗
1 +p2α

∗
2) which is strictly greater

than 1− α, then there exists tl+1 such that for all t ≥ tl+1, we have that:
l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t) > 1− α

1Knowing that the order of the proportions of the users according to the Whittle’s index value al-
ternates between the two classes in the set [1, lmax + 1] as was established in 5.8, then for all integer
b ∈ [1, lmax], the set {zki : k = 1, 2; 1 ≤ i ≤ b} is the set of users with the lowest Whittle’s index value.
Therefore,

∑b
i=1 z

1
i (t) +

∑b
i=1 z

2
i (t) < 1− α implies that the actions prescribed to the users belonging to

the set {zki : k = 1, 2; 1 ≤ i ≤ b} is the passive action. By definition of l, l < 1−α
p2α

, then, l ≤ lmax (see
Lemma 5.3). Hence, the above reasoning can be applied as well when b = l.
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For t ≥ max{tl, tl+1}, we have that:
l∑

i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α <

l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t)

Denoting γ(t) and β(t) the users’ proportion of z2
l+1(t) and z1

l+1(t) respectively which
are not scheduled, therefore, the relation that links z1

l+2(t + 1) and z2
l+2(t + 1) to

z1
l+1(t) and z1

l+1(t) when t ≥ max{tl, tl+1}:

z1
l+2(t+ 1) = β(t)z1

l+1(t) + (1− p1)(1− β(t))z1
l+1(t)

z2
l+2(t+ 1) = γ(t)z2

l+1(t) + (1− p2)(1− γ(t))z2
l+1(t)

with 0 < γ(t) ≤ 1 and β(t) = 0; or γ(t) = 1 and 0 < β(t) ≤ 1. To that extent, we
show that β(t) tends to β = 0 and γ(t) tends to γ. For that purpose, we give the
following equation which is always satisfied when t ≥ max{tl, tl+1}:

l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) + γ(t)z2

l+1(t) + β(t)z1
l+1(t) = 1− α (C.203)

Tending t to +∞ in the equation C.203, we obtain:

lim
t→+∞

[γ(t)z2
l+1(t) + β(t)z1

l+1(t)] = γp2α
∗
2

We consider the set {t : β(t) 6= 0}. If this set is infinite, then there exists a strictly
increasing function n(.) from N to {t ∈ Nβ(t) 6= 0}, such that β(n(t)) is a sub-
sequence of β(t). As β(n(t)) 6= 0, then γ(n(t)) = 1. Therefore, we get:

lim
t→+∞

[z2
l+1(n(t)) + β(n(t))z1

l+1(n(t))] = γp2α
∗
2

Since z2
l+1(n(t)) converges to p2α

∗
2, then:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2

(γ − 1)p2α
∗
2 is less than 0, and β(n(t))z1

l+1(n(t)) is greater than 0 for all t. Thus:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2 = 0

This implies that γ = 1 = γ(n(t)), and lim
t→+∞

β(n(t)) = 0 because z1
l+1(n(t)) con-

verges to p1α
∗
1 6= 0. Hence lim

t→+∞
β(t) = 0 = β, i.e. lim

t→+∞
γ(t) = γ = 1.

If {t : β(t) 6= 0} is finite, then there exists te such that for all t ≥ te, β(t) = 0.
Therefore, for all t ≥ te, we have that:

lim
t→+∞

[γ(t)z2
l+1(t)] = γp2α

∗
2

That means lim
t→+∞

β(t) = 0, and lim
t→+∞

γ(t) = γ. Hence, in both cases, β(t)→ β = 0

and γ(t)→ γ.
Consequently, combining the last result with the one derived in the first step, we
conclude that z1

l+2(t) converges to (β + (1 − p1)(1 − β))p1α
∗
1 and z2

l+2(t) converges
to (γ + (1 − p2)(1 − γ))p2α

∗
2. Similar analysis can be applied to come with the

aforementioned result when γ(t) = 1 and 0 < β(t) ≤ 1.
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3. For i > l + 2, z1
i (t) → (1 − p1)i−l−2(β + (1 − p1)(1 − β))p1α

