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1.1 Source coding for Free Viewpoint Television

1.1.1 InterCom project

My thesis entitled "Slepian- Wolf source coding using LDPC codes for Free Viewpoint
Television" was realized in the framework of a project Cominlabs called "InterCom"
which held from November 2016 to October 2019. The objective of this project was
to design compression solutions for Free Viewpoint Television (FTV). The different
partners of the InterCom project were: Sirocco team (INRIA, Rennes), i4s team
(INRIA Rennes), L2s (CentraleSupelec/Univ Paris-Sud, Paris), and Lab-STICC
(IMT Atlantique, Brest).

FTV [2, 3, 4] is a system for watching videos in which the user can choose its
viewpoint freely and change it instantaneously at any time. For example, when
watching a football game, the user can select the viewpoint he wants, as if he
could change his watching position, although the images remain 2D. This example
is depicted in Figure 1.1, left. As shown in Figure 1.1, all the views of the video are
stored on a server, and the users send requests to the server in order to get their
desired views. When building a storage/transmission system for FTV, we want to
consider a large dataset of videos, and a large number of users. In this context, data
compression can help to reduce the amount of data to be stored on the server and
transmitted to the users.
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=) Multiview video coding
3| Server

Extraction

:I- Brazil () France -[

requested view

i@ i@ g g ...

User 1 User 2 User

Figure 1.1: Multi-view video coding scheme

1.1.2 Source coding for FTV

We now describe the FTV system more formally. We assume that each user can
request a random subset of the views. Previous views are still available in the
user’s memory when the current view is requested by the user. This can be repre-
sented as a problem of source coding with side information available at the decoder,
where the current requested view is the source X and the previous requested views
are represented by the side informations Y, see Figure 1.3. This scheme is known
as Slepian-Wolf coding scheme [5, 6, 7, 8] for the lossless case, and as Wyner-Ziv
source coding for the lossy case [9, 10, 11, 12, 13, 14]. Random requests means
that the statistical correlation between the source and the side information varies
depending on the previous user requests. Therefore, the coding rate must be adapted
on the fly depending on the previous requests.

Server User side
Ul ~
> X Client 1
Y(l)
Encoder Storage U, R,
X —> S : > L Client 2
... Bitstream
Extraction Y@
1) R,
> R Client ]
yo

Figure 1.2: Source coding model for FTV
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A

X——>E > D —>X

v

Figure 1.3: Slepian Wolf source coding

1.2 Limitations of standard compression systems to tackle
FTV

In FTV, the views of the videos will first be encoded once together and then stored
at the server. The users can request their desired views through the network, and
the server will send them the corresponding encoded bits. In order to minimize
the storage rate on the server, all the views should be compressed together. But
since there is a large number of users, we do not want the server to decode the whole
database before extracting the current requested views. This is why, in the InterCom
project, it was proposed to use a rate-adaptive coding scheme [15]. Rate-adaptive
schemes allow to extract only a part of the compressed data. The amount of data to
extract will depend on the statistical relation between the previous received views
and the current requested view. The problem is that classical compression methods
(Huffman, Lempel Ziv, H264 [16], HEVC [17], etc) do not allow extraction of data
without decompression of the whole dataset, and proposed solutions for FTV are
largely based on these methods [18, 6, 19, 20].

On the opposite, it was shown that channel codes such as Low-Density Parity-
Check (LDPC) codes allow to construct rate-adaptive schemes that permit data
extraction. This is why the objective of this thesis is to use LDPC codes to design
rate-adaptive coding schemes for FTV. We focus on the lossless coding part, since
the lossy part (quantization, prediction, etc.) has been addressed by other members
of the InterCom project.

1.3 Slepian-Wolf source coding with LDPC codes

Low-density parity-check (LDPC) codes were first proposed by Gallager [21]. LDPC
codes were first used for channel coding [22, 23, 24, 25, 26, 27, 28]. These linear
codes use a sparse binary parity-check matrix to decode the information received
from the channel. It was proposed in [29, 30, 31, 32] to use them for source coding
with side information, and in this thesis we aim to use them for FTV.

To construct good LDPC codes for source coding, we can combine different methods.
The parity-check matrix of an LDPC code can be equivalently represented by a
Tanner graph that connects variable nodes: the source bits, and check nodes: the
parity check equations. A protograph [33] is a small Tanner Graph that represents
connections between different types of variable nodes and check nodes. An LDPC
matrix can be generated from a protograph by repeating the protograph structure,
and by interleaving the connections between the variable nodes and the check nodes
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of the corresponding types. The performance of an LDPC code depends on its
underlying protograph, and density evolution [26, 34, 35, 36] enables to evaluate
the decoder error probability depending on the protograph. Further, short cycles in
the Tanner graph of the LDPC matrix can degrade the code performance. In order
to limit the amount of short cycles, the progressive edge-growth (PEG) algorithm
was proposed in [37] to construct the matrix from a given protograph.

In FTV, the statistical relation between source and side information varies de-
pending on the previously requested views. So we should adapt the coding rate.
Two traditional rate-adaptive code construction methods can be applied: using
Low-Density Parity-Check Accumulated (LDPCA) codes [38] to decrease the rate
from a high initial rate, or using Rateless codes [39] to increase the rate from a low
initial rate. In this thesis, we aim to improve these existing rate-adaptive methods.
It is hard to construct good performance LDPC matrices for very low rates and this
is why Rateless method only allows to consider a limited range of rates. To solve
this issue, we consider the solution of [40] that proposes to use LDPCA codes and
rateless codes together from a middle initial rate. Unfortunately, this mixed solution
is still penalized by the weakness of LDPCA, which shows a very bad performance
if there exists too many short circles in the corresponding LDPC matrix. So we look
for new code constructions which allows to optimize the code performance at all the
rates and in particular to reduce the amount of short cycles in the LDPC matrices.

1.4 My contributions

In this thesis, as first contribution, we proposed two novel rate-adaptive code con-
structions for Slepian-Wolf source coding. The LDPCA construction combines sev-
eral lines of the initial LDPC matrix in order to construct lower rate codes. LDPCA
code construction does not leave the choice of line combinations (accumulated struc-
ture) and bad combinations can generate a lot of short cycles. As short cycles may
highly degrade the code performance, we proposed a new method that limits the
number of short cycles. In this method, we choose line combinations that add the
least number of cycles. In this way, we generate a sequence of rate-adaptive codes
that perform better than LDPCA. After this, we proposed a second method that
relies on the optimization of the protographs at all rates. Since the protograph can
help us to choose better lines combinations, we proposed a method that can opti-
mize the protograph for all the considered rates. The two proposed methods show
a better performance than LDPCA, especially for short codes (less than 1000 bits)
that are particularly sensitive to short cycles.

As a second contribution, we worked on the integration of these two rate-adaptive
code constructions into the FTV compression system. InterCom project members
of INRIA Rennes worked on the compression pipeline for FTV, but they did not
optimize the lossless part. So they provided us with files containing examples of
source and side information realizations, and we applied our code constructions and
decoding algorithms to these data. For this, we first had to determine and estimate a
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statistical model between the source and side information. Second, the data we were
provided with was on the form of symbols, and we had to adapt our solutions which
work on binary vectors. To finish, we applied our coding solutions and evaluated
the rate performance. The simulation results show that we can achieve transmission
and storage rates close to the theoretical limits.

1.5 Organization of the manuscript

We now present the organization of this manuscript. In Chapter 2, we formally de-
scribe the FTV problem as a source coding problem and we provide the information
theory results that were already obtained for this problem. The information theory
results provide the limiting compression performance of FTV systems, and suggest
design guideline for the practical schemes. Chapter 3 presents the preliminaries of
standard and rate-adaptive LDPC codes. It shows the definitions, decoding meth-
ods and construction methods of LDPC codes. In Chapter 4, we describe the two
rate-adaptive code constructions we propose for lossless source coding with side in-
formation. In Chapter 5, we apply our methods to real FTV data, and show the
obtained simulation results. Chapter 6 presents the conclusions and perspectives.
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Information theory results

Contents
2.1 Entropy definitions . ... ... ... ... . 000000 12
2.2 Theoreticalresults . . . . .. ... ... ... ... ... 13
2.2.1 Lossless source coding without side information . . . . . . .. 13
2.2.2  Lossless source coding with side information . . . . . .. . .. 14
2.2.3 Lossless source coding for FTV . . . .. ... ... ... ... 14
2.3 Conclusion . ... ... ... i i e 16

In this section, we describe information theory results for FTV. FTV can be pre-
sented as a source coding problem with side information available at the decoder,
and the side information is the already received past views. In this thesis, we are
mainly interested in lossless source coding. Figure 2.1 illustrates the source coding
scheme that can be considered for FTV.

In this figure, X is the source which generates sequences X" = [X1,...,X,] of n

X U u X

Encoder Perfect Channel Decoder

Y& [view 1]
Y@ [view 2]

Y'UJ [vie;iv 1

Figure 2.1: Lossless Source Coding for FTV

symbols. Each source symbol X}, takes its value in an alphabet {0,1,...,7—1} and
follows a probability distribution P(Xy = i) = p;,i € {0,1,...,I — 1}. In source
coding, the source X" is compressed into a codeword U™ of length m, where m < n.
The codeword U™ is then transmitted to the decoder. At the decoder, the side in-
formation Y generates sequences Y of n bits. The side information symbol Y; takes
also its value in the alphabet {0,1,...,I — 1} but follows a probability distribution
which is different from the one of the source symbol X;. The decoder reconstructs
the source sequence X" from the side information sequence Y and from the re-
ceived codeword U™. In this thesis we always suppose that the codeword U™ is

perfectly received at the decoder. The source rate R is given by R = 7.
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In our case, there exist several available side informations Y, jedl,...,J}
potentially available at the decoder, J is the number of previous received views. The
statistical relations between X and each Y9 are defined by the joint probability
distributions P(X,Y (). Only one of these potentially available side informations
will be used for decoding, and the choice of the available side information depends
on the previous views requested by the user.

2.1 Entropy definitions

Entropy [41, pagel3-18| is a measure of the information contained in a source. We
present the definitions of entropy, conditional entropy, and the Binary Symmetric
Channel (BSC) in this part. For a discrete source X, its entropy is denoted by
H(X) and defined as

I-1
H(X) = H(p) = —E(logy P(X)) = = Y _ pilogy(ps) (2.1)
i=0

For example, for a Bernoulli source, X takes values in {0,1}. If P(X = 0) = p,
Then

H(X) = —p-logy(p) — (1 —p) - logy(1 - p) (2.2)
Specifically, if P(X = 0) = 0.5, then H(X) =1 bit/source symbol.
The conditional entropy H(X | Y) is defined as

HX|Y)= ) PyHX|Y=y)
y€0,...,/—1

(2.3)
_ Z P(y) Z P(x | y)logy P(x | y)

By the properties of conditional entropy [41, page 29| we have H(X | Y) < H(X).
We get H(X |Y) = H(X) if and only if X and Y are independent.

Figure 2.2 shows us a binary symmetric channel, where X takes values in {0, 1}
and PY =1|X=0=PY=0]|X=1)=np.

X 0 Y
P

P
1 >]

Figure 2.2: Binary Symmetric Channel

Specially,ifP(XzO):%andP(Yzl]XzO)zP(YzO\le):
p, where p is the crossover probability, then P(Y = 0) = % By applying these
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expressions in (2.3), we have

H(X |Y) = —p-logy(p) — (1 —p) -logy(1 —p) (2.4)

2.2 Theoretical results

In this section, we provide the minimum achievable rates for lossless source coding
without side information, lossless source coding with side information, and source
coding for FTV.

2.2.1 Lossless source coding without side information

We first consider the case where no side information is available at the decoder. In
FTV, this corresponds to the case where we do not use the previously received views
as side information at the decoder.

Figure 2.3 shows us the lossless source coding scheme without side information. In

Figure 2.3: Lossless Source Coding

this scheme, the error probability is defined as
P = P(X" # X" (2.5)

It represents whether the source X™ can be perfectly reconstructed at the decoder
or not. If one can construct a coding scheme such that 1ir+n P(X™ # X™) =0,
n—-+0oo

then lossless decoding can be achieved.
The source coding theorem [41, page 112] tells us that a rate R is achievable if and
only if

R > H(X) (2.6)

where H(X) is the entropy of the source X.

Example 2.2.1 For a binary source X with P(X = 0) = 0.4, we have

H(X) = —0.4-1logy(0.4) — (1 — 0.4) - logy(1 — 0.4)

=0.971 2.7)

So the minimum lossless source coding rate R > 0.971 bits/symbol.



14 Chapter 2. Information theory results

X

Perfect Channel

Y

Figure 2.4: Lossless Source Coding with side information

2.2.2 Lossless source coding with side information

In FTV, the already received views can be used as side information at the decoder.
When there is only one possible side information Y, this can be represented as the
Slepian-Wolf [42] source coding problem.

Figure 2.4 represents Slepian-Wolf source coding. The Slepian-Wolf source coding
theorem [42] shows that a rate R is achievable if and only if:

R>H(X|Y) (2.8)

Since H(X | Y) < H(X), the side information at the decoder can help to
decrease the source coding rate compared to source coding without side information.
When the side information Y is available at the decoder, the minimum rate R will
depend on the statistical relation between X and Y.

Example 2.2.2 In BSC for a source X € {0,1} with P(X = 0) = 0.4, and
crossover probability p = 0.1 we have

H(X |Y) = 0.4585 (2.9)

So the minimum lossless source coding rate is R > 0.4585 bits/symbol. Com-
pared to the example 2.2.1, 0.4585 < 0.971, it shows that the source coding with
side information can help to reduce the minimum source rate.

In FTV, several different side informations can be available at the decoder.

2.2.3 Lossless source coding for FTV

For FTV, as described in Figure 2.1, several views Y@ j ¢ {1,...,J} can be
potentially available at the decoder. Only one of these potentially available side
information will be used for decoding, and the available side information depends on
the previous views requested by the user. For instance, Y1) can be the prediction of
X based on the previous received views received by user 1, and Y1) will serve as side
information for the transmission of X to user 1. We suppose that the transmissions
of X to different viewpoints are independent. Figure 2.5 presents the transmission of
sending a single source X, with several clients request for this view X using different
SIYW, ... YY) by network. S defines the storage rate on the server. R; defines
the rate needed to transmit source X to user j with side information Y.

For FTV, we are interested in the achievable rate-storage region which is a set of
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Server Network User side
Ul |%|
> X Client 1
X Encoder Storage Uz R,
> S . X Client 2
... Bitstream
Extraction Y@
UJ TN
> R Client)
Yy

Figure 2.5: Storage and Transmission in FTV

achievable rate-storage pairs (R, Ro, ..., Ry, S). According to (2.8) we would like
to achieve transmission rates

Rj>H(X|YY) je{1,2,...,J} (2.10)

Two methods to achieve these rates can be applied [15, 43].

Method 1 [6] (Exhaustive storage) We store one different codeword for each
possible side information. Then the storage rate is a sum of all the transmission
rates,

J J
=> R, Z (X |yU (2.11)
=1 j=1

Method 2 [15, 43] (Incremental storage) We construct one unique incremen-
tal codeword. For user j, the serve extracts a subpart of rate H(X | Y9)) of the
codeword. So we have

S > max H(X |YY) (2.12)
Jj=1,...,J

It is easy to show that

J
> H(X | YY) > max H(X |YW) (2.13)
j=1

.....

As a result, method 2 allows to reduce the storage rate.
For example, consider a Binary Symmetric Channel with P(X = 0) = % and
PYW =1|X=0)=PYY =0| X =1)=pj,j=1,2,...,J. By apply-

ing (2.4), we can calculate the storage rate of method 2 as follows

S > max H(X |YW)

=hed (2.14)
> max H(pj)
G=1d
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Assuming that in binary case p; < 0.5, with the properties of the entropy function,
we have:

S > H(]irll,aXJpJ) (2.15)

Example 2.2.3 In BSC for a source X € {0,1} with P(X = 0) = 0.4, three
different side informations Y (), j = 1,2,3 which follow the crossover probability
PYW =1]X=0)=PYUW=0|X =1)=pj,p; = 0.05,0.1,0.2 are available
at the decoder. Table 2.1 provides the minimum rates for each possible Y;. The
minimum storage rate is: S > 0.7033 bits/symbol.

‘ vy ‘ v (2) ‘ v (3)
0.05 0.1 0.2
0.2808 | 0.4585 | 0.7033

pj
R;

Table 2.1: The minimum transmission rate with different side informations available
at the decoder

2.3 Conclusion

In this section, we presented information theory results for FTV. These information
theory results suggest that we use an incremental coding scheme in order to build
a practical scheme for FTV. We know that LDPC codes can be used to construct
Slepian-Wolf source coding schemes, including rate-adaptive ones. This is why we
consider them in the following.
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As described in Chapter 2, the lossless source coding part of FTV can be seen
as a Slepian-Wolf [42]| source coding problem, and LDPC codes are often used as
practical codes for this problem [29] [44] [45] [31]. LDPC [21] codes were invented by
Gallager and published in his thesis in 1960. LDPC codes are a class of linear block
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codes and they were initially introduced for channel coding. They show very good
performances in channel coding and they are known to approach the channel capac-
ity. LDPC codes can also be applied to Slepian-Wolf source coding, as described in
this Chapter.

In this section, we will first introduce the definition of LDPC codes, and con-
sider protograph [33, 46]-based LDPC code construction. Three decoding methods
(Bit-flipping decoder [47|, Gallager-A/B decoder [26|, Sum-product decoder [48])
are described as the most used decoding methods for LDPC codes. We then intro-
duce Density evolution [34] to evaluate the asympotic performance of LDPC codes.
We also present the Progressive Edge Growth (PEG) [37] algorithm that allows to
construct good finite-length codes.

