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Résumé de la thèse Motivation de la thèse

Autour de l'année 2012, l'apprentissage profond (ou "deep learning") s'est imposé à l'ensemble de la société en apportant des solutions à beaucoup de problèmes tels que la classification et la génération automatique d'images et de discours, le traitement automatique du langage naturel, le raisonnement et les jeux vidéos. La persévérance des pionniers du domaine -Geoffrey Hinton, Yoshua Bengio et Yann Lecun -a été récompensée par le prix Turing 2018. Historiquement, l'apprentissage profond est le fruit de nombreuses idées provenant des neurosciences computationnelles, des mathématiques et de l'optimisation. Les réseaux de neurones artificiels ont réellement connu leur essor lorsque les réseaux de neurones dits "profonds"avec beaucoup de couches modélisant l'organisation hiérarchique des aires du cerveau -ont pu être entraînés sur de grandes bases de données grâce à l'utilisation des cartes graphiques ("Graphical Processing Units" ou "GPUs") afin de réaliser les calculs requis de façon très efficace.

Aller au delà des capacités des GPUs pour l'entraînement des réseaux de neurones profonds est la motivation principale de cette thèse de doctorat. En effet, les ordinateurs tels que nous les connaissons aujourd'hui sont confrontés à deux limitations technologiques fondamentales. D'une part, les progrès réalisés sur les architectures d'ordinateurs sur les dernières décennies s'appuient sur le paradigme de Von Neumann selon lequel la mémoire et le processeur sont physiquement séparés, entraînant ainsi une très forte consommation énergétique pour transporter les données entre les deux. D'autre part, la loi de Moore prédisant une diminution exponentielle de la taille des transistors a atteint une limite physique au delà de laquelle l'état physique du transistor ne peut plus être fiable de façon déterministe.

Une approche possible pour surmonter ces limitations technologiques est le calcul neuromorphique, proposée pour la première fois par Carver Mead et consistant à repenser l'ordinateur à partir de zéro en imitant les caractéristiques du cerveau. Bien que la recherche en calcul neuromorphique ait longtemps été conduite sur des technologies CMOS, il y a eu ces dernières années un attrait grandissant pour les technologies analogiques de taille nanométrique pour réaliser des neurones et des synapses artificielles. En particulier les mémoires résistives ou memristors, qui peuvent stocker des valeurs de poids synaptiques sous forme de d'états de conductance, sont des candidats extrêmement prometteurs pour réaliser des synapses artificielles. Pour entraîner des réseaux de neurones physiques composés de memristors, une approche possible est de déterminer la valeur numérique des conductances des memristors en dehors de la puce à l'aide de simulations menées sur un ordinateur, puis d'importer physiquement ces valeurs sur les memristors à l'aide de protocoles de programmation précis et élaborés. Une autre approche excitante pour entraîner des réseaux de neurones physiques composés de memristors serait de réaliser l'entraînement directement sur la puce : un tel dispositif pourrait réaliser tout à la fois l'inférence, le calcul du gradient et la mise à jour correspondante des conductance des memristors.

Cependant, l'apprentissage sur puce est extrêmement difficile pour deux raisons. Tout d'abord, le calcul du gradient de la fonction objectif d'apprentissage appelle à première vue à l'utilisation de l'algorithme de rétropropagation du gradient, plus connu sous le nom de "backpropagation". Cet algorithme d'apprentissage est le plus utilisé pour entraîner les réseaux de neurones profonds. Néanmoins, la loi d'apprentissage prescrite par l'algorithme de backpropagation pour une synapse donnée n'est pas spatialement locale : l'incrément de poids synaptique à appliquer ne dépend pas seulement des deux neurones adjacents à la synapse considérée, rendant ainsi difficile son implémentation sur une puce neuromorphique. Les approches existantes sont parvenues à implémenter des lois d'apprentissage Hebbiennes telles que la plasticité fonction du temps d'occurrence des impulsions (plus couramment connue sous sa version anglaise comme "Spike Timing Dependent Plasticity", ou "STDP") en utilisant des memristors. En dépit de l'élégance de cette approche, ce type de loi d'apprentissage ne passe pas à l'échelle sur des réseaux de neurones plus profonds pour traiter des tâches plus compliquées, très certainement en raison de leur manque de garanties théoriques quant à l'optimisation d'une métrique d'apprentissage. Le second défi de l'apprentissage sur puce est l'incrément de condutance à réaliser étant donnée une valeur de gradient. Les memristors présentent de nombreuses imperfections : ils sont sujets à la non-linéarité, à une gamme de conductance restreinte, à une variabilité intrinsèque et leurs propriétés peuvent beaucoup varier d'un composant à un autre. Ces irrégularités physiques entravent considérablement l'apprentissage sur puce.

Dans cette thèse, nous proposons de démêler ces deux aspects de l'apprentissage sur pucele calcul du gradient et l'incrément de conductance -sur deux algorithmes d'apprentissage biologiquement inspirés. D'une part, nous étudions l'effet des imperfections des memristors sur l'apprentissage des Machines de Boltzmann Restreintes, et proposons des stratégies de programmation adaptées. D'autre part, nous développons Equilibrium Propagation, un équivalent de l'algorithme de backpropagation dont la règle d'apprentissage, calculée par la physique du système lui-même, est spatialement locale et mathématiquement fondée. Plus précisément, les contributions de cette thèse sont les suivantes:

• Dans la partie II, nous étudions empiriquement l'utilisation de mémoires résistives dans différentes variantes de Machines de Boltzmann Restreintes. Nous proposons différentes stratégies de programmation pour atténuer l'effet de la non-linéarité, de la variabilité d'un cycle de programmation à un autre et celle d'un composant à un autres sur l'apprentissage. Nous proposons également une technique qui évite de devoir ajuster précisément le temps de programmation des composants.

• Dans la partie IV, nous proposons une version en temps discret d'Equilibrium Propagation, et nous montrons qu'elle est équivalente à l'algorithme de rétropropagation du gradient à travers le temps -plus couramment connu comme Backpropagation Through Time (BPTT) -sur des réseaux de neurones récurrents convergents qui recoivent une entrée statique et atteignent un état stationaire. Cette version de l'Equilibrium Propagation permet d'accélérer l'entraînement d'un facteur 5 à 8 en comparaison à sa version originale ainsi que d'entraîner une architecture convolutionnelle pour la première fois. Nous obtenons ainsi la meilleure performance jamais réalisée sur la reconnaissance de chiffres manuscrits (la base de données MNIST) dans la littérature existante sur Equilibrium Propagation.

• Enfin dans la partie V, nous proposons une version de Equilibrium Propagation plus adaptée à une implémentation neuromorphique, que nous appelons Continual Equilibrium Propagation (C-EP) où les synapses et les neurones évoluent dynamiquement au cours de la seconde phase de l'algorithme. De cette façon, la loi d'apprentissage de l'Equilibrium Propagation devient locale en temps. Nous montrons que dans la limite asymptotiquement lente de changement de poids synaptiques, C-EP est équivalent à BPTT. Nous étendons C-EP à une situation plus biologiquement réaliste où les connections synaptiques sont asymétriques. Enfin, nous montrons empiriquement que plus un modèle satisfait le théorème d'équivalence entre C-EP et BPTT avant l'apprentissage, meilleure est la performance de ce modèle après entraînement par C-EP. Ces résultats pourraient servir de guide pour l'implémentation neuromorphique de Equilibrium Propagation.

Résumé de la partie II

Dans cette partie, nous étudions la composante de l'apprentissage sur puce qui concerne l'incrément de conductance dans plusieurs variantes de Machines de Boltzmann Restreintes.

Avec des valeurs typiques d'imperfections de composants pour la non-linéarité, la variabilité d'un cycle de programmation à un autre et d'un composant à un autre, nous montrons que la Machine de Boltzmann Restreinte Discriminative ("Discriminative RBM" en anglais) est la meilleure architecture candidate en termes de performance à l'entraînement sur la reconnaissance de chiffres manuscrits (la base de données MNIST). Notamment, nos simulations mettent en évidence comment les imperfections agissent sur le temps de programmation optimal des composants : la non-linéarité sélectionne des temps de programmation courts et à l'inverse, la variabilité d'un cycle de programmation à un autre des temps de programmation plus longs. De façon importante, une pile de Machine de Boltzmann Restreintes constituées de memristors, lorsque chacune des Machines de Boltzmann Restreintes sont apprises séparément et successivement ("greedy learning" en anglais), ne bénéficie pas de la profondeur du réseau de neurones résultant pendant l'apprentissage. Au contraire, les effets des imperfections des composants se cumulent lorsque les caractéristiques extraites par une Machine de Boltzmann Restreinte sont transmises à la suivante dans la pile. Cette limitation vient du faire de ne pas transmettre les signaux d'erreur d'une Machine de Boltzmann Restreinte à une autre en utilisant l'algorithme de backpropagation, afin de préserver la localité de la loi d'apprentissage employée.

Nous montrons également que moyenner sur différents exemples et différentes réalisations stochastiques la loi d'apprentissage fournie par la technique de Contrastive Divergence améliore considérablement la résilience des Machines de Boltzmann Restreintes Discriminatives vis à vis des imperfections des composants. Puisque cette technique sélectionne des temps de programmation plus courts, elle atténue à la fois les effets de la non-linéarité et ceux de variabilité. Nous proposons également l'utilisation de l'algorithme de "Resilient Propagation" (RProp) afin de faciliter l'ajustement du temps de programmation des composants. Nous montrons que RProp n'affecte pas la résilience des Machines de Boltzmann Restreintes Discriminatives aux défauts des composants, obéit à une logique très simple et permet d'élargir considérablement la gamme de temps de programmation des composants jusqu'à deux ordres de grandeur.

En conclusion, cette étude propose des stratégies pour faciliter l'implémentation neuromorphique de Machines de Boltzmann Restreintes pour l'apprentissage sur puce avec des composants memristifs réalistes, proposant ainsi de résoudre l'un des défis principaux de l'apprentissage dans les dispositifs embarqués.

Résumé de la partie IV

Dans cette partie, nous nous concentrons sur la composante de l'apprentissage qui concerne le calcul du gradient de la fonction objectif de l'apprentissage avec Equilibrium Propagation.

Nous proposons une version en temps discret de cet algorithme : dans ce contexte, la version originale de l'algorithme en temps continu peut être vue comme un choix particulier de fonction primitive Φ pour la dynamique du système. Nous montrons que notre version en temps discret de Equilibrium Propagation est équivalente à l'algorithme de Backpropagation Through Time (BPTT) si le Jacobien de la dynamique est symmétrique (ce qui est équivalent à l'existence d'une fonction primitive pour la dynamique) et l'equilibre est atteint à la fin de la première phase. Plus précisément, les incréments synaptiques calculés au cours du temps par la dynamique du système pendant la deuxième phase de Equilibrium Propagation sont égaux, à chaque instant, aux gradients de la fonction objectif de l'apprentissage par rapport aux poids synaptiques calculés par BPTT en remontant artificiellement dans le temps de la première phase. Nous appelons cette propriété "Gradient Descending Updates" (GDU) et nous la vérifions numériquement sur deux classes de modèles: les modèles à base d'énergie et les modèles prototypiques. Après avoir défini théoriquement les architectures entièrement connectées pour ces deux classes de modèles, nous montrons que la propriété GDU est de façon générale très bien satisfaite numériquement. De façon plus quantitative, en utilisant une métrique d'erreur quadratique moyenne relative ("Relative Mean Squared Error" ou "RelMSE" en anglais), nous montrons que plus le réseau est profond, plus la RelMSE est grande, suggérant ainsi que l'entraînement d'architectures profondes par Equilibrium Propagation est difficile. Enfin, nous proposons un modèle convolutionnel décrit dans le cadre prototypique préalablement introduit et entraînable par Equilibrium Propagation. Nous montrons que cette architecture satisfait également bien la propriété GDU and réalise la meilleure performance sur MNIST jamais rapportée dans la littérature de Equilibrium Propagation (∼ 1% d'erreur sur l'ensemble de test). Nous montrons que l'utilisation de notre cadre prototypique permet d'accélérer l'entraînement par Equilibrium Propagation d'un facteur 5 à 8 comparé au cadre à base d'énergie.

Ce travail facilite la conception de modèles de réseaux de neurones entraînable par Equilibrium Propagation, tant par l'usage pratique du Théorème 4 que par l'accélération à l'entraînement apporté par le cadre prototypique, un aspect intéressant pour l'implémentation de Equilibrium Propagation sur des dispositifs neuromorphiques. Ces résultats rapproche Equilibrium Propagation de l'apprentissage automatique conventionnel et pourraient aider à faire passer Equilibrium Propagation à l'échelle pour résoudre des problèmes plus compliqués.

Résumé de la partie V

Enfin dans cette partie, nous étendons l'étude de la partie IV à une situation plus proche d'une implémentation neuromorphique où la loi d'apprentissage prescrite par Equilibrium Propagation devient locale en temps.

Dans cette nouvelle version d'Equilibrium Propagation que nous appelons Continual Equilibrium Propagation (C-EP), les synapses évoluent dynamiquement en même temps que les neurones pendant la deuxième phase de l'Equilibrium Propagation. Nous montrons que le théorème précédemment introduit dans la partie IV peut être étendu à ce cadre : dans la limite de changement synaptiques asymptotiquement lents, la propriété GDD ("Gradient Descending Dynamics") est satisfaite (Theorem 10). Nous montrons que la propriété GDD est satisfaite sur différents modèles et montrons les résultats d'entraînement par C-EP d'un modèle prototypique avec des connexions synaptiques asymmétriques sur MNIST, bénéficiant ainsi que l'accélération à l'entraînement évoquée dans la partie précédente. Nous observons une légère dégradation de performance à l'entraînement comparé à la version originale de Equilibrium Propagation dont nous pouvons directement rendre compte : la vitesse d'apprentissage ("learning rate" en anglais) doit être assez petit afin que la propriété GDD soit assez suffisamment bien satisfaite, mais pas trop afin que la convergence ait lieu en un nombre d'époques raisonnable. Nous étendons l'entraînement par C-EP à des réseaux de neurones dont les connexions synaptiques sont asymmétriques et appelons cette version de l'algorithme Continual Vector Field Equilibrium Propagation (C-VF). Nous montrons que C-VF parvient à entraîner des réseaux de neurones avec des connexions synaptiques asymmétriques sur MNIST. De plus nous montrons que, étant donné un modèle, "plus" le théorème 10 est satisfait avant l'entraînement (en termes d'angle entre l'incrément de poids synaptique total sur l'ensemble de la seconde phase de C-EP et le gradient négatif fourni par BPTT), meilleure est la performance de ce modèle après entraînement par C-EP.

Ce travail rapproche Equilibrium Propagation des contraintes hardware et de la biologie : C-VF peut être vu comme un équivalent, en fréquence, de la Spike Timing Dependent Plasticity (STDP). De nouveau, Theorem 10 fournit ici une démarche qui peut aider le déploiement d'Equilibrium Propagation sur des systèmes neuromorphiques.

Introduction

It is not until 2012 that the deep learning approach to artificial intelligence took upon the whole society by producing solutions to many problems as image and speech classification and generation, language processing and translation, reasoning and game playing. The painstacking perseverance of the pioneers of this field -Geoffrey Hinton, Yoshua Bengio and Yann Le Cun -has been rewarded by the 2018 Turing Prize. Historically, deep learning is the result of long standing ideas coming from computational neurosciences, mathematics and optimization. Artificial neural networks became significantly successful when "deep" networks -with many layers, modelling hierarchical brain regions -could be trained on large datasets thanks to the use of Graphical Computing Units (GPUs) to carry out the required computations very efficiently.

Going beyond the capability of the GPUs for deep neural network training is the core motivation of this PhD thesis. Today's modern computer architectures face two limitations. First, progress in computer architectures over the past decades has built upon the von Neumann paradigm where memory and computation are physically separated, entailing tremendous energy consumption costs to route data in between. Second, Moore's law predicting ever shrinking transistors has come to a physical limit beyond which the transistor state can no longer be deterministically reliable.

One possible approach to overcome these limitations was ushered in by Carver Mead as neuromorphic computing, which consists in rethinking the computer from scratch by mimicking brain features. Although neuromorphic computing research has long been conducted for CMOS-based engines, there has been a growing move towards novel nanometric analog substrates to emulate neurons and synapses. Among them, resistive memories or memristors which can store a weight value as a conductance state are promising artificial synapse candidates. For memristor-based hardware neural networks, one possible path for training is to find the conductance values offline on software, and subsequently import these values onto the memristor with precises conductance tuning protocols. A very appealing approach would be on-chip learning: the chip could sustain inference, gradient computation and subsequent conductance update altogether.

Nonetheless, on-chip learning is extremely challenging for two reasons. First, computing the gradient value of an objective function, a problem often called credit assignment, would call at first sight for the use of backpropagation, the most widely used learning algorithm for deep neural networks. However, the learning rule prescribed by backpropagation for a given synapse is not spatially local: the weight update to be performed does not solely depend on the two adjacent neurons, therefore creating a bottleneck on a chip. Existing approaches have successfully employed Hebbian event-based learning rule like Spike Timing Dependent Plasticity (STDP) along with the use of memristive devices, but scale poorly to deeper architectures, possibly because of their lack of theoretical guarantees. The second challenge of onchip learning is the conductance update to be performed given a gradient value. Memristors are very imperfect devices subject to non-linearity, finite conductance range, cycle-to-cycle and device-to-device variability. These imperfections significantly hamper on-chip learning.

In this thesis, we propose to disentangle these two aspects of on-chip learning -gradient computation and conductance update -on two different biologically inspired algorithms. On the one hand, we study the effect of memristive device imperfections on the training of Restricted Boltzmann Machines, and propose appropriate programming strategies. On the other hand, we build upon Equilibrium Propagation, a hardware friendly counterpart of backpropagation whose learning rule, computed by the physics of the system itself, is spatially local. More precisely, the key contributions of this thesis are the following:

• We investigate empirically the use of resistive memories in different variants of Restricted Boltzmann Machines. We propose programming strategies to alleviate the effect of non-linearity, cycle-to-cycle and device-to-device variability on training and remove the need to tune precisely the programming pulse width.

• We propose a discrete-time version of Equilibrium Propagation, which we show to be equivalent to Backpropagation, or more precisely Backpropagation Through Time (BPTT) in the context of convergent recurrent neural networks that receive a static input and settle to a steady state. This version of Equilibrium Propagation enables to speed up training simulations by a factor 5 to 8 compared to the original version, and to train the first convolutional architecture, yielding the best training accuracy on MNIST ever reported in the literature of the algorithm.

• We propose a hardware-friendly version of Equilibrium Propagation, which we call Continual Equilibrium Propagation (C-EP), where the synapses and the neurons evolve both dynamically throughout the second phase. In this way, the learning rule of Equilibrium Propagation becomes local in time. We show that in the limit of slow synaptic changes, C-EP is also equivalent to BPTT. We extend C-EP to the case where the connections are asymmetric. Finally, we show empirically that the best a model satisfies the theorem before training, the best the resulting training performance with C-EP. These results can provide a guidance for the neuromorphic engineering of Equilibrium Propagation.

Part I

Deep learning, neuromorphic computing and on-chip learning Chapter 1

What is "learning" in neural networks?

The aim of this chapter is to introduce in historical order the elemental concepts and techniques that paved the way towards modern artificial neural networks that are widely used today. With these elements in hand, we will formally define supervised learning and introduce backpropagation, the most popular learning algorithm used in deep neural networks. Finally, we will highlight the limit of conventional computers with regards to learning deep neural networks and therefore motivate the approach of neuromorphic computing.

Artificial neural networks: from unheard to overhyped

Artificial Intelligence had long been envisioned, back to 1950, when Turing suggested that "what we want [ed] [was] a machine that can learn from experience" [START_REF] Turing | Computing machinery and intelligence[END_REF], introducing the very notorious notion of Turing test whose goal is to distinguish, out of a conversation sample, a machine from a human being. The first theoretical attempt to model a biological neuron dates back to 1943 and was laid out by Walter Pitts and Warren McCulloch [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. Since their model directly takes inspiration from a biological neuron, the very first question we want to address here is: what is a neuron? The following description does not aim to be holistic and rather focuses on the most important features of a neuron to be taken into account computationally speaking: a real neuron is a huge machinery, which relies on extremely complex biophysical processes mediated by thousands of neurotransmitters! This being said, the working logics of a single neuron can be depicted as follows. A neuron is an electrically excitable cell that communicates through electrical spikes with other cells through connections called synapses. A neuron may or may not transmit an electrical stimulation to the surrounding neurons it is connected to based on the following principle.

First, a neuron receives each electrical input from other neurons through dendrites. Second, a weighted sum of these electrical inputs is integrated within the soma, whose effect is to increase the membrane potential of the neuron. More precisely, the membrane potential is created by a difference of concentrations of ions Cl -, K + and Na + between the interior and exterior of a biological membrane, thereby balancing at equilibrium the diffusive motion of ions across the membrane. Chemical gates called ion channels selectively allow ions to pass through the membrane and can be activated by neurotransmitters. Neurotransmitters that activate Na + ion channels will contribute to increase the membrane potential, thereby creating excitatory post-synaptic potentials (EPSPs) and conversely neurotransmitters activating Cl -or K + create inhibitory post-synaptic potentials (IPSPs) which contribute to decrease the membrane potential. When ion channels of different types are simultaneously activated, these effects cumulate. This description is sufficient to understand the model of Pitts and McCulloch. Let us denote {x k } k∈ [1,N ] input neurons and ŷ the output neuron under consideration. In their model, input neurons can only take binary values: x k ∈ {0, 1}. Among the input neurons, we assume there exists one inhibitor neuron denoted x i such that if it is activated (x i = 1), the output neuron is inhibited (ŷ = 0). Based on cumulated binary inputs, the value of the output neuron is also binary and defined as:

ŷ = σ N k=1 x k =        1 if N k=1
x k > ν and x i = 0 0 otherwise, (1.1) where ν is the activation threshold of the neuron. Generally speaking, the function σ appearing in Eq. (1.1) is called an activation function, as it decides whether the neuron is activated or not given incoming stimuli. In their paper, McCulloch and Pitts show that their neuron can emulate 'AND'/'OR'/'NOT' logical gates if ν is chosen properly.

However, one aspect that the McCulloch-Pitts neuron does not model is how neurons are connected to each other, and how strong should be such a connection, which calls for the notion of a synapse. The weight of a synapse encodes its strength: it can be seen as the conductivity of the synaptic cleft separating the axon of an input neuron and the dendrite of an output neuron. In the context of deep learning, the terms "weight" and "synapse" are often used equivalently. In the model we have just described, all connections between inputs neurons x k and the output neuron ŷ are implicitly taken to be uniformly equal to 1. Also, the logical functions the McCulloch-Pitts neuron can implement requires the adjustable parameters of the model to be hand-coded rather than automatically adjusted, or "learnt", from data: this aspect is crucial and will be further discussed when defining precisely the notion of "learning" in our context of study. So the question raised here boils down to: how should synaptic connections be modelled and how should they be changed given a stimuli input? Donald Hebb was one of the first to suggest a famous heuristic about the way synaptic weights should be changed based on stimuli patterns [START_REF] Olding | The organization of behavior: A neuropsychological theory[END_REF]: "When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased"; also rephrased by Karla Shatz [START_REF] Shatz | The developing brain[END_REF]: "cells that fire together, wire together". More explicitly, if we change the neuron response described by Eq. (1.1) into:

ŷ = i w i x i , (1.2)
where w i denotes the weight of the synapse connecting the input neuron x i to the output neuron ŷ. Assuming the data set D = {(x (1) , y (1) ), (x (2) , y (2) ), • • • , (x (M ) , y (M ) )} where x (k) and y (k) are binary, Hebb's rule prescribes to set the weight value of each synapse w k as:

w k = 1 M M m=1 x (m) k y (m) . (1.3)
Instead, if the data samples of D are presented sequentially, the m th synapse update ∆w k between two data samples reads:

∆w k = 1 M x (m)
k y (m) .

(1.4)

Eq. (1.4), which prescribes a synapse update between two data samples (or batch of samples in more realistic situations), is more generally called a learning rule. The expected effect of this particular learning rule is that the output neuron pattern y (m) becomes activated whenever the pattern x (m) is presented to the input neurons, so that x (m) and y (m) become "associated".

Along the lines of the first theoretical intuitions brought by the McCulloch-Pitts neuron and Hebb's rule, the real milestone that ushered in the deep learning era was the development of the perceptron by Frank Rosenblatt in 1957 at the Cornell Aeronautical Laboratory [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF]. Rosenblatt relaxed some of the stringent assumptions of the McCulloch-Pitts neuron: no absolute inhibition rule applies and importantly the neurons can be real-valued or negative. Overall, Rosenblatt neuron's model reads: Along with this new neuron model, the major achievement of Rosenblatt has been to propose a supervised learning algorithm that enables to find the weights w i and bias b that best account for a given data set. More precisely, let us consider a data set D = {(x (1) , y (1) ), (x (2) , y (2) ), • • • , (x (M ) , y (M ) )} where x (m) is a real-valued vector and y (m) its associated binary label (y (m) ∈ {0, 1}). Let D 0 = {x (m) ∈ D|y (m) = 0} and D 1 = {x (m) ∈ D|y (m) = 1} be the two classes of the problem. The two classes D 0 and D 1 are said to be linearly separable if they can be separated by an hyperplane. With these definitions in hand, Rosenblatt's learning algorithm determines the weights of a perceptron defined per Eq. (1.5) so that the output of the perceptron correctly classifies two linearly separable classes: ŷ(x (m) ) = y (m) ∀k ∈ [1, M ]. The algorithm proceeds intuitively. Given a sample x (m) presented to the input neurons, the perceptron outputs ŷ(x (m) ) given by Eq. (1.5), which is compared to the ground-truth label y (m) . If ŷ(x (m) ) < y (m) (the output is too low), then any weight w i connected to a positive (resp. negative) input x (m) i should be increased (resp. decreased). Conversely if ŷ(x (m) ) > y (m) (the output is too high), then any weight w i connected to a positive (resp. negative) input x (m) i should be decreased (resp. increased). More formally, the weight update prescribed reads:

ŷ = σ N k=1 w k x k + b =        1 if N k=1 w k x k + b > 0 0 otherwise, (1.5) 
∆w i ∝ (y (m) -ŷ(m) ) • x (m) i .
(1.6)

In spite of the incredible success of the perceptron model which later inspired the Adaline algorithm [START_REF] Widrow | Thinking about thinking: the discovery of the LMS algorithm[END_REF], its downfall was in great part overshadowed by Eq. (1.5). Indeed, the boundary decision of the perceptron is given by the equation N k=1 w k x k + b = 0, which is that of an hyperplane. This amounts to say that Rosenblatt's perceptron model can only handle separable classification problems, in particular it cannot solve the XOR logical function which cannot be separated linearly. Also as the algorithm stands, it was unclear how it would extend to a multi-layered perceptron whose definition changes Eq. (1.5) into:

ŷ = σ(w N -1 • • • σ(w 1 • σ(w 0 • x + b 0 ) + b 1 ) • • • + b N -1 ), (1.7) 
where the intermediate neuron values preceding the final output are called hidden neurons, as only the output value is actually observed. Since these values are "hidden", what should then be compared against so that the subsequent weight change on the adjacent synapses improves the output value? Moreover, the computation time required to learn even very simple functions with perceptron-based learning is very long. All these major limitations of the perceptron were pointed out by Marvin Minsky in 1969 [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF], whose paper arguably downcasted the research endeavors of the then emerging neural network community and would freeze the funding of the field for the next ten years, a period also known as the AI winter.

It was not until the 90s that the neural network approach to AI really experienced a revival with the invention of the backpropagation training algorithm -the next section will be dedicated to describe this algorithm technically. In its Ph.D thesis drafted while at Harvard in 1974, Paul Werbos was the first to suggest the use of backpropagation to train neural networks [START_REF] John | The roots of backpropagation: from ordered derivatives to neural networks and political forecasting[END_REF]. It later inspired the development of various theoretical frameworks for backpropagation in neural networks, by David Parker [START_REF] David | Learning Logic Technical Report TR-47[END_REF] in his master thesis at the Massachusetts Institute Technology and Yann LeCun [START_REF] Lecun | A learning scheme for asymmetric threshold networks[END_REF] independently, in 1985. Once the hardware resources available at this time enabled to run simulations fast enough, the definite kick-off of backpropagation in neural networks happened when, in 1987, Geoffrey Hinton and David E. Rumelhart experimentally demonstrated the relevance of the features extracted by hidden units when training a multilayer perceptron to learn non-linear tasks such as the XOR function [START_REF] David E Rumelhart | Learning internal representations by error propagation[END_REF], thereby addressing one of the fundamental objections of Minsky that had caused the demise of neural networks until then.

Another very significant breakthrough is the invention of Convolutional Neural Networks, a neural network architecture inspired from the primary visual cortex which was first known as the Neocogitron [START_REF] Fukushima | Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position[END_REF] in 1980. Yann LeCun later applied backpropagation to train convolutional architectures on document recognition in 1998, a technique soon-to-be deployed commercially to read several million checks per day [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. Finally, while the use backpropagation would enable to explore new neural network topologies such as Recurrent Neural Networks and Long-Short Term Memory [START_REF] Hochreiter | Long short-term memory[END_REF] and variants to learn from temporal data, the tremendous hype that deep learning would definitely gain came from the AlexNet Convolutional Architecture [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] which won the ImageNet Large Scale Visual Recognition Challenge in 2012 and popularized the use of Graphical Processing Units (GPUs) to train deep neural networks.

Learning in neural networks

Definition of the problem

In this subsection, we introduce more formally the backpropagation learning algorithm mentionned previously. Let us define a neural network as a mapping F(•; θ) : x → ŷ, where x denotes the (data) input and ŷ the output of the neural network. Typically, x can represent static data (for image classification for example) or be a stream of data x = x 0 , x 1 , • • • , x T (for language processing for example), we will cover both cases in this section. θ = {θ 0 , θ 1 , • • • , θ N -1 } stand for the weights, and F reads as a composition of N functions F n :

F = F (N -1) • F (N -2) • • • • • F (0) , ( 1.8) 
where each function

F (n) is parametrized by θ n : F (n) (•) = F (n) (•; θ n ).
Depending on the context, n can be a spatial or a temporal label: computation is either carried out through space (from one layer to another) or through time (from a time step to the next one) or both, depending on the task being solved. Typically, the F (n) function are the composition of a matrix multiplication (or a convolution) and of a non-linear function, or a non parametric operation as an average or max pooling. Also, although F (n) is often a deterministic function, it can also be stochastic, as it is the case in generative models like Boltzmann Machines as we will see later.

In this setting, we want to find the parameters, or "weights" θ which, given any input x of a given dataset, make the prediction of the neural network ŷ(x) the closest to the target y associated with x. Generally, the target is a label (for instance, the target y provides the label 'cat' when the data input x is the picture of a cat) or the target can be the data itself, as it is the case in generative models like Boltzmann Machines covered in this thesis. In the former case, the learning setting is said to be "supervised" and in the latter case "unsupervised" -intermediate situations where only a part of the data is labelled pertains to "semi-supervised" learning. For any purpose, the model builds an estimate of the target from the data denoted ŷ(x) that is compared against the ground-truth target y, thereby motivating the following mathematical formulation of the problem:

min θ L(ŷ(x), y; θ) (1.9)
where we call L the loss function of the problem. In general, the minimum of L is not analytically tractable. So, in practice, we proceed numerically by using gradient descent: iteratively, for a given parameter θ, we compute the steep for the loss function L and update θ in the direction of decreasing loss, i.e.:

θ ← θ -α ∂L(x, θ) ∂θ , (1.10)
where α is a scalar coefficient called the learning rate which controls the "speed" of the weight update. Iterating Eq. (1.10) many times, we may reach an optimum θ * such that ∂L(x,θ * ) ∂θ ∼ 0see Fig. 1.2 for a cartoon illustration. Very importantly, θ * may not be a global optimum since L is generally not a convex landscape. There is a vast literature of optimization techniques used for deep learning that enable to convey inertia to gradient descent so that local optima can be overshot, the most famous and widely used of those being the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. With this terminology and notations in hand, learning from this prospective implies two components that are fundamental in the scope of this thesis:

• Computing the gradient of the loss: ∂L(x,θ) ∂θ .

• Updating the weight value: θ ← θ -α ∂L(x,θ) ∂θ .

In order to go further in the details concerning the computation of the gradient, an important notion when dealing with neural networks is the notion of graphs. Eq. (1.8) can be seen as a directed graph where each leaf node represents input data or parameter, directed edges as operations, and their output nodes at the results of these operations. More often than not, the neural network as it is conventionally represented graphically is the computational graph at use. So from a mathematical viewpoint, we may use "neural network" or "computational graph" equivalently. In other contexts though, it is important to distinguish the neural network itself from the computation it carries out. To describe in more details the computation of the gradients of the loss, we will consider two particular topologies of interest in this thesis. 

Backpropagation in a feedforward neural network

General derivation. Let us consider a special case where the topology of the computation in Eq. (1.8) is described as:

     s 1 = F (0) (x; θ 0 ) s n = F (n-1) (s n-1 ; θ n-1 ) ∀n ∈ [2, N ] ŷ = F (N -1) (s N -1 ; θ N -1 ), , (1.11) 
where the intermediate values of the computation denoted s n are called 'hidden layers'. In this particular case, the input data is presented once at the first computation of Eq. (1.11) and subsequent computations are only carried over hidden layers. The larger the number of operations N , the "deeper" the neural network.

Note from Eq. (1.11) that the model estimate of the target ŷ is computed at the very end of the graph. This aspect is crucial and drives the intuition of the backpropagation algorithm whose goal is to compute the gradients of L with respect to each weight θ 0 , θ 1 , • • • , θ N -1 . However, L as it appears in Eq. (1.9) only depends explicitly on ŷ and implicitly on the weights since ŷ is a function of θ 0 , θ 1 , • • • , θ N -1 through Eqs. (1.11). The intuition of backpropagation is to start with ∂L ∂ ŷ which is the simplest derivative to compute since L depends explicitly on ŷ. Then, we compute the derivative of the variables preceding ŷ in the neural network by using the chain-rule of differentiation: this computation therefore propagates ∂L ∂ ŷ backward through the neural network, hence the name "backpropagation". ∂s takes ∂L ∂s n+1 as an input and outputs ∂L ∂s n . Similarly, the Jacobian

∂F (n) ∂θ
takes ∂L ∂s n+1 as an input and outputs ∂L ∂θ n .

More concretely, let us compute

∂L ∂θ N -1 . Since we have ŷ = F (N -1) (s N -1 ; θ N -1 ), we can easily compute ∂L ∂θ N -1 as a function of ∂L ∂ ŷ . Namely, considering the i-th component of ∂L ∂θ N -1
and applying the chain-rule, we get:

∂L ∂θ N -1 i = j ∂ ŷj ∂θ N -1 i ∂L ∂ ŷj ,
which gives in a vectorized fashion, assuming the convention that ∂L ∂u is a column vector for any column vector u:

I.1.2 -Learning in neural networks ∂L ∂θ N -1 = ∂ ŷ ∂θ • ∂L ∂ ŷ .
Using ŷ = F (N -1) (s N -1 ; θ N -1 ), we get:

∂L ∂θ N -1 = ∂F (N -1) ∂θ N -1 (s N -1 ; θ) • ∂L ∂ ŷ .
(1.12)

In order to compute ∂L ∂θ N -2 , we first need to backpropagate ∂L ∂ ŷ to s N -1 , then to θ N -2 . Namely, we first compute ∂L ∂s N -1 :

∂L ∂s N -1 = ∂ ŷ ∂s N -1 • ∂L ∂ ŷ = ∂F (N -1) ∂s (s N -1 ; θ N -1 ) • ∂L ∂ ŷ ,
so that we can subsequently compute ∂L ∂θ N -2 as:

∂L ∂θ N -2 = ∂s N -1 ∂θ N -2 • ∂L ∂s N -1 = ∂F (N -2) ∂θ (s N -2 ; θ N -2 ) • ∂L ∂s N -1 .
Backpropagation computation can be readily generalized for any variable in the network, proceeding recursively and backward from the output layer, with the following recursive equations:

             ∂L ∂s N = ∂l ∂s (ŷ, y) ∂L ∂s N -n = ∂F (N -n) ∂s (s N -n ; θ N -n ) • ∂L ∂s N -n+1 ∀n > 1 ∂L ∂θ N -n = ∂F (N -n) ∂θ (s N -n ; θ N -n ) • ∂L ∂s N -n+1 ∀n > 1 (1.13)
The computation of Eq. (1.13) can be conveniently depicted with a computational graphsee Fig. 1.3.

Example.

For concreteness and as a particular case of Eq. (1.11), let us apply backpropagation the following neural network: 

     s 1 = σ(w 0 • x + b 0 ) s n = σ(w n-1 • s n-1 + b n-1 ) ∀n ∈ [2, N ] ŷ = σ(w N -1 • s N -1 + b N -1 ).
(1.14) Applying Eq. (1.13) to Eq. (1.14) yields:

             ∂L ∂s N = ∂l ∂ ŷ (ŷ, y) ∂L ∂s N -n = w N -n • σ (w N -n • s N -n ) ∂L ∂s N -n+1 ∀n > 1 ∂L ∂w N -n = σ (w N -n • s N -n ) ∂L ∂s N -n+1 • s N -n ∀n > 1, (1.15) 
where denotes element-wise (also known as Hadamard) product between two matrices. The computation of Eq. (1.15) is depicted on Fig. 1.4. For the remainder of this introduction part, the reader should bear in mind that Eq. (1.15) and Fig. 1.4 exhibit explicit features that will later be commented upon when dealing with biologically plausible approaches to learning in chapter 4 of this part. General derivation. We now consider another neural network topology described by the following equations:

Backpropagation through time in a recurrent neural network

I.1.2 -Learning in neural networks s 1 = F (x 1 ; θ 0 = θ) s n = F (x n , s n-1 ; θ n-1 = θ) ∀n ∈ [2, N ] . (1.16)
Note the following important differences of Eqs. (1.16) with Eqs. (1.11):

• The data x is more specifically here a data stream x 1 , x 2 , • • • x N where each x n is fed at the n-th computational step.

• The label n is thereby better thought of as a temporal label.

• The transition functions F n and associated parameters θ n are all the same:

F n (•, θ n ) = F (•, θ).
An important consequence is that the parameters θ are shared across the computational graph, which comes into play when backpropagating derivatives through this type of graph.

All these features motivate to call this type of neural network a recurrent neural network. In general in a recurrent neural network, the goal of learning is to match a target y n at every time step, typically for time series prediction or translation. So the model builds an estimate for y n at each time step that we denote here ŷn . The loss for this kind of problem generally reads as:

     min θ L(ŷ, y; θ) L(ŷ, y; θ) = n l(ŷ n ; y n ) , (1.17)
where l is called a cost function. For simplicity here, we will restrict ourselves to consider the particular case where the loss only depends upon the last time step: L(ŷ, y; θ) = l(ŷ N ; y N ), so that we subsequently drop the label N .

For the sake of gradient descent again, we want to compute ∂L ∂θ with L = l(ŷ(s N ), y), where the model estimate ŷ is built from s N at the last time step. A subtlety that we have mentioned before is that now, the parameter θ is shared across the whole computation: θ is used at each time step, as described per Eq. (1.16). Consequently, the effect of changing θ → θ + δθ upon L depends on when this perturbation occurs. More specifically, when changing θ → θ + δθ at time step n, the loss L evaluated at time step N is going to change by δθ • ∂L ∂θ n , where ∂L ∂θ n is a writing convention to express that the change is caused by a variation happening at time step n. With these notations, the "total" gradient ∂L ∂θ reads like:

∂L ∂θ = ∂L ∂θ N -1 + ∂L ∂θ N -2 + • • • + ∂L ∂θ 0 (1.18)
Finally, the computation the derivatives ∂L ∂θ N -n exactly proceeds like Eq. (1.13), so that the whole computation of ∂L ∂θ is given by:

                     ∂L ∂θ = N n=1 ∂L ∂θ N -n ∂L ∂s N = ∂l ∂s (ŷ, y) ∂L ∂s N -n = ∂F ∂s (x N -n+1 , s N -n ; θ) • ∂L ∂s N -n+1 ∀n > 1, ∂L ∂θ N -n = ∂F ∂θ (x N -n+1 , s N -n ; θ) • ∂L ∂s N -n+1
∀n > 1.

(1.19)

Again, the computations of Eq. (1. [START_REF] Von | First Draft of a Report on the EDVAC[END_REF]) can be conveniently depicted by the computational graph represented in Fig. 1.5.

Example. We consider the following simple recurrent neural network where each hidden state receives input from the previous one and the current data input, and an output is given based on this hidden state as:

     h t = σ([w h , w x ] • [h t-1 , x t ] + b h ) ∀t ∈ [1, T ] o t = σ(w 0 • h t + b o ) ∀t ∈ [1, T ] ŷ = o T , (1.20)
where we use t as a label to emphasize to computation happens through time and [u, v] stands for the concatenation of vectors u and v. Taking the loss to be L = l(o T , y), applying Eq. (1.19) to Eq. (1.20) yields, for the parameters w h :

                 ∂L ∂w h = T t=1 ∂L ∂w h T -t ∂L ∂h T = w 0 • σ (w o • h T + b 0 ) ∂L ∂o ∂L ∂h T -t = w h • σ (w h • h T -t + b h ) ∂L ∂h T -t+1 ∀t ∈ [1, T ] ∂L ∂w h T -t = σ (w h • h T -t + b h ) ∂L ∂h T -t+1 • h T -t ∀t ∈ [1, T ] , ( 1.21) 
for the parameters w x : 

                 ∂L ∂w x = T t=1 ∂L ∂w x T -t ∂L ∂h T = w 0 • σ (w o • h T + b 0 ) ∂L ∂o ∂L ∂h T -t = w h • σ (w h • h T -t + b h ) ∂L ∂h T -t+1 ∀t ∈ [1, T ] ∂L ∂w x T -t = σ (w h • h T -t + b h ) ∂L ∂h T -t+1 • x T -t ∀t ∈ [1, T ] , ( 1 
     ∂L ∂w 0 = ∂L ∂w 0 T ∂L ∂w 0 T = σ (w h • h T -t + b h ) ∂L ∂h T -t+1 • h T . ( 1 

The cost of learning on conventional computers

In the previous section, we have introduced the basic algorithmics of learning. How about the hardware that is used to run these algorithms in practice? In this section, we focus on this aspect and introduce two important limitations of today's widely used computer architectures. Modern computing devices heavily rely on typical device and architecture paradigms, which happen to be fundamentally limited in certain ways today.

The end of Moore's law

The Complementary Metal-oxide Field-Effect (CMOS) transistor is the building block of today's computer logic. A transistor is a three-terminal device (with a source, a gate and a drain) that can switch or amplify electrical signals. A current can only flow between the source and the gate depending on whether a voltage is applied to the gate, thereby producing a binary output value (current flows through the transistor, and is able to charge the output or not). Cascading multiple of these transistors enables to emulate incredibly complex logical functions, so that the more transistors can be fitted onto a chip, the more computationally efficient this chip can be. In 1974 Robert Dennard stated an hypothesis named after him as the Dennard scaling (also known as the MOSFET scaling) [START_REF] Robert H Dennard | Design of ion-implanted MOSFET's with very small physical dimensions[END_REF] that as transistors get smaller, their power density should stay constant, so that since the power use stays in proportion with area, both voltage and current scale would decrease with the gate length, and so would their prices. In 1975, Gordon Moore made the observation that the number of transistors on an integrated chip should double about every two years, an iconic "law" known as "Moore's law" which would hold for the next forty years. With now the transistor feature size dropping below 10 nanometers, the end of this empirical law has become physically inevitable: the smaller the transistor, the higher the leakage and the most likely the bit flips due to thermal noise [START_REF] Laszlo | End of Moore's law: thermal (noise) death of integration in micro and nano electronics[END_REF]. More explicitly, if we assume the two logical states of the transistor are separated by a voltage barrier ∆V (also called the logic threshold voltage) and that it operates at the maximal clock frequency, then it can be easily shown that the power dissipated during the transient phases when switching between logical states scales with the transistor feature size F as:

P ∝ ∆V 2 F 2 . (1.24)
Also, using Boltzmann statistics, the probability that the logical state of a transistor flips under thermal fluctuations, with k b denoting the Boltzmann constant, is:

P(flip) ∝ exp -C∆V 2 2k b T . (1.25)
Since C is an increasing function of F (with a linear or parabolic dependency, depending on the hypothesis made on the gate thickness), Eq. (1.25) prescribes to increase ∆V upon decreasing F to keep P(flip) constant. Conversely, Eq. (1.24) constrains to decrease ∆V upon decreasing F to avoid increasing dissipation. Therefore, below a certain F , both constraints cannot be satisfied, so that Moore's law "dies": the speed of the processors can no longer be improved -see Fig. 1.7.

