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RÉSUMÉ EN FRANÇAIS

Les sciences de la vie et particulièrement la santé sont de gros producteurs de
données (150 exabytes en 2010 pour le seul système de santé Américain [COTTLE

et al., 2013]). En plus de la quantité de données produites, s’ajoutent les défis de leur
diversité et de leur hétérogénéité, puisque ces données sont de natures complémen-
taires (imagerie, diagnostique clinique, données génomiques, etc.) et proviennent de
nombreuses sources.

Nous nous focalisons sur les réseaux de régulation de gènes, un sous-domaine
des sciences de la vie. Même dans ce contexte spécifique, les données sont nom-
breuses et hétérogènes. Pour comprendre la régulation de l’expression génique, il est
nécessaire d’intégrer des informations de nombreuses expériences sur l’ensemble du
génome. En effet, un réseau de régulation de gènes est la somme des interactions
entre les régulateurs, ou entre régulateurs et d’autres entités biologiques, dans une
cellule afin de diriger l’expression génique. Un réseau de régulation est généralement
représenté comme un graphe dont les sommets sont les entités biologiques (gènes,
protéines ou métabolites) et les arcs les interactions entre elles (protéine/protéine, pro-
téine/ADN...).

Nous nous intéressons particulièrement aux réseaux de régulation car ils sont gé-
néralement perturbés en cas de cancer. Effectivement, les cancers sont des maladies
très diversifiées et hétérogènes résultant d’un contexte génétique spécifique à chaque
patient. Une partie de cette hétérogénéité peut être expliquée par les mutations gé-
nétiques dans les parties de l’ADN codant pour des gènes. Cependant, ces mutations
ne suffisent pas à expliquer l’intégralité de la variabilité. Des régions non-codantes de
l’ADN sont aussi connues pour intervenir dans la régulation de l’expression des gènes.
Cette régulation peut ainsi être perturbée dans le cas de mutations dans les régions
non-codantes [KHURANA et al., 2016]. La littérature montre justement que de telles mu-
tations peuvent être à l’origine de l’apparition de tumeurs ou d’en permettre le maintien
et la survie [MANSOUR et al., 2014 ; QUEIRÓS et al., 2016].

Dans le cadre de cette thèse, nous nous intéressons à un cancer particulier :
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Résumé en Français

le lymphome folliculaire. Il s’agit du cancer non-Hodgkinien le plus commun et il est
caractérisé par une altération du réseau de régulation des cellules B. Il est considéré
incurable, car les cas de rechute ou de résistance au traitement sont fréquents. Il est
aussi caractérisé par une grande hétérogénéité chez les patients qui en sont atteints,
principalement dans l’épigénétique de sa régulation [KORFI et al., 2017].

Cependant pour comprendre les modifications de la régulation dans le lymphome
folliculaire, il nous faut comprendre la différenciation saine des cellules B naïves, des
cellules impliquées dans la réponse immunitaire. Pour ce faire nous avons accès à des
données génomiques (expression génique obtenue par RNA-seq et accessibilité de la
chromatine identifiée par ATAC-seq) obtenues sur un nombre restreint d’échantillons
correspondant à des populations cellulaires biologiquement proches. Cette différen-
ciation est déjà étudiée et il ressort plusieurs régulateurs connus : PRDM1, BACH2,
BCL6, PAX5 et IRF4 [WILLIS et NUTT, 2019]. Cependant, ils ne suffisent pas à expli-
quer complètement le processus de différenciation. On soupçonne donc que d’autres
régulateurs encore inconnus pourraient être importants pour certaines étapes de ce
processus de différenciation.

Pour inférer les réseaux de régulations des deux contextes de différenciation des
cellules B et de lymphome folliculaire, nous nous appuyons sur les méthodes exis-
tantes, en particulier Regulatory Circuits [MARBACH et al., 2016], une méthode d’in-
férence de réseaux de régulations orientée vers les cellules humaines. Cependant
comme nous le détaillerons, ces méthodes produisent des réseaux non signés et
elles nécessitent une grande quantité de données, ce que nous ne possédons pas.
Elles sont aussi fréquemment difficilement réutilisables car simplement décrites en
tant qu’algorithmes sans implémentations.

Analyse de Regulatory Circuits, une méthode d’inférence de ré-
seaux de régulation

Dans le premier chapitre de cette thèse, nous nous intéressons au projet Regula-
tory Circuits, une des méthodes d’inférence de réseaux de régulation les plus récentes
et la plus complète. Elle a pour but d’identifier les réseaux de régulations spécifiques
à certains types cellulaires. Le but sous-jacent de cette méthode est de trouver les
perturbations régulatrices spécifiques à certaines maladies, but que nous rejoignons
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dans le cadre du lymphome folliculaire. Notre première intention a été d’appliquer la
méthode de Regulatory Circuits sur un nouveau jeu de données, de manière à infé-
rer de nouveaux réseaux de régulation. Cependant, nous avons été confrontés à des
limitations méthodologiques et techniques. Nous n’avons pas été en mesure d’utiliser
les fichiers résultant de Regulatory Circuits, car ils agrègent les quatre populations cel-
lulaires saines auxquelles nous nous intéressons en une seule (Cellules B CD19+) et
ne possèdent pas de type cellulaire proche du lymphome folliculaire. Nous avons aussi
découvert que l’implémentation fournie ne fonctionne pas et que la section Matériels et
Méthodes de l’article ne permet pas de reproduire les résultats intermédiaires fournis
par Regulatory Circuits.

Nous avons donc proposé deux méthodes permettant de recalculer Regulatory
Circuits : l’une à partir de l’ensemble fichiers proposés (fichiers d’entrée et fichiers in-
termédiaires) puis déroulant la méthode décrite dans les méthodes du papier et une
seconde utilisant uniquement les fichiers d’entrée et déroulant la même méthode. Ce-
pendant, même en reproduisant pas à pas les étapes de la méthode décrite dans l’ar-
ticle nous avons été incapables d’obtenir les même résultats. Ces différents problèmes
illustrent les principaux obstacles à la reproductibilité et à la réutilisabilité des don-
nées en science de la vie : des jeux de données spécifiques, non réutilisables et dont
la méthode d’analyse ou de traitement ne peut pas être reproduite. Notre première
contribution a ainsi consisté à réaliser un recensement de ces différentes limitations
de Regulatory Circuits et de montrer qu’elles peuvent être organisées en catégories
généralisables aux autres méthodes.

Ceci nous a conduits à la fois à proposer une méthode de représentation des
données permettant de dépasser les problèmes de reproductibilité et de réutilisabilité,
et à proposer une nouvelle méthode d’inférence de réseaux de régulations permettant
d’analyser des petits jeux de données issus de populations cellulaires biologiquement
proches et de distinguer les relations d’activation et d’inhibition.

Les technologies du Web Sémantique comme cadre de la formali-
sation des méthodes d’inférence de réseaux

Notre seconde contribution a été de proposer une approche basée sur les techno-
logies du Web Sémantique pour implémenter la méthode publiée par Regulatory Cir-
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cuits de manière à la rentre plus facilement réutilisable et disponible. La méthode de
Regulatory Circuits est basée sur deux niveaux : un premier à l’échelle des échantillons
– basé sur les expériences biologiques – et un second à l’échelle du tissu cellulaire –
composé d’au moins un échantillon, mais généralement de plusieurs. Nous montrons
que le premier niveau de l’analyse de Regulatory Circuits – réseaux spécifiques des
échantillons – peut être formalisé en deux requêtes SPARQL avec des performances
acceptables : moins de 4 heures pour calculer l’ensemble des réseaux.

Notre approche consiste à formaliser les données et les résultats biologiques en
tant que graphe RDF. Nous produisons un modèle de Regulatory Circuits qui permet un
accès unifié aux réseaux spécifiques des échantillons. Une fois les fichiers d’entrée de
Regulatory Circuits traités et formatés pour être intégrés, le pipeline peut être assimilé
à deux requêtes, cependant il est toujours nécessaire d’effectuer un post-traitement
pour pouvoir obtenir les réseaux spécifiques des tissus.

Nous avons ainsi démontré que les technologies du Web Sémantique sont un bon
cadre pour la formalisation des méthodes d’inférence de réseaux de régulation en tant
que graphe de données, et que cette solution permet d’améliorer la réutilisation de la
méthodologie mais aussi son interopérabilité avec des données extérieures. Cepen-
dant, à ce stade, nous ne proposons pas de conservation des graphes calculés. De
plus cette méthode s’avère plus complexe quand on tente de la passer à l’échelle sur
les réseaux tissu-spécifiques.

Utilisation de graphes RDF multi-niveaux pour la structuration de
Regulatory Circuits

Notre troisième contribution étend le travail de la partie précédente sur Regulatory
Circuits, de manière à passer à l’échelle les graphes de données RDF et de ne plus
seulement inférer les réseaux de régulation à l’échelle des échantillons mais aussi à
celle des tissus.

Nous avons élaboré une stratégie permettant de générer une ressource publique
contenant à la fois les données biologiques de Regulatory Circuits, des données liées à
des ressources extérieures suivant le LOD, mais aussi les résultats de l’analyse d’infé-
rence de réseaux de régulations à l’échelle de l’échantillon et de celle du tissu. Pour le
graphe de base, représentant les données biologiques, nous utilisons celui développé
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dans la section précédente ainsi que les deux requêtes SPARQL l’accompagnant. Les
réseaux spécifiques des échantillons alors calculés sont réinjectés dans la base de
donnée (endpoint) sous forme de nouveaux graphes RDF nommés. Ces nouveaux
graphes sont alors eux-mêmes requêtés pour obtenir la dernière étape du pipeline de
Regulatory Circuits : les réseaux tissu-spécifiques. Le résultat de ses réseaux est lui-
même réinjecté en tant que graphe nommé dans la base de données. Ceci permet de
plus facilement requêter une sous-partie des données en explicitant le nom du graphe.

Cette partie s’est avérée plus difficile que prévu, nécessitant des calculs de quasi-
ment un mois entre le calcul des requêtes de manière à obtenir les relations pondérées
pour l’ensemble des réseaux – échantillons et tissus - et la ré-injection des graphes
nommés au sein de la base de données.

Une nouvelle méthode d’inférence de réseaux

Notre quatrième contribution est une nouvelle méthode d’inférence de réseaux
se focalisant sur des petits jeux de données biologiquement proches. Cette méthode
permet aussi l’inférence de réseaux signés (activation ou inhibition) contrairement à
de nombreuses méthodes existantes. Comme mentionné précédemment, le besoin de
développer un nouveau pipeline spécifique à nos données est lié à l’impossibilité de
trouver des méthodes proposées avec le niveau de détail représentant nos populations
cellulaires et non un unique tissu les recouvrant ainsi que l’inexistence de réseaux
de régulation relatifs au lymphome folliculaire. Cela a été renforcé par l’incapacité à
reproduire les résultats et la méthode de Regulatory Circuits de manière probante.

Cette nouvelle stratégie tire avantage de l’hétérogénéité des données en science
de la vie disponibles : information sur l’expression des gènes, sur l’accessibilité de
la chromatine, l’activité des régulateurs et la localisation de leurs sites de fixations sur
l’ADN. Nous utilisons une normalisation pluri-niveaux des activités appelée "profils" (ou
patterns), regroupant les gènes et régions d’expression similaire et suivant la même
trajectoire à travers les différentes populations cellulaires étudiées. Comme nous nous
focalisons sur des petits jeux de données, cette analyse ne peut être statistique et
est descriptive. Comme montré précédemment, les technologies du Web Sémantique
fournissent un cadre adapté à la création de pipelines d’inférence de réseaux de ré-
gulation, c’est pourquoi nous les utilisons pour la création d’un graphe de données
en RDF, représentant nos entitées et leurs relations, que nous pouvons ensuite re-
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quêter pour obtenir l’ensemble des relations entre régulateurs et gènes. Le reste de
cette méthode utilise une logique de raisonnement basée sur la connaissance des
experts du domaine pour décrire les relations de régulations potentielles en accord
avec le contexte et les règles biologiques. Le pipeline est fait de manière à être volon-
tairement strict, car le but de notre méthode est de proposer une liste des régulateurs
potentiels les plus susceptibles d’agir sur les réseaux et non la liste complète des régu-
lateurs. Notre méthode permet d’obtenir des réseaux signés, basés sur la cohérence
des activités respectives des gènes, des régions et des régulateurs sur l’ensemble des
populations considérées.

Nous avons testé notre pipeline sur des données issues de Regulatory Circuits et
avons été en mesure d’obtenir des réseaux de régulation cohérents avec leurs don-
nées mais avec un meilleur taux de récupération des gènes les moins exprimés, pro-
bablement grâce à l’introduction des relations d’inhibition. Nous avons pu aussi vérifier
la véracité des signes inférés à l’aide des deux bases de données majeures (Trrust et
Signor) avec lesquelles nous sommes en concordance pour 70% des relations inférées
existant à la fois dans ces bases et dans nos réseaux.

Application aux cellules B

Notre dernière contribution a été l’application du nouveau pipeline décrit dans la
section précédente à un jeu de données de la différenciation des cellules B, de ma-
nière à mieux comprendre ce processus biologique et à identifier de nouveaux régula-
teurs potentiels. Ce jeu contient des données relatives à quatre populations cellulaires
biologiquement proches : les cellules B naïves, les cellules B mémoires IgG et IgM
ainsi que les plasmablastes. Nous avons extrait 314.965 relations entre régulateurs
et gènes, résultant en deux niveaux de réseaux de régulations : un réseau global re-
présentant les relations entre les différents profils d’expressions et plusieurs graphes
régulateur-gène spécifiques à chacun de ces profils. Cependant, les graphes produits
sont extrêmement denses, nous proposons donc une méthode de post-traitement afin
de réduire le nombre de régulateurs pouvant être clefs. Le but est de produire une liste
de régulateurs priorisés de manière à pouvoir être testés biologiquement pour prou-
ver leur impact sur les réseaux et valider leur importance inférée. Nous avons défini
deux critères : la couverture (la capacité du régulateur à contrôler un grand nombre de
cibles) et la spécificité (la capacité du régulateur de ne réguler qu’un seul profil ou une
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direction de différenciation).

Nous avons produit une liste contenant 146 régulateurs qui valident ces deux cri-
tères et qui sont des candidats régulateurs-clefs de la différenciation. Cette liste inclut
notamment : BACH2, PRDM1, PAX5 et IRF4, quatre régulateurs dont nous connais-
sons l’implication dans la différenciation des cellules B grâce à la littérature. Le seul
régulateur présent dans la littérature que nous ne trouvons pas dans nos réseaux est
BCL6. Cependant il n’est pas présent dans nos données initiales en tant que régula-
teur, car nous n’avons pas d’information sur ses sites de fixation. Nous ne l’avons pas
non plus détecté dans nos population lors de l’analyse de l’expression des gènes. De
fait, BCL6 ne pouvait donc pas apparaître dans les réseaux finaux. Il serait interessant
de voir s’il ressort avec l’analyse des données relatives au lymphome folliculaire ou en
ajoutant de nouvelles populations qui expriment ce facteur.

Les régulateurs ainsi identifiés auront besoin d’être confirmés à l’aide d’expéri-
mentations biologiques. Notre pipeline a permis de réduire l’espace de recherche des
régulateurs de la différenciation des cellules B.

Conclusion

En partant des méthodes existantes d’inférence de réseaux de régulation, nous
montrons qu’elles étaient souvent peu reproductibles ou réutilisables. En utilisant le
cadre des technologies du Web Sémantique, nous proposons une transformation de
ces méthodes sous forme de requêtes SPARQL sur des graphes RDF orientés et
nommés. Cette approche augmente la reproductibilité, la disponibilité, la réutilisabi-
lité et permet l’enrichissement avec des bases de données publiques. En nous ba-
sant sur cette première contribution, nous avons développé une méthode d’inférence
de réseaux signés, adaptée à des jeux de données peu nombreux et biologiquement
proches. Notre méthode intègre la connaissance experte et est couplée à des post-
traitements pour affiner et réduire l’espace de recherche des régulateurs potentiels.
L’application de cette nouvelle méthode à la différenciation des cellules B a permis de
retrouver des régulateurs connus de la littérature, et d’identifier de nouveaux candi-
dats. Les perspectives de ce travail sont de mieux prendre en compte les phénomènes
biologiques de combinatoire des régulateurs, d’optimiser les méthodes de réduction
de l’espace de recherche et d’appliquer cette nouvelle méthode à l’interprétation des
mutations des régions régulatrices dans le contexte de cancers incurables comme le
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lymphome folliculaire.
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CHAPITRE 1

INTRODUCTION

Better understanding the mechanisms driving cancers is a key challenge for sys-
tems biology. Cancers are characterized by abnormalities in gene expressions origina-
ting from mutations on the DNA. They are also a highly diverse group, with high varia-
bility between two patients even of the same disease. In fact each patient presents a
different genetic context.

One key tool in the understanding of cancer diversity is gene regulatory networks
inference methods, as they allow for a deeper knowledge of the regulatory events ta-
king place. A regulatory network is the sum for all the interactions between either re-
gulators or between regulators and other entities in a cell to orientate the fate direction
taken by the cell. A gene regulatory network - or so-called transcriptional regulatory net-
work - describes the interactions between regulators called transcription factors (TF)
and their target genes which expression they control - either positively (induction) or
negatively (inhibition) - by binding at specific sites on DNA in defined regulatory re-
gions. Perturbations in regulatory networks can be caused either by mutations in the
coding part of the DNA - leading to an absence or mis-transcription of TF and/or target
genes - or by a mutation in non-coding parts of the DNA. A non-coding mutation can
occur at a binding site of a transcription factor and stop it from regulating the transcrip-
tion of its target genes, or even create a new TF binding site and add new edges to the
regulatory network.

This thesis focuses on perturbations of the regulatory networks in follicular lym-
phoma (FL), a type of hematological cancer. This cancer is known for its high hete-
rogeneity in patients and is considered incurable as most patients relapse or resist
treatment. Some of the perturbations of the regulation are already known but they do
not explain all the variability of the follicular lymphoma. The follicular lymphoma is an
alteration of terminal B cells differentiation. In order to study its regulatory networks, we
need to better understand the normal differentiation in a first place to have a ground for
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comparison.

In this thesis, we propose a new approach to regulatory network inference based
on knowledge graphs. We are able to represent the different entities composing a re-
gulatory network into a graph and to model their interactions. Using the Web Semantic
technologies, we can represent each layer of information in a RDF graph, this makes
the data easier to query to obtain new information or to extract the relations between
several entities. This proved to be an efficient regulatory networks inference method by
following the relations between the entities of the regulatory chain.

The overarching goal of this thesis is to propose a regulatory context for the folli-
cular lymphoma and subsequently for B cell differentiation. We are aiming to identify
some of the key regulators of these both biological processes.

To answer the goal of this thesis, we first looked into existing network-inference me-
thods and workflows, tried to reproduce them and examined their reproductibility, using
the example of Regulatory Circuits. Secondly, we structured this existing regulatory-
network database using Semantic Web technologies, only representing a first output
layer in this step (sample-specific networks). Thirdly, we scaled the RDF structure onto
the second layer of Regulatory Circuits (tissue-specific networks), which meant adding
named graphs to better define the structure. Fourthly, we developed an alternative net-
work inference method, specialised into analyzing sparse and closely-related cell-types
and producing signed networks. Finally, we applied this new method to biological data,
focusing on B cells differentiation. With this new regulatory network inference method,
we provide a list of potential regulators (and regulatory relations) and it will be neces-
sary to biologically validate these regulators to check their real impact on the networks.
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CHAPITRE 2

STATE OF THE ART AND BIOLOGICAL

CONTEXT

In this chapter we present an overview of the literature applied to our problematic.

We focus on the heterogeneity of the data in life science and health in SECTION

2.1 especially while looking into gene regulatory networks, and their potential pertur-
bations in cancer. We also present the two biological contexts we are invested in: the
B cell differentiation and one of its pathological counterparts, the follicular lymphoma.
In the following SECTION 2.2 we look at the methods of regulatory networks inference,
which type of data they take as input, how they process them and what kind of resul-
ting regulatory networks they produce. Finally, in SECTION 2.3 we look into the ways
of storing life science data and the existing life science databases. We present the Se-
mantic Web technologies as a framework for data-structuring and querying. We then
introduce AskOmics, a dedicated tool for integration and querying based on Semantic
Web technologies that hides the technical graph building and query building from the
user in favor of a graphic interface.

2.1 Heterogeneity of data in Life science

Life science, and in particular health, is a major data producer: for example the
US healthcare system as reached 150 exabytes in 2010 [COTTLE et al., 2013], and
this trend is expected to increase over the next decade [Z. D. STEPHENS et al., 2015].
In addition to the data quantity challenge data heterogeneity is a second challenge.
In [ANDREU-PEREZ et al., 2015] the authors performed a review of different fields of
data production in health: from genomics, proteomics, metabolomics, to imaging, clini-
cal diagnosis, patient history and the recent addition of personal devices information
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(smart watch, sleep tracker...). Moreover, we are confronted to the rise of multi-omics
solutions (Genomics, Epigenomics, Proteomics, Transcriptomics, Metabolomics, etc...)
in health and disease related research [KARCZEWSKI et SNYDER, 2018] [HASIN et al.,
2017]. Each dataset’s size often requires to split the data into several files, which adds
another layer of integration and makes global analysis all the more complicated [GOBLE

et STEVENS, 2008].

Genes regulatory network We focus on gene regulatory networks, and even in this
specific context the data are large and heterogeneous. To understand the regulation
in a given context, one needs to perform diverse types of experiment spanning whole
genome, currently made available by the recent advent of high throughput sequencing.

A gene regulation network is the sum of the interactions either between regula-
tors, or between a regulator and other entities in a cell to direct the gene expression.
A regulatory network is typically represented as a graph composed of nodes repre-
senting the genes, proteins or metabolites and of edges representing the interactions
(protein/protein, protein/DNA, etc...).

(a) Regulations entities, focusing on the DNA
sequence

(b) Regulation, with the addition of the pro-
teins. Figure from [HECKER et al., 2009]

FIGURE 2.1 – Regulation mechanisms

For gene regulatory networks, regulators are specialized proteins called transcrip-
tion factors (TF) which interact with DNA, the molecular support of genetic information.
At the DNA level, a TF will bind to a definite sequence (called a binding motif or binding
site) in a specific regulatory region, which should be in an opened 3D conformation
to allow the regulation [NARLIKAR et al., 2002] (Fig. 2.1a), and which can be located
close (0 kb) or far (500 kb) from its target gene [SMALLWOOD et REN, 2013]. This
binding event will then initiate a cascade of molecular events eventually leading to re-
gulation (induction or inhibition) of the target gene expression. This gene can produce
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a protein that is itself a TF (see FIGURE 2.1B) and regulates other genes. To act as
TF, this protein may need to change conformation or to form a complex with another
protein, adding even more complexity to the system.

In biology, the EM algorithm [LAWRENCE et REILLY, 1990] is used to identify and
characterize binding sites. This algorithm is limited by the necessity to have at least
one occurrence of the binding site in each sequence tested. Most methods currently
in use for TF binding sites finding are based on statistical methods [SINHA et TOMPA,
2000], for example the Gibbs Motif Sampler [THOMPSON et al., 2003] based on Markov
Chain Monte Carlo use for multiples TF binding sites or YMF [SINHA et TOMPA, 2003]
enumerating TF binding site and qualifying them with a z-score. Other methods are
based on biological experimentation, using ChIP-seq data (chromatin immunoprecipi-
tation combined with DNA sequencing) of known or suspected TF, to find their binding
sites and determine their target by looking at the close potential targets [REN et al.,
2000]. In a third category of methods, the gene expression is quantified by RNA-seq
with the presence of the TF and without. These methods are mostly used to confirm TF
identified with the statistical method such as for the ENCODE consortium [GERSTEIN

et al., 2012].

The biological reality is that gene expression is often driven by the combination of
several regulators and not unique entities, either with close or distant regulators with
synergistic or antagonistic effects. For example, some TFs can work as pairs which
change their regulatory impact on the gene’s transcription [JOLMA et al., 2015]. Gene
expression can also be the output of several concomitant regulatory effects dictated by
different TFs. Finally, TFs are themselves regulated by other TFs, which can lead to a
cascade of regulations.

Genes regulatory network perturbations in cancer Cancers are heterogeneous
diseases for which each patient shows a unique genetic context. Part of this hetero-
geneity can be explained by mutation of protein-coding genes, but the majority of this
heterogeneity is due to mutations outside of the coding regions of the DNA. This non-
coding DNA supports the regulatory function of the genes’ expression. Mutations in the
non-coding areas of the DNA represent 10 times the ones in coding regions [KHURANA

et al., 2016]. The impact of those mutations on the cancer development, their resis-
tance to treatment and their likelihood of relapse or transformation is highly unknown,
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and is currently understudied. Several studies showed that alteration of the regulatory
regions can explain the apparition or the upkeep of tumorous process, either genetic
(ex: acute lymphoblastic leukemia [MANSOUR et al., 2014]) or epigenetic (ex: mantle
cell lymphoma [QUEIRÓS et al., 2016]). One of the main impacts of non-coding mu-
tations could be through the breaking or the generation of transcription factor binding
sites. Thus underlines the importance of regulatory network inference, which can help
to prioritize and annotate such non-coding mutations.

Focus on Follicular Lymphoma Follicular Lymphoma (FL) is the most frequent of
non-Hodgkin cancer (20% of all cases) and is characterised by the alteration of the
regulatory networks of B cells [CARBONE et al., 2019]. In its first steps it is largely
asymptomatic leading to late diagnostic, with 70% of the patients presenting stage III
or IV. Relapses or treatment resisting cases are frequent, making follicular lymphoma
considered incurable.

