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Nothing in Biology Makes Sense Except in the Light of Evolution.

Theodosius Dobzhansky
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Résumé substantiel en français

Introduction

Le mot “Cancer” regroupe plusieurs maladies caractérisées par la prolifération excessive de cel-
lules anormales potentiellement invasives. A la différence de la plupart des maladies, le cancer
n’est pas lié à une bactérie ou un virus, il vient de nos propres cellules. Les nouvelles cel-
lules sont généralement produites pour développer de nouveaux tissus ou remplacer des cellules
mortes car endomagées ou vieillissantes. Les cellules saines cessent de se diviser lorsque ce n’est
pas nécessaire tandis que les cellules cancéreuses prolifèrent de manière incontrollable. La rapide
prolifération des cellules cancéreuses produit des tumeurs, une accumulation de cellules organ-
isées qui agit comme un organe. Les tumeurs sont capables de manipuler les cellules saines
environnantes pour accéder au système sanguin en créeant des vaisseaux sanguins. Elles sont par
conséquent capables de se nourrir et peuvent disséminer des cellules cancéreuses dans d’autres
parties du corps, ce processus est appelé angiogénèse. Lorsque les cellules cancéreuses migrent,
elles peuvent produire des tumeurs secondaires nommées métastases, qui sont le plus souvent la
cause des décès du cancer. Le type de cancer peut être défini par le tissu cellulaire où les pre-
mières cellules anormales se développent, avec deux principales catégories. Les cancers à tumeurs
solides représentent environs 90% des cancers humains, ils sont caractérisés par une masse locale
de tissu cellulaire anormal. Les cancers à tumeur liquide, comme les leucémies ou les lymphomes,
correspondent aux cellules anormales présentes dans les fluides (e.g., le sang). D’autres critères
permettent de catégoriser les différents types de cancer: leur localisation, le type de cellule affec-
tée ou les caractéristiques génétiques des tumeurs (Lin et al. (2008)). La réponse au traitement
peut notamment dépendre de ces profils génétiques (Chan et al. (2019)). De nombreuses mal-
adies différentes avec des caractéristiques variées sont par conséquent classifiées comme cancer
(Hanahan and Weinberg (2011)). Les différents types de cancer nécessitent généralement une
prise en charge thérapeutique spécifique. De nombreux nouveaux traitements sont candidats
pour améliorer la prise en charge thérapeutique des cancers, ces traitements font l’objet d’essais
cliniques pour évaluer leur efficacité en comparaison avec l’approche thérapeutique standard (i.e.,
si le nouveau traitement n’existait pas), généralement en terme de survie. Le critère de référence
est en effet la survie globale, qui corresponds au temps écoulé entre la randomisation des lignes
de traitement et le décès, quelle qu’en soit la cause. C’est une quantité facile à mesurer et précise
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12 Résumé substantiel en français

mais lorsque les patients ont un bon pronostique (faible risque de décès), un nombre important
de patients doivent participer à l’étude pour avoir suffisamment de puissance statistique pour dis-
tinguer les lignes de traitement, entrainant une augmentation des coûts des essais cliniques. De
plus, à mesure que les traitements gagnent en efficacité, les patients survivent plus longtemps,
entrainant une augmentation des coûts de l’essai clinique mais également la prolongation des
délais de distribution des nouveaux traitements. Malgré ces limitations, la survie globale reste la
mesure la plus pertinente cliniquement pour évaluer les traitements contre le cancer. Dans cette
situation, on recherche généralement un substitut à la survie afin de comparer l’efficacité des
traitements, cependant en cancérologie aucun marqueur n’a été démontré suffisamment corrélé à
la survie pour servir de substitut fiable (Prasad et al. (2015)). Toutefois les durées de vie ne sont
pas la seule information reflétant l’efficacité d’un traitement dans les données d’essais cliniques
en cancérologie. En effet, les lésions tumorales représentent un symptôme direct de la maladie et
reflètent l’état du patient au cours du suivi de l’essai clinique. L’information sur l’évolution des
tailles tumorales est systématiquement récoltée lors d’essais cliniques pour des cancers à tumeurs
solides dans le cadre des critères d’évaluation RECIST (Litière et al. (2017)). La somme des plus
longs diamètres des lésions cibles (SLD) est un biomarqueur calculé en prenant la somme des
plus longs diamètres des principales lésions tumorales du patient à l’initiation de l’essai clinique.
Ensuite, les mêmes lésions sont mesurées à chaque visite de suivi du patient jusqu’à la date de
point. Ainsi on obtient une représentation longitudinale de l’évolution de la charge tumorale.
Ce biomarqueur capture de l’information sur l’efficacité du traitement (réduction de la charge
tumorale) ainsi que sur les éventuels effets délétères tels que l’hyperprogression, observée avec
de nouvelles classes thérapeutiques telles que les immunothérapies (Champiat et al. (2017)) ou
encore le développement d’une résistance au traitement, souvent observé avec des traitements
tels que la chimiothérapie (Hansen et al. (2017)). Cette information est généralement utilisée
seulement à l’échelle individuelle et résumée par des indicateurs à l’échelle de l’essai, distinguant
les patients avec une diminution, un état stable ou une progression des tailles tumorales. Cette
approche résume l’information précise récoltée et résulte en une perte d’information. De plus,
l’évaluation de l’efficacité d’un traitement repose généralement sur un modèle de survie ne tenant
pas compte de l’information sur les mesures de tailles tumorales. Cette méthode ne permet pas
d’efficacement prendre en compte l’hétérogénéité individuelle de la population et l’ensemble de
l’information issue de l’essai clinique dans l’analyse statistique. De plus, il est primordial d’éviter
toute stratégie thérapeutique provoquant une progression de la maladie, et l’analyse des temps
de survie passe généralement à côté de cette subtilité, en offrant une vision moyenne de l’effet
du traitement, sans tenir compte des variations individuelles.

Dans ce cadre, il semble optimal de prendre en compte les durées de survie ainsi que
l’information sur les tailles tumorales lorsque l’on souhaite évaluer l’efficacité d’un traitement
ou comparer deux stratégies thérapeutiques. Une méthode efficace pour analyser simultanément
des durées de survie et un biomarqueur longitudinal utilise des “modèles conjoints” qui perme-
ttent de prendre en compte l’association entre ces deux marqueurs (en effet, l’association entre
ces deux marqueurs est forte car la taille des tumeurs affecte directement le risque de décès et
le décès implique que l’on n’observera plus de mesures de la SLD). Une subtilité des mesures de
tailles tumorales est la présence d’un excès de zéros dû aux patients ayant une disparition des
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symptômes de la maladie sous l’effet du traitement.
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Histogramme de la distribution de la SLD dans l’essai clinique GERCOR. La distribution est
caractérisée par un excès de zéros et une queue de distribution lourde à droite.

Les méthodes de régression couramment utilisées pour modéliser l’évolution d’un marqueur
longitudinal supposent une distribution Gaussienne, ignorent l’excès de zéros et l’absence de
valeurs négatives, ce qui n’est pas réaliste. Une transformation non-linéaire (e.g., logarithme)
permet de contraindre à la positivité des mesures et corrige la queue de distribution mais l’excès
de zéros est plus difficile à prendre en compte. Une méthode permettant de prendre en compte
cet excès de zéros dans le modèle de régression considère que la mesure des tailles tumorales
est sujette à une censure à gauche en raison de la limite de détectabilité du materiel de mesure
(on suppose alors que l’on n’observe pas de “vrais zéros”, mais des valeurs trop petites pour être
mesurées). Cette approche a été proposée pour l’analyse des mesures répétées de la SLD dans
de précédents travaux de recherche (Król et al. (2016)). Lorsque de vrais zéros sont observés, les
modèles two-part ont été proposés, ils sont particulèrement utiles lorsque les zéros sont informat-
ifs. Dans notre contexte, les zéros correspondent à la disparition complète des lésions tumorales
mesurées sous l’effet du traitement et sont par conséquent informatifs vis à vis de l’effet du traite-
ment. C’est pourquoi nous proposons le développement d’une extension des modèles conjoints
pour prendre en compte la distribution semi-continue des mesures des tailles tumorales (la no-
tion de semi-continuité implique ici des valeurs non négatives ainsi qu’un excès de zéros). Nous
proposons de remplacer le modèle de régression linéaire à effets mixtes généralement utilisé pour
décrire les trajectoires individuelles du biomarqueur par un modèle two-part. Le modèle two-part
décompose la distribution du biomarqueur en deux parties afin de la décrire sous deux angles
complémentaires. La première partie décrit l’effet de variables d’ajustement sur la probabilité
d’observer une valeur positive de la SLD (i.e., une valeur non-nulle). La seconde partie peut être
spécifiée sous plusieurs formes, la principale étant la forme “conditionelle” du modèle two-part
qui décrit l’effet de variables d’ajustement sur la valeur moyenne du biomarqueur à condition
qu’elle soit positive. Ces deux parties utilisent chacune un modèle de régression à effets mixtes,
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elles sont liées par la corrélation de leurs effets aléatoires. Les effets aléatoires capturent donc
la corrélation entre les mesures répétées d’un patient et la corrélation entre les deux parties du
modèle two-part.

La modélisation conjointe consiste à connecter des modèles pour former un modèle plus
complexe. Dans ce travail de thèse, nous nous focalisons sur la modélisation conjointe d’un
biomarqueur longitudinal et un évènement terminal. Des modèles conjoints ont par ailleurs été
proposés pour analyser plusieurs biomarqueurs longitudinaux avec un évènement terminal ainsi
que des évènement récurrents (i.e., plusieurs temps d’évènements, généralement modélisés par
un modèle de survie à fragilité). Les motivations derrière la modélisation conjointe pour un
biomarqueur longitudinal et un évènement terminal sont multiples:

• L’analyse des mesures répétées du biomarqueur sans tenir compte des décès pourrait être
biaisée car le décès représente une forme de censure informative (un patient décédé ne
produira plus de mesures du biomarqueur).

• Le modèle de survie peut être ajusté sur des facteurs de confusion mesurés mais ignore les
facteurs qui affectent le risque de décès lorsqu’ils ne sont pas mesurés. Les mesures répétées
du biomarqueur permettent de capturer l’hétérogénéité individuelle de la population et
la modélisation conjointe permet d’ajuster le modèle de survie sur cette hétérogénéité
individuelle (qui représente l’effet de facteurs de confusion non mesurés).

• Le fait d’utiliser simultanément l’information sur le biomarqueur et la survie améliore
l’estimation de l’effet du traitement (Rizopoulos (2012)).

Les modèles conjoints permettent donc d’étudier: l’évolution d’un biomarqueur longitudinal
censuré par l’évènement terminal, le risque de décès ajusté sur l’hétérogénéité individuelle de
la population capturée par les effets aléatoires, le risque de décès ajusté sur un biomarqueur
endogène avec une erreur de mesure (i.e., precision des outils de mesure), explorer l’association
entre le biomarqueur et le risque d’évènement et prédire le risque de l’évènement sachant les
mesures répétées du biomarqueur. La forme standard du modèle conjoint utilise des effets aléa-
toires pour connecter les modèles entre eux, permettant ainsi de tenir compte de la corrélation
entre le processus longitudinal et le temps d’évènement. Un modèle de régression à effets mixtes
est généralement utilisé pour les mesures répétées du biomarqueur, avec souvent une fonction
de lien non linéaire permettant de lier le marqueur au prédicteur linéaire en corrigeant une
éventuelle queue de distribution lourde et l’hétéroscédasticité des mesures (i.e., pour se ramener
à une distribution Gaussienne). Le modèle de survie est un modèle de Cox à hazards pro-
portionels, avec possiblement une dépendence temporelle des variables d’ajustement. Lorsque
seuls les effets aléatoires sont partagés entre le modèle de régression à effets mixtes et le modèle
de survie, on parle de l’association “effets aléatoires partagés” et elle n’est pas dépendante du
temps. Lorsque l’ensemble du prédicteur linéaire (possiblement retransformé en cas de fonction
de lien non linéaire avec le biomarqueur) est partagé, le modèle de survie est ajusté sur la valeur
individuelle du biomarqueur estimée par le modèle à effets mixtes. On parle alors d’une asso-
ciation “niveau courant” du biomarqueur, et cette association est dépendante du temps. Cela
complexifie le modèle car la densité de probabilité des durées de survie qui doit être calculée
dans la fonction de vraisemblance du modèle conjoint nécessite un calcul d’intégrale pour lequel
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une solution analytique est uniquement disponible lorsque le modèle de survie est ajusté sur des
variables indépendantes du temps. Une approximation numérique de cette intégrale (unidimen-
sionelle) est donc nécessaire lors du calcul de la vraisemblance des données au modèle avec la
structure d’association “niveau courant”. La quadrature de Gauss-Kronrod est généralement util-
isée pour approximer cette intégrale. De nombreuses fonctions de lien (aussi appelées structures
d’association) ont été proposées pour lier le modèle pour le biomarqueur au modèle de survie.
Dans cette thèse, nous nous focalisons sur les deux principales formulations que sont les effets
aléatoires partagés et le niveau courant du biomarqueur. De plus nous proposons une nouvelle
fonction de lien, spécifique au modèle two-part dans notre premier article.

L’expression de la fonction de vraisemblance du modèle conjoint dépend des modèles choisis
pour le biomarqueur et la survie. Soit Yi = (Yi1, Yi2, ..., Yij)

> le vecteur des mesures répétées
du biomarqueur pour l’individu i = (1, ..., n) aux visites j = (1, ..., ni), Ti correspond au temps
d’évènement et δi l’indicateur de censure associé. La contribution à la vraisemblance pour un
individu i peut s’écrire

Li(·) = p(Yi, Ti, δi),

=

∫

bi

p(Yi|bi)p(Ti, δi|bi)p(bi)dbi,

où

p(Yi|bi) =

ni∏

j=1

p(Yij |bi).

Les effets aléatoires corrélés bi définissent la relation entre le modèle pour le biomarqueur et
le modèle de survie. Les deux modèles sont donc indépendents conditionellement aux effets
aléatoires et la vraisemblance du modèle se calcule par l’intégrale sur la distribution des effets
aléatoires du produit des densités de probabilité conditionelles aux effets aléatoires du modèle
pour le biomarqueur et du modèle de survie.

Article 1. Modèle two-part conjoint pour un biomarqueur longitudinal
semi-continu et un évènement terminal.

Dans un premier article, nous avons développé le modèle two-part dans le contexte de la mod-
élisation conjointe pour un biomarqueur longitudinal semi-continu et des durées de survie. Ce
travail a été motivé par l’essai GERCOR, un essai clinique randomisé de phase 3 comparant deux
stratégies de traitement pour des patients atteints d’un cancer colorectal métastatique. L’idée
générale de ce travail consiste à proposer un modèle qui utilise directement les mesures de tailles
tumorales plutôt qu’un critère de substitution tout en prenant en compte l’excès de zéros dans la
distribution des mesures de tailles tumorales. Ces zéros correspondent aux patients pour qui les
tumeurs mesurées ont disparu sous l’effet du traitement. Nous avons évalué la relation entre les
tailles tumorales et le risque de décès et nous avons comparé le nouveau modèle conjoint two-part
avec deux approches alternatives. La première est un modèle conjoint standard qui ignore l’excès
de zéros et considère que la distribution du biomarqueur est continue à l’echelle logarithmique.
La seconde approche suppose que la mesure du biomarqueur est sujette à une limite de détection
et considère les zéros observés comme des valeurs censurées. Avec le nouveau modèle conjoint
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two-part, on considère que de vrais zéros (i.e., non censurés) peuvent être observés. C’est une
approche qui a l’avantage de décrire l’effet de variables explicatives sur la probabilité d’observer
une valeur positive du biomarqueur ainsi que sur la distribution des valeurs positives. Nous
avons proposé une formulation générale du modèle conjoint two-part estimé par la méthode du
maximum de vraisemblance obtenu par l’algorithme Levenberg-Marquardt. Nous avons adapté
les structures d’association “effets aléatoires partagés” et “niveau courant” couramment utilisées
pour un modèle conjoint standard au nouveau modèle conjoint two-part. De plus, nous proposons
une nouvelle association propre au modèle two-part où l’effet de la probabilité d’observer une
valeur positive du biomarqueur et l’effet de l’espérance du biomarqueur à condition d’observer
une valeur positive sur le risque de décès sont évalués séparément dans le modèle de survie. La
comparaison de l’effet joint des zéros et des valeurs positives du biomarqueur avec leur effet
indépendant sur le risque de décès représente un intérêt clinique considérable, on peut en parti-
culier distinguer les patients avec une réponse complète des tumeurs (i.e., SLD=0) des patients
avec une réponse partielle ou une progression de la maladie (i.e., SLD>0).

Dans une étude de simulation, nous avons évalué les performances du modèle estimé en termes
de biais et de taux de couverture. Nous avons par ailleurs évalué les conséquences en cas d’erreur
de spécification du modèle (i.e., sous l’hypothèse que les données sont générées selon un modèle
conjoint standard ou un modèle conjoint avec censure à gauche du biomarqueur). Cette étude
de simulation a permis de mettre en évidence que lorsque de vrais zéros sont observés, l’effet du
traitement donné par les modèles conjoints standard et avec censure à gauche du biomarqueur
peut être biaisé, en particulier si l’effet du traitement est différent entre les deux composantes
du modèle two-part. Ce biais dans le modèle pour le biomarqueur se répercute sur le modèle de
survie au travers de la fonction de lien et peut ainsi biaiser les conclusion sur l’effet du traitement
sur le risque de décès. L’application aux données de l’essai clinique GERCOR était motivée par
la comparaison de l’effet du traitement capturé par les deux composantes du biomarqueur (zéros
et valeurs positives) ainsi que par la relation de cet effet du traitement avec le risque de décès.
Le cancer colorectal fait partie des principales causes de décès du cancer, approximativement la
moitié des patients développent des métastases et la chimiothérapie palliative est souvent utilisée
pour prolonger la survie. Dans ce contexte, une disparition des tumeurs (i.e., SLD=0) n’est pas
fréquente et seulement une fraction des patients observeront une telle réponse au traitement.
Dans l’étude GERCOR, 12% des mesures répétées de la SLD sont des zéros. Nous avons montré
que les deux composantes du modèle two-part (i.e., probabilité d’observer une valeur positive
et espérance du biomarqueur à condition d’observer une valeur positive) sont significativement
associées au risque de décès. De plus, les modèles conjoints standards et avec censure à gauche
du biomarqueur ont une moins bonne discrimination des lignes de traitement vis à vis du risque
de décès car ils expliquent moins bien les variations du biomarqueur que le modèle conjoint two-
part. Ce nouveau modèle possède cependant des limites, notamment lorsque l’on s’intéresse à
l’effet du traitement sur la moyenne (inconditionelle) du biomarqueur, telle que donnée par les
modèles conjoints standard et avec censure à gauche du biomarqueur. Cet article a été publié
dans la revue Biostatistics (Rustand et al. (2020)) et le modèle conjoint two-part a été implémenté
dans la fonction longiPenal du package R frailtypack. Une interaction entre les languages de
programmation Fortran 90 et R permet d’estimer les paramètres de ce modèle statistique.
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Article 2. Extension du modèle conjoint conditionel two-part au modèle
marginal two-part avec application au cancer de la tête et du cou.

Le modèle conjoint two-part proposé dans le premier article utilise la formulation conditionelle
du modèle two-part, telle que proposée initialement dans la littérature (Olsen and Schafer (2001);
Tooze et al. (2002)). Une formulation alternative a récemment été proposée: le marginal two-
part model (Smith et al. (2014)). Une reformulation de la fonction de vraisemblance du modèle
permet d’obtenir l’effet de variables d’ajustement sur la moyenne marginale (i.e., inconditionelle)
du biomarqueur dans la partie continue du modèle two-part, à la place de la moyenne à condi-
tion d’observer une valeur positive. Le modèle conjoint marginal two-part est par conséquent
un mélange entre l’approche par censure à gauche et le modèle conditionel two-part qui permet
de prendre en compte des vrais zéros. Une étude de simulation évalue chaque formulation du
modèle conjoint two-part (i.e., conditionelle et marginale) ainsi que le modèle conjoint stan-
dard avec censure à gauche du biomarqueur sous l’hypothèse de chacun de ces modèles pour
la génération des données. Elle révèle notamment que la formulation conditionelle est biaisée
lorsque les données sont générées selon la formulation marginale du modèle conjoint two-part.
Des problèmes de convergence ont été observés avec la formulation conditionelle tandis que la for-
mulation marginale est robuste quelque soit le scénario de simulation des données, excepté losque
le biomarqueur a une trajectoire non-linéaire. Dans cette situation, la formulation conditionelle
est plus adaptée mais des trajectoires plus complexes que la trajectoire log-linéaire (e.g., fonctions
paramétriques, splines) peuvent aussi donner plus de flexibilité a la formulation marginale, au
prix d’une interprétation plus complexe des paramètres du modèle. De plus, tout comme observé
dans notre premier article, le modèle conjoint avec censure à gauche du biomarqueur est biaisé
lorque de vrais zéros sont observés. En outre, nous avons illustré comment le modèle conjoint
marginal two-part facilite l’interprétation clinique des résultats de l’essai SPECTRUM, un essai
clinique randomisé de phase 3 qui évalue l’efficacité d’un anticorps monoclonal (panitumumab)
en complément de la chimiothérapie pour des patients atteints de cancer recurrent ou métasta-
tique de la tête et du cou. Le choix entre la formulation conditionelle et marginale du modèle
conjoint two-part dépend de la question clinique d’intérêt. Lorsque l’on s’intéresse à l’espérance
du biomarqueur parmi les valeurs positives, la formulation conditionelle est préférable tandis
que la formulation marginale est plus adaptée lorsque l’on s’interesse à la moyenne marginale
du biomarqueur. Cet article confirme que la prise en compte de vrais zéros est importante et
que l’approche par censure à gauche peut être limitée pour évaluer l’effet du traitement sur la
moyenne marginale du biomarqueur. Ces zéros correspondent aux patients avec une réponse
complète des tumeurs mesurées au traitement et sont par conséquent d’intérêt. La formulation
conditionelle du modèle conjoint two-part peut être instable lorsque la proportion de zéros est
faible et nous avons montré que la formulation marginale est plus stable car l’association entre
la partie binaire et continue du modèle est prise en compte dans la vraisemblance du modèle en
plus de la corrélation des effets aléatoires. Les auteurs de l’étude initiale de ces données d’essai
clinique ont conclu à une absence de différence entre les deux lignes de traitement vis à vis de la
survie globale. Cependant, le panitumumab est associé à une meilleure survie sans progression (la
progression du cancer est définie par les critères RECIST), lorsqu’il est ajouté à la chimiothérapie
standard (Vermorken et al. (2013)). Notre nouveau modèle indique un possible effet indirect du
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traitement sur la survie, le panitumumab est en effet associé à une probabilité significativement
plus élevée d’observer une disparition des tumeurs au cours du suivi de l’étude. Un critère de
validation statistique (likelihood cross-validation criterion) montre que la formulation marginale
du modèle conjoint two-part offre un meilleur ajustement aux données de cet essai clinique que
la formulation conditionelle.

Article 3. Estimation Bayésienne du modèle conjoint two-part avec INLA:
Intérêts pour l’évaluation des essais cliniques sur le cancer

Nous avons ensuite développé la méthode d’estimation Bayésienne du modèle conjoint condi-
tionel two-part. L’approche fréquentiste consiste à maximiser la vraisemblance des données au
modèle proposé, les paramètres estimés représentent ainsi uniquement la distribution des données
observées. Cette approche est limitée pour plusieurs raisons. Lorsque la taille d’échantillon est
faible, l’estimation des paramètres peut être instable et provoquer des problèmes de convergence
de l’algorithme d’optimisation (qui repose sur les dérivées de la fonction de vraisemblance pour
faire évoluer les paramètres à chaque itération et approcher du maximum de vraisemblance).
De plus, la fonction de vraisemblance contient une intégrale multidimensionelle correspondant
à la distribution des effets aléatoires corrélés. N’ayant pas de solution analytique permettant
de calculer cette intégrale, elle doit être approximée numériquement. La méthode utilisée dans
le package R frailtypack pour un modèle conjoint standard (i.e., un unique modèle de régres-
sion pour le biomarqueur) est la quandrature de Gauss-Hermite. Cette méthode s’est toutefois
révélée limitée car elle devient très couteuse en temps de calcul a mesure que la dimension de
l’intégration augmente, donnant ainsi lieu à des temps de calculs prohibitifs pour le modèle con-
joint two-part qui possède deux modèles de régression pour le biomarqueur. Dans ce cadre, nous
avons développé pour les deux premiers articles de cette thèse une méthode de Monte-Carlo
pour approximer cette intégrale multidimensionelle dans frailtypack, pour laquelle les temps de
calculs ne dépendent pas de la dimension de l’intégration.

La méthode Bayésienne repose sur les probabilités conditionelles, et en particulier le théorème
de Bayes pour définir la distribution de probabilité des paramètres du modèle sachant les don-
nées observées. Cette distribution est nommée la distribution a posteriori des paramètres, elle
est obtenue à partir de la fonction de vraisemblance du modèle ainsi qu’une distribution a
priori des paramètres du modèle. Cette distribution a priori reflète les connaissance sur la
valeur possible des paramètres avant d’observer les données. L’a priori doit être spécifié, il
peut être informatif ou non-informatif, par exemple on pourrait avoir un a priori informatif
sur le paramètre qui reflète la taille tumorale au début de l’essai clinique si les connaissances
biologiques le permettent. Le plus souvent, on souhaite laisser parler les données et donner un
a priori non-informatif, c’est à dire que toutes les valeurs sont plausibles (en pratique on définit
généralement une distribution de probabilité avec une variance très large, de manière à ce que
la vraie valeur du paramètre soit nécessairement plausible). Le fait de définir un a priori non-
informatif permet d’obtenir une approximation fidèle du maximum de vraisemblance obtenu par
la méthode fréquentiste. L’approche Bayésienne est plus robuste aux problèmes de convergence,
en particulier pour les petites tailles d’échantillons car si les données ne sont pas suffisamment
informatives, les paramètres du modèle reflèteront l’a priori. La méthode couramment utilisée
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pour obtenir le maximum a posteriori des paramètres du modèle est la méthode de Markov
Chain Monte-Carlo (MCMC). C’est une méthode qui repose sur l’échantillonage et la loi des
grands nombres, elle est généralement associée à des temps de calculs conséquents, en particulier
pour les modèles simples pour lesquels la méthode fréquentiste est généralement plus rapide.
Cependant pour les modèles complexes (nombre de paramètres élevé et/ou dimension des effets
aléatoires corrélés élevée), cette méthode est plus efficace que la méthode fréquentiste et permet
de développer des modèles plus complexes. Par exemple, des modèles avec plusieurs biomar-
queurs longitudinaux ont été proposés avec cette approche (Brown et al. (2005); Rizopoulos and
Ghosh (2011)). C’est la raison pour laquelle nous avons souhaité développer l’estimation Bayési-
enne du modèle conjoint two-part. En effet, le modèle two-part décompose le biomarqueur avec
deux modèles de régression, ce qui en pratique est similaire à la modélisation conjointe de deux
biomarqueurs longitudinaux en termes de complexité du modèle. Une alternative prometteuse à
MCMC est l’algorithme INLA (Integrated Nested Laplace Approximation), implémentée dans le
package R R-INLA. Cet algorithme permet d’estimer les modèles qui peuvent s’exprimer sous la
forme d’un modèle à processus Gauss-Markov latents. Il permet d’obtenir une estimation rapide
et précise du maximum a posteriori des paramètres et a récemment été introduit pour estimer
des modèles conjoints (Van Niekerk et al. (2019)). Nous avons proposé une estimation du modèle
conjoint conditionel two-part avec R-INLA et l’avons comparée avec l’estimation fréquentiste
initialement proposée dans frailtypack. Une étude de simulations démontre une réduction des
temps de calcul au-delà de nos attentes et une meilleure précision de l’estimation des effets fixes
du modèle avec R-INLA. En particulier, les paramètres associés aux effets aléatoires du modèle
two-part dans le modèle de survie (qui quantifient l’association entre la survie et le biomarqueur)
sont estimés avec une variance nettement réduite avec R-INLA, tandis que les paramètres as-
sociés au risque de base, à la variance des effets aléatoires et à l’erreur résiduelle de mesure du
biomarqueur ont une estimation plus proche de la vraie valeur avec frailtypack mais restent
dans l’intervalle de crédibilité avec R-INLA. Une application aux données de l’essai clinique
GERCOR illustre les différences entre les deux méthodes d’estimation et montre notamment
que les deux composantes du modèle two-part (zéros et valeurs positives) sont significativement
associées au risque de décès avec R-INLA, tandis qu’aucune association significative n’est trou-
vée avec frailtypack, à cause de la forte variabilité des paramètres d’association constatée dans
les simulations. En outre, R-INLA permet d’obtenir l’estimation du modèle en moins d’une
minute tandis que frailtypack nécessite jusqu’à une heure de calculs (sans supercalculateur).
Une seconde application aux données de l’étude PRIME, un essai clinique randomisé de phase 3
pour évaluer l’efficacité de l’addition de panitumumab à la chimiothérapie pour traiter le cancer
colorectal métastatique illustre la robustesse de l’estimation Bayésienne aux problèmes de conver-
gence. C’est une étude pour laquelle la présence (ou l’absence) d’une mutation génétique (gène
KRAS) a été mesurée pour chaque patient. Cette mutation est connue pour altérer la réponse
des patients au traitement (Van Cutsem et al. (2008); Normanno et al. (2009); Bokemeyer et al.
(2008)). Il y a un intérêt particulier à distinguer les patients qui bénéficieront du traitement
de ceux pour qui il pourrait avoir un effet délétère, en tenant compte de cette mutation géné-
tique. Ainsi, le modèle de régression approprié inclut de nombreuses interactions pour évaluer
les différentes sous-populations qui ont recu ou non le traitement testé et qui ont un gène KRAS
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muté ou non. Dans ce cadre, l’estimation fréquentiste proposée dans frailtypack conduit à des
problèmes de convergence dûs à la complexité du modèle. Nous montrons comment l’estimation
Bayésienne proposée dans R-INLA permet d’estimer ce modèle complexe et a notamment per-
mis d’identifier une sous-population de patients pour qui l’interaction entre la mutation KRAS
et le traitement panitumumab est associé à une décroissance significative de la taille tumorale
(comparé aux patients ayant uniquement la mutation ou le traitement), suggérant un possible
effet sur la survie. L’estimation Bayésienne permet donc de s’affranchir des limites imposées
par l’approche fréquentiste en termes de complexité des modèles (nombre de paramètres, di-
mension des effets aléatoires) et en termes de temps de calcul. Ce travail reste toutefois limité,
en particulier nous n’avons pas proposé l’association “niveau courant (du biomarqueur)”, ni la
formulation marginale du modèle two-part conjoint car ces modèles ne peuvent pas s’exprimer
directement sous la forme d’un processus Gauss-Markov latent et nécessitent des développements
supplémentaires pour être estimés avec R-INLA.

Conclusion

Dans cette thèse, nous avons étendu les méthodes statistiques disponibles pour l’analyse con-
jointe d’un biomarqueur longitudinal semi-continu et un évènement terminal en proposant le
modèle conjoint two-part. Nos développements ont été motivés par l’évaluation de thérapies
anti-tumorales dans le cadre d’essais cliniques sur le cancer pour lesquels la survie et la charge tu-
morale sont deux mesures d’intérêt. La relation entre ces deux mesures peut être prise en compte
par la modélisation conjointe de manière à tirer parti de ces deux sources d’information sur
l’effet du traitement simultanément. Cette approche méthodologique permet une meilleure com-
préhension de la relation entre la réponse des tumeurs au traitement et le risque de décès. Cela
contribue ainsi à la recherche clinique en pourvoyant une méthode innovante pour l’évaluation
des traitements dans les essais cliniques sur le cancer, s’affranchissant des limites des critères
de réponse standards (i.e., RECIST). Ce nouveau modèle statistique est applicable au delà de
la recherche sur le cancer car les biomarqueurs longitudinaux semi-continus sont fréquents dans
divers domaines de la recherche scientifique (e.g., précipitations quotidiennes, consommations ou
dépenses pour des biens, des médicaments ou de la nourriture, données d’expression génétique
ou de composition du microbiote).



Chapter 1

Introduction

1.1 Definition of Cancer

The generic term “Cancer” involves a number of diseases defined by the excessive proliferation of
abnormal cells and their potential for invasiveness. As opposed to most known diseases, cancer is
not a bacteria or a virus, it originates from inside our own cells. New cells are usually produced
to build new tissue or to replace cells that have died because of aging or damages. Healthy cells
stop dividing when this is not required while cancerous cells proliferate uncontrollably. The rapid
proliferation of cancerous cells produces tumors, an accumulation of organized cells acting like
an organ. Tumors are able to manipulate surrounding healthy cells to get access to the blood
system by creating blood vessels. It is therefore able to feed itself and can spread cancerous
cells in other parts of the body, this process is referred to as angiogenesis. When cancerous cells
migrate, they can produce secondary tumors named metastases which are most often the cause
of death from cancer. In humans, the type of cancer can be defined by the cell tissue where the
primary abnormal cells develop, with two main categories:

• Solid tumor cancers represent about 90% of human cancers (e.g., carcinomas, sarcomas),
they are characterized by a local abnormal mass of tissue.

• Liquid tumor cancers, such as leukemias or lymphomas, correspond to abnormal cells
present in body fluids (e.g., blood, bone marrow).

In this thesis work, we focus on the measurements of the size of solid tumors defined as a
biomarker. The different types of cancer are also characterized by their location (e.g., breast,
lung) and cell type (squamous, myeloid, lymphoid, adenomatous). Moreover, cancers can also
be categorized according to some genetic features (Lin et al. (2008)), which can modulate the
response to treatment (Chan et al. (2019)). Many different diseases with various characteristics
are classified as cancer (Hanahan and Weinberg (2011)).
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The cell proliferation and apoptosis are well-oiled mechanisms, especially due to the inter-
vention of specific proteins. The alteration of genes involved in these mechanisms can allow
cells to proliferate out of control or suppress apoptosis. Beyond genetic mutations, epigenetic
mechanisms can modify the genes expression without altering the genetic sequence. Some can-
cers have only epigenetic mutations and no genetic mutations but in most cases, the genetic
epimutations appear in addition to the genetic mutations and participate to the extraordinary
diversity of cancerous cells in a tumor. Mutations are essential to produce genetic variations that
fuels natural selection. A breed that does not produce mutations is condemned to extinction
because it is unable to adapt to constant changes in the environment. A mutation can result
from a DNA replication error or environmental factors (exposition to mutagens) and does not
always imply a risk of cancer. In this context, it is difficult to define when a cancer begins since
mutations and pre-cancerous lesions (genetic changes associated to an increased risk of cancer
than can change the function of the cells but not enough to cause a cancerous behaviour) are
usually contained by the environment long enough to not result in the development of invasive
metastases. A high number of microscopic clinically unapparent tumors were found in several
autopsy studies. For instance, a study of 110 medicolegal autopsies from young and middle-aged
women between 20 and 54 years old, of which only one received breast cancer diagnosis, found
cancerous cells in 22 of them (20%), with a significant effect of age (Nielsen et al. (1987)). An-
other study of 152 prostate glands from male patients between 10 and 49 years old identified
microtumors in 0%, 9%, 20% and 44% in the second, third, fourth and fifth decade of age (Sakr
et al. (1993)). Despite this proportion of individuals with microtumors, the lifetime diagnosis
for breast or prostate cancer is below 2% (Kareva (2018)). As explained by Stephen C. Stearns,
professor of evolutionary medicine at Yale University, we all have thousands of pre-cancerous
mutant lesions and we would probably all die from cancer if we were to live long enough (Stearns
and Medzhitov (2015)).

1.2 Cancer epidemiology

Cancer is an increasing source of mortality, especially in developped countries. It is estimated
that more than 18 million new cases of cancer were diagnosed and more than 9 million death
in 2018 (Bray et al. (2018)). There is a great variability of the risk of developing or dying from
cancer according to the type of cancer, genotype and phenotype of the individuals, environmental
exposures and geographic area.

1.2.1 Risks factors

Risk factors associated with cancer can be identified through epidemiological studies where indi-
viduals who developed cancer are compared to those who did not. These studies entail behaviors,
exposure to substances and characteristics associated with an increased risk of cancer. However,
these studies often induce some uncertainty and cannot prove on their own that the observed
increased risk is due to the risk factor and not the result of chance or something else than the
suspected risk factor. Many studies are required to confirm a similar association between the
risk factor and the risk of developing cancer and in addition, a plausible mechanism is needed
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to explain how the risk factor causes cancer to conclude on a causal association. The most
well-known risks factors according to the U.S. National Cancer Institute (www.cancer.gov) are:

• Age (advancing age is the most important risk factor for cancer, overall).

• Tobacco use along with environmental tobacco smoke cause many types of cancer.

• Alcohol consumption increases the risk of cancer and it is much higher for those who both
drink alcohol and use tobacco.

• Sunlight exposure and sunlamps cause early aging of the skin that can lead to skin cancer
due to ultraviolet radiation.

• Obesity is associated with an increased risk of several types of cancer.

• Ionizing radiation can damage DNA and cause cancer.

• Exposure to carcinogens (e.g., heavy metals, second hand tobacco smoke).

• Chronic inflammation can cause DNA damage and lead to cancer.

• Diet: there is some uncertainty but specific dietary components could be associated with
an increased (or decreased) risk of developing cancer.

• Hormones such as estrogens are human carcinogens and can increase a woman’s risk of
cancer.

• Immunosuppression provoked by immuno-supressive drugs or infection to HIV can cause
cancer.

• Infectious agents: Some viruses, bacteria and parasites can cause cancer or increase the
risk of developing cancer.

Some risk factors, such as aging, cannot be controlled and others involving behavior or
exposure could potentially be controlled to reduce the incidence of cancers, although most cancer
cases cannot be avoided just by controlling the known risk factors. Several studies showed that
around 30-40% of all cancer cases are attributable to potentially modifiable risk factors in the
United kingdom (Brown et al. (2018)), Australia (Whiteman et al. (2015)) or the United States
(Islami et al. (2018)).

An analysis of the role of hereditary factors on the risk of developing cancer, based on
44788 pairs of twins, found an effect of heritability on the risk of developing certain types of
cancer. Heritable factors were estimated to account for 42% of prostate cancer risk, 27% of
breast cancer risk and 35% of colon cancer risk (Lichtenstein et al. (2000)). Recent advances in
the past 20 years have made possible the sequencing of the human genome at a high depth, the
use of common genetic polymorphisms to characterize common human diseases (catalogued in
the International HapMap Project, see Gibbs et al. (2003)), the application of high-throughput
genotyping of millions of polymorphisms simultaneously and the development of new statistical
methods to interrogate the massive amounts of data generated (e.g., genome-wide association
studies). These advances have led to the identification of novel cancer causing variants (e.g.,
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Al-Tassan et al. (2015)). It is now an important focus of cancer research to identify these genetic
risk factors (Pomerantz and Freedman (2011)).

1.2.2 Treatment

The earlier the cancer is diagnosed and treated, the better the prognosis. When the primary
tumor does not develop into metastases, the tumor is resected whenever possible and the cure
rate remains high. When metastases have developed, the treatment is more challenging as the
cancerous cells have circulated into the body and are not localized anymore. The treatment
option then depends on multiple factors and the main types of treatments are, according to the
U.S. National Cancer Institute (www.cancer.gov):

• Surgery: Widely used to resect primary tumors, surgery attempts to remove the entire
tumor and can be followed by other treatments to avoid resurgence of cancer. Sometimes
removing an entire tumor might damage an organ or the body and only part of the cancer
tumor is removed. Finally, surgery can ease cancer symptoms by removing tumors that
are causing pain or pressure.

• Radiation therapy: High doses of radiations are used to damage the DNA of cancer cells,
these cells are not killed right away but when sufficiently damaged, they cannot spread
anymore and are removed by the body. It is used to treat cancer (curative) or to ease
cancer symptoms (palliative). It can be combined with surgery either to shrink the tumor
before resection, to target cancer cells during surgery (avoids radiations passing through
the skin), or to kill the remaining cancer cells after surgery. The radiations also affect
nearby healthy cells that can cause serious side effects.

• Chemotherapy: It targets cancer cells that grow and divide quickly with chemical drugs to
stop or slow their growth. As with radiotherapy, it is used for both curative and palliative
cares. It can be used before surgery or radiotherapy to reduce the tumor size (referred to
as “neoadjuvant chemotherapy”) or after, to destroy remaining cancer cells (referred to as
“adjuvant chemotherapy”). It can also improve the efficacy of other treatments and can be
used for non-local cancers, as it targets all fast growing cells in the body. Cancer cells are
not the only fast growing cells, healthy cells in the mouth, intestines or those responsible of
growing hair and nails are also damaged by chemotherapy, causing side effects. However,
these side effects usually disappear once the treatment is over. Recent work has shown that
it is sometimes better to maintain the tumor size instead of trying to remove it entirely
because some cancer cells can develop some resistance to chemotherapy. When all the
other cancer cells are removed by chemotherapy, only the resistant cells proliferate and the
treatment can be ineffective in contrast to when the tumor is contained. Resistant cells
are in competition with non-resistant cells and survival can be improved, although there
are situations where the containment will make a bad prognosis even worse (Hansen et al.
(2017)).

• Hormone therapy: It is a more specific treatment that slows or stops cancers that use
hormones to grow, such as prostate or breast cancers. It can also be combined with other
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treatments and cause side effects due to the interference with the hormones’ behavior.

• Stem cells transplant: It is used after a first line treatment (e.g., radiation therapy,
chemotherapy) in order to restore blood-forming stem cells destroyed by these treatments.

• Targeted therapy: This type of treatment targets proteins related to cancer cell dynamics
(growth, division and spread). They are either molecules small enough to enter cells or
monoclonal antibodies, a type of antibodies designed to attach to specific targets found
on cancer cells. Most of the time, a biopsy is required because the treatment efficacy is
subject-specific.

