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Abstract

Brain imaging devices can provide a glimpse at neural activity in multiple spatial locations and time
points. Moreover, neuroimaging studies are usually conducted for multiple individuals undergoing the
same experimental protocol. Inferring the underlying sources is a challenging inverse problem that can
only be tackled by biasing the solutions with prior domain knowledge. Several prior hypotheses have
been pursued in the literature such as promoting sparse over dense solutions or solving the problem
for multiple subjects at once. However, none take advantage of the particular spatial geometry of the
problem. The purpose of this thesis is to exploit the multi-subject, spatial and temporal aspects of magneto-
encephalography data as much as possible to improve the conditioning of the inverse problem. To that
end, our contributions revolve around three axes: optimal transport (OT), sparse multi-task regression
and time series. Indeed, the ability of OT to capture spatial disparities between measures makes it very
well suited to compare and average neural activation patterns based on their shape and location over the
cortical surface of the brain. For the sake of scalability, we take advantage of the entropic formulation of
optimal transport, which we argue has two important missing pieces. From a theoretical perspective, it
has no closed form analytical expressions, and from a practical perspective, entropy leads to a significant
increase in variance known as entropic bias. We complete this puzzle by studying multivariate Gaussians
for which we uncover an entropic OT closed form and propose debiased algorithms to compute fast and
accurate optimal transport barycenters. Second, we define a multi-task prior based on OT and sparse
penalties to jointly solve the inverse problem for multiple subjects to promote spatially coherent solutions.
Our real data experiments highlight the benefits of using OT as a prior over classical multi-task regression
penalties. Finally, we propose a loss function to compare and average spatio-temporal data that computes
temporal alignments across spatially similar observations of the data via a fast GPU friendly algorithm.



Résumé

Les dispositifs d’imagerie cérébrale peuvent donner un apercu de 1’activité neuronale a plusieurs
endroits et points dans le temps. En pratique, les études d’imagerie cérébrales sont généralement menées
pour plusieurs personnes suivant le méme protocole expérimental. L'inférence des régions actives du
cerveau est un probleme inverse mal posé qui ne peut étre résolu qu’en ajoutant des hypotheses a priori
sur les solutions. Plusieurs hypotheses préalables ont été poursuivies dans la littérature, comme la
favorisation des solutions parcimonieuses ou la résolution du probléme pour plusieurs sujets a la fois.
Cependant, aucune ne profite de la géométrie spatiale du probleme. Le but de cette thése est d’exploiter
au maximum les aspects multisujets, spatiaux et temporels des données de magnétoencéphalographie
pour améliorer le conditionnement du probléme inverse. A cette fin, nos contributions s’articulent autour
de trois axes : le transport optimal (OT), la régression multi-tdches parcimonieuse et les séries temporelles.
En effet, la capacité de 'OT a mesurer les disparités spatiales entre les distributions le rend tres bien
adapté a la comparaison et 'aggrégation des cartes d’activation neurales en fonction de leur forme et de
leur emplacement sur la surface du cortex cérébral. Pour des raisons numériques, on utilise la formulation
entropique du transport optimal, qui, selon nous, comporte deux piéces manquantes importantes. D'un
point de vue théorique, elle n"a aucune expression analytique a ce jour, et d'un point de vue pratique,
I'entropie conduit a une augmentation significative de la variance, phénomene connu sous le nom de biais
entropique. Nous complétons ce puzzle en étudiant les Gaussiennes multivariées pour lesquelles nous
découvrons une forme close de I'OT entropique et proposons des algorithmes debiaisés pour calculer des
barycentres de transport optimal rapides et précis. Ensuite, nous définissons une pénalité multitache
basé sur I’OT et des pénalités de parcimonie pour résoudre le probleme inverse pour plusieurs sujets
afin de promouvoir des solutions cohérentes sur le plan spatial. Nos résultats sur des données réelles
mettent en évidence les avantages de 1'utilisation de 'OT comme régularisation par rapport aux pénalités
de régression multitaches classiques. Enfin, nous proposons une nouvelle divergence pour comparer
et moyenner des données spatio-temporelles basée sur un alignement temporel entre des observations
spatialement similaires, le tout via un algorithme rapide et adapté aux GPUs.
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Chapter 1

Introduction

Ideally, the pursuit of any scientific endeavor starts with a sense of wonder, which, through further
reasoning and research branches into a knowledge graph of coarse to fine questions. It may seem obvious
that one’s ability to provide answers and expand the graph depends very much on how “interesting” the
matter is. But could it be the other way around ? A subject becomes “interesting” only after mastering its
background leading to a — perhaps unfounded — gut feeling of being able to provide answers to its open
questions. Absorbing the required amount of information to reach that state may take days, months or
even years. Thus, from an optimistic perspective, anything can be interesting if you look at it long enough.
For the subject at hand, we hope that after reading this introduction, “long enough” will not be too long.

1 Why optimal transport ?

We start off lightly by motivating optimal transport (OT) from two different perspectives. First, by
illustrating its practical use in neuroimaging — which will be the main subject of Chapter 3. Second, by
showing how it fits in the statistics landscape.

1.1 Through the lens of the pragmatic: brain imaging data

The purpose of functional brain imaging is to study brain activity. Consider a model of the brain surface
given by a triangulated mesh of p vertices. Brain activity can be illustrated by weighting each vertex with
a number that may correspond or be proportional to the intensity of the electrical current at that vertex’s
location.

1.1.1 Comparing neural patterns

Comparing two different activation maps (sets of weights in IR’ !) can be done using any distance function
in IR?. Such a comparison however will not take into account the spatial disparities between the activation
maps. Indeed, reducing these maps to pairs of weight vectors disregards all the information in the
triangulated structure of their underlying mesh: the order of the vertices matters. Figure 1.1 shows two

! Activation maps can be signed vectors, this will be discussed in further detail in Chapter 3.
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examples. Keeping in mind that the goal of brain imaging is to highlight the function of individual brain
regions, the comparison of the pair (a) must take into account the physical distance between the active
regions. Provided such measurements, a distance between this pair of maps could simply correspond to
the geodesic between their vertices with maximum intensity. This idea however, is not easy to generalize
to complex neural patterns (Figure 1.1 (b)). Lifting this geodesic to compare such maps is precisely the
goal of optimal transport.

Kantorovich OT This generalization requires to see the pair of intensity maps as distributions of mass
that must be transported from one to the other in a way that minimizes a cost function, which, in our
case, is given by the geodesic. This imposes a first important restriction: the pair of weight vectors must
have non-negative entries and add up to the same total mass equal to 1, i.e, they belong to the probability
simplex A,. Formally, if we number the vertices from 1 to p and denote x,y € A, then, the Kantorovich
formulation of OT for the cost function c is given by:

def . ..
OT(x,y) = min c(i, i) = (C, ) , 1.1
( Y) RO zZ,]: ( ]) ij ( ) (1.1)

where C € RP*? is the matrix with the general entry C;; = c(i, j). The minimizer 7 is a discrete joint table
with marginals equal to x and y that minimizes the transport cost (C, 7). Therefore, this cost has the same
unit as C and can be seen as the optimal average displacement between the pair of activation maps.

Unbalanced OT The formulation (1.1) can be useful as a validation metric in simulations where activa-
tion maps are projected onto the simplex beforehand. However, OT cannot a priori be used to compare
the activation maps of two different individuals or different time points: the difference in the overall
amplitudes of the activation maps matters. Comparing weight vectors with unbalanced masses can be done
by relaxing the marginal constraints of (1.1) and replacing them with loose divergences that penalize their
violation. Using the Kullback-Leibler as a divergence leads to unbalanced OT between x,y € R (Liero,
Mielke, and Savaré, 2016):

UOT(x,y) ¥ min (C, ) +9KL(l|x) + vKL(7 " 1y) , (1.2)

ne]R+le,

where v > 0 is a hyperparameter that controls mass displacement. When 7 is small, the marginals of 7
can be very far from x and y, thus very little mass is transported. In practice, it should be set relatively to
the values of C. Going beyond ||C||« leads in practice to transportation plans 7t almost indistinguishable
from each other.

1.1.2 Averaging neural patterns

To understand the function of the healthy Human brain, neuroimaging studies are usually conducted for
a large group of subjects that undergo the same experimental protocol. Synthesizing the results of such
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Fig. 1.1. Examples of pairs of brain activation maps. While it easy and intuitive to com-
pare the pair of mono-atomic maps (a) by computing the geodesic between their locations,
computing such a distance for the pair (b) is not as obvious.

studies require a method of aggregating the multiple brain maps. Usually, individual brain anatomies are
mapped to a common “brain template" by matching the similar brain convolution patterns? to each other.
Now that the resulting maps are defined on the same anatomy, any Fréchet mean can used to define the
average functional brain (Gramfort, Peyré, and Cuturi, 2015).

Given K activation maps xi, ..., xx and a loss function F, their F-Fréchet mean is defined by:

1 &
arg min - kgl F(x, x¢) (1.3)

X

The most straightforward way of averaging brain maps is undoubtedly via the Euclidean mean, i.e taking
F(x,y) = ||x — y||>. However, even when performing the same cognitive task, functional variability
across individuals will prevent the different activation maps from perfectly overlapping: functionally
identical regions are not necessarily spatially identical (Poline et al., 2010; Allena et al., 2012). Averaging
these maps inevitably leads to a blurred mean. Figure 1.2 compares Fréchet means (a.k.a barycenters)
obtained with the quadratic loss and with UOT: leveraging the ground metric given by the geodesic is
crucial to obtain meaningful averages.

2gyri and sulci
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Euclidean mean UOT mean

Fig. 1.2. Euclidean and UOT barycenters of 4 simulated activation maps. UOT does not
suffer from the averaging blurring artifact.

1.2 Through the lens of the statistician and the geometer

The “geometrical awareness” of OT methods discussed above are possible because we consider the
activation maps as distributions over the triangulated mesh of the cortex. So far, we have assumed that
the vertices of this mesh are fixed for all activation maps, meaning that they are defined on the same fixed
support. This assumption allows for simpler and faster algorithms that operate only on the weights of
these measures. However, the theoretical study of OT requires us to let go of this assumption and study
OT as a way to compare probability measures with potentially different supports.

1.2.1 f-Divergences

Comparing probability measures on a space X is a building block of statistics and machine learning
models. This role is played by several tools such as the Kullback-Leibler or Total Variation. These
functions belong to the larger family of Csiszar-divergences first introduced by Rényi (1961) and later
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studied by Csiszar (1963). They can be defined on the set of arbitrary non-negative measures M (X).
Csiszéar-divergences are also known in the literature as f-divergences, as they are defined through an
entropy function f.

Definition 1 (f-divergence) Let f : R — R be a convex and lower semi-continuous function such that

f(1) = 0and f(R* ) = +oo. Define the constant fe &f limy s 4 oo Lpp)' Adopting the convention +o00 x 0 = 0,
the Csiszdr divergence associated to f, commonly referred to as f-divergence, is defined on the set of non-negative

measures M (X) as:
Dy, )™ [ 1 (d”‘) dp+ fo [ dat, (14)
x”7 \dp X
where o is the singular component of the Lebesgue decomposition & = g—g B+at.

When « admits a Lebesgue density with respect to B, the singular component a* is equal to 0. Thus,
the second term in (1.4) disappears. Table 1.1 displays a few examples of Csiszar divergences with their
associated entropy functions f. One of the most appealing feature of this family of divergences is their
simple formulation with a linear computational cost. However, they are bound to a very limited range of
applications due to two major limitations:

1. The Lebesgue decomposition formulation breaks their continuity with respect to a positional
displacement of an atom in their support.

2. Even in the case of absolutely continuous measures, the densities of their inputs are compared
point-wise thereby neglecting any underlying geometry of X"

More examples and properties of Csiszar divergences can be found in (Liese and Vajda, 2006).

1.2.2 MMD norms

To go beyond this “pointwise” comparison of measures, one must take into account some cross-interaction
between the measures. This intuition is particularly accessible when considering a pair of discrete

Divergence f(p)
Kullback-Leibler plog(p) —p+1
Total variation Ilp—1
Reverse Kullback-Leibler —log(p)
Pearson X2-divergence  (p —1)?
Hellinger distance 2p—4,/p+2

Table 1.1: Examples of Csiszar divergences for different entropy functions.
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measures & = Y  a;0y, and f = Zle Bjdy;- 1f their supports overlap — which is necessary for f-
divergences to be well defined — KL(«, 8) for instance would compare the weights on a one-to-one basis
before applying a sum. Summing over all possible pairs (a;, ;) would not only be a more comprehensive
comparison but also a possibility of including some notion of distance between the positions (x;,y;) as
well. This inclusion is commonly referred to as “lifting the geometry” of X. For instance, including the
positions (x;,y;) in this computation through a set of weights w;; = K(x;,y;) for some function k leads to
the formula: }; ; w;j(a; — B;)(a; — B;j). Notice that this formula does not impose any restriction on (x;);
and (y;);, thus, it remains well defined even if the supports of « and § are disjoint. This leads to the
definition of maximum mean discrepancy (MMD) norms (Gretton et al., 2006) or Kernel norms:

Definition 2 (MMD norms) Let X’ be a compact space and K a positive kernel i.e a continuous symmetric
function over X? such that:

* K(x,y) = h(x —y) for some function h

o a2 ¥ [, Kd% = [, K(x,y)da(x)da(y) > 0 forany & € M, (X).
Forany a, p € M, (X), the MMD distance between « and p can be defined as:

MMDx (a, B) & |l — BII2 (1.5)

Unlike f-divergences which require the existence of the Lebesgue density d"‘, MMD norms are well

defined for arbitrary measures in M (X). However, even though they formally lift any geometry
defined through their kernel, in geometrical applications they do not produce satisfying results. For
instance, taking the previous example of averaging neuroimaging data defined on a fixed anatomical
support x1, . .., Xy, the MMD Fréchet loss reads for weight vectors a, by, ..., by € ]Ri and a Kernel matrix
with the entries K;; = K(x;, x;):

def 1 N , 1Y
Z lla—bylx = N Z Z a,Ka) + (b,, Kb,) —2(a,Kby,)) . (1.6)
n=1k=1

As long as K is a positive definite matrix, L is a convex and coercive function. Canceling its gradient
leads to the barycenter a = % YN . b,, which corresponds to the usual Euclidean mean independently
of the choice of K: the geometry of the underlying space is totally ignored. But before making any
hasty judgments and condemn MMDs altogether, perhaps taking on free supports would lead to a more
“geometrically” aware barycenter ? When restricted to Dirac measures, the MMD acts as a loss on the
underlying space as long as /1(0) = 0:

MMDy (6x,6y) = K(x,x) +K(y,y) — 2K(x,y) = —2K(x,y) . (1.7)

This loss can even be a distance on the feature space &X'. For instance, when k is the kernel of the Energy
distance: k(x,y) = —||x — y/||, the MMD corresponds to the ¢, norm between Diracs, for which the average
dirac would be located at their median locations. How encouraging that may be, taking on point clouds
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(@ t=0 (b)t= .25 (c) t= .50 (d)yt=1.00 (e) t=5.00

Fig. 1.3. Taken from KeOps’s documentation (Charlier et al., 2020). Density fitting of

the point cloud on the left to the distribution on the right using a gradient flow with the

Energy distance MMD _ . Particles in the far left are scattered around far from the target

distribution due to their dominant repulsive interactions with neighboring particles. The
different colors are only for the visual tracking of particle trajectories.

with multiple atoms reveals a major limitation of MMDs known as electric-field screening. Similarly to the
effect on an electric charge being dominated by interactions with neighboring particles, the MMD gradient

of a single particle — when performing density fitting — numerically vanishes outside a short-range radius.

Formally, given a target measure 3 &of £ YN, 6y, fitting B corresponds to minimizing over the positions

of a measure a & 4 Y M 5y, the quantity MMDy (a(x1, ..., xm), B). With the kernel k(x,y) = —2||x — y|
for instance, assuming none of the particles overlap, the descent direct with respect to one particle x; is
given by:

—x N oy vy
~ V. MMD (¢, ) =2} L

Bl N i /I (1.8)
i#l Hxl - xi” =1 Hxl _y]'H

Under the influence of the first sum, the particles x; sustain a repulsive force that counters the attractive
pull of B. Figure 1.3 illustrates this dampening effect: the particles in the far left are scattered around their
original location.

Since we are mostly interested in comparing measures based on their overall shape, this illustration
shows that the geometry of X intervenes “too late” in the computation of MMDs, acting merely as a
weighting function. Instead of computing all-on-all interactions, perhaps this underlying geometry could
first inform which particles interact with which ?

1.2.3 Optimal transport

If « and B have the same number of Dirac particles with uniform weights, a “good” density fitting loss
function L should map each particle dy, to its final destination dy,, , for some assignment map o : [1, N| —
[1,N]. Ideally, the performed gradient descent steps of each particle should be proportional to the
distance they must travel. For instance, with a fixed step-size w, gradients of the form: x; — % (%i = Yo(i))
would lead to convergence in a single descent iteration for all the particles of a. These “ideal” gradients
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Fig. 1.4. OT on the real line corresponds to a sorting assignment ¢. Taken from (Peyré and

Cuturi, 2018).
can be obtained with the loss function:
N
w
EZ 1% — Yo I - (1.9)
i=1

For the sake of normalization, take w = & and define the assignment ¢ as the greedy optimal permu-
tation in the set of permutations from [1, N] to [1, N] that minimizes (1.9). The obtained loss function
corresponds to the first Optimal transport distance proposed by Monge (1781):

1 Y 2
OT("‘/,B)—Ué%l&)ﬁ;sz_ya(i)H : (1.10)

A simple and intuitive example of ¢ can be retrieved in dimension 1: it corresponds to a sorting operation
on the real line of the vector y1, ..., yn which is illustrated in Figure 1.4. The Monge formulation of OT
can thus be seen as a generalization of sorting to multi-dimensional spaces.

In practice however, measures may have different numbers of atoms (non-parametric statistics), with
potentially non-uniform weights (functional brain maps):

N M
a=) aidy  P=) b, (1.11)

In such settings, an assignment function may not exist. A more inclusive formulation of OT consists
in seeing the measures not as “particles” to be assigned but as a “volume of fluid” to be transported:
an individual mass «; is not merely transferred to a different location but is split and moved across to
fill multiple target locations. This “non-deterministic” transportation plan can be given by a matrix
€ RN*M such that 71;; corresponds to the fraction of mass transported from a;dy, to bjéy,. Thus,

to guarantee a full transportation, 77 must verify: 7l = a and 7' 1 = b. Formally, this generalized
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formulation of OT corresponds to the problem, introduced by Kantorovich (1942):

1 N

OT(x,8) = min =Y ||x;i—y;il|>mi . (1.12)

wp)= min, 3% lx-vilPm
ml=a,7" 1=b

Since « and B are probability measures, the constraint set of (1.12) makes 7 a joint table with marginals a
and p. A straightforward generalization to generic probability measures with an arbitrary symmetric cost
function C : X2 — R seeks a coupling 7t € P(X?) with marginals 71; = a and 7, = B:

OT(x,f) = mi Cdrr . 1.13
(a, B) I (1.13)
m=a,m=0p

In particular, the cost function ¢(x,y) = ||x — y||” defines the Wasserstein distance of order p:

Wi p)= min, [ Ix=ylrdn(ey) - (1.14)
7'[1:1)6,7'[2:ﬁ

Examples of discrete and continuous transport plans 7t are illustrated in Figure 1.5. Notice that both
formulations of Egs (1.10) and (1.12) coincide with (1.13) when restricted to their domain of definition.

1.2.4 Statistical and computational complexity

Unlike MMDs, OT gradients do not fade for long-range distances. Moreover, they “lift” the geometry of
X to compare distributions by optimizing “mass transportation” which accounts for the overall shape of
the measures. However, these appealing properties are listed with a price tag that is not affordable for
most statisticians and machine learning practitioners.

Computational complexity Consider the two discrete measures &, B defined in (1.11). For the sake of
simplicity, assume that N = M. In practice, the number of atoms N may correspond to the number of
bins of a histogram, the number of vertices of a mesh or the number of pixels of an image. As far as
machine learning applications are concerned, the complexity in N is of most importance. The MMD
distance ||« — B||2 can be given by the closed form:

|la — B|Iz = (a,Ka) + (b,Kb) — 2(a, Kb) (1.15)

which requires an exact number of operations given by 2N? + 3N + 3 = O(N?). Computing OT however
requires solving the linear programming problem (1.12) which can be done using variants of the network
simplex algorithm and thus has a worrisome O(N?log(N)) complexity. Reducing this complexity through
regularization is crucial for most practical uses and will be the subject of Section 2.
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S

Fig. 1.5. Illustration of transportation plans for the continuous (left) and discrete (right) case.
Taken from (Genevay, 2019).

Q

Statistical complexity Consider now the general case of a pair of probability distributions &, § € P(X)
with X C R?. Comparing « and B can be done using empirical approximations a; oof lyn 6y and
B &of Ly 6, where Xy,..., X, and Yy, ..., Y, are i.i.d samples following «, B. A natural practical
question is how many samples n are required to approximate a loss function L(«, B) using L(ay,, Bn) ?

On one hand, Sriperumbudur et al. (2012) showed that for MMDs, the rate of convergence is indepen-
dent of the underlying dimension d:

E| MMDy (,, B) — MMDy(a, B)| = O (n—%) . (1.16)

On the other hand, OT has a catastrophic rate that decays exponentially slowly as the dimension grows.
Consider OT with the cost function C(x,y) = ||x — y||P and d > 2. Dudley (1969) showed that for p = 1:

E| OT(tw, B) — OT(a, B)| = O (n—%) ) (1.17)

which was later generalized by Fournier and Guillin (2015) for p > 1. Equation (1.17) seems to prohibit
the use of OT in high dimensional settings as any empirical approximation would require exponentially
many samples. But perhaps one can find a better estimator than the naive plug-in OT(«,, ) ? The good
news is we have an answer. The bad news is the answer itself: Niles-Weed and Rigollet (2019) showed
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that for any estimator OT(«,,, 8,,) of OT(«, B), there exists a pair of measures &, § € P([0,1]%) such that:

E|OT(ay, Bu) — OT(s, B)| > O ((nlog(n))—%) . (1.18)

As if the cubic numerical complexity was not enough, empirical OT is bound to fail in high dimensions.

But enough with the doom and gloom: what can we do ? In some aspects, MMD and OT are exact
opposites: one is cheap and tractable in high dimensions but not suited for geometric applications, the
other is computationally and statistically costly but performs well on such tasks. Could there be a middle
ground ?

2 How optimal transport ?

The OT literature abounds with attempts of bringing down the complexities of OT. With no pretense of
completeness, these attempts can be categorized in 3 different schools of thought:

1. Cherry-picking: restricting the analysis to a subset of measures that are regular enough such as
Elliptical distributions or measures supported on low-dimensional manifolds.

2. Regularizing the measures: computing OT on projections of the data. The sliced Wasserstein
approach (Bonneel et al., 2015) for instance, consists in aggregating the OT values computed on 1D
projections of the data.

3. Regularizing the transport plan 7 by adding a Tikhonov penalty that makes the OT problem (1.13)
strictly convex and thus easier to solve numerically.

All our contributions revolve around approach 3: the entropic formulation of optimal transport. As
we will see in the following section, it defines the long-awaited bridge between OT and MMD norm:s.
Moreover, it fits naturally with the unbalanced formulation of OT (1.2) given with the marginal KL
discrepancies. First, we discuss a few examples of approaches 1 and 2.

2.1 Cherry-pick and regularize the measures

While computing OT is not an easy problem in high dimensions, it can actually be computed in closed
form for elliptically contoured distributions (see remark below) with the quadratic cost c(x,y) = ||x — y||%.
This closed form is thus specific for the 2-Wasserstein distance (1) and is known as the Bures-Wasserstein
metric.

2.1.1 The Bures-Wasserstein metric

Consider two multivariate Gaussians & = N (a, A) and 8 = N/(b, B) with a,b € R and A, B € §%. Olkin
and Pukelsheim (1982) and (Dowson and Landau, 1982) independently showed that W2 is given by:

W3(a,B) = |la—bl||*> + B*(A,B) , (1.19)
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v

Fig. 1.6. Computing OT (W;) between the univariate Gaussians (left) is equivalent to comput-

ing the Euclidean distance between their corresponding mappings on the (mean, standard-

deviation) plane (right). The bottom row shows a set of Gaussians that are equidistant to the
black Gaussian in the W, sense.

where: ) -
BZ(A,B) = Tr(A) 4+ Tr(B) — 2Tr((A2BA2)2) (1.20)

is the Bures metric on the cone of positive definite matrices (Bures, 1969). When A and B are diagonal,
the Bures metric coincides with the Hellinger distance. Indeed, if A = diag(c,) and B = diag(cy), then
B%*(A,B) = ||\/o, — /0, |3 where \/- on vectors is applied element-wise. Thus, for univariate Gaussians,
the W, corresponds to the Euclidean distance on the plane (mean, standard deviation), illustrated in
Figure 1.6.

Remark 1 The closed form (1.19) goes beyond Gaussian measures and can be extended to elliptical distribu-
tions (Gelbrich, 1990). Their name comes from the fact that they include distributions with a density function that
has elliptical level sets. Formally, they can be characterized via a location and scale parameters m € R and S € S
and can be transformed from one to the other via a linear transformation x — Ax + b where A is positive definite.

The Bures-Wasserstein not only provides a formula of OT for Elliptical distributions but it also gives
a lower bound for all probability measures with a second order moment. Dowson and Landau (1982)
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showed that for any «, 8 € P> (le) with respective mean and variance a, b and A, B:
la—bl*+ B*(A,B) < W3(a, B) (1.21)

A simple upper bound can be derived by noticing that the independent coupling 7o = a ®  has marginals
« and B. Therefore, by definition of min, computing the OT loss with 77y provides the upper bound:

Wi, B) < [ Ilx = y|Pda(x)dB(y) (122
= [ IxlPda(x) + [ lyIPap(y) =2 [ xyda(x)dp(y)
= Eo(X?) 4+ Ep(X?) — 2E4(X)Eg(X) 1.24)

(
(
= V(a) + V(B) + ||E«(X) — Eg(X) | (1.25)
=Tr(A) +Tr(B) + ||]a— b|? (1.26)

1.23)

2.1.2 Low-dimensional projections

Another take at OT’s curse of dimensionality is to consider projections on low-dimensional subspaces.
While data in machine learning may be high dimensional, it has more often than not some — a priori
unknown — low-dimensional structure. Instead of computing OT(a, ) on the whole space IR¢, one could
hope to find the best k-dimensional subspace on which the projections of « and B are most different.
Formally, denoting the orthogonal projection of « on E C IR by Prsa, this quantity reads:

OTk(DC, ,3) = sup OT(PE#D(, PE#ﬂ) P (127)

ECR4
dim(E)=k

which can be approximated by the empirical plug-in estimator OTy(ay, B1)-

Numerical computation In practice, an exact computation of @(an, Bn) is potentially intractable. It
can however be approximated using random projections or convex relaxation. The former led to the
proposal of sliced Wasserstein distances (Rabin et al., 2011; Bonneel et al., 2015) that set k = 1 and average
OT values on 1D lines, which amount to several sorting operations. Paty and Cuturi (2019) proposed
a convex relaxation of (1.27) by making the key observation that the minimized quantity of W3 can be

written:
d

2
X — drr(x,y) = Tr(Vy;) = AL, 1.28
Jo e I = P ) = V) =} (1.28)
where Vi = [poge(* —y)(x —y) "d7(x,y) is a second-order matrix with sorted eigenvalues A; >
- > Ag4. Truncating (1.28) to the largest k eigenvalues leads to a tractable concave-convex max-min
optimization problem that can be solved using saddle point algorithms.



20 Chapter 1. Introduction

Sample complexity Assuming that a and j are equal everywhere except on a k-dimensional subspace
U C R with k < d, Niles-Weed and Rigollet (2019) showed that, for this projection estimator, the sample
complexity bound (1.17) can be improved. Formally, for the p-Wasserstein distance with p € [1,2]:

E|OTx(wn, fn) — OT(w, p)| = O (n}‘ +4/ dl(:f”) : (1.29)

dlogn

where 11t is the cost of estimating OT on U/ and 1/ —>~ is the price to pay for not knowing U/ beforehand.

2.2 Regularize the transport plan: entropic OT

Except in dimension 1 where OT can be solved via sorting — as long as the ground cost function ¢ can be
written ¢(x, y) = h(x — y) with a convex function & (Santambrogio, 2015) —, trading a bit of optimality for
speed is becoming a necessity in machine learning applications. The “rebirth” of OT in machine learning
research is mostly due to the computational edge entropic OT offers. Other regularizations based on /,
norms were also investigated in the literature (Lorenz, Manns, and Meyer, 2019; Blondel, Seguy, and
Rolet, 2018). Even though they come with nice sparsity-enhancing features, they do not “annihilate”
the non-negativity constraint of the transport plan like entropy, which is crucial to obtain a fast and
GPU-friendly dual ascent algorithm.

2.21 Sinkhorn’s algorithm all the way: balanced, unbalanced and barycenters

Balanced OT Leta &' Y&, a;idy, and B dof yM b;,, be discrete measures in R? with a € Ay and

b € Ay where A, Bl {x € R, x* = 1}, known as the probability simplex. Let C € RP*? denote the
ground cost matrix given by C;; = c(x;,y;). On matrices, exp and log are applied element-wise and (.)
denotes the Frobenius dot product. Cuturi (2013) proposed to add a strongly convex entropy penalty:

OTe(w,B) &  min  (C,7) +e(mlog(m) —1) , (1.30)
ne]RKXp
nl=a,7' 1=b

where ¢ > 0 is a fixed hyperparameter. With the linear map A : 7 € RE? — (71, 771) € RE. x R, the
primal problem (1.30) can be written:

OTe(a, B) = min R(7) + t(ap)(A(7T)) , (1.31)
ne]Rﬁ_Xp
where R(71) = (C, 7t) + ¢(7,log(7r) — 1) and ¢,(x) = 0if a = x and +o0 otherwise.
The dual operator of A for the Frobenius dot product is given by: A*(f,g) € RE. xR} — fo g €
R."7, where f @ g denotes the matrix (f; + g;)ij- Computing the Fenchel conjugates R* and 1*, Fenchel
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duality to (1.30) leads to the equivalent dual problem:

OT.(w, ) = max —if,, (—f, —g) — R*(A*(£,g))

f,gcR?
fo c (1.32)
= max (f,a) + (g,b) —e(e = —1,e ¢),
f,geR?

Consider the change of variable u = ¢f and v = e? and K = ¢~ ¢. The dual problem is a maximiza-
tion of a concave function in f and g. Performing block alternative gradient ascent on (1.32) with the
aforementioned change of variable reads:

a b
u<—ﬁ V(—ﬁ , (1.33)

and at optimality, the primal-dual relationship leads to the transport plan:
= diag(u)K diag(v) (1.34)

These iterations are guaranteed to converge at a linear rate as long as K has positive entries (Peyré and
Cuturi, 2018). Strictly speaking, the convergence rate depends on the conditioning number of K: the
better the faster. Thus, in practice, taking low values of € slows down the convergence.

Sinkhorn as a KL projection While the interest in entropic OT from the machine learning community is
fairly recent, the formulation (1.30) dates back to the Schroedinger’s bridge problem also known as entropy
maximization models (Wilson, 1969). Nowadays, its appeal is mainly due to the simple, parallelizable
and GPU friendly iterations (1.33). Better known under the name Sinkhorn’s algorithm (Knopp and
Sinkhorn, 1967), these iterations correspond to scaling operations that must be applied to a positive
matrix (entry-wise) to make it doubly stochastic. From this perspective, it corresponds to a sequence of
“projections” of the matrix diag(u)K diag(v) that make it “fit” the marginals a and b and was previously
known as the “iterative projection fitting procedure” (IPFP). Benamou et al. (2015) formalized this idea by
noticing that up to the additional constant (¢K, 1) = ¢};; Kj;, problem (1.30) is equivalent to a “Bregman”
projection with the KL divergence:

OT¢(x,f) = min ¢KL(7|K) , (1.35)
AERY P
ml=a,nm 1=
where KL(A, B) def :‘] Ajj log <%’]f> +Bij — Ay for A,B ¢ ]RTP . At first sight, the formulation (1.35)
seems to provide a second geometrical interpretation of entropic OT with an intuitive understanding
of Sinkhorn’s algorithm which is illustrated in Figure 1.7. A second glance shows that it actually has a
major numerical contribution: the IPFP algorithm can also be used to solve the fixed support OT barycenter
problem i.e when the support of the barycenter « is known a priori. This is encountered in computer
graphics for instance where the support corresponds to pixel locations of an image. Formally, consider
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Fig. 1.7. Illustration of Sinkhorn’s algorithm as an interative fitting procedure consisting in a
sequence of KL projections that solve the equivalent formulation (1.35).

a sequence of discrete probability measures ock ZZ aks, K fork = 1.K and & Zp , akéy, with fixed
and known support x1, ..., x, but unknown weights ay, ...,a,. Let C; denote the matrix w1th entries

Cy
Crij = c(xk, xj) and Ky = e~ =, Optimization is performed with respect to the weights only and reads:

mmek OT(ay, ) = mm ZkaL | Kx) (1.36)
achy 5 nkeckmcfk 1

where (wy)x € Ak is a fixed weight vector, Gy = {m € RI*P|nl = a;} and €' = {7 € RE**F|Fa ¢
Ap, 7rkT 1 = a, Yk = 1...K}. Solving (1.36) can be done via Iterative Bregman projections (IBP) which
amounts to performing alternative minimization on one constraint set C at a time. Each step can be solved
in closed form, leading to Sinkhorn-like iterations:

K

ay
u; < , Kk uk , Vi < .
K vy ,Q K/ u;

(1.37)

Unified entropic OT framework Perhaps all of the numerical elegance of entropic OT resides in the
following unification proposed by Chizat et al. (2018b). Given a set of non-negative weights (wy ) € Ak
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and a pair of convex separable scalar functions F; and F, operating on [Tk_; RY* and RK*? respectively, it
reads:
min 8121(7‘[1, cey 7TK‘K1, R ,KK) + F1(7T1]l, ceey 7'[;]1) + Fz(?‘[ir]l, cey 7'[1—2]1). (1.38)
neR?PE
with KL(rry, ..., x| KD, ..., KK) €YK 0 KL (7 [ K ).

This extends entropic OT to the “unbalanced” setting where the transport plan 7w does not have
the fit some input measures «,  exactly. Thus, « and f may be non-negative measures with different
masses. While entropic OT can be recovered with K = 1 and F;(x) = ty—, and F»(x) = 1,—g, the balanced
barycenter problem (1.36) corresponds to the choice:

Fi(ml,...,mg1) =Y ima— (1.39)
k=1
K
BE(nl1,..., mi1) = min Y LT (1.40)
a€hp

Using Fenchel-Rockafellars’s duality developments similar to (1.32), Chizat et al. (2018b) showed that
performing dual ascent on the dual problem corresponds to the generic alternating iterations:

uy, ..., ug < proxdivy (K(vy,...,vk))
o - (1.41)
Vi,..., VK < proxd1vF2(IC (uy,...,ug))
where the linear operator K and proxdiv are defined by:
. K
K:RF — [R (1.42)
k=1
(Xl,...,XK) — (K1X1,...,KKXK), (143)
1 _
proxdiv,(z) = L a18 min F(s) + eKL(s|z) (1.44)
S

Similarly, at optimality, each transport plan 7ty is given by diag (1) Ky diag(vy).

As long as the proxdiv operator can be computed in closed form, solving entropic OT covering
balanced, unbalanced and barycenters problems can be done via very simple proxdiv operations (1.41).
Table 1.2 provides the expression of the proxdiv operator of some divergences F; and F,. For the sake
of simplicity, we only cover unbalanced OT with the KL divergence. Examples of barycenters using
F = 7KL are displayed in Figure 1.8. For low values of vy, the marginal constraints are not forced, thus
very little transport occurs. We refer to (Chizat et al., 2018b) for other examples such as unbalanced OT
with a Total Variation discrepancy or a range constraint.

Sinkhorn’s algorithm is significantly faster on regular grids In general, as long as the proxdiv operator
can be computed in closed form, each iteration of Sinkhorn has a complexity of O(Kp?) where K is the
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OT setting Divergence F,(x) proxdivy (x)
Balanced OT ly—a 2
.
Unbalanced OT vKL(x|a) 2375
Balanced OT barycenter Mingea, Z,Ile Ix,=a a—x* with a* = [T (xx) ™

Unbalanced OT barycenter

minaen, YK YKL (xx|a)

Table 1.2: Examples of proxdiv operators from (Chizat et al., 2018b)

= y=0.10
— y=0.25
y=0.50
y=0.75
y=1.00
y=12.00
= y=5.00
m— Y- + o (balanced OT)

Fig. 1.8. Unbalanced barycenters of the two measures shown in black for various values of 7y
where F; and F, are defined as the two unbalanced KL divergences of table 1.2 respectively.

fixed number of the measures involved in the problem. This complexity can however be reduced to
O(Kp”%) when working on regular grids of dimension d (Solomon et al., 2015) with the quadratic loss.
Let’s consider the simple example of imagesi.e d = 2. Assume for the sake of simplicity that the images are
square with the same number of pixels equal to p; = - - - = px = p = m?. Let z € R"*" be an image with
its vectorized format z’ € ]Rﬂz. Let 1 <1 < m? denote a pixel with 2D coordinates | = (I, ly), x,y €1,m].
Thus, the quadratic distance between two pixels [, k corresponds to: ||l — k||> = (Iy — kx)? + (I, — ky)?
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Fig. 1.9. Entropic OT interpolations (weighted balanced barycenters) of the four framed
images for different sets of weights (wy). Each image belongs to RP*? with p = 400. On a
GPU, all 21 barycenters were computed in a few seconds.

and:
m2 5 m2 2 2 m m 2 2
(k=11 (Ix—kx)*+(ly—ky) (Ix—kx)?+(ly—ky)
/ - ’ - ’ -
K=Y e < z1=)e : zp=)_ ) e : z,,
=1 =1 L=11,=1
LG (y—ky)? (Ix—kx)
=Y e T Y e v oz,
=1 =1 (1.45)
m
(ly—ky) ’
=) e« [Kzl,,
l,=1
Iyl
= [K zK ]k’( ky ’
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. . . . (i-))? .
where K’ € ]RTX”Z is the smaller kernel matrix with the entries e~ ¢ . Applying the operator K

amounts to performing Gaussian convolutions along the rows and columns of z which has a complexity
of 2m3 = 2p% instead of the p? operations of the usual matrix-vector product K(z’). The same Kernel
separability trick applies to multi-dimensional data as long as the measures are defined on regular grids
and the cost is quadratic. Figure 1.9 illustrates the barycenters of four images (at the corners) of size
p = (400 x 400) for different interpolation weights. On a GPU, all barycenters were computed in a few
seconds.

2.2.2 Entropic bias and the MMD-OT middle ground

Beyond discrete measures The definition of entropic OT given in (1.30) is specific to discrete measures
as it defines the entropy function with respect to a uniform discrete measure over a finite set. Perhaps
its most straightforward generalization would be that of the Lebesgue continuous case. Let X C R?
be a compact space and a, p € P (X, L) where £ denotes the Lebesgue measure. Let ¢ be a symmetric
Lipschitz cost function over X' x X. Continuous entropic OT can be defined as:

def . dr
OT: (a, B) = nejgr(l)l(rlx)/cdn—ks/log <d£> dr . (1.46)
T =a,m=0

Identifying «, B and 7 with their Lebesgue densities leads to a problem that can be approximated via
discrete OT computed on histograms converging towards those densities. Studying OT" can thus shed
some light on the behavior of discrete entropic OT, as we will see in Chapter 2.

Both these formulations however do not cover instances where the measures are neither both discrete,
nor both absolutely continuous. These limitations can be circumvented by noticing that as long as 7 has
marginals « and B, its support will be included in the support of the product measure & ® B. Formally, if
A X B C X x X is aBorel set such that « ® B(A x B) = 0 then w(A)B(B) = 0 and thus either «(A) = 0 or
B(B) =0.Since AxBC AxXand Ax B C X x B,itholds m(A x B) < min(n(A x X), (X X B)) =
min(7ty(A), m2(B)) = min(a(A), B(B)) = 0. Therefore, 77 is absolutely continuous with respect to « ® p.
Using the product measure as a reference, one can provide a generic definition of entropic OT:

OT? (a, B) & min / cdm+e / log < df; /3) dr . (1.47)
7T1:lX,7T2:ﬁ

MMD and OT interpolation The benefits of this formulation are numerous. For starters, regard-
less of the reference measure, when ¢ — +o00, OT, amounts to an entropy maximization leading to a
lime ;10 7Te = & ® B. But when it comes to computing the limit of the OT value, lim;—;, OT?(&, B) is
well defined and is given by f cda ® dB, whereas lim;_, ; OTf (a, B) = —oo. The former limit led several
authors (Ramdas, Trillos, and Cuturi, 2017; Genevay, Peyre, and Cuturi, 2018; Feydy et al., 2019) to
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propose the Sinkhorn divergence:

(OT¢ (w, ) + OTZ (B, B)) (1.48)

S.(@,) = OTZ (w,6) - 5

for which this limit becomes lim,_, 4 o S¢(a, B) = % J —cd?(a — B). Thus, entropic OT interpolates between
OT and an MMD distance if —C is positive definite:

OT(a,f) « Selwf) 3 %MMD_C(zx, B) (1.49)

In light of this result, could S, provide a middle ground in sample complexity ? Genevay et al. (2019)
provides a positive answer with the complexity bound:

E|Se(atn, Bn) — Se(a, )| = O (n—%(e—% + 1)35) , (1.50)

where x depends on the diameter of the compact set X and c. While the complexity in 7 is the same as the
of MMDs, any practical use of (1.50) in high dimensions prohibits low values of . Thus, S should not be
seen or used as an approximation of OT, but as a well-established middle ground between OT and MMD
metrics. But what properties make S; appropriate for machine learning or shape analysis applications ?

Properties of S, A well established result is the differentiability of entropic OT with gradients given

by the optimal dual variables usually called in the OT theory dual potentials. Moreover, as long as X is a
def _clxy)

compact set and ¢ induces a positive universal kernel k(x,y) = e~ ¢ :

1. S, is non-negative: S;(«, §) > 0, Se(a, ) =0<=a=p.
2. S, is convex with respect to one of its arguments.
3. (1) leads to argming S¢(a, B) = a. S¢ is said to be debiased.

4. S, measures the weak convergence in law: S;(a,, &) - 0 < ay, — a ,

where the weak convergence is defined as:

» Azx(:)/fdzxn —>/fdzx Vf € C(X) (1.51)
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What about unbalanced OT? In the same fashion, entropic unbalanced OT can be defined for arbitrary
non-negative measures M (X) as:

@ (S
UOT(a, ) % inf /cdn—i—eKL(nHa@ﬁ) 4y KL(m||a) + 7 KL(7|B), (1.52)
£y TEM(XXX)

where 7 > 0 and KL(7|la ® B) &ef Jxlog (%) dr.

To obtain similar properties for entropic unbalanced OT, a first attempt would be to consider a similar
divergence:

(4,6) = UOT(w, §) — 5 (UOT(a, ) + UOT(, B)) - (153)

However, even with the positivity assumption of the kernel k = ¢~¢/¢, the divergence (1.53) does not
verify non-negativity nor convexity which are violated when taking large mass discrepancies between the
measures. To compensate them, one can add a quadratic penalty on this mass difference. The unbalanced
Sinkhorn divergence proposed by Séjourné et al. (2019) reads:

® - ® __} ® ® E B 2
8% (8,B) = UOT(w, B) — 5 (UOT(w,a) + UOT(B, B)) + 5 (a(X) — (X)) . (154

Similarly to the balanced case, va is positive-definite and convex with respect to one if its argument. More-
over, it metrizes the convergence in law and has a sample complexity scaling with a similar dependency
on n and ¢ to that of the bound (1.50).

2.2.3 The practitioner’s dilemmas

The generic formulation OTY is undoubtedly more principled from a theoretical point of view: it compares
the entropic penalty of 7 relative to its maximum attained where 7 = a ® B and leads to the debiased
divergence S, with all its virtuous properties. But in practice, when measures are discrete, are OT, and
OT? equivalent ? Does OT fit within the unified framework (1.38) of Chizat et al. (2018b) ?

The uniform and product measure and their Sinkhorn variations. For the sake of clarity, let us re-
estate both formulations in the discrete case using a KL penalty. Let X = x1,...,x, be a finite set,
a, B € P(X). On one hand, up to the additional constant e(log(p) — 1), the discrete OT discussed in (1.30)

is equivalent to:

OT4(0, )X min  (C,7) + eKL(7||UU) , (1.55)

pxp
meRY
nl=a,7' 1=Db
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where Uy is the uniform measure over X2, weighting each x; with %. Notice that in the discrete case one
can always write for a feasible 7t:

L(r|a ® B) = Enqlog( )

= Zn,] log <1/ ) Zm] 2log(p) +log(a;) +log(b;)) (1.56)

:KL(NIIU)—Zlog(P)—GOg( ),a) + (log(b), b)
= KL(7[|f) — KL(al|dx) — KL(b||U4x)

where we used the fact that a and b sum to 1. Thus, OTY and OTY are equivalent up to additive entropies
of w and f:
OT¢ (, B) = OT (x, p) — eKL(a[|Ux) — eKL(B||Ux) (1.57)

The dependency of this constant on « and f however induces some minor modifications to their dual
problem and Sinkhorn’s iterations. The equivalent dual problem of OT? reads:

fog—C
f - <, 1
fggﬁ(p( ,a) + (g, b) —e(e 1), (1.58)
with optimality conditions given by:
£ a 8 b . f . 8
ei= g, ei=——, = diag(e: )K diag(e«) (1.59)
Ke: KTe:

whereas the OT¢ formulation has a slightly different dual problem:

OT?(x,8) ¥  min (C,7) +eKL(t|]a® b)
neRP*

ml=a,7' 1=b (160)
fog—C
= max (f,a) + (g, b) —¢e(e ¢ ,a®b) ,
f,gcRP

with optimality conditions given by:

£ 1 1
& = — e

Kboe!)  K(aoer)

o™ loq

e , 1 =diag(a) diag(eg)K diag(e? ) diag(b) . (1.61)

While Sinkhorn’s algorithm remains almost unchanged, the appearance of « ® p in the dual problem
(1.60) reveals a key difference between OTY and OTY. As a supremum of linear functions in a and b, OTY
is jointly convex in (a, b) whereas the product a ® b in the dual OTZ’ prohibits joint convexity of OTY. In
fact, Feydy et al., 2019 showed that OT? is concave on the diagonal i.e & — oT® («, a) is concave, which is
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OoT Non-negative Convex [0ty argmin, OT(a, B) = B Sgg‘ky};‘;;f;gf;
oT¥ X v v X v

oT? X v X X X

Se v v X v v (chapter 2).
voTY, X v v X v

UOTg, X v X X X

Se, v v X v X

s¢ v X X v v (chapter 2).

Table 1.3: Properties of different OT divergences restricted on discrete measures with a
C

. ey . . . . def _
symmetric positive semi-definite kernel matrix K = ¢~ <.

however useful to prove the convexity of S;. Moreover, barycenter problems with OT? and S; cannot be
written as a KL projection, thus the unified framework of (Chizat et al., 2018b) is lost.

Debiasing unbalanced OT Similar comparisons can be made for unbalanced OT. Debiasing UOT using
the product measure (SS?W) leads to — albeit interesting properties — loss functions for which barycenters
cannot leverage fast GPU friendly algorithms offered by entropic regularization. For discrete measures on
fixed supports, we can keep the appealing properties of Sinkhorn by defining UOT with respect to the
uniform measure U € P(X?):

u
UOT(a, ) % inf /cdn + eKL(7|U) + 7 KL(mt1 ) + 9 KL(72|B), (1.62)
£y TEM(XXX)
and its debiased divergence:
u 1 U U
Sty (2, B) = UOT(a, p) — 5 (UOT(a, ) + UOT(B, B)) - (1.63)
&y &y &Y

The properties of these divergences for discrete measures are summarized in Table 1.3 and will be
discussed in further detail in Chapter 2.

Numerical instability, scalability and Sinkhorn implementations Perhaps one the most notorious
side effects of entropic regularization is the induced blurring of the optimal transportation plan. As ¢
increases, 71, approaches the independent coupling a# ® B which has maximum entropy and is illustrated
in Figure 1.10. To tame this behavior and keep the appealing properties of OT, some applications may

. . f _c . .
require small values of e. However, when ¢ — 0, most entries of the kernel K del e~ ¢ vanish leading to
numerical errors when dividing by Ku and Kv. At the expense of losing parallelization, various Sinkhorn
“stabilized” implementations that “absorb” large values of u and v in log-domain or that are computed
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Fig. 1.10. Entropic blur of the transportation plan as ¢ increases.

entirely in log-domain using logsumexp routines are discussed in (Schmitzer, 2016) along with other
multiscale procedures. Interested practitioners can find these Sinkhorn variants in the Python library
POT (Flamary and Courty, 2017).

GPUs were the magic ingredient that brought back computational OT under the radar of applied
mathematicians. While Sinkhorn’s iterations may be simple and fast on GPUs, they require storing the
ground cost matrix C € RY"? in memory which can be problematic as soon as p reaches a few thousands.
This scalability limitation can be overcome by computing c(x, y) on the fly when applying the logsumexp
routines on non-tensorized data. This requires significant and non-trivial low level CUDA modifications,
which, fortunately for everyone, is offered on a silver plater in the KeOps Python library (Charlier et al.,
2020) with a subsequent package specific for geometric loss functions named GeomLoss’(Feydy et al., 2019).
With GeomLoss, computing entropic OT between millions of samples is no burden. For a comprehensive
overview of shape analysis tools in geometry and all Sinkhorn’s various implementations, we cannot
recommend Jean Feydy’s PhD manuscript highly enough (Feydy, 2020).

3 OQutline and contributions

After having established all necessary background knowledge, we can now state our contributions which
lay at the intersection of optimal transport, brain imaging and inverse problems. Our main purpose is to
use OT to build a spatial prior P in a regularized setting of the form:

min L(x) 4+ uP(x) , (1.64)

where L is a data fidelity term and # > 0 a fixed hyperparameter.
Minimizing entropic OT losses however induce a bias in the minimizer called in the OT literature
entropic bias. It can be defined as the simple case of the 1-measure barycenter: arg min,  OT(«, B) # B. One

3http:/ /www.kernel-operations.io/geomloss /


http://www.kernel-operations.io/geomloss/
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of the virtues of S; is the lack of such bias at the expense of loosing Sinkhorn’s algorithm for barycenters
and joint convexity. From the practical perspective of problem (1.64), should we attempt to debias OT first

or use the off-the-shelf unified framework of Chizat and counter entropy’s blur with additional penalties
?

