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Introduction

Contents

1.1 Source coding for Free Viewpoint Television . . . . . . . . . 5
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1.1.2 Source coding for FTV . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Limitations of standard compression systems to tackle FTV 7

1.3 Slepian-Wolf source coding with LDPC codes . . . . . . . . 7

1.4 My contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Organization of the manuscript . . . . . . . . . . . . . . . . . 9

1.1 Source coding for Free Viewpoint Television

1.1.1 InterCom project

My thesis entitled "Slepian-Wolf source coding using LDPC codes for Free Viewpoint

Television" was realized in the framework of a project Cominlabs called "InterCom"

which held from November 2016 to October 2019. The objective of this project was

to design compression solutions for Free Viewpoint Television (FTV). The different

partners of the InterCom project were: Sirocco team (INRIA, Rennes), i4s team

(INRIA Rennes), L2s (CentraleSupelec/Univ Paris-Sud, Paris), and Lab-STICC

(IMT Atlantique, Brest).

FTV [2, 3, 4] is a system for watching videos in which the user can choose its

viewpoint freely and change it instantaneously at any time. For example, when

watching a football game, the user can select the viewpoint he wants, as if he

could change his watching position, although the images remain 2D. This example

is depicted in Figure 1.1, left. As shown in Figure 1.1, all the views of the video are

stored on a server, and the users send requests to the server in order to get their

desired views. When building a storage/transmission system for FTV, we want to

consider a large dataset of videos, and a large number of users. In this context, data

compression can help to reduce the amount of data to be stored on the server and

transmitted to the users.
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of the corresponding types. The performance of an LDPC code depends on its

underlying protograph, and density evolution [26, 34, 35, 36] enables to evaluate

the decoder error probability depending on the protograph. Further, short cycles in

the Tanner graph of the LDPC matrix can degrade the code performance. In order

to limit the amount of short cycles, the progressive edge-growth (PEG) algorithm

was proposed in [37] to construct the matrix from a given protograph.

In FTV, the statistical relation between source and side information varies de-

pending on the previously requested views. So we should adapt the coding rate.

Two traditional rate-adaptive code construction methods can be applied: using

Low-Density Parity-Check Accumulated (LDPCA) codes [38] to decrease the rate

from a high initial rate, or using Rateless codes [39] to increase the rate from a low

initial rate. In this thesis, we aim to improve these existing rate-adaptive methods.

It is hard to construct good performance LDPC matrices for very low rates and this

is why Rateless method only allows to consider a limited range of rates. To solve

this issue, we consider the solution of [40] that proposes to use LDPCA codes and

rateless codes together from a middle initial rate. Unfortunately, this mixed solution

is still penalized by the weakness of LDPCA, which shows a very bad performance

if there exists too many short circles in the corresponding LDPC matrix. So we look

for new code constructions which allows to optimize the code performance at all the

rates and in particular to reduce the amount of short cycles in the LDPC matrices.

1.4 My contributions

In this thesis, as first contribution, we proposed two novel rate-adaptive code con-

structions for Slepian-Wolf source coding. The LDPCA construction combines sev-

eral lines of the initial LDPC matrix in order to construct lower rate codes. LDPCA

code construction does not leave the choice of line combinations (accumulated struc-

ture) and bad combinations can generate a lot of short cycles. As short cycles may

highly degrade the code performance, we proposed a new method that limits the

number of short cycles. In this method, we choose line combinations that add the

least number of cycles. In this way, we generate a sequence of rate-adaptive codes

that perform better than LDPCA. After this, we proposed a second method that

relies on the optimization of the protographs at all rates. Since the protograph can

help us to choose better lines combinations, we proposed a method that can opti-

mize the protograph for all the considered rates. The two proposed methods show

a better performance than LDPCA, especially for short codes (less than 1000 bits)

that are particularly sensitive to short cycles.

As a second contribution, we worked on the integration of these two rate-adaptive

code constructions into the FTV compression system. InterCom project members

of INRIA Rennes worked on the compression pipeline for FTV, but they did not

optimize the lossless part. So they provided us with files containing examples of

source and side information realizations, and we applied our code constructions and

decoding algorithms to these data. For this, we first had to determine and estimate a
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statistical model between the source and side information. Second, the data we were

provided with was on the form of symbols, and we had to adapt our solutions which

work on binary vectors. To finish, we applied our coding solutions and evaluated

the rate performance. The simulation results show that we can achieve transmission

and storage rates close to the theoretical limits.

1.5 Organization of the manuscript

We now present the organization of this manuscript. In Chapter 2, we formally de-

scribe the FTV problem as a source coding problem and we provide the information

theory results that were already obtained for this problem. The information theory

results provide the limiting compression performance of FTV systems, and suggest

design guideline for the practical schemes. Chapter 3 presents the preliminaries of

standard and rate-adaptive LDPC codes. It shows the definitions, decoding meth-

ods and construction methods of LDPC codes. In Chapter 4, we describe the two

rate-adaptive code constructions we propose for lossless source coding with side in-

formation. In Chapter 5, we apply our methods to real FTV data, and show the

obtained simulation results. Chapter 6 presents the conclusions and perspectives.





Chapter 2

Information theory results

Contents

2.1 Entropy definitions . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Lossless source coding without side information . . . . . . . . 13

2.2.2 Lossless source coding with side information . . . . . . . . . . 14

2.2.3 Lossless source coding for FTV . . . . . . . . . . . . . . . . . 14

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

In this section, we describe information theory results for FTV. FTV can be pre-

sented as a source coding problem with side information available at the decoder,

and the side information is the already received past views. In this thesis, we are

mainly interested in lossless source coding. Figure 2.1 illustrates the source coding

scheme that can be considered for FTV.

In this figure, X is the source which generates sequences Xn = [X1, . . . , Xn] of n

Figure 2.1: Lossless Source Coding for FTV

symbols. Each source symbol Xk takes its value in an alphabet {0, 1, . . . , I−1} and

follows a probability distribution P (Xk = i) = pi, i ∈ {0, 1, . . . , I − 1}. In source

coding, the source Xn is compressed into a codeword Um of length m, where m ≤ n.

The codeword Um is then transmitted to the decoder. At the decoder, the side in-

formation Y generates sequences Y n of n bits. The side information symbol Yi takes

also its value in the alphabet {0, 1, . . . , I − 1} but follows a probability distribution

which is different from the one of the source symbol Xi. The decoder reconstructs

the source sequence X̂n from the side information sequence Y n and from the re-

ceived codeword Um. In this thesis we always suppose that the codeword Um is

perfectly received at the decoder. The source rate R is given by R = m
n

.
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In our case, there exist several available side informations Y (j), j ∈ {1, . . . , J}
potentially available at the decoder, J is the number of previous received views. The

statistical relations between X and each Y (j) are defined by the joint probability

distributions P (X,Y (j)). Only one of these potentially available side informations

will be used for decoding, and the choice of the available side information depends

on the previous views requested by the user.

2.1 Entropy definitions

Entropy [41, page13-18] is a measure of the information contained in a source. We

present the definitions of entropy, conditional entropy, and the Binary Symmetric

Channel (BSC) in this part. For a discrete source X, its entropy is denoted by

H(X) and defined as

H(X) = H(p) = −E(log2 P (X)) = −
I−1
∑

i=0

pi log2(pi) (2.1)

For example, for a Bernoulli source, X takes values in {0, 1}. If P (X = 0) = p,

Then

H(X) = −p · log2(p)− (1− p) · log2(1− p) (2.2)

Specifically, if P (X = 0) = 0.5, then H(X) = 1 bit/source symbol.

The conditional entropy H(X | Y ) is defined as

H(X | Y ) =
∑

y∈0,...,I−1

P (y)H(X | Y = y)

= −
∑

y∈0,...,I−1

P (y)
∑

x∈0,...,I−1

P (x | y) log2 P (x | y)
(2.3)

By the properties of conditional entropy [41, page 29] we have H(X | Y ) ≤ H(X).

We get H(X | Y ) = H(X) if and only if X and Y are independent.

Figure 2.2 shows us a binary symmetric channel, where X takes values in {0, 1}
and P (Y = 1 | X = 0) = P (Y = 0 | X = 1) = p.

Figure 2.2: Binary Symmetric Channel

Specially, if P (X = 0) = 1
2 and P (Y = 1 | X = 0) = P (Y = 0 | X = 1) =

p, where p is the crossover probability, then P (Y = 0) = 1
2 . By applying these
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expressions in (2.3), we have

H(X | Y ) = −p · log2(p)− (1− p) · log2(1− p) (2.4)

2.2 Theoretical results

In this section, we provide the minimum achievable rates for lossless source coding

without side information, lossless source coding with side information, and source

coding for FTV.

2.2.1 Lossless source coding without side information

We first consider the case where no side information is available at the decoder. In

FTV, this corresponds to the case where we do not use the previously received views

as side information at the decoder.

Figure 2.3 shows us the lossless source coding scheme without side information. In

Figure 2.3: Lossless Source Coding

this scheme, the error probability is defined as

Pn
e = P (Xn 6= X̂n) (2.5)

It represents whether the source Xn can be perfectly reconstructed at the decoder

or not. If one can construct a coding scheme such that lim
n→+∞

P (Xn 6= X̂n) = 0,

then lossless decoding can be achieved.

The source coding theorem [41, page 112] tells us that a rate R is achievable if and

only if

R ≥ H(X) (2.6)

where H(X) is the entropy of the source X.

Example 2.2.1 For a binary source X with P (X = 0) = 0.4, we have

H(X) = −0.4 · log2(0.4)− (1− 0.4) · log2(1− 0.4)

= 0.971
(2.7)

So the minimum lossless source coding rate R ≥ 0.971 bits/symbol.
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Figure 2.4: Lossless Source Coding with side information

2.2.2 Lossless source coding with side information

In FTV, the already received views can be used as side information at the decoder.

When there is only one possible side information Y , this can be represented as the

Slepian-Wolf [42] source coding problem.

Figure 2.4 represents Slepian-Wolf source coding. The Slepian-Wolf source coding

theorem [42] shows that a rate R is achievable if and only if:

R ≥ H(X | Y ) (2.8)

Since H(X | Y ) ≤ H(X), the side information at the decoder can help to

decrease the source coding rate compared to source coding without side information.

When the side information Y is available at the decoder, the minimum rate R will

depend on the statistical relation between X and Y .

Example 2.2.2 In BSC for a source X ∈ {0, 1} with P (X = 0) = 0.4, and

crossover probability p = 0.1 we have

H(X | Y ) = 0.4585 (2.9)

So the minimum lossless source coding rate is R ≥ 0.4585 bits/symbol. Com-

pared to the example 2.2.1, 0.4585 < 0.971, it shows that the source coding with

side information can help to reduce the minimum source rate.

In FTV, several different side informations can be available at the decoder.

2.2.3 Lossless source coding for FTV

For FTV, as described in Figure 2.1, several views Y (j), j ∈ {1, . . . , J} can be

potentially available at the decoder. Only one of these potentially available side

information will be used for decoding, and the available side information depends on

the previous views requested by the user. For instance, Y (1) can be the prediction of

X based on the previous received views received by user 1, and Y (1) will serve as side

information for the transmission of X to user 1. We suppose that the transmissions

of X to different viewpoints are independent. Figure 2.5 presents the transmission of

sending a single source X, with several clients request for this view X using different

SI Y (1), . . . , Y (J) by network. S defines the storage rate on the server. Rj defines

the rate needed to transmit source X to user j with side information Y (j).

For FTV, we are interested in the achievable rate-storage region which is a set of
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Assuming that in binary case pj ≤ 0.5, with the properties of the entropy function,

we have:

S ≥ H( max
j=1,...,J

pj) (2.15)

Example 2.2.3 In BSC for a source X ∈ {0, 1} with P (X = 0) = 0.4, three

different side informations Y (j), j = 1, 2, 3 which follow the crossover probability

P (Y (j) = 1 | X = 0) = P (Y (j) = 0 | X = 1) = pj , pj = 0.05, 0.1, 0.2 are available

at the decoder. Table 2.1 provides the minimum rates for each possible Yj . The

minimum storage rate is: S ≥ 0.7033 bits/symbol.

Y (1) Y (2) Y (3)

pj 0.05 0.1 0.2

Rj 0.2808 0.4585 0.7033

Table 2.1: The minimum transmission rate with different side informations available

at the decoder

2.3 Conclusion

In this section, we presented information theory results for FTV. These information

theory results suggest that we use an incremental coding scheme in order to build

a practical scheme for FTV. We know that LDPC codes can be used to construct

Slepian-Wolf source coding schemes, including rate-adaptive ones. This is why we

consider them in the following.
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As described in Chapter 2, the lossless source coding part of FTV can be seen

as a Slepian-Wolf [42] source coding problem, and LDPC codes are often used as

practical codes for this problem [29] [44] [45] [31]. LDPC [21] codes were invented by

Gallager and published in his thesis in 1960. LDPC codes are a class of linear block
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codes and they were initially introduced for channel coding. They show very good

performances in channel coding and they are known to approach the channel capac-

ity. LDPC codes can also be applied to Slepian-Wolf source coding, as described in

this Chapter.

