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FTV [START_REF] Tanimoto | FTV: Free-viewpoint television[END_REF][START_REF] Tian | View synthesis techniques for 3D videos[END_REF]4] is a system for watching videos in which the user can choose its viewpoint freely and change it instantaneously at any time. For example, when watching a football game, the user can select the viewpoint he wants, as if he could change his watching position, although the images remain 2D. This example is depicted in Figure 1.1, left. As shown in Figure 1.1, all the views of the video are stored on a server, and the users send requests to the server in order to get their desired views. When building a storage/transmission system for FTV, we want to consider a large dataset of videos, and a large number of users. In this context, data compression can help to reduce the amount of data to be stored on the server and transmitted to the users.

Chapter 1. Introduction of the corresponding types. The performance of an LDPC code depends on its underlying protograph, and density evolution [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF][START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF][START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Dupraz | Density evolution for the design of nonbinary low density parity check codes for slepian-wolf coding[END_REF] enables to evaluate the decoder error probability depending on the protograph. Further, short cycles in the Tanner graph of the LDPC matrix can degrade the code performance. In order to limit the amount of short cycles, the progressive edge-growth (PEG) algorithm was proposed in [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF] to construct the matrix from a given protograph.

In FTV, the statistical relation between source and side information varies depending on the previously requested views. So we should adapt the coding rate. Two traditional rate-adaptive code construction methods can be applied: using Low-Density Parity-Check Accumulated (LDPCA) codes [START_REF] Shin | Design of binary LDPCA codes with source revealing rate-adaptation[END_REF] to decrease the rate from a high initial rate, or using Rateless codes [START_REF] Eckford | Rateless Slepian-Wolf codes[END_REF] to increase the rate from a low initial rate. In this thesis, we aim to improve these existing rate-adaptive methods. It is hard to construct good performance LDPC matrices for very low rates and this is why Rateless method only allows to consider a limited range of rates. To solve this issue, we consider the solution of [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF] that proposes to use LDPCA codes and rateless codes together from a middle initial rate. Unfortunately, this mixed solution is still penalized by the weakness of LDPCA, which shows a very bad performance if there exists too many short circles in the corresponding LDPC matrix. So we look for new code constructions which allows to optimize the code performance at all the rates and in particular to reduce the amount of short cycles in the LDPC matrices.

My contributions

In this thesis, as first contribution, we proposed two novel rate-adaptive code constructions for Slepian-Wolf source coding. The LDPCA construction combines several lines of the initial LDPC matrix in order to construct lower rate codes. LDPCA code construction does not leave the choice of line combinations (accumulated structure) and bad combinations can generate a lot of short cycles. As short cycles may highly degrade the code performance, we proposed a new method that limits the number of short cycles. In this method, we choose line combinations that add the least number of cycles. In this way, we generate a sequence of rate-adaptive codes that perform better than LDPCA. After this, we proposed a second method that relies on the optimization of the protographs at all rates. Since the protograph can help us to choose better lines combinations, we proposed a method that can optimize the protograph for all the considered rates. The two proposed methods show a better performance than LDPCA, especially for short codes (less than 1000 bits) that are particularly sensitive to short cycles.

As a second contribution, we worked on the integration of these two rate-adaptive code constructions into the FTV compression system. InterCom project members of INRIA Rennes worked on the compression pipeline for FTV, but they did not optimize the lossless part. So they provided us with files containing examples of source and side information realizations, and we applied our code constructions and decoding algorithms to these data. For this, we first had to determine and estimate a 1.5. Organization of the manuscript statistical model between the source and side information. Second, the data we were provided with was on the form of symbols, and we had to adapt our solutions which work on binary vectors. To finish, we applied our coding solutions and evaluated the rate performance. The simulation results show that we can achieve transmission and storage rates close to the theoretical limits.

Organization of the manuscript

We now present the organization of this manuscript. In Chapter 2, we formally describe the FTV problem as a source coding problem and we provide the information theory results that were already obtained for this problem. The information theory results provide the limiting compression performance of FTV systems, and suggest design guideline for the practical schemes. Chapter 3 presents the preliminaries of standard and rate-adaptive LDPC codes. It shows the definitions, decoding methods and construction methods of LDPC codes. In Chapter 4, we describe the two rate-adaptive code constructions we propose for lossless source coding with side information. In Chapter 5, we apply our methods to real FTV data, and show the obtained simulation results. Chapter 6 presents the conclusions and perspectives. In this section, we describe information theory results for FTV. FTV can be presented as a source coding problem with side information available at the decoder, and the side information is the already received past views. In this thesis, we are mainly interested in lossless source coding. Figure 2.1 illustrates the source coding scheme that can be considered for FTV. In this figure, X is the source which generates sequences X n = [X 1 , . . . , X n ] of n The codeword U m is then transmitted to the decoder. At the decoder, the side information Y generates sequences Y n of n bits. The side information symbol Y i takes also its value in the alphabet {0, 1, . . . , I -1} but follows a probability distribution which is different from the one of the source symbol X i . The decoder reconstructs the source sequence Xn from the side information sequence Y n and from the received codeword U m . In this thesis we always suppose that the codeword U m is perfectly received at the decoder. The source rate R is given by R = m n .

Chapter 2

Information theory results

Contents

In our case, there exist several available side informations Y (j) , j ∈ {1, . . . , J} potentially available at the decoder, J is the number of previous received views. The statistical relations between X and each Y (j) are defined by the joint probability distributions P (X, Y (j) ). Only one of these potentially available side informations will be used for decoding, and the choice of the available side information depends on the previous views requested by the user.

Entropy definitions

Entropy [41, page13-18] is a measure of the information contained in a source. We present the definitions of entropy, conditional entropy, and the Binary Symmetric Channel (BSC) in this part. For a discrete source X, its entropy is denoted by H(X) and defined as

H(X) = H(p) = -E(log 2 P (X)) = - I-1 i=0 p i log 2 (p i ) (2.1)
For example, for a Bernoulli source, X takes values in {0, 1}.

If P (X = 0) = p, Then H(X) = -p • log 2 (p) -(1 -p) • log 2 (1 -p) (2.2) 
Specifically, if P (X = 0) = 0.5, then H(X) = 1 bit/source symbol. The conditional entropy H(X | Y ) is defined as 3), we have

H(X | Y ) = y∈0 
(Y = 1 | X = 0) = P (Y = 0 | X = 1) = p.
H(X | Y ) = -p • log 2 (p) -(1 -p) • log 2 (1 -p) (2.4)

Theoretical results

In this section, we provide the minimum achievable rates for lossless source coding without side information, lossless source coding with side information, and source coding for FTV.

Lossless source coding without side information

We first consider the case where no side information is available at the decoder. In FTV, this corresponds to the case where we do not use the previously received views as side information at the decoder. Figure 2.3 shows us the lossless source coding scheme without side information. In Figure 2.3: Lossless Source Coding this scheme, the error probability is defined as

P n e = P (X n = Xn ) (2.5)
It represents whether the source X n can be perfectly reconstructed at the decoder or not. If one can construct a coding scheme such that lim n→+∞ P (X n = Xn ) = 0, then lossless decoding can be achieved. The source coding theorem [41, page 112] tells us that a rate R is achievable if and only if

R ≥ H(X) (2.6)
where H(X) is the entropy of the source X.

Example 2.2.1 For a binary source X with P (X = 0) = 0.4, we have

H(X) = -0.4 • log 2 (0.4) -(1 -0.4) • log 2 (1 -0.4) = 0.971 (2.7)
So the minimum lossless source coding rate R ≥ 0.971 bits/symbol. 

Lossless source coding with side information

In FTV, the already received views can be used as side information at the decoder. When there is only one possible side information Y , this can be represented as the Slepian-Wolf [START_REF] Slepian | Noiseless coding of correlated information sources[END_REF] source coding problem. Figure 2.4 represents Slepian-Wolf source coding. The Slepian-Wolf source coding theorem [START_REF] Slepian | Noiseless coding of correlated information sources[END_REF] shows that a rate R is achievable if and only if:

R ≥ H(X | Y ) (2.8) Since H(X | Y ) ≤ H(X)
, the side information at the decoder can help to decrease the source coding rate compared to source coding without side information. When the side information Y is available at the decoder, the minimum rate R will depend on the statistical relation between X and Y .

Example 2.2.2 In BSC for a source X ∈ {0, 1} with P (X = 0) = 0.4, and crossover probability p = 0.1 we have

H(X | Y ) = 0.4585 (2.9)
So the minimum lossless source coding rate is R ≥ 0.4585 bits/symbol. Compared to the example 2.2.1, 0.4585 < 0.971, it shows that the source coding with side information can help to reduce the minimum source rate.

In FTV, several different side informations can be available at the decoder.

Lossless source coding for FTV

For FTV, as described in Figure 2.1, several views Y (j) , j ∈ {1, . . . , J} can be potentially available at the decoder. Only one of these potentially available side information will be used for decoding, and the available side information depends on the previous views requested by the user. For instance, Y (1) can be the prediction of X based on the previous received views received by user 1, and Y (1) will serve as side information for the transmission of X to user 1. We suppose that the transmissions of X to different viewpoints are independent. Figure 2.5 presents the transmission of sending a single source X, with several clients request for this view X using different SI Y (1) , . . . , Y (J) by network. S defines the storage rate on the server. R j defines the rate needed to transmit source X to user j with side information Y (j) .

For FTV, we are interested in the achievable rate-storage region which is a set of Assuming that in binary case p j ≤ 0.5, with the properties of the entropy function, we have:

S ≥ H( max j=1,...,J p j ) (2.15)
Example 2.2.3 In BSC for a source X ∈ {0, 1} with P (X = 0) = 0.4, three different side informations Y (j) , j = 1, 2, 3 which follow the crossover probability P (Y (j) = 1 | X = 0) = P (Y (j) = 0 | X = 1) = p j , p j = 0.05, 0.1, 0.2 are available at the decoder. Table 2.1 provides the minimum rates for each possible Y j . The minimum storage rate is: S ≥ 0.7033 bits/symbol. 
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Conclusion

In this section, we presented information theory results for FTV. These information theory results suggest that we use an incremental coding scheme in order to build a practical scheme for FTV. We know that LDPC codes can be used to construct Slepian-Wolf source coding schemes, including rate-adaptive ones. This is why we consider them in the following. As described in Chapter 2, the lossless source coding part of FTV can be seen as a Slepian-Wolf [START_REF] Slepian | Noiseless coding of correlated information sources[END_REF] source coding problem, and LDPC codes are often used as practical codes for this problem [START_REF] Liveris | Compression of binary sources with side information at the decoder using ldpc codes[END_REF] [START_REF] Chen | On the duality between slepian-wolf coding and channel coding under mismatched decoding[END_REF] [45] [START_REF] Dupraz | Source coding with side information at the decoder and uncertain knowledge of the correlation[END_REF]. LDPC [START_REF] Gallager | Low-density parity-check codes[END_REF] codes were invented by Gallager and published in his thesis in 1960. LDPC codes are a class of linear block Chapter 3. Low Density Parity Check codes codes and they were initially introduced for channel coding. They show very good performances in channel coding and they are known to approach the channel capacity. LDPC codes can also be applied to Slepian-Wolf source coding, as described in this Chapter.