Chapter 2: Entropic optimal transport This chapter has two major contributions:

1. Entropic OT for Gaussians. Before providing a practical answer to the aforementioned question, it
is crucial to understand what exactly is entropic bias. Doing so for arbitrary measures is not an
easy task, so we turn our focus to multivariate Gaussians. This endeavor requires generalizing the
convexity and differentiability results of entropic OT to measures with non-compact supports. We
uncover a closed form of entropic OT similar to the Wasserstein-Bures metric. This closed form
can be generalized to Unbalanced Gaussians i.e non-normalized Gaussians with an arbitrary mass.
These closed forms provide the first test-case for theoretical conjectures of entropic OT and can
serve as algorithmic benchmarks for stochastic Sinkhorn algorithms. To quantify the entropic bias
for OTf , OT? and S, we characterize OT barycenters of multivariate Gaussians. We show that
(1) OTY / OT¥ induces a blurring bias (increased variance), (2) OT? produces a shrunk barycenter
(decreased variance) and (3) S, has (almost) no bias.

2. Algorithms for debiased balanced and unbalanced barycenters. While it is straightforward to use the
IBP algorithm to compute barycenters wih OTY, doing the same for the other divergences is not
trivial. We propose a reweighted scheme to compute the barycenter of OT¢ and a fast Sinkhorn-like
algorithm to compute the debiased barycenter with S,. Finally, we discuss alternatives to the
debiased unbalanced divergence S, to compute debiased unbalanced barycenters using Sinkhorn-
like iterations.

Related publications:
e H. Janati et al, Debiased Sinkhorn barycenters, ICML'20.

e H. Janati et al, Entropic OT between Gaussians has a closed form, NeurIPS"20.

Chapter 3: Multi-task regression with an OT prior Armed with the necessary entropic OT knowledge,
we can now have a take at (1.64) in the context of inverse brain imaging. This problem corresponds to
locating neural sources given electro-magnetic measurements outside the head. Formally, it is tantamount
to an ill-conditioned linear inverse problem. Our goal is to inform the model with spatial information
by solving it jointly for multiple healthy individuals — referred to as subjects. The prior P acts a binder
across the subjects leading the solution towards more spatially coherent neural patterns. Starting with the
celebrated Group Lasso, several models based on block-sparsity norms are discussed and compared with
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our OT based model. Our proposal is aware of the geometry of the cortex making it less prone to produce
outliers. In practice, we show how this problem can be solved using proximal coordinate descent along
with Sinkhorn’s algorithm to reflect both the sources’ sparsity and their spatial proximity. Experiments
were conducted on both synthetic and real data and confronted to other brain imaging techniques.

s ~

Related publications:
* H. Janati et al, Wasserstein reqularization for sparse multi-task regression, AISTATS'19.

e H. Janati et al, Minimum Wasserstein Estimates: group level EEG-MEG source imaging via optimal
transport, IPMI'19.

¢ H. Janati et al, Multi-subject source imaging with sparse multi-task regression, Neuroimage 2020.

Chapter 4: Spatio-temporal optimal transport Analyzing EEG and MEG data with no regard to the
temporal information is like cracking an egg with a hammer: however successful it may be, it is not
why you bought the hammer in the first place. Unlike other brain imaging technologies, EEG and MEG
measure brain activity up to milliseconds. Perhaps the most straightforward extension of OT to spatio-
temporal data is to consider time as an additional feature. However, this approach would neglect its
chronological order. Dynamic time warping (DTW) offers a principled way to compare time series based
on some pre-defined cost function while being respectful of the chronology of the data. Setting this cost
function to an OT loss would theoretically align time series by matching individual time frames that are
spatially similar. However, DTW has two major limitations: it is not differentiable and is blind to temporal
shifts. We show that its smooth variant, soft-DTW, is in fact not only differentiable but also increasing
quadratically with time shifts. Combining soft-DTW and an entropy-bias-free formulation of UOT, we
define a loss for spatio-temporal data and propose an off-the-shelf method to compute spatio-temporal
barycenters.

Related publications:

¢ H. Janati et al, Spatio-temporal alignments: optimal transport in space and time, AISTATS20.

e H. Janati et al, Optimal transport barycenters for spatio-temporal data, Submitted.
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Chapter 2

Entropic Optimal transport

Let X be a Polish space and C a non-negative cost function on X x & such that C(x,y) =0 < x = y. Let
my, my be non-negative measures in M (X') such that « < m; and B < my. Including both balanced
and unbalanced settings, entropy regularized OT between a, B € M (X) with the reference measures
mq,my € M, (X) and some marginal penalty function F can defined as:

def

OTf’ml’mz(oc,,B) min Cdrm + eKL(7t|my @ my) + F(rm|a) + F(m2|B) , (2.1)

TEM (XX X) JRIXA

where € > 0; 711, 71, denote the left and right marginals of 7 respectively; m; ® mj is the product measure
of my and m; and the relative entropy is defined as:

KL(7t|my & my) def /){xxlog (d(mf;mz)) dmydmy + my (X )mp(X) — (X X X) . (2.2)

Throughout this chapter, we will focus on two instances of F:

1. Balanced OT with F(.|a) = ¢ —,. In this case, we use the notation OT}"2.

2. Unbalanced OT with F(.|a) = yKL(.|a), in which case we use the notation UOT;"?,
with the choices of references:

1. Counting measure: m; = my = U for discrete measures.

2. Lebesgue measure: m; = my = L for continuous measures.

3. Product measure: m; = «, mp = p for any measures; denoted by OT? or UOTS%.

All the formulations above suffer from an entropic bias which refers to the fact that arg min, OTZ ™" (g, ) #
B. Feydy et al. (2019) showed that in the balanced case this bias is fixed when considering the Sinkhorn
divergence:

L OT® (a,0) + OT? (8, B)) . (2.3)

S.(a, ) = OT? (w,B) — 5
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We have omitted the exponent ® on S; on purpose: there is no need to define S; for each pair my, m;
because they would be all be equal to each other. Indeed, Di Marino and Gerolin (2020) made the following
key observation that characterizes the change of reference making all debiased divergences equal to each
other:

OT/™2(a, B) = OTY (a, B) + eKL(a|my) + eKL(B|m2) . (2.4)

In practice, when computing OT barycenters, the obtained minimizer with OT; is either blurred or shrunk
compared to what one would expect had ¢ been equal to 0. Would that be the case with S, ? Can we
quantify this blurring / shrinking by studying a specific family of distributions ? In practice, can we
compute debiased barycenters with S, but keep the computational advantage of Sinkhorn algorithms ?
What would be the equivalent of S, in the unbalanced case ?

This chapter is dedicated to answering these questions as follows:

1. OT in R¥: We start off this chapter by studying OT~,O0T? and S, on R? with the quadratic cost
and generalizing its differentiability and convexity properties previously known on measures with
compact supports. Differentiability requires an additional assumption on the measures: we show
that a sub-Gaussian tail is enough.

2. OT for Gaussians: We show that OT £ and OTE® have a closed form for Gaussian measures. These
expressions provide new insights into the theoretical understanding of entropic OT and generalize
the Bures-Wasserstein metric. For the balanced case, we characterize the barycenters of Gaussians
for serveral OT formulations, showing that the debiased barycenter has an (almost) unaltered
variance.

3. Debiased algorithms for barycenters. We provide fast simple Sinkhorn-like algorithms to compute
debiased barycenters in both balanced and unbalanced cases for fixed support settings.

This chapter is based on:
e H. Janati et al, Debiased Sinkhorn barycenters, ICML'20.

e H. Janati et al, Entropic OT between Gaussians has a closed form, NeurIPS"20.

1 Entropic OT for measures with unbounded supports

The motivation behind this section is to use convexity and differentiability to study barycenters of
Gaussians. These results were published in (Janati, Cuturi, and Gramfort, 2020a).

1.1 Convexity and differentiability of OTY and S

In this section, we set X = R and C(x,y) = ||x — y||>. The set of continuous functions on IR is denoted by
C(R?). The set of probability measures with a second order moment is denoted by P, (IR%). For a € P(R?),
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L,(R?, a) denotes the set of a-measurable functions R? — Rsuch that [ |[f|P da < +oo. Let f € £1(R?, ),
g € £1(R% B) and denote (a, f) = [« fda. The tensor operators ® and @ denote respectively the
mappings f ® ¢ : (v,y) € R x RY = f(x).g(y)and f® g : (x,y) € R* x R?  f(x) + g(y). For the
sake of convenience, we denote OT? the generic OT formulation with the product measure as reference,
formally given by:

OT?(a, 8) & min / x —y|>dm+ eKL(7|la @ B) ,
: (a,B) M L [x =yl (|l ® B)
Tty =&, Tt =P

(2.5)

We show that OTY and S; are convex (w.r.t. one variable) and differentiable. Our differentiability proof is
inspired from that of Feydy et al. (2019) where the compactness assumption of the space X is replaced
with a sub-Gaussian tails assumption on the measures that allows one to apply Lebesgue’s dominated
convergence theorem on R?. The convexity proof is however novel and is solely based on the dual
problem of OT?.

eyll2
Dual problem Consider the Gaussian kernel K(x y) = dof o~ 5 Leta, ,B € P(]Rd) We define the linear

operators on K and K such that K(y) = [« K(x,y dy(y) and K" (u) = [ra K" (x,y) dpi(x) for any
non-negative measure y € M (R%). Problem (2.5) has a dual formulatlon given by:

® . fog—
OT{ (a,B) = feﬁsuﬂ]g:d / fda +/ gdp 8/]Rd><IRd exp < ) dadp+¢ . 2.6)
geL1(RY, .3)

If « and B have finite second moments, (2.6) is well defined and a couple of dual potentials (f,g) are
optimal if and only if they are solutions of Sinkhorn’s equations (Mena and Niles-Weed, 2019):

f g
e K(ee.f)=1, o« —ae,
e Klel ) o
e K (es) =1, Bp—ae
d . . . o feg—C
and the optimal transport plan 77 is givenby: m = exp ( —5— ) .(a ® B)
Thus, at optimality the integral over R x R sums to 1 and:
® —
OT: (zx,ﬁ)_/IRdfdzx—i—/Rdgdﬁ 2.8)

Symmetric terms OT; (¢,&) When & = B, the symmetry of the problem leads to the existence of a
symmetric pair of potentials (, h). Indeed, if (f, g) is optimal (g, f) is also optimal. Moreover, since C
is symmetric, the optimal transport plan 77 is also symmetric which leads to f = g. Thus the following
proposition holds.
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Proposition 1 Let a € Po(R?), it holds:

OT?(w,0) = sup 2 [ hda-— e/ exp (PzENz—(Z) d’a+e, (2.9
heli(Riq) /R RYxIR? €

Moreover, the supremum is attained at the unique (by strong concavity) autocorrelation potential h € L£1(R?, &) if
and only if h is a solution ofe%.lC(e%.zx) =1, a —a.e ,and at optimality it holds: 3 OT{ (a, &) = [pa hdav.

Restriction on sub-Gaussians Feydy et al. (2019) showed the differentiability and convexity of OT: and
Se on measures with compact supports. On IR¢, more assumptions on a and  are required. Throughout
this section we restrict OT¢ and S; to the convex set of sub-Gaussian probability measures:

Assumption 1 We restrict OTY and S, to the set of sub-Gaussian probability measures G(R?) o {n|39 >

I1x]

0, E, (2 ) < 2}.

Mena and Niles-Weed (2019) showed that if «, 8 € G(IRY), there exists a pair of potentials (f, g) verifying
the fixed point equations (2.7) on the whole space R? that are bounded by quadratic functions. This result
is key to show the differentiability of OTS on G(R?).

Proposition 2 (Mena and Niles-Weed (2019), Prop. 6) Let a, B € G(IR?). There exists a pair of smooth func-
tions (f,g) such that (2.7) holds on R and Vx,y € R%:

g1+ S (1l + v2dg?) < 9 < L 4 vade)? -
a1+ 5 Iyl -+ VEaP) < 89 < Ly + vain)?

In the rest of this section, (f,g) denotes a pair of potentials defined by Proposition 2.

Differentiability We say that a function F : G(R?) — R is differentiable at « if there exists VF(a) €
C(R?) such that for any displacement tda with t € [0,1] and da = a; — & with a7, « € G(R?), and:

F(a+tda) = F(a) + t{da, VF(a)) +0(t) , (2.11)
where (6, VF(a)) = [pa VF(«) déa.

Proposition 3 Let «, 3 € G(R?), and (f,g) their associated pair of dual potentials given by proposition 2.
OTZ (a, .) is differentiable on sub-Gaussian measures with unbounded supports and its gradient is given by:

Vg OT¢ (0, B) =g - (2.12)
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PROOF. The proof is inspired from Feydy et al. (2019) in the case of measures with compact supports.
The difference arises when taking the limit of integrals of the potentials. Thanks to assumption 1,
proposition 2 provides an upper bound that allows to conclude by dominated convergence. Consider
a, B, u1,00,B1, B2 € G(R?) and denote the displacements éa = &y — ap and 6 = B1 — P2. Let A; denote
the ratio of (2.11):
OT¢ (a1, 1) — OT; (a, B)

; ,
where a; = a + tén and B; = B + tdB. Similarly to the proof of Proposition 2 of Feydy et al. (2019),
we derive a lower and upper bound of A; using suboptimal potentials. On one hand, the pair (f, g) is
suboptimal for the dual problem defining OTZ’ (s, B¢). Therefore:

Ay = (2.13)

OTE (o) > (31, ) + (Bug) — el @ Brexp (LEE=C ) e
Therefore, (2.6) and (2.7) lead to the lower bound:
Ay > (on, f — ) + (6B, g —¢€) +0(1)
And similarly we get the upper bound:
Ap < (0w, fr —€) + (6B, &+ — &) +0(1)

Ast — 0, (a, ) — (a,B). On one hand, Proposition 4 of Mena and Niles-Weed (2019) leads to the
pointwise convergence of the sequence of potentials ( f;, g;) towards (f, g). On the other hand, Proposition
2 implies that there exists M > 0 such that | f;(x)| < M| x||? for all x € R. Given that any u € Go(R?)
has a second order moment, by Lebesgue’s dominated convergence we have (i, f;) — (p, f). Similarly,
(u, 8ty — (p,8). Finally, since (éa,€) = (6B,¢) =0, we getast — 0, Ay — (da, f) + (6B, g). Since f and g
are smooth (Prop 2) and integrable with respect to any u € G(IRY), (2.11) holds for VOTZ (a, 8) = (f, g)-

|

The differentiability of S; follows immediately. Using the chain rule, 2 cancels 1/2 and it holds:

Corollary 1 Let o, f € G(IR?), and (f, g) their associated pair of dual potentials given by proposition 2 and hg
the autocorrelation potential associated with B. SP (w, .) is differentiable on sub-Gaussian measures with unbounded

supports and its gradient is given by:
VpSE(w,B) =g —hg . (2.14)

Remark 2 It is important to keep in mind that the notion of differentiability (and gradient) of the functions OT
and S, differ from the usual Fréchet differentiability. Indeed, the space of probability measures P (IR%) has an empty
interior in the space of signed Radon measures M(IRY). The definition adopted here defines derivatives along
feasible directions in P(R?). This is however sufficient to characterize the convexity of S and its stationary points
(see appendix 5.2 for details).
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Convexity Now we turn to showing that S, is convex with respect to either one of its arguments
separately. To do so, we prove the first order characterization of convexity of a differentiable function
F:P,(R%) — R given by:

F(a) > F(a') + (a —a/, VF(a')) , (2.15)

As shown by the proof of the following Lemma, the positivity of K plays a key role in proving the
convexity of S,.

Lemma1 Let o, «’ € G(RY) and let hy, h, denote their respective autocorrelation potentials given by proposition
_ eyl

1. Then if K(x,y) = e~ <

o (X hal(l)
[ Ky datx) de'(y) <1 2.16)

PROOF. The left side of (2.16) can be equivalently written using Fubini-Tonelli:

hyt (¥)

A= /ehas(X) K(x,y)e ¢ da(x)da’(y)

hyr

(ee ./, K(eca))+

hy hyr

lee.a, (e a)) (2.17)

Since the optimal transport plans (primal solutions) associated with OTZ (¢, «) and OT (a/,a’) integrate
to 1, the right side of (2.16) can be written:

hyr y

(e ./, K(ecal)) (2.18)

Combining (2.17) with (2.18), it holds:

1
1-A= E(r,lC(r))

I byt . . . .. ..
wherer = e+ .« — e ¢ .. Since K is semi-definite positive, 1 — A > 0. [ |

Proposition 4 Under assumption (1), S, is convex on sub-Gaussian measures with respect to either of its argu-
ments.

PROOF. Let B € G(RY) . Leta, &’ € G(RY). Let (f,g) and (f',¢’) denote the pair of potentials associated
with OT¢ (a, ) and OTY (a/, B) respectively and for any u € G(IR?), let i, denote the autocorrelation
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potential associated with OTZ (, ). The first order inequality (2.15) applied to F = S(., B) is equivalent
to:
(2.15) & (&, f — ho) + (B, g — hg) >
(o, f' = ho) +(B,8" —hp) + (a =, f' — )
S (0 f—h)+ (B8 > (Bg) + (& f —hw) (2.19)
S (0 f)+ (B8 = (Bg) + (& f —hy+ha)
© OT. (0, B) = (o, f' = ho + ha) + (B, &)

To show the last inequality we use the definition of the dual problem (2.6) and evaluate the dual function
at the suboptimal potentials (f' — hy + hy, §'). Doing so leads to:

OT (a, B) > (&, f' = har + ha) + (B, &) + ¢

r_, ;o
—e/ exp<(f h +1ta) @8 C)dzxdﬁ :
R x R4 €

To conclude, all we need to show is that,

r_ 1, ’
/d ,exp <(f o +il“)@g C) dadf <1 (2.20)
R4xR

By the Fubini-Tonelli theorem, the order of integration is irrelevant. First integrating with respect to g, we
use the optimality conditions (2.7) on the pair (f’,¢’) then on h,:

r_ 1, o
Bd:ef/ exp<(f hy + 1) ©8 C) dadp
R4 x R4

€
h“ - ha/
= [ P <€> da

= o a &P <h”‘®h“’_c> dada’

€

Thus, Lemma 1 applies and we have B < 1. [ |

1.2 Convexity and differentiability of OT*

We now turn to the continuous case with m; = m, = L the Lebesgue measure.
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Dual problem Let &, B be continuous sub-Gaussian measures. Identifying &, B and 7t with their Lebesgue
densities, The OT problem (2.1) has a dual problem given by:

a8 — s [ e (£ 80~ Clvy)
OT¢ (a, B) = feﬁ}(?gg (f,a) + (g, B) s// P ( . > dxdy +e¢ (2.21)
8€L

Notice that the convexity of OT¥ follows immediately from (2.21) since it is a supremum of linear functions
in &« and B. The optimality conditions are equivalent to the marginal constraints of the primal problem
(2.1). However, they are slightly different than those of OT;'. Cancelling the gradient of the dual problem
leads to the following system (Ivan Gentil, 2017):

[
o
A
—
M

o )

~—

~

(2.22)

[N
™ [og
A
—
—~
[N
~—
I
™ R

which in integral form can be written:

(2.23)

w)

€

and the optimal transport plan’s density 7 is given by: 7t(x,y) = exp (

Thus, at optimality the integral over R? x R? sums to 1 and:
OTE (w, B) = (f ) + (3. B) (2.24)

Convexity and Differentiability Using absolute continuity continuity, one can rewrite the KL in the
primal problem such that it holds (Di Marino and Gerolin, 2020):

OTE(a, B) = OT? (a, B) + eKL(«|L) + eKL(B|L) . (2.25)

We already showed that OT¢ is convex (w.r.t. to one argument); KL is also convex (even jointly convex).
Since the set of Lebesgue-continuous and sub-Gaussian measures is convex , OT¥ is also convex with
respect to one argument.

Identifying a with its density, it holds:

E(a) & KL(a, £) = / a(x) (log(a(x)) — 1) dx (2.26)
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If « > 0, then for any feasible displacement & = h; — hy with density functions /1, h;. The functional

derivative of E in the direction / is given by: [%} = (h,log(a)). Thus, in the sense of the

directional differentiation (2.11):
V.KL(a, L) = log(«) (2.27)

Let (f, g) be a pair of optimal potentials for OT: («, B). Following the differentiability of OTY given by
proposition 3 and the differentiability of KL, OT is differentiable on the set of sub-Gaussian measures
with positive density functions and its gradient is given by: V; OTZ (&, ) = f — elog(a). By a simple
calculation, it is easy to show that (f — elog(x),g — elog(p)) are actually solutions of the Sinkhorn
equations (2.23). Similarly, given a solution (f1, 1) of (2.23), (f1 + elog(«), g1 + elog(p)) are optimal
potentials of OTY. Therefore, the following proposition holds:

Proposition 5 Let «, f € G,(R?). If a and B are Lebesgue-continuous with positive density functions, then OT=
is differentiable and it holds:
VOT; («,8) = (£,8) , (2.28)

where (f, ) is a pair of dual potentials verifying the fixed point equations (2.24).

2 Entropic OT for Gaussians

After having laid the ground for studying OT; on R, we can now focus on Gaussian measures. Without
invoking convexity and differentiability to study OT barycenters, one can first notice that Sinkhorn’s
optimality conditions could be stable for quadratic potentials if « and B are Gaussians. If successful, this
attempt would provide a first closed form for entropic OT.

2.1 Closed form expressions

This section establishes closed form expressions for entropic between Gaussian measures. Except the last
two propositions establishing the limits of UOT, all theoretical results were shown in (Janati et al., 2020a).

Summarizing measures vs. regularizing OT. Closed-form identities to compute OT distances (or more
generally recover Monge maps) are known when either (1) both measures are univariate and the ground
cost is submodular Santambrogio, 2015, §2: in that case evaluating OT only requires integrating that
submodular cost w.r.t. the quantile distributions of both measures; or (2) both measures are Gaussian, in a
Hilbert space, and the ground cost is the squared Euclidean metric (Dowson and Landau, 1982; Gelbrich,
1990), in which case the OT cost is given by the Wasserstein-Bures metric (Bhatia, Jain, and Lim, 2018;
Malago, Montrucchio, and Pistone, 2018). These two formulas have inspired several works in which
data measures are either projected onto 1D lines (Rabin et al., 2011; Bonneel et al., 2015), with further
developments in (Paty and Cuturi, 2019; Kolouri et al., 2019; Titouan et al., 2019); or represented by
Gaussians, to take advantage of the simpler computational possibilities offered by the Wasserstein-Bures
metric (Heusel et al., 2017; Muzellec and Cuturi, 2018; Chen, Georgiou, and Tannenbaum, 2018).
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Various schemes have been proposed to regularize the OT problem in the primal (Cuturi, 2013;
Frogner et al., 2015) or the dual (Shirdhonkar and Jacobs, 2008; Arjovsky, Chintala, and Bottou, 2017;
Cuturi and Peyré, 2016). We focus in this section on the formulation obtained by (Chizat et al., 2018b),
which combines entropic regularization (Cuturi, 2013) with a more general formulation for unbalanced
transport (Chizat et al., 2018a; Liero, Mielke, and Savaré, 2016; Liero, Mielke, and Savaré, 2018). The
advantages of unbalanced entropic transport are numerous: it comes with favorable sample complexity
regimes compared to unregularized OT (Genevay et al., 2019; Séjourné et al., 2019), can be cast as a loss
with favorable properties (Genevay, Peyre, and Cuturi, 2018; Feydy et al., 2019), and can be evaluated
using variations of the Sinkhorn algorithm (Genevay et al., 2016).

On the absence of closed forms of entropic OT. Despite its appeal, one of the shortcomings of entropic
regularized OT lies in the absence of simple test-cases that admit closed-form formulas. While it is known
that regularized OT can be related, in the limit of infinite regularization, to the energy distance (Ramdas,
Trillos, and Cuturi, 2017), the absence of closed-form formulas for a fixed regularization strength poses an
important practical problem to evaluate the performance of stochastic algorithms that try to approximate
regularized OT: we do not know of any setup for which the ground truth value of entropic OT between
continuous densities is known. One of our contributions is to fill this gap, and provide closed form
expressions for balanced and unbalanced OT for Gaussian measures. We hope these formulas will prove
useful in two different ways: as a solution to the problem outlined above, to facilitate the evaluation of new
methodologies building on entropic OT, and more generally to propose a more robust yet well-grounded
replacement to the Bures-Wasserstein metric.

2.1.1 Bures-Wasserstein and elliptical distributions

The Kantorovich problem. Letw, 3 € P, and let I1(a, B) denote the set of probability measures in P,
with marginal distributions equal to « and . The 2-Wasserstein distance is defined as:

2 def . 2
W ) min [l ylPdn(ey) (2.29)

This is known as the Kantorovich formulation of optimal transport. When « is absolutely continuous with
respect to the Lebesgue measure (i.e. when « has a density), Equation (2.29) can be equivalently rewritten
using the Monge formulation, where Ty = v i.f.f. for all Borel sets A, v(T(A)) = u(A):

Wa(w ) = min, /IR e = T(x)Pda(). (2.30)

The optimal map T* in Equation (2.30) is called the Monge map.

The Wasserstein-Bures metric. Let A(m,X) denote the Gaussian distribution on R with mean m € R*
and covariance matrix X € Si 4. A well-known fact (Dowson and Landau, 1982; Takatsu, 2011) is that
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Equation (2.29) admits a closed form for Gaussian distributions, called the Wasserstein-Bures distance
(a.k.a. the Fréchet distance):

W3(N(a,A),N(b,B)) = ||a —b||*> +B(A,B), (2.31)
where ‘B is the (squared) Bures distance (Bhatia, Jain, and Lim, 2018) between positive matrices:

1 1 1
B(A,B) ' TrA + TrB — 2Tr(A2BA2)2. (2.32)

Moreover, the Monge map between two Gaussian distributions admits a closed form: T* : x — TAB(x —
a) + b, with

1 1 1.1 1 1 1 1 1 1
TAB &' A~2(A2BAZ)2A 2 = B2(BZAB2) 2B2, (2.33)
which is related to the Bures gradient (w.r.t. the Frobenius inner product):
VaB(A,B) =1d —TAB, (2.34)

B(A,B) and its gradient can be computed efficiently on GPUs using Newton-Schulz iterations which
are provided in Algorithm 1. The main bottleneck in computing TAB is that of computing matrix square

Algorithm 1 NS Monge Iterations

Require: PSD matrix A, B, e >0
B A
Y wromr 2 < @weoral
while not converged do

T+ (31d—ZY)/2

Y~ YT
7 TZ
end while
1B lAl
Y \rarY. Z </ JsrZ

Ensure: Y = TAB, 7 — TBA

roots. This can be performed using singular value decomposition (SVD) or, as suggested in (Muzellec and
Cuturi, 2018), using Newton-Schulz (NS) iterations (Higham, 2008, §5.3). In particular, Newton-Schulz
iterations have the advantage of yielding both roots, and inverse roots. Hence, to compute TAB, one

1 1 11
would run NS a first time to obtain A2 and A~ 2, and a second time to get (A2BA2)2.
In fact, as a direct application of (Higham, 2008, Theorem 5.2), one can even compute both TAB

and TBA = (TAB) - in a single run by initializing the Newton-Schulz algorithm with A and B, as in
Algorithm 1. Using (2.34), and noting that B(A, B) = TrA + TrB — 2Tr(TABA), this implies that a single
run of NS is sufficient to compute B(A, B), VAB(A, B) and VB (A, B) using basic matrix operations.
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0.6 1
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Fig. 2.1. Average run-time of Newton-Schulz and EVD to compute on CPUs and GPUs.

The main advantage of Newton-Schultz over SVD is that it its efficient scalability on GPUs, as illustrated
in Figure 2.1.
Newton-Schulz iterations are quadratically convergent under the condition:

Id—(49)% <1,

as shown in (Higham, 2008, Theorem 5.8). To meet this condition, it is sufficient to rescale A and B so that
their norms equal (1 + ¢) ! for some ¢ > 0, as in the first step of Algorithm 1 (which can be skipped if
|A|l < 1 (resp. ||B|| < 1)). Finally, the output of the iterations are scaled back, using the homogeneity
(resp. inverse homogoneity) of eq. (2.33) w.r.t. A (resp. B).

A rough theoretical analysis shows that both Newton-Schulz and SVD have a O(d%) complexity in
the dimension. Figure 2.1 compares the running times of Newton-Schulz iterations and SVD on CPU or

GPU used to compute both A% and A_%. We simulate a batch of positive definite matrices A following
the Wishart distribution W(Id4, d) to which we add 0.11d to avoid numerical issues when computing
inverse square roots. We display the average run-time of 50 different trials along with its + std interval.
Notice the different magnitudes between CPUs and GPUs. As a termination criterion, we first run EVD to

1 _1 1
obtain A2 , and A, 2 and stop the Newton-Schultz algorithm when its n-th running estimate A7 verifies:
1 1
|AZ — A2, |l1 <10~*. Notice the different order of magnitude between CPUs and GPUs. Moreover, the

computational advantage of Newton-Schultz on GPUs can be further increased when computing multiple
square roots in parallel.
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2.1.2 Balanced OT: entropic Bures-Wasserstein

Solving (2.29) can be quite challenging, even in a discrete setting (Peyré and Cuturi, 2018). Adding an
entropic regularization term to (2.29) results in a problem which can be solved efficiently using Sinkhorn’s
algorithm (Cuturi, 2013). Let ¢ > 0. This corresponds to solving the following problem:

def . 2 2
OTya(a,p) ™ min [ llx—ylPdn(xy)+ 2 KL(r|a @ p), (2.35)

where KL(7t||a @ B) def Jgilog ( %) dr is the Kullback-Leibler divergence (or relative entropy). As

in the original case (2.29), OTS?TZ can be studied with centered measures (i.e zero mean) with no loss of
generality:

Lemma 2 Let o, B € P and &, B their respective centered transformations. It holds that
OT;a(a, B) = OT55(&, B) + [la — bl|. (2.36)

PROOF. Letda(x) = da(x+ a) (resp. dB(y) = dB(y +b), d7t(x,y) = dn(x + a,y + b), such that &, B
and 7T are centered. Then, Vrr € T1(«a, B),

1. @ e I1(a, B),

2. KL(7t||a ® B) = KL(7t||a @ )

3. Jraxwe ¥ =¥yIPd7(x,y) = [age | (x—2) = (y=b)[Pd7(x,y) = [la=b]*+ [gaga [x —y[?d7(x,y)
Plugging (i)-(iii) into (2.35), we get OT;, (a, B) = OT; , (&, B) + ||a — b||%. [

Dual problem and Sinkhorn’s algorithm. Compared to (2.29), (2.35) enjoys additional properties, such
as the uniqueness of the solution 7t*. Moreover, problem (2.35) has the following dual formulation:

o ) f) g —llx—y|”
OT;a(a ) = max Exl(f)+Bplg) ~20" | [e  —am —da(w)apy) ~1).  @3)
8€L1(B)

If « and B have finite second order moments, a pair of dual potentials (f, g) is optimal if and only they
verify the following optimality conditions B-a.s and «x-a.s respectively (Mena and Niles-Weed, 2019):

fx) —llx-y[2+g() gx) —llx—yl2+f)
e 202 /d e 202 dg(y) | =1, e2? /1Rd e 202 da(y) | = 1. (2.38)
R

Moreover, given a pair of optimal dual potentials (f, g), the optimal transportation plan is given by

dm* F@)+8y) —[x—yl?
dadﬁ(x,y)w 2 (2.39)
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Starting from a pair of potentials (fy, go), the optimality conditions (2.38) lead to an alternating dual
ascent algorithm, which is equivalent to Sinkhorn’s algorithm in log-domain:

p 5 —llx =yl +fu(x)
g1 =Yy ER" — 20 log/de 207 da(x) |,
R

p ) —llx=y[*+gns1(¥)
fas1= | x€R" = 20 log/de 207 dp(y) | -
R

Séjourné et al. (2019) showed that when the support of the measures is compact, Sinkhorn’s algorithm
converges to a pair of dual potentials. Here in particular, we study Sinkhorn’s algorithm when « and
are Gaussian measures.

(2.40)

Closed form expression for Gaussian measures. When the measures are Gaussian, the algorithm above
not only converges but its limit can be obtained analytically. The following theorem provides the closed
form of entropic OT for Gaussian measures for both the product and the Lebesgue measure.
Theorem 1 Let A,B € 8% and a = N'(a,A) and p = N (b, B).
1 1
Let C; = A2(A2BAZ + 4 1d)2A"2 — S Id, then,

OT5,(a, B) = |la—b|* + B, (A, B) (2.41)
OT5(a, B) = ||la—b|* + B5 (A, B) (2.42)
where:
B2, (A, B) = Tr(A) + Te(B) — 2Tr(C,) + 0> log det (;cg + Id)

(2.43)
BZ£U2 (A, B) — B®

202

(A,B) — c?logdet((27e)*AB) ,

Moreover, regardless of the reference measure, the Sinkhorn optimal transportation plan is also a Gaussian measure
over RY x RY given by

n*:/\/((f;),(g}‘;’)). (2.44)

Remark 3 While for our proof it is necessary to assume that A and B are positive definite in order for them to
have a Lebesgue density, notice that the closed form formula OT;, , given by Theorem 1 remains well-defined for
positive semi-definite matrices. Moreover, unlike the Bures-Wasserstein metric and OTzcaz, OTEZ’U2 is differentiable
even when A or B are singular.

The proof of theorem 1 is broken down into smaller results, Propositions 6 to 8 and lemma 3. Using
Lemma 2, we can focus in the rest of this section on centered Gaussians without loss of generality.
Moreover, the formula for the Lebesgue measure OT¥ can derived from that of OTZ using equation (2.25).
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Sinkhorn’s algorithm and quadratic potentials. We obtain a closed form solution of OT;%2 by consid-
ering quadratic solutions of (2.38). The following key proposition characterizes the obtained potential
after a pair of Sinkhorn iterations with quadratic forms.

Proposition 6 Let x = N'(0,A) and p = N'(0, B) and the Sinkhorn transform Ty, : RR' — RR;

“lr—yl?
To(h) (x) &~ log / 2 g (y). (2.45)

Let X € Sy Ifh = m + Q(X) i.e h(x) = m — 3x" Xx for some m € R, then T, (h) is well-defined if and only if

X' % 52X 4 2A-1 £ 1d = 0. In that case,

1. Tu(h) = Q(Y) + m' where Y = 5 (X'~! —1d) and m’ € R is an additive constant

2. Ty(Tu(h)) is well-defined and is also a quadratic form up to an additive constant, since Y’ L2y 4 o281 +
Id = X'"1+0?B~! = 0and (i) applies.

PROOF. The exponent inside the integral can be written as:

—llx=yl? i ] R S
e 27 MWdg(y) e 27 20 XV AT,

M
o e 20 (BHCATI g
which is integrable if and only if X + Al 4 % Id = 0. Moreover, up to a multiplicative factor, the
exponentiated Sinkhorn transform is equivalent to a Gaussian convolution of an exponentiated quadratic

form. Lemma 7 (see appendix) — which characterizes the Gaussian convolution of quadratic forms —
applies:

_ 2
ST _ [, II;UZyH g

R4

—x—yl? :
/ e AW HAATW g,

(4)) xexp (%) + Q(a™))
( )> * exp (Q(X+A_1))
xexp (Q((Id +c*X +c*A~ 1)~ 1(X—i—A’l))).

(0
(9
(2
x exp <Q =X Id))).
(oG

Q14 -X"1)).

a(y)

o exp

o exp

o exp
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Therefore T, (h) is up to an additive constant given by Q(%(X’ ~1 —1d)). Finally, since B and X’ are
positive definite, the positivity condition of Y’ holds and Tg can be applied again to get Tg(T,(h)). W

Consider the null inialization fy = 0 = Q(0). Since c?A~! +Id = 0, Proposition 6 applies with X = 0
and a simple induction shows that (f,, g») remain quadratic forms for all n. Sinkhorn’s algorithm can

thus be written as an algorithm on positive definite matrices.

Proposition 7 Starting with null potentials, Sinkhorn’s algorithm is equivalent to the iterations:

Fi1=0A""+G,", Gui1=0?B 1+ F,1, (2.46)

with Fy = 0?A~ ' +1d and Gy = ¢*B~1 +1d.
Moreover, the sequence (F,, G,) is contractive (in the matrix operator norm) and converges towards a pair of
positive definite matrices (F, G).

At optimality, the dual potentials are determined up to additive constants fy and go: 2{7 =9(U)+ fo
and 555 = Q(V) + go where U and V are given by

F=c0U+c*A" 1 4+1d, G=0*V+0¢*B ' +1d. (2.47)

Closed form solution. Taking the limit of Sinkhorn’s equations (2.46) along with the change of variable
(2.47), there exists a pair of optimal potentials determined up to an additive constant:

f L e g Lo
where (F, G) is the solution of the fixed point equations
F=c?A14+G}, G=0¢"B'+FL (2.49)

Let C & AG1. Combining both equations of (2.49) in one leads to G = ¢?B~! + (G™1 + ¢2A~ 1)},

which can be shown (see proof below) to be equivalent to

C?2+0*C—AB=0. (2.50)

1 1
Notice that since A and G~ are positive definite, their product C = AG ! is similar to A2G'A2. Thus
it has positive eigenvalues. Proposition 8 provides the only feasible solution of (2.50).

Proposition 8 Let o > 0 and C satisfying Equation (2.50). Then,

—_
N|—
|

NS

ot 2, 11 1 o, 1
C:<AB+4Id> — 2 1d = A2(A2BA2 + 4 1d)2A Id. (2.51)
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PROOF.
Combining the two equations in (2.49) yields

G=0B '+ (G 1+s2A !

= GA ' =B A 4+ (AG ! +0%1d) !

& Cl=0*(AB) ' +(C+c?1d)!

& C Y (C+o%1d) =*(AB) {(C+0?1d) +1d

& Id+0*C ! = ¢*(AB) 1 (C +0%1d) +1d

& C+0?Id = ¢*(AB) }(C+0?1d)C+C

& C?4+0*C—AB=0. (2.52)

1 1 1 1
Given that A and G ! are positive, their product C = AG ! canbewritten: AG™1 = A2 (A2 G lA2 JA™2,

1 1
thus AG ! is similar to the positive matrix A2 G 1A2. Therefore, one can write an eigenvalue decom-
position of C = PLP~! with a positive diagonal matrix . Substituting in (2.50), it follows that C and
AB share the same eigenvectors with modified eigenvalues. Thus, it is sufficient to find the real roots

of the polynomial x +— x? + ¢?x — ab with a,b € R, which are given by: x; = —‘772 —\/ab+ % and

Xy = — %2 +1/ab+ %. Since C is the product of the positive definite matrices G~ and A, its eigenvalues

are all positive. Discarding the negative root, the closed form follows immediately. Indeed, by direct
calculation, computing the square of the solution C leads to the equation (2.50):

—_

2
C? AB+UAId —0 (AB—}—TId)
— AB - ¢*C.

The second equality is obtained by observing that

1 b a2 Al 1 s
(A2(A2BA2 + 2 1d)2A"2) _ AZ(A2BA2 +21d)A 2 = AB + 2 1d,
i.e. that
RN 11
(AB + %Id) = A2(A2BA2 + 5 2 1d)2A72.
[
Using the transformation (2.48), we obtain the following corollary:
Corollary 2 The optimal dual potentials of (2.48) can be given in closed form by:
B s, Id LA 1
U:ﬁ(C—l—a Id) — = (C+0%1d)~ = (2.53)
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Moreover, U and V remain well-defined even for singular matrices A and B.

Optimal transportation plan and OT%?TZ. Using Corollary 2 and (2.48), Equation (2.39) leads to a closed
form expression of 7. To conclude the proof of Theorem 1, we introduce lemma 3 that computes the
OT,, , loss at optimality. Detailed technical proofs are provided in the appendix.

Lemma 3 Let A, B, C be invertible matrices such that H = <(‘;\T g) = 0. Leta = N(0,A),B=N(0,B), and
7T = N(0,H). Then,
/ Ix — y|dre(x,y) = Tr(A) + Tr(B) — 2Tr(C), (2.54)
R x R4
KL (7]« ® B) =  (logdet A +logdet B —logdet (& )) - (2.55)
Properties of OT; ,. Theorem 1 shows that 7 has a Gaussian density. Proposition 9 allows to reformulate

this optimization problem over couplings in R9*? with a positivity constraint.

Proposition 9 Let « = N'(0,A), 8 = N(0,B), and 0> > 0. Then,

OTy . (a, B) = min {Tr(A) + Tr(B) — 2Tr(C) + 0*(log det AB — log det ( f g))} (2.56)
C:(CT B)zo
1 1
= min  TrA + TrB — 2TrA2KB2 — ¢?Indet(Id —KK"). (2.57)

KER®<4:|[K |, <1

Moreover, both (2.56) and (2.57) are convex problems.
We now study the convexity and differentiability of OT, ,, which are more conveniently derived from the

dual problem of (2.56) given as a positive definite program:
Proposition 10 The dual problem of (2.56) can be written with no duality gap as

FG —-1d
!

_ _ 2
Frgag{(ld F, A) + (Id -G, B) + ¢c”log det (

) + 02 logdet AB + 2d0’2}. (2.58)
SKETCH OF PROOF. The dual problem follows from a simple application of Fenchel duality. The technical
computation of the conjugate functions is provided in the appendix.

In the previous section, we have established that OT; is differentiable on the set of sub-Gaussian
measures with a gradient given by the optimal dual potentials. The following proposition re-establishes
this statement for Gaussians and shows that minimizing the obtained loss on positive definite matrices

B, leads to a shrinking bias.

Proposition 11 Assume o > 0 and consider the pair U, V of Corollary 2. Then
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(i) The optimal pair (F*, G*) of (2.58) is a solution to the fixed point problem (2.49),

1 11 1
(ii) By, is differentiable and: VB ,(A,B) = —(02U,0?V). Thus: V85 ,(A,B) = Id —B2 <(B2 AB2 + 2 1d)2 + %
(iii) (A,B) — B3 ,(A,B) is convex in A and in B but not jointly.
(iv) For a fixed B with its spectral decomposition B = PLP', the function ¢p : A — %?UZ(A, B) is minimized

at Ag = P(Z — 0?1d) P where the thresholding operator . is defined by x = max(x,0) for any x € R
and extended element-wise to diagonal matrices.

SKETCH OF PROOF. We present the idea of the proof of each statement. The full technical details are
provided in the appendix.

(i) The dual problem is concave in F and G. Cancelling its gradient with respect to both leads to the
same optimality conditions of the fixed point problem (2.49).

(ii) Applying Danskin’s theorem leads to a gradient given by (Id —F + ¢?A~1,I1d —G + ¢?B~!), which
is equal to —c?(U, V) by virtue of the change of variable (2.47).

(iii) We compute the Hessian of A —> 535_902 and show its positivity. A simple counter-argument for joint
convexity is provided in dimension 1.

(iv) B, is convex and differentiable, we show that A verifies its first order optimality condition.

When A and B are not singular, by letting o — 0in VA%8,,2(A, B), we recover the gradient of the Bures
metric given in (2.34).

Contrast with %f 2 Adding the individual entropies of a and g to the closed form of %gﬂ leads to its

closed form given in Theorem 1. Since these entropies are merely constants summing to —c? log det((27te)2AB),
adding them to the dual problem (2.58):

FG —1d
L _ _ _ 2 g2
B5 (A, B) —g(\}aj){(Id F, A) + (Id —G, B) + 0~ logdet < 1 > do log(27r)} (2.59)

As a supremum of linear functions in (A, B), %Z'C 2 is jointly convex in (A, B), unlike %S?TZ. However,
as clearly established by the presence of logdets of A and B in its closed form, its definition cannot
be extended to the boundary of the cone of positive definite matrices. This is however not surprising,
since for OT¥ to be defined, the Gaussians must be absolutely continuous with respect to the Lebesgue
measure in the first place. Finally, minimizing ‘BZEUZ leads to a blurring bias, which is analogous with the
“usual” behavior of Sinkhorn’s barycentric algorithm with the uniform reference measure in the discrete
case. These properties — which can be deduced from those of %;902 — are summarized in the following

proposition.
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Proposition 12 Assume o > 0, A, B definite positive matrices and consider their associated pair U, V of Corol-
lary 2. Then:

(i) B% , is differentiable and: V8% ,(A,B) = —c*(U+ AL, V+B1)

(ii) (A,B) — BL,(A,B) is jointly convex.

202

(iii) For a fixed B, the function ¢p : A +— B5

202

(A, B) is minimized at Ay = B + ¢ Id.

2.1.3 Unbalanced OT: Entropic Gaussian-Hellinger-Kantorovich

We proceed by considering a more general setting, in which measures a, 8 € M (R?) have finite
integration masses 1, = a(IR%) and m g = B(IR?) that are not necessarily the same. We remind the reader
of entropy-regularized unbalanced OT:

def

UOTza2 (a,B) = inf

int [l yiPan(oy) + 20 KLl © B) + 7KL [0) + 7KLz B), (260

where v > 0 and 71, 712 are the marginal distributions of the coupling 7.

Duality and optimality conditions. By definition of the KL divergence, the term KL(7||a ® ) in (2.60)
is finite if and only if 7t admits a density with respect to & ® B. Therefore (2.60) can be formulated as a
variational problem:

OT,(a,B) = inf — y|[*r(x,y)da(x)d
UOTe(a )= _jint { [l —ylPr(xy)da(x)dp(y) .

+20°KL(r]la @ B) + vKL(n []a) + YKL(r2][B) },

where r; & Jra (- (y) and rp def Jra 7(x,.)da(x) correspond to the marginal density functions and
the Kullback- Lelbler dlvergence is defined as: KL(f||u) = [ga(flog(f) +1— f)du. Asin (Chizat et al.,
2018b), Fenchel-Rockafellar duality provides the following dual problem

f 8
UOT,(a, ) = sup fy/ (1—677)d01-|-')// (1—e 7)dp
v fEl:oo(lX) { R4 R4
€L (B) (2.62)

—[lx=yl?+f(x)+8(v)

_2g? /Rdxw(eT 1)da(x)dp(y) }-

For which strong duality holds. Moreover, a maximizing sequence of potentials ( f,, ) weakly converges
towards a pair of measurable functions (f, g) if they verify the optimality conditions (Rockafellar, 1970):

—Jx— H2 Hr H2
202 ) as Tlog/ ! dg(y), g2— = —Tlog/ - da(y), (2.63)
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i
y+202"
In which case the (unique) optimal transportation plan is given by:

def
where T =

drr f@)+8y) —[x—yl?
T T A (264)

The following proposition provides a simple formula to compute UOT;?T2 at optimality. It shows that it is
sufficient to know the total transported mass 71(R? x R?).

Proposition 13 Assume there exists an optimal transportation plan 7t*, solution of (2.60), then:

UoT?

202’7(0@,8) = y(my + mg) + 20’2711“1115 —2(0? 4+ 7)) (R? x RY). (2.65)
Unbalanced Entropic OT for scaled Gaussians. Let « and B be unbalanced Gaussian measures. For-
mally, « = m,N'(a,A) and p = mgN (b, B) with m,,mg > 0. Unlike balanced OT, « and $ cannot be
assumed to be centered without loss of generality. However, we can still derive a closed form formula for
UOT, (a, B) by considering quadratic potentials of the form:

(x 1 X 1
Let ¢ and 7 be the regularization parameters as in Equation (2.61), and T &of T g’ A % =0+ 7.

Let us define the following useful quantities:

_ (a+AX7(b
~ \b+BX!(a

:;g) (2.67)

g ((d+3C)(A—AXT'A)  C+(1d+3C)AX'B 2.68)
“\CT+(@d+icT)BX'A (Id+1CT)(B-BX !B) '
do? de’t(l’iﬁ)lr o e Ha;(‘i%]
my = o | mymgdet(C) —, (2.69)
det(AB) \/det(C — 2AB)
with
X=A+B+ALd, K:%(Id—/\(A+/\Id)’l),
1
_— . 1o ot \? o2
B=—(Id— = (= — — .
2( AB+AId)™), C (TAB+ 1 Id) 5 1d
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Y

Theorem 2 Let & = myN (a,A) and p = mgN (b, B) be two unbalanced Gaussian measures. Let T = 5 =

and A = def ‘72 =024+ 12 5 and y, H, and m be as above. Then:

1. The unbalanced optimal transport plan, minimizer of (2.60), is also an unbalanced Gaussian over R* x R?
given by w = mN (u,H),

2. UOT,, , can be obtained in closed form using Proposition 13 with (RY x RY) = my.

Remark 4 The exponential term in the closed form formula above provides some intuition on how transportation
occurs in unbalanced OT. When the difference between the means is too large, the transported mass m’, goes to O
and thus no transport occurs. However for fixed means a, b, when iy — +o00, X~1 — 0 and the exponential term
approaches 1.

Woodburry’s identity The most useful technical trick involved in the proofs of this section is Wood-
burry’s identity:
(A+UBV) '=A"1' - A luBt+vAlu)tvat, (2.70)

where A and C are square and invertible of potentially different size. It can be seen as a generalization of
a simple add and subtract algebraic trick. To get the formulation of OT losses and parameters without
inverse, we often used the generalized variant where B can even be non-square:

(A+UBV) 1 =A"1'— A lu(ld +BVA~tu)~'BvA~! . (2.71)

Limit as ¢ — 0: Gaussian-Hellinger-Kantorovich Without entropy regularization (i.e ¢ = 0), UOTS%
was introduced by Liero, Mielke, and Savaré (2018) under the name Gaussian-Hellinger-Kantorovich (GHK,,).
The following proposition provides a closed form formula for GHK,, between Gaussian measures.

