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Abstract

In recent years, with more than 3 million applications on its official store, Google’s Android has dominated
the market of mobile operating systems worldwide. Despite this success, Google has continued evolving its
operating system and its toolkits to ease application development. In 2017 Google declared Kotlin as an
official Android programming language. More recently, during the Google I/O 2019, Google announced
that Android became ‘Kotlin-first’, which means that new API, libraries, and documentation will target
Kotlin and eventually Java and Kotlin as preferred language to create new Android applications.

Kotlin is a programming language that runs on the Java Virtual Machine (JVM) and it is fully interoperable
with Java because both languages are compiled to JVM bytecode. Due to this characteristic, Android
developers do not need to migrate their existing applications to Kotlin to start using Kotlin in these
applications. Moreover, Kotlin provides a different approach to write applications because it combines
object-oriented and functional features. Therefore, we hypothesize that the adoption of Kotlin by developers
may affect different aspects of Android applications’ development. However, one year after this first
announcement, there were no studies in the literature about Kotlin. In this thesis, we conducted a series of
empirical studies to address these lacks and build a better understanding of creating high-quality Android
applications using Kotlin.

First, we carried a study to measure the degree of adoption of Kotlin. Our results showed that 11% of the
studied Android applications had adopted Kotlin. Then, we analyzed how the adoption of Kotlin impacted
the quality of Android applications in terms of code smells. We found that the introduction of Kotlin
in Android applications initially written in Java produces a rise in the quality scores from 50% to 80%
according to the code smell considered. We analyzed the evolution of usage of features introduced by
Kotlin, such as Smart cast, and how the amount of Kotlin code changes over applications’ evolution. We
found that the number of instances of features tends to grow throughout applications’ evolution. Finally,
we focused on the migration of Android applications from Java to Kotlin. We found that 25% of the open
source applications that were initially written in Java have entirely migrated to Kotlin, and for 19%, the
migration was done gradually, throughout several versions, thanks to the interoperability between Java and
Kotlin. This migration activity is challenging because: a) each migrated piece of code must be exhaustively
tested after the migration to ensure it preserves the expected behavior; b) a project can be large, composed
of several candidate files to be migrated.

In this thesis, we present an approach to support migration, which suggests, given a version of an application
written in Java and eventually, in Kotlin, the most convenient files to migrate. We evaluated our approach’s
feasibility by applying two different machine learning techniques: classification and learning-to-rank. Our
results showed that both techniques modestly outperform random approaches. Nevertheless, our approach
is the first that proposes the use of machine learning to recommend file-level migrations. Therefore, our
results define a baseline for future work. Since the migration from Java to Kotlin may positively impact the
application’s maintenance and that migration is time-consuming and challenging, developers may use our
approach to select the files to be migrated first. Finally, we discuss several research perspectives opened by
our results that can improve the experience of creating high-quality Android applications using Kotlin.

Keywords: Android development, Kotlin, adoption, evolution, migration, machine learning
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Résumé

Ces derniéres années, avec plus de 3 millions d’applications sur sa boutique officielle, Android de Google a
dominé le marché des systémes d’exploitation mobiles dans le monde entier. Malgré ce succes, Google a
continué a faire évoluer son systeme d’exploitation et ses kits d’outils pour faciliter le développement des
applications. En 2017, Google a déclaré Kotlin en tant que langage de programmation Android officiel. Plus
récemment, pendant le Google I/0O 2019, Google a annoncé qu’Android devenait ‘Kotlin-first’, ce qui signifie
que de nouvelles API, bibliothéques et documentations cibleront en priorité Kotlin, et éventuellement Java
et Kotlin, comme langage préféré pour créer de nouvelles applications Android.

Kotlin est un langage de programmation qui s’exécute sur la machine virtuelle Java (JVM) et il est entie-
rement interopérable avec Java car les deux langages sont compilés en bytecode JVM. En raison de cette
caractéristique, les développeurs Android n'ont pas besoin de migrer leurs applications existantes vers
Kotlin pour commencer a utiliser Kotlin dans ces applications. De plus, Kotlin propose une approche
différente pour écrire des applications car il combine des fonctionnalités orientées objet et fonctionnelles.
Par conséquent, nous émettons I’hypothése que I'adoption de Kotlin par les développeurs Android peut
affecter différents aspects du développement des applications Android. Cependant, un an apres cette
premiére annonce, il n’y avait aucune étude dans la littérature sur Kotlin. Dans cette these, nous avons
mené une série d’études empiriques pour combler ces lacunes et développer une meilleure compréhension
de la création d’applications Android de haute qualité a ’aide de Kotlin.

Tout d’abord, nous avons réalisé une étude pour mesurer le degré d’adoption de Kotlin. Nos résultats ont
montré que 11% des applications Android étudiées avaient adopté Kotlin. Ensuite, nous avons analysé
I'impact de I'adoption de Kotlin sur la qualité des applications Android en termes de défauts de code. Nous
avons constaté que I'introduction du code Kotlin dans les applications Android initialement écrites en
Java produit une augmentation des scores de qualité de 50% a 80% selon les défauts de code considérés.
Nous avons analysé I’évolution de 'utilisation des fonctionnalités introduites par Kotlin, telles que Smart
cast, et comment la quantité de code Kotlin change au fil de I’évolution des applications. Nous avons
constaté que le nombre d’instances de fonctionnalités a tendance a augmenter tout au long de 1’évolution
des applications. Enfin, nous nous sommes concentrés sur la migration des applications Android de Java
vers Kotlin. Nous avons constaté que 25% des applications open source initialement écrites en Java ont
complétement migré vers Kotlin, et pour 19%, la migration s’est faite progressivement, sur plusieurs
versions, grace a 'interopérabilité entre Java et Kotlin. Cette activité de migration est difficile car : a)
chaque morceau de code migré doit étre testé de maniere exhaustive apres la migration pour s’assurer qu’il
préserve le comportement attendu; b) un projet peut étre énorme, composé de plusieurs dossiers candidats
a migrer.

Dans cette thése, nous présentons une approche de prise en charge de la migration, qui propose, étant donné
une version d’une application écrite en Java et éventuellement, en Kotlin, les fichiers les plus pratiques a
migrer. Nous avons évalué la faisabilité de notre approche en appliquant deux techniques d’apprentissage
automatique différentes : la classification et l'apprentissage par rang. Nos résultats ont montré que les deux
techniques surpassent légerement les approches aléatoires. Toutefois, notre approche est la premiére a
proposer 'utilisation du machine learning pour recommander des migrations au niveau des fichiers. Par
conséquent, nos résultats définissent une base de référence pour les travaux futurs. Comme la migration de
Java vers Kotlin peut avoir un impact positif sur la maintenance de ’application et que la migration est
longue et difficile, les développeurs peuvent utiliser notre approche pour sélectionner les fichiers a migrer
en premier. Enfin, nous discutons de plusieurs perspectives de recherche ouvertes par nos résultats qui
peuvent améliorer 'expérience de création d’applications Android de haute qualité a I’aide de Kotlin.

Mots clés : développement Android, Kotlin, adoption, évolution, migration, apprentissage automatique
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Chapter

Introduction

1.1 Context

The development of applications for mobile devices started more than 10 years ago, but since
the iPhone AppStore, a website that allows users to download applications, opened in July 2008,
there has been exponential growth in mobile application development [274]. Over that time to
the present day, mobile development platforms have evolved, and today one platform dominates
this market, Google’s Android, leading mobile operating system worldwide in July 2020 with a
74.6 percent share [252].

Since the first release of Google’s mobile operating system, developers have been developing
applications mostly using Java and, in some specific scenarios, using C++. Developers use the
official [DE|(Integrated Development Environment), named Android Studio, and a[SDK]
[Development Kit) provided by Google to build Android applications. The SDK compiles the Java
code into Dalvik bytecode, which is then packaged on an apk. Then, developers submit those
apks to application stores, such as the official, named Google Play Store, which currently has
more than 3 million applications in its official store [17]. Android users can install applications
into their Android devices by downloading those apks directly from the applications stores.

Despite the Android operating system’s success, different development approaches and
frameworks have emerged to ease mobile applications” development during the last years [200}
180]. For instance, approaches such as PhoneGap/Cordova [16]] from Adobe, Xamarin from
Microsoft [192], React-Native from Facebook [81]], and more recently Flutter from Google [100],
aim at facilitating the development of multi-platform mobile applications by allowing developers
to write applications using a non-native programming language and then to obtain a version of
a native version for each platform (Android and iOS). Meanwhile, Google and Apple continue
evolving their development toolkits to build native applications to avoid mobile developers
migrating to such third-party development frameworks.

In an attempt to ease mobile programming practice, in June 2014, Apple released Swift, a
modern, multi-paradigm language that combines imperative, object-oriented, and functional
programming for developing iOS applications [231]). Similarly, in 2017 Google announced the
Kotlin programming language as an officially supported language for Android development [53].
Kotlin is a pragmatic programming language that runs on the[Java Virtual Machine| [VM) and it
is fully interoperable with Java because both Java and Kotlin code is compiled to[JVM]bytecode.
Consequently, it is possible to mix Kotlin and Java code in the same application, call Kotlin code

1
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from Java code, and the opposite. Kotlin provides a different approach to write applications
because it combines object-oriented and functional features, some of them not present in Java or
not available for Android development [57).

The announcement made by Google promoting Kotlin as an official Android language kicked
off a change in the development environment of the most popular operating system of mobile
devices. More recently, during the Google I/0O 2019, Google announced a big change. They
declared that the Android became ‘Kotlin-first’, which means that new API, libraries, and
documentation will target Kotlin and eventually Java [107]], and also declared Kotlin as preferred
language to create new Android applications [69]]. Therefore, now developers have two options
of official programming language for writing applications: Java and Kotlin.

Android applications that are high-rated on the Google Play Store are updated more fre-
quently to exploit the latest features provided by the newest versions of the Android SDK [260].
As a consequence of the fact that the Android platform has become ‘Kotlin-first’, developers
and companies would need to adopt Kotlin to keep their applications updated with the new
platform’s features.

Due to the interoperability between Kotlin and Java, to use Kotlin for creating Android appli-
cations, developers have roughly three possible approaches: 1) they can add new functionalities
written in Kotlin and maintain the existing Java code, 2) they can replace portions of existing
Java code with Kotlin code, or 3) they can migrate the Java code entirely to Kotlin. Therefore,
Android developers do not need to migrate their applications completely as it would happen
when migrating other legacy code e.g., from COBOL to Java, because it is possible to evolve these
applications using both languages.

1.2 Problems

Previous works have shown that software written with multiple programming languages is more
defect proneness [[144]. Moreover, the simple fact of adopting another programming language
may affect software quality [230]. Therefore, we hypothesize that the adoption of Kotlin by
Android developers may affect different aspects of Android applications’ development. However,
in January of 2018, when we started this research, there were no studies about Kotlin in the
literature.! Consequently, there was no knowledge about the impact of adopting Kotlin.

This thesis aims to address these lacks and build a better understanding of creating high-
quality Android applications using Kotlin. We believe this understanding is helpful for the
research community, developers, and practitioners working on mobile applications. It is worth
noting that there was no study about Kotlin in the literature when we started this thesis.

To build this understanding, this thesis addresses different research problems. We detail in
the following these problems and the motivation behind our focus on them.

1.2.1 Problem 1 - The lack of knowledge about the adoption of Kotlin

Kotlin became an official Android programming language in 2017, but until 2018 (this thesis
started in February 2018), there was no study about Kotlin in the literature. Consequently, there
was no scientific evidence that Kotlin has been used to build Android applications. Therefore,
before trying to understand the possible consequences of adopting Kotlin by Android developers,
it was necessary to verify whether Kotlin has been adopted to measure the degree of adoption
and identify such applications to conduct further studies.

IThe first study about Kotlin was published in September 2018 [84].
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1.2.2 Problem 2 - The impact in the quality of Android applications

Since mobile applications’ emergence as new mainstream software systems, researchers were
interested in bad development practices in these frameworks, a.k.a. code smells [109]. Code
smells are well-known in the object-oriented development community as poor or bad practices
that negatively impact software maintainability [[87]. Previous studies assessed the impact of
code smells on application performance [116]], power consumption [43}/197,|215] and quality in
terms of code smells [[115]. However, none of these studies have targeted Android Kotlin-based
applications. Therefore, there is no knowledge about how the adoption of Kotlin impacts the
applications’ quality.

1.2.3 Problem 3 - The evolution of Kotlin code

As Kotlin is fully interoperable with Java, it implies that a developer can introduce Kotlin code
into their Java-based applications without migrating that existing code. Thus, an application
written initially in Java can evolve, for instance, by adding Kotlin gradually. Moreover, Kotlin
combines object-oriented and functional features, which brings the development of Android
applications programming language features not provided by Java such as Coroutines (a feature
that provides a new way of writing asynchronous, non-blocking code). However, to the best
of our knowledge, there is no study in the literature about the evolution of Kotlin code and
the usage of Kotlin features by Android developers. Therefore, we do not know which Kotlin
features developers are using or whether they are using features not available in Java. How-
ever, this lack of knowledge negatively affects four audiences: i) researchers are not aware of
the research gaps (i.e., the actual unsolved problems faced by the developers) and thus miss
opportunities to improve the current state of the art, ii) language and library designers do not
know if the developers effectively use the programming constructs and APIs they provide or
are rather misused or underused, iii) tool builders do not know how to tailor their tools, such
as recommendation systems and code assistants, to the developers’ actual needs and practices
when using Kotlin, iv) developers are not aware of the good and bad practices related to the use
of Kotlin features [|186].

1.2.4 Problem 4 - Migrating applications from Java to Kotlin

Historically Android applications have been written in Java since 2008. With the announcements
that stated Kotlin as an official Android programming language, Google changed the Android
development environment. Moreover, Google decided that new Android features, APIs, and
documentation will target Kotlin firstly. Therefore, developers and companies that want to keep
updated with the Android platform’s new features may need to work with Kotlin. Nevertheless,
developers do not need to migrate all Java code, and consequently, their applications, because
Kotlin is interoperable with Java. Developers may add Kotlin code as much as they desire or even
migrate their applications gradually. A gradual migration means that a Java-based application is
converted to Kotlin throughout its version. Thus, an application migrated gradually has at least
three versions considering the presence of Java and Kotlin: 1) A version containing only Java
code, 2) a version containing Java and Kotlin code, and 3) a version containing Kotlin code. The
migration process is challenging because it is necessary to ensure that the application’s behavior
remains unchanged in addition to code translation. Therefore, it is a time-consuming task, even
for a big company. [45]. However, to the best of our knowledge, the currently available tool, the
auto-converter from Android Studio, only helps developers in code translation. It does not help
developers decide which file to migrate first, which is especially important to gradually migrate
an application.
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1.3 Thesis Contribution

To address the aforementioned problems, we conduct in this thesis a set of studies that contribute
to the research about the development of Android applications using Kotlin. We summarize
these contributions in the following subsections.

1.3.1 Contribution 1 - The study about the adoption of Kotlin

The first contribution of this thesis is a study about the adoption of Kotlin by Android developers.
In this study, we propose a methodology for detecting applications written in Kotlin. Using our
methodology, we analyze the source code and the binary files of 2167 Android applications
and their 19 838 versions. This study shows that 11% of the studied Android applications have
adopted Kotlin. Moreover, among applications that adopted Kotlin, it highlights that most
applications have at least 80% of their codebase written in Kotlin.

1.3.2 Contribution 2 - Showing the impact of the adoption of Kotlin on the
quality of Android applications

The second contribution of this thesis is an empirical study that shows the impact of the adoption
of Kotlin on Android applications’ quality in terms of the occurrence of code smells [99]. We use
PAPRIKA [117], a static analysis tool capable of identifying code smells on the JVM byte-code,
to perform this analysis. This study covers 4 Android-specific, 6 object-oriented code smells
and 2 167 Android applications. Using PAPRIKA, we analyze the proportion of applications
affected by code smells, and we perform a more in-depth analysis comparing the proportion of
applications’ entities affected by code smells. The results showed that Java applications have
more entities affected by all object-oriented code smells (4) and by one Android code smell.
Moreover, it shows that the introduction of Kotlin code in Android applications initially written
in Java produces a rise in the quality scores from 50% to 80% of the Android applications
according to the code smell considered. This fact suggests that the migration of applications to
Kotlin may reduce the occurrences of code smells and improve its quality.

1.3.3 Contribution 3 - The evolution of Kotlin code in Android applications

The third contribution of this thesis comprises two empirical studies focused on the evolution
of Kotlin code into Android applications. First, we investigate how the amount of Kotlin
code changes over the evolution of Android applications. In particular, in this study, we
investigate whether developers use Kotlin to create new applications from scratch or to add
new functionalities into existing Java-based applications, or even if they are migrating Java
code to Kotlin. Then, in the second study, we focus on the 26 Kotlin features introduced, such
as Smart cast.” In particular, we explore four aspects of features usage: i) which features are
adopted, ii) what is the degree of adoption, iii) when are these features added into Android
applications for the first time, and iv) how the usage of features evolves along with applications’
evolution. The first study results show that once Kotlin is introduced into an application, it
tends to become the repository’s dominant language. Moreover, it also shows that 25% of the
studied Android applications that introduced Kotlin have entirely migrated. Therefore, these
findings suggest that the amount of Kotlin code in Android applications tends to increase in
the next years, likewise the number of migrated applications. The second study results show

2Smart cast is a Kotlin feature that may avoid the use of explicit cast operators. More details are available in
Appendix ]
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that Android developers are using all the studied Kotlin features that are not available in Java,
including the experimental ones. Furthermore, it shows that the number of instances of features
tends to grow throughout applications’ evolution. These results confirm that the community of
Android developers has been using Kotlin consistently.

1.3.4 Contribution 4 - An approach to assist the migration of Android appli-
cations

The last contribution of this thesis is an approach to assist Android developers in migrating
applications to Kotlin. This approach applies machine learning techniques to suggest file-level
migrations. File-level migration is important since converting classes in a different order may
give different results [1]. Moreover, deciding which file migrate first arbitrarily may cause
some re-work [204]. To evaluate our approach, we built a large-scale corpus of open source
projects that migrated Java files to Kotlin and applied two different machine learning techniques:
classification and learning-to-rank. Our results showed that both techniques outperforms a
random approach. The best classification model, Random Forest, showed a 16% improvement
in accuracy when compared with a random approach. On the other hand, our learning-to-
rank model outperforms a random approach with at least 50%, but this result is still limited
compared to a hypothetical perfect model. To the best of our knowledge, our study is the
first one the investigates the performance of classification and learning-to-rank models on file-
level migrations. Therefore, these results establish the initial baseline on the suggestion of file
migration

1.4 Outline

The remainder of this dissertation is composed of 5 chapters as follows:

Chapter 2]- State of the art: This chapter provides an overview of previous work that focuses
on Kotlin, the quality of Android applications, software maintenance, and evolution, focusing
on programming languages and machine learning techniques applied to software engineering.

Chapter[3]- The adoption of Kotlin by Android developers: This chapter presents a study on
the adoption of Kotlin by Android developers. This chapter is a revised version of the following

paper:

* Bruno Goéis Mateus and Matias Martinez. “An empirical study on quality of Android
applications written in Kotlin language”. In: Empirical Software Engineering 24 (6) (2019),
pp. 3356-3393. por: [10. 1007/510664-019-09727-4

Chapter [4] - Kotlin and the quality of Android applications: This chapter describes an
empirical study that investigates the impact of the adoption of Kotlin in Android applications’
quality in terms of code smells. This chapter is a revised version of the following paper:

* Bruno Goéis Mateus and Matias Martinez. “An empirical study on quality of Android
applications written in Kotlin language”. In: Empirical Software Engineering 24 (6) (2019),
pp. 3356-3393. por: [10. 1007/510664-019-09727-4

Chapter [5]- The evolution of Kotlin code: This chapter shows a study about the evolution
of Kotlin code in Android applications and the usage of Kotlin features by Android developers.
This chapter is a revised version of the following paper:


https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.1007/s10664-019-09727-4
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* Bruno Goéis Mateus and Matias Martinez. “An empirical study on quality of Android
applications written in Kotlin language”. In: Empirical Software Engineering 24 (6) (2019),
pp. 3356-3393. por: |10. 1007/510664-019-09727-4

* Bruno Gois Mateus and Matias Martinez. “On the Adoption, Usage and Evolution of Kotlin
Features in Android Development”. In: Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). ESEM ’20. Bari,
Italy: Association for Computing Machinery, 2020. 1sBN: 9781450375801. por: |10. 1145/
3382494 .3410676

Chapter [6]- Using machine learning to assist migration of Android applications: This
chapter presents a study investigating the feasibility of using a machine learning model to assist
developers who want to migrate their applications to Kotlin.

Chapter|[7]- Conclusion: This chapter presents the conclusion of this thesis and the short
and long-term perspectives for our research.

We list our publications in Appendix[A]


https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.1145/3382494.3410676
https://doi.org/10.1145/3382494.3410676

Chapter

State of the Art

In this chapter, we review the works that are closely related to our research topic. As Kotlin
is the center of this work, Section presents Kotlin and the literature about Kotlin and its
use to develop mobile applications. Section [2.2] presents studies about the quality of mobile
applications. Section [2.3.1|reports studies about the evolution of the usage of programming
languages. Finally, Section [2.4]reviews studies that apply machine learning classification and
learn-to-Ranking to solve software engineering problem:s.

2.1 Kotlin

In this section, we first present the history of Kotlin. Then, we highlight how Android developers
can use Kotlin to create applications. Finally, we describe the literature about Kotlin.

2.1.1 History of Kotlin

Kotlin is a statically typed programming language that combines object-oriented and functional
features, some of them not available in Java, for instance, Smart cast (See Appendix. Designed
to be an industrial-strength object-oriented language and a ‘better language’ than Java, but still,
be fully interoperable with Java code [134].

Kotlin’s history started in July 2011, when JetBrains, a Czech software development company,
unveiled Project Kotlin, a new language for the [Java Virtual Machine| (JVM), which had been
under development for a year [149]]. Less than one year later, in February 2012, JetBrains open
sourced the project under the Apache 2 license [275]. However, only in February 2016, its first
version, Kotlin 1.0, was officially released [31]. In 2017, Kotlin reached an important milestone,
with two versions released that year, Kotlin 1.1 in February and Kotlin 1.2 in November. Kotlin
was announced as the third programming language fully supported for Android, in addition
to Java and C++, during the Google I/O conference in May [53]]. This announcement brought
the possibility for developers to use Kotlin instead of Java to write Android applications and,
consequently, diffuse the use of Kotlin among Android developers. In October 2018, Kotlin 1.3,
well-marked by Coroutines’ addition for asynchronous programming, was released almost one
year later. In the same year, Kotlin reached a remarkable level of popularity. It was the fastest-
growing language on GitHub with 2.6 times more developers than in 2017 [97]. Later, in 2019,
another announcement made by Google had a notorious impact on the environment of Android

7
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Figure 2.1: The evolution of the number of questions about Kotlin on the StackOverflow over

time. The bars in the graph are grouped by color according to the current Kotlin version in that
period.

development and the history of Kotlin. Google announced that Android became ‘Kotlin-first’,
which means that new APIs and features will be offered first in Kotlin [[107]. Moreover, Google
started to advise developers to use Kotlin to create new applications and adopted Coroutines as
the main solution for asynchronous programming on Android applications [[72}|98].

All these facts helped Kotlin to become the fourth most loved programming language,
according to the 2020 StackOverflow Developer Survey [210]. Moreover, as Figure[2.1]illustrates,
Kotlin is attracting the interest of developers increasingly. The total number of questions about
Kotlin on StackOverflow has been increasing continuously since Kotlin’s first release.

