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Résumé

Le contrôle et l'évaluation non destructifs (CND) est un ensemble de techniques

utilisées pour évaluer les propriétés d'un matériau sans modi�er les propriétés

d'origine ni lui causer de dommages. Les techniques d'essais non destructifs

o�rent un moyen rentable de tester un échantillon pour détecter les dommages

pendant la production et après celle-ci.

Parmi les nombreuses méthodes existantes, le contrôle non destructif ther-

mique ou infrarouge (T/INDT) est l'une des plus prometteuses pour l'inspection

des matériaux et des structures. La détection des irrégularités est basée sur

le principe que tous les corps émettent un rayonnement infrarouge. Ce ray-

onnement infrarouge émis peut être mesuré par des caméras infrarouges et

les images analysées pour la détection et la caractérisation des défauts. Les

irrégularités du matériau a�ectent le taux de di�usion de la chaleur, ce qui en-

traîne un contraste thermique à la surface de la pièce homogène. En analysant

les altérations ou le contraste de la con�guration thermique à la surface du

matériau, on peut obtenir des informations sur les défauts enfouis. Outre la

modélisation de l'évolution de la distribution de la température à l'intérieur

de la pièce testée, la modélisation d'appareils de mesure tels que les caméras

thermiques d'imagerie devrait être nécessaire, impliquant des concepts supplé-

mentaires de rayonnement infrarouge.

Selon la présence ou l'absence d'une source d'excitation thermique, la tech-

nique est généralement divisée en deux ensembles principaux, passifs et ac-

tifs, respectivement. La thermographie active, qui est objet d'investigation

ici, utilise une source thermique pour déposer de la chaleur dans le matériau

cible, créant un �ux thermique transitoire et, en cas de défauts, un contraste

thermique. Selon la position relative de l'excitation et de la caméra, il ex-
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iste deux con�gurations : le mode ré�exion, où la source d'excitation et la

caméra IR sont situées du même côté du milieu testé, et le mode transmission,

où la source d'excitation et la caméra IR sont situées du côté opposé. Les

sources thermiques les plus couramment utilisées en thermographie active sont

l'excitation optique, l'excitation électromagnétique, l'excitation acoustique et

l'excitation sous contrainte.

La solution d'un problème dédié à la caractérisation thermophysique des

matériaux ou aux essais thermiques non destructifs peut être divisée en trois

étapes : un problème direct, qui décrit mathématiquement l'évolution spatio-

temporelle du champ de température, un problème de mesure, a�n de donner

le signal de sortie le plus précis et le moins bruyant, et un problème inverse,

qui permet d'estimer des paramètres comme des propriétés thermophysiques

constantes ou conditions aux limites des interfaces.

Puisque la physique est le fondement de chaque technique de CND, si les

matériaux à l'essai sont di�érents, la physique et les techniques de CND seront

également di�érentes. Les concepts de base de l'inspection thermographique

sont, en général, bien établis, mais pas dans tous les cas. Cependant, l'analyse

et l'inversion des données thermographiques ont tendance à être di�ciles.

Cette thèse entend fournir des contributions originales sur le développement

d'un modèle tridimensionnel rapide a�n de simuler le contrôle thermographique

non destructif de pièces planes présentant des défauts intégrés et une stratégie

d'inversion robuste basée sur un modèle pour la détection et la caractérisation

des défauts.

La simulation des procédures TNDT implique dans un premier temps la ré-

solution du problème de conduction thermique dans la pièce considérée, avec

et sans défauts, pour obtenir la distribution de température aux interfaces

de la pièce, qui constitue la mesure. La solution complète de ce problème

peut être obtenue en utilisant des techniques numériques telles que la méth-

ode des éléments �nis (FEM), méthode des di�érences �nies (FDM), tech-

ii



nique d'intégration �nie (FIT), qui sont, en général, capables de modéliser des

géométries générales et complexes.

Leur généralité est obtenue par une description discrète de l'espace, ce qui

les rend dépendants du maillage. Ce point est problématique lorsque l'outil de

simulation est développé à l'intention d'utilisateurs industriels, experts en CND

mais ayant une connaissance limitée de l'analyse numérique en général et des

stratégies de maillage en particulier. Un autre inconvénient de ces méthodes

est le temps de calcul, qui peut être très élevé lorsque l'on considère de gros

problèmes, même si leur complexité en termes de géométrie est faible. D'autre

part, les solutions analytiques au problème thermique sont bien formulées mais

leur mise en ÷uvre numérique n'est pas toujours aisée.

Néanmoins, dans la pratique, il est souvent utile de renoncer aux informa-

tions détaillées des solutions complètes en faveur d'approximations analytiques

ou semi-analytiques rapides, qui constituent l'essence du comportement du �ux

thermique. Des outils de simulation basés sur des modèles semi-analytiques

ont été proposés dans la littérature pour traiter des cas plus simples. Ces outils

se sont avérés très rapides par rapport aux outils numériques, mais ils reposent

sur des hypothèses solides qui limitent leur domaine d'application.

Cette thèse propose des solveurs hybrides combinant des solutions numériques

et semi-analytiques, pour atteindre à un moment donné la généralité sans payer

le prix d'un maillage tridimensionnel et d'un temps de calcul élevé.

Un modèle semi-analytique basé sur la méthode TREE (Truncated region

eigenfunction expansion) est proposé pour la simulation de l'inspection ther-

mographique. Le problème est résolu dans le domaine de Laplace en ce qui

concerne le temps, et la distribution de la température est approchée par son

expansion sur la base d'un produit tensoriel. Les con�gurations visées par ce

modèle sont des pièces planes strati�ées a�ectées de minces défauts de délam-

ination.

Les sources considérées sont des lampes fournissant une excitation ther-
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mique à la surface de la pièce inspectée. L'excitation thermique à la surface

du milieu strati�é est assurée par une lampe �ash qui est utilisée dans une

large gamme d'applications.

La description des défauts de délamination comme de minces espaces d'air

entre les couches de pièces s'avère équivalente à l'introduction d'une résistance

de surface au �ux thermique, permettant ainsi leur traitement par l'approche

modale appliquée sans discrétisation supplémentaire. Une validation numérique

du modèle TREE développé à l'aide d'un logiciel de modélisation commer-

cial basé sur FEM a été e�ectuée. Une grande concordance des résultats

numériques obtenus avec le modèle TREE et avec un modèle FEM est mon-

trée. De plus, l'accélération du modèle semi-analytique développé est décrite

en détail. Les résultats numériques proposés indiquent que le modèle direct

développé peut produire des signaux thermiques rapides et précis.

Parlant de la partie imagerie de cette thèse, la détection des défauts dans la

pièce, à travers des signaux bruités enregistrés ou synthétiques, et leur carac-

térisation sont visées. Le traitement du signal, en général, est un moyen crucial

pour extraire des informations utiles des données brutes capturées à partir de

capteurs. De plus en plus d'algorithmes de traitement du signal incluant la

reconstruction du signal thermographique (TSR), l'analyse en composantes

principales (PCA), l'analyse en composantes indépendantes (ICA), la trans-

formation en ondelettes, la décomposition de Tucker, la machine à vecteur de

support (SVM) et la reconnaissance de formes sont utilisés en thermographie

des composites. L'utilisation de l'une ou l'autre de ces techniques dépend de

la physique du problème et leurs résultats sont généralement qualitatifs, en

signi�ant par cela que les défauts ne sont pas entièrement caractérisés. Selon

l'application, la détection et la reconstruction de la forme des défauts peuvent

être un succès. Dans certaines applications, des informations plus quantitatives

sur les défauts sont nécessaires sur les paramètres que l'on essaie d'estimer.

Le processus de caractérisation des défauts de type délaminage dans les
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milieux plans a été divisé en deux étapes. La première étape concerne le

débruitage des signaux bruts et la détection d'éventuels défauts, et la seconde

la caractérisation des défauts détectés. La première étape est réalisée en util-

isant la technique TSR et l'algorithme de Canny qui sont présentés en détail.

Pour la seconde étape, des techniques d'optimisation sont utilisées pour la

caractérisation des défauts en utilisant les informations a priori de la partie

prétraitement.

L'objectif principal de la partie imagerie est la parfaite conjonction des tech-

niques pour avoir une procédure entièrement automatisée pour l'inspection. De

nombreux résultats numériques sur la détection et la caractérisation des dé-

fauts sont fournis. Les signaux de température, dépendants du temps, obtenus

avec le modèle semi-analytique ont été corrompus par di�érents niveaux de

bruit et ont été utilisés comme signaux bruts. En appliquant la méthode TSR

et l'algorithme de Canny, les défauts candidats ont été localisés avec une grande

précision dans le plan transverse. Leur forme et leurs dimensions ont été util-

isées pour la régularisation d'un schéma de moindres carrés a�n de caractériser

leur épaisseur et leur profondeur. La robustesse du schéma d'inversion a été

testée dans di�érentes con�gurations di�ciles. Les résultats numériques de la

procédure proposée pour la détection et la caractérisation des défauts indiquent

que cette procédure est rapide et précise.
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Chapter 1

Introduction

The service life of a structure is determined by its design, construction, ageing

and maintenance during use. Damage in structures or materials can arise dur-

ing material processing, fabrication of the components or in-service activities.

The most common damages are cracks, delaminations, disbonds, corrosion,

porosity. A wide variety of techniques are used today for condition evaluation

of structures, samples or whole materials. These techniques are capable of

identifying damages of a di�erent level depending on a variety of factors. The

evaluation and inspection process of materials or components for characteri-

zation or �nding defects and �aws in comparison with some standards has to

be done without a�ecting the integrity of the object being tested.

Non-destructive testing and evaluation (NDT-NDE) is a group of tech-

niques used to evaluate the properties of a material without modifying the

original properties or causing any damage to it [1]. It was the need to im-

prove the production quality, especially after World War II, which led to the

development of those methods and techniques. These techniques involve the

identi�cation and characterization of damages on the surface or interior of

materials. NDT techniques provide cost-e�ective means of testing a sample

for damages during the production and after it. In many cases, the strategy

of �nding a �aw may require a combination of di�erent NDT methods. The
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CHAPTER 1. INTRODUCTION

deep understanding of the capabilities and limitations of an NDT method is

vital for the success of the evaluation of a material or a sample. Some of the

most commonly used NDT methods are acoustic emission testing, eddy cur-

rent testing, infrared and thermal testing, leak testing magnetic �ux leakage,

magnetic particle testing, liquid penetration, radiographic testing, ultrasonic

testing and visual testing. The choice of the applied NDT method depends on

many factors, which among others are the physical properties of the materials

and the accessibility of the sample's surfaces which are of great importance.

Among the many existing methods, as stated, thermal or infrared non-

destructive testing (T/INDT) is one of the most promising for inspection of

materials and structures [2]. TNDT is well used in many di�erent industrial

contexts, like welding monitoring in metallurgy, in inspection of composites in

aeronautics, power lines inspections in the sector of energy. The detection of

irregularities is based on the principle that all bodies emit infrared radiation.

This emitted infrared radiation can be measured by infrared cameras and the

images analysed for the detection and characterization of �aws. Subsurface

irregularities will a�ect the heat di�usion rate, leading to a thermal contrast

on the surface of the homogeneous work-piece. By analysing alterations or the

contrast in the thermal pattern of the material surface, one can obtain informa-

tion about subsurface �aws. In many cases, the inspection technique exploits

multi-physical phenomena, as eddy current for inductive thermography or ul-

trasound for thermography. As a consequence, the conversion of energy from

electromagnetic or elasticity to heat is far from being trivial. In addition to

modelling the evolution of temperature distribution inside the tested piece,

the modelling of measurement devices like thermal imaging camera should be

required, involving additional concepts of infrared radiations.

2



1.1. HISTORY

1.1 History

Even though the infrared technology started in 1800 with William Herschel

and an experiment that revealed the existence of the infrared radiation spec-

trum [3, 4], the �rst use of infrared thermography, as a non-destructive testing

technique, dates back to the middle of the last century in the works published

by Beller and Green [5, 6]. Moreover, the heat equation, which describes the

heat �ow in a body, was �rst developed and solved by Joseph Fourier, dur-

ing the same time, in 1822 [7]. Ideas of infrared applications can be tracked

even before Beller and Green when Parker [8] received a patent for detect-

ing icebergs in 1914 and Barker in 1934 proposed using infrared sensors for

monitoring forest �res [9]. The pioneer of the idea of single-sided material

thermophysical properties measurements is Vernotte with his published work

in 1937 [10]. The �rst implementation of Vernottte's idea is recorded in 1956

where Hardy measured the e�usivity of the skin of a patient [11]. As the mile-

stone work can be considered the publication of Parker where the contactless,

double-sided, rear-face measurement of thermal di�usivity by active infrared

pulsed radiometry has been reported [12].

By the end of the 1970s, application of INDT remained qualitative thus

limiting competition with other NDT techniques. Initially, INDT su�ered

from puzzlement and incomprehension mainly because of di�culties in the

interpretation of thermograms. The heat conduction theory, which was well

summarized in the books of Carslaw and Jaeger [13] and Luikov [14] improved

the understanding of thermal, infrared NDT processes. The wider use of el-

ements of the heat conduction theory paved the way to the development of

a thermophysical approach to TNDT the next years by Carlomagno and Be-

rardi [15], Vavilov and Taylor [16], Balageas et al. [17], Mandelis et al. [18] and

many other authors who introduced also multi-dimensional models of defect

or di�erent detection techniques [19, 20, 21].
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The use of thermography for non-destructive testing applications had re-

ceived growing attention in the last years. This is mainly because infrared

(IR) cameras have recently improved signi�cantly in both sensitivity and spa-

tial resolution. The technique has been particularly adapted to many appli-

cations [22] and especially to composites' inspection which is being used in

the aerospace [23], renewable energy [24], civil and architecture [25, 26], and

other industries, due to their excellent advantages. Unlike other direct imaging

techniques, depending on the thermal source, it can be fast, high resolution,

contactless, quantitative and low-cost technique.

1.2 Classi�cations of TNDT

There are many ways one could classify the di�erent techniques of thermog-

raphy. According to the presence or absence of a thermal excitation source,

the technique is generally divided into two main streams, passive and active,

respectively.

Passive thermography is de�ned as measuring the temperature di�erence

between the target material and its surroundings under di�erent ambient tem-

perature conditions. Passive thermography is widely used in industrial con-

dition monitoring [27], in building e�ciency studies [28], in medical applica-

tions [29] and even for the damage characterization of Glass Fiber-Reinforced

Polymer composite materials (GFRP) [30]. In general, passive thermography

is more application-oriented, mostly because of the heat source, and a general

analysis of it would be misleading.

Active thermography [31], on the other hand, uses a thermal source to

deposit heat in the target material creating a transient heat �ow and, when

�nding defects, thermal contrast. This can be classi�ed by heating function,

by excitation sources or by the relative position of excitation and camera. In

the latter case, there are two con�gurations:
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(a) re�ection mode, where excitation source and IR camera are located on the

same side of the tested media, and

(b) transmission mode, where excitation source and IR camera are located on

the opposite side.

The common types of active thermography according to heating func-

tion are pulsed thermography (PT) or square pulse thermography (SPT) [32],

stepped thermography (ST) [33], lock-in thermography (LT) [22], pulsed phase

thermography (PPT) [21], and frequency modulated thermography (FMT) [34].

These functions are depicted in Fig. 1.2.1.

t

Q

(a) PT and SPT

t

Q

(b) ST

t

Q

(c) PPT

t

Q

(d) FMT

Figure 1.2.1: Excitation functions.

The most commonly used thermal sources in active thermography are op-

tical excitation, electromagnetic excitation, acoustic excitation and stress ex-

citation. Thermography can be classi�ed according to excitation sources as:

1. Optical thermography using optical excitation such as �ash lamps [35] or

lasers [36, 37] that heat part of the piece surface and the resulting tem-

perature is observed with a thermal camera. This technique is also known

as pulsed thermography [38] and has been extensively used as inspection
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technology for composite and layered structures. The detection can be on

the same side as the heat source or the opposite side, depending on the type

of access to the sample. These techniques of depositing heat on the mate-

rials have potential disadvantages, e.g. the re�ected heat from the material

can interfere with the measured signals, causing signal-to-noise-ratio (SNR)

problems. For instance, many materials when used in industry are coated

or painted.

2. Eddy current thermography (ECT) or induction thermography which uses

induced eddy current to heat the sample [39, 40, 41]. In this case, the

defect detection is based on the changes of the induced eddy current �ow

revealed by the thermal visualization captured by an IR camera and it is

widely used for detection of cracks [42, 43] and corrosion [44].

3. Magnetic induction thermography, which is used in ferromagnetic materials

to introduce heat through the magnetic �eld and o�ers several advantages

over the conventional active thermography techniques like fast direct heat-

ing, no frequency optimization, no dependence on the surface absorption

coe�cient and penetration depth [45, 46].

4. Microwave thermography uses microwave as heating source for dielectric

materials and gas received growing interest due to many advantages of it

including strong penetrability, selective heating, volumetric heating, signif-

icant energy savings, uniform heating, and good thermal e�ciency [47].

5. Ultrasound thermography or vibrothermography uses mechanical variations

through a welding horn to heat the workpiece [48]. In this case, however,

contact between the workpiece and the ultrasonic welding horn it is re-

quired, which can complicate its practical use and cause a loss of energy

transmission.

Some comparison works were published by other authors where the capabilities
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of di�erent approaches have been tested [49, 50].

1.3 General context

Physics is the foundation of every NDT technique. If the materials under test

are di�erent, the physics and NDT techniques will also be di�erent. Conven-

tional NDT techniques are mainly developed for homogeneous metal compo-

nents and its alloys. However, thermophysical behaviour of composites struc-

tures is di�erent from planar, homogeneous materials, in general. Layered

structures, for example, may include di�erent materials. Therefore, physics

and NDT techniques may be di�erent.

The basic concepts to thermographic inspection are, in general, well estab-

lished but not in every case. However, analysis and inversion of thermography

data tend to be challenging because, in thermography, the underlying heat

conduction phenomenon is a di�usion process. As heat di�uses in time and

space, temperature di�erences blur, the source of the heat becomes harder and

harder to resolve and the contrast created by the �aws is lower. Inversion of

thermography data to identify a heat source or boundary location is, therefore,

an uncertain process potentially requiring substantial assumptions.

The solution of a problem dedicated to the thermophysical characterization

of materials or thermal non-destructive testing could be divided into three

stages: a forward problem, a metrology problem and an inverse problem.

A forward problem mathematically describes the space-time evolution of

the temperature �eld as accurately and simply as possible given a knowledge

of the medium and illuminating source.

A metrology problem gives the most accurate and least noisy output sig-

nal. A priori information can complete the information given by this sig-

nal [51, 52, 53].
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An inverse problem permits estimation of parameters (constant thermo-

physical properties or boundary interface conditions uniform in space and

changing with time or temperature). This task is accomplished by seeking

reversible operators or optimization techniques to get a minimum deviation

between the measured data and the forward problem. In some applications,

signal or image processing techniques can provide the sought parameters.

1.3.1 Simulation and modelling

Simulation of TNDT procedures involves at a �rst step the solution of the heat

conduction problem in the considered work-piece, with and without defects,

in order to obtain the temperature distribution at the piece interfaces, which

constitutes the measurement. The full solution to this problem can be obtained

using numerical techniques such as �nite element method (FEM) [54, 55], �nite

di�erence method (FDM) [56, 57, 58], �nite integration technique (FIT) [59]

which are, in general, able to model complex geometries. Nonetheless, their

multi-dimensional implementation usually is computationally costly.

On the other hand, analytical solutions for the thermal problem are well

formulated and summarised in some classical books [60, 61, 62] but their nu-

merical implementation is not always an easy task. Nevertheless, in practical

situations, it is often meaningful to renounce the detailed information of com-

plete solutions in favour of fast analytical or semi-analytical approximations,

which hold the essence of the thermal �ow behaviour.

One-dimensional approaches for the analytic solution of the thermal prob-

lem can be found for three-layer [63] and multi-layer [64] composite slab. A

semi-analytical solution for multilayer di�usion in a composite medium con-

sisting of a large number of layers was given by Carr [65], based on the Laplace

transform and orthogonal eigenfunction expansion.

Analytical solutions for multi-dimensional time-dependent heat conduction

in media consisting of several layers have been given using di�erent approaches.
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The orthogonal expansion technique derived by Padovan [66] Salt [67, 68]

and Mikhailov and Öz�³�k [69] analyses two- and three-dimensional general-

ized version of the classical Sturm-Liouville procedure [70], however, no nu-

merical results was provided. The Green function solution method developed

by Beck was applied to a three-dimensional two-layer isotropic-composite [71]

and orthotropic-composite [72] slab with an internal heat source. The Laplace

transform approach used by Levine [73], and Kozlov and Mandrix [74, 75] in a

two-dimensional approach in a spherical surface object and a cylinder, respec-

tively, were used, but also here, no numerical results provided. An analytical

solution obtained by solving the transient three-dimensional heat conduction

equation using the Laplace transform for a unit impulse in a �nite domain by

the method of separation of variables was presented with numerical results by

Araya and Gutierrez [76]. A very popular, well-established approach is the

so-called thermal quadrupoles method, where the original three-dimensional

problem is approximated as a multilayer one-dimensional problem (by ignor-

ing the heat �ow in the lateral layers directions) and modelled as a cascade of

"quadrupoles" in analogy with electrical network theory [77].

1.3.2 Signal processing algorithms and inversion tech-

niques

Signal processing (SP) is a crucial mean to extract useful information from

raw data captured from sensors. More and more signal processing algorithms

including thermographic signal reconstruction (TSR) [78, 79], principal com-

ponents analysis (PCA) [80], independent components analysis (ICA) [81, 82],

wavelet transform [83] , Tucker decomposition [84, 85], support vector machine

(SVM) [86], and pattern recognition [87] are being used in thermography for

composites. The use of any of the aforementioned techniques depends on the

physics of the problem and their results are usually qualitative, saying that
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the defects are not fully characterised. Depending on the application, the de-

tection and the shape reconstruction of the defects may be a success. In some

applications, more quantitative information about the defects is required on

the parameters ones tries to estimate.

On the other hand, using model-based techniques, the depth pro�le recon-

struction of a work-piece has been tried. In the frequency domain a stepwise

least-squares �t has been used to reconstruct a polygon best approximation

to the conductivity pro�le [88, 89, 90], a neural network approach to �nd the

best �t [91], an inverse procedure to �nd the Taylor expansion parameters of

the conductivity pro�les [92], an inverse Green's function technique to localize

sources in inverse heat conduction [93, 94], a Hamilton/Jacobi based model

for weak scattering [18, 95] and a thermal wave impedance-based model [96].

In the spatial domain the inverse scattering technique has been used to recon-

struct both thermal conductivity and heat capacity depth pro�les [97] and the

conjugate gradient technique has been used to optimise the �t. In the time

domain, the e�usivity depth pro�le has been reconstructed [17, 98] and the

neural network approach has been used to �nd the best �t [99].

In his book [100], Beck provides a summary of his work on inverse heat con-

duction problems. Exact solutions of the inverse heat conduction problems and

estimation procedures with application to engineering problems are provided.

Öz�³�k and Orlande in their book [101] present in detail the basic steps of four

techniques of solution of inverse heat transfer problem, as a parameter estima-

tion approach and as a function estimation approach. A range of applications

of such techniques to the solution of inverse heat transfer problem of practical

engineering interest, involving conduction, convection and radiation has been

presented. The authors introduce a formulation based on generalised coordi-

nates for the solution of inverse heat conduction problems in two-dimensional

regions.
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1.4 Object of the thesis

This thesis aims to provide original contributions on both aspects of thermog-

raphy that are the forward modelling and the inverse one: The �rst consists

of computing the excitation terms, the thermal di�usion phenomenon and the

measurement of the temperature distribution at the observed surface. The

second, in which information about the work-piece is retrieved from thermo-

graphic measurement and the knowledge of the forward process on one side,

and some a priori information on the other side.

Concerning the forward modelling, many numerical solvers already exist for

the solution of the heat equation in two or three dimensions. Their generality

is obtained through a discretized description of space, which makes them case

dependent from the meshing point of view. This point is a problematic one

when the simulation tool is developed toward industrial users, who are experts

in NDT techniques but have limited knowledge of numerical analysis in general

and meshing strategies in particular. Another disadvantage of such methods

is computation time, which can be very high when considering large problems,

even if their complexity in terms of geometry is low.

