In the past several decades, quadrotor control problems attract more attentions of the researcher comparing with other flying vehicles. However, most of the commercial products still use linear PID controller, which provides sufficiently good performance.

Developing a controller, that would convince the industry to use it instead of linear PID, is still a challenge. The aim of this thesis is to show that homogeneous controller is a possible alternative to linear one. For this purpose, a new method of upgrading linear algorithm to homogeneous one is proposed. It uses the gains of linear controller/observer provided by the manufacturer for tuning of homogeneous algorithm. The experimental results support the theoretical developments and confirm a significant improvement of quadrotor's control quality: better precision, more robustness and faster response.
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Notations

• R the set of real numbers;

• R n the n-dimensional Euclidean space;

• C(X, Y ) the space of continuous functions X → Y , where X, Y are subsets of R n ;

• C p (X, Y ) the space of functions continuously differentiable at least up to the order p;

• λ min (P ) and λ max (P ) are the maximal and minimal eigenvalues of the symmetric matrix P ;

• If A ∈ R n×n then A := sup x 0 Ax x , A = inf x 0 Ax
x , where x is a vector norm in R n ;

• diag{λ i } n i=1 the diagonal matrix with elements λ i ;

• P > 0(< 0, ≥ 0, ≤ 0) for P ∈ R n×n means that P is symmetric and positive(negative) definite(semidefinite);

• d(s) : R n → R n is a one-parameter group of dilations in R n where s ∈ R;

• F d (R n ) the set of d-homogeneous vector fields R n → R n ;

• H d (R n ) the set of d-homogeneous functions R n → R;

• deg F d (f ) homogeneity degree of f ∈ F d (R n ); • deg H d (h) homogeneity degree of h ∈ H d (R n ); • sign(x) =            1 x > 0 0 x = 0 -1 x < 0 • x i α i = |x i | α i sign(x i );
• By default x = √ x P x is the weighted Euclidean norm with some P > 0;

• x R n = √ x x; xvii xviii Notations •
The canonical homogeneous norm is x d = e s x , where s x ∈ R : d(-s x )x = 1;

• φ, θ, ψ are Euler angles represent roll, pitch, and yaw of quadrotor;

• B R L is rotation matrix from local frame to body frame;

• ω is angular velocity in body frame ω = (p, q, r);

• F T denotes total thrust produced by propellers in body frame;

• I com moment of inertia of quadrotor; I xx roll inertia; I yy pitch inertia; I zz yaw inertia;

• L roll roll motor distance;

• L pitch pitch motor distance;

• c drag coefficient;

• k c thrust coefficient;

• m mass of quadrotor;

• g gravitational acceleration;

• τ torque of producing roll, pitch, and yaw;

• f i thrust produced by each propeller i = 1, 2, 3, 4;

• A continuous function σ : [0, +∞] → [0, +∞] belongs to the class K if it is monotone increasing and σ (0) = 0;

Chapter1

Introduction

This chapter presents the context and motivation of the research. Then it reviews the state of the art of quadrotor control, which includes linear, nonlinear and intelligent controllers. The experimental platform is considered as well. The contribution and the outline of the thesis are presented in the last section.

Quadrotor as unmanned aerial vehicle

In this section, we provide a general introduction to quadrotor control problem. Initially, we survey quadrotor's application domains and present advantages of the quadrotor system. Next, we discuss some challenges related with its control and navigation. Finally, we formulate a general problem to be tackled in this thesis.

Applications

Quadrotor is a rotary-wing UAV (Unmanned Aerial Vehicle) which has become very reliable and affordable in the last years. Besides quadrotor applications are rather popular and cover many important flight tasks.

• Quadrotor as transport vehicle: This kind of application uses mainly the quadrotor's ability to transport a payload. For example, Amazon proposed "Prime Air" service to deliver the package using quadrotor. Meanwhile the quadrotor could work for carrying medical equipment to save lives. Ambulance Drone was created by TU Delft and applied in the real life several years ago.