Proposition 14 Consider the same setting of theorem 2. The following holds:

_plI2
bR,

GHK,, (m.N(a,A), mgN (b, B)) =y | my + mp — 2J My (2.72)

e
TP det(y) |

1 1
where ] © (AB)2(1d —2[AA'B1B)2) with A 2A + 1d and B ™ 2B +1d.
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PROOF. As o — 0, UOTf’fza2 — y(my +mpg —2limy 0 my(0)). Let’s compute that limit. First notice that
A — ¥ and T — 1. Therefore, the following limits holds, eventually using Woodburry’s identity:

do? do?
gt = %8Oz g (2.73)
X Y Y E -1 _ AAa-1
A— E(Id (A + = Id) ) A( ryA +1d)7 = AA (2.74)
5 Y Y Y 1 2 2 1 h—1
—(Id —= = =B(= d B+Id)"'B=B 'B 2.7
B—>2(Id 2(B+21d) ) B(’YB—H ) (7 +1d)~ (2.75)
1 PPN 1
C— (AB)2 — (AA7'B87!B)2 (2.76)
Combining these limits ends the proof. [ |

Limit as Y — +oco We end this section with the following proposition, showing the rate at which

UOT;, ., 8rOWS when ¢y — +oc0. In particular, when the masses are equal, we recover balanced entropic
OT

Proposition 15 Let « = m,N(a,A) and p = mgN (b,B). If my # mg, UOT, 5,2 (,B) goes to +oo as
¥ — +00. Moreover, we can obtain the following equivalent:

Nlim |\UOT (a, ) —(v/mis — /715) ] = \/m[oy@o_z ( P ) + 202 KL( 1\\/W] (2.77)

7,202 mg

where KL(1|,/Mgmig) = /Mg — 1 — log(,/Map).

In particular, if my = mg = m > 0, then:

_ o (& B 2
7221&?200? (o, B) =m [OTZU2 <m' m> +20 KL(l|m)} (2.78)

PROOF. Using proposition 13, the following holds:

UOT (, B) — v(v/ma — \/1p)? = 207 (my + mp — mz) + 2 (/Maing — i) (2.79)

7,202
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Computing the limit of m as y — +o0is straightforward. When y — +00, eventually using Woodburry’s
identity:

T—1 (2.80)
1
1 0 (2.81)
~ 1 -1
A=t <A1 +5 Id) —A (2.82)
_ 1 -1
B=r1 <B1 +5 Id) — B (2.83)
X!1-o0. (2.84)
Therefore, m, — ,/M,7ig. The remaining limit to compute is that of 2y (/M7 — m(y)) which is a bit
more technical to compute. The main idea is to use the change of variable w df %
. . 4
VETOOZ')/(, /mamg — my (7)) = }}g}) a(, /mamg — my(w)) (2.85)
dm
=—4 dw (0) . (2.86)

The detailed derivation of this derivative is provided in the appendix. For an intuition, we are expecting
to recover the “Entropic Bures-Wasserstein” loss of the balanced case in this limit. The derivative of the
exponential term leads to the quadratic difference between the means ||a — b||2, while the derivatives of
the determinants lead to the trace terms. The entropic logdet term is obtained from the derivative with
respect to the exponent T%rl and the determinants under it. n

2.14 Numerical Experiments

Empirical validation of the closed form formulas. Figure 2.2 illustrates the convergence towards the
closed form formulas of both theorems. For each dimension 4 in [5, 10], we select a pair of Gaussians
x = N(a,A) and B = mgN (b, B) with mg equals 1 (balanced) or 2 (unbalanced) and randomly generated
means a, b (uniform in [—1,1]?) and covariances A, B € S% . following the Wishart distribution W, (0.2 *
Id, d). We generate i.i.d datasets &, ~ N (a, A) and B, ~ mﬁ./\/ (b, B) with n samples and compute OTE%2
/ UOT?HT We report means and + shaded standard-deviation areas over 20 independent trials for each
value of n.
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Balanced | d=5 Balanced | d =10 Unbalanced | d=5 Unbalanced | d =10
114
7.5 141 81 104
7 91
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6.5 = ~ 71 £=5.0
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4 31
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Fig. 2.2. Numerical convergence the (n-samples) empirical estimation of OT(«ay,, B,,) com-

puted using Sinkhorn’s algorithm towards the closed form of OT} ,(«, 8) and UOT , («, )

(the theoretical limit is dashed) given by Theorem 1 and Theorem 2 for random Gaussians
«, B. For unbalanced OT, v = 1.

Transport plan visualization with d = 1. Figure 2.3 confronts the expected theoretical plans (contours
in black) given by theorems 1 and 2 to empirical ones (weights in shades of red) obtained with Sinkhorn’s
algorithm using 2000 Gaussian samples. The density functions (black) and the empirical histograms (red)
of a (resp. B) with 200 bins are displayed on the left (resp. top) of each transport plan. The red weights
are computed via a 2d histogram of the transport plan returned by Sinkhorn’s algorithm with (200 x 200)
bins. Notice the blurring effect of ¢ and increased mass transportation of the Gaussian tails in unbalanced
transport with larger .

Balanced | £ =0.02 Balanced | e=0.1 Unbalanced | y=0.001 | e=0.1 Unbalanced | y=0.25]£=0.1

e ol

Fig. 2.3. Effect of ¢ in balanced OT and < in unbalanced OT. Empirical plans (red) cor-
respond to the expected Gaussian contours depicted in black. Here « = N(0,0.04) and
B = m,g/\/' (0.5,0.09) with mg = 1 (balanced) and mg = 2 (unbalanced). In unbalanced OT,
the right tail of § is not transported, and the mean of the transportation plan is shifted
compared to that of the balanced case — as expected from Theorem 2 specially for low .

Empirical estimation of the closed form mean and covariance of the unbalanced transport plan Fig-
ure 2.4 illustrates the convergence towards the closed form formulas of y and H of theorem 2. For each
dimension d in [1, 2, 5, 10], we select a pair of Gaussians « = N'(a, A) and g = mgN (b, B) with mg = 1.1
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and randomly generated means a, b (uniform in [—1,1]%) and covariances A,B € S%_ following the
Wishart distribution W;(0.2 * Id, d). We generate i.i.d datasets a,, ~ N'(a,A) and B, ~ mgN (b, B) with n

samples and compute OT;%2 / UOT;@UZ. We set ¢ % 202 — 0.5 and v = 0.1. Using the obtained empirical
Sinkhorn transportation plan, we computed its empirical mean y, and covariance matrix X, and display
their relative /o, distance to y and H (X in the figure) of theorem 2. The means and + sd intervals are

computed over 50 independent trials for each value of n.

100] * 100

107!
8| 1074 i
I Wi
1= [~
E: — ﬁt —
10724 —e— dm=1
10724 .
—— dim=2
~— dim=5
dim =10
10734
100 10t 102 103 10° 10t 102 103
# of samples n # of samples n

Fig. 2.4. Numerical convergence the (n-samples) empirical estimation of the theoretical
mean y and covariance H of theorem 2. Empirical moments are computed computed using
Sinkhorn’s algorithm.

2.2 OT barycenters of Gaussians and entropic bias

Decreasing the relative entropy of the measure 7t always increases its smoothness, usually referred to as
“entropic blur”. We will show that this — so called — entropy blur does not always occur when considering
entropic OT as a loss function. This is for instance the case when minimizing OT to compute the barycenter
of a sequence of measures. Precisely, the blurring bias is the consequence of defining entropy with respect
to uniform (resp. Lebesgue) measures 111, m; in the discrete (resp. absolutely continuous) case which was
extensively studied by practitioners in the machine learning community for its simplicity (Cuturi, 2013;
Schmitzer, 2016; Benamou et al., 2015). Using the product measure x ®  as a reference however defines
an OT barycenter with a shrinking bias. While the blurring bias is usually considered to be an undesired
side effect, the shrinking bias can be leveraged as a deconvolution technique. Following (Ramdas, Trillos,
and Cuturi, 2017; Genevay, Peyre, and Cuturi, 2018; Feydy et al., 2019; Luise et al., 2019), we advocate for
using the following Sinkhorn divergence which, as we mentioned in the introduction of this chapter, can
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be defined without specifying 1, and m; for arbitrary measures a, g € P(RY):

OTe*(a, a) + OTEF (B, B)
: .

def

Se(«, 5) =

OTg,ﬁ(“/ :B) -

Ilustrating the link between the entropy bias and the choice of m;, m; is the purpose of this section.
Given some divergence F : G(RY) x G(R?) — R and weights (wy); such that X  w, = 1, the
weighted barycenter of a set of probability measures (a ), can be defined as the Fréchet mean:

K

Xr def argminaeg(Rd) Z ka(le,lX) . (2.87)
k=1

Provided F is convex and differentiable, the weighted barycenters ar can be characterized by the first
order optimality condition. Formally, a* is a solution of the barycenter problem if and only if for any
direction B € G(R?):

K
() Vo F(ag,a*), p—a*) >0 (2.88)
k=1

We can now present our second main theoretical contribution of this chapter. Taking a sequence
of multivariate Gaussians, we quantify the bias of entropy induced on the their F—barycenter for F €
{OT%,0T%,S,}. Except the subtle difference of the Lebesgue measure for which the infimum must be
taken over the set of absolutely continuous sub-Gaussian measures, the proof of the 3 upcoming theorems
is technically identical. Using the characterization of the gradients via the dual potentials, we find such
dual potentials along with a candidate barycenter by considering quadratic forms and identifying their
parameters. The following theorems were shown for the univariate case in (Janati, Cuturi, and Gramfort,
2020a). Here, their extension to the multivariate case is presented using less technical proofs.

2.21 The entropy blur

Uniform reference and IBP Let X = {x;,...,x,} C R? and consider two discrete measures & =
Y a6y, and B = Y, Bi6y,. One can identify a and B with their weights a; and B; where a "1 = BT 1.
Let C € R"*" be the matrix such that C;; = C(x;, x;). The definition of OTY in (2.1) becomes:

OT¥(x,f) = min (C, ) +eKL(7|U) , (2.89)
meRP"
ml=a,nm 1=

where U is the uniform measure on X? given by I%T. Let K be the element-wise exponentiated kernel

exp (—<). By adopting the definition KL(A, B) = /i Aijlog (%’]]) + B;; — Ajj for A, B € R"*", Benamou
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et al. (2015) noticed that (2.89) is equivalent to a Kullback-Leibler projection up to an additive constant:

OTY(a,) = min  ¢KL(7|K) (2.90)
meRP*"
nl=a,n"1=4

and proposed the Iterative Bregman Projections (IBP) algorithm to solve the equivalent barycenter
problem:
Jmin Y wiKL(7"K) , (2.91)
meeCnC’ K=1
where C; = {m € RY"|nl = a4} and C' = {mw € RY"|3ax € A,, m{ 1 =, Vk = 1...K}. The IBP
algorithm amounts to performing iterative minimization on one constraint set C at a time. Each step can
be solved in closed form, leading to Sinkhorn-like iterations. By combining both iterations, one can write
every iterate of the transport plan as (/) = diag(a!))K diag(b(")) and perform the scaling operations on
the variables a, b given in algorithm 2.

Algorithm 2 IBP algorithm (Benamou et al., 2015; Chizat et al., 2018b)

Input: aq,...,ax, K=¢"¢
Output: aqu
Initialize all scalings (bx) to 1,

repeat
fork=1toKdo
A < I?]l;k
end for

w4 TTE (KT ay) @

fork = 1to Kdo
by (ﬁ
end for

until convergence

Lebesgue reference and smoothing bias As discussed in the introduction, the obtained barycenter
Ko suffers from entropy blurring. To quantify this blur, we turn to Lebesgue continuous measures and
consider the Lebesgue measure as a reference by setting m; = mp = L. We argue that by considering
normalized histograms, the discrete formulation (2.90) Erovides an approximation of OT* when the
number of histogram bins tends to +cc. Indeed, since OTy is defined on Lebesgue-continuous measures,
one can identify «, B and 7t with their density functions. Moreover, if the density functions are positive,
the same KL factorization (2.90) is possible for OT*. The following theorem shows that the weighted
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aorv (IBP) - == Expected by Theorem 1
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Fig. 2.5. Illustration of theorem 3 with A(—2,0.4) and N (2,0.7) shown in black, and
(w1, w;) = (0.4,0.6). The barycenter OTY matches theoretical expectations and is biased
towards blurred distributions.

barycenter of Gaussians is Gaussian with an increased variance. Figure 2.5 illustrates this smoothing bias
using discrete histograms with a grid of 500 bins.

Theorem 3 (Blurring bias of OTZ) Let C(x,y) = ||x — y||? and (wy)x be positive weights that sum to 1. Let
N denote the Gaussian distribution and e = 20, Assume that a, = N (ay, Ay) and let b = ¥ wyay then:
(i) &ype is a Gaussian measure given by N (Zle Wyay, B) where B € 8%, is a solution of the equation:

K 1 1 2 2
Y wg <B2AkBZ N Id> -2 1d (2.92)
= 4 2
In particular, if all Ay are equal to some A, then a e = N (b, A+ 0?1d).

(ii) Moreover, if A is the largest eigenvalue of all (Ay), then c*1d < B < (A +0?)1d.

SKETCH OF PROOF. With the differentiability and convexity of OT;, , established in Section 1, the barycen-
ter can be characterized using the first order optimality condition. We compute the gradient at a Gaussian
verifying (2.95) using the closed form Sinkhorn potentials for Gaussians and show that the said optimality
condition holds. The existence of the solution in shown by Brower’s fixed point theorem. n

2.2.2 The entropy deconvolution

Besides the smoothing bias of the uniform measure, OTY cannot be generalized to a general OT definition
for any arbitrary distributions that are non-discrete or non-Lebesgue continuous measures. To go beyond
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aore (reweighted IBP) - == Expected by Theorem 2
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Fig. 2.6. Illustration of theorem 4 with A (—2,0.4) and N (2,0.7) shown in black, and

(wy,wy) = (0.4,0.6). The barycenter OT;’ matches theoretical expectations and is shrunk

towards a Dirac as ¢ increases. The “reweighted” IBP algorithm will be discussed in the
following section.

this binary classification of probability measures, several authors (Ramdas, Trillos, and Cuturi, 2017;
Genevay, Peyre, and Cuturi, 2018; Feydy et al., 2019) proposed the generic references m; = «, mp = .
Indeed, the marginal constraints 13 = «, 71; =  imply that the support of 7 is included in that of
a ® B and the KL term is always well-defined regardless of the nature of @ and B. For the sake of

convenience, we denote OTY’ of OT:?. Di Marino and Gerolin (2020) made the following key observation
that characterizes the change of reference. For discrete measures «, 3

OTY(a, B) = OTZ (a, B) + eKL(a|U) + eKL(B|U) . (2.93)
Similarly, the same identity holds for Lebesgue-continuous measures in P (IR):
OT% (a, B) = OT? (a, B) + eKL(a|L) + eKL(B|L) . (2.94)

The identity (2.93) unveils another merit of OTY over OTY: its corresponding barycenter problem is
equivalent to a regularized OTY barycenter with a negative KL penalty. Interestingly, even though ‘—KL’
is concave, OT{ remains convex with respect to one of its arguments. However, OTZ’ yet suffers from
some limitations: (1) OTY cannot be written as a KL projection, thus the fast IBP algorithm is lost; (2)
the barycenter agre of Gaussians can be a degenerate Gaussian, as demonstrated by Theorem 4 which
shows that if ¢ is large the barycenter collapses to a Dirac (cf. Figure 2.6). While the extreme degenerate
case showed by Theorem 4 is not helpful in most OT applications, this phenomenon can yet be leveraged
as a deconvolution technique: Rigollet and Weed (2018) showed that minimizing OT{ is equivalent to
maximume-likelihood deconvolution of an additive Gaussian-noise model.

Theorem 4 (Shrinking bias of OTY) Let C(x,y) = ||x — y||* and (wy)x be positive weights that sum to 1.
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Let N denote the Gaussian distribution and e = 20, Assume that oy = N (ay, Ay) and let b = ¥ wyay and
b =YK | wiAy. then:
(i) agre = N (b, B) where B is a solution of the equation:

1
K 11 g4 2 2
Y wy <B2AkBZ +Id> -B+21d (2.95)
= 4 2
In particular, i all Ay are equal to some A, then aqre = N(b, (A —0?1d) ). Where the truncation (.) is
applied to the eigenvalues of A — 2 1d. Thus, in dimension 1, if b < o2, then ore is a Dirac located at b.
(ii) Moreover, if A is the largest eigenvalue of all (Ay), then 0 < B < (A —¢?), 1d.

SKETCH OF PROOF. With the differentiability and convexity of OTZEUZ established in Section 1, the barycen-
ter can be characterized using the first order optimality condition. We compute the gradient at a Gaussian
verifying (2.92) using the closed form Sinkhorn potentials for Gaussians and show that the said optimality
condition holds. The existence of the solution in shown by Brower’s fixed point theorem. u

2.2.3 Entropy debiasing

Interestingly, these limitations and significant differences between OTY, OT* and OT? disappear when
considering the following Sinkhorn divergences:

S"(a, B) % OT" (a, p) — OLe (&%) ;OTW,[%) ,
S:(a, B) 2 OT% (a, ) — DLe (20) ;OT?(ﬁ,ﬁ) |
Using (2.93) and (2.94) it holds:
SS(D‘/ :B) = S;n(l)(, ,B) 7 (296)

where m is either U or £ depending on the nature of « and B. Therefore, S, is defined on arbitrary
probability measures which can be mixtures of continuous measures and Dirac masses. Moreover, Feydy
et al. (2019) showed that when the support of the measures is compact and with the additional assumption
that C is negative semi-definite, S is differentiable and convex with respect to one of its arguments. In the
following section, we generalize the aforementioned statements for measures with unbounded supports
in R?. The negativity assumption on C holds for instance if C(x,y) = ||x — y|¥ with 0 < d < 2 (Berg,
Christensen, and Ressel, 1984, Chapter 3, Cor 3.3) and is the only (cheap) price to pay for a debiased OT
divergence. These convexity and differentiability results are essential to prove the debiasing of S, stated
in Theorem 5 and illustrated in Figure 2.7.

Theorem 5 (Debiasing of S;) Let C(x,y) = ||x — y||> and (wy)x be positive weights that sum to 1. Let N
denote the Gaussian distribution and e = 20°. Assume that oy = N (ay, Ay) and let b = Y wyay, then:
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as, (proposed) —=—- Expected by Theorem 3
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Fig. 2.7. Illustration of theorem 5. Unlike with the uniform measure (Figure 2.5), the debiased
barycenter remains unscathed when increasing e.

(i) s, is a Gaussian measure given by N (Z,Ile Wyay, B) where B € S84 is a solution of the equation:
1 L 7 1 O 1
) wi(B2A(B2 +Zld)2 = (B +Zld)2 (2.97)

In particular, if all Ay are equal to some A, then ag, = N (b, A).
(ii) Moreover, if A and A are the respective smallest and largest eigenvalue of all (Ay), then A1d < B < AId.

SKETCH OF PROOF. With the differentiability and convexity of S,,2 established in Section 1, the barycenter
can be characterized using the first order optimality condition. We compute the gradient at a Gaussian
verifying (2.97) using the closed form Sinkhorn potentials for Gaussians and show that the said optimality
condition holds. The existence of the solution in shown by Brower’s fixed point theorem. u

Figure 2.8 shows a comparison of the three barycenters discussed in this section. We intentionally chose
Gaussians with equal variances to emphasize two observations: (1) the debiasing of S,: the barycenter ag,
has the same variance of the input measures for all ¢; (2) the shrinking bias of OT{ is significant even for
small values of e. Now let’s move on to some news from the Zoo of London where officials are not happy
about their breeding program of the asian lions being disturbed by the Brexit drama, the lionesses Lima,
Eva and Ama were expected to be moved to a zoo east germany to find a mate. Now officials are worried
if they don’t manage to complete the trip before January 1st, it would almost impossible to check lions
through customs.

Besides debiasing, the barycenter ag, also comes with a computational advantage. Using the identity
(2.96), we bypass the technical difficulties of the product measure in S; and derive an algorithm similar to
IBP to compute as, which will be the subject of the following section.
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— Qaorv (IBP) Qore as, (proposed)
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Fig. 2.8. [llustration of the three theorems with A/(—3,0.4) and N (3,0.4) shown in black us-
ing uniform weights. Entropy regularization causes a smoothing bias (blue) and a shrinking
bias (red). Debiasing with S, (cyan) is perfect and independent of €.

3 Algorithms for OT barycenters

Let P(IR¥) denote the set of probability measures on R?. Given some divergence F : P(RY) x P(R?) — R
and weights (wy ) such that YX_, w; = 1, the weighted barycenter of a set of probability measures (ay)x

can be defined as the Fréchet mean:
K

ap & arg min, cp(ge) 3, WiF(ar, @) . (2.98)
k=1

When the support of ar is unknown a priori, free support methods are needed to jointly minimize the
objective with respect to both the support and the mass of the distribution (Cuturi and Doucet, 2014). Oth-
erwise, fixed support methods, which only optimize weights on known supports, are employed (Benamou
et al., 2015). While free support methods are more general and memory efficient, fixed support ones are
faster in practice and more suited to computer graphics applications.

Previous work Using the Wasserstein distance as a divergence F, Li and Wang (2006) were the first
to propose the Fréchet mean (2.98) for a clustering application in computer vision. This idea was later
adopted by Agueh and Carlier (2011) to formally define Optimal Transport (OT) barycenters. However,
the Wasserstein distance is defined through a linear programming problem which does not scale to
large datasets. To address this computational issue, some form of regularization is mandatory: either
regularize the measures themselves using sliced projections for instances or regularize the OT problem
using /> (Blondel, Seguy, and Rolet, 2018) or entropy (Cuturi, 2013). Naturally, in the discrete case,
Benamou et al. (2015) proposed to compute OT barycenters using OTY using algorithm 2. However,
as shown earlier, OTY leads to an undesirable blurring of the barycenter. While using a very small
regularization may appear as an obvious solution, it leads to numerical instabilities that can only be
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mitigated using log-domain stabilization or full log-domain ‘logsumexp” operations (Schmitzer, 2016).
This however considerably slows down Sinkhorn’s iterations.

To reduce this entropy bias, several divergences F have been proposed. For instance, Solomon et al.
(2015) proposed to modify the IBP algorithm by adding a maximum entropy constraint they called entropy
sharpening. This leads to a non-convex constraint which does not fit within the IBP framework. However
this is very similar to solving the OTY barycenter. Luise et al. (2018) proposed to compute the entropy
regularized solution 77* and to evaluate the OT loss (2.1) without the entropy term KL. This indeed leads
to sharper barycenters but can only be estimated via gradient descent, thus requiring a full Sinkhorn loop
at each iteration and setting a pre-defined learning rate which can be cumbersome in practice. Amari
et al. (2019) proposed a modified entropy regularized divergence OT that can still leverage the fast IBP
algorithm of Benamou et al. (2015) but requires a final deconvolution step with the kernel exp(—$),
which is only feasible when ¢ is small. With this same objective of non-blurred solutions, Dongdong et al.
(2019) even called for a return to the original non-regularized Wasserstein barycenter and proposed an
accelerated interior point methods algorithm.

Discrete measures on a finite space The purpose of this section is to derive a fast Sinkhorn-like algo-
rithm to compute as, on a fixed support. Let X = {x1, ..., x,} be a finite grid of size n. With images for
instance, each x; would correspond to a pixel. We identify a probability measure & =)' ; a;dy, € P(X)
with its weights vector (¢;) € R’ such that };_; a; = 1. In the rest of this section, OT, and S; can
be seen as functions operating on the interior of the probability simplex of R” denoted by A, = {x €
R | Y- xi = 1}. We assume that the cost matrix C € R*" is symmetric negative semi-definite (or
equivalently, its associated kernel K = e ¢ is positive semi-definite). This assumption holds for instance
if Cjj = [|x; — x;||” with p €]0,2] (see (Berg, Christensen, and Ressel, 1984, §3, Thm 2.2, Cor 3.3) for both
claims).

3.1 Reweighted IBP for a deconvoluted barycenter

In practice (with discrete measures in the probability simplex A,), even though the IBP formulation is
lost with OTZ, one can still compute the OT{ barycenter using a reweighted version of IBP. Indeed,
using the identity (2.93), the OT:’ barycenter problem is equivalent to the IBP barycenter problem with a
non-convex penalty —KL:

K

argmin, ., Y wp OTY (ay,, &) — eKL(a, U) (2.99)
k=1
K

=argmin, Y wy OTY (ar, &) — (w,log(a) — 1) . (2.100)
k=1

The applied penalty is separable and can be written as the sum of non-convex functions Y/_; —a;(log(a;) —

1) def Y, g(w;) . Gasso, Rakotomamonjy, and Canu (2009) showed that such problems can be solved

using reweighted algorithms where the non-convex penalty is written as a difference of two convex
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functions. The obtained reweighted algorithm is equivalent to minimization-majorization where g is
replaced with a linear upper bound surrogate function. Using the gradient of g (given by — log(«)) to
construct such a surrogate leads to a sequence of OT barycenter problems shown in Algorithm 3.

Algorithm 3 Reweighted IBP algorithm to solve (2.99)

Input: aq,...,ax, K= e ¢

Output: aqre

Initialize x = 0.

repeat
& < argmin, ., YK wi OTY (ay, ) + (&, %)
x + —log(w)

until convergence

Now let’s show how can the inner problem be solved using a modified IBP algorithm. Assume x € IR?
is a fixed vector:

K
argmin, Y wi OTY (ay, ) + (a, x) . (2.101)
k=1

Introducing the concatenation 7w = (7, ..., k), we can use the theoretical framework of Chizat et al.
(2018b) to write (2.101) as:

min KL(7t|K) + F(m1,...,m¢1) + F(m] 1,..., g 1) (2.102)
neIR’iK
with:
~ K —~—
KL(7|K) = }_ wKL(m|K) (2.103)
k=1
F(ml,...,mgl) = Y imi— (2.104)
k=1
T T K
E(m1,...,1xl) = %Ek; LaT =g T (8,X) (2.105)

Chizat et al. (2018b) showed that the IBP algorithm 2 is an example of the general alternating iterations,
starting from some initialized matrices a,b € RPK,

a < proxdivy, (Kb) (2.106)
b+ proxdiVFz(KTa) (2.107)
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where the proxdiv operator is defined as :

proxdiv.(z) = %argmin F(s) +¢eKL(s|z) (2.108)

S
Adapting the proof of Chizat et al. (2018b), we compute proxdivr, (z) by solving:

Proposition 16 The proxdiv operator of F, can be given by:

proxdivy, (z) = % (2.109)
where:
K
a=e ] [z™ (2.110)
k=1

PROOF. Computing the proxdiv operator of F; is equivalent to the problem:

K
min ¢ Yy wy KL(sg, zg) + L5, + (2, X) (2.111)
saeRY 12
K
= min ¢ Z wy KL (&, z¢) + (&, x) (2.112)
weR 3

Given that the problem above is convex, cancelling the gradient leads to its minimizer given by:

K !
Z wy log <> +x=0 (2.113)
k=1 Zk
K
Sa=e X0 H z; "k (2.114)
k=1

The marginal constraints i5,—, impose that all s; are equal to « at optimality, therefore diving by z leads to
the proxdiv evaluation at z. n
Extending the proxdiv iterations leads to the detailed algorithm:
Computing the OT{ barycenter thus requires several IBP loops. In section 2.2, we illustrated its
shrinking bias on Gaussians. Now we turn to the debiased barycenter.

3.2 IBP for debiased barycenters

To obtain a fast iterative algorithm for the debiased barycenters ag , we are going to leverage the IBP
algorithm through the uniform measure on X as follows. First, the identity (2.96) ensures that S; is
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Algorithm 4 IBP algorithm with a linear penalty to solve (2.101)

Input: aq,...,ax, K= e*%, x € RP.
Output: Ko
Initialize all scalings (b ) to 1,
repeat
fork =1to K do
o ()
end for
w4 e X OTIR (K ap)w
fork =1to Kdo
bk — (%ﬁlk
end for
until convergence

independent of the reference measures. Thus, one can write:

_ OT(w, ) + OT(B,B)

S.(,8) = OT(a, p) .

Using (2.90), one can write OTY (a, B) as a KL projection. The remaining autocorrelation terms can be
replaced by their dual problems to obtain the following proposition.

Algorithm 5 Debiased Sinkhorn Barycenter (Janati, Cuturi, and Gramfort, 2020a)

_c
Input: ay,...,ax, K=¢"¢

Output: ag,
Initialize all scalings (bx),d to 1,
repeat
fork=1to Kdo
A < %l];k
end for
w4 dOTIR (K ap)™
fork=1to Kdo
b ('
end for
d« /do (&)
until convergence
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Proposition 17 Let ay,...,ax € Ay and K = e~ . Let 7t denote a sequence 1y, . .., Tt of transport plans in
R and the constraint sets Hy = {n|Vk, ml = ay}, and Hp = {n|VkVK, ] 1 = mp1}. The barycenter
problem mingca, YN_| wy Se(ay, &) is equivalent to:

K
min  |e ) weKL(m| K diag(d)) + S(d — 1, K(d — 1)} ] . (2.115)
e LS ?

+

where KL(A, B) = T; Ayilog (5 ) +Bj — Ay

PROOF. The barycenter problem of S, only depends on OTY («, B) — 1(OTe(a,a). Let’s rewrite this
expression using the IBP formulation and duality. the IBP formulation (2.90) is explicitly given by:

OT(x,f) = min eKL(n|K)—e) Kj (2.116)
TFEIRrJlrxn l,]
nl=a,n" 1=4

And the autocorrelation term can be expressed via its dual problem:

U _ Celot Koty _ 3
OT{ (a, ) = fel%>§2<h’“> elee, Kee) ngZ] (2.117)
= max 2(elog(d), &) — e{d, Kd) — s;jKﬁ (2.118)
= — min —2(elog(d), a) + &(d, Kd) + ¢ ) _K; (2.119)
ER™ i

Moreover, on the constraint set H; N Hy, itholds a = 71/ for all k. Thus, denoting Ho(a) = {7|Vk VK, ;] 1
a} the following can be written:
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K

argmin ) _ wy Se(ay, o)
a€N, k=1

=—argmin min wsKLnK—i—mm elog(d + gde 8 K
;‘;GAH neHmHZ()E keKL (71| K) ER? (elog(d), a) 2 i

= i KL(|K log(d (d,Kd) K;:
gmmi( (1) — (eog(d) ) + 360 K0) = 3¢ LKy
eRY

=argmin min w EKLT(K elog(d), ) 1)) + = e(d, Kd) e K;;
gm nemzukzl ¢ (KL (|K) — (elog(d), 7 1)) + 5 LK

1 1

-

= nir%?}b; Wi (sKL(nk\K) (elog(d), m; ]1)) + §£<d, Kd) — Zeizj:Kij
e n 7,

K
= 716;7{[111137{2](27/01( (sKL(nk|Kd1ag(d)) —e(Kd, 1) +elZ]:Kl]> + —¢(d, Kd) EZK,]
c n

1 1
— n{ﬁﬁmkz ew KL (| K diag(d)) — e(Kd, 1) + Es<al, Kd) + 28;1(1-]-
E n 7,

€
= n%f%;gwkm 7| K diag(d ))+§(d—]l,K(d—]l)> :
e n

n
Since KL is jointly convex and K is assumed positive-definite, the objective (2.115) is convex. Min-
imizing (2.115) with respect to 7t leads to the barycenter problem an (2.91) with the modified kernel

K diag(d). This problem can be solved via the fast IBP algorithm. Minimizing with respect to d leads to

(1
the Sinkhorn fixed point equation d = Zw%:zk for which there exists a converging sequence (Knight, Ruiz,

and Ugar, 2014):
dy ® ) 1
dp1 < || ”%’;"(*) (2.120)

Given that (2.115) is smooth and convex, alternate minimization — which amounts to perform IBP and
(*) iterations — converges towards its minimum. However, we notice that in practice, either taking one
iteration or fully optimizing the subproblems produces the same minimizer. We thus propose to combine
one IBP iteration with the update (x), which leads to Algorithm 5.
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Fig. 2.9. Convergence to the true barycenters of univariate Gaussians N'(—0.5,0.1) and
N(0.5,0.1). Algorithm 5 is as fast as IBP with a linear convergence rate.

Convergence of Algorithm 5 A convergence proof of IBP can obtained using alternating Bregman
projections (See (Benamou et al., 2015) and the references theirein). For Algorithm 5 however, similar
techniques are not successful. Using the theoretical barycenters of Gaussians given by theorems 3 and 5,
we can monitor the convergence to the ground truth (Figure 2.9). Theoretically, both IBP and algorithm 5
have a O(Kn?) complexity per iteration, convergence guarantees will be the subject of future work.

3.3 Debiasing unbalanced OT

In the balanced case, changing the entropic reference measure from the uniform to the product measure is
tantamount to an additional entropy of the input measures:

OTY (&, B) = OT (a, B) + eKL(a|U) + eKL(B|U) . (2.121)

Equalities like (2.121) are possible in balanced OT because of the marginal constraints of the transport
plan. In unbalanced OT, such identities do not hold. Thus, the reference measure has a much more
important role in unbalanced OT.

3.3.1 Reference measure and bias

Let’s re-visit the quantities of interest of UOT in the discrete case. Let a, f be two non-negative measures
with a fixed support given by X = {x1,...,x,} C R They can be identified with vectors of non-negative
weightsi.e a,b € RY. Let C be the cost matrix filled with entries Cij = c(x;, x;) for some non-negative
symmetric cost function ¢ : R? x RY — R.. Denoting U the uniform non-negative measure in
assigning the weight 1 to each (x;, x;), we define:
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2

UOT (&, B) = min (r,C) + eKL(7|U) + yKL(7l|x) + yKL(7t " 1y) , (2.122)
&7 ER {P¥P
®

UOT(a, B) = mir;} ; (rr,C) + eKL(7t|a ® B) + yKL(7tl|x) + yKL(7 " 1]y) . (2.123)
&Y meRy x

Both formulations fall within the framework of (Chizat et al., 2018b) and have equivalent dual
problems up to additional constants which depend only on C and &

u _f _8 898—C

UOT(a, ) = max —y(a,e 7 —1) —y(b,e " —1) —ele” = —1,U) (2.124)
[% f.8€RP
@ _f _3 fog-C

UOT(a, ) = max —y(a,e 7 —1) —y(b,e " —1) —ele” = —1,a®Db) (2.125)
&Y f.8€R?

. . f 8 . .
Moreover, with the change of variables: w = #, K= e*%, u=e:,v= eg, the optimal dual points

are the respective solutions of the fixed point problems and can be used to compute the gradients (Feydy
etal., 2017; Séjourné et al., 2019):

U a\w b \“
For UOT: u= (ﬁ) , v= (KTu> (2.126)
u £ €
VUOT(a, ) = (1L —u 7,1 — v ¥) (2.127)
&y
ForUOT: u= (L Y oo( 1 Y (2.128)
ey - K(b®v) ’ N K'(a®u) '
® e €
VUOT(a,8) = (y+eb'1 — (y+e)u 7, y+ea 1 — (y+e)v 1) (2.129)
&Y

and the optimal transport plans are given by:
¥ = diag(u)K diag(v), n®° = diag(a ® u)Kdiag(v®b), (2.130)

These iterations are a generalization of the Sinkhorn algorithm which corresponds to w = 1 i.e
¥ = +o0c0. When the measures a, § are equal to each other, the symmetries of C, 7t and that of the dual
problem lead to a dual solution on the diagonal:

Corollary 3 Let a € R'}.. The associated optimal dual (identical) scalings u, v to computing UOTgy(a,b) are

a

given by the solution of the fixed point problem: u = ()"
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The following proposition shows that similar to the balanced case, UOT divergences induce blurring
and shrinking biases depending on the reference measure.

Proposition 18 Let b € R’} | and assume that ¢ > 0 is small enough for K L =% 1o be invertible. Then:

. U b \“

a:gﬂg}ngT(a,b) =K <m) (2.131)
++
inUOT(a,b) — <K' ! <( b >w) (2.132)
arg min a,b) =« —_— , .
R K1 (x1)
where:

Ty

e 4ef <w> . (2.133)

PROOF. The dual problem (2.124) shows that UOTg,Y is a supremum of linear functions in (a, b). Thus,

UOTgAY is jointly convex in (a, b). Moreover, Séjourné et al. (2019) showed that UOTS?A, is convex in & and
in B but not jointly. Since they are differentiable, cancelling their gradients lead to the desired formulas. l

3.3.2 Debiased unbalanced divergences

Unlike balanced OT, debiasing unbalanced OT cannot be tackled regardless of the reference measure.
Motivated by computational aspects, we propose a debiased UOT loss based on the uniform measure.
But first, we acknowledge the more generic formulation using the product measure.

Debiasing UOTS?,Y As discussed in the introduction, a natural idea would be to consider a debiasing
similar to the balanced case by proposing;:

(0,B) = UOT(w, ) — 5 (UOT(w,a) + UOT(,B)) (2.134)

However, (2.134) does not verify non-negativity nor convexity which are violated when taking large mass
discrepancies between the measures. Séjourné et al. (2019) proposed to redress it by adding a quadratic
penalty on this mass difference:

def

o e ® 1 ® ® € B )
S, (0, 8) £ UOT(w, B) = 5 (UOT(w,0) + UOT(B, ) + 5 (+(X) ~ B(X))? . (2135)

_ E(
Similarly to the balanced case, as long as K is positive definite, SS?W is non-negative and convex with
respect to one if its argument. Moreover, since it is defined through the product measure, it is not restricted
to discrete measures and was originally studied by Séjourné et al. (2019) for generic measures supported
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on compact sets. When it comes to computing barycenters however, no formulation close to Sinkhorn’s
algorithm can be obtained. One must therefore revert back to first order descent methods where each
descent iteration requires a full Sinkhorn loop to compute the gradient.

Debiasing UOTZS’f7 When restricted to discrete measures supported on the same finite and fixed set X,
we can show that the natural debiased divergence is enough for debiased barycenters to be defined and
computed with fast Sinkhorn-like iterations. We propose the following divergence:

U (x,B) L UOT(a B) — L uOT(w,a) -|-U%T(ﬁ B)) (2.136)
e,y \tr P ’ 2\ ey ’ e y . .

Since the support X' and the kernel K are fixed, we can identify a, B with their weight vectors a,b € RF..
In the rest of this section, UOTSLY and UOTgAY are considered functions over ]RfL X lRfL.

Non-negativity To show that Sg,y is non-negative, we assume that the kernel K = e ¢ is positive
semi-definite. This is the case for example with C;; = ||x; — x;||' with 0 < I < 2 (Berg, Christensen, and
Ressel, 1984) if the support of the measures is given by {xy,...,x,} C R%

Proposition 19 Leta,b € R". IfK = e ¢ is positive semi-definite:
Sgy(a,b) >0
Moreover, if K is positive definite, Sgy(a,b) =0 a=hb.

PROOF. Let ¢ and d denote the solutions of the fixed point problems: ¢ = (ﬁ)w and d = (%) w. With the

change of variable u = ef and v = et, let (u,v) — D(u,v) denote the dual function of (2.124). On one
hand, by Corollary 3, UOTgv(a, a) = max, yeg? D(u,v) = D(c, c). Similarly, UOT?/Y (b,b) = D(d,d).

On the other hand, by definition of the max UOTgAY (a,b) > D(c,d). Therefore:

=¢ —(c®d,K)+1

1
§<C®C,K> + 2<d®d,K>}

|
e [—(c, Kd) + (e, Ke) + 3 (d, Kd)}
(

Where the last inequality follows from the positivity of K. If K is positive definite, the last inequality is
strict unless ¢ = d, in which case the fixed point equations lead to a = b. n
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Coercivity Regardless of the nature of K, we will now show that S(., b) is coercive for any fixed b. To
do so, we first show that UOT% only depends on the sums of transported mass:

Proposition 20 Let a,b € RY and 71,1, € R? their associated transport plan. Then:

1 1
Sty (a,b) = (e +27) (5 lI7maalli + S I mop 1 — [ 7ap 1) (2.137)

SKETCH OF PROOF. Let a,b € R%.. And let u, v the dual scalings associated with the dual problem of
UOTY (a,b). The corresponding primal solution is given by 71;; = u;K;;v;. Therefore, using the fixed

point equations (2.126), we have: ||, [1 = (u,Kv) = (a,u”7) = (v,K'u) = (b,v 7). Therefore, at
optimality, the dual function (2.124) is equal to:

u
UOT(a,b) = —(e +27)ll7mapllr + 7 (llalls + [Ibll1) +el[K]1,

Writing UOTgy(a, a) and UOTgy(b, b) in the same way ends the proof. [
To prove that UOT% is coercive, we bound || 77, , |1 with the ¢; norms of a and b:

Cji
Lemma4 Let a,b € RY and m,), € RY™ their associated transport plan. Let x = min; ; e~ . We have the
following bounds on the total transported mass:
2+2 3
cllaf[[blls < maplly ™ < p2{lallilibl: (2.138)

PROOF. The first order optimality condition of the primal UOT problem (2.122) reads for all 7,j € [1, p] :

i1l
elog(m;;) — elog(K;j) 4 v log xiy] =0 (2.139)
iyj
3 Gij
i in] 1 =abe (2.140)

On one hand we have:

p B e P
Yo il < nlle Yl i
1,] L]

£
= |7l &It

2+
<|lrlly 7
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On the other hand, using Jensen’s inequality in the second step:

v
1
£+2
Z pz <Zz,]2 1]) v
p
_2_0¢t
>p i

SR B P 42
v

z' 7 1 > E T

L L

€
2+£
1

C..
_Si ) . .
Finally, since x < minl-]- e 7 <1 we get the desired inequalities. [ |

Proposition 21 Forb € R, the function a Sg,y(a,b) is coercive.

PROOF. Lemma 4 and proposition 20, we get, with { = zii :
v
2
2 2 3
UOT(a,b) > x([lall + Ib]E) ~ p? [al[1b]¢ (2.141)
Therefore: ||al|; — +oco = Sg’ﬂr(a,b) — +oo [ |

Differentiability UOTZE{W(., b) is differentiable, and its gradient is given by (1 — a7 ) where u is the
solution of the fixed equation (2.126) (Feydy et al., 2017). Thus, SZE{,Y is also differentiable. If K is positive

semi-definite then sﬁfv > 0 and thus, from the following proposition we conclude that all its stationary
points are minimizers:

Proposition 22 Let a,b € R’ be a stationary point of SZAY ieV Sgﬂy(a,b) = (0,0). Then, Sgﬂy(a,b) =0.
Moreover, if K is positive definite, then a = b.

PROOF. Let u, v, ¢, d the solutions of the fixed problems:

w= () v () () e () 12)

Applying the chain rule, ; disappears and we get: V, UOTgv(a, b)=7(c 7 —u 7)and V, UOTZZ,7 (a,b) =

d 7 —v 7). If a, b) is a stationary point of UoT% , then we immediately have u = cand v = d. The
Y YP &y y

fixed point equations lead to Kv = Ku = K¢ = Kd. The transported mass between a and b is given by:
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| Tap|l1 = (u,Kv) = (v, Ku). Therefore, using Proposition 20, UOTZgV can be written:

24 2
UOT(a,b) = & +2 Y (¢, Ke) + (d, Kd) — 2(u, Kv))
€y
_t +227(<c, Kc) + (d,Kd) — (u,Kv) — (v, Ku))
_ 8+22’Y(<c+d—u —v,Ku))
=0
Moreover, if K is positive definite, Ku = Kv leads to u = v and thus a = b. [ |

Remark 5 It is important to keep in mind that all the properties shown for UOT% (coercivity, non-negativity)
hold only if the measures are defined over the same support X for all measures. This is crucial for K to be symmetric
and defined regardless of the measures themseluves.

3.3.3 Debiased unbalanced barycenters

This section extends the debiased barycenter of (Janati, Cuturi, and Gramfort, 2020a) to the unbalanced
case. As of the time of writing, its contributions are not published yet.

Letay, ..., ax € R} and wy, ..., wk a sequence of positive weights adding to 1. UOT% is non-negative
and coercive, thus its barycenter problem is well defined:

K
min 7 (b) & min Y wy Sgﬁr(ak,b) (2.143)
beR:, acRf ;5 ’

UOT is differentiable, and its gradient is given by (1 — ur,1- v_%) where (u, v) is the solution of
the fixed equation (2.126) (Feydy et al., 2017). Thus, using the chain rule, J is also differentiable and its
gradient is given by:

K e
VIb)=7y(c 7 =) wev, ") (2.144)
k=1

where, using the usual exponential change of variables, ¢,vy,...,vg,a1,...,ax € ]RfL verify the fixed

point equations:
w w w
aj b b
= - , = , = — 2.145
H <Kvk> vk <KTuk> ¢ <KC> ( )

Without studying the convexity of 7, we can show that any stationary point of 7 is actually a global
minimum. Thus, it is sufficient to solve V.7 (b) = 0 to compute the UOT% barycenter. The following
lemma plays a major role in proving this statement.
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Lemma 5 (Suboptimality) Let a,b € RE. Let u,v € R’ be the optimal dual variables associated with

w
UOTZW(a, b) i.e the solutions of the optimality conditions u = (&) and v = (K%) . Then for any x,y € R%.:

€

¥(a,x ) +7(b,y ") +&(x,Ky) > (£ +27)(u,Kv) (2.146)
PROOF. Using the same change of variable x = e{, y= e?, the dual problem (2.124) can be written:

U . e
UOT(a,b) = max —y(a,x " —1) —y(b,y » —1) —e(x®y —1,K)
&,y

xyeR:

= InaX —’y(a,xfi - 1) - ’Y<b/Y7% - 1> - €<X®Y -1, K>

r
x,yE€R’

= max —y(a,x 1) —y(b,y 1) —e(x,Ky) — e[[Kl1 +v(|[all1 + [b]}1)

p
x,yE€R’,

Since u, v are the solution of the dual problem above, at optimality it holds:

€

(a,u”7) = (usKv,u 7) = (u,Kv)

Similarly:

Thus: y
UEQT(a/b) = —(e+27)(u,Kv) —¢[[K|l1 + v ([lalls + [|b]]1)

By the definition of the max operator, it holds for any x,y € R”.:

y(ax 7)) +(b,y 1) +e(x, Ky) > (e +27)(u,Kv)

O
Since J is coercive, it has at least one global minimum. The following proposition shows that this
minimum is unique, potentially attained at multiple minimizers.

Proposition 23 Let b € R’} such that V.7 (b) = 0. Then for any z € RY, it holds:

J(z) > J(b)
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PROOF. Let dy, ..., dg the symmetric dual variables used to compute UOTgv(ak, ay) for k = 1..K i.e the
solutions of d; = (K%) w. Letz € ]R’i and its associated dual variables ¢/, u}, ..., u}, v}, ..., vi used to
compute UOTgW(z, z), UOTS’V(al, z),..., UOTIngr(aK, z). Therefore, it holds:
K 1
7 (@) = (e+20) Y w5, KE) + (d Ke) = (u, K} )
k=1
Let c,uy,...,ug, vy,..., vk denote the dual variables verifying (2.145) associated with b and the (ag)-
Since V.7 (b) = 0, itholds: ¢ 7 = YX , wyv, ", therefore:
K K ) . ) .
Z wk<ak/ KVk> = Z Wi <b/ Vk7;> = <b/ C7;> = <C/ KC> (2147)
k=1 k=1
Thus, evaluate 7 at b leads to:
_ K 1
J(b) = (e+27) ) wy (((C, Kc) + (di, Kdy)) — (ug, KVk>>

k=1 2

= %(e +27) (i wy (dg, Kdg) — (c, Kc))

k=1

Thus, the statement we wish to prove is equivalent to:
_ 1 K
J(z) > J(b) & §<€ +27) ((¢,Kc') + (¢, Kc)) > (e+27) ) wi(up, Kvy) (2.148)
k=1

For each element of the sum in the right side above, let’s derive un upper bound using Lemma 5. Consider
the sub-optimal dual variables (x, zy) = (ug, vy © %/) It holds:

/

_£ C._¢ d
Yag,ue 7)) + 9z, (vi ® ;) ) +e(vi © ;,KTuk> > (e+27)(u;, Kvy) (2.149)
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Applying the weighted sum and using the optimality conditions along with 7 (b) = 0, the elements in
the left side can be further simplified as:

€

K K i K
Y wilague ) = Zwk<b Z
=1 =1 =

o Z wk"k
K

K c

/
Y welvi© %,KTuk> - <% ©b, 2 weve 1) = (d Ob,c ) = (¢, Ke)
k=1 =

Q\“"
—~
\g
A
(g}
~

z (v © )77

«\m
Il
N
©
—~
Y Ke!
S~—
<
N
(o)
==
S~
Il
—
N
<
N
<
~
—~
(o)
A
o)
S~

Therefore, summing over equation (2.149):

K
v(c,Ke) + y(c/, Kc') +¢(c/, Ke) > (e +27) Z (u}, Kv})
On another side, since K is positive semi-definite, it holds:

(= Kle—d)) > 0= %((c, Ke) + (¢, Kc')) > (¢, Kc)

Combining the last two inequalities leads to (2.148) ending the proof. O
To solve the barycenter problem (2.143), it is sufficient to solve the fixed point system:

w o w N w K
_ aj - b - b ,g o ,g
e <KVk> S <KT“k> © T (KC> ' ; T (2150

which — combining the last 3 equations — is equivalent to:

1
« b w b w K 1-w
— (2 _ b (b t ew
o (Kvk> S (KTuk> r T (KC) b= (Z wi (K ) (2.151)

k=1

These equations are very similar to the barycentric Sinkhorn algorithm of Chizat et al. (2018b). Indeed,
disregarding the symmetric equation in ¢ and setting ¢ = 1,, in the update of b, we recover Sinkhorn’s
iterations for the UOTS’V barycenter. These updates lead to Algorithm 6. While the theoretical analysis
of its convergence is left for future work, we empirically observe that it converges regardless of the
initialization of the dual variables. More importantly, it leads to sharper barycenters than the (biased)
UOT barycenters for almost no additional computational cost.

Remark 6 The proposition 23 may seem to indicate that J has a positive curvature. However, it is easy to show
that ng is not convex in dimension 1. Indeed, taking a dimension p = 1 leads to K = 1 and the Sinkhorn equations
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Algorithm 6 Debiased unbalanced stﬂr barycenter.

def
Input: a;,...,ax € ]Ri, parameters ¢,y > 0, K e ¢

Output: b, the UOTS/’V barycenter of (aj, ..., ax)
Initializec =v; =--- =vg =1, setw = Vlg
while Not converged do

fork =1to K do

— ag
uk - KVk

end for

1
1-w

1—
b= C% (Zle wk(KTuk) w)
fork =1to K do
Vi =

K’ uy
end for

— (b
C_Kc

end while

Fig. 2.10. All 10 nested ellipses images used to compute the barycenters of Figure 2.11.

w

can be solved in closed form. We obtain for a,b € R..:

2w 2w
aw+T + hu+t _w_
ng(a,b) = (e +27) (2 — (ab)w+1>

Since w < 1, in dimension 1, a Szgfy(a, b) is strictly concave provided a is large enough.

