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INTRODUCTION

On a common day, we are able to wake up, go to school or work, write a note, enjoy a meal,
all without giving it a second thought. We cease our daily activities and after a good night
of sleep we are prepared to do it all over again.

We seldom think about the 100 000 chemical reactions taking place in our brain every sec-
ond, yet, every one of them is critical to the relay of information between the external world
to our brain and from our brain to our body. When we eat for example, the visual system
inspects the plate in front of us and determines how the fork should be grasped. This in-
formation is transmitted from the visual cortex to the frontal-lobe motor areas that plan and
initiate the movement. The spinal cord carries these instructions to the motor neurons in the
muscles of the arm and hand that proceed to pick up the fork with just the right amount of
force and at a convenient speed thanks to the messages of the basal ganglia. Then, sensory
receptors on the fingers send the signal that the fork is being held to the sensory cortex and
finally to the motor cortex so that it can plan our next move. At the same time, we might be
activating multiple other mechanisms by having a conversation, smelling our food or just
by breathing. All within a split second.

In a complex network, neurons communicate with each other by releasing neurotransmit-
ters, chemicals that act as messengers. Billions of nerve cells are arranged in specific patterns
that coordinate thoughts, emotions, behaviors, movements and sensations, controlling ev-
erything from our heart rates to our mood.

The underproduction or overproduction of any of the 200 neurotransmitters produced by
the brain alters the delicate balance necessary for proper functioning and can result in dis-
ease.

Parkinson’s disease (PD) presents a clear example. The production of dopamine is progres-
sively decreased due to damage in the substantia nigra, a basal ganglia structure located in
the midbrain. This affects the inter-communication of the different structures in the basal
ganglia but also, as dopamine levels drop, their interaction with the rest of the brain.

Neurodegenerative diseases like Parkinson’s represent a public health preoccupation, in-
deed more than 6 million persons in the world live with this PD and due to the general
aging of the population, the number of PD patients is expected to double by 2030.

PD is most well known for its motor symptoms, namely resting tremor, bradykinesia, rigid-
ity and gait impairment. The damage to the substantia nigra affects movement control, for
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this reason, patients may experience tremor and/or difficulty initiating voluntary move-
ment.

The diagnosis of Parkinson’s disease is made at the appearance of these clinical motor symp-
toms, however, when they occur, it has been estimated that 50% of dopamine producing
neurons might have already been lost, dropping dopamine levels by 80%. Although there
are effective symptomatic treatments, none of them are curative, so the patient’s quality of
life keeps on worsening over time, eventually leading to disability.

Reducing the gap between diagnosis and the onset of the neurodegenerative process is of
paramount importance to identify treatments that would significantly slow its natural pro-
gression and this can only be achieved by studying the earliest possible pre-clinical stages
of illness possible.

Indeed, non-motor symptoms have been found precede motor disturbances by up to a
decade, indicating the presence of physiopathological changes from the onset of the disease.
Some of the most common features include sleep and mood disorders, anxiety, depression,
autonomic dysfunctions, visual and olfactory disturbances.

Neuroimaging plays a fundamental role in the diagnosis and assessment of neurodegen-
erative diseases. The combination of novel MRI (Magnetic Resonance Imaging) sequences
and current developments in medical image analysis presents an excellent opportunity to
study the complex physiopathology of Parkinson’s disease. Multiple research studies have
detected structural, functional and connectivity changes in newly diagnosed PD patients
but heterogeneity in study cohorts, softwares and techniques have made it difficult to reach
consensus. To this day there is no neuroimaging biomarkers that can diagnose PD with
certainty.

In this context, the work presented in this thesis aims to detect and characterize abnormal-
ities specific to the early stages of Parkinson’s disease. For this purpose, structural and
quantitative images have been studied through different medical imaging processing tech-
niques going from classical computational methods to novel clustering and deep learning
methods.

Motivation and strategy

We address the identification of early physiological changes as an anomaly detection prob-
lem. The goal of anomaly detection is to determine instances within a dataset that stand
out as being dissimilar to all others [1, 2]. It is a very general approach that is employed in
numerous fields, going from finance to health care.

Anomalies are also referred to as abnormalities, deviants or outliers in the data mining and
statistics literature. They are not to be confused with novelties, which correspond to new
or unobserved patterns in the data that can be added to the regular data model [2]. The
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classification of a deviant point as a novelty or an anomaly is merely dependent on the
abnormality threshold chosen. For this reason, the techniques used for novelty detection
are often used for anomaly detection and vice versa.

There exists a plethora of novelty / anomaly detection methods, Pimentel & colleagues [3]
classify them along five general categories:

1. Probabilistic: The density of the "normal" class is estimated and low density areas
indicate a low probability of containing "normal" objects.

2. Distance-based: Includes the concepts of nearest-neighbor and clustering analysis.
Novel data is assumed to be far from a tight "normal" cluster.

3. Reconstruction-based: A model is trained using only "normal" data. The mapping of
"abnormal" data by the trained model is expected to have a high error with respect
to the input. The model can be a regression model or a neural network such as an
autoencoder.

4. Domain-based: A boundary around the "normal" class is defined, thus establishing
the normal domain. Everything outside the domain is "abnormal".

5. Information-theoretic techniques: The information data is computed using information-
theoretic measure. Novel data are supposed to alter significantly the information con-
tent of a dataset.

Each method is best suited to respond to a specific problem formulation. The survey pre-
sented by Chandola & colleagues [1] divides the problem formulation in four axes:

• Nature of the data: Univariate, multivariate, graph data, image data, etc.

• Type of anomaly: Point anomalies if every instance can be looked at individually,
contextual if an instance is only considered as anomalous under a special context, or
collective if several instances should be compared as a group to all others.

• Degree of supervision: Supervised if data labels are available for the normal and
anomalous classes, semi-supervised if only normal labels are provided or unsuper-
vised if no labels are necessary.

• Output: The anomalies can be reported as scores or binary labels.

MR imaging is able to extract information relevant to the structure and physiology of the
brain. The comparison between the scans of healthy and recently diagnosed PD patients
through anomaly detection techniques could bring to light relevant information about the
changes that PD patients’ brains undergo in the early stages of the disease.

In Part II of this manuscript, three very different unsupervised anomaly detection tech-
niques are presented, applied and discussed.
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The first one studies the morphometry of the brain and falls into the category of probabilistic
approaches. The structural MR images of healthy individuals and PD patients are analyzed
by group to measure differences in local concentrations of gray matter, detect signs of atro-
phy, cortical thinning or deformations of the cortical ribbon.

The second approach is reconstruction-based. Auto-encoder architectures are trained to
reconstruct 2-D diffusion MR images of healthy subjects. The trained networks are then
presented with both healthy and early PD diffusion MR slices and the reconstruction errors
of the both populations are studied to find differences between the two.

Lastly, the third approach is distance-based. The quantitative multivariate MR data of
healthy controls is first fitted by a mixture model of flexible distributions to constitute a
reference model against which early PD data is positioned. Any instances with a low proba-
bility of being explained by the reference model are classified as outliers. Finally, the outliers
are characterized as well by a second mixture model and their localization is investigated.

This multi-approach strategy has given the project an interesting point of view regarding
the possible nature of anomalies in PD patients, the MR modalities that hold the most infor-
mative power, and the challenges faced ahead.

Challenges and contributions

The detection of anomalies at the early stages of Parkinson’s disease is not an easy task.
Changes at this phase are expected to be subtle and by consequence, not visible in routine
MR scans. The use of novel MR contrasts and image analysis techniques is therefore neces-
sary to study the physiopathology of this disease.

Since lesions are not apparent, all studies are exploratory and depend on the literature find-
ings and clinical data to support their results. What is more, evidence suggests that there
are different types of PD, so there is a possibility that abnormalities are not presented in the
same regions or in the same manner across all patients.

Finally, we are exposed to common challenges in the medical field such as data availability
and the heterogeneity in processing techniques and pipelines. This last point prevents the
direct comparison of independent research studies. For example, when comparing local
gray matter concentration, there are several techniques for brain tissue segmentation that
can produce variable results. This is also true for the extraction of diffusion and perfusion
parameter maps.

The three investigations presented in this manuscript employ state-of-the art processing
methods that are easily available to the research community, also, techniques for results
generalization were considered when possible.
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To the best of our knowledge, we present the largest PD morphometry study investigating
local gray matter changes, atrophy and cortical thinning. Bootstrap and family wise error
correction were used to challenge the reproducibility of our results.

We found that no morphological differences and proposed quantitative MR data as a better
alternative for the exploration of early PD biomarkers.

A pipeline was proposed for the use of auto-encoders as anomaly detection tools without
any labels and applied it to diffusion images of PD patients. The pipeline could be easily
adapted to other other types of medical images and/or pathologies.

Lastly, we adapted the mixture model pipeline specially designed for physiological data
[4] to detect and characterize subtle anomalies on large datasets when no ground-truth is
available.

Associated publications

In some part, the studies presented here have given place to several publications :

• Muñoz Ramírez V., Coupé P., Forbes F., Dojat M. (2019) « No structural differences are
revealed using VBM in ‘de novo’ Parkinsonian patients ». Stud Health Technol Inform.
264: 268-272.

• Muñoz Ramírez V., Kmetzsch V., Forbes F., Dojat M. (2020) « Deep learning models to
study the early stages of Parkinson Disease ». ISBI 2020 - IEEE International Sympo-
sium on Biomedical Imaging. Iowa City, USA.

• Muñoz Ramírez V., Kmetzsch V., Forbes F., Dojat, M. (2020) « Autoencoder-based
anomaly detection for Parkinson’s disease markers discovery ». (in preparation)

• Muñoz Ramírez V., Forbes F., Arbel J., Arnaud A., Dojat M. « Quantitative MRI charac-
terization of brain abnormalities in de novo Parkinsonian patients ». ISBI 2019 - IEEE
International Symposium on Biomedical Imaging. Venice, Italy.

They can be found as Annexes at the end of the manuscript.

Manuscript structure

In the first part of the manuscript "Medical and scientific context" a general overview of
Parkinson’s disease is presented in Chapter 1, including information about its incidence in
the population, its physiopathology, symptoms, evolution and current treatment strategies.
Chapter 2 contains information about different structural and quantitative MRI techniques
and how they have or could be harnessed for PD exploration. A state-of-the-art on the study
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of Parkinson’s Disease from MR imaging is included in Chapter 3, mainly focusing on tech-
niques comparable to ours, notably studies on structural data, studies employing diffusion,
perfusion or multivariate data and studies employing the outputs of unsupervised deep
learning architectures.

In the second part of the manuscript "Anomalies in ’de novo’ MR scans" three different
approaches are introduced, applied and discussed. The first one (Chapter 4) is a compre-
hensive brain morphological analysis of Parkisonian patients. Local concentrations of gray
matter, atrophy and cortical ribbon deformations are studied. The second one (Chapter 5)
leverages the reconstruction errors produced by unsupervised deep learning architectures
to discriminate between healthy and PD diffusion scans. The third method (Chapter 6)
consists on clustering multivariate MR data with appropriate mixture distributions to dif-
ferentiate between healthy and atypical instances at the voxel level. The notion of an MR
multivariate signature is explored to discriminate between healthy subjects and PD patients.

Finally the employed methods and the physiological changes observed are discussed. We
end the manuscript with a general discussion and perspectives for future work.

This introduction is directly followed by a summary of the manuscript in French.
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Résumé en français

Le bon fonctionnement du cerveau dépend d’un équilibre délicat de plus de 200 neurotrans-
metteurs. La sous-production ou la surproduction de l’un de ces composants chimiques
produits par le cerveau peut entraîner des troubles importants.

La maladie de Parkinson (MP) en présente un exemple clair. La production de dopamine
est progressivement diminuée en raison de lésions de la substance noire, une structure des
noyaux gris centraux située dans le mésencéphale. Cela affecte l’intercommunication des
différentes structures dans les noyaux gris centraux mais aussi, à mesure que les niveaux de
dopamine chutent, leur interaction avec le reste du cerveau.

Les maladies neurodégénératives comme la maladie de Parkinson représentent une préoc-
cupation de santé publique, en effet plus de 6 millions de personnes dans le monde vivent
avec cette maladie et en raison du vieillissement général de la population, le nombre de
patients atteints de MP devrait doubler d’ici 2030.

La MP est surtout connue pour ses symptômes moteurs, à savoir les tremblements au repos,
la bradykinésie, la rigidité et les troubles de la marche. Les dommages à la substance noire
affectent le contrôle du mouvement, pour cette raison, les patients peuvent éprouver des
tremblements et / ou des difficultés à initier un mouvement volontaire.

Le diagnostic de la maladie de Parkinson est posé à l’apparition de ces symptômes moteurs
cliniques, cependant, lorsqu’ils surviennent, il a été estimé que 50% des neurones produc-
teurs de dopamine auraient déjà été perdus, faisant chuter les niveaux de dopamine de 80%.
Bien qu’il existe des traitements symptomatiques efficaces, aucun d’entre eux n’est curatif,
de sorte que la qualité de vie du patient ne cesse de s’aggraver avec le temps, conduisant
éventuellement à un handicap.

Réduire l’écart entre le diagnostic et le début du processus neurodégénératif est d’une im-
portance capitale pour identifier les traitements qui ralentiraient considérablement sa pro-
gression naturelle et cela ne peut être réalisé qu’en étudiant les premiers stades précliniques
possibles de la maladie.

En effet, des symptômes non moteurs ont été trouvés avant les troubles moteurs jusqu’à
une décennie, indiquant la présence de changements physiopathologiques dès le début de
la maladie. Certaines des caractéristiques les plus courantes comprennent les troubles du
sommeil et de l’humeur, l’anxiété, la dépression, les dysfonctionnements autonomes, les
troubles visuels et olfactifs.
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La neuroimagerie joue un rôle fondamental dans le diagnostic et l’évaluation des maladies
neurodégénératives. La combinaison de nouvelles séquences d’IRM (imagerie par réso-
nance magnétique) et des développements actuels en analyse d’images médicales présente
une excellente opportunité d’étudier la physiopathologie complexe de la maladie de Parkin-
son. De nombreuses études de recherche ont détecté des changements structurels, fonc-
tionnels et de connectivité chez des patients atteints de MP nouvellement diagnostiqués,
mais l’hétérogénéité des cohortes, des logiciels et des techniques d’étude a rendu difficile
l’obtention d’un consensus. À ce jour, aucun biomarqueur de neuroimagerie ne permet de
diagnostiquer la MP avec certitude.

Dans ce contexte, les travaux présentés dans cette thèse visent à détecter et caractériser des
anomalies spécifiques aux stades précoces de la maladie de Parkinson. À cette fin, des im-
ages structurelles et quantitatives ont été étudiées à travers différentes techniques de traite-
ment d’imagerie médicale allant des méthodes de calcul classiques aux nouvelles méthodes
de clustering et d’apprentissage en profondeur.

Motivation et défis

Nous abordons l’identification des changements physiologiques précoces comme un prob-
lème de détection d’anomalies. Le but de la détection des anomalies est de déterminer les
instances d’un ensemble de données qui se distinguent par leur différence avec toutes les
autres [1, 2]. C’est une approche très générale qui est employée dans de nombreux do-
maines, allant de la finance à la santé.

L’imagerie par résonance magnétique est capable d’extraire des informations relatives à la
structure et à la physiologie du cerveau. La comparaison entre les scans de patients atteints
de MP sains et récemment diagnostiqués par des techniques de détection d’anomalies pour-
rait mettre en lumière des informations pertinentes sur les changements que le cerveau des
patients atteints de MP subit aux premiers stades de la maladie.

Il existe une pléthore de méthodes de détection d’anomalies [3] (e.g. probabilistes, basées
sur la distance, basées sur la reconstruction, basées sur le domaine) et chacune d’elles est la
mieux adaptée pour répondre à une formulation de problème spécifique.

Dans ce manuscrit, trois études sont présentés. Ils utilisent des méthodes de traitement de
pointe qui sont facilement accessibles à la communauté de recherche, ainsi que des tech-
niques de généralisation des résultats ont été envisagées lorsque cela était possible.

Il est important de préciser que la détection d’anomalies aux premiers stades de la maladie
de Parkinson n’est pas une tâche facile. On s’attend à ce que les changements à cette phase
soient subtils et, par conséquent, non visibles dans les examens IRM de routine. L’utilisation
de nouveaux contrastes IRM et de techniques d’analyse d’images est donc nécessaire pour
étudier la physiopathologie de cette maladie.
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Puisque les lésions ne sont pas apparentes, toutes les études sont exploratoires et dépendent
des résultats de la littérature et des données cliniques pour appuyer leurs résultats. De
plus, les preuves suggèrent qu’il existe différents types de MP, il est donc possible que les
anomalies ne soient pas présentées dans les mêmes régions ou de la même manière chez
tous les patients.

Enfin, nous sommes exposés à des défis communs dans le domaine médical tels que la
disponibilité des données et l’hétérogénéité des techniques de traitement et des pipelines.
Ce dernier point empêche la comparaison directe d’études de recherche indépendantes. Par
exemple, lorsque l’on compare la concentration locale de matière grise, il existe plusieurs
techniques de segmentation des tissus cérébraux qui peuvent produire des résultats vari-
ables. Ceci est également vrai pour l’extraction des cartes de paramètres de diffusion et de
perfusion.

Contenu du manuscrit

Ce manuscrit est divisé en deux parties. La première partie, intitulée «Contexte médical et
scientifique», est composée de trois chapitres. Un aperçu général de la maladie de Parkinson
est présenté dans le Chapitre 1, y compris des informations sur son incidence dans la pop-
ulation, sa physiopathologie, ses symptômes, son évolution et les stratégies de traitement
actuelles. Chapitre 2 contient des informations sur les différentes techniques d’IRM struc-
turelles et quantitatives et comment elles ont ou pourraient être exploitées pour l’exploration
de la MP. Un état de l’art sur l’étude de la maladie de Parkinson à partir de l’imagerie par
résonance magnétique est inclus dans Chapitre 3, principalement axé sur des techniques
comparables aux nôtres, notamment des études sur des données structurelles, des études
utilisant des données de diffusion, de perfusion ou multivariées et études utilisant les résul-
tats d’architectures d’apprentissage en profondeur non supervisées.

Dans la deuxième partie du manuscrit, «Anomalies dans les données IRM des patients ’de
novo’», trois approches non-supervisés sont présentées, appliquées et discutées. Un bref
résumé de ces chapitres est présenté ci-dessous.

Étude des changements structurels (Chapitre 4)

Afin d’élucider la nature des différences morphologiques chez les patients Parkinsoniens
de novo, on a réalisé une étude VBM (Morphométrie à base de voxel) à travers de deux
pipelines: 1) la bien établie Computational Anatomy Toolbox (CAT12) (University of Jena)
incluse dans la version actuelle du logiciel SPM (SPM12) et 2) une nouvelle plateforme en
ligne: volBrain [5]. Les deux pipelines ont des atouts complémentaires qui sont exploités
dans cette étude. volBrain effectue une segmentation de qualité des noyaux sous-corticaux



10 Contents

et CAT12 facilite l’analyse de groupe. En outre, nous avons recherché des différences quanti-
tatives entre la classification des tissus effectuée par les deux approches, toutes deux incluant
l’estimation du volume partiel.

Par la suite, des études DBM et SBM (Morphométrie à base de déformations et surface re-
spectivement) ont été menées uniquement sur CAT12, car volBrain est un système axé sur
la volumétrie.

La population de notre étude est composée 144 patients Parkinsoniens de novo (âge: 61,30
± 9,06; sexe: 53 F, 91 H) et 66 témoins sains (âge: 60,12 ± 11,39; sexe: 23 F, 43 H) de la base
de données PPMI [6] (www.ppmi-info.org/data). Nous avons pris un soin particulier à con-
sidérer une cohorte de sujets relativement importante, à considérer les effets d’un nombre
déséquilibré de patients et de témoins et à corriger pour des comparaisons multiples.

Avec ces précautions, notre analyse VBM n’a pas trouvé de différences morphologiques chez
les patients MP (p <0,05 FWE), ni sur l’analyse du groupe de matière grise du cerveau entier
ni sur l’analyse de plusieurs structures sous-corticales séparément. Les résultats des dif-
férences structurelles cérébrales rapportées dans la littérature ont tendance à être contradic-
toires, ce qui rend difficile la comparaison de nos résultats. Ce manque de consensus peut-
être dû à une variété de facteurs, notamment l’étude des petites cohortes, les différences
dans les techniques de segmentation et, plus important encore, le manque de correction
pour les comparaisons multiples augmentant inévitablement les taux de faux positifs.

En ce qui concerne l’atrophie, notre étude DBM n’a pas établi de disparités significatives
une fois la correction pour comparaisons multiples appliquée (p <0,05 FWE). Nous notons
qu’en omettant cette correction, plusieurs régions qui deviennent significatives font partie
du réseau PD-ICA proposé par Zeighami et ses collègues [7] (e.g. amygdale, thalamus,
hippocampe). Une raison possible pour les écarts entre nos résultats est due à la méthode
employée, ils ont utilisé le pipeline CIVET et nous le pipeline CAT12, et il n’est pas clair
si leur correction a été calculée pour chaque voxel dans l’ICA-ROI ou pour chaque ICA
possible, auquel cas notre correction est beaucoup plus stricte.

Nos résultats de SBM coïncident avec ceux des dernières recherches sur les caractéristiques
corticales des patients atteints de MP, il n’y a pas de différences significatives d’épaisseur
corticale ni de gyrification chez les patients PD de novo. Cela confirme les capacités des
méthodes CAT12 à estimer correctement le ruban cortical, et ce, en une fraction du temps
par rapport à FreeSurfer. [8] a estimé 10-20 heures par sujet pour la reconstruction de la
surface corticale sur FreeSurfer, alors que CAT12 effectue son traitement en moins d’une
heure. À notre connaissance, l’étude SBM réalisée dans cette thèse est la plus importante de
la littérature.

Cette étude renforce le message selon lequel les évaluations morphologiques sont des tech-
niques délicates impliquant de nombreux paramètres qui doivent être manipulés avec pré-
caution pour éviter que les faux positifs n’influencent les résultats finaux [9].
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Au vu de l’absence de différences morphologiques, nous soupçonnons que les biomar-
queurs précoces de la maladie de Parkinson reposent sur les propriétés physiologiques du
cerveau parkinsonien et pourraient être étudiés par des techniques d’IRM quantitatives (re-
laxométrie, diffusion, perfusion).

Étude des changements de diffusion avec Neural Networks (Chapitre 5)

Dans ce chapitre, nous présentons un pipeline novateur pour la détection d’anomalies dans
les données IRM de diffusion des patients récemment diagnostiqués avec la MP. Les auto-
encodeurs entièrement convolutifs et les auto-encodeurs variationnels ont constitué les prin-
cipaux éléments constitutifs de notre approche.

Les données utilisées dans ce travail proviennent également de la base de données PPMI [6].
Les scans IRM de diffusion de 56 contrôles sains et 129 patients atteints de DP de novo ont
été regroupés et à partir de ces scans, deux mesures par voxel ont été calculées en utilisant
MRtrix3.0 [10]: diffusivité moyenne (MD) et anisotropie fractionnelle (FA). Ces mesures
décrivent la diffusion des molécules d’eau dans le cerveau, MD rend compte de leur dé-
placement global et FA indique l’orientation de la diffusion.

Même s’il est possible de former des auto-encodeurs avec des images 3D, 56 contrôles ne
sont pas assez de données pour entraîner les modèles, d’autant plus qu’une partie des don-
nées doit être mise de côté pour les tests. C’est pourquoi nous avons décidé d’entrainer les
auto-encodeurs avec des coupes axiales 2D de nos scans 3D. De plus, nous avons choisi de
traiter chaque hémisphère comme un sujet différent.

L’ensemble de données de contrôle a été divisé en 41 contrôles de formation et 15 contrôles
de test pour éviter les fuites de données. En conséquence, les modèles ont été entraînés avec
un duo (FA & MD) de 1680 images (2 hémisphères ×40 tranches ×41 contrôles). D’autre
part, l’ensemble de données des patients testés est constitué d’un duo de 10320 instances et
l’ensemble de données des contrôles de test comprend un duo de 1200 images.

Nos résultats montrent que les reconstructions cérébrales des patients atteints de MP sont
significativement différentes de celles des témoins sains pour les modèles sAE, sVAE et
dVAE. Dans notre application, il n’y a pas de vérité terrain permettant de privilégier un
modèle par rapport aux autres, néanmoins, les applications d’apprentissage supervisé des
auto-encodeurs dans la littérature ont montré que les architectures dVAE ont du mal à re-
construire les détails fins dans les scans cérébraux, par exemple, les gyrifications [11].

Une procédure d’évaluation originale a été conçue pour comparer les profils d’erreur de re-
construction d’individus sains par rapport aux patients atteints de MP. La procédure était
basée sur l’hypothèse que les reconstructions d’hémisphères de patients devraient présenter
une plus grande quantité de points mal reconstruits et ainsi nous avons comparé les pour-
centages de voxels anormaux dans les hémisphères cérébraux de nos sujets. En définissant
le pourcentage qui présente le meilleur compromis entre sensibilité et spécificité comme
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seuil pathologique, nous avons transformé notre dilemme en un problème de classification
binaire dont nous pouvons calculer les performances discriminantes et prédictives. Cette
procédure a été suivie pour tout l’hémisphère cérébral mais aussi pour des régions d’intérêt
spécifiques telles que les lobes corticaux de matière grise, les structures sous-corticales et les
structures de matière blanche.

Avec des ensembles de données déséquilibrés, nous avons pris un soin particulier à utiliser
une métrique adaptée telle que la moyenne géométrique entre spécificité et sensibilité (g-
mean), mais aussi à généraliser nos résultats en effectuant une validation croisée par 10
pour former et tester nos résultats. Cela s’est avéré être un élément clé de l’étude. En effet,
sans raison évidente, la première sous-population réalise de bien meilleures performances
que la moyenne de nos dix populations. A titre indicatif, le score g-mean sAE associé à
l’hémisphère cérébral est de 74,3% alors que la moyenne est de 64,6%.

Étant donné que le DTI a été conçue pour étudier les caractéristiques de la substance blanche,
il n’est pas surprenant que certaines des meilleures performances aient été obtenues par la
substance blanche, cependant, en observant le seuil pathologique de la sAE déduit pour les
petites structures sous-corticales comme la substantia nigra (20,96 %) et le STN (19,35 %)
nous soupçonnons que l’auto-encodeur spatial était incapable de produire des reconstruc-
tions précises de ces régions.

Comme dans d’autres enquêtes, nous constatons que les patients présentant une déficience
cognitive légère sont nettement plus faciles à classer que les patients conformes sur le plan
cognitif en utilisant tout l’hémisphère cérébral, la combinaison de lobes de matière grise ou
de substance blanche.

D’un point de vue concurrentiel, notre approche a obtenu des performances similaires à
celles d’autres études de diffusion. Notamment, la procédure de validation croisée de Schuff
et ses collègues [12] a obtenu une ROC AUC de 59% pour le segment rostral du SN qui est
comparable à notre AUC ROC de 57,6% pour le SN complet. Ensuite, Correia et ses collègues
[13] ont obtenu un score de précision moyen de 59,7% grâce à une procédure de validation
croisée sur leur SVM et cette sélection de régions de substance blanche. Ceci est conforme à
notre score de prédiction g-mean moyen de 61% pour 11 régions de matière blanche.

Dans leur ensemble, ces résultats offrent des preuves convaincantes que les modèles basés
sur l’apprentissage profond sont utiles pour localiser les anomalies subtiles, comme on les
trouve chez les patients Parkinsoniens de novo, même lorsqu’ils sont entrainés avec un nom-
bre modéré d’images et uniquement des mesures FA et MD. De tels modèles pourraient être
intéressants pour étudier d’autres troubles neurologiques lorsque de petites lésions sont
suspectées et difficiles à localiser pour un observateur humain. On peut s’attendre à ce
que l’insertion de mesures d’IRM quantitatives supplémentaires, telles que la perfusion, la
teneur en fer et le temps de relaxation des tissus, améliorerait la détection des anomalies. De
plus, la localisation spatiale d’altérations subtiles des modalités d’imagerie RM, sensibles à
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différents paramètres physiologiques, pourrait apporter de nouvelles connaissances sur la
physiopathologie de la maladie sous-jacente.

Caractérisation des données multivariées MR à l’aide de modèles de mélange (Chapitre
6)

Dans ce travail, nous proposons de tirer parti des fonctionnalités informatives fournies par
l’IRM quantitative pour construire des modèles statistiques représentant des tissus cérébraux
sains. Cela nous permet de détecter des valeurs atypiques pour ces caractéristiques dans le
cerveau des patients parkinsoniens. Nous introduisons des modèles de mélange pour cap-
turer la forme non standard de la distribution multivariée des données.

Les modèles de mélange sont des modèles probabilistes qui représentent des sous-populations
au sein d’une population globale. Ils ne nécessitent pas de connaissance préalable de la sous-
population à laquelle appartient un point de données, ce qui permet au modèle d’apprendre
automatiquement les sous-populations de manière non supervisée.

Bien que les distributions gaussiennes soient les distributions statistiques les plus largement
utilisées pour leur traitabilité et leur pouvoir de représentation, elles sont contraintes par
des formes elliptiques. Les mélanges de gaussiens peuvent aider à modéliser des formes
distributionnelles plus riches, mais ils ne sont toujours pas appropriés lorsque les don-
nées présentent des sous-groupes allongés et fortement non elliptiques. Comme alterna-
tive, nous considérons une famille de distributions plus riche basée sur des distributions de
Student à échelles multiples (MSD). Ces distributions à queue lourde sont dotées de quan-
tités marginales variables de poids de queue et leurs mélanges se sont avérés fournir une
alternative efficace aux mélanges gaussiens [14, 4].

Dans l’approche proposée, les données quantitatives multivariées IRM des contrôles sains
sont d’abord ajustées par mélange MSD pour constituer un modèle de référence par rapport
auquel les données de PD précoces sont positionnées. Toutes les instances avec une faible
probabilité d’être expliquées par le modèle de référence sont classées comme des valeurs
aberrantes. Enfin, les valeurs aberrantes sont également caractérisées par un deuxième mod-
èle de mélange et leur localisation est étudiée.

Three different applications of MSD mixture models are presented in this study:

• Application 1
Données: Deux cartes paramétriques de diffusion (FA & MD) ainsi qu’une carte de flux
sanguin cérébral (CBF) associées à 3 sujets sains (C1-C3) (Age: {28, 40, 50}; Sex: 2H,
1F) et 10 sujets Parkinsoniens (P1-P10) (Age ∈ [36, 66]; H&Y score ≤ 2; Sex: 7H, 3F).
Seulement les valeurs se trouvant à l’intérieur des structures sous-corticales ont été
considérées dans les modèles.
Résultats: Le modèle de réference à 6 classes a été retenu. Malgré le fait que le mod-
èle de référence a été estimé sans aucune information spatiale, le modèle de référence
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est cohérent d’un point de vue anatomique et respecte la symétrie. 21.6% des vox-
els ont été classifiés comme atypiques, résultat sur un modèle à 4 classes. L’un des
clusters, principalement situé sur la substantia nigra, le noyau rouge et le noyau sous-
thalamique, est caractérisé par de faibles valeurs de CBF et de FA élevées, ce qui
est conforme aux résultats de Fernandez-Seara & al. [15]. Un autre groupe dans le
striatum coïncide avec des valeurs de DM plus élevées rapportées par Peran & al.
[16]. De toute évidence, plus de sujets sont nécessaires pour mettre en évidence des
biomarqueurs robustes de la MP. Cependant, ces résultats préliminaires montrent que
l’application de modèles de mélange de distributions pertinentes est informative et
prometteuse pour discriminer correctement la pathologie.

• Application 2
Données: Cartes FA et MD (diffusion) issues de 56 sujets sains (Age: {61.1 ± 9.8}; Sex:
34H, 23F) et 129 patients de novo (Age: {61.74± 8.96}; Sex: 80H, 49F)
Résultats: L’application de modèles MMST pour la détection d’anomalies de diffusion
sur un ensemble de données considérablement volumineux ( 7,2 millions de voxels
pour les sujets témoins et 35,9 millions de voxels pour les patients) a produit des
résultats non concluants. La plupart des anomalies étaient localisées sur le corps
calleux. Il s’agit de la plus grande structure de matière blanche du cerveau, consti-
tuée d’un faisceau plat de fibres commissionnelles reliant les hémisphères gauche et
droit. L’implication de cette structure dans la maladie de Parkinson et a été liée au
déclin cognitif cite Bledsoe2018, pourtant, une étude de cas récente rapportant un pa-
tient atteint de MP sans corps calleux (agénésie complète) cite Kho2019 suggère que
les changements dégénératifs bilatéraux dans La MP peut survenir indépendamment
de l’état du corps calleux. Il est fort probable que les données de diffusion à elles seules
ne soient pas suffisantes pour distinguer les patients atteints de MP des témoins sains,
du moins aux premiers stades de la maladie.

• Application 3
Données: Nous avons 8 cartes paramétriques pour 2 sujets sains (Ages: 56,58, Sex: 2F) et 12
sujets Parkinsoniens de novo (Age: 62.9 ± 7.9, Sex: 6H, 6F, H&Y=2, MoCA>26). Ces cartes
ont été extraites des scans de diffustion, perfusion (pCASL et DSC), relaxométrie (T1,
T2*) acquises lors du protocole InnobioPark du CHU Grenoble Alpes. Les séquences
avec un taux de crrélation au dessus de 0.5 aux autres paramètres. Les cartes de FA,
pCBF, MTT, T1 et T2* ont été retenues.
Résultats: Ces résultats sont à interpréter avec délicatesse car le modèle de référence
n’a pas été tiré d’un échantillon représentatif de la population, les données disponibles
appartiennent à deux témoins femelles de 58 et 56 ans.
Néanmoins, les résultats préliminaires rapportés ici sont encourageants et plausibles
au regard de la littérature. Dans l’ensemble de l’analyse du cerveau, les anomalies
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caractérisées par des temps de relaxation T1 accrus ont été trouvées sur les structures
sous-corticales, ce qui pourrait indiquer des changements microstructuraux dans les
tissus [17].
Les temps de transit moyens sur les deux analyses étaient clairement plus élevés pour
les patients atteints de MP, une explication pourrait être une diminution de la pression
de perfusion cérébrale qui est compensée par la vasodilatation et produit à son tour
une réduction du CBF et un MTT prolongé (théorie de Monro-Kellie).
Dans l’ensemble, la combinaison des temps de diffusion, de perfusion et de relaxation
tissulaire semble être d’autant plus informative que les mesures séparées.