• Quadrotor with camera: Quadrotor working with camera is one of the applications which attracts a lot of attention recently. The main contribution of camera is to record high quality video. The company "DJI Technology" (one of the main players of commercial quadrotor) provides many kinds of products for aerial photography and videography. Target surveillance, searching and detection are also important quadrotor applications [START_REF] Chen | Dynamic urban surveillance video stream processing using fog computing[END_REF], [START_REF] Perez | A ground control station for a multi-UAV surveillance system[END_REF]. Several targets could be tracking at the same time [START_REF] Lee | Multiple target detection and tracking on urban roads with a drone[END_REF]. This application has potential market in traffic monitorning, military tasks of some dangerous places [START_REF] Michael | Collaborative mapping of an earthquake damaged building via ground and aerial robots[END_REF], etc. Of course it can be extended to the outdoor application of mapping and exploring unknown environments [START_REF] Fraundorfer | Vision-based autonomous mapping and exploration using a quadrotor MAV[END_REF].

• Quadrotor with robot arm: Quadrotor equipped with an arm provides the quadrotor a possibility of working in the air. For example, a two degrees of freedom robotic arm is equipped with quadrotor to pick and hold a payload. One of the application domains is in autonomous inspection and maintenance of power lines, which is a new project proposed by Robotics & perception group of ETH in this year. Besides quadrotor with multi-link arm can handle the assembly tasks in the air [START_REF] Jimenez-Cano | Control of an aerial robot with multi-link arm for assembly tasks[END_REF]. The application of multiple quadrotors' cooperation with robotic arm could be found in [START_REF] Caccavale | Cooperative impedance control for multiple UAVs with a robotic arm[END_REF], [START_REF] Gioioso | The flying hand: A formation of UAVs for cooperative aerial tele-manipulation[END_REF], [START_REF] Qi | Collision-Free Formation Control for Multiple Quadrotor-Manipulator Systems[END_REF].

Further research of quadrotor platform would allow to develop wider range applications.

Advantages

As shown in the previous section, the quadrotor has been applied in many domains. The following advantages of quadrotor could be the reason of this phenomenon.

• Small size, lightweight: The quadrotor could be made to be a relatively small size [START_REF] Grzonka | A fully autonomous indoor quadrotor[END_REF] which gives more safety [START_REF] Hoffmann | Quadrotor helicopter flight dynamics and control: Theory and experiment[END_REF] than other aerial vehicles.

• Simple configuration of the multirotor type: The motors with propeller are the only moving parts. This makes the platform more reliable and mechanically robust [START_REF] Pounds | Modelling and control of a large quadrotor robot[END_REF]. The propellers mostly have a fixed blade pitch, thus quadrotor thrust and attitude can be controlled by changing the motor speed. This is done by electronic speed controller (ESC).

• Vertical take-off and landing: This makes quadrotor to be possible staying airborne without moving, which is required in many tasks, such as videography, photography, inspection, surveillance, manipulation and so on. It needs minimal space for take-off and landing.

1.1. Quadrotor as unmanned aerial vehicle

• Relatively high thrust-to-weight-ratio: Quadrotor is possible to carry rather large payload [START_REF] Jiang | Analysis and synthesis of multi-rotor aerial vehicles[END_REF] and be able to perform agile maneuvers.

• Cheap prototype: This could be the main advantage for researchers to verify their ideas on quadrotor platform.

Quadrotor is a good option as a research platform, since it is simple, cheap, robust, reliable and agile. It needs small laboratory space for making experiments due to vertical take-off and landing.

Challenges

Development of a control system that properly governs quadrotor motion is important for all applications mentioned above. Several challenges related with the quadrotor control problem are listed below:

• Quadrotor is unstable, nonlinear, multi-variable, coupled, under-actuated system.