• Immunotherapy: This class of treatments helps the immune system fighting against cancer.
The immune system usually detects and destroys abnormal cells but cancer cells often by-
pass this destruction either because of genetic changes that prevent the immune system to
detect them or because of specific proteins on their surface that turn off the immune system
or interfere with surrounding healthy cells to block the immune system response. Among
immunotherapies, the Immune Checkpoint Inhibitors (ICI) have received a lot of attention
recently (Pardoll (2012)). Several clinical trials suggest that blockade of checkpoint in-
hibitors (e.g., PD1 pathway) induces sustained tumour regression in various tumour types
(Hargadon et al. (2018)). However, this new class of treatments was shown to induce some
new patterns of responses such as the pseudoprogression where the tumor burden or num-
ber of tumor lesions increases initially before decreasing, or the hyperprogression, which
is a phenomenon reflecting a very rapid tumor progression following immunotherapy and
suggesting that ICI could impact detrimentally on a small subset of patients (Borcoman
et al. (2019); Wang et al. (2018); Kamada et al. (2019); Fuentes-Antrás et al. (2018)).

Next generation sequencing technology has made possible the identification of somatic muta-
tion in the tumor that can modify a patient’s response to treatment (Dancey et al. (2012); Xing
et al. (2011)). For example the KRAS gene mutation is predictive of a poor response to EGFR
inhibiting drugs (e.g., panitumumab and cetuximab) in colorectal cancer (Lievre et al. (2006)).
Such mutational features are particularly of interest for ICIs because this class of treatments di-
rectly targets gene expression (e.g., PD-L1). Several potential biomarkers based on DNA, RNA
or protein features have been proposed to predict the response to an ICI (e.g., microsatellite
instability, mismatch repair deficiency, IFNγ expression), see Galluzzi et al. (2018). Because
cancer cells are mutated cells, their gene sequences differ from healthy cells. It is therefore of
interest to focus on the genetic of the tumor but in a single tumor, the mutations accumulate as
the tumor grows which makes difficult the analysis of all these mutations that are accumulating
over time. The tumor mutational burden (TMB) is a measure of the total amount of somatic
coding mutations in a tumor. It has been proposed to distinguish hypo-mutated tumors from
hyper-mutated tumors. Hyper-mutated tumors are more likely than hypo-mutated tumors to
generate tumor-specific peptides (neoantigens) recognized by the immune system when treated
with an ICI (Strickland et al. (2016)).
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1.2.3 Clinical trials

To propose a new treatment or a new combination of treatments, a series of steps (called phases)
are required, each of them requiring independent clinical trials for their evaluation. The first
phase (phase I) aims to verify the drug safety, the appropriate dose and look for side effects. It
is sometimes preceded by a phase 0 trial, which is a very small trial that help researchers decide
whether a new agent should be tested in a phase I trial or not. Phase I involves only around
15 to 30 patients. A new treatment must be successful in each phase in order to proceed to
the next one. In the second phase (phase II), the drug is tested on a larger number of patients
(e.g., up to 100), with a focus on treatment effect (usually on the tumor dynamics). Then in
phase III, the treatment is compared to a standard therapy in terms of efficacy and safety, it
includes a large number of patients to make sure that the result is valid (e.g., from 100 to several
thousands). Sometimes, a later phase (phase IV) is conducted after giving the drug a license
for further evaluation of the effectiveness and safety. Our methodological developments focus on
trials that aims at comparing a new treatment to the standard of care and concern mostly phase
III cancer clinical trials.

1.2.4 Evaluation of cancer therapeutics

The evaluation of new therapeutics requires criteria in order to compare them to a placebo or
standard of care (Fiteni et al. (2014)). The gold standard is the overall survival (OS), corre-
sponding to the time from randomization until death from any cause. It is precise and easy to
measure but has several limitations:

• In case the enrolled patients have a good prognosis (low death rate), a large sample size
is required to get a sufficient power to distinguish the treatment lines, thus increasing the
cost of the trial.

• As new treatments gain efficacy, patients survive longer and the follow-up required to
evaluate treatments gets longer too, thus inducing an increased cost of the trial as well
as an increased delay in the availability of the new treatment when it is better than the
standard of care.

Despite these limitations, OS remains the most clinically relevant endpoint in cancer clinical tri-
als. In the context of cancer clinical trials, the disease manifests itself through tumors, which are
measurable entities that can reflect the disease severity and its evolution over time. Tumor-
centered clinical surrogates for overall survival are increasingly studied. Ideally, the three-
dimensional volume of each tumor should be considered but it requires highly sophisticated
equipment to be measured and there could be too many tumors to account for all of them. In
the 1980s, the World Health Organization proposed a set of criteria to report and categorize the
tumor response in cancer clinical trials (Miller et al. (1981)). The main idea was to have a “com-
mon language”, able to describe and compare the results of cancer treatments. It became the
standard method for evaluating the tumor response. However, these criteria have been criticized
because of inconsistent methods of measurement including errors in tumor measurements, errors
in selection of measurable target lesions, intercurrent diseases and radiologic technical problems
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(Thiesse et al. (1997)). To remedy these problems, a new set of criteria were introduced in 2001:
the Response Evaluation Criteria in Solid Tumors (RECIST).

1.2.5 RECIST criteria

The RECIST criteria have been developed to evaluate the tumor response to treatment in solid
tumor cancer clinical trials. They are comparable to the WHO criteria but have more simple
and reproducible guidelines (Choi et al. (2005)). A major update of these guidelines has been
proposed in 2009 (Eisenhauer et al. (2009)) and several other updates have been proposed recently
because of the non usual response observed for the new classes of treatments. In practice,
tumors are classified as “target” and “non-target” lesions at baseline. Only the target lesions are
measured at each follow-up visit of the patient while other non-target lesions are only evaluated
qualitatively. Based on the RECIST criteria, the number of target lesions is limited, they are
chosen based on their size (lesions with the longest diameter) and their suitability for accurate
repeated measurements (either by imaging techniques or clinically). A biomarker that reflects
the tumor burden and its evolution over time is the sum of the longest diameter of the target
lesions (SLD). The RECIST criteria relies on categorization of the response of the target lesions:

• Complete Response (CR): Disappearance of all target lesions. Based on the criteria, it can
be required that the disappereace persists for a certain duration (e.g., 1 month).

• Partial Response (PR): At least a 30% decrease in the SLD, taking as reference the baseline
SLD.

• Progressive Disease (PD): At least a 20% increase in the SLD, taking as reference the
smallest SLD recorded since the treatment started.

• Stable Disease (SD): Neither sufficient decrease to qualify for PR nor sufficient increase to
qualify for PD.

Similarly, the response of other non-target lesions are also classified:

• Complete Response: Disappearance of all non-target lesions.

• Progressive disease: Appearance of one or more new lesions and/or unequivocal progression
of existing non-target lesions (since non-target lesions are not measured, progression can
be difficult to assess and usally requires confirmation)

• Stable Disease: Persistence of one or more non-target lesions.

The overall response is defined based on these categories, giving a global summary of the
response to treatment:

New patterns of responses were recently reported for the immunotherapies, for example the
“pseudoprogression” or “flare effect”, where the tumor burden grows for a limited time (usually
for a few weeks, sometimes up to a couple of months) and then shrinks during a successive
phase, resulting in a good efficacy of the treatment. The initial progression was considered as a
failure of treatment according to RECIST criteria, therefore requiring the criteria to be updated
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Table 1.1: Evaluation of overall response

Target lesions Non-Target Lesions New Lesions Overall response
CR CR No CR
CR SD No PR
PR Non-PD No PR
SD Non-PD No SD
PD Any Yes or No PD
Any PD Yes or No PD
Any Any Yes PD

in order to better capture this delayed treatment effect (Tazdait et al. (2018)). The RECIST
working group (which comprises representatives of the European Organization for Research and
Treatment of Cancer (EORTC), the National Cancer Institute (NCI) of the United States and the
Canadian Cancer Trials Group (CCTG), as well as several pharmaceutical companies) published
a proposition for a new criteria called iRECIST, with the goal to standardise the response
assessment in immunotherapy clinical trials. With this version of RECIST criteria, stable disease
(SD), partial response (PR) and complete response (CR) remain identical but the definition of
a progressive disease (PD) changes. A confirmation of a progression at a second visit later
in the follow-up (4-8 weeks) is required to confirm an observed progression. Moreover, death
or immunotherapy discontinuation due to clinical progression is considered as confirmation of
progression (Seymour et al. (2017)).

The RECIST criteria provide a simple and pragmatic methodology to evaluate the activity
and efficacy of new cancer therapeutics in solid tumors, using validated and consistent criteria to
assess changes in tumor burden. Moreover, the standardization of tumor response facilitates the
definition of tumor-based candidate surrogates endpoints. However, these candidates surrogate
endpoints are often limited due to the loss of information driven by the categorization of the
response. The great variability of cancer cells makes each tumor unique and individual responses
are difficult to categorize (Fisher et al. (2013)). These criteria are widely used to categorize
tumor response in chemotherapy trials but raise some questions for new treatment evaluation
such as immunotherapies because of the large inter-individual variability of the response.

1.2.6 Surrogates endpoints

A surrogate endpoint is a biomarker able to predict clinical benefits, harm, or lack of those in
clinical trials (De Gruttola et al. (2001); Prentice (1989)). The research of alternative endpoints
that can predict the response to treatment is an important focus of cancer research. They are
usually evaluated in terms of predictive performance of the overall survival but the validation of a
surrogate endpoint requires an appropriate methodology (Sofeu et al. (2019, 2020)). However, the
evidence supporting the use of surrogate endpoints in oncology is limited (Prasad et al. (2015)).
Other endpoints are sometimes of interest (and replace the OS as the primary endpoint), such
as the quality of life measured by questionnaires. This latter allows for patient-centred clinical
decision making but this is out of the scope of this thesis. Several surrogate endpoints for cancer
clinical trials have been proposed in the literature and are used in clinical trials despite the
low evidence supporting their use (Kemp and Prasad (2017); Piedbois and Croswell (2008)).
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For example, an examination of 54 marketing approvals of new cancer drugs by the Food and
Drug Administration between January 1, 2008 and December 31, 2012 shows that 36 (57%) were
approved on the basis of a surrogate endpoint. Out of these 36 drugs’ approval, 19 were based on a
reduction in tumor size or in volume and 17 were based on a progression-free survival (progression
being defined by the RECIST criteria). An analysis of the postmarketing studies shows that with
several additional years of follow-up, 31 of these 36 approvals based on surrogate endpoints have
in fact unknown effects on the overall survival or fail to show any gain in survival (Kim and Prasad
(2015)). It is even more challenging to use surrogates for the new class of therapeutics (e.g., ICIs),
I was involved in a literature review of the studies assessing the surrogacy of candidate endpoints
for ICI and we found no evidence for a surrogate endpoint for overall survival (Branchoux et al.
(2019)).

The main drawback for these candidate surrogates is that the categorization of individual
responses results in a loss of information (individual baseline value of the biomarker and evo-
lution over time). Clinical trials are very expensive and methodological developments should
take advantage of all the available information to answer the clinical question of interest. The
continuous longitudinal process of the tumor burden is of clinical interest because it captures
information about the primary target of most cancer treatments. The development of new sta-
tistical methodologies makes possible the joint analysis of multiple endpoints, such as survival
times and the repeated measurements of a biomarker.

1.3 Datasets availability

Clinical trials are usually funded by the pharmaceutical industry to provide evidence of the
effectiveness of the new drugs they develop. Because they have financial interest in the outcome
of clinical trials, they must follow strict clinical practice guidelines and publish their results in
peer-reviewed journals (Chopra (2003)). The data from cancer clinical trials is rarely shared
with the world’s research community because of its ownership by the industry and because it
usually contains very detailed information on each participant (Tucker et al. (2016)). However,
data anonymisation is sometimes used to share the data without privacy risk. In this context, we
got access to the results of the GERCOR clinical trial to apply the new statistical model that we
developed (two-part joint model) and illustrate its relevance. We were initially supposed to work
with the results of an innovative immunotherapy trial, for which our new model is particularly
of interest as discussed in this thesis. However the pharmaceutical company that conducts this
trial required dissuasive conditions such as the right to deny the publication of our work. We
were also supposed to analyze the ARCAD database (Franko et al. (2016)), a large database
composed of multiple clinical trials data for colorectal cancer which would have been interesting
in particular to evaluate the relative performances of frailtypack and R-INLA for large sample
sizes, with a focus on the computation time (see Chapter 5). Similarly, the conditions required to
get access to this database were dissuasive. In this context, we illustrated our new methods with
data from the project data sphere platform (www.projectdatasphere.org) which is a nonprofit,
open-access cancer research platform for data sharing.
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1.4 Statistical challenges

Several statistical challenges arise when analyzing cancer clinical trial data. We are interested
in the analysis of the repeated measurements of the SLD in addition to the standard analysis of
survival times. These two outcomes are linked because the measurement of the SLD is censored
by death (i.e., informative censoring that can bias the analysis of the SLD). For example, a patient
could have a rapid tumor progression that provokes his death before he/she could have any visit,
therefore the tumor progression does not appear in the measurements. The SLD value is only
recorded at each visit of the patient, an appropriate regression model must be defined to make
inference about the longitudinal trajectory of the biomarker. The joint analysis of survival times
and a longitudinal biomarker is useful in the context of complex cancer dynamics to explore
the relationship between the evolution of the biomarker and the time to a clinical event. In
the context of cancer clinical trials, the SLD is a biomarker that directly captures information
about the disease at baseline and its evolution over time. Moreover, it captures the individual
heterogeneity in the patient population. Several applications have been proposed to use the
biomarker’s information to predict the occurrence of the event using joint modeling techniques
(Król et al. (2016, 2018)). However, in this thesis, we are interested in the joint modeling of the
SLD with survival time to evaluate new therapeutics, thus an inferential framework. Flexible
models are used to produce accurate predictions, there is no need of an explicit interpretation of
the model as long as it performs well in terms of prediction. When evaluating new treatments,
the model is developed in order to have a clear interpretation of the differences between treatment
arms. The measurements of the SLD is a mixture of discrete and continuous measures because
some patients will have a complete shrinkage of their SLD upon treatment effect while other
patients will have positive continuous measurements. Such distribution requires an appropriate
methodology to be fitted, in particular because we are interested in the characterization of
patients with a complete disappearance of their tumors after treatment (corresponding to CR of
target lesions according to RECIST criteria) along with those with a partial response or a stable
disease (PR, SD). The characterization of patients with progressive disease (PD) is also of interest
when progression or hyperprogression of the tumors is observed. This is particularly challenging
from a statistical point of view because we analyze multiple outcomes, which require complex
models. The recent development of joint modeling in biomedical research has rapidly reached
the limit of the available algorithms in terms of computational burden and model complexity.
There is a great need for developing further statistical methods focusing on the joint analysis of
longitudinal tumor size and death and for providing efficient tools for the analysis of data from
cancer clinical trials.

1.5 Thesis structure

Our main objective in this thesis is to develop a general methodology to analyze jointly the
longitudinal measurements of the SLD and the survival times accounting for the excess of zeros
of the SLD. The longitudinal analysis of the SLD overcomes the limitation of the RECIST
criteria, which categorize the tumor response. The particular distribution of the measurements
of the SLD (i.e., mixture of zeros and positive values) is of particular interest. Previous analyses
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of the SLD used censoring techniques to account for the excess of zeros in the distribution of
this biomarker, therefore assuming zeros are not true zeros but values below a limit of detection
(i.e., too small to be observed). It has the advantage of providing an effect of covariates on the
mean biomarker value and its evolution over time. However, it is limited when true zeros are
observed. Depending on the proportion of zeros, a regression model for a binary outcome (i.e.,
zeros versus positives) could be more appropriate than assuming a continuous outcome. In the
context of cancer clinical trials, there is an interest in the relationship between the occurence of
zero values and predictor variables, as long as the relationship between the occurrence of zeros,
the distribution of positive values and the event of interest.

Firstly, we developed a new methodology for the joint analysis of the SLD and survival
times (Chapter 3). We considered a conditional two-part regression model for the longitudinal
biomarker which splits its distribution into a binary outcome (first part) represented by the
positive versus zero values and a continuous outcome (second part) with the positive values only.
A logistic mixed effects model is proposed to model the effect of covariates on the probability
of a zero SLD value while a linear mixed effects model gives the effect of covariates on the
log-transformed values of the positive measurements of the SLD. Survival times are modeled
with a proportional hazards model for which we proposed three association structures with
the biomarker. The conditional two-part joint model evaluates the effect of covariates on the
probability of positive value of the biomarker, the expected value conditional on a positive value
and the risk of death. We showed through simulation studies that assuming the true model is
a two-part model, bias can arise in the evaluation of a treatment with standard methods. An
application to advanced metastatic colorectal cancer data from the GERCOR study is performed
where our new model finds a significant effect of treatment on the SLD values. We showed how
the different association structures of the two-part joint model allows for an evaluation of this
effect in terms of risk of death compared to the reference treatment.

Secondly, we proposed an alternative formulation of the two-part joint model in order to get
the effect of covariates on the marginal mean of the biomarker. Indeed, a drawback of the two-
part model is that by decomposing the distribution of the biomarker, the effect of treatment on
the probability of positive value can be opposite to the effect of treatment among positive values,
therefore making difficult clinical decision-making about the treatment efficacy. The marginal
two-part joint model is an alternative formulation of the (conditional) two-part joint model,
recently introduced in the literature to get a marginal effect of a covariate on a semicontinuous
outcome. The probability of positive value is taken into account in the continuous part of the
model in order to remove the condition on a positive value of the standard (i.e., conditional) two-
part model. This alternative formulation is useful to facilitate the interpretation of covariates
effect (e.g., treatment) on the mean value of the biomarker. We showed how both the conditional
and the marginal formulations of the two-part joint model answers different clinical questions of
interest. A simulation study assessed the good performance of the marginal two-part joint model
in terms of estimation and coverage rates and how the variability of the mean biomarker value is
reduced with the marginal model compared to the conditional formulation. An application to a
randomized clinical trial of advanced head and neck cancer shows an effect of treatment on the
odds of observing a disappearance of all target lesions, leading to a possible indirect effect of the
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combined treatment on time to death.
Finally, we extended the modeling strategy initially proposed in a frequentist framework to

the Bayesian framework. This work was motivated by the limitations in terms of model complex-
ity often encountered within the frequentist framework. Indeed, the two-part joint model involves
3 regression models (binary, continuous and survival part), the model complexity is increased
compared to standard joint models (i.e., using a single regression model for the bimarker), it can
be challenging for complex models (i.e., large number of parameters and dimension of the ran-
dom effects). We propose a Bayesian estimation of two-part joint models based on the Integrated
Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and be
able to fit more complex models. Our simulation studies show that the Bayesian estimations
are associated to substantially reduced computation time and variability of the estimates, and
improves the model convergence compared to the initially proposed frequentist estimation. We
contrast the Bayesian and frequentist approaches in two randomized cancer clinical trials (GER-
COR and PRIME studies), where INLA suggests a stronger association between the biomarker
and the risk of event and was able to characterize subgroups of patients associated with different
responses to treatment in the PRIME study where the frequentist approach had convergence
issues. Our study suggests that the Bayesian approach using INLA algorithm enables broader
applications of the two-part joint model to clinical applications.

In the following of this thesis, these three parts are presented with related articles. We give
a theoretical background of the statistical methods required for the understanding of the rest
of the manuscript in Chapter 2. This work is concluded by a general discussion with further
perspectives in Chapter 6.



Chapter 2

Theoretical background

In this chapter, we provide some statistical background, necessary for the understanding of the
thesis, with a focus on the analysis of the outcomes observed in cancer clinical trials.

2.1 Analysis of repeated measurements

Repeated measurements occur when there is a longitudinal follow-up of patients with repeated
visits to measure the same marker. We therefore get multiple values of a marker associated
with each individual at different time points. It is common in clinical trials to have repeated
measurements.

Several types of longitudinal repeated measurements exist:

• Continuous values: The measure can take any value.

• Semicontinuous values: The measure can take any value in a half-bounded interval.

• Binary values: The measure is either a 0 or a 1.

• Counts: The measure is a positive integer.

Our biomarker of interest, the SLD, has a non-negative semicontinuous distribution, which
is a mixture of a binary outcome (SLD>0 vs. SLD=0) and a continuous outcome (distribution
of SLD>0). There are several models to analyze count data but they are not discussed in this
manuscript, as they are out of the scope of our application of the joint analysis of the SLD and
the survival time. In order to analyze longitudinal data, it is important to take into account
the correlation between the repeated measurements within an individual as well as measurement
error.

33
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Missing data

In a longitudinal analysis, each subject i is designed to be measured at visits j (j = 1, ..., ni),
meaning that we expect to collect the full vector of measurements Yi = (Yi1, Yi2, ..., Yini)

>. In
practice we usually have missing data that is either intermittent (a subject misses a visit and
comes back at the next one) or permanent (when a subject leaves the study). The missing data
mechanisms can be classified into 3 categories:

• Missing completely at random (MCAR): The probability to have a missing data for an
individual conditional on the covariates is independent from the observations and missing
observations of the marker. Individuals with missing data and individuals with complete
records should have the same characteristics under the MCAR assumption.

• Missing at random (MAR): There are systematic differences between the missing and ob-
served values which can be entirely explained by observed variables. The probability to
have a missing data for an individual is therefore related to some other measured covariates
in the model, but not to the value of the variable with missing values itself.

• Missing non at random (MNAR): The probability to have a missing data for an individual is
conditional on the covariates as well as the observed and unobserved values of the marker.
It is not possible to verify that missing values are MNAR without knowing the missing
values.

To illustrate these missing data mechanisms, assume we are interested in the tumor size of
cancer patients. We have a sample of measurements but some of them are missing. In the
situation where the data are MCAR, the probability of a missing measurement is the same
for all patients. Now, if older patients have larger tumor sizes and have higher probability of
drop-out, the observed sample will not reflect the true distribution of the biomarker from the
original population but the distribution of the biomarker conditional on the age of the patients
will be similar. The data are therefore MAR because missing values depend on an observed
variable (i.e. age). Based on standard missing data theory (Rubin (1976)), likelihood-based
methods ignoring the missingness mechanism provide unbiased estimates given that the data are
missing at random (MAR) or completely at random (MCAR), because a model can predict the
missing data to obtain unbiased estimates (Verbeke and Molenberghs (2000)). Finally, if patients
with higher tumors size are less likely to produce measurements (e.g., because of the disability
provoked by the large tumors themselves), the distribution of the observed tumors will differ from
the distribution in the population of interest. When the missingness mechanism depends on some
unobserved aspect of the data, i.e., the data are missing not at random (MNAR), likelihood-
based methods may be biased for certain parameters (Fitzmaurice et al. (1995); Molenberghs
and Verbeke (2001); Kurland and Heagerty (2005); Rouanet et al. (2019)). It is a fundamentally
untestable assumption, because it concerns the unobserved values. Therefore, the assumption
needs to be justified based on background knowledge and discussion with experts. In case missing
data are the result of informative drop-out (e.g. death), the marker measurements and the drop-
out mechanism have to be jointly modeled to obtain valid estimates.
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Confounders

A confounder is a variable that affects the estimation of an association between an exposure and
an outcome when included in a regression model. Counfounders are the main obstacle to make
causal inference with regression models because when it is missing in a regression model, the
measured association between the exposure and the outcome can be biased. An example of this
bias is given in figure 2.1.
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Figure 2.1: Illustration of Simpson’s paradox. When the confounder (i.e., the dot type) is not
included in the regression model, we conclude to a statistically significant positive trend while
the true trend observed when the confounder is included in the model is negative.

2.1.1 Linear mixed effects model

Description

The linear mixed effects (LME) model (Harville (1977); Laird and Ware (1982)) is an extension
of the simple linear regression model that allows the inclusion of both fixed and random effects
to model a continuous marker. Fixed effects corresponds to the effect of observed variables, it is
constant across individuals while a random effect corresponds to subject-specific effect of latent
(i.e., unobserved) variables. The inclusion of random effects in a fixed effects model assists in
controlling the unobserved heterogeneity. LME models are particularly useful for data with a
hierarchical structure, for which the independence assumption is violated. The structure of the
data can be decomposed into groups that share some common variability in the measurements.
In the context of individual repeated measurements, each individual is a group and there is a
variability intra-groups and a variability inter-groups.

Let Yij denote the biomarker measurement of subject i (i = 1, ..., n) at time j (j = 1, ..., ni)
and Yi = (Yi1, Yi2, ..., Yini)

> the vector of responses for subject i. We assume the observed
biomarker value is noisy (e.g., due to the precision of the tools used to produce the measure),
the true value of the biomarker Y ∗ij remains unobserved.
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Yij = Y ∗ij + εij

= X>ijβ +Z>ijbi + εij

The vectors of explanatory variables Xij and Zij are associated with the fixed effects re-
gression coefficients β and the random effects bi, respectively. The random effects are assumed
to be Gaussian distributed and possibly correlated bi ∼ N (0,Σ2

b). The measurement error εij
follows a Gaussian distribution N (0, σ2ε ) and is assumed independent from the random effects.
The repeated measures of Y are assumed independent conditional on the random effects. ran-
dom effects account for unobserved counfonders that affects the individual, such as genetic or
environmental exposure. Sometimes, additional levels of hierarchy can explain some variability
shared between individuals (e.g., geographical areas or shared genetic features). The model gives
the marginal expectation of Yij for the entire population sharing features Xij through the term
X>ijβ and the subject-specific expectation of Yij by X>ijβ +Z>ijbi.

Estimation

The parameters of the LME model (β,Σb, σε) can be estimated with maximum likelihood (ML),
where the likelihood function corresponds to the joint probability distribution of the sample. The
variance estimator of the parameters is obtained by the inverse of the Hessian matrix. Let Xi

and Zi denote the matrices of explanatory variables with row vectors X>ij and Z>ij , respectively.
The model can be written in vector form as

Yi = Xiβ +Zibi + εi with εi ∼ N (0,σ2
ε Ini).

The model can be given in a marginal formulation, assuming Yij is Gaussian distributed such
that Yi ∼ N (Xiβ, Vi = ZiΣbZ

>
i +σ2ε Ini). Let Θ denote the vector of parameters of the model,

such that Θ = (β>,Σb, σε), the likelihood function can be expressed as

Li(Θ) =

n∏

i=1

ni∏

j=1

p(Yij),

where p(Yij) is the Gaussian probability density function of the outcome. There is a closed-form
expression for the log-likelihood, defined as follows

log(Li(Θ)) = −1

2

n∑

i=1

ni∑

j=1

{ni log(2π) + log |Vi|+ (Yi −Xiβ)>V −1i (Yi −Xiβ)},

where |Vi| is the determinant of Vi. It can be directly maximized with respect to Θ by an
iterative procedure to obtain the maximum likelihood estimate Θ̂. The posterior distribution
of the random effects bi|Yi can be useful for prediction purpose, it has a multivariate normal
distribution and the individual random effect bi is usually estimated by taking the mean of this
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posterior distribution, which has a closed-form expression in the context of linear mixed effects
model. A drawback of the maximum likelihood approach is that it does not take into account the
loss in the degrees of freedom resulting from estimating fixed effects, resulting in biased estimates
of Σ̂b and σ̂ε. An alternative approach maximizes the restricted maximum likelihood, which takes
into account the dimension of the orthogonal vectorial space of Xi (Verbeke (1997)). However,
maximum likelihood and restricted maximum likelihood techniques give similar estimates for
large sample sizes and the ML approach is often used. The model gives an additive effect of
covariates (e.g., treatment) on the marginal mean of the biomarker. The simple linear regression
model is often limited for the analysis of clinical longitudinal biomarkers. Parametric functions
or splines are often favoured to capture the non-linear evolution of the biomarker over time,
which is useful to have a flexible fit for prediction purposes. The interpretation of covariates
effect, when using such functions, is however more difficult. The outcome often requires a non-
linear transformation to handle skewness and heteroscedasticity and to satisfy the hypothesis of
a Gaussian distributed error term. However, when applying such transformation to the outcome,
the effect of the covariates is given on the transformed scale. It is often difficult to transform
back this effect on the natural scale because the non-linear transformation modifies the Gaussian
distribution of the subject-specific random effects. It is however possible to use a non-linear link
function for the biomarker to avoid such transformation for non-Gaussian outcomes.

2.1.2 Generalized linear mixed effects model

The linear mixed effects model is limited to Gaussian distributed outcomes but as described in
Section 2.1, other types of distributions are encountered and require an appropriate methodology.
The Generalized Linear Mixed effects Model (GLMM) is a flexible generalization of ordinary
linear mixed effects model designed for response variables that have error distribution models
other than a Gaussian distribution. The distribution of the response variable is assumed to
belong to the exponential family including in particular the Gaussian, Bernoulli, Binomial and
Poisson distributions. The linear model is related to the response variable through a link function
g(·). Using the same notations as in previous section, the model is defined as

g(Yij) = X>ijβ +Z>ijbi + εij .

The corresponding likelihood function is

Li(Θ) =

n∏

i=1

ni∏

j=1

p(Yij),

=
n∏

i=1

ni∏

j=1

∫

bi

p(Yij |bi)p(bi)dbi.

As opposed to linear mixed effects model, the calculation of the log-likelihood has no analytic
solution and the integral over the random effects bi is computed numerically in most cases (ex-
ceptions include, for example, the log-linear Poisson model with Gamma distributed random
effects). The lack of analytical solution is due to the non-linear function g(·) that links the linear
predictor to the outcome. Numerical computation of the integral over the random effects compli-
cates the computation of the likelihood, making the maximum likelihood estimation of GLMMs
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much more difficult than for the linear mixed model (see Section 2.4.3). In this manuscript, we
will focus on the logarithm and logit link functions.

Logarithm link function

The logarithm function corrects for right skewness and heteroscedasticity. It is defined only
for positive real numbers which is convenient for many applications that cannot have negative
values. It is very common in biological data and fits particularly well the dynamics of cancer
cells for which the unrestricted growth follows an exponential increase law (Koch (1966)). The
model is defined as

log(E[Yij ]) = X>ijβ +Z>ijbi,

or E[Yij ] = exp(X>ijβ +Z>ijbi).

There is an important difference between the GLMM with a log link function and the LME
with a log-transformed outcome. Indeed, the GLMM models the logarithm of the expected
outcome log(E[Yij ]), which is different from the expected log-transformed outcome E[log(Yij)].
Therefore, with a GLMM, exp(βk) represents the multiplicative effect on the mean biomarker
value associated with a one unit increase in covariate k. With a LME using a log-transformed
outcome, βk gives the additive effect of covariate k on the log scale, which is less relevant for
inference as we are usually interested in the effect of a covariate on the natural scale of the
outcome.

Logit link function

The logit link function is useful to model a binary outcome (Yij = 0 or 1). It evaluates the effect
of covariates on the probability p to observe Yij = 1. The logit function is defined by

logit(p) = log(
p

1− p).

Therefore the model has the form

logit(p) = X>ijβ +Z>ijbi,

or p =
exp(X>ijβ +Z>ijbi)

1 + exp(X>ijβ +Z>ijbi)
.

The model does not include an error term because we model the mean of p and not each value
of Y with the predicted mean plus an error term. With the logit link, exp(βk) represents the
subject-specific odds ratio to observe Yij = 1, associated with one-unit increase in the kth
covariate. In the specific case of random intercept logistic models, the subject specific estimates
can be converted to a population average coefficient through the following equation

βpa =
βss

1 + 0.346σ2a
,

where βpa is a population average estimate, βss a subject specific estimate and σ2a is the variance
of the random intercept (Hu et al. (1998)). However, this formula only works for random intercept
models, and cannot be used for models with additional random effects for which a Monte Carlo
sampling procedure should be used instead to obtain marginal coefficients and their standard
deviation.
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2.1.3 Non-linear mixed effects models

The LME and the GLMM are both linear in the parameters (for fixed and random effects). In
contrast, a non-linear mixed effects model includes also non-linear functions of the fixed and
random effects. It is defined as

Yij = g(Xi,β,Zi, bi) + εij ,

where the function g(·) is any parametric function specified a priori. These models can be es-
timated using maximum likelihood techniques or Bayesian inference, they are however usually
difficult to interpret. Mechanistic models have also been proposed, they use ordinary differential
equations to reflect on biological knowledge about the mechanisms underlying the disease dy-
namics. They can be helpful to understand the effect of covariates on the dynamics of biomarkers
and can be useful for prediction purposes but inference about a treatment is difficult because of
the model specification. It is possible to estimate a mechanistic model as a linear mixed effect
model when an analytical solution exists, otherwise a specific algorithm is required to solve the
differential equations. Mechanistic models were also proposed in the context of joint modeling to
evaluate the association of the dynamics of the biomarker with a time to event outcome (Guedj
et al. (2011); Król et al. (2018)). Recently, a Bayesian estimation of a non-linear mechanistic joint
model was proposed to study the repeated measurements of the SLD jointly with survival time
in an immunotherapy trial in patients with advanced or metastatic bladder cancer (Kerioui et al.
(2020)). The mechanistic model based on ODE helps understanding the sources of variability to
immunotherapy but is limited for inference about a treatment.

2.1.4 Modeling strategies for a semicontinuous outcome

A semicontinuous distribution is characterized by a continuous distribution with one or more
point masses. It is ususally a half-bounded interval where in most cases, the distribution has a
lower bound at zero resulting in either a positive value or a zero. In this manuscript, we focus on
zero-inflated nonnegative continuous outcomes, and therefore may omit the word “nonnegative”.
Such distributions are common, examples include medical costs (Manning et al. (1981); Duan
et al. (1983); Liu et al. (2010)), alcohol consumption (Liu et al. (2008, 2016); Han et al. (2019)),
gene expression data (McDavid et al. (2013); Finak et al. (2015)) or microbiome compositional
data (Chen and Li (2016); Chai et al. (2018)). In the context of cancer clinical trials, the SLD has
a semicontinuous distribution because some patients have a complete shrinkage of their tumors
after treatment initiation. They are usually characterized by an excess of zeros, right skewness
and heteroscedasticity for positive continuous values. An illustration of the distribution of the
SLD in a randomized clinical trial is presented in Figure 2.2.

Tobit model

The tobit regression model can accomodate a semicontinuous outcome by assuming that the
continuous distribution of the outcome is censored. It is based on Tobin (1958), the idea is
to modify the likelihood function so that it reflects the unequal sampling probability for each
observation. Let Yij denote the biomarker value for subject i (i = 1, ..., n), at visit j (j = 1, ..., ni).
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Figure 2.2: Histogram of the distribution of the SLD in the GERCOR study. The distribution
is characterized by an excess of zeros and right skewness.

The model assumes the biomarker can be subject to left-censoring when it decreases below a
limit of detection c.

Y ∗ij =

{
Yij if Yij > c,

c otherwise.
(2.1)

The resulting likelihood is based on the density function of the outcome when this one is ob-
served or the corresponding cumulative distribution function for censored observations. The
left-censoring (tobit) model has been applied in the context of HIV infection, where the outcome
is composed of the longitudinal measurements of the viral load (Jacqmin-Gadda et al. (2000)).
The semicontinuous distribution of the outcome is explained by the lower quantification limit of
the viral load. An application of this model to the repeated measurements of the SLD in the
context of cancer clinical trials was proposed in (Król et al. (2016)). The value of the SLD is
assumed to have a quantification limit and the zero values are assumed to be censored values.
When true zeros (i.e., not censored) are observed, the inference could be biased similarly as fitting
a linear regression on a binary outcome because of the mixed discrete-continuous distribution of
the outcome. Moreover, there is often an interest in what influences the probability of a zero
value. For these reasons, two-part models were developed to account for true zeros.

Two-part model

The two-part model decomposes the semicontinuous outcome into a binary outcome (zero vs.
positive values) and an outcome with positive continuous values. A GLMM with a probit or a
logit link is used to fit the probability of observing a positive versus zero value. One of those
models, a LME model on the log-transformed biomarker repeated measurements (Liu (2009)), a
log-skew-normal distribution, a gamma generalized distribution (which includes the lognormal,
gamma, inverse gamma, and Weibull distributions as special cases), links the continuously dis-
tributed values conditional on a positive outcome to the linear predictor (Smith et al. (2018)).
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In the following, we describe the standard two-part model assuming a lognormal distribution for
the positive values.

Let Yij denote the biomarker value for subject i (i = 1, ..., n), at visit j (j = 1, ..., ni). The
biomarker distribution is decomposed into a binary outcome I[Yij > 0] and a positive-continuous
outcome Y +

ij = [Yij |Yij > 0]. A GLMM with a logit link is assumed for the binary outcome. The
distribution of the positive continuous values often requires a non linear transformation because
it is not Gaussian. However, a GLMM can account for such transformation. We use a GLMM
with a logarithm link for the positive continuous outcome in the following. The logarithm link in
the continuous part is used to linearize the biomarker evolution over time and correct for right-
skewness and heteroscedasticity. The two components are linked through correlated random
effects. The two-part model is defined as follows:

{
Logit(Prob(Yij > 0)) = X>Bijα+Z>Bijai (Binary part),
E[Yij |Yij > 0] = exp(X>Cijβ +Z>Cijbi) (Continuous part),

where XBij and ZBij are vectors of covariates associated with the fixed effect parameters α and
the random effects ai for the binary part. Similarly, XCij and ZCij are vectors of covariates
associated with the fixed effect parameters β and the random effects bi. We assume a normal
and independently distributed error term in the continuous part εij ∼ N (0, σ2ε ). The two vectors
of random effects follow a multivariate normal distribution:

[
ai

bi

]
∼MVN

([
0

0

]
,

[
Σ2
a Σab

Σab Σ2
b

])
. (2.2)

The vectors of correlated subject-specific random effects ai and bi account for the correlation
between repeated measurements within an individual and the correlation between the two com-
ponents of the model. The overall mean with a conditional two-part model can be written as
the product of expectations from the first and second parts of the model, as follows

E[Yij ] = Prob(Yij > 0)E[Yij |Yij > 0].

The likelihood of a two-part model is defined as the product of the likelihood of the binary LBi (Θ)

and continuous parts LCi (Θ), where Θ = (α>,β>,Σb, σε) denotes the vector of parameters of
the model. Introducing Uij = I[Yij > 0], the likelihood contribution from the binary part can
be expressed as

LBi (Θ) =

ni∏

j=1

P (Uij |ai),

=

ni∏

j=1

Prob(Yij > 0)Uij (1− Prob(Yij > 0))(1−Uij),

=

ni∏

j=1

(
Prob(Yij > 0)

1− Prob(Yij > 0)

)Uij
(1− Prob(Yij > 0)),

=

ni∏

j=1

exp
(
X>Bijα+Z>Bijai

)Uij
(

1−
exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

)
.
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Assuming a lognormal distribution for positive values, the likelihood contribution from the
continuous part is

LCi (Θ) =

ni∏

j=1

{
1

Yij
√

2πσ2ε
exp

(
−(log(Yij)− µij)2

2σ2ε

)}Uij
,

where µij = X>Cijβ+Z>Cijbi−
σ2
ε
2 . This model is referred to as the conditional two-part model. An

alternative marginal form of the model has been proposed, the difference is that the probability
of positive value is taken into account in the continuous part in order to remove the condition
on a positive value. Therefore, the continuous part of the marginal two-part model gives the
effect of covariates on the unconditional mean biomarker value E[Yij ] instead of the conditional
mean E[Yij |Yij > 0] (Smith et al. (2014)). The difference in the likelihood is in the location
parameter of the lognormal distribution for positive values that accounts for the probability of
positive value, which is now

µij = X>Cijβ +Z>Cijbi − log(Prob(Yij > 0))− σ2ε
2
,

= X>Cijβ +Z>Cijbi +X>Bijα+Z>Bijai − log(1 + exp(X>Bijα+Z>Bijai))−
σ2ε
2
.

More details on the marginal two-part model and the difference in the interpretation compared
to a conditional two-part model are given in Chapter 4.

2.2 Survival analysis

2.2.1 Outcome of interest

In survival analysis, the outcome is a time to event. Some patients will observe the terminal
event while other patients do not. When the follow-up of the study is over, remaining patients
are censored. Some patients leave the study early (i.e., before the end of follow-up), they are
lost to follow-up and considered censored at their last visit. The event is usually death, but
other events of interest (e.g., progression of cancer) can be analyzed with survival models. With
the regression models used in survival analysis, multiple independent prognosis factors can be
analyzed simultaneously and treatment differences can be assessed while adjusting for hetero-
geneity and imbalances in baseline characteristics. The shape of the distribution of survival time
justifies the requirement for specific models, because survival times are always positive, they
often have skewed shapes of distribution and thus, statistical methods that rely on normality are
not directly applicable and may produce invalid results with survival data. However a suitable
transformation of the event times, such as the logarithm of the square root can overcome this
issue. The main difference in the analysis of survival times is the censoring event. It can be
categorized as follows:

• Right censoring: The event time occurs after the last time point of observation.

• Left censoring: The event time occurs before the first time point of observation.

• Interval censoring: The event of interest is only known to occur between two time points.
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Another way to classify censoring focuses on the relationship between the probability of a
subject being censored and the failure process

• Informative censoring: It is similar to the MNAR missing data mechanism, the risk of event
for individuals in the study is different from the risk of event from censored individuals.

• Non-informative censoring: It is similar to the MCAR missing data mechanism, the indi-
vidual withdraws from the study for reasons not related to the study.

Censoring due to loss of follow-up should be non-informative to get unbiased estimate of
survival curves (i.e., the censoring time is statistically independent from the failure time). In
clinical trials, drop-out can occur when the disease progression leads a patient to die or withdraw
from the trial to seek other treatment options, the drop-out is then informative for the estimation
of the disease progression. If the disease progression correlates with a biomarker that is being
monitored (e.g., SLD), modeling the disease progression separately from the drop-out process
may be inefficient and produce biased estimates as explained in Section 2.1. Joint models can
account for such informative drop-out but have limitations when the missing data mechanism is
related to other reasons than the drop-out mechanism.

Let T ∗ denote the positive continuous response variable that represents the elapsed time
between the beginning of the follow-up and the event of interest, usually referred to as survival
time or event time. There are several ways to describe the distribution of survival times:

• Survival function

The survival function is the probability to survive at least until time t: S(t) = P (T ∗ > t).
It is a decreasing function starting at 1 at time 0 that converges towards 0 as t tends
towards +∞.

• Cumulative distribution function

The cumulative distribution function (cdf) represents the probability that death occurs
before or at time t: F (t) = P (T ∗ < t) = 1− S(t).