Simulation tools based on semi-analytical models have been proposed in

the literature to address simpler cases. These tools are proven to be very

fast in comparison to numerical ones, but make some strong assumptions that

limits their domain of application. This thesis aims at proposing hybrid solvers

combining numerical and semi-analytical solutions, to achieve at some point

generality without paying the price of a three-dimensional meshing and high

computational time. Besides, the adaptation of modal methods that have been

proven to be very e�cient in low-frequency electromagnetics will constitute an

original contribution to the community of thermography simulation.

Speaking of the imaging part, the detection of the �aws in the work-piece,

through recorded or synthetic noisy signals, and their characterization is aimed
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at. Signal techniques will be used to denoise the temperature time-dependent

signals and compress them. The detection of the �aws will be conducted with

image processing techniques. Last, optimization techniques will be used for the

characterization of the �aws using a priori information from the preprocessing

part. The main goal of the imaging part is the perfect conjunction of the

techniques to have a fully automated procedure for the inspection.

1.5 Thesis outlines

The thesis is divided into �ve chapters. The �rst one introduces the research

framework and the contributions of this thesis. The theoretical background of

modelling in thermography non-destructive testing is introduced in Chapter 2

where a semi-analytical model based on the so-called truncated region eigen-

function expansion method is proposed. The general theory of the strategy

used for defect characterization is introduced in Chapter 3. The used tech-

niques and methods for the detection and the characterization of abnormalities

in planar media are presented in detail. The numerical implementation of the

derived semi-analytical model, its numerical evaluation and its computational

performance are discussed in detail in Chapter 4. This discussion is followed

by numerical results of the forward model as well as results for delamination

detection and characterization in planar layered media. Chapter 5 summarizes

the achieved work and sets forth some perspectives. Appendices provide sup-

plementary materials, including the published and submitted contributions.
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Chapter 2

Modelling in TNDT

2.1 The di�erential heat conduction equation for

homogeneous isotropic solid

The starting point is the heat equation, also called the heat conduction equa-

tion for a stationary, homogeneous, isotropic solid with heat generation within

the body:

∇2T (r, t)− 1

α

∂

∂t
T (r, t) = −1

k
g(r, t) (2.1.1)

which describes how the distribution of heat evolves over time in a body. The

temperature T , [K] is a function of space r ∈ R3, [m] and time [s]. The

constant α is a material-speci�c quantity called by Kelvin thermal di�usivity

of the substance [m2s−1] and is de�ned as:

α =
k

ρcp
. (2.1.2)

The parameter k is the thermal conductivity [Wm−1K−1] of the region of

space where the Eq. (2.1.1) holds. In general the thermal conductivity may be

a function of temperature and therefore may vary with position in the body.
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The parameter ρ is the mass density [kgm−3] and cp the speci�c heat capacity

at constant pressure [Jkg−1K−1]. In general the density and the speci�c heat

capacity are functions of temperature but small �uctuations of temperature

do not a�ect signi�cantly their values.

On the right-hand side of Eq. (2.1.1), the term g(r, t) is the thermal source

volumetric density which expresses the energy generation throughout the vol-

ume of the body and its unit is [Wm−3]. It is distinguished from energy that

enters the body through its boundaries. The energy generation is in the general

case a function of the position in the body and it may vary with time.

The di�erential equation of heat conduction is a consequence of the energy

conservation law and Fourier's law of conduction, which in its di�erential form

states that the local heat �ux density J is equal to the product of thermal

conductivity k and the negative local temperature gradient, −∇T

J = −k∇T. (2.1.3)

In the Cartesian coordinate system, for an isotropic body, the heat �ux vector

can be decomposed as:

Jx = −k∂T
∂x

, Jy = −k∂T
∂y

, Jz = −k∂T
∂z

. (2.1.4)

2.1.1 Boundary and initial conditions

This thesis is concerned with solutions to the heat conduction equation as

they apply to problems in engineering and physics. The mathematical form

of the solutions is determined by the boundary conditions, that is, the value

of the temperature or its derivative at the boundaries of the heat conducting

body. The combination of the heat conduction equation, the speci�c boundary

conditions, and the initial condition is called a boundary value problem. This
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2.1. THE DIFFERENTIAL HEAT CONDUCTION EQUATION FOR

HOMOGENEOUS ISOTROPIC SOLID

thesis is concerned with orthogonal bodies, whose boundaries coincides with

one constant coordinate. The number of boundary conditions for a boundary

value problem depends on the form of the heat conduction equation and the

geometry of the system under consideration.

Six di�erent boundary conditions are given here, which covers a wide range

of possible situations one could face.

I. The �rst kind of boundary condition is the prescribed temperature at

boundary i,

T (ri, t) = fi(ri, t) (2.1.5)

where fi(ri, t) is the space- and time-dependent surface temperature.

II. The second kind of boundary condition is prescribed heat �ux,

k
∂T

∂ni

∣∣∣∣
ri

= fi(ri, t) (2.1.6)

where ni is an outward pointing normal.

III. The third kind is a convective boundary condition,

k
∂T

∂ni

∣∣∣∣
ri

+ hi T |ri = fi(ri, t) (2.1.7)

where hi is the heat transfer coe�cient and fi(ri, t) being usually equal

to hiT∞ with T∞ being the ambient temperature. This does not exclude

the case of fi(ri, t) including a prescribed heat �ux.

IV. The fourth kind is for a thin �lm at a surface with a prescribed heat

�ux fi(·),

k
∂T

∂ni

∣∣∣∣
ri

= fi(ri, t)− (ρcpd)i
∂T

∂t

∣∣∣∣
ri

(2.1.8)
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where (ρcpd)i if for the thin �lm and d is its thickness at the ith surface.

V. The �fth kind of boundary condition is for a thin �lm permitting losses

from the �lm convection,

k
∂T

∂ni

∣∣∣∣
ri

+ hi T |ri = fi(ri, t)− (ρcpd)i
∂T

∂t

∣∣∣∣
ri

(2.1.9)

This boundary condition is physically identical to the fourth kind bound-

ary condition except that instead of a speci�ed heat �ux on the thin �lm

at the surface there is a speci�ed heat transfer coe�cient h.

VI. Another important case is the zeroth kind, the so-called natural bound-

ary condition or the absorbing boundary condition. It is for conditions

for which there is no physical boundary but for computational purposes

boundary condition has to be imposed to the problem. It includes several

cases, one of which is when a boundary extends to in�nity.

When a system consists of a composite body, interface conditions are ap-

plied in a manner similar to the boundary conditions at the interfaces of the

body's parts. Suppose here a system of two di�erent media with di�erent

thermal properties. Let T (1) be the temperature in the �rst media and T (2)

in the second one, with k(1) and k(2) being the corresponding conductivities.

Two types of interface conditions can be de�ned here.

A. Perfect contact

T (1)
∣∣
ri

= T (2)
∣∣
ri

(2.1.10a)

− k(1)∂T
(1)

∂ni

∣∣∣∣
ri

= − k(2)∂T
(2)

∂ni

∣∣∣∣
ri

. (2.1.10b)

These conditions apply in the case of close contact between the two me-

dia. The �rst equation sets continuity of the temperature and the second

equation sets continuity of the heat �ux through the interface.
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HOMOGENEOUS ISOTROPIC SOLID

B. Interface heat source

T (1)
∣∣
ri

= T (2)
∣∣
ri

(2.1.11a)

− k(1)∂T
(1)

∂ni

∣∣∣∣
ri

= − k(2)∂T
(2)

∂ni

∣∣∣∣
ri

+ fi(ri, t). (2.1.11b)

These conditions correspond to heat production or absorption at the loca-

tion of the interface . In this way, a heating �lm i.e. Joule e�ect between

the two media can be treated. The �lm is considered to have high thermal

conductivity and low thermal capacity.

In the transient regime, in order to complete the formulation of the prob-

lem, an initial temperature distribution has to be set. Expressed in general

coordinates this equation is

T (r, 0) = F (r) (2.1.12)

and for an one-dimensional case with x being the coordinate, T (x, 0) = F (x).

Often, instead of F (·) the notation T0 is used to denote the initial condition

where the space variable has been omitted and the subscript zero states the

initial time, t = 0.

Without loss of generality and since it is mathematically convenient one can

choose the zero of the temperature scale as an initial condition. This is allowed

by the gauge invariance of the temperature which implies that the solution for

the temperature does not depend on the choice of the initial temperature or

its scale.
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2.2 Heat equation in planar layered media in

time domain

The geometry of the developed models in this thesis concerns three-dimensional,

planar, multi-layered structures with respect to the z-direction. For simplic-

ity, our model consists of two thin layers of di�erent solids, in�nite in the x

and y-directions, above and below them semi-in�nite, in the z-direction, layers

of air completing the physical con�guration depicted in Fig. 2.2.1. The heat

di�usion phenomena can be described in each layer by Eq. (2.2.1a) with T (j)

being the temperature in the jth layer of the media.

z

x

L

T
(1)

T
(2)

T
(3)

T
(4)

0

−d1

−(d1 + d2)

Figure 2.2.1: Two-dimensional illustration of a typical thermographic
inspection consisting of a double-layered piece of two di�erent materials

illuminated by a �ash lamp with two insertions.

Equations (2.2.1f) and (2.2.1g) describe the temperature and the heat �ux

continuity, respectively, at the interface (z = zi) where perfect contact between

the layer (j) and (j + 1) has been assumed.

The system is thermally excited by a �ash lamp set above the second layer.

The impact of the excitation can be modelled in terms of an additional thermal

�ux at the interface between the �rst and second layers of the model and

perpendicular to this interface. The continuity conditions at this interface are
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DOMAIN

described by Eq. (2.1.11) where the function fi has been replaced now by the

term Je [Wm−2], see Eq. (2.2.1c).

Regions of imperfect contact, i.e., �aws, between the second and third

layer can be introduced into the model. The �aws will be modelled as very

thin insertions between the second and third layers. By modelling the �aws

as very thin with respect to the z-direction, they can be represented by a

thermal resistance R(x, y) between the two layers. The e�ect of the �aws

can be introduced into the mathematical model by modifying the temperature

continuity relation at that interface, which leads to Eq. (2.2.1d).

With the �rst and last layers being semi-in�nite, it is physically correct to

assume that the temperature far away from the source will remain at its initial

ambient temperature T0. Mathematically, the problem depicted in Fig. 2.2.1

can be expressed by the system Eq. (2.2.1).

∇2T (j)(r, t)− 1

α(j)

∂

∂t
T (j)(r, t) = 0 (2.2.1a)

T (1)
∣∣
z1

= T (2)
∣∣
z1

(2.2.1b)

− k(1)∂T
(1)

∂z

∣∣∣∣
z1

= − k(2)∂T
(2)

∂z

∣∣∣∣
z1

+ Je(x, y) · δ(t) (2.2.1c)

T (2)
∣∣
z2
− T (3)

∣∣
z2

= −R(x, y) · k(2) ∂T
(2)

∂z

∣∣∣∣
z2

(2.2.1d)

− k(2)∂T
(2)

∂z

∣∣∣∣
z2

= − k(3)∂T
(3)

∂z

∣∣∣∣
z2

(2.2.1e)

T (3)
∣∣
z3

= T (4)
∣∣
z3

(2.2.1f)

− k(3)∂T
(3)

∂z

∣∣∣∣
z3

= − k(4)∂T
(4)

∂z

∣∣∣∣
z3

(2.2.1g)
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lim
z→−∞

T (1) = T0 (2.2.1h)

lim
z→−∞

T (4) = T0 (2.2.1i)

T (j)(r, 0) = T0 (2.2.1j)

2.3 Transformation of the problem in Laplace

domain

The boundary value problem described by Eq. (2.2.1) will be solved in the

Laplace domain with respect to time. Assuming that the temporal one-side

Laplace transform of T (r, t) exists,

L{T (r, t)} ≡ T̂ (r, s) =

∫ ∞

0

T (r, t)e−st dt (2.3.1)

where s is the Laplace variable, the system de�ned by Eq. (2.2.1) can be

transformed to the Laplace domain. The governing equation (2.2.1a) becomes

∇2T̂ (j)(r, s)− s

α(j)
T̂ (r, s) + T (r, 0−) = 0 (2.3.2)

where T (r, 0−) refers to the temperature before the initial time and from now

on will be assumed to be zero, T (r, 0−) = 0. The boundary value problem in

the Laplace domain becomes

∇2T̂ (j)(r, s)− s

α(j)
T̂ (r, s) = 0 (2.3.3a)

T̂ (1)
∣∣∣
z1

= T̂ (2)
∣∣∣
z1

(2.3.3b)

− k(1)∂T̂
(1)

∂z

∣∣∣∣∣
z1

= − k(2)∂T̂
(2)

∂z

∣∣∣∣∣
z1

+ Je(x, y) (2.3.3c)

20



2.4. THE TREE METHOD

T̂ (2)
∣∣∣
z2
− T̂ (3)

∣∣∣
z2

= −R(x, y) · k(2) ∂T̂
(2)

∂z

∣∣∣∣∣
z2

(2.3.3d)

− k(2)∂T̂
(2)

∂z

∣∣∣∣∣
z2

= − k(3)∂T̂
(3)

∂z

∣∣∣∣∣
z2

(2.3.3e)

T̂ (3)
∣∣∣
z3

= T̂ (4)
∣∣∣
z3

(2.3.3f)

− k(3)∂T̂
(3)

∂z

∣∣∣∣∣
z3

= − k(4)∂T̂
(4)

∂z

∣∣∣∣∣
z3

(2.3.3g)

lim
z→−∞

T̂ (1) = T̂0 (2.3.3h)

lim
z→−∞

T̂ (4) = T̂0 (2.3.3i)

2.4 The TREE method

A classical analytical solution of a thermal problem is given by, perhaps the

most powerful analytical method, separation of variables. This aspect of ana-

lytical solutions has been explored in depth. In this thesis, a semi-analytical

solution of the (translated in the Laplace domain with respect to time) ther-

mal di�usion problems which are based on Truncated Region Eigenfunction

Expansion (TREE) method is proposed. This method was historically intro-

duced to solve low-frequency electromagnetic problems [102]. As in the classical

approach, the method uses separation of variables to express the temperature

�eld in the various regions of the problem in analytical form. The solution

domain is subject to truncation to limit the range of a coordinate that would

otherwise have an in�nite span. As a result, the solution on that coordinate

is expressed in a series form, instead of an integral form, which has numerous

advantages.
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The main advantage of the domain truncation is the satisfaction of the

�eld continuity at various interfaces simultaneously after a selection of the

discrete eigenvalues and the corresponding eigenfunctions. This expands the

class of problems which can be treated by the method. The matching of the

�eld expressions at interfaces is done either in a term by term basis or by

mode-matching where the testing functions are the same as the expansion

ones. The later allows the TREE method to contain a mesh-less Galerkin type

procedure. This advantage may arise, for example, in layered media, when

one of the layers is much narrower than the other layers or when the thermal

properties change radically between the media's layers. In such cases, the

accuracy of the solution is independent of the meshing of the computational

domain. This is in contrast with numerical methods where re�nement of the

mesh may be required in parts of the computational domain.

The method is shown to provide easily calculated accurate solutions. In

general, the series-form nature of these solutions makes their numerical im-

plementation easy in a machine using any low-level programming language or

even commercial mathematical packages. Moreover, they are extremely fast

and more memory e�cient compared to numerical methods. Due to their ac-

curacy they can easily be used for analysis, parametric studies or calibration

of test systems. These models provide an inexpensive alternative to experi-

mental veri�cation of numerical methods. Thus, they can be widely used for

validation of solutions from more complex numerical methods.

2.4.1 The TREE formulation of the problem

The boundary value problem described by Eq. (2.3.3) is solved in the Laplace

domain with respect to time. The solution of the problem with the TREE

method requires the truncation of the solution domain. That is done with

respect to x-coordinate and y-coordinate. This is an accurate enough approx-

imation when these limits are at a distance large enough so as the heat �aw
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in the region of interest is not a�ected by their presence.

To truncate the solution domain one has to impose boundary conditions

at x = 0, x = Lx and y = 0, y = Ly. The method gives freedom in the choice

of the boundary conditions. Dirichlet boundary conditions can be used, where

the �eld values on the boundary are speci�ed, Neumann boundary conditions,

where the normal derivatives of the �eld on the boundaries are speci�ed, or

even mixed boundary conditions, where �eld values are known on part of the

boundary while normal derivatives are known from the remaining part of the

boundary. If the geometry of the problem, as due to symmetry for example,

does not imply any boundary conditions the most mathematically convenient

choice should be used.

In our case, Dirichlet boundary conditions

T̂ (j)
∣∣∣
x=0

= T̂ (j)
∣∣∣
x=Lx

= 0 (2.4.1a)

T̂ (j)
∣∣∣
y=0

= T̂ (j)
∣∣∣
y=Ly

= 0 (2.4.1b)

will be applied in both x and y-directions.

The �rst step of the method is the application of the separation of variables.

One assumes that the unknown function T̂ which satis�es the heat equation

∇2T̂ (x, y, z; s)− s

α
T̂ (x, y, z; s) = 0 (2.4.2)

is a product of three one-variable functions as follows:

T̂ (x, y, z; s) = X(x)Y (y)Z(z). (2.4.3)

In equation (2.4.2), T̂ (x, y, z; s) is considered to be only a function of the

spatial variables (x, y, z) and the Laplace frequency (s) is considered to be a

parameter. Substituting Eq. (2.4.3) in Eq. (2.4.2) one obtains the following
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di�erential equation:

Y Z
d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2
− s

α
XY Z = 0. (2.4.4)

Dividing Eq. (2.4.4) by the product XY Z, which is not zero, yields:

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
=
s

α
. (2.4.5)

Each term in Eq. (2.4.5) is a function of one variable only, and therefore, each

term must be equal to a constant, in order for Eq. (2.4.3) to be satis�ed for

arbitrary values of the three independent variables (x, y, z). This means that

the following equations should hold:

1

X

d2X

dx2
= −κ2 (2.4.6a)

1

Y

d2Y

dy2
= −λ2 (2.4.6b)

1

Z

d2Z

dz2
= µ2. (2.4.6c)

Considering the di�erential equations (2.4.6), the general solution can be

written as

T̂ (j)(x, y, z; s) =
[
A

(j)
1 sin(κx) + A

(j)
2 cos(κx)

]
(2.4.7)

×
[
B

(j)
1 sin(λy) +B

(j)
2 cos(λy)

]

×
[
C

(j)
1 exp(−µ(j)z) + C

(j)
2 exp(µ(j)z)

]

for each (j) layer. The constants A1, A2, B1, B2, C1, C2 are to be determined

by satisfying the boundary and interface conditions. The separation constants

are linked together through the dispersion equation:

µ(j) =

√
κ2 + λ2 +

s

α(j)
. (2.4.8)
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If the region of interest was in�nite one would have to integrate over κ and λ

from 0 to∞ to get the general solution. Since the solution region is �nite, due

to truncation, κ and λ assume discrete values and to get the solution one has

to sum the modes up to ∞.

The Dirichlet boundary conditions, Eq. (2.4.1), should be satis�ed in x- and

y-direction from which the discrete eigenvalues κm and λn are to be determined

as

sin(κmLx) = 0, κm =
mπ

Lx
, m ∈ Z∗ (2.4.9a)

sin(λnLy) = 0, λn =
nπ

Ly
, n ∈ Z∗ (2.4.9b)

respectively. Thus, the dispersion equation (2.4.8) which links the discrete

eigenvalues can be written as

µ(j)
mn =

√
κ2m + λ2n +

s

α(j)
, m, n ∈ Z. (2.4.10)

The general solution, Eq. (2.4.7), should respect the applied Dirichlet

boundary conditions, Eq. (2.4.1), that have been set due to truncation of the

region in the x- and y-directions. Thus, equation (2.4.7) can be written as

T̂ (j)
mn(x, y, z; s) = A

(j)
1;m sin(κmx) (2.4.11)

×B(j)
1;n sin(λny)

×
[
C

(j)
1;mn exp(−µ(j)

mnz) + C
(j)
2;mn exp(µ(j)

mnz)
]

for each (j) layer. The solution in the x- and y-directions is expressed only

by sin(·) because of the Dirichlet boundary conditions where the terms of

cos(·) in the general solution have to be dismissed. The constants A1, B1 can

be absorbed by the constants C1, C2 where we write them now as C and D,

respectively, in order to simplify the notation. The general solution, for each
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m and n, can be written as

T̂ (j)
mn(x, y, z; s) = sin(κmx)× sin(λny)×

[
C(j)
mn exp(−µ(j)

mnz) +D(j)
mn exp(µ(j)

mnz)
]
.

(2.4.12)

By setting the truncation limits M and N in the x- and y-directions, re-

spectively, the temperature �eld in the Laplace domain for each (j) layer is

given by

T̂ (j)(x, y, z; s) =
M∑

m=1

N∑

n=1

[
C(j)
mn exp(−µ(j)

mnz) +D(j)
mn exp(µ(j)

mnz)
]

sin(κmx) sin(λny).

(2.4.13)

Given the condition

lim
z→±0

T̂ (x, y, z; s) = 0

an expression can be given for each layer of the considered con�guration

T̂ (1)(x, y, z; s) =
M∑

m=1

N∑

n=1

C(1)
mne

−µ(1)mnz sin(κmx) sin(λny) (2.4.14a)

T̂ (2)(x, y, z; s) =
M∑

m=1

N∑

n=1

[
C(2)
mne

−µ(2)mn(z+d1) +D(2)
mne

µ
(2)
mnz
]

sin(κmx) sin(λny)

(2.4.14b)

T̂ (3)(x, y, z; s) =
M∑

m=1

N∑

n=1

[
C(3)
mne

−µ(3)mn(z+d1+d2) +D(3)
mne

µ
(3)
mn(z+d1)

]
sin(κmx) sin(λny)

(2.4.14c)

T̂ (4)(x, y, z; s) =
M∑

m=1

N∑

n=1

D(4)
mne

µ
(4)
mn(z+d1+d2) sin(κmx) sin(λny). (2.4.14d)

The excitation term has been introduced in the model as a thermal �ux

Je(x, y) at the interface between the �rst layer and the second layer located at
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the altitude z = 0. From Fourier's law one has

Je(x, y) = −k(1)∂T̂
(e)

∂z
(2.4.15)

and by using Eq. (2.4.15) and the expression for the temperature �eld from

Eq. (2.4.14b) one has

Je(x, y) = −k(1)
M∑

m=1

N∑

n=1

µ(21
mnC

(e)
mn sin(κmx) sin(λny). (2.4.16)

The coe�cients of the excitation term can be calculated by projecting Eq. (2.4.16)

into the orthogonal basis in the x- and y-directions. The orthogonality of the

basis implies

∫ Lx

0

sin(κmx) sin(κm′x) dx =





Lx
2
, if m = m′

0, if m 6= m′
(2.4.17)

∫ Ly

0

sin(λny) sin(λn′x) dx =





Ly
2
, if n = n′

0, if n 6= n′
. (2.4.18)

Assuming that Je(x, y) is non-zero and constant only inside a rectangular

patch extending from x1 to x2 and from y1 to y2 with 0 < x1 < x2 < Lx and

0 < y1 < y2 < Ly the coe�cients for the excitation term can be calculated

explicitly according to

C(e)
mn = − Q

k(1)µ
(1)
mn

4

LxLy

∫ y2

y1

∫ x2

x1

sin(κmx) sin(λny) dx dy (2.4.19)

where Q is the constant intensity of the source in its domain of support. In

the case of a more general source which is a function of space, the coe�cients
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for the source term can be calculated by

C(e)
mn = − 1

k(1)µ
(1)
mn

4

LxLy

∫ y2

y1

∫ x2

x1

Je(x, y) sin(κmx) sin(λny) dx dy. (2.4.20)

The contact between the second layer and the third layer in the geometry

shown in Fig. 2.2.1 is imperfect in a sub-domain of their interface. As declared

previously, this kind of imperfect contact between the two layers can model a

very thin delamination. In this case, the e�ect of the delamination can be taken

into account by only modifying locally the temperature continuity relation

between the two layers Eq. (2.3.3d). To be more speci�c, let us consider a

very thin defect between two planar media as shown in Fig. 2.4.1 where D is

the region of the delamination, ∆z is the size of this area in the z direction,

Sa and Sb are two �ctitious surfaces parallel to the interface between the two

layers at a distance ∆z/2 from them.

