
HAL Id: tel-03245357
https://theses.hal.science/tel-03245357

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rethinking biologically inspired learning
algorithmstowards better credit assignment for on-chip

learning
Maxence Ernoult

To cite this version:
Maxence Ernoult. Rethinking biologically inspired learning algorithmstowards better credit assign-
ment for on-chip learning. Neural and Evolutionary Computing [cs.NE]. Sorbonne Université, 2020.
English. �NNT : 2020SORUS126�. �tel-03245357�

https://theses.hal.science/tel-03245357
https://hal.archives-ouvertes.fr

Thèse de doctorat de Sorbonne Université

École doctorale Physique en Île-de-France (EDPIF)

Centre de Nanosciences et de Nanotechnologies (C2N),
Unité Mixte de Recherche CNRS, Thalès

Rethinking biologically inspired learning algorithms
towards better credit assignment for on-chip learning

—
Repenser les algorithmes d’apprentissage

inspirés de la biologie pour estimer les gradients par la
physique des systèmes neuromorphiques

présentée par

Maxence Ernoult
Thèse de doctorat de Physique dirigée par

Julie Grollier et Damien Querlioz

Présentée et soutenue publiquement 30/06/2020 devant le jury composé de:

Pr. Pierre Bessière Examinateur
Pr. Laurent Daudet Examinateur
Pr. Julie Grollier Directrice de thèse
Dr. Timothée Masquelier Rapporteur
Dr. Teodora Petrisor Examinatrice
Dr. Damien Querlioz Invité
Pr. Blake Richards Rapporteur

À mes parents

Remerciements

Je tiens en tout premier lieu à remercier mes directeurs de thèse Damien Querlioz et Julie
Grollier de m’avoir accepté de me recruter sur un domaine de compétences qui n’était pas
le mien initialement. Merci Damien pour ton suivi technique extrêmement rigoureux et
ton engagement quasiment paternel auprès de ton laboratoire, pendant tes WEs, tard le
soir, ou bien entre deux avions. Merci infiniment Julie de m’avoir poussé à travailler avec
bienveillance sur ce merveilleux sujet de recherche qu’est Equilibrium Propagation. Ton
approche transverse et courageuse du calcul neuromorphique me donne à croire, plus que
n’importe quelle autre dans la littérature actuelle, qu’elle est celle qui a le plus de chances
d’aboutir à des sytèmes qui passent à l’échelle pour l’apprentissage sur puce. Enfin, merci à
vous deux de m’avoir soutenu à fond dans ma collaboration si épanouissante avec Benjamin
Scellier.

Je voudrais exprimer ma profonde gratitude à mon ami et collègue Benjamin Scellier,
co-inventeur génial de Equilibrium Propagation avec Yoshua Bengio, grâce à qui ma thèse
a connu un incroyable tournant. Tu n’imagines pas combien je te suis reconnaissant de
m’avoir aussi simplement proposé de travailler avec toi lorsque nous nous sommes rencon-
trés à Hanovre en décembre 2018 — conférence dont j’ai découvert par hasard l’existence
au détour d’un couloir de l’UMΦ. Merci de m’avoir accordé ta confiance, ta gentillesse et
ton soutien si précieux à 8 fuseaux horaires de moi pendant une grande partie de notre col-
laboration. Travailler avec toi est un immense plaisir dont j’ai énormément appris et que
j’espère poursuivre aussi longtemps que possible. Si aujourd’hui je fais le choix de poursuivre
la recherche, c’est en immense partie grâce à toi.

Je tiens également à remercier Timothée Masquelier et Blake Richards d’avoir accepté
de rapporter ma thèse. Vos questions pertinentes et votre analyse détaillée ont clairement
témoigné de l’intérêt que vous y avez accordé. Je remercie également les autres membres de
mon jury Teodora Petrisor, Pierre Bessière, Laurent Daudet, pour avoir accepté d’évaluer
mon travail et pour l’attention que vous y avez portée.

Je voudrais également exprimer ma gratitude à Yoshua Bengio pour le soutien qu’il a
apporté aux travaux que j’ai entrepris avec Benjamin, ainsi que pour m’avoir accueilli au
Mila en décembre 2019 et intégré à un projet de recherche aux côtés de Blake Richards et de
Damjan Kalajdzievski.

Ma thèse n’aurait pas été aussi agréable et épanouissante sans tous les autres membres
du C2N et de l’UMΦ.

Du côté du C2N, je voudrais remercier en premier lieu Liza Herrera Diez avec qui j’ai
partagé mon bureau pendant la première moitié de ma thèse. Merci pour ta gentillesse, ton
soutien et ton écoute si importants pendant les moments difficiles, ainsi que pour les soirées
plus légères à base de Lindy Hop et de pizza avec Aloyse !
J’en arrive à mes très (très) chers camarades de bureau qui ont du supporter mes brimades
et mes éclats de rire intempestifs au quotidien. Un immense merci à Tifenn Hirtzlin, mon
frère de thèse si j’ose dire, qui m’aura accompagné au C2N du début à la fin. Un très grand
merci à mon autre frère de thèse, Axel Laborieux avec qui j’ai eu l’immense bonheur de
pouvoir travailler sur les questions théoriques liées à l’apprentissage continu dans les réseaux
binaires ainsi que sur le passage à l’échelle d’Equilibrium Propagation — nous ne sommes
pas encore arrivés au bout de tout ce qu’on peut faire ! Je veux également remercier Kamel
Eddine Harabi pour sa bonté de coeur et le regard fraternel qu’il porte sur les personnes
qui l’entourent au sein du laboratoire. Merci à Mamour Sall pour sa bonne humeur et sa
gentillesse permanente malgré son Paris-Caen aller-retour quotidien pendant plus d’un an et
demi (..!) : Spin-Ion sont chanceux de t’avoir parmi eux ! Merci à tous les quatre pour les
parties de baby-foot enflammées, moments indispensables de détente et de soutien mutuel.
Malgré son départ inopiné vers les contrées obscures du bitcoin photonique disruptif, je veux
sincèrement remercier Bogdan Penkovskyi pour avoir modernisé nos techniques de recherche,
notamment en nous incitant à nous mettre à PyTorch et à GitHub. Je suis également re-
connaissant envers Damir Vodenicarevic, Christopher Bennett et Adrien Vincent que j’ai eu
la chance de connaître sur la fin de leurs thèses de doctorat pour les échanges extrêmement
intéressants que nous avons pu avoir ensemble. Merci Damir de m’avoir appris les bases de
Linux et de l’écriture de scripts en shell, me permettant ainsi de pouvoir travailler efficace-
ment dès le début de ma thèse ! Je veux aussi remercier Atreya Majumdar et Xing Chen
pour leur implication joyeuse au sein du groupe sur les derniers mois de ma thèse. Enfin,
j’adresse toute ma sympathie à Dafiné Ravelosona, Philippe Dollfus et Laurie Calvet pour
nos interactions quotidiennes.
Je voudrais également chaleureusement remercier Alain Péan et Christophe Chassat pour
leur constante disponibilité pour la logistique informatique absolument indispensable pour la
bonne tenue de nos recherches. Merci à Lydia Andalon, Carole Bonnot, Laurence Sidibé et
Bernadette Laborde pour la grande qualité de leur accompagnement administratif tout au
long de ma thèse.

Du côté de l’UMΦ, je voudrais remercier l’ensemble de l’équipe de m’avoir nourri en divers
pots de départs ou thèses puisque ce n’est qu’à ces moments précis que je me rendais au labo
— corroborant ainsi une théorie du complot longuement ourdie par Florian Godel et Bruno
Dlubak ∗. Plus sérieusement, un immense merci à mes camarades de bureau David Perconte
(pour son inimitable sens de l’humour), Mafalda Jotta Garcia (pour son écoute et nos séances

∗"Ah t’es là ? Y a un pot aujourd’hui ?"

de natation), Salvatore Mesoraca (for your unfettered support∗) et James Boust (lors de son
bref, mais heureux, passage en stage).
Je veux exprimer ma grande reconnaissance à toute l’équipe neuromorphique de Julie : Er-
wann Martin, Jérémie Laydevant, Shuai Li (a.k.a. Jack), Alice Mizrahi, Danijela Markovic,
Dédalo Sanz Hernandez, Nathan Leroux, Mathieu Riou, Teodora Petrisor, André Chanth-
bouala, Juan Trastoy Quintela, Marie Drouhin. J’ai tellement hâte de voir évoluer votre
recherche les mois et les années qui viennent : vous participez aux côtés de Julie à révolu-
tionner notre domaine et c’est une chance immense, et pour Julie et pour vous. En partic-
ulier, un très grand merci à Erwann et Jérémie avec qui j’ai eu le bonheur de travailler sur
l’implémentation matérielle de Equilibrium Propagation. Un petit mot spécial pour Mathieu
qui m’a convaincu de venir en thèse avec Julie; merci Mathious par ailleurs pour tous les
moments très drôles passés en compagnie de ton acolyte de toujours Philippe Talatchian.
Merci Phillou pour ton soutien et pour m’avoir convaincu d’acheter une tour de compétition
avec un super GPU rue Montgallet.
Je tiens à exprimer ma reconnaissance à l’ensemble des étudiants et des chercheurs de l’UMΦ
qui ont contribué à rendre mon quotidien heureux : Florian Godel, Bruno Dlubak, Hugo
Merbouche, Lucile Soumah, Faycal Bouamrane, Denis Crété, Cécile Carrétéro, Sophie Collin,
Eliana Recoba Pawlowski, Marie-Blandine Martin, Laurette-Apolline Jerro, Benoit Quinard,
Nicolas Reyren, Steffen Wittrock et Victor Zatko. Je voudrais remercier Frédéric Nguyen Van
Dau et Frédéric Petroff pour l’ambiance chaleureuse qu’ils ont entretenu au sein de l’UMΦ
sous leur direction. Enfin merci à Anne Dussart et Nathalie Lesauvage pour leur grande
gentillesse et la qualité de leur suivi administratif tout au long de ma thèse.

Je veux exprimer ma gratitude à tous les enseignants qui m’ont donné le goût de la rigueur
et des sciences, et l’envie de faire de la recherche : François Guinard et Christelle Dano au
lycée, Bruno Morel et Michel Volcker en prépa, Jean Dalibard, Denis Bernard, Antoine
Broaweys, Roland Lehoucq et Henri-Jean Drouhin à l’X. Je remercie tout particulièrement
Henri-Jean de m’avoir donné l’opportunité de réaliser mon stage de M1 à Harvard (merci à
Federico Capasso de m’y avoir accueilli) puisque c’est cette expériene de recherche qui m’a
définitivement conforté dans l’idée de faire une thèse.

Je voudrais maintenant remercier les personnes extérieures au labo qui m’ont été absol-
ument indispensables pour m’amener à faire une thèse puis la mener jusqu’au bout. Un
immense merci en premier lieu à mes merveilleux amis de Ginette pour m’avoir constamment
et infailliblement soutenu à travers les épreuves depuis 11 ans maintenant: Quentin (pour
ton infatigable fidélité et pour l’élévation intellectuelle sans égale que tu apportes aux débats
politiques à table), Sophie Marbach (pour tes gâteaux et tes roulés de knackis servis rue
de la Huchette), Romain (pour ton éternelle chaleur paternelle), Léiou (pour ton sourire so-
laire), Billou & Mathou (pour les délicieuses soirées à Alesia), Amaury (parce que tu transes
absolument tout), Sylvain (pour m’avoir accompagné à Taizé en juin 2019 et pour tout le
reste), Sophie Gros (pour toutes les soirées raclette organisées chez vous), Mathieu (pour
supporter Quentin au quotidien) et Florian Le Roux (reviens en France b****l). Egalement

∗"Maxence, you’re STUPID!"

de Ginette, un grand merci à Yann Hicke, Alexandre Krajenbrink, Maxime Déporte, Pierre
Laurent, Victor Cluzel, Sébastien Mannai et Luc Lambert pour leur amitié toutes ces an-
nées passées. Je remercie également mes chers amis de l’X : Florian Feppon, Camille Gillot,
Grégoire Dequidt, Benjamin Charbaut, Nicole Lindsay, Frédérique Robin, Ruben Zakine,
Pierre-Philippe Crépin, Guillaume Magnien et Sébastien Demortain. Un petit mot en partic-
ulier pour mon cher ami Florian qui m’a accompagné à la piscine plusieurs midis par semaine
pendant toute la thèse et dont l’immense talent scientifique n’a d’égale que sa gentillesse et
son humilité absolument exemplaire. Un grand merci à mes deux camarades de Cambridge
Antoine Chevenet, Adam Foster, Anika Krause, Lea Volke et Pim de Haan pour leur soutien
malgré la distance géographique. Enfin je remercie également Guillaume Aoust, Andrés Rit-
ter, Blanche Magarinos, Arthur Surzur, Thierry de Fougerolles, Garance de Turenne, Sophie
Bardet et Victor David pour leur fidélité amicale pendant toute la thèse.

Un immense merci à ma Constance pour son merveilleux soutien pendant les derniers
mètres de la thèse qui n’auraient certainement pas été aussi productifs autrement, tout par-
ticulièrement dans le contexte de la crise sanitaire. Enfin merci à mes parents et ma soeur
qui m’ont absolument tout donné, en respectant et en accompagnant tous mes choix avec
amour, et sans qui je ne serais jamais parvenu à être là où je suis aujourd’hui.

Main table of contents

Thesis Summary (french) 1

Introduction 7

I Deep learning, neuromorphic computing and on-chip learning 9

1 What is "learning" in neural networks? 10
1.1 Artificial neural networks: from unheard to overhyped 10
1.2 Learning in neural networks . 15
1.3 The cost of learning on conventional computers 24

2 An opportunity for neuromorphic engineering 28
2.1 A brief history of neuromorphic engineering 28
2.2 The memristor as a promising building block for on-chip learning 30
2.3 Bringing memory and computation the closest: crossbars 31

3 Challenges of on-chip learning 35
3.1 On and off-chip learning, analog and digital memories 35
3.2 Device programming . 36
3.3 Hardware-friendly learning rules . 38

4 Towards better credit assignment for on-chip learning 43
4.1 What is credit assignment? . 43
4.2 Hopfield Networks & Contrastive Hebbian Learning 44
4.3 Biologically plausible credit assignment . 47
4.4 Main results of this thesis . 52

II Restricted Boltzmann Machines with memristors 54

Summary 55

Introduction 56

1 Background 58
1.1 Restricted Boltzmann Machines . 58
1.2 Memristor model used and associated algorithm 60

2 Results 64
2.1 Resilience of RBM-based architectures trained with constant programming

pulse width . 64
2.2 Solutions mitigating device imperfections on the Discriminative RBM 68

Discussion 77

III Introduction to Equilibrium Propagation 80

Summary 81

1 Equilibrium Propagation 82
1.1 A heuristic view . 82
1.2 Theory . 83
1.3 Algorithm . 85
1.4 Neural network model trained by Equilibrium Propagation 87
1.5 Example . 87
1.6 Intuitions about Equilibrium Propagation . 88

2 Why is Equilibrium Propagation hardware-friendly? 96
2.1 Link between Equilibrium Propagation and Spike Timing Dependent Plasticity 96
2.2 Generalization of Equilibrium Propagation to Vector Field dynamics 98
2.3 Equivalence between Equilibrium Propagation and Recurrent Backpropagation 99

IV Updates of Equilibrium Propagation Match gradients of BPTT in
an RNN with a Static Input 101

Summary 102

Introduction 103

1 Background 106
1.1 Convergent RNNs With Static Input . 106
1.2 Backpropagation Through Time (BPTT) . 107

2 A discrete-time formulation of Equilibrium Propagation 109
2.1 Algorithm . 109
2.2 Difference between the primitive function Φ and the energy function E 110

3 Forward-Time Dynamics of EP Compute Backward-Time Gradients of
BPTT 113
3.1 Backpropagation Through Time error processes 114
3.2 Equilbrium Propagation error processes . 114
3.3 Main result . 116

4 Energy-based and Prototypical settings 118
4.1 Definition . 118
4.2 Demonstrating the property of Gradient Descending Updates (GDU) 119
4.3 Real-time RNNs in the energy-based setting 120
4.4 Discrete-time RNNs in the prototypical setting 127

5 Experiments 142
5.1 Effect of depth and approximation . 142

6 Discussion 144

V Equilibrium Propagation with Continual Weight Updates 146

Summary 147

Introduction 148

1 Equilibrium Propagation with Continual Weight Updates (C-EP) 150
1.1 From EP to C-EP: An intuition behind continual weight updates 151
1.2 Description of the C-EP algorithm . 151

2 Gradient Descending Dynamics (GDD) property 153
2.1 Equivalence between BPTT and RBP . 155
2.2 Equivalence between EP and RBP . 156
2.3 Equivalence between EP and C-EP . 157
2.4 Main result . 159
2.5 Extending the GDD property: Continual Vector Field Equilibrium Propaga-

tion (C-VF) . 160

3 Models with symmetric and asymmetric weights 162
3.1 Definition . 162
3.2 Models with symmetric weights trained by C-EP 164
3.3 Models with asymmetric weights trained by C-VF 169

4 Training experiments 173
4.1 C-EP training experiments . 173
4.2 Why C-EP does not perform as well as standard EP? 174
4.3 Continual Vector Field (C-VF) training experiments 174

Discussion 178

VI Conclusion and perspectives 180

Summary of the results 181

Other research projects & collaborations 184
mEqProp: Equilibrium Propagation with memristors in spiking neural networks . 184
Equilibrium Propagation with physical artificial neurons 185
Scaling Equilibrium Propagation to deeper architectures 185
Equilibrium Propagation on sequential data . 186
Equilibrium Propagation without the equilibrium requirement 186

Some thoughts longer-term directions of research 188

List of publications 192

References 195

VII Appendices 206

1 Appendix of part II 207
1.1 Memristor model used . 207
1.2 Simulations . 208

2 Appendix of part IV 210
2.1 Difference between L∗ and L . 210
2.2 Index Shift in the definition of ∆EP

θ and ∇BPTT
θ 211

2.3 Experiments: demonstrating the GDU property 212
2.4 Training experiments . 214

3 Appendix of part V 221
3.1 What ‘Gradients’ are the Gradients of RBP? 221
3.2 Experiments: demonstrating the GDD property 223
3.3 Illustrating the equivalence of the four algorithms on an analytically tractable

model . 223
3.4 Experimental Details . 225

Thesis Abstract 233

Detailed table of contents

Thesis Summary (french) 1

Introduction 7

I Deep learning, neuromorphic computing and on-chip learning 9

1 What is "learning" in neural networks? 10
1.1 Artificial neural networks: from unheard to overhyped 10
1.2 Learning in neural networks . 15

1.2.1 Definition of the problem . 15
1.2.2 Backpropagation in a feedforward neural network 17
1.2.3 Backpropagation through time in a recurrent neural network 21

1.3 The cost of learning on conventional computers 24
1.3.1 The end of Moore’s law . 25
1.3.2 The von Neumann bottleneck . 26

2 An opportunity for neuromorphic engineering 28
2.1 A brief history of neuromorphic engineering 28
2.2 The memristor as a promising building block for on-chip learning 30
2.3 Bringing memory and computation the closest: crossbars 31

2.3.1 Kirchhoff laws for inference . 31
2.3.2 A compelling case for memristor-based learning 33

3 Challenges of on-chip learning 35
3.1 On and off-chip learning, analog and digital memories 35
3.2 Device programming . 36
3.3 Hardware-friendly learning rules . 38

3.3.1 Backpropagation? . 38
3.3.2 Spike Timing Dependent Plasticity (STDP) 40

4 Towards better credit assignment for on-chip learning 43
4.1 What is credit assignment? . 43
4.2 Hopfield Networks & Contrastive Hebbian Learning 44

4.2.1 A brief history . 44
4.2.2 Hardware implementations . 47

4.3 Biologically plausible credit assignment . 47
4.3.1 Reinforcement-based credit assignment 47
4.3.2 Credit assignment with generative models 48
4.3.3 Credit assignment without weight transport 49
4.3.4 Assigning credit to apical dendritic compartments 49
4.3.5 Temporal credit assignment . 51

4.4 Main results of this thesis . 52

II Restricted Boltzmann Machines with memristors 54

Summary 55

Introduction 56

1 Background 58
1.1 Restricted Boltzmann Machines . 58
1.2 Memristor model used and associated algorithm 60

2 Results 64
2.1 Resilience of RBM-based architectures trained with constant programming

pulse width . 64
2.2 Solutions mitigating device imperfections on the Discriminative RBM 68

2.2.1 Mitigating device non-linearity by reducing the variance of the gradient
sign estimate . 68

2.2.2 Facilitate pulse width tuning: Resilient Propagation (RProp) 70
2.2.3 Resilience to cycle-to-cycle variability 73
2.2.4 Resilience to device-to-device variability 74

Discussion 77

III Introduction to Equilibrium Propagation 80

Summary 81

1 Equilibrium Propagation 82
1.1 A heuristic view . 82
1.2 Theory . 83
1.3 Algorithm . 85
1.4 Neural network model trained by Equilibrium Propagation 87
1.5 Example . 87

1.6 Intuitions about Equilibrium Propagation . 88
1.6.1 Going deeper with Boltzmann Machines? 88
1.6.2 Neural computation: going down the energy 90
1.6.3 Key ingredients of Equilibrium Propagation 91

2 Why is Equilibrium Propagation hardware-friendly? 96
2.1 Link between Equilibrium Propagation and Spike Timing Dependent Plasticity 96
2.2 Generalization of Equilibrium Propagation to Vector Field dynamics 98

2.2.1 Theory . 98
2.2.2 Example . 99

2.3 Equivalence between Equilibrium Propagation and Recurrent Backpropagation 99

IV Updates of Equilibrium Propagation Match gradients of BPTT in
an RNN with a Static Input 101

Summary 102

Introduction 103

1 Background 106
1.1 Convergent RNNs With Static Input . 106
1.2 Backpropagation Through Time (BPTT) . 107

2 A discrete-time formulation of Equilibrium Propagation 109
2.1 Algorithm . 109
2.2 Difference between the primitive function Φ and the energy function E 110

3 Forward-Time Dynamics of EP Compute Backward-Time Gradients of
BPTT 113
3.1 Backpropagation Through Time error processes 114
3.2 Equilbrium Propagation error processes . 114
3.3 Main result . 116

4 Energy-based and Prototypical settings 118
4.1 Definition . 118
4.2 Demonstrating the property of Gradient Descending Updates (GDU) 119
4.3 Real-time RNNs in the energy-based setting 120

4.3.1 Toy model . 120
4.3.2 Fully connected architectures . 122

4.4 Discrete-time RNNs in the prototypical setting 127
4.4.1 Fully connected architecture . 127
4.4.2 Convolutional architecture . 132

5 Experiments 142
5.1 Effect of depth and approximation . 142

6 Discussion 144

V Equilibrium Propagation with Continual Weight Updates 146

Summary 147

Introduction 148

1 Equilibrium Propagation with Continual Weight Updates (C-EP) 150
1.1 From EP to C-EP: An intuition behind continual weight updates 151
1.2 Description of the C-EP algorithm . 151

2 Gradient Descending Dynamics (GDD) property 153
2.1 Equivalence between BPTT and RBP . 155
2.2 Equivalence between EP and RBP . 156
2.3 Equivalence between EP and C-EP . 157
2.4 Main result . 159
2.5 Extending the GDD property: Continual Vector Field Equilibrium Propaga-

tion (C-VF) . 160

3 Models with symmetric and asymmetric weights 162
3.1 Definition . 162

3.1.1 Models under consideration . 164
3.1.2 Figures for the GDD experiments . 164

3.2 Models with symmetric weights trained by C-EP 164
3.2.1 Real-time (energy-based) model . 164
3.2.2 Protypical model . 166

3.3 Models with asymmetric weights trained by C-VF 169
3.3.1 Real-time model . 169
3.3.2 Prototypical model . 171

4 Training experiments 173
4.1 C-EP training experiments . 173
4.2 Why C-EP does not perform as well as standard EP? 174
4.3 Continual Vector Field (C-VF) training experiments 174

Discussion 178

VI Conclusion and perspectives 180

Summary of the results 181

Other research projects & collaborations 184
mEqProp: Equilibrium Propagation with memristors in spiking neural networks . 184
Equilibrium Propagation with physical artificial neurons 185
Scaling Equilibrium Propagation to deeper architectures 185
Equilibrium Propagation on sequential data . 186
Equilibrium Propagation without the equilibrium requirement 186

Some thoughts longer-term directions of research 188

List of publications 192

References 195

VII Appendices 206

1 Appendix of part II 207
1.1 Memristor model used . 207
1.2 Simulations . 208

2 Appendix of part IV 210
2.1 Difference between L∗ and L . 210
2.2 Index Shift in the definition of ∆EP

θ and ∇BPTT
θ 211

Index Shift . 211
Missing Weight Gradient ∇BPTT

θ (0) and Weight Update ∆EP
θ (0) . . . 212

2.3 Experiments: demonstrating the GDU property 212
2.3.1 Hyperparameters . 212
2.3.2 Definition of the Relative Mean Squared Error (RMSE) 213
2.3.3 Why are the ∇BPTT

s and ∆EP
s saw-teeth shaped in the prototypical

setting ? . 213
2.4 Training experiments . 214

2.4.1 Training Curves . 218

3 Appendix of part V 221
3.1 What ‘Gradients’ are the Gradients of RBP? 221
3.2 Experiments: demonstrating the GDD property 223
3.3 Illustrating the equivalence of the four algorithms on an analytically tractable

model . 223
3.4 Experimental Details . 225

3.4.1 Training experiments (Table 4.1) . 225

Thesis Abstract 233

Résumé de la thèse

Motivation de la thèse

Autour de l’année 2012, l’apprentissage profond (ou “deep learning”) s’est imposé à l’ensemble
de la société en apportant des solutions à beaucoup de problèmes tels que la classification
et la génération automatique d’images et de discours, le traitement automatique du langage
naturel, le raisonnement et les jeux vidéos. La persévérance des pionniers du domaine — Ge-
offrey Hinton, Yoshua Bengio et Yann Lecun — a été récompensée par le prix Turing 2018.
Historiquement, l’apprentissage profond est le fruit de nombreuses idées provenant des neuro-
sciences computationnelles, des mathématiques et de l’optimisation. Les réseaux de neurones
artificiels ont réellement connu leur essor lorsque les réseaux de neurones dits “profonds” —
avec beaucoup de couches modélisant l’organisation hiérarchique des aires du cerveau — ont
pu être entraînés sur de grandes bases de données grâce à l’utilisation des cartes graphiques
(“Graphical Processing Units” ou “GPUs”) afin de réaliser les calculs requis de façon très
efficace.

Aller au delà des capacités des GPUs pour l’entraînement des réseaux de neurones profonds
est la motivation principale de cette thèse de doctorat. En effet, les ordinateurs tels que nous
les connaissons aujourd’hui sont confrontés à deux limitations technologiques fondamentales.
D’une part, les progrès réalisés sur les architectures d’ordinateurs sur les dernières décennies
s’appuient sur le paradigme de Von Neumann selon lequel la mémoire et le processeur sont
physiquement séparés, entraînant ainsi une très forte consommation énergétique pour trans-
porter les données entre les deux. D’autre part, la loi de Moore prédisant une diminution
exponentielle de la taille des transistors a atteint une limite physique au delà de laquelle l’état
physique du transistor ne peut plus être fiable de façon déterministe.

Une approche possible pour surmonter ces limitations technologiques est le calcul neu-
romorphique, proposée pour la première fois par Carver Mead et consistant à repenser
l’ordinateur à partir de zéro en imitant les caractéristiques du cerveau. Bien que la recherche
en calcul neuromorphique ait longtemps été conduite sur des technologies CMOS, il y a
eu ces dernières années un attrait grandissant pour les technologies analogiques de taille

— 1 —

nanométrique pour réaliser des neurones et des synapses artificielles. En particulier les mé-
moires résistives ou memristors, qui peuvent stocker des valeurs de poids synaptiques sous
forme de d’états de conductance, sont des candidats extrêmement prometteurs pour réaliser
des synapses artificielles. Pour entraîner des réseaux de neurones physiques composés de
memristors, une approche possible est de déterminer la valeur numérique des conductances
des memristors en dehors de la puce à l’aide de simulations menées sur un ordinateur, puis
d’importer physiquement ces valeurs sur les memristors à l’aide de protocoles de programma-
tion précis et élaborés. Une autre approche excitante pour entraîner des réseaux de neurones
physiques composés de memristors serait de réaliser l’entraînement directement sur la puce :
un tel dispositif pourrait réaliser tout à la fois l’inférence, le calcul du gradient et la mise à
jour correspondante des conductance des memristors.

Cependant, l’apprentissage sur puce est extrêmement difficile pour deux raisons. Tout
d’abord, le calcul du gradient de la fonction objectif d’apprentissage appelle à première vue à
l’utilisation de l’algorithme de rétropropagation du gradient, plus connu sous le nom de “back-
propagation”. Cet algorithme d’apprentissage est le plus utilisé pour entraîner les réseaux
de neurones profonds. Néanmoins, la loi d’apprentissage prescrite par l’algorithme de back-
propagation pour une synapse donnée n’est pas spatialement locale : l’incrément de poids
synaptique à appliquer ne dépend pas seulement des deux neurones adjacents à la synapse
considérée, rendant ainsi difficile son implémentation sur une puce neuromorphique. Les ap-
proches existantes sont parvenues à implémenter des lois d’apprentissage Hebbiennes telles
que la plasticité fonction du temps d’occurrence des impulsions (plus couramment connue
sous sa version anglaise comme “Spike Timing Dependent Plasticity”, ou “STDP”) en util-
isant des memristors. En dépit de l’élégance de cette approche, ce type de loi d’apprentissage
ne passe pas à l’échelle sur des réseaux de neurones plus profonds pour traiter des tâches
plus compliquées, très certainement en raison de leur manque de garanties théoriques quant
à l’optimisation d’une métrique d’apprentissage. Le second défi de l’apprentissage sur puce
est l’incrément de condutance à réaliser étant donnée une valeur de gradient. Les memristors
présentent de nombreuses imperfections : ils sont sujets à la non-linéarité, à une gamme de
conductance restreinte, à une variabilité intrinsèque et leurs propriétés peuvent beaucoup
varier d’un composant à un autre. Ces irrégularités physiques entravent considérablement
l’apprentissage sur puce.

Dans cette thèse, nous proposons de démêler ces deux aspects de l’apprentissage sur puce —
le calcul du gradient et l’incrément de conductance — sur deux algorithmes d’apprentissage
biologiquement inspirés. D’une part, nous étudions l’effet des imperfections des memris-
tors sur l’apprentissage des Machines de Boltzmann Restreintes, et proposons des stratégies
de programmation adaptées. D’autre part, nous développons Equilibrium Propagation, un
équivalent de l’algorithme de backpropagation dont la règle d’apprentissage, calculée par la
physique du système lui-même, est spatialement locale et mathématiquement fondée. Plus
précisément, les contributions de cette thèse sont les suivantes:

— 2 —

• Dans la partie II, nous étudions empiriquement l’utilisation de mémoires résistives dans
différentes variantes de Machines de Boltzmann Restreintes. Nous proposons différentes
stratégies de programmation pour atténuer l’effet de la non-linéarité, de la variabil-
ité d’un cycle de programmation à un autre et celle d’un composant à un autres sur
l’apprentissage. Nous proposons également une technique qui évite de devoir ajuster
précisément le temps de programmation des composants.

• Dans la partie IV, nous proposons une version en temps discret d’Equilibrium Propa-
gation, et nous montrons qu’elle est équivalente à l’algorithme de rétropropagation du
gradient à travers le temps — plus couramment connu comme Backpropagation Through
Time (BPTT) — sur des réseaux de neurones récurrents convergents qui recoivent une
entrée statique et atteignent un état stationaire. Cette version de l’Equilibrium Propa-
gation permet d’accélérer l’entraînement d’un facteur 5 à 8 en comparaison à sa version
originale ainsi que d’entraîner une architecture convolutionnelle pour la première fois.
Nous obtenons ainsi la meilleure performance jamais réalisée sur la reconnaissance de
chiffres manuscrits (la base de données MNIST) dans la littérature existante sur Equi-
librium Propagation.

• Enfin dans la partie V, nous proposons une version de Equilibrium Propagation plus
adaptée à une implémentation neuromorphique, que nous appelons Continual Equilib-
rium Propagation (C-EP) où les synapses et les neurones évoluent dynamiquement au
cours de la seconde phase de l’algorithme. De cette façon, la loi d’apprentissage de
l’Equilibrium Propagation devient locale en temps. Nous montrons que dans la limite
asymptotiquement lente de changement de poids synaptiques, C-EP est équivalent à
BPTT. Nous étendons C-EP à une situation plus biologiquement réaliste où les connec-
tions synaptiques sont asymétriques. Enfin, nous montrons empiriquement que plus un
modèle satisfait le théorème d’équivalence entre C-EP et BPTT avant l’apprentissage,
meilleure est la performance de ce modèle après entraînement par C-EP. Ces résul-
tats pourraient servir de guide pour l’implémentation neuromorphique de Equilibrium
Propagation.

Résumé de la partie II

Dans cette partie, nous étudions la composante de l’apprentissage sur puce qui concerne
l’incrément de conductance dans plusieurs variantes de Machines de Boltzmann Restreintes.

Avec des valeurs typiques d’imperfections de composants pour la non-linéarité, la variabil-
ité d’un cycle de programmation à un autre et d’un composant à un autre, nous montrons que
la Machine de Boltzmann Restreinte Discriminative (“Discriminative RBM” en anglais) est
la meilleure architecture candidate en termes de performance à l’entraînement sur la recon-
naissance de chiffres manuscrits (la base de données MNIST). Notamment, nos simulations

— 3 —

mettent en évidence comment les imperfections agissent sur le temps de programmation op-
timal des composants : la non-linéarité sélectionne des temps de programmation courts et à
l’inverse, la variabilité d’un cycle de programmation à un autre des temps de programmation
plus longs. De façon importante, une pile de Machine de Boltzmann Restreintes constituées
de memristors, lorsque chacune des Machines de Boltzmann Restreintes sont apprises séparé-
ment et successivement (“greedy learning” en anglais), ne bénéficie pas de la profondeur du
réseau de neurones résultant pendant l’apprentissage. Au contraire, les effets des imperfec-
tions des composants se cumulent lorsque les caractéristiques extraites par une Machine de
Boltzmann Restreinte sont transmises à la suivante dans la pile. Cette limitation vient du
faire de ne pas transmettre les signaux d’erreur d’une Machine de Boltzmann Restreinte à
une autre en utilisant l’algorithme de backpropagation, afin de préserver la localité de la loi
d’apprentissage employée.

Nous montrons également que moyenner sur différents exemples et différentes réalisa-
tions stochastiques la loi d’apprentissage fournie par la technique de Contrastive Divergence
améliore considérablement la résilience des Machines de Boltzmann Restreintes Discrimina-
tives vis à vis des imperfections des composants. Puisque cette technique sélectionne des
temps de programmation plus courts, elle atténue à la fois les effets de la non-linéarité et
ceux de variabilité. Nous proposons également l’utilisation de l’algorithme de “Resilient
Propagation” (RProp) afin de faciliter l’ajustement du temps de programmation des com-
posants. Nous montrons que RProp n’affecte pas la résilience des Machines de Boltzmann
Restreintes Discriminatives aux défauts des composants, obéit à une logique très simple et
permet d’élargir considérablement la gamme de temps de programmation des composants
jusqu’à deux ordres de grandeur.

En conclusion, cette étude propose des stratégies pour faciliter l’implémentation neuro-
morphique de Machines de Boltzmann Restreintes pour l’apprentissage sur puce avec des
composants memristifs réalistes, proposant ainsi de résoudre l’un des défis principaux de
l’apprentissage dans les dispositifs embarqués.

Résumé de la partie IV

Dans cette partie, nous nous concentrons sur la composante de l’apprentissage qui concerne
le calcul du gradient de la fonction objectif de l’apprentissage avec Equilibrium Propagation.

Nous proposons une version en temps discret de cet algorithme : dans ce contexte, la
version originale de l’algorithme en temps continu peut être vue comme un choix particulier
de fonction primitive Φ pour la dynamique du système. Nous montrons que notre version

— 4 —

en temps discret de Equilibrium Propagation est équivalente à l’algorithme de Backpropa-
gation Through Time (BPTT) si le Jacobien de la dynamique est symmétrique (ce qui est
équivalent à l’existence d’une fonction primitive pour la dynamique) et l’equilibre est atteint
à la fin de la première phase. Plus précisément, les incréments synaptiques calculés au cours
du temps par la dynamique du système pendant la deuxième phase de Equilibrium Propa-
gation sont égaux, à chaque instant, aux gradients de la fonction objectif de l’apprentissage
par rapport aux poids synaptiques calculés par BPTT en remontant artificiellement dans le
temps de la première phase. Nous appelons cette propriété “Gradient Descending Updates”
(GDU) et nous la vérifions numériquement sur deux classes de modèles: les modèles à base
d’énergie et les modèles prototypiques. Après avoir défini théoriquement les architectures
entièrement connectées pour ces deux classes de modèles, nous montrons que la propriété
GDU est de façon générale très bien satisfaite numériquement. De façon plus quantitative,
en utilisant une métrique d’erreur quadratique moyenne relative (“Relative Mean Squared
Error” ou “RelMSE” en anglais), nous montrons que plus le réseau est profond, plus la
RelMSE est grande, suggérant ainsi que l’entraînement d’architectures profondes par Equi-
librium Propagation est difficile. Enfin, nous proposons un modèle convolutionnel décrit dans
le cadre prototypique préalablement introduit et entraînable par Equilibrium Propagation.
Nous montrons que cette architecture satisfait également bien la propriété GDU and réalise la
meilleure performance sur MNIST jamais rapportée dans la littérature de Equilibrium Propa-
gation (∼ 1% d’erreur sur l’ensemble de test). Nous montrons que l’utilisation de notre cadre
prototypique permet d’accélérer l’entraînement par Equilibrium Propagation d’un facteur 5
à 8 comparé au cadre à base d’énergie.

Ce travail facilite la conception de modèles de réseaux de neurones entraînable par Equi-
librium Propagation, tant par l’usage pratique du Théorème 4 que par l’accélération à
l’entraînement apporté par le cadre prototypique, un aspect intéressant pour l’implémentation
de Equilibrium Propagation sur des dispositifs neuromorphiques. Ces résultats rapproche
Equilibrium Propagation de l’apprentissage automatique conventionnel et pourraient aider à
faire passer Equilibrium Propagation à l’échelle pour résoudre des problèmes plus compliqués.

Résumé de la partie V

Enfin dans cette partie, nous étendons l’étude de la partie IV à une situation plus proche
d’une implémentation neuromorphique où la loi d’apprentissage prescrite par Equilibrium
Propagation devient locale en temps.

Dans cette nouvelle version d’Equilibrium Propagation que nous appelons Continual Equi-
librium Propagation (C-EP), les synapses évoluent dynamiquement en même temps que les
neurones pendant la deuxième phase de l’Equilibrium Propagation. Nous montrons que le
théorème précédemment introduit dans la partie IV peut être étendu à ce cadre : dans

— 5 —

la limite de changement synaptiques asymptotiquement lents, la propriété GDD (“Gradi-
ent Descending Dynamics”) est satisfaite (Theorem 10). Nous montrons que la propriété
GDD est satisfaite sur différents modèles et montrons les résultats d’entraînement par C-
EP d’un modèle prototypique avec des connexions synaptiques asymmétriques sur MNIST,
bénéficiant ainsi que l’accélération à l’entraînement évoquée dans la partie précédente. Nous
observons une légère dégradation de performance à l’entraînement comparé à la version orig-
inale de Equilibrium Propagation dont nous pouvons directement rendre compte : la vitesse
d’apprentissage (“learning rate” en anglais) doit être assez petit afin que la propriété GDD
soit assez suffisamment bien satisfaite, mais pas trop afin que la convergence ait lieu en
un nombre d’époques raisonnable. Nous étendons l’entraînement par C-EP à des réseaux
de neurones dont les connexions synaptiques sont asymmétriques et appelons cette version
de l’algorithme Continual Vector Field Equilibrium Propagation (C-VF). Nous montrons
que C-VF parvient à entraîner des réseaux de neurones avec des connexions synaptiques
asymmétriques sur MNIST. De plus nous montrons que, étant donné un modèle, “plus” le
théorème 10 est satisfait avant l’entraînement (en termes d’angle entre l’incrément de poids
synaptique total sur l’ensemble de la seconde phase de C-EP et le gradient négatif fourni par
BPTT), meilleure est la performance de ce modèle après entraînement par C-EP.

Ce travail rapproche Equilibrium Propagation des contraintes hardware et de la biologie
: C-VF peut être vu comme un équivalent, en fréquence, de la Spike Timing Dependent
Plasticity (STDP). De nouveau, Theorem 10 fournit ici une démarche qui peut aider le
déploiement d’Equilibrium Propagation sur des systèmes neuromorphiques.

— 6 —

Introduction

It is not until 2012 that the deep learning approach to artificial intelligence took upon the
whole society by producing solutions to many problems as image and speech classification
and generation, language processing and translation, reasoning and game playing. The pain-
stacking perseverance of the pioneers of this field - Geoffrey Hinton, Yoshua Bengio and
Yann Le Cun - has been rewarded by the 2018 Turing Prize. Historically, deep learning
is the result of long standing ideas coming from computational neurosciences, mathematics
and optimization. Artificial neural networks became significantly successful when "deep"
networks - with many layers, modelling hierarchical brain regions - could be trained on large
datasets thanks to the use of Graphical Computing Units (GPUs) to carry out the required
computations very efficiently.

Going beyond the capability of the GPUs for deep neural network training is the core moti-
vation of this PhD thesis. Today’s modern computer architectures face two limitations. First,
progress in computer architectures over the past decades has built upon the von Neumann
paradigm where memory and computation are physically separated, entailing tremendous
energy consumption costs to route data in between. Second, Moore’s law predicting ever
shrinking transistors has come to a physical limit beyond which the transistor state can no
longer be deterministically reliable.

One possible approach to overcome these limitations was ushered in by Carver Mead as
neuromorphic computing, which consists in rethinking the computer from scratch by mim-
icking brain features. Although neuromorphic computing research has long been conducted
for CMOS-based engines, there has been a growing move towards novel nanometric analog
substrates to emulate neurons and synapses. Among them, resistive memories or memris-
tors which can store a weight value as a conductance state are promising artificial synapse
candidates. For memristor-based hardware neural networks, one possible path for training is
to find the conductance values offline on software, and subsequently import these values onto
the memristor with precises conductance tuning protocols. A very appealing approach would
be on-chip learning: the chip could sustain inference, gradient computation and subsequent
conductance update altogether.

— 7 —

Nonetheless, on-chip learning is extremely challenging for two reasons. First, computing
the gradient value of an objective function, a problem often called credit assignment, would
call at first sight for the use of backpropagation, the most widely used learning algorithm for
deep neural networks. However, the learning rule prescribed by backpropagation for a given
synapse is not spatially local: the weight update to be performed does not solely depend
on the two adjacent neurons, therefore creating a bottleneck on a chip. Existing approaches
have successfully employed Hebbian event-based learning rule like Spike Timing Dependent
Plasticity (STDP) along with the use of memristive devices, but scale poorly to deeper archi-
tectures, possibly because of their lack of theoretical guarantees. The second challenge of on-
chip learning is the conductance update to be performed given a gradient value. Memristors
are very imperfect devices subject to non-linearity, finite conductance range, cycle-to-cycle
and device-to-device variability. These imperfections significantly hamper on-chip learning.

In this thesis, we propose to disentangle these two aspects of on-chip learning - gradient
computation and conductance update - on two different biologically inspired algorithms.
On the one hand, we study the effect of memristive device imperfections on the training
of Restricted Boltzmann Machines, and propose appropriate programming strategies. On
the other hand, we build upon Equilibrium Propagation, a hardware friendly counterpart of
backpropagation whose learning rule, computed by the physics of the system itself, is spatially
local. More precisely, the key contributions of this thesis are the following:

• We investigate empirically the use of resistive memories in different variants of Re-
stricted Boltzmann Machines. We propose programming strategies to alleviate the
effect of non-linearity, cycle-to-cycle and device-to-device variability on training and
remove the need to tune precisely the programming pulse width.

• We propose a discrete-time version of Equilibrium Propagation, which we show to
be equivalent to Backpropagation, or more precisely Backpropagation Through Time
(BPTT) in the context of convergent recurrent neural networks that receive a static
input and settle to a steady state. This version of Equilibrium Propagation enables
to speed up training simulations by a factor 5 to 8 compared to the original version,
and to train the first convolutional architecture, yielding the best training accuracy on
MNIST ever reported in the literature of the algorithm.

• We propose a hardware-friendly version of Equilibrium Propagation, which we call
Continual Equilibrium Propagation (C-EP), where the synapses and the neurons evolve
both dynamically throughout the second phase. In this way, the learning rule of Equi-
librium Propagation becomes local in time. We show that in the limit of slow synaptic
changes, C-EP is also equivalent to BPTT. We extend C-EP to the case where the con-
nections are asymmetric. Finally, we show empirically that the best a model satisfies
the theorem before training, the best the resulting training performance with C-EP.
These results can provide a guidance for the neuromorphic engineering of Equilibrium
Propagation.

— 8 —

Part I

Deep learning, neuromorphic
computing and on-chip learning

— 9 —

Chapter 1

What is "learning" in neural
networks?

The aim of this chapter is to introduce in historical order the elemental concepts and tech-
niques that paved the way towards modern artificial neural networks that are widely used
today. With these elements in hand, we will formally define supervised learning and introduce
backpropagation, the most popular learning algorithm used in deep neural networks. Finally,
we will highlight the limit of conventional computers with regards to learning deep neural
networks and therefore motivate the approach of neuromorphic computing.

1.1 Artificial neural networks: from unheard to overhyped

Artificial Intelligence had long been envisioned, back to 1950, when Turing suggested that
"what we want[ed] [was] a machine that can learn from experience" [1], introducing the very
notorious notion of Turing test whose goal is to distinguish, out of a conversation sample, a
machine from a human being. The first theoretical attempt to model a biological neuron dates
back to 1943 and was laid out by Walter Pitts and Warren McCulloch [2]. Since their model
directly takes inspiration from a biological neuron, the very first question we want to address
here is: what is a neuron? The following description does not aim to be holistic and rather
focuses on the most important features of a neuron to be taken into account computationally
speaking: a real neuron is a huge machinery, which relies on extremely complex biophysical
processes mediated by thousands of neurotransmitters!

This being said, the working logics of a single neuron can be depicted as follows. A neu-
ron is an electrically excitable cell that communicates through electrical spikes with other
cells through connections called synapses. A neuron may or may not transmit an electrical
stimulation to the surrounding neurons it is connected to based on the following principle.

— 10 —

I.1.1 — Artificial neural networks: from unheard to overhyped

First, a neuron receives each electrical input from other neurons through dendrites. Second,
a weighted sum of these electrical inputs is integrated within the soma, whose effect is to
increase the membrane potential of the neuron. More precisely, the membrane potential is
created by a difference of concentrations of ions Cl-, K+ and Na+ between the interior and
exterior of a biological membrane, thereby balancing at equilibrium the diffusive motion of
ions across the membrane. Chemical gates called ion channels selectively allow ions to pass
through the membrane and can be activated by neurotransmitters. Neurotransmitters that
activate Na+ ion channels will contribute to increase the membrane potential, thereby creat-
ing excitatory post-synaptic potentials (EPSPs) and conversely neurotransmitters activating
Cl- or K+ create inhibitory post-synaptic potentials (IPSPs) which contribute to decrease
the membrane potential. When ion channels of different types are simultaneously activated,
these effects cumulate.

This description is sufficient to understand the model of Pitts and McCulloch. Let us
denote {xk}k∈[1,N] input neurons and ŷ the output neuron under consideration. In their
model, input neurons can only take binary values: xk ∈ {0, 1}. Among the input neurons,
we assume there exists one inhibitor neuron denoted xi such that if it is activated (xi = 1),
the output neuron is inhibited (ŷ = 0). Based on cumulated binary inputs, the value of the
output neuron is also binary and defined as:

ŷ = σ

(
N∑
k=1

xk

)
=

1 if

N∑
k=1

xk > ν and xi = 0

0 otherwise,
(1.1)

where ν is the activation threshold of the neuron. Generally speaking, the function σ appear-
ing in Eq. (1.1) is called an activation function, as it decides whether the neuron is activated
or not given incoming stimuli. In their paper, McCulloch and Pitts show that their neuron
can emulate ’AND’/’OR’/’NOT’ logical gates if ν is chosen properly.

However, one aspect that the McCulloch-Pitts neuron does not model is how neurons are
connected to each other, and how strong should be such a connection, which calls for the
notion of a synapse. The weight of a synapse encodes its strength: it can be seen as the
conductivity of the synaptic cleft separating the axon of an input neuron and the dendrite
of an output neuron. In the context of deep learning, the terms "weight" and "synapse"
are often used equivalently. In the model we have just described, all connections between
inputs neurons xk and the output neuron ŷ are implicitly taken to be uniformly equal to 1.
Also, the logical functions the McCulloch-Pitts neuron can implement requires the adjustable
parameters of the model to be hand-coded rather than automatically adjusted, or "learnt",
from data: this aspect is crucial and will be further discussed when defining precisely the
notion of "learning" in our context of study. So the question raised here boils down to: how
should synaptic connections be modelled and how should they be changed given a stimuli

— 11 —

I.1.1 — Artificial neural networks: from unheard to overhyped

input? Donald Hebb was one of the first to suggest a famous heuristic about the way synaptic
weights should be changed based on stimuli patterns [3]: "When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased"; also rephrased by Karla Shatz [4]: "cells that fire together,
wire together". More explicitly, if we change the neuron response described by Eq. (1.1) into:

ŷ =
∑
i

wixi, (1.2)

where wi denotes the weight of the synapse connecting the input neuron xi to the output
neuron ŷ. Assuming the data set D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))} where x(k)

and y(k) are binary, Hebb’s rule prescribes to set the weight value of each synapse wk as:

wk = 1
M

M∑
m=1

x
(m)
k y(m). (1.3)

Instead, if the data samples of D are presented sequentially, the mth synapse update ∆wk
between two data samples reads:

∆wk = 1
M
x

(m)
k y(m). (1.4)

Eq. (1.4), which prescribes a synapse update between two data samples (or batch of samples
in more realistic situations), is more generally called a learning rule. The expected effect
of this particular learning rule is that the output neuron pattern y(m) becomes activated
whenever the pattern x(m) is presented to the input neurons, so that x(m) and y(m) become
"associated".

Along the lines of the first theoretical intuitions brought by the McCulloch-Pitts neuron
and Hebb’s rule, the real milestone that ushered in the deep learning era was the development
of the perceptron by Frank Rosenblatt in 1957 at the Cornell Aeronautical Laboratory [5].
Rosenblatt relaxed some of the stringent assumptions of the McCulloch-Pitts neuron: no
absolute inhibition rule applies and importantly the neurons can be real-valued or negative.
Overall, Rosenblatt neuron’s model reads:

ŷ = σ

(
N∑
k=1

wkxk + b

)
=

1 if

N∑
k=1

wkxk + b > 0

0 otherwise,
(1.5)

— 12 —

I.1.1 — Artificial neural networks: from unheard to overhyped

Figure 1.1: Rosenblatt’s perceptron. By definition, the perceptron first performs a
sum of the inputs x1, x2, · · ·xN weighted by the value of the synaptic weights (Σ node),
then applies a non linearity (σ node), resulting in Eq. (1.5)

where again wk stands for the weights of the synapses, and b is an adjustable parameter
called a bias - which can be regarded as an extra synapse connected to a neuron that is
constantly equal to one. In this case, the activation function σ is the Heaviside function.
Rosenblatt’s perceptron model is depicted on Fig. 1.1.

Along with this new neuron model, the major achievement of Rosenblatt has been to
propose a supervised learning algorithm that enables to find the weights wi and bias b
that best account for a given data set. More precisely, let us consider a data set D =
{(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))} where x(m) is a real-valued vector and y(m) its as-
sociated binary label (y(m) ∈ {0, 1}). Let D0 = {x(m) ∈ D|y(m) = 0} and D1 = {x(m) ∈
D|y(m) = 1} be the two classes of the problem. The two classes D0 and D1 are said to
be linearly separable if they can be separated by an hyperplane. With these definitions in
hand, Rosenblatt’s learning algorithm determines the weights of a perceptron defined per
Eq. (1.5) so that the output of the perceptron correctly classifies two linearly separable
classes: ŷ(x(m)) = y(m) ∀k ∈ [1,M]. The algorithm proceeds intuitively. Given a sam-
ple x(m) presented to the input neurons, the perceptron outputs ŷ(x(m)) given by Eq. (1.5),
which is compared to the ground-truth label y(m). If ŷ(x(m)) < y(m) (the output is too low),
then any weight wi connected to a positive (resp. negative) input x(m)

i should be increased
(resp. decreased). Conversely if ŷ(x(m)) > y(m) (the output is too high), then any weight wi
connected to a positive (resp. negative) input x(m)

i should be decreased (resp. increased).
More formally, the weight update prescribed reads:

— 13 —

I.1.1 — Artificial neural networks: from unheard to overhyped

∆wi ∝ (y(m) − ŷ(m)) · x(m)
i . (1.6)

In spite of the incredible success of the perceptron model which later inspired the Adaline
algorithm [6], its downfall was in great part overshadowed by Eq. (1.5). Indeed, the boundary
decision of the perceptron is given by the equation ∑N

k=1wkxk + b = 0, which is that of
an hyperplane. This amounts to say that Rosenblatt’s perceptron model can only handle
separable classification problems, in particular it cannot solve the XOR logical function which
cannot be separated linearly. Also as the algorithm stands, it was unclear how it would extend
to a multi-layered perceptron whose definition changes Eq. (1.5) into:

ŷ = σ(wN−1 · · ·σ(w1 · σ(w0 · x+ b0) + b1) · · ·+ bN−1), (1.7)

where the intermediate neuron values preceding the final output are called hidden neurons,
as only the output value is actually observed. Since these values are "hidden", what should
then be compared against so that the subsequent weight change on the adjacent synapses
improves the output value? Moreover, the computation time required to learn even very
simple functions with perceptron-based learning is very long. All these major limitations
of the perceptron were pointed out by Marvin Minsky in 1969 [7], whose paper arguably
downcasted the research endeavors of the then emerging neural network community and
would freeze the funding of the field for the next ten years, a period also known as the AI
winter.

It was not until the 90s that the neural network approach to AI really experienced a
revival with the invention of the backpropagation training algorithm - the next section will
be dedicated to describe this algorithm technically. In its Ph.D thesis drafted while at
Harvard in 1974, Paul Werbos was the first to suggest the use of backpropagation to train
neural networks [8]. It later inspired the development of various theoretical frameworks
for backpropagation in neural networks, by David Parker [9] in his master thesis at the
Massachusetts Institute Technology and Yann LeCun [10] independently, in 1985. Once the
hardware resources available at this time enabled to run simulations fast enough, the definite
kick-off of backpropagation in neural networks happened when, in 1987, Geoffrey Hinton and
David E. Rumelhart experimentally demonstrated the relevance of the features extracted
by hidden units when training a multilayer perceptron to learn non-linear tasks such as the
XOR function [11], thereby addressing one of the fundamental objections of Minsky that had
caused the demise of neural networks until then.