• Probability density function

The probability density function (pdf) corresponds to the probability of dying in a very
short time interval after t: f(t) = lim

h→0+

P (t≤T ∗<t+h)
h .

We can therefore express the relationship between the pdf and the cdf: F (t) =
∫ t
0 f(u)du.

• Hazard function

The hazard function corresponds to the probability that death occurs in a small interval
of time after t, conditionally on surviving until t, i.e., the instantaneous risk of event for
individuals free from the event: λ(t) = lim

h→0+

P (t≤T ∗<t+h|T ∗>t)
h = f(t)

S(t) .

• Cumulative hazard function

Finally, the cumulative hazard function corresponds to the cumulative hazard up to time
t (i.e., the total amount of cumulated risk): Λ(t) =

∫ t
0 λ(u)du.
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We can deduce the relationship between the survival and hazard function: S(t) = exp(−Λ(t)) =

exp(−
∫ t
0 λ(u)du).

These quantities of interest can be estimated by non-parametric estimators along with regres-
sion models that describe these quantities as function of explanatory variables. A well-known
non-parametric estimator of the survival function is the Kaplan-Meier estimator (with the Green-
wood formula to estimate the variance). We can compare the survival functions of several groups
of subjects with the log-rank test. Another common estimator is the Nelson-Aalen estimator for
the cumulative hazard function and its variance. For a population of n patients, we can define
the observations as couples (Ti, δi), with i = 1, ..., n and the indicator variable δi = IT ∗

i <Ci
, equal

to 1 if the survival time is observed and 0 in case of incomplete observation (i.e., censoring). The
observed time Ti is Ti = min(T ∗i , Ci), where Ci denote the censoring time of individual i.

2.2.2 The proportional hazards model

The Cox proportional hazards model is the most commonly used statistical model to study the
relationship between the survival time of patients and predictor variables. While the Kaplan-
Meier curves and the log-rank test are limited to categorical variables, the Cox PH model can
include both categorical and quantitative variables and study their effect on the risk of event
simultaneously. The Cox PH model is usually described by its hazard function:

λi(t) = λ0(t) exp(X>i γ),

where λ0(t) is the baseline hazard function, corresponding to the risk of event at time t if all
the Xi are equal to zero. This baseline hazard acts as a time-dependent intercept in the model,
and the rest of the equation is a multiple linear regression of the logarithm of the hazard on the
variables Xi. We are usually interested in the hazard ratio exp(γk) of a covariate Xk comparing
the risk of event for patients with Xk = 1 to the risk for patients with Xk = 0 in case of binary
covariate (with a continuous covariate, exp(γk) gives the hazard ratio of a 1-unit increase in
covariate Xk). A covariate associated to a hazard ratio > 1 increases the risk of event, it is a bad
prognosis factor while a covariate associated to a hazard ratio < 1 is a good prognosis factor.
The key assumption of the Cox PH model is the proportional hazards, meaning that the hazard
of the event in any subgroup defined by the covariates is a constant multiple of the hazard in any
other subgroup. However, when time-dependent covariates are included in the Cox PH model,
the hazard ratio between two individuals can vary over time (Fisher and Lin (1999)). There are
two types of contribution to the likelihood for survival times with a Cox PH model:

• Individual i is censored alive at Ti, his contribution to the likelihood is defined by the
survival function S(Ti).

• Individual i dies at time Ti, his contribution to the likelihood corresponds to the probability
density function f(Ti) = λi(Ti)S(Ti).
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The likelihood contribution of individual i is therefore defined as

Li(·) = λi(Ti)
δiS(Ti),

= λi(Ti)
δi exp

(
−
∫ Ti

0
λi(t)dt

)
,

where λi(t) = λ0(t) exp{X>i γ}. An alternative approach avoids the specification of the baseline
hazard: the semi-parametric proportional hazards model (Cox (1972)). The baseline hazard is
left unspecified with this approach, and the Cox PH model can be estimated using the partial
likelihood (Breslow (1972)). We are however often interested in the estimation of the base-
line hazard functions. Moreover, in some situations (e.g., joint modeling), the baseline hazard
function is approximated to facilitate likelihood inference.

2.2.3 Baseline hazard approximation

There are several ways to define the baseline hazard risk function λ0(t). In a parametric pro-
portional hazards model, the baseline is defined as a function of parameters that are estimated
with other parameters of the model, the most common choices are the exponential, Weibull and
Gompertz distributions. Piecewise constant functions do not make any distribution assumption
for the baseline hazard risk function but tend to lack flexibility because of the assumption of
piecewise constant hazards (and therefore “brutal” jumps in the hazard). Additional flexible
parametric methods (e.g., splines) have been proposed for the approximation of the baseline dis-
tribution function (Royston and Parmar (2002)). Spline functions should be used with caution
as their flexibility relies on an appropriate choice of the number of knots. They might overfit
the data and provide a rough (i.e., not smooth) hazard function, which is usually not suitable as
the risk function in the population is usually smooth. The degrees of freedom of the spline can
be chosen with post-estimation model selection criteria. It is sometimes preferable to opt for a
penalized likelihood approach to obtain smooth non-parametric estimator of the hazard function
(Rondeau et al. (2007)). The penalization of the second-order derivatives of the splines prevents
rough changes in the hazards risk function. Choosing the smoothing parameter is the difficult
part of the method and can be done by approximate cross-validation techniques. Alternatively,
leaving the baseline hazard completely unspecified is possible but the estimation of the stan-
dard errors of the regression parameters is computationally intensive. It may raise convergence
problems and these standard errors may be underestimated (Xu et al. (2020)).

2.2.4 Time-dependent covariates

It is possible to include time-dependent covariates in a survival model, they can be classified into
two categories:

• Exogeneous (or external) covariates remain measurable and their distribution is unchanged
after the occurrence of the event.

• Endogeneous (or internal) covariates’ distribution is affected by the event.

The proportional hazards model can handle exogeneous time-dependent covariates but the like-
lihood requires knowing the value of these covariates for all subjects at risk for each event time.



46 2. Theoretical background

When covariates measurements does not coincide with event times in the sample, models are
required to impute values at the times of events. However most biomarkers of interest in clinical
research are endogeneous variables, their values are affected by a change in the risk of occur-
rence of the event. For example in a cancer clinical trial, if a treatment reduces both the risk
of death and the SLD, adjusting a survival model on the SLD may severely bias the effect of
treatment on the risk of death. It is often of interest to estimate the effect of the treatment on the
biomarker. The biomarker is censored by the event and its value is only known at the specific
time points at which it is measured. Separate models for the longitudinal and survival out-
comes are prone to bias when the two outcomes are associated (Rubin (1976), Wang and Taylor
(2001)). Alternatively, two-stage models can fit a longitudinal model and subsequently use the
estimated longitudinal trajectory of the biomarker as a covariate in the survival model (Tsiatis
et al. (1995)). They account for measurement error of the biomarker in the survival model but
fail to account for informative drop-out in the longitudinal model. Ignoring informative censoring
in a longitudinal analysis can lead to biased covariates’ effect estimates (García-Hernandez et al.
(2020)). In contrast, joint models offer the advantage of dealing with informative drop-out, mea-
surement error and missing biomarker measurements not at random (MNAR) in the longitudinal
and survival regression models (Ibrahim et al. (2010)).

2.3 Joint modeling for longitudinal data and a terminal event

When we observe repeated measurements of a biomarker and an event of interest, there is often
an association between these two outcomes such that the risk of event depends on the longitudinal
biomarker and the biomarker measurements are censored by the event.

The joint model is able to analyze event history data linked to a time-dependent endoge-
neous biomarker. It also improves efficiency of statistical inference by using both the longitudinal
biomarker measurements and survival times simultaneously, taking into account the dependency
and association between longitudinal data and time-to-event data. With joint models, the re-
gression model for the longitudinal measurements allows for outcome dependent drop-out while
the survival submodel provides inference on the distribution of time-to-event conditional on in-
termediate longitudinal measurements.

To summarize, joint models for a longitudinal biomarker and a terminal event are useful
when we are interested in

• Study the biomarker’s evolution when follow-up is censored by the terminal event, causing
non-random drop-out.

• Study the risk of terminal event while accounting for the effect of an endogeneous time-
dependent covariate measured with error.

• Explore the association between the biomarker and the risk of event.

• Predict the risk of event from the repeated measurements of the biomarker.
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The standard joint model uses shared random effects to analyze a longitudinal process and
an associated survival process, they are referred to as “shared random effects joint models”. The
main alternative is the “latent class joint model”, which assumes that the population is divided
in homogeneous groups of subjects with regards to both the marker trajectory and the event risk
(Lin et al. (2000); Proust-Lima et al. (2014)). They are however out of the focus of this thesis
and we describe only the shared random effects joint model.

2.3.1 Shared random effects joint model

The joint model connects separate models for different types of data in order to form one complex
model. In this thesis, we focus on joint models for a longitudinal biomarker Y and the event
time T (Faucett and Thomas (1996), Wulfsohn and Tsiatis (1997)). The most common joint
model uses shared random effects to account for the correlation between the longitudinal and
event history processes. To formulate the model, let’s consider the standard setting of a Gaussian
longitudinal biomarker correlated to the time to a terminal event. The model is decomposed into
two submodels:





Yij = Y ∗ij + εij (Biomarker submodel),
= X>ijβ +Z>ijbi + εij ,

λi(t) = λ0(t) exp(Xi(t)
>γ + h(·)>ϕ) (Survival submodel),

(2.3)

where Xij and Zij are vectors of covariates that can be time-dependent and respectively associ-
ated with the fixed effects β and the individual random effects bi. We assume measurement error
for the biomarker (e.g., the tool used to produce the measurement has a limited precision), there-
fore the true value of the biomarker Y ∗ij is not observed. The error term εij is assumed to follow
a Gaussian distribution with standard deviation σε. The random effects are assumed to follow a
multivariate normal distribution that takes into account their correlation bi ∼ MVN(0,Σb). The
model assumes independence between the random effects and the error term. In the survival
submodel, λ0(t) is the baseline hazard. It is rarely left unspecified to avoid untractable com-
putation as discussed in Section 2.2.3. The vector of covariates (i.e., prognostic factors) Xi(t)

are associated with the fixed effects γ and the multivariate function h(·) is associated with the
vector of parameters ϕ. This function is referred to as the association structure or the link
function between the biomarker submodel and the survival submodel. In the context of shared
random effects, the random effects or functions of the random effects are introduced in the sur-
vival model to account for the individual heterogeneity in the biomarker dynamics and evaluate
their association with the risk of event.

The shared random effects joint model can refer to any association structure that involves the
individual heterogeneity captured by the random effects. It contrasts with the latent class joint
model, which assumes that the population is heterogeneous and therefore can be decomposed
into subpopulations that share similar profiles for the evolution of the biomarker and the risk
of event. The latent class joint model is well adapted for prediction purposes, because it makes
no assumption about the structure of the population, while the shared random effects model is
preferred to evaluate the relationship between the biomarker and the survival time. In this thesis,
we focus on the shared random effects joint models and we will use the terminology “shared
random effects” to define the association structure of the joint model where only the random
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effects are shared between the biomarker submodel and the survival submodel, each random effect
being associated independently to the risk of terminal event, such that h(·) = b>ϕ. Another
association structure often encountered is the “current level” (or current value) of the biomarker,
which assumes the risk of event depends on the true unobserved value of the biomarker, given by
the biomarker submodel such that h(·) = E[Yij ]ϕ. Beyond these two main association structures,
any function of the random effects can be defined as the association structure but complex
associations are often difficult to interpret.

Association structures

Any function of the random effects can define the association structure between the longitudinal
and survival submodels. We review the most common association structures proposed in the
literature for joint models:

• h(·) = b>.
The “shared random effects” (SRE) association structure refers to the joint model sharing
only the random effects between the biomarker submodel and the survival submodel, each
random effect being associated independently to the risk of terminal event.

• h(·) = Zi(t)
>b.

An alternative fomulation includes the covariates associated to the random effects, therefore
the event risk at t is a function of the individual deviation of the marker at t, which is
time-dependent.

• h(·) = Y ∗i (t) = Xi(t)
>β +Zi(t)

>bi.
The “current level” (CL) association structure (or current value) assumes that the instan-
taneous risk of event at t depends on the value of the biomarker at t free of measurement
error, given by the biomarker submodel.

• h(·) = Y ∗′i (t),
where Y ∗′i (t) is the derivative of the function Y ∗i (t) with respect to t at time t. It assumes
the instantaneous risk of event at t depends on the slope at t.

• h(·)> = (Y ∗i (t), Y ∗′i (t)).
This model is more flexible because it assumes that the instantaneous risk of event at t
depends both on the true current value of the marker and on the slope at t.

In this thesis, we focus on the SRE association structure and the CL association structure. The
first one is useful to account for the individual heterogeneity of the population in the survival
model while the second can evaluate the association between the biomarker value and the risk
of event.

Likelihood expression

With joint models, the baseline hazard function is usually approximated to facilitate likeli-
hood inference. We can express the likelihood contribution of individual i by taking advan-
tage of the conditional independence between the biomarker Yi and the event time Ti. Let
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Θ = (β>,γ>,Σb, λ0(t)) be the vector of parameters of the model, where λ0(t) refers to the pa-
rameters associated to the estimation of the baseline hazard function. The likelihood contribution
of individual i is defined as

Li(Θ) = p(Yi, Ti, δi),

=

∫

bi

p(Yi|bi)p(Ti, δi|bi)p(bi)dbi,

where

p(Yi|bi) =

ni∏

j=1

p(Yij |bi).

Computation of the integral over the random effects is the main difficulty since it has no closed
form expression (See Section 2.4.3 for details on the integral over the random effects). Moreover,
the univariate integral over time in the survival function has no analytical solution when the
association structure is time-dependent and must be approximated too.

2.3.2 Extensions of the standard joint model

Several extensions of the standard joint model for a longitudinal biomarker and a terminal event
have been proposed, for example joint models for multiple longitudinal biomarkers and a terminal
event (Rizopoulos and Ghosh (2011)) or joint models for recurrent events and a terminal event
(Liu et al. (2004); Rondeau et al. (2007)). In the context of cancer trials, clinical progression
can be characterized by the occurrence of multiple events, for example the progressive disease
status of non-target lesions or new lesions has been considered as a recurrent event in a joint
analysis of the SLD and the survival time (Król et al. (2016, 2018)). Moreover, the linear mixed
effects model for the biomarker can be replaced by a GLM or more complex non-linear regression
models to characterize the evolution of the biomarker differently.

2.4 Computational aspects

The two main inferential approaches are the frequentist and the Bayesian approaches. A brief
introduction is proposed in this section. Note that the optimization algorithms presented for the
frequentist inference can also be used in Bayesian inference but specific algorithms are usually
preferred. The frequentist approach most often relies on the maximum likelihood approach while
in Bayesian inference, we want to calculate the estimator of the “maximum a posteriori ”.

2.4.1 Frequentist inference

The frequentist inference provides an objective measure of uncertainty under a specified statistical
model. The total likelihood is defined as

L(Θ) =
n∏

i=1

Li(Θ).

For computational convenience, the maximization of the likelihood function L(Θ) is usually done
using the log-likelihood function (natural logarithm of the likelihood). In simple cases such as
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the linear mixed effects model, one can compute the maximum likelihood estimators analytically.
In most non-linear models, there is no closed-form expression and the log-likelihood has to be
maximized with an iterative procedure. We review the main optimization algorithms used to
maximize the likelihood, which turns out to be a minimization problem when working on minus
the log-likelihood.

The Nelder-Mead algorithm, also referred to as the “downhill simplex algorithm” has the ad-
vantage of not using the derivatives of the likelihood function, but it is not the most efficient. The
gradient descent algorithm belong to the class of optimization algorithms known as conjugate
gradient, which uses the first-order derivatives. However, the Newton-Raphson is much more ef-
ficient because it uses in addition the second derivative of the function to minimize. The first and
second derivatives are often difficult to calculate analytically but there are efficient algorithms
to compute them numerically. An advantage of the Newton-Raphson method is that it provides
a direct estimate of the variance of the maximum likelihood estimators through the Fisher infor-
mation matrix. Nonetheless, the Newton-Raphson algorithm may be unstable, in particular if
the initial value is far from the maximum. Several algorithms were proposed based on Newton’s
method (e.g., BGFS algorithm). The Levenberg-Marquardt algorithm combines the gradient
descent algorithm with a modified Newton-Raphson algorithm (Gauss-Newton). The gradient
descent is useful when parameters are far from their optimal value and the Newton algorithm
intervenes when the parameters are close to their optimal value. This algorithm has a much
more stable behavior than the Newton-Raphson algorithm in complex problems (Commenges
and Jacqmin-Gadda (2015)). Note that an important point in the optimization procedure is to
have a good stopping criterion, to prevent the algorithm to stop before convergence.

2.4.2 Bayesian inference

Under the Bayesian framework, the state of knowledge or ignorance about the set of parameters
of the model Θ before the data is available is defined by a prior distribution π(Θ). It plays an
important role in Bayesian analysis, prior distributions are often associated with the fear that the
prior may dominate and distort the information in the observed data. In the context of scientific
inference, we would usally like the data to “speak for themselves” and consequently conduct the
analysis as if a state of relative ignorance existed a priori. Inference is based on the posterior
distribution of Θ. Given the prior distribution π(Θ), the likelihood function π(D|Θ) = L(Θ)

and the data D, it is possible to calculate the posterior probability distribution π(Θ|D) of Θ

given the data D using Bayes theorem:

π(Θ|D) =
π(D|Θ)π(Θ)

π(D)
,

where the marginal likelihood (i.e., distribution of the observed data marginalized over the pa-
rameters) π(D) =

∫
Θ π(D|Θ)π(Θ)dΘ acts as a normalizing constant. Complex models usually

cannot be processed in closed form by a Bayesian analysis, therefore efficient simulation-based
Monte Carlo techniques like the Gibbs sampling or Metropolis-Hastings algorithm are often used.
In the context of joint modeling, Bayesian inference is particularly efficient for complex models,
defined by a large number of random effects and/or outcomes but might lose efficiency compared
to a frequentist alternative for simpler models. For joint models with a non-linear regression
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model for the biomarker such as mechanistic models as discussed in Section (2.1.3), the Hamil-
tonian Monte Carlo algorithm is preferred over other MCMC techniques (Kerioui et al. (2020)).
Recently, the Integrated Nested Laplace Approximation (INLA) algorithm has been introduced
as an alternative to MCMC techniques for latent Gaussian models (LGMs). Many statistical
models for spatial statistics, time series, etc., can be formulated as LGMs. A key feature of
INLA is to provide approximations of the posterior marginals needed for Bayesian inference very
efficiently and that still remain very accurate compared to MCMC methods (Rue et al. (2017)).
By formulating complex joint models as LGM’s, R-INLA can be used to fit these models as
developed recently (Van Niekerk, Bakka, and Rue (2019); Van Niekerk, Bakka, Rue, and Schenk
(2019)). It improves drastically the applicability of the Bayesian estimation for joint models.

2.4.3 Integrals over the random effects

Several techniques can compute the integral over the random effects required in the likelihood
function of most models presented above. The most frequently used are the Gaussian quadrature
rules that approximates the integral by a sum of the integrand computed at predefined points and
weighted according to the type of integral. When the random effects are Gaussian, the abscissas
and weights of the Gauss-Hermite quadrature are used. The adaptive quadrature centers the
quadrature points around the predicted values of the random effects at each iteration, which
results in a more accurate approximation of the integral (Lesaffre and Spiessens (2001)). It
is however limited to simple models as the computational burden increases sharply with the
dimension of the random effects. Monte Carlo methods rely on random sampling to approximate
the integral, it is particularly useful for higher-dimensional integrals as the computational burden
is much less affected by the dimension of the random effects. Finally, Laplace approximation
is an alternative analytical approximation based on Taylor expansions. It has been proposed
for two-part models (Olsen and Schafer (2001)), showing greatly reduced computation times
with consistent accuracy compared to other Monte Carlo and quadrature techniques (Liu et al.
(2008)).

2.4.4 Available programs and packages

Most statistical softwares can fit joint models using the maximum likelihood method, the SAS
macro JMfit (Zhang et al. (2016)) can fit a standard joint model for longitudinal and survival
data. With STATA, this standard joint model can be fitted with the command stjm (Crowther
(2013)), which allows to use splines or polynomials to model the biomarker over time and in-
cludes spline-based approach for the baseline hazard function. The recently introduced merlin
STATA package (Crowther (2018)) provides a unified environment to fit various joint models
with multiple outcomes of different kinds (e.g., terminal event, recurrent events and longitudinal
biomarkers). With R, several packages provide functions for fitting joint models for a longitu-
dinal biomarker and a terminal event. The R package JM (Rizopoulos (2010)) is among the
most widely used in the frequentist framework. Other packages provide alternative methods for
the estimation, for example the R package frailtypack (Rondeau et al. (2020)) uses penalized
likelihood estimation on the hazard function to provide a smooth estimate of the baseline hazard
function. Bayesian estimation of joint models is also proposed in many R packages, JMbayes
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(Rizopoulos et al. (2016)) has been used in many biomedical researches (Lawrence Gould et al.
(2015)) and rstanarm (Muth et al. (2018)) was introduced to provide an intuitive syntax, both
using MCMC methods. Finally, R-INLA was recently used to fit joint models formulated as
latent Gaussian models (Van Niekerk, Bakka, and Rue (2019); Van Niekerk, Bakka, Rue, and
Schenk (2019)). In this thesis, we develop the conditional and marginal formulations of the
two-part joint model in the frailtypack package, written in Fortran 90 within the R function
longiPenal. This compiled language has the advantage of being highly efficient and useful for
optimization problems but it is not adapted for fast operations on vectors or matrices, which
are required for numerical integration. Finally, we developed the Bayesian estimation of the
conditional two-part joint model using R-INLA.



Chapter 3

Two-part joint model for a longitudinal
semicontinuous outcome and a terminal
event with application to metastatic
colorectal cancer data

3.1 Introduction

In this work we developed the two-part model in the context of joint modeling for a longitu-
dinal semicontinuous biomarker and survival times. It was motivated by the GERCOR study,
a randomized phase III clinical trial comparing two treatment strategies for metastatic colorec-
tal cancer patients. The focus of this work was to propose a model using directly the tumor
size instead of a tumor-based criteria while taking into account the excess of zero values of the
biomarker. These zero values correspond to patients with a complete shrinkage of their target
lesions. We evaluated the relationship of the tumor size with the event of death and compared
the proposed two-part joint model with two alternative strategies. The first one is a standard
joint model assuming the semicontinuous biomarker as continuous (i.e., ignoring the zero excess)
and the second assumes the measurements of tumor size are subject to left-censoring due to the
detectability limit of imaging machines, resulting in the observed zero values (assumed censored).
With the new two-part joint model, we assume true zeros (i.e., not censored) can be observed.
The two-part approach is preferred when there is interest in what influences the probability to
observe a zero value of the biomarker because it evaluates the effect of covariates on both the
probability to observe a positive value (i.e., not a zero) and the distribution of positive values.
Moreover, it was also of interest to compare the joint effect of zero and positive values of the
biomarker with their separate effects on overall survival.

The conditional two-part joint model has been proposed in the literature, using shared or cor-
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related random effects to account for the correlation between the binary, continuous and survival
part of the model (Liu (2009); Hatfield et al. (2011)). These formulations are however limited
to random intercept models and the interpretation of the random effects when they are shared
can be difficult as they capture different types of correlations (among repeated measurements
and across submodels). Moreover, the association between the biomarker two-part model and
the survival model is only based on shared or correlated random effects. In contrast, the model
proposed in this chapter includes a vector of random effects specific to the binary and continuous
parts and their correlation accounts for the relationship between the binary and continuous parts.
They are separately shared in the survival model. We also propose a flexible estimation of the
baseline hazard risk function unlike previous articles which considered piecewise constant func-
tions or a Weibull parametric distribution. Moreover, we developed new association structures
between the biomarker two-part model and the survival model. These new association structures
are time-dependent and therefore require an additional integration step in the likelihood compu-
tation. We proposed a general formulation of the two-part joint model fitted using the maximum
likelihood estimation obtained with the Levenberg-Marquardt algorithm. In a simulation study
we evaluated the performances of the proposed estimation method in terms of bias and coverage
probabilities and evaluated the consequences of model misspecification. The GERCOR phase III
randomized clinical trial investigated two sequences of treatment:

• Arm A: folinic acid and irinotecan (FOLFIRI) followed by folinic acid and oxaliplatin
(FOLFOX6)

• Arm B: FOLFOX6 followed by FOLFIRI

We were interested to compare the effect of treatment captured by both components of the
biomarker (i.e., zero and positive values) and the relationship of this treatment effect on the
biomarker with survival. Colorectal cancer is among the leading causes of cancer death, approx-
imately half of all patients develop metastatic disease and palliative chemotherapy is often used
to prolong survival. In this context, a complete response of target lesions (i.e., SLD=0) is not
common and only a small subset of the patients will observe such response. In the GERCOR
study, 12% of the repeated measurements of the SLD are zeros. We compared the clinical inter-
pretation of the results and describe the strengths and limitations of the two-part joint model
compared with alternative approaches. This work has been published in Biostatistics (Rustand
et al. (2020)) and the two-part joint model is implemented in the function longiPenal of the R
package frailtypack.

3.2 Article
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SUMMARY

Joint models for a longitudinal biomarker and a terminal event have gained interests for evaluating cancer

clinical trials because the tumor evolution reflects directly the state of the disease. A biomarker charac-

terizing the tumor size evolution over time can be highly informative for assessing treatment options and

could be taken into account in addition to the survival time. The biomarker often has a semicontinuous

distribution, i.e., it is zero inflated and right skewed. An appropriate model is needed for the longitudinal

biomarker as well as an association structure with the survival outcome. In this article, we propose a joint

model for a longitudinal semicontinuous biomarker and a survival time. The semicontinuous nature of

the longitudinal biomarker is specified by a two-part model, which splits its distribution into a binary out-

come (first part) represented by the positive versus zero values and a continuous outcome (second part)

with the positive values only. Survival times are modeled with a proportional hazards model for which

we propose three association structures with the biomarker. Our simulation studies show some bias can

arise in the parameter estimates when the semicontinuous nature of the biomarker is ignored, assuming

the true model is a two-part model. An application to advanced metastatic colorectal cancer data from the

GERCOR study is performed where our two-part model is compared to one-part joint models. Our results

show that treatment arm B (FOLFOX6/FOLFIRI) is associated to higher SLD values over time and its

positive association with the terminal event leads to an increased risk of death compared to treatment arm

A (FOLFIRI/FOLFOX6).

∗To whom correspondence should be addressed.

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/doi/10.1093/biostatistics/kxaa012/5819604 by  denis@

rustand.fr on 15 April 2020

3.2. Article 55



2 D. RUSTAND AND OTHERS
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1. Introduction

In solid tumor cancer clinical trials, a biomarker of interest is the sum of the longest diameter (SLD) of tar-

get lesions as defined by the Response Evaluation Criteria in Solid Tumors (RECIST). It is often used to

categorize the response of patients to treatment and help in the clinical decision-making (Litiere and oth-

ers, 2017). A limited set of lesions is selected at baseline (target lesions), and those are measured at each

follow-up visit of the patient after initiation of a new treatment. Other non-target lesions and new occur-

ring lesions are evaluated qualitatively. Several updates of the RECIST criteria have been proposed over

the past years but most of them require a limited number of target lesions to be measured. The SLD pro-

vides a longitudinal characterization of the tumor burden. A complete response of target lesions (CRTL)

is observed when the SLD reaches a zero value, meaning that all the target lesions disappeared. A partial

response (PR) is observed when a significant decline in the SLD is observed. The absence of response to

the treatment is qualified as stable disease (SD) and a significant increase in the SLD, a non-target lesion

progression or the appearance of one or more new lesions is considered as a progressive disease (PD). In

most cancer clinical trials, only a subset of patients reach the CRTL state and interest often lies in the

characterization of these complete responders. PR and SD patients are also of interest when the treatment

aims at keeping the disease from progressing. Resistance to treatment is often observed, leading to pro-

gression of tumor size and an increased risk of death. Besides, some treatments (e.g., immune checkpoint

inhibitors) can provide a complete response (CR) to a subset of patients and yield hyperprogressions to

another part of the population (Champiat and others, 2017). The analysis of these complex responses

requires appropriate methodology to inform clinical decisions.

Joint models have been proposed to fit a survival model jointly with the SLD. The biomarker is often

characterized by an excess of zeros due to the subset of patients reaching the CRTL state. A biomarker

distribution exhibiting inflated zeros and a continuous distribution of positive values is referred to as

semicontinuous. The positive values are often right-skewed. Such distribution arises often in biomedical

research when quantifying exposure or measuring symptoms of a disease. Zero-inflated Poisson models

have been proposed to handle an excess of zeros with count data. The zero-inflated Poisson regression

considers two zero generating processes, the Poisson distribution which generates natural zeros and a

binary distribution that accounts for an excess of zeros referred to as structural zeros, see Lambert (1992).

Hurdle models consider two data generating processes, a Bernoulli distribution for the zero versus posi-

tive counts and the conditional distribution of the positive counts, modeled by a truncated-at-zero count

data model (Cragg, 1971; Mullahy, 1986). Duan and others (1983) proposed the two-part model as an

extension of the hurdle model for semicontinuous outcomes. It was originally applied to cross-sectional

medical cost data. The two-part model decomposes the biomarker distribution into a part with zero values

and a part with positive continuous values. A probit or a logit model can be used for the binary outcome

and a regression model fits the positive measurements. Olsen and Schafer (2001) and Tooze and others

(2002) extended the model to longitudinal data. A generalized linear mixed effects model (GLMM) with a

probit or a logit link is used to fit the probability of observing a positive versus zero value while either one

of those models: a linear mixed effects (LME) model on the log-transformed biomarker repeated measure-

ments (Liu, 2009), a log-skew-normal distribution, a gamma generalized distribution (which includes the

lognormal, gamma, inverse gamma, and Weibull distributions as special cases), links the outcome to the

linear predictor and take into account the zero inflation of the continuously distributed values conditional

on a positive outcome (Smith and others, 2018). A review of methods to analyze semicontinuous data is

proposed in Liu and others (2019).
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Liu (2009) proposed a two-part joint model (TPJM) to analyze longitudinal medical cost data jointly

with a survival time where the two components of the two-part model are linked through a shared subject-

specific random intercept between the binary model and the conditional continuous model. Another

subject-specific random intercept captures the residual individual variability of the continuous model.

Both independent random effects are shared with a Cox proportional hazards (PH) model for a terminal

event. This model therefore includes an association structure between its three components (binary, con-

tinuous, and survival) through those shared random effects but is restricted to a random intercept in the

two-part model. Besides, the interpretation of the random intercept from the GLMM used to model the

binary part is complicated since it captures both the correlation among the repeated measures over time

and the correlation among the two components of the semicontinuous model. Dagne (2017) proposed

a similar model but with a Bayesian inference approach via a Markov chain Monte Carlo algorithm. It

assumes the independence between the two components of the two-part model and uses shared random

effects between the two-part model and an accelerated failure time model for the survival outcome. The

assumption of independence between the binary and continuous parts can lead to bias in the estimation of

both regression coefficients and variance components in the continuous part, see Su and others (2009).

For the joint analysis of the SLD repeated measurements and a terminal event, Król and others (2016)

proposed a model with a left-censoring of the biomarker distribution to take into account the excess of

zeros in the regression model. It assumes that there is a limit of detection of the biomarker values below

which we cannot observe the true value of the biomarker. Manning and others (1987) compared the

left-censoring approach to a two-part model to fit semicontinuous outcomes and showed that when the

true model is the left-censoring model, then the two-part model yields a good estimate in terms of mean

behavior of the outcome.

In this article, we propose a TPJM for a longitudinal semicontinuous biomarker and a terminal event,

with correlated random effects between the two components of the two-part model and a Cox PH model

for the terminal event. The remainder of the article is structured as follows: in Section 2, we describe the

TPJM and the estimation method. In Section 3, we present a simulation study to assess the performance of

the TPJM as compared to competing approaches to treat the excess of zeros. An application to colorectal

metastatic cancer data from the GERCOR study is proposed in Section 4 to illustrate the interest of our

model. We conclude with a discussion in Section 5.

2. Methods

2.1. Two-part model for the biomarker

Let Yij denote the biomarker value for subject i (i = 1, ..., n), at visit j (j = 1, ..., ni). The biomarker

distribution is decomposed into a binary outcome I[Yij > 0] and a positive continuous outcome Y+
ij =

[Yij|Yij > 0]. A logistic mixed effects model is assumed for the binary outcome and a LME model for the

positive continuous outcome. A non-linear transformation g(·) is used to linearize the biomarker evolution

over time and correct for right-skewness and heteroscedasticity. The two components are linked through

correlated random effects. The two-part model for the biomarker is defined as follows:

{

Logit(Prob(Yij > 0)) = X
⊤
Bijα + Z

⊤
Bijai (Binary part),

E[g(Y+
ij )] = X

⊤
Cijβ + Z

⊤
Cijbi (Continuous part),

where XBij and ZBij are vectors of covariates associated with the fixed effect parameters α and the ran-

dom effects ai for the binary part. Similarly, XCij and ZCij are vectors of covariates associated with the

fixed effect parameters β and the random effects bi. We assume a normal and independently distributed

error term (ǫij) in the continuous part and the two vectors of random effects follow a multivariate normal
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distribution:

[

ai

bi

]

∼ MVN

([

0

0

]

,

[

62
a 6ab

6ab 62
b

])

.

The vectors of correlated subject-specific random effects ai and bi account for the correlation between

repeatedmeasurements within an individual and the correlation between the two components of themodel.

The logistic regressionmodel includes covariates that represent the effect of an individual’s characteristics

on the probability of observing a positive versus zero SLD. The continuous part represents the expectation

of the SLD given a positive SLD value.

2.2. The two-part joint model

The TPJM considers a two-part model to fit the biomarker evolution over time and a Cox PH model for

the terminal event. It is defined as follows:







Logit(Prob(Yij > 0)) = X
⊤
Bijα + Z

⊤
Bijai (Binary part),

E[g(Y+
ij )] = X

⊤
Cijβ + Z

⊤
Cijbi (Continuous part),

λi(t) = λ0(t) exp
(

X i(t)
⊤ γ + h(α,β, ai, bi)

⊤ϕ
)

(Survival part),

where Xi(t) corresponds to time-dependent or time-independent covariates, and γ is their effect on the

risk of terminal event. The function h(α,β, ai, bi) specifies the association between the terminal event and

the longitudinal outcome, and ϕ is the corresponding vector of parameters. We propose three association

structures, commonly used in joint models. (i) The first one is a ‘‘shared random effects association’’

with a parameter associated with each random effect from the two-part model. The hazard function for

the terminal event is assumed to depend on some latent random effects:

λi(t) = λ0(t) exp
(

X i(t)
⊤ γ + a

⊤
i ϕ1 + b

⊤
i ϕ2

)

.

This association structure is useful to explore the association between an individual’s deviation from

the population mean evolution of the biomarker and the risk of terminal event, but it assumes that the

association is constant over time and no correlation between the random effects, assumed independent in

the Cox PH model.

(2) The second association structure (‘‘current probability of positive value + expected positive value’’)

captures the biomarker evolution in the survival model using two parameters, which account for the effect

of the current probability of positive value on the risk of event (binary part) and the effect of the linear

predictor from the linear regression model on the risk of event (continuous part), respectively. They are

both considered time-dependent effects in the Cox PH model. The binary model can capture the effect of

the probability of having a CRTL on the risk of the terminal event while the continuous model accounts

for other types of responses. This includes partial responders whose SLD has an initial decline following

treatment initiation and then stabilizes without reaching a CRTL or patients who develop a resistance

to treatment as assessed by a progression of the SLD. This association structure takes into account the

correlation between the random intercept and the slope of the biomarker for each part of the model but

assumes no correlation between the binary and continuous parts in the survival model,

λi(t) = λ0(t) exp
(

X i(t)
⊤ γ + Prob(Yij > 0) ϕ1 + E[g(Y+

ij )] ϕ2

)

,

where Prob(Yij > 0) = exp(X⊤
Bijα + Z

⊤
Bijai)

(

1 + exp(X⊤
Bijα + Z

⊤
Bijai)

)−1
and E[g(Y+

ij )] = X
⊤
Cijβ + Z

⊤
Cijbi.
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This second association structure allows to model the hazard of the terminal event conditional on a

CRTL or a PR and also provides information on covariates that affect either response.

(3) The last association structure (‘‘current value’’), includes the subject-specific predictor of the

expected longitudinal outcome from the two-part model into the Cox PH model, defined as

E[Yij] = Prob(Yij > 0)E[Yij|Yij > 0] + Prob(Yij = 0)E[Yij|Yij = 0].

The second term of the equation is 0 because E[Yij|Yij = 0] = 0. This association corresponds to the

current value of the biomarker, commonly used in standard joint models. When a non-linear function g(·)

is applied, the association corresponds to the expected value on the transformed scale

λi(t) = λ0(t) exp
(

X i(t)
⊤ γ + Prob(Yij > 0)E[g(Y+

ij )] ϕ1

)

.

The current value association is useful to explore the association between the expected biomarker value

at the time of the terminal event and the risk of the terminal event. This association structure assumes that

the expected current value of the longitudinal biomarker at time t is predictive of the risk of event at

that particular time t. The non-linear transformation g(·) in the continuous part can handle the positive

biomarker values that exhibit skewness.

2.3. Estimation method

We can derive the full likelihood of the TPJM, which combines the contributions from the binary part

with a Bernoulli density, the continuous part with a Gaussian density, and the survival part which requires

approximation of the baseline hazard

Li(2) =

∫

ai

∫

bi





1
(

√

2πσ 2
ǫ

)ni

ni
∏

j=1

exp

(

−
(g(Y+

ij ) − X
⊤
Cijβ − Z

⊤
Cijbi)

2

2σ 2
ǫ

)

×
(

exp
[

X
⊤
Bijα + Z

⊤
Bijai

])Uij +

(

1 −
exp(X⊤

Bijα + Z
⊤
Bijai)

1 + exp(X⊤
Bijα + Z

⊤
Bijai)

)

×λi(Ti|2i)
δi exp

(

−

∫ Ti

0

λi(t|2i)dt

)

p(ai, bi)

]

dbidai,

with Uij = I(Yij > 0), 2i = (α,β, ai, bi, γ ,ϕ).

The baseline hazard risk function is approximated bym cubicM-splines withQ knots. They are nonneg-

ative functions that facilitate the calculation of the integrals and derivatives in the likelihood expression.

We propose to penalize the log-likelihood in order to obtain smooth estimation of the baseline hazard

function

pl(2) = l(2) − κ

∫ ∞

0

λ′′
0(t)

2dt,

where l(2) =
∑n

i=1 log(Li(2)) and κ a smoothing parameter chosen using an approximate cross-

validation criterion from a separate Cox model. We propose to use the Levenberg-Marquardt algorithm

to maximize this penalized log-likelihood (Marquardt, 1963). The integration over the random effects

is performed by Monte Carlo integration with 5000 integration points in the real data application and
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1000 integration points in the simulation studies. Standard errors are calculated from the inverse Hessian

matrix of the penalized log-likelihood, which is directly available from our optimization algorithm. The

TPJM with time-dependent covariates in the Cox PH model (‘‘current probability of positive value +

expected positive value’’ and ‘‘current value’’) requires the current value from the two-part model (binary,

continuous) between visit times in order to perform the numerical integration for the cumulative hazard

function in the likelihood. This integral has no analytical solution and is approximated numerically with

a Gauss-Kronrod quadrature with 15 points.

3. Simulation study

3.1. Objectives

We conduct simulation studies to evaluate the performances of the TPJM in terms of efficiency and bias

and compare it with alternative approaches. We compare the TPJM to two alternative approaches: a stan-

dard one-part joint model (OPJM), which considers the biomarker as a continuous variable modeled via

a LME model and does not account for the excess of zeros and another OPJM, which considers that the

biomarker distribution is left-censored. The censoring threshold is defined as the smallest positive value

observed.

3.2. Methods

We propose four simulations scenarios, for each scenario 300 datasets were generated and for each dataset

300 individuals were included. The data simulated under the three first scenarios assumed that the TPJM is

the truemodel while the last scenario considers it is the left-censoringOPJM. The current value association

structure is assumed to generate the data with a random intercept and a fixed slope in the binary part

and a random intercept plus a random slope in the continuous part of the biomarker. A binary covariate

corresponding to the treatment effect (trti) is included in each submodel and generated from a Bernoulli

distribution with p = 0.5 and with a time-interaction within each component of the two-part model. The

model for data generation is given by







Logit[Prob(Yij > 0)] = α0 + ai + α1 · timej + α2 · trti + α3 · timej · trti,

Y+
ij = β0 + b0i + (β1 + b1i) · timej + β2 · trti + β3 · timej · trti + εij,

λi(t|Yij) = λ0(t) exp
(

γ · trti + ϕ · E[Yij]
)

,





ai
b0i
b1i



 ∼ MVN









0

0

0



 ,





σ 2
a ρ σaσb0

ρ σaσb1

ρ σaσb0
σ 2
b0

ρ σb0
σb1

ρ σaσb1
ρ σb0

σb1
σ 2
b1







 .

The longitudinal measurements are directly generated assuming a Gaussian distribution without any

non-linear transformation. The first scenario mimicks several aspects of our real data with similar treat-

ment effects in the three components and 15% of zero measurements overall. In the second scenario, the

treatment is associated with higher odds of observing a zero value of the biomarker over time than in

the real data. The difference between the first and the second scenario is that the sign of α3 changes from

positive to negative and the value of the linear slope, α1 is reduced by one unit in order to get the same pro-

portion of zero measurements. This approach is motivated by the complex patterns of responses observed

in clinical trials, where a subset of patients could respond well to treatment until reaching a CR while

other patients could experiment adverse treatment effect. The third scenario considers a larger proportion

of zeros for the biomarker by changing both the linear slope α1 and the effect of treatment over time α3
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Table 1. Comparison of OPJM and TPJM of a longitudinal semicontinuous biomarker and a terminal

event with current value association. The true model is the TPJM, 300 datasets are generated with 15%

(SD = 2%) zeros in the biomarker distribution on average.