T (2)

T (3)

∆z=2

∆z=2
Sa

Sb

D

Figure 2.4.1: Modelling the delamination

By applying Fourier's law between the �ctitious surfaces Sa and Sb one has

Jz = −kd∇T̂ (2.4.21)

Jz = −kd
T̂ (2) − T̂ (3)

∆z
(2.4.22)

which leads to

T̂ (2) − T̂ (3) = −R(x, y)Jz (2.4.23)
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where Jz is the heat �ux in the z direction and R(x, y) represents the thermal

resistance between the two layers de�ned as

R(x, y) =
∆z

kd
, (x, y) ∈ D (2.4.24)

inside the defect domain D ∈ (0, Lx)× (0, Ly) and zero elsewhere. Here ∆z is

the size of the defect in the z direction and kd is the thermal conductivity of

the defect.

At this step, the temperature and the thermal �ux have to be replaced by

their series expressions, Eq. (2.4.14), in all continuity conditions. The set of

continuity relations is then written as a linear system of equations after the

application of the Galerkin variant of the Method of Moments [103]. The result

can be written in matrix form as

[A][X] = [B] (2.4.25)

where X contains the unknown coe�cients C(j)
mn and D(j)

mn. The matrix A has

to be numerically inverted in order to calculate the unknown coe�cients. The

inversion of this matrix is what makes the TREE method a semi-analytical one

and not analytical. The matrix in the right-hand side of the system, B, is quite

sparse as it di�ers from zero only in the lines which correspond to interfaces

where sources may be found, excitations or delamination. By calculating the

matrix X the solution of the problem can be numerically evaluated in the dis-

cretised space domain of interest using Eq. (2.4.14). This result is the solution

of the problem in the Laplace domain. The temperatures can be calculated in

the time domain, with numerical inversion of the obtained solution.

For the inverse Laplace transformation the Stehfest algorithm [104, 105]

has been used, which is an improved variant of Gaver's method [106]. The

methods is described in detail in appendix B.
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2.5 Validation of the assumption made on the

delamination thickness

In this section, the validity domain of the approximation for the �aw, which

was assumed to be very thin, will be investigated. For the needs of this inves-

tigation, a set of di�erent con�gurations has been modelled. For comparison,

these con�gurations have been modelled using the developed TREE model and

a numerical model based on the �nite integral technique (FIT) [59, 107, 108].

The general con�guration concerns double-layer metallic plate models with an

embedded �aw, in�nite in the x� and y�directions and parallel to the surface

of the plate. Two di�erent materials has been taken into account, namely alu-

minium as a high di�usive metal, corresponding to Fig. 2.5.1 and Fig. 2.5.2,

and steel as a low di�usive metal, corresponding to Fig. 2.5.3 and Fig. 2.5.4.

The temperature �eld has been simulated in re�ection and transmission. The

relative error of the simulated signals has been calculated and is shown in the

following �gures. The relative error is displayed as a function of the plate

and �aw thicknesses. The �aw thickness is given as a percentage of the plate

thickness and its depth as well. The values used for the con�gurations are

given in Table 2.5.1. In the following �gures, relative error contours are shown

corresponding to the four di�erent �aws' depths in each sub-�gure.

Plate thickness [mm] 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0

Defect thickness 1% to 10% of the plate thickness

Defect depth 10%, 30%, 50%, 70% of the plate thickness

Table 2.5.1: Parameters used for the investigation of the validity domain of
the assumption made on the delamination thickness.
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DELAMINATION THICKNESS

The four contour plots shown in Fig. 2.5.1 correspond to the case where an

aluminium plate and signals in re�ection are used. The error depends on the

plate thickness and the �aw depth. The error is increasing as the depth of the

�aw is increasing wherein the bottom right sub-�gure the error is the largest

one. However, there is no link between the error and the �aw thickness.
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Figure 2.5.1: Relative error [%] of the approximation for recorded signals in
re�ection as a function of plate thickness and �aw thickness. Aluminium

plate with embedded delamination at di�erent depth: Top left: 10%(d), Top
right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).

Considering the relative error for the same con�guration but using sim-
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ulated signals in transmission, results are shown in Fig. 2.5.2. The relative

error, in this case, is consistent with the �aw's depth and plate's thickness.

Its maximum is much lower than previously and its dependence is only on the

�aw thickness.
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Figure 2.5.2: Relative error [%] of the approximation for recorded signals in
transmission as a function of plate thickness and �aw thickness. Aluminium
plate with embedded delamination at di�erent depth: Top left: 10%(d), Top

right: 30%(d), Bottom left: 50%(d), Bottom right: 70%(d).

Using signals in re�ection for a steel plate, Fig. 2.5.3, one can see that

the relative error increases with the plate thickness and the �aw depth as well.
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2.5. VALIDATION OF THE ASSUMPTION MADE ON THE

DELAMINATION THICKNESS

This result agrees also with Fig. 2.5.1 where an aluminium plate was used. The

di�erence here is that the error is slightly larger, yet, practically acceptable.

In the cases where the �aw thickness is less than 2% of the plate thickness,
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Figure 2.5.3: Relative error [%] of the approximation for recorded signals in
re�ection as a function of plate thickness and �aw thickness. Steel plate with

embedded delamination at di�erent depth: Top left: 10%(d), Top right:
30%(d), Bottom left: 50%(d), Bottom right: 70%(d).

the discrepancy between the results obtained from the two methods does not

follow the trend of the error when the plate thickness is greater than 2% of the

plate thickness. This may be due to discretization issues on the FIT model
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and seems to be independent from the material.
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The relative error in the simulated signals in transmission, in the case of the

steel plate, appears to be very low as shown in Fig. 2.5.4. Its dependence on the

�aw's thickness is not clear any more. However, its relation with the plate's

thickness and �aw's depth agrees with the results shown for the aluminium

plate.
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2.6. SUMMARY

In conclusion, the model produces accurate results despite the assumption

made on the delamination thickness. The relative error is consistent in the

tested cases and acceptable in the �eld of application.

2.6 Summary

In this chapter, a semi-analytical model based on the so-called truncated re-

gion eigenfunction expansion method, for the simulation of the thermographic

inspection was proposed. The problem was solved in the Laplace domain with

respect to time, and the temperature distribution was approximated by its

expansion on a tensor product basis. Con�gurations addressed by this model

were strati�ed planar pieces a�ected by thin delamination �aws. Considered

sources are lamps providing a thermal excitation at the surface of the inspected

piece. The thermal excitation at the surface of the layered media was provided

by a �ash lamp which is used in a wide range of applications. The description

of the delamination defects as thin air gaps between the piece layers proves to

be equivalent with the introduction of surface resistance to the heat �ow, thus

allowing their treatment via the applied modal approach without additional

discretisation.
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Chapter 3

Defect detection and

characterisation

A typical thermal non-destructive thermographic (TNDT) procedure results

in a sequence of infrared (IR) images, obtained via an infrared camera, which

re�ects the evolution of temperature in time. Mathematically, such a sequence

can be regarded as a three-dimensional matrix of temperature, with the di-

mension being space and time. This recorded thermal response, usually, is

degraded because of several factors. Uneven heating, variations of emissivity

on the observed surface, optical distortions and noises of multiple nature sig-

ni�cantly decrease the quality of the obtained thermal images. These factors

limit the potential sensitivity of any method. The goal of data processing in

TNDT is to reduce the amount of noise in thermal images and local storage

requirements while improving discontinuity visibility.

Data processing algorithms in TNDT are either one-dimensional, being

applied to pixel-based temperature evolutions in time, or two-dimensional,

being applied to single images (snapshots). Single IR images are normally

�ltered or segmented to reduce random noise or to analyse geometrical features

of the areas of interest. Much more information about defect parameters can

be obtained by analysing the evolution of temperature in time. Therefore,
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CHAPTER 3. DEFECT DETECTION AND CHARACTERISATION

most TNDT processing algorithms use pixel-based functions.

In this chapter techniques and methods used for the detection and the

characterisation of abnormalities in planar media will be presented.

3.1 Thermographic signal reconstruction.

Since its introduction [109], the thermographic signal reconstruction (TSR)

method has emerged as one of the most widely used methods for enhancement,

analysis and compression of raw thermographic sequences. The technique was

originally developed for pulse thermography to improve contrast results. The

process separates temporal and spatial noise components in the image sequence

and signi�cantly reduces temporal noise. The technique consists of two basic

steps. First step is the �tting of the experimental thermogram in the log-log

space by a logarithmic polynomial of degree n. This step provides a signi�-

cant compression of the raw data. In a later step, the reconstruction of the

temperature signals in the logarithmic domain using the polynomial has to

be performed, providing noise-reduced replica of each pixel time history. The

enhancement of the images is provided by the computation of the 1st and

2nd logarithmic time derivatives of the thermograms. Fitting to the thermo-

grams highly depends on the time window chosen. Thus, the choice of the

time window has to be de�ned with the objective to consider only the part of

the thermograms in�uenced by the physical phenomena to characterize. Even

though TSR is a pixel-based technique, unlike other techniques, it does not

require any reference pixel.

In the literature there are many variations of the TSR method, with the

"classic" one selecting the best, under some criteria, derivative images asso-

ciated with every given depth range. These images are used either to qual-

itatively detect the defects or to quantitatively evaluate their depths from

characteristic times. In Fig. 3.1.1 the basic stages of the TSR method for the
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3.1. THERMOGRAPHIC SIGNAL RECONSTRUCTION.

two most used variations are shown.
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Figure 3.1.1: Defect detection by the TSR method.
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Figure 3.1.2: One-dimensional heat di�usion.

In principle, the method exploits the well-known observation that in a

semi-in�nite �awless sample, or in a very thick slab, Fig. 3.1.2a, the surface

temperature response to instantaneous uniform heating is described by the
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one-dimensional heat di�usion equation:

∂T

∂t
= α

∂2T

∂z2
(3.1.1)

where α = κ
ρc

is the thermal di�usivity of the material with the solution

T (z, t) =
Q

ε
√
πt
e
z2

4αt (3.1.2)

at distance z from its surface, where ε =
√
κρc is the heat e�usivity and Q is

the energy supplied to the surface. From Eq. (3.1.2) one has the temperature

increase ∆T (thermogram) as a function of time t at the surface:

∆T (t) =
Q

ε
√
πt
. (3.1.3)

The one-dimensional approximation of Eq. (3.1.3) assumes that the lateral

di�usion components more or less cancel in a defect-free sample. However,

in the presence of an adiabatic subsurface boundary such as a void or a wall,

Fig. 3.1.2b, the incident heat �ow from the sample surface is impeded, and this

description no longer applies locally. The e�ect of a wall is shown in Fig. 3.1.3a

where the surface temperature for a semi-in�nite sample is compared with the

case of the presence of an adiabatic wall at three di�erent depths.

The defect's identi�cation lies in the fact that the one-dimensional assump-

tion is not valid any more if a defect is present. In general, the separation of

the temperature response at the surface of a solid between a sound area and a

defected area, during the cooling process, should be simple when these defects

are large or very close to the surface, as shown in Fig. 3.1.3b. However, when

one attempts to detect small buried defects, the e�ects of IR camera noise as

well as the randomness or the complexity found in many samples, complicate

and limit the ability to discriminate between sound areas and boundaries.

Additional insight into the surface temperature response to pulsed heating
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Figure 3.1.3: Surface temperature decay curves for a single point of a steel
plate.

is gained by considering the time evolution of the surface temperature in the

logarithmic domain. Equation (3.1.3) can be written in the logarithmic scale

as

ln (∆T ) = ln

(
Q

ε
√
π

)
− 1

2
ln (t) . (3.1.4)

This representation is very signi�cant from many aspects. The time depen-

dence has been separated from the input energy and material properties. Only

the o�set of the response will change as the sample material and the input en-

ergy vary.

For a semi-in�nite solid, Eq. (3.1.4) describes a straight line with slope

equal to −1/2, as pictured in Fig. 3.1.4a. In the case of a plate, the response

deviates from the straight line at a particular time. This particular time is

correlated to the thickness of the plate. In the presence of a subsurface defect

in a plate, or in a semi-in�nite solid, the time evolution plot of the temperature

corresponding to those pixels depart from that behaviour in a particular time
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Figure 3.1.4: Regression by a logarithmic polynomial of degree n equal to 7
and 17, for a sound and a damaged zone.

but in a di�erent way comparing to the case of the adiabatic �aw-free plate, as

shown in Fig. 3.1.4b. In Fig. 3.1.4a and Fig. 3.1.4b, the thermograms have been

normalised based on Eq. (3.1.4) where the term which describes the source and

the material e�ect have been removed.

Noise reduction and data compression

For a given position, the response given by Eq. (3.1.4) can be approximated

by a function or set of orthogonal functions. In this case a polynomial series

will be used to �t the experimental data in log-log space:

ln (∆T ) =
N∑

n=0

an [ln(t)]n . (3.1.5)

The �tting of the log-log thermogram, for each pixel (i, j), by the logarith-

mic polynomial replaces the full sequence of the temperature images T (i, j, t)
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by the series of (n+1) images of the polynomial coe�cients: a0(i, j), · · · , an(i, j).

Once the time evolution of each pixel has been approximated by Eq. (3.1.5),

the original data can be reconstructed as:

∆T = exp

(
N∑

n=0

an [ln(t)]n
)
. (3.1.6)

Thus, it is only necessary to save the polynomial coe�cients an and reconstruct

the images stack at required time samples. This approach provides a signi�cant

degree of data compression. An high-speed IR camera produces images with

a frame rate up to 1kHz, i.e. 1000 images per second, while the polynomial

degree used for the regression is lower than 15 for the whole recorded image

sequence.

A low�degree polynomial expansion is applied usually to serve as a low�pass

�lter. Thus, this approximation preserves the essential thermal response, while

rejecting non�thermal noise contributions. The use of higher-order polynomials

reproduces the original data and replicates also part of the noise that appears

in the later, low�amplitude data. In Fig. 3.1.5 reconstructed noisy signals by

using polynomial degrees n = 7 and 17, with and without the presence of a

defect, are compared.

Logarithmic Derivatives and Signal Enhancement

As shown, the use of TSR removes e�ectively the temporal noise from the

recorded raw data. However, the reduction of temporal noise does not nec-

essarily increase the �aw detectability, which is more related to the contrast

between the signal and background. This contrast not only depends on the

instrumentation and the experimental conditions but also on the relative prop-

erties of the �aw and the host material. This can be partially addressed by

the computation of the �rst and second time derivatives, using Eq. (3.1.5),
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Figure 3.1.5: Regression by a logarithmic polynomial of degree n equal to 7
and to 17, for a sound area and a �awed area.

without additional noise contributions, which leads to equations

d ln (∆T )

d [ln(t)]
=

N∑

n=1

nan [ln(t)]n−1 (3.1.7)

d2 ln (∆T )

d [ln(t)]2
=

N∑

n=2

n(n− 1)an [ln(t)]n−2 (3.1.8)

for the �rst and the second derivative, respectively. The temperature in the

logarithmic scale has been compared with the �rst and the second time deriva-
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tive for a sound area and a �awed area in Fig. 3.1.6.
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Figure 3.1.6: 1st and 2nd derivatives for a thick steel plate, with and
without �aw.

Moreover, the reconstructed images su�er from di�usion blurring. The

peaks in the derivative signals always occur before the contrast peak in the

temperature�time image signal, as depicted in Fig. 3.1.7. Maximum contrast

can be obtained earlier for derivative images compared to conventional images

because the ascending in�exion point in the temperature-time evolution of

a pixel corresponds to a maximum in the time evolution of the �rst time

derivative, and the ascending in�exion point of the �rst derivative corresponds
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to a maximum in the second derivative time evolution. The derivative images

provide earlier indications of the presence of a subsurface defect than normal

contrast images of the same target and this leads to signi�cant reduction of

di�usion blurring.
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Figure 3.1.7: Contrast curves for a damaged area.

The denoising provided by TSR is not limited to the time signals but has

been partially transmitted to the spatial signals also, this is an indirect e�ect.

The derivatives, by de�nition, are much more sensitive to small changes in

amplitude than the raw signal. However, after the application of the TSR

that acts as a low-pass �lter, the derivatives are less sensitive to random sig-
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nal �uctuations. In Fig. 3.1.8 the temperature of the raw signals versus the

horizontal position plot of the steel defect sample and the TSR �rst derivative

are compared.
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(c) TSR 2nd derivative for the same line.

Figure 3.1.8: Comparison of raw and TSR results for a horizontal line
through the centre row of delamination.

The derivative signals have been partially denoised by TSR, too. The

high sensitivity of the derivatives to small changes makes them ideal for the

detection of features that can be undetectable in the original data. Comparing
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now images obtained from TSR, �rst and second derivatives, Fig. 3.1.9, it is

obvious that the images are sharper and the detectability of small �aws has

been signi�cantly improved.
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Figure 3.1.9: Comparison of raw, TSR, 1st and 2nd derivative images.

3.1.2 TSR-based method

As long as detection only is aimed at and no identi�cation of the depth of the

defects is required, a new TSR-based method can answer with success. In the
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"classic TSR" method, as explained before, all the information needed for the

defect detection is stored in the coe�cients of the �tted polynomials which

are used to reproduce the signals and their time derivatives images. The new

TSR-based method uses the original method as a basic pre-processing opera-

tion to compute and store the coe�cients of the �tted logarithmic polynomials.

Instead of using these coe�cients to reproduce the signals or their time deriva-

tives, images are formed for each monomial. In a second step, only the three

best images, out of n + 1 images for a polynomial of degree n, are selected

and projected into an RGB basis to form a unique composite image. This

representation makes easier the detection of defects located at di�erent depths

using one single image. In the "classic TSR", however, one has to go through

all observation times to choose the best-produced image or images.

Like in all TSR�based approaches, the choice of the observation time win-

dow and the degree of the polynomial are very crucial. It is shown that a

polynomial of degree 11 �ts very well the data for time analysis of logarith-

mic images but for defect imaging and detection a polynomial of degree 5 to

8 can be considered as optimal, see Appendix D. For the results shown in

Fig. 3.1.10, a polynomial of degree n = 7 is used. The best images, in this

case, were found to be those corresponding to monomials 7, 6 and 5, shown

in Figs. 3.1.10a to 3.1.10c and used to produce the composite RGB image

Fig. 3.1.10d.

3.2 Edge detection and shape reconstruction

3.2.1 The Canny algorithm

One of the well-established edge-detection algorithms is the so-called Canny

algorithm [110]. Because of a better signal to noise ratio and detection accu-

racy, the Canny operator becomes the evaluation criterion of other methods.

The algorithm consists of Gauss �ltering, gradient calculation, non-maximum
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Figure 3.1.10: First row: grey level images (256 bits) of individual
component. Second row: RGB projection of these components.

suppression, double thresholding, checking the edges and connecting the edges.

Gaussian �ltering and gradient computation In its classical form, the

Canny algorithm processes the image smoothly through Gaussian convolution

and obtains the gradient image through di�erential operation to the image

which is processed via Gaussian convolution. Consider the two-dimensional

Gaussian function:

G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(3.2.1)

50



3.2. EDGE DETECTION AND SHAPE RECONSTRUCTION

with mean µ = 0 and standard deviation σ. The parameter σ is the width of

the Gaussian �lter and directly determines the e�ect of �ltering. The �ltered

image is derived from the convolution

Î(x, y) = G(x, y) ∗ I(x, y) (3.2.2)

where I(x, y) is the original image matrix. Making use of Gaussian function's

separability, ∇G can be decomposed to two one-dimension �lters:

∂G

∂x
= kx exp

(
− x2

2σ2

)
exp

(
− y2

2σ2

)
(3.2.3a)

∂G

∂y
= ky exp

(
− y2

2σ2

)
exp

(
− x2

2σ2

)
. (3.2.3b)

By convolving these equations with the image we obtain:

Lx =
∂G

∂x
∗ I(x, y), Ly =

∂G

∂y
∗ I(x, y) (3.2.4)

where in a matrix representation this can be written as:

Lx = Kx ∗ I(i, j), Ly = Ky ∗ I(i, j) (3.2.5)

where i and j are the coordinates of a pixel in the image.

This is a way to compute the gradient, but not the only one. Di�erent

kernels can be used to calculate the image gradient. This could separate the

denoising part of the algorithm from the computation of the gradient. For the

traditional Canny algorithm, two 2× 2 convolution operators Kx and Ky are

deployed to calculate the image gradient in the x and y directions, respectively.

These operators are written as:

Kx =


1 −1

1 −1


 , Ky =


 1 1

−1 −1


 . (3.2.6)
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The angle accuracy of the computation of the gradient can be improved by

using 3× 3 or 5× 5 truncated area sampled Gaussian derivatives, Eq. (3.2.3),

as the Scharr kernel:

Kx =




47 0 −47

162 0 −162

47 0 −47


 , Ky = KT

x . (3.2.7)

or the proposed [111] Gaussian derivative with optimized sigma σ = 0.6769

Kx =




0.0007 0.0037 0 −0.0037 −0.0007

0.0052 0.1187 0 −0.1187 −0.0052

0.0370 0.2589 0 −0.2589 −0.0370

0.0052 0.1187 0 −0.1187 −0.0052

0.0007 0.0037 0 −0.0037 −0.0007




, Ky = KT
x . (3.2.8)

which gives a minimal angle error.

In general, 2× 2 or 3× 3 kernels based on �nite di�erences are used for the

computation of the gradient. These kernels perform well in not challenging

situations. In the literature one can �nd many other derivative kernels which

provide also some smoothing in the data, with the most used ones being the

Sobel operator:

Kx =




1 0 −1

2 1 −2

1 0 −1


 , Ky = KT

x (3.2.9)

the Roberts operator:

Kx =


1 0

0 −1


 , Ky = KT

x (3.2.10)
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and the Previtt kernel:

Kx =




1 0 −1

1 0 −1

1 0 −1


 , Ky = KT

x . (3.2.11)

After convolution of the image with the kernels, the gradient-component

intensity of the image is derived from:

M(i, j) =
√
L2
x(i, j) + L2

y(i, j) (3.2.12)

and its normal vector direction at the pixel (i, j) is de�ned as:

θ(i, j) = arctan

[
Lx(i, j)

Ly(i, j)

]
. (3.2.13)

Non-maximum suppression To follow, after smoothing the image using

Gaussian smoothing and convolving it with derivative kernels, we end up with

the gradient magnitude image M(i, j) which re�ects the edge intensity at the

pixel(i, j) and θ(i, j), which re�ects the normal vector at the pixel (i, j) in

the image. Edges of objects can be extracted from the gradient component

intensity image but they will be quite blurry. In this step, the algorithm

aims at thinning those edges by setting the pixels around local maxima in the

gradient image M to 0.

Firstly, the direction angle is rounded to 0◦, 45◦, 90◦, 135◦ for the relative

position in adjacent pixels of the image. Aiming at every pixel whose value

is non-zero, the gradient-component intensity of a candidate pixel M(i, j) is

compared with two adjacent pixels along the rounded direction angle. The

candidate pixel is preserved only if its gradient component intensity is the

largest. Otherwise, it is set to zero. Let the processed image be M̂(i, j).
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Thresholding The non-maximum suppression gives the non-zero pixels pro-

viding more accurate approximation regarding the edges of the objects in the

processed image M(i, j). These pixels are taken as the edge pixels. Due to

noise in the original image, M̂(i, j) contains pixels depicting false edges, the

spurious edge response. To mitigate these spurious edges, hysteresis tracking

is performed using dual thresholding by setting a high τh and a low τl thresh-

old parameter. Edge pixels which have gradient larger than τh are added

automatically to the �nal binary image and are considered as strong edge pix-

els. In opposition, edge pixels with a gradient lower than τl are considered as

phantom edges and are discarded. The remaining pixels with a gradient value

between τl and τh are considered as weak edges and are added to the �nal

binary image only if they are connected with a strong edge pixel. When none

of the 8-connected neighbourhood pixels is a strong pixel, the candidate pixel

is suppressed.

The choice of thresholds is very crucial for the success of the method. The

algorithm can wipe o� most of the spurious edges while increasing the value

of τh, but meanwhile, some edges may be missed. On the other hand, by

decreasing the value of τl more information about the edges will be preserved

but by the contrary, the edge's characteristic will become less and less at the

point where the true edges will be missed. Auto-select thresholding value is

a di�cult task. At present, there are many kinds of methods in selecting

threshold values. The more widely used is the Otsu method [112] but also

other methods based on histogram, maximum entropy, or statics are used

[113, 114, 115].

The Otsu method has the best threshold value in the statistical sense and

is the most stable method in the image threshold segmentation. The method

has been used here to choose the value of τh automatically. The method as-

sumes that the pixels of the image to be thresholded can be separated into two

classes, e.g. foreground and background, then calculates the optimum thresh-
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old separating those two classes so that their combined spread is minimal.