Several aspects may have contributed to Kotlin’s success, like the robust software company
that develops it, Google’s announcements, and its programming language features. Since some
of these features are only found in Kotlin, we described them in Appendix B}

2.1.2 Android development using Kotlin

For decades, Java has been the foundation of innovative products for Android users for coders
and programmers. However, Google, the Android owner, chose Kotlin as the alternative for Java
for creating Android applications recently. Kotlin is both created and supported by JetBrains,
Intelli]’s makers, the backbone of Android Studio, the official Android [Integrated Development|
[Environment| (IDE)) [64]. Therefore, to develop a mobile application using Kotlin, developers
can use the same tools that Google provides for developing Android applications using Java: the
Software Development Kit (SDK) and Android Studio.

Android Studio 3.0+ fully supports Android applications’ development using Kotlin and pro-
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import java.util.Calendar
fun calendarDemo() {
val calendar = Calendar.getInstance()
if (calendar.firstDayOfWeek == Calendar.SUNDAY) {
calendar.firstDayOfWeek = Calendar.MONDAY
}

Listing 1: Example of Kotlin code calling a Java class from the standard library. In this snippet
inside the function calendarDemo, a Calendar (Java class) object is instantiated and later some
of its properties are accessed.

//Kotlin code 1 // Java code

@file:JvmName ("DemoUtils") 2 package demonstration;

package org.example 3

class Util 4 new org.example.Util();

fun getTime() { /*...x*/ } 5 org.example.DemoUtils.getTime();

Listing 2: In snippet on the left a Kotlin file defines a class named Util and a function named
getTime. The snippet on the right shows how that Kotlin code is called using Java.

vides features such as auto-complete, debugging and refactoring. Kotlin is 100% interoperable
with the Java programming language, so it is possible to call Java-based code from Kotlin, or call
Kotlin from Java-based code [69], see Listing[1]and [2] Moreover, thanks to the interoperability
between Kotlin and Java, using Android Studio, a mobile developer can: 1) start a new Android
project for developing an app using Kotlin from scratch, 2) add new Kotlin files to an existing
project already written in Java, or 3) convert existing Java code to Kotlin. Because Kotlin compiles
down to JVM bytecode and is fully interoperable with Java, developers or companies that want to
migrate their applications from Java to Kotlin may do it gradually. Therefore, the development
team can prioritize parts of the application to be migrated based on different criteria. Once
the migration is completed, developers may exhaustively test these parts to verify whether it
preserves the expected behavior.

Kotlin’s concise syntax and ability to easily extend existing APIs lends itself to both new and
existing Android APIs [[64]. Core Android APIs and Jetpack components have been extended
through the Android KTX extensions. KTX extensions provide concise, idiomatic Kotlin to
Jetpack, Android platform, and other APIs [68].

All these factors motivate companies to adopt Kotlin for developing their applications. For
instance, at Google, over 60 of Google’s applications are built using Kotlin [[69]. At the same time
that Kotlin became more used among companies, it attracted researchers’ interest, resulting in
several studies about this promising programming language.
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Figure 2.2: Timeline of studies published focused on Kotlin.

2.1.3 Literature about Kotlin

The interest of practitioners in Kotlin has been growing since 2015, as Figure[2.1]shows. This
interest led to the production of many contents in different formats about this programming
language. In 2017, the first books about Kotlin were published [125}239,(198,(47,|267]. These
books focus on different aspects of software development using Kotlin. On the academic side,
the first studies were published in 2018, as Figure[2.2]illustrates. Furthermore, Figure also
shows that several studies were published after that. To present the current state of the art about
Kotlin, in this Section, we cover all studies found in the literature focused on Kotlin.

The first work about Kotlin was published in September 2018 [84]. We remark our research
started in January 2018 and we submitted our first study in July 2018, which was published in
2019 [99]. In that study, Flauzino et al. [84] compared Java and Kotlin applications in terms
of the presence of code smells. We detail this study in Section In the same year, Bryksin
et al. [34], supported by researchers from JetBrains, presented a preliminary study about the
detection of code anomalies on Kotlin code, which was further extended in 2020 [33]. They
presented a method capable of detecting two types of code anomalies: syntax tree anomaly and
compiler-induced anomaly. A syntax tree anomaly is a code fragment written in some way that
is not typical for the programming language community. A compiler-induced anomaly is a code
fragment that is not an anomaly in the syntax tree form but is an anomaly in the bytecode or
vice versa. The authors applied their method on 47 751 repositories collected from GitHub
and found 91 syntax tree anomalies and 54 compiler-induced anomalies. Then, they presented
these anomalies to the Kotlin compiler developers to assess their relevance. 38 syntax tree
anomalies and 31 compiler-induced anomalies were considered useful. Moreover, some of these
anomalies were added into the compiler testing infrastructure as performance and correctness
tests. Therefore, the authors concluded that the detected anomalies are useful and valuable for
language development.

In 2019, Coppola, Ardito, and Torchiano [59] evaluated the transition of Android applications
to Kotlin to understand whether the adoption of Kotlin impacts the success of an application.
The authors mined all the projects from the F-Droid [[103]], a repository of Android open source
applications. After finding the corresponding projects on the official Google Play Store and the
GitHub platform, they statistically analyzed 1232 applications. They found that 19% of projects
featured Kotlin code and that among those projects, the transition from Java to Kotlin was mostly
fast and unidirectional. The authors also concluded that projects with Kotlin exhibited higher
values for the rating and the number of downloads on Google Play Store, and the number of
stars on GitHub.

The Kotlin compiler was also the target of researchers. Stepanov, Akhin, and Belyaev [253|
focused on creating an automatic input reduction tool for the Kotlin compiler to simplify the
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debugging process. The approach is based on a combination of Kotlin-specific transformations,
program slicing, and [Hierarchical Delta Debugging| (HDD) [194]. Based on that approach,
the authors have implemented a prototype tool called ReduKtor. After evaluating their tool,
they concluded that to achieve high reduction quality, one must still employ language-specific
transformations and general approaches, such as HDD.

Tankov, Golubev, and Bryksin [258]] presented a framework for the development of web
services named Kotless, Kotlin Serverless Framework. Kotless is a cloud-agnostic toolkit that
interweaves the target application into the cloud infrastructure and automatically generates the
necessary deployment code. Based on the internal use at JetBrains, the authors concluded that
Kotless is a reliable, scalable, and inexpensive solution for a wide variety of web applications in
a production environment.

Oliveira, Teixeira, and Ebert [205] performed a triangulation study to understand how
developers are dealing with the adoption of Kotlin on Android development, their perception of
the advantages and disadvantages related to its usage. They analyzed 9,405 questions related to
Kotlin’s development for the Android platform on StackOverflow. Moreover, they conducted
qualitative research interviewing seven Android developers that use Kotlin to confirm and
cross-validate their results. The authors conclude that developers seem to find Kotlin easy to
understand and to adopt. Moreover, developers believe that Kotlin can improve code quality,
readability, and productivity.

Ardito et al. [19] conducted a study to assess the assumed advantages of Kotlin concerning
Java in the context of Android development and maintenance. To provide practical evidence that
could help transition from Java to Kotlin, they conducted a controlled study with undergraduate
students. They found that the usage of Kotlin apparently does not affect the maintainability
with respect to Java when working on two small applications. Also, they found evidence that
the adoption of Kotlin led to more compact code when developers were asked to develop
new features for an ongoing software project. Finally, the authors concluded that most of the
development promises using Kotlin are reflected by the code produced and the developers’
perception.

2.1.4 Summary

We summarize in Table the main research works that studied Kotlin. We observe that these
studies have focused on different aspects of the usage of Kotlin. Coppola, Ardito, and Torchiano
[59] and Oliveira, Teixeira, and Ebert [205] investigated the adoption of Kotlin by Android
developers. Coppola, Ardito, and Torchiano [59] studied the impact of this adoption on the
popularity of Android applications. On the other hand, Oliveira, Teixeira, and Ebert [[205]
mined questions and answers from StackOverflow to access the advantages and disadvantages of
adopting Kotlin. Two studies focused on the maintenance of Android applications. In the first
one, Flauzino et al. [84] compared Android applications written in Java and Kotlin in terms of
code smells. In the second one, Ardito et al. [19]] compared maintenance and development tasks
performed on Android applications using Java and Kotlin.

Three studies focused on improving the Kotlin compiler [34,33,253|]. Bryksin et al. [34}33]
investigated code anomalies in Kotlin and whether these anomalies could improve the Kotlin
compiler. Stepanov, Akhin, and Belyaev [253]] proposed a tool to perform input reduction,
which simplifies the bug localization process. Finally, Tankov, Golubev, and Bryksin [258]
proposed a framework for the development of web services. This framework is written in Kotlin,
cloud-agnostic, and has been internally used by JetBrains.
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Table 2.1: Studies about Kotlin in the literature.
Study Purpose Focus

Flauzino et al. [84]

Bryksin et al. [34]
and Bryksin et al.
(33]

Stepanov,  Akhin,
and Belyaev [253]
Coppola, Ardito,

and Torchiano [59)
Tankov, Golubeyv,
and Bryksin [258]
Oliveira, Teixeira,
and Ebert [205]
Ardito et al. [19]

Compare the occurrence of code smells between Java and
Kotlin apps

Create an automated toolset capable of extract abnormal
code fragments from a large Kotlin codebase,

Create a tool for the Kotlin compiler in order to simplify
the debugging process
Investigate Kotlin presence in open source projects

A framework for development of web services

Understand how developers are dealing with the adoption
of Kotlin on Android development

To investigate advantages of Kotlin with respect to Java
in the context of Android development and maintenance

Object-oriented code smells

Code anomalies

Bug localization and input reduc-
tion

Diffusion, Evolution, Popularity
Metrics

Serverless applications

Questions and answers

maintenance and development
tasks performed on Android ap-

plications

2.2 Quality of Android applications

Kotlin became an Android official programming language and, consequently, part of the ecosys-
tem of mobile applications. Mobile applications are part of our daily lives, and they have
attracted the attention of researchers. A variety of aspects of mobile applications, like the
occurrence of code smells, have been investigated. Kent Beck coined the term code smell in the
context of identifying quality issues in code that can be refactored to improve the maintain-
ability of software [87]]. Traditional code smells capture very general principles of good design.
Consequently, specific code smells are needed to capture “bad practices” on software systems
based on a specific platform, architecture, or technology [14]. In this context, studies about code
smell of a specific domain have been conducted: object-relational mapping frameworks [50],
mobile applications [269}(232,[117}[110], [Cascading Style Sheets| (CSS) [187] and [Model View]|
[Controller| (MVC) Architecture [14]]. One of the goals of this work is to understand the impact of
adopting Kotlin on mobile applications’ quality. For that reason, in this section, we discuss the
relevant literature that focuses on code smells to investigate mobile applications’ quality.

2.2.1 Identification of code smells in mobile applications

The work of Reimann, Brylski, and Amann [232] was the pioneer regarding code smells specific
to mobile applications, proposing a catalog of 30 quality smells dedicated to Android. To create
this catalog, the authors mined different information sources: the official Android documentation,
Google I/0 talks, blogs from developers at Google or other companies, websites of discussion,
like the StackOverflow, and discussions on the Android bug tracker.! To identify code smells
from these resources, Reimann, Brylski, and ABmann [232] used a three-step approach. In the
gathering phase, official interfaces for querying the respective provider were used to download
the available data into a local database. Then, in the phase of filtering, a preliminary selection
of potentially relevant information was realized based on keywords as: “energy efficiency”,
“memory”, and “performance”, paired with issue keywords like “slow”, “bad”, “leak”, and
“overhead”. Finally, the authors read the collected resources and created their catalog of code
smells dedicated to Android. The authors also created a tool, named Refactory, to detect and

Uhttps://source.android.com/setup/contribute/report-bugs
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fix the occurrences of code smells from their catalog. Implemented as a plugin that extends the
Eclipse platform, the tool can detect only nine quality smells from the catalog.

Hecht et al. [117]] proposed a tooled approach, named Paprika, to identify object-oriented and
Android-specific code smells from binaries (apk) of Android applications. Paprika is an open
source tool that works at the level of bytecode. It is composed of three steps. In the first step,
Paprika parses the apk to collect meta-data and code-metrics using the Soot framework [266] and
its Dexpler module [21]]. The information extracted in the first step is converted to a graph model.
In the second step, this model is persisted using the graph database Neo4j.? Then, in the last
step, using the Cypher query language?, queries are used to detect code smells. When Paprika
was first released and evaluated, it supported eight code smells, including Android-specific [117]).
Currently, it supports 13 Android code smells.

Palomba et al. [214] proposed a detection tool, called[AnDrOid Code smell detecTOR|(ADOC]
, to detect 15 Android code smells from the catalog of Reimann, Brylski, and ABmann [232].
[ADOCTOR|relies on the analysis of the abstract syntax tree of Java code to identify code smells.
The authors conducted an empirical study involving 18 Android applications to validate their
proposed tool, and the results showed an average precision and recall of 98%.

Kessentini and Ouni [140]] used a [Multi-Objective Genetic Programming| (MOGP) algo-
rithm [[12] to generate rules automatically for detecting code smells in Android applications. The
proposed approach takes as input a set of Android-specific code smell examples from multiple
applications. It uses aMOGP]algorithm to find the best set of rules covering most of the expected
Android code smells. A rule is a combination of quality metrics with threshold values. The
authors reported that the generated detection rules identified 8 Android-code smell types with
average correctness higher than 82% and an average relevance of 77%, according to the feedback
of 27 Android developers.

The previous studies have focused on the detection of Android-code smells. However, other
studies focused on the occurrence of well-known object-oriented code smells, for example Long
Method and Large Class [86]. Linares-Vasquez et al. [163]] presented a large-scale study over
1343 Java Mobile Edition [206] applications to understand the relationships among smells,
application domains, and quality. They used [Defect dEtection for CORrection| (DECOR) [195],
an approach that allows the specification and automatic detection of code and design smells, to
detect 18 object-oriented code smells using bytecode analysis of applications from 13 different
domains. Their results showed that some code smells are more common in specific categories of
Java mobile applications.

Mannan et al. [174] compared the presence of object-oriented code smells in 500 Android
applications and 750 desktop applications in Java. They concluded that there is no major differ-
ence between these two types of applications concerning the density of code smells. However,
they observed that the distribution of code smells on Android applications is more diversified
than for desktop applications.

Khalid, Nagappan, and Hassan [141] analyzed the presence of object-oriented code smells
to investigate whether they impact Android applications’ rating. The authors examined the
relationship between the application ratings from end-users with code smells detected using
FindBugs [121],a tool that applies static analysis to find bugs in Java code, from 10 000 Android
applications. They concluded that three categories of FindBugs warnings appear significantly
more in low-rated apps.

While the previous studies have focused on identifying code smells using structural informa-
tion extracted from source code, Palomba et al. [212] presented [Historical Information for Smell]
deTection|(HIST)), an approach to detect smells based on change history information mined from

Zhttp://neo4j.com/
3http://neodj.com/ developer/cypher-query-language



14 Chapter 2. State of the Art

versioning systems. [HIST|aims to detect five smells. The authors report that[HIST| has precision
between 72% and 86% and recall between 58% and 100%. Comparing [HIST|with techniques
and tools that do not consider historical information, the authors found that outperformed
them in terms of recall, precision, and F-measure. Furthermore, was able to identify code
smells that the other approaches could not. Finally, they concluded that there is a potential to
combine historical and structural information for better smell detection.

2.2.2 Analysis over time of code smells

Historical information of systems was not only used to detect code smells. Unlike Palomba et al.
[212], Tufano et al. [263]] used historical information about changes in open source projects to
investigated when code smells are introduced and the circumstances and reasons behind that
introduction. Their empirical study over the commit history of 200 projects found that code
artifacts are often affected by code smells since their creation. Moreover, they observed that
developers tend to introduce smells mostly when implementing new features and enhancing
existing ones.

Habchi, Rouvoy, and Moha [110] presented a large-scale empirical study investigating the
evolution of mobile-specific (Android) code smells in the change history. Using their tool, named
Sniffer, which relies on Paprika to detect code smells, they analyzed 180k instances of 8 types of
Android code smells in 324 Android apps, covering 255k commits. The authors reported that,
while Android code smells can remain in the codebase for years before being removed, it only
takes 34 effective commits to remove 75% of them. Moreover, they found that Android code
smells disappear faster in bigger projects with more commits, developers, classes, and releases.

Palomba et al. [213]] presented a large-scale empirical study on the diffuseness of code smells
and their impact on code change- and fault-proneness. They analyzed a total of 395 releases of 30
open source projects, considering 13 different code smells. They found that smells characterized
by long and/or complex code (e.g., Complex Class smell) are highly diffused, and smelly classes
have a greater change- and fault-proneness than smell-free classes.

Habchi, Moha, and Rouvoy [109] used historical information to conduct a large-scale em-
pirical study about developers’ role in the rise of mobile-specific code smells. After mining the
change history of Android of 324 applications to track developers’ contributions using their tool
Sniffer, they concluded that the rise of Android code smells is not the responsibility of an isolated
group of developers. Furthermore, most regular developers participated in the introduction
of code smells. They also found that the ownership of code smells spread across developers
regardless of their seniority.

2.2.3 The impact of programming languages on the presence of code smells

Habchi et al. [[108]] studied code smells in the iOS ecosystem, considering Swift and Objective-C
languages, both used to write mobile applications for iOS, and how it is compared with Android
smells. They proposed a catalog of 6 iOS-specific code smells based on information extracted
from developers’ feedback and the official iOS platform. To identify those code smells, they
extended Paprika [117]). Analyzing 103 Objective-C applications and 176 Swift applications, they
discovered that code smells tend to appear with the same proportion or only a slight difference
in Objective-C and Swift. Furthermore, they analyzed 1 551 Android open source applications
from F-Droid. They found that Android applications tend to contain more code smells than iOS
applications in both languages (Objective-C and Swift), except for the [Swiss Army Knife| (SAK])
smell, which appears in the same proportion for all languages.

Flauzino et al. [84]] compared Java and Kotlin applications in terms of the presence of code
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smells. They investigate the total of 100 projects, involving 50 Java and 50 Kotlin, and using
five code smells: Data Class, Large Class, Long Method, Long Parameter List, and Too Many
Methods, to verify whether these code smells are more common in Java applications. Applying
an empirical study that involved more than 6 million lines of code, they found that on average
Kotlin programs have fewer code smells than Java programs.

2.2.4 Evolution patterns on Android Applications

Several aspects of the evolution of Android applications were investigated in the literature.

Hecht et al. [115] used code smells to propose a fully automated approach that monitors
mobile applications’ evolution and assess their quality. Using Paprika [117], they mined 106
Android applications and 3 568 versions. To compute the software quality score, they created an
estimation model using linear regression. Considering seven different code smells, they tracked
the quality score of several versions of each application, and as a result, the authors identified
five different quality evolution trends.

To better understand the evolution of mobile applications and find patterns in their evolution
process, Zhang, Sagar, and Shihab [289]] examined the applicability of three of Lehman’s [152}
153|] laws on mobile apps: continuing change, increasing complexity and declining quality.
The law of continuing change says that systems must be continually adapted else they become
progressively less satisfactory. The law of increasing complexity says that as systems evolve, their
complexity increases unless work is done to maintain or reduce it. The law of declining quality
says that the quality of systems will appear to be declining unless they are rigorously maintained
and adapted to operational environment changes. To conduct this study, they extracted six
evolution metrics from two Android applications and two desktop applications. Their findings
showed that the law of continuing change and declining quality seems to apply for mobile
applications. Moreover, they found that the desktop and mobile versions have different trends
for the law of increasing complexity and the law of declining quality. Like Zhang, Sagar, and
Shihab [289], Li et al. [158]] conducted an empirical study focused on Lehman’s laws. The authors
examined long spans in the lifetime of 8 typical open-source mobile applications, covering
348 official releases, and several metrics were extracted to capture the characteristics of mobile
applications. By observing the evolution trend of these metrics, they examined Lehman’s laws
to verify whether they still apply to mobile applications or not. Their results indicated that
only a subset of Lehman’s laws is still applicable to mobile applications. Moreover, the authors
found that mobile applications’ growth is non-smooth, and software instability increases with
the addition of third-party libraries.

Beyond code smells, authors have identified evolution patterns of different issues related to
Android applications’ quality. Calciati and Gorla [39] investigated the evolution of permission
requests across different releases of Android applications. The authors analyzed 14 000 releases
of 224 Android applications to understand how requests change and how they are used. They
identified a common trend where applications require more permissions over time.

Malavolta et al. [169]] investigated the evolution of 6 maintainability issues, for example,
Module Coupling and Duplication [270]], along with Android applications’ evolution. They
statically analyzed 434 GitHub repositories of applications published on Google Play. Inspecting
the density of maintainability issues, they identified 12 different evolution trends. They con-
cluded that independently of the type of development activity and notwithstanding the issue
type, maintainability issue density grows until it stabilizes. Moreover, the authors found that
maintainability hotspots are independent of the type of development activity.

Calciati et al. [40] proposed a framework named Cartographer to analyze the evolution of
Android applications. Cartographer extracts and shows various information such as how an
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application uses sensitive data, which third-party libraries relies on, which URLs it connects,
and more. Using this framework, the authors analyzed 235 applications with at least 50 releases.
They concluded that Android applications tend to have more leaks of sensitive data over time.

Gao et al. [94] conducted an extensive empirical study focused on the maintainability and
code complexity of mobile applications to understand how mobile applications” quality evolves.
Relying on six metrics proposed by Chidamber and Kemerer [51], the authors investigated
evolution trends of complexity applications from the AndroZoo [6} 161, a dataset of Android
applications. Their results showed that Android applications usually become bigger during their
evolution, and updates tend to add new classes. However, they conclude as well that complexity
evolution is more like to increase or decrease wavily.

2.2.5 Summary

We reviewed in this section research work related to the topic of quality of mobile applications.
This review showed many studies that focused on code smells (object-oriented and mobile-
specific) to access mobile applications’” quality. We also discussed studies that used historical
information to: (i) identify code smells, (ii) investigate the survival of code smells, (iii) understand
the diffuseness of code smells, and (iv) understand developers’ role in the rise of code smells.

In this thesis, we are interested in understanding the impact of the adoption of Kotlin on
the quality of mobile applications. For that reason, among the studies that focused on code
smells, the ones more relevant to this thesis are: (i) Hecht et al. [117]] because their proposed tool
Paprika is capable of identifying code smells on Java and Kotlin applications since it works at the
bytecode level, (ii) Hecht et al. [115]] because they presented an approach to track applications
quality based on the occurrence of code smells and (iii) Habchi, Rouvoy, and Moha [110]] because
they compared the impact of programming language on the presence of code smells. It is
important to note that the study of Flauzino et al. [84], which is closely related to this thesis, is
not listed among the most relevant study because it was not published when we started working
on this topic.

Although several studies focused on the quality of mobile applications, there was no research
about the adoption of Kotlin and its impact on mobile applications’ quality. After analyzing the
studies about mobile applications’ quality, we review another facet of our topic in the upcoming
section, which is the adoption and evolution of programming language features.

2.3 Software maintenance and evolution

Maintenance and evolution of application software consume a range high as 75-80 percent
of a system’s total life cycle cost [162]. This change process continues until it is judged more
cost-effective to replace the system with a recreated version [153].

Along with software evolution, changes in software and its business, operational, and de-
velopment environment will impact the software and conversely. For instance, whenever a
new version of the programming, it is quite possible that programs that worked perfectly in a
previous version of the language fail to function in the new version [190].