Follicular lymphoma is characterized by a high heterogeneity in patients, in par-
ticular around the epigenetics of the regulation. 85% to 90% of FL are characteri-
zed by a t(14;18) translocation placing BCL2 (an anti-apoptotic proto-oncogene) un-
der the control of IGH locus (coding for the heavy chain of B cells antigen receptor),
leading to BCL2 over-expression. 50% of FL cases also present genomic alterations
impacting the retinoblasma pathway [ORICCHIO et al., 2014]. Other known mutations
affect the transcriptional regulation of BCL6 (10-15% of FL cases) [AKASAKA et al.,
2003], STAT6 (>10%) [YILDIZ et al., 2015], BCL2 [CORREIA et al., 2015], CREBBP
and EZH2 [DESMOTS et al., 2019]. Some other works have been done on the modi-
fication of the methylation of the DNA [DOMINGUEZ et al., 2017] or the mutation of
epigenetic enzymes [JIANG et al., 2016].

However this is not sufficient to explain the diversity of FL and its capacities of
relapse or transformation. The study of non-coding mutations in FL could lead to the
discovery of new key regulators that explain its variability.

B cells differentiation FL arises during a specific step of the differentiation of Naive
B cells (NBC) into antibody producer cells. To be able to understand the potential al-
terations of gene regulatory networks caused by mutations in non-coding parts of the
DNA in FL, we must first identify these networks during the normal differentiation pro-
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cess.

As shown in FIGURE 2.2 NBC are mature cells, differentiated in the bone marrow.
Their task is to detect any pathogen in the lymph and blood. After an interaction with a
pathogen, they migrate into secondary lymphatic organs such as lymph nodes or the
spleen. To start their differentiation, NBC interact with other cell types such as T lym-
phocytes. This differentiation is based on two different mechanisms leading to different
Plasma cells (PB). The first mechanism is the extra-follicular differentiation. It is a quick
process with low interaction with T lymphocytes and produces plasma cells with a short
lifespan, little specificity and affinity but with a really quick response. The second me-
chanism takes place in the germinal center and takes more time but produces more
specific antibodies and with greater affinity to the antigen. During the germinal center
reaction, mutations are introduced in the antibody genes of B cells to modify their affi-
nity. This process also produces off-target mutations, which are hypothesized to be at
the origin of FL.

After differentiating, the produced plasma cells - which have a very long life span
- go to the bone marrow where they produce high levels of antibodies. This differentia-
tion also produces Memory B cells (MBC) with lower affinity but a quick differentiation
potential into plasma cells if they encounter the same pathogen again. The immunoglo-
bulin G (IgG) MBC differentiate directly into PB but the immunoglobulin M (IgM) MBC
needs to enter the germinal center again [SEIFERT et AL., 2015]. IgG and IgM memory
B cells are intermediate between NBC and PB but not in a defined temporal manner.
NBC differentiation is coupled to DNA hypomethylation and a specific transcriptional
regulation program [BARWICK et AL., 2016]. Looking for the genetic and epigenetic
mechanisms behind the faster answer of the memory B cells is also a main issue in
immunology. To answer this question, we can identify the involved regulatory networks
by looking to gene expression, chromatin accessibility and the reconfiguration of the
DNA methylome [CARON et AL., 2015].

Some of the regulators of this differentiation are already known, such as PRDM1,
BACH2, BCL6, PAX5 and IRF4 [WILLIS et NUTT, 2019]. PRDM1 and IRF4 are consi-
dered to be the master enhancers of NBC to PB differentiation, whereas BACH2, in the
contrary, is one of its major repressors [HIPP et al., 2017]. While five known regulators
is a good number and more than for some cell types, we know that only those regu-
lators can not explain all the differentiation process and that unknown regulators may
remain. For example Escherichia Coli regulatory network is formed of 271 TF[MADAN
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FIGURE 2.2 – NBC differentiation (simplification): Pathways for the generation of human
B-cell subsets. Naive B cells can yield IgM-only or Ig class switched memory B cells in
a GC dependent manner, as well as plasma cells. MBC can also differentiate into PB,
although through distinct mechanisms. [PHAN et TANGYE, 2017]

BABU et TEICHMANN, 2003]. We also do not have a full view on the targets of those
regulators and the fine processes of their regulation. We need a better description of
their mode of action: do they require another regulator to work as a pair or complex, or
is there a cascade of regulatory events?

Conclusion There is a need to better understand regulatory regulations, particularly
in cancer where it could explain some of the diversity. In our case we focus on Follicular
Lymphoma a specific kind of cancer known for being incurable and with a huge hete-
rogeneity not explained to this day. Some of this diversity could be explained through
non-coding mutations, but to be able to interpret them we need to look at the follicular
lymphoma regulatory network in comparison to a non-pathological regulation.

2.2 Methods of Regulatory network inference

As described in the previous section, gene expression regulation (also called trans-
criptional regulation) is a major field of investigation in Life science. It allows a better
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understanding of major processes such as cell differentiation (how to obtain one or
several effective cell types from a common progenitor cell), cell identity (how gene ex-
pression is used to define a specific cell type) and cell transformation (how altered
gene expression can lead to cell death or cancer) [GARNIS et al., 2004].

Researchers in life sciences and in bioinformatics use huge amounts of data to
build extensive regulatory networks from these different entities (genes, TF, regula-
tory regions), mainly by statistical and machine learning methods. In [HECKER et al.,
2009], the authors review four main types of gene regulatory network architectures: in-
formation theory models, Boolean networks, differential and difference equations and
Bayesian networks. Others workflow and algorithms exist.

In TABLE 2.1, we review the main existing methods of regulatory network infe-
rence, according to several different points and the data they use to compute their
networks.

Specific entry data and number of data-sets Many of these methods use time
series of gene expressions as their only input data (REVEAL, RelNet, BANJO, NIR,
ARCANE, TSNI, Mix-CLR, TIGRESS, COALESCE, iRafNet, SINCERITIES, PoLoBa),
and for ten methods out these eleven, this is the only mandatory entry while other
information can be added but are optional. Unfortunately this require a large set of data
on several time points, this can be an issue to produce for disease related regulatory
network, in particular for patient specific networks. For example, SINCERITIES was
run on 100 cells and 8 time points, TSNI was run using 5 to 10 time points, TIGRESS
used 907 experiments and COALESCE on 2200 expression conditions. Unfortunately,
with patient experiments we have smaller data sets and less time points.

Samples data: unification of the networks Many of inference methods have been
tested in their respective paper on Escherichia Coli expression data (NIR, TSNI, COA-
LESCE, DISTILLER, Mix-CLR, TIGRESS, SINCERITIES, PoLoBa). E. Coli networks
are smaller than human regulatory networks, and often the focus of the regulatory in-
ference was limited to small subset of genes (90 genes for SINCERITIES, maximum
of 1,419 for PoLoBag and 100 for Mix-CLR). When not run on E. Coli data, many me-
thods are run on in-silico models extracted from the DREAM challenge 1 (PoLoBag:

1. http://dreamchallenges.org/
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TABLE 2.1 – Review of different network inference methods

Method name Reference Data Data Normalization Graph
Type of implementation Other

Genes Regions TF Other 2 level
discretization

multi-level
discretization continuous Scored Signed

REVEAL [LIANG et al., 1998] a(t) x Algo
RelNet [BUTTE et KOHANE, 1999] a(t) x x Algo
BANJO [HARTEMINK et al., 2000] a(t) x Algo

NIR [GARDNER et al., 2003] a(t) x Algo
ARCANE [MARGOLIN et al., 2006] a(t) x x Algo

TSNI [BANSAL et al., 2006] a(t) x x Algo Focus on 1 gene

COALESCE [HUTTENHOWER et al., 2009] a(t) BS*

nucleosome
positioning*,
evolutionary

conservation*

x x C++ implementation &
web interface

DISTILLER [LEMMENS et al., 2009] a BS x x integration: itself mining Co-expressed genes
Mix-CLR [MADAR et al., 2010] a(t) x x Algo
TIGRESS [HAURY et al., 2012] a(t) x x Matlab implementation
iRafNet [PETRALIA et al., 2015] a(t)*, a* BS* interaction x x R implementation

Knok-down* protein-protein*
Regulatory Circuits [MARBACH et al., 2016] a BS x x Workflow

SINCERITIES [PAPILI GAO et al., 2018] a(t) x x x Algo
PoLoBag [ROY et al., 2020] a(t) x x x Algo

a = activity, a(t) time series of the activity, * optional, BS = TF binding site, Algo = description of the algorithm without implementation
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DREAM4, TIGRESS: DREAM4 and 5, Mix-CLR: DREAM3, iRafNet: DREAM4 and 5).
This can unfortunately lead to an unification of the methods as they are optimized for
the same data-sets and public. Out of the 14 methods only 4 present an application
to human regulatory networks: ARCANE (B cells), Regulatory Circuits (394 different
tissues), SINCERITIES (monocytic THP-1 human myeloid leukemia cell differentiation
into macrophages) and PoLoBag (bone marrow CD34+ cells). Both ARCANE and Re-
gulatory Circuits produced regulatory networks on B cells, the cell type we are looking
into.

Addition of regulatory regions Out of all the methods, Regulatory Circuits is the
only method to use the regions accessibility information as entry, translated to their
activity. As we saw in the previous section, the accessibility of the chromatin has a
major role on the regulation as it constrains transcription factor binding to DNA (a re-
gulatory region in a "closed" conformation will inhibit any potential regulation for a TF
with a binding site inside it). This information about regulatory regions is also important
when looking into perturbations of the regulatory network in cancer, as mutations can
occur in non-coding areas and still impact the regulation. Regulatory regions can even
be modified in their accessibility or location by pathological processes such as cancer.
One way of obtaining this information while not identifying the regions themselves, is to
look at the TFs binding sites as COALESCE, DISTILLER and iRafNet do. But they look
at TFs binding sites at a given moment and not comparatively on several times points.

Signed networks ans scored ones Few methods (PoLoBag and SINCERITIES)
produce signed networks, i.e. specify if the regulation is positive (induction) or nega-
tive (inhibition) but most of them produce network with weighted edges (exception of
REAVEAL, BANJO and NIR) Some of these methods scores are based on statistical
weight: for example in Regulatory Circuits the weight of the binding site confidence is
based on the conservation of the TF binding site, meaning a large amount of data is
necessary to perform this analysis. COALESCE use a probabilistic approach normali-
zed by the likelihood of the same observation done by chance. The methods inferring
signed networks are also the most recent ones, this may be the result of a shift and
progression in regulatory network inference methods.
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Issues of reusability and reproducibility The closest method to what we are aiming
to realise - inferring regulatory network to look at regulatory perturbation in specific di-
seases - is Regulatory Circuits. It takes as entry regions activities, from which genes
activities are approximated, and information on TFs binding sites, the type of infor-
mation we have. Unfortunately they did not infer regulatory networks on the Follicular
Lymphoma and only in one population of normal B cells (CD19+ blood B cells). We
can’t reuse this network since we are interested in different subsets of B cells which
are all either distinct or included in this latter population. Also, as we will develop in
later chapters, Regulatory Circuits is not reproducible nor easily reusable.

This is an issue with most of network inference methods: they present algorithms
without implementation limiting the reuse of the methods or implementation without
standardization of the output files. Data are usually released as primary raw datasets,
usable processed data or compiled networks but with few possibilities for easily adding
new links between the data or for re-using the published bioinformatics pipelines.

Many of these methods produce local files, often specifically formatted for the cur-
rent analysis and are rarely designed to be easily available and reusable. To help the
reproducibility and the reusability of the workflows of analysis and their results, there is
a need to unify life-science databases and to populate them.

Conclusion on regulatory network inference methods We can see that there is a
variety of regulatory network inference methods but very few capitalize on the hetero-
geneity of the data produced in life science, often focusing only on the genes activities.
And they often concentrate on bacterial regulatory networks, whom are smaller in size
but easier to get more time point for the activities. Few of these methods also provide
signed networks, but knowing if a TF is an activator or an inhibitor could be very useful
for example to determine what happen to a cell.

The main issue with these methods is the lack of sustainable solution to store
and share the produced regulatory networks, which limits their reuse. We could look at
existing data-bases to find a solution.
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2.3 Data Structure in life science

Current life science data structures There are currently more than 1600 life science
databases, each able to answer important questions in a particular domain [RIGDEN

et FERNÁNDEZ, 2019]. There has been a long-standing effort to standardize and inte-
grate reference datasets and databases [ALDHOUS, 1993 ; STEIN, 2003]. But, despite
these efforts, many studies’ data are provided using specific and non-standard for-
mats [CANNATA et al., 2005]. And most of them offer a dedicated repository for expert
knowledge but they fail at structuring biological datasets [STEIN, 2003]. Indeed, the
classical data management technologies used by the life science community range
from data storage in the form of multiple tabulated files analyzed with spreadsheets,
silo models in complex database management systems with a predetermined scheme
of federated data such as Intermine [KALDERIMIS et al., 2014] or Biomart [SMEDLEY

et al., 2015], to ad-hoc community centralized models such as in bio-imaging commu-
nities. These solutions address immediate integration requirements but they are poorly
compatible with scalable and flexible integration needs, either between communities
(for example to jointly analyze medical imaging and genomics data) or with the world
of linked data to enrich analyses with symbolic knowledge selected in a precise and
contextual way in existing databases. This limits the capacity to reuse the studies’ data
in other pipelines, the capacity to reuse the pipeline’s results in other studies, and the
capacity to enrich the data with additional information [AL KAWAM et al., 2018].

Some notable and massive databases have been released following effort of stan-
dardization and good practices, it is the case with ENCODE [CONSORTIUM et al.,
2012] [GERSTEIN et al., 2012], FANTOM5 [LIZIO et al., 2015] [ANDERSSON et al., 2014]
and RoadMap Epigenomics [SKIPPER et al., 2015] [KUNDAJE et al., 2015] consortia.

ENCODE (ENCyclopedia Of DNA Elements) is a National Human Genome Re-
search Institute (NHGRI) project and aims to identify all functional elements in the
human genome. They were 440 scientists from in 32 laboratories collaborating on the
project in 2007. It was developed with the funding a $80 million by the NHGRI in 2007.
A recent overview of the content of ENCODE can be found in [SNYDER et al., 2020].

The FANTOM5 (Functional ANnoTation Of Mammalian Genome) consortium aims
to generate both a map of the majority of human promoters and transcriptional regu-
latory network models of each cellular state. It was initiated by the RIKEN institute.
It contains RNA-seq, short RNA-seq and CAGEscan data for approximately 400 cell
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types.

The Roadmap Epigenomics Mapping Consortium aims to produce a public re-
source on human epigenomic data. It was launched by the National Institutes of Health
(NIH) and is a collaboration of 10 groups, mainly north-American. The current re-
lease contains a total of 2,804 genome-wide data-sets (including: histone modification,
DNase, DNA methylation, and RNA-Seq).

Another project, proposing a large data base of regulatory networks is Regula-
tory Circuits [MARBACH et al., 2016]. Regulatory Circuits is based on previous works
from FANTOM5 and present a collection of 394 scored tissues-specific regulatory net-
works. Their goal is to identify disease-associated mutations that impact the regulatory
networks.

Unfortunately, those datasets have no or low compliance to the FAIR guidelines
[WILKINSON et al., 2016]. ENCODE data for example have only been published as
ontologies [MALLADI et al., 2015], processed data together with scripts used to obtain
them, or unlinked datasets.

Semantic web technologies An alternative approach for structuring and analyzing
heterogeneous datasets and knowledge bases, such as those encountered in Life
Sciences, is based on the Semantic Web technologies. They are an extension of the
current Web that provides an infrastructure for integrating data and metadata in order
to support unified querying and reasoning as a virtual unified data-set [BERNERS-LEE

et HENDLER, 2001]. This approach has been widely adopted by the life science com-
munity for releasing reference data and knowledge bases [JUPP et al., 2014 ; WHETZEL

et al., 2011] in RDF triplestores. Semantic Web technologies have been perceived as
a relevant framework for supporting integration [BLAKE et BULT, 2006], and have been
widely adopted [ANTEZANA et al., 2009 ; H. CHEN et al., 2012], but some challenges
remain to achieve Web-scale integration [KAMDAR et al., 2019]. Thanks to the growth
of linked data, supported by the Linked Open Data initiative (LOD) [BIZER et al., 2009],
more and more reference data and knowledge bases are integrated. We can see in FI-
GURE 2.3, the important part of Life Science databases in the Linked Open Data cloud
diagram and their dense interconnections. Moreover, it also evolved into the FAIR prin-
ciples for ensuring that the available data are Findable, Accessible, Interoperable and
Reusable [BRANDIZI et al., 2018 ; LIVINGSTON et al., 2013 ; RODRÍGUEZ-IGLESIAS et
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al., 2016 ; WILKINSON et al., 2016].

FIGURE 2.3 – Link Open Data cloud diagram as download the 2020-09-10: Life science
is represented in dark red.

2

Some notable databases have been released under the RDF format, for example:
FANTOM5, although it only concerns gene expressions and not regulatory data [ABUGESSAISA

et al., 2016 ; LIZIO et al., 2015].

RDF and SPARQL Resource Description Framework (RDF) is a data model using
triples between a subject, a predicate and an object. The data are described as graph
using the relation between the different entities. Once described using RDF the data

2. Linking Open Data cloud diagram 2020-09-10, by Andrejs Abele, John P. McCrae, Paul Buitelaar,
Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net
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are integrated using triples-stores such as virtuoso. To query the graph a specific lan-
guage, SPARQL, is used, an example of SPARQL query from neXtProt [ZAHN-ZABAL

et al., 2020] can be seen in FIGURE 2.4.

#Proteins which are targets of antipsychotic drugs and expressed in brain
PREFIX drugbank: <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugbank/>
select distinct ?entry where {

service <http://wifo5-03.informatik.uni-mannheim.de/drugbank/sparql> {
select distinct ?unipage WHERE {
?drug drugbank:drugCategory ?drugCat.
?drug drugbank:target ?target.
?target drugbank:swissprotPage ?unipage.
filter(?drugCat = <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugcategory/antipsychoticAgents>
|| ?drugCat = <http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugcategory/antipsychotics>)
}

}
?entry :swissprotPage ?unipage.
?entry :isoform /:detectedExpression / :term /:childOf cv:TS-0095. # detected in brain

}

FIGURE 2.4 – Example of SPARQL query from neXtProt [ZAHN-ZABAL et al., 2020],
extracting proteins that are target for a specific drug in a specific tissue.
3

AskOmics A bottleneck for a broader adoption of Semantic Web technologies by
the life science community is a technical barrier: a complete analysis scheme based
on Semantic Web technologies requires users first to prepare their data according to
a RDF framework to make them exploitable, and second to become familiar with the
SPARQL language [PÉREZ et al., 2009] either for querying their own RDF data, or for
analyzing them in relation with the other triplestores of the LOD.

AskOmics 4 5 is a visual interface for intuitive data integration and querying, develo-
ped by the Dyliss team at INRIA to answer this issue. AskOmics generates two graphs
from tabulated files, some format specific data-sets (e.g. BED or GFF format), as well
as original RDF. Firstly, the graph of data is a RDF representation of the content of files
provided by the user. It is hidden from the user. Secondly and presented to the user,
the graph of entities and values types which is a representation of the structure of the
graph of data. It is also much smaller. It is used as a visual proxy for allowing end-
users to compose SPARQL queries intuitively over the graph of data with a graphical
interface.

3. https://www.nextprot.org/proteins/search?mode=advanced
4. https://github.com/askomics/flaskomics
5. https://flaskomics.readthedocs.io/en/latest/
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FIGURE 2.5 – AskOmics query builder.
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In our works, we use AskOmics as a tool for the integration of the biological data
into relevant end-points, it is also used to help create the SPARQL queries to interro-
gate the RDF graphs.

From workflow to data-graph Semantic Web technologies, is useful to transform
workflows as graph-data queries. As an example, Regulatory Circuits, where the work-
flow follows relations from one entity to another would be a great case study to test
this kind of semantic web implementation. The relations between two entities can be
interpreted as a Triple and SPARQL allows to compute scores for the relations.

One difficulty of using Semantic Web technologies is the need for clean and for-
matted files as input. This may require quite a lot of pre-treatment of the data do ensure
that the header are well formatted and that the entities have the same identifier in all
files and that one identifier is not used for two different entities. This would alos re-
quire a selection of relevant information among the provided data-sets, that may not be
trivial, as we will describe in latter chapters.

An issue of using Semantic Web technologies is the iterative queries: for example
in data-sets such as Regulatory Circuits the networks are inferred in a first time at
the sample level, and then those are used to compute the networks the tissue level
(union of several samples). This means that we need to query the data a first time at
one level, re-inject the result of the query into the triple store and then query it again.
Unfortunately, this does not scale well and can be time consuming and lead to several
layers of potential mis-computation.

This thesis will focus on finding solutions to identify the parts in regulatory network
inference workflow that can be formalized as RDF data graph and queries to obtain the
regulatory networks. This also means identifying which part need to stay as workflow:
such as the cleaning of the input files, post treatment... We also develop on the named
graph as a solution to represent the different level of information computed for obtaining
the regulatory networks.
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2.4 Synthesis

This section introduces the following chapters representing the different contribu-
tions of this Ph.D thesis.

Regulatory circuits and study of reproducibility In CHAPTER 3, we looked at the
Regulatory Circuits project, which is amongst the most recent and the most complete
attempt to identify human cell-type specific regulatory networks. The underlying goal
of this resource is to find disease specific perturbations of the cellular regulatory net-
works, which is what we are aiming to do on a specific cancer although it was generated
on a greater scale with a large public data-set. We looked into applying their methodo-
logy to new data-sets to infer novel regulatory networks. Regulatory Circuits method is
based on two levels of regulatory networks: one based on samples - experiments - and
a second on the tissue-level - composed of at least one sample but often the union of
several samples.

We could not directly reuse the provided computed networks as Regulatory Cir-
cuits networks aggregate the cell populations we are investigating for the normal dif-
ferentiation into only one (CD19+ B cells) and do not include any cell type related to
Follicular Lymphoma. We also discovered that the implementation provided was not
reusable, so we proposed two ways of re-computing Regulatory Circuits networks ba-
sed on the available information on their methodology: one recomputing all the steps
when it was possible, applying the methodology described in the paper accompanying
the resource and a second one using all the pre-processed intermediary files as entry.
But even when following every steps of the described workflow we could not repro-
duce the published results. These three limitations illustrate three common pitfalls of
reproducible science.

This led to the design of a new method for inferring genes regulatory networks, that
responded to those pitfalls, but also added signs to the predicted regulatory relations.
This new method is described in a later section, corresponding to CHAPTER 6.

Semantic Web technologies as framework to format network inference workflow
In CHAPTER 4, we introduce an approach based on Semantic Web technologies to revi-
sit the analysis workflow performed in the Regulatory Circuits study to make them more
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easily available and usable. We show that the first level of Regulatory Circuits analysis
workflow can be formalized as two SPARQL queries and that the performances were
acceptable: less than four hours to compute all sample-specific networks.

Our approach consisted in structuring the data and results of a systems biology
study as a RDF dataset. We produced a RDF model of Regulatory Circuits that pro-
vides a unified access to their sample-specific networks. Our results showed that once
the relations and necessary transformation had been pre-computed, the Regulatory
Circuits analysis pipeline could be formalized as two SPARQL queries, for the sample-
specific networks. But it still requires post-computation to be able to scale to the tissue-
specific level.

We argue that using Semantic Web technologies to format networks inference
workflow as data-oriented graph is a solution that improves the re-usability of the me-
thod and their interoperability with external data. At this step, we only provide the data-
graph of the biological data and the query to compute the sample-specific networks,
there is no conservation of the computed networks. Also, this approach proved a lot
more challenging when scaling to the tissue-level networks.

RDF graphs multi-layered structure for regulatory networks In CHAPTER 5, we
extended the previous works on Regulatory Circuits, leading to scaling of the RDF
data-graph to not only recover sample-specific networks but also tissue-specific ones.

We elaborate upon the strategy to generate a public RDF resource which contains
not only the Regulatory Circuits source biological data, linked to standard LOD re-
sources, but also the results of the analysis pipeline at the sample and tissue-specific
layers. We use the same RDF model of the biological data as described in the previous
paragraph and re-compute the same first two steps, but after computing the sample-
specific networks we re-injected them in the RDF endpoint in named-graph in order
to query them to compute the final step of the original workflow: tissues-specific net-
works. The resulting networks are themselves also re-injected as named graph in the
triple-store.

This part proved more challenging, resulting in an almost one month long compu-
tation on the triple-store between computing the queries to get the scored relations and
re-injecting their results in specific named graphs representing each network.
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A new network inference method In CHAPTER 6, we present a new design of pipe-
line to infer new regulatory networks, with a focus on small sets of biologically-closely
related cells types. This new method also produces signed networks. As mentioned
in a previous section, the need to develop a new approach for our specific data arose
with the inability the find fine-grain analysis at the level of cell population and not cells
tissues that include them all in one network, or the nonexistence of Follicular Lym-
phoma networks in the current available data-sets. It was reinforced by our inability to
reproduce Regulatory Circuits method with convincing results.

This new strategy takes advantage of the heterogeneity of the available data it
uses: information about the gene expression, information about the chromatin acces-
sibility, TFs activities and their binding site localization. We use a multi-level normali-
sation of the activities called Pattern, clustering genes and regions of similar activities
trajectories across the population. As we focus on smaller data-sets, the analysis is
not based on statistical methods but is descriptive. We use a similar structuring in RDF
data-graph once the data are normalized as the one described for re-implementing Re-
gulatory Circuits and query it using similar queries to get the relations between TF and
genes.

The post-processing step is a reasoning method based on expert knowledge to
describe the potential relations of regulation in accordance to the biological context
and rules. This was designed to be voluntarily stringent as the goal of our method
is not to describe all potential interactions but to extract the regulators with the higher
confidence of impact on the network. Our method also produce signed networks based
on the consistency of the activities of the regions, genes and TFs across all populations
given as entry.

We tested the pipeline on Regulatory Circuits data-sets and managed to find re-
gulatory relations obtainable according to their data, but with a better recovery rate of
lowly expressed genes. We also were able to check the consistency of the sign of the
relations with two major databases (Signor and Trrust) and are in accordance for 70%
of relations found in both our networks and the databases.

Application to B cells Finally, CHAPTER 7, we applied the newly designed pipeline
of the previous section, onto a specific set of four closely-related cell types found in the
B cell differentiation: : naive B cells, IgG and IgM memory B cells and plasmablasts, in
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order to gain a better understanding of the normal differentiation.