Variable Standard OPJM Left-censoring OPJM TPJM

Est.† (SD‡) [CP§] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 = 6 6.05 (0.59) [92%]

Time α1 = −4 −3.98 (0.45) [94%]

Treatment α2 = −1 −0.94 (0.52) [93%]

Time:treatment α3 = 1 1.05 (0.57) [93%]

Continuous part

Intercept β0 = 4 4.01 (0.07) 4.08 (0.07) 3.99 (0.18) [94%]

Time β1 = −0.5 −1.05 (0.17) −1.25 (0.22) −0.51 (0.12) [90%]

Treatment β2 = 1 0.91 (0.12) 0.87 (0.11) 1.01 (0.10) [91%]

Time:treatment β3 = 1 0.65 (0.33) 0.80 (0.34) 1.00 (0.17) [92%]

Residual S.E. σǫ = 0.5 1.06 (0.05) 1.03 (0.10) 0.50 (0.02) [93%]

Survival part

Treatment γ = 0.3 0.32 (0.17) [96%] 0.35 (0.16) [92%] 0.34 (0.16) [95%]

Association ϕ = 0.3 0.32 (0.07) [95%] 0.29 (0.06) [92%] 0.31 (0.07) [95%]

Random effects

Intercept (continuous part) σb0
= 0.75 0.74 (0.07) 0.68 (0.06) 0.71 (0.04)

Slope (continuous part) σb1
= 0.75 1.18 (0.14) 1.48 (0.19) 0.47 (0.19)

Intercept (binary part) σa = 2 2.13 (0.26)

corrb0b1 = −0.20 0.18 (0.17) 0.15 (0.14) −0.37 (0.31)

corrab0 = 0.20 0.31 (0.15)

corrab1 = 0.70 0.40 (0.39)

Convergence rate 99% 98% 98%

†Mean of parameter estimates.
‡Standard deviation from the mean.
§ Coverage probability

in the binary part. This yields 35% of zeros with treated patients having a higher chance of CRTL but

higher biomarker values in the continuous part over time. The last scenario was considered to evaluate the

performance of the TPJM when the proportion of zeros result from a higher limit of detection imposed

to the biomarker. These four scenarios entail several treatment effects and proportions of zeros for the

biomarker. The performances of the analysis models are evaluated in terms of mean parameter estimate

and coverage probabilities of the parameter estimates. We consider a maximum follow-up period of 4

years for each patient and a 80% death rate, as observed in our real data. The true value of parameters for

data generation is given in the second column of Tables 1 to 4.

The survival times conditional on the biomarker time-dependent values are generated using the R pack-

age PermAlgo (Sylvestre and Abrahamowicz, 2008), which requires to specify the biomarker trajectory

for the entire follow-up period among all patients, and then a permutation algorithm simulates the sur-

vival times based on these trajectories in order to get the correct effect of the time-dependent biomarker

on survival times. The permutation algorithm also generates random censoring times, which makes the

number of biomarker measurements variable among individuals (from 1 to 30 repeated measurements).
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Table 2. Comparison of OPJM and TPJMs with opposite treatment effects between the odds of zeros

(binary part) and the expected value among positives (continuous part). The true model is the TPJM, 300

datasets are generated with 14% (SD = 2%) zeros in the biomarker distribution on average.

Variable Standard OPJM Left-censoring OPJM TPJM

Est.† (SD‡) [CP§] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 = 6 6.05 (0.60) [92%]

Time α1 = −3 −3.01 (0.36) [94%]

Treatment α2 = −1 −0.93 (0.52) [93%]

Time:treatment α3 = −1 −0.92 (0.52) [94%]

Continuous part

Intercept β0 = 4 3.99 (0.07) 4.02 (0.07) 3.99 (0.17) [92%]

Time β1 = −0.5 −0.76 (0.16) −0.89 (0.19) −0.52 (0.12) [86%]

Treatment β2 = 1 0.97 (0.12) 0.99 (0.12) 1.01 (0.11) [91%]

Time:treatment β3 = 1 −0.15 (0.34) −0.31 (0.39) 1.02 (0.17) [92%]

Residual S.E. σǫ = 0.5 1.06 (0.05) 1.08 (0.09) 0.50 (0.02) [95%]

Survival part

Treatment γ = 0.3 0.34 (0.16) [90%] 0.42 (0.16) [84%] 0.35 (0.16) [92%]

Association ϕ = 0.3 0.33 (0.07) [92%] 0.27 (0.06) [88%] 0.30 (0.07) [95%]

Random effects

Continuous intercept σb0
= 0.75 0.74 (0.07) 0.68 (0.07) 0.71 (0.04)

Continuous slope σb1
= 0.75 1.21 (0.14) 1.58 (0.20) 0.48 (0.19)

Binary intercept σa = 2 2.13 (0.25)

corrb0b1 = −0.20 0.16 (0.18) 0.13 (0.15) −0.35 (0.31)

corrab0 = 0.20 0.30 (0.18)

corrab1 = 0.70 0.39 (0.43)

Convergence rate 99% 99% 96%

†Mean of parameter estimates.
‡Standard deviation from the mean.
§Coverage probability

The parameters from the longitudinal continuous model cannot be compared between the one-part

and two-part models because the former does include the excess of zeros in the biomarker distribution.

Therefore, the coverage probabilities are not provided for these parameters as their true value is unknown.

The focus of our comparison is on the covariate effects affecting the survival part since all the models are

measuring a direct effect of treatment (γ ) and the biomarker effect (ϕ) (which itself includes an indirect

treatment effect captured in the biomarker model) on the risk of terminal event.

3.3. Results

Results from the simulations are presented in Tables 1 to 4. The TPJM performs well across the first three

scenarios in terms of bias. The coverage probabilities for the fixed regression coefficients are close to 95%,

with a small empirical standard deviation reflecting the good precision of the estimations. The difference

in the biomarker fit between the OPJM and TPJM concerns essentially the time-related parameters due

to the zeros appearing during the follow-up. In the first scenario, the true value of the slope (β1 = −0.5)

and the treatment interaction with the slope (β3 = 1) in the continuous part are biased downwards for

the standard OPJM (β̂1 = −1.05, SD = 0.17) and (β̂3 = 0.65, SD = 0.63) and the left-censoring OPJM

(β̂1 = −1.25, SD = 0.22) and (β̂3 = 0.80, SD = 0.34) due to the inclusion of zero values in the LME
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Table 3. Comparison of OPJM and TPJM with an increased zero-rate. The true model is the TPJM, 300

datasets are generated with 35% (SD = 2%) zeros in the biomarker distribution on average.

Variable Standard OPJM Left-censoring OPJM TPJM

Est.† (SD‡) [CP§] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 = 6 5.92 (0.64) [93%]

Time α1 = −8 −7.85 (0.87) [90%]

Treatment α2 = −1 −0.83 (0.51) [94%]

Time:treatment α3 = −4 −4.11 (1.06) [94%]

Continuous part

Intercept β0 = 4 4.06 (0.08) 4.24 (0.08) 3.99 (0.15) [93%]

Time β1 = −0.5 −2.44 (0.26) −3.10 (0.43) −0.50 (0.15) [93%]

Treatment β2 = 1 0.78 (0.15) 1.09 (0.12) 1.01 (0.11) [91%]

Time:treatment β3 = 1 −1.85 (0.38) −3.82 (0.69) 1.02 (0.23) [95%]

Residual S.E. σǫ = 0.5 1.30 (0.04) 1.24 (0.10) 0.50 (0.02) [95%]

Survival part

Treatment γ = 0.3 0.31 (0.13) [96%] 0.46 (0.14) [80%] 0.34 (0.13) [94%]

Association ϕ = 0.3 0.16 (0.09) [66%] 0.14 (0.05) [11%] 0.32 (0.07) [93%]

Random effects

Intercept (continuous part) σb0
= 0.75 0.94 (0.07) 0.58 (0.09) 0.71 (0.04)

Slope (continuous part) σb1
= 0.75 1.41 (0.29) 2.65 (0.47) 0.44 (0.16)

Intercept (binary part) σa = 2 2.06 (0.26)

corrb0b1 = −0.20 −0.34 (0.16) −0.32 (0.19) −0.37 (0.32)

corrab0 = 0.20 0.26 (0.25)

corrab1 = 0.70 0.33 (0.46)

Convergence rate 99% 97% 98%

†Mean of parameter estimates.
‡Standard deviation from the mean.
§Coverage probability

model. In the second scenario, the negative treatment effect over time on the odds of zero values (α3 =

−1) balances out the positive effect on the value among positives (β3 = 1) and no treatment with time

interaction was found by the standard OPJM (β̂3 = −0.15, SD = 0.34) nor by the left-censoring OPJM

(β̂3 − 0.31, SD = 0.39). In the third scenario, with on average 35% of zero biomarker measurements, the

interaction between treatment and time is found significantly negative with the standard OPJM (β̂3 =

−1.85, SD = 0.38), where the true value is β3 = 1. The left-censoring OPJM finds an even steeper

negative slope because the censoring hypothesis allows for hypothetical negative values in the biomarker

distribution (β̂3 = −3.82, SD = 0.69). The standard and left-censoring OPJM are unable to capture the

positive treatment effect over time in the LME model under the third scenario because of the large excess

of zeros. They conclude that the treatment is associated with an overall decrease of the biomarker value

over time among the treated patients. However, the TPJM is able to recover this parameter value with

good precision (β̂3 = 1.02, SD = 0.23, CP = 95%). With the OPJMs, the effect of treatment on the

binary part is captured through the continuous model only and they fail to recover the adverse effect of

treatment on the positive continuous measurements with an overall treatment effect on the slope estimated

as significantly negative. The random intercept standard deviation from the continuous part is properly

captured overall and the slope is systematically overestimated with one-part models, again due to the
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Table 4. Comparison of OPJM and TPJM when the left-censoring OPJM is the true model, 300 datasets

are generated with 13% (SD = 2%) zeros in the biomarker distribution on average.

Variable Standard OPJM Left-censoring OPJM TPJM

Est.† (SD‡) [CP§] Est. (SD) [CP] Est. (SD) [CP]

Binary part

Intercept α0 3.87 (0.41)

Time α1 −1.34 (0.33)

Treatment α2 −0.93 (0.38)

Time:treatment α3 0.78 (0.44)

Continuous part

Intercept β0 = 2 2.03 (0.07) [91%] 2.02 (0.08) [93%] 2.08 (0.14)

Time β1 = −0.5 −0.40 (0.12) [83%] −0.53 (0.14) [92%] −0.34 (0.17)

Treatment β2 = −0.5 −0.44 (0.10) [92%] −0.49 (0.11) [94%] −0.38 (0.13)

Time:treatment β3 = 0.5 0.41 (0.16) [89%] 0.49 (0.20) [94%] 0.38 (0.16)

Residual S.E. σǫ = 1 0.90 (0.02) [0%] 1.00 (0.02) [97%] 0.89 (0.02)

Survival part

Treatment γ = 0.3 0.32 (0.14) [93%] 0.31 (0.14) [94%] 0.32 (0.14) [93%]

Association ϕ = 0.3 0.38 (0.12) [89%] 0.32 (0.10) [95%] 0.38 (0.12) [88%]

Random effects

Intercept (continuous part) σb0
= 0.75 0.67 (0.04) 0.71 (0.05) 0.57 (0.05)

Slope (continuous part) σb1
= 0.75 0.52 (0.11) 0.73 (0.11) 1.22 (0.19)

Intercept (binary part) σa 0.99 (0.26)

corrb0b1 = −0.20 −0.26 (0.18) −0.18 (0.12) −0.08 (0.10)

corrab0 0.31 (0.28)

corrab1 0.62 (0.56)

Convergence rate 100% 100% 99%

†Mean of parameter estimates.
‡Standard deviation from the mean.
§Coverage probability.

inclusion of zero-values and it is slightly underestimated with the TPJM. One-part models cannot recover

the slightly negative correlation between the intercept and slope in the continuous part for the two first

scenarios, and the TPJM properly estimates the correlation structure of the random effects but with a high

variability among models. In the last scenario, where the true model for data generation is a left-censoring

OPJM, the standard OPJM provides slightly biased parameter estimations for the time trend (β̂1 = −0.40,

SD = 0.12, CP = 83%) and the treatment interaction with time (β̂3 = 0.41, SD = 0.16, CP = 89%). The

true values are β1 = −0.5 and β3 = 0.5. The TPJM finds slightly lower values for these two parameters

(β̂1 = −0.34, SD = 0.17) and (β̂3 = 0.38, SD = 0.16) because the true value of these parameters are not

known under the TPJM.

The parameters of interest, γ = 0.30 andϕ = 0.30, respectively the treatment effect and the association

between the biomarker and terminal event, are correctly estimated in the first and second scenarios by all

three models, with the exception of the treatment effect in the second scenario for the left-censoring OPJM

(γ̂ = 0.42, SD = 0.16, CP = 84%) and a slightly decreased coverage probabilities for the association (ϕ̂ =

0.27, SD = 0.06, CP = 88%). The association parameter is underestimated with the standard (ϕ̂ = 0.16,

SD = 0.09) and left-censoring (ϕ̂ = 0.14, SD = 0.05) OPJMs under the third scenario. The coverage

probabilities are low for this parameter (66% with the standard approach and 11% with the left-censoring
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OPJM), and the direct treatment effect for the left-censoring OPJM is overestimated (γ̂ = 0.46). In the

last scenario, the direct effect of treatment is unbiased for the three models and the effect of the current

value of the biomarker tend to be overestimated with the standard OPJM (ϕ̂ = 0.38, SD = 0.12, CP =

89%) and the TPJM (ϕ̂ = 0.38, SD = 0.12, CP = 88%).

3.4. Discussion

The simulation studies show that the TPJM performs well regardless of the percentage of zero values.

The sign of the treatment effect in the binary and continuous parts can be opposite without affecting the

quality of the fit. We also show that an excess of true zeros can bias the treatment effect downwards when

estimated from a one-part model for the biomarker. This bias affects both the biomarker and survival

components of a joint model and therefore the excess of zeros should be considered when deciding a

model for analysis.

4. Application to metastatic colorectal cancer dataset

4.1. GERCOR trial

Our methodological development was motivated by the analysis of the GERCOR study, a randomized

clinical trial investigating two treatment strategies that included a total of 220 patients with metastatic

colorectal cancer. The reference strategy (arm A) corresponds to FOLFIRI (irinotecan) followed by FOL-

FOX6 (oxaliplatin) while arm B involves the reverse sequence. Patients were randomly assigned from

December 1997 to September 1999, and the date chose to assess overall survival was August 30, 2002.

We refer the reader to the original report from the GERCOR study for more details (Tournigand and

others, 2004). Complete data are available on 205 individuals for data analysis. Among them, 165 (80%)

died during the follow-up. The median OS is similar in both arms of the trial (21.6 months). There are

1475 repeated measurements for the biomarker, 174 of which are zero values (12%). Our model uses

death as the terminal event and the repeated SLD measurements (in centimeters) as the semicontinuous

biomarker. Additional baseline covariates collected at the start of the study are also included. Figure S1

of the supplementary material available at Biostatistics online sketches the main difference between the

OPJM and a TPJM in modeling the treatment effect. Figure S2 of the supplementary material available

at Biostatistics online shows a few individuals’ biomarker trajectories with respect to the treatment arm.

Despite the randomization, the percentage of males was higher in treatment arm B and age >65 years

with a percentage slightly higher in arm B. The variables age and sex were not found associated to any of

the three components of the TPJM and thus not included in the final analysis.

4.2. Data analysis

4.2.1. Analysis models. We applied the TPJM and two competing models to the data: a standard OPJM,

which assumes a simple continuous distribution for the biomarker modeled with a LME model and a

left-censoring OPJM, for which the threshold was defined as the smallest positive value observed in

the GERCOR trial (i.e., 0.5 mm). We propose to use the current value of the biomarker for the associ-

ation between the survival and the longitudinal models, so that we can compare the survival function

conditional on the biomarker across models. We also propose an alternative TPJM with a separate asso-

ciation for the probability of observing a positive biomarker value from the binary part and the current

value of the biomarker for the continuous part. Therefore, we can evaluate whether the binary part is

significantly associated with the risk of terminal event, independently from the positive biomarker val-

ues and subsequently whether these positive observations are associated with the risk of terminal event.

We propose a log-transformation of the biomarker to handle its right-skewness with a 1 unit shift in
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order to get a fair comparison between all the fitted models. We used a global backward selection pro-

cedure for each component of the model to select the covariates to include in the final joint model. We

chose among the following clinical variables of interest measured at baseline: sex (yes/no); age (<60/60-

-69/≥70); WHO performance status (0/1/2); primary site (colon/rectum/multiple); previous surgery (no

surgery/curative/palliative); previous adjuvant chemotherapy (yes/no); previous adjuvant radiotherapy

(yes/no); metastases (metachronous/synchronous); number of metastatic sites (1/>1); liver metastatic

site (yes/no); lung metastatic site (yes/no), patients characteristics are described in Table S1 of the sup-

plementary material available at Biostatistics online. The baseline hazard function is approximated with

cubic M-splines with five knots and the penalization term κ = 0.08, chosen by cross-validation from an

univariate survival model.

We consider a random-intercept logistic model for the binary part of the biomarker and a LME model

with both random intercept and random slope for the log-transformed continuous outcome. Parameter

estimates for the binary component of the model are subject-specific estimates, exp(αk) represents the

subject-specific odds ratio of observing a positive outcome associated with a one-unit increase in the kth

covariate. Parameters in the continuous part gives the effect of covariates on the transformed outcome

among the subset of individuals for whom a positive value of the biomarker is observed over time. The

aim of the application is: (i) to evaluate the sensitivity of treatment effect estimation with respect to

model assumptions. (ii) The impact of model assumptions on overall survival estimate and its confidence

intervals. (iii) To assess the influence of the zero part (CRTL) and non-zero part (PR, SD, PD) on overall

survival.

4.3. Results

4.3.1. Biomarker component (SLD). Results from the application are presented in Table 5, and details of

covariates effect are available in Table S3 of the supplementary material available at Biostatistics online.

Despite the fact that the trial was randomized, we found a treatment effect at baseline in both the binary

part (α̂2 = −1.34, SD = 0.72) and the continuous part (β̂2 = −0.24, SD = 0.08) of the TPJM. We tried

fitting the TPJMwith B-splines in order to allow for more flexibility in the biomarker evolution over time

but the treatment effect at baseline remained significant. An ANOVA test confirmed a slightly significant

difference in means at baseline (p = 0.04). The parameter estimates in the binary and continuous parts

are nearly identical for the TPJM with current value association and the TPJM with separate association.

Therefore, we only describe results from the current value association model. The binary part provides

information on the probability of observing a positive SLD. The baseline value is positive (α̂0 = 5.44,

SE = 0.75) which corresponds to a probability of positive value at baseline close to 1. This is expected

since the eligibility criteria for inclusion was at least one measurable lesion >2 cm. The treatment arm A

is associated to a significant decrease in the odds of positive SLD over time (α̂1 = −2.22, SE = 0.39), but

this effect decreases with treatment arm B as the interaction term was found positive but not significant

(α̂3 = 0.43, SE = 0.45). Treatment arm A is therefore associated to a slightly higher probability of CRTL

over time. In the continuous part (i.e., positive SLD), the treatment arm A is associated to a significant

decrease of the SLD over time (β̂1 = −0.31, SE = 0.06) and the treatment arm B is associated to a SD as

the interaction term cancels out the slope parameter (β̂3 = 0.30, SE = 0.09). In the OPJMs, the treatment

arm A is associated to a stronger decrease of the SLD over time compared to the TPJM (β̂1 = −0.40, SE =

0.08 for the standard OPJM and β̂1 = −0.42, SE = 0.10 for the left-censoring OPJM), likely because these

two models include zeros in the continuous biomarker distribution. Under the standard OPJM, treatment

arm B is associated to a similar trend of the SLD over time (β̂3 = 0.29, SE = 0.11) to the TPJM but to a

reduced value under the left-censoring OPJM (β̂3 = 0.11, SE = 0.15). The random intercept in the binary

part of the TPJM captures some variability at the individual level for the probability of observing a positive

SLD (σ̂a = 2.40). The random intercept in the continuous part corresponds to the individual variability of

the SLD at baseline, σ̂b0
= 0.59− 0.62 across all four models. The random slope accounts for individual
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Table 5. Application to advanced colorectal cancer data. The binary model is adjusted on the WHO

performance status (0/1/2), lung metastatic site (yes/no), previous adjuvant radiotherapy (yes/no), the

continuous model is adjusted on the WHO performance status, metastases (metachronous/synchronous),

previous surgery (no surgery/curative/palliative), previous adjuvant radiotherapy, and the survival

model is adjusted on WHO performance status, metastases, previous surgery, and previous adjuvant

radiotherapy.

Variable Standard OPJM Left-censoring OPJM TPJM TPJM

(association) (current value) (current value) (current value) (current probability,

current value(+))

Est. (SE) Est. (SE) Est. (SE) Est. (SE)

Binary part (SLD > 0 versus SLD = 0)

Intercept 5.44∗∗∗∗ (0.75) 5.41∗∗∗∗ (0.74)

Time (years) −2.22∗∗∗∗ (0.39) −2.29∗∗∗∗ (0.36)

Treatment (B/A) −1.34∗ (0.72) −1.31∗ (0.72)

Time:treatment (B/A) 0.43 (0.45) 0.51 (0.42)

Continuous part (SLD>0)

Intercept 2.06∗∗∗∗ (0.14) 2.10∗∗∗∗ (0.14) 2.10∗∗∗∗ (0.14) 2.10∗∗∗∗ (0.13)

Time (years) −0.40∗∗∗∗ (0.08) −0.42∗∗∗∗ (0.10) −0.31∗∗∗∗ (0.06) −0.31∗∗∗∗ (0.06)

Treatment (B/A) −0.28∗∗∗ (0.09) −0.27∗∗∗ (0.10) −0.24∗∗∗ (0.08) −0.24∗∗∗ (0.08)

Time:treatment (B/A) 0.29∗∗ (0.11) 0.11 (0.15) 0.30∗∗∗∗ (0.09) 0.29∗∗∗∗ (0.09)

Residual S.E. 0.43 (0.01) 0.45 (0.01) 0.31 (0.01) 0.31 (0.01)

Death risk

Treatment (B/A) 0.20 (0.17) 0.26 (0.17) 0.25 (0.17) 0.31∗ (0.18)

[HR = 1.22] [HR = 1.30] [HR = 1.28] [HR =1.36]

Association

E[g(Yij)] 0.62∗∗∗∗ (0.10) 0.46∗∗∗∗ (0.08) 0.81∗∗∗∗ (0.12)

P(Yij > 0) 1.80∗∗∗ (0.61)

E[g(Y+
ij )] 0.45∗∗∗ (0.16)

Random effects

Intercept (continuous part, 0.62 0.60 0.59 0.59

σb0
)

Slope (continuous part, σb1
) 0.61 0.94 1.51 1.58

Intercept (binary part, σa) 2.40 2.33

corrb0b1 −0.05 −0.09 −0.08 −0.08

corrab0 0.17 0.18

corrab1 0.78 0.76

∗∗∗∗p < 0.001, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

deviation from the mean slope and is higher under the TPJM (σ̂b1
= 1.51) than under the left-censoring

OPJM (σ̂b1
= 0.94) or the standard OPJM (σ̂b1

= 0.61). It means that the TPJM captures more variability

over time from unobserved covariates. Finally, the positive correlation between the binary intercept and

the continuous slope is high in the TPJM, i.e., patients who are more likely to observe a positive SLD

value also tend to have steeper increase in the SLD over time.

4.3.2. Survival component. Unlike our simulation results (first scenario), we do observe some differ-

ences here between the OPJMs and TPJMs for the effect of the current SLD value on the risk of death

(ϕ̂ = 0.62, SE = 0.10 for the standard OPJM, ϕ̂ = 0.46, SE = 0.08 for the left-censoring OPJM, ϕ̂ = 0.81,
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Fig. 1. Survival curves from the application (current value association structure) according to treatment arm. Estima-
tions are based on models with current value association structure and 95% confidence intervals are provided using
Monte Carlo method with 1000 curves.

SE = 0.12 for the TPJM). The difference observed is similar to that of the third simulation scenario with

an increased zero-rate, where the association parameter was found biased downwards for the standard and

left-censoring OPJM. The hazard ratio for the direct effect of treatment armB versus A on the risk of death

ranges from 1.22 to 1.36 across the four models, which corresponds to an increase in the risk of death

from 22% to 36%. The TPJM with a separate association structure shows that the association with the

biomarker and the risk of death depends significantly on both the probability of positive SLD (ϕ̂1 = 1.80,

SE = 0.61) and the expected positive SLD value (ϕ̂2 = 0.45, SE = 0.16). The hazard ratio for the direct

effect of treatment arm B on the risk of death is slightly higher under this model (exp(γ̂ ) = 1.36, SE =

0.18) compared to the other three. We can estimate from our fitted models the survival curves conditional

on the treatment arm (Figure 1) and conditional on the biomarker (Figure 2). The TPJM yields a stronger

discrimination between the two treatment lines although not significant, in agreement with the GERCOR

initial trial. The second plot illustrates the influence of the biomarker trajectory on the overall survival

curve. Again the TPJM provides a stronger separation of the different profiles of response to treatment,

especially when a CRTL response is observed. The results of the models fitted with the shared random

effects association (‘‘shared random effects association’’) are presented in Table S2 of the supplementary

material available at Biostatistics online. The fit is similar to the models with current value association,

except that the fixed treatment effect on the SLD is not shared in the survival model. This leads to an

increased hazard ratio for the direct effect of treatment (arm B versus arm A) on the risk of death with

the TPJM (exp(γ̂ ) = 1.30) compared to the standard (exp(γ̂ ) = 1.15) and left-censored (exp(γ̂ ) = 1.13)

OPJM. The association between the SLD and risk of death captured by the shared random effects is sig-

nificant with the standard and left-censoring OPJM but not significant with the TPJM. This suggests that

that some of the direct treatment effect on death is most likely captured by the random effects in the two

OPJMs. Our final conclusion about treatment effect from all our models is that overall, the treatment arm

B is associated to a higher value of the SLD over time, and the positive association parameter leads to an

increased risk of death compared to treatment arm A.

4.3.3. Conclusion. The different forms of the association structure allow to answer different questions

of interest.With the shared random-effects association, we can evaluate the effect on the risk of death of an
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Fig. 2. Survival curves from the application according to biomarker response. Estimations are based on models with
current value association structure and 95% confidence intervals are provided using Monte Carlo method with 1000
curves. We propose three patterns of response in order to illustrate the association between the biomarker and the
terminal event. The CRTL corresponds to a zero value for the biomarker, the PR/SD corresponds to an individual
with an initial exponential decline of the SLD from 11 cm to 6 cm and then a stabilization for the rest of the follow-up.
The PD is defined as an exponential progression from a 19 cm SLD to 54 cm (maximum observed in the application
is 57 cm).

individual deviation from the population mean distribution of the biomarker. For instance, let’s assume a

clinician is interested in the top 15%patients who had the largest SLD increase during follow-up compared

to the population average. Their random effect b1i should be higher than 1 standard deviation, that is

from Table S2 of the supplementary material available at Biostatistics online, b1i > 1.46. Conditional

on b1i > 1.46, the mean values of the random effects can be derived analytically (Aitken, 1935) or by

sampling from a conditional multivariate normal distribution with correlation matrix given in Table S2 of

the supplementary material available at Biostatistics online (last 3 rows). These (conditional) means are

2.81, −0.10, and 2.23 for a, b0, and b1, respectively. Therefore, these top 15% individuals increase their

chance to have the terminal event (i.e., to die) measured by an hazard ratio of HR = exp(0.21∗2.81+0.30∗

(−0.10)+ 0.15 ∗ 2.23) = exp(0.89) = 2.44, compared to a patient who has an average longitudinal SLD

profile. The second association (‘‘current probability of positive value + expected positive value’’ and

‘‘current value’’) is helpful to clinicians interested to assess the effect of a CR versus a PR on the risk of

terminal event. For instance, from Table 5, a patient whose expected log SLD value is 1 unit increase and

probability of positive SLD is 50% at follow-up time t, has an increase in the risk of terminal event (i.e., to

die) measured by an HR = exp(0.5∗1.80+1∗0.45) = exp(1.35) = 3.86, compared to a patient who had

CR. The hazard ratio of having a PR versus CR is given by HR = exp(0.5 ∗ 1.80) = exp(0.90) = 2.46.

Finally, the current value association measures the association of the expected value of the SLD (on the

log scale) at follow-up time t on the risk of terminal event. For instance, from Table 5, a patient with an

expected log SLD of 1 unit increase at follow-up time t, has an increased risk of terminal event (i.e., to

die) measured by an HR = exp(1 ∗ 0.81) = 2.25, compared to a patient with an expected SLD of 0.

5. Discussion

In this article, we proposed a new TPJM for longitudinal semicontinuous biomarker data and a terminal

event, which allows to account for excess of zeros in the biomarker distribution and joint inference on the
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biomarker and survival outcomes. From a clinical standpoint, the TPJM is of particular interest because

it can account for various clinical responses to treatment (e.g., CRTL, PR, SD, and PD) and has some

flexibility in specifying the association structure between the biomarker and risk of event, as outlined in

our application. Our simulation studies showed that some bias can arise when estimating time and time by

treatment parameters, particularly when a larger proportion of zeros is observed for the biomarker. This

is in line with previous results from Smith and others (2017) who showed through simulation studies that

a negative treatment effect in the binary part can bias negatively the overall treatment effect captured by a

one-part part model and can lead to misleading results. The real data application illustrates how the zeros

and positive values of SLD could impact the overall survival. The results are consistent with the simulation

studies, showing that one-part models can fail to explain some informative variability in the biomarker

evolution over time, resulting in a reduced discrimination of the risk of death between treatment arms.

The left-censored approach does not assume an excess of zeros in the biomarker distribution but instead a

limit of detection, i.e., below this limit the biomarker values cannot be assessed. The choice between a one-

part or a two-part approach should be guided by the research question, the two-part approach models the

probability of a zero value as well as the conditional mean of positive values while the one-part approach

models the marginal mean of the biomarker. The data structure can also help deciding which model to

use.

A well-known computational challenge with joint models is the lack of analytical solution for the inte-

grals over the random effects, which require some numerical approximation in the likelihood function.

We initially proposed a standard Gauss--Hermite quadrature method for the numerical approximation of

these integrals but our simulation studies showed that a Monte Carlo method gave more accurate estima-

tions for better computational times for our model with three correlated random effects. There are several

limitations to our approach including the interpretation of the LME model used to fit the positive continu-

ous biomarker values. If a log link function was used in the likelihood instead of a log-transformation of

the outcome, exp(βk) would represent the multiplicative increase in the SLD associated with a one unit

increase in the covariate Xk conditional on observing a positive value (instead of the additive effect on the

log scale). Alternatively, marginalized two-part models have also been proposed in order to obtain inter-

pretable covariate effects on the marginal mean (Smith and others, 2014) but have not been developed

for joint models. Another limitation is that in the binary part, regression coefficients are subject-specific

because of the non-linear link function from the GLMM which makes the distribution of the Gaussian

random effects non normal when applying a back transformation to get either the odds or the probabil-

ity of positive values of the biomarker. Although marginal odds and probability can be obtained using

Monte Carlo method. Finally, our real data application includes patients who switched treatment during

follow-up. This information was ignored from our analyses for simplicity, but it could have been a rele-

vant information to include the time to treatment switch in the model. Non-target lesions and new lesions

occurring during follow-up are also not included in the model and could be informative. Król and others

(2018) applied a joint model to the GERCOR dataset, taking into account non-target lesions progressions

and new lesions as recurrent events and observed a positive relationship between the risk of recurrent

event and the risk of death.

Our application of the TPJM differs from usual applications of two-part models (e.g., medical costs

and alcohol consumption) because the subset of complete responders to treatment for whom the disease

disappeared, resulting in a zero biomarker value during follow-up, are quite informative when assessing

treatment effect. Being able to characterize and predict patients with a CR is of primary clinical impor-

tance for personalized treatment options. For instance in 2017, the Food and Drug Administration (FDA)

approved for the first time a cancer treatment (pembrolizumab) for any solid tumor based on patients

tumor biomarker status (DNA/RNA/protein features) rather than on tumor histology. The TPJM allows

to estimate covariate effects on the probability of CRTL and on the expected value among positive val-

ues of the sum of the longest diameter of target lesions. This could help characterize which part of the
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population will get a beneficial or deleterious effect from a given treatment strategy. We also assessed

the robustness of the TPJM when the excess of zeros of the biomarker was taken into account by a left-

censoring mechanism. In our future developments, we plan to extend the model to a marginal TPJM in

order to get an effect of covariates on the marginal mean of the biomarker. The advantage of the current

conditional versus marginal TPJM is that the former models specifically the zeros and the positive values,

allowing to evaluate better the covariate effect on the binary and on the positive continuous outcomes

whereas the marginal model provides covariate effects on the binary outcome and on the marginal mean

of the biomarker, accounting for the excess of zeros. The application of the TPJM is not limited to the

joint analysis of tumor size and survival in the context of cancer clinical trials. Two-part models are now

also becoming very popular in various fields such as microbiome analysis, to account for the excess of

zeros of count data generated from high-throughput sequencing technologies (Chen and Li, 2016; Chai

and others, 2018).

6. Software

All of our model developments are implemented in the longiPenal function of the freely available R pack-

age frailtypack (Król and others, 2017). This package can be used to fit a variety of joint frailty models

or other frailty models for recurrent or clustered time-to-event data with several different options for the

baseline risk functions. The standard version of the function uses OpenMP to parallel computations within

a multi-core node. An MPI version of the function was also developed to use parallel computing between

nodes when using the function on a server. The package can be downloaded from the Comprehensive R

Archive Network accessible via http://cran.r-project.org/package=frailtypack.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Table S1. Patients characteristics

Treatment arm A arm B

Sample size n=101 n=104
Covariates

Sex
Male 55 77
Female 46 27

Age
< 60 35 32
60 − 69 48 43
> 70 18 29

WHO performance status
0 45 49
1 40 48
2 16 7

Primary site
Colon 65 76
Rectum 36 26
Multiple 0 2

Previous surgery
No 15 8
Curative 35 32
Palliative 51 64

Previous chemotherapy
Yes 20 25
No 81 79

Previous radiotherapy
No 78 86
Yes 23 18

Metastases
Synchronous 73 79
Metachronous 28 25

Number of metastatic sites 1 18 21
2+ 83 83

Liver metastases
No 74 79
Yes 27 25

Lung metastases
No 74 79
Yes 27 25

Biomarker
Number of repeated measurements 748 727
% of positive biomarker values 92.5% 83.8%
Baseline mean value (log scale) 2.37 (SD=0.68) 2.18 (SD=0.63)
Mean value 1.92 (SD=0.86) 1.66 (SD=0.97)
Mean value among positives 2.08 (SD=0.69) 1.98 (SD=0.69)
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Fig. S1. Diagrams describing the decomposition of treatment effect with a standard one-part joint model
(left) and a two-part joint model (right). Treatment effect is decomposed into a direct effect on the risk
of terminal event and an indirect effect on the risk of terminal event, through the biomarker. The TPJM
decomposes the biomarker distribution into a binary outcome corresponding to the probability of CRTL
and a continuous outcome with the positive biomarker measurements.

94 110 121

72 78 92

2 21 44

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

0

1

2

3

time(years)

lo
g(

S
LD

+
1)

arm A

105 109 165

51 62 102

10 14 40

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

1

2

3

0

1

2

3

0

1

2

3

time(years)

lo
g(

S
LD

+
1)

arm B

Death Censoring

Fig. S2. Individual trajectories of the biomarker for a subset of patients allocated to arm A (FOLFIRI
followed by FOLFOX6) and arm B (FOLFOX6 followed by FOLFIRI).
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Table S2. Application to advanced colorectal cancer data: shared random-effects association.
The binary model is adjusted on the WHO performance status (0/1/2), lung metastatic
site (yes/no), previous adjuvant radiotherapy (yes/no), the continuous model is adjusted on
the WHO performance status, metastases (metachronous/synchronous), previous surgery (no
surgery/curative/palliative), previous adjuvant radiotherapy and the survival model is adjusted
on WHO performance status, metastases, previous surgery and previous adjuvant radiotherapy.

Variable Joint Joint Two-part joint
standard left-censored
Est. (SE) Est. (SE) Est. (SE)

Binary part (SLD>0 versus SLD=0)
intercept 6.89*** (0.78)
time (year) -2.13*** (0.42)
treatment (B/A) -1.40• (0.75)
time:treatment (B/A) 0.27 (0.49)

Continuous part (SLD>0)
intercept 2.05*** (0.10) 2.06*** (0.10) 2.10*** (0.08)
time (years) -0.37* (0.17) -0.45* (0.19) -0.35*** (0.08)
treatment (B/A) -0.49*** (0.14) -0.43** (0.14) -0.29** (0.11)
time:treatment (B/A) 0.14 (0.22) -0.03 (0.27) 0.34** (0.10)
residual S.E. 0.84 (0.02) 0.80 (0.02) 0.40 (0.01)

Death risk
treatment (B/A) 0.14 (0.22) 0.12 (0.23) 0.27 (0.20)

[HR=1.15] [HR=1.13] [HR=1.30]
Association
continuous intercept 0.54*** (0.13) 0.51*** (0.13) 0.30 (0.30)
continuous slope 0.71*** (0.17) 0.58*** (0.12) 0.15 (0.59)
binary intercept 0.21• (0.12)

random-effects
continuous intercept (σb0) 0.86 0.86 0.78
continuous slope (σb1) 1.19 1.75 1.46
binary intercept (σa) 2.56
corrb0b1 0.05 -0.09 -0.09
corrab0 0.19
corrab1 0.72

***p < 0.001, **p < 0.01, *p < 0.05
•
p < 0.1
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Table S3. Application to advanced colorectal cancer data: covariates effects

Variable Joint Joint Two-part joint Two-part joint
standard left-censored (current probability,

(association) (current value) (current value) (current value) current value(+))
Est. (SE) Est. (SE) Est. (SE) Est. (SE)

Binary part (SLD>0 versus SLD=0)
WHO performance status (1) 1.77** (0.60) 1.72** (0.60)
WHO performance status (2) 1.72• (0.98) 1.69• (0.98)
prev. radio 0.33 (0.69) 0.35 (0.71)
lung metastatic site 2.37** (0.72) 2.29** (0.76)

Continuous part (SLD>0)
WHO performance status (1) 0.47*** (0.10) 0.46*** (0.10) 0.37*** (0.09) 0.36*** (0.09)
WHO performance status (2) 0.52*** (0.15) 0.55*** (0.15) 0.42** (0.13) 0.41** (0.14)
surgery (curative) -0.51* (0.22) -0.51* (0.20) -0.35* (0.16) -0.34* (0.16)
surgery (palliative) -0.10 (0.15) -0.10 (0.14) 0.01 (0.13) 0.02 (0.13)
prev. radio -0.19 (0.14) -0.21 (0.13) -0.22• (0.12) -0.21• (0.11)
metastases (metachronous) 0.42* (0.20) 0.41* (0.17) 0.29* (0.13) 0.28* (0.13)

Death risk
WHO performance status (1) 0.46* (0.18) 0.46** (0.17) 0.25 (0.17) 0.38* (0.18)
WHO performance status (2) 1.22*** (0.28) 1.28*** (0.28) 1.09*** (0.28) 1.24*** (0.28)
surgery (curative) -0.65• (0.38) -0.69• (0.38) -0.61 (0.38) -0.72• (0.39)
surgery (palliative) -0.53* (0.26) -0.57* (0.26) -0.50• (0.26) -0.58* (0.27)
metastases (metachronous) 0.76* (0.32) 0.74* (0.32) 0.76* (0.32) 0.73* (0.32)

***p < 0.001, **p < 0.01, *p < 0.05
•
p < 0.1

Table S4. Summary of a simulated datset (github. com/ DenisRustand/ TPJM_ sim ). The design
is the same as for scenario 1 of the simulation studies but with a reduced sample size (150) and

Monte-Carlo integration points (500) to save computation time.

Survival dataset id deathTimes d trt

Min. 1.00 0.0020 0.00 0.0000
1st Qu. 38.25 0.2105 1.00 0.0000
Median 75.50 0.3930 1.00 0.0000
Mean 75.50 0.6127 0.82 0.4733
3rd Qu. 112.75 0.7890 1.00 1.0000
Max. 150.00 2.8490 1.00 1.0000

Longitudinal dataset id timej trtY Y

Min. 1.0 0.0000 0.0000 0.000
1st Qu. 39.0 0.0700 0.0000 2.949
Median 80.0 0.2800 0.0000 4.096
Mean 79.8 0.4541 0.4052 3.665
3rd Qu. 124.0 0.7000 1.0000 4.930
Max. 150.0 2.8000 1.0000 7.511
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Table S5. Application of the TPJM to the simulated dataset from Table S4, also available in the
examples of the longiPenal function of the R package frailtypack.