Indeed a stable hovering flight cannot be achieved by applying constant inputs to four motors. The mechanical model has 6 degrees of freedom (DOF), while four thrusts produced by propellers are the only inputs of system. The simplest dynamical model of quadrotor is highly nonlinear and has coupled variables.

Since the number of inputs is smaller than the DOF, quadrotor is an underactuated system [START_REF] Bouabdallah | Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[END_REF]. It is not able to independently produce any force orientation. This leads to many control problems, for example, take-off from an inclined surface [START_REF] Tognon | Takeoff and landing on slopes via inclined hovering with a tethered aerial robot[END_REF].

• Quadrotors hardware limitations: saturation of motors [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF], limited battery and computational capabilities. The quadrotor may reach the physical limit of actuators while performing some flight tasks. This may leads to the inability [START_REF] Faessler | Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight[END_REF].

Battery is the main challenge of any electrical vehicle. Quadrotor generally cannot carry too heavy battery due to the small size, which is the reason why quadrotor cannot stay too long in the air with one recharge. The improvement of battery technologies plays an important role in the quadrotor applications. Quadrotor also requires a small and powerful processor for on-board performing various tasks such as realization advanced control strategies motivated by nonlinear system theory, image processing or learning control.

Problem studied in this thesis

A lot of control strategies have been developed for quadrotor platform such as PID (Proportional-Integral-Derivative), sliding mode, back-stepping and other algorithms (see Section 1.3 for more details). Most of commercial products use the classical (linear)

PID controller, which provides sufficiently good quality and admits rather simple welldeveloped design methodology. The linear PID control theory is very well developed, so the further improvements of control quality using the same linear strategy seems impossible. Nonlinearity of the quadrotor system motivates the researchers for development of nonlinear control algorithms. However, it is hard to convince the industry to invest a lot of time/money for such developments while the linear PID works good enough.

That is why this thesis proposes an alternative solution. We take already designed and well-tuned linear PID controller and transform it a into nonlinear one providing better performance.

Therefore the main goals of this thesis are

• to develop a methodology for upgrading linear PID controllers/observers to nonlinear ones with a guaranteed improvement of the control/estimation quality.

• to validate this methodology on a quadrotor platform existing on the market.

Moreover it is worthy noting that in the view of challenges mentioned above, the upgraded quadrotor controllers/observers must be simple for implementation without any hardware upgrade.

Quadrotor system

This section presents more details of the quadrotor system. We follow the researches made by many well-known international labs. Table 1.1 lists the most famous ones. The various coordinate systems (Fig. 1.1) that are commonly used in the flight model need to be presented before introducing different modeling approaches. • Body axis system. The body axis has its origin at the quadrotor center of mass(CoM)

Model of dynamics

and is fixed to the quadrotor while moving along with it. It forms a right-handed rule Fig. 1.1. The terms p, q, r are three body axis rotational velocities.

• Local axis system. The local axis system also has its origin point at the CoM of quadrotor, but has a fixed orientation 1.1.

• Earth axis system. It is an inertial frame that has its origin fixed at some point on earth's surface. Inertial frame is also depicted in Fig. 1.1.

Let the generalized coordinates of quadrotor be presented as

q = (x, y, z, φ, θ, ψ) ∈ R 6 (1.1)
where ξ = (x, y, z) ∈ R 3 denotes the position vector of mass center of quadrotor respecting to the Earth frame E, and η = (φ, θ, ψ) ∈ R 3 represents the Euler angle of quadrotor. The After doing the first rotation ψ,

           X 2 Y 2 Z 2            =            cos ψ sin ψ 0 -sin ψ cos ψ 0 0 0 1                       X 1 Y 1 Z 1            = 2 R 1            X 1 Y 1 Z 1            (1.2)
Next doing the second rotation θ,

           X 3 Y 3 Z 3            =            cos θ 0 -sin θ 0 1 0 sin θ 0 cos θ                       X 2 Y 2 Z 2            = 3 R 2            X 2 Y 2 Z 2            (1.3)
Finally doing the last rotation φ, the body frame is

           X B Y B Z B            =            X Y Z            =            1 0 0 0 cos φ sin φ 0 -sin φ cos φ                       X 3 Y 3 Z 3            = B R 3            X 3 Y 3 Z 3            (1.4) Therefore the relation between local frame X 1 , Y 1 , Z 1 and body frame X B , Y B , Z B is given by combining (1.2)-(1.4):            X B Y B Z B            = B R L            X L Y L Z L            (1.5)
where B R L is the transformation matrix from local frame to body frame.