The von Neumann bottleneck

A fundamental architecture limitation also adds up to this conventional computing paradigm. Back in 1945, John von Neumann proposed a computer architecture, where logics and arithmetics would be performed in a Central Processing Unit (CPU) separately from memory read and write operations, both in space and time [START_REF] Von | First Draft of a Report on the EDVAC[END_REF]. This architecture, known as the Princeton architecture or the von Neumann architecture, prevailed at this time over more complex proposals as the Harvard computer architecture by allowing independent CPU and memory designs with different device and energy requirements. Unfortunately, this physical separation between logic and memory also causes the overall computational inefficiency of this architecture. In a von Neumann architecture, CPU and memory communicate through a single bus that can therefore only access one unit at a time. Consequently, for tasks that typically require numerous memory access and simple logic, the data transfer rate (also called "throughput") is much lower than the rate at which the CPU can operate, so that the CPU constantly waits for data transfers, even more as CPUs have gotten faster. It was shown that an order magnitude more energy is needed to transfer and access the data in memory or in the CPU than the core logical operations operated on this data [START_REF]1.1 Computing's energy problem (and what we can do about it)[END_REF]. This phenomenon is famously known as the von Neumann bottleneck, a physical bottleneck which, as computer design has long built upon this architecture, even created inefficiencies at the programming language level, as John Backus puts it in its ACM Turing Prize lecture [START_REF] Backus | Can programming be liberated from the von Neumann style? A functional style and its algebra of programs[END_REF]: "[T]he von Neumann bottleneck [...] is [...] a literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time thinking instead of encouraging us to think in terms of the larger conceptual units of the task at hand. Thus programming is basically planning and detailing the enormous traffic of words through the von Neumann bottleneck, and much of that traffic concerns not significant data itself, but where to find it". Both of these limitations -from the device and architectural prospective -are typically encountered in the context of learning as defined per section 1.2. Using the same notations, at a given learning iteration, θ is accessed from memory and processed in the computing unit to compute ∂L ∂θ , which is then routed back to the memory to perform the parameter update θ ← θ -α ∂L ∂θ , so that the von Neumann bottleneck typically burdens gradient descent -see Fig. 1.8 for an illustration of this phenomenon. Also, as neural network models get bigger, computing efficiently ∂L ∂θ should not be taken for granted and is severely limited by the device constraints mentionned before. Although the use of Graphical Processing Units (GPUs, which were mentionned in section 1.1) can considerably accelerate gradient computation and the von Neumann bottleneck can be significantly mitigated for example with the use of cache memories or branch predictors, moving beyond these limitations requires a fundamental rethinking of the von Neumann architectures. In this purpose, neuromorphic computing is one approach to explore so-called "non-von Neumann architectures" for on-chip learning that take inspiration from the brain.

Chapter 2

An opportunity for neuromorphic engineering

Up to now, backpropagation has encountered a tremendous success, both in academia and industry, to train deep neural networks thanks to the use of GPUs with dedicated software frameworks like TensorFlow [START_REF] Abadi | Tensorflow: A system for largescale machine learning[END_REF] or Pytorch [START_REF] Paszke | Automatic differentiation in pytorch[END_REF], which employ automatic differentiation. However, designing even more powerful systems building on modern computing paradigms and conventional learning principles such as backpropagation has become fundamentally limited. In this chapter, we show how neuromorphic computing arises as a research opportunity in this context.

A brief history of neuromorphic engineering

Although there is no clear cut out definition today of "neuromorphic engineering", Carver Mead is considered as the main pioneer of the field, as he suggested there was something "fundamental to learn from the brain about a new and much more effective form of computation" [START_REF] Mead | Neuromorphic electronic systems[END_REF]. Based on this inspiration, Mead fostered the development of Very Large Scale Integrated (VLSI) systems electronic circuits mimicking the brain and using MOSFET technology in the subthreshold regime. Operating in this regime requires smaller currents than in the standard digital regime and enables to emulate leaky integrate and fire (LIF) neurons, which depending on an internal analog value may spike or not. Using this CMOS-based LIF neuron as building block has helped achieve extremely energy-efficient systems that can handle simple pattern recognition with spike-based learning rules [START_REF] Srinjoy Mitra | Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI[END_REF]. Although other significant CMOS-based analog neuromorphic circuits include the NeuroGrid chip developed at Stanford University [START_REF] Varkey Benjamin | Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations[END_REF], recent advances in industry and academia have mostly focused on the design digital circuits. SpiNNaker by the University of Manchester [START_REF] Painkras | SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation[END_REF], TrueNorth by IBM Research [START_REF] Filipp Akopyan | Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip[END_REF] or Loihi by Intel [START_REF] Davies | Loihi: A neuromorphic manycore processor with on-chip learning[END_REF] have been designed as fully CMOS, massively parallel neuromorphic architectures that separate spiking neurons and stored weights and operate
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with an outstanding energy efficiency. While these chips are mostly of academic interest for prototyping spike-based learning and inference systems, the most ready-to-use optimized chip for deep learning applications comes from Google with their Tensor Processing Unit (TPU) ASIC chip [START_REF] Norman P Jouppi | In-datacenter performance analysis of a tensor processing unit[END_REF]. [START_REF] Filipp Akopyan | Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip[END_REF]. TrueNorth is made on 28-nanometer process technology. The processor contains 5.4 billion transistors and 4096 cores. Each core was provided with a task scheduler, SRAM-memory and a router. Right: SpiNNAker chip [START_REF] Painkras | SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation[END_REF]. SpiNNAker is composed of 57,600 processors, each with 18 cores and 128 MB of mobile DDR SDRAM, totalling 1,036,800 cores and over 7 TB of RAM.

While all these systems are based upon well-established commercial technologies like CMOS, DRAM and SRAM, a new vision of neuromorphic computing has developed towards hybrid architectures incorporating emerging memory and logic nanodevices over the past decade. Among those, resistive memories -or memristive devices -are considered as compelling candidates for the design of massively parallel and energy efficient neuromorphic systems. Their nanoscale dimension, the low energy required to write and read their memory, their multiple bit-per-device capacity and the possibility to embed this technology into CMOS have incentivized proposals of neuromorphic building block circuitries [START_REF] Indiveri | Integration of nanoscale memristor synapses in neuromorphic computing architectures[END_REF]. A drawback of these technologies is that they are prone to imperfect programming due to the intrinsically unreliable physics at play. However, this aspect of memristive devices was perceived as an opportunity to model the biological features of synapses, and thereby build neuromorphic systems that would be fault-tolerant by design, using them as digital [START_REF] Hirtzlin | Outstanding bit error tolerance of resistive ram-based binarized neural networks[END_REF] or analog [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF] memories. IBM Almaden recently suggested by hybrid software-hardware experiments that the use of non volatile memories as analogue synapses for training neural networks could deliver a computational power that would exceed those of most modern GPUs by two order of magnitudes [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. The next section provides evidence about the huge potential of memristive I.2.2 -The memristor as a promising building block for on-chip learning devices as artificial synapses candidates for on-chip learning.

The memristor as a promising building block for on-chip learning

Based on the fundamental relationships binding altogether current i, charge q, voltage v, magnetic flux linkage ϕ, Leon Chua theoretically investigated in 1971 the meaning and the implications of the relationship that could exist between q and ϕ, thereby suggesting, by symmetry arguments, the existence of a new two-terminal circuit element, albeit yet to be discovered, called a memristor [START_REF] Chua | Memristor-the missing circuit element[END_REF] -as the contraction of "memory" and "resistor". More explicitly, the voltage drop of a charge-controlled memristor would be given at all time by:

           v(t) = M (q(t))i(t) M = ∂ϕ ∂q v = ∂ϕ ∂t , (2.1)
so that the memristance M depends on the total integral of the past changes in charge, thence the memory effect. Chua showed that such a component could realize functions that none of the RLC-based circuits could on their own. In 2008, Hewlett-Packard (HP) laboratories claimed the discovery of the "missing" memristor in a very influential paper published in Nature [START_REF] Strukov | The missing memristor found[END_REF], based on the definition of Chua and in the form of titanium dioxide switching cells. Many controversies arose after the paper was released: the memristor alledgedly unveiled by HP may not abide rigorously by Chua's definition and may rather belong to the broader class of resistance-switching devices, with solid arguments essentially based on thermodynamics [START_REF] Massimiliano | On the physical properties of memristive, memcapacitive and meminductive systems[END_REF][START_REF] Meuffels | Fundamental issues and problems in the realization of memristors[END_REF] and electromagnetism [START_REF] Vongehr | The missing memristor has not been found[END_REF]. Whether a device is a "proper" memristor or not per Chua's 1971 definition therefore rather pertains to mathematics and was perceived as a rather unimportant matter for some device engineers [START_REF] Garling | Wonks question HP's claim to computer-memory missing link[END_REF]. In the scope of this thesis and for the sake of simplicity, we therefore make no distinction between a "memristor" and a "resitive memory".

A resistive memory is any two terminal physical device whose conductance can be modulated by current or voltage. There exists a wide variety of resistive memories, depending on the underlying physical mechanism causing the variation of conductance. Filamentary Redox-based resistive memories (ReRAM) are devices which can create conductive filaments between two electrodes through a transition metal oxide, depending on the voltage applied. Based on electrochemical reactions, the reduction of the anode create defect vacancies that are propagated to the cathode, and the conductance of the device grows as the filament gets thicker. Such a device typically uses metal-oxide films like HfOx or TiOx and combine them, I.2.3 -Bringing memory and computation the closest: crossbars resulting in a simple, compact, CMOS-compatible technology, involving energies per synaptic operations that can be only sub pJ. Based on similar principles, the conductive-briding resistive memory (CB-RAM) exploits the electrochemical formation of conductive metallic filaments through an insulating solid electrolyte or oxide, also constituting a fast and low power technology. Ferroelectric resistive memories (FeRAM) are devices that use a ferroelectric layer instead of a dielectric layer to achieve non-volatility and which can achieve multiple conductance states. Phase-change memories (PCM) are based upon a different mechanism where the active part of the devices can either be in an amorphous (low conductance) or a crystalline (high conductance) state (or "phase", hence the name), switching between these two states through thermal activation by Joule effect. The material most widely used in PCMs is a germanium-antimony-tellurium alloy, which sits in an insulating middle layer and is also connected between an upper and lower electrode. Other resistive memories exploits magnetic effects, like the spin transfer torque (STT-RAM) memory in which a free magnetic layer can switch between two orientations with respect to a fixed layer, resulting in a very fast, current-controlled binary memory. A complete review on the use of non volatile memories for neuromorphic computing can be found in [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF]. Now that we have mentionned a few resistive memory technologies and put forward their advantages in terms of ultra low power consumption, let us account for their assets within a neuromorphic system at a more abstract level. Let us assume a resistive memory whose conductance is denoted by G. When applying a voltage difference V to the device, Ohm's law states that the resulting current I flowing through the device is given by:

Bringing memory and computation the closest: crossbars 2.3.1 Kirchhoff laws for inference

I = G • V.
(2.2)

However innocuous it may seem, Eq. (2.2) is the corner-stone of resistive memory-based analog hardware neural network. Assume now N wires, each having a resistive memory G i and undergoing a voltage drop V i , all connected to the same output node. Then, applying the Kirchhoff current law along with Ohm's law yields the following expression measured at the output node:

I = N i=1 G i • V i . (2.3)
Algebraically speaking, the current flow through the N wires naturally performs the dot product G • V -see Fig. 2.2 for an illustration.

The immediate generalization of this principle to perform matrix multiplication leads to the concept of crossbar. A cross-bar is an electrical circuit to build logical circuits based on memristors, then used in neuromorphic applications to build analog hardware neural networks. The most simple way to think of a cross-bar is an array of N horizontal wires and M vertical wires -Fig. 2.3 depicts a crossbar with M = N = 3. The horizontal wires are the input wires where currents are injected, the vertical wires are the output wires where the currents are collected. Each output horizontal wire i is connected to each of the input vertical wires j with a resistive memory of conductance G ij . Therefore like Eq. (2.3), each output current I i reads:

I i = N j=1 G ij • V j , ( 2.4) 
which goes to show that the crossbar defined as such performs the matrix multiplication G•V . Adding extra circuitry (using an op-amp for instance) at the end of each output wire enables to implement a non-linearity σ, which changes Eq. (2.4) into:

I i = σ   N j=1 G ij • V j   , ( 2.5) 
which brings us back to Rosenblatt's neuron model response Eq. (1.5). Eq. (2.5) gives us a flavor of the huge potential of memristive devices for neuromorphic applications: inference is performed "for free" thanks to Kirchhoff's and Ohm's laws! These multiply-accumulate operations can be performed in parallel where the data is located in a locally analog fashion, thereby cutting power consumption by avoiding weight data transport [START_REF] Burr | Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)[END_REF]. , thus the conductance of devices connected to positive voltage entries should be increased, as it is the case for G 22 . A negative error voltage pulse δ 2 is therefore sent along the second vertical wire so that the device of conductance G 22 undergoes the voltage difference

A compelling case for memristor-based learning

V 22 = V 2 -δ 2 > V ν , so that G 22 is increased.
How about performing learning such a crossbar, that is finding the good conductance values G ij to solve linearly separable classes? Let us push the analogy further with the perceptron model described earlier by considering a dataset D = {(x (1) , y (1) ), • • • , (x (M ) , y (M ) )}. In a neuromorphic context, the input and the output values need to be physically encoded. So we assume here that the inputs V are encoded as input voltages, resulting in output currents Îi (V ), which are either above or below a current threshold, thereby determining the class inferred by the perceptron. Learning consists in adjusting the conductance values of the resistive memories so that the output current Î(V ) matches the target current

I target : Îi (V ) = I target i ∀i.
How does learning proceed physically? We assume each resistive memory can only be written if the voltage difference exceeds a voltage threshold

V ν : ∆G ij (∆V ij ) = 0 if ∆V ij < V ν
with ∆V ij being the voltage difference applied to the device of conductance G ij . Input voltages V j are chosen below V ν in absolute value, so that the resistive memories cannot be written without an additional voltage difference. With this in mind, let us assume voltage inputs V j yielding a current Îi (V ) that is compared against the ground-truth current

I target i . If Îi (V ) < I target i
(the output current is too low), then any resistive memory connected to a positive voltage input V j should have its conductance increased. In this case, an error voltage δ i > 0 is applied on the output wire of G ij , where δ i is taylored so that ∆V ij = δ i -X j > V ν . Fig. (2.3) illustrates this learning procedure.The same logics applies in the 3 other situations, depending on whether the output current is too high or too low and the input voltage positive or negative, so that the learning rule reads heuristically * :

∆G ij ≈ sign(( Îi -I target i ) • X j ).
(

Note that, up to taking the sign, Eq. (2.6) is equivalent to the learning rule of the Rosenblatt's perceptron given by Eq. (1.6). We will come back on this in the next chapter.

While these working principles for memristor-based inference and learning on a crossbar are tractable in theory and in practice on a perceptron, implementing deeper architectures using the same principle by cascading crossbars remains a challenge. The next chapter describes in further details the fundamental difficulties inherent to memristor-based on chip learning.

Chapter 3

Challenges of on-chip learning

The reasons why learning with resistive memories is extremely challenging are rooted into many essentially different aspects. A considerable range of difficulties to overcome stem from the technologies themselves, but also from the underlying algorithmics implemented. The fundamental trade-off that underlies this research could be phrased as: with regards to learning, how much can we give up on the energy spent on computational precision, memory, data routing and mathematical guarantees for the learning rule computation and the parameter update? We deal with each of these different aspects appearing in the literature in the next sections.

On and off-chip learning, analog and digital memories

One of the very first reason why resistive memory-based learning is hard comes from programming these devices: given an update prescribed by a parameter gradient value or any learning rule, how do we update the most accurately the conductance of a memristive device?

First, what a resistive device can encode as a memory in terms of bit capacity remains an open question. In the context of learning, resistive memories are often used or thought of as analog memories, when the conductance update can be gradual enough, thereby encoding a real value. Depending on the technology considered though, some resistive memories are better used as digital memories and therefore more suited for purely inferential engines [START_REF] Hirtzlin | Outstanding bit error tolerance of resistive ram-based binarized neural networks[END_REF], or can be combined with analog memories within mixed-precision architectures to achieve learning [START_REF] Sr Nandakumar | Mixed-precision deep learning based on computational memory[END_REF][START_REF] Hirtzlin | Hybrid analog-digital learning with differential rram synapses[END_REF].

Also, what is meant by "learning" should be clarified in the context of memristive technologybased learning. One approach is to compute the good value for the weights off-chip with software-based training simulations, then to map them onto a cross-bar as conductance values with elaborate voltage programming protocols [START_REF] Kim | Efficient precise weight tuning protocol considering variation of the synaptic devices and target accuracy[END_REF][START_REF] Alibart | Pattern classification by memristive crossbar circuits using ex situ and in situ training[END_REF]. Another approach, which we want to described further in this section, is on-chip learning: the whole learning process is achieved on the chip, iterating inference (or "forward pass"), gradient computation and parameter update. In the next section, we focus on this approach.

Device programming

In spite of their compelling potential for neuromorphic applications, memristive devices exhibit undesirable features when it comes to updating their conductance in the purpose on-chip learning.

The first two most obvious difficulties directly arise from their nanoscale size: since the physical mechanisms governing the conductance updates operate at the atomic level as described in section 2.2, the conductance updates of resistive memories are inherently stochastic and vary a lot from a device to another one -see Fig. 3.1 where the device characteristic exhibits cycle-to-cycle variability. These two sources of stochasticity are often referred to as "cycle-to-cycle variability" and "device-to-device variability" respectively. For instance, ReRAM devices are particularly subject to this stochasticity since their conductance relies upon filament of atoms so that their formation or destruction obeys to a wide variety of physical parameters, entailing at the system level a significant spread of the minimal and maximal conductance values of the devices [START_REF] Dirk J Wouters | Phase-change and redox-based resistive switching memories[END_REF].

Another limitation of memristive devices is the asymmetry existing between potentiation (increase of conductance) and depression (decrease of conductance). PCM devices, described in subsection 2.2, are subject to such an asymmetry since their amorphization is abrupt while their crystallization can be gradual, so that only the conductance increase is well controlled [START_REF] Burr | Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element[END_REF]. One solution to this issue is to implement each synapse W with a pair of memristors of conductances G + , G -so that W = G + -G -: G + (resp. G -) should be potentiated to increase (resp. decrease) W . With this programming scheme however, devices are only programmed in potentiation so that they inevitably reach saturation, thereby requiring an occasional reset in conductance [START_REF] Burr | Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element[END_REF]. Similarly, hafnium-oxide RRAM exhibit a gradual conductance decrease (i.e. the dimensions of an existing conductive filament can be gradually reduced) and an abrupt conductance increase (i.e. a conductive filament connects for the first time the two electrodes of the devices), which also requires the use of two complementary devices per synapse with a programming scheme adapted accordingly [START_REF] Hirtzlin | Hybrid analog-digital learning with differential rram synapses[END_REF]. [START_REF] Querlioz | Immunity to device variations in a spiking neural network with memristive nanodevices[END_REF]). The characteristic of filamentary Ag-Si RRAM is shown as the conductance state as a function of the number of programming voltage pulses applied, of 300µs each and ∼ ±3V each, for potentiation (a) and depression (b). Red points are experimental and the blue curve is a fit. The memristor characteristic typically exhibits non-linearity, asymmetry between potentiation and depression and cycle-to-cycle variability.

The programming of memristive devices is also considerably limited by their finite conductance range G max -G min [START_REF] Burr | Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element[END_REF]: the larger the conductance range, the more precise the programmation, the better the resulting performance at test time. One way to overcome this limitation is the use of a mixed architecture where imprecise analog conductance updates are cumulated in a digital unit with high precision [START_REF] Sr Nandakumar | Mixed-precision deep learning based on computational memory[END_REF]. Another approach consists in implementing each synapse with more than two memristive devices, yielding a larger conductance range and also a better training performance [START_REF] Boybat | Neuromorphic computing with multi-memristive synapses[END_REF].

Most importantly, memristor-based learning is dramatically jeopardized by the non-linearity of the devices: the conductance update undergone by a device using constant programming conditions depends on its current conductance value -see Fig. 3.1 where the device characteristic exhibits non-linearity. For PCM devices as well as filamentary RRAM for instance, the conductance update for low conductance states is relatively high, and becomes smaller as the conductance value increases. Instead, linear devices whose conductance update does not depend on the current conductance value, would yield the best result on classification tasks [START_REF] Burr | Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)[END_REF][START_REF] Jang | Optimization of conductance change in Pr 1-x Ca x MnO 3-based synaptic devices for neuromorphic systems[END_REF]. One first natural approach to overcome this limitation is to employ read-andwrite programming schemes, where the conductance value of the device to program is first read, and the number of pulses applied are chosen accordingly [START_REF] Pai-Yu Chen | Mitigating effects of non-ideal synaptic device characteristics for on-chip learning[END_REF][START_REF] Gao | Programming protocol optimization for analog weight tuning in resistive memories[END_REF]. This solution however appears to be costly, with subsequent overhead on the peripheral circuitry around the crossbar [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF][START_REF] Yu | Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect[END_REF]. Another approach to mitigating non-linearity has been proposed by IBM Research in their milestone Nature paper, where each synapse is implemented with a pair of PCM devices and a three transistors-one capacitor (3T-1C) capacitor [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. The capacitor, whose charge-voltage characteristic is linear, accumulates the weight updates across training samples. Since the capacitor has a volatile memory, its charge is precisely transferred them onto the PCM devices as a conductance state every 8000 training samples, combined along with programming strategies to mitigate the variability of the capacitors. Also, recent work has demonstrated that the combined use of analog memories with digital operations is inherently more robust than more conventional fully analog approaches, without CMOS overhead [START_REF] Hirtzlin | Hybrid analog-digital learning with differential rram synapses[END_REF].

Hardware-friendly learning rules

All the aforementioned approaches focus on the device engineering required to perform a conductance update in the most accurate way given a target update. Thereby implicitly, the computation of the gradient value of the loss function of interest -or of the learning used at all regardless of the notion of a loss function -is somewhat taken for granted. So far in the neuromophic computing literature, which learning rule to implement on a chip has taken two different paths.

Backpropagation?

One of the main approaches in neuromorphic computing to in-situ learning rule computation is to implement verbatim backpropagation. The most simple application of backpropagation is in a perceptron, where the learning rule is given by Eq. (1.6). In the on-chip learning protocol adapted for crossbars described in section 2.3, the learning rule Eq. (2.6) reads like the sign of Eq. (1.6). This learning rule presents significant advantages from a hardware prospective: it is local in space (the weight update solely requires the pre and post-synaptic neuron activities) and it takes the sign of the real gradient, which generally makes stochastic gradient descent in machine learning optimization more robust to noise [START_REF] Bernstein | signSGD: Compressed optimisation for non-convex problems[END_REF][START_REF] Balles | Dissecting adam: The sign, magnitude and variance of stochastic gradients[END_REF]. The learning rule given by Eq. (1.6) on a perceptron was coined the Delta Rule [START_REF] W Schiffmann | Optimization of the backpropagation algorithm for training multilayer perceptrons[END_REF], or more generally on any optimization problem signSGD [START_REF] Bernstein | signSGD: Compressed optimisation for non-convex problems[END_REF] and was successfully applied experimentally for the in-situ learning of 3x3 image patterns by a hardware perceptron [START_REF] Alibart | Pattern classification by memristive crossbar circuits using ex situ and in situ training[END_REF].

So perceptron learning is one of the rare cases where backpropagation * readily applies, up to taking the sign of the gradient, in a hardware-friendly fashion. How we go about implementing backpropagation taking hardware constraints into account in deeper architectures remains one of the most challenging questions of on-chip learning. Most of IBM Research findings are carried out with hybrid hardware-software experiments where inference and gradient computation carried out ex-situ, with the resulting gradient value subsequently mapped as a conductance update on the crossbar, with a strong focus on device engineering and slight algorithmic adaptation to hardware constraints [START_REF] Burr | Neuromorphic computing using non-volatile memory[END_REF][START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF][START_REF] Burr | Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power)[END_REF][START_REF] Burr | Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element[END_REF]. In particular, IBM Research has demonstrated equivalent accuracy to software-based techniques on CIFAR-10 with a convolutional architecture in the particular case of transfer learning where only the classifier is trained [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. Along the same lines, Bennett et al advocate the use of extreme learning machine or NoProp [START_REF] Christopher H Bennett | Contrasting advantages of learning with random weights and backpropagation in non-volatile memory neural networks[END_REF], relaxing memory and energy budget, where only the classifier is learnt while the other weights are kept random and fixed. Random projections, which are of interest in many signal processing and machine learning applications, can also be implemented through light scattering [58] * . Similarly, Hirtzlin et al propose a robust in-situ learning scheme for Binarized Neural Networks mixing digital and analog operations, assuming implicitly the computation of the gradients applied to their RRAM devices [START_REF] Hirtzlin | Hybrid analog-digital learning with differential rram synapses[END_REF]. Although the robustness of gradient descent to gradient binarization [START_REF] Bernstein | signSGD: Compressed optimisation for non-convex problems[END_REF] or ternarization [START_REF] Wen | Terngrad: Ternary gradients to reduce communication in distributed deep learning[END_REF] can be seen as an opportunity in the scope of neuromorphic implementations, they still require high precision in the gradient computation.

Notwithstanding its gigantic popularity, it is widely acknowledged that standard backprop is biologically implausible, which is why it is believed not to account for learning in the brain [START_REF] Blake A Richards | A deep learning framework for neuroscience[END_REF]. Since most of neuromorphic computing research is driven towards biological inspiration to reproduce the outstanding robustness and energy-efficiency of the brain, backpropagation is also not hardware-friendly. The reasons to claim the biological unplausibility of backpropagation appear clearly in Eq. (1.15) and Fig. 1.4:

• the error signal ∂l ∂s (ŷ, y) is routed to upstream layers through the transpose of the forward weights w N -n : this is known as the weight transport problem.

• The gradients computed by backpropagation depend on the derivative of the activation function.

• The gradients computed by backpropagation also depend on the activations of the neurons during the forward phase, which therefore need to be stored during the (backward) gradient computation phase.

• Backpropagation computation is not carried in the circuitry of inference: inference and gradient computation are not "handled by the same system".

• Finally, the gradient ∂L ∂w N -n is not local in space: the resulting weight update to apply to w N -n does not solely depend on the adjacent neurons s N -n and s N -n+1 but also on the output layer ŷ.

Most significantly, the non-locality of backpropagation is a serious issue for on-chip learning. If we were to design a physical deep neural network on a chip out of cascaded crossbars with resistive memories, the conductance update of each device at each learning iteration would require information that lies in the output layer of the neural network, possibly very far apart spatially, thereby creating another bottleneck! Therefore, neuromorphic researchers and neuroscientists endeavors converge to strive for efficient local learning rules, the former for hardware energy-efficiency and the latter to explain human intelligence.

Spike Timing Dependent Plasticity (STDP)

Another widely used learning rule in neuromorphic implementations of spiking neural networks is the Spike Timing Dependent Plasticity (STDP), which can be considered as a spiking version of Hebbian learning as defined in Eq. (1.3) [START_REF] Dan | Spike timing-dependent plasticity of neural circuits[END_REF]. The STDP rule prescribes to modulate the synapse update depending on the firing times of the pre-synaptic and post-synaptic neuron. If a pre-synaptic spike precedes a post-synaptic spike within a specific time-frame, these two spikes may somewhat be causally related so that the STDP rule increases the value of the synaptic weight. In the other way around, a pre-synaptic spike may not be causally related to a previous post-synaptic spike, and the synaptic weight value should therefore be decreased in such case. This STDP mechanism as described, however, is only an interpretation and its underlying causality remains questioned. Very importantly, STDP has been particularly attractive to neuromorphic researchers for its locality in space and time: all the information a synapse needs to update its value at any time is carried by the current value of its adjacent neurons! The STDP rule can be realized on a memristor [START_REF] Antonio Pérez-Carrasco | On neuromorphic spiking architectures for asynchronous stdp memristive systems[END_REF]: if the pre and post-synaptic spikes have appropriate shapes, since the device is programmed by the voltage difference created by these spikes, the resulting conductance update can be correlated with the relative firing times of the pre and post-synaptic neuronssee Fig. 3.3 for an illustration. This memristor-based STDP has proven efficient in simulations for unsupervised learning of temporal correlations for car detection [START_REF] Bichler | Unsupervised features extraction from asynchronous silicon retina through spike-timingdependent plasticity[END_REF] or hand-written digit recognition [START_REF] Beyeler | Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule[END_REF] with 92% test accuracy * . Strikingly, simulations have shown that spiking memristor-based neural networks employing STDP exhibit an outstanding tolerance to device imperfections [START_REF] Querlioz | Immunity to device variations in a spiking neural network with memristive nanodevices[END_REF] -even more: they show in some situations that the non-linearity of the devices can be an asset! However, these demonstrations were carried out on a two-layers perceptron architecture and poorly scale to deeper architectures. The pulse shapes are chosen so that whenever a pre (resp post) synaptic spike precedes a post (resp pre) synaptic spike within a time-frame, the voltage difference exceeds a positive (resp negative) threshold so that the device is subsequently potentiated (resp depressed), thereby emulating STDP. This principle is employed in [START_REF] Querlioz | Immunity to device variations in a spiking neural network with memristive nanodevices[END_REF]. [START_REF] Mozafari | Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks[END_REF] where the sign of the STDP curve is modulated by the error signal produced at the output layer. When applying this version of STDP on the top layers of a spiking convolutional neural network and standard STDP elsewhere with latency coding, the authors report a test accuracy of 97.2% on MNIST, an improvement compared to then STDP state-of-the art, yet far from rate-based performance achieved with backpropagation. Part of the reason why STDP-based approaches may be limited is that the STDP rule itself is generally not derived as the gradient of an objective function in the context of classification but rather taken as a biologically plausible learning heuristic. Only in a few works, some form of STDP-like learning rules were shown to arise from maximum likelihood approaches to reproduce arbitrary spiking patterns [START_REF] Pfister | Optimal spiketiming-dependent plasticity for precise action potential firing in supervised learning[END_REF], but were only limited to small systems and simple pattern recognition.

Recent work proposes a reward-modulated version of STDP

Chapter 4

Towards better credit assignment for on-chip learning 4.1 What is credit assignment?

What we mean here by "credit assignment" is explained the best by Richards et al. in their recent proposal of a deep learning framework for neuroscience [START_REF] Blake A Richards | A deep learning framework for neuroscience[END_REF]:

The concept of credit assignment refers to the problem of determining how much "credit" or "blame" a given neuron or synapse should get for a given outcome. More specifically, it is a way of determining how each parameter in the system (for example, each synaptic weight) should change to ensure that [the objective function is optimized]. In its simplest form, the credit assignment problem refers to the difficulty of assigning credit in complex networks. Updating weights using the gradient of the objective function [...] has proven to be an excellent means of solving the credit assignment problem in ANNs. A question that systems neuroscience faces is whether the brain also approximates something like gradient-based methods.

Credit assignment is of particular relevance in neuromorphic computing: once inputs and outputs of a given neuromorphic system are encoded, how should we change the physical observables of this system so that its output is improved with respect to a task, or namely how do we assign "credit" to these physical observables? In other words, how can the error signal be
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physically encoded and even computed by the physics of the system itself? Backpropagation and STDP mentionned before are only two particular cases of how credit should be assigned to conductances of resistive devices, and this thinking extends well beyond to more complicated physical systems reported in the neuromorphic litterature. For instance, it was shown that the coupling physics of magnetic oscillators could be leveraged for the classification of vowels [START_REF] Romera | Vowel recognition with four coupled spin-torque nano-oscillators[END_REF], with a learning scheme based on complex physics that it is worth describing to convey how critical credit assignment can be in neuromorphic systems. Input vowels are encoded as frequencies emitted by input magnetic oscillators that can couple in frequency with other magnetic oscillators. The classification output is decoded as synchronization patterns between oscillators, for instance two specific oscillators A and B should systematically be synchronized the vowel "a" is presented. If upon presenting the vowel "a" during training A and B are not synchronized, credit is assigned to the current injected in A and B so that their natural frequencies get closer, until A and B are synchronized.

However, the credit assignment schemes used in the neuromorphic litterature have yet to scale to bigger systems. The belief exposed in this thesis is that in order to generalize a credit assignment mechanism to bigger neuromorphic systems, it should preserve some theoretical guarantee that the objective function of interest is optimized. In the following sections, we present some alternatives to backpropagation that can approximate gradients of an objective function that exist in the machine learning and computational neuroscience literature, but have yet to be explored in neuromorphic computing, in order to motivate the objectives of this thesis.

Hopfield Networks & Contrastive Hebbian Learning

A brief history

Historically, since the McCulloch-Pitts neuron model was proposed in 1943, the research in neural networks split into two distinct, though permeable, quests: the development of the deep learning approach to AI we described earlier, and computational neuroscience to better understand the brain.

In 1982, at about the same time when backpropagation was developped, John Hopfield came up with a model of the human memory called content-addressable memories", or "associative memories", which are today remembered as Hopfield Networks [START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF]. These networks learn to remember input patterns so that after learning, if part of the input is removed, it can be recovered by sampling the model. Hopfield networks were first trained with Hebbian learning rules of the kind of Eq. (1.3)-(1.4), which feature spatial locality: the weight update on w ij solely depends on the neurons x i and x j , contrary to backpropagation. Also, within the scope of this thesis, it is important to point out at this stage that the Hopfield network is one of the first energy-based neural network model: each configuration of the neural network is associated to a scalar value depending on the values of the weights called an "energy". Learning consists in adjusting the weights, thereby deforming the energy landscape seen by the neurons, so that the energy minima correspond to the input patterns. When "sampling" the model from a corrupted input, the neurons descend the energy landscape until reaching a minima and should therefore recover the input patterns that have been learnt. In Hopfield networks, neurons are binary and evolve according to deterministic equations which descend the model energy function. Later in 1985, David Ackley and Geoffrey Hinton proposed the Boltzmann Machine model [START_REF] David H Ackley | A learning algorithm for Boltzmann machines[END_REF] taking its name and inspiration from the notorious theoretical physicist who pioneered statistical mechanics. In this model, input patterns should also be learnt as minima of an energy landscape, neurons assume binary values but are sampled stochastically: minima of the energy function correspond to modes of the model distribution. The introduction of stochasticity into energy-based models not only made this approach closer to biology but also helps neurons escape local minima, also called "spurious patterns", of the energy landscape.

Boltzmann machines, whose posterior distribution is intractable in general and therefore makes inference difficult, lead to the development of Restricted Boltzmann Machines (RBM), first known as "harmoniums" [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF]. RBMs are two-layered Boltzmann Machines without internal connections within each layer, so with "restricted" connections. Owing to their simplified topology, inference is tractable in Restricted Boltzmann Machines and their learning can be achieved with Contrastive Divergence [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF] which also prescribe a spatially local learning rule * . Later, Deep Boltzmann Machines extended Boltzmann Machine learning to stacks of Restricted Boltzmann Machines, employing variational inference to approximate the posterior distribution of the network † .

Without delving into technicalities, it is useful at this stage to convey intuition about energy-based learning to prelude this thesis. Contrastive Divergence, which is employed to train all variants of Boltzmann Machines previously mentionned, can be seen as a stochastic version of Contrastive Hebbian Learning, which was first introduced by Ackley and Hinton [START_REF] David H Ackley | A learning algorithm for Boltzmann machines[END_REF] and later formulated in a purely deterministic setting by Javier Movellan [START_REF] Javier R Movellan | Contrastive hebbian learning in the continuous hopfield model[END_REF]. Let us assume a neural network (e.g. a Boltzmann Machine) with a global state variable s whose energy reads:

E = - 1 2 s • ws, (4.1)
where w are the weights of the synapses connecting the neurons s. We also assume that the neurons evolve according to certain dynamics t → s t towards decreasing values of the energy E that we denote s * , typically the dynamics read ds/dt = -∂E/∂s. Using the same notations as before, we also define ŷ as a subset of the neurons s that encodes the output of the neural network, e.g. ŷ, can be the visible layer of the neural network if we want to train a generative model, or conversely it can be the output layer of the neural network if we want to train a discriminative model. Again, let y be the target value for ŷ. The output neurons of the neural network ŷ may evolve freely or not, depending on whether the target value is clamped on the output neurons, so that we enforce ŷ = y. The energy minimum that is reached depends on these two situations, so that we distinguish between s * ,free and s * ,clamped . Heuristically, s * ,clamped states therefore 'better' account for the ground-truth output y than s * ,free states: s * ,clamped states should therefore be minima for the energy. With this intuition in mind, the learning rule prescribed by Contrastive Hebbian Learning reads for the synapse w ij :
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Note from Eq. (4.1) that Eq. (4.2) amounts to increase the energy of s * ,free and to decrease the energy of s * ,clamped . Therefore, upon iterating Eq. (4.2), the energy landscape minima correspond to the network states where ŷ ∼ y.

Hardware implementations

One intermediate path towards reducing the gap between STDP-based and gradient-based approaches is to engineer STDP learning rules properly to that they descend the gradient of an objective function. In their event-based version of Contrastive Divergence, Neftci et al propose a version of STDP that is able to train a spiking Restricted Boltzmann Machines for discrimination and generation on MNIST, which is shown to approximate Contrastive Divergence that itself is an approximation of the gradient of the log-likelihood [START_REF] Neftci | Event-driven contrastive divergence for spiking neuromorphic systems[END_REF], achieving 91.9% test accuracy on MNIST, thereby close to the rate-based performance by less than 2%. This algorithm recently led to the first * experimental realization of a fully hardware spiking Restricted Boltzmann Machines [START_REF] Ishii | On-chip trainable 1.4 m 6t2r pcm synaptic array with 1.6 k stochastic lif neurons for spiking rbm[END_REF] where synapses are made up of PCM devices and which can achieve 92% training accuracy over 100 MNIST samples.

The philosophy of the research presented in this thesis goes along the same direction: finding or building upon hardware friendly learning rules that preserve some theoretical guarantees.

Biologically plausible credit assignment

Along with Contrastive Hebbian Learning, there have been many attempts in the neuroscience and deep learning fields to account for how the brain might perform credit assignment in a way that is as efficient as backpropagation on standard learning benchmarks.

Reinforcement-based credit assignment

Many credit assignment mechanisms are based on reinforcement learning techniques. In this learning paradigm, an agent evolves in an environment which may reward or punish the agent depending on its state, as neuromodulators like dopamine do it in the brain. Therefore, learning consists for the agent in determining an optimal policy giving the best action to take * Prior work proposed a hybrid hardware-software implementation of a Restricted Boltzmann Machine where neuron dynamics were emulated off-chip [START_REF] Burc Eryilmaz | Training a Probabilistic Graphical Model with Resistive Switching Electronic Synapses[END_REF].

given its current state to maximize its cumulated reward over a trajectory in the environment. In most cases, the agent determines an optimal policy by building a map of reward estimates, also called Q-values. The agent should then find a balance between exploiting states of highest estimated reward and random exploration of states, which is also known as the exploitationexploration trade-off.

Attention-Gated Reinforcement Learning (AGREL [START_REF] Pieter | Attention-gated reinforcement learning of internal representations for classification[END_REF] or Q-AGREL in its most general version [START_REF] Pozzi | A biologically plausible learning rule for deep learning in the brain[END_REF]) is a version of Reinforcement Learning applied to neural networks where during the forward phase, the prediction is seen as an action taken based on the output activations. Their values are interpreted as the model estimate of the rewards, or "Q-values", where the highest reward corresponds to the target output. During the backward phase, the network does not receive an explicit teacher signal depending on the target output, but gets rewarded or not depending on the predicted output. The synapse update is subsequently gated by a global reinforcement signal and the subset of neurons that were responsible for the prediction through an "attention" mechanism with specific feedback weights. Conversely, all the neurons are involved in backpropagation with the transpose feedforward weights. On average, the resulting weight updates approximates those provided by backpropagation.

Other techniques known as Node Perturbation and Weight Perturbation [START_REF] Werfel | Learning curves for stochastic gradient descent in linear feedforward networks[END_REF] consist in computing loss gradients by perturbing neurons ("nodes") or weights with noise and measuring the subsequent change in the loss value, also employing reinforcement learning techniques. However, in real neural circuits, it may not be possible to distinguish the injected noise from the intrinsic noise of the circuit, and therefore tell what caused the perturbation of the loss. Regression Discontinuity Design (RDD) overcomes this issue by inferring such causality using thresholding effects [START_REF] James | Spiking allows neurons to estimate their causal effect[END_REF].

Credit assignment with generative models

Some attempts to propose biologically plausible learning models rely on the use of stochastic generative models.

In Difference Target Propagation (DTP), the error signal within each hidden layer is not a gradient but a target value [START_REF] Lee | Difference target propagation[END_REF]. While the target value for the output layer is simply the ground-truth target of the training sample, target values for hidden layers are computed by propagating upper target values with approximate inverses of the forward functions. These layer-wise inverse functions are approximated as auto-encoders where each of them learns to reconstruct a hidden layer from the upper hidden layer, without using the transpose of the forward weights to go backward.

Another approach is provided by the predictive coding framework [START_REF] James | An approximation of the error backpropagation algorithm in a predictive coding network with local hebbian synaptic plasticity[END_REF] where the whole model is probabilistic with each layer being Gaussian conditionally on the previous layer. Maximizing the log-likelihood of the model given an input stimulus with respect to the neural states and the synapses yield local dynamics for the neurons and the synapses, where it is shown that in some limit, the synapse update is approximately the same as the one given by backpropagation. However, the error signal is routed by the transpose of the forward weights.

Credit assignment without weight transport

As emphasized in subsection 3.3.1, one biologically unplausible feature of backpropagation is the use of the transpose of the forward weights to route error signals back into the network. In the previously described approaches, Attention-Gated Reinforcement Learning (AGREL) and Target Propagation use distinct backward weights. Node Perturbation in its original version does not use specific backward weights, until recently where it is proposed to learn backward weights so that the error signals routed by these weights match the best the gradients computed by Node Perturbation [START_REF] James Lansdell | Learning to solve the credit assignment problem[END_REF].

An impactful paper showed that even when random weights are used as feedback weights in place of the transpose of the forward weights, learning occurs with a resulting performance close to backpropagation on benchmark visual tasks [START_REF] Timothy P Lillicrap | Random synaptic feedback weights support error backpropagation for deep learning[END_REF]. They also suggest that the underlying learning mechanism at stake relies upon the alignment of these backward weights with forward weights, a phenomenon known as Feedback Alignment, which later gave rise to Direct Feedback Alignment which uses feedback skip connections [START_REF] Nøkland | Direct feedback alignment provides learning in deep neural networks[END_REF]. Bartunov et al showed that Feedback Alignment did not scale to complex visual tasks [START_REF] Bartunov | Assessing the scalability of biologically-motivated deep learning algorithms and architectures[END_REF]. Xiao et al report a good peformance on ImageNet with a similar algorithm called Sign-Symmetry [START_REF] Xiao | Biologically-plausible learning algorithms can scale to large datasets[END_REF] where only the sign of the forward and backward weights should coincide, an hypothesis that they biologically justify. Recent work has shown that with two different mechanisms that improve the agreement between forward and backward weights, Feedback Alignment can be scaled up to hard visual tasks even better than Sign-Symmetry [START_REF] Akrout | Deep learning without weight transport[END_REF].

Assigning credit to apical dendritic compartments

In most conventional graphical presentations, neurons are represented as blobs in directed computational graphs so that, from a biologicaly prospective, they are mostly assimilated to their somas. So it seems, at first sight, that the neural dynamics are uniquely defined by feedforward equations of the kind of Eq. (1.14), while backpropagation is more of an artificial computation backward through the feedforward network. For biological soundness though, it is tempting to symmetricize the forward and the backward passes, so that the backpropagation of errors is itself part of the neural dynamics. In this case, using the same notations as section 1.2, each neuron voltage membrane s n integrates sensory bottom-up SpikeGrad [START_REF] Christian Thiele | SpikeGrad: An ANNequivalent Computation Model for Implementing Backpropagation with Spikes[END_REF] is an example of a bi-compartment model where integrate-and-fire neurons process bottom-up input spikes and error-discretized spikes in separate voltage compartments, with the exact same kind of dynamics for forward and backward passes. However, it requires to retain the neural activations of the forward passes to compute surrogate derivatives and gradients requested for the weight update and somehow remains close to standard backpropagation by requiring two phases, where each neuron processes successively bottom-up (data), then top-down (error) information. It is very likely though that in real biological systems, neurons can handle both kind of inputs at the same time, so that learning proceeds in one phase only! How a neuron can distinguish "pure" error top-down signals from self-generated top-down signals is still a very interesting open question.