We extracted 314,965 TF-genes relations, resulting in two level of regulatory net-
works: an overall graph presenting the relation between the different Patterns of genes
clusterisation and several specific graph of TF-genes interactions. But the graph are
highly dense, so we proposed a way of reducing the number of regulation master can-
didates. The goal is to be able to produce a list of selected TFs in order to biologically
test their impact on the networks to validate their importance. We chose two criteria:
coverage - the ability of the TF to have a large amount of targets - and the specificity -
the fact that the TF mainly regulate only a certain direction.

Using those criteria we were able to produce a list of 146 TF that pass them and
seems to be key regulatory in at least one pattern of this differentiation. This list in-
cludes BACH2, PRDM1, PAX5 and IRF4 four of the five regulators on which we had
literature knowledge about. The only missing TF from the literature is BLC6, which
was unfortunately not present in our data-set as a potential TF and thus could not be
retrieved.

These TFs will need to be confirmed through biological experiments but our pipe-
line allows to reduce the search space.
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CHAPITRE 3

REGULATORY CIRCUITS AND ITS LIMITS

The regulatory circuits project is amongst the most recent and the most complete
attempt to identify cell-type specific regulatory networks. Its goal is close to what we
were aiming to do, on a higher scale and with very large public datasets. This chap-
ter goal is to determine in which ways can Regulatory Circuits be used to infer new
regulatory networks.

SECTION 3.1 completes the biological introduction presented in CHAPTER 2 and
presents the biological context supporting Regulatory Circuits. SECTION 3.2 details
the workflow and the result files of Regulatory Circuits as 394 tissues-specific net-
works described by scored TF-genes relations. SECTION 3.3 analyses the limits of the
methodology and networks of Regulatory Circuits. In the original Regulatory Circuits
article, several steps of the workflow were under-specified. We conducted a reverse-
engineering of their intermediary results. As the implementation provided was not run-
ning, we propose two new implementations of their method, presented in SECTION

3.4. These 2 strategies for computing the relations score are compared to the original
Regulatory Circuits results. We could only obtain similar (but not identical) results to
Regulatory Circuits on subsets of the relations.

We discovered that (1) the workflow is not reusable, (2) even when re-implementing
the workflow we can not reproduce their results and (3) Regulatory Circuits results
are too coarse, as they aggregate the 4 cells population we want to compare into a
single network. These three limitations illustrate three common pitfalls of reproducible
science.
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3.1 Introduction

The Regulatory Circuits project 1 [MARBACH et al., 2016] is one of the largest ef-
fort of genomics data integration in human cells and consists of several analyses on
heterogeneous and multi-layer “omics” data on 394 human cell lines and primary cells
from tissues.

The Regulatory Circuits website gives access to unstructured, disconnected and
diversely formatted tabulated files related either to source biological data (FANTOM5
data, genes and regions genomic coordinates, TFs binding sites occurrences... divided
in 26 files), to computation intermediate results (59 files), or to the results of in-silico
integrative analyses (394 files, one for each network).

The outputs of the project are only available as text files on their website, this has
huge impact on i) the reproducibility of the results, ii) their maintenance as they will
need to be updated when newer or additional data sources are released and iii) their
reuse for advancing other studies (which was the reason these results were generated
in the first place).

This project is a major provider of biological data, cited more than 157 times
(Google Scholar). its resulting networks were used in at least 42 other articles.

3.2 What is Regulatory Circuits: biological model, in-

put / output data and computational concept

FIGURE 3.1 presents the biology behind regulatory circuits. The interaction bet-
ween a TF and a gene is determined as the ability of the TF to bind in a region close
the gene. From a biological perspective, the regulation of a gene by a TF results from
two mechanisms, as TFs can bind to two types of regulatory regions called promoters
and enhancers. In Regulatory Circuits, the authors place on the DNA the isoforms of
the gene (assimilated to transcript for the rest of this chapter), the relation is calcula-
ted between the TF and the transcript then the transcript is linked to its corresponding
gene.

The entry data used in Regulatory Circuits comes from several independent pro-

1. http://regulatorycircuits.org/
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FIGURE 3.1 – Biological principles behind Regulatory Circuits

jects: FANTOM5 [ANDERSSON et al., 2014] for measuring transcription or regulatory
activity (using CAGE-peak data on the regulatory regions, 808 different samples having
information for both enhancers and promoters), ENCODE [CONSORTIUM et al., 2012]
for the prediction of transcription factor binding sites, and GTex [LONSDALE et al., 2013]
and Roadmap Epigenomics [SKIPPER et al., 2015] for validation data.

Regulatory Circuits computes networks that are not derived from a statistical ana-
lysis of biological measurements but based on a set of computed correlations between
regulatory regions activities, gene expressions, and curated and scored TF binding
sites.

Datasets were published either as input (raw data) or intermediary (authors- pro-
cessed) data files, in the form of tabulation or comma-delimited data files with various
formats and contents.

The output of Regulatory Circuits study is a set of 394 scored tissue-specific re-
gulatory interaction networks that can be explored through text files, representing 9.1
GB. Each network can be described by an oriented graph in which TFs are connected
to genes by weighted edges.

3.3 What is Regulatory Circuits: Detailed workflow

FIGURE 3.2 presents an overview of the Regulatory Circuits workflow, each steps
is described in the following subsections.
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3.3.1 Global formula

The score (wij(S)) of a relation between the transcript (j) and the TF (i) in the
sample S is based on the distance weight(djk) between the transcript and the regulatory
region (k), the confidence score of the binding site of the TF in the given region (cik),
the normalized activity of the region (xk) and the normalized activity of the transcript
(yj). Giving the following formula:

wij(S) = cik × djk ×
√

xk(S)× yj(S) (3.1)

For Promoters, the distance is normalised to 1 -as the promoter is adjacent to
the transcript- and the transcript activity is approximated by its promoter activity. The
previous formula is then reduced to :

wij(S) = cik × xk(S) (3.2)

3.3.2 Normalized expression activity of regions and transcripts

As described in the previous section, the activities of the different elements are
normalized.

As shown by the equations 3.1 and 3.2, the choice of the normalization is important
in such workflows as the value directly influences the score of the relation between the
TF and Genes in the resulting networks.

How ranks were described in the method section

In Regulatory Circuits the authors describe the transformation of the activities of
the different regions as a normalization from 0 to 1, and that the normalization is done
regulatory element by regulatory element:

The weight of promoter-gene edges was defined as the normalized activity
level of the promoter across all samples (normalization was done per regu-
latory element because expression levels of diverse enhancers and promo-
ters might not be on the same scale). Thus, if the promoter is not active in a
given cell type, the edge weight is 0 (i.e., the edge is not present), and if the

45



Regulatory Circuits and its limits

promoter is maximally active, the edge weight equals 1. [MARBACH et al.,
2016]

For the isoforms (transcripts), the activity was based upon their promoters:

The activity level of isoforms was defined as the maximum activity level of
their promoters (which are usually few—the majority of isoforms have only
one or two alternative promoters). [MARBACH et al., 2016]

In the article, the normalization function used is not further described.

How ranks were really calculated

Using reverse engineering, we managed to find out for the enhancer that the nor-
malization is an application of the rank function, this information was given in the name
of the transformed expression files: enhancer_exp.rank.txt, promoter_expr.rank.prec90.txt
and transcript_expr. rank.prec90.txt.

For one enhancer the expressions of the different samples are ordered from the
least expressed to the most expressed. Several samples can have no expression and
their ranks are set to 0. The other samples ranks are calculated as: Position in which
they appear after being ordered divided by the number of samples expressed. For an
enhancer, the most expressed samples are therefore normalized to 1.

For the promoter, when reverse-engineering the rank, we realised that the ranks
were not calculated element by element in this step. Instead all promoters were regrou-
ped based on the transcripts they were preceding, and the rank function was applied
to all the expression for the samples of the promoters, i.e. if a transcript is preceded by
2 promoters the ranks of the promoters were calculated on 2 time 808 samples.

For the transcripts, the rank for a sample was supposed to be the maximum rank
of its different promoters, but it was not what we found in the intermediary files. The
transcripts’ ranks were computed as the means of its promoters ranks weighted by a
different constant for each transcript. Therefore we could not undoubtedly compute the
transcript scores.
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3.3.3 Confidence score of the TF binding sites

In Regulatory Circuits, the authors consider 662 TF and their matrix of binding sites
in the genome. They used a curated collection of matrices and assigned a confidence
score to each binding site based on the conservation across mammals using the works:
[KHERADPOUR et al., 2007][KHERADPOUR et al., 2013][KHERADPOUR et KELLIS, 2014].

The binding sites were looked for in a 400 bp upstream to 50 bp downstream
window of the promoter considered, and limited to the actual chromosomal coordinates
of the enhancers.

If several binding sites of a same TF were found in a regulatory region, only the
maximum of their confidence scores was kept for the TF-region relation. The scores
and relations between TF and regions are compiled in the tf- - -promoter. prec90.txt
and tf- - -enhancer. prec90.txt files.

3.3.4 Distance weight of the regions

The weighting function for the distance only applies to the enhancer, for the pro-
moter the weight of the distance is set to 1.

To normalize the distance between enhancer and transcript, the authors used cis-
eQTLs from RegulomeDB [BOYLE et al., 2012] and computed their distance to the
TSSs of target genes. The weigh function is defined using a local polynomial regression
fitting for the range 1 kb to 500 kb (in either direction from the transcript), where 1 kb
was normalised to 1 and 500 kb to 0. This is then applied to the enhancers considered
in the workflow.

This means that all enhancers further than 500 kb of the transcript were not consi-
dered for the remainder of the computation.

Using the computed files enhancer- - -transcript. prec90.txt and promoter- - -
transcript. prec90.txt where the computed weighted distance are given we were able
to recalculate the polynomial regression and to apply it.
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3.3.5 From individual relations to networks

Up until this point all relations are calculated using the transcripts (i.e. isoforms)
instead of genes. To find the TF-genes relations, all relations between a TF and iso-
forms of a same gene are combined into one and score as the maximum of all those
relations.

Similarly, if a TF-gene relation exist using several promoters (i.e. enhancers) the
relation is kept using the maximal score computed.

For each pair of edges forming a chain that connects a TF to a promoter
to an isoform [...]. If several redundant edges between the same TF and
gene were found (via different promoters or isoforms), they were merged
and the maximum edge weight was retained. A separate TF-gene network
encapsulating all regulatory interactions via enhancers was created using
the same approach. [MARBACH et al., 2016]

At this point, the Regulatory Circuits workflow gives two ways of calculating a TF-
gene relation and its associated score: one using the enhancer and the second using
promoters. In the resulting networks this distinction is not made and the two ways of
computing have been combined:

Both TF-gene networks thus had edge weights ranging from 0 (absent
edge) to 1 (highest confidence), which were added to form a combined TF-
gene network including evidence from both promoters and enhancers. [MARBACH
et al., 2016]

As the intermediary files for the networks computed by enhancer and promoters
were not available, we were not able to confirm the "added" notion and in which way
the score are combined to produce the final networks.

3.4 Issues with Regulatory Circuits

While trying to run and understand the Regulatory Circuits workflow we run into
several setbacks as summarized in FIGURE 3.3. As mentioned in the previous subsec-
tion, some of steps of the workflow were under-described or not corresponding to what
was in the intermediary data.
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3.4.1 Understanding the files

A first setback arose during the inspection of the files available for download. It
was related to the difficulty to explore them and to extract the information they contain.
Some of the files have non explicit names regarding what they contain (e.g.: hg19.
cage_peak_tpm. osc. txt which contains the expression of the promoters). Not all the
files are in the same format: some were comma separated, others, tabulation separa-
ted. 15 of the files had headers, while 6 did not, moreover, two of the files presenting
header had misaligned header to data. And some files start with a list of comments
before the data, up to 1700 lines.

It was also difficult to link the data between two files as the identifiers referring to
the same entity were not consistent among the files (e.g.: chr:start-end in file permis-
sive _enhance. bed corresponds to e@chr:start-end in tf- - -enhancer. prec90. txt).

3.4.2 Regulatory Circuits scripts are not usable

The computational scripts and algorithms given as resources are limited to the
considered data-set. The given implementation was made using Java but is unusable
as such as it lacks explanation on the input files necessary and on how to run it. Fur-
thermore, there is a lack of documentation on the implementation, the wiki is still under
construction 2 and have not been updated since 2015. The project website 3 has not
been updated and the last news on the project were from august 2016.

3.4.3 Intermediary files not present

While most of the pre-processed data are present in the download folder, the au-
thors do not give any access to some of the intermediary steps of the workflow. The
intermediary networks by different type of regulatory regions are not given, nor are the
intermediary sample-specific networks. This leaded to issues while trying to reverse-
engineer the Regulatory Circuits workflow as we could not check the computed inter-
mediary scores before the last step, which leaves several steps unknown.

2. https://github.com/marbach/magnum-app/wiki
3. http://regulatorycircuits.org/
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3.4.4 Regulatory Circuits methodology could not be reproduced

We ran into several issues with points of the workflow while trying to understand
it: the normalisation used for the expression was under-specified, as was the notion of
’addition’ of enhancer and promoter network ("Both TF-gene networks[...] were added
to form a combined TF-gene network") and some steps were not as described: the rank
of the promoter was not calculated element by element. Also, the rank function used as
normalization of the expressions only take their order into account not the distance: i.e.
0.1 and 0.6, and 0.6 and 0.7 will have the same distance in Rank (1/nb samples). It is
not a fine grain normalization function. Removing or adding samples can highly change
the rank distribution: focusing of sub-part of Regulatory Circuits means that computed
ranks will be different from the ones provided by Regulatory Circuits, i.e. the latter are
not reproducible. We hypothesised that the rank of two close samples are really close
when put with a lot of other samples, and would be wrongly separated when put with
very few others.

We also found inconsistencies between the described methodology and the result
files. For the ranks of the promoters the formula was not applied element by element
as described but on all the promoters of a same transcript at the same time. Also we
managed to found regulation between a TF and a gene (INSM1 regulating AMER1)
were the gene could only be regulated thought one specific promoter (no enhancer):
the relation is scored (4.21371298E-03) in the Myeloma cell line, but the confidence
score of the TF in this promoter is given at 0 and applying the formula (3.2) would put
the global score to 0 too. In FIGURE 3.4 we show the disparity between the relations
found in the result files given by Regulatory Circuits and the relations we were able to
find by computing the relations between entities across all files.

Moreover, feedback from the Regulatory Circuits’ authors was non-existent when
solicited about the methodology.

3.4.5 Conceptual issues

Regulatory Circuits stops at the tissue level in the original computed networks,
while some users may want to look at finer level such as samples of a same tissue.
The provided method therefore lacks some plasticity to have fine-grained / personalized
networks.
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FIGURE 3.4 – Number of unique TF-genes relations found in results network (in green)
and number of relations found while following the files (red). The relations in green but
not in red can be explained by the lack of some TF in the files. And the relations in red
but not in green could be explained by relations always scored to 0.

The way of computing scores seems highly in favor of activation, as they are calcu-
lated by multiplying the maximums of several parameters (activities, confidence scores,
distance scores...). For the tissue-specific networks, the relations are therefore unsi-
gned and potential inhibition are either hidden or lost. For the same reasons, genes
which are less expressed in one sample / tissue are more susceptible to be excluded
from a network, disregarding their potential function (for example, TF coding genes are
known to be expressed a low to moderate levels).

Another issue with the methodology is that the networks assume the TF to be
present in the cell type, the workflow never check if it is really the case. All relations
found are assumed to be applied but the TF could be inactivated in the cell type, thus
the regulation non-existent.

3.4.6 Problem with re-usability and application to new data/Fair?

The output format of the networks -Text files- makes it impossible to explore and
enrich the data by combining them to additional knowledge on entities stored in LOD
public databases.

The workflow design makes it difficult both to extend Regulatory Circuits by adding
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new data or updating them, and to reuse only part of Regulatory Circuits, as it require
to re-compute all the ranks for all the entities. Depending on the entities the user have,
it can also be hard to discriminate the different type of regulatory regions or even to
map new regions on the existing ones. It is also difficult to enrich with new type of in-
formation, adding genes’ expression would mean defining a new formula for scores, as
the promoter can not be approximated by the gene (several promoters of one transcript
and several transcripts for one gene).

3.5 Computing Regulatory Circuits

Regulatory Circuits is a general resource on regulatory networks. We wanted to
use it on our specific cells-types, unfortunately the resulting networks of the original
study were on a larger scale than the cell-populations we were looking at. The four
populations (Naive B cells, Memory B cells (IgG and IgG and Plasmablast) we were
interested in were combined in a larger cell-tissue (CD19+ B Cells).This prevented
us to discriminate them. A solution would be to run the Regulatory Circuits workflow
on the new data, but this led to several setbacks and eventually led to our inability to
re-compute the original graphs and their scores as described in this section.

3.5.1 Three ways of computing Regulatory Circuits

For running Regulatory Circuits the first step was to clarify the necessary files and
homogenize the identifiers for all entities across the files.

We released two implementations of Regulatory Circuits, in addition to their own:
the one using semantic web technologies and the given pre-processed files (detailed
in CHAPTER 4) and a second one using bash, recomputing the steps we could by
following the method described in the article and using the less-processed input files.

In the first implementation we simply reused the rank given in Regulatory Circuits
as we could easily reuse the intermediary files. We used the computed confidence
score of the binding sites and the weight for distance. We also used the explicit links
between the entities as given in the various files.

In the second implementation we re-computed the ranks as described in Regula-
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tory Circuits. We used the R rank function separately on each regulatory element as
the principle is the same for both enhancers and promoters. For the transcripts, we
took the rank of their promoter and for each sample kept the highest rank across all
promoters.

For both implementations, the remainder of the steps of the workflow are computed
using the intermediary files of the original study (confidence score, distance, relations
between entities, etc.). For the final steps - computing the scores - we applied the
formula extracted from the paper, and kept the maximum score for a TF-genre relation:
the maximum between the score by promoter and by enhancer and the maximum score
in all the samples constituting the tissue.

TABLE 3.1 compares the different steps of the three ways of calculating the resul-
ting tissues-specific networks.

3.5.2 Comparing the three ways to calculate Regulatory Circuits
circuits

We compare 3 ways of computing Regulatory Circuits: the original study using
directly Regulatory Circuits output network files (1), an intermediate solution using the
pre-processed ranks and files of Regulatory Circuits but applying the remainder of the
pipeline as we understood it (2) and a solution only using input files and computing all
the steps (3).

The comparison is done on 12 cells-types: B lymphoblastoid cell line, brain fetal,
CD4+ T cells, CD8+ T cells, CD34+ stem cells-adult bone marrow derived, colon adult,
colon fetal, epitheloid cancer cell line, pancreas adult, peripheral blood mononuclear
cells, small intestine adult and small intestine fetal. We used those 12 tissues as they
were part of the 40 tissues on which we had RNA-seq data (from Roadmap epigeno-
mic) to run similar validation of the networks as done in the original paper.

Networks topology

In TABLE 3.2 we show the variability of the regulatory networks depending on the
three strategies. In both computed networks, we lost an average of 50 TFs in the result
graphs but retained a similar number of genes and lost nearly half of the relations in
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TABLE 3.1 – Comparison between the 3 ways of calculating Regulatory Circuits. We:
scores for sample-specific network using only enhancers, Wp: scores for sample-
specific network using only promoters

OG network (1) Using Ranks (2) re-computing
Ranks (3)

Normalised
expression

Regions

Using the given
file

Using the given
file

Recomputing the
ranks:

Done element by
element.

Normalised
expression
Transcript

Using the given
file

Using the given
file

max(Rank
(Promoters))

Confidence
score Given file Given file Given file

Distance
enhancer-
transcript

Given file Given file Given file

Link TF-region Given file Given file Given file
Link

region-transcript Given file Given file Given file

Link
transcript-gene Given file Given file Given file

Score We, Wp ∅ Using formula (3.1
and 3.2)

Using formula (3.1
and 3.2)

Score by
samples ∅ max(We,Wp) max(We,Wp)

Score by tissues Result files max(Samples) max(Samples)
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the final networks.

TABLE 3.2 – Comparison between the 3 ways of calculating Regulatory Circuits on
12 cells types. Both method using or re-computing ranks produce networks that are
included in the original Regulatory Circuits networks.

Type of Circuits Given as Result Using the RC rank From scratch
min max mean min max mean min max mean

Nb of TF 643 643 643 592 596 594 593 596 594
Nb of Genes 11,911 14,850 13,067 10,902 14,378 12,220 11,881 14,812 12,933

Nb of Relations 407,056 1,796,098 1,042,839 154,354 653,491 414,173 239,049 1,010,008 581,711
% of complete graph 5.2 21.9 12.5 2.3 8.9 5.7 3.3 13.3 7.6

Regulatory Circuits compare the genes regulated in the tissue-specific networks
to the expressed genes of the RNA-seq of the Roadmap Epigenomics project. The
authors conclude that, as expected, the highly expressed genes are largely (more than
90%) recovered in the produced networks and that the least expressed genes have no
regulatory input (less than 10% recovered).

We did the same analysis on the networks found with the three ways of compu-
ting (FIGURE 3.6). We found that the original networks and the networks with the re-
computed ranks had similar level of recovery of the genes, re-computed network being
slightly lower. The re-computed network using the original ranks were even slightly lo-
wer than the two others, but it was not significant, except for the bottom 10% of the
RNA-seq genes were the percentage found in the network was almost half (9% vs 16
and 15%). But, as concluded by the author of Regulatory Circuits, this is a category
were we do not expect to recover genes as they have no / low regulatory input.

All relations between TF and gene found in both re-computed methods were rela-
tions conserved from the original study networks. The two method developed allow us
to retrieve sub-part of the original study networks. As shown in FIGURE 3.7, both re-
computed networks are part of the original network and the networks using the original
ranks are themselves sub-part of the networks using re-computed ranks.

Scores distributions

As presented in the previous subsection the re-computed networks have a different
topology from the original study, and are sub-part of the original networks. But the
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FIGURE 3.6 – Percentage of genes from the RNA-seq related to the networks found
in the resulting networks. The RNA-seq genes are separated in three categories: the
top 10% most expressed, the middle 10% and the 10% least expressed. Each color
represent one way of computing the tissue-specific networks. Analysis done on the 12
networks.

FIGURE 3.7 – Venn diagram of the relations found in the 3 computed networks. Net-
works recomputing ranks are included in the original networks and networks using
original ranks are included in the recomputed ranks ones. The size of the circles are
proportional to the number of relations found in the networks.
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results of Regulatory Circuits were not only the relations but also the associated scores
.

We looked at the score computed in the three versions of the networks (FIGURE 3.8):
the score found in the original Regulatory Circuits study are in average 10 times lower
that the re-computed scores. The computed version with original ranks have slightly
higher score than the re-computed ranks one.

This raised the issue of the combination of the enhancer and promoter networks
scores, as the original study has scores going over 1 and our method does not. We
choose to unify the two networks by a max, but to go over 1 we could have add the
scores obtained in the two methods for a relation. But the scores are already higher
using the max and the addition would have further augmented the scores. We decided
to keep the max in the formula as it was consistent with the other steps of the workflow.

FIGURE 3.8 – Distribution of the scores across the three methods of calculating Re-
gulatory Circuits networks. Focus on B lymphoblastoid cell line. Scores in the original
network: min 2.82E-7, max 1.08 and mean 0.01. Scores using the ranks: min 2.18E-6,
max 0.90 and mean 0.10. Scores when re-computing the ranks: min 4.45E-6, max 0.9
and mean: 0.08

Since the score distribution seemed to vary between the original networks and
the recomputed ones, we computed the correlation between the scores. FIGURE 3.9
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shows that there is a correlation between the scores in the original study and in the
re-computed ones (r > 0.5). The correlation in the network using the original ranks is
slightly better. This is also the case in the other networks observed: for example in the
brain networks r=0,556 re-computing the ranks and r=0,614 using the original ranks.
But the correlation between both re-computed networks scores is over 0.85 in all the
twelve networks. Making them closer to each other that to the original networks, which
hints to other differences between the original workflow to what we applied and was
described.

As the re-computed networks are sub-part of the original networks and have ove-
rall higher score, we looked into the distribution of the score in the original networks
for the conserved relations: for each relation in a re-computed network we went to look
at its score in the original network of the same tissue. We found that the relations kept
tend to have slightly higher score in average than the relations excluded in both recom-
puted networks (see FIGURE 3.10). The relations kept while using the original scores
are non-statically higher than the one re-computing the ranks.

3.6 Conclusion

We showed two ways of re-computing Regulatory Circuits networks based on the
available information on their methodology: one recalculating all the steps when it was
possible, applying the methodology described in the paper accompanying the resource
and a second one using all the pre-processed intermediary files as entry. The two
methods have their advantages: re-computing ranks allows to find larger networks (i.e.
with more relations) and retrieves more genes known as expressed from the RNA-seq,
but using the original ranks allows to find networks with closer relations’ scores from
the original study and retrieve relations with an higher confidence (score). We choose
to use the second implementation for the remainder of the project, as we wanted to be
closer to the original networks.

Regulatory Circuits is a powerful resources of regulatory networks, but it does not
provide the fine-grain level we need for our specific cell populations. And it is heavily
in favor of activation interactions, and when recomputing it this preference is increased
when using the original ranks.

A solution would have been to re-run Regulatory Circuits workflow onto our data,
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(a) Correlation between original scores and
scores of the re-computed networks using
original ranks.

(b) Correlation between original scores and
scores of the re-computed networks using
re-computed ranks.

(c) Correlation between scores of the
re-computed networks using re-computed
ranks and of the re-computed networks
using the original ranks.

FIGURE 3.9 – Correlation between the scores found in the original networks and the
scores found in the re-computed networks for the conserved relations. Focus on B
lymphoblastoid cell line. The re-computed networks with original ranks have a r of
0.705, the re-computed rank networks have a r of 0.696. Correlation between the two
re-computed ranks have a r = 0.928.
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FIGURE 3.10 – Distribution of the scores across the three methods of calculating Re-
gulatory Circuits networks, depending of the conservation of the relations from the
original network. Focus on B lymphoblastoid cell line. Score presented as log10 of the
computed scores.
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but as shown previously we were unable to re-compute the original networks even
using all the pre-processed data available. This inability to execute the workflow on the
original data motivated the need to develop a new pipeline better suited for data-sets
composed of close and sparse samples.