In this section, we will first introduce the definition of LDPC codes, and consider protograph [START_REF] Thorpe | Low-Density Parity-Check (LDPC) codes constructed from protographs[END_REF][START_REF] Mitchell | Constructing good qcldpc codes by pre-lifting protographs[END_REF]-based LDPC code construction. Three decoding methods (Bit-flipping decoder [START_REF] Zhang | A modified weighted bit-flipping decoding of low-density parity-check codes[END_REF], Gallager-A/B decoder [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF], Sum-product decoder [START_REF] Richardson | The renaissance of gallager's low-density parity-check codes[END_REF]) are described as the most used decoding methods for LDPC codes. We then introduce Density evolution [START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF] to evaluate the asympotic performance of LDPC codes. We also present the Progressive Edge Growth (PEG) [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF] algorithm that allows to construct good finite-length codes.

LDPC codes

Definition of LDPC codes

LDPC codes can be represented by a parity check matrix H of dimension m × n, where m < n. In this thesis we mainly consider binary LDPC codes, which means that the components of H are either 0 or 1. In LDPC codes, the matrix H is sparse in the sense that it contains only a few 1 ′ s which will allow to reduce the decoding complexity. In Slepian-Wolf source coding, a codeword U m is constructed from the source vector X n and from the parity check matrix as

U m = X n • H T (3.1)
The source coding rate is R = m n . The LDPC parity check matrix H can be represented by a Tanner Graph [START_REF] Liner | Ldpc codes-a brief tutorial[END_REF]. The n columns of this matrix are represented by variable nodes (VN), and the m rows are represented by check nodes (CN). If H j,i = 1, there is an edge between the j-th CN and the i-th VN in the Tanner Graph. The number of connections of a given VN x i is called the VN degree and denoted by d v i . The set of CNs connected to VN x i is denoted by C i . The number of connections of a given CN u j is called the CN degree and denoted by d c j . The set of VNs connected to CN u j is denoted by V j . For example, for a code with n = 8, m = 4, a possible matrix H is given by:

H =     x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 u 1 0 1 0 1 1 0 0 1 u 2 1 1 1 0 0 1 0 0 u 3 0 0 1 0 0 1 1 1 u 4 1 0 0 1 1 0 1 0     (3.2)
and the corresponding Tanner Graph is shown in Figure 3.1. In this example, each VN

x i , i ∈ {1, • • • , 8} is connected to 2 CN u j , j ∈ {1, • • • , 4}, and d v i = 2. Each CN is connected to 4 VN, which gives d c j = 4.
An LDPC code is regular if the variable node degree d v i is the same for each VN and the check node degree d c j is the same for each CN. For example, the matrix H in (3.2) represents a regular LDPC codes with degrees d v = 2, d c = 4. For irregular LDPC codes, d v and d c can vary from one node to another, and they can be described with a degree distribution pair (λ (x) , ρ (x)):

λ (x) = dv max k=2 λ k x k-1 ρ (x) = dc max k=2 ρ k x k-1 (3.3) 
where

dv max k=2 λ k = 1, dc max k=2 ρ k = 1, d vmax is the maximum VN degree, d cmax is the maximum CN degree.
In these expressions, the fraction of edges belonging to VNs with d v = k is noted as λ k , and the fraction of edges belonging to CNs with d c = k is noted as ρ k . The rate R depends on the degree distributions λ (x) and ρ (x). It can be computed as follows:

R (λ, ρ) = n -m n = 1 - m n = 1 - 1 0 ρ (x) dx 1 0 λ (x) dx (3.4)
For example, for the regular code described in 3.1, with

d v = 2, d c = 4, we have λ (x) = x ρ (x) = x 3 (3.5) yielding to R (λ, ρ) = 1 - 1 0 x 3 dx 1 0 xdx = 1 2 (3.6)
For an irregular code, a VN degree distribution given by λ (x) = 0.071428x + 0.230118x 2 + 0.079596x 9 + 0.147043x 10

+ 0.073821x 48 + 0.397994x 49 (3.7)
means that the fraction of an edge belonging to VNs with d v = 2 is λ 2 = 0.071428, the fraction of an edge belonging to VNs with d v = 3 is λ 3 = 0.230118, the fraction of an edge belonging to VNs with d v = 10 is λ 10 = 0.079596, etc. If the CN degree distribution is given by

ρ (x) = x 27 (3.8) then R (λ, ρ) = 1 - 1 0 λ(x)dx 1 0 ρ(x)dx = 3 4 (3.9)

LDPC code construction from protographs

An alternative way to represent irregular LDPC codes is the use of protographs [START_REF] Thorpe | Low-Density Parity-Check (LDPC) codes constructed from protographs[END_REF][START_REF] Mitchell | Constructing good qcldpc codes by pre-lifting protographs[END_REF]. Protographs allow for a precise control of the connections in the parity check matrix of the code, and lead to efficient Quasi-Cyclic (QC) parallel hardware implementations [START_REF] Mitchell | Quasi-cyclic LDPC codes based on pre-lifted protographs[END_REF].

A protograph S is a small Tanner Graph of size S m × S n with S m /S n = m/n = R.

Each row (respectively column) of S represents a type of CN (respectively of VN).

The protograph S thus describes the number of connections between S n different types of VNs and S m different types of CNs. A parity check matrix H can be generated from a protograph S by repeating the protograph structure Z times such that n = ZS n , and by interleaving the connections between the VNs and the CNs. The interleaving can be done by a PEG algorithm [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF] that not only permits to satisfy the protograph constraints, but also to lower the number of short cycles that could severely degrade the decoding performance of the matrix H. Components of S represent the connections between one CN of type A 1 and two VNs of types B 1 and B 2 . A parity check matrix H can be constructed from this protograph S, where

H = 0 1 1 1 1 1 0 1 . (3.11)
The Tanner graph of protograph S is represented in Figure 3.2 (left part). In order to construct a parity check matrix H, the protograph is first duplicated Z = 2 times (middle part of Figure 3.2), and the edges are then interleaved (right part of Figure 3.2). In the final Tanner graph, one can verify that each VN of type B 1 is connected to one CN of type A 1 , and each VN of type B 2 is connected to two CNs of type A 1 .

The performance of a given parity check matrix H highly depends on its underlying protograph S. The protograph optimization will be presented later in this section.

Decoding algorithms for LDPC codes

There exist several decoding methods for LDPC codes. These methods were invented in the context of channel coding, but they can also be applied to source coding with side information, as described in this section. Bit-flipping decoder, Gallager-A/B decoder and Sum-product decoder are among the most common decoders [START_REF] Liner | Ldpc codes-a brief tutorial[END_REF]. In this section we describe these three decoders.

Bit-flipping decoder

The rows of the LDPC matrix H represent parity check equations. The idea of the Bit-flipping [START_REF] Zhang | A modified weighted bit-flipping decoding of low-density parity-check codes[END_REF] algorithm is to correct one by one the bits that are involved in the largest number of unsatisfied parity check equations. Some definitions are given first:

• We denote by e i the number of unsatisfied parity check equations associated to VN x i .

• xi ∈ {-1, 1} is the polar representation of x i , xi = -1 corresponds to x i = 1, xi = 1 corresponds to x i = 0.
• The number of iterations is denoted by ℓ.

• The message from CN u j to VN

x i (i ∈ V j ) is denoted by Ψ c (j → i).
• The message from VN

x i to CN u j (j ∈ C i ) is denoted by Ψ v (i → j).
• The function that takes the decision on the value of x i is denoted by Q i .

The steps of the Bit-flipping are as follows:

1. Initialization: The value xi of VNs x i , i ∈ {1, • • • , n} are initialized with the side information bits y i , that is xi = 1 -2y i . The counters e i are set to zero. The messages from VNs to CNs are initialized as

Ψ (0) v (i → j) = xi , ∀j ∈ C i (3.12)
2. CN update: The messages Ψ (ℓ) c (j → i) are calculated as:

Ψ (ℓ) c (j → i) = (1 -2u j ) Π i∈V j Ψ (ℓ) v (i → j) (3.13)
3. VN update: With (3.13), all the m parity equations are checked. Once a parity equation is not satisfied, the counters e i of the associated VN are increased by one. It means that, e

= j∈C i 1{Ψ (ℓ) c (j → i) = -1}, ∀i ∈ V j (3.14) (ℓ) i 
The message

Ψ (ℓ) v (i → j) of the VN with highest e (ℓ) i
will then be corrected, ∀j ∈ C i ,

Ψ (ℓ+1) v (i → j) =    -x i , if e (ℓ) i = max k∈{1,...,n} e (ℓ) k xi , else (3.15) 
4. Detection: The final value xi is set to:

xi = Ψ (ℓ+1) v (i → j) (3.16)
5. If all parity equations are satisfied (which means for

j = 1, • • • , m, Ψ (ℓ) 
c (j → i) = 1) or if the maximum number of iteration is reached, the decoding stops. If not, it goes back to step 2.

Gallager-A/B decoder

The idea of the Gallager-A/B [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF] algorithm is also to correct the codeword bits depending on unsatisfied parity equations. The difference is that here we apply a majority voting operation at VNs, and consider only extrinsic messages at both VNs and CNs.

We use the same notation as in Section 3.2.1. The steps of the Gallager-A decoder are as follows.

1. Initialization: The message of VNs x i , i = 1, . . . , n are initialized with the side information y i , xi = 1 -2y i . The messages are initialized as

Ψ (0) v (i → j) = xi , ∀j ∈ C i (3.17)
2. CN update: The parity check messages are given by

Ψ (ℓ) c (j → i) = (1 -2u j ) Π k∈V j ,k =i Ψ (ℓ) v (k → j) (3.18)
3. VN update (majority voting): 

Ψ (ℓ+1) v (i → j) is calculated from the initial message xi and from the CN messages Ψ (ℓ) c (j → i), as Ψ (ℓ+1) v (i → j) = -x i , if Ψ (ℓ) c (k → i) = -x i , ∀k ∈ C i , k = j xi , otherwise (3.19) 
Q (ℓ+1) i and Q (ℓ+1) i = -x i , if Ψ (ℓ) c (j → i) = -x i ∀j ∈ C i xi , otherwise (3.20)
5. If all the parity equations are satisfied or if the maximum number of iterations is reached, the decoding stops. Otherwise, it goes back to step 2.

Gallager B is different from Gallager A at step 3 and step 4. At step 3, the Gallager B decoder sets the value of Ψ (ℓ+1) v {i → j} to -x i if and only if at least b incoming check messages are equal to -x i . The same is applied at step 4.

Sum-Product decoder

Sum-product [START_REF] Richardson | The renaissance of gallager's low-density parity-check codes[END_REF] is also called belief-propagation or message-passing algorithm. In this algorithm, the exchanged messages are no longer -1 or 1, but Log-Likelihood Ratios (LLR). Therefore, before presenting the algorithm, we need to introduce additional notations. The messages are initialized as m i = log P (x i =0|y i ) P (x i =1|y i ) . For instance for a BSC,

m i = log P (y i | x i = 0) P (y i | x i = 1) = (1 -2y i ) • log 1 -p p (3.21)
where p is the crossover probability and p = P (y i = x i ).

The Sum-Product decoding algorithm is then described by the following steps. 1. Initialization: We compute initial messages as m i = log P (x i =0|y i ) P (x i =1|y i ) , and

Ψ (0) v (i → j) = m i , ∀j ∈ C i (3.22)
2. CN update: The parity check messages are given by

Ψ (ℓ) c (j → i) = log 1 + (1 -2u j ) • k∈V j \i tanh( Ψ (ℓ) v (k→j) 2 1 -(1 -2u j ) • k∈V j \i tanh( Ψ (ℓ) v (k→j) 2 (3.23)
3. Majority voting: The updated VN messages are given by

Ψ (ℓ+1) v (i → j) = m i + k∈C i \j Ψ (ℓ) c (k → i) (3.24)
4. The value of x i is calculated from

Q (ℓ+1) i = m i + k∈C i Ψ (ℓ) c (k → i) (3.25) xi = 1, if Q (ℓ+1) i ≥ 0 -1, if Q (ℓ+1) i < 0 (3.26)
5. If all the parity equations are satisfied or if the maximum number of iterations is reached, the decoding stops. If not, it goes back to step 2.