In this section, we will first introduce the definition of LDPC codes, and con-

sider protograph [33, 46]-based LDPC code construction. Three decoding methods

(Bit-flipping decoder [47], Gallager-A/B decoder [26], Sum-product decoder [48])

are described as the most used decoding methods for LDPC codes. We then intro-

duce Density evolution [34] to evaluate the asympotic performance of LDPC codes.

We also present the Progressive Edge Growth (PEG) [37] algorithm that allows to

construct good finite-length codes.

3.1 LDPC codes

3.1.1 Definition of LDPC codes

LDPC codes can be represented by a parity check matrix H of dimension m × n,

where m < n. In this thesis we mainly consider binary LDPC codes, which means

that the components of H are either 0 or 1. In LDPC codes, the matrix H is sparse

in the sense that it contains only a few 1′s which will allow to reduce the decoding

complexity. In Slepian-Wolf source coding, a codeword Um is constructed from the

source vector Xn and from the parity check matrix as

Um = Xn ·HT (3.1)

The source coding rate is R = m
n

.

The LDPC parity check matrix H can be represented by a Tanner Graph [49]. The

n columns of this matrix are represented by variable nodes (VN), and the m rows

are represented by check nodes (CN). If Hj,i = 1, there is an edge between the j-th

CN and the i-th VN in the Tanner Graph. The number of connections of a given

VN xi is called the VN degree and denoted by dvi . The set of CNs connected to VN

xi is denoted by Ci. The number of connections of a given CN uj is called the CN

degree and denoted by dcj . The set of VNs connected to CN uj is denoted by Vj .
For example, for a code with n = 8, m = 4, a possible matrix H is given by:

H =









x1 x2 x3 x4 x5 x6 x7 x8

u1 0 1 0 1 1 0 0 1

u2 1 1 1 0 0 1 0 0

u3 0 0 1 0 0 1 1 1

u4 1 0 0 1 1 0 1 0









(3.2)

and the corresponding Tanner Graph is shown in Figure 3.1. In this example,

each VN xi, i ∈ {1, · · · , 8} is connected to 2 CN uj , j ∈ {1, · · · , 4}, and dvi = 2.

Each CN is connected to 4 VN, which gives dcj = 4.

An LDPC code is regular if the variable node degree dvi is the same for each VN



3.1. LDPC codes 19

Figure 3.1: Tanner Graph of H with n = 8, m = 4

and the check node degree dcj is the same for each CN. For example, the matrix

H in (3.2) represents a regular LDPC codes with degrees dv = 2, dc = 4. For

irregular LDPC codes, dv and dc can vary from one node to another, and they can

be described with a degree distribution pair (λ (x) , ρ (x)):

λ (x) =

dvmax
∑

k=2

λkx
k−1 ρ (x) =

dcmax
∑

k=2

ρkx
k−1 (3.3)

where
dvmax
∑

k=2

λk = 1,
dcmax
∑

k=2

ρk = 1, dvmax is the maximum VN degree, dcmax is the

maximum CN degree. In these expressions, the fraction of edges belonging to VNs

with dv = k is noted as λk, and the fraction of edges belonging to CNs with dc = k

is noted as ρk. The rate R depends on the degree distributions λ (x) and ρ (x). It

can be computed as follows:

R (λ, ρ) =
n−m

n
= 1− m

n
= 1−

∫ 1
0 ρ (x) dx
∫ 1
0 λ (x) dx

(3.4)

For example, for the regular code described in 3.1, with dv = 2, dc = 4, we have

λ (x) = x ρ (x) = x3 (3.5)

yielding to

R (λ, ρ) = 1−
∫ 1
0 x3dx
∫ 1
0 xdx

=
1

2
(3.6)

For an irregular code, a VN degree distribution given by

λ (x) = 0.071428x+ 0.230118x2 + 0.079596x9 + 0.147043x10

+ 0.073821x48 + 0.397994x49
(3.7)
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means that the fraction of an edge belonging to VNs with dv = 2 is λ2 = 0.071428,

the fraction of an edge belonging to VNs with dv = 3 is λ3 = 0.230118, the fraction

of an edge belonging to VNs with dv = 10 is λ10 = 0.079596, etc.

If the CN degree distribution is given by

ρ (x) = x27 (3.8)

then

R (λ, ρ) = 1−
∫ 1
0 λ(x)dx
∫ 1
0 ρ(x)dx

=
3

4
(3.9)

3.1.2 LDPC code construction from protographs

An alternative way to represent irregular LDPC codes is the use of protographs [33,

46]. Protographs allow for a precise control of the connections in the parity check

matrix of the code, and lead to efficient Quasi-Cyclic (QC) parallel hardware imple-

mentations [50].

A protograph S is a small Tanner Graph of size Sm × Sn with Sm/Sn = m/n = R.

Each row (respectively column) of S represents a type of CN (respectively of VN).

The protograph S thus describes the number of connections between Sn different

types of VNs and Sm different types of CNs. A parity check matrix H can be gener-

ated from a protograph S by repeating the protograph structure Z times such that

n = ZSn, and by interleaving the connections between the VNs and the CNs. The

interleaving can be done by a PEG algorithm [37] that not only permits to satisfy

the protograph constraints, but also to lower the number of short cycles that could

severely degrade the decoding performance of the matrix H.

Figure 3.2: Construction of a parity check matrix H of size 2 × 4 (right picture)

from a protograph S of size 1× 2 (left picture)

Figure 3.2 gives an example of construction of a parity check matrix H from the

protograph S defined by

S =
[

1 2
]

(3.10)

Components of S represent the connections between one CN of type A1 and two

VNs of types B1 and B2. A parity check matrix H can be constructed from this

protograph S, where

H =

[

0 1 1 1

1 1 0 1

]

. (3.11)
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The Tanner graph of protograph S is represented in Figure 3.2 (left part). In

order to construct a parity check matrix H, the protograph is first duplicated Z = 2

times (middle part of Figure 3.2), and the edges are then interleaved (right part of

Figure 3.2). In the final Tanner graph, one can verify that each VN of type B1 is

connected to one CN of type A1, and each VN of type B2 is connected to two CNs

of type A1.

The performance of a given parity check matrix H highly depends on its un-

derlying protograph S. The protograph optimization will be presented later in this

section.

3.2 Decoding algorithms for LDPC codes

There exist several decoding methods for LDPC codes. These methods were invented

in the context of channel coding, but they can also be applied to source coding with

side information, as described in this section. Bit-flipping decoder, Gallager-A/B

decoder and Sum-product decoder are among the most common decoders [49]. In

this section we describe these three decoders.

3.2.1 Bit-flipping decoder

The rows of the LDPC matrix H represent parity check equations. The idea of the

Bit-flipping [47] algorithm is to correct one by one the bits that are involved in the

largest number of unsatisfied parity check equations.

Some definitions are given first:

• We denote by ei the number of unsatisfied parity check equations associated

to VN xi.

• x̂i ∈ {−1, 1} is the polar representation of xi, x̂i = −1 corresponds to xi = 1,

x̂i = 1 corresponds to xi = 0.

• The number of iterations is denoted by ℓ.

• The message from CN uj to VN xi (i ∈ Vj) is denoted by Ψc(j → i).

• The message from VN xi to CN uj (j ∈ Ci) is denoted by Ψv(i→ j).

• The function that takes the decision on the value of xi is denoted by Qi.

The steps of the Bit-flipping are as follows:

1. Initialization: The value x̂i of VNs xi, i ∈ {1, · · · , n} are initialized with the

side information bits yi, that is x̂i = 1 − 2yi. The counters ei are set to zero. The

messages from VNs to CNs are initialized as

Ψ(0)
v (i→ j) = x̂i, ∀j ∈ Ci (3.12)
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2. CN update: The messages Ψ
(ℓ)
c (j → i) are calculated as:

Ψ(ℓ)
c (j → i) = (1− 2uj) Π

i∈Vj

Ψ(ℓ)
v (i→ j) (3.13)

3. VN update: With (3.13), all the m parity equations are checked. Once a parity

equation is not satisfied, the counters ei of the associated VN are increased by one.

It means that,

e
(ℓ)
i =

∑

j∈Ci

1{Ψ(ℓ)
c (j → i) = −1}, ∀i ∈ Vj (3.14)

The message Ψ
(ℓ)
v (i → j) of the VN with highest e

(ℓ)
i will then be corrected,

∀j ∈ Ci,

Ψ(ℓ+1)
v (i→ j) =







−x̂i, if e
(ℓ)
i = max

k∈{1,...,n}
e
(ℓ)
k

x̂i, else
(3.15)

4. Detection: The final value x̂i is set to:

x̂i = Ψ(ℓ+1)
v (i→ j) (3.16)

5. If all parity equations are satisfied (which means for j = 1, · · · ,m, Ψ
(ℓ)
c (j →

i) = 1) or if the maximum number of iteration is reached, the decoding stops. If

not, it goes back to step 2.

3.2.2 Gallager-A/B decoder

The idea of the Gallager-A/B [26] algorithm is also to correct the codeword bits

depending on unsatisfied parity equations. The difference is that here we apply a

majority voting operation at VNs, and consider only extrinsic messages at both VNs

and CNs.

We use the same notation as in Section 3.2.1. The steps of the Gallager-A

decoder are as follows.

1. Initialization: The message of VNs xi, i = 1, . . . , n are initialized with the

side information yi, x̂i = 1− 2yi. The messages are initialized as

Ψ(0)
v (i→ j) = x̂i, ∀j ∈ Ci (3.17)

2. CN update: The parity check messages are given by

Ψ(ℓ)
c (j → i) = (1− 2uj) Π

k∈Vj ,k 6=i
Ψ(ℓ)

v (k → j) (3.18)

3. VN update (majority voting): Ψ
(ℓ+1)
v (i → j) is calculated from the initial

message x̂i and from the CN messages Ψ
(ℓ)
c (j → i), as

Ψ(ℓ+1)
v (i→ j) =

{

−x̂i, if Ψ
(ℓ)
c (k → i) = −x̂i, ∀k ∈ Ci, k 6= j

x̂i, otherwise
(3.19)
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Figure 3.3: Message passing in Gallager-A/B and soft decision. Left figure shows

parity check computation, right figure shows majority voting.

4. Detection: The final value of x̂i is equal to Q
(ℓ+1)
i and

Q
(ℓ+1)
i =

{

−x̂i, if Ψ
(ℓ)
c (j → i) = −x̂i ∀j ∈ Ci

x̂i, otherwise
(3.20)

5. If all the parity equations are satisfied or if the maximum number of iterations

is reached, the decoding stops. Otherwise, it goes back to step 2.

Gallager B is different from Gallager A at step 3 and step 4. At step 3, the

Gallager B decoder sets the value of Ψ
(ℓ+1)
v {i → j} to −x̂i if and only if at least b

incoming check messages are equal to −x̂i. The same is applied at step 4.

3.2.3 Sum-Product decoder

Sum-product [48] is also called belief-propagation or message-passing algorithm. In

this algorithm, the exchanged messages are no longer −1 or 1, but Log-Likelihood

Ratios (LLR). Therefore, before presenting the algorithm, we need to introduce ad-

ditional notations. The messages are initialized as mi = log P (xi=0|yi)
P (xi=1|yi)

. For instance

for a BSC,

mi = log
P (yi | xi = 0)

P (yi | xi = 1)
= (1− 2yi) · log

1− p

p
(3.21)

where p is the crossover probability and p = P (yi 6= xi).

The Sum-Product decoding algorithm is then described by the following steps.

1. Initialization: We compute initial messages as mi = log P (xi=0|yi)
P (xi=1|yi)

, and

Ψ(0)
v (i→ j) = mi, ∀j ∈ Ci (3.22)
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2. CN update: The parity check messages are given by

Ψ(ℓ)
c (j → i) = log

1 + (1− 2uj) ·
∏

k∈Vj\i

(

tanh(Ψ
(ℓ)
v (k→j)

2

)

1− (1− 2uj) ·
∏

k∈Vj\i

(

tanh(Ψ
(ℓ)
v (k→j)

2

) (3.23)

3. Majority voting: The updated VN messages are given by

Ψ(ℓ+1)
v (i→ j) = mi +

∑

k∈Ci\j

Ψ(ℓ)
c (k → i) (3.24)

4. The value of xi is calculated from

Q
(ℓ+1)
i = mi +

∑

k∈Ci

Ψ(ℓ)
c (k → i) (3.25)

x̂i =

{

1, if Q
(ℓ+1)
i ≥ 0

−1, if Q
(ℓ+1)
i < 0

(3.26)

5. If all the parity equations are satisfied or if the maximum number of iterations

is reached, the decoding stops. If not, it goes back to step 2.

3.3 Density evolution

Density evolution [34] is a method to evaluate the performance of LDPC codes. It

is then used to compute a channel threshold from which the decoder can decode

without error. It consists in computing the statistical distribution of messages ex-

changed during the iterative decoding process. More formally, if we denote by P
(ℓ)
e

the codeword error probability after ℓ iterations, then for a BSC with crossover

probability p, the threshold ε satisfies

lim
ℓ→+∞

P (ℓ)
e = lim

ℓ→+∞
P (X̂(ℓ) 6= X) = 0, ∀p ≤ ε (3.27)

Let us describe steps of the density evolution algorithm as follows.