Variable Two-part joint
Est. (SE)

Binary part (SLD>0 versus SLD=0)
intercept 5.71 (0.60)
time (years) -3.87 (0.46)
treatment -1.27 (0.61)
time:treatment 1.44 (0.66)

Continuous part (SLD>0)
intercept 4.06 (0.09)
time (years) -0.48 (0.13)
treatment 1.02 (0.14)
time:treatment 1.11 (0.21)
residual S.E. 0.48 (0.01)

Survival part
treatment 0.35 (0.21)
association 0.38 (0.10)

random-effects covariance matrix
continuous intercept (σ2

b0
)

continuous slope (σ2
b1

)
binary intercept (σ2

a)




0.66
−0.20 0.16
0.55 0.30 3.36



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3.3 Additional remarks

3.3.1 On the left-censoring

With the left-censoring model, we remove the constraint of no negative measurements with a
nonlinear transformation and assume the value of the tumor size can decrease infinitely (usually
with a decreasing speed over time) towards zero. From a clinical point of view, the tumor size is
defined by an accumulation of cancerous cells. As a consequence, there is a limit in the tumor
size where the tumor will only be composed of a single cell. An additional decrease of the tumor
size implies the disappearance of the last cell and therefore observing a true zero. For example,
if we focus on the results of the application of the left-censoring model on the GERCOR study,
the mean baseline value of the biomarker is ' 2 on the log scale (' 7.4cm) and the slope is
' −0.5. Using these values it takes about 20 years of decrease to reach a size less than a single
cell (' 0.001cm) for the mean biomarker value estimated with the left-censoring model. This
sounds reasonable because we are in the context of metastatic cancer and only a few patients
reach a zero value of the biomarker. In the simulation studies, we evaluated the left-censoring
model when the two-part model was specified for the data generation, using a baseline value
on the log scale of 4 and a decrease by year of −3, resulting in 35% zeros on average. This
simulation scenario is justified by the increasing efficacy of treatments, leading to increased rates
of zero measurements of the biomarker. Recent clinical trials can have up to 80% of complete
responders, i.e., SLD=0 (Mangal et al. (2018)). With our simulation scenario with 35% zeros,
the mean predicted value of the biomarker with the left censoring model reaches the limit of the
size of a single cell after only 4 years of follow-up. Moreover this is the estimated mean value and
since we assume Gaussian individual-specific random effects around this mean, some individuals
reach the limit before 4 years of follow-up. This confirms our conclusion that the left-censoring
model is not appropriate in situations where true zeros of the biomarker can be observed and
should be used only in case of a small zero rate and when there is no interest in the process
driving the occurrence of zero values.

3.3.2 On the numerical integration

The standard joint model for a longitudinal biomarker and a terminal event developed in frailty-
pack uses a multivariate non-adaptive Gaussian quadrature or a pseudo-adaptive Gaussian
quadrature rule for the numerical approximation of the integral over the random effects. It
is fast and efficient for the standard joint model because only one regression model includes
random effects for the biomarker, resulting in a low dimension integral. In order to compute
integrals in multiple dimensions, the quadrature rules requires the function evaluations to grow
exponentially as the number of dimensions increases (“curse of dimensionality”). The compu-
tational burden for this numerical approximation therefore depends on the dimension of the
random effects. With a two-part joint model, the biomarker distribution is decomposed into two
regression models with correlated random effects to characterize the biomarker’s distribution. In
this context, a method to overcome this limitation is the Monte-Carlo method that computes the
integral by taking draws from the corresponding distribution. The Monte Carlo method relies
on the law of large numbers, it is time consuming for low dimensional integrals compared to the
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quadrature rules but is much less affected by an increase in the dimension of the integration. In
this context, we developed a Monte Carlo method for the two-part joint model in frailtypack.

3.3.3 Erratum in the likelihood function

The likelihood function presented in the article contains 2 errors, the correct likelihood should
be

Li(Θ) =

∫

ai

∫

bi


 1(√

2πσ2ε

)ni
ni∏

j=1

exp

(
−

(g(Y +
ij )−X>Cijβ −Z>Cijbi)2

2σ2ε

) Uij

×
(

exp
[
X>Bijα+Z>Bijai

])Uij ×
(

1−
exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

)

×λi(Ti|Θi)
δi exp

(
−
∫ Ti

0
λi(t|Θi)dt

)
p(ai, bi)

]
dbidai.





Chapter 4

A marginal two-part joint model for a
longitudinal biomarker and a terminal
event with application to head and
neck cancer data

4.1 Introduction

The methodological development of the two-part joint model proposed in Chapter 3 was limited to
the (standard) conditional form of the two-part model. It decomposes the biomarker into a binary
and a continuous part for the positive vs. zero values and the positive continuous observations.
These two parts are independent conditional on the random effects and evaluate the effect of
covariates on the probability of positive value and the expected conditional positive values. The
focus of Chapter 3 was the comparison of the two-part model with alternative strategies such
as the left-censoring model, exploring the properties of the model under various data generation
scenarios. The marginal two-part model was recently proposed as an alternative formulation of
the conditional two-part model. A reformulation of the likelihood allows to evaluate the effect
of covariates on the marginal mean value of the biomarker instead of the mean across positive
values only. The marginal two-part model is a mix between the left-censoring approach that
provides an effect of covariates on the mean biomarker value and the conditional two-part model
that accounts for and characterize the zero excess with a specific submodel. In this Chapter,
we describe the differences between the conditional and marginal formulations of the two-part
model for the SLD, in the context of joint modeling with survival. A simulation study evaluates
the behavior of each formulation along with the left-censoring joint model using alternatively
each model as the true model for the data generation. We show how the marginal formulation is
robust regardless of the simulation scenario while the other formulations perform poorly when
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the model is misspecified. We illustrate how the new marginal two-part joint model facilitates
the clinical interpretation of the results of a phase III randomized clinical trial for patients with
metastatic and/or recurrent squamous cell carcinoma of the head and neck, the SPECTRUM
(Study of Panitumumab Efficacy in Patients With Recurrent and/or Metastatic Head and Neck
Cancer) study. The purpose of this study was to determine the treatment effect of panitumumab
in combination with chemotherapy versus chemotherapy alone as first line therapy. We show how
the conditional form of the TPJM remains relevant because the marginal two-part joint model
does not inform about the expected value of the biomarker conditional on a positive value. The
model choice depends therefore on the clinical question of interest. In case of high zero rate,
the mean biomarker value could be driven mostly by the zero vs. positive values rather than by
the distribution of positive values and the two formulations could produce very different results.
In the context of metastatic cancer, we often observe a small zero rate but there is a great
interest in these zeros as they represent patients with a complete response of their target lesions
to treatment. The conditional two-part joint model can be unstable when the zero rate is small
and we investigate how the marginal formulation for the two-part model provides a more stable
model because the association between the binary and continuous process is accounted for in the
likelihood in addition to the correlation between the random effects.
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Summary: The Sum of the Longest Diameter of the target lesions (SLD) is a longitudinal biomarker used to

assess tumor response in cancer clinical trials, which can inform about early treatment effect. This biomarker is

semicontinuous, often characterized by an excess of zeros and right skewness. Conditional two-part joint models were

introduced to account for the excess of zeros in the longitudinal biomarker distribution and link it to a time-to-event

outcome. A limitation of the conditional two-part model is that it does not provide an overall estimate of covariate

effects, such as treatment, on the biomarker, which is often of clinical relevance. As an alternative, we propose in this

paper, a marginal two-part joint model (M-TPJM) for the repeated measurements of the SLD and a terminal event,

where the covariates affect the overall mean of the biomarker. Our simulation studies assessed the good performance of

the marginal model in terms of estimation and coverage rates. Our application of the M-TPJM to a randomized clinical

trial of advanced head and neck cancer shows that the combination of panitumumab in addition with chemotherapy

increases the odds of observing a disappearance of all target lesions compared to chemotherapy alone, leading to a
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possible indirect effect of the combined treatment on time to death.

Key words: conditional two-part; joint model; left-censored GLM; marginal two-part; randomized clinical trial;

semicontinuous; solid tumors.
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1 Introduction

In solid tumor cancer clinical trials, there is an increased interest in the joint analysis of the

time to death and the Sum of the Longest Diameter of the target lesions (SLD), defined

according to the Response Evaluation Criteria in Solid Tumours (RECIST). This biomarker

reflects the tumor burden and its evolution over time. It is important to account for the

association between the longitudinal outcome and the risk of terminal event because the

former is censored by the terminal event, and the latter is highly affected by the value and

the evolution of the biomarker over time. The SLD distribution is often characterized by an

excess of zeros and right skewness. Patients whose treatment removes all visible signs of the

disease generates zero values for the SLD. This excess of zeros is therefore highly informative

of treatment efficiency.

A conditional two-part joint model (C-TPJM) has been introduced to fit the SLD evolution

over time jointly with the risk of terminal event, while taking into account the semicontinuous

distribution of the biomarker. When an excess of true zeros is observed, the model was

shown superior to standard approaches such as left-censoring the biomarker’s distribution

(i.e. assuming zero values are censored values, too small to be observed) to compare clinical

treatment strategies. Indeed, the left-censoring one-part joint model (OPJM) fails to explain

some informative variability in the biomarker evolution over time, resulting in a reduced

discrimination of the risk of death between treatment arms (Rustand et al. (2020)). The

conditional two-part model decomposes the distribution of the outcome into a binary part

corresponding to zero versus positive values and a continuous part with positive values

only, both outcomes being modelled by a mixed effects regression model. The binary and

continuous parts are linked through correlated random effects. The model yields covariate

effects, such as treatment effect, on the probability of observing a positive versus zero SLD

in the binary part and on the expected value of the biomarker conditional on observing a
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positive value (i.e., zeros excluded) in the continuous part. On the other hand, this model

cannot provide treatment effect on the marginal mean of the biomarker, which is often of

clinical interest. For the terminal event, the hazard function can be expressed conditionally

on observing a zero SLD value (which is indicative of a complete response to treatment)

and on the expected value of the biomarker among positive values (which is indicative of a

partial response).

The marginal two-part model (Smith et al. (2017)) is an alternative approach, useful when

the interest lies in the population-average effects of covariates, such as treatment effect,

on the biomarker. This model accounts for the zero values in the continuous part of the

model and provides covariates effects on the marginal mean of the biomarker. In addition,

a binary part, similar to the conditional two-part model, accounts for the excess of zeros

and can assess covariate effects on the probability of observing a positive biomarker value

vs. a zero value. The conditional and marginal two-part models can address different clinical

questions. When the interest is in the expectation of the biomarker among positive values,

the conditional model is more appropriate while the marginal two-part model may lead to

arbitrary heterogeneity and provides less interpretable estimates on the conditional mean

of the biomarker among positive values (Smith et al. (2014)). The left-censoring one-part

model provides similar covariates effects on the marginal mean of the biomarker as the

marginal two-part model, but does not account for the excess of zero values. The OPJM

rather considers an excess of values under a certain threshold or limit of detection. The

marginal two-part model combines the advantages of the conditional two-part model and

the left-censoring one-part model by allowing a direct interpretation of covariate effect on

the population mean value of the biomarker while also accounting for the excess of zeros. In

the application section of this article, we illustrate the differences between these modelling
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strategies. The marginal two-part model has not been yet proposed in the context of joint

models.

In this paper, we propose a marginal two-part joint model (M-TPJM) for a longitudinal

semicontinuous outcome and a terminal event. We compare the new model with the C-TPJM

and the left-censoring OPJM through simulation studies and provide a detailed interpretation

of these models. The remainder of the article is structured as follows: in Section 2, we describe

the M-TPJM and its estimation method. In Section 3, we present a simulation study to assess

the performance of the model and compare it to competing approaches that treat the excess

of zeros differently. An application to a randomized clinical trial comparing a combination of

chemotherapy and panitumumab (anti-EGFR monoclonal antibody) to chemotherapy alone,

in patients with metastatic and/or recurrent squamous-cell carcinoma of the head and neck,

is proposed in Section 4 and we conclude with a discussion in Section 5.

2 Model

2.1 Left-censoring one-part model for the biomarker

Let Yij denote the biomarker value for subject i (i = 1, ..., n), at visit j (j = 1, ..., ni). The

model assumes the biomarker can be subject to left-censoring when it decreases below a

limit of detection c.

Y ∗ij =





Yij if Yij > c

c otherwise

(1)

The Y ∗ij has the same distribution as the Yij when Yij > c. For the observations Yij = c, all

we know is P (Y ∗ij = c) = P (Yij < c), see (Tobin (1958)).
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2.2 Conditional two-part model for the biomarker

The biomarker distribution is decomposed into a binary outcome I[Yij > 0] and a positive-

continuous outcome Yij|Yij > 0. A GLMM with a logit link is assumed for the binary outcome

and a GLMM with a logarithm link is specified for the positive continuous outcome. The

logarithm link in the continuous part is used to linearize the biomarker evolution over time

and correct for right-skewness and heteroscedasticity. The two components are linked through

correlated random effects. The two-part model for the biomarker is defined as follows:



Logit(Prob(Yij > 0)) = X>Bijα+Z>Bijai (Binary part),

E[Yij|Yij > 0] = exp(X>Cijβ +Z>Cijbi) (Continuous part),

(2)

where XBij and ZBij are vectors of covariates associated with the fixed effect parameters

α and the random effects ai for the binary part. Similarly, XCij and ZCij are vectors of

covariates associated with the fixed effect parameters β and the random effects bi. We assume

a normal and independently distributed error term in the continuous part εij ∼ N (0, σε).

The two vectors of random effects follow a multivariate normal distribution:

ai

bi


 ∼MVN







0

0


 ,




Σ2
a Σab

Σab Σ2
b





 . (3)

The vectors of correlated subject-specific random effects ai and bi account for the correlation

between repeated measurements within an individual and the correlation between the two

components of the model. The logistic regression model includes covariates that represent

the effect of an individual’s characteristics on the probability of observing a positive versus

zero biomarker value. The continuous part represents the log of the expected value of the

biomarker given a positive biomarker value. This model differs from the conditional two-

part model proposed in Rustand et al. (2020) for which the continuous part represented the

expected value of the log-transformed longitudinal outcome, resulting in an additive effect of

covariates on the transformed scale of the biomarker. Using now a logarithm link facilitates

the interpretation of a covariate k, where exp(βk) represents the multiplicative effect on the
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(natural scale) biomarker value at a given time point, conditional on a positive value at that

time point, associated with a one-unit increase in the covariate Xk (Smith et al. (2018)).

2.3 Marginal two-part model for the biomarker

In the context of two-part models, the term marginal refers to the biomarker distribution

including both zeros and positive values (to contrast with the conditional form) and it does

not refer to the “marginal/subject-specific” usage. In the M-TPJM, the binary part is similar

to the one used in the conditional model, but the continuous part models the covariate effects

on the marginal mean of the biomarker. The model is defined as follows:



Logit(Prob(Yij > 0)) = X>Bijα+Z>Bijai (Binary part),

E[Yij] = exp(X>Cijβ +Z>Cijbi) (Continuous part),

(4)

The marginal two-part model gives the effect of covariates on the marginal mean of the

biomarker instead of the mean conditional on observing a positive value of the biomarker by

including both the zeros and positive values in the continuous part. The correlated random

effects capture some correlation due to potentially unobserved process driving the probability

of positive value and the marginal mean value, i.e., lower values of the biomarker are more

likely correlated with the probability of observing a zero. Another induced correlation is that

the expression of the overall mean also depends on the probability of observing a positive

value (see Equation 7). With the conditional two-part model, the association between the

binary and continuous part is only captured through the correlation structure of the random

effects.
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2.4 Marginal two-part joint model

The proposed model considers a marginal two-part model for the biomarker evolution over

time and a Cox proportional hazards model for the terminal event.




Logit(Prob(Yij > 0)) = X>Bijα+Z>Bijai (Binary part),

E[Yij] = exp(X>Cijβ +Z>Cijbi) (Continuous part),

λi(t) = λ0(t) exp
(
X>i γ + h(·)>ϕ

)
(Survival part),

(5)

The two vectors of random effects ai and bi follow a multivariate normal distribution as

defined by Equation 3. The function h(·) corresponds to the association function between the

biomarker and the risk of event, and ϕ the corresponding vector of association parameters.

In the C-TPJM, the continuous part is given by the second line of Equation 2. The log-

normal distribution assumed for the continuous part cannot be used with the standard OPJM

because of the presence of zeros. Left-censoring is then required, assuming the values observed

below a censoring threshold (i.e., the zeros) are positive but too small to be measured. The

left-censoring OPJM only includes the continuous part and the survival part of Equation 5.

2.5 Association structures

We propose two possible association structures. In the “shared random effects” (SRE)

association structure between the biomarker and the survival model, we have

λi(t) = λ0(t) exp(X>i γ + a>i ϕa + b>i ϕb)

and in the “current level” (CL) association (also referred to as “current value”) we have

λi(t) = λ0(t) exp(X>i γ + E[Yij]ϕ)

The SRE association is useful to explore the association between an individual’s deviation

from the population mean evolution of the biomarker and the risk of terminal event but does

not take into account the covariance between the two vectors of random effects in the survival

model. The difference in the SRE association structure between the M-TPJM and the C-
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TPJM is that the individual heterogeneity captured in the continuous part by the random

effects is conditional on observing a positive value of the biomarker with the C-TPJM, while

for the marginal model it corresponds to the entire population. The biomarker model takes

into account informative censoring by the terminal event through the shared random effects

while the survival part gives the hazard ratio of the covariates conditional on the random

effects, assuming proportional hazards.

In the CL association, ϕ quantifies the strength of the association between the true

unobserved value of the longitudinal biomarker and the risk of event, the interpretation

depends on the model for the biomarker. With a C-TPJM, the “current value” of the

biomarker is given by

E[Yij] = Prob(Yij > 0)E[Yij|Yij > 0], (6)

which is a combination of two non-linear regressions resulting in a difficult interpretation of

the association of the evolution over time of the biomarker value and its effect on the risk of

terminal event. The M-TPJM directly models the mean value of the biomarker E[Yij], which

facilitates the interpretation of covariates effect on the biomarker mean value. Because E[Yij]

is directly obtained from the M-TPJM, the variance of the estimated value of the biomarker

is reduced under the M-TPJM, as illustrated in Figure 2. In terms of covariate effects, the

CL association can be thought of as modelling both the direct effect of covariates on the risk

of terminal event and an indirect effect through the biomarker, which in turn is linked to the

terminal event through the association structure, although the joint model does not provide

a formal mediation analysis.

2.6 Interpretation of treatment effect

[Figure 1 about here.]

A diagram describing the decomposition of treatment effect with the C-TPJM and the

M-TPJM is given in Figure 1. With the SRE association, the survival model gives the
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hazard ratio of treated vs. untreated patients and the biomarker model gives the effect of

treatment on the probability of observing a positive value of the biomarker in the binary

part. In the continuous part of the C-TPJM, the effect of treatment (βtrt) corresponds to

the multiplicative effect on the mean value of the biomarker conditional on observing a

positive value. With the M-TPJM, the effect of treatment in the continuous part (βtrt) can

be interpreted as the multiplicative effect of treatment on the marginal mean biomarker

value.

With the CL association, the treatment effect estimated by the biomarker model affects

also the survival part. This is a flexible approach that allows the treatment effect to vary over

time in the biomarker model, resulting in a non-proportional effect on the survival model.

We recommend to use graphical representations to get a clear idea of the time-dependent

effect of treatment on survival time with the CL association structure.

We can get an approximation of the marginal effect of treatment on the biomarker with

the C-TPJM, but this effect is conditional on the random effects and the value of other

covariates included in the model. Moreover, the delta method or resampling techniques must

be employed to get a confidence interval and a Wald test on this marginal effect of treatment

(See Web Appendix B for more details). We can compute the subject-specific (i.e. conditional

on the random effects) time-dependent overall treatment effect (direct + indirect effect)

with the CL association. It corresponds to the treatment effect for the average patient, with

random effects equal to zero. Moreover, it is possible to compute the average treatment effect

in the population (i.e. marginal) from the subject-specific one using Monte-Carlo simulations,

as discussed in van Oudenhoven et al. (2020).

94 4. marginal two-part joint model



A marginal two-part joint model for a longitudinal biomarker and a terminal event 9

2.7 Estimation procedure

The full likelihood of the M-TPJM is given by

Li(·) =

∫

ai

∫

bi

ni∏

j=1

Prob(Yij > 0)Uij (1− Prob(Yij > 0))(1−Uij)

×





1(√
2πσ2

ε

)Y −1ij exp

(
−(log(Yij)− µij)2

2σ2
ε

)


Uij

× λi(Ti|Θ)δi exp

(
−
∫ Ti

0

λi(t|Θ)dt

)
p(ai, bi)dbidai

With Uij = I[Yij > 0] and Θ = (α,β,ai, bi,γ,ϕ). Details on the construction of the log-

likelihood is given in Web Appendix A.

With a M-TPJM, the marginal mean of Yij is

E[Yij] = Prob(Yij > 0) exp(µij + σ2
ε/2)

The positive values of the biomarker are assumed to take a log-normal density: logN (µij,

σε). Using the parameterization from Equation 5, we can derive the corresponding location

parameter of the log-normal distribution as

µij = X>Cijβ +Z>Cijbi − log(Prob(Yij > 0))− σ2
ε/2 (7)

With a C-TPJM, the likelihood contributions from the binary part and the continuous part

are only linked through the random effects correlation structure. The location parameter of

the log-normal distribution for the positive values is therefore

µij = X>Cijβ +Z>Cijbi − σ2
ε/2, (8)

For the left-censoring OPJM, the positive values are assumed to have a log-normal density

and the zeros (i.e. censored values), a cumulative log-normal distribution corresponding to

the density of probability of a value observed below the threshold (the censoring threshold

is chosen as the smallest positive value observed when not provided by investigators).

The baseline hazard in the survival part of the model is approximated with m cubic M-
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splines with Q knots. A penalization term ensure that the baseline hazard is smooth

pl(Θ) = l(Θ)− κ
∫ ∞

0

λ′′0(t)2dt,

where l(Θ) =
∑n

i=1 log(Li(Θ)) and κ a smoothing parameter chosen using an approximate

cross-validation criterion from a separate Cox model.

We propose the Levenberg-Marquardt algorithm (Marquardt (1963)) to maximize the log-

likelihood. The integration over the random effects has no analytical solution, therefore we

approximate their value with a Monte-Carlo method. The number of points for the Monte-

Carlo integration methods defines the tradeoff between the precision of the approximation

of the random effects distribution and the computation time.

The approximated likelihood cross-validation (LCV) criterion (Commenges et al. (2007))

for evaluation of the goodness-of-fit of the models can be used as a model choice criterion. It

corresponds to the Akaike information criterion (AIC) in the case of the penalized maximum

likelihood estimation. The LCV requires the outcome to be the same and while the overall

mean is the same between the left-censoring OPJM and the MTPJM, the latter does include

the contribution of the binary component into the likelihood, making them not comparable

according to this criterion. However, the LCV can compare the goodness-of-fit between the

C-TPJM and the M-TPJM as well as the SRE and CL association structures for each type

of joint model. The left-censoring OPJM, the C-TPJM and the M-TPJM are estimated

with the function longiPenal of the R package frailtypack, available on the comprehensive R

archive network (CRAN).

3 Simulation study

3.1 Simulation study design

We conducted simulation studies to compare the left-censoring OPJM, the conditional TPJM

and the marginal TPJM in terms of bias and coverage probabilities. We propose three

scenarios where the true model for data generation is either the M-TPJM (scenario 1), the
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C-TPJM (scenario 2) or the left-censoring OPJM (scenario 3). The parameters used for the

data generation are based on the results from the real data application. For each scenario, 300

datasets are generated with 400 individuals each. We focus on the CL association structure

for these simulations since it is a more challenging joint model to estimate (the survival

model requires an additional integration step in the optimization procedure). Moreover, the

CL association structure provides a slightly better fit compared to the SRE association

structure in our application. Besides, simulation studies for a conditional TPJM with SRE

association have been proposed in Liu (2009). For the data generation assuming the M-

TPJM as the true model, we first generate the zero values from a bernoulli distribution,

then the longitudinal biomarker measurements assuming a log-normal distribution for the

positive biomarker values, using the location parameter of Equation 7. The longitudinal

measurements are generated for the entire follow-up and then we use the R package PermAlgo

to generate random death times that depends on the time-dependent biomarker value and

random censoring times (Sylvestre and Abrahamowicz (2008)). The data generation for the

C-TPJM is similar, except that the location parameter does not include the linear predictor

from the binary part (Equation 8). The observed value of the biomarker with the C-TPJM

is therefore defined by Equation 6, which is non-linear on the log scale. For the one-part

model, we generate the longitudinal measurements and then the zero excess with a censoring

threshold chosen as the first decile of the distribution. The number of repeated measurements

of the biomarker per individual varies between 1 and 16, with a median of 2. The percentage

of patients who die during the 4 years follow-up is 80% following the real data death rate.

Therefore, most of the biomarker observations are in the early follow-up (the sample size

decreases over time as censoring and death occurs). A binary covariate generated from a

Bernoulli distribution with p = 0.5 corresponding to the treatment effect is included in each
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submodel of the joint model, with a time-interaction for each submodel of the two-part

models.

We use the same parameters as in the application to decide the number of knots of

the baseline hazard approximation (5 knots). The penalization term was chosen by cross-

validation from an univariate survival model. We use 1000 Monte-Carlo integration points

for the numerical approximation of the integral over the random effects distribution.

The parameters of the binary part can be compared between the C-TPJM and the M-

TPJM as they both give the effect of covariates on the probability to observe a positive

value. The parameters of the continuous part can be compared between the left-censoring

OPJM and the M-TPJM as they both give the effect of covariates on the marginal mean

of the biomarker. The continuous part of the C-TPJM cannot be directly compared to the

continuous part of the other two models. The direct effect of treatment on the risk of death

and the association between the biomarker and the risk of death in the survival part can be

compared between the three models.

3.2 Results

Results from the simulation study are presented in Tables 1 - 3.

3.2.1 Scenario 1 - True model: M-TPJM

[Table 1 about here.]

The M-TPJM recovers the true parameters value with good accuracy, coverage probabilities

are close to 95% (Table 1). Fixed effects parameters for the continuous part of the left-

censoring OPJM are biased, with an intercept value β̂0 = 1.69 (SD=0.06, CP=6%) where

the true value is β0 = 1.5. The model is not able to handle properly the excess of zero

values. We illustrate this systematic bias with a plot of the estimated mean trajectory of

the biomarker compared to the true trajectory under the three scenarios (Figure 2). The

time by treatment interaction effect under the left-censoring OPJM is negative (β̂3 = −0.13,
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SD=0.17, CP=22%) where the true value is positive (β3 = 0.3). The binary part of the

C-TPJM gives unbiased results. For the survival part, both the left-censoring OPJM and

the C-TPJM are able to capture the direct treatment effect on the risk of death (γ̂ = −0.16,

SD=0.13, CP=92% for the left-censoring OPJM and γ̂ = −0.16, SD=0.12, CP=91% for the

C-TPJM), with a mean value slightly lower than the true value (γ = −0.2) compared to the

M-TPJM (γ̂ = −0.18, SD=0.12, CP=92%). The association between the biomarker and the

survival is also unbiased for the left-censoring OPJM (ϕ̂ = 0.09, SD=0.02, CP=94%) and

the C-TPJM (ϕ̂ = 0.08, SD=0.02, CP=95%) where the true value is ϕ = 0.08. The standard

deviations of the random effects are properly estimated with the two TPJMs but not with

the left-censoring OPJM, the random intercept (σb0 = 0.6) is biased downwards (σ̂b0 = 0.45,

SD=0.06) and the random slope (σb1 = 0.3) is biased upwwards (σ̂b1 = 0.69, SD=0.12). The

correlation between the random intercept and slope in the continuous part (corrb0b1 = 0.2) is

biased with the C-TPJM ( ˆcorrb0b1 = −0.20, SD=0.17) as well as the correlation between the

intercept from the binary part and the slope in the continuous part (corrab1 = 0.5), finding

almost no correlation ( ˆcorrab1 = 0.07, SD=0.30).

3.2.2 Scenario 2 - True model: C-TPJM

[Table 2 about here.]

The parameter estimates in the binary part (α0 = 6, α1 = −3, α2 = 1, α3 = −2) are

biased with the M-TPJM (α̂0 = 5.46, SD=0.57, CP=69% ; α̂1 = −2.34, SD=0.38, CP=39%

; α̂2 = 0.66, SD=0.74, CP=89% ; α̂3 = −1.45, SD=0.62, CP=69%) while the C-TPJM is

unbiased with similar variability (Table 2). This could be due to the correlation between

the binary part and the continuous part in the M-TPJM (Equation 7), while they are

simulated independent conditional on the random effects. As displayed in Figure 2, the

mean behaviour of the biomarker is not linear on the log scale with the C-TPJM as opposed

to the left-censoring OPJM and the M-TPJM. In particular, the mean value of the biomarker

converges towards zero at the end of the follow-up because the probability of positive value
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decreases over time in the binary part. The M-TPJM is not able to capture this trend in the

late follow-up (i.e. where there are less observations because some patients got censored or

died during follow-up). The left-censoring OPJM seems severely biased for this simulation

scenario, especially for the time by treatment interaction effect on the marginal mean of

the biomarker (β̂3 = −0.24, SD=0.16). As observed in the first scenario, the direct effect of

treatment on the risk of event and the association parameter is properly recovered for the

three models except the left-censoring OPJM with a slightly higher estimate and standard

error for the association (ϕ̂ = 0.10, SD=0.03)) than the true value recovered by the M-TPJM

and the C-TPJM (ϕ̂ = 0.08, SD=0.02) while coverage probabilities are close to 95% with the

three models. The standard deviations of the random effects and their correlation is properly

captured with the C-TPJM and similarly with the M-TPJM while the left-censoring OPJM

exhibits a similar bias as in scenario 1.

3.2.3 Scenario 3 - True model: Left-censoring OPJM

[Table 3 about here.]

The convergence rate of the C-TPJM (73%) is low, this is due to the data generating

mechanism that gives unstable parameter estimates in the binary part (the probability of

positive value at baseline is close to 1, corresponding to a linear predictor that converges

towards +∞ with the logit link function). Fixing the intercept to a reasonable value of

6.0 solves this issue while not changing the parameters estimates. As expected, the M-

TPJM gives unbiased values for the continuous part (Table 3), although we notice slightly

lower coverage probabilities for the fixed slope effect (β̂1 = −0.55, SD=0.06, CP=83%), the

interaction of the slope and treatment (β̂3 = 0.35, SD=0.08, CP=86%) and the error term

(σ̂ε = 0.30, SD=0.01, CP=75%). In the survival part, all the models are again unbiased,

with similar precision and coverage. The random intercept and slope are properly estimated

but their correlation is slightly biased upwards with the M-TPJM ( ˆcorrb0b1 = 0.44, SD=0.18,

true value is corrb0b1 = 0.2) while the C-TPJM finds no correlation between the intercept
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and slope (ĉorrb0b1 = −0.01, SD=0.21). We also notice a strong correlation between the

random intercept from the binary and continuous parts for both the C-TPJM ( ˆcorrab0 = 0.93,

SD=0.04) and the M-TPJM ( ˆcorrab0 = 0.94, SD=0.04), this is due to the data generating

mechanism where censored values are the 10% smallest observed values, thus inducing a

strong correlation between the mean value of the biomarker and the probability of positive

value.

[Figure 2 about here.]

3.2.4 Conclusion

To conclude, the left-censoring OPJM gives biased estimates of the mean biomarker value

and evolution over time when the true model is either the C-TPJM or the M-TPJM. The M-

TPJM provides an accurate estimate of the biomarker trajectory under scenarios 1 and 3 but

not under scenario 2, as expected (see Figure 2). In our scenarios, the association between

the biomarker and the survival was driven largely by early follow-up (where censorship rate

is low), thus the parameter quantifying this association was not affected by the bias of the

mean biomarker value observed in the late follow-up (see Figure 2). The assumption of

independence between the binary and continuous parts conditionally on the random effects

with the C-TPJM can result in unstable parameter estimations and convergence issues when

this assumption does not hold, as observed in scenario 3. Finally, the C-TPJM is not able to

recover the correlation between the random effects when it is not the true model while the

M-TPJM gives a good approximation of this correlation structure in all three scenarios.

4 Application to metastatic head and neck cancer data

4.1 Data

The study consists of a phase 3 randomised clinical trial (RCT) of chemotherapy with or

without panitumumab in patients with metastatic and/or recurrent squamous cell carcinoma

of the head and neck (SCCHN). The objective of the study is to compare the treatment
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effect of panitumumab in combination with chemotherapy versus chemotherapy alone as

first line therapy for metastatic and/or recurrent SCCHN. This dataset is freely available on

ProjectDataSphere.org (Project Data Sphere is an initiative to provide access to individual

patient data from RCTs across numerous cancer types from industry and academia).

Between May 15, 2007 and March 10, 2009, 657 patients were randomly assigned (327 to the

panitumumab group and 330 to the control group). The data for analysis includes a subset

of 449 patients (i.e., 137 patients excluded from the publicly available dataset and out of

them, 71 had no biomarker measurements). The median overall survival (OS) is 0.61 for the

control group (arm A) and 0.81 for the panitumumab group (arm B), 370 patients (82%)

died during follow-up. There are 1913 repeated measurements of the SLD, 161 of which are

zero values (8%). The number of individual repeated measurements for this biomarker varies

between 1 and 29 with a median of 4. The main conclusion of the trial was that the addition

of panitumumab to chemotherapy did not improve the OS but it improved the progression-

free survival (PFS) and had an acceptable toxicity (Vermorken et al. (2013)). However a

better PFS does not alway lead to improved OS (Prasad et al. (2015)).

We chose 5 knots for the splines approximating the baseline hazard function based on an

univariate survival model. The penalization term, found with cross-validation, is κ = 0.02.

We use 2000 Monte-Carlo integration points for the numerical approximation of the integral

over the random effects.

4.2 Results from the M-TPJM

In this RCT, there is no zero value at baseline as all patients have at least one measurable

lesion at inclusion. For that reason, the estimation of the intercept in the binary part of

the two-part models is unstable and led to convergence issues. We therefore decided to fix

the intercept value at 8.0, which corresponds to a baseline mean probability of zero value of
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3 × 10−4. The results of the M-TPJM with the CL and the SRE association are presented

in Table 4.

4.2.1 Binary part

The treatment effect at baseline is positive and slightly significantly different from zero

with the CL association (α̂trt = −1.00, SE= 0.44) and the SRE association (α̂trt = −0.94,

SE= 0.51). In a RCT, a significant treatment effect at baseline could result from a bias

in randomization (i.e., since we only used a subset of individuals) or a lack of flexibility

in the function describing the evolution of the outcome over time. The slope effect of time

is negative and highly significant with the CL (α̂time = −3.67, SE= 0.37) and the SRE

associations (α̂time = −3.38, SE= 0.47). This means that the probability of observing a zero

value (i.e., complete remission of the measured tumors) increases over time for the reference

treatment (arm A). The time by treatment interaction effect on the probability of observing a

positive value is significantly negative for both the CL (α̂time·trt = −2.02, SE= 0.49) and SRE

associations (α̂time·trt = −1.54, SE= 0.57), meaning that the patients receiving treatment

arm B are associated with higher odds of zero value over time compared to patients receiving

treatment arm A.

4.2.2 Continuous part

The marginal mean value of the SLD at baseline is found similar between the two treatment

arms (β0 ' 1.4). The slope effect of time is negative and significant (CL: β̂time = −0.68, SE=

0.08 and SRE: β̂time = −0.61, SE= 0.07). This effect can be interpreted as a multiplicative

time effect on the marginal mean of the biomarker given by exp(−0.68) = 0.51 for the CL

association (respectively exp(−0.61) = 0.54 for the SRE association). This corresponds to a

reduction of 49% of the SLD value per year for patients receiving the reference treatment

(arm A) with the CL association model (respectively a reduction of 46% per year with the

SRE association model). The two M-TPJMs do not find a significant treatment effect at
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baseline nor time by treatment interaction, therefore patients receiving treatment arm B

have a similar decreasing trend of SLD over time than those in arm A.

4.2.3 Survival part

The interpretation of the covariate effects in the survival part depends on the association

structure specified for the TPJM. With the SRE association, the parameters are interpreted

in terms of effect on the risk of death adjusted for some individual heterogeneity of the pop-

ulation (captured by the random effects of the biomarker model). With the CL association,

the effect of covariates is decomposed into a direct effect on the time to death and an indirect

effect through their association with the biomarker, whose current value affects the terminal

event. The direct treatment effect is not significantly different from zero neither with the

SRE association structure (γ̂ = −0.07, SE=0.11) nor with the CL association (γ̂ = −0.05,

SE=0.11). In terms of indirect effect, the treatment and treatment by time interaction are not

significant with either the CL or SRE associations. For the SRE association, the association

between the individual heterogeneity at baseline (random intercept from the continuous part)

and the risk of death is positive and slightly significant (ϕ̂b0 = 0.42, SE= 0.19), indicating

that the baseline value of the SLD is predictive of the risk of death. However, for the CL

association, the current value of the biomarker is positively and very significantly associated

with the terminal event (ϕ̂ = 0.08, SE= 0.01), indicating that the risk of death increases with

the value of the SLD where the probability of a positive SLD value is decreasing with time

and at a higher rate for treatment arm B vs. A. The M-TPJM with CL association suggests

therefore a possible indirect effect of the biomarker only through its binary component, that

is the probability of a zero value, interpreted as a complete remission of the tumor. However,

this model did not conclude to an indirect effect of treatment on the overall biomarker

trajectory, i.e., when accounting for the continuous part in addition to the zero part of the

biomarker. Moreover, Web Figure 1 shows no difference in the survival curves according

to treatment arm. Another example of such graphical representation of the total treatment
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effect (i.e. direct + indirect effect) is proposed in Rustand et al. (2020). The other advantage

of the M-TPJM with the CL association, is that it allows to quantify the effect of one unit

increase in the biomarker on the risk of terminal event. For instance, the hazard ratio of

a patient with a 1 cm increase in the SLD value is associated with an increased risk of

death of 8% (exp(0.08) = 1.08). The M-TPJM with the SRE association can be helpful to

characterize how individuals who deviate by a certain amount from the mean SLD trajectory

(e.g., 1 standard deviation of the baseline biomarker value) have an increased risk of terminal

event compared to a patient with an average SLD profile.

4.3 Comparison of the M-TPJM with the left-censoring OPJM

The difference in the treatment of the zero values lead to a steeper fixed slope effect on

the mean biomarker value for the left-censoring OPJM (CL: β̂time = −0.87, SE= 0.10,

SRE: β̂time = −0.86, SE= 0.10) compared to the M-TPJM (CL: β̂time = −0.68, SE= 0.08,

SRE: β̂time = −0.61, SE= 0.07). The residual error is higher with the left-censoring OPJM

(σ̂ε = 0.41, SE= 0.01) than with the M-TPJM (σ̂ε = 0.30, SE= 0.01), indicating a better fit

of the latter. Our results are therefore in line with our simulations when OPJM is not the

true model. Overall, the standard errors of the parameter estimates in the biomarker model

are lower under the M-TPJM than the OPJM. Nonetheless, the SRE association shows a

stronger relationship between the random intercept and slope of the mean biomarker value

with the left-censoring OPJM (ϕ̂b0 = 0.48, SE=0.11, ϕ̂b1 = 0.16, SE=0.06) compared to the

M-TPJM (ϕ̂a = 0.00, SE=0.07,ϕ̂b0 = 0.42, SE=0.19, ϕ̂b1 = 0.30, SE=0.23), likely due to

the better fit of the mean biomarker value with the M-TPJM. In particular, the random

slope standard deviation is found higher with the left-censoring OPJM (CL: σ̂b1 = 1.51,

SRE=σ̂b1 = 1.44) compared to the M-TPJM (CL: σ̂b1 = 0.99, SRE=σ̂b1 = 1.01).
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4.4 Comparison of the M-TPJM with the C-TPJM

The LCV criterion indicates that the M-TPJM fits better the data than the C-TPJM for

each association structure. As proposed in Commenges et al. (2007), the comparison of the

LCV value can be classified according to the order of the difference. A difference of order

10−1, 10−2, 10−3 and 10−4 may be qualified as ‘large’, ‘moderate’, ‘small’ and ‘negligible’,

respectively. The difference in the LCV value between the M-TPJM (CL: LCV=1.0072,

SRE: LCV=1.0082) and the C-TPJM (CL: LCV=1.0525, SRE: LCV=1.0524) is moderate

in favour of the M-TPJM and the difference between the CL and the SRE association

structures is small in favour of the CL with the left-censoring OPJM (CL: LCV=1.9790,

SRE: LCV=1.9803) and the M-TPJM where it is negligible with the C-TPJM. We plotted

the mean biomarker trajectory estimated by the left-censoring OPJM, the C-TPJM and the

M-TPJM in Web Figure 2. As observed in the simulations when the M-TPJM is the true

model, the C-TPJM tends to over-estimate the probability of zeros over time.

In line with the simulation results when M-TPJM is the true model, the variability of the

parameter estimates in the binary part is lower under the M-TPJM than the C-TPJM.

Treatment arm B (chemotherapy + panitumumab) vs. arm A (chemotherapy alone) is

associated with a more significant reduction in the probability of positive value over time with

the M-TPJM (CL: α̂time·trt = −2.02, SE=0.49, SRE: α̂time·trt = −1.54, SE=0.57) compared

to the C-TPJM with the CL association structure (α̂time·trt = −1.84, SE=0.71) and the

SRE association (α̂time·trt = −1.83, SE=1.31). In the continuous part, the effect of treatment

is not found significantly different from zero under either the C-TPJM or the M-TPJM

but its interpretation is different under these 2 models, as illustrated in Figure 1. The M-

TPJM finds no treatment effect on the overall mean biomarker value (CL: β̂time·trt = −0.12,

SE=0.12, SRE: β̂time·trt = −0.13, SE=0.11) where the C-TPJM finds no treatment effect on

the biomarker value conditional on a positive value (CL: β̂time·trt = −0.10, SE=0.09, SRE:
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β̂time·trt = 0.07, SE=0.09). As found in our simulation results, the direct effect of treatment

and association parameter are very similar between the M-TPJM and C-TPJM.

To conclude, as observed in our simulation results, the C-TPJM can lead to biased esti-

mates and incorrect statistical inference when it is not the true model (the best model in the

application). In term of treatment effect, this affects mostly the inference about the indirect

effect of the treatment on the terminal event.

[Table 4 about here.]

5 Discussion

We proposed a marginal two-part joint model for a longitudinal semicontinuous biomarker

and a terminal event that allows to obtain directly the population average effect of covariates,

such as treatment effect, on the marginal mean of the biomarker. This M-TPJM is as an

alternative to the conditional two-part joint model. While the mean biomarker value at

baseline and over time is directly estimated from the M-TPJM, it is obtained from the

mixing distributions of the zero and non-zero components in the C-TPJM, which imposes a

non-linear curve for the mean biomarker value over time, not always justified. The population

average effect of covariates under the C-TPJM is also not directly available. We also proposed

two association structures to link the biomarker to the risk of terminal event. The first

one, the current value association, allows to explore time-dependent effect of covariates on

survival through the biomarker (indirect effect), as well as direct effect of covariates on

the terminal event. The model can evaluate survival conditionally on a specific pattern of

clinical responses. The second one consists of sharing only the random effects from the two-

part model, which evaluates the relationship between the risk of terminal event and the

individual deviation from the population mean of the biomarker, including baseline odds

of a positive value, baseline value and slope for the whole trajectory. The M-TPJM could

therefore be relevant in many clinical applications.
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Our simulation studies shows marked differences across the three models applied: the left-

censoring OPJM, the C-TPJM and the M-TPJM. The left-censoring OPJM was severely

biased in the estimation of treatment effect on the biomarker when true zero values (i.e.

not censored) were present. The C-TPJM can account for excess of zeros but led to biased

estimates and wrong inference about treatment effect on the marginal mean value of the

biomarker whenever it was not the true model. In addition, the C-TPJM could have con-

vergence issues due to the assumed independence between the probability of zero and the

expected value among positive conditional on the random effects. The M-TPJM provided

an accurate inference about the biomarker and covariate effects on the biomarker in most

situations, unless the distribution of the biomarker over time is not linear on the log scale.