With the announcements that stated Kotlin an official Android programming language
and that Android platform became ’Kotlin-first’, Google changed the environment of Android
development. After that, developers gained a choice between two programming languages,
Kotlin and Java, for writing Android applications. At the same time, Google decided that new
Android features, APIs and documentation will target Kotlin firstly. Therefore, developers and
companies that want to keep updated with new features of Android platform need to work with
Kotlin.
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Kotlin has some unique features, like Coroutines, the recommended solution for asyn-
chronous programming on Android [72]. Thus, developers who decide to use Kotlin need to
learn a new programming language and new programming language features. Moreover, instead
of adding some Kotlin code to applications, developers may choose to migrate their applications
to Kotlin.

These possible scenarios were target of research that we present in the next sections. Sec-
tion[2.3.1] presents studies about the evolution of programming languages. Section[2.3.1]high-
lights studies concerning the migration of software.

2.3.1 Programming language evolution

Popular programming languages evolve over time and one driver of evolution is a desire to
simplify using languages in real-life projects. Therefore, evolving languages often address
frequently encountered problems by adding language and library support to subsequent releases.
Consequently, by using new features, programmers can express their intent more directly [[226].
Simultaneously, programming language tends to become more complex because, over time,
features are added but rarely removed for fear of breaking backward compatibility [209]. Thus,
evolving programming languages can be problematic; evaluating the impact of changes is
difficult, and it is often unclear how to effectively co-evolve software written in the language [265|.
Moreover, when a new programming language feature is released, there is no guarantee that
developers will use it. For that reason, in this section, we present studies that investigate the
adoption of programming languages.

Several empirical studies about features of different programming languages have been
conducted. Sutton, Holeman, and Maletic [254] developed a tool to identify the use of generic
libraries in C++ projects to support a programmer’s comprehension. Parnin, Bird, and Murphy-
Hill [217, 216|] conducted an empirical study to understand how Java generics* have been
integrated into open source software by mining 40 popular Java programs’ repositories. They
found that one or two contributors often adopt generics and that generics reduce typecasts in
projects.

Uesbeck et al. [264] investigated the impact of lambda expressions on the development,
debugging, and testing effort in C++. In their experiment, two groups of developers, one using
lambda expressions and one using iterators, had to solve four programming tasks. Analyzing
the logs generated during the experiment, the authors conclude that participants spent more
time with compiler errors and had more errors when using lambdas as compared to iterators,
suggesting difficulty with the syntax chosen for C++.

Pinto et al. [224] studied the energy efficiency of Java’s Thread-Safe Collections. They empiri-
cally investigated 16 collection implementations (13 thread-safe, 3 non-thread-safe) grouped
under 3 commonly used forms of collections (lists, sets, and mappings). The authors concluded
that simple design decisions could impact energy consumption and that different implementa-
tions of the same thread-safe collection can have widely different energy consumption behaviors.

Chapman and Stolee [48] studied the use of regular expressions in Python by conducting
an empirical study of open source projects from GitHub. To understand when and how pro-
grammers use regular expressions, they surveyed 18 developers and statically analyzed 3 898
projects. They found six common behaviors that describe how regular expressions are often used
in practice.

JavaScript’s features were also the target of studies. Silva et al. [246] conducted a large-scale
study to understand how class emulation is employed in JavaScript applications. The authors

It is the enhancement to the Java type system allows a type or method to operate on objects of various types while
providing compile-time type safety.
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created a tool, JsClassfinder, capable of identifying class emulation by applying static analysis.
They mined 50 popular applications from GitHub and found that 26% of projects do not use
classes. Gallaba et al. [92] focused on the usage of asynchronous callbacks in JavaScript. The
authors presented a set of program analysis techniques to detect instances of asynchronous
callbacks and refactor such callbacks into promises (an alternative to asynchronous callbacks).
These techniques were implemented in their tool named PromisesLand. They evaluated Promis-
esLand on 21 large JavaScript applications and found that it substitutes callbacks to promises
correctly, with precision and recall of 100% and 83%, respectively.

Other studies investigated how the adoption of features evolves overtime. Pinto et al. [225]
and Wu et al. [278]] performed large empirical studies to investigate the usage of concurrency
constructs in open source applications in Java and C++, respectively. Pinto et al. [225] have
analyzed 2227 Java projects comprising more than 600 million lines of code. They found more
than 75% of the latest versions of the projects either explicitly create threads or employ another
alternative for concurrency control. Furthermore, they observed that efficient and thread-safe
data structures, such as ConcurrentHashMap, are not yet widely used. Wu et al. [278]] analyzed
492 concurrent open source applications, comprising 131 million lines of C ++ code. They found
that small-size applications introduce concurrency constructs more intensively and quicker than
medium-size applications and large-size applications. Moreover, the authors concluded that
most projects do not move from third-party concurrency constructs to standard concurrency
constructs.

Osman et al. [208]][207]] conducted an empirical study on long-lived Java systems to under-
stand how exception usage changes as these systems evolve. The authors observed that the
amount of error-handling code, the number of custom exceptions, and their usage in catch
handlers and throw statements increase as projects evolve [208]. Moreover, they found that
the domain, the type, and the development phase of a project affect the exception handling
patterns [207]].

Yu et al. [286]] conducted an empirical study to evaluate the usage, evolution, and impact
of Java Annotations. The authors analyzed 1 094 projects hosted on GitHub using Spoon, a
tool for source code analysis and transformation for Java code [218]]. They observed a strong
relationship between using annotations and developer ownership, where developers with high
ownership of a file are more likely to use annotations. To identify the uses overtime of Java’s
new features, Dyer et al. [77] analyzed 23 000 open source Java projects. They observed that all
features are used even before their release date and that there were still millions of opportunities
for use. Mazinanian et al. [186] focused on the evolution trend of one Java feature, Lambdas.
They conducted an empirical study by statically analyzing the source code of 241 open source
projects and interviewing 97 developers who introduced lambdas in their projects. As a result,
they revealed an increasing trend in the adoption of lambdas.

2.3.2 Programming language migration

Over time, users of programming language might be impacted by a new release of existing
programming language and its new features or a new programming language release. They must
decide between using their preferred programming language and adopting their new features or
adopting a new programming language. In Android development, developers faced a similar
situation when Kotlin was announced as an Android platform’s official programming language.
While new Android developers may decide to adopt Kotlin, Android developers that are used to
code in Java may decide between performing or not a language migration. For that reason, this
section focus on programming language migration.

Martin and Muller [[179]] presented a structured approach for migrating C source code to
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Java, minimizing manual intervention by software engineers. The authors reported that their
3 case studies were successful, but there was a need to conduct more case studies with larger
programs to further validate their approach. Mossienko [[199] presented an automated approach
for source-to-source translation of Cobol applications into Java. Focusing on ensuring that the
generated code will be maintainable, their approach does not guarantee complete functional
equivalence of the generated code with the initial program. Therefore, some manual changes
might be necessary, as the authors reported in the presented case of study.

El-Ramly, Eltayeb, and Alla [229] presented an experimental language transformer, J2C#, to
automatically convert Java to C# using tree rewriting via functional rule-based programming.
Marchetto and Ricca [[175] defined a stepwise approach to help developers migrating a Java
application into an equivalent service-oriented system. To evaluate their approach, they applied
it to four simple Java applications. They concluded that the approach was successfully applied,
but it needs to be applied to bigger and more complex applications for evaluating its scalability.

Colosimo et al. [56] presented [Migration Environment for Legacy Information Systems|
(MELIS), an Eclipse plugin to migrate legacy COBOL programs to the web. To evaluate MELIS’s
effectiveness, they compared master students and professional developers’ performance on
completing migration tasks. The experiment revealed that software engineers’ experience does
not significantly affect the effort to migrate. Moreover, they reported that when is used,
productivity improves seven or eight times compared to traditional development environments.

Zhong et al. [291]] proposed an approach to assist code migration, calledMining API Mapping|
(MAM), that automatically mines how APIs of one language are mapped to APIs of another
language. They compared the API mapping relations mined by their approach with manually
written API mapping relations of Java2CSharp, a migration tool. They reported that compared
with the mapping files of Java2CSharp, their mined mapping files show reasonably high precision
and recall and include new mapping relations not covered by Java2CSharp. Moreover, they
concluded that Java2CSharp could be improved by adopting API mapping relations mined using
MAM]

Trudel et al. [262] presented C2Eif, a supporting tool (compiler), for source-to-source trans-
lation of C code into Eiffel. In their experiments, C2Eif translated completely automatically
over 900,000 lines of 11 C code from real-world applications, libraries, and test suites, produc-
ing functionally equivalent Eiffel code. The authors concluded that C2Eif correctly translates
complete applications and libraries of significant size and takes advantage of Eiffel’s advanced
features to produce safer code.

Nguyen et al. [201[)[202] introduced a data-driven approach that statistically learns the
mappings between APIs from the source code of the same project written in C# and Java named
Starminer. The authors empirically evaluated their approach and showed that it could mine a
large number of API mappings with 87.1% accuracy. Compared against MAM] [291] it achieved
higher precision (17.1%) and recall (28.6%). Moreover, they observed that when Java2CSharp
uses API mappings mined using Starminer, it produces code with 4.2% fewer compilation errors
and 6.0% fewer defects than with the mappings from [MAM] Gu et al. [102] proposed a deep
learning-based system for API migration named [Deep API Migration|(DEEPAM)). DEEPAM|is a
learning architecture to learn joint semantic representations of bilingual API sequences from big
source code data. Their experiment focused on 1-to-1 API mappings and reported that[DEEPAM]
performs better than Starminer [201]]. They concluded that deep learning in API migration is
one step towards automatic code migration.

Malloy and Power [171]] [172] investigated the degree to which Python developers are mi-
grating from Python 2 to 3 by measuring the adoption of Python 3 features. Using their tool for
syntax and feature recognition, the authors analyzed 51 Python applications hosted on GitHub.
They concluded that developers were more often choosing to maintain backward compatibility
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with Python 2 instead of exploiting the new features and advantages of Python 3.

Verhaeghe et al. [268] proposed an approach to help developers migrate the|Graphical User]
of web-based software systems. To validate their approach, they developed a tool
that migrates Java GWT applications to Angular. They evaluated their approach to an industrial
application. The authors reported, they were able to model all the web pages of the application
and that 26 out of 39 pages (66%) were migrated successfully.

Robillard and Kutschera [234] presented a case study of the migration of an interactive
diagramming tool written in Java from the Swing Graphical User Interface framework to the
more recent JavaFX framework. The authors reported five lessons about the discrepancies
between expectations and reality in information discovery when migrating software between
major frameworks: i) adapting to detail, ii) false friends, iii) feature gap, iv) feature blindness
and v) hidden information. Moreover, for each lesson, they provided insights about how to
better structure the information search in the context of migration frameworks.

2.3.3 Summary

In this section, we reviewed studies focused on the adoption of programming features and
code migration. This review showed that several programming language features of different
programming languages had been studied. However, Kotlin was not the target of these studies.
Regarding studies about code migration, different approaches were proposed to help developers
migrate from one programming language to another in different contexts, such as legacy systems.
However, there is no consolidated solution to that problem. Moreover, we could not find any
research about the migration of mobile applications. Consequently, we conclude that there is no
study to support the migration of Android applications from Java to Kotlin.

2.4 Machine learning applied to software engineering

Machine learning techniques have been applied in different domains, including software en-
gineering. In this Section we present several studies that applied machine learning
classification models to predict software aspects like vulnerabilities. Section presents
studies that applied learning-to-rank, another machine learning technique, to solve software
engineering problems.

2.4.1 Classification applied to software engineering

Prediction is a core part of estimation, which is a crucial aspect of project planning [133].
Moreover, prediction depends mainly on historical internal and external quality attributes
from completed projects [7]. Since machine learning techniques offer algorithms that can
automatically enhance their performance through experience [35], several studies applied them
to predict different software aspects. In this section, we present studies that applied machine
learning classification to solve software engineering problems.

Koten and Gray [145] evaluated and compared the Naive Bayes classifier [131] with regression-
based models. Their results suggest that the Naive Bayes model can predict maintainability more
accurately than the regression-based models for one system, and almost as accurately as the
best regression-based model for the other system. Moreover, they concluded that Naive Bayes is
indeed a useful modelling technique for software maintainability prediction, although further
studies are required to realize the full potential as well as the limitation.

Elish and Elish [78] have empirically evaluated the capability of TreeNet [90}/91], a multiple
additive regression trees algorithm, in predicting object-oriented software maintainability. The
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authors compared TreeNet prediction performance against recently published object-oriented
software maintainability prediction models: multivariate adaptive regression splines, multivari-
ate linear regression, support vector regression, artificial neural network, and regression tree.
The results indicated that when TreeNet is applied, prediction and accuracy improve or achieve
competitive results compared to other models.

Romano and Pinzger [235] investigated various source code metrics’ predictive power to clas-
sify Java interfaces into change-prone and not change-prone. More specifically, they compared
the predictive power of the set of metrics defined by Chidamber and Kemerer [[51]], complexity
metrics and two metrics to measure the external cohesion of Java interfaces. The authors per-
formed a series of classification experiments with different machine learning algorithms, namely:
Support Vector Machine, Naive Bayes Network and Neural Networks. Their results showed that
most of the Chidamber and Kemerer metrics perform well for predicting change-prone concrete
and abstract classes but are limited in predicting change-prone Java interfaces. Therefore, they
concluded that interfaces need to be treated separately.

Al Dallal [3]] empirically studied the impact of size, cohesion, and coupling on class main-
tainability. Using logistic regression [120]], the authors explored the abilities of 19 measures,
considered both individually and in combination, to predict class maintainability. They found
that when the measures are combined, their models’ abilities to predict class maintainability
improve. Moreover, they concluded that prediction models based on the measures could help
software engineers locate classes with low maintainability.

Kaur, Kaur, and Pathak [137] investigated whether a set of 23 metrics proposed by Meyer
[191] and Spinellis and Jureczo [251] could be used for maintainability prediction. For that, they
mined four different open source software repositories and calculated the correlation between
these metrics and the number of changes made to the source code. Then, they built prediction
models using classifiers: Naive Bayes [131]], bayes network, logistic regression [120], multilayer
perceptron and random forests [29]. They concluded that accurate models could be constructed
for software maintainability prediction using the set of metrics studied.

Elish, Aljamaan, and Ahmad [79] conducted three empirical studies on predicting software
maintainability using ensemble methods. In each study, they developed different ensemble
methods and compared their prediction performance in predicting software maintenance effort
(study 1) and change proneness (study 2 and 3). They concluded that some ensemble methods
provide more accurate or at least competitive prediction accuracy compared to individual
models.

Kaur, Kaur, and Jain [[136] investigated the relationship between object-oriented static soft-
ware metrics, code smells, and change-prone classes. The authors compared machine learning
techniques to predict software change-proneness using code smells and object-oriented metrics
as predictor variables. They concluded that code smells are better predictors of change-proneness
as compared to object-oriented software metrics.

Basgalupp, Barros, and Ruiz [23]] applied an evolutionary algorithm called [LExicographical
[Genetic Algorithm for Learning decision Trees| (LEGAL-TREE) [22] for evolving decision trees
tailored to predict software effort using a worldwide IT Company effort data set. They showed
that evolutionary-based decision trees could outperform established approaches for decision-tree
induction and traditional logistic regression.

Aljamaan, Elish, and Ahmad [4] proposed and empirically evaluated an ensemble of com-
putational intelligence models for predicting software maintenance effort. They considered as
ensemble constituent models, four popular prediction models (Multilayer Perceptron, Radial
Basis Function Network, Support Vector Machines, and M5 Model Tree). The results confirm that
the proposed ensemble technique provides more accurate prediction compared to individual
models.
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Khoshgoftaar et al. [142] investigated the usefulness of [Classification And Regression Trees|
[30], a classification tree algorithm to predict fault-proneness system modules over
several system releases. The authors considered forty-two software product, process, and
execution metrics as candidate features predictors. They found that is amenable to
achieving a preferred balance between the two types of classification rates (false-negatives and
false-positives). Moreover, they concluded that process and execution metrics could also be
significant predictors.

Gyimothy, Ferenc, and Siket [[104] demonstrated how object-oriented metrics proposed by
Chidamber and Kemerer [51]] could be used to fault-proneness detection of the source code of the
open source Web and e-mail suite called Mozilla. They employed statistical (logical and linear
regression) and machine learning (decision trees and neural network) methods and compared
the values obtained against the number of bugs found in called Bugzilla, a bug database, to
validate the usefulness of these metrics for fault-proneness prediction. They found concluded
[Coupling Between Object| (CBO) metric seems to be the best in predicting the fault-proneness of
classes. They also affirmed that the precision of their models was not satisfactory.

Singh, Kaur, and Malhotra [248] and Malhotra, Kaur, and Singh [170] applied
[Vector Machine| (SVM)) model to find the relationship between object-oriented metrics given
by Chidamber and Kemerer [51]] and fault proneness at different severity levels. Particularly,
the authors investigated how accurately these metrics predict fault proneness when severity is
taken into account. They concluded that[SVM|method predicts faulty classes with high accuracy.
Mainly when applied to predict medium severity faults.

Shin and Williams [244] investigated whether execution complexity metrics can be used as
indicators of vulnerable code locations to improve security inspection and testing efficiency. For
this purpose, the authors performed empirical case studies on two widely used open source
projects. They compared the effectiveness of execution complexity metrics and static complexity
metrics in detecting vulnerable code locations using logistic regression. They concluded that
models built using execution complexity metrics also could predict vulnerable code locations
with similar prediction performance to the model using the combined set of complexity metrics,
but with lower inspection effort.

Chowdhury and Zulkernine [52] investigated the efficacy of applying complexity, coupling,
and cohesion metrics to predict vulnerability-prone entities in software systems automatically.
They used different machine learning techniques (Decision Trees, Random Forests, Logistic
Regression, and Nave-Bayes) to build vulnerability predictors that learn from the complexity,
coupling, and cohesion metrics and vulnerability history. The authors empirically evaluated
their prediction model over the vulnerability history of more than four years and fifty-two
releases of Mozilla Firefox. They found that their prediction models were able to correctly
predict almost 75% of the vulnerability-prone files, with a false positive rate of below 30% and
an overall prediction accuracy of about 74% independently of the learning method.

Shin and Williams [245| investigated whether fault prediction models can be used for
vulnerability prediction or if specialized vulnerability prediction models should be developed
when both models are built with traditional fault prediction metrics. To achieve this goal, they
performed an empirical case study on a widely-used open source project. They built both fault
prediction models and vulnerability prediction models using the three types of traditional fault
prediction metrics and measured how accurately the models predict vulnerable code locations.
The authors concluded that traditional fault prediction metrics could detect a high portion of
vulnerable code locations but should be significantly improved to reduce false positives while
providing high recall.

Walden, Stuckman, and Scandariato [[271]] compared the predictive power of vulnerability
prediction models based on text mining with models using software metrics as predictors. For
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this purpose, they built both models using a Random Forest machine learning technique and
applied them to predict vulnerability in three web applications written in PHP. They found
that text mining models had higher recall than software metrics based models for all three
applications.

Lessmann et al. [154] empirically compared 22 classification models for software defect pre-
diction over 10 public domain software development datasets. Comparing the individual models
statistically, they found that most methods’ predictive accuracy does not differ significantly.
Therefore, they concluded that the assessment and selection of a classification model should
not be based on predictive accuracy alone but should comprise several additional criteria like
computational efficiency, ease of use, and especially comprehensibility

Zimmermann et al. [293]] investigated the problem of cross-project defect prediction, i.e.,
computing a prediction model from a project and applying it to a different one. They studied 12
real-world applications for this purpose, and for each application, they collected code measures,
domain and process metrics, and defects. Using these metrics, they built defect prediction
models based on logistic regression. In total, they ran 622 cross-projects experiments. Their
experiments showed that using models from projects in the same domain or with the same
process does not lead to accurate predictions. Moreover, the authors identified important factors
influencing the performance of cross-project predictors.

Al-Jamimi and Ghouti [126] evaluated fault prediction models based on support vector
machines and probabilistic neural networks. They compared the performance of the two
approaches concerning their prediction accuracy against each other in the context of the five
different datasets. The results indicated that the probabilistic neural networks generally provided
the best prediction performance for large datasets experiments.

Jiang, Tan, and Kim [130]] explored the idea of building separate prediction models for
individual developers to predict software defects. To validate this idea, they applied these
personalized prediction models to change classification. They evaluated these models on six
open source projects using different classification algorithms (AdTree, Naive Bayes and Logistic
regression). They found that their personalized change classification models outperform the tra-
ditional change classification and multivariate adaptive regression splines models independently
of the classification algorithm.

Taba et al. [255] explored the possibility of predicting bugs using antipatterns to improve
the accuracy of state-of-the-art bug prediction models. They proposed four metrics based on
antipatterns’ history in a file to capture antipatterns information in software systems. Using
these metrics, the authors built logistic regression models to compare each new antipattern based
metric to the state of the art models based on product and process metrics. They concluded that
antipattern metrics provide additional explanatory power about the bug-proneness of files over
product and process metrics.

Kreimer [148]] introduced a method for detecting code smells combining object-oriented
metrics with machine learning (Decision trees). They extract these metrics from Java byte-code.
As a result of this initial study, he found that models built using his idea reached an accuracy of
95% and 100% when detecting ‘Long Method’ and "Big Class’ respectively.

Maneerat and Muenchaisri [173]] presented a methodology for predicting bad smells from
software design model. They applied different machine learning algorithms to detect 7 bad
smells. They concluded that no machine learning algorithm could accurately predict all selected
bad smells.

Maiga et al. [168},|167] introduced an approach to detect anti-patterns, based on a machine
learning technique - support vector machines — that consider practitioners’ feedback. Through
an empirical study involving three systems and four anti-patterns, they showed that their
approach has better accuracy than two state-of-the-art approaches, respectively, that apply exact
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and probabilistic anti-patterns detection.

Fontana et al. [85] presented an experimental analysis of the application of machine learning
to code smell detection. The authors described their approach that was implemented and
evaluated using different classifier algorithms: Support Vector Machines, Decision Trees (J48),
Random Forest, Naive Bayes and JRip. They concluded that their results could be used as a
baseline for a community effort in finding the best possible code smell predictor.

Arcelli Fontana et al. [18]] compared 16 different machine learning algorithms to detect four
code smells on 74 software systems. They found that all algorithms achieved high performances
in the cross-validation data set, yet the highest performances were obtained by J48 and Random
Forest, while support vector machines achieved the worst performance. Moreover, they con-
cluded that the application of machine learning to the detection of these code smells can provide
accuracy high than 96%.

Pecorelli et al. [220] conducted a large-scale empirical study to compare the performance of
heuristic-based and machine learning-based techniques for metric-based code smell detection.
The authors compared five code smell prediction models built using different algorithms with
DECOR [195], a state-of-the-art heuristic-based approach. They evaluated machine learning
techniques, and heuristic approaches considering five different types of code smells over a
dataset composed of 125 releases of 13 open source software systems. They concluded that
heuristic approaches still perform better yet have low performance.

Sahs and Khan [238] built an Android malware detector with features based on a combina-
tion of Android-specific permissions and a Control-Flow Graph representation. The authors
evaluated their classifier using with k-Fold cross-validation on a dataset of 91 malware and 2081
benign applications. They concluded that although their classifier had a very low false-negative
rate, there was also much room for improvement in its high false-positive rate.

Amos, Turner, and White [9] compared 6 machine learning classifiers on 1330 malicious
and 408 benign applications, for a total of 1738 unique applications. They concluded that
cross-validation results were not consistent with results from real testing and over-estimate
performance.

Demme et al. [[63]] investigated the feasibility of building a malware detector in hardware
using dynamic performance data. They applied standard machine learning classification al-
gorithms such Decision Trees to detect variants of known malware. They concluded that
classification algorithms could detect malware at nearly 90% accuracy with 3% false positives
for some mobile malware.