• In the following, we assume that the side information Y is generated from a

BSC with crossover probability p. For the source X, we consider the all-zero

assumption [26], that is xi = 0, ∀i. The codeword U is such that uj = 0, ∀j.

• For the considered decoding algorithm (Gallager-A/B, Sum-product) we es-

timate the statistical distribution of the messages Ψ
(ℓ)
c ,Ψ

(ℓ)
v for L decoder

iterations.

• We estimate the codeword error probabilities P
(ℓ)
e , and then compute the

threshold from (3.27).
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3.3.1 Density evolution for the Gallager-A decoder

We now describe into details the density evolution equations for the Gallager A

decoder and for the sum-product decoder. For Gallager-A decoder, we calculated

the messages Ψ
(ℓ)
c (j → i) by equation (3.18), and Ψ

(ℓ)
v (i → j) by equation (3.19).

The Density evolution evaluates the performance of an ensemble of codes with the

same CN and VN degree distributions. Here, we consider regular LDPC code with

CN degree dc and VN degree dv. In order to evaluate the probability distributions

of Ψ
(ℓ)
c , Ψ

(ℓ)
v , we define

• Probability distribution of Ψ
(ℓ)
c : q

(ℓ)
α = P (Ψ

(ℓ)
c (j → i) = α), where α ∈

{−1, 1}.

• Probability distribution of Ψ
(ℓ)
v : p

(ℓ)
α = P (Ψ

(ℓ)
v (i → j) = α), where α ∈

{−1, 1}.

Then, the probability distribution of Ψ
(ℓ)
c after applying equation (3.18) is [26].

q
(ℓ)
−1 =

1

2

(

1−
(

1− 2p
(ℓ−1)
−1

)(dc−1)
)

q
(ℓ)
1 =

1

2

(

1 +
(

1− 2p
(ℓ−1)
−1

)(dc−1)
)

(3.28)

Then with the majority voting operation in equation (3.19), we have

p
(ℓ)
−1 = p

(0)
1

(

q
(ℓ)
−1

)dv−1
+ p

(0)
−1

(

1− q
(ℓ)
1

)dv−1
(3.29)

p
(ℓ)
1 = p

(0)
−1

(

q
(ℓ)
1

)dv−1
+ p

(0)
−1

(

1− q
(ℓ)
1

)dv−1
(3.30)

The error probability is evaluated as P
(ℓ)
e = p

(ℓ)
−1, then perfect decoding is

achieved if lim
ℓ→+∞

P
(ℓ)
e = 0. Equations (3.28) (3.29) (3.30) allow to compute p

(ℓ)
−1

recursively. As p
(0)
−1 = p, the error probability P

(ℓ)
e can be calculated as

P (ℓ)
e = p− p







1 +
(

1− 2P
(ℓ−1)
e

)dc−1

2







dv−1

+ (1− p)







1−
(

1− 2P
(ℓ−1)
e

)dc−1

2







dv−1
(3.31)

Since Pe is a increasing function of p, the highest p which still satisfies lim
ℓ→+∞

P
(ℓ)
e = 0

will be defined as the threshold ε.



26 Chapter 3. Low Density Parity Check codes

3.3.2 Density evolution for the Sum-product decoder

For the sum-product decoder, we will also evaluate the probability distribution of

Ψ
(ℓ)
c and Ψ

(ℓ)
v , we define

• Probability distribution of Ψ
(ℓ)
c : q

(ℓ)
α = P (Ψ

(ℓ)
c (j → i) = α), where α ∈

{−∞,∞}.

• Probability distribution of Ψ
(ℓ)
v : p

(ℓ)
α = P (Ψ

(ℓ)
v (i → j) = α), where α ∈

{−∞,∞}.
For the Gallager-A decoder, the probability distributions of Ψ

(ℓ)
c and Ψ

(ℓ)
v are dis-

crete. But for sum-product decoder, the probability distributions of Ψ
(ℓ)
c and Ψ

(ℓ)
v

are continuous. Therefore, it is not possible to calculate analytically the probability

distribution for each single value of α. This is why the Monte-Carlo [51] method is

applied here.

The Monte-Carlo method consists in generating K CN and VN messages, in

order to estimate their probability distribution. Mvn[K] and Mcn[K] will store the

generated values of Ψ
(ℓ)
c and Ψ

(ℓ)
v , and the K elements in these two vectors follow

the probability distributions of Ψ
(ℓ)
c and Ψ

(ℓ)
v . As before, we consider the all-zero

codeword assumption for X, and a BSC for Y . Then the initial LLR is equal to

mi = log P (xi=0|yi)
P (xi=1|yi)

= (1−2yi) log 1−p
p

. The Monte Carlo density evolution algorithm

steps are as follows.

• The value of Mvn[K] are initialized with LLR information. Mvn[k] = ±mk, k ∈
{1, · · · ,K} and P (Mvn[k] = mk) = p, P (Mvn[k] = −mk) = 1− p.

• CN update: We apply the equation (3.23) to update the values of all the

elements in Mcn[K]. For each element, we choose randomly dc − 1 elements

from Mvn[K] and apply (3.23) over these elements.

• VN update: We apply the equation (3.24) to update the values of all the

elements in Mvn[K]. For each element, we choose randomly dv − 1 elements

from Mcn[K] and apply (3.24) over these elements.

• Repeat the CN update and VN update for L iterations. The final error prob-

ability is evaluated as

P (ℓ)
e =

{k : Mvn[k] < 0}
K

(3.32)

The highest crossover probability p which satisfies lim
ℓ→+∞

P
(ℓ)
e = 0 will be defined as

the threshold ε.

3.4 Protograph optimization

LDPC codes performance depend on the underlying protograph, and this is why it

is necessary to optimize the protograph for a given rate. Here, we apply Differential

Evolution [52] for protograph optimization.
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3.4.1 Differential Evolution

Differential Evolution is a genetic optimization algorithm, which we now describe.

We consider an optimization problem with D parameters represented by a vector

xD and a cost function f(xD) to minimize. To apply Differential Evolution, we first

randomly generate an initial population of NP vectors x
(0)
i,j , i ∈ {1, · · · ,NP}, j ∈

{1, · · · , D}. We usually set 5D ≤ NP ≤ 10D. Then we apply some recombina-

tion operations among vectors x
(0)
i,j in order to obtain NP trial vectors u

(1)
i,j , i ∈

{1, · · · ,NP}, j ∈ {1, · · · , D}. A new population x
(1)
i,j is then generated, where

x
(1)
i,j =

{

u
(1)
i,j , if f(u

(1)
i ) < f(x

(0)
i )

x
(0)
i,j , otherwise

(3.33)

The recombination and selection operations are repeated for several iterations. The

number of iterations is defined as G. The vector x
(G)
i,j with best cost function value

in the last iteration is chosen as the optimized solution.

The steps of Differential Evolution are precisely detailed as follows:

Mutation A vector of the population is defined as x
(g)
i,j , where i ∈ {1, 2, . . . ,NP},

j ∈ {1, 2, . . . , D} and g represents the current iteration. At iteration g + 1, the NP

mutant vectors are generated as

v
(g+1)
i,j = x

(g)
i,j +K · (x(g)r1,j

− x
(g)
i,j ) + F · (x(g)r2,j

− x
(g)
r3,j

) (3.34)

where i = 1, 2, . . . ,NP, j = 1, 2, . . . , D. The indices r1, r2, r3 ∈ {1, 2, . . . ,NP} are

chosen randomly. For a given i, r1, r2, r3 must be different from each other. K is

called the combination factor, and it is often simplified as K = 1. F is the scaling

factor and it takes its value in [0, 2].

Crossover The population of iterations g is mixed with the newly generated mu-

tant vectors to generate the trial vectors u
(g+1)
i,j

u
(g+1)
i,j =

{

v
(g+1)
i,j if (αj ≤ CR) or j = rj

x
(g)
i,j if (αj > CR) and j 6= rj

(3.35)

where i = 1, 2, . . . ,NP, j = 1, 2, . . . , D; rj ∈ {1, 2, . . . , D} is chosen randomly for

each sample i in the population; CR is a parameter of the algorithm called the

crossover constant and it takes its value in [0, 1]; αj ∈ [0, 1] is chosen randomly.

Selection We now select the best vector between trial vector u
(g+1)
i,j and current

iteration vector x
(g)
i,j by using the cost function f as

x
(g+1)
i,j =

{

u
(g+1)
i,j iff(u

(g+1)
i ) ≤ f(x

(g)
i ), i = 1, 2, . . . ,NP

x
(g)
i,j otherwise

(3.36)

In this way, we generate a new population which reduces the value of cost function

compared to the population of the previous iteration.
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3.4.2 Optimization of protographs using Differential Evolution

In this section, we propose a modification of the Differential Evolution algorithm

in order to optimize protographs. In this case, the D-dimensional parameter vector

xD is now a matrix of dimension Sm × Sn. We denote by τ the maximum value

of elements in protograph. When we generate randomly the initial population of

NP elements, the values x
(g)
i,jm,jn

∈ {0, 1, . . . , τ} are integers, with i ∈ {1, 2, . . . ,NP},
jm ∈ {1, . . . , Sm}, jn ∈ {1, . . . , Sn}. Then we apply the three operators of Differen-

tial Evolution (Mutation, Crossover, Selection) in a slightly different way:

As our protograph contain only integers and non negative elements, several adap-

tations are made during mutation. We set combination factor K = 1 and

v
(g+1)
i,jm,jn

= abs
(

round
(

x
(g)
r1,jm,jn

+ F ·
(

x
(g)
r2,jm,jn

− x
(g)
r3,jm,jn

)))

(3.37)

where "abs" is the operation to take absolute value and "round" is the rounding off

operation. The cost function is set as the threshold of the protograph calculated by

using density evolution (see section 3.3). After G iterations, the protograph with

the best threshold will be selected as the result of optimization.

3.4.3 Optimization results

Here we apply the differential evolution method to optimize the protograph. For

rate R = 1/2, R = Sm

Sn
= 1/2, the maximum threshold we can get is popt = 0.11

[26]. The parameters used in differential evolution are as follows:

• The number of vectors in the population: NP = 30.

• CR = 0.1, and F = 1.

• The iteration number of differential evolution operations: G = 30.

For the cost function, the parameters used in density evolution are:

• The crossover probability: p ∈ [0.1, 0.2], with a pace of 0.005.

• Length of Monte-Carlo simulation vector: W = round ( 1000
Sm×Sn

).

• The decoding iteration number: L = 100.

With different numbers of Sm, Sn, τ , we get the optimization results in Table 3.1.

In our optimizations, the best protographs we found have dimensions Sm =

2, Sn = 4. The three values τ = 3, 6, 9 give the same threshold but since too many

connections in the LDPC matrix may generate more short cycles and reduce the

code performance, we finally choose τ = 3. At the end the retained protograph is

s =

[

1 2 1 3

1 1 1 6

]

(3.38)

This protograph will later be used to generate the LDPC matrix.
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Sm Sn τ Threshold Optimized protograph

1 2 3 0.09
[

5 2
]

1 2 6 CR = 0.1;D = 1× 2;NP = 15 0.09
[

4 2
]

1 2 9 0.09
[

4 2
]

2 4 3 0.1

[

1 2 1 3

1 1 1 6

]

2 4 6 CR = 0.1;D = 2× 4;NP = 60 0.1

[

1 1 5 1

1 1 2 3

]

2 4 9 0.1

[

1 1 1 6

2 1 1 2

]

3 6 4 CR = 0.1;D = 3× 6;NP = 135 0.07





3 4 2 2 1 1

3 1 2 2 2 2

1 2 1 3 1 1





4 8 4 CR = 0.1;D = 4× 8;NP = 240 0.05









6 2 4 3 2 1 1 3

4 4 3 4 2 4 1 2

3 2 1 4 2 3 4 1

2 5 1 4 1 1 2 5









Table 3.1: Construction of protograph based on differential evolution

3.5 LDPC codes construction

3.5.1 Progressive Edge-Growth (PEG) construction

In a parity check matrix H, the connections between VNs and CNs generate cycles,

and the length of the shortest cycle is called girth. The performance of a given H

depends on the girth and on the number of short cycles.

PEG [37] is an algorithm to construct H with girth as large as possible, and with

reduced number of short cycles. When it wants to add a new edge to a given VN,

the algorithm finds the most distant CN and then it places the new edge connecting

the VN and this most distant CN.

Here we first describe the PEG algorithm for regular LDPC codes, for which

the CN degree is denoted by dc, and the VN degree is denoted by dv. Within the

algorithm, the current VN degree of VN xi is denoted by δv[i], i ∈ {1, . . . , n}, the

current CN degree of CN uj is denoted by δc[j], j ∈ {1, . . . ,m}, δv[i] and δc[j] are

initialized to zero. The path length from a CN uj to a VN xi is denoted by d(uj , xi).

Finally, given m,n, dc, dv, the steps of the PEG algorithm are as follows:

Variable nodes are processed one by one from x1 to xn. Given the i-th VN xi,

connections are progressively added until its VN degree reaches the value dv: δv[i] =

dv. We then go to next VN xi+1. When adding one connection, two cases may occur.