Les modèles MMST se sont avérés bien adaptés pour caractériser des tissus sains et patholo-
giques sur la base de paramètres physiologiques. Le pipeline développé pour la détection
des anomalies a produit des résultats cohérents par rapport à la littérature dans les cas où
plus d’une modalité RM était utilisée. En effet, aux stades précoces de la maladie de Parkin-
son, les anomalies sont susceptibles d’être subtiles et les propriétés de diffusion à elles seules
semblent insuffisantes pour caractériser les patients atteints de MP.

Des développements informatiques sont en cours pour optimiser l’estimation des modèles
MMST sur de grands ensembles de données.

Discussion

Trois méthodes très différentes pour étudier différents ensembles de données ont été ex-
plorées dans cette thèse.Cette stratégie multi-approches a donné au projet un point de vue
intéressant sur la nature possible des anomalies chez les patients atteints de MP, les modal-
ités de RM qui détiennent le pouvoir le plus informatif et la défis à relever.

Au meilleur de nos connaissances, nous présentons la plus grande étude de morphométrie
PD portant sur les changements locaux de la matière grise, l’atrophie et l’amincissement
cortical. Le bootstrap et la correction d’erreur au niveau de la famille ont été utilisés pour
contester la reproductibilité de nos résultats.

Nous avons constaté qu’aucune différence morphologique et proposé des données quanti-
tatives MR comme une meilleure alternative pour l’exploration des premiers biomarqueurs
PD.

Un pipeline a été proposé pour l’utilisation d’auto-encodeurs comme outils de détection
d’anomalies sans aucune étiquette et l’a appliqué à des images de diffusion de patients at-
teints de MP. Le pipeline pourrait être facilement adapté à d’autres types d’images médicales
et / ou de pathologies.
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Enfin, nous avons adapté le pipeline de modèles de mélanges spécialement conçu pour
les données physiologiques cite Arnaud2017 pour détecter et caractériser des anomalies
subtiles sur de grands ensembles de données lorsqu’aucune vérité terrain n’est disponible.

Nous pensons que les données quantitatives sont une alternative plus appropriée pour
étudier la maladie de Parkinson, en particulier sur les patients «de novo» où tout change-
ment devrait être subtil.

En résumé, nous avons trouvé des preuves d’anomalies de la substance blanche dans les
premiers stades de la MP, mais des recherches supplémentaires devraient se concentrer sur
la caractérisation de ces différences chez les patients sans déficience cognitive. De plus,
la combinaison des paramètres de diffusion avec d’autres propriétés physiologiques de-
vrait améliorer la classification. Bien qu’aucune étude indépendante de la perfusion n’ait
été réalisée, l’intégration des paramètres de perfusion dans notre approche de détection
d’anomalies basée sur le clustering a donné une indication claire de son potentiel à classer
les patients atteints de MP des témoins, même aux premiers stades de la maladie.

De plus, son interaction avec d’autres propriétés physiologiques devrait être bénéfique pour
les performances de classification.

Dans d’autres travaux, nous étudierons les changements de perfusion sur des cohortes plus
importantes. En outre, la normalisation des cartes de paramètres relatifs DSC (rCBV, rCBF)
devrait être explorée.

Pour conclure, l’intégration de mesures quantitatives de RM reflétant les multiples pro-
priétés du cerveau est certainement essentielle pour détecter les anomalies dans le cerveau
des patients atteints de MP dès les premiers stades possibles. Les mesures de diffusion, de
perfusion et de relaxométrie peuvent brosser un tableau informatif de la physiologie nor-
male du cerveau. De plus, les modèles de mélange et les auto-encodeurs sont d’excellents
candidats pour détecter les anomalies liées à la physiopathologie de la MP à partir de ces
données.



17

Part I
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Chapter 1

Parkinson’s Disease Overview

Parkinson’s disease (PD) is an ever-present neurodegenerative condition with an estimated
global prevalence of 10 million cases [6]. It was first described by James Parkinson in 1817
as a movement disorder where patients have: "Involuntary tremulous motion, with lessened
muscular power, in parts not in action and even when supported; with a propensity to bend the
trunk forward, and to pass from a walking to a running pace: the senses and intellects being unin-
jured"(Parkinson, 1817) [18].

These features were later defined as the cardinal motor symptoms of PD: resting tremor,
bradykinesia, rigidity, and gait impairment. They progress gradually over the years and
their manifestation constitutes the main diagnostic tool for modern-day neurologists.

In the last two hundred years, important elements have been added to the clinical picture of
PD. In the mid-1800, Jean-Martin Charcot refined the description of the disease, differentiat-
ing it from other disorders characterized by tremor [18], specifically from multiple sclerosis.
Later on, he and his students defined atypical occurrences of classical Parkinson’s disease
that would later be termed as Parkinsonism-plus syndromes, such as progressive supranu-
clear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA).

In this day and age it has been recognized that a multitude of non-motor features, such as
cognitive impairment, autonomic dysfunction, disorders of sleep, depression, visual and
olfactory disturbances, are part of the disease and add considerably to overall burden [19].

Although several treatments and symptom management techniques are available for PD
patients, none stop the development of the disease, and so, while mortality has been dras-
tically reduced ( from a 3:1 ratio of deaths to expected deaths to a 1.52:1 ratio ), the number
of years lived with disability due to PD increased between 1990 and 2010 [20]. Furthermore,
a progressive increase in the personal, societal and economic burden associated with the
disease is expected in the future as the world population ages [21].
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1.1 Epidemiology

PD is a progressive, adult-onset disease, and it gets more common with age. It is in fact the
second most common neurodegenerative disease affecting the elderly, only behind Alzheimer’s
Disease.

PD incidence is usually comprised between 10 and 50 per 100,000 persons per year, and its
prevalence between 100 and 300/100,000 population [22]. It is rare before age 50 years, and
its incidence and prevalence both increase progressively after age 60.

Most studies on life expectancy found a significantly higher risk of mortality in patients with
PD compared to the general population. Taking in consideration age and sex differences,
their increased mortality risk ranges between 1.26 to 3.79 [22].

PD is usually more common in men than women, with a male-to-female ratio ranging from
1.3 to 2.0 [23]. Compared to men, women tend to have later age at disease onset; lower
prevalence and incidence; higher rates of tremor phenotype; and a greater likelihood of
dyskinesia, and motor and non-motor fluctuations.

Pre-clinical evidence has suggested a potential neuro-protective effect of oestrogen against
dopaminergic damage through anti-inflammatory, anti-oxidative mechanisms. In support
of this theory, it has been found that PD symptoms in women tend to worsen when oestogen
levels are low (before menses) and are progressively alleviated as the levels rise (during
ovulation) [23].

Most of the time, there’s no known cause, but in a few cases, there might be a genetic ex-
planation, like mutations in the PINK1, parkin, or alpha synuclein genes, indeed 15% of PD
patients report a family history of PD among their first-degree relatives [22]. In rare cases,
Parkinsonian symptoms may be caused by MPTP, a toxic impurity that can be found in the
recreational drug MPPP or desmethylprodine, which is a synthetic opioid. In other people,
one or more risk factors, rather than a single outright cause, might contribute to Parkinson’s,
for example pesticide exposure or DNA variants in genes like LRRK2.

In common with other complex traits, the pathogenesis in the large majority of cases of PD
is expected to be multifactorial, involving a combination of genetic and environmental risk
factors [24].

1.2 Physiopathology

While the specific pathophysiology underlying all of the symptoms observed in PD is not
well understood, it has been clearly recognized that the main biochemical feature of PD is
the progressive degeneration of dopamine-producing neurons in the substantia nigra pars
compacta [21].
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The dopaminergic neurons of the substantia nigra are projected onto the striatum. Both
structures form part of the basal ganglia, a group of gray-matter structures situated at the
base of the forebrain and top of the midbrain. The largest structure in the basal ganglia is the
striatum which brings together the caudate nucleus, the putamen and the ventral striatum.
The sub-thalamic nucleus (STN), the internal and external segments of the globus pallidus
(GPi, GPe) and the substantia nigra (SN) are also included in the basal ganglia. The latter
can be divided into pars compata (SNc) and pars reticulata (SNr).

In healthy subjects, the control of physical movements as well as important cognitive and
limbic functions rely upon a series of parallel corticostriatal pathways that connect the basal
ganglia with regions of the cerebral cortex. Dopamine plays a key role in the regulation of
these functional circuits thus the loss of this neurotransmitter is likely to massively disrupt
the basal ganglia circuitry, triggering a great part of the afflictions manifested by PD patients.

The motor pathway is one of the best documented examples of this disruption. In healthy
individuals, circuits that originate from the motor and pre-motor cortical areas project to
the striatum (putamen) through excitatory glutamatergic neurons. These striatal neurons
use gamma-aminobutyric acid (GABA) as their primary neurotransmitter and are organised
into two pathways that converge on the GPi and the SNr, the major ouput nuclei of the basal
ganglia.

• The direct pathway connects the striatum to the GPi/SNr without deviation. At rest,
neurons from the GPi and SNr project to the thalamus and maintain a steady release of
the neurotransmitter GABA which acts to inhibit the thalamic neurons and keeps un-
wanted movements from occurring. However, when movement is desired, glutamate
neurons from the corticostriatal pathway excite striatal neurons that release GABA in
the GPi and the SNr, inhibiting the activity of these regions and stopping the inhibi-
tion of neurons in the thalamus that stimulates the premotor cortex and activates the
muscles.

• The indirect pathway connects the striatum to the GPi/SNr by intermediary of the GPe
and the STN. At rest, GABA neurons from the GPe exert an inhibitory effect on gluta-
mate neurons in the STN, but when the indirect pathway is activated, GABA neurons
in the striatum project to the GPe and inhibit the activity of neurons there, keeping
them from being able to inhibit neurons in the STN. Simultaneausly, the STN neurons
are activated by projections from the cortex, and they stimulate GABA neurons in the
GPi and SNr. These GABA neurons in turn project to the thalamus, inhibiting thalamic
neurons that travel to motor regions of the cerebral cortex to stimulate movement. The
inhibition of these thalamic neurons thus inhibits movement.

The direct pathway promotes voluntary movement in targeted muscles while the indirect
pathway simultaneously inhibits the movement in other muscles that do not contribute
to the overall wanted movement the result is a coordinated smooth movement in which
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those muscles necessary for the desired movement are recruited while the other muscles
that might affect the flow off of the decided movement are inhibited.

The SNc is thought to modulate the activity of both pathways through dopamine release
in the striatum targeting D1 dopamine receptors to further activate the direct pathway and
D2 receptors to reduce the inhibitory effects of the indirect pathway. Both actions facilitate
movement and it is believed the dynamic balance of dopaminergic stimulation exerted via
both pathways regulates the amount of movement undertaken.

This model of the motor loop provides a physiopathological explanation of the akinetic fea-
tures experienced by PD patients. The loss of D1 dopamine stimulation on striatal neurons
reduces the degree of inhibition exerted in the GPi, leading to its over-activation. Likewise,
the loss of inhibitory D2 stimulation of the striatal fibres in the indirect pathway leads to
over-activation of the STN and consequent over-activation of the output nuclei of the basal
ganglia. This unregulated activation of the GPi/SNr leads to an inhibition of the thalamus,
which in turn impairs both ascending and descending pathways, resulting in the reduction
of motor activity.

FIGURE 1.1: Motor cortex excitatory and inhibitory changes caused by PD.

Alongside the thalamus, the pedunculopontine nucleus (PPN) receives projections from the
GPi and the SNr. This major brainstem nucleus is implicated in the process of locomotion
and is likely the site that activates central pattern generators within the spinal cord. Recent
studies suggest that, in PD patients, cellular loss in the PPN is independent from the cell loss
in the nigrostriatal pathway which could explain gait disturbances and why such symptoms
are not alleviated by dopaminergic treatment.

Indeed, cellular loss is not exclusive to neurons that express dopamine. Cholinergic, seroton-
ergic and noradrenergic structures are impacted as well and doubtless contribute to several
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disease features including cognitive, autonomic and affective disturbances.

Another important characteritic of Parkison’s disease is the presence of Lewy bodies in neu-
ronf the substantia nigra before they die. Lewy bodies are eosinophilic, round inclusions
made of alpha-synuclein protein.

The function of alpha-synuclein is unknown, as well as the significance of Lewy bodies,
and they are both found in other diseases like Lewy body dementia and multiple system
atrophy.

1.3 Symptoms and evolution

Therefore, when substantia nigra pars compacta neurons die, the individual may be in a
hypokinetic or low movement state which is commonly seen in Parkinson’s. In addition to
simply initiating movements, the substantia nigra helps to calibrate and fine tune the way
that movements happen, which leads to the clinical features of Parkinson’s.

First there’s tremor, which is an involuntary shakiness most noticeable in the hands, charac-
teristically called a “pill-rolling” tremor because it looks like someone rolling a pill between
their thumb and index finger. This is a “resting tremor,” meaning it is present at rest and
diminishes with intentional movement.

Then there’s rigidity, which refers to stiffness that can appear as “cogwheel” rigidity, which
is when there are a series of catches or stalls as a person’s arms or legs are passively moved
by someone else. Rigidity is also responsible for the stooped posture and an almost expres-
sionless face that some individuals with Parkinson’s might have.

The patients can also experience difficulty initiating movements, this can induce bradyki-
nesia, slow movement; hypokinesia, lessened movement or akinesia, the absence of move-
ment. Examples of this are having the legs freeze up when trying to walk and also walking
with a shuffling gait, or small steps.

Finally, a late feature of the disease is postural instability which causes problems with bal-
ance and can lead to falls. Despite these multiple effects on movement, Parkinson’s Disease
does not produce weakness. This helps differentiate it from diseases that affect the mo-
tor cortex or corticospinal pathway. In addition, the resting tremor of Parkinson’s Disease
helps to differentiate it from cerebellar diseases, which might result in an action or intention
tremor, which is a tremor that’s essentially the opposite of a resting tremor, where the tremor
actually gets worse with movement.

Also, both bradykinesia and postural instability help differentiate Parkinson’s from essential
tremor of which an action tremor is also a hallmark feature.

In addition to the before-mentioned motor symptoms PD is also accompanied by numer-
ous non-motor consequences that are already identifiable from the pre-motor stages of the
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pathology. One of the most well-documented non-motor symptom of PD is olfactory loss
[25]. Olfaction can be assessed with the Pennsylvania Smell Identification test and aid the
diagnosis of pre-clinical and podromal subjects as the scores in smell discrimination have
been robustly correlated to the risk of developing PD [26].

Autonomic dysfunctions such as constipation, urinary dysfunction, erectile dysfunction and
orthostatic hypotension are eventually experienced by the majority of patients with PD.
However, most autonomic symptoms are common in the general population and in other
illness, notably Multiple System Atrophy (MSA) [25], making their specificity relatively low.
Be as it may, a combination of autonomic dysfunction and another one of PD non-motor
symptoms like RBD (Rapid Eye Movement Sleep Behavior Disorder) can accurately predict
PD with a pronounced long lead time going up to 15 years [25].

RBD is characterized by the loss of the natural paralysis that occurs during REM sleep. Just
over 1% of the general population over 50 has RBD which makes it by far the most speci-
fic/predictive marker [25]. There are other PD-related symptoms like visual disturbances,
hallucinations, cognitive disorders, anxiety and depression, yet, the most substantial chal-
lenge for physicians is to recognize the non-motor profile of PD in order to proceed to further
testing and eventually diagnosis.

The variety of non-motor symptoms of PD would indicate a multi-system neuronal degen-
eration underlying PD and while it clearly affects the quality of life of PD patients, it also
multiplies the plausible biomarkers to characterize the evolution of PD.

Being a progressive disease, various measures have been used to outline disease severity
at different stages in its course. Introduced in 1967, the Hoehn and Yahr (H&Y) scale has
become the most commonly and widely used scale to estimate the severity of PD [27]. The
scale consists on a 5 point staging assessment that evaluates the severity of over-all parkin-
sonism dysfunction based on bilateral motor involvement and the compromise of gait and
balance.

- Stage I. Unilateral involvement only, usually with minimal or no functional impair-
ment.

- Stage II. Bilateral or midline involvement, without impairment of balance.

- Stage III. First sign of impaired righting reflexes. This is evident by unsteadiness as the
patient turns or is demonstrated when he is pushed from standing equilibrium with
the feet together and eyes closed. Functionally the patient is somewhat restricted in his
activities but may have some work potential depending upon the type of employment.
Patients are physically capable of leading independent lives, and their disability is
mild to moderate.

- Stage IV. Fully developed, severely disabling disease; the patient is still able to walk
and stand unassisted but is markedly incapacitated.
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- Stage V. Confinement to bed or wheelchair unless aided. [28]

Given its historic stature, the scale has been used as a gold standard for the testing of newly
developed scales and good correlations have been established with standard PD ratings
scales, e.g., Unified Parkinson’s Disease Rating Scale (UPDRS), quality of life scales, and
functional imaging studies [27].

While in recent years, several efforts have been made to study patients at risk of developing
PD based on the emergence of non-motor symptoms, otherwise called podromal cohorts [29,
30, 25], there is a real challenge to find a balance between cohorts that are truly representative
of idiopathic Parkinson’s as a whole and cohorts that are sufficiently enriched for at-risk
individuals to enable adequate numbers of positive results to be obtained [29, 31].

General consensus establishes the progression to stage III as a major milestone in the natural
history of the illness [31, 19], hence, a cohort of patients in stages I and II of the disease, also
named de novo patients, increases the probability of including different phenotypes of PD
and should allow a deeper understanding of the most important non-motor symptoms.

1.4 Management

Fortunately, there are treatments that help with Parkinson’s symptoms, although none stop
the progressive neurodegeneration.

Most current therapies available focus on pharmacological dopamine substitution (l-DOPA
treatment) [21]. Dopamine itself can’t cross the blood-brain barrier, but its precursor lev-
odopa can, and once in the brain, levodopa is converted to dopamine by dopa decarboxylase
within the remaining nigrostriatal neurons.

Another strategy is using amantadine, which is also an antiviral medication that increases
endogenous dopamine production, the complete interaction mechanisms are still being in-
vestigated.

A different strategy is to use dopamine agonists that can stimulate dopamine receptors
and basically trick the brain into thinking there’s more dopamine than there really is, like
bromocriptine, which is an ergot or fungal derivative, as well as pramipexole and ropinirole,
which are not ergot derivatives.

On occasions, inhibitors of COMT, catecholamine-O-methyltransferase, are prescribed with
levadopa. COMT is an enzyme that degrades dopamine and levadopa. Inhibiting COMT
prevents the enzyme from breaking levadopa down outside the central nervous system, thus
allowing more of it to enter the brain. Very similarly, there are medications like selegiline
which inhibits monoamine oxidase B, also known as MAO-B, which is another enzyme that
metabolizes dopamine.
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Since usually there’s this balance of signaling between dopamine and acetylcholine, a loss
of dopamine reaching the striatum increases the relative amount of acetylcholine signalling
there. Therefore anticholinergics can be given to restore the balance of cholinergic and
dopaminergic signaling, like benztropine, which improves the tremor of PD.

Besides pharmacological treatments, some patients can benefit from deep brain stimula-
tion (DBS) therapy. This ground-breaking treatment involves an implantable device that
directly sends electrical signals to the basal ganglia which counteracts the aberrant signal-
ing in Parkinson’s.

Good candidates are patients with PD with disabling motor fluctuations and/or medically
intractable tremor without significant cognitive or psychiatric problems [32].

Significant improvements in quality of life and motor function have been obtained in the
short-term and long-term with both subthalamic nucleus (STN) and globus pallidus inter-
nus (GPi) deep brain stimulation (DBS) in Parkinson’s disease (PD). Both structures appear
to be equally effective targets for treating motor symptoms with decreased benefits after 6
years. We note that while STN-DBS often allows for greater reduction in medication, it may
be associated with worsening of non-motor symptoms and falls compared to GPi-DBS [33].

PD afflicts patients for as many as one to two decades of their lives and current treatments
can only attenuate some motor manifestations [27]. Therefore, reducing the gap between
diagnosis and the onset of the neurodegenerative process is of paramount importance to
identify treatments that would significantly slow its natural progression and this can only
be achieved by studying the earliest pre-clinical stages of illness possible [19].
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Chapter 2

MR imaging as an exploration tool

2.1 Generalities

Neuroimaging plays a pivotal role in the research of PD by providing an in vivo opportunity
to visualize the neuroanatomical and functional signatures of the disease, to aid differential
diagnosis, to monitor disease progression and to measure the effects and complications of
new therapies [34, 35].

MRI holds a special advantage over PET and SPECT imaging as it is non-invasive and more
widely available than these nuclear neuroimaging techniques [16]. MRI uses hydrogen pro-
tons, which are abundant in the human body. All protons spin creating a small magnetic
charge. When a strong magnetic field (B0) is applied, as is the case in an MRI machine,
the protons align with that field. Radio-frequency pulses are then introduced to disrupt the
protons (excitation), forcing them into a 90o or 180o realignment with the static magnetic
field. Since the radio-frequency pulse pushed the proton against its nature, once this pulse
is turned off, the protons realign with the magnetic field (relaxation), releasing electromag-
netic energy along the way. The MRI is able to detect this energy and differentiate various
tissues based on how quickly they release energy after the pulse is turned off.

Protons realign at different speeds and release different amounts of energy depending on the
environment and the chemical nature of the molecules. These magnetic properties translate
into different contrasts for different types of tissues, for example, gray and white matter.
There exists about a hundred MR sequences, each one consisting on a subtle combination
of radio-frequency pulses and magnetic field gradients that promote the signal of one tissue
above another.

MRI has very much benefited from the technological advances of the last three decades, sig-
nificantly improving the quality and rapidity of acquisitions, but also introducing the notion
of quantitative MRI [36]. While qualitative analysis of MR images by physicians continues
to be the norm, MR is increasingly used as a scientific instrument to make measurements
of clinically relevant quantities, such as iron content, mean diffusivity of water and cerebral
blood volume to name a few.
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For many years, neuroimaging studies of PD were centered on the substantia nigra, but
the recent technical and methodological advances have revolutionized the search with more
than a dozen MRI-based techniques serving the characterization of physiological properties
of the Parkinsonian brain beyond the dopaminergic system [35, 37].

2.2 Qualitative Imaging

As mentioned before, the design of an MR sequence affects the contrast of the images pro-
duced. The response of protons to particular excitations is tested to highlight different tissue
classes. This allows physicians to visualize changes in the structure of the brain but also to
detect abnormalities such as tumors and bleeding.

T1-weighted images differentiate tissues by their longitudinal relaxation times. Fat quickly
realigns its longitudinal magnetization with B0, thus, it appears bright on a T1-weighted
image. Conversely, water has a much slower longitudinal magnetization realignment and
therefore appears dark.

T1-weighted sequences are used in automatic segmentation techniques like voxel-based,
deformation-based and tensor-based morphometry. These methods measure differences in
local concentrations of brain tissue and atrophic changes between two populations. T1-
weighted sequences are also used to measure thickness and other characteristics of the cor-
tical ribbon. Multiple studies have investigated morphometric changes in PD patients, a
literature review is presented in the next chapter.

Conventional T1-weighted images present poor contrast in many structures of interest to the
study of PD, like the substantia nigra, the subthalamic nucleus, the globus pallidus and the
red nucleus [38]. These regions are better observed with sequences that are sensitive to iron-
load such as T2-weighted, T2*-weighted and novel SWI (Susceptibility-weighted Imaging).

T2-weighted images differentiate tissues by their transverse relaxation times. In these scans,
fat has an intermediate brightness while fluid appears bright. T2*-weighted images account
not only for the transverse relaxation time of protons stimulated by a radio-frequency pulse,
but also the effects of magnetic inhomogeneities.

When two tissue regions have different magnetic susceptibility, a spatially varying magnetic
field is induced in the space surrounding the tissue interface or structure, resulting in T2*
decay. As a result, paramagnetic elements such as iron and gadolinium have hypointense
signals in T2-weighted that are further enhanced in T2*-weighted images. SWI scans use
phase image information about local susceptibility changes between tissues to attenuate
paramagnetic signals even more [39].
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Researchers have employed T2, T2* and SWI sequences to study iron load in the substantia
nigra [38] and specific T1-weighted sequences have been designed to visualize neurome-
lanin in the SN as well [31]. Neuromelanin is an iron chelator that could be linked to alpha-
synuclein aggregation.

Alternative sequences currently being explored for the study of PD include proton density,
short tau inversion recovery (STIR) and magnetic transfer (MT). Additionally, the increase
in magnetic field provided by 7T human MRI, improved the visualization of basal ganglia
contours and shapes with an increased spatial resolution and contrast [38, 29].

2.3 Quantitative Imaging

Quantitative MR data is considered, in particular, to be as independent as possible of the
MRI scanner or the study center [36]. The scanner is no longer considered only as a camera
but as a means of measurement.

Compared to qualitative analysis, quantitative analysis allows a direct interpretation of
physiological parameters. This simplifies population comparisons, longitudinal analysis
and interpretation of detected changes. What is more, multiple measures from different
MR modalities can be combined to provide a complete picture of functional and structural
changes caused by PD.

2.3.1 Relaxometry

The term relaxometry refers to the quantitative measurement of T1, T2 and T2* relaxation
times. Instead of manipulating the acquisition parameters to obtain differences in contrast,
the relaxation times are measured as biophysical properties of the tissue [36], describing the
microstructure of the tissue. These measures are expected to be reproducible and thus allow
comparisons across different scanners and subjects. They are displayed as maps in which
every voxel value corresponds to a relaxation time, commonly expressed in milliseconds.

2.3.1.1 T1 mapping

The gold standard for T1 determination is to perform a series of independent single-point
inversion recovery (IR) signal measurements at different inversion times (TI) [36, 17]. T1 can
be calculated by mathematical fitting to the following equation :

S(TI) = So(1− 2e−TI/T1 (2.1)

where S(TI) is the signal measured at time TI and So is the signal acquired at longitudinal
magnetization equilibrium (Mo).
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The single-point IR method is very time consuming (around 20 minutes), therefore other T1
mapping strategies have been devised.

The Look and Locker approach continuously samples the recovering magnetization with a
series of small angle RF pulses. Thus, the T1 recovery curve is fully characterized follow-
ing a single inversion pulse. Due to disturbing nature of the RF pulses, the magnetization
recovery follows an apparent.

Another alternative is the method of variable flip angles. Several gradient echo sequences
that combine low flip angle (θ) RF excitation with short repetition times (TR) (i.e. FLASH,
SPGR) are acquired over a range of flip angles whilst the repetition time is held constant. T1
is calculated by resolving the following equation:

S = So
1− e−TR/T1

1− cosθ.e−TR/T1 sinθ (2.2)

We note that several optimizations of the presented methods have been proposed in the
literature [17].

2.3.1.2 T2/T2* mapping

T2 and T2*-mapping are typically performed using a balanced gradient echo sequence. Sig-
nals are sampled at several different echo times (TE) and fitted to an exponential decay
curve, which in its simplest form can be described by:

S = Soe
−TE/T2 (2.3)

...

Some of the most promising applications of relaxometry in the study of Parkinson’s Disease
are the estimation of iron load in subcortical structures which has been found to be increased
in the Parkinsonian brain and the correlation of the average relaxation rate R2* (1/T2*) in
the substantia nigra with the UPDRS motor score and/or the levodopa daily dose scores
[16, 38].

2.3.2 Diffusion

Diffusion imaging monitors the displacement of water molecules in the brain. As they move,
the molecules interact with macromolecules, proteins fibers and membranes. These obsta-
cles vary depending on the tissue hence the rate of water diffusion gives indirect information
on the structural composition of the brain at that particular location [40].

Generally three types of displacement can be observed: free diffusion, where water molecules
can move in all directions (e.g. CSF); restricted isotrophic, where movements are limited by
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obstacles but all directions are possible; and restricted anisotrophic, where movement is
restricted in some directions and simplified in others, like in myelinated axons.

Diffusion sequences generally detect mobility differences by applying a initial the 180o RF
impulsion followed by two strong magnetic gradients in opposite directions, both symmet-
ric to the RF current. If there is no displacement of water molecules between the two gra-
dient applications, the molecules spins will be dephased by the first gradient and perfectly
rephased by the second one; however, if the molecules move they will not recover the same
phase with the second gradient, therefore signal loss will be detected.

To evaluate the overall displacement of molecules in the cartesian plane, these gradients are
applied in the x, y and z planes. The signal from each of the three diffusion gradient planes
is compared to a baseline T2-weighted images (b = 0). Free diffusion is identified when
any of the three gradient directions displays signal loss compared to baseline, conversely
restricted diffusion occurs when signal is preserved in all directions. In diffusion-weigthed
images, areas of restrictive diffusion are bright.

The magnitude of diffusion is quantified through ADC (Apparent diffusion coefficient)
maps that are no longer dependant on T2 signal. ADC is measured in s/mm2, its calcu-
lation necessitates two diffusion images at known b, commonly b0 = 0s/mm2 and b1 =

1000s/mm2. The following equation is resolved:

ADC(x, y, z) =
lnS1(x,y,z)

S0(x,y,z)

b0 − b1
(2.4)

ADC maps highlight changes in the mobility of water molecules without taking into account
the direction they take.

Diffusion Tensor Imaging (DTI) characterizes the direction of displacement. DTI requires
the acquisition of at least six diffusion weighted images, each obtained with a different ori-
entation of the diffusion gradients. For every voxel diffusion is represented as an ellipsoid
which characteristics are expressed in form of a tensor matrix. The axes of the ellipsoid are
called the eigenvectors and the measures of their lengths eigenvalues.

Mean diffusivity (MD) is a sca

Fractional anisotropy (FA) is a scalar value ranging between 0 and 1 that describes the degree
of anisotropy in water displacements. A value of zero corresponds to free diffusion and a
value of one indicates that diffusion only occurs along one axis, probably a white matter
fiber.

FA can be calculated as:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23
(2.5)
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where λ1, λ2, λ3 correspond to the eigenvalues of the diffusion tensor.

Other measures of DTI include axial diffusion (AD) which is the value of the main diffusion
direction (λ1) and radial diffusivity (RD) defined as (λ2 + λ3)/2.

The particular micro structure of nerve fibers is at the origin of increased diffusion along
the direction of white matter fibers and restricted diffusion in the perpendicular direction.
The great anistrophy observed can be exploited to reconstruct tractography maps through a
post-processing pipeline.

The use of strong gradients in diffusion imaging induces specific artifacts that can be cor-
rected in post-processing. Great heterogeneity in diffusion acquisition parameters and post-
processing pipelines hinders the reproducibility of diffusion studies. PD studies are no
exception, as a matter of fact the literature review presented on the next chapter presents
inconsistencies in the characterization of diffusion in the basal ganglia of PD patients.

2.3.3 Perfusion

Perfusion is physiologically defined as the steady-state delivery of blood to an element of
tissue. This fundamental biological function is closely related to the arrival of oxygen and
nutrients to tissue by means of blood flow [36]. In MRI, there exists two major approaches to
measure cerebral perfusion: those with and without the use of an exogenous, intravascular,
contrast agent.

Gadolinium-based contrast agents are the most common. In the presence of Gadolinium,
the T1 and T2 relaxation times shorten, thereby causing reduced signal intensity on T2 and
T2*-weighted images or increased signal intensity on T1-weighted images. Dynamic sus-
ceptibility contrast (DSC) MR perfusion exploits the regional susceptibility-induced signal
loss caused by paramagnetic contrast agents in T2-weighted images. A bolus of gadolinium-
containing contrast is injected intravenously and rapid repeated imaging of the tissue (most
commonly brain) is performed during the first pass. This leads to a series of images with the
signal in each voxel representing intrinsic tissue T2/T2* signal attenuated by susceptibility-
induced signal loss proportional to the amount of contrast primarily in the microvascula-
ture. Then a region’s signal is interrogated over the time-course of the perfusion sequence,
and a signal intensity-time curve is generated, from which various parameters can be cal-
culated. We can name relative cerebral blood flow (rCBF), relative cerebral blood volume
(rCBV) and mean transit time (MTT).

Although this technique can be performed with both T2 (e.g. spin echo) and T2* (e.g.
gradient-echo echo-planar) sequences, the former requires higher doses of contrast, which
is why T2* techniques are more commonly employed.

DSC relies upon detecting signal loss due to small amounts of contrast. One of its main
pitfalls is the lack of reliable results in the presence of calcification of blood products that



2.3. Quantitative Imaging 33

generate a significant signal loss. This technique is also sensitive to artifacts from adjacent
dense bone or aerated sinuses. Similarly, values in a region immediately adjacent to large
vessels can also be affected.

Dynamic contrast-enhanced (DCE) MR perfusion, sometimes also referred to as perme-
ability MRI, calculates perfusion parameters by evaluating T1 shortening induced by a
gadolinium-based contrast bolus passing through tissue. The most commonly calculated
parameter is k-trans.

DCE relies upon the T1-shortening effects of gadolinium-based contrast agents. An intra-
venous contrast bolus is injected and rapid repeated T1 imaging is obtained. Regional in-
creased signal (T1 shortening) is due to gadolinium concentration which in turn will depend
on a number of factors: intravascular gadolinium (i.e. true perfusion), and accumulation of
gadolinium in the extravascular space (i.e. permeability).

Several local parameters can be extracted from DCE scans, notably, the k-transfer constant,
the rate constant, the fractional volume of extravascular-extracellular space and the frac-
tional volume of the plasma space.

More recently, the development of arterial spin labelled (ASL) MRI has enabled brain per-
fusion to be assessed non-invasively by tracing endogenous arterial blood water that is la-
belled electromagnetically using radiofrequency (RF) irradiation.

A number of magnetic labelling techniques have been proposed for ASL perfusion. We can
count pulsed (PASL), continuous (CASL), pseudocontinuous (PCASL) and velocity-selective
ASL (VS-ASL). The same general principle is applied to all these methods to quantify per-
fusion. Two images are acquired, a control image and a labeled image. The control image is
subtracted from the labeled image to eliminate static signals and isolate the magnetization
signals that are proportional to cerebral blood flow (CBF).

Bolus methods, with injections of a contrast agent, provide better sensitivity with higher
spatial resolution, and are therefore more widely used in clinical applications. However,
arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow
without requiring an exogenous contrast agent and have better accuracy for quantification.

2.3.4 Functional

Lastly, functional MRI (fMRI) is nowadays widely used to study functional connectivity
brain regions. Well known sequences include blood oxygen level-dependent (BOLD) fMRI
and resting state fMRI (rs-fMRI).

Its application to study PD has suggested a remapping of cerebral connectivity resulting
from dopamine depletion. This predominantly affects the sensorimotor circuit targeted by
levodopa and differently associated with motor and non-motor symptoms [38].
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Structural
imaging

(qualitative)

Characterizes brain morphology.
• T1-w: gray matter concentration comparison, atrophy detection

and cortical ribbon characterization.
• T2-w, T2*-w & SWI: basal ganglia delineation and visualization

of iron accumulation.