Yerima et al. [[285] proposed and evaluated a machine learning approach based on Bayesian
classification for detecting Android malware. Their models were evaluated with real malware
samples in the wild. The results demonstrated a significantly better detection rate compared to
the achieved by popular signature-based antivirus software.

Canfora, Mercaldo, and Visaggio [41] proposed a method for detecting malware based on
two classes of features: invoked system calls and permissions that the application under analysis
requires. To evaluate five classification algorithms, they used a dataset composed of 200 trusted
and 200 malware Android applications from different categories. They concluded that their
results must be considered as preliminary findings for further studies.

Allix et al. [[5] compared the performance of machine learning classifiers in the laboratory
and ‘in the wild’. They designed multiple machine learning classifiers and built a set of features
that are textual representations of basic blocks extracted from the Control-Flow Graph of
applications. They concluded that Android malware detectors had poor overall performance in
the wild, unlike in the laboratory tests.

Fereidooni et al. [83]] proposed a machine learning-based system to detect malicious Android
applications through static analysis of Android applications. To this end, the authors employed
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several algorithms for the classification and evaluated them using a data-set containing 18 677
malware and 11 187 benign applications. The results showed a true positive rate of 97.3% and a
false negative rate of 2.7%.

Feng et al. [82] proposed a framework for malware detection on Android applications com-
bining dynamic analysis with machine learning. Their framework extracts dynamic behavior
features by monitoring operations of benign and malicious applications to train ensemble learn-
ing model and distinguish malicious from benign applications. To evaluated their framework,
they compared its detection performance with a state-of-art dynamic analysis tool and concluded
that their framework overcomes that tool.

Zhu et al. [292]] proposed an ensemble machine learning system for the detection of malware
on Android devices. Their system extracts four groups of features including permissions,
monitoring system events, sensitive API and permission rate to characterize each Android
application. Then an ensemble random forest classifier is learned. They evaluated their system’s
performance using a dataset composed of 2 130 Android applications, of which 1 065 are benign
and 1065 are malware. The experimental results demonstrated their system achieved 89.91%
accuracy, outperforming a state-of-the-art support vector machine classifier.

Cai et al. [38] developed a machine learning-based technique to detect and categorize Android
malware. They trained their model using the Random Forest algorithm with features that cover
run-time application characteristics. They evaluated this model against two state-of-the-art
peer approaches as baselines on 34 343 distinct applications spanning 2009 through 2017. The
authors concluded that their technique outperformed the baselines in stability, classification
performance, and robustness, with competitive efficiency.

2.4.2 Learning-to-rank applied to software engineering

[Learning-To-Rank| (LTR) refers to machine learning techniques for training models in a ranking
task. These models can be used to sort objects according to their degrees of relevance, preference,
or importance, as defined in a specific application [159]. This technique has been applied to
specific problems related to software maintenance and evolution, as we report in this section.

Xuan and Monperrus [279]] presented a learning-based approach that combines multiple
fault localization ranking metrics. The authors empirically their against seven ranking metrics
and concluded that it could localize faults more effectively than the ranking metrics taken in
isolation.

Ye, Bunescu, and Liu [283}284] developed a learning-to-rank approach that emulates the
bug-finding process employed by developers. They trained a ranking model that characterizes
useful relationships between a bug report and source code files by leveraging domain knowledge.
The authors empirically evaluated their approach and conclude that it outperforms the other
three state-of-the-art approaches.

Zhao et al. [290] evaluated the approach created by Ye, Bunescu, and Liu [283] to verify the
influence of the recommended files’ size on the efficiency in detecting bugs. Comparing with
the Standard [Vector Space Modell (VSM) approach and the approach on six
large-scale Java projects, they concluded that the approach proposed by Ye, Bunescu, and Liu
[283] performs worse than[VSM]in terms of code inspection effort to detect bugs.

Yang, Tang, and Yao [282]] introduced a learning-to-rank approach to build software defect
prediction models by directly optimizing the performance measure. They compared their
method against other algorithms that optimize the individual-based loss functions and
concluded that their approach could give a better ranking than these algorithms.

Le et al. [151]] proposed a fault localization approach that employs a learning-to-rank strategy,
using likely invariant diffs and suspiciousness scores as features. They evaluated their approach
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on 357 real-life bugs. They concluded that it could successfully locate more bugs than several
state-of-the-art spectrum-based fault localization baselines.

Tian et al. [261] created a learning-to-rank model that combines location-based and activity-
based information from historical bug reports to recommend developers automatically to address
particular bug reports. They evaluated the proposed approach over more than 11 000 bug reports
and concluded that their model performs the best when compared to state-of-the-art location-
based and activity-based models.

Niu, Keivanloo, and Zou [203]] proposed a code example search approach based on the
learning-to-rank technique. They identified 12 features from 2 500 code examples for 50 queries
and applied a learning-to-rank algorithm to learn how the 12 features should be combined
to build a ranking schema. Their approach was evaluated using a corpus of over 360000
code snippets crawled from 586 open source Android projects. Finally, the authors concluded
that their approach outperforms Codota, a commercial online code example search engine for
Android application development.

Wang, Huang, and Ma [272] presented a top-k learning-to-rank approach to [Cross-Project]
[Defect Prediction|(CPDP). They proposed a new data resampling method. Then, they evaluated
several learning-to-rank algorithms using the proposed method as the data resampling method
and concluded that it outperforms other data resampling algorithms.

Cao et al. [42]) proposed a rule-based specification mining approach based on learning-to-rank.
Their approach takes known specification rules as input and learns the best combination over
the 38 interestingness measures. They compared their approach with state-of-the-art approaches
that considered single interestingness measure and concluded that the learning-to-rank approach
outperforms the best by up to 66%.

Loyola, Gajananan, and Satoh [[165] introduced a learning-to-rank based model to support
bug localization. This model learns feature representations from source changes extracted
from the project history and code change dependency. Comparing their model against the
state-of-the-art bug localization solutions, the authors reported a competitive result.

Shi et al. [243] surveyed hybrid bug localization methods. Combining features from hybrid
methods with different learning-to-rank techniques. In total, they compared eight learning-
to-rank algorithms applied in bug localization. The results showed that the coordinate ascent
algorithm without normalization is a suitable learning-to-rank method, outperforming two
state-of-art approaches.

Kim et al. [143]] presented a learning-to-rank fault localization technique that uses genetic
programming to combine multiple sets of localization input features. Their approach combines
static and dynamic features using genetic programming. The evaluation results showed that their
approach outperforms the state-of-the-art mutation based fault localization, spectrum-based
fault localization, and learning-to-rank fault localization techniques significantly.

Sohn and Yoo [249])[250]] introduced a learn-to-rank fault localization approach that learns
how to rank program elements based on existing spectrum-based fault localization formulas,
code metrics and change metrics. The performance of their approach was evaluated using 386
real-world faults.The authors concluded that their approach performs significantly better than
the state-of-the-art spectrum-based fault localization formulas.

Bertolino et al. [26] compared two strategies for machine learning-based prioritization,
learning-to-rank, and reinforcement learning, to prioritize tests in continuous integration. They
evaluated the ten algorithms classified into ensemble and non-ensemble algorithms. As a result,
testers have devised guidelines to select and tune the ML algorithms best fitting their needs.

Haas and Hummel [[105] applied to learning-to-rank to derive a scoring function to suggest
extract method refactoring of long Java methods. They empirically analyzed their candidate
scoring function using a set of 177 long methods and a total of 1,185 refactoring candidates.
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The authors concluded that the resulting scoring function needs fewer parameters than other
state-of-art scoring functions, but it has a better ranking performance.

Hussain et al. [122] used an|[LTR|method to create a prototype of an automated recommen-
dation system to classify and select design patterns. Given a design problem description, their
approach ranks the design patterns according to the text relevancy. They evaluated the efficacy
of the proposed method in the context of several design pattern collections and relevant design
problems. The authors concluded that their prototype is capable of selecting the right design
pattern(s).

2.4.3 Summary

In this section, we reviewed studies that applied classification and learning-to-rank to solve
different software engineering problems. The majority of these classification studies focused
on maintainability prediction, defect prediction, code smell detection, and fault-proneness
prediction. On the other hand, most of the learning-to-rank studies focused on fault localization
and defect prediction. Additionally, we described some studies in which learning-to-rank was
used to create recommendation systems, for instance, recommending methods refactoring or
design patterns to be applied. However, we concluded that classification and learning-to-rank
algorithms had not been employed to recommend code migration.

2.5 Conclusion

Based on our literature review, we observe that the research community still lack knowledge
about various aspects related to the usage of Kotlin in the context of the development of Android
applications:

* Adoption of Kotlin: When we started this research in January 2018, there were no studies
about the adoption of Kotlin. Therefore, it was necessary to investigate whether Android
developers were adopting Kotlin and its impact on Android applications’ quality. Since
we started working on this topic, some studies have covered similar research topics. For
example, Flauzino et al. [[84] compared Android applications written in Java and Kotlin,
Coppola, Ardito, and Torchiano [59] investigated the adoption of Kotlin and how it impacts
Android application’s popularity, and Oliveira, Teixeira, and Ebert [205]] examined the
perception of developers about the advantages and disadvantages of adopting Kotlin. Thus,
there is a research opportunity for understanding how the adoption of Kotlin impacts
application source-code and, consequently, on Android applications quality. Besides,
the potential findings of this research could lead developers to write better Android
applications.

* The usage of Kotlin: Despite the papers about adopting Kotlin by Android [59], no paper
investigated how Kotlin and its features have been used to create Android applications. As
Kotlin brings features not available in Java, we want to know whether Android developers
are using them. Moreover, we believe that understanding how developers are coding
Android applications with Kotlin is essential to improve these applications’ quality. Conse-
quently, this knowledge could be used to assist developers in migrating their applications
from Java to Kotlin.

* Migration to Kotlin: The announcement that Android has become ‘Kotlin-first’ revealed
Google’s intention, the owner of Android, of turning the Android ecosystem to Kotlin.
Furthermore, after this announcement, Kotlin became Google’s recommended choice for
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mobile application development. Considering this scenario, companies that want to keep
updated with the most recent Android features would need to use Kotlin. Consequently, we
believe that companies and developers will have an interest in migrating their applications
to Kotlin. However, there is no research about the migration of Java code to Kotlin.

In this thesis, we address these knowledge gaps and provide necessary elements to understand
how Kotlin impacted on Android application development, how it has been used, and finally,
how we could assist the migration of Android applications to Kotlin. We start by addressing the
lack of studies about the adoption of Kotlin. In the upcoming chapter, we present an empirical
study that explores the adoption of Kotlin and its impact on the quality of Android applications.



Chapter

Measuring the adoption of Kotlin by
Android developers

During the last years, different development approaches and frameworks have emerged to ease
mobile applications’ development. [200}180]. Meanwhile, Google has continued evolving its
development toolkit for building applications. For instance, Android 7.0 added MultiWindow
support [66], Android 8.0 redesigned notifications to provide an easier and more consistent way
to manage notification behavior and settings [[67]] and Android 10 included extensive changes
to protect privacy and give users more control [65]. Following the same trend adopted by
its competitor, Apple, that announced in 2014 a new programming language (Swift) for the
development of mobile applications, Google announced in 2017 Kotlin as an official Android
programming language. However, as showed by the state of the art, the impact of this announce-
ment in the adoption of Kotlin was not known, since there were no studies about the use of
Kotlin by Android developers.

Kotlin is 100% interoperable with the Java programming language, so it is possible to call Java-
based code from Kotlin, or to call Kotlin from Java-based code (See Section [2.1). Consequently,
developers may create applications using Kotlin in different ways: for instance, writing new
applications using only Kotlin or adding new features in applications written initially in Java, or
even migrating their applications.

For these reasons, this chapter aims to study the adoption of Kotlin on Android applications.
More specifically, we conducted an empirical study to answer the following research questions:

* RQq: What is the degree of adoption of Kotlin in Android open source applications?
* RQ,: What is the proportion of Kotlin code in mobile applications?

To carry out our study, first, we collected more than 2 000 open source Android applications
that have at least one version released in the same year that Kotlin became an Android official
programming language or later. Then, we mined these applications to compute the amount of
Kotlin code on each application. Applying this methodology, we identified Android applications
based on Kotlin that are targets of other empirical studies presented along this thesis.

The chapter continues as follows. Section [3.1| presents the steps needed to create the dataset
of Android applications written in Kotlin used in this thesis and the empirical study to measure
the adoption of Kotlin by Android developers. Section [3.2]describes the empirical study’s study
design to investigate the amount of Kotlin code in Android applications and its results. Section
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[3.3| presents threats to validity. Finally, Section summarizes our work and outlines further
works to perform on this research topic.

The content of this chapter has been published in the Empirical Software Engineering
journal [99].

3.1 Study of the adoption of Kotlin

This section focuses on our first research question:
* RQ;: What is the degree of adoption of Kotlin in Android open source applications?

Initially, to answer this research question, we collected as many as possible open source
Android applications. Section [3.1.1|describes the criteria and steps used to create this dataset.
Section presents the heuristics for classifying these Android applications into Kotlin
applications and Java applications. Finally, Section [3.1.3| presents and discusses the results of
the empirical study conducted to answer RQ);.

3.1.1 Looking for Kotlin-based Android applications

To identify Android applications using Kotlin, we focused on Android applications with at least
one version released in 2017, when Kotlin became an official language for Android development
or later. We considered that applications whose last versions date from 2016 or earlier could not
give us much information about the use of Kotlin language in the Android domain.

To carry on our study, we need for each application: a) its source code hosted in a code
repository (e.g., GitHub), and b) binary files (apk) of the released versions. For those reasons, we
mined three defined datasets of Android applications: 1) F-droid!, which is the base of several
datasets of Android applications found in the literature [95]], 2) AndroidTimeMachine [96], a
dataset that does not rely on F-droid, and provides source code of applications published on
Google Play, consequently, minimize the probability of an application be a toy project, and
AndroZoo [6,[161]], the largest dataset of Android executable, from where we only extracted
binary files of applications found either F-droid or AndroidTimeMachine. Let us introduce each
dataset and explain the reasons for choosing them.

F-droid is a directory of open source Android applications that contains 1 509 applications.?

On the main page of each application, F-Droid provides links to download the last three versions
of an application and a link for another page that contains a list of all application versions.
F-droid provides all the information we need, i.e., access to a code repository and the apks of
each released version of an application. However, the number of applications (1 509) is relatively
small compared with other datasets. For this reason, we decided to mine other Android datasets
to include more applications in our study.

AndroidTimeMachine is a graph database of Android applications which are both accessible
on GitHub and Google Play [[96]. To create this dataset, the authors defined and executed a 4-step
process: 1) in the first, are identified open source Android applications hosted on GitHub, 2) in
the second step, are extracted their package names, 3) in third step, are checked their availability
on the Google Play store, and 4) in the fourth step, are matched each GitHub repository to its

Ihttps://f-droid.org
2Last visit: 06/04/2018.
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corresponding app entry in the Google Play store [96]. In total, AndroidTimeMachine has 8,431
applications, and it is based on a publicly-available GitHub mirror available in BigQuery.> Using
the Neo4j database, it is possible to retrieve the source-code repository link and the application’s
package name for each application. However, this dataset does not provide any apks from its
applications. For this reason, we decided to mine the missing apks on the AndroZoo dataset.

AndroZoo isa dataset of millions of Android applications collected from various data sources [6,
161, including major market places Google Play, Anzhi, and AppChine, as well as smaller directo-
ries mobile, AnGeeks, Slideme, ProAndroid, HiApk, and F-Droid. In total, AndroZoo has 4 390 288
applications corresponding to a total of 7 795 372 apks (versions).* The list of available apks is
regularly updated on AndroZoo website, along with metadata for each application as the main
package name, the size of the apk, the version, and the market where the app was downloaded
from, etc. [6,|161]] However, AndroZoo does not provide any information about the source-code
repository of an application, even if it is open source.

Now, we detail the steps executed to build the dataset used in this study. Figure[3.Tillustrated
these steps.

Step 1 - Mining F-Droid: Using the date of upload of the application’s version added in F-
Droid, we retrieved 926 applications from F-Droid that fulfill our selection criterion.> The total
number of versions (i.e., apks) found corresponding to those applications was 13 094. We could
download 11 675 apks (89%), because 11% of apks were not available.

Step 2 - Mining AndroidTimeMachine: The version of AndroidTimeMachine presented by
Geiger et al. [96] contains 8 431 applications and it was executed in October 2017. As their
infrastructure is publicly available,® we re-executed it in October 2018 to include more recent
applications.

Once we retrieved the list of applications, differently of the original work from Geiger et al.
[96]], we carried out a new step to keep applications whose code repositories have only one
Android manifest file. We added this new step because we discovered that the AndroidTimeMa-
chine match algorithm produced wrong results (i.e., applications linked with wrong repositories)
when a repository has more than one AndroidManifest.xml. This list of applications that suffer
from the mentioned problem is publicly available [183].

Table shows the comparison between the numbers found by us resulting from the re-
execution of each step and the numbers of the original dataset by Geiger et al. [96]. In conclusion,
we retained 2 156 applications from AndroidTimeMachine.

Step 3 - Combining AndrodTimeMachine with AndroZoo: Since AndroidTimeMachine does
not provide apks from the applications, we retrieved from AndroZoo the apks corresponding to
each application collected from AndroidTimeMachine. To obtain those apks, we first extracted
the package name located on the AndroidManifest.xml. Then we queried the AndroZoo HTTP
API In total, 1 531 applications from AndrodTimeMachine were found in AndroZoo. To ensure
that these applications were correctly linked with repositories, we manually checked, for each

3https: //cloud.google.com/bigquery/public-data/github

4Last visit: 16/10/2018.

5Executed on June 4th, 2018.

6 AndroidTimeMachine resources: |https: / /androidtimemachine.github.io/dataset//and|https://github.com/
AndroidTimeMachine/open_source_android_apps
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Table 3.1: Steps executed to build a recent version of AndroidTimeMachine.

AndroidTimeMachine
Steps

Original Updated
Finding Android Manifest Files 378610 358518
Extracting package Names 112153 114152
Discarding repositories with more than one manifest file - 49570
Filtering applications on Google Play 9478 3664
Matching of Google Play pages to GitHub repositories 8431 3664
Filtering applications from 2017 or later - 2156

application, its repository page and its page on Google Play Store. We removed 54 applications
linked with wrong repositories, ending with 1477 applications.”

Step 4 - Combining F-Droid and AndroZoo: Finally, we kept 1 241 applications from Andro-
Zoo. The rest, 236, were already discovered from F-Droid during step 1.

The resulting collection: Our final collection corresponds to:

Fdroid U(AndroZoo N AndroidTimeMachine)

In total, we collected 2167 applications (926 + 1241) and 19 838 apks. Figure [3.2]shows
the distribution of apks (released versions) per application. From F-droid we downloaded in
median 6 apks. Moreover, from AndroidZoo, we downloaded in media 3 apks per application.
In summary, we have in median 4 apks per application. The list of collected applications is
publicly available in our appendix.?

3.1.2 Analysis method

To measure the adoption of Kotlin, we built a process to classify both applications and apks of
our dataset in three categories of applications: 1) applications written with Java (i.e., applications
that do not include any line of Kotlin code), 2) applications written partially with Kotlin, and
3) applications written totally with Kotlin, we call these applications as ‘pure Kotlin’. Note that
we only focused on applications’ source code and bytecode, discarding third-party libraries,
which neither their source code nor bytecode (jars) are included in the applications’ code
repositories.

For each collected application, which has a link to the code repository and a set of apks, we
applied three heuristics to classify an application and its apk. Figure[3.3|shows this classification
process.

We first applied the heuristic H,, Figure a), which consists of looking for a folder called
kotlin inside the apk file. Having that folder indicates the presence of Kotlin code. To automatize
this task, we used a tool named apkanalyzer included in the Android SDK. Using this heuristic,
we first classified each version (apk) of an application. If at least one apk is classified as Kotlin,

7In the appendix we list all applications that suffer the mentioned problem: |https://github.com/UPHF/
kotlinandroid/blob/master/docs/wrong_match.md.
SFAMAZOA dataset: https://github.com/UPHF /kotlinandroid/blob/master/docs/final_dataset.md
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Table 3.2: Classification of applications according to their programming language.

Information Total Kotlin Java
Unique apps 2167 244 1923
Versions 19838 1590 18248

the heuristic classifies the application as ‘Kotlin’. Otherwise, it classifies as ‘Java’. The H,;
provides a cheap and fast approach to get an initial guess about the presence of Kotlin code.

At the same time, we applied our second heuristic th, Figure b), which relies on the
GitHub API. For each application hosted on GitHub, we queried the GitHub API to retrieve the
amount of code (expressed in bytes) from the most recent version grouped by programming
language. We classified the app as ‘Kotlin’ if Kotlin is found in the API’s response.

Finally, once we retrieved a set of candidate Kotlin applications using H,,x and Hyy, i.e.,
Hgpk U Hgp, we applied the heuristic Hy. over them, Figure ¢), to assert the presence of
Kotlin code and to measure how much Kotlin an application has. The heuristic H,, inspects
every commit of a given application’s repository. For this purpose, the heuristic used CLOC?,
a tool that counts lines of code in many programming languages,which returns a list with the
programming languages used in an application and the amount of code not considering blank
lines. Hy, is time-consuming because it requires analyzing the source code of each commit of a
repository. Therefore, to execute Hy, for every application from our dataset is prohibitive.

Different from Hj, heuristic Hgj, only focuses on the most recent application version hosted
on GitHub (the API only retrieves that information). Consequently, it cannot detect applications
that: a) do not contain Kotlin code in the most recent version (last commit), but b) contain Kotlin
code in older versions.

At the end of the classification process, an application is classified as ‘Kotlin’ if at least one
commit that has Kotlin code is found and as ‘Pure Kotlin’ if all commits contained only Kotlin
code.

3.1.3 Results

Table [3.2]summarizes the classification of applications done using the presented methodology.
Our collection has 2167 applications and using our heuristics we classified 244 (11.26%) as
‘Kotlin’ applications. Consequently, the remaining applications, 1 923 (88.74%), were classified
as ‘Java’. Figure [3.4a|shows these percentages. Considering the number of versions (apk), we
found 1590 apks (8.01%) with Kotlin code and 18 248 (91.98%) without Kotlin code.

Now, let us explain how we arrived to detect 244 Kotlin applications. First, the heuristic
H,p (apk analyzer, Section classified 265 applications as ‘Kotlin’. Those applications have,
at least, one apk classified as ‘Kotlin’. For 76 of them, all apks are classified as ‘Kotlin’. Then,
Hgp, (GitHub API, Section classified 234 applications as ‘Kotlin’. 193 of them were also
classified as ‘Kotlin’ by H,,,. Up to here, both heuristics have classified 297 unique applications
as ‘Kotlin’.

Finally, we applied Hy.(Source Code analysis Section[3.1.2) on those 297 applications’ reposi-
tories, finding 244 that contains Kotlin code. The list of Kotlin applications can be found in our
appendix.!?

9http: //cloc.sourceforge.net/
10Applications classified as Kotlin: |https: / /gi thub.com/UPHF /kotlinandroid/blob/master/docs/final_kotlin_
dataset.md


http://cloc.sourceforge.net/
https://github.com/UPHF/kotlinandroid/blob/master/docs/final_kotlin_dataset.md
https://github.com/UPHF/kotlinandroid/blob/master/docs/final_kotlin_dataset.md

36 Chapter 3. Measuring the adoption of Kotlin by Android developers

Kotlin Kotlin
11.26% [244] 8.01% [15901]
88.74% [1923] 91.99% [18248]
Java Java
(a) Unique applications. (b) All versions (apk).

Figure 3.4: Distributions between Kotlin and Java applications and versions.

