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Résumé

Le contrôle et l'évaluation non destructifs (CND) est un ensemble de techniques utilisées pour évaluer les propriétés d'un matériau sans modier les propriétés d'origine ni lui causer de dommages. Les techniques d'essais non destructifs orent un moyen rentable de tester un échantillon pour détecter les dommages pendant la production et après celle-ci.

Parmi les nombreuses méthodes existantes, le contrôle non destructif thermique ou infrarouge (T/INDT) est l'une des plus prometteuses pour l'inspection des matériaux et des structures. La détection des irrégularités est basée sur le principe que tous les corps émettent un rayonnement infrarouge. Ce rayonnement infrarouge émis peut être mesuré par des caméras infrarouges et les images analysées pour la détection et la caractérisation des défauts. Les irrégularités du matériau aectent le taux de diusion de la chaleur, ce qui entraîne un contraste thermique à la surface de la pièce homogène. En analysant les altérations ou le contraste de la conguration thermique à la surface du matériau, on peut obtenir des informations sur les défauts enfouis. Outre la modélisation de l'évolution de la distribution de la température à l'intérieur de la pièce testée, la modélisation d'appareils de mesure tels que les caméras thermiques d'imagerie devrait être nécessaire, impliquant des concepts supplémentaires de rayonnement infrarouge.

Selon la présence ou l'absence d'une source d'excitation thermique, la technique est généralement divisée en deux ensembles principaux, passifs et actifs, respectivement. La thermographie active, qui est objet d'investigation ici, utilise une source thermique pour déposer de la chaleur dans le matériau cible, créant un ux thermique transitoire et, en cas de défauts, un contraste thermique. Selon la position relative de l'excitation et de la caméra, il exi iste deux congurations : le mode réexion, où la source d'excitation et la caméra IR sont situées du même côté du milieu testé, et le mode transmission, où la source d'excitation et la caméra IR sont situées du côté opposé. Les sources thermiques les plus couramment utilisées en thermographie active sont l'excitation optique, l'excitation électromagnétique, l'excitation acoustique et l'excitation sous contrainte.

La solution d'un problème dédié à la caractérisation thermophysique des matériaux ou aux essais thermiques non destructifs peut être divisée en trois étapes : un problème direct, qui décrit mathématiquement l'évolution spatiotemporelle du champ de température, un problème de mesure, an de donner le signal de sortie le plus précis et le moins bruyant, et un problème inverse, qui permet d'estimer des paramètres comme des propriétés thermophysiques constantes ou conditions aux limites des interfaces.

Puisque la physique est le fondement de chaque technique de CND, si les matériaux à l'essai sont diérents, la physique et les techniques de CND seront également diérentes. Les concepts de base de l'inspection thermographique sont, en général, bien établis, mais pas dans tous les cas. Cependant, l'analyse et l'inversion des données thermographiques ont tendance à être diciles.

Cette thèse entend fournir des contributions originales sur le développement d'un modèle tridimensionnel rapide an de simuler le contrôle thermographique non destructif de pièces planes présentant des défauts intégrés et une stratégie d'inversion robuste basée sur un modèle pour la détection et la caractérisation des défauts.

La simulation des procédures TNDT implique dans un premier temps la résolution du problème de conduction thermique dans la pièce considérée, avec et sans défauts, pour obtenir la distribution de température aux interfaces de la pièce, qui constitue la mesure. La solution complète de ce problème peut être obtenue en utilisant des techniques numériques telles que la méthode des éléments nis (FEM), méthode des diérences nies (FDM), techii nique d'intégration nie (FIT), qui sont, en général, capables de modéliser des géométries générales et complexes.

Leur généralité est obtenue par une description discrète de l'espace, ce qui les rend dépendants du maillage. Ce point est problématique lorsque l'outil de simulation est développé à l'intention d'utilisateurs industriels, experts en CND mais ayant une connaissance limitée de l'analyse numérique en général et des stratégies de maillage en particulier. Un autre inconvénient de ces méthodes est le temps de calcul, qui peut être très élevé lorsque l'on considère de gros problèmes, même si leur complexité en termes de géométrie est faible. D'autre part, les solutions analytiques au problème thermique sont bien formulées mais leur mise en ÷uvre numérique n'est pas toujours aisée.

Néanmoins, dans la pratique, il est souvent utile de renoncer aux informations détaillées des solutions complètes en faveur d'approximations analytiques ou semi-analytiques rapides, qui constituent l'essence du comportement du ux thermique. Des outils de simulation basés sur des modèles semi-analytiques ont été proposés dans la littérature pour traiter des cas plus simples. Ces outils se sont avérés très rapides par rapport aux outils numériques, mais ils reposent sur des hypothèses solides qui limitent leur domaine d'application.

Cette thèse propose des solveurs hybrides combinant des solutions numériques et semi-analytiques, pour atteindre à un moment donné la généralité sans payer le prix d'un maillage tridimensionnel et d'un temps de calcul élevé.

Un modèle semi-analytique basé sur la méthode TREE (Truncated region eigenfunction expansion) est proposé pour la simulation de l'inspection thermographique. Le problème est résolu dans le domaine de Laplace en ce qui concerne le temps, et la distribution de la température est approchée par son expansion sur la base d'un produit tensoriel. Les congurations visées par ce modèle sont des pièces planes stratiées aectées de minces défauts de délamination.

Les sources considérées sont des lampes fournissant une excitation theriii mique à la surface de la pièce inspectée. L'excitation thermique à la surface du milieu stratié est assurée par une lampe ash qui est utilisée dans une large gamme d'applications.

La description des défauts de délamination comme de minces espaces d'air entre les couches de pièces s'avère équivalente à l'introduction d'une résistance de surface au ux thermique, permettant ainsi leur traitement par l'approche modale appliquée sans discrétisation supplémentaire. Une validation numérique du modèle TREE développé à l'aide d'un logiciel de modélisation commercial basé sur FEM a été eectuée. Une grande concordance des résultats numériques obtenus avec le modèle TREE et avec un modèle FEM est montrée. De plus, l'accélération du modèle semi-analytique développé est décrite en détail. Les résultats numériques proposés indiquent que le modèle direct développé peut produire des signaux thermiques rapides et précis. Parlant de la partie imagerie de cette thèse, la détection des défauts dans la pièce, à travers des signaux bruités enregistrés ou synthétiques, et leur caractérisation sont visées. Le traitement du signal, en général, est un moyen crucial pour extraire des informations utiles des données brutes capturées à partir de capteurs. De plus en plus d'algorithmes de traitement du signal incluant la reconstruction du signal thermographique (TSR), l'analyse en composantes principales (PCA), l'analyse en composantes indépendantes (ICA), la transformation en ondelettes, la décomposition de Tucker, la machine à vecteur de support (SVM) et la reconnaissance de formes sont utilisés en thermographie des composites. L'utilisation de l'une ou l'autre de ces techniques dépend de la physique du problème et leurs résultats sont généralement qualitatifs, en signiant par cela que les défauts ne sont pas entièrement caractérisés. Selon l'application, la détection et la reconstruction de la forme des défauts peuvent être un succès. Dans certaines applications, des informations plus quantitatives sur les défauts sont nécessaires sur les paramètres que l'on essaie d'estimer.

Le processus de caractérisation des défauts de type délaminage dans les iv milieux plans a été divisé en deux étapes. La première étape concerne le débruitage des signaux bruts et la détection d'éventuels défauts, et la seconde la caractérisation des défauts détectés. La première étape est réalisée en utilisant la technique TSR et l'algorithme de Canny qui sont présentés en détail.

Pour la seconde étape, des techniques d'optimisation sont utilisées pour la caractérisation des défauts en utilisant les informations a priori de la partie prétraitement.

L'objectif principal de la partie imagerie est la parfaite conjonction des techniques pour avoir une procédure entièrement automatisée pour l'inspection. De nombreux résultats numériques sur la détection et la caractérisation des défauts sont fournis. Les signaux de température, dépendants du temps, obtenus avec le modèle semi-analytique ont été corrompus par diérents niveaux de bruit et ont été utilisés comme signaux bruts. En appliquant la méthode TSR et l'algorithme de Canny, les défauts candidats ont été localisés avec une grande précision dans le plan transverse. Leur forme et leurs dimensions ont été utilisées pour la régularisation d'un schéma de moindres carrés an de caractériser leur épaisseur et leur profondeur. La robustesse du schéma d'inversion a été testée dans diérentes congurations diciles. Les résultats numériques de la procédure proposée pour la détection et la caractérisation des défauts indiquent que cette procédure est rapide et précise. Among the many existing methods, as stated, thermal or infrared nondestructive testing (T/INDT) is one of the most promising for inspection of materials and structures [2]. TNDT is well used in many dierent industrial contexts, like welding monitoring in metallurgy, in inspection of composites in aeronautics, power lines inspections in the sector of energy. The detection of irregularities is based on the principle that all bodies emit infrared radiation.

This emitted infrared radiation can be measured by infrared cameras and the images analysed for the detection and characterization of aws. Subsurface irregularities will aect the heat diusion rate, leading to a thermal contrast on the surface of the homogeneous work-piece. By analysing alterations or the contrast in the thermal pattern of the material surface, one can obtain information about subsurface aws. In many cases, the inspection technique exploits multi-physical phenomena, as eddy current for inductive thermography or ultrasound for thermography. As a consequence, the conversion of energy from electromagnetic or elasticity to heat is far from being trivial. In addition to modelling the evolution of temperature distribution inside the tested piece, the modelling of measurement devices like thermal imaging camera should be required, involving additional concepts of infrared radiations.

1.1. HISTORY

History

Even though the infrared technology started in 1800 with William Herschel and an experiment that revealed the existence of the infrared radiation spectrum [3,4], the rst use of infrared thermography, as a non-destructive testing technique, dates back to the middle of the last century in the works published by Beller and Green [5,6]. Moreover, the heat equation, which describes the heat ow in a body, was rst developed and solved by Joseph Fourier, during the same time, in 1822 [7]. Ideas of infrared applications can be tracked even before Beller and Green when Parker [8] received a patent for detecting icebergs in 1914 and Barker in 1934 proposed using infrared sensors for monitoring forest res [9]. The pioneer of the idea of single-sided material thermophysical properties measurements is Vernotte with his published work in 1937 [10]. The rst implementation of Vernottte's idea is recorded in 1956

where Hardy measured the eusivity of the skin of a patient [11]. As the milestone work can be considered the publication of Parker where the contactless, double-sided, rear-face measurement of thermal diusivity by active infrared pulsed radiometry has been reported [12].

By the end of the 1970s, application of INDT remained qualitative thus limiting competition with other NDT techniques. Initially, INDT suered from puzzlement and incomprehension mainly because of diculties in the interpretation of thermograms. The heat conduction theory, which was well summarized in the books of Carslaw and Jaeger [13] and Luikov [14] improved the understanding of thermal, infrared NDT processes. The wider use of elements of the heat conduction theory paved the way to the development of a thermophysical approach to TNDT the next years by Carlomagno and Berardi [15], Vavilov and Taylor [16], Balageas et al. [17], Mandelis et al. [18] and many other authors who introduced also multi-dimensional models of defect or dierent detection techniques [START_REF] Krapez | Thermographic nondestructive evaluation: Data inversion procedures -Part II: 2-D analysis and experimental results[END_REF][START_REF] Krapez | Early detection of thermal contrast in pulsed stimulated infrared thermography[END_REF][START_REF] Maldague | Pulse phase infrared thermography[END_REF].

The use of thermography for non-destructive testing applications had received growing attention in the last years. This is mainly because infrared (IR) cameras have recently improved signicantly in both sensitivity and spatial resolution. The technique has been particularly adapted to many applications [START_REF] Maldague | Theory and Practice of Infrared Technology for Nondestructive Testing[END_REF] and especially to composites' inspection which is being used in the aerospace [START_REF] Harman | Improved design methods for scarf repairs to highly strained composite aircraft structure[END_REF], renewable energy [START_REF] Katnam | Composite repair in wind turbine blades: an overview[END_REF], civil and architecture [START_REF] Pendhari | Application of polymer composites in civil construction: A general review[END_REF][START_REF] Brandt | Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[END_REF], and other industries, due to their excellent advantages. Unlike other direct imaging techniques, depending on the thermal source, it can be fast, high resolution, contactless, quantitative and low-cost technique.

Classications of TNDT

There are many ways one could classify the dierent techniques of thermography. According to the presence or absence of a thermal excitation source, the technique is generally divided into two main streams, passive and active, respectively.

Passive thermography is dened as measuring the temperature dierence between the target material and its surroundings under dierent ambient temperature conditions. Passive thermography is widely used in industrial condition monitoring [START_REF] Bagavathiappan | Infrared thermography for condition monitoringa review[END_REF], in building eciency studies [START_REF] Balaras | Infrared thermography for building diagnostics[END_REF], in medical applications [START_REF] Hernandez-Contreras | Narrative review: Diabetic foot and infrared thermography[END_REF] and even for the damage characterization of Glass Fiber-Reinforced Polymer composite materials (GFRP) [START_REF] Harizi | Mechanical damage assessment of Glass Fiber-Reinforced Polymer composites using passive infrared thermography[END_REF]. In general, passive thermography is more application-oriented, mostly because of the heat source, and a general analysis of it would be misleading.

Active thermography [START_REF] Maldague | Introduction to ndt by active infrared thermography[END_REF], on the other hand, uses a thermal source to deposit heat in the target material creating a transient heat ow and, when nding defects, thermal contrast. This can be classied by heating function, by excitation sources or by the relative position of excitation and camera. In the latter case, there are two congurations: The common types of active thermography according to heating function are pulsed thermography (PT) or square pulse thermography (SPT) [START_REF] Feuillet | Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling[END_REF],

stepped thermography (ST) [START_REF] Badghaish | Non-destructive inspection of composites using step heating thermography[END_REF], lock-in thermography (LT) [START_REF] Maldague | Theory and Practice of Infrared Technology for Nondestructive Testing[END_REF], pulsed phase thermography (PPT) [START_REF] Maldague | Pulse phase infrared thermography[END_REF], and frequency modulated thermography (FMT) [START_REF] Tabatabaei | Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range[END_REF].

These functions are depicted in Fig.
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The most commonly used thermal sources in active thermography are optical excitation, electromagnetic excitation, acoustic excitation and stress excitation. Thermography can be classied according to excitation sources as:

1. Optical thermography using optical excitation such as ash lamps [START_REF] Omar | A quantitative review of three ash thermography processing routines[END_REF] or lasers [START_REF] Li | Crack imaging by scanning pulsed laser spot thermography[END_REF][START_REF] Burrows | Thermographic detection of surface breaking defects using a scanning laser source[END_REF] that heat part of the piece surface and the resulting temperature is observed with a thermal camera. This technique is also known as pulsed thermography [START_REF] Maldague | Advances in pulsed phase thermography[END_REF] and has been extensively used as inspection problems. For instance, many materials when used in industry are coated or painted.

2. Eddy current thermography (ECT) or induction thermography which uses induced eddy current to heat the sample [START_REF] Gao | Automatic defect identication of eddy current pulsed thermography using single channel blind source separation[END_REF][START_REF] He | Eddy current volume heating thermography and phase analysis for imaging characterization of interface delamination in CFRP[END_REF][START_REF] Yang | Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon ber reinforced polymers[END_REF]. In this case, the defect detection is based on the changes of the induced eddy current ow revealed by the thermal visualization captured by an IR camera and it is widely used for detection of cracks [START_REF] Xu | Investigation on eddy current pulsed thermography to detect hidden cracks on corroded metal surface[END_REF][START_REF] Siakavellas | The inuence of the heating rate and thermal energy on crack detection by eddy current thermography[END_REF] and corrosion [START_REF] He | An investigation into eddy current pulsed thermography for detection of corrosion blister[END_REF].

3. Magnetic induction thermography, which is used in ferromagnetic materials to introduce heat through the magnetic eld and oers several advantages over the conventional active thermography techniques like fast direct heating, no frequency optimization, no dependence on the surface absorption coecient and penetration depth [START_REF] Jäckel | The inuence of external magnetic elds on crack contrast in magnetic steel detected by induction thermography[END_REF][START_REF] Lahiri | Infrared thermography based defect detection in ferromagnetic specimens using a low frequency alternating magnetic eld[END_REF].

4.

Microwave thermography uses microwave as heating source for dielectric materials and gas received growing interest due to many advantages of it including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal eciency [START_REF] Foudazi | Active microwave thermography for nondestructive evaluation of surface cracks in metal structures[END_REF].

Ultrasound thermography or vibrothermography uses mechanical variations

through a welding horn to heat the workpiece [START_REF] Polimeno | A compact thermosonic inspection system for the inspection of composites[END_REF]. In this case, however, contact between the workpiece and the ultrasonic welding horn it is required, which can complicate its practical use and cause a loss of energy transmission.

Some comparison works were published by other authors where the capabilities 1.3. GENERAL CONTEXT of dierent approaches have been tested [START_REF] Ibarra-Castanedo | Inspection of aerospace materials by pulsed thermography, lock-in thermography, and vibrothermography: a comparative study[END_REF][START_REF] Menner | Aerospace applications of lockin thermography with optical, ultrasonic and inductive excitation[END_REF].

General context

Physics is the foundation of every NDT technique. If the materials under test are dierent, the physics and NDT techniques will also be dierent. Conventional NDT techniques are mainly developed for homogeneous metal components and its alloys. However, thermophysical behaviour of composites structures is dierent from planar, homogeneous materials, in general. Layered structures, for example, may include dierent materials. Therefore, physics and NDT techniques may be dierent.

The basic concepts to thermographic inspection are, in general, well established but not in every case. However, analysis and inversion of thermography data tend to be challenging because, in thermography, the underlying heat conduction phenomenon is a diusion process. As heat diuses in time and space, temperature dierences blur, the source of the heat becomes harder and harder to resolve and the contrast created by the aws is lower. Inversion of thermography data to identify a heat source or boundary location is, therefore, an uncertain process potentially requiring substantial assumptions.

The solution of a problem dedicated to the thermophysical characterization of materials or thermal non-destructive testing could be divided into three stages: a forward problem, a metrology problem and an inverse problem.

A forward problem mathematically describes the space-time evolution of the temperature eld as accurately and simply as possible given a knowledge of the medium and illuminating source.

A metrology problem gives the most accurate and least noisy output signal. A priori information can complete the information given by this signal [START_REF] Tam | Remote sensing applications of pulsed photothermal radiometry[END_REF][START_REF] Leung | Thermal diusivity in thin lms measured by noncontact single-ended pulsed-laser-induced thermal radiometry[END_REF][START_REF] Leung | Techniques of ash radiometry[END_REF].

CHAPTER 1. INTRODUCTION

An inverse problem permits estimation of parameters (constant thermophysical properties or boundary interface conditions uniform in space and changing with time or temperature). This task is accomplished by seeking reversible operators or optimization techniques to get a minimum deviation between the measured data and the forward problem. In some applications, signal or image processing techniques can provide the sought parameters.

Simulation and modelling

Simulation of TNDT procedures involves at a rst step the solution of the heat conduction problem in the considered work-piece, with and without defects, in order to obtain the temperature distribution at the piece interfaces, which constitutes the measurement. The full solution to this problem can be obtained using numerical techniques such as nite element method (FEM) [START_REF] Avdelidis | Pulsed thermography : philosophy , qualitative quantitative analysis on aircraft materials & applications[END_REF][START_REF] Mabrouki | Frictional heating model for ecient use of vibrothermography[END_REF], nite dierence method (FDM) [START_REF] Hickson | Finite difference schemes for multilayer diusion[END_REF][START_REF] Restrepo | New Method for Basic Detection and Characterization of Flaws in Composite Slabs through Finite Dierence Thermal Contrast[END_REF][START_REF] Sun | Pulsed thermal imaging measurement of thermal properties for thermal barrier coatings based on a multilayer heat transfer model[END_REF], nite integration technique (FIT) [START_REF] Marklein | The Finite Integration Technique as a general tool to compute acoustic, electromagnetic, elastodynamic and coupled wave elds[END_REF] which are, in general, able to model complex geometries. Nonetheless, their multi-dimensional implementation usually is computationally costly.

On the other hand, analytical solutions for the thermal problem are well formulated and summarised in some classical books [START_REF] Öz³k | Heat conduction[END_REF][START_REF] Cole | Heat Conduction Using Green's Functions[END_REF][START_REF] Mandelis | Diusion-Wave Fields: Mathematical Methods and Green Functions[END_REF] but their numerical implementation is not always an easy task. Nevertheless, in practical situations, it is often meaningful to renounce the detailed information of complete solutions in favour of fast analytical or semi-analytical approximations, which hold the essence of the thermal ow behaviour.

One-dimensional approaches for the analytic solution of the thermal problem can be found for three-layer [START_REF] Sun | On transient heat conduction in a onedimensional composite slab[END_REF] and multi-layer [START_REF] Monte | An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[END_REF] composite slab. A semi-analytical solution for multilayer diusion in a composite medium consisting of a large number of layers was given by Carr [START_REF] Carr | A semi-analytical solution for multilayer diusion in a composite medium consisting of a large number of layers[END_REF], based on the Laplace transform and orthogonal eigenfunction expansion.

Analytical solutions for multi-dimensional time-dependent heat conduction in media consisting of several layers have been given using dierent approaches.

