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Introduction

“Listen to the technology; find out what it’s telling

you.”

Carver MEAD "Steve Jobs and the Economics of Elitism" by

Steve Lohr, in NYtimes, January 30, 2010.

“THE digital revolution of the 21st century has profoundly changed society. Ac-

cess to information is now extremely easy, telecommunications are extremely

efficient, and today’s computing capacities are such that they are an indispensable

tool for almost everything, including scientific research. ”



2 INTRODUCTION

WHILE electronics has prospered inexorably for several decades, its leading source of progress

will stop in the next coming years, due to the fundamental technological limits of tran-

sistors. However, the current state of microelectronics is not entirely satisfactory. Today, we can

build extremely powerful computers, very flexible in the tasks that they can solve, but they are

far from optimal in terms of energy. Smartphones are more powerful than the computers of

the 90s, but their energy autonomy is relatively limited: one to two days of battery life with-

out intense use. To add new interesting features to today’s electronic circuits, it is necessary to

increase their computing efficiency.

In particular, performing tasks for the Internet of Things (IoT) using extremely low energy is

an exciting challenge. The number of potential applications is considerable: all the wearables

and connected objects in the IoT are concerned. One of the most exciting applications con-

cerns brain-computer interface and implants. Such types of equipment have some practical

and useful applications in medicine for rehabilitation with intelligent prostheses, post-hospital

monitoring at home, prevention for aged people, detection, and care for epileptic seizures,

strokes, heart attacks, etc.

Currently, to have such services, data transfer through the Internet network is required, but

it raises many issues:

• The energy consumption is very high.

• The reduced mobility when there is no signal.

• Privacy issues (Data on users may be collected).

• Security concerns (data manipulation, denial of service attack...).

To overcome all these challenges, a solution is to work at the edge, i.e. with autonomous

and intelligent equipment. Therefore, electronics has to be able to meet all the constraints of

embedded systems in terms of weight, size, integration of sensors, on-chip memory, and be-

ing able to process on-chip data with very low energy. Unfortunately, so far, running artificial

intelligence algorithms required a high computing power which resulted in large energy con-

sumption. A very important part of this energy consumption using classical computer archi-

tecture is due to the data exchange between the memory and the computation, conceptually,

and physically separated. We might believe that continuous progress in microelectronics will

enable the design of low energy circuits able to run such algorithms, however, we are coming

to the end of Moore’s law, which has governed the scheme of scaling Complementary Metal-

Oxide-Semiconductor (CMOS) transistor size year after year.

Nevertheless, microelectronics is currently offering a major breakthrough: in recent years,

memory technologies have undergone incredible progress, opening the way for multiple re-

search venues in embedded systems. Additionally, a major feature for future years will be the

ability to integrate different technologies on the same chip. For this reason, in this thesis, we ex-

plore the use of new emerging memory devices that can be embedded in the core of the CMOS,

such as Resistive Random Access Memory (RRAM), Spin Torque Magnetic Tunnel Junction (ST-
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MTJ) memory, based on naturally intelligent in-memory-computing architecture.

In this thesis, inspired by neuroscience research and taking into account the latest advances

in artificial intelligence, we have designed a hybrid RRAM/CMOS circuit implementing algo-

rithms for In-Memory-Computing. Three brain-inspired algorithms are carefully examined:

Bayesian reasoning, binarized neural networks, and an approach that further exploits the in-

trinsic behavior of components, population coding of neurons.

The first chapter of the thesis is introductory. We discuss the many opportunities available

from a technological perspective for embedded system: first, we present the main limitations

of today’s electronics and then we investigate what are the new emerging memory technologies

and what they enable. We also explore potential next developments of In-Memory-Computing

using these memory devices, including those of bio-inspired algorithms and the recent litera-

ture on neuromorphic electronics.

The second chapter defines the differences and links between Bayesian models and neural

networks, as well as some ideas about the importance of a hardware implementation of these

models using innovative memory components.

The third chapter presents both a detailed presentation of a Bayesian inference algorithm,

and more importantly, a complete description of the implementation of an In-Memory-Computing

hybrid CMOS/RRAM chip (from the algorithm to the tape out) designed during this thesis.

Similarly, Chapter 4 focuses on the hardware implementation of an inference algorithm,

this time based on neural networks. An in-depth study of the impact of the properties of mem-

ory devices is presented, in particular, the effect of errors on system performance.

To go even further in the use of memory devices, Chapter 5 presents how the stochastic

character of magnetic tunneling junctions can be used to reproduce the population coding of

neurons in the brain.

Finally, the chapter 6 shows how to go further in the use of the complex behaviour of mem-

ory devices. We mention our latest advances in the use of these memory devices, where we

aim at developing new algorithms related to devices behaviour and/or adapt classical machine

learning algorithm existing in the literature to hardware constraints.





Chapter 1

The brain as an inspiration for the

future of electronics.

It would appear that we have reached the limits of

what it is possible to achieve with computer

technology, although one should be careful with

such statements, as they tend to sound pretty silly

in 5 years.

John VON NEUMANN in 1949

“FROM the first computer to the present day, the evolution of the performance of

electronic circuits has followed a major rule: improving the performance of

transistors. Even if this component is extraordinary, because when its dimensions

are reduced all its characteristics are improved, this rule is at its limits. Today, many

nanotechnologies with exciting characteristics are emerging and their use can solve

some of the limitations of transistors. One route of research to use them efficiently is

the inspiration of the biological brain, which is composed of a very large number of

complex features and which allows accomplishing complex and varied tasks. ”



6 CHAPTER 1: THE BRAIN AS AN INSPIRATION

ELECTRONIC chips are no longer extraordinary products as in our daily lives, electronic is

present everywhere, in our cars, our coffee machines, our fridges, not to mention our

telephones, which are almost a physical extension of ourselves. The large amount of data they

provide requires processing, analysis, and decision-making. Advances in telecommunications

have enabled massive data transmission over the cloud involving data centers where the data

is processed. Even if new telecommunications technologies try to provide technical answers

to the energy consumption of networks and the Internet of Things (IoT), energy consumption

due to data sent by IoT will remain a major issue. Without a very large battery capacity, it is not

certain that they will have a long autonomy.

Another approach would be to limit the data transmitted, so that only those data that are

truly necessary would be transferred. Such an approach consists of integrating native intelli-

gence into systems in order to select important information. But this data analysis is challeng-

ing; indeed, to be truly interesting, the associated energy consumption has to be lower than the

energy consumption related to communication.

For now, electronic circuits have not been designed for this purpose. From the most com-

plex computer to the smallest microcontroller in a watch, the operating principle remains the

same. Rethinking the computer architecture paradigm is an opportunity to answer to some

issues of modern electronics.

In this chapter, we will begin by detailing how the operating principles of today’s electronics

are coming to the end, detailing its limits, and how to reduce energy consumption by working

on both technology and architectural level. We will highlight the important role of memory for

the future of electronics by presenting bio-inspired architecture where memory plays a crucial

role, in the brain.

1.1 The fundamental limitations of Electronic hardware

In 1960, at the Bell Lab, the first MOSFETs (Metal-Oxide-Semiconductor-Field-Effect-Transistors)

were invented [1]. This invention paved the way for a great adventure with the beginning of

modern electronics. Between the first microprocessors composed of a few thousand transis-

tors and today’s multi-billion transistors [2], the implementation procedures are quite differ-

ent. Today, highly complex tools are employed to be able to integrate all these transistors [3],

but also because the constraints of today’s technologies are much more demanding than in the

past [4], when a design could be done by hand. At the same time, system architectures have

become more and more complex, and most of them are owned by large companies that have

been working on successful system architectures for decades with thousands of engineers.

Currently, from server and personal computer, to mobile processors, electronic circuits

have reached incredible performance. It is possible to perform simulations extremely quickly

and at low cost, to play video games with exceptional graphic quality even on mobile phones, to

do augmented/virtual reality with VR headsets only limited by movement in a confined space.
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What is quite interesting is that all these advances in the field of electronics are linked to a single

principle: the scaling of transistors, with the reduction of the dimension of a single transistor.

The transistor scaling was theorized by Robert Dennard in the early 1970s (Figure 1.1 (a) & (b)).

(b)

(a)

(c)

Figure 1.1: Dennard scaling & Moore’s law [5] adapted from [6], [7] & [8]: (a) Schematic illus-
tration of a classic CMOS (Complementary Metal Oxide Semiconductor) Bulk tran-
sistor technology , (b) transistor following Dennard scaling –dimension reduced by
factor alpha– and (c) Moore’s law trend, around 2005, the Dennard scaling stops.

The operation principle of a transistor is very simple. It consists of controlling the current

flowing under the gate of the transistor between the drain and the source by applying a voltage

at the gate. By decreasing all its dimensions –including the thickness of the gate oxide – by a fac-

torα, and decreasing the voltage applied at the gate by the same factor, it is possible to maintain

the same electric field value under the gate oxide. Since the main source of power consumption

of the leak-free CMOS (Complementary Metal Oxide Semiconductor) transistors is the charg-

ing and discharging of the gate, the resulting energy consumption is E = CV 2. Likewise, with

the scaling of transistors, the maximal operating frequency defined by the gate delay τ=CV /I ,

with I proportional to (1/tox)(W /L)V2 is increased by a factor α. Traditional scaling rules (but

no longer valid), imply that the energy consumption of a single transistor can be decreased by

a factor α3, the frequency increased by a factor of α, the transistor density increased by a factor

of α², while keeping the power density constant. Thereby, to perform the same calculation, be-

tween 1971 and 2012, the number of transistors has not only exponentially increased, but also

the individual performance of each transistor has been significantly improved. To perform the

same logical operation, between 1971 and today, energy consumption is more than 400,000

times lower.

What about the coming decades? As can be seen in Fig. 1.1, a change in the scaling trends

occurred in the mid-2000s as Dennard’s scaling met some difficulties. The number of tran-

sistors still increased exponentially, but the operating frequency has been stuck around a few

GHz. The reason for this stop in progress is the significant increase in variability, noise, and

leakage of nanometer-scaled transistors. To rectify it, a simple solution has been used: reduc-
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ing the supply voltage much slower than suggested by Dennard scaling. However, this trend has

the consequences of increasing the temperature and, to the point that heat dissipation may no

longer be possible with conventional techniques. Water cooling techniques exist but are very

expensive [9]. As the size of the transistors continues to decrease, the energy density rises in-

exorably, until we are not able to power them anymore. However, the systems architectures are

now composed of heterogeneous cores, with GPU (Graphical Processing Unit), CPU (Central

Processing Unit), or more complex systems where the full architecture is not used 100% at the

same time. Thus, the number of cores has been increased but most of them are used at half of

their maximum performance. Remained cores will be "dark" or dimmed, this phenomenon is

called Dark Silicon [10].

Despite these limitations, the electronics industry is making more and more efforts to con-

tinue to follow Moore’s law with incredible sophistication of transistors [11]. The two main

technologies used today to reduce transistor dimensions below 28nm are FDSOI [12] (Fully-

Depleted Silicon-On-Insulator) and FinFET (Fin field-effect transistor) [13]. These two-transistor

structures are very different from the classical structure of the Bulk CMOS transistor. The man-

ufacturing techniques of these transistors is very complex, and the cost of production machin-

ery has become extremely high [14]. Ultimately, the true limit of transistor scaling will be a

physical limit. If we imagine the ultimate electronic device, it would work with a single elec-

tron. So, to make a binary switch, the state of the electron would have to be stable enough to

not be activated by thermal energy. According to basic physics, a fundamental limit for this

energy barrier is Eb = l og (2)kbT and is 0.003aJ at room temperature. However, following basic

physical derivations, if we have 1010 devices in our microchip and we do not want errors for

ten years then the energy barrier required is 0.24aJ [15]. Today, we have technologies that use

around 20aJ per basic switch. Physics, therefore, allows possible improvements by a factor 100,

which is not negligible, but this margin compared to the 400,000 factor that was obtained over

the past 50 years.

What can we do next? The constraints that have just been set: one error every ten years

among 1010 devices is a minimum standard in the electronics industry, but in reality, it is ex-

tremely challenging to achieve this type of reliability, especially when it comes to memory. Al-

ready today, for many memory technologies, formal error correction algorithms are used [16].

By relaxing this constraint, performance could be much better, but system architectures were

never designed to work in regimes where devices have errors. Innovative algorithms for elec-

tronics is therefore highly relevant today, with new nanodevices that promise fantastic oppor-

tunities.

Given the many limitations of competing devices, CMOS has so many advantages that find-

ing a successor to it has never been successful. Traditionally these devices proposed as alter-

natives to CMOS are very complicated to use, they have a high variability, a low reliability, and

are not scalable as easily as CMOS. To be useful in modern electronics, new devices must have

strong qualities. They have to be competitive in terms of energy consumption or speed, but
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also in slightly more diverse areas such as: a very high compactness (e.g.: nanotubes...), a com-

plex behaviour (e.g., molecular electronics) or novel features (e.g., sensing, negative differential

resistance, non volatility...). In most cases, CMOS is and will remain extremely competitive, so

it is very critical before embarking on the use of new nanodevices, to understand its qualities. It

is often difficult to develop devices with sufficient reliability for large-scale use. If the number

of devices is very large, and a single device is defective, and this causes the entire chip to be

discarded, it is certain that it will be impossible to market such a product in view of the costs

involved. Adapting circuit design to system and device reliability is now essential. An exam-

ple of a case study, is the retention time of memories, for 10 years retention an energy barrier

8000 times greater than a system of one hour retention is required. Working with low reten-

tion memory device would result in a much lower energy consumption. At the system level, we

should consider new computational paradigms, such as approximate computing [17].

(a)

(b)

Figure 1.2: (a) Energy consumption for various operations in 45nm 0.9V CMOS technology,
taken from [18], originally adapted from [19] & [20] and (b) Conventional operat-
ing principle of a processor based on the von Neumann architecture. In this type
of architecture, the memory and the calculation are physically separated. A calcula-
tion operation f requires data A which is in memory, and at the end of the calculation
the result f(A) will go to the same memory unit. The data therefore needs to be con-
tinuously moved back and forth between the computing unit and the memory unit,
which leads to a communication bottleneck called von Neumann bottleneck. Taken
from [21]

Until now, we have been talking about the power consumption of individual electrical de-

vices, but what about the energy consumption of a whole system, for real applications? In

Figure 1.2 (a), we can see the relative energy cost of various operations. An obvious observa-

tion is that the energy consumption related to the data movement is very high compared to the

operations performed by transistors. When we look more closely, we can see that the domi-

nant energy is the access to read DRAM (Dynamic Random Access Memory) data with 640pJ
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for 32bit, which corresponds to the data in the central memory of a computer. This high energy

consumption is related to the physical distance that separates the calculation from the memory

which is considerable in comparison to the transistor level. In principle, energy consumption

related to memory access would not be a concern if it did not happen very often. However,

this data access is inherent to today’s computer architecture, which is based on von Neumann’s

architecture as shown in Figure 1.2. To perform a calculation a computer needs data, e.g., if it

wants to add x with y it will need to fetch the values x and y from the RAM of the computer.

Then, the processing unit needs to store these data in the temporary memory called "cache

memory", composed of SRAM (Static Random Access Memory) cells, in order to perform the

calculation. Once the calculation has been performed, the result is returned to RAM. It is this

continuous coming and going of data between different parts of the computer that is actually

the dominant source of power consumption in today’s computers.

1.2 Advancing electronics another way: enhance commu-

nication

The understanding of the high power consumption due to the physical distance between the

memory and the computing cores explained in the previous section is not recent. It was already

remarked in 1977 by John Backus [22]. Now, this information is therefore well known to inte-

grated circuit designers. Despite considerable progress in reducing these data exchanges with

architectures that reduce data flow by integrating more and more levels of memory cache, the

energy consumption for cache access and power dissipation in electrical interconnect is still a

big concern. Connections are indeed a main source of heat dissipation in electronic chips, and

their scaling does not come without certain difficulties especially concerning the electric inter-

connects. The propagation time of a specific signal is limited by a time constant defined by the

resistance and the capacity of the interconnection. When we reduce the size of a wire, the re-

sistance increases. It means that for a wire going through the whole chip, the capacitance does

not change a lot when the dimensions of the wires are reduced but the resistance is increased

as well as the propagation time constant. In order to reduce the energy consumption of the

connecting wires within a chip, there is a whole hierarchy of techniques from system level to

circuit level [23]. Due to the use of all these techniques, the bandwidth between computation

and memory is limited, which implies the use in modern computers of branch prediction [24]

to speed up the execution speed of computations. This implies an important energy overhead

at the computing core level since part of the performed computations is useless.

To measure the progress of future technologies, and highlight the increase importance of

interconnections Wong et al. [25] propose a density metric to evaluate the performance of fu-

ture developments. They propose to use a density metric that is decomposed into three parts,

a transistor density DL for Logic transistor Density, DM for main Memory bit Density and DC
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for main memory/logic Connection Density. In today’s computers, the main memory is the

DRAM, which is mainly composed of very finely integrated capacitors, but which cannot be

integrated with the same manufacturing process as the computing core. So, even though both

the transistor technology and the DRAM technology are very advanced the connection between

the two is limited, so the margin for progress is quite large. This Logic Memory Connectivity

(LMC) is very important to define the performance of a circuit. This idea is a guiding line in all

our research work on neuromorphic electronics, and therefore, of this thesis.

Today, memory and computing densities are already very high, so an interesting question

to ask is therefore how to improve the communication metric. In a conventional computer, a

data bus allows the communication between the processor and the memory (cf. Figure 1.2 (b)).

For this, the pipeline principle [26] is used, i.e., the data are not sent all at once but sequentially,

which allows the calculation to be carried out even though not all the data have been received.

The main reason for this sequential approach is that it allows large data processing even though

the data bus is limited in size.

Moreover, in a conventional synchronous design of electronic circuit, one of the input sig-

nals is the clock that manages the other signals and their timing. The goal of this clock is to

share within the circuit the same notion of time: two independent operations can be done at

the same time, and then their result can be used at the next clock cycle, which allows a very

good efficiency of calculation. Unfortunately, this clock, which by its nature switches contin-

uously, is a very important source of energy consumption. The first reason is that it is always

active, even when there is little or no demand on the circuit. Therefore, one of the tricks to

reduce this source of unnecessary energy consumption is the use of clock gating [27]. It con-

sists of turning off this clock signal on a part of the electronic circuit when it does not need it.

The other reason for the high power consumption of the clock signal is that it has to be shared

across the chip, and managing synchronization is very complex on large circuits. Indeed, two

registers located at two opposite places in the chip must receive the same signal at the same

time, which implies complex circuitry.

An interesting approach without clocks are asynchronous circuits [28] [29]. Asynchronous

circuits do not have shared clocks. To perform calculations and communication of data, these

circuits use the principle of handshaking. This communication protocol consists of communi-

cating information between two entities by a process of waiting for a response, i.e., one entity

performs an operation and transmits a control signal that tells that the calculation is accom-

plished. Thus, the performance of these circuits can be much higher than synchronous circuits

because they are not limited to the longest critical path of the circuit. If a calculation is quick to

perform, the result is quickly transmitted. Unfortunately, asynchronous circuits are difficult to

design, and most of the time implies an overhead in terms of silicon area due to the handshak-

ing implementation. Despite the growing interest in asynchronous circuits, their popularity is

still limited today [30].

To improve the communication between the computing unit and the memory, it is also pos-
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sible to avoid conventional communication by electronic wire. The use of light communication

instead of electrical communication has been explored a lot in recent years. The growing inter-

est in optical communications is certainly driven by the speed offered by optical fibers. Optical

fibers allowed the broadband internet revolution of the 2010s. But when it comes to reducing

the energy cost of long-distance communication, we are in a completely different field from the

approach of reducing the energy related to communication between memory and computing.

In order to replace short-range electrical communication with optics, it is not only important

to have a low loss in optical communications but also to have all its devices with low power

consumption such as photon generators (i.e., lasers), modulators (which convert information

electrical signal into optical signal), and photodetectors [31]. Great progress has been made in

this field and is starting to be commercialized but the communications that are replaced are not

the ones that concern us in this thesis, in general, these optical circuits are used for commu-

nication in Datacenters [32] between the different motherboards of the different servers which

are a significant source of the global energy consumption.

Optical circuits are objectively not easy substitutes for conventional electronic circuits at

the transistor level. The first reason is that optical communications use waveguides that have

relatively large dimensions (micrometers) compared to the dimensions of electrical communi-

cations. Nevertheless, the idea of working with silicon photonic optical circuits [33] would be

very promising in the future if it becomes possible to integrate optical communications circuits

closely to conventional electronic circuits. The exceptional bandwidth, multiplexing [34], and

the fact that waveguides can cross each other without interfering are three properties that are

largely underestimated for the future of electronics. To overcome the issue related to the size

of optical waveguide, plasmonics [35] combines the qualities of both electronics and optics.

The transmission losses and the difficulties to co-integrate this technology with conventional

electronic are the two main issues that limit their use for the next generation of circuits.

Enhancing communications between processor and memory can be performed by rein-

venting communication techniques and technology. In my opinion, the idea of adding addi-

tional technology to the current CMOS technology seems very promising for future embedded

systems. By pursuing this idea, we can then go further than Moore’s Law.

The idea would be to reduce the energy consumption related to communication by increas-

ing integration like Moore’s law but using new technologies. This approach is therefore often

called More than Moore [36]. The first benefit of using new technologies is that it adds new and

complementary features to CMOS. CMOS is mostly powerful to perform simple binary oper-

ations. Even though it is possible to work with transistors in an analog regime their precision

is very limited to perform real analog calculations, especially since scaling is not as easy in the

analog regime. On the other hand, for features that cannot be present within a CMOS core,

hybrid circuits that include several technologies with new features are a great opportunity for

the future low-energy electronic circuits.
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(a)  Interposer stack (2.5D)

(b) TSV based 3D IC

(c) Monolithic 3D IC

Die 1 Die 2

Interposer with TSVs and Metal Layers

Substrate, PCB with Metal Layers

Micro - Bumps

with Underfill
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Wafer - Level Bonding

Without Micro - Bumps; or

Die - Level Bonding,

With Micro - Bumps
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Die 1

Monolithic Vias Die 1
Die 2

Figure 1.3: Overview of 3 different solutions to integrate different technologies on the same
chip from [37] (a) Integration using an interposer, two different technologies placed
side by side that communicate with each other through the interposer. Also called
2.5D. (b) 3D integration based on TSVs, the different technologies are superimposed
on each other but during the manufacturing process the technologies were initially
separated on different wafers, during the final assembling the TSVs pass through the
whole chip to connect the different chips together. (c) Monolithic 3D integration ap-
proach, the different technologies are manufactured one after the other, there is no
final assembly and the technologies are connected to each other through conven-
tional metal connections.

In order to achieve the integration of different technologies within the same chip, different

methods summarized in Figure 1.3, exist. With the advent of Through-Silicon Vias (TSVs) [38],

even when manufacturing techniques are not compatible between the different technologies,

3D integration has become widely possible and is even being developed industrially. There

is 3 types of 3D integration structures. The first one, often called 2.5D [39], is presented in

Figure 1.3 (a) it use an interposer (i.e. an electrical connection interface) using TSVs to connect

two dies together. The second one (Figure 1.3 (b)), called TSV based 3D-IC consists of directly

connecting the different technologies manufactured on different dies by superimposing and

connecting them using TSVs. This technique is very promising but the number of stacks is

limited. First, because of the alignment problems and secondly because of the thermal heating

involved by the technologies integration. The last approach, called monolithic 3D-IC or pure

3D (Figure 1.3 (c)), involves directly integrating different technologies on the same die using

manufacturing processes that are compatible with each other. This technique seems to be the

most appropriate, but it is the most difficult to implement, since it implies the compatibility of

the different manufacturing processes. The more advanced the technologies are, the more it
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becomes an issue.

While historically, memory and computing were physically very far from each other, us-

ing 3D and 2.5D integration technology has led to the emergence of High Bandwidth Mem-

ory (HBM) [40] (widely used in modern graphics cards (GPUs) [41]) where memory and com-

puting core are very close physically. Despite recent advances in this type of integration, there

remains a considerable challenge for this type of integration process, which concerns the ther-

mal implications of such structures. In addition to the influence of temperature on its own

structure, a stack of one technology can influence another stack. Despite the growing interest

in 3D integration, it remains very difficult to implement. When designs are made with redun-

dant patterns, such as memory arrays, it remains relatively simple to make designs. But when

it comes to integrating different technologies with different features to perform different op-

erations as one would do with a conventional CMOS circuit, it becomes much more compli-

cated since there is no fully automatic placement routing flows, or they are very complex to set

up. There is considerable industrial interest in 3D technologies and a lot of research is being

done in this direction, but there are very important limitations for mass production. Reliability,

testing possibilities, and high cost are difficulties that are rarely presented in pure academic

research but are very important for industry.

To sum up, to limit the energy on communication, either we work on pure communica-

tion between the computing units, the memory, the inputs/outputs, the sensors, or we make it

disappear by integrating the different technologies together as much as possible [42–44]. Espe-

cially, that it is now possible to integrate the different technologies with each other.

1.3 The special case of memory

Until very recently, the industry has focused on optimizing either memory technologies or

high performance logic technologies independently. As these technologies have progressed,

the manufacturing processes have become more complex. The monolithic 3D integration of

memory with compatible high performance logic manufacturing processes is therefore very

difficult. By being a little less demanding on the performance of the devices, but being able to

integrate them with other devices that do not have the same function, it is possible to make

very innovative chips. Some very impressive achievements have been made by research teams

recently [44], and the industry seems to have embraced the importance of integration in the

future chips [45, 46].

We have seen in Figure 1.2 that the communication between the CMOS computing core and

the DRAM represents a large part of the power consumption in a full system. But the energy

consumption of the memory in the CMOS core, i.e., for registers as well as SRAM, is also large,

especially since it is used for the cache memory and is therefore very intensively used.
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(a) Positive-Edge 

triggered D Flip-Flop

(b) SRAM

(c) DRAM (d) Flash memory
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Figure 1.4: (a) Schematic of a Positive-Edge triggered D Flip-Flop acting as the classical register
in CPUs, (b) Static Random Access Memory (SRAM): Two CMOS inverters connected
back to back. The charge is confined within the barriers formed by FET channels
and gate insulators. (c) DRAM, Capacitor connected in series to a transistor (d) Flash
memory, charged are trapped in a floating gate influencing the current that flows in
the transistor channel & the two configurations NAND and NOR that setup many
devices.

An SRAM single array element is composed of 6 transistors (Figure 1.4 (b)): one flip-flop

cell and two selecting transistors. The charge is confined in a feedback wire loop between the

two barriers formed by the FET channels and the gate insulator. By contrast to a memory reg-

ister, which by construction does not need a read circuit, an SRAM needs a slightly complex

periphery to be read and programmed. To read an SRAM cell, the Bit Line (BL) & the comple-

mentary Bit Line Bar (BLb) are initially floating high, when the Word Line (WL) is raised. In the

configuration of the Figure 1.4 (b), BLb is pulled down, and BL is pulled up, or the opposite to

have the other binary value. In reality in large memory arrays, the load of the electrical wires
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being relatively important, a more complex reading is implemented. It consists of charging BL

& BLb to Vdd and when WL is active a slight voltage difference between BL & BLb appears and

is detected by a sense amplifier. To write an SRAM as for a latch, BL is loaded to Vdd and BL to

the ground or vice versa, and then WL is activated.

As shown in Figure 1.4 (c), the DRAM memory itself consists of a capacitor that stores the

electrical charge rather than a feedback wire-loop connected to the drain of a transistor. It is

more compact than SRAM, but slower, and needs to be refreshed regularly since reading de-

stroys the content of the capacitance, and it is subject to capacitor leakage losses. The reading

is achieved by first charging BL and then activating WL. According to the charge contained in

the capacitor, a voltage change appears on BL and is compared with a voltage threshold by a

sense amplifier. The SRAM manufacturing processes are compatible with high-performance

CMOS, but DRAM does not have this compatibility, so DRAM is typically implemented in a

dedicated chip. However, some foundries provide some embedded memory e-DRAM that can

be implemented within high-performance CMOS [47, 48].

Flash memory, (Figure 1.4 (d)) relies on a special transistor, which contains an extra gate

suspended in an oxide that can contain trapped charges. The reading is made by detecting

the current flowing under the floating gate. When applying a voltage to the grid, if the floating

gate is discharged, electrons can flow in the channel, but when the floating gate is charged,

the electric field is not sufficient to let the electrons flow. Flash memories can be multilevel-

cell, depending on the possible level of charge in the floating gate. In this case, several gate

voltages are required to sense the current. To write data, an electric current must flow between

the source and the drain and a higher voltage must be applied to the control gate. Some of

the electrons pass between the electrodes and will tunnel towards the floating gate, through

the oxide. Erasing a cell is done in the same way, but by passing a negative voltage across the

control grid. The electrons then tunnel from the floating gate to the substrate. The writing

process tends to damage flash memories, resulting in a relatively low endurance. Reading is

faster than writing or erasing, because the floating gate does not have to be filled or emptied

with electrons.

There are two main categories of Flash memory: NAND Flash memory and NOR Flash

memory, shown in Figure 1.4 (d). NOR memory is the conventional Flash memory where each

device can be addressed separately; one end is connected to the source line and the other end is

connected to the bit line. Flash memory is called NAND when several memory devices are con-

nected in series. In NAND memory the access is sequential while in NOR Flash the access can

be random. In modern process, the great advantage of NAND memory is that it can be stacked

in 3D [49], and therefore its memory capacity is much larger than NOR Flash. In addition to

being non-volatile memory, i.e., it is not erased when the power is turned off. Flash memory is

an inexpensive and high-density memory. However, it has some drawbacks: an asymmetrical

read/write speed performance, memory retention is poorer when its dimensions are reduced,

the endurance is low, and decreases sharply when we increase the number of levels per cell.
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Flash memory, therefore, requires the use of complex error-correcting codes, capable of cor-

recting multiple errors. Finally, it is not Back-End-Of-Line compatible with high-performance

CMOS core.

To work correctly a computer must continuously fetch data from memory, but this data is

often very large and therefore needs to be stored in a memory space outside the computing

chip, otherwise, it would saturate all the registers and the SRAM that the chip contains. Even

when using the best caching strategies, a classical processor will sometimes fetch some data

from the DRAM, even though it could store this data within the computing core to reuse it the

next fraction of a second. The memory access speed, memory capacity, and compatibility of

the technology with a CMOS core are interrelated and interdependent. The current solution is

to make distinctions between each of the categories.
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Figure 1.5: (a) Hierarchy of the different memory technologies in use today, there are two cat-
egories of memory, working memory, which is composed of registers, SRAM and
DRAM, and storage memory, which is composed of flash memory, hard disks or
magnetic tapes. The larger the storage capacity the lower the cost. (b) Correspond-
ing the different memory technologies with their access and write times, it can be
seen that there is a technology gap between DRAM and flash memory, and even
more so if we consider writing time.

Each of these memories has different characteristics and performance, so they are not used

for the same functions. The registers are very fast memories and are part of the computing core,

they are used to synchronize data as well as to briefly store data between two clock cycles. The

SRAM is also very fast, it is organized as a memory array, and data access is done by address-

ing. It is on the same chip as the computing core and is often used as cache memory to speed

up data transfer between computing and DRAM. DRAM, on the other hand, is the computer’s

main memory, which is relatively compact and has a relatively short access time. Figure 1.5 (a)

shows the memory hierarchy present in electronic computing systems and Figure 1.5 (b) high-

lights the access times required for different technologies. It can be seen that there is a clear
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separation between two types of memory capacities, working memory and data storage, which

do not have the same access times. The gap is quite clear, especially if we look at the write time

of Flash memory compared to DRAM. NAND Flash can offer high-density storage, increasing

as devices scale down to smaller dimensions; but while prices are dropping, the speed gap be-

tween memory and storage remains significant. Additionally, the device endurance of Flash is

low and is not likely to improve.

Modern computers have long been designed to limit this constraint and hide this gap in

memory access time. In data centers, the speed of DRAM and its high power consumption are

a big concern, but the non-volatility of Flash memory, and its relatively long access time does

not seem to be the ideal technology either. So very recently, to fill this gap in memory access

time, new technologies have been explored and are now being commercialized [50]. This range

of memories is called Storage-Class Memory [51]. There are a multitude of candidate technolo-

gies to fill this empty space in the memory hierarchy. The main ones are shown in Figure 1.6.

These technologies come with two new features compared to DRAM: the non-volatility of the

stored information and the Back-End-Of-Line compatibility. Therefore, open the way to new

possibilities of circuit architecture.

The origin of these memories can be tied to the works of Leon Chia[52], who theorized a

fourth elementary passive device, called the memristor M, in addition to the resistor R, the in-

ductor L, and the capacitor C. A paper entitled "The missing memristor found" [53] published

in 2008 claimed to have found this theoretical device. Many controversies appeared since the-

oretical guarantees were not provided [54]. There are serious doubts about the existence in the

real world of the memristor as initially proposed. For this reason, we will not use this word in

this thesis and prefer the more generic term resistive memory. But this is not because non-

volatile memories do not correspond to the precise characteristics of an ideal "memristor" that

they are not fascinating. As mentioned earlier, these memory devices are outstanding candi-

dates to fill the gap between DRAM and storage memory. Each resistive memory technology

has pros and cons and the main ones are listed in Figure 1.6.

The first memory device shown in Figure 1.6 (a) is the Spin Transfer Torque Magnetic RAM

(STT-MRAM). This device consists of a free magnetic layer whose direction of the magneti-

zation can be changed and a pinned magnetic layer which is fixed. By current injection, it

is possible to detect the state of the free magnetic layer, the current being greater when both

magnetic layers have their magnetization in the same direction. A spin transfer of the electrons

passing through the junctions can reverse the direction of magnetization of the free layer. Be-

fore the end of the 2000’s, magnetic junctions did not use spin transfer, and the direction of

magnetization of the free layer had to be changed by a magnetic field, which made it poorly

scalable. Today, this technology has made huge progress and manufacturing companies have

their technologies ready to use [45] [46] [55].
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Figure 1.6: (a) Energy consumption for various operations in 45nm 0.9V CMOS technology,
taken from [18], originally adapted from [19] & [20] and (b) Classic operating prin-
ciple of a processor based on the von Neumann architecture. In this type of archi-
tecture the memory

The second category of memory shown in Figure 1.6 (b) is a oxide based resistive memory

(RRAM). The basic idea is that a dielectric material, which is normally insulating, can be forced

to conduct through a filament or conduction path after a sufficiently high voltage is applied.

The formation of the conduction path can result from a variety of mechanisms, including de-

fects, and metal migration. The switching process can be filamentary as well as over the entire

contact surface with the electrode (interfacial). Once the device has been programmed to a

low resistance, it may be reset (broken, resulting in high resistance) or set (re-formed, resulting

in lower resistance) by an appropriately applied voltage. In this thesis, we will present a chip

design that uses this technology using hafnium oxide (HfO2) [56].

The third technology shown in Figure 1.6 (c) is Phase Change Memory (PCM). This device

is made of a nanometer volume of phase change material (that can switch between amorphous

and crystalline phase) between two electrodes. The amorphous phase features a high electric

resistance, while the crystalline phase is conductive. By applying a voltage to the electrodes,

the increase in temperature at the material can induce a phase change, which then changes

the resistance of the device.

The last memory device shown in Figure 1.6 (d) is the ferroelectric memories. Ferroelectric
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memories are different from the three devices presented earlier, since to read their state, they

rely on the electric charges located at the electrodes and not on the state of resistance. The

circuits used for reading therefore look more like the circuits used for DRAM. The principle of

FeRAM is similar to that of DRAM except that the capacitance of the device can be modulated

according to the ferroelectric material state between the two electrodes of the capacitor. Due

to the effect on the electric field of ferroelectric materials, it is possible to use it similarly to

the flash memory at the gate of a transistor to affect on the electrons flowing under the gate:

this memory device is called FeFET. There are also the Ferroelectric Tunnel Junction memories,

which combine the tunnel effect with ferroelectric materials but which are still in very prelimi-

nary stages [57]. Moreover, these devices are very promising because their strong non-linearity

allows matrix products to be produced without selectors [58].

1.4 Integration of Non-Volatile-Memory (NVM) for In-Memory

Computing (IMC)

In order to integrate the different memory technologies mentioned in section 1.3, it is impor-

tant to consider the method of integration, i.e., how to assemble them with each other. Since

these are memory devices, it seems quite obvious at first glance to integrate them similarly to

SRAM cells. In SRAM, two access transistors per bit are needed because the change of state

can only be done by forcing the state of the SRAM cell from one side or the other. This con-

straint is specific to SRAMs and does not apply to memory devices based on their resistance

state. That means that each device, needs to be only associated with one access transistor to be

addressed sequentially (1T1R see Figure 1.7 (a)) to be programmed and read. It is this method

that is classically used to use these devices digitally. The problem with this method is that it

uses a transistor that is below the first metal level 1 to address devices that may be as high as

metal level 4-5. Firstly, it means that all metal levels and transistors under the memory array

are dedicated to it and therefore cannot be used for anything else and secondly, due to the di-

mensions of metals that increase at each level, the device itself can be smaller than the device

access metal.

To increase the memory density per unit area, it is possible to do without access transistors,

i.e., to design a memory array only consisting of memory devices (1R configuration 1.7 (b)).

Only two levels of metals are therefore required to access the devices. To program a device,

or to read it, it is enough to apply a voltage difference between the word line (WL) and the

bit line (BL). Unfortunately, in this configuration, all devices will receive half of this voltage

difference, which will induce leakage currents that will flow through all half-selected devices.

The last configuration presented in Figure 1.7 (c) has associated a bipolar diode-type device

that stops low positive and negative current, which eliminates the effects of sneak paths in a

large part of the memory array. This method transfers the constraints on the manufacturing of
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a selecting device other than CMOS. Many technologies are candidates and can be combined

with the memory device technology [59]. Some are even already marketed by manufacturers.

The technology is not public, but according to multiple news reports, it seems to be Ovonic

Threshold Switch (OTS) [60] [61].

SL0

BL0 BL1 BL31

SL1

SL31

WL0

WL1

WL31

(a) 1T1R configuration

BL0 BL1 BL31

WL0

WL1

WL31

(b) 1R configuration

BL0 BL1 BL31

WL0

WL1

WL31

(b) 1S1R configuration

half 

selected

half 
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not 

selected

Figure 1.7: (a) Memory cell array using 1T1R configuration, one cell gather one Transistor and
one Resistor (1T1R). (b) Memory cell array without access transistor, when a voltage
difference between BL0 & W L0 is applied, the device in green is programmed put
all the other also receive a voltage difference (c) Configuration which associates a
resistor with a selector, avoiding sneak paths (1S1R).

Given the advance of memory technologies, which now seems inevitable, it is fascinating

to wonder what they can allow us to achieve from a system point of view. First, as we have seen,

these memories can be very densely integrated within a CMOS core. It is therefore possible to

envision systems that rely much more on memory.

First, an advantage of the new memory devices that are shown in Figure 1.6, is that they are

non-volatile, whereas all memories that are usually used in processors are volatile. This fea-

ture offers possibilities to replace some memory registers with non-volatile ones [62] [63]. The

possibility of using this non-volatility to replace registers may seem a little curious for today’s

architectures as these registers are continuously loaded. In reality, for many applications, –e.g.

low utilization processors in satellites– these registers are not so much used, and finally main-

taining the data in the register that needs to be continuously supplied with power can be an

issue. A trade-off between the on-time and off-time of a register may therefore require the use

of non-volatile memory within the CMOS itself for applications using a classical von Neumann

architecture [64].

The possibilities offered by such memory devices are not only related to the registers or

memories classically found in a processor. It is also possible to perform operations directly with
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these memory devices. The first method for performing calculations with memory devices is

to use the read circuit of the binary value of the memory device and to augment it with logic

functions. A circuit classically used to know the binary value of a memory device is a PCSA

(Pre-Charge Sense Amplifier) [65]. The difference in resistance between two memory devices

is detected using this PCSA circuit. In fact, it resembles to a pre-charged SRAM cell, which is

configured in such a way that, depending on whether the current is higher in one branch or

another, the SRAM cell ends up in one state or another. By adding transistors in the different

branches where the memory devices are located, it is possible to perform resembles between

the binary value stored in the memory and an input logic value [66]. The detailed operating

principle and the circuits will be presented in detail in the chapter 4 of the thesis, since they are

basic elements of our research.
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Figure 1.8: (a) Basic element of Memristor-Aided Logic, first the output memory device is ini-
tialized to low resistance state coding for a logical "1" then a pulse VG is applied at
the input of the gate which is such as it is able to RESET to high resistance state. If
the two devices IN1 & IN2 are at high resistance state the main voltage difference is
seen by the device two input devices and then the device is kept at LRS, otherwise if
IN1 or IN2 is at low resistance state, the current mainly flow throw LRS devices and
then the device OUT see the voltage difference and is RESET to HRS. (b) Same basic
element but arranged in such a way that it match a memory array. (c) Full Memory
Array with Magic basic element, to perform the NOR operation an isolation voltage
is applied. The devices circled in blue do not see any voltage difference. Adapted
from: [67]

The second method using memory devices for the calculation aims at relying only on mem-
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ory devices without any CMOS overhead. The inventor S. Kvatinsky of this principle describes

it as true In-Memory-Computing, in the sense that all operations are done only with memory

devices. The operating principle is based on the memory arrays previously shown in Figure 1.7,

but the logical inputs and outputs of the system are directly the resistance values stored in the

memory devices. This method is called Memristor Aided LoGIC (MAGIC) [67]. The logical in-

puts and outputs of the system are directly the resistance values stored in the memory devices.

The operating principle is shown in Figure 1.8.

The principle of Magic is therefore very ingenious, the inputs are always programming

pulses, and depending on the state of resistance of the various memory devices, a logical op-

eration is stored in a memory device. Since the NOR logic gate presented in Figure 1.8 is a

universal gate it means that any logical operation can be done by repeating this logic gate.

However, for technological development, this approach is relatively difficult to implement due

to the imperfection of devices and the sensitivity of Magic to errors. Moreover, since the devices

are continuously programmed, the voltages involved are relatively large, which implies higher

energy consumption and relatively rapid aging of the devices.

Beyond this extreme approach, the possibilities offered by memory integration are consid-

erable and numerous have been developed in recent years to take advantage of it. Four exam-

ples of systems using various types of In-Memory computing are listed and briefly introduced

below:

• In the paper called "Solving matrix equations in one step with cross-point resistive ar-

rays" [68], Daniele Ielmini et al. show that by using a crossbar array of memory devices,

it is possible to solve a system of linear equations and find the eigenvectors of the ma-

trix in a single step using Ohm’s law and Kirchoff’s laws. This calculation is carried out

by reading the voltage at the output of a current-voltage converter where the memory

device acts as a feedback resistor.

• Resistive memory can also be used for cryptographic purposes. With a goal of low power

consumption, lightweight cryptography has been introduced. The work [69] presents an

implementation and a power/area analysis using STT-MRAM devices.

• Another approach is to use the input data and compare it with a memory content called

Ternary Content Addressable Memory (TCAM). This technology is already used to per-

form very high-speed SRAM research, but has recently been developed with RRAM [70].

In addition to having industrial applications with classical computer architectures, a

whole field is being opened up for the use of this type of memory in the field of neu-

romorphic with associative memory.

• The approach of hyperdimensional computing using memory devices is presented in

both [71] and [72]. Hyperdimensional computing is about representing semantic, holo-

graphic, spatter code, or other high-dimensional information and comparing it with data
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patterns for analysis. This type of algorithm requires both high-dimensional data pro-

cessing and a large amount of memory, which seems particularly suitable for the use of

our memory nanodevices.

Given the technological advances in the field of memory, a wide variety of applications are

possible. Some authors advocate that memory could replace everything, including logical op-

erations performed with transistors [67]. In our research, and in this thesis, we express the idea

that it is important to mix CMOS and new memory devices to be energy efficient. CMOS being

dedicated to computing and memory devices that save data. Thus some questions appear and

some problems that we should try to address in the next few years: given the human capacity

to perform complex cognitive tasks, is there a way to take inspiration from it? And is there a

connection between its memory-oriented structure and its low energy consumption?

1.5 Bridging the gap between memory and computing: a

brain inspired vision

It is commonly accepted to define as the von Neumann architecture, the architecture used in

today’s computer that physically separates memory from computation. This architecture was

developped for the EDVAC1 project, designed for functioning with a program stored in mem-

ory. Despite the fact that von Neumann imagined the computer at the time as being composed

of two distinct units, one of calculation and one of memory, one of his primary motivations was

to take his inspiration from the brain. He also began a book shortly before his death describing

the brain as a calculating machine: "The computer and the brain" [73]. Even if the knowledge

of the time was not as developed as it is today, his interest in the brain in his book brings out

the fundamental differences that exist between the brain and a computer. In Table 1.1, a non-

exhaustive comparison of the main characteristics of the brain and the computer is made.

A computer, as it works today, is very fast and can perform very sophisticated mathemati-

cal operations in a very short period of time. But it struggles on most cognitive tasks, not even

some tasks that a small mouse performs naturally. Even though we have been able to develop

very powerful algorithms to perform cognitive tasks, especially with the recent progress of ar-

tificial intelligence, there is still a long way to go to have intelligent and low-energy consuming

systems. What makes biological inspiration so attractive? The list of differences between the

working principle of the brain and a computer is much larger than the list of similarities. What

should be highlighted is the energy consumption. When we look at the brain, its energy con-

sumption to perform cognitive tasks is several orders of magnitude lower in comparison to

that of a computer. This low energy consumption is largely due to the fact that in the brain,

memory and calculation are co-located, and therefore, the high energy consumption related to

communication (cf. 1.2) is avoided.
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Computer Brain

Differences

Tasks Arithmetic Cognitive

Speed ≈ 1 ns 1 ms

Devices transistor deterministic noisy & stochastic synapses

Exactness 32/64 floating point (real numbers) imprecise real numbers

Temperature 5°C – 70°C 36°C – 38°C

Operations Sequential Massively parallel

Communication synchronous, clock based asynchronous

Memory separated from calculation co-localized

Energy ≈ 103 W 20W

Structure 2D 3D

Similarities

Evolution: search for energy optimization

Communications based on binary electric signal

Structure composed of nanoscale elements

Going further?

Table 1.1: Non-exhaustive comparison table between the main characteristics of the brain and
a computer.