Relaxometry

Characterizes tissues microstructure
• T1-mapping: Micro-structure characterization
• T2, T2*-mapping: Estimate iron-load concentration.
• MTR: Transfer of energy between highly bound protons,

myelination and axonal density.

Diffusion
imaging

Estimates the overall displacement of water molecules and their
orientation.
• ADC: Overall displacement of water.
• FA: Orientation of diffusion.
• AD: Characterize diffusion along its main direction.
• RD: Characterize diffusion on the perpendicular direction.

Brain perfusion

Tracing of electromagnetically labeled arterial blood.
• DSC (Gd) - rCBF, rCBV, MTT and others
• DCE (Gd) - fractional volume of extravascular-extracellular

space and of the plasma space
• ASL - CBF

Functional MRI

Functional connectivity of brain regions.
- BOLD - Blood oxygenated level-dependent f-MRI
- rs-fMRI - Resting state f-MRI

TABLE 2.1: MRI techniques and their role in the characterization of Parkinson’s Disease.
Adapted from Pyatigorskaya and colleagues [38].
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Chapter 3

State-of-the art in the study of PD
from MR data

Although routine MR scans are generally considered as normal in PD, the quest for a prog-
nosis biomarker continues. Indeed, the broad availability of MR imaging and the standard-
ization of acquisition parameters would confer a potential for widespread application to
any such biomarker. For this reason numerous methodological improvements have been
explored to build robust imaging biomarkers.

3.1 Studies on structural data

3.1.1 VBM: Volume-based morphometry studies

The loss of dopaminergic neurons (amongst others) in specific regions of the brain logi-
cally induces their progressive shrinkage. That being said, currently there is no recognized
biomarker of morphological changes in the brain at the early stages of PD.

In the literature, several studies have reported structural brain differences in PD patients
compared to controls. However, these findings tend to be contradictory. Using locally
gathered databases, Summerfield and colleagues detected gray matter loss on the right
hipocampus, the left anterior cingulate region and the left superior temporal gyrus (p=0.001
uncorrected) in PD patients (n= 13) compared to controls (n=13) [41]. Nyberg and col-
leagues found an augmentation in the volume of the hipocampus (p=0.03 uncorrected) of
PD patients (n=21) and shape deformations of the right accumbens nucleus (p=0.005 un-
corrected) compared to controls (n=20) [42]. Radziunas and colleagues observed that PD
patients (n=28) with sleep disturbances had bigger ventricules and smaller hipocampus (p-
FDR<0.05) than healthy controls (n=28) [43]. Using an globally available database called
PPMI, Jia and colleagues noted gray matter losses (p-FWE<0.001) in the fronto-parietal ar-
eas and the caudate nucleus, as well as an increase in the size of the limbic and paralimbic
areas, the globus pallidus and the putamen of PD patients (n=89) versus controls (n=55)
using SPM8 [44].
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Also using the PPMI, this time for a structural limbic gray matter analysis, Li and col-
leagues from the University of Nottingham [45], assessed the gray matter densities and
cross-sectional estimates of age-related gray matter change from 366 PD patients and 172
healthy controls. Brain structural differences were compared via voxel-based morphometry
(VBM) then, structural brain networks were obtained using covariance analysis seeded in
regions showing gray matter abnormalities in the PD subject group, notably the amygdala.
Last, local age-related gray matter density change was estimated in subjects with Parkin-
son’s and compared with those estimated in healthy controls. They found gray matter
deficits in the right amygdala and reduced cerebellar but increased temporal connectivity.
In addition, there was an increase of age-related gray matter intensity changes in the right
limbic and paralimbic system.

The latter study supports the early affection of the limbic network in Parkinson’s and a role
in autonomic dysfunction and early cognitive impairment.

Authors Features Dataset Findings

Summerfield & al.
(2005) VBM 13 HC

13 PD

GM loss on the R hippocampus, L anterior
cingulate and L superior temporal gyrus
(p=0.001 uncorr.)

Nyberg & al.
(2015) VBM 20 HC

21 PD

↗ hippocampus (p=0.03 uncorr.) and
shape deformations of R accumbens
(p=0.005 uncorr.)

Radzunias & al.
(2018) VBM

20 HC
28 PD with sleep

disturbances

Bigger ventricules and smaller
hippocampus (p-FDR<0.05)

Jia & al.
(2015) VBM

55 HC
89 PD
PPMI

↘ GM in the fronto-parietal and caudate
↗ limbic and paralimbic, GP and putamen
(p-FWE<0.001)

Li & al.
(2017) VBM

172 HC
366 PD
PPMI

GM↘ R amygdala
GM↗ R limbic and paralimbic

TABLE 3.1: Summarized findings of morphological volumetric PD biomarker studies

3.1.2 DBM: Deformation-based morphometry studies

Aside from in size, changes in shape (i.e. deformations) of specific brain structures can con-
stitute more sensitive types of morphometric biomarkers. Deformation-based morphometry
studies have been carried out in several studies with somewhat inconsistent results.

Borghammer and colleagues [46] investigated brain deformations in a group of 24 early
stage PD patients versus 26 age-matched control subjects and found a significant contraction
in the left cerebellum of PD patients. They also observed a high correlation between the
unified PD rating scores and the local expansions in or near sulci bordering on frontal and
temporal cortex.
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Later, Tessa and colleagues [47] effectuated a longitudinal analysis where they measured
the atrophic changes of 22 de novo PD patients without cognitive impairment and 17 age-
matched control subjects at baseline and at a three-year follow-up. At baseline, no signifi-
cant differences were found between controls and patients but the longitudinal evaluation
revealed yearly atrophy rates in regions mainly related to cognitive function, notably the
prefrontal cortex, the anterior cingulum, the head of the caudate nucleus and the thalamus.
This study highlighted the importance of differentiating between cognitively intact, PD-MCI
(Mild Cognitive Impairment) besides demented patients.

Zeighami and colleagues [7], combined deformation-based morphometry (DBM) and ten-
sor probabilistic independent component analysis (ICA) to identify brain regions demon-
strating atrophy in early PD. They analyzed 232 early PD patients versus 117 age-matched
controls and found significantly negative differences in DBM values (p=0.003 Bonferroni
corrected) in one and only one of 30 estimated components. This component, subsequently
named the PD-ICA network, included all components of the basal ganglia (substantia ni-
gra, subthalamic nucleus, nucleus accumbens, putamen, caudate nucleus, and internal and
external globus pallidus), the pedunculopontine nucleus, basal forebrain, including bed nu-
cleus of the stria terminalis and an area containing the nucleus basalis of Meynert, the hy-
pothalamus, amygdala, hippocampus, parahippocampal gyrus, and two thalamic regions,
the ventrolateral nucleus and pulvinar. Cortical regions in this network are the insula, oc-
cipital cortex Brodmann area 19, superior temporal gyrus, rostral anterior cingulate cortex,
premotor and supplementary areas, and parts of lateral prefrontal cortex. These regions cor-
respond to a normal brain network thus support the idea of a network-spread mechanism
in PD.

On a follow-up study [48], they studied the correlation between atrophy in the PD-ICA net-
work and several clinical measurements following a Partial Least Squares approach. With-
out controlling for it, age has the biggest impact for atrophy. After removing the age effect,
highlighted features include gender (males worse), memory-specific cognitive impairment,
RBD and certain affective behavioral scores.

On a another follow-up study [49], Zeighami and colleagues investigated whether this PD-
network atrophy pattern could predict the rate of progression of motor and non-motor
symptoms. The PD-network biomarker outperformed UPDRS, SPECT and PIGD scores as
a prognostic biomarker with a modest ROC-AUC of 63% on average. Even though its pre-
dictive power is very limited and thus not a viable biomarker in clinic the authors propose
it as a better alternative to other biomarkers during clinical trials.

3.1.3 SBM: Surface-based morphometry studies

The characterization of the brain’s cortical ribbon has been useful to detect cortical changes
in patients with Alzheimer’s disease and Huntington’s disease but a robust biomarker of
cortical thickness or complexity is yet to be elucidated for Parkinson’s disease.
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Authors Features Dataset Findings

Borghammer & al.
(2010) DBM 26 HC

24 early PD
↘ L cerbellum
↗ frontal and temporal cortex

Tessa & al.
(2014) DBM

17 HC
22 early PD

(longitudinal)

Atrophy over time on the prefrontal
cortex, anterior cingulum, caudate and
thalamus often related to cognitive decline.

Zeighami & al.
(2015)

DBM +
ICA

117 HC
232 early PD

PPMI

Definition of the PD-ICA network of
atrophy (p=0.003 corrected) including the
basal ganglia, the forebrain, the
hippocampus, parahippocampus and
other neighboring regions.

Zeighami & al.
(2017)

DBM +
PLS

117 HC
229 early PD

PPMI

Important correlations between the
PD-ICA network and the age, sex,
cognitive impairment, RBD and affective
behavioral scores.

Zeighami & al.
(2019) DBM

57 HC
105 early PD

PPMI
(longitudinal)

The PD-ICA network provides a better
progression prediction than other clinical
test scores with a ROC-AUC=63%.

TABLE 3.2: Summarized findings of morphological deformation PD biomarker studies.

Tinaz and colleagues [50] reported cortical thinning in the oribtofrontal cortex, the ventro-
lateral prefrontal cortex and the occipito-parietal areas of a de novo PD patient group made
up of fifteen volunteers when compared to fifteen age-matched healthy individuals. Their
images were obtained at 1.5T and the surface reconstruction method employed appeared to
be in-house developed.

Later, Pereira and colleagues [51] assessed cortical degeneration in 20 PD patients at several
stages of the disease versus 20 HC with FreeSurfer. They found widespread cortical thin-
ning in the left lateral occipital cortex that extended to inferior and superior parietal areas, as
well as in the right hemisphere, concretely in the inferior parietal cortex, extending into var-
ious regions of the lateral occipital, supramarginal, inferior, middle, and superior temporal
cortex, but also in the right frontal cortex, comprising the pars opercularis, triangularis, pre-
central, and postcentral areas in PD patients. In their research, cortical thickness correlated
with disease progression.

Ibarretxe-Bilbao and colleagues [52] studied the progression of cortical thinning in early
PD. They followed 16 PD patients (H&Y ≤ 2) and 16 age-matched controls after 35 months.
While they failed to find relevant differences at baseline, they discovered a greater rate of
cortical thinning in PD patients in the right superior frontal gyrus, extending to caudal mid-
dle frontal gyrus, precentral sulcus, and precentral gyrus; right frontal pars opercularis and
precentral gyrus; right superior temporal gyrus extending to the adjacent temporal sulcus;
left caudal middle frontal gyrus extending to rostral middle frontal gyrus and precentral
region; and left middle temporal gyrus extending to parietal cortex.
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These last two studies concluded that surface-based analysis may be more sensitive to mor-
phological changes on PD.

Studying a larger population, Malek and colleagues [24] imaged 105 newly diagnosed PD
patients (39 MCI and 66 with no cognitive impairment) and 37 HC at baseline and 18 months
later. They reconstructed their cortical surfaces using FreeSurfer. There were no signifi-
cant differences (p < 0.05 FWE) between the cognitively compliant patients and the controls
at baseline but a significantly greater percentage of cortical thinning in the caudal middle
frontal cortex at the 18-month mark. In the case of PD-MCI patients, at baseline, cortical
thickness was significantly reduced in the frontal, parietal and occipital cortices (left supra-
marginal cortex, bilateral rostral middle frontal cortex, left isthmus cingulate and right pos-
terior cingulate cortices, and the right lateral occipital cortex). Over 18 months, PD-MCI had
significantly increased percentage of cortical thinning in the frontal and parietal cortices (left
superior frontal cortex, left supramarginal cortex, and right precuneus). They also estab-
lished a significant positive assosiation with baseline cortical thickness and higher MoCA
scores, in frontal and temporo-parietal cortices (left fusiform gyrus, left superior frontal cor-
tex, left inferior parietal cortex, left orbitofrontal cortex and right parahippocampal gyrus).

Recently, Sampedro and colleagues [53] characterized the relationship of dopaminergic de-
generation and cortical thickness of 87 de novo PD patients and 38 healthy controls from the
PPMI database. They employed striatal DAT uptake to assess dopaminergic degeneration
and FreeSurfer to measure cortical thickness from T1-w images. Their results show a signif-
icant link between dopaminergic integrity and the reduction of cortical thickness in frontal
and posterior-cortical regions that in turn affect cognitive performance.

Aside from cortical thickness, less attention has been paid to features such as gyrification
that assess the degree of folding of the cortical ribbon, that is the percentage of the cortex
that is visible from the exterior of the brain compared to the portion that is buried in the
circonvolutions.

Zhang and colleagues [54] effectuated a study including 37 PD patients at different stages
of the disease and 34 matched HC where they compared the local gyrification indexes of the
two populations. They employed FreeSurfer and found significant reductions in the inferior
parietal cortex, the parahippocampal gyrus, the entorhinal cortex, the lingual and fusiform
gyri, the orbitofrontal cortex and the right superior and middle temporal gyri.

Sterling and colleagues [55] realized a longitudinal cohort study with 70 PD patients (17 de
novo) and 70 HC. They measured the local gyrification index with FreeSurfer and reported
that patients with less than 4 years of illness did not have any significant loss in gyrification
at baseline but over time presented reductions in the postcentral, precentral, superior frontal
and supramarginal areas.
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Authors Features Dataset Findings

Tinaz & al.
(2011)

SBM
(in-house)

15 HC
15 early PD

Cortical thinning in the oribtofrontal
cortex, the ventrolateral prefrontal cortex
and the occipito-parietal areas.

Pereira & al.
(2012)

SBM
FreeSurfer

20 HC
20 PD

Cortical thinning in sections of the
occipital and parietal cortex on both sides
and the occipital and temporal cortex in
the right hemisphere.

Ibarretxe-Bilbao & al.
(2012) SBM

16 HC
16 early PD

(longitudinal)

No relevant differences at baseline.
↗ rate of widespread cortical thinning.

Malek & al.
(2015)

SBM
FreeSurfer

37 HC
66 early PD

39 early PD-MCI
(longitudinal)

At baseline: No differences between
controls and PD patients with normal
cognition but cortical thinning in the
frontal, parietal and occipital cortices of
PD-MCI.
At 18 months, significant differences of
cortical

Sampedro & al.
(2018)

SBM +
DAT

FreeSurfer

38 HC
87 early PD

PPMI

Significant link between dopaminergic
degeneration and cortical thickness in
frontal and posterior-cortical regions.

Zhang & al.
(2013)

SBM
FreeSurfer

34 HC
37 PD

Significant gyrification reductions in the
inferior parietal cortex, the
parahippocampal, lingual, fusiform and
the right superior and middle temporal
gyri.

Sterling & al.
(2016)

SBM
FreeSurfer

70 HC
70 PD

Patients with less than 4 years of illness do
not present significant losses in
gyrification.

TABLE 3.3: Summarized findings of morphological surface PD biomarker studies.

3.2 Studies on quantitative data

A biomarker is defined as a quantitative characteristic which that can be employed as an
indicator of biological or pathological states [38]. As seen in the previous section, changes
in thickness, volumes and densities of gray matter can be assessed from structural images.
Quantitative MR data are considered, in particular, to be as independent as possible of the
MRI scanner or the study center [36]. The scanner is no longer considered only as a cam-
era but as a means of measurement. They can be employed in a straight-forward manner
to study physiopathological changes at the voxel level, notably relaxometry, diffusion and
perfusion imaging.

3.2.1 Diffusion studies

Undeniably diffusion tensor imaging (DTI) has been the subject of many studies, Schwarz
and colleagues at the Queen’s Medical Centre in UK assessed the diagnostic value of nigral
FA and MD measures based on a cohort of 32 PD patients and 27 healthy controls (HC) [56].
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In contrast with Du and colleagues [57], they didn’t find any differences in SN FA values
between patients with PD and controls but a significant increase of MD in the SN (P <0.005).

Schwarz and colleagues also performed a systematic review and meta-analysis to estimate
the disease effect size (DES) related to nigral DTI changes. The results indicate there is no
significant disease effect nigral MD changes (10 studies, DES=+0.26, P=0.17, I2=30%) and
in the case of nigral FA, the values were significantly reduced in PD patients when taking
into account data from 11 studies with a high variability (I2=86%); however, after exclusion
of five studies with unusual high values of nigral FA in the control group, an acceptable
heterogeneity was reached, but there was non-significant disease effect (DES=-0.5, P=0.22,
I2=28%). The general conclusion being that the available published reports do not support
nigral DTI metrics as useful diagnostic marker of PD at this point in time [56].

Cochrane and Ebmier [58] scoured the literature on diffusion studies from 1946 to 2012 and
conducted a meta-analysis with 43 studies totaling 764 controls and 958 patients affected
by a parkinsonian syndrome. The heterogeneity of the pathological population with PD
was not negligible, notably regarding acquisition parameters, analysis methods and the in-
troduction of medication. Most studies focused on the SN as ROI and often reported FA
reductions in different segments with a slight tendency towards the caudal segment. How-
ever, no significant association was detected between disease severity and FA values.

The principal flaw of meta-analyses is inter-study heterogeneity. The available MRI data is
unlikely to be acquired with the same scanner, the extraction of parameters could be done
with different software and there can be important age differences. Large datasets like the
Parkinson’s Progression Markers Initiative (PPMI) from the Michael J.Fox Foundation allow
to conduct studies on a large number of patients for whom the age, sex, clinical information
and scanner conditions are known.

In another SN study, Schuff and colleagues [12] studied FA, radial and axial diffusivity on
a cohort made up of 67 HC and 153 newly diagnosed PD patients from the PPMI database.
They defined manually six ROIs within the SN, the rostral, medial and caudal segment of
both hemispheres. In an interesting choice they decided to consider the laterality of the
pathology and so, instead of separating the hemispheres into left and right, they employed
the contra and ipsilateral labels, where the contralateral corresponds to the brain side op-
posite to the body side presenting greater symptoms. They found a significant reduction
(p=0.04) of FA in the rostral aspect of the contralateral SN of PD patients. Furthermore, they
reported significant relationships between the dopaminergic deficits displayed in DAT scan
images and the FA values of the rostral and caudal regions of the contralateral SN. In spite
of these results, FA contralateral rostral values only achieved a classification ROC AUC of
59% using a bootstrapped half-split cross-validation proceadure.

The variability in reported locations with altered diffusion in the SN is not surprising given
that the SN is a small heterogeneous structure [12], nonetheless other studies have continued
to explored DTI alterations beyond the SN.
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One example lies in the meta-analysis of 39 publications conducted by Atkinson-Clement
and colleagues at Aix-Marseille Université [59]. In the first part of the analysis, regions of
interest (ROI) were classified anatomically (subcortical structures; white matter; cortical ar-
eas; cerebellum) [27 ROI, 1087 PD and 768 HC] . Then, a statistical analysis was effectuated
considering the disease effect size (DES) as the main variable; fiber degradation in PD was
expected to be associated to negative FA-DES scores and positive MD-DES scores. The re-
sults highlight five regions demonstrating significant differences between pathological and
healthy subjects. Four of these regions presented reduced values of FA-DES and increased
MD-DES : the SN, the corpus callosum, the cingular and temporal cortices, while the corti-
cospinal tract displayed increased FA-DES and decreased MD-DES .

On the collaborative research of Martin Cousineau and colleagues [60], the DTI scans of
412 PD patients and 179 controls from the PPMI database were processed, this time to dis-
sect 50 white matter (WM) fascicles using a method called high angular diffusion imaging
(HARDI) crossing fiber modeling and tractography. The chosen fascicles connect deep nu-
clei (thalamus, putamen, pallidum) to different cortical functional areas (associative, motor,
sensorimotor, limbic), basal forebrain and substantia nigra; only the ones that passed a test-
retest reproducibility procedure qualified for further tractometry analysis. Welch’s unequal
variances t-test identified the sections of those tract profiles that were significantly different
between PD patients and controls. The analysis found statistically significant differences
in tract profiles along the subcortico-cortical pathways between PD patients and healthy
controls. In particular, significant increases in FA, apparent fiber density, tract-density and
generalized FA were detected in some locations of the SN-STN-Putamen-Thalamus-Cortex
pathway, which is one of the major motor circuits balancing the coordination of motor out-
put.

Talai and colleagues [61] demonstrated that diffusion alterations could also be helpful to dif-
ferentiate PD from other parkinsonian syndromes such as progressive supranuclear palsy
(PSP). Using a feature selection method the FA and MD average values of 17 ROIs were
chosen to train a SVM in a leave-one-out cross-validation procedure. The classifier was able
to differentiate PD (52) and PSP (21) patients with an accuracy of 87.7% (sens = 88.5% , spe
= 82.3% ) . Their results show that PSP patients present more sever and widespread diffu-
sion alterations than PD patients. The main affected regions were the brainstem, putamen,
palladium, thalamus and some areas of the frontal cortex.

In a similar study, Correia and colleagues [13] went farther proposed to employ SVMs to
classify between controls (43), PD (32), PSP (33) and corticobasal syndrome (CBS) (26) pa-
tients with FA and MD measures in selected regions of white matter. They were very con-
scientious in the quality control of the data and the set up of their classification tests. Leave-
two-out cross-validation (CV) and independent sample test were employed in every experi-
ment and feature selection was effectuated for both atlas-based anatomical regions and PCA
components. The poorest classification performances were obtained when separating con-
trols from patients. The mean accuracy for the leave-two-out cross-validation was of 61.3%
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for the atlas ROIs and 85.4% for the PCA components, whereas for the independent sample
the ROIs obtained a score of 59.7% and the PCA components 57.6%. In general PCA features
provided higher classification accuracies in the cross-validation approach but suffered sig-
nificantly when an independent sample was used for validation. This could be an indication
that PCA components are more prone to over-fitting. The authors did not specify the names
of the most relevant WM ROIs for differentiating between control and PD groups but from
their illustrations we can observe that the left thalamic radiation, the left retrolenticular seg-
ment of the internal capsule, the left splendium and body of the corps callosum, the right
posterior limb of the internal capsule and the bilateral middle cerebellar peduncle played
an important role in said discrimination.

Some studies concentrated on white matter fiber tracts, Guimaraes and colleagues [62] com-
pared FSL tract-based spatial statistics (TBSS) and tractography to study diffusion abnor-
malities in a population of 137 HC and 132 PD patients (24 mild, 60 moderate and 13 se-
vere). While they did find significant lower FA in patients in genu, body and splendium of
corpus callosum, internal and external capsule, corona radiata, posterior thalamic radiation,
sagittal stratum, cingulum and superior longitudinal fasciculus, these differences were only
corroborated in part for the severe patients in the tractography study. What is more, major
abnormalities were found in the corpus callosum and could be a direct result of cognitive
decline in advanced PD patients. The authors went over to conclude that TBSS and gener-
ally DTI analysis might not be the best tool to assess early alterations in PD but could be
employed to differentiate disease stages.

More recently, Wang and colleagues [63] made use of TBSS again, this time with a fully
automatic pipeline that reduces both the bias of coregistration in voxel based methods and
that of manual selection of fibers in tractography. The fiber tracts are identified and seg-
mented into several clusters via an established pipeline, then the clusters are resampled into
200 nodes (points) each. The diffusion properties and a weight measure based on distance
are calculated for each node and the mean value and standard deviation of each cluster are
used to recognize abnormal tracts. Their study, while small (28 HC and 30 early PD from
the PPMI) was able to find significant group differences in the cingulum, the inferior occipi-
tal fascilicus, the corpus callosum, the external capsule, the uncinate fascilicus, the superior
longitudinal fascilicus and the thalamo frontal fascilicus.

As time advances, the techniques to study diffusion in the brain have seen major improve-
ments, however, there is still a large heterogeneity in methodologies, with newer ones ap-
pearing every couple of years. This poses a problem when trying to reach a consensus from
several papers results. Furthermore, the physiopathological complexity of PD suggests that,
while diffusion holds interesting information regarding PD, DTI would be used in combi-
nation with other imaging modalities to construct a robust biomarker [58].
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Authors Features Dataset Findings

Schwarz & al.
(2013)

FA and MD
DES

(SN)

32 PD
27 HC

Meta-analysis

No differences in SN FA values but
increased MD. Non-significant disease
effect size in the meta-analysis for DTI
measures.

Cochrane & Ebmier
(2013) FA and MD

764 HC
958 PD

Meta-analysis

FA reductions in the substantia nigra. No
significant association between disease
severity and FA values.

Schuff & al.
(2015) FA, RD, AD

67 HC
153 early PD

PPMI

Significant reduction (p=0.04) of FA in the
rostral segment of the controlateral SN of
PD patients. Classification score
ROC-AUC=59%.

Atkinson-Clement
& al.

(2017)

FA and MD
DES

768 HC
1087 PD

Meta-analysis

Reduced FA-DES and increased MD-DES

in the SN, the corpus callosum, the
cingular and temporal cortex.
Increased FA-DES and decreased
MD-DES in the corticospinal tract.

Cousineau & al.
(2017)

HARDI
crossing fiber
modeling and
tractography

179 HC
412 PD
PPMI

Significant differences in the tract profiles
along the subcortico-cortical pathway.
Increases in FA and fiber density in the
SN-STN-Putamen-Thalamus-Cortex tract.

Talai & al.
(2018) FA and MD 52 PD

21 PSP

The mean values of 17 ROIs including the
brainstem, putamen, palladium and
thalamus were selected to train a SVM that
achieved a classification accuracy of 87.7%.

Correia & al.
(2020) FA and MD

43 HC
32 PD
33 PSP
36 CBS

The mean accuracy for the leave-two-out
cross-validation was of 61.3% for the atlas
ROIs and 85.4% for the PCA components,
whereas for the independent sample the
ROIs obtained a score of 59.7% and the
PCA components 57.6%.

Guimaraes & al.
(2018)

TBSS and
tractography

137 HC
132 PD

↘ FA in severe patients in the corpus
callosum, internal and external capsule,
corona radiata, posterior thalamic
radiation, sagittal stratum, cingulum and
superior longitudinal fasciculus.
Relationship to cognitive decline in
advanced PD patients.

Wang & al.
(2020) TBSS

28 HC
30 early PD

PPMI

Significant group differences in the
cingulum, the inferior occipital fascilicus,
the corpus callosum, the external capsule,
the uncinate fascilicus, the superior
longitudinal fascilicus and the thalamo
frontal fascilicus.

TABLE 3.4: Summarized findings of diffusion PD biomarker studies.

3.2.2 Perfusion studies

Nuclear imaging techniques have been often used to assess pathological perfusion changes
in Parkinson’s disease [64, 65, 66] and other neurodegenerative diseases. Besides the need
for a radioactive tracer PET imaging is a demanding and time-consuming proceadure and
SPECT has a poor spatial resolution.
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The use of MRI techniques to study perfusion are relatively new but have obtained good
results. What is more, the introduction of Arterial spin-labelling (ASL) has made it possible
to assess perfusion in a non-invasive manner.

Melzer and colleagues [67] effectuated the first sizeable study to derive a PD related perfu-
sion network using ASL MRI. They examined the scans of 29 HC and 61 patients at different
stages of the disease (26 drug naive and 35 under medication) with a PCA framework focus-
ing on gray matter perfusion. The PD group exhibited reduced GM perfusion (ROC AUC
= 0.66). The found PD-network describing this heterogenous population was characterized
by a decreased cortical (posterior parieto-occipital cortex, precuneus, cuneus and middle
frontal gyri) and preserved subcortical and sensorimotor cortical perfusion.

Taking direct advantage of the quantitative nature of ASL, Fernandez-Seara and colleagues
[15] compared the ASL scans of 25 early to moderate PD patients to 34 healthy controls
through statistical parametric mapping. PD patients were characterized by widespread cor-
tical hypoperfusion possibly related to the loss of cognitive functions. Within the subcor-
tical structures, decreased perfusion in the caudate nucleus was detected. This study also
discusses the dangers of global mean normalization on populations with generalized differ-
ences.

Teune and colleagues [68] conducted one of the first investigations comparing pCASL im-
ages of healthy controls (17) to those of PD patients (14). Employing PCA analysis the au-
thors compared the PD-related perfusion covariance pattern to the metabolic covariance
pattern obtained from PET images. They reported that both patterns correlated positively
(0.5) but did not overlap completely. This being said the obtained perfusion pattern was in
accordance with the literature, showing decreased activity in the cortical regions, including
the insula and relative increases in activity in the cerebellum and pons, the right thalamus
and palladium, the sensorimotor cortex, the paracentral lobule and the supplementary mo-
tor area. This study presented pCASL as a promising tool for the early diagnosis of PD.

Studying neurovascular changes in PD patients with ASL, Al-Bachari and colleagues [69]
investigated the CBF and ATT (arterial arrival time) values of 52 controls (18 with a history
of cerebrovascular disease and 34 without) and 51 PD patients at different stages of the
disease (H&Y: 2.6 ± 1.0). They found evidence of hyperperfusion in the globus pallidus
and of hypoperfusion in the occipital cortex predominantly. Additionally, whole brain ATT
revealed to be significantly longer PD group compared to the two groups of control subjects.

On a another ASL study, Erro and colleagues [70] attempted to differentiate perfusion pat-
terns in the subcortical structures of healthy (34), PD (30) and MSA (30) patients. A perfusion
reduction was observed in several cerebellar areas, the right caudate and the bilateral thala-
mus for both MSA and PD patients. Comparing PD and MSA, PD patients had significantly
lower perfusion values in the right caudate and thalami.
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Authors Features Dataset Findings

Melzer & al.
(2011)

ASL
PCA

29 HC
61 PD

(early to severe)

↘ GM perfusion in the cortex (posterior
parieto-occipital cortex, precuneus, cuneus
and middle frontal gyri)

Fernandez-Seara &
al.

(2012)
ASL

34 HC
25 PD

(early to
moderate)

↘ perfusion in the cortex, related to the
loss of cognitive functions. Within the
subcortical structures, decreased perfusion
in the caudate nucleus was detected.

Teune & al.
(2014)

pCASL + PET
PCA

17 HC
14 PD

Positive correlation between the
PD-related perfusion covariance pattern
and the metabolic covariance pattern
obtained from PET images. Decreased
perfusion in the cortical regions, including
the insula and relative increases in activity
in the cerebellum and pons, the right
thalamus and palladium, the sensorimotor
cortex, the paracentral lobule and the
supplementary motor area.

Al-Bachari & al. &
(2017)

ASL
(CBF + ATT)

52 HC
51 PD

Hyperperfusion in the globus pallidus and
of hypoperfusion in the occipital cortex.
Significantly longer ATT in the PD group.

Erro & al.
(2020) ASL

34 HC
30 PD

30 MSA

CBF↘ in several cerebellar areas, the right
caudate and the bilateral thalamus for
both MSA and PD patients. ↘ perfusion
in the right caudate and thalami of PD
compared to MSA.

TABLE 3.5: Summarized findings of perfusion PD biomarker studies.

3.2.3 Multivariate MR studies

Several studies in recent years have made use of more than one MRI feature to bring about
a deeper understanding of PD as summarized in Table 3.6. Probably one of the oldest ones
was carried on by Péran and colleagues in 2010 [16]. T2*-w, T1-w and DTI scans were ac-
quired from 30 PD patients and 22 control subjects as to extract transverse relaxation rate
(R2*), mean diffusivity (MD) and fractional anisotropy (FA) values of the in the pallidum,
putamen, caudate nucleus, thalamus, SN and red nucleus. Region-based and voxel-based
analysis showed that compared to control subjects, patients with PD had significantly higher
R2* values in the SN, lower FA values in the SN and thalamus, and higher MD values in the
thalamus and striatum. Furthermore, logistic regression analysis calculated that the com-
bination of three different markers was sufficient to obtain >95% discrimination between
patients with PD and controls.

One year afterwards, a complementary study by Du and colleagues at Pennsylvania State
University [57] observed the changes in R2* and FA in the SN of 16 PD patients compared
to 16 healthy volunteers. The association between R2* and DTI measures was dismissed
via Pearson correlation suggesting that R2* and FA changes may reflect different patholog-
ical aspects of PD. Their results for regional covariance analysis showed both significantly
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increased R2* and reduced FA values in the SN. Using logistic regression and receiver op-
erating characteristic (ROC) curves to compare the sensitivity and specificity of R2* and FA
they found significant discrimination between the groups using either R2* or FA alone (R2*,
Area under ROC = 0.930, P < .0001; FA, Area under ROC = 0.742, P < .0001). The combi-
nation of R2* and FA in the SN, however, yielded even greater discrimination (Area under
ROC = 0.996, P < .0001).

Another network that arouses interest is the intracranial visual system. In their study, Ar-
rigo and colleagues [71] investigated this system based on a cohort of 20 de novo patients
and 20 controls. They combined DTI to assess white matter diffusion with VBM to explore
constrained spherical deconvolution-based connectivity and to investigate alteration in oc-
cipital gray matter. Significant alterations were found in optic radiation connectivity distri-
bution, with decreased lateral geniculate nucleus V2 density (P < 0.05), a significant increase
in optic radiation mean diffusivity (P = 0.014), and a significant reduction in white matter
concentration. VBM analysis also showed a significant reduction in visual cortical volumes
(P < 0.05). Moreover, the chiasmatic area and volume were significantly reduced (P < 0.05).
Their conclusion states that visual system alterations can be detected in early stages of PD
and that visual impairment affecting discrimination of color and contrast may be a sensitive
marker, in accordance with a previous study by Diederich and colleagues in 2010 [72].

Functional connectivity (FC) in the basal ganglia network (BGN) has also been suggested as
a promising biomarker for PD on its own [73, 74].

Including functional connectivity features in a multimodal approach is not without chal-
lenge. In their study, Bowman and colleagues [75] utilize elastic net, an advanced statistical
learning technique to detect features from T1, rs-fMRI and DTI that reliably distinguish 28
PD patients from 14 healthy controls. Based on the Automated Anatomical Labeling (AAL)
atlas, the brain was parcellated into 290 regions for which they calculated the volume (VBM),
fractional amplitude of low frequency fluctuation (fALFF), FC, FA and structural connectiv-
ity (SC) measures. To reduce the number of features, a bootstrap procedure was employed
and the remaining variables entered the elastic net method from which 24 parameters were
chosen, corresponding to the 10% with the greatest predictive power. 21 of the parameters
came from FC, one from SC and two from VBM. Considering the importance of parsimony,
the authors brought forward three models that using three of the 24 mentioned features
achieve a perfect distinction of the two groups (PD and HC). One of these models combines
the FC of the left frontal superior medial region with the left anterior cingulum, the FC of
the left thalamus with the left mid-temporal pole and the VBM of the right inferior frontal
orbit.