GENERAL CONTEXT

The orthogonal expansion technique derived by Padovan [START_REF] Padovan | Generalized Sturm-Liouville Procedure for Composite Domain Anisotropic Transient Conduction Problems[END_REF] Salt [START_REF] Salt | Transient conduction in a two-dimensional composite slabI. Theoretical development of temperature modes[END_REF][START_REF] Salt | Transient conduction in a two-dimensional composite slabII. Physical interpretation of temperature modes[END_REF] and Mikhailov and Öz³k [START_REF] Mikhailov | Transient conduction in a threedimensional composite slab[END_REF] analyses two-and three-dimensional generalized version of the classical Sturm-Liouville procedure [START_REF] Averin | Sturm-liouville problem for a dierential equation of second order with discontinuous coefcients[END_REF], however, no numerical results was provided. The Green function solution method developed by Beck was applied to a three-dimensional two-layer isotropic-composite [START_REF] Yan | Thermal Characteristics of Two-Layered Bodies With Embedded Thin-Film Heat Source[END_REF] and orthotropic-composite [START_REF] Haji-Sheikh | Temperature solution in multidimensional multi-layer bodies[END_REF] slab with an internal heat source. The Laplace transform approach used by Levine [START_REF] Levine | Unsteady diusion in a composite medium[END_REF], and Kozlov and Mandrix [START_REF] Kozlov | Method of Summation-Integral Equations for Solving the Mixed Problem of Nonstationary Heat Conduction[END_REF][START_REF] Kozlov | Solution of Mixed Contact Problems in the Theory of Nonstationary Heat Conduction by the Method of Summation-Integral Equations[END_REF] in a two-dimensional approach in a spherical surface object and a cylinder, respectively, were used, but also here, no numerical results provided. An analytical solution obtained by solving the transient three-dimensional heat conduction equation using the Laplace transform for a unit impulse in a nite domain by the method of separation of variables was presented with numerical results by Araya and Gutierrez [START_REF] Araya | Analytical solution for a transient, threedimensional temperature distribution due to a moving laser beam[END_REF]. A very popular, well-established approach is the so-called thermal quadrupoles method, where the original three-dimensional problem is approximated as a multilayer one-dimensional problem (by ignoring the heat ow in the lateral layers directions) and modelled as a cascade of "quadrupoles" in analogy with electrical network theory [START_REF] Maillet | Thermal Quadrupoles: Solving the Heat Hquation Through Integral Transforms[END_REF].

Signal processing algorithms and inversion techniques

Signal processing (SP) is a crucial mean to extract useful information from raw data captured from sensors. More and more signal processing algorithms including thermographic signal reconstruction (TSR) [START_REF] Shepard | Reconstruction and enhancement of active thermographic image sequences[END_REF][START_REF] Balageas | The thermographic signal reconstruction method: A powerful tool for the enhancement of transient thermographic images[END_REF], principal components analysis (PCA) [START_REF] Rajic | Principal component thermography for aw contrast enhancement and aw depth characterisation in composite structures[END_REF], independent components analysis (ICA) [START_REF] Wang | Independent component analysis enhanced pulse thermography for high silicon oxygen phenolic resin (HSOPR) sheet with subsurface defects[END_REF][START_REF] Cheng | Impact Damage Detection and Identication Using Eddy Current Pulsed Thermography Through Integration of PCA and ICA[END_REF],

wavelet transform [START_REF] Shrestha | Wavelet transform applied to lockin thermographic data for detection of inclusions in composite structures: Simulation and experimental studies[END_REF] , Tucker decomposition [START_REF] Gao | Thermography spatial-transientstage mathematical tensor construction and material property variation track[END_REF][START_REF] Liang | Low energy impact damage detection in CFRP using eddy current pulsed thermography[END_REF], support vector machine (SVM) [START_REF] Laib Dit Leksir | Localization of thermal anomalies in electrical equipment using Infrared Thermography and support vector machine[END_REF], and pattern recognition [START_REF] Gao | Unsupervised Sparse Pattern Diagnostic of Defects With Inductive Thermography Imaging System[END_REF] are being used in thermography for composites. The use of any of the aforementioned techniques depends on the physics of the problem and their results are usually qualitative, saying that CHAPTER 1. INTRODUCTION the defects are not fully characterised. Depending on the application, the detection and the shape reconstruction of the defects may be a success. In some applications, more quantitative information about the defects is required on the parameters ones tries to estimate.

On the other hand, using model-based techniques, the depth prole reconstruction of a work-piece has been tried. In the frequency domain a stepwise least-squares t has been used to reconstruct a polygon best approximation to the conductivity prole [START_REF] Seidel | Quantitative characterization of material inhomogeneities by thermal waves[END_REF][START_REF] Lan | Theory of microstructural depth proling by photothermal measurements[END_REF][START_REF] Lan | Experimental results of photothermal microstructural depth proling[END_REF], a neural network approach to nd the best t [START_REF] Glorieux | Thermal depth prole reconstruction by neural network recognition of the photothermal frequency spectrum[END_REF], an inverse procedure to nd the Taylor expansion parameters of the conductivity proles [START_REF] Fivez | Thermal waves in materials with inhomogeneous thermal conductivity: An analytical approach[END_REF], an inverse Green's function technique to localize sources in inverse heat conduction [START_REF] Power | Expectation minimum -a new principle of inverse theoretical characterization of expectation values[END_REF][START_REF] Power | A survey of current issues in inverse problem theory as applied to thermal wave imaging[END_REF], a Hamilton/Jacobi based model for weak scattering [18,[START_REF] Munidasa | Application of a generalized methodology for quantitative thermal diusivity depth prole reconstruction in manufactured inhomogeneous steel-based materials[END_REF] and a thermal wave impedance-based model [START_REF] Kolarov | Real-time depth prole reconstruction of the thermal conductivity of inhomogeneous solids[END_REF].

In the spatial domain the inverse scattering technique has been used to reconstruct both thermal conductivity and heat capacity depth proles [START_REF] Vidberg | Inverse determination of the thermal-conductivity prole in steel from the thermal-wave surface data[END_REF] and the conjugate gradient technique has been used to optimise the t. In the time domain, the eusivity depth prole has been reconstructed [17,[START_REF] Krapez | Thermal eusivity prole characterization from pulse photothermal data[END_REF] and the neural network approach has been used to nd the best t [START_REF] Glorieux | Depth proling of thermally inhomogeneous materials by neural network recognition of photothermal time domain data[END_REF].

In his book [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF], Beck provides a summary of his work on inverse heat conduction problems. Exact solutions of the inverse heat conduction problems and estimation procedures with application to engineering problems are provided.

Öz³k and Orlande in their book [START_REF] Öz³k | Inverse Heat Transfer: Fundamentals and Applications[END_REF] present in detail the basic steps of four techniques of solution of inverse heat transfer problem, as a parameter estimation approach and as a function estimation approach. A range of applications of such techniques to the solution of inverse heat transfer problem of practical engineering interest, involving conduction, convection and radiation has been presented. The authors introduce a formulation based on generalised coordinates for the solution of inverse heat conduction problems in two-dimensional regions.

1.4. OBJECT OF THE THESIS

Object of the thesis

This thesis aims to provide original contributions on both aspects of thermography that are the forward modelling and the inverse one: The rst consists of computing the excitation terms, the thermal diusion phenomenon and the measurement of the temperature distribution at the observed surface. The second, in which information about the work-piece is retrieved from thermographic measurement and the knowledge of the forward process on one side, and some a priori information on the other side.

Concerning the forward modelling, many numerical solvers already exist for the solution of the heat equation in two or three dimensions. Their generality is obtained through a discretized description of space, which makes them case dependent from the meshing point of view. This point is a problematic one when the simulation tool is developed toward industrial users, who are experts in NDT techniques but have limited knowledge of numerical analysis in general and meshing strategies in particular. Another disadvantage of such methods is computation time, which can be very high when considering large problems, even if their complexity in terms of geometry is low.

Simulation tools based on semi-analytical models have been proposed in the literature to address simpler cases. These tools are proven to be very fast in comparison to numerical ones, but make some strong assumptions that limits their domain of application. This thesis aims at proposing hybrid solvers combining numerical and semi-analytical solutions, to achieve at some point generality without paying the price of a three-dimensional meshing and high computational time. Besides, the adaptation of modal methods that have been proven to be very ecient in low-frequency electromagnetics will constitute an original contribution to the community of thermography simulation.

Speaking of the imaging part, the detection of the aws in the work-piece, through recorded or synthetic noisy signals, and their characterization is aimed CHAPTER 1. INTRODUCTION at. Signal techniques will be used to denoise the temperature time-dependent signals and compress them. The detection of the aws will be conducted with image processing techniques. Last, optimization techniques will be used for the characterization of the aws using a priori information from the preprocessing part. The main goal of the imaging part is the perfect conjunction of the techniques to have a fully automated procedure for the inspection.

Thesis outlines

The thesis is divided into ve chapters. 

α = k ρc p . (2.1.2)
The parameter k is the thermal conductivity [Wm -1 K -1 ] of the region of space where the Eq. (2.1.1) holds. In general the thermal conductivity may be a function of temperature and therefore may vary with position in the body.
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The parameter ρ is the mass density [kgm -3 ] and c p the specic heat capacity at constant pressure [Jkg -1 K -1 ]. In general the density and the specic heat capacity are functions of temperature but small uctuations of temperature do not aect signicantly their values.

On the right-hand side of Eq. (2.1.1), the term g(r, t) is the thermal source volumetric density which expresses the energy generation throughout the volume of the body and its unit is [Wm -3 ]. It is distinguished from energy that enters the body through its boundaries. The energy generation is in the general case a function of the position in the body and it may vary with time.

The dierential equation of heat conduction is a consequence of the energy conservation law and Fourier's law of conduction, which in its dierential form states that the local heat ux density J is equal to the product of thermal conductivity k and the negative local temperature gradient, -∇T J = -k∇T. In the Cartesian coordinate system, for an isotropic body, the heat ux vector can be decomposed as: 

J x = -k ∂T ∂x , J y = -k ∂T ∂y , J z = -k ∂T ∂z . ( 2 
k ∂T ∂n i r i = f i (r i , t) (2.1.6) 
where n i is an outward pointing normal.

III. The third kind is a convective boundary condition,

k ∂T ∂n i r i + h i T | r i = f i (r i , t) (2.1.7)
where h i is the heat transfer coecient and f i (r i , t) being usually equal to h i T ∞ with T ∞ being the ambient temperature. This does not exclude the case of f i (r i , t) including a prescribed heat ux.

IV. The fourth kind is for a thin lm at a surface with a prescribed heat

ux f i (•), k ∂T ∂n i r i = f i (r i , t) -(ρc p d) i ∂T ∂t r i (2.1.8)
where (ρc p d) i if for the thin lm and d is its thickness at the ith surface.

V. The fth kind of boundary condition is for a thin lm permitting losses from the lm convection,

k ∂T ∂n i r i + h i T | r i = f i (r i , t) -(ρc p d) i ∂T ∂t r i (2.1.9)
This boundary condition is physically identical to the fourth kind boundary condition except that instead of a specied heat ux on the thin lm at the surface there is a specied heat transfer coecient h.

VI. Another important case is the zeroth kind, the so-called natural boundary condition or the absorbing boundary condition. It is for conditions for which there is no physical boundary but for computational purposes boundary condition has to be imposed to the problem. It includes several cases, one of which is when a boundary extends to innity.

When a system consists of a composite body, interface conditions are applied in a manner similar to the boundary conditions at the interfaces of the body's parts. Suppose here a system of two dierent media with dierent thermal properties. Let T (1) be the temperature in the rst media and T (2) in the second one, with k (1) and k (2) being the corresponding conductivities.

Two types of interface conditions can be dened here.

A. Perfect contact

T (1) r i = T (2) r i (2.1.10a) -k (1)
∂T (1) ∂n i r i =k (2) ∂T (2) ∂n i r i .

(2.1.10b)

These conditions apply in the case of close contact between the two media. The rst equation sets continuity of the temperature and the second equation sets continuity of the heat ux through the interface.
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B. Interface heat source

T (1) r i = T (2) r i (2.1.11a)
k (1) ∂T (1) ∂n i r i =k (2) ∂T (2) ∂n i r i + f i (r i , t).

(2.1.11b)

These conditions correspond to heat production or absorption at the location of the interface . In this way, a heating lm i.e. Joule eect between the two media can be treated. The lm is considered to have high thermal conductivity and low thermal capacity.

In the transient regime, in order to complete the formulation of the problem, an initial temperature distribution has to be set. Expressed in general coordinates this equation is

T (r, 0) = F (r) (2.1.12) 
and for an one-dimensional case with x being the coordinate, T (x, 0) = F (x).

Often, instead of F (•) the notation T 0 is used to denote the initial condition where the space variable has been omitted and the subscript zero states the initial time, t = 0.

Without loss of generality and since it is mathematically convenient one can choose the zero of the temperature scale as an initial condition. This is allowed by the gauge invariance of the temperature which implies that the solution for the temperature does not depend on the choice of the initial temperature or its scale.
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Heat equation in planar layered media in time domain

The geometry of the developed models in this thesis concerns three-dimensional, planar, multi-layered structures with respect to the z-direction. For simplicity, our model consists of two thin layers of dierent solids, innite in the x and y-directions, above and below them semi-innite, in the z-direction, layers of air completing the physical conguration depicted in Fig. 2.2.1. The heat diusion phenomena can be described in each layer by Eq. (2.2.1a) with T (j)

being the temperature in the jth layer of the media.

z x L T (1) 
T

T

T (4) 0

-d 1 -(d 1 + d 2 )
Figure 2.2.1: Two-dimensional illustration of a typical thermographic inspection consisting of a double-layered piece of two dierent materials illuminated by a ash lamp with two insertions.

Equations (2.2.1f) and (2.2.1g) describe the temperature and the heat ux continuity, respectively, at the interface (z = z i ) where perfect contact between the layer (j) and (j + 1) has been assumed.

The system is thermally excited by a ash lamp set above the second layer.

The impact of the excitation can be modelled in terms of an additional thermal ux at the interface between the rst and second layers of the model and perpendicular to this interface. The continuity conditions at this interface are With the rst and last layers being semi-innite, it is physically correct to assume that the temperature far away from the source will remain at its initial ambient temperature T 0 . Mathematically, the problem depicted in Fig. 2.2.1 can be expressed by the system Eq. (2.2.1). 

∇ 2 T (j) (r, t) - 1 α (j) ∂ ∂t T (j) (r, t) = 0 (2.2.1a) T (1) z 1 = T (2) z 1 (2.2.1b) -k (1) ∂T (1) ∂z z 1 = -k (2) ∂T (2) ∂z z 1 + J e (x, y) • δ(t) (2.2.1c) T (2) z 2 -T (3) z 2 = -R(x, y) • k (2) ∂T (2) ∂z z 2 (2.2.1d) -k (2) ∂T (2) ∂z z 2 = -k (3) ∂T (3) ∂z z 2 (2.2.1e) T (3) z 3 = T (4) z 3 (2.2.1f ) -k (3) ∂T (3) ∂z z 3 = -k (4) ∂T (4) ∂z z 3 (2.2.1g) CHAPTER 2. MODELLING IN TNDT lim z→-∞ T (1) = T 0 (2.2.1h) lim z→-∞ T (4) = T 0 (2.2.1i) T (j) (r, 0) = T 0 (2.
L {T (r, t)} ≡ T (r, s) = ∞ 0 T (r, t)e -st dt (2.3.1)
where s is the Laplace variable, the system dened by Eq. (2.2.1) can be transformed to the Laplace domain. The governing equation (2.2.1a) becomes

∇ 2 T (j) (r, s) - s α (j) T (r, s) + T (r, 0 -) = 0 (2.3.2)
where T (r, 0 -) refers to the temperature before the initial time and from now on will be assumed to be zero, T (r, 0 -) = 0. The boundary value problem in the Laplace domain becomes

∇ 2 T (j) (r, s) - s α (j) T (r, s) = 0 (2.3.3a)
T (1) 

z 1 = T (2) z 1 (2.3.3b)
k (1) ∂ T (1) ∂z

z 1 = -k (2) ∂ T (2) ∂z z 1 + J e (x, y) (2.3.3c) 20 2.4. THE TREE METHOD T (2) z 2 -T (3) z 2 = -R(x, y) • k (2) ∂ T (2) ∂z z 2 (2.3.3d) -k (2) ∂ T (2) ∂z z 2 = -k (3) ∂ T (3) ∂z z 2 (2.3.3e) T (3) 
z 3 = T (4) z 3 (2.3.3f ) -k (3) ∂ T (3) ∂z z 3 = -k (4) ∂ T (4) ∂z z 3 (2.3.3g) lim z→-∞ T (1) = T 0 (2.3.3h) lim z→-∞ T (4) = T 0 (2.3.3i)

The TREE method

A classical analytical solution of a thermal problem is given by, perhaps the most powerful analytical method, separation of variables. This aspect of analytical solutions has been explored in depth. In this thesis, a semi-analytical solution of the (translated in the Laplace domain with respect to time) thermal diusion problems which are based on Truncated Region Eigenfunction Expansion (TREE) method is proposed. This method was historically introduced to solve low-frequency electromagnetic problems [START_REF] Theodoulidis | Eddy Current Canonical Problems (with Applications to Nondestructive Evaluation[END_REF]. As in the classical approach, the method uses separation of variables to express the temperature eld in the various regions of the problem in analytical form. The solution domain is subject to truncation to limit the range of a coordinate that would otherwise have an innite span. As a result, the solution on that coordinate is expressed in a series form, instead of an integral form, which has numerous advantages.
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The main advantage of the domain truncation is the satisfaction of the eld continuity at various interfaces simultaneously after a selection of the discrete eigenvalues and the corresponding eigenfunctions. This expands the class of problems which can be treated by the method. The matching of the eld expressions at interfaces is done either in a term by term basis or by mode-matching where the testing functions are the same as the expansion ones. The later allows the TREE method to contain a mesh-less Galerkin type procedure. This advantage may arise, for example, in layered media, when one of the layers is much narrower than the other layers or when the thermal properties change radically between the media's layers. In such cases, the accuracy of the solution is independent of the meshing of the computational domain. This is in contrast with numerical methods where renement of the mesh may be required in parts of the computational domain.

The method is shown to provide easily calculated accurate solutions. In general, the series-form nature of these solutions makes their numerical implementation easy in a machine using any low-level programming language or even commercial mathematical packages. Moreover, they are extremely fast and more memory ecient compared to numerical methods. Due to their accuracy they can easily be used for analysis, parametric studies or calibration of test systems. These models provide an inexpensive alternative to experimental verication of numerical methods. Thus, they can be widely used for validation of solutions from more complex numerical methods.

The TREE formulation of the problem

The boundary value problem described by Eq. (2.3.3) is solved in the Laplace domain with respect to time. The solution of the problem with the TREE method requires the truncation of the solution domain. That is done with respect to x-coordinate and y-coordinate. This is an accurate enough approximation when these limits are at a distance large enough so as the heat aw In our case, Dirichlet boundary conditions

T (j) x=0 = T (j) x=Lx = 0 (2.4.1a) T (j) y=0 = T (j) y=Ly = 0 (2.4.1b)
will be applied in both x and y-directions.

The rst step of the method is the application of the separation of variables.

One assumes that the unknown function T which satises the heat equation

∇ 2 T (x, y, z; s) - s α T (x, y, z; s) = 0 (2.4.2)
is a product of three one-variable functions as follows:

T (x, y, z; s) = X(x)Y (y)Z(z).

( 

Y Z d 2 X dx 2 + XZ d 2 Y dy 2 + XY d 2 Z dz 2 - s α XY Z = 0. (2.4.4)
Dividing Eq. (2.4.4) by the product XY Z, which is not zero, yields:

1 X d 2 X dx 2 + 1 Y d 2 Y dy 2 + 1 Z d 2 Z dz 2 = s α .
(2.4.5)

Each term in Eq. (2.4.5) is a function of one variable only, and therefore, each term must be equal to a constant, in order for Eq. (2.4.3) to be satised for arbitrary values of the three independent variables (x, y, z). This means that the following equations should hold:

1 X d 2 X dx 2 = -κ 2 (2.4.6a) 1 Y d 2 Y dy 2 = -λ 2 (2.4.6b) 1 Z d 2 Z dz 2 = µ 2 .
(2.4.6c)

Considering the dierential equations (2.4.6), the general solution can be written as

T (j) (x, y, z; s) = A (j) 1 sin(κx) + A (j) 2 cos(κx) (2.4.7) × B (j) 1 sin(λy) + B (j) 2 cos(λy) × C (j) 1 exp(-µ (j) z) + C (j) 2 exp(µ (j) z) for each (j) layer. The constants A 1 , A 2 , B 1 , B 2 , C 1 , C 2 
are to be determined by satisfying the boundary and interface conditions. The separation constants are linked together through the dispersion equation:

µ (j) = κ 2 + λ 2 + s α (j) .
(2.4.8)
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If the region of interest was innite one would have to integrate over κ and λ from 0 to ∞ to get the general solution. Since the solution region is nite, due to truncation, κ and λ assume discrete values and to get the solution one has to sum the modes up to ∞.