3.1 LDPC codes

3.1.1 Definition of LDPC codes

LDPC codes can be represented by a parity check matrix H of dimension m x n,
where m < n. In this thesis we mainly consider binary LDPC codes, which means
that the components of H are either 0 or 1. In LDPC codes, the matrix H is sparse
in the sense that it contains only a few 1’s which will allow to reduce the decoding
complexity. In Slepian-Wolf source coding, a codeword U™ is constructed from the
source vector X™ and from the parity check matrix as

Um=Xx"-HT (3.1)

The source coding rate is R = 7.

The LDPC parity check matrix H can be represented by a Tanner Graph [49]. The
n columns of this matrix are represented by variable nodes (VN), and the m rows
are represented by check nodes (CN). If H;; = 1, there is an edge between the j-th
CN and the i-th VN in the Tanner Graph. The number of connections of a given
VN z; is called the VN degree and denoted by d,,. The set of CNs connected to VN
x; is denoted by C;. The number of connections of a given CN wu; is called the CN
degree and denoted by d.,. The set of VNs connected to CN u; is denoted by V.
For example, for a code with n = 8, m = 4, a possible matrix H is given by:

1 T2 T3 T4 Ty T 7 T§

wup /0 1 0 1 1 0 0 1
w1 1 1 0 0 1 0 0
i = usl O 0 1 0 0O 1 1 1 (32)
u4\1 0 0 1 1 0 1 0

and the corresponding Tanner Graph is shown in Figure 3.1. In this example,
each VN z;,i € {1,---,8} is connected to 2 CN u;,j € {1,---,4}, and d,, = 2.
Each CN is connected to 4 VN, which gives d.; = 4.
An LDPC code is regular if the variable node degree d,, is the same for each VN
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Ul U2 U3 U4

o O O O O

Xl X2 X3 X4 X5 X6 X7 X8

Figure 3.1: Tanner Graph of H with n =8, m =4

and the check node degree d.; is the same for each CN. For example, the matrix
H in (3.2) represents a regular LDPC codes with degrees d, = 2,d. = 4. For
irregular LDPC codes, d, and d. can vary from one node to another, and they can
be described with a degree distribution pair (A (z),p(x)):

d”max dcmax
Az)= D A plx)="> ppz*! (3.3)
k=2 k=2
dvmax deax
where Z A =1, Z pr = 1, dy,,. is the maximum VN degree, d. .. is the

k=
maximum CN degree. In these expressions, the fraction of edges belonging to VNs

with d, = k is noted as A, and the fraction of edges belonging to CNs with d. = k
is noted as pg. The rate R depends on the degree distributions A (x) and p(x). It
can be computed as follows:

nom_yom_y Jorlwd (3.4)

BOp) = n n [EN () da
0

For example, for the regular code described in 3.1, with d, = 2, d. = 4, we have

Az) ==z p(z) =23 (3.5)
yielding to
fol 23dr 1
RM\p) =1- == 3.6

For an irregular code, a VN degree distribution given by

A (z) = 0.071428z + 0.2301182% + 0.0795962° 4 0.1470432°
+0.073821z* + 0.3979942%



20 Chapter 3. Low Density Parity Check codes

means that the fraction of an edge belonging to VNs with d, = 2 is Ay = 0.071428,
the fraction of an edge belonging to VNs with d, = 3 is A3 = 0.230118, the fraction
of an edge belonging to VNs with d, = 10 is A\;g = 0.079596, etc.

If the CN degree distribution is given by

p(a) = 2*" (3.8)

then

1
L Jo Mx)dz _3 (3.9)

R ) fol p(z)dx 4

3.1.2 LDPC code construction from protographs

An alternative way to represent irregular LDPC codes is the use of protographs [33,
46]. Protographs allow for a precise control of the connections in the parity check
matrix of the code, and lead to efficient Quasi-Cyclic (QC) parallel hardware imple-
mentations [50].

A protograph S is a small Tanner Graph of size S,, x S,, with S,,/S, = m/n = R.
Each row (respectively column) of S represents a type of CN (respectively of VN).
The protograph & thus describes the number of connections between S, different
types of VNs and .S,, different types of CNs. A parity check matrix H can be gener-
ated from a protograph S by repeating the protograph structure Z times such that
n = ZS,, and by interleaving the connections between the VNs and the CNs. The
interleaving can be done by a PEG algorithm [37]| that not only permits to satisfy
the protograph constraints, but also to lower the number of short cycles that could
severely degrade the decoding performance of the matrix H.

Bi® —1a Bio

1

Bio BZO/ Bzo A

A —

BZO> 1 5N A
o]
:1 ?DA]_ BZO !
20

Figure 3.2: Construction of a parity check matrix H of size 2 x 4 (right picture)
from a protograph S of size 1 x 2 (left picture)

Figure 3.2 gives an example of construction of a parity check matrix H from the
protograph S defined by
S=[1 2 (3.10)

Components of S represent the connections between one CN of type A; and two
VNs of types By and Bs. A parity check matrix H can be constructed from this

H:[O bl 1}. (3.11)

protograph S, where

1101
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The Tanner graph of protograph S is represented in Figure 3.2 (left part). In
order to construct a parity check matrix H, the protograph is first duplicated Z = 2
times (middle part of Figure 3.2), and the edges are then interleaved (right part of
Figure 3.2). In the final Tanner graph, one can verify that each VN of type Bj is
connected to one CN of type Ay, and each VN of type Bs is connected to two CNs
of type Aj.

The performance of a given parity check matrix H highly depends on its un-
derlying protograph &. The protograph optimization will be presented later in this
section.

3.2 Decoding algorithms for LDPC codes

There exist several decoding methods for LDPC codes. These methods were invented
in the context of channel coding, but they can also be applied to source coding with
side information, as described in this section. Bit-flipping decoder, Gallager-A/B
decoder and Sum-product decoder are among the most common decoders [49]. In
this section we describe these three decoders.

3.2.1 Bit-flipping decoder

The rows of the LDPC matrix H represent parity check equations. The idea of the
Bit-flipping [47| algorithm is to correct one by one the bits that are involved in the
largest number of unsatisfied parity check equations.

Some definitions are given first:

e We denote by e; the number of unsatisfied parity check equations associated
to VN ZT;.

e i; € {—1,1} is the polar representation of x;, #; = —1 corresponds to z; = 1,
Z; = 1 corresponds to x; = 0.

e The number of iterations is denoted by £.

e The message from CN u; to VN z; (i € V) is denoted by W.(j — 7).

e The message from VN z; to CN u; (j € C;) is denoted by W, (i — j).

e The function that takes the decision on the value of x; is denoted by @);.

The steps of the Bit-flipping are as follows:

1. Initialization: The value #; of VNs z;,i € {1,--- ,n} are initialized with the
side information bits y;, that is &; = 1 — 2y;. The counters e; are set to zero. The
messages from VNs to CNs are initialized as

O = ) =i:,Vj €C (3.12)
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2. CN update: The messages \Ilg) (j — 1) are calculated as:

WO i) = (1 - 2u) T WO - j) (313)
1€V
3. VN update: With (3.13), all the m parity equations are checked. Once a parity
equation is not satisfied, the counters e; of the associated VN are increased by one.
It means that,
e =S 1w = i) = ~1},Vie V; (3.14)
JeC;

The message \I’g) (i — j) of the VN with highest ege) will then be corrected,
Vj e G,
—xy;, if ez(e) = max e,(f)
TG — j) = ke{l,...n} (3.15)
i, else

4. Detection: The final value Z; is set to:

2= 0D - ) (3.16)
5. If all parity equations are satisfied (which means for j =1,--- ,m, \Ifge) (j—

i) = 1) or if the maximum number of iteration is reached, the decoding stops. If
not, it goes back to step 2.

3.2.2 Gallager-A /B decoder

The idea of the Gallager-A /B [26] algorithm is also to correct the codeword bits
depending on unsatisfied parity equations. The difference is that here we apply a
majority voting operation at VNs, and consider only extrinsic messages at both VNs
and CNs.

We use the same notation as in Section 3.2.1. The steps of the Gallager-A
decoder are as follows.

1. Initialization: The message of VNs z;,¢ = 1,...,n are initialized with the
side information y;, &; = 1 — 2y;. The messages are initialized as

O (G = ) =i:,Vj €C (3.17)

2. CN update: The parity check messages are given by

(O (i s i) = (1 — 2u. (0) ;
v —i)=(1 2%)%]};{,6 LY (k—J) (3.18)
\IJS)€+1)(

message Z; and from the CN messages gl (j = 1), as

3. VN update (majority voting): i — j) is calculated from the initial

iy if OOk > i) = —#5,Vk € Cik #

i, otherwise

(i — j) = { (3.19)
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CNs

VNs

Figure 3.3: Message passing in Gallager-A /B and soft decision. Left figure shows
parity check computation, right figure shows majority voting.

4. Detection: The final value of Z; is equal to QEZH) and

Qi

N . l) /. . ~ .
T

z;, otherwise

5. If all the parity equations are satisfied or if the maximum number of iterations
is reached, the decoding stops. Otherwise, it goes back to step 2.

Gallager B is different from Gallager A at step 3 and step 4. At step 3, the
Gallager B decoder sets the value of \111(}”1){2' — j} to —&; if and only if at least b
incoming check messages are equal to —Z;. The same is applied at step 4.

3.2.3 Sum-Product decoder

Sum-product [48] is also called belief-propagation or message-passing algorithm. In
this algorithm, the exchanged messages are no longer —1 or 1, but Log-Likelihood
Ratios (LLR). Therefore, before presenting the algorithm, we need to introduce ad-

ditional notations. The messages are initialized as m; = log 712812(1)51; For instance
for a BSC,
P(y; |z =0) 1—p
m; = lo =(1—-2y;)-1o 3.21
=18 e ) (1 —2y;) - log (3.21)

where p is the crossover probability and p = P(y; # ;).
The Sum-Product decoding algorithm is then described by the following steps.

1. Initialization: We compute initial messages as m; = log ig%ﬂ%

U0 (i — j) = mi,¥j € C; (3.22)

, and
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2. CN update: The parity check messages are given by

(&) ;
14+ (1—2uy)- ] <tanh(%[ (Qk—m>

keVi\i
OO (j — i) =log SViA e (3.23)
1—-(1-2u)- I <tanh(‘1“v (§H9)>
keVj\i
3. Majority voting: The updated VN messages are given by
W = ) =mi+ Y WO (k=) (3.24)
keC;\j
4. The value of x; is calculated from
QY =mi+ Y w0k — i) (3.25)
keC;
1, it QY >0
T = ¢ - 3.26
{ 1, if QY <o (3.26)

5. If all the parity equations are satisfied or if the maximum number of iterations
is reached, the decoding stops. If not, it goes back to step 2.

3.3 Density evolution

Density evolution [34] is a method to evaluate the performance of LDPC codes. It
is then used to compute a channel threshold from which the decoder can decode
without error. It consists in computing the statistical distribution of messages ex-
changed during the iterative decoding process. More formally, if we denote by Pe(g)
the codeword error probability after ¢ iterations, then for a BSC with crossover
probability p, the threshold e satisfies

lim PY = lim P(X®¥) £X)=0, Vp<e (3.27)

{—~+o00 —~+o0

Let us describe steps of the density evolution algorithm as follows.

e In the following, we assume that the side information Y is generated from a
BSC with crossover probability p. For the source X, we consider the all-zero
assumption 26|, that is x; = 0,Vi. The codeword U is such that u; = 0, Vj.

e For the considered decoding algorithm (Gallager-A /B, Sum-product) we es-
timate the statistical distribution of the messages \I/,(JK),\P;E) for L decoder
iterations.

e We estimate the codeword error probabilities PE(E), and then compute the
threshold from (3.27).



3.3. Density evolution 25

3.3.1 Density evolution for the Gallager-A decoder

We now describe into details the density evolution equations for the Gallager A

decoder and for the sum-product decoder. For Gallager-A decoder, we calculated

the messages gl (j — 1) by equation (3.18), and gl (i — j) by equation (3.19).

The Density evolution evaluates the performance of an ensemble of codes with the

same CN and VN degree distributions. Here, we consider regular LDPC code with

CN degree d. and VN degree d,. In order to evaluate the probability distributions
0 O

of W7, Wy”, we define

e Probability distribution of o, qgf) = P(\Pg)(j — i) = «), where a €

{~1,1}.

e Probability distribution of o pg) = P(\Ifl(,é)(i — j) = «a), where a €

{~1,1}.

Then, the probability distribution of \11&‘) after applying equation (3.18) is [26].

© _1(1 (1 _ g0\ %V 0 _1 gD
q1—2(1 (1-24") a’ =3 1+ (1-204) (3.28)

Then with the majority voting operation in equation (3.19), we have

dy—1 dy—1
P =p” (q(ﬁ) +p) (1 - qig)) (3.29)

p) =p") (qie))drl +0 (1- qYZ))dF1 (3.30)

The error probability is evaluated as Pe(g) = p(_e?l, then perfect decoding is

achieved if flim P = o, Equations (3.28) (3.29) (3.30) allow to compute p(_g)1
—+00
recursively. As p(i]% = p, the error probability Pe(e) can be calculated as
de—17 dv—1
z 14 (1-2p7Y)
PO =p—p 5
31
(0—1)\de—17 W1 (3:31)
1-(1-2RY)
+ (1 -p)

2

Since P, is a increasing function of p, the highest p which still satisfies , liin Pe(é) =0
—+00
will be defined as the threshold ¢.
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3.3.2 Density evolution for the Sum-product decoder

For the sum-product decoder, we will also evaluate the probability distribution of
(0) (£)
V.’ and ¥y, we define

e Probability distribution of vl gP = P(\I!((f)(j — i) = «), where a €
{—00,0}.

e Probability distribution of o, pg) = P(\Ill(,é)(i — j) = «), where a €
{—O0,00}.

For the Gallager-A decoder, the probability distributions of \I&(f) and \115,‘) are dis-
crete. But for sum-product decoder, the probability distributions of \Il((f) and \Ilq(,e)
are continuous. Therefore, it is not possible to calculate analytically the probability
distribution for each single value of .. This is why the Monte-Carlo [51] method is
applied here.

The Monte-Carlo method consists in generating K CN and VN messages, in
order to estimate their probability distribution. M,,[K]| and M., [K] will store the
generated values of \I/,(f) and \I&(f), and the K elements in these two vectors follow
the probability distributions of \Ilgg) and \111(,@). As before, we consider the all-zero
codeword assumption for X, and a BSC for Y. Then the initial LLR is equal to
m; = log pioq =
P(zi=1ly;)
steps are as follows.

(1—2y;) log %. The Monte Carlo density evolution algorithm

e The value of M,,[K] are initialized with LLR information. M,,[k] = £my, k €
{1,--+ , K} and P(My,[k] = my) = p, P(Mynlk] = —myg) =1 —p.

e CN update: We apply the equation (3.23) to update the values of all the
elements in M, [K]. For each element, we choose randomly d. — 1 elements
from M,,[K] and apply (3.23) over these elements.

e VN update: We apply the equation (3.24) to update the values of all the
elements in M,,[K]. For each element, we choose randomly d,, — 1 elements
from M., [K] and apply (3.24) over these elements.

e Repeat the CN update and VN update for L iterations. The final error prob-
ability is evaluated as

o _ U s Mun[k] < 0}

e i (3.32)

The highest crossover probability p which satisfies , ligl Pe(g) = 0 will be defined as
—+00
the threshold e.

3.4 Protograph optimization

LDPC codes performance depend on the underlying protograph, and this is why it
is necessary to optimize the protograph for a given rate. Here, we apply Differential
Evolution [52] for protograph optimization.
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3.4.1 Differential Evolution

Differential Evolution is a genetic optimization algorithm, which we now describe.
We consider an optimization problem with D parameters represented by a vector
xp and a cost function f(zp) to minimize. To apply Differential Evolution, we first

randomly generate an initial population of NP vectors xl(f)j),z‘ € {1,---,NP},j €
{1,---,D}. We usually set 5D < NP < 10D. Then we apply some recombina-
(0) (1)

tion operations among vectors x; ; in order to obtain NP trial vectors u, IRLAES
{1,--- ,NP},j € {1,--- ,D}. A new population xglj) is then generated, where
1) . 1 0
a Uz(,j), it fulV) < f(2)
T = (3.33)
1,J (0) .
;s otherwise

The recombination and selection operations are repeated for several iterations. The
number of iterations is defined as G. The vector xgg) with best cost function value
in the last iteration is chosen as the optimized solution.

The steps of Differential Evolution are precisely detailed as follows:

Mutation A vector of the population is defined as xg?, where i € {1,2,..., NP},
j€{1,2,...,D} and g represents the current iteration. At iteration g + 1, the NP

mutant vectors are generated as

L) — xz(:qj) + K- (x(g) _ xz(:‘lj)) +F. (x(g) ) ) (3.34)

i, T1,J T2, r3,J
where i = 1,2,...,NP, j = 1,2,...,D. The indices r1,r2,73 € {1,2,..., NP} are
chosen randomly. For a given i, r1,r9,r3 must be different from each other. K is
called the combination factor, and it is often simplified as K = 1. F is the scaling
factor and it takes its value in [0, 2].