B R L            cos θ cos ψ cos θ sin ψ -sin θ
cos φ sin ψ + sin φ sin θ cos ψ cos φ cos ψ + sin φ sin θ sin ψ sin φ cos θ sin φ sin ψ + cos φ sin θ cos ψsin φ cos ψ + cos φ sin θ sin ψ cos φ cos θ

           (1.6) 
Since the transformation matrix is orthogonal, the inverse matrix can be calculated by

B R L L R B = I (1.7)
and

L R B =            cos ψ cos θ cos ψ sin θ sin φ -sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ -sin φ cos ψ -sin θ cos θ sin φ cos θ cos φ            (1.8)
In the real experiment, the Earth frame is initially set to be the same orientation and position to local frame system.

Derivative of Euler angle and body axis rotational velocities

The body axis angle velocities are presented by a projection of the angle velocity on the body axis. Angle velocity can be presented by the sum of three following terms

1. ψ is measured in the local frame (X 1 , Y 1 , Z 1 ) 2. θ is measured in the intermediate frame (X 2 , Y 2 , Z 2 ) 3. φ is measured in the intermediate frame (X 3 , Y 3 , Z 3 )
Thus the body axis rotational velocities is

ω =            p q r            = B R 3            φ 0 0            + B R 2            0 θ 0            + B R 1            0 0 ψ           =            1 0 -sin θ 0 cos φ sin φ cos θ 0 -sin φ cos φ cos θ                       φ θ ψ           = B W 1 η (1.9)
where B W 1 is the transformation matrix between derivative of Euler angle and body axis rotational velocities. The following approaches will use the frames defined in the previous part.

Euler-lagrange approach

The Euler-Lagrange equation with external generalized forces is

d dt ( ∂L ∂ q ) - ∂L ∂q =       F τ       (1.10)
where the Lagrangian is defined as

L(q, q) = T trans + T rot -P (1.11)
where T trans = 1 2 m ξT ξ is the transnational kinetic energy, T rot = 1 2 ω T I com ω is the rotational kinetic energy, P = mgz is the potential energy of quadrotor, m is the quadrotor mass, ω = (p, q, r) is the vector of body axis rotational velocities, I com is the inertia matrix and g is the gravity acceleration. Remark that when φ, and θ are smaller, the matrix B W 1 of (1.9) is approximated to an identity matrix, then there will be ω ≈ η. In most of the research articles, this approximation is adopted to simplify the dynamic model [START_REF] Xu | Sliding mode control of a quadrotor helicopter[END_REF]. F and τ are the external force and moment in the Earth frame.

From (1.9), we have

ω =            1 0 -sin θ 0 cos φ sin φ cos θ 0 -sin φ cos φ cos θ            η = B W 1 η (1.12) Define J (φ, θ) = B W T 1 I com B W 1 (1. 13 
)
where

I com =            I xx 0 0 0 I yy 0 0 0 I zz            (1.14)
Therefore

T rot = 1 2 ηT J η (1.15)
Finally the Lagrangian is

L(q, q) = 1 2 m ξT ξ + 1 2 ηT J η -mgz (1.16)
Since the Lagrangian term L has no coupled term between ξ and η, the Euler-Lagrange equation can be separated into dynamics equation of ξ and η.