The Dirichlet boundary conditions, Eq. (2.4.1), should be satised in xand y-direction from which the discrete eigenvalues κ m and λ n are to be determined as

sin(κ m L x ) = 0, κ m = mπ L x , m ∈ Z * (2.4.9a) sin(λ n L y ) = 0, λ n = nπ L y , n ∈ Z * (2.4.9b)
respectively. Thus, the dispersion equation (2.4.8) which links the discrete eigenvalues can be written as

µ (j) mn = κ 2 m + λ 2 n + s α (j) , m, n ∈ Z. (2.4.10) 
The general solution, Eq. (2.4.7), should respect the applied Dirichlet boundary conditions, Eq. (2.4.1), that have been set due to truncation of the region in the xand y-directions. Thus, equation (2.4.7) can be written as

T (j) mn (x, y, z; s) = A (j) 1;m sin(κ m x) (2.4.11) × B (j) 1;n sin(λ n y) × C (j) 1;mn exp(-µ (j) mn z) + C (j) 2;mn exp(µ (j) mn z)
for each (j) layer. The solution in the xand y-directions is expressed only by sin(•) because of the Dirichlet boundary conditions where the terms of cos(•) in the general solution have to be dismissed. The constants A 1 , B 

T (j) mn (x, y, z; s) = sin(κ m x) × sin(λ n y) × C (j)
mn exp(-µ (j) mn z) + D (j) mn exp(µ (j) mn z) .

(2.4.12)

By setting the truncation limits M and N in the xand y-directions, respectively, the temperature eld in the Laplace domain for each (j) layer is given by

T (j) (x, y, z; s) = M m=1 N n=1 C (j) mn exp(-µ (j) mn z) + D (j)
mn exp(µ (j) mn z) sin(κ m x) sin(λ n y).

(2.4.13)

Given the condition lim z→±0 T (x, y, z; s) = 0 an expression can be given for each layer of the considered conguration

T (1) (x, y, z; s) = M m=1 N n=1
C (1) mn e -µ (1) mn z sin(κ m x) sin(λ n y)

(2.4.14a)

T (2) (x, y, z; s) = M m=1 N n=1 C (2)
mn e -µ (2) mn (z+d 1 ) + D (2) mn e µ (2) mn z sin(κ m x) sin(λ n y)

(2.4.14b) 4) mn e µ (4) mn (z+d 1 +d 2 ) sin(κ m x) sin(λ n y).

T (3) (x, y, z; s) = M m=1 N n=1 C (3) mn e -µ (3) mn (z+d 1 +d 2 ) + D (3) mn e µ (3) mn (z+d 1 ) sin(κ m x) sin(λ n y) (2.4.14c) T (4) (x, y, z; s) = M m=1 N n=1 D ( 
(2.4.14d)

The excitation term has been introduced in the model as a thermal ux J e (x, y) at the interface between the rst layer and the second layer located at
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the altitude z = 0. From Fourier's law one has

J e (x, y) = -k (1) ∂ T (e) ∂z (2.4.15)
and by using Eq. (2.4.15) and the expression for the temperature eld from Eq. (2.4.14b) one has

J e (x, y) = -k (1) M m=1 N n=1 µ (21 mn C (e)
mn sin(κ m x) sin(λ n y).

(2.4.16)

The coecients of the excitation term can be calculated by projecting Eq. (2.4.16)

into the orthogonal basis in the xand y-directions. The orthogonality of the basis implies

Lx 0 sin(κ m x) sin(κ m x) dx =      Lx 2 , if m = m 0, if m = m (2.4.17) Ly 0 sin(λ n y) sin(λ n x) dx =      Ly 2 , if n = n 0, if n = n . (2.4.18)
Assuming that J e (x, y) is non-zero and constant only inside a rectangular patch extending from x 1 to x 2 and from y 1 to y 2 with 0 < x 1 < x 2 < L x and 0 < y 1 < y 2 < L y the coecients for the excitation term can be calculated explicitly according to

C (e) mn = - Q k (1) µ (1) mn 4 L x L y y 2 y 1 x 2 x 1 sin(κ m x) sin(λ n y) dx dy (2.4.19)
where Q is the constant intensity of the source in its domain of support. In the case of a more general source which is a function of space, the coecients CHAPTER 2. MODELLING IN TNDT for the source term can be calculated by

C (e) mn = - 1 k (1) µ (1) mn 4 L x L y y 2 y 1 x 2 x 1
J e (x, y) sin(κ m x) sin(λ n y) dx dy. (2.4.20) The contact between the second layer and the third layer in the geometry shown in Fig. 2.2.1 is imperfect in a sub-domain of their interface. As declared previously, this kind of imperfect contact between the two layers can model a very thin delamination. In this case, the eect of the delamination can be taken into account by only modifying locally the temperature continuity relation between the two layers Eq. (2.3.3d). To be more specic, let us consider a very thin defect between two planar media as shown in Fig. 2.4.1 where D is the region of the delamination, ∆z is the size of this area in the z direction, S a and S b are two ctitious surfaces parallel to the interface between the two layers at a distance ∆z/2 from them. 

T (2) T (3)
J z = -k d ∇ T (2.4.21) J z = -k d T (2) -T (3) ∆z (2.4.22)
which leads to

T (2) -T (3) = -R(x, y)J z (2.4.23)
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where J z is the heat ux in the z direction and R(x, y) represents the thermal resistance between the two layers dened as

R(x, y) = ∆ z k d , (x, y) ∈ D (2.4.24)
inside the defect domain D ∈ (0, L x ) × (0, L y ) and zero elsewhere. Here ∆z is the size of the defect in the z direction and k d is the thermal conductivity of the defect.

At this step, the temperature and the thermal ux have to be replaced by their series expressions, Eq. (2.4.14), in all continuity conditions. The set of continuity relations is then written as a linear system of equations after the application of the Galerkin variant of the Method of Moments [START_REF] Harrington | Field Computation by Moment Methods[END_REF]. The result can be written in matrix form as

[A][X] = [B] (2.4.25) 
where X contains the unknown coecients C

(j) mn and D

(j)

mn . The matrix A has to be numerically inverted in order to calculate the unknown coecients. The inversion of this matrix is what makes the TREE method a semi-analytical one and not analytical. The matrix in the right-hand side of the system, B, is quite sparse as it diers from zero only in the lines which correspond to interfaces where sources may be found, excitations or delamination. By calculating the matrix X the solution of the problem can be numerically evaluated in the discretised space domain of interest using Eq. (2.4.14). This result is the solution of the problem in the Laplace domain. The temperatures can be calculated in the time domain, with numerical inversion of the obtained solution.

For the inverse Laplace transformation the Stehfest algorithm [START_REF] Stehfest | Algorithm 368: Numerical inversion of Laplace transforms [D5[END_REF][START_REF] Stehfest | Remark on algorithm 368: Numerical inversion of Laplace transforms[END_REF] has been used, which is an improved variant of Gaver's method [START_REF] Gaver | Observing stochastic processes, and approximate transform inversion[END_REF]. The methods is described in detail in appendix B.
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Validation of the assumption made on the delamination thickness

In this section, the validity domain of the approximation for the aw, which was assumed to be very thin, will be investigated. For the needs of this investigation, a set of dierent congurations has been modelled. For comparison, these congurations have been modelled using the developed TREE model and a numerical model based on the nite integral technique (FIT) [START_REF] Marklein | The Finite Integration Technique as a general tool to compute acoustic, electromagnetic, elastodynamic and coupled wave elds[END_REF][START_REF] Weiland | A discretization model for the solution of Maxwell's equations for six-component elds[END_REF][START_REF] Ratsakou | Fast models dedicated to simulation of eddy current thermography[END_REF].

The general conguration concerns double-layer metallic plate models with an embedded aw, innite in the x and ydirections and parallel to the surface of the plate. Two dierent materials has been taken into account, namely aluminium as a high diusive metal, corresponding to Fig. given in Table 2.5.1. In the following gures, relative error contours are shown corresponding to the four dierent aws' depths in each sub-gure.

Plate thickness [mm] 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0 Defect thickness 1% to 10% of the plate thickness Defect depth 10%, 30%, 50%, 70% of the plate thickness Table 2.5.1: Parameters used for the investigation of the validity domain of the assumption made on the delamination thickness.

VALIDATION OF THE ASSUMPTION MADE ON THE DELAMINATION THICKNESS

The four contour plots shown in Fig. 2.5.1 correspond to the case where an aluminium plate and signals in reection are used. The error depends on the plate thickness and the aw depth. The error is increasing as the depth of the aw is increasing wherein the bottom right sub-gure the error is the largest one. However, there is no link between the error and the aw thickness. Using signals in reection for a steel plate, Fig. 2.5.3, one can see that the relative error increases with the plate thickness and the aw depth as well.

VALIDATION OF THE ASSUMPTION MADE ON THE DELAMINATION THICKNESS

This result agrees also with Fig. 2.5.1 where an aluminium plate was used. The dierence here is that the error is slightly larger, yet, practically acceptable.

In the cases where the aw thickness is less than 2% of the plate thickness, the discrepancy between the results obtained from the two methods does not follow the trend of the error when the plate thickness is greater than 2% of the plate thickness. This may be due to discretization issues on the FIT model CHAPTER 2. MODELLING IN TNDT and seems to be independent from the material. The relative error in the simulated signals in transmission, in the case of the steel plate, appears to be very low as shown in Fig. 2.5.4. Its dependence on the aw's thickness is not clear any more. However, its relation with the plate's thickness and aw's depth agrees with the results shown for the aluminium plate.

0

SUMMARY

In conclusion, the model produces accurate results despite the assumption made on the delamination thickness. The relative error is consistent in the tested cases and acceptable in the eld of application.

Summary

In this chapter, a semi-analytical model based on the so-called truncated region eigenfunction expansion method, for the simulation of the thermographic inspection was proposed. The problem was solved in the Laplace domain with respect to time, and the temperature distribution was approximated by its expansion on a tensor product basis. Congurations addressed by this model were stratied planar pieces aected by thin delamination aws. Considered sources are lamps providing a thermal excitation at the surface of the inspected piece. The thermal excitation at the surface of the layered media was provided by a ash lamp which is used in a wide range of applications. The description of the delamination defects as thin air gaps between the piece layers proves to be equivalent with the introduction of surface resistance to the heat ow, thus allowing their treatment via the applied modal approach without additional discretisation. In this chapter techniques and methods used for the detection and the characterisation of abnormalities in planar media will be presented.

3.1 Thermographic signal reconstruction.

Since its introduction [START_REF] Shepard | Advances in pulsed thermography[END_REF], the thermographic signal reconstruction (TSR)

method has emerged as one of the most widely used methods for enhancement, In the literature there are many variations of the TSR method, with the "classic" one selecting the best, under some criteria, derivative images associated with every given depth range. These images are used either to qualitatively detect the defects or to quantitatively evaluate their depths from characteristic times. In Fig. Image selection for several depths and analysis In principle, the method exploits the well-known observation that in a semi-innite awless sample, or in a very thick slab, Fig. 3.1.2a, the surface temperature response to instantaneous uniform heating is described by the one-dimensional heat diusion equation:

∂T ∂t = α ∂ 2 T ∂z 2 (3.1.1)
where α = κ ρc is the thermal diusivity of the material with the solution

T (z, t) = Q √ πt e z 2 4αt (3.1.2)
at distance z from its surface, where = √ κρc is the heat eusivity and Q is the energy supplied to the surface. From Eq. (3.1.2) one has the temperature increase ∆T (thermogram) as a function of time t at the surface:

∆T (t) = Q √ πt . (3.1.3)
The one-dimensional approximation of Eq. (3.1.3) assumes that the lateral diusion components more or less cancel in a defect-free sample. However, in the presence of an adiabatic subsurface boundary such as a void or a wall, where the surface temperature for a semi-innite sample is compared with the case of the presence of an adiabatic wall at three dierent depths.

The defect's identication lies in the fact that the one-dimensional assumption is not valid any more if a defect is present. In general, the separation of the temperature response at the surface of a solid between a sound area and a defected area, during the cooling process, should be simple when these defects are large or very close to the surface, as shown in Fig. 3.1.3b. However, when one attempts to detect small buried defects, the eects of IR camera noise as well as the randomness or the complexity found in many samples, complicate and limit the ability to discriminate between sound areas and boundaries.

Additional insight into the surface temperature response to pulsed heating 3.1. THERMOGRAPHIC SIGNAL RECONSTRUCTION. 

Noise reduction and data compression

For a given position, the response given by Eq. (3.1.4) can be approximated by a function or set of orthogonal functions. In this case a polynomial series will be used to t the experimental data in log-log space:

ln (∆T ) = N n=0 a n [ln(t)] n . (3.1.5)
The tting of the log-log thermogram, for each pixel (i, j), by the logarithmic polynomial replaces the full sequence of the temperature images T (i, j, t)

3.1. THERMOGRAPHIC SIGNAL RECONSTRUCTION.

by the series of (n+1) images of the polynomial coecients: a 0 (i, j), • • • , a n (i, j).

Once the time evolution of each pixel has been approximated by Eq. (3.1.5), the original data can be reconstructed as:

∆T = exp N n=0 a n [ln(t)] n . (3.1.6)
Thus, it is only necessary to save the polynomial coecients a n and reconstruct the images stack at required time samples. This approach provides a signicant degree of data compression. An high-speed IR camera produces images with a frame rate up to 1kHz, i.e. 1000 images per second, while the polynomial degree used for the regression is lower than 15 for the whole recorded image sequence.

A lowdegree polynomial expansion is applied usually to serve as a lowpass lter. Thus, this approximation preserves the essential thermal response, while rejecting nonthermal noise contributions. The use of higher-order polynomials reproduces the original data and replicates also part of the noise that appears in the later, lowamplitude data. In Fig. 

Logarithmic Derivatives and Signal Enhancement

As shown, the use of TSR removes eectively the temporal noise from the recorded raw data. However, the reduction of temporal noise does not necessarily increase the aw detectability, which is more related to the contrast between the signal and background. This contrast not only depends on the instrumentation and the experimental conditions but also on the relative properties of the aw and the host material. This can be partially addressed by the computation of the rst and second time derivatives, using Eq. without additional noise contributions, which leads to equations

d ln (∆T ) d [ln(t)] = N n=1 na n [ln(t)] n-1 (3.1.7) d 2 ln (∆T ) d [ln(t)] 2 = N n=2 n(n -1)a n [ln(t)] n-2 (3.1.8)
for the rst and the second derivative, respectively. The temperature in the logarithmic scale has been compared with the rst and the second time deriva-3.1. THERMOGRAPHIC SIGNAL RECONSTRUCTION.

tive for a sound area and a awed area in Fig. 3.1.6. The derivatives, by denition, are much more sensitive to small changes in amplitude than the raw signal. However, after the application of the TSR that acts as a low-pass lter, the derivatives are less sensitive to random sig- 

TSR-based method

As long as detection only is aimed at and no identication of the depth of the defects is required, a new TSR-based method can answer with success. In the
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"classic TSR" method, as explained before, all the information needed for the defect detection is stored in the coecients of the tted polynomials which are used to reproduce the signals and their time derivatives images. The new TSR-based method uses the original method as a basic pre-processing operation to compute and store the coecients of the tted logarithmic polynomials.

Instead of using these coecients to reproduce the signals or their time derivatives, images are formed for each monomial. In a second step, only the three best images, out of n + 1 images for a polynomial of degree n, are selected and projected into an RGB basis to form a unique composite image. This representation makes easier the detection of defects located at dierent depths using one single image. In the "classic TSR", however, one has to go through all observation times to choose the best-produced image or images.

Like in all TSRbased approaches, the choice of the observation time window and the degree of the polynomial are very crucial. It is shown that a polynomial of degree 11 ts very well the data for time analysis of logarithmic images but for defect imaging and detection a polynomial of degree 5 to 8 can be considered as optimal, see Appendix D. For the results shown in 

∂G ∂x = kx exp - x 2 2σ 2 exp - y 2 2σ 2 (3.2.3a) ∂G ∂y = ky exp - y 2 2σ 2 exp - x 2 2σ 2 . (3.2.3b)
By convolving these equations with the image we obtain:

L x = ∂G ∂x * I(x, y), L y = ∂G ∂y * I(x, y) (3.2.4) 
where in a matrix representation this can be written as:

L x = K x * I(i, j), L y = K y * I(i, j) (3.2.5)
where i and j are the coordinates of a pixel in the image. This is a way to compute the gradient, but not the only one. Dierent kernels can be used to calculate the image gradient. This could separate the denoising part of the algorithm from the computation of the gradient. For the traditional Canny algorithm, two 2 × 2 convolution operators K x and K y are deployed to calculate the image gradient in the x and y directions, respectively.

These operators are written as:

K x =   1 -1 1 -1   , K y =   1 1 -1 -1   . (3.2.6)
The angle accuracy of the computation of the gradient can be improved by using 3 × 3 or 5 × 5 truncated area sampled Gaussian derivatives, Eq. (3.2.3), as the Scharr kernel:

K x =      47 0 -47 162 0 -162 47 0 -47      , K y = K T x .
(3.2.7)

or the proposed [START_REF] Kroon | Numerical Optimization of Kernel Based Image Derivatives[END_REF] Gaussian derivative with optimized sigma σ = 0.6769

K x =           
0.0007 0.0037 0 -0.0037 -0.0007 0.0052 0.1187 0 -0.1187 -0.0052 0.0370 0.2589 0 -0.2589 -0.0370 0.0052 0.1187 0 -0.1187 -0.0052 0.0007 0.0037 0 -0.0037 -0.0007

           , K y = K T x . (3.2.8)
which gives a minimal angle error.

In general, 2 × 2 or 3 × 3 kernels based on nite dierences are used for the computation of the gradient. These kernels perform well in not challenging situations. In the literature one can nd many other derivative kernels which provide also some smoothing in the data, with the most used ones being the Sobel operator:

K x =      1 0 -1 2 1 -2 1 0 -1      , K y = K T x (3.2.9)
the Roberts operator: 

K x =   1 0 0 -1   , K y = K T x ( 3 
K x =      1 0 -1 1 0 -1 1 0 -1      , K y = K T x . (3.2.11)
After convolution of the image with the kernels, the gradient-component intensity of the image is derived from:

M (i, j) = L 2 x (i, j) + L 2 y (i, j) (3.2.12)
and its normal vector direction at the pixel (i, j) is dened as:

θ(i, j) = arctan L x (i, j) L y (i, j) . (3.2.13) 
Non-maximum suppression To follow, after smoothing the image using

Gaussian smoothing and convolving it with derivative kernels, we end up with the gradient magnitude image M (i, j) which reects the edge intensity at the pixel(i, j) and θ(i, j), which reects the normal vector at the pixel (i, j) in the image. Edges of objects can be extracted from the gradient component intensity image but they will be quite blurry. In this step, the algorithm aims at thinning those edges by setting the pixels around local maxima in the gradient image M to 0.

Firstly, the direction angle is rounded to 0 • , 45 • , 90 • , 135 • for the relative position in adjacent pixels of the image. Aiming at every pixel whose value is non-zero, the gradient-component intensity of a candidate pixel M (i, j) is compared with two adjacent pixels along the rounded direction angle. The candidate pixel is preserved only if its gradient component intensity is the largest. Otherwise, it is set to zero. Let the processed image be M (i, j).

Thresholding The non-maximum suppression gives the non-zero pixels providing more accurate approximation regarding the edges of the objects in the processed image M (i, j). These pixels are taken as the edge pixels. Due to noise in the original image, M (i, j) contains pixels depicting false edges, the spurious edge response. To mitigate these spurious edges, hysteresis tracking is performed using dual thresholding by setting a high τ h and a low τ l threshold parameter. Edge pixels which have gradient larger than τ h are added automatically to the nal binary image and are considered as strong edge pixels. In opposition, edge pixels with a gradient lower than τ l are considered as phantom edges and are discarded. The remaining pixels with a gradient value between τ l and τ h are considered as weak edges and are added to the nal binary image only if they are connected with a strong edge pixel. When none of the 8-connected neighbourhood pixels is a strong pixel, the candidate pixel is suppressed.

The choice of thresholds is very crucial for the success of the method. The algorithm can wipe o most of the spurious edges while increasing the value of τ h , but meanwhile, some edges may be missed. On the other hand, by decreasing the value of τ l more information about the edges will be preserved but by the contrary, the edge's characteristic will become less and less at the point where the true edges will be missed. Auto-select thresholding value is a dicult task. At present, there are many kinds of methods in selecting threshold values. The more widely used is the Otsu method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] but also other methods based on histogram, maximum entropy, or statics are used [START_REF] Sen | Gradient histogram: Thresholding in a region of interest for edge detection[END_REF][START_REF] Abutaleb | Automatic thresholding of gray-level pictures using twodimensional entropy[END_REF][START_REF] Medina-Carnicer | A novel method to look for the hysteresis thresholds for the Canny edge detector[END_REF].

The Otsu method has the best threshold value in the statistical sense and is the most stable method in the image threshold segmentation. The method has been used here to choose the value of τ h automatically. The method assumes that the pixels of the image to be thresholded can be separated into two classes, e.g. foreground and background, then calculates the optimum thresh- 

µ 0 = τ i=0 iP i α 0 = µ τ α 0 and µ 1 = L-1 i=τ +1 iP i α 1 = µ -µ τ 1 -α 0 respectively, therein µ = L-1 i=0 iP i , µ τ = τ i=0 iP i .
The criterion function has been dened as variance between the two classes, expressed as

η 2 (τ ) = α 0 (µ 0 -µ) 2 + α 1 (µ 1 -µ) 2 (3.2.14) = α 0 α 1 (µ 0 -µ 1 ) 2 . (3.2.15)
The optimal threshold value τ is given by Edge linking The last step of the algorithm is the connection of already detected edges on the binary image under some restrictions. These restrictions are criteria set upon the gradient value M (i, j) and the gradient angle θ(i, j)

η 2 (τ ) = max 0≤τ ≤L η 2 (τ ).
of the non-edge pixels between two edges. If the gradient is greater than a given value and the gradient angle is close to zero, the pixels between the two edges are added to the binary image.