Our research on neuromorphic electronics aims at trying to get closer to the functioning

of the brain, while keeping in mind that some features of the electronics are still very attrac-

tive. Many computer architects will say that we should not foolishly copy biology, by using

as a metaphor the working principle of an airplane compared to a bird flapping its wings. To

this objection, I often point out that their metaphor is a bit shaky, since it compares two to-

tally radically different systems, the plane sometimes weighing more than 200 tons and a bird

that weighs at most a few kilograms. Moreover, the Wrights Brothers’, two famous aviation pi-

oneers, were largely inspired by the flight of birds to design the firsts airplanes [74]. In fact, the

neuromorphic can finally be brought closer to this comparison because electrons are used in

electronics but not ions like the brain. So the level of difference between airplanes and birds is

comparable with the neuromorphic approach.

Being convinced of the effectiveness of biological inspiration to design energy-efficient

electronic systems, it seems critical to take a closer look at how the brain works in more de-

tail. The brain is made up of about 10,000 billion interconnected neuronal cells. There are

different categories of neurons [75], which all consist of the same basic elements; it is the ar-

rangement of these elements that allows us to categorize neurons. Figure 1.9 shows a biological

neuron and its main components. There is a large number of such schematics of neurons in the

literature describing these devices, but we have chosen to use this representation to highlight

two important points. The first point is that the brain is often seen as a multitude of neurons
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communicating with each other, when in fact each neuron has close to 10,000 synapses, which

means that the brain can rather be seen as an ensemble of synapses with a few neurons nested

inside it, with a multitude of wired connections! The brain can therefore be considered as an

extreme realization of in memory computing.

The second point is the importance of dendrites, since most neural network models are

based only on connections between two neurons via synapses but are not influenced by other

dendrite connections at the neuron level. This consideration of dendrites is increasingly used

to understand how our brain is able to learn [76–79], but this aspect of the brain topology is not

kept as an inspiration in this thesis.

SOMA
A cell’s body, home of 

the nucleus. If you 

stretched out all the DNA 

in just one cell, it would 

be at least 6 feet long

SYNAPSE
Signals called action 

potentials pass from 

an axon to a dendrite 

through junctions 

called synapses. A 

single neuron can 

have over 10,000

DENDRITES
Signals come in through 
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up and out from the 
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Figure 1.9: Biological Neuron and his main devices. The electrical signal from pre-synaptic
neurons comes to the dendrites throw synapses that are integrated at the soma. In
the picture the electrical signal propagates from the top to the bottom.

Neurons are the main brain cells; they communicate with each other through long fibers

called axons. The axon of a neuron transmits nerve impulses, called action potentials or spikes,

to other neurons or specific target cells located in more or less distant regions of the brain.

The connection between two neurons takes place via synapses between the axon of the pre-
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synaptic neuron and the dendrites of the post-synaptic neuron. Each neuron integrates in-

formation from other neurons through dendrites within the soma. Many models describe the

behaviour of neurons in relation to the action potentials they receive. The simplest model is

the integrate and fire model: its principle is that the soma sums up the information received in

the form of spikes at the dendrites, thus increasing its membrane potential. Once a threshold is

reached, the neuron transmits an action potential too. This model being a bit too simplistic, an-

other model called leaky integrate and fire is more commonly used to simulate biological neu-

rons. It is similar to the integrate and fire model in that the soma sums up spikes but an extra

term of leakage is added, which tends to bring the membrane potential down to zero over time.

Thus, to declare an action potential, a neuron must receive typically multiple spikes in a short

period of time. In any case, this model remains simple and does not reflect the physical reality

of the neuron. On the other hand, a model called Hodgkin-Huxley model [80] was awarded a

Nobel Prize in Physiology or Medicine in 1963. This model uses a series of differential equa-

tions to describe how action potentials are transmitted. Unfortunately, the complexity of the

equations is such that it is very difficult to simulate large neural networks with this model. Con-

cerning the synapses, their size being very small, it is highly complex to make measurements

on individual synapses, and therefore to fully understand how they work. Nevertheless, we

know that there exist two categories of synapses, excitatory synapses, and inhibitory synapses,

which will either increase the membrane potential or inhibit the potentiation [81]. It is also

difficult to extract information about the value of synaptic weights, i.e., they are considered to

be imprecise and noisy [82].

Concerning the communication between neurons, we know that communication is asyn-

chronous, i.e., there is no global signal between neurons that controls the transmitted informa-

tion. Additionally, communication is intrinsically binary, since the only signals transmitted are

spikes [83]. Some theories suggest a supplementary form of not entirely binary communication

might be possible, involving spike bursts [84].

That being said, the coding of the transmitted information is not well understood, and there

are different theories [85]. The first theory, rate coding [86], as its name indicates, corresponds

to coding the information transmitted between neurons by a frequency, in other words, a num-

ber of spike per unit of time. This type of coding is very interesting as it directly suggests how

the brain is coding real values.

However interesting experiments performed by Thorpe & al. [87] have shown that neurons

can communicate information with one and only one spike. To do it, he analyses the distance

between the visual system and the part of the brain dedicated to image recognition, with a

comparison to the reaction time interval needed to recognize an image. He concludes that only

one spike could be transmitted. The temporal coding theory could explain such an experiment.

We will see in this thesis, that the use of binarized neural networks, which will be extensively

described in Chapter 4 can also be directly linked to explain this phenomenon. The idea here is

to code information in a time interval, for example, a large real value would be coded in a small
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time interval, and a small real value in a long time interval [88].

Another possibility of coding is to use a set of neurons to code information, i.e., rather than

looking at what is happening at the individual level, we look at the collective level. In neu-

roscience, population coding [89, 90] is a method that involves the use of the joint activity of

neurons to represent information. In Chapter 5, we will study this type of coding in more de-

tail and show that the assembly of superparamagnetic nanodevices embedded in a CMOS core

can encode information and represent complex functions. A final theory is sparse coding [91],

where the main idea is to code the information as a linear combination of a set of small simple

patterns and thus represent more complex patterns. This type of coding allows unsupervised

learning [92], i.e., a data item does not need a label.

The challenges of understanding how the brain works are therefore manyfold. In addition

to the difficulties in understanding the underlying mechanisms of the various devices of our

brain, linked to their noisy and imperfect character, understanding its functioning in its en-

tirety is very difficult. Let us imagine someone who looks at a microprocessor. Even if he or she

perfectly understands the working principle of the transistor, understanding what the micro-

processor does in its entirety simply by looking at the arrangement of the transistors is almost

impossible. This is why many neuroscience studies do not focus on individual devices but

rather at the system level, observing both human behaviour and imaging the brain as a whole.

Many theories concerning reasoning have thus been developed [93], an interesting one which

will be addressed in this thesis with a hardware implementation presented in Chapter 3 is the

Bayesian theory [94, 95].

To understand the learning mechanisms in the brain, some neuroscience studies have ex-

amined how the modification of synaptic weights is done. At the level of an individual synapse,

the major local learning rule that has been extensively studied, particularly for neuromorphic

electronics is Spike Timing Dependant Plasticity (STDP) [96]. This learning rule is very sim-

ple, and it is local as it needs only the information of the post-synaptic spike event and the

pre-synaptic spike event. If at a synapse level, a post-synaptic spike appears just after a pre-

synaptic spike, the synaptic weight is increased, i.e. , reinforced. If it is the opposite, i.e., a

post-synaptic spike occurs just before a pre-synaptic spike the synaptic weight is reduced. De-

spite the great interest in this learning law, which is both unsupervised and local, and the rich

learning outcomes with hardware implementations using non-volatile memory devices [97], it

does not seem to scale up to learn very complex tasks and deep neural networks like the brain.

As a matter of fact, some recent neuroscience studies [98] suggest that the STDP learning rule

would not really be a learning rule as such, but would rather result from a more inherent learn-

ing mechanism [99, 100].

While research has been done on a more comprehensive understanding of the brain, the

advance of artificial intelligence especially through "Deep Learning" [101] has been so remark-

able in recent years that it may help to understand how the brain works. The learning principle

of artificial neural networks is mainly based on the calculation of a gradient of an error, which
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will be used to change the value of synaptic weights, through a process called backpropaga-

tion [102]. In the next section 1.6, we will extensively present artificial neural networks, discuss

the challenges, present the main ideas of the learning algorithm, and their first hardware im-

plementations. There is no direct evidence that the brain uses backpropagation for learning,

but since backpropagation has proven to be a very effective method for optimizing neural net-

works, I personally think that the brain might use some kind of backpropagation.

Recent works by AI pioneers like Yoshua Bengio also reinforce this idea [99]. To study how

the brain works, a lot of research has been done on artificial neural networks for a long time.

One of the earliest attempts were Hopfield networks [103], which are completely connected

neural network, which means that all neurons are connected with the others. The values the

neurons can take are 1, -1, or 0. The synaptic weight that connects the neurons together makes

it possible to store and recreate disrupted patterns as an associative memory. Of the same kind

but a bit more complex, a Boltzmann machine [104] is a stochastic Hopfield network with hid-

den units, i.e., some neurons are used as input to the system and others are used for the dynam-

ics of the system (whereas in Hopfield networks all neurons are used as input). They are very

commonly used to estimate the probabilistic distribution of a dataset. Boltzmann machines

are very difficult to train because the training time increases exponentially with the size of the

network. For this reason, other studies have suggested that to make training easier, it is advis-

able to limit connections in layer connection with Restricted Boltzmann Machines [105, 106].

They were then extended to deeper networks through the stacking of the restricted Boltzmann

machines, called Deep Belief Networks [107].

More recent research is making some sense in bridging the gap between artificial and bi-

ological neural networks by looking at how the brain can encode, calculate and propagate an

error signal to optimize a function [108, 109]. A first idea is that the synapses within dendrites

would have very different importance and roles depending on their position on the dendritic

tree [78, 79, 84]. Another idea called Equilibrium Propagation is that the error signal can implic-

itly be propagated by a difference between alternating phases of signal propagation, free phases

where the system evolves to a steady state of equilibrium, and phases nudged by an error sig-

nal that evolves to another state of equilibrium. Even if this idea is at an early stage with only

preliminary results for the moment, and features some limitations, it seems very promising es-

pecially as it can be applied to deep Convolutional Neural Networks [100] and very recently to

solve complex tasks [110].

1.6 Existing implementation of neuromorphic hardware

Bio-inspired computing became very popular only recently; it is no longer a marginal topic as

it nowadays possesses a topic with an industrial dimension. Scientific publications and confer-

ences in electronics are very often oriented in the neuromorphic perspective. For this reason,

hardware implementations of neuromorphic circuits are very diverse and all of them can not
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be listed here. In this section, I will present my vision on the neuromorphic field with a non-

exhaustive list of neuromorphic implementations, that I believe to be the most promising for

the next decades. Given the major progress in artificial intelligence and the development of

the gradient backpropagation bio-plausibility (see previous section 1.5), we include hardware

implementations of artificial neural networks as parts of the neuromorphic category.

The flagship technique used for training neural networks is gradient backpropagation [111];

it is an optimization method to approximate a function using a derivative calculation. In the

case of neural networks, this function can be very complex. However, an artificial neural net-

work is no more than a function. This function takes an input x and provides an output y.

This function f is parameterized, i.e., its behavior can be modified by changing the parame-

ters, which we will call here the weights w . The function f (x, w) outputs a prediction y. From

this prediction, a loss can be defined – usually, cross-entropy is used for classification and root

mean square error for regression–. From this error, it is also possible to define the gradient of

this loss as a function of the parameters w . By stochastic gradient descent, –that means that

in each example the parameters w will be modified by a small step in the opposite direction

of the calculated gradient–, it is possible to move closer to the parameters w where the loss is

low. This stochastic gradient descent is illustrated in Figure 1.10, the global loss landscape of

the task is presented in brown, while the loss landscape of the current example is presented in

blue. To reach the global minimum w*, a successive presentation of different examples and a

gradient descent allows approaching the ideal w* parameters.
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Figure 1.10: Landscape of the global loss in brown as function of two parameters w0&w1, the
global minimum is at (w∗

0 , w∗
1 ), landscape of one example loss as function of two

parameters in blue, the example loss is at (w x∗
0 , w x∗

1 ). The optimization in stochas-
tic gradient descent consists of calculating the gradient of a multitude of examples,
by accumulation of the gradients we get closer to the global minimum.

A simple artificial neuron is presented Figure 1.11 (a), it is a simple computation of a weighted
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sum of inputs x with weights w . An artificial neuron performs a linear regression, and by adding

a nonlinear function at the output of the neuron, the complexity of the representation space

becomes higher. It then becomes beneficial to cascade layers of neurons, to obtain a network

capable of highly complicated tasks. In this way, a neural network is composed of a multitude

of neurons connected to each other, the output of one neuron is the input of another. In gen-

eral, even if it is possible to have other neural network architectures, the simplest approach is

to have a succession of interconnected layers, also called a fully connected neural network as

presented Figure 1.11 (b).

The principle of learning a pristine neural network is presented in the algorithm of Fig-

ure 1.11 (c), which also highlights the data exchange between the memory and the processing

unit in this process. It is possible to decompose the learning of a neural network in three parts:

1. The inference. It consists of the calculation of the function f (x, w) and thus to make a

prediction. The only operations to be performed are those performed by the neurons as

in Figure 1.11 (a), that is a weighted sum between an input x and weights w and then

a non-linear function. When there is a multitude of neurons, the operation to be per-

formed becomes a matrix-vector product: w.x followed by non-linear function σ.

2. The backpropagation of the gradient. It begins by determining the loss that corresponds

to the difference between the output of the neural network and the expected label. Then,

we want to determine the derivative of this loss with respect to the weights (∂L/∂w). For

this, we need at each layer of the network the input X and the derivative of the loss with

respect to the weighted sum ∂L/∂w calculated during the inference step. The first cal-

culation is the derivation of the loss with respect to the weighted sum ∂L/∂z. Then a

product between the vector row ∂L/∂z and the input vector column xT gives us a matrix

of derivative of the loss with respect to the weights. To carry out the calculation of the

other layers, the derivative of the loss with respect to the inputs X must be determined,

for that a product between the transposed weight matrix and the derivative of the loss

with respect to the weighted sum z is sufficient.

3. The update of the parameters. In a pristine neural network, the only parameters are the

weights, so they are the only parameters to be optimized by gradient descent, but in more

complex neural networks, it can be possible that other parameters need to be optimized.

Once the calculation of the gradient is done, we just have to modify the w parameter

by subtracting from it the gradient re-scaled by an alpha parameter called the learning

rate. The smaller it is, the slower but more precise the learning is. No matter what type of

neural network architecture is used, these steps are always performed.

In Figure 1.11, a very simple neural network architecture was presented. However, more

complex architectures all rely on this basic functioning. We often talk about Deep Learning, but

these are simply neural networks that have a large number of successive layers. The principles

that we just discussed were identified as early as 1974 [112], unfortunately, deep learning did
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not work for many years. But in 2012, deep Convolutional Neural Networks (CNN) [113] that

allowed to extract redundant features inside inputs Data by sharing weights at each layer, out-

performed all others machine learning algorithm for image recognition. This incredible per-

formance did not come through a conceptual breakthrough as backpropagation was already

proposed to train neural networks around 30 years before [112, 114], and CNNs already existed,

but rather through the possibility of having a very large amount of data and high-performance

graphics cards.
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Figure 1.11: (a) Artificial Neuron, simple model the ouput of a neuron is the weigted sum of
inputs x followed by a non-linear function σ (b) Two hidden layers artificial neural
network

Figure 1.11 (c) presents the algorithm to learn a feed-forward neural network in the situa-

tion of memory and computation being distinct. During the forward pass, the parameters of

the neural network weights must first be loaded, and then the neuron outputs that are required

for the backpropagation step must be stored. During the backpropagation, the memory re-

quest is still present since the data of the forward pass and the weights must be loaded, then

the new weights are stored in the memory, and this at each layer of the network and at each



1.6 EXISTING IMPLEMENTATION OF NEUROMORPHIC HARDWARE 33

example.

As mentioned in sections 1.1 and 1.2, the energy consumption related to data exchange is

dominant over this type of arithmetic calculation, especially since here the mathematical op-

erations that are carried out are very simple but need to be performed many times. To perform

these calculations, GPUs have proven to be very fast, they have a very large number of com-

puting cores and access to a very large dedicated DRAM featuring a high bandwidth. They can

therefore both load weights and store in buffer memory the various data required for learning.

The market for GPUs specifically optimized for deep learning is growing very fast [115]. But

there are also other accelerators for Deep Learning. GPUs are very fast for performing matrix

computations but they are not designed to perform only these operations. There is therefore

further research to optimize the calculations involved in neural networks. The research in this

area is very intensive, we have decided to categorize the different research concerning Deep

Learning accelerators into four main categories:

• The first category, composed of CMOS with non-embedded memory, are accelerators

that are very reminiscent of GPUs and that are already available on the market. They

mainly use DRAM to store the parameters of the neural network. The most famous one

is the Tensor Processing Unit (TPU) [116] developed by Google, which allows the accel-

eration of tensor operations. The first generation of TPUs was only used for the forward

propagation. The new generation of TPU is composed of two kinds of TPUs, TPU Edge,

dedicated for ultra-low power consumption at inference [117] and the higher-precision

TPU is dedicated for the learning.

Other accelerators were developed for high-speed inference like the Movidius Stick [118]:

a flash drive that we can plug into a computer to perform neural network inference. Much

other research focuses on designing ASIC with low energy consumption, especially for

CNN. We will not mention them because they rely on a separation between memory and

computing, which is not relevant for this thesis. Most of these works are focusing on the

optimization of the memory access [119].

• The second category had embedded-memory with SRAM [120]. This category is particu-

larly interesting for this thesis, as most of the challenges at the system level are the same

as the ones we try to address with our emerging memory devices. Therefore, the impor-

tant common issues are parallel or sequential data management [121], how to move data

to perform convolution operations, and input/output management.

• The third category is the one we study in this thesis. It is based on CMOS and Non-volatile

Memory embedded at the technology level. To perform the calculation of the neural net-

work based on matrix product, a classical approach is to use a crossbar array and the Kir-

choff laws presented in Figure 1.12. In the forward pass, the calculation to be performed

is the product w · x, by presenting the input as voltage Figure 1.12 (a) (V0,V1), the prod-

uct is performed by Ohm and Kirchoff laws and the result is obtained as electric current.
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Similarly, for the calculation of the backward pass, the product wT ·δ is performed by

applying the voltage Figure (b) (δ0,δ1), the result is also obtained as an electric current.

Updating the weights is more complex. To do it, the δ and V voltages must be applied at

the same time, each device then sees a potential difference, which will have the effect of

programming or not the device. In the ideal case, we would like to have a modification

of the conductance of the device proportional to the product of the voltage. Most of the

non-volatile memory components do not have this behaviour. In order to overcome this

limitation, some works have proposed different approaches [122, 123], but it remains a

challenging question. The main difficulties encountered are: the asymmetry between

potentiation –an increase in conductance– and depression –a decrease in conductance–

of the devices, non-linearity, programming noise, or resistance drift in some memory

technologies. Some proposed solutions are using a capacitor that is almost linear [124],

shows very promising results but it requires significant technological overhead.

• The last category concerns system-level research. This literature does not consider the

technical challenges associated with devices. We consider perfect crossbars that can per-

form calculations at very low energy. It mainly presents architectures that focus on the

hardware implementation of convolutional neural networks. The important question

that these works try to answer is largely based on the management of non-volatile mem-

ory when the weights are shared. They are also studying the impact of different neural

network architectures and how to have systems that can be used in a variety of ways. The

main circuits at the state of the art are: ISAAC [125] and PipeLayer [126]

Neuromorphic research is not limited to the implementation of artificial neural networks

trained by backpropagation. As mentioned in section 5, the complexity, the dynamics of bio-

logical neurons, of synapse learning is not limited to matrix product operations. Some more

complex hardware implementation taking into account some biological aspects exists. As an

example, the SpiNNaker circuit for (Spiking Neural Network Architecture) is a massively par-

allel system composed of one million of ARM cores (featuring a von Neumann architecture)

but, which communicate with each other using spikes to simulate the brain’s operating prin-

ciple [127]. Similarly, the LoiHi chip [128] developed by Intel is composed of 130,000 artificial

neurons and 130 million synapses that are simulated with great complexity including dendritic

compartments, all communicating with spikes.

The other major technological achievement in neuromorphic circuits that mimic the brain

is TrueNorth. As LoiHi does, TrueNorth [129] aims to emulate the functioning of neurons.

In these implementations, the synapses are in SRAM and are therefore volatile. This volatility

implies that at boot time, all the synaptic weights must be loaded, and when the circuit is not

useful it consumes static power.

Other neuromorphic implementations using non-volatile memory devices and biological

learning approaches exist. There is an extensive literature on hardware implementations of
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STDP with innovative memory devices. The implementation of STDP using resistive devices

is presented in [130], and the implementation of stochastic STDP using magnetic memory de-

vices is presented in [131]. In both cases, a particular pulse shape is applied to approximate

the STDP. This curve is matched with the device physics; when a post-synaptic spike appears

very quickly after a pre-synaptic spike the synapse is potentiated and if it is the opposite the

synapse is depreciated.
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Figure 1.12: (a) Configuration of the crossbar array to compute the forward pass of the neural
network, it computes the product of the voltage with the conductance of the de-
vices by Ohm’s law and the sum is obtained as current by Kirchoff’s law. (b) The
backward pass is performed similarly as the forward pass, but in the opposite di-
rection, a voltage δ is applied where the current was previously read and a current
is read where a voltage was previously applied (c) The weight update is obtained by
applying a voltage difference at each device proportional to the previous voltage V
and δ, if the voltage difference is sufficient the devices are programmed, here the
yellow one see a high voltage difference and its conductance is increased

The integration possibilities are not only limited to the use of innovative memory devices,

some nanotechnologies such as photonics, MEMS, sensors can be used and benefit from the

advances of neuromorphic. For instance, the paper [44] not only combines a multitude of tech-

nologies in 3D monolithic integration (CNFET logic and sensors, RRAM, CNFET logic, and sil-

icon logic) but also an accelerated classification module based on a support-vector-machine.

Even if it is an artificial intelligence module far from biological inspirations, the idea of inte-

grating sensors, calculations, and memory within the same chip is an approach that should be

used for future neuromorphic chips

Neuromorphic optical chip research is a recent development that is beginning to be devel-

oped. Some research teams are working on the hardware implementation of deep neural net-

works with photonic circuits. A first approach is to use a set of programmable Mach-Zehnder

interferometers to perform the neuron function [132], performing both the weighted sum op-

eration and the non-linear function for the neuron output. The approach is very interesting es-
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pecially since it could be implemented in 3D, as recent work has shown that it is possible to in-

tegrate waveguides in 3D [133]. Synaptic weights, so the memory devices are at the center of the

neuromorphic approach as discussed in the previous section. Photonic circuits have recently

demonstrated the possibility of integrating memory devices and more particularly PCM [43]

which can be programmed by laser heating. This phenomenon is well known since it is used

to rewrite optical disks [134]. However, it is only recently that the first photonic circuits imple-

menting deep neural networks with integrated memory devices have been demonstrated [135].

The main attractions of photonic circuits for neural network integration are: multiplexing, low-

loss, and low cross-talk crossings waveguides [136], low power consumption, and speed.

The other interesting neuromorphic approach that focuses more on the physical behaviour

of a system is reservoir computing. The concept of reservoir computing is based on the fact

that a physical system can have a very rich behavior, so by presenting certain inputs to the

system it can produce interesting measurements. The first interesting property of reservoir

computing is that it allows modeling very complex functions, the other interesting property

is that it allows producing outputs that are temporally correlated. In other words, the output

will not only depend on the input state of the system at time t , but also on the input states at

previous time steps. This approach has been widely explored in photonics [137–140], and with

memory devices [141] or oscillating magnetic devices [142]. These oscillating magnetic devices

have been used both for reservoir computing but also because of their very rich dynamics it has

been demonstrated both theoretically [143, 144] and experimentally [145, 146] that it is possible

to use them to perform complex tasks in the manner of a neural network by the phenomenon

of devices synchronization.

Given all these neuromorphic literature, the possibilities offered by both the physics of de-

vices and the ability to produce reliable memory devices for digital implementation, how does

this thesis contribute to the field?

To understand the choices made here, it is helpful to make a few remarks on what are the

guiding threads of our work. The first remark to be mentioned is that CMOS technology is very

efficient for logic operations and that its improvement in the next few years should be only

minor. Therefore, in our work, we will not seek to replace CMOS where it performs best, but

rather to provide answers to situations where it is not effective. Secondly, we believe that the

implementation of non-volatile memory devices at the core of CMOS is the future of electronics

to increase both energy performance and computing performance. And that finally, the brain

is a great source of inspiration to efficiently integrate memory and calculation to have efficient

electronic systems.



Chapter 2

Low Energy Inference Neuromorphic

System: Bayesian Machine and Low

precision Neural Network inference

I have always been convinced that the only way to

get artificial intelligence to work is to do the

computation in a way similar to the human brain.

That is the goal I have been pursuing. We are

making progress, though we still have lots to learn

about how the brain actually works.

Geoffrey HINTON

“BRAIN inspiration is complex to implement, especially because all the underly-

ing mechanisms are not known. Nevertheless, advances in artificial intelli-

gence in recent years have made tremendous progress. It is now possible to solve so

many remarkable cognitive tasks exceeding human performance. One of the chal-

lenges is how these solutions can be embedded in systems. In this thesis, the main

approach is to consider that learning is done off-chip (i.e. on a computer) and then,

the final implementation of the solution that solves some very specific problems is

done on the chip for inference only. ”
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RECENT years may have highlighted the limitations of transistor scaling, but new emerging

technologies are paving the way for new algorithms. Brain inspiration seems promising

as it could reduce energy consumption by bringing memory and calculations closer together,

while being intelligent.

There are a variety of bio-inspired algorithms. Some are far from real applications, mainly

belonging to the category of bio-mimicry, whereas some are only partially inspired by biology,

such as artificial neural networks. The work presented in this thesis relies on just a relative

inspiration on biology. Biological functioning and its direct inspiration can be highly successful

approaches to create intelligent systems, nevertheless, we still believe that it is preferable to use

it just as an inspiration, as long as we are not able to reproduce most of the complex behaviour

of the neural system. We preferred to focus on application-oriented work rather than on naive

mimicry.

In view of all these developments, our position is quite strong on the question of energy

consumption. In this thesis, we mainly study two methods for designing low-energy architec-

tures for in-memory-computing: Bayesian reasoning and neural networks. These two meth-

ods differ fundamentally, the first one is inspired by the brain as a whole, in its way of thinking

and reasoning, while neural networks are rather inspired by the basic devices of the brain: the

synapses and neurons.

Three ideas connect the different works presented in this thesis:

• The use of emerging memory nanodevices to create innovative In-Memory-Computing

brain-inspired architectures.

• The reduction of energy consumption for inference – inference is the use of the system

without learning, i.e. the system will respond to input but will not be modified from it.

• The use of approximate computation to reduce this energy consumption. For the Bayesian

model, approximate computation is achieved using stochastic computing and for neural

networks by quantifying the values that neurons and synapses can take.

The objective of the present chapter is to present the basics of Bayesian reasoning and the

quantization of neural networks and the connections between the two fields.
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2.1 Bayesian principle

The concept of intelligence is particularly difficult to define. Nevertheless, it is certain that a

large part of intelligence is the ability to recognize when we do not know something. For many

intelligent systems, such as robots, autonomous vehicles, or even medical diagnostics, it is im-

portant to take uncertainty into account. The description of this uncertainty is critical when

working with small amounts of data, noisy sensors, or safety-critical systems. How to model

this uncertainty? For Bayesian practitioners, the universal mathematical language for uncer-

tainty are the laws of probabilities. As is the case for humans, the world in which an artificial

intelligence operates is uncertain. The data it will encounter will sometimes be noisy, some-

times provide only partial information, sometimes be biased. Integrating probability theory

into the design of systems presented as intelligent machines is therefore highly promising.

In recent years, artificial intelligence has been driven mainly by advances in artificial neural

networks. Nevertheless, the most complex artificial intelligence system in the world "has less

common sense than a rat", said Yann LeCun [147]. Animals are able to learn from very few

examples, which is very difficult for artificial neural networks. For example, for a child, from

a single drawing of a giraffe, he is able to recognize a live giraffe when he sees one for the first

time. No artificial intelligence is capable of such a feat. To recognize a giraffe, a neural network

needs to be trained on giraffe data, i.e., it will need to see thousands of giraffe images, mixed

with other data, to be able to discriminate whether it is a giraffe image or not. In addition, the

output of a neural network will produce almost certain answers –it optimizes the negative log-

likelihood–, whereas when the child asks for confirmation, maybe he was 50% confident of his

prediction, he is uncertain.

The Bayesian approach is based on Bayes’ theorem :

P (y |x) = P (x|y)P (y)

P (x)
= P (x|y)P (y)∑

y∈Y P (x, y)
. (2.1)

This equation is obtained from the sum rule and the product rule that underlie probability

theory :

sum rule: P (x) = ∑
y∈Y

P (x, y) (2.2)

product rule: P (x, y) = P (x)P (y |x). (2.3)

This approach is radically opposed to neural networks and the conventional gradient de-

scent optimization techniques. In neural network type optimization problems, we try to opti-

mize the parameters to match a prediction. Once these parameters have been optimized, the

system is considered to have learned, and the parameters are no longer modified. On the other

hand, in Bayesian models, learning and inference are two problems that can be treated in an

equivalent manner.

Probabilistic theory and Bayesian principle are well explained in a Nature review [148], the
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book of Daphne Koller [149], and her Coursera’s course [150], as well as in the book [151]. A

main idea of the Bayesian approach is that instead of looking only at the most likely set of

parameters of a model (maximum likelihood or maximum a posteriori), we can consider all

the possible settings of parameters of the model, and we try to see for each of that possible

settings what probability they correspond according to the data we observe. In other words, we

will observe data D and calculate for each possible value of the parameters p the corresponding

probability of observing these data : P (p|D).

(a)

Expected Unexpected

(c)(b)

(d)

p

(e)

p

Figure 2.1: (a) Drawing of the experimental demonstration of the Bayesian reasoning on an
eight-months child. Once the box is open we observe the degree of surprise of the
child (b) when the box turns out to be filled mostly with red balls, (c) when the box
turns out to be filled mostly with white balls. (d) Interpretation of the results using
Bayesian Reasoning (the initial distribution is plotted in red, and in blue is plotted
the distribution after a draw): with a uniform prior on the content on the box and
(e) with a different prior on the content on the box.

In addition to the possibility to model uncertainty with Bayesian approach, over the past

few years, neuroscience research has shown that our brain unconsciously carries out Bayesian

reasoning. Two full years of courses at the "College de France" in Experimental Cognitive Psy-

chology by S. Dehaene are dedicated to Bayesian studies of human learning [94, 95]. Here, we

will present only one experiment that seems quite illustrative of our brain’s cognitive ability to

do Bayesian reasoning. The experiment is presented in Figure 2.1 (a), (b) and (c) and is taken

from the studies [152, 153]. An opaque box is presented to an eight-months-old child, and one

after the other, balls are taken out of the box in front of him. The balls can be white or red. A

trick makes sure that most of the balls that come out are red, and only a few are white. Once

this has been done, the box is opened, its contents are presented to the child, and the child’s

degree of surprise is observed from the time the child looks at it: the longer the time, the more

surprised the child is considered to be. If the content is consistent with the sample (a lot of red,

little white) (Figure 2.1 (b)), the child is not surprised. But if the content is in contradiction with

the sample (a lot of white, little red) Figure 2.1 (c), the child shows a long fixation time (he is
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surprised). That is evidence that he had managed to make a hypothesis about the content of

the box from the sample presented.

The interpretation of these results can be made from the curve in Figure 2.1 (d). The red

curve considered that the child has a prior uniform probability density on p (proportion of red

balls in the box), i.e., it is just as likely that there are only red balls, white balls, or any other

proportion. The blue curve represents the posterior probability density on p after the draws

of five red balls and one white ball. It is obtained from Bayes’ theorem, equation 2.1. It is also

possible to have a different prior to the experience, e.g., if we have already seen a first draw

with 10 white balls and one red ball, we will have the prior of the red curve in Figure 2.1 (e).

And after the drawing of 5 red balls and 1 white ball, the posterior probability distribution will

be different from the case where there has been no observation beforehand. The probability of

having a box with a very large majority of white balls and few red balls is higher in the case of

Figure 2.1 (e) than in the case of Figure 2.1 (d).

So we intuitively make Bayesian deductions without even realizing it. But, despite our ap-

parent pragmatism, sometimes our intuition can be wrong. A remarkable example is testing for

disease. "Let’s say we are tested for a serious illness and the test turns out to be positive. The

doctor tells that the test is 99% reliable, what is the probability to be sick? 99%? In reality, there

is one missing information which is the prior probability of being sick. From Bayes’ theorem –

Equation 2.1 – we have:

P (si ck = 1|test = 1) = P (test = 1|si ck = 1)P (si ck = 1)

P (test = 1|si ck = 0)P (si ck = 0)+P (test = 1|si ck = 1)P (si ck = 1).

If we assume that the 99% represents both likelihoods P (si ck = 1|test = 1) and P (si ck =
0|test = 0) and that the prior probability of being sick is 1/10000, the posterior probability of

being sick is a bit less than 1%. It turns out that, if our prior to being sick was 50%, after the test

we would have had that 99% chance of being sick.

The prior probability is therefore very important to make a successful deduction. The

beauty of the Bayesian theory is that this prior can be enhanced, even though it was initially

very vague. When we see some data, we combine our prior distribution with a likelihood term

to get a posterior distribution that will be our new prior. The likelihood term takes into account

how probable the observed data is given the parameters of the model. It favors parameter set-

tings that make the data likely. It fights the prior. With enough data, the likelihood terms always

win. And we can obtain a precise estimate of the posterior distribution using smaller sample

sizes when we use a more informative prior.

To make an estimate of P (y |x), it is common to use sampling: starting from Equation 2.1,

we draw x randomly, we look at the conditional probability P (y |x) which we multiply by the

prior probability P (x) and we start again. In the example of the young child (Figure 2.1), we

started from a uniform distribution. After each ball is drawn by the experimenter, the posterior

distribution changes. After the first draw of a single red ball the posterior distribution on p – the



42 CHAPTER 2: LOW ENERGY INFERENCE NEUROMORPHIC SYSTEM

probability of drawing a red ball – increases. Whereas when a white ball is fired, this probability

p decreases.

The challenge is that it is not always possible to observe all the possibilities of x. If x is a

binary image consisting of only 28x28 pixels there are 2784 possibilities to encode all possible

images. Since there is necessarily a limited amount of observable data, the problem has to be

modeled in such a way that the number of parameters is reduced. In practice, strong assump-

tions on the structure of the model have to be made. In the example of the child, the model

was very simple, it was based on a single parameter p of dimension 1 which is the probability

of drawing a red ball with the probability of drawing a white ball being simply (1−p). But if we

had 3 colors (red, white, and blue) we would then have a parameter p of dimension 2 to learn:

p = [p0, p1] (where p0 the probability of drawing a red ball, p1 a white ball and (1− (p0+p1)

to draw a blue ball).

Therefore, a model has parameters p that can be learned by presenting D data, and a prior

on these parameters noted P (p|m). The prior of the child for a random draw from a box was a

uniform distribution on the single parameter p. Over the experience, the child changes his per-

ception and determines a posterior probability P (p|D,m). It is therefore through the different

experiences or data D that the adjustment of the parameters is made following the equation

above:

P (p|D,m) = P (D|p,m)P (p|m)

P (D|m)
. (2.4)

Interestingly P (D|m) does not depend on p, so learning the optimal P (p|D,m) can be done

using only P (D|p,m) and P (p|m), avoiding the calculation of the normalization term. Once the

parameters are learned, the posterior probability distribution P (p|D,m) of the model is used

to make predictions. To do it, we use this learned probability distribution, as well as the sum

and product rule to obtain the following equation:

P (D test |D,m) =∑
p

P (D test |p,D,m)P (p|D,m). (2.5)

It provides a mathematical description of the prediction on unseen data D test . Once the

model is learned, the probability distribution P (D test |D,m) is obtained by integrating all the

values of the vector space of the parameters p. Summing out over all the parameters in the

model is the main challenge in computing the Bayesian approach. When the space of param-

eter vectors is large, it is indeed very difficult to get all the values of the space. Nevertheless,

there are methods to move within this space randomly but with a bias allowing to sample

the parameters proportionally to their posterior probability distribution such as Monte-Carlo

methods [154]. It means that by sampling a large number of parameters we can have a good

approximation of the posterior probability.

The main subject of this thesis is to perform low-energy inference once the model has

learned all its parameters. In the case of Bayesian models, this involves performing the com-
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putation of Equation 2.5, but as we said, such an inference requires complex integration cal-

culations. As a consequence, in Chapter 3 we will present the approximations made and a

in-memory design to perform this inference.

2.2 Quantization of Neural Networks

2.2.1 Neural Networks : background

Traditionally, the training of a neural network is done by a method differing fundamentally from

Bayesian learning: gradient descent by backpropagation. The loss used for this backpropaga-

tion is generally the maximum of likelihood [155] or the maximum a posteriori. This method

does not attempt to determine the full posterior distribution but only has a point estimate of

the parameters of the neural network, i.e. its synaptic weights. Unfortunately, a neural network

trained with backpropagation is difficult to implement when little data is available.

The training of a neural network for classification can be summarized as follows. We have

an input variable X with very high entropy (for example an image), and we try to assign a label

y to it. This label y is very simple, and can often be encoded in only one bit which denotes the

corresponding class, e.g., the image represents a dog or a cat. This new variable is therefore

much less complex than X. However, the difficulty is that this bit is not determined by X in an

obvious fashion: there is not a particular pixel in an image that says whether it is a dog or a

cat. This information is very highly distributed throughout the image, it is necessary to identify

areas corresponding to the characteristics classically present in all images of a specific label.

What does a neural network do to determine the corresponding label of an image? We

said in the previous chapter that neural networks are very complex parametric functions. The

number of parameters in a neural network is very high and gradient backpropagation is a par-

ticularly effective method of changing these parameters to decrease the loss and assign the

corresponding label to the input. In general, the architecture of neural networks is made of

layers that are connected one after the other.

While it has been shown that a single hidden layer can be sufficient to approximate any

function [156], why are multi-layers used in all current architectures? First, to model a very

complex function, it appears that a single-layer architecture requires a considerable amount

of intermediate neurons. Second, the layered architecture is a series of new representations

of the image, at each layer-level, the representation can only be calculated from the previous

representation and only affects the next one.

Using the principle of bottleneck information, recent work has made possible a detailed

analysis of what happens in the successive representation of neural network layers [157]. By

using the mutual information between layers and inputs and outputs, it is indeed possible to

have an intuitive understanding of learning in a feed-forward neural network. The information

available on the input X input and the label y can only decrease over the layers. Ultimately,
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we want the information on the last layer to be structured, i.e., we lose information on X but

keep the information on the label y . This mutual information can be visualized during the

learning process. During the learning, the authors of this work identified two phases: a first

one that will learn features very quickly but keeping a lot of information on X and a second one

of compression where the information on X decreases. Thus, a neural network can be seen as

consisting of two parts, an encoder that transforms input X into a sub-representation X̂ and a

decoder that extracts the label y from this sub-representation X̂ .

At the beginning of the training, the encoder will arbitrarily project the X̂ sub-representation,

and the decoder will try to assign it the label y . Thus, initially, the encoder is very simple and

the decoder is very complicated, then, as the learning process goes on, things are reversed.

During training, the neural network will extract a very large number of features from the dif-

ferent input examples and then forget those that are not essential for the classification. At the

end of the training, the encoder becomes very complicated and the decoder very simple since

it is generally enough to make a linear classification / a perceptron to obtain the corresponding

label.

Neural networks generally feature a very large number of parameters compared to the num-

ber of inputs presented. This high complexity provides them with a particularly important

power of representation. What is astonishing is that they generalize incredibly well. Moreover,

the representation capacity of a neural network is such, that in [158] the authors were able to

overfit the CIFAR-10 training dataset [159] by setting random labels instead of real ones. This

means that the neural network can store an important part of the features of the dataset and to

assign to it a label without real meaning. –CIFAR-10 is a relatively complicated image classifi-

cation task since it concerns images like dogs, cats, or cars.

Nevertheless, when we have a sufficient amount of data and are well labeled, neural net-

works are very powerful machines to model very complex functions f (D,θ). But we have to

keep in mind that it is surprising that this function is good to generalize to examples that the

network has never seen. For this reason, for researchers working on Bayesian models, reason-

ing, and explanation, neural networks are seen as black boxes. The reasons for the efficient

generalization of neural networks, as interesting as they may be, will not be discussed in this

thesis.

The interest of neural networks and their use within this thesis is for a low-energy comput-

ing implementation. Chapter 4 will present a low-energy implementation but only inference

and in Chapter 6, we will talk about learning. To implement low-energy on-chip artificial neural

networks, we are interested here in decreasing the number of parameters (e.g. synaptic weights

w) of the neural networks. There are different ways to reduce the number of parameters: by re-

ducing the number of neurons and layers, reducing the neuron connectivity, or reducing the

resolution of synaptic weights.

Reducing the number of neurons and the number of layers is not an easy task. In general,

they are hyperparameters of the model that we train, i.e., they are the prior parameters of the
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model and will not be modified during the learning phase. There are methods for optimizing

hyperparameters by gradient descent [160], but this is not the case for those parameters that

define the architecture of the model. Different methods exist to find these hyperparameters

optimally. Classically we do grid-search, i.e. we test a lot of values and choose the optimal one.

But when the number of hyperparameters is large, this method cannot be used. A very interest-

ing and biologically inspired method is to use genetic algorithms to search for hyperparameters

[161]. With this method, we sometimes find quite astonishing architectures and the definition

of the evolutionary environment is fundamental to obtain interesting results.

Another method to reduce the number of parameters is to reduce connectivity, i.e., rather

than having a fully connected neural network between each layer, some weights will be shared.

Convolutional neural networks are this type of neural network that share the same weights

[162]. Sharing weights has a great advantage in reducing the number of parameters in the

model, but they were not initially invented for this reason. The idea of weight sharing in con-

volutional neural networks is to detect translation invariant and redundant features inside an

image, such as a vertical or horizontal line, a slightly rounded shape, or much more complex

shapes when going into deeper layers. By this simple neural network structuring, the progress

of GPUs and the amount of available data it was possible to perform image classification with

incredible performance. It was in 2012, with the classification of the ILSVRC competition on the

Imagenet dataset consisting of more than one million images and 1,000 categories that neural

networks became popular [163].

The current neural network structure for image classification is strongly associated with

convolutional neural networks. The advantage of structuring neural networks with convolu-

tions is that it makes it possible to identify shapes in an image by filter translations and that

these feature detectors can be easily learned by backpropagation since a filter will receive much

more signals than a conventional feed-forward neural network layer. What happens when

training a deep neural network without structuring is that it tends to overfit, the parameter

space is excessively large compared to the amount of data available, and there is no spatial

consistency per layer. Other research has been done very recently to add structuring to existing

neural networks (Both structured neural networks for Sequence to Sequence Learning achieves

the state of the art results: Long Short-Term Memory[164] and Transformers [165]).

According to Geoffrey Hinton, the convolutional neural networks for image recognition are

missing something fundamental, by adding structuring to neural networks he hopes, to be able

to improve the angular variations of an image. Some work involving capsules have already

shown promising results on rotating images or overlapping digits [166–168]. A capsule is a

group of neurons whose activity is expressed as a vector representing a specific entity or part

of an object. The length of this vector represents the probability of the presence of the entity

and its orientation the estimated pose parameters of the entity. The classic example used to

describe capsules intuitively is that of two geometric entities, a triangle, and a rectangle, and

depending on their positioning we can see a house or a boat. At a higher dimension, it is a mat-
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ter of making the different entities coincide with each other. In a classical neural network, the

activity vectors disappear in the scalar product with the weight vector. By working on activity

vectors rather than scalars, we can look at the scalar product of two activity vectors and see if

they coincide. The addition of such a structure in neural networks aims at better generaliza-

tion and we can hope that they also allow reducing the number of parameters. The interest

of such an approach is that it makes it possible to locate the orientation and the size of the

objects whereas in the convolutional neural networks the orientation of the objects cannot be

held by the convolution layers, as for the size of the objects, it is indirectly extracted by the max-

pooling layers. Hinton was not satisfied with the max-pooling layers, so he invented the cap-

sules. We also mentioned these works because they are inspired by the cortical microcolumns

of the human visual system [169, 170]. The biomimetic of cortical columns for neuromorphic

has already been studied in some research work [171]. Adding structure in neural networks is

of great interest to facilitate generalization and in some cases to reduce the number of parame-

ters but sometimes leads to some difficulties of implementation. First, it can lead to challenges

for data movement and leads to a specialization of the architecture and as a consequence less

representation capacity.

Finally, the most widespread approach to reduce the size of parameters in a neural net-

work is to reduce the resolution of synaptic weights. More precisely, this approach means that

instead of having high-precision synaptic weights, they are approximated by less precise val-

ues. Performing such an approximation has two major advantages, the first one is that it may

require less memory, and the second one is that the mathematical operations required to per-

form the calculations required for the network can be simplified. A multiplication and addition

operation on a few bits is much less expensive to implement than a precise operation on 64 bits,

with fewer transistors involved, reduced area occupation, and less energy consumed. This ap-

proach is used in this thesis to reduce the energy consumption of a neural network. Decreasing

the resolution of neural networks is a key aspect of the energy efficiency of deep learning for

embedded systems. Decreasing resolution can be done for both, the inference, and the learn-

ing.

In the next section, we will present challenges for quantized neural network inference. Sim-

ilarly, in Chapter 4, we will present the challenges for the hardware implementation of low-

energy inference of quantized neural networks [172] with emerging memory nanodevices, and

more specifically Binarized Neural Networks. While in the last chapter of the thesis, we will

discuss existing approaches to perform quantized learning.

2.2.2 Reducing the resolution of neural network

In recent years, research to limit the energy consumption of neural networks has made enor-

mous progress. The first motivation for such research is that the energy consumption in the

data-center of algorithms is very high, and, therefore, the cost is very significant. The other

motivation is that these algorithms have a real interest within embedded systems. Being able to
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process data, analyze results, and even make decisions without having to systematically send

data to the cloud could revolutionize the Internet of Things. We mentioned in the previous

section what the choices could be to reduce the number of parameters of a neural network:

synaptic weights are not the only objects of neural networks limiting energy consumption, a

study on neurons is also interesting since mathematical operations are carried out between

neuron activations and synaptic weights. A mathematical operation between a low-resolution

synaptic weight and a high-resolution neuron activation will not have the same impact as if

both are low-resolution.