We named this set of Android applications totally or partially written in Kotlin as FAMAZOA
(F-droid AndroidtimeMachine AndroZoo open source Applications) [185[]. FAMAZOA is, to
the best of our knowledge, the largest publicly available dataset of Kotlin-based Android
applications. Along this thesis, we conducted empirical studies (Chapters 4, 5 and 6) that target
FAMAZOA’s applications.

7

Response to RQq: What is the degree of adoption of Kotlin in Android open source applica-
tions?

We found that 244 out of 2167 (11.26%) applications from our dataset have, at least, one
version released between the years 2017 and 2018 written (totally or partially) using the
Kotlin language.

\. J

This result indicates that Android developers are using Kotlin, although there is no scientific
evidence that this choice positively impacts the development of applications. Therefore, this
finding opens research opportunities. This thesis focus on some of those opportunities. In
Chapter[4, we compare the occurrences of code smell in Kotlin-based and Java-based applications
and based on that, we analyze the impact of Kotlin on the quality of Android applications. In
Chapter 5] we analyze how Kotlin code is evolving in terms of lines of code and the use of Kotlin
features along the development of Android applications.

3.2 Study of The proportion of Kotlin code in Android applica-
tions

Thanks to the interoperability between Java and Kotlin, Android developers can decide between
writing applications totally or partially (with different proportions) in Kotlin. For instance, one
application may have all its codebase written in Kotlin, whereas another one may have only 10%
of lines of code written in Kotlin. For that reason, in this section, we analyze the amount of
Kotlin code in Android applications by answering our second research question:

* RQ,: What is the proportion of Kotlin code in mobile applications?

To answer this research question, we mined Kotlin applications from FAMAZOA. Figure
illustrates the steps followed to conduct this study. Section explains the reason why we
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Figure 3.5: To answer our RQ,, we retrieved the corresponding code repository (e.g., a git
repository) of each FAMAZOA’s application. Then, for each repository, we executed CLOC to
identify the proportion of Kotlin code.

target these applications and characterizes them. Section presents the method applied to
the target applications to identify their Kotlin and Java code proportions. Finally, Section [3.2.3|
presents and discusses the results of the empirical study conducted to answer RQ),.

3.2.1 Applications analyzed in the study

The goal of this research question is to identify the proportion of Kotlin code in Android
applications. For that reason, we did not mine all applications that we collected. We focused
only in applications from FAMAZOA (244 applications).

3.2.2 Analysis method

For each application, we retrieved the corresponding code repository (e.g., a git repository). For
each repository (associated with one application), we executed CLOC, a tool that counts lines
of code in many programming languages, over the most recent version (i.e., the last commit),
then we calculated the proportion of Kotlin code (excluding blanks and comments) concerning
the total code (See Equation [3.1). In this analysis, we discarded files that did not contain Java or
Kotlin code, such as XML, CSS, JavaScript, and others.

Ktloc

LoC — BlackLines — Comments (3.1)

Proportion =
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Figure 3.6: Distribution of applications according the percentage of Kotlin code. 59.43% of
Kotlin applications have more than 80% of source code written in Kotlin.

3.2.3 Results

Figure[3.6/shows the distribution of Kotlin applications according to the percentage of Kotlin
code. We found that 82 out of 244 (33.61%) applications have only Kotlin code. The rest of
the Kotlin applications (66.39%) are also written in Java. Furthermore, we found that 145 out
of 244 (59.43%) applications have at least 80% of Kotlin code and, on the contrary, 45 out of
2167 (18.44%) applications, have less than 10% of Kotlin code.

Response to RQ,: What is the proportion of Kotlin code in mobile applications?
Considering the last version of each application, most Kotlin applications (59.43%) have
at least 80% of lines of code written in Kotlin.

This result indicates that although 11% of Android applications adopt Kotlin, most of these
applications are almost entirely (80% of its codebase) written in Kotlin. However, we do not
know if developers are writing new applications or converting applications written in Java, or
adding Kotlin code to applications initially developed in Java. We investigate this aspect in
Chapter [4] Furthermore, Kotlin brings functional features together with object-oriented features
to the development of Android applications. For that reason, Chapter [5|presents an empirical
study focused on the use of Kotlin features by Android developers.

3.3 Threats to Validity

In this section, we discuss the main issues that may have threatened the validity of the studies
presented in this chapter, considering the classification of threats proposed by Cook, Campbell,
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and Day [58|:

3.3.1 Internal

Classification of Android applications. In Section [3.1]we defined a procedure for classifying
Android applications in ‘Kotlin” and ‘Java’ based on three heuristics that inspect both source
code and Android binary files (apks). By applying those heuristics, we assure the absence of
false-positives in our dataset, i.e., applications classified as ‘Kotlin’ but without Kotlin code along
with their life-cycle. However, it could exist some false negatives, i.e., applications that: 1) has
versions with Kotlin, but heuristic Hapk does not classify them as Kotlin, and 2) the last version
from the code repository does not have Kotlin code anymore (by definition, not detected by the
heuristic Hgy,). The heuristic Hy, could detect such applications in case that H, fails. However,
it is expensive (time-consuming) to execute H. over the complete set of collected applications
considering our current infrastructure (Hy. analyzes each commit from the application’s source
code).

3.3.2 External

Representativeness of the set applications collected. Our studies focus on studying both
source and byte code of mobile applications. For that reason, we decided to study the open source
application available on GitHub. To our knowledge combining F-Droid, AndroidTimeMachine,
and AndroZoo, makes our dataset the largest Android repository that has both binary and source
code of each app. However, we cannot generalize our findings over applications that are not
open source.

3.4 Summary

In this chapter, we presented an empirical study that explores the adoption of Kotlin by Android
developers. Initially, we collected open source Android applications to investigate how many
applications have been written using Kotlin. Once we found these applications, we measured
the amount of Kotlin on it.

To perform our empirical study, we mined 3 existing Android datasets (F-droid, Android-
TimeMachine [96] and AndroZoo [6,(161])). In total, we collected 2 167 applications and 19 838
apks. To identify applications that have Kotlin code, we defined and applied 3 heuristics and we
found that 244 out of 2167 (11%) applications that have at least one released version between
2017 and 2018, adopted Kotlin. The result of this empirical study showed that around 11%
of Android applications already adopted Kotlin. Then, considering the applications that have
adopted Kotlin, we compared the amount of Kotlin and Java code in their last version (i.e.,
commit). The comparison showed that 145 out of 244 (59.43%) applications have at least 80% of
their codebase written in Kotlin.

Regarding our thesis plan, this chapter allowed us to fill one particular gap: the absence of
knowledge in the literature about the adoption of Kotlin by Android developers. Considering
our result, we can affirm that Android developers have adopted Kotlin. However, at this point,
we still do not know how the adoption of Kotlin impacts the quality of Android applications. In
Chapter [4, we address this gap identified in our literature review.
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Chapter

Measuring and Comparing the quality
of Android applications written in
Kotlin

As showed in Chapter[3} in our study conducted in 2018, we found that around 11% of Android
applications have adopted Kotlin and among these applications, 66.39% mix Kotlin and Java.
However, combining multiple programming languages in the same software increases its defect
proneness [144]. Moreover, it is known that language design affects software quality [230].
Nevertheless, as shown in our review of state of the art (See Section no study considers how
the adoption of Kotlin impacts the quality of Android applications. For that reason, this chapter
aims to investigate the impact of adopting Kotlin on Android applications’ quality.

As proposed by Hecht et al. [115], we measure the quality of an Android application regarding
the presence of code smells [87]. More specifically, we conduct an empirical study with the aim
of answering the following research questions:

* RQj3: Is there a difference between the quality of Kotlin and Java Android applications,
expressed in terms of code smells presence?

* RQ,: How frequent does the introduction of Kotlin positively impact on the quality of the
versions of an Android application?

To carry out this study, we mined more than 2 000 Android applications to detect instances of
ten code smells. We replicated the empirical study done by Habchi et al. [108]], which compares
iOS and Android applications to compare code smells found in two sets of Android applications:
Android applications with Kotlin code and Android applications only written in Java. Moreover,
we used the quality model proposed by Hecht et al. [115] to measure the impact on the quality
of applications initially written in Java that have introduced Kotlin.

The chapter continues as follows. Section [4.1|presents the tool used to identify code smells in
applications and the set of code smells considered in both studies described in Section [4.2]and
Section [4.2] describes our empirical study conducted to compare the presence of code smells
on Kotlin and Java Android applications. Section[4.3|describes our empirical study conducted
to investigate the impact of the adoption of Kotlin code on the quality of Android applications.

41
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Section [4.4reports threats to validity. Finally, Section [4.5|summarizes our work and outlines
further works to perform on this research topic.

The content of this chapter has been published in the Empirical Software Engineering
journal [99].

4.1 Study design

We present in this section the tool used in our empirical studies and the reasons for choosing it.
Moreover, this section describes the code smells considered to answer both research questions.

We would like to recall that Kotlin and Java run on top of the[Java Virtual Machine| (JVM).
Consequently, both languages share the same JVM bytecode. This property makes it possible to
interoperate between both languages, allowing developers to call Java code from Kotlin code
and vice versa. Moreover, as both languages share the same bytecode, we can use it to compare
Java-based and Kotlin-based Android applications.

4.1.1 Tool selection

To answer our research questions, we need a tool capable of identifying code smells on Kotlin-
based and Java-based Android applications. Moreover, due to the relevance of domain-specific
code smells [14]], we decided to analyze the presence of object-oriented and Android-specific
code smells. Therefore, we looked for a tool capable of identifying both types of code smells on
Kotlin-based and Java-based Android applications. Since developers use official/commercial
markets to distribute their apks, most Java source code and bytecode existing analyzers could
not be used to analyze the files [[160].

Considering these requirements, we selected Paprika [[115}|117]. Paprika is a static analysis
tool that fits these criteria: a) it can detect object-oriented and Android-specific code smells [117];
b) it was designed for detecting code smells on Android applications without requiring the source-
code: the input of Paprika is the apk of one Android application; c) as it works at JVM bytecode
level (i.e., an apk contains bytecode), it can analyze Android applications written in Java and/or
Kotlin. Moreover, Paprika has been extensively used for analyzing mobile applications [[115}117,
116,|108}43,(101] and its implementation was deeply validated, including an experiment done
together with Android developers [114].

Paprika can identify 4 object-oriented, and 13 Android code smells. Table [4.1|shows these
code smells and it also presents the entities that are related to each of them.!

The input of Paprika is an apk (i.e., a version of an Android application). To detect occurrences
of code smells, Paprika uses metrics associated with entities. For example, the code smell Long
Method (LM) is an object-oriented smell, and it is related to methods: an instance of LM is a
method in which the number of instructions is higher than a given threshold.

As output, Paprika produces a) a list of smells found, and b) the metrics associated with the
entities used for detecting smells, for example, the number of methods, activities and services.
Moreover, for each code smell’s instance (incl. BLOB, CC, and HSS), Paprika outputs a fuzzy
value (between 0 and 1) calculated using fuzzy logic [287], representing the degree of truth of
the detected instance [108},|114].

IVersion of Paprika used: commit 5ebd34 |https://github.com/GeoffreyHecht/paprika/commit/
5ebd349ed3067914386e8c6a05e87ff161f9edd1


https://github.com/GeoffreyHecht/paprika/commit/5ebd349ed3067914386e8c6a05e87ff161f9edd1
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Table 4.1: Paprika supported code-smells. The column ‘Considered’ shows the 10 code smells
studied in our work (v') and the 7 not studied (x).

Type Code smell name Entity Considered
Blob Class (BLOB) Class v
Object-  Swiss Army Knife (SAK) Interface v
Oriented Complex Class (CC) Class v
Long Method (LM) Method v
S Hashmap Usage HMU) ~ Class  x
Unsupported Hardware Acceleration (UHA) Class X
Leaking Inner Class (LIC) Inner class X
Member Ignoring Method (MIM) Method X
Internal Getter/Setter (IGS) Method X
Android- No Low Memory Resolver (NLMR) Activity v
Specific Heavy ASynctask (HAS) Async Task v
Heavy Service Start (HSS) Service v
Heavy Broadcast Receiver (HBR) Broadcast Receiver v
Init OnDraw (IOD) View v
Invalidate Without Rect (IWR) View X
Ul Overdraw (UIO) View v
Bitmap Format Usage (BFU) - X

4.1.2 Code smell selection

In this subsection we introduce the code smells considered in our empirical studies and the ones
discarded.

4.1.2.1 Code Smells considered in our study

We now describe the code smells that we study in this thesis. Table [4.1]shows them with a v'in
column “Considered”.

Firstly, we considered the four object-oriented smells (BLOB, SAK, and CC, related to classes,
LM related to methods) because they can also exist in Kotlin applications. Let us briefly describe
each of them. A Blob class (BLOB), also known as God class, is a class with many attributes
and/or methods [32]. A Swiss army knife (SAK) is an interface with many methods [114]. A
complex class (CC) is a class containing complex methods. These classes are hard to understand
and maintain and need to be refactored [[87]]. On Paprika, the class complexity is calculated by
summing the complexities of the internal methods and the complexity of a method is calculated
using McCabe’s Cyclomatic Complexity [189,[115]. Long methods (LM) have much more lines
than other methods, becoming complex, hard to understand and maintain.

Secondly, we considered 6 Android platform related code smells that Paprika can detect,
and we discarded 7. Those Android smells we considered are: 1) NLMR (related to activities),
2) HAS (async taks), 3) HSS (async taks), 4) HBR (broadcast receivers), 5) UIO (views), and
6) IOD (views)

Let us briefly describe each of them. No Low Memory Resolver (NLMR) [117] occurs when
activities do not have the method onLowMemory() overridden. If an activity does not implement
this method, the Android system could kill a process related to this activity to free memory.
Consequently, it could cause an abnormal termination of programs [233].
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Heavy ASynctask (HAS) [[114], Heavy Service Start (HSS) [114] and Heavy BroadcastReceiver
(HBR) [115] are similar: they occur when heavy operations are executed at the main thread in
different Android components, Async Task, Service and BroadcastReceiver, respectively [[178}
177,[176].

Ul Overdraw (UIO) [115]] and Init OnDraw (IOD) [[114] are related to custom views. The smell
UIO produces overdraw views because of missing methods invocations, such as clipRect and
quickReject [[188]], which could avoid the overdraw. IOD happens when new objects are created
inside the onDraw method that could be executed many times by second, resulting in many
allocations of new objects [[155].

4.1.2.2 Code Smells ignored in our study

We ignored 7 Android-related code smells that Paprika can identify. Table [4.1|shows them with
a “x” in column “Considered”. These smells are MIM, LIC, IGS, BUF, HMU, UHA and IWR. In
the remainder of this section, we describe them and explain why we exclude them.

Member Ignoring Method (MIM) [233]] occurs when a method does not access any class’s
attribute. In Android, it is recommended to use a static method instead because static method
invocations are about 15%-20% faster than a dynamic invocation [11[]. The smell Leaking Inner
Class (LIC) [117]] occurs when an application uses a non-static and anonymous inner class, since
in Java, this type of inner class holds a reference to the outer class, and consequently, it could
provoke a memory leak in Android systems [233},|164]. We decided to discard MIM and LIC
because Kotlin does not have static methods [[146].

Internal Getter/Setter (IGS) [233]] impacts on performance and energy consumption of ap-
plications 116} (196} (197} (140,101}, 214, 43]]. However, this code smell only impacts when an
application runs on Android platforms 2.3 or less [62]. We discarded this smell because the
number of active Android devices that run those platform versions is smaller than 0.5%.>

Bitmap Format Usage (BFU) is related to image format [[43]]. We discard it because it is related
to neither Kotlin nor Java code, i.e., the smell is independent of the programming language used.

HashMap Usage (HMU) [43]] occurs when developers use small HashMap instances instead
of using ArrayMap or SimpleArrayMap, both provided by the Android framework [[106}|10].
However, the results found by Saborido et al. [237]] show that ArrayMap is generally slower
and less efficient regarding energy consumption than HashMap. Moreover, they showed that
when the keys used are primitive types, developers should adopt SparseArray variants because
they are more efficient concerning CPU time, memory and energy consumption. We discarded
this smell because of: a) the mentioned finding from Saborido et al. [237]], and b) the Paprika’s
mechanism used to identify HMU occurrence does not take into account the key’s type.

Finally, we discarded 2 smells related to custom views. Unsupported Hardware Acceleration
(UHA) [114]] occurs when developers call a method that is not hardware accelerated, so it runs
on the CPU instead of GPU, impacting performance and energy consumption [[156]. We discard
it because the occurrences of this smell depend neither on the developer nor programming
languages. The smell Invalidate Without Rect (IWR) [114] appears when the onDraw method is
not implemented properly, resulting in overdraw views [[156]. When developers do not specify
the rectangle area that should be updated, the whole view is redrawn, even some area that is not
visible, resulting in performance problems. Ni-Lewis [156] indicated that developers should call
the method invalidate(Rect dirty), specifying the area to be drawn, to avoid this smell. However,
this method was deprecated in API 28 and since API 21 its calls are ignored. Consequently, we
discarded this smell.

Zhttps://developer.android.com/about/dashboards/ Last visit: 06/11/2018
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Using Paprika we compared Kotlin-
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Figure 4.1: Steps followed to compare Java and pure Kotlin applications in terms of code smells.

4.2 Comparing the quality of Kotlin-based and Java-based An-
droid applications

According to Ray et al. [230|], language design affects software quality. Therefore, the choice
between Java or Kotlin for developing Android applications may affect these applications’ quality.
For that reason, in this section, we compare the quality of Kotlin-based and Java-based Android
applications in terms of code smells by answering our first research question:

* RQj: Is there a difference between the quality of Kotlin and Java Android applications,
expressed in terms of code smells presence?

Figure [4.1]illustrates the steps followed to conduct this study. In Section we describe
the set of applications analyzed to answer this research question. Section presents the
methodology applied to obtain the results reported in Section

4.2.1 Applications analyzed in the study

In this empirical study, we want to compare Kotlin-based and Java-based Android applications’
quality in terms of code smells. For that reason, we used in this study all applications that we
collected to investigate the adoption of Kotlin by Android developers (Section [3.1.1). Therefore,
we analyzed 2 167 applications and their 19 838 versions (apks).

4.2.2 Analysis method

To identify the object-oriented and Android smells listed in Section we analyzed the
2167 applications. We ran Paprika for all versions of each application (i.e., apks). Then, we
computed the percentage of Java and pure Kotlin (i.e., applications that are entirely written in
Kotlin, previously identified in Section applications affected by each code smell. We did
not consider applications partially written in Kotlin in this study because it was not possible to
distinguish whether a code at byte-code level comes from Java or Kotlin code.
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An application a is affected by a code smells s if a has at least one instance of s. This approach
splits applications into two groups: a) affected by s, and not affected by s. We also calculated
a metric that computes the ratio between the number of instances of one code smell and the
number of concerned entities related to this smell, as done by Habchi et al. [108]]. The goal of
this metric is to quantify the importance of the difference in proportions of the smells. Thus, for
each application a, the ratio of a smell s is defined as [108|:

' ~ fuzzy_valueg(a)
ratiog(a) = number_of_entitiesy(a) Y

where fuzzy_valuesg(a) is the sum of the fuzzy values (which vary from 0 to 1) of the detected
instances of a smell s in an app a. number_of _entities;(a)is the number of the entities concerned
by the smell s in the app a. Section shows the relationship between the smells and the
entities concerned by them.

We computed Cliff’s 6 [236] as well, which indicates the magnitude of the effect size [54] of
the treatment on the dependent variable. In our study, we used Cliff’s 0 to determine for each
smell s which group of applications, pure Kotlin or Java applications, have more entities affected
by s, and whether the effect size found presents a significant difference.

The Cliff’s Delta estimator can be obtained with Equation

#(x1 > xp) —#(x1 <x3)
ny*ny

o=

(4.2)

In this expression, x; and x, are scores within group 1 (Kotlin applications) and group 2
(Java applications), and #n; and n, are the sizes of the sample groups. The cardinality symbol
# indicates counting. This statistic estimates the probability that a value selected from one of
the groups, in our case a ratioy, is greater than a value selected from the other group, minus the
reverse probability [166].

According to Romano et al. [236], the effect size is small for 0.147 < d < 0.33, medium for
0.33 < d < 0.474, and large for d > 0.474. We opted for Cliff’s 6 test since it is suitable for
non-normal distributions. Moreover, Cliff’s ¢ is also recommended for comparing samples of
different sizes [[166].

4.2.3 Results

Android applications may vary in different aspects related to software size like the number of
classes, the number of lines of code, the number of methods. For that reason, we initially analyze
the proportion of applications affected and not affected by code smells. Then, in the second part
of this study, we perform a more in-depth analysis by comparing the proportion of applications’
entities affected by code smells. Using this second approach, we can normalize the occurrences
of code smells according to Android applications’ size and, consequently, we can compare Java
and Kotlin applications fairly. The results presented in this section consider the 17 725 apks
from 2 040 applications (94%) successfully analyzed using Paprika.

4.2.3.1 Number of Affected Applications

Table shows for each programming language and code smell, the percentages of Android
applications affected by a given code smell, i.e., having one or more smell instance.

We found that 3 out of 4 (75%) object-oriented smells affect more than 93% of applica-
tions considering both languages, Kotlin and Java. LM is the most common smell, affecting
approximately 99% of the applications of both languages. SAK is the least frequent smell, but it
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Table 4.2: Percentage of Android applications affected by code smell. An app a is affected by a
code smell s if 4 has at least one instance of s.

% Affected applications by smells

Object-oriented smells Android smells
Long Complex BLOB Swiss No Low ul Heavy Heavy Heavy Init
Method Class class Army Memory Overdraw Broadcast Service ASynctask OnDraw
Knife Resolver Receiver Start

(LM) (CC) (BLOB) (SAK) (NLMR) (UIO) (HBR) (HSS) (HAS) (IOD)
Kotlin  99.80 98.50 95.12  65.67 99.30  54.02 3572 17.31 09.55 09.55
Java 99.62 96.89 93.53  66.51 98.84 4533 3998 19.92 2261 06.50
K-J 0.18 1.61 1.59 -0.84 0.46 8.69 -426 -2.61 -13.06 3.05

still affects most applications, around 65% of Kotlin applications and 66% of Java applications.
Therefore, our results agree with previous work [115}108] showing that LM, CC, BLOB and SAK
are the most common OO smells in Android applications, respectively.

Table also shows differences between the percentages of applications written in Java
and Kotlin (row K - J): for all OO smells (LM, CC, BLOB, and SAK), the differences are small:
0.18%, 1.61%, 1.59% and -0.84%, respectively. Our conclusion is twofold. First, 3 out of 4 (75%)
of object-oriented code smells are more present in Kotlin applications. However, they affect a
similar proportion of both Kotlin and Java applications.

Regarding Android smells, we observed that NLMR is the most frequent smell, affecting the
99% of Kotlin and 98% Java applications. Furthermore, the second most present Android smell,
UIO, affects 54% and 45% of Kotlin and Java applications, respectively. The third most present
smell is HBR, which affects 35% of Kotlin and 39% of Java applications. Other 3 smells (HSS,
HAS, IOD) are present in, at most, 22% of all applications. Note that 3 Android smells affect
proportionally more Java applications. Moreover, the most significant difference between the
proportion of applications affected by Android smells is 13.06% from the HAS smell.

We observed a high number of applications affected by NLMR smell because it is related
to Activities, the main component of Android applications, present in almost every Android
application. HBR, HSS and HAS are related to other Android components, BroadcastReceiver,
Service and AsyncTask, that are not essential for all Android applications. UIO and IOD are
smells related to View component, affect only custom views implementation. However, as the
Android SDK provides several views implementations, most applications do not need custom
views implementation.

Response to RQs: Is there a difference between the quality of Kotlin and Java Android
applications, expressed in terms of code smells presence?