Another very significant breakthrough is the invention of Convolutional Neural Networks,
a neural network architecture inspired from the primary visual cortex which was first known

— 14 —

I.1.2 — Learning in neural networks

as the Neocogitron [12] in 1980. Yann LeCun later applied backpropagation to train con-
volutional architectures on document recognition in 1998, a technique soon-to-be deployed
commercially to read several million checks per day [13]. Finally, while the use backprop-
agation would enable to explore new neural network topologies such as Recurrent Neural
Networks and Long-Short Term Memory [14] and variants to learn from temporal data, the
tremendous hype that deep learning would definitely gain came from the AlexNet Convolu-
tional Architecture [15] which won the ImageNet Large Scale Visual Recognition Challenge
in 2012 and popularized the use of Graphical Processing Units (GPUs) to train deep neural
networks.

1.2 Learning in neural networks

1.2.1 Definition of the problem

In this subsection, we introduce more formally the backpropagation learning algorithm
mentionned previously. Let us define a neural network as a mapping F(·; θ) : x → ŷ,
where x denotes the (data) input and ŷ the output of the neural network. Typically,
x can represent static data (for image classification for example) or be a stream of data
x = x0, x1, · · · , xT (for language processing for example), we will cover both cases in this
section. θ = {θ0, θ1, · · · , θN−1} stand for the weights, and F reads as a composition of N
functions Fn:

F = F (N−1) ◦ F (N−2) ◦ · · · ◦ F (0), (1.8)

where each function F (n) is parametrized by θn: F (n)(·) = F (n)(·; θn). Depending on the
context, n can be a spatial or a temporal label: computation is either carried out through
space (from one layer to another) or through time (from a time step to the next one) or both,
depending on the task being solved. Typically, the F (n) function are the composition of a
matrix multiplication (or a convolution) and of a non-linear function, or a non parametric
operation as an average or max pooling. Also, although F (n) is often a deterministic function,
it can also be stochastic, as it is the case in generative models like Boltzmann Machines as
we will see later.

In this setting, we want to find the parameters, or "weights" θ which, given any input x of
a given dataset, make the prediction of the neural network ŷ(x) the closest to the target y
associated with x. Generally, the target is a label (for instance, the target y provides the label
’cat’ when the data input x is the picture of a cat) or the target can be the data itself, as it is
the case in generative models like Boltzmann Machines covered in this thesis. In the former
case, the learning setting is said to be "supervised" and in the latter case "unsupervised" -

— 15 —

I.1.2 — Learning in neural networks

intermediate situations where only a part of the data is labelled pertains to "semi-supervised"
learning. For any purpose, the model builds an estimate of the target from the data denoted
ŷ(x) that is compared against the ground-truth target y, thereby motivating the following
mathematical formulation of the problem:

min
θ
L(ŷ(x), y; θ) (1.9)

where we call L the loss function of the problem. In general, the minimum of L is not
analytically tractable. So, in practice, we proceed numerically by using gradient descent:
iteratively, for a given parameter θ, we compute the steep for the loss function L and update
θ in the direction of decreasing loss, i.e.:

θ ← θ − α∂L(x, θ)
∂θ

, (1.10)

where α is a scalar coefficient called the learning rate which controls the "speed" of the weight
update. Iterating Eq. (1.10) many times, we may reach an optimum θ∗ such that ∂L(x,θ∗)

∂θ ∼ 0 -
see Fig. 1.2 for a cartoon illustration. Very importantly, θ∗ may not be a global optimum since
L is generally not a convex landscape. There is a vast literature of optimization techniques
used for deep learning that enable to convey inertia to gradient descent so that local optima
can be overshot, the most famous and widely used of those being the Adam optimizer [16].
With this terminology and notations in hand, learning from this prospective implies two
components that are fundamental in the scope of this thesis:

• Computing the gradient of the loss: ∂L(x,θ)
∂θ .

• Updating the weight value: θ ← θ − α∂L(x,θ)
∂θ .

In order to go further in the details concerning the computation of the gradient, an im-
portant notion when dealing with neural networks is the notion of graphs. Eq. (1.8) can be
seen as a directed graph where each leaf node represents input data or parameter, directed
edges as operations, and their output nodes at the results of these operations. More often
than not, the neural network as it is conventionally represented graphically is the compu-
tational graph at use. So from a mathematical viewpoint, we may use "neural network" or
"computational graph" equivalently. In other contexts though, it is important to distinguish
the neural network itself from the computation it carries out. To describe in more details the
computation of the gradients of the loss, we will consider two particular topologies of interest
in this thesis.

— 16 —

I.1.2 — Learning in neural networks

Figure 1.2: Learning. Learning proceeds iteratively by computing the gradient of
the loss function ∂L

∂θ for a given θ and by subsequently updating the weight value
θ ← θ − α∂L∂θ , until convergence to an optimum θ∗.

1.2.2 Backpropagation in a feedforward neural network

General derivation. Let us consider a special case where the topology of the computation
in Eq. (1.8) is described as:

s1 = F (0)(x; θ0)
sn = F (n−1)(sn−1; θn−1) ∀n ∈ [2, N]
ŷ = F (N−1)(sN−1; θN−1),

, (1.11)

where the intermediate values of the computation denoted sn are called ’hidden layers’. In
this particular case, the input data is presented once at the first computation of Eq. (1.11)
and subsequent computations are only carried over hidden layers. The larger the number of
operations N , the "deeper" the neural network.

Note from Eq. (1.11) that the model estimate of the target ŷ is computed at the very end
of the graph. This aspect is crucial and drives the intuition of the backpropagation algorithm
whose goal is to compute the gradients of L with respect to each weight θ0, θ1, · · · , θN−1.
However, L as it appears in Eq. (1.9) only depends explicitly on ŷ and implicitly on the weights
since ŷ is a function of θ0, θ1, · · · , θN−1 through Eqs. (1.11). The intuition of backpropagation
is to start with ∂L

∂ŷ which is the simplest derivative to compute since L depends explicitly on
ŷ. Then, we compute the derivative of the variables preceding ŷ in the neural network by
using the chain-rule of differentiation: this computation therefore propagates ∂L

∂ŷ backward
through the neural network, hence the name "backpropagation".

— 17 —

I.1.2 — Learning in neural networks

Figure 1.3: Backpropagation in a feedforward architecture. For any graph, each
leaf node labels an input, an arrow a computation, and a child node the outcome of
a computation. Left: forward pass, going from input x at the very bottom to L at
the very top. At each forward computational step, F (n) takes θn and sn as inputs and
outputs sn+1, until giving ŷ, and the subsequent loss L. Right: backward pass, going
backward from ∂L

∂ŷ at the top to leaves ∂L
∂θn . At each backward computational step,

the Jacobian ∂F (n)>

∂s takes ∂L
∂sn+1 as an input and outputs ∂L

∂sn . Similarly, the Jacobian
∂F (n)>

∂θ takes ∂L
∂sn+1 as an input and outputs ∂L

∂θn .

More concretely, let us compute ∂L
∂θN−1 . Since we have ŷ = F (N−1)(sN−1; θN−1), we can

easily compute ∂L
∂θN−1 as a function of ∂L∂ŷ . Namely, considering the i-th component of ∂L

∂θN−1

and applying the chain-rule, we get:

∂L
∂θN−1

i

=
∑
j

∂ŷj

∂θN−1
i

∂L
∂ŷj

,

which gives in a vectorized fashion, assuming the convention that ∂L
∂u is a column vector for

any column vector u:

— 18 —

I.1.2 — Learning in neural networks

∂L
∂θN−1 =

(
∂ŷ

∂θ

)>
· ∂L
∂ŷ

.

Using ŷ = F (N−1)(sN−1; θN−1), we get:

∂L
∂θN−1 =

(
∂F (N−1)

∂θN−1 (sN−1; θ)
)>
· ∂L
∂ŷ

. (1.12)

In order to compute ∂L
∂θN−2 , we first need to backpropagate ∂L

∂ŷ to sN−1, then to θN−2. Namely,
we first compute ∂L

∂sN−1 :

∂L
∂sN−1 =

(
∂ŷ

∂sN−1

)>
· ∂L
∂ŷ

=
(
∂F (N−1)

∂s
(sN−1; θN−1)

)>
· ∂L
∂ŷ

,

so that we can subsequently compute ∂L
∂θN−2 as:

∂L
∂θN−2 =

(
∂sN−1

∂θN−2

)>
· ∂L
∂sN−1

=
(
∂F (N−2)

∂θ
(sN−2; θN−2)

)>
· ∂L
∂sN−1 .

Backpropagation computation can be readily generalized for any variable in the network,
proceeding recursively and backward from the output layer, with the following recursive
equations:

∂L
∂sN

= ∂l
∂s(ŷ, y)

∂L
∂sN−n

=
(
∂F (N−n)

∂s (sN−n; θN−n)
)>
· ∂L
∂sN−n+1 ∀n > 1

∂L
∂θN−n

=
(
∂F (N−n)

∂θ (sN−n; θN−n)
)>
· ∂L
∂sN−n+1 ∀n > 1

(1.13)

The computation of Eq. (1.13) can be conveniently depicted with a computational graph -
see Fig. 1.3.

— 19 —

I.1.2 — Learning in neural networks

Example. For concreteness and as a particular case of Eq. (1.11), let us apply backpropa-
gation the following neural network:

Figure 1.4: Backpropagation in a feedforward neural network. Left: forward pass,
going from input x at the very bottom to ŷ at the very top. sn are commonly called
"hidden layers". Each hidden layer value sn is determined by the previous one sn−1.
Right: backward pass, going backward from ∂L

∂ŷ . At each backward computational step,
the error signals are routed by wn> , an important feature of backpropagation in neural
networks.

s1 = σ(w0 · x+ b0)
sn = σ(wn−1 · sn−1 + bn−1) ∀n ∈ [2, N]
ŷ = σ(wN−1 · sN−1 + bN−1).

(1.14)

Applying Eq. (1.13) to Eq. (1.14) yields:

∂L
∂sN

= ∂l
∂ŷ (ŷ, y)

∂L
∂sN−n

= wN−n
> ·
(
σ′(wN−n · sN−n)� ∂L

∂sN−n+1

)
∀n > 1

∂L
∂wN−n

=
(
σ′(wN−n · sN−n)� ∂L

∂sN−n+1

)
· sN−n> ∀n > 1,

(1.15)

— 20 —

I.1.2 — Learning in neural networks

where � denotes element-wise (also known as Hadamard) product between two matrices.
The computation of Eq. (1.15) is depicted on Fig. 1.4. For the remainder of this introduction
part, the reader should bear in mind that Eq. (1.15) and Fig. 1.4 exhibit explicit features
that will later be commented upon when dealing with biologically plausible approaches to
learning in chapter 4 of this part.

1.2.3 Backpropagation through time in a recurrent neural network

Figure 1.5: Backpropagation through time in a recurrent architecture. Left:
forward pass. Differences with backpropagation in a feedforward architecture (Fig. 1.3):
n labels time, all F (n) are the same with parameters θn shared across the whole graph
and all equal to θ, and F takes xn as an input at each computational step. Right:
backward pass, going backward from ∂L

∂ŷ at the top to leaves ∂L
∂θn . Difference with

backpropagation in a feedforward architecture (Fig. 1.3): because θ is shared across the
whole forward computation, all derivatives ∂L

∂θn contribute to the same parameters θ and
all add up to provide ∂L

∂θ (see Eq. (1.18))

General derivation. We now consider another neural network topology described by the
following equations:

— 21 —

I.1.2 — Learning in neural networks

{
s1 = F (x1; θ0 = θ)
sn = F (xn, sn−1; θn−1 = θ) ∀n ∈ [2, N] . (1.16)

Note the following important differences of Eqs. (1.16) with Eqs. (1.11):

• The data x is more specifically here a data stream x1, x2, · · ·xN where each xn is fed
at the n-th computational step.

• The label n is thereby better thought of as a temporal label.

• The transition functions Fn and associated parameters θn are all the same: Fn(·, θn) =
F (·, θ). An important consequence is that the parameters θ are shared across the
computational graph, which comes into play when backpropagating derivatives through
this type of graph.

All these features motivate to call this type of neural network a recurrent neural network.
In general in a recurrent neural network, the goal of learning is to match a target yn at every
time step, typically for time series prediction or translation. So the model builds an estimate
for yn at each time step that we denote here ŷn. The loss for this kind of problem generally
reads as:

min
θ
L(ŷ, y; θ)

L(ŷ, y; θ) =
∑
n

l(ŷn; yn) , (1.17)

where l is called a cost function. For simplicity here, we will restrict ourselves to consider the
particular case where the loss only depends upon the last time step: L(ŷ, y; θ) = l(ŷN ; yN),
so that we subsequently drop the label N .

For the sake of gradient descent again, we want to compute ∂L
∂θ with L = l(ŷ(sN), y), where

the model estimate ŷ is built from sN at the last time step. A subtlety that we have mentioned
before is that now, the parameter θ is shared across the whole computation: θ is used at each
time step, as described per Eq. (1.16). Consequently, the effect of changing θ → θ+ δθ upon
L depends on when this perturbation occurs. More specifically, when changing θ → θ + δθ

at time step n, the loss L evaluated at time step N is going to change by δθ> · ∂L∂θn , where
∂L
∂θn is a writing convention to express that the change is caused by a variation happening at
time step n. With these notations, the "total" gradient ∂L

∂θ reads like:

∂L
∂θ

= ∂L
∂θN−1 + ∂L

∂θN−2 + · · ·+ ∂L
∂θ0 (1.18)

— 22 —

I.1.2 — Learning in neural networks

Finally, the computation the derivatives ∂L
∂θN−n

exactly proceeds like Eq. (1.13), so that the
whole computation of ∂L∂θ is given by:

∂L
∂θ

= ∑N
n=1

∂L
∂θN−n

∂L
∂sN

= ∂l
∂s(ŷ, y)

∂L
∂sN−n

=
(
∂F
∂s (xN−n+1, sN−n; θ)

)>
· ∂L
∂sN−n+1 ∀n > 1,

∂L
∂θN−n

=
(
∂F
∂θ (xN−n+1, sN−n; θ)

)>
· ∂L
∂sN−n+1 ∀n > 1.

(1.19)

Again, the computations of Eq. (1.19) can be conveniently depicted by the computational
graph represented in Fig. 1.5.

Example. We consider the following simple recurrent neural network where each hidden
state receives input from the previous one and the current data input, and an output is given
based on this hidden state as:

ht = σ([wh, wx] · [ht−1, xt] + bh) ∀t ∈ [1, T]
ot = σ(w0 · ht + bo) ∀t ∈ [1, T]
ŷ = oT ,

(1.20)

where we use t as a label to emphasize to computation happens through time and [u, v]
stands for the concatenation of vectors u and v. Taking the loss to be L = l(oT , y), applying
Eq. (1.19) to Eq. (1.20) yields, for the parameters wh:

∂L
∂wh

= ∑T
t=1

∂L
∂whT−t

∂L
∂hT

= w0> ·
(
σ′(wo · hT + b0)� ∂L

∂o

)
∂L

∂hT−t
= wh

> ·
(
σ′(wh · hT−t + bh)� ∂L

∂hT−t+1

)
∀t ∈ [1, T]

∂L
∂whT−t

=
(
σ′(wh · hT−t + bh)� ∂L

∂hT−t+1

)
· h>T−t ∀t ∈ [1, T]

, (1.21)

for the parameters wx:

∂L
∂wx

= ∑T
t=1

∂L
∂wxT−t

∂L
∂hT

= w0> ·
(
σ′(wo · hT + b0)� ∂L

∂o

)
∂L

∂hT−t
= wh

> ·
(
σ′(wh · hT−t + bh)� ∂L

∂hT−t+1

)
∀t ∈ [1, T]

∂L
∂wxT−t

=
(
σ′(wh · hT−t + bh)� ∂L

∂hT−t+1

)
· x>T−t ∀t ∈ [1, T]

, (1.22)

— 23 —

I.1.3 — The cost of learning on conventional computers

Figure 1.6: Backpropagation in a recurrent neural network. Top: forward pass,
going from left to right. At time step t, each hidden layer value ht is determined by
the current input xt and the previous hidden layer value ht−1. Based on ht, the neural
network outputs ot. Bottom: backward pass, going backward from ∂L

∂ŷ . Again, at each
backward computational step, the error signals are routed by wh> .

and finally for the parameters wo:
∂L
∂w0 = ∂L

∂w0
T

∂L
∂w0

T
=
(
σ′(wh · hT−t + bh)� ∂L

∂hT−t+1

)
· h>T

. (1.23)

Again, the computations of Eq. (1.21)-(1.23) are depicted in Fig. 1.6. Note that in Fig. 1.6,
backpropagation goes explicitly backward in time, hence the name backpropagation through
time.

1.3 The cost of learning on conventional computers

In the previous section, we have introduced the basic algorithmics of learning. How about
the hardware that is used to run these algorithms in practice? In this section, we focus
on this aspect and introduce two important limitations of today’s widely used computer
architectures.

— 24 —

I.1.3 — The cost of learning on conventional computers

1.3.1 The end of Moore’s law

Figure 1.7: The end of Moore’s law. Since 2005, as the number of transistors keeps
increasing, physics limit clock frequency at around 4 GHz, thereby flattening speed and
power curves from 2005 on.

Modern computing devices heavily rely on typical device and architecture paradigms,
which happen to be fundamentally limited in certain ways today.

The Complementary Metal-oxide Field-Effect (CMOS) transistor is the building block of
today’s computer logic. A transistor is a three-terminal device (with a source, a gate and
a drain) that can switch or amplify electrical signals. A current can only flow between the
source and the gate depending on whether a voltage is applied to the gate, thereby producing
a binary output value (current flows through the transistor, and is able to charge the output
or not). Cascading multiple of these transistors enables to emulate incredibly complex logical
functions, so that the more transistors can be fitted onto a chip, the more computationally
efficient this chip can be. In 1974 Robert Dennard stated an hypothesis named after him as
the Dennard scaling (also known as the MOSFET scaling) [17] that as transistors get smaller,
their power density should stay constant, so that since the power use stays in proportion with
area, both voltage and current scale would decrease with the gate length, and so would their
prices. In 1975, Gordon Moore made the observation that the number of transistors on an
integrated chip should double about every two years, an iconic "law" known as "Moore’s law"
which would hold for the next forty years. With now the transistor feature size dropping

— 25 —

I.1.3 — The cost of learning on conventional computers

below 10 nanometers, the end of this empirical law has become physically inevitable: the
smaller the transistor, the higher the leakage and the most likely the bit flips due to thermal
noise [18]. More explicitly, if we assume the two logical states of the transistor are separated
by a voltage barrier ∆V (also called the logic threshold voltage) and that it operates at the
maximal clock frequency, then it can be easily shown that the power dissipated during the
transient phases when switching between logical states scales with the transistor feature size
F as:

P ∝
∆V 2

F 2 . (1.24)

Also, using Boltzmann statistics, the probability that the logical state of a transistor flips
under thermal fluctuations, with kb denoting the Boltzmann constant, is:

P(flip) ∝ exp −C∆V 2

2kbT
. (1.25)

Since C is an increasing function of F (with a linear or parabolic dependency, depending
on the hypothesis made on the gate thickness), Eq. (1.25) prescribes to increase ∆V upon
decreasing F to keep P(flip) constant. Conversely, Eq. (1.24) constrains to decrease ∆V upon
decreasing F to avoid increasing dissipation. Therefore, below a certain F , both constraints
cannot be satisfied, so that Moore’s law "dies": the speed of the processors can no longer be
improved - see Fig. 1.7.

1.3.2 The von Neumann bottleneck

A fundamental architecture limitation also adds up to this conventional computing paradigm.
Back in 1945, John von Neumann proposed a computer architecture, where logics and arith-
metics would be performed in a Central Processing Unit (CPU) separately from memory
read and write operations, both in space and time [19]. This architecture, known as the
Princeton architecture or the von Neumann architecture, prevailed at this time over more
complex proposals as the Harvard computer architecture by allowing independent CPU and
memory designs with different device and energy requirements. Unfortunately, this physical
separation between logic and memory also causes the overall computational inefficiency of
this architecture. In a von Neumann architecture, CPU and memory communicate through
a single bus that can therefore only access one unit at a time. Consequently, for tasks that
typically require numerous memory access and simple logic, the data transfer rate (also called
"throughput") is much lower than the rate at which the CPU can operate, so that the CPU
constantly waits for data transfers, even more as CPUs have gotten faster. It was shown that
an order magnitude more energy is needed to transfer and access the data in memory or in
the CPU than the core logical operations operated on this data [20].

— 26 —

I.1.3 — The cost of learning on conventional computers

This phenomenon is famously known as the von Neumann bottleneck, a physical bottleneck
which, as computer design has long built upon this architecture, even created inefficiencies at
the programming language level, as John Backus puts it in its ACM Turing Prize lecture [21]:
"[T]he von Neumann bottleneck [...] is [...] a literal bottleneck for the data traffic of a problem,
but, more importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the larger conceptual units of the task
at hand. Thus programming is basically planning and detailing the enormous traffic of words
through the von Neumann bottleneck, and much of that traffic concerns not significant data
itself, but where to find it".

Figure 1.8: The von Neumann bottleneck. In von Neumann architectures, memory
and computation are physically separated, which is particularly critical in the context of
gradient descent for learning neural networks. At each learning step, parameters θ needs
to be routed from memory to processors to compute gradients ∂L∂θ , which is subsequently
routed back to memory to perform the parameter update θ ← θ − α∂L∂θ .

Both of these limitations — from the device and architectural prospective — are typically
encountered in the context of learning as defined per section 1.2. Using the same notations,
at a given learning iteration, θ is accessed from memory and processed in the computing unit
to compute ∂L

∂θ , which is then routed back to the memory to perform the parameter update
θ ← θ − α∂L∂θ , so that the von Neumann bottleneck typically burdens gradient descent - see
Fig. 1.8 for an illustration of this phenomenon. Also, as neural network models get bigger,
computing efficiently ∂L

∂θ should not be taken for granted and is severely limited by the device
constraints mentionned before. Although the use of Graphical Processing Units (GPUs,
which were mentionned in section 1.1) can considerably accelerate gradient computation
and the von Neumann bottleneck can be significantly mitigated for example with the use of
cache memories or branch predictors, moving beyond these limitations requires a fundamental
rethinking of the von Neumann architectures. In this purpose, neuromorphic computing is
one approach to explore so-called "non-von Neumann architectures" for on-chip learning that
take inspiration from the brain.

— 27 —

Chapter 2

An opportunity for neuromorphic
engineering

Up to now, backpropagation has encountered a tremendous success, both in academia and
industry, to train deep neural networks thanks to the use of GPUs with dedicated software
frameworks like TensorFlow [22] or Pytorch [23], which employ automatic differentiation.
However, designing even more powerful systems building on modern computing paradigms
and conventional learning principles such as backpropagation has become fundamentally lim-
ited. In this chapter, we show how neuromorphic computing arises as a research opportunity
in this context.

2.1 A brief history of neuromorphic engineering

Although there is no clear cut out definition today of "neuromorphic engineering", Carver
Mead is considered as the main pioneer of the field, as he suggested there was something
"fundamental to learn from the brain about a new and much more effective form of compu-
tation" [24]. Based on this inspiration, Mead fostered the development of Very Large Scale
Integrated (VLSI) systems electronic circuits mimicking the brain and using MOSFET tech-
nology in the subthreshold regime. Operating in this regime requires smaller currents than
in the standard digital regime and enables to emulate leaky integrate and fire (LIF) neurons,
which depending on an internal analog value may spike or not. Using this CMOS-based
LIF neuron as building block has helped achieve extremely energy-efficient systems that can
handle simple pattern recognition with spike-based learning rules [25]. Although other sig-
nificant CMOS-based analog neuromorphic circuits include the NeuroGrid chip developed at
Stanford University [26], recent advances in industry and academia have mostly focused on
the design digital circuits. SpiNNaker by the University of Manchester [27], TrueNorth by
IBM Research [28] or Loihi by Intel [29] have been designed as fully CMOS, massively paral-
lel neuromorphic architectures that separate spiking neurons and stored weights and operate

— 28 —

I.2.1 — A brief history of neuromorphic engineering

with an outstanding energy efficiency. While these chips are mostly of academic interest for
prototyping spike-based learning and inference systems, the most ready-to-use optimized chip
for deep learning applications comes from Google with their Tensor Processing Unit (TPU)
ASIC chip [30].

Figure 2.1: Neuromorphic chips. Left: IBM TrueNorth chip [28]. TrueNorth is made
on 28-nanometer process technology. The processor contains 5.4 billion transistors and
4096 cores. Each core was provided with a task scheduler, SRAM-memory and a router.
Right: SpiNNAker chip [27]. SpiNNAker is composed of 57,600 processors, each with
18 cores and 128 MB of mobile DDR SDRAM, totalling 1,036,800 cores and over 7 TB
of RAM.

While all these systems are based upon well-established commercial technologies like CMOS,
DRAM and SRAM, a new vision of neuromorphic computing has developed towards hybrid
architectures incorporating emerging memory and logic nanodevices over the past decade.
Among those, resistive memories — or memristive devices — are considered as compelling
candidates for the design of massively parallel and energy efficient neuromorphic systems.
Their nanoscale dimension, the low energy required to write and read their memory, their
multiple bit-per-device capacity and the possibility to embed this technology into CMOS
have incentivized proposals of neuromorphic building block circuitries [31]. A drawback of
these technologies is that they are prone to imperfect programming due to the intrinsically
unreliable physics at play. However, this aspect of memristive devices was perceived as an
opportunity to model the biological features of synapses, and thereby build neuromorphic
systems that would be fault-tolerant by design, using them as digital [32] or analog [33]
memories. IBM Almaden recently suggested by hybrid software-hardware experiments that
the use of non volatile memories as analogue synapses for training neural networks could de-
liver a computational power that would exceed those of most modern GPUs by two order of
magnitudes [34]. The next section provides evidence about the huge potential of memristive

— 29 —

I.2.2 — The memristor as a promising building block for on-chip learning

devices as artificial synapses candidates for on-chip learning.

2.2 The memristor as a promising building block for on-chip
learning

Based on the fundamental relationships binding altogether current i, charge q, voltage v,
magnetic flux linkage ϕ, Leon Chua theoretically investigated in 1971 the meaning and the
implications of the relationship that could exist between q and ϕ, thereby suggesting, by
symmetry arguments, the existence of a new two-terminal circuit element, albeit yet to be
discovered, called a memristor [35] - as the contraction of "memory" and "resistor". More
explicitly, the voltage drop of a charge-controlled memristor would be given at all time by:

v(t) = M(q(t))i(t)

M = ∂ϕ

∂q

v = ∂ϕ

∂t
,

(2.1)

so that the memristanceM depends on the total integral of the past changes in charge, thence
the memory effect. Chua showed that such a component could realize functions that none
of the RLC-based circuits could on their own. In 2008, Hewlett-Packard (HP) laboratories
claimed the discovery of the "missing" memristor in a very influential paper published in Na-
ture [36], based on the definition of Chua and in the form of titanium dioxide switching cells.
Many controversies arose after the paper was released: the memristor alledgedly unveiled
by HP may not abide rigorously by Chua’s definition and may rather belong to the broader
class of resistance-switching devices, with solid arguments essentially based on thermody-
namics [37, 38] and electromagnetism [39]. Whether a device is a "proper" memristor or not
per Chua’s 1971 definition therefore rather pertains to mathematics and was perceived as a
rather unimportant matter for some device engineers [40]. In the scope of this thesis and for
the sake of simplicity, we therefore make no distinction between a "memristor" and a "resitive
memory".

A resistive memory is any two terminal physical device whose conductance can be mod-
ulated by current or voltage. There exists a wide variety of resistive memories, depending
on the underlying physical mechanism causing the variation of conductance. Filamentary
Redox-based resistive memories (ReRAM) are devices which can create conductive filaments
between two electrodes through a transition metal oxide, depending on the voltage applied.
Based on electrochemical reactions, the reduction of the anode create defect vacancies that
are propagated to the cathode, and the conductance of the device grows as the filament gets
thicker. Such a device typically uses metal-oxide films like HfOx or TiOx and combine them,

— 30 —

I.2.3 — Bringing memory and computation the closest: crossbars

resulting in a simple, compact, CMOS-compatible technology, involving energies per synap-
tic operations that can be only sub pJ. Based on similar principles, the conductive-briding
resistive memory (CB-RAM) exploits the electrochemical formation of conductive metallic
filaments through an insulating solid electrolyte or oxide, also constituting a fast and low
power technology. Ferroelectric resistive memories (FeRAM) are devices that use a ferroelec-
tric layer instead of a dielectric layer to achieve non-volatility and which can achieve multiple
conductance states. Phase-change memories (PCM) are based upon a different mechanism
where the active part of the devices can either be in an amorphous (low conductance) or a
crystalline (high conductance) state (or "phase", hence the name), switching between these
two states through thermal activation by Joule effect. The material most widely used in
PCMs is a germanium-antimony-tellurium alloy, which sits in an insulating middle layer and
is also connected between an upper and lower electrode. Other resistive memories exploits
magnetic effects, like the spin transfer torque (STT-RAM) memory in which a free magnetic
layer can switch between two orientations with respect to a fixed layer, resulting in a very fast,
current-controlled binary memory. A complete review on the use of non volatile memories
for neuromorphic computing can be found in [33].

2.3 Bringing memory and computation the closest: crossbars

2.3.1 Kirchhoff laws for inference

Figure 2.2: Kichhoff laws for inference. Each memristor carries a weight value as
a conductance state Gn. With a voltage difference Vn, a current GnVn flows through
each memristor by virtue of Ohm’s law. Through Kirchhoff current law, all currents add
up along the horizontal wire, so that the whole circuit implements the composition of a
matrix multiplication.

Now that we have mentionned a few resistive memory technologies and put forward their
advantages in terms of ultra low power consumption, let us account for their assets within

— 31 —

I.2.3 — Bringing memory and computation the closest: crossbars

a neuromorphic system at a more abstract level. Let us assume a resistive memory whose
conductance is denoted by G. When applying a voltage difference V to the device, Ohm’s
law states that the resulting current I flowing through the device is given by:

I = G · V. (2.2)

However innocuous it may seem, Eq. (2.2) is the corner-stone of resistive memory-based
analog hardware neural network. Assume now N wires, each having a resistive memory Gi
and undergoing a voltage drop Vi, all connected to the same output node. Then, applying
the Kirchhoff current law along with Ohm’s law yields the following expression measured at
the output node:

I =
N∑
i=1

Gi · Vi. (2.3)

Algebraically speaking, the current flow through the N wires naturally performs the dot
product G> · V - see Fig. 2.2 for an illustration.

The immediate generalization of this principle to perform matrix multiplication leads to
the concept of crossbar. A cross-bar is an electrical circuit to build logical circuits based
on memristors, then used in neuromorphic applications to build analog hardware neural
networks. The most simple way to think of a cross-bar is an array of N horizontal wires and
M vertical wires - Fig. 2.3 depicts a crossbar with M = N = 3. The horizontal wires are
the input wires where currents are injected, the vertical wires are the output wires where
the currents are collected. Each output horizontal wire i is connected to each of the input
vertical wires j with a resistive memory of conductance Gij . Therefore like Eq. (2.3), each
output current Ii reads:

Ii =
N∑
j=1

Gij · Vj , (2.4)

which goes to show that the crossbar defined as such performs the matrix multiplication G·V .
Adding extra circuitry (using an op-amp for instance) at the end of each output wire enables
to implement a non-linearity σ, which changes Eq. (2.4) into:

Ii = σ

 N∑
j=1

Gij · Vj

 , (2.5)

which brings us back to Rosenblatt’s neuron model response Eq. (1.5). Eq. (2.5) gives us a
flavor of the huge potential of memristive devices for neuromorphic applications: inference

— 32 —

I.2.3 — Bringing memory and computation the closest: crossbars

is performed "for free" thanks to Kirchhoff’s and Ohm’s laws! These multiply-accumulate
operations can be performed in parallel where the data is located in a locally analog fashion,
thereby cutting power consumption by avoiding weight data transport [41].

2.3.2 A compelling case for memristor-based learning

Figure 2.3: Crossbar learning. Inputs V1, V2 and V3 are encoded as voltages (left end
of horizontal wires) and outputs I1, I2 and I3 as currents (bottom end of vertical wires).
Each input j is connected to output i through a memristive device of conductance Gij .
On the cartoon, Î2 < Itarget

2 , thus the conductance of devices connected to positive
voltage entries should be increased, as it is the case for G22. A negative error voltage
pulse δ2 is therefore sent along the second vertical wire so that the device of conductance
G22 undergoes the voltage difference V22 = V2 − δ2 > Vν , so that G22 is increased.

How about performing learning such a crossbar, that is finding the good conductance values
Gij to solve linearly separable classes? Let us push the analogy further with the perceptron
model described earlier by considering a dataset D = {(x(1), y(1)), · · · , (x(M), y(M))}. In

— 33 —

I.2.3 — Bringing memory and computation the closest: crossbars

a neuromorphic context, the input and the output values need to be physically encoded.
So we assume here that the inputs V are encoded as input voltages, resulting in output
currents Îi(V), which are either above or below a current threshold, thereby determining the
class inferred by the perceptron. Learning consists in adjusting the conductance values of
the resistive memories so that the output current Î(V) matches the target current Itarget:
Îi(V) = Itarget

i ∀i.

How does learning proceed physically? We assume each resistive memory can only be
written if the voltage difference exceeds a voltage threshold Vν : ∆Gij(∆Vij) = 0 if ∆Vij < Vν
with ∆Vij being the voltage difference applied to the device of conductance Gij . Input
voltages Vj are chosen below Vν in absolute value, so that the resistive memories cannot be
written without an additional voltage difference. With this in mind, let us assume voltage
inputs Vj yielding a current Îi(V) that is compared against the ground-truth current Itarget

i .
If Îi(V) < Itarget

i (the output current is too low), then any resistive memory connected to a
positive voltage input Vj should have its conductance increased. In this case, an error voltage
δi > 0 is applied on the output wire of Gij , where δi is taylored so that ∆Vij = δi−Xj > Vν .
Fig. (2.3) illustrates this learning procedure.The same logics applies in the 3 other situations,
depending on whether the output current is too high or too low and the input voltage positive
or negative, so that the learning rule reads heuristically ∗:

∆Gij ≈ sign((Îi − Itarget
i) ·Xj). (2.6)

Note that, up to taking the sign, Eq. (2.6) is equivalent to the learning rule of the Rosenblatt’s
perceptron given by Eq. (1.6). We will come back on this in the next chapter.

While these working principles for memristor-based inference and learning on a crossbar are
tractable in theory and in practice on a perceptron, implementing deeper architectures using
the same principle by cascading crossbars remains a challenge. The next chapter describes
in further details the fundamental difficulties inherent to memristor-based on chip learning.

∗Not taking into account the memristor characteristic.

— 34 —

Chapter 3

Challenges of on-chip learning

The reasons why learning with resistive memories is extremely challenging are rooted into
many essentially different aspects. A considerable range of difficulties to overcome stem
from the technologies themselves, but also from the underlying algorithmics implemented.
The fundamental trade-off that underlies this research could be phrased as: with regards
to learning, how much can we give up on the energy spent on computational precision,
memory, data routing and mathematical guarantees for the learning rule computation and
the parameter update? We deal with each of these different aspects appearing in the literature
in the next sections.

3.1 On and off-chip learning, analog and digital memories

One of the very first reason why resistive memory-based learning is hard comes from
programming these devices: given an update prescribed by a parameter gradient value or
any learning rule, how do we update the most accurately the conductance of a memristive
device?

First, what a resistive device can encode as a memory in terms of bit capacity remains an
open question. In the context of learning, resistive memories are often used or thought of
as analog memories, when the conductance update can be gradual enough, thereby encoding
a real value. Depending on the technology considered though, some resistive memories are
better used as digital memories and therefore more suited for purely inferential engines [32],
or can be combined with analog memories within mixed-precision architectures to achieve
learning [42,43].

— 35 —

I.3.2 — Device programming

Also, what is meant by "learning" should be clarified in the context of memristive technology-
based learning. One approach is to compute the good value for the weights off-chip with
software-based training simulations, then to map them onto a cross-bar as conductance val-
ues with elaborate voltage programming protocols [44, 45]. Another approach, which we
want to described further in this section, is on-chip learning: the whole learning process
is achieved on the chip, iterating inference (or "forward pass"), gradient computation and
parameter update. In the next section, we focus on this approach.

3.2 Device programming

In spite of their compelling potential for neuromorphic applications, memristive devices
exhibit undesirable features when it comes to updating their conductance in the purpose
on-chip learning.

The first two most obvious difficulties directly arise from their nanoscale size: since the
physical mechanisms governing the conductance updates operate at the atomic level as de-
scribed in section 2.2, the conductance updates of resistive memories are inherently stochastic
and vary a lot from a device to another one - see Fig. 3.1 where the device characteristic
exhibits cycle-to-cycle variability. These two sources of stochasticity are often referred to
as "cycle-to-cycle variability" and "device-to-device variability" respectively. For instance,
ReRAM devices are particularly subject to this stochasticity since their conductance relies
upon filament of atoms so that their formation or destruction obeys to a wide variety of
physical parameters, entailing at the system level a significant spread of the minimal and
maximal conductance values of the devices [46].

Another limitation of memristive devices is the asymmetry existing between potentiation
(increase of conductance) and depression (decrease of conductance). PCM devices, described
in subsection 2.2, are subject to such an asymmetry since their amorphization is abrupt
while their crystallization can be gradual, so that only the conductance increase is well
controlled [47]. One solution to this issue is to implement each synapse W with a pair
of memristors of conductances G+, G− so that W = G+ − G−: G+ (resp. G−) should
be potentiated to increase (resp. decrease) W . With this programming scheme however,
devices are only programmed in potentiation so that they inevitably reach saturation, thereby
requiring an occasional reset in conductance [47]. Similarly, hafnium-oxide RRAM exhibit a
gradual conductance decrease (i.e. the dimensions of an existing conductive filament can be
gradually reduced) and an abrupt conductance increase (i.e. a conductive filament connects
for the first time the two electrodes of the devices), which also requires the use of two
complementary devices per synapse with a programming scheme adapted accordingly [43].

— 36 —

I.3.2 — Device programming

Figure 3.1: Experimental memristor characteristic (taken from [48]). The charac-
teristic of filamentary Ag-Si RRAM is shown as the conductance state as a function of
the number of programming voltage pulses applied, of 300µs each and ∼ ±3V each, for
potentiation (a) and depression (b). Red points are experimental and the blue curve is
a fit. The memristor characteristic typically exhibits non-linearity, asymmetry between
potentiation and depression and cycle-to-cycle variability.

The programming of memristive devices is also considerably limited by their finite con-
ductance range Gmax − Gmin [47]: the larger the conductance range, the more precise the
programmation, the better the resulting performance at test time. One way to overcome this
limitation is the use of a mixed architecture where imprecise analog conductance updates
are cumulated in a digital unit with high precision [42]. Another approach consists in imple-
menting each synapse with more than two memristive devices, yielding a larger conductance
range and also a better training performance [49].

Most importantly, memristor-based learning is dramatically jeopardized by the non-linearity
of the devices: the conductance update undergone by a device using constant programming
conditions depends on its current conductance value - see Fig. 3.1 where the device charac-
teristic exhibits non-linearity. For PCM devices as well as filamentary RRAM for instance,
the conductance update for low conductance states is relatively high, and becomes smaller
as the conductance value increases. Instead, linear devices whose conductance update does
not depend on the current conductance value, would yield the best result on classification
tasks [41, 50]. One first natural approach to overcome this limitation is to employ read-and-
write programming schemes, where the conductance value of the device to program is first
read, and the number of pulses applied are chosen accordingly [51, 52]. This solution how-
ever appears to be costly, with subsequent overhead on the peripheral circuitry around the
crossbar [34, 53]. Another approach to mitigating non-linearity has been proposed by IBM
Research in their milestone Nature paper, where each synapse is implemented with a pair of

— 37 —

I.3.3 — Hardware-friendly learning rules

PCM devices and a three transistors-one capacitor (3T-1C) capacitor [34]. The capacitor,
whose charge-voltage characteristic is linear, accumulates the weight updates across train-
ing samples. Since the capacitor has a volatile memory, its charge is precisely transferred
them onto the PCM devices as a conductance state every 8000 training samples, combined
along with programming strategies to mitigate the variability of the capacitors. Also, recent
work has demonstrated that the combined use of analog memories with digital operations
is inherently more robust than more conventional fully analog approaches, without CMOS
overhead [43].

3.3 Hardware-friendly learning rules

All the aforementioned approaches focus on the device engineering required to perform a
conductance update in the most accurate way given a target update. Thereby implicitly, the
computation of the gradient value of the loss function of interest - or of the learning used at
all regardless of the notion of a loss function - is somewhat taken for granted. So far in the
neuromophic computing literature, which learning rule to implement on a chip has taken two
different paths.

3.3.1 Backpropagation?

One of the main approaches in neuromorphic computing to in-situ learning rule computa-
tion is to implement verbatim backpropagation. The most simple application of backpropa-
gation is in a perceptron, where the learning rule is given by Eq. (1.6). In the on-chip learning
protocol adapted for crossbars described in section 2.3, the learning rule Eq. (2.6) reads like
the sign of Eq. (1.6). This learning rule presents significant advantages from a hardware
prospective: it is local in space (the weight update solely requires the pre and post-synaptic
neuron activities) and it takes the sign of the real gradient, which generally makes stochastic
gradient descent in machine learning optimization more robust to noise [54,55]. The learning
rule given by Eq. (1.6) on a perceptron was coined the Delta Rule [56], or more generally on
any optimization problem signSGD [54] and was successfully applied experimentally for the
in-situ learning of 3x3 image patterns by a hardware perceptron [45].

So perceptron learning is one of the rare cases where backpropagation∗ readily applies, up
to taking the sign of the gradient, in a hardware-friendly fashion. How we go about imple-
menting backpropagation taking hardware constraints into account in deeper architectures
remains one of the most challenging questions of on-chip learning. Most of IBM Research
findings are carried out with hybrid hardware-software experiments where inference and gra-
dient computation carried out ex-situ, with the resulting gradient value subsequently mapped

∗Note that technically speaking, this is the Delta rule. Backpropagation refers to propagating error
gradients across at least one hidden layer.

— 38 —

I.3.3 — Hardware-friendly learning rules

as a conductance update on the crossbar, with a strong focus on device engineering and slight
algorithmic adaptation to hardware constraints [33, 34, 41, 47]. In particular, IBM Research
has demonstrated equivalent accuracy to software-based techniques on CIFAR-10 with a con-
volutional architecture in the particular case of transfer learning where only the classifier is
trained [34]. Along the same lines, Bennett et al advocate the use of extreme learning machine
or NoProp [57], relaxing memory and energy budget, where only the classifier is learnt while
the other weights are kept random and fixed. Random projections, which are of interest in
many signal processing and machine learning applications, can also be implemented through
light scattering [58] ∗. Similarly, Hirtzlin et al propose a robust in-situ learning scheme for
Binarized Neural Networks mixing digital and analog operations, assuming implicitly the
computation of the gradients applied to their RRAM devices [43]. Although the robustness
of gradient descent to gradient binarization [54] or ternarization [59] can be seen as an op-
portunity in the scope of neuromorphic implementations, they still require high precision in
the gradient computation.

Notwithstanding its gigantic popularity, it is widely acknowledged that standard back-
prop is biologically implausible, which is why it is believed not to account for learning in
the brain [60]. Since most of neuromorphic computing research is driven towards biological
inspiration to reproduce the outstanding robustness and energy-efficiency of the brain, back-
propagation is also not hardware-friendly. The reasons to claim the biological unplausibility
of backpropagation appear clearly in Eq. (1.15) and Fig. 1.4:

• the error signal ∂l
∂s(ŷ, y) is routed to upstream layers through the transpose of the

forward weights wN−n> : this is known as the weight transport problem.

• The gradients computed by backpropagation depend on the derivative of the activation
function.

• The gradients computed by backpropagation also depend on the activations of the neu-
rons during the forward phase, which therefore need to be stored during the (backward)
gradient computation phase.

• Backpropagation computation is not carried in the circuitry of inference: inference and
gradient computation are not "handled by the same system".

• Finally, the gradient ∂L
∂wN−n

is not local in space: the resulting weight update to apply
to wN−n does not solely depend on the adjacent neurons sN−n and sN−n+1 but also on
the output layer ŷ.

Most significantly, the non-locality of backpropagation is a serious issue for on-chip learn-
ing. If we were to design a physical deep neural network on a chip out of cascaded crossbars
with resistive memories, the conductance update of each device at each learning iteration

∗This principle led to the development of an Optical Processing Unit, a hardware co-processor.

— 39 —

I.3.3 — Hardware-friendly learning rules

would require information that lies in the output layer of the neural network, possibly very
far apart spatially, thereby creating another bottleneck! Therefore, neuromorphic researchers
and neuroscientists endeavors converge to strive for efficient local learning rules, the former
for hardware energy-efficiency and the latter to explain human intelligence.

3.3.2 Spike Timing Dependent Plasticity (STDP)

Another widely used learning rule in neuromorphic implementations of spiking neural net-
works is the Spike Timing Dependent Plasticity (STDP), which can be considered as a spiking
version of Hebbian learning as defined in Eq. (1.3) [61]. The STDP rule prescribes to modu-
late the synapse update depending on the firing times of the pre-synaptic and post-synaptic
neuron. If a pre-synaptic spike precedes a post-synaptic spike within a specific time-frame,
these two spikes may somewhat be causally related so that the STDP rule increases the value
of the synaptic weight. In the other way around, a pre-synaptic spike may not be causally
related to a previous post-synaptic spike, and the synaptic weight value should therefore be
decreased in such case. This STDP mechanism as described, however, is only an interpreta-
tion and its underlying causality remains questioned.

Figure 3.2: Spike Timing Dependent Plasticity [61]. In vitro experiments have shown
the the rate of synaptic change is correlated with the relative timings o pre and post
synaptic spikes. On average, whenever a pre synaptic spike precedes (resp. follows) a
post-synaptic spike, the synapse gets potentiated (resp. depressed).

Very importantly, STDP has been particularly attractive to neuromorphic researchers for
its locality in space and time: all the information a synapse needs to update its value at any
time is carried by the current value of its adjacent neurons! The STDP rule can be realized on

— 40 —

I.3.3 — Hardware-friendly learning rules

a memristor [62]: if the pre and post-synaptic spikes have appropriate shapes, since the device
is programmed by the voltage difference created by these spikes, the resulting conductance
update can be correlated with the relative firing times of the pre and post-synaptic neurons -
see Fig. 3.3 for an illustration. This memristor-based STDP has proven efficient in simulations
for unsupervised learning of temporal correlations for car detection [63] or hand-written digit
recognition [64] with 92% test accuracy∗. Strikingly, simulations have shown that spiking
memristor-based neural networks employing STDP exhibit an outstanding tolerance to device
imperfections [48] – even more: they show in some situations that the non-linearity of the
devices can be an asset! However, these demonstrations were carried out on a two-layers
perceptron architecture and poorly scale to deeper architectures.

Figure 3.3: Memristor-based Spike Timing Dependent Plasticity. Pre and post
synatic neurons fire at tpre and tpost times respectively with specific pulse shapes. At
all time, the memristive device undergoes the voltage difference created by the pre and
post synaptic pulses. Upper panel, low panel and middle panel show pre-synaptic spikes,
post synaptic spikes and voltage difference through time respectively. The pulse shapes
are chosen so that whenever a pre (resp post) synaptic spike precedes a post (resp
pre) synaptic spike within a time-frame, the voltage difference exceeds a positive (resp
negative) threshold so that the device is subsequently potentiated (resp depressed),
thereby emulating STDP. This principle is employed in [48].

Recent work proposes a reward-modulated version of STDP [65] where the sign of the
STDP curve is modulated by the error signal produced at the output layer. When applying
this version of STDP on the top layers of a spiking convolutional neural network and standard
STDP elsewhere with latency coding, the authors report a test accuracy of 97.2% on MNIST,
an improvement compared to then STDP state-of-the art, yet far from rate-based performance
achieved with backpropagation. Part of the reason why STDP-based approaches may be
limited is that the STDP rule itself is generally not derived as the gradient of an objective
function in the context of classification but rather taken as a biologically plausible learning

∗Which is, however, not as good as logistic regression.

— 41 —

I.3.3 — Hardware-friendly learning rules

heuristic. Only in a few works, some form of STDP-like learning rules were shown to arise
from maximum likelihood approaches to reproduce arbitrary spiking patterns [66], but were
only limited to small systems and simple pattern recognition.

— 42 —

Chapter 4

Towards better credit assignment
for on-chip learning

4.1 What is credit assignment?

What we mean here by "credit assignment" is explained the best by Richards et al. in their
recent proposal of a deep learning framework for neuroscience [60]:

The concept of credit assignment refers to the problem of deter-
mining how much "credit" or "blame" a given neuron or synapse
should get for a given outcome. More specifically, it is a way of de-
termining how each parameter in the system (for example, each synaptic
weight) should change to ensure that [the objective function is optimized].
In its simplest form, the credit assignment problem refers to the difficulty
of assigning credit in complex networks. Updating weights using the gra-
dient of the objective function [...] has proven to be an excellent means of
solving the credit assignment problem in ANNs. A question that systems
neuroscience faces is whether the brain also approximates something like
gradient-based methods.

Credit assignment is of particular relevance in neuromorphic computing: once inputs and
outputs of a given neuromorphic system are encoded, how should we change the physical
observables of this system so that its output is improved with respect to a task, or namely how
do we assign "credit" to these physical observables? In other words, how can the error signal be

— 43 —

I.4.2 — Hopfield Networks & Contrastive Hebbian Learning

physically encoded and even computed by the physics of the system itself? Backpropagation
and STDP mentionned before are only two particular cases of how credit should be assigned to
conductances of resistive devices, and this thinking extends well beyond to more complicated
physical systems reported in the neuromorphic litterature. For instance, it was shown that the
coupling physics of magnetic oscillators could be leveraged for the classification of vowels [67],
with a learning scheme based on complex physics that it is worth describing to convey how
critical credit assignment can be in neuromorphic systems. Input vowels are encoded as
frequencies emitted by input magnetic oscillators that can couple in frequency with other
magnetic oscillators. The classification output is decoded as synchronization patterns between
oscillators, for instance two specific oscillators A and B should systematically be synchronized
the vowel "a" is presented. If upon presenting the vowel "a" during training A and B are not
synchronized, credit is assigned to the current injected in A and B so that their natural
frequencies get closer, until A and B are synchronized.

However, the credit assignment schemes used in the neuromorphic litterature have yet to
scale to bigger systems. The belief exposed in this thesis is that in order to generalize a credit
assignment mechanism to bigger neuromorphic systems, it should preserve some theoretical
guarantee that the objective function of interest is optimized. In the following sections, we
present some alternatives to backpropagation that can approximate gradients of an objective
function that exist in the machine learning and computational neuroscience literature, but
have yet to be explored in neuromorphic computing, in order to motivate the objectives of
this thesis.

4.2 Hopfield Networks & Contrastive Hebbian Learning

4.2.1 A brief history

Historically, since the McCulloch-Pitts neuron model was proposed in 1943, the research
in neural networks split into two distinct, though permeable, quests: the development of the
deep learning approach to AI we described earlier, and computational neuroscience to better
understand the brain.

In 1982, at about the same time when backpropagation was developped, John Hopfield came
up with a model of the human memory called content-addressable memories", or "associative
memories", which are today remembered as Hopfield Networks [68]. These networks learn
to remember input patterns so that after learning, if part of the input is removed, it can be
recovered by sampling the model. Hopfield networks were first trained with Hebbian learning
rules of the kind of Eq. (1.3)-(1.4), which feature spatial locality: the weight update on wij
solely depends on the neurons xi and xj , contrary to backpropagation. Also, within the
scope of this thesis, it is important to point out at this stage that the Hopfield network is

— 44 —

I.4.2 — Hopfield Networks & Contrastive Hebbian Learning

one of the first energy-based neural network model: each configuration of the neural network
is associated to a scalar value depending on the values of the weights called an "energy".
Learning consists in adjusting the weights, thereby deforming the energy landscape seen by
the neurons, so that the energy minima correspond to the input patterns. When "sampling"
the model from a corrupted input, the neurons descend the energy landscape until reaching
a minima and should therefore recover the input patterns that have been learnt. In Hopfield
networks, neurons are binary and evolve according to deterministic equations which descend
the model energy function. Later in 1985, David Ackley and Geoffrey Hinton proposed the
Boltzmann Machine model [69] taking its name and inspiration from the notorious theoretical
physicist who pioneered statistical mechanics. In this model, input patterns should also be
learnt as minima of an energy landscape, neurons assume binary values but are sampled
stochastically: minima of the energy function correspond to modes of the model distribution.
The introduction of stochasticity into energy-based models not only made this approach closer
to biology but also helps neurons escape local minima, also called "spurious patterns", of the
energy landscape.

Boltzmann machines, whose posterior distribution is intractable in general and therefore
makes inference difficult, lead to the development of Restricted Boltzmann Machines (RBM),
first known as "harmoniums" [70]. RBMs are two-layered Boltzmann Machines without inter-
nal connections within each layer, so with "restricted" connections. Owing to their simplified
topology, inference is tractable in Restricted Boltzmann Machines and their learning can
be achieved with Contrastive Divergence [71] which also prescribe a spatially local learning
rule∗. Later, Deep Boltzmann Machines extended Boltzmann Machine learning to stacks of
Restricted Boltzmann Machines, employing variational inference to approximate the posterior
distribution of the network †.

Without delving into technicalities, it is useful at this stage to convey intuition about
energy-based learning to prelude this thesis. Contrastive Divergence, which is employed to
train all variants of Boltzmann Machines previously mentionned, can be seen as a stochastic
version of Contrastive Hebbian Learning, which was first introduced by Ackley and Hinton [69]
and later formulated in a purely deterministic setting by Javier Movellan [72]. Let us assume
a neural network (e.g. a Boltzmann Machine) with a global state variable s whose energy
reads:

E = −1
2s
> · ws, (4.1)

where w are the weights of the synapses connecting the neurons s. We also assume that
the neurons evolve according to certain dynamics t → st towards decreasing values of the

∗Part II will further detail Restricted Boltzmann Machine and Contrastive Divergence.
†Part III provides further details on Deep Boltzmann Machines and variational inference.

— 45 —

I.4.2 — Hopfield Networks & Contrastive Hebbian Learning

Figure 4.1: Contrastive Hebbian Learning. This figure illustrates Eq. (4.2). The
plain and dotted lines represent the energy landscape seen by the neurons before and
after learning respectively. By definition, neural dynamics evolve towards minima of the
energy landscape, denoted here as smodel

∗ and called a ’model pattern’. At the beginning
of learning, smodel

∗ does not correspond to configurations that account for the data
that we call here "data patterns" (sdata

∗): for instance for discriminative models the
resulting output layer does not give the ground-truth target or for generative models the
resulting visible layer does not correspond to the input data. The learning rule prescribed
Eq. (4.2) amounts to reshape this energy landscape by increasing the energy of smodel

∗
(−s∗,model

i s∗,model
j in Eq. (4.2)) and decreasing the energy of sdata

∗ (+s∗,data
i s∗,data

j in
Eq. (4.2)) so that the system subsequently evolves towards data patterns.

energy E that we denote s∗, typically the dynamics read ds/dt = −∂E/∂s. Using the same
notations as before, we also define ŷ as a subset of the neurons s that encodes the output of
the neural network, e.g. ŷ, can be the visible layer of the neural network if we want to train
a generative model, or conversely it can be the output layer of the neural network if we want
to train a discriminative model. Again, let y be the target value for ŷ. The output neurons
of the neural network ŷ may evolve freely or not, depending on whether the target value is
clamped on the output neurons, so that we enforce ŷ = y. The energy minimum that is
reached depends on these two situations, so that we distinguish between s∗,free and s∗,clamped.
Heuristically, s∗,clamped states therefore ’better’ account for the ground-truth output y than
s∗,free states: s∗,clamped states should therefore be minima for the energy. With this intuition
in mind, the learning rule prescribed by Contrastive Hebbian Learning reads for the synapse
wij :

— 46 —

I.4.3 — Biologically plausible credit assignment

∆wij ∝ s∗,clamped
i s∗,clamped

j − s∗,free
i s∗,free

j . (4.2)

Note from Eq. (4.1) that Eq. (4.2) amounts to increase the energy of s∗,free and to decrease
the energy of s∗,clamped. Therefore, upon iterating Eq. (4.2), the energy landscape minima
correspond to the network states where ŷ ∼ y.