The differences observed across models did impact the inference about the indirect effect

of treatment on the terminal event but to a lesser extent, the direct association of treatment

on the terminal event and the association between the biomarker and the terminal event.

This could be the consequence of the heavy censoring present in the simulated data (which

mimicked the real data) and the fact that the estimated mean value of the biomarker was

relatively close across models during the early follow-up (see Figure 2). In other situations

with lower censoring rate or higher proportion of zeros, it is not excluded that the direct

treatment effect and association parameter(s) be also affected by the model assumptions.

Our application to a cancer clinical trial assessing two treatment arms for squamous cell

carcinoma of the head and neck illustrates the interest of the M-TPJM. We recall that the

original trial concluded that the addition of panitumumab to chemotherapy did not improve

OS but led to better progression-free survival (Vermorken et al. (2013)). In contrast, the M-

TPJM concluded to a possible indirect effect of the combined treatment vs. single treatment

on the risk of death, where this indirect effect was mainly explained by a higher probability

of observing a zero biomarker value for the combined treatment, that is higher odds of

108 4. marginal two-part joint model



A marginal two-part joint model for a longitudinal biomarker and a terminal event 23

observing a disappearance of all target lesions, compared to chemotherapy alone. Based

on LCV criterion, the M-TPJM fitted the data better than the C-TPJM. In line with our

simulation results when the M-TPJM was the true model, the C-TPJM could lead to bias

in the treatment effect on the biomarker and false inference about the indirect effect of

treatment on the terminal effect. In particular, the C-TPJM found an attenuated indirect

effect compared to the M-TPJM in terms of observing a disappearance of all target lesions

over time. Finally, the M-TPJM did not conclude to a treatment effect on the overall mean

of the biomarker either at baseline or during the follow-up.

This work has several limitations. For instance, in the cancer clinical trial application,

the SLD measures the longest diameter of target lesions, which can be subject to important

measurement error. It could be more appropriate to use instead a more accurate measurement

such as the total volume of the tumors, although it is usually unavailable in clinical trials

as it is not part of the RECIST criteria. In this work, the M-TPJM was not developed

specifically to capture a non-linear mean biomarker trajectory on the log scale. The inclusion

of time-dependent covariates and interactions could account for such trajectories. Besides,

an extension of the marginal two-part model has been proposed using a generalized Gamma

distribution (that includes the logarithm as a specific case) to link the outcome to the linear

predictor in the continuous part and allows more flexibility in the biomarker trajectory but

has not yet been developed for joint models (Smith and Preisser (2017); Smith et al. (2017)).

Beyond the application to solid tumor cancer data, we propose a tool that can be applied

to several other situations that include a longitudinal semicontinuous biomarker and sur-

vival times (covariates measuring symptoms of a disease or quantifying exposure are often

semicontinuous). To our knowledge, this is the first software (frailtypack, Król et al. (2017))

available that proposes to fit a marginal TPJM.
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Figure 1. Diagrams describing the treatment effect decomposition with the C-TPJM (left)
and the M-TPJM (right) for the shared random effects (up) and the current level (down)
association structures. The marginal model includes zero values to give the effect of treatment
on the marginal mean biomarker value. The current level association structure shares the
treatment effect captured in the biomarker model with the survival model and therefore
provides a decomposition into a direct and an indirect effect of treatment on the risk of
event.
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Figure 2. Mean biomarker trajectory captured in the simulation studies (Tables 1-3) for
the M-TPJM, the C-TPJM and the left-censoring OPJM compared to the true trajectory.
(This figure appears in color in the electronic version of this article.)
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Table 1
Summary of the results of simulations scenario 1 (true model : marginal TPJM) ; 300 datasets with 400 individuals
each and 1000 integration points, 10.17% zeros on average (SD=1.33). The true value of the parameters estimated

in the continuous part of the C-TPJM are unknown, therefore coverage probabilities are not provided for these
parameters.

Variable (appli) Left-censoring OPJM conditional TPJM marginal TPJM
Est.∗ (SD†) [CP‡] Est. (SD) [CP] Est. (SD) [CP]

Binary part
intercept α0 = 6 6.09 (0.64) [96%] 6.11 (0.57) [94%]
time α1 = −3 -3.04 (0.44) [96%] -3.04 (0.35) [93%]
treatment α2 = 1 0.93 (0.75) [96%] 0.94 (0.68) [96%]
time:treatment α3 = −2 -1.93 (0.65) [94%] -1.95 (0.53) [94%]

Continuous part
intercept β0 = 1.5 1.69 (0.06) [06%] 1.52 (0.05) 1.53 (0.05) [90%]
time β1 = −0.5 -0.58 (0.10) [93%] -0.35 (0.03) -0.50 (0.06) [93%]
treatment β2 = 0.3 0.38 (0.08) [77%] 0.28 (0.07) 0.30 (0.07) [93%]
time:treatment β3 = 0.3 -0.13 (0.17) [22%] 0.42 (0.09) 0.30 (0.08) [95%]
residual S.E. σε = 0.3 0.64 (0.07) [00%] 0.32 (0.01) 0.30 (0.01) [92%]

Survival part
treatment γ = −0.2 -0.16 (0.13) [92%] -0.16 (0.12) [91%] -0.18 (0.12) [92%]
association ϕ = 0.08 0.09 (0.02) [94%] 0.08 (0.02) [95%] 0.08 (0.02) [95%]

Random effects
intercept (binary part) σa = 1.4 1.33 (0.28) 1.37 (0.28)
intercept (continuous part) σb0 = 0.6 0.45 (0.06) 0.62 (0.03) 0.61 (0.03)
slope (continuous part) σb1 = 0.3 0.69 (0.12) 0.33 (0.07) 0.28 (0.08)

corab0 = 0.5 0.51 (0.17) 0.56 (0.16)
corab1 = 0.5 0.07 (0.30) 0.45 (0.30)
corb0b1 = 0.2 0.20 (0.23) -0.20 (0.17) 0.27 (0.24)

Convergence rate 100% 100% 100%

∗ Mean of parameter estimates; † Standard deviation from the mean; ‡ Coverage probability
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Table 2
Summary of the results of simulations scenario 2 (true model : conditional TPJM) ; 300 datasets with 400

individuals each and 1000 integration points, 10.53% zeros on average (SD=1.36). The true value of the parameters
estimated in the continuous part of the left-censoring OPJM and the M-TPJM are unknown, therefore coverage

probabilities are not provided for these parameters.
Variable (appli) Left-censoring OPJM conditional TPJM marginal TPJM

Est.∗ (SD†) [CP‡] Est. (SD) [CP] Est. (SD) [CP]
Binary part
intercept α0 = 6 6.13 (0.64) [96%] 5.46 (0.57) [69%]
time α1 = −3 -3.07 (0.45) [95%] -2.34 (0.38) [39%]
treatment α2 = 1 1.03 (0.85) [96%] 0.66 (0.74) [89%]
time:treatment α3 = −2 -2.04 (0.72) [95%] -1.45 (0.62) [69%]

Continuous part
intercept β0 = 1.5 1.68 (0.07) 1.53 (0.05) [90%] 1.53 (0.05)
time β1 = −0.5 -0.68 (0.10) -0.50 (0.06) [90%] -0.60 (0.06)
treatment β2 = 0.3 0.41 (0.08) 0.30 (0.07) [91%] 0.32 (0.07)
time:treatment β3 = 0.3 -0.24 (0.16) 0.30 (0.08) [94%] 0.23 (0.09)
residual S.E. σε = 0.3 0.63 (0.08) 0.30 (0.01) [94%] 0.30 (0.01)

Survival part
treatment γ = −0.2 -0.21 (0.13) [95%] -0.20 (0.12) [95%] -0.21 (0.12) [95%]
association ϕ = 0.08 0.10 (0.03) [92%] 0.08 (0.02) [94%] 0.08 (0.02) [93%]

Random effects
intercept (binary part) σa = 1.4 1.35 (0.29) 1.25 (0.28)
intercept (continuous part) σb0 = 0.6 0.47 (0.07) 0.61 (0.03) 0.61 (0.03)
slope (continuous part) σb1 = 0.3 0.80 (0.16) 0.29 (0.05) 0.37 (0.06)

corab0 = 0.5 0.53 (0.16) 0.54 (0.17)
corab1 = 0.5 0.51 (0.25) 0.62 (0.20)
corb0b1 = 0.2 0.18 (0.19) 0.20 (0.19) 0.34 (0.18)

Convergence rate 100% 100% 100%

∗ Mean of parameter estimates; † Standard deviation from the mean; ‡ Coverage probability
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Table 3
Summary of the results of simulations scenario 3 (true model : Left-censoring OPJM) ; 300 datasets with 400

individuals each and 1000 integration points, 10.04% zeros on average (SD=0.02). The true value of the parameters
estimated in the continuous part of the C-TPJM are unknown, therefore coverage probabilities are not provided for

these parameters.
Variable (appli) Left-censoring OPJM conditional TPJM conditional TPJM marginal TPJM

Est.∗ (SD†) [CP‡] Est. (SD) [CP] Est. (SD) [CP] Est. (SD) [CP]
Binary part
intercept α0 7.89 (0.78) 6.00 (fixed) 5.95 (0.81)
time α1 -3.50 (0.55) -2.73 (0.34) -2.47 (0.47)
treatment α2 2.52 (0.90) 2.96 (0.83) 1.60 (0.62)
time:treatment α3 1.18 (0.76) 0.63 (0.63) 0.72 (0.49)

Continuous part
intercept β0 = 1.5 1.52 (0.05) [93%] 1.54 (0.04) 1.50 (0.05) 1.51 (0.05) [96%]
time β1 = −0.5 -0.51 (0.05) [94%] -0.42 (0.05) -0.44 (0.05) -0.55 (0.06) [83%]
treatment β2 = 0.3 0.30 (0.06) [94%] 0.29 (0.06) 0.34 (0.06) 0.32 (0.07) [93%]
time:treatment β3 = 0.3 0.31 (0.08) [92%] 0.23 (0.07) 0.24 (0.07) 0.35 (0.08) [86%]
residual S.E. σε = 0.3 0.30 (0.01) [93%] 0.29 (0.01) 0.29 (0.01) 0.30 (0.01) [75%]

Survival part
treatment γ = −0.2 -0.21 (0.13) [95%] -0.21 (0.13) [95%] -0.20 (0.13) [94%] -0.21 (0.13) [95%]
association ϕ = 0.08 0.08 (0.02) [92%] 0.08 (0.02) [93%] 0.08 (0.02) [93%] 0.08 (0.02) [93%]

Random effects
intercept (binary part) σa 4.53 (0.44) 3.62 (0.27) 2.82 (0.42)
intercept (continuous part) σb0 = 0.6 0.60 (0.03) 0.59 (0.03) 0.59 (0.03) 0.62 (0.03)
slope (continuous part) σb1 = 0.3 0.30 (0.05) 0.21 (0.05) 0.22 (0.05) 0.29 (0.06)

corab0 0.93 (0.04) 0.93 (0.04) 0.94 (0.04)
corab1 0.33 (0.21) 0.33 (0.21) 0.69 (0.13)

corb0b1 = 0.2 0.22 (0.18) -0.01 (0.21) -0.02 (0.21) 0.44 (0.18)

Convergence rate 100% 73% 100% 100%

∗ Mean of parameter estimates; † Standard deviation from the mean; ‡ Coverage probability
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146 rue Léo Saignat, 33076 Bordeaux, France

118 4. marginal two-part joint model



Supporting Information for “A marginal two-part joint model for a longitudinal biomarker and a terminal event” 1

Web Appendix A Details on the likelihood of the model

The full likelihood of the model can be expressed as

Li(·) =

∫

ai

∫

bi

LBi (·)LCi (·)LSi (·)p(ai, bi)dbidai

Where LBi (·), LCi (·) and LSi (·) corresponds to the likelihood contributions from the binary,

continuous and survival parts of the two-part joint model, respectively. With ai and bi the

two vectors of random-effects following a multivariate normal distribution:


ai

bi


 ∼MVN (0,B) with B =




Σ2
a Σab

Σab Σ2
b


 . (1)

The set of parameters to estimate is Θ = (α,β,B, λ0(t),γ,ϕ).

Noting that

Prob(Yij > 0) =
exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

We can deduce

log(Prob(Yij > 0)) = X>Bijα+Z>Bijai − log(1 + exp(X>Bijα+Z>Bijai))).

Finally,

log(1− Prob(Yij > 0)) = − log(1 + exp(X>Bijα+Z>Bijai))).

We introduce Uij = I[Yij > 0], the likelihood contribution from the binary part can be

expressed as

LBi (·) =

ni∏

j=1

P (Uij|ai)

=

ni∏

j=1

Prob(Yij > 0)Uij(1− Prob(Yij > 0))(1−Uij)

=

ni∏

j=1

(
Prob(Yij > 0)

1− Prob(Yij > 0)

)Uij

(1− Prob(Yij > 0))

=

ni∏

j=1

exp
(
X>Bijα+Z>Bijai

)Uij

(
1− exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

)
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The continuous part contribution to the likelihood has a log-normal density

LCi (·) =

ni∏

j=1

{
1

Yij
√

2πσ2
ε

exp

(
−(log(Yij)− µij)2

2σ2
ε

)}Uij

With either the location parameter of the marginal TPJM

µij = X>Cijβ +Z>Cijbi − log(Prob(Yij > 0))− σ2
ε

2

= X>Cijβ +Z>Cijbi +X>Bijα+Z>Bijai − log(1 + exp(X>Bijα+Z>Bijai))− σ2
ε/2

or the location parameter of the conditional TPJM

µij = X>Cijβ +Z>Cijbi −
σ2
ε

2
.

The contribution to the likelihood from the survival part corresponds to a Cox proportional

hazards model, with splines approximation of the baseline hazard

LSi (·) =

ni∏

j=1

λi(Ti|ai, bi)δiS(Ti|ai, bi)

=

ni∏

j=1

λi(Ti|ai, bi)δi exp

(
−
∫ Ti

0

λi(t|ai, bi)dt
)
.

Where λi(t) = λ0(t) exp{XSi(t)
>γ + h(·)ϕ}.

The full likelihood of the M-TPJM is therefore given by

Li(·) =

∫

ai

∫

bi

ni∏

j=1





exp
(
X>Bijα+Z>Bijai

)
(√

2πσ2
ε

) Y −1ij exp

(
−(log(Yij)− µij)2

2σ2
ε

)


Uij

×
(

1− exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

)

× λi(Ti|Θ)δi exp

(
−
∫ Ti

0

λi(t|Θ)dt

)
p(ai, bi)dbidai
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and the log-likelihood

log(Li(Θ)) =

∫

ai

∫

bi

ni∑

j=1

{
X>Bijα+Z>Bijai − log(Yij)−

log(2π)

2
− log(σ)

− 1

2σ2
ε

(
log(Yij) +X>Bijα+Z>Bijai − log(1 + exp(X>Bijα+Z>Bijai))

+
σ2
ε

2
−X>Cijβ +Z>Cijbi

)2
}Uij

− log(1 + exp(X>Bijα+Z>Bijai))

+ δi

(
log (λ0(Ti|Θij)) +XSi(Ti)

>γ + h(·)ϕ
)

−
(∫ Ti

0

λ0(t|Θij) exp(XSi(t)
>γ + h(·)ϕ)dt

)
p(ai, bi)dbidai

Web Appendix B Interpretation of the treatment effect on the marginal mean

value of the biomarker with the C-TPJM

The effect of treatment on the marginal mean of the biomarker involves parameters from

both the binary (αtrtint
, αtrtslo) and the continuous part (βtrtint

, βtrtslo), assuming we include

the effect of treatment at baseline and on the slope. Let XBij(−trt) and α(−trt) denote the

set of covariates and the associated parameters other than treatment in the binary part. We

have

E[Yij] = Prob(Yij > 0)E[Yij|Yij > 0] =
exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)
exp(X>Cijβ +Z>Cijbi)

The effect of a treatment (trt) on the unconditional mean is

E[Yij|trti = 1]

E[Yij|trti = 0]
=
Prob(Yij > 0|trti = 1)

Prob(Yij > 0|trti = 0)
× E[Yij|Yij > 0, trti = 1]

E[Yij|Yij > 0, trti = 0]

= exp

(
log

(
Prob(Yij > 0|trti = 1)

Prob(Yij > 0|trti = 0)

)
+ log

(
E[Yij|Yij > 0, trti = 1]

E[Yij|Yij > 0, trti = 0]

))

4.2. Article 121



4

where

log

(
Prob(Yij > 0|trti = 1)

Prob(Yij > 0|trti = 0)

)
=

log




exp{αtrtint+timej αtrtslo
+X>

Bij(−trt)
α(−trt)+Z

>
Bijai}

1+exp{αtrtint+timej αtrtslo
+X>

Bij(−trt)
α(−trt)+Z

>
Bijai)}

exp{X>
Bij(−trt)

α(−trt)+Z
>
Bijai}

1+exp{X>
Bij(−trt)

α(−trt)+Z
>
Bijai)}




= log

(
exp{αtrtint

+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai}
1 + exp{αtrtint

+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai)}

)

− log

(
exp{X>Bij(−trt)α(−trt) +Z>Bijai}

1 + exp{X>Bij(−trt)α(−trt) +Z>Bijai)}

)

= log
(
exp{αtrtint

+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai}
)

− log
(
1 + exp{αtrtint

+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai}
)

−
[
log
(
exp{X>Bij(−trt)α(−trt) +Z>Bijai}

)
− log

(
1 + exp{X>Bij(−trt)α(−trt) +Z>Bijai)}

)]

= αtrtint
+ timej αtrtslo +

((((((((((((((
X>Bij(−trt)α(−trt) +Z>Bijai

− log
(
1 + exp{αtrtint

+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai}
)

−
(
((((((((((((((
X>Bij(−trt)α(−trt) +Z>Bijai

)

+ log
(
1 + exp{X>Bij(−trt)α(−trt) +Z>Bijai)}

)

= αtrtint
+ timej αtrtslo + log

(
1 + exp{X>Bij(−trt)α(−trt) +Z>Bijai)}

1 + exp{αtrtint
+ timej αtrtslo +X>Bij(−trt)α(−trt) +Z>Bijai}

)

and

log

(
E[Yij|Yij > 0, trti = 1]

E[Yij|Yij > 0, trti = 0]

)
= βtrtint

+ timej βtrtslo

From this expression, we can deduct that the mean biomarker value is observed higher

(lower) at baseline if both αtrtint
and βtrtint

are positive (negative). The mean biomarker

value increases (or decreases) over time if both αtrtslo and βtrtslo are positive (negative).

The interpretation of the marginal treatment effect on mean of the biomarker depends on

specific values of the covariates other than treatment in the model (XBij(−trt)) and on the the

random-effects. Further, to obtain a statistical test for this effect or confidence interval, the
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delta method or resampling techniques need to be used. With a marginal two-part model,

the effect of treatment in the continuous part at baseline βtrtint
and over time βtrtslo directly

describe the marginal effect of the treatment on the mean biomarker baseline value and

evolution over time, respectively. Besides, exp(βtrt) can be interpreted as the multiplicative

effect of the treatment on the unconditional marginal mean of the biomarker but it is not the

case when considering the continuous part of the conditional two-part model. The standard

errors and confidence intervals are therefore easily obtained as part of the standard model

output (Smith et al. (2014)).

[Figure 1 about here.]

[Figure 2 about here.]

References
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.0

Survival according to treatment arm (M−TPJM current−level)

Time

S
u

rv
iv

a
l

Treatment

arm A
arm B

Web Figure 1. Survival according to treatment arm from the real data application. The
curves take into account the direct effect of treatment on the risk of death (hazard ratio in the
survival part) and the time-dependent indirect effect captured in the marginal two-part model
for the biomarker (i.e., treatment effect on the mean biomarker value) and shared through
the CL association. The confidence intervals are obtained by resampling the parameters
using the inverse Hessian matrix of the model, taking the 2.5% and 97.5% quantiles of 1000
simulated curves.
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0
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lo
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D
+

1
)

C−TPJM M−TPJM OPJM Regression LOESS with 1 SD bands

Mean biomarker value (GERCOR)

Web Figure 2. Individual biomarker trajectories from the GERCOR data with mean
value estimated by the left-censoring OPJM (OPJM), the marginal TPJM (M-TPJM) and
the conditional TPJM (C-TPJM). A local regression curve (locally estimated scatterplot
smoothing, LOESS) represents the empirical mean biomarker value. Note that the LOESS
curve does not take into account the correlation between the repeated measurements within
an individual, informative drop-out and the semicontinuous distribution of the biomarker.
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4.3 Additional remarks

4.3.1 On the software

The marginal two-part joint model was implemented as an extension of the longiPenal function
in the R package frailtypack, along with the conditional two-part joint model. It is therefore
easy to estimate both the conditional and marginal formulations of a model using a simple option
in the function to switch from conditional to marginal formulation of the TPJM.

4.3.2 On the association structure

We developed the shared random effects and current value association structures for the M-
TPJM, similarly as in Chapter 3 for the C-TPJM. However, the third association structure
proposed in Chapter 3 involved a separate association for the current probability of positive
value and for the expected value among positives with the risk of event. It was not proposed
for the marginal formulation of the two-part joint model because it led to convergence issues.
This is likely related to the fact that with the M-TPJM, the binary and continuous parts are not
independent conditional on the random effects and this could induce some collinearity issue in
the survival model.



Chapter 5

Bayesian Estimation of Two-Part Joint
Models for a Longitudinal
Semicontinuous Biomarker and a
Terminal Event with R-INLA: Interests
for Cancer Clinical Trial Evaluation

5.1 Introduction

The objective of this work is to extend the frequentist estimation of the conditional two-part joint
model to a Bayesian inference approach. It is motivated by the limitations encountered in the
frequentist framework. Indeed, the Levenberg-Marquardt algorithm we proposed for the estima-
tion of the TPJM has strong convergence criteria (i.e., the difference between the log-likelihood,
the estimated coefficients and the gradient of the log-likelihood of two consecutive iterations
must be under 10−3) and can fail to converge when maximizing the likelihood of complex mod-
els, especially for small sample size as the parameters only reflect the data distribution in the
frequentist framework. When including covariates in each submodel of the TPJM, the sample
must include a sufficient number of patients for each subcaterogy defined by the covariates in
order to have a stable parameter estimation and reach convergence. Moreover, the numerical
approximation of the integral over the random effects in the likelihood can represent a large com-
putational burden, especially for high dimension (i.e., multiple correlated random effects), for the
frequentist estimation. The computational burden is also an issue within the Bayesian framework
with common methods such as MCMC. In this context, the integrated nested Laplace approxi-
mation (INLA) method implemented in the R package R-INLA is a promising alternative for
approximate Bayesian inference, focusing on models that can be expressed as latent Gaussian
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Markov random fields (GMRF). It gives fast and accurate estimates of posterior marginals and
was recently introduced for joint models. We propose an estimation of the conditional TPJM
with R-INLA and compare this estimation strategy with the initially proposed estimation with
frailtypack. This work was motivated by two different phase III randomized clinical trials in
colorectal metastatic cancer, the GERCOR study is used to contrast the Bayesian estimation
of the conditional TPJM to the frequensist estimation while the PRIME study illustrates the
robustness of the Bayesian estimation to convergence issues.

5.2 Article
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Abstract

Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been
recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a
probability of positive value and the expected value among positive values. Shared random effects can
represent the association structure between the biomarker and the terminal event. The computational
burden increases compared to standard joint models with a single regression model for the biomarker.
In this context, the frequentist estimation implemented in the R package frailtypack can be challenging
for complex models (i.e., large number of parameters and dimension of the random effects). As an
alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested
Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex
models. Our simulation studies show that R-INLA reduces the computation time substantially as well as
the variability of the parameter estimates and improves the model convergence compared to frailtypack.
We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical
trials (GERCOR and PRIME studies), where R-INLA suggests a stronger association between the
biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups
of patients associated with different responses to treatment in the PRIME study while frailtypack had
convergence issues. Our study suggests that the Bayesian approach using R-INLA algorithm enables
broader applications of the two-part joint model to clinical applications.
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1 Introduction

Estimation of joint models for longitudinal and time-to-event data were initially introduced using maximum
likelihood estimation (Wulfsohn and Tsiatis (1997); Henderson et al. (2000); Song et al. (2002); Chi and
Ibrahim (2006)). It was further developed within the Bayesian framework in situations where maximum
likelihood estimation with asymptotic assumptions faces nonidentifiability issues. It allows flexible and more
complex association structures and can handle multiple longitudinal outcomes (Andrinopoulou and Rizopou-
los (2016)). Bayesian joint models can be fitted with the R package JMbayes (Rizopoulos et al. (2016)),
which has been used in many biomedical researches (Lawrence Gould et al. (2015)), among other packages
(e.g. rstanarm, Muth et al. (2018)). Bayesian estimation is usually based on MCMC techniques (Hanson
et al. (2011); R. Brown and G. Ibrahim (2003); Xu and Zeger (2001); Rizopoulos and Ghosh (2011)), which
can have slow convergence properties. The Integrated Nested Laplace Approximation (INLA) algorithm has
been recently introduced as an alternative to MCMC techniques for latent Gaussian models (LGM) (Rue
et al. (2009); Martins et al. (2013)). Many statistical models for spatial statistics, time series, etc., can be
formulated as LGMs. A key feature of INLA is to provide approximations of the posterior marginals needed
for Bayesian inference very efficiently and that still remain very accurate compared to MCMC methods (Rue
et al. (2017)). By formulating complex joint models as LGMs, R-INLA can be used to fit these models as
developed recently (Van Niekerk, Bakka, and Rue (2019); Van Niekerk, Bakka, Rue, and Schenk (2019)).
For the two-part joint model, R-INLA is yet to be used for inference.

Two-part joint models (TPJMs) for a longitudinal semicontinuous biomarker and a terminal event have
been recently introduced (Rustand, Briollais, Tournigand, and Rondeau (2020)) and applied to the joint
analysis of survival times and repeated measurements of the Sum of the Longest Diameter of target lesions
(SLD), which is a biomarker representative of tumor burden in cancer clinical trials. The TPJM uses a
conditional two-part joint model that decomposes the biomarker distribution into a binary outcome (zero vs.
positive value) fitted with a logistic mixed effects model and a continuous outcome (positive values only) fitted
with either a linear mixed effect model on the log-transformed outcome or a lognormal mixed effects model
(Rustand, Briollais, and Rondeau (2020)). The “conditional” form of the two-part model gives the effect of
covariates on the mean biomarker value conditional on a positive value in the continuous part. An alternative
marginal model has recently been proposed to get the effect of covariates on the (unconditional) mean of the
biomarker. A drawback of the marginal two-part model is that it may lead to arbitrary heterogeneity and
provide less interpretable estimates on the conditional mean of the biomarker among positive values (Smith
et al. (2014)). In this article, we focus on the conditional two-part joint model, simply referred to as TPJM
in what follows. The association with the survival model can be specified in terms of shared random effects,
i.e., random effects that are shared between the different components of the models including the binary
and continuous parts of the model and the survival component. An important limitation of such models is
the estimation procedure that requires a numerical approximation of the random effects distribution, which
can lead to long computation times and convergence issues with high-dimensional parameter settings and
complex association structures between the different components of the TPJMs. In this article, we propose
an efficient Bayesian estimation procedure for the TPJM which relies on INLA algorithm, as implemented
in the R package R-INLA. The Bayesian inference is compared to the frequentist estimation of the TPJM
available in the R package frailtypack. The remainder of the article is structured as follows: in Section
2, we describe the TPJM and introduce the frequentist and Bayesian estimations. In Section 3, we present
a simulation study to assess the performance of these two estimation strategies in terms of bias, coverage
probability, computation time and convergence rate. An application to two randomized clinical trials each
comparing two treatment strategies in patients with metastatic colorectal cancer is proposed in Section 4
and we conclude with a discussion in Section 5.

2 Estimation of the conditional two-part joint model

2.1 Model specification

Let Yij denote the biomarker measurement for individual i(i = 1, ..., n) at visit j(j = 1, ..., ni), Ti denotes
the survival time and δi the censoring indicator for individual i. We use a logistic mixed effect model for
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the probability of a positive value of the biomarker and a lognormal mixed effect model for the conditional
expected biomarker value. A proportional hazards survival model specifies the effect of covariates on survival
time, adjusted for the individual heterogeneity captured in the biomarker model. The complete model is
defined as follows:





ηBij = Logit(Prob(Yij > 0)) = X>Bijα+Z>Bijai (Binary part),

ηCij = E[Yij |Yij > 0] = exp(X>Cijβ +Z>Cijbi) (Continuous part),

λi(t) = λ0(t) exp(ηSi) = λ0(t) exp
(
X>i γ + a>i ϕa + b>i ϕb

)
(Survival part),

where XBij , XCij and Xi are vectors of covariates associated to the fixed effects α, β and γ, respectively.
Similarly, ZBij and ZCij are vectors of covariates associated to the random effects ai and bi in the binary and
continuous parts. These two vectors of random effects follow a multivariate normal distribution. They are
shared in the survival model, with association parameters ϕa and ϕb, respectively. Therefore, the random
effects account for both the association between the three components of the model and the correlation
between the repeated measurements in the longitudinal process (observations are independent conditional
on the random effects). The joint distribution assumes that the vectors of random effects underlies both the
longitudinal and survival process, the joint distribution of the observed outcomes for individual i is defined
by

p(Ti, δi,Yi|ai, bi; Θ) = p(Ti, δi|ai, bi; Θ)

ni∏

j=1

p(Yij |ai, bi; Θ)

= p(Ti, δi|ai, bi; Θ)

ni∏

j=1

p(Yij |Yij > 0;ai, bi; Θ) p(Yij > 0;ai, bi; Θ)

with Θ the full parameter vector, including the parameters for the binary, continuous and survival out-
comes, the baseline hazard function and the random effects covariance matrix, such that the full conditional
distribution is given by

p(T , δ,Y |a, b; Θ) =

n∏

i=1

p(Ti, δi,Yi|ai, bi; Θ).

The likelihood contribution for the ith subject can be formulated as follows

Li(Θ|Yi, Ti, δi) =

∫

ai

∫

bi

ni∏

j=1

exp
(
X>Bijα+Z>Bijai

)Uij

(
1−

exp(X>Bijα+Z>Bijai)

1 + exp(X>Bijα+Z>Bijai)

)

×
{

1

Yij
√

2πσ2
ε

exp

(
− (log(Yij)− µij)2

2σ2
ε

)}Uij

× λi(Ti|ai, bi)δi exp

(
−
∫ Ti

0

λi(t|ai, bi)dt
)
p(ai, bi)dbidai,

where Uij = I[Yij > 0] and λi(t) = λ0(t) exp{XSi(t)
>
γ + a>i ϕa + b>i ϕb}.

2.2 Bayesian estimation of the TPJM

Define D ≡ {Ti, δi, Yij : i = 1, · · · , n; j = 1, · · · , ni} the observation variables. The goal of the Bayesian
inference is to estimate the posterior distribution π(Θ|D). The joint posterior distribution π(Θ|D) is given
by Bayes theorem as

π(Θ|D) =
p(D|Θ)π(Θ)

π(D)
∝ p(D|Θ)π(Θ),

where p(D|Θ) is the likelihood and π(Θ) is the joint prior. The marginal likelihood π(D) =
∫
Θ
p(D|Θ)π(Θ)dΘ

acts as a normalizing constant. The posterior marginal distribution of each parameter is then obtained by in-
tegrating out the other parameters of the model. In many cases, the posterior distribution is not analytically
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tractable and sampling-based methods like MCMC can be used. Approximate methods like INLA, provide
exact approximations to the posterior at lower cost than sampling-based methods. The INLA methodology
is based on the assumption that the statistical model is a latent Gaussian model, which we show in the next
section for the TPJM.

2.3 Formulation of the TPJM as a latent Gaussian model

Let u ≡ (ηB ,ηC ,ηS ,a, b,α,β,γ,λ,ϕ) be the set of latent Gaussian variables related to the TPJM, where
λ is a vector of coefficients associated with a random walk order one or order two used to approximate the
baseline hazard function λ0(t) of the survival model. Note that the first

∑n
i=1 ni +

∑n
i=1 ni + n elements of

u are the linear predictors of the TPJM and the rest of the elements are the latent unobserved variables.
For that reason, the random field u is termed the latent field.
In particular, we assume ai, bi|Qab ∼ N (0,Q−1ab ), α ∼ N (0, ταI), β ∼ N (0, τβI), γ ∼ N (0, τγI) and
ϕ ∼ N (0, τϕI). The coefficients of the baseline hazard λ are assumed to follow either a random walk one or
random walk two model. These models are stochastic spline models with precision parameter τλ. Thus, the
latent field u is multivariate Gaussian with zero mean and precision matrix Q(θ1), i.e.,

u|θ1 ∼ N (0,Q−1(θ1)).

Note that Q(θ1) is a sparse matrix indexed by a low dimension of parameters θ1. This then implies that
the latent field u is a Gaussian Markov random field (GMRF).

The distribution of the observation variables D is denoted by π(D|u,θ2) and depends on the set of
hyperparameters θ2 that influence the likelihood. They are assumed to be conditionally independent over
the n individuals given the latent Gaussian random field u and hyperparameters θ ≡ (θ1,θ2),

D|u,θ ∼
n∏

i=1

p(di|ui,θ).

Thus, assuming a prior π(θ) for the hyperparameters θ ≡ (θ1,θ2), the posterior of (u,θ) can be written as

π(u,θ|D) ∝ π(θ)π(u|θ)
n∏

i=1

p(di|ui,θ),

∝ π(θ)|Q(θ1)|n/2 exp
[1

2
uTQ(θ1)u+

n∑

i=1

log{p(di|ui,θ)}
]
.

This construction then shows that the TPJM is in fact an LGM since the latent field is a Gaussian Markov
field and each data contribution depends on only one element of the latent field.

The main aim of INLA is then to approximate the posterior marginals π(ui|D), π(θ|D) and p(θj |D).

2.4 INLA

The INLA methodology introduced by Rue and Held (2005) is a major contribution to achieving efficient
Bayesian inference, especially for complex or large models. INLA uses a unique combination of Laplace
Approximations and conditional distributions to approximate the joint posterior density as well as the
marginals of the latent field and hyperparameters. It is thus not a sampling based method like MCMC and
such.
For the sake of brevity, the INLA methodology can be presented in the following three steps:

1. Approximate

π(θ|DDD) =
π(uuu,θ|DDD)

π(uuu|θ,DDD)
≈ π(θ)π(uuu|θ)π(DDD|uuu,θ)

π̃(uuu|θ,DDD)
|u=u∗(θ),

where the Gaussian or Laplace approximation is used to approximate the denominator at the mode
u∗(θ) of the latent field for a given configuration of θ.
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2. Approximate

π(uj |θθθ,DDD) ∝ π(uuu,θ|DDD)

π(uuu−j |uj ,θ,DDD)
,

using a Gaussian approximation (option 1), or in a similar way as mentioned in step 1 (option 2) or
by expanding the numerator and denominator up to a third order Taylor series expansion and then
applying a Laplace approximation (option 3).

3. Use numerical integration to approximate

π(uj |YYY ) ≈
H∑

h=1

π̃(uj |θ∗h,YYY )π̃(θ∗h|YYY )∆h,

from steps 1 and 2. The integration points {θ∗1 , ...,θ∗H} are selected from a rotation using polar
coordinates and based on the density at these points.

2.5 Priors for the hyperparameters

From the formulation of the TPJM as an LGM, the prior for the hyperparameters, π(θθθ), should be specified.
This prior can assume any form while keeping the TPJM an LGM. Amidst the debate about priors, Simpson
et al. (2017) proposed a framework to construct principled priors for hyperparameters, namely penalizing
complexity (PC) priors. These priors are derived based on the distance from a complex model to a simpler
(base) model, with a user-defined parameter that informs the strength of contraction towards the simpler
model. This parameter defines whether the PC priors are vague, weakly informative, or strongly informative
based on the departure from the base model measured by the Kullback-Leibler distance. It is based on the
principle of parsimony, simplifying the interpretation of the results by ensuring that the priors do not overfit.

In our case we have various precision hyperparameters, {Qab, τα, τβ , τγ , τϕ, τλ}. We assign weakly infor-
mative priors to the fixed effects such that τα = τβ = τγ = τϕ = 10−3. We thus need to formulate priors
for the elements of Qab and τλ. For all these hyperparameters (precision and correlation parameters), we
assume the respective PC priors as given in Simpson et al. (2017).
As illustration we give the details for the precision of the first element of a, τa0 . The PC prior is derived as

π(τa0) =
ρ

2
τ−3/2a0 exp(−ρτ−1/2a0 ),

with the user-defined scaling parameter ρ = − ln(v)
w . This parameter is chosen based on the desired tail

behaviour (or strength of contraction towards the base model σa0 = τ
−1/2
a0 = 0) in the sense that v and w

are such that
P [σa0 > w] = v, w > 0, 0 < v < 1.

Larger values of v and w results in higher prior density away from the base model, whereas smaller values
of v places more density closer to the base model.

3 Simulation study

3.1 Settings

We designed simulations studies to compare the performances of R-INLA and frailtypack in terms of bias
of the parameter estimates, coverage probabilities, computation time and convergence rates. The main factor
driving the performance is the model complexity defined by the number of parameters. In particular, the
number of correlated random effects defines the dimension of the integration that needs to be numerically
approximated. We propose two simulation scenarios based on the results obtained from the real data analyses.
The first scenario includes a random intercept in the binary and continuous parts of the TPJM that are
correlated. The second simulation scenario includes an additional random-effect for the individual deviation
from the mean slope in the continuous part, thus 3 correlated random effects. For each scenario, we generate
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1000 datasets with 200 individuals each, corresponding to a small sample size commonly seen in randomized
clinical trials. We first sample the positive longitudinal biomarker repeated measurements from a log-normal
distribution and include the zero values sampled from a binomial distribution. The relationship between the
probability of zero value and the positive values is given by the correlated random effects. Survival times
for the terminal event are generated with an exponential baseline hazard function with a scale of 0.2, an
administrative censoring is assumed to occur at the end of the follow-up (4 years). The rate of zeros is 8%
(SD=1%), which is in between what we observed in our two real datasets (12% of zeros in application 1
and 4% in application 2). A zero value observation corresponds to a patient who experienced a complete
disappearance of his/her target lesions and thus is extremely informative about treatment effect.

The baseline hazard function in the survival part of the model is approximated by a random walk model
with R-INLA (Martino et al. (2011)) such that for m bins of the time axis,

λk − λk−1 ∼ N(0, τλ),

where the PC prior (see Section 2.5) is used as the prior for τλ.
The random walk order one model is a stochastic smoothing spline that smooths based on first order dif-
ferences. The number of bins are not influential (as opposed to knots of other splines) since an increase in
bins only results in an estimate closer to the stochastic model. In the simulations and applications, we use
the random walk order two model that provides a smoother spline since the smoothing is then done on the
second order. See Van Niekerk et al. (2020) for more details on the use of these random walk models as
Bayesian smoothing splines. This approximation is different with frailtypack that uses cubic M-splines with
5 knots. A penalization ensures that the baseline hazard is smooth (a smoothing parameter is chosen using
an approximate cross-validation criterion from a separate Cox model). The Levenberg-Marquardt algorithm,
a robust Newton-like algorithm maximizes the log-likelihood function with frailtypack (Marquardt (1963)).
The convergence of the algorithm depends on three conditions: The difference between the log-likelihood,
the estimated coefficients and the gradient of the log-likelihood of two consecutive iterations must be under
10−3. We use a Monte-Carlo approximation for the approximation of the integrals over the random effects in
the likelihood function, with 1000 integration points which is a reasonable tradeoff between the precision of
the approximation and computation time. The simulation studies are performed with 80 CPUs, frailtypack
uses Message Passing Interface (MPI) for parallel computation while the conjunction of R-INLA with the
PARDISO library provides a high performance computing environment with parallel computing support
(Schenk and Gärtner (2004)). In practice, the 80 CPUs are only useful to reduce the computation time
with frailtypack because the computation time with INLA is very low regardless of the number of threads
because of the small sample size and number of hyperparameters.

3.2 Results

In the results, we are comparing a Bayesian and frequentist method and for this we have to keep in mind
that each has a different criteria for evaluation of the method. Frequentist bias is used to evaluate the results
from frailtypack while the plausibility of the result based on 95% credible intervals are used to evaluate the
results from R-INLA (Hespanhol et al. (2019)). However, we are interested in the Bayesian approximation
of the MLE (i.e. non informative priors) and therefore provide an interpretation in this context.