The output of the Canny algorithm is a binary image which contains the edges of any present objects in the initial image. This binary image will be used as a-priori information in the next step of the defect characterisation.

Parameter estimation -Optimization

We will be seeking to characterize detected aws which are described through some parameters. Hence, these parameters have to be estimated. A classical approach of parameter estimation has been taken in this thesis. For its completeness, the optimization method will be presented in this section.

The function to be minimized

In the inversion process, one usually minimizes a discrepancy between some experimental data, say u d , and some model data, say u. 

||u -u d || 2 2 := i u i -u i d 2 = S δ j i (u -u d ) ds (3.3.1) 56 
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where δ j i = d(x ix j ). In order to write down a general form for the cost function to be minimized, we use:

J = f ||u -u d || 2 (3.3.2)
without specifying any choice of the norm. The norm || • || is squared so that the function J does not a priori present discontinuity. Regularization terms could be added to the cost function which would become:

J = f ||u -u d || 2 + g ||ψ|| 2 . (3.3.3)
Therefore the cost function is explicitly given in terms of u, it is actually to be minimized with respect to what is searched, the parameters ψ. Hence we write the equality:

j(ψ) := J (u) (3.3.4) 
where the function j is the so-called reduced cost function, as opposed to J which is the cost function.

Elements of minimization

The function denoted j is dened on K with values in R. K is a set of admissible elements of the problem. In some cases, K denes some constraints on the parameters or functions. The minimization problem is written as: inf φ∈K⊂V j(φ).

( 

j(φ) = inf ψ∈K⊂V j(ψ).
To indicate that the minimum is obtained, one should prefer the notation:

φ = arg min ψ∈K⊂V j(ψ).
If j is a convex function in K, the local minimum of j in K is the global minimum in K.

Optimality conditions

For convex functions, there is no dierence between local minima and global minimum. Thus, we are more interested in minimizing a function without specifying whether the minimum is local or global.

Let us derive here the minimization necessary and sucient conditions.

These conditions use the rst-order derivatives (order-1 condition), and secondorder derivatives (order-2 condition) on the cost function j. Using gradienttype algorithms, the rst-order condition is to be reached, while the secondorder condition leads to x the convexity hypothesis, and then make a distinction between minima, maxima and optima.

Let us assume that j(ψ) is continuous and has continuous partial rst derivatives ∂j(ψ) ∂ψ i and second derivatives ∂ 2 j(ψ) ∂ψ i ∂ψ j . Then the necessary condition for ψ to be a minimum, at least locally, of j is that:

(i) ψ is a stationary point, i.e. ∇j( ψ) = 0 (ii) the Hessian ∇ 2 j( ψ) = ∂ 2 j(ψ)
∂ψ i ∂ψ j is a positive semi-denite matrix, i.e.

∀y ∈ R n , ∇ 2 j( ψ)y, y ≥ 0 where (•, •) is a scalar product in R n and dim(ψ) = n.

A point ψ which satises condition (i) is called a stationary point. It is important to point out that stationarity is not a sucient condition for local optimality. For instance, the point of inexion for cubic functions would satisfy condition (i) while there is no minimum. Hence the Hessian is not positivedenite but merely positive semi-denite.

The sucient condition for ψ to be a minimum of j is that (i) ψ is a stationary point, i.e. ∇j( ψ) = 0

(ii) the Hessian ∇ 2 j( ψ) = ∂ 2 j(ψ)
∂ψ i ∂ψ j is a positive denite matrix, i.e.

∀y ∈ R n , y = 0, ∇ 2 j( ψ)y, y > 0.

Stopping criteria

Since the convergence of the iterative algorithms is, in general, not achieved in a nite number of iterations, a stopping criterion must be applied. Some commonly used criteria are given next. We denote ψ k the vector parameter ψ at the optimization iteration k.

∇j(ψ k ) ∞ ≤ ε 1 (3.3.6) ∇j(ψ k ) 2 ≤ ε 2 (3.3.7) j(ψ k ) -j(ψ k-1 ) ≤ ε 3 (3.3.8) ψ k -ψ k-1 ≤ ε 4 (3.3.9) j(ψ k ) ≥ ε 5 (3.3.10)
Sometimes it is asked that the constraints be satised over several successive iterations.

The four rst presented criteria are convergence criteria applied on the cost function gradient, on the cost function value itself, or on the parameters: the rst two criteria are the || • || ∞ and || • || 2 norms of the cost function gradient at iteration k; the third criterion is related to the stabilization of the cost function from the actual iteration with respect to the previous one, and the fourth is linked to the stabilization of the parameters. These criteria are commonly used when dealing with optimization problems. The last criterion refers to the fact that when the cost function reaches a value that depends on the variance of the measurement error, the optimization algorithm should stop [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF]. By lowering the cost function below a given criterion, which has to be based on measurement error, only aects the result in highlighting its intrinsic noise.

Optimization algorithms

Zero-order methods, also called derivative-free optimization (DFO) are based on a global vision of the cost function value j. The main interest of using such methods is when the cost function gradient is not available, or when the cost gradient is not easy to compute, or when the cost function presents local minima. There is an increasing number of computation tools to solve optimization problems with no gradient [116] such as the simplex method, which is a deterministic algorithm, and the particle swarm optimization method (PSO), which is probabilistic.

There is a great number of one-dimensional optimization methods one could nd in the literature [START_REF] Minoux | Mathematical Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization[END_REF][START_REF] Gill | Practical Optimization[END_REF][START_REF] Press | Numerical Recipes 3rd Edition: The Art of Scientic Computing[END_REF][START_REF] Fletcher | Practical Methods of Optimization[END_REF]. Some of the most often used are the Newton-Raphson method, the secant method, the quadratic interpolation and the dichotomy method. Other methods may be more or less complicated and some of them may be much more optimal than the above-mentioned methods.

In practice, both the Fibonacci method and the golden section search method are very widely used. The cubic interpolation method is also very widely.

There is a wide variety of multi-dimensional gradient-type optimization algorithms. Since in all cases, the stationarity of j is a necessary optimality condition, almost all unconstrained optimization methods consist in searching -the gradient with predened steps method, -the steepest descent method, -the conjugate gradient method for quadratic functions, -the conjugate gradient method for arbitrary functions.

If the cost function j(ψ) is twice continuously dierentiable and the second derivatives exist one can use Newton's method which is a second-order method. The idea is to approach the cost function gradient by its quadratic approximation through a Taylor expansion:

∇j(ψ k+1 ) = ∇j(ψ k ) + ∇ 2 j(ψ k ) δψ k + O(δψ k ) 2 (3.3.11)
and equating the obtained approximated gradient to zero to get the new parameter ψ k+1 = δψ k + ψ k :

ψ k+1 = ψ k -∇ 2 j(ψ k ) -1 ∇j(ψ k ) .
(3.3.12)

By using second-order optimization algorithms, the direction of descent, as well as the step size, are obtained from the last equation in one iteration.

Another interesting point is the fact that the algorithm converges to ψ k in a single step when applied to strictly quadratic functions. One limitation of Newton's method is when the Hessian ∇ 2 j(ψ k ) is not positive denite, and also the Hessian is usually very dicult to compute and highly time-consuming.

To overcome these diculties, one should, in practice, prefer using one of the numerous quasi-Newton methods. The quasi-Newton methods consist of generalizing Newton's recurrence formulation, Eq. (3.3.12).

Since the limitation of the Newton's method is the restriction of the Hessian to be positive denite, the natural extension consists indeed in replacing the inverse Hessian by an approximation to a positive denite matrix H k which has to be updated at each step k. There is much exibility in the computation of the matrix H k but usually the imposed condition is:

H ∇j(ψ k ) -∇j(ψ k-1 ) = ψ k -ψ k-1 (3.3.13)
so that the approximation given by Eq. (3.3.12) is valid at previous step k -1.

Many variations of this method can be found in the literature where corrections, of rank 1 or 2, of the type:

H k+1 = H k + Λ k (3.3.14)
are imposed. For the rank 1 correction, the main point is to choose a symmetric matrix H 0 and perform the corrections so that they preserve the symmetry of the matrices H p . Rank 2 corrections as in the algorithms Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are done in a more sophisticated way where a displacement factor is introduced in the modication of the inverse Hessian [START_REF] Davidon | Variable metric method for minimization[END_REF]. If the number of the parameters is not very high and the cost function is explicitly given in terms of data, that is of the form:

j(ψ) := J (u) = S (u -u d ) 2 ds
the Gauss-Newton method or some derivatives may be interesting to deal with.
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The Gauss-Newton method uses the gradient of the cost function; to dene it we have to dene rst the derivative u (ψ; δψ) of the state at the point ψ in the direction δψ as:

u (ψ; δψ) := lim ε→0 u(ψ + εδψ) -u(ψ) ε . (3.3.15)
The directional derivative of the cost function can be written now as: j (ψ; δψ) = (J (u), u (ψ; δψ))

(3.3.16)
where j (ψ; δψ) = (∇j(ψ), δψ). Equivalently, the second derivative of j(ψ) at the point ψ in the directions δψ and δφ is given by: j (ψ; δψ, δφ) = (J (u), u (ψ; δψ, δφ)) + ((J (u), u (ψ; δψ)) , u (ψ; δφ)) .

(3.3.17)

By neglecting the second-order term, which is actually the Gauss-Newton approach, one has: j (ψ; δψ, δφ) ≈ ((J (u), u (ψ; δψ)) , u (ψ; δφ)) .

(3.3.18)

One has to choose the directions for the canonical base of ψ to form the cost function gradient vector and the approximated Hessian matrix. The socalled sensitivity matrix S can be used, which gathers the derivatives of u in all directions δψ i , i = 1, . . . , dim ψ and the product (u (ψ; δψ i ), u (ψ; δψ j )) is the product of the so-called sensitivity matrix with its transpose. Thus, the Newton relationship is approximated as:

S t Sδψ k = -∇j ψ k . (3.3.19)
The matrix system S t S is obviously symmetric and positive denite with 63 CHAPTER 3. DEFECT DETECTION AND CHARACTERISATION a dominant diagonal. However, this matrix system is often ill-conditioned and one way to decrease the ill-condition feature is to "damp" the system by using:

S t S + I δψ k = -∇j ψ k (3.3.20) or S t S + diag S t S δψ k = -∇j ψ k . (3.3.21)
The "damping" parameter may be adjusted at each iteration. Note that → 0 yields the Gauss-Newton algorithm while larger gives an approximation of the steepest descent gradient algorithm. The presented method is the socalled Levenberg-Marquardt (LM).

A brief presentation of the parameter estimation theory was conducted in this section. From the presented methods and because of its features, the Levenberg-Marquardt method will be used in our inversion schemes. Results of the method applied to the aw's parameter estimation will be shown in the next chapter.

Parameter estimation in TNDT

In this thesis we are seeking to characterize defects of delamination type. These kinds of defects can be fully characterized if one knows their shape, location and size in the three directions. As the shape, location and size in the x, yplane will be provided from the techniques used during the pre-processing phase, here the estimation of thickness and depth of the delamination will be aimed at.

The forward model we use here accounts for defects of delamination type as boundary conditions in a ctional interface inside a double-layer plate. Thus, we are limited to consider only aws that are located at the same depth. For
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the m detected aws, the number of the unknown parameters will be m + 1, ψ = (ψ 1 , ψ 2 , . . . , ψ m+1 ) T .

If the thickness of the plate's layers is known, the number of the unknown parameters is reduced to m.

Preparation of the given data. The rst step in any optimisation procedure is the preparation of the data. In this case, the input data are provided as a three-dimensional matrix T px,py,n+1 , containing n + 1 frames of p x × p y elements with the coecients of the n-degree polynomials as expressed in Eq. (3.1.5). For each pixel, a couple of (p x i , p y j ), we reconstruct the temperature signals in the logarithmic scale by evaluating the polynomials at the, previously chosen, time instances t i , i = 1, 2, . . . , n + 1. The data to be tted, denoted as u d , is now the vectorised temperature eld in the logarithmic scale.

The initialisation of the forward model. The second step is the conguration of the forward model using the a-priori information, that is, the shape, the location and the size in the x, y-plane. The initialisation of the parameter vector ψ is done by setting the thickness of every defect equal to zero and the depth at which they are located equal to half of the plate's thickness, ψ 0 = (0, . . . , 0, L/2) T , where L is the plate's thickness.

Stopping criteria. In all optimisation procedures, the choice of the stopping criteria is a crucial step. Here we will be measuring the stabilisation of the cost function and the stabilisation of the parameters themselves. This is achieved by using the aforementioned criteria Eqs. (3.3.8) and (3.3.9). Since we know that the initial data are corrupted due to some noise, we use that knowledge to apply one more criterion. This is given by Eq. (3.3.10), where a low-bound has been imposed to the cost function. A constraint on the iteration number CHAPTER 3. DEFECT DETECTION AND CHARACTERISATION has been imposed, too.

Summary

In this chapter, the general theory of the strategy and the methods used for the characterization of the aws was presented. The process of the characterization of delamination-type defects in planar media has been separated in two steps.

The rst step refers to the denoising of the raw signals and the detection of any possible defects, and the second one refers to the characterization of the detected defects. The rst step is accomplished by using the TSR technique and the Canny algorithm which were presented. For the characterization of the defects, iterative optimization methods that will be used have been presented in detail.

Chapter 4

Modelling results and fast imaging

In this chapter, results from a model-based strategy for detection and characterisation of delamination in planar stratied media will be shown. As stated before, this approach requires a forward model which will provide the temperature eld for the given conguration and an inversion scheme for the detection and the characterisation of the delamination. The numerical implementation of the derived semi-analytical model and its computational performance will be discussed in detail. The TREE model will be numerically evaluated concerning two dierent numerical methods, FIT and FEM, in its two-and three-dimensional conguration. Numerical results from interesting industrial congurations will be shown here. Results from the detection and the characterisation of single or multiple defects will be shown.

All simulations have been performed on a workstation equipped with an

Intel Xeon E3-1241 v3 @ 3.5 GHz processor and 16 GB RAM. Finally, the computational times given refer to the computation of the temperature eld in the mentioned region and for the given time window.

Problem denitions

Planar layered geometries can be found in many structures in dierent industries. The most common are structures that consists of a stack of dierent laminates glued together. The integrity of these structures has to be assessed during the manufacturing process and service life. One of the most common defects that can cause their failure is a delamination which can occur between their layers.

The need for reliable and eective repair of damaged structures is growing in dierent industries and especially in aeronautics. In order to have reliable repair, it is necessary to assess bonding and patch quality. Both delaminations in patch and disbond between patch and structure eect the integrity of the repair as the service life of the structure [START_REF] Avdelidis | A thermographic comparison study for the assessment of composite patches[END_REF]. This is another application where a planar layer geometry can appear.

When such defects are detected, it is necessary to perform a defect assessment to identify their positions inside the structure and their dimensions. As said already, our work is focused on the characterisation of this kind of defects.

The characterisation of defects by using pulsed thermography (active thermography) often requires a priori knowledge of the defect-free zone in the eld of the inspection. The absence of this knowledge can be compensated with the knowledge of the geometry of the structure and its thermal properties. Assuming that this knowledge has been achieved, the development of a model which describes the problem is a natural step. The developed TREE model will be used to generate accurate reference data for characterisation of the defects. The data will then be used in a minimization procedure for parameter estimation.

MODELLING IN TNDT

Modelling in TNDT

In this section, the capabilities of the developed model will be stressed. A double-layer plate with embedded thin delamination between the two layers of the plate is considered, Fig. 

T

T

T (4) 0 We will be investigating here two dierent congurations. Their dierences lay in the aws between the layers and the spatial support of the source.

-d 1 -(d 1 + d 2 )
In the rst case, Fig. The physical parameters of the materials used in these simulations are given in Table 4.2.1. 

MODELLING IN TNDT 4.2.1 Numerical validation of the TREE model

In order to proceed with a quantitative comparison of the results obtained with the TREE method, the same problem has been solved using a commercial numerical modelling software, the heat transfer module of COMSOL Multiphysics ® [124]. The numerical solver of COMSOL Multiphysics ® is based on the nite element method using a time-stepping technique.

The energy conservation equation treated with the COMSOL Multiphysics ® solver reads as

ρC p ∂T ∂t + ∇ • q = Q (4.2.1)
where q = -k∇T . The source is described as a surface condition at z = 0 as

-n • q = Q b (4.2.2) where Q b (t) = Q 0 δ(t -τ ), [W/m 2 ].
The defect is described as a thin layer of resistance R s = d s /k s , where d s is its thickness and k s its thermal conductivity, modelled as a surface condition

-n d • q d = - T u -T d R s (4.2.3) -n u • q u = - T d -T u R s (4.2.4)
where the subscript u stands for the upper layer and the subscript d stands for the lower layer. The boundary conditions in the x and y directions have been taken the same as in the TREE model. Since the FEM method requires the denition of a closed box as solution domain, Dirichlet boundary conditions have been imposed also in the z-direction, at a sucient distance from the domain of interest in order not to perturb the solution.

Thermograms simulated with TREE and FEM have been compared in Figs. 4 
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Paying some attention to this comparison in Fig. 4.2.7 we plot the simulated thermograms for the front surface in a loglog plot. In these plots, the discrepancy between the two methods is clear in early time when it is well known that numerical methods usually fail if no adaptive discretization of the time space has been carried out. 

Computational performance of the implementation and acceleration

In this subsection, we comment on the implementation of the developed model and focus on its acceleration. This acceleration is based on the simple idea of taking advantage of the Laplace solution to the problem which gives the option to compute the solution only at specic times, i.e., reduce the time sampling, since no time-stepping is performed. The starting point will be the derived equations from Chapter 2.

The temperature in the media is given in an explicit form in the Laplace transformed time domain by a set of equations, Eq. (4.2.5), whose coecients, C (i) and D (i) , have to be computed.

T (1) (x, y, z; s)

= M m=1 N n=1
C (1) mn e -µ (1) mn z sin(κ m x) sin(λ n y) (4.2.5a)

T (2) (x, y, z; s) = M m=1 N n=1
C (2) mn e -µ (2) mn (z+d 1 ) + D (2) mn e µ (2) mn z sin(κ m x) sin(λ n y) (4.2.5b) 3) mn e -µ (3) mn (z+d 1 +d 2 ) + D (3) mn e µ (3) mn (z+d 1 ) sin(κ m x) sin(λ n y) 4) mn e µ (4) mn (z+d 1 +d 2 ) sin(κ m x) sin(λ n y)

T (3) (x, y, z; s) = M m=1 N n=1 C ( 
(4.2.5c) T (4) (x, y, z; s) = M m=1 N n=1 D ( 
(4.2.5d)
The computation of these coecients is performed by solving a linear system of equations which in matrix form can be written as

[A][X] = [B] (4.2.6)
where X contains the unknown coecients which will be used to compute the temperature eld in the Laplace domain. The matrix A has to be numerically inverted for each given Laplace variable, s, which is linked to the time instances, t i , when the solution is required. This procedure makes the implementation time consuming because of the use of the Stehfest algorithm [START_REF] Stehfest | Algorithm 368: Numerical inversion of Laplace transforms [D5[END_REF][START_REF] Stehfest | Remark on algorithm 368: Numerical inversion of Laplace transforms[END_REF]. This algorithm for each t i requires ten Laplace variables. Thus, the system has to be solved ten times for each t i .

Since the geometry is planar, the simulated logarithmic thermograms at the surface at early times in a sound region of the plate are linear and in regions, with existing aws, these thermograms can be approximated with low degree polynomials. We choose to reduce the time sampling by carefully choosing the time instances when the solution to the problem is computed. To do that, a This sampling is used for the solution of the three-dimensional problem and it can be safely interpolated in the logarithmic time-space in a denser time sampling if needed. After an extensive study of this approximation, under dierent congurations, we saw that the added relative error to the solution was lower than 0.4%, which is considered as a valid approximation.

The random access memory (RAM) requirement of the method is decreased signicantly, but, even more impressive, is the reduction of the CPU time by a factor larger than 20. 
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Application in eddy current thermography

An application in induction thermography has been presented in this early work [START_REF] Ratsakou | Fast models dedicated to simulation of eddy current thermography[END_REF]. The modelled congurations consist of a homogeneous metallic plate with a circular coil above it, as illustrated in Fig. 4.2.9. The model assumes axial symmetry along the z-axis. Aluminium alloy and steel has been used as materials for the plate. Two dierent congurations of the metallic plate has been considered also, with the rst one modelling a homogenous plate with no defect in it and the second one a circular hole has been modelled at the bottom of the metallic plate.

The problem combines electromagnetic induction and thermography where the coil induces eddy current into the plate causing heating to it because of the Joule eect. This is a multi-physical problem and a two-dimensional, inhouse, solver based on the nite integration technique has been used to solve it [START_REF] Marklein | The Finite Integration Technique as a general tool to compute acoustic, electromagnetic, elastodynamic and coupled wave elds[END_REF][START_REF] Weiland | A discretization model for the solution of Maxwell's equations for six-component elds[END_REF].