4.2.2 Hardware implementations

One intermediate path towards reducing the gap between STDP-based and gradient-based
approaches is to engineer STDP learning rules properly to that they descend the gradient
of an objective function. In their event-based version of Contrastive Divergence, Neftci et al
propose a version of STDP that is able to train a spiking Restricted Boltzmann Machines
for discrimination and generation on MNIST, which is shown to approximate Contrastive
Divergence that itself is an approximation of the gradient of the log-likelihood [73], achieving
91.9% test accuracy on MNIST, thereby close to the rate-based performance by less than 2%.
This algorithm recently led to the first ∗ experimental realization of a fully hardware spiking
Restricted Boltzmann Machines [75] where synapses are made up of PCM devices and which
can achieve 92% training accuracy over 100 MNIST samples.

The philosophy of the research presented in this thesis goes along the same direction: find-
ing or building upon hardware friendly learning rules that preserve some theoretical guaran-
tees.

4.3 Biologically plausible credit assignment

Along with Contrastive Hebbian Learning, there have been many attempts in the neuroscience
and deep learning fields to account for how the brain might perform credit assignment in a
way that is as efficient as backpropagation on standard learning benchmarks.

4.3.1 Reinforcement-based credit assignment

Many credit assignment mechanisms are based on reinforcement learning techniques. In
this learning paradigm, an agent evolves in an environment which may reward or punish the
agent depending on its state, as neuromodulators like dopamine do it in the brain. Therefore,
learning consists for the agent in determining an optimal policy giving the best action to take

∗Prior work proposed a hybrid hardware-software implementation of a Restricted Boltzmann Machine
where neuron dynamics were emulated off-chip [74].

— 47 —

I.4.3 — Biologically plausible credit assignment

given its current state to maximize its cumulated reward over a trajectory in the environment.
In most cases, the agent determines an optimal policy by building a map of reward estimates,
also called Q-values. The agent should then find a balance between exploiting states of highest
estimated reward and random exploration of states, which is also known as the exploitation-
exploration trade-off.

Attention-Gated Reinforcement Learning (AGREL [76] or Q-AGREL in its most general
version [77]) is a version of Reinforcement Learning applied to neural networks where during
the forward phase, the prediction is seen as an action taken based on the output activations.
Their values are interpreted as the model estimate of the rewards, or "Q-values", where the
highest reward corresponds to the target output. During the backward phase, the network
does not receive an explicit teacher signal depending on the target output, but gets rewarded
or not depending on the predicted output. The synapse update is subsequently gated by a
global reinforcement signal and the subset of neurons that were responsible for the prediction
through an "attention" mechanism with specific feedback weights. Conversely, all the neurons
are involved in backpropagation with the transpose feedforward weights. On average, the
resulting weight updates approximates those provided by backpropagation.

Other techniques known as Node Perturbation and Weight Perturbation [78] consist in
computing loss gradients by perturbing neurons ("nodes") or weights with noise and measuring
the subsequent change in the loss value, also employing reinforcement learning techniques.
However, in real neural circuits, it may not be possible to distinguish the injected noise from
the intrinsic noise of the circuit, and therefore tell what caused the perturbation of the loss.
Regression Discontinuity Design (RDD) overcomes this issue by inferring such causality using
thresholding effects [79].

4.3.2 Credit assignment with generative models

Some attempts to propose biologically plausible learning models rely on the use of stochastic
generative models.

In Difference Target Propagation (DTP), the error signal within each hidden layer is not
a gradient but a target value [80]. While the target value for the output layer is simply the
ground-truth target of the training sample, target values for hidden layers are computed by
propagating upper target values with approximate inverses of the forward functions. These
layer-wise inverse functions are approximated as auto-encoders where each of them learns to
reconstruct a hidden layer from the upper hidden layer, without using the transpose of the
forward weights to go backward.

— 48 —

I.4.3 — Biologically plausible credit assignment

Another approach is provided by the predictive coding framework [81] where the whole
model is probabilistic with each layer being Gaussian conditionally on the previous layer.
Maximizing the log-likelihood of the model given an input stimulus with respect to the neural
states and the synapses yield local dynamics for the neurons and the synapses, where it is
shown that in some limit, the synapse update is approximately the same as the one given by
backpropagation. However, the error signal is routed by the transpose of the forward weights.

4.3.3 Credit assignment without weight transport

As emphasized in subsection 3.3.1, one biologically unplausible feature of backpropaga-
tion is the use of the transpose of the forward weights to route error signals back into the
network. In the previously described approaches, Attention-Gated Reinforcement Learning
(AGREL) and Target Propagation use distinct backward weights. Node Perturbation in its
original version does not use specific backward weights, until recently where it is proposed to
learn backward weights so that the error signals routed by these weights match the best the
gradients computed by Node Perturbation [82].

An impactful paper showed that even when random weights are used as feedback weights
in place of the transpose of the forward weights, learning occurs with a resulting performance
close to backpropagation on benchmark visual tasks [83]. They also suggest that the un-
derlying learning mechanism at stake relies upon the alignment of these backward weights
with forward weights, a phenomenon known as Feedback Alignment, which later gave rise
to Direct Feedback Alignment which uses feedback skip connections [84]. Bartunov et al
showed that Feedback Alignment did not scale to complex visual tasks [85]. Xiao et al report
a good peformance on ImageNet with a similar algorithm called Sign-Symmetry [86] where
only the sign of the forward and backward weights should coincide, an hypothesis that they
biologically justify. Recent work has shown that with two different mechanisms that improve
the agreement between forward and backward weights, Feedback Alignment can be scaled up
to hard visual tasks even better than Sign-Symmetry [87].

4.3.4 Assigning credit to apical dendritic compartments

In most conventional graphical presentations, neurons are represented as blobs in directed
computational graphs so that, from a biologicaly prospective, they are mostly assimilated
to their somas. So it seems, at first sight, that the neural dynamics are uniquely defined
by feedforward equations of the kind of Eq. (1.14), while backpropagation is more of an
artificial computation backward through the feedforward network. For biological soundness
though, it is tempting to symmetricize the forward and the backward passes, so that the
backpropagation of errors is itself part of the neural dynamics. In this case, using the same
notations as section 1.2, each neuron voltage membrane sn integrates sensory bottom-up

— 49 —

I.4.3 — Biologically plausible credit assignment

information vnB ∼ wn · sn−1 and top-down error signals vnA ∼ wn+1> · ∂L
∂sn+1 . Therefore, each

neuron needs two dendritic compartments to integrate the basal voltage vnB and the apical
voltage vnA. Using the terminology given before, credit is assigned to apical dendritic voltage
in this framework.

Figure 4.2: Dendritic models. Each neuronal layer of membrane potential sn integrates
bottom-up signals through basal compartments of voltage vnB and top-down signals
through apical compartments of voltage vnA. Dendritic models and associated algorithms
are designed so that basal and apical compartments integrate data information (vnB ∼
wn · sn−1) and error information (vnA ∼ wn+1> · ∂L

∂sn+1) respectively.

SpikeGrad [88] is an example of a bi-compartment model where integrate-and-fire neurons
process bottom-up input spikes and error-discretized spikes in separate voltage compartments,
with the exact same kind of dynamics for forward and backward passes. However, it requires
to retain the neural activations of the forward passes to compute surrogate derivatives and
gradients requested for the weight update and somehow remains close to standard backprop-
agation by requiring two phases, where each neuron processes successively bottom-up (data),
then top-down (error) information. It is very likely though that in real biological systems,
neurons can handle both kind of inputs at the same time, so that learning proceeds in one
phase only! How a neuron can distinguish "pure" error top-down signals from self-generated
top-down signals is still a very interesting open question.

In this purpose, Sacramento et al have proposed a dendritic micro-circuit which learns to
cancel these intrinsic top-down inputs through the use of interneurons: whenever an external
error signal appears, it cannot be explained away by the micro-circuit so that apical dendritic
compartments perfectly encode an error signal [89]. Another study showed that the dendritic
activity was reflected in the probability that a burst of spikes occurs, suggesting that top-

— 50 —

I.4.3 — Biologically plausible credit assignment

down error signals are encoded as bursts and bottom-up signals as single spikes [90].

4.3.5 Temporal credit assignment

Another approach to credit assignment is to compute error gradients through time. Bi-
ological neuronal networks are dynamical systems governed by temporal equations which,
from the deep learning viewpoint, can be classified in the broader class of Recurrent Neural
Networks (RNNs) where the computional graph is both deployed in space (from one layer to
another) and time (from a time step to the next one). Applying backpropagation in such a
neural network therefore amounts to go backward in time, which is why backpropagation in
this context is more specifically called Backpropagation Through Time (BPTT) [91].

However, one of the goal of temporal credit assignment is to avoid going backward in time
to compute error gradients but rather compute them in a forward-time fashion. Real Time
Recurrent Leaning (RTRL) [92] is one of the earliest proposals of forward-time computation
of the gradient provided by backpropagation through time, which precludes the need to store
activations of the neurons at each time step of the forward phase. Recurrent Backpropagation
(RBP) [93,94] can be seen as one particular case of backpropagation through time when it is
applied to convergent RNNs which reach a steady state: the error signal is backpropagated
through this steady state so that the computation of the error jacobians does not require
anything else but the value of this steady state.

Very recently and in the same spirit as RTRL, Eligibility Propagation (e-prop) [95] was
proposed as a biologically plausible technique to approximate BPTT gradients in an online
and forward-time fashion in spiking networks, using the combined trick of synaptic eligibility
traces to capture long-term dependencies and approximating spikes by differentiable proxies
[96]. In spite of the tremendous potential of e-prop with regards to neuromorphic computing,
although the gradient computation happens online, it cannot be conducted by the system
itself: from a hardware prospective, it would require an external circuitry and subsequent
overhead.

Equilibrium Propagation [97], the central algorithm of this thesis, is a variant of Contrastive
Hebbian Learning where the target y is weakly clamped to the output neurons ŷ through a
small nudging strength β. Albeit the simplicity of this modification of Contrastive Hebbian
Learning, Equilibrium Propagation is endowed with strong theoretical guarantees for any
network topology∗. The core idea of Equilibrium Propagation is to first let the system reach
a steady state given a static input on the visible layer. Then, the error in the output layer
is encoded as a force which drives the whole system towards lower loss: because the system

∗Part III is dedicated to introducing thoroughly Equilibrium Propagation and its variants.

— 51 —

I.4.4 — Main results of this thesis

initially does not move, subsequent motion encodes gradients. Heuristically if neurons are
described by a variable s and the loss of interest is denoted L: ṡ ∼ ∂L

∂s . Moreover, the
learning rule prescribed by Equilibrium Propagation, which is rigorously shown to optimize
the loss, is spatially local, an important feature for on-chip learning as we emphasized before.
Therefore, the gradients of the loss are computed by the physics of the system itself: the
system sustains both inference and gradient computation, with a local learning rule, without
calling for the need of an external circuitry! Consequently, Equilibrium Propagation is both
hardware friendly and mathematically justified, therefore extremely promising to scale on-
chip learning to deep neural networks.

4.4 Main results of this thesis

The objective of this thesis is to address the two fundamental components of on-chip learning
with two biologically plausible learning algorithms. We investigate the conductance update
component of learning on Restricted Boltzmann Machines, and the gradient computation com-
ponent with Equilibrium Propagation. Restricted Boltzmann Machine training and Equilib-
rium Propagation bear some resemblance that will be highlighted in part III. More precisely,
the contributions of this thesis are the following:

• We first present an empirical study of the use of memristive devices in Restricted
Boltzmann Machines. We come up with programming strategies to mitigate device
imperfections such as non-linearity, device-to-device and cycle-to-cycle variability, and
to facilitate hyperparameter tuning (part II).

• We reformulate Equilibrium Propagation in a discrete-time setting and demonstrate its
equivalence with Backpropagation Through Time mathematically and numerically. We
propose a convolutional model that is trainable with our discrete-time version of Equilib-
rium Propagation, achieving best performance on MNIST ever reported in the literature
of this algorithm. Finally, we show that our new formulation of Equilibrium Propa-
gation enables a simulation speed-up by a factor 5 to 8. These results can potentially
help prototype faster hardware-friendly implementations of Equilibrium Propagation
(part IV).

• We extend Equilibrium Propagation to the biologically plausible and hardware-friendly
situation where the learning rule becomes local in time: synapses are treated as a dy-
namical system that evolve along with neurons during the second phase of the algorithm,
a new version of the algorithm that we call Continual Equilibrium Propagation. We
demonstrate the equivalence of Continual Equilibrium Propagation with Backpropaga-
tion Through Time, and extend the algorithm to the situation where the connections
between neurons are asymmetric. Finally, we show numerically that the more a model
satisfies the theorem before training, the best its resulting training performance. These

— 52 —

I.4.4 — Main results of this thesis

results can provide an engineering guidance to map Equilibrium Propagation onto neu-
romorphic chips (part V).

• Finally, we discuss ongoing projects and future directions of research for the implemen-
tation of Equilibrium Propagation on neuromorphic hardware.

— 53 —

Part II

Restricted Boltzmann Machines
with memristors

— 54 —

Summary

One of the biggest stakes in nanoelectronics today is to meet the needs of Artificial Intel-
ligence by designing hardware neural networks which, by fusing computation and memory,
process and learn from data with limited energy. For this purpose, we have seen that mem-
ristive devices are excellent candidates to emulate synapses. A challenge, however, is to map
existing learning algorithms onto a chip: for a physical implementation, a learning rule should
ideally be tolerant to the typical intrinsic imperfections of such memristive devices, and local.
Restricted Boltzmann Machines (RBM), for their local learning rule and inherent tolerance
to stochasticity, comply with both of these constraints and constitute a highly attractive
algorithm towards achieving memristor-based Deep Learning. On simulation grounds, this
part gives insights into designing simple memristive devices programming protocols to train
on chip Boltzmann Machines. Among other RBM-based neural networks, we advocate using
a Discriminative RBM, with two hardware-oriented adaptations. We propose a pulse width
selection scheme based on the sign of two successive weight updates, and show that it removes
the constraint to precisely tune the initial programming pulse width as a hyperparameter.
We also propose to evaluate the weight update requested by the algorithm across several
samples and stochastic realizations. We show that this strategy brings a partial immunity
against the most severe memristive device imperfections such as the non-linearity and the
stochasticity of the conductance updates, as well as device-to-device variability.

— 55 —

Introduction

As we pointed it out in part I, fast progress in machine learning and big data processing
make conventional electronics hardware unable to cope with it in the long run, and calls for
breakthrough in artificial intelligence hardware design. Memristive devices are particularly
exciting in this regard, as they can emulate synapses when arranged into crossbar arrays with
interconnecting transistors acting as neurons [98–101] (see Fig. 2.3 of part I), which could
lead to hardware neural networks with an outstanding energy efficiency.

As we mentionned it in subsection 3.3.1 of part I, such hardware neural networks can be
trained ex situ: the synaptic weights are optimally determined on conventional central or
graphical processing units, and then transferred onto memristive hardware [102,103]. Never-
theless, the most exciting applications could come from systems with a capability of learning.
However, such in situ learning comes with two major challenges: the programmation of mem-
ristive devices (section 3.2 of part I), and the learning rule implemented itself (section 3.3
of part I). For self-containedness of this part, we remind the main features of these two
challenges.

First, programming the conductance of memristive device very precisely is difficult, due to
well-known memristive device imperfections, such as non-linear conductance response, cycle-
to-cycle and device-to-device variability. In the case of ex situ learning, this difficulty can
be avoided by using complex tuning protocols. But in the case of in situ learning, such
tuning protocols cannot be used as devices need to be reprogrammed repeatedly throughout
learning.

The second challenge of in situ learning is the non-locality of most neural network learning
rules. This is the case of backpropagation (see subsection 3.3.1 of part I) whose prescribed
weight update does not solely depend on the pre- and post- synaptic neurons. Local learning
rules can conversely be conveniently implemented on hardware with memristive devices which
can be programmed by the voltage difference created by the pre- and post- synaptic neurons
(see subsection 3.3.2 of part I). For this reason, although its theoretical implementation with

— 56 —

memristive devices has been extensively studied [104–110], most demonstrations of memristive
in situ learning hardware is single layer, when backpropagation becomes local [102,111].

In this part, we investigate the possibility to perform in situ learning circumventing these
two challenges entirely. For this purpose, we propose implementing variations of Restricted
Boltzmann Machines (RBMs) that allow in situ learning with a local learning rule, and
where memristive device programming can be achieved in a very simple way. RBMs were
introduced in the previous part (section 4.2 of part I) and have mostly found applications in
pattern detection [112,113]. In software, RBMs often underperform with regards to the most
sophisticated deterministic neural networks on benchmark data sets [114]. However, they
appear extremely attractive with regards to our two challenges. They can indeed be trained
with Contrastive Divergence [115], a spatially local learning rule. Also, their intrinsically
stochastic nature suggests that they could be appropriate to learn in an approximate setting.
Existing works on memristive RBMs [116–120] mainly focused on the CMOS circuitry to
implement the neurons [116,118], matrix multiplication and summation [118], Gibbs sampling
[120], neuron value centering when adding depth [119]. In our study, we perform simulations
and propose methods for achieving in situ learning. We focus in particular on the impact of
the conductance update physics, and of the tuning of hyperparameters, a critical question
for in situ learning.

We first introduce a baseline memristor-based gradient descent algorithm taking only the
sign of the gradient into account. We use this algorithm to train the three most encountered
RBM-based architectures in the neuromorphic literature on the hand-written digit classifi-
cation task (MNIST [121]) with typical values of the device parameters to identify the most
relevant algorithm. In the second part of the paper, we show that reducing the variance of
the gradient estimate provided by Contrastive Divergence improves the performance of the
RBM with non-linear devices. Pointing out the necessity to hand-tune the pulse width in
the baseline algorithm, we come up with a programming pulse width selection based on the
sign of two consecutive weight updates inspired from Resilient Propagation [122–124] which
enlarges the range of eligible pulse widths by up to two decades. Finally, we combine the
two techniques introduced and analyze the effect of variability on the RBM. We conclude by
lessons taught by these results. These results were published in Scientific Reports and the
present part is adapted from this publication [125].

— 57 —

Chapter 1

Background

1.1 Restricted Boltzmann Machines

Figure 1.1: Restricted Boltzmann Machine (RBM). Left: RBM toplogy, with a visi-
ble layer x and a hidden layer s bidirectionally connected through w. Right: Contrastive
Divergence. Given data x0 clamped to the visible layer, the hidden neurons are sampled
from the Bernoulli distribution s0 ∼ p(s = 1|x0). Afterwards given the samples s0, the
visible layer is sampled from x1 ∼ p(x = 1|s0).

A Restricted Boltzmann Machine (RBM) is a stochastic neural network which learns to
generate a data set. In such a network, the neural dynamics are governed by an energy
landscape. After learning, the minima of the energy should correspond to the data set
samples (see Fig. 4.1 on Contrastive Hebbian Learning in part I): neurons evolve towards
a state that accounts for the data. With notations consistent with the introduction of this
thesis, the data is presented to visible units, denoted by x and the other neurons, called
hidden neurons and denoted by s, are correlated to the visible units through the weights
w and evolve accordingly. Visible and hidden units may also be influenced by a constant
input which we model by a bias, respectively bx and bs. Formally, we can write the energy
associated to such a system as:

— 58 —

II.1.1 — Restricted Boltzmann Machines

E(x, s;w, bx, bh) = −s> · w · x− b>s · s− b>x · x, (1.1)

In practice, bx and bs are concatenated to w as an extra column and row, respectively,
so that we absorb their definition into w without loss of generality. In accordance with the
previous notations, we denote θ = {w, bh, bv}. Neurons have binary values {0, 1}, which are
samples of the joint distribution:

p(x, s; θ) = exp(−E(x, s; θ))∑
x̃,s̃ exp(−E(x̃, s̃; θ)) (1.2)

Running the neural dynamics amounts to sampling this distribution. Once the neural net-
work is trained, such sampling is able to regenerate the data set. Learning is achieved by gradi-
ent ascent on the log-likelihood log p(x; θ) = ∑

s̃ p(x, s̃; θ). Denoting Z = ∑
x̃,s̃ exp(−E(x̃, s̃; θ)),

the computation reads:

∆θ ∝ ∂ log p(x; θ)
∂θ

= Z∑
s̃ exp(−E(x, s̃)︸ ︷︷ ︸

= 1
p(x)

∑
s̃

−∂E
∂θ

(x, s̃) exp(−E(x, s̃))
Z︸ ︷︷ ︸

=p(x,s̃)

+
∑
x̃,s̃

∂E

∂θ
(x̃, s̃) exp(−E(x̃, s̃))

Z︸ ︷︷ ︸
p(x̃,s̃)

=
∑
s̃

−∂E
∂θ

(x, s̃)p(s̃|x) +
∑
x̃,s̃

∂E

∂θ
(x̃, s̃)p(x̃, s̃)

= −
〈
∂E

∂θ

〉
data

+
〈
∂E

∂θ

〉
model

where 〈·〉data and 〈·〉model denote a data average and a model average respectively. Taking
the specific form of the energy given by Eq. (1.1), we finally get:

∆wij ∝ 〈sixj〉data − 〈sixj〉model
∆bh,i ∝ 〈si〉data − 〈si〉model
∆bv,j ∝ 〈vj〉data − 〈vj〉model

(1.3)

In Eqs. (1.3), computing the data statistics 〈·〉data is straightforward: the posterior p(s|x)
is a Bernoulli distribution that makes inference tractable. However, computing the model
statistics 〈·〉model, which boils down to sampling the joint distribution p(x, s) is much more
of a challenge. An approach to estimate the model statistics is provided by Constrastive
Divergence [115]. More precisely, Contrastive Divergence provides a biased estimate of the
gradient of the likelihood log p(x; θ). The principle of this algorithm is to update the synaptic
weights of the neural networks wij through:

— 59 —

II.1.2 — Memristor model used and associated algorithm

∆wij ∝ xj(0)si(0)− xj(1)si(1) (1.4)

States "0" and "1" refer to the step of a "Gibbs chain", used to produce samples from the
model. In step 0, the state of hidden neurons s(0) is sampled based on the state of input
neurons x(0), clamped to a training example: si(0) ∼ p(si = 1|xj(0)) where ’∼’ means ’is
sampled from’. In step 1, the state of input neurons x(1) is sampled based on the previous
state of hidden neurons (xj(1) ∼ p(xj = 1|si(0))), and the state of the hidden neurons s(1) is
sampled a second time based on the new state of the input neurons (si(1) ∼ p(si = 1|xj(1))).
Note that p(s|x) = σ(w · x + bs) and p(v|s) = σ(w> · s + bx) with σ(x) = 1/(1 + exp(−x))
so that the activation function used in a Restricted Boltzmann Machine is the usual sigmoid
function - see the excellent introduction to Restricted Boltzmann Machines by Asja Fischer for
derivation details [126]. The most distinctive feature of Contrastive Divergence is its spatial
locality. Unlike the backpropagation rule use for conventional forms of neural networks, the
update to synaptic weight wij only depends on information about the two neurons i and j
to which the synapse is connected.

1.2 Memristor model used and associated algorithm

All the simulations presented in this paper have been carried out at a level which highlights
the effects of the weight update physics and the learning rules it enables on the different
neural network architectures introduced thereafter.

The following model [127] for the memristive devices was used:

dG(t)
dt

=

 Cp exp
(
−βp G(t)−Gmin

Gmax−Gmin

)
(potentiation)

−Cd exp
(
−βd Gmax−G(t)

Gmax−Gmin

)
(depression)

, (1.5)

applying Eq. (1.5) between t0 and t0 + ∆t yields the effective conductance update (whose
explicit form is shown in the Methods):

G(t0 + ∆t) = G(t0) +
∫ t0+∆t

t0

dG(t)
dt

dt, (1.6)

G(t) denotes the conductance at time t of the device, with Gmax and Gmin being the maximal
and minimal conductance, labels p and d referring to potentiation and depression respectively.
∆t appearing in Eq. (1.6) defines the programming pulse width. Note that our memristor
model implicitly takes into account the number of pulses applied to the device: it treats
equally a programming pulse of width ∆t or n programming pulses of width ∆t/n. We also
introduce ∆tmax as the pulse width that is required to bring the conductance from Gmin

— 60 —

II.1.2 — Memristor model used and associated algorithm

Figure 1.2: Memristor model. a) Each weight is implemented with two memristors,
i.e. W = G+ −G−, conductance updates follow the memristor characteristic dictated
by Eq.(1.5). b)-d) Illustration of the memristive imperfections taken into account: b)
non-linearity (conductance dependent update), c) cycle-to-cycle variability (each red
dot represent one stochastic realization of a conductance update), d) device-to-device
variability (from left to right).

to Gmax. Cp and Cd, which encode the amplitude of the voltage difference applied to the
device, is fixed to ensure this last condition (see Methods for details). βp and βd model
the dependence of the conductance update with the current conductance, namely the non-
linearity of the device so that if βp = 0, dG/dt is constant for potentiation. This model can
be used to describe practical memristive devices [98, 127–129]. Our model is similar in form
to existing model [130], as further discussed in Appendix 1.1.

In our work, we assume that each model parameter or weight w is carried by two memristive
devices of conductance G+ and G−, so that w = G+−G− [104] - see Fig. 1.2. In the light of

— 61 —

II.1.2 — Memristor model used and associated algorithm

these notations and for most of our simulations, we assumed that the non-linear parameter
β and the multiplicative factor C were the same not only between two devices of the same
synaptic pair, but also for potentiation and depression - in the absence of device variation,
see below. Depending on the technology used, G+ and G− can only be increased [104, 131],
which our simulation framework can handle. In most cases, a learning algorithm prescribes
an update ∆w, given by the gradient of a loss function for instance or a proxy (as it is the
case for contrastive divergence)

w ← w + α∆w, (1.7)

where α and ∆w are the learning rate and the weight update respectively. However, incre-
menting precisely w = G+ − G− of the amount α∆w along the memristor characteristics
Eq. (1.5) is extremely impractical: it requires to temporarily store the gradient value, read
out the weight values and adjust the programming pulse width accordingly. So in this first
section, we only take the sign of the gradient into account at each learning step and we apply
identical pulses with width ∆t according to a simple heuristic, described in Alg. 1: whenever
the desired weight change ∆w is positive (negative), we increase (decrease) G+ and decrease
(increase) G− by applying a pulse of duration ∆t. Note in Alg. 1 that the conductance
update reads as Gij ← Gij + fp,d(Gij ,∆t) with fp and fd respectively denoting the effective
potentiation and depression occuring over a pulse width ∆t -see Appendix 1.1 for details.

Algorithm 1 Memristor based gradient descent algorithm (Cst)
Input: {wij}, {x(n)} (training set), ∆t (pulse width)
Output: {wij}
1: for each sample x do
2: for each weight wij do
3: Compute ∆wij
4: if sign(∆wij) > 0 then
5: Increase G+,ij and decrease G−,ij with ∆t
6: else
7: Decrease G+,ij and increase G−,ij with ∆t
8: end if
9: wij ← G+,ij −G−,ij
10: end for
11: end for

The pulse width monitors the speed of learning, and therefore has to be tuned. Alg. 1
has been called the Manhattan Rule [122], Unregulated Step Descent [132] or Stochastic Sign
Descent (SSD) [133]. We herein call it Cst to refer to the fact that the programming pulse
width is constant throughout learning.

In this work, we focus on the impact of non-linearity, cycle-to-cycle variability and device-

— 62 —

II.1.2 — Memristor model used and associated algorithm

to-device variability on the resulting performance. Non-linearity is parametrized by β in
Eq. (1.5), we modeled cycle-to-cycle variability by adding a Gaussian noise to each conduc-
tance update, and device-to-device variability by a dispersion on the multiplicative factor
C appearing in Eq. (1.5). In this case, one given device may not respond symmetrically to
potentiation and depression, or devices of the same pair may not respond symmetrically to
potentiation (see Appendix 1.1).

— 63 —

Chapter 2

Results

2.1 Resilience of RBM-based architectures trained with con-
stant programming pulse width

The impact of RBM-based network topology has not been extensively investigated from a
neuromorphic viewpoint [116, 117, 119]: a direct comparison of the influence of the position
of the labels (i.e. placed in the visible layer or in a separate output layer) or of the depth
of the network (i.e. stacking several RBMs) on the resulting performance with different
device parameters has not yet been carried out. Our goal is to compare different RBM-based
architectures on the same learning task in terms of their resilience to device imperfections. We
now present the results obtained when training — under the Cst algorithm with typical device
parameters — the three most encountered RBM-based architectures in the neuromorphic
literature on the MNIST discrimination task (see Table 2.1 and Fig. 2.1).

• The first one is a simple Restricted Boltzmann Machine (RBM) topped by a softmax
classifier [116, 119] ("RBM+softmax"), with labels placed at the end of the network
as the output of a classifier. In this architecture, the connections between input and
hidden neurons, and output and hidden neurons are learned independently.

• The second is a Discriminative Restricted Boltzmann Machine [117,134] taking as inputs
both the picture and the associated label ("Discriminative RBM"). This architecture is
expected to outperform the simple RBM, as the connections between input and hidden
neurons, and output and hidden neurons are learned jointly.

• Finally, we simulate a Deep Belief Net consisting in a stack of two RBMs topped by
a Discriminative RBM ("Deep Belief Net", or DBN) [119, 120]. As this architecture
features three layers of hidden neurons, it is expected to be able to learn more difficult
tasks than the other two architectures.

— 64 —

II.2.1 — Resilience of RBM-based architectures trained with constant programming pulse
width

The three architectures are depicted in Fig. 2.1. A thorough description of the network
hyperparameters and the methodology can be found in the Methods part. Throughout this
part, in contrast with most studies on the multi-layer perceptron, neurons are encoded with
binary values at train and test time, and not real values. Moreover, as we restrict our study
to local learning rules, the Deep Belief Net has only been trained two-layer wise as a stack
of independent RBMs (i.e. "greedy learning" [135]), with no additional joint training with
backpropagation (i.e. "fine-tuning"). Apart from the softmax classifier, all the architectures
are trained using Contrastive Divergence. If not stated otherwise, the mini-batch size is set
to 100.

Figure 2.1: Architectures under study. a) a Restricted Boltzmann Machine topped
by a softmax classifier ("RBM+softmax"), b) a Discriminative Restricted Boltzmann
Machine ("Discriminative RBM"), c) a Deep Belief Net. Blue, grey and green filled
circles stand for visible, hidden and label neurons respectively.

Table 2.1 lists the mean optimal performance over five trials of the three networks on the
test set with typical device parameters. For each set of device parameters, we tuned the pulse
width ∆t until achieving the best performance: we denote the optimal pulse width for a given
set of device parameters by ∆t∗. To make sense of our simulation results, we also performed
floating point standard gradient descent simulation results, referred to as "software-based" in
Table 2.1. In this situation, as an example, a Discriminative RBM achieves over five trials
6.6 ± 0.3% test error with 300 hidden units. This error rate can be reduced by the use of
larger neural networks. With 500 hidden units, the Discriminative RBM achieves 5.4±0.2%,
and 3.6 ± 0.2% with 6,000 hidden units which, up to the choice of hyperparameters, is akin
to state-of-the-art for this type of architecture [114].

In this non-memristive floating point software-based training, the Deep Belief Net outper-
forms the other two networks, as one would expect. When using memristors, the near-linear
case (β = 0.005) yields the best results for the three architectures compared to the non-linear
case (β = 3), as it has been extensively observed on multi-layer perceptrons [104, 109, 136].

— 65 —

II.2.1 — Resilience of RBM-based architectures trained with constant programming pulse
width

RBM+softmax Discriminative
RBM Deep Belief Net

Topology 785-301-10 795-301 785-501-511-2001

Software-
based

Test error 7.0± 0.5% 6.6± 0.3% 5.7± 0.1%

β = 0.005 Test error 8.3± 0.1% 6.4± 0.2% 6.6± 0.2%
∆t∗

∆tmax
1

1000
1

1000
1

150

β = 3 Test error 17.3± 0.3% 15± 0.1% 28.4± 0.3%
∆t∗

∆tmax
1

5000
1

5000
1

10000

Cycle-to-
cycle
variability

Test error 15.1± 0.4% 11.9± 0.5% 9.2± 0.3%

Device-to-
device
variability

Test error 20.3± 0.3% 13.9± 0.5% 22.6± 0.5%

Table 2.1: Test error rate achieved by the three architectures under study on MNIST
with typical values of the device parameters in terms of non-linearity, cyle-to-cycle and
device-to-device variability. Cycle-to-cycle variability is taken as σintra

(Gmax−Gmin) = 6 ·10−3

with β = 0.005. Device-to-cycle variability is taken as
(
σ
µ

)
inter

= 1 with β = 0.005.
Each topology includes the bias. Each simulation was performed over 30 epochs with a
mini-batch size of 100, we indicate the mean error rate and the variance over five trials.

Interestingly, the Discriminative RBM achieves the lowest test error rate. It is not surprising
that the RBM topped by a classifier may not do as well as the Discriminative RBM, as noth-
ing ensures the features extracted by the RBM to be discriminative [114]. By contrast, it is
surprising at first sight that the benefits of depth with the Deep Belief Net are not observed
as in the floating point software-based training: the Deep Belief Net performs similarly to the
Discriminative RBM when using near-linear memristors. However, the shape of the features
accounts for these discrepancies. In Fig. 2.2, we display a 5 × 5 grid of gray-scale pictures,
each of which representing the values of the 784 weights connecting the visible layer to a
given hidden unit: each picture represents what is seen by one hidden unit, thus giving a
direct insight into the features extracted by this hidden unit from the data. As seen per
Fig. 2.2, while the features learned by a standard RBM (i.e. with a proper gradient descent)
are sharply defined stroke-like features [137], those learned by a memristive Discriminative
RBM with the Cst algorithm are coarser. This may explain why stacking several memristive
RBMs may not help for subtle features extraction and subsequently improved performance.

— 66 —

II.2.1 — Resilience of RBM-based architectures trained with constant programming pulse
width

This adds up to the fact we did not fine-tune the Deep Belief Net with backpropagation.

Figure 2.2: Feature extraction. Examples of hidden features extracted by, from left to
right: standard RBM (trained with a learning rate of 0.05), a memristive Discriminative
RBM (trained under Cst with β = 0.005, ∆t/∆tmax = 1/1000), another memristive
Discriminative RBM (trained under Cst with β = 3, ∆t/∆tmax = 1/5000). Each gray-
scale picture represents the values of the 784 weights connecting the visible layer to a
given hidden unit.

In the non-linear case (β = 3), the RBM topped by a softmax and the Discriminative
RBM test error rates jumps by ∼ 9% compared to ∼ 22% for the Deep Belief Net. We can
account for this observation with the corruption of the extracted features which, as seen from
Fig. 2.2, is even more pronounced than in the linear case. As these corrupted features are
fed into the next RBM, this effect cumulates with depth. When passing extracted features
from one RBM to the next one, one stochastic realization may consequently not be enough
to transmit all the information contained by the features. Finally, the pulse width for which
the networks are tuned at β = 3 is lower than in the β = 0.005 case: non-linearity drags
the optimal pulse width to low values to accommodate the abrupt conductance update it
triggers.

When taking cycle-to-cycle variability into account in the linear case (σintra
(Gmax−Gmin) =

6 · 10−3, β = 0.005), the Deep Belief Net appears to be more resilient to the programming
noise than the two other networks: its test error rate only jumps by ∼ 3% against ∼ 6%
for the two other networks. This happens because the pulse width for which the first two
networks are tuned (∆t∗/∆tmax = 1/1000) is lower than the one of the Deep Belief Net
(∆t∗/∆tmax = 1/150), so that the deterministic component of conductance update better
dominates the programming noise. This idea will be further developed in the last section.

The impact of device-to-device variability in the linear case (
(
σ
µ

)
inter

= 1, β = 0.005)
can also be interpreted in the light of the pulse width employed. As the coefficient carrying
device-to-device variability comes in the memristor characteristic Eq. (1.5) as C±∆t, the
bigger ∆t the bigger the effect of device-to-device variability, which may explain why the
Deep Belief Net is less resilient in this regard than the Discriminative RBM: the test error
rate achieved by the latter increases by ∼ 8% compared to ∼ 16% for the former. Although
the RBM topped by a softmax and the Discriminative RBM use the same pulse width,
the former network turns out to be less resilient. The Discriminative RBM optimizes the

— 67 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

joint probability of the inputs and labels so that device-to-device variability affects features
extraction and classification consistently, which is not the case when RBM features are fed
into an independent softmax classifier.

Overall, this comparative study reveals that the Discriminative RBM appears to be the
best candidate architecture in terms of performance for typical values of the device param-
eters. We consequently focus our study in the rest of the part on the Discriminative RBM.
Still, the best performance for a given set of realistic device parameters is not satisfactory
enough, and it is achieved for a very narrow range of pulse widths around the optimum. In
the next two subsections, we propose two intuitive solutions to deal with these two aspects
respectively, and finally combine them in the last subsection.

2.2 Solutions mitigating device imperfections on the Discrim-
inative RBM

2.2.1 Mitigating device non-linearity by reducing the variance of the gra-
dient sign estimate

Gradient descent is inherently stochastic when dealing with a large data set. The first
source of stochasticity comes from sampling a mini-batch of data drawn uniformly and inde-
pendently from the data set and computing an approximate gradient over this mini-batch.
A second source of stochasticity stems from Contrastive-Divergence itself, which relies on
stochastic quantities, as seen in Eq. (1.4).

Most neuromorphic investigations on RBMs [116, 117, 119] exacerbate these two forms of
stochasticity, as Contrastive Divergence is carried out sample by sample (that is with a
mini-batch of size one) using one single stochastic realization per neuron. In this section,
we investigate techniques to reduce the stochasticity. First, we sum Eq. 1.4 across several
samples (i.e. mini-batches). Second, we sum it over multiple stochastic realizations (i.e.
parallel Gibbs chains). This second strategy amounts to encoding neurons by their firing rate
instead of a single spike, and is reminiscent of the rate-coded Contrastive Divergence of [138]
or Event-driven Contrastive Divergence [139].

Fig. 2.3a) and 2.3b) show the test error rate as a function of the pulse width used for the
Discriminative RBM trained under the Cst algorithm, in the linear and non-linear case, and
with different mini-batch sizes and numbers of parallel Gibbs chains used for Contrastive
Divergence.
In the linear case (Fig. 2.3a)), increasing the mini-batch size or the number of parallel Gibbs
chains does not improve significantly the resulting performance. Conversely, when working

— 68 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

Figure 2.3: Mitigating non-linearity. a) Test error rate achieved by the Discriminative
RBM as a function of the programming pulse width for different mini-batch sizes and
different number of parallel Gibbs chains to evaluate the Contrastive Divergence term
(’# CD’) in the near-linear case (β = 0.005). b) Same Figure as a) in the non-linear
case (β = 3).c) Optimal test error rate achieved by the Discriminative RBM for different
values of β with different mini-batch sizes and different number of parallel Gibbs chains
to evaluate the Contrastive Divergence term (’# CD’). For mini-batches size of 100, each
simulation was ran over 30 epochs, 5 times per value of pulse width, error bars indicate
median, first quartile and third quartile. For mini-batches of size 1, each simulation was
ran over 50 epochs 5 times per value of pulse width to ensure convergence.

with non-linear devices (Fig. 2.3b)), decreasing the variance of the gradient estimate dra-
matically makes a difference. Decreasing the variance of the gradient estimate indeed helps
the conductances to move into good directions, especially when the conductance increment
is abrupt and uncontrolled in the non-linear case.

Moreover, the optimal pulse width is dragged towards smaller values when decreasing the
variance of the sign of the gradient estimate: with a reduced variance and within a fixed
number of epochs, the algorithm converges faster and subsequently selects a smaller learning
rate. This could seem counter-intuitive, as in a standard gradient descent framework, the
optimal mini-batch size is known to scale linearly with the learning rate [140]. However, this

— 69 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

analysis does not hold here upon only taking the sign of the gradient into account. Fig. 2.3c)
shows for each value of β the best error rate achieved when using one or 20 parallel Gibbs
chains, both with a mini-batch size of 100, supporting the above statement.

2.2.2 Facilitate pulse width tuning: Resilient Propagation (RProp)

Using a constant pulse width may not be optimal for several reasons. As the amplitude of
the weight updates is directly monitored by the programming pulse width and amplitude, it
has to be tuned with a hyperparameter selection by sweeping through different values. Also,
when using identical pulses throughout learning, undesirably large weight updates may occur
in conductance regions of high non-linearity, entailing weight dithering around optima [104].
Conversely with a pulse width that is too small, conductances may move too slowly for
convergence to be achieved within a reasonable number of epochs. A natural solution is
to drop the Manhattan rule by reading out the numerical value of the gradient itself and
applying the number of pulses required [104, 109, 141], or emulating linearity with pulses
consistent with the current conductance state [142, 143]. However, these solutions are very
expensive in practice: they require reading the state of each memory device at each learning
update. Here, we investigate a simpler to implement solution, which exploits information
about neurons only. In a system, information about neurons is indeed much more readily
available than information about the memory devices.

Interestingly, off-line conductance tuning protocols, gradually increasing the pulse width or
voltage amplitude so long as we get closer to a conductance target or decreasing it otherwise
[102,144], give some insights into appropriate on-line programming schemes. A mathematical
generalization of this heuristic, consisting in increasing the learning rate so long as we get
closer to an optimal model or decreasing it otherwise, is called Resilient Propagation [122–124]
(RProp). Very recently, a RProp-like technique was proposed for training a memristive
multi-layer perceptron and was named the "Local Gain Techniques" [145]. In this work,
we take inspiration in an improved version of RProp with "weight back-tracking" (called
RProp+ in [123]), which cancels conductance updates that overshot an optimal model, and
subsequently reduces the pulse width.

A detailed description of the neuromorphic adaptation of RProp with weight back-tracking
is presented in Alg. 2. Whenever the sign of the gradient remains the same, the pulse
width is increased by a factor η+ > 1 so long as it does not exceed the initial pulse width:
∆tij ← min(η+∆tij ,∆t(0)). This condition emulates a learning rate decay from its initial
value, as seen per Fig. 2.4. When a gradient sign flip is encountered, we cancel the last
conductance change over the same pulse width, and decrease the pulse width for the next
learning step by a factor η− < 1. Note from Alg. 2 that we did not impose a minimal pulse
width, we allow it to decay to zero. By construction, the pulse width is consequently bounded

— 70 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

Algorithm 2 Memristor based gradient descent algorithm (RProp)
Input: {wij}, {x(n)} (training set), {∆t(0)} (initial programming pulse width)
Output: {wij}
1: for each sample x do
2: for each weight wij do
3: if ∆w(n)

ij ∆w(n−1)
ij > 0 then

4: ∆tij ← min(η+∆tij ,∆t(0))
5: Adjust G+,ij and G−,ij according to sign(∆w(n)

ij) with ∆tij
6: else if ∆w(n)

ij ∆w(n−1)
ij < 0 then

7: Apply opposite conductance change over the same ∆tij
8: ∆tij ← η−∆tij for the next learning step
9: Set ∆w(n)

ij = 0
10: else if ∆w(n)

ij ∆w(n−1)
ij = 0 then

11: Adjust G+,ij and G−,ij according to sign(∆w(n)
ij) with ∆tij

12: end if
13: w

(n+1)
ij ← G

(n+1)
+,ij −G

(n+1)
−,ij

14: end for
15: end for

by initial pulse width and zero: ∆tmax = ∆t(0), ∆tmin = 0. This weight-backtracking is
meant to avoid penalizing twice the algorithm by overshooting a local optimum and not
going back far enough to cancel the wrong conductance move, and is handled by the third
logic case ∆W (n)∆W (n+1) = 0 (see Alg. 2). In addition, the pulse width is bounded by the
initial pulse width.

∆w(n)
ij = N

(n)
+,ij −N

(n)
−,ij

n−1 N
(n−1)
+,ij > N

(n−1)
−,ij N

(n−1)
+,ij < N

(n−1)
−,ij N

(n−1)
+,ij > N

(n−1)
−,ij N

(n−1)
+,ij < N

(n−1)
−,ij

n N
(n)
+,ij > N

(n)
−,ij N

(n)
+,ij < N

(n)
−,ij N

(n)
+,ij < N

(n)
−,ij N

(n)
+,ij > N

(n)
−,ij

Case ∆w(n−1)
ij ∆w(n)

ij > 0 ∆w(n−1)
ij ∆w(n)

ij < 0

Table 2.2: RProp table of truth for any mini-batch size and number of parallel Gibbs
chains. In the five remaining cases: ∆W (n−1)

ij ∆W (n)
ij = 0. The notations are defined

on the body text.

As seen in Table 2.2, in spite of the apparent complexity of the RProp, it can be handled
easily when applied to Contrastive Divergence. In Table 2.2, we denote N (n)

+,ij the positive
term of Contrastive Divergence, i.e. vj(0)hi(0), and N (n)

+,ij the negative term, i.e. vj(1)hi(1)),
summed across mini-batches and parallel Gibbs chains. The relative importance of N+,ij
and N+,ij between two consecutive learning steps n − 1 and n can be classified in the nine
logic cases depicted in Table 2.2. From these nine cases, we can deduce the sign of the factor

— 71 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

Figure 2.4: RProp. Typical time trace of the ∆tij/∆tmax statistics in terms of the
mean value (blue plain line) and standard deviation (shaded blue region around the line).

∆W (n−1)
ij ∆W (n)

ij , which is essential for RProp. This shows that our RProp-type rule can be
implemented with knowledge about the neurons only, and relatively simple logics.

Figure 2.5: RProp. a) Test error rate achieved by the Discriminative RBM as a function
of the programming pulse width when trained with Cst and RProp driven pulse widths
for β = 0.005. b) Same as a) with β = 3. Grey dashed lines indicate 10% and 20%
on the left and right panel respectively. Each simulation was ran over 30 epochs with
a mini-batch size of 100, 5 times per value of pulse width, error bars indicate median,
first quartile and third quartile.

Fig. 2.5 shows the comparative performance of the Discriminative RBM trained with
Cst and our RProp rule, for varying initial pulse widths. In the linear case (β = 0.005),
RProp allows achieving a test error that is lower than 10% for ∆t/∆tmax ∈ [10−4,∼ 10−1],
compared to ∆t/∆tmax ∈ [10−4,∼ 2.10−2] when using the Cst algorithm. Similarly in the

— 72 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

non-linear case (β = 3), RProp allows achieving a test error that is lower than 20% for
∆t/∆tmax ∈ [∼ 5.10−5,∼ 7.10−2], compared to ∆t/∆tmax ∈ [∼ 5.10−5,∼ 3.10−3] when using
the Cst algorithm. In this regard, RProp manages to extend the range of eligible pulse widths.

2.2.3 Resilience to cycle-to-cycle variability

In this subsection, we investigate the resilience of the Discriminative RBM to cycle-to-cycle
variability and device-to-device variability using the two techniques introduced above. We
restrict our study to the linear case (β = 0.005) to ensure that our results are not biased by
non linearity.

Figure 2.6: Resilience to cycle-to-cycle variability. a) Test error rate achieved by the
Discriminative RBM as a function of cycle-to-cycle variability for every combination of
the pulse width programming scheme (Cst, RProp) and number of parallel Gibbs chains
used to evaluate Contrastive Divergence (# CD). b) Optimal conductance increment-
to-noise ratio as a function of cycle-to-cycle variability associated with each curve of the
left panel. When using 20 Gibbs chains (blue curves), from σintra/(Gmax − Gmin) =
6.10−3 onwards (vertical gray dashed line) the conductance update overcomes the noise
increase, accounting for the improved performance compared to the use of a single Gibbs
chain (orange curves), regardless of the programming scheme. Each simulation was ran
over 30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error
bars indicate median, first quartile and third quartile.

We present in Fig. 2.6a) the impact of cycle-to-cycle variability upon the performance
of the Discriminative RBM trained under the four possible combinations of the training
techniques studied before. As mentioned above, using longer programming pulses may be
preferable in the presence of cycle-to-cycle variability. Therefore, we tuned learning for the
best pulse width for each given noise intensity.
We first observe that using Cst or RProp only weakly changes the resilience to cycle-to-cycle
variability. By contrast, using multiple Gibbs chains improves the performance by ∼ 6% with
the maximal amount of cycle-to-cycle variability. This result might seem initially surprising,
as the systems with 20 Gibbs chains are tuned at a smaller pulse width than the systems

— 73 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

with one Gibbs chain at low noise, thus intuitively more sensitive to noise.
To facilitate the cycle-to-cycle variability analysis, we present the conductance increment-
to-noise ratio in the linear case 2C∆t∗(0)/(σintra(Gmax − Gmin)) = 2∆t(0)/(∆tmaxσintra),
computed for each level of noise and optimal pulse width ∆t∗(0), in Fig. 2.6b). When
using a single Gibbs chain, the conductance increment-to-noise ratio steadily decreases when
noise increases: the noise increase dominates the conductance update. By contrast, when
using 20 Gibbs chains, this parameter increases with noise from σintra/(Gmax − Gmin) =
6.10−3 onwards: the conductance update starts to overcome the noise increase. This value
corresponds to the level of noise for which a clear difference appears between on and 20 Gibbs
chains in Fig. 2.6a), so that our analysis in terms of the conductance increment-to-noise ratio
relevantly accounts for this discrepancy.
All of these observations boil down to how much the pulse width can be increased to absorb
noise: what matters is not the pulse width for which the algorithms are tuned in the absence
of noise, but how much it can be increased from there to absorb noise. Consequently, it is
precisely because the systems using 20 Gibbs chains are tuned at a smaller pulse width than
(Cst, 1 CD), and itself smaller than (RProp, 1 CD) that the former are more resilient to
noise than the latter.

2.2.4 Resilience to device-to-device variability

While analyzing the impact of cycle-to-cycle variability on the performance involves many
phenomena, understanding the impact of device-to-device variability for the four different
schemes is straightforward and similar to the analysis carried out in Table 2.1: the larger
the pulse width, the bigger the impact of device-to-device variability on the performance.
Fig. 2.7 shows that the schemes using 20 parallel Gibbs chains are more robust to device-
to-device variability than the scheme with Cst driven pulse widths and 1 Gibbs chain, itself
more robust than its RProp counterpart, which is directly accounted by their respective pulse
widths. Table 2.3 summarizes the results obtained with all the possible combinations of the
techniques used and for typical values of the device parameters.

— 74 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

Figure 2.7: Resilience to device-to-device variability. Test error rate achieved by the
Discriminative RBM as a function of device-to-device variability for every combination
of the pulse width programming scheme (Cst, RProp) and the number of parallel Gibbs
chains (# CD). Each simulation was ran over 30 epochs with a mini-batch size of 100,
5 times per value of pulse width, error bars indicate median, first quartile and third
quartile.

— 75 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

1 CD, Cst 1 CD, RProp 20 CD, Cst 20 CD, RProp

β = 0.005 Test error 6.4± 0.1% 6± 0.2% 6.7± 0.1% 6.7± 0.2%
∆t∗

∆tmax
1

1000
1
50

1
5000

1
5000

∆t
∆tmax

s.t.
Test error
< 10%

[10−4, 2.10−2] [10−4, 10−1] [5.10−5, 10−2] [5.10−5, 5.10−2]

β = 3 Test error 14.7± 0.2% 14.9± 0.2% 10.7± 0.2% 10.5± 0.2%
∆t∗

∆tmax
1

5000
1

5000
1

10000
1

10000

∆t
∆tmax

s.t.
Test error
< 20%

[5.10−5, 3.10−3] [5.10−5, 7.10−2] [10−5, 4.10−3] [10−5, 2.10−2]

Cycle-to-
cycle
variability

Test error 16.8± 0.7% 18.8± 0.3% 10.2± 0.2% 11.2± 0.1%

Device-to-
device
variability

Test error 13.9± 0.6% 14.9± 0.4% 9.6± 0.3% 10.8± 0.3%

Table 2.3: Summary of the results obtained on the Discriminative RBM. Cycle-to-cycle
variability is taken to be σintra

(Gmax−Gmin) = 6 · 10−3 with β = 0.005. Device-to-device
variability is taken to be

(
σ
µ

)
inter

= 1 with β = 0.005. Each simulation was ran over
30 epochs with a mini-batch size of 100, 5 times per value of pulse width, error bars
indicate median, first quartile and third quartile.

— 76 —

Discussion

To design hardware-friendly learning rules that are both local and resilient to imprecise
programming of memristive devices, we first studied the three most encountered RBM-based
neural networks in the neuromorphic literature in terms of their performance on the MNIST
discrimination task, when trained under our baseline memristor-based gradient descent al-
gorithm (Cst). With typical values of non-linearity, cycle-to-cycle and device-to-device vari-
abilities, the Discriminative RBM outperforms the two other architectures. Using one bit of
information at each learning step (i.e. the sign of the gradient) with one bit per neuron (i.e.
stochastically sampled binary neurons) while achieving a classification performance akin to
software-based simulations, the Discriminative RBM trained under Contrastive Divergence
appears to be a good candidate for in situ learning. Also, the choice of the pulse width is
critical with respect to the device imperfections. While hand-tuning the programming width
as a hyperparameter selects an optimal value that is never predictable in advance, we can
understand how the weight update physics influence it. Increasing non-linearity or device-
to-device variability, with regards to an ideal device, favors pulse widths that are shorter
to avoid abrupt conductance changes. Conversely increasing cycle-to-cycle variability se-
lects pulse widths that are longer to overshadow the programming noise with respect to the
amplitude of the conductance update.

More importantly, and surprisingly at first sight, the Deep Belief Net does not perform
better than the Discriminative RBM. On the one hand, the inefficiency of depth in our
specific training and inference setting is due to the coarsened feature extraction abilities of
RBMs upon using memristive devices. In the best case (near-linear) the stack of RBMs is
not useful, in the worst case (non-linear), learning is dramatically jeopardized when passing
corrupted features into downstream RBMs. On the other hand, this inefficiency also stems
from not fine-tuning the stack of RBMs with backpropagation, as per our choice to solely
focus on local learning rules.

For advanced applications, Discriminative RBMs could nonetheless be used within deep
neural networks to learn complex tasks, if the transfer learning approach is used. This
approach consists in importing upstreams weights previously trained on software for feature
extraction on a particular kind of data, and training in situ only the last layers on similar but

— 77 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

more specific data [34]. This strategy has been proven in various contexts, and allows training
neural networks on new tasks with relatively modest amounts of data, if the neural network
has been previously trained on a different but yet similar task with important amounts of
data [146]. Therefore, our simplified technique for training should not be considered for
training deep neural networks in their entirety, but for adapting them to new situations, for
example in embedded environments.