Suppose that G = [0, L− 1] is the range of greyscale of in image F and Pi

is the probability of every greyscale and the threshold value τ has splitted the

image in two classes which are C0 = [0, τ ] and C1 = [τ + 1, L − 1]. The two

classes probabilities are

α0 =
τ∑

i=0

Pi

and

α1 = 1− α0

respectively. The average grey values of the two classes are

µ0 =
τ∑

i=0

iPi
α0

=
µτ
α0

and

µ1 =
L−1∑

i=τ+1

iPi
α1

=
µ− µτ
1− α0

respectively, therein

µ =
L−1∑

i=0

iPi, µτ =
τ∑

i=0

iPi.

The criterion function has been de�ned as variance between the two classes,

expressed as

η2(τ) = α0 (µ0 − µ)2 + α1 (µ1 − µ)2 (3.2.14)

= α0α1 (µ0 − µ1)
2 . (3.2.15)

The optimal threshold value τ ? is given by

η2(τ ?) = max
0≤τ≤L

η2(τ). (3.2.16)
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Threshold τ ? will be used as the high threshold parameter τh. The value of

the low threshold τl, usually, is set to be τl = τh
2
.

Edge linking The last step of the algorithm is the connection of already

detected edges on the binary image under some restrictions. These restrictions

are criteria set upon the gradient value M̂(i, j) and the gradient angle θ(i, j)

of the non-edge pixels between two edges. If the gradient is greater than a

given value and the gradient angle is close to zero, the pixels between the two

edges are added to the binary image.

The output of the Canny algorithm is a binary image which contains the

edges of any present objects in the initial image. This binary image will be

used as a-priori information in the next step of the defect characterisation.

3.3 Parameter estimation - Optimization

We will be seeking to characterize detected �aws which are described through

some parameters. Hence, these parameters have to be estimated. A classi-

cal approach of parameter estimation has been taken in this thesis. For its

completeness, the optimization method will be presented in this section.

3.3.1 The function to be minimized

In the inversion process, one usually minimizes a discrepancy between some

experimental data, say ud, and some model data, say u. The discrepancy

function also called cost or objective function, is often expressed as a norm of

the di�erence between ud and u. Classically, one uses the L2(·) norm if some

continuous u and especially ud are available. When the available data ud are

given only at speci�c locations, then the squared Euclidean norm is to be used:

||u− ud||22 :=
∑

i

(
ui − uid

)2
=

∫

S
δji (u− ud) ds (3.3.1)
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where δji = d(xi − xj). In order to write down a general form for the cost

function to be minimized, we use:

J = f
(
||u− ud||2

)
(3.3.2)

without specifying any choice of the norm. The norm || · || is squared so that

the function J does not a priori present discontinuity. Regularization terms

could be added to the cost function which would become:

J = f
(
||u− ud||2

)
+ g

(
||ψ||2

)
. (3.3.3)

Therefore the cost function is explicitly given in terms of u, it is actually

to be minimized with respect to what is searched, the parameters ψ. Hence

we write the equality:

j(ψ) := J (u) (3.3.4)

where the function j is the so-called reduced cost function, as opposed to J
which is the cost function.

3.3.2 Elements of minimization

The function denoted j is de�ned onK with values in R. K is a set of admissible

elements of the problem. In some cases, K de�nes some constraints on the

parameters or functions. The minimization problem is written as:

inf
φ∈K⊂V

j(φ). (3.3.5)

Using the notation "inf" for a minimization problem means that one does
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know, a priori, if the minimum is obtained, i.e. if there exists φ ∈ K such that:

j(φ) = inf
ψ∈K⊂V

j(ψ).

To indicate that the minimum is obtained, one should prefer the notation:

φ = arg min
ψ∈K⊂V

j(ψ).

If j is a convex function in K, the local minimum of j in K is the global

minimum in K.

3.3.3 Optimality conditions

For convex functions, there is no di�erence between local minima and global

minimum. Thus, we are more interested in minimizing a function without

specifying whether the minimum is local or global.

Let us derive here the minimization necessary and su�cient conditions.

These conditions use the �rst-order derivatives (order-1 condition), and second-

order derivatives (order-2 condition) on the cost function j. Using gradient-

type algorithms, the �rst-order condition is to be reached, while the second-

order condition leads to �x the convexity hypothesis, and then make a distinc-

tion between minima, maxima and optima.

Let us assume that j(ψ) is continuous and has continuous partial �rst

derivatives ∂j(ψ)
∂ψi

and second derivatives ∂2j(ψ)
∂ψi∂ψj

. Then the necessary condition

for ψ̃ to be a minimum, at least locally, of j is that:

(i) ψ̃ is a stationary point, i.e. ∇j(ψ̃) = 0

(ii) the Hessian ∇2j(ψ̃) = ∂2j(ψ)
∂ψi∂ψj

is a positive semi-de�nite matrix, i.e.

∀y ∈ Rn,
(
∇2j(ψ̃)y, y

)
≥ 0
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where (·, ·) is a scalar product in Rn and dim(ψ) = n.

A point ψ̃ which satis�es condition (i) is called a stationary point. It is im-

portant to point out that stationarity is not a su�cient condition for local op-

timality. For instance, the point of in�exion for cubic functions would satisfy

condition (i) while there is no minimum. Hence the Hessian is not positive-

de�nite but merely positive semi-de�nite.

The su�cient condition for ψ̃ to be a minimum of j is that

(i) ψ̃ is a stationary point, i.e. ∇j(ψ̃) = 0

(ii) the Hessian ∇2j(ψ̃) = ∂2j(ψ)
∂ψi∂ψj

is a positive de�nite matrix, i.e.

∀y ∈ Rn, y 6= 0,
(
∇2j(ψ̃)y, y

)
> 0.

3.3.4 Stopping criteria

Since the convergence of the iterative algorithms is, in general, not achieved

in a �nite number of iterations, a stopping criterion must be applied. Some

commonly used criteria are given next. We denote ψk the vector parameter ψ

at the optimization iteration k.

∣∣∣∣∇j(ψk)
∣∣∣∣
∞ ≤ ε1 (3.3.6)

∣∣∣∣∇j(ψk)
∣∣∣∣
2
≤ ε2 (3.3.7)

∣∣j(ψk)− j(ψk−1)
∣∣ ≤ ε3 (3.3.8)

ψk − ψk−1 ≤ ε4 (3.3.9)

j(ψk) ≥ ε5 (3.3.10)

Sometimes it is asked that the constraints be satis�ed over several successive

iterations.

The four �rst presented criteria are convergence criteria applied on the cost

function gradient, on the cost function value itself, or on the parameters: the
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�rst two criteria are the || · ||∞ and || · ||2 norms of the cost function gradient at

iteration k; the third criterion is related to the stabilization of the cost function

from the actual iteration with respect to the previous one, and the fourth is

linked to the stabilization of the parameters. These criteria are commonly

used when dealing with optimization problems. The last criterion refers to the

fact that when the cost function reaches a value that depends on the variance

of the measurement error, the optimization algorithm should stop [100]. By

lowering the cost function below a given criterion, which has to be based on

measurement error, only a�ects the result in highlighting its intrinsic noise.

3.3.5 Optimization algorithms

Zero-order methods, also called derivative-free optimization (DFO) are based

on a global vision of the cost function value j. The main interest of using such

methods is when the cost function gradient is not available, or when the cost

gradient is not easy to compute, or when the cost function presents local min-

ima. There is an increasing number of computation tools to solve optimization

problems with no gradient [116] such as the simplex method, which is a deter-

ministic algorithm, and the particle swarm optimization method (PSO), which

is probabilistic.

There is a great number of one-dimensional optimization methods one could

�nd in the literature [117, 118, 119, 120]. Some of the most often used are the

Newton-Raphson method, the secant method, the quadratic interpolation and

the dichotomy method. Other methods may be more or less complicated and

some of them may be much more optimal than the above-mentioned methods.

In practice, both the Fibonacci method and the golden section search method

are very widely used. The cubic interpolation method is also very widely.

There is a wide variety of multi-dimensional gradient-type optimization

algorithms. Since in all cases, the stationarity of j is a necessary optimality

condition, almost all unconstrained optimization methods consist in searching

60



3.3. PARAMETER ESTIMATION - OPTIMIZATION

the stationary point ψ̃ where ∇j(ψ̃) = 0. The usual methods are iterative

and proceed this way: one generates a sequence of points ψ0, ψ1, . . . , ψk which

converges to a local optimum of j. At each stage k, ψk+1 is de�ned by ψk+1 =

ψk + αk dk where dk is a displacement direction which may be either the

opposite of the gradient of j at ψk
(

dk = −∇j(ψk)
)
, or computed from the

gradient or chosen in another way provided that it is a descent direction, i.e.
(
∇j(ψk), dk

)
< 0. Some of the 1st order frequently used methods are:

- the gradient with prede�ned steps method,

- the steepest descent method,

- the conjugate gradient method for quadratic functions,

- the conjugate gradient method for arbitrary functions.

If the cost function j(ψ) is twice continuously di�erentiable and the sec-

ond derivatives exist one can use Newton's method which is a second-order

method. The idea is to approach the cost function gradient by its quadratic

approximation through a Taylor expansion:

∇j(ψk+1) = ∇j(ψk) +
[
∇2j(ψk)

]
δψk +O(δψk)2 (3.3.11)

and equating the obtained approximated gradient to zero to get the new pa-

rameter ψk+1 = δψk + ψk:

ψk+1 = ψk −
[
∇2j(ψk)

]−1∇j(ψk) . (3.3.12)

By using second-order optimization algorithms, the direction of descent, as

well as the step size, are obtained from the last equation in one iteration.

Another interesting point is the fact that the algorithm converges to ψ̃k in

a single step when applied to strictly quadratic functions. One limitation of

Newton's method is when the Hessian∇2j(ψk) is not positive de�nite, and also
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the Hessian is usually very di�cult to compute and highly time-consuming.

To overcome these di�culties, one should, in practice, prefer using one of

the numerous quasi-Newton methods. The quasi-Newton methods consist of

generalizing Newton's recurrence formulation, Eq. (3.3.12).

Since the limitation of the Newton's method is the restriction of the Hessian

to be positive de�nite, the natural extension consists indeed in replacing the

inverse Hessian by an approximation to a positive de�nite matrix Hk which

has to be updated at each step k. There is much �exibility in the computation

of the matrix Hk but usually the imposed condition is:

H
[
∇j(ψk)−∇j(ψk−1)

]
= ψk − ψk−1 (3.3.13)

so that the approximation given by Eq. (3.3.12) is valid at previous step k−1.

Many variations of this method can be found in the literature where correc-

tions, of rank 1 or 2, of the type:

Hk+1 = Hk + Λk (3.3.14)

are imposed. For the rank 1 correction, the main point is to choose a symmet-

ric matrix H0 and perform the corrections so that they preserve the symmetry

of the matrices Hp. Rank 2 corrections as in the algorithms Davidon-Fletcher-

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are done in a

more sophisticated way where a displacement factor is introduced in the mod-

i�cation of the inverse Hessian [121]. If the number of the parameters is not

very high and the cost function is explicitly given in terms of data, that is of

the form:

j(ψ) := J (u) =

∫

S
(u− ud)2 ds

the Gauss-Newton method or some derivatives may be interesting to deal with.
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The Gauss-Newton method uses the gradient of the cost function; to de�ne

it we have to de�ne �rst the derivative u′(ψ; δψ) of the state at the point ψ in

the direction δψ as:

u′(ψ; δψ) := lim
ε→0

u(ψ + εδψ)− u(ψ)

ε
. (3.3.15)

The directional derivative of the cost function can be written now as:

j′(ψ; δψ) = (J ′(u), u′(ψ; δψ)) (3.3.16)

where j′(ψ; δψ) = (∇j(ψ), δψ). Equivalently, the second derivative of j(ψ) at

the point ψ in the directions δψ and δφ is given by:

j′′(ψ; δψ, δφ) = (J ′(u), u′′(ψ; δψ, δφ)) + ((J ′′(u), u′(ψ; δψ)) , u′(ψ; δφ)) .

(3.3.17)

By neglecting the second-order term, which is actually the Gauss-Newton ap-

proach, one has:

j′′(ψ; δψ, δφ) ≈ ((J ′′(u), u′(ψ; δψ)) , u′(ψ; δφ)) . (3.3.18)

One has to choose the directions for the canonical base of ψ to form the

cost function gradient vector and the approximated Hessian matrix. The so-

called sensitivity matrix S can be used, which gathers the derivatives of u in

all directions δψi, i = 1, . . . , dimψ and the product (u′(ψ; δψi), u
′(ψ; δψj)) is

the product of the so-called sensitivity matrix with its transpose. Thus, the

Newton relationship is approximated as:

StSδψk = −∇j
(
ψk
)
. (3.3.19)

The matrix system StS is obviously symmetric and positive de�nite with
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a dominant diagonal. However, this matrix system is often ill-conditioned and

one way to decrease the ill-condition feature is to "damp" the system by using:

[
StS + `I

]
δψk = −∇j

(
ψk
)

(3.3.20)

or

[
StS + ` diag

(
StS

)]
δψk = −∇j

(
ψk
)
. (3.3.21)

The "damping" parameter ` may be adjusted at each iteration. Note that

`→ 0 yields the Gauss-Newton algorithm while ` larger gives an approximation

of the steepest descent gradient algorithm. The presented method is the so-

called Levenberg-Marquardt (LM).

A brief presentation of the parameter estimation theory was conducted in

this section. From the presented methods and because of its features, the

Levenberg-Marquardt method will be used in our inversion schemes. Results

of the method applied to the �aw's parameter estimation will be shown in the

next chapter.

3.3.6 Parameter estimation in TNDT

In this thesis we are seeking to characterize defects of delamination type. These

kinds of defects can be fully characterized if one knows their shape, location

and size in the three directions. As the shape, location and size in the x, y-

plane will be provided from the techniques used during the pre-processing

phase, here the estimation of thickness and depth of the delamination will be

aimed at.

The forward model we use here accounts for defects of delamination type as

boundary conditions in a �ctional interface inside a double-layer plate. Thus,

we are limited to consider only �aws that are located at the same depth. For
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the m detected �aws, the number of the unknown parameters will be m+ 1,

ψ = (ψ1, ψ2, . . . , ψm+1)
T .

If the thickness of the plate's layers is known, the number of the unknown

parameters is reduced to m.

Preparation of the given data. The �rst step in any optimisation pro-

cedure is the preparation of the data. In this case, the input data are pro-

vided as a three-dimensional matrix Tpx,py ,n+1, containing n + 1 frames of

px×py elements with the coe�cients of the n-degree polynomials as expressed

in Eq. (3.1.5). For each pixel, a couple of (pxi , pyj), we reconstruct the tem-

perature signals in the logarithmic scale by evaluating the polynomials at the,

previously chosen, time instances ti, i = 1, 2, . . . , n+ 1. The data to be �tted,

denoted as ud, is now the vectorised temperature �eld in the logarithmic scale.

The initialisation of the forward model. The second step is the con�gu-

ration of the forward model using the a-priori information, that is, the shape,

the location and the size in the x, y-plane. The initialisation of the param-

eter vector ψ is done by setting the thickness of every defect equal to zero

and the depth at which they are located equal to half of the plate's thickness,

ψ0 = (0, . . . , 0, L/2)T , where L is the plate's thickness.

Stopping criteria. In all optimisation procedures, the choice of the stopping

criteria is a crucial step. Here we will be measuring the stabilisation of the cost

function and the stabilisation of the parameters themselves. This is achieved

by using the aforementioned criteria Eqs. (3.3.8) and (3.3.9). Since we know

that the initial data are corrupted due to some noise, we use that knowledge

to apply one more criterion. This is given by Eq. (3.3.10), where a low-bound

has been imposed to the cost function. A constraint on the iteration number
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has been imposed, too.

3.4 Summary

In this chapter, the general theory of the strategy and the methods used for the

characterization of the �aws was presented. The process of the characterization

of delamination-type defects in planar media has been separated in two steps.

The �rst step refers to the denoising of the raw signals and the detection of

any possible defects, and the second one refers to the characterization of the

detected defects. The �rst step is accomplished by using the TSR technique

and the Canny algorithm which were presented. For the characterization of the

defects, iterative optimization methods that will be used have been presented

in detail.

66



Chapter 4

Modelling results and fast imaging

In this chapter, results from a model-based strategy for detection and charac-

terisation of delamination in planar strati�ed media will be shown. As stated

before, this approach requires a forward model which will provide the temper-

ature �eld for the given con�guration and an inversion scheme for the detec-

tion and the characterisation of the delamination. The numerical implementa-

tion of the derived semi-analytical model and its computational performance

will be discussed in detail. The TREE model will be numerically evaluated

concerning two di�erent numerical methods, FIT and FEM, in its two- and

three-dimensional con�guration. Numerical results from interesting industrial

con�gurations will be shown here. Results from the detection and the charac-

terisation of single or multiple defects will be shown.

All simulations have been performed on a workstation equipped with an

Intelr Xeonr E3-1241 v3 @ 3.5 GHz processor and 16 GB RAM. Finally, the

computational times given refer to the computation of the temperature �eld

in the mentioned region and for the given time window.
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4.1 Problem de�nitions

Planar layered geometries can be found in many structures in di�erent indus-

tries. The most common are structures that consists of a stack of di�erent

laminates glued together. The integrity of these structures has to be assessed

during the manufacturing process and service life. One of the most common

defects that can cause their failure is a delamination which can occur between

their layers.

The need for reliable and e�ective repair of damaged structures is growing

in di�erent industries and especially in aeronautics. In order to have reliable

repair, it is necessary to assess bonding and patch quality. Both delaminations

in patch and disbond between patch and structure e�ect the integrity of the

repair as the service life of the structure [122]. This is another application

where a planar layer geometry can appear.

When such defects are detected, it is necessary to perform a defect assess-

ment to identify their positions inside the structure and their dimensions. As

said already, our work is focused on the characterisation of this kind of defects.

The characterisation of defects by using pulsed thermography (active ther-

mography) often requires a priori knowledge of the defect-free zone in the �eld

of the inspection. The absence of this knowledge can be compensated with the

knowledge of the geometry of the structure and its thermal properties. As-

suming that this knowledge has been achieved, the development of a model

which describes the problem is a natural step. The developed TREE model

will be used to generate accurate reference data for characterisation of the de-

fects. The data will then be used in a minimization procedure for parameter

estimation.
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4.2 Modelling in TNDT

In this section, the capabilities of the developed model will be stressed. A

double-layer plate with embedded thin delamination between the two layers of

the plate is considered, Fig. 4.2.1, which depicts a two-dimensional projection

of the con�guration. The models developed in Chapter 2, with dimensions in

x and y-directions being su�ciently large versus the dimensions of the area

of interest so that there is no interaction with the boundary. The truncation

range in the x-direction is denoted as L where the thickness of the �rst layer

and second layer are denoted as d1 and d2, respectively.

z

x

L

T
(1)

T
(2)

T
(3)

T
(4)

0

−d1

−(d1 + d2)

Figure 4.2.1: A two-dimensional representation of a double-layer plate with
two embedded defects, illuminated by a �ash lamp.

Following the experimental con�guration described in [123], a �ash lamp,

which can deliver a heating power density of Q = 106W/m2 on the surface of

the work-piece, has been used. The �ash has been modelled as a Dirac's delta

in time and a uniform density in space. The inspected work-piece consists of

two metallic plates of d1 = d2 = 2.5 mm thickness each. The top layer is a

steel plate and the bottom one an aluminium plate. The computational region

has been truncated in the x−direction at a length of Lx = 50 mm and in the

y−direction at a length of Ly = 50 mm.
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(a) Single-delamination plate. (b) Double-delamination plate.

Figure 4.2.2: Two double-layer plates of steel and aluminium with
embedded thin delaminations.

We will be investigating here two di�erent con�gurations. Their di�er-

ences lay in the �aws between the layers and the spatial support of the source.

In the �rst case, Fig. 4.2.2a, a single �nite-support delamination is taken

into account. This delamination is modelled as an air-�lled gap of dimen-

sions 10 mm × 10 mm in the xy−plane, placed at its centre. The expan-

sion of the delamination in the z−direction is modelled as a delamination

d = 10−3 mm thick. The spatial support of the source, �ash lamp, is an area

of 30 mm × 30 mm centred on the xy−plane. For the second con�guration,

Fig. 4.2.2b, two delaminations of di�erent sizes but of the same thickness,

have been taken into account. The expansion of these delaminations in the

xy−plane is 5 mm × 10 mm and 10 mm × 10 mm. The spatial support of the

source, in this case, is an area of 45 mm × 45 mm centred on the xy−plane.
The physical parameters of the materials used in these simulations are given

in Table 4.2.1.

Table 4.2.1: Thermophysical properties of materials.

Bulk

material

Thermal

conductivity

k [W/mK]

Heat capacity

Cp [J/kgK]
Density

ρ [kg/m3]

Aluminium 237 897 2707
Steel 44.5 475 7850
Air 0.02454 1005 1.1843
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In Fig. 4.2.3 the temperature distribution at the front and the rear surface

is shown for �rst case at 0.0408 and 0.2143 s, respectively.
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(a) Front surface, t1 = 0.0408 s.
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(b) Rear surface, t1 = 0.0408 s.
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(c) Front surface, t2 = 0.2143 s.
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(d) Rear surfaces, t2 = 0.2143 s.

Figure 4.2.3: Simulated surface temperature �eld for the single-�aw
con�guration at two di�erent times.

Fig. 4.2.4 show the same results for the double-�aw con�guration. These
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�gures illustrate how heat di�usion is e�ected by the presence of the �aw.
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(a) Front surface, t1 = 0.0408 s.
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(b) Rear surface, t1 = 0.0408 s.
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(c) Front surface, t2 = 0.2143 s.
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(d) Rear surfaces, t2 = 0.2143 s.

Figure 4.2.4: Simulated surface temperature �eld for the multi-�aw
con�guration at two di�erent times.
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4.2.1 Numerical validation of the TREE model

In order to proceed with a quantitative comparison of the results obtained

with the TREE method, the same problem has been solved using a com-

mercial numerical modelling software, the heat transfer module of COMSOL

Multiphysics® [124]. The numerical solver of COMSOL Multiphysics® is

based on the �nite element method using a time-stepping technique.

The energy conservation equation treated with the COMSOL Multiphysics®

solver reads as

ρCp
∂T

∂t
+∇ · q = Q (4.2.1)

where q = −k∇T . The source is described as a surface condition at z = 0 as

− n · q = Qb (4.2.2)

where Qb(t) = Q0δ(t − τ), [W/m2]. The defect is described as a thin layer of

resistance Rs = ds/ks, where ds is its thickness and ks its thermal conductivity,

modelled as a surface condition

−nd · qd = −Tu − Td
Rs

(4.2.3)

−nu · qu = −Td − Tu
Rs

(4.2.4)

where the subscript u stands for the upper layer and the subscript d stands for

the lower layer. The boundary conditions in the x and y directions have been

taken the same as in the TREE model. Since the FEM method requires the

de�nition of a closed box as solution domain, Dirichlet boundary conditions

have been imposed also in the z-direction, at a su�cient distance from the

domain of interest in order not to perturb the solution.

Thermograms simulated with TREE and FEM have been compared in

Figs. 4.2.5 and 4.2.6 for the single- and double-�aw con�guration, Fig. 4.2.2,
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respectively. A very good agreement between both results is observed.
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Figure 4.2.5: Simulated thermograms for the single-�aw model using
COMSOL Multiphysics® and the TREE method obtained at the centre of
the xy−plane and at a distance of 0.5 mm from the surface of the plate.
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Figure 4.2.6: Simulated thermograms for the multi-�aw model using
COMSOL Multiphysics® and the TREE method obtained at the centre of
the xy−plane and at a distance of 0.5 mm from the surface of the plate.
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Paying some attention to this comparison in Fig. 4.2.7 we plot the simu-

lated thermograms for the front surface in a loglog plot. In these plots, the

discrepancy between the two methods is clear in early time when it is well

known that numerical methods usually fail if no adaptive discretization of the

time space has been carried out.
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(a) Single-�aw model.

−4 −3 −2 −1 0

−1.5

−1

−0.5

0

ln(t) [s]

ln
(∆
T

)
[K

]

FEM

TREE

(b) Multi-�aw model.