Density evolution

Density evolution [START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF] is a method to evaluate the performance of LDPC codes. It is then used to compute a channel threshold from which the decoder can decode without error. It consists in computing the statistical distribution of messages exchanged during the iterative decoding process. More formally, if we denote by P (ℓ) e the codeword error probability after ℓ iterations, then for a BSC with crossover probability p, the threshold ε satisfies

lim ℓ→+∞ P (ℓ) e = lim ℓ→+∞ P ( X(ℓ) = X) = 0, ∀p ≤ ε (3.27)
Let us describe steps of the density evolution algorithm as follows.

• In the following, we assume that the side information Y is generated from a BSC with crossover probability p. For the source X, we consider the all-zero assumption [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF], that is x i = 0, ∀i. The codeword U is such that u j = 0, ∀j.

• For the considered decoding algorithm (Gallager-A/B, Sum-product) we estimate the statistical distribution of the messages

Ψ (ℓ) c , Ψ (ℓ) 
v for L decoder iterations.

• We estimate the codeword error probabilities P (ℓ) e , and then compute the threshold from (3.27).

Density evolution for the Gallager-A decoder

We now describe into details the density evolution equations for the Gallager A decoder and for the sum-product decoder. For Gallager-A decoder, we calculated the messages Ψ (ℓ) c (j → i) by equation (3.18), and Ψ (ℓ) v (i → j) by equation (3.19). The Density evolution evaluates the performance of an ensemble of codes with the same CN and VN degree distributions. Here, we consider regular LDPC code with CN degree d c and VN degree d v . In order to evaluate the probability distributions of

Ψ (ℓ) c , Ψ (ℓ) v , we define • Probability distribution of Ψ (ℓ) c : q (ℓ) α = P (Ψ (ℓ) c (j → i) = α), where α ∈ {-1, 1}. • Probability distribution of Ψ (ℓ) v : p (ℓ) α = P (Ψ (ℓ) v (i → j) = α), where α ∈ {-1, 1}.
Then, the probability distribution of Ψ (ℓ) c after applying equation (3.18) is [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF].

q (ℓ) -1 = 1 2 1 -1 -2p (ℓ-1) -1 (dc-1) q (ℓ) 1 = 1 2 1 + 1 -2p (ℓ-1) -1 (dc-1) (3.28) 
Then with the majority voting operation in equation (3.19), we have

p (ℓ) -1 = p (0) 1 q (ℓ) -1 dv-1 + p (0) -1 1 -q (ℓ) 1 dv-1 (3.29) p (ℓ) 1 = p (0) -1 q (ℓ) 1 dv-1 + p (0) -1 1 -q (ℓ) 1 dv-1 (3.30)
The error probability is evaluated as P e can be calculated as

P (ℓ) e = p -p    1 + 1 -2P (ℓ-1) e dc-1 2    dv-1 + (1 -p)    1 -1 -2P (ℓ-1) e dc-1 2    dv-1 (3.31)
Since P e is a increasing function of p, the highest p which still satisfies lim ℓ→+∞ P (ℓ) e = 0 will be defined as the threshold ε.

Density evolution for the Sum-product decoder

For the sum-product decoder, we will also evaluate the probability distribution of

Ψ (ℓ) c and Ψ (ℓ) v , we define • Probability distribution of Ψ (ℓ) c : q (ℓ) α = P (Ψ (ℓ) c (j → i) = α), where α ∈ {-∞, ∞}. • Probability distribution of Ψ (ℓ) v : p (ℓ) α = P (Ψ (ℓ) v (i → j) = α), where α ∈ {-∞, ∞}.
For the Gallager-A decoder, the probability distributions of Ψ are continuous. Therefore, it is not possible to calculate analytically the probability distribution for each single value of α. This is why the Monte-Carlo [START_REF] Gorgoglione | Optimized puncturing distributions for irregular non-binary ldpc codes[END_REF] method is applied here.

The Monte-Carlo method consists in generating K CN and VN messages, in order to estimate their probability distribution. M vn [K] and M cn [K] will store the generated values of Ψ v . As before, we consider the all-zero codeword assumption for X, and a BSC for Y . Then the initial LLR is equal to

m i = log P (x i =0|y i ) P (x i =1|y i ) = (1-2y i ) log 1-p p .
The Monte Carlo density evolution algorithm steps are as follows.

• The value of M vn [K] are initialized with LLR information. • Repeat the CN update and VN update for L iterations. The final error probability is evaluated as

M vn [k] = ±m k , k ∈ {1, • • • , K} and P (M vn [k] = m k ) = p, P (M vn [k] = -m k ) = 1 -p.
P (ℓ) e = {k : M vn [k] < 0} K (3.32)
The highest crossover probability p which satisfies lim ℓ→+∞ P (ℓ) e = 0 will be defined as the threshold ε.

Protograph optimization

LDPC codes performance depend on the underlying protograph, and this is why it is necessary to optimize the protograph for a given rate. Here, we apply Differential Evolution [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF] for protograph optimization. 

Differential Evolution

Differential Evolution is a genetic optimization algorithm, which we now describe. We consider an optimization problem with D parameters represented by a vector x D and a cost function f (x D ) to minimize. To apply Differential Evolution, we first randomly generate an initial population of NP vectors x

(0) i,j , i ∈ {1, • • • , NP}, j ∈ {1, • • • , D}.
We usually set 5D ≤ NP ≤ 10D. Then we apply some recombination operations among vectors x (0) i,j in order to obtain NP trial vectors u

(1) i,j , i ∈ {1, • • • , NP}, j ∈ {1, • • • , D}. A new population x (1)
i,j is then generated, where

x (1) i,j = u (1) i,j , if f (u (1) i ) < f (x (0) i ) x (0) i,j , otherwise (3.33)
The recombination and selection operations are repeated for several iterations. The number of iterations is defined as G. The vector x (G) i,j with best cost function value in the last iteration is chosen as the optimized solution.

The steps of Differential Evolution are precisely detailed as follows:

Mutation A vector of the population is defined as x (g) i,j , where i ∈ {1, 2, . . . , NP}, j ∈ {1, 2, . . . , D} and g represents the current iteration. At iteration g + 1, the NP mutant vectors are generated as

v (g+1) i,j = x (g) i,j + K • (x (g) r 1 ,j -x (g) i,j ) + F • (x (g) r 2 ,j -x (g) r 3 ,j ) (3.34) 
where i = 1, 2, . . . , NP, j = 1, 2, . . . , D. The indices r 1 , r 2 , r 3 ∈ {1, 2, . . . , NP} are chosen randomly. For a given i, r 1 , r 2 , r 3 must be different from each other. K is called the combination factor, and it is often simplified as K = 1. F is the scaling factor and it takes its value in [0, 2].

Crossover The population of iterations g is mixed with the newly generated mutant vectors to generate the trial vectors u

(g+1) i,j u (g+1) i,j = v (g+1) i,j if (α j ≤ CR) or j = r j x (g) i,j
if (α j > CR) and j = r j (3.35) where i = 1, 2, . . . , NP, j = 1, 2, . . . , D; r j ∈ {1, 2, . . . , D} is chosen randomly for each sample i in the population; CR is a parameter of the algorithm called the crossover constant and it takes its value in [0, 1]; α j ∈ [0, 1] is chosen randomly.

Selection We now select the best vector between trial vector u (g+1) i,j and current iteration vector x (g) i,j by using the cost function f as

x (g+1) i,j = u (g+1) i,j iff (u (g+1) i ) ≤ f (x (g) i ), i = 1, 2, . . . , NP x (g) i,j otherwise (3.36)
In this way, we generate a new population which reduces the value of cost function compared to the population of the previous iteration.

Optimization of protographs using Differential Evolution

In this section, we propose a modification of the Differential Evolution algorithm in order to optimize protographs. In this case, the D-dimensional parameter vector x D is now a matrix of dimension S m × S n . We denote by τ the maximum value of elements in protograph. When we generate randomly the initial population of NP elements, the values x (g) i,jm,jn ∈ {0, 1, . . . , τ } are integers, with i ∈ {1, 2, . . . , NP}, j m ∈ {1, . . . , S m }, j n ∈ {1, . . . , S n }. Then we apply the three operators of Differential Evolution (Mutation, Crossover, Selection) in a slightly different way:

As our protograph contain only integers and non negative elements, several adaptations are made during mutation. We set combination factor K = 1 and

v (g+1) i,jm,jn = abs round x (g) r 1 ,jm,jn + F • x (g) r 2 ,jm,jn -x (g) r 3 ,jm,jn (3.37)
where "abs" is the operation to take absolute value and "round" is the rounding off operation. The cost function is set as the threshold of the protograph calculated by using density evolution (see section 3.3). After G iterations, the protograph with the best threshold will be selected as the result of optimization.

Optimization results

Here we apply the differential evolution method to optimize the protograph. For rate R = 1/2, R = Sm Sn = 1/2, the maximum threshold we can get is p opt = 0.11 [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF]. The parameters used in differential evolution are as follows:

• The number of vectors in the population: NP = 30.

• CR = 0.1, and F = 1.

• The iteration number of differential evolution operations: G = 30.

For the cost function, the parameters used in density evolution are:

• The crossover probability: p ∈ [0.1, 0.2], with a pace of 0.005.

• Length of Monte-Carlo simulation vector: W = round ( 1000 Sm×Sn ).

• The decoding iteration number: L = 100.

With different numbers of S m , S n , τ , we get the optimization results in Table 3.1.

In our optimizations, the best protographs we found have dimensions S m = 2, S n = 4. The three values τ = 3, 6, 9 give the same threshold but since too many connections in the LDPC matrix may generate more short cycles and reduce the code performance, we finally choose τ = 3. At the end the retained protograph is

s = 1 2 1 3 1 1 1 6 (3.38)
This protograph will later be used to generate the LDPC matrix. In a parity check matrix H, the connections between VNs and CNs generate cycles, and the length of the shortest cycle is called girth. The performance of a given H depends on the girth and on the number of short cycles. PEG [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF] is an algorithm to construct H with girth as large as possible, and with reduced number of short cycles. When it wants to add a new edge to a given VN, the algorithm finds the most distant CN and then it places the new edge connecting the VN and this most distant CN.

Here we first describe the PEG algorithm for regular LDPC codes, for which the CN degree is denoted by d c , and the VN degree is denoted by d v . Within the algorithm, the current VN degree of VN x i is denoted by δ v [i], i ∈ {1, . . . , n}, the current CN degree of CN u j is denoted by δ c [j], j ∈ {1, . . . , m}, δ v [i] and δ c [j] are initialized to zero. The path length from a CN u j to a VN x i is denoted by d(u j , x i ). Finally, given m, n, d c , d v , the steps of the PEG algorithm are as follows:

Variable nodes are processed one by one from x 1 to x n . Given the i-th VN x i , connections are progressively added until its VN degree reaches the value

d v : δ v [i] = d v .
We then go to next VN x i+1 . When adding one connection, two cases may occur.