This is one of the first approaches that truly combine the predictive power of different pa-
rameters and not only adds them, yet, 42 subjects may not be enough to validate the tech-
nique and adding more subjects is likely to be computationally expensive.
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Also focusing on brain connectivity, Amoroso and colleagues [76] pooled T1 images (169
HC and 243 de novo PD) from the PPMI database and proceeded to extract connectivity
measures with an approach borrowed from graph theory. All images were divided into
an equal number of patches, every patch was considered as a node in the graph having as
weights the pairwise Pearson’s correlation measured between each pair of nodes throughout
the whole brain. To classification between controls and patients maps was achieved by a
combination of two Random Forest (RF) and a Support Vector Machine (SVM) classifiers.
The first RF was dedicated to feature selection and the second one to subject scoring. The
SVM combined these scores and other clinical features to discriminate between PD and HC
scans and achieved an accuracy score of 93% corresponding to an specificity of 93% and a
sensitivity of 92%.

More recently, Laganà and colleagues [77] studied the interaction between aberrant func-
tional connectivity and perfusion alteration in a cohort of 26 early PD patients and 18 age
and sex matched controls. rs-fMRI images were processed by an independant component
analysis from which 11 FC components were retained, additionally CBF maps were ex-
tracted from pCASL MR images. FC was reported to be significantly reduced in PD patients
within a sensory-motor network (p-FWE=0.01) and the primary (p-FWE=0.022) and lateral
(p-FWE=0.01) visual networks. Perfusion in these visual networks was found to be reduced
as well, pointing towards alterations of other systems besides the dopaminergic system. No
gray matter atrophy (assessed from T1 scans) was related to these changes.

Authors Features Dataset Findings

Péran & al.
(2010)

R2*
FA, MD

(basal ganglia)

30 PD
22 HC

Higher R2* in the SN, lower FA in the SN
and the thalamus, higher MD in the
thalamus and striatum. 95%
discrimination of PD and HC using the 3
values combined.

Du & al.
(2011)

R2* and FA
(SN)

16 PD
16 HC

R2* and FA values of the SN are
uncorrelated and significantly
discriminatory on their own; combined
they yield greater sensitivity and
specificity.

Arrigo & al.
(2017)

DTI
VBM

(Visual system)

20 PD
20 HC

Alterations in optic radiation connectivity.
Reduction in visual cortical and chiasmatic
volumes.

Bowman & al.
(2016)

VBM
fALFF

FC
FA
SC

28 PD
14 HC

24 region specific parameters, mostly
issued from functional connectivity. The
combination of any three features
discriminates PD from HC.

Laganà & al. (2020)
FC

CBF
VBM

26 early PD
18 HC

↘ FC in the SMN (p-FWE=0.01)
↘ CBF and FC in primary (p-FWE=0.022)
and lateral (p-FWE=0.01) visual networks.

TABLE 3.6: Summarized findings of multiparametric PD biomarker studies
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3.3 Deep learning studies

Deep Learning (DL) is a growing trend in the general data analysis. Recent breakthroughs
like the explosion of the available computer power and the availability of data have allowed
artificial neural networks to obtain state-of-the art performances in several computer vision
challenges (i.e. ILSVRC2012). These developments have great potential to exploit the valu-
able information generated in the medical field.

Concerning Parkinson’s Disease, several strategies have been developed to analyze physio-
logical signals. For example, to analyze data recorded by wearable devices and characterize
symptoms such as bradykinesia [78] or freezing of gait [79]. They have also been effective to
detect particularities in PD patients handwriting [80] and even to identify PD specific vocal
features [81].

Combinations of all of these features have been studied in [82] and included in smart-
phone applications [83, 84] including one that is now a registered Class I medical device:
cloudUPDRS [83] that utilize a previously supervised Feed Forward Artificial Neural Net-
works (FFANN) to analyze the subjects results.

Medical imaging represents the largest percentage of data produced in healthcare and thus
a particular interest has been taken in DL methods to create support tools for radiologists to
analyze images, segment lesions and even detect subtle pathological changes that even an
expert eye can miss.

Over the years different architectures have emerged and within the MRI community several
public databases have been curated with annotated images to compare their performances.
Some of the most prominent databases are the MSSEG, for MS lesion segmentation; BRATS,
for brain tumor segmentation; ISLES, for ischemic stroke lession segmentation; and mTOP
for mild traumatic injury outcome prediction.

Challenges are organized regularly to showcase the latest technological advancements and
push the community towards better performances in these important tasks.

In the case of PD, this kind of challenges are unheard of as any remarkable features are
only visible on MR scans once the disease is at an advanced stage. Moreover, any outcome
prediction would necessitate a clear picture of the possible outcomes whereas at the mo-
ment the phenotypical progression paths of the disease are still up for debate. Nevertheless,
convolutional neural networks have been proposed to discriminate between healthy and
pathological data and unsupervised deep learning models can be used in an exploratory
manner to identify subtle anomalies in the MR images of PD patients.

In the literature, most state-of-the art DL anomaly detection techniques use Generative Ad-
versarial Networks (GAN) or Auto-encoders (AE) and their variations. Both types of archi-
tectures are trained to model "normal" data with two complementary networks. GANs are
composed of a generator and a discriminator that learn simultaneously to generate "normal"
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data from samples in a latent space and to discriminate between true and generated data.
The overall goal is to train a generator that produces candidates susceptible to fool the dis-
criminator. Differently, AEs trains an encoder and a decoder networks that can effectively
reconstruct "normal" inputs. The encoder summarizes the data into a smaller latent space
representation from which the decoder can construct an image. Once the models are trained,
different anomaly scores can be defined to measure how far new observations fall from the
normality model.

One of the precursor applications of unsupervised DL methods for anomaly detection on
medical data was proposed by Schlegl and colleagues [85] to identify anomalous regions in
spectral-domain OCT scans of the retina. Their architecture, named AnoGAN, consisted on
a convolutional GAN architecture trained with 2D patches (64 × 64). During training, the
generator learned to map 1D vectors of uniformly distributed input noise to a 2D image in
the image space manifold χ, which is populated by healthy examples exclusively. During
testing, for every query image, first the latent vector corresponding to the most similar image
in the manifold was found via backpropagation, then, an anomaly score was computed. This
score was defined as the combination of two losses : the dissimilarity between the generated
and the query image on one side and the sigmoid cross-entropy of the generated image with
respect to χ. AnoGAN achieved a ROC AUC of 89%.

As presented by Varghese and colleagues [86], another possibility is to use the discriminator
of the trained GAN architecture to output, for each query image, a probability map that
gives an indication of the likelihood for every point of belonging to the learnt "normal" data
distribution. The authors applied the proposed method to detect brain tumors from the
multimodal MR images (FLAIR, T2, T1, T1 post contrast) of the BRATS dataset. The model
was trained with 13 000 healthy patches of 64 × 64 patches and obtained a DICE score of
69 % for the whole tumor segmentation task. This corresponds to a sensitivity score of 92%
and a specificity score of 59%.

In an unpublished study, Ha Son and colleagues [87] proposed to increase the training
stability of GANs by employing two autoencoders as generator and discriminator. Their
model, called ADAE (Adversarial Dual Autoencoders), was also trained on BRATS data
and achieved a ROC AUC score of 89.2%.

Baur and colleagues also propose to combine GAN and AE architectures. They devised
the AnoVAEGAN model, which is constituted by a Variational Autoencoder that generates
reconstructions of input images with a discriminator network at the end to assesses every
point in the reconstructions as "real" or "fake", otherwise "healthy" or "pathological".

To evaluate the model, the authors conducted experiments on a private dataset containing
FLAIR and T1 image pairs from 83 healthy controls and 49 patients with multiple sclerosis
(MS) lesions. For each brain volume, 20 consecutive axial slices of 256 × 256 pixels were
extracted. Experiments compared the proposed model with AnoGAN [85] and with dense
and spatial variants of VAEs and AEs. Results measured by the DICE score in the task of MS
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lesion segmentation showed that AnoVAEGAN beats AnoGAN (0.605 vs. 0.375) as well as
dense and spatial variations of VAEs and AEs. However, spatial VAE (0.592) and spatial AE
(0.585) without any adversarial training performed only slightly worse than the proposed
model.

While a DICE score of 60.5% may seem poor compared to the previous DL results here
exposed, MS lesions are generally more challenging to segment than tumors. Additionally,
the DICE score evaluates the accuracy of the automatic segmentation, whereas if the task
was merely to detect the presence of a lesion, the above mentioned techniques would have
achieved much better performances in MS.

Authors Architecture Dataset Performances

Schlegl & al.
(2017)

GAN
AnoGAN

OCT scans of the retina
64× 64 patches

Classification
ROC AUC: 89%

Varghese & al.
(2017) GAN

BRATS
13 000 64× 64 patches

Multimodal data

Segmentation
DICE: 69 %

sens: 92%, spe: 59%

Ha Son & al. GAN + AE
ADAE BRATS ROC AUC: 89.2%

Baur & al. GAN + AE
AnoVAEGAN

MS dataset
83 HC & 49 MS
256× 256 slices

Segmentation DICE
AnoVAEGAN: 60.5%

VAE: 59.2%
AE: 58.5%

TABLE 3.7: A brief sample of some medical DL biomarker studies

In the scale of difficulty, early PD anomaly detection is much higher than MS lesion de-
tection. Indeed, as mentioned before, early symptoms in PD have not yet been translated
to identifiable characteristics in MR imaging. Regardless, in the last year some innovative
methods have been devised to apply unsupervised deep learning to PD anomaly detection
in MR imaging.

Li and colleagues[88] set out to employ a stacked sparse autoencoder (SSAE) to classify
between controls (62) and PD patients (142) from longitudinal data pooled from the PPMI
database. T1 and DTI maps were obtained for every subject at baseline, after 12 months and
over 24 months. Gray matter, white matter and mean diffusivity features were extracted for
every one of the 116 ROIs in the AAL atlas and serve as input for the SSAE. The outputs of
the architecture at the three time-points are classified with an SVM. The proposed method
achieved a ROC AUC score of 86% at baseline and 97% at 24 months. They compared their
results with a simple sAE, a CNN and a DBN architecture. The sAE achieved the second
best results with a ROC AUC of 82% at baseline and 92% at 24 months.

Other studies prefered to employ CNNs to discriminate PD from HC scans. Shinde and
colleagues [89] adapted the well know ResNet50 design to study 2D NMS-MRI images of
the substantia nigra (45 PD, 35 HC) from a local database. The average Hoehn and Yahr
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score for the patients was of 1.70 ± 0.54. They achieved a good classification performance
(ROC-AUC = 90%) taking into account clinical laterality.

Sivaranjini and colleagues [90] proposed to employ the popular AlexNet CNN to discrimi-
nate T2-weighted MR scans of 82 HC and 100 PD patients from the PPMI at various stages of
the disease. One particularity of this investigation is the utilization of transfer learning, that
is, the CNN architecture had been pre-trained with natural images before medical images
were input. Their results show an accuracy of 88.9% corresponding to 89.3% in sensitivity
and 88.4% in specificity.

Authors Architecture Dataset Performances

Li & al.
(2019) SSAE + SVM

PPMI: 62 HC & 142 PD
T1 and DTI maps divided by

116 ROIs at baseline

SSAE ROC AUC: 86%
sAE ROC AUC: 82%

Shinde & al.
(2019)

CNN: ResNet50
adaptation

35 HC and 45 PD
2D NMS-MRI images of the

SN at H&Y= 1.7 ± 0.54
ROC AUC: 90%

Sivaranjini & al.
(2020)

CNN: AlexNet
with transfer

learning

82 HC and 100 PD (PPMI)
T2-w MR scans

Classification
sens: 89.3%
spe: 88.4%

TABLE 3.8: Summarized findings of DL PD biomarker studies
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Part II

ANOMALIES IN ’DE NOVO’ MR
SCANS
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Chapter 4

Study of structural changes

4.1 A word on morphometric analysis

Anatomical MR images provide detailed information about the shape and size of several
brain regions in vivo. In a world were 100 years ago any knowledge on the brain’s anatomy
came from autopsy studies, this has been quite revolutionary.

Scanners having field strengths of 3 Tesla or higher render images of great spatial resolution
where brain tissues can be accurately differentiated and investigators can delineate brain
structures. The quantification of their shapes and sizes is named morphometry [91].

All morphometric studies meet two requirements: (1) the availability of measurable fea-
tures of interest belonging to at least two populations and (2) appropriate statistical meth-
ods to compare the measurements quantitatively. Given the complex anatomy of the brain,
it comes without surprise that multiple techniques have been developed for feature spe-
cific purposes. The most popular method is know as Voxel-based morphometry (VBM) [92].
In VBM, the images are spatially normalized into a template space and then compared at
a voxel level to disclose any regionally specific differences. Other approaches have been
developed to employ the deformation fields used to normalize the neuroimaging data in
a straightforward fashion, this is the case of Deformation-based morphometry (DBM) [93, 94].
Another option is to use brain segmentation to reconstruct the boundaries between different
classes of tissue as a surface and study features like cortical thickness and gyrification. This
method is best known as Surface-based morphometry (SBM) [95].

We note that fiber tracking based on diffusion-weighted imaging is also considered as a
morphometric analysis but it will not be discussed in this chapter.

The use of structural T1-weighted images may be the most common in clinical MR imaging.
While the signal in these images is generally inversely related to the longitudinal relaxation
time (T1) in a nonlinear manner, many factors can alter their calibration and thus, they
cannot be used to produce quantitative results. However, they are adequately employed
in VBM, DBM and SBM techniques after some standard pre-processing steps.
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Several automated non-operator dependent pipelines have emerged that involve all steps
from pre-processing and registration to the segmentation of tissues and structures. They
are supported by sensitive methods that help detect statistical deviations of the anatomical
features from the normal brain. We can cite famous open-source software packages like
SPM, FSL and FreeSurfer. There are also several universities that have developed their own
tools like the CIVET pipeline of the McGill University and in the latest developments the
Polytechnic University of Valencia and Bordeaux University provide not only access to their
software pipeline called volBrain [5] but also share the computational resources of their
institutions.

The work presented on this chapter is the fruit of a collaboration with Pierrick Coupé’s team
at Université de Bordeaux, who developed volBrain alongside José V. Manjon’s team at the
Polytechnic University of Valencia.

4.2 Pipeline description

The study of morphological brain differences between pathological and healthy groups can
potentially identify key regions affected during the PD prodromal phase to better under-
stand PD pathophysiology and its treatment. As seen in Chapter 3 several studies have
already focused on this subject however, population size is often reduced and results repro-
ducibility is seldom considered. Here, we explore this question with up-to-date methods
applied to a large and openly available population.

In order to elucidate the nature of morphological differences in de novo PD patients, per-
formed a VBM study through both 1) the well-established Computational Anatomy Tool-
box (CAT12) (University of Jena) included in the current version of the Statistical Paramet-
ric Mapping (SPM12) software and 2) a new online platform: volBrain [5]. Both pipelines
have complementary strengths that are exploited in this study: volBrain performs quality
segmentation of subcortical nuclei and CAT12 facilitates group analysis. Furthermore, we
looked for quantitative differences between the tissue classification performed by the two
approaches, both including partial volume estimation.

Subsequently, DBM and SBM studies were carried out on CAT12 uniquely, as volBrain is a
volumetry focused system. A representation of the whole pipeline is available in Figure 4.1

Our study included 144 de novo PD patients (age: 61.30 ± 9.06; sex: 53 F, 91 M) and 66
healthy controls (age: 60.12± 11.39; sex: 23 F, 43 M) from the PPMI database [6] (www.ppmi-
info.org/data). The PPMI (Parkinson’s Progression Markers Initiative) is a longitudinal
study that follows de novo PD patients of 35 centers for five years. The database is openly
available for researchers and contains, among other clinical and behavioral assessments,
structural and DTI MR scans.
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FIGURE 4.1: Graphical description of the morphometric analysis pipeline employed. Tis-
sue segmentation maps were estimated with both volBrain and CAT12 for VBM analysis.
A manual delineation of the substantia nigra (SN) was added to the parcellated regions
extracted with volBrain for ROI analysis. DBM and SBM analysis were carried out with

CAT12 exclusively.

The structural T1-weighted MRI images extracted were acquired with a 3T Siemens Trio Tim
scanner with repetition time (TR) = 2300ms; echo time (TE) = 3ms; flip angle = 9o; thickness
= 1mm. We chose to pool data acquired with the same acquisition parameters, including
magnetic field and scanner manufacturer, to eliminate any additional sources of bias.

4.2.1 Data pre-processing

While algorithms may progress over time, the pre-processing steps for morphometric stud-
ies are very similar and typically include:

• Noise reduction. The images are smoothed with a filter that preserves boundaries
between brain tissues.

• Intensity correction. The variations introduced by inhomogeneities in the magnetic
field B0 or fluctuations in the radiofrequency pulses are adjusted.

• Spatial normalization. The images are registered to a reference template brain.
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• Brain tissue segmentation. Delimitation of the brain, the CSF, white matter and gray
matter, for instance.

CAT12 and volBrain follow these steps with some methodological differences. They both
employ a Spatially Adaptive Non-Local Means (SANLM) filter [96] for noise correction,
however CAT12 registers the images to a reference brain using an affine and non-linear
method (DARTEL and Geodesic Shooting), whereas volBrain utilizes a linear affine trans-
formation with ANTs software. Concerning intensity correction, volBrains opts for the N4
method [97] for coarse inhomogeneities and SPM8’s method [98] for fine inhomogeneities
once the images are registered. CAT12 only corrects inhomogeneities before registration
with SPM8’s method which consists of a parametric bias correction where the intensities
of different tissues are modeled as a mixture of Gaussians and the bias are estimated as a
smooth intensity variation multiplying the true signal.

For tissue segmentation, CAT12 integrates a classical Markov Random Field and the Adap-
tive Maximum Posterior (AMAP) technique to reduce the dependency on Tissue Probability
Maps. In addition, partial volumes are estimated using two additional mixed classes: GM-
WM and GM-CSF. volBrain employs the Trimmed Mean Segmentation (TMS) method [5],
robustly estimating the mean values of the different tissues by excluding partial volume
voxels from the estimation jointly with the use of an unbiased robust mean estimator. Par-
tial volume coefficients are computed as well.

CAT12 does not propose tools for tissue parcellation within its pipeline, yet several atlases
are available for region-based statistical analysis. volBrain goes a step further and segments
each individual brain into cerebrum, cerebellum, brainstem, hemispheres, and seven subcor-
tical structures (putamen, caudate, globus pallidus, thalamus, hipocampus, amygdala, and
accumbens) with a multi-template method that considers non-local label fusion schemes
[96]. Additionally substantia nigra was manually delineated as can be seen in Figure 4.2.

FIGURE 4.2: volBrain segmentation: a) GM, b) WM and c) subcortical structures. d) Manu-
ally segmented substantia nigra.
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4.2.2 VBM : Voxel-based morphometry

VBM is most efficient when comparing the local concentration of gray matter between two
groups of subjects. It can also be used to examine white matter but other methods such as
DTI are more sensible to white matter effects.

4.2.2.1 CAT12

Before performing a statistical analysis some additional steps are necessary. The segmented
images from both pipelines were modulated by scaling with the amount of volume changes
due to spatial registration, so that the total amount of grey matter in the modulated image
remained the same as it would be in the original image. The resulting images were smoothed
with an isotropic Gaussian kernel of 8mm and finally the Total Intracranial Volume (TIV)
was estimated so that it could be used as a covariate during statistical analysis.

We chose to employ a two-sample T-test to compare the CAT12 modulated tissue maps (GM
and WM) of patients versus controls with a general linear model (GLM) where age, sex, and
TIV were entered as covariates.

4.2.2.2 volBrain

The volBrain volumetric analysis is deployed through a web interface (http://volbrain.upv.es)
and utilizes the resources of the Polytechnic University of Valencia. It does not require instal-
lation, configuration or training. The web interface takes a single anonymized compressed
MRI T1-weighted Nifti file as input and outputs a pdf and csv file summarizing the vol-
umes and asymmetry ratios estimated from the data. If the age and sex of the subject were
submitted, population-based normal volumes and asymmetry bounds for all structures are
added to the report for reference purposes. These normality bounds are automatically es-
timated from the IXI dataset (http://www.brain-development.org) which contains almost
600 normal subjects covering most of adult lifespan. Nifti files containing the gray matter,
white matter, and subcortical structures segmentations in the native and MNI spaces are
also available for download.

For large studies it is possible to contact the team to input the T1w images in batches instead
of one-by-one. To perform a group analysis on the calculated tissue maps CAT12’s proce-
dure was utilized. The GM and WM were deformed to the same template space as CAT12’s
outputs by applying a forward deformation with the corresponding DARTEL fields, then
they were spatially smoothed with a 8mm kernel.

A two-sample T-test was employed again to compare volBrain’s tissue maps with sex, age
and TIV as covariates.
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The subcortial structures segmentations were also deformed into the template space to per-
form some complementary region-based morphometric analysis.

4.2.3 DBM : Deformation-based morphometry

DBM is a valuable tool to detect morphological variations in the entire brain since it analyses
positional differences between every voxel and a standard brain.

As mentioned before, morphometric analysis require images to be in the same stereotactic
space. Spatial normalization is achieved by registering each of the brain scans to the same
template image, thus minimizing the residual sum of squared differences between them.
This procedure does not attempt to match every cortical feature exactly, but rather to correct
for global brain shape differences.

Each individual voxel undergoes a transformation during the registration process. These
transformations are encoded as displacement vectors and the map of all displacement vec-
tors in the scan constitutes a deformation field.

Deformations reveal information about the type and localization of the structural differ-
ences between the brains and can undergo subsequent DBM analysis [93, 94]. One option
is to compare the deformation fields through a multivariate test using the parameters that
describe the deformations and employ a Hotelling’s T2 statistic for simple comparisons or
a Wilk’s λ statistic for more complex analysis. A second and probably the most popular
option is to compute the Jacobian determinant of the displacement in each voxel to produce
a map of local volume changes that can be quantified. This approach is often called Tensor-
based morphometry (TBM) because the Jacobian determinant represents such a tensor. It is
the strategy hereby adopted.

The resulting Jacobian determinant maps can be compared between the healthy and patho-
logical groups using statistical tests like in the VBM strategy. A two-sample t-test was chosen
here too to examine the previously smoothed maps (8mm) of both populations with age and
sex as covariates.

As mild cognitive impairment has been strongly correlated to patterns in atrophy [48], a
small study was also carried out on a sub-population of 24 PD patients that scored below
26 points on the MoCA test for cognitive assessment. The potential atrophy of those 24 PD
subjects (age: 64.25 ± 6.52; sex: 6F, 18M) was analyzed against 24 randomly selected control
subjects (age: 64.25 ± 12.34; sex: 8F, 16M) using a two-sample t-test as well.

4.2.4 SBM : Surface-based morphometry

The cerebral cortex is a highly folded sheet of gray matter with ridges (gyri) and faults (sulci)
that is located between the cerebrospinal fluid on the exterior and a core of white matter in
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the interior. It has an average thickness of around 2.5mm varying between a range of 1 and
4.5mm across different brain regions [99].

Cortical thickness and complexity are two additional features that convey relevant informa-
tion on morphological changes of the brain. To effectuate these measurements there are two
classes of methods available: surface and volume-based approaches [8].

Surface-based approaches require an explicit reconstruction of the brain’s cortical surface
delivering highly accurate measurements of the cortical surface at the expense of extensive
processing times. FreeSurfer’s software suite has positioned this method as the gold stan-
dard in cortical thickness measurements.

Volume-based methods work direcly from the MRI volumes drastically reducing compu-
tation time. However they are more prone to deliver inaccurate measurements due to the
presence of noise and erratic partial volume effects (PVE) on the outer boundary. To over-
come these issues, CAT12 introduced a projection-based thickness (PBT) technique [95] that
uses a projection scheme considering buried sulci, an otherwise problematic region.

The PBT method estimates the distance between every GM voxel and the WM inner bound-
ary to then project the local maxima to other GM voxels using a neighbor relationship de-
fined by this distance map. PBT has been proven to handle partial volume information,
sulcal blurring, and sulcal asymmetries without explicit sulcus reconstruction [8]. Addi-
tionally, PBT enables the easy reconstruction of the central surface, defined as the average
of the two GM boundaries. This surface, passing exactly at the middle of the CSF-GM and
GM-WM boundaries, is thought to be a better representation of the cortical sheet, less error-
prone to noise.

Next, to compare the cortical surface of multiple subjects, a spherical coordinate system is
adopted as a common space, but before being inflated (mapped to a sphere) the subjects
surfaces should be free of any topological defects. The CAT12 SBM pipeline performs topo-
logical correction of defects using spherical harmonics [100]. In short, the defects are auto-
matically labeled as ’fill’ or ’cut’ operations using the original T1 image intensities so that
the brain surface mesh can be modified in a way that the defective points are no longer on
the surface of the sphere. Then, a regularly sampled grid is overlaid on top of the modified
mesh during reparametrization. The points outside the sphere are highly unlikely to inter-
sect the grid and thus the defects are minimized. Finally, the areas that contained defects are
replaced by a low-pass filtered reconstruction of the surface based on spherical harmonics.
Indeed, a spherical harmonic can be described as Fourrier transform on a sphere that de-
composes the brain surface data into frequency components, therefore applying an inverse
Fourrier transform to the smoothed (low-pass filtered) harmonic produces the coordinates
needed to reconstruct the surface mesh where defects laid.

Once all the subjects can be properly mapped into a sphere, CAT12 employs an adapted
version of the volume-based diffeomorphic DARTEL algorithm to the surface [101] to work
with spherical maps [102]. It consists on a multi-grid approach that uses reparameterized
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values of sulcal depth and shape index defined on the sphere to estimate a flow field that
allows deforming a spherical grid.

All these steps, from PBT to registration to mesh surface registration, are fully automated
and invisible for the user. At this point, cortical thickness has been estimated and the central
cortical surface has been created for the left and right hemisphere. It is also possible to ex-
tract additional parameters such as the gyrification index [103] and/or measures of cortical
complexity and sulcal depth.

In this study we concentrate on cortical thickness and gyrification indices for our statistical
analysis. Gyrification is the term employed to designate the ratio between deep (sulci) and
superficial (gyri) in a region of the brain. This information can be projected onto the central
surface for comparison.

The last action needed before analysis can proceed is to smooth the (central) surfaces. A
filtering kernel of 15mm FWHM (Full Width at Half Maximum) is employed for thickness
data and one of 20mm for gyrification following the standard software recommendations.

Cortical thickness and gyrification measures were also extracted for individual all the re-
gions in the Desikan-Killiany 40 atlas [104] for supplementary region-based analysis.

All comparisons were effectuated using a two sample t-test with age and sex as covariates.

4.3 Results

4.3.1 VBM

When choosing a p-value of 0.05 with Family Wise Error (FWE) correction for multiple com-
parisons, no voxels survive the difference analysis between PD patient and control groups
with tissue map computed with CAT12 or volBrain. In order to replicate some literature re-
sults (exploratory study), we decreased the statistical threshold to p<0.001 uncorrected for
multiple comparisons. Several clusters were then found showing a volume decrease in PD
patients mainly located in the bilateral posterior cingulate gyrus, the cerebellum, the right
supramarginal gyrus and the left parietal operculum for CAT12 and for volBrain there is
one cluster that almost perfectly coincides with the substantia nigra and other small clusters
in the right occipital pole, the left superior frontal gyrus and white matter.

Also, two-sample T-test comparisons of each subcortical structure independently (computed
by volBrain) failed to detect any differences in GM contents p<0.05 FWE corrected. In an
exploratory test, differences were found in the caudate nucleus, the hipocampus and the
putamen for an uncorrected p-value of 0.001.

"Small volume" analysis in SPM12 was used as well to study possible morphometric changes
in the substantia nigra, key structure in PD research, using volBrain maps. We observed
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that differences were only present for an uncorrected p-value of 0.001 and did not survived
multiple comparison correction.

A recent study investigating the high rate of false positive present in VBM studies recom-
mends the use of the same group size to detect morphological differences between two
groups [105]. Following this recommendation, we repeated our analysis five times to com-
pare the tissue maps of 66 controls versus 66 randomly selected patients using sampling
with replacement technique. Their age and sex characteristics are summarized on Table 4.1

Age Sex

Controls 60.1 ± 11.4 43 M, 23 F

PD Patients 61.3 ± 9.1 91 M, 53 F

PD sample1 59.2 ± 9.2 45 M, 21 F

PD sample2 62.3 ± 7.9 36 M, 30 F

PD sample3 60.5 ± 9.0 39 M, 27 F

PD sample4 60.9 ± 9.0 38 M, 29 F

PD sample5 60.3 ± 9.4 42 M, 24 F

TABLE 4.1: Characteristics of the original study population and the 5 sub-samples of pa-
tients equal in size to the control group.

For all of the 5 new equal size sub-populations (see Table 1), no differences were found in the
CAT12 tissue maps for p < 0.05 FWE corrected, whilst several significant clusters appeared
for an uncorrected p-value of 0.001, specifically in the bilateral cerebellum, precuneus, and
supramarginal gyrus, as well as the right posterior cingulate gyrus, the right posterior or-
bital gyrus and the left subcallosal area.

Concerning volBrain, there were some clusters at p < 0.001 uncorrected in the right supple-
mentary motor cortex and the substantia nigra but most shared clusters appeared in the left
superior frontal gyrus and the right occipital pole aside from smaller ones dispersed withing
the white matter.

4.3.2 DBM

The two-sample t-test on the Jacobian deformation maps with age and sex as covariates
failed to find any significant differences (p < 0.05) once corrected for family wise error for
the general population and the five same-size sample populations.

At the exploratory theshold p < 0.001 uncorrected some clusters appeared in the left fusiform
gyrus, the left inferior temporal gyrus and the left thalamus.
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The only shared cluster amongst the five same-size samples at p < 0.001 uncorrected en-
veloped the amygdala, including a section of white matter and the hippocampus. Other
clusters included the right putamen and a region between the left fusiform gyrus and the
left inferior temporal gyrus.

The test on mildly cognitively impaired patients compared to controls did not bring to light
any significant differences at p<0.05 FWE corrected and at p < 0.001 uncorrected a cluster
appeared in the middle of the left putamen and the left anterior insula.

4.3.3 SBM

Concerning cortical characteristics, there were no significant thickness nor gyrification dif-
ferences for a p < 0.05 FWE-corrected nor p < 0.001 uncorrected. This was also true for the
five same-size populations.

The most notable results resided on the gyrification index of the bilateral pars triangularis
with p = 0.006 for the right hemisphere and p=0.008 for the left hemisphere in the whole
population study and an average of p = 0.014 in the right hemispheres of the same-size
population.

4.4 Discussion

Using two recent approaches for accurate segmentation of tissues (CAT12 and volBrain) and
subcortical structures (volBrain) we failed to detect robust structural differences in de novo
PD patients and healthy controls. We took special care to consider a relatively large cohort of
subjects, consider the effects of an unbalanced number of patients and controls and correct
for multiple comparisons. Following these precautions, no morphological differences were
found in PD patients, neither on whole brain GM group analysis or on the analysis of several
subcortical structures separately.

In the literature, there is an overall lack of consensus on the presence of structural brain
differences in de novo PD patients. These discrepancies may be due to a variety of factors.
Some studies were carried out on small cohorts, no more than 60 subjects in total [41, 42,
43], so one may argue that the inconsistencies could be resolved with a larger cohort more
representative of the population. Although, in [105], it was brought to light that sample size
does not appear to influence false positive rate, a small sample may incorrectly represent a
pathological population, hindering the reproductibility of results.

There is a wide variety of softwares for pre-processing MRI images (i.e. SPM, FSL), all using
different techniques that will inevitably influence the final statistical results as proven by
Popescu and colleagues [106] on the study of Multiple Sclerosis. By combining the latest
improvements on VBM analysis present in CAT12 (notably denoising and partial volume
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estimation) with the state of the art segmentations of volBrain [5] we sought to reduce esti-
mation bias considerably. Finally, correction for multiple comparison is vital to reduce the
false positive rate and thefore to produce robust and reproducible results [9]. Exploratory
studies, which use lenient statistical thresholds, could be interesting to indicate some trends
in the observed population, that should be confirmed by more robust studies. In the case
of [44], the tests were FWE corrected, but the the study was effectuated on VBM8 while,
according to [107], the CAT12 toolbox can contribute to more robust detection compared to
VBM8.

Regarding the differences we observed between the tissue classification with CAT12 versus
volBrain, raw volBrain’s tissue maps seem to better distinguish the presence of gray and
white matter in the subcortical nuclei. However, as in this study no morphological robust
differences were found between PD patients and controls, a more in depth investigation
would be necessary to pertinently test the performances of both methods of partial volume
estimation.

The study took a step further to study any early signs of atrophy in the PD population using
CAT12 but no significant disparities were established once family wise error correction was
applied. Atrophy is seldom reported in early PD patients [47, 48] and there is a possibility
that small investigations reporting differences may be biased.

We note that by omiting multiple comparison correction, several regions that become signif-
icant are part of the PD-ICA network proposed by Zeighami and colleagues [7] (i.e amyg-
dala, thalamus, hippocampus). A possible reason for the discrepancies between our results
are due to the method employed, they employed the CIVET pipeline and us the CAT12
pipeline, plus it is not clear if their correction was calculated for every voxel in the ICA-ROI
or for every possible ICA, in which case our correction is far more strict. What is more, in
[48] it was brought to light that the strongest correlates to the PD-ICA network were age and
gender. While this is in accordance with the literature, aging is the largest risk factor for the
development and progression of PD [108] and older males tend to have poorer prognosis
[109], we stand by our decision of introducing age and gender as covariates in our statistical
analysis to draw-out PD-specific patterns of atrophy.

Lastly, our study included less subjects from the PPMI database (PD:144, HC:66 vs. PD:232,
HC:117) seeing that we chose to pool subjects imaged with the same acquisition parameters
to reduce the sources of bias. If their study included more patients with a specific set of
shared clinical traits such as MCI or anxiety, that were highly correlated to the PD-ICA
network, the statistical power of their test was increased.

Our SBM results coincide with those of the latest research on cortical characteristics of PD
patients, there are no significant differences in cortical thickness nor gyrification in de novo
PD patients. This confirms the capabilities of CAT12 methods to correctly estimate the cor-
tical ribbon, and this, in a fraction of the time compared to FreeSurfer. [8] estimated 10-20
hours per subject for the reconstruction of the cortical surface on FreeSurfer, whereas CAT12
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effectuates its processing in less than an hour. To our knowledge, the SBM study carried out
in this thesis is the largest one in the literature.

4.5 Conclusion

In conclusion, using two recent approaches for accurate tissue classification (CAT12 and
volBrain) we failed to detect robust structural differences between de novo PD patients and
healthy controls. Findings of structural brain differences reported in the literature tend to be
contradictory. This lack of consensus may be due to a variety of factors, notably the study of
small cohorts, differences in segmentation techniques, and more importantly, the lack of cor-
rection for multiple comparison inevitably increasing false positive rates. We reinforce the
message that morphological assessments are delicate techniques involving many parame-
ters that should be handled with care to avoid false positive influencing the final results
[9].