3.4 Experiments

Now we turn to showing the practical benefits of debiased barycenters in terms of accuracy, speed and
performance. We compare the following barycenters.

3.4.1 Balanced OT

We compare several formulations of OT barycenters:

1. OT?: OT with the uniform measure; computed using the IBP algorithm (Algorithm 2).
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2. S¢: Proposed debiased divergence; computed using the proposed algorithm (Algorithm 5).

3. OTZ: Computed using iterative IBP within the minimization-majorization framework (Algorithm
3).

4. A¢: Sharp barycenters introduced by Luise et al. (2018). Given the optimal transport plan 7,
computed by solving OTY, A, is defined by evaluating the OT loss without entropy:

Ae(a, B) = (C, ) . (2.152)

Its barycenter can be computed using accelerated gradient descent with automatic differentiation
through Sinkhorn’s algorithm. This method required considerable manual effort to tune the learning
rate in order to get an acceptable barycenter and was more prone to numerical instabilities.

5. Free support barycenters with S;: introduced by Luise et al. (2019), we used the online Python code
provided by the authors which amounts to add or remove a dirac particle at each iteration and
update their weights using Frank-Wolf’s algorithm. The algorithm is stopped when no particules
are created / removed.

6. W: non regularized Wasserstein distance. We used the accelerated interior point methods introduced
by Dongdong et al. (2019) with the online matlab implementation provided by the authors.

Debiased barycenters of ellipses To demonstrate how debiased barycenters ag, reduce smoothing and
are computationally competitive with a ., we compare the barycenters of 10 randomly generated nested
ellipses displayed in Figure 2.10. We simulate each ellipse by generating random major and minor radii
with a moving a center from the top left quarter corner to the bottom right quarter corner. The box
constraints of the random generators of the radii are manually picked so that ellipses are more likely to be
nested with an assymetric surrounding ellipse (see supplementary code). The full list of 10 images used
to compute the barycenters is displayed in Figure 2.10. Each image has 60 x 60 pixels. The ground OT cost
function is the squared Euclidean cost over the unit square [0, 1]2. For entropy regularized distances (All
except W), we set ¢ to the lowest value guaranteeing no numerical instabilities in Sinkhorn’s algorithm
(this was particularly an issue for Sharp barycenters a 4, of Luise et al. (2018)). Now we detail the algorithm
used for each divergence F defining each barycenter ar of the experiment in Figure 2.11. We use the same
termination criterion for all methods based on a maximum relative change of the barycenters set to 10~°.
For as,, aqqu, Xore, A, WE use the convolution trick introduced by Solomon et al. (2015) which amounts
to computirslg the kernel operation Ka on a vectorized image a by applying a Gaussian convolution on the
rows and the columns of 4, thereby reducing the complexity of one Debiased / IBP iteration from O(n?)
to O(n% ). Figure 2.11 shows that even though a4, and ay are not blurred compared to &y, they cannot
compete computationally with Sinkhorn-like algorithms. The debiased barycenter is shapr and runs in
about the same time as a . Besides, the shrinking bias of OT{’ unfolded by theorem 4 is illustrated in
the degeneracy of the ellipsge Koo -
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as. (proposed) Qigp Qore,
e e
() ] Do
b S R
Ranin 0.86 s Ranin 0.11 s Ranin 13.17 s
ap as_(Free support) ay
e P
L L ] r_ﬂ _/i
-_ r r ' l:."-_._-
Ran in 105.71 s Ran in 36.25 s Ranin 92.91 s

Fig. 2.11. Barycenters of the 10 nested ellipses shown in Figure 2.10. Results illustrate the

reduced blurring of the proposed approach and running times presented below each image

demonstrate the computational efficiency. All 6 barycenters were computed on a laptop with
an Intel Core i5 3.1 GHz Processor.

Barycenters of 3D shapes The original 3D shapes (tore and rabbit) are taken from the PyVista (Sullivan
and Kaszynski, 2019) Python library and displayed in Figure 2.12. We preprocess the original meshes
as follows. Each mesh is smoothed by 100 iterations of a Laplacian operator then the coordinates are
centered and rescaled to fit within 95% of the cube (—1,1)3. We sample 3D histograms of both meshes on
a uniform 3D grid of size 200%. Both histograms are normalized and regularized by adding a 10~!° weight
to avoid numerical errors. We set the lowest stable regularization ¢ = 0.01 for the ground cost defined as
the squared Euclidean distance over the (—1,1)% cube. We compute weighted barycenters with the IBP
algorithm 2 and the proposed debiased Sinkhorn barycenter algorithm 5. The different interpolations
correspond to weights (w, 1 — w) where w € [0,0.25,0.5,0.75, 1]. We set the cost matric C to the squared
Euclidean distance on the unit cube and set ¢ = 0.01. Results presented in Figures 2.13 and 2.14 using
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& ©

Fig. 2.12. Input meshes used to compute the barycenters of 3D meshes.

66600

Fig. 2.13. Interpolation of two 3D shapes a (200)3 uniform grid with IBP illustrating a clear
blurring bias of OTY.

66o0oe

Fig. 2.14. Interpolation of two 3D shapes on a (200)® uniform grid with the proposed
Debiased Sinkhorn (Alg 5). The interpolation is sharper and completes in about the same
time as figure 2.13 (5 seconds on a GPU).

OTY and S, qualitatively demonstrate that S, leads to sharper edges, while in both cases it takes a few
seconds to compute on a GPU. Again, the kernel operation Ka on a vectorized 3D grid a can be computed
via a sequence of 3 Gaussian convolutions on each axis (x,y,z) which reduces the complexity of one

Debiased / IBP iteration from O(n?) to O(n3).

Optimal transport barycentric embeddings One of the many machine learning applications of OT
barycenters is to compute low-dimensional barycentric embeddings. Introduced by Bonneel, Peyré, and
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Cuturi (2016), OT barycentric coordinates are defined as follows. Given a dictionary .4 of distributions
a1, ..., &g and w € Ak, let ap(w) = argmin,, YK | wiF(ay, «) for some OT divergence F. The OT coordi-
nates @ of a distribution B are defined as the weights of the barycenter ar(w) best approximating  for a
given divergence. Using a quadratic divergence, it reads:

@ = arg min ||ap(w) — B> . (2.153)

weAg

To leverage the differentiability of the IBP iterations, Bonneel, Peyré, and Cuturi (2016) used the divergence

OTY and proposed to substitute the minimizer ar(w) with the I-th TBP iterate (x(Fl) (w). Differentiating
the barycenter nets ag) (w) with respect to w can be done via automatic differentiation, while the full
minimization can be done using accelerated gradient descent using a soft-max reparametrization. Here
we use the ADAM optimizer of the pyTorch library (Paszke et al., 2017). To evaluate the benefits of
debiasing, we take 500 samples of the MNIST dataset (LeCun and Cortes, 2010) with 100 instances of
each digit (0-1-2-3-4). We select 10% of the dataset (a subset of 50 images; ergo K=50) at random as our
learning dictionary A and compute the barycentric coordinates of the remaining 90% subset denoted as
D. Thus, for each image among the 450 samples of D, we compute the closest (in squared /) weighted
barycenter of the elements of A by optimizing over the weights. Thus, each image is represented by a
vector of weights w € Ag. Our new embedded dataset is now a table of shape (450 x 50). We then use this
embedding to train a Random Forest Classifier with 100 estimators using scikit-learn’s (Pedregosa et al.,
2011) default parameters (version 0.21.3) and compute a 10-fold cross-validation. Figure 2.15 displays the
accuracy scores for F = OTY and F = S, for 20 different randomized selections of the dictionary .A. The
debiased S, improves accuracy and is less sensitive to the setting of .

3.4.2 Unbalanced barycenters

A proper application of debiased unbalanced barycenters will be the subject of Chapter 4. We provide
nonetheless a toy example with barycenters of scaled Gaussians in Figure 2.16. Both Gaussians have the
same variance but a 3 to 1 mass ratio.

4 Limitations and future perspectives

Entropic OT is now considered to be a well-established loss function for comparing and averaging
probability / positive measures. The purpose of this chapter was to study the various entropic OT
formulations both from a theoretical perspective as well as a practical one. This is yet far from being
a closed book. Several questions remain open. We conclude this chapter with a brief discussion over
potential future directions.

Entropic OT over non-compact sets Without compactness of the underlying space, an integrable upper
bound on the optimal dual potentials is required to obtain the differentiability of entropic OT. In our case,
we assumed that measures have sub-Gaussian tails which leads to quadratic bounds provided by Mena
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Fig. 2.15. Cross-validation accuracy with 95% confidence intervals obtained on 500 MNIST
images using barycentric embedding with S, or OTY. Debiasing of S, improves performance.

S; is less sensitive to ¢.

—— inputs —— UOTY, barycenter

—— S¢, barycenter
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Fig. 2.16. Barycenters of 2 unbalanced Gaussian distributions. The debiased barycenter S,

is less sensitive to entropy regularization (e) than UOTgT

U
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and Niles-Weed (2019). Enlarging this set of measures can be done by establishing these bounds directly.
Moreover, it is important to keep in mind that the sub-Gaussian assumptions is intimately linked with the
use of the quadratic cost.

Entropic OT closed forms A long-standing missing piece of the entropic OT puzzle was the existence
of closed form expressions for non-trivial parameters. The closed form we obtained is similar to that of the
Bures-Wasserstein metric. Since the latter can be generalized to Elliptical distributions, It is thus natural
to wonder whether such an extension is possible for entropic OT as well. Our proofs are however based
on the stability of Sinkhorn’s equations for quadratic potentials. At the heart of this stability property lies
the simplicity of integrating exponentials of quadratic forms. If the same reasoning is followed, exploring
other distributions would probably require changing the cost function.

Entropic OT barycenters for Gaussians The purpose of our barycenter theorems was to highlight how
the variance of the barycenter is effected for different OT formulations. Yet we cannot help but ask how
can such barycenters be computed ? All equations that define the variance of the barycenter can be written
as fixed point equations. Numerically, the natural fixed point algorithm of these equations converge
for virtually any initialization. Whether these iterations are contractant for some metric is still an open
question even for the non-entropic case studied by Agueh and Carlier (2011).

Debiased barycentric algorithms We provided two GPU friendly algorithms to compute debiased
barycenters for both balanced and unbalanced measures. While these algorithms converge well in
practice, numerical evidence suggests that they are not contractant for the Thompson metric (for which
Sinkhorn is). Theoretical understanding of these algorithms thus requires going beyond usual entropic
OT convergence techniques.
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5 Appendix

We provide in this appendix the technical proofs of the closed forms and the Gaussian barycenters
theorems.

5.1 Proofs of the closed forms

Proof of Proposition 7. PROOF. Let Uy = Vy = 0. Applying Proposition 6 to the initial pair of potentials
Q(Uy), Q(Vy) leads to the sequence of quadratic Sinkhorn potentials 2{;‘2 = Q(U,) and 5% = Q(Vy,)
where:

Vi = %((UZUH +0?A7 4 1d) 7! —1d)
Uny1 = %((Uzvnﬂ +0*B~ +1d) 7! —1d).
The change of variable:
F, =0*U,+0°A™ ' +1d
Gy =0V, +0’B ' +1d

leads to (2.46).
We turn to show that this algorithm converges. First, note that since Fp, Go € & i ., a straightforward
induction shows that Vu > 0,F,, G, € Si .- Next, let us write the decoupled iteration on F:

Fe ?A 4+ (®B L+ F ! (2.154)

Let VX € 89, ¢(X) ef 21 4+ (e?B~1 +X1)~1 € &9 . The first differential of ¢ admits the following
expression:

VX € 81 ,VH € R, Dp(X)[H] = (Id +0>XB~ 1) TH(¢?B X +1d) L. (2.155)

Hence, ||Dp(X)[H]|lop < [[(Id +0*XB~1) ||, [ H]lop. Plugging H = Id, we get that || Dp(X)|lop =

|(Id +-0°XB~1)~1||3,,. Finally, by matrix similarity

1 1
d+e*XB ™) Yoo = [|(Id+0*B 2XB 2) Y|op < 1,
P P

which implies that || D (X)||op < 1 for X € S%, and ¢ > 0. The same arguments hold for the iterates

(Gn)nZO-
From (2.154) and using Weyl’s inequality, we can bound the smallest eigenvalue of F, from under:

Vi, Ag(Fy) > #;) (where A;(F) is the smallest eigenvalue of F and A1(A) is the biggest eigenvalue of A).
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Hence, the iterates live in A &' ST N{X:Ay(X) > forallX € A,

1
Ao(1d +02B-1/2XB-172)
1
1+ 02A4(B-1/2XB-1/2)
< 1
— 1+ UZAd(Bfl)Ad(X)
1

B N
I+ rem@

1 1
Id +0?B 2XB 2) " Y|op =
P

IN

Which proves the uniform bound l

Proof of Lemma 3 PROOF. It follows from elementary properties of Gaussian measures that the first
and second marginals of 7t are respectively « and . Hence,

Lo Jx=ylPdnoy = [ xPdrGeon + [Py <2 [ dr(y)
(2.156)
= [ xlPdata) + [ lvIPap) —2 [ (x )dr(xy) (2.157)
= Tr(A) + Tr(B) — 2Tr(C). (2.158)

Next, using the closed form expression of the Kullback-Leibler divergence between Gaussian measures,

KL (@ p) = % (Te[(§8) " (&S)] —2n+logdet (4 §) —logdet (& §)) (2.159)
3 (logdet A +logdet B —logdet (& §))- (2.160)
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with T = < _‘T%d G‘TZ). Moreover, since % > 0, and its Schur complement satisfies % — %G 1 =

2 2
A~! = 0, we have that I > 0. Therefore 7 is a Gaussian N (H) with the covariance matrix given by the
block inverse formula:

H=T"! (2.161)
B (F-G 1)1 (GF-1d)!
= 2 <(FG_Id)_1 (G_F_1>_1> (2.162)
A C
= (CT B), (2.163)

where we used the optimality equations (2.49) and the definition of C = AG™1.

We can now conclude the proof of Theorem 1 by computing OT?H2 (a, B) using Lemma 3. Let R =

AZBA:. Using the closed form expression of C in (2.51), it first holds that

1
' ATICAI = (R+%1d)2 - Z1d. (2.164)
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Moreover, since R = R 7, it holds that Z = Z ". Hence,

det (& §) =det(A)det(B—C'A™'C)
R — 7?) (2.165)

= (‘%)d det((4R + 0*1d)2 — 021d).
Since the matrices inside the determinant commute, we can use the identity 7 — Q = (712 — Q?)(w + Q) !
to get rid of the negative sign. Equation (2.165) then becomes:

o2 4 4101 2 o\ 414)2 213)!
(5)" det((4R +*1d)? — 0 1d) = ()" det(4R) det(((4R+a Id)? + 02 Id) )

= (202)" det(AB) det (((4R +041d)? + o2 Id)*l) .
Plugging this expression in (2.55), the determinant of A and B cancel out and we finally get:

B%(A,B) = Tr(A) + Tr(B) — Tr(4A2BA? + ¢*1d)? + do?—
o?d log(20?) + o log det ((4A%BA% +041d)? + o2 Id) .

Proof of Proposition 9 PROOF. Using Lemma 3, eq. (2.35) becomes

B%(A,B)= min {Tr(A) + Tr(B) — 2Tr(C) + o*(log det A + log det B — log det ( & g))},

o(& )

which gives eq. (2.56). Let us now prove eq. (2.57). A necessary and sufficient condition for ( (‘?‘T g ) >0is

11
that there exists a contraction K (i.e. K € R? : || K||op < 1) such that C = A2KB2 (Bhatia, 2007, Ch. 1).!
With this parameterization, we have (using Schur complements) that
det (& §) = detBdet(A—CB~'C')
= detBdet A det(Id —-KK ")

I Another immediate NSC is A > CB~1cT
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Hence, injecting this in Equation (2.56), we have the following equivalent problem:

11
B%(A,B)=  min  TrA+TrB — 2TrA2KBZ — ¢? Indet(Id —KK ") (2.166)
v KER: || K||op<1

Let’s prove that both problems are convex.

* (2.56): The set {C : (& §) > 0} is convex, since (éT (];1> > 0 and (% (];2) > 0 implies that
((179)%%@ (1_9)(];”9(:2) =(1-6) (é} (1:31 ) +6 (% %) > 0. Following the same decomposition,

the concavity of the log det function implies that C — log det ( é"T g) is concave, and hence that the
objective function of (2.56) is convex.

* (2.57): The ball By, & {K € R"?: ||K||op < 1} is obviously convex. Hence, there remains to prove
d K

that f(K) : K € Bop — logdet(Id —KK ") is concave. Indeed, it holds that f(K) = log det (KT Id).
Hence, VK, H € By, Vt € [0,1],
f((1= DK+ H) = logdet { (1 - 1) (4 K) +¢ (4 1)}
> (1—t)logdet (II(dT Iﬁ) + tlog det (IEIdT S)
(1-1)f(K) +tf(H),

where the second line follows from the concavity of log det.

Proof of Proposition 10 PROOF. By Proposition 9, (2.56) is convex, hence strong duality holds. Ignoring
the terms not depending on C, problem (2.56) can be written using the redundant parameterization

X1 X2 .
x=(¥%):

D(A,B) ¥ min  — Tr(Xz) — Tr(X3) — o* log det (X) (2.167)
X1:A>,-X4:B

= min — (X, (4 '9)) — o*log det (X) (2.168)
Xi= 7x4:B

= min F(X), (2.169)
X0
X;=A,X,=B
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where the functional F is convex. Moreover, its Legendre transform is given by:

FH(Y) = r)r(lag)((X,Y—i— (% 19)) + 0% log det (X)
—

= (=c*logdet)* (Y+ (3 )))

Let H be the linear operator H : X — (X1, X4). Its conjugate operator is defined on S, x S% . and is
given by H*(F,G) = (§ 2 ). Therefore, Fenchel’s duality theorem leads to:

D(A,B) = max — (F,A) — (G,B) — F* (—H*(F,G))

F,G~0
— 2 ~1d 2_ 2 2
= max — (F,A) — (G,B) + 0" log det (fld g ) +2d(0” — o log(c?))
= max — (F,A) — (G, B) + ¢?logdet (FG —1d) + 2d(c* — 0% log(c?))
,G >

Where the last equality follows from the fact that Id and G commute. Therefore, reinserting the discarded
trace terms, the dual problem of (2.56) can be written as

_— —_— 2 —_—
}%a:%){ (F, A) — (G, B) + 0 logdet (FG —1d)

+Tr(A) + Tr(B) + 02 log det AB + 240> (1 — log %)) } (2.170)

Proof of Proposition 11 PROOF. (i) Optimality: Canceling out the gradients in eq. (2.58) leads to the
following optimality conditions:
~A+0*G(FG —1d) 1 =0

2.171
~B+0*(FG —Id)'F =0, 2171
ie.

F=c?A14+G!
G o2t p (2.172)

Thus (F, G) is a solution of the Sinkhorn fixed point equation (2.49).
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(ii) Differentiabilty: Using Danskin’s theorem on problem (2.58) leads to the formula of the gradient
as a function of the optimal dual pair (F, G). Indeed, keeping in mind that V5 logdet(A) = —A~! and
using the change of variable of Proposition 7, we recover the dual potentials of Corollary 2:

VB5(A,B) = (Id “F +*A L 1d-G" + aZB—1>
= —*(U,V)
Using Corollary 2, it holds that
VaB%(A,B) = —0°U
=1d -B(C+0%1d)"!

where D % B2 AB2 + ¢ 1d.

(iii) Convexity: Assume without loss of generality that B is fixed and let G : B — V A%S% (A,B). As
long as o > 0, G is differentiable as a composition of differentiable functions. Let’s show that the Hessian
of ¢ : A — B (A, B) is a positive quadratic form. Take a direction H € S%. It holds:

VA%, (A, B)(H,H) = (H,Jacg(A)(H))
= Tr(HJacg(A)(H)).

For the sake of clarity, let’s write G(A) = Id —L(W(¢$(A))) with the following intermediary functions:

11
:A— B2AB2

1
A — A2
:A— Q(L(A) + TId)

2

A (Ad %Id)‘l.

S & 0O =
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Moreover, their derivatives are given by:

Jac, (A)(H) — B2HB2
Jacyy (A)(H) = —(A + U;Id)lH(A + ‘7221d)l
Jach(A)(H) = Z,

1 1
where Z € 8% is the unique solution of the Sylvester equation: ZA2 + A2Z = H.
Using the chain rule:

Jacg(A)(H) = —Jac, (W(¢(A))) (Jacy (¢(A))(Jacy (A) (H)))

— —B2 Jacy ($(A)) (Jac,(A) (H))B2

(¢(A) * azzld) h Jacy(A)(H) (4>(A) + U;Id) gk

N[ =

B

N|—

12 N\ 12 Nl
Again using the chain rule:

Y & Jac, (A) (H) = Jacg(L(A) + = 1d)((Jac, (A))(H))

G

= Jaco(L(A) +
= ]aCQ(D)(BiHB%).

Therefore, Y > 0 is the unique solution of the Sylvester equation:

1 1 1 1
YD2 +D2Y = B2HB2.
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Combining everything:

VAB.:(A, B)(H H) = (H,Jacg(A)(H))
= Tr (HJacg(A)(H)

)
1 1 g? ! 1 g2 1
=Tr | HB2 <D2+21d> Y(D2+2Id> B2

11/ 1 g2 N\ 102 N\ !

-1 -1

11 1 1
Since H and Y are positive, the matrices BZHB2 and | D2 + ‘772 Id) Y(D2+ ‘772 Id are positive

semi-definite as well. Their product is similar to a positive semi-definite matrix, therefore the trace above
is non-negative.
Given that A and H are arbitrary positive semi-definite matrices, it holds that

VAB%(A,B)(H,H) >0

Therefore, A — B, (A, B) is convex.

Counter-example of joint convexity: If %ffz were jointly convex , then § LA %ffz (A, A) would be a

convex function.

1
In the 1-dimensional case with ¢ = 1, one can see that this would be equivalent to x — In((x* +1)2 +

1
1) — (¥2 4+ 1)2 being convex, whereas it is in fact strictly concave.
g y

(iv) Minimizer of ¢ With fixed B, cancelling the gradient of ¢g d:ef: A — %?2 (A,B) leads to A =

B — 02 1d which is well defined if and onlyif B = 2 1d. However, if B — ¢2Id is not positive semi-definite,

write the eigenvalue decomposition: B = nxm ! and define Ay def (- o? Id>+7'L'T where the operator
x4+ = max(x,0) is applied element-wise. Then:

<
>
=
=]
>
N
Il
o
|
3
™
N—
3
*4
—
2
™M
N
|
qI\)
n
+
|
_‘
_|_

1 _ 1
—Id—722 (£ —0?1d); +0°1d) " Z27"
1 _ 1
= 1(Id —22 (£ - 021d); +021d) "' £2)7"

1
= ﬁn(az Id—x),m"
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Thus, given that (£ — ¢21d)4 (¢?1d —X); = 0, it holds, for any H € S%:

(H— Ao, Vags(Ag)) = (' Hr — (X —?1d), (c*1d —X),)
(m"Hm, (0?1d X))
T

r(n Hr(o?1d —X),) >0

Where the last inequality holds since both matrices are positive semi-definite. Given that ¢p is convex,
the first order optimality condition holds so ¢ is minimized at A.

Proof of Proposition 13 PROOF. Using Fubini-Tonelli along with the optimality conditions (2.63), the
double integral can be written:

—lx=yl?+f(x)+8(v)

(R x R? :/ e 202 da(x)d

( )= o (x)dp(y)
—[lx—y|?+£(x)

-/ (/Rdezazdzx(x)> e%dﬁ(y)

= [ 510 Ddp(y)

R4

= e’%dﬁ(y)

R4

f)
And similarly: 77(R? x R?) = [L.e” 7 da(x). Therefore, the three integrals in the dual objective (2.62)
are equal to 77(RY x R?) which ends the proof.

Lemma 6 [Sum of factorized quadratic forms] Let A, B € Sy such that A # B and a,b € R?. Denote x = (A, a)
and B = (B,b). Let Py(x) = —3(x — a) "A(x — a) and Pg(x) = —3(x — b) "B(x — b). Then:

1
Pu() + Py(x) = =3 ((x —o)TC(x—¢) + qa,ﬁ) (2.173)
where:
C =A+B
(A+B)c = (Aa+ Bb) (2.174)
Gap =a'Aa+b'Bb—c'Cc

In particular, if C = A + B is invertible, then:

{ c=C!(Aa+Bb) (2.175)

¢'Cc= (Aa+Bb)'C!(Aa+ Bb)
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PROOF. On one hand,

Py(x) + Py(x) = — (<x —a)TA(x—a)+ (x—b)TB(x — b))

NI~ DN~

(€1A+BW—QQWAa+Bby+JAa+bTmQ

On the other hand, for an arbitrary v = (¢,C) and g € R:

Pyx) ~ 1 = 2 (x— ) Clx—€) +4)

_ 1T T T
— 5 (¥"cx—2c"Ce e+ q)
If A # B, identification of the parameters of both quadratic forms leads to (2.174).

Lemma 7 [Gaussian convolution of generic quadratic forms] Let A € Sy and a € R? and o > 0 such that
0?A +1d = 0. Let Qu(x) = —%(XTAX —2x"a). Then the convolution of e%+ by the Gaussian kernel N (0, (IT%)
is given by:

Id def [ 1 e _
N(O,ﬁ)*exp(Qa) = /1Rd 20! exp ( 202”. ylI©+ Qa(y)> dy = choexp(Q(Ga,GA)) (2.176)

where:

G=(*A+1d)!

o?a' Ga
Tayta
V/det(c2A +1d)

PROOF. Using Lemma 6 one can write for any x € IR¥ considered fixed:

Cqp =

szl =Yl Quly) = Qx, 5)(v) + Q(a A) )

Id
o2
X Id
= P(‘”*‘ﬁﬂ*‘*‘p)(y) + h(x)

X 1
= Q@+ 25 A+ 5)(1) — o5 1l
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with h(x) = —3 (% | x]|? — %(O'Za + x)"(02A +1d) ! (0%a + x)). Therefore, the convolution integral is

finite if and only if A + (IT% > 0 in which case we get the integral of a Gaussian density:

de Idy-1
&P <Qf(a+ A+ (I;l)(y) +h(x)> d(y) = \/ t(zg‘:;); )7

eh(x)
/det(c?A + 1d)

For the sake of clarity, let’s separate the terms of & depending on their orderin x: h(x) = —3 (ha(x) + h1(x) + ho)
where:

et
(2m02)2 JR

1
ha(x) = 2

h(x) = —2x" (c?A+1d) 'a
hg = —c?a' (c?A+1d)'a

(||xH2 — xT(cTZA + Id)_lx

Finally, we can factorize h and hy using Woodbury’s matrix identity which holds even for a singular
matrix A:
(c?A+1d) ' =1d —c?(c*A+1d) 1A (Woodbury’s identity)

Let G = (¢?A +1d) ..

a(x) = (P~ x7 (14 ~0*(0?A +1d) " A)x
=x" (A +1d) 'Ax
= x ' GAx

h(x) = —2x"Ga
hg = —c*a' (c*’A+1d) 'a

= —c?a'Ga
Therefore, h(x) = — (x'GAx —2x"Ga — v?a’'Ga) = Q(Ga, GA)(x) + LzagGa~

Proof of theorem 2 — closed form of unbalanced Gaussians In the balanced case, we showed that
Sinkhorn’s transform is stable for quadratic potentials and that the resulting sequence is a contraction.
Similarly, the following proposition shows that the unbalanced Sinkhorn transform is stable for quadratic
potentials. M
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Proposition 24 Let a be an unbalanced Gaussians given bym, N (a, A). Let T = 57 guol Define the unbalanced
Sinkhorn transform T : RR' — RR’;
“lx—vl?
T, (h)(x) & —7log / 27 W) da(y) (2.177)

Let U € Sy, u € R and my, > 0. If h = log(m,) + Q(u,U) i.e h(x) = log(m,) — 5(x"Ux — 2x "u), then
Tu(h) is well defined if and only if F L 72U + 02A~1 +1d = 0, in which case Tu(h) = Q(v, V) +log(m,) with
the identified parameters:

1

V=15(F'-1d) (2.178)

v=—1F (A la+u) (2.179)

. ( det(A) det(F )> (2.180)
mymge 2 024

2
where gy, = %VTFV —a'Ala

PROOF. The exponent inside the integral can be written as:

—llx=y|? “lx =yl 1y TA
e 27 TWdg(y) e 27 20 XV AT,

LT “lyy) iy
x e 2V XA g,

which is integrable if and only if U + A~! + = LIld = 0 & F = 0. Moreover, up to a multiplicative
factor, the exponentiated Sinkhorn transform is equwalent to a Gaussian convolution of an exponentiated
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quadratic form.

o~ Te()

Lemma 7 applies:

—[lx—yI?
= / [4
R4

My My

= MyMy

exp(%

252 +f(y)doc(y)

1 _ 2
exp(—1a' A 1a) / e QuU)(y)+ QA aA )W) gy
R4

\/det 27tA)

1,7
A
exiﬁma \/ (2to?) M exp (N (02 1d)) * exp (Q(u+A‘1a,U—|—A—1))

o exp(—3a’ A la)

exp (W (0*1d)) xexp (Q(u+ A", U+A™))

Q(F '(u+ Ala), F (U + A—l)) .

Q(F Y(u+ Ala), %F*l(F — Id)) .

Q(F Y(u+ Ala), %(Id —F1)> .

2(u+A"1a) TF 1 (ut+A1a)) .

where ¢, =

det(F)

Therefore, by applying —7 log we can identify V and v. Substituting u + A~'a by —1Fv leads to the
equation of m,. Unlike the balanced case, the unbalanced Sinkhorn iterations require 2 more parameters
(v and m,) with tangled updates. Proving the convergence of the resulting algorithm is more challenging.
Instead, we directly solve the optimality conditions and show that a pair of quadratic potentials verifies

(2.63).

Proposition 25 The pair of quadratic forms (f, g) of (2.66) verifies the optimality conditions (2.63) if and only if:

FE2A1 L 2U+1d = 0

— (2.181)
GEPB ' 4+0°V+Id -0,
Ly | T o, d T
mymee 2 0 myge 2
My =1 My =1
( det(A) det(F)) det(B) det(G)

v=—1F'(A"a+u) u=-1G(Blb+v) (2.182)

G=1F'+cB '+ (1-1)ld F=tGl+?Al+(1-7)ld

2

_ 0 Tp.,  Ta-1l o T To_1
v Fv—a A™a qvlﬁ:§uGu—bB b
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PROOF. The equations on m,,, m,, u, v follow immediately from Proposition 24. Using the definition of F
and G, substituting U and F leads to the equations in F and G

We now turn to solve the system (2.182). Notice that in general, the dual potentials can only be
identified up to a an additive constant. Indeed, if a pair (f, g) is optimal, then (f + K, g — K) is also
optimal for any K € R (the transportation plan does not change). Thus, at optimality, it is sufficient to
obtain the product m,m,. We start by identifying (F, G) then (u, v) and finally m,m,.

Identifying F and G. The equations in F and G can be shown to be equivalent to those of the balanced

. def 2
case up to some change of variables. Let A = {~ = ¢? + 1.

F =1G '+2A '+ (1-1)ld
G =tF!'+¢B 14+ (1-17)Id

|
N |

which correspond to the balanced OT fixed point equations (2.49) associated with the pair (2, B) with the
change of variables:

— () +Zr(A 1 + L1a)

T
2

=F'+Z(B'+11d)

~ IK _
-G 1_|_Uz~(?) 1
=F'40°B!

(1= [ W

GG (2.183)
T

. 1

AL AT+ L) (2.184)

. 1

BY B 1+ L1 (2.185)

Notice that since 0 < T < 1, A and B are well-defined and positive definite. Therefore, Proposition 8
applies and we can write in closed form:

1
o e 2 2
CcEfAG 1= <1AB T O:Id) - %Id
(2.186)

1 1.1 4 2 1 2
A2 (1A2BA2 7 1) A 2-T1a
T 4 2

And similarly by symmetry:

1
. o 2 2
BF 1= CBA s Id) T Hd=c’ (2.187)
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Therefore we obtain F and G in closed form:

F=BC! (2.188)
G=C'A (2.189)

Finally, to obtain the formulas of A and B of Theorem 2, use Woodburry’s identity to write:

B =1A(Id —A(B+AId)™Y)

oy 207+
Ty 4202 2

- %(Id “AB+AId) Y

(Id —A(B+AId)™)

the same applies for A.

Identifying u and v. Combining the equations in u and v leads to:

v=—71F (A ta+tu)

& Fv=-1A'a—1u

SFv=-1Aa+7°G (B b +v)

& GFv = —1tGA la+ 2(B" b 4 v)

& (GF - 7?1d)v = —1GA la+ B b
Similarly, (FG _Iz Id)u = —tFB~'b + t?A~'a. Moreover, since 0 < 7 < 1, it holds(F — T2G™1) >~
(F—1tG™!) = 0?A~1 = 0. Therefore, (FG — 721d) = (F — t2G~'1d)G is invertible. The same applies for

(GF — 721d).
Finally, both equations can be vectorized:

< 0 FG—T21d> <u> - <T21d —TF> < 0 B1> <b> (2.190)

Identifying m,m,. Now that F, G, u and v are given in closed form, m,m, is obtained by taking the
product of both equations:

/det(AB) det
o2mymg

(mumv)TJrl — ( (FG)> eXp(-%(qu + %,5)) (2.191)
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. d_ef Mymg laTAla+b B 'b) . .
Transportation plan. Let w N mymye™ 2 . At optimality, the transport plan 7
is given by:
dr _ fx) +8y) —llx —ylP? dp
o) = e ( - FRORAT
— wexp (Q(A latu Al U)(x) — I y” +O(B b+v,B —|—V)(y)>
Id _%
= wexp (Q(U+A )(x)+Q(V+B 7 )(y) + Q(_% it )(x,y))
_ Alat+u) (U+A 1+ 4 0
_“’eXP<Q<(B—1b+v)'( 0 V+Bl+§;§)>(x’y)>
—wen (0 A'atu\ 1 (F -Id (x,1)
N P Bb+v) ' c2\-Id G Y
= wexp (L, 1) (x,y))
1 E Id
with j & (1};1; j_ u) and T & ( 74 (572>. Let’s show that I' >~ 0. Since % > 0, it is sufficient to
_ﬁ' o2
show that Schur complement 5= —G 1~ 0. On one hand, with
F-G! ~4 1 4
o2 =TA — XG

On the other hand, almost by definition A < TAId and B < TAId. Thus for any x € R¥:

~lo1
AZBAZ

1 -
X < A|A2x|]2 = Ax T Ax < TA?|x|)?,

x

which implies

~1 1 3
(AZBAZ

T 2

2
+Tld) ~ T/\z—i—TId:/z\( st (- 20+ g
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Therefore, using the second equality of (2.186) and inverting (2.188) to obtain G

1

1 1 2
2BA2 2 ~ 1
BA +041d) —%Id) A 2x

>

1
x'Glx=x"TA"2

T 4

= tAx A lx.

Thus G~' < TAA~!. We can therefore conclude that the Schur complement %(F — G7!) is positive

definite. By completing the square, we can factor % as a Gaussian density. Let z &f ()

Ty (99 = e (Q(u T (x,)

= wexp <—;(ZTFZ - ZZT}l)>

—wexp (51T M 5T TE-T )
— wez" TN (Hp, H) (2),

where H =T 1.

Detailed expressions. To conclude the proof of Theorem 2, we need to simplify the formulas of m, Hu
and H. First, we will start with the mean Hy.



5. Appendix 109

Hyu  Using the optimality conditions of Proposition 25 and the closed form formula of v and u:
_ (Ala+u
F=\Bb+v
_ 1 /Fv
1 \Gu
_ L/F 0 (v
— 7\0 G/ \u
_ _1(F 0\ (GF-72Id 0 /16 T2Id) (AT 0 (a
1t \0 G 0 FG —721d 21d —7F 0 B!)\b
F 0\ (GF-721d 0 - —7Id) (A" 0
0 G 0 FG — 72 1d TId F 0 B!
F 0 (F—>G 1)t —T(GF—TZId) Al a
0 G)\-t(FG—-7?1d)"! (G-7F1)! 0 13*1 b
F 0\(F tId\ " (A 0)/a
0 G)\rld G 0 B')\b
d tG "\ '/AT 0 (a
F1 Id 0 B')\b

mee (G &) (e ) () 6)

(e ) e &) () 6)

(a5 <) (V) 6) e
A (AT ) () ()
() () 6)

Let’s compute the inverse of:

(2.192)

Therefore:

I
Q

0.2

def (A1 +11d  —31d
V4 ( 113 Btili) (2.194)
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Let S and S’ be the respective Schur complements of A~! + 1 Id and B! + 1 Id in Z. The block inverse
formula writes: . N .
71 _ S 1S(B™" 4 5 1d)~ '
(A1 4+ 11d)7'S S’

Using Woodbury’s identity twice and denoting X LA+ B+AId:

— 1, 19— il

= (A~ 3 Id /\Z(B +Ald) hH-t

= (A '+ (B +AId)~H!

=(A—AA+B+AId)'A)

=A—AX'A.

And similarly: S’ = B — BX"!'B. The off-diagonal blocks can be simplified as well:

1o 1o 1,04 y—1p-1, gy
/\S(B +Ald) —/\(A +(B+AId)"") (B +/\Id)

= (A '+ (B+AId) H I (AId+BId)?
- ((B £ AId) — (B4+AId)(A+B+Ald)~(B +/\Id)) (Ald+B1d) ™!

— (B+AId)X?
=B-(X-AX'B
= AX"'B.

Slmﬂarly, (A1+1 11d)~!'S = BX"'A. Thus, the inverse of Z is given by:

(2.195)

z-1_ (A= AX7'A  AX'B
~\ BX’'A B-BX'B

and finally:

Hy— 71 Al 0 a\ (Id-AX! AX! a
= o B)\p)/ "\ BX! 1d-Bx')\b
_ (a+AX"l(b—a)
~“ \b+BX'(a—Db)
o . . L F o —1d\\ '
Finding the covariance matrix H. To compute H = | 5 ( _ d G one may use the block

inverse formula. However, the Schur complement (F — G~!) ! is not easy to manipulate. Instead notice
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that the following holds:

1/F -1d\(/Id «F" _ 1/F-1G' —(1-71)ld
2\-1d G G Id ) 22\-(1-7)ld G-7F!
_(AT'+1ld  —1Hd
~\ —ild  B'4+1l1d)’

where the last equality follows from the optimality conditions (2.182). Therefore:
- _ -1
g ( d tFN/At+3ld -3 .
G Id —3Ild  Bl'4+31Id

Notice that we have already computed the inverse matrix on the right side above in the developments of
Hyu. Thus:

g (1 tF 1\ [A—AX"'A AX"'B
~\tG! I BX'A B-BX'B

Id Tcﬁ—l) (A—Ax—lA AX'B )

c'A' 1d BX'A B-BX'B
B Id C(B'1+1Id) ([A-—AX'A AX'B
~\C'(A™1++1d) Id BX'A B-BX'!B
B Id C(B1+1ld) ([A-—AX'A AX''B
S \CT(ATT+ 11d) Id BX''!A B-BX !B
B Id 1C(AId+B)B 1 ([A—AX'A AX'B
~\3CTC(AId+A)A! Id BX"'A B-BX'B

B Id 1C(X—A)B 1\ (A—AX'A AX'B
—\icT(x-B)A! Id BX"'A B-BX'B
A-AX'A+1Cc(A-AX'A) AX'B+1C(X—A)(Id-X"'B)
C'(X-B)(Id—X"'A)+BX'A 1C"(X-B)X 'B+B-BX'B
(Id+1C)(A — AX71A) AX B+ 1C(X— A —B+ AX!B)
ACT(AId+BX'A)+BX'A  }CT(X-B)X"'B+B—-BX'B
(Id+1iC)(A - AX"'A)  AX 'B+1C(AId+AX'B)
C'+1C™BX'A+BX'A (Id+1C")(B-BX 'B)
(Id+1c)(A—-AX'A) C+(Id+1C)AX"'B
C'+ (Id+iCcT)BX'A (Id+1CT)(B—-BX'B)/"
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Finding the mass of the plan 7r. The optimal transport plan is given by:

dmr 1, Tr-1
= we2t T 27H)N (Hu, H 2.1
Gy (V) = e’ det(2TH) ' (Hyt, H) (2), (2.196)
where
w — Matip mymye (@ A7la+b B D)

\/det(472AB)

_ mzxmﬁ ( \/det(AB) det(FG) ) T+1 e_ﬁ(qu,ﬁ‘%,ﬁ)e—%(aTA_la+bTB_1b)

\/det(4712AB) o2m,mg
1 T
_ 1 < myimg 1 /det(FG) 1 e*z(riil)(q“’“Jqu'ﬁ)e*%(aTAilaH’TBilb)_
)

(27)4 \ \/det(AB o2

First, let’s simplify the argument of the exponential terms. Isolating the terms that depend only on
the input means a, b it holds: g,4 + qog = g(VTFV +u'Gu) +a'A ta+b"B !b. Therefore, the full
exponential argument is given by:

o 7 T
T+1?(v Fv+u Gu)—

def

=T -

Til(aTA—la +b'B!b) (2.197)

On one hand, using Equation (2.193) we replace u:
pIT = p Hy
_ (AT "/1d FN '/ F -1\ '/ 1d tG !\ /A la
N B~1b G! Id -ld G tF1 1d B 'b
On the other hand:

2
T (v EFv+u Gu) = c2(Ala+u) F A Tatu)+ (B b+v) G (B b +v))

2
F!1 0
= O.ZHT < 0 G_1> U

_ (AT (d TFT R0 Id 1G !\ ' /A la
—7\B ) \tG1 1d 0 G1)\rF! 1d B~'b
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Id tG™! F 0
Let] = <TF_1 d > and K = (0 G)' It holds:

2 “1,\ " 2 -1
' Ty — L (v'Fv+u'Gu) = (A a) ]Til(H— v K 1! (A a)

T+172 B~'b T+1 B~'b
, . T-1 102 1 —1\1—1 . . . F Tld .
Let’s compute the matrix J' ~(H — 7 K™")J . First keep in mind that JK = ‘1d G /) Now using
Woodburry’s identity:
PN et g k)
T+1 B T+1
B T+1 T+1N\? o TH1_ ) ot
_]<_ WZK_<W2> KH — sz) K|J

1 S S A
LU JK((_ "y o ) (JKUT)

T0?

-1
—JKJT+(T+1)JK(<Tl;d Téd) <JKT>T)

(B ) ()
(
(

~F-’G '+ (t+1)F (2t+7(r+1))Id
(=2t +7(t+1)ld -G-7TF '+ (t+1)G
F-tG! —-(1-1)Id
~-(1-7)Id G-tF!

B Al4+3ld  —3Id
_(T“)( 1l B4l
=(t+1)Z
Therefore: -
_ T 0?2 1 (A la 4 (A 'a
'ty — — 1?(VTFV—|—uTGu) = (Blb) z! (B1b> (2.198)
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The full exponential argument ¢ defined in Equation (2.197) is given by:
1 Ala\'_ (A a TaA-1 Tp-1
_ 1 (a\ (AT 0\, (A 0\ (AT 0)(a
~T+1\b 0 B! 0 B 0 B')\b
1 (a\' /A 0\ [/-AX'A AX'B\ /Al 0 /a
CT+1\b 0 B'/UBX'A -BX'B/\ 0 B'/\b

-6 G530 6)

1 _
= —T+1(a—b)TX la—b)
1
= ol bl

Substituting in (2.196) leads to:

i m(RY x RY)

L T
— det(H) M T+1 w T+1 672(T1+1)(Hafb”§(71).
det(AB) o2

The determinants can be easily expressed as functions of C. First notice that:

1 ot
det(T)  det(FG —1d)’

det(H) =

and using the definition of C, it holds that

FG = BC2A.
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Therefore, det(FG) = iitt(é?z). Keeping in mind that the closed form expression of C given in (2.188) is

applied to the pair (1A, B) in the unbalanced case, it holds: C2 4 ¢2C = %Kﬁ. Thus:

1
T
FG —Id = BC2A(Id—A'C*B})

_ BC?A(Id _;;1(%111% _2C)B )

_ EC—Z};(“_TT) 1d +0?A-1CB 1)

- azgc—zg(_i d+A-1CB )

- UZEC—Z(—iﬁﬁ + OB,
therefore 0t
,det((—2AB +C)

det(C)2

Replacing the determinant formulas of FG and FG — Id and re-arranging the common terms det(C) and
o leads to:

det(FG —Id) = ¢?

1
——\ T
<mamﬁ(72d det(C) Clleett(&];)) )

N(Rd X Rd) — e z(T]Jrl)(Ha_bHi—l)
det(C—%zN\ﬁ)
=
1
det(AB)” |
mamg det(C)4 /g as)
) o~ e (la=bl% )
det(C — 2AB
(C—3AB) (2.199)
det(AB o
t T
<mamlg det(C) deet((AB)) )
_ - J (T
det(C — 2AB)
1
det(AB)” |
2\ Ml det(C)1/ Fei(an)
. oz (a=bl3 1)
det(C — %Kﬁ)
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Deriving a closed form for UOT; ,. Using Equation (2.199), a direct application of Proposition 13 yields
UOTS , (&, B) = 7y (1o + mpg) 4 207 (mamp) — 2(0% + 277 ) s (2.200)

This ends the proof of Theorem 2.
We end this first section with the technical details of the proof of Proposition 15 restated below.

Proposition 26 Let « = m,N(a,A) and p = mgN (b,B). If my # mg, UOT, 5,2 («,B) goes to +oo as
¥ — —+00. Moreover, we can obtain the following equivalent:

713200 ggf; (&, B) — v (V/my — \/mp) ] /Mg [OT?UZ <ma ni) +20° KL(1| /mgmmp) ] (2.201)
where KL(1|,/fgtig) = /Mg — 1 — log(,/Ma11p).
In particular, if m, = mg=m >0, then:
Jim UOT (&, ) = m [OT?UZ (:1 ,i > + 202 KL(1|m)} (2.202)
PROOF. Using proposition 13, the following holds:
UOT (a, B) — y(\/mq — \/mp)? = 207 (mammpg — my) + 27( /manig — my) (2.203)

7,202

Computing the limit of m, as y — +o0 is straightforward. When v — +00, eventually using Woodburry’s
identity:

1 (2.204)

1

_ 1 -1
A=t (A—l += Id) —A (2.206)

_ 1 -1
B=r1 (B—l +2 Id> — B (2.207)
Xx'1-o0. (2.208)

Therefore, my, —  /m,mg. And it holds:
: 2

713?00 Iing (a, B) — v(\/my — \/m } = 20", /mampg(/mamg — 1) (2.209)

+lim 2y (\/mag — (7)) (2.210)
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The remaining limit to compute is that of 2y (/7 — m7()) which is a bit more technical to

compute. The main idea is to use the change of variable w &f %
. .4
Jim 29 (/g — i (y)) = Hm —(/myitg — mz(w)) (2.211)
dm
=—4 . 2.212
" 0) @212)
First, let’s write all elements of m, as a function of w:
0% 1
= = 2.21
t y+202 1+ wo? (2213)
2
v _y+2 1 (2.214)
T+1 274202 2 + wo?
1 2 w
— = = 2.215
A y+202 14 wo? ( )
~ -1 -1
Alw)=1 (A—l + }\Id> - ((1 Fwo?)ATL wId) (2.216)
=~ 1 -1 -1
B(w)=r1 (B—l + Id> = ((1 + w?)B! + wId) (2.217)
X )= (e A4+ 1) T = w(l = — " )(wA + wB + (wo? £ 1)1d) (2218)
T+1 2+ 2w w 2+ 0w '
e 2 2
Cw) = ((1 + wo?)AB + O:Id> - % Id (2.219)
To differentiate w +— m(w) at 0, we re-write it as follows:
() = exp [f(@) + g(w) +h(w)] (2220)
where
do?w
= — 2.221
flw) = 575 Tog() @.21)
8(w) = go(w) [G +gi1(w) + g2(w)] + g3(w) (2222)
1 - X!
N _ 2.22
hw) = —5(a—b) (= (@)a—b) , (2.223)
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where
(@) =1— -1 (2.224)
L R '
G = log(mymg) — %log det(AB) (2.225)
g1(w) = log det(C(w)) (2.226)
1 ~ ~
B(w) = ) log det(C(w) — wA(w)B(w)) . (2.228)
With these notations, it holds:
dm df dh
(0) = (52(0)+ @m) + 2(0)) exp(£(0) +8(0) +h(0) (2229)
df dh
= (L0 + @(m + 5L (0))ma(0) (2230)
df dh
= (3,0 + @(0) + 7 (0)/maing (2.231)
where the derivative of ¢ can be detailed further:
dg dgo dg1 |, dg» dgs
0 =G +a0)+20)+ 20 ($+ )0+ Lo 2.232)
o 0'2 1 dg1 dgz dg3
= (log(mampg) +log det(C(0))) + 5 (dw + dw) (0) + a0 (0) (2.233)
We evaluate the derivative of each component.
Computing % (0) The function f is defined as:
do?w
2
= dlog(c) (1 - M) (2.235)
Its derivative is given by:
df . 202
@(w) = dlog(a)m (2.236)

thus 9£(0) = 1do?log(0).
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Computing $2(0) The function / is defined as:

M) = - b) (X (w)(a—b) (2237)
2 T+1 ’
_ _%wlp(w) (2.238)
where ,
P(w) ¥ (1 - 57o20) @ D) (WA +WB + (wo* +1)1d) ' (a—b) . (2.239)
As a derivative of a product, it holds:
dn, 1 1
350 =—59(0) = —7lla—b[*. (2.240)

Derivatives of A(w )ﬁ(w) and C(w) Differentiation through the elements of g requires computing
derivatives of w + A(w)B(w) and w + C(w). For the sake of clarity, we introduce the following
notations.

The matrix inverse and square root operations are denoted respectively by inv : A — A~!and

1
R : A — AZ. First, we remind the reader of the differentials of these applications along with det and
logdet. The differential operator of a function F at A is a linear operator denoted by Jr(A).