Case 1 If the current VN xi is not connected to any CNs or there exist some CNs

which are not reachable and their CN degree smaller than dc, then choose randomly

one among these CNs with lowest CN degree δc[j]. New connection will be made
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between xi and this selected CN, and the CN degree information will be incremented

by 1: δc[j] = δc[j] + 1.

Case 2 If all the CNs are reachable for current VN xi, choose the CN uj with

largest distance d(uj , xi) and their CN degree should be smaller than dc. If there

exist a lot of CNs having largest girth, choose randomly one CN uj with least CN

degree δc[j]. When this new connection is added, we also update δc[j] = δc[j] + 1.

We continue to add new connections until all the VN degree dv are satisfied:

δv[i] = dv, ∀i ∈ {1, · · · , n}.
The irregular LDPC codes construction follows the same steps, the difference is

that the CN degree dc and VN degree dv are now vectors dc[m] and dv[n].

3.5.2 LDPC codes construction using protograph based on PEG
algorithm

A PEG algorithm can also be used in order to construct the parity check matrix H

from a protograph [33]. The steps are almost the same, but the difference is that

now the VN and CN degree distributions should follow the values in protograph.

So the VN and CN types need to be declared, and they should be updated when

adding a new edge.

3.6 Performance comparison of the three decoders

We now compare the decoding performance of the three decoding algorithms (Bit-

flipping, Gallager-A, Sum-product). With a Wimax code [1] of length n = 504, by

using 10000 tests, 50 iterations for decoding, we get the results in Figure 3.4. We

also generate a LDPC matrix of length n = 1024 from a protograph s, where

s =









2 1 1 1 0 1 1 0

1 2 1 1 1 0 1 1

1 1 2 1 1 1 0 1

1 1 1 2 1 1 1 0









(3.39)

Applying also 10000 tests and 50 iterations, we get the results in Figure 3.5.

In both cases, we observe that the Sum-product decoder has a significantly better

performance than Gallager-A decoder and Bit-flipping decoder. This is why it will

be considered in the following. Nevertheless, Bit-flipping and Gallager-A decoder

are less complex than Sum-product decoder, and they can be used in the case of

limited computational resources.

For the LDPC code construction in Section 3.5, the coding rate R is fixed once

for all. But if the available side information Y (t) comes from a set of possible side

informations {Y (1), · · · , Y (T )}, sending the data at fixed rate R will cause either a

rate loss or a decoding failure. This is why we now describe rate-adaptive LDPC code

constructions that allow to adapt the coding rate depending on the side information

Y (t) available at the decoder. In channel coding, we refer to "rate-compatible LDPC
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Figure 3.4: LDPC decoder with n=504 Tests=10000 iterations=50 using Wimax

code [1]
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Figure 3.5: LDPC decoder with n=1024 Tests=10000 iterations=50 using proto-

graph given by (3.39)

codes", while in source coding, we refer to "rate-adaptive LDPC codes". We first

describe existing rate-compatible code constructions in channel coding, and then

present methods developed for source coding with side information.
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3.7 Rate-compatible LDPC codes for channel coding

In this section, we present two standard methods for the construction of rate-

compatible LDPC codes for channel coding. These two methods are Puncturing [53]

and Parity Check Matrix extension [54]. We also explain the limitations of these

methods when applied to source coding.

3.7.1 Puncturing

Puncturing [53] is a rate compatible method that starts from a high rate and achieves

a lower rate by not sending several punctured codeword bits. Recall that Xn is the

codeword obtained with a channel coding rate R. After puncturing, only a part

of the bits of Xn will be transmitted over the channel. The conserved codeword

bits after puncturing are defined by rn(1−ζ) as shown in Figure 3.6, where ζ is the

proportion of punctured bits.

So as to compute the channel coding rate after puncturing, we have to introduce

new useful notations. Let us define λ̃k (respectively ρ̃k) as the fraction of VNs

(respectively CNs) having k edges. The relation between λ̃k (ρ̃k) and λk (ρk) in

(3.3) is

λ̃k =
λk/k

dvmax
∑

k′=2

λk′/k′

ρ̃k =
ρk/k

dcmax
∑

k′=2

ρk′/k′

(3.40)

The puncturing proportion π(0)(x) is defined as

π(0)(x) =

dvmax
∑

k=2

π
(0)
k xk−1 (3.41)

where 0 ≤ π
(0)
k ≤ 1, π

(0)
k represents the puncturing fraction for variable nodes

of degree k. Then the puncturing fraction ζ that represents the total puncturing

proportion on the n-length source code can be expressed as

ζ =

dvmax
∑

k=2

π
(0)
k · nk

n
=

dvmax
∑

k=2

π
(0)
k · λk/k

dvmax
∑

k=2

λk/k

=

dvmax
∑

k=2

λ̃k · π(0)
k (3.42)

The rate of the punctured LDPC code is then [53]

R
(

λ, ρ, π(0)
)

=
R (λ, ρ)

1− ζ
(3.43)

In order to design a good rate-compatible code, one can design puncturing pro-

portions π
(0)
k for all k, that minimize the SNR threshold for a given puncturing

fraction ζ. Alternatively, we can fix a target SNR threshold and maximize the

puncturing fraction ζ and puncturing proportions π
(0)
k while satisfying the thresh-

old.
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3.8.3 Method starting from rate 1/2

Due to the drawbacks of Rateless and LDPCA schemes, an intermediate solution was

proposed in [59]. It first constructs an initial code of rate R = 1/2. It then applies

either the LDPCA method to obtain rates lower than 1/2 or the Rateless method

for rates higher than 1/2. In this way, the shortage of the Rateless construction can

be avoided, but the drawbacks of LDPCA remain.

In this thesis, we thus propose a novel rate-adaptive construction that replaces

the LDPCA part in the solution of [59]. The construction we propose replaces

the regular LDPCA accumulator described in (3.44) by a non-regular structure.

In addition, in our construction, this non-regular structure is also described by

a protograph. We show that the daughter code protographs can be calculated

explicitly from the non-regular accumulator protograph and from the mother code

protograph. This allows us to optimize the asymptotic code performance by carefully

selecting the code protograph at all rates. We also propose a finite length code

construction method that permits to reduce the amount of short cycles in all the

considered codes. The proposed method is thus well adapted to the construction of

short length LDPC codes.

3.9 Conclusion

In this Chapter, we presented existing methods for the construction and decoding

of LDPC source codes. We also introduced existing rate-adaptive source coding

solutions based on LDPC codes. Since existing methods show some limitations and

drawbacks, we now propose two novel rate-adaptive constructions for source coding.
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In this Chapter, we introduce our novel rate-adaptive code constructions for

source coding. The first Section 4.1 is common to both methods.
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4.1.2 Rate adaptive condition

In the construction of [40, 60], the following transmission rules are set in order to

allow H1 and H2 related by (4.1) to be rate-adaptive. In order to get a rate R2, we

simply transmit all the syndrome values um2 , which corresponds to m2 equations

defined by the set U . The decoding is then realized with the matrix H2. In order

to get a rate R1, we transmit all syndrome values in um2 but also a subset S′ ⊆ S

of size m1 −m2 of the values in sm1 . This guarantees that the code construction

is incremental and that the storage rate is given by R1 = max(R1, R2) < R1 + R2.

However, in order to use the matrix H1 for decoding, the receiver must be able to

recover the full syndrome sm1 from um2 and S′. The code that results from the

choice of (H1, H1→2, S
′) is thus said to be rate-adaptive if is satisfies the following

condition.

Definition 1 ([40, 60]) The sets U and S′ define a system of m1 equations with

m1 unknown variables S. If this system has a unique solution, then the triplet (H1,

H1→2, S
′) is said to be a rate-adaptive code.

The following proposition gives a simple condition that permits to verify whether

a given intermediate matrix H1→2 gives a rate-adaptive code.

Proposition 1 ([40, 60]) If the matrix H1→2 is full rank, then there exists a set

S′ ⊆ S of size m1 −m2 such that (H1, H1→2, S
′) is a rate-adaptive code.

The above proposition shows that if H1→2 is full rank, it is always possible

to find a set S′ that ensures that H1 and H2 are rate-adaptive. The decoding

performance of H1 does not depend on the choice of the set S′, since at rate R1, the

decoder uses H1 and at rate R2, the decoder uses H2. On the opposite, according

to (4.1), the decoding performance of the matrix H2 heavily depends on the matrix

H1→2. In [40], the matrix H1→2 is constructed from an exhaustive search, which

is hardly feasible when the codeword length increases (from 100 bits). In [60], a

more efficient method is proposed to construct the intermediate matrix H1→2 so

as to avoid short cycles in H2. However, the method of [60] does not optimize the

theoretical threshold of the degree distribution of H2, which also influences the code

performance. In this thesis, we propose a novel method based on protographs for

the design of the intermediate matrix H1→2. This novel method not only allows to

optimize the threshold of the protograph of H2, but also to reduce the amount of

short cycles in H2.

4.2 Intermediate matrix construction without protograph

This section describes our first novel method for the construction of the interme-

diate matrix H1→2 introduced in Section 4.1. The proposed construction seeks to

minimize the threshold of new constructed parity check matrix H2 at rate R2 by

reducing the amount of short cycles.
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simply choose the degrees dk as small as possible. For example, if R2 = 3/8, we set

d = [1, 2] and the proportions α1 and α2 are set to α1 = 1/2, α2 = 1/2. Setting low

degrees in H1→2 increases the chances of avoiding short cycles in the resulting H2.

4.2.2 Connections in H1→2

We now explain how to choose the connections between S and U according to the

degree distribution (α, d). In our method, the degree of each CN uj ∈ U is selected

at random according to the degree distribution (α, d). Then, whatever the degree

dk of a given uj , we impose the following two conditions in order to choose the CNs

of S that will be connected to uj :

1. We choose dk CNs in S that are not connected to any common VN. This

permits to avoid eliminating VN connections in the resulting H2.

2. We choose the dk CNs in S in order to minimize the number of resulting cycles

in H2.

Condition 1) is very easy to verify while condition 2) requires to count the

number of cycles in H2. There exists several methods to calculate the number of

shorts cycles in the parity check matrix of an LDPC codes. Here, since we are

mainly concerned with short cycles, we choose the method proposed in [61] which

is very efficient for the counting of short cycles of length 4, 6, and 8.

Then, in order to construct uj , we need to select dk CNs of S. The first CN si is

selected at random from the set of CNs that have not yet been used in any already

constructed u′j . The next dk − 1 CNs si are chosen so as to minimize the number

of length-4, length-6, and length-8 cycles introduced in H2 by the newly created uj .

In order to select the best dk − 1 CNs si, we try T possible combinations of dk − 1

CNs selected at random from the set of remaining CNs. As an example, Algorithm

1 shows the algorithm that is used in a particular case (α, d) = (1, 2) when we only

want to minimize the number of length-4 cycles.

4.2.3 Construction of the set S
′

The degree distribution defined in Section 4.2.1 as well as the code construction

proposed in Section 4.3.3 ensure that the matrix H1→2 is full rank. This guarantees

that the rate-adaptive condition presented in Section 4.1.1 is satisfied. In order to

completely define the rate-adaptive code (H1, H1→2, S
′), we need to define a set S′

of symbols of S that will be sent together with the set U in order to obtain the rate

R1.

The set S′ will serve to solve a system of m2 equations U with m2 unknowns

S \ S′. For each equation ui ∈ U of degree dk, we hence decide to put dk − 1 of the

dk CNs connected to ui into S′. For example, if u1 = s1 ⊕ s2 ⊕ s3, s1 and s2 can be

placed into S′. This strategy gives that the set S′ is, as expected, composed by
K
∑

k=1

αk(dk − 1)m2 = m1 −m2 (4.3)





4.3. Intermediate matrix construction with protograph 43

optimization of the code protographs. The proposed construction seeks to minimize

the protograph threshold at rate R2, and also to reduce the amount of short cycles

in the parity check matrix H2.

4.3.1 Protograph S2 of parity check matrix H2

In order to construct a good parity check matrix H2 from the initial matrix H1, we

first want to select a protograph S2 with a good theoretical threshold. In this section,

we consider the following notation. Generally speaking, consider the protograph

Sg of size Smg × Sng associated with the matrix Hg, where g ∈ {1, 2, 1 → 2}.
As a particular case, note that Sm1→2 = Sm2 and Sn1→2 = Sm1 . For all (i, j) ∈
{1, · · · , Smg} × {1, · · · , Sng}, denote by s

(g)
i,j the coefficient at the i-th row, j-th

column of Sg. In the protograph Sg, the CN types are denoted A
(g)
1 , · · · , A(g)

Smg
and

the VN types are denoted B
(g)
1 , · · · , B(g)

Sng
. In the parity check matrix Hg, the set of

CNs of type A
(g)
i is denoted A(g)

i and the set of VNs of type B
(g)
j is denoted B(g)j .

Finally, denote by h
(g)
k the k-th row of Hg, and denote by h

(g)
ℓ,k the coefficient at the

ℓ-th row, k-th column of Hg.

Based on the above notation, the following proposition gives the relation between

the three protographs S1, S2, and S1→2.