Case 1 If the current VN x i is not connected to any CNs or there exist some CNs which are not reachable and their CN degree smaller than d c , then choose randomly one among these CNs with lowest CN degree δ c [j]. New connection will be made Chapter 3. Low Density Parity Check codes between x i and this selected CN, and the CN degree information will be incremented by 1:

δ c [j] = δ c [j] + 1.
Case 2 If all the CNs are reachable for current VN x i , choose the CN u j with largest distance d(u j , x i ) and their CN degree should be smaller than d c . If there exist a lot of CNs having largest girth, choose randomly one CN u j with least CN degree δ c [j]. When this new connection is added, we also update δ c [j] = δ c [j] + 1.

We continue to add new connections until all the VN degree d v are satisfied:

δ v [i] = d v , ∀i ∈ {1, • • • , n}.
The irregular LDPC codes construction follows the same steps, the difference is that the CN degree d c and VN degree

d v are now vectors d c [m] and d v [n].

LDPC codes construction using protograph based on PEG algorithm

A PEG algorithm can also be used in order to construct the parity check matrix H from a protograph [START_REF] Thorpe | Low-Density Parity-Check (LDPC) codes constructed from protographs[END_REF]. The steps are almost the same, but the difference is that now the VN and CN degree distributions should follow the values in protograph. So the VN and CN types need to be declared, and they should be updated when adding a new edge.

Performance comparison of the three decoders

We now compare the decoding performance of the three decoding algorithms (Bitflipping, Gallager-A, Sum-product). With a Wimax code [1] of length n = 504, by using 10000 tests, 50 iterations for decoding, we get the results in Figure 3.4. We also generate a LDPC matrix of length n = 1024 from a protograph s, where

s =     2 1 1 1 0 1 1 0 1 2 1 1 1 0 1 1 1 1 2 1 1 1 0 1 1 1 1 2 1 1 1 0     (3.39)
Applying also 10000 tests and 50 iterations, we get the results in Figure 3.5.

In both cases, we observe that the Sum-product decoder has a significantly better performance than Gallager-A decoder and Bit-flipping decoder. This is why it will be considered in the following. Nevertheless, Bit-flipping and Gallager-A decoder are less complex than Sum-product decoder, and they can be used in the case of limited computational resources.

For the LDPC code construction in Section 3.5, the coding rate R is fixed once for all. But if the available side information Y (t) comes from a set of possible side informations {Y (1) , • • • , Y (T ) }, sending the data at fixed rate R will cause either a rate loss or a decoding failure. This is why we now describe rate-adaptive LDPC code constructions that allow to adapt the coding rate depending on the side information Y (t) available at the decoder. In channel coding, we refer to "rate-compatible LDPC codes", while in source coding, we refer to "rate-adaptive LDPC codes". We first describe existing rate-compatible code constructions in channel coding, and then present methods developed for source coding with side information.

Rate-compatible LDPC codes for channel coding

In this section, we present two standard methods for the construction of ratecompatible LDPC codes for channel coding. These two methods are Puncturing [START_REF] Ha | Rate-compatible puncturing of lowdensity parity-check codes[END_REF] and Parity Check Matrix extension [START_REF] Yazdani | On construction of rate-compatible lowdensity parity-check codes[END_REF]. We also explain the limitations of these methods when applied to source coding.

Puncturing

Puncturing [START_REF] Ha | Rate-compatible puncturing of lowdensity parity-check codes[END_REF] is a rate compatible method that starts from a high rate and achieves a lower rate by not sending several punctured codeword bits. Recall that X n is the codeword obtained with a channel coding rate R. After puncturing, only a part of the bits of X n will be transmitted over the channel. The conserved codeword bits after puncturing are defined by r n(1-ζ) as shown in Figure 3.6, where ζ is the proportion of punctured bits. So as to compute the channel coding rate after puncturing, we have to introduce new useful notations. Let us define λk (respectively ρk ) as the fraction of VNs (respectively CNs) having k edges. The relation between λk (ρ k ) and

λ k (ρ k ) in (3.3) is λk = λ k /k dv max k ′ =2 λ k ′ /k ′ ρk = ρ k /k dc max k ′ =2 ρ k ′ /k ′ (3.40) 
The puncturing proportion π (0) (x) is defined as

π (0) (x) = dv max k=2 π (0) k x k-1 (3.41)
where 0 ≤ π

(0) k ≤ 1, π (0) 
k represents the puncturing fraction for variable nodes of degree k. Then the puncturing fraction ζ that represents the total puncturing proportion on the n-length source code can be expressed as

ζ = dv max k=2 π (0) k • n k n = dv max k=2 π (0) k • λ k /k dv max k=2 λ k /k = dv max k=2 λk • π (0) k (3.42)
The rate of the punctured LDPC code is then

[53] R λ, ρ, π (0) = R (λ, ρ) 1 -ζ (3.43)
In order to design a good rate-compatible code, one can design puncturing proportions π (0) k for all k, that minimize the SNR threshold for a given puncturing fraction ζ. Alternatively, we can fix a target SNR threshold and maximize the puncturing fraction ζ and puncturing proportions π (0) k while satisfying the threshold.

Method starting from rate 1/2

Due to the drawbacks of Rateless and LDPCA schemes, an intermediate solution was proposed in [START_REF] Kasai | Rate-compatible Slepian-Wolf coding with short non-binary LDPC codes[END_REF]. It first constructs an initial code of rate R = 1/2. It then applies either the LDPCA method to obtain rates lower than 1/2 or the Rateless method for rates higher than 1/2. In this way, the shortage of the Rateless construction can be avoided, but the drawbacks of LDPCA remain.

In this thesis, we thus propose a novel rate-adaptive construction that replaces the LDPCA part in the solution of [START_REF] Kasai | Rate-compatible Slepian-Wolf coding with short non-binary LDPC codes[END_REF]. The construction we propose replaces the regular LDPCA accumulator described in (3.44) by a non-regular structure. In addition, in our construction, this non-regular structure is also described by a protograph. We show that the daughter code protographs can be calculated explicitly from the non-regular accumulator protograph and from the mother code protograph. This allows us to optimize the asymptotic code performance by carefully selecting the code protograph at all rates. We also propose a finite length code construction method that permits to reduce the amount of short cycles in all the considered codes. The proposed method is thus well adapted to the construction of short length LDPC codes.

Conclusion

In this Chapter, we presented existing methods for the construction and decoding of LDPC source codes. We also introduced existing rate-adaptive source coding solutions based on LDPC codes. Since existing methods show some limitations and drawbacks, we now propose two novel rate-adaptive constructions for source coding.

Chapter 4

Proposed methods for the construction of rate-adaptive LDPC codes Contents

Rate adaptive condition

In the construction of [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF][START_REF] Ye | Optimized short-length rateadaptive LDPC Codes for Slepian-Wolf source coding[END_REF], the following transmission rules are set in order to allow H 1 and H 2 related by (4.1) to be rate-adaptive. In order to get a rate R 2 , we simply transmit all the syndrome values u m 2 , which corresponds to m 2 equations defined by the set U . The decoding is then realized with the matrix H 2 . In order to get a rate R 1 , we transmit all syndrome values in u m 2 but also a subset S ′ ⊆ S of size m 1m 2 of the values in s m 1 . This guarantees that the code construction is incremental and that the storage rate is given by R

1 = max(R 1 , R 2 ) < R 1 + R 2 .
However, in order to use the matrix H 1 for decoding, the receiver must be able to recover the full syndrome s m 1 from u m 2 and S ′ . The code that results from the choice of (H 1 , H 1→2 , S ′ ) is thus said to be rate-adaptive if is satisfies the following condition.

Definition 1 ( [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF][START_REF] Ye | Optimized short-length rateadaptive LDPC Codes for Slepian-Wolf source coding[END_REF]) The sets U and S ′ define a system of m 1 equations with m 1 unknown variables S. If this system has a unique solution, then the triplet (H 1 , H 1→2 , S ′ ) is said to be a rate-adaptive code.

The following proposition gives a simple condition that permits to verify whether a given intermediate matrix H 1→2 gives a rate-adaptive code.

Proposition 1 ( [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF][START_REF] Ye | Optimized short-length rateadaptive LDPC Codes for Slepian-Wolf source coding[END_REF]) If the matrix H 1→2 is full rank, then there exists a set

S ′ ⊆ S of size m 1 -m 2 such that (H 1 , H 1→2 , S ′ ) is a rate-adaptive code.
The above proposition shows that if H 1→2 is full rank, it is always possible to find a set S ′ that ensures that H 1 and H 2 are rate-adaptive. The decoding performance of H 1 does not depend on the choice of the set S ′ , since at rate R 1 , the decoder uses H 1 and at rate R 2 , the decoder uses H 2 . On the opposite, according to (4.1), the decoding performance of the matrix H 2 heavily depends on the matrix H 1→2 . In [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF], the matrix H 1→2 is constructed from an exhaustive search, which is hardly feasible when the codeword length increases (from 100 bits). In [START_REF] Ye | Optimized short-length rateadaptive LDPC Codes for Slepian-Wolf source coding[END_REF], a more efficient method is proposed to construct the intermediate matrix H 1→2 so as to avoid short cycles in H 2 . However, the method of [START_REF] Ye | Optimized short-length rateadaptive LDPC Codes for Slepian-Wolf source coding[END_REF] does not optimize the theoretical threshold of the degree distribution of H 2 , which also influences the code performance. In this thesis, we propose a novel method based on protographs for the design of the intermediate matrix H 1→2 . This novel method not only allows to optimize the threshold of the protograph of H 2 , but also to reduce the amount of short cycles in H 2 .

Intermediate matrix construction without protograph

This section describes our first novel method for the construction of the intermediate matrix H 1→2 introduced in Section 4.1. The proposed construction seeks to minimize the threshold of new constructed parity check matrix H 2 at rate R 2 by reducing the amount of short cycles. simply choose the degrees d k as small as possible. For example, if R 2 = 3/8, we set d = [1, 2] and the proportions α 1 and α 2 are set to α 1 = 1/2, α 2 = 1/2. Setting low degrees in H 1→2 increases the chances of avoiding short cycles in the resulting H 2 .

Connections in H 1→2

We now explain how to choose the connections between S and U according to the degree distribution (α, d). In our method, the degree of each CN u j ∈ U is selected at random according to the degree distribution (α, d). Then, whatever the degree d k of a given u j , we impose the following two conditions in order to choose the CNs of S that will be connected to u j :

1. We choose d k CNs in S that are not connected to any common VN. This permits to avoid eliminating VN connections in the resulting H 2 .

2. We choose the d k CNs in S in order to minimize the number of resulting cycles in H 2 .

Condition 1) is very easy to verify while condition 2) requires to count the number of cycles in H 2 . There exists several methods to calculate the number of shorts cycles in the parity check matrix of an LDPC codes. Here, since we are mainly concerned with short cycles, we choose the method proposed in [START_REF] Mao | A heuristic search for good low-density paritycheck codes at short block lengths[END_REF] which is very efficient for the counting of short cycles of length 4, 6, and 8.

Then, in order to construct u j , we need to select d k CNs of S. The first CN s i is selected at random from the set of CNs that have not yet been used in any already constructed u ′ j . The next d k -1 CNs s i are chosen so as to minimize the number of length-4, length-6, and length-8 cycles introduced in H 2 by the newly created u j . In order to select the best d k -1 CNs s i , we try T possible combinations of d k -1 CNs selected at random from the set of remaining CNs. As an example, Algorithm 1 shows the algorithm that is used in a particular case (α, d) = (1, 2) when we only want to minimize the number of length-4 cycles.