Juw(A)(H) = —A"THA ™! (2.241)
Jaet(A)(H) = Tr(A, H) (2.242)
Tiogdet(A)(H) = Tr(A™", H) (2.243)
Jr(A)(H) is the only positive definite solution Z of < A2 Z -+ ZAZ = (2.244)

Let’s compute the derivative of V : w ++ A(w)B(w) at 0. First, we can simplify that expression by
writing:

[( (1+ wo?)B~ +wId) ((1+wa2)A*1 +w1d)y1 (2.245)

-1
(14 wo?)*B'A 4+ w(1 4 wo?) (A7 + B + w? Id} (2.246)

lﬁ

||m

(w)™? (2.247)
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Applying the chain rule, the derivative of V for some direction & > 0:

Tv(@)(h) = Tiny(M(w)) (Tm(w)(h)) (2.248)
= —M(w) ' Im(w) (MM (w) ™! (2.249)
(2.250)
where
Im(w)(h) = h (202(1 +PwId)B A+ (14+20%w) (A +B7Y) + 2w Id) (2.251)
Evaluating at 0 leads to:
Jv(0)(h) = —hA (20°1d+A +B) B . (2.252)

We can now establish the derivative of w — C(w) at 0 as well. First re-rewrite the definition of C:

N[—=

= ( (1+ we?)A(w)B(w) + TId) — ‘7221(:1 (2.253)
1
- < (14 wo?) Tld) o (;zld (2.254)
9 5 ()2 — L (2.255)
2

Thus, by the chain rule:
Jc(w)(h) = Tr(S(w))(Ts(w)(h)) (2.256)
= Jr(S(w)) (ho?V(w) + (1 + 0*w) Fy(w) (1)) (2.257)
(2.258)

Substituting at 0:

Jc(0)(h) = Jr(S(0)) (ho*AB — hA (20*1d +A + B) B) (2.259)
= Jr(S(0)) (—ho*AB — hA (A + B) B) (2.260)

Thus Jc(0)(h) is the only positive definite solution Z of:

s(o)%z + zs(o)% = —h (c*’AB+ A(A +B)B) (2.261)

< (AB + f Id)% Z+Z(AB+ Tld)% = —h (c*AB+ A(A +B)B) (2.262)
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Computing %(O) The function g; is defined as: g1 : w > log det(C(w)). The chain rule dictates:
dgi oy _
981(0) = Jhogae(C(0) (T (0) (1) (2.26)
= Tr(C(0) "' Tc(0)(h)) (2.264)
= Tr(C(0)"12) (2.265)
Computing (31% (0) The function g» can be written:
D(w) = mlogdet(A(w)B(w)) (2.266)
1
D) log det(V(w)) (2.267)
Thus:
d o’h 1
982 0) () = ~ 7 10g det(V(0)) + 3 Tiogae (V(0)) (Io(0)(B) (2.268)
*h 1
= —‘% log det(V(0)) + 5 Tr (VO (R O)0) (2.269)
o*h 1 —1p-1 2
— — 7~ logdet(AB) + Tr (B~ 'A™" (—hA (20’ 1d +A + B) B) ) (2.270)
T g det(AB) - ' (A" (A (20%1d+A +B)B) B) (2.271)
2 8 2 ‘
o?h h )
= ——logdet(AB) — 2 Tr (20°I1d +A + B) (2272)
Computing ii? (0) The function g3 can be written:
g3(w) = —%log det(C(w) — wA(w)B(w)) (2.273)
= —% logdet(C(w) — wV(w)) . (2.274)
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Since the derivative of wV(w) at 0 is given by V(0), the chain rule dictates:

282 0) ) = ~ 3 FopaaC0)) (T (O) (1) ~ WV(0) 2279
= T (C(0) (T (0) (1) ~ mV(0))) (2.276)
= —%Tr (C(O)’l(Z — hAB)) (2.277)

Computing g—f) (0) We showed earlier that:

dg o2 1 /dg1 dg dgs
dw( ) = T (log(m,xmﬁ) +logdet(C(0))) + 5 <dw + a0 (0) + a( ) . (2.278)
We can detail the derivatives above:
dg1  dg dgs 1 1
<dw + dw) (0)(h) + 2 (0) () = (Tr(c(o) Z) (2.279)
2
—h‘; log det(AB) — ZTr (20%1d +A + B)) - %Tr (c(o)—l(z - hAB)) . (2.280)

The terms depending on Z cancel out and it holds:

+ 582 (0) + 9820 =
(dgl gz) dgs

<ot 3, T 1 (c*log det(AB) — Tr (2021d +A + B~ 2C(0) 'AB) ) , (2.281)

4

where, C(0) = (AB + % Id> 2 ‘772 Id corresponds to the solution Cy of the fixed point equation shown

in balanced OT:
C}+0°Cy=AB = C,'(AB) = Cy+0°1d . (2.282)

Thus:

dg1  dg» dgs 1
5 (dw + dw) (0) + dw( )= ~1 (0*logdet(AB) + Tr (A + B — 2Cy)) . (2.283)
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Finally, summing up the constituents of g:
dg o? 1,,
30, (0) = 7 (log(mamp) +log det(Co)) — (0~ log det(AB) + Tr (A + B — 2Cy)) (2.284)
2
= 7 (tog(mymg) + log det(Co(AB) ) ) - %Tr (A+B—2C) (2.285)
o? y 1 1
=7 <log(m,xm/5) + log det((Cp + 0°Id) )) - Z}Tr (A+ B —2C) (2.286)
2
UZ (log(mqamp) — log det(Co + o> 1d)) — %Tr (A+B—2C) (2.287)
o2 Co 1
=7 log(mymg) —2dlog(c) —log det( +1d) ) — Z}Tr (A+ B —2C) (2.288)
1 .o o2 )
= —1%(72(A,B) T log(mampg) — ida log(o) . (2.289)
Summing up everything
dm d d dh
" (0) = (S (0) + S8 (0) + - 0)) (2290)
1 1 d
= \/ligimg (25102 log(e) — 7 lla— b|]> + g (0 )) (2.291)
2
= \/mamg ( jIHa —b|?* - JB® (A,B) + % log(mam;;)> (2.292)
1 & o2
= /Mg <—4 OT?az(m—a, nlig) + s log(mamﬁ)) (2.293)
Thus:
Jim 29 (/g — i (y)) = Hm = (/maitg — iz (w)) (2.294)
- 4dd";" (0) (2.295)
It
= mpg <OT§§UZ(m“ ’fﬁ) —0? log(m,xm/g)) . (2.296)
Adding 202, fiitairig ( /figiiig — 1) from (2.209) ends the proof. [

5.2 Proofs of the Gaussian barycenter theorems
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Convexity and Optimality condition In this section we show how the notion of differentiability along
feasible directions in P(IRY) is enough to characterize convexity and first order optimality conditions.
Consider an arbitrary function F on the space of probability measures.

Definition 3 F is said to be differentiable at « € P(R?), if and only if there exists VF(a) € C(R?) such that for
any displacement o = aq — wp with ay, ap € P(IR"Z):

F(a+tda) = F(a) + t{da, VF(a)) +0(t) , (2.297)

where (17, VF(a)) = [ra VF(a)dy.
Proposition 27 (convexity) Assume F is differentiable on P(R?). F is convex If and only if for all a, o’ € P(R?):
F(a) > F(a') + (a —a/, VF(a")) , (2.298)

PROOF. (=). Assume (2.298) holds. Let A € [0,1] and o) = Aa + (1 — Aa’) with arbitrary probability
measures &, «’. Applying (2.298) twice with &’ = a, leads to:

F(a)
F(a')

F(ap) + (& —ap, VF(ar))

>
> F(ap) + (&' —ap, VF(xp))

Multiplying the first equation by A and the second one by 1 — A before summing leads to:
AF(a) 4+ (1 —A)F(a’) > F(ay).

Thus F is convex.
(«<=). Assume F is convex. Let A € (0,1). Convexity implies that:

Fha+ (1= A)a') < AF(a) + (1 — M)F(@)
= F(o/ + Ma—a')) < AF(@) + (1 - A)F(a)
= F(&') + AMa—a', VF(a')) +0(A) < AF(a)

+ (1= A)F(a')
= Ma—a, VF(a")) +0(A) < AF(a) — AF(a')

= (a —a/, VF(a)) + O</\A) < F(a) — F(a')

Letting A — 0 leads to (2.298). ]

Proposition 28 (Optimality condition) Assume F is differentiable and convex on P (IRY) then a* minimizes F
ifand only if (VF(a*), & —a*) > 0.

PROOF. (=>) Assume a* is a minimizer of F. Let t >. Since P(R?) is convex, we can write for any
a € P(RY):
F(a*) < F(a* +t(a — a))
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For t small enough, we can use (2.297) on the right-hand side:
F(a*) < F(a*) 4+ t{aw —a*, VF(a™)) +o(t)

Dividing by t and letting t — 0 leads to (« — a*, VF(a*)) > 0 for all a.
(<) Assume (VF(a*), & — a*) > 0. Proposition 27 applies and (2.298) allows to conclude that a* is a
minimizer of F. |

Proofs of the barycenter theorems For any probability measure «, let & denote its centered transforma-
tion « — E,(X). Let F be any of the divergences OTzﬁaz, OTS?TZ or S,,2. Thanks to Lemma 2, the barycenter
problem can be restricted to centered distributions. Indeed, the following holds:

Oy (&, ) = [Ea(X) = Ep(X)[|* + OT,5 (%, B) - (2299)

Similarly, since for Lebesgue continuous measures the entropy is irrelevant to the centering of the
distribution KL(«||£) = KL(&||£), it holds thanks to (2.94):

OT5,(a, B) = |Ea(X) — Eg(X)||* + OT52(%, B) (2.300)

And finally:
Sap2 (&, B) = ||Ea(X) — Eg(X)|I* + Syp2 (&, B) - (2.301)

Thus, each barycenter problem is equivalent to:

K
min )  wiF(ag, B)
€Y k=1

K
= min ) | willa — Ep(X)||* + wiF (i, p) (2.302)
Beg =1

K
= min Y willag — b + wiF(dy, p)
BeG,Ex(x)=0 """

Therefore, since both arguments are independent, we can first minimize over b to obtain Eg(X) = b =
Y'X_, wiay, which provides the mean of the barycenter that is identical in all 3 theorems. Without loss of
generality, we assume from now on that a; = 0 for all k.

We have showed that F € {OTé:az, OT?UZ, S,.2 } is differentiable and convex (w.r.t. one measure at a
time) on sub-Gaussian measures. Characterizing the barycenter can thus be done using the first order

optimality condition:

K

K
B =argmin ) wiF(ay, ) < foranyu € G () wiVF(ag, p),p—p) >0 (2.303)
2€G(RY) k=1 k=1
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We remind the reader that the notion of differentiability is different from the usual Fréchet differ-
entiability: a function F : G — R is differentiable at a if there exists VF(a) € C(RY) such that for any
displacement tda with t > 0 and da = a1 — ap with a1, ap € G, and:

F(a+ téa) = F(a) + t(6a, VF(x)) +0(t) , (2.304)
where (6, VF(a)) = [pa VF(a)doa.
Variance of the 5,2 barycenter: theorem 5 Let (fy, g) denote the potentials associated with OT; , (ax, B)
and hg the autocorrelation potential associated with OT; , (B, B). If B is sub-Gaussian, it holds: VS,,2(ax, B) =

Sk — h. Therefore, from (2.298) a probability measure  is the debiased barycenter if and only if for any
direction y € G, the optimality condition holds:

K
(Y weVgSapa(ar, B), i — B) >

k=1

K
& Y wi(gk—hg,u—p) =0
k=1

(2.305)

Moreover, the potentials (fi), (gx) and / must verify the Sinkhorn optimality conditions (2.38) for all k
and for all x B-a.s and y a-a.s:

fi(x) —llx =yl +8x (y) gk(x) —llx =yl +fi ()
e 202 f]Rd e 207 d‘B(y) =1, e 27 fIRd e 207 dak(y) =1.

h(x) Iyl +hs(y)
e 2072 fIRd e 2072 d_ﬁ(y) =1.

We are going to show that for the Gaussian measure 8 given in the statement of the theorem is well-defined
and verifies all optimality conditions (2.306). Indeed, assume that f is a Gaussian measure given by N/ (B)
for some unknown B € S‘i (remember that 8 is necessarily centered, following the developments (2.302)).
The Sinkhorn equations can therefore be written as a system on positive definite matrices:

(2.306)

F, = ?A '+ G, Y, Gi=0’B+F,!, H=c’B+H!

where for all k:

i: Q(%(G 1 Id))—I—fk(O)
1

202 202
Sk _ gx(0)
5o7 = Q5 (Bt —1d)) + 5 (2:307)
hﬁ _ 1 -1 hﬁ(o)
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Moreover, provided B exists and is positive definite, the system (2.307) has a unique set of solutions
(Fi)k, (Gk)x, H given by:

F,=BC.!, Gy=C'A, H=BJ (2.308)

1 1
where C; = (AB + % Id)2 — ‘77 IdandJ = (B + z T 1d)2 + ‘77 Id. Therefore, the gradient in (2.305) can
be written:

K K
Y wi(gr —hp) = Q2() wiF, ' — )+ Z wi8k(0) — hp(0)
k=1 k=1 w= (2 309)
X .
2 wF ' —H ) +m
k=1
for some constant m € IR. Let’s compute the matrix defining the quadratic form:
K
Y wCB -] 'B
=1
K 11 1ot 11 S|
=Y wB 2(B2AB2 + —1d)2B"2 — B }(B? + ——Id)2
k=1
2.310
K11 1 ¢4 1 1 1 . g+t 1 1 (2:310)
=) wB 2(B2A(B2+ —1d)2B 2 —B 2(B*+ —1Id)2B "2
k=1
1 (K 1 1 1 1 1
=B 2 <Z wr(B2AB2 + Tld)z — (B*+ Id)z) B2
k=1
which is null if B is a solution of the equation:
K 1 1 4 1 1
) wi(BZAB2 +%Id)§ = (B® + O:Id)Z. (2.311)
k=1
Therefore, the gradient is constant and equal to m. For any probability measure y € G:
K
(Y W VpSap (ak, B), 1t — B) = Z wigk — hp, 1 — P)
= (2.312)
<m w—p)
=0

since both measures integrate to 1. Therefore, the optimality condition holds.
To end the proof, all we need to show is that (2.311) admits a positive definite solution. To show the
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existence of a solution, the same proof of Agueh and Carlier (2011) applies. Indeed, let Ay and Ay denote
respectively the smallest and largest eigenvalue of Ay. Let A = min; Ay and A = max; Ag. Let K A be the
convex compact subset of positive definite matrices B such that AId = B = AId. Define the map:

T:Kyp — S?

1
2 2

K 1 1 1 4

B — (Zwk(BZAkBZ—I-OAId)Z) -7 1d
= 4 4
Now for any B € K}, 4, it holds:
Ald < T(B) X Ald. (2.313)

T is therefore a continuous function that maps K a to itself, thus Brouwer’s fixed-point theorem guaran-
tees the existence of a solution. n

Variance of the OT,, , barycenter: theorem 4 Let (f, g) denote the potentials associated with OT; , (ay, ).
If B is sub-Gaussian, it holds: Vg OT,,2(ax, B) = g. Therefore, from (2.298), a probability measure f is
the OT;, , barycenter if and only if for any direction y1 € G, the optimality condition holds:

K
<Z wrVg OTyp2 (2, B), u—B) >0
- (2.314)

K
< Y welgup—p) =0
k=1

Moreover, the potentials (fi), (gx) must verify the Sinkhorn optimality conditions (2.38) for all k and for
all x B-a.s and y a-a.s:

fi(x) ==yl +g(y) 8k (x) —lx=yl>+fi(y)
€27 | fpae 27 dB(y) | =1, e2? | [paem 27 da(y) | =1 (2.315)

We are going to show that for the Gaussian measure p given in the statement of theorem 4 is well-defined
and verifies all optimality conditions (2.315). Indeed, assume that f is a Gaussian measure given by NV (B)
for some unknown B € S‘i (remember that 8 is necessarily centered, following the developments (2.302)).
The Sinkhorn equations can therefore be written as a system on positive definite matrices:

Fr=0’A' + G !, Gy=0"B+F'
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where for all k:

ﬁ — Q(%(G 1 —Id)) +fk(0)
1

2;2 th(fg) (2.316)
k L _ k
ﬁ - Q(o_z (F Id)) 20_2

Moreover, provided B exists and is positive definite, the system (2.307) has a unique set of solutions
(Fi)k, (G )k given by:

F, =BC_!, G, =C'A;, (2.317)

1
where C, = (AxB + %4 Id)2 — ‘77 Id. Therefore, the gradient in (2.314) can be written:

K K K
E Wik = Q(2(E kak_l — Id)) + E wkgk(o)
k=1 k=1 w=1
X (2.318)
=Q <2(2 wiF ! —Id)) +m
k=1
for some m € R. Let’s compute the matrix of the quadratic form:
1 K 1.1 ot 1 1 g2,
ZwkaB —Id=) wB 2( B2AkBZ +—Id)2]3 2- B —1d
= o 1 B (2.319)
=B2 (Z wr(B2AB2 + —1d)2 — %Id +B> B2
k=1
which is null if B is a solution of the equation
1 1ot 1 o2
) wi(B2ZAB2 + —-1d)2 :B+71d. (2.320)
k=1
Therefore, for any probability measure p € G:
K
Z wkVp Ongz("‘krﬁ)r p—p)= <Z WSk, 1 — B)
k=1
= (m,pu—p) (2.321)

—m [ (dn—dp)
=0
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since both measures integrate to 1. Therefore, the optimality condition holds.

To end the proof, all we need to show is that (2.99) admits a positive definite solution. To show the
existence of a solution, the same proof of Agueh and Carlier (2011) applies. Indeed, let A denote the
largest eigenvalue of Ay and A = max; A. Let K5 be the convex compact subset of positive definite
matrices B such that (A — ¢?); Id = B = 0. Define the map:

T:Kp — ST
K 11 gt 1 g2
B+— Y wi(B2AB2 +—1d)2 — —1d
= 4 2
Now for any B € Kj, it holds:
0<T(B) < (A—0c?), Id. (2.322)

T is therefore a continuous function that maps K to itself, thus Brouwer’s fixed-point theorem guarantees
the existence of a solution. [

Variance of the OTzﬁaz barycenter: theorem 3 Let ( fi, gx) denote the potentials associated with OTfaz (ax, B).
If B is sub-Gaussian, it holds: Vg OT% » (a, B) = gk + 202 log (%) . Therefore, from (2.15), a probability

measure f is the OTzﬁaz barycenter if and only if for any direction u € G, the optimality condition holds:

K
(Y w Vg OTsa(ar, B),  — B) > 0
k=1 (2.323)
K 2 dp
&) we(gk+20log | == ), p—pB) >0
= dl

Moreover, the potentials (fi), (¢x) must verify the Sinkhorn optimality conditions (2.38) for all k and for
all x B-a.s and y a-a.s:

Si(x) =lx=ylP+8e(y) 8(x) —lx=ylP+fiw)
e 27 | [pae 202 df(y) | =1, e27 | [pae 202 day(y) | = 1. (2.324)

We are going to show that for the Gaussian measure p given in the statement of theorem 3 is well-defined
and verifies all optimality conditions (2.324). Indeed, assume that f is a Gaussian measure given by N'(B)
for some unknown B € S% (remember that B is necessarily centered, following the developments (2.302)).
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On one hand, its density with respect to the Lebesgue measure verifies:

log <jlfj> (x) = —%xTB_lx + %log det(27tB) (2.325)
= Q(B N (x) +m (2.326)

for some constant m € RR.
On the other hand, the Sinkhorn equations corresponding can therefore be written as a system on
positive definite matrices:

Fr = ?A '+ G, !, Gy =0c"B+F!

where for all k:

Jo—oh ey + A9
1

2? N gZ((’g) (2.327)
Sk Lop-1 k
202 Q<02 (Fy " —1d)) + 202

Moreover, provided B exists and is positive definite, the system (2.307) has a unique set of solutions
(Fx)k, (Gk)k given by:

F, = BC, !, Gy =C, Ay, (2.328)

1
where C, = (AxB + % Id)2 — ‘772 Id. Therefore, the gradient in (2.314) can be written:

K d K K
Z wigk + 207 log ((15:) = Q(Z(Z kak’1 —Id+*B 1)) + Z wi gk (0) + 20%m
k=1 w=1

= . (2.329)
=_ye) (2(2 wiF, ' —1d +(72B1)> +m'
k=1
for some constant m’ € R. Let’s compute the matrix of the quadratic form:

K K 1 1 1 o4 11 2

Y wCB 1 —Td+0?B' = Y w,B 2(B2ABZ + 2 1d)2B 2 + 2 B! —Id
k=1 k=1 4 2

(2.330)
B (Y w(BiAB+ Zia)}+ C1a—B)B b
= k; wr(B2A(B2 + T )2+ 5 a-
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which is null if B is a solution of the equation:
K I Ay o2
) wi(B2AB2Z + —-1d)2 =B— —-1d. (2.331)
= 4 2
Therefore, for any probability measure p € G:

K L K 2 dﬁ
(3 Vs OTE (04, B) 1 — B) = (1. g+ 20 log (55 ) = )
k=1 k=1

= (m+m',p—p) (2.332)
:m+m’/(dy—d5)
=0

since both measures integrate to 1. Therefore, the optimality condition holds.

To end the proof, all we need to show is that (2.92) admits a positive definite solution. To show the
existence of a solution, the same proof of Agueh and Carlier (2011) applies. Indeed, let Ay denote the
largest eigenvalue of Ay and A = max; Ag. Let K2 5 be the convex compact subset of positive definite
matrices B such that (A + (72) Id > B > ¢21d. Define the map:

K 11 gt 1 g2
B Y w(BZAB2 + 1d)2 + L Id
= 4 2
Now for any B € K2 ,, it holds:
?Id<T(B) < (A+c?)Id. (2.333)

T is therefore a continuous function that maps K2 , to itself, thus Brouwer’s fixed-point theorem guaran-
tees the existence of a solution in K2 4. |
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Chapter 3

Optimal transport as a multi-task prior

A learner is facing several learning tasks. Intuitively, one may think that isolated and focused learning
on one single task at a time leads to greater mastery of the given assignments. Unless the tasks have
nothing in common, this intuition is more likely to be wrong. Take the example of an archer practicing
his aiming skills with different ranges, wind conditions and moving targets. Two methods are offered
before them. Method 1: practice one scheme at a time until reaching mastery before moving on to the
other. Method 2: practice throws in a mixed-up scheme. Even though method 1 is common and more
appealing, chances are that in test time, when evaluated on a random setting in the Olympics, method 2
proves to be the strategy to follow. This argument is based on behavioral experiments in different types of
exercises in sports, arts and mnemonics (Brown, Roediger, and McDaniel, 2014). It can be explained by
two factors. By following method 1, repeated trials of the same task may lead to great performances in
training sessions that are not necessarily reproducible at evaluation (overfitting). However, by following
method 2 the subject not only learns each task but also learns to adapt from one to another (generalization).

These psychology and cognitive science observations relate to similar ones in machine learning. By
acquiring knowledge from slightly different sources, multi-task learning models can generalize better and
avoid overfitting. Moreover, in high dimensional settings (when the dimension of the problem p is larger
than the number of samples 7), solving the problems jointly can be seen as a way of pooling together more
data if the learned entities share some underlying structure (Caruana, 1993). This chapter is devoted to
modeling this underlying structure in the context of brain imaging across different individuals. Taking
into account the spatial geometry of the cortex is a crucial ingredient for an accurate portrayal of the
similarity across tasks. Enters optimal transport.

This chapter is based on:
e H. Janati et al, Wasserstein reqularization for sparse multi-task regression, AISTATS’19.

¢ H. Janati et al, Minimum Wasserstein Estimates: group level EEG-MEG source imaging via optimal
transport, IPMI'19.

e H. Janati et al, Multi-subject source imaging with sparse multi-task regression, Neuroimage 2020.
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Fig. 3.1. Left: Subject wearing a MEG scanner and using a controller for a cognitive experi-
ment (Proudfoot et al., 2014). Right: schematic of two pyramidal neurons.

1 Brain imaging

An area of the brain is active when neurons in that area emit electrical currents. If strong enough, these
electrical currents can be sensed by measuring the electrical potentials at the surface of the head (electro-
encephalography or EEG). The magnetic field created by those neural currents (magneto-encaphalography
or MEG) can also be measured outside the head using magnetic sensors. EEG and MEG are direct brain
imaging techniques in the sense that they measure the electrical brain activity with no intermediary
middleman. On the contrary, indirect modalities rely on some physiological phenomenon correlated with
brain activity. Functional magnetic resonance imaging (fMRI) for instance relies on measuring the rapid
delivery of blood to neural cells known as the haemodynamic response. These inherent differences lead
to different characteristics: because fMRI relies on magnetic resonance, it provides 3D activation maps
of the entire brain with an accuracy reaching less than 1mm (Duyn, 2012). However, blood delivery is
slow and delayed in time thereby limiting the temporal resolution of fMRI to the order of 1 second. EEG
and MEG provide the complimentary picture: high temporal resolution up to a millisecond, but low
spatial resolution since measurements are taken from a distance. Recovering the brain sources from these
measurements is known as source localization (Baillet, 2017; Baillet, Mosher, and Leahy, 2001a).
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Fig. 3.2. Schematic illustrating neural activity from brain sources to MEG data. Source

localization consists in inferring the location and amplitudes of neural currents from electro-

magnetic field measurements. The drawing of the pyramidal neurons — which contribute
most to EEG and MEG signals — are taken from (Ramén y Cajal, 1899).

1.1 From brain recordings to brain activity: source localization

Sudden changes in the concentration of the ions in contact with a pyramidal neuron’s membrane create
un action potential (Figure 3.1). Action potentials are electrical impulses that travel along the neuron’s
“long cable” called axon before being transmitted to neighboring neurons at their “junctions” (synapses).
At the receiving neuron, post-synaptic potentials are generated in its apical dendritic tree. These electrical
impulses are however very weak: around a few pA. To create a magnetic field strong enough to be
captured by MEG sensors, these impulses must be coordinated in time and orientation. This is the
main reason why MEG measurements are most likely due to post-synaptic potentials in the columnar
organization of the cortex where large pyramidal neurons have parallel apical dendrites (Nunez and
Srinivasan, 2006) as shown in Figure 3.2. Localizing the underlying neural activity at the origin of the
signals is a linear inverse problem known as source localization (Baillet, Mosher, and Leahy, 2001b; Becker
et al., 2015; Michel et al., 2004; Wipf and Nagarajan, 2009). To solve this inverse problem and localize the
underlying brain activity, several linear and non-linear methods have been proposed and reviewed in the
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literature (Fuchs et al., 1999; Becker et al., 2015; Vega-Herndndez et al., 2008). One commonly employed
strategy to tackle the inverse problem is beamforming (Van Veen et al., 1997; Gross et al., 2001) or more
generally scanning techniques (Mosher and Leahy, 1999; Mékela et al., 2018). A popular alternative casts
the problem as a linear regression problem in high dimension; an approach commonly referred to as the
imaging approach (Baillet, Mosher, and Leahy, 2001b). However, and despite the linearity of the forward
model, this inverse problem is inherently difficult as it is “ill-posed”. Indeed, the number of potential
sources is much larger than the number of MEG and EEG sensors, which implies that, even in the absence
of noise, different neural activity patterns could result in the same electromagnetic field measurements.
Moreover, each source is modeled as a dipole for which both an amplitude and an orientation must be
inferred. This fact makes M/EEG source localization particularly challenging in the presence of multiple
simultaneous active regions in the brain. Incorporating additional prior information is mandatory. Such
information can be formulated for instance using Bayesian framework (Haufe et al., 2009; Cai et al., 2020)
or by exploiting the temporal axis of the data (Castafio-Candamil et al., 2015).

Cortically constrained source spaces In the imaging approach that leads to regression models, the
position of the potential current sources in the brain need to be defined. Given a segmentation of the
MRI scan of each subject, the sources, which are modeled as electric current dipoles, can be either placed
on a regular grid spanning the entire brain volume, or positioned along the cortical mantle (Dale et al.,
2000). When working with such a cortically constrained model, and since synchronized currents flowing
along the apical dendrites of cortical pyramidal neurons are thought to be mostly responsible for M/EEG
signals (Okada, 1993), it is then possible to constrain the dipole orientations to be normal to the cortical
surface. Doing so, solving the inverse problem amounts to estimating the amplitudes of current dipoles
whose positions and orientations are fixed a priori. The ensemble of possible candidate dipoles forms
what is generally referred to as the source space. In this work, we will consider cortically constrained
source spaces.

Forward modeling Let n denote the number of sensors (EEG and/or MEG) and p the number of dipoles
in the source space. Following Maxwell’s equations, at each time instant, the electromagnetic field
measurements b € R" are a linear combination of the fields produced by all sources x € IR? : b = Lx. The
linear forward operator L € IR"*7 is called the leadfield or gain matrix. Factoring noise in the measurements
y € R" leads to:

y=b+e=Lx+7y, (3.1)

where 77 is some noise vector that is generally assumed Gaussian distributed A (0, Z). In practice, L is com-
puted by solving Maxwell’s equations using for example a boundary element method (BEM) (Hamaéldinen
and Sarvas, 1987; Mosher, Leahy, and Lewis, 1999; Kybic et al., 2005).

Whitening Since M/EEG signals are correlated by design, the noise covariance matrix X is not diagonal.
For the inverse problem to be cast as a least squares regression problem, one needs to apply a whitening
transformation to the data. Given an estimate %, that can be obtained from pre-stiumus baseline periods,
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.1 L1
the whitening step amounts to computing the transformed dataX *yand X °L (Engemann and Gramfort,
2015). In the rest of this chapter, we will assume that the data are whitened, meaning that the noise has
unit variance at each sensor, and that it is uncorrelated across sensors.

1.2 Ill-conditioning and prior biases

When using the imaging approach, one limits the set of possible solutions by making prior hypotheses on
the nature of the source distributions. Formally, this can be achieved by optimizing a regularized data
titting loss:

1
x* = argmin —— ||y — Lx||3 + w(x) , (3.2)
x€RP 2n
where w is a prior function.
Perhaps one of the most simple regularizers is the Ridge penalty, the solutions of which are known as
minimum-norm estimates (MNE) (Hamaéldinen and Ilmoniemi, 1994):

o1
XMNE = argmin -y — Lx|3 + A3, (33)

The inverse solutions discussed above typically employ penalties w that are increasing functions of
the source amplitudes. This inherently induces a bias towards sources in the superficial layers of the
cortex (Kohler et al., 1996; Lin et al., 2006). Indeed, deep sources require larger amplitude values than
superficial ones to produce electromagnetic fields with similar strength. To circumvent this problem, one
can normalize the columns of the leadfield L by a fraction of their norms (Lin et al., 2006; Gramfort et al.,
2013b). In all our experiments we use a depth weighting of 0.9. Formally, this means that every column
L is normalized by ||L;°°.

The proposal of minimum-norm estimates (3.3) lead to several variants variants such as dSPM (Dale
et al., 2000) which relies on noise normalization or sSLORETA (Pascual-Marqui, 2002), proposed to correct
for the depth bias induced by the ¢, norm (Ahlfors, Imoniemi, and Hamaéldinen, 1992). These methods
have linear solutions and are very cheap to compute but promote weak and distributed neural patterns
that inevitably lead to low spatial accuracy. When studying the brain response of specific and simple
cognitive tasks, it is more principled to favor strong and sparse sources as long as they explain the data.
Sparsity can be promoted using an ¢; norm penalty. The resulting problem, known as minimum current
estimates (MCE) (Uutela, Himéaldinen, and Somersalo, 1999) in the field of M/EEG, and Lasso (Tibshirani,
1996) in the machine learning community, reads:

* : 1
x* = arg min Z—Hy—LxH%—l—/\me . (34)

x€RP hn
The possible choices of w are virtually limitless: block-sparse norms can be used to defined mixed-norms
estimates (MXNE) (Strohmeier et al., 2016) and their time-frequency variant (TE-MxNE) (Gramfort et al.,
2013b) to leverage the spatio-temporal dynamics of M/EEG signals. If other imaging data are available
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such as fMRI (Zhongming Liu, Lei Ding, and Bin He, 2006; Ou et al., 2010) or diffusion MRI (Deslauriers-
Gauthier et al., 2017), it is also possible to use them as prior information for example in hierarchical
Bayesian models (Sato et al., 2018). While such techniques have had some success, source estimation in
the presence of complex multi-dipole configurations remains a challenge. To address it, one idea is to
leverage the anatomical and functional diversity of multi-subject datasets to improve localization results.

1.3 Multi-subject source localization

The idea of using multi-subject information to improve the spatial accuracy of M/EEG source imaging
has been proposed before in the neuroimaging community. Before presenting our contributions, let’s
discuss some of the related proposals in the literature.

Related work Larson, Maddox, and Lee (2014) hypothesized that different anatomies across subjects
allow for different point spread functions that only overlap on one source location. Averaging across
subjects thereby increases the accuracy of source localization. On fMRI data, Varoquaux et al. (2011)
proposed a probabilistic dictionary learning model to infer activation maps jointly across a cohort of
subjects. A similar idea lead Litvak and Friston (2008) to propose a Bayesian hierarchical model to cope
with inter-subject functional variability. Their model uses a multiple sparse prior defined using 256
bilateral patches, making the assumption that the same few patches are active with different amplitudes
for all subjects. Each patch is created using a Laplacian diffusion of a source on the cortical mesh. This
Laplacian operator is defined with a smoothness coefficient that can vary between zero and one, and
defaults to 0.6 in the reference implementation. However, when the number of subjects increases, it
requires more patches to cope with the diversity of cortical orientation patterns. This becomes problematic
for a number of subjects as small as 10. The assumption of a common set of active patches was then
relaxed by Kozunov and Ossadtchi (2015) who proposed a Bayesian model inspired by Litvak and Friston
(2008). Instead of defining spatial patches as priors, GALA models spatial coherence across subjects
through a number of fixed covariance matrices that embody both group similarities and individual
signatures. The weights of these covariance matrices are then learned adaptively from the data. The
novelty of the GALA model lies in the design of some fixed covariance matrices to model functional
similarity across subjects using the geometry of the cortex. This is achieved using a Gaussian Kernel
defined on the adjacency matrix of the cortical mesh. The correlation between two different sources is
thereby inversely proportional to the geodesic distance that separates them.

Multi-task regression As source imaging can be cast as estimating a regression model, source imaging
for a set of subjects can be formulated as solving a set of coupled regression problems. In the statistical
machine learning literature, such supervised learning problems are commonly referred to as multi-task
prediction problems (Caruana, 1993). Notice that in this context, a task must be perceived as a machine
learning task, not as a cognitive one. Multi-task regression is thus equivalent to multi-subject regression. In the
M/EEG source imaging literature, to our knowledge, the only contribution formulating the problem as
a multi-task regression model employs a Group Lasso with an ¢»; block sparse norm (Lim et al., 2017).
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However, the Group Lasso promotes neural sources that are either active for all subjects, or for none of
them, similarly to (Litvak and Friston, 2008).

Although, the assumption of perfectly overlapping functional activity across subjects can be justified
when aiming for coarse localization results, it gets more unrealistic as we aim for fine spatial resolution in
the order of millimeters. In the following section, we investigate several multi-task regression models that
relax the aforementioned overlapping sources assumption and propose a new flexible regularized model
defined through a combination of Wasserstein metrics and non-convex /; (0 < g < 1) pseudo-norms.
These priors formalize the two main assumptions of our model: (1) focal and strong activation foci are
favored over weak distributed ones; (2) responses across subjects are spatially close if presented with the
same cognitive stimulus. To promote spatial proximity, we minimize an optimal transport (Wasserstein)
distance across subjects, hence the name of our method: Minimum Wasserstein Estimates (MWE,). Our
experiments show that the choice of g defining the /; is very important: lower values tend to promote
sparser solutions and yield models easier to tune in practice (Strohmeier, Gramfort, and Haueisen, 2015).

Anatomical alignment and common source space In order to estimate the source amplitudes jointly
for S different subjects, it is necessary to have a correspondence between their cortical source spaces. To do
so, one needs some anatomical alignhment procedure between the cortical surfaces of the different subjects.
In this work we follow the methods implemented by FreeSurfer. The morphing procedure uses the sulci
and gyri patterns which are matched in an auxiliary spherical inflated cortical surface (Fischl, Sereno, and
Dale, 1999; Gramfort et al., 2013a). Defining a source space in a template anatomy — here fsaverage — it is
possible to morph it to each individual subject. Doing so, the source spaces for all subjects have the same
number of dipoles and have some spatial correspondence. The resulting leadfields L(V), ..., L(®) have
therefore the same dimensions (n x p) with aligned columns; a given column maps to the same brain
region across all subjects — note that each leadfield is computed using the anatomical head model of its
corresponding individual subject. While this procedure constructs aligned leadfield operators, assuming
that the obtained correspondence across subjects is also functional, does not necessarily hold (Robinson
et al., 2014). Using optimal transport, our proposed model goes beyond this rigid one-to-one alignment
and allows for some spatial flexibility of the activation foci. Before introducing our model, we remind the
reader of the general framework of multi-task regression.

2 Joint multi-task regression

Jointly estimating the current density x*) of each subject s can be expressed as a multi-task regression
problem where some coupling prior is assumed on x(), ..., x(5) through a penalty Q:

x(8) ]2 (1) (S)
o, mmew 7 Z |y Iz + Q(x"Y, ..., x")) . (3.5)
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2.1 Block-sparse models

Let X € RP*S denote the horizontal stacking of the individual source vectors X = [x(1), ..., x(®)]. Mixed
norms are defined on matrices as combinations of £, norms applied on their columns. For a,b > 1, the £,
norm is defined as:

Cp(X) = Z <Zx ) . (3.6)

j=1

When setting b = 1, the resulting mixed norm applies an ¢; norm to the p ¢, norms of the columns of the
matrix. Thus, minimizing such a penalty would promote sparsity of the entire columns of that matrix. This
is particularly interesting when the desired prior should reflect some structured sparsity. In the context of
source imaging, this corresponds to a strict consensus across subjects to decide whether a source is active
or not. One of the most simple examples of such norms is the Group-Lasso penalty.

The Group-Lasso The Group Lasso (Yuan and Lin, 2006; Lim et al., 2017) is defined using the ¢>; norm.
In practice, using some hyper-parameter u > 0, it reads:

mm Z ||y (S)X(S)H% + wln (X) . (3.7)

x( .. x(S) eRp on

The double sum penalty can be seen as an ¢; penalty applied to a vector of £, norms taken across subjects:
only some {, norms are non-zero. Therefore, a source is canceled out for all subjects or for none of them.
In general multi-task learning settings, this is relevant for settings where all tasks are explained by the
exact same relevant features. In practice however, the degree to which the active features overlap across
tasks is not known a priori. Negahban and Wainwright (2008) showed that in the simple case of two tasks,
if the fraction of overlapping sources is less than 2/3 then Group Lasso has a lower probability of correct
support identification than a Lasso estimator solved independently for each task. Such a high bar is not
likely to be met when data do not follow such a rigid structured sparsity simply because in real life, data
are dirty. For Dirty data, we need “dirty models”.

Dirty models The assumption of identical sources for all subjects is clearly not realistic, Dirty mod-

els (Jalali et al., 2010) relax this assumption by decomposing the source vector of each subject s into two
c d c d

parts: x(¥) = X©) 4- X5), where the support of X(*) is common to all subjects and X®) is different for each

Cc
one. Originally, Jalali et al. (2010) introduced Dirty models with an ¢, block norm on X. For the sake of
convenience and comparison with the Group Lasso, we use the (practically equivalent) /21 norm. This
variant of Dirty models reads:

1 S c d
min € RP® 5 L Iy = LX) )3 + X1 + AlIX 11 (3.8)
XX s=1
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with tuning hyper-parameters y, A > 0.

Since the ¢1; norm induces un-structured sparsity on all sources, Dirty models can be seen as a middle
ground between an independent Lasso and a Group Lasso. The advantage of Dirty models over the
Group Lasso is that it is agnostic with respect to the degree of similarities across subjects. Moreover,
when tuning the hyper-parameters y and A, a comparison with Group-Lasso is not needed since it is
included in the “tuning path” of Dirty models. The following proposition provides sufficient conditions
for falling back to Group Lasso or independant Lasso which guides the selection of hyper-parame ter
candidates. Figure 3.3 visualizes this proposition by showing the nature of the obtained solutions on a
grid of hyper-parameters.

-X 0 (Group Lasso) Dty(t ct) ——\ = —— )\ = \pazx
- X - O(L B X-X-0 =% T A=t

M

i

ot M N {H”MH; m

0

ijﬂl i

|
m

Fig. 3.3. Illustration of proposition 29. Dirty models do not need to be tuned over a full square
grid: outside the highlighted slopes, it is equivalent to a Group Lasso or an independent
Lasso. Experiment run with random Gaussian data with 4 tasks.
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Proposition 29 Let R % [LO) b1, ... L) 'b()] € R™S and define the maximum hyper-parameter values

def Rz def R * XX : : :
Hmax = 2= and Amax = ==, Let X* = X* + X* be a solution of Dirty models (3.8). Then the following
holds:

C
u>VSA=X"=0 (3.9)
d
A>u=X"=0 (3.10)
d c
A > Amaxand g > pmax © X =X"=0 . (3.11)

SKETCH OF PROOF. The proof of the three statements is derived using first order optimality conditions.
The sub-differential sets of j.¢; and A¢q; at 0 are given by the balls B and ABx respectively, leading to
the quantities pmax and Amax. Moreover, any optimal dual variable must be included in the intersection
of the aforementioned balls. Loosely speaking, when y > v/SA, it holds ABe C 1Bacs, thus the pify;
penalty becomes irrelevant for optimality: Dirty models are equivalent to a Lasso. Inversely, when
U < A, uBreo C ABw, thus the Al1; penalty becomes irrelevant for optimality and Dirty models are then
equivalent to a Group Lasso. Detailed technical derivations are provided in the appendix. n

Multi-level Lasso It is noteworthy to keep in mind that structured sparsity can be obtained without
necessarily invoking mixed norms. Perhaps a more simple and intuitive solution is to consider a mul-
tiplicative model for inverse solutions by writing them as a product of an equal vector E and a different
matrix D:

) _ ap®
X% = D! (3.12)

Lozano and Swirszcz (2012) proposed this model and applied an ¢; penalty on both components e € R?
and D € RP°. For the model to be identifiable, e is constrained to be non-negative. The Multi-level Lasso
reads:

ZHY (e @EW) |+ pllefls +A|Dlf - (3.13)

ee]R” DelRPXS 2n

Due to the multiplicative formulation, the multi-level Lasso is not a convex problem. Moreover, it can
be related to group-norm models highlighting a form a structured sparsity prior. As shown by Lozano
and Swirszcz (2012), (3.13) is equivalent to a standard multi-task regression problem with the non-convex
group pseudo norm /, 1 regularization:

S

1 p
ZHy LEOXO)2+2/uA Y/ IXi - (3.14)
j=1

min
XeRP*S 2n

Both Dirty models and Multi-level Lasso can be solved via alternating optimization where each update is
carried out via proximal coordinate descent.
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2.2 MWE: minimum Wasserstein estimates

Block-sparse models can be used to promote consistency across tasks. This consistency is however limited
by a form of pointwise comparison of features. For source localization, these features are not arbitrarily
ordered: their spatial structure matters. Our aim is to use OT metrics to compare source estimates by
taking into account the geodesic distances between their locations. The application of OT in brain imaging
is however not novel. Haufe et al. (2008) used the Wasserstein distance (a.k.a Earth Mover’s Distance) as
an evaluation metric to compare M/EEG source imaging methods on simulated experiments. Leveraging
its fast entropic variant, Gramfort, Peyré, and Cuturi (2015) proposed to compute average brain patterns
for fMRI and M/EEG group studies. Given these successes, one cannot help but wonder about the
benefits of including OT in the model design not only as a pre- or post- processing step.

2.21 MWE;: sparse entropic OT regularization

Consider the finite metric space (X, ||.||2) where each element of X = {1,..., p} corresponds to a vertex
of the source space. Let C be the matrix where C;; corresponds to the geodesic distance ||i — j|| between

vertices i and j. The unbalanced entropic OT loss UOT?/’Y introduced in chapter 2 can be used to compare
non-negative activation maps a,b € R":

u
UOT(a,b) % min  eKL(nt|le ) +1KL(nl|a) +KL(7 1|b) . (3.15)
&y meR L pxp N—————
transport cost + entropy relaxed marginal constraints

A straightforward extension to signed measures proposed by several authors (Mainini, 2012; Profeta and
Sturm, 2018) is to compare positive and negative parts separately:

. def U L u
UOT(a,b) & UOT(a*,b") + UOT(a",b ") , (3.16)
&Y &Y
where x(5)+ = max(x()+,0) and x(®)- = max(—x{®)+,0) for any x € R?.

Minimizing UOT across subjects would lead to both spatial and sign consistency across subjects. In
the context of MEG, the sign of the source estimates indicates the polarity of the dipoles which is defined
using the convention that positive currents are flowing out of the cortex (from deep cortical layers to
superficial ones), while negative currents are flowing into the cortex (Gramfort et al., 2013¢; Tadel et al.,
2011). Along with a sparsity constraint, we propose to use as a coupling prior in (3.25):

S S
def N IR _
Onwe, (x1, ., x9)) LAY 1x6) |, 4 p min = Y UOT(x"), %) , (3.17)
s=1 s=1
Sparsity Spatial variance

where yu, A > 0 are tuning hyperparameters. The minimized OT sum in (3.17) measures the average
geodesic distance between all the x(°) and their barycenter %. It can thus be seen as quantification of
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the spatial variability of the source estimates. This spatial averaging is illustrated in Figure 3.4 where
we considered two averaging methods of simulated brain patterns of 5 different subjects. When the
brain patterns are close but non-overlapping, the usual (Euclidean) average leads to blurring and spatial
distortions while the OT barycenter conserves the shape of its input.

Brain activations of 5 subjects
Each color corresponds to a subject

OT barycenter Euclidean barycenter

Fig. 3.4. Tllustration of the UOT barycenter # (middle) of 5 activations inputs x(*) (left) with

random amplitudes between 20 and 30 nAm in the middle and occipital lunatus sulcus defined

by the aparc.a2009s segmentation. ¥ is located at the average location of the inputs with an

average amplitude levels. The Euclidean barycenter (right) is the usual mean: it creates

undesirable blurring. Promoting subject-level source estimates that are close to a population
average for UOT promotes spatial proximity between all activation foci.

Solving MWE; Even though UOTg,Y is differentiable and jointly convex, computing its gradient requires
running a full Sinkhorn loop with a learning-rate that must be tuned. Instead, we would like to take
advantage of both Sinkhorn’s algorithm and the separability of the /1 norm for which proximal coordinate
descent — at least in practice — outperforms proximal gradient descent methods. By combining (3.15),
(3.16) and (3.17), we obtain an objective function taking as arguments:

(), (x7), (7200, (07),, 27,27
The only coupled terms in this loss function are the KL terms which is jointly convex. We propose to
minimize it by alternating.

When minimizing with respect to one x*)* (or x(*)7), the resulting problem can be written (dropping
the exponents for simplicity):

1
min ||y — Lx|3 + &KL (m]x) + Allx]}: (3.18)
xEIRJr n
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Algorithm 7 MWE; algorithm (Janati et al., 2019)

Input: 11, ¢,7, A and cost matrix C. data (y(®))s(L®));.
Output: Solutions (x(*)) of MWE;
repeat
fors =1to S do
Update x(*)* with proximal coordinate descent to solve (3.18).
Update x(*)~ with proximal coordinate descent to solve (3.18).

end for
Update left marginals m()+, ..., m$)* and the barycenter #t with Sinkhorn’s algorithm.
Update left marginals m~ ..., m®)~ and the barycenter ¥~ with Sinkhorn’s algorithm.

until convergence

where m %' 71. In addition to the data fidelity and sparsity terms, the group prior is individually applied
to each subject through the KL term. The individual source estimates are pushed towards the marginals
of the transport plan linking them to the barycenter x. The following proposition shows that problem
(3.18) can be solved using proximal coordinate descent (Richtarik and Takac, 2014).

Proposition 30 Problem (3.18) is equivalent to the non-negative reqularized regression problem with a separable
penalty g:
min iu —Lx||2+f [(x7) (3.19)
XG]Ri n y 2 b 8] i) s .

where gj : x € Ry +— —ajlog(x) +bx € Rwith a Lo Hmand b = A + £, Moreover, g; is convex and its

proximal operator is given by:
1
prox, (y)= 5 {—b +y+4/(b—y)?>+ 4a]} . (3.20)
PROOF. Proof from (Janati, Cuturi, and Gramfort, 2019). The definition of KL(m, x) = Zle m;(log(m;) —

log(x;)) + x; — m; along with the positivity constraint on x leads to the equivalent formulation (3.19). KL
and the /; norm are convex, thus g is convex. Its proximal operator is defined as:

.1
prox, (y) = argmin 3z~ + (2 (3.21)
z>
= argmin % |z —y|* — ajlog(z) + bz (3.22)
z>0

The first order optimality condition leads to a second order equation in z. Keeping the non-negative
solution ends the proof. n
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Remark 7 The — log penalty seems to act as a barrier and forbid the sources to be sparse. This is true when
a;j > 0, which is desired to promote similarity towards the barycenter. However, the individual entries of a are not
necessarily positive. In the event of a; = 0, g is equivalent to a non-negative {1 norm. Moreover, even when a; = 0,
the proximal operator (3.20) is still valid as it coincides with that of a non-negative lasso:

1
aj=0= proxgj(y) =5 [—b+y+|b—yl] (3.23)
= %max(y —b,0) (3.24)

The second update with respect to ((P®)*),, (P)~),, %%, %) can be cast as two UOT barycenter
problems, carried out using generalized Sinkhorn iterations (Chizat et al., 2018b) (a.k.a IBP algorithm).
Note that one does not need to compute the transport plans 77(*) since inferring every source estimate x
only requires the knowledge of the left marginal m = P1 which does not require storing P in memory.
Moreover, while coordinate descent iterations are linear in the number of sources p, optimal transport
iterations are linear in the number of subjects S and quadratic in the number of sources p. However,
the algorithm can be significantly sped up using (1) GPUs for optimal transport iterations; (2) removing
sparse sources from the computing of the OT barycenter; (3) warm-start within the inner alternating
operations of the convex subproblem MWE;. In all our experiments, we set the initial source estimates to
xt =x_=1/p.

2.2.2 Concomitant MWE;: adaptive noise level normalization

One of the drawbacks of MWE; is that the ¢; hyper-parameter A is common to all subjects. This implicitly
assumes that the level of noise is the same across subjects. Following the work of Ndiaye et al. (2017) and
Massias et al. (2018) on the smoothed concomitant Lasso, we propose to extend MWE by inferring the
specific noise standard deviation ¢(*) along with the regression coefficient x(*) of each subject.