3.2.1 Scenario 1: Two correlated random effects

The fixed effect parameters from the binary and continuous parts are properly estimated with both algo-
rithms, with similar precision and coverage probabilities close to the expected 95% level. The parameter
for the treatment effect in the survival part (γ1 = 0.2) is associated to a larger variability with frailtypack
(γ̂1 = 0.22, SD=0.35, CP=96%) compared to R-INLA (γ̂1 = 0.19, SD=0.27, CP=96%). The true value of
the standard deviation of the random intercept in the binary part (σa = 1) is within the 95% credible interval
with R-INLA (σ̂a = 0.86, SD=0.19), with a slightly lower posterior mean value compared to frailtypack’s
estimate (σ̂a = 0.97, SD=0.22). The random intercept’s standard deviation in the continuous part is found
similar with both algorithms but the correlation between the random intercepts of the binary and continuous
parts (corrab = 0.5) has a reduced variability estimate with R-INLA ( ˆcorrab = 0.48, SD=0.10) compared
to frailtypack ( ˆcorrab = 0.51, SD=0.15). The main difference observed is the estimation of the parameters
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for the association of the random effects with the risk of event, which links the biomarker to the termi-
nal event. The association involving the random intercept from the binary part (ϕa = 1) has much lower
variability with R-INLA (ϕ̂a = 1.00, SD=0.11, CP=99%) and is unbiased with good coverage with frailty-
pack (ϕ̂a = 1.08, SD=0.82, CP=93%). The association involving the random intercept from the continuous
(ϕb = 1) part is biased upwards with frailtypack with large variability (ϕ̂b = 1.33, SD=1.13, CP=92%),
while R-INLA’s posterior estimate recovers the true value (ϕ̂b = 1.05, SD=0.15, CP=99%). This could be
due to the small sample size problems that cause more convergence issues under the frequentist framework.
Although R-INLA yields accurate posterior estimates with small variability for these parameters, the cov-
erage probabilities are higher than the expected 95%. The computation times are much lower with R-INLA
(14 seconds per model, SD=1) compared to frailtypack (66 seconds per model, SD=26). Finally, all models
converged with R-INLA while 11% of the 1000 models did not reach convergence with frailtypack.

Table 1: Simulations with two correlated random effects
Package R-INLA frailtypack

Est.∗ (SD†) [CP‡] Est. (SD) [CP]
Binary part (SLD>0 versus SLD=0)
intercept α0 = 4 3.96 (0.35) [94%] 4.02 (0.38) [95%]
time (year) α1 = −0.5 -0.51 (0.11) [95%] -0.51 (0.12) [95%]
treatment (B/A) α2 = −0.5 -0.49 (0.45) [96%] -0.50 (0.47) [95%]
time:treatment (B/A) α3 = 0.5 0.50 (0.18) [94%] 0.51 (0.18) [95%]

Continuous part (E[Yij |Yij > 0])
intercept β0 = 2 2.00 (0.05) [95%] 2.00 (0.06) [92%]
time (years) β1 = −0.3 -0.30 (0.01) [95%] -0.30 (0.01) [95%]
treatment (B/A) β2 = −0.3 -0.30 (0.08) [94%] -0.30 (0.09) [91%]
time:treatment (B/A) β3 = 0.3 0.30 (0.02) [94%] 0.30 (0.02) [95%]
residual S.E. σε = 0.3 0.30 (0.01) [89%] 0.30 (0.01) [94%]

Death risk
treatment (B/A) γ1 = 0.2 0.19 (0.27) [96%] 0.22 (0.35) [96%]

Association
Intercept (binary part) ϕa = 1 1.00 (0.11) [99%] 1.08 (0.82) [93%]
Intercept (continuous part) ϕb = 1 1.05 (0.15) [99%] 1.33 (1.13) [92%]

Random effects’s standard deviation
intercept (binary part) σa = 1 0.86 (0.19) 0.97 (0.22)
intercept (continuous part) σb = 0.5 0.50 (0.03) 0.50 (0.03)

corrab = 0.5 0.48 (0.10) 0.51 (0.15)
Computation time
80 CPUs - Intel Xeon E5-4627 v4 2.60 GHz 14 sec. (1) 66 sec. (26)
Convergence rate 100% 89%
∗ Posterior mean, † Standard deviation of the posterior mean, ‡ Coverage probability

3.2.2 Scenario 2: Three correlated random effects

With an additional random effect parameter compared to scenario 1, the fixed effects parameters are still
properly estimated with R-INLA. The coverage probabilities are low with frailtypack for the slope and
treatment by slope parameters in the continuous part (β1 = −0.3 and β3 = 0.3), while the parameter

estimates remain unbiased. The variability for these two parameters is lower with R-INLA (β̂1 = −0.30,

SD=0.06, CP=94% and β̂3 = 0.30, SD=0.08, CP=95%) compared to frailtypack (β̂1 = −0.25, SD=0.11,

CP=46% and β̂3 = 0.29, SD=0.14, CP=44%). As observed in the first scenario, the treatment effect’posterior
estimate in the survival model has lower variability with R-INLA (γ̂1 = 0.20, SD=0.30, CP=95%), moreover
the coverage probability for this parameter is lower than observed with frailtypack (γ̂1 = 0.24, SD=0.49,
CP=84%). For the random effects covariance structure estimation, the posterior mean from R-INLA is
slightly lower than the true value of the random intercept’s standard deviation in the binary part (σ̂a = 0.86,
SD=0.15) with lower variability for the standard deviation and correlation terms overall. The association
parameters (ϕa = 1, ϕb0 = 1, ϕb1 = 1) are recovered well and have much lower variability with R-INLA
(ϕ̂a = 1.03, SD=0.13, CP=98%, ϕ̂b0 = 1.07, SD=0.14, CP=98%, ϕ̂b1 = 1.07, SD=0.14, CP=98%) compared
to frailtypack (ϕ̂a = 0.87, SD=1.86, CP=91%, ϕ̂b0 = 1.03, SD=1.82, CP=89%, ϕ̂b1 = 1.44, SD=1.70,
CP=91%), but still with conservative coverage probabilities. Computation times remain much lower with
R-INLA (19 seconds per model, SD=2) compared to frailtypack (159 seconds per model, SD=52) for
which the time increased substantially when adding the third random-effect. Moreover, the convergence rate
of the model is reduced with frailtypack for this scenario (82%), because the model complexity increased
while it remains 100% with R-INLA.
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Table 2: Simulations with three correlated random effects
Package R-INLA frailtypack

Est.∗ (SD†) [CP‡] Est. (SD) [CP]
Binary part (SLD>0 versus SLD=0)
intercept α0 = 4 3.95 (0.35) [94%] 4.03 (0.39) [94%]
time (year) α1 = −0.5 -0.52 (0.12) [94%] -0.51 (0.12) [95%]
treatment (B/A) α2 = −0.5 -0.51 (0.47) [95%] -0.50 (0.50) [94%]
time:treatment (B/A) α3 = 0.5 0.51 (0.18) [95%] 0.50 (0.18) [96%]

Continuous part (E[Yij |Yij > 0])
intercept β0 = 2 2.00 (0.05) [96%] 1.99 (0.06) [88%]
time (years) β1 = −0.3 -0.30 (0.06) [94%] -0.25 (0.11) [46%]
treatment (B/A) β2 = −0.3 -0.30 (0.08) [96%] -0.29 (0.09) [87%]
time:treatment (B/A) β3 = 0.3 0.30 (0.08) [95%] 0.29 (0.14) [44%]
residual S.E. σε = 0.3 0.29 (0.01) [88%] 0.30 (0.01) [96%]

Death risk
treatment (B/A) γ1 = 0.2 0.20 (0.30) [95%] 0.24 (0.49) [84%]

Association
Intercept (binary part) ϕa = 1 1.03 (0.13) [98%] 0.87 (1.86) [91%]
Intercept (continuous part) ϕb0

= 1 1.07 (0.14) [98%] 1.03 (1.82) [89%]
Slope (continuous part) ϕb1

= 1 1.07 (0.14) [98%] 1.44 (1.70) [91%]
Random effects’s standard deviation
intercept (binary part) σa = 1 0.86 (0.15) 1.07 (0.24)
intercept (continuous part) σb0

= 0.5 0.50 (0.03) 0.50 (0.04)
slope (continuous part) σb1

= 0.5 0.49 (0.03) 0.58 (0.10)
corrab0

= 0.5 0.47 (0.10) 0.48 (0.16)
corrab1

= 0.5 0.46 (0.12) 0.58 (0.16)
corrb0b1

= −0.2 -0.19 (0.09) -0.14 (0.19)
Computation time
80 CPUs - Intel Xeon E5-4627 v4 2.60 GHz) 19 sec. (2) 159 sec. (52)
Convergence rate 100% 82%
∗ Posterior mean, † Standard deviation of the posterior mean, ‡ Coverage probability

3.3 Conclusions

Our method comparison suggests that the frequentist approach, implemented in frailtypack, reaches some
limitations when fitting the more complex TPJMs, compared to the Bayesian approach implemented in
R-INLA. Convergence rates are lower and estimation of the association parameters is highly variable with
frailtypack. However, a representation of the baseline survival curves estimated under both scenarios is
displayed in Figure 1. The median of the estimated survival curves is slightly lower than the true survival with
R-INLA although the credible interval contains the true curve, while the point estimate from frailtypack
is closer to the true curve but yields much larger confidence intervals.

4 Application

We applied the Bayesian TPJM to two cancer clinical trials, the GERCOR and the PRIME studies. A
comparison with frailtypack is provided only for the GERCOR data since this approach did not converge
on the PRIME study. We used the same parameterizations for R-INLA and frailtypack, as detailed in
the simulation studies. In the context of a Bayesian approximation of the MLE, we provide indications of
the p-value for both frailtypack and INLA to ease the interpretation and the comparison of the results.

Table 3: Description of the GERCOR and PRIME study datasets
Study GERCOR PRIME

Treatment
arm A arm B arm A arm B

FOLFIRI/FOLFOX6 FOLFOX6/FOLFIRI FOLFOX4 Panitumumab/FOLFOX4
Number of patients enrolled 109 111 593 590
Number of patients for the analysis 101 104 223 219
number of repeated measurements of the SLD 748 727 1192 1081
Number of zero values (%) 118 (16.2%) 56 (7.5%) 47 (3.8%) 52 (4.6%)
Number of death (%) 83 (82.2%) 82 (78.8%) 164 (73.5%) 164 (74.9%)
Median OS (years) 1.8 (1.4-2.3) 1.8 (1.5-2.2) 1.7 (1.5-1.9) 1.4 (1.3-1.7)
KRAS exon 2 at codons 12 and 13
Nonmutated 132 (59.2%) 128 (58.4%)
Mutated 91 (40.8%) 91 (41.6%)
Not available 101 (100%) 104 (100%)
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Figure 1: Quantiles at 2.5%, 50% and 97.5% of the baseline survival curves estimated with frailtypack and
R-INLA in the simulations (Section 3).

4.1 GERCOR study

4.1.1 Description

It is a randomized clinical trial investigating two treatment strategies that included a total of 220 patients
with metastatic colorectal cancer. The reference strategy (arm A) corresponds to FOLFIRI (irinotecan)
followed by FOLFOX6 (oxaliplatin) while arm B involves the reverse sequence. Patients were randomly
assigned from December 1997 to September 1999 and the date chosen to assess overall survival was August
30, 2002. Complete data are available on 205 individuals for data analysis. Among them, 165 (80%)
died during the follow-up. There are 1475 repeated measurements for the biomarker, 174 of which are
zero values (12%). A summary of the dataset structure is given in Table 3. Our model uses death as
the terminal event and the repeated SLD measurements (in centimeters) as the semicontinuous biomarker.
Additional baseline covariates collected at the start of the study are also included, including performance
status (0/1/2), lung metastatic site (Y/N), previous adjuvant radiotherapy (Y/N), previous surgery (no
surgery/curative/palliative) and metastases (metachronous/synchronous). The first analysis of this dataset
(Tournigand et al. (2004)) did not find any significant difference between the two treatment strategies using
classic survival analysis methods (i.e. log-rank tests). A trivariate joint model has been applied to this study
for the simultaneous analysis of the longitudinal SLD, recurrent events (progression of lesions not included
in the SLD or new lesions) and the terminal event (Król et al. (2018)). A flexible mechanistic model using
ordinary differential equation was proposed to fit the biomarker dynamics. The results shows a greater
decline of the SLD for treatment arm A compared to treatment arm B. Moreover, the model finds a strong
association between the biomarker model and the risk of terminal event. However the interpretation of this
treatment effect is difficult due to the non-linear transformation applied to the outcome (Box-Cox) and the
use of a non-linear mechanistic model. Finally, a conditional two-part joint model was recently proposed
(Rustand et al. (2020)), which showed a significant treatment effect on the positive values of the biomarker
(and no treatment effect on the probability of zero value). The model was able to show that when taking
into account this treatment effect on the biomarker, the risk of terminal event is not significantly different
between the two treatment arms. However, the interpretation of the treatment effect on the biomarker value
could have been impacted by a logarithm transformation used on the outcome. Instead, we use a GLM with
log link function here for the continuous part of the biomarker.
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Figure 2: Baseline survival curves and their 95% confidence and credible intervals obtained from the appli-
cation of the TPJM to the GERCOR study with frailtypack and R-INLA, respectively.

4.1.2 Results

As presented in Table 4, the fixed effect parameter estimates in the binary, continuous and survival parts
are quite similar between the frequentist and Bayesian approaches, with a slightly lower variability for the
parameters estimated with R-INLA. Treatment arm A (reference treatment) is associated with a significant

reduction in the SLD conditional on a positive value with R-INLA (β̂1 = −0.33, SD=0.07) and frailtypack

(β̂1 = −0.35, SD=0.08), compared to treatment arm B. This is because the treatment by time interaction

balances out the negative slope obtained, i.e., with R-INLA (β̂9 = 0.30, SD=0.10) and with frailtypack

(β̂9 = 0.33, SD=0.10). Therefore, conditional on a positive value of the SLD, treatment arm A is associated
with a reduction of ∼ 26% of the SLD per year (1−exp(−0.30)) while treatment arm B is associated with no
change over time. The hazard ratio of treatment arm B versus treatment arm A that evaluates the change in
the risk of death was similar between R-INLA (HR=1.30, CI 0.84− 1.92) and frailtypack (HR=1.26, CI
0.85−1.79). The main difference between R-INLA and frailtypack is in the estimation of the parameters for
the association between the two-part model for the biomarker and the survival model. There is a positive and
significant association between the random intercept (ϕ̂a = 0.11, SD=0.03) from the binary part, the random
intercept (ϕ̂b0 = 0.66, SD=0.07) and the random slope (ϕ̂b1 = 0.83, SD=0.26) from the continuous part and
the risk of event with R-INLA. This association has a slightly lower effect size and much larger variability
with frailtypack (ϕ̂a = 0.13, SD=0.13, ϕ̂b0 = 0.46, SD=0.37 and ϕ̂b1 = 0.55, SD=0.60), so that the effects
are not significant. This is in line with our simulation results (scenario 1) where the association structure
was estimated with better precision with R-INLA. The computation time is much longer with frailtypack
compared to R-INLA, the latter fits the data in less than a minute. The computation time for frailtypack
increases quickly with the sample size and the model complexity (number of parameters and dimension of
the random effects). The model was estimated in 60 minutes with frailtypack with 8 CPUs and this reduces
to 10 minutes with 80 CPUs. The differences found in the association structure estimates is important when
assessing the relationship between the biomarker dynamics and the risk of event. For instance, let’s assume
a clinician is interested in the top 15% patients who had the largest SLD increase during follow-up compared
to the average patient. Their random effect b1i should be higher than 1 standard deviation, that is from
Table 4, b1i > 0.51 with R-INLA (respectively b1i > 0.52 with frailtypack). Conditional on b1i > 0.51
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(respectively b1i > 0.52), the mean values of the random effects can be derived by sampling from a conditional
multivariate normal distribution with correlation matrix given in Table 4. These conditional means are 2.35,
−0.14 and 0.77 for a, b0 and b1, respectively (2.25, −0.20 and 0.80 with frailtypack). Therefore, these top
15% individuals increase their chance to have the terminal event (i.e., to die) measured by an hazard ratio
of HR = exp(0.11 ∗ 2.35 + 0.66 ∗ (−0.14) + 0.83 ∗ 0.77) = exp(0.81) = 2.24, CI=1.46 − 3.51, compared to a
patient who has an average longitudinal SLD profile. Frailtypack underestimates this risk as we obtain HR
= exp(0.13 ∗ 2.25 + 0.46 ∗ (−0.20) + 0.55 ∗ 0.80) = exp(0.64) = 1.90, CI=1.21− 3.05. The confidence intervals
were obtained by sampling parameters from the Hessian matrix with frailtypack and the credible intervals
from the posterior distribution of the parameters with R-INLA. Figure 2 shows a similar estimation of the
baseline survival curves obtained with frailtypack and R-INLA.

Table 4: Application of the Bayesian and frequentist two-part joint models with shared random effects to
the GERCOR study with the R packages R-INLA and frailtypack

Package R-INLA frailtypack

Est.† (SD‡) Est. (SD)
Binary part (SLD>0 versus SLD=0)
intercept α0 5.05*** (0.68) 5.10*** (0.69)
time (year) α1 -2.11*** (0.39) -2.14*** (0.41)
treatment (B/A) α2 -1.17 (0.69) -1.24 (0.69)
PS (1 vs. 0) α3 1.83** (0.57) 1.97*** (0.58)
PS (2 vs. 0) α4 1.72 (1.08) 1.72 (1.18)
Previous radio (Y/N) α5 0.82 (0.70) 0.85 (0.72)
Lung (Y/N) α6 1.84** (0.67) 2.14** (0.75)
time:treatment (B/A) α7 0.30 (0.46) 0.31 (0.47)

Continuous part (E[Yij |Yij > 0])
intercept β0 1.99*** (0.16) 2.04*** (0.23)
time (years) β1 -0.33*** (0.07) -0.35*** (0.08)
treatment (B/A) β2 -0.28** (0.10) -0.35*** (0.10)
PS (1 vs. 0) β3 0.42*** (0.11) 0.42*** (0.11)
PS (2 vs. 0) β4 0.53** (0.17) 0.55** (0.17)
Previous surgery (curative) β5 -0.53** (0.20) -0.61** (0.23)
Previous surgery (palliative) β6 0.00 (0.15) -0.02 (0.19)
Previous radio (Y/N) β7 -0.25* (0.12) -0.22 (0.13)
Metastases (metachronous vs. synchronous) β8 0.43** (0.17) 0.46** (0.16)
time:treatment (B/A) β9 0.30** (0.10) 0.33** (0.10)
residual S.E. σε 0.39*** (0.00) 0.42*** (0.01)

Death risk
treatment (B/A) γ1 0.24 (0.21) 0.21 (0.19)
PS (1 vs. 0) γ2 0.81*** (0.22) 0.78*** (0.21)
PS (2 vs. 0) γ3 1.59*** (0.34) 1.58*** (0.33)
Previous surgery (curative) γ4 -0.93* (0.42) -0.97* (0.42)
Previous surgery (palliative) γ5 -0.51 (0.30) -0.53 (0.30)
Metastases (metachronous vs. synchronous) γ6 0.95** (0.35) 0.99** (0.34)

Association
Intercept (binary part) ϕa 0.11*** (0.03) 0.13 (0.13)
Intercept (continuous part) ϕb0

0.66*** (0.07) 0.46 (0.37)
Slope (continuous part) ϕb1

0.83** (0.26) 0.55 (0.60)
Random effects’s standard deviation
intercept (binary part) σa 2.67 2.81
intercept (continuous part) σb0

0.67 0.71
slope (continuous part) σb1

0.51 0.52
corrab0

0.49 0.55
corrab1

0.57 0.53
corrb0b1

-0.14 -0.18
Computation time (Intel Xeon E5-4627 v4 2.60 GHz)
8 CPUs < 1 minute 60 minutes
80 CPUs < 1 minute 10 minutes
† Posterior mean, ‡ Posterior standard deviation , ***p < 0.001, **p < 0.01, *p < 0.05

4.2 PRIME study

4.2.1 Description

The Panitumumab Randomized Trial in Combination with Chemotherapy for Metastatic Colorectal Cancer
to Determine Efficacy (PRIME) study is a more challenging application for fitting the TPJM because it
includes information about the KRAS mutation status (exon 2 codons 12/13), which has been shown to
impact the clinical response to treatment in metastatic colorectal cancer patients (Van Cutsem et al. (2008);
Normanno et al. (2009); Bokemeyer et al. (2008)). It is therefore an important risk modifier and clinicians
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are interested to assess treatment by mutation interaction in order to tailor treatment to patients’ genetic
risk (Marabelle et al. (2020)). This dataset is freely available on ProjectDataSphere.org.

The PRIME study is a randomized clinical trial that compares the efficacy and safety of panitumumab
(anti-EGFR) in combination with FOLFOX4 (chemotherapy) with those of FOLFOX4 alone in the first-line
treatment of patients, according to KRAS exon 2 status (Wild type or Mutant type). Between August 2006
and February 2008, 1183 patients were randomly assigned to receive treatment arm A (FOLFOX4 alone) or
treatment arm B (panitumumab + FOLFOX4). The data for analysis includes a subset of 442 patients (i.e.,
741 excluded from the publicly available dataset). There are 2372 repeated measurements of the SLD, 99 of
which are zero values (4%). The small rate of zero measurements in the SLD distribution leads to a large
variability in the binary part, however zeros corresponds to patients with a complete shrinkage of their target
lesions, which is a very relevant information for clinicians about treatment effect. The number of individual
repeated measurements for this biomarker varies between 1 and 24 with a median of 5. The death rate is 74%,
corresponding to 328 deaths. Summary statistics of the dataset are given in Table 3. Additional baseline
covariates collected at the start of the study are also included, including metastases to liver at study entry
(Y/N), the number of baseline metastases sites (1/2/3/4+), age (<60/60-69/>=70) and baseline ECOG
performance status (0/1/2). We used a global backward selection procedure for each component of the
model to select the covariates to include in the final joint model. The conclusions of the study are presented
in Douillard et al. (2013) and show the importance of taking into account the mutation status when assessing
treatment effect. Among patients without mutated KRAS, treatment arm B was associated with a slightly
significant reduced risk of death compared to treatment arm A. For patients with mutated KRAS, treatment
arm B was associated with a non-significant increase in the risk of death compared to treatment arm A.
In the results, the mean parameters and their standard deviation are obtained by taking the ML estimates
and the inverse Hessian matrix with frailtypack while the posterior mean and standard deviation of the
posterior distribution were used with R-INLA.

0 1 2 3 4

0
5

1
0

1
5

Wild type KRAS

Time (years)

S
L

D

0 1 2 3 4

0
5

1
0

1
5

Mutant KRAS (exon 2 codons 12/13)

Time (years)

S
L

D

Mean SLD over time (PRIME study)

FOLFOX4
FOLFOX4+Panitumumab

Figure 3: Mean biomarker value according to treatment received for patients with wild type KRAS status
(left) and mutant KRAS status (right). The 95% credible intervals are obtained by resampling from the
posterior parameter distributions.

4.2.2 Results

As presented in Table 5, in the binary part of the TPJM, the intercept is very large (α̂0 = 21.32, SD=3.99),
corresponding to a high probability of positive value at baseline. This probability is increased for patients
with mutated KRAS (α̂3 = 5.63, SD=5.73) and patients receiving treatment arm B (α̂2 = 2.41, SD=4.70)
but with large standard deviations so that these effects are not significant. The slope parameter with time
is negative and significant (α̂1 = −10.43, SD=1.95), meaning that patients without mutated KRAS and
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receiving treatment A have a higher odds of zero SLD value over time, i.e., complete response to treatment.
This odds decreases, but not significantly, among patients with either mutated KRAS (α̂6 = 1.68, SD=2.90)
or receiving treatment B (α̂5 = 1.99, SD=2.24) and is slightly attenuated in patients with both mutated
KRAS and receiving treatment arm B (α̂7 = −1.38, SD=5.32).

In the continuous part of the TPJM, patients with the wild type KRAS status and in treatment arm A
are associated with a decrease in the SLD value over time conditional on a positive SLD value (β̂1 = −1.71,

SD=0.09). This reduction of SLD over time is attenuated in patients with mutated KRAS (β̂12 = 1.22,

SD=0.14) or receiving treatment B (β̂11 = 0.98, SD=0.13). Patients with the KRAS mutation and who
received treatment B have a similar SLD trend over time as patients with the KRAS mutation who received
treatment A or patients who received treatment B but with the wild type KRAS status because of the
negative interaction term between time, treatment and KRAS status (β̂13 = −1.16, SD=0.20).

In the survival part, the model shows no significant difference between treatment arms for the risk of
death (γ̂1 = 0.10, SD=0.16). Besides, patients with mutated KRAS have similar risk of death compared to
patients with the wild type (γ̂2 = 0.21, SD=0.17), so do patients with mutated KRAS receiving treatment
B (γ̂3 = 0.04, SD=0.23). The random effect from the binary part and the random slope from the continuous
part are not associated to the risk of death (ϕ̂a = 0.00, SD=0.01 and ϕ̂b1 = 0.13, SD=0.15) but the random
intercept from the continuous part (ϕ̂b0 = 0.36, SD=0.09) have a positive and highly significant association
with the risk of event. This means that conditional on a positive value, the individual deviation from the
mean baseline value of the SLD is predictive of the risk of event. Similarly to the GERCOR study, we can
compare the top 15% patients with the smallest SLD at baseline to the average patient, their risk of death
is reduced by 32% (HR=0.68, CI=0.61− 0.78).

In conclusion, we did not find a direct effect of treatment B vs. A on the risk of death while the initial
study (Douillard et al. (2013)) finds a slightly significant improvement in overall survival for patients with
wild type KRAS status (HR=0.78, CI=0.62 − 0.99), likely because of the reduced sample size available for
our analysis (publicly available dataset only includes 37% of the original set of patients). Interestingly, the
analysis of the continuous part of the TPJM suggests that the reduction of the SLD over time conditional on
a positive value is attenuated with treatment B compared to treatment A for patients with wild type KRAS
status. A graphical representation of the mean biomarker evolution over time according to KRAS mutation
status and treatment received is depicted in Figure 3. It confirms the suggested significant difference between
treatment arms for patients with wild type KRAS status and shows no treatment effect for patients with
mutant KRAS.

5 Discussion

In this article, we developed a Bayesian estimation approach based on the INLA algorithm for two-part joint
models for a longitudinal semicontinuous biomarker and a terminal event. We also provided a comparison
with a frequentist alternative approach previously implemented into the frailtypack package, using small
sample sizes as seen in cancer clinical trial evaluation. The frequentist estimation raises several limitations
both in terms of model complexity and computation time. The Bayesian estimation proposed in the R
package R-INLA has been recently introduced to fit complex joint models (Van Niekerk, Bakka, Rue, and
Schenk (2019)) but to our knowledge, has never been proposed for TPJMs. Accounting for the semicontinuous
nature of the biomarker, i.e. the SLD, and being able to fit joint models with more complex association
structures between the biomarker and the terminal event, can be quite relevant in clinical applications by
providing critical insights into the direct and indirect effect of a treatment on the event of interest. This was
illustrated in our simulations and applications to two randomized cancer clinical trials.

In our simulation studies, the estimation with R-INLA was found superior to frailtypack in terms
of computation time and precision of the fixed effects estimation. The point estimates from frailtypack
yielded closer results to the true values of the random effects’ standard deviations, the residual error term
and the baseline hazard function than the posterior mean from R-INLA, even though R-INLA recovered
all parameters well based on the estimated credible intervals.

Our first application to the GERCOR randomized clinical trial investigating two treatment lines to treat
metastatic colorectal cancer shows some differences between the two estimation approaches. In line with
our simulations, the variability of the parameter estimates is reduced with R-INLA, in particular for the
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Table 5: Application of the Bayesian two-part joint model with shared random effects to the PRIME study
with the R package R-INLA

Package R-INLA

Est.† (SD‡)
Binary part (SLD>0 versus SLD=0)
intercept α0 21.32*** (3.99)
time (year) α1 -10.43*** (1.95)
treatment (B/A) α2 2.41 (4.70)
kras (MT/WT) α3 5.63 (5.73)
treatment (B/A):kras (MT/WT) α4 3.66 (8.43)
time:treatment (B/A) α5 1.99 (2.24)
time:kras (MT/WT) α6 1.68 (2.90)
time:treatment (B/A):kras (MT/WT) α7 -1.38 (5.32)

Continuous part E[Yij |Yij > 0]
intercept β0 2.41*** (0.17)
time (years) β1 -1.71*** (0.09)
treatment (B/A) β2 -0.17 (0.10)
kras (MT/WT) β3 -0.20 (0.11)
liver metastases (Y/N) β4 0.63*** (0.14)
ECOG (symptoms but ambulatory vs. fully active) β5 0.19* (0.08)
ECOG (in bed less than 50% of the time vs. fully active) β6 0.52** (0.18)
baseline metastases sites (2 vs. 1) β7 0.08 (0.12)
baseline metastases sites (3 vs. 1) β8 0.26* (0.12)
baseline metastases sites (4+ vs. 1) β9 0.19 (0.12)
treatment (B/A):kras (MT/WT) β10 0.19 (0.15)
time:treatment (B/A) β11 0.98*** (0.13)
time:kras (MT/WT) β12 1.22*** (0.14)
time:treatment (B/A):kras (MT/WT) β13 -1.16*** (0.20)
residual S.E. σε 0.31 (0.01)

Death risk
treatment (B/A) γ1 0.10 (0.16)
kras (MT/WT) γ2 0.21 (0.17)
treatment (B/A):kras (MT/WT) γ3 0.04 (0.23)
age (60-69 vs. <60) γ4 0.08 (0.13)
age (70+ vs. <60) γ5 0.22 (0.14)
liver metastases (Y/N) γ6 0.03 (0.23)
ECOG (symptoms but ambulatory vs. fully active) γ7 0.30** (0.12)
ECOG (in bed less than 50% of the time vs. fully active) γ8 0.81** (0.26)
baseline metastases sites (2 vs. 1) γ9 0.12 (0.20)
baseline metastases sites (3 vs. 1) γ10 0.32 (0.20)
baseline metastases sites (4+ vs. 1) γ11 0.43* (0.21)

Association
Intercept (binary part) ϕa 0.00 (0.01)
Intercept (continuous part) ϕb0

0.36*** (0.09)
Slope (continuous part) ϕb1

0.13 (0.15)
Random effects’s standard deviation
intercept (binary part) σa 11.17
intercept (continuous part) σb0

0.74
slope (continuous part) σb1

0.74
corrab0

0.03
corrab1

0.84
corrb0b1

-0.13
† Posterior mean, ‡ Posterior standard deviation , ***p < 0.001, **p < 0.01, *p < 0.05

association parameters between the biomarker and the survival outcome where R-INLA concluded to a
strong association unlike frailtypack, which found a non-significant association with an attenuated effect
size. The second application to the PRIME study reflects upon the concept that treatment response might
depend on genetic alterations or tumor biomarker status (DNA/RNA/protein features). There is now a
great interest in identifying subgroups of patients with specific patterns of responses however most methods
provide an average effect of covariates. Instead, our model can distinguish complete responders (i.e. SLD=0)
from partial responders (i.e. SLD >0). This leads also to an increase in model complexity as additional
covariates and random effects are included in each submodel of the TPJM. The frequentist approach proposed
in frailtypack can have convergence issues or sometimes cannot be fitted at all as this was the case for the
PRIME study. Only the Bayesian approach could be used in that situation. Interestingly, the analysis of the
continuous part of the TPJM suggested that the subgroup of patients with the KRAS mutation receiving
treatment B had a similar decrease of the SLD over time compared to the KRAS mutation group receiving
treatment A or patients who received treatment B with wild type KRAS status. Therefore, the lack of
response to the addition of anti-EGFR to FOLFOX4 chemotherapy was not fully explained by the KRAS
mutation status. This could motivate further investigations of the interaction between KRAS mutation and
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anti-EGFR therapies to treat advanced colorectal cancer patients, in particular by including information on
other somatic tumour mutations (e.g., BRAF or NRAS mutations).

Our work has several limitations. Our applications focused on clinical trials of very advanced cancers,
which often have high death rates and small proportions of complete responses (i.e. SLD=0). In situa-
tions where we have a higher proportion of complete responders, the relative performances of R-INLA vs.
frailtypack could be different. The conclusions might be different for different settings (i.e. with higher zero
rate and reduced censoring). For instance a meta-analysis evaluating the responses among non-Hodgkin’s
Lymphoma patients estimated complete response rates (i.e. SLD= 0) ranging from 1.2% to 84% in the differ-
ent pooled clinical trials (Mangal et al. (2018)). We also notice that the two models estimated with R-INLA
and frailtypack are not completly comparable because of the difference in the approximation of the baseline
hazard function. Besides the shared random effects, other association structures have also been proposed
such as the current value association, i.e., it uses the current level of the biomarker, and is available in frailty-
pack. For the TPJMs, the current value of the biomarker is defined as E[Yij ] = Prob(Yij > 0)E[Yij |Yij > 0],
which is non linear. It cannot be directly defined as part of the latent gaussian model and more work is
warranted to be included in R-INLA. It would be also interesting to consider a Bayesian development for
the marginal TPJM we recently proposed (Rustand, Briollais, and Rondeau (2020)). Finally, the definition
of the hyperparameter prior distributions are an important aspect of Bayesian estimation. In this work,
the PC priors provided a general setting for the priors since they provide a natural avenue to incorporate
knowledge from the practitioner about the expected size of the parameter and they are constructed to be
proper and avoid overfitting. Alternative prior choices for the hyperparameters can be used in R-INLA if
the practitioner possesses motivation for it from expert or prior knowledge.

The reduction in the computation times with R-INLA was beyond our expectations. It improves drasti-
cally the applicability of the Bayesian estimation for complex models such as the TPJMs and other families
of joint models, such as a bivariate joint model for recurrent events and a terminal event or a trivariate joint
model for a longitudinal biomarker, recurrent events and a terminal event, which are currently available
in frailtypack. Finally, R-INLA can accommodate multiple longitudinal outcomes while frailtypack is
currently limited to a single longitudinal outcome.
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5.3 Additional remarks

5.3.1 On the association structure

In this Chapter, we only focused on the shared random effects association structure presented in
Chapter 2 and proposed in Chapter 3 and 4. We also investigated the possibility to use a current
level association, which is available in frailtypack as described in Chapter 3. The current level
association is also available with R-INLA in the context of standard joint models. However,
the “current value” of a two-part model is non linear as illustrated in Chapter 4 and therefore
the two-part joint model with a current value association cannot be directly formulated as a
latent GMRF model. Further developments are required to use a current value association for
the two-part joint model with R-INLA.

5.3.2 On the marginal two-part joint model

Similarly, the marginal two-part model uses a modified lognormal distribution to account for the
probability of positive value and therefore requires further developments to be estimated with
R-INLA. We were therefore only interested in a conditional TPJM in this thesis when focusing
on R-INLA.

5.3.3 On the prior distributions

When the data does not provide sufficient information to distinguish each subgroup of the popu-
lation defined by each category of the covariates included in the model, the Bayesian estimation
of the parameters relies mostly on the non informative prior (with minimal influence on the
inference) and concludes to no significant covariate effect while the frequentist estimation faces
unstability (because the parameter estimates only depend on the observed data distribution), as
illustrated in the application to the PRIME study.



Chapter 6

General discussion

6.1 Conclusion on the thesis work

The objective of this thesis was to develop statistical methods for the analysis of cancer clinical
trials with a focus on the repeated tumor measurements along with survival times. We propose a
joint modeling approach for the simultaneous study of the repeated measurements of the tumor
size of target lesions (i.e., SLD) and the risk of death. The particular distribution of the biomarker
(i.e., semicontinuous) requires an appropriate methodology.

Firstly, we proposed a method for the application of a conditional two-part joint model to
analyze the repeated measurements of the SLD and the survival times in a cancer clinical trial.
The biomarker distribution is decomposed in order to evaluate both the effect of covariates on
the probability of a positive value and the conditional mean of the positive values. We pro-
vided an efficient estimation method of the parameters using a maximum penalized likelihood
approach. We proposed three different forms for the association structure that allow to answer
different questions of interest. With the shared random effects association, the proportional
hazards submodel that evaluates the effect of covariates on the risk of death is adjusted for in-
dividual heterogeneity of the population, captured by the random effects of the two-part model
for the biomarker. Moreover, we can evaluate the effect on the risk of death of an individual’s
deviation from the population mean distribution of the biomarker. The second proposed associa-
tion structure evaluates the separate effect of the probability of positive values and the expected
value conditional on a positive value on the risk of death. It is helpful to clinicians interested to
assess the effect of a complete response of target lesions (i.e., SLD=0) versus a partial response
(i.e., SLD>0) on the risk of terminal event. Moreover, it could help understanding the complex
pattern of responses of the tumors to treatment, such as the long term effect of a complete re-
moval of target lesions on the risk of death, as discussed in Section (1.2.2). Finally, the current
value association measures the association of the expected value of the SLD (on the log scale) on
the risk of terminal event. We compared the two-part joint model with a standard joint model
(i.e., a single linear regression model for the biomarker) and a left-censoring joint model (i.e.,
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single regression model and zeros are assumed to be censored). The best model choice depends
on the research question of interest, the standard and left-censoring joint models give the effect
of covariates on the marginal mean of the biomarker while the two-part joint model gives the
effect of covariates on both the probability of positive values and the conditional mean of positive
values. In a simulation study, we show how a negative treatment effect in the binary part of the
two-part joint model can bias negatively the overall treatment effect captured by a standard or a
left-censoring joint model and can lead to spurious results. We show in the application how the
TPJM is relevant for cancer clinical trials because the subset of complete responders to treat-
ment for whom the disease disappeared, resulting in a zero biomarker value during follow-up, is
of particular interest in addition to the distribution of the positive values of the SLD and the
survival times.

In the second part, we developed a marginal two-part joint model for a longitudinal semi-
continuous biomarker and a terminal event that gives the population average effect of covariates
on the biomarker value. It is an alternative formulation of the conditional two-part joint model
which gives the effect of covariates on the marginal mean value of the biomarker instead of the
conditional mean of positive values. The interpretation of the continuous part of the marginal
TPJM is therefore similar to the left-censoring OPJM. We compared the marginal TPJM with
the conditional TPJM and the left-censoring OPJM in terms of bias and coverage probabilities
in simulation studies. The marginal TPJM is robust to misspecification and provides an accu-
rate inference about the biomarker and covariate effects on the biomarker. However, when the
distribution of the biomarker over time is not linear on the log scale, the marginal TPJM can
lack flexibility and can provide biased parameter estimates. When there is only interest in the
effect of covariates on the marginal mean of the biomarker and the biomarker’s distribution is
assumed to be censored, resulting in the zero excess, the left-censoring OPJM is appropriate.
When true zeros are observed and there is an interest in the marginal mean of the biomarker or
the probability of positive versus zero value, the marginal TPJM should be preferred. If there
is an interest in the positive values of the biomarker (i.e., zeros excluded) and the probability of
positive values, the conditional TPJM must be used. An application of the marginal TPJM to
a randomized clinical trial of advanced head and neck cancer illustrates these differences. More-
over, an appropriate model choice criterion (i.e., LCV) shows that the marginal TPJM fitted the
data better than the conditional TPJM.

In the final part, we addressed the limitations of the frequentist framework for the estimation
of a conditional two-part joint model. This model had convergence issues in the second part of
this thesis when misspecified (scenario 3 of the simulation studies) because of unstable parame-
ter estimations due to the model complexity (number of parameters, dimension of the random
effects). We proposed a Bayesian estimation of the conditional two-part joint model, using the
recently introduced Integrated Nested Laplace Approximation (INLA) method. This is an effi-
cient alternative to Markov Chain Monte Carlo methods that provide accurate approximations
of the posterior marginals needed for Bayesian inference. We compared the INLA method imple-
mented in the R-INLA package with a frequentist alternative approach previously implemented
into the frailtypack package through simulation studies. The comparison of the frequentist and
Bayesian frameworks can be tricky as we use maximum likelihood estimation in the frequentist
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framework while the Bayesian framework involves prior knowledge in addition to the likelihood
of the observed data. However, we assume non informative prior distributions for the parameters
and therefore evaluate the Bayesian estimation as an approximation of the MLE. The estimation
with R-INLA was shown to reduce significantly the computation time and improve the precision
of the fixed effects estimation, compared to frailtypack. The parameters are all recovered with
R-INLA based on the estimated credible intervals but frailtypack yielded closer results to the
true values of the random effects’ standard deviations, the residual error term and the baseline
hazard function. Our application to the GERCOR clinical trial exhibits similar differences be-
tween the two estimation methods as the simulation studies and R-INLA concluded to a strong
association between the semicontinuous biomarker and the survival times unlike frailtypack,
which found a non-significant association with an attenuated effect size. An additional appli-
cation shows how the Bayesian estimation with INLA avoids convergence issues. It illustrates
the ability of the conditional TPJM to describe subgroups of patients associated with specific
patterns of response to treatment and subsequently provides insights into the direct and indirect
effect of a treatment on the event of interest, which is relevant in clinical applications. The
Bayesian approach proposed in R-INLA overcomes the limits of the frequentist framework and
allows complex models with high dimensional random effects to be fitted. Moreover, R-INLA
can accommodate multiple longitudinal outcomes while frailtypack is currently limited to a sin-
gle longitudinal outcome because of the computational burden added when including additional
longitudinal outcomes.

6.2 Critical insights and perspectives

The new approach using a two-part model for jointly modeling tumor response and survival
proposed in this thesis contributes to the scientific discussion on elucidating objective response
criteria for cancer clinical trials. We illustrated this new approach on the basis of the GERCOR
study and the PRIME study, both randomized clinical trials in colorectal metastatic cancer
as well as the SPECTRUM study, a randomized clinical trial in recurrent and/or metastatic
head and neck cancer. These trials only involve advanced (i.e., metastatic) cancer for which the
occurrence of zero values for the biomarker is unlikely, therefore resulting in small zero rates.
Another relevant application could be to study early-onset cancers as the zero rate is much higher
but on the side note, the death rate might be reduced and the survival model would have less
statistical power for hypothesis testing. As discussed in this thesis, the use of joint modeling
for the tumor response evaluation can be of particular interest for immunotherapies where the
traditional response criteria are not well adapted. In perspective, we might apply the proposed
two-part joint model to data from an immunotherapy clinical trial in order to analyze the effect
of tumor size changes on survival while accounting for the subset of individuals with a complete
response of their target lesions.