First, I illustrate whether it is possible to decrease the synaptic resolution of an already

trained neural network without degrading performance. Fig. 2.2 (a) shows the recognition rate

on the MNIST [173] test set as a function of the number of resolution bits of the synaptic weights

and activation. The neural network considered here is a backpropagation driven feedforward

neural network with a single 512 neurons hidden layer, the activation functions are hyperbolic

tangents, and a batch-normalization [174] is performed at the level of each neuron. In this

Figure, we can see that reducing the resolution has an important effect on the performance

of the neural network only if we go below 4 bits of resolution of weights or activation, i.e., 16

values. Studies on more complex tasks such as ImageNet found that the resolution could be

reduced to 8 bits.

The observation made that a few bits are sufficient to have almost as good test accuracy as

full precision neural network is quite interesting, indeed, it means that to perform inference, it

is not necessary to use processors or graphics cards operating on a very large number of bits,

typically 32 or 64. Moreover, the coding type is different, in our experiment we considered

that we have linearly distributed the values, with a fixed point coding type [175], whereas in

a classical computer floating-point coding is used [176]: one part of the bits are used to code

the exponent and the other part to code the mantissa of the considered number. Mathematical

operations on a fixed point coding are relatively simple to perform in hardware with a small

number of transistors compared to floating-point coding.

Figure 2.2 illustrates that normal training is not efficient enough to reduce to a lower res-

olution. To go further, it is necessary to adapt the training process. Recently, various works

emerged to reduce the number of bits required for the inference of a neural network. The main

advances have been achieved in Y. Bengio’s group in 2015 and 2016 with the publication of Bi-

naryConnect [177] and then Binarized Neural Networks [178]. In the first work, only the weights

are binarized, while in the second it is both the weights and the neuron activations that are bi-

narized. At the same time another group published in 2016, showed how to train Binarized

Neural Networks [179].
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2.2.3 Binarized Neural Network

In a conventional neural network with L layers, the activation values of the neurons of layer k,

a[k]
i , are obtained by applying a non-linear activation function f to the matrix product between

real-valued synaptic weight matrix W [k] and the real-valued activations of the previous layer of

neurons a[k−1]:

a[k]
i = f

(∑
j

W [k]
i j ·a[k−1]

j

)
. (2.6)

By contrast, in a Binarized Neural Network, excluding the first layer, neuron activation val-

ues as well as synaptic weights assume binary values, meaning +1 and −1. The products be-

tween neuron activation a and weight w values in Equation (2.6) then simply become logic

XNOR operation:

a j Wi j XNOR

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

The sum in Equation (2.6) is replaced by the popcount operation, the basic function that

counts the number of ones in a data vector. The resulting value is then converted to a binary

value by comparing it to a trained threshold value µ[k]
i . Equation (2.6) therefore becomes:

a[k]
i = sign

(
popcount

j

(
XNOR

(
W [k]

i j , a[k−1]
j

))
−µ[k]

i

)
, (2.7)

where sign is the sign function.

The hardware implementation of such Binarized Neural Network is clearly attractive for low

power consumption in edge computing, since it is based only on logical functions that can be

implemented with only a few transistors. Regarding learning, this remains an open question

that will be addressed in the last chapter of this thesis.

The method for training a Binarized Neural Network is presented in Algorithm 1 adapted

from Courbariaux et al. [178]. And the inference phase corresponds to the forward propagation

only. The first important point to know is that during the learning process, synapses actually

have two distinct weights: a first binary weight which is used to make the inference and a sec-

ond non-binary weight which is the one that is modified during the update phase of the weight.

Without this real-valued hidden weight, the weight update is not possible directly on the binary

weight. The binary weight is then the sign of the realed-value weight.
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Algorithm 1 Conventional BNN training model

Require: training data : X tr ai n , targets output ytr ai n , previous binarized and real weights W and Wa ,

and previous threshold values µ

Ensure: updated weights Wt+1 and Wa,t+1, updated BatchNorm parameters µ and σ

1. Forward propagation

for k = 1 to L do

W [k] ← sign(W [k]
a )

z[k] ←W [k] ·a[k−1]

ẑ[k] ← BatchNorm(z[k],µ[k],σ[k])

if (k < L) then

a[k] ← sign(ẑ[k])

else

a[k] ← softmax(ẑ[k])

end if

end for

Compute gradient of softmax cross entropy loss : ga[L] = ∂C

∂a[L]
= a[L] − y

2. Backward propagation

for k = L to 1 do

if (k < L) then

ga[k] ← ga[k−1] ◦ 1|ak<1|
end if

g ẑ[k] ← BackBatchNorm(ga[k] , ẑ[k],µ[k],σ[k])

gz[k] ←W [k] T g ẑ[k]

gW [k]
b

← g ẑ[k] aT
k−1

end for

3. Update parameters

for k = 1 to L do

W [k]
a,t+1 ← Clip(UpdateAdam(W [k]

a,t+1, gW [k]
b

),−1,1)

(µ[k],σ[k])t+1 ← MovingAverage(µ[k]
B ,σ[k]

B )t

end for

Regarding the activation of neurons, it is necessary to make an approximation of the deriva-

tive of the activation function to be able to back-propagate the gradient through it. As the sign

function has no derivative, generally the derivative of a hardtanh is used as an approximation,

i.e. the STE (Straight-Through Estimator) [180, 181].

Two other key ingredients are to be taken into account for learning Binarized Neural Net-

works, the first one was batch-normalisation as mentioned above. This normalization aims to

have neurons that are not always in the same state whatever the input provided. The second

key ingredient is the momentum on the gradients [182], to perform a correct weight update we

will take into account the dynamics of the gradients in the form of momentum. In most cases

the Adam method [183] is used, but this is not the only one that works well.
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2.2.4 Quantized and Binarized Neural Network : a comparison

Using Binarized Neural Networks (BNNs) is very interesting, because it both reduces the num-

ber of bits needed and facilitates the mathematical operations involved in a neural network.

Nevertheless, Binarized Neural Networks have a lower power of representation than classical

neural networks, which implies that it is necessary to increase the number of neurons at each

layer to obtain equivalent performance. If this increase in the number of neurons is too impor-

tant, the interest of Binarized Neural Networks can be questioned.
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Figure 2.2: Impact of quantization on the performance of neural networks. (a) Test accuracy on
MNIST data-set for various bits size quantization for the activation and the weights
on a two hidden 512-512 neurons. Accuracy on the MNIST test-set for (b) a classi-
cal neural network, (c) a binary weight neural network, (d) a fully Binarized Neural
Network for various size.

To address this question, we have plotted three colormaps in Figure 2.2. Each of these col-

ormaps represents the test accuracy as a function number of the number of layers and neurons

per layer. The colormap of Figure 2.2 (b) represents the performances for a classical feeedfor-

ward network with real values, Figure 2.2 (c) with binary weights but real activations and Figure

2.2 (d) with both activations and weights that are binary. For the case of binary weights, col-
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ormaps (c) and (d), an inflation of the number of neurons by a factor of 4 is performed, and

which brings equivalent performances with real-valued neural networks. In both colormaps

(c) and (d), a black dashed surrounded area corresponds to the configurations where the num-

ber of bits required for the binary weights is greater than the 8-bit fixed-point coding colormap

(b). To ensure that binary neural networks are interesting regarding the amount of bits required

to encode all the synapses, we should accept to have a little drop in accuracy.

Intermediate quantized neural networks can also be used, e.g. Ternarized Neural Networks

(TNN), but also require special training and special hardware implementation [184]. The im-

plementation of such a TNN is attractive as it has a greater expressivity than Binarized Neu-

ral Networks which are sometimes constrained to be in a state incompatible to the value they

would like to be, indeed, a binary weight will be necessarily -1 or 1 and there is no intermediate

value, the gap between these two values is significant, adding a simple representation value

increases drastically the expressivity and therefore the resulting performances can also be im-

proved. In Chapter 6, we will briefly present the circuit used to perform a low-energy TNN

product operation.

This comparison was strictly in terms of the amount of required memory. However, BNNs

have further advantages when taking into account the arithmetic operations that are performed

in a neural network. Doing an operation between two bits is much less complex than an 8-bit

operation. The advantage of Binarized Neural Networks is that the mathematical operation of

multiplication becomes a simple XNOR logic gate and then the additions required to perform

the scalar product between the activation vector and the weight vector become a simple bit

count. In a classical neural network, the operations involved are the same, multiplication and

addition, but the number of coding bits is much higher than in the binary case involving both

greater circuit complexity and greater associated power consumption. In Chapter 4, based on

practical design, we were able to present a comparison between binarized neural network and

classical neural network in terms of energy consumption. The other consideration is the data

movement, even if the calculation is relatively localized in a neural network, the data move-

ment can have a significant impact on energy consumption, by opting for a Binarized Neural

Network, only one wire is needed to transmit the information between two neurons, whereas

in a case of 8-bit coding, at least 8 times more would be needed.

These considerations strongly motivate our study on the implementation of the binarized

neural network with RRAM, presented in chapter 4.

2.2.5 Specificities of Binarized Neural Network

An important remark about the training of Binarized Neural Network, is that it usually requires

more iterations than for classical neural network. The reason for this observation was under-

stood recently. When we train a classic neural network, we have two phases, the first one that

will learn features very quickly and the second one of compression that will learn to forget the

useless features [157]. In binarized neural networks, as we have less representation capacity,
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the binary network performs both phases at the same time! It is not able to learn a lot of fea-

tures at the beginning, so the choice is partial, it will forget the uninteresting features and then

build new ones at the same time [185].

We have just mentioned Binarized Neural Networks for feedforward architectures, but this

approach also works for a wide range of neural networks. In Chapter 4, the results of Convo-

lutional Binarized Neural Networks will be described, but some authors have also been able to

train binarized autoencoders [186] / restricted Boltzmann machines and recurrent neural net-

works. For recurrent architectures, like Long Short-Term Memory neural network (LSTM) [164],

weights can be easily binarized but not activations which need a sufficiently precise probabilis-

tic coding. In order to have probabilities at the output of layers, we have to rescale the activation

functions. Otherwise, they will saturate at maximum and minimum values, the sigmoid func-

tions will be re-scaled with a small value parameter α that can be learned by backpropagation

or tuned as a hyper-parameter.

The special feature of restricted Boltzmann machines is that they have a local learning rule,

i.e. there is no need to transmit information from the output of the neural network to the input.

This makes them particularly interesting candidates for the implementation of on chip learn-

ing. These different architectures will not be presented in this thesis as the principle is very

similar to feedforward neural networks, so we mainly focused on the simple hardware imple-

mentation of feedforward Binarized Neural Networks.

2.3 Connection between Bayesian Reasoning and Neural

Network

Today, deep learning and probabilistic reasoning are the two main areas of research in artifi-

cial intelligence. Deep learning has the ability to create very complex and efficient models for

image classification[163], time series [187], physics simulations [188] and an incredible range

of other applications [189, 190]. On the other hand, the probabilistic approach to reasoning

makes it possible to integrate information in a progressive manner, to infer on a set of param-

eters and to make decisions. Probabilistic reasoning makes possible to work with uncertainty,

and also allows to make a choice of models. Each of these two areas has its own advantages and

drawbacks, a list of which is presented in the Table 2.1 reproduced from [191].

Neural networks feature a very large number of parameters. At each layer of a deep net-

work, there can be hundreds of thousands of parameters, so a complete network can feature

millions of parameters or even hundreds of billions of parameters for the most complex models

[192]. This large number of parameters allows deep learning to create extremely complex and

very non-linear models. On the other hand, Bayesian models are very limited in the number of

parameters, the inference being made by integrating on all possible parameter configurations

(see Equation 2.5), when there are more than a few parameters, we quickly end up with a prob-
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lem complicated to solve in a reasonable amount of time. In Bayesian models, the sampling

weight vector space is difficult to simulate whereas neural networks do not need it. For neural

networks, stochastic gradient descent and inference are conceptually very simple.

Deep Learning Bayesian Reasoning

Rich non-linear models for classification and

sequence prediction.
Mainly conjugate and linear models

Scalable learning using stochastic approxi-

mation and conceptually simple.

Potentially intractable inference, computa-

tionally expensive or long simulation time.

Easily composable with other gradient-

based methods.

Unified framework for model building, infer-

ence, prediction and decision making

Only point estimates.
Explicit accounting for uncertainty and vari-

ability of outcomes

Hard to score models, do selection and com-

plexity penalisation.

Robust to overfitting; tools for model selec-

tion and compositiong

Table 2.1: Advantages and drawbacks of the two main areas of machine learning research: Deep
Learning and Bayesian Reasoning. Reproduced from [191].

Concerning the mixture of models, probabilistic reasoning is very powerful as it provides a

unified framework for inference, prediction, and decision making. Where deep learning lacks

efficiency is in estimating the uncertainty of its prediction. It is difficult to score models, to

do selection and complexity penalization. This difficulty emerges from the fact that neural

networks optimize the maximum likelihood (they only have point estimates) and thus estimate

the model on a single set of parameters. This aspect makes the big difference with Bayesian

reasoning, which explicitly takes into account uncertainty, variability, is robust to overfitting,

and is a perfect tool for model selection and model composition.

Even though neural networks have revolutionized artificial intelligence, they still have a lot

of limitations. They are very data-intensive: without several million examples, some models

are not capable of good performance. They are also very demanding in calculations, both for

training and for the deployment of solutions in embedded systems. This thesis tries to answer

this question: how to reduce the energy consumption related to neural networks for inference

in Chapter 4 and for learning in Chapter 6. But it should not be forgotten that they are not

very efficient to represent uncertainty, can be fooled by adversarial examples [193], are very

tricky to optimize: the choice of architecture, the learning procedure, the initialization of pa-

rameters require expert knowledge. For all these reasons and because they are often seen as

uninterpretable black boxes that lack transparency and are difficult to trust, we are interested

in bringing them closer to the Bayesian models.

Unfortunately, for Bayesian models, and for all graphical models in general, it is difficult to

generate their architectures automatically. In the example in section 2.1, we described a very
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simple example of the child and the random draw of a ball in a box. This example features

only one hidden variable representing the probability of having a red or white ball. In fact, we

unconsciously created our model from prior information. In some cases, we don’t know how

many variables exist and how they influence each other. As this example, early graphical mod-

els used experts to define the graph structure where nodes have meanings. And the conditional

probabilities are typically stored in conditional probabilities tables made by hand. The graphs

were initially quite simple with sparse connections. Most of the research focused on doing

correct inference and not learning.

Research to link neural network models to Bayesian models has now become a broad area

of research. To go further in this study, Appendix A provides two principles linking neural net-

works to Bayesian models. Similarly, in Appendix B, we present some very recent and unpub-

lished work on the use of Bayesian inference to interpret the last layer of a binary neural net-

work.

2.4 The use of emerging memory devices for Neural Net-

work and Bayesian models

As mentioned in the previous chapter, memory devices are the key to the low-power imple-

mentation of AI electronic circuits. Memory devices have various characteristics depending on

the technology used. Magnetic memories (MRAM) are intrinsically binary and cannot encode

analog values. RRAMs are very noisy during programming, so it can happen that when a pulse

is applied to increase the conductance of the component, it eventually decreases. PCMs are

subject to thermal drift, their conductance value is not stable over time, making it necessary to

reprogram them from time to time. The choice of technology therefore depends very strongly

on the target application.

In this thesis, we have mainly studied a specific technology, the resistive memories (RRAM)

to implement the Bayesian machine (Chapter 3), the implementation of the inference of a Bi-

narized Neural Network (Chapter 4), and for the learning process of the BNN (Chapter 6). In

Chapter 5, we also studied the use of stochastic memory devices for the implementation of

neuromorphic algorithms using the intrinsic stochastic characteristics of MRAM devices. The

use of other technologies for the implementation of Bayesian circuitry and Binarized Neural

Networks using the approaches proposed in this thesis is entirely realizable. Concerning the

learning of the Binarized Neural Network and the studies within chapter 5, we had to focus on

the characteristics of a specific technology and to face its defects, these studies exploit (and

sometimes suffer from) the very specific features of the devices. In addition to the collabora-

tions that we have, which allow us to have access to the fabrication of chip using this technol-

ogy, the choice was made to work with an RRAM technology because it is a simple structure,

low cost, mature and back-end-of-line compatible.
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The first hardware implementation is a Bayesian model, which is a probabilistic model that

performs operations on probabilities. The mathematical operations of such a system are very

simple, under the conditions we fixed, i.e. assuming conditional independence, the mathemat-

ical operations are simply products of probabilities. The circuit implementation in Chapter 3

shows how to perform these probability products using stochastic computing. Each probabil-

ity is coded in conventional binary fixed point, the circuit generates a sequence of random bits

proportional to the value stored in memory, and a stochastic probability product is performed

by a simple AND logic gate. The idea of this hardware implementation is to associate a memory

matrix to each set of likelihood, each cell will therefore associate one single probability corre-

sponding to one specific observation. Errors in such a system can have an impact on the final

result since an error on the most significant bit impacts the totality of the probability and thus

the final result. The implementation of such systems cannot have a large number of errors

occurring in the memory devices.

In Chapter 4, we will see that the implementation of Binarized Neural Networks is different,

each synapse is associated with a value, a 1 or a -1 which corresponds to the value by which

the binary input will be multiplied. An error will have a very different impact on the final result

compared to a system coding the values in a classical way. The classical method of implement-

ing neural networks to perform multiplication operations between the input vector and the

weight vector is the use of Kirchhoff’s laws. The use of this principle is very interesting con-

ceptually but can lead to some difficulties and hidden costs in the implementation especially

because of ADCs [194] or current-voltage converters [195]. For these reasons in Chapter 4 we

do differently using fully digital implementation.

In Chapter 5, we will see how to go beyond the use of memory devices as simple binary

storage values, since we will see also how to use all the complexity of the devices and especially

their stochastic behaviour to perform learning, inspired by the population coding of neurons in

the brain. But this work is not the only one that seeks to go beyond the classic use of memories.

The approach that we will propose in Chapter 5, is relatively different from the two other sub-

jects addressed in this thesis that can be linked together. Nevertheless, the foundations remain

the same, and other works propose to use the same type of approach to implement algorithms

that bring neural networks and Bayesian models closer together.

Finally Chapter 6, we explore all the opportunities for using the analog characteristics of

RRAM type devices. Increasing the number of values that can be encoded per synapse allows

to increase the performance of neural networks, but also to obtain new features, such as long

term memory. Finally, the use of these analog devices paves the way for extensive on-chip

learning.





Chapter 3

Hardware implementation of Bayesian

Machine

The human brain is still far from being reproduced by

machines. What they lack is the ability to formulate

scientific theories, as toddlers do. Machines remain

highly specialized, they are not able to think in

multiple fields and gather their knowledge in a

symbolic form. But things are changing very quickly,

and I wouldn’t be surprised if, in ten or fifteen years,

much more advanced machines emerge. All the key

elements of human learning [...] (attention, active

engagement, error feedback, consolidation) are being

modelled by artificial intelligence.

(translated from French)

Stanislas DEHAENE

“ONE of the solutions for low-energy inference involves a high-level inspiration

of the brain, around the principle of probabilistic reasoning. To work with

probabilistic reasoning, we mainly use Bayes’ theorem, which allows us to deduce a

probability prediction from an observation. The purpose of this chapter is to present

a hardware implementation of a circuit that implements this Bayesian reasoning. ”
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THE BIOLOGICAL inspiration from the brain can take place at several levels. Since the pio-

neering work of Carver Mead, researchers are naturally inclined to replicate the under-

lying mechanisms: mainly synapses and neurons. By contrast, another approach is to look at

how reasoning is done, by trying to interpret the characteristics of human reasoning. Many

neuroscientists and cognitive psychologists study the brain by doing experiments on children’s

and adults’ reasoning, by showing them images/objects but also on adult subjects. As reported

in the previous chapter, many of these experiments suggest that the brain might be doing a

form of Bayesian reasoning. We also discussed the links with neural networks in Appendix A

and Appendix B.

My contribution is mainly focused on the design of a hardware accelerator for Bayesian in-

ference. I was able to implement a hybrid CMOS/RRAM chip that allows "In-Memory-Computing"

with the innovative paradigm of Bayesian reasoning. The theoretical notions presented here

have been extensively studied in the literature.

In this chapter, we will therefore present these notions, showing the main equations of

Bayesian inference and study the naive hypothesis, which is the working hypothesis for our

hardware implementation. Then we will detail the hardware implementation using stochastic

computation and finally, we will detail the complete architecture of our taped out.

I designed the full architecture of the circuit implementing Bayesian inference from the

theoretical level to the final taped out. The layout design was largely conducted by Kamel-

Eddine Harabi.

3.1 Theoretical Bayes Inference

Bayesian programming is a discipline in its entirety and it would be quite presumptuous to pre-

tend to be able to summarize this discipline in a few pages! To have a global understanding of

it, to fully apprehend its challenges, and to see the wide variety of applications that can use it,

the "Bayesian Programming" [151] and "Probabilistic Graphical Models" [149] books are a gold

mine of information. In these few pages, we will therefore limit ourselves to considering prob-

abilistic inference. In the previous chapter, we introduced the use of probabilities to describe

machine learning problems. The whole approach of probabilistic models is based on the Bayes

theorem (Equation 3.1) :

P (y |x) = P (x|y)P (y)

P (x)
= P (x|y)P (y)∑

y∈Y P (x, y)
. (3.1)

The calculation of Bayesian inference seeks to determine the posterior distribution P (y |x)

of a set of hypothesis y from observations x. As mentioned in the previous Chapter 2. It is

decomposed into three factors, the prior distribution P (y), which corresponds to the initial

probability of the hypothesis before any observation has been obtained, the conditional prob-

ability P (x|y), which corresponds to the probability of the observation given the hypothesis,

and the marginal likelihood
∑

y∈Y P (x, y), which corresponds to the sum of the probabilities
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over all hypotheses.

From one observation x, we try to determine information on y using Bayes’ rule. In Equa-

tion 3.1, the variables X and Y are continuous variables that can take their value in the set of

real numbers R. As a matter of fact, for the calculation of probabilities, it is not useful to know

the value of the variables, it is sufficient to associate a probability at each value. Most models

can be described using discrete variables, but when this is not the case, the set of variables will

be discretized to perform the calculation on a computer. Most of the time, the performed dis-

cretization seeks to approximate simple functions like Gaussian distributions. For this type of

computation, some Application Specific Integrated Circuit (ASIC) can be used. In this chapter,

we will describe an ASIC architecture using non-volatile memory devices focusing on compu-

tation from discrete variables. Being limited in the amount of memory that can be allocated,

these discrete variables may take a relatively small number of different values.

In a wide range of cases, it is not the full posterior probability over all possible input that

we try to estimate, but rather from an observation x, what are the relative probabilities of the

different hypotheses y . The advantage of such an approach is that the marginal probability

does not depend on the hypothesis y , as it is the same for each one of the hypotheses, it can be

ignored to infer the best hypothesis given an input. We then have the following proportionality

equations:

P (y |x) ∝ P (x|y)P (y). (3.2)

In the various equations presented above, only one variable x influencing the distribution

was considered. It is according to the value of this unique variable that we determine the pos-

terior probability on the hypotheses y . In more real-life situations, there is not just one variable

that can influence the posterior distribution, but several. In the case of a multivariate problem,

the Bayes’ theorem becomes:

P (y |x0, x1, · · ·xn) = P (x0, x1, · · · , xn |Y = y)P (y)

P (x0, x1, · · · , xn)
=

P (
⋂

i∈I
xi |Y = y)P (y)

P (
⋂

i∈I
xi )

. (3.3)

As for Equations 3.2, the marginal probability does not depend on the hypothesis, so when

looking at an observation set to determine which hypothesis is the most likely, the term can be

removed. Proportionality equations for multivariate problems consequently become:

P (y |⋂
i∈I

xi ) ∝ P (
⋂
i∈I

xi |Y = y)P (y). (3.4)

The most important term in the previous Equation 3.4 is the likelihood factor P (
⋂

i∈I
xi |Y =

y), which contain all the information about the different observed variables, the prior corre-

sponding only to the knowledge about the hypothesis before making the observation. For a

given variable xi , different observations can be made. For instance, for a six-sided dice, there

are six possible observations. If we use several variables, e.g. four dices, and with the same
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number of observations, the dimension of the likelihood term is 64 = 1296. For a relatively

small number of variables, it is possible to count all these cases and assign a probability to

them, but when the number of variables becomes large this is no longer possible.

When all the variables depend on each other, (equation 3.3) the model is impractical, as the

amount of available memory is limited. As a consequence, when building a Bayesian model,

it is extremely important to use the independence between variables and more particularly

conditional independence to reduce the dimension of the likelihood term.

Two variables a and b are independent from each other if and only if P (a ∩b) = P (a) ·P (b).

From the product rule, this condition is also equivalent to P (a|b) = P (a) and P (b|a) = P (b).

Similarly, two variables a and b are conditionally independent to a third one, c, if and only

if P (a∩b|c) = P (a|c) ·P (b|c). From the product rule, this condition is also equivalent to P (a|b∩
c) = P (a|c) and P (b|a ∩ c) = P (b|c).

Be aware that strict independence does not imply conditional independence, neither con-

ditional independence does imply strict independence. We have indeed these following two

relationships: P (a,b) = P (a)P (b) = P (a|c)P (c)P (b|c)P (c) if a is strictly independent from b and

P (a,b) = P (a,b|c)P (c) = P (a|c)P (b|c)P (c) if a is independent from b given c. Therefore, even

if two variables are independent in the prior, they can be dependent to a third variable which

they both influence.

truck hits

house
earthquake

house jumps-20

20 20

-10 -10

sj

si

Wij

𝑝 𝑠𝑖 = 1 =
1

1 + exp(−𝑏𝑖 +  𝑗𝑊𝑖𝑗𝑠𝑗)

bi

(a) (b)

Figure 3.1: (a) Sigmoid belief net illustration, this probabilistic graphical model is a directed
graph where the probability of the variable is given as function of the parents state.
(b) Example of a particular belief network, the fact that a house jumps is very un-
likely unless a truck hits the house or there is an earthquake. This example was used
by Geoffrey Hinton in [180] to illustrate the "Explaining away" phenomena that lead
to difficulties to train sigmoid belief nets one layer at a time.

This phenomena, called "explaining away" [196], is illustrate in the classic example of a

simple belief network of Figure 3.1. The example in Figure 3.1 (b) shows three binary variables

taking value 0 or 1, two hidden causes a = "truck hits house" and b = "earthquake", and an

effect that they can both influence c = "the house jumps". The network presented here is a

belief network where the two variables a and b are independent but dependent given c. From
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the model we obtain the following probabilities of the variables a, b and c:

P (a) = 1

1+exp(−10)
& P (b) = 1

1+exp(−10)
(3.5)

P (c|a,b) = 1

1+exp(−20+20(sa + sb))
(3.6)

The posterior distribution on the hidden variables is obtained from the observation on c.

The mathematical relation 3.7 below is obtained from independence between a and b, and

from the equations 3.5 and 3.6.

P (a,b|c) =P (c|a,b)P (a,b)

P (c)

= P (c|a,b)P (a,b)

P (c|a,b)P (a,b)+P (c|a,b)P (a,b)+P (c|a,b)P (a,b)+P (c|a,b)P (a,b)

= P (c|a,b)P (a)P (b)

P (c|a,b)P (a)P (b)+P (c|a,b)P (a)P (b)+P (c|a,b)P (a)P (b)+P (c|a,b)P (a)P (b)
(3.7)

From the different coefficients presented in Figure 3.1 (b), we obtain the posterior proba-

bilities on a and b given c as follows:

P (a = 0,b = 0|c = 1) = 0.00005

P (a = 0,b = 1|c = 1) = 0.49995

P (a = 1,b = 0|c = 1) = 0.49995

P (a = 1,b = 1|c = 1) = 0.00005

If the house jumps, it is about 50% likely that it is due to the earthquake and about 50% that

it is due to a truck hitting the house. But it is highly unlikely that this is both reasons at the

same time or neither at all. This means that if it is learned that there was an earthquake, this

information greatly reduces the probability that the house jumps because of a truck. In this very

common configuration, it is therefore important to keep each of the conditional probabilities

given c, otherwise, a sensor measuring several factors would be useless.

As we want to build dedicated hardware that is energy efficient and consequently with a

small amount of memory, we will try to build Bayesian models that reduce the number of pa-

rameters. Thus, we will try to avoid working with observational variables depending on several

hidden causes. The type of model that will be preferred is therefore the opposite of the one

presented in Figure 3.1. It will be composed of several observable variables for the one hidden

variable. The goal is therefore to work on the conditional independence between the observa-
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tions with respect to the hidden variable we want to determine.

3.2 Naive Bayes Assumption

The model can be constructed in such a way that only conditionally independent observations

are taken into account. The advantage of such a technique is that it allows information from

different sensors to be merged to estimate the state of a given phenomenon. For example, in

Figure 3.2 (a), we try to estimate the probability corresponding to each stat e k of the variable s

from observations ω.

The statement of the problem is the following: we want to obtain information on a given

phenomenon, this phenomenon influences directly sensors, which state can be read, and from

this reading, we try to estimate the probability of each state of the phenomenon.
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Figure 3.2: (a) "Naive Bayes Model", all the observations ωi are conditionally independent one
to another given the hidden phenomena s. The equation below describes the prob-
ability of the hidden phenomena s given the observations ω, as a function of the
prior knowledge of the hidden phenomena s and the conditional probability of the
observation ω given s. This kind of model are the easiest to implement Bayesian
Inference, and will be the one that our hardware design implement. (b) A simple ex-
ample of Naïve Bayes Inference to detect if an email is a spam or not. The posterior
probability that an email is a spam or not is proportional to the product of the con-
ditional probabilities. (c) Model in which we have added a dependency between the
observations ω1 and ω2. (d) Model in which we have added a dependency between
the observations s, ω2 and ω3 to a hidden phenomenon l .

Obviously, in reality, the different observations are not always conditionally independent

given the hidden variable. The first case is when two observations may not be conditionally

independent of each other given the hidden variable 3.2 (c). In that case, the conditional inde-
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pendence simplification leads to error compared to the exact Bayesian inference.

When we assume that all the observations are conditionally independent given the hidden

variable we call it "the naive assumption". This hypothesis is very strong, but it turns out that it

is particularly effective in a very large number of cases [197].

The other issue mentioned in the previous section is the phenomenon of explaining away

when observations are linked to another hidden variable. In the real world, there are always

factors other than the searched variable that is correlated with the sensor readings. It is im-

portant to decide whether or not these correlations can be neglected. If modeling all these

correlations requires a very large amount of computation and resources, while they have little

impact on the final result, there is no point in modeling them.

In the spam detection example of Figure 3.2 (b) knowing whether a text is a spam or not

is far from being enough to explain all the correlations between words in the text. This model

neglects both the direct correlations between variables that can exist as 3.2 (c) depicted or the

correlations of the observations to another hidden variables t , that we do not model as 3.2 (d)

depicted. Despite these very strong simplifications, the results of the "Naive Bayes Model" turns

out to be very efficient for this example of spam classifications [198].

However, in some cases, the naive assumption is not sufficient and leads to large errors

compared to the exact Bayesian inference. When there are strong dependencies between vari-

ables, (Figure 3.2 (c)) it is possible to use the intersect of these variables making the number of

observations higher. Bayesian inference with the naive hypothesis is then still possible by not

taking the variables ω1 and ω2 independently anymore, but by taking as observable variable

the intersect of the two. This approach is relatively simple to implement, the mathematical

operations remain the same, as it is sufficient to add more memory to the system.

When there is a hidden variable that influences only the observations and not the search

phenomenon s, it is possible to perform Naive Bayesian inference. It only requires to relax the

constraints on the naive hypothesis exactly as it is done in Figure 3.2 (c), no longer assuming

the conditional independence of single variables but that of tuples of variables given the phe-

nomenon.

On the other hand, when there is a hidden variable that also influences the hidden search

phenomenon, the problem is more complicated. In the example in Figure 3.2 (d) a hidden

phenomenon l influences both observations ω2, ω3 and the variable s. In this configuration

multiple phenomena can explain a specific observation, so the naive Bayes assumption is not

anymore valid.

Let us take the following example: the variable s is a binary variable corresponding to the

presence or not of a storm and the four observations ω0, ω1, ω2 and ω3 are three binary wind

speed sensors, taking the values 0 for weak wind and 1 for strong wind, the hidden variable l

could correspond to the presence of lightning during the storm or not. Unfortunately, when

lightning strikes theω2 andω3 sensors are defective and give mostly random responses. Know-

ing the hidden variable "lightning" would be very useful, not because it would allow determin-
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ing directly if there is a storm but especially to detect if the observations ω2 and ω3 can be

used to detect if there is a storm or not. In some problems, it is essential to determine these

hidden variables. For this purpose, there is a field of statistics that works to identify latent vari-

ables from data called "Latent Class Analysis" [199]. When a latent variable t is identified, it is

mandatory to model the joint distribution p(s, t |ω0,ω1,ω2,ω3), looking at the two variables s

and t at the same time and not only p(s|ω0,ω1,ω2,ω3), looking at the only variable s .

This chapter will focus on the hardware implementation of naive Bayesian inference. When

naive inference is not possible, we will model the problem from the hidden variables using

joint probabilities –increasing significantly the number of memories required–. Nevertheless,

this naive hypothesis is relatively efficient for a wide variety of applications. It is indeed one of

the most efficient methods for sensor fusion [200]. The naive hypothesis of Bayesian inference

allows data from multiple sources to be combined meaningfully.

3.3 Computing Bayesian Inference with Stochastic Com-

puting

In classical computers, the mathematical operations are performed with high precision, in a

fully deterministic manner. Given the digital nature of computers, calculations with real values

are not exact, but what we mean by exact calculation is that once real value data is converted

into digital data, the mathematical operations on this converted digital data are exact. If the

discretization of the analog data was done accurately, the digital result at the output of the

digital computer will be very close to the true real calculation.

The classical coding scheme for precise calculation is 64-bits (full precision) and 32-bits

(single precision) floating-point. In CPUs and GPUs, the hardware implementation optimized

the speed of the mathematical operations leading to very intensive energy consumption, es-

pecially for multiplication. Recently the 16-bits (half precision) floating-point coding scheme

has been shown to be useful for the training of neural network [201]. For this reason, the new

GPUs optimized for deep learning now include half-precision coding. This conversion to half-

precision is sometimes very brutal for most applications and requires rethinking program code.

Nevertheless, some tools and techniques are available to perform this conversion [202].

It is possible to go even further in floating-point bit reduction by using "mini float" coding

with less than 16 coding bits [203]. It makes hardware implementations even simpler. This is a

coding scheme to take into account when working with data that may be imprecise but requires

a wide range of values.

For many applications, the exact calculation is not necessary, and rather acceptable results

can be obtained by using such extensive approximations. Moreover, by accepting to not per-

form exact calculations, it is possible to relax the constraints of digital circuits by making them

faster and less energy-consuming [204] [205].
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In recent years, this field of "approximate computing" has gained renewed interest in re-

search. The goal is to analyze the trade-off between the accuracy, the energy efficiency, and

speed of the calculation. In general, when applications do not require extraordinary precision,

it is possible to work with fixed-point coding with a relatively small number of bits. Digital op-

erations become simpler and lower in power-consuming. But it is possible to go further, by

using approximate operators for the calculation.

That being said, in the literature [206], a detailed comparison between fixed-point arith-

metic architecture and approximate operators shows that even if theoretically, the use of ap-

proximate operators seems competitive, the advantages can be lost at the application level. An

approximate operator does not reduce the size of the output data and therefore has no positive

impact on the operator that follows. When operating a succession of approximated operators,

the result can be quite different from the expected output. Nevertheless, a system able to over-

come these successive approximations could be a method of reviving this approach.

Rethinking data coding is very important to reduce the energy consumption of microchips.

Most machine learning algorithms (e.g. neural networks) are based on multiplication and ac-

cumulation (MAC) operations. The academic and industrial research for a simplified coding

scheme and associated dedicated hardware to optimize these operations is very intensive and

very competitive. On the other hand, for the Bayesian approach, hardware optimization is not

yet highly developed. Bayesian Inference mainly involves the successive product of probabili-

ties.

In this succession of products necessary for Bayesian computation, the main potential in-

fluences on energy consumption are: the access to the probabilities data, the multiplication

operations between probabilities, and the data movement. It is given these challenges that we

decided to use stochastic computing, whose main qualities will be detailed in the following

paragraphs.

Figure 3.3 (a) and (b) present a classical architecture to perform respectively the addition

and the multiplication operations of floating-point coding [207]. Each small building block

represents a consequent number of logic gates and thus a large number of transistors in the

final design. This remark should be balanced by the fact that the architectural complexity of a

floating-point multiplier is relatively simple when working with few mantissa bits (it is domi-

nated by the fixed point addition on the exponent bits).

By contrast, the stochastic computing approach consists in coding the data in the form of

a bitstream – a sequence of successive bits of 1s and 0s whose ratio of 1 to the total size of

the bitstream corresponds to the encoded data between 0 and 1–. By construction, the coded

value can only be between 0 and 1. All the data are coded this way; it is a different paradigm

since, for instance, the addition presented in Figure 3.3 (c) does not sum the two values but

performs a weighted sum with another factor also coded in the form of a bitstream. In Figure

3.3 (c) and (d), we can see that the implementation of the calculation is exceptionally simple.

The multiplication operation in stochastic computing is therefore performed by a simple AND
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logic gate, the output precision of this multiplication depending only on the averaging time.

When a high degree of precision is required, the time needed to obtain it becomes very impor-

tant. To get as good precision as floating-point coding the time needed is considerable and the

energy required is higher than performing floating-point multiplication. On the other hand,

the implementation area remains unchanged.
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Figure 3.3: (a) Basic architecture of a floating-point adder. (b) Basic architecture of a floating-
point multiplier. Both taken from [207]. (c) A multiplexer can be used to perform the
sum in stochastic computing, the output is : z = px+(1−p)y if p = 1/2 : z = (x+y)/2.
(d) A logical AND gate can perform directly the stochastic multiplication between
two bit-streams.

In the idea of building an "in memory computing" circuit, where the computation and the

memory are co-located, the possibility to replicate the multiplication circuit with stochastic

computing gives the ability to perform a large number of parallel computations at the same

time. This is in GPUs with high precision operators, where the arithmetic and logical units

(ALU) are replicated for each core. But the size and power consumption of a hybrid CMOS/Non-

Volatile-Memory (NVM) ASIC performing floating-point coded probability product operations

would be way too high in comparison to the memory units.

Another advantage of stochastic computing concerns the data movement. The number

of clock cycles required will be very large compared to a more classical calculation approach.
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However, the fact that the data is coded on a single wire allows us to significantly reduce the

data size and therefore the data movement. The other advantage is the possibility of coding

a very large number of probability values, each wire corresponding to a probability value: the

amount of data that can be processed simultaneously is considerable. This is one of the reasons

that make the brain very powerful, transmitting only one specific signal per axon.
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Figure 3.4: (a)Design of a C-Element circuit using standard cell. (b) Muller C-Element Truth
table. (c) Symbol of the C-element. (d) Efficient implementation of the C-
Element with CMOS transistors. (e) Two input cascaded C-element give the output
P (y |X0, X1). (f) Tree structure of C-element give the output of the Bayesian Infer-
ence for seven inputs P (y |X0, ...X6).

In stochastic computing, the key elements of the operations concern the coherence of the

bit-streams. To obtain accurate results, the input bit-streams of the logic gates must be inde-

pendent and uncorrelated otherwise the output will not correspond to the expected result.

Stochastic computing seems to be particularly well suited to perform calculations based

on probabilities. For instance, the basic equation of Bayes’ theorem can be calculated from the

basic Müller C-elements logical circuit presented in Figure 3.4 (c) taken from [198].

From the truth table Figure 3.4 (b) and for uncorrelated input signals, the output probability

P (Z ) of a C-Element is:

P (Z ) = P (X )P (Y )

P (X )P (Y )+ (1−P (X ))(1−P (Y )).
(3.8)

By replacing P(X) by P?(X ) = P (X |Y )
P (X |Y )+P (X |Y )

, we obtain the Bayesian Inference Equation that

can be directly compute by the C-Element logic gate:

P (Y |X ) = P (X |Y )P (Y )

P (X |Y )P (Y )+P (X |Y )P (Y )
(3.9)

By adding different inputs, still with the same type of probability coding P*, it is possible to
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perform a Bayesian inference by stochastic computing by cascading the C-elements logic gates

if the inputs Xi are conditionally independent given Y . As shown in Figure 3.4 (e), the Bayesian

inference P (Y |X 0, X 1) is calculated from two C-Elements gates :

P (Y |X0, X1) = P (X1|Y , X0)P (Y |X0)

P (X1|Y , X0)P (Y |X0)+P (X1|Y , X0)P (Y |X0)

= P?(X1)P (Y |X0)

P?(X1)P (Y |X0)+ (1−P?(X1))(1−P (Y |X0)).

(3.10)

In general, it is possible to extend the Bayesian inference with a very large number of condi-

tionally independent variables given Y by rearranging the succession of logic gates C-elements

in the tree form.

However, even if the logical gate C-element is very interesting as it allows to directly perform

the mathematical operation of the Bayes’ theorem, it can only work for binary variables, i.e.,

variables that can only take two values. When we want to fuse sensors, it is more convenient

to have sensors that provide more information, with more possibilities, i.e., the values that the

variables can take are greater than two. Moreover, when two observations are correlated, we

explained earlier that the joint probabilities have to be represented, which is the same as if we

have several possible values for a variable.

Taking into account the limitations of pure C-Element architecture, a new Bayesian Ma-

chine has been developed [208] [209] and studied for source localisation [210] [211]. This archi-

tecture will be presented in the next section 3.4, then a hardware implementation with RRAM

technology will be presented 3.6.

3.4 The Bayesian Machine : hardware description

3.4.1 General overview of the Architecture

The hardware implementation of the Bayesian machine aims at implementing the calculation

of the probability of an event y from observations ω for discrete variables. The working hy-

pothesis of this machine is that it performs naive Bayesian inference. i.e. we will work with

observations ω that are independent given y . If two observations are not independent given

y , the choice will be to model the joint distribution of these observations. Similarly, if there is

more than one hidden variable, we will use their joint distribution. As in Figure 3.2 (a), under

naive assumption, the equation to compute is:

P (y |⋂
i∈I
ωi ) =

P (y)
∏
i∈I

P (ωi |y)∑
y∈Y

∏
i∈I

P (ωi |y)P (y)
. (3.11)

As mention in the section 1.1, when looking at an observation set to determine which hy-
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pothesis is the most likely, the term at the denominator can removed:

P (y |⋂
i∈I
ωi ) ∝ P (y)

∏
i∈I

P (ωi |y). (3.12)

For more clarity, the equation above can be written in the form:

P (y |ω0, · · ·ωn) ∝ P (y)P (ω0|y) · · ·P (ωn |y). (3.13)

This Bayesian machine uses stochastic bit-streams. Each probability P (ωi |y) is a bitstream

and a logical AN D gate will be used to perform the multiplication. It is possible to perform a

succession of stochastic multiplication with a cascade of logical AND gates.

…
𝑃(𝑦|𝜔0)

𝑃(𝑦)

𝑃(𝑦)𝑃 𝑦 𝜔0

𝑃 𝑦 𝜔1
𝑃 𝑦 𝜔2

𝑃 𝑦 𝑃 𝑦 𝜔0 …𝑃 𝑦 𝜔𝑛

Figure 3.5: Succession of AN D gate that perform for one configuration of y the succesive mul-
tiplications of the likelihood P (ωi ). This circuit is replicated as many as the possible
values for y.

In Figure 3.5 the stochastic multiplication between the bitstreams P (y) and all the proba-

bilities P (y |ωi ) is performed by a succession of AN D gates. It is important to notice that here,

only one configuration of y is calculated. For instance, a thermal sensor will be able to give

different values and not only give a binary value 0 or 1. These likelihood values can be deter-

mined beforehand during the learning process, then at the Bayesian inference we will look for

these values and multiply them with each other according to Equation 3.12 using stochastic

computing. Imagine that y can take 16 values, we will need 16 times the circuit presented in

Figure 3.5 to compute the complete posterior distribution.

An example of the complete Bayesian machine is shown in Figure 3.6 for 4 possibles values

of y . Each row of the Bayesian machine then performs the product between the prior P (yk ) of

one of the possible values of yk with the likelihoods P (ωi |yk ). As each row performs product

probabilities with bit-streams, at each likelihood P (ωi |yk ), there is a logical AN D gate.

The strength of this architecture relies not only on the efficiency in the calculation of the

product of probabilities logical AN D gate but more importantly, on its particularly suitable

architecture for In-Memory-Computing. As a matter of fact, each blue box in Figure 3.6 corre-

sponds to a probability that can be stored in a memory array.

Even if it would have been possible to input each bitstream corresponding to P (ωi |yk )

from outside the architecture, and to have a circuit dedicated to the stochastic product, the in-

memory computation approach seems highly attractive as it avoids massive data-movement.
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Instead of presenting at the top column a bit-stream for each likelihood, this architecture only

requires the configuration of the observation (e.g. the temperature value). Consequently, ωi

corresponds to an address that is shared along the whole column, each memory array in the

light blue cells addressed by ωi gives the corresponding likelihood P (ωi |yk ).

P(ω0|y1)

P(ω0|y2)

P(ω0|y3)

P(ω1|y1)

P(ω1|y2)

P(ω1|y3)

P( y0)

P( y1)

P( y2)

P( y3)

P(ω0|y0) P(ω1|y0)

P(ωn|y1)

P(ωn|y2)

P(ωn|y3)

P(ωn|y0)
α P(y0|ω1, ω2...ωn )

α P(y1|ω1, ω2...ωn )

α P(y2 |ω1, ω2...ωn )

α P(y3|ω1, ω2...ωn )

ω0 ω1 ωn

…
…
…
…

Figure 3.6: Schematic of the implemented Bayesian machine basic principle. Each row perform
the calculation of the posterior distribution P (y |ω)

The system works as follows:

• The dark blue blocks –the priors– generate a random bit-stream with probability P (yk ) at

each row level. This bitstream can be generated intra-architecture or out-of-architecture,

as these priors can have been generated either previously by another system or come

from the posterior distribution of the same system.