∗
1 and z2

i (t) → (1 −
p2)i−l−2(γ + (1− p2)(1− γ))p2α

∗
2:

For t ≥ max{tl, tl+1}, we are sure that the action prescribed to zki (t) for all i ≥ l+ 2
is the active action. As consequence, zki+1(t+ 1) satisfies:

zki+1(t+ 1) = (1− pk)zki (t)

Therefore, as z1
l+2(t) converges to (β+ (1− p1)(1− β))p1α

∗
1 and z2

l+2(t) converges to
(γ + (1− p2)(1− γ))p2α

∗
2, one can easily establish by induction that z1

i (t) converges
to (1 − p1)i−l−2(β + (1 − p1)(1 − β))p1α

∗
1 and z2

i (t) converges to (1 − p2)i−l−2(γ +
(1− p2)(1− γ))p2α

∗
2 for all i > l + 2.

We conclude that for all states i and k = 1, 2, zki (t) converges. On the other hands,
according to Proposition 5.7, the only possible limit of z(t) is z∗. As consequence, for
each k and i, zki (t) converges to zk,∗i .

C.17 Proof of Proposition 5.16

For a given z, let m1(z) and m2(z) be the highest states of the class 1 and the class 2
respectively and l1(z) and l2(z) be the thresholds of class 1 and 2 respectively at time t
when ZN(t) = z. Given that, we introduce the following lemma.

Lemma C.10. For any µ, there exists positive constant C(z) such that:

P (||ZN(t+ 1)− z′|| ≥ µ|ZN(t) = z) ≤ C(z)

N
(C.204)

where C(z) is independent of N and z′ = Q(z)z = E(ZN(t+ 1)|ZN(t) = z)

Proof. By definition ofm1(z) andm2(z), we have that z = (z1
1 , · · · , z1

m1(z), z
2
1 , · · · , z2

m2(z)).
On can easily show that m1(z′) = m1(z) + 1 and m2(z′) = m2(z) + 1 since the users’
proportions at statesm1(z) andm2(z) in class 1 and class 2 will become at statesm1(z)+1
and m2(z) + 1 at the next time slot respectively. To prove this lemma, we use the
Chebychev inequality presented as follows:

P (|X − E(X)| > µ) ≤ V ar(X)

µ2
(C.205)

for any µ > 0 and random variable X.
As z′ = E(ZN(t + 1)|ZN(t) = z), we can apply the Chebychev inequality. However
we need to find the distribution of ZN(t + 1) knowing ZN(t) = z in order to derive the
expression of V ar(ZN(t+1)|ZN(t) = z). It is more simple to study the parameters of one
dimensional random variable than multi-dimensional random variable. Hence, instead of
investigating ZN(t+ 1), we look into ZN,k

i . In this regard, we have that:

{ZN(t+1) : ||ZN(t+1)−z′|| ≥ µ} ⊂ ∪
k,i
{ZN(t+1) : ||ZN,k

i (t+1)−z′ki ||i >
µ

m1(z′) +m2(z′)
}

(C.206)
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Therefore:

P (||ZN(t+ 1)− z′|| ≥ µ|ZN(t) = z) ≤ P (∪
k,i
{||ZN,k

i (t+ 1)− z′ki ||i >
µ

m1(z′) +m2(z′)
|ZN(t) = z})

(C.207)

≤
∑
k,i

P ({||ZN,k
i (t+ 1)− z′ki ||i >

µ

m1(z′) +m2(z′)
|ZN(t) = z})

(C.208)

Now, we look for the distribution of ZN,k
i (t+ 1) knowing ZN(t) = z.