Construction of the set S ′

The degree distribution defined in Section 4.2.1 as well as the code construction proposed in Section 4.3.3 ensure that the matrix H 1→2 is full rank. This guarantees that the rate-adaptive condition presented in Section 4.1.1 is satisfied. In order to completely define the rate-adaptive code (H 1 , H 1→2 , S ′ ), we need to define a set S ′ of symbols of S that will be sent together with the set U in order to obtain the rate R 1 .

The set S ′ will serve to solve a system of m 2 equations U with m 2 unknowns S \ S ′ . For each equation u i ∈ U of degree d k , we hence decide to put d k -1 of the d k CNs connected to u i into S ′ . For example, if u 1 = s 1 ⊕ s 2 ⊕ s 3 , s 1 and s 2 can be placed into S ′ . This strategy gives that the set S ′ is, as expected, composed by

K k=1 α k (d k -1)m 2 = m 1 -m 2 (4.3)
optimization of the code protographs. The proposed construction seeks to minimize the protograph threshold at rate R 2 , and also to reduce the amount of short cycles in the parity check matrix H 2 .

Protograph S 2 of parity check matrix H 2

In order to construct a good parity check matrix H 2 from the initial matrix H 1 , we first want to select a protograph S 2 with a good theoretical threshold. In this section, we consider the following notation. Generally speaking, consider the protograph S g of size S mg × S ng associated with the matrix H g , where g ∈ {1, 2, 1 → 2}.

As a particular case, note that

S m 1→2 = S m 2 and S n 1→2 = S m 1 . For all (i, j) ∈ {1, • • • , S mg } × {1, • • • , S ng }, denote by s (g)
i,j the coefficient at the i-th row, j-th column of S g . In the protograph S g , the CN types are denoted A 

(1→2) ℓ . Then, ∀k 1 , k 2 ∈ N (1→2) ℓ such that k 1 = k 2 , and ∀i ∈ {1, • • • , n}, h (1) k 1 ,i = h (1) k 2 ,i .
If these two assumptions are fulfilled, then the matrix

S 2 = S 1→2 S 1 (4.4)
is of size S m 2 × S n and it is a protograph of the matrix H 2 . The operation in (4.4) corresponds to standard matrix multiplication over the field of real numbers.

In this proof, for clarity, we denote by the modulo two sums and by the standard sums over the field of real numbers. With the above notation, relation (4.1) can be restated row-wise as . This implies that, in (4.5) the type combination is the same for every ℓ ∈ A

h (2) ℓ = m 1 k=1 h (1→2) ℓ,k h (1) k = Sm 1 j=1 k∈B (1→2) j s.t. h (1→2) ℓ,k =0 h (1) k . ( 4 
(1→2) i . As a result, for all i ∈ {1, • • • , S m 2 }, A (2) i = A (1→2) i
. In the same way, deriving relation (4.1) column-wise permits to show that ∀j ∈ {1, • • • , S n }, B

(2)

j = B (1) j . Now consider i ∈ {1, • • • , S m 2 }, v ∈ {1, • • • , S n }, and ℓ ∈ A (2)
i . Then, from (4.5),

s (2) i,v = u∈B (2) v h (2) l,u = u∈B (2) v         Sm 1 j=1 k∈B (1→2) j s.t. h (1→2) ℓ,k =0 h (1) k,u         . (4.6)
In the vector h

(1)

k with k ∈ B (1→2) j
, there are s . As a result, and since there is not VN elimination,

s (2) i,v = Sm 1 j=1 s (1→2) i,j s (2) j,v , (4.7) 
which implies (4.4). In Proposition 2, assumption 1) is required because various interleaving structures may be used to construct e.g. a matrix H 1 from a given protograph S 1 . This assumption guarantees that the same interleaving structure is used for the CNs of S 1 and the VNs of S 1→2 . Further, assumption 2 guarantees that relation (4.1) does not eliminate any VN from the parity check equations in H 2 . This permits to preserve the code structure that will be characterized by protograph S 2 . Then, by comparing (4.1) and (4.4), we observe that there is the same relation between the protographs S 1 , S 2 , and between the parity check matrices H 1 , H 2 . Further, according to (4.4), the problem of finding a good protograph S 2 for H 2 can be reduced to finding the intermediate protograph S 1→2 that maximizes the threshold of S 2 .

Optimization of the intermediate protograph S 1→2

The protograph S 1→2 of size S m 2 × S m 1 must be full rank in order to satisfy the rate-adaptive condition defined in Section 4.1.2. However, even if S m 1 and S m 2 are small, there is still a lot of possible protographs S 1→2 . This is why, here, we impose that each row of S 1→2 has either 1 or 2 non-zero components, that each column has exactly 1 non-zero component, and that all the non-zero components are equal to 1. These constraints are equivalent to considering that each row of S 2 is either equal to a row of S 1 or equal to the sum of two rows of S 1 . They limit the number of possible S 1→2 without being too restrictive. They will also make the intermediate matrix H 1→2 quite sparse, which will help limiting the amount of short cycles in the matrix H 2 . Finally, we observe that these constraints provide satisfactory rateadaptive code constructions in our simulations. The design algorithms described in the remaining of the thesis can also be easily generalized to other constraints on the intermediate protograph.

For the optimization, we then generate all the possible intermediate protographs S 1→2 that satisfy the above two conditions (S 1→2 is full rank and each of its rows has either 1 or 2 non-zero components), and select the intermediate protograph that maximizes the threshold of the protograph S 2 calculated from (4.4).

The intermediate protograph S 1→2 defines the degree distribution of the intermediate matrix H 1→2 . It also indicates the rows of H 1 that can be combined in order to construct the daughter matrix H 2 . We would like those rows to be combined in the best possible way in order to produce H 2 . In particular, we would like to avoid both short circles and VN elimination during the construction of H 2 . In the following, we propose an algorithm that constructs H 2 from these conditions.

Algorithm Proto-Circle: connections in H 1→2

Algorithm 2 Proto-Circle: construction of the low-rate matrix H 2

Inputs: H 1 , S 1 , S 1→2 , K, H 2 = {φ} for i = 1 to S m 2 do if i-th row of S 1→2 has two non-zero components s (1→2) i,j 1 , s (1→2) i,j 2 
then for ℓ = 1 to m 1 /S m 1 do Pick u at random in A

(1)

j 1 and v 1 , • • • , v K at random in A (1) 
j 2 such that ∀k ∈ {1, • • • , K}, ∀w ∈ {1, • • • , m 1 }, h (1) v 1 ,w .h (1) v 2 ,w = 0 For all k ∈ {1, • • • , K}, count the number N 4,k of length-4 cycles in H 2 ∪ {h (1) u + h (1) v k } For the index k ⋆ that minimizes N 4,k , do H 2 ← H 2 ∪ {h (1) u + h (1) v k ⋆ } Remove u from A (1) j 1 and v k ⋆ from A (1) j 2 else for ℓ = 1 to m 1 /S m 1 do Pick u at random in A (1) j 1 (s (1→2) i,j 1 = 0) and do H 2 ← H 2 ∪ {h (1) u }, remove u from A (1) j 1 outputs: H 2 , N 4 (number of length-4 cycles in H 2 )
In Section 4.3.2, we selected the intermediate protograph S 1→2 that gives the protograph S 2 with highest threshold. We now explain how to construct H 1→2 in order to follow the degree distribution defined by protograph S 1→2 , but also to limit the amount of short cycles in H 2 and to avoid VN elimination. Applying the PEG algorithm directly on H 1→2 would reduce the amount of short cycles on H 1→2 but would not guarantee that the number of cycles in H 2 is reduced as well. As an alternative, the algorithm Proto-Circle we propose is described in Algorithm 2. It constructs one row of H 2 at a time by combining rows of H 1 , which can be regarded LDPC codes as defining the coefficients of the intermediate matrix H 1→2 . For each new row of H 2 , we want to limit the number of short cycles that are added to the parity check matrix H 2 .

According to section 4.3.2, each row of the protograph S 1→2 has either 1 or 2 non-zero components. The rows of S 1→2 that have 2 non-zero components indicate that two rows of H 1 of some given types should be combined in order to obtain one row of H 2 . More formally, assume that the i-th row of S 1→2 is such that s

(1→2) i,j 1 = 1 and s (1→2) i,j 2 = 1 (j 1 = j 2 )
. This means that two rows of H 1 of types A

(1)

j 1 and A (1) j 2
should be combined in order to obtain one row of H 2 of type A

i . For this, we select at random one row h

(1)

u of H 1 of type A (1) j 1 and K rows h (1) v 1 , • • • h (1) v K of type A (1) j 2 such that ∀k ∈ {1, • • • , K}, ∀w ∈ {1, • • • , m 1 }, h (1) v 1 ,w .h (1)
v 2 ,w = 0 (binary AND operation). This condition avoids VN elimination. The algorithm counts the number N 4,k of length-4 cycles that would be added if a new row h

(1)

u + h (1)
v k was added to H 2 . The number of length-4 cycles in H 2 is computed with the algorithm proposed in [START_REF] Mao | A heuristic search for good low-density paritycheck codes at short block lengths[END_REF]. Note that the algorithm can be easily modified to also consider larger cycles. The algorithm then chooses the row combination that adds least cycles in H 2 .

Once all the lines of types A

(1)

j 1 and A (1) 
j 2 have been combined, the algorithm passes to the next row of S 1→2 with two non-zero components and repeats the same process. It then processes the rows of S 1→2 with one non-zero component. For instance, assume that row i ′ of S 1→2 has one non-zero component s

(1→2) i ′ ,j ′ = 1.
Then, all the lines of H 1 of type A

(1) j ′ are placed into H 2 . The placement order does not have any influence on the amount of cycles in the matrix H 2 .

After constructing all the rows of H 2 , the algorithm counts the total number of length-4 cycles in the newly created H 2 . At the end, repeating the algorithm Proto-Circle several times allows us to choose the matrix H 2 with least short cycles.

Construction of the set S ′

The intermediate matrix H 1→2 follows the structure of the protograph S 1→2 . As a result, according to Section 4.3.2, each of its lines has either 1 or 2 non-zero components. Further, the algorithm Proto-Circle introduced in Section 4.3.3 imposes that each row of H 1 participates to exactly one combination for the constructions of the rows of H 2 . These two conditions guarantee that H 1→2 is full-rank so that the rate-adaptive condition presented in Section 4.1.2 is satisfied. However, in order to completely define the rate-adaptive code (H 1 , H 1→2 , S ′ ), we need to define a set S ′ of symbols of S that will be sent together with the set U in order to obtain the rate R 1 .

The set S ′ will serve to solve a system of m 1 equations U with m 1 unknowns S \ S ′ . For each syndrome symbol u i ∈ U of degree d k in H 1→2 , we hence decide to put d k -1 of the d k CNs connected to u i into S ′ . For example, if u 1 = s 1 ⊕ s 2 ⊕ s 3 , s 1 and s 2 may be placed into S ′ . This strategy guarantees that it is always possible to reconstruct the set S from U and S ′ . In the above example, it indeed suffices to recover s 3 as

s 3 = u 1 ⊕ s 1 ⊕ s 2 .
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We now count the number of symbols s i that are placed into S ′ with this strategy. Since each line of H 1→2 has either 1 or 2 non-zero components, we have d k = 1 or d k = 2. Denote by α the proportion of values u k of degree 1. We have the following relation between m 1 , m 2 and α:

m 1 = αm 2 + 2(1 -α)m 2 .
This gives that α = 2 -m 1 m 2 . Further, according to the code construction proposed in Section 4.3.3, each s i participates to exactly one equation u j . As a result, in the above strategy, the set S ′ is composed by

(1 -α)m 2 = m 1 -m 2 different values s i ,
which is exactly what is required by the rate-adaptive construction.