• The light blue blocks correspond to likelihoods modules. Each of it consists of a memory

array that stores the different likelihoods P (ω0|y0) with precise value. For instance, for a

thermal sensor, each temperature will have a different likelihood. As a consequence, each

column receives the same information ωi but assigns different values to the likelihood.

Therefore one column is a map of the likelihoods for a given observation.

• When the various observations are presented to the system, the system chooses the cor-

responding probability from the set of probabilities available. Each likelihood block will

then generate random bits proportional to the selected probabilities in the array.

• The bitstream at the output of the system is finally proportional to the product of the

likelihood and the prior probabilities

In practice, to speed up the calculation, the probabilities stored in the system do not corre-

spond to the true probability, they are normalized, by the highest value for each column.
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3.4.2 Global Architecture

Figure 3.6 presents a schematic overview of the machine, while Figure 3.7 shows the complete

design. As mentioned above, the architecture is mainly composed of memory arrays storing

probability values. Each memory array is used to save the different likelihoods of the different

possible observations given a single configuration of the hidden variable. By combining all

probability products in rows, the last column gives the complete posterior distribution of the

hidden variable given the observations.

The complete design, Figure 3.6 (a) consists of a pattern (the likelihood cell) repeated many

times. As shown in Figure 3.6 (b), each "likelihood cell" will therefore be composed of a memory

matrix, a random number generator, a circuit able to transform these random bits into a bit-

stream proportional to the probability value read from the memory array and an AN D gate

that performs the probability product.

To control each of these cells, but also to manage the inputs and outputs of the system,

other blocks are added. The memory controller has the task to manage the addressing of the

memories for both writing and reading. When writing the memories each cell will be addressed

independently, while when reading, each probability of the same column uses the same ad-

dress. Input/output controllers are used to manage the data. The input controller is used to

manage the writing of memories, the generation of stochastics bit-stream for the prior, and the

loading of seeds necessary for the generation of pseudo-random numbers.
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Figure 3.7: (a) Schematic of the fully implemented Bayesian machine formed of a repetition
of basic cells. (b) A basic cell is composed of a memory array that stored all the
likelihoods for a given observation, a Random Number Generator (RNG) –it can be
True RNG of pseudo-periodic RNG– both are working for the Bayesian Inference,
and a logic module composed of a comparator that makes the comparison between
the generated random number and the stored probability, generating a bit-stream
according to this probability.
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The architecture presented allows Bayesian inference and not learning, i.e. likelihoods are

fixed and no longer change. The use of non-volatile technologies seems particularly suited to

the implementation of such a system.

Each technology requires different methods to be programmed, e.g. different voltages.

Sometimes, level-shifters [212] are needed to manage the programming voltage levels. For

this reason, more detailed design with all the inputs/outputs of the system is presented in sec-

tion 3.6, showing all the control signals needed for both memory programming/reading RRAM

memory technology as well as signals for random number generation.

3.4.3 Random Number Generator

The quality of random number generators is one of the most important considerations in the

use of bitstream encoding data. Each variable must be independent and decorrelated in time

to ensure a consistent result on the mathematical operations. There are two main categories

of random number generators: PRNGs (Pseudo Random Number Generator) and TRNGs (True

Random Number Generator). TRNGs are obtained from physical sources that have intrinsic

entropy, such as thermal noise. Pseudo-random number generators are obtained by a deter-

ministic system with a specific algorithm.

The presented architecture is incredibly interesting for in-memory-computing. The free-

dom concerning the generation of random numbers is therefore specific to the designer but

also to the algorithmic constraints of the system.

One of the recent approaches to generating random bits is the use of memory technology,

either by playing with the dimensions of the device[213] or by using the stochastic behaviour

when it is programmed[214] [215]. The use of such an approach has a real advantage, in ad-

dition to being TRNGs, they can be implemented using the same technology as the one used

for the memory array. However, this approach usually requires the addition of circuitry, either

because the bits can be self-correlated in time, or because it involves programming devices

that can even cause power overhead. This approach is fundamentally exciting but requires an

in-depth study to be implemented.

Consequently, for the implementation of our machine, we used a pseudo-random number

generator, the principle can be easily simulated on a computer, the result being deterministic,

it is also possible to make an exact comparison with the implemented system.

The pseudo-random number generation system used is a Linear-Feedback Shift Register

(LFSR). It is a pseudo-random generator that is inexpensive in terms of surface area and en-

ergy consumption as the implementation only requires flip-flops and XOR gates. The physical

structure of an LFSR is often presented in polynomial form, for example x8 + x6 + x5 + x4 + 1

for a 8-bits LFSR. This polynomial corresponds to the different shift register bits which are con-

nected one after the other by XOR logic gates. For each size of LFSR, a configuration maximizes

the periodicity of it, passing in all states except the null state.

This random number generator has three major drawbacks for our system. Firstly, the zero
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state is never reached which decreases the number of values reached by the generator by one.

Secondly, this generator is pseudo-random, this means that the sequence of generated bits

is periodic, which results in a limitation on the length of the output bitstream configuration.

Moreover, the number of LFSRs of the same physical structure that can be put in series for the

stochastic product is limited. Indeed, two LFSRs must be different, otherwise, the bitstreams

output from the different likelihoods will be highly correlated with each other. And thirdly, to

generate different values, each LFSR needs a seed value that must be programmed, increasing

the complexity of the system, and also requiring to be seeded every time we turn off the system.

3.4.4 Weighted Binary Generator

To perform stochastic computation, in particular the multiplication between each likelihood,

we need to generate a stream of random bits whose ratio of 1 to 0 is proportional to a prob-

ability. Probability coding is done by a classical binary coding with a value between 0 and 1.

When all the bits are at 1, the probability is 1, and when all the bits are at 0, the probability is

zero. A digital cell is needed to convert the value of a probability in fixed-point coding into a

bit-stream encoding this value. The digital circuit Figure 3.8 (a) was previously shown in the

global architecture Figure 3.7 (b). Two implementations options are presented in Figure 3.8 (b)

and (c).

In both cases, random numbers and probability must be encoded on the same number of

bits. Otherwise, the generation of a stochastic bit stream proportional to the desired probabil-

ity is not ensured. For the generation of the stochastic bitstream, a conventional comparator

is usually used (Figure 3.8 (b)). If the random number generated is less than or equal to the

probability shown, the output bit is 1, otherwise, it is 0.

Another method, proposed by Gupta in 1988 [216] [217] and presented in Figure 3.8 (c)

consists in generating the proportional bitstream by comparing each bit of the probability with

the random number generated by the LFSR. The system is based on the principle that each bit

of the LFSR has a probability 1/2 of being a 1 and a probability 1/2 of being a 0. The AN D gates

are used to weight each bit generated by the LFSR by the probability loaded in the register. The

logical OR gate is used to add these different options.

We designed this circuit using the SystemVerilog Hardware Description Language (HDL)

and made a comparison on the energy consumption, area and speed of these two circuits. The

circuit in Figure 3.8 (c) is around 10% better in both energy consumption and surface area than

the circuit in Figure 3.8 (b), but these results depend on the number of bits considered.

The architecture of the stochastic Bayesian circuit is relatively little dependent on the choices

of this circuit. If we work with memory arrays, the peripheral circuits are relatively large com-

pared to the logic. As we will see in the next sections, in a full architecture with a large quantity

of memory, the logic largely comes for free. This architecture allowing Bayesian inference is to

a large extent composed of small memory arrays with little logic.
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Figure 3.8: (a) Logical gate required to generate a bit-stream proportional to the value of a prob-
ability p, it requires the input p encoding the probability in fixed point coding and
r nd which is a generated random number. (b) Classical circuit used to make the
comparison between two numbers, both encoding in 4 bits fixed point, it can have
3 outputs, but to generate the bit-stream only x2 is used. (c) Alternative circuit to
generate this bit-stream, it is a simplified form in comparison with the comparator.

3.5 The boat localization example

For the implementation of the Bayesian inference model, we need to create an example model

that we can test. The example requires specific observations and to draw inferences from them.

The example that will be described in this section is about localizing the position of an object

from sensor data, for instance, the position of a ship in the ocean from position sensors. This

example was first introduce in the book "Bayesian Programming" [151].

This proposed example is relatively simple to understand, but its hardware implementation

is relatively complex because it requires a large amount of memory. The hybrid CMOS/RRAM

microchip that was fabricated does not have enough memory to make this full Bayesian infer-

ence. The study of Bayesian inference on our chip will therefore be relatively simple, with a
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typical simpler task, which is to classify sleep phases from Electroencephalography (EEG) tem-

poral data previously transformed in the frequency domain [218] [219]. Our chip will also be

able to perform the Bayesian inference of the last layer of a neural network as mentioned in

Appendix B.
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Figure 3.9: Description of the model for the boat localization. (a) Drawing presenting the prob-
lem, a boat is on a map and three sensors try to find the position of the boat. (b)
The simplified form of the model, the position of the boat is obtained from three
sensors that are conditionally independent given the position. (c) Full description
of the model, the position of the boat is described by the joint variable (X ,Y ) and
each sensor gives an estimated position using polar coordinates, consequently, they
can be decomposed into two terms, a distance and a position. All the observations
of angles and distances are conditionally independent given the position of the boat
(X ,Y ). To determine the position of the boat, the Bayesian Inference simply consists
into the computation of Equation 3.12 P (p| ⋂

i∈I
ωi ) ∝ P (p)

∏
i∈I

P (ωi |p)

Figure 3.9 (a) describes the basic problem of the localization of a boat in a map. The posi-

tion of the boat p is determined by each sensor observation ωi Figure 3.9 (b). The variable p

can be described by the two parameters X and Y that are not independent, therefore we need

to describe the joint distribution (X ,Y ). Each observation of sensor gives a specific position us-

ing polar coordinates, but instead of modeling the joint distribution (ai ,di ) which can be very

large, it is possible to describe each parameter ai and di as conditionally independent given the

joint distribution (X ,Y ) (Figure 3.9 (c)). This model finally results in a naive Bayesian inference

between the different likelihoods of angles and distances of sensors.

To obtain the values of likelihoods, it is possible to perform a sampling based on a very large

number of examples, in which we know the position of the boat, (i.e. the distribution (X ,Y ))

and we look at the sensors’ response and then determine the different probability values. How-

ever, this is not always possible to do: either there is too little data available, or the experiment

is far too complex to execute. Nevertheless, it is possible to add human knowledge to model

these sensors. This is one of the major strengths of Bayesian models.
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To model the behavior of the sensors, it is typical to work using Gaussian functions. The

likelihoods correspond to the response of a sensor given the position of an object at a specific

position (X ,Y ). When an object is at position (X ,Y ) the angle and the distance sensors will

determine the corresponding angle and distance with a certain error. It is this error that is

determined in a Gaussian way. If the object is at the position (X ,Y ) it is simply a conversion

from Cartesian coordinates to polar coordinates with the sensor as a reference to get the cor-

responding distance and angle. A Gaussian distribution centered on the exact values is then

added.

It can be required to add complexity to the model, for instance, a sensor can be less accu-

rate when the target is at a long distance. In this case, the standard deviation of the Gaussian

distribution can be increased according to the distance of the sensor.

𝑑0

Distance Sensor 0 Distance Sensor 1 Distance Sensor 2

𝑃 𝑑 𝑋, 𝑌 ∝ exp −
(𝑑𝑖−𝑑)²

2 𝜎𝑑
2 𝑤ℎ𝑒𝑟𝑒 𝑑𝑖 = 𝑥 − 𝑥𝑖

2 + (𝑦 − 𝑦𝑖)²(a)

(b)
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𝑃 𝜃 𝑋, 𝑌 ∝ exp −
(𝜃𝑖 − 𝜃)²

2 𝜎𝜃
2

𝑤ℎ𝑒𝑟𝑒 𝜃𝑖 = 𝑎𝑡𝑎𝑛2(𝑦 − 𝑦𝑖 , 𝑥 − 𝑥𝑖)

Figure 3.10: Sensor likelihood model. (a) Three distance sensors give an estimation of the po-
sition of the boat. For each sensor at a given position (xi , yi ), N maps are stored
for different values of d , generated from the Equation on P (d |X ,Y ). When doing
the Bayesian inference the sensors will chose one of this N stored maps as "like-
lihood". (b) Likelihoods maps for three angle sensors obtained from the Equation
on P (θ|X ,Y ).

To evaluate the performance of the system, we created a cycle-accurate model that simu-

lates the operation of the electronic circuit. The system perfectly reproduces the behavior of

the circuit and is interfaced with the hardware description in SystemVerilog using the same
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probability coding files, random generator seeds, and using the same logic functions. This in-

terfacing allows us to perform fast simulations and to evaluate both system parameters and the

likelihood values stored in memory.

Figure 3.11 shows different inferences made after different duration: after 10 (Figure 3.11

(a)), 100 (Figure 3.11 (b)), and 1000 (Figure 3.11 (c)) clock cycles corresponding to the size of the

bit-stream. The greater the number of clock cycles, the greater the accuracy of the inference,

but even after 10 clock cycles, the prediction is accurate. It should be noticed, however, that the

precision of the system is limited by the periodicity of the random generators. If this periodicity

is too low, the same cycle will repeat the same inference result over and over. To avoid this

concern in the future, TRNGs will be preferred.

(a) 10 cycles (b) 100 cycles (c) 1000 cycles

Figure 3.11: Naive Bayes Inference for the toy problem of boat localization obtain after (a) 10
clock cycles, (b) 100 clock cycles, and (c) after 1000 clock cycles

To evaluate the strengths of such a model, we also added complexity to the system by in-

creasing the complexity of sensors, changing their position or tracking the temporal movement

of the boat on the map. Adding sensors makes the model more complex, but the accuracy of

the inference is increased. This accuracy is increased if the sensors add information about the

position of the ship. For instance, a sensor close to the boat will have higher accuracy. Changing

the position of the sensors requires changing the values of the likelihoods stored in memory.

This is simply a pre-process of the model. To track the position of the boat over time, its prior

position can be considered as the posterior position at the previous time step.

3.6 The final Chip Design with RRAM

The implemented system is the one presented in the previous sections but on a smaller scale.

This is a proof-of-concept circuit and not a perfect design for future applications. The goal

of this microchip is to create an intelligent memory where memory and calculations are co-

located resulting in very little energy consumption for inference.

The fabrication of a hybrid CMOS/NVM chip is performed in two phases. A classical silicon

implementation using a 130nm commercial technology and an implementation of RRAM cells

whose architecture and technology will be described in the following parts. This design has
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been realized in collaboration with Jean-Michel Portal and Marc Bocquet from the "Institut

Matériaux Microélectronique Nanosciences de Provence" (IM2NP) at Aix-Marseille Université

and CNRS, and manufacturing is currently performed under the supervision of Etienne Nowak

and Elisa Vianello at CEA-Leti in Grenoble.

Being able to experiment the fabrication of a hybrid CMOS/RRAM chip is a true opportu-

nity to test at an early stage the future of microelectronics, to implement original algorithms,

and to understand what are the constraints that occur in real chips in contrast with high-level

description.

3.6.1 The Design Flow

The circuit architecture that we will implement uses ASIC circuit integration tools. An ASIC

(Application-specific integrated circuit) is a circuit designed for a particular use and, therefore,

dedicated to specific tasks.

To describe the architecture of such an electronic circuit, designers use a hardware descrip-

tion language (HDL), which describes the functionalities of the chip. The code can be inter-

preted and synthesized using system design tools (such as the tools provided by Cadence or

Synopsys), a library of logic gates (usually provided by the design kit of a foundry). These gates

are optimally designed to limit power consumption, delays, and surface area.
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Figure 3.12: Overview of an ASIC Design Flow. (a) Simulation steps that are done from Design
Tools, only simulation based. At the end of these steps GDS masks are obtained and
used for the manufacture process. (b) All main steps from system specification to
ready to use final chip.

To design the Bayesian system, we used the SystemVerilog hardware description language.
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Once the system structure is written, the model is simulated to confirm that the design will

work correctly.

When setting up a design flow most of the steps can be automated. Nevertheless, consider-

ing the particularity of our design integrating RRAM at the core of CMOS, we have performed

a semi-automated design. The layout of the devices and peripheral circuits were placed and

routed by hand, while the digital part was pre-placed and routed and then assembled in the

final design.

3.6.2 The RRAM memory array

In this section, we will present in detail the memory array used as the foundation of our design.

First, we will explain the technology used and how it is programmed, and then, we will present

the full implementation of the memory array including an explanation of the peripheral circuits

required to program it.

Presentation of the RRAM device used
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Figure 3.13: (a) Basic principle of all RRAM technology, a material resistance switch occurs un-
der a specific applied voltage. (b) Low Resistance State (LRS) is coding for a binary
0, this state corresponds to the presence of the filament & High Resistance State
(HRS) is coding for a binary 1, this state corresponds of the absence of the filament
(c) Mask of the device used in our HfO2-based OxRAM integrated with a 130 nm
CMOS logic process, the active region is located between metal-4 and metal-5. (d)
Schematic of the Bipolar switching behaviour for Forming/Set/Reset process. (e)
SEM cross-section of the device –TiN/HfO2/Ti/TiN–
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To implement our circuit, we, therefore, use a resistive RAM technology. RRAM technologies are

technologies based on the changing resistance value of a material when voltages are applied to

it Figure 3.13 (a). The memory component used is a H f O2 OxRAM based RRAM. It is a oxygen

vacancies filamentary-based technology presented in Figure 3.13 (e), the mask of the device is

presented in Figure 3.13 (c), the active region is located between metal-4 and metal-5 presented

in Figure 3.13 (c) & (e).

Before being programmed, these resistive memories will endure a forming process. To

achieve this process, a high voltage V f or mi ng is applied to their terminals to form the initial

filament. The physics of these devices is relatively complex, but the basic principle is as fol-

lows [220] [221]. H f O2 based OxRAM– have SET and RESET voltages of opposite signs 3.13 (d).

When applying a positive voltage, for the forming process and SET process, oxygen ions drift

to the anodic interface of the high electric field, where they are discharged as neutral oxygen.

Thus, the current flows through the oxide via the conductive filaments of oxygen vacancy, re-

sulting in a low resistance state (Figure 3.13 (b)). During the RESET process, the electrode/oxide

interface behaves like a reservoir of oxygen ions. Ions migrate to the oxide to recombine with

the filament of oxygen vacancy, the memory cell is then in the high resistance state (HRS). In

[222] & [223], a deep study of the physical H f O2 principle is made, detailing the principle of

migration of oxygen ions.

In general, all RRAM technologies are difficult to model, as their underlying physical pro-

cesses are generally dependent on a large number of parameters with a significant amount of

noise [224]. However, there are well-defined programming methods that allow each device to

be binary programmed as 0 (LRS) and 1 (HRS), as described in Figure 3.14.
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module RRAM ( input logic BL, 
input logic WL,
input logic SL, 
output logic Rstate ); 

logic Rstate_prev, SET, RESET;
assign SET = ~BL & SL & WL; 
assign RESET = BL & ~SL & WL; 
assign Rstate = SET ? 0 : (RESET ? 1 : Rstate_prev);
always@(posedge RESET | SET) 

Rstate_prev <= Rstate; 
endmodule

(a) (b) (c)

Figure 3.14: (a) 1 Transistor 1 Resistor structure with the corresponding terminals BL, SL and
WL. (b) Programming schemes for the Forming/RESET and SET process, the volt-
ages and timing presented are not the typical ones used for our OxRAM. (c) Sys-
temVerilog behavioural model of the 1T1R structure used for the simulations.

The Forming/RESET/SET programming procedures are represented in Figure 3.14 (b) with

the voltage applied to the different terminals of a 1T1R architecture (Figure 3.14(a)). For the

forming process, a high voltage is applied at the Sense Line (SL) and the Bit Line (BL) is set

to ground, while the access transistor is partially turn-on, limiting to the compliance current
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with a specific voltage on the Word Line (WL). The SET process is the same as the forming

process but with lower voltage and shorter programming time. For the RESET process, it is

the opposite: SL is set to ground while a voltage is applied to BL. The access-transistor is fully

open. Accordingly, we wrote a SystemVerilog behavioral model of the device that replicates the

binary operation of the device under stereotypical programming conditions (Figure 3.14 (c)),

which will be used to model the full behaviour of our Bayesian architecture.

The values of the voltages used are defined and can be adjusted when testing the chip. In a

previous run on the same technology, different voltages have been tested. In the implementa-

tion of our chip, we chose a simple design where all voltages are generated outside the die and

applied directly to it. This way, different values of voltage and programming time can be easily

defined.

2T2R array

In the implementation of our final circuit, we employed a 2T2R structure, i.e. instead of using

a single component to encode a binary value, we use two RRAM and two access transistors. To

encode a binary value 0, the LRS/HRS configuration is used and the opposite HRS/LRS config-

uration is used to encode binary value 1. Thorough investigation of this configuration, which

reduces the number of errors, will be presented in the next Chapter 4, in the context of Bina-

rized Neural Network.

(a)

BL0 BLb0

WLE0

BL1 BLb1 BL7 BLb7

BL0 BLb0 BL1 BLb1 BL7 BLb7

WLO0

WLE3

SL0 SL1 SL7

(b)

Figure 3.15: (a) Schematic of a 2T2R structure with all the control lines (b) Layout of the 2T2R
array, with dummy devices all around

The programming principle of the 2T2R configuration, presented in Figure 3.15 (a), is the

same as in the 1T1R one. However, the SL and WL of both devices are shared, and each one pos-

sesses its own Bit line, BL and BLb. To prevent sneak path through the complementary device,

when performing the programming steps, it is necessary to apply complementary voltages to

the complementary device Bit Line to manage these different voltages.
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The memory array is composed of a set of devices configured in 2T2R structure, the line

control signals allow managing the transistor access (WL) while in the column, the controlled

signals are those that allow the programming and reading of the devices (SL and BL).

Additional devices are located all around the main memory array (see Fig (b) shaded area),

this way all devices in the core of the memory array have the same number of devices at their

interface, reducing surface effect variability.

Drivers

CMOS transistors optimized for numerical computation do not allow to control the high pro-

gramming voltages of RRAM devices. To manage these high voltages, it is necessary to use big-

ger transistors with thick gate oxide. In our design, we have therefore used two types of transis-

tors, small transistors thin-oxide for the digital computation and bigger thick-oxide transistors

in the memory array periphery. The bigger transistors are only used in driver circuits. These

drivers are composed of small transistors that work using the nominal voltage VDD controlling

the bigger transistors able to work with higher supply voltage to program the RRAM devices.

Row and column drivers are used on all four sides of the memory array. The control line

drivers are arranged as follows: column driver on WLE on the left, row driver on WLO on the

right, BL and BLb driver on top, and SL driver on the bottom.

These drivers control the voltages applied to the various terminals of the 2T2R structure

from digital circuits supplied in VDD or GND. For the power transistors to operate and apply

the correct voltages to these terminals, two additional power supply voltages pulled to the input

pads are added: a row supply voltage VDDR and a column supply voltage VDDC.

The driver on the BLs is a bit different from the others when writing we will have to apply a

high voltage, hence the need for the driver. However, when we want to read, we have to leave

these lines at high impedance to discharge the current in the reading circuit, so an additional

control signal CBLEN is added to control if we are going to apply voltages on the BLs or leave

this value at high impedance.

The PCSA reading circuit & near-memory logic circuit

Once the devices have been programmed, the binary value that they store must be read. To do

this, the memory array features a dedicated peripherally circuit shown in Figure 3.16 (a). It was

first introduced in 2009 [65] and is called Pre-Charge Sense Amplifier (PCSA). The operating

principle is as follows. The first phase consists of charging the RRAM devices and the compar-

ison latch to the supply voltage. To do it, SL is charged at supply voltage and the SEN signal is

set to the ground. With SEN signal set to ground, the PMOS transistors are turned on, and the

supply voltage is applied at the two states of the latch. The second phase consists of discharg-

ing the voltages at the devices through the SL. This is achieved by setting the SEN signal to the

supply voltage and SL to the ground. Considering that the latches are both at supply voltages,

the NMOS transistors are turned on, letting current flow through the branches of the RRAM de-
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vices; but since the two devices have different resistances, the discharge speed is not the same

in each of the branches. Because the current is greater in the low-resistance branch, the low-

resistance branch discharges faster. The state of the branch of the latch with low resistance will

decrease faster than the other with high resistance, this disequilibrium will be amplified until

the state of the high current branch discharges to the ground controlling the PMOS transistor

of the complementary branch. As a consequence, the PMOS transistor of the other branch will

be charged to VDD. The state of the latch is then used as the binary value stored in the RRAM

devices.

The advantage of this circuit is that it also allows operations to be carried out directly in the

reading circuit by adding a few NMOS transistors. This approach presented in [66], is very in-

teresting to reduce the energy consumption of the calculations. In Figure 3.16 (b), the 4 NMOS

transistors are controlled by a DIN input data which will define in which branch of the sense

each resistive device will correspond. If DIN is at logic level 1, it is a classical PCSA, if on the

opposite the DIN signal is at 0 it is always the same PCSA but the branches are inverted. The

output is switched only if DIN is 0. The operation performed in this way is an XNOR between

the binary value stored in RRAM memory and the DIN input data.
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Figure 3.16: (a) Schematic of the Pre-Charge-Sense Amplifier. (b) Schematic of the Pre-Charge-
Sense Amplifier with additional volatile data stage that perform an XNOR opera-
tion between the RRAM binary state and the DIN input. (c) Layout of the Sense
amplifier used in our final design.

As long as the addition of transistors and their resistance is negligible compared to the re-

sistances of RRAM devices, it is possible to make complex operations by adding new transis-

tors. Nevertheless, it should be remembered that the output remains a 1-bit binary output, so

complex operations can be performed, for example, AND gates with three inputs but not more

complex logic functions. To carry out more complex logic gates, a new differential pair must be

added. With this technique, for instance, in [66], it has been possible to create a non-volatile

full adder.
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In our final circuit implementing the Bayesian machine, we do not use this Volatile Data

Stage input to perform digital operations. Nevertheless, these transistors are used to isolate

the reading circuit during the programming step. When programming the devices, DIN and

DINb are set to the logic zero states, so no current that could damage the sense amplifier flows

through it. The layout of the sense amplifier used in our final design is shown in Figure 3.16 (c).

Full memory Array

The basic elements of our Bayesian design are the RRAM components. The principle of pro-

gramming and reading devices has been presented in the previous paragraphs. These devices

are arranged in the form of a memory array of size 8x8bits. For the implementation of our

model, we used very small arrays. The surface of the complete system circuit is therefore dom-

inated by the periphery. The entire memory array is shown in Figure 3.17. To power the circuit,

there are 4 power supply rings all around the memory array. VDD is the voltage to power the

logic transistors that control the drivers and the sense amplifier. GND is used for the transis-

tors and to discharge the currents. VDDR is the row supply voltage, it is the one used for the WL

transistors. VDDC is the column supply voltage, this is the one used for the BL & SL lines when

writing.

The drivers are all around the memory array, the read circuit (PCSA) is at the bottom. The

top drivers are bigger than the others because they are composed of a double command, CBL,

and CBLEN. CBL is used to address which component of the differential pair is selected and

CBLEN decides the application of voltage to the device.

We can see that the memory array is mainly composed of wires. The 5 levels of metals are

used in the RRAM array and very loaded in the drivers but as for the rest, there is space to add

logic transistors below.

In this presented array, all devices on the same row can be programmed and read in parallel

from the input command lines (CBL, CBLEN, CWL, and CSL). In the final design, due to the

small number of components, each device is programmed sequentially but is read in parallel.

Each of the control lines is going to be controlled by decoders but, in our final design, we

still have direct control over these rows. It is a waste of energy, as we need to load all the lines

from the PAD to transistors, but it is easier to test the array and to test different programming

conditions. If we perform the test on this basic cell efficiently, all the other designs are simple

to test as they are derived from this memory array.

The control of all these lines thus passes through a logic circuit whose implementation

method will be described in the following sub-section.
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Figure 3.17: Memory array composed of 16x8 readable and programmable RRAM devices al-
lowing 8x8 binary bits to be encoded in the 2T2R configuration. The dimensions
of the circuit are 200x290um.
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3.6.3 Digital Logic Blocks

In this section, we detail the use of the 130nm digital CMOS flow. It will be presented in part

as a working document. The memory blocks have been made full-custom, i.e. the transistors,

RRAMs, and wires have been arranged by hand using the layout Virtuoso tools provided by Ca-

dence. The implementation of the digital blocks was done automatically with a place and route

flow. On the other hand, the memory array was assembled by hand. To use both in our design,

we used a behavioural model to do the simulation, and the memory array was used only for the

final assembly to obtain the GDS file for fabrication. A complete flow that integrates a place &

route of both, memory blocks (pre-designed in full-custom) and logic have been implemented

in the IM2NP lab and recently reproduced in our laboratory for our future designs, but for the

implementation of the whole die assembly everything was done in full-custom.

As an example, we present the logic block called complex_decoder_top in Figure 3.18 (d),

which is the basic element of our Bayesian circuit. Inside it, there are the random number gen-

erators, one per column, the numerical commands to control the decoders, as well as different

instructions to define the different steps of the system. We used CADENCEr Encounter RTL

compiler to generate the layout of the circuit.

(a) (b)

(c) (d)

Figure 3.18: (a) Tools used to place & route the digital part of the design. (b) Example of the
final placed & routed digital block complex_decoder_top. (c) Filler Cap & Fill Cells
placed by hand all around (d) a the digital block, input and output pins are also
placed by hand to match the full design.

The place & route flow uses an automated flow provided by the CMOS foundry (Figure 3.18

(a)). Once all the steps are finished, we can take the layout and add some wires to connect the

logic block with the rest of the design. In Figure 3.18 (d) we can see in green that we added
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some wires to connect this logic block to the memory array. To have continuity between the

logic gates and logic blocks and that the design respects all the VLSI rules, fillers caps, and

fillers cells are used (Figure 3.18 (c)). Usually, the routing placement tool fills the empty spaces

with fillers caps and fillers cells automatically so it is not a consideration in most cases. In our

case because our design is fully custom we need to add these extra cells. Filler cells are used to

have power supply continuity as well as NWELL and PWELL continuity. Filler caps are used to

avoid voltage drop and ground bounce.

3.6.4 The Bayesian Machine full architecture

In the previous sections, in Figure 3.6 and 3.7, we briefly showed the principle of the Bayesian

Machine architecture. It simply consists of a generating stochastic bit-stream proportional

within each likelihood and multiplying it with the neighbor’s one. Thus, by propagating the

probability product, we obtain at the end of the row the naive Bayesian inference. The digital

part of a cell is therefore very simple, it is simply a random number generator, an "AND" gate,

and control signals for the 8x8 bits memory array.
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Figure 3.19: (a) Details of the basic likelihood cell which is repeated 4x4 times to make the com-
plete system. (b) Layout of the cell with wires all around that allow the connections
between the different arrays.

The architecture we have designed physically follows these principles, with slight differ-

ences: instead of having one random number generator per cell, we use one random number

generator per column, i.e. each cell in the same column will receive the same random number

to compare to. The implementation of such a method is not optimal from a data movement

perspective, since the randomly generated numbers will be made far away from the compar-

ison cell. However, this method greatly simplifies the design because these random number

generators need to receive a seed, i.e. an initial value at the start. Having only one random
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number generator per column is therefore a way to simplify this initialization. This basic like-

lihood is very simple but receives a lot of input signals.

Details of the basic cell are shown in Figure 3.19 (a) and its associated layout in (b). The

complete design consists of 4x4 times the basic cell, plus two fully digital blocks. The overall

system is presented in Figure 3.20. It is composed of a module called "complex_decoder_top"

which is used both to manage the inputs and outputs of the circuit and to generate the random

bits using LFSRs. Another digital module called "complex_decoder_left" is simpler, and it is only

used to manage the row signals of the memory array. The architecture of the complete system,

therefore, appears in the form of a matrix of repeated memory arrays.

This handmade design is not optimal in terms of the used area. Nevertheless, we have been

able to make a design with a maximum release on constraints, even if the circuit can be slower

than a fully automated design, normally, it should work with low energy consumption.

Figure 3.20: Complete design of a 4x4 array of the Bayesian Machine, composed of memory ar-
ray of 8x8bits. Input/Output are connected to buffers (orange) then go through the
complex_decoder_top in purple and complex_decoder_left that control the whole
system. On top left, (in red) is presented input pins for the different voltages used
to control the devices programming.

The major advantage of our design is that in addition to being able to perform the Bayesian

inference operation, we designed it so that it can also read every bit stored in memory. The

outputs of the system allow reading one bit in a row line. Such test capability is critical when
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working with emerging technologies, as it can be important to make experiments on the pro-

gramming conditions of the devices (see Chapter 4).

To verify and prepare the testing, we wrote a behavioural model of our system in HDL (Sys-

temVerilog). The principle is as follows. We will program each bit of the matrix sequentially

by applying the right control signals (address & instructions) and programming commands on

WL, SL, BL, and BLEN as shown in Figure 3.14 (BL is used to select which device of the pair will

be selected and BLEN the applied signal).

Once each device has been programmed and then checked, the inference can be made. To

do this we initialize the LFSRs by programming bit by bit the values of the seeds. Once it is done

the system is ready to work for inference. The output is in the form of 4 bit-streams.

Each memory array has 8 sense amplifiers, so when reading, 8 bits are read simultaneously.

The specificity of the system is that the address on a column is the same for each of the memory

arrays. Therefore, when reading the probability, we will be able to update the likelihood on a

whole column of the system, which will change the posterior distribution accordingly. The step

of addressing the columns is therefore done very quickly since it is a matter of addressing one

address per column. This means that in the inference phase, the response of the sensors can

be directly modified and the response of the system is determined accordingly.

3.6.5 Final Design and small array test structures

Our system will be tested with probe-cards featuring 25 pads. Therefore, to test the design we

have 25 inputs/outputs including supply voltages and ground. We have optimized our system

to work with this relatively small number of pads. The first design to be tested (Design 3) is the

simplest design: it is simply the basic memory array with a few control signals. This design is

detailed in Figure 3.21, with all corresponding pads on the layout and architectural description

of the system with a correspondence on the layout.

This design consists mainly of 4 decoders, which allow addressing the different RRAM com-

ponents and the programming control signals CBL, CBLEN, CWL, and CSL. The read signal di-

rectly controls the volatile stage for programming, if the read control signal is at logic state 1,

the operations of the XNOR in memory can be carried out whereas if it is at 0 it isolates the

memory array from the sense-amplifier. The bi ti n signal is the input signal of the logic data

stage XNOR. A clock and an 8 bits register are used to read the output signal.

All programming is therefore done by external software that controls the addressing and

programming signals. This design will allow both to prepare the test of the complete system,

but also to test the technology. It also allows us to optimize RRAM programming conditions

and is the first thing to be tested before testing more complex designs.

The layout of all our designs is shown in Figure 3.22, both designs 1 and 2 are very similar to

design 3: they also feature a single 8x8 memory matrix, to which we added a little more digital

complexity. Design 4 corresponds to the complete system of the 4x4 Bayesian Machine.
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Figure 3.21: (a) Schematic of the implemented design, the decoders are used to address each
device independently with control signal CBL, CBLEN, CWL, and CSL. A clocked
register is used to store the value read by the sense amplifier and is directly con-
nected to the output PADs, read is used to isolate the sense from the programming
step and bi ti n is the input of the XNOR operation. (b) The layout of the design
where the different logic blocks are associated with their corresponding area.

Design 1 is made of an LFSR that allows verifying its operation for the complete design but

also to estimate the difference in energy consumption between a system where the LFSR is

quite far from the different memory arrays and a design where this random number generator

is very close to the useful data.

Design 2, on the other hand, is a design that has the digital popcount operation that sums

the output bits of the XNOR operation. This design is a basic element of a Binarized Neural

Network which will be described in the next Chapter 4.

3.7 Conclusion

The design that we have implemented using RRAM technologies is relatively simple, as it fea-

tures only 1024 bits of RRAM. Nevertheless, it is a first basic structure that could be scaled up

to a much larger scale if the tests prove to be conclusive. We hope that by testing this chip, we
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will obtain significant energy results. This work has also allowed us to set up a design flow for

future implementations.

D
esign

 1

Design 2

D
es

ig
n

 3

Design 4

Figure 3.22: Final Layout, each design has is corresponding PADS, 25 for each, they will be
tested independently. All designs have a special interest, but design 3 is mainly
a control test design for all the others. Designs 1 and 2 are complementary designs
that allow to check some digital functions and design 4 is the most interesting de-
sign implementing the Bayesian Machine.

For the design of this chip, we have worked on innovative paradigms: in-memory-computing,

stochastic computing... It is not certain from an algorithmic point of view that each of our de-

sign choices are the best options. We are convinced of the interest of in-memory computing

but we should remember that some of our signals in the implementation are not local, many

signals travel a long distance to reach their final destination. This is the case for memory ad-
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dressing signals but it is a relatively not very frequent signal, the random numbers generated

are a real problem, they are propagated over a whole column and require a lot of wires.

It would be preferable, in an approach that would gather memory and computation, to

have random number generators within each cell. The reason we did not do it is that the seed

of the LFSRs is difficult to address. By using random number generators with memory compo-

nents [213–215], we could do without seed programming and we would have TRNGs instead of

periodic random number generators.

A more fundamental problem is the clock signal, it is the most important signal in digital

circuits, but our design seems to only need this clock very superficially. By using the asyn-

chronous paradigm [28], we could implement the same circuit but reduce the circuit connec-

tivity and therefore reduce the power consumption.

The stochastic approach is really interesting when we look at the complexity of the digital

circuits needed to do operations. However, when we designed our system we quickly realized

that the logic circuits are not dominant in terms of area. Moreover, stochastic implementations

are relatively imprecise and timing dilution is a big challenge. An alternate road could be to do

approximate computing using logarithmic probability coding rather than floating-point cod-

ing, which makes product operations very simple: they become fixed point additions which are

very simple, low power, and surface consuming. An implementation of such a system could be

very interesting to compare the advantages and drawbacks of stochastic computation against

a more accurate coding scheme.



Chapter 4

Digital Biologically Plausible

Implementation of Binarized Neural

Networks With Differential Hafnium

Oxide Resistive Memory Arrays

I think the brain is essentially a computer and

consciousness is like a computer program. It will

cease to run when the computer is turned off.

Theoretically, it could be re-created on a neural

network, but that would be very difficult, as it

would require all one’s memories.

Stephen HAWKING
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“THE BRAIN performs intelligent tasks with extremely low energy consumption.

This work, published as [225, 226], and reproduced here, takes inspiration

from two strategies used by the brain to achieve this energy efficiency: the absence

of separation between computing and memory functions, and the reliance on low

precision computation. The emergence of resistive memory technologies indeed pro-

vides an opportunity to co-integrate tightly logic and memory in hardware. In par-

allel, the recently proposed concept of Binarized Neural Network, where multiplica-

tions are replaced by exclusive NOR (XNOR) logic gates, offers a way to implement

artificial intelligence using very low precision computation. We therefore propose a

strategy to implement low energy Binarized Neural Networks, while retaining en-

ergy benefits from digital electronics. We design, fabricate and test a memory array,

including periphery and sensing circuits, optimized for this in-memory comput-

ing scheme. Our circuit employs hafnium oxide resistive memory integrated in the

back end of line of a 130 nanometer CMOS process, in a two transistors - two re-

sistors cell, which allows performing the exclusive NOR operations of the neural

network directly within the sense amplifiers. We show, based on extensive elec-

trical measurements, that our design allows reducing the amount of bit errors on

the synaptic weights, without the use of formal error correcting codes. We design

a whole system using this memory array. We show on standard machine learning

tasks (MNIST, CIFAR-10, ImageNet and an ECG task) that the system has an inher-

ent resilience to bit errors. We evidence that its energy consumption is attractive

compared to more standard approaches, and that it can use the memory devices

in regimes where they exhibit particularly low programming energy and high en-

durance. However, such neural networks are generally not entirely binarized: their

first layer remains with fixed point input. This appears to be a challenge for low-

energy hardware implementation. For this reason, in this chapter, we also propose

a stochastic computing version of Binarized Neural Networks, where the inputs are

also binarized. Simulations on the example of the Fashion-MNIST and CIFAR-10

datasets show that such networks can approach the performance of conventional

Binarized Neural Networks. We conclude the work by discussing how it associates

biologically-plausible ideas with more traditional digital electronics concepts. ”
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AS PRESENTED in Chapter 1, through deep learning, artificial intelligence has made tremen-

dous achievements in recent years. Its energy consumption on graphics or central pro-

cessing units (GPUs and CPUs) remains, however, a considerable challenge, limiting its use at

the edge and raising the question of the sustainability of large scale artificial intelligence-based

services. Artificial intelligence algorithms indeed require large amounts of memory access,

which consume most of the energy compared to actual arithmetic operations [227]. Brains,

by contrast, manage intelligent tasks with highly reduced energy usage by colocating neurons –

which implement most of the arithmetic – and synapses – which are believed to store long term

memory –. In Chapter 1, we have seen that, in the literature, researchers imitate this strategy

and design non-von Neumann systems where logic and memory are merged [228–231], espe-

cially with the advent of novel nanotechnology-based non-volatile memories [124, 228, 232–

236].

Moreover, in brains, most of the computation is done in a low precision analog fashion

within the neurons [237, 238], resulting in asynchronous spikes as an output, which is there-

fore binary. Therefore, in this Chapter, we also explored a second idea for cutting the energy

consumption of artificial intelligence, which is to design systems that operate with low preci-

sion computation.

In Chapter 1, we presented how neural network computation can be done using analog

electronics: weight/neuron multiplication can be performed out of Ohm’s law, and addition

can be natively implemented with Kirchoff’s current law [124, 125, 232, 233, 239, 240]. But a

challenge of this implementation is that it requires to be associated with relatively heavy analog

or mixed-signal CMOS circuitry such as an operational amplifier or Analog to Digital Convert-

ers, resulting in significant area and energy overhead.

In parallel, the novel class of – Binarized Neural Networks (or the closely related XNOR-

NETs) [179, 241] – that we presented in Chapter 2 have limited memory requirements, and

also rely on highly simplified arithmetics –multiplications are replaced by one-bit exclusive

NOR (XNOR) operations–. Despite this extremely low precision, Binarized Neural Network can

achieve near state of the art performance on vision tasks [179, 241, 242], and are therefore ex-

tremely attractive for realizing inference hardware.

Moreover, the binary nature of neurons – which is reminiscent of biological neurons spikes

– also endows them with biological plausibility: they can indeed be seen as a simplification of

spiking neural networks.

Great efforts have been devoted to developing hardware implementations of Binarized Neu-

ral Networks. Using nanodevices, one natural intuition would be to adopt the same strategy

proposed for conventional neural networks presented in Chapter 2, where arithmetic is per-

formed in an analog fashion using Kirchoff’s law [228, 243]. However, Binarized Neural Net-

works are very digital in nature and are multiplication-less. These networks can therefore pro-

vide an opportunity to benefit at the same time from bioinspired ideas and from the achieve-

ments of Moore’s law and digital electronics. Here we propose a fully digital implementation of
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binarized neural networks incorporating CMOS and nanodevices, and implementing the bio-

logical concepts of tight memory and logic integration, as well as low precision computing. As

memory nanodevices, we use hafnium oxide-based resistive random access memory (OxRAM),

a compact and fast non-volatile memory cell fully compatible with the CMOS process [244].

However, one significant challenge to implement a digital system with memory nanode-

vices is their inherent variability [245, 246], which causes bit errors. Traditional memory ap-

plications employ multiple error correcting codes (ECCs) to solve this issue. ECC decoding

circuits have a large area and high energy consumption [247], and add extra time to data access

due to syndrome computation and comparison. Moreover, the arithmetic operations of error

syndrome computation are actually more complicated than those of a Binarized Neural Net-

work. This solution is difficult to implement in a context where memory and logic are tightly

integrated especially when part of the computation is performed during sensing. It is one of the

main reason for which the state of the art of RRAM for in-memory computing does not correct

errors and is not compatible with technologies with errors [248, 249].

In this chapter, we introduce our solution. My main contribution of this work was on the

algorithmic part concerning the implementation of neural networks with a study of their in-

trinsic resilience to error, and the design at the system level of a neural network chip using

non-volatile memory. On the other hand, Jean-Michel Portal was in charge of the design of the

test chip composed of the differential oxide-based resistive memory array, including all periph-

eral and sensing circuitry. E. N. and E.V. managed the fabrication of the die at CEA-Leti. The

intensive test of the chip was performed by Marc Bocquet.
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4.1 Differential Memory Array for In-Memory Comput-

ing

The memory cell used in this chapter, relies on hafnium oxide (HfO2) oxide-based Resistive

Random Access Memory (OxRAM). The main strengths and weakness of RRAM technology

were mentioned in Chapter 2. The stack of the device is composed of a HfO2 layer and a ti-

tanium layer. Both layers have a thickness of ten nanometers, and they grow between two

titanium nitride (TiN) electrodes. Our devices are embedded within the back-end-of-line of

a commercial 130 nanometer CMOS logic process (Figure 4.1(a)), allowing tight integration of

logic and non volatile memory [244]. The devices are integrated on top of the fourth (copper)

metallic layer.

Figure 4.1: (a) Scanning Electron Microscopy image of the back-end-of-line of the CMOS pro-
cess integrating an OxRAM device. (b) Photograph and (c) simplified schematic of
the one kilobit in-memory computing-targeted memory array characterized in this
work.

Hafnium oxide OxRAMs are known to provide non-volatile memories compatible with mod-

ern CMOS process, and only involve foundry-friendly materials and process steps.

After a one-time forming process, such devices can switch between low resistance and high

resistance states (LRS and HRS) by applying positive or negative electrical pulses respectively.

Our work could be reproduced with other types of memories. NOR flash cells, which are

readily available in commercial process could be used, and their potential for neuromorphic

inference has been proven [250]. However, they suffer from high programming voltages (higher



98 CHAPTER 4: HARDWARE IMPLEMENTATION OF BINARIZED NEURAL NETWORKS

than ten volts) requiring charge pumps, limited endurance, and they are not scalable to the

most advanced technology nodes [251]. Emerging memories such as phase change memory or

spin torque magnetoresitive memory could also be used using the strategies presented in this

Chapter. These technologies do not require a forming process and they can bring enhanced

reliability with regards to OxRAMs, but come with an increased process cost [252].