In the second section of this part, we showed that decreasing the variance of Contrastive
Divergence by summing it across samples (i.e. mini-batches) and stochastic realizations of
neurons (i.e. parallel Gibbs chains) considerably improved the performance of Discrimina-
tive RBMs, when trained with realistic memristive devices. This trend was seen in terms
of non-linearity, cycle-to-cycle and device-to-device variability. Decreasing the variance of
Contrastive Divergence indeed makes the algorithm more immune to non-linearity: it is no
longer penalized by abrupt conductance changes along wrong directions. And as this tech-
nique selects a smaller programming pulse width, it can smoothen out the discrepancies due
to variability sources. Interestingly, our findings on the Discriminative RBM shed new light
on the impact of the device imperfections by entangling them all around the choice of the
programming pulse width, which has to be tediously tuned when it is fixed throughout learn-
ing (Cst). This statement pushed us to investigate the use of RProp driven pulse widths.
By taking into account the sign of the gradient between two consecutive learning steps, this
technique enables to enlarge the range of sensible pulse widths by up to two decades without
affecting the resilience to the device imperfections. From Fig. 2.6, Fig. 2.7 and Table 2.3, we
acknowledge that the use RProp may not always yield the best error rate when tuned at its
optimal pulse width. However, we see from Fig. 2.5 that RProp outperforms Cst when taking
the whole range of pulse widths into account. Also, while we explicitly studied the combi-
nation of RProp with the use of multiple Gibbs chains with regards to variability sources,
we want to stress here its impact upon non-linearity effects as it appears in Table 2.3: (20
CD, Cst) and (20 CD, RProp) at β = 3 achieve the same optimal performance and the only
effect of RProp is to enlarge the range of pulse widths achieving a test error that is lower
than 20%. Thus this technique is of definite practical interest as it reduces the need to tune
hyperparameters, a major concern for learning in embedded contexts.

Our choices regarding device modeling were guided by the existing literature. For in-
stance, putting device-to-device variability into the multiplicative parameter C appearing in
Eq. (1.5) is inspired by device measurements [129]. Our work would not apply directly to
Phase Change Memory devices which exhibit a strong asymmetry between potentiation and
depression. However, our results would be applicable directly to pairs of Phase Change Mem-
ories associated in 2-PCM structures [104]. We also bear in mind that the use of mini-batches
calls for the design of elaborate memory devices. A promising path to accomplish on-chip
mini-batch gradient descent could be inspired by recent works [34], combining a volatile and
a non-volatile memory that would be updated within and across mini-batches respectively.

— 78 —

II.2.2 — Solutions mitigating device imperfections on the Discriminative RBM

Overall, these results suggest the possibility to achieve on-chip learning with memristive
learning with Discriminative Restricted Boltzmann machines, using a local learning rule and
very simple device programming, and highlights strategies to make the learning process viable
even with highly imperfect devices. More generally, our results highlight that the methods
for making learning functional with imperfect analog hardware can differ from the techniques
used for standard machine learning in software, suggesting the high need for hardware and
learning algorithm codevelopment.

— 79 —

Part III

Introduction to Equilibrium
Propagation

— 80 —

Summary

In this part, we introduce Equilibrium Propagation, one of the central algorithms of this
PhD thesis. We first formally introduce the algorithm as formalized by Scellier [97]. Then,
we connect Equilibrium Propagation with Boltzmann Machines and we present intuitions
about the algorithm. Afterwards, we present the generalization of Equilibrium Propagation
to vector field dynamics [147], where the requirement of an energy function for the system
dynamics is lifted. Finally, we mention the equivalence established between Equilibrium
Propagation and Recurrent Backpropagation [148], a result which inspired one of the main
contributions of this thesis presented in part IV.

— 81 —

Chapter 1

Equilibrium Propagation

1.1 A heuristic view

Before delving into the theory of Equilibrium Propagation, it is worth conveying a heuristic
view of this algorithm. Let us consider a neural network with a visible layer x, one hidden
layer s1 and an output layer ŷ. We assume that this neural network is recurrent: simply
speaking, the neural network evolves through time as a dynamical system — we introduced
recurrent neural networks in Eq. (1.16) of subsection 1.2.3 of part I. We furthermore assume
that the dynamics of the neural network derive from an energy potential: the neural network
dynamics subsequently evolve towards minima of the energy function. More explicitely, if we
denote s = (s, ŷ)> the global variable that labels the state of the hidden and output neurons
altogether, θ the set of all the synapse weight values of the system and E the energy function
of the system, the dynamics are defined as:

ds

dt
= −∂E

∂s
(x, s; θ). (1.1)

It should be noted in Eq. (1.1) that the energy function E explicitly depends on the input
x, the neurons s and the weight values of the synapses θ. By definition, the system reaches
equilibrium when ds

dt = 0 and we denote s∗ the steady state achieving this equilibrium —
therefore ŷ∗ and s1

∗ denote the steady states of the output and hidden layers respectively.

We are in a supervised training context where the goal of learning is to map an input x to
a target y. More precisely here, the goal of learning is to adjust the weights θ so that, upon
clamping an input x to the visible layer and letting the system evolve along the dynamics
given by Eq. (1.1) until reaching equilibrium, the resulting steady state configuration of the
output layer ŷ∗ is the closest to the ground-truth target y — see Fig. 1.1 for a cartoon.

— 82 —

III.1.2 — Theory

Figure 1.1: A heuristic view of Equilibrium Propagation [97]. We consider a recur-
rent neural network with a visible layer x, one hidden layer s1 and an output layer ŷ
whose dynamics are governed by Eq. (1.1) with a given energy function E: the network
evolves towards minima of energy. The energy landscape seen by the neurons is plotted
in dark blue. In the Equilibrium Propagation setting, the goal of learning is to adjust the
weight values of the synapses θ so that upon presenting an input x to the visible layer
of the system (e.g. a MNIST sample, as depicted here), the system evolves towards a
minimum of the energy function so that the resulting steady state of the output layer
(ŷ∗) is the closest to the ground-truth target y. The trajectory of the systemv from its
initial state until reaching equilibrium is plotted with a dashed yellow arrow.

Since this system falls into the category of recurrent neural networks, there is at this stage
a natural intuition that upon defining the appropriate loss function, backpropagation through
time could be used for the purpose of this learning objective, as we showed in subsection 1.2.3
of part I. However, instead of backpropagating error gradients through the computational
graph, Equilibrium Propagation enables the system itself to compute the error gradients
through time. In the next sections, we explain why and how.

1.2 Theory

We now formally introduce Equilibrium Propagation as it is presented in [97]. Again, we
consider a system that is described by a state variable s, parameters θ and associated energy

— 83 —

III.1.2 — Theory

Figure 1.2: Equilibrium Propagation [97]. The system trajectory is depicted with
yellow dotted arrows. During the first phase, the system descends the energy landscape
before the weight update (Ebefore, in dark blue), until reaching the first steady state s∗
(in red). During the second phase, the elastic contribution β` (bright blue) is added
to Ebefore, so that the system subsequently evolves along the free energy landscape F
(orange), until reaching the second steady state sβ∗ (in green). The effect of the learning
rule Eq. (1.5) is to increase the energy of s∗ (red upward arrow) and to decrease the
energy of sβ∗ (green downward arrow), resulting in a new energy landscape (Eafter in
red).

function E(x, s; θ) where x is an input clamped to the visible layer, which models "external
world". Generally, E is a Hopfield energy, as we shall see on the concrete example presented
later in this chapter. We also define a cost function ` that tells how "good" a network
configuration is with respect to a target y, and the loss function L is the cost function
evaluated at equilibrium: L = `(s∗, y) with ∂E

∂s (s∗) = 0, where s∗ is called the free steady state.
The goal of learning is to adjust the parameters θ so that the cost function at equilibrium is
minimal, or more formally:

{
minθ `(s∗(θ), y)
subject to ∂E

∂s (s∗) = 0 . (1.2)

When learning is achieved, the output of the system should spontaneously relax towards y
upon presenting x, namely: ŷ∗ ∼ y. Before stating their main result, Scellier and Bengio also
introduce a free energy function F defined as:

— 84 —

III.1.3 — Algorithm

F(x, s, y; θ, β) = E(x, s; θ) + β`(s, y), (1.3)

where β is called the nudging strength. Physically, the free energy is the landscape seen by
the neurons when they are nudged towards y with strength β: the term β`(s, y) in Eq. (1.3)
can be seen a elastic energy potential of stiffness β that can shift the steady state of a system.
For instance, if we were to think of a pendulum under the influence of gravity, E in Eq. (1.3)
would model gravity energy potential and β` the elastic energy potential of a spring that
would pull the pendulum updwards.

We call the nudged steady state sβ∗ the configuration of the network which minimizes F :
∂F
∂s (sβ∗) = 0. Scellier and Bengio showed that, as expected, sβ∗ has a lower cost than s∗ so
that, in this regard, sβ∗ a "better" state than s∗.

The main result of [97] is that the gradient of the loss function is given by:

∂L
∂θ

= lim
β→0

1
β

(
∂F
∂θ

(x, s, y; θ, β)− ∂F
∂θ

(x, s, y; θ, β = 0)
)
. (1.4)

In particular, when the cost function ` does not depend on θ, as it is the case when we
use a mean-squared error (i.e. `(ŷ, y) = 1

2 (ŷ − y)2), the learning rule reads:

∂L
∂θ

= lim
β→0

1
β

(
∂E

∂θ
(x, s, y; θ, β)− ∂E

∂θ
(x, s, y; θ, β = 0)

)
(1.5)

The interpretation of Eq. (1.5) is very intuitive. When going down the loss function
θ ← θ − α∂L∂θ , the first term of Eq. (1.5) contributes to decreasing the energy of sβ∗ which
is a "good" state while the second term contributes to increasing the energy of s∗ which
is a "bad" state. The energy landscape seen by the neurons is iteratively deformed until
minima of the energy correspond to data configurations. This interpretation exactly follows
the rationale of Contrastive Hebbian Learning as illustrated on Fig. 4.1. Finally, note that
Eq. (1.5) holds for any network topology and does not specify any particular dynamics, so
long as the system under consideration can minimize an energy function E and the associated
free energy function F .

1.3 Algorithm

Let us now describe the algorithmic implementation of Equilibrium Propagation. To perform
the weight update prescribed by Eq. (1.5), we need to get the free and nudged steady states s∗

— 85 —

III.1.3 — Algorithm

Figure 1.3: Implementation of Equilibrium Propagation [97]. We consider a fully
connected architecture with a visible layer taking input x, hidden layer s and output
layer ŷ. During the first phase, the system evolves on its own, under the influence of x,
until reaching the first steady state s∗. During the second phase, the output layer ŷ is
elastically nudged towards the ground-truth target y, until reaching the second steady
state sβ∗ . The learning rule Eq. (1.5) is subsequently applied.

and sβ∗ respectively for a given input x. For this purpose, Equilibrium Propagation proceeds
in two phases. During the first phase, we execute the following dynamics:

ds

dt
= −∂E

∂s
(x, s; θ), (1.6)

until reaching the free steady state s∗ since by definition, Eq. (1.6) minimizes E. Then,
during a second phase, we execute the following dynamics:

ds

dt
= −∂E

∂s
(x, s; θ)− β ∂`

∂s
, (1.7)

until reaching sβ∗ , since Eq. (1.7) minimizes F . Then, along with sβ∗ and s∗, we simply perform
the weight update given by Eq. (1.5). The whole algorithm is summarized by Alg. 3.

— 86 —

III.1.4 — Neural network model trained by Equilibrium Propagation

Algorithm 3 Equilibrium Propagation [97]
Input: x (input data), θ (parameters), y (target)
Output: θ
1: while s is not converged do
2: s← s− dt∂E∂s
3: end while
4: s∗ ← s

5: while s is not converged do
6: s← s− dt∂E∂s − dtβ

∂`
∂s(s, y)

7: end while
8: sβ∗ ← s

9: θ ← θ − 1
β

(
∂E
∂θ (sβ∗)− ∂E

∂θ (s∗)
)

1.4 Neural network model trained by Equilibrium Propaga-
tion

Although Eq. (1.5) holds for any neural network so long as the system under consideration
can minimize an energy function E, the neural networks trained by Equilibrium Propagation
in practice are recurrent neural networks typically described by dynamics of the kind of
Eq. (1.6). More precisely, these RNNs belong to the class of convergent RNNs which, by
definition, converge to a steady state given a static input. Depending on the literature,
these networks are equivalently called "continuous Hopfield networks" and their dynamics are
sometimes abusively said to be Leaky-Integrate and Fire (LIF), although we only consider
here rate-based and not spiking models.

1.5 Example

Let us now apply this theory to a two layer neural network, defined by the following energy:

E(x, s1, ŷ;w1, w2) = 1
2‖s

1‖2 + 1
2‖ŷ‖

2 − σ(s1>) · w1 · σ(x)− σ(ŷ>) · w2 · σ(s1), (1.8)

where σ denotes the activation function. Again, the goal of learning is that the free steady
state of the output layer ŷ∗ coincides the best with a given target y. Typically, we choose
the cost function as a mean squared error function:

`(ŷ, y) = 1
2‖ŷ − y‖

2 (1.9)

— 87 —

III.1.6 — Intuitions about Equilibrium Propagation

Applying Eq. (1.6) with this energy gives the following differential equations for the first
phase of Equilibrium Propagation:

{ dŷ
dt = −ŷ + σ′(ŷ)� w2 · σ(s1)
ds1

dt = −s1 + σ′(s1)�
(
w1 · σ(x) + w>2 · σ(ŷ)

) . (1.10)

During the second phase, the system satisfies the following equations:

{ dŷ
dt = −ŷ + σ′(ŷ)� w2 · σ(s1) + β(y − ŷ)
ds1

dt = −s1 + σ′(s1)�
(
w1 · σ(x) + w>2 · σ(ŷ)

) , (1.11)

where the output layer is elastically nudged towards y and � denotes Hadamard (element-
wise) product. Having the free and nudged steady states of all the neurons, the weight update
given by Eq. (1.5) reads in this particular case:

 ∆w2 = 1
β

(
σ(ŷβ∗) · σ(s1,β

∗)> − σ(ŷ∗) · σ(s1
∗)>

)
∆w1 = 1

β

(
σ(s1,β
∗) · σ(x)> − σ(s1

∗) · σ(x)>
) (1.12)

1.6 Intuitions about Equilibrium Propagation

1.6.1 Going deeper with Boltzmann Machines?

Variational inference in Deep Boltzmann Machines. In the work presented previ-
ously, we stack RBMs and perform greedy learning to train deeper architectures with a local
learning rule, which is theoretically justified by the fact that this procedure increases a lower
bound on the log-likehood p(x; θ) [135]. Increasing further this lower bound implies taking
hidden layer interactions into account. Again, the hardest part in Boltzmann Machine learn-
ing is to sample the posterior distribution of the model. As highlighted in part I, inference is
tractable in a Restricted Boltzmann Machines because the restriction of the synaptic connec-
tions make the model distribution tractable and easy to sample from. For Deep Boltzmann
Machines [149], variational inference is used to approximate the model posterior distribution.
The central idea of variational inference is to approximate the true posterior distribution by
an approximate posterior distribution that maximizes the log-likelihood of the model ∗.The
derivation presented in this subsection goes along the lines of [150].

∗Note that this setting where both the parameters and posterior are unknown and one is needed to compute
the other falls into Expectation-Maximization. During the expectation phase, the posterior is approximated
given parameter values, and during the maximization phase the parameter gradients are computed given
posterior values.

— 88 —

III.1.6 — Intuitions about Equilibrium Propagation

For the sake of concreteness, let us consider a Deep Boltzmann Machine with two hidden
layers defined by the energy:

E(x, s1, s2;w1, w2) = −s1> · w1 · x− s2> · w2 · s1, (1.13)

with p(x, s1, s2; θ) = exp(−E(x, s1, s2; θ))/Z, θ = {w1, w2} and Z the partition function.
More precisely, variational inference aims to approximate p(s1, s2|x; θ) with an approximate
family of distributions q(s|x) = q(s1, s2|x) which are chosen so that they maximize log-
likelihood of the model. For any distribution q, it can be shown with the Jenssen inequality
that p(x; θ) can be lower-bounded by Lb(x, q) as:

log p(x; θ) ≥ Lb(x, q; θ) (1.14)

where Lb(x, q; θ) = p(x; θ) − KL(q(s|x)||p(s|x; θ)), with KL denotes the Kullback-Leibler
divergence of two distributions: KL(q||p) = ∑

h q(h) log q(h)
p(h) . Therefore, the lower-bound is

tight when KL(q(s|x)||p(s|x; θ)) = 0, that is q(s|x) = p(s|x; θ).

Lb(x, q; θ) can be computed explicitly by rewriting it as Lb(x, q; θ) = H(q)−〈log p(x, s; θ)〉q
whereH(q) = ∑

h q(h|v) log q(h|v) denotes the entropy of q. For the Deep Boltzmann Machine
defined per Eq. (1.13, Lb(x, q; θ) therefore rewrites:

Lb(x, q; θ) = H(q) + 〈s1> · w1 · x〉q + 〈s2> · w2 · s1〉q − logZ, (1.15)

where logZ does not depend upon q. To go further in the determination of approximate
posteriors, we need an explicit prior on their form. Mean-field inference is one particular case
of variational inference where a simple prior is assumed.

Mean-field inference. Mean-field inference is a particular case of variational inference
where we choose factorial distributions to approximate q:

q(s1, s2|x) =
∏
i

q1(s1
i |x)

∏
i

q2(s2
i |x), (1.16)

where the probability of each hidden unit is a Bernoulli distribution, i.e. q(s1
i = 1|v) = λ1

i ,
q(s2

i = 1|v) = λ2
i . In this case we can easily show that Eq. (1.15) rewrites:

Lb(x, q; θ) = λ1,> · log λ1 + (1− λ1)> · log(1− λ1) + λ2,> · log λ2 + (1− λ2)> · log(1− λ2)

+ λ1> · w1 · x+ λ2> · w2 · λ1 + logZ. (1.17)

— 89 —

III.1.6 — Intuitions about Equilibrium Propagation

Mean-field inference finds λi values that maximize Lb by cancelling its gradient component-
wise: ∂L(x,q;θ)

∂λi
= 0. We iteratively run the resulting equation for each layer i until we satisfy

a convergence criterion. We have:

{
∂L
∂λ1 = 0
∂L
∂λ2 = 0 ,

⇔
{
λ1 = σ(w1 · x+ w>2 · λ2)
λ2 = σ(w2 · λ1) . (1.18)

In Deep Boltzmann Machine training, mean-field inference enables getting the data statistics
of Contrastive Divergence, while the model statistics are again obtained by Gibbs sampling,
as in RBMs [149]. This whole procedure therefore allows to estimate gradients of the log-
likelihood of Deep Boltzmann Machines, and therefore training.

1.6.2 Neural computation: going down the energy

Assuming the neuron are described, at any moment in time, by their approximate posterior
distribution λt, mean-field inference prescribes that their dynamics should read:

{
λ1
t+1 = σ(w1 · x+ w>2 · λ2

t)
λ2
t+1 = σ(w2 · λ1

t),
(1.19)

until reaching a steady state. By construction of mean-field inference, Eq. (1.19) make the
system evolve towards states of higher probability. We insist on Eq. (1.19) because very sim-
ilar dynamical equations will appear later in this thesis, and according to the same principle.

Taking a step back on the particular Boltzmann Machine setting, a central hypothesis in
neural computation is that the neurons evolve towards configurations of higher probability
under the current "model of the world" associated with the parameters of the model, i.e.
the value of the synapses at time scales such that they can be considered to be static [151].
Writing the configuration of the neurons as s, this hypothesis can be written heuristically as:

ds

dt
≈ ∂ log p(x, s; θ)

∂s
. (1.20)

Assuming an energy model like a Boltzmann Machine: p(x, s; θ) ∝ exp(−E(x, s; θ)),
Eq. (1.20) rewrites:

— 90 —

III.1.6 — Intuitions about Equilibrium Propagation

ds

dt
≈ −∂E(x, s; θ)

∂s
. (1.21)

Therefore, evolving towards more probable configurations under the posterior p(s|x; θ) and
eventually sampling from p(s|x; θ) amounts for the neurons to descend the energy function
E ∗. Equilibrium Propagation builds on this central assumption.

1.6.3 Key ingredients of Equilibrium Propagation

Computing through time, encoding the error as a force and bidirectional inte-
gration. From either a neuromorphic or neuroscience prospective, one fundamental lim-
itation of backpropagation is that it prescribes a learning rule which is not local in space
(see subsection 3.3.1). Another obstacle of backpropagation is that it proceeds backward:
as emphasized in the introduction, it propagates error backward through the computational
graph that is used for inference (see Fig. 1.3 in part I). However, it is very likely that the
brain computes error signals out of its own biophysics in a forward-time fashion. From a
neuromorphic prospective, a "dream chip" would use the same circuitry, more precisely in
our context of study the same crossbar for inference and gradient computation, out of the
sole circuit physics. The idea of performing both inference and gradient computation on the
same circuitry motivates the following ingredients for Equilibrium Propagation:

• The first error signal in the output layer should be encoded physically. Pretty much like
dopamine acts a reward signal upon neural dynamics in the brain, the original error
signal ∂`

∂ŷ should act as a force on the output layer.

• Somehow, by standard backpropagation or any other learning scheme, the error signal
should be routed back into the network. With our constraints, we want error signals
to propagate out of the network dynamics. Therefore, we consider recurrent neural
network where computation happens through time.

• Another consequence is that each neuron should be able integrate both bottom-up (data)
information and top-down (error) information. At the theoretical level, this involves
the existence of bidirectional connections.

In this way, error signals can propagate across time and layers, so that at some point in
time, the learning rule can also become local, which was one of the most fundamental point
to address.

∗This statement is rigorous if we add additive noise to Eq. (1.20) and Eq. (1.21), which is similar to
Stochastic Gradient Langevin Dynamics in the context of Bayesian learning [152]. This detail is not essential
here and is omitted for readability.

— 91 —

III.1.6 — Intuitions about Equilibrium Propagation

The requirement of equilibrium from a topological prospective. Still, the last three
ingredients are not sufficient to complete Equilibrium Propagation credit assignment scheme.
Error signals propagate through time from "above" and the data is sent from "below". With
a biological terminology, we call the input connections to the neuron integrating bottom-up
signals basal dendrites and those integrating top-down signals apical dendrites. Whenever a
neural network model allows for bidirectional integration, it implicitly assume the existence
of such dendritic compartments — see Fig. 1.4. However, it is misleading to think of the
top-down input arriving to each neuron as a pure error signal: without further assumption
about the state of the system or the topology of the neuronal circuit employed, top-down
signals are a mix of error and data information and there is no way that each neuron could
disentangle these two components.

Figure 1.4: Dendritic compartments. Equilibrium Propagation applies to neural net-
works who can integrate signals bidirectionally: roughly speaking, from below and from
above. When a layer receives two inputs (top-down and bottom-up inputs), it implicitly
assumes dendritic compartments: basal compartments (of voltage vB) and apical com-
partments (of voltage vA) integrate bottom-up and top-down signals respectively. We
invoke this biological terminology for completeness, although Equilibrium Propagation
formalism and application do not require these concepts.

The way Equilibrium Propagation proceeds in this purpose is contained in its name: the
requirement of equilibrium. Let us consider again the layered architecture depicted on Fig. 1.3,
and assume that we are in the second phase of Equilibrium Propagation (leftmost part of
Fig. 1.5). At this stage, the system is under the influence of the input and of the nudging
of the output layer. More precisely, the layer s1 integrates both "self-generated" top-down
inputs (blue arrows) and pure error signals (red arrows). During the second phase, s1 only
integrates self-generated top-down inputs. "Substracting" these two situations, we are only
left out with the red arrows: only the error contribution so that the layer s1 only integrates
the error signal coming from the output layer - see Fig. 1.5. This "substraction" corresponds
to a temporal variation of the system, which goes to show that temporal variations of the
system can encode error signals.

— 92 —

III.1.6 — Intuitions about Equilibrium Propagation

Figure 1.5: Equilibrium Propagation from a topological prospective. During the
second phase, the layer s1 integrates both self-generated top-down inputs (blue arrows)
and the error signal coming from the output layer (red arrows). Conversely during the
second phase, s1 only integrates the self-generated top-down inputs. Substracting the
two phases, we are only left out with the red arrows. This simple reasoning conveys
that the temporal variations of the system during the second phase of Equilibrium
Propagation may encode error signals.

The requirement of equilibrium from a dynamical prospective. We can convey
more explicitly why the requirement of equilibrium is essential. Let us assume the network
state is described by a variable s. For a layered architecture of the kind described before
in this thesis, s represents the concatenation of all the layers: s = (s1, s2, · · · , sN = ŷ)>.
Equilibrium Propagation assumes that s evolves as:

ds

dt
= −∂E

∂s
(x, s; θ), (1.22)

where x denotes an input clamped to the visible layer and E the energy function of the
system. Since Eq. (1.22) derives from a potential, after running the dynamics for a sufficiently
long time, the system reaches a steady state s∗ such that ṡ = 0, that is ∂E

∂s (s∗) = 0. Once
equilibrium is achieved, assume a nudging − ∂`

∂ŷ is applied on the output layer: output neurons
are pulled towards directions of decreasing cost, that is towards y. Since the system is initially
at rest, subsequent motion of the system is solely due to this error signal: in Equilibrium
Propagation, temporal variations of the system encodes error signals. Therefore,
the initial perturbation of the equilibrium undergone by the output layer propagates across
layers, hence the name "Equilibrium Propagation". More explicitly, Fischer and Bengio [151]
propose the following heuristic. If the output layer is nudged by − ∂`

∂s , its resulting temporal
variation reads:

— 93 —

III.1.6 — Intuitions about Equilibrium Propagation

˙̂y = − ∂`
∂ŷ
. (1.23)

The resulting variation in the previous layer sN−1 is:

ṡN−1 = ∂sN−1

∂ŷ
· ˙̂y

∝
∂2E

∂sN−1∂ŷ
· ˙̂y

=
(

∂2E

∂ŷ∂sN−1

)>
· ˙̂y

∝ −
(

∂ŷ

∂sN−1

)>
· ∂`
∂ŷ

∝ − ∂`

∂sN−1 , (1.24)

where we have used that ˙̂y = −∂E/∂ŷ and ṡN−1 = −∂E/∂sN−1. This reasoning extends to
previous layers: ṡn ∼ − ∂`

∂sn - see Fig. 1.6.

Importantly, note that the requirement of an energy function for the network dynamics
has two distinct roles. First, it ensures the existence of an equilibrium, as we pointed it
before. Second and in a more subtle way, it also ensures that the Jacobian of the dynamics is
symmetric: ∂sN−1

∂ŷ =
(

∂ŷ
∂sN−1

)>
. This is a condition for the temporal variations of the system

to carry error gradients, or more precisely for the equivalence of Equilibrium Propagation
with Recurrent Backpropagation and Backpropagation Through Time, as we shall see later
in this thesis.

— 94 —

III.1.6 — Intuitions about Equilibrium Propagation

Figure 1.6: Intuition of Equilibrium Propagation. Equilibrium Propagation applies to
recurrent neural networks so that neural computation occurs throughout time. Assuming
the neural network is initially at equilibrium (ṡn = 0), the output layer ŷ undergoes the
perturbation ∂`

∂ŷ . Through reciprocal connections, this perturbation propagates across
time (from left to right) and layers (from top to bottom), with ṡn ∼ ∂`

∂sn .

— 95 —

Chapter 2

Why is Equilibrium Propagation
hardware-friendly?

2.1 Link between Equilibrium Propagation and Spike Timing
Dependent Plasticity

Pre-synaptic activity times the variation of the post-synaptic activity. Following
their preliminary intuition of Equilibrium Propagation, Bengio and Fischer [151] asked the
following question: given that the temporal variations of the membrane potential of the
neurons can encode error gradients after a perturbation from equilibrium as we shown earlier,
what would it take to carry out gradient descent on synapses? They simply noted that,
denoting again L the loss function, using Eq. (1.24) and assuming ∂sn+1

∂wn
= σ(sn):

∆wn = − ∂L
∂wn

= −
(
∂sn+1

∂wn

)>
· ∂L
∂sn+1

∼ σ(sn) · ṡn+1, (2.1)

which gives, element-wise:

∆wn,ij ∼ σ(snj)ṡn+1
i (2.2)

Putting Eq. (2.2) into words, the synaptic update should be proportional to the pre-
synaptic activity times the change of post-synaptic activity.

— 96 —

III.2.1 — Link between Equilibrium Propagation and Spike Timing Dependent Plasticity

Relation to Spike Timing Dependent Plasticity. Very interestingly, the learning rule
prescribed by Eq. (2.2) was shown to resemble STDP [153]. To convey this, let us assume
that each neuron sn spike at a rate proportional to σ(sn): ξnj ∼ σ(snj) ∈ {0, 1}, where ξnj = 1
means that the neuron snj has spiked. We also apply Eq. (2.2) in an event-based fashion,
whenever the presynaptic neuron sn spikes:

∆wn,ij ∼ ξnj ṡn+1
i (2.3)

Let us moreover assume that when the presynaptic neuron spikes (ξnj = 1) at tnj , the post-
synaptic activity is rising (ṡn+1

i > 0), so that Eq. (2.3) gives ∆wn,ij > 0. Appropriate corre-
lation of Eq. (2.3) with STDP as defined by Fig. (3.2) requires tnj < tn+1

i (the post synaptic
neuron spikes after the pre synaptic neuron). Considering a temporal window of length ∆t
preceding the pre-synaptic spike and another one of the same length following it, we have
:P(pre spikes after post) =

∫ tnj
tnj −∆t σ(sn+1

i)dt <
∫ tnj +∆t
tnj

σ(sn+1
i)dt = P(post spikes after pre).

The same reasonning applying when the post-synaptic activity is decreasing (ṡn+1
i < 0), the

learning rule Eq. (2.3) correlates on average with STDP, as shown by Fig. (2.1).

Figure 2.1: Rate-based STDP (taken from [153]). Left: when the presynaptic neuron
spikes (ξnj = 1) at tni (vertical dotted line) and the post-synaptic activity is rising
(ṡn+1
i > 0), the post-synaptic neuron will most likely spike after the pre-synaptic neuron.

Right: Eq. (2.3) yields STDP-like correlations similar to Fig. 3.2. The x-axis denotes the
temporal delay between the post-synaptic and pre-synaptic firing times and the y-axis
the associated weight update.

Connection to Equilibrium Propagation. Now we have yet to clarify how this rate-
based version of STDP defined by Eq. (2.2) is related to the exact learning rule that Equi-
librium Propagation prescribes (Eq. (1.5)). Changing slightly Eq. (2.2) into:

∆wn,ij ∼ σ(snj)dσ(sn+1
i)
dt

, (2.4)

— 97 —

III.2.2 — Generalization of Equilibrium Propagation to Vector Field dynamics

and bearing in mind that the bidirectional connections used in the networks trained by
Equilibrium Propagation should account for both pre-synaptic to post-synaptic and post-
synaptic to pre-synaptic pressures [97], cumulating the resulting total weight change ∆wn,ij
prescribed by Eq. (2.4) over the second phase (from the free steady state until the nudged
steady state) yields:

∆wn,ij ∼
∫ sβ∗

s∗

(
σ(snj)dσ(sn+1

i)
dt

+ σ(sn+1
i)

dσ(snj)
dt

)
=
∫ sβ∗

s∗

d

dt
(σ(sn+1

i)σ(snj))

=
(
σ(sn+1,β

i,∗)σ(sn,βj,∗)− σ(sn+1
i,∗)σ(snj,∗)

)
, (2.5)

hence the connection between Eq. (2.2) and Equilibrium Propagation.

This relationship is especially of interest for neuromorphic researchers. As we pointed
out earlier, STDP can be emulated with memristors in spiking neural networks, assuming
the memristor is programmed by the voltage difference created by the pre and post synap-
tic spikes, where the spike forms are appropriately engineered to create arbitrary STDP-
correlation (see Fig. 3.3). Therefore, there is some intuition behind Eq. (2.5) that Equilibrium
Propagation could be implemented in a event-driven fashion with memristive devices.

2.2 Generalization of Equilibrium Propagation to Vector Field
dynamics

2.2.1 Theory

One limitation of Equilibrium Propagation as it was presented so far is that it requires an
energy function, or equivalently, symmetric synaptic connections. This assumption is neither
biologically plausible, nor hardware-friendly.

To address this issue, a version of Equilibrium Propagation was proposed [147] where
the dynamics of the neurons follow a vector field which does not necessarily derives from a
potential, namely changing Eq. (1.6) into:

ds

dt
= µ(x, s; θ), (2.6)

and the dynamics in the second phase are changed into:

— 98 —

III.2.3 — Equivalence between Equilibrium Propagation and Recurrent Backpropagation

ds

dt
= µ(x, s; θ)− β ∂`

∂s
. (2.7)

Scellier et al. subsequently propose the following learning rule:

∆θ = lim
β→0

1
β

(
∂µ

∂θ
(s∗)

)>
·
(
sβ∗ − s∗

)
. (2.8)

Note that when µ = −∂E
∂s , Eq. (2.8) and Eq. (1.5) coincide.

2.2.2 Example

Let us consider again the same example that we used to illustrate Equilbrium Propagation. In
this context, having model dynamics which do not derive from an energy function amounts to
use asymmetric connection between neurons. Before, wn sustained bi-directional propagation
from sn to sn+1. Now, we denotes wn,n+1 the synapses connecting sn+1 towards sn and wn+1,n
the reverse synaptic connections. So the dynamics of system during the first phase have to
be changed from Eq. (1.10) to:

{
dŷ
dt = µ2 = −ŷ + w2,1 · σ(s1)
ds1

dt = µ1 = −s1 + w1,0 · σ(x) + w1,2 · σ(ŷ)
, (2.9)

and the dynamics of the second phase from Eq. (1.11) to:

{
dŷ
dt = −s2 + w2,1 · σ(s1) + β(y − s2)
ds1

dt = −s1 + w1,0 · σ(x) + w1,2 · σ(ŷ)
. (2.10)

Applying Eq. (2.8) to these dynamics yield the following parameters updates:

∆w2,1 = 1

βρ(s1
∗) ·

(
ŷβ∗ − ŷ∗

)>
∆w1,2 = 1

βρ(ŷ∗) ·
(
s1,β − s1

∗

)>
∆w1,0 = 1

βρ(x) ·
(
s1,β − s1

∗

)> . (2.11)

2.3 Equivalence between Equilibrium Propagation and Recur-
rent Backpropagation

As we pointed out earlier, Bengio and Fischer heuristically showed that, in the first time steps
of the second phase of Equilibrium Propagation, the temporal derivatives of the activations

— 99 —

III.2.3 — Equivalence between Equilibrium Propagation and Recurrent Backpropagation

encoded error signals - see Fig. (1.6). This intuition was first proved formally by Scellier [148]
in terms of an equivalence between Equilibrium Propagation and Recurrent Backpropagation,
an algorithm proposed by Almeida [154] and Pineda [155] which computes the gradients of
L = `(s∗) using the same notations as before. To state formally his result, Scellier introduces
the notion of projected cost function:

L(u, t) = `(s(t, u; θ)), (2.12)

where s(t, u; θ), also called a flow in the theory of dynamical systems, denotes the state of the
neurons at time step t when the system was initially at u: s0 = u. In other words, t→ L(u, t)
gives the value of the cost function all along the system trajectory when it starts from u. In the
context of Equilibrium Propagation, the projected cost function of interest is L(s∗, t) where
the system is initially at the free steady state (s0 = s∗). Recurrent Backpropagation can
compute L(s∗, t) iteratively for increasing t. Based on the way Recurrent Backpropagation
carries out gradient computation through time, Scellier shows that the temporal variations of
the neurons and of the derivative ∂E/∂θ through the second phase of Equilibrium Propagation
can compute the exact same gradients as those computed by Recurrent Propagation, namely:

limβ→0

1
β
∂sβt
∂t = −∂L(s∗,t)

∂s

limβ→0
1
β

(
∂E
∂θ (sβt ; θ)− ∂E

∂θ (s∗; θ)
)

= −∂L(s∗,t)
∂θ

sβ0 = s∗

. (2.13)

Part of this thesis is dedicated to extending this result to an equivalence between Equi-
librium Propagation and Backpropagation Through Time.

— 100 —

Part IV

Updates of Equilibrium
Propagation Match gradients of
BPTT in an RNN with a Static

Input

— 101 —

Summary

In part III, we introduced Equilibrium Propagation as biologically inspired learning algorithm
that can be used to train convergent recurrent neural networks, i.e. RNNs that are fed
by a static input x and settle to a steady state (section 1.4). Training convergent RNNs
consists in adjusting the weights until the steady state of output neurons coincides with a
target y (see Eq. (1.2) in section 1.2 of part III). Convergent RNNs can also be trained
with the more conventional Backpropagation Through Time (BPTT) algorithm (which was
introduced and derived in subsubection 1.2.3 of part III). In its original formulation EP was
described in the case of real-time neuronal dynamics (see Eq. (1.6) in section 1.3 of part III),
which is computationally costly. In this chapter, we introduce a discrete-time version of EP
with simplified equations and with reduced simulation time, bringing EP closer to practical
machine learning tasks. We first prove theoretically, as well as numerically that the neural
and weight updates of EP, computed by forward-time dynamics, are step-by-step equal to
the ones obtained by BPTT, with gradients computed backward in time. The equality is
strict when the transition function of the dynamics derives from a primitive function and the
steady state is maintained long enough. We then show for more standard discrete-time neural
network dynamics that the same property is approximately respected and we subsequently
demonstrate training with EP with equivalent performance to BPTT. In particular, we define
the first convolutional architecture trained with EP achieving ∼ 1% test error on MNIST,
which is the lowest error reported with EP. These results can guide the development of deep
neural networks trained with EP. This chapter is adapted from our paper that was presented
at NeurIPS 2019 as an oral contribution [156]. This work was done in collaboration with
Benjamin Scellier, who carried out the derivation of theorem 4.

— 102 —

Introduction

The remarkable development of deep learning over the past years [157] has been fostered by
the use of backpropagation [11] which stands as the most powerful algorithm to train neural
networks. In spite of its success, the backpropagation algorithm is not biologically plausible
[158], and its implementation on GPUs is energy-consuming [159]. As we mentionned in
part I, hybrid hardware-software experiments carried out by IBM Almaden have recently
demonstrated how physics and dynamics can be leveraged to achieve learning with energy
efficiency. Hence the motivation to invent novel learning algorithms where both inference and
learning could fully be achieved out of core physics.

Many biologically inspired learning algorithms have been proposed as alternatives to
backpropagation to train neural networks. As we mentioned in the section 4.2 of part I,
Contrastive Hebbian learning (CHL) has been successfully used to train recurrent neural net-
works (RNNs) with static input that converge to a steady state, such as Boltzmann machines
and real-time Hopfield networks. Equilibrium Propagation that we thoroughly introduced
in part III also belongs to the family of CHL algorithms to train RNNs with static input.
Interestingly, EP also shares similar features with the backpropagation algorithm, and more
specifically recurrent backpropagation (RBP): it was proved that neural computation in the
second phase of EP is equivalent to gradient computation in RBP - see section 2.3 of part III.

Originally, EP was introduced in the context of leaky integrate-like dynamics for the
neurons (see section 1.4 of the previous chapter). Computing their dynamics involves long
simulation times, hence limiting EP training experiments to small neural networks. In this
chapter, we propose a discrete-time formulation of EP. This formulation allows demonstrat-
ing an equivalence between EP and BPTT in specific conditions, simplifies equations and
speeds up training, and extends EP to standard neural networks including convolutional
ones. Specifically, the contributions of the present work are the following:

• We introduce a discrete-time formulation of EP (Section 2.1) of which the original
real-time formulation can be seen as a particular case (Section 4.1).

• We show a step-by-step equality between the updates of EP and the gradients of BPTT
when the dynamics converges to a steady state and the transition function of the RNN

— 103 —

derives from a primitive function (Theorem 4, Figure 1). We say that such an RNN
has the property of ‘gradient-descending updates’ (or GDU property).

• We numerically demonstrate the GDU property on a small network, on fully connected
layered and convolutional architectures. We show that the GDU property continues to
hold approximately for more standard – prototypical – neural networks even if these
networks do not exactly meet the requirements of Theorem 4.

• We validate our approach with training experiments on different network architectures
using discrete-time EP, achieving similar performance than BPTT. We show that the
number of iterations in the two phases of discrete-time EP can be reduced by a factor
three to five compared to the original real-time EP, without loss of accuracy. This
allows us training the first convolutional architecture with EP, reaching ∼ 1% test error
on MNIST, which is the lowest test error reported with EP. Our code is available on-line
in Pytorch ∗.

∗https://github.com/ernoult/updatesEPgradientsBPTT

— 104 —

https://github.com/ernoult/updatesEPgradientsBPTT

Figure 1: Illustration of the property of Gradient-Descending Updates (GDU property).
Top left. Forward-time pass (or ‘first phase’) of an RNN with static input x and
target y. The final state sT is the steady state s∗. Bottom left. Backprop through
time (BPTT). Bottom right. Second phase of equilibrium prop (EP). The starting
state in the second phase is the final state of the first phase, i.e. the steady state
s∗. GDU Property (Theorem 4). Step by step correspondence between the neural
updates ∆EP

s (t) in the second phase of EP and the gradients ∇BPTT
s (t) of BPTT.

Corresponding computations in EP and BPTT at timestep t = 0 (resp. t = 1, 2, 3) are
colored in green (resp. blue, red, yellow). Forward-time computation in EP corresponds
to backward-time computation in BPTT.

— 105 —

Chapter 1

Background

1.1 Convergent RNNs With Static Input

We consider the supervised setting where we want to predict a target y given an input x.
The model is a dynamical system - such as a recurrent neural network (RNN) - parametrized
by θ and evolving according to the dynamics:

st+1 = F (x, st; θ) . (1.1)

We call F the transition function. Note that Eq. (1.1) uses the same notations as in the
introduction of this thesis (part I). The input of the RNN at each timestep is static, equal
to x. Assuming convergence of the dynamics before time step T , we have sT = s∗ where s∗
is such that

s∗ = F (x, s∗; θ) . (1.2)

We call s∗ the steady state (or fixed point, or equilibrium state) of the dynamical system.
The number of timesteps T is a hyperparameter chosen large enough to ensure sT = s∗. The
goal of learning is to optimize the parameter θ to minimize the loss:

L∗ = ` (s∗, y) , (1.3)

where the scalar function ` is called cost function. Several algorithms have been proposed
to optimize the loss L∗, including Recurrent Backpropagation (RBP) and Equilibrium Prop-
agation (EP), as we saw in section 2.3 of the previous chapter. Thereafter, we reformulate
with new notations Backpropagation Through Time (BPTT) which was introduced in sub-
section 1.2.3 of part I so as to enunciate the main theoretical result of this paper (Theorem 4).

— 106 —

IV.1.2 — Backpropagation Through Time (BPTT)

1.2 Backpropagation Through Time (BPTT)

BPTT was introduced in subsection 1.2.3 of part I, and we use here the same notations,
substituting the index n by t to emphasize that computation happens through time.

With frameworks such as Pytorch or Tensorflow implementing automatic differentiation,
optimization by gradient descent using Backpropagation Through Time (BPTT) has become
the standard method to train RNNs. In particular BPTT can be used for a convergent RNN
such as the one that we study here. To this end, we consider the loss after T iterations
(i.e. the cost of the final state sT), denoted L = ` (sT , y), and we substitute L as a proxy
∗ for the loss at the steady state L∗. The gradients of L can be computed with BPTT. In
order to state our Theorem 4 (chapter 3), we recall some of the inner working mechanisms of
BPTT. Eq. (1.1) can be rewritten in the form st+1 = F (x, st, θt = θ), where θt denotes the
parameter of the model at time step t, the value θ being shared across all time steps. This
way of rewriting Eq. (1.1) enables us to define the partial derivative ∂L

∂θt
as the sensitivity of

the loss L with respect to θt when θ1, . . . θt−1, θt+1, . . . θT remain fixed (set to the value θ).
With these notations, the gradient ∂L

∂θ reads as the sum:

∂L
∂θ

= ∂L
∂θ1

+ ∂L
∂θ2

+ · · ·+ ∂L
∂θT

. (1.4)

This equation is the same as Eq. (1.18) of subsection 1.2.3 (part I), we simply recall it here
for the completeness of this chapter. BPTT computes the "full" gradient ∂L

∂θ by computing
the partial derivatives ∂L

∂st
and ∂L

∂θt
iteratively and efficiently, backward in time, using the

chain rule of differentiation. Subsequently, we denote the gradients that BPTT computes:

∀t ∈ [0, T − 1] :

∇BPTT
s (t) = ∂L

∂sT−t

∇BPTT
θ (t) = ∂L

∂θT−t
,

(1.5)

so that
∂L
∂θ

=
T−1∑
t=0
∇BPTT
θ (t). (1.6)

The gradients ∇BPTT
s (t) and ∇BPTT

θ (t) are the ‘elementary gradients’ computed as in-
termediary steps in BPTT in order to compute the ‘full gradient’ ∂L∂θ . We now reformulate
Eq. (1.19) with this new set of notations.

∗The difference between the loss L and the loss L∗ is explained in Appendix 2.1.

— 107 —

IV.1.2 — Backpropagation Through Time (BPTT)

Proposition 1 (Backpropagation Through Time). The gradients ∇BPTT
s (t) and ∇BPTT

θ (t)
can be computed using the recurrence relationship

∇BPTT
s (0) = ∂`

∂s
(sT , y) , (1.7)

∀t = 1, 2, . . . , T, ∇BPTT
s (t) = ∂F

∂s
(x, sT−t; θ)> · ∇BPTT

s (t− 1), (1.8)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) = ∂F

∂θ
(x, sT−t; θ)> · ∇BPTT

s (t− 1). (1.9)

Proof of Proposition 1. This is a direct application of the chain rule of differentiation, using
the fact that st+1 = F (x, st, θ) - exactly as we did for Eq. (1.19) in subsection 1.2.3 of
part I

— 108 —

Chapter 2

A discrete-time formulation of
Equilibrium Propagation

2.1 Algorithm

In its original formulation, Equilibrium Propagation (EP) was introduced in the case of real-
time dynamics - see section 1.4 of part III. The first theoretical contribution of this chapter
is to adapt the theory of EP to discrete-time dynamics. EP is an alternative algorithm to
compute the gradient of L∗ in the particular case where the transition function F derives from
a scalar function Φ, i.e. with F of the form F (x, s, θ) = ∂Φ

∂s (x, s; θ). The algorithmics of our
discrete-time version are exactly the same as the one of the original version of Equilibrium
Propagation described in section 1.3 of part III. In this setting, the dynamics of Eq. (1.1)
rewrites:

∀t ∈ [0, T − 1], st+1 = ∂Φ
∂s

(x, st; θ). (2.1)

This constitutes the first phase of EP. At the end of the first phase, we have reached steady
state, i.e. sT = s∗. In the second phase of EP, starting from the steady state s∗, an extra term
β ∂`

∂s (where β is a positive scaling factor) is introduced in the dynamics of the neurons and
acts as an external force nudging the system dynamics towards decreasing the cost function
`. Denoting sβ0 , s

β
1 , s

β
2 , . . . the sequence of states in the second phase (which depends on the

value of β), the dynamics is defined as

sβ0 = s∗ and ∀t ≥ 0, sβt+1 = ∂Φ
∂s

(
x, sβt ; θ

)
− β ∂`

∂s

(
sβt , y

)
. (2.2)

The network eventually settles to a new steady state sβ∗ . It was shown in [160] that the
gradient of the loss L∗ can be computed based on the two steady states s∗ and sβ∗ . More

— 109 —

IV.2.2 — Difference between the primitive function Φ and the energy function E

specifically, ∗ in the limit β → 0,

1
β

(
∂Φ
∂θ

(
x, sβ∗ ; θ

)
− ∂Φ
∂θ

(x, s∗; θ)
)
→ −∂L

∗

∂θ
. (2.3)

2.2 Difference between the primitive function Φ and the en-
ergy function E

We want to highlight here the relationship between the discrete-time setting (resp. the
primitive function Φ) of this paper and the real-time setting (resp. the energy function E)
of [148,160].

As we shown in part III, previous work on EP has studied real-time dynamics of the form:

ds

dt
= −∂E

∂s
(x, st; θ) . (2.4)

In contrast, in this chapter we study discrete-time dynamics of the form

st+1 = ∂Φ
∂s

(x, st; θ) . (2.5)

Here we explain why we changed the sign convention in the dynamics and why we called Φ
a ‘primitive function’ rather than an ‘energy function’.

While it is useful to think of the primitive function Φ in the discrete-time setting as an
equivalent of the energy function E in the real-time setting, there is an important difference
between E and Φ. We argue next that, rather than an energy function, Φ is much better
thought of as a primitive of the transition function F . First we show how the two settings
are related.

Casting real-time dynamics to discrete-time dynamics. The real-time dynamics of
Eq. (2.4) can be cast to the discrete-time setting of Eq. (2.5) as follows. The Euler scheme
of Eq. (2.4) with discretization step ε reads:

st+1 = st − ε
∂E

∂s
(x, st; θ) . (2.6)

This equation rewrites

st+1 = ∂Φε

∂s
(x, st; θ) , where Φε(x, s, θ) = 1

2‖s‖
2 − ε E(x, s; θ). (2.7)

However, although the real-time dynamics can be mapped to the discrete-time setting, the
discrete-time setting is more general.

∗The EP learning rule is a form of contrastive Hebbian learning similar to that of Boltzmann machines [69]
and similar to the one presented in [72].

— 110 —

IV.2.2 — Difference between the primitive function Φ and the energy function E

The scalar function Φ is better thought of as a primitive function of F than of an
energy. The primitive function Φ cannot be interpreted in terms of an energy in general. In
the real-time setting, st follows the gradient of E, so that E (st) decreases as time progresses
until st settles to a (local) minimum of E. This property motivates the name of ‘energy
function’ for E by analogy with physical systems whose dynamics settle down to low-energy
configurations. In contrast, in the discrete-time setting, st is mapped onto the gradient of
Φ (at the point st). In general, there is no guarantee that the discrete-time dynamics of
Eq. (2.5) optimizes Φ and there is no guarantee that the dynamics of st converges to an
optimum of Φ. For this reason, there is no reason to call Φ an ‘energy function’, since the
intuition of optimizing an energy does not hold.

The name of ‘primitive function’ for Φ is motivated by the fact that Φ is a primitive of
the transition function F , whose property better captures the assumptions under which the
theory of EP holds. To see this, let us consider again the general form of the dynamics as
defined by Eq. (1.1) with:

F (x, s, θ) = ∂Φ
∂s

(x, s; θ) . (2.8)

For the theory of EP to hold (in particular Theorem 4 as we shall see later), the following
two conditions must be satisfied (see Lemma 2 and Lemma 3 in chapter 3):

1. The steady state s∗ (at the end of the first phase and at the beginning of the second
phase) must satisfy the condition

s∗ = F (x, s∗; θ) , (2.9)

2. the Jacobian of the transition function F must be symmetric, i.e.

∂F

∂s
(x, s; θ)> = ∂F

∂s
(x, s; θ). (2.10)

The condition of Eq. (2.10) is equivalent to the existence of a scalar function Φ(x, s, θ) such
that Eq. (2.8) holds. Going from Eq. (2.8) to Eq. (2.10) is straightforward: in this case the
Jacobian of F is the Hessian of Φ, which is symmetric. Indeed ∂F

∂s (x, s; θ) = ∂2Φ
∂s2 (x, s; θ) =

∂F
∂s (x, s; θ)>. Going from Eq. (2.10) to Eq. (2.8) is also true – though less obvious – and is
a consequence of Green’s theorem. ∗ We say that F derives from the scalar function Φ, or
that Φ is a primitive of F . Hence the name of ‘primitive function’ for Φ.

Assumption of Convergence in the Discrete-Time Setting. In the real-time setting,
the gradient dynamics of Eq. (2.4) guarantees convergence to a (local) minimum of E. In
contrast, in the discrete-time setting, no intrinsic property of F or Φ a priori guarantees that

∗Another equivalent formulation is that the curl of F is null, i.e. ~F = ~0.

— 111 —

IV.2.2 — Difference between the primitive function Φ and the energy function E

the dynamics of Eq (2.5) settles to steady state. This discussion is out of the scope of this
work and we refer to [161] where sufficient (but not necessary) conditions are discussed to
ensure convergence based on the contraction map theorem.

— 112 —

Chapter 3

Forward-Time Dynamics of EP
Compute Backward-Time
Gradients of BPTT

Note that for fixed β > 0, defining the neural and weight updates:

∀t ≥ 0 : ∆EP

s (β, t) = 1
β

(
sβt+1 − s

β
t

)
,

∀t ≥ 1 : ∆EP
θ (β, t) = 1

β

(
∂Φ
∂θ

(
x, sβt , θ

)
− ∂Φ
∂θ

(
x, sβt−1, θ

))
,

(3.1)

Eq. (2.3) rewrites as the following telescoping sum:

∞∑
t=0

∆EP
θ (β, t)→ −∂L

∗

∂θ
as β → 0. (3.2)

Therefore, BPTT and EP compute the gradient of the loss in very different ways: while
the former algorithm iteratively adds up gradients going backward in time, as in Eq. (1.6),
the latter algorithm adds up weight updates going forward in time, as in Eq. (3.2). In fact,
under a condition stated below, the sums are equal term by term: there is a step-by-step
correspondence between the two algorithms. To prove our main result, we first prove two
intermediate Lemmas. Theorem 4 is a consequence of Lemma 2 and Lemma 3 below, which
are stated for general dynamics with a transition function F . Theorem 4 proves formally,
in the context of discrete-time dynamics, the intuition presented in part III that temporal
derivatives of the system during the second phase of Equilibrium Propagation encode error
gradients.

— 113 —

IV.3.1 — Backpropagation Through Time error processes

3.1 Backpropagation Through Time error processes

Lemma 2. In our specific setting with static input x, suppose that the network has reached
the steady state s∗ after T −K steps, i.e.

sT−K = sT−K+1 = · · · = sT−1 = sT = s∗. (3.3)

Then the first K gradients of BPTT satisfy the recurrence relationship ∗

∇BPTT
s (0) = ∂`

∂s
(s∗, y) , (3.4)

∀t = 1, 2, . . . ,K, ∇BPTT
s (t) = ∂F

∂s
(x, s∗, θ)> · ∇BPTT

s (t− 1), (3.5)

∀t = 1, 2, . . . ,K, ∇BPTT
θ (t) = ∂F

∂θ
(x, s∗, θ)> · ∇BPTT

s (t− 1). (3.6)

Proof of Lemma 2. This is a direct application of Proposition 1 along with sT−K = sT−K+1 =
· · · = sT−1 = sT = s∗ so that we evaluate the Jacobians ∂F/∂s and ∂F/∂θ at s∗.

3.2 Equilbrium Propagation error processes

Before stating Lemma 3, we formulate EP for arbitrary transition function F , inspired by
the ideas of [147]. Recall that at the beginning of the second phase of EP the state of the
network is the steady state sβ0 = s∗ characterized by

s∗ = F (x, s∗, θ) , (3.7)

and that, given some value β > 0 of the hyperparameter β, the successive neural states
sβ1 , s

β
2 , . . . are defined and computed as follows:

∀t ≥ 0, sβt+1 = F
(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
. (3.8)

In this more general setting, we redefine the ‘weight updates’ as:

∀t ≥ 1, ∆EP
θ (β, t) = 1

β

∂F

∂θ

(
x, sβt−1, θ

)>
·
(
sβt − s

β
t−1

)
. (3.9)

Note that when F = ∂Φ
∂s , in the liimt β → 0, Eq. (3.9) coincide with the previous definition

of ∆EP
θ (Eq. (3.1)):
∗Note that the stability of the steady state implies that the eigenvalues of the Jacobian ∂F

∂s
(x, s∗, θ) are

smaller than 1 in magnitude. As a consequence of Lemma 2, the gradients ∇BPTT
θ (t) decay (i.e. vanish)

exponentially fast, which ensures that the full gradient
∑K−1

t=0 ∇BPTT
θ (t) converges, even if K → ∞. In the

context of convergent RNNs with a static input, vanishing gradients of BPTT are consequently not a problem,
as it is the case when learning from temporal data with RNNs.