Figure 4.2.7: Simulated thermograms for the multi-�aw model using
COMSOL Multiphysics® and the TREE method obtained at the centre of

the xy−plane and at a distance of 0.5 mm from the front surface of the plate.

4.2.2 Computational performance of the implementation

and acceleration

In this subsection, we comment on the implementation of the developed model

and focus on its acceleration. This acceleration is based on the simple idea of

taking advantage of the Laplace solution to the problem which gives the option

to compute the solution only at speci�c times, i.e., reduce the time sampling,

since no time-stepping is performed. The starting point will be the derived

equations from Chapter 2.

The temperature in the media is given in an explicit form in the Laplace
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transformed time domain by a set of equations, Eq. (4.2.5), whose coe�cients,

C(i) and D(i), have to be computed.

T̂ (1)(x, y, z; s) =
M∑

m=1

N∑

n=1

C(1)
mne

−µ(1)mnz sin(κmx) sin(λny) (4.2.5a)

T̂ (2)(x, y, z; s) =
M∑

m=1

N∑

n=1

[
C(2)
mne

−µ(2)mn(z+d1) +D(2)
mne

µ
(2)
mnz
]

sin(κmx) sin(λny)

(4.2.5b)

T̂ (3)(x, y, z; s) =
M∑

m=1

N∑

n=1

[
C(3)
mne

−µ(3)mn(z+d1+d2) +D(3)
mne

µ
(3)
mn(z+d1)

]
sin(κmx) sin(λny)

(4.2.5c)

T̂ (4)(x, y, z; s) =
M∑

m=1

N∑

n=1

D(4)
mne

µ
(4)
mn(z+d1+d2) sin(κmx) sin(λny) (4.2.5d)

The computation of these coe�cients is performed by solving a linear system

of equations which in matrix form can be written as

[A][X] = [B] (4.2.6)

where X contains the unknown coe�cients which will be used to compute the

temperature �eld in the Laplace domain. The matrix A has to be numerically

inverted for each given Laplace variable, s, which is linked to the time instances,

ti, when the solution is required. This procedure makes the implementation

time consuming because of the use of the Stehfest algorithm [104, 105]. This

algorithm for each ti requires ten Laplace variables. Thus, the system has to

be solved ten times for each ti.

Since the geometry is planar, the simulated logarithmic thermograms at the

surface at early times in a sound region of the plate are linear and in regions,

with existing �aws, these thermograms can be approximated with low degree

polynomials. We choose to reduce the time sampling by carefully choosing the

time instances when the solution to the problem is computed. To do that, a
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one�dimensional con�guration of the given three�dimensional model including

the �aw is automatically generated. If more than one �aw is present in the

given model, more one-dimensional con�gurations have to be generated. The

problem is solved for these con�gurations in less than a second with a relatively

dense time sampling. The thermograms are then studied in the logarithmic

time-space.

The logarithmic thermograms are then approximated by a polynomial and

second time derivatives are reconstructed using the polynomial coe�cients.

Criteria upon the second time derivative have to be set in order to choose the

time samples. To understand the nature of the criteria one has to understand

�rst the behaviour of this second time derivative. In Fig. 4.2.8 the logarithmic

thermograms for a sound area ln [Ts] and a �awed area ln [Tf ] are compared

with the logarithmic thermogram of a semi-in�nite plate, (−1/2 ln [t]), taking

out the e�ect of the material thermal properties. The absolute value of the

second time derivatives for the �awed and the sound area are compared where

the e�ect of the �aw on the thermograms is clear. By having this behaviour of

the thermogram as a guide the chosen time samples are indicated in Fig. 4.2.8

in yellow boxes. These samples correspond to time instances where the ab-

solute value of the second time derivative in the logarithmic space has local

minima and maxima. The �rst and last time instances have to be added to

this sampling.

This sampling is used for the solution of the three-dimensional problem

and it can be safely interpolated in the logarithmic time-space in a denser

time sampling if needed. After an extensive study of this approximation,

under di�erent con�gurations, we saw that the added relative error to the

solution was lower than 0.4%, which is considered as a valid approximation.

The random access memory (RAM) requirement of the method is decreased

signi�cantly, but, even more impressive, is the reduction of the CPU time by

a factor larger than 20.
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Figure 4.2.8: Thermograms in logarithmic scale for a sound area Ts, a
�awed area Tf and the absolute value of their second logarithmic derivatives.

4.2.3 Application in eddy current thermography

An application in induction thermography has been presented in this early

work [108]. The modelled con�gurations consist of a homogeneous metallic

plate with a circular coil above it, as illustrated in Fig. 4.2.9. The model

assumes axial symmetry along the z−axis. Aluminium alloy and steel has been

used as materials for the plate. Two di�erent con�gurations of the metallic

plate has been considered also, with the �rst one modelling a homogenous

plate with no defect in it and the second one a circular hole has been modelled

at the bottom of the metallic plate.

The problem combines electromagnetic induction and thermography where

the coil induces eddy current into the plate causing heating to it because of

the Joule e�ect. This is a multi-physical problem and a two-dimensional, in-

house, solver based on the �nite integration technique has been used to solve

it [59, 107].

The same numerical tool has been used to solve both physical problems,

namely the electromagnetic induction by the coil in the plate and the heat

di�usion in the plate after excitation. Due to the large di�erence in time scale
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Figure 4.2.9: Schematic setup diagram. Circular coil of inner radius Ri,
outer radius Re and height h standing above a conductive plate of thickness d

in a distance e.

between the electromagnetic problem and the thermal one, a weak coupling of

the two problems is possible. Thus, modelling the generation of eddy current

requires an electromagnetic solution in the workpiece, which results in a Joule

heat distribution. The latter is used as a volumetric heating source in order

to obtain the temperature distribution in the workpiece as a function of time.

The use of such a numerical solver is important to easily investigate some

aspects like the e�ect of piece inhomogeneity or anisotropy, however, it can lead

to heavy calculations and complicated meshing considerations when addressing

three-dimensional con�gurations. For this reason, this tool was used only in

its two-dimensional implementation here mostly to study the weak coupling of

the two physical problems.

The theoretical formulation of the problem and numerical results of this

work can be found on their full extension in Appendix F.

4.3 Flaw characterization

In this section, the proposed multi-step �aw characterization technique will be

demonstrated by employing the forward model developed in Chapter 2, and the

image processing and parameter estimation techniques described in Chapter 3.
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Temperature signals, produced by the three-dimensional TREE model, have

been corrupted with Gaussian noise of di�erent levels to simulate temperature

signals collected by an infrared camera and from now on are called raw signals.

Other types of noise beyond Gaussian could be used in this part but this is out

of our scope. The detection and characterization procedure has been divided

into two parts.The �rst step concerns the detection and shape reconstruction of

candidate �aws and the second step, their characterization through an iterative

parameter estimation technique regularised by the information gained from the

�rst step.

Concerning this section, the three-dimensional model developed in Chap-

ter 2 has been used to compute the temperature �eld, for the general con�g-

uration depicted in Fig. 4.3.1. These signals are supposed to be collected on

Figure 4.3.1: Sketch of the con�guration in the (x, y) and (x, z)�plane, left
and right respectively.

the front, or upper, surface and back, or bottom, surface of the working piece.

A grade 4340 steel plate with thermal conductivity k = 44.5 W/mK, heat ca-

pacity Cp = 475 J/kgK, density ρ = 7850 kg/m3 and thickness d = 3 mm is

used. The plate is considered to be in�nite in the x� and y�direction where

the area of interest is a (40× 40 mm) rectangle. Three well-de�ned air-�lled

defects, named A,B and C, which simulate delaminations of di�erent thick-
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ness, dA = 3× 10−3 mm, dB = 2× 10−3 mm, dC = 1× 10−3 mm and of di�er-

ent sizes (2× 3 mm), (2× 4 mm), (4× 4 mm), respectively, have been embed-

ded into the plate with their larger faces set to be parallel to the plate surface.

As an excitation term, a �ash lamp, set above the plate and parallel to its

surface, depositing a heating power density of Q = 104 W/m2 at the surface

of the plate has been modelled as a Dirac's delta function in time, whereas its

spatial distribution is considered to be uniform and covers all the domain of

interest, as already done before.

4.3.1 Shape reconstruction

The described con�guration will be used in this part with the addition that

the �aws are located in the middle of the plate along the z�axis.

The shape reconstruction part of the technique starts by applying the TSR

method to the noisy signals. This provides the polynomial approximation of

the signals, say, the matrix P of dimensions Nx ×Ny × (p+ 1), where Nx, Ny

are the pixels' number along the x� and y�direction, respectively, and p is

the polynomial degree. Polynomial coe�cients of the �rst and second time

derivatives are stored in the matrices P1 and P2, respectively. The time-

dependent temperature �eld in the logarithmic scale, as well as the �rst and

second time derivatives, can be reconstructed using the polynomial matrices

P ,P1,P2 and stored in the matrices I, I1, I2, respectively. The reconstruction
of the time signals derives time frames which are smoother and suitable for

defect detection. The reconstructed second time derivative matrix, I2, will be
used for the detection of the time which corresponds to the best frame.

The choice of the polynomial degree is a very crucial task for the TSR

technique since it is a trade-o� between the accuracy of the approximation,

noise management and computational time. Here we choose to work with 7th

degree polynomials that were shown to approximate the original signal with

high accuracy and �ltering most of the noise as observed from the log− log

81



CHAPTER 4. MODELLING RESULTS AND FAST IMAGING

plots in Fig. 3.1.5. In Fig. 4.3.2 the reconstructed signals versus time are

compared with the raw noisy signals as well as with the synthetic signals as a

reference. The signals correspond to two di�erent pixels with the �rst one being

at the centre of the plate where it is considered to be a sound area, Fig. 4.3.2a

and the second one at the centre of the largest defect, named C, Fig. 4.3.2b.

It is clear from Fig. 4.3.2 that most of the noise has been signi�cantly �ltered

through the TSR method and the original signals have been approximated

with great accuracy.
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Figure 4.3.2: Reconstruction of temperature noisy signals with the TSR
technique for a sound area and a �awed area. Comparison of the

reconstructed signals with the reference signals and the noisy signals.

The choice of the most suitable frame for shape reconstruction is very cru-

cial at this point. The best frame for the shape reconstruction algorithm should

correspond to a time instant which maximises the contrast of the image. The

contrast for defects of di�erent thicknesses, located at di�erent depths reach

their maximum contrast at di�erent times [125]. To compute the contrast, one

needs information about where the �aws are located and a reference sound

area. Since no reference data will be used, so the computation of the contrast
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could be considered as an option, the second time derivative matrix I2 will be
used. A criterion upon the second time derivative for each pixel will be set,

instead. Each variation that occurs in the time-dependent signals, which is a

result of the alteration of material thermal properties at a speci�c depth, is

indicated by a change of the �rst time derivative of the signals. This change

on the �rst time derivative of the signal causes the second time derivative to

change signi�cantly. The times at which the second time derivative reaches

its local maxima are correlated with the times where the absolute contrast of

the second derivative reaches its local maxima. In order to have an early �aw

identi�cation, and avoid the image blurring at later times, we will take into

account the times where the second time derivative changes sign. For each

frame, the frequency of the sign changes of the second time derivative will be

computed and the frame with the maximum frequency will be chosen as shown

in Fig. 4.3.3, where the maximum frequency has been marked with a red aster-

isk. If the candidate frame it is not only one, the frame that corresponds to the

earlier time will be chosen. This results in a sharper image but in a multilayer

con�guration could results in loss of information about deeply buried defects.

In such a case multiple images could be used.
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Figure 4.3.3: Frequency of the sign changes of the second time derivative
for all pixels in each frame of the reconstructed signals.

The image that corresponds to that frame number is shown in Fig. 4.3.4b

and that frame will be named I∗. The e�ect of the technique on partially de-

noising the signals in space can be seen by the comparison of the derived image
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with the raw image that corresponds to the same frame number, Fig. 4.3.4a.

An RGB image constructed from the triplet I∗, I∗1 , I∗2 is shown in Fig. 4.3.5.

The later is useful in understanding the relative depth of the �aws and their

relative thickness since �aws with signi�cantly di�erent thickness or located at

di�erent depth appear with di�erent colours.
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(a) Raw image.
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(b) Reconstructed image, (I∗).

Figure 4.3.4: Comparison of a raw image with the reconstructed image
corresponding to the same optimal frame number.

A similar RGB image can be constructed from the monomials but that

representation is quite noisy when a high degree polynomial is used. The degree

of the polynomials used here, p = 7, is considered to be high compared with the

short time period of the recorded signals and the noise level. For a longer time

period or lower noise level, an RGB image reconstructed using the monomials

could be as useful as the image in Fig. 4.3.5. We illustrate this in Fig. 4.3.6

where signals with higher SNR (40) are used to reconstruct RGB images using

5th and 7th degree polynomials. In Fig. 4.3.6a the monomials −5/5, 4/5, 3/5

are used to form the image and in Fig. 4.3.6b the used monomials are the

−7/7, 6/7, 5/7. It is clear from the �gures that a lower degree polynomial

will o�er more qualitative information about the �aws that a higher degree

84



4.3. FLAW CHARACTERIZATION

10 20 30 40

10

20

30

40

x [mm]

y
[m

m
]

Figure 4.3.5: RGB(I∗, I∗1 , I∗2 ) image corresponding to the optimal frame
number.

polynomial which inherits a larger part of noise.
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(a) TSR with 5th degree polynomial.
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(b) TSR with 7th degree polynomial.

Figure 4.3.6: Reconstructed RGB image from the projection of three
monomials after applying TSR on noisy signals, SNR = 40.

At this point, the image I∗ will be provided to the Canny algorithm for the

detection and the reconstruction of defects' shape. The �rst step of the algo-

rithm consists of a Gaussian smoothing of which the image will be a subject.
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Thus the parameter σ that de�nes the amount of smoothing will be provided

to the Canny algorithm since the smoothing algorithm has been integrated

into the Canny algorithm. In our case, we perform a slight smoothing by us-

ing σ = 5. A comparison in greyscale of the input image and the smoothed

one is shown in Fig. 4.3.7, where the two images have been rescaled.
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(a) The noisy input image I∗.
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(b) The smoothed image Î∗.

Figure 4.3.7: The impact of the Gaussian smoothing on the noisy input
image for the Cany algorithm shown in grey scale.

A gradient magnitude image M , Fig. 4.3.8a, of the smoothed image Î∗,
Fig. 4.3.7b, will be derived after its convolution with the derivative kernel,

and in this case, the Sobel kernel has been used. By applying non-maximum

suppression to the gradient image, all values along the line of the gradient

that are not peak values of the ridge have been suppressed. This leads to the

image M̂ , Fig. 4.3.8b, which contains one pixel wide edges.

Due to noise in the original image, M̂ contains pixels depicting false edges

and to mitigate these spurious edges, hysteresis tracking is performed using

dual thresholding. The choice of the threshold parameters is very crucial for

the success of the method, so we use the Otsu [112] method to compute these

parameters. The method will provide the high threshold parameter τh and the
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(a) The gradient intensity image before
applying non-maximum suppression,

M(i, j).
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(b) The gradient intensity image after
applying non-maximum suppression,

M̂(i, j).

Figure 4.3.8: The impact of the non-maximum suppression on the gradient
intensity image. Before, M(i, j), and after, M̂(i, j), applying non-maximum

suppression.

low threshold parameter τl will be set by us, τl = τh/2. Pixels that correspond

to values higher than the high threshold are considered strong edges and have

been preserved, pixels that falls under the low threshold are omitted. Pixels

that falls between the two threshold parameters are considered as weak edges

and will be kept only if they are connected with a strong edge. The last step of

the algorithm is the connection of already detected edges in the binary image

under some restrictions upon the gradient and the gradient angle.

The stages of the edge detection are shown in Fig. 4.3.9, where di�erent

colours refer to di�erent stages of the detection. The strong edges that are

detected after the non-maximum suppression are in blue. In yellow and red, are

the parts of the edge that was omitted or added after the hysteresis tracking,

respectively. The green part of the edges is the last added part during the

connectivity analysis.

The �nal binary image which gives the edges of the �aws is depicted
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Figure 4.3.9: The stages of the edge detection algorithm illustrated with
di�erent colours.

in Fig. 4.3.10 where the true shape of the defects is depicted with green colour

lines. Rectangles are �tted to the approximated defect shapes for the next

step, the parameter estimation.

The presented multi-step procedure was fully automated exempting the fact

that the smoothing parameter σ needed to be given. By giving a di�erent value

to that parameter the results will be e�ected but in our case not dramatically

as can be seen in Fig. 4.3.11 where the smoothed input image is given for

σ = 3, Fig. 4.3.11a, and the �nal binary, Fig. 4.3.11b.

For completeness of the text, the one-dimensional Gaussian kernels are

depicted in Fig. 4.3.12 where the e�ect of the parameters is shown.

Challenging applications of this edge detection algorithm can be found

in Appendix E where complex-shaped defects have been simulated and their

shape has been reconstructed using the same automated multistep procedure.
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Figure 4.3.10: The �nal binary image.

4.3.2 Parameters estimation

Considering the con�guration depicted in Fig. 4.3.1, the three embedded �aws

inside the plate can be characterised exactly by their relative location inside

the plate, their physical dimensions and their thermophysical properties. Their

relative location in the (x, y)�plane inside the plate and their dimensions in

the same plane are provided by the previous step of this procedure where

the defects were well localised and their shape was approximated with great

accuracy. These parameters will be used to regularize the inverse problem

where the characterization of the defects is aimed at.

Since the geometry consists a double layer plate, any possible �aws will be
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Figure 4.3.11: Gaussian smoothing of the input image to the Canny
algorithm shown in grey scale. Left: The noisy input image I∗. Right: The

smoothed image Î∗.
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Figure 4.3.12: One-dimensional projection of the Gaussian distribution
used to denoise the images.
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present at the same depth, i.e., the �aws will be located at same relative loca-

tion inside the plate in the z�direction. Assuming that the �aws are air-�lled

delaminations, their material is known, thus, the parameters to be estimated

are the common depth at which the �aws are located and their thicknesses, Z

and dA, dB, dC respectively.

The capability of the inversion scheme to estimate the defects' depth and

thickness is challenged in the subsection. First, the robustness of the scheme

versus additive noise is tested where di�erent noise levels are taken into ac-

count. For each case with a di�erent SNR, the noise has been generated 25

di�erent times and the mean relative error for the given SNR is shown only.

Raw signals in re�ection, transmission and in both situations are to be �t-

ted. The relative error occurred is shown in Fig. 4.3.13 for each estimated

parameter as a function of SNR.

The correlation between SNR and estimation's relative error is clearly illus-

trated in Fig. 4.3.13 where a lower SNR value gives larger relative error values

for the estimation of each parameter. Nonetheless, the relative error for the

studied cases is less than 4% and acceptable in the �eld of application. From

the same �gure, the nature of the estimated parameters is revealed and how

their estimation can be e�ected by the signals used. It is clear here that the

best estimation of the defects' depth can be achieved by using both recorded

signals, i.e. in re�ection and transmission, and the worst one by using only the

signals in transmission, Fig. 4.3.13d. The latter is not true for the estimation

of the defects' thickness as it is clear from Figs. 4.3.13a to 4.3.13c where the

estimation is better using the signals in transmission than in re�ection.

By using the current con�guration as a reference, the performance of the

inversion scheme is to be tested in challenging situations. Such situations

arise when the defects are located very close to the top or bottom surface of

the plate. In the reference case, the defects were located at the middle of the

plate, i.e. their distance from the top and bottom surface was 1.5 mm. For the
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(d) Estimation of depth Z.

Figure 4.3.13: Relative error for the estimation of defects' thickness and
depth as a function of SNR.

next shown results, this distance has been changed to 0.75 mm and 2.25 mm

while the noise level has been kept constant, SNR = 20. The relative error

occurred during the estimation of the parameters is shown in Fig. 4.3.14 for

each estimated parameter as a function of defects' depth.

The estimation of the depth parameters dA, dB and dC is strongly e�ected

by the defects' depth as shown in Figs. 4.3.14a to 4.3.14b. For the con�guration

where the defect is deeply buried in the plate, z = 2.25 mm, the estimation of
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Figure 4.3.14: Relative error for the estimation of defects' thickness and
depth as a function of defects' depth.

the thickness is very poor using the signals in re�ection, relative error higher

than 10%, but very accurate when using the signals in transmission. On the

other hand, when the defects are close to the upper surface, the estimation

accuracy is not signi�cantly e�ected. As for the estimation of the defects'

depth, for the buried defects the estimation accuracy is not signi�cantly better

using signals in transmission whereas in the case of the defects being close to

the upper surface of the plate the estimation is better using signals in re�ection.
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These results agree with the physics of the problem.

An interesting con�guration where the advantages of using a three-dimensional

forward model could be fully exploited is that of thee defects located close to

each other. This case studies the sensibility of the estimation quality on the

interaction of the defects. Keeping as reference the con�guration depicted in

Fig. 4.3.1, new con�gurations have been studied. The distance X between the

defects A,B and C has been adjusted from 0 mm to 5 mm and the noise level

has been kept constant, SNR = 20. In this kind of con�gurations, where the

interaction between the defects is strong, the one-dimensional approaches will

fail to accurately characterize the defects. The advantage of using a three-

dimensional model can be exempli�ed by Fig. 4.3.15 where one cannot �nd a

strong connection of the estimation accuracy and the defects' relative location

in the xy-plane.
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Figure 4.3.15: Relative error for the estimation of four parameters as a
function of the relative distance X between defects A,B and C.

4.4 Summary

This chapter has been divided into two parts, numerical modelling in TNDT

and defect characterization. The former deals with the numerical validation

of the developed TREE model and its computational performance. A great

agreement of numerical results obtained with the TREE model and with a

FEM model has been shown. Furthermore, the acceleration of the developed

95



CHAPTER 4. MODELLING RESULTS AND FAST IMAGING

semi-analytical model has been described in detail. We refer also to an applica-

tion in eddy current thermography. This application concerns of the inspection

of a metallic plate with a circular bottom-hole using ECT. The multi-physical

problem has been solved using a numerical solver based on the �nite integration

technique. The theoretical formulation of the problem, simulated temperature

�eld inside the plate concerning of two di�erent materials and a discussion on

the results can be found in the Appendix F were a published work has been

attached. The second part of the chapter concerns results on the �aw detection

and characterization. Temperature, time-dependent, signals obtained with the

semi-analytical model have been corrupted with di�erent noise levels and been

used as raw signals in this part. Appling the TSR method and the Canny al-

gorithm, candidate defects have been localized in the x, y-plane. Their shape

and dimensions have been used for the regularization of a least-square scheme

to characterize their thickness and depth.

Results shown in this chapter indicate that the forward model can produce

fast and accurate thermal signals and the proposed procedure for the detection

and characterization of the defects is shown to be fast and accurate.
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Chapter 5

Conclusions and perspectives

5.1 Recapitulation of main results

The aim of this thesis was the development of a fast three-dimensional forward

model to simulate the thermographic non-destructive testing of planar pieces

with embedded defects and a robust model-based inversion strategy for the

detection and characterization of the defects.

A model based on the so-called truncated region eigenfunction expansion

method has been presented where the thermal problem is solved in the Laplace

domain with respect to time and its solution, the temperature distribution, is

given as a tensor product. Con�gurations consisting of multi-layer planar work-

pieces with delamination-like defects were addressed. Thin delamination-like

defects were introduced into the model as interface conditions allowing their

treatment via the applied modal approach without additional discretisation

needed. Flash lamp, which is used in a wide range of applications, were mod-

elled to provide the thermal excitation term to the media. The model has

been evaluated numerically with commercial simulation software and a great

agreement between the results was observed.

The second goal of this thesis was the development of an inversion strat-

egy for the detection and characterization of the defects. Signal and image
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processing techniques and optimization methods available in the literature has

been used to meet this goal. The thermal reconstruction technique was used to

denoise the signals and compress the recorded data. The Canny edge-detection

algorithm was presented in detail and used to approximate the shape of the

sub-surface defects. The approximated shape of the defects projected in the

x, y-plane was used as a priori information to regularize a least-square scheme

used to estimate their depth and thickness. Results shown indicate that the

proposed procedure for the detection and characterization of the defects is

shown to be fast and accurate.

5.2 Perspectives

The presented model can be enhanced in order to improve its performance

and deal with even more complex applications. The inversion strategy could

feature more sophisticated inversion schemes.