Generalization to several rates

The above methods construct the matrix H 2 of rate R 2 < R 1 from the matrix H 1 . In order to obtain lower rates

R T < R T -1 < • • • < R 2 < R 1 , we need to construct the successive matrices H t , t ∈ {2, • • • , T }.
As initially proposed in [START_REF] Mheich | Short length non-binary rate-Adaptive LDPC codes for Slepian-Wolf source coding[END_REF], the matrices H t can be constructed recursively from intermediate matrices H t-1→t such that H t = H t-1→t H t-1 . The intermediate matrices H t-1→t are constructed by from the method described in Section 4.3.

However, with the method of Section 4.3, the rate values R 2 , • • • , R T are constrained by the size of the initial protograph S 1 . For a protograph S 1 of size S m 1 ×S n , the rate granularity is given by

r g = R 1 S m 1 . (4.8) 
For instance, if R 1 = 1/2 and S 1 is of size 4 × 8, only rates R 2 = 3/8, R 3 = 1/4, R 4 = 1/8 can be achieved. This is why, in this section, we propose two alternatives methods that allow to decrease the rate granularity r g .

Protograph extension

The first method called "protograph extension" consists of lifting the mother protograph S 1 by a factor Z e , in the same way as for producing a parity check matrix from a given protograph (see Section 3.1.2). This extension produces a protograph S ′ 1 of size Z e S m 1 × Z e S n . For instance, the protograph

S 1 = 1 2 1 3 1 0 2 5 (4.9)
can be extended as

S ′ 1 =     1 1 1 2 0 1 0 1 0 1 0 1 1 1 1 2 1 0 1 4 0 0 1 1 0 0 1 1 1 0 1 4     . ( 4 
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The protograph S 1 permits to generate an ensemble H 1 of parity check matrices with asymptotic codeword length. According to [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF]Theorem 2], all the asymptotic parity check matrices in H 1 have the same decoding performance given by the threshold of S 1 . The extended protograph S ′ 1 generates a code ensemble H ′ 1 ⊆ H 1 . As a result, the asymptotic matrices in H ′ 1 have the same decoding performance as the matrices in H 1 , and S 1 and S ′ 1 have the same theoretical threshold. The above protograph extension allows to consider more rates, since the rate granularity r ′ g of S ′ 1 is given by r ′ g = r g /Z e ≤ r g . However, it is not desirable neither to end up with an extended protograph S ′ 1 of large size, e.g. in the order of magnitude of m 1 . Indeed, in this case, the number of possibilities for intermediate protographs S t-1→t would also become very large. In addition, it becomes computationally difficult to compute the theoretical thresholds for large protographs. As a result, if the size of S ′ 1 is large, it will be very difficult to optimize the successive protographs S t according to the method described in Section 4.3.2. This is why we now propose a second method that allows to push further the rate granularity improvement.

Anchor rates

In this second method, consider a protograph S 1 of size S m 1 × S n . As a first step, we do the protograph optimization of Section 4.3.2 for all the possible rates

R t = R 1 - (t -1)R 1 S m 1 , (4.11) 
where t ∈ {1, • • • , S m 1 }, and R t-1 -R t = R 1 /S m 1 . This produces a sequence of protographs S t , and the rates R t are called the anchor rates. We now want to construct all the possible intermediate rates between any R t-1 and R t , with a rate granularity r g = R 1 /m 1 .

According to Section 4.3.2, the rows of the intermediate protographs S t-1→t have either one or two non-zero components. In addition, in order to obtain all the rates R t defined in (4.11), exactly one row of S t-1→t has two non-zero components. This is why, in order to obtain a rate R t-1 -1 m 1 , we propose to combine two rows of the corresponding type in H t-1 . The resulting matrix contains the considered row combination, as well as all the non-combined rows of H t-1 . As in the algorithm Proto-Circle described in Section 4.3.3, we choose the row combination that minimizes the amount of short cycles that will be added in the resulting matrix. Applying this process recursively allows to obtain all rates R t-1 -kR 1 /m 1 , with k ∈ {1, • • • , m 1 /S m 1 }, and m 1 /S m 1 = Z 1 , where Z 1 is the lifting factor. This approach also guarantees that at rate R t , the resulting matrix follows the structure of protograph S t .

The anchor rates method allows to obtain a rate granularity r g = R 1 /m 1 . In the simulation section, the performances of two code construction methods in Section 4.2 and Section 4.3 are compared to LDPCA. And we combine both approaches (protograph extension and anchor rates) in order to obtain an incremental code con- The parity check matrix of C 1 was constructed from the protograph S ′ 1 by the PEG algorithm [START_REF] Hu | Regular and irregular progressive edge-growth tanner graphs[END_REF]. We then applied our construction method introduced in Section 4.3 in order to obtain lower rates 3/8, 1/4 and 1/8. For this, we first needed to decide which rows of the protograph S opt1 should be combined (see Section 4.3.2) by checking the thresholds of all the possible combinations using Density Evolution. From Density Evolution, we chose row combinations A

(1)

1 + A (1)
3 for rate 3/ 8 andA (1)

1 + A (1) 3 , A (1) 2 + A (1)
4 for rate 1/4, where the A (1)

i , i = 1, 2, • • • , S m , denotes the rows of S ′
1 . From the selected row combinations, we then constructed the corresponding matrices of rate 3/8, 1/4, 1/8 from the algorithm Proto-Circle described in Section 4.3.3. This algorithm was applied with K = 20 and repeated 10 times in order to choose the low-rate matrices with the least short cycles.

Figure 4.6 shows the Bit Error Rate (BER) performance with respect to the BSC parameter p for the four considered rates for C 1 . We observe that our code construction performs better than LDPCA at all the considered rates. Table 4.2 indeed shows that there are less length-4 cycles at rates 1/4 and 1/8 in our construction than in the LDPCA matrices.

The second code C 2 is of size 256 × 512 and it was generated from another protograph

S opt2 =     2 1 1 1 0 1 1 0 1 2 1 1 1 0 1 1 1 1 2 1 1 1 0 1 1 1 1 2 1 1 1 0     (4.12)
obtained from Differential Evolution and protograph extension. The codes of lower rates 3/8, 1/4, and 1/8 were constructed by following the same steps as for C 1 , according to the construction of Section 4.3. The BER performance of these codes are shown in Figure 4.7 and compared to LDPCA. For this case as well, our construction shows better performance than LDPCA. Finally, the code C 3 is of size 512 × 1024 and it was generated from the same protograph S opt2 as C 2 . Figure 4.8 shows that for C 3 as well, our algorithm perform better than LDPCA at all the considered rates, with a larger code size.

The curves of Figures 4.6, 4.7, 4.8, considered the code performance for the anchor rates given in Section 4.4.2. We then applied the method described in Section 4.4.2 to codes C 2 and C 3 in order to obtain rate granularities of R 1 /m 1 = 9.8 × 10 -4 for C 2 and R 1 /m 1 = 4.9 × 10 -4 for C 3 , rather than R 1 /S m 1 = 0.125. For this, we considered different values of p, and for every considered value, we generated 1000 couples (x n , y n ) from a BSC or parameter p. For every generated couple, we found the minimum rate that permits to decode x n from y n without any error. The same kind of analysis was performed in [START_REF] Varodayan | Rate-adaptive codes for distributed source coding[END_REF] and [START_REF] Cen | Design of degree distributions for LDPCA codes[END_REF], with different criterion to measure the rate needed for a given couple (x n , y n ). In [START_REF] Varodayan | Rate-adaptive codes for distributed source coding[END_REF], this rate was determined as the minimum rate such that the decoded codeword xn verifies H T xn = c m , see (3.1). However, this criterion does not necessarily means that the codeword was correctly decoded (x n can be different from x n ), and this is why we 

Simulation results at full rate range

In Section 3.8.3, we construct an initial code of rate R = 1/2 and apply either the LDPCA method to obtain rates lower than 1/2 or the Rateless method for rates higher than 1/2 to avoid the drawbacks of Rateless and LDPCA. Now we evaluate this construction method and compare it with LDPCA. In this section, we suppose that the source X is uniformly distributed. The source X is obtained from a BSC with crossover probability p. We first construct two mother codes of rate R = 1/2. The first mother code is denoted by O1 with length n = 512 and constructed from a protograph

S = 0 2 3 1 2 0 3 2 (4.13)
by applying the methods with two steps described in [START_REF] Mitchell | Quasi-cyclic LDPC codes based on pre-lifted protographs[END_REF] which permit to construct quasi-cyclic codes. The second mother code is a WIMAXLike code of length n = 192 obtained from [1]. For each mother code, we construct two family of compatible codes with a rate variation of 1/n. The first code family is obtained by applying Rateless for rates higher than 1/2 and LDPCA for rates smaller than 1/2. The second code family is obtained by using the proposed method in this article which takes place of LDPCA. During the application of algorithm Circle, we use K = 50. In order to evaluate the performances of different code families, we will apply the following method which is initially proposed in [START_REF] Varodayan | Rate-adaptive codes for distributed source coding[END_REF]. For different values of p, we generate 1000 vectors x n and y n . For each set of vectors (x n , y n ), we search the minimum rate which permit to decode x n without error. Then we calculate the average value of these rates.

The results are presented in Figure 4.11. For the rates smaller than 1/2, we find out a significant gain of our method compared to LDPCA. We can also find out that the performance of the method Rateless for rates higher than 1/2. We find a disconnecting of the curve for higher rates, which implies that the method Rateless could also be optimized.

Conclusion

In this Chapter, we presented our two novel rate-adaptive solutions. The two proposed solutions show a better performance than LDPCA, especially for short codes (less than 1000 bits) that are particularly sensitive to short cycles. Now we will apply these solutions in the real FTV system.

Equipped with rate-adaptive code constructions and decoders for lossless source coding, we now apply our solutions to the problem of Free Viewpoint Television (FTV). Members of the InterCom project provided us with files containing source and side information vectors. These vectors were generated by a video encoder they implemented for Free Viewpoint Television. They however did not implement the lossless part, and this is our objective here.

Generation of video files

In our project, since we deal with applications like FTV or the 360 degree video [START_REF] Bidgoli | Evaluation framework for 360degree visual content compression with user view-dependent transmission[END_REF], the original video images are spherical. In order to compress these videos, the project members proposed a solution that is described in [START_REF] Bidgoli | Evaluation framework for 360degree visual content compression with user view-dependent transmission[END_REF]. In this solution described in Figure 5.1, the spherical video images are first projected onto 2D images. Then several operations are applied such as: Discrete Cosine Transformation (DCT), Quantization, Prediction. These operations allow us to obtain a source vector X n to be transmitted losslessly to the decoder. They also provide prediction Y (1) , . . . , Y (J) of X that can serve as side informations at the decoder. These predictions can be encoder knows the possible side information Y (j) and can choose the transmission rate accordingly. This rate-adaptive construction strategy is applied on all the possible side informations Y (j) , j ∈ {1, . . . , J}. We evaluate the performance of our rate-adaptive scheme as follows. The transmission rate of b-th bit plane by using j-th side information Y (j) is :

R (j) b = m (j) b n (5.23)
The total transmission rate by using j-th side information Y (j) is:

R (j) tot = L-1 b=0 R (j) b + R (j) s (5.24)
For ∀b ∈ 0, . . . , L -1, the storage rate of b-th bit plane is:

S b = max j∈{1,...,J} R (j) b (5.25)
and the storage rate of sign bit plane is:

S s = max j∈{1,...,J} R (j) s (5.26) 
The total storage rate is:

S tot = L-1 b=0 S b + S s (5.27)
As shown in Section 5.2, there is no loss in terms of transmission rate. But on the other hand, there will be some loss on storage rate. There is no loss on storage rate only if we can reach at the maximum value of H symbol as shown in [START_REF] Dupraz | Rate-storage regions for extractable source coding with side information[END_REF][START_REF] Roumy | Universal lossless coding with random user access: the cost of interactivity[END_REF]. But in this decoding scheme, only a sum of maximum values of H bits can be achieved. Some loss on the storage rate will surely happen in order to realise this rate-adaptive decoding scheme.