Concomitant estimation Inferring both the sources and their standard deviations in linear regression
models can be via maximization of a penalized maximum likelihood of a joint distribution. Even though
such a problem can be made convex through a change of variable (Stadler, Bithlmann, and Geer, 2010), it
does not fit within the usual “smooth + proximable” framework. Following the seminal work of Huber
(1981) on robust estimation, Owen (2007) proposed a concomitant problem for the Lasso problem with
the constraint ¢ > 0, also known as Scaled Lasso for which proximal coordinate descent methods are
still applicable. The positivity constraint is however problematic for primal dual methods that require
dividing by ¢. Ndiaye et al. (2017) proposed to overcome this issue by adding a “smoothing” constraint
so that minimization is performed over a closed set. Similarly, we define concomitant MWE; as:

0'(5)
2

5.1
min
xM,...x(5) R ;2710(5)
U(l),...,a(s)e[aO,Jroo}

Hy(S) _ L(S)X(S)H% + + QMWEl(x(l),_‘_,x(S)) , (3.25)
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where 0y is a pre-defined constant. In practice oy can be set as a small fraction of the initial estimate of the

.. . (s) . . .
standard deviation 0y = & ming % In our experiments we set « = 0.01, making sure that it does not

affect the solutions by checking that the estimated (%) are largely superior to oy.

Solving (3.25) Adding the estimation of the standard deviations ¢*) does not change the convexity of
the problem. Adding an update with respect to ¢ leads to the iteration:

o L 1Y -1,
NG

The only modification to the update of the sources x(*) is the change of the hyper-parameters y and A
which finds themselves being multiplied by o(*).

o N (3.26)

2.2.3 Concomitant MWE5: fighting entropic blur

Given our lengthy discussions over debiasing entropic OT in chapter 2, it would make sense to replace
UOT% with its debiased loss function ng for which we can compute barycenters via Sinkhorn’s algorithm.
This alternative would conceptually lead to less blurry barycenters. In practice however, minimizing with
respect to the sources x*) could not be done via proximal coordinate descent anymore. Instead, we opt
for substituting the ¢; penalty with the more sparsity enhancing penalty /5.

Non-convex separable penalties and re-weighted algorithms In the machine learning community,
using non-convex penalties as better proxy of the exact sparsity norm ¢y is not new. The particular case
of {y5 is known as adaptive Lasso or re-weighted Lasso (Candes, Wakin, and Boyd, 2008). As long as
the non-convex penalty is separable, Gasso, Rakotomamonjy, and Canu (2009) showed that the resulting
problem can be solved via multiple convex sub-problems. Let L : R¥ — R and g : Ry — R be a convex
and non-convex functions respectively. Assume for the sake of simplicity that g is differentiable. Then the

problem
p

min L(x) + Y _ g(|xj]) , (3.27)

xeRP =1

can be solved via the sequence of weighted Lasso problems starting with w = 1:

x1) — argmin L(x) + |[w® @ x||; (3.28)
xeRP
w](kﬂ) — g’(x](kﬂ)) for all j (3.29)

This iterative reweighting scheme can be be seen as a majorization-minimization procedure where g is
majorized by its local linear approximation which is then minimized as a convex surrogate function.
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Algorithm 8 Reweighted MWE 5 (Janati et al., 2020b)

Initialize weights w) =1fors=1...5

repeat
Solve MWE; (Algorithm 7) with the weighted #; norms ||w(®) ® x®)||;
w(s) =1 forall s,J

T, /\x}5>|

until convergence

Reweighted concomitant MWE Replacing /1 with 5 in our MWE estimator is motivated by several
factors:

1. Promote sparser estimates to fight back against the entropic blur induce by UOT

2. Its established de-biasing of the amplitudes of the sources and improved support identification in
the context of source localization (Strohmeier et al., 2016)

3. It can be solved as a sequence of MWE; sub-problems.

Formally, the concomitant MWE 5 problem reads:

5 (s)
1 o
: (5) _ 1.(5)x(5) 2 o) @ xS )
o min 52212”0(5) ly X3+ =+ Ouawes (Y, 1) (3.30)
0'(1> ’’’’’ U(S)E[U'[),+OO]
where: s
def .1 —— _
Oy (1, ... x18)) € /\||X(S)||0.5+V£2ﬁ<nn§2;UOT(X(S),x) : (3.31)

Sparsity
Spatial variance

Computing the update rule for ¢ : x — +/x leads to Algorithm 8. In practice however, when some
(s)

x; " = 0, the majorization step will cause an overflow error in the weights w. In practice, one can simply
filter out the corresponding null features or set w'¥ = — L \here 1 is a small value as proposed by
] 24/ I+

Gasso, Rakotomamonjy, and Canu (2009). We adopt this strategy and set 7 = 10° in all our experiments.

Hyperparameters of UOT The parameters defining the Wasserstein distance UOT are e (entropy reg-
ularization) and <y (marginal relaxation). Large values of ¢ accelerate the convergence of the Sinkhorn
algorithm but induce an undesired blurring of the source estimates. Very Low values however lead to
numerical instability. We set ¢ to 0.002 divided by the median of the ground metric C which provides a
good trade-off between computation speed and sharpness of the barycenter. With the same reasoning,
low values of y allow for a “free” transport, thus the barycenter converges towards a blurred uniform
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distribution. In chapter 2, the closed form for unbalanced OT between Gaussians indicates that oy should
scale as the distance between their means ||a — b||? for the transported mass not to vanish. Thus, y should
be set proportionally to the values of C. In all our experiments, we set ¥ = ||C||c.

3 Experiments

We compared all the multi-task regression models discussed so far on MEG source localization problems
for both simulations and real data. We believe the results we obtained are as important as how we
obtained them. Well documented software matters.

3.1 Software

Benchmarking sparse multi-task regression problems required implementing all the aforementioned
methods. For the sake of reproducibility, we decided to share our Python implementation of several
multi-task regression models for both general machine learning applications as well as EEG/MEG source
localization.

mutar: Multi-task regression in Python The MuTaR library follows the scikit-learn API and provides
solvers for the following models:

1. Independent Lasso

2. Independent Reweighted Lasso

3. Group Lasso

4. Dirty Models

5. Multi-level Lasso

6. (Concomitant) MWE, for g € {0.5,1}.

The MuTaR webpage provides several illustrating examples (Fig 3.5) and can be accessed via the link:

hichamjanati.github.io/mutar/
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Ground truth

Group Lasso Dirty Models Multi-Level Lasso

Features
Features
Features
Features
Features

30

Fig. 3.5. Example taken from MuTaR’s documentation displaying the supports of inverse
solutions with random Gaussian data.

groupmne: multi-subject EEG / MEG source localization MNE-Python is undoubtedly the reference for
EEG and MEG analysis in Python. Starting from raw MEG and EEG data, it provides users with simple
functions from computing the source space and the leadfield operator to solving the inverse problem with
5, 1, Ly 5 and several other priors. GroupMNE is a MNE-python derivative project that provides functions
to prepare the leadfields for muti-subject source localization and calls MuTaR to solve the inverse problem.
The groupMNE webpage is available at:

[ hichamjanati.github.io/groupmne/ ]

3.2 Results

To the best of our knowledge, only the Group Lasso model was previously used for multi-subject source
localization with EEG/MEG (Lim et al., 2017). The extent to which multi-task regression improves source
localization is thus still unknown. Is there a limiting number of subjects for which performance stops
improving ? Could subject variability degrade that performance ? Using simulated MEG data, we attempt
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® Subjectl ® Subject 3 ® Subject5

Subject 2 ® Subject4 ® Subject 6

Fig. 3.6. Example of a simulated source configuration with 5 activations for S = 6 subjects -

one activation per label. The 5 labels — highlighted within green borders — are taken from

the aparc.a2009s FreeSurfer Destrieux parcellation (Destrieux et al., 2010). Different radii

are used to distinguish overlapping sources. Here, subjects 1, 3 and 5 share the exact same
source locations.

to provide answers to these questions by first exploring “the best case scenario” for each model. Is
multi-task regression worth it ?

3.2.1 Simulations with semi-real data

By semi-real data we mean that we simulate MEG data y with real leadfield matrices L extracted from
the public Cam-CAN dataset (Taylor et al., 2017). We use the MRI scan of each subject to compute
a source space and its associated leadfield comprising 2562 sources per hemisphere (Gramfort et al.,
2013a). Keeping only MEG gradiometer channels, we have n = 204 observations per subject. To keep
the simulation settings simple, we restrict all leadfields to the left hemisphere. We thus have S = 32
leadfields with p = 2562. We simulate an inverse solution x° with 5 sources (5-sparse vector) by randomly
selecting one source per label (a.k.a. region of interest) among 5 pre-defined labels using the aparc.a2009s
parcellation of the Destrieux atlas (Destrieux et al., 2010). To model functional consistency, 50% of the
subjects share sources at the same locations, the remaining 50% have sources randomly generated in
the same labels (see Figure 3.6 for an example). Their amplitudes are taken uniformly between 20 and
30nAm. Their sign is taken at random with a Bernoulli distribution (0.5) for each label (all subjects share
the same polarity of currents in a given label). We simulate y using the real forward model of each subject
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with a covariance matrix oI,,. We set o so as to have an average signal-to-noise ratio across subjects equal

to 4 (SNRE yos5 | ILOXO)

Same Leadfield Different Leadfields

d

Concomitant MWEg 5

Concomitant MWE;,

MLL

Dirty

Group Lasso

$ 45

Lasso

Adaptive Lasso

4 S | )

o~

P 4 8 16 24 32 2 4 8 16 24 32
# subjects # subjects

Fig. 3.7. Performance of different models over 30 trials in terms of PR-AUC, EMD and

MSE. Each simulation trial uses a different source configuration (5 sources) and noise. The

leadfields were derived from the MRI scans of the Cam-CAN dataset. For the same leadfield
column, the shared leadfield across subjects is randomly picked for each run.

Performance evaluation We evaluate the performance of all models knowing the ground truth by
comparing the best estimates on a grid of hyperparameters in terms of three metrics: the mean squared
error (MSE) to quantify accuracy in amplitude estimation, area under the curve (AUC) of the precision-
recall curve (PR), and a generalized Earth mover distance (EMD) to assess supports estimation, as done
by Haufe et al. (2008). We use the PR-AUC computed between the absolute values of the coefficients
and the true supports. Similarly, the EMD is computed between normalized absolute values of sources.
Since C is expressed in centimeters, EMD can be seen as an expectation of the geodesic distance in
millimeters between the truth and the source estimates. For a better intuitive interpretation of the EMD,
we compute the EMD per source, i.e we divide it by 5. When increasing the number of subjects, the sets
of used leadfields are increasing (the list of leadfields is ordered). For the “same leadfields” condition, we
randomly pick a leadfield for all subjects for each run. We perform 30 different trials (with different true
activations and noise) and report the mean within a 95% confidence interval in Figure 3.7.
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Simulation results Various observations can be made. The Group Lasso (Lim et al., 2017) performs
poorly — even compared to independent Lasso — which is expected since simulated sources are not
perfectly overlapping for all subjects. This result is supported by theoretical evidence. As mentioned in
the introduction, for the simple case of 2 subjects, one can show that if the fraction of overlapping sources
is less than 2/3, Group Lasso performs worse than independent Lasso (Negahban and Wainwright,
2008). MWE,; however benefits from the presence of more subjects by leveraging spatial proximity. The
mean AUC increases from 0.4 (Lasso) to 0.8. The average error EMD distance is reduced from 6 mm
(Lasso) to nearly 2 mm. Finally, even if both MWE,; models show a similar AUC score, the proposed
reweighting allows MWEg 5 to outperform MWE; by a significant margin in terms of amplitude estimation
as quantified by MSE. Finally, by inducing more sparsity, the £y 5 norm of MWE 5 reduces the number
of false positives which are located far from the true sources, thereby reducing the EMD distance by
1 mm compared to MWE;. The case of Multi-level Lasso is more difficult to assess. When examining the
obtained solutions, we find that it most often than not has several false negatives i.e it promote solutions
that are too sparse, specially as the number of subjects increase. This is perhaps due to its non-convex
formulation: once a feature is 0, it is removed for all subjects. Further analysis of its initialization and
hyper-parameter tuning should be pursued. Finally, we can appreciate the improvement of multi-task
models when increasing the number subjects, especially when using different leadfield matrices. We
argue that this improvement is the consequence of the different folding patterns of the cortex across
subject. Indeed, these folding differences lead to different dipole orientations of the same source across
subjects, thereby increasing the chances of an accurate localization.

3.2.2 Experiments on MEG data

Datasets description We use two publicly available MEG datasets: DS117 (Wakeman and Henson, 2015)
and Cam-CAN (Taylor et al., 2017). DS117 provides MRI, MEG, EEG and fMRI data of 16 healthy subjects
to whom were presented images of famous, unfamiliar and scrambled faces. The fusiform face area
(FFA) which specializes in facial recognition activates around 170 ms after stimulus (Henson et al., 2011;
Kanwisher, McDermott, and Chun, 1997a). We pick the time point in the contrast response famous vs
scrambled with the peak response for each subject within the interval 150-200 ms after stimulus. Similarly,
Cam-CAN provides MEG, EEG and MRI data of around 650 healthy subjects with several types of tasks.
We select the youngest 32 subjects (aged between 18 years and 29 years) and use their MEG recordings
to study the auditory N100 response. We average the responses of 3 stimuli: 300Hz, 600Hz and 1200Hz
with a total of 60 trials. We pick the time point with the peak response within 80-120 ms after stimulus.
For both datasets, the leadfield operator of each subject was obtained from their T1 MRI scan using a
cortically constrained source space formed by about 2500 candidate dipoles per hemisphere.

Model selection For all lasso-type models, there exists Amax such that for A > A, the inverse solution

h
is 0 everywhere. For instance, with ¢; and /p5 we have Amax = % (Rakotomamonjy, Gasso, and

Salmon, 2019). This allows to set A in a relative scale between 0 and 1, making this choice less sensitive to
the data. In practice, one can pick a certain value in [0, 1] based on the number of active sources, which is

the heuristic used in the following experiments with real data. Even though the choice of Anax does not
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Fig. 3.8. Number of active sources for MWE models with A = 30%. Color encodes the
different models; line-style encodes the different datasets. The mean is reported across all
subjects. With MWEj 5, a similar phase transition occurs for both datasets after a certain

Kmax-

theoretically guarantee null source estimates with MWE 5, we observe experimentally that reweighting
and the OT regularizer promote even more sparsity with a lower A compared to Lasso models. We
use the same relative scaling to set A for MWE( 5. The OT regularization parameter u controls the level
of consistency across subjects. Figure 3.8 shows that for the reweighted MWEj 5, there exists a phase
transition at a certain value pmay, after which the source estimates lose all sparsity and cover the entire
cortical mantle uniformly. MWE; however shrinks the source estimates towards 0 but fails to produce
sparse solutions. In practice, based on the complexity of the topographic maps of the MEG data, we select
A and y that lead to — on average — a 2-sparse solution with Cam-CAN (A = 30%, ;1 = 3) and a 6-sparse
solution with DS117 (A = 20%, u = 0.5).

MWE for population imaging The standard approach to obtain the source estimates from a group of
subjects is to average the estimates obtained independently for each subject. Euclidean averaging however
induces undesired blurring and sparsity is lost even when the individual solutions are sparse. Figure 3.10
shows that MWE| 5 prevents that from happening. Moreover, the latent variable ¥ of MWE 5 is sharper
and more informative at a population level. To compare with single-subject solvers, we compute MCE
and reweighted MCE solutions by selecting independently for each subject a A such that the solution is
2-sparse (resp. 6-sparse) for Cam-CAN (resp. DS117). For dSPM, we use the default hyperparameter
value 1/SNR? with SNR = 3. For multi-subject models, we compare with the hierarchical Bayesian model
GALA (Kozunov and Ossadtchi, 2015). GALA is a Bayesian model with a multivariate Gaussian prior
with covariance matrices defined such that neighboring vertices are highly correlated. GALA has however
a certain degree of flexibility as it models both similar and specific types of activation across subjects. The
hyperparameters setting this similarity-specificity trade-off are inferred from the data, which is one of the
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Fig. 3.9. Support of source estimates of MWE 5 recovered in the auditory task of Cam-CAN

with 32 subjects (top) and the visual task of DS117 with 16 subjects (bottom). Each color

corresponds to a subject. Different radii are displayed for a better distinction of sources.

Increasing p with y < pimax promotes functional consistency across subjects. Top: Cam-CAN
dataset (A = 30%). Bottom: DS117 dataset (A = 20%).

main features of GALA. In our experiments, we used the default fixed covariance matrices in the code
kindly provided by the authors of GALA. The green borders highlight regions of interest. For Cam-CAN,
we use the neurosynth (Yarkoni, 2014) label corresponding to the auditory cortex thresholded at 15 and
projected on the surface of the temporal lobe. For DS117, we rely on the aparc a2009s segmentation to show
both the fusiform gyrus and the primary visual cortex V1. With Cam-CAN, the Euclidean average of the
obtained minimum Wasserstein estimates is focal, located right in the auditory cortex. However, The
average Lasso and dSPM estimates are dispersed around the auditory cortex with a substantial blurring
due to averaging. The visual task of DS117 appears to be the most challenging for several reasons which
explain the low amplitude sources. These reasons are discussed in detail at the end of this chapter.

Comparison with fMRI The EEG/MEG inverse problem has an infinite number of solutions. We
proposed to regularize it in two ways: (1) at a subject level by favoring focal sources; (2) at a population
level by promoting spatial proximity between activation foci. However, one could argue that MWE 5
promotes consistency at the expense of proper fitting of individual data. To address this concern we
compute the standardized fMRI Z-score of the conditions famous vs scrambled faces. We compare minimum
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Cam-CAN (Auditory) DS117 (Visual)

dSPM

MCE
(1)

04 02 0 02 04

GALA

MWE
0.5

-0.1 -0.05 0 0.05 041
T

Fig. 3.10. Average source estimates of different solvers. Left: Cam-CAN dataset. Right:
DS117 dataset. MWE reduces blurring by promoting functional consistency. No thresholding
was applied on the source estimates except for the dSPM Z-scores.
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(A) Peak activation of all subjects

Fig. 3.11. (A) Peak activation in each hemisphere of all subjects of the DS117 dataset (each dot

represents the peak of each subject). (B) Mean geodesic distance between the peak foci and

the vertices of the labels FFA and V1. For some subjects, MCE / reweighted MCE produce

6-sparse solutions entirely in the right hemisphere, to which the goedesic +oc is assigned.

Notice that MWE tends to be closer to the FFG than MCE. The glass brains of the remaining
subjects are displayed in the appendix.

current estimates (MCE or Lasso) (Uutela, Himaéldinen, and Somersalo, 1999), reweighted MCE, MWE 5
and fMRI by computing for each subject the mean geodesic distance between the mode of the neural
activation map of each subject and the vertices of the Fusiform-gyrus (FFG) as well as the primary visual
cortex (V1). Figure 3.11 (B) shows that the distribution of MWE geodesics is closer to that of fMRI z-maps.
By promoting functional similarity, MWE disregards the spurious activation that are far from the regions
of interest. Moreover, one can notice that some 6-sparse MCE models cancel out all sources in the left
hemisphere (subjects with a geodesic equal to +o0). Figure 3.11 (A) shows using glass-brains (Abraham
et al., 2014) the distribution of the peak activation of all subjects (each dot corresponds to a subject).
Multi-subject models (GALA and MWE) do not display the spurious activation in the temporal lobes
and the medial wall recovered by MCE and Reweighted MCE. While both GALA and MWE are more
consistent with fMRI, GALA promotes an almost identical solution for all subjects: functional consistency
is favored at the expense of individual signatures.
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4 Discussion

The M/EEG source imaging problem is a notoriously hard inverse problem, in particular when the
underlying neural activity is distributed over different coactive brain regions. To tackle this problem,
this work proposes to jointly localize sources for a population of subjects by casting the estimation as a
multi-task regression problem.

Embracing this formulation of multi-task regression, this work develops three key ideas. First it
proposes to use non-linear registration to obtain subject specific leadfield matrices that are spatially
aligned. Second it copes with the issue of inter-subject spatial variability of functional activations using
optimal transport. Finally, it makes use of non-convex sparsity priors (¢p5) and joint inference of source
estimates and noise variances 07 to obtain accurate source amplitudes.

The classic pipeline of a M/EEG group source imaging study is to perform source localization
independently across subjects using inverse solvers such as MNE, MCE, sLORETA, dSPM or MxNE.
The group-level analysis is then carried out as a post-processing step by averaging the source estimates
of each subject or by aggregating Z-scores in a multiple tests comparison (Takeda et al., 2019). This is
usually done thanks to a non-linear registration and by averaging of the estimates after mapping them to
the same brain template. In this work, a different approach based on multi-task regression is proposed.
The non-linear registration is used to compute leadfield matrices that are spatially aligned. A source
space formed by candidate dipoles are defined on the average brain geometry and this source space is
warped to individual anatomies for which Maxwell equations are solved numerically. By doing so, we
demonstrate improvements in terms of source localization accuracy. This is significant evidence that
anatomical variability can be more a blessing than a curse for group level M/EEG source imaging.

This statement is actually inline with the work of Larson, Maddox, and Lee (2014), who suggested
that anatomical differences between subjects can improve the accuracy of the averaged source estimates
by emphasizing common sources across subjects. Our simulations confirm this hypothesis not only
for averaged estimates but also for individual ones. Indeed, all the multi-task models studied in our
simulations improve with more subjects. One possible explanation of why anatomical differences help
is that anatomical variability combined with functional similarities lead to non-redundant information
across subjects. Take the example of a shared source across subjects. Different folding patterns of the
cortical mantle would lead to different (normal) orientations of the current dipole. Since the relative
position of the sensors is not changed, the leadfields — having different sensitivity maps — generate
measurements with more information, i.e higher rank. Quantitatively, our simulations with semi-real
data show that multi-subject inverse solvers improve the localization error by almost 4 mm per source.

By pooling together data from multiple subjects one can increase the number of measurements, hence
make the problem less ill-posed. Yet, this cannot be done without taking into consideration differences
between subjects, especially the spatial variability in activation patterns. To cope with this issue when
averaging brain patterns both in M/EEG and fMRI, Wasserstein distances have proven efficient (Gramfort,
Peyré, and Cuturi, 2015). Through this work, we explained how they could be included directly in the
inverse solver. Thanks to their ability to model spatial proximity between source estimates, the MWE
model allows to promote functional similarities across subjects using the geometry of the cortical mantle.
Fortunately, the computation of the Wasserstein barycenter does not lead to a computational bottleneck.
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In our experiments, 40% to 60% of time is spent on optimal transport versus proximal coordinate descent.
Thanks to careful optimization procedures based on Sinkhorn iterations and block coordinate descent
algorithms, the model proposed here runs in a few minutes on empirical M/EEG datasets.

Beyond the use of Wasserstein metrics to cope with spatial misalignments, the proposed MWE,; model
brings in two important ingredients from the statistics literature employing sparsity promoting regu-
larizations: concomitant estimation and convex reweighted schemes. By using concomitant estimation,
the MWE,; model can cope with the different noise levels and signal-to-noise ratios for the different
subjects. This is particularly critical to have the number of hyperparameters of the model that is fixed
and does not scale with the number of subjects. In theory, for source imaging with a solver such as
dSPM or sLORETA, that is applied independently for all subjects, the regularization parameters could be
tuned for each dataset. The MWE, model has a list of regularization parameters that does not depend
on the number of subjects. Besides, results from Figures 4 and 5 demonstrate the benefit of MWE(5 vs.
MWE;. Employing a more aggressive sparsity promoting regularization improves in particular the source
amplitude estimation as shown by the MSE metric. Also, as demonstrated empirically in Figure 3.8, it
greatly simplifies the setting of the regularization parameter y as solutions become suddenly much less
sensitive to the choice of this parameter. Indeed, in practice one can set the sparsity hyperparameter A
based on the number of active sources. Meanwhile, the OT hyperparameter can be set as y = 3 fimax Where
Hmax is the smallest i for which the solutions are suddenly dense. Finally, note that other priors could be
used along with the optimal transport regularizer W. The same optimization strategy would apply as

s
7
For instance, one can define go(x) = x? to favor distributed sources over focal ones similarly to dSPM or
sLORETA.

From a more neuroscientific perspective, the model presented here has potentially interesting conse-
quences. Results on Cam-CAN demonstrate that the sources obtained with MWE 5 have a higher spatial
specificity. As seen in Figure 7, the inferred activation foci are well limited to primary auditory cortices
while solvers that are not based on a group-level multi-task regression model lead to spurious activations
next to secondary somatosensory cortices and on middle temporal gyrus. On DS117 dataset, the cognitive
task performed by the subjects is more advanced, complicating the discussion of the results in terms of
localization. Yet, the availability of the fMRI data allows for a quantification of the activation foci between
MEG and fMRI. While it is often repeated that fMRI and M/EEG sources are different, and thus brain
activation maps obtained by these different modalities should not necessarily match, Kujala et al. (2014)
provide evidence that fMRI correlates with source-localized MEG activity in many regions of the brain
specially with the high frequency components, suggesting that similarities between the two methods
should not be overlooked. Our results point in the same direction, demonstrating that the proposed
method reduces the gap between MEG source imaging and fMRI.

long as the penalty g is separable across sources and subjects, i.e it can be written as g(x) = Y, ; go(x
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5 Appendix
Proof of proposition 29.

Proposition 31 Let R def [L(l)Tb(l), ey L(S)Tb(s)] € R™° and define the maximum hyper-parameter values

def R [z def R © X e : : :
Hmax = == and Amax = —,=. Let X* = X* + X* be a solution of Dirty models (3.8). Then the following
holds:

c
>SS\ =X = (3.32)
d
A> =X =0 (3.33)
d c
A > Amaxand g > pmax < X =X"=0 . (3.34)

PROOF. Let’s denote the block diagonal matrix G e diag(L™M,..., L)) € R"*5P and the vertical

c 1 s d 1) (S)
stackings X’ o [>C<( ),...,;(( )] € RS and X' & [f( ,...,i ] € R%. The reverse shaping operation

X' € RPS — X € R*? is denoted by ¢. The resulting observed data can be reshaped as B’ Lpx =
c d
L'(X' +X') € R>". With these changes, problem (3.8) can be written:

c d c d
IL' (X +X') = B[1> + p[| X[|21 + AlX[[11 (3.35)

. 1
min € R — |
c d 27’1

XX

The optimality condition for problem (3.8) reads:

c d c

06 Tp(LT(LX +UX —B)) + pidg, (X°) (3.36)
1 1T 1 Ik / d* / d*

0e E(P(L (L X*+L'X"—B )) + )\agu(x ) . (3.37)

c c d d
Therefore, there exist Z € 9y, (X*) and Z € 9;,, (X*) such that:

1 1T (1 Ik /d* / <

0= (L' (X" +L'X* ~B)) +4Z , (3.38)
1 1T (1 Ik /d* / d

0="¢(L' (X" +L'X* ~B)) +AZ . (3.39)

Thus: ]
C
HZ = M\Z . (3.40)
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The sub-differentials of ¢5; and ¢1; are given by:
N X £0
A, (X)j = ¢ Xl ! (3.41)
{zeRS, |z, <1} if X;=0
: (k)y s (s)
sign(X:”) if X:V #0
afu(x)](S) = / J . (s) (3.42)
{z€R, |z| <1} if X;" =0
Therefore, for any j and s:
Cc
1Zi]2 <1, (3.43)
d
1z <1 (3.44)
Thus, equation (3.40) leads to:
Cc
X; d
X; #0= p——=AZ;
[1Xi 12
d
= pu=A|Zj][2 <AS .
Hence: .
u>AS=X=0. (3.45)
Similarly:
d c d
X(s)j #0= yZ(s)]- = )\sign(X(s)j)
Cc
= Wz = 2
=>u>A
Hence: .
pu<A=X=0. (3.46)
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Finally:
c d 1
(X*,X*) = (0,0) & IZ € udy,, (0) N9y, (0) EL/TB’ +Z=0 (3.47)
& LB e < pand LB o < A (3.48)
S fmax < pand Apax < A . (3.49)
|

Glass brains for all subjects
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Fig. 3.12. Peak activation foci on each hemisphere of all subjects of the DS117 dataset.
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Chapter 4

Spatio-temporal Optimal transport

Spatio-temporal data consist of time series in which each time sample is multivariate and lives in a certain
coordinate system equipped with a natural distance. Such a coordinate system can correspond to 2D or 3D
positions in space, pixel positions etc. This setting is encountered in several machine learning problems.
Multi-target tracking for example, involves the prediction of the time indexed positions of several objects
or particles (Doucet et al., 2002). In brain imaging, magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI) yield measurements of neural activity in multiple positions and at
multiple time points (Gramfort et al., 2011). Quantifying spatio-temporal variability in brain activity can
allow to compare different clinical populations which is the main applied motivation of this chapter.

As discussed in Chapter 2, OT metrics such as the Wasserstein distance can capture spatial variations
between probability distributions. Given a transport cost function — commonly referred to as ground
metric — the Wasserstein distance computes the optimal transportation plan between two measures. Its
heavy computational cost can be significantly reduced by using entropy regularization (Cuturi, 2013).
Additionally, it is also possible to extend its definition to handle measures with different total mass using
the unbalanced OT formulation of Chizat et al. (2018b), which also relies on entropic regularization,
pending some minor modifications to Sinkhorn’s algorithm (Frogner et al., 2015; Chizat et al., 2018b). To
take into account the temporal dimension, one could define the ground metric as a combination of spatial
and temporal shifts similarly to the definition of TL? distances (Thorpe et al., 2017). This method however
ignores the chronological order of the data and requires a tuning parameter to settle the tradeoff between
spatial and temporal transport cost. This is one of the main features of Dynamic Time Warping (DTW).

Given a pairwise distance matrix between all time points of two time series of respective lengths m, n,
DTW computes the minimum-cost alignment between the time series (Sakoe and Chiba, 1978) while
preserving the chronological order of the data. Indeed, the DTW optimization problem is constrained on
alignments where no temporal back steps are allowed. It can be seen as an OT-like problem where the
transport plan must not respect the marginal constraints but instead is a binary matrix with at least one
non-zero entry per line and per column, and where the cumulated non-zero path is formed by —, |, ™\,
steps exclusively. However, the binary nature of this set makes the DTW loss non-differentiable which is a
major limitation when DTW is used as a loss function. To circumvent this issue, several authors introduced
smoothed versions of DTW (Saigo et al., 2004; Cuturi, 2011; Cuturi and Blondel, 2017). Instead of selecting
the minimum cost alignment, Global Alignment Kernels (GAK) (Saigo et al., 2004; Cuturi, 2011) compute
a weighted cost on the whole set of possible alignments. Similarly, the soft-minimum generalization



166 Chapter 4. Spatio-temporal Optimal transport

approach of Cuturi and Blondel (2017) — called soft-DTW — provides a similar framework to that of GAK
where gradients can easily be computed used a backpropagation of Bellman’s equation (Bellman, 1952).

We show that this soft version of DTW has another property: it increases quadratically with temporal
shifts. It can thus be considered a “transportation” loss for time series. For spatio-temporal data, it is only
natural to combine DTW with Optimal transport. To do so however, we need to make use of unbalanced
optimal transport to allow different time samples to have different total masses. As with balanced OT, we
propose a debiased version of Unbalanced OT and study its properties. We conclude this chapter with a
barycenter algorithm for spatio-temporal data.

This chapter is based on:

e H. Janati et al, Spatio-temporal alignments: optimal transport in space and time, AISTATS20.

e H. Janati et al, Optimal transport barycenters for spatio-temporal data, Submitted.

1 OTin time

1.1 Soft dynamic time warping

Consider two multivariate time series x € RPTl and y € RP2 with respective lengths T, T» and having
observations in R?. DTW is defined through some pairwise distance matrix A(x,y) € RT T2 between
all their time points such that the cost of a given alignment function ¢ : [1, T;] — [1,T2] is equal to
ZZ.T;l A(Xi,¥o(7)). To guarantee the preservation of the chronology of the data, ¢ must be increasing
and verify 0(1) = 1 and ¢(T;) = T. The resulting optimization problem is however better posed as
a minimization of Zgl Z].Ti 1 AijA(x;, yj) over the set of binary alignments A on the rectangular lattice
[1, T1] x [1, T2] where no temporal back steps are allowed. This amounts to considering binary matrices
with a non-zero path linking the corners of the lattice (1,1) (upper left) and (T1, Tz) (bottom right) using
—, 4, "\ steps exclusively (Sakoe and Chiba, 1978). Figure 4.1 displays a toy example of such an alignment.
Formally, DTW is defined as:

dtw(x,y;A) = min{(A,A(x,y)),A € A1, 1,} , (4.1)

where (.,.) denotes the Frobenius dot product. The binary nature of the constraint set in (4.1) makes
the DTW loss non-differentiable which is a major limitation when DTW is used as a loss function.
To circumvent this issue, several authors introduced regularized variants of DTW (Saigo et al., 2004;
Cuturi, 2011; Cuturi and Blondel, 2017). Instead of selecting the minimum cost alignment, Global
Alignment Kernels (GAK) for instance (Saigo et al., 2004; Cuturi, 2011) compute a weighted cost of all
possible alignments with a certain smoothing hyperparameter. Similarly, the soft-minimum generalization
approach of (Cuturi and Blondel, 2017) — called soft-DTW — provides a similar framework to that of GAK
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Fig. 4.1. Example of Dynamic Time Warping alignment between two time series of images
given a pairwise distance matrix.
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that includes DTW as a sub-case:
dtwg(x,y; A) = softming{ (A, A(x,y)), A € Ar, 1} , (4.2)

where the soft-minimum operator of a set .4 with parameter p > 0 is defined as:
oy | —Plog (Taeae ) ifp>0
softming(A) = { min A if f = 0 (4.3)

In particular, softmin is continuous at 0 so that when g — 0, dtwg approaches dtw.

Forward recursion Figure 4.1 illustrates two time series of images and their cost matrix A. The path
from (1, 1) to (5, 6) is an example of a feasible alignement in 45¢. When = 0, the soft-minimum is a
minimum and dtwy falls back to the classical DTW metric. Nevertheless, it can still be computed using
the dynamic program of Algorithm 9 with a soft-min instead of min operator.



168 Chapter 4. Spatio-temporal Optimal transport

Algorithm 9 BP recursion to compute dtwg (Cuturi and Blondel, 2017)

Input: data x, y soft-min parameter § and distance function ¢
Output: dtwg(x,y) = 1,1,
ro0 = 0;19; = rig = cofori € [T1],j € [T2]
fori =1to Ty do

forj=1to 1> do

ri,j = (S(Xi, y]) + SOftmil’llg(Ti,Lj,L 1"1’,1,]', 1’1',]',1)

end for

end for

Algorithmic differentiation When g > 0, differentiating (4.2) with respect to x yields:

-
Vxdtwg(x,y,A) = <8A(a);'Y)> Es(x,y) , (4.4)

(AA(xy))
B
‘ < A,MX,Y»A can be interpreted as a weighted average alignment.
ZATyTz ‘ ’
To compute Eg(x,y), (Cuturi and Blondel, 2017) proposed to back propagate the forward recursion of
Algorithm 9, starting from Er, 1, down to Eg. Indeed, the value of dtwy is stored in the last alignment
cost ry 1, Thus differentiating dtwy with respect to any r;; only involves the terms of r; 1, 7; ;1 and
ri—1,j-1- Differentiating the softmin operation of the forward pass yields the backward recursion of
Algorithm 10.

r
where Eg(x,y) &ef —a%tfﬁ (xy) = aut

Algorithm 10 Backward recursion to differentiate sdtw (Cuturi and Blondel, 2017).

Input: x,y, parameter p, distance J and intermediary alignment matrix R
Output: E = Eg4(x,y)
Tim+1 = Tn41,j = —00,1 € [[Tlﬂ /j € [[m]]
Cimi1 = Tny1,j = 0,1 € [n],j € [m]
Simi1 =0ny1;=0,i€ [n],j € [m]
(5n+1,m+1 =0, Cnt+1,m+1 = 1, Yn+1,m+1 = "um
fori =1tondo
forj =1tomdo
_ 1
a = exp g(riyrj —rij = Ois1)
b= exp g(rijs1 —rij = 6ijs1)
c = exp %(7’1'—&-1,]'—&-1 —7ij— 0it1,j+1)
eij = aei1j+ bejji1 + ceitj
end for
end for
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The cardinality of the set of feasible alignments A7, 1, plays a crucial role in our proofs. It is known
as the Delannoy number D(T; — 1, T, — 1) (Cuturi, 2011). For the sake of convenience, we consider the
shifted Delannoy sequence starting at n = m = 1 so that: card(Ay,n) = Dy, for all integers m,n > 1.
Formally, the Delannoy sequence can be defined recursively by:

Definition 4 (Delannoy sequence) The Delannoy number D, , corresponds to the number of paths from (1,1)
to (m,n) ina (m x n) lattice where only —, |, \, movements are allowed. It can also be defined with the recursion
Vm,n € IN*:

Dyy =Dy =1 (4.5)
Dm+1,n+1 = Dm,n+1 + Dm+1,n + Dm,n . (4-6)

1.2 New bounds of Delannoy numbers

In this section we provide several new inequalities bounding the growth of Delannoy numbers. These
inequalities are crucial in both proving that dtwy is sensitive to temporal shifts and in providing a practical
heuristic to set B depending on temporal sensitivity. First we start by studying the central Delannoy
numbers D, ,,.

Proposition 32 Let ¢ = 1+ /2 and o = 3Lc? — 5. The central (diagonal) Delannoy sequence D, def Dy,
verifies:

Dy 11 2 M
<c VYm >1 4.7
Dm - m —+ % - ( )
D1 2 M
> Vm >5 4.8
D, — ¢ m+o "= (4.8)

PROOF. In (Janati, Cuturi, and Gramfort, 2020b), we showed the weaker result ”’* L < ¢2. The same proof
can be adapted to obtain tighter bounds depending on m. The central (or dlagonal) Delannoy numbers
D,, verify the 2-stages recursion equation for any m > 2 (Stanley, 2011):

mDy,41 = (6m —3)Dyy — (m —1)Dyyq (4.9)

We are going to prove both inequalities by induction.
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Inequality (4.7) Form =1, wehave D, =3 <2+ %ﬁ = %CZ = %C2D1. Assume that (4.8) holds for
some m > 2. From (4.9) and the induction assumption:

(m+1)Dyyy2 = (6m + 3)Dyyp1 — mDyy (4.10)
m+ i
< (6m+3)Dpy1 — meZDmH (4.11)
1
< (m+3-"22)Dy (4.12)
(6c —1)m + 621
_ - 2 Dot (4.13)
1
= c*(m + 5)Dmi1 (4.14)

where we used the fact that 1/¢2 = 3+; 5= 3—2v2 =6— % hence 6¢2 — 1 = ¢*. Therefore:

Dm+2< 2m+%
Dm+1_ m+1 -

To conclude, it suffices to show that for all m > 5:

m+% < m—+1

ml S msd (4.15)
which is equivalent to:
(m+%)(m+%) < (m+1)>? (4.16)
@m2+2m+2§m2+2m+1 (4.17)
& Z <1 (4.18)
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Inequality (4.8) For m =5, we have with numerical evaluation g—g — C25+% > 0. Assume that (4.8) holds
for some m > 6. From (4.9) and the induction assumption:
(m ~+1)Dyyy2 = (6m + 3)Dyyp1 — mDyy (4.19)
m-—+o
m-+o
= (6m+3——5—)Dns1 (4.21)
6¢> —1)m +3c*> — o
_ e lm Do @22)
3¢ —¢
=c2(m+ 5 )Dyig1 (4.23)
where we used the fact that 1/¢2 = 3+; 5= 3—2v/2 =6—c?% hence 6¢2 — 1 = ¢*. Therefore:
Dy 2 > 2 + SC;_U
Dpt1 — m+1
To conclude, it suffices to show that for all m > 2:
32—
m 4+ CC4U> m+1 (424)
m+1 — m+o+1
which is equivalent to:
32 —¢ )
(m+ a Ym+o+1)> (m+1)
3 2 3 2
& CC4U+U—1)m+ CC4 Te+1)—1>0 (4.25)

Numerical evaluation shows that B’Ci—[" 4+ 0 —1 > 0.06 and that 3%—4’”(0 +1) — 1> —0.24. Thus (4.25) is
verified form > 5. R

The main purpose of proposition 32 is the following corollary which is crucial to derive a simple
heuristic to set the hyperparameter f when using dtwg in practice.

Corollary 4 Let T >m >1,c =1+ V2and o = % —5(= 0.56). The central Delannoy numbers verify:

1
D T\?
2(T—m) Zm > | — >1
c Dy = <m ) form >

¢/ (4.26)
szm)% < <;_D form>5
. -
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PROOF. Combining both inequalities of proposition 32 leads to:

7<7

1_[ k+c = Dy — 1__51 k_|_%

H k+3 _ or-mDn _Tqkto
kK~ T_k:m k

1—[ +%< (r-mDn T ko

—m - DT—k:m k
T-1 T-1

& exp Zlog(l—i—zk) < cAT=m) T<exp Zlog(l—f— )

k=m

-1 T-1 =z

Loy Sk;1°g<1+k) Y
B B
“(Erh-Erh) < EmleD==(Ei -}
RS

Finally, using the classical bounds of the Harmonic series (Chen and Qi, 2003):

1 "1 1
< - < .
10g(n)+’)/+2n+1_i221i_log( )~|—'y+2n 1 (4.27)
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it holds:
1= z 1 1
- Z) < — — —1) —
. k;mlog <1 + k) <log(T—1)+ 5T 5 log(m — 1) T
1 1
< _ _1) —
<log(T) + 5T 72 log(m —1) P—
T-1 1 2m—T)+1
< - - il
< log (m—1> T T —Den-1
<0
T-1
< - -
<log (m — 1)
and similarly:
1 z 1 1
- ) > _ _
2 L los (1+5) 2 108(T) + 575 ~log(m) = 5,7
T
>1 — ) -1
=18 3
Taking the exponential after substituting z by o (resp. 1) provides the upper (resp. lower) bound. n

We now turn to provide bounds on the off-diagonal Delannoy numbers which lead to the quadratic
lower bound of dtwg. The following proposition was established in (Janati, Cuturi, and Gramfort, 2020b).

Proposition 33 Let c = 1+ /2. Vm,i € IN*:

Dm,m+i < Cq)m,iDm,m+i—l
YiiDimmyi < Dyt mti

Where

—

By =1 — (DD
—IyG—
II'rm,i:1—|‘7(l )i

(4.28)
(4.29)

SKETCH OF PROOF. We prove both statements jointly with a double recurrence reasoning. The initializing

for i = 1is immediately obtained using the bounded growth proposition 32. To show the induction step,

we rely on the recursion equation (4.6). For the sake of clarity, the full proof is provided in the appendix.
By applying proposition 33 to all i € [1,k], the product of all the obtained inequalities leads to:
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Proposition 34 Letk € [1,T —1], forany m,m’, k € N* such thatm+m' < T —1and k < min(T —m, m’ —
1). Using the notations of proposition 33 for ® and ¥:

k -

m+k,mDm’—k,m’ i=1 m,i

whereP(k):ock(k—l)—i—pk—i—%witha:z%ﬁ >Oandp:3‘§# >0Wherea——‘[(—+¥) >0

m’ m-+m’
and p = 3‘?{4 > 0.

PROOF. Iterating the inequalities of proposition 33, we have on one hand with the first inequality:

Dy m S 1

> (4.31)
Dm,m+k ck Hi‘(:1 D, i

and on the other hand with the second inequality:

D
M>Cknwm+zk i=~¢C H‘Pm—i-k ii -
Dmm+k i=1

With the change of variable m’ = m + k and the symmetry of Delannoy numbers, we have:

Dml m!
Dm/ m' — k

k H‘I’m/ i - (4.32)

Taking the product of (4.31) and (4.32) leads to the first lower bound. Leta = 1 — 1, it also holds:

i=1

k ¥ i k
log (H 5 ) =) log(¥uw—ii) — log(®p,:) (4.33)
m,i i=1

Using the inequality 177 < log(1+ x) < x for x > —1 on both logarithms we have, on one hand:

log(¥ i) = log (1 + (i — 1))

F—i

a(z—l) a(i—1)

m —i+a(i—1) m'—1—q

a(i—1)
>0 (4.34)
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and on the other hand:
a(i—1)+1
— log(q)m,l) = — log (1 - ﬁ
a(i—1)+1 - a(i—1)+1

>

m+i—1 — m+m
a(i—1) 1
> — . 4.
— m+4+m' + cT (435
Finally, combining equations (4.34) and (4.35), the formula Zi-‘zl(i -1) = @ leads the quadratic
function P. [ |

1.3 dtwy increases quadratically with temporal shifts

Temporal shifts Let x and y be two time series. When studying the properties of dtwg, the dimension-
ality of the time series is irrelevant since it is compressed when computing the cost matrix A. Thus, to
study temporal shifts, we assume in this section that x and y are univariate and belong to R”. To properly
define temporal shifts, we introduce a few preliminary notions. We name the first (respectively, last) time
index where x fluctuates the onset (respectively, the offset) of x and denote it by on(x) (respectively, off(x)).
The fluctuation set of x is denoted by fluc(x) and corresponds to all time indices between the onset and the
offset. Formally:

on(x) = argmin{x;11 # X;} (4.36)
ie[1,T—1]

off(x) = arg max{x;+1 # X;} (4.37)
ie[1,T-1]

fluc(x) = {i € [1,T],on(x) <i < off(x)} (4.38)

For x and y to be temporally shifted with respect to each other, their values must agree both within and
outside their (different) fluctuation sets.

Definition 5 (Temporal k-shift) Let x and y be two time series in RT and k € [1,T — 1]. We say that y is
temporally k-shifted with respect to x and write y = x4, if and only if:

i<on(x),j <on(y) = x =y; (4.39)
i > off(x),j > off(y) = x; = y;
i € fluc(x),j € fluc(y),j—i=k=x=y; .
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Fig. 4.2. Example of 3 DTW alignment paths (A, B and C) between x and y = x, with a

temporal 50-shift. The heatmap of the distance matrix A shows (white) rectangles where all

paths A, B, C have an equal DTW cost of 0. These areas correspond to time durations where

x and x, are constant. It is noteworthy that when shifting one time series, among the areas

crossed by the alignments A, B, C, only the two white rectangles outside the fluctuation set
change in size.

An example of a temporal 50-shift is illustrated in Figure 4.2. The heatmap of the squared Euclidean cost
matrix A shows three rectangular white areas where all alignments A, B and C have the same cost of 0.
Since dtwy is defined as the minimum of all alignment costs, all these paths are equivalent. Temporal
k-shifts change the set of alignments with cost 0 but do not change the dtw, value. However, when
p > 0, dtwg computes a weighted sum of all possible paths, which is affected by temporal shifts by
including the number of equivalent paths. The cardinality of A, is known as the Delannoy number
D(m —1,n — 1)(Sulanke, 2003), as reported in (Cuturi, 2011). For the sake of convenience, we consider
the shifted Delannoy sequence starting at n = m = 1 so that: card (A, n) = Dy . If B is positive but small
enough, the alignements with 0 cost dominate the dtwg logsumexp. This leads to proposition 35.

Proposition 35 Let k € [1,T — 1], let m = on(x) and m" = T — off(x). Let p = min; ;{A(x,x);j|A(x,x);; >

0} If0 < B < 1z -

D D ! !
dtwpg(x,x,) — dtwg(x,x) > Blog <D :;Z(’mDm/,mk /) — 3% (4.40)
m+kmPm'—k,m
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PROOF. Given a pairwise distance matrix A(x,y), the soft-DTW dissimilarity is defined as dtwg(x,y) =
(AAxy))

—Blog ( Laca, .6 P ). The set of all possible costs can be written: C = {(A,A(x,y)), A € Arr}.

Dropping duplicates, let dy < dy, ..., < dg denote all unique values in C. And finally let 1; be the number

of alignments A such that (A, A(x,y)) = d;. We have:

_ (AAkxy)) G 4
dtwg(x,y) = —Blog | Y e ¢ = —PBlog nie b | . (4.41)
AEAT,T i=0
When y = x, we have dy = 0. Isolating the first element of the sum we get:
G n; _4
dtwg(x,x) = —Blog(ng) — plog | 1+ 21 n—oe F | < —Blog(ng) . (4.42)
=

Similarly, when y is temporally k-shifted with respect to x, we also have dy = 0. Adding an exponent’ on
terms that depend on the time series x;, we have:

dtwp (x,x44) = —plog(iy) — plog | 1+ e | > —plog(ny) —pY_ e ?
=170 i=1 "0
dl
> —Blog(mng) — 5DT,T€731 (4.43)

However, since the set of values taken by A(x, x) and A(x, x1;) are the same, we have d; = d; (but n; # n;
apriori) and the assumption on 8 provides:

H
<
'B - 10g(3TDT/T)

'B - 10g(3TDT T)
- 1
~ " = 3TDrr
.

_ P> _ .

= —PDrre? > —o (4.44)
Combining (4.42), (4.43) and (4.44) leads to:
dtwg(x, x4 ) — dtwg(x,x) > Blog <Z?> — 3% (4.45)
0

Now let’s develop the term 7. nj corresponds to the number of equivalent alignments with 0 cost which
0

can be given by D (x),on(y) 2D T—off(x), T—off(y), Where () is the number of 0 cost alignments within the cross
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product of the fluctuation sets. However, temporal shifts do not change () but only change the outermost

sets. For instance, considering the example of Figure 4.2 one can see that only rectangles outside the

fluctuation set are affected. Therefore, () cancels out in 7 and we get the desired bound. u
0

Combining proposition 35 with the lower bound in 34 leads to the main theoretical result of this
chapter:

Theorem 6 Letk € [1,T — 1], let m = on(x) and m" = T — off(x).
Let p = min; ;{A(x,x);;|A(x,x);; > 0}. If0 < B < m :

dtwg(x, x4,) — dtwp(x,x) > P(k) < Bak(k — 1) + Bok (4.46)

Whereazzfz‘/i(l—i- ! )>Oandp:3\/3§{4>0.

m U mm’

1.4 Setting B to control temporal sensitivity

While the previously considered time series covered a wide range of scenarios, the obtained result requires
p to be too small, thereby not providing any insight on how dtwg behaves when B increases. In the
following paragraph, we relax this assumption on g in order to find a tighter lower bound than the one
given in theorem 6. We consider the simplified setting of Dirac univariate time series x, y such that y is
ahead of x by k time steps (see Figure 4.1). Formally, let x,y € R” such that for some t* € [1,T] and
1<k<T-t~

t7ét*2>xt:0

t#t"+k=y; =0 (4.47)
Xpr = ypar = €R

This simplified setting allows for tighter bounds of Soft-DTW.