In our analyses, we used the sum of the longest diameters as the measure of tumor size. It is
subject to limitations, in particular due to the unidimensionality of the measure and because it
relies on anatomical aspects only. The individual deviations in size change of each lesion instead
of the sum of the target lesions might be of interest, using a multivariate biomarker with separate
longitudinal outcomes for each target lesion. The Bayesian estimation would be suitable because
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the computational burden would increase importantly due to larger number of parameters and
higher dimensions of integrals approximated numerically. Moreover, the evolution of the differ-
ent target lesions is likely to be highly correlated and might induce colinearity in the survival
model if each lesion is associated to the risk of death separately. For the tumor size, two or
three dimensional measures or volumetric measures could be considered to increase the precision
of the response but in currently available data, there is usually no information other than the
unidimensional measurement of target lesions. Beyond target lesions, additional non-target le-
sions can provide information on the disease evolution and could be of interest, they are however
not measured according to RECIST criteria. Similarly, new lesions appearing during follow-up
are not considered as target lesions but could capture important information on the patient’s
response to treatment. New lesions and non-target lesions could be taken into account jointly
as recurrent events as proposed in Król et al. (2016). However, the progression of non-target
lesions and the appearance of new lesions only show a modest improvement in the context of OS
prediction and are highly correlated with target lesions response (Litière et al. (2014)).

6.3 General conclusion

In this thesis, we have extended the statistical methods available for the joint analysis of a
longitudinal semicontinuous marker and the time to an event with the development of the two-
part joint model. Our developments were motivated by the evaluation of anti-tumor therapies in
cancer clinical trials for which both the survival and the tumor burden are outcomes of primary
interest. The relationship between these outcomes can be assessed using joint modeling in order to
take advantage of these two sources of information about treatment effect, simultaneously. This
methodological approach allows a better understanding of the relationship between the tumor
response to treatment and the risk of death. Therefore, it contributes to clinical research by
providing an innovative method for treatment evaluation in cancer clinical trials that overcomes
the limitations of standard response criteria (i.e., RECIST). The new statistical model developped
is a general method for the joint modeling of a longitudinal semicontinuous biomarker and a
terminal event. It is applicable beyond cancer clinical trials since semicontinuous distributions
of longitudinal markers are common to many scientific areas (e.g., daily quantity of rainfall or
snowfall, goods, food or drug consumption or expenditure, gene expression data, microbiome
compositional data).
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Appendices

R code for the estimation of the conditional TPJM with
frailtypack

The code "TPJM_sim.R" is available at github.com/DenisRustand/TPJM_sim.

1 # The following code is decomposed into 3 parts:
2 # 1. Simulation of a dataset assuming a conditional two -part joint model
3 # (with current -level association structure)
4 # 2. Estimation of the true model as long as a joint naive and left -censored model
5 # 3. Plot of the conditional survival taking into account the effect of treatment
6 # on the risk of event through the biomarker in addition to the direct treatment
7 # effect on the risk of event.
8
9 suppressMessages(library(frailtypack))

10 suppressMessages(library(PermAlgo)) # for generation of death times and censoring times
11 suppressMessages(library(mvtnorm)) # multivariate normal generation
12
13 # Method for the numerical approximation of the integral over random -effects
14 methodInt="Monte -carlo" # (" Standard" for standard gauss -hermite quadrature)
15 # association structure for estimation ("Current -level" / "Two -part" / "Random -effects ")
16 assoc="Current -level"
17 MAXITER =100 # max iterations for Marquardt algorithm
18 estim_TPJM <- T # Two -part joint model estimation
19 estim_JMn <- F # Naive joint model estimation
20 estim_JMlc <- F # Left -censoring joint model estimation
21 plotsRes=F # plot results (survival conditional on treatment)
22 set.seed (1) # seed for data generation
23 seed_MC=1 # seed for Monte -carlo integration method
24
25 #####
26 # 1 # data simulation
27 #####
28 # Need to sync random number generator because of some changes in R 3.6
29 if("Rounding"%in%RNGkind () | "Rejection"%in%RNGkind ()){
30 suppressWarnings(RNGkind(sample.kind = "Rounding"))
31 }
32
33 nsujet =150 # number of indivduals
34 numInt =500 # number of integration points
35
36 # binary part fixed effects
37 alpha_0=6 # intercept
38 alpha_1=-4 # slope
39 alpha_2=-1 # baseline treatment
40 alpha_3=1 # treatment X time
41
42 # continuous part fixed effects
43 beta_0=4 # intercept
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44 beta_1=-0.5 # slope
45 beta_2=1 # baseline treatment
46 beta_3=1 # treatment X time
47
48 # survival part
49 gamma_1=0.3 # fixed effect of treatment on the risk of event
50
51 sigma_e=0.5 # error term (gaussian)
52
53 gapLongi =0.07 # gap between longi measurements
54 gap =0.001 # used to generate a lot of time points because the permutation
55 # algorithm choses among those time points to define survival times
56
57 assocCL =0.30 # current -level association between two -part model and survival model
58 kno=5 # knots for splines / baseline hazard
59 followup =4 # follow -up time
60
61 # random effects variance and covariance
62 sigma_b=sqrt (0.5625) # continuous intercept
63 sigma_bt=sqrt (0.5625) # continuous slope
64 sigma_a=sqrt (4) # binary intercept
65 cor_bbt=-0.2 # correlation continuous intercept X slope
66 cor_ba=0.2 # correlation continuous intercept X binary intercept
67 cor_bta =0.7 # correlation continuous slope X binary intercept
68 cov_bbt <- sigma_b*sigma_bt*cor_bbt
69 cov_ba <- sigma_b*sigma_a*cor_ba
70 cov_bta <- sigma_bt*sigma_a*cor_bta
71
72 Sigma=matrix(c(sigma_b^2,cov_bbt ,cov_ba,
73 cov_bbt ,sigma_bt^2,cov_bta ,
74 cov_ba,cov_bta ,sigma_a^2),ncol=3,nrow =3)
75
76 fsurv <- Surv(deathTimes , d)~trt # survival model formula
77 flon <- Y~timej*trtY # continuous model formula
78 fbin <- Y~timej*trtY # binary model formula
79
80 mestime=seq(0,followup ,gap) # measurement times
81 timej=rep(mestime , nsujet) # time column
82 nmesindiv=followup/gap+1 # number of individual measurements
83
84 nmesy= nmesindiv*nsujet# number of longi measurements
85 idY <-as.factor(rep(1:nsujet , each=nmesindiv)) # id
86
87 ### begin data generation
88 # random effects generation
89 MVnorm <- mvtnorm :: rmvnorm(nsujet , rep(0, 3), Sigma)
90
91 a_i = MVnorm [,3] # binary intercept
92 a_iY <- rep(a_i, each=nmesindiv)
93
94 b_i = MVnorm [,1] # continuous intercept
95 b_iY <- rep(b_i, each=nmesindiv)
96 bt_i = MVnorm [,2] # continuous slope
97 bt_iY <- rep(bt_i, each=nmesindiv)
98
99 e_ij = rnorm(nmesy ,mean=0, sigma_e) # error

100
101 trt=rbinom(nsujet ,1, 0.5) # treatment covariate
102 trtY=rep(trt , each=nmesindiv)
103
104 ## binary part generation
105 # linear predictor (binary)
106 linPredBin <- alpha_0+a_iY+alpha_1*timej+alpha_2*trtY+alpha_3*timej*trtY
107 probaBin <- exp(linPredBin)/(1+exp(linPredBin)) # proba of zero
108 B <- rbinom(nmesy ,1, probaBin) # zero values (binomial)
109
110 ## generation of longitudinal measurements of outcome
111 # linear predictor (continuous)
112 linPredCont <- beta_0+b_iY+(beta_1+bt_iY)*timej+beta_2*trtY+beta_3*timej*trtY+e_ij
113 # linear predictor (free from error term , for the association)
114 linPredContTrue <- beta_0+b_iY+(beta_1+bt_iY)*timej+beta_2*trtY+beta_3*timej*trtY
115 # in case of negative generated continuous measurements (rarely happening)
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116 linPredContP <- ifelse(linPredCont <(0), 0, linPredCont)
117 linPredContTrueP <- ifelse(linPredCont <(0), 0, linPredContTrue)
118
119 # include zeros in the biomarker distribution
120 Yobs = (ifelse(B==1, linPredContP , 0))
121 Ytrue = (ifelse(B==1, linPredContTrueP , 0))
122
123 #longitudinal dataset
124 id <- as.integer(idY)
125 longDat <- data.frame(id, timej , trtY , Yobs , B, Ytrue)
126
127 # longi measurements to generate survival times with permutation algorithm
128 matX=matrix(ncol=3, nrow=nsujet*nmesindiv)
129 # treatment covariate (to evaluate treatment effect on the risk of event)
130 matX[,1] <- longDat[,"trtY"]
131 # true value of the biomarker (to evaluate effect of the biomarker on the risk of event)
132 matX[,2] <- longDat[,"Ytrue"]
133 # observed value of the biomarker
134 matX[,3] <- longDat[,"Yobs"]
135 eventRandom <- round(rexp(nsujet , 0.0012) +1,0) # ~80% death
136 censorRandom=runif(nsujet ,1, nmesindiv) # uniform random censoring
137 Ttemp <- permalgorithm(nsujet ,nmesindiv ,Xmat=matX ,eventRandom = eventRandom ,
138 censorRandom=censorRandom ,XmatNames=c("trtY", "Ytrue", "Yobs"),
139 betas=c(gamma_1,assocCL , 0) )
140
141 # extract last line of each individual (= death/censoring time)
142 ligne=NULL
143 for(i in 1:(dim(Ttemp)[1]-1)){
144 if(Ttemp[i,"Id"]!=Ttemp[i+1,"Id"]) ligne <- c(ligne , i)
145 }
146 ligne <-c(ligne , dim(Ttemp)[1])
147
148 Ttemp2=Ttemp[ligne , c("Id","Event","Stop", "trtY")] # one line per individual
149 Ttemp2$deathTimes <- mestime[Ttemp2$Stop +1] # deathtimes
150 survDat <- Ttemp2[, c("Id", "deathTimes", "Event", "trtY")] # survival dataset
151 names(survDat) <- c("id", "deathTimes", "d", "trt")
152
153 longDat2 <- Ttemp[,c("Id", "Start", "trtY", "Yobs")]
154 longDat2$timej <- mestime[longDat2$Start +1] # measurements times of the biomarker
155 longDat3 <- longDat2[, c("Id", "timej", "trtY", "Yobs")]
156 names(longDat3) <- c("id", "timej", "trtY", "Y")
157 timesLongi=mestime[which(mestime -round(mestime/gapLongi ,0)*gapLongi ==0)] # visit times
158 longDat <- longDat3[longDat3$timej%in%timesLongi ,]
159
160 survDat$id <- as.integer(survDat$id)
161 longDat$id <- as.integer(longDat$id)
162
163 # Datasets generated are also stored in the frailtypack
164 #load(survDat)
165 #load(longDat)
166
167 ### end data generation
168
169 print(head(longDat , 20))
170 print(head(survDat , 20))
171 print(str(survDat))
172 print(str(longDat))
173 print(summary(survDat))
174 print(summary(longDat))
175
176 #####
177 # 2 # Model estimation
178 #####
179
180 # kappa value (smoothing) chosen by cross -validation with an univariate Cox model
181 tte <- frailtyPenal(fsurv ,n.knots=kno ,kappa=0, data=survDat ,cross.validation = T)
182 kap <- round(tte$kappa ,2);kap # smoothing parameter
183 if(estim_TPJM){ # computation takes ~12min with an Intel i7 -4790 (8 cores , 3.60 GHz)
184 TPJM <- longiPenal(fsurv , flon , data=survDat , data.Longi = longDat ,
185 random = c("1","timej"), formula.Binary=fbin ,
186 random.Binary=c("1"), timevar="timej", id = "id",
187 link = assoc , n.knots = kno , kappa = kap ,
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188 hazard="Splines -per", method.GH=methodInt ,
189 n.nodes=numInt , seed.MC=seed_MC);TPJM
190 }
191
192 ## joint naive model
193 if(estim_JMn){
194 JMn <- longiPenal(fsurv , flon , data=survDat , data.Longi = longDat ,
195 random = c("1","timej"), timevar="timej",id = "id",
196 link = assoc , n.knots = kno ,
197 kappa = kap ,hazard="Splines -per",
198 method.GH=methodInt , n.nodes=numInt , seed.MC=seed_MC);JMn
199 }
200
201 ## joint left -censored model
202 if(estim_JMlc){
203 # censoring threshold (just below smallest observed positive value)
204 TRE <- min(longDat[longDat$Y!=min(longDat$Y),"Y"])-
205 (min(longDat[longDat$Y!=min(longDat$Y),"Y"])/1000)
206 JMlc <- longiPenal(fsurv , flon , data=survDat , data.Longi = longDat ,
207 random = c("1","timej"), timevar="timej", id = "id",
208 link = assoc , left.censoring = TRE , n.knots = kno ,
209 kappa = kap ,hazard="Splines -per",
210 method.GH=methodInt , n.nodes=numInt , seed.MC=seed_MC);JMlc
211 }
212
213 #####
214 # 3 # plots results (only Two -part model / conditional on treatment arm)
215 #####
216
217 if(plotsRes){
218 # Plot conditional survival from a model estimated with frailtypack
219 # M-splines for the baseline hazard risk and
220 # I-splines for the baseline survival (Ispline=integral(Msplines))
221 # We estimate baseline survival with a numerical approximation
222
223 # load models as R objects
224 #load("~/TPJM.RData ")
225 TP=TPJM
226 #--------------mspline -----------------------#
227 #’ this function generates M_i
228 #’ @param x time x for estimation
229 #’ @param tp timepoint of length n+k
230 #’ @param n.knot total number of knots
231 #’ @param k order of the spline function
232 mspline = function(x,tp,n.knot ,k=4){
233 if(k==1){
234 region = cbind(tp[1:( length(tp) -1)],tp[2: length(tp)])
235 bool = as.integer(x>region [,1] & x<region [,2])
236 return ((1/diff(tp))[as.logical(bool)]*bool)
237 }
238 else{
239 n=length(tp)-k
240 region = cbind(tp[1:n],tp[(k+1):(k+n)])
241 bool = I(x>region [,1] & x<region [,2])
242 M=k*((x-tp[1:n])*(mspline(x,tp ,n.knot ,k-1)[1:n])+
243 (tp[(k+1):(k+n)]-x)*(mspline(x,tp,n.knot ,k-1) [2:(n+1)]))/
244 ((k-1)*(tp[(k+1):(k+n)]-tp[1:n]))
245 M_final = rep(0,n)
246 M_final[bool]=M[bool]
247 return(M_final)
248 }
249 }
250
251 tpoints=seq(0,max(TP$xD),len =1000) # time points for splines estimation and biomarker values
252 BH=TP$b[1:7]^2 # parameters associated to splines (n.knots +2)
253 M_i=apply(as.matrix(tpoints), 1,mspline ,tp=TP$zi,n.knot = 5,k=4) # M-splines
254 hazardEst=t(M_i)%*%as.matrix(BH) # baseline hazard risk
255
256 weights=rep(tpoints [2]- tpoints [1],len=length(tpoints)) # for the integral approximation
257 hCUM=cumsum(hazardEst)*weights # baseline cumulative risk
258 survEst <- exp(-hCUM) # baseline survival
259
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260 # biomarker value
261 coefTP <- TP$coef # model parameters
262 res <- NULL
263 TwoPart <- function(t,trt){
264 BinLinPred <- coefTP [6]+ coefTP [7]*t+coefTP [8]*trt+coefTP [9]*t*trt
265 ConLinPred <- coefTP [2]+ coefTP [3]*t+coefTP [4]*trt+coefTP [5]*t*trt
266 Prob <- exp(BinLinPred)/(1+ exp(BinLinPred))
267 res <- Prob*ConLinPred
268 return(res)
269 }
270
271 survx <- tpoints # abscissas
272 survy <- survEst^exp(TwoPart(survx ,0)*TP$eta) # survival (arm A)
273 survytrt <- survEst^exp(coefTP [1]+ TwoPart(survx ,1)*TP$eta) # (arm B)
274
275 # confidence intervals (Monte -carlo method)
276 nloop =1000 # number of Monte -Carlo curves
277 Hess <- TP$varHIHtotal # Hessian matrix (splines for the baseline hazard included)
278 # generation of the random points
279 isCoef <- mvtnorm :: rmvnorm(nloop , TP$b, Hess)
280 mc_BH=isCoef [ ,1:7]^2 # parameters for the splines (survival)
281 M_i=apply(as.matrix(tpoints), 1,mspline ,tp=TP$zi,n.knot = 5,k=4) # M-splines
282 mc_hazardEst=apply(mc_BH ,1,function(x) t(M_i)%*%as.matrix(x))# baseline hazard
283 mc_hCUM=apply(mc_hazardEst ,2,cumsum)
284
285 mc_hCUMfinal = apply(mc_hCUM ,2, function(x) x*weights)
286 mc_survEst <- exp(-mc_hCUMfinal) # baseline survival for all the Monte -carlo curves
287
288 # biomarker
289 survMC=NULL
290 survMCtrt=NULL
291 for(i in 1:nloop){
292 curve_i <- mc_survEst[,i]^exp(TwoPart(survx ,0)*isCoef[i,8])
293 curve_itrt <- mc_survEst[,i]^exp(isCoef[i,16]+ TwoPart(survx ,1)*isCoef[i,8])
294 survMC <- cbind(survMC , curve_i) # survival (arm A)
295 survMCtrt <- cbind(survMCtrt , curve_itrt) # survival (arm B)
296 }
297
298 # quantiles
299 QL <- function(x) quantile(x,prob =0.025)
300 QU <- function(x) quantile(x,prob =0.975)
301 SCL <- apply(survMC ,1,QL) # ref lower
302 SCU <- apply(survMC ,1,QU) # ref upper
303 SCLtrt <- apply(survMCtrt ,1,QL) # trt lower
304 SCUtrt <- apply(survMCtrt ,1,QU) # trt upper
305
306 # plot
307 par(mfrow=c(1,1))
308 plot(survx ,survy ,lwd=2,xlab="time",ylab="survival",ylim=c(0,1),type=’l’,
309 main="Survival conditional on treatment arm (TPJM current -level)")
310 lines(survx ,survytrt ,col=’red’,lwd=2,lty=2)
311 lines(survx ,SCL)
312 lines(survx ,SCU)
313 lines(survx ,SCLtrt ,col=’red’,lty=2)
314 lines(survx ,SCUtrt ,col=’red’,lty=2)
315 legend("topright",title = "Treatment", c("arm A","arm B"), lty=c(1,1),
316 lwd=c(2,2),col=c("black","red"))
317 }

R code for the estimation of the marginal TPJM with frailtypack

The code "MTPJM_sim.R" is available at github.com/DenisRustand/TPJM_sim.
1 # 1- This code shows how to simulate a dataset assuming a marginal two -part joint model
2 # 2- The estimation of the marginal two -part joint model is then done with frailtypack
3
4 library(frailtypack)
5 library(PermAlgo)
6 library(mvtnorm)
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7
8 ###########
9 ### 1 ### Simulation of a dataset

10 ###########
11 nsujet =150 # number of indivduals
12 # fixed effects of the model
13 ## Binary part
14 alpha_0=6 # intercept
15 alpha_1=-3 # slope
16 alpha_2=1 # baseline treatment
17 alpha_3=-2 # treatment x slope
18 ## Continuous part
19 beta_0=1.5 # intercept
20 beta_1=-0.5 # slope
21 beta_2=0.3 # baseline treatment
22 beta_3=0.3 # treatment x slope
23 sigma_e=0.3 # error term
24 ## Survival part
25 gamma_1= -0.2 # treatment
26
27 gapLongi =0.25 # gap between repeated measurements of the biomarker
28 gap =0.001 # used to generates a lot of biomarker measurements because
29 # the permutation algorithm choses among those measuremnts to define survival time
30
31 assocCL =0.08 # current -level association between two -part model and survival model
32
33 followup =4 # duration of the study
34
35 # random effects variance and covariance
36 sigma_b=sqrt (0.5625) # continuous intercept
37 sigma_bt=sqrt (0.5625) # continuous slope
38 sigma_a=sqrt (4) # binary intercept
39 cor_bbt=-0.2 # correlation continuous intercept X slope
40 cor_ba=0.2 # correlation continuous intercept X binary intercept
41 cor_bta =0.7 # correlation continuous slope X binary intercept
42 cov_bbt <- sigma_b*sigma_bt*cor_bbt
43 cov_ba <- sigma_b*sigma_a*cor_ba
44 cov_bta <- sigma_bt*sigma_a*cor_bta
45
46 Sigma=matrix(c(sigma_b^2,cov_bbt ,cov_ba,
47 cov_bbt ,sigma_bt^2,cov_bta ,
48 cov_ba,cov_bta ,sigma_a^2),ncol=3,nrow =3)
49
50 mestime=seq(0,followup ,gap) # measurement times
51 timej=rep(mestime , nsujet) # time column
52 nmesindiv=followup/gap+1 # number of individual measurements
53
54 nmesy= nmesindiv*nsujet# number of longi measurements
55 idY <-as.factor(rep(1:nsujet , each=nmesindiv)) # id
56
57 # random effects generation
58 MVnorm <- rmvnorm(nsujet , rep(0, 3), Sigma)
59 a_i = MVnorm [,3] # binary intercept
60 a_iY <- rep(a_i, each=nmesindiv)
61 b_i = MVnorm [,1] # continuous intercept
62 b_iY <- rep(b_i, each=nmesindiv)
63 bt_i = MVnorm [,2] # continuous slope
64 bt_iY <- rep(bt_i, each=nmesindiv)
65
66 e_ij = rnorm(nmesy ,mean=0, sigma_e) # error term (continuous part)
67
68 trt=rbinom(nsujet ,1, 0.5) # treatment covariate
69 trtY=rep(trt , each=nmesindiv)
70
71 ## binary part generation
72 # linear predictor (binary)
73 linPredBin <- alpha_0+a_iY+alpha_1*timej+alpha_2*trtY+alpha_3*timej*trtY
74 probaBin <- exp(linPredBin)/(1+exp(linPredBin)) # proba of zero
75 B <- rbinom(nmesy ,1, probaBin) # zero values (binomial)
76
77 ## generation of longitudinal measurements of outcome
78 # linear predictor (continuous)
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79 linPredCont <- beta_0+b_iY+(beta_1+bt_iY)*timej+beta_2*trtY+beta_3*timej*trtY+e_ij
80 # linear predictor (free from error term , for the association with survival)
81 linPredContTrue <- beta_0+b_iY+(beta_1+bt_iY)*timej+beta_2*trtY+beta_3*timej*trtY
82 # location parameter of the lognormal distribution of positive values
83 mu=linPredCont -log(probaBin)-sigma_e^2/2
84 muTrue=linPredCont -log(probaBin)
85 Y <- rlnorm(length(mu), meanlog = mu , sdlog = sigma_e) # observed positive value
86 Yt <- rlnorm(length(mu), meanlog = muTrue , sdlog = 0) # error -free positive value
87 # include zeros in the biomarker distribution
88 Yobs = (ifelse(B==1, Y, 0))
89 Ytrue = (ifelse(B==1, Yt, 0))
90
91 #longitudinal dataset
92 id <- as.integer(idY)
93 longDat <- data.frame(id, timej , trtY , Yobs , B, Ytrue)
94
95 # longi measurements to generate survival times with permutation algorithm
96 matX=matrix(ncol=3, nrow=nsujet*nmesindiv)
97 # treatment covariate (to evaluate treatment effect on the risk of event)
98 matX[,1] <- longDat[,"trtY"]
99 # true value of the biomarker (to evaluate effect of the biomarker on the risk of event)

100 matX[,2] <- longDat[,"Ytrue"]
101 # observed value of the biomarker
102 matX[,3] <- longDat[,"Yobs"]
103 eventRandom <- round(rexp(nsujet , 0.0012) +1,0) # ~80% death
104 censorRandom=runif(nsujet ,1, nmesindiv) # uniform random censoring
105 Ttemp <- permalgorithm(nsujet ,nmesindiv ,Xmat=matX ,eventRandom = eventRandom ,
106 censorRandom=censorRandom ,XmatNames=c("trtY", "Ytrue", "Yobs"),
107 betas=c(gamma_1,assocCL , 0) )
108
109 # extract last line of each individual (= death/censoring time)
110 ligne=NULL
111 for(i in 1:(dim(Ttemp)[1]-1)){
112 if(Ttemp[i,"Id"]!=Ttemp[i+1,"Id"]) ligne <- c(ligne , i)
113 }
114 ligne <-c(ligne , dim(Ttemp)[1])
115
116 Ttemp2=Ttemp[ligne , c("Id","Event","Stop", "trtY")] # one line per individual
117 Ttemp2$deathTimes <- mestime[Ttemp2$Stop +1] # deathtimes
118 survDat <- Ttemp2[, c("Id", "deathTimes", "Event", "trtY")] # survival dataset
119 names(survDat) <- c("id", "deathTimes", "d", "trt")
120
121 longDat2 <- Ttemp[,c("Id", "Start", "trtY", "Yobs")]
122 longDat2$timej <- mestime[longDat2$Start +1] # measurements times of the biomarker
123 longDat3 <- longDat2[, c("Id", "timej", "trtY", "Yobs")]
124 names(longDat3) <- c("id", "timej", "trtY", "Y")
125 timesLongi=mestime[which(round(mestime ,3) %in% round(c(seq(0,followup ,by=gapLongi)) ,3))] # visit times
126 longDat <- longDat3[longDat3$timej%in%timesLongi ,]
127 survDat$id <- as.integer(survDat$id)
128 longDat$id <- as.integer(longDat$id)
129
130 print(head(longDat , 20))
131 print(head(survDat , 20))
132 print(str(survDat))
133 print(str(longDat))
134 print(summary(survDat))
135 print(summary(longDat))
136
137 ###########
138 ### 2 ### Estimation of the marginal two -part joint model
139 ###########
140 numInt =500 # number of integration points
141 fsurv <- Surv(deathTimes , d)~trt # survival model formula
142 flon <- Y~timej*trtY # continuous model formula
143 fbin <- Y~timej*trtY # binary model formula
144 # kappa value (smoothing) chosen by cross -validation
145 tte <- frailtyPenal(fsurv ,
146 n.knots=5,kappa=0, data=survDat ,cross.validation = T)
147 kap <- round(tte$kappa ,2)
148
149 MTPJM <- longiPenal(fsurv , flon , data=survDat ,data.Longi = longDat , random = c("1", "timej"),
150 formula.Binary=fbin , random.Binary=c("1"),



168 Appendices

151 GLMlog=T, # logarithm link for the distribution of positive values
152 MTP=T, # Trigger for marginal two -part model (set to FALSE for a conditional two -part model)
153 timevar="timej",id = "id", link = "Current -level", left.censoring = F,seed.MC=1,
154 n.knots = 5, kappa = kap ,hazard="Splines -per",maxit =200,
155 method.GH="Monte -carlo", n.nodes=numInt )
156 print(MTPJM)

R code for the estimation of the conditional TPJM with R-INLA

The code "TPJM_INLA.R" is available at github.com/DenisRustand/TPJM_sim.
1
2 # 1- This code shows how to simulate a dataset assuming a conditional two -part joint model
3 # 2- The estimation of the conditional two -part joint model is then done with INLA
4
5 set.seed (1)
6 library(INLA)
7 inla.setOption(mkl=TRUE)
8
9 ###########

10 ### 1 ### Simulation of a dataset
11 ###########
12
13 library(mvtnorm) # for multivariate normal generation (random -effects)
14 nsujet =200 # number of individuals
15 #binary part
16 alpha_0=4 # Intercept
17 alpha_1= -0.5 # slope
18 alpha_2= -0.5 # treatment
19 alpha_3=0.5 # treatment x time
20 #continuous part
21 beta_0=2 # Intercept
22 beta_1=-0.3 # slope
23 beta_2=-0.3 # treatment
24 beta_3=0.3 # treatment x time
25 sigma_e=0.3 # error term (standard error)
26 gamma_1=0.2 # treatmentt effect on survival
27 # Shared random effects association between the two -part model for the biomarker and survival
28 phi_a=1 # random intercept (binary)
29 phi_b=1 # random intercept (continuous)
30 phi_bt=1 # random slope (continuous)
31 # baseline hazard scale (to generate exponential death times)
32 baseScale =0.2
33 gap =0.4# gap between longitudinal repeated measurements
34 followup =4 # study duration
35 # correlated random -effects
36 sigma_a=1 # random intercept (binary)
37 sigma_b=0.5 # random intercept (continuous)
38 sigma_bt=0.5 # random slope (continuous)
39 cor_ba=0.5 # correlation intercept (binary)/intercept (continuous)
40 cor_bta =0.5 # correlation intercept (binary)/slope (continuous)
41 cor_bbt=-0.2 # correlation continuous intercept/slope
42 cov_ba <- sigma_b*sigma_a*cor_ba # covariance
43 cov_bta <- sigma_bt*sigma_a*cor_bta
44 cov_bbt <- sigma_b*sigma_bt*cor_bbt
45 Sigma=matrix(c(sigma_a^2,cov_ba,cov_bta , # variance -covariance matrix
46 cov_ba,sigma_b^2,cov_bbt ,
47 cov_bta ,cov_bbt ,sigma_bt^2),ncol=3,nrow =3)
48 mestime=seq(0,followup ,gap) # measurement times
49 timej=rep(mestime , nsujet) # time column
50 nmesindiv=followup/gap+1 # number of individual measurements
51 nmesy= nmesindiv*nsujet # number of longi measurements
52 id<-as.factor(rep(1:nsujet , each=nmesindiv)) # patient id
53 # random effects generation
54 MVnorm <- mvtnorm :: rmvnorm(nsujet , rep(0, 3), Sigma)
55 a_i = MVnorm [,1] # binary intercept
56 a_iY <- rep(a_i, each=nmesindiv) # binary intercept (repeated for longi dataset)
57 b_i = MVnorm [,2] # continuous intercept
58 b_iY <- rep(b_i, each=nmesindiv)
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59 bt_i = MVnorm [,3] # continuous slope
60 bt_iY <- rep(bt_i, each=nmesindiv)
61
62 treated <- sample (1:nsujet , nsujet/2, replace=F)
63 treatedFull <- NULL
64 for(i in 1: nsujet){
65 treatedFull <- c(treatedFull , ifelse(i%in%treated , 1, 0))
66 }
67 trt= treatedFull# treatment covariate
68 trtY=rep(trt , each=nmesindiv)
69
70 ## linear predictor (binary part)
71 linPredBin <- alpha_0+a_iY+alpha_1*timej+alpha_2*trtY+alpha_3*timej*trtY
72 probaBin <- exp(linPredBin)/(1+exp(linPredBin)) # proba of positive value
73 B <- rbinom(nmesy ,1, probaBin) # observed zero values
74
75 ## linear predictor (continuous part)
76 linPredCont <- beta_0+b_iY+(beta_1+bt_iY)*timej+beta_2*trtY+beta_3*timej*trtY
77 mu=linPredCont -sigma_e^2/2 # lognormal mean
78 Ypos <- rlnorm(length(mu), meanlog = mu, sdlog = sigma_e) # observed biomarker values
79 Y = (ifelse(B==1, Ypos , 0)) # include zeros in the biomarker distribution
80
81 ## longitudinal biomarker dataset
82 longDat <- data.frame(id, timej , trtY , Y)
83
84 ## generation of exponential death times
85 u <- runif(nsujet) # uniform distribution for survival times generation
86 deathTimes <- -(log(u) / (baseScale * exp(trt * gamma_1 + a_i*phi_a + b_i*phi_b + bt_i*phi_bt)))
87 d <- as.numeric(deathTimes <followup) # deathtimes indicator
88 ## censoring individuals at end of follow -up (not at random)
89 deathTimes[deathTimes >= followup ]= followup
90 ids <- as.factor (1: nsujet)
91 survDat <- data.frame(id=ids ,deathTimes , d, trt) # survival times dataset
92
93 ## removing longi measurements after death
94 ind <- rep(NA, nsujet*length(mestime))
95 for (i in 1: nsujet){
96 for(j in 1: length(mestime)){
97 if(longDat [(i-1)*length(mestime)+j, "timej"]<=survDat[i,"deathTimes"]) ind[(i-1)*length(mestime)+j

]=1
98 }
99 }

100 longDat <- longDat[!is.na(ind),]
101 survDat$trt <- as.factor(survDat$trt)
102 longDat$trtY <- as.factor(longDat$trtY)
103 longDat$id <- as.integer(longDat$id)
104 survDat$id <- as.integer(survDat$id)
105 ## Summary of the longitudinal and survival datasets
106 print(summary(survDat))
107 print(summary(longDat))
108
109 ###########
110 ### 2 ### Estimation of a conditional two -part joint model with R-INLA
111 ###########
112
113 # create dataset with positive values only for the continuous part
114 longDatlog <- longDat[longDat$Y>0,]
115 nB <- length(longDat$Y) # length of binary part
116 nC <- length(longDatlog$Y) # length of continuous part
117 ns=dim(survDat)[1] # number of individuals
118
119 longDat$B <- ifelse(longDat$Y==0,0,1) # zero value indicator (binary part outcome)
120 longDatlog$sld <- longDatlog$Y # positive values only (continuous part outcome)
121 yy <- matrix(NA, ncol = 2, nrow = nB+nC)
122 yy[1:nB ,1] <- longDat$B # binary outcome
123 yy[nB+(1:nC) ,2] <- longDatlog$Y # continuous outcome
124 yB = yy[,1]
125 yC = yy[,2]
126
127 ####### Add all survival covariates
128 # set up unique identifiers for the random -effects
129 longDatlog$idl <- ns+as.integer(longDatlog$id)



170 Appendices

130 longDatlog$idl2 <- ns+ns+as.integer(longDatlog$id)
131 survDat$idl <- ns+as.integer(survDat$id)
132 survDat$idl2 <- ns+ns+as.integer(survDat$id)
133
134 cox_TRTs = as.factor(c(ifelse(survDat$trt=="0", "ref", "trt")))
135 cox_IntS = rep(1, length(cox_TRTs))
136 surv_inla_obj = inla.surv(time=survDat$deathTimes ,event = survDat$d)
137 cox_ext = inla.coxph(surv_inla_obj ~ 1+TRTs ,
138 control.hazard=list(model="rw2",
139 scale.model=TRUE ,
140 diagonal =1e-4,
141 constr=F,
142 hyper=list(prec=list(prior="pc.prec",
143 param=c(1 ,0.01)))),
144 data = c(list(surv_inla_obj = surv_inla_obj ,
145 TRTs = cox_TRTs ,
146 IDs = survDat$idl ,
147 IDsb = as.integer(survDat$id),
148 IDs2 = survDat$idl2), as.list(survDat)))
149 ns_cox = dim(cox_ext$data)[1] # for extended dataframe for poisson regression
150
151 ###For other parts without survival part
152 # fixed effects
153 linear.covariate <- data.frame(
154 InteB = c(rep(1,nB), rep(0,nC)), # intercept (binary part)
155 InteC = c(rep(0,nB), rep(1,nC)), # intercept (continuous part)
156 TIME = c(rep(0,nB),longDatlog$timej), # time (continuous part)
157 TIMEb = c(longDat$timej ,rep(0,nC)), # time (binary part)
158 TRTc = c(rep(0,nB),as.numeric(longDatlog$trtY) -1), # treatment (continuous)
159 TRTb = c(as.numeric(longDat$trtY) -1,rep(0,nC))) # treatment (binary)
160 # random -effects
161 random.covariate <-list(IDl=c(rep(NA,nB),longDatlog$idl), # random intercept (continuous)
162 IDb=c(as.integer(longDat$id),rep(NA,nC)), # random intercept (binary)
163 IDl2=c(rep(NA,nB),as.integer(longDatlog$idl2)), # random slope (continuous)
164 slopeCont=c(rep(NA,nB),longDatlog$timej)) # weight for random slope (continuous

)
165 jointdf = data.frame(linear.covariate , random.covariate , yB, yC)
166 joint.data_cox <- c(as.list(inla.rbind.data.frames(jointdf , cox_ext$data)),
167 cox_ext$data.list)
168 Yjoint = cbind(joint.data_cox$yB, joint.data_cox$yC, joint.data_cox$y.. coxph) # outcomes
169 joint.data_cox$Y <- Yjoint
170
171 # conditional two -part joint model formula - update from the cox expansion
172 formulaJ= update(cox_ext$formula , Yjoint ~ . + InteB+InteC + TIME*TRTc+TIMEb*TRTb+
173 f(IDb , model="iid3d", n=3*ns,constr=F)+
174 f(IDl ,copy="IDb")+
175 f(IDl2 , slopeCont ,copy="IDb")+
176 f(IDsb ,copy="IDb",fixed=F)+
177 f(IDs ,copy="IDl",fixed=F)+
178 f(IDs2 ,copy="IDl2",fixed=F))
179
180 #Fit model with INLA ()
181 TPinla <- inla(formulaJ ,family = c("binomial", "gamma", cox_ext$family),
182 data=joint.data_cox ,
183 Ntrials=c(rep(1,length(longDat$Y)),rep(NA ,nC),rep(NA,ns_cox)),
184 control.predictor=list(compute=TRUE ,link =1),#error gaussian
185 E = joint.data_cox$E..coxph ,
186 control.family=list(list(control.link = list(model = "logit")),
187 list(link=’log’,hyper = list(prec = list(initial = 2, fixed=FALSE))

),
188 list()),#variant = 1
189 control.inla = list(strategy="adaptive"),
190 control.fixed=list(remove.names="(Intercept)"),
191 verbose=F)
192 print(summary(TPinla))



Abstract

Assessing the effectiveness of cancer treatments in clinical trials raises multiple methodological problems that need to be
properly addressed in order to produce a reliable estimate of treatment effects. The purpose of this research project is to
propose a new modeling strategy within the joint modeling framework to study simultaneously the evolution of tumor
size (biomarker) and the risk of death (terminal event). An excess of zero values characterize the distribution of the
tumor size measurements, corresponding to patients responding well to a treatment that observe a complete shrinkage
of their tumors. The two-part model has been proposed with the idea to decompose the distribution of the biomarker
into a binary outcome (zero values vs. positive values) and a continuous outcome, both outcomes usually being modeled
with mixed effects regression models. We developed a two-part joint model for which the binary part captures the effect
of covariates on the probability of zero value of the biomarker while the continuous part gives the effect of covariates
either on the expected value of the biomarker among positives (conditional form) or the marginal expected value of the
biomarker (marginal form), both answering different clinical questions of interest. We established it provides unbiased
parameter estimations by simulations and compared this new model with alternative approaches such as ignoring the
zero excess by not decomposing the biomarker’s distribution or considering zeros as censored values (i.e., too small to
be measured). We show how the two-part approach is more appropriate in presence of true zeros (i.e., not censored).
This new model allows to use both the tumor size repeated measurements and the survival times to compare several
treatment lines, which could impact the final clinical decisions. We illustrated these developments on the basis of real
data from randomized cancer clinical trials. Finally, we extended the frequentist estimation that we implemented into
the R package frailtypack to a Bayesian framework within the R package INLA in order to reduce the computation
time and solve convergence issues when dealing with more complex correlation structures. The software and code for
both the frequentist and Bayesian estimations of this new model are freely available to ensure that these tools are easily
disseminated to epidemiologists, statisticians or biomedical researchers. Semicontinuous distributions are common in
biomedical research, e.g., when quantifying exposure or measuring symptoms of a disease, in genomics (microbiome,
epigenetics), so that the proposed work could lead to a wide spectrum of applications beyond cancer research.

Key words: cancer; clinical trial; joint model; longitudinal analysis; semicontinuous distribution; survival analysis;

tumor response; two-part model.

Résumé

Evaluer l’efficacité des traitements dans les essais cliniques en oncologie soulève de multiples problèmes méthodologiques
qui doivent être correctement traités afin de produire une estimation fiable des effets du traitement. Le but de ce projet
de recherche est de proposer une nouvelle stratégie de modélisation dans le cadre de la modélisation conjointe pour
étudier simultanément l’évolution de la taille tumorale (biomarqueur) et le risque de décès (évènement terminal). Un
excès de zéros caractérise la distribution des mesures de taille tumorale, correspondant à des patients ayant une réponse
au traitement qui se traduit par la disparition des tumeurs. Le modèle two-part a été proposé avec l’idée de décomposer
la distribution du biomarqueur en une partie binaire (zéros vs. valeurs positives) et une partie continue, les deux étant
généralement modélisés avec des modèles de régression à effets mixtes. Nous avons développé un modèle conjoint two-part
pour lequel la partie binaire donne l’effet de covariables sur la probabilité de valeur nulle du biomarqueur tandis que la
partie continue donne l’effet de covariables soit sur la valeur du biomarqueur parmi les positifs (forme conditionnelle) ou
la valeur marginale du biomarqueur (forme marginale), tous deux répondant à différentes questions cliniques d’intérêt.
Nous avons établi à l’aide de simulations que ce modèle fournit des estimations de paramètres non biaisées et nous
l’avons comparé avec des approches alternatives telles qu’ignorer l’excès de zéro en ne décomposant pas la distribution
du biomarqueur ou considérer les zéros comme des valeurs censurées (i.e., trop petites pour être mesurées). Nous montrons
comment l’approche two-part est plus appropriée en présence de vrais zéros (i.e., non censurés). Ce nouveau modèle
permet d’utiliser à la fois les mesures répétées de taille tumorale et les temps de survie pour comparer plusieurs lignes de
traitement, ce qui pourrait impacter les décisions cliniques finales. Nous avons illustré ces développements sur la base de
données réelles issues d’essais cliniques randomisés en cancérologie. Enfin, nous avons étendu l’estimation fréquentiste
que nous avons implémentée dans le package R frailtypack à un cadre Bayésien avec le package R INLA afin de réduire
le temps de calcul et résoudre les problèmes de convergence observés pour des structures de corrélation plus complexes.
Les logiciels et codes pour l’estimation fréquentiste et Bayésienne de ce nouveau modèle sont publiquement disponibles
pour s’assurer que ces outils sont facilement diffusés aux épidémiologistes, aux statisticiens ou chercheurs en sciences
biomédicales. Les distributions semi-continues sont courantes dans la recherche biomédicale, par exemple lorsque l’on
quantifie une exposition ou mesure les symptômes d’une maladie, notamment en génomique (microbiome, épigénétique),
de sorte que le modèle proposé pourrait ouvrir un large spectre d’applications au-delà de la recherche relative au cancer.

Mots-clés : analyse de survie; analyse longitudinale; cancer; distribution semi-continue; essai clinique; modèle

conjoint; modèle two-part; réponse tumorale.
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