— 114 —

IV.3.2 — Equilbrium Propagation error processes

∆EP
θ (t+ 1) = 1

β

(
∂Φ
∂θ

(
x, sβt+1, θ

)
− ∂Φ
∂θ

(
x, sβt , θ

))
= 1
β

∂2Φ
∂s∂θ

(
x, sβt , θ

)
︸ ︷︷ ︸

= ∂F
∂s

(
x,sβt ,θ

)>
·
(
sβt+1 − s

β
t

)
+ o(β)

Lemma 3. Let ∆EP
s (t) = limβ→0 ∆EP

s (β, t) and ∆EP
θ (t) = limβ→0 ∆EP

θ (β, t) be the neural
and weight updates of EP in the limit β → 0. They satisfy the recurrence relationship

∆EP
s (0) = −∂`

∂s
(s∗, y) , (3.10)

∀t ≥ 0, ∆EP
s (t+ 1) = ∂F

∂s
(x, s∗, θ) ·∆EP

s (t), (3.11)

∀t ≥ 0, ∆EP
θ (t+ 1) = ∂F

∂θ
(x, s∗, θ)> ·∆EP

s (t). (3.12)

Proof of Lemma 3. First, in the limit β → 0, the weight update ∆EP
θ (β, t) of Eq. (3.9) simply

rewrites as Eq. (3.12) by evaluating ∂F/∂s at s∗ and using the definition of ∆EP
s in Eq. (3.1).

Now we prove Eq. (3.10) and Eq. (3.11). Note that the neural update ∆EP
s (β, t) of Eq. (3.1)

rewrites:

∆EP
s (t) =

∂sβt+1
∂β

∣∣∣∣∣
β=0
− ∂sβt

∂β

∣∣∣∣∣
β=0

. (3.13)

This is because for every t ≥ 0 we have sβt → s∗ as β → 0 : starting from s0
0 = s∗, setting

β = 0 in Eq. (3.8) yields s0
1 = s0

2 = . . . = s∗.

Differentiating Eq. (3.8) with respect to β, we get:

∀t ≥ 0,
∂sβt+1
∂β

= ∂F

∂s

(
x, sβt , θ

)
· ∂s

β
t

∂β
− ∂`

∂s

(
sβt , y

)
− β ∂

2`

∂s2

(
sβt , y

)
· ∂s

β
t

∂β
. (3.14)

Letting β → 0, we have sβt → s∗, so that:

∀t ≥ 0,
∂sβt+1
∂β

∣∣∣∣∣
β=0

= ∂F

∂s
(x, s∗, θ) ·

∂sβt
∂β

∣∣∣∣∣
β=0
− ∂`

∂s
(s∗, y) . (3.15)

Since at time t = 0 the initial state of the network sβ0 = s∗ is independent of β, we have:

∂sβ0
∂β

= 0. (3.16)

— 115 —

IV.3.3 — Main result

Using Eq. (3.15) for t = 0 and Eq. (3.16), we get the initial condition on ∆EP
s (0) (Eq. (3.10))

∆EP
s (0) = ∂sβ1

∂β

∣∣∣∣∣
β=0
− ∂sβ0

∂β

∣∣∣∣∣
β=0

= −∂`
∂s

(s∗, y) . (3.17)

Moreover, if we take Eq. (3.15) and subtract itself from it at time step t− 1, we get:

∆EP
s (t+ 1) = ∂F

∂s
(x, s∗, θ) ·∆EP

s (t). (3.18)

Hence Eq. (3.11) and the final result.

3.3 Main result

We can now state our main theoretical result.

Theorem 4 (Gradient-Descending Updates, GDU). Consider the setting with a transition
function of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). Let s0, s1, . . . , sT be the convergent sequence of
states and denote s∗ = sT the steady state. If we further assume that there exists some step
K where 0 < K ≤ T such that s∗ = sT = sT−1 = . . . sT−K , then, in the limit β → 0, the
first K updates in the second phase of EP are equal to the negatives of the first K gradients
of BPTT, i.e.

∀t = 0, 1, . . . ,K :
{

∆EP
s (β, t)→ −∇BPTT

s (t),
∆EP
θ (β, t)→ −∇BPTT

θ (t). (3.19)

Proof of Theorem 4. Note that in the context of convergent RNNs, the equations governing
BPTT (Eq.(3.4)-(3.6)) and those governing EP (Eq. (3.10)-(3.12)) only differ by one matrix
multiplication: the error signals carried by the neurons in BPTT are transmitted from one
timestep to another through ∂F

∂s (x, s∗; θ)> (Eq. (3.5)) while neural updates in the second phase
of EP are transmitted through ∂F

∂s (x, s∗; θ) (Eq. (3.11)). Other things being equal (including
initial condition), −∇BPTT

s (resp. −∇BPTT
θ) and ∆EP

s (resp. ∆EP
θ) satisfy different recurrence

relationship, thereby are different in general. However, since for since we assume here that
F is of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ), the Jacobian matrix of the transition function F is
the Hessian of Φ, thus is symmetric:

∂F

∂s
(x, s, θ)> = ∂2Φ

∂s2 (x, s, θ) = ∂F

∂s
(x, s, θ) . (3.20)

Consequently, −∇BPTT
s (resp. −∇BPTT

θ) and ∆EP
s (resp. ∆EP

θ) satisfy the same recurrence
relationship with the same initial condition, so that they are equal at all time.

— 116 —

IV.3.3 — Main result

The convergence requirement enables to derive the equations satisfied by the neural and
weight updates (Lemma 3). Then, the existence of a primitive function ensures that these
equations are equal to those satisfied by the gradients of BPTT (Lemma 2), with same initial
conditions, yielding the desired equality (Theorem 4).

Note that other algorithms such as RTRL [92] and UORO [162] also compute the gradients
by forward-time dynamics.

— 117 —

Chapter 4

Energy-based and Prototypical
settings

In this chapter, we introduce the two classes of models we have considered in this study.

4.1 Definition

Energy-based setting. The system is defined in terms of a primitive function of the form:

Φε(s;W,Wx) = (1− ε)1
2‖s‖

2 + ε
(
σ(s)> ·W · σ(s) + σ(s)> ·Wx · σ(x)

)
, (4.1)

where ε is a discretization parameter, σ is an activation function, W is a symmetric weight
matrix and Wx the weight matrix connecting the input to the system. In this setting, we
consider ∆EP(βε, t) instead of ∆EP(β, t) and write ∆EP(t) for simplicity, so that:

∆EP
s (β, t) =

sβεt+1 − s
βε
t

βε

∆EP
W (β, t) = 1

β

(
σ
(
sβεt+1

)>
· σ
(
sβεt+1

)
− σ

(
sβεt

)>
· σ
(
sβεt

))
.

∆EP
Wx

(β, t) = 1
β

(
σ
(
sβεt+1

)>
· σ (x)− σ

(
sβεt

)>
· σ (x)

)
. (4.2)

With Φε as a primitive function and with the hyperparameter β rescaled by a factor ε,
we recover the discretized version of the real-time setting of [160], i.e. the Euler scheme of
ds
dt = −∂E

∂s − β
∂`
∂s with E = 1

2‖s‖
2 − σ(s)> ·W · σ(s) − σ(s)> ·Wx · σ(x). We will show that

up to defining properly W and Wx, these equations apply for any number of layers.

— 118 —

IV.4.2 — Demonstrating the property of Gradient Descending Updates (GDU)

Prototypical setting. In this case, the dynamics of the system does not derive from a
primitive function Φ. Instead, the dynamics is directly defined as:

st+1 = σ (W · st +Wx · x) , (4.3)

where again we same the same notations as above for W and Wx. The dynamics of Eq. (4.3)
is a standard and simple neural network dynamics: we will show that up to defining properly
W and Wx, these dynamics apply for any number of layers. Although the model is not
defined in terms of a primitive function, note that st+1 ≈ ∂Φ

∂s (st;W,Wx) with Φ(s;W,Wx) =
1
2s
> ·W · s1

2s
> ·Wx · x if we ignore the activation function σ. Following Eq. (3.1), we define:

∆EP
s (β, t) = 1

β

(
sβt+1 − s

β
t

)
,

∆EP
W (β, t) = 1

β

(
sβ
>

t+1 · s
β
t+1 − s

β>

t · s
β
t

)
,

∆EP
Wx

(β, t) = 1
β

(
sβ
>

t+1 · x− s
β>

t · x
)

(4.4)

4.2 Demonstrating the property of Gradient Descending Up-
dates (GDU)

The approach we propose is to use Theorem 4 as a tool to design neural networks that
are trainable with EP: if a model satisfies the GDU property of Eq. 3.19, then we expect
EP to perform as well as BPTT on this model. We have defined the energy-based setting
and prototypical setting where the conditions of Theorem 4 are exactly and approximately
met respectively (Section 4.1). After introducing our protocol, we show the GDU property
on a toy model (Fig. 4.1) and on fully connected layered architectures in the two settings
(subsubection 4.3.2 and subsubection 4.4.1). We define a convolutional architecture in the
prototypical setting (Section 4.4.2) which also satisfies the GDU property. Finally, we validate
our approach by training these models with EP and BPTT (Table 5.1).

Property of Gradient-Descending Updates. We say that a convergent RNN model fed
with a fixed input has the GDU property if during the second phase, the updates it computes
by EP (∆EP) on the one hand and the gradients it computes by BPTT (−∇BPTT) on the
other hand are ‘equal’ - or ‘approximately equal’, as measured per the RelMSE (Relative
Mean Squared Error) metric.

Relative Mean Squared Error (RelMSE). In order to quantitatively measure how well
the GDU property is satisfied, we introduce a metric which we call Relative Mean Squared
Error (RelMSE) such that RelMSE(∆EP, -∇BPTT) measures the distance between ∆EP and

— 119 —

IV.4.3 — Real-time RNNs in the energy-based setting

−∇BPTT processes, averaged over time, over neurons or synapses (layer-wise) and over a
mini-batch of samples - see Appendix 2.3.2 for the details.

Protocol. In order to measure numerically if a given model satisfies the GDU property,
we proceed as follows. Considering an input x and associated target y, we perform the
first phase for T steps. Then we perform on the one hand BPTT for K steps (to compute
the gradients ∇BPTT), on the other hand EP for K steps (to compute the neural updates
∆EP) and compare the gradients and neural updates provided by the two algorithms, either
qualitatively by looking at the plots of the curves (as in Figs. 4.1 and 4.12), or quantitatively
by computing their RelMSE (as in Fig. 5.1).

4.3 Real-time RNNs in the energy-based setting

4.3.1 Toy model

Equations. The toy model is an architecture where input, hidden and output neurons
are connected altogether, without lateral connections. Denoting input neurons as x, hidden
neurons as s1 and output neurons as s2 = ŷ, the primitive function for this model reads:

Φ
(
x, s1, ŷ

)
= (1− ε)1

2
(
||s1||2 + ||ŷ||2

)
+ε
(
σ(ŷ)> · w1 · σ(s1) + σ(s1)> · w1,0 · σ(x) + σ(ŷ)> · wŷ,0 · σ(x)

)
,

where ε is a discretization parameter. Furthermore the cost function ` is

` (ŷ, y) = 1
2‖ŷ − y‖

2. (4.5)

As a reminder, we define the following convention for the dynamics of the second phase:
∀t ∈ [0,K] : sn,βt = snt+T where T is the length of the first phase. The equations of motion
read in the first phase read:

∀t ∈ [0, T] :
{
ŷt+1 = (1− ε)ŷt + εσ′(ŷt)� (w1 · σ(s1

t) + wŷ,0 · σ(x))
s1
t+1 = (1− ε)s1

t + εσ′(s1
t)� (w>1 · σ(ŷt) + w1,0 · σ(x)),

and in the second phase:

∀t ∈ [0,K] :

ŷβt+1 = (1− ε)ŷβt + εσ′(ŷβt)� (w1 · σ(s1,β

t) + wŷ,0 · σ(x))
+εβ(y − ŷβt)

s1,β
t+1 = (1− ε)s1,β

t + εσ′(s1,β
t)� (w>1 · σ(ŷβt) + w1,0 · σ(x)),

(4.6)

— 120 —

IV.4.3 — Real-time RNNs in the energy-based setting

Figure 4.1: Demonstrating the property of gradient-descending updates in the energy-
based setting on a toy model with dummy data x and a target y elastically nudging
the output neurons s0 (right). Dashed and solid lines represent ∆EP and −∇BPTT

processes respectively and perfectly coincide for 5 randomly selected neurons (left) and
synapses (middle). Each randomly selected neuron or synapse corresponds to one color.

where y denotes the target. In this case and according to the definition Eq. (3.1), the EP
error processes for the parameters θ = {w1,0, wŷ,0, w1} read:

∀t ∈ [0,K] :

∆EP
w1 (β, t) = 1

β

(
σ(ŷβt+1) · σ(s1,β

t+1)> − σ(ŷβt) · σ(s1,β
t)>

)
∆EP
wŷ,0(β, t) = 1

β

(
ŷβt+1) · σ(x)> − σ(ŷβt) · σ(x)>

)
∆EP
w1,0(β, t) = 1

β

(
σ(s1,β

t+1) · σ(x)> − σ(s1,β
t) · σ(x)>

)
,

Experiment. We took 5 output neurons, 50 hidden neurons and 10 visible neurons, using
σ(x) = tanh(x). The data x is a dummy uniformly distributed random input x ∼ U [0, 1] (of
size 1 × 10) and y is a dummy random one-hot encoded target (of size 1 × 5). We run the
protocol described above with ε = 0.08, T = 5000 steps for the first phase, K = 80 steps and
β = 0.01 for the second phase.

— 121 —

IV.4.3 — Real-time RNNs in the energy-based setting

4.3.2 Fully connected architectures

In this subsection, we shall denote N the number of hidden layers, so that in general,
s1, s2, · · · , sN stand for the hidden layers and sN+1 = ŷ is the output layer.

Figure 4.2: Fully connected layered architecture with N = 2 hidden layers.

Equations with N = 2. For this model, the primitive function is defined as:

Φ
(
x, s1, s2, ŷ

)
= 1

2(1− ε)
(
‖s1‖2 + ‖s1‖2 + ‖ŷ‖2

)
+ ε

(
σ(s1)> · w0 · σ(x) + σ(s2)> · w1 · σ(s1) + σ(ŷ)> · w2 · σ(s2)

)
(4.7)

so that the equations of motion read:

∀t ∈ [0, T] :

ŷt+1 = (1− ε)ŷt + εσ′(ŷt)� w2 · σ(s2

t)
s2
t+1 = (1− ε)s2

t + εσ′(s2
t)� (w1 · σ

(
s1
t

)
+ w>2 · σ(ŷt))

s1
t+1 = (1− ε)s1

t + εσ′(s1
t)� (w0 · σ (x) + w>1 · σ(s2

t))

In the second phase:

∀t ∈ [0,K] :

ŷβt+1 = (1− ε)ŷβt + εσ′(ŷβt)� w2 · σ(s2,β

t) + βε(y − ŷβt)
s2,β
t+1 = (1− ε)s2,β

t + εσ′(s2,β
t)� (w1 · σ

(
s1,β
t

)
+ w>2 · σ(ŷβt))

s1,β
t+1 = (1− ε)s1,β

t + εσ′(s1,β
t)� (w0 · σ (x) + w>1 · σ(s2,β

t))

In this case and according to the definition Eq. (3.1), the EP error processes for the
parameters θ = {w0, w1, w2} read :

∀t ∈ [0,K]

∆EP
w0 (β, t) = 1

β

(
σ
(
s1,β
t+1

)
· σ (x)> − σ

(
s1,β
t

)
· σ (x)>

)
,

∆EP
w1 (β, t) = 1

β

(
σ
(
s2,β
t+1

)
· σ
(
s1,β>
t+1

)
− σ

(
s2,β
t

)
· σ
(
s1,β>
t

))
,

∆EP
w2 (β, t) = 1

β

(
σ
(
ŷβt+1

)
· σ
(
s2,β>
t+1

)
− σ

(
ŷβt

)
· σ
(
s2,β>
t

))
.

(4.8)

— 122 —

IV.4.3 — Real-time RNNs in the energy-based setting

Simplifying the equations with N = 2. To go from our multi-layered architecture to
the more general model presented in the previous section, we define the state s of the network
as the concatenation of all the layers’ states, i.e. s = (s2, s1, s0)> and we define the weight
matrices W and Wx as:

W =

 0 w>1 0
w1 0 w>2
0 w2 0

 , Wx =

w0
0
0

 , (4.9)

so that the primitive function Φ defined in Eq. (4.7) rewrites as Eq. (4.1).

Generalizing the equations for any N. For this model, the primitive function is defined
as:

Φ
(
x, s1, s2, . . . , sN+1 = ŷ

)
= 1

2(1−ε)
(
N+1∑
n=1
||sn||2

)
+ε

N∑
n=1

σ(sn+1)>·wn·σ(sn)+σ(s1)·w0·σ(x)

(4.10)

so that the equations of motion read:

∀t ∈ [0, T] :

ŷt+1 = (1− ε)ŷt + εσ′(ŷt)� wN · σ(sNt)
snt+1 = (1− ε)snt + σ′(snt)� ε(wn−1 · σ

(
sn−1
t

)
+ w>n · σ(sn+1

t)) ∀n ∈ [2, N]
s1
t+1 = (1− ε)s1

t + εσ′(s1
t)� (w0 · σ (x) + w>1 · σ(s2

t))
,

and in the second phase:

∀t ∈ [0, T] :

ŷβt+1 = (1− ε)ŷβt + εσ′(ŷβt)� wN · σ(sN,βt) + βε(y − ŷβt)
sn,βt+1 = (1− ε)sn,βt + σ′(sn,βt)� ε(wn−1 · σ

(
sn−1,β
t

)
+ w>n · σ(sn+1,β

t))
∀n ∈ [2, N],

s1,β
t+1 = (1− ε)s1,β

t + εσ′(s1,β
t)� (w0 · σ (x) + w>1 · σ(s2,β

t))

According to Eq. (3.1) again, we have:
∆EP
w0 (β, t) = 1

β

(
σ
(
s1,β
t+1

)
· σ (x)> − σ

(
s1,β
t

)
· σ (x)>

)
∆EP
wn (β, t) = 1

β

(
σ
(
sn+1,β
t+1

)
· σ
(
sn,βt+1

)>
− σ

(
sn+1,β
t

)
· σ
(
sn,βt

)>)
∀n ∈ [1, N]

Defining s = (s1, s2, . . . , ŷ)> and:

— 123 —

IV.4.3 — Real-time RNNs in the energy-based setting

W =

0 w>1 0 0 0
w1 0 w>2 0 0

0 w2 0 . . . 0

0 0 . . . 0 w>n
0 0 0 wn 0

, Wx =

w0
0
...
0

 , (4.11)

the primitive function Φ defined in Eq. (4.10) again writes as Eq. (4.1).

Experiment. We consider architectures of the kind 784-512-. . . -512-10 where we have 784
input neurons, 10 output neurons, and each hidden layer has 512 neurons, using σ(x) =
tanh(x). The data x is a random MNIST sample (of size 1 × 784) and y is the associated
target (of size 1 × 10). We have ran experiments for ε = 0.08. The values of T , K and β

depend on the depth of the architecture considered and can be found in Table 2.1.

Figure 4.3: Real-time RNN with symmetric weights with one hidden layer. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates

and −∇BPTT
θ (t) gradients.

— 124 —

IV.4.3 — Real-time RNNs in the energy-based setting

Figure 4.4: Real-time RNN with symmetric weights with two hidden layers. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates and

−∇BPTT
θ (t) gradients.

— 125 —

IV.4.3 — Real-time RNNs in the energy-based setting

Figure 4.5: Real-time RNN with symmetric weights with three hidden layers. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates and

−∇BPTT
θ (t) gradients.

— 126 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

4.4 Discrete-time RNNs in the prototypical setting

4.4.1 Fully connected architecture

Equations with N = 2. We consider again the layered architecture of Fig. 4.2. In the
discrete-time setting of EP, the dynamics of the first phase are defined as:

∀t ∈ [0, T] :

ŷt+1 = σ

(
w2 · s2

t

)
,

s2
t+1 = σ

(
w1 · s1

t + w>2 · ŷt
)
,

s1
t+1 = σ

(
w0 · x+ w>1 · s2

t

)
.

(4.12)

In the second phase, the dynamics read:

∀t ∈ [0,K] :

ŷβt+1 = σ

(
w2 · s2,β

t

)
+ β(y − ŷβt),

s2,β
t+1 = σ

(
w1 · s1,β

t + w>2 · ŷ
β
t

)
,

s1,β
t+1 = σ

(
w0 · x+ w>1 · s

2,β
t

)
.

(4.13)

As usual, y denotes the target. Consider the function:

Φ
(
x, s1s2, ŷ

)
= ŷ> · w2 · s2 + s2> · w1 · s1 + s1> · w0 · x. (4.14)

We can compute, for example:

∂Φ
∂s2 = w1 · s1 + w>2 · ŷ. (4.15)

Comparing Eq. (4.12) and Eq. (4.15), and ignoring the activation function σ, we can see
that

s2
t ≈

∂Φ
∂s2

(
x, s1

t−1, s
2
t−1, ŷt−1

)
. (4.16)

And similarly for the layers ŷ and s1.

According to the definition of ∆EP
θ in Eq. (3.1), for every layer and every t ∈ [0,K]:

∆EP
w0 (β, t) = 1

β

(
s1,β
t+1 · x> − s

1,β
t · x>

)
,

∆EP
w1 (β, t) = 1

β

(
s2,β
t+1 · s

1,β>
t+1 − s

2,β
t · s

1,β>
t

)
,

∆EP
w2 (β, t) = 1

β

(
ŷβt+1 · s

2,β>
t+1 − ŷ

β
t · s

2,β>
t

)
.

(4.17)

— 127 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Simplifying the equations with N = 2. Again, we define the state s of the network
as the concatenation of all the layers’ states, i.e. s = (s2, s1, s0)> and we define the weight
matrices W and Wx as in Eq. (4.9) so that Eq. (4.12) and Eq. (4.14) can be vectorized into:

st+1 = σ(W · st +Wx · x), (4.18)

Φ = 1
2s

T ·W · s+ 1
2s

T ·Wx · x. (4.19)

Generalizing the equations for any N . For a general architecture with a given N , the
dynamics of the first phase are defined as:

∀t ∈ [0, T] :

ŷt+1 = σ

(
wN · sNt

)
snt+1 = σ

(
wn−1 · sn−1

t + w>n · sn+1
t

)
∀n ∈ [2, N]

s1
t+1 = σ

(
w0 · x+ w>1 · s2

t

)
,

(4.20)

and those of the second phase as:

∀t ∈ [0, T] :

ŷβt+1 = σ

(
wN · sN,βt

)
+ β(y − ŷβt)

sn,βt+1 = σ
(
wn−1 · sn−1,β

t + w>n · s
n+1,β
t

)
∀n ∈ [2, N]

s1,β
t+1 = σ

(
w0 · x+ w>1 · s

2,β
t

)
,

(4.21)

where y denotes the target. Defining:

Φ(x, s1, . . . , ŷ) =
N∑
n=1

sn+1> · wn · sn + s1 · w0 · x, (4.22)

ignoring the activation function σ, Eq. (4.20) rewrites:

snt+1 ≈
∂Φ
∂sn

(x, s1, . . . , ŷ) ∀n ∈ [1, N + 1] (4.23)

According to Eq. (3.1), for every layer wn and every t ∈ [0,K]: ∆EP
w0 (β, t) = 1

β

(
s1,β
t+1 · x> − s

1,β
t · x>

)
,

∆EP
wn (β, t) = 1

β

(
sn+1,β
t+1 · sn,β

>

t+1 − s
n+1,β
t · sn,β

>

t

)
∀n ∈ [1, N]

(4.24)

Defining s = (s1, s2, . . . , ŷ)> and taking again W and Wx as defined in Eq. (4.11),
Eq. (4.20) and Eq. (4.22) can also be vectorized into:

— 128 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

st+1 = σ(W · st +Wx · x) (4.25)

Φ(x, s,W,Wx) = 1
2s

T ·W · s+ 1
2s

T ·Wx · x (4.26)

Experiment. We have considered the same architectures as the ones used for real-time
RNNs and on the same data (MNIST). The values of T , K and β depend on the depth of
the architecture considered and can be found in Table 2.1.

Figure 4.6: Discrete-time RNN with symmetric weights with one hidden layer. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates and

−∇BPTT
θ (t) gradients.

— 129 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Figure 4.7: Discrete-time RNN with symmetric weights with two hidden layers. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates and

−∇BPTT
θ (t) gradients.

— 130 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Figure 4.8: Discrete-time RNN with symmetric weights with three hidden layers. Left:
∆EP
s (t) neural updates and −∇BPTT

s (t) gradients. Right: ∆EP
θ (t) weight updates and

−∇BPTT
θ (t) gradients.

— 131 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

4.4.2 Convolutional architecture

Figure 4.9: Convolutional architecture. Summary of the operations, notations and
conventions adopted in this subsection.

Architecture. The model is a layered architecture composed of a fully connected part and
a convolutional part. We therefore distinguish between the flat layers (i.e. those of the fully
connected part) and the convolutional layers (i.e. those of the convolutional part). We denote
nfc and nconv the number of flat (hidden) layers and of convolutional layers respectively.

As previously, layers are labelled in a forward fashion, but we differentiate convolutional
layers (h) from fully connected layers (s). h1 labels the first convolutional layer, h2 the
second one, hnconv the last one. Convolutional layers, also called feature maps, are three-
dimensional ∗, i.e. hc,i,j where c labels a channel, i and j label one pixel of this feature
map. A convolutional layer hn is deduced from an upstream convolutional layer hn−1 by the
composition of a convolution and a pooling operation, which we shall respectively denote by
? and P. Conversely, a convolutional layer hn is deduced from a downstream convolutional
layer hn+1 by the composition of a unpooling operation and of a transpose convolution.

After flattening hnconv , the next layer is the first fully connected layer and is denoted
snconv+1. The second fully connected layer is denoted snconv+2 and the last (output) layer is
ŷ = snconv+nfc+1. Fully connected layers are bi-dimensional†, i.e. si,j where i and j label one
pixel.

We note wfc and wconv the fully connected weights and the convolutional filters respec-
tively, so that wfc is a two-order tensor and wconv is a four order tensor, i.e. wconv

cout,cin,i,j
is the

element (i, j) of the filter connecting the channel cin of the input feature map to the channel
cout of the output feature map. We denote the filter size by F. We keep the same notation x
for the input data. Fig. 4.9 summarizes the whole architecture.

Definition of the operations. In this paragraph, we define all the operations involved in
the definition and the properties of our convolutional model:

∗Four-dimensional in pratice, considering the mini-batch dimension.
†Three-dimensional in practice, considering the mini-batch dimension.

— 132 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

• the convolution of a filter w of size F with Cout output channels and Cin input channels
by a vector X as:

(w ? X)cout,i,j :=
Cin∑

cint=1

F∑
r,s=1

wcout,cin,r,sXcin,i+r−1,j+s−1., (4.27)

• the associated transpose convolution is defined as the convolution of kernel W̃ (also
called "flipped kernel"):

w̃cin,cout,r,s = wcout,cin,F−r+1,F−s+1, (4.28)

with an input padded with P̃ = F − 1 − P where P denotes the padding applied in
the forward convolution: in this way transpose convolution recovers the original input
size before convolution. Whenever w̃ is applied on a vector, we shall implicitly assume
this padding. The transpose convolution can be seen as the gradient of the associated
forward convolution with respect to its input - see Eq. (4.39) of Lemma 5. Fig. 4.10
provides a simple sketch of convolution and transpose convolution.

• We define the general dot product between two vectors X1 and X2 as:

X1 •X2 =
Cin∑
cin=1

d∑
i,j=1

X1
cin,i,jX

2
cin,i,j . (4.29)

• We define the pooling operation with filter size F and stride F as:

P(X)c,i,j = max
r,s∈[1,F]

{
Xc,F (i−1)+r,F (j−1)+s

}
. (4.30)

We also introduce the relative indices within a pooling zone for which the maximum is
reached as:

ind(X)c,i,j =r,s∈[1,F]
{
Xc,F (i−1)+r,F (j−1)+s

}
= (r∗(X, c, i), s∗(X, c, j)). (4.31)

• We define the inverse pooling operation as:

P−1(Y, ind(X))c,p,q =

Yc,dp/F e,dq/F eif p = F (dp/F e − 1) + r∗(X, c, dp/F e),

q = F (dq/F e − 1) + s∗(X, c, dq/F e)
0 otherwise

(4.32)

Putting Eq. (4.32) into words, the inverse pooling operation applied to a vector Y given
the indices of another vector X up-samples Y to a vector of the same size of X with the
elements of Y placed at the location of the maximal elements of X within each pooling
zone, and zero elsewhere. Note that Eq. (4.32) can be written more conveniently as:

— 133 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Figure 4.10: Convolution and transpose convolution. The convolution operation
depicted uses F = 2 (kernel size), P = 0 (padding), S = 1 (stride). The input of the
convolution is in blue, the kernel in red and the output of the convolution in yellow.
With an input length of Lin = 4, the output length is Lout = Lin−F+2P

S + 1 = 3.
The transpose convolution uses the flipped kernel (deduced from the convolution kernel
by flipping rows and columns). In order to ensure that the output of the transpose
convolution is of the same size as the original input (Lin = 4), the input of the transpose
convolution should be padded with zeros, with P̃ = F − 1−P = 1 (gray squares). The
length of the output of the transpose convolution thereby is Lout−F+2P̃

S + 1 = 4.

P−1(Y, ind(X))c,p,q =
∑
i,j

Yc,i,j · δp,F (i−1)+r∗(X,i) · δq,F (j−1)+s∗(X,j). (4.33)

Similarly to the transpose convolution, the inverse pooling can be seen as the gradient
of pooling with respect to its input - see Eq. (4.38) of Lemma 5. Fig. 4.11 provides a
simple sketch of pooling and inverse pooling.

• The flattening operation which maps a vector X into its flattened shape, i.e. F :
C in × d × d → 1 × C inD2. We denote its inverse operation, i.e. the inverse flattening
operation as F−1.

Equations for nconv = 2 and nfc = 0. We first consider a simple example where the input
image is convolved and pooled twice, then directly flattened and fed into the output layer.

— 134 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Figure 4.11: Pooling and inverse pooling. The pooling operation depicted uses
F = 2 (kernel size), P = 0 (padding), S = 2 (stride). The input of the pooling is
in blue and its output in yellow. With an input length of Lin = 4, the output length
is Lout = Lin−F+2P

S + 1 = 2. Note that upon pooling within a zone (red frame),
the relative indices of the maximum element (with respect to the upper left corner)
are retained for the inverse operation. Inverse pooling therefore simply amounts to
reconstruct an input, with the maximum elements located at their initial position, and
putting zeros elsewhere.

This is the architecture which was used to process the MNIST data set in the experiments.
For concreteness, let us assume here the same hyperparameters.

The first convolutional layer uses a 5× 5 (Fconv = 5) kernel with 32 features maps, stride
1 (S = 1) and pooling 0 (P = 0), the second convolutional layer uses a 5× 5 kernel with 64
feature maps, stride 1 and pooling 0 as well. Pooling is achieved with 2× 2 filters (Fpool = 2)
and stride 2. With the notations we have introduced before, h1 and h2 are respectively the
first two convolutional layers, and s3 = ŷ is the output layer. We denote d1, d2 and d3 the
length of h1, h2 and ŷ respectively so that their dimension is c1×d1×d1, c2×d2×d2 and 1×d3

respectively ∗. In our case, we have c1 = 32, c2 = 64. Taking dim(x) = 1× 28× 28 (MNIST
samples), the length of the output of the first convolution is L1 = d0−Fconv+2P

S +1 = 24. After
pooling, we get h1 of length d1 = L1−Fpool

2 +1 = 12 so that dim(h1) = 32×12×12. Similarly,
dim(h2) = 64× 4× 4. After flattening, we get F(h1) of dimension 1× (64 · 4 · 4) = 1× 1024.

∗We omit here the batch dimension for simplicity.

— 135 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Finally, as usual for MNIST classification, dim(ŷ) = 1× 10.

Also as pointed out before, note that for a convolution of filter size F and padding P ,
padding P̃ = F−1−P should be applied to the input of the associated transpose convolution
to retrieve the dimension of the initial input. Concretely, the output of the first convolution
has dimension 32 × 24 × 24 has shown above (L1 = 24 with the previous notations). Using
the same formula as before with padding P̃ = F − 1 − P = 4, we obtain the length of the
output of the deconvolution by the tilted filter w̃0 as Lback = L1−Fconv+2P̃

S + 1 = 28, so that
we get the initial input dimension back. This technical point is addressed more formally in
the demonstration of Eq. (4.39) of Lemma 5.

With these notations, the system is driven by the following dynamics during the first
phase:

∀t ∈ [0, T] :

ŷt+1 = σ

(
wfc

2 · F
(
h2
t

))
h2
t+1 = σ

(
P
(
wconv

1 ? h1
t

)
+ F−1

(
wfc>

2 · ŷt
))

h1
t+1 = σ

(
P (wconv

0 ? x) + w̃conv
2 ? P−1 (h2

t , ind(wconv
1 ? h1

t−1)
)) .

Note that to unpool h2 at time step t+ 1, we need to store the indices of the maximum
elements within each pooling window of wconv

1 ∗ h1 upon pooling at time step t. During the
second phase, the system dynamics read:

∀t ∈ [0,K] :

ŷβt+1 = σ

(
wfc

2 · F
(
h2,β
t

))
+ β

(
y − ŷβt

)
h2,β
t+1 = σ

(
P
(
wconv

1 ? h1,β
t

)
+ F−1

(
wfc>

2 · ŷβt
))

h1,β
t+1 = σ

(
P (wconv,

0 ? x) + w̃conv
2 ? P−1

(
h2,β
t , ind(wconv

1 ? h1,β
t−1)

)) .

Considering the function:

Φ(x, h1, h2, ŷ) = ŷ · wfc
2 · F(h2

t) + h2 • P
(
wconv

1 ? h1
)

+ h1 • P (wconv
1 ? x) ,

and ignoring the activation function, we have:

h1
t ≈

∂Φ
∂h2

h2
t ≈

∂Φ
∂h2

ŷ ≈ ∂Φ
∂ŷ

, (4.34)

— 136 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

so that in this case, we define the EP error processes for the parameters θ = {wconv
0 , wconv

1 , wfc
2 }

as, ∀t ∈ [0,K]:

∆EP
wfc

2
(t) = 1

β

(
ŷβt+1 · F

(
h2,β
t+1

)>
− ŷβt · F

(
h2,β
t

)>)
∆EP
wconv

1
(t) = 1

β

(
P−1(h2,β

t+1) ? h1,β
t+1 − P−1(h2,β

t) ? h1,β
t

)
∆EP
wconv

0
(t) = 1

β

(
P−1(h1,β

t+1) ? x− P−1(h1,β
t) ? x

) , (4.35)

Equations for any number of layers. The equations in the fully connected layers read
in the first phase:

∀t ∈ [0, T] :

ŷt+1 = σ

(
wfc
nconv+nfc · s

nconv+nfc
t

)
snt+1 = σ

(
wfc
n−1 · sn−1

t + wfc>
n+1 · sn+1

t

)
∀n ∈ [nconv + 2, nconv + nfc]

snconv+1
t+1 = σ

(
wfc
nconv · F(hnconv

t) + wfc>
nconv+2 · s

nconv+2
t

) ,

where F denotes the flatten operation. In the second phase:

∀t ∈ [0,K] :

ŷβt+1 = σ

(
wfc
nconv+nfc · s

nconv+nfc,β
t

)
+ β(y − ŷβt)

sn,βt+1 = σ
(
wfc
n−1 · s

n−1,β
t + wfc>

n+1 · s
n+1,β
t

)
∀n ∈ [nconv + 2, nconv + nfc]

snconv+1,β
t+1 = σ

(
wfc
nconv · F(hnconv,β

t) + wfc>
nconv+2 · s

nconv+2,β
t

) ,

where y denotes the target. Conversely, convolutional layers read the following set of
equations at all time:

∀t :

hnconv
t+1 = σ

(
P
(
wconv
nconv−1 ? h

nconv−1
t

)
+ F−1

(
wfc>
nconv+1 · s

nconv+1
t

))
hnt+1 = σ

(
P
(
wconv
n−1 ? h

n−1
t

)
+ w̃conv

n+1 ? P−1
(
hn+1
t , ind(wconv

n ? hnt−1)
))

∀n ∈ [2, nconv − 1]
h1
t+1 = σ

(
P (wconv

0 ? x) + w̃conv
2 ? P−1 (h2

t , ind(wconv
1 ? h1

t−1)
)) .

From here on, we shall omit the second argument of inverse pooling P−1 - i.e. the
locations of the maximal neuron values before applying pooling - to improve readability of
the equations and proofs. Considering the function:

— 137 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Φ(x, h1, · · · , hnconv , snconv+1, · · · , ŷ) =
nconv+nfc∑
n=nconv+2

sn+1> · wfc
n · sn + snconv+1 · wfc

nconv · F(hnconv
t)

+
nconv−1∑
n=2

hn+1 • P (wconv
n ? hn) + h1 • P (wconv

1 ? x) ,

and ignoring the activation function, we have:

∀n ∈ [1, nconv] : hnt ≈

∂Φ
∂hn

∀n ∈ [nconv, nconv + nfc + 1] : snt ≈
∂Φ
∂sn

, (4.36)

so that in this case, we define the EP error processes for the parameters θ = {wfc
n , w

conv
n }

as, ∀t ∈ [0,K]:

∀n ∈ [nconv + 1, nfc + nconv] : ∆EP
wfc
n

(t) = 1
β

(
sn+1,β
t+1 · sn,β

>

t+1 − s
n+1,β
t · sn,β

>

t

)
∆EP
wfc
nconv

(t) = 1
β

(
snconv+1,β
t+1 · F

(
hnconv,β
t+1

)>
− snconv+1,β

t · F
(
hnconv,β
t

)>)
∀n ∈ [1, Nconv − 2] : ∆EP

wconv
n

(t) = 1
β

(
P−1(hn+1,β

t+1) ? hn,βt+1 − P−1(hn+1,β
t) ? hn,βt

)
∆EP
wconv

0
(t) = 1

β

(
P−1(h1,β

t+1) ? x− P−1(h1,β
t) ? x

)
,

(4.37)

To further justify Eq. (4.36) and Eq. (4.37), we state and prove the following lemma.

Lemma 5. Taking:
Φ = Y • P (w ? X) ,

and denoting Z = w ? X, we have:

∂Φ
∂Z

= P−1 (Y) (4.38)

∂Φ
∂X

= w̃ ? P−1 (Y) (4.39)

∂Φ
∂w

= P−1 (Y) ? X (4.40)

∂Φ
∂Y

= P (w ? X) (4.41)

— 138 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Proof of Lemma 5. Let us prove Eq. (4.38). We have:

∂Φ
∂Zc,x,y

=
∑
c′,i,j

Yc′,i,j
∂P(Z)c′,i,j
∂Zc,x,y

=
∑
c′,i,j

Yc′,i,j
∂Zc′,F (i−1)+1+r∗(i),F (j−1)+1+s∗(j)

∂Zc,x,y

=
∑
i,j

Yc,i,jδx,F (i−1)+1+r∗(i)δy,F (j−1)+1+s∗(j)

= P−1(Y)c,x,y,

where we used Eq. (4.33) at the last step.

We can now proceed to proving Eq. (4.39). We have:

∂Φ
∂Xc,p,q

=
∑
c′,x,y

∂Φ
∂Zc′,x,y

·
∂Zc′,x,y
∂Xc,p,q

=
∑
c′,x,y

P−1(Y)c′,x,y ·
∂

∂Xc,p,q

∑
c′′,r,s

wc′,c′′,r,sXc′′,x+r−1,y+s−1

=
∑
c′,x,y

∑
r,s

P−1(Y)c′,x,ywc′,c,r,sδp,x+r−1δq,y+s−1

=
∑
c′,r,s

wc′,c,r,sP−1(Y)c′,p−(r−1),q−(s−1).

Using the flipped kernel w̃ and performing the change of variable r ← F − r + 1 and
s← F − s+ 1, we obtain:

∂Φ
∂Xc,p,q

=
∑
c′,r,s

w̃c,c′,r,s · P−1(Y)c′,p+r−F,q+s−F . (4.42)

Note in Eq. (4.42) that P−1(Y) indices can exceed their boundaries. Also, as stated
previously, P−1(Y) should be padded with P̃ = F − 1 − P so that we recover the size of X
after transpose convolution. Without loss of generality, we assume P = 0. We subsequently
defined the padded input P−1(Y) as:

P−1(Y)c,p,q =
{
P−1(Y)c,p−F+1,q−F+1 if p, q ∈ [F,N + F − 1]
0 if p, q ∈ [1, F − 1] ∪ [N + F,N + 2(F − 1)] , (4.43)

where N denotes the dimension of P−1(Y). Finally Eq. (4.42) can conveniently be rewrit-
ten as:

— 139 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

∂Φ
∂Xc,p,q

=
(
w̃ ? P−1(Y)

)
p,q
. (4.44)

For the sake of readability, the padding is implicitly assumed whenever transpose convo-
lution is performed so that we drop the bar notation.

We can now proceed to proving Eq. (4.40). We have:

∂Φ
∂wc′,c,r,s

=
∑
c′′,x,y

∂Φ
∂Zc′′,x,y

·
∂Zc′′,x,y
∂wc′,c,r,s

=
∑
c′′,x,y

P−1(Y)c′′,x,y ·
∂

∂wc′,c,r,s

 ∑
k,r′,s′

wc′′,k,r′,s′Xk,x+r′−1,y+s′−1

=
∑
x,y

P−1(Y)c′,x,y ·Xc,r+x−1,s+y−1

=
(
P−1(Y) ? X

)
c′,c,r,s

Finally, proving Eq. (4.41) is straightforward.

Experiment. We have implemented an architecture with 2 convolution-pooling layers and
1 fully connected layer. The first and second convolution layers are made up of 5× 5 kernels
with 32 and 64 feature maps respectively. Convolutions are performed without padding and
with stride 1. Pooling is performed with 2× 2 filters and with stride 2.

The experimental protocol is the exact same as the one used on the fully connected
layered architecture. The only difference is the activation function that we have used here
is σ(x) = max(min(x, 1), 0) which we shall refer to here for convenience as ‘hard sigmoid
function’. Precise values of the hyperparameters T, K, beta are given in Tab. 2.1.

We show on Fig. 4.12 that ∆EP and −∇BPTT processes qualitatively very well coincide
when presenting one MNIST sample to the network. Looking more carefully, we note that
some ∆EP

s processes collapse to zero. This signals the presence of neurons which saturate to
their maximal or minimal values, as an effect of the non linearity used. Consequently, as these
neurons cannot move, they cannot carry the error signals. We hypothesize that this accounts
for the discrepancy in the results obtained with EP on the convolutional architecture with
respect to BPTT.

— 140 —

IV.4.4 — Discrete-time RNNs in the prototypical setting

Figure 4.12: Demonstrating the GDU property with the convolutional architecture on
MNIST. Dashed and continuous lines represent ∆EP and −∇BPTT processes respec-
tively, for 5 randomly selected neurons (top) and synapses (bottom) in each layer. Each
randomly selected neuron or synapse corresponds to one color. Dashed and continu-
ous lines mostly coincide. Some ∆EP processes collapse to zero as an effect of the
non-linearity. Interestingly, the ∆EP

s and −∇BPTT
s processes are saw-teeth-shaped ;

Appendix 2.3.3 accounts for this phenomenon.

— 141 —

Chapter 5

Experiments

5.1 Effect of depth and approximation

We consider a fully connected layered architecture where layers sn are labelled in a backward
fashion: s0 denotes the output layer, s1 the last hidden layer, and so forth. Two consecutive
layers are reciprocally connected with tied weights with the convention that Wn,n+1 connects
sn+1 to sn. We study this architecture in the energy-based and prototypical setting as
described per Equations (4.1) and (4.3) respectively, with corresponding weight updates (4.2)
and (4.4). We study the GDU property layer-wise, e.g. RelMSE(∆EP

sn , -∇BPTT
sn) measures the

distance between the ∆EP
sn and −∇BPTT

sn processes, averaged over all elements of layer sn.

Figure 5.1: RelMSE analysis in the energy-based (top) and prototypical (bottom) set-
ting. For one given architecture, each bar is labelled by a layer or synapses connecting
two layers, e.g. the orange bar above s1 represents RelMSE(∆EP

s1 ,−∇BPTT
s1). For each

architecture, the recurrent hyperparameters T , K and β have been tuned to make the
∆EP and −∇BPTT processes match best.

— 142 —

IV.5.1 — Effect of depth and approximation

Table 5.1: Training results on MNIST with EP benchmarked against BPTT, in the
energy-based and prototypical settings. "EB" and "P" respectively denote "energy-
based" and "prototypical", "-#h" stands for the number of hidden layers and WCT
for "Wall-clock time" in hours : minutes. We indicate over five trials the mean and
standard deviation for the test error, the mean error in parenthesis for the train error.
T (resp. K) is the number of iterations in the first (resp. second) phase.

EP (error %) BPTT (error %) T K Epochs WCT

Test Train Test Train

EB-1h 2.06± 0.17 (0.13) 2.11± 0.09 (0.46) 100 12 30 1 : 33
EB-2h 2.01± 0.21 (0.11) 2.02± 0.12 (0.29) 500 40 50 16 : 04
P-1h 2.00± 0.13 (0.20) 2.00± 0.12 (0.55) 30 10 30 0 : 17
P-2h 1.95± 0.10 (0.14) 2.09± 0.12 (0.37) 100 20 50 1 : 56
P-3h 2.01± 0.18 (0.10) 2.30± 0.17 (0.32) 180 20 100 8 : 27
P-conv 1.02± 0.04 (0.54) 0.88± 0.06 (0.12) 200 10 40 8 : 58

Table 5.2: Best training results on MNIST with EP reported in the literature.
EP (error %)

Test Train

[160] ∼ 2.2 (∼ 0)
[163] 2.37 (0.15)
[164] 2.19

We display in Fig. 5.1 the RelMSE, layer-wise for one, two and three hidden layered
architecture (from left to right), in the energy-based (upper panels) and prototypical (lower
panels) settings, so that each architecture in a given setting is displayed in one panel - see
Table 2.1 of Appendix 2.3.1 for a detailed description of the hyperparameters and curve
samples. In terms of RelMSE, we can see that the GDU property is best satisfied in the
energy-based setting with one hidden layer where RelMSE is around ∼ 10−2 (top left). When
adding more hidden layers in the energy-based setting (top middle and top right), the RelMSE
increases to ∼ 10−1, with a greater RelMSE when going away from the output layer. The
same is observed in the prototypical setting when we add more hidden layers (lower panels).
Compared to the energy-based setting, although the RelMSEs associated with neurons are
significantly higher in the prototypical setting, the RelMSEs associated with synapses are
similar or lower. On average, the weight updates provided by EP match well the gradients
of BPTT, in the energy-based setting as well as in the prototypical setting.

— 143 —

Chapter 6

Discussion

Table 5.1 shows the accuracy results on MNIST of several variations of our approach and
Table 5.2 those of the literature - see Table 2.2 of Appendix 2.3.1 for a complete description
of the hyperparameters used. First, EP overall performs as well or practically as well as
BPTT in terms of test accuracy in all situations. Second, no degradation of accuracy is seen
between using the prototypical (P) rather than the energy-based (EB) setting, although the
prototypical setting requires three to five times less time steps in the first phase (T) and cuts
the simulation time by a factor five to eight. Finally, the best EP result, ∼ 1% test error, is
obtained with our convolutional architecture. This is also the best performance reported in
the literature on MNIST training with EP. BPTT achieves 0.90% test error using the same
architecture. This slight degradation is due to saturated neurons which do no route error
signals (as reported in the previous section). The prototypical situation allows using highly
reduced number of time steps in the first phase than [160] and [163]. On the other hand, [164]
manages to cut this number even more. This comes at the cost of using an extra network to
learn proper initial states for the EP network, which is not needed in our approach.

Overall, our work broadens the scope of EP from its original formulation for biologically
motivated real-time dynamics and sheds new light on its practical understanding. We first
extended EP to a discrete-time setting, which reduces its computational cost and allows
addressing situations closer to conventional machine learning. Theorem 4 demonstrated that
the gradients provided by EP are strictly equal to the gradients computed with BPTT in
specific conditions. Our numerical experiments confirmed the theorem and showed that its
range of applicability extends well beyond the original formulation of EP to prototypical
neural networks widely used today. These results highlight that, in principle, EP can reach
the same performance as BPTT on benchmark tasks, for RNN models with fixed input. One
limitation of our theory however is that it has yet to be adapted to sequential data: such
an extension would require to capture and learn correlations between successive equilibrium
states corresponding to different inputs.
Layer-wise analysis of the gradients computed by EP and BPTT show that the deeper the
layer, the more difficult it becomes to ensure the GDU property. On top of non-linearity

— 144 —

effects, this is mainly due to the fact that the deeper the network, the longer it takes to reach
equilibrium.

While this may be a conundrum for current processors, it should not be an issue for
alternative computing schemes. Physics research is now looking at neuromorphic computing
approaches that leverage the transient dynamics of physical devices for computation [67,
165, 166]. In such systems, based on magnetism or optics, dynamical equations are solved
directly by the physical circuits and components, in parallel and at speed much higher than
processors. On the other hand, in such systems, the nonlocality of backprop is a major
concern [34]. In this context, EP appears as a powerful approach as computing gradients
only requires measuring the system at the end of each phase, and going backward in time is
not needed. In a longer term, interfacing the algorithmics of EP with device physics could
help cutting drastically the cost of inference and learning of conventional computers, and
thereby address one of the biggest technological limitations of deep learning.

— 145 —

Part V

Equilibrium Propagation with
Continual Weight Updates

— 146 —

Summary

As presented in the last two parts, EP prescribes a learning rule which is local in space,
with the same local computations being performed in both prediction and credit assignment
phases. However, in existing implementations of EP, the learning rule is not local in time.
EP proceeds in two successive phases, the weight update is performed after the dynamics
of the second phase (credit assignment) have converged, and it requires information of the
first phase that is no longer available physically. In this part, we propose a version of EP
named Continual Equilibrium Propagation (C-EP), where neural and synaptic dynamics
occur simultaneously throughout the second phase, so that the weight update becomes local
in time. We prove theoretically that, provided the learning rates are sufficiently small, at each
time step of the second phase, the dynamics of neurons and synapses follow the gradients
of the loss given by BPTT. We demonstrate training with C-EP on MNIST and generalize
C-EP to neural networks where neurons are connected by asymmetric connections. We show
through experiments that the more closely the network updates follow the gradients of BPTT,
the best it performs in terms of training. These results bring EP a step closer to biology
and open up the possibility of extremely energy efficient hardware implementations while
maintaining an intimate link with backpropagation. This work was done in collaboration
with Benjamin Scellier, who carried out the derivation of theorem 10.

— 147 —

Introduction

The implementation of backpropagation on conventional computers or dedicated hardware
consumes more energy than the brain by several orders of magnitude [167]. One path towards
reducing the gap between brains and machines in terms of power consumption and thereby
achieving fast and energy efficient AI is by investigating alternative learning paradigms rely-
ing, as synapses do in the brain, on locally available information, as we showed in section 3.3
of part I. In these regards, we showed in part III that Equilibrium Propagation (EP) is an
alternative style of computation for estimating error gradients that presents significant ad-
vantages. A key property of EP is that, unlike Contrastive Hebbian Learning (CHL) and
related algorithms, it is intimately linked to backpropagation. It has been shown that synap-
tic updates in EP compute gradients of recurrent backpropagation (RBP) (section 2.3 of
part III) and backpropagation through time (part IV). This makes EP especially attractive
for bridging the gap between neural networks developed by neuroscientists, neuromorphic
researchers, and deep learning researchers.

Nevertheless, the bioplausibility of EP still undergoes major limitations. First, although
EP is local in space, it is non-local in time. In all existing implementations of EP, the
weight update is performed after the dynamics of the second phase have converged, when
the first steady state is no longer physically available: the first steady state has to be stored.
Second, the network dynamics have to derive from a primitive function which, in the Hopfield
model, translates into to the requirement of symmetric weights. These two requirements are
biologically unrealistic and also hinder the development of efficient EP computing hardware.

In this part, we propose an alternative implementation of EP, called Continual Equilibrium
Propagation (C-EP) which features temporal locality, by enabling synaptic dynamics to occur
throughout the second phase, simultaneously with neural dynamics. We then address the
second issue by adapting C-EP to systems having asymmetric synaptic connections, taking
inspiration from [147]; we call this modified version the Continual Vector Field approach (or
C-VF).

More specifically, the contributions of the current part are the following:

• We introduce C-EP (Section 1.1-1.2), a new version of EP with continual weight up-
dates. Like standard EP, the C-EP algorithm applies to networks whose synaptic

— 148 —

connections between neurons are assumed to be symmetric and tied.

• We show mathematically that, provided that the changes in synaptic strengths are
sufficiently slow (i.e. the learning rates are sufficiently small), at each time step of the
second phase the dynamics of neurons and synapses follow the gradients of the loss
obtained with BPTT (Theorem 10 and Fig. 1.2, chapter 2). We call this property
the Gradient Descending Dynamics (GDD) property, following the terminology used in
part IV.

• We demonstrate training with C-EP on MNIST, with accuracy approaching the one
obtained with standard EP (Section 4.1).

• We adapt C-EP to the more bio-realistic situation of a neural network with asymmetric
connections between neurons. We call this C-VF as it is inspired by the Vector Field
method proposed in [147]. We demonstrate this approach on MNIST, and show numer-
ically that the training performance is correlated with the satisfaction of the Gradient
Descending Dynamics property (Section 4.3).

• We also show how the Recurrent Backpropagation (RBP) algorithm of [154,155] relates
to C-EP, EP and BPTT. We illustrate the equivalence of these four algorithms on a
simple analytical model (Fig. 2.1) and we develop their general relationship.

— 149 —

Chapter 1

Equilibrium Propagation with
Continual Weight Updates (C-EP)

Algorithm 4 EP
Input: x, y, θ, β, η.
Output: θ.
1: s0 ← 0 . First Phase
2: repeat
3: st+1 ← ∂Φ

∂s (x, st, θ)
4: until st = s∗
5: Store s∗
6: sβ0 ← s∗ . Second Phase
7: repeat
8: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
9: until sβt = sβ∗
10: . Global Parameter Update
11: θ ← θ + η

β

(
∂Φ
∂θ

(
sβ∗ , θ

)
− ∂Φ

∂θ (s∗, θ)
)

Algorithm 5 C-EP (with simplified nota-
tions)
Input: x, y, θ, β, η.
Output: θ.
1: s0 ← 0 . First Phase
2: repeat
3: st+1 ← ∂Φ

∂s (x, st, θ)
4: until st = s∗
5: sβ0 ← s∗ . Second Phase
6: repeat
7: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
8: . Parameter Update at Time t
9: θ ← θ + η

β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
10: until sβt and θ are converged.

Figure 1.1: Left. Pseudo-code of EP. This is the version of EP for discrete-time
dynamics introduced in part IV. Right. Pseudo-code of C-EP with simplified notations
(see section 1.2 for a formal definition of C-EP). Difference between EP and C-EP.
In EP, one global parameter update is performed at the end of the second phase ; in
C-EP, parameter updates are performed throughout the second phase. Eq. (1.2) shows
that the continual updates of C-EP add up to the global update of EP.