For 2 ≤ i ≤ lk(z), as all the users at state i− 1 strictly less than lk(z) will transit to the
state i at the next time slot, then we have ZN,k

i (t+ 1) = zki−1 = z
′k
i . This implies that:

P ({||ZN,k
i (t+ 1)− z′ki ||i >

µ

m1(z′) +m2(z′)
|ZN(t) = z}) = 0 (C.209)

For i = 1, defining α1(z) and α2(z) as the proportions of the scheduled users in class 1
an class 2 respectively when ZN(t) = z, then NZN,k

1 (t+ 1)|ZN(t) = z follows a binomial
distribution with parameters pk and αk(z)N . Therefore, V ar(NZN,k

1 (t+1)|ZN(t) = z) =

pk(1 − pk)αk(z)N , which means that V ar(ZN,k
1 (t + 1)|ZN(t) = z) = pk(1−pk)αk(z)

N
. As a

results, according to Chebychev inequality, we have that:

P ({||ZN,k
1 (t+1)−z′k1 || >

µ

m1(z′) +m2(z′)
|ZN(t) = z}) ≤ pk(1− pk)αk(z)

Nµ2
(m1(z′)+m2(z′))2

(C.210)
For i ≥ lk(z)+2, NZN,k

i (t+1)|ZN(t) = z follows a binomial distribution with parameters
1− pk and zki−1N . Hence, V ar(ZN,k

i (t+ 1)|ZN(t) = z) =
pk(1−pk)zki−1

N
. Thus:

P ({||ZN,k
i (t+1)−z′ki || >

µ

i(m1(z′) +m2(z′))
|ZN(t) = z}) ≤

pk(1− pk)zki−1

Nµ2
(m1(z′)+m2(z′))2i2

(C.211)
Denoting βk(z) the users’ proportion of zklk(z) that will not be transmitted, then for i =

lk(z) + 1, NZN,k
i (t + 1)|(ZN(t) = z) = βk(z)Nzki−1 + X, where X follows a binomial

distribution with parameters 1− pk and (1− βk(z))zki−1N , then:

P ({||ZN,k
i (t+1)−z′ki || >

µ

i(m1(z′) +m2(z′))
|ZN(t) = z}) ≤

pk(1− pk)(1− βk(z))zki−1

Nµ2
(m1(z′)+m2(z′))2i2

(C.212)
We end up with:

P (||ZN(t+ 1)− z′|| ≥ µ|ZN(t) = z)

≤ (m1(z′) +m2(z′))2.[
p1(1− p1)α1(z)

Nµ2
+
p2(1− p2)α2(z)

Nµ2
+

∑
i≥l1(z)+2

p1(1− p1)i2z1
i−1

Nµ2

+
∑

i≥l2(z)+2

p2(1− p2)i2z2
i−1

Nµ2
+
p1(1− p1)(l1(z) + 1)2(1− β1(z))z1

l1(z)

Nµ2
+
p1(1− p2)(l2(z) + 1)2(1− β2(z))z2

l2(z)

Nµ2
]

(C.213)
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Knowing that αk(z) ≤ 1,
∑

i≥lk(z) z
k
i ≤ 1, 1− βk(z) ≤ 1, and for all state i in the vector

z′, i ≤ m1(z′) +m2(z′) then:

P (||ZN(t+ 1)− z′|| ≥ µ|ZN(t) = z) ≤ (m1(z′) +m2(z′))4

µ2N
[2p1(1− p1) + 2p2(1− p2)]

Hence, denoting by C(z), (m1(z′)+m2(z′))4

µ2
[2p1(1−p1)+2p2(1−p2)] = (m1(z)+1+m2(z)+1)4

µ2
[2p1(1−

p1) + 2p2(1− p2)], we obtain as a result:

P (||ZN(t+ 1)− z′|| ≥ µ|ZN(t) = z) ≤ C(z)

N
(C.214)

�

Now, we give a lemma that bounds the probability knowing the initial state z(0) = x.
One can easily verifies that m1(z(t)) = m1(x)+ t and m2(z(t)) = m2(x)+ t by induction.
Without loss of generality, we let mk(z(t)) = mk(t) for k = 1, 2.

Lemma C.11. For any µ, there exists positive constant C(t+ 1) such that:

Px(||ZN(t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(C.215)

where C(t+ 1) is independent of N .

Proof. We recall from Lemma C.10 that for any µ > 0, there exists a constant C(z)
independent of N such that:

P (||ZN(t+ 1)−Q(z)z|| ≥ µ|ZN(t) = z) ≤ C(z)

N
(C.216)

Before proving the present lemma, we give an important lemma that will helps us in the
later analysis.