Proposition 2 Consider a matrix H1 with protograph S1 of size Sm1×Sn, a matrix

H1→2 with protograph S1→2 of size Sm2 × Sm1 , and a matrix H2 = H1→2H1. Also

consider the following two assumptions:

1. Type structure: for all j ∈ {1, · · · , Sm1}, B
(1→2)
j = A(1)

j .

2. No VN elimination: For all ℓ ∈ {1, · · · ,m2}, denote by N (1→2)
ℓ the positions of

the non-zero components in h
(1→2)
ℓ . Then, ∀k1, k2 ∈ N (1→2)

ℓ such that k1 6= k2,

and ∀i ∈ {1, · · · , n}, h(1)k1,i
6= h

(1)
k2,i

.

If these two assumptions are fulfilled, then the matrix

S2 = S1→2S1 (4.4)

is of size Sm2 × Sn and it is a protograph of the matrix H2. The operation in (4.4)

corresponds to standard matrix multiplication over the field of real numbers.

In this proof, for clarity, we denote by
⊕

the modulo two sums and by
∑

the

standard sums over the field of real numbers. With the above notation, relation (4.1)

can be restated row-wise as

h
(2)
ℓ =

m1
⊕

k=1

h
(1→2)
ℓ,k h

(1)
k =

Sm1
⊕

j=1

⊕

k∈B
(1→2)
j

s.t. h
(1→2)
ℓ,k

6=0

h
(1)
k . (4.5)
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Relation (4.5) depends on index ℓ only through h
(1→2)
ℓ,k . This implies that, in (4.5)

the type combination is the same for every ℓ ∈ A(1→2)
i . As a result, for all i ∈

{1, · · · , Sm2}, A
(2)
i = A(1→2)

i . In the same way, deriving relation (4.1) column-wise

permits to show that ∀j ∈ {1, · · · , Sn}, B(2)j = B(1)j .

Now consider i ∈ {1, · · · , Sm2}, v ∈ {1, · · · , Sn}, and ℓ ∈ A(2)
i . Then, from (4.5),

s
(2)
i,v =

∑

u∈B
(2)
v

h
(2)
l,u =

∑

u∈B
(2)
v

















Sm1
⊕

j=1

⊕

k∈B
(1→2)
j

s.t. h
(1→2)
ℓ,k

6=0

h
(1)
k,u

















. (4.6)

In the vector h
(1)
k with k ∈ B(1→2)

j , there are s
(1)
j,v non-zero values over the components

hk,u such that u ∈ B(2)v . In addition, for k ∈ B(1→2)
j , there are s

(1→2)
i,j non-zero values

over the components h
(1→2)
ℓ,k . As a result, and since there is not VN elimination,

s
(2)
i,v =

Sm1
∑

j=1

s
(1→2)
i,j s

(2)
j,v , (4.7)

which implies (4.4).

In Proposition 2, assumption 1) is required because various interleaving structures

may be used to construct e.g. a matrix H1 from a given protograph S1. This

assumption guarantees that the same interleaving structure is used for the CNs

of S1 and the VNs of S1→2. Further, assumption 2 guarantees that relation (4.1)

does not eliminate any VN from the parity check equations in H2. This permits

to preserve the code structure that will be characterized by protograph S2. Then,

by comparing (4.1) and (4.4), we observe that there is the same relation between

the protographs S1, S2, and between the parity check matrices H1, H2. Further,

according to (4.4), the problem of finding a good protograph S2 for H2 can be

reduced to finding the intermediate protograph S1→2 that maximizes the threshold

of S2.

4.3.2 Optimization of the intermediate protograph S1→2

The protograph S1→2 of size Sm2 × Sm1 must be full rank in order to satisfy the

rate-adaptive condition defined in Section 4.1.2. However, even if Sm1 and Sm2 are

small, there is still a lot of possible protographs S1→2. This is why, here, we impose

that each row of S1→2 has either 1 or 2 non-zero components, that each column has

exactly 1 non-zero component, and that all the non-zero components are equal to 1.

These constraints are equivalent to considering that each row of S2 is either equal

to a row of S1 or equal to the sum of two rows of S1. They limit the number of

possible S1→2 without being too restrictive. They will also make the intermediate

matrix H1→2 quite sparse, which will help limiting the amount of short cycles in
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the matrix H2. Finally, we observe that these constraints provide satisfactory rate-

adaptive code constructions in our simulations. The design algorithms described in

the remaining of the thesis can also be easily generalized to other constraints on the

intermediate protograph.

For the optimization, we then generate all the possible intermediate protographs

S1→2 that satisfy the above two conditions (S1→2 is full rank and each of its rows

has either 1 or 2 non-zero components), and select the intermediate protograph that

maximizes the threshold of the protograph S2 calculated from (4.4).

The intermediate protograph S1→2 defines the degree distribution of the inter-

mediate matrix H1→2. It also indicates the rows of H1 that can be combined in

order to construct the daughter matrix H2. We would like those rows to be com-

bined in the best possible way in order to produce H2. In particular, we would like

to avoid both short circles and VN elimination during the construction of H2. In

the following, we propose an algorithm that constructs H2 from these conditions.

4.3.3 Algorithm Proto-Circle: connections in H1→2

Algorithm 2 Proto-Circle: construction of the low-rate matrix H2

Inputs: H1, S1, S1→2, K, H2 = {φ}
for i = 1 to Sm2 do

if i-th row of S1→2 has two non-zero components s
(1→2)
i,j1

, s
(1→2)
i,j2

then

for ℓ = 1 to m1/Sm1 do

Pick u at random in A(1)
j1

and v1, · · · , vK at random in A(1)
j2

such that

∀k ∈ {1, · · · ,K}, ∀w ∈ {1, · · · ,m1}, h(1)v1,w.h
(1)
v2,w = 0

For all k ∈ {1, · · · ,K}, count the number N4,k of length-4 cycles in H2 ∪
{h(1)u + h

(1)
vk }

For the index k⋆ that minimizes N4,k, do H2 ← H2 ∪ {h(1)u + h
(1)
vk⋆}

Remove u from A(1)
j1

and vk⋆ from A(1)
j2

else

for ℓ = 1 to m1/Sm1 do

Pick u at random in A(1)
j1

(s
(1→2)
i,j1

6= 0) and do H2 ← H2 ∪ {h(1)u }, remove

u from A(1)
j1

outputs: H2, N4 (number of length-4 cycles in H2)

In Section 4.3.2, we selected the intermediate protograph S1→2 that gives the

protograph S2 with highest threshold. We now explain how to construct H1→2 in

order to follow the degree distribution defined by protograph S1→2, but also to limit

the amount of short cycles in H2 and to avoid VN elimination. Applying the PEG

algorithm directly on H1→2 would reduce the amount of short cycles on H1→2 but

would not guarantee that the number of cycles in H2 is reduced as well. As an

alternative, the algorithm Proto-Circle we propose is described in Algorithm 2. It

constructs one row of H2 at a time by combining rows of H1, which can be regarded
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as defining the coefficients of the intermediate matrix H1→2. For each new row of

H2, we want to limit the number of short cycles that are added to the parity check

matrix H2.

According to section 4.3.2, each row of the protograph S1→2 has either 1 or 2

non-zero components. The rows of S1→2 that have 2 non-zero components indicate

that two rows of H1 of some given types should be combined in order to obtain one

row of H2. More formally, assume that the i-th row of S1→2 is such that s
(1→2)
i,j1

= 1

and s
(1→2)
i,j2

= 1 (j1 6= j2). This means that two rows of H1 of types A
(1)
j1

and A
(1)
j2

should be combined in order to obtain one row of H2 of type A
(2)
i . For this, we select

at random one row h
(1)
u of H1 of type A

(1)
j1

and K rows h
(1)
v1 , · · ·h(1)vK of type A

(1)
j2

such

that ∀k ∈ {1, · · · ,K}, ∀w ∈ {1, · · · ,m1}, h(1)v1,w.h
(1)
v2,w = 0 (binary AND operation).

This condition avoids VN elimination. The algorithm counts the number N4,k of

length-4 cycles that would be added if a new row h
(1)
u + h

(1)
vk was added to H2. The

number of length-4 cycles in H2 is computed with the algorithm proposed in [61].

Note that the algorithm can be easily modified to also consider larger cycles. The

algorithm then chooses the row combination that adds least cycles in H2.

Once all the lines of types A
(1)
j1

and A
(1)
j2

have been combined, the algorithm

passes to the next row of S1→2 with two non-zero components and repeats the

same process. It then processes the rows of S1→2 with one non-zero component.

For instance, assume that row i′ of S1→2 has one non-zero component s
(1→2)
i′,j′ = 1.

Then, all the lines of H1 of type A
(1)
j′ are placed into H2. The placement order does

not have any influence on the amount of cycles in the matrix H2.

After constructing all the rows of H2, the algorithm counts the total number

of length-4 cycles in the newly created H2. At the end, repeating the algorithm

Proto-Circle several times allows us to choose the matrix H2 with least short cycles.

4.3.4 Construction of the set S
′

The intermediate matrix H1→2 follows the structure of the protograph S1→2. As a

result, according to Section 4.3.2, each of its lines has either 1 or 2 non-zero com-

ponents. Further, the algorithm Proto-Circle introduced in Section 4.3.3 imposes

that each row of H1 participates to exactly one combination for the constructions of

the rows of H2. These two conditions guarantee that H1→2 is full-rank so that the

rate-adaptive condition presented in Section 4.1.2 is satisfied. However, in order to

completely define the rate-adaptive code (H1, H1→2, S
′), we need to define a set S′

of symbols of S that will be sent together with the set U in order to obtain the rate

R1.

The set S′ will serve to solve a system of m1 equations U with m1 unknowns

S \ S′. For each syndrome symbol ui ∈ U of degree dk in H1→2, we hence decide to

put dk − 1 of the dk CNs connected to ui into S′. For example, if u1 = s1⊕ s2⊕ s3,

s1 and s2 may be placed into S′. This strategy guarantees that it is always possible

to reconstruct the set S from U and S′. In the above example, it indeed suffices to

recover s3 as s3 = u1 ⊕ s1 ⊕ s2.
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We now count the number of symbols si that are placed into S′ with this strategy.

Since each line of H1→2 has either 1 or 2 non-zero components, we have dk = 1 or

dk = 2. Denote by α the proportion of values uk of degree 1. We have the following

relation between m1,m2 and α:

m1 = αm2 + 2(1− α)m2.

This gives that α = 2 − m1
m2

. Further, according to the code construction proposed

in Section 4.3.3, each si participates to exactly one equation uj . As a result, in the

above strategy, the set S′ is composed by (1− α)m2 = m1 −m2 different values si,

which is exactly what is required by the rate-adaptive construction.

4.4 Generalization to several rates

The above methods construct the matrix H2 of rate R2 < R1 from the matrix

H1. In order to obtain lower rates RT < RT−1 < · · · < R2 < R1, we need to

construct the successive matrices Ht, t ∈ {2, · · · , T}. As initially proposed in [40],

the matrices Ht can be constructed recursively from intermediate matrices Ht−1→t

such that Ht = Ht−1→tHt−1. The intermediate matrices Ht−1→t are constructed by

from the method described in Section 4.3.

However, with the method of Section 4.3, the rate values R2, · · · , RT are con-

strained by the size of the initial protograph S1. For a protograph S1 of size Sm1×Sn,

the rate granularity is given by

rg =
R1

Sm1

. (4.8)

For instance, if R1 = 1/2 and S1 is of size 4 × 8, only rates R2 = 3/8, R3 = 1/4,

R4 = 1/8 can be achieved. This is why, in this section, we propose two alternatives

methods that allow to decrease the rate granularity rg.

4.4.1 Protograph extension

The first method called “protograph extension” consists of lifting the mother pro-

tograph S1 by a factor Ze, in the same way as for producing a parity check matrix

from a given protograph (see Section 3.1.2). This extension produces a protograph

S ′1 of size ZeSm1 × ZeSn. For instance, the protograph

S1 =
[

1 2 1 3

1 0 2 5

]

(4.9)

can be extended as

S ′1 =









1 1 1 2 0 1 0 1

0 1 0 1 1 1 1 2

1 0 1 4 0 0 1 1

0 0 1 1 1 0 1 4









. (4.10)
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The protograph S1 permits to generate an ensemble H1 of parity check matrices

with asymptotic codeword length. According to [26, Theorem 2], all the asymp-

totic parity check matrices in H1 have the same decoding performance given by the

threshold of S1. The extended protograph S ′1 generates a code ensemble H′
1 ⊆ H1.

As a result, the asymptotic matrices in H′
1 have the same decoding performance as

the matrices in H1, and S1 and S ′1 have the same theoretical threshold.

The above protograph extension allows to consider more rates, since the rate

granularity r′g of S ′1 is given by r′g = rg/Ze ≤ rg. However, it is not desirable nei-

ther to end up with an extended protograph S ′1 of large size, e.g. in the order of

magnitude of m1. Indeed, in this case, the number of possibilities for intermediate

protographs St−1→t would also become very large. In addition, it becomes compu-

tationally difficult to compute the theoretical thresholds for large protographs. As

a result, if the size of S ′1 is large, it will be very difficult to optimize the successive

protographs St according to the method described in Section 4.3.2. This is why

we now propose a second method that allows to push further the rate granularity

improvement.