This chapter presents the main theoretical contributions of this part. Again, the loss of
interest is the cost function ` evaluated at equilibrium:

— 150 —

V.1.1 — From EP to C-EP: An intuition behind continual weight updates

L∗ = `(s∗, y). (1.1)

We introduce a new algorithm to optimize L∗, a new version of EP with continual param-
eter updates that we call C-EP. Unlike typical machine learning algorithms (such as BPTT,
RBP and EP) in which the weight updates occur after all the other computations in the
system are performed, our algorithm offers a mechanism in which the weights are updated
continuously as the state of the neurons change.

1.1 From EP to C-EP: An intuition behind continual weight
updates

The key idea to understand how to go from EP to C-EP is that the gradient of EP appearing
in Eq. (2.3) reads as the following telescopic sum:

1
β

(
∂Φ
∂θ

(
x, sβ∗ , θ

)
− ∂Φ
∂θ

(x, s∗, θ)
)

︸ ︷︷ ︸
global parameter gradient in EP

=
∞∑
t=1

1
β

(
∂Φ
∂θ

(
x, sβt , θ

)
− ∂Φ
∂θ

(
x, sβt−1, θ

))
︸ ︷︷ ︸

parameter gradient at time t in C-EP

.

(1.2)

In Eq. (1.2) we have used that sβ0 = s∗ and sβt → sβ∗ as t→∞. Here lies the very intuition of
continual updates motivating this work; instead of keeping the weights fixed throughout the
second phase and updating them at the end of the second phase based on the steady states
s∗ and sβ∗ , as in EP (Alg. 4), the idea of the C-EP algorithm is to update the weights at each
time t of the second phase between two consecutive states sβt−1 and sβt (Alg. 5). One key
difference in C-EP compared to EP though, is that, in the second phase, the weight update
at time step t influences the neural states at time step t+ 1 in a nontrivial way, as illustrated
in the computational graph of Fig. 1.2. In the next section, we define C-EP using notations
that explicitly show this dependency.

1.2 Description of the C-EP algorithm

The first phase of C-EP is the same as that of EP (see Alg. 5 compared to Alg. 4). In the
second phase of C-EP, the parameter variable is regarded as another dynamic variable θt that
evolves with time t along with st. The dynamics of st and θt in the second phase of C-EP
depend on the values of the two hyperparameters β (the hyperparameter of influence) and η
(the learning rate), therefore we write sβ,ηt and θβ,ηt to show explicitly this dependence. With

— 151 —

V.1.2 — Description of the C-EP algorithm

Figure 1.2: Gradient-Descending Dynamics (GDD, Theorem 10). In the second
phase of Continual Equilibrium Prop (C-EP), the dynamics of neurons and synapses
descend the gradients of BPTT, i.e. ∆C−EP(t) = −∇BPTT(t). The colors illustrate
when corresponding computations are realized in C-EP and BPTT. Top left. 1st phase
of C-EP with static input x and target y. The final State sT is the steady state s∗.
Bottom left. Backprop through time (BPTT). Bottom right. 2nd phase of C-EP. The
starting State sβ,η0 is the final State of the forward-time pass, i.e. the steady state s∗.

now both the neurons and the synapses evolving in the second phase, the dynamic variables
sβ,ηt and θβ,ηt start from sβ,η0 = s∗ and θβ,η0 = θ and follow, ∀t ≥ 0:

sβ,ηt+1 = ∂Φ
∂s

(
x, sβ,ηt , θβ,ηt

)
− β ∂`

∂s

(
sβ,ηt , y

)
,

θβ,ηt+1 = θβ,ηt + η

β

(
∂Φ
∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ
∂θ

(
x, sβ,ηt , θβ,ηt

))
.

(1.3)

The difference in C-EP compared to EP is that the value of the parameter used to update
sβ,ηt+1 in Eq. (1.3) is the current θβ,ηt , not θ. Provided the learning rate η is small enough, i.e.
the synapses are slow to change compared to the neurons, this effect is weak. Intuitively, in
the limit η → 0, the parameter changes are negligible so that θβ,ηt can be approximated by
its initial value θβ,η0 = θ. Under this approximation, the dynamics of sβ,ηt in C-EP and the
dynamics of sβt in EP are the same. See Fig. 2.1 for a simple example.

— 152 —

Chapter 2

Gradient Descending Dynamics
(GDD) property

Figure 2.1: Illustration of Theorem 10 on a simple model. The variables s and θ are
scalars, the first phase equation is st+1 = 1

2(st + θ), the steady state is denoted s∗
and the loss is L∗ = 1

2s
2
∗. See Appendix 3.3 for derivation details. For completeness,

we also include the corresponding gradients of Recurrent Backpropagation (RBP) and
the normalized updates of EP, denoted ∇RBP and ∆EP respectively. The equivalence
between C-EP, EP, RBP and BPTT holds in the general setting.

The main theoretical contribution of this part is to prove that, provided the hyperpa-
rameter β and the learning rate η are small enough, the dynamics of the neurons and the
weights given by Eq. (1.3) follow the gradients of BPTT (Theorem 10 and Fig. 1.2). For a
formal statement of this property and in a similar way than the previous part, we define the
normalized (continual) updates of C-EP:

— 153 —

∆C−EP
s (β, η, t) = 1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−EP
θ (β, η, t) = 1

η

(
θβ,ηt+1 − θ

β,η
t

)
,

(2.1)

as well as the gradients of the loss L = ` (sT , y) after T time steps, computed with BPTT:

∇BPTT
s (t) = ∂L

∂sT−t
,

∇BPTT
θ (t) = ∂L

∂θT−t
.

(2.2)

Note that injecting Eq. (1.3) in Eq. (2.1), the normalized updates of C-EP read:

∆C−EP
θ (β, η, t) = 1

β

(
∂Φ
∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ
∂θ

(
x, sβ,ηt , θβ,ηt

))
, (2.3)

which corresponds to the parameter gradient at time t, defined informally in Eq. (1.2).

Again and as in the two previous parts, the loss to optimize is still the cost function at
equilibrium:

L∗ = `(s∗, y). (2.4)

Backpropagation Through Time (BPTT) described in the Introduction and in the pre-
vious part, Equilibrium Propagation and Recurrent Backpropagation (RBP) [154, 155] can
all optimize L∗, and we show in this part that Continual Equilibrium Propagation also can.
To demonstrate the equivalence between C-EP and BPTT, we will show that these four
algorithms are computationally equivalent. Namely, the proof outline is the following:

• BPTT and RBP are equivalent (section 2.1, Lemma 7). This link is known since the
late 1980s and can be found in [168].

• EP and RBP are also equivalent (section 2.2, Lemma 8). This result was proved in [148]
in the setting of real-time dynamics.

• Finally, C-EP and EP are equivalent (section 2.3, Lemma 9), which is the new ingredient
of this part.

• We conclude that, by transitivity, BPTT and C-EP are equivalent (section 2.4, Theo-
rem 10).

This outline is illustrated on a very simple model in Fig. 2.1: the equivalence between
BPTT and RBP is illustrated with the link between the blue and the green blobs, the equiv-
alence between EP and RBP with the link between the yellow and green blobs and finally

— 154 —

V.2.1 — Equivalence between BPTT and RBP

the equivalence between C-EP and EP with the link between the red and yellow blobs. See
Appendix 3.3 for the derivation details of this toy model.

2.1 Equivalence between BPTT and RBP

Definition of Recurrent Backpropagation (RBP). The Almeida-Pineda algorithm
(a.k.a. Recurrent Backpropagation, or RBP for short), which was invented independently
in [154] and [155], relies on this property to compute the gradients of the loss L∗ using only
the steady state s∗. Similarly to BPTT, it computes quantities ∇RBP

s (t) and ∇RBP
θ (t), which

we call ‘gradients of RBP’, iteratively for t = 0, 1, 2,

Definition 6 (Gradients of RBP). The gradients ∇RBP
s (t) and ∇RBP

θ (t) are defined and
computed iteratively as follows:

∇RBP
s (0) = ∂`

∂s
(s∗, y) , (2.5)

∀t ≥ 0, ∇RBP
s (t+ 1) = ∂F

∂s
(x, s∗, θ)> · ∇RBP

s (t), (2.6)

∀t ≥ 0, ∇RBP
θ (t+ 1) = ∂F

∂θ
(x, s∗, θ)> · ∇RBP

s (t). (2.7)

In Appendix 3.1, we justify the name of ‘gradients’ for the quantities∇RBP
s (t) and∇RBP

θ (t)
by proving that they are the gradients of L∗. More explicitely:

∞∑
t=1
∇RBP
θ (t) = ∂L∗

∂θ
. (2.8)

In general, to apply BPTT, it is necessary to store in memory the history of past hidden
states s1, s2, . . . , sT in order to compute the gradients∇BPTT

s (t) and∇BPTT
θ (t) as in Eq. (1.8)-

(1.9). However, in our specific setting with static input x, if the network has reached the
steady state s∗ after T −K steps, i.e. if sT−K = sT−K+1 = · · · = sT−1 = sT = s∗, then we see
that, in order to compute the first K gradients of BPTT, all one needs to know is ∂F

∂s (x, s∗, θ)
and ∂F

∂θ (x, s∗, θ). To this end, all one needs to keep in memory is the steady state s∗. In
this particular setting, it is not necessary to store the past hidden states sT , sT−1, . . . , sT−K
since they are all equal to s∗ Unlike BPTT where keeping the history of past hidden states is
necessary to compute (or ‘backpropagate’) the gradients, in RBP Eq. (2.6)-(2.7) show that
it is sufficient to keep in memory the steady state s∗ only in order to iterate the computation
of the gradients. RBP is more memory efficient than BPTT.

Lemma 7 (Equivalence of BPTT and RBP). In the setting with static input x, suppose that
the network has reached the steady state s∗ after T −K steps, i.e. sT−K = sT−K+1 = · · · =
sT−1 = sT = s∗. Then the first K gradients of BPTT are equal to the first K gradient of

— 155 —

V.2.2 — Equivalence between EP and RBP

Algorithm 6 BPTT
Input: x, y, θ.
Output: θ.
1: s0 ← 0
2: for t = 0 to T − 1 do
3: st+1 ← F (x, st, θ)
4: end for
5: ∇BPTT

s (0)← ∂`
∂s (sT , y)

6: for t = 1 to T do
7: ∇s(t)← ∂F

∂s (x, sT−t, θ)> · ∇s(t− 1)
8: ∇θ(t)← ∂F

∂θ (x, sT−t, θ)> · ∇s(t− 1)
9: end for
10: ∇BPTT

θ (tot)←∑T−1
t=0 ∇BPTT

θ (t)

Algorithm 7 RBP
Input: x, y, θ.
Output: θ.
1: s0 ← 0
2: repeat
3: st+1 ← F (x, st, θ)
4: until st = s∗
5: ∇RBP

s (0)← ∂`
∂s (s∗, y)

6: repeat
7: ∇RBP

s (t)← ∂F
∂s (x, s∗, θ)> · ∇RBP

s (t− 1)
8: ∇RBP

θ (t)← ∂F
∂θ (x, s∗, θ)> · ∇RBP

s (t− 1)
9: until ∇RBP

θ (t) = 0.
10: ∇RBP

θ (tot)←∑∞
t=0∇RBP

θ (t)

Figure 2.2: Left. Pseudo-code of BPTT. The gradients ∇(t) denote the gradi-
ents ∇BPTT(t) of BPTT. Right. Pseudo-code of RBP. Difference between BPTT
and RBP. In BPTT, the state sT−t is required to compute ∂F

∂s (x, sT−t, θ) and
∂F
∂θ (x, sT−t, θ) ; thus it is necessary to store in memory the sequence of states
s1, s2, . . . , sT . In contrast, in RBP, only the steady state s∗ is required to compute
∂F
∂s (x, s∗, θ) and ∂F

∂θ (x, s∗, θ) ; it is not necessary to store the past states of the net-
work.

RBP, i.e.

∀t = 0, 1, . . . ,K :
{
∇BPTT
s (t) = ∇RBP

s (t),
∇BPTT
θ (t) = ∇RBP

θ (t). (2.9)

Proof of Lemma 7. Using sT−K = sT−K+1 = · · · = sT−1 = sT = s∗ along with Eq. (1.7),
Eq. (1.8) and Eq. (1.9) (the set of equations satisfied by BPTT described in the previous
part), ∇BPTT

s (resp. ∇BPTT
θ) and ∇RBP

s (resp. ∇RBP
θ) satisfy the same recursive equations

with the same initial conditions, so that BPTT and RBP error processes are equal at all
times. Hence ∇RBP

s (t) = ∇BPTT
s (t), ∇RBP

θ (t) = ∇BPTT
θ (t) ∀t = 0, 1, . . . ,K.

2.2 Equivalence between EP and RBP

For completeness of this part, we state the equivalence between EP and RBP. Note that
the equations defining RBP Eq. (2.5)-(2.7) are the same than those satisfied by BPTT at
equilibrium in the previous part (Lemma 2), so that Lemma 8 is simply a reformulation of
the theorem of the previous part (Theorem 4).

Lemma 8 (Equivalence of EP and RBP). Assume that the transition function derives from
a primitive function, i.e. that F is of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). Then, in the limit of

— 156 —

V.2.3 — Equivalence between EP and C-EP

small hyperparameter β, the normalized updates of EP are equal to the gradients of RBP:

∀t ≥ 0 :

lim

β→0 (β>0)
∆EP
s (β, t) = −∇RBP

s (t),

lim
β→0 (β>0)

∆EP
θ (β, t) = −∇RBP

θ (t). (2.10)

Proof of Lemma 8. See proof of Theorem 4 in the previous part.

2.3 Equivalence between EP and C-EP

First, recall the dynamics of C-EP in the second phase: starting from sβ,η0 = s∗ and θβ,η0 = θ

we have ∀t ≥ 0:
sβ,ηt+1 = ∂Φ

∂s

(
x, sβ,ηt , θβ,ηt

)
− β ∂`

∂s

(
sβ,ηt , y

)
,

θβ,ηt+1 = θβ,ηt + η

β

(
∂Φ
∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ
∂θ

(
x, sβ,ηt , θβ,ηt

))
.

(2.11)

We have also defined the normalized updates of C-EP:

∀t ≥ 0 :

∆C−EP
s (β, η, t) = 1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−EP
θ (β, η, t) = 1

η

(
θβ,ηt+1 − θ

β,η
t

)
.

(2.12)

We also recall the dynamics of EP in the second phase:

sβ0 = s∗ and sβt+1 = ∂Φ
∂s

(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
, (2.13)

as well as the normalized updates of EP, as defined in part IV:

∀t ≥ 0 :

∆EP
s (β, t) = 1

β

(
sβt+1 − s

β
t

)
,

∆EP
θ (β, t) = 1

β

(
∂Φ
∂θ

(
x, sβt+1, θ

)
− ∂Φ
∂θ

(
x, sβt , θ

))
.

(2.14)

Lemma 9 (Equivalence of C-EP and EP). In the limit of small learning rate, i.e. η → 0,
the (normalized) updates of C-EP are equal to those of EP:

∀t ≥ 0 :

lim

η→0 (η>0)
∆C−EP
s (β, η, t) = ∆EP

s (β, t),

lim
η→0 (η>0)

∆C−EP
θ (β, η, t) = ∆EP

θ (β, t). (2.15)

Proof of Lemma 9. We want to compute the limits of ∆C−EP
s (β, η, t) and ∆C−EP

θ (β, η, t) as
η → 0 with η > 0. Note that it is crucial that this property is derived for η > 0 so that
learning is actually performed. In a subtle way though, the proof can be derived with η = 0

— 157 —

V.2.3 — Equivalence between EP and C-EP

for the following mathematical reasons. Note that assuming the regularity on the functions
Φ and ` (e.g. continuous differentiability), for fixed t and β, the quantities sβ,ηt and θβ,ηt
are continuous as functions of η; this is straightforward from the form of Eq. (2.11). As a
consequence, ∆C−EP

s (β, η, t) is a continuous function of η, which implies in particular that:

lim
η→0 (η>0)

∆C−EP
s (β, η, t) = ∆C−EP

s (β, 0, t). (2.16)

Now, taking η = 0 in the bottom equation of Eq. (2.11) yields the recurrence relation θβ,0t+1 =
θβ,0t , so that θβ,0t = θβ,00 = θ for every t. Injecting θβ,0t = θ in the top equation of Eq. (2.11)
yields for sβ,0t the same recurrence relation as that of sβt (Eq. 2.13), so that sβ,0t = sβt for
every t. Therefore, for η = 0, we have:

∆C−EP
s (β, 0, t) = 1

β

(
sβ,0t+1 − s

β,0
t

)
= 1
β

(
sβt+1 − s

β
t

)
= ∆EP

s (β, t).

(2.17)

It follows from Eq. (2.16) and Eq. (2.17) that

lim
η→0 (η>0)

∆C−EP
s (β, η, t) = ∆EP

s (β, t). (2.18)

Now let us compute limη→0 (η>0) ∆C−EP
θ (β, η, t). Using Eq. (2.11), we have

∆C−EP
θ (β, η, t) = 1

η

(
θβ,ηt+1 − θ

β,η
t

)
(2.19)

= 1
β

(
∂Φ
∂θ

(
x, sβ,ηt+1, θ

β,η
t

)
− ∂Φ
∂θ

(
x, sβ,ηt , θβ,ηt

))
. (2.20)

Similarly as before, for fixed t, ∂Φ
∂θ

(
x, sβ,ηt , θβ,ηt

)
is a continuous function of η. Therefore

lim
η→0 (η>0)

∆C−EP
θ (β, η, t)

= 1
β

(
∂Φ
∂θ

(
x, sβ,0t+1, θ

β,0
t

)
− ∂Φ
∂θ

(
x, sβ,0t , θβ,0t

))
= 1
β

(
∂Φ
∂θ

(
x, sβt+1, θ

)
− ∂Φ
∂θ

(
x, sβt , θ

))
= ∆EP

θ (β, t).

(2.21)

An explicit link between EP and C-EP weight updates. A consequence of Lemma 9
is that the total update of C-EP matches the total update of EP in the limit of small η, so
that we retrieve the standard EP learning rule of Eq. (2.3). More explicitly, after K steps in
the second phase and starting from θβ,η0 = θ0:

— 158 —

V.2.4 — Main result

θβ,ηK − θ0 =
K−1∑
t=0

θβ,ηt+1 − θ
β,η
t (2.22)

=
K−1∑
t=0

η∆C−EP
θ (β, η, t) (2.23)

≈
η&0

K−1∑
t=0

η∆EP
θ (β, t) (2.24)

=
K−1∑
t=0

η
1
β

(
∂Φ
∂θ

(x, st+1, θ0)− ∂Φ
∂θ

(x, st+1, θ0)
)

(2.25)

= η

β

(
∂Φ
∂θ

(x, sβK , θ0)− ∂Φ
∂θ

(x, s∗, θ0)
)

(2.26)

Here we have used successively the definition of ∆C−EP
θ (Eq. (2.1)), Lemma 9 and the

definition of ∆EP
θ (Eq. (2.14)).

2.4 Main result

We now ready to state the main result of this part: the equivalence between C-EP and BPTT.

Theorem 10 (GDD Property). Let s0, s1, . . . , sT be the convergent sequence of states and
denote s∗ = sT the steady state. Further assume that there exists some step K where 0 <
K ≤ T such that s∗ = sT = sT−1 = . . . sT−K . Then, in the limit η → 0 and β → 0, the first
K normalized updates in the second phase of C-EP are equal to the negatives of the first K
gradients of BPTT, i.e. ∀t = 0, 1, . . . ,K:

lim
β→0

lim
η→0

∆C−EP
s (β, η, t) = −∇BPTT

s (t),

lim
β→0

lim
η→0

∆C−EP
θ (β, η, t) = −∇BPTT

θ (t). (2.27)

Proof of Lemma 10. As stated in the proof outline, Theorem 10 is a consequence of Lemma (8),
Lemma (9) and Lemma (7).

Remarks. Note that:

• Fig. 2.1 illustrates Theorem 10 with a simple dynamical system for which the normalized
updates ∆C−EP and the gradients ∇BPTT are analytically tractable.

• Theorem 10 rewrites sβ,ηt+1 ≈ sβ,ηt − β ∂L
∂sT−t

and θβ,ηt+1 ≈ θβ,ηt − η ∂L
∂θT−t

, showing that in
the second phase of C-EP, neurons and synapses descend the gradients of the loss L

— 159 —

V.2.5 — Extending the GDD property: Continual Vector Field Equilibrium Propagation
(C-VF)

obtained with BPTT, with the hyperparameters β and η playing the role of learning
rates for sβ,ηt and θβ,ηt , respectively. Theorem 10 holds in the limit β → 0, η → 0,
which means that β and η have to be small enough for the neurons and synapses to
compute approximately the gradient of L∗. On the other hand β and η also have to be
large enough so that an error signal can be transmitted in the second phase and that
optimization of the loss happens within a reasonable number of epochs. This trade-off
is well reflected by the table of hyperparameters of Table 3.2 in Appendix 3.4.1. In
particular, the values β = 0 (there is no second phase) and (or) η = 0 (there is no
learning) are excluded.

2.5 Extending the GDD property: Continual Vector Field
Equilibrium Propagation (C-VF)

The Gradient Descending Dynamics property (GDD, Theorem 10) states that, when the
system dynamics derive from a primitive function, i.e. when the transition function F is of
the form F = ∂Φ

∂s , then the normalized updates of C-EP match the gradients provided by
BPTT. Remarkably, even in the case of dynamics that do not derive from a primitive function
Φ, experiments in the next chapter show that the biologically plausible update rule of C-VF
follows well the gradients of BPTT ∗. In this section, we give a theoretical justification for
this fact by proving a more general result than Theorem 10. We call this version of Continual
Equilibrium Propagation where the dynamics follow any transition function (or "vector field")
F , Continual Vector Field Equilibrium Propagation.

Now let us consider general dynamics with transition function F the first phase rewrites:

st+1 = F (x, st; θ) , (2.28)

and the second phase:

∀t ≥ 0 :

sβ,ηt+1 = F

(
x, sβ,ηt ; θβ,ηt

)
− β ∂`

∂s

(
sβ,ηt

)
,

θβ,ηt+1 = θβ,ηt + η

β

∂F

∂θ

(
x, sβ,ηt ; θβ,ηt

)>
·
(
sβ,ηt+1 − s

β,η
t

)
.

(2.29)

The definition of the normalized updates of C-VF is also:

∆C−VF
s (β, η, t) = 1

β

(
sβ,ηt+1 − s

β,η
t

)
,

∆C−VF
θ (β, η, t) = 1

η

(
θβ,ηt+1 − θ

β,η
t

)
.

(2.30)

∗More illustrations of this property are shown on Fig. 3.7 and Fig. 3.8.

— 160 —

V.2.5 — Extending the GDD property: Continual Vector Field Equilibrium Propagation
(C-VF)

We can now state the generalization of Theorem 10.

Theorem 11 (Generalisation of the GDD Property). Let s0, s1, . . . , sT be the convergent
sequence of states and denote s∗ = sT the steady state. Further assume that there exists
some step K where 0 < K ≤ T such that s∗ = sT = sT−1 = . . . sT−K . Finally, assume that
the Jacobian of the transition function at the steady state is symmetric, i.e. ∂F

∂s (x, s∗; θ) =
∂F
∂s (x, s∗; θ)>. Then, in the limit η → 0 and β → 0, the first K normalized updates of C-VF
follow the the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

lim
β→0

lim
η→0

∆C−VF
s (β, η, t) = −∇BPTT

s (t),

lim
β→0

lim
η→0

∆C−VF
θ (β, η, t) = −∇BPTT

θ (t). (2.31)

Proof of Lemma 11. Defining:

∀t = 0, 1, . . . ,K :

 ∆VF
s (β, t) = lim

η→0
∆C−VF
s (β, η, t),

∆VF
θ (β, t) = lim

η→0
∆C−VF
θ (β, η, t). (2.32)

We can readily show using Eq. (2.29) along with Eq. (2.30) that ∆VF
s (β, t) and ∆VF

θ (β, t)
satisfy the recurrence relationship:

∆VF
s (β, 0) = −∂`

∂s
(s∗, y) , (2.33)

∀t ≥ 0, ∆VF
s (β, t+ 1) = ∂F

∂s
(x, s∗, θ) ·∆C−VF

s (β, t), (2.34)

∀t ≥ 0, ∆VF
θ (β, t+ 1) = ∂F

∂θ
(x, s∗, θ)> ·∆C−VF

s (β, t). (2.35)

Again, using the exact same kind of reasoning than the one used for the demonstration
of Theorem 4 in the previous part, since ∂F

∂s (x, s∗; θ) = ∂F
∂s (x, s∗; θ)>, Eq. (2.33)-(2.35) are

the same as Eq. (3.4)-(3.6), so that ∆VF
s (β, t) and ∆VF

θ (β, t) are equal to −∇BPTT
s (t) and

−∇BPTT
θ (t) at all time.

— 161 —

Chapter 3

Models with symmetric and
asymmetric weights

In this chapter, we validate our continual version of Equilibrium Propagation against training
on the MNIST data set with two models. Following the terminology of section 4.1 in part IV,
the first model is a prototypical RNN with tied and symmetric weights: the dynamics of this
model approximately derive from a primitive function, which allows training with C-EP. The
second model is a prototypical RNN with untied and asymmetric weights, which is therefore
closer to biology. These two models belong to the class of prototypical models introduced
in part IV, and we use them for this study to accelerate training simulations. We train
this second model with C-VF which was previously introduced. In part IV, we showed with
simulations the intuitive result that, if a model is such that the normalized updates of EP
‘match’ the gradients of BPTT (i.e. if they are approximately equal), then the model trained
with EP performs as well as the model trained with BPTT. Along the same lines, we show
in this work that the more the EP normalized updates follow the gradients of BPTT before
training (which depends on the alignment between feedforward and feedback weights), the
best is the resulting training performance.

3.1 Definition

Prototypical model with symmetric weights trained by C-EP. The first phase dy-
namics is defined as:

st+1 = σ (W · st +Wx · x) , (3.1)

where σ is an activation function, W is a symmetric weight matrix, and Wx is a matrix
connecting x to s. The same dynamics were introduced in Eq. (4.3), section 4.1 of part IV
when defining the prototypical setting. Although the dynamics are not directly defined in
terms of a primitive function, note that st+1 ≈ ∂Φ

∂s (st,W) with Φ(s,W) = 1
2s
> ·W · s if we

— 162 —

V.3.1 — Definition

ignore the activation function σ. Following Eq. (1.3) and Eq. (2.1), we define the normalized
updates of this model as:

∆C−EP
s (β, η, t) = 1

β

(
sβ,ηt+1 − s

β,η
t

)
, ∆C−EP

W (β, η, t) = 1
β

(
sβ,η

>

t+1 · s
β,η
t+1 − s

β,η>

t · sβ,ηt
)
. (3.2)

Note that this model applies to any topology as long as existing connections have sym-
metric values: this includes deep networks with any number of layers. More explicitly, for a
network whose layers of neurons are s0, s1, ..., sN , with Wn,n+1 connecting the layers sn+1

and sn in both directions, the corresponding primitive function is Φ = ∑
n(sn)> ·Wn,n+1 ·

sn+1 + sN
> ·Wx · x.

Prototypical model with asymmetric weights trained by C-VF. In this model, the
dynamics in the first phase is the same as Eq. (3.1) but now the weight matrix W is no
longer assumed to be symmetric. In this setting the weight dynamics in the second phase is
replaced by a version for asymmetric weights: W β,η

t+1 = W β,η
t + η

β s
β,η>

t ·
(
sβ,ηt+1 − s

β,η
t

)
, so that

the normalized updates are equal to:

∆C−VF
s (β, η, t) = 1

β

(
sβ,ηt+1 − s

β,η
t

)
, ∆C−VF

W (β, η, t) = 1
β
sβ,η

>

t ·
(
sβ,ηt+1 − s

β,η
t

)
. (3.3)

Like the previous model, the prototypical RNN with asymmetric weights also applies to deep
networks with any number of layers. Although in C-VF the dynamics of the weights is
not one of the form of Eq. (1.3) that derives from a primitive function, the (bioplausible)
normalized weight updates of Eq. (3.3) can approximately follow the gradients of BPTT,
provided that the values of reciprocal connections are not too dissimilar: this is a consequence
of Theorem 11. Indeed, defining the transition function F (s,W) = σ(W · s+Wx · x), so that
the dynamics of the first phase (Eq. (3.1)) rewrite:

st+1 = F (x, st;W,Wx) . (3.4)

As for the second phase, notice that ∂F
∂W (x, s;W,Wx) = σ′(W · s + Wx · x) · s, so that if we

ignore the factor σ′(W · s+Wx · x), the second phase rewrites:

∀t ≥ 0 :

sβ,ηt+1 = F

(
x, sβ,ηt ;W β,η

t ,W β,η
x,t

)
− β ∂`

∂s

(
sβ,ηt

)
,

W β,η
t+1 = W β,η

t + η

β

∂F

∂W

(
x, sβ,ηt ;W β,η

t ,W β,η
x,t

)>
·
(
sβ,ηt+1 − s

β,η
t

)
.

(3.5)

Also observe that:
∂F

∂s
(x, s;W,Wx) = σ′(W · s+Wx · x) ·W>. (3.6)

Ignoring the factor σ′(W · s+Wx ·x) again, we see that if W is symmetric then the Jacobian
of F is also symmetric, therefore the conditions of Theorem 11 are met. This observation is
illustrated in Fig. 4.1 (as well as in Fig. 3.7 and Fig. 3.8).

— 163 —

V.3.2 — Models with symmetric weights trained by C-EP

3.1.1 Models under consideration

In the rest of this part, we study the following models:

• The real-time model with symmetric weights trained by C-EP (subsection 3.2.1). This
model corresponds to the energy-based model introduced in subsubsection 4.3.2 of
part IV, where the second phase has been adapted for C-EP training.

• The prototypical model with symmetric weights trained by C-EP (subsection 3.2.2).
This model corresponds to the prototypical model introduced in subsubsection 4.4.1 of
part IV, where the second phase has also been adapted for C-EP training.

• The real-time model with asymmetric weights trained by C-VF (subsection 3.3.1). This
model is inspired from [147] - see section 2.2 in chapter III.

• The prototypical model with asymmetric weights trained by C-VF (subsection 3.3.2).

3.1.2 Figures for the GDD experiments

For each of the model described below, we show the effect of using continual updates with a
finite learning rate in terms of the ∆C−EP and −∇BPTT processes. These figures have been
realized for each of the models with one hidden layer on MNIST. Dashed an continuous lines
respectively represent the normalized updates ∆ and the gradients ∇BPTT. Each randomly
selected synapse or neuron correspond to one color. We add an s or θ index to specify whether
we analyse neuron or synapse updates and gradients. Each C-VF simulation has been realized
with an angle between forward and backward weights of 0 degrees (i.e. Ψ(θf , θb) = 0◦) - see
Appendix 3.4.1 for a precise definition of Ψ(θf , θb).

3.2 Models with symmetric weights trained by C-EP

3.2.1 Real-time (energy-based) model

Equations. In this subsection (as in subsection 4.3.2 of the previous part), we denote N
the number of hidden layers, so that in general, s1, s2, · · · , sN stand for the hidden layers and
sN+1 = ŷ is the output layer.

As in subsection 4.3.2, we consider the following primitive function:

Φ
(
x, s1, s2, . . . , sN+1 = ŷ

)
= 1

2(1−ε)
(
N+1∑
n=1
||sn||2

)
+ε

N∑
n=1

σ(sn+1)>·wn·σ(sn)+σ(s1)·w0·σ(x)

(3.7)

— 164 —

V.3.2 — Models with symmetric weights trained by C-EP

so that the equations of motion for the first phase read:

∀t ∈ [0, T] :

ŷt+1 = (1− ε)ŷt + εσ′(ŷt)� wN · σ(sNt)
snt+1 = (1− ε)snt + σ′(snt)� ε(wn−1 · σ

(
sn−1
t

)
+ w>n · σ(sn+1

t)) ∀n ∈ [2, N]
s1
t+1 = (1− ε)s1

t + εσ′(s1
t)� (w0 · σ (x) + w>1 · σ(s2

t))
,

During the second phase,

∀t ∈ [0, T] :

ŷβ,ηt+1 = (1− ε)ŷβ,ηt + εσ′(ŷβ,ηt)� wN · σ(sN,β,ηt) + βε(y − ŷβ,ηt)
sn,β,ηt+1 = (1− ε)sn,β,ηt + σ′(sn,β,ηt)� ε(wn−1 · σ

(
sn−1,β,η
t

)
+ w>n · σ(sn+1,β,η

t))
∀n ∈ [2, N],

s1,β,η
t+1 = (1− ε)s1,β,η

t + εσ′(s1,β,η
t)� (w0 · σ (x) + w>1 · σ(s2,β,η

t))
θβ,ηt+1 = θβ,ηt + η∆EP

θ (β, η, t) ∀θ ∈ {wn}

According to Eq. (2.3) and Eq. (3.7), we have:
∆EP
w0 (β, η, t) = 1

β

(
σ
(
s1,β,η
t+1

)
· σ (x)> − σ

(
s1,β,η
t

)
· σ (x)>

)
∆EP
wn (β, η, t) = 1

β

(
σ
(
sn+1,β,η
t+1

)
· σ
(
sn,β,ηt+1

)>
− σ

(
sn+1,β,η
t

)
· σ
(
sn,β,ηt

)>)
∀n ∈ [1, N]

— 165 —

V.3.2 — Models with symmetric weights trained by C-EP

Figure 3.1: Real-Time RNN with symmetric weights. Left: ∆C−EP
s (t) normalized

updates (η ∼ 10−6) and −∇BPTT
s (t) gradients. Right: ∆C−EP

s (t) normalized updates
(η ∼ 10−5) and −∇BPTT

s (t) gradients.

Figure 3.2: Real-Time RNN with symmetric weights. Left: ∆C−EP
θ (t) normalized

updates (η ∼ 10−6) and −∇BPTT
θ (t) gradients. Right: ∆C−EP

θ (t) normalized updates
(η ∼ 10−5) and −∇BPTT

θ (t) gradients.

3.2.2 Protypical model

Equations. Similarly to subsection 4.3.2, we consider a discrete-time model where the
dynamics of the first phase are defined as:

— 166 —

V.3.2 — Models with symmetric weights trained by C-EP

∀t ∈ [0, T] :

ŷt+1 = σ

(
wN · sNt

)
snt+1 = σ

(
wn−1 · sn−1

t + w>n · sn+1
t

)
∀n ∈ [2, N]

s1
t+1 = σ

(
w0 · x+ w>1 · s2

t

)
.

(3.8)

Again, we remind here that defining:

Φ(x, s1, . . . , ŷ) =
N∑
n=1

sn+1> · wn · sn + s1 · w0 · x, (3.9)

ignoring the activation function σ, Eq. (3.8) rewrites:

snt+1 ≈
∂Φ
∂sn

(x, s1, . . . , ŷ) ∀n ∈ [1, N + 1] (3.10)

Thereby, applying Eq. (2.3) along with Eq. (3.9), the dynamics of the second phase read:

∀t ∈ [0, T] :

ŷβ,ηt+1 = σ
(
wN · sN,β,ηt

)
+ β(y − ŷβ,ηt)

sn,β,ηt+1 = σ
(
wn−1 · sn−1,β,η

t + w>n · s
n+1,β,η
t

)
∀n ∈ [2, N]

s1,β,η
t+1 = σ

(
w0 · x+ w>1 · s

2,β,η
t

)
,

θβ,ηt+1 = θβ,ηt + η∆EP
θ (β, η, t) ∀θ ∈ {wn}

(3.11)

where for every layer wn and every t ∈ [0,K]: ∆EP
w0 (β, η, t) = 1

β

(
s1,β,η
t+1 · x> − s

1,β,η
t · x>

)
,

∆EP
wn (β, η, t) = 1

β

(
sn+1,β,η
t+1 · sn,β,η

>

t+1 − sn+1,β,η
t · sn,β,η

>

t

)
∀n ∈ [1, N]

(3.12)

Defining s = (s1, s2, . . . , ŷ)> and taking again W and Wx as defined in Eq. (4.11) in the
previous part, Eq. (3.8) can also be vectorized in a block-wise fashion as Eq. (3.1).

— 167 —

V.3.2 — Models with symmetric weights trained by C-EP

Figure 3.3: Prototypical model with symmetric weights. Left: ∆C−EP
s (t) normalized

updates (η ∼ 10−6) and −∇BPTT
s (t) gradients. Right: ∆C−EP

s (t) normalized updates
(η ∼ 10−5) and −∇BPTT

s (t) gradients.

Figure 3.4: Prototypical model with symmetric weights. Left: ∆C−EP
θ (t) normalized

updates (η ∼ 10−6) and −∇BPTT
θ (t) gradients. Right: ∆C−EP

θ (t) normalized updates
(η ∼ 10−5) and −∇BPTT

θ (t) gradients.

— 168 —

V.3.3 — Models with asymmetric weights trained by C-VF

3.3 Models with asymmetric weights trained by C-VF

In this section, we consider models with asymmetric connections: wm,n stands for the synapses
connecting the layer sn to the layer sm.

3.3.1 Real-time model

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T] :

ŷt+1 = (1− ε)ŷt + εwŷ,N · σ

(
sNt

)
snt+1 = (1− ε)snt + ε

(
wn,n−1 · σ

(
sn−1
t

)
+ wn,n+1 · σ

(
sn+1
t

))
∀n ∈ [2, N]

s1
t+1 = (1− ε)s1

t + ε
(
w0 · σ (x) + w1,2 · σ

(
s2
t

))
where ε is the time-discretization parameter.

Using Eq. (2.29) applied to these dynamics to derive the weight updates, the dynamics
of the second phase read:

∀t ∈ [0,K] :

ŷβ,ηt+1 = (1− ε)ŷβ,ηt + εwŷ,N · σ
(
sN,β,ηt

)
+ βε(y − ŷβ,η)

sn,β,ηt+1 = (1− ε)sn,β,ηt + ε
(
wn,n−1 · σ

(
sn−1,β,η
t

)
+ wn,n+1 · σ

(
sn+1,β,η
t

))
∀n ∈ [2, N]

s1,β,η
t+1 = (1− ε)s1,β,η

t + ε
(
w0 · σ (x) + w1,2 · σ

(
s2,β,η
t

))
θβ,ηt+1 = θβ,ηt + η ∆C−VF

θ (β, η, t) ∀θ ∈ {wnn+1, wn+1n}
(3.13)

where for every time step t ∈ [0,K]
∆C−VF
w0 (β, η, t) = 1

β (s1,β,η
t+1 − s

1,β,η
t) · σ(x)

∆C−VF
wn+1,n(β, η, t) = 1

β

(
sn+1,β,η
t+1 − sn+1,β,η

t

)
· σ
(
sn,β,ηt

)>
∆C−VF
wn,n+1(β, η, t) = 1

β

(
sn,β,ηt+1 − s

n,β,η
t

)
· σ
(
sn+1,β,η
t

)>

— 169 —

V.3.3 — Models with asymmetric weights trained by C-VF

Figure 3.5: Real-Time RNN with asymmetric weights. Left: ∆C−VF
s (t) normalized

updates (η ∼ 10−6) and −∇BPTT
s (t) gradients. Right: ∆C−VF

s (t) normalized updates
(η ∼ 10−5) and −∇BPTT

s (t) gradients.

Figure 3.6: Real-Time RNN with asymmetric weights. Left: ∆C−VF
θ (t) normalized

updates (η ∼ 10−6) and −∇BPTT
θ (t) gradients. Right: ∆C−VF

θ (t) normalized updates
(η ∼ 10−5) and −∇BPTT

θ (t) gradients.

— 170 —

V.3.3 — Models with asymmetric weights trained by C-VF

3.3.2 Prototypical model

Equations. For this model, the dynamics of the first phase are defined as:

∀t ∈ [0, T] :

ŷt+1 = σ(wŷ,N · sNt)
snt+1 = σ(wn,n−1 · sn−1

t + wn,n+1 · sn+1
t) ∀n ∈ [2, N]

s1
t+1 = σ

(
w0 · x+ w1,2 · s2

t

)
,

(3.14)

and the second phase as:

∀t ∈ [0,K] :

ŷβ,ηt+1 = σ(wŷ,N · sN,β,ηt)
sn,β,ηt+1 = σ(wn,n−1 · sn−1,β,η

t + wn,n+1 · sn+1,β,η
t) ∀n ∈ [2, N]

s1,β,η
t+1 = σ

(
w0 · x+ w1,2 · s2,β,η

t

)
θβ,ηt+1 = θβ,ηt + η∆C−VF

θ (β, η, t) ∀θ ∈ {Wnn+1,Wn+1n}

(3.15)

Note that Eq. (3.14) can also be in a vectorized block-wise fashion as Eq. (3.1) with
s = (s0, s1, . . . , sN−1)> and provided that we define W and Wx as:

W =

0 w1,2 0 0 0
w2,1 0 w2,3 0 0

0 w3,2 0 . . . 0

0 0 . . . 0 wN,ŷ
0 0 0 wŷ,N 0

, Wx =

w0
0
...
0

 , (3.16)

For all layers wn,n+1 and wn+1,n, and every t ∈ [0,K], we define the weight updates as:
∆C−VF
w0 (β, η, t) = 1

β (s1,β,η
t+1 − s

1,β,η
t) · x

∆C−VF
wn+1,n(β, η, t) = 1

β (sn+1,β,η
t+1 − sn+1,β,η

t) · sn,β,η
>

t

∆C−VF
wn,n+1(β, η, t) = 1

β (sn,β,ηt+1 − s
n,β,η
t) · sn+1,β,η>

t

— 171 —

V.3.3 — Models with asymmetric weights trained by C-VF

Figure 3.7: Prototypical model with asymmetric weights. Left: ∆C−VF
s (t) normalized

updates (η ∼ 10−6) and −∇BPTT
s (t) gradients. Right: ∆C−VF

s (t) normalized updates
(η ∼ 10−5) and −∇BPTT

s (t) gradients.

Figure 3.8: Prototypical model with asymmetric weights. Left: ∆C−VF
θ (t) normalized

updates (η ∼ 10−6) and −∇BPTT
θ (t) gradients. Right: ∆C−VF

θ (t) normalized updates
(η ∼ 10−5) and −∇BPTT

θ (t) gradients.

— 172 —

Chapter 4

Training experiments

4.1 C-EP training experiments

Table 4.1: Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the
number of hidden layers. We indicate over 5 trials the mean and standard deviation for
the test error (mean train error in parenthesis). T (resp. K) is the number of iterations
in the 1st (resp. 2nd) phase. For C-VF results, the initial angle between forward (θf)
and backward (θb) weights is Ψ(θf , θb) = 0◦.

Error (%) T K Epochs

Test Train

EP-1h 2.00± 0.13 (0.20) 30 10 30
EP-2h 1.95± 0.10 (0.14) 100 20 50

C-EP-1h 2.28± 0.16 (0.41) 40 15 100
C-EP-2h 2.44± 0.14 (0.31) 100 20 150

C-VF-1h 2.43± 0.08 (0.77) 40 15 100
C-VF-2h 2.97± 0.19 (1.58) 100 20 150

Experiments are first performed with multi-layered prototypical RNNs (with symmetric
weights) on MNIST. Table 4.1 presents the results obtained with C-EP training benchmarked
against standard EP training results of part IV - see Appendix 3.4.1 for training conditions.
The test error of C-EP approaches that of EP, with a slight degradation in accuracy. This
is because although Theorem 10 guarantees Gradient Descending Dynamics (GDD) in the
limit of infinitely small learning rates, in practice we have to strike a balance between having
a learning rate that is small enough to ensure this condition but not too small to observe
convergence within a reasonable number of epochs. As seen in Fig. 4.1 (b), the finite learning

— 173 —

V.4.2 — Why C-EP does not perform as well as standard EP?

rate η of continual updates leads to ∆C−EP(β, η, t) curves splitting apart from the −∇BPTT(t)
curves. As seen per Fig. 4.1 (a), this effect is emphasized with the depth: before training,
angles between the normalized updates of C-EP and the gradients of BPTT reach 50 degrees
for two hidden layers. The deeper the network, the more difficult it is for the C-EP dynamics
to follow the gradients provided by BPTT. As an evidence, we show in section 4.2 that when
we use extremely small learning rates throughout the second phase (θ ← θ+ηtiny∆C−EP

θ) and
rescale up the resulting total weight update (θ ← θ−∆θtot + η

ηtiny
∆θtot), we recover standard

EP results.

4.2 Why C-EP does not perform as well as standard EP?

We provide here further ground for the training performance degradation observed on the
MNIST task when implementing C-EP compared to standard EP. In practice, when training
with C-EP, we have to make a trade-off between:

1. having a learning rate that is small enough so that C-EP normalized updates are sub-
sequently close enough to the gradients of BPTT (Theorem 10),

2. having a learning rate that is large enough to ensure convergence within a reasonable
number of epochs.

In other words, the degradation of accuracy observed in the table of Fig. 4.1 is due to using
a learning rate that is too large to observe convergence within 100 epochs. To demonstrate
this, we implement Alg. 8 which consists simply in using a very small learning rate throughout
the second phase (denoted as ηtiny), and artificially rescaling the resulting weight update by a
bigger learning rate (denoted as η). Applying Alg. 8 to a fully connected layered architecture
with one hidden layer, T = 30,K = 10, β = 0.1, yields 2.06±0.13% test error and 0.18±0.01%
train error over 5 trials, where we indicate mean and standard deviation. Similarly, applying
Alg. 8 to a fully connected layered architecture with two hidden layers, T = 100, K = 20,
β = 0.5, yields 1.89 ± 0.22% test error and 0.02 ± 0.02% train error. These results exactly
match the ones provided by standard EP - see Table 3.3.

4.3 Continual Vector Field (C-VF) training experiments

Depending on whether the updates occur continuously during the second phase and the
system obey general dynamics with untied forward and backward weights, we can span a
large range of deviations from the ideal conditions of Theorem 10. Fig. 4.1 (b) depicts
qualitatively these deviations with a model for which the normalized updates of EP match
the gradients of BPTT (EP); with continual weight updates, the normalized updates and
gradients start splitting apart (C-EP), and even more so if the weights are untied (C-VF).

— 174 —

V.4.3 — Continual Vector Field (C-VF) training experiments

Algorithm 8 Debugging procedure of C-EP
Input: x, y, θ, β, η, ηtiny = 10−5η.
Output: θ.
1: s0 ← 0 . First Phase
2: ∆θ ← 0 . Temporary variable accumulating parameter updates
3: repeat
4: st+1 ← ∂Φ

∂s (x, st, θ)
5: until st = s∗
6: sβ0 ← s∗ . Second Phase
7: repeat
8: sβt+1 ← ∂Φ

∂s

(
x, sβt , θ

)
− β ∂`∂s

(
sβt , y

)
9:

10: θ ← θ + ηtiny
β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
11: ∆θ ← ∆θ + ηtiny

β

(
∂Φ
∂θ

(
sβt+1

)
− ∂Φ

∂θ

(
sβt

))
12: until sβt and θ are converged.
13: θ ← θ −∆θ + η

ηtiny
∆θ . Rescale the total parameter update by η

ηtiny

Protocol. In order to create these deviations from Theorem 10 and study the consequences
in terms of training, we proceed as follows. For each C-VF simulations, we tune the initial an-
gle between forward weights (θf) and backward weights (θb) between 0 and 180◦. We denote
this angle Ψ(θf , θb) - see Appendix 3.4.1 for the angle definition and the angle tuning tech-
nique employed. For each of these weight initialization, we compute the angle between the
total normalized update provided by C-VF, i.e. ∆C−VF(β, η, tot) = ∑K−1

t=0 ∆C−VF(β, η, t)
and the total gradient provided by BPTT, i.e. ∇BPTT(tot) = ∑K−1

t=0 ∇BPTT(t) on ran-
dom mini-batches before training. We denote this angle Ψ

(
∆C−VF(tot),−∇BPTT(tot)

)
.

Finally for each weight initialization, we perform training on the prototypical models pre-
viously introduced. We proceed in the same way for EP and C-EP simulations, computing
Ψ
(
∆EP(tot),−∇BPTT(tot)

)
and Ψ

(
∆C−EP(tot),−∇BPTT(tot)

)
before training. We use the

generic notation ∆(tot) to denote the total normalized update. This procedure yields (x, y)
data points with x = Ψ

(
∆(tot),−∇BPTT(tot)

)
and y = test error, which are reported on

Fig. 4.1 (a) - see Table 3.3 of Appendix 3.4.1 for the full table of results.

Results. Fig. 4.1 (a) shows the test error achieved on MNIST by EP, C-EP on the proto-
typical model with symmetric weights and C-VF on the prototypical model with asymmetric
weights for different number of hidden layers as a function of the angle Ψ

(
∆(tot),−∇BPTT(tot)

)
before training. This graphical representation spreads the algorithms between EP which best
satisfies the GDD property (leftmost point in green at ∼ 20◦) to C-VF which satisfies the
less the GDD property (rightmost points in red and orange at ∼ 100◦). As expected, high
angles between gradients of C-VF and BPTT lead to high error rates that can reach 90%
for Ψ

(
∆C−VF(tot),−∇BPTT(tot)

)
over 100◦. More precisely, the inset of Fig. 4.1 shows the

same data but focusing only on results generated by initial weight angles lying below 90◦,

— 175 —

V.4.3 — Continual Vector Field (C-VF) training experiments

Figure 4.1: Three versions of EP: standard Equilibrium Propagation (EP), Continual
Equilibrium Propagation (C-EP) and Continual Vector Field EP (C-VF). #-h denotes
the number of hidden layers. (a): test error rate on MNIST as a function of the initial
angle Ψ between the total normalized update of EP and the total gradient of BPTT.
(b): Dashed and continuous lines respectively represent the normalized updates ∆θ(t)
(i.e. ∆EP

θ (t), ∆C−EP
θ (t), ∆C−VF

θ (t)) and the gradients −∇BPTT
θ (t). Each randomly

selected synapse corresponds to one color. While dashed and continuous lines coincide
for standard EP, they split apart upon untying the weights and using continual updates.

i.e. Ψ(θf , θb) = {0◦, 22.5◦, 45◦, 67.5◦, 90◦}. From standard EP with one hidden layer to C-VF
with two hidden layers, the test error increases monotonically with Ψ

(
∆(tot),−∇BPTT(tot)

)
but does not exceed 5.05% on average. This result confirms the importance of proper weight
initialization when weights are untied, also discussed in other context [83]. When the initial
weight angle is of 0◦, the impact of untying the weights on classification accuracy remains
constrained, as shown in Table 4.1. Upon untying the forward and backward weights, the
test error increases by ∼ 0.2% with one hidden layer and by ∼ 0.5% with two hidden layers
compared to standard C-EP.

— 176 —

V.4.3 — Continual Vector Field (C-VF) training experiments

Figure 4.2: Test error rate on MNIST achieved by C-VF as a function of the initial
angle Ψ(θf , θb) between feedforward weights θf and feedback weights θb.

— 177 —

Discussion

Equilibrium Propagation is an algorithm that leverages the dynamical nature of neurons
to compute weight gradients through the physics of the neural network. C-EP embraces
simultaneous synapse and neuron dynamics, getting rid of the need for artificial memory units
for storing the neuron values between different phases. The C-EP framework preserves the
equivalence with Backpropagation Through Time: in the limit of sufficiently slow synaptic
dynamics (i.e. small learning rates), the system satisfies Gradient Descending Dynamics
(Theorem 10).

Our experimental results confirm this theorem. When training our prototypical model
with symmetric weights with C-EP while ensuring convergence in 100 epochs, a modest
reduction in MNIST accuracy is seen with regards to standard EP. This accuracy reduction
can be eliminated by using smaller learning rates and rescaling up the total weight update
at the end of the second phase (section 4.2). On top of extending the theory of part IV,
Theorem 10 also appears to provide a statistically robust approach for C-EP based learning:
our experimental results show, as in part IV, that for a given network with specified neuron
and synapse dynamics, the more the updates of Equilibrium Propagation follow the gradients
provided by Backpropagation Through Time before training (in terms of angle between weight
vectors, in this work), the better this network can learn. Specifically, Fig. 4.1 (a) shows that
hyperparameters should be tuned so that before training, C-EP updates stay within 90◦ of
the gradients provided by BPTT. In practice, it amounts to tune the degree of symmetry of
the dynamics, for instance the angle between forward and backward weights - see Fig. 4.2.

Our C-EP and C-VF algorithms exhibit features reminiscent of biology. C-VF extends
C-EP training to RNNs with asymmetric weights between neurons, as is the case in biology.
Its learning rule, local in space and time, is furthermore closely acquainted to Spike Timing
Dependent Plasticity (STDP), which we presented in subsection 3.3.2 of part I. Strikingly,
the same rule that we use for C-VF learning can approximate STDP correlations in a rate-
based formulation, as we also showed in section 2.1 of part III. From this viewpoint, our
work brings EP a step closer to biology. This being said, C-EP and C-VF do not aim at
being end-to-end models of biological learning. EP and its variants are meant to optimize
any given loss function, and this loss function could be for supervised learning (as in our

— 178 —

V.4.3 — Continual Vector Field (C-VF) training experiments

experiments) or for any differentiable loss function in general. The core motivation of this
work is to focus on and propose a fully local implementation of EP, in particular to foster its
hardware implementation. When computed on a standard computer, due to the use of small
learning rates to mimic analog dynamics within a finite number of epochs, training our models
with C-EP and C-VF entail long simulation times. With a Titan RTX GPU, training a fully
connected architecture on MNIST takes 2 hours 39 mins with 1 hidden layer and 10 hours
49 mins with 2 hidden layers. On the other hand, C-EP and C-VF might be particularly
efficient in terms of speed and energy consumption when operated on neuromorphic hardware
that employs analog device physics. To this purpose, our work can provide an engineering
guidance to map Equilibrium Propagation onto a neuromorphic system. This is one step
towards bridging Equilibrium Propagation with neuromorphic computing and thereby energy
efficient hardware implementations of gradient-based learning algorithms.

— 179 —

Part VI

Conclusion and perspectives

— 180 —

Summary of the results

Overall, this thesis emphasizes two components of on-chip learning:

• The computation of the loss gradient: ∂L
∂θ .

• Given the loss gradient, the resulting weight update: θ ← θ − α∂L∂θ .

Part II investigates the second component in several variants of Restricted Boltzmann
Machines. With typical values of device imperfections for non-linearity, cycle-to-cycle and
device-to-device variabilities, we have shown that the Discriminative RBM is the best can-
didate architecture in terms of the resulting training performance on MNIST. Also, our sim-
ulations highlight how device imperfections influence the optimal pulse width: non-linearity
favors small pulse widths and cycle-to-cycle variability large pulse widths conversely. Impor-
tantly, a stack of memristive RBMs, when being greedily learnt does not benefit from depth:
on the contrary the effect of the device imperfections cumulate when passing features from a
RBM to the next one in the stack. This limitation comes from not propagating error signals
across layers using backpropagation for instance, to preserve the locality of the learning rule
employed. We have also shown that averaging Contrastive Divergence across samples and
stochastic realizations of the binary states of the neurons considerably improves the resilience
of Discriminative RBMs versus device imperfections. Since this method selects smaller pulse
widths, it mitigates both non-linearity and variability effects. We also propose the use of Re-
silient Propagation (RProp) to facilitate the tuning of the pulse width. While not affecting
the resilience of the Discriminative RBM with respect to imperfections and obeying to very
simple logics, RProp allows to enlarge the range of usable pulse widths by up to two order of
magnitudes. Overall, our study proposes strategies to make Restricted Boltzmann Machines
amenable to on-chip training with highly imperfect memristive devices, thereby addressing
some of the major challenges of embedded environments.