Conventionally, OxRAMs are organized in a “One Transistor - One Resistor” structure (1T1R),

where each nanodevice is associated with one access transistor [252]. The LRS and HRS are

used to mean the zero and one logic values, or inversely. The read operation is then achieved

by comparing the electrical resistance of the nanodevice to a reference value intermediate be-

tween typical values of resistances in HRS and LRS. Unfortunately, due to device variability,

OxRAMs are prone to bit errors: the HRS value can become lower than the reference resistance,

and the LRS value can be higher than the reference resistance. The device variability includes

both device-to-device mismatch, as well as the fact that within the same device, the precise

value of HRS and LRS resistance changes at each programming cycle [253].

Figure 4.2: (a) Schematic of the precharge sense amplifier used in this work to read 2T2R mem-
ory cells. (b) Schematic of the precharge sense amplifier augmented with a XNOR
logic operation.

To limit the amount of bit errors, in this work, we fabricated a memory array with a “Two

Transistors - Two Resistors” structure (2T2R), where each bit of information is stored in a pair

of 1T1R structures. A photograph of the die is presented in Figure 4.1(b) and its simplified

schematic in Figure 4.1(c). Information is stored in a differential fashion: the pair LRS/HRS

means logic value zero, while the pair HRS/LRS means logic value one. In this situation, read-

out is performed by comparing the resistance values of the two devices. We therefore expect bit

errors to be less frequent, as a bit error only occurs if a device programmed in LRS is more resis-
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tive than its complementary device programmed in HRS. This concept of 2T2R memory arrays

has already been proposed, but its benefit in terms of bit error rate has never been demon-

strated until this work [254, 255].

The programming of devices in our array is made sequentially, i.e. on a device-by-device

basis. The first time that the memory array is used, all devices are “formed”. To form the device

of row i and column j , the bit line BL j , connected to the bottom electrode of the memory de-

vice, is set to ground, and the word line W Li is set to a voltage chosen to limit the current to

a “compliance value” of 200µA. A voltage ramp is applied to the sense line SLi connected to

the top electrode of the memory device, increasing from 0 to 3.3V at a ramp rate of 1000V /s.

This forming operation is performed only once over the lifetime of the device. To program a

device into its LRS (SET operation), the bit line BL j is set to ground, while the sense line SLi is

set to 2V . The word line W Li is again set to a voltage chosen to limit the current to a compli-

ance value, ranging from 20µA to 200µA, depending on the chosen programming condition.

To program a device into its HRS (RESET operation), a voltage from opposite sign needs to be

applied to the device, and the current compliance is not needed. The sense line SLi is there-

fore set to the ground, while the word line W Li is set to a value of 3.3V , and the bit line BL j to a

“RESET voltage” ranging from 1.5V to 2.5V , depending on the chosen programming condition.

For both SET and RESET operations, programming duration can range from 0.1µs to 100µs.

During programming operations, all bit, select and word lines corresponding to non-selected

devices are grounded, to the exception of the bit line of the complementary device of the se-

lected device: this one is programmed to the same voltage as the one applied to the sense line,

to avoid any disturb effect on the complementary device.

In our fabricated circuit, the readout operation is performed with precharge sense ampli-

fiers (PCSA) [65, 256] (Figure 4.2(a)), the same read circuits as used in chapter 3. These circuits

are highly energy efficient due to their operation in two phases, precharge and discharge, avoid-

ing any direct path between supply voltage and ground. First, the sense signal (SEN) is set to

ground and SL to the supply voltage, which precharges the two selected complementary nan-

odevices as well as the comparing latch at the same voltage. In the second phase, the sense sig-

nal is set to the supply voltage, and the voltages on the complementary devices are discharged

to ground through SL. The branch with the lowest resistance discharges faster, and causes its

associated inverter output to discharge to ground, which latches the complementary inverter

output to the supply voltage. The two output voltages therefore represent the comparison of

the two complementary resistance values. In our test chip, the read time is approximately 10 ns

and is due to the high capacitive load associated with our probe testing setup. Without this

high capacitive load, the switching time would be determined by the time to resolve the initial

metastability of the circuit. This switching time can be as fast as 100ps in a scaled technology

[256].

We fabricated a differential memory with 2048 devices, therefore implementing a kilobit

memory. Each column of complementary nanodevices features a precharge sense amplifier,
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and row and columns are accessed through integrated CMOS digital decoders. The pads of the

dies are not protected for electrostatic discharge, and the dies were tested with commercial 22-

pads probe cards. In all the experiments, voltages are set using a home made printed circuit

board, and pulses voltages are generated using Keysight B1530A pulse generators. In the de-

sign, the precharge sense amplifiers can optionally be deactivated and by-passed, which allows

measuring the nanodevices resistance directly through external precision source monitor units

(Keysight B1517a).

4.2 Design of In-Memory Binarized Neural Network Based

on the Differential Memory Building Block

This work aims at implementing Binarized Neural Networks in hardware already mentionned

in Chapter 2, section 2.2.3. In these neural networks, the synaptic weights, as well as the neu-

ronal states, can take only two values, +1 and −1. The equation to compute is therefore:

A j = sign

(
POPCOUNT

i

(
X NOR

(
W j i , Xi

))−µ j

)
. (4.1)

In this equation,µ j is the so called threshold of the neuron, and it is learned during training.

POPCOUNT is the function that counts the number of ones in a series of bits, and sign is the

sign function.

As explained in the second chapter, the training process of binarized neural networks dif-

fers from conventional neural networks, already presented in Algorithm 1. During training, the

weights assume real weights in addition to the binary weights, which are equal to the sign of

the real weights. Training employs the classical error backpropagation equations, with several

adaptations. The binarized weights are used in the equations of both the forward and the back-

ward passes, but the real weights change as a result of the learning rule [241]. Additionally, as

the activation function of binarized neural networks is the sign function and it is not differen-

tiable, we consider the sign function as the first approximation of the hardtanh function

Hardtanh(x) = Clip(x,−1,1), (4.2)

and we use of the derivative of this function as a replacement for the derivative of the sign

function in the backward pass. This replacement is a key element for training Binarized neu-

ral Network successfully. The clip interval in equation (4.2) is not learned and is chosen to be

between -1 and 1 for all neurons. Using a larger interval would indeed increase vanishing gra-

dient effect, while using a smaller interval would lead to derivatives higher than one, which can

cause exploding gradient effects.

Finally, the Adam optimizer is used to stabilize learning [183]. A technique known as batch-

normalization is employed at each layer of the neural network [174]. Batch-normalization
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shifts and scales the neuronal activations over a batch during the training process. This method

is optionally used in conventional neural networks to accelerate and stabilizing learning. Using

this technique becomes essential when training binarized neural networks to reach high accu-

racies, as it ensures that neuronal activations utilize both +1 and −1 value. At inference time,

batch-normalization is no longer necessary and the threshold learned by this technique can be

used directly as neuronal threshold in equation (4.1).

With this learning technique, binarized neural networks function surprisingly well. They

can achieve near state of the art performance on image recognition tasks such as CIFAR-10 and

ImageNet [242]. After learning, the real weights serve no more purpose and can be discarded.

This makes binarized neural networks exceptional candidates for hardware implementation

of neural network inference. Not only their memory requirements are minimal (one bit per

neuron and synapse), but their arithmetic is also vastly simplified. Multiplication operations of

classical neural network are expensive in terms of area and energy consumption, and they are

replaced by one-bit exclusive NOR (XNOR) operations in eq. 4.1. Additionally, the real sums are

replaced by POPCOUNT operations, which are equivalent to integer sums with a low bit width.

Figure 4.3: (a) Design of an RRAM based fully connected binarized neural network, computing
in the “parallel to sequential” configuration. The system assembles a memory block
surrounded by logic circuits and moves minimal data between the blocks. The ar-
chitecture is presented with 32 rows and 32 columns of basic cells (b-c) that behaves
as a neuron if the input is sequential, or each column behaves as a neuron if the in-
put is parallel. In each basic cell, a kilobit memory block (i.e., n = 32) is used to store
the weights and a smaller memory block is used to stored the threshold to compute
the neurons output.

It is possible to implement ASIC Binarized Neural Networks with solely CMOS [121, 257].

However, a more optimal implementation can rely on emerging non-volatile memories, and

associate logic and memory as closely as possible. This approach can provide non volatile
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neural networks, and eliminate the von Neumann bottleneck entirely: the nanodevices can

implement the synaptic weights, while the arithmetic can be done in CMOS. In the Chapter 2,

we have seen that the literature proposes the use of emerging memories as synapses relying on

analog electronics with an ingenious technique to perform the multiplications and additions:

the multiplications are done with Ohm’s law, and the addition with Kirchoff current law [124,

243]. This analog approach can be transposed directly to binarized neural networks [228, 258–

260]. However, binarized neural networks are inherently digital objects that rely, as previously

remarked, on simple logic operation: XNOR operations and low bit-width sums. Therefore,

here, we investigate their implementation with purely digital circuitry. This concept has also

recently appeared in [261, 262]. We are the first one to explore binarized neural network with

measurements on a physical memory array, that includes the effect of bit errors.

A first realization is that the XNOR operations can be realized directly within the sense am-

plifiers. For this, we follow the pioneering works of [256], which shows that precharge sense

amplifier can be enriched with any logic operation. In our case, we can add four additional

transistors in the discharge branches of a precharge sense amplifier (Figure 4.2(b)). These tran-

sistors can prevent the discharge and allow implementing the XNOR operation between input

voltage X and the value stored in the complementary OxRAM devices in a single operation.

Based on the basic memory array with PCSAs enriched with XNOR, we designed the whole

system implementing a Binarized Neural Network. The overall architecture is presented in Fig-

ure 4.3 (a). It is inspired by the purely CMOS architecture proposed in [121], adapted to the

constrains of OxRAM. The design is made of the repetition of basic cells organized in a matrix

of N by M cells. These basic cells presented in Figure 4.3 (b-c) incorporate a n ×n OxRAM

memory block with XNOR-enriched PCSAs, POPCOUNT logic and adds the threshold values µ

in a memory array. The signed bit of the difference between the popcount value saved in the

register and µ gave the activation value. The whole system, which aims at computing the ac-

tivation of neurons (equation (4.1)), features a degree of reconfigurability to adapt to different

neural network topologies: it can be used either in “parallel to sequential” or in a “sequential

to parallel” configuration.

The parallel to sequential configuration can deal with layers with up to n×N input neurons,

and up to n×M output neurons. In this situation, at each clock cycle, the system computes the

activations of M output neurons in parallel. At each clock cycle, each basic-cell reads an entire

row of its OxRAM memory array, while perforning the XNOR operation with input neuron val-

ues. The results are used to compute the POPCOUNT operation over a subset of the indices i in

equation (4.1), using fully digital five bits counters embedded within the cell. Additional logic,

called “popcount tree”and only activated in this configuration, computes the full POPCOUNT

value operation over a column by successively adding the five bits-wide partial POPCOUNT val-

ues. The activation value of the neuron is obtained by subtracting the complete POPCOUNT

value at the bottom of the column with a threshold value, stored in a separate memory array;

the signed bit of the result gives the activation value. At the next clock cycle, the next rows in the
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OxRAM memory arrays are selected, and the activations of the next M neurons are computed.

The sequential to parallel configuration, by contrast, can be chosen to deal with a neural

network layer with up to n2 inputs neurons, and up to N M output neurons. In this config-

uration, each basic cell of the system computes the activation of one neuron A j . The input

neurons Xi are presented sequentially, by subsets of n inputs. At each clock cycle, the digital

circuitry therefore computes only a part of equation (4.1). The partial POPCOUNT is looped to

the same cell to compute the whole POPCOUNT sequentially After the presentations of all in-

puts, the threshold is subtracted, the binary activation is extracted and equation (4.1) has been

entirely computed.

This whole system was designed using synthesizable SystemVerilog. The memory blocks

are described in behavioral SystemVerilog. We synthesized the system using the 130 nanometer

design kit used for fabrication, as well as using the design kit of an advanced commercial 28 nm

process for scaling projection.

All simulations reported in the section 4.5 were performed using the Cadence Incisive sim-

ulators. The estimates for system-level energy consumption were obtained using the Cadence

Encounter tool. We used Value Change Dumps (VCD) files extracted from simulations of prac-

tical tasks so that the obtained energy values reflect the operation of the system realistically.
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4.3 Differential Memory Allows Memory Operation at Re-

duced Bit Error Rate
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Figure 4.4: (a) Distribution of the LRS and the HRS of the OxRAM devices in an array pro-
grammed with a checkerboard pattern. RESET voltage of 2.5V , SET current of 55µA
and programming time of 1µs. (b-c) Proportion of 1 values read by the onchip
precharge sense amplifier, over 100 whole-array programming of a memory array,
for the two complementary checkerboards configuration. (d) Rate of programming
failure indicated of the precharge sense amplifier circuits as a function of the ratio
between HRS and LRS resistance (measured by a sense measure unit), in the same
configuration as (a-c). (e-f) Proportion of 1 values read by the onchip precharge
sense amplifier, over 100 whole-array programming of a memory array, for the last
layer of a binarized neural network trained on MNIST (details in body text)

This section first presents the electrical characterization results of the differential OxRAM ar-

rays. We program the array with checkerboard-type data, alternating zero and one bits, using
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programming times of one microsecond. For programming devices in HRS (RESET operation),

the access transistor is fully opened and a reset voltage of 2.5V is used.

For programming devices in LRS (SET operation), the gate voltage of the access transistor is

chosen to ensure a compliance current of 55µA. Figure 4.4(a) shows the statistical distribution

of the LRS and HRS of the cells, based on 100 programmings of the full array. This graph is

using a standard representation in the memory field, where the y axis is expressed as number

of standard deviations of the distribution [246]. The Figure superimposes distributions of left

(BL) and right (BLb) columns of the array, and no significant difference is seen between BL and

BLb devices.

The LRS and HRS distributions are clearly separate but overlap at a value of three standard

deviations, which makes bit errors possible. If a 1T1R structure was used, a bit error rate of

0.012 (1.2%) would be seen with this distribution. By contrast, at the output of the precharge

sense amplifiers, a bit error rate of 0.002 (0.2%) is seen, giving a first suggestion of the benefits

of the 2T2R approach. Figure 4.4(b) and 4.4(c) show the mean error (using the 2T2R configu-

ration) on the whole array, for the two types of checkerboards. We see that all devices can be

programmed in HRS and LRS. A few devices have increased bit error rate. This graph highlights

the existence of both cycle to cycle and device to device variability, and the absence of “dead”

cells.
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Figure 4.5: Number of errors for different programming conditions, as measured by the
precharge sense amplifier, for 2T2R configuration on a kilobit memory array.The
“< 1” label means that no errors were detected. The error bars present the minimum
and maximum number of detected errors, over five repetitions of the experiments.

We now validate in detail the functionality of the precharge sense amplifiers. The precise

resistance of devices is first measured by deactivating the precharge sense amplifiers, and us-

ing the external source monitor units. Then, the precharge sense amplifiers are reactivated

and a sense operation is performed. Figure 4.4(d) plots the mean measurement of the sense

amplifiers as a function of the ratio between the two resistances that are being compared, su-
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perimposed with the ideal behavior of a sense amplifier. The sense amplifiers show excellent

functionality, but can make mistakes if the two resistances differ by less than a factor five. Fi-

nally, Figs. 4.4(e-f) repeat the experiments of 4.4(b-c) in a more realistic situation and on a

different die. We trained a memory array 100 times with weights corresponding to the last layer

of a binarized neural network trained on the MNIST task of handwritten digit recognition. As in

the checkerboard case, no dead cell is seen, and a similar degree of cycle-to-cycle and device-

to-device variation is seen.

Figure 4.6: (a-b) Distribution of the resistance values, (c-d) mean resistance value and (e) mean
bit error rate over 10 million cycles measured by the precharge sense amplifier, in
the 2T2R configuration, as function of the number of cycles that a device has been
programmed. RESET voltage of 2.5V , SET current of 200µA and programming time
of 1µs.
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Figure 4.7: (a-b) Mean resistance value of the BL and BLb device over 10 thousand cycles for
measurements of a device pair over 5×1010 cycles. RESET voltage of 1.5V , SET cur-
rent of 200µA and programming time of 1µs.

The programming rates are strongly dependent on the programming conditions. Figure 4.5
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shows the mean number of incorrect bits on a whole array for various combination of pro-

gramming times (from 0.1µs to 100µs), RESET voltage (between 1.5 and 2.5 Volts), and SET

compliance current (between 28 and 200µA). We observe that the bit error rate depends exten-

sively on these three programming parameters, the SET compliance current having the most

significant impact.

In Figure 4.6, we look more precisely at the effects of cycle to cycle device variability and

device aging. A device and its complementary device were programmed 700 million cycles.

Figs. 4.6(a) and 4.6(b) show the distribution of LRS and HRS of the device under test and its

complementary device, after different number of cycles ranging from the first one to the last

one.

We can observe that when the devices are cycled, LRS and HRS distributions become less

separated and start to overlap at lower number of standard deviations. This translates directly

on the mean resistance of the devices in HRS and LRS (Figs. 4.6(c) and 4.6(d)), which become

closer when the device ages. More importantly, the aging process impacts the device bit error

rate (Figs. 4.6(e)): the bit error rate of the device and its complementary device increase of

several orders of magnitudes over the lifetime of the device. The same effect is seen on the bit

error rate resulting from the precharge sense amplifier (2T2R), but it remains at much lower

level: while the 1T1R bit error rate goes above 10−3 after a few million cycles, the 2T2R remains

below this value over the 700 million cycles. This result highlights that the concept of cyclability

depends on the acceptable bit error rate, and that the cyclability at constant bit error rate can

be considerably extended when using the 2T2R structure. It should also be highlighted that

the cyclability depends tremendously on the programming condition. Figure 4.7(a-b)) shows

endurance measurements with a reset voltage of 1.5V (all other programming conditions are

identical to Figure 4.6(a-e)). We can see that the device experiences no degradation along more

than ten billion cycles. Over that time, the 2T2R bit error rates remains below 10−4.

We now aim at quantifying and benchmarking more precisely the benefits of the 2T2R

structure. We performed extensive characterization of bit error rates on the memory array in

various regimes. Figure 4.8(a) presents different experiments where the 2T2R bit error rate is

plotted as a function of the bit error rate that would be obtained using using a single device pro-

grammed in the same conditions. The different points are obtained by varying the compliance

current Ic during SET operations, and the graph associates two type of experiments:

• The points marked as “Low Ic” are obtained using whole array measurement where de-

vices are programmed with low SET compliance current to ensure high error rate. Each

device in the memory array is programmed once (following the checkerboard configu-

ration), and all synaptic weights are read using the on-chip precharge sense amplifiers.

The plotted bit error rate is the proportion of weights for which the read weight differs

from the weight value targeted by the programming operation.

• The points marked as “High Ic” are obtained by measurements on a single device pair.
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A single 2T2R structure in the array is programmed ten million times by alternating pro-

gramming to +1 and −1 values. The value programmed in the 2T2R structure is read us-

ing an on-chip precharge sense amplifier after each programming operation. The plotted

bit error rate is the proportion of read operation for which the read weight differs from

the targeted value.

We can see that the 2T2R bit error rate is always lower than the 1T1R one. The difference is

larger for lower bit error rate, and reaches four order of magnitudes for a 2T2R bit error rate of

10−8. The black line presents calculation where the precharge sense amplifier is supposed to

be ideal (i.e. to follow the idealized dotted characteristics of Figure 4.4(c)).

Figure 4.8: Experimental bit error rate of the 2T2R array, measured by the precharge sense am-
plifiers, as a function of the bit error rate obtained individual (1T1R) RRAM devices
in the same programming conditions. The detailed methodology for obtaining this
graph is presented in the body text. Bit error rate obtained with (b) Single Error Cor-
recting (SEC) and (c) Single Error Correcting Double Error Detection (SECDED) ECC
as a function of the error rate on the individual devices.

To interpret the results of the 2T2R approach with more perspective, we benchmark them

with standard error correcting codes. Figs. 4.8(b) and 4.8(c) show the benefits of two codes,

using the same plotting format as Figs. 4.8(a): a Single Error Correction (SEC) and a Single

Error Correction Double Error Detection (SECDED) code, presented with different degrees of

redundancy. These simple codes, formally known as Hamming and extended Hamming codes,

are widely used in the memory field. Interestingly, we see that the benefit of these codes are

very similar to the benefit of our 2T2R approach with ideal sense amplifier, at equivalent mem-

ory redundancy (e.g. SECDED(8,4)), although our approach uses no decoding circuit and the

equivalent of error correction is performed directly within the sense amplifier. By contrast,

ECCs can also reduce bit errors, to a lesser extent, using less redundancy, but the required de-

coding circuits utilize hundreds to thousands of logic gates [247]. In a context where logic and
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memory are tightly integrated, these decoding circuits would need to be repeated many times,

and as their logic is much more complicated than the one of binarized neural networks, they

would be the dominant source of computation and energy consumption. ECC circuits are also

incompatible with the idea of integrating XNOR operations within the sense amplifiers, and

cause important read latency.

4.4 Do All Errors Need to Be Corrected?

4.4.1 Impact of Errors on Binarized neural Network performances

Based on the results of the electrical measurements, and before discussing the whole system, it

is important to know the OxRAM bit error rate levels that can be tolerated for applications. To

answer this question, we performed simulations of binarized neural networks on four different

tasks:

• MNIST handwritten digit classification [162], the canonical task of machine learning. We

use a fully connected neural network with two 1024-neurons hidden layers.

• The CIFAR-10 image recognition task [263], which consists in recognizing 32×32 color

images spread between ten categories of vehicles and animals. We use a deep convo-

lutional network with six convolutional layers using kernels of 3×3 and a stride of one,

followed by three fully connected layers.

• The ImageNet recognition task, which consists in recognizing 224×224 color images out

of 1000 classes. This task is considerably more difficult than MNIST and CIFAR-10. We

use the historic AlexNet deep convolutional neural network [163].

• A medical task involving the analysis of electrocardiography (ECG) signals: automatic

detection of electrode misplacement. This binary classification challenge takes as input

the ECG signals of twelve electrodes. The experimental trial data are sampled at 250H z

and have a duration of three seconds each. To solve this task, we employ a convolutional

neural network composed of five convolutional layers and two fully-connected layers.

The convolutional kernel (sliding window) sizes are decreasing from 13 to 5 in each sub-

sequent layer. Each convolutional layer produce 64 filters detecting different features of

the signal.

Fully binarized neural networks were trained on these tasks on Nvidia Tesla GPUs using

Python and the PyTorch deep learning framework. Once the neural networks were trained, we

ran them on the datasets validation sets, artificially introducing errors in the neural networks

weights (meaning some +1 weights are replaced by −1 weights, and reciprocally). Using this

technique, we can emulate the impact of OxRAM bit errors. Figure 4.9 shows the resulting



110 CHAPTER 4: HARDWARE IMPLEMENTATION OF BINARIZED NEURAL NETWORKS

validation accuracy as a function of the introduced bit error rate for the four considered tasks.

In the case of ImageNet, both the Top-1 (proportion of validation images where the right label

is the top choice of the neural network) and the Top-5 (proportion of validation images where

the right label is within the top five choices of the neural network).

Figure 4.9: Recognition rate on the validation dataset of the fully connected neural network for
MNIST, the convolutional neural network for CIFAR10, and AlexNet for ImageNet
(Top-5 and Top-1) accuracies and the ECG analysis task, as a function of the bit error
rate over the weights during inference. Each experiment was repeated five times, the
mean recognition rate is presented. Error bars represent one standard deviation.

On the three vision task (MNIST, CIFAR-10, ImageNet), we see that extremely high levels

of bit errors can be tolerated: up to a bit error rate of 10−4, the network performs as well as

with no errors. Minimal performance reduction starts to be seen with bit error rates of 10−3

(the Top-5 accuracy on ImageNet is degraded from 69.7% to 69.5%). At bit error rates of 0.01,

the performance reduction becomes significant. The reduction is more substantial for harder

tasks: MNIST accuracy is only degraded from 98.3% to 98.1%, CIFAR-10 accuracy is degraded

from 87.5% to 86.9%, while ImageNet Top-5 accuracy is degraded from 69.7% to 67.9%.

The ECG tasks also shows extremely high bit error tolerance, but bit errors have an effect

more rapidly than in the vision tasks. At a bit error rate of 10−3, the validation accuracy is

reduced from 82.1% to 78.7%, and at a bit error rate of 0.01 to 68.4%. This difference between

vision and ECG tasks probably originates in the fact that ECG signals carry a lot less redundant

information than images. Nevertheless, we see that even for ECG tasks high bit errors rates can

be accepted with regards to the standards of conventional digital electronics.
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4.4.2 Reducing Error Impact using adapted learning

The already high robustness seen in Fig. 4.9 can be further enhanced if an appropriate train-

ing method is used. These results were published in [264] For this purpose, we retrain the

BNNs, but this time including bit errors during the training process, and not only during the

testing phase. This way, the training process takes into account the fact that the BNN will be

implemented on error-prone RRAM-based systems. The devices subject to errors are chosen

independently in training and testing phase: the training phase assumes that the RRAM-based

systems will have errors, but does not know which devices will be affected.

More precisely, to train the neural network, we added errors at each iteration. The forward-

pass is computed with errors on weights, e.g. 10% are changed from the original weights W to

Wer r or . During the backward-pass, we reuse the same value of weights Wer r or instead of W to

backpropagate through the whole depth of the neural network.

Figure 4.10: Recognition rate on the test dataset of the convolutional neural network for CI-
FAR10 as a function of the bit error rate over the weights during inference. Navy
curve: no weight error considered during training. Other curves: the adapted train-
ing was used, each curve corresponding to a different bit error rate on the weights
during training.

Fig. 4.10 shows the results of the same study on the CIFAR10 dataset. Using this procedure,

extremely high amount of bit errors can be tolerated. Bit error rates up to 4×10−2 do not affect

the recognition rate. For a bit error rate of 0.15, the recognition rate is 81.5%, instead of 62.2%

if errors had not been taken into account during training (navy line).

When using RRAM devices, using the adapted training procedure therefore allows use weak

programming conditions despite its high bit error rate. This can allow us to benefit from its low

programming energy, cell area and high endurance.
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4.5 Projection at the System Level

4.5.1 Impact of In-Memory Computation

We now use all the chapter results to discuss the potentials of our approach. Based on our ASIC

design, using the energy evaluation technique described in section 4.2, we find that our system

would consume 25 n J to recognize one handwritten digit, using a fully connected neural net-

works with two hidden layers of 1024 neurons. This is considerably less than processor based

options. For example, [265] analyses the energy consumption of inference on CPUs and GPUs:

operating a fully connected neural network with two hidden layers of 1000 neurons requires 7

to 100 millijoules on a low power CPU (from Nvidia Tegra K1 or Qualcomm Snapdragon 800

systems on chip), and 1.3 millijoules on a low power GPU (Nvidia Tegra K1).

These results are not surprising due to the considerable overhead for accessing memory

in modern computers. For example, in Chapter 1 we showed that accessing data in a static

RAM cache consumes around fifty times more energy than the integer addition of this data.

If the data is stored in the external dynamic RAM, the ratio is increased to more than 3000.

Binarized Neural Networks require minimal arithmetic: no multiplication, and only integer

addition with a low bit width. When operating a Binarized Neural Networks on a CPU or GPU,

the almost entirely of the energy is used to move data, and the inherent topology of the neural

network is not exploited to reduce data movement. Switching to in-memory or near-memory

computing approaches has therefore the potential to reduce energy consumption drastically

for such tasks. This is especially true as, in inference hardware, synaptic weights are static and

can be programmed to memory only once if the circuit does not need to change function.

4.5.2 Impact of Binarization

We now look specifically to the benefits of relying on Binarized Neural Networks rather than

real-valued digital ones. Binarized Neural Networks feature considerably simpler architec-

ture than conventional neural network, but also require an increased number of neurons and

synapses to achieve equivalent accuracy. It is therefore essential to confront the binarized and

real-values approaches.

Most digital ASIC implementations of neural networks inference function with eight-bit

fixed point arithmetic, the most famous example being the tensor processing units developed

by Google [116]. At this precision, no degradation is usually seen for inference with regards to

32 and 64 bits floating point arithmetic.

To investigate the benefits of Binarized Neural Networks, Figure 4.11 looks at the energy

consumption for inference over a single MNIST digits. We consider two architectures: a neural

network with a single hidden layer (Figure 4.11(a)) and another one with two hidden layers (Fig-

ure 4.11(b)), and we vary the number of hidden neurons. Figs. 4.11(a) and Figs. 4.11(b) plot on

the x axis the estimated energy consumption of a Binarized Neural Networks using our archi-
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tecture based on the flow presented in the Methods section. It also plots the energy required for

the arithmetic operations (sum and product) of a eight bit fixed point regular neural network,

neglecting the overhead that is considered for the Binarized Neural Network. For both types of

networks, the y axis shows the resulting accuracy on the MNIST task. We see that at equivalent

precision, the Binarized Neural Network always consume less energy than the arithmetic oper-

ations of the real-valued one. It is remarkable that the energy benefit depends significantly on

the targeted accuracy, and should therefore be investigated in a case by case basis. The highest

energy benefits, a little less than a factor ten, are seen at lower targeted precision.

Figure 4.11: Dark blue circles: MNIST validation accuracy as a function of the inference energy
of our Binarized Neural Network hardware design. Light blue square: same, as
function of the energy used for arithmetic operation in a real valued neural net-
works employing eight bits fixed point arithmetic. The different points are ob-
tained by varying the number of hidden neurons in (a) a one hidden layer neural
network and (b) a two hidden layers neural network. Insets: number of synapses
in each situations.

Binarized Neural Networks have other benefits with regards to real valued digital networks:

if the weights are stored in RRAM, the programming energy is reduced due to the lower memory

requirements of Binarized Neural Networks. The area of the overall circuit is also expected to

be reduced due to the absence of multipliers, which are high area circuit.

4.5.3 Comparison with Analog Approaches

As mentioned in the introduction, a widely studied approach for implementing neural net-

works with RRAM is to rely on an analog electronics strategy, where Ohm’s law is exploited

for implementing multiplications, and Kirchoff’s current law for implementing additions [124,

232, 233, 239, 240]. The digital approach presented in this Chapter cannot be straightforwardly

compared to the analog approach: the detailed performance of the analog approach depends

tremendously on its implementation details, device specifics and size of the neural networks.
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Nevertheless, several points can be raised.

First, the programming of the devices is much simpler in our approach than in the analog

one: one only needs to program a device and its complementary one in LRS and HRS, which

can be achieved by two programming pulses. It is not necessary to verify the programming op-

eration, as the neural network has inherent bit error tolerance. Programming RRAM for analog

operation is a more challenging task, and usually requires a sequence of multiple pulses [232],

which leads to higher programming energy and device aging.

For the neural network operation, the analog approach and ours function differently. Our

approach reads synaptic values using the sense amplifier, which is a highly energy efficient and

fast circuit that can operate at hundreds of picoseconds in advanced CMOS nodes [256]. This

sense amplifier inherently produces the multiplication operation, and then the addition needs

to be performed using low bit-width digital integer addition circuit. The ensemble of a read

operation and the corresponding addition typically consumes fourteen femtojoules in our es-

timates in advanced node. In the analog approach, the read operation is performed by applying

a voltage pulse, and inherently produces the multiplication though Ohm’s law, but also the ad-

dition though Kirchoff law. This approach is attractive, but in the other hand requires the use

of CMOS analog overhead circuitry such as operational amplifier, which can bring high energy

and area overhead. Which approach is the most energy efficient between ours and the analog

one will probably depend tremendously on memory size, application and targeted accuracy.

Another advantage of the digital approach is that it is much simpler to design, test and ver-

ify, as it relies on all standard VLSI design tools. On the other hand, an advantage of the analog

approach is that it may, for small memory size, function without access transistors, resulting in

higher memory densities [232].

4.5.4 Impact in Terms of Programming Energy and Device Aging

A last comment is that the bit error tolerance of binarized neural networks can have consid-

erable benefits at the system level. Table 4.1 summarizes the measured properties of RRAM

cells in different programming conditions, chosen out of the ones presented in Figure 4.5. We

consider only the conditions with bit error rates below 10−3 (i.e. corresponding to a “< 1” data

point in Figure 4.5), as this constrains makes them appropriate for use for all tasks considered

in section 4.4. The “strong” programming conditions are the ones presented in Figure 4.6. They

feature low bit error rate before aging, but high programming energy. The other two columns

correspond to two optimized choices. The conditions optimized for programming energy are

the conditions of Figure 4.5 with bit error rates below 10−3 and the lowest programming energy.

They use a lower RESET voltage (2.0V ) than the strong conditions, and shorter programming

time (100ns). The cyclability of the device – defined as the number of cycles a cell can be pro-

grammed while retaining a bit error rate below 10−3 – remains comparable to the strong pro-

gramming conditions. The conditions optimized for endurance are by contrast the conditions

of Figure 4.5 with bit error rate below 10−3 and the highest cyclability: more than 1010 cycles,
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as already evidenced in Figure 4.7. These conditions use a low RESET voltage 1.5V but require

a programming time of 1µs.

Programming condition Strong (Figure 6)
Optimized
endurance (Figure
7)

Optimized pro-
gramming energy

SET compliance current 200µA 200µA 200µA

RESET voltage 2.5V 1.5V 2V

Programming time 1µs 1µs 100ns

2T2R Bit error rate (before
aging)

< 10−7 < 10−4 < 10−5

Programming energy 200 ∼ 400 p J 150 ∼ 400 p J 20 ∼ 30 p J

(SET/RESET)

Cyclability (number of cy-
cles at BER < 10−3)

> 108 > 1010 > 108

Table 4.1: RRAM Properties with Different Programming Conditions

4.6 Stochastic Computing for Binarized Neural Networks

4.6.1 Background

Binarized Neural Networks are not entirely binarized: the first layer input is usually coded as

a fixed point real number. This fact is not a significant issue for operating Binarized neural

Networks on graphical processor units (GPUs) [241], as they feature extensive arithmetic units.

Research aimed at implementing binarized neural network on Field Programmable Gate Ar-

rays (FPGAs) [266] has also not specifically investigated the question of the non-binarized first

layer: these works usually use the Digital Signal Processors (DSPs) of the FPGA to process the

associated operations. However, in an application-specific integrated circuits (ASIC) imple-

mentation, the non-binarization of the first layer implies that this layer needs a specific design,

which is more energy consuming and uses more area than the design used for the purely binary

layers.

For this reason, in this section, we introduce a stochastic computing implementation of

Binarized Neural Networks, which allows implementing them in an entirely binarized fashion.

The network functions by presenting several stochastically binarized versions of the images

to the Binarized neural Network, in a way reminiscent to the historic concept of stochastic

computing [267]. Our work focuses on the inference part of Binarized Neural Networks.

To evaluate the stochastic computing approach, we use the Fashion-MNIST dataset, which

has the same format as MNIST, but presents grayscale images of fashion items [268], and con-

stitutes a harder task. The canonical MNIST dataset would not be appropriate for this study,

as it consists in images that are mostly black and white. As in the MNIST dataset, each image
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in Fashion-MNIST has 28x28 pixels, and can be classified within ten classes. The dataset con-

tains 60,000 training examples, 10,000 test examples. Conventional Binarized neural Networks

(non-binarized first layer and no use of stochastic computing), perform very well on this task.

With a fully connected Binarized neural Network with first layer coded with eight bit fixed point

real numbers, with two hidden layers of 1024 neurons each and dropout, a classification accu-

racy of 90% can be obtained after 300 epochs. This result is comparable with the test accuracy

of 91% obtained by a conventional real-valued neural network with the same architecture.

4.6.2 Stochastic Computing with Regular Training Procedure

A first approach to design a stochastic computing Binarized neural Network is to reuse the

synaptic weights of a conventional Binarized neural Network, trained with grayscale picture.

However, in the inference phase, we approximate the computation of the first layer by using

stochastic images presentation instead of grayscale images.

The quality of the results depends on the number of image presentation T . In Figure 4.12,

the navy blue curve shows the network test error as a function of T . We can see that after 100

stochastic image presentation, the accuracy is nearly equivalent to the use of grayscale images.

With eight image presentation, the test accuracy is reduced to 88% instead of 90.1%. With a

single presentation, the test accuracy is only 76%.

(a) (b)

Figure 4.12: Accuracy on the (a) Fashion MINIST and (b) CIFAR-10 classification task as func-
tion of the number of stochastic image presented for the two training methods.
Navy blue curve: training of the neural network with grayscale images. Light blue
curve: training with presentation of stochastic binarized images. Dashed black
line: accuracy when training with a black and white image (i.e. pixels with a value
greater than 0.5 are white and pixels that are smaller are black). Dashed red line:
best accuracy when the binarized neural network is trained with grayscale images.
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4.6.3 Adapted Training Procedure

We now try a second strategy, where we train the neural network with binarized stochastic im-

age presentation instead of grayscale images. To do this, during training, we use the conven-

tional Binarized neural Network training technique, but instead of using the normal grayscale

Fashion-MNIST images, we use stochastic binarized ones, with the same number of presenta-

tion T as will be used during inference. The inference technique then remains identical to the

the regular one. In Figure 4.12, in cyan color, we plotted the test error rate as a function of the

number of presentation of the same image with this scheme. We see that the test accuracy is

equivalent to the one obtained with grayscale images for high numbers of image presentation.

On the other hand, with few stochastic presentation (one to five), the adapted input training

technique allows reaching a quite high accuracy. If a single presentation is used at inference

time, the network test accuracy is 86%. This test accuracy is equivalent to the one obtained

when training a Binarized neural Network with non-stochastic black and white versions of the

Fashion-MNIST dataset (dashed black line in Figure 4.12) (a). If three image presentation are

used, the network test accuracy increases to 88.7%.

We also apply this strategy to the more advanced CIFAR-10 dataset, presented in Figure 4.12)

(b). Each RGB channel pixel presents a value of zero or one. This value is chosen randomly with

a probability equal to the RGB value of the corresponding pixel of the image.

These results show that when using the stochastic computing version of Binarized neural

Network, the adapted training procedure should be used.

4.6.4 Energy and Area, comparison using stochastic computing

To study the hardware implementation of Binarized Neural Networks, we projected the imple-

mentation with modern technology available today. Therefore, we designed a system using the

design kit of a commercial 28 nanometer technology and MRAM technology [45] [46] [55] in-

stead of RRAM1. MRAM are mature technology and already available for commercial produc-

tion whereas RRAM are still in the research phase. Digital circuits were described in synthe-

sizable SystemVerilog description. MRAM memory arrays are modeled in a behavioral fashion,

and their characteristics (area, energy consumption) are inspired by [269]. The system was syn-

thesized to estimate its area and energy consumption. For energy consumption, we employed

Value Change Dumps extracted from a Fashion-MNIST inference task, and estimated it using

the Cadence Encounter tool.

Figure 4.13(a) shows the area of a basic cell of our architecture already presented in Figure

4.3(b-c), but now using MRAM instead of RRAM.

In the case of binary input (one operating bit), and in situations where the input is coded

in Fixed Point representation (two, four and eight operating bit), as is required in the first layer

of a conventional Binarized Neural Network.

1This study was performed before having access to the RRAM technology, it is also a reason explaining this choice.
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Figure 4.13: (a) Area of the basic cell (Figure 4.3 (b-c)) of our ASIC architecture, implemented
in a 28 nm CMOS technology, as function of the number of operating bit for a fixed
point binary architecture. One-bit corresponds to our stochastic fully binarized
architecture. (b) Corresponding energy consumption, per clock cycle.

This Figure separates the area used by registers, logic and MRAM. A cell with binary input

uses six times less area than a cell designed for eight bit input. Interestingly, the difference is

mostly due to the popcount circuits, which need more depth when the input is non-binary.

Similarly, as seen in Figure 4.13(b), a cell with binary input uses 4.5 times less energy per cycle

than the corresponding one with eight bits input. Again, the difference is mostly due to the

popcount circuits.

Using our architecture, a full Binarized with eight bit first layer occupies 1.95 mm2, while

the Binarized with stochastic binarized first layer occupies 0.73 mm2, a 62% saving in area.

These area values were extracted from a system designed for a T value of eight.

Figure 4.14 plots the energy consumption for recognizing an image with our ASIC archi-

tecture, as a function of the number of presented stochastic images. This is compared with the

energy cost of the same architecture, but using a non stochastic first layer, with eight bit input.

We see that the system with stochastic first layer is more energy efficient than the system with

non-binary first layer if less than eight presentation are used.

The previous curves do not include the cost of random bit generation. If we use a simple

eight-bit Linear Feedback Shift Register (LFSR) pseudo random number generator, the added

energy is 0.52n J/c ycle, and the added area is 48,000 µm2. Both are therefore negligible. It

has also been shown that Spin Torque MRAM technology can be adapted to provide very low

energy true random numbers [213]. If such a technology was used, based on the numbers of

[213], the energy cost of random bit generation would be 0.125n J/c ycle, and the area much

smaller than LFSR. The energy cost of random number generation is therefore negligible with

regards to the consumption of the system seen in Figure 4.14.
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Figure 4.14: Energy consumption of the full Fashion-MNIST classifier systems, for the classi-
fication of one image. Light blue: stochastic fully binarized binary architecture.
Navy blue: Conventional BNN with non binary (8 bit fixed point) first layers. The
neural networks have two layers with 1024 neurons each. The light blue area indi-
cate the regime where the non-binary first layer is more energy efficient thant the
fully binarized system.

These energy numbers are very attractive with regards to non binarized implementations at

equivalent recognition rate. Non binarized neural networks require less neurons and synapses

than BNNs to achieve equivalent recognition rate. However, in an ASIC, the non binarized neu-

ral network requires energy-hungry 8-bits multiplications and addition (0.3 p J and 0.04 p J per

operation in our 28 nm technology). Taking into account only these arithmetic operations, the

energy consumption is 220 n J for recognizing a Fashion-MNIST image with the same accuracy

as the stochastic BNN with three image presentations. This stochastic BNN requires only 90 n J

(Fig. 4.14), taking into account the whole system.

4.6.5 Partially Binarized Convolutional Neural Network (only Bina-

rized Classifier)

In a study performed with Bogdan Penkovsky, we consider a variation of this scheme, a partially

binarized convolutional neural network presented in [270]. Fully connected layers of neural

networks are particularly adapted for in-memory Binarized implementation [228, 271], as these

layers involve large quantities of memories. Convolutional layers are less memory intensive,

and thus benefit less from binarization, while requiring increasing the number of channels

when binarized [241]. In a hardware implementation, it can therefore be attractive to binarize

only the classifier (fully connected) layers. In that case, the input of the classifier is real, and

is processed with the stochastic BNN approach. This is also of special interest as the first fully

connected layer in a convolutional neural network is usually the layer that involves the highest
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number of additions, and can therefore benefit significantly in a hardware to be implemented

with the stochastic approach.

We consider a neural network with the same architecture as the fully binarized one. Without

the stochastic approach, this neural network has the same CIFAR-10 recognition rate than the

fully binarized one (90%). If the classifier weights are retrained with the stochastic binarized

inputs to the classifier, the stochastic results are very impressive. Even with a single image

presentation T , the network approaches the performance of the non stochastic network. The

stochastic BNN approach therefore appears especially effective in this situation.

Task Real-weight NN BNN Bin. Classifier
EEG 88% [272] 84.6% (1×) | 86% (11×) 87% (1×)
ECG 96.3% 92.1% (1×) | 94.9% (7×) 95.9% (1×)
ImageNet Top-1 70.6% [273] 54.4% (4×) [274] 70% (1×)
ImageNet Top-5 89.5% [273] 77.5% (4×) [274] 89.1% (1×)

Table 4.2: Accuracy comparison of CNN with real weights, binarized CNN (BNN), and CNN
where only the fully-connected part was binarized. In parentheses, number of fil-
ter augmentations.

To extend this study we were able to study other neural network architectures on other

datasets and verify these performances, on electrocardiography (ECG) and Electroencephalog-

raphy (EEG) and ImageNet data-set using MobileNet architecture [274]. In the work published

in [270], we investigate the memory-accuracy trade-off when binarizing whole network and

binarizing solely the classifier part, as well as the impact in overhead memory due to the in-

crease in size of binarized neural networks compared to traditional neural networks. For both

ECG and EEG models, most of the weights reside in fully-connected classifier layers, and the

strategy of binarizing only the classifier has therefore high memory benefits.

4.7 Conclusion

This work proposes an architecture for implementing binarized neural networks with RRAMs,

and incorporates several biological-plausible ideas:

• Fully co-locating logic memory,

• Relying only on low precision computation (through the Binarized Neural Network con-

cept),

• Avoiding multiplication all-together,

• The acceptance of some errors without formal error correction.

• The stochastic computing approach is attractive in terms of area occupancy and energy

efficiency, if a relatively small number of presentation is used (T < 8).

At the same time, our approach relies on conventional microelectronics ideas that are non-

biological in nature:
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• Relying on fixed point arithmetic to compute sums, whereas brains use analog compu-

tation,

• The use of sense amplifiers circuits, which are not brain-inspired ,

• And the use of a differential structure to reduce errors, a traditional electrical engineering

strategy.

Based on these ideas, we designed, fabricated and tested extensively a memory structure

with its peripheral circuitry, and designed and simulated a full digital system based on this

memory structure. Our results show that this structure allows implementing neural networks

without the use of Error Correcting Codes, which are usually used with emerging memories.

Our approach also features very attractive properties in terms of energy consumption, and can

allow using RRAM devices in “weak” programming regime where they have low programming

energy and outstanding endurance. These results highlight that although in-memory com-

puting cannot efficiently rely on Error Correcting Codes, it can still function without stringent

requirements on device variability if a differential memory architecture is chosen.

When working on bioinspiration, drawing the line between bio-plausibility and embrac-

ing the differences between the nanodevices of the brain and electronic devices is always a

challenging question. In this project, we highlight that digital electronics can be enriched by

biologically-plausible ideas. When working with nanodevices, it can be beneficial to incorpo-

rate device physics questions into the design, and not to necessarily target the level of deter-

minism that we have been accustomed to by CMOS.

This works opens multiple prospects. On the device front, it could be possible to develop

more integrated 2T2R structures to increase the density of the memories. The concept of this

work could also be adapted to other kind of emerging memories, such as phase change memo-

ries and spin torque magnetoresistive memories. At the system level, we are now in a position

to fabricate larger systems, and to investigate the extension of our concept to more varied forms

of neural network architecture such as convolutional and recurrent ones. In the case of convo-

lutional networks, a dilemma appears between carrying the in-memory computing approach

to its fullest, by replicating physically convolutional kernels, or implementing some sequential

computation to minimize resources, as works have started to evaluate already. These consider-

ations open the way for truly low energy artificial intelligence for both servers and embedded

systems.