63





CHAPITRE 4

INTERPRETATION OF REGULATORY

NETWORK INFERENCE PIPELINE AS

GRAPH-BASED QUERIES

This chapter is based on the a article: [LOUARN et al., 2019]

In this chapter, we introduce an approach based on Semantic Web technologies to
revisit the analysis workflow performed in the Regulatory Circuits study to make them
more easily available and usable.

In SECTION 4.1 we present a structuring of Regulatory Circuits using Semantic
web technologies and transforming the original workflow as a data oriented graph. We
explain in the first step how we identified the relevant files from the original Regulatory
Circuits data-set. We then map out those files to extract the underlying structure of
interaction between the entities they represent. In a third time, we format the existing
and relevant files, in order to integrate them. We produce an overview of the integrated
files and the underlying data-graph supporting them. In a fourth time, we designed two
queries to recover the TF-genes relations through two types of regulatory regions. And
finally, we review the performance of this new structuration. Lastly, SECTION 4.3 is a
discussion and a conclusion about our approach benefits and limitations.

4.1 Introduction

We propose an RDF representation of the unstructured data files in order to exhibit
the chain of relations between the entities involved in the regulation of gene by TFs. To
this end, we identified the useful data and we structured them according to a schema
supporting the network building task. Based on this RDF representation of the dataset,
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we show that the intermediary output of the Regulatory Circuits study can be obtained
by two SPARQL queries.

FIGURE 4.1 reintroduce the Regulatory Circuits workflow presented in the previous
chapter with an en-phase on the steps re-computed during this chapter: leading to the
computation of the two missing intermediary files (networks by promoters and networks
by enhancers).

4.2 Contribution

Semantic Web technologies provide a generic infrastructure for integrating, com-
bining data with knowledge bases and querying them. They have been successfully
applied on reference data, that are arguably the most prone to be reused. We have
seen that this requirement also applies to research results, such as the ones from the
Regulatory Circuits study. There are some ongoing efforts in the neuroimaging com-
munity to use Semantic Web technology for sharing and reusing datasets [MAUMET

et al., 2016], but these are not directly applicable to our situation.

By structuring and integrating the data from Regulatory Circuits we aimed at ef-
ficiently recovering the TF-gene relationships computed in the original work. We also
wanted to make the data structure easily extendable to new data for the users. To do
so, a requirement was to identify all the necessary entities from the published datasets
(files) and the relevant steps of the pipeline necessary for deriving the relations bet-
ween transcription factors and genes. We reused the rank values for the expression
measures because the Regulatory Circuits’ method section does not specify how to
compute them, as well as the distance values between enhancers and transcripts. We
computed the other elements.

4.2.1 Identifying relevant files among all Regulatory Circuits re-
sources

The first step of data structuring was the identification of all the necessary files
from Regulatory Circuits (available from the supplementary archive file 1), including raw

1. http://regulatorycircuits.org
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data (input) and pre-processed (intermediary) files, to recreate the published pipeline.
TABLE 4.1 presents a review of the supplementary files in Regulatory Circuits, including
the number of headers and comment lines, the entity names, and their format. Regu-
latory Circuits files also contained the computed networks, available on the download
tab of their website under the Networks category. FANTOM5_individual_networks.tar
contained 394 tissues-specific networks and Network_compendium.zip contained 32
high-level networks and 40 public ones. We did not use those final networks to construct
our model.

On the 21 files present in TABLE 4.1, 14 were input files and seven were interme-
diary ones. The dataset was composed of text files of various size ranging from 184
to 124,358,159 lines and from 3 to 890 columns. This lead to large files which were
complex to explore and made retrieving specific information difficult. For example the
file hg19.cage_peak_OK.txt was just over 1.1GB.

These files had heterogeneous structures of headers and entities identifiers. 5
files had no header and one had 3 header lines. 3 of the files with headers were
mis-formatted (enhancer_expr.rank.txt, promoter_expr.rank.prec90.txt and transcript
_expr.rank.prec90.txt). They had an offset of 1 between the number of columns in the
header versus in the data, which forced us to retrieve the data of the (n+1)th column
to get the information related to the nth element. This contributed to the complexity of
navigating those files. One file also had 800 comment lines above file header and one
(motif_defs.txt) which contained only comments and non-formatted text.

To increase the difficulty of links retrieval between the files, the entity identifiers
were not homogeneous across the dataset. For example, the promoter regions had
an identifier sometimes following the pattern: chr:start-end,strand and some other
times following: p@chr:start..end,strand (with chr being the chromosome on which
is the region and start and end are its chromosomal locations). Samples’ names also
differed across files headers. The most common denomination was the libld identi-
fier based on CNhs + nb where nb is a five digit integer (e.g.: CNhs11051), but in
hg19_permissive_enhancers_expression_rle_tpm.csv the sample name were cellType+
donor+nb : libld with cellType either only the cell line or the cell line and the localization
(example: Adipocyte - breast donor1 : CNhs11051). In hg19.cage _peak _coord _ro-
bust.bed this identifier were tpm.Adipocyte%20%20breast%2c%20donor1.CNhs11051.11376−
118A8.
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To identify which files were necessary to rebuild the regulation networks, we map-
ped the entities and files on the biological background (see CHAPTER 3) as shown in
FIGURE 4.2.

FIGURE 4.2 – Underlying biological background used to infer TF-gene relationships by
the Regulatory circuits pipeline. TF can interact with enhancers or promoters binding
sites. Regulatory Circuits original files containing the necessary entities and relations
are also represented.

For the datatype values linked to entities, only elements that improved the recovery
of entities by users were kept, such as: binding sites motif for transcription factors,
ENSEMBL identifiers for genes and transcripts and DNA strands on which promoters
are located.

4.2.2 Structuration

Once we identified all the files, entities and relations required to build TF-genes
interactions, we structured their content. To do so, we first placed the entities in a graph
as shown in FIGURE 4.3A. The only attributes given at this step were the expression
levels of enhancers and promoters.

Second, we retrieved the relationships given in the Regulatory Circuits data. For
those, we used the pre-computed distances between the transcripts and the regulatory
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TABLE 4.1 – Regulatory Circuits files’ review

type of file file name format header missformated comment data nb Label of column(s) ID format Entities Source content
lines header lines lines columns with ID

Input hg19_permissive_enhancers_expression_rle_tpm.csv csv (,) 1 0 43011 809 1 chr:start-end enhancer [1] [a]
data permissive_enhancers.bed bed12 (tab-delim) 1 0 43011 12 4 chr:start-end enhancer [1] [b]
for robust_enhancers.bed bed12 (tab-delim) 1 0 38554 12 4 chr:start-end enhancer [1] [b]

network hg19.cage_peak_tpm.osc.txt tab-delim 3 893 184827 890 1 chr:start-end,strand promoter [2] [a]
inference hg19.cage_peak_coord_robust.bed bed12 (tab-delim) 0 0 184827 12 4 chr:start-end,strand promoter [2] [b]

gene_coord.bed bed6 (tab-delim) 0 0 19125 6 4 GENE _SYMBOL gene [3] [b]
gene_ids.txt tab-delim 1 0 19125 3 1 ENSG00000000000 gene [3] [c]

2 GENE _SYMBOL gene
3 EntrezID gene

mhc_genes.txt tab-delim 1 0 184 1 1 GENE _SYMBOL gene [3] [c]
transcript_coord.bed bed6 (tab-delim) 0 0 53449 6 4 GENE _SYMBOL-000 transcript [3] [b]
transcript—gene.txt tab-delim 1 0 53449 4 1 GENE _SYMBOL-000 transcript [3] [c]

2 GENE _SYMBOL gene
3 ENSG00000000000 transcript
4 ENST00000000000 gene

tss_coord.bed bed6 (tab-delim) 0 0 53449 6 4 GENE _SYMBOL-000 gene [3] [b]
motif_defs.txt space-delim 0 1772 N/A N/A N/A N/A [4] [g]

motif_instances.bed bed6 (tab-delim 0 0 124358159 6 4 TF _0 TF [4] [b]
tf_motif_ids.txt tab-delim 1 0 1792 3 1 TF TF [4] [g]

2 TF_0 TF
Intermediary enhancer_expr.rank.txt tab-delim 1 x 0 43011 809 1 e@chr:start..end enhancer [5]* [d]

files enhancer—transcript.prec90.txt tab-delim 1 0 950513 5 1 e@chr:start..end enhancer [5]* [e]
2 GENE _SYMBOL-000 transcript
5 GENE _SYMBOL gene

promoter_expr.rank.prec90.txt tab-delim 1 x 0 59126 809 1 p@chr:start..end,strand promorer [5]* [d]
promoter—transcript.prec90.txt tab-delim 1 0 123440 4 1 p@chr:start..end,strand promoter [5]* [e]

2 GENE _SYMBOL-000 transcript
4 GENE _SYMBOL gene

tf—enhancer.prec90.txt tab-delim 1 0 524816 3 1 TF TF [5]* [f]
2 e@chr:start..end enhancer

tf—promoter.prec90.txt tab-delim 1 0 1169797 3 1 TF TF [5]* [f]
2 p@chr:start..end,strand promoter

transcript_expr.rank.prec90.txt tab-delim 1 x 0 43352 809 1 GENE _SYMBOL-000 trancript [5]* [d]

[1]http://enhancer.binf.ku.dk/Pre-defined_tracks.html, [2]
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/, [3] Ensembl biomart, [4]Pouya Kheradpour (pouyak

<a> mit.edu), [5]* Regulatory Circuits: auto produced, [a] Normalized activities,[b] Genomic coordinates,[c]
Identifier, [d] Rank of normalized activities,[e] Distances, [f] Confidence score, [g] TF motifs
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regions (enhancers and promoters), as well as the weight of the transcripts-enhancer
distances. We also kept all the pre-processed confidence scores for the transcription
factors / regions interactions. In the Regulatory Circuits article, the authors used a rank
normalization of their expressions data in the final pipeline, so we used their interme-
diary files including these ranks for the enhancers and promoters expressions. We also
kept the file including the rank for the transcript. All these interactions are described in
FIGURE 4.3B.

Third, the structure built from all these data and their interactions allowed us to
easily retrieve the TF-gene relationships by navigating through the entities and their
relations (FIGURE 4.3C).

4.2.3 Integration

Once the data had been structured, we integrated them so that they can be brow-
sed and queried. To do so, we unified the identifiers and explicited the links between
the entities.

We created a new set of rules to homogenize the entities identifiers across files
ni order to facilitate integration. Regions identifiers were created using the following
pattern: r_chrX_start_end, r being the first letter of the region type (e for enhancer
or p for promoter), X the chromosome number for the region and start and end its
chromosomal coordinates. For the expression, we chose to keep the libld identifier
(CNhs + nb with nb a five digit integer) of the tissues samples as name and added
Rank_ before this identifier for the ranks score of the same samples. Genes, transcripts
and TF retained their original identifiers.

When a relation involved more than two entities or had some attributes, we used
reification and represented the relation as an additional entity. The identifier for the
reified relation was defined as name1_name2_nb with name1 the type of the first entity
in the link, name2 the second type and nb a unique integer. The reified relation was
then associated to the entities and attributes using regular binary relations (for example
in FIGURE 4.3B, notice that the relation from a TF to a Promoter had a confidence score
(confidence); this ternary relation was represented by the tf_promoter entity in the
RDF model in FIGURE 4.4 which associated a TF, a Promoter and a confidence). We
created a RDF graph of the dataset using Regulatory Circuits data and new entities for
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(a) Graph with input files (b) Graph updated with intermediary files

(c) Final structure

FIGURE 4.3 – The three steps of data structuring, with identification of the files contai-
ning the needed information. In (a) identification of input files. In this step we mostly
import entities (genes, TF, regulatory regions). The only imported relation is the ex-
pression levels of both types of regulatory regions.
In (b) we added all the information from the intermediary files: interactions between the
different elements and scores based on those relations. We also added pre-processed
scores on the expression levels, called Ranks.
In (c) we can see that the TF-gene relations were obtained by following the links bet-
ween entities and that these relations could be weighted using the score from step
(b).
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representing reified relationships, as shown in FIGURE 4.4. The description of entities
classes, numbers and attributes in each node can be found in TABLE 4.2.

Once the files had been cleaned and augmented with reified relationship, we orga-
nised them as coma separated files. We integrated these data using AskOmics, using
the formatted files as entries. AskOmics auto-generated the RDF files associated with
the data and use its specific prefix, as can be seen in queries below. Due to the file
size limitations, we had to separate some of the files in smaller ones resulting in a total
of forty-four integrated files.

We then deployed them as a SPARQL endpoint using OpenLink Virtuoso engine. 2

As shown in TABLE 4.3, we integrated ten classes representing more than three hun-
dred million triples.

The description of the dataset population can be seen in FIGURE 4.4b and Tables 4.2
and 4.3: over three million entities, separated in ten classes, each with several attri-
butes.

4.2.4 Queries

After integrating all the data, we could query the dataset in order to retrieve the TF-
gene relationships for each cell type or tissue. According to Regulatory Circuits there
are two ways of getting the transcription factor and gene relationship: using either type
of regulatory regions (enhancers or promoters). The first step consisted in computing
all the potential TF-gene relations.

The first query used the promoter as the binding region for the TF: starting from
the TF, and continuing by the promoter, the transcript and then the gene. To confirm
the existence of this relation, we needed to verify that the TF confidence score and the
promoter expression rank were both different from 0.

PREFIX user: <http://www.semanticweb.org/user/ontologies/2018/1#>
PREFIX askomics: <http://www.semanticweb.org/askomics/ontologies/2018/1#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?tf1 ?gene1
WHERE {

?tf1 rdf:type user:tf.

2. The RDF dataset can be retrieved from https:// regulatorycircuits-rdf.genouest.org/ dump/ and
the SPARQL endpoint is accessible at https:// regulatorycircuits-rdf.genouest.org/ sparql
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TABLE 4.2 – Data population. The first three lines correspond to the nodes in red in
FIGURE 4.4, the next two correspond to the blue nodes and the last five to the pink
ones.

Class Attributes
(nb of entities)

Gene ID_ENSEMBL
(19 125)

Transcript ID_ENSEMBL
(53 549) Rank for 808 pop.

TF motif
(691) description

Promoter strand
(184 828) Expression for 889 pop.

Rank for 808 pop.
Enhancer Expression for 808 pop.
(43 011) Rank for 808 pop.

tf_promoter confidence
(1 169 797) inclu@tf

in@promoter
tf_enhancer confidence
(524 816) inclu@tf

in@enhancer
transcript_gene isgene@gene

(53 449) istranscript@transcript
promoter_transcript distance

(123 441) nextto@transcript
nextto@promoter

enhancer_transcript distance
(950 514) weight

nextto@transcript
nextto@promoter
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FIGURE 4.4 – Data structure after integration. Nodes in red are gene entities, nodes in
blue are regulatory region entities and nodes in pink are reified relations. Genomic lo-
calization attributes are indicated in green, other attributes are in orange and attributes
type are in gray. Details about the number of entities for each nodes can be found in
TABLE 4.2.

?tf_promoter1 rdf:type user:tf_promoter.
?tf_promoter1 askomics:confidence ?confidence1.
FILTER ( ?confidence1 > 0 ).
?promoter1 rdf:type user:promoter.
?promoter1 askomics:Rank_CNhs12017 ?Rank_CNhs12017P.
FILTER ( ?Rank_CNhs12017P > 0 ).
?promoter_transcript1 rdf:type user:promoter_transcript.
?transcript1 rdf:type user:transcript.
?transcript_gene1 rdf:type user:transcript_gene.
?gene1 rdf:type user:gene.
?tf_promoter1 askomics:inclu ?tf1.
?tf_promoter1 askomics:in ?promoter1.
?promoter_transcript1 askomics:nextto ?promoter1.
?promoter_transcript1 askomics:nextto ?transcript1.
?transcript_gene1 askomics:istranscript ?transcript1.
?transcript_gene1 askomics:isgene ?gene1.

}
ORDER BY ?tf1 ?gene1
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TABLE 4.3 – Integrated data

Number of elements
Triples 335 429 988
Entities 3 226 341
Classes 10
Datasets 53

The second query was similar but used the enhancer instead of the promoter: we
started from the TF, and proceeded following the enhancer, the transcript and then the
gene, making sure that all score component were superior to 0.

PREFIX user: <http://www.semanticweb.org/user/ontologies/2018/1#>
PREFIX askomics: <http://www.semanticweb.org/askomics/ontologies/2018/1#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?tf1 ?gene1
WHERE {

?tf1 rdf:type user:tf.
?tf_enhancer1 rdf:type user:tf_enhancer.
?tf_enhancer1 askomics:confidence ?confidence1.

FILTER ( ?confidence1 > 0 ).
?enhancer1 rdf:type user:enhancer.
?enhancer1 askomics:Rank_CNhs12017 ?Rank_CNhs12017E.
FILTER ( ?Rank_CNhs12017E > 0 ).
?enhancer_transcript1 rdf:type user:enhancer_transcript.
?enhancer_transcript1 askomics:weight ?weight1.
FILTER ( ?weight1 > 0 ).
?transcript1 rdf:type user:transcript.
?transcript1 askomics:CNhs12017 ?CNhs12017T.
FILTER ( ?CNhs12017T > 0 ).
?transcript_gene1 rdf:type user:transcript_gene.
?gene1 rdf:type user:gene.
?tf_enhancer1 askomics:inclu ?tf1.
?tf_enhancer1 askomics:in ?enhancer1.
?enhancer_transcript1 askomics:nextto ?enhancer1.
?enhancer_transcript1 askomics:nextto ?transcript1.
?transcript_gene1 askomics:istranscript ?transcript1.
?transcript_gene1 askomics:isgene ?gene1.

}
ORDER BY ?tf1 ?gene1

The two first queries were designed using AskOmics, in which the SPARQL code
for the queries are automatically generated using the intuitive graphical interface (see
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FIGURE 4.5), following the relation between the entities and allow to retrieve attributes
along the way.

FIGURE 4.5 – Graphical based query for the relation between a TF and a Gene, using
enhancer. The block on the left is the query builder and the list on the right is the
definition of the attributes we might want to retrieve or put under conditions.

In the final Regulatory Circuits network, all the TF-gene relations were qualified by
a score (cf. FIGURE 4.3C). The score (wij(S)) between the transcript (j) and the TF (i)
in the sample S is given based on the distance weight(dik) between the transcript and
the regulatory region (k), the confidence score of the binding site of the TF in the region
(cik), the normalisation of the expression of the region (xk) and the normalisation of the
expression of the transcript (yj).

wij(S) = cik × dkj ×
√

xk(S)× yj(S)

This score was the maximum of all the TF-gene relations scores obtained through
either promoters (bottom part of FIGURE 4.3C) or enhancers (top part of FIGURE 4.3C).
The intermediate score through a promoter was Confidence_Score×Rank_promoter.
As for the promoter the distance weight is normalized to 1 and the rank of the transcript
is the same as the rank of the promoter.
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wij(S) = cik × xk(S)

The intermediate score through an enhancer was Confidence_Score×Weight_Distance×√
(Rank_transcript × Rank_enhancer) where Rank_transcript (yj) is the max of the

transcript promoters ranks.

wij(S) = cik × dkj ×
√

xk(S)× yj(S)

PREFIX user: <http://www.semanticweb.org/user/ontologies/2018/1#>
PREFIX askomics: <http://www.semanticweb.org/askomics/ontologies/2018/1#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?tf1 ?gene1 (max(xsd:float(?confidence1) * xsd:float(?confidence1) * xsd:float(?Rank_CNhs12017P) *

xsd:float(?Rank_CNhs12017P)) AS ?weightP)
WHERE {

?tf1 rdf:type user:tf.
?tf_promoter1 rdf:type user:tf_promoter.
?tf_promoter1 askomics:confidence ?confidence1.
FILTER ( ?confidence1 > 0 ).
?promoter1 rdf:type user:promoter.
?promoter1 askomics:Rank_CNhs12017 ?Rank_CNhs12017P.
FILTER ( ?Rank_CNhs12017P > 0 ).
?promoter_transcript1 rdf:type user:promoter_transcript.
?transcript1 rdf:type user:transcript.
?transcript_gene1 rdf:type user:transcript_gene.
?gene1 rdf:type user:gene.
?tf_promoter1 askomics:inclu ?tf1.
?tf_promoter1 askomics:in ?promoter1.
?promoter_transcript1 askomics:nextto ?promoter1.
?promoter_transcript1 askomics:nextto ?transcript1.
?transcript_gene1 askomics:istranscript ?transcript1.
?transcript_gene1 askomics:isgene ?gene1.

}
GROUP BY ?tf1 ?gene1
ORDER BY ?tf1 ?gene1

With our structured data we could extend our queries to compute the intermediate
promoter and enhancer-related scores. SPARQL queries do not support square root,
but could easily be devised to compute the square of the previously presented scores.
For enhancers, although we could have written queries that compute Rank_transcript

on the fly (and recompute it for each transcript every time a promoter is considered), we
took advantage of the intermediary files where Rank_transcript values were already
provided, and added these pre-computed Rank_transcript values to our RDF model.
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The resulting query for computing the score could then use directly the Confidence_Score×
Weight_Distance×

√
(Rank_transcript×Rank_enhancer) formula.

PREFIX user: <http://www.semanticweb.org/user/ontologies/2018/1#>
PREFIX askomics: <http://www.semanticweb.org/askomics/ontologies/2018/1#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?tf1 ?gene1 (max(xsd:float(?confidence1) * xsd:float(?confidence1) * xsd:float(?weight1)*

xsd:float(?weight1) * xsd:float(?CNhs12017T) * xsd:float(?Rank_CNhs12017E) ) AS ?weightE)
WHERE {

?tf1 rdf:type user:tf.
?tf_enhancer1 rdf:type user:tf_enhancer.
?tf_enhancer1 askomics:confidence ?confidence1.
FILTER ( ?confidence1 > 0 ).
?enhancer1 rdf:type user:enhancer.
?enhancer1 askomics:Rank_CNhs12017 ?Rank_CNhs12017E.
FILTER ( ?Rank_CNhs12017E > 0 ).
?enhancer_transcript1 rdf:type user:enhancer_transcript.
?enhancer_transcript1 askomics:weight ?weight1.
FILTER ( ?weight1 > 0 ).
?transcript1 rdf:type user:transcript.
?transcript1 askomics:CNhs12017 ?CNhs12017T.
FILTER ( ?CNhs12017T > 0 ).
?transcript_gene1 rdf:type user:transcript_gene.
?gene1 rdf:type user:gene.
?tf_enhancer1 askomics:inclu ?tf1.
?tf_enhancer1 askomics:in ?enhancer1.
?enhancer_transcript1 askomics:nextto ?enhancer1.
?enhancer_transcript1 askomics:nextto ?transcript1.
?transcript_gene1 askomics:istranscript ?transcript1.
?transcript_gene1 askomics:isgene ?gene1.

}
GROUP BY ?tf1 ?gene1
ORDER BY ?tf1 ?gene1

We then computed the score for TF-gene relations as the square root of the maxi-
mum of both the promoter and enhancer queries. Overall, the complete Regulatory
Circuits pipeline producing both TF-gene relations and their associated scores could
be performed by 2 SPARQL queries. Theses queries were rather simple and involved
7 kinds of entities and 6 relations.

All queries in this section were based on the CNhs12017 sample of Regulatory
Circuits and can be extended to other tissues by changing the sample name in the
queries. The full list of tissue samples and their descriptions is given in the supple-
mentary data file nmeth.3799-S2.xlsx from Regulatory Circuits 3. A sub-list of samples

3. Link to nmeth.3799-S2.xlsx

79

https://media.nature.com/original/nature-assets/nmeth/journal/v13/n4/extref/nmeth.3799-S2.xlsx


Interpretation of Regulatory network inference pipeline as graph-based queries

names is given in Table 4.4 in the following section.

4.2.5 Performances

Performance-wise, TABLE 4.4 shows that all queries times ranged from 4.49 se-
conds for the fastest and 537.32 seconds (9 minutes) for the longest. FIGURE 4.4
shows the re-partition of the execution times. On the 3.232 queries (4 queries for each
808 samples) only 124 had an execution time over 90 seconds. Each of the 4 queries
have been performed on the 808 different samples of the dataset. This have been auto-
mated by using the python SPARQLwrapper library and feeding it the list of all different
sample names.

TABLE 4.4 – Queries’ execution time (in seconds) for some of the 808 samples. They
were run on the SPARQL end-point https:// regulatorycircuits-rdf.genouest.org/ sparql .
The means are over the 808 samples.

Queries for TF-relation based on: (in seconds)
Sample Promoters Enhancers Promoters Enhancers
name all > 0 all > 0 & Score & Score

CNhs12017 19.310 16.359 31.319 20.515
CNhs13465 18.062 50.649 28.630 70.771
CNhs10629 23.631 20.755 37.505 27.434
CNhs11750 16.519 5.437 26.650 6.915
CNhs13195 16.138 26.339 28.377 38.867
CNhs13492 18.159 44.711 25.378 66.119
CNhs11771 22.666 13.026 30.768 16.451
CNhs12347 17.099 9.029 28.260 11.861
CNhs11047 21.361 35.926 35.727 49.122
CNhs12075 17.775 10.570 26.353 12.648
CNhs13099 16.105 9.275 24.457 12.225
CNhs12569 20.792 15.234 32.980 19.403
CNhs10636 28.768 51.718 42.956 75.017
CNhs11869 19.686 14.204 29.645 19.136

... ... ... ... ...
Fastest 12.064 4.487 18.054 4.734
Slowest 148.232 329.655 217.806 537.319

Mean 27.189 32.060 42.500 43.798
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FIGURE 4.6 – Visual representation of queries’ execution time, in second, for all the
808 samples.

We chose to have two distinct queries to retrieve yhe TF-gene relations scores,
and to process their results to keep the maximal score instead of an unique query
which would result in longer execution time.