4.4.2 Anchor rates

In this second method, consider a protograph S1 of size Sm1 × Sn. As a first step,

we do the protograph optimization of Section 4.3.2 for all the possible rates

Rt = R1 −
(t− 1)R1

Sm1

, (4.11)

where t ∈ {1, · · · , Sm1}, and Rt−1 − Rt = R1/Sm1 . This produces a sequence of

protographs St, and the rates Rt are called the anchor rates. We now want to

construct all the possible intermediate rates between any Rt−1 and Rt, with a rate

granularity rg = R1/m1.

According to Section 4.3.2, the rows of the intermediate protographs St−1→t

have either one or two non-zero components. In addition, in order to obtain all the

rates Rt defined in (4.11), exactly one row of St−1→t has two non-zero components.

This is why, in order to obtain a rate Rt−1 − 1
m1

, we propose to combine two rows

of the corresponding type in Ht−1. The resulting matrix contains the considered

row combination, as well as all the non-combined rows of Ht−1. As in the algo-

rithm Proto-Circle described in Section 4.3.3, we choose the row combination that

minimizes the amount of short cycles that will be added in the resulting matrix.

Applying this process recursively allows to obtain all rates Rt−1 − kR1/m1, with

k ∈ {1, · · · ,m1/Sm1}, and m1/Sm1 = Z1, where Z1 is the lifting factor. This ap-

proach also guarantees that at rate Rt, the resulting matrix follows the structure of

protograph St.
The anchor rates method allows to obtain a rate granularity rg = R1/m1. In

the simulation section, the performances of two code construction methods in Sec-

tion 4.2 and Section 4.3 are compared to LDPCA. And we combine both approaches

(protograph extension and anchor rates) in order to obtain an incremental code con-







4.5. Simulation results 51

10 -5 10 -4 10 -3 10 -2 10 -1

p

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

B
E

R

Rate 1/8 LDPCA
Rate 1/8 Proposed
Rate 1/4 LDPCA
Rate 1/4 Proposed
Rate 3/8 LDPCA
Rate 3/8 Proposed
Rate 1/2

Figure 4.6: BER performance of code C1 with dimension 248× 496 using proposed

construction compared with LDPCA
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Figure 4.7: BER performance of code C2 with dimension 256× 512 using proposed

construction compared with LDPCA
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Figure 4.8: BER performance of code C3 with dimension 512× 1024 using proposed

construction compared with LDPCA

Rate LDPCA Our method

R = 3/8 453 455

R = 1/4 1216 737

R = 1/8 5361 3477

Table 4.2: Number of length-4 cycles for code C1

R = 1/2. The algorithm introduced in Section 4.3.3 then produces the correspond-

ing daughter codes for lower rates 3/8, 1/4, 1/8. In the following, we compare the

performance of the obtained rate-adaptive codes with LDPCA.

The first code C1 is of size 248x496. In order to construct C1, we first obtained

the protograph S1 of size 2× 4 in (4.9) from the Differential Evolution optimization

method described in Section 3.4.1. Differential Evolution was applied by considering

V = 60 elements in the population. This follows [63] which suggests to choose

5D < V < 10D, where in our case, D = SnSm = 8. In addition, the number of

iterations was set as L = 100, and the maximum degree was set as dmax = 10. The

theoretical threshold of S1 is equal to p = 0.094, which is very close to the maximum

value p = 0.11 that can be considered at rate 1/2. Protograph S1 was then extended

to the protograph S ′1 of size 4 × 8 in (4.10) according to the method described in

Section 4.4.1. This extension allows ton consider more anchor rates 3/8, 1/4 and
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1/8, rather than 1/4 only with S1.
The parity check matrix of C1 was constructed from the protograph S ′1 by the

PEG algorithm [37]. We then applied our construction method introduced in Sec-

tion 4.3 in order to obtain lower rates 3/8, 1/4 and 1/8. For this, we first needed to

decide which rows of the protograph Sopt1 should be combined (see Section 4.3.2)

by checking the thresholds of all the possible combinations using Density Evolution.

From Density Evolution, we chose row combinations A
(1)
1 + A

(1)
3 for rate 3/8 and

A
(1)
1 + A

(1)
3 , A

(1)
2 + A

(1)
4 for rate 1/4, where the A

(1)
i , i = 1, 2, · · · , Sm, denotes the

rows of S ′1. From the selected row combinations, we then constructed the corre-

sponding matrices of rate 3/8, 1/4, 1/8 from the algorithm Proto-Circle described

in Section 4.3.3. This algorithm was applied with K = 20 and repeated 10 times in

order to choose the low-rate matrices with the least short cycles.

Figure 4.6 shows the Bit Error Rate (BER) performance with respect to the

BSC parameter p for the four considered rates for C1. We observe that our code

construction performs better than LDPCA at all the considered rates. Table 4.2

indeed shows that there are less length-4 cycles at rates 1/4 and 1/8 in our con-

struction than in the LDPCA matrices.

The second code C2 is of size 256 × 512 and it was generated from another

protograph

Sopt2 =









2 1 1 1 0 1 1 0

1 2 1 1 1 0 1 1

1 1 2 1 1 1 0 1

1 1 1 2 1 1 1 0









(4.12)

obtained from Differential Evolution and protograph extension. The codes of lower

rates 3/8, 1/4, and 1/8 were constructed by following the same steps as for C1, ac-

cording to the construction of Section 4.3. The BER performance of these codes are

shown in Figure 4.7 and compared to LDPCA. For this case as well, our construction

shows better performance than LDPCA. Finally, the code C3 is of size 512 × 1024

and it was generated from the same protograph Sopt2 as C2. Figure 4.8 shows that

for C3 as well, our algorithm perform better than LDPCA at all the considered rates,

with a larger code size.

The curves of Figures 4.6, 4.7, 4.8, considered the code performance for the

anchor rates given in Section 4.4.2. We then applied the method described in Sec-

tion 4.4.2 to codes C2 and C3 in order to obtain rate granularities of R1/m1 =

9.8 × 10−4 for C2 and R1/m1 = 4.9 × 10−4 for C3, rather than R1/Sm1 = 0.125.

For this, we considered different values of p, and for every considered value, we

generated 1000 couples (xn, yn) from a BSC or parameter p. For every generated

couple, we found the minimum rate that permits to decode xn from yn without

any error. The same kind of analysis was performed in [55] and [58], with different

criterion to measure the rate needed for a given couple (xn, yn). In [55], this rate

was determined as the minimum rate such that the decoded codeword x̂n verifies

HT x̂n = cm, see (3.1). However, this criterion does not necessarily means that the

codeword was correctly decoded (x̂n can be different from xn), and this is why we
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Figure 4.9: Required rate R with respect to H(p) for LDPCA and for our method,

for codes C2 and C3

do not consider it here. In [58], the required rate was determined as the minimum

rate that gives a BER lower than 10−6. This is equivalent to our criterion, since one

uncorrectly decoded bit gives a BER of 2.0× 10−3 for C2, and of 1.0× 10−3 for C3.
At the end, Figure 4.11 represents the average rates needed for the considered

values of p with respect to H(p). We first observe that our method shows a loss

compared to the optimal rate H(p). This rate loss is expected since we consider

relatively short codeword length 512 for C2 and 1024 for C3. In addition, for the

same codes C2 and C3, LDPCA shows a much more significant rate loss compared to

our method, which was also expected from the results of Figures 4.7 and 4.8. This

shows that our construction combined with the anchor rates method is valid and

outperforms LDPCA at all the considered values of p.

Name Protograph Theoretical threshold

Code 1 A
(2)
1 +A

(2)
2 , A

(2)
3 , A

(2)
4 0.051

Code 2 A
(2)
1 +A

(2)
2 , A

(2)
3 +A

(2)
4 , A

(2)
4 0.049

Code 3 A
(2)
1 +A

(2)
2 , A

(2)
3 +A

(2)
4 , A

(2)
2 0.050

Code 4 2A
(2)
1 +A

(2)
2 , A

(2)
3 , A

(2)
4 0.049

Code 5 A
(2)
1 +A

(2)
2 , 2A

(2)
3 , A

(2)
4 0.049

Table 4.3: Protographs with different constraints for rate 3/8. The protographs are

described in the form of combination of the lines A
(2)
i of the original protograph

Sopt2.
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Figure 4.10: Performance of five code constructions with different protographs at

rate 3/8

To finish, we discuss the influence of the constraints expressed in Section 4.3.2

for the code construction. These constraints were that in the intermediate proto-

graph S1→2, each column has only 1 non-zero components, and that all the non-zero

components are equal to 1. In order to discuss the influence of these constraints,

we again consider the extended protograph Sopt2 of rate 1/2 given in (4.12) and we

consider the construction of a daughter code of rate 3/8. If the above constraints

are not satisfied, there are many possibilities to construct such daughter codes. We

consider 5 different protographs that can be obtained from Sopt2 for the daughter

codes. These protographs are given in Table 4.3, with their theoretical thresholds.

Code 1 corresponds to a protograph that satisfies the constraints of Section 4.3.2.

We see that the other protographs have either more than 1 non-zero component

per column (Codes 2 and 3), or a non-zero component equal to 2 (Codes 4 and 5).

Note that we selected give protographs with close theoretical thresholds, in order to

compare the finite-length performance of the considered codes.

The performance of the five considered codes are compared in Figure 4.10. We see

that despite the fact that the five codes have very close theoretical thresholds, their

BER performance vary from one code to another. As expected, Code 1 shows the

best performance. This can be explained by the fact that its parity check matrix is

more sparse than the other ones. We also note that Codes 4 and 5 for which the

protographs contain non-zero components equal to 2 show the worst performance.

This shows that, in the considered case, the above constraints are reasonable.
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4.5.3 Simulation results at full rate range

In Section 3.8.3, we construct an initial code of rate R = 1/2 and apply either the

LDPCA method to obtain rates lower than 1/2 or the Rateless method for rates

higher than 1/2 to avoid the drawbacks of Rateless and LDPCA. Now we evaluate

this construction method and compare it with LDPCA. In this section, we suppose

that the source X is uniformly distributed. The source X is obtained from a BSC

with crossover probability p. We first construct two mother codes of rate R = 1/2.

The first mother code is denoted by O1 with length n = 512 and constructed from

a protograph

S =

[

0 2 3 1

2 0 3 2

]

(4.13)

by applying the methods with two steps described in [50] which permit to con-

struct quasi-cyclic codes. The second mother code is a WIMAXLike code of length

n = 192 obtained from [1]. For each mother code, we construct two family of com-

patible codes with a rate variation of 1/n. The first code family is obtained by

applying Rateless for rates higher than 1/2 and LDPCA for rates smaller than 1/2.

The second code family is obtained by using the proposed method in this article

which takes place of LDPCA. During the application of algorithm Circle, we use

K = 50.

In order to evaluate the performances of different code families, we will apply the

following method which is initially proposed in [55]. For different values of p, we

generate 1000 vectors xn and yn. For each set of vectors (xn, yn), we search the

minimum rate which permit to decode xn without error. Then we calculate the

average value of these rates.

The results are presented in Figure 4.11. For the rates smaller than 1/2, we find

out a significant gain of our method compared to LDPCA. We can also find out

that the performance of the method Rateless for rates higher than 1/2. We find a

disconnecting of the curve for higher rates, which implies that the method Rateless

could also be optimized.

4.6 Conclusion

In this Chapter, we presented our two novel rate-adaptive solutions. The two pro-

posed solutions show a better performance than LDPCA, especially for short codes

(less than 1000 bits) that are particularly sensitive to short cycles. Now we will

apply these solutions in the real FTV system.
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Equipped with rate-adaptive code constructions and decoders for lossless source

coding, we now apply our solutions to the problem of Free Viewpoint Television

(FTV). Members of the InterCom project provided us with files containing source

and side information vectors. These vectors were generated by a video encoder they

implemented for Free Viewpoint Television. They however did not implement the

lossless part, and this is our objective here.

5.1 Generation of video files

In our project, since we deal with applications like FTV or the 360 degree video [64],

the original video images are spherical. In order to compress these videos, the project

members proposed a solution that is described in [64]. In this solution described in

Figure 5.1, the spherical video images are first projected onto 2D images. Then

several operations are applied such as: Discrete Cosine Transformation (DCT),

Quantization, Prediction. These operations allow us to obtain a source vector Xn to

be transmitted losslessly to the decoder. They also provide prediction Y (1), . . . , Y (J)

of X that can serve as side informations at the decoder. These predictions can be
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will be decoded one after each other, from Q(L−1) to Q(0). Previously decoded bit

planes will be used to decode current bit plane Q(b). This bit plane strategy was

also considered in [66, 67].

In the following, we first propose a symbol-based statistical model between Xn and

Y n. We then show how to obtain a bit-based model from this symbol-based model.

5.3 Joint statistical model between X
n and Y

n

In FTV, as in standard video compression, the statistical relation between the source

Xn and the side information Y n varies a lot from frame to frame and from video

to video [68, 69, 70, 14, 71]. A well-chosen statistical model is important for the

LDPC decoder as described in the previous chapters. In the following, for simplicity,

we suppose that Xk are all i.i.d. and Yk are i.i.d. too. An additive model Z = X−Y
is supposed here just as people often do in the practice. A Laplacian model and a

Q-ary symmetric model are considered here for Z.