Proposition 36 Consider x and y as defined in (4.47). Let r = A(c,0), T > 6,c =1+ +2and o = zé—gz —5(&
0.56).Then:

dtwg(x,y) — dtwg(x,x) > —Blog (e‘P(k)(l —Ag) + AﬁH) (4.48)

where: Ag = e #, H = 92T and P is the quadratic bound defined in Proposition 34.

PROOF. First let’s upper bound dtwg(x,y). Notice that since x,y are Dirac time series, the elements
of the distance matrix A(x,y) are either equal to 0 or r. Therefore, the cost of any path A given by
(A, A(x,y)) can be written as qr for some g € IN. More specifically, g corresponds to the number of times
the path A meets the non-zero elements of A(x, y). Therefore, denoting the number of feasible alignments
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Fig. 4.3. Example of 3 DTW alignment paths (A, B and C) between x and y with a temporal

50-shift. The heatmap of the distance matrix A (here squared Euclidean) shows 2 red bars

where the distance is not equal to 0 except at their intersection. An alignment path has 0 cost
if and only if it does not cross the red lines.

corresponding to each g by M;(x,y) it holds:

(AAxy)) Ltk ar T+k r(g=1)

Y r 1
Y, e F =) My(xye F=Mxy) et Y M(xye (4.49)
A€ArT q=0 q=1
Therefore:
(A oy Tk
Y e P < Mo(x,y)+e 7Y Mi(xy)
A€eArr g=1

= Mo(x,y) + e F(Dr — Mo(x,y))
=(1- )\ﬁ)MQ(X,y) + AﬁDT
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and similarly:

_ (AA(xx))
Y e P > My(x,x)
AEAT,T

where My(x,y) = Dp_1p—144Dr—p 74+ and My(x,x) = Dp_1Dr_. Therefore, combining both
inequalities after introducing — log leads to:

Mo(x,y)(l — )\/5) + AﬁDT)
dtwg(x,yv) — dtwg(x,x) > —B1lo
() — ditwy(,x) = —log (2T 2
_ Dp—1,p 14k Dr—p, 71—k Dy
= ~Plog < Dy 1Dt (1=Ap) + 2 Dy 1D

On one hand applying Proposition 34 with m = t* —1and m’ = T — m — 1 provides:

Dp—1,p—14kDr—p, 71—k < o~ P(k)
<e
Dy_1Dr_p

And on the other, using Corollary 4 we can get the H upper bound. For t* > 1:

Dr <
D4 — T  2T-++1)

D5 < T - t* - 1 OCZ(T*t**E)) < T - t* v 1
Dy = 4 =\ 4 2(t=6)

Combining the two leads to:
Dr - 2 (T—t\" [tre
Dy_1D7_p« = Ds 4 T
T

Maximizing the upper bound with respect to t* leads to the maximizer t* = Substituting shows

h - 20+1-
that:
[ +* 20 \7 |/ 1
T—t)%=<|T
( ) _< 1—|—20’) 1+ 20

Finally, numerical evaluation gets rid of the constants:

- T

andift* —1 > 5:

_ Dr <H
Dy 1D
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Fig. 4.4. Lower bound P of dtwl; along with the knax value given by proposition 37.

If however t* < 5:

D * 2\ t* 2\ 0
T ”<C> g\/g<c3> ~ 4563 <92 < H

Dt*_lDT_t* T

Multiplying by 1 — Ag > 0, adding AgH and applying — log ends the proof B.

Effect of 5 When g is small enough, Ag goes to 0, thus the lower bound of Proposition 36 can be very
well approximated by the quadratic bound P(k). However when f increases, AgH increases which will
dominate the log argument for a sufficiently large k. Using the example of Figure 4.1, we compute both
sides of Equation (4.48) for 3 values of B. Figure 4.4 shows that dtwy saturates for a certain temporal shift
kmax beyond which it is no longer sensitive to temporal lags. This phase transition is also observed by the
lower bound (4.48). This provides a heuristic to set p based on a predefined kmax corresponding to the
largest temporal shift the user is willing to capture. Notice that such a point does not always exist (when
B is too small) as it may be larger than the time series length T (see top example, Figure 4.4).
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Proposition 37 Let T > 6,1 < kmax and 0 < 1 < 1. Using the same notations of Proposition 36, define the
lower bound function:

LBy : k= —Blog ("M (1— Ag) + AgH)

then:

B 2 sy iioger
max) +10g ((eT—1)H)
lim LBg(k) — LBg(kmax)
0 < ke 5 <7y (4.50)

PROOF. It is straightforward to see that klim LBg(k) = —pBlog(AgH). Therefore on one hand:
—400

kl_l)l’_{loo LBlg(k) - LBﬁ(kmax) < »
,B =

& log (e’P(k)(l —Ag) + AﬁH) —log(AgH) <17

@efp(kmax)(l —Ag) +AgH < e"AgH
e—P(kmax)

(677 — ]_)H —+ e*P(kmax)

On the other hand:

P 2 Pllnms) +1og (e —1VH)

- — ; > —P(kmax) - log((e” - 1)H)

e*P(kmax) S e*P(kmax)
(617 - ].)H - (8'7 — 1)H + efp(kmax)

Thus the upper bound in (4.50) holds. The lower bound follows from the positivity of e ") (1 — Ag) I

Proposition 37 provides a sufficient condition to set § such that the lower bound LB saturates for
a certain kmax. In the examples shown in Figure 4.4, B was set using this heuristic with 7 = 0.01 and
kmax € {500,100,80} respectively top to bottom. The dotted vertical lines highlight the choice of kmax
which is very close to the saturation point of dtwg. In practice, we use the same heuristic by setting
r = max;; A(x;, y;).

2 OT in space

To perform temporal matching across different time points of spatio-temporal data, we take advantage
of the debiased unbalanced entropic OT divergence S/, introduced in Chapter 2. Provided some minor

assumptions, this divergence is non-negative and its Fréchet means arg min Y% _, w; Sgy(ak, b) can be
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computed in parallel on GPUs. For the sake of clarity, we provide a brief reminder of the its definition
and main properties.

2.1 Unbalanced entropic OT

When data are endowed with geometrical properties, OT metrics such as the Wasserstein distance can
capture spatial variations between probability distributions. Given a transport cost function — commonly
referred to as ground metric — the Wasserstein distance computes the optimal transportation plan between
two measures. Its heavy computational cost can be significantly reduced by using entropy regularization
(Cuturi, 2013). Additionally, it is also possible to extend its definition to handle measures with different
total mass using the unbalanced OT formulation of Chizat et al. (2018b), which also relies on entropic
regularization, pending some minor modifications to Sinkhorn’s algorithm (Frogner et al., 2015). Formally,
Let a, B be two non-negative measures with a fixed support given by X = {x1,...,x,} C R?. They can

be identified with vectors of non-negative weights a,b € R".. Let C be the cost matrix filled with entries
def C

Cij = c(x;, x;) for some non-negative symmetric cost function ¢ : RY x RY — Ry such that K = e~ .
Denoting U the uniform non-negative measure in X2 assigning the weight 1 to each (x;, x;), we define:

U
UOT(x,p) = min_(7,C) + eKL(7t|tf) + 7KL(7rl[x) + YKL(7t " 1]y) (4.51)
&y TER P

UOTg,Y is however not positive. Moreover, its barycenters are biased towards smooth and blurred
measures which inevitably neglect the fine-grained aspects of the data. To reduce this effect, we propose
the following divergence:

S (a, B) £ UOT(w, B) — - (UOT(a, &) + UOT(B, B)) 452)
GV &Y ’ 2 &Y ’ %4 ’ ' '

2.2 Debiased spatial barycenters

The following proposition regroups all relevant properties of Ség shown in Chapter 2.

Proposition 38 Let aj,...,ak,a,b € ]R’i and wy, . .., wg a sequence of positive weights adding to 1. Assume
that K is positive semi-definite. Let Jb s Y& _, wy S[gfv(ak, b).

1. Sg,y is differentiable, non-negative and coercive but not convex.
2. If K is positive definite then ng(a,b) =0&a=b.

3. The Fréchet mean b = arg min, J (b) is well-defined and is equivalent to V.7 (b) = 0
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Cancelling the gradient of 7 is equivalent to solving the fixed point system in (uy ), (Vi ), ¢, b:

a \“ b \“ b\“
(i) v () - (k) - B

An iterating algorithm to solve the system (4.53) is provided below.

1

(f wk(KTuk)l_“’> h (4.53)

k=1

8=

Algorithm 11 Debiased unbalanced Sg,y barycenter.

def _C

Input: a;,...,ax € ]Ri, parameterse,y > 0, K = e ¢
Output: b, the UOTg,Y barycenter of (a, ..., ax)
Initializec =v; =--- =vg =1,,setw = 718
while Not converged do
fork =1to K do
uy = KL‘I;k
end for

1
1-w

1—
b=ce (Zszl wi (K uy) w)
fork = 1to Kdo

Vi = \KTu,
end for
b

C = Ke

end while

w

3 OT in space and time
3.1 The spatio-temporal loss and barycenters

Su

. . . . . def _C. o . ..
¢y 18 coercive with respect to each of its arguments, moreover, if K = e™ ¢ is positive semi-definite, then
SU

¢ is non-negative. Therefore, dtwg is well defined with ng as a cost function, a loss function we named
STA: Spatio-Temporal Alignment.

Definition 6 (STA) We define the STA loss as:
stag(x,y) = dtwg(x,y; Sgy) (4.54)

With SQ’W as a cost function, two time points x;, y; would be temporally aligned if they are close spatially,
formally, if ng(xi, y;) is small enough.
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Consider a dataset with N multivariate time series xy, . .., Xy assumed to have the same dimension p
and respective time lengths T3, ..., Tn. Let wy, ..., w, be a set of positive weights summing to one. The
Soft-DTW barycenter with cost Szgfv and fixed length T is defined as:

N
X =argmin Z w;stag(x;, X) (4.55)
x€RPT =1
N
= argmin )_ w;dtwg(x;, x; SZW) (4.56)
xeRPT i=1

(A8 (xx;)

N
=argmin— ) w;Blog | Y e (4.57)

x€RPT i=1 AE.AT,TI.

Alternating optimization Since Sgﬁr is differentiable, the most straightforward solution to (4.55) would
probably be to use a Quasi-Newton method. However, computing each gradient step would require
T YN | T; Sinkhorn runs. Instead, we use Fenchel duality to obtain an alternating optimization problem
that non only avoids the computation of the gradients of S ., but also spares us any form of step-size
backtracking. This is given by proposition 39.

Proposition 39 Denote the sets of binary matrices Ar, v with some arbitrary indexation A, = {A},..., A?T’"T}
and let Sk denote the probability simplex of RX. For any coercive cost function A, the Soft-DTW problem (4.55) is
equivalent to the alternating optimization problem:

Dr,r
min  min w0 A% A(x;,x)) + BH(6; 458
xeRPT HleSDT T IZ: Z‘i iV 44 ( i )) 5 ( l) ( )

BNESDTNT

PROOF. A standard result in convex optimization theory states that the Fenchel conjugate of entropy is
logsumexp. Formally, for x € RX:

K

(BH)*(x) Cl:efgré%§<x,9> BH(8) = Blog (Z é‘) (4.59)

Thus: p
— Blog <Z e_’;k) = min(—x,0) + BH(0). (4.60)
k=1 QESK
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Therefore, the barycenter loss (4.55) can be written:

N N (AAGxX))
mm wdtw X;,X) = min —w;Blo e B 4.61
al D
= L (AL A o (APTT A (X H(6; 4.62
min Yo, min (6, (A} A0, (AP0 A0} )) + BH(B) (462
DTk
— (B AX, A H(6; 4.
i Lo B 0l ) + ) (46
N Drr
= min  min Y (Y wff A}, A(x;,x)) +BH(6;) , (4.64)

xeRp T HIGSDTl,T i=1 k=1

GNGSDTN,T

where the last equality follows from the separability of the sum with respective to the 6, l
The major benefit of the dual formulation of Proposition (39) is the ability to compute Fréchet means
of A directly. This will be in particular crucial when we define A as S ., divergence, briefly revisited in

the following section. Sg,y Fréchet means can be computed using the Variant of Sinkhorn’s algorithm
studied in chapter 2. These Sinkhorn-type algorithms are known to be orders of magnitude faster
than gradient based methods (Cuturi and Peyré, 2018). While minimizing with respect to the 6; seems

computationally unfeasible due their large dimension, their update is actually not required to compute
DTk

the new x. Instead, one needs to update the matrices Z = 2 w;0F A¥ which are exactly given by the

gradients %(x’) (xi,x). Indeed, given that the loss is convex in 6;, for a fixed x, the optimal 6; verifies

the KKT conditions for some Lagrange multiplier A;:

{ <f}j,A<xi,x>> + Blog(6f) — A; =0

Yok =1
which leads to: .
(AT A(x;,x))
TP
) —— . (4.65)
Drr — Ai,A(xi,x)>
Lyt f
Thus: Dy 1 (kA0 x)) ‘ )
def & 1k Zk:le B Al adtWﬁ(Xi,X
Z;= ) wbiAf = D (AkA(xVX)>l - oA (xi%) (4.66)
k=1 2 TkT —— B

which can be computed using Algorithm 10. Notice that to update x computing the 6; is not necessary;, it
is sufficient to update the Z;. This leads to algorithm 12.
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Initialization It is important to keep in mind the loss (4.58) is not jointly convex in x and 6. Thus,
algorithm 12 is not guaranteed to converge to a global minimum. Nevertheless, in our experiments,
initializing x with a uniform distribution leads to meaningful barycenters with the desired spatio-temporal
properties.

Algorithm 12 Soft-DTW barycenter.

Input: x4, ...,xn, X0, weights wy, . .., wy, parameter 8
Output: solution of (4.58)
Initialize x = xo € R”'T, compute A(x;, x) foralli = 1..N
while not converged do
fori =1to N do
Update Z; with Algorithm 10
end for
fort =1to T do
x' = argmin__p, YN, ZtT;l w;Z!A(X, a)
end for
end while

3.2 Experiments
We perform several experiments on both synthetic and real data to answer two main questions:
1. Can stag discriminate between several classes with spatio-temporal differences ?

2. Is the stag barycenter robust to the spatio-temporal variability of the data ?

Discriminative power of stag  Brain imaging data recordings report the brain activity both in space and
time. Thanks to their high temporal resolution, Electroencephalography and magnetoencephalography
can capture response latencies in the order of a millisecond. Abnormal differences in latency, amplitude
and topography of brain signals are important biomarkers of several conditions of the central nervous
system such as multiple sclerosis (Whelan et al., 2010) or amblyopia (Sokol, 1983). We argue here that
stag can aggregate all these differences in a meaningful dissimilarity score. To illustrate this, we use
the average brain surface derived from MRI scans and provided by the FreeSurfer software (Fischl,
2012). We compute a triangulated mesh of 642 vertices on the left hemisphere and simulate 4 types
of signals as follows. We set T = 20 and select 2 activation time points t; = 5 and t, = 15. We also
select two brain regions in the visual cortex given by FreeSurfer’s segmentation known as V1 (primary
visual cortex) and MT (middle temporal visual area) which are defined on 17 and 8 vertices respectively.
Each generated time series peaks at t; or t», in a random vertex in V1 or MT with a random amplitude
between 1 and 3. For the signals to be more realistic, we apply a Gaussian filter along the temporal
and the spatial axes. Examples of the generated data are displayed in Figure 4.5. We generate N = 200
samples (50 per time point / brain region) and compute the pairwise dissimilarity matrices dtwg and
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t=26 t>8

MT

Fig. 4.5. Two examples of the simulated time series. (A) brain signal in V1 with a peak at
t = t1. (B) brain signal in MT with a peak at ¢ = ¢,. The borders of the brain regions V1 and
MT are highlighted in green.

stag with § = 0 and B = 0.1. Figure 4.6 shows the t-distributed Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008; Pedregosa et al., 2011) of the data. As expected, dtwg cannot capture
spatial variability regardless of f. With f = 0, stag separates the data according to the brain region
only. Only with positive  can stag identify all four groups. Computing the full stag dissimilarity matrix
performed %N (N +1) x T?> = 8040000 Sinkhorn loops between 642 dimensional inputs. The whole
experiment completed in 10 minutes on our DGX-1 station. Python code and data can be found in
https:/ /github.com/hichamjanati/spatio-temporal-alignements.

Averaging of real brain imaging data Studying the function of the various regions of the Human
brain is one of the primary goals of neuroimaging research. These studies usually involve a group
of healthy individuals (subjects) or patients who perform a series of tasks while having their neural
activity recorded from which active regions of the brain are localized. However, drawing conclusions
at a population level requires an aggregation function that combines the individual active sources of
each subject. While averaging may seem like a straightforward and simple solution, it does not take
into account the anatomical differences across subjects which lead to spatially blurred means. Moreover,
the brain responses of the different subjects are never synced in time, specially when working with
Electro-encephalogrphy (EEG) or Magneto-encephalography (MEG) data which have a high temporal
resolution of the order of 1 millisecond. We use public the EEG/MEG dataset DS117 (Wakeman and
Henson, 2015) and compute the spatio-temporal source configuration of 6 subjects who were shown
images of Human faces using MNE-Python (Gramfort et al., 2013c). Here the support of our measures .A
is taken to be the set of 642 vertices that define the cortical mesh of the brain. The OT ground metric C is
defined as the quadratic length of the shortest path on the triangulated mesh. We compute 3 different
averages: a Euclidean mean, a Szg,{y barycenter (independently across time) and a spatio-temporal STA
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Fig. 4.6. t-SNE visualization of the simulated brain signals in two different regions, at two
different time instants. With > 0, stag can discriminate between all four groups. Increasing
B leads to a higher temporal sensitivity.

barycenter with kmax = 20. As shown in Figure 4.7, the first burst in the neural response is a visually
evoked potential (known as P1) that arises around 100ms after the stimulus (Slotnick et al., 1999) in the
primary visual cortex (blue). Then, at around 170 ms, an evoked response that is specific to the display
of faces occurs in a small region known as the Fusiform Face Area (Green) (FFA) (Bentin et al., 1996;
Kanwisher, McDermott, and Chun, 1997b). The delimited regions of interest were selected using the
meta-analysis tool Neurosynth (Yarkoni, 2014).
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Euclidean mean
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Temporally static OT mean (UOT)
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Spatio-temporal mean (STA)
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Fig. 4.7. Barycenters of the spatio-temporal neural activity of 6 subjects taken from the DS117

dataset. The STA barycenter shows a more focused activation around the Fusiform Form

Face Area (green) than the other methods. Unlike the OT barycenter, STA shows a more
plausible time occurrence of the first evoked response around 100ms.

—— Euclidean mean ——— OT mean (SZV) —— Spatio-temporal mean (STA)
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Fig. 4.8. The ¢, norm (across space) of the barycenters displayed Figure 4.7 shows a clear
temporal sensitivity of STA as it identifies the two expected evoked responses to visual facial
stimulus.
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To further assess the temporal sensitivity of STA, we display in Figure 4.8 the ¢, norm across space
of the 3 barycenters of Figure 4.7. The two evoked responses are more pronounced when using the STA
barycenter.

Forecasting the motion of handwritten letters

Dataset We evaluate the performance of STA in a prediction task using a publicly available dataset of
handwritten letters where the position of a pen are tracked in time (Williams, M.Toussaint, and Storkey.,
2006). We subsample the data both spatially and temporally so as to keep 13 time points of (30x30)
images for each time series. Each image can thus be seen as a screenshot at a certain time during the
writing motion. To make the task a bit more challenging, we randomly shift each time series spatially
(resp. temporally) by 0 to 10 pixels in each direction (by keeping 5 to 13 time points evenly selected). The
dataset is composed of 20 samples of each one of the letters (“a”, “b”, “c”, “v”), thus the full shape of the
dataset is (100, 13, 30, 30).

Time
. . B T T . = 1 —>
Time seties sample ) L. L. , :
to forecast : Xj [0] Xj [tO] :
rspxp 1| || | ||
. PXp
X;eR :
X;[Uto] -------------------- Unknown time points X;[to + 1 : T
S S1R e Determine nearest neighbors in X [O : to]
X0t (= Compute all distances d(X;[0 : to], X;[0 : to]) for i # j

to get the 5 nearest neighbors of X : (le LT st)

X0 5 to] ' ' \
Forecasting using the barycenter of (Xj,,...,Xj;)
X [0 : to]
Complete X[0 : ¢o] by computing the barycenter over the unknown time points:
5

. 1
arg min —Zd(Xjk,[Xj[O:tg],Xj[to—l—l :TN))
Xj [f,g-i—l:T]ERI_tO’p'p k=1

Fig. 4.9. Sketch explaining the forecasting pipeline used with the handwritten letters experi-
ment.
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Forecasting We propose to use barycenters as a forecasting method. For each time series x in the dataset,
knowing only the first ty < 13 time points, we would like to predict the rest. First, based only on the
observed ty = 5 time points, we select the closest 5 neighbors of x in the data based on some loss function
d. We denote these nearest neighbors xj, ..., x5. Next, we predict the future of x by computing the
d-barycenter of (x;)r—1.5 while keeping the first ty observations of x fixed. The full pipeline is illustrated
in Figure 4.9. The predictions obtained for the example shown in Figure 4.9 are illustrated in Figure 4.10.
While /; based method clearly fail to identify neighbors in the same class (“a"), OT based methods do not.
Moreover, thanks to temporal variability, STA provides a more accurate prediction of the remaining time
points than OT alone.

1
Q
N
N

Truth

L2

A (OT)

Y YYD

Q9] |~
Y
A
A

STA

Fig. 4.10. Forecasts of a handwritten letter time series. The green time points are fixed and
considered known for all models. Blue observations are predicted. As expected L2 based
methods fail to identify neighbors in the same class.

Figure 4.11 shows a more quantitative comparison where we evaluate the accuracy of the predictions
for all samples in the dataset with the ¢, and the EMD (Earth mover distance) metrics averaged across the
8 predicted time points. To compute the EMD scores, we normalize all images so that their values add up
to 1 and define EMD with the Euclidean quadratic cost between pixel coordinates. On both metrics and
for all letters, STA outperforms the other loss functions.
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Fig. 4.11. Mean p?ediction scords computed on the unknown halves of the time series for

each letter. The EMD score is computed between each true image and its prediction after

normalization to the probability simplex. The ground metric is the Euclidean distance
between pixel locations, normalized so that EMD is within [0-1].

4 Appendix

Proposition 33 is our most technical contribution, its demonstration — published in (Janati, Cuturi, and
Gramfort, 2020b) — requires considerable care. Similarly to the bounded growth proposition 32, we would
like to bound the off-diagonal Delannoy numbers with their closest diagonal numbers with a bound
depending on k. We do so incrementally by comparing the off-diagonal number D,, ,,,+x with Dy, ;1 k1
and D11 y+k- The proposition states:

Proposition 40 (Proposition 33) Let c = 1+ /2. Vm, k € N*:

A(m, k) : Dm,m+k < Cq)m,kDm,m—i-k—l (4.67)
B(m, k) :  YuxDmmik < Dyytmrk (4.68)

_ (1-Ly(k-1)+1
{‘D —1—W

Where

¥, = 14 02D

It is noteworthy that since1 —1/c =2 — V2 > 0, we have for all m, k ®,,x <land Y, > 1. When both
Y and @ are constant and equal to 1, we get two constant bounds equal to c. The role of ® and Y is to

have tighter bounds when k increases. The demonstration is based on an induction reasoning on m. That
is, we would like to show for all m the statement: P(m) : (Vk > 1) A(m, k) and B(m, k). To assist the
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reader, we visualize the proof on Figure 4.12 which describes all the steps of the induction. For the sake of
clarity, we isolate the following technical Lemma before proving the proposition.

Lemma8 Letc =1+ v/2and m,k > 1. The sequences ® and Y verify the inequalities:
1
C‘Pm,k+1q>m,k+1 < (C + Tm,k + ¢m,k+1) < Cq)erl,klem,k (4-69)

PROOF. First, a notation to make calculations easier, leta = 1 — % Then we have:

k—1)+1
CI)m,k =1- a(m+k),1C
Y, =1+ a(k—1)

m

The middle term can be written using 2 + % =g,

1 1 a(k—1) ak+1
-+Y¥ o =24 - — £
c + m,k+ m,k+1 =+ c =+ m m+k

a(k—1) _ak-l—%
m m+k

= C +
Let’s start by proving the right inequality.
1. Right inequality: The right side can be written:

ak  a(k—1)+1 a(k—1) (a(k—1)+1)

D1 ik = o -

(4.70)

The inequality we want to prove is equivalent to, dropping the first c: For all m, k > 1:

m m+k

a(k—1) _ak+1 _ fa(k=1) ak-1)+§ a(k—1) (ak=1)+})]
=¢ m m+k m m—+k

@a(k—l)(m—kk)—m(ak—k%) <c [a(k—l)(m+k) —m <a(k—1)+}:>

—a(k—1) <a(k—1)—i—i>
@akm—l—akz—am—ak—mak—% gc[akm+uk2—ma—ak—akm+ma

SR YO N Y
Cc C ClJ

1
@a(c—ac—l)k2+ac(2a—1)k+m<a+c—1) +a—a*c>0
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However,c —ac—1=0and a + % —1 = 0. Thus, the left side above gives rise to an affine function
f in k defined as: f(k) = ac(2a — 1)k + a — a?c that verifies f(1) = ac(2a — 1) +a — a’>c = 0, and
since its slope ac(2a — 1) = a(2c — 3) = a(v/2—1) > 0, we have f(k) > 0, Vk > 1. Therefore,
since all inductions above are equivalent to each other, the right inequality is proven.

2. Left inequality: Similarly, the left side can be written:

ak ak+% ak (ak+%)

m+k m m-+k

C(Dm,k—&-l‘ym,k-i-l =c+c (4.71)

Again c cancels out, and the inequality is equivalent to, for all m, k > 1:

m m—l—k_c m

u(k—l)_ak—l—%> %_ak—l—% ak (ak + 1)
m m+k m m+k

<:>akm—|—ak2—am—ak—mak—r:zc[akm—i—akZ—akm—T—aZkz—aCk}

1
(:)a(c—ac—l)k2+m<a+c—1> >0

However, c —ac —1 = 0and a + 1 — 1 = 0. Thus, we indeed have the last inequality. Therefore,
since all inductions above are equivalent to each other, the left inequality is proven. u

Proof of proposition 33 We can now describe our induction proof. We would like to show for all m the
statement: P(m) : (Vk > 1) A(m, k) and B(m, k).

1+ @ > 1, thus we have A(1, k) Vk. On the other hand, one can easily show that D, 1 4 = 2k + 1
and that c¥1; = (c — 1)k+1 = 2k +1 < 2k + 1, since Dy 1 = 1, we have B(1,k) Vk.

0. intialization step For m = 1, on one hand we have forallk > 1: Dy = 1and c®;; = 1 + % =

1. induction step (on m) . Let m > 2 and assume A(m, k) and B(m, k) are true for all k > 1. We first start
by proving A(m + 1, k) for any k > 1.

1.1 A(m, k) and B(m, k) (Vk) = A(m +1,k) (Vk): We show this directly for any k > 1. Using the
recursive definition of Delannoy numbers (4.9) applied to left side of A(m + 1, k) we have:

Dm+1,m+k+1 = Dm+1,m+k + Dm,m+k+1 + Dm,erk . (472)

Applying A(m, k + 1) to the second term of the right side we get: D k11 < Py k1 Dimris
and applying B(m, k) to the third term, we get: Dy, ik < D'g‘}izl";*". Which sums up to:
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n <I>\I,}n,k+1) Dy 1,m+k- To conclude A(m + 1, k), all we need is:

Dytmiks1 < <1+ g -

1
m,k

1 Dy k11
1 s <cd 4.73
(1+ g+ ) <cPmis, @7

which follows directly from the right inequality of Lemma 8. We have thus proven A(m + 1,k)
for any arbitrary k > 1.

1.2 A(m, k), A(m +1,k), B(m, k) (Vk) = B(m + 1,k) (Vk): We prove the statement B(m + 1, k) (Vk)
via an induction reasoning on k.

1.2.0 initialization step (k =1) . For k = 1, we have to show that:

cYm+1,1Dm1,m+2 < Do

On one hand, we have ¥,,;1,1 = 1. On the other hand, using the recursion definition (4.6)

we get: D2 = Dyr1m+2 + Dimt2mt+1 + Dimt1. And by symmetry of Delannoy numbers:

Dy+2 = 2 Dyi1my2 + Diyt1. Now using the growth proposition 32 on D,,1, we have:

Dys1imy2 < C;T}leH. Since ¢ = 1 + /2, we have C;C}l = % which concludes B(m +1,1).

1.2.1 induction step (on k) :. Let k > 1 and assume B(m + 1, k) is true, let’s prove that B(m +
1,k+1)istrueaswell. B(m+1,k+1) canbe written: ¢¥ ;11 k+1Dm+1m+k+2 < Dms2mtk+2-
Again, using the recursion definition, we have:

D2 mik+2 = Dyt mtk+2 + Diymtk+1 + Dyt mak+1 + D2, msk+1 (4.74)

Applying the already proven A(m+1, k') (for all k’) to the second member of the right side,

Dn1+1,7n+k+2
C<I>m+1,k+1
B(m +1, k) to the third member, we get: Dy, 2 mik+1 > CYmt1kDimt1m+k+1. Which sums

. 1 ‘Pm+l,k
up t0: Dy mkr2 2 (1 + Pyt 1,k+1 + D1 k+1
all we need is:

we have: Dy, 11 yikt1 > . Similarly, applying the induction (on k) assumption

D11 m+k+2- To conclude B(m + 1,k +1),

1 Y1k
Vo < (1+ 4+ (4.75)
L Duiipr1 Pugipst

Which follows directly from the left inequality of Lemma 8, where m is substituted with
m + 1. Therefore, B(m + 1,k + 1) is true, ending the induction proof on k.

Hence, B(m + 1, k) holds for any k > 1, the induction on proof on m is complete. [ |
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Fig. 4.12. Visualization of the proof of proposition 33. The key steps are 1.1 and 1.2.1, where
given the top and left arrows, one must derive the right and bottom arrows.
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Chapter 5

Conclusion

As highlighted by the last two chapters, brain imaging was the leading motivation of this PhD. To design
the ultimate prior that combines the data of multiple subjects, we must exploit all facets of MEG data and
inverse problems. To that end, we involved tools from optimal transport theory, time series and sparse
optimization. As any good chef would recommend, inspecting the quality of our ingredients is a must.

Sparsity and MEG source localization Source localization is an inherently ill-posed inverse problem.
Using a sparse prior in cognitive experiments where few regions of the brain are expected to be active
is not only a mere “natural” idea. The adaptive (a.k.a re-weighted) Lasso can recover sparse sources
with no amplitude bias while explaining the variance of the data (Strohmeier, Haueisen, and Gramfort,
2014). Moreover, blind source separation techniques such as ICA can recover components with single
dipoles in a complete unsupervised way (i.e without knowledge of the leadfield matrix) (Makeig et al.,
1997; Delorme et al., 2012). From a biological perspective, anatomical evidence shows that MEG and EEG
are most sensitive to the pyramidal neurons which have a columnar organization within the superficial
layers of the cortex (Nunez and Srinivasan, 2006). Following the argument of sufficient reason of Poincaré
(1902), science should favor such simple sparse models as long as they fit the data. However, sparse
sources are not necessarily accurate solutions. Our contribution was to bind these subject-specific sparse
solutions together using optimal transport for a more spatially informed solver. As our experiments
suggest, combining the data of different subjects is significantly more informative for various multi-task
models and provides solutions that are similar to fMRI activation maps which do not require solving
any inverse problem. These encouraging preliminary results for multi-subject inverse problems must
be followed by work facilitating hyperparameter tuning for seeing these results being used in a realistic
clinical setting.

Time series and spatio-temporal data Exploiting the temporal dimension of MEG data was conducted
with the intention of defining a spatio-temporal MEG source localization prior. Dynamic time warping
(DTW) has long been applied to clinical data for pattern detection (Karamzadeh et al., 2013) and temporal
alignment (Talakoub et al., 2015). Our main contribution was to show that its smooth variant (soft-DTW) is
sensitive to temporal shifts and can be virtually defined with any alignment cost function. To some extent,
on one hand, we have illustrated the benefits of jointly solving the inverse problem for multiple subjects
using OT and sparsity priors. On the other hand, combining OT with soft-DTW captures both time and
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space and can be used to average spatio-temporal sources using Sinkhorn’s algorithm. Conceptually,
replacing OT with STA in the multi-task prior of chapter 3 would allow us to exploit the temporal,
spatial and multi-subject axes at once. What could go wrong ? Well, as a house of cards, everything
could crumble: the foundations must be reliable. First of all, as our proof demonstrates, the obtained
temporal sensitivity is more due to the combinatorial nature of the Delannoy sets than it is an inherent
property with which soft-DTW is designed. Thus, how temporal vs spatial differences are aggregated
in its final value requires further exploration. Moreover, the order of magnitude of its value — which is
not necessarily positive — depends a lot on the size of the time series and the time points where sources
are active. Such variability would only make model selection harder. In the context of machine learning
and signal processing however, we believe that STA can provide a useful tool to compare and average
spatio-temporal data with fast GPU friendly algorithms.

Optimal transport Unlike the other contributions mentioned above, the results presented in chapter
2 are relatively more mature. From theory to practice, we have analyzed entropic OT in its multiple
formulations. As a practitioner, working on fixed support brain anatomies guided our focus on fast
Sinkhorn iterations for measures defined on grids including debiasing techniques. As a mathematician,
our borderline obsession with a bias-free entropic OT and its barycenters led to the study of Gaussians
and to the discovery their closed forms. We hope that these contributions will pave the way for a deeper
understanding of entropic optimal transport and its algorithms both for neuroimaging and beyond.
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Appendix A

Introduction en Francais

Idéalement, la poursuite de toute activité scientifique commence par un sentiment d’émerveillement,
qui, par le biais d’un raisonnement et d'une recherche plus poussés, se transforme en un graphe de
connaissances composé de questions grossiéres et fines. Il peut sembler évident que la capacité d"une
personne a fournir des réponses et a étendre le graphe dépend fortement du degré d""intérét" de la
question. Mais ne serait-ce pas plutot 'inverse ? Un sujet ne devient "intéressant" qu’apreés avoir maitrisé
son contexte, ce qui conduit a un sentiment - peut-étre infondé - d’étre capable de fournir des réponses
a ses questions ouvertes. Absorber la quantité d’informations nécessaire pour atteindre cet état peut
prendre des jours, des mois, voire des années. Ainsi, d"un point de vue optimiste, tout peut étre intéressant
si on l’observe suffisamment longtemps. Pour le sujet qui nous occupe, nous espérons qu’apres avoir lu
cette introduction, "assez longtemps" ne sera pas trop long.

1 Pourquoi le transport optimal ?

Nous commengons par motiver le transport optimal (OT) sous deux angles différents. Premierement, en
illustrant son utilisation pratique en neuro-imagerie — qui sera le sujet principal du chapitre 3. Ensuite, en
montrant comment il s’inscrit dans le paysage statistique.

1.1 Point de vue pragmatique: données d'imagerie cérébrale

L’objectif de I'imagerie cérébrale fonctionnelle est d’étudier 1'activité cérébrale. Considérons un modéle
de la surface du cerveau donné par un maillage triangulé de p sommets. L'activité cérébrale peut étre
illustrée en pondérant chaque sommet par un nombre qui peut correspondre ou étre proportionnel a
I'intensité du courant électrique a I'emplacement de ce sommet.

1.1.1 Comparaison de schémas neuronaux

La comparaison de deux cartes d’activation différentes (ensembles de poids dans R/, 1) peut étre effectuée
a I'aide de n’importe quelle fonction de distance dans R”. Cependant, une telle comparaison ne prendra

ILes cartes d’activation peuvent étre des vecteurs signés, ce point sera abordé plus en détail au chapitre 3.
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pas en compte les disparités spatiales entre les cartes d’activation. En effet, la réduction de ces cartes
a des paires de vecteurs de poids ne tient pas compte de toutes les informations contenues dans la
structure triangulée de leur maille sous-jacente : I’ordre des sommets importe. La figure A.1 en présente
deux exemples. Sachant que 1’objectif de 'imagerie cérébrale est de mettre en évidence la fonction des
différentes régions du cerveau, la comparaison de la paire (a) doit tenir compte de la distance physique
entre les régions actives. Sous réserve de telles mesures, une distance entre cette paire de cartes pourrait
simplement correspondre a la géodésique entre leurs sommets avec une intensité maximale. Cette idée
n’est cependant pas facile a généraliser a des schémas neuronaux complexes (Figure A.1 (b)). Lever cette
géodésique pour comparer de telles cartes est précisément 1’objectif du transport optimal.

Kantorovich OT Cette généralisation nécessite de voir la paire de cartes d’intensité comme des distri-
butions de masse qui doivent étre transportées de I'une a I’autre de maniere & minimiser une fonction de
cotit, qui, dans notre cas, est donnée par la géodésique. Cela impose une premiére restriction importante
: la paire de vecteurs de poids doit avoir des entrées non négatives et s’additionner a la méme masse
totale égale a 1, c’est-a-dire qu’ils appartiennent au simplexe de probabilité A,. Formellement, si nous
numérotons les sommets de 1 a p et désignons x, par € Ay, alors, la formulation de Kantorovich de 1’'OT
pour la fonction de cofit c est donnée par :

OT(x,y) & min ic(i, jymij=(Cn), (A1)

ne]RiXpn]l:x,mLop]l:y ij

ot C € RP*? est la matrice avec I'entrée générale C;; = c(i, ). Le minimiseur 7 est un tableau conjoint
discret avec des marginaux égaux a x et y qui minimise le cotit de transport (C, 7r). Ce cotit a donc la
méme unité que C et peut étre considéré comme le déplacement moyen optimal entre la paire de cartes
d’activation.

Unbalanced OT La formulation (A.1) peut étre utile comme métrique de validation dans les simu-
lations ot les cartes d’activation sont préalablement projetées sur le simplexe. Cependant, I'OT ne
peut pas a priori étre utilisée pour comparer les cartes d’activation de deux individus différents ou de
deux points temporels différents : la différence dans les amplitudes globales des cartes d’activation
importe. La comparaison de vecteurs de poids avec des masses unbalanced peut se faire en relaxant les con-
traintes marginales de (A.1) et en les remplagant par des divergences laches qui pénalisent leur violation.
L'utilisation du Kullback-Leibler comme divergence conduit a unbalanced OT entre x, par € lRi (Liero,
Mielke, and Savaré, 2016) :

UOT(x,y) ¥ min (C, ) +9KL(l|x) + vKL(7 ' 1y) , (A2)

T[eR+po

ott v > 0 est un hyperparametre qui contrdle le déplacement de masse. Lorsque 7y est petit, les marginales
de 7m peuvent étre tres éloignées de x et de y, donc trés peu de masse est transportée. En pratique, il
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Fig. A.1. Exemples de paires de cartes d’activation cérébrale. S’il est facile et intuitif de
comparer la paire de cartes mono-atomiques (a) en calculant la géodésique entre leurs
emplacements, calculer une telle distance pour la paire (b) n’est pas aussi évident.

devrait étre fixé relativement aux valeurs de C. Aller au-dela de ||C||o conduit en pratique a des plans de
transport 7t presque indiscernables les uns des autres.

1.1.2 Moyennes de mesures neurales

Pour comprendre le fonctionnement du cerveau humain sain, les études de neuro-imagerie sont générale-
ment menées sur un grand groupe de sujets soumis au méme protocole expérimental. La synthese des
résultats de ces études nécessite une méthode d’agrégation des multiples cartes cérébrales. Habituelle-
ment, les anatomies cérébrales individuelles sont cartographiées sur un "modele cérébral” commun en
faisant correspondre les modéles de convolution cérébrale similaires (note : gyri et sillons) les uns aux
autres. Maintenant que les cartes résultantes sont définies sur la méme anatomie, toute moyenne de
Fréchet peut étre utilisée pour définir le cerveau fonctionnel moyen (Gramfort, Peyré, and Cuturi, 2015).

Etant donné K cartes d’activation xi, . .., Xx et une fonction de perte F, leur moyenne F-Fréchet est
définie par :

K
Y F(x,xi) (A.3)

k=1

1

arg min —

gx K

La facon la plus directe de calculer la moyenne des cartes cérébrales est sans aucun doute la moyenne
euclidienne, c’est-a-dire en prenant F(x,y) = ||x — y||>. Cependant, méme lors de la réalisation d"une
méme tache cognitive, la variabilité fonctionnelle entre les individus empéchera les différentes cartes
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Euclidean mean UOT mean

Fig. A.2. Barycentres euclidiens et UOT de 4 cartes d’activation simulées. L'UOT ne souffre
pas de 'artefact de flou lié a la moyenne.

d’activation de se superposer parfaitement : Des régions fonctionnellement identiques ne sont pas néces-
sairement spatialement identiques (Poline et al., 2010; Allena et al., 2012). L'établissement de la moyenne de
ces cartes conduit inévitablement & une moyenne floue. La figure A.2 compare les moyennes de Fréchet
(ou barycentres) obtenues avec la perte quadratique et avec UOT : I'exploitation de la métrie du sol donnée
par la géodésique est cruciale pour obtenir des moyennes significatives.

1.2 Point de vue du statisticien et du géometre

La "conscience géométrique" des méthodes d’OT discutées ci-dessus est possible parce que nous consid-
érons les cartes d’activation comme des distributions sur le maillage triangulé du cortex. Jusqu’a présent,
nous avons supposé que les sommets de ce maillage sont fixes pour toutes les cartes d’activation, ce qui
signifie qu’elles sont définies sur le méme support fixe. Cette hypothése permet d’utiliser des algorithmes
plus simples et plus rapides qui n’operent que sur les poids de ces mesures. Cependant, 1’étude théorique
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de I'OT nous oblige a abandonner cette hypotheése et a étudier I'OT comme un moyen de comparer des
mesures de probabilité avec des supports potentiellement différents.

1.2.1 f-Divergences

La comparaison de mesures de probabilité sur un espace X" est un élément constitutif des statistiques et
des modeles d’apprentissage automatique. Ce role est joué par plusieurs outils tels que la fonction de
Kullback-Leibler ou la variation totale. Ces fonctions appartiennent a la grande famille des divergences
de Csiszar introduites pour la premiere fois par Rényi (1961) et étudiées ensuite par Csiszar (1963). Elles
peuvent étre définies sur I’ensemble des mesures arbitraires non négatives M (X'). Les divergences de
Csiszdr sont également connues dans la littérature comme des divergences f, car elles sont définies par
une fonction entropie f.

Definition 7 (f-divergence) Soit f : R — Ry une fonction convexe et semi-continue inférieure, telle que

f(1) = 0. et f(RY) = +oo. Définissons la constante fe def im0 L]f). En adoptant la convention
+o00 x 0 = 0, la divergence de Csiszdr associée a f, communément appelée divergence f, est définie sur l'ensemble
des mesures non négatives M (X') comme :

Ds(a, p) & /X f (jg) dp + feo /X daP? (A.4)

oit a’- est la composante singuliere de la décomposition de Lebesgue a = g—g B+at.

Lorsque a admet une densité de Lebesgue par rapport a 8, la composante singuliere a est égale a 0.
Ainsi, le deuxiéme terme de (A.4) disparait. Le tableau A.1 présente quelques exemples de divergences
de Csiszér avec leurs fonctions d’entropie associées f. L'une des caractéristiques les plus attrayantes de
cette famille de divergences est leur formulation simple avec un cofit de calcul linéaire. Cependant, elles
sont limitées a une gamme tres restreinte d’applications en raison de deux limitations majeures :

1. La formulation de la décomposition de Lebesgue rompt leur continuité par rapport a un déplacement
de position d’un atome dans leur support.

Divergence f(p)
Kullback-Leibler plog(p) —p+1
Total variation p—1
Reverse Kullback-Leibler —log(p)
Pearson X2-divergence (p—1)?
Hellinger distance 2p—4,/p+2

Table A.1: Exemples de divergences de Csiszar pour différentes fonctions d’entropie.
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2. Méme dans le cas de mesures absolument continues, les densités de leurs entrées sont comparées
ponctuellement, négligeant ainsi toute géométrie sous-jacente de X'.

Vous trouverez d’autres exemples et propriétés des divergences de Csiszar dans (Liese and Vajda, 2006).

1.2.2 Normes MMD

Pour aller au-dela de cette comparaison "ponctuelle” des mesures, il faut prendre en compte une certaine
interaction croisée entre les mesures. Cette intuition est particulierement accessible lorsqu’on considére
une paire de mesures discrétes « = Y-/, a;0y, et B = 2}11 Bjdy,. Sileurs supports se chevauchent — ce qui
est nécessaire pour que les divergences f soient bien définies — KL(«, §) par exemple comparera les poids
sur une base univoque avant d’appliquer une somme. Faire la somme de toutes les paires possibles («;, ;)
serait non seulement une comparaison plus complete mais permettrait également d’inclure une certaine
notion de distance entre les positions (x;, ;). Cette inclusion est communément appelée "élévation de la
géométrie" de X'. Par exemple, I'inclusion des positions (x;, y;) dans ce calcul par le biais d"'un ensemble
de poids w;; = K(x;,y;) pour une certaine fonction k conduit a la formule : Y, ; w;j(a; — Bi)(aj — B;)-
Remarquez que cette formule n'impose aucune restriction sur (x;); et (y;);, elle reste donc bien définie
meéme si les supports de a et § sont disjoints. Cela conduit a la définition des normes maximum mean
discrepancy (MMD) (Gretton et al., 2006) ou des normes de Kernel :

Definition 8 (Normes MMD) Soit X’ un espace compact et K un noyau positif c’est-a-dire une fonction symétrique
continue sur X2 telle que :

* K(x,y) = h(x —y) pour une fonction h quelconque

o |||a]|2 = et [y K& = [, K(x,y)da(x)da(y) > 0 pour tout «
inM, (X

Pour tout a, p € M, (X), la MMD distance entre « et B peut étre définie comme :

MMDx («, ) = [la - BlI% (A5)

Contrairement aux divergences f qui nécessitent I’existence de la densité de Lebesgue g—g, les normes

MMD sont bien définies pour des mesures arbitraires dans M (X'). Cependant, méme si elles levent
formellement toute géométrie définie par leur noyau, dans les applications géométriques, elles ne
produisent pas de résultats satisfaisants. Par exemple, en reprenant I'exemple précédent de la moyenne
de données de neuro-imagerie définies sur un support anatomique fixe xj, . .., xy, la perte de Fréchet
MMD se lit pour des vecteurs de poids a,by,..., by dans]R’i et une matrice Kernel avec les entrées
Kl‘]' = K(Xl‘,X]') :

1y 1Y
)E R L la=bulk =5 1

n=1k

Mz

(a,Ka) + (b,,Kb,) —2(a,Kb,)) . (A.6)
1
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Tant que K est une matrice définie positive, L est une fonction convexe et coercitive. L’annulation
de son gradient conduit au barycentre a = Ly"N | b, qui correspond a la moyenne euclidienne usuelle
indépendamment du choix de K : la géométrie de l'espace sous-jacent est totalement ignorée. Mais
avant de porter des jugements hétifs et de condamner completement les MMD, peut-étre que le fait de
prendre des supports libres conduirait & un barycentre plus "géométriquement” conscient ? Lorsqu’elle est
restreinte aux mesures de Dirac, la MMD agit comme une perte sur l’espace sous-jacent tant que /1(0) = 0

MMDy(6y,6y) = K(x,x) + K(y,y) —2K(x,y) = —2K(x,y) . (A.7)

Cette perte peut méme étre une distance sur l'espace caractéristique X'. Par exemple, lorsque k est le
noyau de la distance énergétique : k(x,y) = —|/x — y||, la MMD correspond a la norme ¢, entre les
Diracs, pour lesquels le average dirac serait situé a leurs emplacements médians. Aussi encourageant que
cela puisse étre, la prise en compte de nuages de points avec de multiples atomes révele une limitation
majeure des MMD connue sous le nom de écran de champ électrique. De la méme maniere que 1'effet
sur une charge électrique est dominé par les interactions avec les particules voisines, le gradient MMD
d’une seule particule - lors de I'ajustement de la densité - disparait numériquement en dehors d"un rayon

p 4 4 - def . N
de courte portée. Formellement, étant donné une mesure cible 8 = & YN, 5, ajuster B correspond a

minimiser sur les positions d’une mesure « & LM, 5, la quantité MMDy(a(x1, ..., xum), B). Avec le
noyau k(x,y) = —2||x — y|| par exemple, en supposant qu’aucune des particules ne se chevauche, la
descente directe par rapport a une particule x; est donnée par :

— Vi MMDy(a, ) =2)  ———— HXz —sz Z !xz (A.8)

i#l % H

Sous l'influence de la premiére somme, les particules x; subissent une force répulsive qui s’oppose a la
force attractive de B. La figure A.3 illustre cet effet d’amortissement : les particules a 1’extréme gauche
sont dispersées autour de leur emplacement d’origine.

Puisque nous sommes principalement intéressés par la comparaison de mesures basées sur leur
forme globale, cette illustration montre que la géométrie de X" intervient "trop tard" dans le calcul des
MMD, agissant simplement comme une fonction de pondération. Au lieu de calculer les interactions tous
azimuts, cette géométrie sous-jacente pourrait peut-étre indiquer quelles particules interagissent avec
quelles ?