4.3 Discussion

Our approach consisted in structuring the data and results of a systems biology
study as a RDF dataset. Our experience was that reusing the 21 raw and intermediary
files from Regulatory Circuits required an in-depth analysis of their structure and of
the documentation. We produced a RDF model (FIGURE 4.4) of Regulatory Circuits
that provides a unified access to their networks which are currently spread in 394 cell
types and tissue-specific files, statically grouped into 32 high-level regulatory networks.
This RDF model saves future users from having to manually reproduce the integration
effort. Our results showed that once the relations and ranks had been pre-computed,
the Regulatory Circuits analysis pipeline could be formalized as two SPARQL queries.
We argue that this unified RDF dataset makes querying and reuse in other studies
easier.
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Even if the structure of our RDF model (FIGURE 4.4) is fairly simple, the Regulatory
Circuits dataset is rather large (more than 300 millions triples, cf. TABLE 4.3). Despite
the size, SPARQL querying performances were of a few seconds (TABLE 4.4).

The Regulatory Circuits pipeline relies on raw data as well as external resources
such as Ensembl that are regularly updated. To accomodate these updates, the ori-
ginal Regulatory Circuit data structure requires to update some raw files, regenerate
the intermediary files that depend on them and run the pipeline. With our approach,
these third-party updates can easily be propagated to our RDF model by running the
SPARQL queries.

The RDF version of Regulatory Circuits allows a fine-grained exploration of the
relations between entities (transcription factors, enhancers, promoters, transcripts and
genes) involved in regulation mechanisms. For example, it allows to differentiate the
relations involving enhancers from the ones involving promoters (e.g. for taking into
account that promoters relations are more reliable). Similarly, it allows to differentiate
between the binding motifs of a single transcription factor or to consider transcription
factors from a specific family that usually share similar binding site motifs.

The RDF version of Regulatory Circuits can also be extended with user-specific
data, which increases flexibility. For example, if users have expression data of additio-
nal tissues, a new set of regulatory regions or binding data for an undescribed trans-
cription factor, they can update the current model to add their new data. Depending on
the type of data it may require pre-processing, to fit with Regulatory Circuits current
dataset. Users can also import new data not present in the current data structure by
following the rules described in SECTION 4.2. This will require to extend the RDF graph
(FIGURE 4.4), which is straightforward in RDF.

Following the Linked Data approach, we used the Ensembl identifiers for genes
and transcripts. Federated SPARQL queries can then be used to combine information
for Regulatory Circuits with information from Ensembl (e.g. variants, associations with
diseases, or annotations).

Our approach is rather generic and should be straightforward to other studies for
which the analysis pipeline follows relations and performs simple arithmetic functions,
such as parts of the ENCODE or Roadmap Epigenomics databases. More in-depth
analyses (e.g. statistical) are beyond SPARQL expressivity and should be addressed
by dedicated pre or post-processing.
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4.4 Conclusion

Life Science current standardization and integration efforts increasingly rely on
Semantic Web technologies. They are currently directed towards reference data and
knowledge bases. We hypothesized that applying the same approach to original stu-
dies would improve the results reproducibility, their maintenance and their reuse for ad-
vancing other studies. We considered the Regulatory Circuits case-study. We surveyed
the 394 original data files and proposed an unified RDF data model. We showed that
the Regulatory Circuits analysis pipeline can be formalized as two SPARQL queries
and that the performances were acceptable. Overall, this unified RDF dataset makes
querying and reuse in other studies easier.
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CHAPITRE 5

WORKFLOW AND INTERMEDIARY

RESULTS AS GRAPH-BASED QUERY AND

MODEL

This chapter follows the work of the previous chapter (CHAPTER 4) and expends it,
leading to scaling of the previous method to not only recover sample-specific networks
but tissue-specific ones. This chapter is the body of an article in collaboration with:
Fabrice Chatonnet, Xavier Garnier, Thierry Fest, Anne Siegel, Catherine Faron and
Olivier Dameron, which is currently ready for submission.

We present in SECTION 5.1 the global approach of this chapters. In SECTION

5.2 we describe: (1) the design principle and the organisation of the developed re-
source, (2) the data and metadata used and integrated, (3) the queries to recover
sample-specific TF-gene regulations, (4) the queries for tissue-specific relations. We
also present (6) the overall data-set of the resource and (6) some examples of biologi-
cally relevant queries we can perform on the resource. In SECTION 5.3 we discuss the
perspectives and the limitations of this resource and approach.

5.1 Introduction

In the previous Chapter [LOUARN et al., 2019], we provided a data structure en-
abling to integrate the source biological data of the Regulatory Circuits project in a RDF
triplestore of 3,226,341 entities and 335,429,988 relations. As an application case-
study, we evidenced that TF-gene interaction networks for each cell sample could be
generated on-the-fly with two SPARQL queries.

Here, we elaborate upon this strategy to generate a public RDF resource which
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contains not only the Regulatory Circuits source biological data, linked to standard
LOD resources, but also the results of the analysis pipeline at the sample and tissue-
specific layers. This extension from the previous chapter is presented in FIGURE 5.1,
we do use the same entree files as before and re-compute the same first two steps, but
after computing the promoters and enhancers networks we combine them to compute
the final step of the original workflow: tissues-specific networks.

The expected benefits are threefold. First, instead of only having access to tissue-
specific regulatory networks, biologists will also be able to query this resource from
different perspectives. For example, they may be interested in comparing the targets
of a given TF in different tissue-specific networks, or in determining how the TFs re-
gulating a given gene vary among networks. Second, biologists will be able to define
new tissue-specific regulatory networks based on the 808 samples from Regulatory
Circuits. This encompasses both specializing a network by selecting a subset of the
samples it is based on, or generalizing a network by adding other samples. Third, bio-
logists will be able to combine the data from Regulatory Circuits with their specific
samples. Altogether, this resource aims at providing a more complete, more flexible
and reusable rendition of the Regulatory Circuits dataset.

5.2 Approach

Our first contribution is motivated by the important drawback of using on-the-fly
SPARQL queries to compute TF-gene interaction networks. Each sample-specific net-
work contains some values such as ranks that depend on values from the other net-
works, so that the 808 sample-specific networks have to be computed simultaneously.
Therefore, exploring, comparing and integrating information about a subfamily of TF-
gene interactions requires to compute the full set of networks, which necessitates
large-scale computation resources. In order to save the users the trouble (and time,
and CPU) to perform these queries, we execute them once (11.2 days CPU times) and
integrate the final 808 sample-specific networks in our resource triplestore.

Our second contribution focuses on computing the tissue-specific networks by ag-
gregating the corresponding sample-specific networks. We show that this is equivalent
to a union SPARQL query on the source biological data and the 808 sample-specific
networks from our first contribution. Even if these sample-specific networks were consi-
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dered as intermediary (and unpublished) results in the original Regulatory Circuits pi-
peline, we recognize that they are crucial for computing tissue-specific networks. We
compute the 394 tissue-specific TF-gene interaction networks, which are also included
in the RDF triplestore to facilitate their reusability by users in global analyses.

Our third contribution elaborates on the capability to query only some portion of
the Regulatory Circuits dataset relevant for the user. It consists in integrating metadata
such as the descriptions of the samples (which types of cells they were measured in,
information about the donor, etc.) and of the tissues (the organ they refer to, the stu-
died pathology and of course the samples they were composed of), which were also
provided as tabulated files by Regulatory Circuits. When applicable, we also include
references to other knowledge bases from the Linked Open Data initiative such as
gene identifiers from Ensembl, protein identifiers from Uniprot, cell types and anatomi-
cal structures from the Uberon ontology. This explicit representation of these metadata
about the samples and the tissues as well as the relations to external knowledge bases
can be queried by the users for identifying the portions of the dataset they are inter-
ested in. The result can then be combined with our second contribution to support
flexibility.

Our fourth contribution is motivated by avoiding performance issues when integra-
ting and querying large datasets. It consists in proposing a modular organization into
named graphs for the original biological data from Regulatory Circuits, the 808 sample-
specific and the 394 tissue-specific regulatory networks, as well as for the metadata.

We called Linked Extended Regulatory Circuits (LERC) our RDF representation
of the Regulatory Circuits. Overall, our dataset consists in (i) descriptions of biolo-
gical and experimental data and linked to the references databases, (ii) annotations
about TF-gene interactions at the sample level for 808 samples, (iii) annotations about
TF-gene interactions at the tissue level for 394 tissues, (iv) metadata connecting the
named graphs of the three previous points. It contains 2,145,789,028 triples and re-
quired 28.6 days CPU to be generated. A Virtuoso endpoint is available at https:
//regulatorycircuits-lod.genouest.org/. The integration scheme to construct it is appli-
cable to any similar dataset produced in other project.
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5.3 Results

First, we describe our design principles and our modular organization into RDF na-
med graphs. Second, we describe the biological data from Regulatory Circuits and the
metadata associated to the samples and the tissues. Third, we describe the sample-
specific graphs as well as the SPARQL queries for computing the weights associated to
TF-genes relations and integrating them in the graphs. Fourth, we describe the tissue-
specific graphs as well as the SPARQL queries for computing the weights and scores
associated to TF-genes relations based on the values computed for the samples, and
integrating them in the graphs. Eventually, we show how our flexible architecture sup-
ports biologically-relevant SPARQL queries that were not possible with our previous
representation of Regulatory Circuits’s final results in RDF.

5.3.1 Design principles and modular organization

As shown in FIGURE 5.2, our RDF dataset encompasses a total of 1,205 graphs
of five types: 1 source biological data graph (in blue), 1 experimental data graph (in
purple), 808 sample-specific graphs (in green), 394 tissue-specific graphs (in orange)
and 1 metadata graph (in grey). The RDF models for each type of graphs is described
in the next sections. Their main characteristics are as follows:

— The source biological data graph representing the biological data of the Regu-
latory Circuits and FANTOM5 projects was already published in [LOUARN et al.,
2019].

— The experimental context graph contains all the information about samples (or-
gan, cell type and patient-related information) and tissues (the samples they
are composed of).

— Each sample-specific RDF graph provides the weights of the TF-gene interac-
tions associated with the considered sample.

— Each tissue-specific graph provides the weights and scores of the TF-gene
interactions associated with the considered tissue-specific regulatory networks,
which is an aggregation of biologically related individual samples.

— The metadata graph contains all the information about the other graphs inclu-
ding their VoID descriptions, as well as the associations of the samples and
tissues with their respective graph.
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FIGURE 5.2 – Modular organization of the RDF dataset into 1,205 named graphs. The
named graphs are the labeled boxes. The plain boxes and straight edges represent
a simplified view of the main classes of each graph and their relations. The dotted
arrows represent how the graphs are connected through entity matching, i.e. the URIs
of entities primarily described in the graph at the origin of the edge are reused in the
graph at the end of the edge.
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5.3.2 Biological and experimental data from Regulatory Circuits
and metadata

The graph of biological data (FIGURE 5.3) contains descriptions of the biological
entities that are independent from the experiments. As detailed in [LOUARN et al., 2019]
and depicted in FIGURE 5.3, it is based on five main biological entities: three related
to genes or proteins (gene, transcript, TF) and two related to chromosomal regulation
regions (promoter, enhancer), and on five reified relations.

The identifiers of genes (19,125 instances of the class Gene), transcripts (53,549
instances of the class Transcript) and transcription factors (691 instances of the class
TF ) are constructed by using the names provided by the Regulatory Circuits da-
tasets (HGNC reference identifiers for TF and Gene, Ensembl transcript names for
Transcript). These identifiers are linked to the external databases Uniprot and En-
sembl identifiers as follows. Genes are associated to the Uniprot identifier of their re-
viewed proteins; in case of several proteins being reviewed for a gene, the longest one
is selected. Both genes and transcripts are associated to their Ensembl identifiers as
already available in Regulatory Circuits datasets.

There are two classes of regulatory regions: Promoter (184,828 entities) and
Enhancer (43,011 entities).

The dataset comprises five types of reified relations, two between TFs and regula-
tory regions weighed by the confidence of transcription factor binding site in the region
(1,169,797 entities for TF_promoter and 524,816 for TF_enhancer), two between re-
gulatory regions and transcripts weighed by the distance and the Weight_Distance

between those entities (123,441 entities for promoter_transcipt and 950,514 entities
for enhancer_transcipt) and a last one between transcripts and genes (53,449 enti-
ties). Each instance of classes Promoter or Enhancer is associated with two sets of
808 float values, one corresponding to its expression value in every sample, and the
other corresponding to its normalized relative rank in each sample compared to the
807 others. Similarly, each instance of the Transcript class is associated with 808 float
values, describing its normalized relative rank in each sample compared to the others.
This rank information is directly provided by Regulatory Circuits. Contrary to the pro-
moters and enhancers, no measured expression value is provided for transcripts. Each
rank identifier is built by using the sample’s identifier (libId).
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FIGURE 5.3 – Structure of the graph of biological data from the Regulatory Circuits
project. Boxes represent classes of entities. The grey boxes represent mappings to
external resources.
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FIGURE 5.4 – Structure of the graph of experimental conditions describing the samples
and the tissue-specific circuits (in bold). Boxes represent classes of entities. The grey
boxes represent mappings to external resources.

The graph of experimental conditions (FIGURE 5.4) describes the experimental in-
formation about the 808 samples (cell types, organs, patient, diseases... and mappings
to reference databases such as Uberon) and the 394 tissues.

The graph of metadata contains the VoID descriptions of each of the other graphs.
For the sample-specific and tissue-specific regulatory networks, these descriptions re-
fer explicitly to the sample or tissue from the graph of experimental conditions.

5.3.3 Sample-specific weights of the TF-gene regulations

According to Regulatory Circuits published methodology, the TF-gene interactions
are mediated by the ability of the TF to bind into regulatory regions of the chromatin
(enhancers or promoters), the distance of this region to the gene (enhancer being
farther and promoter being adjacent to the genes), the region accessibility and the
gene expression. Each TF-gene interaction is therefore characterized by a promoter
weight and by an enhancer weight. As shown in FIGURE 5.3, the relation between the
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TF and a regulatory region is described by a confidence value, and the rank of the
regulatory region is described by a value associated with the sample. The promoter
weight is defined by weightP = max((confidence × rank_promoter_sample)2), where
the maximum is computed for all the possible promoters mediating the interaction.
The enhancer weight is defined by: weightE = max((confidence×Weight_Distance×√

(Rank_transcript_sample×Rank_enhancer_sample))2).

For each of the 808 samples, a distinct named graph represents these sample-
specific weights characterizing the TF-gene regulation relations by reified relations
(FIGURE 5.6 left). The SPARQL queries introduced in [LOUARN et al., 2019] are adap-
ted to compute the weights, and an INSERT operation is added to re-inject the re-
sult into the sample-specific graphs. The relations with a null weight are excluded to
avoid overloading the graph. The SPARQL query for computing weightP is given in
FIGURE 5.5, where SAMPLE must be replaced by the identifier of an actual sample.
A similar query for computing weightE is available on the Github repository of the pro-
ject 1. In total, the sample-specific graphs contain 888,602,040 triples.

5.3.4 Tissue-specific weights and score of the TF-gene regula-
tions

According to the experimental data graph, each tissue is associated to 1 to 33
samples.

The tissue-specific TF-gene interaction network is obtained by aggregating the
sample-specific networks. As in sample-specific networks, TF-gene relations are cha-
racterized by (i) a promoter weight (class WeightP ), (ii) an enhancer weight (class
WeightE), and (iii) a global score (which is the max of the two weights, class Score)
that corresponds to the only TF-gene relation score given in the published regulatory
networks of Regulatory Circuits. In a tissue, the WeightP and WeightE values of a TF-
gene relation are obtained as the maxima of the corresponding weights of the same
relation in the RDF graphs specific for all the samples constituting the tissue.

For each of the 394 tissues, a distinct named graph represents these tissue-
specific weights and scores characterizing the TF-gene regulation relations by reified
relations (FIGURE 5.6 right). A SPARQL query is designed to compute tissue-specific

1. https://github.com/mlouarn/RCsparql
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX user: <http://regulatorycircuits.org/data/>
PREFIX graph: <http://regulatorycircuits.org/graph/>
PREFIX rco: <http://regulatorycircuits.org/ontology/>

INSERT {
GRAPH graph:SAMPLE {

_:idRel rco:fromTF ?tf_uri .
_:idRel rco:fromGene ?gene_uri .
_:idRel rco:weightP ?max_weightP .

}
}

WHERE {
SELECT ?tf_uri ?gene_uri (max (?weightP) AS ?max_weightP)

WHERE {
?tf_uri rco:inclu ?tf_promoter_uri .
?tf_promoter_uri rco:in ?promoter_uri .
?promoter_transcript_uri rco:nextto ?promoter_uri .
?transcript_uri rco:nextto ?promoter_transcript_uri .
?transcript_gene_uri rco:istranscript ?transcript_uri .
?gene_uri rco:isgene ?transcript_gene_uri .
?tf_uri rdf:type user:tf .
?tf_uri rdfs:label ?tf_Label .
?tf_promoter_uri rdf:type user:tf_promoter .
?tf_promoter_uri rdfs:label ?tf_promoter_Label .
?tf_promoter_uri user:confidence ?tf_promoter_confidence .
?promoter_uri rdf:type user:promoter .
?promoter_uri rdfs:label ?promoter_Label .
?promoter_uri user:SAMPLE ?promoter_SAMPLE .
?promoter_transcript_uri rdf:type user:promoter_transcript .
?promoter_transcript_uri rdfs:label ?promoter_transcript_Label .
?transcript_uri rdf:type user:transcript .
?transcript_uri rdfs:label ?transcript_Label .
?transcript_uri user:SAMPLE ?transcript_SAMPLE .
?transcript_gene_uri rdf:type user:transcript_gene .
?transcript_gene_uri rdfs:label ?transcript_gene_Label .
?gene_uri rdf:type user:gene .
?gene_uri rdfs:label ?gene_Label .
BIND (xsd:float(?tf_promoter_confidence) * xsd:float(?tf_promoter_confidence) *
xsd:float(?promoter_SAMPLE) * xsd:float(?promoter_SAMPLE) AS ?weightP).
FILTER ( ?weightP > 0 )

}
}

FIGURE 5.5 – SPARQL query for computing the sample-specific value of the weight
associated to promoters for the TF-gene regulation relations and inserting it in the
corresponding sample graph
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FIGURE 5.6 – Structure of the 808 sample-specific (left) and 394 tissue-specific (right)
graphs representing the parameters of the TF-gene regulation relations. Boxes re-
present classes of entities.

weights and scores and re-inject them into the tissue-specific RDF graphs. The query
in FIGURE 5.7 computes weights of TF-Gene relations in a tissue-specific network for-
med by two separate Samples. Queries for tissue-specific network with more samples
or a single sample are available in the Github repository of the project 2. In total, the
tissue-specific graphs contain 916,758,018 triples.

5.3.5 Overall dataset

All data related to LERC are available on the website of the project 3.

The overall dataset is composed of 1205 RDF named graphs. The resource is
composed of 2,145,789,028 triples and the distribution of the triples by graphs can be
seen in TABLE 5.1.

In total it required 28.6 days CPU to generate the dataset from the initial integration
of the biological data graph to the computation of the tissue-specific graphs. TABLE 5.1
compiles the total number of triples, entities and classes in the biological data graph.
The population of the sample and tissue-specific graphs is described in TABLE 5.1. On
average a sample-specific graph is composed of 1,099,755 triples and a tissue-specific
graph is composed of 2,326,797 triples.

2. https://github.com/mlouarn/RCsparql
3. https://regulatorycircuits-lod.genouest.org
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX user: <http://regulatorycircuits.org/data/>
PREFIX graph: <http://regulatorycircuits.org/graph/>
PREFIX rco: <http://regulatorycircuits.org/ontology/>
INSERT { GRAPH graph:TISSUE {

_:idRel rco:fromTF ?tf .
_:idRel rco:fromGene ?gene .
_:idRel rco:weightP ?wp .
_:idRel rco:weightE ?we .
_:idRel rco:score ?score .

} }
WHERE {

VALUES ?g1 {graph:SAMPLE1}
VALUES ?g2 {graph:SAMPLE2}
?tf rdf:type user:tf .
?gene rdf:type user:gene .
OPTIONAL {

GRAPH ?g1 {
?rP rco:fromTF ?tf.
?rP rco:fromGene ?gene .
?rP rco:weightP ?weightP1 .

}
}

BIND (IF(bound(?weightP1), ?weightP1, "0.0"^^xsd:float) AS ?Wp1) .
OPTIONAL {

GRAPH ?g1 {
?rE rco:fromTF ?tf.
?rE rco:fromGene ?gene .
?rE rco:weightE ?weightE1 .

}
}

BIND (IF(bound(?weightE1), ?weightE1, "0.0"^^xsd:float) AS ?We1) .
OPTIONAL {

GRAPH ?g2 {
?rP rco:fromTF ?tf.
?rP rco:fromGene ?gene .
?rP rco:weightP ?weightP2 .

}
}

BIND (IF(bound(?weightP2), ?weightP2, "0.0"^^xsd:float) AS ?Wp2) .
OPTIONAL {

GRAPH ?g2 {
?rE rco:fromTF ?tf.
?rE rco:fromGene ?gene .
?rE rco:weightE ?weightE2 .

}
}

BIND (IF(bound(?weightE2), ?weightE2, "0.0"^^xsd:float) AS ?We2) .
BIND (IF((?We1 > ?We2),?We1, ?We2) AS ?We)
BIND (IF((?Wp1 > ?Wp2),?Wp1, ?Wp2) AS ?Wp)
BIND (IF((?We > ?Wp),?We, ?Wp) AS ?score)
FILTER (?score >0)
}

FIGURE 5.7 – SPARQL query for computing a tissue-specific values of the weights
associated to promoters and enhancers and the global score for the TF-gene regulation
relations from the values of the samples associated to the tissue, and inserting them in
the corresponding tissue graph
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TABLE 5.1 – Characteristics of the RDF dataset

Number of elements
Triples 340,428,970
Entities 3,226,341

(a) Integrated data in the
biological data graph be-
fore running the injection
queries

Nb of triples By samples By samples By tissues
Promoter Enhancer

Minimum 408,618 146,196 909,670
Maximum 592,698 1,282,083 5,106,105
Average 513,644 586,111 2,326,797

EST. TOTAL 415,024,352 473,577,688 916,758,018

(b) Population of the re-injected graphs

Time By samples Promoter By samples Enhancer By tissues
Minimum 4m26.779s 7m35.194s 24m29.327s
Maximum 7m5.927s 21m25.270s 120m04.794s
Average 5m30.071s 15m29.902s 59m53.039s

(c) Execution times of the queries, calculated for the first 102 samples and 55 tissues
networks

5.3.6 Biologically-relevant queries

As we have seen, exposing the intermediate results such as the sample-specific
regulation networks allows biologists to access the information they need.

Moreover, all this additional information allows biologists to tailor their analysis
according to their needs. For example, the Regulatory Circuits dataset has a tissue-
specific circuit “CD14+ Monocytes" composed of 33 samples. However, among these
samples, only 3 were measured in blood (for the others, the tissue of the measure is
unknown), in men aged 47, 57 and 53. If the biologist is specifically interested in CD14+
Monocytes from blood for man over 55, the graph of experimental data can be queried
to create a dedicated new tissue with the following query (FIGURE 5.8). From there, the
metadata graph is queried to retrieve the identifiers of the sample-specific graphs, and
then the query presented in FIGURE 5.7 is run to compute the weights and score of the
regulation relations in this new tissue, thus extending Regulatory Circuits by reusing a
part of its data.

More examples of queries are available on the Github of the project 4.

4. https://github.com/mlouarn/RCsparql/tree/master/queries_examples
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FROM graph:experimentalContext

INSERT {
GRAPH graph:experimentalContext {

rc:myTissue rdf:type rco:TissueSpecificCircuit .
rc:myTissue rco:isComposedOf ?sample .

}
}
WHERE {

rc:CD14%2B%20Monocytes rco:isComposedOf ?sample .
?sample rc:tissue rc:blood .
?sample rc:patient [ rc:gender pato:Male ;

rc:age ?age ] .
FILTER ( ?age > "55"^^xsd:integer)

}

FIGURE 5.8 – SPARQL query for retrieving the set of samples that meet some condi-
tions expressed by the user (here, identify the subset of the “CD14+ Monocytes"
samples taken in the blood of male patients over 55 years old) and creating the as-
sociated user-defined tissue

5.4 Discussion and perspectives

In this chapter, we address the issue of allowing the reusability of the existing
source biological datasets from the Regulatory Circuits project [MARBACH et al., 2016]
and of enriching its published output, which consists in 394 TF-gene interaction (large-
scale) tissue-specific networks. These networks result from the aggregation of 808
sample-specific TF-gene interaction networks, which were unpublished and are also
integrated in the dataset we propose.

The RDF representation of the Regulatory Circuits dataset follows the best prac-
tices, using reification entities for weighted relations, using named graphs, and follows
the FAIR guidelines. It also reuses already suitable existing resources class such as
Uniprot and Ensembl identifiers and follows the faldo chromosomal localization format.
Federated SPARQL queries can then be used to combine information for Regulatory
Circuits with information from these resources (e.g. associations with diseases, or an-
notations).

LERC is available on a persistent domain and every queries are publicly available
on Github. The original datasets can be downloaded as tabulated files from the website
of the original project 5.

5. http://regulatorycircuits.org/download.html
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By converting the Regulatory Circuits dataset into RDF with our modular prin-
ciples, our contribution to reusability is threefold. First, it facilitates the reuse of Re-
gulatory Circuits’s results in other studies by providing access to the tissues-specific
regulatory networks and the associated information. Second, it facilitates the reuse
of the studies’ data in other pipelines by providing access to the samples’ experi-
mental context and to the intermediary results such as the sample-specific regulatory
networks, which can be reused to compute other indicators than Regulatory Circuits
weights and scores. Third, it provides the capacity to enrich the Regulatory Circuits
dataset with additional information as the data model and Semantic Web technologies
support adding new samples or defining new tissues, and the SPARQL queries we
provide generate the corresponding weights and scores. Overall, the Regulatory Cir-
cuits case study confirms that Semantic Web technologies are a relevant solution for
reusing knowledge bases [KAMDAR et al., 2019 ; S. STEPHENS et al., 2006], and de-
monstrates that they are also applicable to address the challenge of integrating them
to project-specific datasets [H. CHEN et VANBUREN, 2012].