Crossover The population of iterations g is mixed with the newly generated mu-

tant vectors to generate the trial vectors uggjﬂ)

(3.35)

Jﬁnz?ﬁﬂ)ﬁ(%§CM(nj:”

b a;z(-?j) if (aj >CR) and j #r;
where i = 1,2,...,NP, j = 1,2,...,D; r; € {1,2,...,D} is chosen randomly for
each sample ¢ in the population; C'R is a parameter of the algorithm called the
crossover constant and it takes its value in [0,1]; a; € [0, 1] is chosen randomly.

Selection We now select the best vector between trial vector uggjﬂ) and current
iteration vector :cz(%) by using the cost function f as
1) . +1 ~
(g+1) uggj ) 1ff(u§g )) < f(xgg)), 1=1,2,...,NP
Tijg T Y..@ - (3.36)
T otherwise

In this way, we generate a new population which reduces the value of cost function
compared to the population of the previous iteration.
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3.4.2 Optimization of protographs using Differential Evolution

In this section, we propose a modification of the Differential Evolution algorithm
in order to optimize protographs. In this case, the D-dimensional parameter vector
rp is now a matrix of dimension S,, X S,,. We denote by 7 the maximum value
of elements in protograph. When we generate randomly the initial population of
NP elements, the values xgg])mjn €{0,1,...,7} are integers, with ¢ € {1,2,..., NP},
Jm €4{1,...,Sm}, jn € {1,...,Sn}. Then we apply the three operators of Differen-
tial Evolution (Mutation, Crossover, Selection) in a slightly different way:

As our protograph contain only integers and non negative elements, several adap-
tations are made during mutation. We set combination factor K = 1 and

o9 abs (round (az(g) .+ F- (az(g) — 39 ))) (3.37)

5Jmsdn T1,Jm,Jn T2,Jm;Jn T3,JmJIn

where "abs" is the operation to take absolute value and "round" is the rounding off
operation. The cost function is set as the threshold of the protograph calculated by
using density evolution (see section 3.3). After G iterations, the protograph with
the best threshold will be selected as the result of optimization.

3.4.3 Optimization results

Here we apply the differential evolution method to optimize the protograph. For
rate R =1/2, R = S—:’; = 1/2, the maximum threshold we can get is pop: = 0.11
[26]. The parameters used in differential evolution are as follows:

e The number of vectors in the population: NP = 30.

e CR=0.1,and F =1.

e The iteration number of differential evolution operations: G = 30.
For the cost function, the parameters used in density evolution are:

e The crossover probability: p € [0.1,0.2], with a pace of 0.005.

e Length of Monte-Carlo simulation vector: W = round ( Siogg”n ).

e The decoding iteration number: L = 100.

With different numbers of S,,, Sy, T, we get the optimization results in Table 3.1.
In our optimizations, the best protographs we found have dimensions S, =
2,5, = 4. The three values 7 = 3,6,9 give the same threshold but since too many
connections in the LDPC matrix may generate more short cycles and reduce the
code performance, we finally choose 7 = 3. At the end the retained protograph is

121 3
3_[1 Ll 6] (3.38)

This protograph will later be used to generate the LDPC matrix.
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Sm | Sn | T Threshold Optimized protograph
1|23 0.09 [5 2]
1|2 |6|] CR=01;D=1x2,NP=15 0.09 [4 2]
1|29 0.09 [4 2]
1 2 1 3]
2 | 4|3 0.1 111
1 1 5 1]
2 | 46| CR=01;D=2x4;NP =60 0.1 IRER
1 1 1 6]
2 1419 0.1 > 11 9
342 211
316 |4|CR=01;D=3x6;NP=135 0.07 312 2 2 2
1 21311
6 2 4 32113
4 4 3 42 41 2
4 | 8 |4 CR=01;D=4x8 NP =240 0.05 291 4923 41
25141125

Table 3.1: Construction of protograph based on differential evolution

3.5 LDPC codes construction

3.5.1 Progressive Edge-Growth (PEG) construction

In a parity check matrix H, the connections between VNs and CNs generate cycles,
and the length of the shortest cycle is called girth. The performance of a given H
depends on the girth and on the number of short cycles.

PEG [37] is an algorithm to construct H with girth as large as possible, and with
reduced number of short cycles. When it wants to add a new edge to a given VN,
the algorithm finds the most distant CN and then it places the new edge connecting
the VN and this most distant CN.

Here we first describe the PEG algorithm for regular LDPC codes, for which
the CN degree is denoted by d., and the VN degree is denoted by d,. Within the
algorithm, the current VN degree of VN z; is denoted by d,[i],i € {1,...,n}, the
current CN degree of CN w; is denoted by 6.[j],j € {1,...,m}, &,[i] and d.[j] are
initialized to zero. The path length from a CN u; to a VN z; is denoted by d(u;, ;).
Finally, given m,n, d., d,, the steps of the PEG algorithm are as follows:

Variable nodes are processed one by one from x1 to x,. Given the ~th VN z;,
connections are progressively added until its VN degree reaches the value d,: d,[i] =
d,. We then go to next VN z;4.1. When adding one connection, two cases may occur.

Case 1 If the current VN x; is not connected to any CNs or there exist some CNs
which are not reachable and their CN degree smaller than d., then choose randomly
one among these CNs with lowest CN degree d.[j]. New connection will be made
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between x; and this selected CN, and the CN degree information will be incremented
by 1: 50[]] = 50[]] + 1.

Case 2 If all the CNs are reachable for current VN z;, choose the CN u; with
largest distance d(u;,x;) and their CN degree should be smaller than d.. If there
exist a lot of CNs having largest girth, choose randomly one CN u; with least CN
degree 6.[j]. When this new connection is added, we also update d.[j] = d.[j] + 1.

We continue to add new connections until all the VN degree d, are satisfied:
dli] = dy,Vi e {1,--- ,n}.

The irregular LDPC codes construction follows the same steps, the difference is
that the CN degree d. and VN degree d,, are now vectors d.[m] and d,[n].

3.5.2 LDPC codes construction using protograph based on PEG
algorithm

A PEG algorithm can also be used in order to construct the parity check matrix H
from a protograph [33|. The steps are almost the same, but the difference is that
now the VN and CN degree distributions should follow the values in protograph.
So the VN and CN types need to be declared, and they should be updated when
adding a new edge.

3.6 Performance comparison of the three decoders

We now compare the decoding performance of the three decoding algorithms (Bit-
flipping, Gallager-A, Sum-product). With a Wimax code [1] of length n = 504, by
using 10000 tests, 50 iterations for decoding, we get the results in Figure 3.4. We
also generate a LDPC matrix of length n = 1024 from a protograph s, where

(3.39)

— == N

1
2
1
1

el e )

1
0
1
1

O = = O

1
1
0
1

N = = =

1
1
2
1

Applying also 10000 tests and 50 iterations, we get the results in Figure 3.5.

In both cases, we observe that the Sum-product decoder has a significantly better
performance than Gallager-A decoder and Bit-flipping decoder. This is why it will
be considered in the following. Nevertheless, Bit-flipping and Gallager-A decoder
are less complex than Sum-product decoder, and they can be used in the case of
limited computational resources.

For the LDPC code construction in Section 3.5, the coding rate R is fixed once
for all. But if the available side information Y®) comes from a set of possible side
informations {Y(l), e ,Y(T)}, sending the data at fixed rate R will cause either a
rate loss or a decoding failure. This is why we now describe rate-adaptive LDPC code
constructions that allow to adapt the coding rate depending on the side information
Y (®) available at the decoder. In channel coding, we refer to "rate-compatible LDPC
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Figure 3.4: LDPC decoder with n=504 Tests=10000 iterations=50 using Wimax
code [1]
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Figure 3.5: LDPC decoder with n=1024 Tests=10000 iterations=50 using proto-
graph given by (3.39)

codes", while in source coding, we refer to "rate-adaptive LDPC codes". We first
describe existing rate-compatible code constructions in channel coding, and then
present methods developed for source coding with side information.
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3.7 Rate-compatible LDPC codes for channel coding

In this section, we present two standard methods for the construction of rate-
compatible LDPC codes for channel coding. These two methods are Puncturing [53]
and Parity Check Matrix extension [54]. We also explain the limitations of these
methods when applied to source coding.

3.7.1 Puncturing

Puncturing [53] is a rate compatible method that starts from a high rate and achieves
a lower rate by not sending several punctured codeword bits. Recall that X™ is the
codeword obtained with a channel coding rate R. After puncturing, only a part
of the bits of X™ will be transmitted over the channel. The conserved codeword
bits after puncturing are defined by r™(1=%) as shown in Figure 3.6, where ¢ is the
proportion of punctured bits.

So as to compute the channel coding rate after puncturing, we have to introduce
new useful notations. Let us define A, (respectively j) as the fraction of VNs
(respectively CNs) having k edges. The relation between Ay (%) and \p (pg) in
(3.3) is

Sp= ik PR L (3.40)

d’Umax deax

> /K > /K
k=2 =2

The puncturing proportion 79 (z) is defined as

d’Umax

7O (z) = Z w,(go)a:k_l (3.41)
k=2

where 0 < 7T](€0) <1, w,(co) represents the puncturing fraction for variable nodes
of degree k. Then the puncturing fraction ¢ that represents the total puncturing
proportion on the n-length source code can be expressed as

d

VUmax d’Umax

om0 Sk du
(= =2 =Y Ao (3.42)
3 i/ b=
k=2
The rate of the punctured LDPC code is then [53]
R ()\,p,ﬂ'(o)> - Rl(i’é’) (3.43)

In order to design a good rate-compatible code, one can design puncturing pro-
portions 77,(90) for all k, that minimize the SNR threshold for a given puncturing
fraction ¢. Alternatively, we can fix a target SNR threshold and maximize the

puncturing fraction ¢ and puncturing proportions ﬂ,go) while satisfying the thresh-
old.
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3.7.1.1 Puncturing in source coding

Uk Xn Xn(l-()
Channel COding —> G > Puncturing > Channel > D >
Y”T
xn Um Um(l-C)
Source COdlng E—— H > Puncturing > D >

Figure 3.6: Puncturing in channel coding and in source coding. D is the decoder.
In channel coding, G is the generator matrix, and in source coding, H is the parity
check matrix.

As shown in Figure 3.6, puncturing can also be applied in source coding. After
puncturing, the codeword U™ is shortened to U™(1~%) and the puncturing propor-
tions may also be optimized. Unfortunately, it is shown in [55] that puncturing
on the codeword U fastly destroys the code structure and leads to very poor per-
formance. As a result, puncturing is not a good solution for our source coding
problem.

3.7.2 Parity Check Matrix extension

Parity check matrix extension [54] is a channel coding rate-compatible construction
that starts from an initial low rate LDPC code and then constructs the higher
rates.  Figure 3.7 shows an example of extension of a PEG-constructed LDPC
code. It starts from an initial LDPC code Hy of rate Ry = 8/13 with dimensions
n = 1664,k = 640. In order to encode the information sequence of length k =
n —m into a longer codeword (n = 1664 + 768), the original parity check matrix is
concatenated with three other matrices. This method fills the left-down matrix Hn;
with zero and uniform matrix and fills the right-up matrix with zeros in order to add
a stronger dependency between the columns of the initial parity-check matrix and
the newly added columns. The right-down matrix Heyt which permits to generate
new columns is constructed with a PEG algorithm with zeros and with a given fixed
matrix hext in the diagonal. Using PEG for both the initial matrix Hy and hext
improves the girth distribution of the Tanner Graph.

Unfortunately, the Extension method cannot be applied to source coding. Indeed,
in source coding, the dimension n is fixed and given by the source sequence to be
compressed.

Since most rate-compatible methods used in channel coding are based either on
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- n=1664 columns _ 768 columns _
A —~ )
= Parity-check matrix Hq 0
640 of the irreqular rate 8-13 LDPC code
rows
[
K =
768
rows Huni Hext
Y _ )

Figure 3.7: Extension of rate-8/13 PEG-constructed LDPC code with n = 1024

puncturing or on extension, several alternative methods were specifically designed
for source coding. We now describe these methods.

3.8 Rate-adaptive LDPC codes for source coding

We now describe two rate-adaptive code constructions for source coding: Rate-

less [39, 56| and LDPCA [55].

3.8.1 Rateless

The rate-adaptive Rateless scheme [39, 56| starts by constructing an initial low-rate
LDPC code. If a higher rate is needed, a part of the source bits ™ will be sent in
addition to the syndrome u™. In order to select the additional transmitted source
bit ", we choose the most unreliable bits of ™ after applying an LDPC decoder.
For this, we choose the bits x; with the lowest absolute value |Q;|, where Q; is
defined in (3.25). However, the major drawback of the Rateless scheme is that it
difficult to construct good low rate LDPC codes [57, 38]*, and a bad initial low rate
code will cause poor performance at any considered higher rate. Therefore, it is not
desirable to apply the Rateless construction from very low rates.

'Low rate LDPC codes for source coding correspond to high rate LDPC codes for channel
coding
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3.8.2 LDPCA

U]_ a]_
Ll O
D)
D)
O
U4 a4

(b)

Figure 3.8: (a) The LDPCA encoder for rate R = 1, (b) The LDPCA encoder for
rate R =1/2

On the opposite, the LDPCA scheme [55] starts from a high-rate LDPC code. It

then computes new accumulated symbols a™ = [ay, az, - ,amy]? from the syndrome
u™ (3.1) as

ap = uy,

a; = a;—1 + u;, Vi= {2, s ,m} , (344)

where the binary sum in (3.44) corresponds to XOR operations. If a lower rate
is demanded, only a part of the symbols (ay,as,--- ,a,) will be sent. For in-
stance, if the original rate is R and a rate R/2 is demanded, only the even symbols
as, a4, ag, - - - will be transmitted. The decoder will then compute all the differences
a; — a;—9 = u; + u;—1, before applying a BP decoder in order to estimate the source
vector " from all the obtained XOR sums wu; + u;—1.

In this construction, puncturing the source symbols a; rather than the syndrome
bits u; was shown to better preserve the code structure and to greatly improve the
decoding performance [55|. However, in the LDPCA construction, the accumulator
structure (3.44) is fixed and does not allow for an optimization of the combinations
of syndrome symbols u; that are used by the decoder. The accumulator structure
may in particular induce short cycles in the lowest rates and eliminate some source
bits from the CN constraints. In [58], the LDPCA structure is improved by consid-
ering a non-regular accumulator. The non-regular accumulator is designed for any
rate of interest by optimizing its polynomial degree distribution under asymptotic
conditions. Unfortunately, [58] does not propose any finite-length code construction
that could solve the short cycles and VN elimination issues.
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3.8.3 Method starting from rate 1/2

Due to the drawbacks of Rateless and LDPCA schemes, an intermediate solution was
proposed in [59]. It first constructs an initial code of rate R = 1/2. It then applies
either the LDPCA method to obtain rates lower than 1/2 or the Rateless method
for rates higher than 1/2. In this way, the shortage of the Rateless construction can
be avoided, but the drawbacks of LDPCA remain.

In this thesis, we thus propose a novel rate-adaptive construction that replaces
the LDPCA part in the solution of [59]. The construction we propose replaces
the regular LDPCA accumulator described in (3.44) by a non-regular structure.
In addition, in our construction, this non-regular structure is also described by
a protograph. We show that the daughter code protographs can be calculated
explicitly from the non-regular accumulator protograph and from the mother code
protograph. This allows us to optimize the asymptotic code performance by carefully
selecting the code protograph at all rates. We also propose a finite length code
construction method that permits to reduce the amount of short cycles in all the
considered codes. The proposed method is thus well adapted to the construction of
short length LDPC codes.

3.9 Conclusion

In this Chapter, we presented existing methods for the construction and decoding
of LDPC source codes. We also introduced existing rate-adaptive source coding
solutions based on LDPC codes. Since existing methods show some limitations and
drawbacks, we now propose two novel rate-adaptive constructions for source coding.
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In this Chapter, we introduce our novel rate-adaptive code constructions for
source coding. The first Section 4.1 is common to both methods.
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Figure 4.1: The left part of the figure shows the combination of 77 with T7_9.
The right part of the figure shows the resulting 75. Here, the matrix Hy_,5 is full
rank, and one may choose between S = {s1,s2}, " = {s3,s4}, S' = {s1,84}, or
S' = {s2,3}.

4.1 Rate-adaptive code construction

The rate-adaptive code design method we propose in this thesis is based on a rate-
adaptive code structure initially proposed in [40, 60]. For the sake of clarity, this
section describes the rate-adaptive code structure of [40, 60]. This construction
starts from a mother code of the highest rate and then builds a sequence of daughter
codes of lower rates. This section only describes the construction of one code of rate
Ry from a code of rate R; > Ro. This construction is generalized to more rates later
in the thesis.

4.1.1 Rate-adaptive code construction

In the rate-adaptive construction of [40, 60|, the mother code is described by a parity
check matrix H; of size m; x n with coding rate Ry = mj/n. The Tanner graph T;
connects then VNs X' = {xy1,--- ,x,} tom; CNs S = {s1,--- , S, }. The matrix H;
is constructed from a protograph &7 according to the code design method described
in Section 3.1.2. From the mother matrix H;, we want to construct a daughter
matrix Ha of size mg X n, with mg < my, and rate Ry = ma/n < Rj. The Tanner
graph 7Ty will connect the n VNs X to mo CNs U = {uq, -, U, }-

In the considered construction, the daughter matrix Hs and the mother matrix
H; are linked by an intermediate matrix Hy_,o of size my X mq such that

Hy = Hy_oH,. (4.1)

The Tanner graph 77,9 of H1_,5 connects the m; CNs S of 77 to the my CNsU of 7.
Figure 4.1 shows an example of the construction of 75 from 77 and 71_,2. Note that
LDPCA codes can be seen as a particular case of this construction. The intermediate
matrix Hj_,o should be chosen not only to give a good decoding performance for
Hs, but also to allow H; and Hs to be rate-adaptive in a sense we now describe.
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4.1.2 Rate adaptive condition

In the construction of [40, 60], the following transmission rules are set in order to
allow H; and Hs related by (4.1) to be rate-adaptive. In order to get a rate Ra, we
simply transmit all the syndrome values u2, which corresponds to ms equations
defined by the set Y. The decoding is then realized with the matrix Hy. In order
to get a rate Ry, we transmit all syndrome values in ™2 but also a subset S’ C S
of size m1; — mg of the values in s™!. This guarantees that the code construction
is incremental and that the storage rate is given by R; = max(R1, R2) < R; + Ra.
However, in order to use the matrix H; for decoding, the receiver must be able to
recover the full syndrome s™! from u™2 and S’. The code that results from the
choice of (Hy, Hy—2, S’) is thus said to be rate-adaptive if is satisfies the following
condition.