In this purpose, Sacramento et al have proposed a dendritic micro-circuit which learns to cancel these intrinsic top-down inputs through the use of interneurons: whenever an external error signal appears, it cannot be explained away by the micro-circuit so that apical dendritic compartments perfectly encode an error signal [START_REF] Sacramento | Dendritic cortical microcircuits approximate the backpropagation algorithm[END_REF]. Another study showed that the dendritic activity was reflected in the probability that a burst of spikes occurs, suggesting that top-
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down error signals are encoded as bursts and bottom-up signals as single spikes [START_REF] Naud | Sparse bursts optimize information transmission in a multiplexed neural code[END_REF].

Temporal credit assignment

Another approach to credit assignment is to compute error gradients through time. Biological neuronal networks are dynamical systems governed by temporal equations which, from the deep learning viewpoint, can be classified in the broader class of Recurrent Neural Networks (RNNs) where the computional graph is both deployed in space (from one layer to another) and time (from a time step to the next one). Applying backpropagation in such a neural network therefore amounts to go backward in time, which is why backpropagation in this context is more specifically called Backpropagation Through Time (BPTT) [START_REF] Paul | Generalization of backpropagation with application to a recurrent gas market model[END_REF].

However, one of the goal of temporal credit assignment is to avoid going backward in time to compute error gradients but rather compute them in a forward-time fashion. Real Time Recurrent Leaning (RTRL) [START_REF] Ronald | A learning algorithm for continually running fully recurrent neural networks[END_REF] is one of the earliest proposals of forward-time computation of the gradient provided by backpropagation through time, which precludes the need to store activations of the neurons at each time step of the forward phase. Recurrent Backpropagation (RBP) [START_REF] Almeida | A learning rule for asynchronous perceptrons with feedback in a combinatorial environment[END_REF][START_REF] Pineda | Generalization of Back-Propagation to Recurrent Neural Networks[END_REF] can be seen as one particular case of backpropagation through time when it is applied to convergent RNNs which reach a steady state: the error signal is backpropagated through this steady state so that the computation of the error jacobians does not require anything else but the value of this steady state.

Very recently and in the same spirit as RTRL, Eligibility Propagation (e-prop) [START_REF] Bellec | Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets[END_REF] was proposed as a biologically plausible technique to approximate BPTT gradients in an online and forward-time fashion in spiking networks, using the combined trick of synaptic eligibility traces to capture long-term dependencies and approximating spikes by differentiable proxies [START_REF] Huh | Gradient descent for spiking neural networks[END_REF]. In spite of the tremendous potential of e-prop with regards to neuromorphic computing, although the gradient computation happens online, it cannot be conducted by the system itself: from a hardware prospective, it would require an external circuitry and subsequent overhead.

Equilibrium Propagation [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF], the central algorithm of this thesis, is a variant of Contrastive Hebbian Learning where the target y is weakly clamped to the output neurons ŷ through a small nudging strength β. Albeit the simplicity of this modification of Contrastive Hebbian Learning, Equilibrium Propagation is endowed with strong theoretical guarantees for any network topology * . The core idea of Equilibrium Propagation is to first let the system reach a steady state given a static input on the visible layer. Then, the error in the output layer is encoded as a force which drives the whole system towards lower loss: because the system initially does not move, subsequent motion encodes gradients. Heuristically if neurons are described by a variable s and the loss of interest is denoted L: ṡ ∼ ∂L ∂s . Moreover, the learning rule prescribed by Equilibrium Propagation, which is rigorously shown to optimize the loss, is spatially local, an important feature for on-chip learning as we emphasized before. Therefore, the gradients of the loss are computed by the physics of the system itself: the system sustains both inference and gradient computation, with a local learning rule, without calling for the need of an external circuitry! Consequently, Equilibrium Propagation is both hardware friendly and mathematically justified, therefore extremely promising to scale onchip learning to deep neural networks.

Main results of this thesis

The objective of this thesis is to address the two fundamental components of on-chip learning with two biologically plausible learning algorithms. We investigate the conductance update component of learning on Restricted Boltzmann Machines, and the gradient computation component with Equilibrium Propagation. Restricted Boltzmann Machine training and Equilibrium Propagation bear some resemblance that will be highlighted in part III. More precisely, the contributions of this thesis are the following:

• We first present an empirical study of the use of memristive devices in Restricted Boltzmann Machines. We come up with programming strategies to mitigate device imperfections such as non-linearity, device-to-device and cycle-to-cycle variability, and to facilitate hyperparameter tuning (part II).

• We reformulate Equilibrium Propagation in a discrete-time setting and demonstrate its equivalence with Backpropagation Through Time mathematically and numerically. We propose a convolutional model that is trainable with our discrete-time version of Equilibrium Propagation, achieving best performance on MNIST ever reported in the literature of this algorithm. Finally, we show that our new formulation of Equilibrium Propagation enables a simulation speed-up by a factor 5 to 8. These results can potentially help prototype faster hardware-friendly implementations of Equilibrium Propagation (part IV).

• We extend Equilibrium Propagation to the biologically plausible and hardware-friendly situation where the learning rule becomes local in time: synapses are treated as a dynamical system that evolve along with neurons during the second phase of the algorithm, a new version of the algorithm that we call Continual Equilibrium Propagation. We demonstrate the equivalence of Continual Equilibrium Propagation with Backpropagation Through Time, and extend the algorithm to the situation where the connections between neurons are asymmetric. Finally, we show numerically that the more a model satisfies the theorem before training, the best its resulting training performance. These results can provide an engineering guidance to map Equilibrium Propagation onto neuromorphic chips (part V).

• Finally, we discuss ongoing projects and future directions of research for the implementation of Equilibrium Propagation on neuromorphic hardware.

Introduction

As we pointed it out in part I, fast progress in machine learning and big data processing make conventional electronics hardware unable to cope with it in the long run, and calls for breakthrough in artificial intelligence hardware design. Memristive devices are particularly exciting in this regard, as they can emulate synapses when arranged into crossbar arrays with interconnecting transistors acting as neurons [START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF][START_REF] Alibart | Integration of nanoscale memristor synapses in neuromorphic computing architectures[END_REF][START_REF] Yang | Memristive Devices for Computing : Mechanisms , Applications and Challenges[END_REF][START_REF] Sacchetto | Applications of Multi-Terminal Memristive Devices : A Review[END_REF] (see Fig. 2.3 of part I), which could lead to hardware neural networks with an outstanding energy efficiency.

As we mentionned it in subsection 3.3.1 of part I, such hardware neural networks can be trained ex situ: the synaptic weights are optimally determined on conventional central or graphical processing units, and then transferred onto memristive hardware [START_REF] Alibart | Pattern classification by memristive crossbar circuits using ex situ and in situ training[END_REF][START_REF] Guo | Mixed-Signal Neuromorphic Classifier Based on Embedded NOR Flash Memory Technology[END_REF]. Nevertheless, the most exciting applications could come from systems with a capability of learning. However, such in situ learning comes with two major challenges: the programmation of memristive devices (section 3.2 of part I), and the learning rule implemented itself (section 3.3 of part I). For self-containedness of this part, we remind the main features of these two challenges.

First, programming the conductance of memristive device very precisely is difficult, due to well-known memristive device imperfections, such as non-linear conductance response, cycleto-cycle and device-to-device variability. In the case of ex situ learning, this difficulty can be avoided by using complex tuning protocols. But in the case of in situ learning, such tuning protocols cannot be used as devices need to be reprogrammed repeatedly throughout learning.

The second challenge of in situ learning is the non-locality of most neural network learning rules. This is the case of backpropagation (see subsection 3.3.1 of part I) whose prescribed weight update does not solely depend on the pre-and post-synaptic neurons. Local learning rules can conversely be conveniently implemented on hardware with memristive devices which can be programmed by the voltage difference created by the pre-and post-synaptic neurons (see subsection 3.3.2 of part I). For this reason, although its theoretical implementation with memristive devices has been extensively studied [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF][105][START_REF] Soudry | Memristor-based multilayer neural networks with online gradient descent training[END_REF][START_REF]Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses[END_REF][START_REF] Lim | Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices[END_REF][START_REF] Nandakumar | Mixed-precision training of deep neural networks using computational memory[END_REF][START_REF] Anakha | Stochastic Deep Learning in Memristive Networks[END_REF], most demonstrations of memristive in situ learning hardware is single layer, when backpropagation becomes local [START_REF] Alibart | Pattern classification by memristive crossbar circuits using ex situ and in situ training[END_REF][START_REF] Prezioso | Training and operation of an integrated neuromorphic network based on metal-oxide memristors[END_REF].

In this part, we investigate the possibility to perform in situ learning circumventing these two challenges entirely. For this purpose, we propose implementing variations of Restricted Boltzmann Machines (RBMs) that allow in situ learning with a local learning rule, and where memristive device programming can be achieved in a very simple way. RBMs were introduced in the previous part (section 4.2 of part I) and have mostly found applications in pattern detection [START_REF] Kawasaki | A Study on Visualizing Feature Extracted from Deep Restricted Boltzmann Machine using PCA[END_REF][START_REF] Lu | A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines[END_REF]. In software, RBMs often underperform with regards to the most sophisticated deterministic neural networks on benchmark data sets [START_REF] Larochelle | Classification using Discriminative Restricted Boltzmann Machines[END_REF]. However, they appear extremely attractive with regards to our two challenges. They can indeed be trained with Contrastive Divergence [START_REF] Hinton | Training Products of Experts by Minimizing Contrastive Divergence[END_REF], a spatially local learning rule. Also, their intrinsically stochastic nature suggests that they could be appropriate to learn in an approximate setting. Existing works on memristive RBMs [START_REF] Suri | Neuromorphic Hybrid RRAM-CMOS RBM Architecture[END_REF][START_REF] Muqeem | Contrastive divergence for memristor-based restricted Boltzmann machine[END_REF][START_REF] Mahdi | Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning[END_REF][START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF][START_REF]A novel memristor-based restricted Boltzmann machine for contrastive divergence[END_REF] mainly focused on the CMOS circuitry to implement the neurons [START_REF] Suri | Neuromorphic Hybrid RRAM-CMOS RBM Architecture[END_REF][START_REF] Mahdi | Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning[END_REF], matrix multiplication and summation [START_REF] Mahdi | Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning[END_REF], Gibbs sampling [START_REF]A novel memristor-based restricted Boltzmann machine for contrastive divergence[END_REF], neuron value centering when adding depth [START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF]. In our study, we perform simulations and propose methods for achieving in situ learning. We focus in particular on the impact of the conductance update physics, and of the tuning of hyperparameters, a critical question for in situ learning.

We first introduce a baseline memristor-based gradient descent algorithm taking only the sign of the gradient into account. We use this algorithm to train the three most encountered RBM-based architectures in the neuromorphic literature on the hand-written digit classification task (MNIST [START_REF] Lecun | The MNIST database of handwritten digits[END_REF]) with typical values of the device parameters to identify the most relevant algorithm. In the second part of the paper, we show that reducing the variance of the gradient estimate provided by Contrastive Divergence improves the performance of the RBM with non-linear devices. Pointing out the necessity to hand-tune the pulse width in the baseline algorithm, we come up with a programming pulse width selection based on the sign of two consecutive weight updates inspired from Resilient Propagation [START_REF] W Schiffmann | Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons[END_REF][START_REF] Igel | Empirical evaluation of the improved Rprop learning algorithms[END_REF][START_REF] Mosca | Adapting Resilient Propagation for Deep Learning[END_REF] which enlarges the range of eligible pulse widths by up to two decades. Finally, we combine the two techniques introduced and analyze the effect of variability on the RBM. We conclude by lessons taught by these results. These results were published in Scientific Reports and the present part is adapted from this publication [START_REF] Ernoult | Using memristors for robust local learning of hardware restricted Boltzmann machines[END_REF]. A Restricted Boltzmann Machine (RBM) is a stochastic neural network which learns to generate a data set. In such a network, the neural dynamics are governed by an energy landscape. After learning, the minima of the energy should correspond to the data set samples (see Fig. 4.1 on Contrastive Hebbian Learning in part I): neurons evolve towards a state that accounts for the data. With notations consistent with the introduction of this thesis, the data is presented to visible units, denoted by x and the other neurons, called hidden neurons and denoted by s, are correlated to the visible units through the weights w and evolve accordingly. Visible and hidden units may also be influenced by a constant input which we model by a bias, respectively b x and b s . Formally, we can write the energy associated to such a system as:

II.1.1 -Restricted Boltzmann Machines E(x, s; w, b x , b h ) = -s • w • x -b s • s -b x • x, (1.1)
In practice, b x and b s are concatenated to w as an extra column and row, respectively, so that we absorb their definition into w without loss of generality. In accordance with the previous notations, we denote θ = {w, b h , b v }. Neurons have binary values {0, 1}, which are samples of the joint distribution:

p(x, s; θ) = exp(-E(x, s; θ))
x,s exp(-E(x, s; θ))

(1.2)
Running the neural dynamics amounts to sampling this distribution. Once the neural network is trained, such sampling is able to regenerate the data set. Learning is achieved by gradient ascent on the log-likelihood log p(x; θ) = s p(x, s; θ). Denoting Z = x,s exp(-E(x, s; θ)), the computation reads:

∆θ ∝ ∂ log p(x; θ) ∂θ = Z s exp(-E(x, s) = 1 p(x) s - ∂E ∂θ (x, s) exp(-E(x, s)) Z =p(x,s) + x,s ∂E ∂θ (x, s) exp(-E(x, s)) Z p(x,s) = s - ∂E ∂θ (x, s)p(s|x) + x,s ∂E ∂θ (x, s)p(x, s) = - ∂E ∂θ data + ∂E ∂θ model
where • data and • model denote a data average and a model average respectively. Taking the specific form of the energy given by Eq. (1.1), we finally get:

     ∆w ij ∝ s i x j data -s i x j model ∆b h,i ∝ s i data -s i model ∆b v,j ∝ v j data -v j model (1.3) In Eqs. (1.
3), computing the data statistics • data is straightforward: the posterior p(s|x) is a Bernoulli distribution that makes inference tractable. However, computing the model statistics • model , which boils down to sampling the joint distribution p(x, s) is much more of a challenge. An approach to estimate the model statistics is provided by Constrastive Divergence [START_REF] Hinton | Training Products of Experts by Minimizing Contrastive Divergence[END_REF]. More precisely, Contrastive Divergence provides a biased estimate of the gradient of the likelihood log p(x; θ). The principle of this algorithm is to update the synaptic weights of the neural networks w ij through:

II.1.2 -Memristor model used and associated algorithm

∆w ij ∝ x j (0)s i (0) -x j (1)s i (1) (1.4)
States "0" and "1" refer to the step of a "Gibbs chain", used to produce samples from the model. In step 0, the state of hidden neurons s(0) is sampled based on the state of input neurons x(0), clamped to a training example: s i (0) ∼ p(s i = 1|x j (0)) where '∼' means 'is sampled from'. In step 1, the state of input neurons x( 1) is sampled based on the previous state of hidden neurons (x j (1) ∼ p(x j = 1|s i (0))), and the state of the hidden neurons s( 1) is sampled a second time based on the new state of the input neurons

(s i (1) ∼ p(s i = 1|x j (1))). Note that p(s|x) = σ(w • x + b s ) and p(v|s) = σ(w • s + b x ) with σ(x) = 1/(1 + exp(-x))
so that the activation function used in a Restricted Boltzmann Machine is the usual sigmoid function -see the excellent introduction to Restricted Boltzmann Machines by Asja Fischer for derivation details [START_REF] Fischer | Training restricted Boltzmann machines: An introduction[END_REF]. The most distinctive feature of Contrastive Divergence is its spatial locality. Unlike the backpropagation rule use for conventional forms of neural networks, the update to synaptic weight w ij only depends on information about the two neurons i and j to which the synapse is connected.

Memristor model used and associated algorithm

All the simulations presented in this paper have been carried out at a level which highlights the effects of the weight update physics and the learning rules it enables on the different neural network architectures introduced thereafter.

The following model [START_REF] Querlioz | Learning with memristive devices: How should we model their behavior?[END_REF] for the memristive devices was used:

dG(t) dt =    C p exp -β p G(t)-G min Gmax-G min (potentiation) -C d exp -β d Gmax-G(t) Gmax-G min (depression) , (1.5) 
applying Eq. (1.5) between t 0 and t 0 + ∆t yields the effective conductance update (whose explicit form is shown in the Methods):

G(t 0 + ∆t) = G(t 0 ) + t 0 +∆t t 0 dG(t) dt dt, (1.6)
G(t) denotes the conductance at time t of the device, with G max and G min being the maximal and minimal conductance, labels p and d referring to potentiation and depression respectively. ∆t appearing in Eq. (1.6) defines the programming pulse width. Note that our memristor model implicitly takes into account the number of pulses applied to the device: it treats equally a programming pulse of width ∆t or n programming pulses of width ∆t/n. We also introduce ∆t max as the pulse width that is required to bring the conductance from G min to G max . C p and C d , which encode the amplitude of the voltage difference applied to the device, is fixed to ensure this last condition (see Methods for details). β p and β d model the dependence of the conductance update with the current conductance, namely the nonlinearity of the device so that if β p = 0, dG/dt is constant for potentiation. This model can be used to describe practical memristive devices [START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF][START_REF] Querlioz | Learning with memristive devices: How should we model their behavior?[END_REF][START_REF] Barbera | Narrow Heater Bottom Electrode-Based Phase Change Memory as a Bidirectional Artificial Synapse[END_REF][START_REF] Serb | Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[END_REF]. Our model is similar in form to existing model [START_REF] Martin | Double-barrier memristive devices for unsupervised learning and pattern recognition[END_REF], as further discussed in Appendix 1.1.

In our work, we assume that each model parameter or weight w is carried by two memristive devices of conductance G + and G -, so that w = G + -G - [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF] -see Fig. 1.2. In the light of these notations and for most of our simulations, we assumed that the non-linear parameter β and the multiplicative factor C were the same not only between two devices of the same synaptic pair, but also for potentiation and depression -in the absence of device variation, see below. Depending on the technology used, G + and G -can only be increased [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF][START_REF] Fumarola | Accelerating machine learning with Non-Volatile Memory: Exploring device and circuit tradeoffs[END_REF], which our simulation framework can handle. In most cases, a learning algorithm prescribes an update ∆w, given by the gradient of a loss function for instance or a proxy (as it is the case for contrastive divergence)

w ← w + α∆w, ( 1.7) 
where α and ∆w are the learning rate and the weight update respectively. However, incrementing precisely w = G + -G -of the amount α∆w along the memristor characteristics Eq. (1.5) is extremely impractical: it requires to temporarily store the gradient value, read out the weight values and adjust the programming pulse width accordingly. So in this first section, we only take the sign of the gradient into account at each learning step and we apply identical pulses with width ∆t according to a simple heuristic, described in Alg. 1: whenever the desired weight change ∆w is positive (negative), we increase (decrease) G + and decrease (increase) G -by applying a pulse of duration ∆t. Note in Alg. 1 that the conductance update reads as 

G ij ← G ij + f p,d (G ij ,
w ij ← G +,ij -G -,ij 10:
end for 11: end for The pulse width monitors the speed of learning, and therefore has to be tuned. Alg. 1 has been called the Manhattan Rule [START_REF] W Schiffmann | Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons[END_REF], Unregulated Step Descent [START_REF] Nair | Gradient-descent-based learning in memristive crossbar arrays[END_REF] or Stochastic Sign Descent (SSD) [START_REF] Balles | Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients[END_REF]. We herein call it Cst to refer to the fact that the programming pulse width is constant throughout learning.

In this work, we focus on the impact of non-linearity, cycle-to-cycle variability and device-to-device variability on the resulting performance. Non-linearity is parametrized by β in Eq. (1.5), we modeled cycle-to-cycle variability by adding a Gaussian noise to each conductance update, and device-to-device variability by a dispersion on the multiplicative factor C appearing in Eq. (1.5). In this case, one given device may not respond symmetrically to potentiation and depression, or devices of the same pair may not respond symmetrically to potentiation (see Appendix 1.1).

Chapter 2 Results

Resilience of RBM-based architectures trained with constant programming pulse width

The impact of RBM-based network topology has not been extensively investigated from a neuromorphic viewpoint [START_REF] Suri | Neuromorphic Hybrid RRAM-CMOS RBM Architecture[END_REF][START_REF] Muqeem | Contrastive divergence for memristor-based restricted Boltzmann machine[END_REF][START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF]: a direct comparison of the influence of the position of the labels (i.e. placed in the visible layer or in a separate output layer) or of the depth of the network (i.e. stacking several RBMs) on the resulting performance with different device parameters has not yet been carried out. Our goal is to compare different RBM-based architectures on the same learning task in terms of their resilience to device imperfections. We now present the results obtained when training -under the Cst algorithm with typical device parameters -the three most encountered RBM-based architectures in the neuromorphic literature on the MNIST discrimination task (see Table 2.1 and Fig. 2.1).

• The first one is a simple Restricted Boltzmann Machine (RBM) topped by a softmax classifier [START_REF] Suri | Neuromorphic Hybrid RRAM-CMOS RBM Architecture[END_REF][START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF] ("RBM+softmax"), with labels placed at the end of the network as the output of a classifier. In this architecture, the connections between input and hidden neurons, and output and hidden neurons are learned independently.

• The second is a Discriminative Restricted Boltzmann Machine [START_REF] Muqeem | Contrastive divergence for memristor-based restricted Boltzmann machine[END_REF][START_REF] Lorenz K Müller | Randomized Unregulated Step Descent for Limited Precision Synaptic Elements[END_REF] taking as inputs both the picture and the associated label ("Discriminative RBM"). This architecture is expected to outperform the simple RBM, as the connections between input and hidden neurons, and output and hidden neurons are learned jointly.

• Finally, we simulate a Deep Belief Net consisting in a stack of two RBMs topped by a Discriminative RBM ("Deep Belief Net", or DBN) [START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF][START_REF]A novel memristor-based restricted Boltzmann machine for contrastive divergence[END_REF]. As this architecture features three layers of hidden neurons, it is expected to be able to learn more difficult tasks than the other two architectures.

II.2.1 -Resilience of RBM-based architectures trained with constant programming pulse width

The three architectures are depicted in Fig. 2.1. A thorough description of the network hyperparameters and the methodology can be found in the Methods part. Throughout this part, in contrast with most studies on the multi-layer perceptron, neurons are encoded with binary values at train and test time, and not real values. Moreover, as we restrict our study to local learning rules, the Deep Belief Net has only been trained two-layer wise as a stack of independent RBMs (i.e. "greedy learning" [START_REF] Geoffrey E Hinton | A Fast Learning Algorithm for Deep Belief Nets[END_REF]), with no additional joint training with backpropagation (i.e. "fine-tuning"). Apart from the softmax classifier, all the architectures are trained using Contrastive Divergence. If not stated otherwise, the mini-batch size is set to 100. Table 2.1 lists the mean optimal performance over five trials of the three networks on the test set with typical device parameters. For each set of device parameters, we tuned the pulse width ∆t until achieving the best performance: we denote the optimal pulse width for a given set of device parameters by ∆t * . To make sense of our simulation results, we also performed floating point standard gradient descent simulation results, referred to as "software-based" in Table 2.1. In this situation, as an example, a Discriminative RBM achieves over five trials 6.6 ± 0.3% test error with 300 hidden units. This error rate can be reduced by the use of larger neural networks. With 500 hidden units, the Discriminative RBM achieves 5.4 ± 0.2%, and 3.6 ± 0.2% with 6,000 hidden units which, up to the choice of hyperparameters, is akin to state-of-the-art for this type of architecture [START_REF] Larochelle | Classification using Discriminative Restricted Boltzmann Machines[END_REF].

In this non-memristive floating point software-based training, the Deep Belief Net outperforms the other two networks, as one would expect. When using memristors, the near-linear case (β = 0.005) yields the best results for the three architectures compared to the non-linear case (β = 3), as it has been extensively observed on multi-layer perceptrons [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF][START_REF] Nandakumar | Mixed-precision training of deep neural networks using computational memory[END_REF][START_REF] Yu | Neuro-Inspired Computing With Emerging Nonvolatile Memory[END_REF]. (Gmax-G min ) = 6 • 10 -3 with β = 0.005. Device-to-cycle variability is taken as σ µ inter = 1 with β = 0.005. Each topology includes the bias. Each simulation was performed over 30 epochs with a mini-batch size of 100, we indicate the mean error rate and the variance over five trials.

II.2.1 -Resilience of RBM-based architectures trained with constant programming pulse width

RBM+softmax

Interestingly, the Discriminative RBM achieves the lowest test error rate. It is not surprising that the RBM topped by a classifier may not do as well as the Discriminative RBM, as nothing ensures the features extracted by the RBM to be discriminative [START_REF] Larochelle | Classification using Discriminative Restricted Boltzmann Machines[END_REF]. By contrast, it is surprising at first sight that the benefits of depth with the Deep Belief Net are not observed as in the floating point software-based training: the Deep Belief Net performs similarly to the Discriminative RBM when using near-linear memristors. However, the shape of the features accounts for these discrepancies. In Fig. 2.2, we display a 5 × 5 grid of gray-scale pictures, each of which representing the values of the 784 weights connecting the visible layer to a given hidden unit: each picture represents what is seen by one hidden unit, thus giving a direct insight into the features extracted by this hidden unit from the data. As seen per Fig. 2.2, while the features learned by a standard RBM (i.e. with a proper gradient descent) are sharply defined stroke-like features [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF], those learned by a memristive Discriminative RBM with the Cst algorithm are coarser. This may explain why stacking several memristive RBMs may not help for subtle features extraction and subsequently improved performance.

II.2.1 -Resilience of RBM-based architectures trained with constant programming pulse width

This adds up to the fact we did not fine-tune the Deep Belief Net with backpropagation. In the non-linear case (β = 3), the RBM topped by a softmax and the Discriminative RBM test error rates jumps by ∼ 9% compared to ∼ 22% for the Deep Belief Net. We can account for this observation with the corruption of the extracted features which, as seen from Fig. 2.2, is even more pronounced than in the linear case. As these corrupted features are fed into the next RBM, this effect cumulates with depth. When passing extracted features from one RBM to the next one, one stochastic realization may consequently not be enough to transmit all the information contained by the features. Finally, the pulse width for which the networks are tuned at β = 3 is lower than in the β = 0.005 case: non-linearity drags the optimal pulse width to low values to accommodate the abrupt conductance update it triggers.

When taking cycle-to-cycle variability into account in the linear case ( σ intra (Gmax-G min ) = 6 • 10 -3 , β = 0.005), the Deep Belief Net appears to be more resilient to the programming noise than the two other networks: its test error rate only jumps by ∼ 3% against ∼ 6% for the two other networks. This happens because the pulse width for which the first two networks are tuned (∆t * /∆t max = 1/1000) is lower than the one of the Deep Belief Net (∆t * /∆t max = 1/150), so that the deterministic component of conductance update better dominates the programming noise. This idea will be further developed in the last section.

The impact of device-to-device variability in the linear case ( σ µ inter = 1, β = 0.005) can also be interpreted in the light of the pulse width employed. As the coefficient carrying device-to-device variability comes in the memristor characteristic Eq. (1.5) as C ± ∆t, the bigger ∆t the bigger the effect of device-to-device variability, which may explain why the Deep Belief Net is less resilient in this regard than the Discriminative RBM: the test error rate achieved by the latter increases by ∼ 8% compared to ∼ 16% for the former. Although the RBM topped by a softmax and the Discriminative RBM use the same pulse width, the former network turns out to be less resilient. The Discriminative RBM optimizes the II.2.2 -Solutions mitigating device imperfections on the Discriminative RBM joint probability of the inputs and labels so that device-to-device variability affects features extraction and classification consistently, which is not the case when RBM features are fed into an independent softmax classifier.

Overall, this comparative study reveals that the Discriminative RBM appears to be the best candidate architecture in terms of performance for typical values of the device parameters. We consequently focus our study in the rest of the part on the Discriminative RBM. Still, the best performance for a given set of realistic device parameters is not satisfactory enough, and it is achieved for a very narrow range of pulse widths around the optimum. In the next two subsections, we propose two intuitive solutions to deal with these two aspects respectively, and finally combine them in the last subsection.

Solutions mitigating device imperfections on the Discriminative RBM

Mitigating device non-linearity by reducing the variance of the gradient sign estimate

Gradient descent is inherently stochastic when dealing with a large data set. The first source of stochasticity comes from sampling a mini-batch of data drawn uniformly and independently from the data set and computing an approximate gradient over this mini-batch. A second source of stochasticity stems from Contrastive-Divergence itself, which relies on stochastic quantities, as seen in Eq. (1.4).

Most neuromorphic investigations on RBMs [START_REF] Suri | Neuromorphic Hybrid RRAM-CMOS RBM Architecture[END_REF][START_REF] Muqeem | Contrastive divergence for memristor-based restricted Boltzmann machine[END_REF][START_REF] Parmar | Design Exploration of Hybrid CMOS-OxRAM Deep Generative Architectures[END_REF] exacerbate these two forms of stochasticity, as Contrastive Divergence is carried out sample by sample (that is with a mini-batch of size one) using one single stochastic realization per neuron. In this section, we investigate techniques to reduce the stochasticity. First, we sum Eq. 1.4 across several samples (i.e. mini-batches). Second, we sum it over multiple stochastic realizations (i.e. parallel Gibbs chains). This second strategy amounts to encoding neurons by their firing rate instead of a single spike, and is reminiscent of the rate-coded Contrastive Divergence of [START_REF]Rate-coded DBN: An online strategy for spike-based deep belief networks[END_REF] or Event-driven Contrastive Divergence [START_REF] Emre | Stochastic synapses enable efficient brain-inspired learning machines[END_REF]. Fig. 2.3a) and 2.3b) show the test error rate as a function of the pulse width used for the Discriminative RBM trained under the Cst algorithm, in the linear and non-linear case, and with different mini-batch sizes and numbers of parallel Gibbs chains used for Contrastive Divergence. In the linear case (Fig. 2.3a)), increasing the mini-batch size or the number of parallel Gibbs chains does not improve significantly the resulting performance. Conversely, when working with non-linear devices (Fig. 2.3b)), decreasing the variance of the gradient estimate dramatically makes a difference. Decreasing the variance of the gradient estimate indeed helps the conductances to move into good directions, especially when the conductance increment is abrupt and uncontrolled in the non-linear case.

Moreover, the optimal pulse width is dragged towards smaller values when decreasing the variance of the sign of the gradient estimate: with a reduced variance and within a fixed number of epochs, the algorithm converges faster and subsequently selects a smaller learning rate. This could seem counter-intuitive, as in a standard gradient descent framework, the optimal mini-batch size is known to scale linearly with the learning rate [START_REF] Samuel | Don't Decay the Learning Rate, Increase the Batch Size[END_REF]. However, this analysis does not hold here upon only taking the sign of the gradient into account. Fig. 2.3c) shows for each value of β the best error rate achieved when using one or 20 parallel Gibbs chains, both with a mini-batch size of 100, supporting the above statement.

Facilitate pulse width tuning: Resilient Propagation (RProp)

Using a constant pulse width may not be optimal for several reasons. As the amplitude of the weight updates is directly monitored by the programming pulse width and amplitude, it has to be tuned with a hyperparameter selection by sweeping through different values. Also, when using identical pulses throughout learning, undesirably large weight updates may occur in conductance regions of high non-linearity, entailing weight dithering around optima [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF]. Conversely with a pulse width that is too small, conductances may move too slowly for convergence to be achieved within a reasonable number of epochs. A natural solution is to drop the Manhattan rule by reading out the numerical value of the gradient itself and applying the number of pulses required [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF][START_REF] Nandakumar | Mixed-precision training of deep neural networks using computational memory[END_REF][START_REF] Narayanan | Reducing circuit design complexity for neuromorphic machine learning systems based on Non-Volatile Memory arrays[END_REF], or emulating linearity with pulses consistent with the current conductance state [START_REF] Pai-Yu | Mitigating Effects of Non-ideal Synaptic Device Characteristics for On-chip Learning[END_REF][START_REF] Jerry | Ferroelectric FET Analog Synapse for Acceleration of Deep Neural Network Training[END_REF]. However, these solutions are very expensive in practice: they require reading the state of each memory device at each learning update. Here, we investigate a simpler to implement solution, which exploits information about neurons only. In a system, information about neurons is indeed much more readily available than information about the memory devices.

Interestingly, off-line conductance tuning protocols, gradually increasing the pulse width or voltage amplitude so long as we get closer to a conductance target or decreasing it otherwise [START_REF] Alibart | Pattern classification by memristive crossbar circuits using ex situ and in situ training[END_REF][START_REF]Programming Protocol Optimization for Analog Weight Tuning in Resistive Memories[END_REF], give some insights into appropriate on-line programming schemes. A mathematical generalization of this heuristic, consisting in increasing the learning rate so long as we get closer to an optimal model or decreasing it otherwise, is called Resilient Propagation [START_REF] W Schiffmann | Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons[END_REF][START_REF] Igel | Empirical evaluation of the improved Rprop learning algorithms[END_REF][START_REF] Mosca | Adapting Resilient Propagation for Deep Learning[END_REF] (RProp). Very recently, a RProp-like technique was proposed for training a memristive multi-layer perceptron and was named the "Local Gain Techniques" [START_REF] Boybat | Improved Deep Neural Network hardware-accelerators based on Non-Volatile-Memory : the Local Gains technique[END_REF]. In this work, we take inspiration in an improved version of RProp with "weight back-tracking" (called RProp+ in [START_REF] Igel | Empirical evaluation of the improved Rprop learning algorithms[END_REF]), which cancels conductance updates that overshot an optimal model, and subsequently reduces the pulse width.

A detailed description of the neuromorphic adaptation of RProp with weight back-tracking is presented in Alg. 2. Whenever the sign of the gradient remains the same, the pulse width is increased by a factor η + > 1 so long as it does not exceed the initial pulse width: ∆t ij ← min(η + ∆t ij , ∆t(0)). This condition emulates a learning rate decay from its initial value, as seen per Fig. 2.4. When a gradient sign flip is encountered, we cancel the last conductance change over the same pulse width, and decrease the pulse width for the next learning step by a factor η -< 1. Note from Alg. 2 that we did not impose a minimal pulse width, we allow it to decay to zero. By construction, the pulse width is consequently bounded for each weight w ij do

3: if ∆w (n) ij ∆w (n-1) ij > 0 then 4: ∆t ij ← min(η + ∆t ij , ∆t(0)) 5:
Adjust G +,ij and G -,ij according to sign(∆w

(n) ij ) with ∆t ij 6: else if ∆w (n) ij ∆w (n-1) ij < 0 then 7:
Apply opposite conductance change over the same ∆t ij 8:

∆t ij ← η -∆t ij for the next learning step 9:
Set ∆w

(n) ij = 0 10: else if ∆w (n) ij ∆w (n-1) ij = 0 then 11:
Adjust G +,ij and G -,ij according to sign(∆w

(n) ij ) with ∆t ij 12: end if 13: w (n+1) ij ← G (n+1) +,ij -G (n+1) -,ij 14:
end for 15: end for by initial pulse width and zero: ∆t max = ∆t(0), ∆t min = 0. This weight-backtracking is meant to avoid penalizing twice the algorithm by overshooting a local optimum and not going back far enough to cancel the wrong conductance move, and is handled by the third logic case ∆W (n) ∆W (n+1) = 0 (see Alg. 2). In addition, the pulse width is bounded by the initial pulse width. ∆w

(n) ij = N (n) +,ij -N (n) -,ij n -1 N (n-1) +,ij > N (n-1) -,ij N (n-1) +,ij < N (n-1) -,ij N (n-1) +,ij > N (n-1) -,ij N (n-1) +,ij < N (n-1) -,ij n N (n) +,ij > N (n) -,ij N (n) +,ij < N (n) -,ij N (n) +,ij < N (n) -,ij N (n) +,ij > N (n) -,ij
Case ∆w

(n-1) ij ∆w (n) ij > 0 ∆w (n-1) ij ∆w (n) ij < 0 Table 2.2:
RProp table of truth for any mini-batch size and number of parallel Gibbs chains. In the five remaining cases:

∆W (n-1) ij ∆W (n) ij = 0.
The notations are defined on the body text.

As seen in Table 2.2, in spite of the apparent complexity of the RProp, it can be handled easily when applied to Contrastive Divergence. In Table 2.2, we denote N (n) +,ij the positive term of Contrastive Divergence, i.e. v j (0)h i (0), and N (n) +,ij the negative term, i.e. v j (1)h i (1)), summed across mini-batches and parallel Gibbs chains. The relative importance of N +,ij and N +,ij between two consecutive learning steps n -1 and n can be classified in the nine logic cases depicted in Table 2.2. From these nine cases, we can deduce the sign of the factor Cst and our RProp rule, for varying initial pulse widths. In the linear case (β = 0.005), RProp allows achieving a test error that is lower than 10% for ∆t/∆t max ∈ [10 -4 , ∼ 10 -1 ], compared to ∆t/∆t max ∈ [10 -4 , ∼ 2.10 -2 ] when using the Cst algorithm. Similarly in the non-linear case (β = 3), RProp allows achieving a test error that is lower than 20% for ∆t/∆t max ∈ [∼ 5.10 -5 , ∼ 7.10 -2 ], compared to ∆t/∆t max ∈ [∼ 5.10 -5 , ∼ 3.10 -3 ] when using the Cst algorithm. In this regard, RProp manages to extend the range of eligible pulse widths.

Resilience to cycle-to-cycle variability

In this subsection, we investigate the resilience of the Discriminative RBM to cycle-to-cycle variability and device-to-device variability using the two techniques introduced above. We restrict our study to the linear case (β = 0.005) to ensure that our results are not biased by non linearity. We present in Fig. 2.6a) the impact of cycle-to-cycle variability upon the performance of the Discriminative RBM trained under the four possible combinations of the training techniques studied before. As mentioned above, using longer programming pulses may be preferable in the presence of cycle-to-cycle variability. Therefore, we tuned learning for the best pulse width for each given noise intensity. We first observe that using Cst or RProp only weakly changes the resilience to cycle-to-cycle variability. By contrast, using multiple Gibbs chains improves the performance by ∼ 6% with the maximal amount of cycle-to-cycle variability. This result might seem initially surprising, as the systems with 20 Gibbs chains are tuned at a smaller pulse width than the systems with one Gibbs chain at low noise, thus intuitively more sensitive to noise. To facilitate the cycle-to-cycle variability analysis, we present the conductance incrementto-noise ratio in the linear case 2C∆t * (0)/(σ intra (G max -G min )) = 2∆t(0)/(∆t max σ intra ), computed for each level of noise and optimal pulse width ∆t * (0), in Fig. 2.6b). When using a single Gibbs chain, the conductance increment-to-noise ratio steadily decreases when noise increases: the noise increase dominates the conductance update. By contrast, when using 20 Gibbs chains, this parameter increases with noise from σ intra /(G max -G min ) = 6.10 -3 onwards: the conductance update starts to overcome the noise increase. This value corresponds to the level of noise for which a clear difference appears between on and 20 Gibbs chains in Fig. 2.6a), so that our analysis in terms of the conductance increment-to-noise ratio relevantly accounts for this discrepancy. All of these observations boil down to how much the pulse width can be increased to absorb noise: what matters is not the pulse width for which the algorithms are tuned in the absence of noise, but how much it can be increased from there to absorb noise. Consequently, it is precisely because the systems using 20 Gibbs chains are tuned at a smaller pulse width than (Cst, 1 CD), and itself smaller than (RProp, 1 CD) that the former are more resilient to noise than the latter.

Resilience to device-to-device variability

While analyzing the impact of cycle-to-cycle variability on the performance involves many phenomena, understanding the impact of device-to-device variability for the four different schemes is straightforward and similar to the analysis carried out in Table 2.1: the larger the pulse width, the bigger the impact of device-to-device variability on the performance. Fig. 2.7 shows that the schemes using 20 parallel Gibbs chains are more robust to deviceto-device variability than the scheme with Cst driven pulse widths and 1 Gibbs chain, itself more robust than its RProp counterpart, which is directly accounted by their respective pulse widths. Table 2.3 summarizes the results obtained with all the possible combinations of the techniques used and for typical values of the device parameters. 

II.2.2 -Solutions mitigating device imperfections on the

Discussion

To design hardware-friendly learning rules that are both local and resilient to imprecise programming of memristive devices, we first studied the three most encountered RBM-based neural networks in the neuromorphic literature in terms of their performance on the MNIST discrimination task, when trained under our baseline memristor-based gradient descent algorithm (Cst). With typical values of non-linearity, cycle-to-cycle and device-to-device variabilities, the Discriminative RBM outperforms the two other architectures. Using one bit of information at each learning step (i.e. the sign of the gradient) with one bit per neuron (i.e. stochastically sampled binary neurons) while achieving a classification performance akin to software-based simulations, the Discriminative RBM trained under Contrastive Divergence appears to be a good candidate for in situ learning. Also, the choice of the pulse width is critical with respect to the device imperfections. While hand-tuning the programming width as a hyperparameter selects an optimal value that is never predictable in advance, we can understand how the weight update physics influence it. Increasing non-linearity or deviceto-device variability, with regards to an ideal device, favors pulse widths that are shorter to avoid abrupt conductance changes. Conversely increasing cycle-to-cycle variability selects pulse widths that are longer to overshadow the programming noise with respect to the amplitude of the conductance update.

More importantly, and surprisingly at first sight, the Deep Belief Net does not perform better than the Discriminative RBM. On the one hand, the inefficiency of depth in our specific training and inference setting is due to the coarsened feature extraction abilities of RBMs upon using memristive devices. In the best case (near-linear) the stack of RBMs is not useful, in the worst case (non-linear), learning is dramatically jeopardized when passing corrupted features into downstream RBMs. On the other hand, this inefficiency also stems from not fine-tuning the stack of RBMs with backpropagation, as per our choice to solely focus on local learning rules.

For advanced applications, Discriminative RBMs could nonetheless be used within deep neural networks to learn complex tasks, if the transfer learning approach is used. This approach consists in importing upstreams weights previously trained on software for feature extraction on a particular kind of data, and training in situ only the last layers on similar but II.2.2 -Solutions mitigating device imperfections on the Discriminative RBM more specific data [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. This strategy has been proven in various contexts, and allows training neural networks on new tasks with relatively modest amounts of data, if the neural network has been previously trained on a different but yet similar task with important amounts of data [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. Therefore, our simplified technique for training should not be considered for training deep neural networks in their entirety, but for adapting them to new situations, for example in embedded environments.

In the second section of this part, we showed that decreasing the variance of Contrastive Divergence by summing it across samples (i.e. mini-batches) and stochastic realizations of neurons (i.e. parallel Gibbs chains) considerably improved the performance of Discriminative RBMs, when trained with realistic memristive devices. This trend was seen in terms of non-linearity, cycle-to-cycle and device-to-device variability. Decreasing the variance of Contrastive Divergence indeed makes the algorithm more immune to non-linearity: it is no longer penalized by abrupt conductance changes along wrong directions. And as this technique selects a smaller programming pulse width, it can smoothen out the discrepancies due to variability sources. Interestingly, our findings on the Discriminative RBM shed new light on the impact of the device imperfections by entangling them all around the choice of the programming pulse width, which has to be tediously tuned when it is fixed throughout learning (Cst). This statement pushed us to investigate the use of RProp driven pulse widths. By taking into account the sign of the gradient between two consecutive learning steps, this technique enables to enlarge the range of sensible pulse widths by up to two decades without affecting the resilience to the device imperfections. From Fig. 2.6, Fig. 2.7 and Table 2.3, we acknowledge that the use RProp may not always yield the best error rate when tuned at its optimal pulse width. However, we see from Fig. 2.5 that RProp outperforms Cst when taking the whole range of pulse widths into account. Also, while we explicitly studied the combination of RProp with the use of multiple Gibbs chains with regards to variability sources, we want to stress here its impact upon non-linearity effects as it appears in Table 2.3: (20 CD, Cst) and (20 CD, RProp) at β = 3 achieve the same optimal performance and the only effect of RProp is to enlarge the range of pulse widths achieving a test error that is lower than 20%. Thus this technique is of definite practical interest as it reduces the need to tune hyperparameters, a major concern for learning in embedded contexts.