Indeed, the numerical implementation of the model can be enhanced using a

low-level programming language and parallelize parts of it in order to decrease

further its computational time and memory requirements. The model itself

could be expanded in order to include di�erent thermal sources, such as an

induction coil [108] in order to simulate a broader range of thermal inspection

applications. Taking into account material anisotropy seems to be the natural

next extension of the model. For the simulation of more general defect ge-

ometries, as for example corrosion, cracking, etc., one must resort to the more

general strategy involving an integral equation formalism like in [126, 127].

The estimation of the transverse location and shape of the �aws could be

integrated into the inversion scheme for adaptive estimation of parameters

o�ering a faster convergence and a better estimation. Clustering algorithms

can be applied in chosen images for the detection of pixels that corresponds to

�awed areas. Meta-modelling approaches in combination with sophisticated
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interpolators can be used to build a database which will allow nearly real-time

evaluations in the parameter optimization process.
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Appendix A

Fundamental properties of the

Laplace transformation.

Theorem 1.

L{v1 + v2} = L{v1}+ L{v2}

Theorem 2.

L
{
∂v

∂t

}
= pL{v} − v0, (A.0.1)

where v0 is the value of limt→+0 v. In general v0 will be a function of the space

variables x, y, z.

The result (A.0.1) follows immediately on integration by parts, since

∫ ∞

0

e−pt
∂v

∂t
dt =

[
e−ptv

]∞
0

+ p

∫ ∞

0

e−ptv dt = −v0 + pv̄

Theorem 3.

L
{
∂nv

∂xn

}
=
∂nv̄

∂xn
, (A.0.2)

with similar results for the other space variables.

This is equivalent to

∫ ∞

0

e−pt
∂nv

∂xn
dt =

∂n

∂xn

∫ ∞

0

e−ptv dt,
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TRANSFORMATION.

and we assume v to be such that the orders of integration and di�erentiation

can be interchanged in this way.

Theorem 4.

L
{∫ t

0

v(t′) dt′
}

=
1

p
L{v} , (A.0.3)

for, integrating by parts,

∫ ∞

0

e−pt dt

∫ t

0

v(t′) dt′ = −
[

1

p
e−pt

∫ t

0

v(t′) dt′
]∞

0

+
1

p

∫ ∞

0

e−ptv dt

=
1

p
v̄. (A.0.4)

Theorem 5. If k is a positive constant, and

L{v(t)} = v̄(p), (A.0.5)

then

L{v(kt)} =
1

k
v̄
(p
k

)
, (A.0.6)

for ∫ ∞

0

e−ptv(kt) dt =
1

k

∫ ∞

0

e−(p/k)t
′
v(t′) dt′ =

1

k
v̄
(p
k

)
. (A.0.7)

Theorem 6. If a is any constant and L{v} = v̄(p), then

L
{
e−atv

}
= v̄(p+ a), (A.0.8)

for ∫ ∞

0

e−pte−atv dt =

∫ ∞

0

e−(p+a)tv dt = v̄(p+ a). (A.0.9)

Theorem 7. If f(t) = H(t− t0)φ(t− t0), where H(t− t0) is a Heaviside's unit
function de�ned by

H(t− t0) = 0, t < t0 (A.0.10)

H(t− t0) = 1, t > t0 (A.0.11)
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then

L{f(t)} = e−pt0L{φ(t)} . (A.0.12)

Theorem 8. If f(t) is periodic with period T ,

L{f(t)} =
1

1− e−pT
∫ T

0

e−ptf(t) dt, (A.0.13)

for

L{f(t)} =

∫ ∞

0

e−ptf(t) dt =
∞∑

n=0

∫ (n+1)T

nT

f(t)e−pt dt

=
∞∑

n=0

e−npT
∫ T

0

e−pttf(t′) dt′

=
1

1− e−pT
∫ T

0

e−ptf(t) dt (A.0.14)

Theorem 9. Lerch's theorem or the uniqueness theorem.

If L{f1(t)} = L{f2(t)}, for all p, then f1(t) = f2(t) for all t ≥ 0, if the

functions are continuous; if the functions have only ordinary discontinuities

they can only di�er at these point.

Theorem 10.

L
{∫ t

0

f1(τ)f2(t− τ) dτ

}
= L{f1(t)}L {f2(t)} . (A.0.15)

This is known as the Faulting or Superposition theorem, also as Duhamel's

theorem.

Theorem 11. If

L{v(t)} = v̄(p), (A.0.16)

then

L
{

1√
pt

∫ ∞

0

e−u
2/4tv(u) du

}
=
v̄(
√
p)

√
p
. (A.0.17)
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Appendix B

The Gaver-Stehfest Method.

The principle of the method is to use the following property of the Dirac

distribution δ(t), which is valid for any function f(t):

f(t) =

∫ ∞

0

δ(t− λ)f(λ) dλ (B.0.1)

A ∆-convergent function δN(t, λ) is an approximation of the shifted Dirac

distribution. In therefore veri�es the following property:

lim
N→∞

(δN(t, λ)) = δ(t− λ) (B.0.2)

The particular ∆-convergent function that has been chosen by Stehfest is

δN(t, λ) =
N∑

j=1

uj
1

t
exp

(
−ajλ

t

)
(B.0.3)

The coe�cients uj and aj must be optimized in order to make the Laplace

transforms of δN(t, λ) and of δ(t− λ) as close as possible, i.e.

2
N∑

j=1

ujK0(2
√
ajλ
√
p) ∼= exp(−λp) (B.0.4)
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Once these coe�cients have been optimized, f(t) can be calculated using eq..

where δ(t− λ) has been replaced by δN(t, λ):

f(t) ∼=
∫ ∞

0

δN(t, λ)f(λ) dλ =
1

t

N∑

j=1

uj

∫ ∞

0

f(λ) exp

(
−ajλ

t

)
dλ (B.0.5)

or, noting that the integral term in the last member of the preceding equation

is simply the Laplace transform of f evaluated in p = aj/t:

f(t) ∼= ln(2)

t

N∑

j=1

VjF

(
j ln(2)

t

)
(B.0.6)

This corresponds to the otpimized coe�cients

aj = j ln(2) and Vj = uj/ ln(2)

where the Vj are given by the following expression for an even value of N :

Vj = (−1)j+N/2
min(N/2,j)∑

k=Int((j+1)/2)

kN/2(2k)!

(N/2− k)!k!(k − 1)!(j − k)!(2k − j)! (B.0.7)

In this equation "Int" designates the integer part of a real number.

N depends on the �oating-point precision of the computer. With single

precision, N = 10 is often the most suitable choice
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Appendix C

Convergence.

The before-mentioned methods are iterative methods and the choice of one of

them to use depends on factors such as the convergence speed and the cost

of the computation cost of the gradient. This algorithms yields to a series
{
ψk
}
k≥1 that converges to ψ̃.

De�nition 1. The convergence rate of the series {ψk}k≥1 is said to be linear

if

||ψk+1 − ψk||∣∣∣
∣∣∣ψk − ψ̃

∣∣∣
∣∣∣
≤ τ, τ ∈ (0, 1) . (C.0.1)

This means that the distance to the solution ψ̃ decreases at each iteration by

at least the constant factor τ .

De�nition 2. The convergence rate of the series {ψk}k≥1 is said to be super-

linear in n steps if

lim
k→∞

||ψk+n − ψk||∣∣∣
∣∣∣ψk − ψ̃

∣∣∣
∣∣∣

= 0 . (C.0.2)
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De�nition 3. The convergence rate of the series {ψk}k≥1 is said to be quadratic
if

||ψk+1 − ψk||∣∣∣
∣∣∣ψk − ψ̃

∣∣∣
∣∣∣
2 ≤ τ, τ > 0 . (C.0.3)

The steepest descent method converge linearly but in the case of ill-posed

problems the method may converge linearly with a constant τ close to 1. The

conjugate-gradient method converges superlinearly in n steps to the optimum.

Quasi-Newton methods usually converge superlinearly and the Newton method

converges quadratically. Thus the quasi-Newton methods convergence-rate is

much higher than the conjugate gradient methods convergence rate which need

approximatively n times more steps at the same convergence behaviour. How-

ever, for the quasi-Newton method, the memory place is proportional to n2.
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Appendix D

Study on the choice of the

polynomial degree.

The choice of the polynomial degree is a very crucial task for the performance

of the TSR method. The TSR method acts as a low-pass �lter to the noisy sig-

nals while trying to reconstruct them. The choice of the polynomial degree is a

trade-o� between the approximation accuracy and noise management. Choos-

ing a low degree leads to a bad but noiseless approximation and on the other

side, choosing a high degree polynomial leads to a good reconstruction of the

signals reproducing also a part of the noise. In order to choose appropriately

the polynomial degree for the TSR method, we carry out a numerical study.

The con�gurations depicted in Fig. D.1.1 consists of a single-layer and a

double-layer metallic plate, left and right respectively. The materials used for

this simulation are aluminium alloy and construction steel, Table D.1.1. In the

single-layer con�guration, the plate thickness, d, will be changing in the range

of [3, 6] mm and in the double-layer con�guration the thicknesses, d1 and d2,

of the plate will be set to be the half of the total thickness of the plate where

the plate thickness will vary in the range of [3, 6] mm.

For the given con�gurations, the temperature on the upper surface of the

plate has been simulated and the TSR method has been applied to the noise-
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APPENDIX D. STUDY ON THE CHOICE OF THE POLYNOMIAL

DEGREE.

(a) Single-layer plate of thickness d. (b) Double-layer plate of thicknesses
d1 and d2.

Figure D.1.1: A two-dimensional representation of a metal work-piece
thermal inspection.

less signals for their reconstruction, choosing polynomials of di�erent degrees.

The relative error between the simulated temperature signals in the logarith-

mic scale and the reconstructed ones has been computed and shown in the

following plots, as a function of the polynomial degree n, next to the plots of

the simulated signals.

A safe conclusion from the plots could be that the relative error introduced

to the thermograms in the logarithmic scale, by the polynomial regression, de-

creases almost exponentially with the polynomial degree. In the tested cases,

this error is less than 2% for a regression using polynomials of 5th degree and

less than 0.5% when using polynomials of 7th degree. No signi�cant improve-

ment of the approximation can be seen using polynomials with a degree higher

than 9.

Table D.1.1: Thermophysical properties of materials.

Bulk

material

Thermal

conductivity

k [W/mK]

Heat capacity

Cp [J/kgK]
Density

ρ [kg/m3]

Aluminium 237 897 2707
Steel 44.5 475 7850
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Figure D.1.2: Thermograms in the logarithmic scale and the relative error
of the polynomial regression as a function of the polynomial degree n.

Single-layer aluminium plate of thickness 3, 4, 5 and 6 mm.
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Figure D.1.3: Thermograms in the logarithmic scale and the relative error
of the polynomial regression as a function of the polynomial degree n.

Single-layer steel plate of thickness 3, 4, 5 and 6 mm.
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Figure D.1.4: Thermograms in the logarithmic scale and the relative error
of the polynomial regression as a function of the polynomial degree n. A
double-layer plate of thickness 3, 4, 5 and 6 mm with aluminium in the top

layer and steel in the bottom layer.
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Figure D.1.5: Thermograms in the logarithmic scale and the relative error
of the polynomial regression as a function of the polynomial degree n. A
double-layer plate of thickness 3, 4, 5 and 6 mm with steel in the top layer

and aluminium in the bottom layer.
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Appendix E

Edge detection in challenging

geometries.

The goal of this appendix is to test the reconstruction procedure in cases where

shape of the defect is more complex that the ones used in the main text. The

general con�guration of the problem consists of a steel plate of 4 mm width

and a delamination-type defect of thickness 10−3 mm, parallel to the plate's

surface, at depth 3 mm. The top surface of the plate is illuminated by a �ash

lamp which delivers a heating power of 106W/m2. The temperature at the

top surface of the plate, on an 50 × 50 mm area, has been recorded, with a

resolution of 512 × 512 pixels, and corrupted with Gaussian noise with the

noisy signals having an SNR equal to 10.The corrupted signals are used as the

starting point here and from now-on will be called raw signals.

The TSR method and the Canny algorithm are applied to the raw signals

trying to reconstruct the defect's shape. Two di�erent shapes are used in

this part and depicted in Fig. E.0.1. In the TSR method, for the polynomial

regression, polynomials of 7th degree have been used. In the Canny algorithm,

Gaussian denoising of the images has been performed using σ = 3 and the

derivative image has been computed using the Sobel kernel.
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APPENDIX E. EDGE DETECTION IN CHALLENGING GEOMETRIES.

Figure E.0.1: The two geometries projected in the (x, y)-plane. Left: A
disc of radius 1.5 mm included in a ring of internal radius 8.5 mm and

external radius 10 mm. Right: A complex shape of dimensions 20× 18 mm.

E.1 A disc inside a ring

In the �rst case, letting a small disc inside a ring, the best frame from the

raw signals is shown in Fig. E.1.1a and after the application of TSR the re-

constructed image that corresponds to the same time is shown in Fig. E.1.1b,

where the features of the image are more clear.

The synthetic RGB image reconstructed from the frame shown in Fig. E.1.1b

and the frame of �rst and second time derivative that corresponds to the same

time is shown in Fig. E.1.2.

The �rst step of the Canny algorithm gives the smoothed image in greyscale

shown in Fig. E.1.3b where is compared with the input image Fig. E.1.3a.

The gradient intensity images are shown in Fig. E.1.4 before and after

applying non-maximum suppression.

The �nal binary image of the algorithm is shown in Fig. E.1.5 where the

reconstructed edges of the defect are depicted with black colour and compared

with the true shape of the defect, in green colour. The multiple stages of the

Canny algorithm are shown in Fig. E.1.6 with di�erent colours. The strong

edges that are detected after the non-maximum suppression are in blue. In
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(a) Raw image.
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(b) Reconstructed image, (I∗).

Figure E.1.1: Comparison of a raw image with the reconstructed image
corresponding to the same optimal frame number.
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Figure E.1.2: RGB(I∗, I∗1 , I∗2 ) image corresponding to the optimal frame
number.

yellow and red, are the parts of the edge that was omitted or added after the

hysteresis tracking, respectively. The green part of the edges is the last added

part during the connectivity analysis. To help the reader, the parameters used

for the edge detection are written in the caption of the images where p is the

polynomial degree and σ refers to the Gaussian smoothing.
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(a) The noisy input image I∗.
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(b) The smoothed image Î∗.

Figure E.1.3: The impact of the Gaussian smoothing on the noisy input
image for the Canny algorithm shown in grey scale.
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(a) The gradient intensity image before
applying non-maximum suppression,

M(i, j).
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(b) The gradient intensity image after
applying non-maximum suppression,

M̂(i, j).

Figure E.1.4: The impact of the non-maximum suppression on the gradient
intensity image. Before, M(i, j), and after, M̂(i, j), applying non-maximum

suppression.

Trying to improve the edge detection one could change the used parameters

for the two used techniques. Changing the smoothing parameter σ from 3 to
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5 will give a less noisy input image resulting a smoother edge detection but

with the risk of loosing in resolution. The binary image is shown in Fig. E.1.7

and the stages of the algorithm in Fig. E.1.8 where the detected strong edges,

coloured in blue, are the only one processed from the algorithm.

A di�erent strategy to improve the edge detection could be lowering the de-

gree of the polynomial used for the polynomial regression by the TSR method.

by setting the polynomial degree equal to 5 the resulting binary image is shown

in Fig. E.1.10 and the image with the stages of the algorithm in Fig. E.1.9.

The approximation of the edges is better than using 7th degree polynomial but

not signi�cantly.
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Figure E.1.5: Binary image for p = 7 and σ = 3.
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Figure E.1.6: Stages image with p = 7 and σ = 3.
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Figure E.1.7: Binary image for p = 7 and σ = 5.
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Figure E.1.8: Stages image with p = 7 and σ = 5.
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Figure E.1.9: Binary image for p = 5 and σ = 3.
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Figure E.1.10: Stages image with p = 5 and σ = 3.
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E.2 The "spider"

Because of the shape used in the previous section, one cannot have a clear

picture of how the resolution of the approximation is e�ected by the used

parameters in the parts of the edge detection. To demonstrate this, a dif-

ferent shape defect with very thin part and many angles is considered here.

In Fig. E.2.1a, the best frame from the raw signals is shown and in Fig. E.2.1b

the reconstructed image after the application of TSR, corresponding to the

same time, is shown.
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(a) Raw image.
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(b) Reconstructed image, (I∗).

Figure E.2.1: Comparison of a raw image with the reconstructed image
corresponding to the same optimal frame number.

The synthetic RGB image reconstructed from the frame shown in Fig. E.2.1b

and the frame of �rst and second time derivative that corresponds to the same

time is shown in Fig. E.2.2 where the defect is distinguished from the back-

ground and its central part is pictured in di�erent colour.

The smoothed image in greyscale is shown in Fig. E.2.3b where is compared

with the input image Fig. E.2.3a.

The gradient intensity images are shown in Fig. E.2.4 before and after

applying non-maximum suppression.
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Figure E.2.2: RGB(I∗, I∗1 , I∗2 ) image corresponding to the optimal frame
number.
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(a) The noisy input image I∗.
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(b) The smoothed image Î∗.

Figure E.2.3: The impact of the Gaussian smoothing on the noisy input
image for the Canny algorithm shown in grey scale.

The �nal binary image of the algorithm is shown in Fig. E.2.5 where the

reconstructed edges of the defect are depicted with black colour and compared

with the true shape of the defect, in green colour. The image contains many

false edges and its true edges are not all detected. The multiple stages of

the Canny algorithm are shown in Fig. E.2.6 with di�erent colours. For the
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(a) The gradient intensity image before
applying non-maximum suppression,

M(i, j).
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(b) The gradient intensity image after
applying non-maximum suppression,

M̂(i, j).

Figure E.2.4: The impact of the non-maximum suppression on the gradient
intensity image. Before, M(i, j), and after, M̂(i, j), applying non-maximum

suppression.

obtained results here, 7th degree polynomial has been used for the TSR method

and for the Canny algorithm the image was subject of Gaussian smoothing with

σ = 3 and the derivative kernel used is the Sobel kernel.

To preserve a high resolution of the detection, a di�erent strategy is fol-

lowed here. A 5th degree polynomial is used to reconstruct the edges shown

in Fig. E.2.7. The stages of the algorithm are shown in Fig. E.2.8. The recon-

structed image is less spurious with many less false edges added to the binary

image and with the true edges detected better than previously.

To improve the edge detection, the polynomial degree is kept the same but

the smoothing of the image is changed. Using σ = 5 the reconstructed binary

image is shown in Fig. E.2.9 and the stages of the algorithm in Fig. E.2.10.

Comparing the resulting binary image with the previous case, less false edges

are included.

To move a step further, a di�erent derivative kernel is used and results are
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shown in the following �gures. The edge detection is not improved signi�cantly

except in few parts of the defect contour.

In this case, the used kernel is the one proposed in [111] which is a Gaussian

derivative with optimized sigma σ = 0.6769

Kx =




0.0007 0.0037 0 −0.0037 −0.0007

0.0052 0.1187 0 −0.1187 −0.0052

0.0370 0.2589 0 −0.2589 −0.0370

0.0052 0.1187 0 −0.1187 −0.0052

0.0007 0.0037 0 −0.0037 −0.0007




, Ky = KT
x . (E.2.1)

and the author shows that this kernel gives a minimal angle error in cases with

complex shapes.
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Figure E.2.5: Binary image for p = 7 and σ = 3.
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Figure E.2.6: Stages image with p = 7 and σ = 3.

129



APPENDIX E. EDGE DETECTION IN CHALLENGING GEOMETRIES.

10 15 20 25 30 35 40

10

15

20

25

30

35

40

x [mm]

y
[m

m
]

Figure E.2.7: Binary image for p = 5 and σ = 3.
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Figure E.2.8: Stages image with p = 5 and σ = 3.
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Figure E.2.9: Binary image for p = 5 and σ = 5.
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Figure E.2.10: Stages image with p = 5 and σ = 5.
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Figure E.2.11: Binary image for p = 5 and σ = 5.
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Figure E.2.12: Stages image with p = 5 and σ = 5 and optimized derivative
kernel.
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Abstract. This communication presents the first development aiming at efficiently
simulating configurations of eddy current thermography for nondestructive evalua-
tion. The numerical method proposed here is based on the Finite Integration Tech-
nique for both electromagnetic and thermal problems. Simulation results obtained
using two different materials, steel and aluminum, are compared and discussed with
respect to the presence of a flaw affecting the piece under test.

Keywords. Eddy current, thermography, simulation, finite integration technique

1. Introduction

The use of thermography [1] for nondestructive testing applications had received grow-
ing attention in the last years. This is mainly due to the fact that infrared (IR) cameras
have recently improved significantly in both sensitivity and spatial resolution and that
this technique is particularly adapted to many applications [2] such as composites’ in-
spection. Unlike other direct imaging techniques, it is a fast, high resolution and con-
tactless method. Thermal testing is generally divided into two main streams: passive and
active. Passive thermography is defined as measuring the temperature difference between
the target material and its surroundings under different ambient temperature conditions.
Active thermography uses a thermal source in order to deposit heat in the target mate-
rial. Most common sources consist in lamps or lasers [3] that heat part of the piece sur-
face. These techniques of depositing heat on the materials have potential disadvantages,
e.g. the reflected heat from the material can interfere with the measured signals, caus-
ing signal-to-noise-ratio (SNR) problems. For instance, many conductive materials when
used in industry are coated or painted. The heating of the workpiece may also be ob-
tained via the application of sonic or ultrasonic energy using a welding horn, i.e. vibroth-
ermography, thermosonics or sonic infrared [4]. In this case, however, contact between
the workpiece and the ultrasonic welding horn it is required, which can complicate its
practical use and cause a loss of energy transmission.

1Corresponding Author: Almpion Ratsakou, CEA, LIST, Centre de Saclay, Gif-sur-Yvette F-91191, France;
E-mail:almpion.ratsakou@cea.fr.
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© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-836-5-175

175



Eddy current thermography (ECT), also named as induction thermography, is an
alternative to inspect metallic structures that does not suffer from the above-mentioned
disadvantages. This is an emerging technology in nondestructive testing (NdT) that com-
bines eddy current and thermography. ECT is based on electromagnetic induction and
Joule effect heating. The technique uses induced eddy current to heat the sample and
defect detection is based on the changes of the induced eddy current flow revealed by the
thermal visualization captured by an IR camera. Induction thermography can be used to
detect cracks [5], disbond, impact damage, delamination and corrosion.

This work presents a modelling approach using a two-dimensional numerical solver
based on the Finite Integration Technique (FIT) [6,7]. A typical configuration, consisting
of a coil located above a plate, is sketched in Figure 1. This configuration will be used
in our simulations and an axial symmetry is assumed. The same numerical tool is used
to solve both physical problems, namely the electromagnetic induction by the coil in the
plate and the heat diffusion in the plate after excitation. Due to the large difference in
time scale between the electromagnetic problem and the thermal one, a weak coupling
of the two problems is possible.

z z

ρρ

a) b)
R

R

e

h

Figure 1. Schematic setup diagram. Circular coil of inner radius Ri, outer radius Re and height h standing
above a conductive plate of thickness d in a distance e. a) Homogeneous plate. b) Homogeneous plate with a
axisymmetric defect of radius r.

In other words, the electromagnetic problem is first solved to calculate the
time-dependent eddy current density induced in the plate, then it is converted into a
heat source term by considering Joule effect. Finally, the diffusion of heat in the plate is
computed with respect to time. This first development will serve as reference for further
works, consisting in solving both problems with fast modal methods [8].

2. Theoretical formulation

ECT involves multi-physical interactions with electromagnetic-thermal phenomena in-
cluding eddy current, Joule heating and heat conduction. Simulation of induction heating
requires the ability to model multiple physical fields. Thus, modeling the generation of
eddy current requires an electromagnetic solution in the workpiece, which results in a
Joule heat distribution. The latter is used as a volumetric heating source in order to obtain
the temperature distribution in the workpiece.

The coupling between the electromagnetic problem and the thermal one can often be
further complicated by the fact that the electromagnetic properties of the workpiece are
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depending on the temperature of the workpiece, which will lead to a strongly-coupled
problem. This coupling of the two problems requires the electromagnetic solution to be
computed based on a time/temperature updated set of materials properties. This leads to
a time consuming numerical computation that can be avoided under some assumptions.