Before all the views of video are stored at the server, the server has access to all

the X and Y while encoding them. So it can know the model parameters of them

at this moment, these parameters will then be stored and transmitted with the

codeword together. Surely this requires additional bits for the model parameters,

but that costs just a little if we consider a model with little model parameters, just

as we do here.

5.3.1 Laplacian Model

The Laplacian model is often considered in video coding to model the statistical

relation between the source and side information. The Laplacian density probability

function of distribution L(µ, δ2) is given by

fZ(z) =
1√
2δ2

exp−
√
2|z − µ|
δ2

(5.5)

where µ is the mean of Z, and δ2 is the variance. The expressions of µ and δ2 are

given by

µ = E(Z) (5.6)

δ2 = E(Z − µ)2 (5.7)

For a side information Y , the density of P (Xk|Yk) = P (Xk − Yk|Yk) = P (Zk | Yk).
We suppose that Zk and Yk are independent, which gives P (Zk | Yk) = P (Zk) and

simplifies our problem. Then we model P (Zk) by using a Laplacian distribution

L(µ, δ2). The values of µ and δ2 can be estimated from vectors Zn as

µ̂ = Median(Zn) (5.8)
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δ̂2 =
1

n

n
∑

k=1

(Zk − µ̂)2 (5.9)

The Laplacian model however has two issues. First it is a continuous model

while our data are discrete. Second, when the variance δ2 is small, the density

(5.5) applied to values of Zk is numerically equal to 0, which poses problems in our

decoder. This is why we also consider a second model described in section 5.3.2.

5.3.2 Q-ary symmetric Model

The probability mass function of a Q-ary symmetric [72] model Q(q, Zmax, Zmin) is

given by

fZ(z) =

{

q if z = 0
1−q

Zmax−Zmin
otherwise

(5.10)

where q ∈ [0, 1] is a constant, Zmax is the maximum value of Z, Zmin is the minimum

value of Z. The value of q can be estimated as

q̂ =
NZ0

n
(5.11)

where NZ0 is the number of symbol Zk = Xk − Yk = 0, and n is the total length of

sequence Zn.

5.4 Probability calculation from symbol-based model to

bit-based model

In [65], it is shown how to obtain the bit-based conditional probability P (Q
(b)
k | Yk =

y,Q
(b+1)
k , . . . , Q

(L−1)
k ) from the symbol-based conditional entropy P (Xj | Yk). Let

us denote by PZ the probability distribution of Z. It corresponds to fZ either given

by (5.5) or (5.10). The bit-based probability can be obtained as follows:

P0 = P
(

Q
(b)
k = 0 | Yk = y,Q

(b+1)
k , . . . , Q

(L−1)
k

)

=
P
(

Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

P
(

Q
(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

=
P
(

Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

P
(

Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

+ P
(

Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

(5.12)
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and

P1 = P
(

Q
(b)
k = 1 | Yk = y,Q

(b+1)
k , . . . , Q

(L−1)
k

)

=
P
(

(Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

P
(

Q
(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

=
P
(

Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

P
(

Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

+ P
(

Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

(5.13)

where,

P
(

Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

=
2b−1
∑

i=0

P

(

L−1
∑

k=b+1

Q
(k)
k · 2k + i | Yk = y

)

=
2b−1
∑

i=0

PZ

(

L−1
∑

k=b+1

Q
(k)
k · 2k + i− y

)

(5.14)

P
(

Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y

)

=
2b+1−1
∑

i=2b

P

(

L−1
∑

k=b+1

Q
(k)
k · 2k + i | Yk = y

)

=

2b+1−1
∑

i=2b

PZ

(

L−1
∑

k=b+1

Q
(k)
k · 2k + i− y

)

(5.15)

As a result, we just need to calculate P (Q
(b)
k = 0, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y)

and P (Q
(b)
k = 1, Q

(b+1)
k , . . . , Q

(L−1)
k | Yk = y) by using the probability distribution

PZ(·), and then normalize them to get P0 and P1.

5.5 Decoding scheme with bit-based source and symbol-

based side information

We now present the lossless coding scheme we consider for FTV. In FTV, the value

of Xn can be negative, so we need to add a sign bit. If Xk is converted into L+ 1

bits, we have

Xk ↔ Q
(0)
k Q

(1)
k . . . Q

(b)
k . . . Q

(L−1)
k Q

(s)
k (5.16)

Q
(s)
k is the sign bit of Xk. The value of Q

(s)
k is given by

Q
(s)
k =

{

0 if Xk ≥ 0

1 if Xk < 0
(5.17)
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Xn is encoded and decoded from bit plane to bit plane from b = s, b = L− 1 to

b = 0. For the encoding of b-th bit plane Q(b), we use a parity check matrix Hb with

dimension mb × n. We compute a syndrome U (b) as ∀b, U (b) = Q(b) ·HT
b , where the

syndrome U (b) is of length mb.

The bit plane Q(s) is encoded and decoded first. The received syndrome U (s), Y n

and the estimated model parameters will be used for the decoding. In the decoding,

we use the bit probability of Q
(s)
k in Q(s), calculated as

P (Q
(s)
k = 0 | Yk = y) =

2L−1
∑

i=0

PZ(i− y) (5.18)

P (Q
(s)
k = 1 | Yk = y) =

−1
∑

i=−2L+1

PZ(i− y) (5.19)

Then the received syndrome U (b), Y n, the estimated model parameters (µ̂ and

δ̂2 for Laplacian model, q, Zmax and Zmax for Q-ary symmetric model) and the

previous decoded bit planes Q̂
(b+1)

. . . Q̂
(L−1)

Q̂
(s)

will be used to decode the current

bit plane Q̂
(b)

. By applying (5.12) and (5.13), the bit probability of Q
(b)
k in Q(b) is

calculated as

P
(

Q
(b)
k = 0 | Yk = y, Q̂

(b+1)
j , . . . , Q̂

(L−1)
j , Q̂

(s)
j

)

=

2b−1
∑

i=0

PZ

(

(

1− 2Q̂
(s)
j

)

·
(

L−1
∑

k=b+1

Q̂
(k)
j · 2k + i

)

− y

)

(5.20)

P
(

Q
(b)
k = 1 | Yk = y, Q̂

(b+1)
j , . . . , Q̂

(L−1)
j , Q̂

(s)
j

)

=

2b+1
−1

∑

i=2b

PZ

(

(

1− 2Q̂
(s)
j

)

·
(

L−1
∑

k=b+1

Q̂
(k)
j · 2k + i

)

− y

)

(5.21)

When the bit planes Q̂
(0)

, Q̂
(1)

, . . . , Q̂
(L−1)

, Q̂
(s)

are all decided, Xn can be

reconstructed with

X̂
n
= Q̂

(0)
1 Q̂

(1)
1 . . . Q̂

(L−1)
1 Q̂

(s)
1 , . . . , Q̂(0)

n Q̂(1)
n . . . Q̂(L−1)

n Q̂(s)
n (5.22)

5.6 Rate-adaptive construction

To encode each bit plane, we construct Hb by using our rate-adaptive method de-

scribed in Chapter 4. Starting with the same mother code H, we construct Hb for

all the bit planes so as to decode Q̂
(b)

without error. This can be done since the
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encoder knows the possible side information Y (j) and can choose the transmission

rate accordingly.

This rate-adaptive construction strategy is applied on all the possible side informa-

tions Y (j), j ∈ {1, . . . , J}. We evaluate the performance of our rate-adaptive scheme

as follows.

The transmission rate of b-th bit plane by using j-th side information Y (j) is :

R
(j)
b =

m
(j)
b

n
(5.23)

The total transmission rate by using j-th side information Y (j) is:

R
(j)
tot =

L−1
∑

b=0

R
(j)
b +R(j)

s (5.24)

For ∀b ∈ 0, . . . , L− 1, the storage rate of b-th bit plane is:

Sb = max
j∈{1,...,J}

R
(j)
b (5.25)

and the storage rate of sign bit plane is:

Ss = max
j∈{1,...,J}

R(j)
s (5.26)

The total storage rate is:

Stot =

L−1
∑

b=0

Sb + Ss (5.27)

As shown in Section 5.2, there is no loss in terms of transmission rate. But on

the other hand, there will be some loss on storage rate. There is no loss on storage

rate only if we can reach at the maximum value of Hsymbol as shown in [15, 43]. But

in this decoding scheme, only a sum of maximum values of Hbits can be achieved.

Some loss on the storage rate will surely happen in order to realise this rate-adaptive

decoding scheme.

In our simulation, the value of the transmission rates R
(j)
b for the most significant

bits can be really small. This means that the bit plane Q(b) can almost be deduced

from previous bit planes and from corresponding symbols in Y (j). So if the LLR

values already allow to perfectly detect Q̂
(b)

without need for decoding, we define

Rb = 0.

5.7 Simulation results

For FTV, for a source X, several side informations Y (j) are available. The number

of available side informations Y (j) is denoted by J . Each side information Y (j) gives
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a different empirical probability distribution on P (X − Y (j)) with different param-

eters for Laplacian model or a Q-ary symmetric model.

In our simulations, we observed that the Laplacian model would generate too many

0 for LLR information, so we applied the Q-ary symmetric model to avoid this dis-

advantage. Since the amount of dependency between X and Y (j) can give different

results, we tested three types of video files with low dependency, middle dependency

and high dependency.

5.7.1 X and Y
(j) with high dependency

In the first file we used, we have J = 8. The estimated parameter values of the

Q-ary symmetric model for each side information are shown in Table 5.1.

j q̂ Zmax Zmin

1 0.989 1 -2

2 0.989 1 -2

3 0.990 1 -2

4 0.989 1 -2

5 0.990 1 -2

6 0.989 1 -2

7 0.989 1 -2

8 0.989 4 -2

Table 5.1: Q-ary symmetric model for X and Y (j) with high dependency

We observe that the value of q̂ does not vary much with the side information.

After testing Xn, We observe that L + 1 = 8 bits are sufficient to completely

represent the source X. The obtained transmission rates R
(j)
b for all the bit planes

b (b ∈ [0, . . . , L − 1, L]) are shown in Table 5.2. We find out that the rates for the

most significant bits are smaller.

Given the Q-ary symmetric model of P (X|Y (j)), we can calculate the model

entropy

H(X|Y (j))model = −q log2(q)− (1− q) log2

(

1− q

Zmax − Zmin

)

(5.28)

For a given sequence Zn, we can also evaluate an empirical entropy as

H(Zn) =

NZ
∑

i=0

−p(i)× log2 (p(i)) (5.29)

where NZ is the number of different values that can take zk in Zn, and p(i) is the

corresponding empirical frequency of element i.

As seen in Chapter 2, Slepian-Wolf theorem tells us that R ≥ H(X | Y ). In our

problem, the conditional entropy H(X | Y ) can be simplified as H(Z). In addition,
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j R0 R1 R2 R3 R4 R5 R6 R7(Rs)

1 0.090820 0.019531 0 0 0 0 0 0

2 0.108398 0.015625 0 0 0 0 0 0

3 0.091796 0.015625 0 0 0 0 0 0

4 0.108398 0.015625 0 0 0 0 0 0

5 0.091796 0.015625 0 0 0 0 0 0

6 0.092773 0.015625 0.015625 0 0 0 0 0

7 0.090820 0.019531 0 0 0 0 0 0

8 0.091796 0.017578 0 0.015625 0 0 0 0

Sb 0.108398 0.019531 0.015625 0.015625 0 0 0 0

Stot 0.159179

Table 5.2: The obtained rates (bit/symbol) for each bit plane and each side infor-

mation Y (j)

the value of H(Z) can be estimated by H(Zn). It means that,

Rtot ≥ H(Zn) (5.30)

The Q-ary symmetric model is an approximate model of sequence Zn with three

model parameters q, Zmax, Zmin. The entropy of Q-ary model H(X|Y (j))model is

larger than H(Zn) as it uses less parameters than considering the empirical fre-

quency and thus describes less precisely the statistics of Zn. The Q-ary symmetric

model is used at the decoder to calculate P0, P1, and the corresponding LLR. There-

fore, using the Q-ary symmetric model rather than the empirical frequency will result

in different values P0 and P1. But we know that using mismatched values of P0 and

P1 does not degrade much the decoder performance. Perhaps a model which follows

exactly the empirical probability distribution can achieve a slightly smaller Rtot ,

but it also means that more model parameters should be sent and this will however

increase the transmission rate.

The simulation results of total transmission rates Rtot, model entropy H(X|Y (j))model

and empirical entropies H(Zn) are shown in Table 5.3.

We can find that for all the side information

H(X|Y (j))model ≥ H(Zn) (5.31)

Rtot ≥ H(Zn) (5.32)

This is expected from the theoretical results. We can see that Rtot is close to

H(X|Y (j))model and H(Zn). Sending no information (rate 0 in Table 5.2) when

LLR is sufficient to retrieve the bit planes clearly helps to achieve this good result.