Our choices regarding device modeling were guided by the existing literature. For instance, putting device-to-device variability into the multiplicative parameter C appearing in Eq. (1.5) is inspired by device measurements [START_REF] Serb | Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[END_REF]. Our work would not apply directly to Phase Change Memory devices which exhibit a strong asymmetry between potentiation and depression. However, our results would be applicable directly to pairs of Phase Change Memories associated in 2-PCM structures [START_REF] Burr | Experimental demonstration and tolerancing of a largescale neural network (165,000 synapses), using phase-change memory as the synaptic weight element[END_REF]. We also bear in mind that the use of mini-batches calls for the design of elaborate memory devices. A promising path to accomplish on-chip mini-batch gradient descent could be inspired by recent works [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF], combining a volatile and a non-volatile memory that would be updated within and across mini-batches respectively.

Overall, these results suggest the possibility to achieve on-chip learning with memristive learning with Discriminative Restricted Boltzmann machines, using a local learning rule and very simple device programming, and highlights strategies to make the learning process viable even with highly imperfect devices. More generally, our results highlight that the methods for making learning functional with imperfect analog hardware can differ from the techniques used for standard machine learning in software, suggesting the high need for hardware and learning algorithm codevelopment.

Part III

Introduction to Equilibrium Propagation

Chapter 1

Equilibrium Propagation 1.1 A heuristic view

Before delving into the theory of Equilibrium Propagation, it is worth conveying a heuristic view of this algorithm. Let us consider a neural network with a visible layer x, one hidden layer s 1 and an output layer ŷ. We assume that this neural network is recurrent: simply speaking, the neural network evolves through time as a dynamical system -we introduced recurrent neural networks in Eq. (1.16) of subsection 1.2.3 of part I. We furthermore assume that the dynamics of the neural network derive from an energy potential: the neural network dynamics subsequently evolve towards minima of the energy function. More explicitely, if we denote s = (s, ŷ) the global variable that labels the state of the hidden and output neurons altogether, θ the set of all the synapse weight values of the system and E the energy function of the system, the dynamics are defined as:

ds dt = - ∂E ∂s (x, s; θ). (1.1)
It should be noted in Eq. (1.1) that the energy function E explicitly depends on the input x, the neurons s and the weight values of the synapses θ. By definition, the system reaches equilibrium when ds dt = 0 and we denote s * the steady state achieving this equilibriumtherefore ŷ * and s 1 * denote the steady states of the output and hidden layers respectively.

We are in a supervised training context where the goal of learning is to map an input x to a target y. More precisely here, the goal of learning is to adjust the weights θ so that, upon clamping an input x to the visible layer and letting the system evolve along the dynamics given by Eq. (1.1) until reaching equilibrium, the resulting steady state configuration of the output layer ŷ * is the closest to the ground-truth target y -see Fig. 1.1 for a cartoon.

III.1.2 -Theory

Figure 1.1: A heuristic view of Equilibrium Propagation [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. We consider a recurrent neural network with a visible layer x, one hidden layer s 1 and an output layer ŷ whose dynamics are governed by Eq. (1.1) with a given energy function E: the network evolves towards minima of energy. The energy landscape seen by the neurons is plotted in dark blue. In the Equilibrium Propagation setting, the goal of learning is to adjust the weight values of the synapses θ so that upon presenting an input x to the visible layer of the system (e.g. a MNIST sample, as depicted here), the system evolves towards a minimum of the energy function so that the resulting steady state of the output layer (ŷ * ) is the closest to the ground-truth target y. The trajectory of the systemv from its initial state until reaching equilibrium is plotted with a dashed yellow arrow.

Since this system falls into the category of recurrent neural networks, there is at this stage a natural intuition that upon defining the appropriate loss function, backpropagation through time could be used for the purpose of this learning objective, as we showed in subsection 1.2.3 of part I. However, instead of backpropagating error gradients through the computational graph, Equilibrium Propagation enables the system itself to compute the error gradients through time. In the next sections, we explain why and how.

Theory

We now formally introduce Equilibrium Propagation as it is presented in [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. Again, we consider a system that is described by a state variable s, parameters θ and associated energy Figure 1.2: Equilibrium Propagation [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. The system trajectory is depicted with yellow dotted arrows. During the first phase, the system descends the energy landscape before the weight update (E before , in dark blue), until reaching the first steady state s * (in red). During the second phase, the elastic contribution β (bright blue) is added to E before , so that the system subsequently evolves along the free energy landscape F (orange), until reaching the second steady state s β * (in green). The effect of the learning rule Eq. (1.5) is to increase the energy of s * (red upward arrow) and to decrease the energy of s β * (green downward arrow), resulting in a new energy landscape (E after in red).

function E(x, s; θ) where x is an input clamped to the visible layer, which models "external world". Generally, E is a Hopfield energy, as we shall see on the concrete example presented later in this chapter. We also define a cost function that tells how "good" a network configuration is with respect to a target y, and the loss function L is the cost function evaluated at equilibrium: L = (s * , y) with ∂E ∂s (s * ) = 0, where s * is called the free steady state. The goal of learning is to adjust the parameters θ so that the cost function at equilibrium is minimal, or more formally:

min θ (s * (θ), y) subject to ∂E ∂s (s * ) = 0 . (1.2)
When learning is achieved, the output of the system should spontaneously relax towards y upon presenting x, namely: ŷ * ∼ y. Before stating their main result, Scellier and Bengio also introduce a free energy function F defined as:

III.1.3 -Algorithm F(x, s, y; θ, β) = E(x, s; θ) + β (s, y), (1.3)
where β is called the nudging strength. Physically, the free energy is the landscape seen by the neurons when they are nudged towards y with strength β: the term β (s, y) in Eq. (1.3) can be seen a elastic energy potential of stiffness β that can shift the steady state of a system. For instance, if we were to think of a pendulum under the influence of gravity, E in Eq. ( 1.3) would model gravity energy potential and β the elastic energy potential of a spring that would pull the pendulum updwards.

We call the nudged steady state s β * the configuration of the network which minimizes F: ∂F ∂s (s β * ) = 0. Scellier and Bengio showed that, as expected, s β * has a lower cost than s * so that, in this regard, s β * a "better" state than s * .

The main result of [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] is that the gradient of the loss function is given by:

∂L ∂θ = lim β→0 1 β ∂F ∂θ (x, s, y; θ, β) - ∂F ∂θ (x, s, y; θ, β = 0) . ( 1.4) 
In particular, when the cost function does not depend on θ, as it is the case when we use a mean-squared error (i.e. (ŷ, y) = 1 2 (ŷ -y) 2 ), the learning rule reads:

∂L ∂θ = lim β→0 1 β ∂E ∂θ (x, s, y; θ, β) - ∂E ∂θ (x, s, y; θ, β = 0) (1.5)
The interpretation of Eq. (1.5) is very intuitive. When going down the loss function θ ← θ -α ∂L ∂θ , the first term of Eq. (1.5) contributes to decreasing the energy of s β * which is a "good" state while the second term contributes to increasing the energy of s * which is a "bad" state. The energy landscape seen by the neurons is iteratively deformed until minima of the energy correspond to data configurations. This interpretation exactly follows the rationale of Contrastive Hebbian Learning as illustrated on Fig. 4.1. Finally, note that Eq. (1.5) holds for any network topology and does not specify any particular dynamics, so long as the system under consideration can minimize an energy function E and the associated free energy function F.

Algorithm

Let us now describe the algorithmic implementation of Equilibrium Propagation. To perform the weight update prescribed by Eq. (1.5), we need to get the free and nudged steady states s * [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. We consider a fully connected architecture with a visible layer taking input x, hidden layer s and output layer ŷ. During the first phase, the system evolves on its own, under the influence of x, until reaching the first steady state s * . During the second phase, the output layer ŷ is elastically nudged towards the ground-truth target y, until reaching the second steady state s β * . The learning rule Eq. (1.5) is subsequently applied.

and s β * respectively for a given input x. For this purpose, Equilibrium Propagation proceeds in two phases. During the first phase, we execute the following dynamics:

ds dt = - ∂E ∂s (x, s; θ), (1.6) 
until reaching the free steady state s * since by definition, Eq. (1.6) minimizes E. Then, during a second phase, we execute the following dynamics:

ds dt = - ∂E ∂s (x, s; θ) -β ∂ ∂s , ( 1.7) 
until reaching s β * , since Eq. (1.7) minimizes F. Then, along with s β * and s * , we simply perform the weight update given by Eq. (1.5). The whole algorithm is summarized by Alg. 3.

III.1.4 -Neural network model trained by Equilibrium Propagation

Algorithm 3 Equilibrium Propagation [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] Input: x (input data), θ (parameters), y (target) Output: θ 1: while s is not converged do 

s β * ← s 9: θ ← θ -1 β ∂E ∂θ (s β * ) -∂E ∂θ (s * )

Neural network model trained by Equilibrium Propagation

Although Eq. (1.5) holds for any neural network so long as the system under consideration can minimize an energy function E, the neural networks trained by Equilibrium Propagation in practice are recurrent neural networks typically described by dynamics of the kind of Eq. (1.6). More precisely, these RNNs belong to the class of convergent RNNs which, by definition, converge to a steady state given a static input. Depending on the literature, these networks are equivalently called "continuous Hopfield networks" and their dynamics are sometimes abusively said to be Leaky-Integrate and Fire (LIF), although we only consider here rate-based and not spiking models.

Example

Let us now apply this theory to a two layer neural network, defined by the following energy:

E(x, s 1 , ŷ; w 1 , w 2 ) = 1 2 s 1 2 + 1 2 ŷ 2 -σ(s 1 ) • w 1 • σ(x) -σ(ŷ ) • w 2 • σ(s 1 ), (1.8) 
where σ denotes the activation function. Again, the goal of learning is that the free steady state of the output layer ŷ * coincides the best with a given target y. Typically, we choose the cost function as a mean squared error function:

(ŷ, y) = 1 2 ŷ -y 2 (1.9)

III.1.6 -Intuitions about Equilibrium Propagation

Applying Eq. (1.6) with this energy gives the following differential equations for the first phase of Equilibrium Propagation:

dŷ dt = -ŷ + σ (ŷ) w 2 • σ(s 1
)

ds 1 dt = -s 1 + σ (s 1 ) w 1 • σ(x) + w 2 • σ(ŷ) .
(1.10)

During the second phase, the system satisfies the following equations:

dŷ dt = -ŷ + σ (ŷ) w 2 • σ(s 1 ) + β(y -ŷ) ds 1 dt = -s 1 + σ (s 1 ) w 1 • σ(x) + w 2 • σ(ŷ) , (1.11)
where the output layer is elastically nudged towards y and denotes Hadamard (elementwise) product. Having the free and nudged steady states of all the neurons, the weight update given by Eq. (1.5) reads in this particular case:

   ∆w 2 = 1 β σ(ŷ β * ) • σ(s 1,β * ) -σ(ŷ * ) • σ(s 1 * ) ∆w 1 = 1 β σ(s 1,β * ) • σ(x) -σ(s 1 * ) • σ(x)
(1.12)

Intuitions about Equilibrium Propagation 1.6.1 Going deeper with Boltzmann Machines?

Variational inference in Deep Boltzmann Machines. In the work presented previously, we stack RBMs and perform greedy learning to train deeper architectures with a local learning rule, which is theoretically justified by the fact that this procedure increases a lower bound on the log-likehood p(x; θ) [START_REF] Geoffrey E Hinton | A Fast Learning Algorithm for Deep Belief Nets[END_REF]. Increasing further this lower bound implies taking hidden layer interactions into account. Again, the hardest part in Boltzmann Machine learning is to sample the posterior distribution of the model. As highlighted in part I, inference is tractable in a Restricted Boltzmann Machines because the restriction of the synaptic connections make the model distribution tractable and easy to sample from. For Deep Boltzmann Machines [START_REF] Salakhutdinov | Deep boltzmann machines[END_REF], variational inference is used to approximate the model posterior distribution. The central idea of variational inference is to approximate the true posterior distribution by an approximate posterior distribution that maximizes the log-likelihood of the model * .The derivation presented in this subsection goes along the lines of [START_REF] Goodfellow | Deep learning[END_REF].
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For the sake of concreteness, let us consider a Deep Boltzmann Machine with two hidden layers defined by the energy:

E(x, s 1 , s 2 ; w 1 , w 2 ) = -s 1 • w 1 • x -s 2 • w 2 • s 1 , ( 1.13) 
with p(x, s 1 , s 2 ; θ) = exp(-E(x, s 1 , s 2 ; θ))/Z, θ = {w 1 , w 2 } and Z the partition function. More precisely, variational inference aims to approximate p(s 1 , s 2 |x; θ) with an approximate family of distributions q(s|x) = q(s 1 , s 2 |x) which are chosen so that they maximize loglikelihood of the model. For any distribution q, it can be shown with the Jenssen inequality that p(x; θ) can be lower-bounded by L b (x, q) as:

log p(x; θ) ≥ L b (x, q; θ) (1.14)
where L b (x, q; θ) = p(x; θ) -KL(q(s|x)||p(s|x; θ)), with KL denotes the Kullback-Leibler divergence of two distributions: KL(q||p) = h q(h) log q(h) p(h) . Therefore, the lower-bound is tight when KL(q(s|x)||p(s|x; θ)) = 0, that is q(s|x) = p(s|x; θ). L b (x, q; θ) can be computed explicitly by rewriting it as L b (x, q; θ) = H(q) -log p(x, s; θ) q where H(q) = h q(h|v) log q(h|v) denotes the entropy of q. For the Deep Boltzmann Machine defined per Eq. (1.13, L b (x, q; θ) therefore rewrites:

L b (x, q; θ) = H(q) + s 1 • w 1 • x q + s 2 • w 2 • s 1 q -log Z, (1.15) 
where log Z does not depend upon q. To go further in the determination of approximate posteriors, we need an explicit prior on their form. Mean-field inference is one particular case of variational inference where a simple prior is assumed.

Mean-field inference. Mean-field inference is a particular case of variational inference where we choose factorial distributions to approximate q:

q(s 1 , s 2 |x) = i q 1 (s 1 i |x) i q 2 (s 2 i |x), (1.16) 
where the probability of each hidden unit is a Bernoulli distribution, i.e. q(s

1 i = 1|v) = λ 1 i , q(s 2 i = 1|v) = λ 2 i .
In this case we can easily show that Eq. (1.15) rewrites:

L b (x, q; θ) = λ 1, • log λ 1 + (1 -λ 1 ) • log(1 -λ 1 ) + λ 2, • log λ 2 + (1 -λ 2 ) • log(1 -λ 2 ) + λ 1 • w 1 • x + λ 2 • w 2 • λ 1 + log Z.
(1.17)
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Mean-field inference finds λ i values that maximize L b by cancelling its gradient componentwise: ∂L(x,q;θ) ∂λ i = 0. We iteratively run the resulting equation for each layer i until we satisfy a convergence criterion. We have:

∂L ∂λ 1 = 0 ∂L ∂λ 2 = 0 , ⇔ λ 1 = σ(w 1 • x + w 2 • λ 2 ) λ 2 = σ(w 2 • λ 1 ) . (1.18)
In Deep Boltzmann Machine training, mean-field inference enables getting the data statistics of Contrastive Divergence, while the model statistics are again obtained by Gibbs sampling, as in RBMs [START_REF] Salakhutdinov | Deep boltzmann machines[END_REF]. This whole procedure therefore allows to estimate gradients of the loglikelihood of Deep Boltzmann Machines, and therefore training.

Neural computation: going down the energy

Assuming the neuron are described, at any moment in time, by their approximate posterior distribution λ t , mean-field inference prescribes that their dynamics should read:

λ 1 t+1 = σ(w 1 • x + w 2 • λ 2 t ) λ 2 t+1 = σ(w 2 • λ 1 t ), (1.19) 
until reaching a steady state. By construction of mean-field inference, Eq. (1.19) make the system evolve towards states of higher probability. We insist on Eq. (1.19) because very similar dynamical equations will appear later in this thesis, and according to the same principle.

Taking a step back on the particular Boltzmann Machine setting, a central hypothesis in neural computation is that the neurons evolve towards configurations of higher probability under the current "model of the world" associated with the parameters of the model, i.e. the value of the synapses at time scales such that they can be considered to be static [START_REF] Bengio | Early inference in energy-based models approximates backpropagation[END_REF]. Writing the configuration of the neurons as s, this hypothesis can be written heuristically as: Therefore, evolving towards more probable configurations under the posterior p(s|x; θ) and eventually sampling from p(s|x; θ) amounts for the neurons to descend the energy function E * . Equilibrium Propagation builds on this central assumption.

ds dt ≈ ∂ log p(x

Key ingredients of Equilibrium Propagation

Computing through time, encoding the error as a force and bidirectional integration. From either a neuromorphic or neuroscience prospective, one fundamental limitation of backpropagation is that it prescribes a learning rule which is not local in space (see subsection 3.3.1). Another obstacle of backpropagation is that it proceeds backward: as emphasized in the introduction, it propagates error backward through the computational graph that is used for inference (see Fig. 1.3 in part I). However, it is very likely that the brain computes error signals out of its own biophysics in a forward-time fashion. From a neuromorphic prospective, a "dream chip" would use the same circuitry, more precisely in our context of study the same crossbar for inference and gradient computation, out of the sole circuit physics. The idea of performing both inference and gradient computation on the same circuitry motivates the following ingredients for Equilibrium Propagation:

• The first error signal in the output layer should be encoded physically. Pretty much like dopamine acts a reward signal upon neural dynamics in the brain, the original error signal ∂ ∂ ŷ should act as a force on the output layer.

• Somehow, by standard backpropagation or any other learning scheme, the error signal should be routed back into the network. With our constraints, we want error signals to propagate out of the network dynamics. Therefore, we consider recurrent neural network where computation happens through time.

• Another consequence is that each neuron should be able integrate both bottom-up (data) information and top-down (error) information. At the theoretical level, this involves the existence of bidirectional connections.

In this way, error signals can propagate across time and layers, so that at some point in time, the learning rule can also become local, which was one of the most fundamental point to address.

The requirement of equilibrium from a topological prospective. Still, the last three ingredients are not sufficient to complete Equilibrium Propagation credit assignment scheme. Error signals propagate through time from "above" and the data is sent from "below". With a biological terminology, we call the input connections to the neuron integrating bottom-up signals basal dendrites and those integrating top-down signals apical dendrites. Whenever a neural network model allows for bidirectional integration, it implicitly assume the existence of such dendritic compartments -see Fig. 1.4. However, it is misleading to think of the top-down input arriving to each neuron as a pure error signal: without further assumption about the state of the system or the topology of the neuronal circuit employed, top-down signals are a mix of error and data information and there is no way that each neuron could disentangle these two components. The way Equilibrium Propagation proceeds in this purpose is contained in its name: the requirement of equilibrium. Let us consider again the layered architecture depicted on Fig. 1.3, and assume that we are in the second phase of Equilibrium Propagation (leftmost part of Fig. 1.5). At this stage, the system is under the influence of the input and of the nudging of the output layer. More precisely, the layer s 1 integrates both "self-generated" top-down inputs (blue arrows) and pure error signals (red arrows). During the second phase, s 1 only integrates self-generated top-down inputs. "Substracting" these two situations, we are only left out with the red arrows: only the error contribution so that the layer s 1 only integrates the error signal coming from the output layer -see Fig. 1.5. This "substraction" corresponds to a temporal variation of the system, which goes to show that temporal variations of the system can encode error signals. The requirement of equilibrium from a dynamical prospective. We can convey more explicitly why the requirement of equilibrium is essential. Let us assume the network state is described by a variable s. For a layered architecture of the kind described before in this thesis, s represents the concatenation of all the layers: s = (s 1 , s 2 , • • • , s N = ŷ) . Equilibrium Propagation assumes that s evolves as:

ds dt = - ∂E ∂s (x, s; θ), (1.22) 
where x denotes an input clamped to the visible layer and E the energy function of the system. Since Eq. (1.22) derives from a potential, after running the dynamics for a sufficiently long time, the system reaches a steady state s * such that ṡ = 0, that is ∂E ∂s (s * ) = 0. Once equilibrium is achieved, assume a nudging -∂ ∂ ŷ is applied on the output layer: output neurons are pulled towards directions of decreasing cost, that is towards y. Since the system is initially at rest, subsequent motion of the system is solely due to this error signal: in Equilibrium Propagation, temporal variations of the system encodes error signals. Therefore, the initial perturbation of the equilibrium undergone by the output layer propagates across layers, hence the name "Equilibrium Propagation". More explicitly, Fischer and Bengio [START_REF] Bengio | Early inference in energy-based models approximates backpropagation[END_REF] propose the following heuristic. If the output layer is nudged by -∂ ∂s , its resulting temporal variation reads:

III.1.6 -Intuitions about Equilibrium Propagation ẏ = - ∂ ∂ ŷ . (1.23)
The resulting variation in the previous layer s N -1 is:

ṡN-1 = ∂s N -1 ∂ ŷ • ẏ ∝ ∂ 2 E ∂s N -1 ∂ ŷ • ẏ = ∂ 2 E ∂ ŷ∂s N -1 • ẏ ∝ - ∂ ŷ ∂s N -1 • ∂ ∂ ŷ ∝ - ∂ ∂s N -1 , (1.24)
where we have used that ẏ = -∂E/∂ ŷ and ṡN-1 = -∂E/∂s N -1 . This reasoning extends to previous layers: ṡn ∼ -∂ ∂s n -see Fig.

Importantly, note that the requirement of an energy function for the network dynamics has two distinct roles. First, it ensures the existence of an equilibrium, as we pointed it before. Second and in a more subtle way, it also ensures that the Jacobian of the dynamics is symmetric:

∂s N -1 ∂ ŷ = ∂ ŷ ∂s N -1
. This is a condition for the temporal variations of the system to carry error gradients, or more precisely for the equivalence of Equilibrium Propagation with Recurrent Backpropagation and Backpropagation Through Time, as we shall see later in this thesis. 

Chapter 2

Why is Equilibrium Propagation hardware-friendly?

Link between Equilibrium Propagation and Spike Timing Dependent Plasticity

Pre-synaptic activity times the variation of the post-synaptic activity. Following their preliminary intuition of Equilibrium Propagation, Bengio and Fischer [START_REF] Bengio | Early inference in energy-based models approximates backpropagation[END_REF] asked the following question: given that the temporal variations of the membrane potential of the neurons can encode error gradients after a perturbation from equilibrium as we shown earlier, what would it take to carry out gradient descent on synapses? They simply noted that, denoting again L the loss function, using Eq. (1.24) and assuming ∂s n+1 ∂wn = σ(s n ):

∆w n = - ∂L ∂w n = - ∂s n+1 ∂w n • ∂L ∂s n+1 ∼ σ(s n ) • ṡn+1 , ( 2.1) 
which gives, element-wise:

∆w n,ij ∼ σ(s n j ) ṡn+1 i (2.2)
Putting Eq. (2.2) into words, the synaptic update should be proportional to the presynaptic activity times the change of post-synaptic activity.

III.2.1 -Link between Equilibrium Propagation and Spike Timing Dependent Plasticity

Relation to Spike Timing Dependent Plasticity. Very interestingly, the learning rule prescribed by Eq. (2.2) was shown to resemble STDP [START_REF] Bengio | STDP as presynaptic activity times rate of change of postsynaptic activity[END_REF]. To convey this, let us assume that each neuron s n spike at a rate proportional to σ(s n ): ξ n j ∼ σ(s n j ) ∈ {0, 1}, where ξ n j = 1 means that the neuron s n j has spiked. We also apply Eq. (2.2) in an event-based fashion, whenever the presynaptic neuron s n spikes:

∆w n,ij ∼ ξ n j ṡn+1 i (2.3)
Let us moreover assume that when the presynaptic neuron spikes (ξ n j = 1) at t n j , the postsynaptic activity is rising ( ṡn+1 i > 0), so that Eq. ( 2.3) gives ∆w n,ij > 0. Appropriate correlation of Eq. ( 2.3) with STDP as defined by Fig. [START_REF] Bengio | STDP as presynaptic activity times rate of change of postsynaptic activity[END_REF]). Left: when the presynaptic neuron spikes (ξ n j = 1) at t n i (vertical dotted line) and the post-synaptic activity is rising ( ṡn+1 i > 0), the post-synaptic neuron will most likely spike after the pre-synaptic neuron. Right: Eq. (2.3) yields STDP-like correlations similar to Fig. 3.2. The x-axis denotes the temporal delay between the post-synaptic and pre-synaptic firing times and the y-axis the associated weight update.

Connection to Equilibrium Propagation. Now we have yet to clarify how this ratebased version of STDP defined by Eq. (2.2) is related to the exact learning rule that Equilibrium Propagation prescribes (Eq. (1.5)). Changing slightly Eq. (2.2) into:

∆w n,ij ∼ σ(s n j ) dσ(s n+1 i ) dt , ( 2.4) 

III.2.2 -Generalization of Equilibrium Propagation to Vector Field dynamics

and bearing in mind that the bidirectional connections used in the networks trained by Equilibrium Propagation should account for both pre-synaptic to post-synaptic and postsynaptic to pre-synaptic pressures [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF], cumulating the resulting total weight change ∆w n,ij prescribed by Eq. (2.4) over the second phase (from the free steady state until the nudged steady state) yields:

∆w n,ij ∼ s β * s * σ(s n j ) dσ(s n+1 i ) dt + σ(s n+1 i ) dσ(s n j ) dt = s β * s * d dt (σ(s n+1 i )σ(s n j )) = σ(s n+1,β i, * )σ(s n,β j, * ) -σ(s n+1 i, * )σ(s n j, * ) , ( 2.5) 
hence the connection between Eq. (2.2) and Equilibrium Propagation.

This relationship is especially of interest for neuromorphic researchers. As we pointed out earlier, STDP can be emulated with memristors in spiking neural networks, assuming the memristor is programmed by the voltage difference created by the pre and post synaptic spikes, where the spike forms are appropriately engineered to create arbitrary STDPcorrelation (see Fig. 3.3). Therefore, there is some intuition behind Eq. (2.5) that Equilibrium Propagation could be implemented in a event-driven fashion with memristive devices.

Generalization of Equilibrium Propagation to Vector Field dynamics 2.2.1 Theory

One limitation of Equilibrium Propagation as it was presented so far is that it requires an energy function, or equivalently, symmetric synaptic connections. This assumption is neither biologically plausible, nor hardware-friendly.

To address this issue, a version of Equilibrium Propagation was proposed [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF] where the dynamics of the neurons follow a vector field which does not necessarily derives from a potential, namely changing Eq. (1.6) into: 

ds dt = µ(x, s; θ), ( 2 

Example

Let us consider again the same example that we used to illustrate Equilbrium Propagation. In this context, having model dynamics which do not derive from an energy function amounts to use asymmetric connection between neurons. Before, w n sustained bi-directional propagation from s n to s n+1 . Now, we denotes w n,n+1 the synapses connecting s n+1 towards s n and w n+1,n the reverse synaptic connections. So the dynamics of system during the first phase have to be changed from Eq. (1.10) to:

dŷ dt = µ 2 = -ŷ + w 2,1 • σ(s 1 ) ds 1 dt = µ 1 = -s 1 + w 1,0 • σ(x) + w 1,2 • σ(ŷ) , ( 2.9) 
and the dynamics of the second phase from Eq. (1.11) to:

dŷ dt = -s 2 + w 2,1 • σ(s 1 ) + β(y -s 2 ) ds 1 dt = -s 1 + w 1,0 • σ(x) + w 1,2 • σ(ŷ)
.

(2.10) Applying Eq. (2.8) to these dynamics yield the following parameters updates:

           ∆w 2,1 = 1 β ρ(s 1 * ) • ŷβ * -ŷ * ∆w 1,2 = 1 β ρ(ŷ * ) • s 1,β -s 1 * ∆w 1,0 = 1 β ρ(x) • s 1,β -s 1 * . (2.11)

Equivalence between Equilibrium Propagation and Recurrent Backpropagation

As we pointed out earlier, Bengio and Fischer heuristically showed that, in the first time steps of the second phase of Equilibrium Propagation, the temporal derivatives of the activations encoded error signals -see Fig. (1.6). This intuition was first proved formally by Scellier [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF] in terms of an equivalence between Equilibrium Propagation and Recurrent Backpropagation, an algorithm proposed by Almeida [START_REF] Luis | A learning rule for asynchronous perceptrons with feedback in a combinatorial environment[END_REF] and Pineda [START_REF] Fernando | Generalization of back-propagation to recurrent neural networks[END_REF] which computes the gradients of L = (s * ) using the same notations as before. To state formally his result, Scellier introduces the notion of projected cost function:

L(u, t) = (s(t, u; θ)), (2.12) 
where s(t, u; θ), also called a flow in the theory of dynamical systems, denotes the state of the neurons at time step t when the system was initially at u: s 0 = u. In other words, t → L(u, t) gives the value of the cost function all along the system trajectory when it starts from u. In the context of Equilibrium Propagation, the projected cost function of interest is L(s * , t) where the system is initially at the free steady state (s 0 = s * ). Recurrent Backpropagation can compute L(s * , t) iteratively for increasing t. Based on the way Recurrent Backpropagation carries out gradient computation through time, Scellier shows that the temporal variations of the neurons and of the derivative ∂E/∂θ through the second phase of Equilibrium Propagation can compute the exact same gradients as those computed by Recurrent Propagation, namely:

       lim β→0 1 β ∂s β t ∂t = -∂L(s * ,t) ∂s lim β→0 1 β ∂E ∂θ (s β t ; θ) -∂E ∂θ (s * ; θ) = -∂L(s * ,t) ∂θ s β 0 = s * . ( 2.13) 
Part of this thesis is dedicated to extending this result to an equivalence between Equilibrium Propagation and Backpropagation Through Time.

Introduction

The remarkable development of deep learning over the past years [START_REF] Yann Lecun | Deep learning[END_REF] has been fostered by the use of backpropagation [START_REF] David E Rumelhart | Learning internal representations by error propagation[END_REF] which stands as the most powerful algorithm to train neural networks. In spite of its success, the backpropagation algorithm is not biologically plausible [START_REF] Crick | The recent excitement about neural networks[END_REF], and its implementation on GPUs is energy-consuming [START_REF] Editorial | Big data needs a hardware revolution[END_REF]. As we mentionned in part I, hybrid hardware-software experiments carried out by IBM Almaden have recently demonstrated how physics and dynamics can be leveraged to achieve learning with energy efficiency. Hence the motivation to invent novel learning algorithms where both inference and learning could fully be achieved out of core physics.

Many biologically inspired learning algorithms have been proposed as alternatives to backpropagation to train neural networks. As we mentioned in the section 4.2 of part I, Contrastive Hebbian learning (CHL) has been successfully used to train recurrent neural networks (RNNs) with static input that converge to a steady state, such as Boltzmann machines and real-time Hopfield networks. Equilibrium Propagation that we thoroughly introduced in part III also belongs to the family of CHL algorithms to train RNNs with static input. Interestingly, EP also shares similar features with the backpropagation algorithm, and more specifically recurrent backpropagation (RBP): it was proved that neural computation in the second phase of EP is equivalent to gradient computation in RBP -see section 2.3 of part III.

Originally, EP was introduced in the context of leaky integrate-like dynamics for the neurons (see section 1.4 of the previous chapter). Computing their dynamics involves long simulation times, hence limiting EP training experiments to small neural networks. In this chapter, we propose a discrete-time formulation of EP. This formulation allows demonstrating an equivalence between EP and BPTT in specific conditions, simplifies equations and speeds up training, and extends EP to standard neural networks including convolutional ones. Specifically, the contributions of the present work are the following:

• We introduce a discrete-time formulation of EP (Section 2.1) of which the original real-time formulation can be seen as a particular case (Section 4.1).

• We show a step-by-step equality between the updates of EP and the gradients of BPTT when the dynamics converges to a steady state and the transition function of the RNN derives from a primitive function (Theorem 4, Figure 1). We say that such an RNN has the property of 'gradient-descending updates' (or GDU property).

• We numerically demonstrate the GDU property on a small network, on fully connected layered and convolutional architectures. We show that the GDU property continues to hold approximately for more standardprototypical -neural networks even if these networks do not exactly meet the requirements of Theorem 4.

• We validate our approach with training experiments on different network architectures using discrete-time EP, achieving similar performance than BPTT. We show that the number of iterations in the two phases of discrete-time EP can be reduced by a factor three to five compared to the original real-time EP, without loss of accuracy. This allows us training the first convolutional architecture with EP, reaching ∼ 1% test error on MNIST, which is the lowest test error reported with EP. Our code is available on-line in Pytorch * . 

Convergent RNNs With Static Input

We consider the supervised setting where we want to predict a target y given an input x. The model is a dynamical system -such as a recurrent neural network (RNN) -parametrized by θ and evolving according to the dynamics:

s t+1 = F (x, s t ; θ) . (1.1)
We call F the transition function. Note that Eq. (1.1) uses the same notations as in the introduction of this thesis (part I). The input of the RNN at each timestep is static, equal to x. Assuming convergence of the dynamics before time step T , we have s T = s * where s * is such that

s * = F (x, s * ; θ) . (1.2)
We call s * the steady state (or fixed point, or equilibrium state) of the dynamical system. The number of timesteps T is a hyperparameter chosen large enough to ensure s T = s * . The goal of learning is to optimize the parameter θ to minimize the loss:

L * = (s * , y) , (1.3)
where the scalar function is called cost function. Several algorithms have been proposed to optimize the loss L * , including Recurrent Backpropagation (RBP) and Equilibrium Propagation (EP), as we saw in section 2.3 of the previous chapter. Thereafter, we reformulate with new notations Backpropagation Through Time (BPTT) which was introduced in subsection 1.2.3 of part I so as to enunciate the main theoretical result of this paper (Theorem 4).

Backpropagation Through Time (BPTT)

BPTT was introduced in subsection 1.2.3 of part I, and we use here the same notations, substituting the index n by t to emphasize that computation happens through time.

With frameworks such as Pytorch or Tensorflow implementing automatic differentiation, optimization by gradient descent using Backpropagation Through Time (BPTT) has become the standard method to train RNNs. In particular BPTT can be used for a convergent RNN such as the one that we study here. To this end, we consider the loss after T iterations (i.e. the cost of the final state s T ), denoted L = (s T , y), and we substitute L as a proxy * for the loss at the steady state L * . The gradients of L can be computed with BPTT. In order to state our Theorem 4 (chapter 3), we recall some of the inner working mechanisms of BPTT. Eq. (1.1) can be rewritten in the form s t+1 = F (x, s t , θ t = θ), where θ t denotes the parameter of the model at time step t, the value θ being shared across all time steps. This way of rewriting Eq. (1.1) enables us to define the partial derivative ∂L ∂θt as the sensitivity of the loss L with respect to θ t when θ 1 , . . . θ t-1 , θ t+1 , . . . θ T remain fixed (set to the value θ). With these notations, the gradient ∂L ∂θ reads as the sum:

∂L ∂θ = ∂L ∂θ 1 + ∂L ∂θ 2 + • • • + ∂L ∂θ T . (1.4)
This equation is the same as Eq. (1.18) of subsection 1.2.3 (part I), we simply recall it here for the completeness of this chapter. BPTT computes the "full" gradient ∂L ∂θ by computing the partial derivatives ∂L ∂st and ∂L ∂θt iteratively and efficiently, backward in time, using the chain rule of differentiation. Subsequently, we denote the gradients that BPTT computes:

∀t ∈ [0, T -1] :        ∇ BPTT s (t) = ∂L ∂s T -t ∇ BPTT θ (t) = ∂L ∂θ T -t , (1.5) so that ∂L ∂θ = T -1 t=0 ∇ BPTT θ (t). (1.6) 
The gradients ∇ BPTT s (t) and ∇ BPTT θ (t) are the 'elementary gradients' computed as intermediary steps in BPTT in order to compute the 'full gradient' ∂L ∂θ . We now reformulate Eq. (1.19) with this new set of notations.

IV.1.2 -Backpropagation Through Time (BPTT)

Proposition 1 (Backpropagation Through Time). The gradients ∇ BPTT s (t) and ∇ BPTT θ (t) can be computed using the recurrence relationship

∇ BPTT s (0) = ∂ ∂s (s T , y) , (1.7) ∀t = 1, 2, . . . , T, ∇ BPTT s (t) = ∂F ∂s (x, s T -t ; θ) • ∇ BPTT s (t -1), (1.8) ∀t = 1, 2, . . . , T, ∇ BPTT θ (t) = ∂F ∂θ (x, s T -t ; θ) • ∇ BPTT s (t -1).
(1.9)

Proof of Proposition 1. This is a direct application of the chain rule of differentiation, using the fact that s t+1 = F (x, s t , θ) -exactly as we did for Eq. (1.19) A discrete-time formulation of Equilibrium Propagation

Algorithm

In its original formulation, Equilibrium Propagation (EP) was introduced in the case of realtime dynamics -see section 1.4 of part III. The first theoretical contribution of this chapter is to adapt the theory of EP to discrete-time dynamics. EP is an alternative algorithm to compute the gradient of L * in the particular case where the transition function F derives from a scalar function Φ, i.e. with F of the form F (x, s, θ) = ∂Φ ∂s (x, s; θ). The algorithmics of our discrete-time version are exactly the same as the one of the original version of Equilibrium Propagation described in section 1.3 of part III. In this setting, the dynamics of Eq. (1.1) rewrites:

∀t ∈ [0, T -1], s t+1 = ∂Φ ∂s (x, s t ; θ). (2.1)
This constitutes the first phase of EP. At the end of the first phase, we have reached steady state, i.e. s T = s * . In the second phase of EP, starting from the steady state s * , an extra term β ∂ ∂s (where β is a positive scaling factor) is introduced in the dynamics of the neurons and acts as an external force nudging the system dynamics towards decreasing the cost function . Denoting s β 0 , s β 1 , s β 2 , . . . the sequence of states in the second phase (which depends on the value of β), the dynamics is defined as

s β 0 = s * and ∀t ≥ 0, s β t+1 = ∂Φ ∂s x, s β t ; θ -β ∂ ∂s s β t , y . (2.
2)

The network eventually settles to a new steady state s β * . It was shown in [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] that the gradient of the loss L * can be computed based on the two steady states s * and s β * . More 

IV

Difference between the primitive function Φ and the energy function E

We want to highlight here the relationship between the discrete-time setting (resp. the primitive function Φ) of this paper and the real-time setting (resp. the energy function E) of [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF][START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF].

As we shown in part III, previous work on EP has studied real-time dynamics of the form:

ds dt = - ∂E ∂s (x, s t ; θ) . (2.4)
In contrast, in this chapter we study discrete-time dynamics of the form

s t+1 = ∂Φ ∂s (x, s t ; θ) . (2.5)
Here we explain why we changed the sign convention in the dynamics and why we called Φ a 'primitive function' rather than an 'energy function'.

While it is useful to think of the primitive function Φ in the discrete-time setting as an equivalent of the energy function E in the real-time setting, there is an important difference between E and Φ. We argue next that, rather than an energy function, Φ is much better thought of as a primitive of the transition function F . First we show how the two settings are related.

Casting real-time dynamics to discrete-time dynamics. The real-time dynamics of Eq. (2.4) can be cast to the discrete-time setting of Eq. (2.5) as follows. The Euler scheme of Eq. (2.4) with discretization step ε reads:

s t+1 = s t -ε ∂E ∂s (x, s t ; θ) . (2.6)
This equation rewrites

s t+1 = ∂Φ ε ∂s (x, s t ; θ) , where Φ ε (x, s, θ) = 1 2 s 2 -ε E(x, s; θ). (2.7)
However, although the real-time dynamics can be mapped to the discrete-time setting, the discrete-time setting is more general.

The scalar function Φ is better thought of as a primitive function of F than of an energy. The primitive function Φ cannot be interpreted in terms of an energy in general. In the real-time setting, s t follows the gradient of E, so that E (s t ) decreases as time progresses until s t settles to a (local) minimum of E. This property motivates the name of 'energy function' for E by analogy with physical systems whose dynamics settle down to low-energy configurations. In contrast, in the discrete-time setting, s t is mapped onto the gradient of Φ (at the point s t ). In general, there is no guarantee that the discrete-time dynamics of Eq. (2.5) optimizes Φ and there is no guarantee that the dynamics of s t converges to an optimum of Φ. For this reason, there is no reason to call Φ an 'energy function', since the intuition of optimizing an energy does not hold.

The name of 'primitive function' for Φ is motivated by the fact that Φ is a primitive of the transition function F , whose property better captures the assumptions under which the theory of EP holds. To see this, let us consider again the general form of the dynamics as defined by Eq. (1.1) with:

F (x, s, θ) = ∂Φ ∂s (x, s; θ) . (2.8)
For the theory of EP to hold (in particular Theorem 4 as we shall see later), the following two conditions must be satisfied (see Lemma 2 and Lemma 3 in chapter 3):

1. The steady state s * (at the end of the first phase and at the beginning of the second phase) must satisfy the condition 

s * = F (x, s * ; θ) , ( 2 

Forward-Time Dynamics of EP Compute Backward-Time Gradients of BPTT

Note that for fixed β > 0, defining the neural and weight updates:

       ∀t ≥ 0 : ∆ EP s (β, t) = 1 β s β t+1 -s β t , ∀t ≥ 1 : ∆ EP θ (β, t) = 1 β ∂Φ ∂θ x, s β t , θ - ∂Φ ∂θ x, s β t-1 , θ , (3.1) 
Eq. ( 2.3) rewrites as the following telescoping sum:

∞ t=0 ∆ EP θ (β, t) → - ∂L * ∂θ as β → 0. (3.2)
Therefore, BPTT and EP compute the gradient of the loss in very different ways: while the former algorithm iteratively adds up gradients going backward in time, as in Eq. (1.6), the latter algorithm adds up weight updates going forward in time, as in Eq. (3.2). In fact, under a condition stated below, the sums are equal term by term: there is a step-by-step correspondence between the two algorithms. To prove our main result, we first prove two intermediate Lemmas. Theorem 4 is a consequence of Lemma 2 and Lemma 3 below, which are stated for general dynamics with a transition function F . Theorem 4 proves formally, in the context of discrete-time dynamics, the intuition presented in part III that temporal derivatives of the system during the second phase of Equilibrium Propagation encode error gradients.

IV.3.1 -Backpropagation Through Time error processes

Backpropagation Through Time error processes

Lemma 2. In our specific setting with static input x, suppose that the network has reached the steady state s * after T -K steps, i.e.

s T -K = s T -K+1 = • • • = s T -1 = s T = s * . (3.3)
Then the first K gradients of BPTT satisfy the recurrence relationship *

∇ BPTT s (0) = ∂ ∂s (s * , y) , (3.4) ∀t = 1, 2, . . . , K, ∇ BPTT s (t) = ∂F ∂s (x, s * , θ) • ∇ BPTT s (t -1), (3.5) ∀t = 1, 2, . . . , K, ∇ BPTT θ (t) = ∂F ∂θ (x, s * , θ) • ∇ BPTT s (t -1). (3.6)
Proof of Lemma 2. This is a direct application of Proposition 1 along with

s T -K = s T -K+1 = • • • = s T -1 = s T = s *
so that we evaluate the Jacobians ∂F/∂s and ∂F/∂θ at s * .

Equilbrium Propagation error processes

Before stating Lemma 3, we formulate EP for arbitrary transition function F , inspired by the ideas of [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF]. Recall that at the beginning of the second phase of EP the state of the network is the steady state s β 0 = s * characterized by

s * = F (x, s * , θ) , (3.7)
and that, given some value β > 0 of the hyperparameter β, the successive neural states s β 1 , s β 2 , . . . are defined and computed as follows:

∀t ≥ 0, s β t+1 = F x, s β t , θ -β ∂ ∂s s β t , y . (3.8)
In this more general setting, we redefine the 'weight updates' as:

∀t ≥ 1, ∆ EP θ (β, t) = 1 β ∂F ∂θ x, s β t-1 , θ • s β t -s β t-1 . (3.9)
Note that when F = ∂Φ ∂s , in the liimt β → 0, Eq. (3.9) coincide with the previous definition of ∆ EP θ (Eq. (3.1)): * Note that the stability of the steady state implies that the eigenvalues of the Jacobian ∂F ∂s (x, s * , θ) are smaller than 1 in magnitude. As a consequence of Lemma 2, the gradients ∇ BPTT θ (t) decay (i.e. vanish) exponentially fast, which ensures that the full gradient

K-1 t=0 ∇ BPTT θ (t) converges, even if K → ∞.
In the context of convergent RNNs with a static input, vanishing gradients of BPTT are consequently not a problem, as it is the case when learning from temporal data with RNNs.