In sight of the lack of morphological differences, we suspect that early PD biomarkers may
lie on the physiological properties of the Parkinsonian brain and could be investigated
through quantitative MRI techniques (relaxometry, diffusion, perfusion).
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Chapter 5

Investigating diffusion changes with
Neural Networks

5.1 A word on anomaly detection using auto-encoders

Deep learning based architectures have been employed with great success to detect patho-
logical characteristics in medical imaging as illustrated in Chapter 3. Unsupervised methods
enjoy a particular success as they by-pass the time-consuming task of annotating images and
rather learn a model of normality from healthy images to later detect any outliers as patho-
logical. Auto-encoders are deep architectures that play a fundamental role in unsupervised
anomaly detection [110].

Introduced in the 1980s by Hinton and the PDP group [111], an auto-encoder is an unsuper-
vised neural network that is trained to attempt to copy its input into its output. They work
by compressing the input into a compressed representation, and then reconstructing the
output from this representation. They can be viewed as consisting of two parts: an encoder
and a decoder.

The encoder is a mapping that is applied on a input x ∈ Rd in order to transform it to a
latent representation z ∈ Rd′ where d′ is typically smaller that d (Figure 5.1-A). It is gen-
erally modeled with a non-linear function (i.e. sigmoid, ReLu, etc.) applied to the affine
transformation of the input:

z = f(Wx + b) (5.1)

where W is a d′× d weight matrix, b ∈ Rd′ is a bias vector associated with the mapping and
f is the (non)-linear function of choice.

The decoder is the inverse mapping from the hidden representation space to the original
space with a similarly configured transformation:

x̂ = g(W ′z + b′) (5.2)
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The difference between the original input data and its reconstruction is the reconstruction er-
ror that has to be minimized during training. The parameter sets θ = {W, b} and φ = {W ′, b′}
are optimized through back-propagation during a series of epochs as to minimize the recon-
struction error across all the instances of a given data set D composed of N examples. The
loss function can be defined as:

L(D; θ) =
1

N

N∑

i=1

c(xi, x̂i) (5.3)

where xi is the i-th example, x̂i is its reconstruction and c is the chosen measure of the
reconstruction error i.e. the absolute error or the mean squared error.

Auto-encoders can be stacked in a layer-wise matter where a sequence of layers performs
the encoding and another sequence decodes the middle-layer representation (Figure 5.1-B).
In a stacked auto-encoder, the latent representation of one layer serves as input of the next
one :

zk = f(W kzk−1 + bk)

This allows the model to learn more complex mappings and, hence, more abstract represen-
tations in the middle layer.

FIGURE 5.1: Different types of auto-encoders: A) Simple, fully-connected; B) Stacked, fully-
connected; D) Stacked, convolutional; E) Stacked, convolutional, variational. A representa-

tion on the sliding kernel technique employed in convolutional layers is presented in C).

The main disadvantage of fully-connected auto-encoders is that they ignore the spatial re-
lationships present in 2D or 3D images and are prone to learning redundant features. This
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issue can be overcome by considering convolutional auto-encoders instead (Figure 5.1-C-
E). This type of auto-encoders exploit the convolution operator and shared weights so as to
learn features that are common in various locations of the image. More precisely, the input
image x is mapped to a number of feature maps and each feature map zk is computed as:

zk = f(x ∗W k + bk),

where W k is the shared weight matrix, bk is the shared bias, f is a chosen activation func-
tion and ∗ denotes the convolution operation. The reverse mapping to the input space is
achieved through a "deconvolution" or more appropriately a transposed convolution. The
parameters are tuned to optimize, as in the case of basic auto-encoders, a chosen loss func-
tion. Naturally, convolutional auto-encoders too can be stacked to form more complex ar-
chitectures.

The latent space dimension for the hidden representation is crucial: too few dimensions may
cause important information loss, whereas too many dimensions will prevent the model
from filtering out redundant information. It is desired that the hidden units capture fea-
tures that well represent the input data. As a matter of fact, Baur & colleagues [11] showed
that using a fully convolutional encoder-decoder architecture in order to preserve spatial
information in the latent space, i.e. having z ∈ Rh×w×c, improves the anomaly detection
performance.

Another point that deserves special attention is the regularity of the latent space in the auto-
encoder. For the moment, the auto-encoder is solely trained to encode and decode with as
few loss as possible, without any regard to how the latent space is organised. This enables
the network to take advantage of any overfitting possibilities to achieve its task, implying
that there are some points in the latent space that are "overused" and others that give mean-
ingless content once decoded.

So, in order to be able to benefit from the generative properties of auto-encoders, explicit
regularisation can be introduced during the training process to ensure that the latent space
is regular enough. This constitutes a variational auto-encoder (VAE).

Based on an auto-encoder, a VAE is trained to minimise the reconstruction error between
the produced and the original data. However, instead of producing a single point, the en-
coder portion in the VAE produces a distribution over the latent space. Subsequently, a
point from the latent space is sampled from that distribution to be decoded. The resulting
reconstruction error is backpropagated through the network.

In other words, given training data x, the model is trained to learn a distribution pθ(x) using
a latent representation model :

pθ(x) =

∫
pθ(x|z)pθ(z)dz
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where pθ(x) is also called the marginal likelihood, z is a latent variable of lower dimension
than x, pθ(z) is its prior distribution and θ denotes the parameters of the encoder.

Since the posterior distribution pθ(z|x) is intractable, the encoder is rather learning an ap-
proximation qφ(z|x) while the decoder is generating data from pθ(x|z) where φ represents
the parameters of the decoder.

The objective of the VAE is to maximize the log-likelihood of a given dataset, where for any
observation log pθ(x) can be written as :

log p(x) = Ezlog
pθ(x|z)pθ(z)

pθ(z|x)

= Ezlog
(
pθ(x|z)pθ(z)

qφ(z|x)

qφ(z|x)

pθ(z|x)

)

= Ezlog pθ(x|z)− Ezlog
qφ(z|x)

pθ(z)
+ Ezlog

qφ(z|x)

pθ(z|x)

= Ezlog pθ(x|z)−DKL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
(1)ELBO

+DKL(qφ(z|x)||pθ(z|x))︸ ︷︷ ︸
(2)DKL≥0

(5.4)

where the first term is known as the variational lower bound of the marginal log-likelihood,
also called ELBO (evidence lower bound) and the second term is the Kullback-Leibler diver-
gence between the approximated posterior qφ(z|x) from the true posterior pθ(z|x).

Because DKL(qφ(z|x)||pθ(z|x)) is non-negative and only zero if qφ(z|x) equals the true pos-
terior distribution, maximizing log p(x) boils down to maximizing ELBO which by conse-
quence corresponds to the loss function of VAE:

Lvae(x) = Ezlog pθ(x|z)−DKL(qφ(z|x)||pθ(z)) (5.5)

One common setting is to consider that pθ(x|z) is a Gaussian distribution and have the VAE
encoder output its mean µ and standard deviation Σ which are then used to draw z = µ+Σ·ε
of dimensionality M ∈ R. In this case, the KL-divergence has the following closed form :

DKL(qφ(z|x)||pθ(z)) = −1

2

M∑

m=1

[1 + log(Σ2
m)− µ2m − Σ2

m]

As it is not possible to backpropagate through a sampling operation, the introduction of ε
is a fundamental characteristic of VAE, called the "re-parameterization trick". The sampling
operation is effectuated on ε N (0, 1) which liberates µ and Σ for training. We note that
pθ(x|z) can take the form of a multivariate Gaussian distribution and even a mixture of
Gaussians, depending on the application.
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As demonstrated, autoencoders are very flexible structures, besides being stacked, convo-
lutional and variational, they can take on very simple and very complex data of many di-
mensions (as long as there is enough data available) and they can even be equipped with a
discriminator, a classifier or other statistical tools.

Regardless of the autoencoder architecture, the anomaly detection procedure is virtually the
same: First, the model is trained solely on data instances considered "normal". Then, the
model is tested with a "normal" and "abnormal" instances. The individual reconstruction
error at voxel level |xi− x̂i|may be used to compute an anomaly score and thus any sample
with a reconstruction error above a certain threshold (t), it is considered to be anomalous.
Indeed, large reconstruction errors are expected when trying to reconstruct anomalous data
samples while all other samples should be well reconstructed. Finally, different metrics can
be used to evaluate the effectiveness and efficiency of the implemented autoencoder for in
its anomaly detection application.

The effectiveness in anomaly detection can be evaluated according to the quantity of anoma-
lous data points that are correctly identified (true negative rate) and the number of normal
data that are misclassified as anomalous (false negative rate). Notably, receiver operating
characteristic (ROC) curves can be used to represent the trade-off between specificity and
specificity.

5.2 Pipeline description

The application presented on this chapter searches to identify abnormalities in the diffusion
MR data of newly diagnosed PD patients. Several studies have already looked for biomark-
ers in diffusion MR data, however, the presence of inconsistent findings, as shown by [56]
and [59], indicates the need of a robust methodology to resolve such discrepancies.

Here, we propose the use of fully convolutional auto-encoders and variational auto-encoders
to provide a meaningful representation of quantitative MRI data from healthy brains. Once
these models are trained, they are used to identify unusual patterns in data from de novo PD
patients.

This is not without challenge as we do not dispose for imaging data of a ground truth that
identifies, at the voxel level, values specific to PD, especially for de novo patients. This com-
plicates model evaluation and selection. The only available information is the classification
of each individual as PD patient or healthy control. In addition, PD related abnormalities
may be very local and particularly subtle to detect in de novo patients.

Despite the rising interest in uncovering biomarkers of PD and the advent of Deep Learn-
ing for anomaly detection, no studies have been published, to the best of our knowledge,
concerning this application.
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5.2.1 Data pre-processing

Like in Chapter 4, the data used in this work comes from the PPMI database [6], only this
time we extracted DTI MR scans.

DTI data are particularly sensitive to various sources of bias [112]. For this reason, we pooled
DTI data from 57 healthy controls and 129 de novo PD patients acquired with the same MR
scanner model (3T Siemens Trio Tim) and configured with the same acquisition parameters
(90◦ flip angle, 64 gradient directions, EP Pulse sequence, TE=88ms).

From these images, two measures per voxel were computed using MRtrix3.0 [10]: mean
diffusivity (MD) and fractional anisotropy (FA). As mentioned in Chapter 2, these measures
describe the diffusion of water molecules in the brain, MD accounts for the their overall
displacement and FA indicates the orientation of diffusion.

Each MR feature map was obtained in the NIfTI format as a 3-dimensional array. The im-
ages were normalized into the MNI space with a non-linear deformation. Only one healthy
control was taken out of the study due to important artifacts in the images.

Even though it is possible to train auto-encoders with 3D images, 56 controls is not enough
data to train the models, specially since part of the data needs to be set aside for testing. This
is why we decided to train the auto-encoders with 2D axial slices of our 3-D scans, keeping
only 40 slices around the center of the brain to avoid training the models with empty or
almost-empty images. Additionally, we opted to treat each hemisphere as different subject.
In practice, the right and left hemisphere were segmented separately in two volumes, then
the left hemisphere was flipped to resemble the right hemisphere and both volumes were
cropped. The process, was done in the exact same way for FA and MD images as can be
seen in Figure 5.2.

The control dataset was divided into 41 training controls and 15 testing controls to avoid
data leakage. As a result the models were trained with a duo (FA & MD) of 1680 images
(2 hemispheres × 40 slices × 41 controls). On the other hand, the test patients dataset is
constituted by a duo of 10320 instances and the test controls dataset includes a duo of 1200
images. All hemisphere slices measure 75× 145 voxels.

To accrue the generalization of our results to other populations we implemented a 10-fold
cross-validation to train and test our results. That is, formed 10 different combinations of
train and test controls, taking special care to maintain similar age profiles and 40 % of fe-
males in both datasets and along the ten samples as summarized in Table 5.1. For every
sample, the values of FA and MD were normalized into the range [0, 1] using the minimum
and maximum values within the corresponding training samples.
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FIGURE 5.2: Pre-processing procedure : A) MD and FA parameter maps are extracted from
DTI scans; B) Normalization of the volumes into the MNI space and selection of 40 axial
slices around the center of the brain; C) Separation of the two brain hemispheres, the left
hemisphere is flipped to resemble right hemisphere; D) All images are cropped to a 75 ×

145 image size.

Train controls Test controls

Sample 1 60.9 ± 10.5 61.5 ± 8.2
Sample 2 61.3 ± 9.2 60.7 ± 11.9
Sample 3 61.2 ± 10.2 60.9 ± 9.3
Sample 4 61.0 ± 10.0 61.3 ± 9.8
Sample 5 61.1 ± 9.5 61.1 ± 11.2
Sample 6 61.1 ± 9.5 61.0 ± 11.2
Sample 7 61.1 ± 10.2 61.1 ± 9.2
Sample 8 61.1 ± 10.6 61.1 ± 7.8
Sample 9 61.3 ± 10.1 60.4 ± 9.5
Sample 10 61.1 ± 10.3 61.1 ± 9.0

TABLE 5.1: Ages of the control train and test sub-populations across the 10 different sam-
ples.

5.2.2 Auto-encoder architectures design

Three autoencoder-based models were developed and evaluated: a spatial autoencoder
(sAE), a spatial variational autoencoder (sVAE) and a dense variational autoencoder (dVAE).

We extended the work of [11] by using multiple quantitative MRI measures simultaneously
as input. Thus, every input can be expressed as x ∈ RH×W×C , where H is the height, W the
width and C the number of channels (FA and MD).

The design of the architectures was inspired from the first pathway of the DeepMedic [113]
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network and other 5 layers deep networks [114]. As seen in Figure 5.3, depending on the
network architecture, the latent code may be a simple vector (z ∈ Rd) or a third-order ten-
sor (z ∈ Rh×w×c). The former is referred as a dense bottleneck and the latter as a spatial
bottleneck.

FIGURE 5.3: A) The general architecture of the implemented autoencoders with an unspec-
ified bottleneck; B) sAE spatial bottleneck; C) sVAE spatial bottleneck and D) fourth con-
volutional layer of the dVAE along with its fully connected layers and dense bottleneck. µ
and σ describe the approximate posterior of the latent variable, z is obtained by a sampling

operation.

All models were implemented using Python 3.6.8, PyTorch 1.0.1, CUDA 10.0.130 and trained
on a NVIDIA GeForce RTX 2080 Ti GPU with batches of 40 images. After each convolutional
layer, batch normalization [115] was applied for its regularization properties. The nonlinear
activation function in each layer was the rectified linear unit (ReLU), except for the last layer
where a sigmoid was employed in order to have output pixels normalized between [0, 1].
The loss functions were optimized using Adam [116], a popular optimization algorithm for
training deep neural networks.

In order to choose the best network architecture and tune the corresponding hyper-parameters,
the three models were trained and assessed with a 7-fold cross-validation employing 35 MR
volumes used for training and 6 MR volumes for validation in each fold. We note that we
did not perform a nested cross-validation, and thus, this parameter tuning step was only ef-
fectuated for the fist sample population. Nevertheless, the learning behavior of the models
remained consistent across all the different samples for the three models.
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5.2.2.1 Spatial Auto-encoder (sAE)

The spatial autoencoder model is fully convolutional, 5 convolutional layers go from input
to bottleneck and 5 transposed convolutional layers from bottleneck to output. As depicted
in Figure 5.3-B, the output of the encoder network is directly the latent vector z and loss
function is simply the absolute difference between output and input:

L = ‖x− x̂‖1 (5.6)

This model was trained for 200 epochs, with a learning rate of 0.9× 10−3. 3× 3 kernels were
convolved using padding of 1 pixel and a stride of (2, 2) for the first 4 layers and a stride of
(1,1) for the last one. There were no pooling layers.

5.2.2.2 Spatial Variational Auto-encoder (sVAE)

Our spatial variational autoencoder model is shown in Figure 5.3-C. Similar to sAE, the
model is fully convolutional, however, the encoder generated the parameters of the approx-
imate posterior of the latent variable given the input, constrained to follow a multivariate
normal distribution. A sampling operation was needed to obtain an actual value for z.

Training lasted for 200 epochs using a learning rate of 0.3× 10−3. A 3× 3 kernel was chosen
as filter, along with a padding of 1 and stride of (2, 2) for the first 4 layers and a stride of (1,1)
for the last one. No pooling layers were used. The loss function was computed as follows:

L = λ‖x− x̂‖1 + (1− λ)
[
− 1

2

J∑

j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)
]

(5.7)

where µ and σ denote the mean and the variance of the approximate posterior, J is the
number of dimensions of the latent space and λ controls the proportions between the two
terms. The first term is the reconstruction error and the second term is the Kullback-Leibler
(KL) divergence between the approximate posterior and the prior of the latent variable, for
the Gaussian case [117]. To favor good reconstructions over a Gaussian-like distribution of
the latent variables, we put more weight (90%) in the reconstruction term and less weight
(10%) in the KL divergence term.

5.2.2.3 Dense Variational Auto-encoder (dVAE)

The main difference of the dense variational autoencoder when compared to the sVAE is its
dense bottleneck. Encoder and decoder also have fully connected layers in addition to the
convolutional layers, as shown in Figure 5.3-D.
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For regularization purposes, the dropout [118] technique was used to turn off 30% of the
units in fully-connected layers during training. This model was trained for 100 epochs with
a learning rate of 0.3 × 10−3. There were no pooling layers. Kernels for all convolutional
layers were 3× 3, and convolutions were performed with a padding of 1 and stride of (2, 2)
for all layers except the last one. The dVAE shared the same loss function as the sVAE and
we kept the same 90/10 proportion between the reconstruction term and the KL divergence
term.

5.2.3 Evaluation procedure

Since the networks were solely trained on healthy subjects, we hypothesized that the MR
scans of the PD population would have greater reconstruction errors in some regions. The
idea is therefore to use the reconstruction error as an anomaly score.

The voxel-wise reconstruction errors in one image can be computed as |xi − x̂i|. Seeing that
our decoders output two images (F̂A, M̂D), we defined the joint reconstruction error of every
voxel as:

ei =

√
(FAi − ˆFAi)2 + (MDi − M̂Di)2 (5.8)

We identified four sources of reconstruction errors :

1. Noise in the input data.

2. Loss of information due to dimension reduction in the latent space.

3. Variability of healthy controls not captured by the model.

4. PD-related anomalies.

Because we were only interested in anomalies caused by PD, the best way to evaluate and
compare the models is by measuring their ability to discriminate between controls and PD
patients, based on the intensity and localization of the reconstruction errors.

We investigated extreme reconstruction errors with the idea that PD patients should exhibit
very abnormal voxels in larger quantities. Accordingly, we considered an extreme quantile
(eg. the 98% quantile) of the distribution of errors in the control population as threshold
value to decide whether or not a given voxel was considered as abnormal, hereafter called
the abnormality threshold.

Next, for each control and PD subject, we counted the number of extreme abnormalities
detected in every structure as a percentage. The idea being to classify a subject as PD or
healthy when this number was above a certain value. The critical choice of this value was
investigated using a Receiver Operator Curve (ROC) of sensitivity and specificity.
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Truly, the imbalanced nature of the test set (30 healthy and 258 PD brain hemispheres) de-
manded an evaluation criterion that is well adapted to evaluate performance in each class,
independently from class prevalence. The trade-off between sensitivity and specificity de-
picted by the ROC curve deemed itself the best adapted. What is more, the area under the
ROC curve (AUC) can be directly used as a measure of classification performance.

However, to classify any future patients or controls, the following question must be an-
swered: how much abnormal voxels are typical in the healthy population ? As every point
in the ROC curve corresponds to the sensitivity and specificity values obtained by a given
threshold, the point closest to a perfect sensitivity and specificity can be considered as the
percentage of abnormality threshold, hereafter called, the pathological threshold. This is
illustrated on Figure 5.4.

FIGURE 5.4: Histogram of the percentage of WM voxels considered as abnormal for the
controls and the patients (left) and the corresponding ROC curve (right). The pathological

threshold is indicated by a red point.

And so, the abnormality threshold serves for classification at the voxel-level, while the
pathological threshold differentiates subjects at the hemisphere-level or ROI-level. The clas-
sification performance of the pathological threshold can be evaluated using the geometric
mean (g-mean) between sensitivity and specificity :

G−mean =
√
Sensibility × Specificity (5.9)

Additionally, to help evaluate the localization of anomalies, two atlases were applied: the
Neuromorphometrics atlas [119] and the MNI PD25 atlas [120]. The first is used to segment
the brain into 8 macro-regions: Subcortical structures, White matter and the 5 gray matter
lobes (Frontal, Temporal, Parietal, Occipital, Cingulaire/Insulaire). The latter was specifi-
cally designed for PD patient exploration. It contains 8 regions: substantia nigra (SN), red
nucleus (RN), subthalamic nucleus (STN), globus pallidus interna and externa (GPi, GPe),
thalamus, putamen and caudate nucleus. Both atlases are depicted in Figure 5.5
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FIGURE 5.5: MNIPD25 (top) and Neuromorphometrics (bottom) modified atlases to seg-
ment subcortical and brain regions on the subject’s hemispheres.

For all of the before-mentioned regions of interest (ROI), we calculated the ROC-AUC and
the g-mean of the associated pathological threshold. The results across all sample popula-
tions for all models are featured in the following section.

Next arises the question of how would this pipeline perform when classifying new incom-
ing subjects. In an effort to begin to answer this question, we made use of the test datasets
of every sample, and employed a logistic regression onto the percentage of abnormal voxels
in the individuals for the whole hemisphere and in every ROI studied. In a 5-fold stratified
cross-validation the logistic regression was fitted onto the 80% of the dataset and predicted
the type of the remaining 20% (control or patient). The g-mean score was once again cho-
sen to measure the quality of the predictions. Different tests were realized to examine the
performance of different ROI combinations.

5.3 Results

As it can be observed on Figure 5.6 , the best reconstructions are achieved by the sAE, which
is expected as there are not any regularization constraints for the reconstructions. The sVAE
generates quite good reconstructions as well, on the contrary, the dVAE is unable to recon-
struct fine details in the images, specially around the circonvolutions and the subcortical
structures. This may be caused by the loss of information in its fully connected layers.
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FIGURE 5.6: Example of an FA (top) and MD (middle) reconstruction of a brain hemisphere
(first column) from the sAE, sVAE and dVAE trained architectures. The compound recon-

struction error of the two feature maps is also featured (bottom).

The first performance evaluation corresponds to the ROC-AUC obtained when comparing,
for each ROI, the percentage of values above the 98% quantile of the distribution of recon-
struction errors originated by healthy controls. The results displayed in Figure 5.7 show
that comparing the quantities of abnormal voxels in the whole hemisphere yields satisfac-
tory results with an average AUC of 67.6%, 67.5% and 63% for the sAE, sVAE and dVAE
respectively.

FIGURE 5.7: Obtained ROC-AUC scores for the whole brain hemisphere (first) and several
ROIs.

Due to the lack of ground truth, we cannot say that a model is superior to one another but
for the rest of the study we focus on the scores obtained by the sAE and take those of the
sVAE as a sign of robustness.
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FIGURE 5.8: Obtained G-mean scores for the whole brain hemisphere (first) and several
ROIs.

The ROC curves belonging to very population sample throw an specific pathological thresh-
old from which the associated g-mean score can be computed. For example, in average, we
expect that any hemisphere sAE reconstruction with more than 2.20% of abnormal voxels
(see 5.2.3), most likely belongs to a PD patient. The averages of the ROC-AUC scores, the
retained pathological thresholds and their associated g-mean scores are presented on Table
5.2.

Stucture ROC-AUC (%) P. threshold (%) G-mean (%)

Brain 67.6 2.18 64.6
Subcortical 62.0 1.02 61.2

White Matter 69.0 4.24 67.4
Frontal 58.4 1.02 60.4

Temporal 65.1 1.70 64.4
Parietal 64.7 0.80 61.1

Occipital 64.4 1.98 61.7
Cing./Ins. 61.0 1.66 58.5

RN 56.7 9.21 57.5
SN 57.6 20.96 57.7

STN 54.1 19.35 53.6
Cau 59.1 1.03 58.3
Put 60.5 1.08 60.4

GPe 57.6 2.91 57.6
GPi 62.5 5.11 62.2
Th 60.9 1.54 61.7

TABLE 5.2: ROC-AUC scores obtained from sAE reconstructions, the pathological threshold
retained from the ROC curves and the associated g-mean scores. All in percentages
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Still, it is interesting to observe the variation of the g-mean classification scores obtained for
every ROI as presented in Figure 5.8

We notice that the macro-structures that obtained the highest scores for the sAE reconstruc-
tions are the White Matter and the Temporal lobe with a g-mean average of 67.4% (p.t.
4.24%) and 64.4% (p.t. 1.7%) respectively and that within the subcortical structures, it is the
internal part of the Globus Pallidus (GPi) and the Thalamus that achieved the best perfor-
mances in average with a g-mean score of 62% for both. This being said, the variation of the
temporal lobe scores is quite important (std: 5.6%) compared to the other four ROIs. What
is more, the g-mean score variation associated to the Temporal lobe sVAE reconstructions is
the highest one out of all ROIs with a value of 65.1 ± 6.6%. For comparison, the White Mat-
ter obtained a g-mean score (sVAE) of 66.2 ± 4.3%, the GPi, 60.1 ± 3.5% and the Thalamus,
60.5 ± 3.2%.

In order further exploit the good classification results of the white matter, we used the John
Hopkins University (JHU) WM atlas [121] to search for a specific ROI were abnormalities
were clustered. The regions of the atlas that were mainly concentrated on the midline of the
brain were suppressed to keep only regions that were well represented in both hemispheres
(Figure 5.9), there remained: the three segments of the corps callosum (genu, body and sple-
nium); the cerebral peduncle; the anterior, posterior and retrolenticular limb of the internal
capsule (AIC, PIC, RlIC); the external capsule; the anterior, superior and posterior part of
the corona radiata (ACR, SCR, PCR); the posterior thalamic radiation (PTR) including the
optic radiation; the cigulate gyrus; the hippocampus; the fornix; the tapetum; the superior
longitudinal fasciliculus (SLF); the uncinate fascilicus (UF); the superior fronto-occipital fas-
ciliculus (SFOF); and the sagittal stratum, which includes the inferior longitidinal fasciculus
and inferior fronto-occipital fasciculus.

FIGURE 5.9: White Matter John Hopkins atlas in one hemisphere

We found that the sagittal stratum, the SLF and the PTR had the best sAE g-mean results
with averages of 63, 62 and 62% accordingly.
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5.3.1 Performance predictions

The results of our 5-fold stratified cross-validation employed to predict the performances
that our pipeline could produce on new data showed that the threshold on the whole hemi-
sphere has the best performance with and average g-mean of 61%, closely followed by white
matter (60.7%) and the combination of the 5 gray-matter lobes (59.3%). The combination of
several smaller ROIs yielded similar results as shown in Figure 5.10. ROI 1 is the combi-
nation of all regions in the JHU atlas, ROI 2 is composed of 11 white matter regions found
near the subcortical structures of the brain (AlIC, PlIC, RlIC, ACR, SCR, PCR, PTR, sagittal
stratum, hippocampus, SLF, SFOF), ROI 3 is constituted by 3 subcortical structures : the GPi,
the thalamus and the SN, ROI 4 includes ROI 3 plus the AlIC, PlIC, SCR and PTR, these 4
regions surround the three subcortical structures. Finally, ROI 5 is composed of the sagittal
stratum, the SLF and the PTR.

FIGURE 5.10: G-mean prediction scores for the whole brain hemispheres, the GM lobes, the
White Matter and 5 composed ROIs.

While on average, all g-mean scores oscillate around 60%, ROI 3 exhibits the worst score
(55.7 ± 6.5 %), ROI 1 has the greatest standard deviation (58.7 ± 9.9 %) and the whole brain
hemisphere the smallest (61.0 ± 4.8 %).

As seen in Chapter 3 some classification methods are more successful in detecting anoma-
lies in PD patients that present mild cognitive impairment (MCI) versus patients without
cognitive symptoms [47, 48, 24, 62]. To test for this eventuality in our dataset, we divided
the patients into the two categories based on their MoCA test scores. The patients with a
score below 26 points were classified as MCI and the rest as "normal cognition".

A secondary classification was made based on their motor symptoms. Indeed, PD often
presents unilateral symptoms in the early stages of the disease, and thus, following the in-
spiration of other studies [12, 89] we studied the prediction differences on the ipsilateral
(the side where symptoms are presented) and contralateral (the opposite side) hemispheres
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based on the UPDRS III test scores. For many patients, however, motor symptoms are pre-
sented on both sides and so an hemisphere was considered as symptomatic if the sum of the
UPDRS III scores related to the hemisphere is equal or above 10 points.

The logistic regression cross-validation procedure was repeated for these four subsets of
patients alongside with the combination of patients that have MCI and important motor
symptoms. The results are displayed on Figure 5.11.

FIGURE 5.11: Logistic regression prediction scores for different subsets of patients hemi-
spheres regarding their cognitive symptoms (MCI or normal) and their motor symptoms.

5.3.2 Assessment at 48 months

While we are particularly interested on early diffusivity changes in PD patients, we chose
to assess the efficacy of our methodology on discriminating between healthy controls and
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PD patients 48 months after their diagnosis. In consequence, we extracted 41 advanced PD
patients (Age: 63 ± 8.2, Sex: 26M, 16F) from the PPMI database. The FA and MD parameter
maps per hemisphere were extracted with the same pipeline as the baseline patients and
healthy controls (see Section 5.2.1).

The parameter maps of the new patients were reconstructed by the pre-trained autoencoder
architectures and abnormal voxels were identified based on the same reconstruction error
criteria as for the rest of the subjects (see Section 5.2.3). The discrimination between patients
and controls is dependant on the percentage of abnormal voxels in different ROIs. For the
ten train controls sub-populations, a logistic regression was trained with the information
from healthy controls and PD patients at baseline, then tested on the data of the advanced
PD patients.

The effect of cognitive symptoms was briefly explored as well, by training and testing the
logistic regressions only with patients in the MCI group in one instance and only with cog-
nitively compliant patients in another. The results are presented in Figure 5.12.

FIGURE 5.12: G-mean prediction scores for 41 patients 48 months after diagnosis.
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5.4 Discussion

In this Chapter we designed and evaluated a pipeline for the detection of anomalies in the
diffusion MR data of newly diagnosed PD patients. Fully convolutional auto-encoders and
variational auto-encoders constituted the main building blocks our our approach.

We were able to appropriately train the architectures with a medium-size collection of sam-
ples (41 controls) and while preserving spatial information by employing 2D slices instead
of 3D volumes and considering brain hemispheres instead of whole brain images. Indeed,
classical techniques of data augmentation such as flipping, cropping and rotating images
are irrelevant to our application as the goal is to learn the normal distribution of quantita-
tive data. What is more, we found that the models were better suited to learn to reconstruct
normalized images.

Our results show that the brain reconstructions of PD patients are significantly different
than those of healthy controls for the sAE, sVAE and dVAE models. In our application,
there is not any ground truth permitting to favor one model over the others, nevertheless,
supervised learning applications of auto-encoders in the literature have shown that dVAE
architectures struggle to reconstruct fine details in brain scans, for example, gyri [11].

An original evaluation procedure was conceived to compare the reconstruction error pro-
files of healthy individuals versus PD patients. The procedure was based on the hypothesis
that the reconstructions of patients hemispheres should exhibit a largest quantity of ill re-
constructed points and thus we compared the percentages of abnormal voxels in the brain
hemispheres of our subjects. By defining the percentage that presents the best compromise
between sensitivity and specificity as a pathological threshold, we transformed our dilemma
into a binary classification problem for which we can calculate the discriminating and pre-
dictive performances. This procedure was followed for the whole brain hemisphere but also
for specific regions of interest such as gray matter cortical lobes, subcortical structures and
white matter structures.

With an unbalanced datasets we took special care in employing convenient metrics such as
the geometric mean between specificity and sensibility, but also in generalizing our results
by effectuating a 10-fold cross-validation to train and test our results. This turned out to be
a key part in the study. As a matter of fact, for no obvious reason the first sub-population
achieves much better performances than the average of our ten populations. For indication,
the sAE g-mean score associated to the brain hemisphere is of 74.3% while the average is
64.6%.

We were also particularly cautious with our pre-processing. Indeed, on a previous study
[122] we opted to extract our FA and MD tensor metrics using an older pipeline and obtained
considerably better results in the subcortical structures. Nevertheless the parameter maps
calculated with the current state-of-the-art software, MRtrix3, are visually better while the
older maps displayed small artifacts that could have biased the study.
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Seeing that DTI was designed to study white matter characteristics, it did not come as a
surprise that some of the best performances were attained by the hemisphere’s white matter
and white matter structures, however, by observing the sAE pathological threshold inferred
for small subcortical structures like the substantia nigra (20.96%) and the STN (19.35%) we
suspect that the spatial auto-encoder was unable to produce accurate reconstructions of
these regions and it would be beneficial to train the networks with patch images concentrat-
ing on basal ganglia in default to including more control subjects in the training population
in order to better study diffusion abnormalities in the subcortical structures of PD patients
with this method.

Like in other investigations, we find that patients displaying mild cognitive impairment
are significantly easier to classify than cognitively compliant patients using the whole brain
hemisphere, the combination of gray matter lobes or white matter. However, the combi-
nation of all JHU white matter structures or the 11 white matter regions in ROI 2 do not
improve their performances, which may be an indication that the white matter anomalies
in MCI patients are often toward the sagittal stratum, SLF and PTR (ROI 5) but generally
diffuse. It is also remarkable that the g-mean prediction scores of the GPi, thalamus and
SN (ROI 3) are better for the patients without cognitive symptoms that those with MCI.
This may be an indication of the presence of two types of patients with different diffusion
anomaly locations.

Our research also hints that motor disturbances mainly manifests as diffusion anomalies in
the white matter of the contralateral hemisphere.

The predictive assessment on patients 48 months after diagnosis is difficult to interpret. We
could expect that after two years some diffusion properties of the brain would had contin-
ued to degrade, however, all but one of these patients take at least one PD related medica-
tion. We can see an indication of degradation in the white matter structures surrounding the
basal ganglia from the results of ROI1, ROI2 and ROI4. The whole hemisphere of patients
with MCI (8−→ 16 hemispheres) have the best g-mean scores from the whole study with an
average of 79.6%. As the cognitive symptoms progress, this may be due to cortical atrophy
[47, 24].

From a competitive standpoint, our approach achieved similar performances than other dif-
fusion studies. Notably, the cross-validation procedure of Schuff and colleagues [12] ob-
tained a ROC AUC of 59% for the rostral segment of the SN which is comparable to our
ROC AUC of 57.6% for the complete SN. Then, Correia and colleagues [13] obtained a mean
accuracy score of 59.7% through a cross-validation procedure on their SVM and this selected
regions of white matter. This is in accordance to our average g-mean prediction score of 61%
for 11 white matter regions (ROI2).