In our simulation, the value of the transmission rates R

b for the most significant bits can be really small. This means that the bit plane Q (b) can almost be deduced from previous bit planes and from corresponding symbols in Y (j) . So if the LLR values already allow to perfectly detect Q(b) without need for decoding, we define R b = 0.

Simulation results

For FTV, for a source X, several side informations Y (j) are available. The number of available side informations Y (j) is denoted by J. Each side information Y the value of H(Z) can be estimated by H(Z n ). It means that,

(j) gives j R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 (R s ) 1 
R tot ≥ H(Z n ) (5.30) 
The Q-ary symmetric model is an approximate model of sequence Z n with three model parameters q, Z max , Z min . The entropy of Q-ary model H(X|Y (j) ) model is larger than H(Z n ) as it uses less parameters than considering the empirical frequency and thus describes less precisely the statistics of Z n . The Q-ary symmetric model is used at the decoder to calculate P 0 , P 1 , and the corresponding LLR. Therefore, using the Q-ary symmetric model rather than the empirical frequency will result in different values P 0 and P 1 . But we know that using mismatched values of P 0 and P 1 does not degrade much the decoder performance. Perhaps a model which follows exactly the empirical probability distribution can achieve a slightly smaller R tot , but it also means that more model parameters should be sent and this will however increase the transmission rate.

The simulation results of total transmission rates R tot , model entropy H(X|Y (j) ) model and empirical entropies H(Z n ) are shown in Table 5.3.

We can find that for all the side information

H(X|Y (j) ) model ≥ H(Z n ) (5.31) R tot ≥ H(Z n ) (5.32)
This is expected from the theoretical results. We can see that R tot is close to H(X|Y (j) ) model and H(Z n ). Sending no information (rate 0 in Table 5.2) when LLR is sufficient to retrieve the bit planes clearly helps to achieve this good result. The storage rate S tot is just a little larger than the maximum value of R tot , which means our decoder can help to realise the rate-adaptive decoding for all the possible side informations Y (j) with a small extra rate cost. A bit length of L + 1 = 7 is sufficient to completely represent the source X. The obtained transmission rates R b for all the bit planes b (b ∈ [0, . . . , L -1, L]) are shown in Table 5.5.

The simulation results of total transmission rates R tot , model entropy H(X|Y (j) ) model and empirical entropies H(Z n ) are shown in Table 5.6.

We can find that for all the side information

H(X|Y (j) ) model ≥ H(Z n ) (5.33) R tot ≥ H(Z n ) (5.34)
It follows the theoretical results too. And the total transmission rate R tot is still close to the theoretical limit The storage rate S tot is just a little larger than the maximum value of R tot , which means our decoder can help to realise the rate-adaptive decoding for all the possible side informations Y (j) with a small extra rate cost.

H(Z n ). j R 0 R 1 R 2 R 3 R 4 R 5 R 6 (R

X and Y (j) with low dependency

In this file we have J = 8. The informations of the Q-ary symmetric model for each side information is shown in Table 5.7.

A bit length of L + 1 = 9 is sufficient to completely represent the source X. The obtained transmission rates R b for all the bit planes b (b ∈ [0, . . . , L -1, L]) are shown in Table 5.8.

The simulation results of total transmission rates R tot , model entropy H(X|Y (j) ) model and empirical entropies H(Z n ) are shown in Table 5.9.

We can find that for all the side information H(X|Y It is also in accordance with the theoretical results. And our methods work well, it generates a total rate R tot quite close to theoretical limit H(Z n ).

The storage rate S tot is just a little larger than the maximum value of R tot , which means our decoder can help to realise the rate-adaptive decoding for all the possible side informations Y (j) with a small extra rate cost.

Conclusion

In this Chapter, we applied our rate-adaptive solutions to the lossless part of FTV. We transformed a symbol-based model to a bit-based model in order to be able to apply our coding solution. The simulation results show that the required transmission and storage rates are just a little larger than the theoretical performance.

It means that we successfully incorporate the proposed lossless code construction into a complete lossy source coding scheme that was developped for FTV in the framework of the InterCom project. The on-going work is testing this solution with a large database of video files and comparing the performance of transmission rate and entropy for different dependency relations between the source and the side information. Also, as we know our Q-ary model is just a simplified model of sequence Z n , we should look for other models with both limited defining parameters and a closer probability distribution to the empirical frequency of Z n , in order to achieve better performance in terms of transmission rate.

Chapter 6

Conclusions & Perspectives

Conclusions

Many multimedia applications such as Free Viewpoint Television (FTV) use a distant service provider that offers customized services depending on the user request. The main challenge is the efficient storage of a huge amount of data and the realtime extraction of a small fraction of these data upon request. In some applications such as FTV, the requests previously addressed by the user can help to optimize both the storage and the extraction. The problem can thus be seen as a source coding problem with side information at the user side. This PhD thesis fits into this context. It is part of the CominLabs project InterCom that focuses on solutions for massive random access to subsets of correlated data.

In Chapter 3, we investigate practical lossless source coding schemes with side information based on Low Density Parity Check (LDPC) codes. We first analysed the performance of LDPC codes with density evolution, and we constructed efficient finite-length LDPC codes with the PEG algorithm. We also analysed the limitations of rate-compatible channel coding methods and rate-adaptive source coding methods like Rateless and LDPCA. Rateless codes perform poorly at low coding rates while LDPCA is not adapted to high-rates.In this thesis, we combine both methods to construct rate-adaptive LDPC codes offering a wide range of rates. However LDPCA does not allow to optimize the code degree distribution, nor to control the amount of short cycles at all rates. This is why we propose two novel rate-adaptive LDPC code constructions to replace the LDPCA part.

In Chapter 4, these two novel rate-adaptive LDPC code constructions are presented. The first construction replaces the LDPCA accumulator by intermediate graphs that combine the syndrome bits in order to obtain lower rate codes. This method allows to reduce the amount of short cycles in the codes and it shows a great performance improvement compared to standard solutions. However it only considers unstructured finite-length code constructions, that is without design of the degree distributions of the lower rate codes. The second construction introduces a novel design method that allows to select the photographs of the intermediate graphs so as to optimize the decoding performance of all the codes constructed at all rates of interest. We also propose a new algorithm called Proto-Circle that constructs the intermediate graphs according to their protographs, while minimizing the amount Chapter 6. Conclusions & Perspectives of short cycles in the codes at all the considered rates. Simulation results show improved performance compared to LDPCA.

In Chapter 5, we applied our rate-adaptive solutions to the lossless part of FTV. We transformed a symbol-based model to a bit-based model in order to be able to apply our coding solution. The simulation results show that the required transmission and storage rates are just a little larger than the theoretical performance. It means that we successfully incorporate the proposed lossless code construction into a complete lossy source coding scheme that was developped for FTV in the framework of the InterCom project.

Perspectives

In the future, several problems related to this thesis may be considered.

Comparison to other multiview video coding standards

As we know, there exists a lot of video coding standards like H264, H265, or HEVC. Some multiview video coding schemes have been proposed before. Our solution and these standards may be compared in terms of achieved transmission and storage rates.

2. Other families of channel codes LDPC codes, Turbo codes and Polar codes are among the most efficient channel coding methods. They all have good decoding performances and show different properties in terms of decoding latency, depending on the code length, etc. It could be interesting to investigate the application of Turbo codes and Polar into the FTV problem, and then, to compare the three methods.

Latency

Since FTV may also be used in a real-time video transmission system, the problem of latency need to be considered. The main latency comes at the encoding step that stores the videos and generates the model parameters at the server. Large quantity of views and large number of users may increase this latency. Doing less complex encoding operations may help us to improve this latency. In addition, transmission of views over a real network (packet loss, delay in transmission, etc.) may also be taken into account.

Machine Learning

Machine learning has known an increasing success over the last years. The choice of line combinations in the rate-adaptive LDPC code constructions may be done by relying on machine learning. It may help us to better choose the combinations in order to improve the code performance at all rates.
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  Figure 4.6: BER performance of code C 1 with dimension 248 × 496 using proposed construction compared with LDPCA
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 5 2: The obtained rates (bit/symbol) for each bit plane and each side information Y(j) 
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 5 3: Total rate compared with entropy in case of high dependency 5.7.2 X and Y (j) with middle dependencyIn this file we have J = 8. The informations of the Q-ary symmetric model for each side information is shown in Table5.4.

	j	R tot	H(X|Y (j) ) model H(Z n )
	1	0.1103		0.1027	0.0997
	2	0.1240		0.1027	0.0998
	3	0.1074		0.0947	0.0925
	4	0.1240		0.1027	0.0998
	5	0.1074		0.0947	0.0925
	6	0.1240		0.1027	0.1001
	7	0.1103		0.1027	0.0997
	8	0.1250		0.1134	0.1036
	max 0.1250		0.1134	0.1036
		j	q	Z max Z min
		1 0.950	10	-16
		2 0.950	7	-5
		3 0.948	24	-24
		4 0.950	18	-18
		5 0.950	7	-11
		6 0.951	12	-12
		7 0.950	10	-13
		8 0.950	9	-7

Table 5 . 4
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: Q-array model for X and Y (j) with middle dependency
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: Total rate compared with entropy in case of middle dependency

Table 5 .

 5 7: Q-ary symmetric model for X and Y (j) with low dependency

				j	q	Z max Z min		
				1 0.669	29	-22		
				2 0.668	26	-21		
				3 0.668	26	-21		
				4 0.667	29	-20		
				5 0.668	26	-61		
				6 0.669	50	-21		
				7 0.668	26	-21		
				8 0.668	26	-25		
	j	R 0	R 1	R 2	R 3		R 4	R 5	R 6	R 7 R 8 (R s )
	1	1 0.575195 0.278320 0.183593 0.209960 0.015625	0	0	0
	2	1 0.580078 0.279296 0.191406 0.175781	0	0	0	0
	3	1 0.556640 0.279296 0.185546 0.175781 0.015625	0	0	0
	4	1 0.551757 0.275390 0.209960 0.219726	0	0	0	0
	5	1 0.593750 0.279296 0.152343 0.126953	0	0	0	0
	6	1 0.576171 0.279296 0.149414 0.173828 0.163085 0.015625 0	0
	7	1 0.580078 0.279296 0.188476 0.175781 0.015625	0	0	0
	8	1 0.575195 0.279296 0.181640 0.177734	0	0	0	0
	S b	1 0.593750 0.279296 0.209960 0.219726 0.163085 0.015625 0	0
	S tot						2.481442		

(j) 

) model ≥ H(Z n )
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 5 8: The obtained rates (bit/symbol) for each bit plane and each side information Y(j) 

	j	R tot	H(X|Y (j) ) model H(Z n )
	1	2.2626	2.7873	1.9017
	2	2.2265	2.7549	1.9113
	3	2.2128	2.7549	1.9133
	4	2.2568	2.7812	1.8988
	5	2.1523	3.0490	1.9133
	6	2.3574	2.9449	1.9050
	7	2.2392	2.7549	1.9106
	8	2.2138	2.7939	1.9133
	max 2.3574	3.0490	1.9133

Table 5 .