The same numerical tool has been used to solve both physical problems, namely the electromagnetic induction by the coil in the plate and the heat diusion in the plate after excitation. Due to the large dierence in time scale between the electromagnetic problem and the thermal one, a weak coupling of the two problems is possible. Thus, modelling the generation of eddy current requires an electromagnetic solution in the workpiece, which results in a Joule heat distribution. The latter is used as a volumetric heating source in order to obtain the temperature distribution in the workpiece as a function of time.

The use of such a numerical solver is important to easily investigate some aspects like the eect of piece inhomogeneity or anisotropy, however, it can lead to heavy calculations and complicated meshing considerations when addressing three-dimensional congurations. For this reason, this tool was used only in its two-dimensional implementation here mostly to study the weak coupling of the two physical problems.

The theoretical formulation of the problem and numerical results of this work can be found on their full extension in Appendix F.

Flaw characterization

In this section, the proposed multi-step aw characterization technique will be As an excitation term, a ash lamp, set above the plate and parallel to its surface, depositing a heating power density of Q = 10 4 W/m 2 at the surface of the plate has been modelled as a Dirac's delta function in time, whereas its spatial distribution is considered to be uniform and covers all the domain of interest, as already done before.

Shape reconstruction

The described conguration will be used in this part with the addition that the aws are located in the middle of the plate along the zaxis. The choice of the most suitable frame for shape reconstruction is very crucial at this point. The best frame for the shape reconstruction algorithm should correspond to a time instant which maximises the contrast of the image. The contrast for defects of dierent thicknesses, located at dierent depths reach their maximum contrast at dierent times [START_REF] Balageas | The thermographic signal reconstruction method: A powerful tool for the enhancement of transient thermographic images[END_REF]. To compute the contrast, one needs information about where the aws are located and a reference sound area. Since no reference data will be used, so the computation of the contrast the second derivative reaches its local maxima. In order to have an early aw identication, and avoid the image blurring at later times, we will take into account the times where the second time derivative changes sign. For each frame, the frequency of the sign changes of the second time derivative will be computed and the frame with the maximum frequency will be chosen as shown in Fig. 4.3.3, where the maximum frequency has been marked with a red asterisk. If the candidate frame it is not only one, the frame that corresponds to the earlier time will be chosen. This results in a sharper image but in a multilayer conguration could results in loss of information about deeply buried defects.

In such a case multiple images could be used. The later is useful in understanding the relative depth of the aws and their relative thickness since aws with signicantly dierent thickness or located at dierent depth appear with dierent colours. A similar RGB image can be constructed from the monomials but that representation is quite noisy when a high degree polynomial is used. The degree of the polynomials used here, p = 7, is considered to be high compared with the short time period of the recorded signals and the noise level. For a longer time period or lower noise level, an RGB image reconstructed using the monomials could be as useful as the image in Fig. At this point, the image I * will be provided to the Canny algorithm for the detection and the reconstruction of defects' shape. The rst step of the algorithm consists of a Gaussian smoothing of which the image will be a subject. Due to noise in the original image, M contains pixels depicting false edges and to mitigate these spurious edges, hysteresis tracking is performed using dual thresholding. The choice of the threshold parameters is very crucial for the success of the method, so we use the Otsu [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] method to compute these parameters. The method will provide the high threshold parameter τ h and the low threshold parameter τ l will be set by us, τ l = τ h /2. Pixels that correspond to values higher than the high threshold are considered strong edges and have been preserved, pixels that falls under the low threshold are omitted. Pixels that falls between the two threshold parameters are considered as weak edges and will be kept only if they are connected with a strong edge. The last step of the algorithm is the connection of already detected edges in the binary image under some restrictions upon the gradient and the gradient angle.

The stages of the edge detection are shown in Fig. 4.3.9, where dierent colours refer to dierent stages of the detection. The strong edges that are detected after the non-maximum suppression are in blue. In yellow and red, are the parts of the edge that was omitted or added after the hysteresis tracking, respectively. The green part of the edges is the last added part during the connectivity analysis.

The nal binary image which gives the edges of the aws is depicted The presented multi-step procedure was fully automated exempting the fact that the smoothing parameter σ needed to be given. By giving a dierent value to that parameter the results will be eected but in our case not dramatically as can be seen in Fig. For completeness of the text, the one-dimensional Gaussian kernels are depicted in Fig. 4.3.12 where the eect of the parameters is shown.

Challenging applications of this edge detection algorithm can be found

in Appendix E where complex-shaped defects have been simulated and their shape has been reconstructed using the same automated multistep procedure. 
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Parameters estimation

Considering the conguration depicted in Fig. 4.3.1, the three embedded aws inside the plate can be characterised exactly by their relative location inside the plate, their physical dimensions and their thermophysical properties. Their relative location in the (x, y)plane inside the plate and their dimensions in the same plane are provided by the previous step of this procedure where the defects were well localised and their shape was approximated with great accuracy. These parameters will be used to regularize the inverse problem where the characterization of the defects is aimed at.

Since the geometry consists a double layer plate, any possible aws will be 
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present at the same depth, i.e., the aws will be located at same relative location inside the plate in the zdirection. Assuming that the aws are air-lled delaminations, their material is known, thus, the parameters to be estimated are the common depth at which the aws are located and their thicknesses, Z

and d A , d B , d C respectively.
The capability of the inversion scheme to estimate the defects' depth and thickness is challenged in the subsection. First, the robustness of the scheme versus additive noise is tested where dierent noise levels are taken into account. For each case with a dierent SNR, the noise has been generated 25 dierent times and the mean relative error for the given SNR is shown only. By using the current conguration as a reference, the performance of the inversion scheme is to be tested in challenging situations. Such situations arise when the defects are located very close to the top or bottom surface of the plate. In the reference case, the defects were located at the middle of the plate, i.e. their distance from the top and bottom surface was 1.5 mm. For the CHAPTER 4. MODELLING RESULTS AND FAST IMAGING These results agree with the physics of the problem.

An interesting conguration where the advantages of using a three-dimensional forward model could be fully exploited is that of thee defects located close to each other. This case studies the sensibility of the estimation quality on the interaction of the defects. Keeping as reference the conguration depicted in Chapter 5

Conclusions and perspectives

Recapitulation of main results

The aim of this thesis was the development of a fast three-dimensional forward model to simulate the thermographic non-destructive testing of planar pieces with embedded defects and a robust model-based inversion strategy for the detection and characterization of the defects.

A model based on the so-called truncated region eigenfunction expansion method has been presented where the thermal problem is solved in the Laplace domain with respect to time and its solution, the temperature distribution, is given as a tensor product. Congurations consisting of multi-layer planar workpieces with delamination-like defects were addressed. Thin delamination-like defects were introduced into the model as interface conditions allowing their treatment via the applied modal approach without additional discretisation needed. Flash lamp, which is used in a wide range of applications, were modelled to provide the thermal excitation term to the media. The model has been evaluated numerically with commercial simulation software and a great agreement between the results was observed.

The second goal of this thesis was the development of an inversion strategy for the detection and characterization of the defects. Signal and image processing techniques and optimization methods available in the literature has been used to meet this goal. The thermal reconstruction technique was used to denoise the signals and compress the recorded data. The Canny edge-detection algorithm was presented in detail and used to approximate the shape of the sub-surface defects. The approximated shape of the defects projected in the

x, y-plane was used as a priori information to regularize a least-square scheme used to estimate their depth and thickness. Results shown indicate that the proposed procedure for the detection and characterization of the defects is shown to be fast and accurate.

Perspectives

The presented model can be enhanced in order to improve its performance and deal with even more complex applications. The inversion strategy could feature more sophisticated inversion schemes.

Indeed, the numerical implementation of the model can be enhanced using a low-level programming language and parallelize parts of it in order to decrease further its computational time and memory requirements. The model itself could be expanded in order to include dierent thermal sources, such as an induction coil [START_REF] Ratsakou | Fast models dedicated to simulation of eddy current thermography[END_REF] in order to simulate a broader range of thermal inspection applications. Taking into account material anisotropy seems to be the natural next extension of the model. For the simulation of more general defect geometries, as for example corrosion, cracking, etc., one must resort to the more general strategy involving an integral equation formalism like in [START_REF] Miorelli | Ecient modeling of ECT signals for realistic cracks in layered halfspace[END_REF][START_REF] Pipis | ECT-signal calculation of cracks near fastener holes using an integral equation formalism with dedicated Green's kernel[END_REF].

The estimation of the transverse location and shape of the aws could be integrated into the inversion scheme for adaptive estimation of parameters oering a faster convergence and a better estimation. Clustering algorithms can be applied in chosen images for the detection of pixels that corresponds to awed areas. Meta-modelling approaches in combination with sophisticated 98 5.2. PERSPECTIVES interpolators can be used to build a database which will allow nearly real-time evaluations in the parameter optimization process.

Appendix A Fundamental properties of the Laplace transformation.

Theorem 1.

L {v 1 + v 2 } = L {v 1 } + L {v 2 } Theorem 2. L ∂v ∂t = pL {v} -v 0 , (A.0.1)
where v 0 is the value of lim t→+0 v. In general v 0 will be a function of the space variables x, y, z.

The result (A.0.1) follows immediately on integration by parts, since

∞ 0 e -pt ∂v ∂t dt = e -pt v ∞ 0 + p ∞ 0 e -pt v dt = -v 0 + pv Theorem 3. L ∂ n v ∂x n = ∂ n v ∂x n , (A.0.2)
with similar results for the other space variables.

This is equivalent to yellow and red, are the parts of the edge that was omitted or added after the hysteresis tracking, respectively. The green part of the edges is the last added part during the connectivity analysis. To help the reader, the parameters used for the edge detection are written in the caption of the images where p is the polynomial degree and σ refers to the Gaussian smoothing. Comparing the resulting binary image with the previous case, less false edges are included.

∞ 0 e -pt ∂ n v ∂x n dt = ∂ n ∂x n ∞ 0 e -pt v dt,
To move a step further, a dierent derivative kernel is used and results are APPENDIX E. EDGE DETECTION IN CHALLENGING GEOMETRIES.

shown in the following gures. The edge detection is not improved signicantly except in few parts of the defect contour.

In this case, the used kernel is the one proposed in [START_REF] Kroon | Numerical Optimization of Kernel Based Image Derivatives[END_REF] which is a Gaussian derivative with optimized sigma σ = 0.6769

K x =           
0.0007 0.0037 0 -0.0037 -0.0007 0.0052 0.1187 0 -0.1187 -0.0052 0.0370 0.2589 0 -0.2589 -0.0370 0.0052 0.1187 0 -0.1187 -0.0052 0.0007 0.0037 0 -0.0037 -0.0007

           , K y = K T x . (E.2.1)
and the author shows that this kernel gives a minimal angle error in cases with complex shapes. 128 E.2. THE "SPIDER" 

Introduction

The use of thermography [1] for nondestructive testing applications had received growing attention in the last years. This is mainly due to the fact that infrared (IR) cameras have recently improved significantly in both sensitivity and spatial resolution and that this technique is particularly adapted to many applications [2] such as composites' inspection. Unlike other direct imaging techniques, it is a fast, high resolution and contactless method. Thermal testing is generally divided into two main streams: passive and active. Passive thermography is defined as measuring the temperature difference between the target material and its surroundings under different ambient temperature conditions. Active thermography uses a thermal source in order to deposit heat in the target material. Most common sources consist in lamps or lasers [3] that heat part of the piece surface. These techniques of depositing heat on the materials have potential disadvantages, e.g. the reflected heat from the material can interfere with the measured signals, causing signal-to-noise-ratio (SNR) problems. For instance, many conductive materials when used in industry are coated or painted. The heating of the workpiece may also be obtained via the application of sonic or ultrasonic energy using a welding horn, i.e. vibrothermography, thermosonics or sonic infrared [4]. In this case, however, contact between the workpiece and the ultrasonic welding horn it is required, which can complicate its practical use and cause a loss of energy transmission.

Eddy current thermography (ECT), also named as induction thermography, is an alternative to inspect metallic structures that does not suffer from the above-mentioned disadvantages. This is an emerging technology in nondestructive testing (NdT) that combines eddy current and thermography. ECT is based on electromagnetic induction and Joule effect heating. The technique uses induced eddy current to heat the sample and defect detection is based on the changes of the induced eddy current flow revealed by the thermal visualization captured by an IR camera. Induction thermography can be used to detect cracks [5], disbond, impact damage, delamination and corrosion.

This work presents a modelling approach using a two-dimensional numerical solver based on the Finite Integration Technique (FIT) [6,7]. A typical configuration, consisting of a coil located above a plate, is sketched in Figure 1. This configuration will be used in our simulations and an axial symmetry is assumed. The same numerical tool is used to solve both physical problems, namely the electromagnetic induction by the coil in the plate and the heat diffusion in the plate after excitation. Due to the large difference in time scale between the electromagnetic problem and the thermal one, a weak coupling of the two problems is possible. In other words, the electromagnetic problem is first solved to calculate the time-dependent eddy current density induced in the plate, then it is converted into a heat source term by considering Joule effect. Finally, the diffusion of heat in the plate is computed with respect to time. This first development will serve as reference for further works, consisting in solving both problems with fast modal methods [8].

Theoretical formulation

ECT involves multi-physical interactions with electromagnetic-thermal phenomena including eddy current, Joule heating and heat conduction. Simulation of induction heating requires the ability to model multiple physical fields. Thus, modeling the generation of eddy current requires an electromagnetic solution in the workpiece, which results in a Joule heat distribution. The latter is used as a volumetric heating source in order to obtain the temperature distribution in the workpiece.

The coupling between the electromagnetic problem and the thermal one can often be further complicated by the fact that the electromagnetic properties of the workpiece are depending on the temperature of the workpiece, which will lead to a strongly-coupled problem. This coupling of the two problems requires the electromagnetic solution to be computed based on a time/temperature updated set of materials properties. This leads to a time consuming numerical computation that can be avoided under some assumptions.

The induction heating process involves multiple time and length scales. Generally, the time scale associated with the heat transfer is much larger than the time scale associated with the electromagnetics. The time scale associated with the electromagnetic solution depends on the frequency f of the alternative current in the coil, while the time scale associated with the transient heat transfer in the workpiece is determined by its thermal properties. The length scale, for the electromagnetic problem, also depends on the frequency, as well on the magnetic permeability μ and electrical conductivity σ . The so-called skin depth, defined in the particular case of a half-space medium by the relation δ = (πμσ f ) -1/2 , illustrates the penetration of the electromagnetic field in the piece. As a consequence, the associated Joule effect is also generated in a depth range of two or three times the skin depth δ . From the numerical point of view, this implies that this particular region must be finely discretized.

The electromagnetic problem

In a typical configuration, a pulse generator emits a signal to an infrared camera and to a induction heater, which generates an excitation signal. This excitation signal is usually a sinusoidal of alternating current with high amplitude. The current is then driven into an inductive coil, which induces eddy current in the neighbouring workpiece. This phenomenon is described by the Maxwell's equations, which for the quasi-static approximation are

∇ × E = - ∂ B ∂t , (1) 
∇ × H = J, (2) 
∇ • B = 0, ( 3 
)
where E is the electric field intensity, H is the magnetic field intensity, B is the magnetic flux density, and J is the current density. Excitation frequencies are typically lower than 10 MHz, consequently the displacement current term (∂ D/∂t) in ( 2) can be neglected. The above equations are combined with the following constitutive relations characterizing a linear, homogeneous and isotropic material

J = σ E, B = μ H. (4) 
For solving the above differential equations and since B is divergence free, it can be expressed as B = ∇ × A where A is the magnetic vector potential. Substituting B into (1) and using (2) as well as the constitutive relations (4), the diffusion equation for the magnetic vector potential can be derived as:

∇ × μ -1 ∇ × A + σ ∂ A ∂t = J s (5) 
where J s is the current density driving the inductor. The choice of a Coulomb gauge, ∇ • A = 0, is made here.

The FIT method provides a discrete reformulation of Maxwell's equations on its integral form. A typical simulation task is described by a known geometry and material configuration, as well as boundary and initial conditions. In the following a rectangular cubic cell complex consisting of a material grid complex M, a primary grid complex G and a dual grid complex G will be used.

The eddy current density in FIT is computed by the equation

CM -1 μ C a -M σ ˙ a = j (6) 
where C and C, contain only topological information and represent a discrete curloperator on the primary and the dual grid G and G, respectively, M -1 μ , M σ , are the material matrices, a is the magnetic vector potential and j is the current density.

Initial conditions of the model assume a thermal equilibrium of the sample and its surroundings. In the z-direction Neumann boundary conditions are imposed. On the artificial left side boundary, at ρ = 0 where the axis of the symmetry is, Neumann condition is imposed too. On the right side boundary, at ρ = ρ e Dirichlet boundary condition is imposed. We suppose that the workpiece is infinite in the ρ-direction so this artificial boundary does not affect the solution within the domain of interest.

The thermal problem

Due to resistive heating from the induced eddy current, the temperature of conductive materials increases, which is known as Joule heating. It can be expressed by the equation

Q = 1 σ |J s | 2 ,
where the sum of generated power density Q is proportional to the square of the eddy current density. The resistive heat will diffuse as a time transient until an equilibrium state is restored between the bulk and its surface, or better saying the workpiece and the environment. The thermal part of the problem can be divided into two phases, (i) the heating phase, during which the heat is being deposited in the workpiece and (ii) the cooling phase, when the workpiece has reached a maximum temperature, the deposit of heat has stopped, and only diffusion of the heat is occurring in the plate.

Starting with the energy conservation law in integral form

ˆV C p ∂ T ∂t dV = ˆV Q dV - ˛∂V J • ds (7)
and using the Fourier's law J = -κ∇T , the heat equation is derived as

-κ∇ 2 T + C p ∂ T ∂t = Q, ( 8 
)
where κ is the thermal conductivity, the density, C p the specific heat and T the temperature.

In the FIT, the solution of the thermal problem is given by the equation

SM κ Gθ -M c θ = -q, (9) 
which is a discrete formulation for the heat equation, where S is the div-operator on the dual grid, M κ , M c are material matrices, G is the discrete gradient matrix, θ the temperature and q the source term. Pairing this equation with the boundary conditions, the temperature of the workpiece and its surrounding is computed. The boundary conditions that are used here are the same as in the electromagnetic problem.

Simulation and results

For the simulations a circular coil is used with e = 1 mm of lift-off and inner radius R i = 11 mm, outer radius R e = 84 mm, height h = 41 mm and number of wire-turns N = 408 as in [9]. For modeling the workpiece, two different materials are used: (i) Aluminum, (ii) Steel, their respective physical parameters being given in Table 1. We are investigating here two scenarios. In the first case, we compare the behaviours of two homogeneous plates of thickness d = 10 mm, made of aluminum and steel, respectively. In the second case, we introduce a defect, which can be assumed to be a corrosion, at the bottom surface of a thin plate (d = 1 mm) of aluminum. The defect is modelled as a local change of physical properties (same as the surrounding environment). The excitation signal is considered to be a sinusoid of frequency f . Setting the frequency of the excitation signal at f = 200 Hz and the duration of the signal at 50 ms we probe the two different plates with 10 periods of the signal. In Figure 2, the images of the simulation for three crucial times are given. In the first two rows, for which no diffusion has been occurring, the skin depth effect is highlighted, i.e. the difference of the electromagnetic properties of the materials.

As one can expect, through the Joule effect, the penetration depth of the eddy currents in the aluminum plate is much larger than in the workpiece of steel. The difference between both rows of images is a result of the difference of the thermal properties of the materials. A corrosion has been now introduced in a thick aluminum plate. The frequency of the probed signal has been kept the same, at 200 Hz, which gives a penetration depth of 6 mm, much larger than the thickness of the plate. The defect has been modeled as a circular discontinuity in the plane (ρ, θ ) of radius r = 3 cm or 5 cm and a thickness of 0.5 mm in the z-direction. The results of the simulation of this setup are given in Figure 3.

Since only the infrared radiation emitted by the surface of the workpiece as a function of time can be captured by a thermal camera, in Figure 4 and Figure 5 the surface temperatures are plotted. In Figure 4, the temperature of the the workpiece on the sur- face, when the radius of the corrosion is 5 cm, is plotted compared with the case of the undamaged plate. In Figure 5 the results with a corrosion of radius of 3 cm are given. Since the position of the thermal camera is not fixed, i.e. we can have thermal images on both sides of the plate, the difference of temperature is shown in both surfaces.

On both cases, the information about the defect is clear for early times where we are able to distinguish its edges, i.e. the size of the defect in the ρ-direction is well defined. When diffusion occurs, the temperature curves of the damaged and undamaged plate are close. In the case of the smaller defect, still we can see that there is a defect in the workpiece but it is impossible to locate its edges. On the other hand, when the defect's radius is 5 cm, even after 5 seconds the localization of the edges of the defect can be easily achieved through those curves. In general, in ECT we are interested on early times when the difference of the electromagnetic and thermal properties of the workpiece can highlight any presence of a damage on it and this is well shown by the previous results.

Conclusions and perspectives

To conclude, a 2D numerical solver based on the finite integration technique has been implemented and used to simulate the behaviour of different materials under inspection by means of eddy current thermography. Both electromagnetic and thermal problems are coupled in a weak way, taking advantage of the large difference between their characteristic time constants. Possible generalizations of this solver are the development of a 3D version or the investigation of strong coupling in the calculation process.