Oppositely, our results fall below those achieved by Li and colleagues [88] employing a
stacked spatial autoencoder with GM, WM and mean diffusivity features for 116 ROIs as
input. Indeed they got a ROC AUC of 86% but they did not indicate any cross-validation
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or generalization procedure. Still, it is possible that the relationship between white matter
quantity, gray matter quantity and mean diffusion brings out anomalies that are not signifi-
cant when studying mophometric and diffusion properties separately.

Taken together, these results offer compelling evidence that deep learning-based models
are useful to locate subtle anomalies, as found in de novo PD patients, even when trained
with a moderate number of images and only FA and MD measures. Such models could
be of interest for studying other neurological disorders when small lesions are suspected
(such as mild traumatic brain injury) and difficult to localize for a human observer. We
may expect that the insertion of additional quantitative MRI measures, such as perfusion,
iron content and tissue relaxation time, would improve abnormalities detection. Moreover,
the spatial localization of subtle alterations in MR imaging modalities, sensitive to different
physiological parameters, could bring new knowledge about the physio-pathology of the
underlying disease.

In future research we will seek to train a classifier with the latent vectors produced by the
encoder part of the architectures to decrease the level of post-processing necessary. It would
also be interesting to include clinical scores in the classification as a means to study pheno-
types of Parkinson’s disease.

5.5 Conclusion

Auto-encoders, and unsupervised deep anomaly detection techniques in general, are cost
effective techniques that do not require annotated data for training. Instead, they learn the
inherent data characteristics to define normal data behavior from which outlier detection is
possible.

The main limitation of these methods in the medical field is the requirement of large amounts
of data, specially when attempting to learn complex data, as they are sensitive to noise and
data corruption. The presented pipeline for anomaly detection employing auto-encoders
could be used as a blueprint to detect subtle anomalies for medical purposes with a moder-
ate size dataset.

While our results do not highlight a particular diffusion biomarker for early PD, they give
an indication on the presence of diffuse anomalies mainly located in the white matter. The
addition of more training data and other parameter maps could not be but beneficial to our
classification performances.
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Chapter 6

Characterization of MR multivariate
data using mixture models

6.1 A word on mixture models

Clustering is an unsupervised learning problem intended to group unlabeled examples
sharing common characteristics within a dataset. Clustering has a myriad of uses in im-
age analysis going from segmentation to anomaly detection. When presented with simple
problems where clusters are unlikely to overlap, hard clustering methods like the k-means
algorithm may suffice. However, it is often useful to obtain a measure of probability or like-
lihood for every data point to be associated with a specific cluster. This is achieved by soft
clustering methods, mainly mixture models.

Mixture models are statistical models that combine several probability distributions, each
representing a cluster in the dataset. Formally put, let Y ∈ RM be a real random variable in
dimension M, M ∈ N∗. The corresponding mixture model is comprised by K ∈ N∗ probabil-
ity distributions {f1, ..., fK} described by their respective parameters θ = {θ1, ..., θK}.

The probability density function p of the mixture is defined by:

∀y ∈ RM, p(y; θ, π) =
K∑

k=1

πkfk(y; θk) (6.1)

where π = {π1, ..., πK} are the mixture proportions: ∀k ∈ [1; K], 0 < πk < 1 and
∑K

k=1 πk = 1.

Given a sample of independent realizations {y1, ...,yN} from the mixture model, the likeli-
hood of the sample is defined by:

p(y1, ...,yN; θ, π) =
N∏

n=1

K∑

k=1

πkfk(yn; θk) (6.2)
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The estimation of a mixture model from a sample is generally done with an Expectation-
Maximization algorithm (EM). The EM algorithm jointly estimates the mixture proportions
π and parameters θ in an iterative two step process :

• E-step. Estimate for each data point the probability of belonging to each possible clus-
ter given the current values of the parameters.

• M-step. Update the mixture parameters using the previous probabilistic assignments
to increase the likelihood of the observed data set.

Before the first E-step, the algorithm is initialized, for example using the results of the k-
means algorithm and after each M-step the log-likelihood of the model is calculated until
the increase of the computed log-likelihood is below a given threshold. The algorithm is
shown to increase the likelihood at each iteration and is hoped to reach a (local) maximum:

(
θ̂, π̂
)

= arg max(θ,π) log p(y1, ...,yN; θ, π) (6.3)

6.2 Mixtures of Multiple Scaled t-distributions (MMST)

It is fair to say that Gaussian distributions are the most popular probability distributions
employed in mixture models, yet, like all other elliptical distributions (multivariate Student,
Laplace, etc.) They are limited by the type of elliptical shapes they allow, making them
unsuitable to model data presenting elongated and strongly non-elliptical subgroups which
is often the case for physiological parameters.

As an alternative, Forbes & Wraith [14] introduced a richer family of multiple scaled t-
distributions (MST) which is a generalization of the multivariate t-distributions. These
heavy-tailed distributions are endowed with variable marginal amounts of tail-weight and
their mixtures have been shown to provide an efficient alternative to Gaussian mixtures. In
particular, their ability to model over-dispersed values is illustrated in Figure 6.1.

FIGURE 6.1: Gaussian versus MST mixture models on synthetic bivariate data.
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Parting from a M-dimensional Gaussian distribution denoted NM (y; θ) of parameters θ =

(µ,Σ), where µ correspond to the mean and Σ to the covariance; a t-distribution can be
represented as an infinite mixture of scaled Gaussians of the form:

p(y;µ,Σ, θ) =

∫ ∞

0
NM (y;µ,Σ/w) fW (w; θ) dw (6.4)

Most commonly, fW takes the form of a Gamma distribution G(ν/2, ν/2) where ν denotes
the degrees of freedom. The resulting density distribution denoted by tM ((y;µ,Σ, ν) is ex-
pressed:

tM (y;µ,Σ, ν) =

∫ ∞

0
NM (y;µ,Σ/w) G(w; ν/2, ν/2) dw (6.5)

=
Γ((ν +M)/2)

|Σ|1/2 Γ(ν/2) (πν)M/2
[1 + δ(y, µ,Σ)/ν]−(ν+M)/2

where δ(y, µ,Σ) = (y − µ)TΣ−1(y − µ) is the Mahalanobis distance between y and µ (T

means transpose) and Γ is the Gamma function: Γ(x) =
∫ +∞
0 tx−1 exp(−t)dt , x ∈ R∗+. Note

that µ is the mean when ν > 1 but Σ is not strictly speaking the covariance matrix of the
t-distribution which is ν/(ν − 2)Σ when ν > 2.

The weight variable W is commonly univariate which results in tails with the same heav-
iness in all dimensions. Forbes and Wraight propose to parametrize the scale matrix pa-
rameter into Σ = DADT , where D is the matrix of eigenvectors of Σ and A is a diagonal
matrix with the corresponding eigenvalues of Σ. The matrix D determines the orientation of
the Gaussian and A its shape. The scaled Gaussian part is then set toNM (y;µ,D∆wADT ) ,
where ∆w = diag(w−11 , . . . , w−1M ) is theM×M diagonal matrix whose diagonal components
are the inverse weights {w−11 , . . . , w−1M }. The full expression then becomes:

p(y;µ,D,A, θ) =

∫ ∞

0
...

∫ ∞

0
NM (y;µ,D∆wADT ) fw(w1...wM ; θ) dw1...dwM (6.6)

where fw is now a M-variate density function. When the weights are all one, a standard
multivariate Gaussian case is recovered. If the weights are independent so that, i.e. with θ =

{θ1, ..., θM}, fw(w1...wM ; θ) = fW1(w1; θ1)...fWM
(wM ; θM ), we can then use the expression

below:

NM (y;µ,D∆wADT ) =

M∏

m=1

N1([D
T (y − µ)]m; 0, Amw

−1
m ) (6.7)

where [DT (y − µ)]m denotes the mth component of vector DT (y − µ) and Am the mth
diagonal element of the diagonal matrix A (or equivalently the mth eigenvalue of Σ). Using
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(6.7), it follows that

p(y;µ,D,A, θ) =
M∏

m=1

∫ ∞

0
N1([D

T (y − µ)]m; 0, Amw
−1
m ) fWm(wm; θm) dwm . (6.8)

The terms in the product reduce then to standard univariate scale mixtures and in particular,
when setting fWm(wm; θm) to a Gamma distribution G(wm; νm/2, νm/2), it follows a gener-
alization of the multivariate t-distribution. We can use (6.8) to express easily the density
denoted by pMST(y;µ,Σ, ν) with ν = {ν1, ..., νM}:

pMST(y;µ,D,A, ν) =
M∏

m=1

Γ((νm + 1)/2)

Γ(νm/2)(Amνmπ)1/2

(
1 +

[DT (y − µ)]2m
Amνm

)−(νm+1)/2

(6.9)

We can then rewrite equation (6.1) as follows to have the density of a mixture of MST (MMST
model) ∀y ∈ RM:

pMMST(y;ψ) =
K∑

k=1

πkpMST(y;µk,Dk,Ak, νk) (6.10)

=
K∑

k=1

πk

M∏

m=1

Γ
(
νk,m+1

2

)

Γ
(νk,m

2

)
([Ak]m,mνk,mπ)

1
2

(
1 +

[Dk(y − µk)]2m
[Ak]m,mνk,m

)− νk,m+1

2

with: ψ = {ψ1, ..., ψK}where ψk = (πk, µk,Dk,Ak, νk) for k ∈ [1; K].

6.3 Pipeline: applying MMST for anomaly detection

With all the mathematical tools available to fit a MMST onto a multivariate dataset, it is also
possible to use the generative properties of mixture models to simulate data and to appraise
the probability of new data to belong to an existing model.

Arnaud & colleagues [4] produced an original pipeline employing the MMST R library
"ompmmsd_0.7" (available at: https://www-ljk.imag.fr/membres/Stephane.Despreaux/
MMSD/Download/0.7/) to characterize tumors in a rodent model using MRI data. The
procedure is data-driven and requires the availability of two data sets: one from healthy
subjects and another one from subjects where we expect to find abnormalities, in this case,
traces of a pathology. First, a mixture model is fitted to the healthy subjects voxels assum-
ing that healthy subjects present a set of distinct healthy tissues characterized by different
quantitative characteristics. This reference model is later used to detect voxels which exhibit
abnormal MR features with respect to the reference model, in the healthy and pathological
subjects. The newfound abnormal voxels are in turn used to build another mixture model
that describes the classes of atypical characteristics found in the data. The proportions of

https://www-ljk.imag.fr/membres/Stephane.Despreaux/MMSD/Download/0.7/
https://www-ljk.imag.fr/membres/Stephane.Despreaux/MMSD/Download/0.7/
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theses classes in each subject are used as a signature of the pathology and finally, these sig-
natures are refined in an spatial post-processing step.

To ensure a fully automatic procedure Arnaud & colleagues opted for a data-driven way
to choose the appropriate number of clusters K for the healthy and pathological mixture
models. Considering a too small K may not allow a good fit of the data while a too large
K may lead to overfitting issues. The choice of K was treated as a model selection problem
by minimizing a penalized log-likelihood criterion to regulate the complexity of the model.
The data-driven slope-heuristic method, developed by Baudry, Mugis & Michel [123] was
employed to tune the penalization term.

In practice, for a collection of mixture models identified by their cluster numbersK between
1 and Kmax, a subset of fK = {f1, . . . , fKmax−2} models is extracted. Each model fK is de-
scribed by its log-likelihood γK and its number of free parameters PK . On this subset, a
robust linear regression on the negative log-likelihoods {γ1, . . . , γKmax−2} is computed with
{P1, . . . , PKmax−2} as regressors and the regression slope CK is estimated.

The optimal number of clusters K∗ corresponds to the model f∗K which minimizes the asso-
ciated penalized log-likelihood:

f∗K = argmin(fk∈fK) {2CKPK − γK}

This corresponds to the first model from which the log-likelihood is in a linear regime with
respect to the number of free parameters. It is also the last model before overfitting.

Equipped with this automatic model selection functionality, the full pipeline yielded very
satisfactory results and even allowed brain tumor classification [4]. Before applying it to the
detection of anomalies in the quantitative MR brain data of ’de novo’ Parkinsonian patients,
some modifications were needed. One of the main differences between the two problems is
that while tumors express strong differences with respect to healthy tissues, Parkinsonian
anomalies are not clearly defined; what is more, they are expected to be subtle, especially in
’de novo’ cases. For instance, it is well documented that gliome vascularity is altered and the
diffusion of water within the tumor is different [124], on the other side, studies regarding
brain perfusion in PD patients are limited and research in diffusion data report divided
results as already exposed in Section 3. This comes into play when attempting to separate
abnormal from normal voxels. In the work of [4], a two component mixture model was fitted
to the log-likelihood scores of all voxels with respect to the reference model. This resulted
in two distinct components with small tail, which is not the case in the PD application. For
this reason, we decided to rather define a threshold of abnormality, as presented later in this
section.

Another important difference, is the access to a ground truth segmentation of abnormalities.
In effect, in the gliome application Arnaud & colleagues could calculate different perfor-
mance scores (i.e. DICE, ARI) to compare their results to the manual segmentation and
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characterization furnished by physicians whilst the application of the pipeline is completely
exploratory. Our goal is not to improve or automatize an existing method for anomaly de-
tection but instead to model a combined set of measures from multiple MRI modalities in
the hope to provide a complete picture of the initial functional changes caused by PD.

Additionally, some optimizations were added to enable the application of the pipeline to
bigger datasets. As mentioned before, the models are fit onto the parameter values at voxel-
level and not surprisingly humans brains are bigger than rodent brains and their MR images
often have a better resolution. As a matter of fact a human brain measures 1 200 cm3 in
average whilst a rat brain measures merely 2.59 cm3. In a diffusion parameter map, this
translates to 175 000 voxels for a human brain and approximately 8 000 for a rat brain.

Hereafter the modified pipeline of five steps is presented in more detail.

6.3.1 Reference Model

Each subject is associated to M co-localized MR parameter maps that provide for each
voxel v a M -dimensional vector of parameters denoted yv. The set of healthy voxels is
denoted VH and that of patients voxels VH , while their corresponding datasets are defined
as YH = {yv, v ∈ VH} and YP = {yv, v ∈ VP } for the healthy and pathological individuals
correspondingly.

In this first step of the procedure an MST mixture is fitted to YH building a reference model
of density fH that describes healthy tissues.

fH(y|π, θ) =

KH∑

k=1

πkMST (y;ψk), (6.11)

where KH is the number of mixture components, and each component is characterized by
a proportion πk and an MSD parameter ψk. The EM algorithm is used to obtain the best fit
of the MST mixture on YH . Iteratively, the MST mixture model parameters ψ = {µ,D,A, ν}
and the π proportions of every cluster are optimized to maximize the global log-likelihood
of the model.

The KH clusters in fH account for the potential heterogeneity in the parameter values be-
longing to different brain tissues or structures within the human brain. fH is referred to as
the reference model and its generative properties permit the detection of abnormalities.

6.3.2 Outlier Detection

Now the goal is to identify any voxels manifesting abnormal MR parameter values. For this
anomaly detection task the log-likelihood score is considered as a measure of proximity for
every v (associated to value yv) to the reference healthy model (represented by fH ).
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The rationale is that voxels from healthy subjects are more likely to have a high log-score
while pathological voxels may not be well explained by the reference model and conse-
quently have a lower log-score.

This is not restricted to the pathological dataset. Surely, it is interesting to recognize any
voxels that are not well statistically explained by fH within the healthy dataset, in order to
differentiate healthy heterogeneity from abnormalities related to PD.

Therefore, the log-likelihood score with respect to fH of all voxels included in the healthy
and pathological datasets {log fH(yv), v ∈ VH ∪VP } is computed and the ensemble of values
is used to establish an abnormality threshold noted τα.

Every possible threshold τα is associated to a certain false positive error rate (FPR) α. In
other words, the probability a log-score is smaller than τα, although the log-score is that of
an healthy voxel, is α.

Formally τα is the value such that:

P (log(fH(Y )) < τα) = α,

when Y is a random variable following the fh reference model distribution. In practice,
while fH is known explicitly, the probability distribution of log(fH(Y )) is not. However, it
is easy to simulate this distribution so that τα can be computed using empirical quantiles.

α is fixed to an acceptable value (i.e. 5%) and then all the voxels whose log-score is below τα

are labeled as abnormal and the corresponding measures provide a set of parameters that
are referred to as the abnormal data set:

YA = {yv, v ∈ VH ∪ VP , s.t. log fH(yv) < τα}.

We note that several thresholds of abnormality can be established to study the proportions
and localization of the resulting nested anomaly segmentations.

6.3.3 Atypical Model

The following step is dedicated to characterize the newly found abnormal voxels. A new
model denoted by fA is then fitted to YA in the same manner as the fH model was fitted to
the YH dataset.

fA(y|η, φ) =

KA∑

k=1

ηkMST (y;φk). (6.12)
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This abnormality model is used to account for the fact that voxels detected as abnormal may
belong to different abnormality classes, with different physiological characteristics. Typi-
cally, the above formula indicates that among the YA set there are KA different clusters.

6.3.4 Signature Extraction

The different abnormality classes can in turn be used to build a signature ρS of each subject
S by determining the proportion of voxels that are assigned to each of the KA group. The
probability that a voxel v ∈ VS belongs to cluster k among KA clusters is expressed as :

pvk =
ηkMST (yv;φk)∑KA
l=1 ηlMST (yv;φl)

and thus, the mean probability over all voxels in VS is

pSk =

∑
v∈VS p

v
k

nS
(6.13)

The resulting signature is then :
ρS = (pS1 , . . . , p

S
KA

) (6.14)

This signature aims to characterize and classify subjects. Notably, discriminant analysis
models can be used to learn the differences between healthy and pathological signatures
to later classify unlabeled subjects. In addition, the presence of distinct signature patterns
among the patients may indicate different phenotypes of the disease.

6.3.5 Spatial post-processing

As explained in [4], we can make use of this classification information and of additional
spatial information to refine abnormality detection. For instance, clusters of less than 4
atypical voxels are discarded. Figure 6.2 shows the effect of such a post-processing.

FIGURE 6.2: Effect of post-treatment on the subject’s signatures
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6.4 Application 1: AGIR-Park data study

6.4.1 Data presentation and pre-processing

The first application of the previously presented pipeline to characterize PD abnormalities
was carried out on a small population consisting on three healthy subjects (C1-C3) (Age:
{28, 40, 50}; Sex: 2M,1F) and ten de novo PD patients (P1-P10) (Age ∈ [36, 66]; H&Y score ≤ 2;
Sex: 7M, 3F).

For each individual three MR sequences were acquired on a Philips 3T scanner at the IR-
MaGe platform in Grenoble.

• Anatomical image: T1 3D MP-RAGE with a spatial resolution of 1 x 1 x 1 mm3, 180
sagittal slices, an acquisition matrix of 256 × 240 and a TR/TE/TI = 4.8/2.3/616 ms
and a flip angle of 9◦.

• Diffusion scan: Two DTI iso SENSE scans of 26 slices centered on the visual tract of
dimensions 112 × 112 were acquired with 64 gradient directions. One of the volumes
was acquired on the anterior/posterior orientation and the other one on the posteri-
or/anterior orientation. Both with a TE/TR = 90/3300 ms.

• Blood perfusion scan: pCASL scan covering the whole brain with a labelling at 1800
ms and a post-labelling delay of 1643 ms and an EPI single-shot (3.5× 3.5× 3.5 mm3,
20 slices, TE/TR = 4230/12ms).

We extracted FA and MD parameter maps from the DTI images following a classic pipeline
of MRtrix3 which includes denoising, Gibbs artifacts correction, merging of the two DTI
orientations, eddy current correction, tensor calculation and metric inference. The CBF maps
were derived from the pCASL images with an in-house method following the indications in
[125].

The computed maps were coregistered and resliced (1mm isotropic) with respect to the T1-
weighted image using SPM12. Having the images in the same space permits us to have for
each voxel v, three corresponding feature values yv = (FAv,MDv,CBFv) to which we could
fit the reference and atypical MMST models.

We opted to fit the model on the voxels belonging to the subcortical structures in the MNI
PD25 atlas [120] (introduced in Chapter 5). Indeed, as the diffusion scan only covered a
section of the brain, we decided to concentrate in the subcortical structures that were, for
their majority, entirely comprised in the 26 axial slices available.
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6.4.2 Results

Several MMST models of K ∈ {1; 12} were fitted to the control subjects data, the slope
heuristic retained a reference model (fH ) of KH = 6 clusters that obtained the best com-
promise between log-likelihood and complexity of the model. The fH clusters seemingly
respect spatial cues such as symmetry and structural composition. A projection of these ref-
erence classes onto the control subjects subcortical structures is showcased in Figure 6.3-D).

FIGURE 6.3: Two-by-two scatter plots of the multivariate physiological values to which
the reference model was fitted colored by cluster: A)FA as a function of CBF. B)CBF as a
function of MD. C) MD as a function of FA. D) Spatial localization of the classes in the

subject’s subcortical structures.

In Figure 6.3 it is visually apparent that the distributions of the physiological parameters
here studied (FA,MD and CBF) are not Gaussian (i.e. elliptical), thus renforcing the utility
of MMST models. To simplify their comparison, we characterize every fH cluster through
their center µK , which is the vector that indicates the mean value of the cluster in every
parameter dimension, and their size in the mixture πK given as a percentage, as reported in
Table 6.1.

Outliers were detected based on their low likelihood of belonging to this reference model.
The accepted false positive error rate (FPR) α was empirically fixed at 10%, which corre-
sponded to a tα pathological threshold of -5.558722, where α = 100% equates to a negative
log-likelihood threshold of -1.276832.

A total of 51533 voxels (21.6%) with a negative log-likelihood score above tα were deemed
as atypical and thus the MMST atypical model (fA) was fitted to their properties (YA). The
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KH1 KH2 KH3 KH4 KH5 KH6

CBF(ml/100g/min) 38.63 39.37 41.98 29.89 37.81 36.91
FA (scalar) 0.386 0.267 0.158 0.251 0.058 0.003
MD (µm2/s) 696.2 677.3 660.3 805.8 261.7 55.8
Size (%) 32.21 31.81 18.38 9.13 5.79 2.70

TABLE 6.1: Characteristics of the reference model clusters: mean value for every parameter
and overall size in the model.

resulting model counted with KA = 4 clusters, according to the slope heuristic. Only 32719
voxels survived post-treatment, that is 13.7% of all voxels.

Each cluster in fA corresponds to a MST distribution. Table 6.2 provides a summary of these
distributions by their centers and sizes.

KA1 KA2 KA3 KA4

CBF (ml/100g/min) 30.92 74.79 33.51 45.69
FA (scalar) 0.427 0.244 0.145 0.110
MD (µm2/s) 729.4 673.6 1032.3 218.5
Size (%) 27.95 27.61 23.42 21.02

TABLE 6.2: Characteristics of the atypical model
clusters: mean value for every parameter and over-

all size in the model.
FIGURE 6.4: Clusters compar-

ison by parameter means.

The atypical clusters are present in a different proportion for every subject and by observing
their signatures it is possible to verify that there is an evident difference between controls
and patients but also to identify subgroups of signatures within the pathological group. The
signatures of the study after post-treatment are presented in Figure 6.5 (right).

Hierarchical clustering on these signatures identifies two subtypes of patients, the first com-
posed by P4, P6, P7, P10 and the second one by P1, P2, P3, P5, P8 and P9.

The localization of the atypical voxels is also of great importance. Just by looking at the
projection of the atypical voxels with their classes onto the subcortical structures of our
subjects (like in Figure 6.5) we are able to understand that the anomalies encompassed by
the KA4 cluster (green) are probably due to partial volume. As a matter of fact, these voxels
are generally in the rear part of the putamen and the caudate nucleus, near the point were
last diffusion slices were found (see 6.4.1).

Furthermore, we can notice that KA1 clusters (red) are predominantly located on the red
nucleus, the substantia nigra and the subthalamic nucleus, on average between the ten pa-
tients they make up for 21.7, 12.9 and 25.9 % of these structures respectively. In the reference
model, the RN, SN and STN of the control subjects is characterised by the KH1 cluster.
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Comparing the two clusters parameter averages there seems to be a decrease in CBF and an
increase in both FA and MD.

The KA2 cluster has the biggest CBF average (74.79 ml/100g/min) out of both healthy and
atypical clusters. It is mainly present on the biggest subcortical structures, the thalamus
(8.7%) the putamen (6.6%), the external segment of the globus pallidus (4.9%) and the cau-
date nucleus (4.1%).

KA3 abnormalities have the greatest MD values on average (1023.3 µm2/s). They were also
found in the caudate nucleus (6.4%) and in smaller quantities in the internal segment of
the globus pallidus (5.0%), the putamen (3.0%) and the thalamus (2.2%). Half of the patients
present importantKA3 clusters in the colliculus (superior and/or inferior) going up to 76.2%
of the structures for P8.

FIGURE 6.5: Spatial localization of the identified atypical clusters for all study subjects (left)
and their atypical signatures built from the proportion of each cluster on the patients.

The persistent abnormalities in the third control subject are majoritarily from theKA3 cluster
and can be found in the globus pallidus, where they represent 55.8% of the internal segment
on and 15.2% of the external segment.

We calculated the percentage of abnormal voxels belonging to the first three atypical clusters
(KA = 1, 2, 3) in every structure (Table 6.3). In smaller regions (RN, SN, STN, SC, IC), atypi-
cal clusters often take up a bigger part of the structure, while for bigger structures (putamen,
thalamus, caudate nucleus), they constitute a smaller percentage even though the size of the
clusters are considerable.

6.4.3 Discussion

The presented method for the detection of abnormalities in de novo PD patients using MST
mixture models produced encouraging results on a small cohort of three controls and ten
patients. The MMST models were able to capture the complexity of FA, MD and CBF pa-
rameter distributions that are evidently non-elliptical. Despite the fact that the reference
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% P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

RN 2.5 57.8 36.4 25.0 13.2 25.7 30.6 25.7 0 0
SN 46.4 29.4 5.2 16.0 3.0 0 0 18.4 11.3 0
STN 43.6 77.3 0 59.7 16.1 15.1 0 17.0 30.8 0
Cau 32.1 12.9 16.8 18.4 7.1 16.6 3.9 3.6 5.4 0
Put 15.9 26.8 22.4 3.3 12.0 2.0 5.3 11.7 3.1 2.5
GPe 21.6 21.1 7.1 10.5 14.2 2.5 1.9 8.3 1.0 1.9
GPi 31.2 10.2 9.5 50.2 29.1 4.6 1.7 1.2 0.2 5.4
Th 13.5 3.7 9.3 4.7 19.8 4.7 13.1 18.8 39.9 5.8
SC 0 30.5 0 33.3 23.4 0 0 76.2 0 52.4
IC 0 31.9 0 0 0 0 0 33.3 0 0

TABLE 6.3: Percentages of abnormal voxels after post-processing in each patient subcortical
structure.

model was estimated without any spatial information, the retained model is coherent from
an anatomical standpoint and respects symmetry.

The estimation of the atypical model was proven useful in allowing us to eliminate ab-
normalities linked to partial volume interference, what is more, we were able to study the
location of the abnormal clusters and found that the KA1 clusters, mainly located on the
substantia nigra, the red nucleus and the subthalamic nucleus, are characterized by low
CBF and high FA values, which is in accordance with the results of Fernandez-Seara & al.
[15] (Table 3.5) and Couisineau & al. [60] (Table 3.4).

Also, the KA3 abnormalities in the striatum coincide with the higher MD values reported
by Peran & al. [16] (Table 3.6). Nevertheless, these conclusions are not unanimous across
the literature and our cohort is quite small.

Clearly, more subjects are needed to bring out robust biomarkers of PD. However, these
preliminary results show that the application of mixture models of relevant distributions is
informative and promising to correctly discriminate the pathology.

6.5 Application 2: PPMI data study

6.5.1 Data presentation and pre-processing

For the second application we employed diffusion data from the PPMI [6] database, like
in the previous chapter. From PPMI, we pooled the DTI scans of 56 healthy controls (Age:
61.1 ± 9.8, Sex: 34M, 23F) and 129 ’de novo’ PD patients (Age: 61.74 ± 8.96, Sex: 80M,
49F), all measured with a 3T Siemens Trio Tim MRI scanner and configured with the same
acquisition parameters (90◦ flip angle, 64 gradient directions, EP Pulse sequence, TE=88ms)
to limit bias in our study.
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As this method is designed to model quantitative data, we computed the FA (fractional
anisotrophy) and MD (mean diffusivity) parameter maps for all of the subjects using MR-
trix3.

This being a bigger dataset with approximately 7.2 million voxels for the control subjects and
35.9 million voxels for the patients, a considerable amount of RAM memory was required.
The complete pipeline was implemented using R 3.6.3 on a Intel Xeon Gold6130 machine
with 32 cores of 2.1 GHz of processor speed and 384 Go of system memory.

6.5.2 Results

Twelve MMST models of K ∈ {1; 12} were fitted to the diffusion features of all voxels be-
longing to the control subjects (YH = yv; v ∈ VH} where yv = {FAv,MDv}). The model
chosen with the slope heuristic to be the reference model (fH ) counted with KH = 6 clus-
ters. In Figure 6.6 the six clusters are displayed directly on the distribution of FA and MD
values of the control subjects.

FIGURE 6.6: Scatter plot of the FA and MD features belonging to the healthy subjects. The
colors represent the fH clusters.

Each cluster is summarized on Table 6.4 by their cluster mean values and their proportion
on the mixture.

KH1 KH2 KH3 KH4 KH5 KH6

FA (scalar) 0.376 0.187 0.062 0.097 0.540 0.151
MD (µm2/s) 730.0 760.7 2281.8 1172.7 754.6 2237.5
Size (%) 23.49 23.38 17.78 15.53 13.06 6.76

TABLE 6.4: Characteristics of the reference model clusters: mean value for every parameter
and overall size in the model.

Outlier detection was performed on the ensemble of voxels from controls and patients. The
atypical model (fA) was constructed from the voxels with a log-likelihood FPR α ≥ 10% of
belonging to the reference model (YA = {yv, v ∈ VH ∪ VP , s.t. log fH(yv) < τ10%}). Accord-
ing to the slope heuristic, the best fA is composed by KA = 4 clusters that can be described
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by their center (µK), that is the intersection between their mean FA and MD values, and
their proportion within the model (ηK). This characteristics are available on Table 6.5.

KA1 KA2 KA3 KA4

FA (scalar) 0.274 0.153 0.771 0.582
MD (µm2/s 1460.3 3088.6 834.2 362.5
Size (%) 28.08 27.32 25.14 19.46

TABLE 6.5: Characteristics of the atypical model clusters: mean value of FA and MD as well
as size in the model.

From the 1 810 395 voxels detected as atypical, that is 5.5% of all voxels, only 620 950 (1.9%)
remained after post-treatment. The resulting signatures of the study control and patient
subjects are illustrated on Figure 6.7.

FIGURE 6.7: Subjects’ signatures describing the proportion of each atypical subject in their
brain.

There is no apparent difference between neither on the amount nor the class of abnormali-
ties found in PD patients compared to healthy controls. When studying the localization of
the abnormalities, we discovered that most abnormalities were found on the corpus callo-
sum and around the ventricules in general. An additional experiment concentrating on the
subcortical structures exclusively did not produce conclusive results either.

6.5.3 Discussion

The application of MMST models for the detection of diffusion anomalies on a considerably
large dataset produced inconclusive results.

Once again the non-gaussianity of the data indicated that MST distributions are better suited
to describe physiological parameters, however, diffusion anomalies were observed in equal
quantity for control subjects and PD patients.

Most of the abnormalities were located on the corpus callosum. This is the largest white
matter structure of the brain, consisting on a flat bundle of commisural fibers that connect
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the left and right hemispheres. The implication of this structure in Parkinson’s disease and
has been related to cognitive decline [126], yet, a recent case study reporting a PD patient
without corpus callosum (complete agenesis) [127] suggests that the bilateral degenerative
changes in PD may occur independent of the state of the corpus callosum.

It is quite probable that diffusion data alone is not enough to discriminate PD patients from
healthy controls, at least on the early stages of the disease, notwithstanding, to continue the
study it would be interesting to employ our method on a carefully chosen subset of white
matter structures related to specific symptoms assessed by a clinical score from which we
can position our results.

We note that the estimation of the models on a dataset of this size is both time consuming
and computationally expensive. Computational developments are on their way to optimize
the model estimation and adapt the pipeline for large datasets.

6.6 Application 3: SignaPark data study

The INNOBIOPARK study (PI: E. Moro) is a group project of several laboratories and hos-
pital services within the Université Grenoble Alpes, designed to identify potential new and
innovative biomarkers in de novo Parkinson’s disease patients.

The study was designed to include 60 healthy controls and 60 de novo PD patients matched
in age and gender. Five different modalities are assessed at baseline, 1 year and 2 years
follow-up:

1. Detailed clinical evaluation using the current available validated clinical scales (MoCA,
UPDRS, SCOPA, etc.)

2. Dopamine transporter (DAT) SPECT imaging.

3. Comprehensive brain evaluation using MRI.

4. Cortical brain mapping and transcranial magnetic stimulation assessment using a robo-
tized approach.

5. Emotional responses study using a novel paradigm.

The third modality, called SignaPark, is embedded in this thesis project. Healthy volunteers
and de novo PD patients have been included in the protocol since July 2019. Each individual
was imaged during one hour in a Philips Achieva dStream 3T imager at the IRMaGe plat-
form (CHU Grenoble Alpes). Anatomical, perfusion, diffusion and relaxometry sequences
parameterized at IRMaGe were performed.
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6.6.1 Data presentation and pre-processing

In this preliminary study we compare the MRI data of 2 healthy volunteers (Ages: 56,58,
Sex: 2F) and 12 early PD patients (Age: 62.9 ± 7.9, Sex: 6M, 6F, H&Y=2, MoCA>26). The
protocol’s scans relevant to this study are the following:

• Anatomical image: 3D MPRAGE T1-weighted scan of 220 sagittal images of 288×288

with a spatial resolution of 0.89 × 0.89mm, slice-thickness = 1mm, flip angle = 8◦ and
TE/TR=3.75/8.1ms.

• Diffusion scan: Two DTI scans of 90 gradient directions each acquired in the posterior-
anterior and anterior-posterior directions with a b=800. The volume consisted 60 im-
ages of 96 × 96 with a spatial resolution of 2.5 × 2.5mm, slice thickness= 2.5mm and
TE/TR=85/3000ms.