IV.3.2 -Equilbrium Propagation error processes

∆ EP θ (t + 1) = 1 β ∂Φ ∂θ x, s β t+1 , θ - ∂Φ ∂θ x, s β t , θ = 1 β ∂ 2 Φ ∂s∂θ x, s β t , θ = ∂F ∂s x,s β t ,θ • s β t+1 -s β t + o(β) Lemma 3. Let ∆ EP s (t) = lim β→0 ∆ EP s (β, t) and ∆ EP θ (t) = lim β→0 ∆ EP θ (β, t)
be the neural and weight updates of EP in the limit β → 0. They satisfy the recurrence relationship

∆ EP s (0) = - ∂ ∂s (s * , y) , (3.10) ∀t ≥ 0, ∆ EP s (t + 1) = ∂F ∂s (x, s * , θ) • ∆ EP s (t), (3.11) ∀t ≥ 0, ∆ EP θ (t + 1) = ∂F ∂θ (x, s * , θ) • ∆ EP s (t). (3.12)
Proof of Lemma 3. First, in the limit β → 0, the weight update ∆ EP θ (β, t) of Eq. (3.9) simply rewrites as Eq. (3.12) by evaluating ∂F/∂s at s * and using the definition of ∆ EP s in Eq. (3.1). Now we prove Eq. (3.10) and Eq. (3.11) 

Main result

We can now state our main theoretical result.

Theorem 4 (Gradient-Descending Updates, GDU). Consider the setting with a transition function of the form F (x, s, θ) = ∂Φ ∂s (x, s, θ). Let s 0 , s 1 , . . . , s T be the convergent sequence of states and denote s * = s T the steady state. If we further assume that there exists some step K where 0 < K ≤ T such that s * = s T = s T -1 = . . . s T -K , then, in the limit β → 0, the first K updates in the second phase of EP are equal to the negatives of the first K gradients of BPTT, i.e. ∀t = 0, 1, . . . , K : ) and ∆ EP s (resp. ∆ EP θ ) satisfy different recurrence relationship, thereby are different in general. However, since for since we assume here that F is of the form F (x, s, θ) = ∂Φ ∂s (x, s, θ), the Jacobian matrix of the transition function F is the Hessian of Φ, thus is symmetric:

∆ EP s (β, t) → -∇ BPTT s (t), ∆ EP θ (β, t) → -∇ BPTT θ (t). ( 3 
∂F ∂s (x, s, θ) = ∂ 2 Φ ∂s 2 (x, s, θ) = ∂F ∂s (x, s, θ) . (3.20) Consequently, -∇ BPTT s (resp. -∇ BPTT θ
) and ∆ EP s (resp. ∆ EP θ ) satisfy the same recurrence relationship with the same initial condition, so that they are equal at all time.

Chapter 4

Energy-based and Prototypical settings

In this chapter, we introduce the two classes of models we have considered in this study.

Definition

Energy-based setting. The system is defined in terms of a primitive function of the form:

Φ ε (s; W, W x ) = (1 -ε) 1 2 s 2 + ε σ(s) • W • σ(s) + σ(s) • W x • σ(x) , (4.1)
where ε is a discretization parameter, σ is an activation function, W is a symmetric weight matrix and W x the weight matrix connecting the input to the system. In this setting, we consider ∆ EP (βε, t) instead of ∆ EP (β, t) and write ∆ EP (t) for simplicity, so that:

∆ EP s (β, t) = s βε t+1 -s βε t βε ∆ EP W (β, t) = 1 β σ s βε t+1 • σ s βε t+1 -σ s βε t • σ s βε t . ∆ EP Wx (β, t) = 1 β σ s βε t+1 • σ (x) -σ s βε t • σ (x) . (4.2)
With Φ ε as a primitive function and with the hyperparameter β rescaled by a factor ε, we recover the discretized version of the real-time setting of [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF], i.e. the Euler scheme of

ds dt = -∂E ∂s -β ∂ ∂s with E = 1 2 s 2 -σ(s) • W • σ(s) -σ(s) • W x • σ(x).
We will show that up to defining properly W and W x , these equations apply for any number of layers.
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Prototypical setting. In this case, the dynamics of the system does not derive from a primitive function Φ. Instead, the dynamics is directly defined as:

s t+1 = σ (W • s t + W x • x) , (4.3)
where again we same the same notations as above for W and W x . The dynamics of Eq. ( 4.3) is a standard and simple neural network dynamics: we will show that up to defining properly W and W x , these dynamics apply for any number of layers. Although the model is not defined in terms of a primitive function, note that s t+1 ≈ ∂Φ ∂s (s t ; W, W x ) with Φ(s;

W, W x ) = 1 2 s • W • s 1 2 s • W x •
x if we ignore the activation function σ. Following Eq. (3.1), we define:

∆ EP s (β, t) = 1 β s β t+1 -s β t , ∆ EP W (β, t) = 1 β s β t+1 • s β t+1 -s β t • s β t , ∆ EP Wx (β, t) = 1 β s β t+1 • x -s β t • x (4.4)

Demonstrating the property of Gradient Descending Updates (GDU)

The approach we propose is to use Theorem 4 as a tool to design neural networks that are trainable with EP: if a model satisfies the GDU property of Eq. 3.19, then we expect EP to perform as well as BPTT on this model. We have defined the energy-based setting and prototypical setting where the conditions of Theorem 4 are exactly and approximately met respectively (Section 4.1). After introducing our protocol, we show the GDU property on a toy model (Fig. 4.1) and on fully connected layered architectures in the two settings (subsubection 4.3.2 and subsubection 4.4.1). We define a convolutional architecture in the prototypical setting (Section 4.4.2) which also satisfies the GDU property. Finally, we validate our approach by training these models with EP and BPTT (Table 5.1). Protocol. In order to measure numerically if a given model satisfies the GDU property, we proceed as follows. Considering an input x and associated target y, we perform the first phase for T steps. Then we perform on the one hand BPTT for K steps (to compute the gradients ∇ BPTT ), on the other hand EP for K steps (to compute the neural updates ∆ EP ) and compare the gradients and neural updates provided by the two algorithms, either qualitatively by looking at the plots of the curves (as in Figs. 4.1 and 4.12), or quantitatively by computing their RelMSE (as in Fig. 5.1).

Property of Gradient
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Equations. The toy model is an architecture where input, hidden and output neurons are connected altogether, without lateral connections. Denoting input neurons as x, hidden neurons as s 1 and output neurons as s 2 = ŷ, the primitive function for this model reads:

Φ x, s 1 , ŷ = (1 -ε) 1 2 ||s 1 || 2 + ||ŷ|| 2 +ε σ(ŷ) • w 1 • σ(s 1 ) + σ(s 1 ) • w 1,0 • σ(x) + σ(ŷ) • w ŷ,0 • σ(x) ,
where ε is a discretization parameter. Furthermore the cost function is

(ŷ, y) = 1 2 ŷ -y 2 . (4.5)
As a reminder, we define the following convention for the dynamics of the second phase:

∀t ∈ [0, K] : s n,β t = s n
t+T where T is the length of the first phase. The equations of motion read in the first phase read:

∀t ∈ [0, T ] : ŷt+1 = (1 -ε)ŷ t + εσ (ŷ t ) (w 1 • σ(s 1 t ) + w ŷ,0 • σ(x)) s 1 t+1 = (1 -ε)s 1 t + εσ (s 1 t ) (w 1 • σ(ŷ t ) + w 1,0 • σ(x)),
and in the second phase: where y denotes the target. In this case and according to the definition Eq. (3.1), the EP error processes for the parameters θ = {w 1,0 , w ŷ,0 , w 1 } read:

∀t ∈ [0, K] :      ŷβ t+1 = (1 -ε)ŷ β t + εσ (ŷ β t ) (w 1 • σ(s 1,β t ) + w ŷ,0 • σ(x)) +εβ(y -ŷβ t ) s 1,β t+1 = (1 -ε)s 1,β t + εσ (s 1,β t ) (w 1 • σ(ŷ β t ) + w 1,0 • σ(x)),
∀t ∈ [0, K] :          ∆ EP w 1 (β, t) = 1 β σ(ŷ β t+1 ) • σ(s 1,β t+1 ) -σ(ŷ β t ) • σ(s 1,β t ) ∆ EP w ŷ,0 (β, t) = 1 β ŷβ t+1 ) • σ(x) -σ(ŷ β t ) • σ(x) ∆ EP w 1,0 (β, t) = 1 β σ(s 1,β t+1 ) • σ(x) -σ(s 1,β t ) • σ(x) ,
Experiment. We took 5 output neurons, 50 hidden neurons and 10 visible neurons, using σ(x) = tanh(x). The data x is a dummy uniformly distributed random input x ∼ U [0, 1] (of size 1 × 10) and y is a dummy random one-hot encoded target (of size 1 × 5). We run the protocol described above with ε = 0.08, T = 5000 steps for the first phase, K = 80 steps and β = 0.01 for the second phase.

Fully connected architectures

In this subsection, we shall denote N the number of hidden layers, so that in general, s 1 , s 2 , • • • , s N stand for the hidden layers and s N +1 = ŷ is the output layer. Equations with N = 2. For this model, the primitive function is defined as:

Φ x, s 1 , s 2 , ŷ = 1 2 (1 -ε) s 1 2 + s 1 2 + ŷ 2 + ε σ(s 1 ) • w 0 • σ(x) + σ(s 2 ) • w 1 • σ(s 1 ) + σ(ŷ) • w 2 • σ(s 2 ) (4.7)
so that the equations of motion read:

∀t ∈ [0, T ] :

     ŷt+1 = (1 -ε)ŷ t + εσ (ŷ t ) w 2 • σ(s 2 t ) s 2 t+1 = (1 -ε)s 2 t + εσ (s 2 t ) (w 1 • σ s 1 t + w 2 • σ(ŷ t )) s 1 t+1 = (1 -ε)s 1 t + εσ (s 1 t ) (w 0 • σ (x) + w 1 • σ(s 2 t ))
In the second phase:

∀t ∈ [0, K] :        ŷβ t+1 = (1 -ε)ŷ β t + εσ (ŷ β t ) w 2 • σ(s 2,β t ) + βε(y -ŷβ t ) s 2,β t+1 = (1 -ε)s 2,β t + εσ (s 2,β t ) (w 1 • σ s 1,β t + w 2 • σ(ŷ β t )) s 1,β t+1 = (1 -ε)s 1,β t + εσ (s 1,β t ) (w 0 • σ (x) + w 1 • σ(s 2,β t ))
In this case and according to the definition Eq. (3.1), the EP error processes for the parameters θ = {w 0 , w 1 , w 2 } read :

∀t ∈ [0, K]          ∆ EP w 0 (β, t) = 1 β σ s 1,β t+1 • σ (x) -σ s 1,β t • σ (x) , ∆ EP w 1 (β, t) = 1 β σ s 2,β t+1 • σ s 1,β t+1 -σ s 2,β t • σ s 1,β t , ∆ EP w 2 (β, t) = 1 β σ ŷβ t+1 • σ s 2,β t+1 -σ ŷβ t • σ s 2,β t . (4.8)
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Simplifying the equations with N = 2. To go from our multi-layered architecture to the more general model presented in the previous section, we define the state s of the network as the concatenation of all the layers' states, i.e. s = (s 2 , s 1 , s 0 ) and we define the weight matrices W and W x as:

W =    0 w 1 0 w 1 0 w 2 0 w 2 0    , W x =    w 0 0 0    , (4.9)
so that the primitive function Φ defined in Eq. (4.7) rewrites as Eq. (4.1).

Generalizing the equations for any N. For this model, the primitive function is defined as:

Φ x, s 1 , s 2 , . . . , s N +1 = ŷ = 1 2 (1-ε) N +1 n=1 ||s n || 2 +ε N n=1 σ(s n+1 ) •w n •σ(s n )+σ(s 1 )•w 0 •σ(x) (4.10)
so that the equations of motion read:

∀t ∈ [0, T ] :

       ŷt+1 = (1 -ε)ŷ t + εσ (ŷ t ) w N • σ(s N t ) s n t+1 = (1 -ε)s n t + σ (s n t ) ε(w n-1 • σ s n-1 t + w n • σ(s n+1 t )) ∀n ∈ [2, N ] s 1 t+1 = (1 -ε)s 1 t + εσ (s 1 t ) (w 0 • σ (x) + w 1 • σ(s 2 t ))
, and in the second phase:

∀t ∈ [0, T ] :

           ŷβ t+1 = (1 -ε)ŷ β t + εσ (ŷ β t ) w N • σ(s N,β t ) + βε(y -ŷβ t ) s n,β t+1 = (1 -ε)s n,β t + σ (s n,β t ) ε(w n-1 • σ s n-1,β t + w n • σ(s n+1,β t )) ∀n ∈ [2, N ], s 1,β t+1 = (1 -ε)s 1,β t + εσ (s 1,β t ) (w 0 • σ (x) + w 1 • σ(s 2,β t ))
According to Eq. (3.1) again, we have:

     ∆ EP w 0 (β, t) = 1 β σ s 1,β t+1 • σ (x) -σ s 1,β t • σ (x) ∆ EP wn (β, t) = 1 β σ s n+1,β t+1 • σ s n,β t+1 -σ s n+1,β t • σ s n,β t ∀n ∈ [1, N ]
Defining s = (s 1 , s 2 , . . . , ŷ) and:
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W =           0 w 1 0 0 0 w 1 0 w 2 0 0 0 w 2 0 . . . 0 0 0 . . . 0 w n 0 0 0 w n 0           , W x =       w 0 0 . . . 0       , ( 4 
       ŷt+1 = σ w 2 • s 2 t , s 2 t+1 = σ w 1 • s 1 t + w 2 • ŷt , s 1 t+1 = σ w 0 • x + w 1 • s 2 t .
(4.12)

In the second phase, the dynamics read:

∀t ∈ [0, K] :          ŷβ t+1 = σ w 2 • s 2,β t + β(y -ŷβ t ), s 2,β t+1 = σ w 1 • s 1,β t + w 2 • ŷβ t , s 1,β t+1 = σ w 0 • x + w 1 • s 2,β t . (4.13)
As usual, y denotes the target. Consider the function:

Φ x, s 1 s 2 , ŷ = ŷ • w 2 • s 2 + s 2 • w 1 • s 1 + s 1 • w 0 • x. (4.14)
We can compute, for example:

∂Φ ∂s 2 = w 1 • s 1 + w 2 • ŷ. (4.15)
Comparing Eq. (4.12) and Eq. (4.15), and ignoring the activation function σ, we can see that

s 2 t ≈ ∂Φ ∂s 2 x, s 1 t-1 , s 2 t-1 , ŷt-1 . (4.16)
And similarly for the layers ŷ and s 1 .

According to the definition of ∆ EP θ in Eq. (3.1), for every layer and every t ∈ [0, K]:

         ∆ EP w 0 (β, t) = 1 β s 1,β t+1 • x -s 1,β t • x , ∆ EP w 1 (β, t) = 1 β s 2,β t+1 • s 1,β t+1 -s 2,β t • s 1,β t , ∆ EP w 2 (β, t) = 1 β ŷβ t+1 • s 2,β t+1 -ŷβ t • s 2,β t .
(4.17)
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Simplifying the equations with N = 2. Again, we define the state s of the network as the concatenation of all the layers' states, i.e. s = (s 2 , s 1 , s 0 ) and we define the weight matrices W and W x as in Eq. (4.9) so that Eq. (4.12) and Eq. (4.14) can be vectorized into:

s t+1 = σ(W • s t + W x • x), (4.18) Φ = 1 2 s T • W • s + 1 2 s T • W x • x. (4.19)
Generalizing the equations for any N . For a general architecture with a given N , the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :

         ŷt+1 = σ w N • s N t s n t+1 = σ w n-1 • s n-1 t + w n • s n+1 t ∀n ∈ [2, N ] s 1 t+1 = σ w 0 • x + w 1 • s 2 t , (4.20)
and those of the second phase as:

∀t ∈ [0, T ] :

         ŷβ t+1 = σ w N • s N,β t + β(y -ŷβ t ) s n,β t+1 = σ w n-1 • s n-1,β t + w n • s n+1,β t ∀n ∈ [2, N ] s 1,β t+1 = σ w 0 • x + w 1 • s 2,β t , (4.21)
where y denotes the target. Defining:

Φ(x, s 1 , . . . , ŷ) = N n=1 s n+1 • w n • s n + s 1 • w 0 • x, (4.22)
ignoring the activation function σ, Eq. (4.20) rewrites:

s n t+1 ≈ ∂Φ ∂s n (x, s 1 , . . . , ŷ) ∀n ∈ [1, N + 1] (4.23)
According to Eq. (3.1), for every layer w n and every t ∈ [0, K]:

   ∆ EP w 0 (β, t) = 1 β s 1,β t+1 • x -s 1,β t • x , ∆ EP wn (β, t) = 1 β s n+1,β t+1 • s n,β t+1 -s n+1,β t • s n,β t ∀n ∈ [1, N ] (4.24)
Defining s = (s 1 , s 2 , . . . , ŷ) and taking again W and W x as defined in Eq. (4.11), Eq. (4.20) and Eq. (4.22) can also be vectorized into:
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s t+1 = σ(W • s t + W x • x) (4.25) Φ(x, s, W, W x ) = 1 2 s T • W • s + 1 2 s T • W x • x (4.26)
Experiment. We have considered the same architectures as the ones used for real-time RNNs and on the same data (MNIST). The values of T , K and β depend on the depth of the architecture considered and can be found in Table 2.1. Architecture. The model is a layered architecture composed of a fully connected part and a convolutional part. We therefore distinguish between the flat layers (i.e. those of the fully connected part) and the convolutional layers (i.e. those of the convolutional part). We denote n fc and n conv the number of flat (hidden) layers and of convolutional layers respectively.

Convolutional architecture

As previously, layers are labelled in a forward fashion, but we differentiate convolutional layers (h) from fully connected layers (s). h 1 labels the first convolutional layer, h 2 the second one, h nconv the last one. Convolutional layers, also called feature maps, are threedimensional * , i.e. h c,i,j where c labels a channel, i and j label one pixel of this feature map. A convolutional layer h n is deduced from an upstream convolutional layer h n-1 by the composition of a convolution and a pooling operation, which we shall respectively denote by and P. Conversely, a convolutional layer h n is deduced from a downstream convolutional layer h n+1 by the composition of a unpooling operation and of a transpose convolution.

After flattening h nconv , the next layer is the first fully connected layer and is denoted s nconv+1 . The second fully connected layer is denoted s nconv+2 and the last (output) layer is ŷ = s nconv+n fc +1 . Fully connected layers are bi-dimensional † , i.e. s i,j where i and j label one pixel.

We note w fc and w conv the fully connected weights and the convolutional filters respectively, so that w fc is a two-order tensor and w conv is a four order tensor, i.e. w conv cout,c in ,i,j is the element (i, j) of the filter connecting the channel c in of the input feature map to the channel c out of the output feature map. We denote the filter size by F. We keep the same notation x for the input data. Fig. 4.9 summarizes the whole architecture.

Definition of the operations. In this paragraph, we define all the operations involved in the definition and the properties of our convolutional model:

• the convolution of a filter w of size F with C out output channels and C in input channels by a vector X as:

(w X) cout,i,j := C in c int =1 F r,s=1 w cout,c in ,r,s X c in ,i+r-1,j+s-1 ., (4.27) 
• the associated transpose convolution is defined as the convolution of kernel W (also called "flipped kernel"):

wc in ,cout,r,s = w cout,c in ,F -r+1,F -s+1 , (4.28) 
with an input padded with P = F -1 -P where P denotes the padding applied in the forward convolution: in this way transpose convolution recovers the original input size before convolution. Whenever w is applied on a vector, we shall implicitly assume this padding. The transpose convolution can be seen as the gradient of the associated forward convolution with respect to its input -see Eq. (4.39) of Lemma 5. Fig. 4.10 provides a simple sketch of convolution and transpose convolution.

• We define the general dot product between two vectors X 1 and X 2 as:

X 1 • X 2 = C in c in =1 d i,j=1 X 1 c in ,i,j X 2 c in ,i,j . (4.29) 
• We define the pooling operation with filter size F and stride F as:

P(X) c,i,j = max r,s∈[1,F ]
X c,F (i-1)+r,F (j-1)+s . (4.30)

We also introduce the relative indices within a pooling zone for which the maximum is reached as:

ind(X) c,i,j = r,s∈[1,F ] X c,F (i-1)+r,F (j-1)+s = (r * (X, c, i), s * (X, c, j)). ( 4.31) 
• We define the inverse pooling operation as:

P -1 (Y, ind(X)) c,p,q =      Y c, p/F , q/F if p = F ( p/F -1) + r * (X, c, p/F ), q = F ( q/F -1) + s * (X, c, q/F ) 0 otherwise (4.32)
Putting Eq. (4.32) into words, the inverse pooling operation applied to a vector Y given the indices of another vector X up-samples Y to a vector of the same size of X with the elements of Y placed at the location of the maximal elements of X within each pooling zone, and zero elsewhere. Note that Eq. (4.32) can be written more conveniently as: With an input length of L in = 4, the output length is L out = L in -F +2P S + 1 = 3. The transpose convolution uses the flipped kernel (deduced from the convolution kernel by flipping rows and columns). In order to ensure that the output of the transpose convolution is of the same size as the original input (L in = 4), the input of the transpose convolution should be padded with zeros, with P = F -1 -P = 1 (gray squares). The length of the output of the transpose convolution thereby is L out -F +2 P S + 1 = 4.

P -1 (Y, ind(X)) c,p,q = i,j Y c,i,j • δ p,F (i-1)+r * (X,i) • δ q,F (j-1)+s * (X,j) . ( 4.33) 
Similarly to the transpose convolution, the inverse pooling can be seen as the gradient of pooling with respect to its input -see Eq. (4.38) of Lemma 5. Fig. 4.11 provides a simple sketch of pooling and inverse pooling.

• The flattening operation which maps a vector X into its flattened shape, i.e. F :

C in × d × d → 1 × C in D 2 .
We denote its inverse operation, i.e. the inverse flattening operation as F -1 .

Equations for n conv = 2 and n fc = 0. We first consider a simple example where the input image is convolved and pooled twice, then directly flattened and fed into the output layer. 

L out = L in -F +2P S + 1 = 2.
Note that upon pooling within a zone (red frame), the relative indices of the maximum element (with respect to the upper left corner) are retained for the inverse operation. Inverse pooling therefore simply amounts to reconstruct an input, with the maximum elements located at their initial position, and putting zeros elsewhere. This is the architecture which was used to process the MNIST data set in the experiments. For concreteness, let us assume here the same hyperparameters.

The first convolutional layer uses a 5 × 5 (F conv = 5) kernel with 32 features maps, stride 1 (S = 1) and pooling 0 (P = 0), the second convolutional layer uses a 5 × 5 kernel with 64 feature maps, stride 1 and pooling 0 as well. Pooling is achieved with 2 × 2 filters (F pool = 2) and stride 2. With the notations we have introduced before, h 1 and h 2 are respectively the first two convolutional layers, and s 3 = ŷ is the output layer. We denote d 1 , d 2 and d 3 the length of h 1 , h 2 and ŷ respectively so that their dimension is c 1 ×d 1 ×d 1 , c 2 ×d 2 ×d 2 and 1×d 3 respectively * . In our case, we have c 1 = 32, c 2 = 64. Taking dim(x) = 1 × 28 × 28 (MNIST samples), the length of the output of the first convolution is

L 1 = d 0 -Fconv+2P S + 1 = 24. After pooling, we get h 1 of length d 1 = L 1 -F pool 2 + 1 = 12 so that dim(h 1 ) = 32 × 12 × 12. Similarly, dim(h 2 ) = 64 × 4 × 4. After flattening, we get F(h 1 ) of dimension 1 × (64 • 4 • 4) = 1 × 1024.
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Finally, as usual for MNIST classification, dim(ŷ) = 1 × 10. Also as pointed out before, note that for a convolution of filter size F and padding P , padding P = F -1-P should be applied to the input of the associated transpose convolution to retrieve the dimension of the initial input. Concretely, the output of the first convolution has dimension 32 × 24 × 24 has shown above (L 1 = 24 with the previous notations). Using the same formula as before with padding P = F -1 -P = 4, we obtain the length of the output of the deconvolution by the tilted filter w0 as L back = L 1 -Fconv+2 P S + 1 = 28, so that we get the initial input dimension back. This technical point is addressed more formally in the demonstration of Eq. (4.39) of Lemma 5.

With these notations, the system is driven by the following dynamics during the first phase:

∀t ∈ [0, T ] :        ŷt+1 = σ w fc 2 • F h 2 t h 2 t+1 = σ P w conv 1 h 1 t + F -1 w fc 2 • ŷt h 1 t+1 = σ P (w conv 0 x) + wconv 2 P -1 h 2 t , ind(w conv 1 h 1 t-1 )
.

Note that to unpool h 2 at time step t + 1, we need to store the indices of the maximum elements within each pooling window of w conv 1 * h 1 upon pooling at time step t. During the second phase, the system dynamics read:

∀t ∈ [0, K] :          ŷβ t+1 = σ w fc 2 • F h 2,β t + β y -ŷβ t h 2,β t+1 = σ P w conv 1 h 1,β t + F -1 w fc 2 • ŷβ t h 1,β t+1 = σ P (w conv, 0 x) + wconv 2 P -1 h 2,β t , ind(w conv 1 h 1,β t-1 )
.

Considering the function:

Φ(x, h 1 , h 2 , ŷ) = ŷ • w fc 2 • F(h 2 t ) + h 2 • P w conv 1 h 1 + h 1 • P (w conv 1 x) ,
and ignoring the activation function, we have:

             h 1 t ≈ ∂Φ ∂h 2 h 2 t ≈ ∂Φ ∂h 2 ŷ ≈ ∂Φ ∂ ŷ , (4.34) 
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           ∆ EP w fc 2 (t) = 1 β ŷβ t+1 • F h 2,β t+1 -ŷβ t • F h 2,β t ∆ EP w conv 1 (t) = 1 β P -1 (h 2,β t+1 ) h 1,β t+1 -P -1 (h 2,β t ) h 1,β t ∆ EP w conv 0 (t) = 1 β P -1 (h 1,β t+1 ) x -P -1 (h 1,β t ) x , ( 4.35) 
Equations for any number of layers. The equations in the fully connected layers read in the first phase:

∀t ∈ [0, T ] :

         ŷt+1 = σ w fc nconv+n fc • s nconv+n fc t s n t+1 = σ w fc n-1 • s n-1 t + w fc n+1 • s n+1 t ∀n ∈ [n conv + 2, n conv + n fc ] s nconv+1 t+1 = σ w fc nconv • F(h nconv t ) + w fc nconv+2 • s nconv+2 t ,
where F denotes the flatten operation. In the second phase:

∀t ∈ [0, K] :

         ŷβ t+1 = σ w fc nconv+n fc • s nconv+n fc ,β t + β(y -ŷβ t ) s n,β t+1 = σ w fc n-1 • s n-1,β t + w fc n+1 • s n+1,β t ∀n ∈ [n conv + 2, n conv + n fc ] s nconv+1,β t+1 = σ w fc nconv • F(h nconv,β t ) + w fc nconv+2 • s nconv+2,β t ,
where y denotes the target. Conversely, convolutional layers read the following set of equations at all time: ∀t :

             h nconv t+1 = σ P w conv nconv-1 h nconv-1 t + F -1 w fc nconv+1 • s nconv+1 t h n t+1 = σ P w conv n-1 h n-1 t + wconv n+1 P -1 h n+1 t , ind(w conv n h n t-1 ) ∀n ∈ [2, n conv -1] h 1 t+1 = σ P (w conv 0 x) + wconv 2 P -1 h 2 t , ind(w conv 1 h 1 t-1 )
.

From here on, we shall omit the second argument of inverse pooling P -1 -i.e. the locations of the maximal neuron values before applying pooling -to improve readability of the equations and proofs. Considering the function:

IV.4.4 -Discrete-time RNNs in the prototypical setting Φ(x, h 1 , • • • , h nconv , s nconv+1 , • • • , ŷ) = nconv+n fc n=nconv+2 s n+1 • w fc n • s n + s nconv+1 • w fc nconv • F(h nconv t ) + nconv-1 n=2 h n+1 • P (w conv n h n ) + h 1 • P (w conv 1 x) ,
and ignoring the activation function, we have:

     ∀n ∈ [1, n conv ] : h n t ≈ ∂Φ ∂h n ∀n ∈ [n conv , n conv + n fc + 1] : s n t ≈ ∂Φ ∂s n , ( 4.36) 
so that in this case, we define the EP error processes for the parameters θ = {w fc n , w conv n } as, ∀t ∈ [0, K]:

                 ∀n ∈ [n conv + 1, n fc + n conv ] : ∆ EP w fc n (t) = 1 β s n+1,β t+1 • s n,β t+1 -s n+1,β t • s n,β t ∆ EP w fc nconv (t) = 1 β s nconv+1,β t+1 • F h nconv,β t+1 -s nconv+1,β t • F h nconv,β t ∀n ∈ [1, N conv -2] : ∆ EP w conv n (t) = 1 β P -1 (h n+1,β t+1 ) h n,β t+1 -P -1 (h n+1,β t ) h n,β t ∆ EP w conv 0 (t) = 1 β P -1 (h 1,β t+1 ) x -P -1 (h 1,β t ) x , ( 4.37) 
To further justify Eq. (4.36) and Eq. (4.37), we state and prove the following lemma.

Lemma 5. Taking:

Φ = Y • P (w X) ,
and denoting Z = w X, we have:

∂Φ ∂Z = P -1 (Y ) (4.38) ∂Φ ∂X = w P -1 (Y ) (4.39) ∂Φ ∂w = P -1 (Y ) X (4.40) ∂Φ ∂Y = P (w X) (4.41)
IV.4.4 -Discrete-time RNNs in the prototypical setting Proof of Lemma 5. Let us prove Eq. (4.38). We have:

∂Φ ∂Z c,x,y = c ,i,j Y c ,i,j ∂P(Z) c ,i,j ∂Z c,x,y = c ,i,j Y c ,i,j ∂Z c ,F (i-1)+1+r * (i),F (j-1)+1+s * (j) ∂Z c,x,y = i,j Y c,i,j δ x,F (i-1)+1+r * (i) δ y,F (j-1)+1+s * (j) = P -1 (Y ) c,x,y ,
where we used Eq. ( 4.33) at the last step.

We can now proceed to proving Eq. (4.39). We have:

∂Φ ∂X c,p,q = c ,x,y ∂Φ ∂Z c ,x,y • ∂Z c ,x,y ∂X c,p,q = c ,x,y P -1 (Y ) c ,x,y • ∂ ∂X c,p,q   c ,r,s w c ,c ,r,s X c ,x+r-1,y+s-1   = c ,x,y r,s P -1 (Y ) c ,x,y w c ,c,r,s δ p,x+r-1 δ q,y+s-1 = c ,r,s w c ,c,r,s P -1 (Y ) c ,p-(r-1),q-(s-1) .
Using the flipped kernel w and performing the change of variable r ← F -r + 1 and s ← F -s + 1, we obtain:

∂Φ ∂X c,p,q = c ,r,s wc,c ,r,s • P -1 (Y ) c ,p+r-F,q+s-F . ( 4.42) 
Note in Eq. (4.42) that P -1 (Y ) indices can exceed their boundaries. Also, as stated previously, P -1 (Y ) should be padded with P = F -1 -P so that we recover the size of X after transpose convolution. Without loss of generality, we assume P = 0. We subsequently defined the padded input P -1 (Y ) as:

P -1 (Y ) c,p,q = P -1 (Y ) c,p-F +1,q-F +1 if p, q ∈ [F, N + F -1] 0 if p, q ∈ [1, F -1] ∪ [N + F, N + 2(F -1)] , ( 4.43) 
where N denotes the dimension of P -1 (Y ). Finally Eq. (4.42) can conveniently be rewritten as:

IV.4.4 -Discrete-time RNNs in the prototypical setting ∂Φ ∂X c,p,q = w P -1 (Y ) p,q . (4.44)
For the sake of readability, the padding is implicitly assumed whenever transpose convolution is performed so that we drop the bar notation.

We can now proceed to proving Eq. (4.40). We have:

∂Φ ∂w c ,c,r,s = c ,x,y ∂Φ ∂Z c ,x,y • ∂Z c ,x,y ∂w c ,c,r,s = c ,x,y P -1 (Y ) c ,x,y • ∂ ∂w c ,c,r,s   k,r ,s w c ,k,r ,s X k,x+r -1,y+s -1   = x,y P -1 (Y ) c ,x,y • X c,r+x-1,s+y-1 = P -1 (Y ) X c ,c,r,s
Finally, proving Eq. (4.41) is straightforward.

Experiment. We have implemented an architecture with 2 convolution-pooling layers and 1 fully connected layer. The first and second convolution layers are made up of 5 × 5 kernels with 32 and 64 feature maps respectively. Convolutions are performed without padding and with stride 1. Pooling is performed with 2 × 2 filters and with stride 2.

The experimental protocol is the exact same as the one used on the fully connected layered architecture. The only difference is the activation function that we have used here is σ(x) = max(min(x, 1), 0) which we shall refer to here for convenience as 'hard sigmoid function'. Precise values of the hyperparameters T, K, beta are given in Tab. 2.1.

We show on Fig. 4.12 that ∆ EP and -∇ BPTT processes qualitatively very well coincide when presenting one MNIST sample to the network. Looking more carefully, we note that some ∆ EP s processes collapse to zero. This signals the presence of neurons which saturate to their maximal or minimal values, as an effect of the non linearity used. Consequently, as these neurons cannot move, they cannot carry the error signals. We hypothesize that this accounts for the discrepancy in the results obtained with EP on the convolutional architecture with respect to BPTT. 

Experiments

Effect of depth and approximation

We consider a fully connected layered architecture where layers s n are labelled in a backward fashion: s 0 denotes the output layer, s 1 the last hidden layer, and so forth. Two consecutive layers are reciprocally connected with tied weights with the convention that W n,n+1 connects s n+1 to s n . We study this architecture in the energy-based and prototypical setting as described per Equations (4.1) and (4.3) respectively, with corresponding weight updates (4.2) and (4.4). We study the GDU property layer-wise, e.g. RelMSE(∆ EP s n , -∇ BPTT s n

) measures the distance between the ∆ EP s n and -∇ BPTT s n processes, averaged over all elements of layer s n . ). For each architecture, the recurrent hyperparameters T , K and β have been tuned to make the ∆ EP and -∇ BPTT processes match best.

IV.5.1 -Effect of depth and approximation

Table 5.1: Training results on MNIST with EP benchmarked against BPTT, in the energy-based and prototypical settings. "EB" and "P" respectively denote "energybased" and "prototypical", "-#h" stands for the number of hidden layers and WCT for "Wall-clock time" in hours : minutes. We indicate over five trials the mean and standard deviation for the test error, the mean error in parenthesis for the train error. T (resp. K) is the number of iterations in the first (resp. second) phase. We display in Fig. 5.1 the RelMSE, layer-wise for one, two and three hidden layered architecture (from left to right), in the energy-based (upper panels) and prototypical (lower panels) settings, so that each architecture in a given setting is displayed in one panel -see Table 2.1 of Appendix 2.3.1 for a detailed description of the hyperparameters and curve samples. In terms of RelMSE, we can see that the GDU property is best satisfied in the energy-based setting with one hidden layer where RelMSE is around ∼ 10 -2 (top left). When adding more hidden layers in the energy-based setting (top middle and top right), the RelMSE increases to ∼ 10 -1 , with a greater RelMSE when going away from the output layer. The same is observed in the prototypical setting when we add more hidden layers (lower panels). Compared to the energy-based setting, although the RelMSEs associated with neurons are significantly higher in the prototypical setting, the RelMSEs associated with synapses are similar or lower. On average, the weight updates provided by EP match well the gradients of BPTT, in the energy-based setting as well as in the prototypical setting.

EP (error

Chapter 6

Discussion

Table 5.1 shows the accuracy results on MNIST of several variations of our approach and Table 5.2 those of the literature -see Table 2.2 of Appendix 2.3.1 for a complete description of the hyperparameters used. First, EP overall performs as well or practically as well as BPTT in terms of test accuracy in all situations. Second, no degradation of accuracy is seen between using the prototypical (P) rather than the energy-based (EB) setting, although the prototypical setting requires three to five times less time steps in the first phase (T) and cuts the simulation time by a factor five to eight. Finally, the best EP result, ∼ 1% test error, is obtained with our convolutional architecture. This is also the best performance reported in the literature on MNIST training with EP. BPTT achieves 0.90% test error using the same architecture. This slight degradation is due to saturated neurons which do no route error signals (as reported in the previous section). The prototypical situation allows using highly reduced number of time steps in the first phase than [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] and [START_REF] O'connor | Initialized equilibrium propagation for backprop-free training[END_REF]. On the other hand, [START_REF] Peter O'connor | Training a spiking neural network with equilibrium propagation[END_REF] manages to cut this number even more. This comes at the cost of using an extra network to learn proper initial states for the EP network, which is not needed in our approach.

Overall, our work broadens the scope of EP from its original formulation for biologically motivated real-time dynamics and sheds new light on its practical understanding. We first extended EP to a discrete-time setting, which reduces its computational cost and allows addressing situations closer to conventional machine learning. Theorem 4 demonstrated that the gradients provided by EP are strictly equal to the gradients computed with BPTT in specific conditions. Our numerical experiments confirmed the theorem and showed that its range of applicability extends well beyond the original formulation of EP to prototypical neural networks widely used today. These results highlight that, in principle, EP can reach the same performance as BPTT on benchmark tasks, for RNN models with fixed input. One limitation of our theory however is that it has yet to be adapted to sequential data: such an extension would require to capture and learn correlations between successive equilibrium states corresponding to different inputs. Layer-wise analysis of the gradients computed by EP and BPTT show that the deeper the layer, the more difficult it becomes to ensure the GDU property. On top of non-linearity effects, this is mainly due to the fact that the deeper the network, the longer it takes to reach equilibrium.

While this may be a conundrum for current processors, it should not be an issue for alternative computing schemes. Physics research is now looking at neuromorphic computing approaches that leverage the transient dynamics of physical devices for computation [START_REF] Romera | Vowel recognition with four coupled spin-torque nano-oscillators[END_REF][START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF][START_REF] Feldmann | All-optical spiking neurosynaptic networks with self-learning capabilities[END_REF]. In such systems, based on magnetism or optics, dynamical equations are solved directly by the physical circuits and components, in parallel and at speed much higher than processors. On the other hand, in such systems, the nonlocality of backprop is a major concern [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF]. In this context, EP appears as a powerful approach as computing gradients only requires measuring the system at the end of each phase, and going backward in time is not needed. In a longer term, interfacing the algorithmics of EP with device physics could help cutting drastically the cost of inference and learning of conventional computers, and thereby address one of the biggest technological limitations of deep learning.

Introduction

The implementation of backpropagation on conventional computers or dedicated hardware consumes more energy than the brain by several orders of magnitude [START_REF] Strubell | Energy and Policy Considerations for Deep Learning in NLP[END_REF]. One path towards reducing the gap between brains and machines in terms of power consumption and thereby achieving fast and energy efficient AI is by investigating alternative learning paradigms relying, as synapses do in the brain, on locally available information, as we showed in section 3.3 of part I. In these regards, we showed in part III that Equilibrium Propagation (EP) is an alternative style of computation for estimating error gradients that presents significant advantages. A key property of EP is that, unlike Contrastive Hebbian Learning (CHL) and related algorithms, it is intimately linked to backpropagation. It has been shown that synaptic updates in EP compute gradients of recurrent backpropagation (RBP) (section 2.3 of part III) and backpropagation through time (part IV). This makes EP especially attractive for bridging the gap between neural networks developed by neuroscientists, neuromorphic researchers, and deep learning researchers.

Nevertheless, the bioplausibility of EP still undergoes major limitations. First, although EP is local in space, it is non-local in time. In all existing implementations of EP, the weight update is performed after the dynamics of the second phase have converged, when the first steady state is no longer physically available: the first steady state has to be stored. Second, the network dynamics have to derive from a primitive function which, in the Hopfield model, translates into to the requirement of symmetric weights. These two requirements are biologically unrealistic and also hinder the development of efficient EP computing hardware.

In this part, we propose an alternative implementation of EP, called Continual Equilibrium Propagation (C-EP) which features temporal locality, by enabling synaptic dynamics to occur throughout the second phase, simultaneously with neural dynamics. We then address the second issue by adapting C-EP to systems having asymmetric synaptic connections, taking inspiration from [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF]; we call this modified version the Continual Vector Field approach (or C-VF).

More specifically, the contributions of the current part are the following: This chapter presents the main theoretical contributions of this part. Again, the loss of interest is the cost function evaluated at equilibrium: V.1.1 -From EP to C-EP: An intuition behind continual weight updates L * = (s * , y).

• We introduce C-EP (Section 1.1-1.2),
(

We introduce a new algorithm to optimize L * , a new version of EP with continual parameter updates that we call C-EP. Unlike typical machine learning algorithms (such as BPTT, RBP and EP) in which the weight updates occur after all the other computations in the system are performed, our algorithm offers a mechanism in which the weights are updated continuously as the state of the neurons change.

From EP to C-EP: An intuition behind continual weight updates

The key idea to understand how to go from EP to C-EP is that the gradient of EP appearing in Eq. ( 2.3) reads as the following telescopic sum:

1 β ∂Φ ∂θ x, s β * , θ - ∂Φ ∂θ (x, s * , θ) global parameter gradient in EP = ∞ t=1 1 β ∂Φ ∂θ x, s β t , θ - ∂Φ ∂θ x, s β t-1 , θ
parameter gradient at time t in C-EP .

(

In Eq. (1.2) we have used that s β 0 = s * and s β t → s β * as t → ∞. Here lies the very intuition of continual updates motivating this work; instead of keeping the weights fixed throughout the second phase and updating them at the end of the second phase based on the steady states s * and s β * , as in EP (Alg. 4), the idea of the C-EP algorithm is to update the weights at each time t of the second phase between two consecutive states s β t-1 and s β t (Alg. 5). One key difference in C-EP compared to EP though, is that, in the second phase, the weight update at time step t influences the neural states at time step t + 1 in a nontrivial way, as illustrated in the computational graph of Fig. 1.2. In the next section, we define C-EP using notations that explicitly show this dependency.

Description of the C-EP algorithm

The first phase of C-EP is the same as that of EP (see Alg. 5 compared to Alg. 4). In the second phase of C-EP, the parameter variable is regarded as another dynamic variable θ t that evolves with time t along with s t . The dynamics of s t and θ t in the second phase of C-EP depend on the values of the two hyperparameters β (the hyperparameter of influence) and η (the learning rate), therefore we write s β,η t and θ β,η t to show explicitly this dependence. With now both the neurons and the synapses evolving in the second phase, the dynamic variables s β,η t and θ β,η t start from s β,η 0 = s * and θ β,η 0 = θ and follow, ∀t ≥ 0:

s β,η t+1 = ∂Φ ∂s x, s β,η t , θ β,η t -β ∂ ∂s s β,η t , y , θ β,η t+1 = θ β,η t + η β ∂Φ ∂θ x, s β,η t+1 , θ β,η t - ∂Φ ∂θ x, s β,η t , θ β,η t .
(1.

3)

The difference in C-EP compared to EP is that the value of the parameter used to update s β,η t+1 in Eq. (1.3) is the current θ β,η t , not θ. Provided the learning rate η is small enough, i.e. the synapses are slow to change compared to the neurons, this effect is weak. Intuitively, in the limit η → 0, the parameter changes are negligible so that θ β,η t can be approximated by its initial value θ β,η 0 = θ. Under this approximation, the dynamics of s β,η t in C-EP and the dynamics of s β t in EP are the same. See Fig. 2.1 for a simple example.

       ∆ C-EP s (β, η, t) = 1 β s β,η t+1 -s β,η t , ∆ C-EP θ (β, η, t) = 1 η θ β,η t+1 -θ β,η t , ( 2.1) 
as well as the gradients of the loss L = (s T , y) after T time steps, computed with BPTT:

       ∇ BPTT s (t) = ∂L ∂s T -t , ∇ BPTT θ (t) = ∂L ∂θ T -t .
(2.2)

Note that injecting Eq. (1.3) in Eq. (2.1), the normalized updates of C-EP read:

∆ C-EP θ (β, η, t) = 1 β ∂Φ ∂θ x, s β,η t+1 , θ β,η t - ∂Φ ∂θ x, s β,η t , θ β,η t , ( 2.3) 
which corresponds to the parameter gradient at time t, defined informally in Eq. (1.2).