The storage rate Stot is just a little larger than the maximum value of Rtot, which

means our decoder can help to realise the rate-adaptive decoding for all the possible

side informations Y (j) with a small extra rate cost.
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j Rtot H(X|Y (j))model H(Zn)

1 0.1103 0.1027 0.0997

2 0.1240 0.1027 0.0998

3 0.1074 0.0947 0.0925

4 0.1240 0.1027 0.0998

5 0.1074 0.0947 0.0925

6 0.1240 0.1027 0.1001

7 0.1103 0.1027 0.0997

8 0.1250 0.1134 0.1036

max 0.1250 0.1134 0.1036

Table 5.3: Total rate compared with entropy in case of high dependency

5.7.2 X and Y
(j) with middle dependency

In this file we have J = 8. The informations of the Q-ary symmetric model for each

side information is shown in Table 5.4.

j q̂ Zmax Zmin

1 0.950 10 -16

2 0.950 7 -5

3 0.948 24 -24

4 0.950 18 -18

5 0.950 7 -11

6 0.951 12 -12

7 0.950 10 -13

8 0.950 9 -7

Table 5.4: Q-array model for X and Y (j) with middle dependency

A bit length of L + 1 = 7 is sufficient to completely represent the source X.

The obtained transmission rates Rb for all the bit planes b (b ∈ [0, . . . , L− 1, L]) are

shown in Table 5.5.

The simulation results of total transmission rates Rtot, model entropy H(X|Y (j))model

and empirical entropies H(Zn) are shown in Table 5.6.

We can find that for all the side information

H(X|Y (j))model ≥ H(Zn) (5.33)

Rtot ≥ H(Zn) (5.34)

It follows the theoretical results too. And the total transmission rate Rtot is still

close to the theoretical limit H(Zn).
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j R0 R1 R2 R3 R4 R5 R6(Rs)

1 0.219726 0.194335 0.083984 0.0341796 0.015625 0 0

2 0.193359 0.189453 0.116210 0.0283203 0.015625 0 0

3 0.191406 0.222656 0.130859 0.0371093 0.022460 0.015625 0

4 0.222656 0.195312 0.0869140 0.046875 0.020507 0 0

5 0.189453 0.183593 0.1435546 0.016601 0 0 0

6 0.182617 0.194335 0.0839843 0.037109 0.015625 0 0

7 0.208984 0.200195 0.1025390 0.034179 0.015625 0 0

8 0.177734 0.200195 0.1191406 0.036132 0.015625 0 0

Sb 0.222656 0.222656 0.1435546 0.046875 0.022460 0.015625 0

Stot 0.6738266

Table 5.5: The obtained rates (bit/symbol) for each bit plane and for each side

information Y (j)

j Rtot H(X|Y (j))model H(Zn)

1 0.5478 0.5197 0.4462

2 0.5429 0.4641 0.4386

3 0.6201 0.5829 0.4630

4 0.5722 0.5431 0.4473

5 0.5332 0.4932 0.4495

6 0.5136 0.5053 0.4526

7 0.5615 0.5109 0.4435

8 0.5488 0.4848 0.4459

max 0.6201 0.5829 0.4630

Table 5.6: Total rate compared with entropy in case of middle dependency

The storage rate Stot is just a little larger than the maximum value of Rtot, which

means our decoder can help to realise the rate-adaptive decoding for all the possible

side informations Y (j) with a small extra rate cost.

5.7.3 X and Y
(j) with low dependency

In this file we have J = 8. The informations of the Q-ary symmetric model for each

side information is shown in Table 5.7.

A bit length of L + 1 = 9 is sufficient to completely represent the source X.

The obtained transmission rates Rb for all the bit planes b (b ∈ [0, . . . , L− 1, L]) are

shown in Table 5.8.

The simulation results of total transmission rates Rtot, model entropy H(X|Y (j))model

and empirical entropies H(Zn) are shown in Table 5.9.

We can find that for all the side information

H(X|Y (j))model ≥ H(Zn) (5.35)



5.7. Simulation results 71

j q̂ Zmax Zmin

1 0.669 29 -22

2 0.668 26 -21

3 0.668 26 -21

4 0.667 29 -20

5 0.668 26 -61

6 0.669 50 -21

7 0.668 26 -21

8 0.668 26 -25

Table 5.7: Q-ary symmetric model for X and Y (j) with low dependency

j R0 R1 R2 R3 R4 R5 R6 R7 R8(Rs)

1 1 0.575195 0.278320 0.183593 0.209960 0.015625 0 0 0

2 1 0.580078 0.279296 0.191406 0.175781 0 0 0 0

3 1 0.556640 0.279296 0.185546 0.175781 0.015625 0 0 0

4 1 0.551757 0.275390 0.209960 0.219726 0 0 0 0

5 1 0.593750 0.279296 0.152343 0.126953 0 0 0 0

6 1 0.576171 0.279296 0.149414 0.173828 0.163085 0.015625 0 0

7 1 0.580078 0.279296 0.188476 0.175781 0.015625 0 0 0

8 1 0.575195 0.279296 0.181640 0.177734 0 0 0 0

Sb 1 0.593750 0.279296 0.209960 0.219726 0.163085 0.015625 0 0

Stot 2.481442

Table 5.8: The obtained rates (bit/symbol) for each bit plane and each side infor-

mation Y (j)

j Rtot H(X|Y (j))model H(Zn)

1 2.2626 2.7873 1.9017

2 2.2265 2.7549 1.9113

3 2.2128 2.7549 1.9133

4 2.2568 2.7812 1.8988

5 2.1523 3.0490 1.9133

6 2.3574 2.9449 1.9050

7 2.2392 2.7549 1.9106

8 2.2138 2.7939 1.9133

max 2.3574 3.0490 1.9133

Table 5.9: Total rate compared with entropy in case of low dependency

Rtot ≥ H(Zn) (5.36)

It is also in accordance with the theoretical results. And our methods work well, it
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generates a total rate Rtot quite close to theoretical limit H(Zn).

The storage rate Stot is just a little larger than the maximum value of Rtot, which

means our decoder can help to realise the rate-adaptive decoding for all the possible

side informations Y (j) with a small extra rate cost.

5.8 Conclusion

In this Chapter, we applied our rate-adaptive solutions to the lossless part of FTV.

We transformed a symbol-based model to a bit-based model in order to be able to

apply our coding solution. The simulation results show that the required trans-

mission and storage rates are just a little larger than the theoretical performance.

It means that we successfully incorporate the proposed lossless code construction

into a complete lossy source coding scheme that was developped for FTV in the

framework of the InterCom project.

The on-going work is testing this solution with a large database of video files

and comparing the performance of transmission rate and entropy for different de-

pendency relations between the source and the side information. Also, as we know

our Q-ary model is just a simplified model of sequence Zn, we should look for other

models with both limited defining parameters and a closer probability distribution

to the empirical frequency of Zn, in order to achieve better performance in terms of

transmission rate.



Chapter 6

Conclusions & Perspectives

Conclusions

Many multimedia applications such as Free Viewpoint Television (FTV) use a dis-

tant service provider that offers customized services depending on the user request.

The main challenge is the efficient storage of a huge amount of data and the real-

time extraction of a small fraction of these data upon request. In some applications

such as FTV, the requests previously addressed by the user can help to optimize

both the storage and the extraction. The problem can thus be seen as a source

coding problem with side information at the user side. This PhD thesis fits into this

context. It is part of the CominLabs project InterCom that focuses on solutions for

massive random access to subsets of correlated data.

In Chapter 3, we investigate practical lossless source coding schemes with side

information based on Low Density Parity Check (LDPC) codes. We first analysed

the performance of LDPC codes with density evolution, and we constructed efficient

finite-length LDPC codes with the PEG algorithm. We also analysed the limitations

of rate-compatible channel coding methods and rate-adaptive source coding meth-

ods like Rateless and LDPCA. Rateless codes perform poorly at low coding rates

while LDPCA is not adapted to high-rates.In this thesis, we combine both methods

to construct rate-adaptive LDPC codes offering a wide range of rates. However

LDPCA does not allow to optimize the code degree distribution, nor to control the

amount of short cycles at all rates. This is why we propose two novel rate-adaptive

LDPC code constructions to replace the LDPCA part.

In Chapter 4, these two novel rate-adaptive LDPC code constructions are pre-

sented. The first construction replaces the LDPCA accumulator by intermediate

graphs that combine the syndrome bits in order to obtain lower rate codes. This

method allows to reduce the amount of short cycles in the codes and it shows a

great performance improvement compared to standard solutions. However it only

considers unstructured finite-length code constructions, that is without design of the

degree distributions of the lower rate codes. The second construction introduces a

novel design method that allows to select the photographs of the intermediate graphs

so as to optimize the decoding performance of all the codes constructed at all rates

of interest. We also propose a new algorithm called Proto-Circle that constructs the

intermediate graphs according to their protographs, while minimizing the amount
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of short cycles in the codes at all the considered rates. Simulation results show

improved performance compared to LDPCA.

In Chapter 5, we applied our rate-adaptive solutions to the lossless part of FTV.

We transformed a symbol-based model to a bit-based model in order to be able to

apply our coding solution. The simulation results show that the required trans-

mission and storage rates are just a little larger than the theoretical performance.

It means that we successfully incorporate the proposed lossless code construction

into a complete lossy source coding scheme that was developped for FTV in the

framework of the InterCom project.

Perspectives

In the future, several problems related to this thesis may be considered.

1. Comparison to other multiview video coding standards

As we know, there exists a lot of video coding standards like H264, H265, or

HEVC. Some multiview video coding schemes have been proposed before. Our

solution and these standards may be compared in terms of achieved transmis-

sion and storage rates.

2. Other families of channel codes

LDPC codes, Turbo codes and Polar codes are among the most efficient chan-

nel coding methods. They all have good decoding performances and show dif-

ferent properties in terms of decoding latency, depending on the code length,

etc. It could be interesting to investigate the application of Turbo codes and

Polar into the FTV problem, and then, to compare the three methods.

3. Latency

Since FTV may also be used in a real-time video transmission system, the

problem of latency need to be considered. The main latency comes at the

encoding step that stores the videos and generates the model parameters at

the server. Large quantity of views and large number of users may increase

this latency. Doing less complex encoding operations may help us to improve

this latency. In addition, transmission of views over a real network (packet

loss, delay in transmission, etc.) may also be taken into account.

4. Machine Learning

Machine learning has known an increasing success over the last years. The

choice of line combinations in the rate-adaptive LDPC code constructions

may be done by relying on machine learning. It may help us to better choose

the combinations in order to improve the code performance at all rates.
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2. Rappels de théorie de l’information en codage de source

Figure 2: Modélisation du codage de sources pour l’application FTV

Figure 3: Codage de source sans perte

2.1. Codage de source sans perte

La théorie de l’information fournit les performances limites atteignables en fonction des hypothèses. La

figure 3 résume le schéma de codage de source sans perte. On suppose que le mot de code U est envoyé

sur un canal parfait. Le théorème du codage source indique qu’une compression sans perte de taux R est

réalisable si et seulement si:

R ≥ H(X) (1)

où H(X) est l’entropie de la source X .

2.2. Codage de source sans perte avec information adjacente

Figure 4: Codage de source sans perte avec information adjacente

Dans le cas où le récepteur dispose d’une information adjacente Y , le théorème du codage de source

sans perte de Slepian-Wolf s’applique. La figure 4 représente le schéma de Slepian-Wolf. Selon le théorème,

un taux R est réalisable si et seulement si:

R ≥ H(X | Y ) (2)

Puisque H(X |Y ) ≤ H(X), l’information adjacente au niveau du décodeur permet de diminuer le débit

de codage de source par rapport au codage de source sans information adjacente. Dans ce cas, le débit

minimum R dépend de la corrélation entre X et Y .
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5. Application: vidéo en 360 degrés
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Rate 1/8 LDPCA
Rate 1/8 Proposed
Rate 1/4 LDPCA
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Rate 3/8 Proposed
Rate 1/2

Figure 17: Performances de l’algorithme 2 sur un code de longueur n = 512

N4 LDPCA Algorithme 2

R = 3/8 453 455

R = 1/4 1216 737

R = 1/8 5361 3477

Table 2: Nombre de cycles de longueur 4 obtenu par application des méthodes LDPCA et de l’algorithme 2

sur un code de longueur n = 512

5. Application: vidéo en 360 degrés

Les images en 360 degrés nous sont fournies après traitement, par nos partenaires du projet CominLabs

de l’Inria (Rennes). Les images 3D sont d’abord transformées en images 2D, à partir desquelles sont

générées des informations de source X et des informations adjacentes Y (j)
, j = 1, 2, · · · , J. La Figure 19

décrit l’insertion du schéma de codage de source proposé dans la chaîne de traitement des vidéo en 3D.

Voici les principales étapes que nous avons suivies.

1. Notre schéma nécessite la connaissance de Pr(X |Y ). Aussi nous introduisons la variable aléatoire

Z = X − Y . Nous avons étudié deux modèles de distribution pour Z : Laplacienne et Q-aire.

Finalement, nous avons retenu le modèle Laplacien. La transmission des paramètres de la distribution

de Z doit également être prise en compte dans le bilan.

2. Le schéma de codage utilise un code LDPC binaire. Une transformation préalable des composantes

du vecteur source Xn en différents plans de bits est nécessaire.

3. Codage séparé des plans de bits de Q(s), Q(L−1), jusqu’à Q(0).

Um,b
= Q(b)HT
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