• Blood perfusion scan:

– 3D pCASL scan of 25 axial 64×64 images with a spatial resolution of 3.5×3.5mm,
slice thickness=5mm, flip angle = 90◦, TE/TR=12.96/4003ms. The labelling dis-
tance was set at 105mm, labelling was effectuated at 1800 ms and post-labelling
at 1800ms.

– DSC routine perfusion scan of 25 (112 × 112) axial images of 2 × 2mm spatial
resolution, slice thickness = 4mm, TE/TR = 40/1559.4ms. A gadolinium contrast
agent was administered with a dosage of 2mMoL/ml/kg at 66/s 30 seconds after
the start of the sequence and is followed by a physiological serum administered
at the same speed.

• T1 relaxometry scan: DCE scans at flip angle = 5, 15, 20 and 35. Each volume is
composed of 110 (240× 240) sagittal images with a spatial resolution of 1× 1mm, slice
thickness=4mm and TE/TR=3.85/8.1ms.

• T2* relaxometry scan: Four SWI scans at TE = 7.2, 13.4, 19.6 and 25.8ms. Each volume
is made up of 130 (240× 240) axial images with a spatial resolution of 0.95× 0.95, slice
thickness=1mm, flip angle=17◦, TR = 31ms.

The MP3 (Medical software for Processing multi-Parametric images Pipelines) software [128],
developed at the Grenoble Institute of Neurosciences, was employed to extract the quanti-
tative parameter maps of all sequences, except for the pCASL sequence, for which CBF
(cerebral blood flow) maps are calculated directly at acquisition. In order to differentiate
these maps from the DSC CBF maps we refer to pCASL CBF maps as pCBF.

From the DTI sequences, FA and MD images were computed; from the DSC perfusion se-
quence, relative CBF and CBV (cerebral blood volume) maps were extracted as well as MTT
(mean transit time) maps; from the four flip angle T1 scans a T1 relaxometry map was es-
timated and finally from the SWI scans at multiple echos, a T2 star relaxometry map was
constructed.
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The eight resulting parameter maps were coregistered and resliced (1mm isotropic) with
respect to the T1-weighted anatomical scan using SPM12. Additionally, ventricules were
supressed.

The rCBF, rCBV and MD features were eliminated based on their high correlation (>0.5)
to other features. In consequence, every voxel v was associated to the feature vector yv =

{FAv,pCBFv,MTTv,T1v,T2starv}.

In the first part of this application we chose to fit the MMST models to all brain voxels and
on the second part we only studied the voxels belonging to the subcortical structures in the
MNI PD25 atlas.

6.6.2 Results for the brain

The controls brain data was fitted with several MMST models from which the model pre-
senting KH = 6 clusters was retained as the reference model fH by the slope heuristic. Pair
plots of the physiological parameters describing the controls’ voxels are featured on Figure
6.8 along with projections of the clusters on 2D slices of the two control subjects.

FIGURE 6.8: Scatter plots of the parameter features belonging to the healthy subjects. The
colors represent the fH clusters.

The repartition of the classes on the anatomical images is visually coherent. Most of the
white matter is described by the KH1 and KH2 clusters, while the gray matter is mainly
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described by the KH3− 5 clusters. For simplicity we summarize the clusters by their mean
values (µK) for every parameter and their size in the mixture (πK) on Table 6.6.

KH1 KH2 KH3 KH4 KH5 KH6

FA (%) 0.391 0.430 0.155 0.138 0.308 0.145
pCBF (ml/100g/min) 14.49 20.93 35.30 25.47 32.58 24.32
MTT (s) 5.27 4.83 4.26 4.52 4.85 12.31
T1 (ms) 1105 1560 1313 1837 950 1427
T2star (ms) 47.33 44.48 53.65 56.16 48.52 55.79
Size (%) 25.2 19.52 19.11 15.74 12.59 7.84

TABLE 6.6: Characteristics of the reference brain model clusters: mean value of FA and MD
as well as size in the model.

Outlying voxels from the controls and patients voxels were detected in function of their
negative log-likelihood of belonging to the reference model. An allowed FPR was fixed at
5% and so any voxel with a negative log-likelihood above t5% was declared as atypical.

An atypical MMST model of KA = 5 clusters was retained, their mean values and sizes are
reported on Table 6.7.

KA1 KA2 KA3 KA4 KA5

FA (%) 0.300 0.314 0.078 0.408 0.472
pCBF (ml/100g/min) 23.03 13.41 34.94 40.15 7.21
MTT (s) 8.34 8.67 7.15 10.52 13.98
T1 (ms) 1991 635 1053 1101 1192
T2star (ms) 63.78 48.84 69.69 48.66 49.08
Size (%) 22.59 20.57 20.45 18.82 17.57

TABLE 6.7: Characteristics of the atypical brain model
clusters: mean value of FA and MD as well as size in the

model.

FIGURE 6.9: Clusters
comparison by parameter

means.

From an initial number of 1 987 053 (20.2%) voxels, 1 284 815 (13.1%) survived post-treatment.
The atypical signatures of the control subjects and patients after post-treatment are dis-
played on Figure 6.10. For additional information, Table 6.8 presents the percentage of
anomalies in several brain structures defined from the Neuromorphometrics atlas, presented
on Chapter 5.

The signatures of patients P5, P7 and P8 show that a large percentage of these subjects’
brains is considered anomalous, 28%, 26.5% and 35.6% respectively. The data on Table 6.8
indicates that a large portion of these patients’ anomalies is found on the white matter, and
more specifically on the corpus callosum. Indeed, 24.5, 31 and 43% of the white matter and
58.5, 51.6 and 43.9% of the corpus callosum is described by an atypical cluster.
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FIGURE 6.10: Signatures of the subjects (brain) after post-treatment.

Additional analysis shows that the KA1 cluster, exhibiting the largest T1 relaxation times, is
predominantly present on the subcortical structures. This KA1 cluster takes up 52% of the
subcortical structures in patient P3 who exhibits the largest quantities of this cluster.

Cluster KA2, exhibited in large percentages by patients P5, P7 and P8 describes abnormal-
ities both in white matter (outside of the corpus callosum) and cortical gray matter lobes.
This cluster has the lowest T1 relaxation times. Cluster KA3, identified by dramatically
reduced FA, is present on the same structures but on smaller proportion.

Finally, the KA4 and KA5 clusters primarily describe anomalies in the corpus callosum and,
in a smaller percentage, anomalies in the subcortical structures. The two clusters are on
positive extremes regarding perfusion, KA4 has the greatest pCBF average and KA5 the
smallest. Both clusters, however, share high MTT averages.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Subcortical 12.4 23.3 56.0 15.8 18.2 18.4 17.1 17.3 12.6 20.6 30.6 21.3
Frontal 1.0 9.8 4.3 1.4 6.3 1.2 20.4 38.5 8.0 2.4 13.5 5.3
Parietal 0.0 9.3 13.0 1.1 3.9 1.2 13.3 36.6 5.9 2.9 10.6 3.3
Temporal 0.1 9.3 11.7 1.0 20.1 1.3 21.4 23.3 1.9 3.7 14.9 2.6
Occipital 0.2 30.5 26.6 2.2 23.0 1.8 20.7 18.4 3.1 2.0 23.8 4.7
White Matter 6.9 5.5 24.5 2.5 13.5 3.6 31.0 43.0 9.8 11.1 11.2 5.9
Cing/Ins. 1.3 16.1 36.9 13.9 4.1 11.7 16.1 10.0 8.9 9.8 20.5 13.7
C. Callosum 13.8 25.3 58.5 25.2 35.9 36.3 51.6 43.9 30.2 33.5 41.6 32.3

TABLE 6.8: Percentages of abnormal voxels after post-processing in each patient in the sub-
cortical structures, the gray matter lobes, the white matter and the corpus callosum.

6.6.3 Results for the subcortical structures

A new reference model was fitted to the healthy voxels included on the subcortical struc-
tures exclusively. According to the slope heuristic, the model with KH = 7 clusters offered
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the best compromise between maximizing the log-likelihood of the model and limiting com-
plexity.

The clusters are presented on different parameter distributions on Figure 6.11. This time the
projection of the clusters on the subjects anatomy shows quite different results, despite the
fact that both control subjects are females with similar ages.

FIGURE 6.11: Scatter plots of the parameter features belonging to the healthy subjects. The
colors represent the fH clusters.

The structures predominantly described by cluster KH4 on C1 are represented KH2 and
KH3 on C2. By observing the mean values of the clusters in every parameter (Table 6.9) we
notice that in average C1 has reduced perfusion (CBF), MTT and T2* relaxation times on the
RN, SN, STN and thalamus compared to C2.

Once again the FPR was fixed at 5% and all voxels from the controls and patients above the
threshold associated to this FPR, that is t5%, were deemed as atypical. An atypical model of
KA = 4 clusters was chosen by the slope heuristic to represent the outlying voxels.

The cluster centers in every dimension and their size in the mixture are reported on Table
6.10.
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KH1 KH2 KH3 KH4 KH5 KH6 KH7

FA (%) 0.132 0.317 0.267 0.325 0.272 0.137 0.222
pCBF (ml/100g/min) 25.58 24.01 44.24 17.00 27.98 22.51 25.02
MTT (s) 2.82 5.21 4.40 3.21 4.63 5.87 12.85
T1 (ms) 1641 1422 1870 1870 2304 1868 2285
T2star (ms) 32.83 44.60 47.31 40.09 53.43 52.92 47.61
Size (%) 18.85 17.82 14.44 14.31 12.63 12.37 9.6

TABLE 6.9: Characteristics of the reference subcortical structures model clusters: mean
value for every parameter and overall size in the model.

KA1 KA2 KA3 KA4

FA(scalar) 0.229 0.188 0.355 0.243
pCBF(ml/100g/min) 25.17 23.30 24.09 43.48
MTT(s) 5.72 8.83 9.80 13.21
T1(ms) 923 2480 1323 1520
T2star(ms) 37.53 81.65 59.94 45.65
Size(%) 31.98 22.78 22.63 22.61

TABLE 6.10: Characteristics of the atypical model clus-
ters: mean value for every parameter and overall size in

the model.
FIGURE 6.12: Clusters compari-

son by parameter means.

From 109 572 (27.5%) initial atypical samples, 74 773 (18.8%) survived post-treatment. The
atypical signatures of all subjects after post-treatment are shown on Figure 6.10, in addition
to the projection of the atypical clusters on the patients anatomical structures.

Patients P5, P7 and P8 present a very important percentage of KA1 abnormalities charac-
terized by the smallest T1 relaxation times in average in comparison with all other healthy
and atypical clusters. These clusters are mainly found on the putamen, the caudate nucleus
and the globus pallidus (external and internal segments) but also in the thalamus, SN and
STN for P8. The three patients are males, which could explain this type ob abnormalities,
however, patients P1, P3 and P10, who are males as well, do not present KA1 clusters of
comparable size.

The most generalized abnormalities are characterized by the KA4 cluster. They are present
on the thalamus, the caudate nucleus and the internal segment of the globus pallidus and
suggest high CBF and MTT values.

On Table 6.11 is reported the percentage of voxels in every structure considered as atypical.
We can abserve generalized abnormalities in the caudate nucleus and the thalamus. Pa-
tients P7, P8 and P5 present huge amounts of abnormalities in almost all of the subcortical
structures studied, but the colliculus.
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FIGURE 6.13: Signatures of the subjects (subcortical structures) after post-treatment.

% P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

RN 4.7 0 20.6 0 50.7 0.0 18.3 30.8 0 5.3 0 0
SN 3.8 0 24.7 0 38.7 0.0 59.8 57.8 0 3.7 2.2 3.2
STN 0 0 0 0 1.1 0 73.3 85.5 0 0 7.8 2.0
Cau 10.2 11.5 12.1 3.9 18.0 0.3 61.5 67.0 3.4 9.0 33.8 9.1
Put 1.5 6.5 1.5 0 63.3 0.2 74.4 83.3 0 0.1 12.7 2.4
GPe 20.4 2.1 0 1.8 81.7 0.0 79.8 96.0 1.6 19.7 0 0
GPi 15.8 3.8 0 9.8 82.5 0.0 90.3 91.7 0 19.3 0 0
Th 18.4 12.4 39.7 17.7 25.4 8.3 18.5 62.1 7.4 18.4 25.4 12.0
CS 0 0 21.2 13.5 9.5 0 0 0 16.3 0 17.4 11.9
CI 0 0 31.4 0 0 0 0 0 0 0 0 0

TABLE 6.11: Percentages of abnormal voxels after post-processing in each patient subcorti-
cal structure.

6.6.4 Discussion

On this application we employed our anomaly detection pipeline based on MMST models
to detect abnormalities on a small dataset with multiple physiological parameters. These
results should be interpreted delicately as the reference model was not learnt from a repre-
sentative sample of the population, the available data appertain to two female controls of 58
and 56 years of age.

Nevertheless, the preliminary results here reported are encouraging and plausible with
respect to the literature. In the whole brain analysis, the anomalies characterized by in-
creased T1 relaxation times were found on the subcortical structures, which could indicate
microstructural changes in the tissues [17].

Mean transit times on both analysis were clearly higher for PD patients, one explication
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could be a decrease in cerebral perfusion pressure which is compensated by vasodilatation
and in turn produces a reduction of CBF and prolonged MTT (Monro-Kellie theory). On a
side note, the predilection for pCBF over relative CBF maps extracted from DSC perfusion
sequences should be further studied.

Patients P5, P7 and P8 presented the biggest percentage of anomalies with respect to both
the brain and the subcortical structures healthy models. While this could be influenced by
their sex (they are three males of 62; 58 and 63 years), the other males presented similar
signatures to the females for both the brain and subcortical structures study.

All in all, the combination of diffusion, perfusion and tissue relaxation times seems to be all
the more informative than the separate measures.

The addition of more healthy and pathological subjects to the study cohort is of utmost
importance to produce robust results that convey more information on the pathophysiology
of the early stages of Parkinson’s Disease.

6.7 Conclusions

MMST models have proven to be well suited to characterize healthy and pathological tis-
sues based on physiological parameters. The developed pipeline for anomaly detection
produced coherent results with respect to the literature in the cases where more than one
MR modality was employed. Indeed, on the early stages of Parkinson’s Disease, anomalies
are likely to be subtle and diffusion properties alone appear to be insufficient to characterize
PD patients.

Our method, in contrast to supervised machine learning techniques, does not rely on a large
set of annotated data, which are difficult to obtain in medical contexts. Moreover, it relies on
interpretable statistical tools that can be tuned and compared, providing a model of physical
properties alterations.

In addition, it does not require ground-truth comparison, making it a valuable tool for the
exploration of physiological changes in a wide variety of pathologies.

Computational developments are on their way to optimize the estimation of MMST models
on large datasets. Methodological changes have been evoked as well. Coresets could be em-
ployed to reduce the size of the datasets before model estimation [129], that is, the dataset
can be summarized by a fraction of its instances with corresponding weights. Also, frac-
tionation and refractionation [130] could be used to constitute a general model by merging
several partial models fitted to subsets of the dataset.
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GENERAL DISCUSSION AND
PERSPECTIVES

Three very different methods to study different datasets were explored in this thesis. In this
section we attempt to discuss our main findings within the scope of the project.

Regarding our methods

Volume, deformation and surface-based morphometry

The study of brain morphometry through MR imaging is an undoubtedly valuable tech-
nique. It has allowed researchers to quantify anatomical features of the brain in terms of
shape, mass, volume; to study local changes in gray matter, atrophic changes, cortical thin-
ning and other alterations of the cortical ribbon. Numerous studies both on healthy (ageing,
learning) and pathological populations have used VBM, DBM or SBM and achieved remark-
able results. Most employ widely recognized pipelines like CAT12 while others develop
their own pipelines.

Methods heterogeneity is one of the principal challenges we encountered while studying
early changes in Parkinson’s disease patients. On one side the variability of results may be
a direct product of the differences in the algorithms employed. This leads us to believe that
investigations employing state-of-the-art established pipelines like CAT12 to study large
size populations should be privileged. On the other side, novel algorithms to analyze brain
morphometry are on constant development and the community should be open to test them
and promote improvements.

The availability of large open datasets like PPMI and the current tendency for data shar-
ing are of great aid to study morphometry and to develop new methods. Learning-based
segmentation methods such as volBrain’s largely benefit from these databases to produce a
highly accurate segmentation of multiple subcortical structures.

Volume, deformation and surface based morphometry are excellent tools for the investiga-
tion of structural changes in a population. The absence of significant morphological differ-
ences in this study does not indicate the contrary. It is merely an indication that the spatial
resolution achieved by the current MR settings is not sufficient to detect subtle alterations
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or even that morphological changes probably occur in the later stages of the disease. A
longitudinal investigation could be implemented to further study this claims.

Auto-encoders

Deep-learning methods have gained great popularity in the medical imaging field. While
most networks have been applied to structure segmentation and supervised learning of le-
sions, the development of unsupervised deep-learning architectures, such as auto-encoders,
holds great promise for the democratization of these techniques. Indeed, lesion labelling is
both time and resource-consuming, plus it is not always possible.

In our application, we trained auto-encoder architectures to reconstruct healthy diffusion
MR slices and then compared the reconstruction error profiles of early PD patients compared
to a population of test controls. The hypothesis being that the amount of abnormalities in PD
reconstruction maps would be significantly higher that that of the healthy test population.

There are two main issues with the investigation. The first one is the amount of healthy data
available for training and specially for testing. The reconstructions achieved by the sAE
were quite satisfactory and those of the sVAE were quite good as well, but perhaps more
training data (41 controls) would have allowed the dVAE to yield better results. This being
said we considerably increased the learning and testing data available by considering 2D
images (40 per patients) and separating the two hemispheres.

During testing, we compared the reconstructions associated to 15 controls (120 hemisphere
images) to those of 129 PD patients (10 320 hemisphere images). All the necessary precau-
tions were taken to correctly carry out this very unbalanced classification task, notably we
followed a cross-validation procedure and chose an appropriate metric. Nevertheless, more
test controls would give us more statistical confidence.

The second issue is the bias introduced by our thresholds. We defined a threshold to identify
abnormalities at the voxel level. Any voxel with a reconstruction error above the value
corresponding to the 98% quantile of the distribution of errors in the healthy test population
was considered as abnormal. Then we defined another threshold to discriminate healthy
from pathological subjects using a ROC curve. The threshold corresponded to the optimal
cut-point of the curve which in this case was the point minimizing the Euclidean distance
between the curve and perfect sensitivity and specificity. Both thresholds are tailored to
the data but probably over-summarize the information included on the reconstruction error
maps.

Future research should devise a strategy to use the reconstruction error maps in raw form,
perhaps through voxel-level analysis, or even to train a classifier directly from the latent
vectors produced by the encoding block of the architecture.
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Mixture models

Mixtures models are statistical models commonly used in clustering tasks where the goal is
identify sub-populations within an overall data population, every component in the mix-
ture corresponds to an univariate or multivariate distribution that describes one of the
sub-populations under consideration. These models have been widely used in economics,
botany, medicine and many other fields.

Among the various possible mixtures of distributions, the ones mixing multiple scaled t-
distributions (MST) [14] have been shown to be better suited to characterize physiological
data than other elliptical distributions. The variable tail-weight in these distributions gives
them a flexible nature specially useful when studying outliers.

In three different applications we applied an in-house developed pipeline that utilizes MST
mixtures for anomaly detection and characterization. A MST mixture model is fitted to
healthy data to constitute a reference model to which new data can be compared. The log-
likelihood of the patients data to belong to the reference model is computed and any voxels
below a determined threshold are labeled as atypical. The atypical voxels are then charac-
terized by another MST mixture model.

In one application we modeled the FA and MD diffusion parameters of the same population
that was studied with auto-encoder reconstructions. No relevant differences were found
in the percentage of atypical voxels found in PD patients versus controls nor on classes to
which the atypical voxels belonged.

In the two remaining applications the multivariate data fitted by the model came from more
than one modality. The results were interesting; atypical clusters of the same class emerged
in similar locations for all patients despite the fact that no spatial information is entered in
the model. However, the studies included very few participants (3 controls and 10 patients
in one and 2 controls and 12 patients in the other) so the results are merely preliminary.

In future research a larger cohort of multivariate data should be studied. Notably new ac-
quisitions of the SignaPark project could be added to the study.

This clustering-based anomaly detection framework appears to be a great means to study
the physiopathological changes affecting the brains of newly diagnosed Parkinson’s disease
patients. The interaction of different features is taken into account and the models are easily
interpretable. Furthermore, the method can be easily applied to other pathologies. Finally,
if the reference and atypical models are built from a representative population, they can be
used in a direct manner to classify new subjects.
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Regarding the physiopathology of Parkinson’s Disease

Structural changes

No structural changes were found on the morphological assessment presented on Chap-
ter 4. Two different methods were employed for tissue segmentation, yet neither of the
two produced significant differences between the local gray matter concentrations (VBM)
of PD patients versus controls in the brain or in the subcortical structures studied. One of
this methods is included in a pipeline (CAT12) that also allows for deformation (DBM) and
cortical analysis (SBM). No significant atrophy was found using DBM and neither did any
cortical ribbon differences in ’de novo’ PD patients using SBM.

It is our belief that quantitative data is a more appropriate alternative to study the Parkin-
son’s disease, specially on ’de novo’ patients where any changes are expected to be subtle.

As a matter of fact, the preliminary results presented on Section 6.6 give us a glimpse of the
potential discriminant information contained in T1 and T2* relaxometry maps that could
indicate microstructural changes in the tissues as proposed by Deoni and colleagues [17].

Diffusion changes

DTI is the only MR modality that was explored through two different techniques in this
thesis. First through a reconstruction-based anomaly detection pipeline employing auto-
encoder architectures and secondly by the clustering of MR diffusion properties with MMST
models. In both cases the DTI scans were pooled from the PPMI database.

In the first study we found a larger percentage of abnormal instances in the brains of PD pa-
tients compared to controls, this resulted on an average g-mean classification performance
of 64.6% in a ten-fold cross-validation. Most of the abnormalities were found in the white
matter, which came as no surprise due to the nature of DTI. In addition, we found that the
patients exhibiting mild cognitive impairment presented more abnormalities and in differ-
ent locations than those with normal cognition.

In the second study, no relevant differences emerged between the ’de novo’ PD patients
and controls but most atypical instances were found in the corps callosum, a white matter
structure responsible for the communication between the two hemispheres.

In summary, we found evidence of white matter abnormalities in the early stages of PD,
however further research should concentrate in characterizing these differences in patients
without cognitive impairment. Moreover, the combination of diffusion parameters along
with other physiological properties should improve classification.
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Perfusion changes

While no independent studies of perfusion were performed, the integration of perfusion
parameters in our clustering-based anomaly detection approach gave a clear indication its
potential to classify PD patients from controls, even at the early stages of the disease.

Furthermore, its interaction with other physiological properties should be of benefit to clas-
sification performances.

In further work, we shall investigate perfusion changes on larger cohorts. Also, the stan-
dardization of DSC relative parameter maps (rCBV, rCBF) should be explored.

...

Ton conclude, the integration of quantitative MR measures reflecting multiple properties of
the brain is certainly key to detect abnormalities in the brains of PD patients from the earliest
stages possible. Diffusion, perfusion and relaxometry measures can paint an informative
picture of the normal physiology of the brain. Moreover, mixture models and auto-encoders
are great candidates to detect abnormalities linked to the pathophysiology of PD from this
data.
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Appendix A

Publication: « No structural
differences are revealed using VBM in
‘de novo’ Parkinsonian patients »

This conference paper was accepted at MEDINFO 2019: Health and Wellbeing e-Networks
for All. This international conference took place in August,2019 in Lyon, France. The pro-
ceedings were published in the Journal of Studies of Health Technology and Informatics.

The scope of this paper includes the VBM study presented in Chapter 4.
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Abstract 

The identification of brain morphological alterations in newly 
diagnosed PD patients (i.e. 'de novo') could potentially serve as 
a biomarker and accelerate diagnosis. However, presently no 
consensus exists in the literature possibly due to several 
factors: small size cohorts, differences in segmentation 
techniques or bad control of false positive rates. In this study, 
we use the CAT12 pipeline, to seek for morphological brain 
differences in gray and white matter of 66 controls and 144 de 
novo PD patients from the PPMI database. Moreover, we 
search for subcortical structure differences using the VolBrain 
pipeline. We found no structural brain differences in this de 
novo Parkinsonian population, neither in tissues using a whole 
brain analysis nor in any of nine subcortical structures 
analyzed separately. We conclude that some results published 
in the literature may appear as false positives and we contest 
their reproductibility. 
Keywords:  

Biomarkers, Magnetic Resonance Imaging, Brain 

Introduction 

Parkinson's Disease (PD) is a complex neurodegenerative 
disorder that affects more than 10 million people worldwide  
[1]. It is mainly characterized by the depletion of dopaminergic 
neurons situated in the substantia nigra that consequentially 
disturbs the functions of subcortical nuclei and triggers cortical 
neuropathological changes causing a plethora of heavily 
disabling motor and non-motor symptoms [2]. 
In general, the diagnosis of PD takes place after the 
manifestation of motor symptoms, which have been found to 
occur once 50 % of nigrostriatal neurons are lost and dopamine 
levels are dropped by 80 % [2], [3], creating an urgent need to 
detect PD biomarkers at the earliest pre-clinical stages of illness 
possible [4]. 
The study of morphological brain differences between 
pathological and healthy groups could potentially identify key 
regions affected during the PD prodromal phase to better 
understand PD pathophysiology and its treatment. Magnetic 
Resonance Imaging (MRI) has positioned itself as a valuable 
tool for the non-invasive study of the brain's structure. Many 
automated non operator-dependent techniques have been 
developed for the analysis of structural MRI data. Voxel-based 
morphometry (VBM) is the most popular, it allows the 
detection of subtle morphometric group differences at voxel 
level [5].  
In order to elucidate the nature of morphological differences in 
de novo PD patients, we investigated 210 subjects from the 
PPMI (Parkinson Progressive Markers Initiative) through both 
1) the well-established Computational Anatomy Toolbox 
(CAT12) (University of Jena) via the current version of the 

Statistical Parametric Mapping (SPM12) software and 2) via a 
new online platform: volBrain [6]. Both pipelines have 
complementary strengths that are exploited in this study: 
volBrain performs state of the art quality segmentation of 
subcortical nuclei [7] and CAT12 facilitates group analysis. 
Furthermore, we looked for quantitative differences between 
the tissue classification performed by the two approaches, both 
including partial volume estimation. 

Methods 

It is well-known that gathering large cohorts of  subjects is a 
time and resource-consuming task. This is why several efforts 
have been made by the community to generate databases that 
benefit for more than one research group. The PPMI (Parkinson 
Progression Markers Initiative) project is a longitudinal study 
that gathers data from 35 centers that follows PD patients for 
five years. The database is openly available for researchers and 
contains, among other clinical test results, structural MRI 
images at baseline for 412 patients and 182 healthy subjects. 
The scans being heterogeneous, we chose to pool data acquired 
with the same acquisition parameters, notably magnetic field 
and scanner manufacturer, to eliminate any additional sources 
of bias. As a result, our study included 144 de novo PD patients 
(age: 61.30 ± 9.06; sex: 53 F, 91 M) and 66 healthy controls 
(age: 60.12 ± 11.39; sex: 23 F, 43 M) from the PPMI database. 
The structural T1-weighted MRI images extracted were 
acquired with a 3T Siemens Trio Tim scanner with repetition 
time (TR) = 2300 ms; echo time (TE) = 2.98 ms; flip angle = 9 
degrees; field of view (FOV) = 240 x 256 mm; matrix size : 240 
x 256; thickness = 1mm. We note that although T2-weighted 
images are generally prefered to the delineation of brain 
structures in neurodegenerative diseases, the available scans on 
PPMI are provided with low-resolution and thus barely suitable 
for VBM studies. 

Using the CAT12 pipeline 

Imaging data were first analyzed using the CAT12 toolbox 
included in SPM12. All 3D T1-w MRI scans follow a pre-
processing protocol including intensity normalization, bias and 
noise-correction with the Spatially Adaptive Non-Local Means 
(SANLM) filter introduced in [8] that removes spatially varying 
noise while maintaining edges. Then the images were spatially 
normalized using an affine and non-linear (DARTEL and 
Geodesic Shooting) registration to a reference template brain. 
Tissue segmentation served to classify the MRI scans into gray 
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) 
components. CAT12 integrates a classical Markov Random 
Field and the Adaptive Maximum Posterior (AMAP) technique 
that reduces the dependency on Tissue Probability Maps 
(TPM). In addition, the segmentation approach uses a Partial 
Volume Estimation (PVE), taking the three pure tissue classes 
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as input and estimating two additional mixed classes: GM-WM 
and GM-CSF. This allows for more precise segmentation as 
single voxels are likely to contain more than one tissue type. 
Next, the total intracranial volumes (TIV) were estimated for 
each subject and the segmented images were modulated by 
scaling with the amount of volume changes due to non-linear 
spatial registration, so that the total amount of grey matter in 
the modulated image remains the same as it would be in the 
original image.  
The resulting images, appearing in Figure 1, were smoothed 
with an isotropic Gaussian kernel (8mm), and ready for 
statistical analysis. 
 

 
Figure 1– A) CAT12 GM and WM segmentations (modulated) 

B) volBrain GM and WM segmentations (raw). 

 
 

 
Figure 2– Segmented structures using volBrain. 

 

Using the volBrain pipeline 

In  parallel, imaging data were analyzed via the volBrain online 
platform. This system not only provides a state-of-the-art 
segmentation of the brain tissues (WM, GM, CSF and TIV) 
(Figure 1), but also segments brain regions like the cerebrum, 
cerebellum and brainstem; the ventricules; and GM structures 
such as the putamen, the caudate, the globus pallidus, the 
thalamus, the hipocampus, the amygdala, and the accumbens 
[9], as shown in Figure 2. 

The multi-template method employed to segment the above 
mentioned structures considers non-local label fusion schemes 
using a library  built from the manual segmentation of 50 
subjects. 
The segmentation performed by volBrain provides results in the 
native and MNI space along with a report containing normality 
bounds corresponding to the age and sex of the considered 
subject. These bounds were estimated from the IXI dataset 
containing 600 normal subjects covering most of adult lifespan. 
The pipeline starts by some pre-processing steps. The image is 
denoised using a SANLM filter, goes through a rough 
inhomogeneity correction using the N4 method, is registered to 
the MNI space with a linear affine transformation, goes though 
a fine SPM based inhomogeneity correction and intensity 
normalization. Then, segmentation takes place. Tissue 
classification is obtained by the TMS method that robustly 
estimates the mean values of the different tissues by excluding 
partial volume voxels from the estimation jointly with the use 
of an unbiased robust mean estimator. Partial Volume 
Coefficients (PVC) are computed from the mean values and 
completely leave aside tissue probability maps. Next, GM and 
WM are divided into cerebrum, cerebellum and brainsteam, 
discriminating between the two hemispheres; and last, 
subcortical structure segmentation is performed. 

VolBrain results analysis by CAT12 

Since some subcortical structures of the brain are impacted by 
PD, we decided to do VBM analysis for the regions provided 
by volBrain. To do this, we brought volBrain output images to 
the template space of CAT12 by applying the forward 
deformation DARTEL field. Once in the same space, the 
segmented images were used as input for the subsequent 
statistical analysis. For tissue segmentation analysis (GM & 
WM), corresponding volBrain's PVC maps were, similarly to 
CAT12's PVE maps, spatially smoothed with a 8mm kernel. 

Statistical analysis  

We chose to employ a two-sample T-test to compare the 
CAT12 modulated tissue maps (GM and WM) of patients 
versus controls with a general linear model (GLM) where age, 
sex, and TIV were entered as covariates. The same test was 
effectuated on volBrain's PVC maps.  
A recent study investigating the high rate of false positive 
present in VBM studies recommends the use of the same group 
size to detect morphological differences between two groups 
[10]. Following this recommendation, we repeated our analysis 
five times to compare the tissue maps of 66 controls versus 66  
randomly selected patients using sampling with replacement 
technique. Their age and sex characteristics are summarized on 
Table 1. 

Table 1– Characteristics of the original study population and 
the 5 sub-samples of patients equal in size to the control group 

 Age Sex 
Controls 60.1 ± 11.4 43 M, 23F 
Patients 61.3 ±  9.1 91 M, 53F 

 
PD sample 1 61.0 ±  8.7 40 M, 26F 
PD sample 2 60.6 ±  9.7 41 M, 25F 
PD sample 3 61.7 ±  9.5 44 M, 22F 
PD sample 4 61.9 ±  8.7 38 M, 28F 
PD sample 5 59.6 ±  8.6 38 M, 28F 
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Figure 3– Comparison of PD patients vs controls. Clusters detected for GM an WM diminution in patients using CAT12 and volBrain 
for different statistical thresholds. The selected slices in the template's MNI space are x=99 and z=64. 

 

Results 

When choosing a p-value of 0.05 with Family Wise Error 
(FWE) correction for multiple comparisons, no voxels survive 
the difference analysis between PD patient and control groups  
with tissue map computed with CAT12 or volBrain. In order to 
replicate some literature results (exploratory study), we 
decreased the statistical threshold to p<0.001 and p<0.05 and 
refrained from any type of correction. Several clusters were 
then found in PD patients showing volume decrease both in GM 
and WM as seen in Figure 3. 
Also, two-sample T-test comparisons of each independent 
subcortical structure (computed by volBrain) failed to detect 
any differences in GM and WM contents p<0.05 while FWE 
corrected. Differences were found in the caudate nucleus, the 
hipocampus and the putamen for an uncorrected p-value of 
0.001. 

“Small volume” analysis in SPM12 was used as well to study 
possible morphometric changes in the substantia nigra, key 
structure in PD research, using volBrain maps. We observed 
that differences were only present in gray matter for an 
uncorrected p-value of 0.001 and did not survived  multiple 
comparison correction. 
For all of the 5 new equal size sub-populations (see Table 1), 
no differences were found in GM or WM for p< 0.05 FWE 
corrected, whilst several significant clusters appeared for an 
uncorrected p-value of 0.001, esspecially in the frontal cortex 
for gray matter. 