Again and as in the two previous parts, the loss to optimize is still the cost function at equilibrium:

L * = (s * , y).
(

Backpropagation Through Time (BPTT) described in the Introduction and in the previous part, Equilibrium Propagation and Recurrent Backpropagation (RBP) [START_REF] Luis | A learning rule for asynchronous perceptrons with feedback in a combinatorial environment[END_REF][START_REF] Fernando | Generalization of back-propagation to recurrent neural networks[END_REF] can all optimize L * , and we show in this part that Continual Equilibrium Propagation also can. To demonstrate the equivalence between C-EP and BPTT, we will show that these four algorithms are computationally equivalent. Namely, the proof outline is the following:

• BPTT and RBP are equivalent (section 2.1, Lemma 7). This link is known since the late 1980s and can be found in [START_REF] Hertz | Introduction to the theory of neural computation[END_REF].

• EP and RBP are also equivalent (section 2.2, Lemma 8). This result was proved in [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF] in the setting of real-time dynamics.

• Finally, C-EP and EP are equivalent (section 2.3, Lemma 9), which is the new ingredient of this part.

• We conclude that, by transitivity, BPTT and C-EP are equivalent (section 2.4, Theorem 10).

This outline is illustrated on a very simple model in Fig. 2.1: the equivalence between BPTT and RBP is illustrated with the link between the blue and the green blobs, the equivalence between EP and RBP with the link between the yellow and green blobs and finally V.2.1 -Equivalence between BPTT and RBP the equivalence between C-EP and EP with the link between the red and yellow blobs. See Appendix 3.3 for the derivation details of this toy model.

Equivalence between BPTT and RBP

Definition of Recurrent Backpropagation (RBP). The Almeida-Pineda algorithm (a.k.a. Recurrent Backpropagation, or RBP for short), which was invented independently in [START_REF] Luis | A learning rule for asynchronous perceptrons with feedback in a combinatorial environment[END_REF] and [START_REF] Fernando | Generalization of back-propagation to recurrent neural networks[END_REF], relies on this property to compute the gradients of the loss 

= s T -K+1 = • • • = s T -1 = s T = s * ,
then we see that, in order to compute the first K gradients of BPTT, all one needs to know is ∂F ∂s (x, s * , θ) and ∂F ∂θ (x, s * , θ). To this end, all one needs to keep in memory is the steady state s * . In this particular setting, it is not necessary to store the past hidden states s T , s T -1 , . . . , s T -K since they are all equal to s * Unlike BPTT where keeping the history of past hidden states is necessary to compute (or 'backpropagate') the gradients, in RBP Eq. (2.6)-(2.7) show that it is sufficient to keep in memory the steady state s * only in order to iterate the computation of the gradients. RBP is more memory efficient than BPTT. ) satisfy the same recursive equations with the same initial conditions, so that BPTT and RBP error processes are equal at all times. Hence ∇ RBP

s t+1 ← F (x,
s (t) = ∇ BPTT s (t), ∇ RBP θ (t) = ∇ BPTT θ (t) ∀t = 0, 1, . . . , K.

Equivalence between EP and RBP

For completeness of this part, we state the equivalence between EP and RBP. Note that the equations defining RBP Eq. (2.5)-(2.7) are the same than those satisfied by BPTT at equilibrium in the previous part (Lemma 2), so that Lemma 8 is simply a reformulation of the theorem of the previous part (Theorem 4).

Lemma 8 (Equivalence of EP and RBP). Assume that the transition function derives from a primitive function, i.e. that F is of the form F (x, s, θ) = ∂Φ ∂s (x, s, θ). Then, in the limit of V.2.3 -Equivalence between EP and C-EP small hyperparameter β, the normalized updates of EP are equal to the gradients of RBP:

∀t ≥ 0 :      lim β→0 (β>0) ∆ EP s (β, t) = -∇ RBP s (t), lim β→0 (β>0) ∆ EP θ (β, t) = -∇ RBP θ (t).
(2.10)

Proof of Lemma 8. See proof of Theorem 4 in the previous part.

Equivalence between EP and C-EP

First, recall the dynamics of C-EP in the second phase: starting from s β,η 0 = s * and θ β,η 0 = θ we have ∀t ≥ 0:

       s β,η t+1 = ∂Φ ∂s x, s β,η t , θ β,η t -β ∂ ∂s s β,η t , y , θ β,η t+1 = θ β,η t + η β ∂Φ ∂θ x, s β,η t+1 , θ β,η t - ∂Φ ∂θ x, s β,η t , θ β,η t .
(2.11)

We have also defined the normalized updates of C-EP:

∀t ≥ 0 :        ∆ C-EP s (β, η, t) = 1 β s β,η t+1 -s β,η t , ∆ C-EP θ (β, η, t) = 1 η θ β,η t+1 -θ β,η t .
(2.12)

We also recall the dynamics of EP in the second phase: as well as the normalized updates of EP, as defined in part IV:

s β 0 =
∀t ≥ 0 :        ∆ EP s (β, t) = 1 β s β t+1 -s β t , ∆ EP θ (β, t) = 1 β ∂Φ ∂θ x, s β t+1 , θ - ∂Φ ∂θ x, s β t , θ .
(2.14)

Lemma 9 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. η → 0, the (normalized) updates of C-EP are equal to those of EP:

∀t ≥ 0 :      lim η→0 (η>0) ∆ C-EP s (β, η, t) = ∆ EP s (β, t), lim η→0 (η>0) ∆ C-EP θ (β, η, t) = ∆ EP θ (β, t).
(2.15)

Proof of Lemma 9. We want to compute the limits of ∆ C-EP s (β, η, t) and ∆ C-EP θ (β, η, t) as η → 0 with η > 0. Note that it is crucial that this property is derived for η > 0 so that learning is actually performed. In a subtle way though, the proof can be derived with η = 0

V.2.3 -Equivalence between EP and C-EP

for the following mathematical reasons. Note that assuming the regularity on the functions Φ and (e.g. continuous differentiability), for fixed t and β, the quantities s β,η t and θ β,η t are continuous as functions of η; this is straightforward from the form of Eq. (2.11). As a consequence, ∆ C-EP s (β, η, t) is a continuous function of η, which implies in particular that:

lim η→0 (η>0) ∆ C-EP s (β, η, t) = ∆ C-EP s (β, 0, t).
(2.16)

Now, taking η = 0 in the bottom equation of Eq. (2.11) yields the recurrence relation θ β,0 t+1 = θ β,0 t , so that θ β,0 t = θ β,0 0 = θ for every t. Injecting θ β,0 t = θ in the top equation of Eq. (2.11) yields for s β,0 t the same recurrence relation as that of s β t (Eq. 2.13), so that s β,0 t = s β t for every t. Therefore, for η = 0, we have:

∆ C-EP s (β, 0, t) = 1 β s β,0 t+1 -s β,0 t = 1 β s β t+1 -s β t = ∆ EP s (β, t).
( 

∆ C-EP θ (β, η, t) = 1 β ∂Φ ∂θ x, s β,0 t+1 , θ β,0 t - ∂Φ ∂θ x, s β,0 t , θ β,0 t = 1 β ∂Φ ∂θ x, s β t+1 , θ - ∂Φ ∂θ x, s β t , θ = ∆ EP θ (β, t).
(2.21)

An explicit link between EP and C-EP weight updates. A consequence of Lemma 9 is that the total update of C-EP matches the total update of EP in the limit of small η, so that we retrieve the standard EP learning rule of Eq. (2.3). More explicitly, after K steps in the second phase and starting from θ β,η 0 = θ 0 :

V.2.4 -Main result θ β,η K -θ 0 = K-1 t=0 θ β,η t+1 -θ β,η t (2.22) = K-1 t=0 η∆ C-EP θ (β, η, t) (2.23) ≈ η 0 K-1 t=0 η∆ EP θ (β, t) (2.24) = K-1 t=0 η 1 β ∂Φ ∂θ (x, s t+1 , θ 0 ) - ∂Φ ∂θ (x, s t+1 , θ 0 ) (2.25) = η β ∂Φ ∂θ (x, s β K , θ 0 ) - ∂Φ ∂θ (x, s * , θ 0 ) (2.26)
Here we have used successively the definition of ∆ C-EP θ (Eq. (2.1)), Lemma 9 and the definition of ∆ EP θ (Eq. (2.14)).

Main result

We now ready to state the main result of this part: the equivalence between C-EP and BPTT.

Theorem 10 (GDD Property). Let s 0 , s 1 , . . . , s T be the convergent sequence of states and denote s * = s T the steady state. Further assume that there exists some step K where 0 < K ≤ T such that s * = s T = s T -1 = . . . s T -K . Then, in the limit η → 0 and β → 0, the first K normalized updates in the second phase of C-EP are equal to the negatives of the first K gradients of BPTT, i.e. ∀t = 0, 1, . . . , K:

     lim β→0 lim η→0 ∆ C-EP s (β, η, t) = -∇ BPTT s (t), lim β→0 lim η→0 ∆ C-EP θ (β, η, t) = -∇ BPTT θ (t). ( 2 

.27)

Proof of Lemma 10. As stated in the proof outline, Theorem 10 is a consequence of Lemma (8), Lemma [START_REF] David | Learning Logic Technical Report TR-47[END_REF] and Lemma [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF].

Remarks. Note that:

• Fig. 2.1 illustrates Theorem 10 with a simple dynamical system for which the normalized updates ∆ C-EP and the gradients ∇ BPTT are analytically tractable.

• Theorem 10 rewrites

s β,η t+1 ≈ s β,η t -β ∂L ∂s T -t and θ β,η t+1 ≈ θ β,η t -η ∂L ∂θ T -t ,
showing that in the second phase of C-EP, neurons and synapses descend the gradients of the loss L V.2.5 -Extending the GDD property: Continual Vector Field Equilibrium Propagation (C-VF) obtained with BPTT, with the hyperparameters β and η playing the role of learning rates for s β,η t and θ β,η t , respectively. Theorem 10 holds in the limit β → 0, η → 0, which means that β and η have to be small enough for the neurons and synapses to compute approximately the gradient of L * . On the other hand β and η also have to be large enough so that an error signal can be transmitted in the second phase and that optimization of the loss happens within a reasonable number of epochs. This trade-off is well reflected by the table of hyperparameters of Table 3.2 in Appendix 3.4.1. In particular, the values β = 0 (there is no second phase) and (or) η = 0 (there is no learning) are excluded.

Extending the GDD property: Continual Vector Field Equilibrium Propagation (C-VF)

The Gradient Descending Dynamics property (GDD, Theorem 10) states that, when the system dynamics derive from a primitive function, i.e. when the transition function F is of the form F = ∂Φ ∂s , then the normalized updates of C-EP match the gradients provided by BPTT. Remarkably, even in the case of dynamics that do not derive from a primitive function Φ, experiments in the next chapter show that the biologically plausible update rule of C-VF follows well the gradients of BPTT * . In this section, we give a theoretical justification for this fact by proving a more general result than Theorem 10. We call this version of Continual Equilibrium Propagation where the dynamics follow any transition function (or "vector field") F , Continual Vector Field Equilibrium Propagation. Now let us consider general dynamics with transition function F the first phase rewrites:

s t+1 = F (x, s t ; θ) , ( 2.28) 
and the second phase:

∀t ≥ 0 :

       s β,η t+1 = F x, s β,η t ; θ β,η t -β ∂ ∂s s β,η t , θ β,η t+1 = θ β,η t + η β ∂F ∂θ x, s β,η t ; θ β,η t • s β,η t+1 -s β,η t .
(2.29)

The definition of the normalized updates of C-VF is also: 

       ∆ C-VF s (β, η, t) = 1 β s β,η t+1 -s β,η t , ∆ C-VF θ (β, η, t) = 1 η θ β,η t+1 -θ β,η t . ( 2 

V.2.5 -Extending the GDD property: Continual Vector Field Equilibrium Propagation (C-VF)

We can now state the generalization of Theorem 10.

Theorem 11 (Generalisation of the GDD Property). Let s 0 , s 1 , . . . , s T be the convergent sequence of states and denote s * = s T the steady state. Further assume that there exists some step K where 0 < K ≤ T such that s * = s T = s T -1 = . . . s T -K . Finally, assume that the Jacobian of the transition function at the steady state is symmetric, i.e. ∂F ∂s (x, s * ; θ) = ∂F ∂s (x, s * ; θ) . Then, in the limit η → 0 and β → 0, the first K normalized updates of C-VF follow the the first K gradients of BPTT, i.e. ∀t = 0, 1, . . . , K :

     lim β→0 lim η→0 ∆ C-VF s (β, η, t) = -∇ BPTT s (t), lim β→0 lim η→0 ∆ C-VF θ (β, η, t) = -∇ BPTT θ (t). ( 2 

.31)

Proof of Lemma 11. Defining:

∀t = 0, 1, . . . , K :    ∆ VF s (β, t) = lim η→0 ∆ C-VF s (β, η, t), ∆ VF θ (β, t) = lim η→0 ∆ C-VF θ (β, η, t). (2.32)
We can readily show using Eq. (2.29) V.3.1 -Definition ignore the activation function σ. Following Eq. (1.3) and Eq. (2.1), we define the normalized updates of this model as:

∆ C-EP s (β, η, t) = 1 β s β,η t+1 -s β,η t , ∆ C-EP W (β, η, t) = 1 β s β,η t+1 • s β,η t+1 -s β,η t • s β,η t . (3.2)
Note that this model applies to any topology as long as existing connections have symmetric values: this includes deep networks with any number of layers. More explicitly, for a network whose layers of neurons are s 0 , s 1 , ..., s N , with W n,n+1 connecting the layers s n+1 and s n in both directions, the corresponding primitive function is

Φ = n (s n ) • W n,n+1 • s n+1 + s N • W x • x.
Prototypical model with asymmetric weights trained by C-VF. In this model, the dynamics in the first phase is the same as Eq. (3.1) but now the weight matrix W is no longer assumed to be symmetric. In this setting the weight dynamics in the second phase is replaced by a version for asymmetric weights:

W β,η t+1 = W β,η t + η β s β,η t • s β,η t+1 -s β,η t
, so that the normalized updates are equal to:

∆ C-VF s (β, η, t) = 1 β s β,η t+1 -s β,η t , ∆ C-VF W (β, η, t) = 1 β s β,η t • s β,η t+1 -s β,η t . ( 3.3) 
Like the previous model, the prototypical RNN with asymmetric weights also applies to deep networks with any number of layers. Although in C-VF the dynamics of the weights is not one of the form of Eq. (1.3) that derives from a primitive function, the (bioplausible) normalized weight updates of Eq. (3.3) can approximately follow the gradients of BPTT, provided that the values of reciprocal connections are not too dissimilar: this is a consequence of Theorem 11. Indeed, defining the transition function F (s, W ) = σ(W • s + W x • x), so that the dynamics of the first phase (Eq. (3.1)) rewrite:

s t+1 = F (x, s t ; W, W x ) . (3.4)
As for the second phase, notice that ∂F ∂W (x, s; W, W x ) = σ (W • s + W x • x) • s, so that if we ignore the factor σ (W • s + W x • x), the second phase rewrites:

∀t ≥ 0 :        s β,η t+1 = F x, s β,η t ; W β,η t , W β,η x,t -β ∂ ∂s s β,η t , W β,η t+1 = W β,η t + η β ∂F ∂W x, s β,η t ; W β,η t , W β,η x,t • s β,η t+1 -s β,η t . ( 3.5) 
Also observe that:

∂F ∂s (x, s; W, W x ) = σ (W • s + W x • x) • W . (3.6)
Ignoring the factor σ (W • s + W x • x) again, we see that if W is symmetric then the Jacobian of F is also symmetric, therefore the conditions of Theorem 11 are met. This observation is illustrated in Fig. 4.1 (as well as in Fig. 3.7 and Fig. 3.8).

V.3.2 -Models with symmetric weights trained by C-EP so that the equations of motion for the first phase read:

∀t ∈ [0, T ] :

       ŷt+1 = (1 -ε)ŷ t + εσ (ŷ t ) w N • σ(s N t ) s n t+1 = (1 -ε)s n t + σ (s n t ) ε(w n-1 • σ s n-1 t + w n • σ(s n+1 t )) ∀n ∈ [2, N ] s 1 t+1 = (1 -ε)s 1 t + εσ (s 1 t ) (w 0 • σ (x) + w 1 • σ(s 2 t ))
, During the second phase, ∀t ∈ [0, T ] :

                 ŷβ,η t+1 = (1 -ε)ŷ β,η t + εσ (ŷ β,η t ) w N • σ(s N,β,η t ) + βε(y -ŷβ,η t ) s n,β,η t+1 = (1 -ε)s n,β,η t + σ (s n,β,η t ) ε(w n-1 • σ s n-1,β,η t + w n • σ(s n+1,β,η t )) ∀n ∈ [2, N ], s 1,β,η t+1 = (1 -ε)s 1,β,η t + εσ (s 1,β,η t ) (w 0 • σ (x) + w 1 • σ(s 2,β,η t )) θ β,η t+1 = θ β,η t + η∆ EP θ (β, η, t) ∀θ ∈ {w n }
According to Eq. ( 2.3) and Eq. (3.7), we have: 

     ∆ EP w 0 (β, η, t) = 1 β σ s 1,β,η t+1 • σ (x) -σ s 1,β,η t • σ (x) ∆ EP wn (β, η, t) = 1 β σ s n+1,β,η t+1 • σ s n,β,η t+1 -σ s n+1,β,η t • σ s n,β,η t ∀n ∈ [1, N ]

Protypical model

Equations. Similarly to subsection 4.3.2, we consider a discrete-time model where the dynamics of the first phase are defined as:

V.3.2 -Models with symmetric weights trained by C-EP ∀t ∈ [0, T ] :

         ŷt+1 = σ w N • s N t s n t+1 = σ w n-1 • s n-1 t + w n • s n+1 t ∀n ∈ [2, N ] s 1 t+1 = σ w 0 • x + w 1 • s 2 t .
(3.8)

Again, we remind here that defining:

Φ(x, s 1 , . . . , ŷ) = N n=1 s n+1 • w n • s n + s 1 • w 0 • x, ( 3.9) 
ignoring the activation function σ, Eq. (3.8) rewrites:

s n t+1 ≈ ∂Φ ∂s n (x, s 1 , . . . , ŷ) ∀n ∈ [1, N + 1] (3.10)
Thereby, applying Eq. ( 2.3) along with Eq. (3.9), the dynamics of the second phase read:

∀t ∈ [0, T ] :

             ŷβ,η t+1 = σ w N • s N,β,η t + β(y -ŷβ,η t ) s n,β,η t+1 = σ w n-1 • s n-1,β,η t + w n • s n+1,β,η t ∀n ∈ [2, N ] s 1,β,η t+1 = σ w 0 • x + w 1 • s 2,β,η t , θ β,η t+1 = θ β,η t + η∆ EP θ (β, η, t) ∀θ ∈ {w n } (3.11) 
where for every layer w n and every t ∈ [0, K]:

   ∆ EP w 0 (β, η, t) = 1 β s 1,β,η t+1 • x -s 1,β,η t • x , ∆ EP wn (β, η, t) = 1 β s n+1,β,η t+1 • s n,β,η t+1 -s n+1,β,η t • s n,β,η t ∀n ∈ [1, N ] (3.12) 
Defining s = (s 1 , s 2 , . . . , ŷ) and taking again W and W x as defined in Eq. (4.11) in the previous part, Eq. (3.8) can also be vectorized in a block-wise fashion as Eq. (3.1). 

Models with asymmetric weights trained by C-VF

In this section, we consider models with asymmetric connections: w m,n stands for the synapses connecting the layer s n to the layer s m .

Real-time model

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :          ŷt+1 = (1 -ε)ŷ t + εw ŷ,N • σ s N t s n t+1 = (1 -ε)s n t + ε w n,n-1 • σ s n-1 t + w n,n+1 • σ s n+1 t ∀n ∈ [2, N ] s 1 t+1 = (1 -ε)s 1 t + ε w 0 • σ (x) + w 1,2 • σ s 2 t
where ε is the time-discretization parameter.

Using Eq. (2.29) applied to these dynamics to derive the weight updates, the dynamics of the second phase read: 

∀t ∈ [0, K] :                    ŷβ,η t+1 = (1 -ε)ŷ β,η t + εw ŷ,N • σ s N,β,η t + βε(y -ŷβ,η ) s n,β,η t+1 = (1 -ε)s n,β,η t + ε w n,n-1 • σ s n-1,β,η t + w n,n+1 • σ s n+1,β,η t ∀n ∈ [2, N ] s 1,β,η t+1 = (1 -ε)s 1,β,η t + ε w 0 • σ (x) + w 1,2 • σ s 2,β,η t θ β,η t+1 = θ β,η t + η ∆ C-VF θ (β,
           ∆ C-VF w 0 (β, η, t) = 1 β (s 1,β,η t+1 -s 1,β,η t ) • σ(x) ∆ C-VF w n+1,n (β, η, t) = 1 β s n+1,β,η t+1 -s n+1,β,η t • σ s n,β,η t ∆ C-VF w n,n+1 (β, η, t) = 1 β s n,β,η t+1 -s n,β,η t • σ s n+1,β,η t

Prototypical model

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T ] :      ŷt+1 = σ(w ŷ,N • s N t ) s n t+1 = σ(w n,n-1 • s n-1 t + w n,n+1 • s n+1 t ) ∀n ∈ [2, N ] s 1 t+1 = σ w 0 • x + w 1,2 • s 2 t , (3.14) 
and the second phase as:

∀t ∈ [0, K] :            ŷβ,η t+1 = σ(w ŷ,N • s N,β,η t ) s n,β,η t+1 = σ(w n,n-1 • s n-1,β,η t + w n,n+1 • s n+1,β,η t ) ∀n ∈ [2, N ] s 1,β,η t+1 = σ w 0 • x + w 1,2 • s 2,β,η t θ β,η t+1 = θ β,η t + η∆ C-VF θ (β, η, t) ∀θ ∈ {W nn+1 , W n+1n } (3.15)
Note that Eq. (3.14) can also be in a vectorized block-wise fashion as Eq. (3.1) with s = (s 0 , s 1 , . . . , s N -1 ) and provided that we define W and W x as:

W =           0 w 1,2 0 0 0 w 2,1 0 w 2,3 0 0 0 w 3,2 0 . . . 0 0 0 . . . 0 w N,ŷ 0 0 0 w ŷ,N 0           , W x =       w 0 0 . . . 0       , ( 3.16) 
For all layers w n,n+1 and w n+1,n , and every t ∈ [0, K], we define the weight updates as: V.4.2 -Why C-EP does not perform as well as standard EP? rate η of continual updates leads to ∆ C-EP (β, η, t) curves splitting apart from the -∇ BPTT (t) curves. As seen per Fig. 4.1 (a), this effect is emphasized with the depth: before training, angles between the normalized updates of C-EP and the gradients of BPTT reach 50 degrees for two hidden layers. The deeper the network, the more difficult it is for the C-EP dynamics to follow the gradients provided by BPTT. As an evidence, we show in section 4.2 that when we use extremely small learning rates throughout the second phase (θ ← θ + η tiny ∆ C-EP θ ) and rescale up the resulting total weight update (θ ← θ -∆θ tot + η η tiny ∆θ tot ), we recover standard EP results.

       ∆ C-VF w 0 (β, η, t) = 1 β (s 1,β,η t+1 -s 1,β,η t ) • x ∆ C-VF w n+1,n (β, η, t) = 1 β (s n+1,β,η t+1 -s n+1,β,η t ) • s n,β,η t ∆ C-VF w n,n+1 (β, η, t) = 1 β (s n,β,η t+1 -s n,β,η t ) • s n+1,β,η t

Why C-EP does not perform as well as standard EP?

We provide here further ground for the training performance degradation observed on the MNIST task when implementing C-EP compared to standard EP. In practice, when training with C-EP, we have to make a trade-off between:

1. having a learning rate that is small enough so that C-EP normalized updates are subsequently close enough to the gradients of BPTT (Theorem 10),

2. having a learning rate that is large enough to ensure convergence within a reasonable number of epochs.

In other words, the degradation of accuracy observed in the table of Fig. 4.1 is due to using a learning rate that is too large to observe convergence within 100 epochs. To demonstrate this, we implement Alg. 8 which consists simply in using a very small learning rate throughout the second phase (denoted as η tiny ), and artificially rescaling the resulting weight update by a bigger learning rate (denoted as η). Applying Alg. 8 to a fully connected layered architecture with one hidden layer, T = 30, K = 10, β = 0.1, yields 2.06±0.13% test error and 0.18±0.01% train error over 5 trials, where we indicate mean and standard deviation. Similarly, applying Alg. 8 to a fully connected layered architecture with two hidden layers, T = 100, K = 20, β = 0.5, yields 1.89 ± 0.22% test error and 0.02 ± 0.02% train error. These results exactly match the ones provided by standard EP -see Table 3.3.

Continual Vector Field (C-VF) training experiments

Depending on whether the updates occur continuously during the second phase and the system obey general dynamics with untied forward and backward weights, we can span a large range of deviations from the ideal conditions of Theorem 10. Fig. 4.1 (b) depicts qualitatively these deviations with a model for which the normalized updates of EP match the gradients of BPTT (EP); with continual weight updates, the normalized updates and gradients start splitting apart (C-EP), and even more so if the weights are untied (C-VF).

V.4.3 -Continual Vector Field (C-VF) training experiments

Algorithm 8 Debugging procedure of C-EP Input: x, y, θ, β, η, η tiny = 10 -5 η. Output: θ. Protocol. In order to create these deviations from Theorem 10 and study the consequences in terms of training, we proceed as follows. For each C-VF simulations, we tune the initial angle between forward weights (θ f ) and backward weights (θ b ) between 0 and 180 • . We denote this angle Ψ(θ f , θ b ) -see Appendix 3.4.1 for the angle definition and the angle tuning technique employed. For each of these weight initialization, we compute the angle between the total normalized update provided by C-VF, i.e. ∆ C-VF (β, η, tot) = K-1 t=0 ∆ C-VF (β, η, t) and the total gradient provided by BPTT, i.e. ∇ BPTT (tot) = K-1 t=0 ∇ BPTT (t) on random mini-batches before training. We denote this angle Ψ ∆ C-VF (tot), -∇ BPTT (tot) . Finally for each weight initialization, we perform training on the prototypical models previously introduced. We proceed in the same way for EP and C-EP simulations, computing Ψ ∆ EP (tot), -∇ BPTT (tot) and Ψ ∆ C-EP (tot), -∇ BPTT (tot) before training. We use the generic notation ∆(tot) to denote the total normalized update. This procedure yields (x, y) data points with x = Ψ ∆(tot), -∇ BPTT (tot) and y = test error, which are reported on Fig. 4.1 (a) -see Table 3.3 of Appendix 3.4.1 for the full table of results.

Results. Fig. 4.1 (a) shows the test error achieved on MNIST by EP, C-EP on the prototypical model with symmetric weights and C-VF on the prototypical model with asymmetric weights for different number of hidden layers as a function of the angle Ψ ∆(tot), -∇ BPTT (tot) before training. This graphical representation spreads the algorithms between EP which best satisfies the GDD property (leftmost point in green at ∼ 20 • ) to C-VF which satisfies the less the GDD property (rightmost points in red and orange at ∼ 100 • ). As expected, high angles between gradients of C-VF and BPTT lead to high error rates that can reach 90% for Ψ ∆ C-VF (tot), -∇ BPTT (tot) over 100 • . More precisely, the inset of Fig. 4.1 shows the same data but focusing only on results generated by initial weight angles lying below 90 i.e. Ψ(θ f , θ b ) = {0 • , 22.5 • , 45 • , 67.5 • , 90 • }. From standard EP with one hidden layer to C-VF with two hidden layers, the test error increases monotonically with Ψ ∆(tot), -∇ BPTT (tot) but does not exceed 5.05% on average. This result confirms the importance of proper weight initialization when weights are untied, also discussed in other context [START_REF] Timothy P Lillicrap | Random synaptic feedback weights support error backpropagation for deep learning[END_REF]. When the initial weight angle is of 0 • , the impact of untying the weights on classification accuracy remains constrained, as shown in Table 4.1. Upon untying the forward and backward weights, the test error increases by ∼ 0.2% with one hidden layer and by ∼ 0.5% with two hidden layers compared to standard C-EP.

Discussion

Equilibrium Propagation is an algorithm that leverages the dynamical nature of neurons to compute weight gradients through the physics of the neural network. C-EP embraces simultaneous synapse and neuron dynamics, getting rid of the need for artificial memory units for storing the neuron values between different phases. The C-EP framework preserves the equivalence with Backpropagation Through Time: in the limit of sufficiently slow synaptic dynamics (i.e. small learning rates), the system satisfies Gradient Descending Dynamics (Theorem 10).

Our experimental results confirm this theorem. When training our prototypical model with symmetric weights with C-EP while ensuring convergence in 100 epochs, a modest reduction in MNIST accuracy is seen with regards to standard EP. This accuracy reduction can be eliminated by using smaller learning rates and rescaling up the total weight update at the end of the second phase (section 4.2). On top of extending the theory of part IV, Theorem 10 also appears to provide a statistically robust approach for C-EP based learning: our experimental results show, as in part IV, that for a given network with specified neuron and synapse dynamics, the more the updates of Equilibrium Propagation follow the gradients provided by Backpropagation Through Time before training (in terms of angle between weight vectors, in this work), the better this network can learn. Specifically, Fig. 4. 1 (a) shows that hyperparameters should be tuned so that before training, C-EP updates stay within 90 • of the gradients provided by BPTT. In practice, it amounts to tune the degree of symmetry of the dynamics, for instance the angle between forward and backward weights -see Fig. 4.2.

Our C-EP and C-VF algorithms exhibit features reminiscent of biology. C-VF extends C-EP training to RNNs with asymmetric weights between neurons, as is the case in biology. Its learning rule, local in space and time, is furthermore closely acquainted to Spike Timing Dependent Plasticity (STDP), which we presented in subsection 3.3.2 of part I. Strikingly, the same rule that we use for C-VF learning can approximate STDP correlations in a ratebased formulation, as we also showed in section 2.1 of part III. From this viewpoint, our work brings EP a step closer to biology. This being said, C-EP and C-VF do not aim at being end-to-end models of biological learning. EP and its variants are meant to optimize any given loss function, and this loss function could be for supervised learning (as in our V. training experiments experiments) or for any differentiable loss function in general. The core motivation of this work is to focus on and propose a fully local implementation of EP, in particular to foster its hardware implementation. When computed on a standard computer, due to the use of small learning rates to mimic analog dynamics within a finite number of epochs, training our models with C-EP and C-VF entail long simulation times. With a Titan RTX GPU, training a fully connected architecture on MNIST takes 2 hours 39 mins with 1 hidden layer and 10 hours 49 mins with 2 hidden layers. On the other hand, C-EP and C-VF might be particularly efficient in terms of speed and energy consumption when operated on neuromorphic hardware that employs analog device physics. To this purpose, our work can provide an engineering guidance to map Equilibrium Propagation onto a neuromorphic system. This is one step towards bridging Equilibrium Propagation with neuromorphic computing and thereby energy efficient hardware implementations of gradient-based learning algorithms.

Part VI

Conclusion and perspectives

Overall, this thesis emphasizes two components of on-chip learning:

• The computation of the loss gradient: ∂L ∂θ .

• Given the loss gradient, the resulting weight update: θ ← θ -α ∂L ∂θ .

Part II investigates the second component in several variants of Restricted Boltzmann Machines. With typical values of device imperfections for non-linearity, cycle-to-cycle and device-to-device variabilities, we have shown that the Discriminative RBM is the best candidate architecture in terms of the resulting training performance on MNIST. Also, our simulations highlight how device imperfections influence the optimal pulse width: non-linearity favors small pulse widths and cycle-to-cycle variability large pulse widths conversely. Importantly, a stack of memristive RBMs, when being greedily learnt does not benefit from depth: on the contrary the effect of the device imperfections cumulate when passing features from a RBM to the next one in the stack. This limitation comes from not propagating error signals across layers using backpropagation for instance, to preserve the locality of the learning rule employed. We have also shown that averaging Contrastive Divergence across samples and stochastic realizations of the binary states of the neurons considerably improves the resilience of Discriminative RBMs versus device imperfections. Since this method selects smaller pulse widths, it mitigates both non-linearity and variability effects. We also propose the use of Resilient Propagation (RProp) to facilitate the tuning of the pulse width. While not affecting the resilience of the Discriminative RBM with respect to imperfections and obeying to very simple logics, RProp allows to enlarge the range of usable pulse widths by up to two order of magnitudes. Overall, our study proposes strategies to make Restricted Boltzmann Machines amenable to on-chip training with highly imperfect memristive devices, thereby addressing some of the major challenges of embedded environments.

In part IV, we focus on the first component of learning: the computation of the loss gradient with Equilibrium Propagation. We have proposed a discrete-time formulation of Equilibrium Propagation and in this framework, the original real-time formulation of Equilibrium Propagation can be seen as a particular choice of primitive function Φ. We have shown that our discrete-time version of Equilibrium Propagation is equivalent to Backpropagation Through Time provided that the Jacobian of the dynamics is symmetric (which is equivalent to the requirement of a primitive function), and equilibrium is reached at the end of the first phase. More precisely, the synapse updates computed in a forward-time fashion during the second phase of Equilibrium Propagation are step-by-step equal to the gradients computed by Backpropagation Through Time in a backward-time fashion. We call this property the Gradient Descending Update (GDU) property and check it on two classes of models: energy-based models and prototypical models. After defining theoretically the fully connected architectures in both settings, we show that the GDU property is generally very well satisfied numerically. More quantitatively, using the Relative Mean Squared (RelMSE) metric, we show that the deeper the network, the larger the RelMSE, thereby suggesting the difficulty to train deep architectures with Equilibrium Propagation. Finally, we propose a Convolutional model in the prototypical setting trainable by Equilibrium Propagation. We show that this architecture also satisfies well the GDU property and achieves the best training performance ever reported on MNIST in the literature of Equilibrium Propagation (∼ 1% test error). Finally, we show that the use of our prototypical setting speeds up training by a factor 5 to 8 compared to the energy-based setting. This work facilitates the design of models trainable by Equilibrium Propagation both by the practical use of Theorem 4 and the training speed-up offered by the prototypical setting, which is of interest to map Equilibrium Propagation onto neuromorphic systems. These results bring Equilibrium Propagation closer to conventional machine learning and should help the algorithm to scale to more complex problems.

Finally in part V, we extend the study of part IV to a more biologically realistic -and hardware-friendly -setting where the learning rule prescribed by Equilibrium Propagation becomes local in time, a definite asset for future hardware implementations of Equilibrium Propagation. In this new version of Equilibrium Propagation that we call Continual Equilibrium Propagation (C-EP), the synapses evolve dynamically along with the neurons during the second phase of Equilibrium Propagation. In this framework, we show that the theorem of the previous part can be extended: in the limit of slow synaptic dynamics, we say that Gradient Descending Dynamics (GDD) are satisfied (Theorem 10). We numerically show the GDD property on various models and demonstrate C-EP training on a prototypical model with symmetric weights, therefore benefiting from the subsequent acceleration for training simulations mentioned before. We observe a slight training accuracy reduction compared to standard Equilibrium Propagation which we can directly account for: the learning rate should be small enough so that GDD is sufficiently well satisfied, but not too small so that convergence occurs within a reasonable number of epochs. We extend C-EP training to neural networks whose synaptic connections are asymmetric and we call this version of the algorithm Continual Vector Field Equilibrium Propagation (C-VF). We show that C-VF successfully trains neural networks with asymmetric connections on MNIST. Furthermore we show that, given a model with specified dynamics and connectivity, the more Theorem 10 is satisfied before training (in terms of the angle between the total weight update over the second phase of C-EP and the negative gradient provided by BPTT), the better the resulting training performance. This work brings Equilibrium Propagation one step closer to hardware and biology: C-VF can be seen as a rate-based equivalent of Spike Timing Dependent Plasticity (STDP), which is amenable to energy efficient analog hardware. Finally here again, Theorem 10 provides a guidance to map Equilibrium Propagation onto neuromorphic systems.

Other research projects & collaborations

This section describes research projects on Equilibrium Propagation that I have been involved in at the end of my PhD project.

mEqProp: Equilibrium Propagation with memristors in spiking neural networks

In subsection 3.3.2 of the Introduction, we have shown that the use of memristive devices along with spiking voltage pulses with appropriate shapes could emulate Spike Timing Dependent Plasticity -Fig. 3.2 and Fig. 3.3. Given a memristive device emulating a synapse, whenever the pre or post synaptic neuron spikes, a voltage pulse is created and depending on the relative timings of the pre and post synaptic resulting voltages, the device undergoes a subsequent voltage difference that may or may not cross the programming threshold of the device. On the other hand, we have shown in subsection 2.1 the connection existing between Equilibrium Propagation and STDP. Finally, part V provides theoretical guarantees on the rate-based equivalent of an STDP-like implementation of Equilibrium Propagation. Somehow, combining these three highlights, there comes here some intuition that the learning rule of Equilibrium Propagation could be emulated in an event-based fashion with memristive devices. One possible approach in this purpose is to engineer the shape of the spikes that program the memristive device so that the resulting conductance updates undergone by the device correlate well enough at any time with the weight updates prescribed by Equilibrium Propagation, namely ∆ C-EP θ (t) ∼ ṡpost ρ(s pre ) to reuse the notations of the last part. Note that this event-based setting where synapses evolve along with neurons throughout the second phase falls into our Continual Equilibrium Propagation setting.

I have worked with Erwann Martin (PhD student under the joint supervision of Julie Grollier and Teodora Petrisor at Thalès lab) on this event-based version of Equilibrium Propagtion to be known as mEqProp. Erwann will present the results of this work at the NAISys conference as an oral contribution.

Equilibrium Propagation with physical artificial neurons

In the project previously described, traditional leaky-integrate-and-fire (LIF) neurons are assumed for spiking simulations with a strong focus on how to emulate appropriate synapse dynamics. How about the neurons? In other words, how would be go about implementing Equilibrium Propagation on a physical substrate where the neurons are governed by the equations of their very own physics and not simply LIF equations? At the end of my thesis, I have worked with Jérémie Laydevant (a PhD student of Julie Grollier) in this regard and help him make Equilibrium Propagation comply the best with our hardware constraints. To only mention a few of these constraints: how do we encode inputs and outputs? How should they be scaled appropriately? What are the conditions for the system to achieve a stable steady state (a highly non trivial question for non-linear systems for instance)? How do we physically nudge the system during the second phase ? Which physical quantity stores the value of the synapse and what is the subsequent learning rule prescribed by Equilibrium Propagation? What if the neurons or the synapses are constrained to binary values, as it is the case for a lot of candidate technologies? Jérémie's work and results achieved so far are extremely exciting and will hopefully contribute to leading to the first experimental demonstration of Equilibrium Propagation-based training with our technologies.

Scaling Equilibrium Propagation to deeper architectures

Although Equilibrium Propagation has been brought closer to standard machine learning through the "prototypical" setting presented in part IV, it has yet to be scaled up to more complex visual tasks like CIFAR-10 or ImageNet. When working on chapter IV, I could not achieve better than 65-70% test accuracy on CIFAR-10. I believe there are three main reasons for this:

• The first reason why Equilibrium Propagation may scale poorly to deeper architectures is the credit assignment itself used: the requirement of equilibrium. And the deeper the architecture, the longer it takes to reach equilibrium. When running training simulations, a trade-off has to be find between having a first phase that is long enough to ensure equilibrium, but not too long to make simulations achievable within a reasonable time. So it might be that equilibrium is not perfectly achieved when training deep networks.

• Another reason is rather subtle. One should bear in mind that the ability of the system to reach a steady state is an hypothesis of the theory of Equilibrium Propagation.

In practice, we use dynamics deriving from an energy function or equivalently of a primitive function in the prototypical setting. But what actually helps the system to reach convergence at the end of the first and second phase is to clip the activations of the neurons between 0 and 1. Consequently, a large proportion of neurons saturate at the end of the first phase at equilibrium. Therefore, when nudging the system during the second phase, error signals do not pass through saturated neurons.

• Finally, the learning given by Equilibrium Propagation in Eq. (1.5) At the end of my PhD project, I have been working with Axel Laborieux to pursue this work and attempt to achieve > 90% test accuracy on CIFAR-10 using techniques to mitigate what we believe hinder learning in deep networks. We believe that carrying out this work, leading to positive or negative conclusions, could in any case benefit the community, as a continuation of Bartunov et al work [START_REF] Bartunov | Assessing the scalability of biologically-motivated deep learning algorithms and architectures[END_REF] on the scalability of biologically inspired learning algorithms and architectures -which, in its study, mainly investigated Feedback Alignment and Target Propagation.

Equilibrium Propagation on sequential data

One natural question that arises is: could it extend to temporal data? At first sight, it seems that the answer is no, again because of the credit assignment scheme itself. Upon presenting a static input, the system reaches a steady state so that its subsequent motion triggered by the nudging strength during the second phase encode error signals: ṡ ∼ ∂L ∂s . In other words, when applying the nudge, the system should only move because of the error signal. Thereby, if the system receives a sequential input, the system may be influenced by both the nudging strength applied on the output layer and changing inputs on the visible layer, so that the motion may no longer encode error signals. This being said, we have some intuitions that there are clever ways to build neural network models that could both process temporal data and be trainable under Equilibrium Propagation: error signals could possibly propagate across different inputs.

Equilibrium Propagation without the equilibrium requirement

From the previous points, it appears clearly that the requirement of equilibrium hinders the scalability of Equilibrium Propagation. Would there be any way we could go round this requirement at all, therefore being able to train deeper architectures, by rethinking the whole credit assignment of "Equilibrium" Propagation? Yoshua Bengio came to Benjamin and I suggesting that if each neuron could access simultaneously its free current state s t (when it evolve freely, without nudging) and nudged state s β t (when it evolves under the influence of nudging), the error signal s β t -s t thereby created neuron-wise could be leveraged for learning. This idea raises two questions that can be treated independently:

• How could, each neuron, know about its free state s t while being in its nudged state s β t ?

• Once the error signal s β t -s t is extracted, how could it be used to achieve learning?

At the end of my thesis, I have been collaborating with Yoshua Bengio, Blake Richards and Damjan Kalajdzievski on this project. I went to the Mila after NeurIPS in December for a week to help kicking off this project, and hopefully pursue it after the thesis defense.

Some thoughts about longer-term directions of research

The wide spectrum of neuromorphic approaches. Neuromorphic computing is a complex area in itself, as it intertwines closely computer sciences, mathematics, statistics, optimization, neurosciences, general electrical engineering, condensed matter physics and circuit design. There are arguably as many conceptions of the field as there are researchers, as to the expertise, approaches, research endeavors and time scales involved in such research. Should it be? Clearly, the discrepancies of the existing approaches makes it especially hard not only to pick up on the missing skills and keep up with the forefront of miscellaneous research literatures, and even more to form a strong opinion about promising directions of research. From my research experience, I also think that although such diversity of point of views in the field can benefit the community, the numerous research efforts in neuromorphic computing could still benefit from a better coordination across different fields.

Better communication amongst neuromorphic researchers? Today, diverse communities are still working far apart, each coping separately with the technical challenges of their own research on neuromorphic computing. A lot of physicists or electronic researchers within neuromorphic computing work hard to emulate basic functions required for inference with their candidate hardware substrate, such as non-linearity, matrix multiplication, or to connect at all a significant number neurons. Other hardware researchers focus more on the physics of the synapse update, to achieve the most accurate conductance update given a gradient value, as already mentionned in this thesis. Computational neuroscientists are limited in the problems they can solve by the simulation time required to solve learning problems with realistic spiking neurons, motivating projects such as SpiNNaker [START_REF] Painkras | SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation[END_REF]. Although overcoming these technological challenges is essential, better communication between communities might have the potential of saving a lot of time in the research. Tremendous technological advances have been realized in neuromorphic computing; however there is some risk that these research endeavours, which sometimes involve years of research, build upon learning paradigms that could have benefited from more neuroscience inspiration or mathematical guarantees from the very beginning, far ahead in the project design. For instance, a lot of neuromorphic researchers have designed systems building upon the Bi-Poo Spike Timing Dependent Plas-ticity arguing about biological plausibility (STDP). Although this research led to extremely exciting results, STDP is a learning heuristic that was not thought at first to optimize an objective function. Also, STDP was fitted on in vitro measurements. It was shown that with realistic in vivo calcium concentration, Bi-Poo STDP could not be observed [START_REF] Lim | Inferring learning rules from distributions of firing rates in cortical neurons[END_REF]. The same team subsequently proposed to infer learning rules from distribution of firing rates in cortical neurons. Such learning rules -based on burst synaptic mechanisms for instance -could also inspire neuromorphic engineering. Finally, although Hebbian learning rules such as STDP are extremely attractive for hardware designers, they should be endowed with strong theoretical guarantees optimization-wise to be able to scale to complex problems, as this thesis suggests. In this regard, better communication between mathematicians and neuromorphic engineers could strongly benefit research towards on-chip learning.