Chapter 5

Exploiting Stochastic Devices Behaviour

for Brain Inspired Computing

We need to group the neurons [...] that do a lot of

internal computation and then output a compact

result.

Geoffrey HINTON

“FABRICATING efficient hardware computing devices leveraging stochasticity could

be an alternative use for emerging nanodevices. In neuroscience, population

coding theory demonstrates that neural assemblies can achieve fault-tolerant infor-

mation processing. Mapped to nanoelectronics, this strategy could allow for reli-

able computing with scaled-down, noisy, imperfect devices. Doing so requires that

the population components form a set of basis functions in terms of their response

functions to inputs, offering a physical substrate for computing. Such a population

can be implemented with CMOS technology, but the corresponding circuits have

high area or energy requirements. Here, we show that nanoscale magnetic tunnel

junctions can instead be assembled to meet these requirements. We demonstrate

experimentally that a population of nine junctions can implement a basis set of

functions, providing the data to achieve, for example, the generation of cursive let-

ters. We design hybrid magnetic-CMOS systems based on interlinked populations

of junctions and show that they can learn to realize non-linear variability-resilient

transformations with a low imprint area and low power. ”
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THE CHALLENGES to reduce the area and increase the energy efficiency of microelectronic

circuits are increasing dramatically. The size of transistors is reaching the nanoscale,

and decreasing their dimensions further, or using emerging nanometer-scale devices, leads to

stochastic behaviors, large device-to-device variability, and failures [230, 275].

Our current computing schemes are not able to deal well with noisy, variable, and faulty

components. Entire processor chips are rejected based on single component failure. However,

we have seen in the previous chapter that Binarized Neural Networks can be extremely resilient

to errors. But we simply verified that these components had no impact on the performance of

our neural networks. In this chapter, we are going further by directly exploiting their seemingly

bad characteristics to make calculations.

To introduce this chapter, we will present a very innovative work from the literature that

uses stochastic components as synapses to implement a learning algorithm particularly adapted

to the intrinsic non-volatile nature of RRAM devices [276].

Then we will present a work done in collaboration with Alice Mizrahi at CNRS-Thales,

which involves the use of the stochastic nature of nanodevices to implement the neurons of

a neuroscience-inspired model. My main role in this collaboration was the design of the hard-

ware implementation of the system as well as its energy evaluation.

5.1 Exploiting stochastic device behaviours for Markov Chain

Monte Carlo Sampling

Operating at the thermal limit, our brain seems to have found an optimal tradeoff between

low-energy consumption and computational reliability [237]. It carries out amazingly complex

computations even though its components, neurons, are very noisy [277, 278].

In Chapter 3, the use of device stochastic behaviour has been shown to be very appealing

for Bayesian computation as a random number generator. From a similar perspective, the use

of stochastic devices can be exploited as synapse in a neural network. In our work presented in

Chapter 4, the stochastic behaviour of synapses is mainly a concern for binarized neural net-

works. However, in the literature some neural networks are exploiting the stochastic behaviour

of synapses: they are called Bayesian Neural Network [279].

A first interesting work exploiting the complex behaviour of components and more partic-

ularly MRAM to build a Bayesian network was proposed in [280]. The idea is to use magnetic

tunnel junctions as a tunable random number generator to emulate a Bayesian network. One

of the main advantages is that they use stochastic units called "p-bits" which can be intercon-

nected and which are invertible. It is called invertible because in the "direct" mode, the input is

fixed and the network gives the correct output response and in the "inverted" mode, the output

is fixed and the network fluctuates according to all the input possibilities, consistent with the

output [281]. The use of this type of approach seems to be an interesting idea to explore for
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sampling in Bayesian Neural Networks. As a consequence, the use of innovative memory de-

vices is a key element for in-memory computing, not only because it allows values to be stored

in memory for energy-efficient calculation, but also because their behaviour can be exploited

for calculation.

(a)

(b)

(c)

(d)

(e)

Figure 5.1: Using RRAM devices variability for Markov Chain Monte Carlo Sampling, taken from
[276]. (a) Distribution of conductance for one specific device in the high conduc-
tance state when applying multiple SET programming pulses. (b) Memory array
used to store the multiple parameters SET, each row correspond to one specific set
of parameter, a counter is used to add a coefficient for the row that corresponds to
the number of the rejection by the Metropolis-Hastings algorithm. (c) The posterior
distribution for a multiple set of parameters, the initial parameter set is the redpoint,
each accepted model corresponds to one green point and the corresponding level
lines show the probability value. (d) Input vectors are presented as two categories,
red point or blue point, each dashed black line corresponds to one set of parame-
ters. (e) The probabilistic boundary of the posterior distribution, the value of the
probability to belong to the red category is written on each line of the boundary.

One of the interesting features of new memory devices is that they can be integrated into

the core of the CMOS and use little energy, but this almost forgets that the main feature of these
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memory components is their non-volatility. How to exploit the non-volatility of a component

and its intrinsic physical behaviour? Indeed, if we use its physical behaviour, most of the time

the non-volatile characteristic is no longer of interest. In my opinion, one of the most inter-

esting works exploiting both the physical behavior of memory devices and their non-volatility

for implementing synapses is "In-situ learning harnessing intrinsic resistive memory variability

through Markov Chain Monte Carlo Sampling" [276].

The idea is to use the stochastic behaviour of RRAM devices when applying SET pulses:

when SET pulses are applied to the devices, for each device, a Gaussian conductance distri-

bution with a well-defined mean µ and standard deviation σ in conductance is obtained (see

Figure 5.1 (a)). As in a more classical approach, the conductance of an RRAM pair is used to

code a parameter of the model [123] and the Kirchhoff laws to perform the dot product be-

tween the input vector and the parameters vector. Here, the system is presented for a canonical

problem with two parameters, but in the paper, the study is also done with the evaluations on

a malignant breast tissue recognition task and a reinforcement learning task.

As its name suggests, the idea of the paper is to perform a sampling of the parameters by

the Metropolis-Hastings Monte-Carlo method. To do it, a set of parameters must be selected

by the algorithm and then saved to obtain the full posterior distribution. In the paper, the

authors saved for the canonical example 2048 sets of parameters as a memory array of size

2048x2 (Figure 5.1 (b)).

The learning is done in the following way: initially, the first row is selected and a first ran-

dom sampling of the parameters is performed, then the model is evaluated. Thereafter, the

next row is selected and sampling is again performed until the Metropolis-Hastings algorithm

accepts the set of parameters. The system then proceeds the next row, and the one after it, un-

til it has gone through the whole matrix. At each row, a counter will determine the number of

rejections of samples in order to assign a coefficient to each line parameters. The presence of

this coefficient is due to the generation of the new parameter set that is not done directly from

the previous parameter set. Once the training is finished, a whole set of parameters is used to

evaluate the full posterior distribution of the model. Figure 5.1 (c) shows the posterior distri-

bution after training of all parameter sets stored in the memory array. Figure 5.1 (d) shows the

data used to evaluate the model, it is a classification task where we are trying to separate the

blue dots from the red dots. Each black dotted line corresponds to a different set of parameters

while Figure 5.1 (e) shows the probabilistic boundary of the posterior distribution.

Gathering a set of parameters to perform Bayesian inference with memory technologies is a

very innovative idea that could also be used for Bayesian neural networks. The technology used

here is an RRAM technology, but this approach could be valid for a whole range of technologies.

Unfortunately, regarding learning, the Metropolis-Hastings MCMC algorithm does not seem to

be effective for neural networks with a very large number of parameters [282].

Moreover, we have seen in the section 2.1 that when we perform training with gradient

descent, during the second training stage – that is, once the neural network starts to forget the
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useless features– the exploration of the parameters is almost done following random-walks,

indeed the mean of the gradients is very small compared to the standard deviation. Thus, it is

possible to exploit these random-walks by saving several sets of parameters of the same model

that have changed during this last phase. Then operating on a combination of these different

sets of parameters can increase performance during inference.

5.2 Neural-like computing with populations of superpara-

magnetic basis functions

Figure 5.2: Neural and superparamagnetic tuning curves for population coding. (a) Schematic
representing information reconstruction from a population of neurons. Each neu-
ron (color dots) senses a specific range of stimuli (orientations). The represented
function H is computed as a weighted sum of the rates of each neuron. (b) Sketch
of a typical neuron firing pattern. The emitted voltage is plotted versus time. (c)
Tuning curve of a neuron: spiking rate versus direction of the observed target, re-
produced with data from [283]. Experiment (symbols) and Gaussian fit (solid lines)
are shown. (d) Schematic of a superparamagnetic tunnel junction. (e) Polynomial
function constructed from a weighted sum of the tuning curves of the population
of neurons. (f) Energy landscape of the magnetic device. (g)–(i) Experimental mea-
surements of the resistance versus time of a superparamagnetic tunnel junction for
injected currents of 50µA (g), -50µA (h), and −10µA (i). (j) Rate of the superpara-
magnetic tunnel junction versus current. The experimental results (symbols) and
analytical fit (solid line) are shown

The stochastic behavior of devices can not only be exploited for synapses, but also for the be-

havior of neurons. It is interesting to observe the important similarity between the behaviour
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of a neuron in the brain and those of a specific type of nanodevices that we will study in this

section. This work was published in [284] and is reproduced in the following sections of this

chapter.

A key reason for the resilience of the brain seems to be redundancy. Measurements of neu-

ronal activity in diverse parts of the brain such as the retina [285], the midbrain [286], the motor

cortex [287] or the visual cortex [288] indicate that these parts encode and process information

by populations of neurons rather than by single neurons. This principle of population coding

and its benefits for the brain have been investigated in numerous theoretical works [89, 90]. In

electronics, mimicking population coding has been proposed and shown to be effective in cir-

cuits using conventional transistors, but leads to circuits with high area costs due to the large

size of the artificial neurons [289, 290]. It is therefore attractive to take inspiration from this

strategy and compute with populations of low-area nanoscale electronic devices, even when

they exhibit stochastic or variable behaviors. This approach has recently inspired pioneering

studies of the dynamical response of ensembles of emerging nanodevices [291, 292]. However,

showing that actual computations can be realized using the physics of population of nanode-

vices remains an open challenge.

Neuroscience studies indicate that, for this purpose, elementary devices mimicking neu-

rons should have certain properties [89]. In particular, a neuron that is part of a population

should possess a tuning curve: on average, it should spike more frequently for a narrow range

of input values, to which it is tuned [293, 294]. Figure 5.2 (c) shows data from [283] correspond-

ing to spike rate measurements of a single neuron in vivo. The corresponding tuning curve

has a bell-shape dependence on the drift direction of the input visual stimulus. The measured

neuron spikes more frequently when the drift direction is around -20°: it is in charge of repre-

senting the input over a narrow range of angles. In general, all neurons in a given population

have similar tuning curves of rate versus amplitude. However, the tuning curves are shifted

and distributed in order to cover the whole range of input amplitudes. The ensemble of tun-

ing curves in the population then forms a basis set of functions (bottom panel of Fig. 5.2 (e)),

similar to the sines and cosines of a Fourier expansion [89, 295].

In the present work, we show that a nanodevice –the superparamagnetic tunnel junction–

naturally implements neurons for population coding, and that it can be exploited for design-

ing systems that can compute and learn. The behavior of the nanodevice directly provides

a tuning curve and resembles a spiking neuron. Without the use of explicit analog-to-digital

converters it transforms an analog input into a naturally digital output that can then be pro-

cessed by energy-efficient digital circuits, resulting in a low area and low energy system. The

spiking nature of the neurons gives a stochastic character to the system, which appears a key

element of its energy efficiency and a source of robustness.

After having studied and modeled the tuning curve provided by superparamagnetic tunnel

junctions, we demonstrate experimentally that they can be assembled to implement a physi-

cal basis set of expansion functions and carry out computations. We simulate larger systems
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composed of several populations of superparamagnetic junctions and show that they can be

combined in order to learn complex non-linear transformations, and that the resulting sys-

tems are particularly resilient. We propose and evaluate an implementation associating the

nanodevices with conventional CMOS (complementary metal oxide semiconductor) circuits,

highlighting the low area and energy consumption potential of the approach.

5.3 Tuning curve of a superparamagnetic tunnel junction

Magnetic tunnel junctions, schematized in Fig. 5.2 (d), are devices composed of two ferro-

magnets: one with a fixed magnetization and the other with a free magnetization that can be

either parallel (P) or antiparallel (AP) to the fixed magnet. Large junctions are stable and used

today as non-volatile memory cells in spin-torque magneto-resistive random access memo-

ries (ST-MRAM) [296]. However, when the junctions are scaled down, the energy barrier con-

fining the magnetization in the P or AP states (∆E in Fig. 5.2(f)) is reduced. For very small

lateral dimensions of the junctions (typically below a few tens of nanometers), thermal fluctu-

ations can destabilize the magnetic configuration, generating sustained stochastic oscillations

between the P and AP states [297–299] (Fig. 5.2 (f)). This phenomenon, called superparam-

agnetism, leads to telegraphic signals of the resistance as a function of time through magneto-

resistive effects. These stochastic junctions have recently attracted interest for novel forms of

computing [298, 300, 301]. Here, we experimentally study superparamagnetic junctions with

a Co27Fe53B20 magnetic switching layer of thickness 1.7nm, and an area of 60x120nm2 Fig-

ure 5.2(g)-(i) shows experimental time traces of a superparamagnetic junction resistance as a

function of time. The thermally induced random resistive switches follow a Poisson process

[297, 299, 302]. This phenomenon presents similarities with the highly stochastic neural firing

illustrated in Fig. 5.2(b), also often modeled as a Poisson random process [298, 299].

We propose to combine the thermally induced resistive switches arising in nanoscale mag-

netic tunnel junctions with spin-torque phenomena to emulate the tuning curves of stochastic

spiking neurons. Indeed, when a direct current is applied across a superparamagnetic tunnel

junction, the escape rates of the Poisson process are modified through spin-transfer torque

(STT) [297, 303]. As observed in Fig. 5.2 (g), a positive current stabilizes the anti-parallel state

while a negative current stabilizes the parallel state (Fig. 5.2 (h)), resulting in reduced switching

rates in both cases compared to the case where I is close to zero (Fig. 5.2 (i)). As a consequence,

the rate of the stochastic oscillator varies with the value of the applied dc current. From such

measurements, we extracted the rate r of the junction at various current values. The result-

ing experimental rate versus current curve r (I ) is shown in Fig. 5.2 (j). With its bell-shape, it

accurately mimics the neural tuning curve schematized in Fig. 5.2 (c). Spin transfer torque the-

ory [299] allows deriving the analytical expression of the rate of a superparamagnetic tunnel

junction as a function of current:
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r (I ) = r0

cosh( ∆E I
kB T Ic

)
(5.1)

In Eq. 5.1, kB T is the thermal energy, I the applied current, and Ic the critical current of the

junction. As shown by the solid line in Fig. 5.2 (j), this equation fits well the experimental result,

with ∆E
kB T ≈ 13, and a critical current Ic of 300µA. The natural rate r0 = ϕ0exp(− ∆E

kB T ) (with an

attempt frequency ϕ0 of 1G H z) is the peak frequency at zero current, of the order of a few

thousand Hertz in the case of the junction of Fig. 5.2 (j). Superparamagnetic tunnel junctions

therefore have a well-defined tuning curve r (I ), which allows them to sense a narrow range

of currents around zero current (here around ±50µA). The shape of the superparamagnetic

tuning curve approximates a Gaussian function, which is favorable for population coding, as

the ensemble of Gaussian functions with all possible peak positions forms a well-known basis

set [89].

5.4 Population coding with superparamagnetic tunnel junc-

tions

Following the basic principles of [89], for our approach, we need to produce a population of

superparamagnetic tunnel junctions that can construct non-linear functions H of its inputs

through a simple weighted sum of the nanodevice non-linear tuning curves ri :

H(θ) =
N∑

i=1
wi ri (θ) (5.2)

Non-linear transformations underlie a wide range of computations such as pattern recog-

nition, decision making or motion generation [295, 304–308]. For example, navigating in a

crowded room requires generating complex trajectories to avoid obstacles. The top panel of

Fig. 5.2 (e) displays an instance of such a trajectory produced through Eq. 5.2 using the basis set

formed by the tuning curves in the bottom panel. These outputs are generated by the ensemble

of the neural responses. Therefore, having a full population rather than a single superparam-

agnetic tunnel junction allows for parallel processing of each neuron, as well as resilience to

failure of the devices. In addition, the population outputs correspond to time averages of the

stochastic neural firing patterns, which make them robust to noise. Good approximations of

these output curves can be obtained quickly and at low energy by averaging the first few ob-

served spikes, whereas more precision can be gained by increasing the measurement length.

To build a population, we need to tune each junction to different ranges of input cur-

rents. An elegant solution for this purpose is to leverage a spintronic effect called spin-orbit

torques [309–311]. However, shifting the tuning curves can also be achieved by applying in-

dividual current biases Ibi as to each junction, so that the effective current Ie f f flowing in a

junction is shifted compared to the common applied current Iapp : Ie f f = Iapp − Ibi as . This



5.4 POPULATION CODING WITH SUPERPARAMAGNETIC TUNNEL JUNCTIONS 131

method has been used in CMOS-only hardware implementations of population coding [289].

Figure 5.3(a) shows the normalized rates r /r 0 of an experimental population of nine junctions

obtained with this method (symbols) and the corresponding fits with Eq. 5.1 (solid lines). We

have chosen the shifts so that the junctions in the population cooperate to sense a large range

of currents between −300 and +300µA. As can be observed in Fig. 5.3(a), the junctions are

not identical due to the polycrystalline nature of the free ferromagnetic layer. This variability

affects both the critical current Ic and the energy barrier ∆E , resulting in the width variations

of the tuning curves in Fig. 5.2(a), but also in the variation of natural rates that for this set of

junctions span from a few Hertz to 70kH z.

Figure 5.3: Representing non-linear functions with superparamagnetic tunnel junctions. (a)
Rates versus current for nine superparamagnetic tunnel junctions with shifted tun-
ing curves. Symbols correspond to experimental data while solid lines are analytical
fits with Eq. 5.1. The switching rate of each junction is normalized by its natural rate
r0. (b) Example of the altimeter sensor. The solid blue line corresponds to the baro-
metric formula, converting an air pressure measurement into the local height. The
black symbols correspond to the experimental approximation of this function gen-
erated with Eq. 5.3, using the basis set data from (a) and performing the weighted
sum with a computer. (c) Six examples of cursive letters (w, i, n, r, u, m) generated
from the experimental junction tuning curves of (a) following the same procedure
as in (b)

Despite this variability, the experimental basis set of nine superparamagnetic tuning curves
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can be used to perform useful computations. We encode the input to process in the current

applied to the junctions. We use the junctions measured output rates ri (I ). Then this data is

used to achieve the transformation to the output function H by performing a weighted sum

through:

H(I ) =
9∑

i=1
wi ri (I ) (5.3)

where the optimal weights in Eq. 5.3 for the desired function H are obtained through matrix

inversion on a computer.

Non-linear transformations of inputs as in Eq. 5.3 are essential in many applications. A

first field of applications is sensors, which generally require converting a measured quantity

into the sought-after information through a complex equation. For instance, a thermometer

will convert the height of a column of liquid into a temperature. Similarly, an altimeter mea-

sures the local air pressure that is then converted into the corresponding height through the

barometric equation shown in solid line in Fig. 5.3 (b). We have used our experimental basis

set to implement this equation. As can be seen in Fig. 5.3 (b), the output reconstructed from the

experimental data using Eq. 5.3 (symbols) reproduces the desired function. Another applica-

tion making substantial use of non-linear transformations is motor control. Indeed, directing

robotic arms, guiding vehicles or moving biological fingers require the generation of complex

trajectories. For instance, we use here our superparamagnetic basis set to create handwriting.

Figure 5.3 (c) shows that we can successfully output six letters, which means that our small

experimental system of nine junctions could potentially guide a robot’s arm to write. These

results constitute the proof of concept of computing with electronic nanodevices through pop-

ulation coding.
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5.5 A computing unit that can learn

We have seen that the benefit of representing a value, such as the current I, by a basis set pop-

ulation is that non-linear transformations on this value, H(I ), can be conducted by operating

only linear operations. However, in order to realize multi-step computations, series of non-

linear transformations are necessary. As a consequence, the result H(I ) of the first transforma-

tion should be represented by a basis set as well, implemented by an output population.

For this purpose, we can take inspiration from biology, where neurons in different popu-

lations are densely connected through synapses which control the strength of the connection.

This configuration has indeed multiple advantages. In particular, the weight values can be

learnt from example data, and the high degree of interconnection provides a high resilience

to noise and variability in the synapses and neurons. In neuroscience models, the rates of an

output population are linked to the input rates through linear weights wi j [90, 301].

r OU T
j =

N∑
i=1

wi r I N
i (5.4)

The encoded value Y can then be determined by counting the switching rates of the output

population: Y is equal to the mean of the values of the stimulus to which the neurons are tuned,

weighted by the spiking rates of the corresponding neurons [89, 305].

Y =
∑N

j=1 I jbi as r OU T
j∑N

j=1 r OU T
j

(5.5)

The error of the system is then the distance between H(I ) and Y .

To evaluate this approach before designing the full system, we perform numerical simula-

tions of transformation learning with two populations of superparamagnetic tunnel junctions.

We choose parameters for the junctions that reflect the experimental values and variability of

their energy barrier and their critical current.

We first focus on an example of a sensory-motor task (illustrated in Fig. 5.4(a)) to explain

our system and demonstrate the transfer of information between two basis sets, implemented

by two different populations. A robot observes an object with a visual sensor and attempts to

grasp it with a gripper. The input population of junctions receives a current I encoding for the

orientation of the object. The output population represents the orientation Y of the gripper.

We want to find the weights wi j allowing for the orientation Y of the gripper to match the

orientation of the object, and show how they can be learned. For this purpose, we follow an

error and trial procedure, similar to the one described in [312]. Originally, the weights are

random. At each trial, the object is presented at a different orientation and the weights are

modified depending on the success of the grasping:

1. If the gripper succeeds—i.e., if its orientation is close enough to the orientation of the

object to be in the catch zone—the weights are unchanged.
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2. If the gripper strikes in the up zone, the synaptic weights connecting the sensor network

to motor junctions which are tuned to orientations above (resp. below) of the gripper are

decreased (resp. increased).

3. If the gripper strikes in the down zone, the opposite is implemented.

Figure 5.4: Learning to transfer information between two interconnected populations. (a)
Schematic of the system and associated learning process. (b) Distance between
the gripper and the object (i.e., grasping error) versus the number of learning steps
(populations of 100 junctions). (c) Distance between the gripper and the object af-
ter 3000 learning steps as a function of the number of junctions in the input pop-
ulation. The output population has 100 junctions. For all figures, each data point
corresponds to the average over 50 trials and the error bar to the associated standard
deviation

The key advantage of this learning rule is its simplicity: there is no need to perform a pre-

cise measurement of the error (here distance between the gripper and the object) as required

by most learning methods in the literature [313] [314]. Note that the proposed system is in-

dependent of this learning rule and that different algorithms could be used to perform more

complex tasks. Figure 5.4 (b) shows that the distance between the object and the gripper is
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progressively decreased through repeated learning steps. After 3000 learning steps, the mean

error is below 2.5% of the range: learning is successful. As can be seen in Fig. 5.4 (c) the grasp-

ing error decreases as the number of junctions in the input population increases. The precision

of the result indeed improves as the population grows, better approximating an ideal, infinite

basis set. Figure 5.4 (c) also demonstrates that transfer of information between populations of

different sizes can be achieved, allowing changes of basis if needed.

The example of the gripper in Fig. 5.4 shows how we can transfer information without

degradation from one population to a different one performing a basis change. Now we show

that our system and our simple learning procedure can also transform information during the

transfer between populations, in other words, realize more complex functions than the identity

of Fig. 5.4. In Fig. 5.5 (a), we illustrate increasingly more complicated transformations: linear

but not identity (double), square, inverse, and sine of the stimulus. Each can be learned with

excellent precision, similar to the identity.

Furthermore, by adding another matrix of synaptic weights and another population of junc-

tions after the output of our system, we can realize transformations in series. An example of

this is shown in Fig. 5.5 (a), as indicated by the label Series, where the square of the sine is

performed.

The system can also be adapted for learning and performing tasks involving several inputs.

A possible solution to process multiple inputs with a population is to combine them in a single

input that can then be presented to the superparamagnetic tunnel junctions, consistently with

the approach recently presented in [315]. Here we propose a different approach where each

input is sent to a different input population, and the rates originating from these separate pop-

ulations are combined into a single neural network. In this way, by using several populations

as inputs and outputs, multi-input multi-output computations, and therefore transformations

in several dimensions can be learned. In particular, we used this approach to learn the conver-

sion of coordinates from polar to Cartesian system. The results corresponding to this task are

labeled 2 inputs in Fig. 5.5 (a).

The excellent precision of these transformations, obtained with junction parameters and

variability extracted from experiments, demonstrates the resilience of our system to variabil-

ity. Additional simulations indicate that variability of the critical current barely affects the sys-

tem. Figure 5.5 (b) shows the distance between the object and the gripper as a function of the

variability on the energy barrier (and thus on the natural rate). The level of variability corre-

sponding to experiments is indicated. We observe that even larger levels of variability can be

tolerated by the system, which is promising for realizing population coding with ultra-small

junctions despite lithographic defects.
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(a) (b)

(c)

Figure 5.5: Evaluation of stochastic population coding with superparamagnetic tunnel junc-
tions. (a) Performance of several transformations, including non-linear. The 2 in-
puts label corresponds to transformation from polar to Cartesian coordinates. The
series label corresponds to two transformations in series implementing the function
si n2(x). (b) Distance to target versus variability of the energy barrier (bottom axis)
and variability of the natural frequency (top axis). The experimental variability is in-
dicated in red. (c) Distance to target for different times of observation during which
switching rates are recorded, leading to different energy dissipated by the junctions.
Longer acquisition time allows better precision of the transformation, but leads to
higher energy consumption. Each population is composed of 100 junctions and
3000 learning steps are used. Each data point corresponds to the average over 50
trials and the error bar to the associated standard deviation

Finally, it should be noted that scaling down the junctions allows decreasing the energy

consumption of a population to tens of picoJoules, as show on Fig. 5.5 (c). Furthermore, as

typical in stochastic computing systems [217], the precision of the system is directly dependent

on the observation time and thus on the consumed energy, allowing choice in a precision-

energy tradeoff.
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5.6 Design of the full system

To evaluate the viability of the approach, we designed a full system associating superparamag-

netic tunnel junctions as input neurons, CMOS circuits, and standard magnetic tunnel junction

used as ST-MRAM to store the synaptic weights wi j . These stable junctions can be fabricated

using the same magnetic stacks as the superparamagnetic junctions (but a different sizing).

The CMOS parts of the circuit were designed using standard integrated circuit design tools and

the design kit of a commercial 28nm CMOS technology. A representation of the system is shown

in Fig. 5.6 (a).
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Figure 5.6: Design of the full system for the gripper task. (a) Schematic illustrating the data path
of the designed system, associating CMOS circuits, superparamagnetic tunnel junc-
tions, and stable magnetic junctions used as MRAM. (FSM finite state machine).
(b) Circuit area occupied by the superparamagnetic tunnel junctions, CMOS, and
MRAM. (c) Energy consumption of the superparamagnetic tunnel junctions, CMOS,
and MRAM required to perform one system operation: running the junctions, com-
puting the output, and adjusting the weight. The system has 128 inputs and 128
outputs
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5.6.1 Methods

The CMOS digital parts of the system were designed with the SystemVerilog description lan-

guage at the register transfer level, and synthesized to the standard cells provided with the

design kit with Cadence RTL Compiler. Overall, the circuits were optimized for low-area and

low-energy consumption, and not for high speed computation. Their area was estimated using

the Cadence Encounter tool. For estimating their energy consumption, value change dumps

files corresponding to the gripper task were generated using Cadence ncsim and the power

consumption was estimated using Cadence Encounter.

Figure 5.7: Circuit for converting the switching events of a superparamagnetic tunnel junction
to a CMOS digital signal. In addition to the superparamagnetic tunnel junction, the
stimulus current is applied to a reference resistor Rr e f , whose resistance is interme-
diate between the parallel and anti-parallel state resistance of the superparamag-
netic tunnel junctions, and at each clock cycle, the voltage at the junction and at
the reference resistor is compared by a low power CMOS comparator. Simple logic
comparing the result of the comparison to the same result at the previous clock cy-
cle allows detecting the junction switching events, which are counted by an eight-bit
digital counter.This design is not able to detect multiple switching occurring during
a single clockcycle. We saw on system-level simulations that this particularity has
no impact on the full application

The superparamagnetic junctions were modeled assuming d = 11nm diameter, a size that

has been demonstrated experimentally [316]. The energy consumption for the detection of

the spikes was based on Cadence Spectre simulation of a simple circuit, presented in Figure

5.7, and based on the stimulus value corresponding to the highest energy consumption. The

stimulus is applied to reference resistors whose resistance is intermediate between the par-
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allel and anti-parallel state resistance of the superparamagnetic tunnel junctions, as well on

the superparamagnetic tunnel junction. At each clock cycle, the voltage at the junction and at

the reference resistor is compared by a low-power CMOS comparator (Figure 5.7). Simple logic

comparing the result of the comparison to the same result at the previous clock cycle allows de-

tecting the junction switching events, which are counted by an eight-bit digital counter. (Each

junction is associated with one counter).

At the end of the counting phase, the system then computes Equation 5.4 in a sequential

manner, controlled by a finite state machine (Figure 5.6 (a)). The synaptic weights are stored

in eight-bit fixed point representation in an ST-MRAM array. Computation is realized in fixed

point using integer addition and multiplication circuits. The ST-MRAM array was modeled us-

ing assumptions in terms of area and energy consumption as expected for a 28nm technology

[317]. ST-MRAM read and write circuits are modeled in a behavioral fashion, using results of

[256] for evaluating their area and energy consumption.

The learning circuit can be activated after the computation phase optionally. Based on the

learning rule described above, computed in fixed point representation, the ST-MRAM array is

reprogrammed. In order to save energy, ST-MRAM cells are read before programming, so that

only bit that actually changed are reprogrammed (a standard technique for resistive memory

[318])

5.6.2 Results

The system features an ensemble of superparamagnetic tunnel junctions, to which the stim-

ulus is applied using the current shift method introduced earlier. But, it is also a possibility

to design the system using a single superparamagnetic junction, and to implement the popu-

lation response through time multiplexing. This approach would allow avoiding the effects of

device variability. However, it would also increase conversion time by the number of input neu-

rons, giving a very low bandwidth to the system. As the superparamagnetic junctions have low

area and the system features a natural resilience to device variability, we propose to physically

implement the population with an actual population of junctions.

Figure 5.6 (b) shows the circuit area occupied by superparamagnetic junctions, CMOS, and

ST-MRAM on chip, for a system with 128 inputs and 128 outputs. The total area is very low

(12,000µm2) showing that the concept is adapted to be used in low-cost intelligent sensor ap-

plications. The area is dominated by the CMOS circuits, while the area occupied by the super-

paramagnetic junctions is negligible.

Figure 5.6 (c) shows the energy consumption to perform the gripper task, for one operation

of the gripper, separating the three phases (observation of the stimulus, computation of Eq. 5.4,

learning), and the three technologies present in the system. The total energy is very low: 23n J

during the learning phase, and 7.4n J when learning is finished.

It is instructive to compare these results with solutions where neurons would have been

implemented with purely CMOS circuits. A natural idea is to replace our junctions and their
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read circuitry by low-power CMOS spiking neurons, such as those of [319], which provides fea-

tures similar to our nanodevices (analog input and spiking digital output). This strategy works

but has high area requirements (higher than 1mm2), and would consume more than 330n J

per operation. Alternative options rely on analog computation, for example exploiting neurons

such as [290]. Such solutions require the use of an explicit analog to digital conversion (ADC),

which actually becomes the dominant source of area and energy consumption. Even extremely

energy efficient ADCs [320] require a total of 20n J/conversion and an area of 0.2mm2. Finally,

a more conventional solution, using a generic processor and not an application-specific inte-

grated circuit would have naturally used order-of-magnitudes more energy.

The low-energy consumption of our system arises from a combination of three major fac-

tors. The superparamagnetic junctions consume a negligible energy (150p J ), and allow avoid-

ing the ADC bottleneck present in other approaches by implementing a form of stochastic ADC

in a particularly efficient manner. The use of a stochastic approach and of integer arithmetic in

the CMOS part of the circuit is particularly appealing in terms of energy consumption. Finally,

associating both CMOS and spintronic technology on-chip limits data transfer-related energy

consumption.

5.7 Discussion

In this work, we show that superparamagnetic tunnel junctions are promising nanodevices

for computing in hardware through population coding. We experimentally demonstrate that

these components intrinsically mimic the tuning curve of neurons through their non-linear

frequency response to input currents. We realize a basis set of expansion functions in hardware

from a small population of junctions, and show how they can encode information and compute

by generating complex functions such as letters. Using a physical model of the superparamag-

netic tuning curves, we demonstrate that combined populations of junctions can learn non-

linear transformations with accuracy, even with substantial device-to-device variability. Our

system acts as a stochastic computing unit that can be cascaded to perform complex tasks. The

design of the full system associating the junctions with CMOS circuits and ST-MRAM shows the

potential of the approach for extremely low-area and low-energy implementation.

Our work reproduces the essence of population coding in neuroscience, with some adap-

tations for implementation with nanoelectronics. In population coding theory, neuronal cor-

relation [90, 321], the meaning of the time [90], as well as decoding techniques [321] are con-

tentious topics. In our system, these aspects were guided by the properties of the nanodevices

and by circuit design principles. The input neurons spike in an uncorrelated fashion, as their

noise originates from basic physics. The time is divided into discrete phases, allowing the use

of counters, and finite state machines in the system. The information is decoded by counting

spikes using simple unsigned digital counters.

It is also important to note that in our system, the junctions act as a form of spiking neurons
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that employ rate coding, similarly to several population coding theories [89, 90]. The spiking

nature of the neurons offers considerable benefits to the full system: it naturally transforms

an analog signal into easy-to-process digital signals. The stochastic nature of the neurons is

one of the keys of the energy efficiency and of the robustness of the system. It also gives the

possibility for the system to provide an approximate or precise answer depending on the time

and energy budget, similarly to stochastic computing [217, 267]. The rest of the system is rate

based, which allows learning tasks in a straightforward manner. Another possibility would have

been to perform the entire operation in the spiking domain, as is common in the neuromor-

phic engineering community [129, 322, 323]. However, learning in the spiking regime remains

a difficult problem today [130], and involves more advanced concepts and overheads [323].

Therefore, our system is designed to take benefits from both the spiking and the rate-coding

approaches.

In summary, our system mixes biological and conventional electronics ideas to reach low-

energy consumption in an approach that might presage the future of bioinspired systems. Our

results therefore open the path to building low energy and robust brain-inspired processing

hardware.





Chapter 6

Are Analog RRAMs required for

Neuromorphic Computing?

There’s no sense in being precise when you don’t

even know what you’re talking about.

–Unsourced quote– John VON NEUMANN

“EXPLOITING the analog properties of RRAM cells is a compelling approach for

Neuromorphic Computing as it increases integration and calculation capa-

bilities. Considering the performances of low precision neural network, using ana-

log RRAM might seem unnecessary. Nevertheless, real weights are always required

in the learning process of these low precision neural networks and are of particular

interest to prevent catastrophic forgetting. Besides, learning raises important chal-

lenges in terms of CMOS overhead, the impact of device imperfections, and device

endurance. For these reasons, in this chapter, we show that the analog behaviour

of RRAM can be a key for both increasing neural network performances and imple-

menting learning at the edge. We investigate a learning-capable architecture, based

on the concept of Binarized Neural Networks, which addresses the three issues of

on-chip learning with RRAM. It exploits the analog properties of the weak RESET in

hafnium-oxide RRAM cells and requires no refresh process. ”
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This last chapter presents the latest advances in our work on neural networks. The main

idea is to look at how we can go further in the hardware implementation of binarized neural

networks and more particularly how we can use the analog nature of RRAM devices and their

analog nature to implement learning. In the preceding chapters, we have only worked on the

inference.

A first step towards exploiting the analog nature of RRAM is to increase the capacity of bi-

nary weights for the inference using a third value. A very recent work on Ternarized neural

network, mainly performed by Axel Laborieux and published in [184] opens the way to under-

standing what is necessary from a nanodevice perspective. The main idea is to use a configu-

ration not used in our previous work, the HRS/HRS state, to encode this third weight value.

We also explored approaches using this analog nature much more deeply. First by suggest-

ing the utility of the underlying analog value, and paving the way for metaplasticity, a memory

variable, allowing the learning of several data sets at the same time. Then, we will see that this

analog value can be used for learning and the various challenges of the implementation of the

learning algorithm of binarized neural networks.

6.1 Ternarized Neural Network

The design of systems implementing low precision neural networks with emerging memories

such as resistive random access memory (RRAM) is a significant lead for reducing the energy

consumption of artificial intelligence, as already presented in chapter 4. To achieve maximum

energy efficiency in such systems, logic and memory should be integrated as tightly as pos-

sible. The work presented here and published in [184] focuses on the case of ternary neural

networks, where synaptic weights assume ternary values. We use the same architecture as in

Chapter 4: a two-transistor/two-resistor memory architecture employing a precharge sense

amplifier, where the weight value can be extracted in a single sense operation. Based on neural

network simulation on the CIFAR-10 image recognition task, we show that the use of ternary

neural networks significantly increases neural network performance, with regards to binarized

ones.

Ternary neural networks (TNNs) are an extension to Binarized Neural Network where neu-

ronal activations and synaptic weights A j , Xi , and W j i can now assume three values: +1, −1,

and 0 instead of binarized one. Neuronal activation then becomes:

A j =φ
(∑

i
G X NOR

(
W j i , Xi

)−µ j

)
. (6.1)

G X NOR is the “gated” XNOR operation that realizes the product between numbers with values

+1, −1 and 0 (Table 6.1). φ is an activation function that outputs +1 if its input is greater than a

threshold ∆, −1 if the input is lesser than −∆ and 0 otherwise.
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W j i Xi X NOR

−1 −1 1

−1 1 −1

1 −1 −1

1 1 1

W j i Xi G X NOR

−1 −1 1

−1 1 −1

1 −1 −1

1 1 1

0 X 0

X 0 0

Table 6.1: Truth Tables of the XNOR and GXNOR Gates

6.1.1 Using the same amount of device to implement ternary synapse

without memory overhead

The architecture, where synaptic weights are stored in a differential fashion, and the used

RRAM technology, are the same as presented in Chapter 4 and [324]. Each bit is implemented

using two devices programmed either as low resistance state (LRS) / high resistance state (HRS)

to mean weight +1 or HRS/LRS to mean weight −1. Additionally, we use the HRS/HRS config-

uration to mean synaptic weight 0, while the LRS/LRS configuration is avoided. The ternary

synaptic weights are read using on-chip precharge sense amplifiers (PCSA) with the addition of

a XOR logical gate, presented in Figure 3.16.
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Figure 6.1: Schematic of the precharge sense amplifier with an additionnal XOR gate between
output Q and Qb.

Figure 6.2 (a) shows an electrical simulation of this circuit to explained its working princi-

ple, using the Mentor Graphics Eldo simulator. As explain in the chapter 3, in the first phase

(SEN=0), the outputs Q and Qb are precharged to the supply voltage VDD . In the second phase

(SEN=VDD ), each branch starts to discharge to the ground. The branch that has the resistive
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memory (BL or BLb) with the lowest electrical resistance discharges faster and causes its asso-

ciated inverter to drive the output of the other inverter to the supply voltage. At the end of the

process, the two outputs are therefore complementary and can be used to tell which resistive

memory has the highest resistance and therefore the synaptic weight.

We observed that the convergence speed of a PCSA depends heavily on the resistance state

of the two resistive memories. Figure 6.2(b) shows a simulation where the two devices, BL and

BLb, were programmed in the HRS. The two branches (BL or BLb) discharges slowly to the

ground and causes to drive the inverters’ output slowly.

We see that the two outputs converge to complementary values in more than 200ns, whereas

less than 50ns were necessary in Figure 6.2(a), where the devices are programmed in comple-

mentary LRS/HRS states.
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Figure 6.2: Circuit simulation of the precharge sense amplifier of Figure 6.1, if the two devices
are programmed in an (a) LRS / HRS (5kΩ/350kΩ) or (b) HRS/HRS (320kΩ/350kΩ)
configuration.

The sense operation is performed during a duration of 50ns. If at the end of this period,

outputs Q and Qb have differentiated, causing the output of the XOR gate to be 1, output Q

determines the synaptic weight (1 or −1). Otherwise, the output of the XOR gate is 0, and the

weight is determined to be 0. In [184], we verified this behavior experimentally.

By thinking RRAM cells as more than binary switches, this works makes a first step toward

exploiting the analog features of RRAMS.
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6.1.2 Binarized Neural Network vs Ternarized Neural Network

To confirm the strength of ternarized neural network implementation, we investigate the accu-

racy gain when using ternarized instead of binarized networks. We trained BNN and TNN ver-

sions of networks with Visual Geometry Group (VGG) type architectures [325] on the CIFAR-10

task of image recognition [263].

Table 6.1.2 lists the impact of weight ternarization for different types of activations (binary,

ternary, and real activation). All results are averaged over five training procedures. We observe

that for BNNs and TNNs with quantized activations, the accuracy gains provided by ternary

weights over binary weights are 0.84 and 0.86 points and are statistically significant over the

standard deviations. This accuracy gain is more important than the gain provided by ternary

activations over binary activations, which is about 0.3 points. This bigger impact of weight

ternarization over ternary activation may come from the ternary kernels having a better ex-

pressing power over binary kernels, which are often redundant in practical settings [241]. The

gain of ternary weights drops to 0.26 points if real activation is allowed (using rectified linear

unit, or ReLU, as activation function), and is not statistically significant considering the stan-

dard deviations.

Weights

Activations
Binary Ternary Full Precision

Binary 91.19±0.08 91.51±0.09 93.87±0.19

Ternary 92.03±0.12 92.35±0.05 94.13±0.10

Gain of ternarization 0.84 0.86 0.26

Table 6.2: Comparison of the gain in test accuracy for a N = 128 model size on CIFAR-10 ob-
tained by weight ternarization instead of binarization for three types of activation
quantization.
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6.2 Synaptic Metaplasticity in Binarized Neural Networks

While we have studied binarized neural networks as especially adapted for performing infer-

ence with low computational and memory cost [225, 257, 326], and excellent accuracy on mul-

tiple vision [179, 242] and signal processing [270] tasks, they might feature more fundamental

properties. In this work published in [327], we made a connection between the hidden weights

and a neuroscience concept called metaplasticity [328, 329].

6.2.1 Catastrophic forgetting

While deep neural networks have surpassed human performance in multiple situations, they

are prone to catastrophic forgetting: upon training a new task, they rapidly forget previously

learned ones [330, 331]: synaptic weights optimized during former tasks are not protected

against further weight updates and are overwritten, causing the accuracy of the neural network

on these former tasks to plummet [332, 333] (see Figure 6.3).

(a) (b)

Figure 6.3: (a)Problem setting: two training sets (here MNIST and Fashion-MNIST) are pre-
sented sequentially to a fully connected neural network. (b) When learning MNIST
(epochs 0 to 50), the MNIST test accuracy reaches 97%, while the Fashion-MNIST
accuracy stays around 10%. When learning Fashion-MNIST (epochs 50 to 100), the
associated test accuracy reaches 85% while the MNIST test accuracy collapses to ∼
20% in 25 epochs: this phenomenon is known as “catastrophic forgetting”.

Neuroscience studies, based on idealized tasks, suggest that in the brain, synapses over-

come this issue by adjusting their plasticity depending on their history. However, such “meta-

plastic” behaviours do not transfer directly to mitigate catastrophic forgetting in deep neural

networks.

The neuroscience literature provides insights about underlying mechanisms in the brain

that enable task retention. In particular, it was suggested by Fusi et al. [328, 329] that memory

storage requires, within each synapse, hidden states with multiple degrees of plasticity. For a

given synapse, the higher the value of this hidden state, the less likely this synapse is to change:

it is said to be consolidated. The plasticity of the synapse itself being plastic, this behaviour is

named “metaplasticity”. The metaplastic state of a synapse can be viewed as a criterion of im-
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portance with respect to the tasks that have been learned throughout and therefore constitutes

one possible approach to overcome catastrophic forgetting.

6.2.2 Interpreting the Hidden Weights of Binarized Neural Networks

as Metaplasticity States

The training procedure of binarized neural networks involves a real value associated to each

synapse which accumulates the gradients of the loss computed with binary weights. This real

value is said to be “hidden”, as, during inference, we only use its sign to get the binary weight.

In this work, we interpret this hidden weight as a metaplastic variable that can be leveraged to

achieve multitask learning. Based on this insight, we develop a learning strategy using bina-

rized neural networks to alleviate catastrophic forgetting.

(a)

(b)

Figure 6.4: (a) Illustration of our approach: in a binarized neural network, each synapse incor-
porates a hidden weight W h used for learning and a binary weight W b = sign(W h)
used for inference. Our method, inspired by neuroscience works in the litera-
ture [328], amounts to regarding hidden weights as metaplastic states that can en-
code memory across tasks and thereby alleviate forgetting. With regards to the con-
ventional training technique of binarized neural network, it consists in modulating
some hidden weight updates by a function fmeta(W h) whose shape is indicated in
(b). This modulation is applied to negative updates of positive hidden weights, and
positive updates of negative hidden weights. fmeta(|W h|) being a decreasing func-
tion, this modulation makes the hidden weights signs less likely to switch back when
they grow in absolute value.

An important benefit of our synapse-centric approach is that it does not require a formal

separation between datasets, which also allows the possibility to learn a single task more con-

tinuously. Traditionally, if new data appears, the network needs to relearn incorporating the

new data into the old data: otherwise, the network will just learn the new data and forget
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what it had already learned. Through the example of the progressive learning of datasets, we

show that our metaplastic binarized neural network, by contrast, can continue to learn a task

when new data becomes available, without seeing the previously presented data of the dataset.

This feature makes our approach particularly attractive for embedded contexts. The spatially

and temporally local nature of the consolidation mechanism makes it also highly attractive for

hardware implementations, in particular using neuromorphic approaches.