The use of such a numerical solver is important to investigate easily some aspects like effect of piece inhomogeneity or anisotropy, however it can lead to heavy calculations and complicated meshing considerations when addressing 3D configurations. For this reason, this tool will later be used in complement of fast modal methods to adress 3D cases involving canonical geometries like a stratified planar medium.

INTRODUCTION

Thermal/infrared non-destructive testing (T/INDT) techniques [1] have received growing attention in recent years thanks to their advantages, that is, fast, high resolution and contact-less, control, and benefiting form the technological progress in the infrared cameras and data acquisition equipment. The detection of irregularities is based on the principle that all bodies emit infrared radiation when their temperature is above 0 K. The emitted infrared radiation can be measured by infrared cameras, and the images are then analysed for the detection and characterization of flaws. Subsurface irregularities will affect the heat diffusion rate leading to a thermal contrast on the surface of the homogeneous work-piece. By analysing alterations or the contrast in the thermal pattern of the material surface, one can obtain information about subsurface flaws.

Simulation of TNDT procedures involves at a first step the solution of the heat conduction problem in the considered work-piece, with and without defects, in order to obtain the temperature distribution at the piece interfaces, which constitutes the measurement. The full solution to this problem can be obtained using a numerical technique like the finite elements method (FEM) or the finite integration technique (FIT). Nevertheless, in practical situations it is often meaningful to renounce the detailed information of the complete numerical solution in favour of fast analytical or semi-analytical approximations, which hold the essence of the thermal flow behaviour. A very popular, well-established approach is the so-called thermal quadrupoles method, where the original tree dimensional problem is approximated as a multilayer one dimensional problem (by ignoring the heat flow in the lateral layers directions) and modelled as a cascade of "quadrupoles" in analogy with the electrical network theory [2].

Should the lateral propagation be taken into account, the quadrupole approach can be extending by taking the Fourier transform of the solution along these directions and forming an one dimensional problem per spatial frequency. Mathematically speaking, this is equivalent with stating that the Fourier basis diagonalises the part of the operator standing for the lateral propagation, thus allowing us to treat the problem as a set of independent one dimensional problems. This approach is, however, not valid in case where defects are present since the Fourier basis is not an eigenbasis of the operator any more. In order to address this problem a more general approach should be followed.

Such an approach based on the artificial truncation of the computational domain, referred to in the literature as the truncated region eigenfunction expansion (TREE), has been successfully applied in the electromagnetism for the solution of magnetostatic and low-frequency (eddy-current) problems [3,4,5,6]. Defects can be modelled directly as part of the geometry like in [4,5,6], or indirectly by first applying the TREE method to construct the Green's function accounting for the geometry of the flawless piece and treating the defect as a perturbation by solving the appropriate integral equation [7,8,9]. In a previous work [10], a dedicated two-dimensional numerical solver based on FIT [11,12] has been used for studying volumetric defects in planar multilayer media, consisting of steel and aluminium sheets. In this communication, the TREE method will be extended in order to treat arbitrarily shaped delamination defects in steel-aluminium multilayer specimens, like those of [10]. Delamination flaws are entirely confined between the structure layers and hence can be modelled as inter-layer resistance patches, making modal approaches like the TREE method applicable. The temporal part of the solution is treated as in the quadrupole method via the Laplace transform. The semianalytical solutions developed for a number of case studies will be compared with the numerical results obtained via the COMSOL Multiphysics R simulation platform [13].

THEORETICAL DESCRIPTION OF THE PROBLEM

Classical heat conduction solutions have been summarized by Carslaw and Jaeger [14] in late 50s and are widely used for calculating the temperature field inside homogeneous or isotropic materials. In our case, a general heat diffusion model of a multi-layered structure, with respect to the z-direction, is described by the following expressions:

1 a (i) ∂T (i) (x, y, z, t) ∂t = ∂ 2 T (i) (x, y, z, t) ∂x 2 + ∂ 2 T (i) (x, y, z, t) ∂y 2 + ∂ 2 T (i) (x, y, z, t) ∂z 2 , i = 1, . . . , M (1) 
T (i) t 0 = T in (2) 
T (i) z j = T (i+1) z j (3) 
-k (i) ∂T (i) ∂z z j = -k (i+1) ∂T (i+1) ∂z z j . (4) 
Here T (i) is the temperature in the i-th region, M is the number of layers, T in is the temperature of the work piece at the initial time t 0 , a (i) = k (i) / ρ (i) C (i) p is the thermal diffusivity in the i-th region, k (i) is the thermal conductivity, ρ (i) is the material density, C (i) p is the heat capacity and t is the time variable. The heat diffusion phenomenon is described by the Equation 1. Equation 3 and 4 describe the continuity of the temperature and the continuity of the thermal flux at the interface between layers i and i + 1, respectively. For simplicity, our model consists of two thin metallic plates, above and below them thick layers of air will complete the physical configuration. In Fig. 1, a two dimensional projection on the xz-plane of the a general set-up is depicted.

The work piece is thermally excited by a flash lamp set above the work piece. This excitation is modelled in terms of an additional thermal flux J e at the interface between the first and second layer of the model and perpendicular to that interface. The introduction of the source flux requires the modification of the flux continuity condition in Equation 4as follows:

T (1) z=0 = T (2) z=0 (5) 
-k (1) ∂T (1) 

∂z z=0 = -k (2) ∂T (2) ∂z z=0 + J e . (6) 
Let us introduce some flaws in the model. These flaws will be modelled as very thin air gaps between the two metallic plates, i.e. the second and the third layer. By modelling the flaws as very thin with respect to the z-coordinate, they can be represented by a thermal resistance R(x, y) between the two layers. The effect of the flaws can be taken into account by modifying the continuity relation at the interface of the two layers. By applying the Fourier's law between the fictitious surfaces of the flaw we have the new continuity condition between the second and third layer

T (1) z=-d 1 = T (2) z=-d 1 -R(x, y) ∂T (1) ∂z z=-d 1 (7) 120004-2 z x L T (1) 
T

T

T (4) 0

-d 1 -(d 1 + d 2 )
FIGURE 1. Two-dimensional illustration of a typical thermographic inspection consisting of a double-layered piece of two different materials illuminated by a flash lamp.

-k (1) ∂T (1) ∂z z=-

d 1 = -k (2) ∂T (2) ∂z z=-d 1 . (8) 

THE TREE FORMULATION

The boundary value problem described by Equations 1 -8 will be solved in the Laplace domain with respect to time. However, the solution of the problem with the TREE method requires the truncation of the solution domain.

That is done with respect to x-coordinate and y-coordinate. This is physically valid if these limits are set far away from the region of interest or just at a distance large enough so as the flaws of the work-piece do not interfere with the boundaries. To truncate the solution domain we have to impose boundary conditions at x = 0, x = L x and y = 0, y = L y . Dirichlet boundary conditions, see Equation 9 and 10, Neumann boundary conditions, see Equation 11 and 12, or even mixed boundary conditions can be used indifferently, an advantage of this method being the ability to handle a variety of boundary conditions.

T (i) x=0 = T (i) x=L x = 0 (9) 
T (i) y=0 = T (i) y=L y = 0 (10) 
or

∂T (i) ∂x x=0 = ∂T (i) ∂x x=L x = 0 (11) 
∂T (i) ∂y y=0 = ∂T (i) ∂y y=L y = 0. (12) 
In our case, we will apply Dirichlet boundary conditions in both directions. The formal solution for the temperature field in the Laplace domain reads

T (1) = M m=1 N n=1
C (1) mn e -η (1) mn z sin(κ m x) sin(λ n y) 2) mn e -η (2) mn (z+d 1 ) + D (2) mn e η (2) mn z sin(κ m x) sin(λ n y)

T (2) = M m=1 N n=1 C (13) 
120004-3 3) mn e -η (3) mn (z+d 1 +d 2 ) + D (3) mn e η (3) mn (z+d 1 ) sin(κ m x) sin(λ n y) 4) mn e η (4) mn (z+d 1 +d 2 ) sin(κ m x) sin(λ n y)

T (3) = M m=1 N n=1 C ( 
T (4) = M m=1 N n=1 D (15) 
the discrete eigenvalues κ m and λ n being determined by the truncation conditions in the x and y direction, respectively, as follows:

sin(κ m L x ) = 0, κ m = mπ L x , m ∈ Z * sin(λ n L y ) = 0, λ n = nπ L y , n ∈ Z *
M and N being the truncation limits and η (i) mn being calculated using the dispersion equation

-κ 2 m -λ 2 n + η 2 mn - s a (i) = 0 η (i) mn = κ 2 m + λ 2 n + s a (i) .
According to Equation 6, the excitation term is expressed by means of a given thermal flux J e (x, y) at the interface between the first and the second layer, at z = 0. Applying the Fourier's law, one obtains

J e (x, y) = -k (1) ∂T (e) ∂z (17) 
which using Equation 17and substituting the expression for the temperature field from Equation 14yields

J e (x, y) = -k (1) M m=1 N n=1
η (1) mn C (e) mn sin(κ m x) sin(λ n y)

If we assume that J e (x, y) has the form of a rectangular patch exceeding from x 1 to x 2 and from y 1 to y 2 with 0 < x 1 < x 2 < L x and 0 < y 1 < y 2 < L y the coefficients for the excitation term can be calculated explicitly according to

C (e) mn = - A k (1) η (1) mn y 2 y 1 x 2 x 1 sin(κ m x) sin(λ n y) dx dy ( 19 
)
where A is the constant intensity of the source. 
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FIGURE 2. Sketch of a 2-layer medium with delaminations
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At this point, we consider the same case of the double-layer medium but this time we assume that the contact between the two layers is imperfect in a sub-domain of their interface as depicted in Fig. 2. This kind of imperfect contact between the two layers can model a very thin delamination. In this case, the effect of the delamination can be taken into account by only modifying locally the continuity relation between the two layers. To be more specific, let us consider a very thin defect between two planar media as shown in Fig. 3, where D is the region of the delamination, ∆z is the size of this area in the z-direction, S a and S b are two fictitious surfaces parallel to the interface between the two layers at a distance ∆z/2 from it each. By applying the Fourier's law between the fictitious surfaces S a and S b one has 2) -T (3) ∆z which leads to

J z = -k d ∇T J z = -k d T ( 
T (2) -T (3) = -R(x, y)J z (20) 
where J z is the heat flux in the z-direction and R(x, y) represents the resistance between the two layers defined as

R(x, y) = ∆z k d , (x, y) ∈ D
inside the flaw domain D ∈ (0, L x ) × (0, L y ) and valued to zero elsewhere. Here, ∆z is the size of the delamination in the z-direction and k d is the thermal conductivity of the flaw, which is air in our case.

T

T We denote J z 2 and J z 3 as the heat flux for the second and third layer, respectively. Since J z 2 = J z 3 , by the continuity of the thermal flux at the interface, Equation 20becomes

T (2) -T (3) = - ∆z k d J z (21) 
where T (2) and T (3) will be replaced by their series expressions. The set of continuity relations is then written as a linear system of equations after the application of the Galerkin method. The result can be written in matrix form:

[A][X] = [B] (22) 
where X contains the unknown coefficients C mn and D mn . The matrix A has to be numerically inverted in order to calculate the unknown coefficients. This matrix is a block tridiagonal matrix. The right hand side of the system, B, is sparse as it differs from 0 only in the lines which correspond to interfaces where sources may be found, excitations or delaminations. By calculating the matrix X the solution of the problem can be numerically evaluated in the discretised space domain of interest using Equation 13-16. The results are the solution of the problem in the Laplace domain.

The temperatures can be calculated in the time domain, by numerical inversion of the obtained solution in the Laplace domain.

For the inverse Laplace transformation the Stehfest's algorithm is used [15,16], which is an improved variant of Gaver's method [17]. If F(s) is the known Laplace transform of the function f (t), evaluated at s = a j /t where 120004-5 a j = j ln(2), then an approximate value of this function at time t can be calculated as

f (t) ln(2) t N J=1 V j F j ln(2) t . (23) 
The coefficients V j are given by the following expression for an even value of N:

V j = (-1) j+N/2 Min(N/2, j) k=Int(( j+1)/2) k N/2(2k)! (N/2 -k)!k!(k -1)!( j -k)!(2k -j)! . (24) 
In this equation 'Int' designates the integer part of a real number and 'Min' the minimum of two numbers.

NUMERICAL RESULTS

The three-dimensional model has been tested for the two inspection scenarios depicted in Fig. 4, following the experimental configuration described in [18]. A flash lamp producing a heating power density of Q = 10 6 W/m 2 on the surface of the work-piece, is used for excitation. The flash has been modelled as a Dirac's delta function in time, whereas its spatial part is considered as uniform. The inspected material consists of two metallic plates of equal thickness, i.e. In Fig. 5 and 6 the temperature distribution at the front and the rear surface is shown for the single-flaw configuration at 0.0408 and 0.2143 s, respectively. Fig. 7 and8, show the same results for the second configuration. The two figures illustrated how the heat diffusion is affected by the presence of the flaw. In order to proceed to a quantitative comparison of the above presented solution the same problem has been solved using a commercial numerical modelling software, the heat transfer module of COMSOL Multiphysics R [13]. The numerical solver of COMSOL Multiphysics R is based on the finite elements method using a time stepping technique.

The heat equation treated with the COMSOL Multiphysics R solver reads

ρC p ∂T ∂t + ∇ • q = Q (25) 
where q = -k∇T . The source is described as surface condition at z = 0 as

-n • q = Q b ( 26 
)
120004-7 where Q b (t) = Q 0 δ(tτ), [W/m 2 ]. The defect is described as a thin layer of resistance R s = d s /k s , where d s is its thickness and k s its thermal conductivity, modelled as a surface condition

-n d • q d = - T u -T d R s (27) 
-n u • q u = -T d -T u R s [START_REF] Balaras | Infrared thermography for building diagnostics[END_REF] where the subscript u stands for the upper layer and the subscript d stands for the down layer. The boundary conditions in x and y directions have been taken the same as in the TREE model. Due to the fact that the FEM method requires the definition of a closed box as solution domain, Dirichlet boundary conditions have been imposed in the z direction, at a sufficient distance from the domain of interest in order not to perturb the solution. In Fig. 9, the TREE solution for the temperature time dependence at a distance of 0.5 mm from the centre of the front (on the left) and the rear (on the right) surface of the single-defect specimen is compared against the respective FEM results. Fig. 10 shows the same comparison for the second specimen. A very well agreement of both results is observed.
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CONCLUSIONS

The proposed semi-analytical model can treat a wide range of problems in the field of TNDT involving canonical geometries, like stratified planar media. The model has been validated using a commercial FEM software, and the results are in good agreement. Work is under way in order to include different thermal sources, such as an induction coil [10] in order to simulate a broad range of thermal inspection applications. In a further step, the herein presented semi-analytical model will be integrated in an inversion algorithm in order to provide estimations about the size and the thickness of the defect.

For the simulation of more general defect geometries, as for example pitting, stress corrosion cracking, etc., one must resort to the more general strategy involving an integral equation formalism like in [8,9]. The development of a such solver lies in the broader perspectives of the current work.

Introduction

Non-destructive evaluation (NDE) techniques can be evaluated in terms of their capability to answer to two main questions: (i ) detection and (ii ) identification or characterisation of defects. The first question requires a qualitative answer of a binary nature. The second one refers to quantitative parameters, that is, once a defect is detected it has to be identified in terms of its parameters as size, location, nature, independently of the technique employed. This work particularly emphasizes the identification problem in thermal non-destructive testing (TNDT).

Active thermography [1] uses a thermal source in order to deposit heat in the target material creating a transient heat flow and, when finding defects, thermal contrast. The most common form of active thermography for material evaluation consists in using sources as flash lamps or lasers where a pulse of light instantaneously heats a surface and the resulting temperature is observed with a thermal camera. This technique is also known as pulsed thermography and has been extensively used as inspection technology for composite and layered structures. The detection can be on the same side as the heat source or on the opposite side, depending on the type of access to the sample. However, analysis and inversion of thermographic data tends to be challenging since the underlying heat conduction phenomenon is a diffusion process. As heat diffuses in time and space, temperature differences blur, the heat source becomes harder and harder to resolve and the contrast created by the flaws is lower.

Typical TNDT procedure results in a sequence of infrared (IR) images, obtained via an IR camera, that reflects the evolution of temperature in time. Mathematically, such a sequence can be regarded as a three-dimensional space and time, T x,y,t . This recorded thermal response usually is degraded because of several factors. Uneven heating, variations of emissivity on the observed surface, optical distortions and noises of multiple nature significantly decrease the quality of the obtained thermal images. These factors limit the potential sensitivity of any method. Usually, the recorded signals are a subject of some signal processing like subtraction of the camera response when the piece under test is removed.

Several data processing techniques for reducing the amount of noise in thermal images and local storage requirements while improving the visibility of discontinuities have been proposed in the literature. These algorithms are either one-dimensional, being applied to pixel-based temperature evolutions in time, or two-dimensional, being applied to single images. Single IR images are normally filtered or segmented to reduce random noise or to analyse geometrical features of the areas of interest.

Much more information about defect parameters can be obtained by analysing the evolution of temperature in time. Therefore, most TNDT processing algorithms use pixel-based functions, which rely on one-dimensional diffusion models [2]. These models serve very well their purpose when one is trying to identify one defect at the time or defects located at a reasonable distance since the presence of one does not affect the temperature profile of the other. When the defects are located close to each other the usage of pixel-based functions, i.e. one dimensional models, fails to characterise those defects with an acceptable accuracy.

The usage of one dimensional models is not restricted only by the relative location of the defects but also by the depth of the defects. In situations where the defects are deeply buried in the material, or the material is too thick, the need of using a three-dimensional approach which will take into account the interaction between the defects and the occurred diffusion is of a significant importance. Yet, one cannot define a strict rule which will imply the limits of the one-dimensional model with respect to the mentioned parameters. The application of two or three-dimensional models in iterative inversion schemes is limited because of their excessive computational time since most of them are based on a numerical approaches [3].

In this work we propose a combination of pre-processing techniques and inversion to achieve an accurate characterisation of delamination-type flaws in metallic plates. We regularize the inverse problem by pre-processing the data, which brings information about the location and the shape of the flaws in the transverse plane. Thus, we are dealing with an easier problem since the size of the parameters is significantly reduced. Here we present the inversion problem by assuming that the pre-processing has been carried out, which will be presented in a future contribution. We use a fast, three-dimensional, semi-analytical direct model which is able to produce reliable data in cases of planar double-layered materials with embedded, rectangularly shaped in the transverse plane defects [4]. This semi-analytical direct model is based on an approach referred in the literature as the truncated region eigenfunction expansion (TREE) which has been successfully applied also in electromagnetics for the solution of magnetostatic and low-frequency (eddy-current) problems [5].

Methodology

A valuable answer to the characterisation problem can be given if one has at its disposal three essential elements:(i ) a characterisation of the defect parameters in terms of the active parameters in the physical process used by the NDE technique, (ii ) a direct model giving the expression of the measured quantity as a function of the active parameters of the defect and (iii ) an inversion (or parameter estimation) technique that gives these parameters as a function of the measured physical quantities. In our case, the defect parameters are the physical parameters of the defect such as its location, its size and its thermal properties. The measured quantity is the temperature recorded as a time series at the surfaces of the sample. The theoretical value of the surface temperature T surf will be provided by the aforementioned semi-analytical model where the thermal characteristics of the sample are known.

In literature one can find different parameter estimation techniques depending on the nature of the parameters one is looking for. The depth profile reconstruction, the inverse problem, consists of set of attempts for fitting T surf by trying all reasonable profiles. In the spatial domain the inverse scattering technique has been used to reconstruct both thermal conductivity and heat capacity depth profiles [6] and the conjugate gradient technique has been used to optimise the fit. In the time domain the effusivity depth profile has been reconstructed [7,8] and the neural network approach has been used to find the best fit [9]. In TNDT a successful characterisation of a subsurface defect consists of the knowledge of its location, its dimensions and its thermal properties. Our approach separates the characterisation of the defect in two stages: in the first stage, the localisation of possible defects and the reconstruction of their shapes in the xy-plane, see Fig. 1a, during the second stage, the estimation of their thickness and depth, see Fig. 1b, performed by using an iterative scheme.

Pre-processing

The temperature field inside anisotropic materials can be expressed mathematically by Eq. ( 1), where ρ, c represent the material density and heat capacity, respectively, κ x , κ y and κ z represent the thermal conductivities in three principal directions. If the heating of the plate is instantaneous and on one side of the plate only, we can assume that the solution of temperature in flawless regions can be described by the one-dimensional heat equation ∂T ∂t = α ∂ 2 T ∂z 2 , where α = κ ρc is the thermal diffusivity of the material. For an ideal pulse, heat flux uniformly applied to the surface of a semi-infinite solid, the temperature of the material at distance z from its surface is given by Eq. ( 2) where = √ κρc is the heat effusivity and Q is the energy supplied to the surface. The temperature at the surface of the sample it described by Eq. (3). From Eq. ( 3) is clear that the presence of any defect will be expressed as the deviation of the temperature decay curve from its expected values.