Lemma C.12. For any proportion vector z, there exists σ > 0 such that if ||ZN(t)−z|| ≤
σ, then Q(ZN(t)) = Q(z).

Proof. One can deduce from the analysis done in Section 5.2, and more precisely the
equation (5.26), that there exists σ > 0 such that if ZN(t) ∈ Ωσ(z), Q(ZN(t)) is constant
and doesn’t depend on ZN(t). Therefore, there exists σ > 0 such that Q(ZN(t)) = Q(z).
That concludes the proof. �

Corollary C.1. For any v > 0, there exists ρ such that ||ZN(t) − z(t)|| ≤ ρ ⇒
||Q(ZN(t))ZN(t)−Q(z(t))z(t)|| ≤ v

Proof. According to the previous lemma, if ||ZN(t) − z(t)|| ≤ σ, then Q(ZN(t)) =
Q(z(t)). This implies that ||Q(ZN(t))ZN(t)−Q(z(t))z(t)|| = ||Q(z(t))ZN(t)−Q(z(t))z(t)|| ≤
||Q(z(t))||||ZN(t)−z(t)||. That is, choosing ρ = min{ v

||Q(z(t))|| , σ}, we get ||Q(ZN(t))ZN(t)−
Q(z(t))z(t)|| ≤ v. �
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With the above corollary being laid out, we prove the statement by a mathematical
induction.
For t = 1, applying Lemma C.10, the following holds:

Prx(||ZN(1)− z(1)|| ≥ µ) =P (||ZN(t+ 1)−Q(x)x|| ≥ µ|ZN(t) = x) ≤ C(x)

N

=
C(1)

N
(C.217)

and the desired result holds for t = 1 by simply choosing C(1) = (m1(x)+1+m2(x)+1)4

µ2
[2p1(1−

p1) + 2p2(1− p2)]. Let us suppose that the statement holds for any t ≥ 1. We investigate
the property for t + 1. To that end, let us consider ν < µ. Therefore, according to
Corollary C.1, there exists ρ such that:

||ZN(t)− z(t)|| ≤ ρ⇒ ||Q(ZN(t))ZN(t)−Q(z(t))z(t)|| ≤ v (C.218)

Bearing that in mind, we have that:

Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ)

=Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| ≥ ρ)Prx(||ZN(t)− z(t)|| ≥ ρ)

+ Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| < ρ)Prx(||ZN(t)− z(t)|| < ρ)

≤(a)C
′(t)

N
+ Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ

∣∣∣||ZN(t)− z(t)|| < ρ) (C.219)

where (a) follows from Prx(||ZN(t + 1) − z(t + 1)|| ≥ µ
∣∣∣||ZN(t) − z(t)|| ≥ ρ) ≤ 1 and

C ′(t) being the constant related to the statement holding for t and for ρ. Next, we tackle
the second term of the inequality in (C.219):

Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| < ρ)

=Prx(||ZN(t+ 1)−Q(ZN(t))ZN(t) +Q(ZN(t))ZN(t)− z(t+ 1)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| < ρ)

≤(a)Prx(||ZN(t+ 1)−Q(ZN(t))ZN(t)||+ ||Q(ZN(t))ZN(t)−Q(z(t))z(t)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| < ρ)

≤(b)Prx(||ZN(t+ 1)−Q(ZN(t))ZN(t)|| ≥ µ− ν
∣∣∣||ZN(t)− z(t)|| < ρ)

=
∑

z∈Ωρ(z(t))
mk(z)≤mk(z(t))

k=1,2

Prx(ZN(t) = z
∣∣∣ZN(t) ∈ Ωρ(z(t)))Prx(||ZN(t+ 1)−Q(z)z|| ≥ µ− ν|ZN(t) = z)

+
∑

z∈Ωρ(z(t))
m1(z)>m1(z(t))

or
m2(z)>m2(z(t))

Prx(ZN(t) = z
∣∣∣ZN(t) ∈ Ωρ(z(t)))Prx(||ZN(t+ 1)−Q(z)z|| ≥ µ− ν|ZN(t) = z)