Improving the exploration of Regulatory Circuits biological data and networks
In a previous work we showed that Regulatory Circuits workflow could be described
using Semantic Web technologies thus increasing its reproducibility. This new imple-
mentation, including not only the input data but also the TF-gene interaction networks
resulting from the in-silico integration of source biological data, improves the browsing
of this resource. The implementation we propose allows a fine-grained exploration: the
user can select part of the network, for example excluding regions at a lower distance
than the Regulatory Circuits threshold, or excluding one type of region (e.g. for taking
into account that promoters relations are more reliable).

Improving the reusability and the enrichment of the source biological data with
SPARQL queries The networks available in the Regulatory Circuits website are sta-
tic and do not evolve with the biological datasets it was based upon. A major advantage
of our approach is that TF-gene interaction networks for samples and tissues are ge-
nerated with SPARQL queries from the source biological data before being inserted
in the resource. This implementation allows a user to easily change some bricks of
the integration pipeline which generates the network, such as new calculation of the
ranks, adding new genes or transcription factors in the networks, or removing some of
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them: all these changes will be translated into modifications of the few queries used to
generate the network.

Our resource and the approach we use to populate it also facilitates the gene-
ration of new TF-gene interaction networks for new tissues, through the aggregation
of samples with different characteristics than those chosen in the Regulatory Circuits
project. Indeed, Regulatory Circuits present 394 tissue-specific networks, but looking
into the detail of the sample and tissues correspondence evidenced some tissues that
could be separated into smaller sets. For example, the “CD14+ Monocytes" network gi-
ven in Regulatory Circuits is based on 33 CD14+ monocytes cell samples, which have
different characteristics (origin, donor age...). The modular structure of our resource
allows for the computation of new TF-gene interaction network using these characte-
ristics to discriminate the samples.

Finally, using our RDF resource of Regulatory Circuits introduced in this chapter
and the strategy used to build it allows a user to add new tissues or TFs if they have
similar input data. This would require to pre-compute rankings for transcripts and regu-
latory regions which are at the moment provided by the Regulatory Circuits resource
and cannot be recomputed. Similarly, introducing a new TF would require to introduce
new confidence values for its binding in regulatory regions.

Improving interoperability Among the 150 articles citing Regulatory Circuits, at
least 42 either use directly the resulting networks for biological data explanation or
use them as comparison for regulatory network inference. And, in 10 of these, Regu-
latory Circuits was used in combination with one or several other databases. Other
resources on TF-genes relations exist [HAN et al., 2018][LICATA et al., 2020] but are
complementary of Regulatory Circuits, the latter being the only one categorizing tissue-
specific networks. By representing Regulatory Circuits as an RDF graph we therefore
improve its interoperability with resources of similar scope already using Semantic Web
technologies and helps its reuse in combination with other already existing RDF re-
sources. In particular, it significantly extends the part of FANTOM5 data available as
RDF [ABUGESSAISA et al., 2016 ; LIZIO et al., 2015].

A generic approach for the enrichment of source biological data with the result
of data-analyses Our results show that a Semantic Web approach scales not only for
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the integration of large-scale biological data but also for the iterative enrichment of such
a resource with the results of in-silico analyses modeled with SPARQL queries. This is
possible by using a modular structure based on named graphs. This strategy could be
easily transposed to other life science studies which analysis pipeline describes rela-
tions with simple arithmetic functions. For more in depth analyses, this approach could
be transposed while pre-processing the most complex computing tasks. Our work sup-
ports the adoption of Semantic Web technologies as it is a large real data graph, which
is used in several studies and does have an impact in life science before integration.

5.5 Conclusion

As we shown in this chapter and in the previous one, Semantic Web technologies
are a relevant tool for regulatory networks data-bases. The lower layers of the Regu-
latory Circuits workflow: obtaining sample-specific networks can be reduce to two well
performing queries. But we add in complexity when trying to re-inject the result of those
queries to further extract the networks in higher level such as tissue-specific networks.
As we seen the re-injection of the 808 samples and 394 tissue-specific networks took
almost a month of computation.

But the end result is a triple-store wildly available, containing all the resources
necessary to either reuse the result of Regulatory Circuits - even the intermediary ones
not given in the original downloadable folder - or to add new information to reproduce
the workflow with additional data.
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CHAPITRE 6

DESIGN OF A SUITABLE PIPELINE FOR

BIOLOGICALLY-CLOSE AND SPARSE

CELLS TYPES

This chapter goal is to present a new design of pipeline to infer new regulatory
networks, with a focus on small sets of closely-related cells types.

In SECTION 6.1 we present the overall design of this pipeline, what does it take
as entry and what information we capitalised on from other resources. SECTION 6.2
focus on the pre-processing of the data-sets use for the pipeline: creation of patterns
to regroups genes and regions of similar expression across the cells populations, fin-
ding the TF binding sites in the given regions and calculation the closeness for which
the regions can regulate the genes. Then, in SECTION 6.3 we explain the data-graph
created from those files and how we integrated it to later query the data-graph and
extract regulatory networks. SECTION 6.4 present the post-processing where we look
at the relations infer in the previous section and checks their consistency with the bio-
logy to asses if they can or not have a regulatory impact on the network. This step
act as a filter. SECTION 6.5 present the automation of the pipeline, compiling all the
previous steps in a snake-make and python implementation. Finally, in SECTION 6.6
we compare the design of our pipeline to the workflow of Regulatory Circuits - presen-
ted in CHAPTER 3 and in the following SECTION 6.7 we run our pipeline on data-set
extracted from Regulatory Circuits and look at the resulting networks in comparison of
Regulatory Circuits.
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6.1 Introduction

As presented in CHAPTER 3, we raised several issues on existing network infe-
rence workflows, and especially on Regulatory Circuits itself. As synthesized in FI-
GURE 6.1, the issues span the files formats, the workflow description, inconsistencies
between the workflow description and the provided intermediary files, as well as metho-
dological problems. In this chapter we introduce a new pipeline addressing the issues
on the methodology (in green in the figure). This pipeline (1) takes into account the
activities of the TFs themselves, (2) proposes an alternative to the discretization of the
activities as ranks and (3) produces signed networks.

We propose a regulatory-network inference pipeline. It has been developed to be
stringent and to limit the space of the candidates TF-genes relations. The candidate
relations are the most likely to occur but will need to be confirmed through biological
experiments or bibliography review.

6.2 Design

The goal of the pipeline is to find the regulators of genes sets of similar expression
and to qualify these TF-genes’ relations as either activation or inhibition.

This pipeline requires: a list of genes, their expression in a selected number of
cell types, their genomic coordinates and a list of selected regulatory regions with their
activity and genomic localisation. For genes and regions the coordinates are determi-
ned according to the GRCh37 or hg19 [MEYER et al., 2013] [KAROLCHIK et al., 2014]
human reference genome from UCSC [KENT et al., 2002].

The pipeline also needs TF binding sites localisation. This can be provided by the
user, but we provide an implementation using the genome-wide TF binding sites coor-
dinates from FANTOM5 [ANDERSSON et al., 2014] [MARBACH et al., 2016] (Functional
Annotation of the Mammalian Genome).
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FIGURE 6.2 – Representation of the different steps of this pipeline.

FIGURE 6.2 presents the different steps of the pipeline: the transformation of in-
dividual expression in patterns, finding the relations between genes and regions and
finding the TF binding sites in the provided regions. The pre-processed data are then
integrated using Semantic Web technologies. They can then be queried to find the can-
didate relations between TF, regions and genes that respect a given set of rules: the
regions must be at most at 500 kb of the gene, the TF must have a binding site in the
region. Query results must then be refined to identify the TF-gene relations that are
compatible with their expressions and assigned them signs (either positive, indicating
an induction, or negative, indicating an inhibition).

As an output, the pipeline gives a list of candidates signed TF-genes relations that
can be explored to find new regulators.
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6.3 Pre-processing

FIGURE 6.3 represents the different steps of data pre-processing. The top of the
figure represents the background knowledge on TF binding sites, bellow is represented
the input data: regulatory regions (their coordinates and read density), genes (coordi-
nates and expression level). The bottom represents the processes to actually integrate
these data. The first step discretizes of gene expressions and regulatory regions read
densities into patterns. The second step computes the distances between neighbor
genes and regions. The third step finds the inclusion of TF binding sites into regions.

FIGURE 6.3 – Representation of the different pre-processing steps (in red) of our pipe-
line.

6.3.1 Discretization patterns for read densities and gene expres-
sion

The idea behind the pattern is to be able to regroup genes of similar behavior in
the different populations. A solution could have been to use co-expression analysis for
example using the WGCNA R [LANGFELDER et HORVATH, 2008] package. Unfortuna-
tely, after testing, it gave poor results with limited data-sets such as ours.

The patterns do not show a chronological order between the different populations,
which can be placed in any order.
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Preliminary analysis

The first step of discretization of the expression and density, is to identify features
which are relevant for building a regulatory network, i.e. those which vary between the
compared cell types. We ask of the user to provide a list of differently expressed genes
and regions, on which patterns will be generated.

The user can also provide a list of genes with low expression in all populations and
a list of genes with similar expression in all population that will both be affected with
specific patterns.

Gene Expression Pattern

The discretization has been performed independently for each gene. A gene ex-
pression pattern or gene expression profile is based on a several digits pattern, one for
each cell population (ex: pop1: 1, pop2: 1, pop3: 1, pop4: 4 is pattern: 1114 or another
pattern is 1234) each digit having a value ranging from 1 to 4, leading to a potential of
256 distinct patterns. To determine this pattern we first compute the mean per popu-
lations based on normalized count from the differential expression analysis. We used
a logarithmic discretization on these average values. Furthermore, the population with
the lowest expression gets always 1 in the profile and the population with the highest
always gets 4. We generated the expression profiles with the R software and using a
custom function that affects its class number to each element of a distribution when
the number of classes is specified. On four populations, once these pattern were dis-
cretized, we obtained 126 potential different profiles. This is explained by our principles
which favor extreme patterns: 1114 will be kept instead of 1113 and 4441 instead of
4442 and impose at least a 1 and a 4 in each pattern.

Finally, genes with low expression as defined in differential expression analysis
have been granted the profile 0000 and have been removed from the implementation.
Genes with constant expression in all population have been granted the profile 5555.

The TF patterns are those of their respective coding genes.
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pop1 pop2 pop3 pop4
0

0.5

1

·104

Gene:1124

(a) Graphical representation of a
gene expression

pop1 pop2 pop3 pop4
Biological data 259,61 319,72 1578,61 13589,51
Pattern 1 1 2 4

(b) Expression of a gene and expression pattern by cell
type

FIGURE 6.4 – Example of a gene expression and pattern: This gene expression is cha-
racterized by three low expression values followed by an higher one. This expression
is modeled by the 1124 pattern, favoring extreme values.

Region Density Pattern

Similarly to the gene expression pattern, the region density pattern is a pattern
composed of digits corresponding to the number of populations, each point from 1 to
4, based on the read densities of each region. This profile is also determined using a
logarithmic discretization and implemented in R.

The read density patterns have been defined by discretization for a union of unique
regions from all experiments. This discretization led to a pattern following the same
properties than the ones for the expression pattern. An example with a region can be
seen in FIGURE 6.5, where we can see that this region has a low read density in the
population pop4 but a high density in the populations pop2 and pop3. For the regions,
the profile 0000 does not appear, as it is necessary for the region to be detected in at
least one population to be selected.
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pop1 pop2 pop3 pop4

6

7

8

·10−3

Reg.:3441

(a) Graphical representation of a
region density pattern

pop1 pop2 pop3 pop4
Read density 0.0074009 0.00859515 0.00822473 0.00543647
Pattern 3 4 4 1

(b) Read density of a region and density pattern by cell
type

FIGURE 6.5 – Region read density and pattern: the expression of this region is cha-
racterized by one medium values, two high read density values followed by a very low
one. This expression is modeled by the 3441 pattern, favoring extreme values.

6.3.2 Neighborhood relationship

The second step was to define the neighborhood relationship between a region
and a gene. If a region is relatively close to a gene on a same chromosome, it can be
a regulatory region of this gene if presenting TF binding site motifs.

The implementation was done in python. It uses as entry the genomic coordinates
of both regulatory regions and genes. We computed the relations between regions and
genes keeping all relations which distance was inferior or equal to 500 kb (using the
same limit as Regulatory Circuits). The region was kept regardless of its position to the
gene (before or after). The distance was calculated between the two closest extremities
of the entities. If the region and the gene are overlapping, either included or exceeding,
the distance is set to 0.

As some genes have duplicates, we only kept the smallest distance between a
gene and a region, regardless of the duplicate use.

6.3.3 Finding TF binding sites in our regions

We decided to use the Regulatory Circuits [MARBACH et al., 2016] data on TF
localization across the genome. We used the genomic coordinates of the TF binding
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sites identified in the Regulatory circuits data 1 which is based on FANTOM5. The inte-
gration of the TF localization was at first processed using Bedtools intersect [QUINLAN,
2014] tool, looking for all the binding sites included into our regions. We kept the pre-
sence information only: if a TF had a binding site in a region we kept the information,
but if it had more than one binding site only kept one, not all the binding site localization
nor their number. This was done to reduce the size of the output file and to optimize
the time of the latter queries.

6.4 Data graph for the integration

We integrated the discretized patterns into an RDF graph, to do so a first step was
to ensure that all the necessary files were formatted for the integration. Each entity
needs to present a unique identifier, identical across all files to allow to refer specifically
to this entity. For the regions, we used an identifier designed after the type of region (i.e.
ATAC_; and Region_ for the rest of this chapter) followed by the row number at which
they appear in the region localisation file - this ensured that a same number was never
used twice for different entities. For genes and TF, we kept the usual names (HGNC
Gene Symbols) as identifiers.

To implement the weighed relations (distance and tf_inclusion), we needed to add
reified entities as RDF does nor allow relations to bear a score. We defined two reified
entities: Region_closest (weight = integer) and TF_inclusion which correspond to the
last two steps of the pre-processing.

FIGURE 6.6 – Example of reification between the entities Entity1 and Entity2, creation
of the Reified Entity whom bear the value of the relation.

The data model structure after integration is illustrated in FIGURE 6.7. This figure

1. http://regulatorycircuits.org/download.html
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can be seen as a representation of the interactions between the data, where the entities
are linked between each other by different relationships.

To retrieve TF-Gene relations and the necessary patterns all the entities presented
in FIGURE 6.7 are not necessary, some of them have been added to help refine the
results. The entities that are strictly necessary are: genes, TF and regions with their
respective patterns, as well as the reified entities Region_closest and TF_inclusion.
We choose to add references to Uniprot and Ensembl for the genes as it can add
information to the graph. We also choose to add the localisation information that we
used in previous steps, as a potential filtering parameter.

From this question and the data structure we used AskOmics to generate the query
shown in FIGURE 6.8: starting from the green node "Gene" having an expression pat-
tern, we trace back all ID_ATAC (red node) which are connected to the Gene by a
ATAC_closest relationship (orange node). We filter these Id_ATAC by taking into ac-
count the transcription factor (cyan node) which have a relationship with the Id_ATAC
through the Id_Inclusion (dark blue node), representing the presence of a binding site.
Along the way, we gather the patterns for the TF, the region and the gene, as we will
need them in the next step. This automatically generate the SPARQL query presented
in FIGURE 6.9.

FIGURE 6.8 – The final AskOmics query: starting from a gene of a given profile then
look for its neighbor regions and then for the TF included in these regions.

This query was challenging to run directly in AskOmics - as the length of the result
was automatically cut after an arbitrary number and sometime produced time-out while
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PREFIX : <http://www.semanticweb.org/user/ontologies/2018/1#>
PREFIX askomics: <http://www.semanticweb.org/askomics/ontologies/2018/1#>
PREFIX faldo: <http://biohackathon.org/resource/faldo/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?Gene ?Pattern_Gene ?Region ?Pattern_Region ?TF ?Pattern_TF
WHERE {

?Gene_uri :next_to_gene ?Region_Closest_uri .
?Region_Closest_uri :next_to_region ?Region_uri .
?TF_inclusion_uri :has_binding_site_in ?Region_uri .
?TF_inclusion_uri :binding_site_of_TF ?TF_uri .
?Gene_uri rdf:type :Gene .
?Gene_uri rdfs:label ?Gene .
?Gene_uri :PatternGene ?Pattern_GeneCategory .
?Pattern_GeneCategory rdfs:label ?Pattern_Gene .
?Region_Closest_uri rdf:type :Region_Closest .
?Region_Closest_uri rdfs:label ?Region_Closest .
?Region_Closest_uri :Distance ?Region_Closest_Distance .
?Region_uri rdf:type :Region .
?Region_uri rdfs:label ?Region .
?Region_uri :Pattern_Region ?Pattern_RegionCategory .
?Pattern_RegionCategory rdfs:label ?Pattern_Region .
?TF_inclusion_uri rdf:type :TF_inclusion_ATAC .
?TF_inclusion_uri rdfs:label ?TF_inclusion .
?TF_uri rdf:type :Transcription_Factor .
?TF_uri rdfs:label ?TF .
?TF_uri :PatternTF ?Pattern_TFCategory .
?Pattern_TFCategory rdfs:label ?Pattern_TF .
FILTER ( ?Region_Closest_Distance < 500000 ) .

}

FIGURE 6.9 – SPARQL query for retrieving all relations between TF-Region-Gene and
their associated patterns. This code was automatically generated by AskOmics from
the graphical query shown at FIGURE 6.8
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reaching to the platform hosting it - and required to wrap the SPARQL query (FIGURE

6.9) into Python. An example of the results of this query is shown in TABLE 6.1, for-
ming a triple between the gene, the neighbor region and the TF with a binding site in
said region, and their mutual expression and density patterns. But all the TF found in
the triples may not have a regulatory impact: it depends on their expression and the
accessibility of the chromatin at regions containing their binding sites (i.e. TF pattern
equal to 0, region and TF activities contradictory,...). This is the reason we developed
a tool to checks those rules, as explained in the next section.

Gene Expression ID ATAC Density TF TF Pattern
PRDM1 1124 Region_1 1114 PRDM1 1124
PRDM1 1124 Region_123 1114 IRF4 1124

IRF4 1124 Region_67 1114 PRDM1 1124
IRF4 1124 Region_90 1234 BACH2 4431

TABLE 6.1 – Example of the query output

6.5 Compatibility table to assign sign to relations

To regulate a gene, a TF must be expressed and be able to bind in an accessible
chromatin area. A TF can either positively regulate or inhibit a gene expression. In
the first case (activation), an open chromatin region and an expressed TF will induce
the transcription of the gene and in the second case (inhibition) the gene will not be
expressed. Based on these basic principles, we devised a compatibility table for each
cell population.

The motivation for this compatibility table is (1) to discard the TF-gene candidate
relations that are not consistent with the biological knowledge of how regulation works,
and (2) to infer a regulation sign (i.e. activation or inhibition) for the consistent candi-
dates relations.
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RD TF Gene Sign
1 1 1 +
...

...
...

...
4 4 4 +

(a) Extraction of the regulation sign
attribution table (+): RD= Read den-
sity pattern, TF= TF expression pat-
tern, Gene=Gene expression Pattern,
Sign: potential sign of the regulation

RD TF Gene Sign
1 1 4 -
...

...
...

...
4 4 1 -

(b) Extraction of the regulation sign
attribution table (-): RD= Read den-
sity pattern, TF= TF expression pat-
tern, Gene=Gene expression Pattern,
Sign: potential sign of the regulation

(c) Closed chromatin and non-expressed
TF: Activation: there is a potential lack of
gene expression. Inhibition: the gene ex-
pression could be high.

(d) Opened chromatin and expressed
TF:Activation: there is a potential high
gene expression. Inhibition: the gene could
be absent.

FIGURE 6.10 – Illustration of the regulation sign attribution table.

FIGURE 6.10 presents a graphical representation of the compatibility principle be-
hind assignment tables. When the chromatin is closed and the TF not expressed (First
line of FIGURE 6.10A and FIGURE 6.10B): if there is no gene expression then the TF is
more likely to act as an activator and if there is a high gene expression then the TF is
more likely to act as an inhibitor. When the chromatin is opened and the TF expressed
(last line of FIGURE 6.10A and FIGURE 6.10B): if there is a gene expression then the
TF is more likely to act as an activator and if the gene expression is low or null, then
the TF is more likely to be an inhibitor.

The compatibility table must follow the following principles:
— the maximum effects on the gene expressions are obtained when the TF is at

its highest expression level.
— The more accessible the region, the higher is the impact of the TF on the gene:

for an activation this implies that if the TF is highly expressed so must be the
gene, for an inhibition the higher the TF, the lower the gene’s expression.
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— If the region looses its accessibility, the weight of the TF lowers: for an activation
we need higher TF level to gain a similar gene level. For an inhibition, we would
need higher TF level to lower the gene expression.

— The closeness of a Region can produce an effect comparable to an inhibition
for activator TF by reducing its impact.

These principles can be seen in FIGURE 6.11: The window of activation (res-
pectively inhibition) glides to lower (higher) gene expression as the TF expression de-
creases. The same behaviour is true when the region accessibility decreases. The only
exception to this is when the value of one or more item is set to 5, which does not mean
that the expression is higher but that it is constant across all studied populations.

For each digit of the three patterns (gene, TF and region), we check on the com-
patibility table if the relation is compatible with an activation or an inhibition. If it is the
case, a score from 1 to 2 depending on the confidence ("-" and "+" award a score of 1;
"- -" and "++" award a score of 2) is given to the pattern point and we move to the next.
The sum all of points must be superior to a fixed threshold to award the relation a sign,
either + or - depending of the direction. For example this threshold is fixed to 7 for a 4
digit pattern, allowing at most one point to be a little less compatible (lower confidence,
see Figure 6.11).

After using the regulation sign attribution table for filtering we obtained a result in
form of a quadruple between the gene, the neighbor region, the TF with a binding site
in the region and the potential regulation on the gene such as presented in TABLE 6.2.
These results represent a potential TF impact on gene expression and not an actual
biological impact, which would need to be experimentally validated.

Gene Expression ID ATAC Density TF TF Pattern Regulation
PRDM1 1124 Region_1 1114 PRDM1 1124 +
PRDM1 1124 Region_123 1114 IRF4 1124 +

IRF4 1124 Region_67 1114 PRDM1 1124 +
ECH1 1124 Region_7569 4431 BACH2 4431 -

TABLE 6.2 – Regulation sign attribution: examples of the sign attribution output
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TF \gene 1 2 3 4 5
1 ++ +
2 + ++ +
3 + ++ + +
4 + ++ +
5 + + ++

(a) Activation, Region = 5

TF gene 1 2 3 4 5
1 - - - -
2 - - - - -
3 - - - -
4 - - -
5 - - - -

(b) Inhibition, Region = 5

TF gene 1 2 3 4 5
1 ++ +
2 + ++ +
3 + ++ + +
4 + ++ +
5 + + ++

(c) Activation, Region = 4

TF gene 1 2 3 4 5
1 - - - -
2 - - - - -
3 - - - -
4 - - -
5 - - - -

(d) Inhibition, Region = 4

TF gene 1 2 3 4 5
1 ++ +
2 ++ + +
3 + ++ + +
4 + ++ +
5 + + ++

(e) Activation, Region = 3

TF gene 1 2 3 4 5
1 - - -
2 - - - -
3 - - - - -
4 - - - -
5 - - - -

(f) Inhibition, Region = 3

TF gene 1 2 3 4 5
1 ++ +
2 ++ + +
3 ++ +
4 + ++ +
5 + + +

(g) Activation, Region = 2

TF gene 1 2 3 4 5
1 - -
2 - - -
3 - - - -
4 - - - - -
5 - - -

(h) Inhibition, Region = 2

TF gene 1 2 3 4 5
1 ++
2 ++
3 ++ +
4 ++ +
5 ++ +

(i) Activation, Region = 1

TF gene 1 2 3 4 5
1 - -
2 - -
3 - - -
4 - - -
5 - - -

(j) Inhibition, Region = 1

FIGURE 6.11 – Sign attribution table, divided by region pattern value. Cells with "++" or
"- -" have a higher confidence than the "+" or "-" cells.
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6.6 Automation

In close collaboration with Guillaume Collet, we proposed an automated version
of the pipeline as a package available on Gitlab and optimized to run on the Genouest
cluster 2.

The pipeline needs as input a coma or tabulation separated file with a list of dif-
ferently expressed genes and a second with differently activated regulatory regions, it
also needs two bed files with the coordinates of genes and regulatory regions. The TF
binding sites localization are already implemented (extracted from Regulatory Circuits)
but can be given by the user as bed files.

The automated version uses a combination of Conda and Snakemake to automa-
tize the succession of the different scripts. Starting at the last step of the pipeline, the
pipeline verifies if the resulting file is computed, if not it looks for the files necessary to
run this step, if they do not exist the pipeline then move to the previous steps and so
on until it can either run the step or runs out of steps and gives out an error. The steps
represented in FIGURE6.12 are themselves implemented using Python and the Panda
library to efficiently navigate data-sets and Bedtools for the intersection of the TF bin-
ding sites and region localisation. Once all the files are transformed into Turtle (ttl) files
they are integrated into a local docker of Virtuoso and queried to find TF-region-gene
relations. They are then run through the compatibility table and given signed TF-gene
relations as output.

2. https://www.genouest.org/2017/03/02/cluster/
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FIGURE 6.12 – Automation diagram up to integration: if the resulting file of a box is find
the box is skip, else it is computed to get that resulting file.

For a set of 26,802 genes and 58,449 regulatory regions, on 4 different cell popu-
lations, the pipeline takes 59 minutes and 36 seconds to be completed and resulted
in 5,635,099 relations TF-region-Gene and 314,965 TF-genes unique relations. Those
relations are the same as the ones obtain by running the steps of the pipeline indepen-
dently.