1.2.3 Transport optimal

Si a et B ont le méme nombre de particules de Dirac avec des poids uniformes, une "bonne" fonction de
perte d’ajustement de la densité L devrait faire correspondre chaque particule Jy, a sa destination final
dy,(;,» POUr une certaine carte d’affectation ¢ : [1, N] — [1, N]. Idéalement, les étapes de descente de
gradient effectuées par chaque particule devraient étre proportionnelles a la distance qu’elles doivent
parcourir. Par exemple, avec une taille d’étape fixe w, des gradients de la forme : x; — %(xi — yg(i))
conduiraient a la convergence en une seule itération de descente pour toutes les particules de a. Ces
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(@ t=0 (b)t= .25 (c) t= .50 (d)yt=1.00 (e) t=5.00

(graphiques)

Fig. A.3. Tiré de la documentation de KeOps (Charlier et al., 2020). Ajustement de la densité

du nuage de points de gauche a la distribution de droite en utilisant un flux de gradient avec

la distance énergétique MMD_ . Les particules a I'extréme gauche sont dispersées loin de

la distribution cible en raison de leurs interactions répulsives dominantes avec les particules

voisines. Les différentes couleurs servent uniquement au suivi visuel des trajectoires des
particules.

gradients “idéaux” peuvent étre obtenus avec la fonction de perte :

w N 2
E;HM—%U)H : (A9)

Dans un souci de normalisation, prenons w = 3; et définissons l'affectation ¢ comme la permutation
optimale avide dans I’ensemble des permutations de [1, N] a [1, N] qui minimise (??). La fonction de
perte obtenue correspond a la premiére distance de transport optimale proposée par Monge (1781) :

1 Y 2
OT(tx,ﬁ)—Ugg&)ﬁ;\!xz—yam!l : (A.10)

Un exemple simple et intuitif de o peut étre retrouvé en dimension 1 : il correspond & une opération de tri
sur la droite réelle du vecteur vy, ..., yn qui est illustré dans la Figure ??. La formulation de Monge de
I'OT peut donc étre vue comme une généralisation du tri aux espaces multidimensionnels.

En pratique toutefois, les mesures peuvent avoir des nombres d’atomes différents (statistiques non
paramétriques), avec des poids potentiellement non uniformes (cartes cérébrales fonctionnelles) :

N =

M-

Il
-

M
aiéxi ﬁ = Z b]‘(sy]. (A.]l)
j=1

Dans de tels contextes, une fonction d’affectation peut ne pas exister. Une formulation plus inclusive de
I’OT consiste a voir les mesures non pas comme des "particules" a assigner mais comme un "volume de
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Fig. A.4. OT sur la ligne réelle correspond a une affectation de tri o. Tiré de (Peyré and
Cuturi, 2018).

fluide" a transporter : une masse individuelle a; n’est pas simplement transférée a un endroit différent
mais est splittée et déplacée a travers pour remplir plusieurs endroits cibles. Ce plan de transport "non
déterministe" peut étre donné par une matrice 7 € RN*M telle que 7;,j correspond a la fraction de masse
transportée de 4,0y, a bjéy,. Ainsi, pour garantir un transport complet, 7t doit vérifier : 7l = a et 7'l =b.
Formellement, cette formulation généralisée d’OT correspond au probleme, introduit par Kantorovich
(1942) :

1Y
OT(«,f) = min 3 Y Ml =yl (A.12)
inIRI}r’XM i=1
pi
1=a,7"1=b

Puisque « et § sont des mesures de probabilité, I’ensemble de contraintes de (A.12) fait de 7r un tableau
conjoint avec les marginaux a et . Une généralisation directe aux mesures de probabilité génériques
avec une fonction de colit symétrique arbitraire C : X2 — R cherche un couplage 7 € P(X?) avec des
marginaux 71 = a et 71, = B :

OT(a,8) = min Cdr . A.13
() neP(x?) Jx2 ( )
m=a,m=0p
En particulier, la fonction de cotit ¢(x, y) = ||x — y||P définit la distance de Wasserstein d’ordre p :
WE(x,) = min / x —yl|Pdr(x,y) . Al4
fap = min [ lx—ylan(ny) (a1

T =a,m=p

Des exemples de plans de transport discrets et continus 7t sont illustrés dans la figure A.5. Remarquez que
les deux formulations des équations (A.10) et (A.12) coincident avec (A.13) lorsqu’elles sont restreintes a
leur domaine de définition.
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4

Fig. A.5. Illustration des plans de transport pour le cas continu (a gauche) et discret (a droite).
Tiré de (Genevay, 2019).

1.2.4 Complexité statistique et informatique

Contrairement aux MMD, les gradients OT ne s’estompent pas pour les longues distances. De plus, ils
"levent" la géométrie de X’ pour comparer les distributions en optimisant le "transport de masse" qui tient
compte de la forme globale des mesures. Cependant, ces propriétés attrayantes ont un prix qui n’est pas
abordable pour la plupart des statisticiens et des praticiens de ’apprentissage automatique.

Computational complexity (complexité informatique) Considérons les deux mesures discretes «, B
définies dans (A.11). Par souci de simplicité, supposons que N = M. En pratique, le nombre d’atomes
N peut correspondre au nombre de bins d"un histogramme, au nombre de sommets d’un maillage ou
au nombre de pixels d'une image. En ce qui concerne les applications d’apprentissage automatique, la
complexité en N est la plus importante. La distance MMD ||a — B||Z peut étre donnée par la forme fermée

|la — B|17 = (a,Ka) + (b,Kb) — 2(a, Kb) (A.15)

qui nécessite un nombre exact d’opérations donné par 2N? 4+ 3N + 3 = O(N?). Cependant, le calcul
de I’OT nécessite la résolution du probléme de programmation linéaire (A.12), ce qui peut étre réalisé a
l'aide de variantes de 1’algorithme du réseau simplex et présente donc une complexité inquiétante de
O(N3log(N)). La réduction de cette complexité par la régularisation est cruciale pour la plupart des
utilisations pratiques et fera I’objet de la section 2.
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Complexité statistique Considérons maintenant le cas général d"une paire de distributions de probabil-
ité a, B dansP(X) avec X C R¥. La comparaison de & et f peut étre effectuée a ’aide d’approximations

empiriques a, def %Z?:l Jx, et B def %Z?:l oy, ot Xy,..., X, et Yq,...,Y, sont des échantillons i. i.d.
suivant a, . Une question pratique naturelle est de savoir combien d’échantillons 7 sont nécessaires pour
approximer une fonction de perte L(«, ) en utilisant L(«y, B) ?

D’une part, Sriperumbudur et al. (2012) ont montré que pour les MMD, le taux de convergence est
indépendant de la dimension sous-jacente 4 :

E| MMDy (, B) — MMDy (g, B)| = O <n*%) . (A.16)

D’autre part, OT a un taux de catastrophe qui décroit exponentiellement lentement lorsque la dimension
augmente. Considérons OT avec la fonction de cott C(x,y) = |[x — y||P et d > 2. Dudley (1969) ont
montré que pour p = 1:

E|OT(aty, Bn) — OT(a, B)| = O (n—%) , (A.17)

qui a ensuite été généralisée par Fournier and Guillin (2015) pour p > 1. L'équation (A.17) semble
interdire l'utilisation de 'OT dans des contextes a haute dimension, car toute approximation empirique
nécessiterait un nombre exponentiel d’échantillons. Mais peut-étre peut-on trouver un meilleur estimateur
que le plug-in naif OT(a,, B,) ? La bonne nouvelle est que nous avons une réponse. La mauvaise nouvelle
est la réponse elle-méme : Niles-Weed and Rigollet (2019) a montré que pour tout estimateur oT (an, Bn)
de OT(a, B), il existe une paire de mesures a, 8 € P([0,1]%) telle que :

E|OT(ay, Bu) — OT(s, B)| > O ((nlog(n))—%) . (A.18)

Comme si la complexité numérique cubique ne suffisait pas, I'OT empirique est voué a I’échec en haute
dimension.

Mais assez de pessimisme : que pouvons-nous faire ? A certains égards, MMD et OT sont exactement
opposés : I'un est bon marché et exploitable en haute dimension mais ne convient pas aux applications
géométriques, I’autre est coliteux en termes de calcul et de statistique mais donne de bons résultats pour
ce type de taches. Pourrait-il y avoir un juste milieu ?

2 Comment le transport optimal ?

La littérature sur I'OT regorge de tentatives de réduction de la complexité de ’OT. Sans prétendre a
I'exhaustivité, ces tentatives peuvent étre classées en 3 écoles de pensée différentes :

1. Cherry-picking : restreindre 1’analyse a un sous-ensemble de mesures qui sont suffisamment
régulieres telles que les distributions elliptiques ou les mesures supportées sur des collecteurs de
faible dimension.
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2. Regularizing the measures : calcul des OT sur les projections des données. L'approche de Wasser-
stein en tranches (Bonneel et al., 2015) par exemple, consiste a agréger les valeurs d’OT calculées
sur des projections 1D des données.

3. Régularisation du plan de transport 7t en ajoutant une pénalité de Tikhonov qui rend le probleme
OT (A.13) strictement convexe et donc plus facile a résoudre numériquement.

Toutes nos contributions tournent autour de I’approche 3 : la formulation entropique du transport
optimal. Comme nous le verrons dans la section suivante, elle définit le pont tant attendu entre les normes
OT et MMD. De plus, elle s’adapte naturellement a la formulation déséquilibrée d’OT (A.2) donnée avec
les divergences marginales de KL. Tout d’abord, nous discutons de quelques exemples des approches 1 et
2.

2.1 Choix et régularisation des mesures

Bien que le calcul de I’OT ne soit pas un probléeme facile en haute dimension, il peut en fait étre calculé
en forme fermée pour les distributions elliptiquement contournées (voir remarque ci-dessous) avec le cotit
quadratique c(x,y) = ||x — y||>. Cette forme fermée est donc spécifique a la distance de 2-Wasserstein
(W) et est connue comme la métrique de Bures-Wasserstein.

2.1.1 Lamétrique de Bures-Wasserstein

Considérons deux gaussiennes multivariées « = N (a,A) et = N'(b,B) aveca,b € R?et A,B € S4.
Olkin and Pukelsheim (1982) et (Dowson and Landau, 1982) ont montré indépendamment que sz est

donné par :
W3(a, B) = ||ba —bl||> + B*(A,B) , (A.19)

ou:
B*(A,B) = Tr(A) + Tr(B) —2Tr((A%BA%)%) (A.20)

est la métrique de Bures sur le cone des matrices définies positives (Bures, 1969). Lorsque A et B sont
diagonales, la métrique de Bures coincide avec la distance de Hellinger. En effet, si A = diag(aa) et
B = diag(cy), alors B*(A, B) = ||\/7, — \/0}||3 ot /- sur les vecteurs est appliqué élément par élément.
Ainsi, pour les gaussiennes univariées, le JV, correspond a la distance euclidienne sur le plan (moyenne,
écart-type), illustrée dans la figure A.6.

Remark 8 La forme fermée (2?) va au-dela des mesures gaussiennes et peut étre étendue aux distributions ellip-
tiqgues (Gelbrich, 1990). Leur nom vient du fait qu’elles incluent des distributions dont la fonction de densité a
des ensembles de niveaux elliptiques. Formellement, elles peuvent étre caractérisées par un emplacement et des
parametres d’échelle m € RY et S € ST et peuvent étre transformées de 'une a I'autre par une transformation
linéaire x — Ax + b oit A est défini positif.

La formule de Bures-Wasserstein fournit non seulement une formule d’OT pour les distributions ellip-
tiques mais elle donne également une borne inférieure pour toutes les mesures de probabilité avec un
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»
>

(graphique)

Fig. A.6. Calculer 'OT (W) entre les gaussiennes univariées (a gauche) est équivalent a

calculer la distance euclidienne entre leurs mappings correspondants sur le plan (moyenne,

écart-type) (droite). La rangée du bas montre un ensemble de gaussiennes qui sont équidis-
tantes de la gaussienne noire dans le sens Wj.

moment du second ordre. Dowson and Landau (1982) ont montré que pour toute a, B € P,(R?) avec
moyenne et variance respectives a,b et A, B :

a—b|?+ B%A,B) < W3(a,B) (A.21)

Une simple limite supérieure peut étre dérivée en remarquant que le couplage indépendant mp = a ® fa
des marginaux « et . Par conséquent, par définition de min, le calcul de la perte OT avec 7y fournit la
limite supérieure :

W(a,B) < [ flx = ylPda(x)dB(y) (A22)
= [ IxlPdatx) + [ lvI2ap(y) =2 [ xyda(x)dB(y) (A23)
= Eu(X?) + Eg(X?) — 2B+ (X)Ep(X) (A.24)
= V(@) + V(B) + | Ea(X) — Eg(X) (A25)

= Tr(A) + Tr(B) + ||a — b|? (A.26)



214 Appendix A. Introduction en Francgais

2.1.2 Projections en basse dimension

Une autre approche de la malédiction de la dimensionnalité de 1'OT consiste a envisager des projections
sur des sous-espaces de faible dimension. Bien que les données de 1’apprentissage automatique puissent
étre de haute dimension, elles présentent le plus souvent une structure de basse dimension, inconnue a
priori. Au lieu de calculer OT(a, B) sur I'espace entier IRY, on peut espérer trouver le meilleur sous-espace
k-dimensionnel sur lequel les projections de « et B sont les plus différentes. Formellement, en désignant

z 4

la projection orthogonale de a sur le sous-ensemble ERY par Prsa, cette quantité s’écrit:

OTk(DC, ,3) = sup OT(PE#D(, PE#ﬁ) P (A27)

ECR4
dim(E)=k

qui peut étre approximé par l'estimateur empirique plug-in OTy(ay, Bn)-

Calcul numérique En pratique, un calcul exact de @(an, Bn) est potentiellement intraitable. Il peut
cependant étre approché en utilisant des projections aléatoires ou une relaxation convexe. La premiere a
conduit a la proposition de distances de Wasserstein tranchées (Rabin et al., 2011; Bonneel et al., 2015) qui
fixent k = 1 et font la moyenne des valeurs OT sur des lignes 1D, ce qui revient a plusieurs opérations de
tri. Paty and Cuturi (2019) ont proposé une relaxation convexe de (A.27) en faisant 1’observation clé que
la quantité minimisée de W3 peut s’écrire :

AL (A.28)

=~

Lo = ylPdr(xy) = Te(Ve) =
R4 xR I—1

ot Vi = [rayre(X —¥)(x —y) "dm(x, y) est une matrice du second ordre avec des valeurs propres triées
Ay > -+ > A4. La troncature de (A.28) aux k plus grandes valeurs propres conduit a un probleme
d’optimisation max-min concave-convexe tragable qui peut étre résolu a I'aide d’algorithmes de point de
selle.

Complexité de 1’échantillon En supposant que « et  sont égaux partout sauf dans un sous-espace a
k dimensions &/ C R avec k < d, Niles-Weed and Rigollet (2019) a montré que, pour cet estimateur
par projection, la limite de complexité d’échantillon (A.17) peut étre améliorée. Formellement, pour la
distance p-Wasserstein avec p € [1,2] :

E|OT(ay, fn) — OT(a, p)| = O (”i 1/ dlofn> , (A.29)

dlogn

o1 1~ ¥ est le cotit de I'estimation de OT sur I/ et —=

I’avance.

est le prix a payer pour ne pas connaitre I/ a
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2.2 Régulariser le plan de transport : OT entropique

Sauf en dimension 1 ou1 'OT peut étre résolu via un tri - tant que la fonction de cofit au sol c peut étre écrite
c(x,y) = h(x —y) avec une fonction convexe & (Santambrogio, 2015) —, troquer un peu d’optimalité pour la
vitesse devient une nécessité dans les applications d’apprentissage automatique. La "renaissance" de 1'OT
dans la recherche sur I'apprentissage automatique est principalement due a 1’avantage computationnel
qu’offre I'OT entropique. D’autres régularisations basées sur les normes £, ont également été étudiées
dans la littérature (Lorenz, Manns, and Meyer, 2019; Blondel, Seguy, and Rolet, 2018). Méme si elles
présentent de belles caractéristiques d’amélioration de la spartialité, elles n’annihilent pas la contrainte
de non-négativité du plan de transport comme 1’entropie, ce qui est crucial pour obtenir un algorithme
d’ascension double rapide et convivial pour les GPU.

2.21 L’algorithme de Sinkhorn: équilibré, déséquilibré et barycentres

Balanced OT Supposons que « def YN aidy, et B def M b;é,, soient des mesures discrétes dans RY

aveca € Ayetb € Ayyout A, Ll {x € RE, x! = 1}, connu sous le nom de simplex de probabilité.

Soit C € RP*? la matrice de cotit du terrain donnée par C;; = c(x;, y]-). Sur les matrices, exp et log sont
appliqués élément par élément et (.) désigne le produit scalaire de Frobenius. Cuturi (2013) ont proposé
d’ajouter une pénalité d’entropie fortement convexe :

OTe(w, B) & min  (C, 7) +e(m,log(m) —1) , (A.30)
meRF*7
nl=a,7' 1=b

oit ¢ > 0 est un hyperparametre fixe. Avec la carte linéaire A : 7 € RY? — (71, 7'1) € RE. x RY, le
probleme primaire (A.30) peut étre écrit :

OTe(a, B) = min R(71) + (ap) (A(7T)) , (A.31)

e
ou R(mr) = (C, ) + ¢(m,log(mr) — 1) et 1,(x) = 0sia = x et +o0 sinon.
L'opérateur dual de A pour le produit scalaire de Frobenius est donné par : A*(f,g) € RY. x RY. —

foge ]R’iX P, o1 f @ g désigne la matrice (f; + g;)ij- En calculant les conjugués de Fenchel R* et /*, la
dualité de Fenchel a (A.30) conduit au probleme dual équivalent :

OT.(1, ) = max ~ifyy)(~£,~8) ~ R (A'(£g))
. (A.32)

fog
— f, b)Y —elee —1,e7¢) ,
max(fa)+ (g b) —ele e e)

Considérons le changement de variable u = e? et v = e? et K = e . Le probléeme dual est une
maximisation d"une fonction concave dans f et g. L'exécution de la montée de gradient alternative par
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7T(0) - K
°
O
ﬂ-(l) a .
° « zrggclzanL(w/ﬂ(l)) 7T(2)
.............. ()
e

Ci={rcR>Prl=a} * C={recR?z"1=b}

C1NCy
(graphiques)

Fig. A.7. Illustration de l’algorithme de Sinkhorn comme procédure d’ajustement interactif
consistant en une séquence de projections KL qui résolvent la formulation équivalente (A.35).

blocs sur (A.32) avec le changement de variable susmentionné donne les résultats suivants :

a
— — A.
u<—Kv v<—KTu, (A.33)
et a 'optimalité, la relation primal-dual conduit au plan de transport :
7 = diag(u)K diag(v) (A.34)

Ces itérations sont garanties converger a un taux linéaire tant que K a des entrées positives (Peyré and
Cuturi, 2018). Strictement parlant, le taux de convergence dépend du nombre de conditionnement de
K : plus il est élevé, plus il est rapide. Ainsi, en pratique, prendre de faibles valeurs de ¢ ralentit la
convergence.

Sinkhorn comme projection KL Bien que l'intérét de la communauté de ’apprentissage automatique
pour les OT entropiques soit assez récent, la formulation (A.30) remonte au probleme du pont de
Schr’oedinger également connu sous le nom de modéles de maximisation de I'entropie (Wilson, 1969). De nos
jours, son attrait est principalement di aux itérations simples, parallélisables et compatibles avec les GPU
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(A.33). Plus connues sous le nom d’algorithme de Sinkhorn (Knopp and Sinkhorn, 1967), ces itérations
correspondent aux opérations de mise a I’échelle qui doivent étre appliquées a une matrice positive (au
niveau des entrées) pour la rendre doublement stochastique. De ce point de vue, elle correspond a une
séquence de "projections" de la matrice diag(u)K diag(v) qui lui font "épouser" les marginales a et b
et était précédemment connue sous le nom de "procédure itérative d’ajustement par projection” (IPFP).
Benamou et al. (2015) ont formalisé cette idée en remarquant que jusqu’a la constante supplémentaire
(eK, 1) = e} Kjj, le probleme (A.30) est équivalent a une projection “Bregman” avec la divergence KL :

OT¢(a,) = min eKL(7r|K) , (A.35)
nGIR’erV
pil=a,n 1=4
ot KL(A,B) def i Aijlog (%’j) + Bjj — Ajjpour A,B € R.P. A premiere vue, la formulation (A.35)

semble fournir une deuxiéme interprétation géométrique de 'OT entropique avec une compréhension
intuitive de l’algorithme de Sinkhorn qui est illustré dans la figure A.7. Un deuxieme coup d’ceil montre
qu’il a en fait une contribution numérique majeure : I'algorithme IPFP peut également étre utilisé pour
résoudre le fixed support OT, c’est-a-dire lorsque le support du barycentre a est connu a priori. Cela se

rencontre par exemple en infographie ot1 le support correspond aux emplacements des pixels d'une image.

BTN p ST N def
Formellement, on consideére une séquence de mesures de probabilité discretes ay = YI* | aké , pour
1

def . . S
k=1.Keta = 2?:1 aﬁ‘&xi avec un support fixe et connu x, ..., x, mais des poids inconnus ay, ..., ap.

C
Soit Cy la matrice avec des entrées Cy;; = c(xk, xj) et Ky = et L’optimisation est effectuée par rapport
aux poids seulement et se lit comme suit :

K K
min ) w OTe(ag, ) = min Y wKL(7me|Ky) | (A.36)

TT1,eee, 7T
ach, =1 1 K

oit (wy)x € Ak est un vecteur de poids fixe, C; = {m € REFF|nl = a;} et C' = {m € RF**¥|3a ¢
Ap, mi1 = a, Yk = 1...K}. La résolution de (A.36) peut étre effectuée via Projections itératives de
Bregman (IBP), ce qui revient a effectuer une minimisation alternative sur un ensemble de contraintes C a
la fois. Chaque étape peut étre résolue en forme fermée, ce qui conduit a des itérations de type Sinkhorn :

K

A T w
uy , a=|[(K;u)™, Vi .
Kyvi IE K]Iuk

(A.37)

Cadre unifié d’OT entropique Toute 1'élégance numérique de 1'OT entropique réside peut-étre dans
"unification suivante proposée par Chizat et al. (2018b). Etant donné un ensemble de poids non négatifs
(wy)x € Ax et une paire de fonctions scalaires convexes séparables F et F, opérant sur [Tk ; RE* et RK*?
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respectivement, on obtient :

min 8121(7‘[1, cey, ﬂK‘Kl, R ,KK) + F1(7T1]l, ey 7'[;]1) + Fz(?‘[ir]l, cey 7'[1—2]1). (A.38)
TeRPPE
KT 1 Ky def &k
avec KL(7ry,..., mx|K', ..., KY) = Y wiKL (7| Kg).

Cela étend la théorie de 'OT entropique au cadre "déséquilibré" ot le plan de transport 77 ne doit pas
s’adapter a certaines mesures d’entrée a, § exact. Ainsi, a et § peuvent étre des mesures non négatives
avec des masses différentes. Alors que I’OT entropique peut étre retrouvé avec K = 1 et Fj(x) = iy, et
F>(x) = 1x—p, le probleme du barycentre équilibré (A.36) correspond au choix :

F(ml,...,mgl) =Y imi— (A.39)
k=1

K
B(m{1,...,m¢1) = min Y

A.40
€Ay =1 ( )

T{—
T 1=

En utilisant les développements de la dualité de Fenchel-Rockafellars similaires a ceux de (A.32), Chizat
et al. (2018b) a montré qu’effectuer une ascension duale sur le probleme dual correspond aux itérations
alternées génériques :

uy, ..., ug < proxdivg (K(v,...,vK))

- (A41)
Vi,...,VK proxdisz(lC (uy,...,uxg))
out 'opérateur linéaire K et proxdiv sont définis par :
. K
K:RF — [[R (A.42)
k=1
(Xl, - ,XK) — (K1X1, ey KKXK), (A43)
1 _
proxdiv,(z) = L 18 min F(s) 4+ eKL(s|z) (A.44)
S

De méme, a I'optimalité, chaque plan de transport 71, est donné par diag (1) Ky diag(vy).

Tant que I'opérateur proxdiv peut étre calculé sous une forme fermée, la résolution des problemes
entropiques OT couvrant les centres équilibrés, déséquilibrés et barycentriques peut se faire via des
opérations proxdiv tres simples (A.41). Le tableau A.2 fournit I’expression de l'opérateur proxdiv de
certaines divergences F; et F,. Pour des raisons de simplicité, nous ne couvrons que les OT non équilibrés
avec la divergence de KL. Des exemples de barycentres utilisant F = yKL sont présentés dans la figure
A.8. Pour les faibles valeurs de 7, les contraintes marginales ne sont pas forcées, et donc trés peu de
transport se produit. Nous nous référons a (Chizat et al., 2018b) pour d’autres exemples tels que les OT
déséquilibrés avec un écart de variation totale ou une contrainte de plage.
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oT Divergence F»(x) proxdivg, (x)
Balancé ly—a 2
Ea
Non balancé vKL(x|a) (2)7+
Barycentre min,ea, Z‘f:l Ix,—a % with a* = ]_[,If:1 (xx )™k

X K 7\ ©
P K at\ 7 [ 2K o
Barycentre non balancé minaea, Y —; 7KL (x¢[a) (T with a* = < k=1 WXy >

Table A.2: Exemples de proxdiv (Chizat et al., 2018b)

= y=0.10
— y=0.25
y=0.50
y=0.75
y=1.00
y=12.00
= y=5.00
y— + « (balanced OT)

Fig. A.8. Barycentres non équilibrés des deux mesures indiquées en noir pour différentes
valeurs de 7 ol1 F; et F, sont définis comme les deux divergences de KL non équilibrées du
tableau A.2 respectivement.

L'algorithme de Sinkhorn est significativement plus rapide sur les grilles réguliéres En général, tant
que l'opérateur de proxdivision peut étre calculé sous une forme fermée, chaque itération de Sinkhorn a
une complexité de O(Kp?) ot K est le nombre fixe de mesures impliquées dans le probléeme. Cette com-
plexité peut toutefois étre réduite & O(K pH%) lorsqu’on travaille sur des grilles régulieres de dimension
d (Solomon et al., 2015) avec la perte quadratique. Considérons 1'exemple simple des images, c’est-a-dire
d = 2. Supposons pour simplifier que les images sont carrées avec le méme nombre de pixels égal a
p1 == pk = p = m> Soit z € R"”" une image avec son format vectoriel z’' € R". Soit 1 < I < m?
un pixel de coordonnées 2D | = (I, ly), x,y € [1,m] . Ainsi, la distance quadratique entre deux pixels /, k
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(graphiques)

Fig. A.9. Interpolations OT entropiques (barycentres équilibrés pondérés) des quatre images
encadrées pour différents ensembles de poids (wy). Chaque image appartient a8 RP*F avec
p = 400. Sur un GPU, les 21 barycentres ont été calculés en quelques secondes.

correspond a: ||l — k> = (Iy — kg)? + (I, — ky)? et :

(ka2 (ly—ky)?

m m m
K(z)y=) e & z= Ze_ e z) = Z Z e : z),,

=1 L= v (A.45)
Mo (ly—ky)

=) e © [Kzl,,
=1
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N . L =))? . . .
ouK’ e ]RTX”Z est la matrice du noyau smaller avec les entrées e~ < . Appliquer l'opérateur K revient

a effectuer des convolutions gaussiennes le long des lignes et des colonnes de z, ce qui a une complexité
de 2m3 = 2p% au lieu des p? opérations du produit matrice-vecteur habituel K(z'). La méme astuce de
séparabilité du noyau s’applique aux données multidimensionnelles pour autant que les mesures soient
définies sur des grilles régulieres et que le cotit soit quadratique. La figure A.9 illustre les barycentres de
quatre images (aux coins) de taille p = (400 x 400) pour différents poids d’interpolation. Sur un GPU,
tous les barycentres ont été calculés en quelques secondes.

2.2.2 Biaissement entropique et compromis MMD-OT

Au-dela des mesures discrétes La définition de 1'OT entropique donnée dans (A.30) est spécifique aux
mesures discretes puisqu’elle définit la fonction entropique par rapport a une mesure discrete uniforme
sur un ensemble fini. Sa généralisation la plus simple serait peut-étre celle du cas continu de Lebesgue.
Soit X C RY un espace compact et a, § € P(X, L) ot L désigne la mesure de Lebesgue. Soit ¢ une
fonction de cotlit symétrique Lipschitz sur X' x X. L'OT entropique continu peut étre défini comme :

dr
TE (a0, 8) &' mi / / log S . A4
OT7 (w, B) ne?gr(\)l(rlx) cdr+¢ [ log ar dr (A.46)

pii=a,m=0

Identifier «, B et 7T avec leurs densités de Lebesgue conduit a un probleme qui peut étre approximé via
des OT discrets calculés sur des histogrammes convergents vers ces densités. L'étude de OT* peut donc
éclairer le comportement de I'OT entropique discret, comme nous le verrons au chapitre ??.

Ces deux formulations ne couvrent cependant pas les cas ol les mesures ne sont ni both discretes,
ni both absolument continues. Ces limitations peuvent étre contournées en remarquant que tant que
7t posseéde des marginales a et B, son support sera inclus dans le support de la mesure produit « ® B.
Formellement, si A x B C X x X est un ensemble de Borel tel que a ® B(A x B) = 0 alors a(A)B(B) =
0 et donc soit a(A) = 0 soit B(B) = 0. Puisque A x B C AX et A X B C X x B, il est vrai que
(A x B) < min(w(AX), (X % B)) = min(7;1(A), 12(B)) = min(a(A), B(B)) = 0. Par conséquent, 7t
est absolument continue par rapport a « ® B. En utilisant la mesure du produit comme référence, on peut
donner une définition générique de 1'OT entropique :

OT% (a, B) & min / cdr+ ¢ / log (dtfgﬁ> dr . (A47)
m=a,m=p

MMD et interpolation OT Les avantages de cette formulation sont nombreux. Pour commencer, quelle
que soit la mesure de référence, lorsque ¢ — 400, OT; revient & une maximisation de 'entropie conduisant
aun lime_, 7 = & ® . Mais lorsqu’il s’agit de calculer la limite de la valeur OT, lim,_ 4 OT? (a, B)
est bien défini et est donné par [ cda ® dB, alors que lim;—, OT* (&, B) = —co. La premiere limite a
conduit plusieurs auteurs (Ramdas, Trillos, and Cuturi, 2017; Genevay, Peyre, and Cuturi, 2018; Feydy
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et al., 2019) a proposer la divergence de Sinkhorn :

Se(a, B) = OT¢ (a, B) — - (OT¢ (a, a) + OTZ (B, B)) (A.48)

1

2
pour laquelle cette limite devient lim;_, 0 S¢(a, B) = 1 [ —cd?(a — B). Ainsi, 'OT entropique interpole
entre I'OT et une distance MMD si —C est défini positif :

OT(w, B)Leftarrow Se(«, B) e %MMD_C(zx,lB) (A.49)

e—0

A lalumiere de ce résultat, S pourrait-il fournir un terrain d’entente en matiére de complexité d’échantillonnage
? Genevay et al. (2019) fournit une réponse positive avec la limite de complexité :

E| Sc(an, Bu) = Selw, B)] = O (2 (™8 + 1)et ), (A.50)

ou k dépend du diameétre de I’ensemble compact X’ et de c. Bien que la complexité en n soit la méme
que celle des MMD, toute utilisation pratique de (A.50) en haute dimension interdit les faibles valeurs
de e. Ainsi, S; ne doit pas étre considéré ou utilisé comme une approximation de I'OT, mais comme un
moyen terme bien établi entre les métriques OT et MMD. Mais quelles sont les propriétés qui rendent S,
approprié pour les applications d’apprentissage automatique ou d’analyse de forme ?

Propriétés de S; Un résultat bien établi est la différentiabilité de I'OT entropique avec des gradients

donnés par les variables duales optimales généralement appelées dans la théorie de 1'OT potentiels duaux.
def _cxy)

De plus, tant que X’ est un ensemble compact et que ¢ induit un noyau universel positif k(x,y) = e ¢

1. S, is non-negative : S;(«, f) > 0, Se(w, ) =0 a=p.
L’élément S, est convexe par rapport a 1'un de ses arguments.
L'énoncé (1) conduit a arg minﬁ Se(w, B) = a. On dit que S, est debiased.
L'élément S, mesure la convergence faible en 10i:S; (a,, &) - 0 < ay — a ,

ot la convergence faible est définie comme :
ty — o = /fdzxn - /fdzx Vf € C(X) (A51)

Qu’en est-il des OT déséquilibrés? De la méme maniere, I'OT entropique non équilibré peut étre défini
pour des mesures arbitraires non négatives M (X') comme :

& e .
UQT(zx,,B) Y /cdn + eKL(7t]|ja ® B) + yKL(m1||a) + v KL(72||B), (A.52)

TEM(X X X)

oty > 0 et KL(rr]la @ ) & [, log (145 dr.
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Pour obtenir des propriétés similaires pour les OT entropiques déséquilibrés, une premiere tentative
serait de considérer une divergence similaire :

(4,6) = UOT(w, B) — 5 (UOT(a, ) + UOT(, B)) - (A.53)

Cependant, méme avec 'hypothese de positivité du noyau k = e~/¢, la divergence (A.53) ne vérifie pas
la non-négativité ni la convexité qui sont violées lorsqu’on prend de grands écarts de masse entre les
mesures. Pour les compenser, on peut ajouter une pénalité quadratique sur cette différence de masse. La
divergence de Sinkhorn déséquilibrée proposée par Séjourné et al. (2019) se lit comme suit :

® 1 ® ® €
Seq(a, B) = UOT(a, B) — 5 (UOT(a,2) + UOT(B, ) + 5 (a(X) — B(X)) . (A.54)

Comme dans le cas équilibré, SS% est définie positivement et convexe par rapport a un si son argument.
De plus, elle métrique la convergence en loi et a une complexité d’échantillon qui s’échelonne avec une
dépendance similaire sur n et € a celle de la borne (A.50).

2.2.3 Les dilemmes du praticien

La formulation générique OT¢ est sans doute plus conforme aux principes d"un point de vue théorique
: elle compare la pénalité entropique de 7 par rapport a son maximum atteint lorsque 7 = a ® 8 et
conduit a la divergence débiaisée S, avec toutes ses propriétés vertueuses. Mais en pratique, lorsque les
mesures sont discrétes, OT, et OTS sont-ils équivalents ? Est-ce que OT;’ s’inscrit dans le cadre unifié
(A.38) d’Chizat et al. (2018b) ? ?

La mesure uniforme et la mesure du produit et leurs variations de Sinkhorn. Par souci de clarté,
reprenons les deux formulations dans le cas discret en utilisant une pénalité KL. Soit X' = x1,...,x, un
ensemble fini, a, € P(X). D'une part, jusqu’a la constante supplémentaire ¢(log(p) — 1), 'OT discret
discuté dans (A.30) est équivalent a :

OTY(a, p) & min (C, ) + eKL(r||U) , (A.55)

neRiXpnIL:a,nTIL:b
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ott U y2 est la mesure uniforme sur X2, en pondérant chaque x; avec %. Remarquez que dans le cas discret,
on peut toujours écrire pour un 7t faisable :

L(r|a ®B) = Enqlog( )

= Zn,] log <1/ ) Zm] 2log(p) +log(a;) +log(b;)) (A.56)

:KL(NIIU)—Zlog(P)—GOg( ),a) + (log(b), b)
= KL(7[|f) — KL(al|dx) — KL(b||U4x)

ot1 nous avons utilisé le fait que la somme de a et b est égale a 1. Ainsi, OTY et OTY sont équivalents
jusqu’aux entropies additives de a et § :

OT;’(w, B) = OT{ (a, p) — eKL(a|tdx) — eKL(B||tdx) (A.57)

La dépendance de cette constante vis-a-vis de « et § induit cependant quelques modifications mineures a
leur probleme dual et aux itérations de Sinkhorn. Le probleme dual équivalent de OTY se lit comme suit :

fmax (f, ) + (g b) - e(e/no8=C 1) (A.58)

avec des conditions d’optimalité données par :

£ a g b £ g A
ee — , ee = —— 7= diag(es )Kdiag(ee (A.59)

alors que la formulation OT{’ a un probléme dual légerement différent :

OT?(x,8) ¥  min  (C ) +eKL(nla®b)
neRY P r
mathdsl=a,7 " 1=b (A.60)

= max (f,a) + (g b) — e(e/™f¥8Cc 2 b)
f,gcRP

avec des conditions d’optimalité données par :

£ a g b .
e =g, €= _——, M= diag(e
Kee KTe:

EES

)K diag(e?) (A.61)

Alors que l'algorithme de Sinkhorn reste L?resque inchangg, 'apparition de « ® B dans le probleme dual
(A.60) révele une différence clé entre OT¢' et OT: . En tant que supremum de fonctions linéaires dans a
et b, OTY est conjointement convexe dans (a,b) alors que le produit a ® b dans le dual OTY interdit la
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oT Non-negative Convex JOInly  argmin OT(a,f) = p inkhorn for

convex barycenters
oT¥ X v v X v
oT® X v X X X
Se v v X v v (chapter 2).
voTY, X v v X v
UOTg, X v X X X
Se, v v X v X
s¢ v X X v v (chapter 2).

Table A.3: Propriétés de différentes divergences OT restrictives sur des mesures discrétes
C

. Lo o 14 sre def
avec une matrice noyau symétrique semi-définie positive K = ¢~ ¢

convexité conjointe de OT{ . En effet, Feydy et al., 2019 a montré que OT est concave sur la diagonale
c’est-a-dire que & — OT®(a, &) est concave, ce qui est pourtant utile pour prouver la convexité de S. De
plus, les probléemes de barycentre avec OT{ et S, ne peuvent pas étre écrits comme une projection de KL,
ainsi le cadre unifié de (Chizat et al., 2018b) est perdu.

Débarrassage des OT non équilibrés Des comparaisons similaires peuvent étre faites pour les OT non
équilibrés. Le débiaisage des OT non équilibrés a I'aide de la mesure du produit (SS%) conduit a des
fonctions de perte - bien que présentant des propriétés intéressantes - pour lesquelles les barycentres
ne peuvent pas tirer parti des algorithmes rapides compatibles avec les GPU offerts par la régularisa-
tion entropique. Pour les mesures discréetes sur supports fixes, nous pouvons conserver les propriétés
attrayantes de Sinkhorn en définissant UOT par rapport a la mesure uniforme U € P(X?) :

u
UOT(a, ) % inf /cdn + eKL(7|U) + 7 KL(mt1 ) + 7 KL(72|B), (A.62)
£y TEM(XXX)
et sa divergence abaissée :
u 1 U U
Sty (2, B) = UOT(a, p) — 5 (UOT(a, ) + UOT(B, B)) - (A.63)
&y &y &Y

Les propriétés de ces divergences pour les mesures discretes sont résumées dans le tableau A.3 et seront
examinées plus en détail dans le chapitre ??.

Instabilité numérique, scalabilité et implémentations Sinkhorn L'un des effets secondaires les plus
notoires de la régularisation entropique est peut-étre le flou induit du plan de transport optimal. Au fur et
a mesure que € augmente, 77, se rapproche du couplage indépendant « ® B qui a une entropie maximale et
est illustré dans la Figure A.10. Pour apprivoiser ce comportement et conserver les propriétés attrayantes
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N VN VN Y Y

A 4
/ 4 ' ' ’
€= 0.0005 £= 0.001 = 0.01 = 0.1 e=10.0
(graphiques)

Fig. A.10. Flou entropique du plan de transport a mesure que ¢ augmente.

de I'OT, certaines applications peuvent nécessiter de petites valeurs de e. Cependant, lorsque ¢ — 0, la

plupart des entrées du noyau K def ot disparaissent, ce qui entraine des erreurs numériques lors de la
division par Ku et Kv. Au prix d"une perte de parallélisation, diverses implémentations "stabilisées"
de Sinkhorn qui "absorbent" de grandes valeurs de u et v dans le domaine logarithmique ou qui sont
calculées entierement dans le domaine logarithmique a 1’aide de routines logsumexp sont discutées dans
(Schmitzer, 2016) avec d’autres procédures multi-échelles. Les praticiens intéressés peuvent trouver ces
variantes de Sinkhorn dans la bibliotheque Python POT (Flamary and Courty, 2017).

Les GPU ont été I'ingrédient magique qui a ramené I'OT computationnelle sous le radar des math-
ématiciens appliqués. Si les itérations de Sinkhorn peuvent étre simples et rapides sur les GPU, elles
nécessitent de stocker en mémoire la matrice des cofits de base C € RY 7, ce qui peut étre problématique
des que p atteint quelques milliers. Cette limite d’évolutivité peut étre surmontée en calculant c(x, y)
a la volée lors de I'application des routines logsumexp sur des données non-tensorisées. Cela nécessite
d’importantes et non triviales modifications CUDA de bas niveau, qui, heureusement pour tout le monde,
sont offertes sur un plateau d’argent dans la KeOps Python (Charlier et al., 2020) avec un package ultérieur
spécifique aux fonctions de perte géométrique nommé GeomLoss?(Feydy et al., 2019). Avec GeomLoss, le
calcul de I'OT entropique entre des millions d’échantillons n’est pas un fardeau. Pour un aper¢u complet
des outils d’analyse de forme en géométrie et des diverses implémentations de Sinkhorn, nous ne saurions
trop recommander le manuscrit de these de Jean Feydy (Feydy, 2020).

3 Plan et contributions

Apres avoir établi toutes les connaissances de base nécessaires, nous pouvons maintenant énoncer nos
contributions qui se situent a I'intersection du transport optimal, de I'imagerie cérébrale et des problémes
inverses. Notre objectif principal est d"utiliser I'OT pour construire un antécédent spatial P dans un cadre

Zhttp:/ /www.kernel-operations.io/ geomloss/


http://www.kernel-operations.io/geomloss/
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régularisé de la forme :
min L(x) + uP(x) , (A.64)
X

ot L est un terme de fidélité des données et y > 0 un hyperparametre fixe.

La minimisation des pertes entropiques d’OT induit cependant un biais dans le minimiseur appelé
dans la littérature sur I’OT biais entropique.

Il peut étre défini comme le cas simple du barycentre a 1 mesure : argmin, OT¢(a, ) # B. L'une
des vertus de S, est 'absence d’un tel biais, au prix de la perte de 1’algorithme de Sinkhorn pour les
barycentres et la convexité conjointe. Du point de vue pratique du probléeme (A.64), devons-nous tenter
de débiaiser OT en premier ou utiliser le cadre unifié standard de Chizat et contrer le flou de I’entropie
avec des pénalités supplémentaires ?

Chapitre 2 : Transport optimal entropique Ce chapitre comporte deux contributions majeures :

1. Transport entropique optimal pour les gaussiens. Avant de fournir une réponse pratique a la question
susmentionnée, il est crucial de comprendre ce qu’est exactement le biais entropique. Le faire pour
des mesures arbitraires n’est pas une tache facile, nous nous concentrons donc sur les gaussiennes
multivariées. Pour ce faire, il faut généraliser les résultats de convexité et de différentiabilité de 'OT
entropique aux mesures a supports non compacts. Nous découvrons une forme fermée de 1'OT en-
tropique similaire a la métrique de Wasserstein-Bures. Cette forme fermée peut étre généralisée aux
Unbalanced gaussiennes, c’est-a-dire des gaussiennes non normalisées avec une masse arbitraire. Ces
formes fermées fournissent le premier test-case pour les conjectures théoriques de I'OT entropique
et peuvent servir de reperes algorithmiques pour les algorithmes stochastiques de Sinkhorn. Afin
de quantifier le biais entropique pour OT%, OTZ et S, nous caractérisons les barycentres OT des
gaussiennes multivariées. Nous montrons que (1) OTY / OT? induit un biais de flou (variance
accrue), (2) OTY produit un barycentre rétréci (variance diminuée) et (3) S n’a (presque) aucun biais.

2. Algorithmes pour les barycentres équilibrés et déséquilibrés débités. Bien qu’il soit simple d’utiliser
I'algorithme IBP pour calculer les barycentres avec OTY, faire de méme pour les autres divergences
n’est pas trivial. Nous proposons un schéma repondéré pour calculer le barycentre de OT? et
un algorithme rapide de type Sinkhorn pour calculer le barycentre débiaisé avec S,. Enfin, nous
discutons des alternatives a la divergence déséquilibrée débitée S, ,, pour calculer les barycentres
déséquilibrés débités en utilisant des itérations de type Sinkhorn.

Publications:
e H. Janati et al, Debiased Sinkhorn barycenters, ICML'20.

e H.Janati et al, L'OT entropique entre gaussiens a une forme fermée, NeurIPS20.




228 Appendix A. Introduction en Francgais

Chapitre 3 : Régression multi-tiches avec un antécédent OT Armés des connaissances entropiques
nécessaires en matiere d’OT, nous pouvons maintenant nous intéresser a (A.64) dans le contexte de
I'imagerie cérébrale inverse. Ce probléme correspond a la localisation de sources neuronales a partir
de mesures électro-magnétiques hors de la téte. Formellement, cela équivaut a un probleme inverse
linéaire mal conditionné. Notre objectif est d’apporter des informations spatiales au modéle en le résolvant
conjointement pour plusieurs individus sains — appelés subjets. L'antériorité P agit comme un liant entre les
sujets, conduisant la solution vers des modéles neuronaux plus cohérents dans I’espace. En commencant
par le célébre Group Lasso, plusieurs modéles basés sur des normes de spartialité par blocs sont discutés
et comparés a notre modele basé sur 'OT. Notre proposition est aware de la géométrie du cortex, ce qui la
rend moins encline a produire des valeurs aberrantes. En pratique, nous montrons comment ce probléme
peut étre résolu en utilisant la descente de coordonnées proximales avec 1’algorithme de Sinkhorn pour
refléter a la fois la sparsité des sources et leur proximité spatiale. Les expériences ont été menées sur des
données synthétiques et réelles et confrontées a d’autres techniques d’imagerie cérébrale.

~ )

Publications:

* H. Janati et al, Régularisation de Wasserstein pour la régression multi-tiches clairsemée, AISTATS19.

e H.Janati et al, Estimations minimales de Wasserstein : imagerie des sources EEG-MEG au niveau
du groupe via un transport optimal, IPMI'19.

¢ H. Janati et al, Imagerie de la source multi-sujets avec régression multi-tiches clairsemée, Neuroim-
age 2020.

Chapitre 4 : Transport optimal spatio-temporel Analyser les données EEG et MEG sans tenir compte
de I'information temporelle, c’est comme casser un ceuf avec un marteau : aussi réussi soit-il, ce n’est
pas pour cela que vous avez acheté le marteau en premier lieu. Contrairement aux autres technologies
d’imagerie cérébrale, I'EEG et la MEG mesurent I'activité cérébrale jusqu’a la milliseconde. L'extension
la plus simple de I'OT aux données spatio-temporelles est peut-étre de considérer le temps comme
une caractéristique supplémentaire. de considérer le temps comme une caractéristique supplémentaire.
Toutefois, cette approche négligerait son ordre chronologique. La distorsion temporelle dynamique (DTW)
offre une méthode de principe pour comparer des séries temporelles sur la base d"une fonction de cotit
prédéfinie tout en respectant la chronologie des données. En fixant cette fonction de cofit a une perte OT,
on pourrait théoriquement aligner les séries temporelles en faisant correspondre les trames temporelles
individuelles qui sont spatialement similaires.

Cependant, le DTW a deux limitations majeures : il n’est pas différentiable et est aveugle aux décalages
temporels. Nous montrons que sa variante lisse, le soft-DTW, est en fait non seulement différentiable,
mais qu’elle augmente de fagon quadratique avec les décalages temporels. En combinant le soft-DTW
et une formulation sans biais d’entropie de 'UOT, nous définissons une perte pour les données spatio-
temporelles et proposons une méthode préte a 'emploi pour calculer les barycentres spatio-temporels.
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Publications:

e H. Janati et al, Alignements spatio-temporels : transport optimal dans I'espace et le temps, AIS-
TATS"20.

e H. Janati et al, Barycentres de transport optimal pour les données spatio-temporelles, Soumis.
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Résumé L'inférence des régions actives du des raisons numériques, on utilise la formulation

cerveau est un probleme inverse mal posé qui ne
peut étre résolu qu’en ajoutant des hypothéses a
priori. Par exemple, la favorisation des solutions
parcimonieuses ou la résolution du probléme pour
plusieurs sujets a la fois. Le but de cette these
est d’exploiter au maximum les aspects multisu-
jets, spatiaux et temporels des données de magné-
toencéphalographie pour améliorer le condition-
nement du probléeme inverse. A cette fin, nos con-
tributions s’articulent autour de trois axes : le trans-
port optimal (OT), la régression multi-taches parci-
monieuse et les séries temporelles. En effet, la ca-
pacité de I'OT a mesurer les disparités spatiales
entre les distributions le rend tres bien adapté a la
comparaison et I'aggrégation des cartes d’activation
neurales en fonction de leur forme et de leur em-
placement sur la surface du cortex cérébral. Pour

entropique du transport optimal, qui, selon nous,
comporte deux pieces manquantes importantes.
D’un point de vue théorique, elle n’a aucune ex-
pression analytique a ce jour, et d’un point de vue
pratique, 'entropie conduit a une augmentation sig-
nificative de la variance, phénoméne connu sous le
nom de biais entropique. Nous complétons ce puz-
zle en étudiant les Gaussiennes multivariées pour
lesquelles nous découvrons une forme close de I'OT
entropique et proposons des algorithmes debiaisés
pour calculer des barycentres de transport optimal
rapides et précis. Ensuite, nous définissons une pé-
nalité multitdche basé sur I'OT et des pénalités de
parcimonie pour résoudre le probleme inverse pour
plusieurs sujets afin de promouvoir des solutions
cohérentes sur le plan spatial.

Titre : Advances in optimal transport and applications to neuroscience
Keywords : optimal transport, machine learning, sparsity, regression, brain imaging
Abstract : Inferring the underlying active brain

sources is a challenging inverse problem that can
only be tackled by biasing the solutions with prior
domain knowledge. Several prior hypotheses have
been pursued in the literature such as promoting
sparse over dense solutions or solving the problem
for multiple subjects at once. However, none take
advantage of the particular spatial geometry of the
problem. The purpose of this thesis is to exploit
the multi-subject, spatial and temporal aspects of
magneto-encephalography data as much as possi-
ble to improve the conditioning of the inverse prob-
lem. To that end, our contributions revolve around
three axes: optimal transport (OT), sparse multi-
task regression and time series. Indeed, the ability
of OT to capture spatial disparities between mea-
sures makes it very well suited to compare and aver-
age neural activation patterns based on their shape

and location over the cortical surface of the brain.
For the sake of scalability, we take advantage of the
entropic formulation of optimal transport, which
we argue has two important missing pieces. From a
theoretical perspective, it has no closed form analyt-
ical expressions, and from a practical perspective,
entropy leads to a significant increase in variance
known as entropic bias. We complete this puzzle
by studying multivariate Gaussians for which we
uncover an entropic OT closed form and propose
debiased algorithms to compute fast and accurate
optimal transport barycenters. Second, we define a
multi-task prior based on OT and sparse penalties
to jointly solve the inverse problem for multiple
subjects to promote spatially coherent solutions.
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