Definition 1 (|40, 60]) The sets U and S’ define a system of mi equations with
mq unknown variables S. If this system has a unique solution, then the triplet (Hy,
Hy_2, S') is said to be a rate-adaptive code.

The following proposition gives a simple condition that permits to verify whether
a given intermediate matrix Hi_,9 gives a rate-adaptive code.

Proposition 1 ([40, 60]) If the matric Hi_o is full rank, then there exists a set
S" C S of size m; —ma such that (Hy, Hi_2, S’) is a rate-adaptive code.

The above proposition shows that if Hy_,5 is full rank, it is always possible
to find a set S’ that ensures that H; and Hs are rate-adaptive. The decoding
performance of H; does not depend on the choice of the set S’, since at rate Ry, the
decoder uses H; and at rate Ro, the decoder uses Hs. On the opposite, according
to (4.1), the decoding performance of the matrix Hy heavily depends on the matrix
Hi_5. In [40], the matrix Hj_ is constructed from an exhaustive search, which
is hardly feasible when the codeword length increases (from 100 bits). In [60], a
more efficient method is proposed to construct the intermediate matrix Hq_.o so
as to avoid short cycles in Hy. However, the method of [60] does not optimize the
theoretical threshold of the degree distribution of Hs, which also influences the code
performance. In this thesis, we propose a novel method based on protographs for
the design of the intermediate matrix Hi_,o. This novel method not only allows to
optimize the threshold of the protograph of Hs, but also to reduce the amount of
short cycles in Hs.

4.2 Intermediate matrix construction without protograph

This section describes our first novel method for the construction of the interme-
diate matrix Hj_,o introduced in Section 4.1. The proposed construction seeks to
minimize the threshold of new constructed parity check matrix Hs at rate Ry by
reducing the amount of short cycles.
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X1

X2
U,

X4

Figure 4.2: Since the VN z3 appears in both s; and ss, combining these CNs into
u1 makes x3 disappear in Hs.

As the decoding performance of the matrix Hs heavily depends on the matrix
Hy_,5, the careful choice of the connections in 77_,9 is very important. Constructing
Hq_,o can be seen as combining the CNs S of H; in order to create the CNs U of
the new parity check matrix Hs. Combining the CNs S can however cause three
issues that could degrade the decoding performance of Ho.

First, combining some of the CNs of H; could degrade the connectivity of some
VNs in Hj, see Figure 4.2 for an example. In the worst case, some VNs may not
be connected anymore to any CNs in Hs. Second, combining H; and Hi_o may
introduce short cycles in Hs which could severely degrade the decoding performance.
As a third issue, the matrix Hq_,o has to be full rank in order to satisfy the rate-
adaptive condition described in Section 4.1.2. The construction method we now
propose for Hi_,o addresses these three issues through the choice of the degree
distribution and of the connections in Hq_s9.

4.2.1 Degree distribution for H;_,,

In order to be able to construct the intermediate matrix Hi_o in a systematic way,
we first need to choose a degree distribution for Hi_9. As a first constraint, we
impose that each CN s; € S is connected to exactly one CN of 4. We also impose
that each u; € U is connected to one or more CN of S. These two conditions ensure
that Hi_9 will be full rank. In addition, the CNs in S are all of degree 1, and we
only need to describe the degree distribution of the u; € U.

We denote the degree distribution of the CNs in U in Hi_,5 as («, d), where oo =
[aq, - ,ak], d = [dy,--- ,dk], and K represents the number of possible degrees.
The value ay, denotes the proportion of CNs of U connected to exactly dj symbols
of §. The degree distribution (a, d) satisfies

my

K
— Z apdy,. (4'2)
k=1

m2
Note that the degree distribution (a, d) of the CNs in ¢ in Hj_,5 is not the same
as the degree distribution of the CNs U in Hz. We could think of optimizing the
degree distribution (a,d) in Hj_o by applying density evolution on the resulting

degree distribution in Hs. However, here, in order to focus on the finite length
code construction, we do not consider optimization from density evolution and we
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simply choose the degrees dj as small as possible. For example, if Ry = 3/8, we set
d = [1,2] and the proportions «; and ag are set to a; = 1/2, g = 1/2. Setting low
degrees in Hi_,o increases the chances of avoiding short cycles in the resulting Hs.

4.2.2 Connections in H;_,,

We now explain how to choose the connections between S and U according to the
degree distribution (a,d). In our method, the degree of each CN u; € U is selected
at random according to the degree distribution (a,d). Then, whatever the degree
dj, of a given u;, we impose the following two conditions in order to choose the CNs
of S that will be connected to u;:

1. We choose dj, CNs in S that are not connected to any common VN. This
permits to avoid eliminating VN connections in the resulting Ho.

2. We choose the di CNs in S in order to minimize the number of resulting cycles
in H2.

Condition 1) is very easy to verify while condition 2) requires to count the
number of cycles in Hs. There exists several methods to calculate the number of
shorts cycles in the parity check matrix of an LDPC codes. Here, since we are
mainly concerned with short cycles, we choose the method proposed in [61] which
is very efficient for the counting of short cycles of length 4, 6, and 8.

Then, in order to construct u;, we need to select d, CNs of S. The first CN s; is
selected at random from the set of CNs that have not yet been used in any already
constructed u; The next d — 1 CNs s; are chosen so as to minimize the number
of length-4, length-6, and length-8 cycles introduced in Hz by the newly created u;.
In order to select the best dp — 1 CNs s;, we try T possible combinations of dy — 1
CNs selected at random from the set of remaining CNs. As an example, Algorithm
1 shows the algorithm that is used in a particular case (a,d) = (1,2) when we only
want to minimize the number of length-4 cycles.

4.2.3 Construction of the set S’

The degree distribution defined in Section 4.2.1 as well as the code construction
proposed in Section 4.3.3 ensure that the matrix Hy_,s is full rank. This guarantees
that the rate-adaptive condition presented in Section 4.1.1 is satisfied. In order to
completely define the rate-adaptive code (Hy, Hi—2,S5"), we need to define a set S’
of symbols of S that will be sent together with the set U in order to obtain the rate
Ry.

The set S” will serve to solve a system of mso equations U with my unknowns
S\ S’. For each equation u; € U of degree di, we hence decide to put di — 1 of the
di, CNs connected to u; into S’. For example, if u; = s1 @ s9 @ s3, 51 and sy can be
placed into S’. This strategy gives that the set S’ is, as expected, composed by

K
Zak(dk - 1)m2 =1mi1 — My (4.3)
k=1
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Algorithm 1 Construction of the intermediate matrix Hq_,o in the particular case

(Qv d) = (17 2)

Fix T, S = {1,2--- ,m1}

for j =1 to mo do
Fix MinCycle = oo

Select a value p at random among the set S
Remove p from the set .S

fort=1to T do

Select a value g at random among the set S
if s, and s, are connected to a common VN, then

break
else

Count the number NbCycles of length-4 cycles in Ha with j-th line Hs ; =

Hl,p D Hl,q

if NbCycles < MinCycle then
MinCycle = NbCycles
Set gchoosen = q
Set HQ,j = Hl,p S Hl,qchoosen

different CNs of S. It also guarantees that it is always possible to reconstruct the

set S from U and S’.
Ss3 = uy1 D s1 D s2.

In the above example, it indeed suffices to recover s3 as

row 1

H, ,=|row s, ® row s,
row 1 (S.,50) row m
H.,=| row?2 p7a
=
row m .

row 1
Ha2tq row Sp ® NOW Sq ¢

rowm

m-1

m-1

NbCycles(H; ;)

NbCycles(H, )

Figure 4.3: Schema of Algo 1

Select (sp,sq):
Min{NbCycles}

4.3 Intermediate matrix construction with protograph

This section describes our second novel method for the construction of the inter-

mediate matrix Hj_,o introduced in Section 4.1.

This method is based on the

Y

H
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optimization of the code protographs. The proposed construction seeks to minimize
the protograph threshold at rate Ro, and also to reduce the amount of short cycles
in the parity check matrix Hs.

4.3.1 Protograph S, of parity check matrix H,

In order to construct a good parity check matrix Hs from the initial matrix H;, we
first want to select a protograph S with a good theoretical threshold. In this section,
we consider the following notation. Generally speaking, consider the protograph
Sy of size Sy, x S, associated with the matrix Hy, where g € {1,2,1 — 2}.
As a particular case, note that S,,, ., = S, and S,, ., = Sp,,. For all (i,7) €
{1, ,Sm,} x {1,---,8n,}, denote by S( 9 the coefficient at the i-th row, j-th

column of ;. In the protograph S, the CN types are denoted Ag ), e ,A(Sg) and
"Lg

the VN types are denoted B%g), “ee ,ng) . In the parity check matrix Hy, the set of
ng
CNs of type Agg) is denoted .Agg) and the set of VNs of type B](g) is denoted Bj(g).

Finally, denote by h,gg ) the k-th row of H ¢ and denote by hgglz the coefficient at the
¢-th row, k-th column of H,. 7

Based on the above notation, the following proposition gives the relation between
the three protographs S1, So, and S1_,9.

Proposition 2 Consider a matriz Hy with protograph S1 of size Sy, X Sy, a matrix
Hi_,5 with protograph Si_2 of size Sy, X Spm,, and a matric Hy = Hi_,oH;. Also
consider the following two assumptions:

1. Type structure: for all j € {1,-+-,Sm, }, Bj(.l_ﬂ) = Ag.l),

2. No VN elimination: For alll € {1,--- ,ma}, denote by/\/ ) the positions of
the non-zero components in ﬁél_ﬂ). Then, Yk, ko € -Afz (1=2) such that k1 # ko,

and Vi € {1,--- ,n}, h,(gll)l # h,(;)l
If these two assumptions are fulfilled, then the matrix
Sz = 815281 (4.4)

is of size Sy, X Sy and it is a protograph of the matriz Hy. The operation in (4.4)
corresponds to standard matriz multiplication over the field of real numbers.

In this proof, for clarity, we denote by @ the modulo two sums and by > the
standard sums over the field of real numbers. With the above notation, relation (4.1)
can be restated row-wise as

Sy

@ h(1—>2 7(1) @ @ hl(cl)' (4'5>

I=1 keB( 7Y

st by P20
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Relation (4.5) depends on index ¢ only through héllj 2)

. This implies that, in (4.5)

122 As a result, for all i €

the type combination is the same for every ¢ € .AZ(-
{1, ,Sm, }, A§2) = A,El_ﬂ). In the same way, deriving relation (4.1) column-wise
permits to show that Vj € {1,---,S,}, 83(‘2) = B§1).

Now consider i € {1, -+ , S, },ve{l,---,S,},and £ € AZ(?). Then, from (4.5),

Sony
() _ (2) _ (1)
siw= 2 lu=2, | D Ml (4.6)
ueBP weB® | 7=1 kij(,l_’Q)
st Ay P20

In the vector ﬁg) with k € Bj(l_ﬂ), there are sglv) non-zero values over the components
Iy such that u € 81(,2) . In addition, for k € Bj(-l_ﬂ), there are sg}j_m non-zero values
over the components h@lk_) D Asa result, and since there is not VN elimination,
Sy
2 1—2) (2
=S a
j=1

which implies (4.4).

In Proposition 2, assumption 1) is required because various interleaving structures
may be used to construct e.g. a matrix H; from a given protograph &;. This
assumption guarantees that the same interleaving structure is used for the CNs
of 8§ and the VNs of S;_,9. Further, assumption 2 guarantees that relation (4.1)
does not eliminate any VN from the parity check equations in Hs. This permits
to preserve the code structure that will be characterized by protograph Ss. Then,
by comparing (4.1) and (4.4), we observe that there is the same relation between
the protographs S, S, and between the parity check matrices Hy, Ho. Further,
according to (4.4), the problem of finding a good protograph Sy for Hy can be
reduced to finding the intermediate protograph Sj_,o that maximizes the threshold
of 82.

4.3.2 Optimization of the intermediate protograph &; .,

The protograph S;_so of size Sp,, X Sp,, must be full rank in order to satisfy the
rate-adaptive condition defined in Section 4.1.2. However, even if S,,, and S,,, are
small, there is still a lot of possible protographs S;_,5. This is why, here, we impose
that each row of S;_.o has either 1 or 2 non-zero components, that each column has
exactly 1 non-zero component, and that all the non-zero components are equal to 1.
These constraints are equivalent to considering that each row of Ss is either equal
to a row of &1 or equal to the sum of two rows of S;. They limit the number of
possible 81,9 without being too restrictive. They will also make the intermediate
matrix Hy_,o quite sparse, which will help limiting the amount of short cycles in
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the matrix Hs. Finally, we observe that these constraints provide satisfactory rate-
adaptive code constructions in our simulations. The design algorithms described in
the remaining of the thesis can also be easily generalized to other constraints on the
intermediate protograph.

For the optimization, we then generate all the possible intermediate protographs
S1-2 that satisfy the above two conditions (S1—2 is full rank and each of its rows
has either 1 or 2 non-zero components), and select the intermediate protograph that
maximizes the threshold of the protograph Sy calculated from (4.4).

The intermediate protograph S;_,5 defines the degree distribution of the inter-
mediate matrix Hqi_,9. It also indicates the rows of H; that can be combined in
order to construct the daughter matrix Ho. We would like those rows to be com-
bined in the best possible way in order to produce Hs. In particular, we would like
to avoid both short circles and VN elimination during the construction of Hs. In
the following, we propose an algorithm that constructs Hs from these conditions.

4.3.3 Algorithm Proto-Circle: connections in H;_,,

Algorithm 2 Proto-Circle: construction of the low-rate matrix Ha
Inputs: Hi, S1, S12, K, Ha = {¢}
for : =1 to 5, do

if i-th row of S1_,9 has two non-zero components sl(.yljl_ﬂ), 853?2) then
for £ =1 to my/Sp, do
Pick u at random in Aﬁ) and vy, --,vg at random in Ag) such that

Vke{l,- K}, Ywe {1, mi}, iVl =
For all k € {1,--- , K}, count the number Ny of length-4 cycles in Hy U
(b + i)y
For the index k* that minimizes Ny, do Hy < Ho U {ﬁ&l) + Ql(,?*}
Remove u from Aﬁ) and v+ from Ag)

else

for £ =1 to my/Sm, do

Pick u at random in Aﬁ) (s
u from Aﬁ)

outputs: Hy, N4 (number of length-4 cycles in Hs)

(1—-2
1,1

) # 0) and do Hy < Ha U {h&l)}, remove

In Section 4.3.2, we selected the intermediate protograph S5 that gives the
protograph So with highest threshold. We now explain how to construct Hi_,s in
order to follow the degree distribution defined by protograph Sj_,2, but also to limit
the amount of short cycles in Hy and to avoid VN elimination. Applying the PEG
algorithm directly on Hj_,o would reduce the amount of short cycles on Hq_,o but
would not guarantee that the number of cycles in Hy is reduced as well. As an
alternative, the algorithm Proto-Circle we propose is described in Algorithm 2. It
constructs one row of Hs at a time by combining rows of Hy, which can be regarded
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as defining the coefficients of the intermediate matrix Hy_,o. For each new row of
Hy, we want to limit the number of short cycles that are added to the parity check
matrix Hs.

According to section 4.3.2, each row of the protograph Si_.o has either 1 or 2
non-zero components. The rows of S7_,9 that have 2 non-zero components indicate
that two rows of H; of some given types should be combined in order to obtain one
row of Hy. More formally, assume that the i-th row of S1_,9 is such that 5(1%2) =

i =
%?2) =1 (j1 # j2). This means that two rows of H; of types Ag) and Ag)

should be combined in order to obtain one row of Hs of type A@(g). For this, we select

at random one row @5}) of Hy of type Aﬁ) and K rows ﬁ&), . @%{) of type Ag)

that Vk € {1,--- K}, Vw € {1,--- ,m1}, hq(jllzw.h%),w = 0 (binary AND operation).
This condition avoids VN elimination. The algorithm counts the number N, of
length-4 cycles that would be added if a new row ﬁ(ul) + ﬁgi) was added to Hy. The
number of length-4 cycles in Hy is computed with the algorithm proposed in [61].
Note that the algorithm can be easily modified to also consider larger cycles. The

and s

such

algorithm then chooses the row combination that adds least cycles in Ha.
Once all the lines of types Aﬁ) and Ag) have been combined, the algorithm
passes to the next row of S1_9 with two non-zero components and repeats the

same process. It then processes the rows of S1_,0 with one non-zero component.
(1—=2)
g =1
Then, all the lines of H; of type Ag}) are placed into Hs. The placement order does
not have any influence on the amount of cycles in the matrix Hs.