In part IV, we focus on the first component of learning: the computation of the loss gradient
with Equilibrium Propagation. We have proposed a discrete-time formulation of Equilibrium
Propagation and in this framework, the original real-time formulation of Equilibrium Prop-
agation can be seen as a particular choice of primitive function Φ. We have shown that our

— 181 —

discrete-time version of Equilibrium Propagation is equivalent to Backpropagation Through
Time provided that the Jacobian of the dynamics is symmetric (which is equivalent to the
requirement of a primitive function), and equilibrium is reached at the end of the first phase.
More precisely, the synapse updates computed in a forward-time fashion during the second
phase of Equilibrium Propagation are step-by-step equal to the gradients computed by Back-
propagation Through Time in a backward-time fashion. We call this property the Gradient
Descending Update (GDU) property and check it on two classes of models: energy-based mod-
els and prototypical models. After defining theoretically the fully connected architectures in
both settings, we show that the GDU property is generally very well satisfied numerically.
More quantitatively, using the Relative Mean Squared (RelMSE) metric, we show that the
deeper the network, the larger the RelMSE, thereby suggesting the difficulty to train deep
architectures with Equilibrium Propagation. Finally, we propose a Convolutional model in
the prototypical setting trainable by Equilibrium Propagation. We show that this architec-
ture also satisfies well the GDU property and achieves the best training performance ever
reported on MNIST in the literature of Equilibrium Propagation (∼ 1% test error). Finally,
we show that the use of our prototypical setting speeds up training by a factor 5 to 8 com-
pared to the energy-based setting. This work facilitates the design of models trainable by
Equilibrium Propagation both by the practical use of Theorem 4 and the training speed-up
offered by the prototypical setting, which is of interest to map Equilibrium Propagation onto
neuromorphic systems. These results bring Equilibrium Propagation closer to conventional
machine learning and should help the algorithm to scale to more complex problems.

Finally in part V, we extend the study of part IV to a more biologically realistic - and
hardware-friendly - setting where the learning rule prescribed by Equilibrium Propagation
becomes local in time, a definite asset for future hardware implementations of Equilibrium
Propagation. In this new version of Equilibrium Propagation that we call Continual Equi-
librium Propagation (C-EP), the synapses evolve dynamically along with the neurons during
the second phase of Equilibrium Propagation. In this framework, we show that the theorem
of the previous part can be extended: in the limit of slow synaptic dynamics, we say that
Gradient Descending Dynamics (GDD) are satisfied (Theorem 10). We numerically show the
GDD property on various models and demonstrate C-EP training on a prototypical model
with symmetric weights, therefore benefiting from the subsequent acceleration for training
simulations mentioned before. We observe a slight training accuracy reduction compared
to standard Equilibrium Propagation which we can directly account for: the learning rate
should be small enough so that GDD is sufficiently well satisfied, but not too small so that
convergence occurs within a reasonable number of epochs. We extend C-EP training to neural
networks whose synaptic connections are asymmetric and we call this version of the algorithm
Continual Vector Field Equilibrium Propagation (C-VF). We show that C-VF successfully
trains neural networks with asymmetric connections on MNIST. Furthermore we show that,
given a model with specified dynamics and connectivity, the more Theorem 10 is satisfied
before training (in terms of the angle between the total weight update over the second phase
of C-EP and the negative gradient provided by BPTT), the better the resulting training

— 182 —

performance. This work brings Equilibrium Propagation one step closer to hardware and
biology: C-VF can be seen as a rate-based equivalent of Spike Timing Dependent Plasticity
(STDP), which is amenable to energy efficient analog hardware. Finally here again, Theo-
rem 10 provides a guidance to map Equilibrium Propagation onto neuromorphic systems.

— 183 —

Other research projects &
collaborations

This section describes research projects on Equilibrium Propagation that I have been involved
in at the end of my PhD project.

mEqProp: Equilibrium Propagation with memristors in spik-
ing neural networks

In subsection 3.3.2 of the Introduction, we have shown that the use of memristive devices
along with spiking voltage pulses with appropriate shapes could emulate Spike Timing De-
pendent Plasticity - Fig. 3.2 and Fig. 3.3. Given a memristive device emulating a synapse,
whenever the pre or post synaptic neuron spikes, a voltage pulse is created and depending
on the relative timings of the pre and post synaptic resulting voltages, the device undergoes
a subsequent voltage difference that may or may not cross the programming threshold of the
device. On the other hand, we have shown in subsection 2.1 the connection existing between
Equilibrium Propagation and STDP. Finally, part V provides theoretical guarantees on the
rate-based equivalent of an STDP-like implementation of Equilibrium Propagation.

Somehow, combining these three highlights, there comes here some intuition that the learn-
ing rule of Equilibrium Propagation could be emulated in an event-based fashion with mem-
ristive devices. One possible approach in this purpose is to engineer the shape of the spikes
that program the memristive device so that the resulting conductance updates undergone by
the device correlate well enough at any time with the weight updates prescribed by Equilib-
rium Propagation, namely ∆C−EP

θ (t) ∼ ṡpostρ(spre) to reuse the notations of the last part.
Note that this event-based setting where synapses evolve along with neurons throughout the
second phase falls into our Continual Equilibrium Propagation setting.

I have worked with Erwann Martin (PhD student under the joint supervision of Julie
Grollier and Teodora Petrisor at Thalès lab) on this event-based version of Equilibrium

— 184 —

Propagtion to be known as mEqProp. Erwann will present the results of this work at the
NAISys conference as an oral contribution.

Equilibrium Propagation with physical artificial neurons

In the project previously described, traditional leaky-integrate-and-fire (LIF) neurons are
assumed for spiking simulations with a strong focus on how to emulate appropriate synapse
dynamics. How about the neurons? In other words, how would be go about implementing
Equilibrium Propagation on a physical substrate where the neurons are governed by the
equations of their very own physics and not simply LIF equations? At the end of my thesis,
I have worked with Jérémie Laydevant (a PhD student of Julie Grollier) in this regard
and help him make Equilibrium Propagation comply the best with our hardware constraints.
To only mention a few of these constraints: how do we encode inputs and outputs? How
should they be scaled appropriately? What are the conditions for the system to achieve a
stable steady state (a highly non trivial question for non-linear systems for instance)? How
do we physically nudge the system during the second phase ? Which physical quantity stores
the value of the synapse and what is the subsequent learning rule prescribed by Equilibrium
Propagation? What if the neurons or the synapses are constrained to binary values, as
it is the case for a lot of candidate technologies? Jérémie’s work and results achieved so
far are extremely exciting and will hopefully contribute to leading to the first experimental
demonstration of Equilibrium Propagation-based training with our technologies.

Scaling Equilibrium Propagation to deeper architectures

Although Equilibrium Propagation has been brought closer to standard machine learning
through the "prototypical" setting presented in part IV, it has yet to be scaled up to more
complex visual tasks like CIFAR-10 or ImageNet. When working on chapter IV, I could
not achieve better than 65-70% test accuracy on CIFAR-10. I believe there are three main
reasons for this:

• The first reason why Equilibrium Propagation may scale poorly to deeper architectures
is the credit assignment itself used: the requirement of equilibrium. And the deeper
the architecture, the longer it takes to reach equilibrium. When running training sim-
ulations, a trade-off has to be find between having a first phase that is long enough to
ensure equilibrium, but not too long to make simulations achievable within a reason-
able time. So it might be that equilibrium is not perfectly achieved when training deep
networks.

• Another reason is rather subtle. One should bear in mind that the ability of the system
to reach a steady state is an hypothesis of the theory of Equilibrium Propagation.

— 185 —

In practice, we use dynamics deriving from an energy function or equivalently of a
primitive function in the prototypical setting. But what actually helps the system to
reach convergence at the end of the first and second phase is to clip the activations of
the neurons between 0 and 1. Consequently, a large proportion of neurons saturate at
the end of the first phase at equilibrium. Therefore, when nudging the system during
the second phase, error signals do not pass through saturated neurons.

• Finally, the learning given by Equilibrium Propagation in Eq. (1.5) in part III is biased
in the way the underlying derivative with respect to β is estimated. More precisely,
in [97] EP learning rule is more generally expressed in terms of d

dβ

(
∂E
∂θ

)∣∣∣
β=0

. Eq. (1.5)
is the discrete forward-time estimate of this derivative. Cancelling out this bias, for
instance by flipping the sign of β across mini-batches, could also dramatically improve
learning in deep architectures.

At the end of my PhD project, I have been working with Axel Laborieux to pursue this
work and attempt to achieve > 90% test accuracy on CIFAR-10 using techniques to mitigate
what we believe hinder learning in deep networks. We believe that carrying out this work,
leading to positive or negative conclusions, could in any case benefit the community, as a
continuation of Bartunov et al work [85] on the scalability of biologically inspired learning
algorithms and architectures - which, in its study, mainly investigated Feedback Alignment
and Target Propagation.

Equilibrium Propagation on sequential data

One natural question that arises is: could it extend to temporal data? At first sight, it
seems that the answer is no, again because of the credit assignment scheme itself. Upon
presenting a static input, the system reaches a steady state so that its subsequent motion
triggered by the nudging strength during the second phase encode error signals: ṡ ∼ ∂L

∂s . In
other words, when applying the nudge, the system should only move because of the error
signal. Thereby, if the system receives a sequential input, the system may be influenced by
both the nudging strength applied on the output layer and changing inputs on the visible
layer, so that the motion may no longer encode error signals. This being said, we have some
intuitions that there are clever ways to build neural network models that could both process
temporal data and be trainable under Equilibrium Propagation: error signals could possibly
propagate across different inputs.

Equilibrium Propagation without the equilibrium requirement

From the previous points, it appears clearly that the requirement of equilibrium hinders the
scalability of Equilibrium Propagation. Would there be any way we could go round this

— 186 —

requirement at all, therefore being able to train deeper architectures, by rethinking the whole
credit assignment of "Equilibrium" Propagation? Yoshua Bengio came to Benjamin and I
suggesting that if each neuron could access simultaneously its free current state st (when it
evolve freely, without nudging) and nudged state sβt (when it evolves under the influence of
nudging), the error signal sβt −st thereby created neuron-wise could be leveraged for learning.
This idea raises two questions that can be treated independently:

• How could, each neuron, know about its free state st while being in its nudged state
sβt ?

• Once the error signal sβt − st is extracted, how could it be used to achieve learning?

At the end of my thesis, I have been collaborating withYoshua Bengio,Blake Richards
and Damjan Kalajdzievski on this project. I went to the Mila after NeurIPS in December
for a week to help kicking off this project, and hopefully pursue it after the thesis defense.

— 187 —

Some thoughts about longer-term
directions of research

The wide spectrum of neuromorphic approaches. Neuromorphic computing is a com-
plex area in itself, as it intertwines closely computer sciences, mathematics, statistics, opti-
mization, neurosciences, general electrical engineering, condensed matter physics and circuit
design. There are arguably as many conceptions of the field as there are researchers, as
to the expertise, approaches, research endeavors and time scales involved in such research.
Should it be? Clearly, the discrepancies of the existing approaches makes it especially hard
not only to pick up on the missing skills and keep up with the forefront of miscellaneous
research literatures, and even more to form a strong opinion about promising directions of
research. From my research experience, I also think that although such diversity of point of
views in the field can benefit the community, the numerous research efforts in neuromorphic
computing could still benefit from a better coordination across different fields.

Better communication amongst neuromorphic researchers? Today, diverse commu-
nities are still working far apart, each coping separately with the technical challenges of their
own research on neuromorphic computing. A lot of physicists or electronic researchers within
neuromorphic computing work hard to emulate basic functions required for inference with
their candidate hardware substrate, such as non-linearity, matrix multiplication, or to connect
at all a significant number neurons. Other hardware researchers focus more on the physics
of the synapse update, to achieve the most accurate conductance update given a gradient
value, as already mentionned in this thesis. Computational neuroscientists are limited in
the problems they can solve by the simulation time required to solve learning problems with
realistic spiking neurons, motivating projects such as SpiNNaker [27]. Although overcoming
these technological challenges is essential, better communication between communities might
have the potential of saving a lot of time in the research. Tremendous technological advances
have been realized in neuromorphic computing; however there is some risk that these research
endeavours, which sometimes involve years of research, build upon learning paradigms that
could have benefited from more neuroscience inspiration or mathematical guarantees from
the very beginning, far ahead in the project design. For instance, a lot of neuromorphic
researchers have designed systems building upon the Bi-Poo Spike Timing Dependent Plas-

— 188 —

ticity arguing about biological plausibility (STDP). Although this research led to extremely
exciting results, STDP is a learning heuristic that was not thought at first to optimize an
objective function. Also, STDP was fitted on in vitro measurements. It was shown that with
realistic in vivo calcium concentration, Bi-Poo STDP could not be observed [169]. The same
team subsequently proposed to infer learning rules from distribution of firing rates in cortical
neurons. Such learning rules - based on burst synaptic mechanisms for instance - could also
inspire neuromorphic engineering. Finally, although Hebbian learning rules such as STDP are
extremely attractive for hardware designers, they should be endowed with strong theoretical
guarantees optimization-wise to be able to scale to complex problems, as this thesis suggests.
In this regard, better communication between mathematicians and neuromorphic engineers
could strongly benefit research towards on-chip learning.

Mathematics versus biological inspiration? When developping efficient neuromorphic
systems, should mathematics prevail over biological inspiration or the other way around?
Is there such a thing as "mathematics versus biology" when doing neuromorphic research?
For the neuromorphic approach to succeed in the long run and scale to complex systems,
we very likely need both: close biological inspiration and mathematics. The first most ob-
vious example supporting this necessity is Convolutional neural networks. The topology of
the convolution operation applied in neural networks is directly inspired by the primary vi-
sual cortex. Still, this biological inspiration is not sufficient by itself: the parameters of the
convolution are not given by neuroscience measurements but gradually adjusted by back-
propagation and gradient descent, whose goal is to minimize a mathematically well-defined
objective function. Quite often and intriguingly, the optimization setting of deep learning
often enabled to recover some neurophysiological features of the brain like grid cells, Gabor
filters, shape tuning or temporal receptive fields [60].

Richards et al more generally support this vision in their Nature paper where they advocate
the use of a deep learning framework to fuel progress in neuroscience [60]: this way of thinking
could potentially be transferred to neuromorphic computing. More precisely, Richards et al
argue that such a framework should rely on three fundamental components: the neural
architectures, the objective function and the learning rule. Evaluating deep learning models
with an emphasis on these three components on benchmark "Brain tasks" that could also be
experimentally carried out on living beings, this framework would enable to create complex
models with testable hypothesis. They insist in particular on the necessity of inductive
biases, as opposed to the properties that emerge during learning. Inductive biases are the
priors of the model that are chosen appropriately to help this model learn specific tasks. For
example, translation invariance is an inductive bias of convolutional architectures, which is
especially suited on visual tasks where the system should detect redundant visual features.
This is how both mathematics and biology come into play: biology provides inspiration for
the inductive biases of the models, the emergent properties of the models come from the
mathematical optimization framework itself. The authors beautifully illustrate this trade-off
as follows: "[...]many of the successes of deep learning have grown out of a balance between

— 189 —

useful inductive biases and emergent computation, echoing the blend of nature and
nurture which underpins the adult brain". Similarly, the design of neuromorphic systems
should maybe result from the same combination. More than only bringing memory the closest
to computation, the topology of the circuit that achieves inference and gradient computation
should directly take inspiration from physiological features of the brain, while still obeying
strong mathematical principles.

Evolution? How about biological biases that are endowed by evolution? Could neuro-
morphic systems somehow inherit "evolved" features? Many experiments suggest that the
optimization framework is not sufficient to pick up evolution. It is worth mentioning here a
conflicting view that was presented at NeurIPS in a wonderful talk by Blaise Aguera y Arcas
from Google ∗. In his view, life at all scales may not be governed by optimization-based
principles. He first underpins this opinion on a bacteria population which he considers as
the most simple biological system. What he shows is that when such a population strives
to find food and survive with pure evolutionary principles, it elaborates a strategy in terms
of displacement given a chemical stimulus - a phenomenon known as bacteria chemotaxis.
Whether the strategy eventually retained by the bacteria after a sufficiently long time is op-
timal in some mathematical sense is not simple at all and pertains to inverse reinforcement
learning. Rather than pure optimization, Aguera y Arcas rather argues that evolution de-
cides on its own the notion of "good" or "bad" throughout time, so that "what persists exists"
in his own words. Similarly, he puts forward that a GAN optimization problem is another
case in point where each of the actor - the discriminator and the generator - does a gradient
descent of its own well defined loss function, but the combined system does not [170]. At
all scales, life operates with modular agents so that intelligence would emerge collectively
from the interaction of these agents. Therefore, evolution from this prospective appears as a
definite key component of intelligence and results from a combination of complex phenomena
that the optimization framework is not sufficient on its own to account for. This being said,
there are specific situations where evolution can be emulated in an optimization setting.

Metalearning as a way to emulate evolution Similarly according to Aguera y Ar-
cas, the learning rules themselves should be "evolved". Traditional learning rules, such as
backpropagation, act on parameters that model the connectome: looping several times over
a dataset until convergence of these parameters as we are used to can be seen as a learn-
ing episode. One way to model evolution is to parametrise the learning rule itself: these
parameters model the genome. The way we proceed generally to train these parameters is
metalearning: each learning episode (as defined before) is part of a outer loop that optimizes
the parameters of the genome, or metaparameters. A metalearning approach has been used
for instance to achieve few shot learning [171], where the learning agent can learn out of
a very few samples of each class, pretty much like human beings can. A learning episode
consists in learning from a dataset with a few samples, where the learning rule does not read

∗The full talk can be found: https://slideslive.com/38922302/social-intelligence.

— 190 —

like gradient descent but LSTM-like dynamics with metaparameters: θt+1 ← LSTM(θt; γ).
At the end of each learning episode, a meta-loss is evaluated on the current test set, and
the gradients with respect to γ backpropagated through the whole training episode. Alterna-
tively, the γ parameters can also be learnt in a evolutionary way. Eventually, at the end of
the metalearning procedure, the γ parameters learnt in this way, or equivalently the learning
rule, allow to perform few shot learning on unseen datasets: it has learn to learn with a few
examples! Very recently, a metalearning approach - presented at the NeurIPS workshop and
at Cosyne - was used to learn local learning rules able to perform few shot learning [172].

Similarly, these metalearning techniques could potentially benefit neuromorphic comput-
ing. For example, we could think of these metaparameters as adjustable physical quantities
that we would generally tune by hand - e.g. a voltage or current threshold, the shape of
a programming pulse, tunable parameters of a technology. Metalearning approaches could
for instance be used on software to find good values for these tunable parameters. What if,
given a physical substrate with topological constraints, a learning rule could be made local
by adjusting properly the properties of the circuits? Also, conductance udpdate is energy
costly and some devices are limited by their endurance. What if we could metalearn proper
learning rules on software, which once transferred onto hardware would enable to learn with
a very few examples, and thereby reduce the energy consumption of neuromorphic systems
with a few conductance updates?

Take-away message. This piece of work, which intertwines closely neuroscience, mathe-
matical and physical aspects, is one leap towards achieving such transdisciplinarity in neu-
romorphic computing. These results and the previous outlook have convinced me of the
formidable prospects of this kind of approach. Neuroscientists seek for mathematical models
of how the brain might work and neuromorphic researchers would tremendously benefit to
be part of the same exciting quest. Intriguingly, neuroscientists may also well gain from the
neuromorphic insight, as the emergent physics of the neuromorphic systems might reveal fea-
tures of the brain that one may have not suspected otherwise. Therefore, bringing these two
communities closer, to the extent of collaboration towards building learning theories, may
well be a very promising path for neuromorphic computing, and perhaps for neuroscience as
well. In the long run, the joint endeavour could potentially lead to building a formal umbrella
framework for neuromorphic computing, and hopefully help neuromorphic systems scale to
complex tasks.

— 191 —

List of publications

Publications linked to my Ph.D work

Peer-reviewed journal articles

• Maxence Ernoult, Julie Grollier, Damien Querlioz. "Using Memristors for Robust
Local Learning of Hardware Restricted Boltzmann Machines", Scientific Reports 9(1),
1–15 (2019).

• Miguel Romera, Philippe Talatchian, Sumito Tsunegi, Flavio Abreu Araujo, Vincent
Cros, Paolo Bortolotti, Juan Trastoy, Kay Yakushiji, Akio Fukushima, Hitoshi Kub-
ota, Shinji Yuasa, Maxence Ernoult, Damir Vodenicarevic, Tifenn Hirtzlin, Nicolas
Locatelli, Damien Querlioz, Julie Grollier. “Vowel recognition with four coupled spin-
torque nano-oscillators”, Nature 563(7730), 230 (2018).

Pre-prints

• Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Damien Quer-
lioz, Julie Grollier. "Scaling Equilibrium Propagation to Deep ConvNets by Drastically
Reducing its Gradient Estimator Bias", arXiv preprint arXiv:2006.03824 (2020).

• Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier,
"Equilibrium Propagation with Continual Weight Updates",
arXiv preprint arXiv:2005.04168 (2020).

• Axel Laborieux, Maxence Ernoult, Tifenn Hirtzlin, Damien Querlioz. "Synaptic
Metaplasticity in Binarized Neural Networks", arXiv preprint arXiv:2003.03533 (2020).

• Miguel Romera, Philippe Talatchian, Sumito Tsunegi, Kay Yakushiji, Akio Fukushima,
Hitoshi Kubota, Shinji Yuasa, Vincent Cros, Paolo Bortolotti, Maxence Ernoult,
Damien Querlioz, Julie Grollier. "Binding events through the mutual synchronization
of spintronic nano-neurons". arXiv preprint arXiv:2001.08044.(2020)

— 192 —

Peer-reviewed conference articles

• Maxence Ernoult, Julie Grollier, Damien Querlioz. "Robust Local Learning with
Memristor-Based Restricted Boltzmann Machines". Cognitive Computing, poster (2018).

• Tifenn Hirtzlin, Marc Bocquet, Maxence Ernoult, Jacques-Olivier Klein, /’Etienne
Nowak, Elisa Vianello, Jean-Michel Portal, Damien Querlioz. "Hybrid Analog-Digital
Learning with Differential RRAM Synapses". IEEE International Electron Devices
Meeting (2019).

• Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio and Benjamin
Scellier. “Updates of Equilibrium Prop Match Gradients of Backprop Through Time
in an RNN with Static Input”. In Advances in Neural Information Processing Systems,
pages 7079–7089, oral (2019).

• Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio and Benjamin
Scellier. "Continual Weight Updates and Convolutional Architectures for Equilibrium
Propagation". Cosyne, poster (2020).

• Erwann Martin, Maxence Ernoult, Shuai Li, Damien Querlioz, Teodora Petrisor,
Julie Grollier. "Spiking Equilibrium Propagation for Intrinsic Learning Hardware".
NAISys, oral (2020).

Publications prior to my Ph.D

• Christian Hoecker, Jean de la Verpilliere, Maxence Ernoult, Brian Graves and Adam
Boies. "Theoretical model of CNT aerogel formation". European Aerosol Conference,
poster(2016).

• Gautier Lefebvre, Alexane Gondel, Marc Dubois, Michael Atlan, Florian Feppon, Aim/’e
Labb/’e, Camille Gillot, Alix Garelli, Maxence Ernoult, Svitlana Mayboroda, Marcel
Filoche, and Patrick Sebbah, "One Single Static Measurement Predicts Wave Localiza-
tion in Complex Structures", Phys. Rev. Lett. 117, 074301 (2016).

— 193 —

References

— 194 —

References

[1] Alan M Turing. “Computing machinery and intelligence”. In Parsing the Turing Test, pages
23–65. Springer, (2009).

[2] Warren S McCulloch and Walter Pitts, “A logical calculus of the ideas immanent in nervous
activity”, The bulletin of mathematical biophysics 5(4), 115–133 (1943).

[3] Donald Olding Hebb, The organization of behavior: A neuropsychological theory, Psychology
Press (2005).

[4] Carla J Shatz, “The developing brain”, Scientific American 267(3), 60–67 (1992).
[5] Frank Rosenblatt, “The perceptron: a probabilistic model for information storage and organi-

zation in the brain.”, Psychological review 65(6), 386 (1958).
[6] Bernard Widrow, “Thinking about thinking: the discovery of the LMS algorithm”, IEEE Signal

Processing Magazine 22(1), 100–106 (2005).
[7] Marvin Minsky and Seymour A Papert, Perceptrons: An introduction to computational geome-

try, MIT press (2017).
[8] Paul John Werbos, The roots of backpropagation: from ordered derivatives to neural networks

and political forecasting, volume 1, John Wiley & Sons (1994).
[9] David B Parker, “Learning Logic Technical Report TR-47”, Center of Computational Research

in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA
(1985).

[10] Yann LeCun, “A learning scheme for asymmetric threshold networks”, Proceedings of COGNI-
TIVA 85(537), 599–604 (1985).

[11] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. “Learning internal represen-
tations by error propagation”. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, (1985).

[12] Kunihiko Fukushima and Sei Miyake, “Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position”, Pattern recognition 15(6), 455–469 (1982).

[13] Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner, “Gradient-based learning ap-
plied to document recognition”, Proceedings of the IEEE 86(11), 2278–2324 (1998).

[14] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory”, Neural computation 9(8),
1735–1780 (1997).

[15] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “Imagenet classification with deep
convolutional neural networks”. In Advances in neural information processing systems, pages
1097–1105, (2012).

[16] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980 (2014).

— 195 —

References

[17] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous and Andre R LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions”, IEEE Journal of
Solid-State Circuits 9(5), 256–268 (1974).

[18] Laszlo B Kish, “End of Moore’s law: thermal (noise) death of integration in micro and nano
electronics”, Physics Letters A 305(3-4), 144–149 (2002).

[19] John Von Neumann, “First Draft of a Report on the EDVAC”, IEEE Annals of the History of
Computing 15(4), 27–75 (1993).

[20] “1.1 Computing’s energy problem (and what we can do about it)”, Digest of Technical Papers
- IEEE International Solid-State Circuits Conference 57, 10–14 (2014).

[21] John Backus, “Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs”, Communications of the ACM 21(8), 613–641 (1978).

[22] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard et al. “Tensorflow: A system for large-
scale machine learning”. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, (2016).

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga and Adam Lerer, “Automatic differentiation in
pytorch”, (2017).

[24] Carver Mead, “Neuromorphic electronic systems”, Proceedings of the IEEE 78(10), 1629–1636
(1990).

[25] Srinjoy Mitra, Stefano Fusi and Giacomo Indiveri, “Real-time classification of complex patterns
using spike-based learning in neuromorphic VLSI”, IEEE transactions on biomedical circuits
and systems 3(1), 32–42 (2008).

[26] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chan-
drasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A Merolla and
Kwabena Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural
simulations”, Proceedings of the IEEE 102(5), 699–716 (2014).

[27] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron
Patterson, David R Lester, Andrew D Brown and Steve B Furber, “SpiNNaker: A 1-W 18-core
system-on-chip for massively-parallel neural network simulation”, IEEE Journal of Solid-State
Circuits 48(8), 1943–1953 (2013).

[28] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul
Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam et al., “Truenorth: Design
and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip”, IEEE transactions
on computer-aided design of integrated circuits and systems 34(10), 1537–1557 (2015).

[29] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning”, IEEE Micro 38(1), 82–99 (2018).

[30] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers et al. “In-datacenter performance
analysis of a tensor processing unit”. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, pages 1–12, (2017).

[31] Giacomo Indiveri, Bernabé Linares-Barranco, Robert Legenstein, George Deligeorgis and
Themistoklis Prodromakis, “Integration of nanoscale memristor synapses in neuromorphic com-
puting architectures”, Nanotechnology 24(38), 384010 (2013).

— 196 —

References

[32] Tifenn Hirtzlin, Marc Bocquet, J-O Klein, Etienne Nowak, Elisa Vianello, J-M Portal and
Damien Querlioz. “Outstanding bit error tolerance of resistive ram-based binarized neural net-
works”. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS), pages 288–292. IEEE, (2019).

[33] Geoffrey W Burr, Robert M Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler,
Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola et al., “Neuromorphic
computing using non-volatile memory”, Advances in Physics: X 2(1), 89–124 (2017).

[34] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat, Carmelo
di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP Farinha et al.,
“Equivalent-accuracy accelerated neural-network training using analogue memory”, Nature
558(7708), 60–67 (2018).

[35] Leon Chua, “Memristor-the missing circuit element”, IEEE Transactions on circuit theory 18(5),
507–519 (1971).

[36] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart and R Stanley Williams, “The missing
memristor found”, nature 453(7191), 80–83 (2008).

[37] Massimiliano Di Ventra and Yuriy V Pershin, “On the physical properties of memristive, mem-
capacitive and meminductive systems”, Nanotechnology 24(25), 255201 (2013).

[38] Paul Meuffels and Rohit Soni, “Fundamental issues and problems in the realization of memris-
tors”, arXiv preprint arXiv:1207.7319 (2012).

[39] Sascha Vongehr and Xiangkang Meng, “The missing memristor has not been found”, Scientific
reports 5, 11657 (2015).

[40] C Garling, “Wonks question HP’s claim to computer-memory missing link”, Wired. com, re-
trieved pages 09–23 (2012).

[41] GW Burr, P Narayanan, RM Shelby, Severin Sidler, Irem Boybat, Carmelo di Nolfo and Yusuf
Leblebici. “Large-scale neural networks implemented with non-volatile memory as the synaptic
weight element: Comparative performance analysis (accuracy, speed, and power)”. In 2015
IEEE International Electron Devices Meeting (IEDM), pages 4–4. IEEE, (2015).

[42] SR Nandakumar, Manuel Le Gallo, Christophe Piveteau, Vinay Joshi, Giovanni Mariani, Irem
Boybat, Geethan Karunaratne, Riduan Khaddam-Aljameh, Urs Egger, Anastasios Petropou-
los et al., “Mixed-precision deep learning based on computational memory”, arXiv preprint
arXiv:2001.11773 (2020).

[43] T Hirtzlin, Marc Bocquet, M Ernoult, J-O Klein, E Nowak, E Vianello, J-M Portal and D Quer-
lioz. “Hybrid analog-digital learning with differential rram synapses”. In 2019 IEEE Interna-
tional Electron Devices Meeting (IEDM), (2019).

[44] Hyeongsu Kim, Jong-Ho Bae, Suhwan Lim, Sung-Tae Lee, Young-Tak Seo, Dongseok Kwon,
Byung-Gook Park and Jong-Ho Lee, “Efficient precise weight tuning protocol considering vari-
ation of the synaptic devices and target accuracy”, Neurocomputing 378, 189–196 (2020).

[45] Fabien Alibart, Elham Zamanidoost and Dmitri B Strukov, “Pattern classification by memristive
crossbar circuits using ex situ and in situ training”, Nature communications 4(1), 1–7 (2013).

[46] Dirk J Wouters, Rainer Waser and Matthias Wuttig, “Phase-change and redox-based resistive
switching memories”, Proceedings of the IEEE 103(8), 1274–1288 (2015).

[47] Geoffrey W Burr, Robert M Shelby, Severin Sidler, Carmelo Di Nolfo, Junwoo Jang, Irem
Boybat, Rohit S Shenoy, Pritish Narayanan, Kumar Virwani, Emanuele U Giacometti et al.,
“Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses)
using phase-change memory as the synaptic weight element”, IEEE Transactions on Electron
Devices 62(11), 3498–3507 (2015).

— 197 —

References

[48] Damien Querlioz, Olivier Bichler, Philippe Dollfus and Christian Gamrat, “Immunity to device
variations in a spiking neural network with memristive nanodevices”, IEEE Transactions on
Nanotechnology 12(3), 288–295 (2013).

[49] Irem Boybat, Manuel Le Gallo, SR Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas
Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian and Evangelos Eleftheriou, “Neuromor-
phic computing with multi-memristive synapses”, Nature communications 9(1), 1–12 (2018).

[50] Jun-Woo Jang, Sangsu Park, Geoffrey W Burr, Hyunsang Hwang and Yoon-Ha Jeong, “Opti-
mization of conductance change in Pr 1–x Ca x MnO 3-based synaptic devices for neuromorphic
systems”, IEEE Electron Device Letters 36(5), 457–459 (2015).

[51] Pai-Yu Chen, Binbin Lin, I-Ting Wang, Tuo-Hung Hou, Jieping Ye, Sarma Vrudhula, Jae-sun
Seo, Yu Cao and Shimeng Yu. “Mitigating effects of non-ideal synaptic device characteristics
for on-chip learning”. In 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 194–199. IEEE, (2015).

[52] Ligang Gao, Pai-Yu Chen and Shimeng Yu, “Programming protocol optimization for analog
weight tuning in resistive memories”, IEEE Electron Device Letters 36(11), 1157–1159 (2015).

[53] Shimeng Yu, Pai-Yu Chen, Yu Cao, Lixue Xia, Yu Wang and Huaqiang Wu. “Scaling-up
resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect”. In 2015
IEEE International Electron Devices Meeting (IEDM), pages 17–3. IEEE, (2015).

[54] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli and Anima Anandkumar,
“signSGD: Compressed optimisation for non-convex problems”, arXiv preprint arXiv:1802.04434
(2018).

[55] Lukas Balles and Philipp Hennig, “Dissecting adam: The sign, magnitude and variance of
stochastic gradients”, arXiv preprint arXiv:1705.07774 (2017).

[56] W Schiffmann, M Joost and R Werner, “Optimization of the backpropagation algorithm for
training multilayer perceptrons”, University of Koblenz: Institute of Physics (1994).

[57] Christopher H Bennett, Vivek Parmar, Laurie E Calvet, Jacques-Olivier Klein, Manan Suri,
Matthew J Marinella and Damien Querlioz, “Contrasting advantages of learning with random
weights and backpropagation in non-volatile memory neural networks”, IEEE Access 7, 73938–
73953 (2019).

[58] Alaa Saade, Francesco Caltagirone, Igor Carron, Laurent Daudet, Angélique Drémeau, Sylvain
Gigan and Florent Krzakala. “Random projections through multiple optical scattering: Approx-
imating kernels at the speed of light”. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6215–6219. IEEE, (2016).

[59] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen and Hai Li. “Terngrad:
Ternary gradients to reduce communication in distributed deep learning”. In Advances in neural
information processing systems, pages 1509–1519, (2017).

[60] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli et al.,
“A deep learning framework for neuroscience”, Nature neuroscience 22(11), 1761–1770 (2019).

[61] Yang Dan and Mu-ming Poo, “Spike timing-dependent plasticity of neural circuits”, Neuron
44(1), 23–30 (2004).

[62] José Antonio Pérez-Carrasco, Carlos Zamarreno-Ramos, Teresa Serrano-Gotarredona and Bern-
abé Linares-Barranco. “On neuromorphic spiking architectures for asynchronous stdp memris-
tive systems”. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
pages 1659–1662. IEEE, (2010).

— 198 —

References

[63] Olivier Bichler, Damien Querlioz, Simon J Thorpe, Jean-Philippe Bourgoin and Christian Gam-
rat. “Unsupervised features extraction from asynchronous silicon retina through spike-timing-
dependent plasticity”. In The 2011 International Joint Conference on Neural Networks, pages
859–866. IEEE, (2011).

[64] Michael Beyeler, Nikil D Dutt and Jeffrey L Krichmar, “Categorization and decision-making in
a neurobiologically plausible spiking network using a STDP-like learning rule”, Neural Networks
48, 109–124 (2013).

[65] Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, Simon J Thorpe and Timo-
thée Masquelier, “Bio-inspired digit recognition using reward-modulated spike-timing-dependent
plasticity in deep convolutional networks”, Pattern Recognition 94, 87–95 (2019).

[66] Jean-Pascal Pfister, Taro Toyoizumi, David Barber and Wulfram Gerstner, “Optimal spike-
timing-dependent plasticity for precise action potential firing in supervised learning”, Neural
computation 18(6), 1318–1348 (2006).

[67] Miguel Romera, Philippe Talatchian, Sumito Tsunegi, Flavio Abreu Araujo, Vincent Cros, Paolo
Bortolotti, Juan Trastoy, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota et al., “Vowel recog-
nition with four coupled spin-torque nano-oscillators”, Nature 563(7730), 230 (2018).

[68] John J Hopfield, “Neural networks and physical systems with emergent collective computational
abilities”, Proceedings of the national academy of sciences 79(8), 2554–2558 (1982).

[69] David H Ackley, Geoffrey E Hinton and Terrence J Sejnowski, “A learning algorithm for Boltz-
mann machines”, Cognitive science 9(1), 147–169 (1985).

[70] Paul Smolensky. “Information processing in dynamical systems: Foundations of harmony the-
ory”. Technical report, Colorado Univ at Boulder Dept of Computer Science, (1986).

[71] Geoffrey E Hinton, “Training products of experts by minimizing contrastive divergence”, Neural
computation 14(8), 1771–1800 (2002).

[72] Javier R Movellan. “Contrastive hebbian learning in the continuous hopfield model”. In Con-
nectionist models, pages 10–17. Elsevier, (1991).

[73] Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado and Gert Cauwenberghs,
“Event-driven contrastive divergence for spiking neuromorphic systems”, Frontiers in neuro-
science 7, 272 (2014).

[74] S Burc Eryilmaz, Emre Neftci, Siddharth Joshi, SangBum Kim, Matthew BrightSky, Hsiang-Lan
Lung, Chung Lam, Gert Cauwenberghs and H-S Philip Wong, “Training a Probabilistic Graph-
ical Model with Resistive Switching Electronic Synapses”, arXiv preprint arXiv:1609.08686
(2016).

[75] M Ishii, S Kim, S Lewis, A Okazaki, J Okazawa, M Ito, M Rasch, W Kim, A Nomura, U Shin
et al. “On-chip trainable 1.4 m 6t2r pcm synaptic array with 1.6 k stochastic lif neurons for
spiking rbm”. In 2019 IEEE International Electron Devices Meeting (IEDM), pages 14–2. IEEE,
(2019).

[76] Pieter R Roelfsema and Arjen van Ooyen, “Attention-gated reinforcement learning of internal
representations for classification”, Neural computation 17(10), 2176–2214 (2005).

[77] Isabella Pozzi, Sander Bohté and Pieter Roelfsema, “A biologically plausible learning rule for
deep learning in the brain”, arXiv preprint arXiv:1811.01768 (2018).

[78] Justin Werfel, Xiaohui Xie and H Sebastian Seung. “Learning curves for stochastic gradient
descent in linear feedforward networks”. In Advances in neural information processing systems,
pages 1197–1204, (2004).

[79] Benjamin James Lansdell and Konrad Paul Kording, “Spiking allows neurons to estimate their
causal effect”, bioRxiv page 253351 (2019).

— 199 —

References

[80] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer and Yoshua Bengio. “Difference target propaga-
tion”. In Joint european conference on machine learning and knowledge discovery in databases,
pages 498–515. Springer, (2015).

[81] James CR Whittington and Rafal Bogacz, “An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity”, Neural com-
putation 29(5), 1229–1262 (2017).

[82] Benjamin James Lansdell, Prashanth Prakash and Konrad Paul Kording, “Learning to solve
the credit assignment problem”, arXiv preprint arXiv:1906.00889 (2019).

[83] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed and Colin J Akerman, “Random synap-
tic feedback weights support error backpropagation for deep learning”, Nature communications
7(1), 1–10 (2016).

[84] Arild Nøkland. “Direct feedback alignment provides learning in deep neural networks”. In
Advances in neural information processing systems, pages 1037–1045, (2016).

[85] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton and Timo-
thy Lillicrap. “Assessing the scalability of biologically-motivated deep learning algorithms and
architectures”. In Advances in Neural Information Processing Systems, pages 9368–9378, (2018).

[86] Will Xiao, Honglin Chen, Qianli Liao and Tomaso Poggio, “Biologically-plausible learning al-
gorithms can scale to large datasets”, arXiv preprint arXiv:1811.03567 (2018).

[87] Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap and Douglas B Tweed.
“Deep learning without weight transport”. In Advances in Neural Information Processing Sys-
tems, pages 974–982, (2019).

[88] Johannes Christian Thiele, Olivier Bichler and Antoine Dupret, “SpikeGrad: An ANN-
equivalent Computation Model for Implementing Backpropagation with Spikes”, arXiv preprint
arXiv:1906.00851 (2019).

[89] João Sacramento, Rui Ponte Costa, Yoshua Bengio and Walter Senn. “Dendritic cortical mi-
crocircuits approximate the backpropagation algorithm”. In Advances in Neural Information
Processing Systems, pages 8721–8732, (2018).

[90] Richard Naud and Henning Sprekeler, “Sparse bursts optimize information transmission in a
multiplexed neural code”, Proceedings of the National Academy of Sciences 115(27), E6329–
E6338 (2018).

[91] Paul J Werbos, “Generalization of backpropagation with application to a recurrent gas market
model”, Neural networks 1(4), 339–356 (1988).

[92] Ronald J Williams and David Zipser, “A learning algorithm for continually running fully recur-
rent neural networks”, Neural computation 1(2), 270–280 (1989).

[93] L. B. Almeida. “A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment”. volume 2, pages 609–618, San Diego 1987, (1987). IEEE, New York.

[94] F. J. Pineda, “Generalization of Back-Propagation to Recurrent Neural Networks”, 59, 2229–
2232 (1987).

[95] Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein and Wolfgang
Maass, “Biologically inspired alternatives to backpropagation through time for learning in re-
current neural nets”, arXiv preprint arXiv:1901.09049 (2019).

[96] Dongsung Huh and Terrence J Sejnowski. “Gradient descent for spiking neural networks”. In
Advances in Neural Information Processing Systems, pages 1433–1443, (2018).

[97] Benjamin Scellier and Yoshua Bengio, “Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation”, Frontiers in computational neuroscience 11, 24
(2017).

— 200 —

References

[98] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder and
Wei Lu, “Nanoscale memristor device as synapse in neuromorphic systems”, Nano Letters 10(4),
1297–1301 (2010).

[99] Fabien Alibart, Bernabé Linares-Barranco, Robert Legenstein, George Deligeorgis and Themis-
toklis Prodromakis, “Integration of nanoscale memristor synapses in neuromorphic computing
architectures”, Nanotechnology 24(38) (2013).

[100] J Joshua Yang, Byung Joon Choi, Min-xian Zhang, Antonio C Torrezan, John Paul Strachan,
Stanley Williams and R Stanley Williams, “Memristive Devices for Computing : Mechanisms ,
Applications and Challenges”, The Electrochemical Society (2013).

[101] Davide Sacchetto, Pierre-emmanuel Gaillardon, Michael Zervas, Sandro Carrara, Giovanni De
Micheli and Yusuf Leblebici, “Applications of Multi-Terminal Memristive Devices : A Review”,
IEEE Circuits and Systems Magazine pages 23–41 (2013).

[102] Fabien Alibart, Elham Zamanidoost and Dmitri B. Strukov, “Pattern classification by memris-
tive crossbar circuits using ex situ and in situ training”, Nature Communications 4(May), 1–7
(2013).

[103] X Guo, F Merrikh Bayat, M Bavandpour, M Klachko, M R Mahmoodi, M Prezioso, Santa
Barbara, Santa Barbara and Stony Brook. “Mixed-Signal Neuromorphic Classifier Based on
Embedded NOR Flash Memory Technology”. In Electron Devices Meeting (IEDM), 2017 IEEE
International, pages 151–154, (2017).

[104] G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy, P. Narayanan, K. Virwani, E.U.
Giacometti, B. Kurdi and H. Hwang. “Experimental demonstration and tolerancing of a large-
scale neural network (165,000 synapses), using phase-change memory as the synaptic weight
element”. In 2014 IEEE International Electron Devices Meeting, (2014).

[105] “Efficient training algorithms for neural networks based on memristive crossbar circuits”, Pro-
ceedings of the International Joint Conference on Neural Networks 2015-Septe (2015).

[106] D Soudry, D Di Castro, A Gal, A Kolodny and S Kvatinsky, “Memristor-based multilayer
neural networks with online gradient descent training”, IEEE transactions on neural networks
and learning systems 26(10), 2408–2421 (2015).

[107] “Physical Realization of a Supervised Learning System Built with Organic Memristive
Synapses”, Scientific Reports 6(September), 1–12 (2016).

[108] Suhwan Lim, Jong-Ho Bae, Jai-Ho Eum, Sungtae Lee, Chul-Heung Kim, Byung-Gook Park
and Jong-Ho Lee, “Adaptive Learning Rule for Hardware-based Deep Neural Networks Using
Electronic Synapse Devices”, arXiv:1707.06381 (2017).

[109] Nandakumar S. R., Manuel Le Gallo, Irem Boybat, Bipin Rajendran, Abu Sebastian and Evan-
gelos Eleftheriou, “Mixed-precision training of deep neural networks using computational mem-
ory”, arXiv:1712.01192 (2017).

[110] Anakha V Babu and Bipin Rajendran, “Stochastic Deep Learning in Memristive Networks”,
arXiv:1711.03640 (2017).

[111] M Prezioso, B Hoskins, G Adam, K K Likharev and D B Strukov, “Training and operation of an
integrated neuromorphic network based on metal-oxide memristors”, Nature (December), 1–21
(2015).

[112] Koki Kawasaki, Tomohiro Yoshikawa and Takeshi Furuhashi, “A Study on Visualizing Feature
Extracted from Deep Restricted Boltzmann Machine using PCA”, International Journal of
Computer Information Systems and Industrial Management Applications. 8, 67–76 (2016).

[113] Na Lu, Tengfei Li, Xiaodong Ren and Hongyu Miao, “A Deep Learning Scheme for Motor
Imagery Classification based on Restricted Boltzmann Machines”, IEEE Transactions on Neural
Systems and Rehabilitation Engineering 25(6), 566–576 (2017).

— 201 —

References

[114] Hugo Larochelle and Yoshua Bengio, “Classification using Discriminative Restricted Boltz-
mann Machines”, Proceedings of the Twenty-fifth International Conference on Machine Learning
(ICML’08) (2008).

[115] Geoffrey E. Hinton, “Training Products of Experts by Minimizing Contrastive Divergence”,
Neural Computation (2002).

[116] Manan Suri, Vivek Parmar, Ashwani Kumar, Damien Querlioz and Fabien Alibart, “Neuromor-
phic Hybrid RRAM-CMOS RBM Architecture”, Non-Volatile Memory Technology Symposium
(NVMTS), 2015 15th (2015).

[117] Ahmad Muqeem Sheri, Aasim Rafique, Witold Pedrycz and Moongu Jeon, “Contrastive diver-
gence for memristor-based restricted Boltzmann machine”, Engineering Applications of Artificial
Intelligence (2015).

[118] Mahdi Nazm Bojnordi and Engin Ipek. “Memristive Boltzmann machine: A hardware accelera-
tor for combinatorial optimization and deep learning”. In Proceedings - International Symposium
on High-Performance Computer Architecture, (2016).

[119] Vivek Parmar and Manan Suri, “Design Exploration of Hybrid CMOS-OxRAM Deep Generative
Architectures”, https://arxiv.org/pdf/1801.02003 (2018).

[120] “A novel memristor-based restricted Boltzmann machine for contrastive divergence”, IEICE
Electronics Express (2018).

[121] Y. Lecun and C. Cortes, “The MNIST database of handwritten digits [Online].”,
http://yann.lecun.com/exdb/mnist/ (1998).

[122] W Schiffmann, M Joost and R Werner, “Optimization of the Backpropagation Algorithm for
Training Multilayer Perceptrons”, Physics (\mbox{}), 1–36 (1994).

[123] Christian Igel and Michael Hüsken, “Empirical evaluation of the improved Rprop learning algo-
rithms”(2003).

[124] Alan Mosca and George D. Magoulas, “Adapting Resilient Propagation for Deep Learning”,
https://arxiv.org/pdf/1509.04612 (2015).

[125] Maxence Ernoult, Julie Grollier and Damien Querlioz, “Using memristors for robust local learn-
ing of hardware restricted Boltzmann machines”, Scientific reports 9(1), 1–15 (2019).

[126] Asja Fischer and Christian Igel, “Training restricted Boltzmann machines: An introduction”,
Pattern Recognition 47(1), 25–39 (2014).

[127] Damien Querlioz, Philippe Dollfus, Olivier Bichler and Christian Gamrat. “Learning with mem-
ristive devices: How should we model their behavior?”. In Proceedings of the 2011 IEEE/ACM
International Symposium on Nanoscale Architectures, NANOARCH 2011, (2011).

[128] S. La Barbera, D. R. B. Ly, G. Navarro, N. Castellani, O. Cueto, G. Bourgeois, B. De Salvo,
E. Nowak and Elisa Vianello Querlioz, D., “Narrow Heater Bottom Electrode-Based Phase
Change Memory as a Bidirectional Artificial Synapse”, Advanced Electronic Materials (2018).

[129] Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein and Themis Pro-
dromakis, “Unsupervised learning in probabilistic neural networks with multi-state metal-oxide
memristive synapses”, Nature communications 7, 12611 (2016).

[130] Ziegler Martin Kohlstedt Hermann Hansen Mirko, Zahari Finn, “Double-barrier memristive
devices for unsupervised learning and pattern recognition”, Frontiers in Neuroscience 11, 1–11
(2017).

[131] Alessandro Fumarola, Pritish Narayanan, Lucas L. Sanches, Severin Sidler, Junwoo Jang, Ki-
bong Moon, Robert M. Shelby, Hyunsang Hwang and Geoffrey W. Burr, “Accelerating machine
learning with Non-Volatile Memory: Exploring device and circuit tradeoffs”, 2016 IEEE Inter-
national Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings (2016).

— 202 —

References

[132] V Nair Manu and Piotr Dudek. “Gradient-descent-based learning in memristive crossbar arrays”.
In International Joint Conference on Neural Networks (IJCNN). IEEE, (2015).

[133] Lukas Balles and Philipp Hennig. “Dissecting Adam: The Sign, Magnitude and Variance of
Stochastic Gradients”. (2017).

[134] Lorenz K Müller, Manu V Nair and Giacomo Indiveri, “Randomized Unregulated Step Descent
for Limited Precision Synaptic Elements”, IEEE (2017).

[135] Geoffrey E Hinton, Simon Osindero and Yee-Whye Teh, “A Fast Learning Algorithm for Deep
Belief Nets”, Neural computation (2006).

[136] Shimeng Yu, “Neuro-Inspired Computing With Emerging Nonvolatile Memory”, Proceedings of
the IEEE 106(2) (2018).

[137] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of Machine
Learning Research 15, 1929–1958 (2014).

[138] “Rate-coded DBN: An online strategy for spike-based deep belief networks”, Biologically Inspired
Cognitive Architectures (April), 0–1 (2018).

[139] Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi, Maruan Al-Shedivat and Gert Cauwen-
berghs, “Stochastic synapses enable efficient brain-inspired learning machines”, Frontiers in
Neuroscience 10(JUN), 1–29 (2016).

[140] Samuel L.Smith, Pieter-Jan Kindermans, Chris Ying and Quoc V. Le. “Don’t Decay the Learn-
ing Rate, Increase the Batch Size”. In ICLR 2018, number 2017, pages 1–11, (2018).

[141] P. Narayanan, L.L. Sanches, A. Fumarola, R.M. Shelby, S. Ambrogio, J. Jang, H. Hwang,
Y. Leblebici and G.W. Burr, “Reducing circuit design complexity for neuromorphic machine
learning systems based on Non-Volatile Memory arrays”, Proceedings - IEEE International Sym-
posium on Circuits and Systems pages 4–7 (2017).

[142] Chen Pai-Yu, Lin Binbin, Wang I-Ting, Hou Tuo-Hung, Ye Jieping, Vrudhula Sarma, Seo Jae-
sun, Cao Yu and Yu Shimeng. “Mitigating Effects of Non-ideal Synaptic Device Characteristics
for On-chip Learning”. In Computer-Aided Design (ICCAD), (2015).

[143] Matthew Jerry, Pai-yu Chen, Jianchi Zhang, Pankaj Sharma, Kai Ni, Shimeng Yu and Suman
Datta, “Ferroelectric FET Analog Synapse for Acceleration of Deep Neural Network Training”,
International Electron Devices Meeting, IEDM 6(c) (2017).

[144] “Programming Protocol Optimization for Analog Weight Tuning in Resistive Memories”, IEEE
Electron Device Letters (2015).

[145] Irem Boybat, Carmelo Nolfo, Stefano Ambrogio, Martina Bodini, Nathan C P Farinha,
Robert M Shelby, Pritish Narayanan, Severin Sidler, Hsinyu Tsai, Yusuf Leblebici, Geoffrey W
Burr, Harry Road and San Jose. “Improved Deep Neural Network hardware-accelerators based
on Non-Volatile-Memory : the Local Gains technique”. In Rebooting Computing (ICRC), (2017).

[146] Jason Yosinski, Jeff Clune, Yoshua Bengio and Hod Lipson. “How transferable are features in
deep neural networks?”. In Advances in neural information processing systems, pages 3320–3328,
(2014).

[147] Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas Mesnard and Yoshua Ben-
gio, “Generalization of equilibrium propagation to vector field dynamics”, arXiv preprint
arXiv:1808.04873 (2018).

[148] Benjamin Scellier and Yoshua Bengio, “Equivalence of equilibrium propagation and recurrent
backpropagation”, Neural computation 31(2), 312–329 (2019).

[149] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep boltzmann machines”. In Artificial intelli-
gence and statistics, pages 448–455, (2009).

— 203 —

References

[150] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep learning, MIT press (2016).

[151] Yoshua Bengio and Asja Fischer, “Early inference in energy-based models approximates back-
propagation”, arXiv preprint arXiv:1510.02777 (2015).

[152] Max Welling and Yee W Teh. “Bayesian learning via stochastic gradient langevin dynamics”. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688,
(2011).

[153] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang and Yuhuai Wu, “STDP
as presynaptic activity times rate of change of postsynaptic activity”, arXiv preprint
arXiv:1509.05936 (2015).

[154] Luis B Almeida. “A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment”. In Artificial neural networks: concept learning, pages 102–111. (1990).

[155] Fernando J Pineda, “Generalization of back-propagation to recurrent neural networks”, Physical
review letters 59(19), 2229 (1987).

[156] Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio and Benjamin Scellier. “Up-
dates of equilibrium prop match gradients of backprop through time in an rnn with static input”.
In Advances in Neural Information Processing Systems, pages 7079–7089, (2019).

[157] Yann LeCun, Yoshua Bengio and Geoffrey Hinton, “Deep learning”, Nature 521(7553), 436
(2015).

[158] Francis Crick, “The recent excitement about neural networks”, Nature 337(6203), 129–132
(1989).

[159] Editorial, “Big data needs a hardware revolution”, Nature 554(7691), 145 February 2018.

[160] Benjamin Scellier and Yoshua Bengio, “Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation”, Frontiers in computational neuroscience 11 (2017).

[161] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner and Gabriele Monfardini,
“The graph neural network model”, IEEE Transactions on Neural Networks 20(1), 61–80 (2009).

[162] Corentin Tallec and Yann Ollivier, “Unbiased online recurrent optimization”, arXiv preprint
arXiv:1702.05043 (2017).

[163] P. O’Connor, E. Gavves and M. Welling. “Initialized equilibrium propagation for backprop-free
training”. In Initialized Equilibrium Propagation for Backprop-Free Training”, (2018).

[164] Peter O’Connor, Efstratios Gavves and Max Welling. “Training a spiking neural network with
equilibrium propagation”. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Training a
Spiking Neural Network with Equilibrium Propagation”, volume 89 of Proceedings of Machine
Learning Research, pages 1516–1523. PMLR, 16–18 Apr 2019.

[165] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien
Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima et al., “Neuromorphic
computing with nanoscale spintronic oscillators”, Nature 547(7664), 428 (2017).

[166] J Feldmann, N Youngblood, CD Wright, H Bhaskaran and WHP Pernice, “All-optical spiking
neurosynaptic networks with self-learning capabilities”, Nature 569(7755), 208 (2019).