In terms of affected applications: Considering all smells, 6 out of 10 (3 out of 4 object-
oriented and 3 out of 6 Android) smells affect proportionally more applications with
Kotlin code. However, for all object-oriented smells and 4 out of 6 Android smells,
the difference between the percentage of affected Kotlin and Java applications is small
(between 0.18% and 4.26%).

. v

This result shows that 3 out of 4 object-oriented smells and 3 out of 6 Android smells affect
more Kotlin applications. However, we can not affirm that Kotlin applications are worse than
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Java applications in terms of the presence of code smells because, in this analysis, we do not
consider the number of code smells that each application has. Thus, one application with 100
instances of a given code smell is counted in the same way that an application has only one
instance of the same code smell. For that reason, we also analyze the number of applications’
entities affect by code smells.

4.2.3.2 Number of Affected Entities

Now, we study the proportion of entities affected by smells using the methodology presented in
Section In the previous section, we identify the proportion of Kotlin-based and Java-based
applications affected by code smell. However, we ignore how much they are affected, i.e., we do
not consider the density of code smells into applications. On the other hand, in the section, we
analyze the density of code smells into applications by measuring the proportion of applications’
entities affected by code smells’ instances. Table [4.3|shows the median (med) ratios of smells in
applications (Formula [4.1) and Cliff’s 6 effect sizes for each smell and programming language.

First, we observed that the most frequent smells (LM, CC, and BLOB) have a small median
ratio. This means that, although they are present in most applications, only a few entities
are affected by these smells. Moreover, Cliff’s 0 values show that the differences between the
smell median ratio of pure Kotlin and Java applications are statistically significant for all object-
oriented smells: ‘small’ difference for CC and SAK, and ‘medium’ for LM and BLOB. We conclude
that although 3 out of 4 object-oriented smells affect more Kotlin applications, our results show
that for 100% of object-oriented smells, Java applications have in median more entities affected
by them with statistical relevance.

Concerning Android smells, we observed that the median ratios for 4 out of 6 smells (HBR,
HSS, HAS and IOD) are zero for Java and Kotlin applications, which is consistent with Table
since less than 50% of applications for both languages are affected by these smells. Furthermore,
Cliff’s 6 showed no significant difference for 5 out of 6 Android smells, including those previously
mentioned. We conclude that very few entities are affected by these smells, even for HBR that
affects more than 35% of Android applications (see Table[4.2). Concerning the smell NLMR, we
observed, with statistical significance, that Java applications have more entities affected with a
‘small’ significant difference. This result agrees with those from Habchi et al. [108]] and shows
that NLMR affects most Java applications’ activities.

Response to RQj: Is there a difference between the quality of Kotlin and Java Android
applications, expressed in terms of code smells presence?

In terms of affected entities: Although 3 out of 4 (LM, CC, and BLOB) object-oriented
smells affect more Kotlin applications, our results show that for all object-oriented smells
(LM, CC, BLOB and SAK), Java applications have in median more entities affected by them
with statistically relevance. Moreover, considering Android smells, Java applications
have, in the median, more entities affected by NLMR, the unique Android smell that
presents statistical relevance.

The results showed that in general, Java applications have more entities affected by all (4)
object-oriented and one Android code smells. Therefore, by choosing Kotlin instead of Java,
developers are minimizing the occurrences of these code smells in their applications.
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Table 4.3: Ratio comparison between Kotlin and Java. The column ‘Cliff’s 9’ shows the difference
between the smell median ratio of pure Kotlin and Java applications: negative values mean that
a smell affects fewer entities in Kotlin than in Java.

Smell Lang II;/Iaetcil(i)an Cliff’s 6 zii%frelirfei;irelce of

LM };‘xin 8:8;22 -0.3873 Medium

cC ﬁ?}gin 8:8?3‘;’ -0.3168  Small

BLOB ﬁ(";hn 8:8;?2 -0.4338 Medium

SAK ﬁ‘;ﬁi“ 8:8823 -0.2433  Small
o KR0S

UIO f;;gin 8:8(7)83 0.1156  Insignificant

HBR }i‘:;hn 8:8888 -0.0699 Insignificant

HSS ﬁ(\);lin 88888 -0.0240 Insignificant

HAS ﬁ?;lin 88888 -0.1306 Insignificant

10D }i(‘);lin 88888 0.0341  Insignificant
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4.3 Measuring the impact on the quality of introducing Kotlin

In Section we found that 162 out of 244 (66.39%) applications with Kotlin code also
have Java code. As Kotlin became an Android official programming language later than Java,
potentially these applications were initially written in Java, and Kotlin has been added to it
later. However, we do not know whether this introduction affects the applications’ quality. In
the section, we investigate the impact of adopting Kotlin on the quality of Android applications
written in Java by answering our fourth research question:

* RQy: How frequent does the introduction of Kotlin positively impact on the quality of the
versions of an Android application?

Figure[4.2]illustrates the steps executed during this study. Section [4.3.1] presents the target
applications of this empirical study. Section [4.3.2]defines the quality model used to estimate the
quality of Android applications. Section [4.3.3|explains how we trained this model. Section [4.3.4]
describes how we used our quality model to answer RQ, and Section presents the results
of our empirical study.

4.3.1 Applications analyzed in the study

In order to investigate the impact of adopting Kotlin on the quality of Android apps, we need
applications with two characteristics: i) they were initially written in Java and ii) later, they
had Kotlin code introduced. For that reason, we target the 244 applications from FAMAZOA, a
dataset of open source Android applications written in Kotlin (Section[3.1.3). These applications
have Kotlin code, but they were not necessarily written from scratch using Java. For instance,
some of them may have only Kotlin code. Applying the methodology presented in Section [4.3.4}
we consider only the applications that have both characteristics mentioned previously.

4.3.2 Defining a quality model

For responding to RQ,, we used the technique presented by Hecht et al. [115] for scoring each
version (apk) from a mobile application. The score serves as an estimation of the mobile app
quality in a particular version (apk) and is based on the consistency between the application’s
size and the number of detected code smells.

To compute the software quality score based on one type of code smell s, the technique from
Hecht et al. [117] first builds an estimation model using linear regression. This model represents
the relationship between the number of code smells of type s and one metric representing the
size of the application in terms of the numbers of entities associated with s. For example, for the
smell BLOB, the metric of size that we consider is the total number of classes, and for the smell
LM, the metric is the number of methods. Table [4.1] presents the relation between the types of
smells and entities. We built a quality model for each code smell that we consider in this study
(Section[4.1.2.1).

To obtain the quality score for one application (apk), the technique takes as input the number
of code smells and a value of that app’s size, and produces as output a score. A higher positive
score implies better quality. As described by Hecht et al. [115], the quality score of an application
at a particular version is computed as the additive inverse of the residual. Consequently, a
larger positive residual value suggests worst software quality because it means the apk has more
smells with respect to its size than the norm (i.e., linear regression). In contrast, a larger negative
residual value implies better quality because of the lower number of smells.
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4.3.3 Training a quality model

We created a quality score model, i.e., a linear regression, for each code smell presented in
Section[4.1.2.1] We trained the linear model using a dataset defined by Hecht et al. [115] which
contains 3 568 Android versions (apk) extracted from the Google Play store between June 2013
and June 2014. We selected this dataset for training the model for two main reasons: 1) it was
previously used in a similar studies for training quality models Hecht et al. [115] and Hecht [[114];
and 2) its applications do not include Kotlin code. The trained model created from this dataset
represents the quality of applications built previously to Kotlin was released. Thus, we used
it as a baseline to measure if Kotlin applications have more (or less) quality than applications
written before Kotlin was released.

To create a quality model, we first run Paprika over the dataset previously mentioned. The
output of Paprika is the training set. Each element of the training dataset (a row) corresponds
to a single apk a and has the following information: a) the number of instances of a smell s in
application 4, and b) the value associated with the entity of smell s in a. For example, for smell
Long Method (LM) we compute the linear regression between: 1) the number of instances of
smell LM,3 and 2) the total number of methods.

4.3.4 Analysis method

Once we trained our quality model, we computed the quality scores (one per code smell) for
each apk from our dataset of applications classified as ‘Kotlin’, i.e., applications that mix Java
and Kotlin previously identified in Section [3.1.3] Those apks conform to our test dataset. Note
that the training dataset does not include any apk from the test dataset. Thus, we discarded the
possibility of having overfitting in our models.

In this study, we analyzed the applications that initially have one or more apks classified as
Java and then it has 1 or more apks classified as Kotlin. We measured the impact on the quality
of introducing Kotlin code in one application as follows. For each of those applications and for
each code smell s, we first compared the quality scores of s between the apk that introduces
Kotlin code and the previous apk (i.e., which has Java code and no Kotlin). Then, we compared
the quality score between the last Java apk (i.e., the version just before introducing of Kotlin
code) and the most recent Kotlin version available. These two comparisons have different goals:
the first one aims at measuring the impact just after the introduction of Kotlin in an app; the
second one aims at studying the impact after the application (that now includes Kotlin code) has
evolved.

Using this information, we studied the quality evolution trend of each application. A quality
evolution trend describes how the quality scores from the versions of an application a change
throughout its evolution. Considering 5 major quality evolution trends defined by Hecht et al.
[115]: A) Constant decline, B) Constant rise, C) Stability, D) Sudden decline, and E) Sudden rise,
we verified whether the introduction of Kotlin code into an app a produces a positive change in
the quality evolution trend.

For each application a, we classified the quality evolution trend manually before and after
the introduction of Kotlin on a. Then, we considered that the introduction of Kotlin produces
a positive change if: 1) the trend before the introduction is ‘Decline’ or ‘Stability’ (trends A, C
or D); and 2) the trend after the introduction is exclusively ‘Rise’ (trends B or E). Note that we
discarded analyzing those applications whose trends (before or after) do not fit any defined
trends.

3Hecht [114] considers that a method is “long" (LM) if it has more than 17 instructions.
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Figure 4.2: Steps followed to measure the impact of introducing Kotlin on applications’ quality.
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Table 4.4: Changes on quality scores after introducing Kotlin.

# Apps Kotlin Improves Quality Score Positive Change

Code Smell

First Kotlin Last Kotlin on Evolution Trend

LM 28 (50%) 28 (50%) 10/28 (35.71%)
CcC 35 (62.5%) 36 (64.29%) 13/36 (36.11%)
BLOB 43 (76.79%) 42 (75%) 18/42 (42.86%)
SAK 44 (78.57%) 45 (80.36%) 17/45 (37.78%)

~ HBR  45(80.36%)  40(71.43%) 7/40 (17.5%)

HAS 37 (66.07%) 30 (53.57%) 2/30 (6.67%)
HSS 45 (80.36%) 42 (75%) 6/42 (14.29%)
10D 36 (64.29%) 36 (64.29%) 5/36 (13.89%)
NLMR 33 (58.93%) 31 (55.36%) 6/31 (19.35%)
UIO 36 (64.29%) 36 (64.29%) 8/36 (22.22%)

4.3.5 Results

In our empirical study, we found a total of 57 applications that initially had only Java code and
later introduced Kotlin. Considering these applications, Table shows the number of Kotlin
applications whose quality score increases after the introduction of Kotlin code for each type of
smell. The increase of one quality score associated with one type of smell implies fewer instances
of that smell and, consequently, a better quality of the application [115].

The results show that for the 10 smells, for at least the 50% of the applications that introduced
Kotlin code, their quality scores increased between the last Java version and the first version with
Kotlin (see Table[5.1|column ‘First Kotlin’). That means, for such applications, the introduction
of Kotlin code impacted the quality scores positively. Note that 50% of values is the lower bound
value because smell LM improves precisely the 50% of applications. However, all the other
smells improve more than 50%. For instance, Table shows that, for 8 out of 10 smells, the
percentage of applications with quality improvement is larger than the 62% and for 4 smells
is larger than 76%. That means that for only one smell (LM), 50% of apps do not improve the
quality. For all other smells, the number of apps with improvement is larger than the number of
apps that do not enhance. Furthermore, for all smells, at least the 50% applications improved
the quality score between the last Java version and the most recent (i.e., the last) Kotlin version
(see Table[5.1]column ‘Last Kotlin’).

For instance, let us focus on smell CC (complex-class) at the second row of Table As
column “First Kotlin" shows, for 35 out of 56 (62.5%) applications, the version vy that introduces
Kotlin code has greater (i.e., better) quality score associated with the CC smell than the last
version without Kotlin v;_; (i.e., the previous version of vy). Figure shows the quality score
associated with the CC smell of each version of “Mozilla Klar” app. The last version that does
not contain Kotlin code corresponds to X=5 in that figure. We observed that the first version
that has Kotlin code (X=6) increases the quality score, as well as all the subsequent versions
(X=[6..12]) do.

Furthermore, as the column “Last Kotlin" shows, for 36 applications (64.29%), the most
recent version with Kotlin code has a greater (i.e., better) quality score associated with the CC
smell than the version before the introduction of Kotlin. Again, “Mozilla Klar” is one of those
applications: the last version (X=12) has a higher score than the last Java version (X=5). Note
that, for the CC smell, there is 1 application (36 - 35) whose quality scores: a) decreases in the
version that introduces Kotlin, but b) increases in the most recent Kotlin version. The evolution
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of the quality score of one of those applications, named “HTTP Shortcuts”, is displayed in
sub-figure

We also observed in Table [4.4] that for 5 out of 10 smells, the number of applications with
quality improvements after the first Kotlin version (column “First Kotlin’) is larger than the
number of applications with quality improvements over the last Kotlin version (column “Last
Kotlin’). This means that some Kotlin applications’ quality scores decrease between the first
and the last Kotlin versions. For instance, sub-figure [4.3c|shows the quality score evolution of
“Hanks Note” application: the first Kotlin version increases the score w.r.t of the last Java version.
However, during the subsequent versions, the quality scores drop, even lower than the last Java
version’s score. Finally, sub-figure shows the quality score evolution of one application,
named “Calendula”, whose quality score constantly decreases after introducing Kotlin code.

This finding shows that also the quality of Kotlin applications can be degraded throughout
the app evolution.

Response to RQ,: How frequent does the introduction of Kotlin positively impact on the
quality of the versions of an Android application? The introduction of Kotlin code in Android
applications initially written in Java produces a rise in the quality scores from, at least,
the 50% of the Android applications. More precisely, for 8 out of 10, the first commits
with Kotlin code produce a rise in the quality in at least 62% of the studied applications.

Finally, the last column from Table [4.4shows the number of applications where the intro-
duction of Kotlin has changed the quality evolution trend from ‘Decline’ or ‘Stability” to ‘Rise’
(Section [4.3.4). We called those Positive changes on quality evolution changes. Regarding the
object-oriented smells, the percentage of applications that improved their quality between the
last version of Java and the last of Kotlin varies between the 35.7% and 42.8%. For the Android
smells, the number of applications with positive change is lower: between 6.6% and 22.2%.

Figure [4.4 shows three cases. The first one, displayed in sub-figure corresponds to a
positive change in the quality evolution trend. Before the introduction of Kotlin, the quality
scores were constantly declining. The introduction of Kotlin has positively changed the evolution
trend: after that, the quality scores constantly rise. The second case, sub-figure shows
that the introduction of Kotlin does not change the trend: the quality score before and after
the introduction is stable. Note that, over the end of the evolution, the quality score suddenly
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rises. However, we did not associate this rise with the introduction of Kotlin, which was done
much before. Finally, the third case, sub-figure [4.4d} does not present a change on the trend: the
quality score was rising before the introduction of Kotlin and continues rising after that.

In conclusion, the study about the changes of quality evolution trend showed that some
applications: a) stopped having a constant degradation of the quality of the app written in Java,
and b) presented an improvement of quality that rises after the introduction of Kotlin code.

4.4 Threats of validity

4.4.1 Internal

Modelization of software quality models. There is a risk that the training dataset could not
be representative. Thus, the quality model produces incorrect estimation. We consider the
same training dataset that previous work has used to create quality models and detect smells
on Android applications 115,117, |116]. Furthermore, the use of that dataset allows having a
training dataset and a validation dataset without any intersection, avoiding the generation of an
overfitted model.

The set of smells studied. To compare fairly the presence of code smells in Java and Kotlin
applications, we selected Paprika tool, which works at the bytecode level. However, other
code smells that are not considered in our work could impact the code’s quality. Nonetheless,
according to Mannan et al. [174]], 3 out 4 object-oriented code smells considered in this work are
in the ranking of the most studied code smells in Android applications.

Furthermore, Kotlin provides new features and different syntax that could introduce new
types of code smells. Nevertheless, to the best of our knowledge, there are no studies in the
literature that investigate the impact of the adoption of Kotlin, and consequently its features, on
the source code quality.

4.4.2 External

The validity of Paprika. It could exist the risk that Paprika has a) false positives, i.e., it detects
smells instances that are not correct, and b) false negatives, i.e., it does not detect smell instances.
However, Paprika has been extensively evaluated through different experiments [[114}115,|117,
116).

Applications’ Representativeness. Our empirical study focus on studying the bytecode of
Java-based and Kotlin-based Android applications. For that reason, we used the applications
collected in our previous study (Section[3.1.1), because to the best of our knowledge, it is the
largest set of open source Android applications that contains apks from applications written in
Java and Kotlin. However, we cannot generalize our findings over applications that are not open
source.

Missing versions (apks). In our previous study, we collected apk of the application hosted on
F-droid and AndroZoo. However, there is a risk that F-droid and AndroZoo do not contain all
the released versions of an Android application. Consequently, this missing data could affect our
analysis of the application quality, which is based on the analysis of all apks available of F-droid.
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Kotlin learning curve In this study, we did not consider the developers’ experience with Kotlin
and consequently, the effect of the learning curve of Kotlin in the source code written using this
programming language. As Kotlin is a new programming language compared to Java, especially
in the context of Android development, it is possible that some code smells found results of the
lack of experience in Kotlin. Therefore, by targeting experienced Kotlin developers, we could
find a different result. Nevertheless, all applications analyzed were published on F-droid or
Google Play, then they represented snapshot of Android development in the period of our study.

4.5 Summary

In this chapter, we presented an empirical study investigating how the adoption of Kotlin
impacts the quality of Android applications. Initially, we compared the occurrence of ten
different code smells, 4 object-oriented and 6 Android-specific, on Java-based and Kotlin-based
Android applications. Then, using a quality model that estimates the quality of applications’
version based on the presence of code smells, we analyzed how the introduction of Kotlin affects
the quality evolution trend of Android applications initially written in Java.

In this empirical study, we used Paprika to identify the presence of code smells on Android
applications. Paprika identifies the number of instances of a given code smell and the number of
affected entities related to each smell. Using this information, we compared two sets of Android
applications: applications written in Java and applications written in Kotlin. Moreover, using
the information about the occurrence of code smells, we estimated its quality score for each
application version using a quality model based on linear regression defined by Hecht et al.
[115]. Then, considering applications initially written in Java, we evaluate the impact of the
adoption of Kotlin using this quality model.

We found that 3 out of 4 object-oriented smells (LM, CC and BLOB) are present in, at least,
the 93% of both Java and Kotlin applications. In percentage, 3 out of 4 object-oriented smells
(LM, CC and BLOB) are more frequent in Kotlin applications. However, we found that Java
applications have more entities affected by 5 out of 10 code smells, including all object-oriented
smells. Moreover, we found that the introduction of Kotlin code on an Android application
written in Java produced a rise of the quality on, at least, the 50% of the studied applications.
Therefore, these results showed that, in general, the adoption of Kotlin impacts the quality of
Android applications positively.

This work allowed us to show that, in general, choosing Kotlin instead of Java impacts the
quality of Android applications positively. Therefore, this is a motivation for developers to add
Kotlin to their applications or even migrate them. However, at this point, it is not clear how
developers are introducing Kotlin. For instance, whether Android developers are migrating
applications written in Java or adding new features using Kotlin or how this code evolves.
Moreover, we also do not know if developers have been using the programming language
features provided by Kotlin. In Chapter |5 we investigated the evolution of Kotlin code in
Android applications and the usage of Kotlin features by Android developers.
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Chapter

Analyzing the evolution of Kotlin code
in Android applications

In Chapter [4 we showed that adding Kotlin code to Android applications initially written in Java
improved the quality, in terms of code smell presence, for most of the studied applications. As
Kotlin is fully interoperable with Java, it implies that developers can introduce Kotlin code into
their Java-based applications without migrating that existing code. Thus, an application written
initially in Java can evolve, for instance, by adding Kotlin gradually. Moreover, Kotlin provides
a different approach to write applications because it combines object-oriented and functional
features, some of them not present in Java or not available for Android development [57]. Even
though, as presented in Section [3.1.3} around 11% of Android applications have adopted Kotlin.
Although some studies were published about Kotlin, to the best of our knowledge, there was no
study in the literature about the evolution of Kotlin code in Android.

For that reason, the goal of this chapter is to understand the evolution of Kotlin code in
Android applications. To that end, we conduct two empirical studies. First, we investigate how
the amount of Kotlin code changes over the evolution of Android applications. For instance, we
want to know whether developers continue adding Java code after introducing Kotlin. Then, in
the second study, we focus on the language features introduced by Kotlin, such as Smart cast(See
Appendix B.8). In particular, we explore four aspects of Kotlin features usage: i) which features
are adopted, ii) what is the degree of adoption, iii) when are these features added into Android
applications for the first time, and iv) how the usage of features evolves along with applications’
evolution. These empirical studies answer the following research questions:

* RQs5: How does code evolve along the history of an Android application after introducing
Kotlin code?

* RQ¢: Which Kotlin features are adopted by Android developers?

* RQ7: When do Android developers introduce Kotlin features during applications’ evolu-
tion?

* RQg: How the usage of Kotlin features evolves along with the evolution of Android
applications?

To carry out these empirical studies, we used FAMAZOA, the largest publicly available
dataset of open source Android applications written in Kotlin (Section [3.1.3). In the first study,
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we analyzed each application’s commits to measure the amount of Java and Kotlin code. We
use this information to define the observed code evolution trends. Using these trends, we
classify each application according to the trend that better describes Kotlin code’s evolution. For
example, one trend is that Java is removed totally, whereas Kotlin is added. The second study is
a finer-grained study of code, which focuses on the usage and evolution of Kotlin features. To
investigate these features’ adoption, we extracted them from each version of applications’ source
code, and we identified when features were used for the first time. To understand how the use of
features evolves, we analyzed each application’s code repository (i.e., Git) to mine the features
used on each version (commit). Then, we inspect the most frequent usage trend for each Kotlin
feature.

The chapter continues as follows. Section [5.1|presents our empirical study about the evolution
of Kotlin code in Android applications. Section[5.2] presents our empirical study about the usage
and evolution of Kotlin features in Android applications. Finally, Section summarizes our
work and outlines further works to perform on this research topic.

This chapter includes a revised version of two papers published in the proceedings of ESEM
2020 [184] and the Empirical Software Engineering journal [99].

5.1 Analyzing the code evolution of Android applications

Chapter [3| showed that Android developers are using Kotlin to build Android applications.
However, it is not clear whether developers are using Kotlin to create new applications from
scratch or add new functionalities using Kotlin, or even if they are migrating Java code to Kotlin.

In this section, we investigated the evolution of Kotlin code in Android applications by
answering the first research question:

* RQs5: How does code evolve along the history of an Android application after introducing
Kotlin code?

To answer this research question, we conducted an empirical study that analyzes the source
code of Android applications. Figure [5.1]illustrates the steps followed to conduct this study. Sec-
tion[5.1.1|describes the set of Android applications analyzed in this empirical study. Section[5.1.2
introduces the evolution trends of code considered in this empirical study. Section [5.1.3|explains
the methodology applied to investigate the evolution of Kotlin code in Android applications.
Section [5.1.4] presents the result of this empirical study. Finally, Section outlines threats of
validity.