The induction heating process involves multiple time and length scales. Generally,
the time scale associated with the heat transfer is much larger than the time scale as-
sociated with the electromagnetics. The time scale associated with the electromagnetic
solution depends on the frequency f of the alternative current in the coil, while the time
scale associated with the transient heat transfer in the workpiece is determined by its
thermal properties. The length scale, for the electromagnetic problem, also depends on
the frequency, as well on the magnetic permeability μ and electrical conductivity σ . The
so-called skin depth, defined in the particular case of a half-space medium by the relation
δ = (πμσ f )−1/2, illustrates the penetration of the electromagnetic field in the piece. As
a consequence, the associated Joule effect is also generated in a depth range of two or
three times the skin depth δ . From the numerical point of view, this implies that this
particular region must be finely discretized.

2.1. The electromagnetic problem

In a typical configuration, a pulse generator emits a signal to an infrared camera and to
a induction heater, which generates an excitation signal. This excitation signal is usually
a sinusoidal of alternating current with high amplitude. The current is then driven into
an inductive coil, which induces eddy current in the neighbouring workpiece. This phe-
nomenon is described by the Maxwell’s equations, which for the quasi-static approxima-
tion are

∇×E =−∂B
∂ t

, (1)

∇×H = J, (2)

∇ ·B = 0, (3)

where E is the electric field intensity, H is the magnetic field intensity, B is the mag-
netic flux density, and J is the current density. Excitation frequencies are typically lower
than 10 MHz, consequently the displacement current term (∂D/∂ t) in (2) can be ne-
glected. The above equations are combined with the following constitutive relations char-
acterizing a linear, homogeneous and isotropic material

J = σ E, B = μ H. (4)

For solving the above differential equations and since B is divergence free, it can be
expressed as B = ∇×A where A is the magnetic vector potential. Substituting B into
(1) and using (2) as well as the constitutive relations (4), the diffusion equation for the
magnetic vector potential can be derived as:

∇×μ−1∇×A+σ
∂A
∂ t

= Js (5)
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where Js is the current density driving the inductor. The choice of a Coulomb gauge,
∇ ·A = 0, is made here.

The FIT method provides a discrete reformulation of Maxwell’s equations on its
integral form. A typical simulation task is described by a known geometry and material
configuration, as well as boundary and initial conditions. In the following a rectangular
cubic cell complex consisting of a material grid complex M, a primary grid complex G
and a dual grid complex G̃ will be used.

The eddy current density in FIT is computed by the equation

C̃M−1
μ C�a−Mσ

�̇a =
��
j (6)

where C̃ and C, contain only topological information and represent a discrete curl-
operator on the primary and the dual grid G and G̃, respectively, M−1

μ , Mσ , are the ma-

terial matrices, �a is the magnetic vector potential and
��
j is the current density.

Initial conditions of the model assume a thermal equilibrium of the sample and its
surroundings. In the z-direction Neumann boundary conditions are imposed. On the arti-
ficial left side boundary, at ρ = 0 where the axis of the symmetry is, Neumann condition
is imposed too. On the right side boundary, at ρ = ρe Dirichlet boundary condition is
imposed. We suppose that the workpiece is infinite in the ρ-direction so this artificial
boundary does not affect the solution within the domain of interest.

2.2. The thermal problem

Due to resistive heating from the induced eddy current, the temperature of conductive
materials increases, which is known as Joule heating. It can be expressed by the equation

Q̇=
1
σ
|Js|2 ,

where the sum of generated power density Q̇ is proportional to the square of the eddy
current density. The resistive heat will diffuse as a time transient until an equilibrium
state is restored between the bulk and its surface, or better saying the workpiece and the
environment. The thermal part of the problem can be divided into two phases, (i) the
heating phase, during which the heat is being deposited in the workpiece and (ii) the
cooling phase, when the workpiece has reached a maximum temperature, the deposit of
heat has stopped, and only diffusion of the heat is occurring in the plate.

Starting with the energy conservation law in integral form

ˆ

V
�Cp

∂T
∂ t

dV =

ˆ

V
Q̇ dV −

˛

∂V
J · ds (7)

and using the Fourier’s law J =−κ∇T , the heat equation is derived as

−κ∇2T+ �Cp
∂T
∂ t

= Q̇, (8)

where κ is the thermal conductivity, � the density, Cp the specific heat and T the temper-
ature.
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In the FIT, the solution of the thermal problem is given by the equation

S̃Mκ Gθ −Mcθ̇ =−q̇, (9)

which is a discrete formulation for the heat equation, where S̃ is the div-operator on
the dual grid, Mκ , Mc are material matrices, G is the discrete gradient matrix, θ the
temperature and q̇ the source term.

Pairing this equation with the boundary conditions, the temperature of the workpiece
and its surrounding is computed. The boundary conditions that are used here are the same
as in the electromagnetic problem.

3. Simulation and results

For the simulations a circular coil is used with e= 1 mm of lift-off and inner radius Ri =
11 mm, outer radius Re = 84 mm, height h= 41 mm and number of wire-turns N = 408
as in [9]. For modeling the workpiece, two different materials are used: (i) Aluminum, (ii)
Steel, their respective physical parameters being given in Table 1. We are investigating
here two scenarios. In the first case, we compare the behaviours of two homogeneous
plates of thickness d = 10 mm, made of aluminum and steel, respectively. In the second
case, we introduce a defect, which can be assumed to be a corrosion, at the bottom
surface of a thin plate (d = 1 mm) of aluminum. The defect is modelled as a local change
of physical properties (same as the surrounding environment). The excitation signal is
considered to be a sinusoid of frequency f . Setting the frequency of the excitation signal
at f = 200 Hz and the duration of the signal at 50 ms we probe the two different plates
with 10 periods of the signal. In Figure 2, the images of the simulation for three crucial
times are given. In the first two rows, for which no diffusion has been occurring, the skin
depth effect is highlighted, i.e. the difference of the electromagnetic properties of the
materials.

As one can expect, through the Joule effect, the penetration depth of the eddy cur-
rents in the aluminum plate is much larger than in the workpiece of steel. The differ-
ence between both rows of images is a result of the difference of the thermal properties
of the materials. A corrosion has been now introduced in a thick aluminum plate. The
frequency of the probed signal has been kept the same, at 200 Hz, which gives a pene-
tration depth of 6 mm, much larger than the thickness of the plate. The defect has been
modeled as a circular discontinuity in the plane (ρ,θ) of radius r = 3 cm or 5 cm and
a thickness of 0.5 mm in the z-direction. The results of the simulation of this setup are
given in Figure 3.

Since only the infrared radiation emitted by the surface of the workpiece as a func-
tion of time can be captured by a thermal camera, in Figure 4 and Figure 5 the surface
temperatures are plotted. In Figure 4, the temperature of the the workpiece on the sur-

Table 1. Electromagnetic and thermal parameters of the materials.

μr σ (S/m) κ (W/m/K) � (Kg/m3) Cp (J/Kg/K)

Aluminum case 1 3.5×107 237 2707 897
Steel 700 3.21×106 44.5 7850 475
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Figure 2. Temperature distribution images in the region of interest for different time and homogeneous
materials without defects.
Top: Aluminum. Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.
Bottom: Steel. Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.

Figure 3. Temperature distribution images in the region of interest for different time and an aluminum
plate with defect.
Top: Discontinuity radius: 5 cm. Bottom: Discontinuity radius: 3 cm.
Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.

face, when the radius of the corrosion is 5 cm, is plotted compared with the case of the
undamaged plate. In Figure 5 the results with a corrosion of radius of 3 cm are given.
Since the position of the thermal camera is not fixed, i.e. we can have thermal images on
both sides of the plate, the difference of temperature is shown in both surfaces.

On both cases, the information about the defect is clear for early times where we are
able to distinguish its edges, i.e. the size of the defect in the ρ-direction is well defined.
When diffusion occurs, the temperature curves of the damaged and undamaged plate
are close. In the case of the smaller defect, still we can see that there is a defect in the
workpiece but it is impossible to locate its edges. On the other hand, when the defect’s
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Figure 4. Comparison of the distribution of temperature at the surfaces of the plates with and without defect for
different observation times. Defect’s radius r = 5 cm. Top: Upper surface, Bottom: Bottom surface. Different
observation time: Left: 10, 50, 70 ms Right: 1, 2, 3s

Figure 5. Comparison of the distribution of temperature at the surfaces of the plates with and without defect
for different observation times. Defect’s radius r= 3 cm. Top: Upper surface, Bottom: Bottom surface Different
observation time: Left: 10, 50, 70 ms Right: 1, 2, 3s
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radius is 5 cm, even after 5 seconds the localization of the edges of the defect can be
easily achieved through those curves. In general, in ECT we are interested on early times
when the difference of the electromagnetic and thermal properties of the workpiece can
highlight any presence of a damage on it and this is well shown by the previous results.

4. Conclusions and perspectives

To conclude, a 2D numerical solver based on the finite integration technique has been
implemented and used to simulate the behaviour of different materials under inspection
by means of eddy current thermography. Both electromagnetic and thermal problems are
coupled in a weak way, taking advantage of the large difference between their character-
istic time constants. Possible generalizations of this solver are the development of a 3D
version or the investigation of strong coupling in the calculation process.

The use of such a numerical solver is important to investigate easily some aspects
like effect of piece inhomogeneity or anisotropy, however it can lead to heavy calcula-
tions and complicated meshing considerations when addressing 3D configurations. For
this reason, this tool will later be used in complement of fast modal methods to adress
3D cases involving canonical geometries like a stratified planar medium.
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91192 Gif-sur-Yvette cedex, France

a)Corresponding author: almpion.ratsakou@cea.fr

Abstract. In the present work, we propose a semi-analytical model based on the so-called truncated region eigenfunction expansion
method, for the simulation of thermographic inspection. The problem is solved in the Laplace domain with respect to time, and
the temperature distribution is approximated by its expansion on a tensor product basis. Configurations addressed by this model
are stratified planar pieces affected by thin delamination flaws. Considered sources are lamps providing a thermal excitation at
the surface of the inspected piece. The description of the delamination defects as thin air gaps between the piece layers proves
to be equivalent with the introduction of a surface resistance to the heat flow, thus allowing their treatment via the applied modal
approach without additional discretisation.

INTRODUCTION

Thermal/infrared non-destructive testing (T/INDT) techniques [1] have received growing attention in recent years
thanks to their advantages, that is, fast, high resolution and contact-less, control, and benefiting form the techno-
logical progress in the infrared cameras and data acquisition equipment. The detection of irregularities is based on
the principle that all bodies emit infrared radiation when their temperature is above 0 K. The emitted infrared radia-
tion can be measured by infrared cameras, and the images are then analysed for the detection and characterization of
flaws. Subsurface irregularities will affect the heat diffusion rate leading to a thermal contrast on the surface of the
homogeneous work-piece. By analysing alterations or the contrast in the thermal pattern of the material surface, one
can obtain information about subsurface flaws.

Simulation of TNDT procedures involves at a first step the solution of the heat conduction problem in the con-
sidered work-piece, with and without defects, in order to obtain the temperature distribution at the piece interfaces,
which constitutes the measurement. The full solution to this problem can be obtained using a numerical technique
like the finite elements method (FEM) or the finite integration technique (FIT). Nevertheless, in practical situations
it is often meaningful to renounce the detailed information of the complete numerical solution in favour of fast an-
alytical or semi-analytical approximations, which hold the essence of the thermal flow behaviour. A very popular,
well-established approach is the so-called thermal quadrupoles method, where the original tree dimensional problem
is approximated as a multilayer one dimensional problem (by ignoring the heat flow in the lateral layers directions)
and modelled as a cascade of ”quadrupoles” in analogy with the electrical network theory [2].

Should the lateral propagation be taken into account, the quadrupole approach can be extending by taking the
Fourier transform of the solution along these directions and forming an one dimensional problem per spatial frequency.
Mathematically speaking, this is equivalent with stating that the Fourier basis diagonalises the part of the operator
standing for the lateral propagation, thus allowing us to treat the problem as a set of independent one dimensional
problems. This approach is, however, not valid in case where defects are present since the Fourier basis is not an
eigenbasis of the operator any more. In order to address this problem a more general approach should be followed.

Such an approach based on the artificial truncation of the computational domain, referred to in the literature as
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the truncated region eigenfunction expansion (TREE), has been successfully applied in the electromagnetism for the
solution of magnetostatic and low-frequency (eddy-current) problems [3, 4, 5, 6]. Defects can be modelled directly as
part of the geometry like in [4, 5, 6], or indirectly by first applying the TREE method to construct the Green’s function
accounting for the geometry of the flawless piece and treating the defect as a perturbation by solving the appropriate
integral equation [7, 8, 9].

In a previous work [10], a dedicated two-dimensional numerical solver based on FIT [11, 12] has been used for
studying volumetric defects in planar multilayer media, consisting of steel and aluminium sheets. In this communica-
tion, the TREE method will be extended in order to treat arbitrarily shaped delamination defects in steel-aluminium
multilayer specimens, like those of [10]. Delamination flaws are entirely confined between the structure layers and
hence can be modelled as inter-layer resistance patches, making modal approaches like the TREE method applica-
ble. The temporal part of the solution is treated as in the quadrupole method via the Laplace transform. The semi-
analytical solutions developed for a number of case studies will be compared with the numerical results obtained via
the COMSOL Multiphysics R© simulation platform [13].

THEORETICAL DESCRIPTION OF THE PROBLEM

Classical heat conduction solutions have been summarized by Carslaw and Jaeger [14] in late 50s and are widely used
for calculating the temperature field inside homogeneous or isotropic materials. In our case, a general heat diffusion
model of a multi-layered structure, with respect to the z−direction, is described by the following expressions:

1
a(i)

∂T (i)(x, y, z, t)
∂t

=
∂2T (i)(x, y, z, t)

∂x2 +
∂2T (i)(x, y, z, t)

∂y2 +
∂2T (i)(x, y, z, t)

∂z2 , i = 1, . . . ,M (1)

T (i)
∣∣∣
t0

= Tin (2)

T (i)
∣∣∣
z j

= T (i+1)
∣∣∣
z j

(3)

−k(i) ∂T (i)

∂z

∣∣∣∣∣∣
z j

= −k(i+1) ∂T (i+1)

∂z

∣∣∣∣∣∣
z j

. (4)

Here T (i) is the temperature in the i-th region, M is the number of layers, Tin is the temperature of the work piece at the
initial time t0, a(i) = k(i)/

(
ρ(i)C(i)

p

)
is the thermal diffusivity in the i-th region, k(i) is the thermal conductivity, ρ(i) is the

material density, C(i)
p is the heat capacity and t is the time variable. The heat diffusion phenomenon is described by the

Equation 1. Equation 3 and 4 describe the continuity of the temperature and the continuity of the thermal flux at the
interface between layers i and i + 1, respectively. For simplicity, our model consists of two thin metallic plates, above
and below them thick layers of air will complete the physical configuration. In Fig. 1, a two dimensional projection
on the xz−plane of the a general set-up is depicted.

The work piece is thermally excited by a flash lamp set above the work piece. This excitation is modelled in terms
of an additional thermal flux Je at the interface between the first and second layer of the model and perpendicular to that
interface. The introduction of the source flux requires the modification of the flux continuity condition in Equation 4
as follows:

T (1)
∣∣∣
z=0 = T (2)

∣∣∣
z=0 (5)

−k(1) ∂T (1)

∂z

∣∣∣∣∣∣
z=0

= −k(2) ∂T (2)

∂z

∣∣∣∣∣∣
z=0

+ Je. (6)

Let us introduce some flaws in the model. These flaws will be modelled as very thin air gaps between the two metallic
plates, i.e. the second and the third layer. By modelling the flaws as very thin with respect to the z− coordinate, they
can be represented by a thermal resistance R(x, y) between the two layers. The effect of the flaws can be taken into
account by modifying the continuity relation at the interface of the two layers. By applying the Fourier’s law between
the fictitious surfaces of the flaw we have the new continuity condition between the second and third layer

T (1)
∣∣∣
z=−d1

= T (2)
∣∣∣
z=−d1

− R(x, y)
∂T (1)

∂z

∣∣∣∣∣∣
z=−d1

(7)
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FIGURE 1. Two-dimensional illustration of a typical thermographic inspection consisting of a double-layered piece of two differ-
ent materials illuminated by a flash lamp.

−k(1) ∂T (1)

∂z

∣∣∣∣∣∣
z=−d1

= −k(2) ∂T (2)

∂z

∣∣∣∣∣∣
z=−d1

. (8)

THE TREE FORMULATION

The boundary value problem described by Equations 1 – 8 will be solved in the Laplace domain with respect to
time. However, the solution of the problem with the TREE method requires the truncation of the solution domain.
That is done with respect to x−coordinate and y−coordinate. This is physically valid if these limits are set far away
from the region of interest or just at a distance large enough so as the flaws of the work-piece do not interfere with the
boundaries. To truncate the solution domain we have to impose boundary conditions at x = 0, x = Lx and y = 0, y = Ly.
Dirichlet boundary conditions, see Equation 9 and 10, Neumann boundary conditions, see Equation 11 and 12, or even
mixed boundary conditions can be used indifferently, an advantage of this method being the ability to handle a variety
of boundary conditions.

T (i)
∣∣∣
x=0 = T (i)

∣∣∣
x=Lx

= 0 (9)

T (i)
∣∣∣
y=0 = T (i)

∣∣∣
y=Ly

= 0 (10)

or

∂T (i)

∂x

∣∣∣∣∣∣
x=0

=
∂T (i)

∂x

∣∣∣∣∣∣
x=Lx

= 0 (11)

∂T (i)

∂y

∣∣∣∣∣∣
y=0

=
∂T (i)

∂y

∣∣∣∣∣∣
y=Ly

= 0. (12)

In our case, we will apply Dirichlet boundary conditions in both directions.
The formal solution for the temperature field in the Laplace domain reads

T (1) =

M∑

m=1

N∑

n=1

C(1)
mne−η

(1)
mnz sin(κmx) sin(λny) (13)

T (2) =

M∑

m=1

N∑

n=1

[
C(2)

mne−η
(2)
mn(z+d1) + D(2)

mneη
(2)
mnz

]
sin(κmx) sin(λny) (14)

120004-3



T (3) =

M∑

m=1

N∑

n=1

[
C(3)

mne−η
(3)
mn(z+d1+d2) + D(3)

mneη
(3)
mn(z+d1)

]
sin(κmx) sin(λny) (15)

T (4) =

M∑

m=1

N∑

n=1

D(4)
mneη

(4)
mn(z+d1+d2) sin(κmx) sin(λny) (16)

the discrete eigenvalues κm and λn being determined by the truncation conditions in the x and y direction, respectively,
as follows:

sin(κmLx) = 0, κm =
mπ
Lx
, m ∈ Z∗

sin(λnLy) = 0, λn =
nπ
Ly
, n ∈ Z∗

M and N being the truncation limits and η(i)
mn being calculated using the dispersion equation

−κ2
m − λ2

n + η2
mn −

s
a(i) = 0

η(i)
mn =

√
κ2

m + λ2
n +

s
a(i) .

According to Equation 6, the excitation term is expressed by means of a given thermal flux Je(x, y) at the interface
between the first and the second layer, at z = 0. Applying the Fourier’s law, one obtains

Je(x, y) = −k(1) ∂T (e)

∂z
(17)

which using Equation 17 and substituting the expression for the temperature field from Equation 14 yields

Je(x, y) = −k(1)
M∑

m=1

N∑

n=1

η(1)
mnC(e)

mn sin(κmx) sin(λny) (18)

If we assume that Je(x, y) has the form of a rectangular patch exceeding from x1 to x2 and from y1 to y2 with 0 < x1 <
x2 < Lx and 0 < y1 < y2 < Ly the coefficients for the excitation term can be calculated explicitly according to

C(e)
mn = − A

k(1)η(1)
mn

∫ y2

y1

∫ x2

x1

sin(κmx) sin(λny) dx dy (19)

where A is the constant intensity of the source.
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FIGURE 2. Sketch of a 2-layer medium with delaminations
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At this point, we consider the same case of the double-layer medium but this time we assume that the contact
between the two layers is imperfect in a sub-domain of their interface as depicted in Fig. 2. This kind of imperfect
contact between the two layers can model a very thin delamination. In this case, the effect of the delamination can be
taken into account by only modifying locally the continuity relation between the two layers. To be more specific, let
us consider a very thin defect between two planar media as shown in Fig. 3, whereD is the region of the delamination,
∆z is the size of this area in the z−direction, S a and S b are two fictitious surfaces parallel to the interface between the
two layers at a distance ∆z/2 from it each. By applying the Fourier’s law between the fictitious surfaces S a and S b
one has

Jz = −kd∇T

Jz = −kd
T (2) − T (3)

∆z

which leads to
T (2) − T (3) = −R(x, y)Jz (20)

where Jz is the heat flux in the z−direction and R(x, y) represents the resistance between the two layers defined as

R(x, y) =
∆z
kd
, (x, y) ∈ D

inside the flaw domain D ∈ (0, Lx) × (0, Ly) and valued to zero elsewhere. Here, ∆z is the size of the delamination in
the z−direction and kd is the thermal conductivity of the flaw, which is air in our case.

T
(2)

T
(3)

∆z=2

∆z=2
Sa

Sb

D

FIGURE 3. Modelling the delamination

We denote Jz2 and Jz3 as the heat flux for the second and third layer, respectively. Since Jz2 = Jz3 , by the continuity
of the thermal flux at the interface, Equation 20 becomes

T (2) − T (3) = −∆z
kd

Jz (21)

where T (2) and T (3) will be replaced by their series expressions.
The set of continuity relations is then written as a linear system of equations after the application of the Galerkin

method. The result can be written in matrix form:

[A][X] = [B] (22)

where X contains the unknown coefficients Cmn and Dmn. The matrix A has to be numerically inverted in order to
calculate the unknown coefficients. This matrix is a block tridiagonal matrix. The right hand side of the system, B, is
sparse as it differs from 0 only in the lines which correspond to interfaces where sources may be found, excitations or
delaminations. By calculating the matrix X the solution of the problem can be numerically evaluated in the discretised
space domain of interest using Equation 13–16. The results are the solution of the problem in the Laplace domain.
The temperatures can be calculated in the time domain, by numerical inversion of the obtained solution in the Laplace
domain.

For the inverse Laplace transformation the Stehfest’s algorithm is used [15, 16], which is an improved variant
of Gaver’s method [17]. If F(s) is the known Laplace transform of the function f (t), evaluated at s = a j/t where
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a j = j ln(2), then an approximate value of this function at time t can be calculated as

f (t) �
ln(2)

t

N∑

J=1

V jF
(

j
ln(2)

t

)
. (23)

The coefficients V j are given by the following expression for an even value of N:

V j = (−1) j+N/2
Min(N/2, j)∑

k=Int(( j+1)/2)

kN/2(2k)!

(N/2 − k)!k!(k − 1)!( j − k)!(2k − j)!
. (24)

In this equation ’Int’ designates the integer part of a real number and ’Min’ the minimum of two numbers.

NUMERICAL RESULTS

The three-dimensional model has been tested for the two inspection scenarios depicted in Fig. 4, following the ex-
perimental configuration described in [18]. A flash lamp producing a heating power density of Q = 106W/m2 on the
surface of the work-piece, is used for excitation. The flash has been modelled as a Dirac’s delta function in time,
whereas its spatial part is considered as uniform. The inspected material consists of two metallic plates of equal thick-
ness, i.e. d1 = d2 = 2.5 mm. The top layer is a steel plate and the bottom one, an aluminium plate. The computational
region has been truncated at Lx = 50 mm and Ly = 50 mm.

In the first configuration, shown on the left part of Fig. 4, a single rectangular delamination flaw is considered.
The flaw dimensions are 10 × 10 mm in the xy−plane, and its thickness is taken equal to d = 10−3 mm. The flaw is
located at the centre of the plate. The spatial support of the source, flash lamp, is a square of 30 mm side, and it is also
centred in the middle of the plate. In the second case, depicted on the right side of Fig. 4, the plate is affected by two
rectangular flaws of different sizes, but of same thickness. The lateral dimensions of the defects in the xy−plane are
5 × 10 mm and 10 × 10 mm, respectively. The spatial support of the source in this case is a square of 45 mm centred
in the middle of the plate, as in the first case.

FIGURE 4. The three-dimensional configurations of the work-piece. Left: Single-flaw configuration including a
10 × 10 × 10−3 mm void inclusion centred between the two layers. Right: Multi-flaw configuration including a 10 × 10 × 10−3 mm
and a 5 × 10 × 10−3 mm void inclusion between the two layers.

TABLE 1. Thermophysical properties of materials.