ρc ∂T ∂t = κ x ∂ 2 T ∂x 2 + κ y ∂ 2 T ∂y 2 + κ z ∂ 2 T ∂z 2 (1) 
T (z, t) = Q √ πt e z 2 4αt
(2)
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T (t) = Q √ πt (3) 
To get rid of experimental noise, pre-processing like thermographic signal reconstruction (TSR) leads to high spatial and temporal detection resolution [10]. The assumption of TSR is identical with the assumption of Eq. ( 3), which can be rewritten in the logarithmic scale as ln (T surf (t)) = ln Q -1 2 ln (πt) and expanded into a polynomial series: ln (T surf (t)) = a 0 + a 1 ln(t) + a 2 [ln(t)]

2 + • • • + a n [ln(t)] n . ( 4 
)
where the logarithmic evolution of temperature at each pixel has been approximated by a ndegree polynomial function. This approximation compresses a thermographic sequence into n + 1 frames of polynomial coefficients, removes high-frequency temporal noise and enhances the defect visibility. Reconstruction of the signals in the logarithmic scale and the computation of second time derivative using the polynomial approximation derives time frames which are smoother and suitable for defect detection. Such detection can be carried out by different image processing algorithms, such as the Canny edge detection algorithm, to define the location, shape and size in the xy-plane of the defects. The application of these algorithms is out of the scope of the present communication and it will be addressed in a future work. The choice of the polynomial degree is a trade off between accuracy of the approximation, noise management and computational time. Here the choice has been made by studying the behaviour of the second time derivative of the signals in the logarithmic space and re-sampling in time. Initially we choose the time instances where the absolute value of the second time derivative is zero and those where its value reaches local maxima between the zeros, see Fig. 1c. The first and the last time instances are also added. For t N chosen time instances the polynomial degree will be set to be n = t N -1. In our case, as illustrated by Fig. 1c the absolute value of the second logarithmic derivative is zero at the beginning of time and in two more instances. By adding the instances where local maxima occur and the last time instance one has six time instances. Thus, the polynomial degree is set to be n = 5. For the configuration depicted in 

Defect characterisation

In an inversion process, one usually minimizes a discrepancy between some experimental data, say u d , and some model data, say u. The discrepancy function, also called cost or objective function, is often expressed as a norm of the difference between u d and u. Most often, one uses the L 2 (•) norm but since we are working with discrete data, the squared Euclidean norm is to
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1. 2 .

 2 CLASSIFICATIONS OF TNDT (a) reection mode, where excitation source and IR camera are located on the same side of the tested media, and (b) transmission mode, where excitation source and IR camera are located on the opposite side.

CHAPTER 1 .

 1 INTRODUCTIONtechnology for composite and layered structures. The detection can be on the same side as the heat source or the opposite side, depending on the type of access to the sample. These techniques of depositing heat on the materials have potential disadvantages, e.g. the reected heat from the material can interfere with the measured signals, causing signal-to-noise-ratio (SNR)

2. 4 .

 4 THE TREE METHOD in the region of interest is not aected by their presence. To truncate the solution domain one has to impose boundary conditions at x = 0, x = L x and y = 0, y = L y . The method gives freedom in the choice of the boundary conditions. Dirichlet boundary conditions can be used, where the eld values on the boundary are specied, Neumann boundary conditions, where the normal derivatives of the eld on the boundaries are specied, or even mixed boundary conditions, where eld values are known on part of the boundary while normal derivatives are known from the remaining part of the boundary. If the geometry of the problem, as due to symmetry for example, does not imply any boundary conditions the most mathematically convenient choice should be used.

Figure 2 . 4 . 1 :

 241 Figure 2.4.1: Modelling the delamination

  2.5.1 and Fig. 2.5.2, and steel as a low diusive metal, corresponding to Fig. 2.5.3 and Fig. 2.5.4. The temperature eld has been simulated in reection and transmission. The relative error of the simulated signals has been calculated and is shown in the following gures. The relative error is displayed as a function of the plate and aw thicknesses. The aw thickness is given as a percentage of the plate thickness and its depth as well. The values used for the congurations are

Figure 2 . 5 . 2 :

 252 Figure 2.5.2: Relative error [%] of the approximation for recorded signals in transmission as a function of plate thickness and aw thickness. Aluminium plate with embedded delamination at dierent depth: Top left: 10%(d), Top right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).
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 253 Figure 2.5.3: Relative error [%] of the approximation for recorded signals in reection as a function of plate thickness and aw thickness. Steel plate with embedded delamination at dierent depth: Top left: 10%(d), Top right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).
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 5254 Figure 2.5.4: Relative error [%] of the approximation for recorded signals in transmission as a function of plate thickness and aw thickness. Steel plate with embedded delamination at dierent depth: Top left: 10%(d), Top right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).

  non-destructive thermographic (TNDT) procedure results in a sequence of infrared (IR) images, obtained via an infrared camera, which reects the evolution of temperature in time. Mathematically, such a sequence can be regarded as a three-dimensional matrix of temperature, with the dimension being space and time. This recorded thermal response, usually, is degraded because of several factors. Uneven heating, variations of emissivity on the observed surface, optical distortions and noises of multiple nature signicantly decrease the quality of the obtained thermal images. These factors limit the potential sensitivity of any method. The goal of data processing in TNDT is to reduce the amount of noise in thermal images and local storage requirements while improving discontinuity visibility. Data processing algorithms in TNDT are either one-dimensional, being applied to pixel-based temperature evolutions in time, or two-dimensional, being applied to single images (snapshots). Single IR images are normally ltered or segmented to reduce random noise or to analyse geometrical features of the areas of interest. Much more information about defect parameters can be obtained by analysing the evolution of temperature in time. Therefore, CHAPTER 3. DEFECT DETECTION AND CHARACTERISATION most TNDT processing algorithms use pixel-based functions.

  analysis and compression of raw thermographic sequences. The technique was originally developed for pulse thermography to improve contrast results. The process separates temporal and spatial noise components in the image sequence and signicantly reduces temporal noise. The technique consists of two basic steps. First step is the tting of the experimental thermogram in the log-log space by a logarithmic polynomial of degree n. This step provides a signicant compression of the raw data. In a later step, the reconstruction of the temperature signals in the logarithmic domain using the polynomial has to be performed, providing noise-reduced replica of each pixel time history. The enhancement of the images is provided by the computation of the 1st and 2nd logarithmic time derivatives of the thermograms. Fitting to the thermograms highly depends on the time window chosen. Thus, the choice of the time window has to be dened with the objective to consider only the part of the thermograms inuenced by the physical phenomena to characterize. Even though TSR is a pixel-based technique, unlike other techniques, it does not require any reference pixel.
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 311 Figure 3.1.1: Defect detection by the TSR method.

Figure 3 . 1 . 2 :

 312 Figure 3.1.2: One-dimensional heat diusion.

Fig. 3 .

 3 Fig. 3.1.2b, the incident heat ow from the sample surface is impeded, and this description no longer applies locally. The eect of a wall is shown in Fig. 3.1.3a

  10 mm plate 8 mm plate 6 mm plate(a) Comparison of temperature time plot of a semi-innite sample with three adiabatic samples of dierent thickness.

  (b) Comparison of temperature time plot of a sound sample with two defected samples at dierent depth.

Figure 3 . 1 . 3 :

 313 Figure 3.1.3: Surface temperature decay curves for a single point of a steel plate.

( 3 . 1 . 4 )

 314 This representation is very signicant from many aspects. The time dependence has been separated from the input energy and material properties. Only the oset of the response will change as the sample material and the input energy vary.For a semi-innite solid, Eq. (3.1.4) describes a straight line with slope equal to -1/2, as pictured in Fig.3.1.4a. In the case of a plate, the response deviates from the straight line at a particular time. This particular time is correlated to the thickness of the plate. In the presence of a subsurface defect in a plate, or in a semi-innite solid, the time evolution plot of the temperature corresponding to those pixels depart from that behaviour in a particular time CHAPTER 3. DEFECT DETECTION AND CHARACTERISATION (a) Comparison of temperature time plot of a semi-innite sample with three adiabatic samples of dierent thickness in the logarithmic space.

  (b) Comparison of temperature time plot of a sound sample with two defected samples at dierent depth in the logarithmic space.
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 314 Figure 3.1.4: Regression by a logarithmic polynomial of degree n equal to 7 and 17, for a sound and a damaged zone.

  3.1.5 reconstructed noisy signals by using polynomial degrees n = 7 and 17, with and without the presence of a defect, are compared.

= 7 = 7

 77 Reconstructed, n = 17 (a) Polynomial regression for a sound area. Reconstructed, n = 17 (b) Polynomial regression for a awed area.
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 315 Figure 3.1.5: Regression by a logarithmic polynomial of degree n equal to 7 and to 17, for a sound area and a awed area.

Figure 3 .

 3 Figure 3.1.6: 1st and 2nd derivatives for a thick steel plate, with and without aw.

Figure 3 . 1 . 7 :

 317 Figure 3.1.7: Contrast curves for a damaged area.

3. 1 .

 1 THERMOGRAPHIC SIGNAL RECONSTRUCTION. nal uctuations. In Fig. 3.1.8 the temperature of the raw signals versus the horizontal position plot of the steel defect sample and the TSR rst derivative are compared.

  TSR 1 st derivative for the same line.

  TSR 2 nd derivative for the same line.

Figure 3 . 1 . 8 :

 318 Figure 3.1.8: Comparison of raw and TSR results for a horizontal line through the centre row of delamination.

  Best TSR image.

  Best 2nd derivative image.

Figure 3 . 1 . 9 :

 319 Figure 3.1.9: Comparison of raw, TSR, 1st and 2nd derivative images.

Fig. 3 .FigFigure 3 . 1 . 10 : 2 .

 331102 Fig. 3.1.10, a polynomial of degree n = 7 is used. The best images, in this case, were found to be those corresponding to monomials 7, 6 and 5, shown in Figs. 3.1.10a to 3.1.10c and used to produce the composite RGB image Fig. 3.1.10d.

3. 2 . 1 = 1

 211 EDGE DETECTION AND SHAPE RECONSTRUCTION old separating those two classes so that their combined spread is minimal. Suppose that G = [0, L -1] is the range of greyscale of in image F and P i is the probability of every greyscale and the threshold value τ has splitted the image in two classes which are C 0 = [0, τ ] and C 1 = [τ + 1, L -1].α 0 respectively. The average grey values of the two classes are

( 3 . 2 . 16 )CHAPTER 3 .

 32163 DEFECT DETECTION AND CHARACTERISATIONThreshold τ will be used as the high threshold parameter τ h . The value of the low threshold τ l , usually, is set to be τ l = τ h 2 .

3. 3 .

 3 PARAMETER ESTIMATION -OPTIMIZATION the stationary point ψ where ∇j( ψ) = 0. The usual methods are iterative and proceed this way: one generates a sequence of points ψ 0 , ψ1, . . . , ψ k which converges to a local optimum of j. At each stage k, ψ k+1 is dened by ψ k+1 = ψ k + α k d k where d k is a displacement direction which may be either the opposite of the gradient of j at ψ k d k = -∇j(ψ k ) , or computed from the gradient or chosen in another way provided that it is a descent direction, i.e. ∇j(ψ k ), d k < 0. Some of the 1st order frequently used methods are:
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 421 which depicts a two-dimensional projection of the conguration. The models developed in Chapter 2, with dimensions in x and y-directions being suciently large versus the dimensions of the area of interest so that there is no interaction with the boundary. The truncation range in the x-direction is denoted as L where the thickness of the rst layer and second layer are denoted as d 1 and d 2 , respectively.
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 421 Figure 4.2.1: A two-dimensional representation of a double-layer plate with two embedded defects, illuminated by a ash lamp.

  (a) Single-delamination plate.(b) Double-delamination plate.

Figure 4 . 2 . 2 :

 422 Figure 4.2.2: Two double-layer plates of steel and aluminium with embedded thin delaminations.

4 . 2 .Fig. 4 .

 424 Fig. 4.2.2b, two delaminations of dierent sizes but of the same thickness, have been taken into account. The expansion of these delaminations in the xy-plane is 5 mm × 10 mm and 10 mm × 10 mm. The spatial support of the source, in this case, is an area of 45 mm × 45 mm centred on the xy-plane.

4. 2 .

 2 MODELLING IN TNDT In Fig. 4.2.3 the temperature distribution at the front and the rear surface is shown for rst case at 0.0408 and 0.2143 s, respectively. Rear surfaces, t 2 = 0.2143 s.
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 423 Figure 4.2.3: Simulated surface temperature eld for the single-aw conguration at two dierent times.

Figure 4 . 2 . 4 :

 424 Figure 4.2.4: Simulated surface temperature eld for the multi-aw conguration at two dierent times.

Figure 4 . 2 . 5 :

 425 Figure 4.2.5: Simulated thermograms for the single-aw model using COMSOL Multiphysics ® and the TREE method obtained at the centre of the xy-plane and at a distance of 0.5 mm from the surface of the plate.

Figure 4 . 2 . 6 :

 426 Figure 4.2.6: Simulated thermograms for the multi-aw model using COMSOL Multiphysics ® and the TREE method obtained at the centre of the xy-plane and at a distance of 0.5 mm from the surface of the plate.

Figure 4 . 2 . 7 :

 427 Figure 4.2.7: Simulated thermograms for the multi-aw model using COMSOL Multiphysics ® and the TREE method obtained at the centre of the xy-plane and at a distance of 0.5 mm from the front surface of the plate.

4. 2 .

 2 MODELLING IN TNDT onedimensional conguration of the given threedimensional model including the aw is automatically generated. If more than one aw is present in the given model, more one-dimensional congurations have to be generated. The problem is solved for these congurations in less than a second with a relatively dense time sampling. The thermograms are then studied in the logarithmic time-space. The logarithmic thermograms are then approximated by a polynomial and second time derivatives are reconstructed using the polynomial coecients. Criteria upon the second time derivative have to be set in order to choose the time samples. To understand the nature of the criteria one has to understand rst the behaviour of this second time derivative. In Fig. 4.2.8 the logarithmic thermograms for a sound area ln [T s ] and a awed area ln [T f ] are compared with the logarithmic thermogram of a semi-innite plate, (-1/2 ln [t]), taking out the eect of the material thermal properties. The absolute value of the second time derivatives for the awed and the sound area are compared where the eect of the aw on the thermograms is clear. By having this behaviour of the thermogram as a guide the chosen time samples are indicated in Fig. 4.2.8 in yellow boxes. These samples correspond to time instances where the absolute value of the second time derivative in the logarithmic space has local minima and maxima. The rst and last time instances have to be added to this sampling.
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 428 Figure 4.2.8: Thermograms in logarithmic scale for a sound area T s , a awed area T f and the absolute value of their second logarithmic derivatives.

  Homogeneous plate with a axisymmetric defect of radius r.

Figure 4 . 2 . 9 :

 429 Figure 4.2.9: Schematic setup diagram. Circular coil of inner radius R i , outer radius R e and height h standing above a conductive plate of thickness d in a distance e.

  demonstrated by employing the forward model developed in Chapter 2, and the image processing and parameter estimation techniques described in Chapter 3. Temperature signals, produced by the three-dimensional TREE model, have been corrupted with Gaussian noise of dierent levels to simulate temperature signals collected by an infrared camera and from now on are called raw signals. Other types of noise beyond Gaussian could be used in this part but this is out of our scope. The detection and characterization procedure has been divided into two parts.The rst step concerns the detection and shape reconstruction of candidate aws and the second step, their characterization through an iterative parameter estimation technique regularised by the information gained from the rst step. Concerning this section, the three-dimensional model developed in Chapter 2 has been used to compute the temperature eld, for the general conguration depicted in Fig. 4.3.1. These signals are supposed to be collected on

Figure 4 . 3 . 1 :

 431 Figure 4.3.1: Sketch of the conguration in the (x, y) and (x, z)plane, left and right respectively.

  The shape reconstruction part of the technique starts by applying the TSR method to the noisy signals. This provides the polynomial approximation of the signals, say, the matrix P of dimensions N x × N y × (p + 1), where N x , N y are the pixels' number along the x and ydirection, respectively, and p is the polynomial degree. Polynomial coecients of the rst and second time derivatives are stored in the matrices P 1 and P 2 , respectively. The timedependent temperature eld in the logarithmic scale, as well as the rst and second time derivatives, can be reconstructed using the polynomial matrices P, P 1 , P 2 and stored in the matrices I, I 1 , I 2 , respectively. The reconstruction of the time signals derives time frames which are smoother and suitable for defect detection. The reconstructed second time derivative matrix, I 2 , will be used for the detection of the time which corresponds to the best frame.The choice of the polynomial degree is a very crucial task for the TSR technique since it is a trade-o between the accuracy of the approximation, noise management and computational time. Here we choose to work with 7 th degree polynomials that were shown to approximate the original signal with high accuracy and ltering most of the noise as observed from the loglog plots in Fig. 3.1.5. In Fig. 4.3.2 the reconstructed signals versus time are compared with the raw noisy signals as well as with the synthetic signals as a reference. The signals correspond to two dierent pixels with the rst one being at the centre of the plate where it is considered to be a sound area, Fig. 4.3.2a and the second one at the centre of the largest defect, named C, Fig. 4.3.2b. It is clear from Fig. 4.3.2 that most of the noise has been signicantly ltered through the TSR method and the original signals have been approximated with great accuracy. Time signals corresponding to a awed area of the plate.

Figure 4 . 3 . 2 :

 432 Figure 4.3.2: Reconstruction of temperature noisy signals with the TSR technique for a sound area and a awed area. Comparison of the reconstructed signals with the reference signals and the noisy signals.

4. 3 .

 3 FLAW CHARACTERIZATION could be considered as an option, the second time derivative matrix I 2 will be used. A criterion upon the second time derivative for each pixel will be set, instead. Each variation that occurs in the time-dependent signals, which is a result of the alteration of material thermal properties at a specic depth, is indicated by a change of the rst time derivative of the signals. This change on the rst time derivative of the signal causes the second time derivative to change signicantly. The times at which the second time derivative reaches its local maxima are correlated with the times where the absolute contrast of
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 433 Figure 4.3.3: Frequency of the sign changes of the second time derivative for all pixels in each frame of the reconstructed signals.

  Reconstructed image, (I * ).

Figure 4 . 3 . 4 :

 434 Figure 4.3.4: Comparison of a raw image with the reconstructed image corresponding to the same optimal frame number.
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 43577675784 We illustrate this in Fig.4.3.6 where signals with higher SNR[START_REF] He | Eddy current volume heating thermography and phase analysis for imaging characterization of interface delamination in CFRP[END_REF] are used to reconstruct RGB images using 5 th and 7 th degree polynomials. In Fig.4.3.6a the monomials -5/5, 4/5, 3/5 are used to form the image and in Fig.4.3.6b the used monomials are the It is clear from the gures that a lower degree polynomial will oer more qualitative information about the aws that a higher degree

Figure 4 .

 4 Figure 4.3.5: RGB(I * , I * 1 , I *2 ) image corresponding to the optimal frame number.

  TSR with 5 th degree polynomial.

  TSR with 7 th degree polynomial.

Figure 4 . 3 . 6 :

 436 Figure 4.3.6: Reconstructed RGB image from the projection of three monomials after applying TSR on noisy signals, SNR = 40.

CHAPTER 4 .

 4 MODELLING RESULTS AND FAST IMAGING Thus the parameter σ that denes the amount of smoothing will be provided to the Canny algorithm since the smoothing algorithm has been integrated into the Canny algorithm. In our case, we perform a slight smoothing by using σ = 5. A comparison in greyscale of the input image and the smoothed one is shown in Fig. 4.3.7, where the two images have been rescaled. The noisy input image I * .

  The smoothed image I * .

Figure 4 . 3 . 7 :

 437 Figure 4.3.7: The impact of the Gaussian smoothing on the noisy input image for the Cany algorithm shown in grey scale.

  The gradient intensity image before applying non-maximum suppression, M (i, j).

  The gradient intensity image after applying non-maximum suppression, M (i, j).

Figure 4 . 3 . 8 :

 438 Figure 4.3.8: The impact of the non-maximum suppression on the gradient intensity image. Before, M (i, j), and after, M (i, j), applying non-maximum suppression.

Figure 4 . 3 . 9 :

 439 Figure 4.3.9: The stages of the edge detection algorithm illustrated with dierent colours.

  4.3.11 where the smoothed input image is given for σ = 3, Fig. 4.3.11a, and the nal binary, Fig. 4.3.11b.
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 4310 Figure 4.3.10: The nal binary image.
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 4311 Figure 4.3.11: Gaussian smoothing of the input image to the Canny algorithm shown in grey scale. Left: The noisy input image I * . Right: The smoothed image I * .

Figure 4 . 3 . 12 :

 4312 Figure 4.3.12: One-dimensional projection of the Gaussian distribution used to denoise the images.

  Raw signals in reection, transmission and in both situations are to be tted. The relative error occurred is shown in Fig. 4.3.13 for each estimated parameter as a function of SNR. The correlation between SNR and estimation's relative error is clearly illustrated in Fig. 4.3.13 where a lower SNR value gives larger relative error values for the estimation of each parameter. Nonetheless, the relative error for the studied cases is less than 4% and acceptable in the eld of application. From the same gure, the nature of the estimated parameters is revealed and how their estimation can be eected by the signals used. It is clear here that the best estimation of the defects' depth can be achieved by using both recorded signals, i.e. in reection and transmission, and the worst one by using only the signals in transmission, Fig. 4.3.13d. The latter is not true for the estimation of the defects' thickness as it is clear from Figs. 4.3.13a to 4.3.13c where the estimation is better using the signals in transmission than in reection.