 5 9: Total rate compared with entropy in case of low dependency R
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Code 1 Code 2 Code 3 Code 4 Code 5 Figure 4.10: Performance of five code constructions with different protographs at rate 3/8

To finish, we discuss the influence of the constraints expressed in Section 4.3.2 for the code construction. These constraints were that in the intermediate protograph S 1→2 , each column has only 1 non-zero components, and that all the non-zero components are equal to 1. In order to discuss the influence of these constraints, we again consider the extended protograph S opt2 of rate 1/2 given in (4.12) and we consider the construction of a daughter code of rate 3/8. If the above constraints are not satisfied, there are many possibilities to construct such daughter codes. We consider 5 different protographs that can be obtained from S opt2 for the daughter codes. These protographs are given in Table 4.3, with their theoretical thresholds. Code 1 corresponds to a protograph that satisfies the constraints of Section 4.3.2. We see that the other protographs have either more than 1 non-zero component per column (Codes 2 and 3), or a non-zero component equal to 2 (Codes 4 and 5). Note that we selected give protographs with close theoretical thresholds, in order to compare the finite-length performance of the considered codes. The performance of the five considered codes are compared in Figure 4.10. We see that despite the fact that the five codes have very close theoretical thresholds, their BER performance vary from one code to another. As expected, Code 1 shows the best performance. This can be explained by the fact that its parity check matrix is more sparse than the other ones. We also note that Codes 4 and 5 for which the protographs contain non-zero components equal to 2 show the worst performance. This shows that, in the considered case, the above constraints are reasonable.

The first code C 1 is of size 248x496. In order to construct C 1 , we first obtained the protograph S 1 of size 2 × 4 in (4.9) from the Differential Evolution optimization method described in Section 3.4.1. Differential Evolution was applied by considering V = 60 elements in the population. This follows [START_REF] Storn | Minimizing the real functions of the icec'96 contest by differential evolution[END_REF] which suggests to choose 5D < V < 10D, where in our case, D = S n S m = 8. In addition, the number of iterations was set as L = 100, and the maximum degree was set as d max = 10. The theoretical threshold of S 1 is equal to p = 0.094, which is very close to the maximum value p = 0.11 that can be considered at rate 1/2. Protograph S 1 was then extended to the protograph S ′ 1 of size 4 × 8 in (4.10) according to the method described in Section 4.4.1. This extension allows ton consider more anchor rates 3/ do not consider it here. In [START_REF] Cen | Design of degree distributions for LDPCA codes[END_REF], the required rate was determined as the minimum rate that gives a BER lower than 10 -6 . This is equivalent to our criterion, since one uncorrectly decoded bit gives a BER of 2.0 × 10 -3 for C 2 , and of 1.0 × 10 -3 for C 3 .

At the end, Figure 4.11 represents the average rates needed for the considered values of p with respect to H(p). We first observe that our method shows a loss compared to the optimal rate H(p). This rate loss is expected since we consider relatively short codeword length 512 for C 2 and 1024 for C 3 . In addition, for the same codes C 2 and C 3 , LDPCA shows a much more significant rate loss compared to our method, which was also expected from the results of Figures 4.7 and 4.8. This shows that our construction combined with the anchor rates method is valid and outperforms LDPCA at all the considered values of p.

Name Protograph Theoretical threshold

Code 1 A

(2)

3 , A

(2) 4

0.051

Code 2 A

(2)

0.049 (2)

3 , A

(2) 4

0.049

Code 5 A

(2)

3 , A Chapter 5. Application to FTV will be decoded one after each other, from Q (L-1) to Q (0) . Previously decoded bit planes will be used to decode current bit plane Q (b) . This bit plane strategy was also considered in [START_REF] Yang | Multiterminal source code design based on slepian-wolf coded quantization[END_REF][START_REF] Vatis | Inverse bit plane decoding order for turbo code based distributed video coding[END_REF].

In the following, we first propose a symbol-based statistical model between X n and Y n . We then show how to obtain a bit-based model from this symbol-based model.

Joint statistical model between X n and Y n

In FTV, as in standard video compression, the statistical relation between the source X n and the side information Y n varies a lot from frame to frame and from video to video [START_REF] Brites | Modeling correlation noise statistics at decoder for pixel based wyner-ziv video coding[END_REF][START_REF] Maugey | Using an exponential power model forwyner ziv video coding[END_REF][START_REF] Vaezi | Improved modeling of the correlation between continuous-valued sources in ldpc-based dsc[END_REF][START_REF] Bassi | Rate-distortion bounds for wyner-ziv coding with gaussian scale mixture correlation noise[END_REF][START_REF] Westerlaken | Dependency channel modeling for a ldpc-based wyner-ziv video compression scheme[END_REF]. A well-chosen statistical model is important for the LDPC decoder as described in the previous chapters. In the following, for simplicity, we suppose that X k are all i.i.d. and Y k are i.i.d. too. An additive model Z = X -Y is supposed here just as people often do in the practice. A Laplacian model and a Q-ary symmetric model are considered here for Z.

Before all the views of video are stored at the server, the server has access to all the X and Y while encoding them. So it can know the model parameters of them at this moment, these parameters will then be stored and transmitted with the codeword together. Surely this requires additional bits for the model parameters, but that costs just a little if we consider a model with little model parameters, just as we do here.

Laplacian Model

The Laplacian model is often considered in video coding to model the statistical relation between the source and side information. The Laplacian density probability function of distribution L(µ, δ 2 ) is given by

where µ is the mean of Z, and δ 2 is the variance. The expressions of µ and δ 2 are given by

For a side information Y , the density of

We suppose that Z k and Y k are independent, which gives (Z kμ) 2 (5.9)

The Laplacian model however has two issues. First it is a continuous model while our data are discrete. Second, when the variance δ 2 is small, the density (5.5) applied to values of Z k is numerically equal to 0, which poses problems in our decoder. This is why we also consider a second model described in section 5.3.2.

Q-ary symmetric Model

The probability mass function of a Q-ary symmetric [START_REF] Weidmann | A fresh look at coding for q-ary symmetric channels[END_REF] 

where q ∈ [0, 1] is a constant, Z max is the maximum value of Z, Z min is the minimum value of Z. The value of q can be estimated as

where N Z0 is the number of symbol Z k = X k -Y k = 0, and n is the total length of sequence Z n .

Probability calculation from symbol-based model to bit-based model

In [START_REF] Westerlaken | Analyzing symbol and bit plane-based ldpc in distributed video coding[END_REF], it is shown how to obtain the bit-based conditional probability P (Q

) from the symbol-based conditional entropy P (X j | Y k ). Let us denote by P Z the probability distribution of Z. It corresponds to f Z either given by (5.5) or (5.10). The bit-based probability can be obtained as follows:

(5.12)

and

where,

As a result, we just need to calculate P (Q

y) by using the probability distribution P Z (•), and then normalize them to get P 0 and P 1 .

Decoding scheme with bit-based source and symbolbased side information

We now present the lossless coding scheme we consider for FTV. In FTV, the value of X n can be negative, so we need to add a sign bit. If X k is converted into L + 1 bits, we have

k is given by The bit plane Q (s) is encoded and decoded first. The received syndrome U (s) , Y n and the estimated model parameters will be used for the decoding. In the decoding, we use the bit probability of

(5.18)

Then the received syndrome U (b) , Y n , the estimated model parameters (μ and δ2 for Laplacian model, q, Z max and Z max for Q-ary symmetric model) and the previous decoded bit planes Q(b+1) . . . Q(L-1) Q(s) will be used to decode the current bit plane Q(b) . By applying (5.12) and (5.13), the bit probability of

When the bit planes

Rate-adaptive construction

To encode each bit plane, we construct H b by using our rate-adaptive method described in Chapter 4. Starting with the same mother code H, we construct H b for all the bit planes so as to decode Q(b) without error. This can be done since the a different empirical probability distribution on P (X -Y (j) ) with different parameters for Laplacian model or a Q-ary symmetric model. In our simulations, we observed that the Laplacian model would generate too many 0 for LLR information, so we applied the Q-ary symmetric model to avoid this disadvantage. Since the amount of dependency between X and Y (j) can give different results, we tested three types of video files with low dependency, middle dependency and high dependency.

X and Y (j) with high dependency

In the first file we used, we have J = 8. The estimated parameter values of the Q-ary symmetric model for each side information are shown in Table 5.1.

Table 5.1: Q-ary symmetric model for X and Y (j) with high dependency

We observe that the value of q does not vary much with the side information.

After testing X n , We observe that L + 1 = 8 bits are sufficient to completely represent the source X. The obtained transmission rates R 5.2. We find out that the rates for the most significant bits are smaller.

Given the Q-ary symmetric model of P (X|Y (j) ), we can calculate the model entropy

For a given sequence Z n , we can also evaluate an empirical entropy as

where N Z is the number of different values that can take z k in Z n , and p(i) is the corresponding empirical frequency of element i.

As seen in Chapter 2, Slepian-Wolf theorem tells us that R ≥ H(X | Y ). In our problem, the conditional entropy H(X | Y ) can be simplified as H(Z). In addition,

Chapter 7

Résumé de thèse en français 2. Rappels de théorie de l'information en codage de source 

Codage de source sans perte

La théorie de l'information fournit les performances limites atteignables en fonction des hypothèses. La figure 3 résume le schéma de codage de source sans perte. On suppose que le mot de code U est envoyé sur un canal parfait. Le théorème du codage source indique qu'une compression sans perte de taux R est réalisable si et seulement si: R ≥ H(X)

où H(X) est l'entropie de la source X. 

Codage de source sans perte avec information adjacente

Puisque H(X |Y ) ≤ H(X), l'information adjacente au niveau du décodeur permet de diminuer le débit de codage de source par rapport au codage de source sans information adjacente. Dans ce cas, le débit minimum R dépend de la corrélation entre X et Y . 

Application: vidéo en 360 degrés

Les images en 360 degrés nous sont fournies après traitement, par nos partenaires du projet CominLabs de l'Inria (Rennes). Les images 3D sont d'abord transformées en images 2D, à partir desquelles sont générées des informations de source X et des informations adjacentes Y (j) , j = 1, 2, • • • , J. La Figure 19 décrit l'insertion du schéma de codage de source proposé dans la chaîne de traitement des vidéo en 3D. Voici les principales étapes que nous avons suivies.

1. Notre schéma nécessite la connaissance de Pr(X |Y ). Aussi nous introduisons la variable aléatoire Z = X -Y . Nous avons étudié deux modèles de distribution pour Z : Laplacienne et Q-aire. Finalement, nous avons retenu le modèle Laplacien. La transmission des paramètres de la distribution de Z doit également être prise en compte dans le bilan.

2. Le schéma de codage utilise un code LDPC binaire. Une transformation préalable des composantes du vecteur source X n en différents plans de bits est nécessaire.

3. Codage séparé des plans de bits de Q (s) , Q (L-1) , jusqu'à Q (0) .