Bulk
material

Thermal conductivity k
[W/mK]

Heat capacity Cp
[J/kgK]

Density ρ
[kg/m3]

Aluminium 237 897 2707
Steel 44.5 475 7850
Air 0.02454 1005 1.1843
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In Fig. 5 and 6 the temperature distribution at the front and the rear surface is shown for the single-flaw configu-
ration at 0.0408 and 0.2143 s, respectively. Fig. 7 and 8, show the same results for the second configuration. The two
figures illustrated how the heat diffusion is affected by the presence of the flaw.
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FIGURE 5. Simulated surface temperature field at time 0.0408 second for single-flaw configuration. Left: Top surface.
Right: Bottom surface.
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FIGURE 6. Simulated surface temperature field at time 0.2143 second for single-flaw configuration. Left: Top surface.
Right: Bottom surface.

In order to proceed to a quantitative comparison of the above presented solution the same problem has been solved
using a commercial numerical modelling software, the heat transfer module of COMSOL Multiphysics R© [13]. The
numerical solver of COMSOL Multiphysics R© is based on the finite elements method using a time stepping technique.

The heat equation treated with the COMSOL Multiphysics R© solver reads

ρCp
∂T
∂t

+ ∇ · q = Q (25)

where q = −k∇T . The source is described as surface condition at z = 0 as

−n · q = Qb (26)
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FIGURE 7. Simulated surface temperature field at time 0.0408 second for the multi-flaw configuration. Left: Top surface.
Right: Bottom surface.
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FIGURE 8. Simulated surface temperature field at time 0.2143 second for the multi-flaw configuration. Left: Top surface.
Right: Bottom surface.

where Qb(t) = Q0δ(t − τ), [W/m2]. The defect is described as a thin layer of resistance Rs = ds/ks, where ds is its
thickness and ks its thermal conductivity, modelled as a surface condition

−nd · qd = −Tu − Td

Rs
(27)

−nu · qu = −Td − Tu

Rs
(28)

where the subscript u stands for the upper layer and the subscript d stands for the down layer. The boundary conditions
in x and y directions have been taken the same as in the TREE model. Due to the fact that the FEM method requires
the definition of a closed box as solution domain, Dirichlet boundary conditions have been imposed in the z direction,
at a sufficient distance from the domain of interest in order not to perturb the solution.

In Fig. 9, the TREE solution for the temperature time dependence at a distance of 0.5 mm from the centre of the
front (on the left) and the rear (on the right) surface of the single-defect specimen is compared against the respective
FEM results. Fig. 10 shows the same comparison for the second specimen. A very well agreement of both results is
observed.
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FIGURE 9. Simulated thermograms for the single-flaw model using COMSOL Multiphysics R© and the TREE method obtained at
the centre of the xy−plane and at a distance of 0.5mm from the surface of the plate. Left: Front face detection, Right: Rear face
detection
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FIGURE 10. Simulated thermograms for the multi-flaw model using COMSOL Multiphysics R© and the TREE method obtained at
the centre of the xy−plane and at a distance of 0.5mm from the surface of the plate. Left: Front face detection, Right: Rear face
detection

CONCLUSIONS

The proposed semi-analytical model can treat a wide range of problems in the field of TNDT involving canonical
geometries, like stratified planar media. The model has been validated using a commercial FEM software, and the
results are in good agreement.

Work is under way in order to include different thermal sources, such as an induction coil [10] in order to simulate
a broad range of thermal inspection applications. In a further step, the herein presented semi-analytical model will be
integrated in an inversion algorithm in order to provide estimations about the size and the thickness of the defect.

For the simulation of more general defect geometries, as for example pitting, stress corrosion cracking, etc., one
must resort to the more general strategy involving an integral equation formalism like in [8, 9]. The development of a
such solver lies in the broader perspectives of the current work.
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Abstract. The objective of the work presented in this paper is to propose a fast and accurate
approach for the characterisation of the delamination in single-layer metallic planar pieces using
infrared thermography. This approach is based on a combination of pre-processing techniques
and inversion. The inversion has been done in a reduced parameter space since the pre-
processing phase gives us information about the location and the shape of the flaws in the
transverse plane. The estimation of the flaws’ parameters has been carried out by an iterative
data fitting method involving a fast semi-analytical three-dimensional model. The robustness
of the proposed approach is numerically assessed in presence of synthetic noisy data sets in
different configurations.

1. Introduction
Non-destructive evaluation (NDE) techniques can be evaluated in terms of their capability to
answer to two main questions: (i) detection and (ii) identification or characterisation of defects.
The first question requires a qualitative answer of a binary nature. The second one refers to
quantitative parameters, that is, once a defect is detected it has to be identified in terms of
its parameters as size, location, nature, independently of the technique employed. This work
particularly emphasizes the identification problem in thermal non-destructive testing (TNDT).

Active thermography [1] uses a thermal source in order to deposit heat in the target material
creating a transient heat flow and, when finding defects, thermal contrast. The most common
form of active thermography for material evaluation consists in using sources as flash lamps or
lasers where a pulse of light instantaneously heats a surface and the resulting temperature is
observed with a thermal camera. This technique is also known as pulsed thermography and
has been extensively used as inspection technology for composite and layered structures. The
detection can be on the same side as the heat source or on the opposite side, depending on the
type of access to the sample. However, analysis and inversion of thermographic data tends to
be challenging since the underlying heat conduction phenomenon is a diffusion process. As heat
diffuses in time and space, temperature differences blur, the heat source becomes harder and
harder to resolve and the contrast created by the flaws is lower.

Typical TNDT procedure results in a sequence of infrared (IR) images, obtained via an IR
camera, that reflects the evolution of temperature in time. Mathematically, such a sequence
can be regarded as a three-dimensional table of temperature values, with the dimensions being
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space and time, Tx,y,t. This recorded thermal response usually is degraded because of several
factors. Uneven heating, variations of emissivity on the observed surface, optical distortions
and noises of multiple nature significantly decrease the quality of the obtained thermal images.
These factors limit the potential sensitivity of any method. Usually, the recorded signals are a
subject of some signal processing like subtraction of the camera response when the piece under
test is removed.

Several data processing techniques for reducing the amount of noise in thermal images and
local storage requirements while improving the visibility of discontinuities have been proposed
in the literature. These algorithms are either one-dimensional, being applied to pixel-based
temperature evolutions in time, or two-dimensional, being applied to single images. Single IR
images are normally filtered or segmented to reduce random noise or to analyse geometrical
features of the areas of interest.

Much more information about defect parameters can be obtained by analysing the evolution
of temperature in time. Therefore, most TNDT processing algorithms use pixel-based functions,
which rely on one-dimensional diffusion models [2]. These models serve very well their purpose
when one is trying to identify one defect at the time or defects located at a reasonable distance
since the presence of one does not affect the temperature profile of the other. When the defects
are located close to each other the usage of pixel-based functions, i.e. one dimensional models,
fails to characterise those defects with an acceptable accuracy.

The usage of one dimensional models is not restricted only by the relative location of the
defects but also by the depth of the defects. In situations where the defects are deeply buried
in the material, or the material is too thick, the need of using a three-dimensional approach
which will take into account the interaction between the defects and the occurred diffusion is
of a significant importance. Yet, one cannot define a strict rule which will imply the limits of
the one-dimensional model with respect to the mentioned parameters. The application of two
or three-dimensional models in iterative inversion schemes is limited because of their excessive
computational time since most of them are based on a numerical approaches [3].

In this work we propose a combination of pre-processing techniques and inversion to achieve
an accurate characterisation of delamination-type flaws in metallic plates. We regularize the
inverse problem by pre-processing the data, which brings information about the location and
the shape of the flaws in the transverse plane. Thus, we are dealing with an easier problem
since the size of the parameters is significantly reduced. Here we present the inversion problem
by assuming that the pre-processing has been carried out, which will be presented in a future
contribution. We use a fast, three-dimensional, semi-analytical direct model which is able to
produce reliable data in cases of planar double-layered materials with embedded, rectangularly
shaped in the transverse plane defects [4]. This semi-analytical direct model is based on an
approach referred in the literature as the truncated region eigenfunction expansion (TREE)
which has been successfully applied also in electromagnetics for the solution of magnetostatic
and low-frequency (eddy-current) problems [5].

2. Methodology
A valuable answer to the characterisation problem can be given if one has at its disposal
three essential elements:(i) a characterisation of the defect parameters in terms of the active
parameters in the physical process used by the NDE technique, (ii) a direct model giving the
expression of the measured quantity as a function of the active parameters of the defect and (iii)
an inversion (or parameter estimation) technique that gives these parameters as a function of
the measured physical quantities. In our case, the defect parameters are the physical parameters
of the defect such as its location, its size and its thermal properties. The measured quantity is
the temperature recorded as a time series at the surfaces of the sample. The theoretical value
of the surface temperature Tsurf will be provided by the aforementioned semi-analytical model
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where the thermal characteristics of the sample are known.
In literature one can find different parameter estimation techniques depending on the nature

of the parameters one is looking for. The depth profile reconstruction, the inverse problem,
consists of set of attempts for fitting Tsurf by trying all reasonable profiles. In the spatial
domain the inverse scattering technique has been used to reconstruct both thermal conductivity
and heat capacity depth profiles [6] and the conjugate gradient technique has been used to
optimise the fit. In the time domain the effusivity depth profile has been reconstructed [7, 8]
and the neural network approach has been used to find the best fit [9].
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Figure 1: Sketch of the configuration in the xz–plane, (a) and in the xz–plane, (b).
Thermograms in logarithmic scale for a sound area, Ts a flawed area, Tf and the absolute
value of their second logarithmic derivatives.

In TNDT a successful characterisation of a subsurface defect consists of the knowledge of its
location, its dimensions and its thermal properties. Our approach separates the characterisation
of the defect in two stages: in the first stage, the localisation of possible defects and the
reconstruction of their shapes in the xy–plane, see Fig. 1a, during the second stage, the
estimation of their thickness and depth, see Fig. 1b, performed by using an iterative scheme.

2.1. Pre-processing
The temperature field inside anisotropic materials can be expressed mathematically by Eq. (1),
where ρ, c represent the material density and heat capacity, respectively, κx, κy and κz
represent the thermal conductivities in three principal directions. If the heating of the plate is
instantaneous and on one side of the plate only, we can assume that the solution of temperature

in flawless regions can be described by the one-dimensional heat equation ∂T
∂t = α∂

2T
∂z2

, where
α = κ

ρc is the thermal diffusivity of the material. For an ideal pulse, heat flux uniformly applied
to the surface of a semi-infinite solid, the temperature of the material at distance z from its
surface is given by Eq. (2) where ε =

√
κρc is the heat effusivity and Q is the energy supplied to

the surface. The temperature at the surface of the sample it described by Eq. (3). From Eq. (3)
is clear that the presence of any defect will be expressed as the deviation of the temperature
decay curve from its expected values.

ρc
∂T

∂t
= κx

∂2T

∂x2
+ κy

∂2T

∂y2
+ κz

∂2T

∂z2
(1)

T (z, t) =
Q

ε
√
πt
e
z2

4αt (2)
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T (t) =
Q

ε
√
πt

(3)

To get rid of experimental noise, pre–processing like thermographic signal reconstruction
(TSR) leads to high spatial and temporal detection resolution [10]. The assumption of TSR
is identical with the assumption of Eq. (3), which can be rewritten in the logarithmic scale as

ln (Tsurf(t)) = ln
(
Q
ε

)
− 1

2 ln (πt) and expanded into a polynomial series:

ln (Tsurf(t)) = a0 + a1 ln(t) + a2 [ln(t)]2 + · · ·+ an [ln(t)]n . (4)

where the logarithmic evolution of temperature at each pixel has been approximated by a n-
degree polynomial function. This approximation compresses a thermographic sequence into
n + 1 frames of polynomial coefficients, removes high-frequency temporal noise and enhances
the defect visibility. Reconstruction of the signals in the logarithmic scale and the computation
of second time derivative using the polynomial approximation derives time frames which are
smoother and suitable for defect detection. Such detection can be carried out by different image
processing algorithms, such as the Canny edge detection algorithm, to define the location, shape
and size in the xy–plane of the defects. The application of these algorithms is out of the scope
of the present communication and it will be addressed in a future work.

The choice of the polynomial degree is a trade off between accuracy of the approximation,
noise management and computational time. Here the choice has been made by studying the
behaviour of the second time derivative of the signals in the logarithmic space and re-sampling
in time. Initially we choose the time instances where the absolute value of the second time
derivative is zero and those where its value reaches local maxima between the zeros, see Fig. 1c.
The first and the last time instances are also added. For tN chosen time instances the polynomial
degree will be set to be n = tN − 1. In our case, as illustrated by Fig. 1c the absolute value of
the second logarithmic derivative is zero at the beginning of time and in two more instances.
By adding the instances where local maxima occur and the last time instance one has six time
instances. Thus, the polynomial degree is set to be n = 5. For the configuration depicted in
Fig. 1, and using noisy signals, SNR = 20, obtained in reflection we present the reconstructed
images, Fig. 2, at the first four chosen time instances.

Figure 2: Reconstructed temperature field in the logarithmic scale for the first four chosen time
instances, ti, i = 1, 2, 3, 4.

2.2. Defect characterisation
In an inversion process, one usually minimizes a discrepancy between some experimental data,
say ud, and some model data, say u. The discrepancy function, also called cost or objective
function, is often expressed as a norm of the difference between ud and u. Most often, one uses
the L2(·) norm but since we are working with discrete data, the squared Euclidean norm is to
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be used, J = f
(
||u− ud||22

)
. The cost function is explicitly given in terms of u and minimized

with respect to the parameters ψ, characterizing the flaws.
For the minimization problem the Levenberg–Marquardt method has been used [11]. This is

an iterative method originally devised for solving non-linear least-square problems of parameter
estimation but it has also been successfully applied to the solution of linear problems that
are too ill-conditioned to permit the application of linear algorithms. The method decreases
the ill-condition feature by using a “damping” parameter, ` ≤ 0, which may be adjusted at
each iteration. Note that ` → 0 yields the Gauss-Newton algorithm while larger ` gives an
approximation of the steepest descent gradient algorithm.

The forward model we use here models defects of delamination type as boundary conditions
in a fictional interface inside the metallic plate. Thus, we are bounded to consider only flaws
that are located at the same depth. The parameters to be estimated here are the depth at which
the defects are located and their thickness. Thus, for the m detected flaws, the number of the
unknown parameters will be m+ 1, ψ = (ψ1, ψ2, . . . , ψm+1)

T.
After applying TSR to the synthetic noisy data Tsurf, we end up with a three-dimensional

matrix, denoted Tpx,py ,n+1, containing n+ 1 frames of px × py elements with the coefficients of
the n-degree polynomials as expressed in Eq. (4). For each pixel we reconstruct the temperature
signals in the logarithmic scale by evaluating the polynomials at the, previously chosen, time
instances ti, i = 1, 2, . . . , n + 1. The data to be fitted, denoted as ud, is now the vectorised
temperature in the logarithmic scale.

3. Experiment and result analysis
For the purpose of this research, the three-dimensional model [4] has been used to produce
synthetic data, temperature signals, for the general configuration depicted in Fig. 1 . A grade
4340 steel plate with thermal conductivity k = 44.5 W/mK, heat capacity Cp = 475 J/kgK,
density ρ = 7850 kg/m3 and of thickness d = 3 mm is used. The steel plate has
three well-defined air-filled defects, named A,B and C, to simulate delaminations of
different thickness, dA = 3× 10−6 m, dB = 2× 10−6 m, dC = 1× 10−6 m and of different size
(2× 3 mm), (2× 4 mm), (4× 4 mm), respectively. As an excitation term, a flash lamp
depositing a heating power density of Q = 104 W/m2 on the surface of the plate has been
modelled as a Dirac’s delta function in time, whereas its spatial distribution is considered as
uniform.

To test the robustness of the inversion scheme versus the noise, the configuration depicted
in Fig. 1 has been tested for different noise levels using recorded signals in reflection, in
transmission and in both situations. The thickness of the top and bottom layer, for this
configuration, is d1 = 1.5 mm and d2 = 1.5 mm, respectively. The distance of the defects
A and B from the defect C, which has been indicated as X in Fig. 1a, for this reference case
X = 5 mm. The parameters to be estimated are the thickness of the defects and the depth in
which they are located, dA, dB, dC and Z respectively.

The relative error of the estimation of the parameters is shown in Fig. 3 for each parameter
as a function of SNR. As one can see, the estimation is highly depending on SNR but also on
the used signals. That is, using the signals obtained in transmission, a better estimation can
be achieved than using the signals in reflection. Yet the usage of both signals does not ensure
a better estimation as one can see in Fig. 3a and in Fig. 3b where for SNR equal to 40 or 30
the estimation is not given with a smaller relative error as in the case of using only the signals
recorded in transmission.

From Fig. 3 one can understand the nature of the estimated parameters and how their
estimation can be affected by the signals used. From these graphs it is clear that the best
estimation of the defects depth can be achieved by using both recorded signals, i.e. in reflection
and transmission, and the worst one by using only the signals in transmission, see Fig. 3d. The
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Figure 3: Relative error for the estimation of four parameters as a function of SNR.

latter is not true for the estimation of the defects’ thickness as it is clear from Fig. 3(a),(b),(c)
where the estimation is better using the signals in transmission than in reflection.

By using the configuration depicted in Fig. 1a as a reference, we want to test the performance
of the inversion scheme in difficult situations. Such a situation can be when the defects are
located close to the top or bottom surface of the plate. The depth of the defect, i.e. the distance
of the defects from the upper surface of the plate, has been changed to 0.75 mm and 2.25 mm
while the noise level has been kept constant, SNR = 20.
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Figure 4: Relative error for the estimation of four parameters as a function of defects’ depth.

The estimation of the parameters dA, dB and dC is strongly affected by the depth of the
defects as one can see in Fig. 4. For the configuration where the defect is deeply buried in the
plate, z = 2.25 mm, the estimation of the thickness is very poor using the signals in reflection,
relative error higher than 10%, but very accurate when using the signals in transmission. On
the other hand, when the defects are close to the upper surface, the estimation accuracy is not
significantly affected. As for the estimation of the defects’ depth, for the buried defects the
estimation accuracy is better using signals in transmission whereas in the case of the defects
being close to the upper surface of the plate the estimation is better using signals in reflection.
These results agree with the physics of the problem.

An interesting configuration where the advantages of using a three-dimensional forward model
can be fully exploited is that of defects located close to each other. Keeping as reference the
configuration depicted in Fig. 1a, we set up two new configurations by setting the distance of
the defect named C from the other two to 2 mm and 0 mm respectively. The noise level has
been kept constant, SNR = 20. In this kind of configurations, where the interaction between the
defects is strong, the one-dimensional approaches fail to characterize accurately the defects. The
advantage of using a three-dimensional model can be exemplified by Fig. 5 where one cannot
find a strong link of the estimation accuracy and the defects’ relative location in the xy-plane.
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Figure 5: Relative error for the estimation of four parameters as a function of the relative
distance X between to defects A,B and C.

4. Conclusions and perspectives
This contribution presented a model-based inversion strategy for thermographic characterisation
of delamination in planar pieces. We choose to use here the Levenberg–Marquardt method where,
as an iterative method, its performance is strongly linked to the forward model. In this work we
use a three-dimensional semi-analytical model based in the TREE approach which is fast and
accurate. Results of the inversion scheme, using synthetic noisy data, have been presented in
the work for several cases.

In the future we intend to extend this work by considering more complex cases. Thus, the
used froward model has to be enhanced. Flaws with more complex shapes in the transverse plane
have to be introduced in stratified planar geometries for modelling delamination in composites.
Surface defects, crack-type, will be introduced to the model using the Green function. Moreover,
the application of signal processing tools as the Canny algorithm will be addressed in order to
compute the transverse location and the shape of the flaws.
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Titre : Modélisation multi-physique de méthodes d'inspection par thermographie et imagerie rapide 
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Résumé : L’inspection thermographique est une 

technique populaire de contrôle non destructif qui 

fournit des images de distributions de température 

sur de grandes étendues aux surfaces des pièces 

testées. Détecter les délaminations entre couches 

métalliques est le sujet ici. La simulation de ces 

inspections contribue en effet à compléter les études 

expérimentales, à évaluer les performances en termes 

de détection, et à être support d'algorithmes basés 

sur modèles. On se focalise sur un modèle semi-

analytique basé sur un développement tronqué en 

fonctions propres par région. Le problème est résolu 

dans le domaine de Laplace en temps, et la 

distribution de température approximée par un 

développement sur une base produit tensoriel. Les 

sources considérées sont des lampes flash, mais aussi 

des sources courantes de Foucault. La description des 

délaminages sous forme de minces couches d'air se 

révèle équivalente à l'introduction d'une résistance 

superficielle au flux de chaleur permettant le 

traitement via l'approche modale. Des calculs 

complémentaires par des codes commercial (EFM) 

et interne (FIT) confirment l'exactitude. Puis une 

grande attention est donnée à l'imagerie et la 

détection. Une procédure en deux étapes est 

conçue: débruitage des signaux bruts et détection 

de tout éventuel défaut en utilisant une 

reconstruction de signal thermographique 

conduisant à une haute résolution spatiale et 

temporelle dans le plan transverse, complété par 

une détection de frontière, puis optimisation 

itérative, les résultats de la première étape étant 

utilisées pour la régularisation d'un schéma 

moindres carrés afin de caractériser épaisseurs et 

profondeurs. Tout ce qui précède est illustré par de 

nombreuses simulations numériques dans des 

conditions proches de l'application. 

 

 

Title : Multi-physical modeling of thermographic inspection methods and fast imaging 

Keywords : Thermography, Multi-physical imaging, Inverse problems, Nondestructive testing, Modeling, 

Simulation 

Abstract : Thermographic inspection is a popular 

nondestructive testing (NdT) technique that provides 

images of temperature distribution over large areas 

at surfaces of tested workpieces. Detecting 

delaminations between metallic layers is the subject 

here. Simulation of these inspections complement 

experimental studies, evaluate performance in terms 

of detection and support model-based algorithms. A 

semi-analytical model based on a truncated region 

eigenfunction expansion for simulation of 

thermographic inspection is focused onto. The 

problem is solved in the Laplace time domain, and 

the temperature distribution approximated by 

expanding it on a tensor product basis. Considered 

sources are lamps providing thermal excitation but 

may also be eddy current sources. The description of 

the delaminations as thin air gaps between the 

workpiece layers proves to be equivalent with the 

introduction of surface resistance to the heat flow, 

enabling treatment via the applied modal 

approach. Complementary computations by 

commercial (FEM) and in-house (FIT) codes confirm 

the accuracy of the developments. Then, attention 

is paid on imaging and detection. A two-step 

procedure is devised, first denoising of raw signals 

and detecttion of possible defects using a 

thermographic signal reconstruction leading to 

high spatiotemporal resolution in the transverse 

plane, completed by proper edge detection, 

second the results of the first step are used for the 

regularization of a least-square scheme to 

characterize thicknesses and depths. All the above 

is illustrated by comprehensive numerical 

simulations in conditions close to practice. 
 


	Contents
	List of Figures
	List of Tables
	Introduction
	History
	Classifications of TNDT
	General context
	Simulation and modelling
	Signal processing algorithms and inversion techniques

	Object of the thesis
	Thesis outlines

	Modelling in TNDT
	The differential heat conduction equation for homogeneous isotropic solid 
	Boundary and initial conditions

	Heat equation in planar layered media in time domain
	Transformation of the problem in Laplace domain
	The TREE method
	The TREE formulation of the problem

	Validation of the assumption made on the delamination thickness
	Summary

	Defect detection and characterisation
	Thermographic signal reconstruction.
	Classic TSR
	TSR-based method

	Edge detection and shape reconstruction
	The Canny algorithm

	Parameter estimation - Optimization
	The function to be minimized
	Elements of minimization
	Optimality conditions
	Stopping criteria
	Optimization algorithms
	Parameter estimation in TNDT

	Summary

	Modelling results and fast imaging
	Problem definitions
	Modelling in TNDT
	Numerical validation of the TREE model
	Computational performance of the implementation and acceleration
	Application in eddy current thermography

	Flaw characterization
	Shape reconstruction
	Parameters estimation

	Summary

	Conclusions and perspectives
	Recapitulation of main results
	Perspectives

	Appendices
	Fundamental properties of the Laplace transformation.
	The Gaver-Stehfest Method.
	Convergence.
	Study on the choice of the polynomial degree.
	Edge detection in challenging geometries.
	A disc inside a ring
	The "spider"

	Peer-reviewed published articles