This approach takes a remarkably different direction than the considerable research in deep

learning that is now addressing the question of catastrophic forgetting. Many proposals consist

of keeping or retrieving information about the data or the model at previous tasks: using data

generation [334], the storing of exemplars [335], or in preserving the initial model response

in some components of the network [336]. These strategies do not seem connected to how the

brain avoids catastrophic forgetting, need a very formal separation of the tasks and are not very

appropriate for embedded contexts.

The mechanism that we propose is illustrated in Figure 6.4 (a), where W h is the hidden

weight and ∆W h is the update provided by the learning algorithm. We introduce a set of func-

tions fmeta, parameterized by a scalar m and depending on the hidden weight to modulate the

strength of updates prescribing to switch the sign of the binary weight. The specific choice of

this set of functions is motivated by the conceptual properties that we want our model to share

with the cascade model [328]. First, the functions fmeta should be chosen so that the switch-

ing strength of the binary weight decreases exponentially with the amplitude of the hidden

weight. On the other hand, the switching ability should remain unaffected when the hidden

weight is close to zero, making the learning process of such weights analogous to the training

of a conventional binarized neural network. We therefore choose a set of functions plotted in

Figure 6.4(b) that decrease exponentially to zero as the hidden weight |W h| approaches infinity,

while being flat and equal to one around zero values of W h:

fmeta(m,W h) = 1− tanh2(m ·W h). (6.2)

The parameter m controls the speed at which the decay occurs and constitutes the only

hyper-parameter in our approach. All experiments in this work use adaptive moment esti-

mation (Adam) [183]. Momentum-based training and root mean square propagation showed

equivalent results. However, pure stochastic gradient descent leads to lower accuracy, as usu-

ally observed in binarized neural networks, where momentum is an important element to sta-

bilize training [179, 225, 241].

6.2.3 Learning two tasks with Metaplastic Binarized Neural Networks

To test the ability of our binarized neural network to learn several tasks sequentially, we se-

quentially train a binarized neural network on two tasks in a difficult situation. We trained a

binarized neural network with two hidden layers of 4,096 units to learn sequentially the MNIST
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dataset and the Fashion-MNIST dataset [268] which consists of fashion items images belonging

to ten classes. Figure 6.5 (b) shows the result of the training of a m = 1.5 binarized neural net-

work, with 50 epochs on MNIST and 50 epochs on Fashion-MNIST. Figs. 6.5 (a) also show the

result for the conventional binarized neural network (m = 0). Baselines define the accuracies

the binarized neural network would have obtained had it been trained on each of these tasks

separately. We observe that the metaplastic binarized neural network can learn both tasks se-

quentially with baseline accuracies. Our full paper [327] includes a much more in-depth study

on multitask learning, and also an analysis of the possibility of stream learning.

Epochs Epochs

Figure 6.5: MNIST/Fashion-MNIST sequential learning. Binarized neural network learning
MNIST and Fashion-MNIST sequentially for two values of the metaplastic parame-
ter m. m = 0 corresponds to a conventional BNN (a), m = 1.5 is a metaplastic BNN
(b). Curves are averaged over five runs and shadows correspond to one standard
deviation

6.2.4 Metaplasticity using emerging nanodevices

The fact that metaplastic approaches build on synapses with rich behaviour resonates with the

progress of nanotechnologies, which can provide compact and energy-efficient electronic de-

vices able to mimic neuroscience-inspired models, employing analog memristive technologies

[124, 145]. Many works in nanotechnologies have shown that a single nanometer-scale device

can provide metaplastic behaviour [337–341]. The metaplasticity features of these nanode-

vices vary greatly depending on their underlying physics and technology, but their complexity

is analogous to our proposal here. Typically, metaplasticity occurs by transforming the shape

of a conductive filament continuously. These changes make the device harder to program, and

therefore provide a feature that can be analogous to our continuous metaplasticity function

fmeta. Our proposal could therefore be an outstanding candidate for nanotechnological imple-

mentations, as it provides rich features at the network level while remaining compatible with

the constraints of technology.

Additionally, taking inspiration from the metaplastic behaviour of actual synapses of the

brain resulted in a strategy where the consolidation is local in space and time. This makes this

approach particularly suited for artificial intelligence dedicated hardware and neuromorphic
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computing approaches, which can save considerable energy by employing circuit architec-

tures optimized for the topology of neural network models, and therefore limiting data move-

ments [229].

This work also evidences the benefit of taking inspiration from biology with regards to

purely mathematically-motivated approaches: they tend to be naturally compatible with the

constraints of hardware developments and can be amenable for the development of energy-

efficient artificial intelligence.

Here we have implemented long-term memory into binarized neural networks by modify-

ing the hidden weight update of synapses. It highlights that binarized neural networks can be

more than a low precision version of deep neural networks, as well as the potential benefits of

the synergy between neurosciences and machine learning research, which for instance aims to

convey long-term memory to artificial neural networks.

6.3 Hybrid Analog-Digital Learning with Differential RRAM

Synapses

In the work presented in this section, already published in [342], we investigate a learning-

capable model of Binarized Neural Network which exploits the analog properties of the weak

RESET in hafnium-oxide RRAM cells, but uses exclusively compact and low power digital CMOS.

This approach requires no refresh process, is more robust to device imperfections than more

conventional analog approaches, and we show that due to the reliance on weak RESETs, the

devices show outstanding endurance that can withstand multiple learning processes.

6.3.1 Principle of learning

We have already presented in Chapter 1 and Chapter 4 the benefit of these RRAM devices for the

implementation of neural networks for inference. In addition, a particularly attractive idea is to

exploit their analog properties for learning [122, 124]: during training, following a learning rule,

the synaptic weights, implemented by RRAM conductance, are adjusted sequentially until the

neural network reaches maximum accuracy. This technique is compelling but faces multiple

challenges. First, it requires analog CMOS circuitry or conversion between analog and digital

signals, which brings high area and energy overheads [343]. Second, it is highly sensitive to

RRAM imperfections such as asymmetry between SET and RESET process, non-linearity and

noise [124]. Third, devices optimized for analog operation may suffer from reduced reliability

and endurance [233].

As already mentioned in this Chapter, during the training of binarized neural network, a

hidden real weight is also associated with binary synapses, which is adjusted by the learning
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rule. This real value is encoded by the difference between the log resistance of the two devices:

W h = log (RBL)− log (RBLb). (6.3)

The binarized weight used by the neural network in all arithmetic operations is the sign of

this hidden real weight. Once training is finished, the hidden real weight is of no use and can

be discarded. For RRAM-based learning hardware, BNNs do not seem ideal at first sight, as

synapses need to be associated with real weights. However, the BNN learning process does

not need to know the value of the hidden real weight, as only the sign is used in arithmetic

operations. The network only needs the ability to increase or decrease it. We show here that

this is feasible in a simple manner employing RRAM cells with only an adapted programming

sequence and purely digital CMOS.

For the binary value, we use the 2T2R structure already used to reduce the bit error rate

in Chapter 4: if the BL cell has higher resistance than the BLb one, the 2T2R structure imple-

ments synaptic weight +1, and otherwise -1. The binary weight can therefore be obtained by

comparing the resistances of the two devices using a pre-charge-sense-amplifier.

For learning, we exploit weak RESET pulses [344], which exhibit a progressive effect (Figure

6.6): when such a pulse is applied to an RRAM cell, it increases the resistance of the device

slightly.

Figure 6.6: Statistical measurements of the weak RESET process over 64 devices. Error bar is
one standard deviation, for different RESET voltages.
(a) tRESET=1 µs. (b) tRESET=100 ns.

Figure 6.6 shows this progressive effet of RESET pulses as statistical measurements over

64 devices. This effect is strongly dependent on the programming voltage and duration and

is subject to significant noise and variability due to the atomic size of filaments in the RRAM

devices. The conductance vs. pulse number is also highly nonlinear. It is however seen on all
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devices that we measured. In section 6.3.4, this high noise and variability will be shown and

compared with a device model.

6.3.2 A 2T2R complementary programming strategy

On the other hand, the SET process does not feature a progressive effect. For this reason, we

mainly exploit the RESET effect for learning. Whenever the learning rule of BNNs predicts to

increase a synaptic weight, we apply a weak RESET to the BL device, whereas if the learning

rule predicts a decrease in the weight, we apply a weak RESET on the BLb device (Figure 6.7).

To determine the number of pulses to be applied for training, it is first of all necessary to

calculate the value of the gradient. This gradient calculation is done by the backpropagation

algorithm where the value of the gradient is precise. It is this gradient value that will then be

transformed into several pulses to be applied. This value will be positive or negative, which will

determine the choice of the device to which the pulses are applied.

This technique is particularly effective for learning in binarized neural networks, indeed,

it is not the specific value of the weight that is important but the relative difference. The real

value coded in the devices is therefore the number of pulses received on each of the devices, if

the BL device has received more pulses than the BLb device the weight will be +1 and if it is the

opposite the weight will be −1.
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Figure 6.7: Learning procedure for an artificial synapse using a 2T2R structure in binarized neu-
ral networks. (a) The two resistances states of the two devices are presented as func-
tion of the number of pulses they received. The weight is coded as the difference
between the log of the resistance of the two devices. (b) The two resistance states
are presented in the form of a diamond, a dot presents the position of the actual pair
of resistances. When a RESET pulse is applied to one device the position of the dot
change. If the dot is in the green area the binary weight is +1, if it is in the yellow
area the binary weight is -1.

To verify the learning compatibility of RRAM devices with on-chip learning, we simulated

the training of a neural network with 784 inputs neurons, a hidden layer of 1024 neurons, and
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10 output neurons on the MNIST handwritten recognition task. The RRAM cells were modeled

with an experiment-matched compact model that will be described in section 6.3.4 and CMOS

circuits with cycle-accurate modeling.

During the learning process, the two complementary devices receive RESET pulses that

gradually increase their resistances. Unfortunately, this approach has a limitation, after a cer-

tain number of pulses the resistances saturate and no longer increase, which has several conse-

quences. Firstly, when these resistances become high, they are no longer able to increase and

the binary value is therefore no longer mobile. And secondly, the devices are subject to noise,

when the resistance values are high the binary values will be completely stochastic.

Figure 6.8 (a) shows the effect of the saturation in term of accuracy. During the first 100

epochs, the resistance increases (or the conductance decreases) until it reaches the maximum

resistance, where devices begin to saturate (Figure 6.8 (b)).

Saturation

(a)

(b)

Figure 6.8: (a) Test accuracy on the MNIST task and (b) distribution of the conductance of the
RRAM cells, in the neural network trained using the complementary 2T2R strategy
for the learning process.

In [345], the authors solved the saturation issue by performing refresh operations after a

certain number of iterations. But, this approach is time and energy-hungry and require com-

plex programming circuits. It is indeed necessary to follow the number of updates performed

from the beginning of the learning process and also because during the refresh phases it is not

sure that the sign of the binary weight remains unchanged. Moreover, despite theses refresh-

ments, performances decrease after a while.
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6.3.3 Reprogramming check strategy to avoid saturation

Here, we propose a simpler approach based on an adapted programming sequence imple-

mented only with pure digital circuitry (Figure 6.9). Before any write operation, we check the

binary value of synapse. After the progressive RESET, we check if the binary value of the synapse

has switched. If this has happened both devices are reprogrammed with a full SET and one with

a weak RESET to recover an opportunity for progressive RESET.
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Figure 6.9: Adapted learning procedure for an artificial synapse using a 2T2R structure in bi-
narized neural networks that require no refresh process. (a) After n RESET pulses
applied to the device BL, the resistance change but the sign of the binary value re-
mains unchanged. (b) After n RESET pulses applied to the device BL, the resistance
change and the sign of the binary value change. We detect this change by operating
a double read, a first one before the applying pulses, and a second one after the n
pulses applied. When then sign change happens, we apply a strong SET pulse to put
the two devices in low resistance state and then we apply one pulse to the device
corresponding to the device selected by the new sign of the binary weight.

We check the efficiency and robustness of our technique in practical simulation using the

same neural network architecture as used in the previous section and the same learning rate

resulting in the same order of magnitude of the number of pulses applied. In Figure 6.10 (a), we

can see that the neural network does learn to recognize digits with 98% accuracy without any
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drop in accuracy even after a large number of iterations. We can also see that the distribution

of conductances is much wider than before. It is also interesting to note that when the devices

begin to saturate, under the effect of the inherent noise of the devices, the sign switch occurs

naturally, resulting in a strong SET pulse applied in which devices return to low resistance state.

After several iterations, the different pairs of devices tend to configure themselves in a cer-

tain order. We have seen in section 6.2.4 that hidden values can have some importance. What

happens is that the real values are limited to a certain range, for W maximum RBL must be max-

imum and RBLb must be minimum. This means that the dynamics of the weight evolution are

limited, we can see that the distributions tend to be polarised, some devices are low resistance

and some devices are high resistance. The advantage of such polarisation is that the errors of

the reading circuit are much lower in this case. The weakness is that the weights are less mobile

and therefore, as mentioned in section 6.2.4, learning a new task becomes more complex.

(a)

(b)

Figure 6.10: (a) Test accuracy on the MNIST task and (b) distribution of the conductance of the
RRAM cells, in the neural network trained using the reprogramming check strategy.
The plots are obtained with the same learning rate as Figure 6.8 but with much
more iterations.

6.3.4 Device simulation

Our neural network simulations are performed using a behavioural RRAM device model. We

used the analog progressive behaviour of RRAM devices under RESET pulses. The SET pulse

does not exhibit this progressive behaviour, and we model the SET as a refresh process: under

SET pulses, the resistance goes back to low resistance state under a distribution specific to each

device.

The progressive RESET pulses behaviour is strongly dependent on the programming volt-
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age and duration, and is subject to significant noise and variability due to the atomic size of

filaments in the RRAM devices (Figure 6.11 (a)). The conductance also features a highly non-

linear relationship with the number of pulses applied. This behaviour is seen in all devices that

we measured.

From the measurements made on the devices, we extracted a behavioral model. Figure

6.11 (a) shows the behavior of 8 devices when RESETs are applied pulse by pulse. During pro-

gramming, we can see the high noise level. The model used is inspired by [346, 347], where a

noise term was added to each RESET pulse applied, resulting in the equation of Figure 6.11 (c).

As illustrated in Figure 6.11 (c), this model reproduces relatively correctly the measurements

made on the devices. To go further in this device modeling it would be necessary to extend this

modeling study by linking different terms with physical principles, as well as to understand the

nature of this noise.

𝑑𝐺

𝑑𝑡
= −𝐶exp −𝛽

𝐺𝑚𝑎𝑥 − 𝐺 𝑡

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛
+ 𝜂𝑁𝑜𝑖𝑠𝑒 𝑡

G : Device conductance
𝛽 : Nonlinearity of the device
𝐺𝑚𝑎𝑥/𝐺𝑚𝑖𝑛 : Max/Min device conductance

𝜂 : Noise factor
C : RESET strength

(a) Measurements of 8 devices (b) Simulation of 8 devices

(c) 

Figure 6.11: (a) Measurements of the weak RESET process on 8 randomly chosen devices. (b)
Simulations of the weak RESET process. (c) Analytical equations used to model the
weak RESET process in our RRAM cells. Noi se(t ): Gaussian noise

The specific features of this model and its complexity originates from the noisy behavior.

Since the equation is very non-linear, the noise does not have the same impact at low con-

ductance as at high conductance. Therefore, we worked either with a single applied pulse or

performed an iterative loop in the simulations on the number of applied pulses making the

simulations relatively long.
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6.3.5 Device imperfection, impact on accuracy

Moreover, we can look at the impact of various device issues by adjusting some parameters of

the model.

(a)

(b)

(c) (d)

Figure 6.12: (a) Test accuracy on MNIST data-set as function of the noise factor η for our ap-
proach and for conventional analog neural network implementing real weights
with RRAM devices. (b) Test accuracy on MNIST data-set as function of the num-
ber of learning procedures. Between each learning procedure, we randomly mixed
the devices pairs to see the saturation effect of the devices. When the noise is
strong, the device pair do not saturate as there is some sign switch of the binary
weight due to the noise. (c) Study of the effect of the β value on the test accuracy
of MNIST data-set for our reprogramming scheme procedure in binarized neural
network and (d) in a classical neural network using RRAM pair of devices.

First, in Figure 6.12 (a), we simulate the neural network training for different levels of noise

(η in Figure 6.11 (c)) associated with the weak RESET process. We compare our reprogramming

check strategy and a control case employing the conventional approach of using RRAM devices

in a fully analog fashion. We see that with our approach, unlike the conventional one, noise is

tolerated to an outstanding level. The level of noise seen in our experimental devices (η= 3 in
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Figure 6.11 (a)) causes no accuracy degradation, whereas it would cause important degradation

in the conventional approach.

Second, we explored the effect of the noise of the devices. Figure 6.11 (b) shows that RESET

noise is not only tolerated, in some situations it can even be useful. In this particular situation,

several training processes are realized cumulatively, without resetting devices in-between the

processes: i.e., in this figure, the x-axis is not a number of epochs or iterations, it is the num-

ber of times the network learns. We perform a first learning procedure during one epoch (each

training data is presented only once) and then we keep the conductance of the devices. To per-

form a new learning process, all pairs of devices are randomly mixed. As some device pairs have

complementary conductances, e.g. BL is high resistance state and BLb is low resistance state,

the neural network has more difficulty to learn than for the first learning process, however, it is

still possible; the learning process only needs more iterations.

We see that the re-learning processes are more effective when RESET noise is stronger. This

is because when there is more noise, the reprogramming SET step where both devices are pro-

grammed in a low-resistance state, occurs more often and therefore the devices do not end up

in a not very mobile configuration.

Another study of device imperfection concerns the nonlinearity of the RESET process. Fig-

ure 6.12 (c) shows the impact of the nonlinearity of the RESET process (β in equation Figure 6.11

(c)) in our approach. We did not have to study the effect of the non-linearity of the SET process

for our approach as it is used only to apply strong SET to the device to low resistance state.

So the SET operation only needs to be efficient to go to low resistance state but do not exhibit

any progressive behaviour. To make a comparison we study the impact of the non-symmetry

between the SET and RESET process in the conventional approach. We see an outstanding tol-

erance of our approach to these effects, whereas the conventional approach is highly sensitive

to them.

6.3.6 Benefits of Operating in a Weak RESET Regime

For learning, a very important concern is endurance as devices will have to be programmed

a large number of times until it reaches a high accuracy. The number of programming steps

required for the learning can be very different from one synapse to another. Therefore, spe-

cific synapses and consequently specific devices will receive more or less programming pulses.

Generally, to learn a simple task like MNIST, a device will be programmed on average several

hundred times. This value increases for more difficult tasks as they generally require more iter-

ations of learning.

The reliance of our technique on weak RESET pulses has tremendous benefits in regards to

endurance. Figure 6.13 shows cycled measurements alternating strong SET and weak RESET

pulses. Figure 6.13 (a) & (b) shows the cycle to cycle distribution variation of two devices. The

distribution of the low resistance state does not change dramatically when the devices age,

whereas the distribution of the high resistance state tends to shift towards low resistances when
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the number of cycles is more than 1010.

(a)

(b)

Figure 6.13: Endurance measurement on two complementary devices programmed with weak
RESET (VRESET=1.5V), pulse width of 1 µs and SET compliance current of 200 µA.
(a-b) Cycle-to-cycle (C2C) distribution of resistance values for 10k cycle. (c) me-
dian value resistance ratio (RBL/RBLb), extracted over 10k cycles.

Under test, an outstanding endurance of 55 Billion cycles is seen on the two devices. This

result shows that with our approach we could perform multiple learning processes on a sin-

gle chip. Besides this high endurance, the great quality of our RRAM memory array is that it

requires low energy consumption with voltage compatible with high-performance CMOS.

6.3.7 Comparison with other approaches for RRAM-Based Learning

The approach presented in this section for learning binarized neural networks is very new. It

requires only two devices per synapse using only the RESET pulse programming regime. This

approach is by construction resilient to non-linearity which does not affect performance. It

is very resilient to programming noise and has the particularity of using only one regime of

programming, therefore it is completely resilient to the asymmetry between RESET and SET

pulses.

Table 6.3 compares the requirements for on-chip learning of our hybrid RRAM/CMOS re-

programming check strategy with conventional neural network and 8-bits precision approach.

All the approaches mentioned in this table focus on the technological aspect, how to im-

plement the synapses of a neural network. But from a system point of view, the challenges of

the hardware implementation of neural networks on a chip are not limited to this single aspect,

there are also plenty of additional difficulties.
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Device/ CMOS Resilience Resilience Resilience Requires

synapse overhead to noise to non-linearity to asymmetry refresh

Analog RRAM [122, 343] 1 High Low No No No

Analog PCM [124] 2 High Low No Yes Yes

Fully digital [348] 8+ Medium Medium Yes Yes No

[345] 2 Low High Yes Yes Yes

This work 2 Low High Yes Yes No

Table 6.3: Comparison of our approach with approaches of the literature for learning with re-
sistive memories.

6.3.8 Next requirement for a final on-chip learning implementation

The idea of our work is that we consider that the 2T2R differential implementation present in

chapter 4 is not only interesting to reduce errors but also, as presented in section 6.3, that it

allows learning.

There are various reasons to believe that the hardware implementation of binarized neural

networks is particularly attractive for learning and simpler than classical neural networks:

• Their implementation for inference is very simple and energy-efficient.

• The update of the hidden value only influences the binary weight under certain condi-

tions.

• The learning of binary neural networks has a high tolerance to noise and non-linearity

of the devices unlike classical neural networks implemented with the same devices.

In chapter 4 we studied most of the hardware challenges that may exist for the inference of

binary neural networks, but learning raises new questions.

Challenge with batch

To perform the learning process on software, the use of batches is usually required to evaluate

the loss landscape. The loss landscape can also be evaluated on the whole data-set, but this

learning process is very long and requires intensive calculations. To use large batch, a large

amount of memory is needed: all neuron activations have to be stored for the backpropagation

(see Figure 1.11).

To have a relatively fast learning and less intensive calculations, we usually use mini-batches.

Nevertheless, it is possible to train neural networks by making a pure stochastic gradient de-

cent, i.e. by presenting the inputs one by one. But this training is generally longer on GPU

as it only deals with one sample at a time and therefore only with vector/matrix operations

whereas GPUs function optimally with pure matrix operations. For a low-power hardware im-

plementation, it was seen in chapters 1 and 4 that memory registers have an important role in

power consumption. Therefore, for embedded systems it may be preferable to work with these

vector/matrix operations rather than pure matrix operations.
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In the previous sections of this chapter, we did not focus on the challenges related to batches,

as we mainly focused on how to perform the update of the weights using RRAM devices. The

weights were updated according to the mini-batch gradient. For a real implementation, it is

important to verify that our approach works with stochastic gradient descent. This is a work in

progress.

Moreover, all our binarized neural network simulations use batch-normalization, as it is

known to efficiently stabilize the training [179, 241]. Batch-normalization is not, however, a

fundamental element of the scheme. Normalization technique that do not involve batches,

such as instance normalization [349], layer normalization [350], or online normalization [351]

provide more hardware-friendly alternatives and works perfectly well with binarized neural

network training.

Quantization of gradient for backpropagation

In binarized neural networks, the inference is completely binary: between each neural network

layer, only binary information is transmitted. For learning, it is different because the informa-

tion transmitted between layers during backpropagation is not binarized; it has a real value.

The implementation of binarized neural network is interesting only if the transmitted informa-

tion is binarized for both inference and learning.

Some recent work has shown that it is possible to quantize gradients for backpropaga-

tion [352]. Even if these first results are promising, their implementation requires at least 8

bits for quantization for difficult learning tasks.

To go further, in the same way as we discuss in Chapter 4 where we use stochastic comput-

ing for the inference of the first layer of binarized neural network, some researchers have expe-

rienced the implementation of classical networks using a similar approach with spikes [353].

They realized that the gradient can be discretized into spike events for training a spiking neu-

ral network. They were able to demonstrate that even for deep networks, the gradients can be

discretized sufficiently well with spikes if the gradient is properly rescaled. This form of spike-

based backpropagation enables to achieve equivalent or better accuracies than comparable

state-of-the-art spiking neural networks trained with full precision gradients. These spikes –

binary in nature– would make it possible to transmit completely binary information for both

the forward pass and the backward pass of neural networks. We will investigate this approach

for the future implementation of a binarized neural network able to perform both inference

and learning.

Gradient momentum: a fundamental element and adapted learning procedure

In the learning procedure of binarized neural networks, generally, the use of the classical neural

networks optimizer Adam, or momentum, in stochastic gradient descent to update the hidden

weight is required. Without these methods, the performance of these neural networks is weaker

and tend to have oscillations in accuracy.



164 CHAPTER 6: ANALOG RRAMS

As seen in section 6.2.4, where the hidden value of weights is interpreted as a factor of im-

portance, the authors of a very recently published paper [354] also mentioned that the latent

value in binarized neural network cannot be treated analogously to weights in real-valued neu-

ral networks.

The role of this hidden weight seems to be linked to the momentum (called inertia in the

original paper). Making this link between hidden weight and momentum not only allows us

to understand that, without momentum, the learning of binary neural networks is subject to

oscillations, but also to use only one parameter for the learning process, instead of two until

now. Indeed, in the learning presented so far, we did not illustrate that the evaluated gradient

was related to momentum, which implied that each synapse had an additional hidden gradient

value in addition to the hidden weight value.

Figure 6.14 summarises the approach, which is relatively simple. The gradient g in light

green corresponds to the value of the gradient calculated for a specific weight W , i.e. ∂L/∂W .

For each successive example at step t , this gradient is calculated and then summed up in the

form of momentum according to the equation below:

mt+1 = (1−γ).mt +γ.g (6.4)

If the binary weight Wb and the sign of this value m are of the same sign and m is greater

than a threshold τ, the binary value switches.

Figure 6.14: Illustration of the optimization method for training binarized neural network with
only one inertia parameter m. Taken from [354] NeurIPS poster.

For its implementation in neural network simulations, it is very simple as it only requires

to rewrite the optimizer (i.e. the update rule method). In frameworks such as Pytorch [355] or

Tensorflow [356], this is done in a few lines of code. Modifying the optimizer of these frame-

works makes it very easy to add hardware features for learning. When it is well written, it can
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be generalized to all kinds of architectures, allowing the training of a wide variety of data sets.

In general, creating optimizers specific to binary neural networks is highly innovative. It is

also a very interesting approach because we can extend these optimizers with the specificy of

RRAM models.

We are currently working on this type of implementation. We are taking into account all the

hardware constraints to be optimized and in particular to adapt this very efficient optimizer for

the implementation of binarized neural networks to perform learning using post-programming

checks.

By simulating all the dynamics of the real value of the weight with RRAMs we can hope to

have a real hardware implementation of the learning process. However, other challenges have

to be taken up, in particular concerning neurons activations. For instance, in deep neural net-

works, propagation times have to be taken into account: in order to calculate the gradient at

the first layer, the information must first be transferred through the entire network a first time

for the forward pass and a second time for the backward pass. Each layer will require differ-

ent times to save the activations of neurons for the gradient calculation. This management

of cache memory for both feedforward neural network activations and convolutions is a very

interesting and difficult topic that deserves to be explored for the hardware implementation.

The big advantage of binarized neural networks is that the activations that have to be saved are

binary, this way the amount of memory required is relatively small.





Conclusions and future work

“The profound study of nature is the most fertile

source of mathematical discovery.”

Joseph FOURIER

“BIOLOGICAL inspiration is the approach explored in this thesis as a solution to

the fundamental limitations of today’s electronics circuits. Even if the work-

ing principle of the brain is not fully understood, current knowledge still allows re-

searchers to extract useful features to implement intelligent systems for embedded

system with relatively low energy. We explored several bio-inspired algorithms, fol-

lowing as a guideline the low energy consumption achieved by bringing calculation

and memory close, using emerging memory nanodevices. ”
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Summary

THE development of electronics is expected to take a fundamental turn in the next few

years, mainly because the scaling laws of transistors are at the end of their lifespan.

In Chapter 1, we first presented the fundamental limitations of CMOS transistors: the flag-

ship component of today’s integrated circuits. Transistors have exceptional performance in

terms of computing, especially for logic functions. Regarding memory, this is not the case:

transistors-based memory circuits are volatile, i.e. the memory effect disappears when the cir-

cuit is turned-off, and such memories are not very compact. To be more compact, transistor-

based memories have to be manufactured using an additional capacitor which is not compati-

ble with an implementation in the core of the high-performance computation.

For this reason, today’s hardware architectures are based on the von Neumann principle,

with random access memory and computing conceptually and physically separated. One of

the main issues with this architecture is the energy consumption related to the data exchange

between the memory and the computing core. Especially since transistor technologies have

improved, this energy consumption has constituted an increasing part of the total energy con-

sumption of the circuits.

In Chapter 1, we explored different methods for saving this energy by presenting:

• More efficient technologies for data transfer (e.g. photonics and asynchronous commu-

nication).

• Advantages and drawback of the different emerging non-volatile memory devices that

can be embedded in the core of the CMOS.

• A comparison between the main characteristics of the brain and computer.

• In-Memory-Computing and neuromorphic hardware published recently.

An overview of the different approaches explored in the thesis is introduced in Chapter 2.

We described two topics: Bayesian models and neural networks. Even if, these approaches re-

main focused on a common application, performing an inference calculation (i.e. a prediction)

with a minimum of energy, they differ fundamentally. We explained the specificities of both

approaches and discussed their implementation using the new emerging memory devices. We

also present some recent works that make possible connections between Bayesian reasoning

and neural networks in Appendix A. And in Appendix B, we describe an example mixing the

two approaches.

The use of innovative memory devices is the guideline for all the chapters of this thesis. One

of its the main results, presented in chapter 3, is the hardware implementation of a Bayesian

reasoning algorithm, from the algorithm to the tape-out using a hybrid RRAM/CMOS tech-

nology. Firstly, we presented a theoretical description of the implemented algorithm and the

hypotheses required to create the system with a very low energy cost. Secondly, we presented a

new paradigm of calculation in which the final circuit operates: stochastic computing, with its
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advantages and drawbacks. Finally, we presented the complete architecture, with its layout, its

operating principle, both for the digital part and the programming of the RRAM devices.

The hardware implementation of intelligent algorithms continues in Chapter 4 with a study

of binarized neural networks. It mainly focused on the implementation of a 2T2R design (i.e.

two transistors and two RRAMs) to encode a neural network’s binary-weight. An in-depth study

of the impact of errors on the performance of neural networks was presented. A comparison

with error-correcting codes was provided. To analyze the energy consumption of the system, a

projection at the system level was performed by simulating the implementation of a complete

circuit with a perspective on an MRAM-ready technology. Finally, an analysis of the stochastic

approach in binary neural networks was presented.

The use of non-volatile devices in a binary fashion is something relatively simple to im-

plement that does not fundamentally challenge all the principles of digital circuit design. In

Chapter 5, we wanted to go further in the use of emerging devices by exploiting the stochastic

behaviour of MRAMs. After briefly introduced works exploiting the stochastic characteristic for

Bayesian neural networks, and thus making a link with our previously presented work, we intro-

duced an alternative neuroscience theory concerning stochastic neurons. An analogy between

the stochastic behaviour of superparamagnetic tunnel junctions and a population of neurons

allowed us to design a hybrid STT-MRAM/CMOS chip for this new computing paradigm.

Finally, the last chapter of the thesis aimed at going even further in the use of the analog be-

haviour of devices. Their analog characteristic allows improving the performances of quantized

neural networks, but also enables long-term memory effects and to perform on-chip learning.

There is still more to be done concerning the full implementation of the learning process, both

at system level and at the device level, identifying what the impacts of variability and noise are.

Also, some algorithmic aspects of the learning process need to be reworked so that it can be

easily implemented at the system level.

Perspectives

In September 2020, Nvidia presented the new RTX 30 Series graphics cards1, an announcement

that is causing a stir among video game players but also computer scientists. These GPUs will

be able to train even bigger neural networks! But what about this end of Moore’s Law that has

been predicted for a while? It seems that graphics cards keep getting better and better.

One of the reasons for the latest advances is still the improvement of transistors, but it is

not the leading reason. In the latest generations of high-performance GPUs, an improvement

on high bandwidth memory technology has allowed the increase of the transfer speed between

the computing core and memory. This recent technology brings memory and calculation closer

one to each other. The GPU architecture is also different from the one used in previous years.

The major data transfer issue is therefore today largely studied by the semiconductor industry.

1https://www.nvidia.com/fr-fr/geforce/graphics-cards/30-series/
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All our insights on how to reduce energy consumption by bringing memory and calculation

closer together seem confirmed by the direction major industrial companies are following.

Even if energy consumption is an important issue, the main limitation in the development

of high-performance electronic circuits is the thermal dissipation. Interesting innovations at

the academic level are making great progress to tackle this issue in recent years. For instance,

the use of silicon photonic optics to both increase the transfer speed and reduce the heat dis-

sipated locally at the data bus. And possibly in the longer term, optical calculation as tensor

computing cores for machine learning [357]. Another interesting approach is to cool-down mi-

crochips by integrating microfluidic cooling systems within the chip itself [358]. Nevertheless,

these approaches remain relatively complex to implement, expensive and are not compatible

with the prerequisites of embedded systems.

The ability to perform low-energy computing for embedded systems is the main objective

of this thesis. Working under these circumstances implies constraints that high-performance

electronic circuits do not have. Embedded systems require a large autonomy, a relatively small

system, a limited use of external networks, and the ability to process data directly from sensors.

Our core idea is to have a large memory capacity within our chip to implement artificial intel-

ligence algorithms where memory plays a primordial role. In this way, our approach allows the

reduction of the energy linked to data transfer between the computing core and the memory,

but also it limits exchanges with the external network. Assuming that more and more mem-

ory can be used, a critical question appears: in which case is it better to perform a calculation

explicitly or to use a memory table that has in memory the result of the calculation?

The technologies providing a very large amount of on-chip memory exist; some of them like

phase change memory and ST-MRAM are already commercialized. Their characteristics are

already interesting for digital uses with classical von Neumann architecture, and they should

be used for realizing in-memory-computing in the near-future. To look even further, the most

complex characteristics of devices could also be exploited in the future. Perhaps, by integrating

more analog behaviours into current electronic circuits, we could significantly improve their

performance. According to this approach, we should be able to characterize the behaviour of

the devices as well as to work on the algorithm to use them optimally.

For now, most computer scientists with expertise in machine learning do not question the

progress of electronic circuits and do not seek to address this type of question. And even the

subject of neuromorphic circuits and chips dedicated to the calculation for artificial intelli-

gence has only recently become a topic of discussion at prestigious computer science confer-

ences.

The major publications in the field of artificial intelligence are based on the increase in the

size of artificial intelligence models. The strength of neural networks is indeed that increasing

significantly the size of models and the amount of data, seems to keep improving their perfor-

mances infinitely. Today’s most complex models can contain hundreds of billions of parame-

ters [359]. In this context, what is the future of embedded systems and how can we make them
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fit into AI embedded systems when models have so many parameters?

Working on neural network model optimization for embedded systems is crucial. Some

architectures are well suited to the hardware implementation of convolutional networks such

as the MobileNets [273] architectures, but there is still a lot of research to be done.

In this thesis, we seeked to build AI models optimised for hardware using two different ap-

proaches. On one hand, the hardware implementation of Bayesian models presented in Chap-

ter 3 can be very efficient even with relatively few parameters and a relatively low memory

overhead. On the other hand, the quantification of neural networks presented in Chapter 4

allows to elegantly reduce the number of bits needed for inference.

These challenges are therefore opening up new perspectives, especially for embedded sys-

tems, with the possibility to re-engineer the architecture of electronic circuits, integrating more

data processing, new non-volatile memory devices, and sensors. The changes to be made are

considerable, the decades of labour optimizing hardware architecture are difficult to reconsider

(it is a question of rethinking everything!).

One opportunity to achieve this could be open-source hardware. Innovative architectures

could have the same success as RISC-V [360]. This is especially relevant as IoT is emerging,

opening up a whole new perspective of hardware for specific applications. Academic projects

for open source hardware already exist (such as [361]) and could be massively implemented in

the coming years. Open-source hardware could also be beneficial for neuromorphic circuits,

providing the opportunity to develop the field very rapidly.

The neuromorphic field, despite having been initiated by Carver Mead, remains in its in-

fancy: who knows what remains to be discovered? In my opinion, the avenues to be pursued

are at the forefront of many disciplines:

• Computer science and mathematics, both to carry out simulations and to understand

qualitatively the experimental results.

• Neuroscience, to explore the methods used by the brain to reason. It indeed inspires

today’s artificial intelligence algorithms, as we did to explore the utility of metaplastic

synapses in the context of deep-learning.

• Electronics and physics, to try to reproduce certain characteristics of the brain.

For this reason, it is essential, today, to work in hardware/software co-development, other-

wise, certain specific research fields could be condemned to disappear [362]. Finally, for neu-

roscience research, I am convinced that to understand all the underlying mechanisms of the

brain we need to reproduce its main mechanisms by developing mimetic electronic circuits.
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Appendix A

Link between neural network and

Bayesian models

“IN THIS APPENDIX , we investigate some of the research work that tries to link

neural network and Bayesian models together.

Bayesian reasoning does not really belong to a category of model but rather

to a category of algorithms. Any well-defined model can then be interpreted in a

Bayesian way, including neural networks. Bayesian neural networks seems to be

the best of both world. For this reason, a lot of research aims at implementing

deep Bayesian learning like "The Evidence Framework Applied to Classification Net-

works" [363], "The Bayesian interpretation of weight decay" [180], "An introduction

to MCMC for machine learning" [364], "Bayesian learning via stochastic gradient

Langevin dynamics" [365], "Probabilistic backpropagation for scalable learning of

bayesian neural networks" [366], "Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning" [367]. For more in-depth coverage, we

recommend Yarin Gal’s thesis "Uncertainty in Deep Learning" [368] and the NeurIPS

workshop "Bayesian Deep Learning" [369] that is held every year. ”
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Here we present two techniques associating ideas from neural networks and Bayesian mod-

eling: Variational Inference and Sum-Product Networks.

Variational Inference

The variational inference (or variational approximations) method was originally presented by

G. Hinton in 1993 [370], and modernized in 2011 by A. Graves [279]. The idea of a Bayesian

neural network is to describe neural network variables as Gaussian latent variables. To make

the exact but intractable inference of such Bayesian neural network with Gaussian latent vari-

ables, it is necessary to do the following. We start with a prior distribution on all the weights

of the model. We then construct the correct posterior distribution of each of these parameters

by multiplying the prior distribution by the probability of having the output of the training set

knowing these weights. Then we normalize to have the complete posterior distribution and

make new predictions on new inputs.

To obtain the posterior distribution in a tractable way, we can use a Monte Carlo method

which does not impose any hypothesis on the shape of the posterior distribution. Unfortu-

nately, the simulation time can remain very high. The method proposed by G. Hinton [370] is

therefore to make a hypothesis on the posterior distribution, but to take into account the pa-

rameters distribution during training. The integration on Gaussian distributions can be done

exactly and the exact derivative of the weights can be computed. The learning procedure is

done by backpropagation minimizing the Kullback-Leibler divergence [371] that measures the

disparity between two probability distributions. To calculate the KL divergence, a sum over

the whole parameter set using random draw on the weights is necessary. The classical method

to perform backpropagation through theses stochastic weights is "the local reparameterization

trick" [372] described in Figure A.1 (a). The weight is deflected as Gaussian distribution of mean

µ and standard deviation σ. Each weight has its own µ and σ parameters that are optimized

by backpropagation while a standard Gaussian random draw ε is performed but no error is

backpropagated through it. To understand the Variational Bayes Method in more detail, we

recommend the T.Broderick [373] tutorial given at ICML 2018.

Sum-Product Networks

"Sum-Product Networks" (SPN)[374] is a particular architecture of neural networks. These neu-

ral networks only contain indicator variables, sums, and products. Sum-Product Networks

have clear semantics, they have some interesting properties from a probabilistic and statis-

tical perspective. Then, they do not suffer from several of the problems that other types of deep

neural networks have. Figure A.1 (b) presents a picture of what a sum-product network is: the

network is an acyclic directed graph, and, in the leaves, we have indicator variables or more

generally univariate distributions.
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Such network can be interpreted as a probabilistic graphical model like Bayesian networks

[375] and Markov networks [149], but it is a class of tractable probabilistic graphical model.

Such network mainly focus on computation and not correlation between variables but it can’t

represent all the complexity of all Graphical Models.

As every classical neural network, SPNs are also composed of a linear combination of inputs

and non-linear activation. At the level of the sum nodes, SPNs perform a linear combination

of the inputs. By adding a logarithmic activation function, the network behaves in a log space,

which allows the product nodes to make a linear combination of the inputs. At the level of the

product nodes, SPNs have an exponential activation function to go out of the log space and

return to the initial linear combination space of the sum nodes. With this architecture, there

is an alternation of layers with log and exponential activations and therefore can be trained by

backpropagation.

Even if at first glance neural networks and Bayesian models are two completely different

principles, research linking the two fields has made considerable progress in recent years. In

the thesis, the objective was not to explore all the possibilities linking these two spheres, but

rather to explore what possibilities are available for the hardware implementation to make an

inference at a very low energy cost.
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Figure A.1: (a) The local reparametrization trick [372] that allows to perform backpropagation
through stochastic weights. (b) Sum-Product Network composed of Sum Nodes "+"
and Product nodes "x"





Appendix B

Mixing Bayesian Inference and

Binarized Neural Network: a pratical

example

“NEURAL NETWORKS are nowadays the preferred solution for artificial intelli-

gence. They allow obtaining impressive results as long as the practitioner

have a dataset including a lot of data. Even if some studies seek to understand in

detail the principles underlying these very complex networks [157], they are still in-

terpreted by many researchers as black boxes. What is impressive about neural net-

works is their incredible ability to model extremely complex functions. For an input

set, to associate a specific answer or set of outputs with a very low error is an op-

eration that can be done extremely efficiently. But these neural networks are very

bad when there is very little data because they tend to overfit the training set and

therefore do no generalize well. To overcome this weakness, we will generally reduce

the complexity of the neural network when we have small amount of data. But fun-

damentally there is no reason why the amount of data should influence our prior

knowledge about the complexity of the model used. It is more interesting to choose

a model with a lot of parameters but averaged over all the parameters to know the

full posterior distribution. The other question that arises is how much trust can be

placed in a neural network... Multiple examples show that they can very easily be

fooled [193]. ”
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In this appendix, we will consider neural networks as magical black boxes and see how

to use the neuron’s output to perform Bayesian Inference. The neural networks considered

will be Binarized Neural Network. The two main reasons for the choice of Binarized Neural

Networks in this study are: first, they seem to be a bit more reliable in their response than

full precision neural networks. In particular, they have been shown to be more resistant to

adversarial attacks [376] than a conventional full precision neural network. The second reason,

which is the focus of this thesis, is that they seem to be effective candidates for making low-

energy inference with almost as good accuracy as a classical neural network. Therefore, using

them as a simple feature extractor without training and analyzing their output is of very strong

interest. Since Binarized Neural Networks have only two possible outputs for each neuron,

counting the vectors represented by the output neurons is feasible if the number of neurons is

sufficiently small.
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Figure B.1: Using Binarized Neural Networks as a feature extractor to train a Bayesian classi-
fier. (a) We look at the neuron’s output in the middle of an autoencoder trained by
backpropagation to give from an input X the same output X (b) Same kind of obser-
vations but instead of looking at the sub-representation of an autoencoder we look
at what the neuron’s output just before the softmax layer. (c) For each correspond-
ing configuration of neuron output vector, we plotted the corresponding number of
samples of each configuration.

Principle

The question we try to answer here is if we can use a Bayesian inference as the output of the

layer of the Binarized Neural Network rather than softmax. To do so, we trained a Binarized

Neural Network with a particular architecture Figure B.1 (a), we created a bottleneck at the

end of the network of the same size as the number of digits, i.e. 10 here. The training of the

neural network is performed using the usual backpropagation minimizing the log-likelihood
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of the softmax cross-entropy loss. The choice of 10 neurons for the bottleneck is arbitrary, we

use this value because the number of output configurations of the neurons is relatively small

(210 = 1024 configurations).

We used the Binarized Neural Network as a feature extractor, and we observed the config-

urations in Figure B.1 (b) for each set of the handwritten digits. We can see that the configura-

tions of the digits are very distinct from each other. There are a few configurations that overlap

with each other, but in most cases, each digit has a very limited number of possible configura-

tions. To make an exact Bayesian inference, we need to determine different probabilities. The

calculation of the exact inference is expressed in Equation B.1.

P (l abel |Con f i g ur ati on) = P (Con f i g ur ati on|l abel ) P (l abel )

P (Con f i g ur ati on)
(B.1)

The configuration corresponds to the neurons’ activation vector of the layer. From the

training data, or even from a smaller number of data, the different associated probabilities

can be determined. The probability P (l abel ) is the prior of a particular label: if there is the

same amount of images for each category of the handwritten digits, we can assume a prior of

1/10. The probability P (Con f i g ur ati on|l abel ) corresponds to a likelihood matrix of 1024 x

10. For each configuration, we will determine the likelihood of each configuration given the

labels from the Equation B.2.

P (Con f i g ur ati on|l abel ) = 1+#Samples f or the cor r espondi ng l abel

10+#Samples f or the Con f i g ur ati on
(B.2)

This equation is obtained from the generalized form of Laplace’s rule (or Rule of succession)

[377]. The probability P (Con f i g ur ati on) is determined by summing over all the likelihoods

of each label.

By using this Bayesian inference method instead of using a softmax layer, we can have a

real idea of the probabilities corresponding to each of the labels. It also allows us to work with

images that change over time (i.e videos) by replacing the prior distribution by the posterior

distribution of the previous instant. By looking at the posterior distribution of such a Bayesian

inference, it is possible to make our model say that it does not know the answer and therefore

to make no decision when it does not know what the answer is.
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Results

By making such an inference we obtain performances similar to the neural network classifi-

cation with softmax output, i.e. around 97% test accuracy for both. But what is impressive is

when we compare the output probability of the softmax with the output probabilities of the

Bayesian inference. For instance, it is possible to choose a particular threshold probability that

defines in which case the model chooses to make a decision or not. A threshold can be cho-

sen in both cases, the Bayesian inference case and the softmax layer case. The comparison of

these two methods is made in Figure B.2. When the threshold is taken in a way that the model

gives an answer for 90% of the test set, the Bayesian inference has better accuracy than the

softmax layer. During the training, using softmax output, we maximize the log-likelihood of

the posterior but not the distribution of the posterior over all the parameter space, resulting in

inconsistent probability whereas, with Bayes inference, the probability calculated are consis-

tent.
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Figure B.2: Accuracy on the subtest set as a function of the number of samples taken from the
test set, if the probability is smaller than a particular threshold we do not make the
classification for some samples. Three cases are plotted: The softmax layer classi-
fication, The Exact Bayes Inference, and the Naive Bayes Inference. The accuracy
of the exact Bayes inference is always higher than for the softmax layer. When we
make the naive Bayes assumption over the neurons we can see that the accuracy
is not much changed from the exact Bayes inference when the threshold is not too
high, but for a higher threshold (i.e. for fewer samples taken, it looks like a lot like
the softmax layer classification).