[167] Emma Strubell, Ananya Ganesh and Andrew McCallum, “Energy and Policy Considerations
for Deep Learning in NLP”, arXiv preprint arXiv:1906.02243 (2019).

[168] John A Hertz, Introduction to the theory of neural computation, CRC Press (2018).

[169] Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Shein-
berg and Nicolas Brunel, “Inferring learning rules from distributions of firing rates in cortical
neurons”, Nature neuroscience 18(12), 1804 (2015).

— 204 —

http://dx.doi.org/10.1038/d41586-018-01683-1
https://ivi.fnwi.uva.nl/isis/publications/2018/OConnorICML2018
http://proceedings.mlr.press/v89/o-connor19a.html
http://proceedings.mlr.press/v89/o-connor19a.html

References

[170] Vaishnavh Nagarajan and J Zico Kolter. “Gradient descent gan optimization is locally stable”.
In Advances in neural information processing systems, pages 5585–5595, (2017).

[171] Sachin Ravi and Hugo Larochelle, “Optimization as a model for few-shot learning”, (2016).

[172] Jack Lindsey, “Learning to Learn with Feedback and Local Plasticity”, (2019).

[173] E. Cha, J. Woo, D. Lee, J.and Koo Y. ... Lee, S.and Song and K. Shiraishi, “Nanoscale (10nm)
3D vertical ReRAM and NbO 2 threshold selector with TiN electrode”, Electron Devices Meeting
(IEDM), 2013 IEEE International (2013).

[174] Y. Koo, K. Baek and H. Hwang, “Te-based amorphous binary OTS device with excellent selector
characteristics for x-point memory applications”, VLSI Technology, 2016 IEEE Symposium on
IEEE pages 1–2 (2013).

[175] Geoffrey Hinton. “A Practical Guide to Training Restricted Boltzmann Machines A Practical
Guide to Training Restricted Boltzmann Machines”. In Neural networks: Tricks of the trade ().
., volume 9, chapter pp. 599-61, page 1. (2010).

[176] Benjamin Scellier and Yoshua Bengio, “Towards a biologically plausible backprop”, arXiv
preprint arXiv:1602.05179v2 914 (2016).

— 205 —

Part VII

Appendices

— 206 —

Chapter 1

Appendix of part II

1.1 Memristor model used

Integrating Eq. (1.5) between t0 and t0 + ∆t yields the explicit effective conductance update
G(t0 + ∆t)−G(t0), which is equal to :

 fp(G(t0),∆t) = Gmax−Gmin
βp

log
(
1 + βp

Gmax−GminCp∆t exp
(
−βp G(t0)−Gmin

Gmax−Gmin

))
(potentiation)

fm(G(t0),∆t)− Gmax−Gmin
βd

log
(
1 + βd

Gmax−GminCd∆t exp
(
−βd Gmax−G(t0)

Gmax−Gmin

))
(depression)

,

(1.1)

Eq. (1.1) is the explicit form of Eq. (1.6). In most of our simulations, we took Cp =
Cd = C and βp = βd = β. The single part of the study where this symmetry is broken is
when studying device-to-device variability -see below. The constant C, encoding the voltage
amplitude applied to the device, is fixed by the condition ∆G(t0,∆tmax) = Gmax − Gmin,
G(t0) = Gmin yielding with Eq. (1.1) C = Gmax−Gmin

∆tmax
expβ−1

β . Injecting this C back into
Eq.(1.1) shows that only the ratio ∆t/∆tmax is relevant. Note that C depends on β so
that whenever β was changed, so was C. In all the simulations, Gmax was taken to be 1
and Gmin = 1/13. To model cycle-to-cycle variability, we simply added a Gaussian noise to
each conductance update dictated by Eq.(1.1), e.g. ∆Gtot(t0,∆t) = ∆G(t0,∆t) + noise with
noise∼ N (0, σ2

intra) with σintra = εintra(Gmax − Gmin). The parameter εintra is the actual
quantity we called ’cycle-to-cycle variability’ throughout the paper: its value was swept
through {0.001, 0.003, 0.006, 0.01, 0.02, 0.03}. For a given β, device-to-device variability was
modeled by adding a dispersion on the coefficient C with
C ∼ logN

(
log C̄√

1+ε2
inter

,
√

log(1 + ε2
inter)

)
so that 〈C〉 = C̄ σ(C) = εinterC̄ with C̄ =

Gmax−Gmin
∆tmax

expβ−1
β . The parameter εinter is the actual quantity we called ’device-to-device

variability’ throughout the paper: its value was swept through {0.01, 0.1, 1, 2, 4}. Note that
consequently in this very particular case: C+,p 6= C+,p (one given device do not respond
symmetrically to potentiation and depression) and C+,p 6= C−,p (devices of the same pair do
not respond symmetrically to potentiation).

— 207 —

VII.1.2 — Simulations

Finally note that our model defined as Eq. (1.5) can look similar to [130]:

dG(t)
dt

= β(G(t), n,∆V (t),∆t)
(

1− G(t)
Gmax

)
, (1.2)

with some important differences however. The coefficient β does not have the same meaning
in the two models: while it is a constant in ours, it appears in theirs as a function of the
applied voltage height (∆V (t)) and width (∆t) to model switching dynamics which we did
not take into account. Morever, the number of pulses applied (n) appears explicitly in their
model while it is implicit in ours: we treat equally a pulse of length ∆t and n pulses of length
∆t/n. Finally, the dependence of the conductance update with the current conductance is
exponential in our model while it is polynomial in theirs. Expanding Eq. (1.5) for a small
βand assuming Gmax >> Gmin brings our model the closest to Eq. (1.2), up to the linear
contribution in C:

dG(t)
dt

∼β→0

{
C + βCGminGmax

(1− G(t)
Gmin

) (potentiation)
−C + βC(1− G(t)

Gmax
) (depression)

. (1.3)

1.2 Simulations

All the simulations presented in this work have been carried out in the most simple way in
the sense that it is abstracted from the realistic constraints inherent to the crossbar circuitry.
We assumed that the memristive devices are associated with an access device (transistor
[34] or resistive switching selector device [173, 174]), and therefore neglected sneak paths
current effects. Sneak paths currents, if present, would significantly decrease the accuracy
in programming the synaptic weights. Our goal is to focus on the effects of the weight
update physics and the learning rules it enables on the different neural network architectures
introduced above, so as to motivate further realistic investigations.

When training any architecture throughout the paper, we used 40, 000 samples for training
and 10, 000 for test from the MNIST data base. The different neural network topologies (bias
included) were set as follows: 785-301-10 for the RBM+softmax stack, 794(784+10)+300
for the Discriminative RBM and 785+501+511(501+10)+2001 for the Deep Belief Net. In
practice, biases were concatenated to W as an extra column and row. Labels are one-hot
encoded, e.g. the label “2” is encoded as
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0) out of 10 possible outcomes. If not stated otherwise, all simulations
were carried out with a mini-batch size of 100.

The benchmark floating point software-based simulation results on the Discriminative
with 300, 500 and 6000 hidden units have been obtained in specific training and test conditions
apart from the memristor-based simulations. During training when computing Contrastive
Divergence, visible units are binarized while hidden units are encoded by probabilities as it
has been empirically prescribed [175]. Only one step of Gibbs sampling was used to compute
Contrastive Divergence (CD-1). At test time and contrary to memristor-based simulations,
the inference technique is deterministic: when clamping a digit the network was not trained
on, the label which is selected is the one which minimizes the free-energy F (v) of the RBM:

— 208 —

VII.1.2 — Simulations

F (v) = − log
∑
h

exp (hTWv), (1.4)

with p(v) = exp (−F (v))/∑ṽ exp (−F (ṽ)): a minimal free-energy corresponds to a maximal
likelihood. The Discriminative RBMs with 300, 500 and 6000 hidden units have respectively
been tuned with a learning rate of 0.01, 0.01 and 0.04.

We now specify memristor-based simulation conditions. As in [105], the conductance were
sampled from
N (Gmax−Gmin2 ,

(
0.1Gmax−Gmin2

)2
) and the conductance bias were set to Gmax−Gmin

2 . In any
architecture, the neurons values during inference (i.e. during the forward pass at a given
training step) and training (i.e. in the weight update itself) were binarized, i.e. stochastically
sampled from their Bernoulli probability given their upstream neurons, using sigmoid acti-
vation functions. When greedily training the Deep Belief Net, we trained the 785+501 RBM
taking as inputs binarized MNIST inputs, then the 501+501 RBM taking as inputs binarized
features extracted by the first RBM, finally the 511+2001 Discriminative RBM taking as
inputs features extracted by the second RBM and target labels. To perform inference in
the Discriminative RBM on the label units to calculate the test error rate (this is strictly
analogous in the Deep Belief Net, taking extracted features instead of the MNIST samples
as inputs), we proceeded in the following way: we initially clamp a given test sample on the
first 784 units (or extracted features of this test sample on the first 500 hidden units) along
with a label vector on the remaining 10 units initialized to (1/10)(1, . . . , 1). We subsequently
perform 40 Gibbs chains in parallel over 2 steps (exactly as in [139]) and average the resulting
40 label vectors to determine which label was selected by the network.

If not stated otherwise, simulations were performed over 30 epochs, over 5 trials, with
error bars indicating median, first quartile, third quartile with a mini-batch size of 100.

Finally, the multiplicative coefficient η+ appearing in Alg. (2) describing RProp was set
empirically set to 1.01 and we fixed η− = 1/η+. We selected η+ by simply drawing the
cumulative distribution function of the final pulse widths and ensured that it was spread
enough over the whole range [0,∆tmax] - with η = 1.05 conversely, 40% of the device were
shut off after 30 epochs of learning (∆t = 0).

All simulation scripts can be found on: https://github.com/ernoult/mem-RBM.git.

— 209 —

Chapter 2

Appendix of part IV

2.1 Difference between L∗ and L

There is a difference between the loss at the steady state L∗ and the loss after T iterations
L. To see why the functions L∗ and L (as functions of θ) are different, we have to come back
to the definitions of s∗ and sT . Recall that

• L∗ = ` (s∗, y) where s∗ is the steady state, i.e. characterized by s∗ = F (x, s∗, θ),

• L = ` (sT , y) where sT is the state of the network after T time steps, following the
dynamics s0 = 0 and st+1 = F (x, st, θ).

For the current value of the parameter θ, the hyperparameter T is chosen such that sT = s∗,
i.e. such that the network reaches steady state after T time steps. Thus, for this value of θ
we have numerical equality L(θ) = L∗(θ). However, two functions that have the same value
at a given point are not necessarily equal. Similarly, two functions that have the same value
at a given point don’t necessarily have the same gradient at that point. Here we are in the
situation where

1. the functions L and L∗ (as functions of θ) have the same value at the current value of
θ, i.e. L(θ) = L∗(θ) numerically,

2. the functions L and L∗ (as functions of θ) are analytically different, i.e. L 6= L∗.

Since the functions L and L∗ (as functions of θ) are different, the gradients ∂L∗
∂θ and ∂L

∂θ are
also different in general.

— 210 —

VII.2.2 — Index Shift in the definition of ∆EP
θ and ∇BPTT

θ

2.2 Index Shift in the definition of ∆EP
θ and ∇BPTT

θ

The convention that we have chosen to define ∇BPTT
θ (t) and ∆EP

θ (t) could seem strange at
first glance for two reasons:

• the state update ∆EP
s (t) is defined in terms of sβt and sβt+1, whereas the weight update

∆EP
θ (t) is defined in terms of sβt−1 and sβt ,

• at time t = 0, the state gradient ∇BPTT
s (0) and the state update ∆EP

s (0) are defined,
but the weight gradient ∇BPTT

θ (0) and the weight update ∆EP
θ (0) are not defined.

Here we explain why.

First, recall that we have defined the gradients of BPTT as

∀t = 0, 1, . . . , T, ∇BPTT
s (t) = ∂L

∂sT−t
, (2.1)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) = ∂L

∂θT−t
, (2.2)

where
∀t = 0, 1, . . . T − 1, st+1 = F (x, st, θt = θ) , L = ` (sT , y) , (2.3)

and that we have defined the neural and weight updates of EP as

∀t ≥ 0, ∆EP
s (t) = lim

β→0

1
β

(
sβt+1 − s

β
t

)
, (2.4)

∀t ≥ 1, ∆EP
θ (t) = lim

β→0

1
β

(
∂Φ
∂θ

(
x, sβt , θ

)
− ∂Φ
∂θ

(
x, sβt−1, θ

))
, (2.5)

where

sβ0 = s∗, ∀t ≥ 0, sβt+1 = F
(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
. (2.6)

Index Shift

Let us introduce
Φβ(x, s, y, θ) = Φ(x, s, θ)− β `(s, y), (2.7)

so that the dynamics in the second phase rewrites

sβt+1 = ∂Φβ

∂s

(
x, sβt , y, θ

)
. (2.8)

— 211 —

VII.2.3 — Experiments: demonstrating the GDU property

It is then readily seen that the neural updates ∆EP
s and the weight updates ∆EP

θ both rewrite
in the form

∆EP
s (0) = lim

β→0

1
β

(
∂Φβ

∂s

(
x, sβ0 , y, θ

)
− ∂Φ
∂s

(
x, sβ0 , θ

))
, (2.9)

∀t ≥ 1, ∆EP
s (t) = lim

β→0

1
β

(
∂Φβ

∂s

(
x, sβt , y, θ

)
− ∂Φβ

∂s

(
x, sβt−1, y, θ

))
, (2.10)

∀t ≥ 1, ∆EP
θ (t) = lim

β→0

1
β

(
∂Φβ

∂θ

(
x, sβt , y, θ

)
− ∂Φβ

∂θ

(
x, sβt−1, y, θ

))
. (2.11)

Written in this form, we see a symmetry between ∆EP
s (t) and ∆EP

θ (t) and there is no more
index shift.

Missing Weight Gradient ∇BPTT
θ (0) and Weight Update ∆EP

θ (0)

We can naturally extend the definition of ∇BPTT
θ (0) and ∆EP

θ (0) following Eq. 2.2. In the
setting studied in this paper, they both take the value 0 because the cost function `(s, y) does
not depend on the parameter θ. But suppose now that ` depends on θ, i.e. that ` is of the
form `(s, y, θ). Then the loss of Eq. 2.3 takes the form L = ` (sT , y, θT = θ), so that:

∇BPTT
θ (0) = ∂L

∂θT
= ∂`

∂θ
(sT , y, θ) . (2.12)

As for the missing weight update ∆EP
θ (0), we follow the definition of Eq. 2.9 and define:

∆EP
θ (0) = lim

β→0

1
β

(
∂Φβ

∂θ

(
x, sβ0 , y, θ

)
− ∂Φ
∂θ

(
x, sβ0 , θ

))
= −∂`

∂θ
(s∗, y, θ) . (2.13)

Since sT = s∗ (the state at the end of the first phase is the state at the beginning of the
second phase, and it is the steady state), we have ∆EP

θ (0) = −∇BPTT
θ (0).

2.3 Experiments: demonstrating the GDU property

2.3.1 Hyperparameters

We provide in Table 2.1 a complete description of the hyperparameters that were used to
demonstrate Theorem 4 on the different models.

— 212 —

VII.2.3 — Experiments: demonstrating the GDU property

Table 2.1: Table of hyperparameters used to demonstrate Theorem 4. "EB" and "P"
respectively denote "energy-based" and "prototypical", "-#h" stands for the number of
hidden layers.

Activation T K β ε

Toy model tanh 5000 80 0.01 0.08
EB-1h tanh 800 80 0.001 0.08
EB-2h tanh 5000 150 0.01 0.08
EB-3h tanh 30000 200 0.02 0.08
P-1h tanh 150 10 0.01 -
P-2h tanh 1500 40 0.01 -
P-3h tanh 5000 40 0.015 -
P-conv hard sigmoid 5000 10 0.02 -

2.3.2 Definition of the Relative Mean Squared Error (RMSE)

We introduce a relative mean squared error (RelMSE) ∗ between two continuous functions f
and g in a given layer L as:

RelMSE(f, g) =
〈

‖f − g‖2,K
max(‖f‖2,K , ‖g‖2,K)

〉
L

, (2.14)

where ‖f‖2,K =
√

1
K

∫K
0 f2(t)dt and 〈·〉L denotes an average over all the elements of layer

L. For example, RelMSE(∆EP
W01

,−∇BPTT
W01

) averages the squared distance between ∆EP
W01

and
−∇BPTT

W01
averaged over all the elements of W01. Also, instead of computing ∆EP and ∇BPTT

processes on a single sample presentation and bias the RelMSE by the choice of this sample,
∆EP and ∇BPTT processes have been averaged over a mini-batch of 20 samples before their
distance in terms of RelMSE was measured.

2.3.3 Why are the ∇BPTT
s and ∆EP

s saw-teeth shaped in the prototypical
setting ?

In the prototypical setting, in the case of a layered architecture (without lateral and skip-
layer connections), the ∇BPTT and ∆EP processes are saw teeth shaped, i.e. they take the
value zero every other time step (as seen per Fig. 4.12, Fig. 4.6, Fig. 4.7 and Fig. 4.8). We

∗We choose the RelMSE metric rather than a more conventional one such as the cos metric. Indeed,
although the cos metric is also meaningful, it lacks an important property in our context: the cos between f
and g is maximal if and only if f and g are proportional, whereas we aim at reaching equality (Theorem 4).
In contrast, our RelMSE metric is such that RelMSE(f, g) = 0 ⇔ f(t) = g(t).

— 213 —

VII.2.4 — Training experiments

provide an explanation for this phenomenon both from the point of view of BPTT and from
the point of view of EP. Fig. 2.1 illustrates this phenomenon in the case of a network with
two layers: one output layer s0 and one hidden layer s1.

• Point of view of BPTT. In the forward-time pass (first phase), s0
t+1 is determined

by s1
t , while s1

t+1 is determined by s0
t . This gives rise to a zig-zag shaped connectivity

pattern in the computational graph of the the network unrolled in time (Fig. 2.1). In
particular, the gray nodes of Fig. 2.1 are not involved in the computation of the loss
L, i.e. their gradients are equal to zero. In other words ∇BPTT

s1 (0) = 0, ∇BPTT
s0 (1) = 0,

∇BPTT
s1 (2) = 0, etc.

• Point of view of EP. At the beginning of the second phase (at time step t = 0), the
network is at the steady state ; in particular s1,β

0 = s1
∗. At time step t = 1, only the

output layer s0 is influenced by y ; the hidden layer s1 is still at the steady state, i.e.
s1,β

1 = s1
∗. From s1,β

0 = s1,β
1 , it follows that s0,β

1 = s0,β
2 . In turn, from s0,β

1 = s0,β
2 it

follows that s1,β
2 = s1,β

3 . Etc. In other words ∆EP
s1 (0) = 0, ∆EP

s0 (1) = 0, ∆EP
s1 (2) = 0,

etc.

The above argument can be generalized to an arbitrary number of layers. In this case
we group the layers of even index (resp. odd index) together. We call et =

(
s0
t , s

2
t , s

4
t , . . .

)
and ot =

(
s1
t , s

3, t, s5
t , . . .

)
. The crucial property is that ot+1 (resp. et+1) is determined by et

(resp. ot).

One consequence of this analysis is that, in the prototypical setting of EP, half of the
computations are redundant and could be avoided. Avoiding such redundant computations
would lead to an implementation where the layers of even indices and the layers of odd indices
are updated alternatively, similar to the one proposed in section 4.3 of [176].

In contrast, the saw teeth shaped curves are not observed in the energy based setting.
This is due to the different topology of the computational graph in this setting. In the
energy-based setting, the assumptions under which we have shown the saw teeth shape are
not satisfied since neurons are subject to leakage, e.g. s1

t+1 depends not just on s0
t but also

on s1
t . Therefore the reasoning developed above no longer holds.

2.4 Training experiments

Simulation framework. Simulations have been carried out in Pytorch. The code has been
attached to the supplementary materials upon submitting this work on the CMT interface.
We have also attached a readme.txt with a specification of all dependencies, packages, de-
scriptions of the python files as well as the commands to reproduce all the results presented
in this paper.

Data set. Training experiments were carried out on the MNIST data set. Training set and
test set include 60000 and 10000 samples respectively.

— 214 —

VII.2.4 — Training experiments

Figure 2.1: Explanation of the saw teeth shape of the ∇BPTT
s and ∆EP

s processes in
the prototypical setting (layered architecture without lateral or skip-layer connections).
Forward-time pass (top left): gray nodes in the computational graph indicate nodes
that are not involved in the computation of the loss L. BPTT (bottom left): red
arrows indicate the differentiation path through the output units s0. The gradients in
the gray nodes are equal to 0. EP (bottom right): nodes of the same color have the
same value.

Optimization. Optimization was performed using stochastic gradient descent with mini-
batches of size 20. For each simulation, weights were Glorot-initialized. No regularization
technique was used and we did not use the persistent trick of caching and reusing converged
states for each data sample between epochs as in [160].

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters:
the recurrent hyperparameters - i.e. T , K and β - and the learning rates. A first guess of
the recurrent hyperparameters T and β is found by plotting the ∆EP and ∇BPTT processes
associated to synapses and neurons to see qualitatively whether the theorem is approximately

— 215 —

VII.2.4 — Training experiments

satisfied, and by conjointly computing the proportions of synapses whose ∆EP
W processes have

the same sign as its ∇BPTT
W processes. K can also be found out of the plots as the number

of steps which are required for the gradients to converge. Morever, plotting these processes
reveal that gradients are vanishing when going away from the output layer, i.e. they lose
up to 10−1 in magnitude when going from a layer to the previous (i.e. upstream) layer.
We subsequently initialized the learning rates with increasing values going from the output
layer to upstreams layers. The typical range of learning rates is [10−3, 10−1], [10, 1000] for
T, [2, 100] for K and [0.01, 1] for β. Hyperparameters where adjusted until having a train
error the closest to zero. Finally, in order to obtain minimal recurrent hyperparameters -
i.e. smallest T and K possible, both in the energy-based and prototypical setting for a fair
comparison - we progressively decreased T and K until the train error increases again.

Activation functions, update clipping. For training, we used two kinds of activation
functions:

• σ(x) = 1
1+exp(−4(x−1/2)) . Although it is a shifted and rescaled sigmoid function, we shall

refer to this activation function as ‘sigmoid’.

• σ(x) = max(min(x, 1), 0). It is the ‘hard’ version of the previous activation function so
that we call it here for convenience ‘hard sigmoid’.

The sigmoid function was used for all the training simulations except the convolutional
architecture for which we used the hard sigmoid function - see Table 2.2. Also, similarly
to [160], for the energy-based setting we clipped the neuron updates between 0 and 1 so
that at each time step, when an update ∆s was prescribed, we have implemented: s ←
max(min(s+ ∆s, 1), 0).

Benchmarking EP with respect to BPTT. In order to compare EP and BPTT directly,
for each simulation trial we used the same weight initialization to train the network with EP
on the one hand, and with BPTT on the other hand. We also used the same learning rates,
and the same recurrent hyperparameters: we used the same T for both algorithms, and we
truncated BPTT to K steps, as prescribed by the theory.

— 216 —

VII.2.4 — Training experiments

Table 2.2: Table of hyperparameters used for training. "EB" and "P" respectively denote
"energy-based" and "prototypical", "-#h" stands for the number of hidden layers.

Activation T K β ε Epochs Learning rates
EB-1h sigmoid 100 12 0.5 0.2 30 0.1-0.05
EB-2h sigmoid 500 40 0.8 0.2 50 0.4-0.1-0.01
P-1h sigmoid 30 10 0.1 - 30 0.08-0.04
P-2h sigmoid 100 20 0.5 - 50 0.2-0.05-0.005
P-3h sigmoid 180 20 0.5 - 100 0.2-0.05-0.01-0.002
P-conv hard sigmoid 200 10 0.4 - 40 0.15-0.035-0.015

Algorithm 9 Discrete-time Equilibrium Propagation (EP)
Input: static input x, parameter θ, learning rate α.
Output: parameter θ.
1: while θ not converged do
2: for each mini-batch x do
3: ∆θ ← 0
4: for t ∈ [1, T] do
5: st+1 ← ∂Φ

∂s (x, st, θ) . 1st phase: common to EP and BPTT
6: end for
7: for t ∈ [1,K] do
8: sβt+1 ← ∂Φβ

∂s (x, st, θ) . 2nd phase: forward-time computation
9: ∆EP

θ ← 1
β

(
∂Φ
∂θ (x, sβt+1, θ)− ∂Φ

∂θ (x, sβt , θ)
)

10: ∆θ ← ∆θ + ∆EP
θ

11: end for
12: θ ← θ + α∆θ
13: end for
14: end while

— 217 —

VII.2.4 — Training experiments

Algorithm 10 Backpropagation Through Time (BPTT)
Input: static input x, parameter θ, learning rate α.
Output: parameter θ.
1: while θ not converged do
2: for each mini-batch x do
3: ∆θ ← 0
4: for t ∈ [1, T] do
5: st+1 ← ∂Φ

∂s (x, st, θ) . 1st phase: common to EP and BPTT
6: end for
7: for t ∈ [1,K] do
8: ∇BPTT

θ ← ∂L
∂θT−t

. 2nd phase: backward-time computation
9: ∆θ ← ∆θ +∇BPTT

θ

10: end for
11: θ ← θ − α∆θ
12: end for
13: end while

2.4.1 Training Curves

Figure 2.2: Train and test error achieved on MNIST by the fully connected layered
architecture with one hidden layer (784-512-10) in the energy-based setting through-
out learning, over five trials. Plain lines indicate mean, shaded zones delimiting mean
plus/minus standard deviation.

— 218 —

VII.2.4 — Training experiments

Figure 2.3: Train and test error achieved on MNIST by the fully connected layered ar-
chitecture with two hidden layers (784-512-512-10) in the energy-based setting through-
out learning, over five trials. Plain lines indicate mean, shaded zones delimiting mean
plus/minus standard deviation.

Figure 2.4: Train and test error achieved on MNIST by the fully connected layered
architecture with one hidden layer (784-512-10) in the prototypical setting through-
out learning, over five trials. Plain lines indicate mean, shaded zones delimiting mean
plus/minus standard deviation.

— 219 —

VII.2.4 — Training experiments

Figure 2.5: Train and test error achieved on MNIST by the fully connected layered ar-
chitecture with two hidden layers (784-512-512-10) in the prototypical setting through-
out learning, over five trials. Plain lines indicate mean, shaded zones delimiting mean
plus/minus standard deviation.

Figure 2.6: Train and test error achieved on MNIST by the fully connected layered
architecture with three hidden layers (784-512-512-512-10) in the prototypical setting
throughout learning, over five trials. Plain lines indicate mean, shaded zones delimiting
mean plus/minus standard deviation.

Figure 2.7: Train and test error achieved on MNIST by the convolutional architecture in
the prototypical setting throughout learning, over five trials. Plain lines indicate mean,
shaded zones delimiting mean plus/minus standard deviation.

— 220 —

Chapter 3

Appendix of part V

3.1 What ‘Gradients’ are the Gradients of RBP?

In this subsection we motivate the name of ‘gradients’ for the quantities∇RBP
s (t) and∇RBP

θ (t)
by proving that they are the gradients of L∗ in the sense of Proposition 12 below. They are
also the gradients of what we call the ‘projected cost function’ (Proposition 13), using the
terminology of [148].

Proposition 12 (RBP Optimizes L∗). The total gradient computed by the RBP algorithm
is the gradient of the loss L∗ = ` (s∗, y), i.e.

∞∑
t=1
∇RBP
θ (t) = ∂L∗

∂θ
. (3.1)

∇RBP
s (t) and ∇RBP

θ (t) can also be expressed as gradients of Lt = ` (st, y), the cost after
t time steps. In the terminology of [148], Lt was named the projected cost. For t = 0, L0
is simply the cost of the initial state s0. For t > 0, Lt is the cost of the state projected a
duration t in the future.

Proposition 13 (Gradients of RBP are Gradients of the Projected Cost). The ‘RBP gradi-
ents’ ∇RBP

s (t) and ∇RBP
θ (t) can be expressed as gradients of the projected cost:

∀t ≥ 0, ∇RBP
s (t) = ∂Lt

∂s0

∣∣∣∣
s0=s∗

, ∇RBP
θ (t) = ∂Lt

∂θ0

∣∣∣∣
s0=s∗

(3.2)

where the initial state s0 is the steady state s∗.

Proof of Proposition 12. First of all, by Definition 6 (Eq. 2.5-2.7) it is straightforward to see
that

— 221 —

VII.3.1 — What ‘Gradients’ are the Gradients of RBP?

∀t ≥ 0, ∇RBP
s (t) =

(
∂F

∂s
(x, s∗, θ)>

)t
· ∂`
∂s

(s∗, y) , (3.3)

∀t ≥ 1, ∇RBP
θ (t) = ∂F

∂θ
(x, s∗, θ)> ·

(
∂F

∂s
(x, s∗, θ)>

)t−1
· ∂`
∂s

(s∗, y) . (3.4)

Second, recall that the loss L∗ is

L∗ = ` (s∗, y) , (3.5)

where
s∗ = F (x, s∗, θ) . (3.6)

By the chain rule of differentiation, the gradient of L∗ (Eq. 3.5) is

∂L∗

∂θ
= ∂`

∂s
(s∗, y) · ∂s∗

∂θ
. (3.7)

In order to compute ∂s∗
∂θ , we differentiate the steady state condition (Eq. 3.6) with respect to

θ, which yields
∂s∗
∂θ

= ∂F

∂s
(x, s∗, θ) ·

∂s∗
∂θ

+ ∂F

∂θ
(x, s∗, θ) . (3.8)

Rearranging the terms, and using the Taylor expansion (Id−A)−1 = ∑∞
t=0A

t with A =
∂F
∂s (x, s∗, θ), we get

∂s∗
∂θ

=
(

Id− ∂F

∂s
(x, s∗, θ)

)−1
· ∂F
∂θ

(x, s∗, θ) (3.9)

=
∞∑
t=0

(
∂F

∂s
(x, s∗, θ)

)t
· ∂F
∂θ

(x, s∗, θ) . (3.10)

Therefore
∂L∗

∂θ
= ∂`

∂s
(s∗, y) · ∂s∗

∂θ
(3.11)

=
∞∑
t=0

∂`

∂s
(s∗, y) ·

(
∂F

∂s
(x, s∗, θ)

)t
· ∂F
∂θ

(x, s∗, θ) (3.12)

=
∞∑
t=0
∇RBP
θ (t). (3.13)

Proof of Proposition 13. By the chain rule of differentiation we have

∂Lt+1
∂s0

= ∂F

∂s
(x, s0, θ)> ·

∂Lt+1
∂s1

. (3.14)

Evaluation this expression for s0 = s∗ we get

∂Lt+1
∂s0

∣∣∣∣
s0=s∗

= ∂F

∂s
(x, s∗, θ)> ·

∂Lt+1
∂s1

∣∣∣∣
s0=s∗

. (3.15)

— 222 —

VII.3.2 — Experiments: demonstrating the GDD property

Finally note that
∂Lt+1
∂s1

∣∣∣∣
s0=s∗

= ∂Lt+1
∂s1

∣∣∣∣
s1=s∗

= ∂Lt
∂s0

∣∣∣∣
s0=s∗

(3.16)

Therefore ∂Lt
∂s0

∣∣∣
s0=s∗

and ∇RBP
s (t) satisfy the same recurrence relation, thus they are equal.

Proving the equality of ∂Lt
∂θ0

∣∣∣
s0=s∗

and ∇RBP
θ (t) is analogous.

3.2 Experiments: demonstrating the GDD property

We provide the full table of hyperparameters used to demonstrate the GDD property on the
different models defined - Table 3.1.

Table 3.1: Table of hyperparameters used to demonstrate Theorem 10.
Figure Angle Ψ (◦) Activation T K β ε η

C-EP 4.1 0 tanh 800 80 0.01 0.08 1.510−6 − 1.510−6

C-VF 4.1 45 tanh 800 80 0.01 0.08 1.510−6 − 1.510−6

C-EP 4.1 0 tanh 800 80 0.01 0.08 1.510−5 − 1.510−5

C-VF 4.1 45 tanh 800 80 0.01 0.08 1.510−5 − 1.510−5

C-VF 3.5-3.6 0 tanh 800 80 0.005 0.08 2.10−6 − 2.10−6

C-VF 3.5-3.6 0 tanh 800 80 0.005 0.08 2.10−5 − 2.10−5

C-VF 3.7-3.8 0 tanh 150 10 0.01 − 2.10−6 − 2.10−6

C-VF 3.7-3.8 0 tanh 150 10 0.01 − 2.10−5 − 2.10−5

C-EP 3.1-3.2 0 tanh 800 80 0.05 0.08 2.10−6 − 2.10−6

C-EP 3.1-3.2 0 tanh 800 80 0.05 0.08 2.10−5 − 2.10−5

C-EP 3.3-3.4 0 tanh 150 10 0.01 − 2.10−6 − 2.10−6

C-EP 3.3-3.4 0 tanh 150 10 0.01 − 2.10−5 − 2.10−5

3.3 Illustrating the equivalence of the four algorithms on an
analytically tractable model

Model. To illustrate the equivalence of the four algorithms (BPTT, RBP, EP and CEP),
we study a simple model with scalar variable s and scalar parameter θ:

s0 = 0, st+1 = 1
2 (st + θ) , L∗ = 1

2s
2
∗, (3.17)

where s∗ is the steady state of the dynamics (it is easy to see that the solution is s∗ = θ).
The dynamics rewrites st+1 = F (st, θ) with the transition function F (s, θ) = 1

2 (s+ θ), and
the loss rewrites L∗ = ` (s∗) with the cost function `(s) = 1

2s
2. Furthermore, a primitive

— 223 —

VII.3.3 — Illustrating the equivalence of the four algorithms on an analytically tractable
model

function of the system ∗ is Φ(s, θ) = 1
4(s + θ)2. This model has no practical application ; it

is only meant for pedagogical purpose.

Backpropagation Through Time (BPTT). With BPTT, an important point is that
we approximate the steady state s∗ by the state after T time steps sT , and we approximate
L∗ (the loss at the steady state) by the loss after T time steps L = ` (sT).

In order to compute (i.e. ‘backpropagate’) the gradients of BPTT, Proposition 1 tells us
that we need to compute ∂`

∂s (sT) = sT , ∂F∂s (st, θ) = 1
2 and ∂F

∂θ (st, θ) = 1
2 . We get

∀t = 0, 1, . . . , T − 1, ∇BPTT
s (t) = sT

2t , ∇BPTT
θ (t) = sT

2t+1 . (3.18)

Recurrent Backpropagation (RBP). Similarly, to compute the gradients of RBP, Defi-
nition 6 tells us that we need to compute ∂`

∂s (s∗) = s∗, ∂F∂s (s∗, θ) = 1
2 and ∂F

∂θ (s∗, θ) = 1
2 . We

have
∀t ≥ 0, ∇RBP

s (t) = s∗
2t , ∇RBP

θ (t) = s∗
2t+1 . (3.19)

The state after T time steps in BPTT converges to the steady state s∗ as T →∞, therefore
the gradients of BPTT converge to the gradients of RBP. Also notice that the steady state
of the dynamics is s∗ = θ.

Equilibrium Propagation (EP). Following the equations governing the second phase of
EP (Fig. 1.1), we have:

sβ0 = θ, sβt+1 =
(1

2 − β
)
sβt + 1

2θ. (3.20)

This linear dynamical system can be solved analytically:

∀t ≥ 0, sβt = θ

1 + 2β

(
1 + 2β

(1
2 − β

)t)
. (3.21)

Notice that sβt → θ as β → 0 ; for small values of the hyperparameter β, the trajectory in
the second phase is close to the steady state s∗ = θ.

Using Eq. 2.14, it follows that the normalized updates of EP are

∀t ≥ 0, ∆EP
s (β, t) = − θ2t (1− 2β)t , ∆EP

θ (β, t) = − θ

2t+1 (1− 2β)t . (3.22)

Notice again that the normalized updates of EP converge to the gradients of RBP as β → 0.

∗The primitive function Φ is determined up to a constant.

— 224 —

VII.3.4 — Experimental Details

Continual Equilibrium Propagation (C-EP). The system of equations governing the
system is: {

sβ,η0 = s∗,

θβ,η0 = θ,
∀t ≥ 0 :

sβ,ηt+1 =

(1
2 − β

)
sβ,ηt + 1

2θ
β,η
t ,

θβ,ηt+1 = θβ,ηt + η

2β
(
sβ,ηt+1 − s

β,η
t

)
.

(3.23)

First, rearranging the terms in the second equation, we get

1
η

(
θβ,ηt+1 − θ

β,η
t

)
= 1

2β
(
sβ,ηt+1 − s

β,η
t

)
. (3.24)

It follows that
∆C−EP
θ (β, η, t) = 1

2∆C−EP
s (β, η, t). (3.25)

Therefore, all we need to do is to compute ∆C−EP
s (β, η, t). Second, by iterating the second

equation over all indices from t = 0 to t− 1 we get

θβ,ηt = θ + η

2β
(
sβ,ηt − s∗

)
. (3.26)

Using s∗ = θ and plugging this into the first equation we get

sβ,ηt+1 =
(1

2 − β + η

4β

)
sβ,ηt +

(1
2 −

η

4β

)
θ. (3.27)

Solving this linear dynamical system, and using the initial condition sβ,η0 = θ we get

sβ,ηt = θ

1− η
2β + 2β

[
1− η

2β + 2β
(1

2

)t (
1− 2β + η

2β

)t]
(3.28)

Finally:

∆C−EP
s (β, η, t) = − θ2t

(
1− 2β + η

2β

)t
(3.29)

3.4 Experimental Details

3.4.1 Training experiments (Table 4.1)

Simulation framework. Simulations have been carried out in Pytorch. The code has been
attached to the supplementary materials upon submitting this work on OpenReview. We have
also attached a readme.txt with a specification of all dependencies, packages, descriptions of
the python files as well as the commands to reproduce all the results presented in this paper.

Data set. Training experiments were carried out on the MNIST data set. Training set and
test set include 60000 and 10000 samples respectively.

— 225 —

VII.3.4 — Experimental Details

Optimization. Optimization was performed using stochastic gradient descent with mini-
batches of size 20. For each simulation, weights were Glorot-initialized. No regularization
technique was used and we did not use the persistent trick of caching and reusing converged
states for each data sample between epochs as in [160].

Activation function. For training, we used the activation function

σ(x) = 1
1 + exp(−4(x− 1/2)) . (3.30)

Although it is a shifted and rescaled sigmoid function, we shall refer to this activation function
as ‘sigmoid’.

Use of a randomized β. The option ’Random β’ appearing in the detailed table of results
(Table 3.3) refers to the following procedure. During training, instead of using the same β
accross mini-batches, we only keep the same absolute value of β and sample its sign from a
Bernoulli distribution of probability 1

2 at each mini-batch iteration. This procedure was hinted
at by [160] to improve test error, and is used in our context to improve the model convergence
for Continual Equilibrium Propagation - appearing as C-EP and C-VF in Table 4.1 - training
simulations.

Tuning the angle between forward and backward weights. In Table 4.1, we inves-
tigate C-VF initialized with different angles between the forward and backward weights -
denoted as Ψ in Table 4.1. Denoting them respectively θf and θb, the angle κ between them
is defined here as:

κ(θf , θb) = cos−1

 Tr(θf · θ>b)√
Tr(θf · θ>f)

√
Tr(θb · θ>b)

 ,

where Tr denotes the trace, i.e. Tr(A) = ∑
iAii for any squared matrix A. To tune

arbitrarily well enough κ(θf , θb), the procedure is the following: starting from θb = θf , i.e.
κ(θf , θb) = 0, we can gradually increase the angle between θf and θb by flipping the sign of
an arbitrary proportion of components of θb. The more components have their sign flipped,
the larger is the angle. More formally, we write θb in the form θb = M(p)� θf and we define:

Ψ(p) = κ(θf ,M(p)� θf), (3.31)

where M(p) is a mask of binary random values {+1, -1} of the same dimension of θf :
M(p) = −1 with probability p and M(p) = +1 with probability 1− p. Taking the cosine and
the expectation of Eq. (3.31), we obtain:

— 226 —

VII.3.4 — Experimental Details

〈cos(Ψ(p))〉 = p×−Tr(θf · θ>f)
Tr(θf · θ>f)

+ (1− p)× Tr(θf · θ>f)
Tr(θf · θ>f)

= 1− 2p

Thus, the angle Ψ between θf and θf �M(p) can be tuned by the choice of p through:

p(Ψ) = 1
2(1− 〈cos(Ψ)〉) (3.32)

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters:
the recurrent hyperparameters - i.e. T , K and β - and the learning rates. A first guess of
the recurrent hyperparameters T and β is found by plotting the ∆EP and ∇BPTT processes
associated to synapses and neurons to see qualitatively whether the theorem is approximately
satisfied, and by conjointly computing the proportions of synapses whose ∆EP

W processes have
the same sign as its ∇BPTT

W processes. K can also be found out of the plots as the number
of steps which are required for the gradients to converge. Morever, plotting these processes
reveal that gradients are vanishing when going away from the output layer, i.e. they lose
up to 10−1 in magnitude when going from a layer to the previous (i.e. upstream) layer.
We subsequently initialized the learning rates with increasing values going from the output
layer to upstreams layers. The typical range of learning rates is [10−3, 10−1], [10, 1000] for
T , [2, 100] for K and [0.01, 1] for β. Hyperparameters where adjusted until having a train
error the closest to zero. Finally, in order to obtain minimal recurrent hyperparameters -
i.e. smallest T and K possible - we progressively decreased T and K until the train error
increases again.

Table 3.2: Table of hyperparameters used for training. "C" and "VF" respectively
denote "continual" and "vector-field", "-#h" stands for the number of hidden layers.
The sigmoid activation is defined by Eq. (3.30).

Activation T K β Random β Epochs Learning rates
EP-1h sigmoid 30 10 0.1 False 30 0.08− 0.04
EP-2h sigmoid 100 20 0.5 False 50 0.2− 0.05− 0.005
C-EP-1h sigmoid 40 15 0.2 False 100 0.0056− 0.0028
C-EP-1h sigmoid 40 15 0.2 True 100 0.0056− 0.0028
C-EP-2h sigmoid 100 20 0.5 False 150 0.01− 0.0018− 0.00018
C-VF-1h sigmoid 40 15 0.2 True 100 0.0076− 0.0038
C-VF-2h sigmoid 100 20 0.35 True 150 0.009− 0.0016− 0.00016

Full table of results. Since Table 4.1 does not show C-VF simulation results for all initial
weight angles, we provide below the full table of results, including those which were used to

— 227 —

VII.3.4 — Experimental Details

plot Fig. 4.1.

Figure 3.1: Train and test error achieved on MNIST with Continual Equilibrium Prop-
agation (C-EP) on the Discrete-Time RNN model with symmetric weights. Plain lines
indicate mean, shaded zones delimiting mean plus/minus standard deviation over 5
trials. Left: C-EP on the fully connected layered architecture with one hidden layer
(784-512-10) without beta randomization. Middle: C-EP on the fully connected lay-
ered architecture with one hidden layer (784-512-10) with beta randomization. Right:
C-EP on the fully connected layered architecture with two hidden layers (784-512-512-
10) without beta randomization.

— 228 —

VII.3.4 — Experimental Details

Table 3.3: Training results on MNIST with EP, C-EP and C-VF. "#h" stands for the
number of hidden layers. We indicate over five trials the mean and standard deviation
for the test error, the mean error in parenthesis for the train error. T (resp. K) is the
number of iterations in the first (resp. second) phase.

Initial Ψ(θf , θb) (◦) Error (%) T K Random β Epochs
Test Train

EP-1h − 2.00± 0.13 (0.20) 30 10 No 30
EP-2h − 1.95± 0.10 (0.14) 100 20 No 50
C-EP-1h − 2.85± 0.18 (0.83) 40 15 No 100
C-EP-1h − 2.28± 0.16 (0.41) 40 15 Yes 100
C-EP-2h − 2.44± 0.14 (0.31) 100 20 No 150
C-VF-1h 0 2.43± 0.08 (0.77) 40 15 Yes 100

22.5 2.38± 0.15 (0.74) 40 15 Yes 100
45 2.37± 0.06 (0.78) 40 15 Yes 100
67.5 2.48± 0.15 (0.81) 40 15 Yes 100
90 2.46± 0.18 (0.78) 40 15 Yes 100

112.5 4.51± 3.96 (2.92) 40 15 Yes 100
135 86.61± 4.27 (88.51) 40 15 Yes 100
157.5 91.08± 0.01 (90.98) 40 15 Yes 100
180 92.82± 3.47 (92.71) 40 15 Yes 100

C-VF-2h 0 2.97± 0.19 (1.58) 100 20 Yes 150
22.5 3.54± 0.75 (2.70) 100 20 Yes 150
45 3.78± 0.78 (2.86) 100 20 Yes 150
67.5 4.59± 0.92 (4.68) 100 20 Yes 150
90 5.05± 1.17 (4.81) 100 20 Yes 150

112.5 20.33± 13.03 (20.30) 100 20 Yes 150
135 59.04± 17.97 (60.53) 100 20 Yes 150
157.5 77.90± 13.49 (78.04) 100 20 Yes 150
180 74.17± 12.76 (74.05) 100 20 Yes 150

— 229 —

VII.3.4 — Experimental Details

Figure 3.2: Train and test error achieved on MNIST by Continual Vector Field Equilib-
rium Propagation (C-VF) on the Discrete-Time RNN model with asymmetric weights
with one hidden layer (784-512-10) for different initialization for the angle between for-
ward and backward weights (Ψ). Plain lines indicate mean, shaded zones delimiting
mean plus/minus standard deviation over 5 trials.

— 230 —

VII.3.4 — Experimental Details

Figure 3.3: Train and test error achieved on MNIST by Continual Vector Field Equilib-
rium Propagation (C-VF) on the vanilla RNN model with asymmetric weights with two
hidden layers (784-512-512-10) for different initialization for the angle between forward
and backward weights (Ψ). Plain lines indicate mean, shaded zones delimiting mean
plus/minus standard deviation over 5 trials.

— 231 —

Résumé court de la thèse

Le deep learning s’est imposé à l’ensemble de la société grâce à l’utilisation des GPUs (Graph-
ical Processing Units). Aller au-delà de la capacité des GPUs pour l’entraînement des réseaux
de neurones est la motivation principale de cette thèse. Une approche possible est le calcul
neuromorphique consistant à repenser l’ordinateur à partir de zéro en imitant les carac-
téristiques du cerveau. En particulier, les memristors, qui peuvent stocker des valeurs de
poids sous forme d’états de conductance, sont des candidats prometteurs pour les synapses
artificielles. Une approche excitante pour réaliser des réseaux de neurones physiques util-
isant memristors serait l’apprentissage sur puce : un tel dispositif pourrait réaliser à la fois
l’inférence, le calcul de gradient et la mise à jour correspondante des conductances des mem-
ristors. Cependant, l’apprentissage sur puce est extrêmement difficile pour deux raisons. Tout
d’abord, le calcul du gradient de la fonction objectif appelle à première vue à l’utilisation
de l’algorithme de “ backpropagation” , qui est intrinsèquement difficile à implémenter sur
puce. Le deuxième défi de l’apprentissage sur puce est l’incrément de conductance à réaliser
étant donnée une valeur de gradient : les memristors présentent de nombreuses imperfections
qui entravent considérablement l’apprentissage sur puce. Dans cette thèse, nous proposons
de démêler ces deux aspects de l’apprentissage sur puce. D’une part, nous étudions l’effet
des imperfections des memristors sur l’apprentissage des machines Boltzmann restreintes et
proposons des stratégies de programmation appropriées. D’autre part, nous nous appuyons
sur l’algorithme de “ Equilibrium Propagation” , un équivalent de la backpropagation dont la
règle d’apprentissage, calculée par la physique du système lui-même, est spatialement locale
et mathématiquement fondée.

Thesis Abstract

The deep learning approach to AI has taken upon the whole society thanks to the use of
Graphical Computing Units (GPUs). Going beyond the capability of the GPUs for deep
neural network training is the core motivation of this thesis. One possible approach is neu-
romorphic computing, which consists in rethinking the computer from scratch by mimicking
brain features. In particular memristors, which can store weight values as conductance states,
are promising artificial synapse candidates. An appealing approach to train memristor-based
hardware neural networks would be on-chip learning: the chip could sustain inference, gradi-
ent computation and subsequent conductance update altogether. However, on-chip learning
is extremely challenging for two reasons. First, the computation of the objective function
gradient calls at first sight for backpropagation, which is hardware unfriendly. More hard-
ware convenient approaches use learning heuristics that poorly scale to deeper architectures,
probably because of their lack of theoretical guarantees.The second challenge of on-chip learn-
ing is the conductance update to be performed given a gradient value: memristors exhibit
many imperfections which dramatically hamper on-chip learning. In this thesis, we propose
to disentangle these two aspects of on-chip learning. On the one hand, we study the effect
of memristive device imperfections on the training of Restricted Boltzmann Machines and
propose appropriate programming strategies. On the other hand, we build upon Equilib-
rium Propagation, a hardware friendly counterpart of backpropagation whose learning rule,
computed by the physics of the system itself, is spatially local and mathematically grounded.

— 233 —

	Main table of contents
	Detailed table of contents
	Thesis Summary (french)
	Introduction
	I Deep learning, neuromorphic computing and on-chip learning
	1 What is "learning" in neural networks?
	1.1 Artificial neural networks: from unheard to overhyped
	1.2 Learning in neural networks
	1.2.1 Definition of the problem
	1.2.2 Backpropagation in a feedforward neural network
	1.2.3 Backpropagation through time in a recurrent neural network

	1.3 The cost of learning on conventional computers
	1.3.1 The end of Moore's law
	1.3.2 The von Neumann bottleneck

	2 An opportunity for neuromorphic engineering
	2.1 A brief history of neuromorphic engineering
	2.2 The memristor as a promising building block for on-chip learning
	2.3 Bringing memory and computation the closest: crossbars
	2.3.1 Kirchhoff laws for inference
	2.3.2 A compelling case for memristor-based learning

	3 Challenges of on-chip learning
	3.1 On and off-chip learning, analog and digital memories
	3.2 Device programming
	3.3 Hardware-friendly learning rules
	3.3.1 Backpropagation?
	3.3.2 Spike Timing Dependent Plasticity (STDP)

	4 Towards better credit assignment for on-chip learning
	4.1 What is credit assignment?
	4.2 Hopfield Networks & Contrastive Hebbian Learning
	4.2.1 A brief history
	4.2.2 Hardware implementations

	4.3 Biologically plausible credit assignment
	4.3.1 Reinforcement-based credit assignment
	4.3.2 Credit assignment with generative models
	4.3.3 Credit assignment without weight transport
	4.3.4 Assigning credit to apical dendritic compartments
	4.3.5 Temporal credit assignment

	4.4 Main results of this thesis

	II Restricted Boltzmann Machines with memristors
	Summary
	Introduction
	1 Background
	1.1 Restricted Boltzmann Machines
	1.2 Memristor model used and associated algorithm

	2 Results
	2.1 Resilience of RBM-based architectures trained with constant programming pulse width
	2.2 Solutions mitigating device imperfections on the Discriminative RBM
	2.2.1 Mitigating device non-linearity by reducing the variance of the gradient sign estimate
	2.2.2 Facilitate pulse width tuning: Resilient Propagation (RProp)
	2.2.3 Resilience to cycle-to-cycle variability
	2.2.4 Resilience to device-to-device variability

	Discussion

	III Introduction to Equilibrium Propagation
	Summary
	1 Equilibrium Propagation
	1.1 A heuristic view
	1.2 Theory
	1.3 Algorithm
	1.4 Neural network model trained by Equilibrium Propagation
	1.5 Example
	1.6 Intuitions about Equilibrium Propagation
	1.6.1 Going deeper with Boltzmann Machines?
	1.6.2 Neural computation: going down the energy
	1.6.3 Key ingredients of Equilibrium Propagation

	2 Why is Equilibrium Propagation hardware-friendly?
	2.1 Link between Equilibrium Propagation and Spike Timing Dependent Plasticity
	2.2 Generalization of Equilibrium Propagation to Vector Field dynamics
	2.2.1 Theory
	2.2.2 Example

	2.3 Equivalence between Equilibrium Propagation and Recurrent Backpropagation

	IV Updates of Equilibrium Propagation Match gradients of BPTT in an RNN with a Static Input
	Summary
	Introduction
	1 Background
	1.1 Convergent RNNs With Static Input
	1.2 Backpropagation Through Time (BPTT)

	2 A discrete-time formulation of Equilibrium Propagation
	2.1 Algorithm
	2.2 Difference between the primitive function and the energy function E

	3 Forward-Time Dynamics of EP Compute Backward-Time Gradients of BPTT
	3.1 Backpropagation Through Time error processes
	3.2 Equilbrium Propagation error processes
	3.3 Main result

	4 Energy-based and Prototypical settings
	4.1 Definition
	4.2 Demonstrating the property of Gradient Descending Updates (GDU)
	4.3 Real-time RNNs in the energy-based setting
	4.3.1 Toy model
	4.3.2 Fully connected architectures

	4.4 Discrete-time RNNs in the prototypical setting
	4.4.1 Fully connected architecture
	4.4.2 Convolutional architecture

	5 Experiments
	5.1 Effect of depth and approximation

	6 Discussion

	V Equilibrium Propagation with Continual Weight Updates
	Summary
	Introduction
	1 Equilibrium Propagation with Continual Weight Updates (C-EP)
	1.1 From EP to C-EP: An intuition behind continual weight updates
	1.2 Description of the C-EP algorithm

	2 Gradient Descending Dynamics (GDD) property
	2.1 Equivalence between BPTT and RBP
	2.2 Equivalence between EP and RBP
	2.3 Equivalence between EP and C-EP
	2.4 Main result
	2.5 Extending the GDD property: Continual Vector Field Equilibrium Propagation (C-VF)

	3 Models with symmetric and asymmetric weights
	3.1 Definition
	3.1.1 Models under consideration
	3.1.2 Figures for the GDD experiments

	3.2 Models with symmetric weights trained by C-EP
	3.2.1 Real-time (energy-based) model
	3.2.2 Protypical model

	3.3 Models with asymmetric weights trained by C-VF
	3.3.1 Real-time model
	3.3.2 Prototypical model

	4 Training experiments
	4.1 C-EP training experiments
	4.2 Why C-EP does not perform as well as standard EP?
	4.3 Continual Vector Field (C-VF) training experiments

	Discussion

	VI Conclusion and perspectives
	Summary of the results
	Other research projects & collaborations
	mEqProp: Equilibrium Propagation with memristors in spiking neural networks
	Equilibrium Propagation with physical artificial neurons
	Scaling Equilibrium Propagation to deeper architectures
	Equilibrium Propagation on sequential data
	Equilibrium Propagation without the equilibrium requirement

	Some thoughts longer-term directions of research
	List of publications
	References

	VII Appendices
	1 Appendix of part II
	1.1 Memristor model used
	1.2 Simulations

	2 Appendix of part IV
	2.1 Difference between L* and L
	2.2 Index Shift in the definition of EP and BPTT
	Index Shift
	Missing Weight Gradient BPTT (0) and Weight Update EP (0)

	2.3 Experiments: demonstrating the GDU property
	2.3.1 Hyperparameters
	2.3.2 Definition of the Relative Mean Squared Error (RMSE)
	2.3.3 Why are the sBPTT and sEP saw-teeth shaped in the prototypical setting ?

	2.4 Training experiments
	2.4.1 Training Curves

	3 Appendix of part V
	3.1 What `Gradients' are the Gradients of RBP?
	3.2 Experiments: demonstrating the GDD property
	3.3 Illustrating the equivalence of the four algorithms on an analytically tractable model
	3.4 Experimental Details
	3.4.1 Training experiments (Table 4.1)

	Thesis Abstract