Mathematics versus biological inspiration?

When developping efficient neuromorphic systems, should mathematics prevail over biological inspiration or the other way around? Is there such a thing as "mathematics versus biology" when doing neuromorphic research? For the neuromorphic approach to succeed in the long run and scale to complex systems, we very likely need both: close biological inspiration and mathematics. The first most obvious example supporting this necessity is Convolutional neural networks. The topology of the convolution operation applied in neural networks is directly inspired by the primary visual cortex. Still, this biological inspiration is not sufficient by itself: the parameters of the convolution are not given by neuroscience measurements but gradually adjusted by backpropagation and gradient descent, whose goal is to minimize a mathematically well-defined objective function. Quite often and intriguingly, the optimization setting of deep learning often enabled to recover some neurophysiological features of the brain like grid cells, Gabor filters, shape tuning or temporal receptive fields [START_REF] Blake A Richards | A deep learning framework for neuroscience[END_REF].

Richards et al more generally support this vision in their Nature paper where they advocate the use of a deep learning framework to fuel progress in neuroscience [START_REF] Blake A Richards | A deep learning framework for neuroscience[END_REF]: this way of thinking could potentially be transferred to neuromorphic computing. More precisely, Richards et al argue that such a framework should rely on three fundamental components: the neural architectures, the objective function and the learning rule. Evaluating deep learning models with an emphasis on these three components on benchmark "Brain tasks" that could also be experimentally carried out on living beings, this framework would enable to create complex models with testable hypothesis. They insist in particular on the necessity of inductive biases, as opposed to the properties that emerge during learning. Inductive biases are the priors of the model that are chosen appropriately to help this model learn specific tasks. For example, translation invariance is an inductive bias of convolutional architectures, which is especially suited on visual tasks where the system should detect redundant visual features. This is how both mathematics and biology come into play: biology provides inspiration for the inductive biases of the models, the emergent properties of the models come from the mathematical optimization framework itself. The authors beautifully illustrate this trade-off as follows: "[...]many of the successes of deep learning have grown out of a balance between useful inductive biases and emergent computation, echoing the blend of nature and nurture which underpins the adult brain". Similarly, the design of neuromorphic systems should maybe result from the same combination. More than only bringing memory the closest to computation, the topology of the circuit that achieves inference and gradient computation should directly take inspiration from physiological features of the brain, while still obeying strong mathematical principles.

Evolution? How about biological biases that are endowed by evolution? Could neuromorphic systems somehow inherit "evolved" features? Many experiments suggest that the optimization framework is not sufficient to pick up evolution. It is worth mentioning here a conflicting view that was presented at NeurIPS in a wonderful talk by Blaise Aguera y Arcas from Google * . In his view, life at all scales may not be governed by optimization-based principles. He first underpins this opinion on a bacteria population which he considers as the most simple biological system. What he shows is that when such a population strives to find food and survive with pure evolutionary principles, it elaborates a strategy in terms of displacement given a chemical stimulus -a phenomenon known as bacteria chemotaxis. Whether the strategy eventually retained by the bacteria after a sufficiently long time is optimal in some mathematical sense is not simple at all and pertains to inverse reinforcement learning. Rather than pure optimization, Aguera y Arcas rather argues that evolution decides on its own the notion of "good" or "bad" throughout time, so that "what persists exists" in his own words. Similarly, he puts forward that a GAN optimization problem is another case in point where each of the actor -the discriminator and the generator -does a gradient descent of its own well defined loss function, but the combined system does not [START_REF] Nagarajan | Gradient descent gan optimization is locally stable[END_REF]. At all scales, life operates with modular agents so that intelligence would emerge collectively from the interaction of these agents. Therefore, evolution from this prospective appears as a definite key component of intelligence and results from a combination of complex phenomena that the optimization framework is not sufficient on its own to account for. This being said, there are specific situations where evolution can be emulated in an optimization setting.

Metalearning as a way to emulate evolution Similarly according to Aguera y Arcas, the learning rules themselves should be "evolved". Traditional learning rules, such as backpropagation, act on parameters that model the connectome: looping several times over a dataset until convergence of these parameters as we are used to can be seen as a learning episode. One way to model evolution is to parametrise the learning rule itself: these parameters model the genome. The way we proceed generally to train these parameters is metalearning: each learning episode (as defined before) is part of a outer loop that optimizes the parameters of the genome, or metaparameters. A metalearning approach has been used for instance to achieve few shot learning [START_REF] Ravi | Optimization as a model for few-shot learning[END_REF], where the learning agent can learn out of a very few samples of each class, pretty much like human beings can. A learning episode consists in learning from a dataset with a few samples, where the learning rule does not read like gradient descent but LSTM-like dynamics with metaparameters: θ t+1 ← LSTM(θ t ; γ). At the end of each learning episode, a meta-loss is evaluated on the current test set, and the gradients with respect to γ backpropagated through the whole training episode. Alternatively, the γ parameters can also be learnt in a evolutionary way. Eventually, at the end of the metalearning procedure, the γ parameters learnt in this way, or equivalently the learning rule, allow to perform few shot learning on unseen datasets: it has learn to learn with a few examples! Very recently, a metalearning approach -presented at the NeurIPS workshop and at Cosyne -was used to learn local learning rules able to perform few shot learning [START_REF] Lindsey | Learning to Learn with Feedback and Local Plasticity[END_REF].

Similarly, these metalearning techniques could potentially benefit neuromorphic computing. For example, we could think of these metaparameters as adjustable physical quantities that we would generally tune by hand -e.g. a voltage or current threshold, the shape of a programming pulse, tunable parameters of a technology. Metalearning approaches could for instance be used on software to find good values for these tunable parameters. What if, given a physical substrate with topological constraints, a learning rule could be made local by adjusting properly the properties of the circuits? Also, conductance udpdate is energy costly and some devices are limited by their endurance. What if we could metalearn proper learning rules on software, which once transferred onto hardware would enable to learn with a very few examples, and thereby reduce the energy consumption of neuromorphic systems with a few conductance updates? Take-away message. This piece of work, which intertwines closely neuroscience, mathematical and physical aspects, is one leap towards achieving such transdisciplinarity in neuromorphic computing. These results and the previous outlook have convinced me of the formidable prospects of this kind of approach. Neuroscientists seek for mathematical models of how the brain might work and neuromorphic researchers would tremendously benefit to be part of the same exciting quest. Intriguingly, neuroscientists may also well gain from the neuromorphic insight, as the emergent physics of the neuromorphic systems might reveal features of the brain that one may have not suspected otherwise. Therefore, bringing these two communities closer, to the extent of collaboration towards building learning theories, may well be a very promising path for neuromorphic computing, and perhaps for neuroscience as well. In the long run, the joint endeavour could potentially lead to building a formal umbrella framework for neuromorphic computing, and hopefully help neuromorphic systems scale to complex tasks.

Part VII

Appendices

Chapter 1

Appendix of part II 1.1 Memristor model used

Integrating Eq. (1.5) between t 0 and t 0 + ∆t yields the explicit effective conductance update G(t 0 + ∆t) -G(t 0 ), which is equal to : . Injecting this C back into Eq.(1.1) shows that only the ratio ∆t/∆t max is relevant. Note that C depends on β so that whenever β was changed, so was C. In all the simulations, G max was taken to be 1 and G min = 1/13. To model cycle-to-cycle variability, we simply added a Gaussian noise to each conductance update dictated by Eq.(1.1), e.g. ∆G tot (t 0 , ∆t) = ∆G(t 0 , ∆t) + noise with noise∼ N (0, σ 2 intra ) with σ intra = ε intra (G max -G min ). The parameter ε intra is the actual quantity we called 'cycle-to-cycle variability' throughout the paper: its value was swept through {0.001, 0.003, 0.006, 0.01, 0.02, 0.03}. For a given β, device-to-device variability was modeled by adding a dispersion on the coefficient C with . The parameter ε inter is the actual quantity we called 'device-to-device variability' throughout the paper: its value was swept through {0.01, 0.1, 1, 2, 4}. Note that consequently in this very particular case: C +,p = C +,p (one given device do not respond symmetrically to potentiation and depression) and C +,p = C -,p (devices of the same pair do not respond symmetrically to potentiation).

VII.1.2 -Simulations

Finally note that our model defined as Eq. (1.5) can look similar to [START_REF] Martin | Double-barrier memristive devices for unsupervised learning and pattern recognition[END_REF]:

dG(t) dt = β(G(t), n, ∆V (t), ∆t) 1 - G(t) G max , (1.2) 
with some important differences however. The coefficient β does not have the same meaning in the two models: while it is a constant in ours, it appears in theirs as a function of the applied voltage height (∆V (t)) and width (∆t) to model switching dynamics which we did not take into account. Morever, the number of pulses applied (n) appears explicitly in their model while it is implicit in ours: we treat equally a pulse of length ∆t and n pulses of length ∆t/n. Finally, the dependence of the conductance update with the current conductance is exponential in our model while it is polynomial in theirs. Expanding Eq. (1.5) for a small βand assuming G max >> G min brings our model the closest to Eq. (1.2), up to the linear contribution in C:

dG(t) dt ∼ β→0 C + β CG min Gmax (1 -G(t) G min ) (potentiation) -C + βC(1 -G(t)
Gmax ) (depression)

.

(1.3)

Simulations

All the simulations presented in this work have been carried out in the most simple way in the sense that it is abstracted from the realistic constraints inherent to the crossbar circuitry. We assumed that the memristive devices are associated with an access device (transistor [START_REF] Ambrogio | Equivalent-accuracy accelerated neural-network training using analogue memory[END_REF] or resistive switching selector device [START_REF] Cha | Nanoscale ( 10nm) 3D vertical ReRAM and NbO 2 threshold selector with TiN electrode[END_REF][START_REF] Koo | Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications[END_REF]), and therefore neglected sneak paths current effects. Sneak paths currents, if present, would significantly decrease the accuracy in programming the synaptic weights. Our goal is to focus on the effects of the weight update physics and the learning rules it enables on the different neural network architectures introduced above, so as to motivate further realistic investigations.

When training any architecture throughout the paper, we used 40, 000 samples for training and 10, 000 for test from the MNIST data base. The different neural network topologies (bias included) were set as follows: 785-301-10 for the RBM+softmax stack, 794(784+10)+300 for the Discriminative RBM and 785+501+511(501+10)+2001 for the Deep Belief Net. In practice, biases were concatenated to W as an extra column and row. Labels are one-hot encoded, e.g. the label "2" is encoded as (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) out of 10 possible outcomes. If not stated otherwise, all simulations were carried out with a mini-batch size of 100.

The benchmark floating point software-based simulation results on the Discriminative with 300, 500 and 6000 hidden units have been obtained in specific training and test conditions apart from the memristor-based simulations. During training when computing Contrastive Divergence, visible units are binarized while hidden units are encoded by probabilities as it has been empirically prescribed [START_REF] Hinton | A Practical Guide to Training Restricted Boltzmann Machines A Practical Guide to Training Restricted Boltzmann Machines[END_REF]. Only one step of Gibbs sampling was used to compute Contrastive Divergence (CD-1). At test time and contrary to memristor-based simulations, the inference technique is deterministic: when clamping a digit the network was not trained on, the label which is selected is the one which minimizes the free-energy F (v) of the RBM:

(t) = ∂L ∂θ T -t , ( 2.2) 
where ∀t = 0, 1, . We can naturally extend the definition of ∇ BPTT θ (0) and ∆ EP θ (0) following Eq. 2.2. In the setting studied in this paper, they both take the value 0 because the cost function (s, y) does not depend on the parameter θ. But suppose now that depends on θ, i.e. that is of the form (s, y, θ). Then the loss of Eq. 2.3 takes the form L = (s T , y, θ T = θ), so that:

∇ BPTT θ (0) = ∂L ∂θ T = ∂ ∂θ (s T , y, θ) .
(2.12)

As for the missing weight update ∆ EP θ (0), we follow the definition of Eq. 2.9 and define:

∆ EP θ (0) = lim Since s T = s * (the state at the end of the first phase is the state at the beginning of the second phase, and it is the steady state), we have ∆ EP θ (0) = -∇ BPTT θ (0).

Experiments: demonstrating the GDU property 2.3.1 Hyperparameters

We provide in Table 2.1 a complete description of the hyperparameters that were used to demonstrate Theorem 4 on the different models. 

Definition of the Relative Mean Squared Error (RMSE)

We introduce a relative mean squared error (RelMSE) * between two continuous functions f and g in a given layer L as: RelMSE(f, g) = f -g 2,K max( f 2,K , g 2,K ) L , (2.14) where f 2,K = 1 K K 0 f 2 (t)dt and • L denotes an average over all the elements of layer L. For example, RelMSE(∆ EP W 01 , -∇ BPTT W 01 ) averages the squared distance between ∆ EP W 01 and -∇ BPTT W 01 averaged over all the elements of W 01 . Also, instead of computing ∆ EP and ∇ BPTT processes on a single sample presentation and bias the RelMSE by the choice of this sample, ∆ EP and ∇ BPTT processes have been averaged over a mini-batch of 20 samples before their distance in terms of RelMSE was measured. In the prototypical setting, in the case of a layered architecture (without lateral and skiplayer connections), the ∇ BPTT and ∆ EP processes are saw teeth shaped, i.e. they take the value zero every other time step (as seen per Fig. 4.12, Fig. 4.6,Fig. 4.7 and Fig. 4.8). We * We choose the RelMSE metric rather than a more conventional one such as the cos metric. Indeed, although the cos metric is also meaningful, it lacks an important property in our context: the cos between f and g is maximal if and only if f and g are proportional, whereas we aim at reaching equality (Theorem 4). In contrast, our RelMSE metric is such that RelMSE(f, g) = 0 ⇔ f (t) = g(t).

Why are the ∇ BPTT

VII.2.4 -Training experiments

provide an explanation for this phenomenon both from the point of view of BPTT and from the point of view of EP. Fig. 2.1 illustrates this phenomenon in the case of a network with two layers: one output layer s 0 and one hidden layer s 1 .

• Point of view of BPTT. In the forward-time pass (first phase), s 0 t+1 is determined by s 1 t , while s 1 t+1 is determined by s 0 t . This gives rise to a zig-zag shaped connectivity pattern in the computational graph of the the network unrolled in time (Fig. 2.1). In particular, the gray nodes of Fig. 2.1 are not involved in the computation of the loss L, i.e. their gradients are equal to zero. In other words ∇ BPTT s 1 (0) = 0, ∇ BPTT s 0

(1) = 0, ∇ BPTT s 1

(2) = 0, etc.

• Point of view of EP. At the beginning of the second phase (at time step t = 0), the network is at the steady state ; in particular s 1,β 0 = s 1 * . At time step t = 1, only the output layer s 0 is influenced by y ; the hidden layer s 1 is still at the steady state, i.e. The above argument can be generalized to an arbitrary number of layers. In this case we group the layers of even index (resp. odd index) together. We call e t = s 0 t , s One consequence of this analysis is that, in the prototypical setting of EP, half of the computations are redundant and could be avoided. Avoiding such redundant computations would lead to an implementation where the layers of even indices and the layers of odd indices are updated alternatively, similar to the one proposed in section 4.3 of [START_REF] Scellier | Towards a biologically plausible backprop[END_REF].

In contrast, the saw teeth shaped curves are not observed in the energy based setting. This is due to the different topology of the computational graph in this setting. In the energy-based setting, the assumptions under which we have shown the saw teeth shape are not satisfied since neurons are subject to leakage, e.g. s 1 t+1 depends not just on s 0 t but also on s 1 t . Therefore the reasoning developed above no longer holds.

Training experiments

Simulation framework. Simulations have been carried out in Pytorch. The code has been attached to the supplementary materials upon submitting this work on the CMT interface.

We have also attached a readme.txt with a specification of all dependencies, packages, descriptions of the python files as well as the commands to reproduce all the results presented in this paper.

Data set.

Training experiments were carried out on the MNIST data set. Training set and test set include 60000 and 10000 samples respectively. end for 13: end while The state after T time steps in BPTT converges to the steady state s * as T → ∞, therefore the gradients of BPTT converge to the gradients of RBP. Also notice that the steady state of the dynamics is s * = θ.

Training Curves

Equilibrium Propagation (EP).

Following the equations governing the second phase of EP (Fig. 1.1), we have: Notice again that the normalized updates of EP converge to the gradients of RBP as β → 0. * The primitive function Φ is determined up to a constant.

s β 0 = θ, s β t+1 = 1 
-224 -

VII.3.4 -Experimental Details

Continual Equilibrium Propagation (C-EP). The system of equations governing the system is: 

s β,η 0 = s * , θ β,η 0 = θ, ∀t ≥ 0 :      s β,η

Figure 1 . 1 :

 11 Figure 1.1: Rosenblatt's perceptron. By definition, the perceptron first performs a sum of the inputs x 1 , x 2 , • • • x N weighted by the value of the synaptic weights (Σ node), then applies a non linearity (σ node), resulting in Eq. (1.5)

Figure 1 . 2 :

 12 Figure 1.2: Learning. Learning proceeds iteratively by computing the gradient of the loss function ∂L ∂θ for a given θ and by subsequently updating the weight value θ ← θ -α ∂L ∂θ , until convergence to an optimum θ * .

Figure 1 . 3 :

 13 Figure 1.3: Backpropagation in a feedforward architecture. For any graph, each leaf node labels an input, an arrow a computation, and a child node the outcome of a computation. Left: forward pass, going from input x at the very bottom to L at the very top. At each forward computational step, F (n) takes θ n and s n as inputs and outputs s n+1 , until giving ŷ, and the subsequent loss L. Right: backward pass, going backward from ∂L ∂ ŷ at the top to leaves ∂L ∂θ n . At each backward computational step, the Jacobian ∂F (n)

Figure 1 . 4 :

 14 Figure 1.4: Backpropagation in a feedforward neural network. Left: forward pass, going from input x at the very bottom to ŷ at the very top. s n are commonly called "hidden layers". Each hidden layer value s n is determined by the previous one s n-1 . Right: backward pass, going backward from ∂L ∂ ŷ . At each backward computational step, the error signals are routed by w n , an important feature of backpropagation in neural networks.

Figure 1 . 5 :

 15 Figure 1.5: Backpropagation through time in a recurrent architecture. Left: forward pass. Differences with backpropagation in a feedforward architecture (Fig. 1.3): n labels time, all F (n) are the same with parameters θ n shared across the whole graph and all equal to θ, and F takes x n as an input at each computational step. Right: backward pass, going backward from ∂L ∂ ŷ at the top to leaves ∂L ∂θ n . Difference with backpropagation in a feedforward architecture (Fig. 1.3): because θ is shared across the whole forward computation, all derivatives ∂L ∂θ n contribute to the same parameters θ and all add up to provide ∂L ∂θ (see Eq. (1.18))

. 22 )Figure 1 . 6 :

 2216 Figure 1.6: Backpropagation in a recurrent neural network. Top: forward pass, going from left to right. At time step t, each hidden layer value h t is determined by the current input x t and the previous hidden layer value h t-1 . Based on h t , the neural network outputs o t . Bottom: backward pass, going backward from ∂L ∂ ŷ . Again, at each backward computational step, the error signals are routed by w h .

. 23 )

 23 Again, the computations of Eq. (1.21)-(1.23) are depicted in Fig.1.6. Note that in Fig.1.6, backpropagation goes explicitly backward in time, hence the name backpropagation through time.

Figure 1 . 7 :

 17 Figure 1.7: The end of Moore's law. Since 2005, as the number of transistors keeps increasing, physics limit clock frequency at around 4 GHz, thereby flattening speed and power curves from 2005 on.

Figure 1 . 8 :

 18 Figure 1.8: The von Neumann bottleneck. In von Neumann architectures, memory and computation are physically separated, which is particularly critical in the context of gradient descent for learning neural networks. At each learning step, parameters θ needs to be routed from memory to processors to compute gradients ∂L ∂θ , which is subsequently routed back to memory to perform the parameter update θ ← θ -α ∂L ∂θ .
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 21 Figure 2.1: Neuromorphic chips. Left: IBM TrueNorth chip[START_REF] Filipp Akopyan | Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip[END_REF]. TrueNorth is made on 28-nanometer process technology. The processor contains 5.4 billion transistors and 4096 cores. Each core was provided with a task scheduler, SRAM-memory and a router. Right: SpiNNAker chip[START_REF] Painkras | SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation[END_REF]. SpiNNAker is composed of 57,600 processors, each with 18 cores and 128 MB of mobile DDR SDRAM, totalling 1,036,800 cores and over 7 TB of RAM.
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 22 Figure 2.2: Kichhoff laws for inference. Each memristor carries a weight value as a conductance state G n . With a voltage difference V n , a current G n V n flows through each memristor by virtue of Ohm's law. Through Kirchhoff current law, all currents add up along the horizontal wire, so that the whole circuit implements the composition of a matrix multiplication.
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 23 Figure 2.3: Crossbar learning. Inputs V 1 , V 2 and V 3 are encoded as voltages (left end of horizontal wires) and outputs I 1 , I 2 and I 3 as currents (bottom end of vertical wires). Each input j is connected to output i through a memristive device of conductance G ij . On the cartoon, Î2 < I target 2
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 31 Figure 3.1: Experimental memristor characteristic (taken from[START_REF] Querlioz | Immunity to device variations in a spiking neural network with memristive nanodevices[END_REF]). The characteristic of filamentary Ag-Si RRAM is shown as the conductance state as a function of the number of programming voltage pulses applied, of 300µs each and ∼ ±3V each, for potentiation (a) and depression (b). Red points are experimental and the blue curve is a fit. The memristor characteristic typically exhibits non-linearity, asymmetry between potentiation and depression and cycle-to-cycle variability.

Figure 3 . 2 :

 32 Figure 3.2: Spike Timing Dependent Plasticity[START_REF] Dan | Spike timing-dependent plasticity of neural circuits[END_REF]. In vitro experiments have shown the the rate of synaptic change is correlated with the relative timings o pre and post synaptic spikes. On average, whenever a pre synaptic spike precedes (resp. follows) a post-synaptic spike, the synapse gets potentiated (resp. depressed).
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 33 Figure 3.3: Memristor-based Spike Timing Dependent Plasticity. Pre and post synatic neurons fire at t pre and t post times respectively with specific pulse shapes. At all time, the memristive device undergoes the voltage difference created by the pre and post synaptic pulses. Upper panel, low panel and middle panel show pre-synaptic spikes, post synaptic spikes and voltage difference through time respectively.The pulse shapes are chosen so that whenever a pre (resp post) synaptic spike precedes a post (resp pre) synaptic spike within a time-frame, the voltage difference exceeds a positive (resp negative) threshold so that the device is subsequently potentiated (resp depressed), thereby emulating STDP. This principle is employed in[START_REF] Querlioz | Immunity to device variations in a spiking neural network with memristive nanodevices[END_REF].
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 41 Figure 4.1: Contrastive Hebbian Learning. This figure illustrates Eq. (4.2). The plain and dotted lines represent the energy landscape seen by the neurons before and after learning respectively. By definition, neural dynamics evolve towards minima of the energy landscape, denoted here as s model * and called a 'model pattern'. At the beginning of learning, s model *does not correspond to configurations that account for the data that we call here "data patterns" (s data * ): for instance for discriminative models the resulting output layer does not give the ground-truth target or for generative models the resulting visible layer does not correspond to the input data. The learning rule prescribed Eq. (4.2) amounts to reshape this energy landscape by increasing the energy of s model *

  information v n B ∼ w n • s n-1 and top-down error signals v n A ∼ w n+1 • ∂L ∂s n+1 . Therefore, each neuron needs two dendritic compartments to integrate the basal voltage v n B and the apical voltage v n A . Using the terminology given before, credit is assigned to apical dendritic voltage in this framework.
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 42 Figure 4.2: Dendritic models. Each neuronal layer of membrane potential s n integrates bottom-up signals through basal compartments of voltage v n B and top-down signals through apical compartments of voltage v n A . Dendritic models and associated algorithms are designed so that basal and apical compartments integrate data information (v n B ∼ w n • s n-1 ) and error information (v n A ∼ w n+1 • ∂L ∂s n+1 ) respectively.
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 11 Figure 1.1: Restricted Boltzmann Machine (RBM). Left: RBM toplogy, with a visible layer x and a hidden layer s bidirectionally connected through w. Right: Contrastive Divergence. Given data x 0 clamped to the visible layer, the hidden neurons are sampled from the Bernoulli distribution s 0 ∼ p(s = 1|x 0 ). Afterwards given the samples s 0 , the visible layer is sampled from x 1 ∼ p(x = 1|s 0 ).
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 12 Figure 1.2: Memristor model. a) Each weight is implemented with two memristors, i.e. W = G + -G -, conductance updates follow the memristor characteristic dictated by Eq.(1.5). b)-d) Illustration of the memristive imperfections taken into account: b) non-linearity (conductance dependent update), c) cycle-to-cycle variability (each red dot represent one stochastic realization of a conductance update), d) device-to-device variability (from left to right).
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 21 Figure 2.1: Architectures under study. a) a Restricted Boltzmann Machine topped by a softmax classifier ("RBM+softmax"), b) a Discriminative Restricted Boltzmann Machine ("Discriminative RBM"), c) a Deep Belief Net. Blue, grey and green filled circles stand for visible, hidden and label neurons respectively.
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 22 Figure 2.2: Feature extraction. Examples of hidden features extracted by, from left to right: standard RBM (trained with a learning rate of 0.05), a memristive Discriminative RBM (trained under Cst with β = 0.005, ∆t/∆t max = 1/1000), another memristive Discriminative RBM (trained under Cst with β = 3, ∆t/∆t max = 1/5000). Each grayscale picture represents the values of the 784 weights connecting the visible layer to a given hidden unit.
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 23 Figure 2.3: Mitigating non-linearity. a) Test error rate achieved by the Discriminative RBM as a function of the programming pulse width for different mini-batch sizes and different number of parallel Gibbs chains to evaluate the Contrastive Divergence term ('# CD') in the near-linear case (β = 0.005). b) Same Figure as a) in the non-linear case (β = 3).c) Optimal test error rate achieved by the Discriminative RBM for different values of β with different mini-batch sizes and different number of parallel Gibbs chains to evaluate the Contrastive Divergence term ('# CD'). For mini-batches size of 100, each simulation was ran over 30 epochs, 5 times per value of pulse width, error bars indicate median, first quartile and third quartile. For mini-batches of size 1, each simulation was ran over 50 epochs 5 times per value of pulse width to ensure convergence.
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 222 Solutions mitigating device imperfections on the Discriminative RBM Algorithm Memristor based gradient descent algorithm (RProp) Input: {w ij }, {x (n) } (training set), {∆t(0)} (initial programming pulse width) Output: {w ij } 1: for each sample x do 2:
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 24 Figure 2.4: RProp. Typical time trace of the ∆t ij /∆t max statistics in terms of the mean value (blue plain line) and standard deviation (shaded blue region around the line).
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 25 Figure 2.5: RProp. a) Test error rate achieved by the Discriminative RBM as a function of the programming pulse width when trained with Cst and RProp driven pulse widths for β = 0.005. b) Same as a) with β = 3. Grey dashed lines indicate 10% and 20% on the left and right panel respectively. Each simulation was ran over 30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error bars indicate median, first quartile and third quartile.

Fig. 2 .

 2 Fig.2.5 shows the comparative performance of the Discriminative RBM trained with Cst and our RProp rule, for varying initial pulse widths. In the linear case (β = 0.005), RProp allows achieving a test error that is lower than 10% for ∆t/∆t max ∈ [10 -4 , ∼ 10 -1 ], compared to ∆t/∆t max ∈ [10 -4 , ∼ 2.10 -2 ] when using the Cst algorithm. Similarly in the

Figure 2 . 6 :

 26 Figure 2.6: Resilience to cycle-to-cycle variability. a) Test error rate achieved by the Discriminative RBM as a function of cycle-to-cycle variability for every combination of the pulse width programming scheme (Cst, RProp) and number of parallel Gibbs chains used to evaluate Contrastive Divergence (# CD). b) Optimal conductance incrementto-noise ratio as a function of cycle-to-cycle variability associated with each curve of the left panel. When using 20 Gibbs chains (blue curves), from σ intra /(G max -G min ) = 6.10 -3 onwards (vertical gray dashed line) the conductance update overcomes the noise increase, accounting for the improved performance compared to the use of a single Gibbs chain (orange curves), regardless of the programming scheme. Each simulation was ran over 30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error bars indicate median, first quartile and third quartile.
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 27 Figure 2.7: Resilience to device-to-device variability. Test error rate achieved by the Discriminative RBM as a function of device-to-device variability for every combination of the pulse width programming scheme (Cst, RProp) and the number of parallel Gibbs chains (# CD). Each simulation was ran over 30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error bars indicate median, first quartile and third quartile.

(

  Gmax-G min ) = 6 • 10 -3 with β = 0.005. Device-to-device variability is taken to be σ µ inter = 1 with β = 0.005. Each simulation was ran over 30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error bars indicate median, first quartile and third quartile.
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 13 Figure 1.3: Implementation of Equilibrium Propagation[START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. We consider a fully connected architecture with a visible layer taking input x, hidden layer s and output layer ŷ. During the first phase, the system evolves on its own, under the influence of x, until reaching the first steady state s * . During the second phase, the output layer ŷ is elastically nudged towards the ground-truth target y, until reaching the second steady state s β * . The learning rule Eq. (1.5) is subsequently applied.

Figure 1 . 4 :

 14 Figure 1.4: Dendritic compartments. Equilibrium Propagation applies to neural networks who can integrate signals bidirectionally: roughly speaking, from below and from above. When a layer receives two inputs (top-down and bottom-up inputs), it implicitly assumes dendritic compartments: basal compartments (of voltage v B ) and apical compartments (of voltage v A ) integrate bottom-up and top-down signals respectively. We invoke this biological terminology for completeness, although Equilibrium Propagation formalism and application do not require these concepts.
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 15 Figure 1.5: Equilibrium Propagation from a topological prospective. During the second phase, the layer s 1 integrates both self-generated top-down inputs (blue arrows) and the error signal coming from the output layer (red arrows). Conversely during the second phase, s 1 only integrates the self-generated top-down inputs. Substracting the two phases, we are only left out with the red arrows. This simple reasoning conveys that the temporal variations of the system during the second phase of Equilibrium Propagation may encode error signals.
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 16 Figure 1.6: Intuition of Equilibrium Propagation. Equilibrium Propagation applies to recurrent neural networks so that neural computation occurs throughout time. Assuming the neural network is initially at equilibrium ( ṡn = 0), the output layer ŷ undergoes the perturbation ∂ ∂ ŷ . Through reciprocal connections, this perturbation propagates across time (from left to right) and layers (from top to bottom), with ṡn ∼ ∂ ∂s n .

  (

  3.2) requires t n j < t n+1 i (the post synaptic neuron spikes after the pre synaptic neuron). Considering a temporal window of length ∆t preceding the pre-synaptic spike and another one of the same length following it, we have :P(pre spikes after post) = P(post spikes after pre). The same reasonning applying when the post-synaptic activity is decreasing ( ṡn+1 i < 0), the learning rule Eq. (2.3) correlates on average with STDP, as shown by Fig. (2.1).
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 21 Figure 2.1: Rate-based STDP (taken from[START_REF] Bengio | STDP as presynaptic activity times rate of change of postsynaptic activity[END_REF]). Left: when the presynaptic neuron spikes (ξ n j = 1) at t n i (vertical dotted line) and the post-synaptic activity is rising ( ṡn+1

Figure 1 :

 1 Figure 1: Illustration of the property of Gradient-Descending Updates (GDU property). Top left. Forward-time pass (or 'first phase') of an RNN with static input x and target y. The final state s T is the steady state s * . Bottom left. Backprop through time (BPTT). Bottom right. Second phase of equilibrium prop (EP). The starting state in the second phase is the final state of the first phase, i.e. the steady state s * . GDU Property (Theorem 4). Step by step correspondence between the neural updates ∆ EP s (t) in the second phase of EP and the gradients ∇ BPTT s (t) of BPTT. Corresponding computations in EP and BPTT at timestep t = 0 (resp. t = 1, 2, 3) are colored in green (resp. blue, red, yellow). Forward-time computation in EP corresponds to backward-time computation in BPTT.

(4. 6 )Figure 4 . 1 :

 641 Figure 4.1: Demonstrating the property of gradient-descending updates in the energybased setting on a toy model with dummy data x and a target y elastically nudging the output neurons s 0 (right). Dashed and solid lines represent ∆ EP and -∇ BPTT processes respectively and perfectly coincide for 5 randomly selected neurons (left) and synapses (middle). Each randomly selected neuron or synapse corresponds to one color.
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 42 Figure 4.2: Fully connected layered architecture with N = 2 hidden layers.

. 11 )

 11 the primitive function Φ defined in Eq. (4.10) again writes as Eq. (4.1).Experiment. We consider architectures of the kind 784-512-. . . -512-10 where we have 784 input neurons, 10 output neurons, and each hidden layer has 512 neurons, using σ(x) = tanh(x). The data x is a random MNIST sample (of size 1 × 784) and y is the associated target (of size 1 × 10). We have ran experiments for ε = 0.08. The values of T , K and β depend on the depth of the architecture considered and can be found in Table2.1.
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 43 Figure 4.3: Real-time RNN with symmetric weights with one hidden layer. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ
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 44 Figure 4.4: Real-time RNN with symmetric weights with two hidden layers. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ
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 45441 Figure 4.5: Real-time RNN with symmetric weights with three hidden layers. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ

Figure 4 . 6 :

 46 Figure 4.6: Discrete-time RNN with symmetric weights with one hidden layer. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ
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 47 Figure 4.7: Discrete-time RNN with symmetric weights with two hidden layers. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ
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 48 Figure 4.8: Discrete-time RNN with symmetric weights with three hidden layers. Left: ∆ EP s (t) neural updates and -∇ BPTT s (t) gradients. Right: ∆ EP θ (t) weight updates and -∇ BPTTθ
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 49 Figure 4.9: Convolutional architecture. Summary of the operations, notations and conventions adopted in this subsection.

Figure 4 . 10 :

 410 Figure 4.10: Convolution and transpose convolution. The convolution operation depicted uses F = 2 (kernel size), P = 0 (padding), S = 1 (stride). The input of the convolution is in blue, the kernel in red and the output of the convolution in yellow. With an input length of L in = 4, the output length is L out = L in -F +2P
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 411 Figure 4.11: Pooling and inverse pooling. The pooling operation depicted uses F = 2 (kernel size), P = 0 (padding), S = 2 (stride). The input of the pooling is in blue and its output in yellow. With an input length of L in = 4, the output length is L out = L in -F +2P
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 412 Figure 4.12: Demonstrating the GDU property with the convolutional architecture on MNIST. Dashed and continuous lines represent ∆ EP and -∇ BPTT processes respectively, for 5 randomly selected neurons (top) and synapses (bottom) in each layer. Each randomly selected neuron or synapse corresponds to one color. Dashed and continuous lines mostly coincide. Some ∆ EP processes collapse to zero as an effect of the non-linearity. Interestingly, the ∆ EP s and -∇ BPTT s processes are saw-teeth-shaped ; Appendix 2.3.3 accounts for this phenomenon.
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 51 Figure 5.1: RelMSE analysis in the energy-based (top) and prototypical (bottom) setting. For one given architecture, each bar is labelled by a layer or synapses connecting two layers, e.g. the orange bar above s 1 represents RelMSE(∆ EP s 1 , -∇ BPTT s 1
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 11 Figure 1.1: Left. Pseudo-code of EP. This is the version of EP for discrete-time dynamics introduced in part IV. Right. Pseudo-code of C-EP with simplified notations (see section 1.2 for a formal definition of C-EP). Difference between EP and C-EP.In EP, one global parameter update is performed at the end of the second phase ; in C-EP, parameter updates are performed throughout the second phase. Eq. (1.2) shows that the continual updates of C-EP add up to the global update of EP.

V. 1 . 2 -Figure 1 . 2 :

 1212 Figure 1.2: Gradient-Descending Dynamics (GDD, Theorem 10). In the second phase of Continual Equilibrium Prop (C-EP), the dynamics of neurons and synapses descend the gradients of BPTT, i.e. ∆ C-EP (t) = -∇ BPTT (t). The colors illustrate when corresponding computations are realized in C-EP and BPTT. Top left. 1 st phase of C-EP with static input x and target y. The final State s T is the steady state s * . Bottom left. Backprop through time (BPTT). Bottom right. 2 nd phase of C-EP. The starting State s β,η 0 is the final State of the forward-time pass, i.e. the steady state s * .

Lemma 7 (

 7 Equivalence of BPTT and RBP). In the setting with static input x, suppose that the network has reached the steady state s * after T -K steps, i.e. s T -K = s T -K+1 = • • • = s T -1 = s T = s * . Then the first K gradients of BPTT are equal to the first K gradient of V.2.2 -Equivalence between EP and RBP Algorithm 6 BPTT Input: x, y, θ. Output: θ. 1: s 0 ← 0 2: for t = 0 to T -1 do 3:

(2. 9 )

 9 Proof of Lemma 7. Using sT -K = s T -K+1 = • • • = s T -1 = s T =s * along with Eq. (1.7), Eq. (1.8) and Eq. (1.9) (the set of equations satisfied by BPTT described in the previous part), ∇ BPTT s (resp. ∇ BPTT θ ) and ∇ RBP s (resp. ∇ RBP θ

. 30 )

 30 * More illustrations of this property are shown on Fig. 3.7 and Fig. 3.8.
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 3231 Figure 3.1: Real-Time RNN with symmetric weights. Left: ∆ C-EP s (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTs
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 32 Figure 3.2: Real-Time RNN with symmetric weights. Left: ∆ C-EP θ (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTθ

Figure 3 . 3 :

 33 Figure 3.3: Prototypical model with symmetric weights. Left: ∆ C-EP s (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTs
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 34 Figure 3.4: Prototypical model with symmetric weights. Left: ∆ C-EP θ (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTθ
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 35 Figure 3.5: Real-Time RNN with asymmetric weights. Left: ∆ C-VF s (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTs

Figure 3 . 6 :

 36 Figure 3.6: Real-Time RNN with asymmetric weights. Left: ∆ C-VF θ (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTθ

Figure 3 . 7 :

 37 Figure 3.7: Prototypical model with asymmetric weights. Left: ∆ C-VF s (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTs

Figure 3 . 8 :

 38 Figure 3.8: Prototypical model with asymmetric weights. Left: ∆ C-VF θ (t) normalized updates (η ∼ 10 -6 ) and -∇ BPTTθ
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 41 Figure 4.1: Three versions of EP: standard Equilibrium Propagation (EP), Continual Equilibrium Propagation (C-EP) and Continual Vector Field EP (C-VF). #-h denotes the number of hidden layers. (a): test error rate on MNIST as a function of the initial angle Ψ between the total normalized update of EP and the total gradient of BPTT. (b): Dashed and continuous lines respectively represent the normalized updates ∆ θ (t) (i.e. ∆ EP θ (t), ∆ C-EP θ

1 )

 1 G(t 0 ), ∆t) = Gmax-G min βp log 1 + βp Gmax-G min C p ∆t exp -β p G(t 0 )-G min Gmax-G min (potentiation) f m (G(t 0 ), ∆t) -Gmax-G min β d log 1 + β d Gmax-G min C d ∆t exp -β d Gmax-G(t 0 ) Gmax-G min isthe explicit form of Eq. (1.6). In most of our simulations, we took C p = C d = C and β p = β d = β. The single part of the study where this symmetry is broken is when studying device-to-device variability -see below. The constant C, encoding the voltage amplitude applied to the device, is fixed by the condition ∆G(t 0 , ∆t max ) = G max -G min , G(t 0 ) = G min yielding with Eq. (1.1) C = Gmax-G min ∆tmax exp β-1 β

C ∼ log N log C √ 1+ε 2 inter,

 2 log(1 + ε 2 inter ) so that C = C σ(C) = ε inter C with C = Gmax-G min ∆tmax exp β-1 β

s 1,β 1 = s 1 * 1 = s 0,β 2 . 1 = s 0,β 2 it follows that s 1,β 2 =

 1112122 . From s 1,β 0 = s 1,β1 , it follows that s 0,β In turn, from s 0,β s 1,β 3 . Etc. In other words ∆ EP s 1 (0) = 0, ∆ EP s 0 (1) = 0, ∆ EP s 1 (2) = 0, etc.
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 22 Figure 2.2: Train and test error achieved on MNIST by the fully connected layered architecture with one hidden layer (784-512-10) in the energy-based setting throughout learning, over five trials. Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.
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 32 Figure 3.2: Train and test error achieved on MNIST by Continual Vector Field Equilibrium Propagation (C-VF) on the Discrete-Time RNN model with asymmetric weights with one hidden layer (784-512-10) for different initialization for the angle between forward and backward weights (Ψ). Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5 trials.

  

  

  

  

  

  

  

Table 2 .

 2 

	Discriminative RBM	Deep Belief Net

1: Test error rate achieved by the three architectures under study on MNIST with typical values of the device parameters in terms of non-linearity, cyle-to-cycle and device-to-device variability. Cycle-to-cycle variability is taken as

σ intra

Table 2 . 3 :

 23 , 2.10 -2 ] [10 -4 , 10 -1 ] [5.10 -5 , 10 -2 ] [5.10 -5 , 5.10 -2 ] , 3.10 -3 ] [5.10 -5 , 7.10 -2 ] [10 -5 , 4.10 -3 ] [10 -5 , 2.10 -2 ] Summary of the results obtained on the Discriminative RBM. Cycle-to-cycle variability is taken to be

	Discriminative RBM

  .2.2 -Difference between the primitive function Φ and the energy function E specifically, * in the limit β → 0,

	1 β	∂Φ ∂θ	x, s β * ; θ -	∂Φ ∂θ	(x, s * ; θ) → -	∂L * ∂θ	.	(2.3)

  We say that F derives from the scalar function Φ, or that Φ is a primitive of F . Hence the name of 'primitive function' for Φ.

	∂F ∂s	(x, s; θ) =	∂F ∂s	(x, s; θ).	(2.10)
	The condition of Eq. (2.10) is equivalent to the existence of a scalar function Φ(x, s, θ) such
	that Eq. (2.8) holds. Going from Eq. (2.8) to Eq. (2.10) is straightforward: in this case the
	Jacobian of F is the Hessian of Φ, which is symmetric. Indeed ∂F ∂s (x, s; θ) = ∂ 2 Φ ∂s 2 (x, s; θ) =
	Assumption of Convergence in the Discrete-Time Setting. In the real-time setting,
	the gradient dynamics of Eq. (2.4) guarantees convergence to a (local) minimum of E. In

.9) 2. the Jacobian of the transition function F must be symmetric, i.e. ∂F ∂s (x, s; θ) . Going from Eq. (2.10) to Eq. (2.8) is also true -though less obvious -and is a consequence of Green's theorem. * contrast, in the discrete-time setting, no intrinsic property of F or Φ a priori guarantees that Chapter 3

  . Note that the neural update ∆ EP

	IV.3.3 -Main result											
	Using Eq. (3.15) for t = 0 and Eq. (3.16), we get the initial condition on ∆ EP s (0) (Eq. (3.10))
		∆ EP s (0) =	∂s β 1 ∂β β=0	-	∂s β 0 ∂β β=0	= -	∂ ∂s	(s * , y) .	(3.17)
	Moreover, if we take Eq. (3.15) and subtract itself from it at time step t -1, we get:
			∆ EP s (t + 1) =	∂F ∂s	(x, s * , θ) • ∆ EP s (t).	(3.18)
	Hence Eq. (3.11) and the final result.								
														1)
	rewrites:												
				∆ EP s (t) =	∂s β t+1 ∂β β=0	-	∂s β t ∂β β=0	.	(3.13)
	This is because for every t ≥ 0 we have s β t → s * as β → 0 : starting from s 0 0 = s * , setting
	β = 0 in Eq. (3.8) yields s 0 1 = s 0 2 = . . . = s * .				
	Differentiating Eq. (3.8) with respect to β, we get:
	∀t ≥ 0,	∂s β t+1 ∂β	=	∂F ∂s	x, s β t , θ •	∂s β t ∂β	-	∂ ∂s	s β t , y -β	∂ 2 ∂s 2 s β t , y •	∂s β t ∂β	.	(3.14)
	Letting β → 0, we have s β t → s * , so that:						
		∀t ≥ 0,		∂s β t+1 ∂β β=0	=	∂F ∂s	(x, s * , θ) •	∂s β t ∂β β=0	-	∂ ∂s	(s * , y) .	(3.15)
	Since at time t = 0 the initial state of the network s β 0 = s * is independent of β, we have:
								∂s β 0 ∂β	= 0.		(3.16)

s (β, t) of Eq. (3.