6.7 Comparison between Regulatory Circuits workflow

and our pipeline

Our pipeline and Regulatory Circuits workflow both take similar data as input: ac-
tivities of the regions and the genes (or approximation of the transcript activity) and
regions localisation. We also have similar steps: closeness between the regions and
the genes, finding the binding sites of the TF in our regions. All theses steps are listed
in TABLE 6.3, the main differences are:
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— We use the activity of the TF (extracted from its coding gene activity), they do
not use this information.

— They approximate the gene to the transcript and the activity of the transcripts
to its promoters, we directly use the gene activity (if available).

— Regulatory Circuits use a score in which each step that must be superior to 0,
while we check the consistency of the activities of the elements of the relation.

— We also give networks by patterns whereas Regulatory Circuits gives tissue-
specific networks.

— We produce signed networks.

Steps Regulatory Circuits Us
Activities

transformations
(Regions)

Ranks(promoter) &
Rank(enhancer) Pattern(Region)

Activities
transformations

(genes/transcripts)

Rank(Transcript) =
max(Ranks(Promoter)) Pattern(Gene)

Activities
transformations (TF) ∅ extract TFs from Genes’

pattern list

Link TF-Region max(Confidence BS in
region) at least 1 BS in region

Link
Region-Gene/Transcript

Distance < |500kb| and
Weighted Distance < |500kb|

Link transcript-Gene correspondence file ∅
Networks non-filtered 1 overall network 1 overall network

Filtering score > 0 compatibility table

Final Network By tissues (Scored &
Unsigned)

By patterns (Unscored
& Signed)

TABLE 6.3 – Comparison between the steps of Regulatory Circuits workflow and our
pipeline. The main differences are the use of Patterns instead of Ranks and the filte-
ring steps. But also in the produced networks: unsigned and score tissue-specific in
Regulatory Circuits and signed but unscored pattern-specific in our case.
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6.8 Validation

For validating the pipeline, we ran it with Regulatory Circuits data, approximating
the expression for the genes by that of their promoters. We selected 4 combinations
of 4 tissues (2 sets of 4 biologically-similar tissues and 2 sets of 4 dissimilar tissues)
representing 12 tissues from Regulatory Circuits (see TABLE 6.4), on which we had
RNA-seq information from Roadmap Epigenomic to use as comparison for the topo-
logy of the network (as described in SECTION 3.4.3), for a total of 23 samples. On
these samples, we ran both our pipeline and Regulatory Circuits’s using the bash im-
plementation (see SECTION 3.4) as it was the only one allowing us to re-compute ranks
and scores for smaller sets.

Type of sub-set Tissue 1 Tissue 2 Tissue 3 Tissue 4
Similar (1) B lymphoblastoid cell line CD4+ T cells CD8+ T cells peripheral blood mononuclear cell
Similar (2) colon adult colon fetal small intestine adult small intestine fetal

Dissimilar (1) CD34+ stem cells adult brain fetal epitheloid cancer cell line pancreas adult
Dissimilar (2) CD4+ T cells brain fetal colon adult epitheloid cancer cell line

TABLE 6.4 – Composition of the tissues to form 4 sub-sets of regulatory circuits: 2
composed of biologically-similar tissues and 2 composed of dissimilar tissues. CD4+ T
cells and Colon adult tissues both appear in similar and dissimilar sub-sets to be able
to compare them.

TABLE 6.5 presents the number of relations in the resulting networks of the 4 set
of tissues. Just after the query and before running the compatibility table, we can see
that we had the same number of relations (3,005,934 TF-region-Gene or 1,869,854 TF-
Gene), this is due to the fact that we have the exact same information on the TF binding
site and regions for the four sets. We used the files given by Regulatory Circuits for all
theses steps. The differences start after the compatibility table where the inconsistent
relations are filtered.

In Regulatory Circuits the number of potential TF-genes relations is of 3,260,087.
This number was found by making a union of 1) all the unique TF-gene relations ap-
pearing in at least one of the 394 tissue-specific networks (3,246,008) and 2) all the
possible relations in Regulatory Circuits ignoring the scores, based on the provided
intermediary files of TF-promoter, TF-enhancer, promoter-transcript and enhancer-
transcript relations (2,060,960). All the TF-gene relations found by our pipeline are
included in the potential Regulatory Circuits relations, meaning that our method does
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FIGURE 6.13 – Number of unique TF-genes relations found in results networks (in
green) (1), number of relations found while following the files (red) (2) and number of
relations found while using our pipeline (blue) (3). The number of relations in blue is
lower than the relation in red because we exclude TF with binding score of 0 in our
pipeline. All relation we compute (3) s either included in (1) or (2), 13,840 are not
included in (1) and only in (2).

not create irrelevant relations. But 13,840 were only found in the list of potential rela-
tions (2) we hypothesize that those relations are scored to 0 in the Regulatory Circuits
networks. We also found fewer relations than (2) because we excluded all relations
where the confidence score of the TF is 0. We can see the intersection of each set of
relation in FIGURE 6.13. We do have fewer relations than the maximum proposed by
Regulatory Circuits, in part due to the fact that we exclude all TF with a 0 score for their
binding site while processing the files, so we only kept 596 TF out of the 643 in the
original data set.

Sub-set Nb relations Nb relations Nb relations Nb relations Nb relations
before Table After Table Unique "+" "-"

Similar 1 3,005,934 219,495 164,251 114,624 49,627
Similar 2 3,005,934 237,487 178,514 154,276 24,238

Dissimilar 1 3,005,934 165,804 125,451 79,359 46,092
Dissimilar 2 3,005,934 165,597 126,145 88,609 37,536

TABLE 6.5 – Number of relations by network after the pipeline, on the 4 sub-sets of
Regulatory Circuits.

As seen in TABLE 6.5 the networks computed on dissimilar sets of tissues are
slightly smaller and contain (relatively to their number of relations) more inhibitions
relations than the ones computed with similar subsets. The lower number of relations
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can be explained by the lack of consistency in TF-gene regulations across different
tissues.

In FIGURE 6.14, we look at the percentage of genes we are able to find in our
network regarding the RNA-seq expression level given as validation in Regulatory Cir-
cuits. We can see that for the networks computed using our pipeline, we recover sightly
fewer genes from the 10% the most expressed (-4% for similar and -6% for dissimilar)
and for the middle 10% (-3% for similar and -4% for dissimilar). But we do gain a lot
of least expressed genes: from 17% in the original networks, to 36.75% with similar
cells-types and 52% when running our pipeline with dissimilar sub-sets.

The lack of some highly expressed genes can be explained by the number of rela-
tions we obtain which is inferior to the number found in the original graphs. We do keep
a lot more of least expressed genes because - contrary to Regulatory Circuits original
workflow - we do not favor inductions and keep inhibitions in the result networks. We
can also recover them if they are activated in another cell type of the subset. This re-
covery of more of the low expressed genes is a expected output of our pipeline as we
do not exclude based on the scores.

TABLE 6.6 presents the same type of information about the RNA-seq percentage
found, but focuses on the two tissues used in both similar and dissimilar runs of our
pipeline. We can see the same trend: similar sets allow for better coverage of top and
middle part of the RNA-seq but dissimilar sets recover more of the least expressed
genes.
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FIGURE 6.14 – Percentage of genes from the RNA-seq related to the networks found
in the resulting networks. The RNA-seq genes are separated in three categories: the
top 10% most expressed, the middle 10% and the 10% least expressed. In blue the
original networks as computed by Regulatory Circuits, in red the network computed
with our pipeline on similar data-set and in yellow networks computed with our pipeline
but with dissimilar cell-types.

Sub-set Network Top 10% Middle 10% Bottom 10%
Similar colon_adult 91 89 32

Dissimilar colon_adult 89 87 35
Similar CD4 91 86 41

Dissimilar CD4 89 84 66

TABLE 6.6 – Percentage of genes from the RNA-seq related to the networks found in
the resulting networks. Focus on Colon Adult and CD4+ tissues both found in either
similar or dissimilar sub-sets.

In a second time, we looked at the signed relations. As this information is not
contained in Regulatory Circuits we looked at the two major databases containing
signed regulatory relations to confirm the signs: Trrust [HAN et al., 2018] and Si-
gnor [LICATA et al., 2020]. Trrust and Signor both contain signed relations that have
been found through literature. In Trrust some relations are unsigned but this still adds
an information: the relation between the TF and the gene have been found in literature.
Trrust also has relations that are both signed as activation and inhibition (and unsigned
at the same time on some examples).
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In TABLE 6.7 we compiled the relations in our networks that are found in either
Trrust or Signor. In average we found 0.22% of the relations of a set in Trrust and
0.04% in Signor. In Trrust 45% are unsigned, 39% signed in the same direction and
16% signed differently as the database. In Signor 76% are signed the same way and
23% in opposite direction. The relations found in common between Trrust and Signor
in our networks are signed the same way in most cases and in 72% signed the same
way as in our networks.

Graph Trrust Signor Trrust U Signor
Total True False Unknown Total True False Unknown Total Different True False

Similar1 432 164 65 203 76 54 21 0 51 9 33 9
Similar2 357 156 37 164 54 45 9 0 39 5 31 3

DiSimilar1 293 100 54 139 56 42 14 0 39 4 28 7
DiSimilar2 264 113 50 101 58 44 14 0 37 2 26 7

TABLE 6.7 – Relations found in Trrust and Signor and coherence of signs. True: number
of relations with the same sign as the database, False: relations with different sign than
the database, Unknown: relations non signed or signed + and - in the database. For the
union of Trrust and Signor: different: relations signed differently in the two databases,
True: relation signed the same as both databases and False: relations signed differently
than the databases.

For the relations generated by our pipeline and found at least one of Signor or
Trrust, the sign we predicted is consistent with the databases in two third of the time.
It is important to note that Trrust and Signor relations are not necessary found in the
same tissues as the one we use and that can explain some of the differences in signs.

6.9 Conclusion

In this chapter we presented a new design for regulatory network inference. Our pi-
peline addresses some of the methodology concerns presented in Regulatory Circuits:
(1) the lack of consideration for the TFs expression, (2) the discretization of the ex-
pression, (3) the favoritism of activation regulation and (4) the lack of signed relations.
To solve theses issues (1) we added the TFs expression in the pipeline by looking at
the expression of the gene that code for them, (2) we choosed to use patterns of ex-
pression which cluster genes or regions of similar expression direction under the same
pattern. We computed an overall networks and then checked the consistency of the re-
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lations with the biological background, which allowed us to sign the relations (4) and to
not discriminate the inhibition (3). We also provide an automated version of our pipeline
to facilitate its reuse.

Our pipeline gives is consistent with the expression of more genes than Regulatory
Circuits workflow. We were able to explain the regulation of poorly expressed genes by
looking into the regulations of inhibition. We also confirmed that all found relations
between a TF and a Gene are already existing in the realm of potential relations of
Regulatory Circuits.
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CHAPITRE 7

APPLICATION TO B CELLS AND

INTERPRETATION

In this chapter, we apply the pipeline presented in CHAPTER 6 onto a specific set of
four closely-related cell types found in the B cell differentiation: naive B cells, memory
IgG. and IgM. and plasma blast. We then extract the main TFs of the regulation to
further biologically experiment and find key regulator of this differentiation.

In SECTION 7.1 we overview the application of our pipeline on this data-set, from
the type of input data to the data integrated in an end-point and the resulting networks
before and after filtering. As the genes are grouped into patterns we then (SECTION

7.2) look into the patterns interactions which each other as a higher level of regulation.
In SECTION 7.3 we look for the master candidates of the regulation: the TFs with an
impact on a substantial part of a pattern and specific enough to regulate the differen-
tiation in only one direction. We look at the candidate found an their consistency with
the literature.

7.1 Introduction

The pipeline presented in the previous chapter is meant to run on small data-set of
closely related cell populations. We are particularly interested in deciphering the trans-
criptional regulatory network changes sustaining a hematological malignancy arising
form B lymphocytes, follicular lymphoma (FL). To better understand the FL regulatory
networks, we need to identify these networks in a physiological situation. Therefore,
a first step was to run the pipeline on data from normal B cell differentiation in order
to have a baseline of comparison to see the perturbations of the network for the FL.
One of the advantages of the NBC differentiation is that it is a biological process better
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understood than the FL mutations, with some regulators already known and expected.
We thus had a basis for comparing the results of the pipeline to the bibliography.

In this chapter we apply the pipeline to four B cells populations and look at the
resulting networks. We also describe methods to filter the resulting networks in order
to extract TF which could be key regulators of the B cell differentiation. The goal of the
network inference and limitation of the TF space to explore is to be able to give a list
of TF of interest to the biologists we are working with, in order to further biologically
experiment and confirm the regulatory impact of the said TFs.

7.2 Application of the pipeline

7.2.1 Input data

In this study, we used four distinct populations: NBC, MBC IgM, MBC IgG and PB
for which we had gene expression data (RNA-seq) and epigenetic data about chromatin
accessibility (ATAC-seq) that can be used to determine potential regulatory regions.
Some background knowledge on this differentiation is presented in FIGURE 7.1 ,in this
specific case the four populations are sequential: NBC is the first population and PB
is the last, but MBC can be either a transitional state or a final one. Three main TF
are highlighted in the bibliography at different steps of the differentiation: an inhibitor,
BACH2, and two activators, IRF4 and PRDM1.

The initial data for this project were the genes names and coordinates of 29.261
identified genes in our populations. Their expression values were obtained as the nor-
malized mean of three samples of RNA-seq data in each of the four populations. NBC,
IgG and IgM memory B cells have been purified from blood samples and plasma cells
have been produced in vitro and are close to extra-follicular PB. The differential ex-
pression analysis was run using DESeq2 R package: we found 14’921 genes that did
not pass our expression threshold and 3’591 genes of constant expression in all four
populations.

For these four populations we also had the information of read density in ATAC-
seq, which lead to the identification of large sets of regions of open chromatin area.
We had 35.078 ATAC regions each with specific names and coordinates.

As described in CHAPTER 6, the list of TF we look at is extracted from the Regu-
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FIGURE 7.1 – NBC differentiation (simplification): Pathways for the generation of human
B-cell subsets. Naive B cells can yield IgM-only or Ig class switched memory B cells in
a GC dependent manner, as well as plasma cells. MBC can also differentiate into PB,
although through distinct mechanisms. [PHAN et TANGYE, 2017]

latory Circuits initiative, their activity is extracted from the list of gene we looked at or
put to 0 if not expressed in our data-set and their binding sites are filtered within our
regions.

7.2.2 Integration

Once the data are pre-processed through the pipeline - computation of the dis-
tance between region and genes, finding the binding sites of the TF present in the
given regions and transformation of expressions into patterns - the data are integrated
using AskOmics. The database structure is a Triplestore as such interaction between
two entities are described as triples.

With the entry data we obtain 109 distinct Patterns of 4 digits representing in order:
NBC, MBC IgM, MBC IgG and PB. The patterns are comprising from 1 (1412 and 2414)
to 1,418 (4441) genes, while the 0000 and 5555 patterns represent 14,921 and 3,591
genes, respectively - those two patterns were put aside the during the interpretation
of the pipeline as they bore less information on the differentiation. 18 patterns are
composed of more than 100 genes as presented in FIGURE 7.2. Included within the
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genes but also treated as a different entity, we also have 593 TF out of which 326 had
a pattern of 0000 hence would not impact the networks as we compute them.

In addition to the patterns, we computed 3,460,101 relations of binding sites inclu-
sion between a TF and a region and 496,282 relations under 500kb between our ATAC
regions and the genes.

FIGURE 7.2 – The different Patterns present in the pipeline: 107 patterns (0000 and
5555 not represented), with 18 composed of more than 100 genes and 33 of less than
10 genes

TABLE 7.1 presents the different classes integrated into the AskOmics database,
with their number of entities and their attributes. Not all attributes presented in TABLE

7.1 have been used to run the pipeline but were integrated in case we wanted to allow
finer-exploration of the data. For example: limitation of the distance of a region from a
gene, only looking for one chromosome, etc...
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Class Number of entities Data types
Gene 29 261 Start, End, Duplicates, Transcripts, Chromosome, Strand, Expression Pattern

ID ATAC 35 078 Start, End, Chromosom, Density Pattern
ID ATAC Closest 496 282 Distance to gene, Neighbor Gene, ID ATAC

TF 593 Expression Pattern
TF inclusion ATAC 3.460.101 ID ATAC, TF

TABLE 7.1 – Entities integrated in the AskOmics database: the different classes and
their data types integrated in AskOmics, and their number of elements.

As presented in TABLE 7.2 the total data-set integrated represents 14,675,450 and
6,552,236 distinct entities.

Triples 14 675 450
Entities 6 552 236
Classes 5

TABLE 7.2 – Data in AskOmics database: Number of entities and relations successfully
integrated in the database.

7.2.3 Networks extraction and filtering

Once integrated the data-set is queried to retrieve all relations respecting the set
conditions: all interactions involving a TF with a binding site in a region closer than 500
kb of a given gene. Taking all patterns into account excepted 0000, this query outputs
5,635,099 relations. We can then filter the result of the query with the compatibility table
resulting to 612,633 TF-region-gene relations with a score above the compatibility thre-
shold. We can then reduce the number of relations by merging TF-gene relations that
happen through different regions: we then obtain 314,965 unique TF-gene relations
consistent with the fixed threshold of compatibility.

As we are more focused in the regulation of the global differentiation than on direct
regulation between a TF an a Gene, we choose to compile the information given in the
network as a global file giving all the TF and the number of their target in each pattern
as the direction of the regulation. A sub-part of this file can be found in TABLE 7.3.
We pass from 314,965 unique TF-genes relations in the previous step, to 7,465 unique
relations between TF and patterns, as several TF-genes relations are fuse in the same
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TF-pattern relation. The global table contain 64,637 potential relations of which 3,050
are activation (+), 3,933 inhibition (-), 482 are found either as activation or inhibition for
the same TF-pattern couple (+/-). The remaining 57,172 relations are not found in our
data and are put to 0.

Pattern 4441 4431 4421 4414
TF nb Gene Percent Regulation nb Gene Percent Regulation nb Gene Percent Regulation nb Gene Percent Regulation

CEBPA 28 1 +/- 12 2 +/- 0 0 ∅ 0 0 ∅
CEBPB 29 2 - 0 0 ∅ 0 0 ∅ 1 33 -
CEBPG 499 35 + 148 33 + 0 0 ∅ 0 0 ∅
CENPB 0 0 ∅ 1 0 + 0 0 ∅ 0 0 ∅
CLOCK 3 0 + 0 0 ∅ 0 0 ∅ 0 0 ∅
CREB3 665 46 - 35 7 - 30 43 - 0 0 ∅

CREB3L1 0 0 ∅ 0 0 ∅ 0 0 ∅ 0 0 ∅
CREB3L2 379 26 - 115 26 - 22 31 - 0 0 ∅

CTCF 796 56 - 190 43 - 29 42 - 0 0 ∅
CUX1 0 0 ∅ 86 19 + 9 13 + 0 0 ∅

TABLE 7.3 – Sub-part of the general file of interaction between TF and the different
patterns. Include the number of genes targeted by the TF in the pattern, the percentage
of the pattern it represents and the direction of the regulation.

For example the output for the 1124 pattern gives: 7,375 TF-Region-Genes re-
lations and 6,004 TF-genes relations for 519 distinct genes (out of the 557 existing
genes in the patterns) and 145 TF (of which 12 are also genes member of the pattern),
out of which 3,777 are activation (+) and 2,227 inhibition (-). This is represented in
FIGURE 7.3 which creates an hyper-dense network not easily navigated.

7.3 Patterns interactions

At first, we can focus on a overall graph composed of the different patterns and
how they interact with each others. This is done using TABLE7.3 and looking at the
pattern of the different TF. An edge between two pattern is defined as the interaction
between at least a TF from a pattern (1) to a target gene in an other pattern (2):
creating the relation pattern (1) regulating pattern (2). The size of the edge is defined
by the number of TFs regulating the target pattern. The graphs of Pattern can highlight
the combinatory aspect of the regulation and more precisely the potential cascade of
regulation as TF are themselves regulated by other TF.

This first step was to extract all “pattern-on-pattern” relations, as we can see in
FIGURE 7.4 this lead to a high number of edges between the patterns and a very
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FIGURE 7.3 – Visual representation of the network for the pattern 1124. Representing
6,004 edges, 652 nodes (507 genes (dark blue), 133 TF (Turquoise) and 12 both TF
and Genes (pink)), the size of the node represent the number of connections they have.
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dense graph. The pattern 0000 has been represented but not connected as it is filtered
during the compatibility table.

FIGURE 7.4 – Interactions between all the patterns. Note that 0000 is not connected. In
green arrow are represented the activation (regulation +) and in red the inhibitions (-).

As the previous graph is too dense to look at and extract relevant information,
we then focused on the 18 patterns with more than 100 genes FIGURE 7.5. We limited
ourselves to the interactions within the 18 patterns on which we added the main inferred
TF. A TF was only added if it was part of the 5 regulators with the most targets in
another pattern. We can see several auto-activation loops (1124, 4441, 1224, etc...)
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and mutual regulations when two patterns are regulators of each other (4331-4321
and 4441-1124).

FIGURE 7.5 – Interactions between patterns, limited to the interactions between the 18
patterns with more than 100 genes. We also added the main TFs in each patterns: a
TF was added if it was part of the 5 TF with the most targets in at least one pattern.

The last aspect considered is the closeness of some patterns that have either the
same direction (ex: 1124 and 1224 or 1134 and 4441 and 4431) or completely opposite
direction (ex: 1124 and 4431). The closeness was defined as a distance of maximum 1
between both pattern. If we focus on the 18 patterns with more than 100 genes we find
two main directions: pattern going up from low expression in NBC to high expression
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in PB and patterns going down. This is shown in FIGURE 7.6 were we can see that all
patterns in the 18 are related to at least one other.

We can see by comparing FIGURE 7.5 and FIGURE 7.6 - in which the patterns
are placed in the same order - that closes patterns of same directions are activators
of each others (top-left of the figures and triangle at the bottom, example: 4431 and
4441). While patterns opposite direction are often inhibitor of each other (Right to left
of the figures, example: 3441 and 2114).

FIGURE 7.6 – Closeness of Pattern: on the left pattern that go down, on the right pattern
going up
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7.4 Finding master candidates of the regulation

In our study, a good regulator candidate is a TF that we infer to have an impact on a
substantial part of a profile representing a specific part of the global network. Those two
criteria are based on the need to experimentally validate the TF after the computation
to verify if they indeed have a biological action on the regulatory network. The more
targets the TF have the more likely it will be to identify its function in experiments,
particularly if they have a specific expression profile. Since we also infer a sign of
the relation, the expected behaviour of the TF will be even more defined and easy to
confirm.

In this section, we mainly focus on the network for the gene pattern 1124, as it is a
pattern of genes which are known regulators of B cell differentiation, such as PRDM1
and IRF4.

7.4.1 Coverage

The first aspect we focus on is the coverage of a TF: it is the number of genes a
TF has for targets in a specific Pattern. As the Pattern have various number of genes,
we used the percentage of the pattern covered as the final value of the coverage.
The higher the coverage, the higher is the number of genes of the patterns potentially
regulated by the TF.

In FIGURE 7.7 we present a small toy sample of resulting network composed of 1
TF and 4 genes. In this example the TF cover 100% of the pattern2 (1 out of 1 genes)
and 66% of pattern1 (2 out of 3 genes).

The network of the pattern 1124 is covered by 152 TF, of which 20 cover more than
50% of the pattern and only 2 more than 80%. The distribution of the TF coverage is
shown in FIGURE 7.8: 73 TF cover less that 100 genes in the pattern. We define top5
(respectively top10) as the 5 (10) TF with the most target in a given pattern, it is the 5
TF with the higher coverage in said pattern.

TABLE 7.4 present the top5 TF in terms of coverage for the pattern 1124. We can
see a higher pondering of inhibition than activation relations and we find one of the
known TF: PRDM1.

TABLE 7.5 present the top10 regulators in coverage for 18 patterns (all with more
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FIGURE 7.7 – Toy-example: in this example the TF covers 100% of Pattern2 and 66%
of Pattern1
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FIGURE 7.8 – Distribution of the number of target by TF on the pattern 1124 (557
Genes). The TF are labeled according to their number of targets.

Targeted genes % TF Regulation
386 69 RARA neg
390 70 ELF1 neg
410 73 PRDM1 pos
460 82 SP3 neg
479 85 SP4 neg

TABLE 7.4 – Focusing on Pattern 1124: Top 5 regulators by number of targeted genes
and their regulation
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than 100 genes). We can see some highly represented TF across all patterns, with
high levels of coverage. For example SP4 is the Top1 regulator in 8 patterns and Top2
in 2. Some other notable examples are RARA (present 11 times), SP3 (10), ELF1
(10), RREB1 (10) SP1 (9) and KLF16 (9). As they have a large number of targets they
do not appears as interesting for the biological experimentation: they seem ubiquitous
and would not give a specific direction to the model to be able to follow their regulatory
impact.

But the TABLE 7.5 also shows that in opposed pattern (ex: 1124 and 4431) the
same TF have opposite regulatory roles: SP3 and SP4 have an inhibitory impact in
1124 and are activators in 4431. 15 out of the 18 patterns are covered at least at 90%
with the combined actions of their top5 regulators, but are never totally explained only
by looking at this top5.