(C.220)

where (a) and (b) follows from the triangular inequality and the relationship in (C.218).
One can notice that at any time slot t, mk(Z

N(t)) ≤ mk(z(t)). In light of that fact, the
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second term of the equation (C.220) is equal to 0. Bearing that in mind, We have for
z ∈ Ωρ(z(t)) such that mk(z) ≤ mk(z(t)):

Prx(||ZN(t+ 1)−Q(z)z|| ≥ µ− ν|ZN(t) = z) ≤ C1(z(t))

N
(C.221)

where C1(t) = (m1(z(t))+m2(z(t))+2)4

(µ−ν)2
[2p1(1−p1)+2p2(1−p2)] = (m1(t)+m2(t)+2)4

(µ−ν)2
[2p1(1−p1)+

2p2(1− p2)]. By substituting the above results in (C.220), we get:

Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN(t)− z(t)|| < ρ) ≤ C1(t)

N
(C.222)

Combining this with (C.219), we can conclude that there exists a constant C(t+ 1) such
that:

Prx(||ZN(t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(C.223)

which concludes our inductive proof. �

Knowing that:

Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ) ≤
T−1∑
t=0

Px(||ZN(t)− z(t)|| ≥ µ)

Therefore, from Lemma C.11, there exists a constant C which doesn’t depend on N such
that:

Px( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ) ≤ C

N

Which concludes the proof.

C.18 Proof of Lemma 5.4
We show first of all that z(t) converges to z∗ with respect to our considered norm, i.e.
lim
t→+∞

∑+∞
i=1 |zki (t) − zk,∗i |i = 0 for k = 1, 2. For that purpose, we use the limit inversion

theorem which states that:

• If the series
∑

i fi(t) is uniformly convergent on R+

• If for each integer i, fi(t) admits a finite limit ri when t tends to +∞.

Therefore, lim
t→+∞

∑+∞
i=1 fi(t) =

∑+∞
i=1 lim

t→+∞
fi(t) =

∑+∞
i=1 ri.

By letting fi(t) denotes |zki (t)− zk,∗i |i for a given k, proving the result above is equivalent
to establish that:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =
+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i

To that extent, we check if the aforementioned conditions are satisfied for this specific
function fi(t) = |zki (t)− zk,∗i |i.
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• Uniform convergence: According to Weierstrass criterion,
∑

i fi(t) is uniformly con-
vergent if for each i the function fi(t) is bounded by a constant ci such that

∑
i ci

is convergent. Based on the proof of the Proposition 5.15, one can deduce that for
large enough t denoted by tl, the following induction relation always holds for t ≥ tl
and i ≥ lmax + 1:

zki+1(t+ 1) = pkz
k
i (t)

That is, choosing t0 greater than tl, and denoting by i0 = mk(t0) the highest state
of the vector z(t0) which is greater than lmax + 1, we have that for each i > i0:

zki (t) =

{
0 if t0 ≤ t < t0 + i− i0
pi−i0k zki0(t− (i− i0)) if t ≥ t0 + i− i0

(C.224)

Based on the above equation, for each i > i0, zki (t) is less than pi−i0k for all t ≥ t0. To
that extent, we investigate the evolution of the series of interest only when t ≥ t0
(the limit inversion theorem still applicable since +∞ > t0). Moreover, we have
that for all t ≥ t0:∑
i

|zki (t)− zk,∗i |i =

i0∑
i=1

|zki (t)− zk,∗i |i+
+∞∑
i0+1

|zki (t)− zk,∗i |i ≤ i20 +
+∞∑

i=i0+1

(pi−i0k i+ zk,∗i i)

This last sum is known to be a finite sum since
∑+∞

i=1 z
k,∗
i i is the optimal average age

of the relaxed problem for the class k which is finite, and
∑+∞

i=1 p
ii is a finite sum

for any 0 ≤ p < 1. Hence, the uniform convergence can be accordingly concluded.

• Existence of the limit of fi(t) = |zki (t)−zk,∗i |i: According to the result of Proposition
5.15, we have lim

t→+∞
|zki (t)−zk,∗i |i = 0 which is finite. Therefore, the second condition

is satisfied.