  -Descending Updates. We say that a convergent RNN model fed with a fixed input has the GDU property if during the second phase, the updates it computes by EP (∆ EP ) on the one hand and the gradients it computes by BPTT (-∇ BPTT ) on the other hand are 'equal' -or 'approximately equal', as measured per the RelMSE (Relative Mean Squared Error) metric. BPTT processes, averaged over time, over neurons or synapses (layer-wise) and over a mini-batch of samples -see Appendix 2.3.2 for the details.

Relative Mean Squared Error (RelMSE).

In order to quantitatively measure how well the GDU property is satisfied, we introduce a metric which we call Relative Mean Squared Error (RelMSE) such that RelMSE(∆ EP , -∇ BPTT ) measures the distance between ∆ EP and IV.4.3 -Real-time RNNs in the energy-based setting -∇

Table 5 . 2 :

 52 Best training results on MNIST with EP reported in the literature.

			%)	BPTT (error %)	T	K Epochs WCT
		Test	Train	Test	Train
	EB-1h	2.06 ± 0.17 (0.13) 2.11 ± 0.09 (0.46) 100 12	30	1 : 33
	EB-2h	2.01 ± 0.21 (0.11) 2.02 ± 0.12 (0.29) 500 40	50	16 : 04
	P-1h	2.00 ± 0.13 (0.20) 2.00 ± 0.12 (0.55) 30 10	30	0 : 17
	P-2h	1.95 ± 0.10 (0.14) 2.09 ± 0.12 (0.37) 100 20	50	1 : 56
	P-3h	2.01 ± 0.18 (0.10) 2.30 ± 0.17 (0.32) 180 20	100	8 : 27
	P-conv 1.02 ± 0.04 (0.54) 0.88 ± 0.06 (0.12) 200 10	40	8 : 58
				EP (error %)
				Test	Train
				[160] ∼ 2.2 (∼ 0)
				[163] 2.37	(0.15)
				[164] 2.19

  a new version of EP with continual weight updates. Like standard EP, the C-EP algorithm applies to networks whose synaptic

	Chapter 1	
	Equilibrium Propagation with
	Continual Weight Updates (C-EP)
	1: s 0 ← 0	First Phase
	2: repeat 3: s t+1 ← ∂Φ ∂s (x, s t , θ) 4: until s t = s * 5: Store s * 6: s β 0 ← s * 7: repeat 8: s β t+1 ← ∂Φ ∂s x, s β t , θ -β ∂ Second Phase ∂s s β t , y 9: until s β t = s β * 10: Global Parameter Update 11: θ ← θ + η β ∂Φ ∂θ s β * , θ -∂Φ ∂θ (s 1: s 0 ← 0 2: repeat 3: s t+1 ← ∂Φ ∂s (x, s t , θ) 4: until s t = s * 5: s β 0 ← s * 6: repeat 7: s β t+1 ← ∂Φ ∂s x, s β t , θ -β ∂ Second Phase First Phase ∂s s β t , y 8: Parameter Update at Time t 9: θ ← θ + η β ∂Φ ∂θ s β t+1 -∂Φ ∂θ s β

Algorithm 4 EP Input: x, y, θ, β, η. Output: θ. * , θ) Algorithm 5 C-EP (with simplified notations) Input: x, y, θ, β, η. Output: θ. t 10: until s β t and θ are converged.

  L * using only the steady state s * . Similarly to BPTT, it computes quantities ∇ RBP In general, to apply BPTT, it is necessary to store in memory the history of past hidden states s 1 , s 2 , . . . , s T in order to compute the gradients ∇ BPTT However, in our specific setting with static input x, if the network has reached the steady state s * after T -K steps, i.e. if s T -K

								s	(t) and ∇ RBP θ	(t), which
	we call 'gradients of RBP', iteratively for t = 0, 1, 2, . . ..
	Definition 6 (Gradients of RBP). The gradients ∇ RBP s	(t) and ∇ RBP θ	(t) are defined and
	computed iteratively as follows:						
		∇ RBP s	(0) =	∂ ∂s	(s * , y) ,	(2.5)
	∀t ≥ 0,	∇ RBP s	(t + 1) =	∂F ∂s	(x, s * , θ) • ∇ RBP s	(t),	(2.6)
	∀t ≥ 0,	∇ RBP θ	(t + 1) =	∂F ∂θ	(x, s * , θ) • ∇ RBP s	(t).	(2.7)
	In Appendix 3.1, we justify the name of 'gradients' for the quantities ∇ RBP s	(t) and ∇ RBP θ	(t)
	by proving that they are the gradients of L * . More explicitely:
		∞ t=1	∇ RBP θ	(t) =	∂L * ∂θ	.	(2.8)
								s	(t) and ∇ BPTT θ	(t) as in Eq. (1.8)-
	(1.9).						

  Left. Pseudo-code of BPTT. The gradients ∇(t) denote the gradients ∇ BPTT (t) of BPTT. Right. Pseudo-code of RBP. Difference between BPTT and RBP. In BPTT, the state s T -t is required to compute ∂F ∂s (x, s T -t , θ) and ∂F ∂θ (x, s T -t , θ) ; thus it is necessary to store in memory the sequence of states s 1 , s 2 , . . . , s T . In contrast, in RBP, only the steady state s * is required to compute ∂F ∂s (x, s * , θ) and ∂F ∂θ (x, s * , θ) ; it is not necessary to store the past states of the network.

					Algorithm 7 RBP
					Input: x, y, θ.
					Output: θ.
					1: s 0 ← 0
					2: repeat
			s t , θ)		3:	s t+1 ← F (x, s t , θ)
	4: end for		4: until s t = s *
	5: ∇ BPTT s	(0) ← ∂ ∂s (s T , y)		5: ∇ RBP s	(0) ← ∂ ∂s (s * , y)
	6: for t = 1 to T do		6: repeat
	7: 8:	∇ s (t) ← ∂F ∂s (x, s T -t , θ) • ∇ s (t -1) ∇ θ (t) ← ∂F ∂θ (x, s T -t , θ) • ∇ s (t -1)	7: 8:	∇ RBP s ∇ RBP θ	(t) ← ∂F ∂s (x, s * , θ) • ∇ RBP s (t) ← ∂F ∂θ (x, s * , θ) • ∇ RBP s	(t -1) (t -1)
	9: end for		9: until ∇ RBP θ	(t) = 0.
	10: ∇ BPTT θ	(tot) ← T -1 t=0 ∇ BPTT θ	(t)	10: ∇ RBP θ	(tot) ← ∞ t=0 ∇ RBP θ	(t)
	Figure 2.2: RBP, i.e.			
			∀t = 0, 1, . . . , K :	∇ BPTT s ∇ BPTT θ	(t) = ∇ RBP s (t) = ∇ RBP θ	(t), (t).

  in part III is biased in the way the underlying derivative with respect to β is estimated. More precisely, in[START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] EP learning rule is more generally expressed in terms of d

	dβ	∂E ∂θ β=0	. Eq. (1.5)
	is the discrete forward-time estimate of this derivative. Cancelling out this bias, for
	instance by flipping the sign of β across mini-batches, could also dramatically improve
	learning in deep architectures.		

  VII.2.3 -Experiments: demonstrating the GDU propertyIt is then readily seen that the neural updates ∆ EP s and the weight updates ∆ EP Written in this form, we see a symmetry between ∆ EP s (t) and ∆ EP θ (t) and there is no more index shift.

									θ both rewrite
	in the form							
		∆ EP s (0) = lim β→0	1 β	∂Φ β ∂s	x, s β 0 , y, θ -	∂Φ ∂s	x, s β 0 , θ ,	(2.9)
	∀t ≥ 1,	∆ EP s (t) = lim β→0	1 β	∂Φ β ∂s	x, s β t , y, θ -	∂Φ β ∂s	x, s β t-1 , y, θ ,	(2.10)
	∀t ≥ 1,	∆ EP θ (t) = lim β→0	1 β	∂Φ β ∂θ	x, s β t , y, θ -	∂Φ β ∂θ	x, s β t-1 , y, θ .	(2.11)
	Missing Weight Gradient ∇ BPTT θ	(0) and Weight Update ∆ EP θ (0)
									(2.3)
	and that we have defined the neural and weight updates of EP as
	∀t ≥ 0,	∆ EP s (t) = lim β→0	1 β	s β t+1 -s β t ,	(2.4)
	∀t ≥ 1,	∆ EP θ (t) = lim β→0	1 β	∂Φ ∂θ	x, s β t , θ -	∂Φ ∂θ	x, s β t-1 , θ ,	(2.5)
	where							
		s β 0 = s * ,	∀t ≥ 0, s β t+1 = F x, s β t , θ -β	∂ ∂s	s β t , y .	(2.6)
	Index Shift							
	Let us introduce							
			Φ β (x, s, y, θ) = Φ(x, s, θ) -β (s, y),	(2.7)
	so that the dynamics in the second phase rewrites
				s β t+1 =	∂Φ β ∂s	x, s β t , y, θ .	(2.8)

. . T -1, s t+1 = F (x, s t , θ t = θ) , L = (s T , y) ,

Table 2 . 1 :

 21 Table of hyperparameters used to demonstrate Theorem 4. "EB" and "P" respectively denote "energy-based" and "prototypical", "-#h" stands for the number of hidden layers.

		Activation	T	K	β	ε
	Toy model	tanh	5000	80	0.01 0.08
	EB-1h	tanh	800	80 0.001 0.08
	EB-2h	tanh	5000 150 0.01 0.08
	EB-3h	tanh	30000 200 0.02 0.08
	P-1h	tanh	150	10	0.01	-
	P-2h	tanh	1500	40	0.01	-
	P-3h	tanh	5000	40 0.015	-
	P-conv	hard sigmoid 5000	10	0.02	-

  2 t , s 4 t , . . . and o t = s 1 t , s 3 , t, s 5 t , . . . . The crucial property is that o t+1 (resp. e t+1 ) is determined by e t (resp. o t ).

Table 2 . 2 :

 22 Table of hyperparameters used for training. "EB" and "P" respectively denote "energy-based" and "prototypical", "-#h" stands for the number of hidden layers. Backpropagation Through Time (BPTT) Input: static input x, parameter θ, learning rate α. Output: parameter θ.

		Activation	T	K	β	ε	Epochs	Learning rates
	EB-1h	sigmoid	100 12 0.5 0.2	30	0.1-0.05
	EB-2h	sigmoid	500 40 0.8 0.2	50	0.4-0.1-0.01
	P-1h	sigmoid	30 10 0.1	-	30	0.08-0.04
	P-2h	sigmoid	100 20 0.5	-	50	0.2-0.05-0.005
	P-3h	sigmoid	180 20 0.5	-	100	0.2-0.05-0.01-0.002
	P-conv hard sigmoid 200 10 0.4	-	40	0.15-0.035-0.015

Algorithm 9 Discrete-time Equilibrium Propagation (EP) Input: static input x, parameter θ, learning rate α. Output: parameter θ. 1: while θ not converged do 2: for each mini-batch x do θ ← θ -α∆θ 12:

  VII.3.1 -What 'Gradients' are the Gradients of RBP?By the chain rule of differentiation, the gradient of L * (Eq. 3.5) is Proof of Proposition 13. By the chain rule of differentiation we have VII.3.3 -Illustrating the equivalence of the four algorithms on an analytically tractable model function of the system * is Φ(s, θ) = 1 4 (s + θ)2 . This model has no practical application ; it is only meant for pedagogical purpose.Backpropagation Through Time (BPTT).With BPTT, an important point is that we approximate the steady state s * by the state after T time steps s T , and we approximate L * (the loss at the steady state) by the loss after T time steps L = (s T ).In order to compute (i.e. 'backpropagate') the gradients of BPTT, Proposition 1 tells us that we need to compute ∂ ∂s (s T ) = s T , ∂F ∂s (s t , θ) = 1 2 and ∂F ∂θ (s t , θ) = 1 2 . We get ∀t = 0, 1, . . . , T -1, Similarly, to compute the gradients of RBP, Definition 6 tells us that we need to compute ∂ ∂s (s * ) = s * , ∂F ∂s (s * , θ) = 1 2 and ∂F ∂θ (s * , θ) = 1 2 . We have

	∀t ≥ 0,	∇ RBP s	(t) =	∂F ∂s	(x, s * , θ)	t	•	∂ ∂s	(s * , y) ,		(3.3)
	∀t ≥ 1,	∇ RBP θ	(t) =	∂F ∂θ	(x, s * , θ) •	∂F ∂s	(x, s * , θ)	t-1	•	∂ ∂s	(s * , y) .	(3.4)
	Second, recall that the loss L * is								
						L * = (s * , y) ,					(3.5)
	where In order to compute ∂s * ∂θ , we differentiate the steady state condition (Eq. 3.6) with respect to s * = F (x, s * , θ) . (3.6) ∂L * ∂θ = ∂ ∂s (s * , y) • ∂s * ∂θ . (3.7) θ, which yields ∂s * ∂θ = ∂F ∂s (x, s ∂s * ∂θ = Id -∂F ∂s (x, s * , θ) -1 • ∂F ∂θ (x, s * , θ) (3.9) = ∞ t=0 ∂F ∂s (x, s (3.10) Therefore ∂L * ∂θ = ∂ ∂s (s * , y) • ∂s * ∂θ (3.11) = ∞ t=0 ∂ ∂s (s * , y) • ∂F ∂s (x, s t • ∂F ∂θ (x, s * , θ) (3.12) = ∞ t=0 ∇ RBP θ (t). (3.13) ∂L t+1 ∂s 0 = ∂F ∂s (x, s 0 , θ) • ∂L t+1 ∂s 1 . (3.14) Evaluation this expression for s 0 = s * we get ∂L t+1 ∂s 0 s 0 =s * = ∂F ∂s s (t) = s T 2 t , ∇ BPTT θ (t) = s T 2 t+1 . (3.18) (x, s ∇ BPTT Recurrent Backpropagation (RBP). ∀t ≥ 0, ∇ RBP s (t) = s * 2 t , ∇ RBP θ (t) = s * 2 t+1 . (3.19)

* , θ) • ∂s * ∂θ + ∂F ∂θ (x, s * , θ) . (

3.8)

Rearranging the terms, and using the Taylor expansion (

Id -A) -1 = ∞ t=0 A t with A = ∂F ∂s (x,

s * , θ), we get * , θ) t • ∂F ∂θ (x, s * , θ) . * , θ) * , θ) • ∂L t+1 ∂s 1 s 0 =s * . (3.15)

  Notice that s β t → θ as β → 0 ; for small values of the hyperparameter β, the trajectory in the second phase is close to the steady state s * = θ.

					2	-β s β t +	1 2	θ.	(3.20)
	This linear dynamical system can be solved analytically:			
		∀t ≥ 0,	s β t =	θ 1 + 2β	1 + 2β	1 2	-β	t	.	(3.21)
	Using Eq. 2.14, it follows that the normalized updates of EP are
	∀t ≥ 0,	∆ EP s (β, t) = -	θ 2 t (1 -2β) t ,		∆ EP θ (β, t) = -	θ 2 t+1 (1 -2β) t .	(3.22)

Experimental Details 3.4.1 Training experiments (Table 4.1) Simulation framework.

  Therefore, all we need to do is to compute ∆ C-EP Second, by iterating the second equation over all indices from t = 0 to t -1 we get Simulations have been carried out in Pytorch. The code has been attached to the supplementary materials upon submitting this work on OpenReview. We have also attached a readme.txt with a specification of all dependencies, packages, descriptions of the python files as well as the commands to reproduce all the results presented in this paper.Data set.Training experiments were carried out on the MNIST data set. Training set and test set include 60000 and 10000 samples respectively.

									t+1 = θ β,η t+1 = θ β,η 1 2 t	-β s β,η t + + η 2β s β,η t+1 -s β,η 1 2 θ β,η t , t	.	(3.23)
	First, rearranging the terms in the second equation, we get
			1 η	θ β,η t+1 -θ β,η t		=		1 2β	s β,η t+1 -s β,η t	.	(3.24)
	It follows that		∆ C-EP θ	(β, η, t) =		1 2	∆ C-EP s	(β, η, t).	(3.25)
				θ β,η t	= θ +	η 2β		s β,η t -s * .	(3.26)
	Using s s β,η t+1 =	1 2	-β +	η 4β		s β,η t +	1 2	-	η 4β	θ.	(3.27)
	Solving this linear dynamical system, and using the initial condition s β,η 0 = θ we get
	s β,η t	=	θ 1 -η 2β + 2β	1 -	η 2β	+ 2β	1 2	t	1 -2β +	η 2β	t	(3.28)
	Finally:		∆ C-EP s	(β, η, t) = -	θ 2 t 1 -2β +	η 2β	t	(3.29)
	3.4											

s

(β, η, t). * = θ and plugging this into the first equation we get

Table 3 . 3 :

 33 Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the number of hidden layers. We indicate over five trials the mean and standard deviation for the test error, the mean error in parenthesis for the train error. T (resp. K) is the number of iterations in the first (resp. second) phase.

		Initial Ψ(θ f , θ b ) ( • )	Error (%)		T	K Random β Epochs
			Test	Train			
	EP-1h	-	2.00 ± 0.13	(0.20)	30 10	No	30
	EP-2h	-	1.95 ± 0.10	(0.14) 100 20	No	50
	C-EP-1h	-	2.85 ± 0.18	(0.83)	40 15	No	100
	C-EP-1h	-	2.28 ± 0.16	(0.41)	40 15	Yes	100
	C-EP-2h	-	2.44 ± 0.14	(0.31) 100 20	No	150
	C-VF-1h	0	2.43 ± 0.08	(0.77)	40 15	Yes	100
		22.5	2.38 ± 0.15	(0.74)	40 15	Yes	100
		45	2.37 ± 0.06	(0.78)	40 15	Yes	100
		67.5	2.48 ± 0.15	(0.81)	40 15	Yes	100
		90	2.46 ± 0.18	(0.78)	40 15	Yes	100
		112.5	4.51 ± 3.96	(2.92)	40 15	Yes	100
		135	86.61 ± 4.27 (88.51) 40 15	Yes	100
		157.5	91.08 ± 0.01 (90.98) 40 15	Yes	100
		180	92.82 ± 3.47 (92.71) 40 15	Yes	100
	C-VF-2h	0	2.97 ± 0.19	(1.58) 100 20	Yes	150
		22.5	3.54 ± 0.75	(2.70) 100 20	Yes	150
		45	3.78 ± 0.78	(2.86) 100 20	Yes	150
		67.5	4.59 ± 0.92	(4.68) 100 20	Yes	150
		90	5.05 ± 1.17	(4.81) 100 20	Yes	150
		112.5	20.33 ± 13.03 (20.30) 100 20	Yes	150
		135	59.04 ± 17.97 (60.53) 100 20	Yes	150
		157.5	77.90 ± 13.49 (78.04) 100 20	Yes	150
		180	74.17 ± 12.76 (74.05) 100 20	Yes	150

* This principle led to the development of an Optical Processing Unit, a hardware co-processor.

* Note that this setting where both the parameters and posterior are unknown and one is needed to compute the other falls into Expectation-Maximization. During the expectation phase, the posterior is approximated given parameter values, and during the maximization phase the parameter gradients are computed given posterior values.

* https://github.com/ernoult/updatesEPgradientsBPTT

* The difference between the loss L and the loss L * is explained in Appendix 2.1.

* Another equivalent formulation is that the curl of F is null, i.e. F = 0.

† Three-dimensional in practice, considering the mini-batch dimension.

* The full talk can be found: https://slideslive.com/38922302/social-intelligence.

Remerciements

Part II

Restricted Boltzmann Machines with memristors

Summary

One of the biggest stakes in nanoelectronics today is to meet the needs of Artificial Intelligence by designing hardware neural networks which, by fusing computation and memory, process and learn from data with limited energy. For this purpose, we have seen that memristive devices are excellent candidates to emulate synapses. A challenge, however, is to map existing learning algorithms onto a chip: for a physical implementation, a learning rule should ideally be tolerant to the typical intrinsic imperfections of such memristive devices, and local.

Restricted Boltzmann Machines (RBM), for their local learning rule and inherent tolerance to stochasticity, comply with both of these constraints and constitute a highly attractive algorithm towards achieving memristor-based Deep Learning. On simulation grounds, this part gives insights into designing simple memristive devices programming protocols to train on chip Boltzmann Machines. Among other RBM-based neural networks, we advocate using a Discriminative RBM, with two hardware-oriented adaptations. We propose a pulse width selection scheme based on the sign of two successive weight updates, and show that it removes the constraint to precisely tune the initial programming pulse width as a hyperparameter.

We also propose to evaluate the weight update requested by the algorithm across several samples and stochastic realizations. We show that this strategy brings a partial immunity against the most severe memristive device imperfections such as the non-linearity and the stochasticity of the conductance updates, as well as device-to-device variability.

Summary

In this part, we introduce Equilibrium Propagation, one of the central algorithms of this PhD thesis. We first formally introduce the algorithm as formalized by Scellier [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF]. Then, we connect Equilibrium Propagation with Boltzmann Machines and we present intuitions about the algorithm. Afterwards, we present the generalization of Equilibrium Propagation to vector field dynamics [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF], where the requirement of an energy function for the system dynamics is lifted. Finally, we mention the equivalence established between Equilibrium Propagation and Recurrent Backpropagation [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF], a result which inspired one of the main contributions of this thesis presented in part IV.

Part IV

Updates of Equilibrium Propagation Match gradients of BPTT in an RNN with a Static Input Summary

In part III, we introduced Equilibrium Propagation as biologically inspired learning algorithm that can be used to train convergent recurrent neural networks, i.e. RNNs that are fed by a static input x and settle to a steady state (section 1.4). Training convergent RNNs consists in adjusting the weights until the steady state of output neurons coincides with a target y (see Eq. (1.2) in section 1.2 of part III). Convergent RNNs can also be trained with the more conventional Backpropagation Through Time (BPTT) algorithm (which was introduced and derived in subsubection 1.2.3 of part III). In its original formulation EP was described in the case of real-time neuronal dynamics (see Eq. (1.6) in section 1.3 of part III), which is computationally costly. In this chapter, we introduce a discrete-time version of EP with simplified equations and with reduced simulation time, bringing EP closer to practical machine learning tasks. We first prove theoretically, as well as numerically that the neural and weight updates of EP, computed by forward-time dynamics, are step-by-step equal to the ones obtained by BPTT, with gradients computed backward in time. The equality is strict when the transition function of the dynamics derives from a primitive function and the steady state is maintained long enough. We then show for more standard discrete-time neural network dynamics that the same property is approximately respected and we subsequently demonstrate training with EP with equivalent performance to BPTT. In particular, we define the first convolutional architecture trained with EP achieving ∼ 1% test error on MNIST, which is the lowest error reported with EP. These results can guide the development of deep neural networks trained with EP. This chapter is adapted from our paper that was presented at NeurIPS 2019 as an oral contribution [START_REF] Ernoult | Updates of equilibrium prop match gradients of backprop through time in an rnn with static input[END_REF]. This work was done in collaboration with Benjamin Scellier, who carried out the derivation of theorem 4.

IV.2.2 -Difference between the primitive function Φ and the energy function E

the dynamics of Eq (2.5) settles to steady state. This discussion is out of the scope of this work and we refer to [START_REF] Scarselli | The graph neural network model[END_REF] where sufficient (but not necessary) conditions are discussed to ensure convergence based on the contraction map theorem.

IV.3.3 -Main result

The convergence requirement enables to derive the equations satisfied by the neural and weight updates (Lemma 3). Then, the existence of a primitive function ensures that these equations are equal to those satisfied by the gradients of BPTT (Lemma 2), with same initial conditions, yielding the desired equality (Theorem 4).

Note that other algorithms such as RTRL [START_REF] Ronald | A learning algorithm for continually running fully recurrent neural networks[END_REF] and UORO [START_REF] Tallec | Unbiased online recurrent optimization[END_REF] also compute the gradients by forward-time dynamics.

Part V

Equilibrium Propagation with Continual Weight Updates

Summary

As presented in the last two parts, EP prescribes a learning rule which is local in space, with the same local computations being performed in both prediction and credit assignment phases. However, in existing implementations of EP, the learning rule is not local in time.

EP proceeds in two successive phases, the weight update is performed after the dynamics of the second phase (credit assignment) have converged, and it requires information of the first phase that is no longer available physically. In this part, we propose a version of EP named Continual Equilibrium Propagation (C-EP), where neural and synaptic dynamics occur simultaneously throughout the second phase, so that the weight update becomes local in time. We prove theoretically that, provided the learning rates are sufficiently small, at each time step of the second phase, the dynamics of neurons and synapses follow the gradients of the loss given by BPTT. We demonstrate training with C-EP on MNIST and generalize C-EP to neural networks where neurons are connected by asymmetric connections. We show through experiments that the more closely the network updates follow the gradients of BPTT, the best it performs in terms of training. These results bring EP a step closer to biology and open up the possibility of extremely energy efficient hardware implementations while maintaining an intimate link with backpropagation. This work was done in collaboration with Benjamin Scellier, who carried out the derivation of theorem 10.

connections between neurons are assumed to be symmetric and tied.

• We show mathematically that, provided that the changes in synaptic strengths are sufficiently slow (i.e. the learning rates are sufficiently small), at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss obtained with BPTT (Theorem 10 and Fig. 1.2, chapter 2). We call this property the Gradient Descending Dynamics (GDD) property, following the terminology used in part IV.

• We demonstrate training with C-EP on MNIST, with accuracy approaching the one obtained with standard EP (Section 4.1).

• We adapt C-EP to the more bio-realistic situation of a neural network with asymmetric connections between neurons. We call this C-VF as it is inspired by the Vector Field method proposed in [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF]. We demonstrate this approach on MNIST, and show numerically that the training performance is correlated with the satisfaction of the Gradient Descending Dynamics property (Section 4.3).

• We also show how the Recurrent Backpropagation (RBP) algorithm of [START_REF] Luis | A learning rule for asynchronous perceptrons with feedback in a combinatorial environment[END_REF][START_REF] Fernando | Generalization of back-propagation to recurrent neural networks[END_REF] relates to C-EP, EP and BPTT. We illustrate the equivalence of these four algorithms on a simple analytical model (Fig. 2.1) and we develop their general relationship.

Chapter 2

Gradient Descending Dynamics (GDD) property For completeness, we also include the corresponding gradients of Recurrent Backpropagation (RBP) and the normalized updates of EP, denoted ∇ RBP and ∆ EP respectively. The equivalence between C-EP, EP, RBP and BPTT holds in the general setting.

The main theoretical contribution of this part is to prove that, provided the hyperparameter β and the learning rate η are small enough, the dynamics of the neurons and the weights given by Eq. (1.3) follow the gradients of BPTT (Theorem 10 and Fig. 1.2). For a formal statement of this property and in a similar way than the previous part, we define the normalized (continual) updates of C-EP: Chapter 3

Models with symmetric and asymmetric weights

In this chapter, we validate our continual version of Equilibrium Propagation against training on the MNIST data set with two models. Following the terminology of section 4.1 in part IV, the first model is a prototypical RNN with tied and symmetric weights: the dynamics of this model approximately derive from a primitive function, which allows training with C-EP. The second model is a prototypical RNN with untied and asymmetric weights, which is therefore closer to biology. These two models belong to the class of prototypical models introduced in part IV, and we use them for this study to accelerate training simulations. We train this second model with C-VF which was previously introduced. In part IV, we showed with simulations the intuitive result that, if a model is such that the normalized updates of EP 'match' the gradients of BPTT (i.e. if they are approximately equal), then the model trained with EP performs as well as the model trained with BPTT. Along the same lines, we show in this work that the more the EP normalized updates follow the gradients of BPTT before training (which depends on the alignment between feedforward and feedback weights), the best is the resulting training performance.

Definition

Prototypical model with symmetric weights trained by C-EP. The first phase dynamics is defined as:

where σ is an activation function, W is a symmetric weight matrix, and W x is a matrix connecting x to s. The same dynamics were introduced in Eq. (4.3), section 4.1 of part IV when defining the prototypical setting. Although the dynamics are not directly defined in terms of a primitive function, note that

-Models with symmetric weights trained by C-EP

Models under consideration

In the rest of this part, we study the following models:

• The real-time model with symmetric weights trained by C-EP (subsection 3. • The real-time model with asymmetric weights trained by C-VF (subsection 3.3.1). This model is inspired from [START_REF] Scellier | Generalization of equilibrium propagation to vector field dynamics[END_REF] -see section 2.2 in chapter III.

• The prototypical model with asymmetric weights trained by C-VF (subsection 3.3.2).

Figures for the GDD experiments

For each of the model described below, we show the effect of using continual updates with a finite learning rate in terms of the ∆ C-EP and -∇ BPTT processes. These figures have been realized for each of the models with one hidden layer on MNIST. Dashed an continuous lines respectively represent the normalized updates ∆ and the gradients ∇ BPTT . Each randomly selected synapse or neuron correspond to one color. We add an s or θ index to specify whether we analyse neuron or synapse updates and gradients. Each C-VF simulation has been realized with an angle between forward and backward weights of 0 degrees (i.e. Ψ(θ f , θ b ) = 0 • ) -see Appendix 3.4.1 for a precise definition of Ψ(θ f , θ b ).

Models with symmetric weights trained by C-EP

Real-time (energy-based) model

Equations. In this subsection (as in subsection 4.3.2 of the previous part), we denote N the number of hidden layers, so that in general, s 1 , s 2 , • • • , s N stand for the hidden layers and s N +1 = ŷ is the output layer.

As in subsection 4.3.2, we consider the following primitive function:

Chapter 4

Training experiments 20 150 Experiments are first performed with multi-layered prototypical RNNs (with symmetric weights) on MNIST. Table 4.1 presents the results obtained with C-EP training benchmarked against standard EP training results of part IV -see Appendix 3.4.1 for training conditions. The test error of C-EP approaches that of EP, with a slight degradation in accuracy. This is because although Theorem 10 guarantees Gradient Descending Dynamics (GDD) in the limit of infinitely small learning rates, in practice we have to strike a balance between having a learning rate that is small enough to ensure this condition but not too small to observe convergence within a reasonable number of epochs. As seen in Fig. 4.1 (b), the finite learning 

C-EP training experiments

V.4.3 -Continual Vector Field (C-VF) training experiments

List of publications

with p(v) = exp (-F (v))/ ṽ exp (-F (ṽ)): a minimal free-energy corresponds to a maximal likelihood. The Discriminative RBMs with 300, 500 and 6000 hidden units have respectively been tuned with a learning rate of 0.01, 0.01 and 0.04.

We now specify memristor-based simulation conditions. As in [105], the conductance were sampled from

) and the conductance bias were set to Gmax-G min 2 . In any architecture, the neurons values during inference (i.e. during the forward pass at a given training step) and training (i.e. in the weight update itself) were binarized, i.e. stochastically sampled from their Bernoulli probability given their upstream neurons, using sigmoid activation functions. When greedily training the Deep Belief Net, we trained the 785+501 RBM taking as inputs binarized MNIST inputs, then the 501+501 RBM taking as inputs binarized features extracted by the first RBM, finally the 511+2001 Discriminative RBM taking as inputs features extracted by the second RBM and target labels. To perform inference in the Discriminative RBM on the label units to calculate the test error rate (this is strictly analogous in the Deep Belief Net, taking extracted features instead of the MNIST samples as inputs), we proceeded in the following way: we initially clamp a given test sample on the first 784 units (or extracted features of this test sample on the first 500 hidden units) along with a label vector on the remaining 10 units initialized to (1/10)(1, . . . , 1). We subsequently perform 40 Gibbs chains in parallel over 2 steps (exactly as in [START_REF] Emre | Stochastic synapses enable efficient brain-inspired learning machines[END_REF]) and average the resulting 40 label vectors to determine which label was selected by the network.

If not stated otherwise, simulations were performed over 30 epochs, over 5 trials, with error bars indicating median, first quartile, third quartile with a mini-batch size of 100.

Finally, the multiplicative coefficient η + appearing in Alg. (2) describing RProp was set empirically set to 1.01 and we fixed η -= 1/η + . We selected η + by simply drawing the cumulative distribution function of the final pulse widths and ensured that it was spread enough over the whole range [0, ∆t max ] -with η = 1.05 conversely, 40% of the device were shut off after 30 epochs of learning (∆t = 0).

All simulation scripts can be found on: https://github.com/ernoult/mem-RBM.git.
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Appendix of part IV 2.1 Difference between L * and L

There is a difference between the loss at the steady state L * and the loss after T iterations L. To see why the functions L * and L (as functions of θ) are different, we have to come back to the definitions of s * and s T . Recall that • L * = (s * , y) where s * is the steady state, i.e. characterized by s * = F (x, s * , θ),

• L = (s T , y) where s T is the state of the network after T time steps, following the dynamics s 0 = 0 and s t+1 = F (x, s t , θ).

For the current value of the parameter θ, the hyperparameter T is chosen such that s T = s * , i.e. such that the network reaches steady state after T time steps. Thus, for this value of θ we have numerical equality L(θ) = L * (θ). However, two functions that have the same value at a given point are not necessarily equal. Similarly, two functions that have the same value at a given point don't necessarily have the same gradient at that point. Here we are in the situation where 1. the functions L and L * (as functions of θ) have the same value at the current value of θ, i.e. L(θ) = L * (θ) numerically, 2. the functions L and L * (as functions of θ) are analytically different, i.e. L = L * .

Since the functions L and L * (as functions of θ) are different, the gradients ∂L * ∂θ and ∂L ∂θ are also different in general. Optimization. Optimization was performed using stochastic gradient descent with minibatches of size 20. For each simulation, weights were Glorot-initialized. No regularization technique was used and we did not use the persistent trick of caching and reusing converged states for each data sample between epochs as in [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF].

VII.2.4 -Training experiments

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters: the recurrent hyperparameters -i.e. T , K and β -and the learning rates. A first guess of the recurrent hyperparameters T and β is found by plotting the ∆ EP and ∇ BPTT processes associated to synapses and neurons to see qualitatively whether the theorem is approximately

VII.2.4 -Training experiments satisfied, and by conjointly computing the proportions of synapses whose ∆ EP

W processes have the same sign as its ∇ BPTT W processes. K can also be found out of the plots as the number of steps which are required for the gradients to converge. Morever, plotting these processes reveal that gradients are vanishing when going away from the output layer, i.e. they lose up to 10 -1 in magnitude when going from a layer to the previous (i.e. upstream) layer. We subsequently initialized the learning rates with increasing values going from the output layer to upstreams layers. The typical range of learning rates is [10 -3 , 10 -1 ], [START_REF] Lecun | A learning scheme for asymmetric threshold networks[END_REF]1000] for T, [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Yang | Memristive Devices for Computing : Mechanisms , Applications and Challenges[END_REF] for K and [0.01, 1] for β. Hyperparameters where adjusted until having a train error the closest to zero. Finally, in order to obtain minimal recurrent hyperparametersi.e. smallest T and K possible, both in the energy-based and prototypical setting for a fair comparison -we progressively decreased T and K until the train error increases again.

Activation functions, update clipping.

For training, we used two kinds of activation functions:

Although it is a shifted and rescaled sigmoid function, we shall refer to this activation function as 'sigmoid'.

• σ(x) = max(min(x, 1), 0). It is the 'hard' version of the previous activation function so that we call it here for convenience 'hard sigmoid'.

The sigmoid function was used for all the training simulations except the convolutional architecture for which we used the hard sigmoid function -see Table 2.2. Also, similarly to [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF], for the energy-based setting we clipped the neuron updates between 0 and 1 so that at each time step, when an update ∆s was prescribed, we have implemented: s ← max(min(s + ∆s, 1), 0).

Benchmarking EP with respect to BPTT. In order to compare EP and BPTT directly, for each simulation trial we used the same weight initialization to train the network with EP on the one hand, and with BPTT on the other hand. We also used the same learning rates, and the same recurrent hyperparameters: we used the same T for both algorithms, and we truncated BPTT to K steps, as prescribed by the theory. In this subsection we motivate the name of 'gradients' for the quantities ∇ RBP s (t) and ∇ RBP θ (t) by proving that they are the gradients of L * in the sense of Proposition 12 below. They are also the gradients of what we call the 'projected cost function' (Proposition 13), using the terminology of [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF].

VII.2.4 -Training experiments

VII.2.4 -Training experiments

Proposition 12 (RBP Optimizes L * ). The total gradient computed by the RBP algorithm is the gradient of the loss L * = (s * , y), i.e.

∇ RBP s (t) and ∇ RBP θ (t) can also be expressed as gradients of L t = (s t , y), the cost after t time steps. In the terminology of [START_REF] Scellier | Equivalence of equilibrium propagation and recurrent backpropagation[END_REF], L t was named the projected cost. For t = 0, L 0 is simply the cost of the initial state s 0 . For t > 0, L t is the cost of the state projected a duration t in the future.

Proposition 13 (Gradients of RBP are Gradients of the Projected Cost). The 'RBP gradients' ∇ RBP s (t) and ∇ RBP θ (t) can be expressed as gradients of the projected cost:

where the initial state s 0 is the steady state s * .

Proof of Proposition 12. First of all, by Definition 6 (Eq. 

Experiments: demonstrating the GDD property

We provide the full table of hyperparameters used to demonstrate the GDD property on the different models defined -Table 3.1. 

Illustrating the equivalence of the four algorithms on an analytically tractable model

Model. To illustrate the equivalence of the four algorithms (BPTT, RBP, EP and CEP), we study a simple model with scalar variable s and scalar parameter θ:

where s * is the steady state of the dynamics (it is easy to see that the solution is s * = θ). The dynamics rewrites s t+1 = F (s t , θ) with the transition function F (s, θ) = 1 2 (s + θ), and the loss rewrites L * = (s * ) with the cost function (s) = 1 2 s 2 . Furthermore, a primitive Optimization. Optimization was performed using stochastic gradient descent with minibatches of size 20. For each simulation, weights were Glorot-initialized. No regularization technique was used and we did not use the persistent trick of caching and reusing converged states for each data sample between epochs as in [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF].

Activation function.

For training, we used the activation function

Although it is a shifted and rescaled sigmoid function, we shall refer to this activation function as 'sigmoid'.

Use of a randomized β. The option 'Random β' appearing in the detailed table of results (Table 3.3) refers to the following procedure. During training, instead of using the same β accross mini-batches, we only keep the same absolute value of β and sample its sign from a Bernoulli distribution of probability 1 2 at each mini-batch iteration. This procedure was hinted at by [START_REF] Scellier | Equilibrium propagation: Bridging the gap between energy-based models and backpropagation[END_REF] to improve test error, and is used in our context to improve the model convergence for Continual Equilibrium Propagation -appearing as C-EP and C-VF in Table 4.1 -training simulations.

Tuning the angle between forward and backward weights. In Table 4.1, we investigate C-VF initialized with different angles between the forward and backward weightsdenoted as Ψ in Table 4.1. Denoting them respectively θ f and θ b , the angle κ between them is defined here as:

where Tr denotes the trace, i.e. Tr(A) = i A ii for any squared matrix A. To tune arbitrarily well enough κ(θ f , θ b ), the procedure is the following: starting from θ b = θ f , i.e. κ(θ f , θ b ) = 0, we can gradually increase the angle between θ f and θ b by flipping the sign of an arbitrary proportion of components of θ b . The more components have their sign flipped, the larger is the angle. More formally, we write θ b in the form θ b = M (p) θ f and we define:

where M (p) is a mask of binary random values {+1, -1} of the same dimension of θ f : M (p) = -1 with probability p and M (p) = +1 with probability 1 -p. Taking the cosine and the expectation of Eq. (3.31), we obtain:

Thus, the angle Ψ between θ f and θ f M (p) can be tuned by the choice of p through:

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters: the recurrent hyperparameters -i.e. T , K and β -and the learning rates. A first guess of the recurrent hyperparameters T and β is found by plotting the ∆ EP and ∇ BPTT processes associated to synapses and neurons to see qualitatively whether the theorem is approximately satisfied, and by conjointly computing the proportions of synapses whose ∆ EP W processes have the same sign as its ∇ BPTT W processes. K can also be found out of the plots as the number of steps which are required for the gradients to converge. Morever, plotting these processes reveal that gradients are vanishing when going away from the output layer, i.e. they lose up to 10 -1 in magnitude when going from a layer to the previous (i.e. upstream) layer. We subsequently initialized the learning rates with increasing values going from the output layer to upstreams layers. The typical range of learning rates is [10 -3 , 10 -1 ], [START_REF] Lecun | A learning scheme for asymmetric threshold networks[END_REF]1000] for T , [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Yang | Memristive Devices for Computing : Mechanisms , Applications and Challenges[END_REF] for K and [0.01, 1] for β. Hyperparameters where adjusted until having a train error the closest to zero. Finally, in order to obtain minimal recurrent hyperparametersi.e. smallest T and K possible -we progressively decreased T and K until the train error increases again. 

Résumé court de la thèse

Le deep learning s'est imposé à l'ensemble de la société grâce à l'utilisation des GPUs (Graphical Processing Units). Aller au-delà de la capacité des GPUs pour l'entraînement des réseaux de neurones est la motivation principale de cette thèse. Une approche possible est le calcul neuromorphique consistant à repenser l'ordinateur à partir de zéro en imitant les caractéristiques du cerveau. En particulier, les memristors, qui peuvent stocker des valeurs de poids sous forme d'états de conductance, sont des candidats prometteurs pour les synapses artificielles. Une approche excitante pour réaliser des réseaux de neurones physiques utilisant memristors serait l'apprentissage sur puce : un tel dispositif pourrait réaliser à la fois l'inférence, le calcul de gradient et la mise à jour correspondante des conductances des memristors. Cependant, l'apprentissage sur puce est extrêmement difficile pour deux raisons. Tout d'abord, le calcul du gradient de la fonction objectif appelle à première vue à l'utilisation de l'algorithme de " backpropagation" , qui est intrinsèquement difficile à implémenter sur puce. Le deuxième défi de l'apprentissage sur puce est l'incrément de conductance à réaliser étant donnée une valeur de gradient : les memristors présentent de nombreuses imperfections qui entravent considérablement l'apprentissage sur puce. Dans cette thèse, nous proposons de démêler ces deux aspects de l'apprentissage sur puce. D'une part, nous étudions l'effet des imperfections des memristors sur l'apprentissage des machines Boltzmann restreintes et proposons des stratégies de programmation appropriées. D'autre part, nous nous appuyons sur l'algorithme de " Equilibrium Propagation" , un équivalent de la backpropagation dont la règle d'apprentissage, calculée par la physique du système lui-même, est spatialement locale et mathématiquement fondée.

Thesis Abstract

The deep learning approach to AI has taken upon the whole society thanks to the use of Graphical Computing Units (GPUs). Going beyond the capability of the GPUs for deep neural network training is the core motivation of this thesis. One possible approach is neuromorphic computing, which consists in rethinking the computer from scratch by mimicking brain features. In particular memristors, which can store weight values as conductance states, are promising artificial synapse candidates. An appealing approach to train memristor-based hardware neural networks would be on-chip learning: the chip could sustain inference, gradient computation and subsequent conductance update altogether. However, on-chip learning is extremely challenging for two reasons. First, the computation of the objective function gradient calls at first sight for backpropagation, which is hardware unfriendly. More hardware convenient approaches use learning heuristics that poorly scale to deeper architectures, probably because of their lack of theoretical guarantees.The second challenge of on-chip learning is the conductance update to be performed given a gradient value: memristors exhibit many imperfections which dramatically hamper on-chip learning. In this thesis, we propose to disentangle these two aspects of on-chip learning. On the one hand, we study the effect of memristive device imperfections on the training of Restricted Boltzmann Machines and propose appropriate programming strategies. On the other hand, we build upon Equilibrium Propagation, a hardware friendly counterpart of backpropagation whose learning rule, computed by the physics of the system itself, is spatially local and mathematically grounded.