Pattern Total of Genes Covered in % Top5 TF Top6 to Top10 TF
in Pattern by top5

3431 116 110 94.83 SP4 (+) KLF16 (+) SP3 (+) ZFX (+) ZNF219 (+) ELF1 (+) RARA (+) RREB1 (+) NRF1 (+) PATZ1 (+)
2114 421 399 94.77 SP4 (-) KLF16 (-) SP3 (-) RREB1 (-) ELF1 (-) EGR1 (-) RARA (-) ETV6 (-) ELF3 (-) PATZ1 (-)
1214 221 209 94.57 SP4 (-) SP3 (-) KLF7 (-) ELF1 (-) RARA (-) GABPA (-) PATZ1 (-) KLF12 (-) ESR1 (+) SP1 (+/-)
3441 358 338 94.41 SP1 (+/-) SP4 (+) KLF16 (+) SP3(+) RREB1 (+) ELF1 (+) RARA (+) PATZ1 (+) GABPA (+) TCF3 (+/-)
4321 102 96 94.12 KLF4 (+) ZFX (+) ZNF219 (+) TFAP4 (-) PRDM1 (-) PPARA (-) EGR2 (-) ZBTB14 (+) RFX2 (-) ETV7 (-)
4441 1418 1329 93.72 SP4 (+) SP3 (+) KLF16 (+) SP1 (+/-) RREB1 (+) PRDM1 (-) ELF1 (+) RARA (+) NRF1 (+) PATZ1 (+)
2441 110 102 92.73 KLF16 (+) RREB1 (+) ZNF143 (-) NRF1 (+) ITGB2 (-) PRDM1 (-) SPIB (+) SP1 (+/-) YY1 (+) IRF9 (+)
2214 178 165 92.70 EGR1 (-) RARG (-) RORA (-) JDP2 (-) TCF7L1 (-) RUNX1 (+) PRDM1 (-) TFAP4 (-) ETV7 (-) NR2F6 (-)
1124 557 516 92.64 SP4 (-) SP3 (-) PRDM1 (+) ELF1 (-) RARA (-) TFAP4 (+) PATZ1 (-) RFX2 (+) RFX3 (-) EBF1 (-)
4431 439 406 92.48 SP1 (+/-) SP4 (+) SP3 (+) RREB1 (+) KLF16 (+) ZFX (+) ELF1 (+) RARA (+) NRF1 (+) GABPA (+)
1114 1244 1148 92.28 SP4 (-) SP3 (-) RREB1 (-) KLF16 (-) KLF7 (-) SP1 (+/-) ELF1 (-) RARA (-) NRF1 (-) PATZ1 (-)
4331 228 209 91.67 SP4 (+) KLF16 (+) SP3 (+) RREB1 (+) KLF7 (+) KLF4 (+) ELF1 (+) ZFX (+) RARA (+) NRF1 (+)
1234 142 130 91.55 EGR3 (+) NR2F6 (+) RUNX2 (+) THRB (-) BHLHE41 (+) HSF4 (+) E2F1 (+) ZNF143 (-) E2F7 (+) SP1 (+)
1334 105 96 91.43 RUNX2 (+) EGR3 (+) NR2F6 (+) SP1 (+) POU2F1 (+) TCF3 (+) E2F1 (+) HSF4 (+) SPI1 (+) POU2F2 (+)
2124 131 118 90.08 CTCF (+) FLI1 (+) EGR1 (-) ETV6 (-) RORA (-) JDP2 (-) LEF1 (+) LMO2 (+) SOX7 (-) ESR1 (-)
4341 168 151 89.88 SP4 (+) KLF16 (+) RREB1 (+) SP3 (+) KLF7 (+) ELF1 (+) SPI1 (+/-) RARA (+) PRDM1 (-) SP1 (+/-)
3114 121 108 89.26 EGR1 (-) ETV6 (-) NFYA (+) RORA (-) JDP2 (-) ZNF143 (+) POU3F1 (-) TFCP2 (+) RREB1 (-) RARA (-)
1224 307 259 84.36 EGR3 (+) RUNX2 (+) ETS1 (-) ZNF75A (-) E2F1 (+) THRB (-) ZNF143 (-) E2F7 (+) ARID3A (+) TFCP2 (-)

TABLE 7.5 – List of the TOP TF for the patterns with more than 100 genes, list given in
order of coverage.

As shown, using only the coverage is not sufficient to find good candidates for
the biological experiment: it does not take into account the diversity of targets of the
regulator.

7.4.2 Specificity

A second aspect we choose to focus on is the specificity, which is based on the
number of targets of a TF that are from a specific pattern. A TF has a great specificity
for a pattern if out of all its target a significant number come from this pattern. As for
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the coverage, the specificity is calculated in percentage, the number of targets in the
specific pattern on the total number of targets of the TF.

In FIGURE 7.9 we use the same toy-example as for the previous subsection. In
this example the TF is specific at 66% of pattern1 (2 out of 3 targets) and at 33% of
pattern2 (1 out of 3 targets).

FIGURE 7.9 – Toy-example: in this example the TF is specific at 66% of Pattern1 and
at 33% of Pattern2

TABLE 7.6 present the specificity of the TF PRDM1: it has targets in 35 patterns
out of which only 3 represent more than 50% of all PRDM1 targets. PRDM1 is more
specific to the pattern 4441 (34%) than of 1124 (13%) and 1114 (12%), 1124 and 1114
being very close patterns (low in all population except PB) and 4441 being the opposite
of 1114.

TF Total target 4441 1124 1114 3441 4431 4341 4331 4321 4221 2441 2214
PRDM1 3076 34 13 12 8 5 3 1 2 1 2 1

4421 4414 4411 4314 4311 4241 4231 4214 4211 3431 3421 3411 3341
1 0 0 0 0 0 0 0 0 0 0 0 1

3314 3241 3214 2431 2421 2414 2411 2341 2314 2241 1134
0 0 1 0 0 0 0 0 0 0 1

TABLE 7.6 – Specificity of PRDM1, in percentage of the target of the TF belonging to
the pattern. Out of 35 patterns covered, 3 have a specificity over 10% and 28 with less
than 2

As for the coverage, the specificity does not bring enough information by itself:
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despite having a large number of its targets in a Pattern, a TF may have little influence
on it if the pattern itself is very large.

7.4.3 Combination of coverage and specificity

The solution we chose to implement was to use a combination of the two previous
criteria to extract some TF of interest. In this section we do not differentiate if the TF
is an inhibitor or an activator in the pattern, we also kept unknown direction: if the TF
is activator of one gene of the pattern but inhibitor of another of the same pattern.
For a given pattern, a TF of interest is a TF whom specificity and coverage are both
superior to their respective mean + one standard deviation. The TF needs to have both
its specificity and its coverage over the threshold. Then, they are two ways to find TF:
either by focusing on the TF or on the pattern.

By focusing on the TFs, we obtain a list of patterns where the TF pass the threshold
and might be of interest, i.e. patterns regulated by this specific TF. And by focusing on
the Pattern, we obtain a list of TF that pass the threshold and might be regulators of
this specific pattern.

In the following figures we reefer as "UP" the TF/Patterns for which the threshold
is passed, the regulations are indifferently activation or inhibition.

FIGURE 7.10 focuses on the pattern 1124: for this pattern 10 TF pass the threshold
for both coverage and specificity: CREB3, E2F2, ELK3, GFI1, IRF4, MYB, PPARA,
PRDM1, RFX2 and TFAP4.

FIGURE 7.11 focuses on three TFs: IRF4, PRDM1 and BACH2. IRF4 and PRDM1
which seems to have an impact on 1134 and 1124, two related patterns and BACH2
on 3421. IRF4 and BACH2 were not TF that were high on the coverage list, and they
did not appear in the top10 TF of their respective target pattern.

In FIGURE 7.12A we look at the number of TF we extract from the data. For 24
patterns we highlight no specific regulator and for 9 only one TF appears to pass both
threshold, finally 12 patterns have 10 or more regulators of interest. As shown in FI-
GURE 7.12B, out of the 237 TF in the resulting networks, 91 do not pass the threshold
for any patterns, 31 pass in only 1 pattern and 21 are up in 10 or more patterns.

The TF passing the threshold in more than 10 patterns can be less interesting that
some passing in less: they are at higher risk to cover patterns that are too different of

143



Application to B cells and interpretation

FIGURE 7.10 – Focusing on pattern: identification of putative regulators. Example on
pattern 1124.

each other to find a global direction. But this representation is help-full for biologist as
it allow to easily find the supposed target of a TF and the direction it influence.

7.4.4 Consistency with the literature

This method allow us to retrieve some known TF as TF of interest while they were
not necessarily high in the coverage or specificity lists. The combination of both para-
meters allow us to filter some highly ubiquitous TF (for example: SP4 which has a high
coverage but very low specificity). This method was validated by the 3 mains TF of our
model: PRDM1, IRF4 and BACH2. PRDM1 and IRF4 both being up in 1134 and 1124
as activators, while the literature describe them as activators of the PB identity. BACH2
is found as an activator in 3421 and is given as an inhibitor of the PB (last population
of the pattern). PAX5 is alsoo found as an activator of 3421.
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(a) Example of IRF4: up in 1134 and 1124 (b) Example of PRDM1: up in 1134 and 1124

(c) Example of BACH2: up in 3421

FIGURE 7.11 – Focusing on TF: identification of expression patterns susceptible to be
regulated by this TF.

(a) Number of TF passing both threshold by
patterns.

(b) Number of patterns for which a TF pass
both threshold.

FIGURE 7.12 – Number of elements passing the threshold by TF or by Pattern
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7.5 Conclusion

As shown in this chapter we are able to infer signed networks on the B cells dif-
ferentiation. We produce several regulatory networks, one by pattern and have also
produced an overall graph of regulation focusing on the pattern level. We are also able
to extract key regulators of different patterns and to reduce the search space for further
biological experiments.

A first step in the validation of the obtained networks, was the occurrence of three
TFs we were expecting to find according to the bibliography and with the same impact
on the direction of the differentiation. But to further confirm those TF we need to see
if they have a real impact on the regulatory network with hand-on experiments. Unfor-
tunately, the biological experiments necessary to confirm the candidates TF are long
and costly and we have not been able to perform them during the therm of this Ph.D.
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CHAPITRE 8

CONCLUSION AND PERSPECTIVES

In this chapter we discuss the contributions presented in this thesis and the pers-
pectives and future works related to it.

8.1 Contributions and limitations

In this thesis we focused on the regulatory network inference methods and their
application to two specific biological contexts: the B cells differentiation and the follicular
lymphoma.

Firstly, we revealed and analyzed the reproducibility and re-usability limitations of
the most recent and complete network inference method: Regulatory Circuits. We tried
to apply it to our data, since our cell populations do not appear in the published inferred
networks. Following the methodology explained in the Regulatory Circuits article pro-
ved more complex than expected: some of the workflow steps were poorly described
or plainly different between their explanation and the published data-sets they were
supposed to generate. We proposed two ways of recomputing Regulatory Circuits, the
first one using a maximum of the published files (intermediary and entry ones) and a
second one using only the entry files. Both of these methods led to different results
- varying both from one another and from the original networks. This unfortunately
illustrates a common pitfall of reproducible and reusable science.

Secondly, to address the issue of re-usability, we proposed a new method for struc-
turing and representing Regulatory Circuits using the Semantic Web technologies fra-
mework. We produced a RDF graph of the relations between the biological entities
of Regulatory Circuits. We showed that the first layer of regulatory networks (sample-
specific) provided by Regulatory Circuits can be generated by two SPARQL queries. At
this point the method did not allow to easily extract the second layer of regulatory net-
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works (tissue-specific) and needed post-computation to obtain them. We showed that
Semantic Web technologies are a relevant framework to support network inference
models and that they improved their re-usability.

To further improve the re-use of Regulatory Circuits, we thirdly proposed an exten-
sion of the previous method to generate the second layer of regulatory networks. Using
the same RDF graph representing the biological data as described in the previous sec-
tion, we could use the same two queries but this time we re-injected the result of the
queries in the triplestore. The re-injected networks were put in specific named graphs
- named after the sample they represent. We could then query those named graphs to
generate the tissue-specific networks, and similarly re-inject them in another layer of
named graphs. This allowed us to propose a resource composed of all the biological
entities of Regulatory Circuits, but also of all the inferred regulatory networks, impro-
ving its re-usability. However, this was a very time-consuming task (a month for 808
sample-specific networks and 394 tissues). We are currently looking at other options
to improve it efficiency such as not directly re-injecting the results of the queries but
extracting them and using Quads 1 to inject the result in a second time.

As we saw that we could not reproduce Regulatory Circuits on new data, we
fourthly proposed a new design for regulatory network inference. This method was de-
signed to run on small, biologically-related data-sets and to produce signed networks.
We took advantage of the heterogeneity of the biological data and used a multi-level
normalisation of the activities based on the direction of the entities across all cell po-
pulations. We capitalized on the work previously done, as we developed a similar RDF
graph-data reasoning. The design was based on expert knowledge to check the po-
tential regulations and validate whether they are in concordance with the biological
knowledge. We tested this method on data-set extracted from Regulatory Circuits, and
obtained a better recall for the lowly expressed genes because we were able to take
inhibitions into account. We also verified the signs of the relations with two major data-
bases.

Fifthly, we applied this pipeline to four populations of B cells differentiation. We ex-
tracted 314,965 TF-genes relations representing two network levels: an overall network
and several pattern-specific networks. To address the graphs high density, we propo-
sed two criteria to select TF with a higher potential impact: the coverage (the ability of

1. https://www.w3.org/TR/n-quads/
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the TF to have a large number of targets) and the specificity (the potential of the TF to
regulate only a specific direction of the differentiation). This allowed us to identify a list
of 146 TFs, including the major known TFs from the literature (BACH2, PRDM1, PAX5
and IRF4), and to associate each of them with the expression patterns they may regu-
late. This list still represents a large number of TF to further biologically experiment to
validate their impact on the network.

8.2 Perspectives

In this section we present three main axes of perspectives: optimizing the metho-
dology to find relevant TFs of significant impact on the network, better understanding
the TFs mode of action at a bigger scale and not only in a specific relation, and the
biological applications to follicular lymphoma, including the biological confirmation of
the inferred TFs.

8.2.1 Improving the methodology to find significant TFs: finding
minimum set of TF

The list of candidate TFs we propose is still composed of 146 TFs. We can narrow
the search space by focusing on a specific pattern and its regulators, but this can still
lead to up to 12 regulators. As biologically testing one TF is costly, we need to propose
a way to further reduce this list of potential regulators.

In preliminary work, the solution approached was to find the minimum possible set
of TF capable of covering all, or most part, of a given pattern. The goal was to give a
small set of regulators to the biologists to test, and to have it be of the higher possible
impact on the desired trajectory.

To do so, we chose to use ASP (Answer Set Programming). It took as input the
list of TF included in the network, with the rule to use at least one and a set of rules
representing the relations between TF and Genes. A rule was given as such: if TF is
in the solution then exactly n out of the n genes its regulates are also in the solution.
We could then ask to maximize the number of genes while minimizing the number of
TF. We give an example of the type of ASP script used in FIGURE 8.1. This example
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% Specify the TF set we can pick from:
1\{ tf(arhgef12); tf(arid3a); [...] ; tf(nfe2l1); tf(zkscan3); tf(atf6); tf(creb3l2)\}.

% Declaring the relations between TF and Genes:
15\{ gene(abhd17c); gene(aifm2);gene(atp8b2); gene(cenpu); gene(chek1); gene(dhrs9);
gene(gadd45a); gene(kcnn3); gene(mocs2); gene(mrpl46); gene(pmvk); gene(ppa1); gene(psma3);
gene(psmb1); gene(pus3) \}15:-tf(arhgef12).\\
150\{gene(abhd17c); gene(abhd2); gene(ada); [...] ; gene(yeats2); gene(zbed2) \}150:-tf(arid3a).

[...]

55{ gene(anxa6); gene(arhgap10); gene(arhgap18); gene(atox1); gene(atp8b2); [...] ; gene(yeats2) }55
:-tf(znf691).

Maximizing:
%{choose_TF(X):tf(X)}.
nb_TF(N):-N=\{ tf(\_)\}.
nb_Gene(Z):-Z= { gene(_)}.

#minimize{ S@1,S:nb_TF(S)}.
#maximize{ G@2,G:nb_Gene(G)}.

FIGURE 8.1 – Simplified ASP query to find solutions with the minimal number of TF
and the maximal number of genes.

includes regulatory relations for the 1124 pattern at a previous development state of
the pipeline, therefore it does not correspond to the reality of the current results.

In this configuration, we were able to run the ASP script and to find a solution
composed of 3 TF covering all the 556 genes of the pattern. The solution was computed
under 2 seconds as shown in TABLE 8.1. Out of the 3 TF found, 2 were part of the 5
TF with the most coverage and one was a ubiquitous TF not found among the 10 TF
with the most coverage.
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Models 1
Optimum yes

Optimization -556 3
Calls 1
Time 1.123s

Solving 0.61s
1st Model 0.01s

Unsat 0.00s
CPU Time 1.114s

TABLE 8.1 – Example of ASP output, for pattern 1124 (previous iteration) 3 TF for 100%
of coverage: FOXP1 (4441), SP3 (4441) and CTCF (3124)

We still need to run this method on all the current networks to have a better land-
scape of the TFs we could submit to biological experiments. This approach allowed us
to quickly find small sets of TF with large impact on specific networks, however it does
not take into account if the output TF have a large variety of patterns’ targets. It would
be interesting to limit the search of the TFs with this methodology to the TFs previously
found as interesting both in term of coverage and specificity (see SECTION 7.4).

8.2.2 Better understanding the TF roles in the overall regulatory
network

In the current methodology developed during this thesis we mainly focus on the
interactions between a TF and a gene or a TF on a pattern and eventually patterns
onto patterns. We do not look at the overall graph, which could lead us to misinterpret
some regulatory mechanisms on a higher level. With the overall network there is two
aspects to take into consideration: the combinatory nature of the regulation and the
consistency of the predicted network.

The combinatory aspect of the regulation means that there could be a cascade
of events before the regulation we are looking at. For example: a TF we extracted
to be interesting could itself be regulated by another TF. Therefore, the second TF,
up-stream of the one we identified, could potentially have an higher impact on the
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global network. But also than regulators do not necessarily act independently: there
are events of competition between two TF, collaboration (example in [JOLMA et al.,
2015]) or they can bind DNA sequentially.

To look at the cascade of regulation, we should look at the graph of regulations
composed only by the 266 TF we consider and look at their interactions. We have only
7,723 interactions of a TF on another TF, where a complete graph would have been of
70,756 interactions, but as we can see in FIGURE 8.2 this still forms a highly connected
graph. This is what we started to do in SECTION 7.3 with the interactions of TFs onto
patterns.

For the second aspect (potential collaboration or competition between TFs), we
will look to see if some TFs always appear together in the same patterns (either with
the same or opposite regulatory input) in the resulting networks. We also need to fur-
ther investigate the literature to try to find existing known collaboration or competition
between TFs. We could also try to prove our hypothesis through experimentation.

In addition to the combinatory aspect, it is important to look at the overall consis-
tency of the predicted networks. We know that the TF-genes relations are themselves
consistent regarding the TF and the genes activities, but it does not mean they are
consistent with other regulations surrounding them.

An example of consistency can be seen in [BAUMURATOVA et al., 2010]: if a TF is
an activator of two genes and that only one is present in the population it is inconsistent.
This could be explained by a difference of regulatory regions: one being closed and
the other open in the same population, but it would be interesting to check. Another
example would be activations’ loop between two TFs but where one is not present in
the given population.

To compute the overall consistency, we propose to use Caspo [VIDELA et al., 2017]
to check the implemented rules of consistency.

8.2.3 Biological applications

The final goal of this work was to generate regulatory networks relevant for ana-
lyzing follicular lymphoma emergence. Our aim is to be able to decipher and prioritize
non coding mutations in this context, by identifying their potential impact on regulatory
networks. Therefore, we applied the pipeline to biological data relevant for follicular
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FIGURE 8.2 – Regulatory network, focusing only on TF/TF interactions. In green acti-
vation and in red inhibition.
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lymphoma.

We selected five cell populations as inputs: Naive B cells (NBC), Centroblast (CB),
Centrocyte (CC), Follicular Lymphoma (FL) and Plasmablast (PB). CB and CC are two
germinal center B cell subsets, which are described as the origin of FL tumoral B cells.
The data-set is composed of 26,802 genes, of which only 13,688 pass the differential
expression filter and 83,240 regions obtained by ATAC-seq analysis. The rest of the
computed and integrated elements are presented in TABLE 8.2.

gene_pattern 13,688
region_pattern 83,240

tf_pattern 350
gene_region_closest 1,192,688
tf_region_intersect 2,716,726

TABLE 8.2 – Numbers of entities integrated for the FL analysis

The pipeline produced 10,476,567 TF-region-gene relations before the compatibi-
lity table and 618,907 unique signed TF-gene relations after filtering.

While the regulatory networks have been produced, they are not yet analysed. A
future work will be to comparatively analysed the networks obtained with the normal
differentiation and with the follicular lymphoma. We hope to find changes in key re-
gulators, by doing so we could then look into their binding sites to see if we can find
mutations in them.

Finally, we are currently working with the INSERM team U1236 working on the B
cells, to develop a protocol in order to biologically experiment on the TF we infer to
confirm their involvement in the regulatory networks. One idea would be to perform
whole-genome analysis of TF binding sites (ChIP-seq) in specific B cell subsets. A
complementary approach could be to invalidate a potential regulator either by RNA
interference or by genome editing (CRISPR / Cas9 technology), and to evaluate the
consequences on B cell differentiation and/or on tumorigenic potential of primary B
cells or cell lines.

Unfortunately, this is costly both in time and money, to order the antibody specific
of the TF we are looking for. This would therefore necessitate to further reduce the list
of provided TFs, for example using the ASP method proposed in a previous section.
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Circuits Nb of TF Nb of Genes Nb of Relations % of complete graph
OG Using Ranks Re-computing OG Using Ranks Re-computing OG Using Ranks Re-computing OG Using Ranks Re-computing

b_lymphoblastoid_cell_line 643 594 594 12330 11338 12305 1358031 602268 769386 17.1291429695807 8.94266353783023 10.5263114690177
brain_fetal 643 594 594 12218 11827 12065 407056 234251 239049 5.18135163503252 3.33442084097364 3.3355938163232

cd4+_t_cells 643 593 593 11911 10902 11881 1281420 526036 715736 16.7314007087036 8.13681788046997 10.1588646148505
cd8+_t_cells 643 593 593 11919 10936 11893 1327365 555780 744147 17.3196682584115 8.57017557927096 10.551461606293

cd34+_stem_cells_-_adult_bone_marrow_derived 643 593 593 12151 11837 12085 733382 407965 416869 9.38657712125019 5.81201283710251 5.81698913192877
colon_adult 643 594 596 14850 12847 14812 1215042 301243 688446 12.7248849301726 3.94756050161982 7.79847919426839
colon_fetal 643 595 595 13890 13518 13787 675760 377168 384553 7.56622518410036 4.68927206923604 4.68780418528476

epitheloid_cancer_cell_line 643 595 595 12844 11145 11942 1256139 445225 619340 15.2099024881906 6.7140180432873 8.71635875921295
pancreas_adult 643 595 595 12703 12323 12567 476699 267037 271991 5.83615704596543 3.64198393793937 3.63752471626034

peripheral_blood_mononuclear_cells 643 592 593 12780 11473 12763 1796098 154354 1010008 21.8568817431981 2.27258004103642 13.3449622968163
small_intestine_adult 643 596 596 14710 14378 14677 1181926 653491 666581 12.4958740946003 7.62596612460685 7.62025275358926
small_intestine_fetal 643 595 595 14492 14119 14414 805147 445257 454427 8.64044043820605 5.30017063840906 5.29861840670776

TABLE 8.3 – Extension of TABLE 3.2, network by network. Comparison between the 3 ways of calculating Regulatory
Circuits. Both method using or re-computing ranks produce networks that are included in the original Regulatory
Circuits networks.
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Titre: Analyse et intégration de données génomiques larges et hétérogènes

Mot clés : Bio-informatique, technologies du web sémantique, inférence de réseaux de régulations

Résumé: L’inférence de réseaux de régulation à
partir de données hétérogènes a pour but d’identi-
fier les régulateurs clefs impliqués dans des pro-
cessus biologiques aboutissant à des cancers.
Dans cette thèse, je m’intéresse à la différencia-
tion des cellules B naïves, d’où émerge le lym-
phome folliculaire. Ma première contribution sou-
ligne les problèmes de réutilisation et de reproduc-
tibilité des méthodes d’inférence de réseaux ac-
tuelles. Pour surmonter ces limites, je propose une
structure utilisant les technologies du Web Séman-
tique pour intégrer et requêter ces jeux de données
hétérogènes de manière systématique (deuxième
contribution). Le pipeline d’origine est reproduit par
des requêtes sur le graphe de données, ce résultat

peut lui-même être intégré et enrichi avec des don-
nées publiques (troisième contribution). Ceci dé-
montre l’utilité de cette approche et de ses béné-
fices en terme de réutilisation et de reproductibilité.
Ma quatrième contribution est une nouvelle mé-
thode d’inférence de réseaux prenant en compte la
connaissance des experts, pour étendre l’analyse
à des jeux de données restreints et biologiquement
proches et pour introduire la notion de relations si-
gnées, incluant les inhibitions. Enfin, l’application
de cette méthode à la différenciation des cellules
B, a permis la découverte de 146 FT avec un
impact potentiel majeur sur le réseau (cinquième
contribution).

Title: Analysis and integration of heterogeneous large-scale genomics data
Keywords : BioInformatics, Semantic Web technologies, regulatory network inference

Abstract: Regulatory networks inference from he-
terogeneous data is a computational step aiming at
identifying key regulators involved in differentiation
processes leading to cancer. In this thesis I focus
on B cell differentiation, from which follicular lym-
phoma emerges. The first contribution outlines the
reproducibility and reusability limitations of a state-
of-the-art method for network inference from geno-
mic data. To overcome these limitations, I demons-
trated that Semantic Web technologies can struc-
ture and integrate large-scale heterogeneous data-
sets in a systematic way (second contribution). The
original analysis workflow outputs could be repro-
duced as queries on a graph of data, which could it-

self be layered and enriched with public databases
(third contribution). This demonstrates the techni-
cal relevance of this approach and underlines its
benefits in improving reusability and reproducibility.
As a fourth contribution, a new method for network
inference was designed to take expert knowledge
into account - both to extend the previous frame-
work to the analysis of smaller, closely-related da-
tasets and to enrich the inferred networks with si-
gns, therefore including inhibitory regulatory pro-
cesses. Finally, the method was applied to B cell
differentiation, leading to the discovery of 146 TF
with potential large impact on the network (fifth
contribution).
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