For instance, assume that row i’ of S;_,2 has one non-zero component s

After constructing all the rows of Hj, the algorithm counts the total number
of length-4 cycles in the newly created Hs. At the end, repeating the algorithm
Proto-Circle several times allows us to choose the matrix Ho with least short cycles.

4.3.4 Construction of the set 5’

The intermediate matrix Hy_,o follows the structure of the protograph S;_,2. As a
result, according to Section 4.3.2, each of its lines has either 1 or 2 non-zero com-
ponents. Further, the algorithm Proto-Circle introduced in Section 4.3.3 imposes
that each row of H; participates to exactly one combination for the constructions of
the rows of Hy. These two conditions guarantee that Hi_,9 is full-rank so that the
rate-adaptive condition presented in Section 4.1.2 is satisfied. However, in order to
completely define the rate-adaptive code (Hy, Hi_2,5"), we need to define a set S’
of symbols of S that will be sent together with the set U in order to obtain the rate
Ry.

The set S” will serve to solve a system of m; equations U with m; unknowns
S\ S’. For each syndrome symbol u; € U of degree dj, in Hy_,2, we hence decide to
put dj, — 1 of the d;, CNs connected to u; into S’. For example, if u; = s1 @ s9 P s3,
s1 and s may be placed into S’. This strategy guarantees that it is always possible
to reconstruct the set S from U and S’. In the above example, it indeed suffices to
recover Ss as s3 = u1 D s1 D So.
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We now count the number of symbols s; that are placed into S’ with this strategy.
Since each line of Hi_,9 has either 1 or 2 non-zero components, we have dp = 1 or
dp = 2. Denote by «a the proportion of values uy of degree 1. We have the following
relation between mq, mo and «:

m1 = amg + 2(1 — a)ma.

This gives that « = 2 — % Further, according to the code construction proposed
in Section 4.3.3, each s; participates to exactly one equation u;. As a result, in the
above strategy, the set S’ is composed by (1 — a)mg = my — mq different values s;,

which is exactly what is required by the rate-adaptive construction.

4.4 Generalization to several rates

The above methods construct the matrix Ho of rate Ry < R; from the matrix
Hi. In order to obtain lower rates Ry < Rp_1 < --- < Ry < Ry, we need to
construct the successive matrices Hy, t € {2,---,T}. As initially proposed in [40],
the matrices H; can be constructed recursively from intermediate matrices H;_1_¢
such that H; = Hy_1_+H;_1. The intermediate matrices H;_1_,; are constructed by
from the method described in Section 4.3.

However, with the method of Section 4.3, the rate values Ro,--- , Ry are con-
strained by the size of the initial protograph &;. For a protograph &1 of size Sy, XSy,
the rate granularity is given by

Ry
Sy

For instance, if Ry = 1/2 and S is of size 4 x 8, only rates Ry = 3/8, R3 = 1/4,
R4 = 1/8 can be achieved. This is why, in this section, we propose two alternatives

(4.8)

rg =

methods that allow to decrease the rate granularity r,.

4.4.1 Protograph extension

The first method called “protograph extension” consists of lifting the mother pro-
tograph &; by a factor Z., in the same way as for producing a parity check matrix
from a given protograph (see Section 3.1.2). This extension produces a protograph
S} of size Z¢Spm, X Z.Sy. For instance, the protograph

1 2 1 3
51_[1 > 5} (4.9)
can be extended as
111 2 0101
, o101 1112
81—10140011 (4.10)
00111014
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The protograph &7 permits to generate an ensemble H; of parity check matrices
with asymptotic codeword length. According to [26, Theorem 2|, all the asymp-
totic parity check matrices in H; have the same decoding performance given by the
threshold of S;. The extended protograph S; generates a code ensemble H} C H;.
As a result, the asymptotic matrices in H} have the same decoding performance as
the matrices in H1, and S; and S} have the same theoretical threshold.

The above protograph extension allows to consider more rates, since the rate
granularity r; of Sy is given by r; = ry/Z. < r,. However, it is not desirable nei-
ther to end up with an extended protograph S of large size, e.g. in the order of
magnitude of mi. Indeed, in this case, the number of possibilities for intermediate
protographs S;_1_,; would also become very large. In addition, it becomes compu-
tationally difficult to compute the theoretical thresholds for large protographs. As
a result, if the size of ] is large, it will be very difficult to optimize the successive
protographs S; according to the method described in Section 4.3.2. This is why
we now propose a second method that allows to push further the rate granularity
improvement.

4.4.2 Anchor rates

In this second method, consider a protograph S; of size Sy,, X S,. As a first step,
we do the protograph optimization of Section 4.3.2 for all the possible rates

(t—1)Ry

Rt:Rl_ S )
mi

(4.11)
where ¢ € {1,---,S,,}, and R_1 — Ry = Ry/Sm,. This produces a sequence of
protographs &;, and the rates R; are called the anchor rates. We now want to
construct all the possible intermediate rates between any R;_1 and R;, with a rate
granularity ry = Ri/m;.

According to Section 4.3.2, the rows of the intermediate protographs S;_1_
have either one or two non-zero components. In addition, in order to obtain all the
rates R; defined in (4.11), exactly one row of S;_1_,; has two non-zero components.
This is why, in order to obtain a rate R;—1 — mil, we propose to combine two rows
of the corresponding type in H;_1. The resulting matrix contains the considered
row combination, as well as all the non-combined rows of H; ;. As in the algo-
rithm Proto-Circle described in Section 4.3.3, we choose the row combination that
minimizes the amount of short cycles that will be added in the resulting matrix.
Applying this process recursively allows to obtain all rates R;—1 — kR1/m1, with
Ee{l,---,m1/Sm, }, and my/Sym, = Z1, where Z; is the lifting factor. This ap-
proach also guarantees that at rate Ry, the resulting matrix follows the structure of
protograph ;.

The anchor rates method allows to obtain a rate granularity ry = Ri/m. In
the simulation section, the performances of two code construction methods in Sec-
tion 4.2 and Section 4.3 are compared to LDPCA. And we combine both approaches
(protograph extension and anchor rates) in order to obtain an incremental code con-
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struction that permits to handle a wide range of statistical relations between the

source and the side information.

4.5 Simulation results

4.5.1 Simulation results without protograph

le-14:

1e-2

1e-3 &=

i
b le-4

1e-5

Figure 4.4: BER performance on a BSC channel for code C; of size 128 x 256

1e-4

1e-3
p

1e-2 1e-1

| | N4(C1) | N6(Cy) || Nu(C2) | No(Co) |

R=1/2 0 1856 0 584

R =3/8 LDPCA 256 5232 204 2256

R = 3/8 Proposed || 184 6823 83 2232
R=1/4 LDPCA 928 15328 968 5600

R =1/4 Proposed || 465 19073 200 6130

R =1/8 LDPCA 2632 67384 2336 42620

R = 1/8 Proposed || 2425 166227 1193 53101

Table 4.1: Number of length-4 (N4) and length-6 (N6) cycles for the two considered

codes

In this section, we evaluate the performance of the first code construction method
in Section 4.2 (without protograph) compared to LDPCA. The two codes which we
choose to evaluate were obtained from [62]. The first code called C; code is of size
128 x 256. The second code called Cy code is generated from a WiMax protograph.
It is of size 96 x 192. These two codes have rate R = 1/2. For each of the two codes,
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Figure 4.5: BER performance on a BSC channel for code C5 of size 96 x 192

we generated three codes of rates 3/8, 1/4, 1/8, both with the LDPCA method
and with our construction. In our algorithm, only short cycles of length 4 were
considered.

In our simulations, we assumed a binary symmetric channel of parameter p
and we evaluated the Bit Error Rate (BER) performance of both LDPCA and our
construction for the two considered codes. The results are shown in Figure 4.4 for
the code C7 and in Figure 4.5 for code C5. In both cases and for almost all rates,
we observe that our rate-adaptive construction gives a better performance than the
LDPCA. It even outperforms LDPCA by almost one order of magnitude. The only
particular case is the rate 3/8 for code Cj. In this case, LDPCA shows slightly
better performance than our method. After a cycle analysis given in Table 4.1 from
the method of |61], we observe that at all rates, our code construction contains less
length-4 cycles than LDPCA, which explains its improved performance. On the
opposite, our code construction contains more length-6 cycles than LDPCA. This
probably explains why LDPCA works slightly better than our method for the rate
3/8 for Cy. This can probably be improved in the future. We can however conclude
that our method works better than LDPCA in almost all the considered cases.

4.5.2 Simulation results with protograph

This section evaluates from Monte Carlo simulations the performance of the pro-
posed rate-adaptive protograph-based construction in Section 4.3. We assume a
BSC of parameter p and we consider three binary LDPC codes Ci, Ca, C3 con-
structed from protographs. These codes are set as mother codes for the initial rate
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Figure 4.6: BER performance of code C; with dimension 248 x 496 using proposed
construction compared with LDPCA
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Figure 4.7: BER performance of code Co with dimension 256 x 512 using proposed
construction compared with LDPCA
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Figure 4.8: BER performance of code C3 with dimension 512 x 1024 using proposed
construction compared with LDPCA

Rate LDPCA | Our method
R=13/8 | 453 455
R=1/4 | 1216 737
R=1/8 | 5361 3477

Table 4.2: Number of length-4 cycles for code C;

R =1/2. The algorithm introduced in Section 4.3.3 then produces the correspond-
ing daughter codes for lower rates 3/8, 1/4, 1/8. In the following, we compare the
performance of the obtained rate-adaptive codes with LDPCA.

The first code C; is of size 248x496. In order to construct Cq, we first obtained
the protograph S of size 2 x 4 in (4.9) from the Differential Evolution optimization
method described in Section 3.4.1. Differential Evolution was applied by considering
V = 60 elements in the population. This follows [63] which suggests to choose
5D <V < 10D, where in our case, D = 5,5, = 8. In addition, the number of
iterations was set as L = 100, and the maximum degree was set as dyax = 10. The
theoretical threshold of Sy is equal to p = 0.094, which is very close to the maximum
value p = 0.11 that can be considered at rate 1/2. Protograph &; was then extended
to the protograph S} of size 4 x 8 in (4.10) according to the method described in
Section 4.4.1. This extension allows ton consider more anchor rates 3/8, 1/4 and
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1/8, rather than 1/4 only with S;.

The parity check matrix of C; was constructed from the protograph Sf by the
PEG algorithm [37]. We then applied our construction method introduced in Sec-
tion 4.3 in order to obtain lower rates 3/8, 1/4 and 1/8. For this, we first needed to
decide which rows of the protograph S,p1 should be combined (see Section 4.3.2)
by checking the thresholds of all the possible combinations using Density Evolution.
From Density Evolution, we chose row combinations Agl) + Agl) for rate 3/8 and
Agl) + Aél),Agl) + Agl) for rate 1/4, where the Agl),i =1,2,---,85,, denotes the
rows of . From the selected row combinations, we then constructed the corre-
sponding matrices of rate 3/8, 1/4, 1/8 from the algorithm Proto-Circle described
in Section 4.3.3. This algorithm was applied with K = 20 and repeated 10 times in
order to choose the low-rate matrices with the least short cycles.

Figure 4.6 shows the Bit Error Rate (BER) performance with respect to the
BSC parameter p for the four considered rates for C;. We observe that our code
construction performs better than LDPCA at all the considered rates. Table 4.2
indeed shows that there are less length-4 cycles at rates 1/4 and 1/8 in our con-
struction than in the LDPCA matrices.

The second code Cy is of size 256 x 512 and it was generated from another
protograph

Sopta = (4.12)
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obtained from Differential Evolution and protograph extension. The codes of lower
rates 3/8, 1/4, and 1/8 were constructed by following the same steps as for Cy, ac-
cording to the construction of Section 4.3. The BER performance of these codes are
shown in Figure 4.7 and compared to LDPCA. For this case as well, our construction
shows better performance than LDPCA. Finally, the code C3 is of size 512 x 1024
and it was generated from the same protograph Sy, as Co. Figure 4.8 shows that
for C3 as well, our algorithm perform better than LDPCA at all the considered rates,
with a larger code size.

The curves of Figures 4.6, 4.7, 4.8, considered the code performance for the
anchor rates given in Section 4.4.2. We then applied the method described in Sec-
tion 4.4.2 to codes Cy and Cs in order to obtain rate granularities of Ri/m; =
9.8 x 107% for Cy and Ry/m; = 4.9 x 10~* for C3, rather than R;/S,,, = 0.125.
For this, we considered different values of p, and for every considered value, we
generated 1000 couples (z",y") from a BSC or parameter p. For every generated
couple, we found the minimum rate that permits to decode z" from y" without
any error. The same kind of analysis was performed in [55] and [58], with different
criterion to measure the rate needed for a given couple (z",y™). In [55], this rate
was determined as the minimum rate such that the decoded codeword ™ verifies
HT3"™ = ¢™ see (3.1). However, this criterion does not necessarily means that the
codeword was correctly decoded (2" can be different from z™), and this is why we
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Figure 4.9: Required rate R with respect to H(p) for LDPCA and for our method,
for codes Cy and Cs

do not consider it here. In [58], the required rate was determined as the minimum
rate that gives a BER lower than 1079, This is equivalent to our criterion, since one
uncorrectly decoded bit gives a BER of 2.0 x 1073 for Cy, and of 1.0 x 1073 for Cs.

At the end, Figure 4.11 represents the average rates needed for the considered
values of p with respect to H(p). We first observe that our method shows a loss
compared to the optimal rate H(p). This rate loss is expected since we consider
relatively short codeword length 512 for Co and 1024 for C3. In addition, for the
same codes Cy and C3, LDPCA shows a much more significant rate loss compared to
our method, which was also expected from the results of Figures 4.7 and 4.8. This
shows that our construction combined with the anchor rates method is valid and
outperforms LDPCA at all the considered values of p.

Name | Protograph Theoretical threshold
Code 1 | AP + AP AP AP 0.051

Code 2 | A® + 4P AP + 4P AP | 0.049
Code 3 | AP + AP AP + AP AP | 0.050

Code 4 | 24 4 AP AP AP 0.049
Code 5 | A? + AP 24P AP 0.049

Table 4.3: Protographs with different constraints for rate 3/8. The protographs are
(2

described in the form of combination of the lines A;”" of the original protograph

Sopt2-
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Figure 4.10: Performance of five code constructions with different protographs at
rate 3/8

To finish, we discuss the influence of the constraints expressed in Section 4.3.2

for the code construction. These constraints were that in the intermediate proto-
graph 81,9, each column has only 1 non-zero components, and that all the non-zero
components are equal to 1. In order to discuss the influence of these constraints,
we again consider the extended protograph Sopo of rate 1/2 given in (4.12) and we
consider the construction of a daughter code of rate 3/8. If the above constraints
are not satisfied, there are many possibilities to construct such daughter codes. We
consider 5 different protographs that can be obtained from S,p2 for the daughter
codes. These protographs are given in Table 4.3, with their theoretical thresholds.
Code 1 corresponds to a protograph that satisfies the constraints of Section 4.3.2.
We see that the other protographs have either more than 1 non-zero component
per column (Codes 2 and 3), or a non-zero component equal to 2 (Codes 4 and 5).
Note that we selected give protographs with close theoretical thresholds, in order to
compare the finite-length performance of the considered codes.
The performance of the five considered codes are compared in Figure 4.10. We see
that despite the fact that the five codes have very close theoretical thresholds, their
BER performance vary from one code to another. As expected, Code 1 shows the
best performance. This can be explained by the fact that its parity check matrix is
more sparse than the other ones. We also note that Codes 4 and 5 for which the
protographs contain non-zero components equal to 2 show the worst performance.
This shows that, in the considered case, the above constraints are reasonable.
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4.5.3 Simulation results at full rate range

In Section 3.8.3, we construct an initial code of rate R = 1/2 and apply either the
LDPCA method to obtain rates lower than 1/2 or the Rateless method for rates
higher than 1/2 to avoid the drawbacks of Rateless and LDPCA. Now we evaluate
this construction method and compare it with LDPCA. In this section, we suppose
that the source X is uniformly distributed. The source X is obtained from a BSC
with crossover probability p. We first construct two mother codes of rate R = 1/2.
The first mother code is denoted by O1 with length n = 512 and constructed from

a protograph
0 2 31
s=[02 1] 1

by applying the methods with two steps described in [50| which permit to con-
struct quasi-cyclic codes. The second mother code is a WIMAXLike code of length
n = 192 obtained from [1]. For each mother code, we construct two family of com-
patible codes with a rate variation of 1/n. The first code family is obtained by
applying Rateless for rates higher than 1/2 and LDPCA for rates smaller than 1/2.
The second code family is obtained by using the proposed method in this article
which takes place of LDPCA. During the application of algorithm Circle, we use
K =50.

In order to evaluate the performances of different code families, we will apply the
following method which is initially proposed in [55]. For different values of p, we
generate 1000 vectors z™ and y™. For each set of vectors (z",y"), we search the
minimum rate which permit to decode z" without error. Then we calculate the
average value of these rates.

The results are presented in Figure 4.11. For the rates smaller than 1/2, we find
out a significant gain of our method compared to LDPCA. We can also find out
that the performance of the method Rateless for rates higher than 1/2. We find a
disconnecting of the curve for higher rates, which implies that the method Rateless
could also be optimized.

4.6 Conclusion

In this Chapter, we presented our two novel rate-adaptive solutions. The two pro-
posed solutions show a better performance than LDPCA, especially for short codes
(less than 1000 bits) that are particularly sensitive to short cycles. Now we will
apply these solutions in the real FTV system.
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Figure 4.11: Obtained rates based on entropy, for two mother codes: O1 and
WIMAX.
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Equipped with rate-adaptive code constructions and decoders for lossless source
coding, we now apply our solutions to the problem of Free Viewpoint Television
(FTV). Members of the InterCom project provided us with files containing source
and side information vectors. These vectors were generated by a video encoder they
implemented for Free Viewpoint Television. They however did not implement the
lossless part, and this is our objective here.