Fig. 4 . 3 . 1 ,

 431 Fig. 4.3.1, new congurations have been studied. The distance X between the defects A, B and C has been adjusted from 0 mm to 5 mm and the noise level has been kept constant, SN R = 20. In this kind of congurations, where the interaction between the defects is strong, the one-dimensional approaches will fail to accurately characterize the defects. The advantage of using a threedimensional model can be exemplied by Fig. 4.3.15 where one cannot nd a strong connection of the estimation accuracy and the defects' relative location in the xy-plane.

  Thermograms in the logarithmic scale.

  Relative error of the polynomial regression as a function of the polynomial degree n.

Figure D. 1 . 2 :

 12 Figure D.1.2: Thermograms in the logarithmic scale and the relative error of the polynomial regression as a function of the polynomial degree n.Single-layer aluminium plate of thickness 3, 4, 5 and 6 mm.

  Relative error of the polynomial regression as a function of the polynomial degree n.

Figure D. 1 . 3 :

 13 Figure D.1.3: Thermograms in the logarithmic scale and the relative error of the polynomial regression as a function of the polynomial degree n.Single-layer steel plate of thickness 3, 4, 5 and 6 mm.
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 1 Reconstructed image, (I * ).

Figure E. 1 . 1 :

 11 Figure E.1.1: Comparison of a raw image with the reconstructed image corresponding to the same optimal frame number.

Figure E. 1 . 2 :

 12 Figure E.1.2: RGB(I * , I * 1 , I *2 ) image corresponding to the optimal frame number.

  The noisy input image I * . The smoothed image I * .

Figure E. 1 . 3 :

 13 Figure E.1.3: The impact of the Gaussian smoothing on the noisy input image for the Canny algorithm shown in grey scale.

  The gradient intensity image after applying non-maximum suppression, M (i, j).

Figure E. 1 . 4 :Figure E. 1 . 5 :

 1415 Figure E.1.4: The impact of the non-maximum suppression on the gradient intensity image. Before, M (i, j), and after, M (i, j), applying non-maximum suppression.
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 16 Figure E.1.6: Stages image with p = 7 and σ = 3.

Figure E. 1 . 7 :

 17 Figure E.1.7: Binary image for p = 7 and σ = 5.
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 18 Figure E.1.8: Stages image with p = 7 and σ = 5.

Figure E. 1 . 9 :

 19 Figure E.1.9: Binary image for p = 5 and σ = 3.

Figure E. 1 . 10 :

 110 Figure E.1.10: Stages image with p = 5 and σ = 3.

Figure E. 2 . 1 :Figure

 21 Figure E.2.1: Comparison of a raw image with the reconstructed image corresponding to the same optimal frame number.

Figure E. 2 . 3 :

 23 Figure E.2.3: The impact of the Gaussian smoothing on the noisy input image for the Canny algorithm shown in grey scale.

  The gradient intensity image after applying non-maximum suppression, M (i, j).

Figure E. 2 . 4 :

 24 Figure E.2.4:The impact of the non-maximum suppression on the gradient intensity image. Before, M (i, j), and after, M (i, j), applying non-maximum suppression.
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 25 Figure E.2.5: Binary image for p = 7 and σ = 3.
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 26 Figure E.2.6: Stages image with p = 7 and σ = 3.

Figure E. 2 . 7 :

 27 Figure E.2.7: Binary image for p = 5 and σ = 3.
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 2829 Figure E.2.8: Stages image with p = 5 and σ = 3.
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 210 Figure E.2.10: Stages image with p = 5 and σ = 5.

Figure E. 2 . 11 :

 211 Figure E.2.11: Binary image for p = 5 and σ = 5.

Figure E. 2 . 12 :

 212 Figure E.2.12: Stages image with p = 5 and σ = 5 and optimized derivative kernel.

Figure 1 .

 1 Figure 1. Schematic setup diagram. Circular coil of inner radius R i , outer radius R e and height h standing above a conductive plate of thickness d in a distance e. a) Homogeneous plate. b) Homogeneous plate with a axisymmetric defect of radius r.

Figure 2 .

 2 Figure 2. Temperature distribution images in the region of interest for different time and homogeneous materials without defects. Top: Aluminum. Left to the right: Different observation times, t = t 0 , t = t 0 + 50 ms, t = t 0 + 5s. Bottom: Steel. Left to the right: Different observation times, t = t 0 , t = t 0 + 50 ms, t = t 0 + 5s.

Figure 3 .

 3 Figure 3. Temperature distribution images in the region of interest for different time and an aluminum plate with defect. Top: Discontinuity radius: 5 cm. Bottom: Discontinuity radius: 3 cm.Left to the right: Different observation times, t = t 0 , t = t 0 + 50 ms, t = t 0 + 5s.

Figure 4 .Figure 5 .

 45 Figure 4. Comparison of the distribution of temperature at the surfaces of the plates with and without defect for different observation times. Defect's radius r = 5 cm. Top: Upper surface, Bottom: Bottom surface. Different observation time: Left: 10, 50, 70 ms Right: 1, 2, 3s

FIGURE 3 .

 3 FIGURE 3. Modelling the delamination

  d 1 = d 2 = 2.5 mm. The top layer is a steel plate and the bottom one, an aluminium plate. The computational region has been truncated at L x = 50 mm and L y = 50 mm.In the first configuration, shown on the left part of Fig.4, a single rectangular delamination flaw is considered. The flaw dimensions are 10 × 10 mm in the xy-plane, and its thickness is taken equal to d = 10 -3 mm. The flaw is located at the centre of the plate. The spatial support of the source, flash lamp, is a square of 30 mm side, and it is also centred in the middle of the plate. In the second case, depicted on the right side of Fig.4, the plate is affected by two rectangular flaws of different sizes, but of same thickness. The lateral dimensions of the defects in the xy-plane are 5 × 10 mm and 10 × 10 mm, respectively. The spatial support of the source in this case is a square of 45 mm centred in the middle of the plate, as in the first case.

FIGURE 4 .

 4 FIGURE 4. The three-dimensional configurations of the work-piece. Left: Single-flaw configuration including a 10 × 10 × 10 -3 mm void inclusion centred between the two layers. Right: Multi-flaw configuration including a 10 × 10 × 10 -3 mm and a 5 × 10 × 10 -3 mm void inclusion between the two layers.

FIGURE 5 .

 5 FIGURE 5. Simulated surface temperature field at time 0.0408 second for single-flaw configuration. Left: Top surface. Right: Bottom surface.

FIGURE 6 .

 6 FIGURE 6. Simulated surface temperature field at time 0.2143 second for single-flaw configuration. Left: Top surface. Right: Bottom surface.

FIGURE 7 . 1 FIGURE 8 .

 718 FIGURE 7. Simulated surface temperature field at time 0.0408 second for the multi-flaw configuration. Left: Top surface. Right: Bottom surface.

FIGURE 9 .FIGURE 10 .

 910 FIGURE 9. Simulated thermograms for the single-flaw model using COMSOL Multiphysics R and the TREE method obtained at the centre of the xy-plane and at a distance of 0.5mm from the surface of the plate. Left: Front face detection, Right: Rear face detection

Figure 1 :

 1 Figure 1: Sketch of the configuration in the xz-plane, (a) and in the xz-plane, (b). Thermograms in logarithmic scale for a sound area, T s a flawed area, T f and the absolute value of their second logarithmic derivatives.

Fig. 1 ,

 1 and using noisy signals, SN R = 20, obtained in reflection we present the reconstructed images, Fig. 2, at the first four chosen time instances.

Figure 2 :

 2 Figure 2: Reconstructed temperature field in the logarithmic scale for the first four chosen time instances, t i , i = 1, 2, 3, 4.
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  1 can be absorbed by the constants C 1 , C 2 where we write them now as C and D,

respectively, in order to simplify the notation. The general solution, for each CHAPTER 2. MODELLING IN TNDT m and n, can be written as

  signals in transmission, results are shown in Fig.2.5.2. The relative error, in this case, is consistent with the aw's depth and plate's thickness.
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Figure 2.5.1: Relative error [%] of the approximation for recorded signals in reection as a function of plate thickness and aw thickness. Aluminium plate with embedded delamination at dierent depth: Top left: 10%(d), Top right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).

Considering the relative error for the same conguration but using sim-CHAPTER 2. MODELLING IN TNDT ulated

  The discrepancy function also called cost or objective function, is often expressed as a norm of the dierence between u d and u. Classically, one uses the L 2 (•) norm if some continuous u and especially u d are available. When the available data u d are given only at specic locations, then the squared Euclidean norm is to be used:

  , a priori, if the minimum is obtained, i.e. if there exists φ ∈ K such that:
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	Using the notation "inf " for a minimization problem means that one does
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know

Table 4 .

 4 2.1: Thermophysical properties of materials.

	Bulk material	Thermal conductivity	Heat capacity C p [J/kgK]	Density ρ [kg/m 3 ]
		k [W/mK]		
	Aluminium	237	897	2707
	Steel	44.5	475	7850
	Air	0.02454	1005	1.1843

Table 1 .

 1 Electromagnetic and thermal parameters of the materials.

		μ r	σ (S/m)	κ (W/m/K)	(Kg/m 3 ) C p (J/Kg/K)
	Aluminum case Steel	1 700	3.5 × 10 7 3.21 × 10 6	237 44.5	2707 7850	897 475

TABLE 1 .

 1 Thermophysical properties of materials.

	Bulk material	Thermal conductivity k [W/mK]	Heat capacity C p [J/kgK]	Density ρ [kg/m 3 ]
	Aluminium Steel Air	237 44.5 0.02454	897 475 1005	2707 7850 1.1843
		120004-6		

  table of temperature values, with the dimensions being
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5.2. PERSPECTIVES

the thickness is very poor using the signals in reection, relative error higher than 10%, but very accurate when using the signals in transmission. On the other hand, when the defects are close to the upper surface, the estimation accuracy is not signicantly eected. As for the estimation of the defects' depth, for the buried defects the estimation accuracy is not signicantly better using signals in transmission whereas in the case of the defects being close to the upper surface of the plate the estimation is better using signals in reection. 

Summary

This chapter has been divided into two parts, numerical modelling in TNDT and defect characterization. The former deals with the numerical validation of the developed TREE model and its computational performance. A great agreement of numerical results obtained with the TREE model and with a FEM model has been shown. Furthermore, the acceleration of the developed Appendices TRANSFORMATION. and we assume v to be such that the orders of integration and dierentiation can be interchanged in this way. Theorem 4.

for, integrating by parts,

(A.0.4) Theorem 5. If k is a positive constant, and (A.0.9)

, where H(tt 0 ) is a Heaviside's unit function dened by

for all t ≥ 0, if the functions are continuous; if the functions have only ordinary discontinuities they can only dier at these point. Theorem 10.

This is known as the Faulting or Superposition theorem, also as Duhamel's theorem. Theorem 11. If

(A.0.17)

Appendix B

The Gaver-Stehfest Method.

The principle of the method is to use the following property of the Dirac distribution δ(t), which is valid for any function f (t):

A ∆-convergent function δ N (t, λ) is an approximation of the shifted Dirac distribution. In therefore veries the following property:

The particular ∆-convergent function that has been chosen by Stehfest is

The coecients u j and a j must be optimized in order to make the Laplace transforms of δ N (t, λ) and of δ(tλ) as close as possible, i.e. Once these coecients have been optimized, f (t) can be calculated using eq..

where δ(tλ) has been replaced by δ N (t, λ):

or, noting that the integral term in the last member of the preceding equation is simply the Laplace transform of f evaluated in p = a j /t:

This corresponds to the otpimized coecients

and

where the V j are given by the following expression for an even value of N :

In this equation "Int" designates the integer part of a real number.

N depends on the oating-point precision of the computer. With single precision, N = 10 is often the most suitable choice Appendix C Convergence.

The before-mentioned methods are iterative methods and the choice of one of them to use depends on factors such as the convergence speed and the cost of the computation cost of the gradient. This algorithms yields to a series ψ k k≥1 that converges to ψ.

Denition 1. The convergence rate of the series {ψ k } k≥1 is said to be linear if

This means that the distance to the solution ψ decreases at each iteration by at least the constant factor τ .

Denition 2. The convergence rate of the series {ψ k } k≥1 is said to be superlinear in n steps if

Denition 3. The convergence rate of the series {ψ k } k≥1 is said to be quadratic if

The steepest descent method converge linearly but in the case of ill-posed problems the method may converge linearly with a constant τ close to 1. The conjugate-gradient method converges superlinearly in n steps to the optimum.

Quasi-Newton methods usually converge superlinearly and the Newton method converges quadratically. Thus the quasi-Newton methods convergence-rate is much higher than the conjugate gradient methods convergence rate which need approximatively n times more steps at the same convergence behaviour. However, for the quasi-Newton method, the memory place is proportional to n 2 .

Appendix D

Study on the choice of the polynomial degree.

The choice of the polynomial degree is a very crucial task for the performance of the TSR method. The TSR method acts as a low-pass lter to the noisy signals while trying to reconstruct them. The choice of the polynomial degree is a trade-o between the approximation accuracy and noise management. Choosing a low degree leads to a bad but noiseless approximation and on the other side, choosing a high degree polynomial leads to a good reconstruction of the signals reproducing also a part of the noise. In order to choose appropriately the polynomial degree for the TSR method, we carry out a numerical study. D.1.1. In the single-layer conguration, the plate thickness, d, will be changing in the range of [3,6] mm and in the double-layer conguration the thicknesses, d 1 and d 2 , of the plate will be set to be the half of the total thickness of the plate where the plate thickness will vary in the range of [3,6] mm.

The congurations depicted in

For the given congurations, the temperature on the upper surface of the plate has been simulated and the TSR method has been applied to the noise-DEGREE. A safe conclusion from the plots could be that the relative error introduced to the thermograms in the logarithmic scale, by the polynomial regression, decreases almost exponentially with the polynomial degree. In the tested cases, this error is less than 2% for a regression using polynomials of 5 th degree and less than 0.5% when using polynomials of 7 th degree. No signicant improve- ment of the approximation can be seen using polynomials with a degree higher than 9. (a) Thermograms in the logarithmic scale. The approximation of the edges is better than using 7 th degree polynomial but not signicantly.

Appendix F

Peer-reviewed published articles 2 . The cost function is explicitly given in terms of u and minimized with respect to the parameters ψ, characterizing the flaws.

For the minimization problem the Levenberg-Marquardt method has been used [11]. This is an iterative method originally devised for solving non-linear least-square problems of parameter estimation but it has also been successfully applied to the solution of linear problems that are too ill-conditioned to permit the application of linear algorithms. The method decreases the ill-condition feature by using a "damping" parameter, ≤ 0, which may be adjusted at each iteration. Note that → 0 yields the Gauss-Newton algorithm while larger gives an approximation of the steepest descent gradient algorithm.

The forward model we use here models defects of delamination type as boundary conditions in a fictional interface inside the metallic plate. Thus, we are bounded to consider only flaws that are located at the same depth. The parameters to be estimated here are the depth at which the defects are located and their thickness. Thus, for the m detected flaws, the number of the unknown parameters will be m + 1, ψ = (ψ 1 , ψ 2 , . . . , ψ m+1 ) T .

After applying TSR to the synthetic noisy data T surf , we end up with a three-dimensional matrix, denoted T px,py,n+1 , containing n + 1 frames of p x × p y elements with the coefficients of the n-degree polynomials as expressed in Eq. ( 4). For each pixel we reconstruct the temperature signals in the logarithmic scale by evaluating the polynomials at the, previously chosen, time instances t i , i = 1, 2, . . . , n + 1. The data to be fitted, denoted as u d , is now the vectorised temperature in the logarithmic scale.

Experiment and result analysis

For the purpose of this research, the three-dimensional model [4] has been used to produce synthetic data, temperature signals, for the general configuration depicted in Fig. 1 . A grade 4340 steel plate with thermal conductivity k = 44.5 W/mK, heat capacity C p = 475 J/kgK, density ρ = 7850 kg/m 3 and of thickness d = 3 mm is used.

The steel plate has three well-defined air-filled defects, named A, B and C, to simulate delaminations of different thickness, d A = 3 × 10 -6 m, d B = 2 × 10 -6 m, d C = 1 × 10 -6 m and of different size (2 × 3 mm), (2 × 4 mm), (4 × 4 mm), respectively. As an excitation term, a flash lamp depositing a heating power density of Q = 10 4 W/m 2 on the surface of the plate has been modelled as a Dirac's delta function in time, whereas its spatial distribution is considered as uniform.

To test the robustness of the inversion scheme versus the noise, the configuration depicted in Fig. 1 has been tested for different noise levels using recorded signals in reflection, in transmission and in both situations. The thickness of the top and bottom layer, for this configuration, is d 1 = 1.5 mm and d 2 = 1.5 mm, respectively. The distance of the defects A and B from the defect C, which has been indicated as X in Fig. 1a, for this reference case X = 5 mm. The parameters to be estimated are the thickness of the defects and the depth in which they are located, d A , d B , d C and Z respectively.

The relative error of the estimation of the parameters is shown in Fig. 3 for each parameter as a function of SNR. As one can see, the estimation is highly depending on SNR but also on the used signals. That is, using the signals obtained in transmission, a better estimation can be achieved than using the signals in reflection. Yet the usage of both signals does not ensure a better estimation as one can see in Fig. 3a and in Fig. 3b where for SNR equal to 40 or 30 the estimation is not given with a smaller relative error as in the case of using only the signals recorded in transmission.

From Fig. 3 one can understand the nature of the estimated parameters and how their estimation can be affected by the signals used. From these graphs it is clear that the best estimation of the defects depth can be achieved by using both recorded signals, i.e. in reflection and transmission, and the worst one by using only the signals in transmission, see Fig. latter is not true for the estimation of the defects' thickness as it is clear from Fig. 3(a),(b),(c) where the estimation is better using the signals in transmission than in reflection.

By using the configuration depicted in Fig. 1a as a reference, we want to test the performance of the inversion scheme in difficult situations. Such a situation can be when the defects are located close to the top or bottom surface of the plate. The depth of the defect, i.e. the distance of the defects from the upper surface of the plate, has been changed to 0.75 mm and 2.25 mm while the noise level has been kept constant, SN R = 20. The estimation of the parameters d A , d B and d C is strongly affected by the depth of the defects as one can see in Fig. 4. For the configuration where the defect is deeply buried in the plate, z = 2.25 mm, the estimation of the thickness is very poor using the signals in reflection, relative error higher than 10%, but very accurate when using the signals in transmission. On the other hand, when the defects are close to the upper surface, the estimation accuracy is not significantly affected. As for the estimation of the defects' depth, for the buried defects the estimation accuracy is better using signals in transmission whereas in the case of the defects being close to the upper surface of the plate the estimation is better using signals in reflection. These results agree with the physics of the problem.

An interesting configuration where the advantages of using a three-dimensional forward model can be fully exploited is that of defects located close to each other. Keeping as reference the configuration depicted in Fig. 1a, we set up two new configurations by setting the distance of the defect named C from the other two to 2 mm and 0 mm respectively. The noise level has been kept constant, SN R = 20. In this kind of configurations, where the interaction between the defects is strong, the one-dimensional approaches fail to characterize accurately the defects. The advantage of using a three-dimensional model can be exemplified by Fig. 5 where one cannot find a strong link of the estimation accuracy and the defects' relative location in the xy-plane. 

Conclusions and perspectives

This contribution presented a model-based inversion strategy for thermographic characterisation of delamination in planar pieces. We choose to use here the Levenberg-Marquardt method where, as an iterative method, its performance is strongly linked to the forward model. In this work we use a three-dimensional semi-analytical model based in the TREE approach which is fast and accurate. Results of the inversion scheme, using synthetic noisy data, have been presented in the work for several cases.

In the future we intend to extend this work by considering more complex cases. Thus, the used froward model has to be enhanced. Flaws with more complex shapes in the transverse plane have to be introduced in stratified planar geometries for modelling delamination in composites. Surface defects, crack-type, will be introduced to the model using the Green function. Moreover, the application of signal processing tools as the Canny algorithm will be addressed in order to compute the transverse location and the shape of the flaws. Abstract : Thermographic inspection is a popular nondestructive testing (NdT) technique that provides images of temperature distribution over large areas at surfaces of tested workpieces. Detecting delaminations between metallic layers is the subject here. Simulation of these inspections complement experimental studies, evaluate performance in terms of detection and support model-based algorithms. A semi-analytical model based on a truncated region eigenfunction expansion for simulation of thermographic inspection is focused onto. The problem is solved in the Laplace time domain, and the temperature distribution approximated by expanding it on a tensor product basis. Considered sources are lamps providing thermal excitation but may also be eddy current sources. The description of the delaminations as thin air gaps between the workpiece layers proves to be equivalent with the introduction of surface resistance to the heat flow, enabling treatment via the applied modal approach. Complementary computations by commercial (FEM) and in-house (FIT) codes confirm the accuracy of the developments. Then, attention is paid on imaging and detection. A two-step procedure is devised, first denoising of raw signals and detecttion of possible defects using a thermographic signal reconstruction leading to high spatiotemporal resolution in the transverse plane, completed by proper edge detection, second the results of the first step are used for the regularization of a least-square scheme to characterize thicknesses and depths. All the above is illustrated by comprehensive numerical simulations in conditions close to practice.