Leveraging these findings, we can inverse the order between the limit and the sum. Sub-
sequently:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =
+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i = 0

In other words, for k = 1, 2,
∑+∞

i=1 |zki (t)− zk,∗i |i tends to 0 when t grows. Consequently,
z(t) converges to z∗ with respect to our defined norm.
Therefore, for 0 < ν < µ, there exists T0 such that for any t ≥ T0:

||z(t)− z∗|| ≤ ν (C.225)

By leveraging Proposition 5.16, we have:

Prx( sup
T0≤t<T

||ZN(t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN(t)− z(t)||+ ||z(t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN(t)− z(t)|| ≥ µ− ν)

≤ Prx( sup
0≤t<T

||ZN(t)− z(t)|| ≥ µ− ν) ≤ s

N
(C.226)

which concludes the proof.
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C.19 Proof of Proposition 5.17

We have that:

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i

∣∣∣ZN(0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣

=
∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

(Zk,N
i (t)i− zk,∗i i)

∣∣∣ZN(0) = x

] ∣∣
≤
∣∣ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣ZN(0) = x
] ∣∣

(C.227)

+
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣ZN(0) = x
] ∣∣

(C.228)

We start by bounding (C.227). We have that:

∣∣ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣ZN(0) = x
] ∣∣

≤ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[∣∣Zk,N

i (t)i− zk,∗i i
∣∣∣∣∣ZN(0) = x

]
(C.229)

≤ 1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i

∣∣∣ZN(0) = x
]
] +

1

T

T0−1∑
t=0

K∑
k=1

+∞∑
i=1

zk,∗i i

(C.230)

=
1

T

T0−1∑
t=0

K∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,N
i (t)i

∣∣∣ZN(0) = x
]

+
1

T

T0−1∑
t=0

CRP

(C.231)

As mk(.) is increasing with t, then denoting m(t) = max{m1(t),m2(t)}, we get:

1

T

T0−1∑
t=0

K∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,N
i (t)i

∣∣∣ZN(0) = x
]

+
1

T

T0−1∑
t=0

CRP ≤ (m(T0) + CRP )T0

T

(C.232)

We denote YN the event sup
T0≤t<T

||ZN(t) − z∗|| ≥ µ, and we proceed to bound the second
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term (C.228).

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣ZN(0) = x
] ∣∣

=Px(YN)
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣YN ,ZN(0) = x
] ∣∣ (C.233)

+ (1− Px(YN))
∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣YN ,ZN(0) = x
] ∣∣

(C.234)

≤(a) (T − T0)(m(T ) + CRP )

T
Px(YN) + (1− Px(YN))µ (C.235)

where (a) results from:

∣∣ 1

T

T−1∑
t=T0

K∑
k=1

+∞∑
i=1

Ewi
[
Zk,N
i (t)i− zk,∗i i

∣∣∣YN ,ZN(0) = x
] ∣∣

≤ sup
T0≤t<T

Ewi
[

K∑
k=1

+∞∑
i=1

|Zk,N
i (t)i− zk,∗i i|

∣∣∣YN ,ZN(0) = x

]
(C.236)

= Ewi
[

sup
T0≤t<T

||ZN(t)− z∗||
∣∣∣YN ,ZN(0) = x

]
< µ (C.237)

According to Lemma 5.4, we have limN→∞ Px(YN) = 0. Thus, combining the result
(C.232) and (C.235), we obtain:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i

∣∣∣ZN(0) = x

]
−

K∑
1

+∞∑
i=1

zk,∗i i
∣∣ ≤ T0(m(T0) + CRP )

T
+ µ

(C.238)
This inequality is true for all µ > 0, then:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i

∣∣∣ZN(0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ ≤ T0(m(T0) + CRP )

T

(C.239)
Finally we have:

lim
T→∞

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i

∣∣∣ZN(0) = x

]
−

K∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ = 0 (C.240)

As consequence:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

K∑
k=1

+∞∑
i=1

Zk,N
i (t)i

∣∣∣ZN(0) = x

]
=

K∑
k=1

+∞∑
i=1

zk,∗i i (C.241)
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