5.1 Generation of video files

In our project, since we deal with applications like FTV or the 360 degree video [64],
the original video images are spherical. In order to compress these videos, the project
members proposed a solution that is described in [64]. In this solution described in
Figure 5.1, the spherical video images are first projected onto 2D images. Then
several operations are applied such as: Discrete Cosine Transformation (DCT),
Quantization, Prediction. These operations allow us to obtain a source vector X™ to
be transmitted losslessly to the decoder. They also provide prediction Yy, .y
of X that can serve as side informations at the decoder. These predictions can be
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built from previous viewpoints received by the decoder, and they are also known
by the encoder. The obtained sequence X" will then be encoded with an LDPC
matrix H, and the syndrome U"* will be stored in the server. When users send their
requests for desired views, a rate-adaptive extraction is realized and the adapted
length syndrome U™ will be sent, depending on the side information Y ) available
at the decoder.

The spherical image

Projection
User request
X um A/Um’
—->| DCT H QuantizationH Predictionl——E Server ——m—>
extraction
2D image

Encoding

Figure 5.1: FTV compression scheme

Model of P,
with Z = X - YO
y © QL Ll mbA mb “
X—>Q7Q%.Q7Q U Error-free U X

| Encoder Decoder

Channel

j=12,..]

Figure 5.2: FTV Application

The files we were provided by the project members give realization of source
vector X™ and corresponding side informations YV, ..., Y/). The source and side
information vectors are sequences of n symbols which take integer values. But our
codes and decoder treat bits. Therefore, some adaptions need to be made in order
to apply our solutions to the FTV problem.

In this chapter, we denote one symbol-based source vector by X" with

X" =[X1Xy... Xp... Xy (5.1)

We denote the binary representation of k-th symbol Xy by Q;O)QS) ... Qg’) ... Q;L_l),
where b € [0, L — 1], with b = 0 is the Least Significant Bit (LSB) and b =L — 1 is
the Most Significant Bit (MSB), and L is the bit length of Xj. The value of each
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Xn =[X1 X2 XK Xn]

i | | ‘L Bit plane Q®
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Figure 5.3: X™: from symbol-based to bit planes

bit is given by
QY = (Xi/2")%2 (5.2)

where "%2" denotes the modulo 2 operation.

One symbol-based side information vector is denoted by Y where Y™ = [V1,Y5,...,Y,].

In practice, there are several possible side information Y). But in the following,
for simplicity, we describe our solution for one side information Y.

The source bits with the same significant power are called bit planes. For example
for bit position b, the bit plane Q(b) is:

QY =1Q",...QV" (5.3)

In next section, we show how to transform the symbol-based model into a bit-based
model. We also show that passing from the symbol-based model to the bit-based
model theoretically does not degrade the coding performance. Then we describe the
joint statistical model we consider between X and Y.

5.2 Symbol-based and bit-based models

In [65], the symbol-based model and the bit-based model are compared. It is shown
that the minimal achievable rates for symbol-based coding schemes and bit-based
coding schemes are identical. The conditional entropies of the two models can indeed
be related by:

HX"Y") =HQY,...,Q" YY"

L=2 (5.4)
=Y HEQW Y™, QWY ... QU V) + H(QEV Y™

T
o

This suggests that, in the bit-based decoder, bit plane Q(b) is decoded with condi-
tional probability P(Q® | Y™, QU+D ... QL=1). In practice, the bit planes QW
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will be decoded one after each other, from Q(Lfl) to Q(O). Previously decoded bit
planes will be used to decode current bit plane Q(b). This bit plane strategy was
also considered in [66, 67]. N

In the following, we first propose a symbol-based statistical model between X™ and
Y™, We then show how to obtain a bit-based model from this symbol-based model.

5.3 Joint statistical model between X" and Y"

In FTV, as in standard video compression, the statistical relation between the source
X" and the side information Y™ varies a lot from frame to frame and from video
to video [68, 69, 70, 14, 71]. A well-chosen statistical model is important for the
LDPC decoder as described in the previous chapters. In the following, for simplicity,
we suppose that X, are alli.i.d. and Y} are i.i.d. too. An additive model Z = X —-Y
is supposed here just as people often do in the practice. A Laplacian model and a
Q-ary symmetric model are considered here for Z.

Before all the views of video are stored at the server, the server has access to all
the X and Y while encoding them. So it can know the model parameters of them
at this moment, these parameters will then be stored and transmitted with the
codeword together. Surely this requires additional bits for the model parameters,
but that costs just a little if we consider a model with little model parameters, just
as we do here.

5.3.1 Laplacian Model

The Laplacian model is often considered in video coding to model the statistical
relation between the source and side information. The Laplacian density probability
function of distribution £(u, %) is given by

() = ¢;? exp Jﬁ';;“’ (5.5)

where y is the mean of Z, and 62 is the variance. The expressions of y and 62 are

given by
§=E(2) (5.6)

62 =E(Z — p)? (5.7)

For a side information Y, the density of P(Xy|Yy) = P(X; — Yi|Yi) = P(Zk | Yi).

We suppose that Zj and Y} are independent, which gives P(Zy | Yi) = P(Z) and
simplifies our problem. Then we model P(Zy) by using a Laplacian distribution
L(p1,6%). The values of y and 62 can be estimated from vectors Z" as

i = Median(Z") (5.8)
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# =23 i) (5.9)

k=1

The Laplacian model however has two issues. First it is a continuous model
while our data are discrete. Second, when the variance 62 is small, the density
(5.5) applied to values of Zj is numerically equal to 0, which poses problems in our
decoder. This is why we also consider a second model described in section 5.3.2.

5.3.2 Q-ary symmetric Model

The probability mass function of a Q-ary symmetric [72] model Q(q, Zmax; Zmin) 1S
given by

fz(2) = {q g He=0 (5.10)

m otherwise

where ¢ € [0, 1] is a constant, Zyay is the maximum value of Z, Zy,iy is the minimum
value of Z. The value of ¢ can be estimated as

N
g=-2 (5.11)

n
where Nyzq is the number of symbol Z; = X — Yy, = 0, and n is the total length of
sequence Z".

5.4 Probability calculation from symbol-based model to
bit-based model

In [65], it is shown how to obtain the bit-based conditional probability P(Q,gb) | Y, =
Y, gjﬂ), . ,Q;L_l)) from the symbol-based conditional entropy P(X; | Y}). Let
us denote by Pz the probability distribution of Z. It corresponds to f7 either given

by (5.5) or (5.10). The bit-based probability can be obtained as follows:

P=P(Q =01vi=yQ,. Q)
CP(@P =00 o 1Y=y)
Pl Y =y)
PP =0, Qb“,...,Q,iL‘”|Y=y)
PR =000, @ Y v =y) +P(Q =100, @V | Vi =)

(5.12)
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and

=P (Q =11V =y.Q{"".....Q")

«@,—1QHQ”. @1!%—y)

P(Q(b+1a"'7Qk |Yk:y>
(Qk —1 QZH&,.. (L—U|§%::y>
Cr(V =000 Lol vi=y) P (@ =1, Lol Y =)
(5.13)
where,
o . 2b—1 -1 i
PR =0,0{"",... ,il)rYkzy)=ZP(Z Q,i)-2’“+z'|Yk=y>
i=0 k=b+1

261
:ZPZ<ZQ ok — >
=0

k=b+1
(5.14)

20+l 1 L—1
P(Q —1,Q"Y, ., (“\Yk_y) ZP(ZQ;"”.Q’“H\Ykzy)

§=20b k=b+1

2b+1—1 L-1
Uy pz(z a2+

=20 k=b+1
(5.15)
As a result we just need to calculate P( =0 Q (b+1) ,...,Qk | Y =vy)
and P(Q =1 Q (b+1) v'”va \ Yi =v) by using the probability distribution

Pz(+), and then normalize them to get Py and P;.

5.5 Decoding scheme with bit-based source and symbol-
based side information

We now present the lossless coding scheme we consider for FTV. In FTV, the value
of X™ can be negative, so we need to add a sign bit. If Xj is converted into L + 1
bits, we have

X, QWM ...QP .. Qg (5.16)
Q,(:) is the sign bit of X. The value of Q,(:) is given by

@ [0 ifXp>0
_ 5.17
@i {1 if Xp <0 (5:17)
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X" is encoded and decoded from bit plane to bit plane from b=3s, b= L —1 to
b = 0. For the encoding of b-th bit plane Q(b), we use a parity check matrix Hy with
dimension my x n. We compute a syndrome U ®) as Vb, U (b) = Q(b) -H IT , where the
syndrome U ®) is of length my,.

The bit plane Q) is encoded and decoded first. The received syndrome U () yn
and the estimated model parameters will be used for the decoding. In the decoding,
we use the bit probability of Q](:) in Q(S), calculated as

2Ll _1
P =0|Yi=y)= 3 Pzli~y) (5.18)
-1
PQY =11Yi=y)= > Psli-y) (5.19)
i=—2L41

Then the received syndrome U® . Y™ the estimated model parameters ([ and
62 for Laplacian model, ¢, Zrnax and Zpyax for Q-ary symmetric model) and the

previous decoded bit planes Q . Q(L DA Q (s)

bit plane Q By applying (5.12) and (5.13), the bit probability of Qk in Q ®) is
calculated as

201 L-1
(ol =0 =n Q. ar) = S (1-200) (32 o) o)

k=b+1
(5.20)

will be used to decode the current

9b+1_q L-1
P( ,(cb)=1|Yk=yaQ§‘bH Q(L 1)’Qs)) Z Py ((1_26}5.5))'( Z Q;k).Qk—i—i) —y)

i=2b k=b+1
(5.21)
When the bit planes Q(O), Q(l), ceey Q(L 1), Q(s) are all decided, X™ can be
reconstructed with
X"=00W . Qe . QLW L QE-DQE (5.22)

5.6 Rate-adaptive construction

To encode each bit plane, we construct Hjy by using our rate-adaptive method de-
scribed in Chapter 4. Starting with the same mother code H, we construct Hj for

A (b
all the bit planes so as to decode Q( ) without error. This can be done since the
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encoder knows the possible side information Y ) and can choose the transmission
rate accordingly.

This rate-adaptive construction strategy is applied on all the possible side informa-
tions Y j € {1,...,J}. We evaluate the performance of our rate-adaptive scheme
as follows.

The transmission rate of b-th bit plane by using j-th side information Y@ is :

RY) = b (5.23)
The total transmission rate by using j-th side information Y () is:
L1 '
RY) =3 "Ry +RY (5.24)
b=0

For Vb € 0,...,L — 1, the storage rate of b-th bit plane is:

S, = RV 5.25
’ je?ll?.)if} b ( )

and the storage rate of sign bit plane is:

Sy= max RV (5.26)
jell,..J}
The total storage rate is:
L—1
Stot = > S+ Ss (5.27)
b=0

As shown in Section 5.2, there is no loss in terms of transmission rate. But on
the other hand, there will be some loss on storage rate. There is no loss on storage
rate only if we can reach at the maximum value of Hgymbol as shown in [15, 43]. But
in this decoding scheme, only a sum of maximum values of Hyjs can be achieved.
Some loss on the storage rate will surely happen in order to realise this rate-adaptive
decoding scheme. A

In our simulation, the value of the transmission rates Rl(f ) for the most significant
bits can be really small. This means that the bit plane Q(b) can almost be deduced
from previous bit planes and from corresponding symbols in Y. So if the LLR

values already allow to perfectly detect Q(b) without need for decoding, we define
Ry =0.

5.7 Simulation results

For FTV, for a source X, several side informations Y are available. The number
of available side informations Y'9) is denoted by J. Each side information Y') gives
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a different empirical probability distribution on P(X — YU )) with different param-
eters for Laplacian model or a Q-ary symmetric model.

In our simulations, we observed that the Laplacian model would generate too many
0 for LLR information, so we applied the Q-ary symmetric model to avoid this dis-
advantage. Since the amount of dependency between X and V') can give different
results, we tested three types of video files with low dependency, middle dependency
and high dependency.

5.7.1 X and Y with high dependency

In the first file we used, we have J = 8. The estimated parameter values of the
Q-ary symmetric model for each side information are shown in Table 5.1.

j (j Zrnax Zmin
1] 0.989 1 -2
21 0.989 1 -2
3 10.990 1 -2
41 0.989 1 -2
5 1 0.990 1 -2
6 | 0.989 1 -2
7 | 0.989 1 -2
8 | 0.989 4 -2

Table 5.1: Q-ary symmetric model for X and Y'¥) with high dependency

We observe that the value of ¢ does not vary much with the side information.

After testing X™, We observe that L + 1 = 8 bits are sufficient to completely
represent the source X. The obtained transmission rates Rl()j ) for all the bit planes
b((bel0,...,L —1,L]) are shown in Table 5.2. We find out that the rates for the
most significant bits are smaller.

Given the Q-ary symmetric model of P(X|Y (), we can calculate the model

entropy

. 1—
HOXY ) oga = ~aogs(a) ~ (1= ) logs (55— ) (5.29)

For a given sequence Z™, we can also evaluate an empirical entropy as

Nz

H(z") = —p(i) x log, (p(i)) (5.29)

=0

where Ny is the number of different values that can take zj in Z", and p(7) is the
corresponding empirical frequency of element 7.

As seen in Chapter 2, Slepian-Wolf theorem tells us that R > H(X | Y). In our
problem, the conditional entropy H(X | Y) can be simplified as H(Z). In addition,
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J Ry Ry Ry R3 Ry | Rs | R | R7(Rs)

1 ] 0.090820 | 0.019531 0 0 0]o]o 0

2 [0.108398 | 0.015625 0 0 0]0]0 0

3 [ 0.091796 | 0.015625 0 0 0]o]o 0

4 ]0.108398 | 0.015625 0 0 0]0]0 0

5 [0.091796 | 0.015625 0 0 0]o]o 0

6 | 0.092773 | 0.015625 | 0.015625 0 0]o]o 0

7 [0.090820 | 0.019531 0 0 0]o0]o 0

8 [0.091796 | 0.017578 0 0.015625 | 0 | 0 | 0 0
| S, |0.108398 | 0.019531 | 0.015625 | 0.015625 | 0 | 0 [ 0 | 0 |
| Stot | 0.159179 |

Table 5.2: The obtained rates (bit/symbol) for each bit plane and each side infor-
mation V()

the value of H(Z) can be estimated by H(Z™). It means that,
Rt > H(Z") (5.30)

The Q-ary symmetric model is an approximate model of sequence Z" with three
model parameters ¢, Zmax, Zmin- Lhe entropy of Q-ary model H(X |Y(j))rnodel is
larger than H(Z") as it uses less parameters than considering the empirical fre-
quency and thus describes less precisely the statistics of Z". The Q-ary symmetric
model is used at the decoder to calculate Py, P;, and the corresponding LLR. There-
fore, using the Q-ary symmetric model rather than the empirical frequency will result
in different values Py and P;. But we know that using mismatched values of Py and
P, does not degrade much the decoder performance. Perhaps a model which follows
exactly the empirical probability distribution can achieve a slightly smaller Ry ,
but it also means that more model parameters should be sent and this will however
increase the transmission rate.

The simulation results of total transmission rates Ryo;, model entropy H(X|Y 9)) 0del
and empirical entropies H(Z") are shown in Table 5.3.
We can find that for all the side information

H(X|YD)moaa > H(Z") (5.31)

Riot > H(Z") (5.32)

This is expected from the theoretical results. We can see that Ry is close to
H(X|Y %) 040 and H(Z™). Sending no information (rate 0 in Table 5.2) when
LLR is sufficient to retrieve the bit planes clearly helps to achieve this good result.
The storage rate St is just a little larger than the maximum value of Ry, which
means our decoder can help to realise the rate-adaptive decoding for all the possible
side informations Y') with a small extra rate cost.
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Riot | HX|Y9 ) oda | H(Z™)

j
1 [0.1103 0.1027 0.0997
2 [ 0.1240 0.1027 0.0998
3 [o0.1074 0.0947 0.0925
4 ]0.1240 0.1027 0.0998
5 [0.1074 0.0947 0.0925
6 |0.1240 0.1027 0.1001
7 [0.1103 0.1027 0.0997
8 |0.1250 0.1134 0.1036
| max [ 01250 | 0.1134 0.1036

Table 5.3: Total rate compared with entropy in case of high dependency

5.7.2 X and Y with middle dependency

In this file we have J = 8. The informations of the Q-ary symmetric model for each
side information is shown in Table 5.4.

(j Zrnax Zmin
0.950 10 -16
0.950 7 -5
0.948 24 -24
0.950 18 -18
0.950 7 -11
0.951 12 -12
0.950 10 -13
0.950 9 -7

|| T = | W[ N .

Table 5.4: Q-array model for X and Y') with middle dependency

A bit length of L + 1 = 7 is sufficient to completely represent the source X.
The obtained transmission rates Ry, for all the bit planes b (b € [0,..., L —1, L]) are
shown in Table 5.5.

The simulation results of total transmission rates Ry, model entropy H (X \Y(j ))model
and empirical entropies H(Z") are shown in Table 5.6.