• ξ dynamics equation:

d dt ( ∂L ∂ ξ ) - ∂L ∂ξ = F ⇒ m ξ +            0 0 mg            = F (1.17)
where

F = E R B F B = E R B            0 0 F T            (1.18)
and F T = 4 i=1 f i is the main thrust where f i with i = 1, 2, 3, 4 is the thrust produced by propellers. If the Earth frame coincides with the local frame before the quadrotor moving, then E R B = L R B referring to (1.8).

• η dynamic equation is

d dt ( ∂L ∂ η ) - ∂L ∂η = τ (1.19)
thus one obtains

J η + J η - 1 2 ∂ ∂η ( ηT J η) = τ (1.20)
where

τ =            τ φ τ θ τ ψ            =            l roll k c (ω 2 1 -ω 2 3 ) l pitch k c (ω 2 2 -ω 2 4 ) l yaw c(-ω 2 1 + ω 2 2 -ω 2 3 + ω 2 4 )            (1.21) l roll (l pitch ) is the roll (pitch) motor to CoM distance, c is drag coefficient and k c is thrust coefficient. Define Coriolis-centripetal vector as V (η, η) = J η - 1 2 ∂ ∂η ( ηT J η) = ( J - 1 2 ∂ ∂η ( ηT J ) η) = C(η, η) η (1.22)
where C(η, η) is the Coriolis term. Finally η dynamic equation is

J η = τ -C(η, η) η (1.23)
Then the dynamic equations of quadrotor based on Euler-Lagrange approach are

m ξ +            0 0 mg            = E R B            0 0 F T            (1.24) η = τ (1.25) where τ = J -1 (τ -C(η, η) η) = [ τφ , τθ , τψ ] T .
Finally the dynamic equations of quadrotor system are

ẍ = F T m (cos φ sin θ cos ψ + sin φ sin ψ) (1.26) ÿ = F T m (cos φ sin θ sin ψ -sin φ cos ψ) (1.27) z = F T m cos φ cos θ -g (1.28) φ = τφ (1.29) θ = τθ (1.30) ψ = τψ (1.31)
Notice that in most cases of experiment, φ and θ are supposed to be small such that cos θ ≈ 1, cos φ ≈ 1 and sin θ ≈ θ, sin φ ≈ φ.

Linear parameter varying (LPV) model of quadrotor

The quadrotor model built in the previous part is a nonlinear one, which sometimes is not convenient for controller design. A LPV quadrotor model will be utilized hereafter.

From (1.26)-(1.31), suppose that

      (1.32)
In the rest of this thesis, the controller design will be mainly based on this reformulated model (1.35).

Sensors used for quadrotor

In order to stabilize the quadrotor system, knowing some of the state information is necessary. Therefore selecting a reasonable sensor is very important for designing autonomous quadrotor. Consequently, a fast, reliable and high precise sensing system is important in the system controller design. Many kinds of sensors have been applied on quadrotor, some of them measure the value concerned the system itself, for example internal temperature of electronic chip. Other sensors like IMU and camera can extract information about the quadrotor and its environment, which is then used to get the motion and location information of quadrotor. In this thesis, we mainly talk about the latter type of sensors.

The main sensors used to measure the state of quadrotor are following:

• Accelerometer: Accelerometer measures the linear acceleration in body frame.

It is relatively accurate in long time measurement since there is no drift and the center of Earth gravity does not move. However it is a noisy measurement which makes it unreliable in short time. A well tuning filter is necessary before using it in controller algorithm.

• Gyroscope: Gyroscope measures the angular velocity in degree/sec. It usually works with accelerometer to become a 6 DOF sensor fusion.

• Magnetometer: Magnetometer measures magnetic field strength in uT or Gauss (1 Gauss = 100 uT). It can be regarded as complementary information of accelerometer to provide a higher precision of yaw (heading direction). However it is usually affected by metal, and needs to be well calibrated according to different locations.

• IMU (Inertial measurement unit): 9 DOF IMU is a chip including 3-axes gyroscope, 3-axes magnetometer and 3-axes accelerometer.