We also tried to perform this analysis with an autoencoder Figure B.1(c) rather than a fully

connected neural network. The problem with the autoencoder is that it does not really try to

maximize probabilities on labels, but tries to reconstruct input X. In the case of a Binarized

Neural Network, the size of the latent space of the neurons plays a critical role in the ability of

the autoencoder to reconstruct the input. With 10 neurons, it was not possible to have a good

reconstruction of the input. Nevertheless, it was possible to have good reconstruction perfor-

mances with 128 neurons. The problem is that with 128 neurons the exact Bayesian inference

is already intractable, so we could only evaluate the naive Bayesian inference and not the full
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Bayesian one. The performance was bad with only 79% accuracy on the test set. This low per-

formance is explained by the strong naive hypothesis as it assumes that each neuron reacts

independently from the others given the input X. The independency is very challenging as the

goal of an autoencoder is to keep a maximum of information on X and can therefore correlate

neurons with each other.

The use of a Bayesian interpreter at the output of neural networks can be useful in several

particular cases: if a pre-trained neural network is used on data that do not match the deploy-

ment solution for a real application, to use a multiplicity of models and combine their answer,

and possibly for the use of non-deterministic neural networks with stochastic outputs units

and stochastic weights that can use the reparametrization trick.

We have briefly mentioned here the naive hypothesis of Bayesian inference because it al-

lows us to contextualize our work. The details of the naive inference are presented at the be-

ginning of the Chapter 3. We explain what it implies, and why it can be interesting to perform

such an approximation. Actually, the Chapter 3 is dedicated to the hardware implementation

of a Bayesian machine to perform naive Bayesian inference with a minimum amount of energy.





Appendix C

Synthèse en Français

“DES années soixante-dix à nos jours l’évolution des performances des circuits

électroniques a été fondée exclusivement sur l’amélioration des performances

des transistors. Ce composant a des propriétés extraordinaires puisque lorsque ses

dimensions sont réduites, toutes ses caractéristiques sont améliorées. Du fait de lim-

ites physiques fondamentales, la diminution des dimensions des transistors n’est

plus possible aujourd’hui. De nombreuses nanotechnologies présentant des carac-

téristiques différentes voient le jour, ce qui constitue une opportunité pour dépasser

cette problématique. L’une des voies de recherche possible est de s’inspirer du fonc-

tionnement du cerveau biologique. Ce dernier peut accomplir des tâches complexes

et variées en consommant très peu d’énergie.”
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Introduction et contexte

Les smartphones actuels ont des processeurs puissants mais leur autonomie énergétique est

relativement limitée : un à deux jours pour une utilisation relativement modérée. Afin d’ajouter

des fonctionnalités d’intelligence dans les circuits électroniques, il convient d’accroître cette

efficacité énergétique.

Or réaliser des tâches cognitives à très faible consommation énergétique, c’est ce que fait

notre cerveau puisqu’il consomme environ 20 Watts. Lorsqu’en 2016, Lee Sedol, le meilleur

joueur mondial de go s’est fait battre par « alphago », un algorithme d’intelligence artificielle, il

est rarement précisé que l’algorithme utilisé tournait sur des serveurs consommant plusieurs

dizaines de milliers de Watts.

Dans l’optimal, on voudrait être capable d’effectuer ces même calculs sur une puce minia-

ture tenant dans le creu de la main. Mais pour se faire, il faut non seulement être attentif à

l’optimisation du calcul informatique, mais aussi à celle des capteurs, des écrans, des télécom-

munications et à la récupération d’énergie. Certaines applications, nécessitent de travailler

sans l’intermédiaire d’une connexion réseau, par exemple les interfaces cerveau-machine en

médecine, tels que :

• L’utilisation de prothèses intelligentes pour les amputations et la paralysie.

• Le suivi post-hospitalier à domicile.

• La prévention à destination des personnes âgées.

• La détection et le soin des crises épileptiques, des accidents vasculaires cérébraux ou

encore des crises cardiaques.

Actuellement le traitement de ce type de données est encore réalisé sur des datas-centers

mais soulève de nombreuses problématiques :

• La consommation énergétique.

• Des questions de confidentialité (Les données des utilisateurs pouvant être interceptées

et collectées).

• Des problèmes de sécurité (manipulation des données, attaque par déni de service...).

• La mobilité réduite lorsqu’il n’y a pas de signal de connexion au réseau.

Pour répondre à tous ces défis, une des solutions est de travailler sur des technologies mé-

moires émergentes. Ainsi, en s’inspirant de la recherche en neurosciences et en prenant en

compte les dernières avancées en matière d’intelligence artificielle, nous avons conçu un cir-

cuit hybride mémoires/transistors, implémentant des algorithmes de calcul en mémoire. Trois

algorithmes bio-inspirés sont explorés: le raisonnement bayésien, les réseaux de neurones bi-

naires, et une approche qui exploite davantage le comportement intrinsèque des composants,

le codage en population de neurones.
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Résultats

LES limites fondamentales des transistors sont visibles aujourd’hui par la fréquence max-

imale de fonctionnement qui est bloquée autour de quelques GHz depuis quelques an-

nées déjà. En plus d’être très peu compacts, les circuits mémoires à base de transistors sont

volatiles, l’effet mémoire disparaît lorsque le circuit est éteint. Pour être plus compacts, il faut

ajouter des condensateurs qui ne sont pas compatibles avec une implémentation au cœur du

calcul haute performance.

Les architectures matérielles actuelles cherchent donc à minimiser leurs utilisations, en

utilisant le principe de von Neumann, consistant en une séparation conceptuelle et physique

entre la mémoire vive et le calcul. Plus les technologies des transistors se sont améliorées, plus

la consommation d’énergie liée à l’échange entre la mémoire et le calcul a constitué une part

importante de la consommation totale des circuits.

Pour répondre à cette problématique, nous avons travaillé sur une implémentation totale-

ment orthogonale, où mémoires et calculs sont co-localisés. Les deux technologies mémoires

utilisées étant les mémoires résistives à base d’oxyde (RRAM) et les mémoires magnétiques

(MRAM). Lorsque ces composants sont utilisés de façon binaire, leurs caractéristiques sont

relativement semblables, seule change leur méthode de programmation, la valeur des tensions

à appliquer et leur fiabilité. Mais leurs comportements physiques particuliers, nous ont égale-

ment permis d’explorer de nouvelles pistes.

Deux principaux algorithmes ont été utilisés : les modèles bayésiens et les réseaux de neu-

rones. Ces approches sont optimales pour effectuer un calcul d’inférence (c’est-à-dire une

prédiction) avec un minimum d’énergie, mais sans apprentissage. Après avoir décrit les spé-

cificités des réseaux de neurones quantifiés et plus particulièrement ceux des réseaux de neu-

rones binarisés, nous avons présenté les différences et les potentielles connexions avec le raison-

nement bayésien. Le rôle des composants mémoires émergents est primordial dans l’implémentation

finale sur puce de ces deux algorithmes.

L’un des principaux résultats de cette thèse est l’implémentation matérielle de l’algorithme

d’inférence bayésienne utilisant une puce hybride mémoire/transistor, on y présente :

• Un détail complet de l’implémentation matérielle de l’algorithme au tape-out.

• Les détails de programmation des composants mémoires.

• Une description théorique de l’algorithme implémenté.

• Des hypothèses nécessaires pour créer un système à très faible coût énergétique.

• L’utilisation d’un nouveau paradigme de calcul : le calcul stochastique. Avec ses avan-

tages et ses inconvénients.

Toutes les architectures que nous avons conçues reposent sur une base commune, tel que

sur la Figure C.1. Des matrices mémoires et leurs circuits de périphérie sont juxtaposés les

unes avec les autres, entre chacune d’elles on dispose des circuits logiques qui se chargent des
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calculs numériques.
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Figure C.1: Architecture classique utilisée pour concevoir un modèle de calcul en mémoire.
Des signaux de contrôles se trouvent autour des matrices mémoires, le tout con-
trôlé par des circuits digitaux partagés entre les différents blocs constituant la puce
complète.

La mise en œuvre matérielle des algorithmes intelligents se poursuit avec une étude des

réseaux neuronaux binarisés. Nous nous sommes principalement concentrés sur la mise en

œuvre d’une conception 2T2R, c’est à dire avec deux transistors et deux composants RRAM

pour coder un poids binaire de réseau de neurones. Une étude approfondie de l’impact des

erreurs sur la performance des réseaux de neurones est présentée. Tout d’abord, une compara-

ison de l’effet des erreurs dans la configuration 2T2R vis à vis de la configuration 1T1R. Puis,

une comparaison avec les codes correcteurs d’erreurs. Nous avons pu en conclure que notre

approche est aussi efficace que l’approche utilisant des codes correcteurs d’erreurs mais ne

nécessite pas de circuit supplémentaire pour la détection et la correction de celles-ci.

S’il était nécessaire d’ajouter un circuit de correction pour supprimer les erreurs, dans un

calcul en mémoire, il faudrait le répliquer un très grand nombre de fois. Cela nécessiterait un

très grand nombre de transistors et donc on aurait un impact à la fois sur la taille du circuit

mais aussi sur la consommation énergétique finale.

Afin d’analyser la consommation d’énergie, une projection au niveau du système a été réal-

isée en simulant la mise en œuvre d’un circuit complet avec une perspective sur une technolo-

gie commerciale MRAM. Enfin, une analyse de l’utilisation de l’approche stochastique pour

la première couche des réseaux de neurones est explorée; on y montre que jusqu’à 8 présen-
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tations stochastiques la consommation énergétique peut être diminuée en utilisant cette ap-

proche.

Par la suite nous avons voulu aller plus loin dans l’utilisation des dispositifs émergents en

exploitant le comportement stochastique des MRAM. Après avoir brièvement présenté des

travaux exploitant la caractéristique stochastique pour les réseaux neuronaux bayésiens, et

faisant ainsi un lien avec nos travaux présentés précédemment, nous avons introduit une théorie

des neurosciences complètement différente concernant les neurones stochastiques. Une analo-

gie entre le comportement stochastique des jonctions tunnel super-paramagnétiques et une

population de neurones nous a permis de concevoir une puce hybride STT-MRAM/CMOS dans

un nouveau paradigme informatique.

Enfin, en poursuivant dans l’utilisation du comportement analogique des dispositifs, nous

avons non-seulement amélioré les performances des réseaux de neurones quantifiés, mais

également obtenu des effets de mémoire à long terme et réaliser un apprentissage sur puce. Il

reste encore beaucoup à faire concernant la mise en œuvre complète du processus d’apprentissage,

tant au niveau du système qu’au niveau du dispositif, en identifiant les impacts de la variabilité

et du bruit. En outre, certains aspects algorithmiques du processus d’apprentissage doivent

être retravaillés afin qu’ils puissent être facilement mis en œuvre au niveau du système.

Perspectives

Les dernières avancées des circuits électroniques concernent toujours l’amélioration des tran-

sistors, mais ce n’est pas la seule explication. Dans les dernières générations de cartes graphiques

haute performance, une amélioration de la technologie de la mémoire à large bande passante

a permis d’augmenter la vitesse de transfert entre le cœur du calcul et la mémoire en les rap-

prochant physiquement. Toutes les idées relatives à la réduction de la consommation d’énergie

en rapprochant mémoire et calcul sont validées par l’industrie.

L’objectif de nos travaux est d’améliorer la capacité à réaliser des calculs à faible consom-

mation d’énergie pour les systèmes embarqués. Travailler dans ces conditions implique cer-

taines contraintes que les circuits électroniques à haute performance n’ont pas. Les systèmes

embarqués nécessitent une grande autonomie, un système relativement petit, une utilisation

limitée des réseaux externes et la capacité de traiter les données directement à partir des cap-

teurs. L’idée principale de notre travail est donc d’avoir une grande capacité de mémoire dans

notre puce. Les technologies mémoires commencent à être commercialisées. Leur comporte-

ment non-volatile est déjà intéressant pour l’électronique numérique mais sous exploite la

complexité de leurs caractéristiques. L’une des utilisations futures pourrait donc être d’tintégrer

davantage d’analogique dans les circuits électroniques actuels. Ainsi, nous pourrions améliorer

sensiblement les performances de ces circuits.

Même si elle semble relativement compliquée à mettre en œuvre, utiliser des composants

analogiques n’est pas une nouveauté. L’utilisation de transistors dans leur régime analogique
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est déjà extrêmement courante. L’intégration de nouveaux composants dans la palette de con-

ception des ingénieurs de circuits analogiques est donc quelque chose qui peut être réalisable.

Pour l’instant, les informaticiens spécialisés dans l’intelligence artificielle ne remettent pas en

question les progrès des circuits électroniques. Le sujet des circuits et puces neuromorphiques

dédiés au calcul pour l’intelligence artificielle n’est devenu que récemment un sujet de discus-

sion lors des prestigieuses conférences d’informatique.

Ce qui est intéressant, c’est que la plupart des avancées dans le domaine de l’intelligence

artificielle est basée sur l’augmentation de la taille des modèles. En effet, le grand intérêt des

réseaux de neurones est que l’augmentation de la taille des modèles ainsi celle de la quantité

de données, semble toujours améliorer leurs performances.

Les modèles les plus complexes d’aujourd’hui peuvent contenir des centaines de milliards

de paramètres. Dans ce contexte, quel est l’avenir des systèmes embarqués et comment peuvent-

ils intégrer ces modèles ayant tant de paramètres ? Comme les architectures MobileNets qui

sont particulièrement bien adaptées à la mise en œuvre matérielle des réseaux convolution-

nels, il y a beaucoup de recherches à faire sur l’optimisation des modèles de réseaux neuronaux.

Les deux approches étudiées dans cette thèse cherchent à construire de petits systèmes d’IA,

notre implémentation matérielle des modèles bayésiens peut être très efficace même avec rel-

ativement peu de paramètres et une surcharge mémoire relativement faible. D’autre part, la

quantification des réseaux de neurones présentée permet de réduire élégamment le nombre

de bits nécessaires à l’inférence.

Ces algorithmes, ont la capacité d’intégrer davantage de traitement des données, de nou-

veaux composants mémoires non volatiles, en intégrant des capteurs, et notamment en le

faisant sur une puce spécifique. Le paradigme informatique utilisé jusqu’à présent centré sur

l’architecture von Neumann est difficile à reconsidérer puisqu’il s’agit de repenser tous les cir-

cuits développés pendant des dizaines d’années et ce par des milliers d’ingénieurs.

Une opportunité pour y parvenir pourrait être le hardware open-source. Des architectures

innovantes pourraient avoir le même succès que RISC-V. Cela est d’autant plus pertinent que

l’Internet des Objets est en train d’émerger, ouvrant une toute nouvelle perspective de matériel

pour des applications spécifiques. Des projets universitaires existent déjà et pourraient être

massivement mis en œuvre dans les années à venir.

Le hardware open-source pourrait également être utile pour les circuits neuromorphiques,

ce qui permettrait de développer très rapidement ce domaine. Même s’il est difficile de définir

exactement ce qu’est le domaine neuromorphique, notamment, dans notre travail, les ap-

proches sont extrêmement différentes les unes des autres. Mais rendre libre les architectures

inspirées du cerveau pourraient venir alimenter le domaine de nouvelles idées.

Pour les grandes entreprises technologiques, les réseaux neuronaux artificiels est le princi-

pal domaine de recherche dans lequel des progrès dans la mise en œuvre du matériel restent

à accomplir. Même si les algorithmes de rétro-propagation du gradient sont largement util-

isés depuis des années, les architectures dédiées à un apprentissage efficace sont relativement
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peu développées à l’échelle industrielle, à l’exception du TPU de Google, mais ils n’utilisent

que la technologie CMOS. C’est surtout dans le domaine des systèmes embarqués qu’il existe

des opportunités. Les contraintes sont si importantes qu’elles permettent de réfléchir à des

idées novatrices, et le fait que les conceptions ASIC soient spécifiques à une application nous

permet de les développer davantage. Le domaine du neuromorphique, bien qu’il ait été initié

par Carver Mead, en est encore à ses débuts. Qui sait ce qui reste à découvrir ? Les pistes à

poursuivre sont à la frontière de nombreuses disciplines:

• Informatique et mathématiques, à la fois pour effectuer des simulations et pour com-

prendre qualitativement les résultats expérimentaux.

• Neuroscience, pour explorer les méthodes utilisées par le cerveau pour raisonner dont

certains nouveaux algorithmes d’intelligence artificielle en sont inspiré. Nous l’avons

également fait pour explorer l’utilité des synapses métaplastiques dans le contexte de

l’apprentissage profond.

• Électronique et physique, pour tenter de reproduire certaines caractéristiques du cerveau.

C’est pourquoi il est essentiel, aujourd’hui, de travailler au co-développement matériel/logiciel,

faute de quoi certains domaines de recherche spécifiques pourraient être condamnés à dis-

paraître. Enfin, pour la recherche en neurosciences, je suis convaincu que pour comprendre

tous les mécanismes sous-jacents du cerveau, nous devons reproduire ses principaux mécan-

ismes en développant des circuits électroniques mimétiques.





Bibliography

[1] Bo Lojek. History of semiconductor engineering. Springer, 2007.

[2] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi, Sreenivas

Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedaraman, et al. Cascade

lake: Next generation intel xeon scalable processor. IEEE Micro, 39(2):29–36, 2019.

[3] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI physical design: from graph

partitioning to timing closure. Springer Science & Business Media, 2011.

[4] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric. Stan-

dard cell library design and optimization methodology for asap7 pdk. In 2017 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 999–1004. IEEE,

2017.

[5] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[6] Shahab Siddiqui, Takashi Ando, Rajan K Pandey, and Dominic Schepis. Limits of gate

dielectrics scaling. In Handbook of Thin Film Deposition, pages 107–145. Elsevier, 2018.

[7] David J Frank, Robert H Dennard, Edward Nowak, Paul M Solomon, Yuan Taur, and Hon-

Sum Philip Wong. Device scaling limits of si mosfets and their application dependencies.

Proceedings of the IEEE, 89(3):259–288, 2001.

[8] Karl Rupp. 40 years of microprocessor trend data. In GitHub, 2018.

[9] Kioan Cheon. Water cooling type cooling system for electronic device, January 15 2004.

US Patent App. 10/241,126.

[10] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug

Burger. Dark silicon and the end of multicore scaling. In 2011 38th Annual international

symposium on computer architecture (ISCA), pages 365–376. IEEE, 2011.

[11] Kelin J Kuhn. Considerations for ultimate cmos scaling. IEEE transactions on Electron

Devices, 59(7):1813–1828, 2012.



196 BIBLIOGRAPHY

[12] Nicolas Planes, Oliver Weber, V Barral, S Haendler, D Noblet, D Croain, M Bocat, P-O

Sassoulas, X Federspiel, A Cros, et al. 28nm fdsoi technology platform for high-speed

low-voltage digital applications. In 2012 Symposium on VLSI technology (VLSIT), pages

133–134. IEEE, 2012.

[13] Xuejue Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamoto, Leland Chang, Jakub

Kedzierski, Erik Anderson, Hideki Takeuchi, Yang-Kyu Choi, Kazuya Asano, et al. Sub 50-

nm finfet: Pmos. In International Electron Devices Meeting 1999. Technical Digest (Cat.

No. 99CH36318), pages 67–70. IEEE, 1999.

[14] Mark Neisser and Stefan Wurm. Itrs lithography roadmap: 2015 challenges. Advanced

Optical Technologies, 4(4):235–240, 2015.

[15] Damien Querlioz. "nanoarchitectures" (circuit and system architectures that use nan-

odevices). In 2017 Nanosciences and Integrated Circuits Master programs. Université

Paris-Saclay, 2018.

[16] Mu-Yue Hsiao. A class of optimal minimum odd-weight-column sec-ded codes. IBM

Journal of Research and Development, 14(4):395–401, 1970.

[17] Jie Han and Michael Orshansky. Approximate computing: An emerging paradigm for

energy-efficient design. In 2013 18th IEEE European Test Symposium (ETS), pages 1–6.

IEEE, 2013.

[18] Vivienne Sze. Efficient processing of deep neural networks: from algorithms to hardware

architectures. In 2019 Conference on Neural Information Processing Systems (NeurIPS),

Invited Tutorial. NeurIPS, 2019.

[19] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014

IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

pages 10–14. IEEE, 2014.

[20] Ardavan Pedram, Stephen Richardson, Mark Horowitz, Sameh Galal, and Shahar Kvatin-

sky. Dark memory and accelerator-rich system optimization in the dark silicon era. IEEE

Design & Test, 34(2):39–50, 2016.

[21] Abu Sebastian, Tomas Tuma, Nikolaos Papandreou, Manuel Le Gallo, Lukas Kull, Thomas

Parnell, and Evangelos Eleftheriou. Temporal correlation detection using computational

phase-change memory. Nature Communications, 8(1):1–10, 2017.

[22] John Backus. Can programming be liberated from the von neumann style? a functional

style and its algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

[23] Sparsh Mittal. A survey of techniques for improving energy efficiency in embedded com-

puting systems. arXiv preprint arXiv:1401.0765, 2014.



BIBLIOGRAPHY 197

[24] James E Smith. A study of branch prediction strategies. In 25 years of the international

symposia on Computer architecture (selected papers), pages 202–215, 1998.

[25] H-S Philip Wong, Kerem Akarvardar, Dimitri Antoniadis, Jeffrey Bokor, Chenming Hu,

Tsu-Jae King-Liu, Subhasish Mitra, James D Plummer, and Sayeef Salahuddin. A density

metric for semiconductor technology [point of view]. Proceedings of the IEEE, 108(4):478–

482, 2020.

[26] Shahid H Bokhari. Partitioning problems in parallel, pipeline, and distributed comput-

ing. IEEE transactions on Computers, 37(1):48–57, 1988.

[27] Qing Wu, Massound Pedram, and Xunwei Wu. Clock-gating and its application to low

power design of sequential circuits. IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, 47(3):415–420, 2000.

[28] Jens Spars and Steve Furber. Principles asynchronous circuit design. Springer, 2002.

[29] Kees Van Berkel. Handshake circuits: an asynchronous architecture for vlsi program-

ming. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):391–397,

1993.

[30] Barry Pangrle. Asynchronous design is it time yet? In 2015 Semiconductor Engineering,

2015.

[31] Wim Bogaerts, Martin Fiers, and Pieter Dumon. Design challenges in silicon photonics.

IEEE Journal of Selected Topics in Quantum Electronics, 20(4):1–8, 2013.

[32] Dessislava Nikolova, Sébastien Rumley, David Calhoun, Qi Li, Robert Hendry, Payman

Samadi, and Keren Bergman. Scaling silicon photonic switch fabrics for data center in-

terconnection networks. Optics express, 23(2):1159–1175, 2015.

[33] Bahram Jalali and Sasan Fathpour. Silicon photonics. Journal of lightwave technology,

24(12):4600–4615, 2006.

[34] DJ Richardson, JM Fini, and Lynn E Nelson. Space-division multiplexing in optical fibres.

Nature Photonics, 7(5):354, 2013.

[35] Stefan Alexander Maier. Plasmonics: fundamentals and applications. Springer Science &

Business Media, 2007.

[36] M Mitchell Waldrop. More than moore. Nature, 530(7589):144–148, 2016.

[37] Johann Knechtel, Ozgur Sinanoglu, Ibrahim Abe M Elfadel, Jens Lienig, and Cliff CN Sze.

Large-scale 3d chips: Challenges and solutions for design automation, testing, and trust-

worthy integration. IPSJ Transactions on System LSI Design Methodology, 10:45–62, 2017.



198 BIBLIOGRAPHY

[38] Makoto Motoyoshi. Through-silicon via (tsv). Proceedings of the IEEE, 97(1):43–48, 2009.

[39] Masahiro Sunohara, Takayuki Tokunaga, Takashi Kurihara, and Mitsutoshi Higashi. Sil-

icon interposer with tsvs (through silicon vias) and fine multilayer wiring. In 2008 58th

Electronic Components and Technology Conference, pages 847–852. IEEE, 2008.

[40] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young Kim,

Young Jun Park, Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook Shin, et al. 25.2

a 1.2 v 8gb 8-channel 128gb/s high-bandwidth memory (hbm) stacked dram with effec-

tive microbump i/o test methods using 29nm process and tsv. In 2014 IEEE International

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 432–433. IEEE,

2014.

[41] Chang-Chi Lee, CP Hung, Calvin Cheung, Ping-Feng Yang, Chin-Li Kao, Dao-Long Chen,

Meng-Kai Shih, Chien-Lin Chang Chien, Yu-Hsiang Hsiao, Li-Chieh Chen, et al. An

overview of the development of a gpu with integrated hbm on silicon interposer. In 2016

IEEE 66th Electronic Components and Technology Conference (ECTC), pages 1439–1444.

IEEE, 2016.

[42] JH Smith, S Montague, JJ Sniegowski, JR Murray, and PJ McWhorter. Embedded mi-

cromechanical devices for the monolithic integration of mems with cmos. In Proceedings

of International Electron Devices Meeting, pages 609–612. IEEE, 1995.

[43] Carlos Ríos, Matthias Stegmaier, Peiman Hosseini, Di Wang, Torsten Scherer, C David

Wright, Harish Bhaskaran, and Wolfram HP Pernice. Integrated all-photonic non-volatile

multi-level memory. Nature Photonics, 9(11):725, 2015.

[44] Max M Shulaker, Gage Hills, Rebecca S Park, Roger T Howe, Krishna Saraswat, H-S Philip

Wong, and Subhasish Mitra. Three-dimensional integration of nanotechnologies for

computing and data storage on a single chip. Nature, 547(7661):74–78, 2017.

[45] S Aggarwal, H Almasi, M DeHerrera, B Hughes, S Ikegawa, J Janesky, HK Lee, H Lu,

FB Mancoff, K Nagel, et al. Demonstration of a reliable 1 gb standalone spin-transfer

torque mram for industrial applications. In 2019 IEEE International Electron Devices

Meeting (IEDM), pages 2–1. IEEE, 2019.

[46] K Lee, JH Bak, YJ Kim, CK Kim, A Antonyan, DH Chang, SH Hwang, GW Lee, NY Ji,

WJ Kim, et al. 1gbit high density embedded stt-mram in 28nm fdsoi technology. In 2019

IEEE International Electron Devices Meeting (IEDM), pages 2–2. IEEE, 2019.

[47] H Ishiuchi, T Yoshida, H Takato, K Tomioka, K Matsuo, H Momose, S Sawada, K Yamazaki,

and K Maeguchi. Embedded dram technologies. In International Electron Devices Meet-

ing. IEDM Technical Digest, pages 33–36. IEEE, 1997.



BIBLIOGRAPHY 199

[48] Sparsh Mittal, Jeffrey S Vetter, and Dong Li. A survey of architectural approaches for

managing embedded dram and non-volatile on-chip caches. IEEE Transactions on Par-

allel and Distributed Systems, 26(6):1524–1537, 2014.

[49] Hang-Ting Lue, Tzu-Hsuan Hsu, Yi-Hsuan Hsiao, SP Hong, MT Wu, FH Hsu, NZ Lien,

Szu-Yu Wang, Jung-Yu Hsieh, Ling-Wu Yang, et al. A highly scalable 8-layer 3d vertical-

gate (vg) tft nand flash using junction-free buried channel be-sonos device. In 2010 Sym-

posium on VLSI Technology, pages 131–132. IEEE, 2010.

[50] Micron Technology TM. 3d x-point technology. https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.

[51] Richard F Freitas and Winfried W Wilcke. Storage-class memory: The next storage system

technology. IBM Journal of Research and Development, 52(4.5):439–447, 2008.

[52] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit theory,

18(5):507–519, 1971.

[53] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The miss-

ing memristor found. nature, 453(7191):80–83, 2008.

[54] Sascha Vongehr and Xiangkang Meng. The missing memristor has not been found. Sci-

entific reports, 5:11657, 2015.

[55] WJ Gallagher, Eric Chien, Tien-Wei Chiang, Jian-Cheng Huang, Meng-Chun Shih,

CY Wang, Chih-Hui Weng, Sean Chen, Christine Bair, George Lee, et al. 22nm stt-mram

for reflow and automotive uses with high yield, reliability, and magnetic immunity and

with performance and shielding options. In 2019 IEEE International Electron Devices

Meeting (IEDM), pages 2–7. IEEE, 2019.

[56] Binh Q Le, Alessandro Grossi, Elisa Vianello, Tony Wu, Giusy Lama, Edith Beigne, H-

S Philip Wong, and Subhasish Mitra. Resistive ram with multiple bits per cell: Array-level

demonstration of 3 bits per cell. IEEE Transactions on Electron Devices, 66(1):641–646,

2018.

[57] André Chanthbouala, Arnaud Crassous, Vincent Garcia, Karim Bouzehouane, Stéphane

Fusil, Xavier Moya, Julie Allibe, Bruno Dlubak, Julie Grollier, Stephane Xavier, et al.

Solid-state memories based on ferroelectric tunnel junctions. Nature nanotechnology,

7(2):101–104, 2012.

[58] Radu Berdan, Takao Marukame, Kensuke Ota, Marina Yamaguchi, Masumi Saitoh,

Shosuke Fujii, Jun Deguchi, and Yoshifumi Nishi. Low-power linear computation using

nonlinear ferroelectric tunnel junction memristors. Nature Electronics, pages 1–8, 2020.

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology


200 BIBLIOGRAPHY

[59] Geoffrey W Burr, Rohit S Shenoy, Kumar Virwani, Pritish Narayanan, Alvaro Padilla, Bü-

lent Kurdi, and Hyunsang Hwang. Access devices for 3d crosspoint memory. Journal of

Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Pro-

cessing, Measurement, and Phenomena, 32(4):040802, 2014.

[60] Fabio Pellizzer and Agostino Pirovano. Phase change memory with ovonic threshold

switch, March 30 2010. US Patent 7,687,830.

[61] D Garbin, W Devulder, R Degraeve, GL Donadio, S Clima, K Opsomer, A Fantini, D Cel-

lier, WG Kim, M Pakala, et al. Composition optimization and device understanding of

si-ge-as-te ovonic threshold switch selector with excellent endurance. In 2019 IEEE In-

ternational Electron Devices Meeting (IEDM), pages 35–1. IEEE, 2019.

[62] Jean-Michel Portal, Marc Bocquet, Mathieu Moreau, Hassen Aziza, Damien Deleruyelle,

Yue Zhang, Wang Kang, Jacques-Olivier Klein, YG Zhang, Claude Chappert, et al. An

overview of non-volatile flip-flops based on emerging memory technologies. J. Electron.

Sci. Technol, 12(2):173–181, 2014.

[63] Weisheng Zhao, Eric Belhaire, and Claude Chappert. Spin-mtj based non-volatile flip-

flop. In 2007 7th IEEE Conference on Nanotechnology (IEEE NANO), pages 399–402. IEEE,

2007.

[64] Albert Lee, Chieh-Pu Lo, Chien-Chen Lin, Wei-Hao Chen, Kuo-Hsiang Hsu, Zhibo Wang,

Fang Su, Zhe Yuan, Qi Wei, Ya-Chin King, et al. A reram-based nonvolatile flip-flop

with self-write-termination scheme for frequent-off fast-wake-up nonvolatile proces-

sors. IEEE Journal of Solid-State Circuits, 52(8):2194–2207, 2017.

[65] Weisheng Zhao, Claude Chappert, Virgile Javerliac, and Jean-Pierre Noziere. High speed,

high stability and low power sensing amplifier for mtj/cmos hybrid logic circuits. IEEE

Transactions on Magnetics, 45(10):3784–3787, 2009.

[66] Weisheng Zhao, Mathieu Moreau, Erya Deng, Yue Zhang, Jean-Michel Portal, Jacques-

Olivier Klein, Marc Bocquet, Hassen Aziza, Damien Deleruyelle, Christophe Muller, et al.

Synchronous non-volatile logic gate design based on resistive switching memories. IEEE

Transactions on Circuits and Systems I: Regular Papers, 61(2):443–454, 2013.

[67] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G Fried-

man, Avinoam Kolodny, and Uri C Weiser. Magic—memristor-aided logic. IEEE Transac-

tions on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

[68] Zhong Sun, Giacomo Pedretti, Elia Ambrosi, Alessandro Bricalli, Wei Wang, and Daniele

Ielmini. Solving matrix equations in one step with cross-point resistive arrays. Proceed-

ings of the National Academy of Sciences, 116(10):4123–4128, 2019.



BIBLIOGRAPHY 201

[69] M Kharbouche-Harrari, G Di Pendina, R Wacquez, B Dieny, D Aboulkassimi, J Postel-

Pellerin, and J-M Portal. Light-weight cipher based on hybrid cmos/stt-mram:

Power/area analysis. In 2019 IEEE International Symposium on Circuits and Systems (IS-

CAS), pages 1–5. IEEE, 2019.

[70] DRB Ly, JP Noel, B Giraud, P Royer, E Esmanhotto, N Castellani, T Dalgaty, J-F Nodin,

C Fenouillet-Beranger, E Nowak, et al. Novel 1t2r1t rram-based ternary content address-

able memory for large scale pattern recognition. In 2019 IEEE International Electron

Devices Meeting (IEDM), pages 35–5. IEEE, 2019.

[71] Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M Rabaey, H-S Philip Wong,

Max M Shulaker, and Subhasish Mitra. Brain-inspired computing exploiting carbon nan-

otube fets and resistive ram: Hyperdimensional computing case study. In 2018 IEEE In-

ternational Solid-State Circuits Conference-(ISSCC), pages 492–494. IEEE, 2018.

[72] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi,

and Abu Sebastian. In-memory hyperdimensional computing. Nature Electronics, Jun

2020.

[73] John Von Neumann and Ray Kurzweil. The computer and the brain. Yale University Press,

2012.

[74] Wright brothers’ invention process (1899 - 1902) - researched how things fly. https://

wright.nasa.gov/researched.htm.

[75] JB Furness. Types of neurons in the enteric nervous system. Journal of the autonomic

nervous system, 81(1-3):87–96, 2000.

[76] Christopher D Harvey and Karel Svoboda. Locally dynamic synaptic learning rules in

pyramidal neuron dendrites. Nature, 450(7173):1195–1200, 2007.

[77] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with

segregated dendrites. Elife, 6:e22901, 2017.

[78] Panayiota Poirazi and Athanasia Papoutsi. Illuminating dendritic function with compu-

tational models. Nature Reviews Neuroscience, pages 1–19, 2020.

[79] Joao Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic error

backpropagation in deep cortical microcircuits. arXiv preprint arXiv:1801.00062, 2017.

[80] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. The Journal of physiology,

117(4):500–544, 1952.

[81] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized

populations of model neurons. Biophysical journal, 12(1):1–24, 1972.

https://wright.nasa.gov/researched.htm
https://wright.nasa.gov/researched.htm


202 BIBLIOGRAPHY

[82] William H Calvin and CHARLES F Stevens. Synaptic noise and other sources of ran-

domness in motoneuron interspike intervals. Journal of neurophysiology, 31(4):574–587,

1968.

[83] Semir Zeki. A massively asynchronous, parallel brain. Philosophical Transactions of the

Royal Society B: Biological Sciences, 370(1668):20140174, 2015.

[84] Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake Richards, and Richard

Naud. Burst-dependent synaptic plasticity can coordinate learning in hierarchical cir-

cuits. bioRxiv, 2020.

[85] Eric R Kandel, James H Schwartz, Thomas M Jessell, Department of Biochemistry, Molec-

ular Biophysics Thomas Jessell, Steven Siegelbaum, and AJ Hudspeth. Principles of neu-

ral science, volume 4. McGraw-hill New York, 2000.

[86] Rufin Van Rullen and Simon J Thorpe. Rate coding versus temporal order coding: what

the retinal ganglion cells tell the visual cortex. Neural computation, 13(6):1255–1283,

2001.

[87] Simon J Thorpe. Spike arrival times: A highly efficient coding scheme for neural net-

works. Parallel processing in neural systems, pages 91–94, 1990.

[88] Gyorgy Buzsáki, Rodolfo Llinas, Wolf Singer, Alain Berthoz, and Yves Christen. Temporal

coding in the brain. Springer Science & Business Media, 2012.

[89] Alexandre Pouget, Peter Dayan, and Richard Zemel. Information processing with popu-

lation codes. Nature Reviews Neuroscience, 1(2):125–132, 2000.

[90] Martin Boerlin and Sophie Denève. Spike-based population coding and working mem-

ory. PLoS computational biology, 7(2), 2011.

[91] Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. Current opinion

in neurobiology, 14(4):481–487, 2004.

[92] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[93] Alvin I Goldman et al. Theory of mind. The Oxford handbook of philosophy of cognitive

science, 1, 2012.

[94] Stanislas Dehaene. Le cerveau statisticien: la révolution bayésienne en science cogni-

tives. In 2011-2012 College de France. College de France, 2012.

[95] Stanislas Dehaene. Le bébé statisticien : les théories bayésiennes de l’apprentissage. In

2012-2013 College de France. College de France, 2013.



BIBLIOGRAPHY 203

[96] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. Spike-timing-dependent

plasticity: a comprehensive overview. Frontiers in synaptic neuroscience, 4:2, 2012.

[97] Damien Querlioz, Olivier Bichler, Philippe Dollfus, and Christian Gamrat. Immunity to

device variations in a spiking neural network with memristive nanodevices. IEEE Trans-

actions on Nanotechnology, 12(3):288–295, 2013.

[98] Harel Z Shouval, Samuel S-H Wang, and Gayle M Wittenberg. Spike timing dependent

plasticity: a consequence of more fundamental learning rules. Frontiers in computa-

tional neuroscience, 4:19, 2010.

[99] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. Stdp

as presynaptic activity times rate of change of postsynaptic activity. arXiv preprint

arXiv:1509.05936, 2015.

[100] Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier.

Continual weight updates and convolutional architectures for equilibrium propagation.

arXiv preprint arXiv:2005.04169, 2020.

[101] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436,

2015.

[102] Geoffrey Hinton. How to do backpropagation in a brain. In Invited talk at the NIPS’2007

deep learning workshop, volume 656, 2007.

[103] John J Hopfield. Neurons with graded response have collective computational prop-

erties like those of two-state neurons. Proceedings of the national academy of sciences,

81(10):3088–3092, 1984.

[104] Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines. New York, NY;

John Wiley and Sons Inc., 1988.

[105] Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neu-

ral networks: Tricks of the trade, pages 599–619. Springer, 2012.

[106] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the

likelihood gradient. In Proceedings of the 25th international conference on Machine learn-

ing, pages 1064–1071, 2008.

[107] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[108] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton.

Backpropagation and the brain. Nature Reviews Neuroscience, pages 1–12, 2020.



204 BIBLIOGRAPHY

[109] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.

Trends in cognitive sciences, 2019.

[110] Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and

Damien Querlioz. Scaling equilibrium propagation to deep convnets by drastically re-

ducing its gradient estimator bias. arXiv preprint arXiv:2006.03824, 2020.

[111] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-

sentations by error propagation. Technical report, California Univ San Diego La Jolla Inst

for Cognitive Science, 1985.

[112] Paul John Werbos. The roots of backpropagation: from ordered derivatives to neural net-

works and political forecasting, volume 1. John Wiley & Sons, 1994.

[113] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hier-

archical features for scene labeling. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1915–1929, 2012.

[114] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. Nature, 323(6088):533, 1986.

[115] NVIDIA. Powering change with ai and deep learning, https://www.nvidia.com/en-

us/deep-learning-ai. In NVIDIA-website, 2020.

[116] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proc. ISCA, pages 1–12. IEEE, 2017.

[117] Google. Edge tpu, https://cloud.google.com/edge-tpu. In Google. Google, 2020.

[118] Movidius. Movidius stick, https://www.intel.com/content/www/us/en/support/articles/000033354/boards-

and-kits/neural-compute-sticks.html. In Movidius. Intel, 2020.

[119] Arthur Stoutchinin, Francesco Conti, and Luca Benini. Optimally scheduling cnn convo-

lutions for efficient memory access. arXiv preprint arXiv:1902.01492, 2019.

[120] Avishek Biswas and Anantha P Chandrakasan. Conv-ram: An energy-efficient sram with

embedded convolution computation for low-power cnn-based machine learning appli-

cations. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC), pages 488–

490. IEEE, 2018.

[121] Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shimpei Sato, Hiroki

Nakahara, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Tetsuya Asai, Tadahiro Kuroda,

et al. Brein memory: A single-chip binary/ternary reconfigurable in-memory deep neu-

ral network accelerator achieving 1.4 tops at 0.6 w. IEEE Journal of Solid-State Circuits,

53(4):983–994, 2017.



BIBLIOGRAPHY 205

[122] Fabien Alibart, Elham Zamanidoost, and Dmitri B Strukov. Pattern classification by

memristive crossbar circuits using ex situ and in situ training. Nature communications,

4(1):1–7, 2013.

[123] Geoffrey W Burr et al. Experimental demonstration and tolerancing of a large-scale neu-

ral network (165 000 synapses). IEEE Trans. Electron. Dev., 62(11):3498–3507, 2015.

[124] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat,

Carmelo di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP Farinha,

et al. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature, 558(7708):60–67, 2018.

[125] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul

Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A convolutional neu-

ral network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Com-

puter Architecture News, 44(3):14–26, 2016.

[126] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined reram-based

accelerator for deep learning. In 2017 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 541–552. IEEE, 2017.

[127] Steve B Furber, David R Lester, Luis A Plana, Jim D Garside, Eustace Painkras, Steve Tem-

ple, and Andrew D Brown. Overview of the spinnaker system architecture. IEEE Trans-

actions on Computers, 62(12):2454–2467, 2012.

[128] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,

Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi:

A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99,

2018.

[129] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Fil-

ipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million

spiking-neuron integrated circuit with a scalable communication network and interface.

Science, 345(6197):668–673, 2014.

[130] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-

timing-dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

[131] Adrien F Vincent et al. Spin-transfer torque magnetic memory as a stochastic memristive

synapse for neuromorphic systems. IEEE T. Biomed. Circ. S., 9(2):166–174, 2015.

[132] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones, Michael

Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al. Deep learning with

coherent nanophotonic circuits. Nature Photonics, 11(7):441, 2017.



206 BIBLIOGRAPHY

[133] Johnny Moughames, Xavier Porte, Michael Thiel, Gwenn Ulliac, Laurent Larger, Maxime

Jacquot, Muamer Kadic, and Daniel Brunner. Three-dimensional waveguide intercon-

nects for scalable integration of photonic neural networks. Optica, 7(6):640–646, 2020.

[134] Noboru Yamada, Eiji Ohno, Nobuo Akahira, Ken’ichi Nishiuchi, Ken’ichi Nagata, and

Masatoshi Takao. High speed overwritable phase change optical disk material. Japanese

Journal of Applied Physics, 26(S4):61, 1987.

[135] J Feldmann, N Youngblood, C David Wright, H Bhaskaran, and WHP Pernice. All-optical

spiking neurosynaptic networks with self-learning capabilities. Nature, 569(7755):208–

214, 2019.

[136] Wim Bogaerts, Pieter Dumon, Dries Van Thourhout, and Roel Baets. Low-loss, low-

cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Optics letters,

32(19):2801–2803, 2007.

[137] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant, Jose M Gutiérrez,

Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Photonic information processing be-

yond turing: an optoelectronic implementation of reservoir computing. Optics express,

20(3):3241–3249, 2012.

[138] Kristof Vandoorne, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert Mor-

thier, David Verstraeten, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. Ex-

perimental demonstration of reservoir computing on a silicon photonics chip. Nature

communications, 5(1):1–6, 2014.

[139] Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin Schrauwen,

Marc Haelterman, and Serge Massar. Optoelectronic reservoir computing. Scientific re-

ports, 2:287, 2012.

[140] François Duport, Bendix Schneider, Anteo Smerieri, Marc Haelterman, and Serge Massar.

All-optical reservoir computing. Optics express, 20(20):22783–22795, 2012.

[141] Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, and Wei D Lu. Reser-

voir computing using dynamic memristors for temporal information processing. Nature

communications, 8(1):2204, 2017.
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Depuis les années soixante-dix l'évolution des 

performances des circuits électroniques repose 

exclusivement sur l'amélioration des perfor-

mances des transistors. Ce composant a des 

propriétés extraordinaires puisque lorsque ses 

dimensions sont réduites, toutes ses caractéris-

tiques sont améliorées. Mais, dû à certaines li-

mites physiques fondamentales, la diminution 

des dimensions des transistors n’est plus pos-

sible. Néanmoins, de nouveaux nano-compo-

sants mémoire innovants qui peuvent être inté-

gré conjointement avec les transistors voient le  

jour tant  au niveau académique qu'industriel, 

ce qui constitue une opportunité pour 

repenser complètement l'architecture des 

circuits électroniques actuels. L'une des voies 

de recherche possible est l’inspiration du 

fonctionnement du cerveau biologique. Ce 

dernier peut accomplir des tâches complexes 

et variées en consommant très peu d’énergie. 

Ces travaux de thèse explorent trois 

paradigmes neuro-inspirés pour l'utilisation 
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approches explore différentes problématiques 

du calcul en mémoire. 
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While electronics has prospered inexorably for 

several decades, its leading source of progress 

will stop in the next coming years, due to the 

fundamental technological limits of transistors. 

Nevertheless, microelectronics is currently 

offering a major breakthrough: in recent years, 

memory technologies have undergone 

incredible progress, opening the way for 

multiple research venues in embedded systems. 

Additionally, a major feature for future years 

will be the ability to integrate different 

technologies on the same chip.  

new emerging memory devices that can be 

embedded in the core of the CMOS, such as 

Resistive Random Access Memory (RRAM) or 

Spin Torque Magnetic Tunnel Junction (ST-

MRAM) based on naturally intelligent in-

memory-computing architecture. Three brain-

inspired algorithms are carefully examined: 

Bayesian reasoning binarized neural networks, 

and an approach that further exploits the 

intrinsic behavior of components, population 

coding of neurons.   

Each of these approaches explores different 

aspects of in-memory computing. 
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