We can find that for all the side information

H(X|Y(j))m0del > H(Zn) (5.33)

Ryt > H(Z") (5.34)

It follows the theoretical results too. And the total transmission rate Ry is still
close to the theoretical limit H(Z").
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j Ry Ry R, R Ry Rs Rs(Rs)
1 | 0.219726 | 0.194335 | 0.083984 | 0.0341796 | 0.015625 0 0
2 1 0.193359 | 0.189453 | 0.116210 | 0.0283203 | 0.015625 0 0
3 | 0.191406 | 0.222656 | 0.130859 | 0.0371093 | 0.022460 | 0.015625 0
4 10.222656 | 0.195312 | 0.0869140 | 0.046875 | 0.020507 0 0
5 | 0.189453 | 0.183593 | 0.1435546 | 0.016601 0 0 0
6 | 0.182617 | 0.194335 | 0.0839843 | 0.037109 | 0.015625 0 0
7 1 0.208984 | 0.200195 | 0.1025390 | 0.034179 | 0.015625 0 0
8 | 0.177734 | 0.200195 | 0.1191406 | 0.036132 | 0.015625 0 0
| S, | 0.222656 | 0.222656 | 0.1435546 | 0.046875 | 0.022460 | 0.015625 0
| Siot | 0.6738266

Table 5.5: The obtained rates (bit/symbol) for each bit plane and for each side
information Y ()

J Rior H(X|Y(j))model H(Zn)
1 0.5478 0.5197 0.4462
2 0.5429 0.4641 0.4386
3 0.6201 0.5829 0.4630
4 0.5722 0.5431 0.4473
) 0.5332 0.4932 0.4495
6 0.5136 0.5053 0.4526
7 0.5615 0.5109 0.4435
8 0.5488 0.4848 0.4459
max | 0.6201 0.5829 0.4630

Table 5.6: Total rate compared with entropy in case of middle dependency

The storage rate St is just a little larger than the maximum value of Ry, which

means our decoder can help to realise the rate-adaptive decoding for all the possible

side informations Y ) with a small extra rate cost.

5.7.3 X and YV with low dependency

In this file we have J = 8. The informations of the Q-ary symmetric model for each

side information is shown in Table 5.7.

A bit length of L + 1 = 9 is sufficient to completely represent the source X.
The obtained transmission rates Ry, for all the bit planes b (b € [0,...,L —1, L]) are
shown in Table 5.8.
The simulation results of total transmission rates Ry, model entropy H (X |Y(j ) )model
and empirical entropies H(Z") are shown in Table 5.9.
We can find that for all the side information

H(X|YDY 000 > H(Z™)

(5.35)
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j qA Zmax Zmin
110669 | 29 | -22
20668 26 | -21
3/0668| 26 | -21
410667 | 29 [ -20
50668 26 | -61
60669 50 | -21
7]0668| 26 | -21
810668 26 | -25
Table 5.7: Q-ary symmetric model for X and Y'¥) with low dependency
j |Ro| R Ry R Ry Rs Rs | Ry | Rs(Rs)
1 | 1 ] 0575195 | 0.278320 | 0.183593 | 0.209960 | 0.015625 0 0 0
2 | 1 [0.580078 | 0.279296 | 0.191406 | 0.175781 0 0 0 0
3 | 1 ]0.556640 | 0.279296 | 0.185546 | 0.175781 | 0.015625 0 0 0
4 | 1 [0.551757 | 0.275390 | 0.209960 | 0.219726 0 0 0 0
5 | 1 ]0.593750 | 0.279296 | 0.152343 | 0.126953 0 0 0 0
6 | 1 |0.576171 | 0.279296 | 0.149414 | 0.173828 | 0.163085 | 0.015625 | 0 0
7 | 1 ]0.580078 | 0.279296 | 0.188476 | 0.175781 | 0.015625 0 0 0
8 | 1 [0.575195 | 0.279296 | 0.181640 | 0.177734 0 0 0 0
| S, | 1 ]0.593750 | 0.279296 | 0.209960 | 0.219726 | 0.163085 | 0.015625 | 0 0 |
| Siot | 2.481442 |

Table 5.8: The obtained rates (bit/symbol) for each bit plane and each side infor-

mation Y (9)

Table 5.9: Total rate compared with entropy in case of low dependency

j Riot H(X|Y(j))m0del H(Zn)
1 2.2626 2.7873 1.9017
2 2.2265 2.7549 1.9113
3 2.2128 2.7549 1.9133
4 2.2568 2.7812 1.8988
) 2.1523 3.0490 1.9133
6 2.3574 2.9449 1.9050
7 2.2392 2.7549 1.9106
8 2.2138 2.7939 1.9133
max | 2.3574 3.0490 1.9133

Ryt > H(Z")

(5.36)

It is also in accordance with the theoretical results. And our methods work well, it
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generates a total rate Ry quite close to theoretical limit H(Z").

The storage rate Sy is just a little larger than the maximum value of Ry, which
means our decoder can help to realise the rate-adaptive decoding for all the possible
side informations Y¥) with a small extra rate cost.

5.8 Conclusion

In this Chapter, we applied our rate-adaptive solutions to the lossless part of FTV.
We transformed a symbol-based model to a bit-based model in order to be able to
apply our coding solution. The simulation results show that the required trans-
mission and storage rates are just a little larger than the theoretical performance.
It means that we successfully incorporate the proposed lossless code construction
into a complete lossy source coding scheme that was developped for FTV in the
framework of the InterCom project.

The on-going work is testing this solution with a large database of video files
and comparing the performance of transmission rate and entropy for different de-
pendency relations between the source and the side information. Also, as we know
our Q-ary model is just a simplified model of sequence Z", we should look for other
models with both limited defining parameters and a closer probability distribution
to the empirical frequency of Z™, in order to achieve better performance in terms of
transmission rate.



CHAPTER 6

Conclusions & Perspectives

Conclusions

Many multimedia applications such as Free Viewpoint Television (FTV) use a dis-
tant service provider that offers customized services depending on the user request.
The main challenge is the efficient storage of a huge amount of data and the real-
time extraction of a small fraction of these data upon request. In some applications
such as FTV, the requests previously addressed by the user can help to optimize
both the storage and the extraction. The problem can thus be seen as a source
coding problem with side information at the user side. This PhD thesis fits into this
context. It is part of the CominLabs project InterCom that focuses on solutions for
massive random access to subsets of correlated data.

In Chapter 3, we investigate practical lossless source coding schemes with side
information based on Low Density Parity Check (LDPC) codes. We first analysed
the performance of LDPC codes with density evolution, and we constructed efficient
finite-length LDPC codes with the PEG algorithm. We also analysed the limitations
of rate-compatible channel coding methods and rate-adaptive source coding meth-
ods like Rateless and LDPCA. Rateless codes perform poorly at low coding rates
while LDPCA is not adapted to high-rates.In this thesis, we combine both methods
to construct rate-adaptive LDPC codes offering a wide range of rates. However
LDPCA does not allow to optimize the code degree distribution, nor to control the
amount of short cycles at all rates. This is why we propose two novel rate-adaptive
LDPC code constructions to replace the LDPCA part.

In Chapter 4, these two novel rate-adaptive LDPC code constructions are pre-
sented. The first construction replaces the LDPCA accumulator by intermediate
graphs that combine the syndrome bits in order to obtain lower rate codes. This
method allows to reduce the amount of short cycles in the codes and it shows a
great performance improvement compared to standard solutions. However it only
considers unstructured finite-length code constructions, that is without design of the
degree distributions of the lower rate codes. The second construction introduces a
novel design method that allows to select the photographs of the intermediate graphs
S0 as to optimize the decoding performance of all the codes constructed at all rates
of interest. We also propose a new algorithm called Proto-Circle that constructs the
intermediate graphs according to their protographs, while minimizing the amount
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of short cycles in the codes at all the considered rates. Simulation results show
improved performance compared to LDPCA.

In Chapter 5, we applied our rate-adaptive solutions to the lossless part of FTV.
We transformed a symbol-based model to a bit-based model in order to be able to
apply our coding solution. The simulation results show that the required trans-
mission and storage rates are just a little larger than the theoretical performance.
It means that we successfully incorporate the proposed lossless code construction
into a complete lossy source coding scheme that was developped for FTV in the
framework of the InterCom project.

Perspectives

In the future, several problems related to this thesis may be considered.

1. Comparison to other multiview video coding standards
As we know, there exists a lot of video coding standards like H264, H265, or
HEVC. Some multiview video coding schemes have been proposed before. Our
solution and these standards may be compared in terms of achieved transmis-
sion and storage rates.

2. Other families of channel codes
LDPC codes, Turbo codes and Polar codes are among the most efficient chan-
nel coding methods. They all have good decoding performances and show dif-
ferent properties in terms of decoding latency, depending on the code length,
etc. It could be interesting to investigate the application of Turbo codes and
Polar into the FTV problem, and then, to compare the three methods.

3. Latency

Since FTV may also be used in a real-time video transmission system, the
problem of latency need to be considered. The main latency comes at the
encoding step that stores the videos and generates the model parameters at
the server. Large quantity of views and large number of users may increase
this latency. Doing less complex encoding operations may help us to improve
this latency. In addition, transmission of views over a real network (packet
loss, delay in transmission, etc.) may also be taken into account.

4. Machine Learning
Machine learning has known an increasing success over the last years. The
choice of line combinations in the rate-adaptive LDPC code constructions
may be done by relying on machine learning. It may help us to better choose
the combinations in order to improve the code performance at all rates.
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CHAPTER 7

Résumé de thése en francais




2. Rappels de théorie de I’information en codage de source

Résumé de these en Francais
Titre : Codage de sources de Slepian-Wolf utilisant des codes LDPC et application a la télévision
interactive
Mots clés : Codes LDPC, Codage de source, Rendement compatible, Codage, FTV.

1. Introduction

Multiview Data storage
video
codlng Se rVer

A

User request

L

Spinning Dancer, N. Kayahara, 2003. RequeSted VieW
delivery

X
LEY

Figure 1: La Télévision Interactive

La Télévision Interactive (FTV) est un service de vidéo a la demande qui permet au client de choisir
I’angle de vue de la vidéo. Un des principaux défis est de stocker un énorme volume de données dans un
serveur avec un outil de compression efficace et d’en extraire une petite partie a la demande et en temps
réel, sans devoir décoder ’intégralité des données. L'utilisateur, de son c6té, possede déja des vues, issues
de ses demandes précédentes, et cette connaissance peut tre exploitée pour la compression et le décodage.
Le projet CominLabs InterCom s’inscrit dans ce contexte. Le principal objectif est de proposer des solutions
pour I’acces aléatoire a des sous-ensembles de données massives corrélées. Intégrée a ce projet, cette these
s’intéresse au probleme de codage de sources sans perte avec information adjacente du c6té de I’ utilisateur,
dans le but de développer des schémas pratiques adaptés a 1’application visée.

Une modélisation de ce probleme de codage de sources est illustrée par la figure 2. Elle suppose que le
client mémorise les vues précédentes, notées Y/) et appelées informations adjacentes. Ces informations
sont utilisées pour décoder la source X (qui correspond a la vue demandée). Des méthodes de compression
classiques de type Huffman, Lempel-Ziv, H264, HEVC, etc ... n’exploitent pas d’informations adjacentes et
ne peuvent donc pas s’appliquer a notre problématique. Il est donc nécessaire de trouver d’autres solutions.

Les objectifs de cette these sont

= d’étudier des schémas de codage de source sans perte adaptés a I’application FTV.
= de construire des codes qui prennent en compte différentes informations adjacentes Y.

= d’appliquer les solutions développées a I’application Vidéo en 360 degrés.

2. Rappels de théorie de I’information en codage de source
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2. Rappels de théorie de I’information en codage de source

Network

Server

m R, Client 1

» using SI Y
Bitstream

Encoder Storage | g, Extraction Client 2

X —> S > using SI Y@
. \

> Client ]

S~ using SI YO

Figure 2: Modélisation du codage de sources pour I’application FTV

X_> Encoder v »| Perfect Channel Y »| Decoder

v

Figure 3: Codage de source sans perte

2.1. Codage de source sans perte

La théorie de I’information fournit les performances limites atteignables en fonction des hypotheses. La
figure 3 résume le schéma de codage de source sans perte. On suppose que le mot de code U est envoyé
sur un canal parfait. Le théoréme du codage source indique qu’une compression sans perte de taux R est
réalisable si et seulement si:

R > H(X) (1)

ol H(X) est I’entropie de la source X.

2.2. Codage de source sans perte avec information adjacente

— 3| Encoder |~ ylPerfect Channel »| Decoder _X>

Y

Figure 4: Codage de source sans perte avec information adjacente

Dans le cas ou le récepteur dispose d’une information adjacente Y, le théoréme du codage de source
sans perte de Slepian-Wolf s’applique. La figure 4 représente le schéma de Slepian-Wolf. Selon le théoreme,
un taux R est réalisable si et seulement si:

R>H(X|Y) ()

Puisque H(X|Y) < H(X), I'information adjacente au niveau du décodeur permet de diminuer le débit
de codage de source par rapport au codage de source sans information adjacente. Dans ce cas, le débit
minimum R dépend de la corrélation entre X et Y.

2/13



3. Des codes LDPC

En pratique, il a ét€ démontré que les codes LDPC peuvent étre utilisés pour construire un schéma de
codage de source de type Slepian-Wolf qui soit efficace.

2.3. Codage de source sans perte adapté a I’application FTV

Server
-
Encoder Storage U,
X — <
. Bitstream
Extraction
U,
— 5(\ Client
T Y(J)

Figure 5: Codage de source sans perte pour FTV

Dans une application de type FTV, différentes informations adjacentes peuvent étre disponibles au
décodeur en fonction du client.
Notons § le débit de stockage sur le serveur et R; le débit nécessaire pour transmettre la source X a
I'utilisateur j avec les informations adjacentes YY), Alors d’apres (2), les débits R; réalisables doivent
vérifier la contrainte suivante :
R; > H(X | YY), 3)

Le débit de stockage doit étre suffisant pour satisfaire tous les clients. Il s’agit donc d’optimiser conjointement
I'uplet (Ry, Ry, - - - , Ry, S). La meilleure stratégie est la stratégie de "Stockage incrémental” qui permet de
minimiser le débit de transmission et le débit de stockage. Elle est basée sur la construction d’un mot de
code unique qui couvre tous les débits de compression : la longueur du mot de code transmis sera adaptée
au débit de compression demandé. Le débit de stockage satisfait la relation suivante :

§ > max H(X | YY) 4)
J

En pratique, les codes LDPC adaptatifs en débit permettent la conception de schémas de codage de source
satisfaisant aux contraintes (3) et (4).

3. Des codes LDPC

Les codes LDPC ont été inventés par Gallager et publiés dans sa thése en 1960. Les codes LDPC sont des
codes en blocs linéaires, initialement congus pour le codage de canal. Tres performants, ils approchent la
capacité du canal dans ce cas. Les codes LDPC peuvent également étre appliqués au codage de source de
Slepian-Wolf.

3.1. Définition des codes LDPC

Utilisé en codage de source, un code LDPC de matrice de contrdle de parité H s’applique comme suit.
Dans ce cas, il s’agit de calculer le syndrome U™ correspondant au message X" :

UI’H — X” . HT
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3. Des codes LDPC

X_» Encoder —,U Perfect Channel v »| Decoder _»X
Y
Figure 6: Codage de source sans perte avec information adjacent
Un exemple de matrice H est le suivant
X1 X2 X3 X4 X5 Xe X7 X3
w (O 1 0 1T 1 0 0 1
w11 1.0 0 1 0 0
H= w0 0 1 0 0 1 1 1 ®)
ups \1 -0 0 1 1 0 1 O

On définit les noeuds de variables (VN) : x;,i € {1,---,n} etles noeuds de parité (CN) : u;, j € {1,---,m}.
H;; = 1 implique une connexion entre x; et u;. Le code LDPC peut encore étre représenté sous la forme
d’un graphe dit de Tanner.

Dans la these, nous utilisons I’algorithme "Sum-Product" pour décoder le code LDPC.

Figure 7: Graphe de Tanner de H donnée par (5)

3.2. Construction des codes LDPC

Une autre facon de représenter les codes LDPC est I'utilisation de protographes. Les protographes
permettent un contrdle précis des connexions dans les codes LDPC.

Un protographe S est un petit graphe de Tanner de taille S, X S,, avec S,,,/S,, = m/n = R. Chaque ligne
(respectivement colonne) de S représente un type de CN (respectivement de VN). Le protographe S décrit
ainsi le nombre de connexions entre S, différents types de VN et S,,, différents types de CN. Une matrice H
peut étre construite a partir d’un protographe S en répétant la structure du protographe Z fois avec n = ZS,,,
et en entrelacant les connexions entre les VN et les CN.

La figure 8 donne un exemple de construction d’une matrice H a partir du protographe S défini par

B B
S= A (1 2)

Les composantes de S représentent les connexions entre un CN de type A; et deux VN de types Bj et B;.
Une matrice H peut étre construite a partir de ce protographe S telle que

By B, By B
Aj (O 1 1 1

H=A11101
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3. Des codes LDPC

B]_O > D B O
A 1
/ 1
Bl o Bz © BZ 0 [] Al
? I:‘ A]_ - - B. O
BZO 1 \:\ A
o 1
B]' ? D A]_ BZO
B,o
Figure 8: Construction de H a partir d’un protographe

Le graphe de Tanner du protographe S est représenté sur la figure 8 (partie gauche). Pour construire une
matrice H, le protographe est d’abord dupliqué Z = 2 fois (partie centrale de la figure 8), puis les bords
sont entrelacés (partie droite de la figure 8). Dans le graphe de Tanner final, on peut vérifier que chaque VN
de type B; est connecté a un CN de type Aj, et chaque VN de type B, est connecté a deux CN de type A;.
Les performances d’un code LDPC donné, de matrice H, dépend fortement du protographe S. L’algorithme
"Differential evolution" permet d’optimiser le protographe.