5.1.1 Applications analyzed in the study

This empirical study aims to investigate how the amount of Kotlin evolves throughout appli-
cations’ development. Consequently, to respond to this research question, we need Android
applications that contain Kotlin code. For that reason, we target applications from FAMAZOA,
a dataset of open source Android applications written in Kotlin, presented in Section
FAMAZOA has 244 Android applications totally of partially written in Kotlin.

5.1.2 Code evolution trends

We defined 12 cases that represent different evolution trends of Kotlin and Java code. The
procedure we used to define those trends is as follows: First, we plotted a two-dimension plot
for each application where the axis X corresponded to the number of commits (chronologically
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Figure 5.1: Steps executed to perform the analysis of the code evolution trends of Android
applications.
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ordered) from a given application, and the axis Y was the number of lines of code. Then, we

plotted two series, one corresponding to the number of code lines written in Java and one

corresponding to the number of code lines written in Kotlin. For each plot, we described the

trend we observed. Then, we checked whether a similar trend had been seen before based on

such descriptions. To avoid bias, both authors (myself, a Ph.D. student and my Ph.D. co-advisor)

have analyzed the same plots separately, and later, we compared and discussed the result found.
The trends identified are:

ET 1: Kotlin is the initial language, and the amount of Kotlin grows throughout history.
ET 2: Kotlin code replaces all Java code between two consecutive versions.

ET 3: Kotlin code replaces some Java in consecutive versions (i.e., amount of Java code drops),
but the amount of Java continues growing after the drop.

ET 4: Kotlin increases together with Java.

ET 5: Kotlin grows, and Java decreases, and the last version of the app has both languages.
ET 6: Kotlin grows, and Java decreases until the amount of Java code is 0.

ET 7: Kotlin grows, and Java remains constant.

ET 8: Kotlin is constant and Java changes.

ET 9: Kotlin and Java remain constant.

ET 10: Kotlin introduced in the app but lately disappears (the amount is 0).

ET 11: Javareplaces Kotlin code.

ET 12: Other.

Note that it could exist more evolution trends that we have not included in the previous
list. Those would be included in ‘Other’. We included only those we have observed during our
empirical study and are particularly interesting for this thesis.

5.1.3 Analysis method

We explore each application’s source code repository to analyze Kotlin code’s trend throughout
the application history. Given a repository, we analyzed each commit in chronological order
(i.e., starting from the oldest one) to calculate the amount of code (using CLOC) on that commit.
We analyzed the evolution trend of two particular languages: Java (i.e., the traditional used for
developing Android applications) and Kotlin.

To classify each Kotlin application according to its evolution trend, we first plotted the
amount of code (lines of code) of Kotlin and Java for each commit. Figure shows some of
such plots. Then, we manually selected the most representative evolution trend (i.e., that better
fits) to that application’s code evolution. We classified an application with a given evolution
trend only when both authors (myself, a Ph.D. student, and my Ph.D. co-advisor) of the paper
fully agree on the classification. Otherwise, we classified the applications without consensus
as Other. Moreover, we make publicly available in our appendix all the plots and the resulting
classifications to further analyze our studies.!

Uhttps://github.com/UPHF /kotlinandroid/tree/master/docs/evolution/


https://github.com/UPHF/kotlinandroid/tree/master/docs/evolution/

5.1. Analyzing the code evolution of Android applications 63

5.1.4 Results

In this section, we present the results obtained when applying the methodology presented in
Section Table[5.1|shows the results and Figure[5.2]displays, for each code evolution trend,
the code evolution of one particular application as an example.

Table 5.1: Classification of Android applications according to the evolution trend of Kotlin and
Java source code.

Source Code Evolution Trend # Apps %
ET1  Kotlin is the initial language and the amount of Kotlin grows 19 7.8
ET 2  Kotlin code replaces all Java code 15 6.1
ET 3  Kotlin code replaces some Java then Java continues growing 4 1.6
ET 4  Kotlin increase together with Java 8 3.3
ET 5 Kotlin grows and Java decreases, but it does not reach zero 52 21.3
ET 6 Kotlin grows and Java decreases until the Java code is 0 48 19.7
ET7 Kotlin grows and Java remains constant 41 16.8
ET 8  Kotlin is constant and Java changes 43  17.6
ET 9 Kotlin and Java remain constant 7 2.9
ET 10 Kotlin introduced but lately disappears 3 1.2
ET 11 Java replaces Kotlin code 2 0.8
ET 12 Other 2 0.8
Total applications 244  100%

The most frequent code evolution trend we found is ET 5 (Kotlin grows and Java decreases,
but it does not reach zero), with 52 out of 244 (21.3%) Kotlin applications. This evolution trend
represents the cases that, after the first version (i.e., commit) that introduces Kotlin code, Kotlin
code’s amount tends to grow, whereas the amount of Java code decreases. Sub-Figure shows
the code evolution of the application Jalkametri-Android, which corresponds to that evolution
trend. Still, the last version of Jalkametri-Android has more lines of code (LOC) of Java than
Kotlin. Another application classified as ET 5 is Poet-Assistant (Sub-Figure[5.2f). However, unlike
Jalkametri-Android, the amount of Kotlin code in the last version is larger than the amount of
Java code. In the mentioned applications, the lines representing the evolution of Kotlin code
seem to be symmetric with respect to those of Java. We suppose that in those cases, some Java
components of these applications were gradually migrated to Kotlin code.

A similar trend to ET 5 is ET 6 (Kotlin grows and Java decreases until the Java code is 0):
48 Android applications (19.7%) exhibited that trend. Unlike ET 5, the amount of Java code
in trend ET 6 gradually decreases until arriving at zero LOC. The Sub-Figure [5.2g|shows one
application, Simple-Calendar, whose first versions were written in Java. Then, in the versions
from commit 09¢f99 to 206dfe, the authors added Kotlin and removed Java code. Finally, from
commit eeel84 until its last commit, the application is only composed of Kotlin code.

There are two trends, ET 7 (Kotlin grows and Java remains constant) and ET 8 (Kotlin is
constant and Java grows) with 41 and 43 applications, respectively, which amount of code of one
language remains stable after the introduction of Kotlin. For example, the Sub-Figure[5.2i]shows
the code evolution of Talk-Android, classified as ET 8. One commit (7f12) introduced a portion of
Kotlin code (105 lines). Since then: a) the amount of Kotlin code remains constant throughout
the evolution (in the last commit (#724) it has 106 LOC), b) the amount of Java code constantly
grows. The Sub-Figure [5.2h|shows an inverted case (app Bimba): the amount of Java code is
constant while the amount of Kotlin code grows. There are also 7 applications whose amount
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of code written in both languages remain constant. Such as the app Wyk-Android showed in
Sub-Figure[5.2]] These applications represent the trend ET 9 (Kotlin and Java remain constant).

The fifth most frequent evolution trend is ET 1 (Kotlin is the initial language), with 19 appli-
cations. Those applications were initially written in Kotlin and did not include Java code in any
version. The application Vpnhotspot is one of them (Sub-Figure[5.2a). The evolution trend ET 2
(Kotlin code replaces all Java code), with 15 applications over 244 (6.1%), represents applica-
tions such Simple-Flashing, Sub-Figure which are initially written in Java and completely
migrated in one commit (18b5c9). However, unlike ET 5 and 6, in ET 2 no versions share Java
and Kotlin code. On the other hand, we classified 2 applications with trend ET 11 (Java replaces
Kotlin code), i.e., applications whose evolution presents the opposite behavior compared with
ET 2, such application Material-Flashlight, Sub-Figure These applications migrated from
Kotlin to Java code.

Moreover, there were 8 Android applications (3.3%) that correspond to trend ET 4 (Kotlin
increases together with Java): the amount of both Java and Kotlin grows. The Sub-Figure
shows the amount of code of the application Android USB MSD. The introduction of code written
in one language did not produce a decrease in the amount of code written in the other language.

Another evolution trend is ET 3 (Kotlin code replaces some Java, then Java continues growing).
When Kotlin code is introduced, the amount of Java code decreases (in similar proportions)
but then the amount of Java starts growing again. Sub-Figure shows the code evolution of
application Home-Assistant, one of the 4 applications (1.6%) classified as ET 3. Here, we suspect
that developers migrated only a portion of the code.

Furthermore, there were 3 applications represented by ET 10 (Kotlin introduced but lately
disappears): Kotlin code is introduced at some time but, at some version later, that code is
removed. Sub-Figure [5.2k|shows the code evolution of the Freeotpplus application. We can see
that Kotlin is introduced in the commit 2dbc32, but later, after two commits, it is completely
removed.

Finally, we assigned the trend ET 12 (Other) to 2 applications that we could not assign to any
of our previously defined evolution trends. In our appendix, we presented the classification of
the evolution trend discussed in this section.?

e "

Response to RQ 5: How does code evolve along the history of an Android application after
introducing Kotlin code?

For the 63.9% of the Kotlin applications, the amount of Kotlin code increases throughout
the Android application evolution, and, at the same time, the amount of Java code
decreases or remains constant (cases ET 2, 5, 6, and 7). For the 25.8% of applications, the
Kotlin code replaces the totality of the Java code written on those applications (cases ET
2 and 6).

. 7

This result shows that once Kotlin is introduced into an application, it tends to become
the dominant programming language, i.e., the language used to write most of its source code.
Due to this trend of dominance, we concluded that it is necessary to understand how Android
developers are using Kotlin features. Consequently, we decided to analyze the Kotlin code in a
fine-grained manner: at the lever of code features. In Section 5.2} we present three empirical
studies about the usage and evolution of Kotlin features in Android applications. Moreover, it
shows a trend of migration of Android applications from Java to Kotlin since 25.8% (ET 2 + ET 6)
of applications have migrated. Chapter [6] presents a machine learning model to assist developers
that want to follow these trends, i.e., migrate their applications.

2Classification of the evolution trends. |nttps://github.com/UPHF /kotlinandroid/tree/master/docs/evolution
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5.1.5 Threats to Validity
5.1.5.1 External

Representativeness of FAMAZOA. Our work relies on FAMAZOA, a dataset of open source
mobile applications written in Kotlin. Considering the number of applications published on
Google Play, FAMAZOA represents a small parcel since it only contains open source applications,
limiting the generalization of our findings. However, to the best of our knowledge, it is the
largest dataset of Android open source applications written in Kotlin.

Comparison between Kotlin and Java code. To compare the amount of Kotlin and Java code
on each application, we used the tool CLOC.? Consequently, our results are dependent on the
preciseness of that tool. To avoid that, we manually checked a sample of results and did not find
any issue.

5.2 The usage and evolution of Kotlin features

When Kotlin became an official programming language in 2017 [53[], Android developers gained
another option for creating their applications. Kotlin is a programming language that combines
object-oriented and functional features, which brings to the development of Android applications
programming language features not provided by Java such as Coroutines. Although some studies
were published about Kotlin, to the best of our knowledge, there was no study in the literature
focused on the usage of Kotlin features by Android developers.

As pointed by Mazinanian et al. [186]], this lack of knowledge negatively affects four audiences:
i) researchers are not aware of the research gaps (i.e., the actual unsolved problems faced by the
developers) and thus miss opportunities to improve the current state of the art, ii) language and
library designers do not know if the developers effectively use the programming constructs and
APIs they provide are effectively used by the developers or are rather misused or underused,
ii7) tool builders do not know how to tailor their tools, such as recommendation systems and
code assistants, to the developers’ actual needs and practices when using Kotlin, iv) developers
are not aware of the good and bad practices related to the use of Kotlin features.

For that reason, this section presents an empirical study that investigates different aspects
related to the usage of Kotlin features by Android developers. We answer the following research
questions:

* RQg4: Which Kotlin features are adopted by Android developers?

* RQ7: When do Android developers introduce Kotlin features during applications’ evolu-
tion?

* RQg: How the usage of Kotlin features evolves along with the evolution of Android
applications?

Figureillustrates the steps executed to answer RQg, RQ7 and RQg. Sectionpresents
the study design applied to respond to these research questions. It presents the Kotlin features
considered in our empirical study, the tool that we created to identify these features, and the
dataset of Android applications used to investigate the usage of Kotlin features. Section|5.2.2
describes the study we conducted to investigate the adoption of Kotlin features. Section [5.2.3]
describes the study that we conducted to understand when Android developers add Kotlin

3https://github.com/AlDanial/cloc
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features into Android applications. Section describes the study that aims to identify
evolution trends of Kotlin features” usage. Section presents a discussion about the result of
this empirical study. Finally, Section reports threats of validity.

5.2.1 Study Design

When a new programming language is released, it offers developers a set of language features.
Other languages could already provide some of these features, whereas other features can be
completely new. For example, the feature Operator Overloading is included in C++ (but not in
Java). In this thesis, we exclusively focus on features that are presented in Kotlin but not in Java.
Our goal is to study how Android developers use programming features that were not fully
available for developing Android apps before the release of Kotlin.

5.2.1.1 Selection of Kotlin features

To identify Kotlin features that we focus on in this study, we inspected the Kotlin official website.
First, we extracted 13 features from a document that compares Kotlin and Java [57]. Then, we
extracted 4 features from Kotlin’s release notes, which were not mentioned in the comparison
document (coroutine as experimental feature and type alias from release 1.1 and contract and inline
class from release 1.3). Finally, we passed over the Kotlin Reference [129] and identified 7 more
features. Table[5.2]summarizes the features identified. Appendix [B|provides the description and
some examples of the use of each feature.

Table 5.2: Kotlin features and their release version.

ID Feature Release version Normalization Criteria
1 Type inference 1.0 # of variable declarations
2 Lambda 1.0 LLOC
3 Inline function 1.0 # of named functions
4 Null-safety (Safe and Unsafe calls) 1.0 LLOC
5  When expressions 1.0 LLOC
6  Function w/arguments with a default value 1.0 # of functions + # of constructors
7  Function w/ named arguments 1.0 # of function calls
8  Smart casts 1.0 LLOC
9  Data classes 1.0 # of classes
10  Range expressions 1.0 LLOC
11  Extension Functions 1.0 # of named functions
12 String template 1.0 # of strings

. # of properties

13 Delegation (Super and Property) 1.0 # of inheritances
14  Operator Overloading 1.0 # of named functions
15 Singleton 1.0 # of object declarations
16 Companion Object 1.0 # of object declarations
17 Destructuring Declaration 1.0 # of variable declaration
18 Infix function 1.0 # of named functions
19  Tail-recursive function 1.0 # of named functions
20  Sealed class 1.0 # of classes
21  Type aliases 1.1 LLOC
22 Coroutine (experimental) 1.1 LLOC
23  Contract (experimental) 1.3 LLOC
24 Inline class 1.3 # of classes
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Figure 5.3: Steps executed in out study about the use of Kotlin features.



5.2. The usage and evolution of Kotlin features 69

val listWithNulls = 1istOf("Kotlin", null)
for (item in listWithNulls) {
item?.let { println(it) }

}

Listing 3: Kotlin snippet with instances of type inference, lambda and safe call.

5.2.1.2 Identification of Kotlin features

For responding to our research questions, we need to identify the use of Kotlin features from the
applications’ source code. For example, Listing |3|shows a code that has three Kotlin features
from Table type inference (line 1)), lambda (lines [2|and 3) and safe call (line[3). For that reason,
we built a tool that, given as input, a Kotlin source code file (.kt file) returns a list of all features
found in that file.

We built the tool as follows. Our feature detection tool operates on the abstract syntax
tree (AST) provided by the Kotlin compiler API. For each feature presented in Table we
manually investigated how a feature is represented on an AST. Then, we encoded different
analyzers for detecting feature instances on ASTs. We encoded analyzers successfully for the
24 features presented in Table We built 26 analyzers because we encoded two analyzers
for two features: Null-safety and Delegation. We split the Null-safety feature in two: 1) Safe
call that provides information about the usage of the safe call operator ‘?” and 2) Unsafe call
tells whether developers use the not-null assertion operator ‘!!” that we will refer to as unsafe
operator. We also split Delegation into two features: 1) Super Delegation and 2) Property Delegation.
Moreover, regarding the feature Type inference, our analyzer focuses on a single scenario: variable
declaration (e.g., “var a=10;", the type of a is inferred (int)).

To the best of our knowledge, there is no benchmark of Kotlin features usage that we could
use for evaluating our tool. Therefore, we performed a study applying manual verification
to evaluate its precision. We executed our tool over the last version of each application from
FAMAZOA, which returned a list of features instances found, with their respective locations (file
name and line number). This information allowed us to verify whether each reported feature
instance was present or not in the reported files. To achieve a confidence level of 95% and a
confidence interval of 10%, we checked 96 instances of each feature, randomly selected. The
evaluation results, available in our online appendix, showed the precision of the tool is 100%.4>
To measure our tool’s recall, both authors (myself, a Ph.D. student, and my Ph.D. advisors)
manually analyzed 100 files randomly selected. Then, we executed our tool over this set of
files and calculated the recall. We found a recall of 100% for all features, but coroutine (an
experimental feature). Our strategy based on keywords could not identify all possible coroutines,
resulting in a recall of 91%.

To analyze the usage of features along with the history of one application, we created another
tool that takes as input a Git repository and produces, for each version v (i.e., commit), the
number of features found on v. The tool navigates through the commits of the active branch, in
general, the master branch. Given a Git repository, it starts from the oldest commit, and for each

4https: //github.com/UPHF /kotlin_features
5To find the minimum number of instances to analyze (96), we compute the confidential level by considering as
sample size the number of instances of the most frequent feature, which was type inference with 165 667 instances.
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commit, it computes the number of features by invoking our feature detection tool described.
When a repository is analyzed, our tool generates a JSON file. This file has for each commit, the
number of features of each studied feature grouped by file. This tool is built over Coming [182], a
framework for navigating Git repositories that allow users to plug-in their source code analyzers.

5.2.1.3 Evaluation dataset

To investigate the adoption and evolution of Kotlin features, we need Android applications
written in Kotlin. To collect more applications that satisfy this criterion, we re-execute the
methodology presented in Section to update FAMAZOA, our dataset of open source
Android applications written in Kotlin. For that reason, in next studies, we use the third version
of FAMAZOA, which contains 387 open source Android applications written fully or partially in
Kotlin.® Those apps have a median of 6 contributors, 56 files and 3984 lines of Java/Kotlin.

5.2.2 The adoption of Kotlin features

Kotlin provides several programming language features that were not fully available for devel-
oping Android apps before its release. In this study, we verify whether Android developers have
been using these features by answering the following research question:

* RQ¢: Which Kotlin features are adopted by Android developers?

Section [5.2.2.1| presents the method applied during this empirical study. Section |5.2.2.2
shows the study’s results.

5.2.2.1 Analysis method

To answer RQg, we processed the output of our feature evolution tool (Section [5.2.1.2). For each
feature f, we counted the number of applications that have at least one instance of f in any
commit and the total number of instances in the last commit of every application.

As the applications may have different sizes, we normalized the number of instances following
the criterion presented in Table We could normalize each feature with a unique metric of
size, such as LLOC. However, we consider it more meaningful (and would better describe the use
of a feature) if we normalize each feature f by a metric related to f. For instance, it gives more
information to say that an application has 1 data class for each N classes, rather than reporting
that it has 1 data class for every Y lines of code.

Now, we detail the normalization process. As explained in Section our analyzer of
type inference considers only variable declarations. Thus, we normalized the instances of this
feature by the number of variables declared. Since destructuring declarations break down objects
into (declaring) multiple variables, we also normalized its instances by the number of variables
declared.

In Kotlin, every declared function is a named function node in the AST. Thus, we normalized
the number of instances of extension functions by the number of named functions. Since only
named functions might receive the modifier inline, we used their number to normalize the number
of inline functions. For the same reason, we used the same criterion to normalize the number of
tail-recursive. Analogously, we normalized the number of data classes, sealed classes and inline
class by the number of classes. Additionally, the number of named functions was also used to
normalize the number of operator overloading because, by definition, an overloaded operator is a
named function that receives the modifier operator.

Shttps://uphf.github.io/FAMAZOA/versions/v3
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Figure 5.4: Percentage of applications that use a feature. Each bar corresponds to a feature and
contains on top the number of applications that use that feature.

Arguments with a default value can be used in named functions and constructors. Thus, we
normalized function with arguments with a default value by the number of named functions and
constructors. Named arguments are used when a method/function is called. Consequently, we
normalized the number of function calls with named arguments by the number of function
calls. Besides, since only strings might have a string template, we normalized the number of
string templates by the number of strings. Concerning Kotlin delegations, we normalized the
number of properties delegated by the number of properties. Moreover, as super delegation is an
alternative to inheritance, we normalized their instances by the number of classes. In Kotlin,
object expressions are used to declare singletons and companion objects. Consequently, we
normalized the number of singleton and companion object by the number of object declarations.
For the remaining features, we normalized them by LLOC because we could not find a better
criterion.

5.2.2.2 Results

To answer RQgq, we applied the method described in Section [5.2.2.1} and Figure [5.4]summarizes
its results. For each feature, it shows the percentage of applications that have used that feature
at least once (considering all the versions of those apps). Also, Figure[5.5|shows the distribution
of the normalized number of occurrences of each feature per application (considering the latest
version of each one).

We observed that the most used feature is type inference, with 381 out of 387 (98%) appli-
cations having at least one instance of this feature, as Figure |5.4|shows. Using type inference,
developers do not need to declare explicitly the types of varlables when they are declared. The
Kotlin compiler can identify the variable’s type by evaluating the expression on the right side
of the assign operator ‘=’, see Listing 3] (line[I). In this example, the type of ‘listWithNull’ is
infered as ‘List<String?>". We found that a median of 77% of variable declarations does not
explicitly declare their type, as Figure displays. However, we noticed some applications
whose all variables have their type inferred as well. Therefore, we concluded that developers
can write code more concisely, avoiding type declaration when the type is self-explained in the
assignment.
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Figure 5.5: Kotlin features normalized.

Lambda is the second most used feature, being found in 370 out of 387 (95%) applications
with a median of 71 instances per application. The fact that Android applications rely on
callbacks to interact with the Android platform [280] could be seen as a reason for the number
of instances found. However, a high number of instances, especially when they are nested, could
lead developers to write code with poor readability. In Kotlin, developers do not need to name
the parameter of a single parameter lambda function. In this case, it is automatically named as
‘it’. Therefore, a chain of nested lambdas using this mechanism might be hard to read. For that
reason, JetBrains once considered removing the ‘it” parameter [276].

Safe call is the third most used feature. We found 348 out of 387 (89%) applications where
safe calls were found, with a median of 28 occurrences per application. Another feature related
to null-safety, unsafe call, is used in 339 out of 387 (87%) applications. As the opposite of safe
calls, the usage unsafe calls could result in NullPointerException (NPE). We investigated some
instances of this feature manually, and we found cases where it could be substituted by a safe call
or the Elvis operator.

Finding 1: We found a median of 16 occurrences of unsafe calls per application, which makes
these applications more prone to ‘NullPointerException’. However, we found that occurrences
could be replaced by Kotlin’s built-in functions such as the Elvis operator to avoid NPEs.

Considering companion objects, the sixth most used feature, found in 337 out of 387 (87%)
Companion objects are the substitute of Java static members in Kotlin, but by default, companion
objects’ properties and methods are not static. To make them static, developers should use the
annotation @JvmField or @JvmStatic, and we found several not annotated objects in our study.
As Figure [5.4]shows, function with arguments with a default value and function calls with named
arguments is used in more than 60% applications of our dataset’s applications with a median of
occurrences of 3 and 2 occurrences per application, respectively. We normalized the number
of instances by the number of named functions plus the number of constructors and the number of
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function calls, respectively, as Figure [5.5|shows.