Discussion 

Using two recent approaches for accurate segmentation of 
tissues (CAT12 and volBrain) and subcortical structures 
(volBrain) we failed to detect robust structural differences in de 
novo PD patients and healthy controls.  We took special care to 
consider a relatively large cohort of subjects, consider the 
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effects of an unbalanced number of patients and controls and 
correct for multiple comparisons. We controlled for multiple 
comparison using FWE approach, which is known nevertheless 
to produce some false positives [11]. Following these 
precautions, no morphological differences were found in PD 
patients, neither on whole brain GM and WM group analysis or 
on the analysis of several subcortical structures separately.  
In the literature, several studies have reported structural brain 
differences in PD patients compared to controls. However, 
these findings tend to be contradictory. In studying a different 
PD population than in our study,  Summerfield and colleagues 
detected gray matter loss on the right hipocampus, the left 
anterior cingulate region and the left superior temporal gyrus 
(p=0.001 uncorrected) in PD patients (n= 13) compared to 
controls (n=13) [12]. Nyberg and colleagues found an 
augmentation in the volume of the hipocampus (p=0.03 
uncorrected) of PD patients (n=21) and shape deformations of 
the right accumbens nucleus (p=0.005 uncorrected) compared 
to controls (n=20) [13]. Radziunas and colleagues observed that 
PD patients (n=28) with sleep disturbances had bigger 
ventricules and smaller hipocampus (p-FDR<0.05) than healthy 
controls (n=28) [14].  
Similarly to our study, some VBM studies used the PPMI 
database and reported structural differences in PD patients. Jia 
and colleagues noted gray matter losses (p-FWE<0.001) in the 
fronto-parietal areas and the caudate nucleus, as well as an 
increase in the size of the limbic and paralimbic areas, the 
globus pallidus and the putamen of PD patients (n=89) [15] 
versus controls (n=55) using SPM8.  
This lack of consensus on the morphological differences 
present in de novo PD patients may be due to a variety of 
factors. 
Some studies were carried out on small cohorts, no more than 
60 subjects in total, so one may argue that the inconsistencies 
could be resolved with a larger cohort more representative of 
the population.  
Although, in [10], it was brought to light that sample size does 
not appear to influence false positive rate, a small sample may 
incorrectly represent a pathological population, hindering the 
reproductibility of results.  
We note that there is a wide variety of softwares for pre-
processing MRI images (i.e. SPM, Freesurfer, FSL), all using 
different techniques that will inevitably influence the final 
statistical results as proven by [16] on the study of Multiple 
Sclerosis. By combining the latest improvements on VBM 
analysis present in CAT12 (notably denoising and partial 
volume estimation) with the state of the art segmentations of 
volBrain [7] we sought to reduce estimation bias considerably. 
Finally, correction for multiple comparison is vital to reduce the 
false positive rate, even if it is not perfect to hope providing 
robust and reproducible results [11]. Exploratory studies, which 
use lenient statistical thresholds, could be interesting to indicate 
some trends in the observed population, that should be 
confirmed by more robust studies. Then, in our exploratory 
action (p<0.001 uncorrected) we were able to reproduce some 
GM results reported in [17]. In the case of [15], the tests were 
FWE corrected, but the the study was effectuated on VBM8 
while, according to [18], the CAT12 toolbox can contribute to 
more robust detection compared to VBM8. 
Regarding the differences we observed between the tissue 
classification with CAT12 versus volBrain, raw volBrain's 
PVC maps seem to better distinguish the presence of gray and 
white matter in the subcortical nuclei. However, as in this study, 
no morphological robust differences were found between PD 
patients and controls, a more in depth investigation would be 

necessary to pertinently test the performances of both methods 
of partial volume estimation. 
In order to further this research, other morphometric methods 
should be explored, notably Surface Based Morphometry 
(SBM) and Deformation Based Morphometry (DBM) [17]. 

Conclusions 

In sight of the lack of morphological differences, we suspect 
that early PD biomarkers may lie on the physiological 
properties of the Parkinsonian brain and could be investigated 
through quantitative MRI techniques. 

Finally, we reinforce the message that VBM is a delicate 
technique involving many parameters that should be handled 
with care to avoid false positive influencing the final results. 
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ABSTRACT

Current physio-pathological data suggest that Parkinson’s
Disease (PD) symptoms are related to important alterations
in subcortical brain structures. However, structural changes
in these small regions remain difficult to detect for neuro-
radiologists, in particular, at the early stages of the disease
(de novo PD patients). The absence of a reliable ground truth
at the voxel level prevents the application of traditional su-
pervised deep learning techniques. In this work, we consider
instead an anomaly detection approach and show that auto-
encoders (AE) could provide an efficient anomaly scoring to
discriminate de novo PD patients using quantitative Magnetic
Resonance Imaging (MRI) data.

Index Terms— Brain, Anomaly detection, Autoencoder,
Diffusion Imaging, MRI

1. INTRODUCTION

Today, there is a pressing need for objective and reliable
biomarkers that allow the detection of Parkinson’s Disease
(PD) from its early stages. MRI has played a vital role in the
characterization of multiple neurological diseases like Mul-
tiple Sclerosis and brain cancer [1]. However, structural MR
images appear to be insufficient to detect the subtle changes
caused by PD, especially in the sub-cortical structures of the
brain [2]. This motivates the study of PD through quantitative
MRI techniques such as DTI (Diffusion Tensor Imaging) that
measures the displacement of water molecules in the brain.
Indeed, DTI has been useful in the study of Alzheimer’s
disease [1], making it very attractive for the study of PD.

In this work, we propose to implement an anomaly de-
tection framework to uncover alterations in the diffusion MR
images of newly diagnosed (i.e. de novo) patients.

While there exists numerous techniques for anomaly de-
tection [3], deep learning models have achieved remarkable
results in recent brain lesion classification challenges such
as BRATS, BrainLes and ISLES at MICCAI conferences

VMR is supported by a grant from NeuroCoG IDEX UGA in the frame-
work of the “Investissements dávenir” program (ANR-15-IDEX-02).

Data used in the preparation of this article were obtained from the
Parkinson’s Progression Markers Initiative (PPMI) database. For up-to-date
information on the study, visit www.ppmi-info.org.

(see for instance [4]). Nonetheless, these deep learning ap-
proaches for anomaly detection are often supervised, mean-
ing that the networks are trained with representatives of both
healthy and diseased voxels so as to learn their characteristics.
Seeing that the only information available for PD MR scans is
an indication of the global presence or absence of the disease,
we designed a semi-supervised framework employing three
different types of fully convolutional auto-encoders.

More specifically, we trained the auto-encoders to recon-
struct healthy diffusion MR scans with a healthy training
dataset. Since the network is learned only from healthy
subjects, there is no guarantee that it provides good recon-
structions outside this population. We therefore compared the
scan reconstruction errors of a healthy test data set with those
of a pathological data set to identify unusual patterns in the
sub-cortical structures of de novo PD patients.

We follow the work of [5], which demonstrated the advan-
tages of employing full MR slices as input for the network ar-
chitectures instead of down sampling and patch division that
result in important loss of spatial information.

2. INPUT DATA

We pooled our data from the PPMI (Parkinson Progression
Markers Initiative) database. The PPMI is a longitudinal
study that follows de novo PD patients of 35 centers for
five years. The database is openly available for researchers
and contains, among other clinical test results, structural and
diffusion MR images. To eliminate any additional sources
of bias, we only selected scans acquired with the same ac-
quisition parameters, notably magnetic field and scanner
manufacturer. As a result, we pooled 129 de novo patients
(age: 62 ± 9; sex: 48 F, 80 M) and 57 healthy controls (age:
61 ± 10; sex: 23 F, 34 M).

From this data, two features were extracted: mean diffu-
sivity (MD), accounting for the overall water displacement,
and fractional anisotropy (FA), an indication of diffusion ori-
entation. Values of FA and MD were normalized into the
range [0, 1]. Each volume was composed of 116 × 116 × 72
voxels. Forty coronal slices (116 × 72) were extracted from
the center of the brain encompassing the sub-cortical struc-
tures under study.

To avoid data leakage, the control dataset was divided into



a training dataset (42 MR volumes) and a testing dataset (15
MR volumes). Special care was taken to maintain similar
age and sex profiles in both datasets. In order to choose the
best network architecture and tune the corresponding hyper-
parameters, all models were trained and assessed with 7-fold
cross-validation, with 36 MR volumes used for training and
6 MR volumes for validation in each fold. Once the final
models were defined, they were retrained with the full control
training set (1680 slices) and evaluated with the PD dataset
(5160 slices) and the healthy control test set (600 slices).

3. ARCHITECTURE DESIGN

Three autoencoder-based models were developed and evalu-
ated: a spatial autoencoder (sAE), a spatial variational autoen-
coder (sVAE) and a dense variational autoencoder (dVAE).

As seen in Figure 1-A, all autoencoders come with two
parts, an encoder fφ and a decoder gθ. The encoder maps the
input images x to a lower dimensional latent representation z,
then the decoder maps the latent vector z to the reconstructed
output images x̂ ∈ RH×W×C :

z = fφ(x) x̂ = gθ(z) (1)

We extended the work of [5] by using multiple quantita-
tive MRI measures simultaneously as input. Thus, every input
can be expressed as x ∈ RH×W×C , where H is the height,
W the width and C the number of channels (FA and MD).

Depending on the network architecture, the latent code
may be a simple vector (z ∈ Rd) or a third-order tensor (z ∈
Rh×w×c). The former is referred as a dense bottleneck and
the latter as a spatial bottleneck.

All models were implemented using Python 3.6.8, Py-
Torch 1.0.1, CUDA 10.0.130 and trained on a NVIDIA
GeForce RTX 2080 Ti GPU with batches of 32 images. After
each convolutional layer, batch normalization [6] was applied
for its regularization properties. The nonlinear activation
function in each layer was the rectified linear unit (ReLU),
except for the last layer where a sigmoid was employed in
order to have output pixels normalized between [0, 1]. The
loss functions were optimized using Adam [7], a popular
optimization algorithm for training deep neural networks.

3.1. Spatial autoencoder (sAE)

The spatial autoencoder model is fully convolutional, 4 con-
volutional layers go from input to bottleneck and 4 transposed
convolutional layers from bottleneck to output. As depicted in
Figure 1-B, the output of the encoder network is directly the
latent vector z and loss function is simply the reconstruction
error:

L = ‖x− x̂‖1 (2)

This model was trained for 160 epochs, with a learning
rate of 10−3. 5× 5 kernels were convolved using padding of
1 pixel and a stride of (2, 2), and there were no pooling layers.

3.2. Spatial variational autoencoder (sVAE)

Our spatial variational autoencoder model is shown in Figure
1-C. Similar to sAE, the model is fully convolutional, how-
ever, the encoder generated the parameters of the approximate
posterior of the latent variable given the input, constrained to
follow a multivariate normal distribution. A sampling opera-
tion was needed to obtain an actual value for z.

Training lasted for 200 epochs using a learning rate of
0.3 × 10−3. A 5 × 5 kernel was chosen as filter, along with
a padding of 1 and stride of (2, 2). No pooling layers were
used. The loss function was computed as follows:

L = λ‖x− x̂‖1 + (1− λ)
[
− 1

2

J∑
j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)
]

(3)
where µ and σ denote the mean and the variance of the

approximate posterior, J is the number of dimensions of the
latent space and λ controls the proportions between the two
terms. The first term is the reconstruction error and the sec-
ond term is the Kullback-Leibler (KL) divergence between
the approximate posterior and the prior of the latent variable,
for the Gaussian case [8]. To favor good reconstructions over
a Gaussian-like distribution of the latent variables, we put
more weight (90%) in the reconstruction term and less weight
(10%) in the KL divergence term.

3.3. Dense variational autoencoder (dVAE)

The main difference of the dense variational autoencoder
when compared to the sVAE is its dense bottleneck. Encoder
and decoder also have fully connected layers in addition to
the convolutional layers, as shown in Figure 1-D.

For regularization purposes, the dropout [9] technique
was used to turn off 30% of the units in fully-connected lay-
ers during training. This model was trained for 100 epochs
with a learning rate of 0.3 × 10−3. There were no pooling
layers. Kernels for all convolutional layers were 5 × 5, and
convolutions were performed with a padding of 1 and stride
of (2, 2). The dVAE shared the same loss function as the
sVAE and we kept the same 90/10 proportion between the
reconstruction term and the KL divergence term.

4. PD ANOMALY DETECTION

A reference model is learned from healthy MR images using
the autoencoder-based models presented in Section 3. Dur-
ing the training process the model parameters are tuned so as
to minimize a loss function that favors good reconstructions.
Since the network was solely trained on healthy subjects, we
hypothesized that the MR scans of the PD population would



Fig. 1. A) The general architecture of the implemented autoencoders with an unspecified bottleneck; B) sAE spatial bottleneck;
C) sVAE spatial bottleneck and D) fourth convolutional layer of the dVAE along with its fully connected layers and dense
bottleneck. µ and σ describe the approximate posterior of the latent variable, z is obtained by a sampling operation.

have greater reconstruction errors in some regions. The idea is
therefore to use the reconstruction error as an anomaly score.

The voxel-wise reconstruction errors in one image can be
computed as |xi − x̂i|. Seeing that our decoders output two
images (F̂A, M̂D), we defined the joint reconstruction error of
every voxel as:

√
(FAi − ˆFAi)2 + (MDi − M̂Di)2 (4)

We identified four sources of reconstruction errors : 1)
noise in the input data, 2) loss of information due to dimen-
sion reduction in the latent space, 3) variability of healthy
controls not captured by the model and 4) finally real anoma-
lies caused by PD. Because we were only interested in the
latter, the best way to evaluate and compare the models is by
measuring their ability to discriminate between controls and
PD patients, based on the intensity and localization of the re-
construction errors.

To help evaluate the localization of anomalies, we em-
ployed the MNI PD25 atlas [10], specifically designed for PD
patient exploration. It contains 8 regions: substantia nigra
(SN), red nucleus (RN), subthalamic nucleus (STN), globus
pallidus interna and externa (GPi, GPe), thalamus, putamen
and caudate nucleus. In addition, we considered the superior
colliculus (SC) and the inferior colliculus (IC), where we re-
cently found functional deficits [11].

Regarding comparisons of reconstruction error intensities,
we investigated extreme reconstruction errors with the idea
that PD patients should exhibit very abnormal voxels in larger
quantities. Accordingly, we considered an extreme quantile
(eg. the 95% quantile) of the distribution of errors in the con-
trol population as possible threshold value to decide whether
or not a given voxel was considered as abnormal. For each

control or PD subject, we counted the number of extreme ab-
normalities detected in every structure. The idea being to clas-
sify a subject as PD or healthy when this number was above
a certain value. The critical choice of this value was investi-
gated using a ROC curve of sensitivity and specificity to ac-
count for class imbalance. We chose the AUC as our principal
indicator of discrimination performance.

5. RESULTS: RECONSTRUCTION ASSESSMENT

We used the reconstruction errors of every structure in ev-
ery subject to classify patients from controls as explained in
Section 4. Amongst the three models tested, we noticed that
dVAE detected the biggest reconstruction errors, as an exam-
ple the mean reconstruction error of the control’s subcortical
structures is of 0.075, 0.086 and 0.106 for the sAE, sVAE and
dVAE respectively. However, the absence of ground truth at a
voxel level prevented us from determining which model was
the most accurate relative to PD abnormalities.

The number of voxels over the 95% quantile abnormal-
ity threshold were generally superior in a patient than in a
healthy control. We employed the ROC curve as a perfor-
mance measurement for our classification problem, we were
able to measure the AUC to have an indication on the abil-
ity of the model to distinguish between patients and healthy
controls. The structures with the highest AUC were the Sub-
stantia Nigra, the Red Nucleus, the Thalamus and the com-
bination of all subcortical structures as seen in Table 1. This
was in accordance with the literature. The total white matter
present in the reconstructed slices obtained even better results
with an AUC of 0.83, 0.80 and 0.74 for the sAE, sVAE and
dVAE respectively.



sAE sVAE dVAE
Red Nucleus 0.75 0.76 0.65
Substantia Nigra 0.74 0.73 0.72
Sub-thalamic Nucleus 0.59 0.64 0.53
Caudates 0.70 0.64 0.61
Putamen 0.72 0.74 0.63
Globus Pallidus ext. 0.65 0.69 0.69
Globus Pallidus int. 0.69 0.69 0.71
Thalamus 0.71 0.73 0.72
Superior Colliculus 0.51 0.59 0.54
Inferior Colliculus 0.54 0.56 0.49
All subcortical structures 0.76 0.77 0.73
White Matter 0.83 0.80 0.74

Table 1. AUC values obtained in different structures when
counting the number of voxels above the 95% percentile to
discriminate between patients and controls

When assessing the reconstructions of FA and MD sep-
arately, FA obtained the highest ROC AUC for the caudates
and the putamen, whereas for the white matter and the red nu-
cleus MD was better. The substantia nigra and the ensemble
of all subcortical structures benefited from the joint measures
of FA and MD.

6. DISCUSSION AND CONCLUSION

Although preliminary, these results offer compelling evi-
dence that deep learning-based models are useful to identify
subtle anomalies in de novo PD patients, even when trained
with a moderate number of images and only two paramet-
ric maps as input. The good discriminative performances of
the sub-cortical structures are in accordance to our physio-
pathological knowledge of PD. The dopaminergic neuron
deficit in Substantia Nigra is known as critical in the develop-
ment of PD. What is more, the absence of motor symptoms
in the pre-clinical stages of PD may be the result of com-
pensation mechanisms involving the structures in the motor
coordination pathways of the brain such as the Thalamus and
the Red Nucleus [12].

We have shown that no structural changes, including in
the White Matter (WM), can be robustly observed from T1-
weighted images to automatically distinguish between con-
trols and de novo PD patients [2]. To explain the good per-
formances of autoencoders based on white matter voxels, we
may hypothesize that 1) diffusion parameters (FA an MD) are
more informative than grey levels from T1-weighted imag-
ing, or that 2) they dispose of more voxels, compared to sub-
cortical structures, to build a model that captures the variabil-
ity of healthy controls.

Undeniably, experiments on a larger cohort are necessary
to confirm our results. The control group available for our ex-
periments contained only 57 MRI volumes, with gender and

age imbalance. Although we were able to discriminate be-
tween healthy controls and individuals affected by PD with
good performances, we cannot rule out that other possible
causes of variability in brain properties, such as age and gen-
der, and other hidden parameters, might have influenced our
classification performance.

Similar anomaly detection frameworks could be of in-
terest for studying other neurological disorders where small
lesions are suspected and difficult to localize for a human
observer. In future work, it could be beneficial to include
other quantitative MR measures, such as perfusion and relax-
ation times, to encode a more complete picture of the patho-
physiology of the disease.
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ABSTRACT
Currently there is an important delay between the onset
of Parkinson’s disease and its diagnosis. The detection of
changes in physical properties of brain structures may help
to detect the disease earlier. In this work, we propose to take
advantage of the informative features provided by quantita-
tive MRI to construct statistical models representing healthy
brain tissues. This allows us to detect atypical values for
these features in the brain of Parkinsonian patients. We intro-
duce mixture models to capture the non-standard shape of the
data multivariate distribution. Promising preliminary results
demonstrate the potential of our approach in discriminating
patients from controls and revealing the subcortical structures
the most impacted by the disease.

Index Terms— Brain, Biomarker, Statistical mixture
models

1. INTRODUCTION

Parkinson’s Disease (PD) is a complex neurodegenerative dis-
ease that can be divided into two stages. First, a prodro-
mal phase lasting from a few years to several decades where
dopaminergic neurons are lost progressively, affecting mainly
subcortical brain structures. Then, a clinical phase involving
cortical networks and marked by PD motor symptoms, such
as gait impairment, rigidity and resting tremor. It would be of
great importance, with respect to research and treatment, to
identify biomarkers that may yield early PD diagnosis. Mag-
netic Resonance Imaging (MRI) is a non-invasive imaging
technique useful for the detection, characterization and mon-
itoring of neurological changes in de novo, i.e. just diag-
nosed, PD patients. Several innovative quantitative MRI tech-
niques have been developed to measure meaningful physical
or chemical brain properties [1]. The combination of mea-
sures from multiple MRI modalities may provide a complete
picture of functional and structural changes caused by PD [2].

In the quest to find biomarkers that accurately differenti-
ate PD patients from healthy subjects, we propose an abnor-
mality detection approach that identifies unusual patterns in

VMR is supported by a grant from NeuroCoG IDEX UGA in the frame-
work of the Investissements dávenir program (ANR-15-IDEX-02).

multi-parametric MRI data. For this purpose, we fit a mixture
model to data from healthy volunteers (reference model), then
compare to de novo PD data to search for outliers, i.e. possi-
ble abnormalities, in different brain regions, to which we fit
another mixture model (atypical model) to represent the po-
tentially complex distribution of abnormal tissues.

Mixture models are probabilistic models that represent
subpopulations within an overall population. They do not re-
quire prior knowledge of which subpopulation a data point
belongs to, allowing the model to learn automatically the sub-
populations in an unsupervised manner.

In our study, the reference model is built assuming that
healthy subjects present a set of distinct healthy tissues char-
acterized by different quantitative characteristics. These
classes of characteristics are captured using a mixture model
with an appropriate number of components, whose number is
determined automatically from the data. Abnormal regions
in PD patients are then detected as those with a too low log-
density score in the reference model. The detected abnormal
regions are in turn used to build another mixture that defines
a new model for atypical characteristics.

2. QUANTITATIVE MRI DATA

Quantitative MR data are considered, in particular, to be as
independent as possible of the MRI scanner or the study cen-
ter [1]. The scanner is no longer considered only as a camera
but as a means of measurement. In this paper, we consider
Diffusion imaging (DI) and Perfusion Imaging (PI). Through
DI, mean diffusivity [MD] describes the overall displacement
of water molecules and fractional anisotropy [FA] indicates
the orientation of diffusion. Although there are some incon-
sistent findings regarding diffusivity in PD patients, DI has
been helpful to discriminate PD from other syndromes [3,
4]. Moreover, with the development of arterial spin labelling
(ASL), brain perfusion can be assessed non-invasively. Cere-
bral blood flow (CBF) has been reported to be decreased in
the cortex of PD patients and either preserved or decreased in
their basal nuclei [5, 6].

To explore the feasibility of our method described in Sec-
tion 3, we extracted FA and MD parameter maps from DI,
and CBF maps from PI, for three healthy subjects (C1-C3)



(Age: {28, 40, 50}; 2 Males) and nine de novo PD patients
(P1-P9) (Age ∈ [36, 66]; H&Y score ≤ 2; 7 Males). All im-
ages were acquired on a Philips 3T scanner. For each individ-
ual, the computed maps were coregistered and resliced (1mm
isotropic) with SPM12 to obtain, for each voxel v, three cor-
responding feature values yv = (FAv,MDv,CBFv).

In this first attempt, we have searched for outliers in the
subcortical brain structures where changes were most likely
to take place in de novo PD patients, namely the substantia
nigra (SN), the red nucleus (RN), the subthalamic nucleus
(STN), the Globus Pallidus interna and externa (GPi, GPe),
the thalamus, the putamen and the caudate nucleus. To obtain
a mask of these Regions of Interest (ROIs), we performed a
non-linear deformation of the MNI PD25 atlas [7], specifi-
cally designed for PD patient exploration. In addition, we
considered the superior colliculus (SC) and the inferior col-
liculus (IC), where we recently found functional deficits [8].
The results of this experiment are summarized in Section 4.

3. ABNORMALITY DETECTION VIA MIXTURE
MODELS

To eliminate possible redundant information, we perform
a Principal Component Analysis (PCA) on the three maps
(CBF, FA and MD) for our healthy subjects. Each parameter
contributes equally to the information of explained variance
(38%, 33%, 29%) on axes (1, 2, 3) and all parameters are
then considered in the statistical analysis. A following step is
then to decide on an appropriate model that best accounts for
the data distribution. Although Gaussian distributions are the
most widely used statistical distributions for their tractability
and representation power, they are constrained by elliptical
shapes. Mixtures of Gaussians can help in modelling richer
distributional shapes but they are still not appropriate when
the data present elongated and strongly non-elliptical sub-
groups. As an alternative, we consider a richer family of
distributions based on multiple scaled t-distribution (MSD)
mixtures. These heavy-tailed distributions are endowed with
variable marginal amounts of tail-weight and their mixtures
have been showed to provide an efficient alternative to Gaus-
sian mixtures [9, 10]. In particular, their ability to model
over-dispersed values is illustrated in Figure 1.

The tridimensional measures (FA, MD, CBF) are sepa-
rated into healthy and patient datasets,

YH = {yv, v ∈ VH} and YP = {yv, v ∈ VP }, (1)

where VH and VP respectively represent the voxels belong-
ing to healthy volunteers and to patients. By fitting an MSD
mixture to the healthy data YH , we build a reference model
density fH that describes healthy tissues as follows:

fH(y|π,θ) =
KH∑

k=1

πkMSD(y; θk), (2)

where KH is the number of mixture components, and each
component is characterized by a proportion πk and an MSD

Fig. 1. Bivariate marginal distributions of our three parame-
ter maps (CBF, FA, MD). The colors represent the different
classes assigned by the MSD mixture reference model (2).

parameter θk. The optimal number of components KH is
chosen using the Bayesian Information Criterium (BIC). The
Expectation-Maximization algorithm (EM) [9] is used to ob-
tain the best fit of the MSD mixture on YH : it jointly estimates
the weights π and the parameters θ by reaching a (local) max-
imum of the model log-likelihood.

The log-density (or log-score) of each voxel (in VH and
VP ) with respect to fH , {log fH(yv), v ∈ VH ∪ VP }, can
then be used to compute a threshold to detect abnormal vox-
els. The log-score can be considered as a measure of prox-
imity of one voxel v (associated to value yv) to the reference
healthy model (represented by fH ). The rational is that vox-
els from healthy subjects are more likely to have a high log-
score while pathological voxels may not be well explained by
the reference model and consequently have a lower log-score.
A threshold can be computed in a data-driven way by fitting
a 2-component mixture model on the log-scores, defining the
threshold at the intersection of the two distributions. This sep-
aration into high and low score groups would correspond to a
certain false positive error rate (FPR) that can be determined
as proposed in [10]. We choose another option which con-
sists of deciding on an acceptable FPR α and determining the
corresponding threshold τα: the probability the log-score is
smaller than τα, although the log-score is that of an healthy
voxel, is α. In other words, τα is the value such that

P (log(fH(Y )) < τα) = α,

when Y is a random variable following the fh reference
model distribution. In practice, while fH is known explicitly,
the probability distribution of log(fH(Y )) is not. However, it
is easy to simulate this distribution so that τα can be computed
using empirical quantiles (Figure 2).

All the voxels whose log-score is below τα are then la-
beled as abnormal and the corresponding measures provide a



set of parameters that are referred to as the abnormal data set

YA = {yv, v ∈ VH ∪ VP , s.t. log fH(yv) < τα} .

An abnormality model denoted by fA is then constructed fol-
lowing the same procedure as for the reference model:

fA(y|µ,φ) =
KA∑

k=1

µkMSD(y;φk). (3)

This abnormality model is used to account for the fact that
voxels detected as abnormal may belong to different abnor-
mality classes, with different physiological characteristics.
Typically, the above formula indicates that among the YA set
there are KA different groups. Theses groups can be used to
build a signature ρs of each subject s by determining the pro-
portion of voxels that are assigned to each of the KA classes:

ρs = (ps1, . . . , p
s
KA

). (4)

Figure 3 provides an example of such signatures. The top
plot illustrates that abnormal voxels can be detected in healthy
subject although in a much lower proportion that in PD sub-
jects. In addition the abnormality pattern in healthy subjects
is usually different and may be distinguished from PD pat-
terns. A model of this difference can be quantified using stan-
dard discriminant analysis models and the known status of
each subject (control or patient). As explained in [10], we can
make use of this classification information and of additional
spatial information to refine abnormality detection. Notably,
clusters of less than 4 atypical voxels are not selected. Figure
3-bottom shows the effect of such a post-processing.

4. RESULTS

For control data, the highest BIC score for the MSD mixture
reference model (2) is obtained for KH = 7 components.
It is critical that the reference model correctly characterizes
the physiological properties of brain structures while encom-
passing the individual variability. Interestingly, while individ-
ual differences emerge, a spatial symmetry is observed over
the two brain hemispheres, when looking at individual brain
slices annotated with the reference classification. The propor-
tion of each class in the control subjects provides an insight
into these differences, see Figure 2(A).

To separate atypical from healthy voxels we choose a FPR
of α = 5%. Figure 2(B) shows the density of the log-scores
computed for all voxels with respect to the reference model.
Voxels considered as abnormal are located left to the vertical
red line representing the threshold τα. 49 196 voxels are la-
belled as abnormal (i.e. 20.4% of the set of voxels). Note that
the majority of these abnormal voxels belong to PD patients,
however, but some are detected in the controls. This is ex-
pected for two reasons. First, because each healthy individual
is unique and can bring some non-pathological extreme val-
ues, just like for a patient, the physiological measures are not

(A) (B)

Fig. 2. Panel (A): proportion of each of the KH = 7 classes
for controls C1, C2 and C3 given by the reference model fH .
Panel (B): density of the log-scores computed for all voxels
(controls and patients) with respect to fH . The red line repre-
sents the abnormality threshold τα.

Fig. 3. Subjects signatures derived from fA before (top) and
after post-processing (bottom). Each color represents one the
KA = 10 abnormal classes. Their localization in the brain is
illustrated for PD patient P1 (right).

all abnormal; and second, because we have admitted a non-
zero FPR.

The abnormal model is best defined by KA = 10 classes
according to BIC score. Figure 3 displays the abnormal sig-
natures of all subjects before and after post-processing. After
post-processing only 28 377 voxels, i.e 11.8% of all voxels,
remain labelled as abnormal. For Controls, no more voxels
are detected as abnormal. The largest numbers of abnormal
voxels are detected for patients P1 and P4. This is coherent
with the corresponding additional functional MRI data ob-
tained for these two subjects, which show alteration in visual
information processing in their subcortical structures[8].

Table 1 indicates the localization for each PD patient of



abnormal voxels with regard to the corresponding subcortical
structures. We computed the percentage of each ROI that was
detected as abnormal. In accordance with the literature, with
found that the substantia nigra (SN), the red nucleus (RN)
and the globus pallidus (GP) were the most impacted by the
pathology. Indeed,the degeneration of dopaminergic neurons
in the SN pars compacta and the subsequent denervation of
the dorsal striatum are at the origin of PD [11]. Abnormal
signatures found in SN, GP and Cau are also in line with the
reduced degree of myelination found in these regions for PD
patients [12, 5]. Moreover, SN and RN show an augmented
FA [3] and there is evidence of a decrease in structural con-
nectivity between SN, ipsilateral putamen and thalamus [13];

% P1 P2 P3 P4 P5 P6 P7 P8 P9
SN 71 19 18 64 10 49 60 29 7
RN 48 1 0 7 41 31 27 24 0
STN 22 2 0 45 0 11 12 0 0
GPe 49 4 9 24 29 21 19 5 10
GPi 63 4 1 21 11 39 24 0 22
Th 20 10 32 11 12 16 5 32 3
Put 30 11 7 25 20 5 7 4 3
Cau 27 1 4 14 28 13 15 5 0
SC 0 0 13 0 0 22 16 0 0
IC 33 0 0 0 0 18 58 13 0

Table 1. Percentages of abnormal voxels after post-
processing in each patient subcortical structure.

5. CONCLUSION AND PERSPECTIVES

We presented a method for the detection of abnormalities in
de novo PD patients. We demonstrated its potential on a
small cohort of three controls and nine PD patients. Clearly,
more subjects are needed to bring out robust biomarkers of
PD. However, these preliminary results show that the applica-
tion of mixture models of relevant distributions is informa-
tive and promising to correctly discriminate the pathology.
In addition, our method, in contrast to supervised machine
learning techniques, does not rely on a large set of anno-
tated data, which are difficult to obtain in medical contexts.
Moreover, it relies on interpretable statistical tools that can be
tuned and compared, providing a model of physical proper-
ties alterations. Last but not least, it does not require ground-
truth comparison, making it a valuable tool for the exploration
of any physiological changes. Future work will extend our
method to the study of the entire brain on large cohorts and
on the inclusion of new physiological measures to fully ex-
ploit the potential of multi-parametric quantitative MRI.
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Anomaly characterization in the MRI data of ‘de novo’ Parkinson’s patients 

Parkinson's disease (PD) is a progressive disorder of the nervous system characterized by the 

degeneration of dopaminergic neurons found in the substantia nigra. In general, the diagnosis 

occurs once the patients start experiencing the well-known motor symptoms of this disease, 

namely stiffness, akinesia and resting tremor. By this moment, it is estimated that 60 to 80% of 

the dopamine-producing neurons have already been lost or impaired. 

However, as the loss of these neurons disrupts the functioning of the subcortical structures, 

many non-motor symptoms such as visual and olfactory disturbances, mood disorders or 

changes in cerebral perfusion occur earlier in the pathology. 

In this context, our project aims to find specific signatures in the newly diagnosed Parkinson's 

patients that can lead to earlier diagnosis and the classification of patients into sub-types for 

more tailored treatments to slow down the disease process.  

To reach this objective, we have explored three different approaches. Firstly, we searched for 

morphometric changes in structural data using popular techniques such as VBM, DBM and 

SBM. Secondly, we conceived a deep-learning methodology to detect brain diffusion anomalies 

employing reconstruction errors of a trained auto-encoder. Finally, we developed an original 

statistical approach based on mixture models generated from Student distribution laws to 

construct a reference control model form multi-modal quantitative data of “normality” and to 

classify the abnormalities present in our patients. 

 

Caractérisation d’anomalies sur les données IRM des patients Parkinsoniens 

‘de novo’ 

La maladie de Parkinson est un trouble progressif du système nerveux caractérisé par la 

dégénérescence des neurones dopaminergiques trouvés dans la substantia nigra. En général, 

le diagnostic est posé par le neurologue lorsque les patients commencent à ressentir les 

symptômes moteurs bien connus de cette maladie, à savoir la raideur, l'akinésie et les 

tremblements au repos. À ce stade, on estime que 60 à 80% des neurones productrices de 

dopamine ont déjà été perdues ou altérées. 

Cependant, la perte de ces neurones perturbant le fonctionnement des autres structures sous-

corticales, de nombreux symptômes non moteurs (e.g. troubles olfactifs, visuels, modifications 

de la perfusion cérébrale) peuvent apparaitre à un stade plus précoce de la pathologie. 

Dans ce contexte, notre projet vise à révéler des anomalies spécifiques chez les patients 

Parkinsoniens nouvellement diagnostiqués qui pourraient conduire à un diagnostic plus 

précoce et à un sous-typage des patients pour définir un traitement plus personnalisé et ralentir 

la progression de la maladie. 

Pour atteindre cet objectif, nous avons exploré trois approches différentes. Premièrement, nous 

avons recherché des changements morphométriques dans les données structurelles en 

utilisant des techniques standard telles que VBM, DBM et SBM. Deuxièmement, nous avons 

conçu une méthodologie à base d'apprentissage profond pour détecter les anomalies 

cérébrales dans les IRM de diffusion. Enfin, nous avons développé une approche statistique 

originale basée sur des modèles de mélange générés à partir des lois de distribution de 

Student. Cela nous permet de pour construire un modèle de normalité à partir de données 

quantitatives multimodales de sujets sains, pour ensuite détecter les anomalies présentes chez 

nos patients. 
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