Des cycles courts dans le graphe de H dégraderont les performances du code LDPC. La figure 9 illustre
ce phénomene. La courbe rouge représente un cycle court de longueur 4. On définit le parametre "girth"

X1 O
X2 O D h

X3 O
L] w
Xs O
Figure 9: Cycles courts en H
comme la longueur du cycle le plus court. Un critere d’optimisation est la construction d’une matrice H
possédant un "girth" maximum, avec un nombre minimum de cycles courts.

L’algorithme Progressive Edge-Growth (PEG) permet de réduire les cycles courts. Son fonctionnement
est illustré sur la Figure 10. L’idée est d’ajouter des connexions entre des x; et des u; jusqu’a ce que tous

Xj

d(Uj,Xi) =1 . I:' D uJ

d(Uj,Xi) = 3

d(Uj,Xi) = Jrmax e e

Figure 10: PEG

les VN soient connectés a d,, CN, et que tous les CN soient connectés a d. VN. Sur le schéma, 6, [i] et 5[i]
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3. Des codes LDPC

représentent les nombres de connexions a une étape donnée du processus. Différents cas se présentent :
= il n’existe pas de connexion entre u; et x; (CN inaccessible pour x;)
= la distance entre u; et x; est d(uj, x;) = 1,3, -+, dmax

Lorsqu’on ajoute une nouvelle connexion, deux cas peuvent survenir et la stratégie de choix du CN a
connecter sera différente.

= cas 1: certains CN sont inaccessibles.
On choisit parmi les CN inaccessibles, celui qui possede 6. [i] minimum.

= cas 2: tous les CN sont accessibles.
On choisit le CN tel que d(u;, x;) = diax €t 0. [i] minimum.

Le processus se poursuit jusqu’a ce que les conditions suivantes soient satisfaites :

Solil = dy Vi € {1, ,n}

6C[.]] = dC’Vj € {1’ ’m}

3.3. Codes LDPC adaptatifs

En codage de canal, les méthodes de construction de codes LDPC adaptatifs utilisent le poingonnage
(Puncturing) ou I’extension de la matrice de parité (Parity check matrix extension). Ces méthodes ne
sont pas adaptées au codage de source. En codage de source, la littérature propose deux techniques de
construction de codes LDPC adaptatifs, dites "Rateless" et "LDPCA".

La figure 11 représente le principe Rateless qui augmente le débit en partant d’un code LDPC de bas débit.

o ™, x3 ™, x3 Qn
— 3| Encoder | jlPerfect Channel »| Decoder | 5
Yn

Figure 11: Rateless LDPC

Pour augmenter le débit, une partie des bits source X" sera envoyée en plus du syndrome U™. Afin de

sélectionner le bit source supplémentaire transmis, nous choisissons les bits les moins fiables de X" apres

avoir appliqué un décodeur LDPC.

Cependant, I’inconvénient majeur du Rateless est qu’il est difficile de construire de bons codes LDPC a

faible débit. Il n’est donc pas conseillé d’appliquer la construction Rateless a partir d’un débit trop bas.
A ’opposé, la technique LDPCA (Figure 12) part d’un code LDPC a haut débit. 11 calcule ensuite de

nouveaux symboles par accumulation, notés a™ = [ay, as, - -+ , a,]7, a partir du syndrome «” comme suit

ap = up,

a; = aj-1 + u;, Vl={29sm}

ol la somme binaire correspond & XOR. Si un débit inférieur est demandé, seule une partie des symboles
(ay,az, - -, ay) sera envoyée.
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4. Proposition de méthodes de construction de codes LDPC adaptatifs

Xl Ul al
Xg Ug a8

Figure 12: LDPCA

Cependant, dans la construction LDPCA, la structure de I’accumulateur est fixe et ne permet pas une
optimisation des combinaisons des symboles de syndrome u; utilisés par le décodeur. La structure de
I’accumulateur peut notamment induire des cycles courts aux débits les plus bas et éliminer certains bits de
sources des équations de parité (cf. la courbe rouge sur la figure 12).

Rateless
%
7
0 1 LDPCA Rateless

/_\ 0 1/2 1

Figure 13: Une solution intermédiaire de construction de codes LDPC adaptatifs

Pour palier les inconvénients des techniques Rateless et LDPCA, une solution intermédiaire a été
proposée (figure 13). Elle part d’un code initial de débit R = 1/2. Elle applique ensuite soit la méthode
LDPCA pour obtenir des débits inférieurs a 1/2 ou la méthode Rateless pour des débits supérieurs a 1/2. De
cette facon, le défaut de la technique Rateless peut étre évité, mais les inconvénients du LDPCA demeurent.
Notre objectif dans cette these est de proposer une méthode de construction qui permet d’éviter les défauts
de la technique LDPCA (cycles courts, élimination de noeuds de variable).

4. Proposition de méthodes de construction de codes LDPC adaptatifs
4.1. Principe de construction des codes a débit adaptatif

Notre construction part d’un code meére H; (m; X n) de débit le plus élevé, puis construit une séquence de
codes filles Hy my X n de débits inférieurs. Le débit du code mere est noté R; et le débit de code de fille est
noté R, tel que R; > R>. Une matrice intermédiaire H;_,, est introduite pour décrire la relation entre le
code mere H; et le code fille H>, comme suit :

H, = H_»H| (6)
7/13




4. Proposition de méthodes de construction de codes LDPC adaptatifs

Figure 14: Premicre construction de code LDPC a débit adaptatif

Le probléme revient a construire cette matrice intermédiaire H;_,>, par combinaison des syndromes s;.
Les combinaisons sont optimisées selon trois criteres

= éviter I’élimination des VN,
= empécher les cycles courts,
= assurer que Hj_,, soit de rang plein.

La matrice intermédiaire d’un code LDPCA est de la forme

1 1 O o --- 0

0 0 1 1 - 0
Hy» =

o0 --- 0 1 1

La combinaison des s; est sous-optimale. D’autres matrices intermédiaires existent. Par exemple :.

1 0 1 o --- 0

01 0 I - 0
Hyi_» =

0 0 1 0 1

I 0 O 1 0

0 0 1 0 1
Hy, =

0 1 0 1 0

La performance de H, dépend de la structure de H;—_,,. Notre construction est basée sur I’optimisation
du choix des lignes de H; a combiner selon les trois criteres énoncés précédemment.
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4. Proposition de méthodes de construction de codes LDPC adaptatifs

row 1
Haamon s @ 100 Bz SR Select (U, Ue):
row 1 . a.Ue):
row m
H.=| row2 (UaUe2) m-1 Min{NbCycles} .
1= > > ,
row m . .
row 1
Haq row U, @ row Uy, NbCycles(H,.)
row m
m-1

Figure 15: Algorithme 1

4.2. Premier algorithme basé sur ’optimisation directe de H;_,,

La figure 15 représente le schéma de construction des codes LDPC de débit adaptatif selon 1’algorithme
1 pour passer de H; a H>. Notons U, et U, les composantes du syndrome S qui seront additionnées
(correspond a I’addition des lignes de méme indice de H).

= On sélectionne les paires de composantes U1, U.» de S telles que les CN d’indices correspondants
ne sont connectés a aucun VN commun. Ceci permet d’éviter d’éliminer les noeuds de variable dans
H,.

= Parmi les composantes éligibles, on choisit celles qui minimisent le nombre de cycles d’une longueur
donnée.

= Une ligne de H; est sélectionnée au plus une fois pour assurer que Hj_,, soit de rang plein.

L’application de notre méthode au code Wimax de longueur n = 256 est illustrée sur la figure 16. On a généré
trois codes de débits respectifs 3/8, 1/4, 1/8, avec la méthode LDPCA et avec notre algorithme de construction.
Dans notre algorithme, seuls les courts cycles de longueur 4 ont été pris en considération. Pour tous les débits,
on observe que notre construction a débit variable donne une meilleure performance que la méthode LDPCA.

‘ | Ni(C) |
R=1/2 0
R =3/8 LDPCA 204
R = 3/8 Algorithme 1 | 83
R =1/4 LDPCA 568
R = 1/4 Algorithme 1 | 200
R =1/8 LDPCA 2336
R = 1/8 Algorithme 1 | 1193

Table 1: Nombre de cycles de longueur-4 pour les codes issus de la méthode LDPCA et de 1’algorithme 1
proposé (code Wimax n=256)

D’apres I’analyse des cycles reportée dans la Table 1, on observe que dans tous les cas, notre construction
de code contient moins de cycles de longueur 4 que LDPCA, ce qui explique sa supériorité en termes de
taux d’erreur binaire.
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10° . .
-o Rate 1/8 LDPCA
—-e—Rate 1/8 Proposed

10 -o- Rate 1/4 LDPCA

——Rate 1/4 Proposed
-+ Rate 3/8 LDPCA

» |—+Rate 3/8 Proposed
10 | >—Rate 1/2

o
[T 3 J
|10 E
107 E
10°° E
10'6 L L P TS L L Lol L L ool i L P
107° 10 107 1072 10"
Y
Figure 16: Application de 1’algorithme 1 sur le code Wimax n=256

4.3. Algorithme 2 : basé sur I’optimisation préliminaire du protographe
Proposition: Supposons que H; soit générée par le protographe S|, H;—,, par le protographe S;_,», telles
que H, = Hi_,»H,. Alors il existe toujours un protographe S;_,» qui génere H;_,, et qui satisfait la relation
S = 8108 (7)
Lalgorithme 2 que nous proposons se déroule en deux étapes.

1- Optimiser S|, pour obtenir S, avec un bon seuil de décodage.

2- Construire H;_,, selon Sj_,; et telle que le nombre de cycles courts de longueur donnée pour H; soit
minimal.

Autrement dit les deux étapes sont les suivantes :

1. Premiere étape : détermination de S;_,, par recherche exhaustive. Critére : obtention de S, avec le
meilleur seuil de décodage.

2. Deuxieme étape : optimisation des combinaisons de lignes de Hy, (U., U.2), pour minimiser le
nombre de cycles courts, en appliquant 1’algorithme 1 avec la contrainte supplémentaire U, €
Ajl’ Us € Ajz'

L’ application de cet algorithme sur un code de longueur n = 512 est illustrée sur la figure 17.

Nous observons la supériorité de notre algorithme 2 sur la méthode LDPCA, justifiée par la réduction
du nombre de cycles courts.
En appliquant la méthode intermédiaire basée sur la technique Rateless et notre algorithme 2, on obtient les
performances reportées sur la figure 18, qui confirment I’efficacité du schéma de construction proposé.
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5. Application: vidéo en 360 degrés

-o Rate 1/8 LDPCA
-o—Rate 1/8 Proposed
-o- Rate 1/4 LDPCA
-o—Rate 1/4 Proposed
-+ Rate 3/8 LDPCA
——Rate 3/8 Proposed
——Rate 1/2

107 1074 1073 1072 107"

Ny LDPCA | Algorithme 2
R =3/8 | 453 455

R=1/4 1216 737

R=1/8 | 5361 3477

5. Application: vidéo en 360 degrés

Les images en 360 degrés nous sont fournies apres traitement, par nos partenaires du projet CominLabs
de I'Inria (Rennes). Les images 3D sont d’abord transformées en images 2D, a partir desquelles sont
générées des informations de source X et des informations adjacentes YW, j=12---,J. LaFigure 19
décrit I’insertion du schéma de codage de source proposé dans la chaine de traitement des vidéo en 3D.
Voici les principales étapes que nous avons suivies.

1. Notre schéma nécessite la connaissance de Pr(X|Y). Aussi nous introduisons la variable aléatoire
Z = X —-Y. Nous avons étudié deux modeles de distribution pour Z : Laplacienne et Q-aire.
Finalement, nous avons retenu le modele Laplacien. La transmission des parametres de la distribution
de Z doit également &tre prise en compte dans le bilan.

2. Le schéma de codage utilise un code LDPC binaire. Une transformation préalable des composantes
du vecteur source X" en différents plans de bits est nécessaire.

3. Codage séparé des plans de bits de Q(“), Q(L‘l), jusqu’a Q(O).

ymh = g T
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5. Application: vidéo en 360 degrés

"= Entropy :

> Proposed WIMAX
> L DPCA WIMAX
0.8 [=<o~Propose do1

0.6F s S o0 (R G

o
0.4 ....... ...................... .....................
0.2
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
H(p)
figure 18: Taux de compression obtenu sur un canal parfait tel que H(X|Y) = H(p)

U™P and model of Z

X X
D Transformation| | Quantization )@ .............................. @
A A
Required block Y(j) 0)
. Y
i=1,2,...]
—»| | Transformation| | Quantization Prediction
Neighbor blocks
Figure 19 yplication du schéma de codage de source proposé a la vidéo en 360 degrés

4. Décodage successif de chaque plan de bits Q(b ) utilisant U™P_ Iinformation adjacente ainsi que Q(i)
aveci > b.

Nous avons également introduit une stratégie dite "coding/no coding" pour optimiser le débit et mis en
oeuvre une quantification des parametres de la distribution de Z. Appliqué a des fichiers vidéos en 360
degrés fournis par nos partenaires de I'INRIA, le schéma global atteint des performances en termes de débit
de compression proches des limites théoriques, démontrant ainsi son efficacité. .
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6. Conclusions

Xn =[X1

X3

e Xy
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O[] | ]| [ > -

Bit plane Q™

| Q©

" 9(1)

—> Q(L—l)

" 9(5)

na
—_— > —>

b=s

Figure 20: Génération des plans de bits Q a partir du vecteur de symboles X

6. Conclusions

Dans cette these, nous nous sommes intéressés a une problématique de codage de source avec différentes
informations adjacentes, typique d’applications telles que FT'V. Nous avons proposé un schéma de codage de
source a débit adaptatif basé sur des codes LDPC. Nous avons développé deux algorithmes de construction
de codes LDPC binaires adaptatifs qui surpassent les constructions de I’état de 1’art (LDPCA) en termes de
taux d’erreur binaire. Nous avons appliqué notre schéma dans une chaine de traitement sans pertes de vidéo
en 360 degrés et obtenu des résultats proches des limites théoriques.
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Codage de sources de Slepian-Wolf utilisant des codes LDPC et application a la télévision
interactive

Mots clés : Codes LDPC, Codage de source, Rendement compatible, Codage, FTV.

Résumeé : La Télévision Interactive (FTV) est un service de vidéo a la demande qui permet au
client de choisir I'angle de vue de la vidéo. Le défi principal est de stocker un d’énorme volume
de données et d’extraire une petite partie de ces données a la demande et en temps réel. Pour
améliorer le décodage de l'information, on peut supposer que les vues précédemment recues
sont conservées par l'utilisateur. Le probléme ainsi posé devient un probleme de codage de
sources avec information adjacente du co6té de I'utilisateur. Cette thése s’inscrit dans ce contexte.
Elle s’intégre au projet CominLabs InterCom dont I'objectif est de proposer des solutions pour
'accés massif aléatoire a des sous-ensembles de données corrélées. Dans cette thése, nous
proposons des schémas pratiques de codage de sources sans perte sous I'hypothése d’une
information adjacente. Ces schémas sont basés sur des codes de type Low Density Parity Check
(LDPC). Les méthodes de I'état de I'art utilisent des solution adaptatives en débit s’appuyant sur
des codes LDPC de type Rateless ou LDPC Accumulés (LDPCA). Mais les codes Rateless
fonctionnent mal aux débits faibles, et les codes LDPCA ne sont pas adaptés aux débits élevés.
Dans cette thése, on combine les deux méthodes pour construire des codes LDPC aux débits
adaptables offrant une large gamme de débits. Cependant, la technique LDPCA ne permet pas
d’optimiser la distribution des degrés du code, ni de contréler le nombre de cycles courts pour
tous les rendements. C’est pourquoi nous proposons deux nouvelles méthodes de construction
pour remplacer le code LDPCA. Les résultats de la simulation montrent une amélioration des
performances par rapport a LDPCA. Enfin, nous intégrons la construction de codes sans perte
dans un schéma complet de codage de source avec pertes développé pour l'application FTV
dans le cadre du project InterCom.

Slepian-Wolf source coding using LDPC codes for Free Viewpoint Television
Keywords : LDPC codes, Source coding, Rate adaptive, Video coding, FTV.

Abstract : Many multimedia applications such as Free Viewpoint Television (FTV) use a distant
service provider that offers customized services depending on the user request. The main
challenge is the efficient storage of a huge amount of data and the real-time extraction of a small
fraction of these data upon request. In some applications such as FTV, the requests previously
addressed by the user can help to optimize both the storage and the extraction. The problem can
thus be seen as a source coding problem with side information at the user side. This PhD thesis
fits into this context. It is part of the CominLabs project InterCom that focuses on solutions for
massive random access to subsets of correlated data. In this thesis, we investigate practical
lossless source coding schemes with side information based on Low Density Parity Check
(LDPC) codes. State-of-the-art approaches use rate-adaptive LDPC codes such as rateless
codes and LDPC accumulate (LDPCA) codes. Rateless codes perform poorly at low coding rates
while LDPCA is not adapted to high-rates. In this thesis, we combine both methods to construct
rate-adaptive LDPC codes offering a wide range of rates. However LDPCA does not allow to
optimize the code degree distribution, nor to control the amount of short cycles at all rates. This is
why we propose two novel rate-adaptive LDPC code constructions to replace the LDPCA part.
Simulation results show improved performance compared to LDPCA. Finally, we incorporate the
proposed lossless code construction into a complete lossy source coding scheme that was
developped for FTV in the framework of the InterCom project.
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