Finding 2: According to the Kotlin convention, the use of named arguments can improve the
readability of the code [|127]]. However, we found that less than 1% of function calls have a
named argument.

Moreover, we found that 252 out of 387 (65%) applications using data classes, with a median
of 1 instance per application. In total, we found that only the 4% of the applications’ classes are
data classes. Figure [5.5|shows the distribution of that proportion: for 25% of applications, the
proportion of data classes is more than 10% of the total number of classes.

Kotlin provides simple approaches to use two well-known design patterns, the Singleton and
Delegation. Regarding the usage of singleton, we observed 276 out of 387 (71%) applications have
at least one class that implements Singleton pattern. Furthermore, an application has a median
of 2 occurrences of this feature.

Considering properties delegation, we observed it in 210 out of 387 (54%) applications. Nor-
malizing the number of properties delegated by the number of properties for each application,
we found that:

Finding 3: Although Kotlin standard library provides several useful kinds of delegation, such as
lazy and observable, less than 1% of properties defined in Kotlin applications are delegated.

Coroutine is most used feature considering those released after Kotlin 1.0. Note that coroutine
was released as an experimental feature in Kotlin 1.1, and it was made stable in Kotlin 1.3 in
October of 2019. Comparing with type alias, also released in Kotlin 1.1, coroutines are found
in 23% of applications, whereas type aliases are found in 13%. Since in Java, the concept of
type alias does not exist, type alias is not interoperable with Java. Therefore, this could be one
possible reason for this level of adoption. On the other hand, coroutine might be used to perform
different actions concurrently without block Android’s main thread. For instance, one could
replace AsyncTaks usage by coroutine since AsyncTask was marked as deprecated [70].

Delegation has been proven to be an alternative to inheritance [86|], but we found that super
delegation was used only in 39 out of 387 (10%) applications. Moreover, we observed that Kotlin
applications have a median of 0 occurrence of super delegation. Therefore, we believe that the
fact of inheritance is essentially absent in mobile applications [193] can explain this finding.

Among the least used features, we found two features released in Kotlin 1.3. Although
contract was released as an experimental feature, we found one application using it, and inline
class was found in 4 applications.

Finding 4: Less than 35% of Android apps have instances of features like inline function, inline
class and tail-recursive function that might improve their performance [124,|256}123]].

Response to RQg: Which Kotlin features are adopted by Android developers?

We studied 26 Kotlin features, and as a result, we found that Android developers use all
features of them. We identified three groups of features: i) 7 features used in at least 80%
of applications; ii) 9 features used in more than 48% and less than 80% of applications;
ii1) 10 used in less than 33%.

Furthermore, we found that type inference, lambdas and safe calls are the most used features,
being found on 98%, 95% and 89% of applications, respectively.

This result shows that Android developers are taking advantage of using Kotlin features that
they could not fully use before Java 7. We found that even experimental Kotlin features, like
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Coroutines and Contract, have been used. We also showed that 10 features are used in less than
33% applications. So, we conclude that there is room for improvement in the usage of these
features.

5.2.3 The introduction of Kotlin features

Our empirical study about the adoption of Kotlin features showed that Android Developers had
used the 26 studied features. In this section, we focus on another aspect of the adoption of these
features. We investigate when these features are added into Android applications throughout
their evolution by answering the following research question:

* RQ7: When do Android developers introduce Kotlin features during applications’ evolu-
tion?

Section [5.2.3.1| presents the method applied during this empirical study. Section |5.2.3.2
shows the study’s results.

5.2.3.1 Analysis method

For responding to RQ7, we computed, for each application a and for each feature f, the first
commit Cg, that introduces an instance of f into a. Finally, we defined a metric, named
introduction moment, m,s € [0,n] where n is the number of days between the first Kotlin commit
and the last commit, which measures how long after the initial commit a feature f was introduced
into a. It is expressed in days. For instance, m,s = 0 means that feature f was introduced into a
in the same day of the first Kotlin commit, m,s = 5 means that f was added in the 5 days after
the Kotlin introduction, and Mg = 1, means that f was introduced in the same day of the last
commit.

5.2.3.2 Results

To answer RQ;, we used a metric defined in Section [5.2.3.1}, named introduction moment. Fig-
ure[5.6]displays its distribution. We found that:

Finding 5: In the following ten days after the first commit with Kotlin code, 15 out of 26 features
were added into Android applications.

However, comparing the introduction moment of the most and the least used features turned
out distinct behaviors. We found that the most used features, type inference, lambda, safe call, when
expressions, companion object, unsafe call, string template and singleton, presented in median the
introduction moment smaller than 1. While the least used features presented a high introduction
moment.

Finding 6: The least used Kotlin features tend to be introduced later on the applications’ history
compared to the most used features.

Furthermore, the two features with the highest introduction moment, respectively, 308
and 439, were inline class and contract, both released in Kotlin 1.3. These features were made
available more recently compared to the others. This can explain the highest introduction
moment. Among features released in Kotlin 1.1, we noted that coroutine, released initially as an
experimental feature, presented a smaller introduction moment than type alias. We analyzed
the commits that introduced coroutine and found that 87 out of 90 (96%) applications added
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Figure 5.6: Distributions of the number of days between the first Kotlin commit and the commit
that introduces the first instance of a feature.

coroutines when coroutine was still an experimental feature. Contract, found in one application,
is another experimental feature used by developers. Therefore, as Dyer [76] found in their study
about the usage of Java features, we observed that developers start adopting features early when
they are experimental.

Response to RQ7: When do Android developers introduce Kotlin features during applications’
evolution? Most features, 15 out of 26, are added into the first days of development using
Kotlin. Moreover, while the most used Kotlin features type inference, lambda, safe call, when
expressions, companion object and string template tend to be introduced in the first commit
with Kotlin code, the least used features tend to be introduced later into an application.

These results show that most features are added into applications in the following ten days
after the first commit with Kotlin code. Therefore, a solid understanding of these features would
help developers use them correctly since the initial development phase.

5.2.4 The usage evolution of Kotlin features

The goal of RQg is to detect trends that describe the usage evolution of features along with the
applications’ history. For example, we want to detect applications where the use of a particular
feature is constant, increases or decreases along with its evolution. Therefore, we conducted an
empirical study to answer the following research question:

* RQg: How the usage of Kotlin features evolves along with the evolution of Android
applications?

To respond to this research question, we mined Android applications written in Kotlin
to identify evolution trends. Section [5.2.4.1| presents the evolution trends found in that step.
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Section |5.2.4.2| describes the methodology used to identify instances of features throughout
applications’ evolution, and match features evolution trends with trends considered in this study
Section|5.2.4.3|shows the result of this empirical study.

5.2.4.1 Evolution trends

To classify each pair of application-feature (a, f) and find the trend that best describes the
evolution of a feature f in the history of an application a, we defined a set of evolution trends
following a data-driven approach.

First, we automatically plotted a two-dimension plot for each application-feature (a, f) where
the axis X corresponded to the number of commits (chronologically ordered) from a, and the
axis Y was the number of instances of a feature f. Then, we iteratively analyzed the generated
plots. For each of them, we first described the trend we observed in two ways: 1) natural
language description (e.g., “Instances increase”), 2) mathematically (e.g., “y=ax+b”). Then,
we checked whether a similar trend had been seen before based on such descriptions. We
repeated this last step until no new trend be found after analyzing dozens of plots. To avoid bias,
both authors (myself, a Ph.D. student and my Ph.D. co-advisor) have analyzed the same plots
separately, and later, we compared and discussed the result found. Other works have previously
defined evolution trends, such as Hecht et al. [115] and Malavolta et al. [169]. Both studies have
used their trends to classify evolution plots manually. On the contrary, the definition of our
evolution trends was motivated by the need to classify trends automatically, which guarantees
i) scalability (i.e., thousands of apps-feature pairs to classify) and ii) the replication (analysis of
other applications) of this study.

We found 11 unique evolution trends that were described by 6 different mathematical
formulas. An example of each of them is shown in Figure These trends are:

* Constant Rise (CR) describes features that, once they are introduced (i.e., used for the first
time in an application), developers tend to add more instances of this feature in future
application versions. Therefore, the number of instances increases at a constant rate, i.e.,
linearly along with the application’s evolution.

» Constant Decline (CD) describes features that, once they are introduced, developers tend
to remove them gradually in future applications’ versions. Therefore, along with the
application’s evolution, the number of feature instances decreases at a constant rate.

* Stability (S) describes features whose numbers of instances remain the same after their
introduction, throughout the application’s evolution.

We used the linear function given by the formula y = ax + b to detect CR, CD and S. Since in
linear function, the rate of change (given by coefficient a) is always constant, we could classify
the application’s trend into: (CR) when a > 0, which implies on constant increase; (CD) when
a < 0, which implies on constant decrease; and (S) when a = 0, which determines a constant
behavior.

* Sudden Rise (SR) describes those features that the number of occurrences grows suddenly
after relative stability along with the applications’ history. Using this trend, we are able to
identify those features that present a small number of instances in the first commits and
then, at the following commits, on each commit, developers introduce significantly more
instances.
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Figure 5.7: Example of evolution trends. The x-axis shows the evolution of an application, i.e.,
commits, and the y-axis shows the number of occurrences of a feature.

* Sudden Decline (SD), analogously, describes the opposite behavior of SR, where the number
of feature instances decreases suddenly. Features that present many instances since the
first commits and then, suddenly, start to be removed and this behavior continues in the
next consecutive commits.

We used the exponential function given by formula y = ab* + ¢ to detect SR and SD. In this
formula, the rate of change is given by coefficient b. When b is greater than 1, the value of
increase as x increases. On the other hand, if b is 0 < b < 1, the value of a function increases as
the value of x decreases. Then, considering the value of b, we classified evolution trends better
described by an exponential function in two trends, SR and SD.

¢ Sudden Rise Plateau (SRP) describes features which most of its instances are introduced in
the firsts commits of an application. Then, during the rest of the application’s history, only
a few instances are introduced.

We used the logarithmic function given by formula y = alog,(bx) + c to detect SRP. In this
case, unlike the exponential formula, the rate of change always decreases with time.

* Plateau Gradual Rise (PGR) describes those features which once they are introduced, the
number of instances tends to remain the same during an interval of commits and then
presents a sudden increase in few consecutive commits, and finally presents a stable
behavior again.

e Plateau Gradual Decline (PGD) is similar to the trend PGR. This trend describes those
features that the number of instances starts and finishes stable. However, on the contrary
of PGR, here, the change that happens between the periods of stability is a reduction of the
number of instances in a few consecutive commits.

* Plateau Sudden Rise (PSR) is similar to PGR. However, using this trend, we aim to detect
features that present: a) a stability period at the beginning of the application’s evolution
b) a transition period containing only one commit and c) stability period at the end of the
application’s evolution.

* Plateau Sudden Decline (PSD) analogously to PSR, this trend is a special case of PGD, where
the change between the two periods of stability has a marked decrease in the number of
instances in two consecutive commits.

We used the Sigmoid function, y = m +b, to detect the trends PGR, PGD, PSR and PSD.
A Sigmoid is a bounded function where y can assume values from —L + b to L + b. Additionally,
when L+b >0, y approaches L + b as x approaches +oo and approaches —L + b as x approaches
—o0. On the other hand, we observe the opposite behavior when L+b < 0. While x0 is Sigmoid’s

midpoint, which marks the middle of the S-curve, k determines the curve’s steepness. The
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PGR trend is characterized by the lowest the number of instances (—L + b) at the beginning of the
application history and the highest value (L + b) of the number of instances in the end. Moreover,
the transition between the lowest and the highest values is characterized by a gradual rise, in
a small number of commits, when developers introduce a considerable number of instances.
The PGD trend follows the opposite behavior, starting with the highest number of instances
and finishing with the lowest number of instances. The differences between PGR and PSR,
and PGD and PSD, is determined by the coefficient k, where a small value of coefficient k makes
the slope of a Sigmoid function completely vertical.

Instability (I): describes features that the number of instances alternates between an increase
and a decrease during the application’s evolution.

We used the polynomial function given by formula a,,x" +a,_ X" +---+a,x? +a; x +agy, where
n is the degree of the polynomial function and a,, > 0 to detect the Instability trend. Since the
degree of a polynomial determines the number of minimum and maximum (at most degree—1)
given an open interval, using this formula, we detected those features which the number of
instances throughout the application’s evolution form a curve with two or more minimum or
maximum.

5.2.4.2 Analysis method

To match a feature evolution trend from one application with one of the studied trends, we
applied the following methodology:

Obtaining the series of the number of instances per application. Given one application, our tool’s
execution gives each feature’s number of instances that each application’s version (i.e., commit)
has. Therefore, for each application a, we generated a series of values y,, = {vax,,vax,,..,vax,}
where vax; corresponds to the number of instances of feature f detected in the i-version of a
(corresponding to the i-th commit considering chronological order, starting with the first version
that introduces x). That is, the first element contains the number of features in the first version
that introduces f.

Computing formulas’ coefficients by fitting the series. For each series y,, from a pair application-
feature (a,x), and for each formula f presented in[5.2.4.1} we used non-linear least squares to fit
function f to data p,,. As a result, this gives a set of coefficients (ay, .., @) for f that correspond
to the optimal values so that the sum of the squared residuals SS,., (Formula is minimized.

|versionsal
SSres= ) @xa—fi) (5.1)
1

The number of coefficients generated varies according to the formula f: for linear, the number
of coefficients is two, whereas a polynomial of 4 degrees is 5. For executing the fitness of data,
we used the function ‘curve_fit’ from library SciPy [132].

Post-Processing formulas and coefficients. This step has two goals: a) simplify polynomial for-
mulas and b) discard some Sigmoid functions which do not have a clear S-shape considering the
domain applied [0, #commits — 1]. We simplify those polynomial formulas whose the coefficient
a, is close to zero (i.e., < than 0.0001) because these evolution trends can be similarly described
by a polynomial n—1 degree. We also discard Sigmoid functions where the coefficient x, i.e.,
the Sigmoid’s midpoint, is outside the range of commits [0, #commits — 1] because in these cases,
only one plateau could be in the commit range. Therefore, these cases do not configure any of
the studied trends modeled with the Sigmoid function.

Choosing the formula that best represents a feature evolution trend. Once we computed the
coefficients for each formula, we chose, for each pair (4, x), the formula that yields less error
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to predict the values of y,,. We call it fy,5 4. Thus, this formula is considered as the one
that best represents the feature evolution trend among all formulas we consider in this study
(Section[5.2.4.1). We based our choice on a statistical measure named R-squared (Coefficient of
Determination) which measures how close the data are to the fitted formula. R-squared (R?) is
always between 0 (bad) and 1 (good).

When two formulas f1 and f2, produce the same R? values within a small positive delta
(0.01 in our study), we prioritized formulas with the smallest quantity of coefficients that is:
Linear >> Exponential >> Logarithmic >> Sigmoid >> Polynomial.

Summarizing of best formulas. For each feature x and formula f, we count the number of
applications that have f as the best formula (Section [5.2.4.2). The result from this step helps us
to explain the most frequent evolution trend associated with each feature.

5.2.4.3 Results

Table[5.3|presents the results of RQg obtained using the methodology presented in Section[5.2.4.2}
Each cell shows the number and the percentage of applications whose the evolution of a feature
f (a row) is better described by trend t (a column). Additionally, the number of applications
analyzed with a feature f is displayed in the column Total applications.

For 11 out of 26 (42%) features studied are better described by CR, a constant rise trend.
Moreover, 7 out of 26 (6%) features are better described by PSR. Other 6 features (23%) presented
the behavior of stability intervals separated by a gradual rise (trend PGR Figure[5.7i). We also
observed that 2 (7%) features better described by PSD. Note that the feature tail-recursive function
is better described by two trends, PSR and PSD. Additionally, the PGR trend better describes 1
feature (3%), inline class. Finally, we did not find any feature better described by stability.

Finding 7: In general, the number of instances of features tends to grow along with the applica-
tions” evolution.

In Table 5.3} the column Inc shows the total number of applications and the percentage of
applications better described by any trend whose the number of instances increases throughout
the application’s evolution (i.e., CR, SR, SRP, PGR, PSR). Analogously, the column Dec, shows the
sum of CD, SD, PGD, PSD. Furthermore, column I represents the Instability trend. Consequently,
100% of applications are represented by columns I, Inc and Dec.

Now we explain our results for the three most used Kotlin features, type inference, lambda,
and safe call. We found that most applications presented a behavior of increasing the number
of instances throughout the applications’ evolution. Table shows this behavior in 72%
of applications containing type inference, 79% of applications containing lambda and 79% of
applications containing safe calls. Moreover, the constant rise trend, CR, better described the
evolution of these features in 36%, 36% and 30% of applications, respectively. Considering
the usage of type inference, we found 91 (26%) applications whose number of instances varies
between increase and decrease intervals along with applications’ evolution. Furthermore, we
observed only 8 (2%) applications whose number of type inference instances decreases during
applications’ evolution.

Finally, as we described in Section to identify the trend that better describes the
evolution trend of a feature, we used R-squared, which measures how close the data are to the
fitted formula. The R-squared assumes values between 0 and 1, and 1 means a perfect fitting.
In our study, the median R-squared was 0.88, which means that 50% of the selected formulas
describe almost perfectly the evolution trends. Moreover, we found that 75% of evolution trends
fitted presented an R-squared greater than 0.74, and only outliers have R-squared values lower
than 0.43.
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Table 5.3: This table shows for each Kotlin feature X (rows) and for each evolution formula f (columns) the number of applications
where the formula f better describes the evolution of the feature X. The last row, Total, shows how many features were better described
by a trend (column)

Featu ds CR CD S SR SD SRP PGR PGD PSR PSD 1 Inc Dec Total
Type Inference 128 (36%) 3(1%)  0(0%) :ﬂx; 1(0%) 53(15%) 10(3%) 0(0%) 5 (1%) 4(1%)  91(26%) || 256 (72%)  8(2%) 355
Lambda 124 (36%)  2(1%)  0(0%) 67(20%) 4(1%) 31 (9%) A 0%) 0(0%) 14(4%)  4(1%) 61 (18%) || 272(79%) 10 (3%) || 343
Safe Call 94 (30%) 2(1%) 0(0%) 64(20%) 3(1%) 38(12%) 3(10%) 1(0%) 21 (7%) 9(3%) 51(16%) || 250 (79%) 15 (5%) 316
When Expr 85 (29%) 3(1%) 0(0%) 47(16%) 2(1%) 28 (10%) Awn@ ) 0(0%) 29(10%) 5 (2%) 23 (8%) 261 (89%) 0 (3%) 294
Unsafe Call 60 (19%) 32(10%) 0(0%) 54(17%) 19(6%) 25 (8%) Cws\ov 3(1%) 17 (5%) 11 (4%) 51 (16%) || 197 (63%) 65 ABQ& 313
Companion Object 75 (26%) 11 (4%) 0(0%) 38(13%) 8(3%) 33(11%) 7(20%) 2(1%) 39 (13%) 5 (2%) 22 (8%) 242 (83%) 26 (9%) 290
String Template 80 (27%) 5(2%) 0(0%) 39(13%) 6(2%) 32(11%) 9(20%) 1(0%) 28 (9%) 7 (2%) 38 (13%) || 238 (81%) 19 (6%) 295
Func With Default || 50 (21%)  3(1%) 0(0%) 41(18%) 4(2%) 19(8%) 64 331 3(1%) 27(12%)  6(3%)  17(7%) || 201 (86%) 16 (7%) || 234
Value

Singleton 3 (15%) 6(3%) 0(0%) 36(16%) 7(3%) 25(11%) 51(22%) 3(1%) 9 (13%) 24 (11%) (6%) 174 (77%) 40 (18%) 227
Range Expr A 4%) 14 (7%)  0(0%) 28 (13%) 5 (2%) 17 (8%) 47 (22%) 6 (3%) 8 (18%) 14 (7%) (6%) 160 (76%) 39 (18%) 211
Smart Cast 38 (18%) 14 (7%) 0 (0%) Cwo\ov 8 (4%) 20(10%) 40(19%) 4(2%) 25(12%) 14(7%) 10 (5%) 158 (76%) 40 (19%) 208
Data Class 44 (22%)  2(1%) 0 (0%) :@i 5(2%) 19(9%) 51(25%) 0(0%) 35(17%) 6 (3%) (7%) || 177 (87%) 13 (6%) || 204
Func Call With || 48(22%) 2(1%) 0(0%) 40(19%) 6 (3%) 20 (9%) 41 (19%) 1(0%) 30(14%) 8 (4%) (9%) || 179 (83%) 17 (8%) || 215

.| Named Arg
Extension Function 47 (23%) 4(2%)  0(0%) 32(16%) 7(3%) 23(11%) 42(21%) 1(0%) 22(11%) 7 (3%) 16 (8%) 166 (83%) 19 (9%) 201

Property Delegation 40 (22%)  11(6%) 0(0%) 32(18%) 8(4%) 22 (12%) 23 (13%) 3(2%) 18(10%) 5(3%)  17(9%) || 135(75%) 27 (15%) || 179
Destructuring Decla- || 23 (16%)  9(6%) 0(0%) 14(10%) 5(3%)  9(6%) 33 (23%) 4(3%) 25(17%) 16(11%) 5(3%) || 104 (73%) 34 (24%) || 143

ration

Inline Func 11 (12%) 5 (5%) 0 (0%) 1(12%) 5 (5%) 5 (5%) 17 (18%) 2 (2%) 20(21%) 4 (15%) 5 (5%) 4(67%) 26 (27%) 95
Overloaded Op 9 (14%) 3 (5%) 0(0%) 5 (8%) 2 (3%) 5 (8%) 11 (17%) 2 (3%) 15(23%) 1 (17%) 1(2%) QoQ ) 18(28%) 64
Coroutine 17 (22%) 1(1%) 0(0%) 2(16%) 1 (1%) 8 (11%) 16 (21%) 0 (0%) 6 (8%) 1 (1%) 14 (18%) Qmo&v 3 (4%) 76
Sealed Class 6 (9%) 3 (5%) 0(0%) 10(15%) 1 (2%) 5 (8%) 7(11%) 0(0%) 26 (40%) 3 (5%) 4 (6%) 4 (83%) 7 (11%) 65
Type Alias 2 (7%) 1 (3%) 0(0%) 6(20%) 1 (3%) 0 (0%) 8(27%) 0(0%) 10(33%) 2 (7%) 0 (0%) A 7%) 4 (13%) 30
Super Delegation 3(10%) 0 (0%) 0 (0%) 1 (3%) 3(10%) 4 (14%) 3(10%) 0(0%) 10(34%) 4(14%) 1 (3%) 21 (72%) 7 (24%) 29
Infix Func 3 (19%) 0 (0%) 0(0%) 0 (0%) 1 (6%) 0 (0%) 3(19%) 0(0%) 3(19%) 6 (38%) 0 (0%) 9 (56%) 7 (44%) 16
Inline Klass 0 (0%) 0 (0%) 0(0%) 0 (0%) 0(0%) 1(100%) 0(0%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 1 (100%) 0 (0%) 1
Tailrec Func 0 (0%) 0 (0%) 0(0%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 0(0%) 1(50%) 1 (50%) 0 (0%) 1 (50%) 1 (50%) 2
Contract 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 1(100%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 1
Total 11 0 0 0 0 1 6 0 7 2 0 - - -




5.2. The usage and evolution of Kotlin features 81

Response to RQ 4: How the usage of Kotlin features evolves along with the evolution of Android
applications? Developers tend to add more instances along the evolution of Android
applications of 24 out of 26 (92%) features studied.

These results show that developers add more instances along with the applications’ evolution,
which could be a consequence of the fact that developers are more likely to introduce new classes
rather than adding code to existing ones [94]]. As the number of instances grows, applications
become more prone to overusing of features.

5.2.5 Discussion

As a consequence of our study, we