Notice that all the measurements of above sensor are taken in body frame. The main sensors used to detect the environment are following:

• Ultrasonic sensor: Ultrasonic sensor is an instrument of measuring the distance to an object by using ultrasonic sound waves. The working principle is that it can generate high frequency sound waves which is then reflected from the boundaries of object to produce distinct echo patterns. The time between sending waves and receiving waves is the key information to determine the distance to an object.

• Laser range finder(LRF): LRF is another device to measure the distance to an object by laser beam. In general, most of the LRFs are based on the time of flight principle which is sending a laser pulse in a narrow beam towards the object and then measuring the time taken between sending and receiving. LRF is widely applied for 3D object recognition and modeling while providing a high precision scanning ability.

• Infrared sensor: Infrared sensor has two types: active and passive. Active infrared sensor both emits and detects the infrared radiation. Passive infrared sensor only measures the infrared light radiation from objects. Active infrared sensor estimates the distance by measuring the time taken between sending and receiving. However infrared sensor works only for shorter distance than ultrasonic sensors.

• Image sensor: Image sensor is a sensor that detects and transmits the information of making an image. The working principle is converting the attenuation of light (electromagnetic) waves into signals while the light (electromagnetic) passes through or reflects off the objects. The image sensor includes such as digital cameras, medical imaging equipment, night version device and so on. These equipments can provide amount of information around robot's environment.

However image processing requires powerful computation chips, it is generally finished on the ground station.

• Pressure sensor: Pressure sensor is a device for pressure estimation of gases or liquids. In aircraft, weather balloon and rocket, the pressure sensor could generate an altitude output in function of the measured pressure, which gives the altitude information based on the pressure. Similarly, pressure sensor used in submarine will provide the depth information based on the pressure estimation of liquids.

• Global positioning system(GPS): GPS is a space-based global navigation satellite system that can provide absolute location of object on the Earth. Most of the outdoor aircrafts are working based on the GPS. Combining with the information from IMU, a better estimation can be given after a data fusion. However GPS can't work independently for the indoor cases, where the GPS signal is weak and distance measurement is not accurate. In this case, other sensors such as IMU, LRF, ultrasonic sensor and image sensor could be a better choice for giving a relative or absolute location.

On Quanser's QDrone platform which is used during the work of this thesis, many sensors such as IMU, gyroscope, magnetometer and depth camera are equipped. To stabilize the quadrotor, and track some references, the controller and observer design of our work will be mainly based on the output data of IMU and the positioning system ( section 1.4.1).

State of the art in quadrotor control

Quadrotor has been studied for a few decade, this section will give a short introduction of three types of popular controllers: linear controllers, nonlinear controllers and intelligent controllers.

Linear controllers

Linear controllers are the most popular algorithms. They are easy to tune and require less computation power than other algorithms.

1.3.1.1 Proportional Integral Derivative (PID)
PID controller is the most widely applied controller in the industry. Classical PID controller has several advantages such as easy to design and optimize the parameter, and has a good robustness. One important advantage of PID is that it can be applied in the case of without the knowledge of dynamic model of quadrotor. However, applying PID controller on the quadrotor may limit its performance, since quadrotor model is an under-actuated system with nonlinear terms.

Many researchers have already applied PID controller to quadrotor [START_REF] Bouabdallah | PID vs LQ control techniques applied to an indoor micro quadrotor[END_REF], [START_REF] Hoffmann | Quadrotor helicopter flight dynamics and control: Theory and experiment[END_REF]. Generally the quadrotor control structure includes inner loop and outer loop which stabilize attitude and position respectively [START_REF] Li | Dynamic analysis and PID control for a quadrotor[END_REF], [START_REF] Salih | Flight PID controller design for a UAV quadrotor[END_REF]. Of course, the control method of inner loop and outer loop may be different, for example, inner loop uses PID controller and outer loop is based on dynamic surface controller [START_REF] Lee | Hovering control of a quadrotor[END_REF]. The system operating by LQR optimal controller is based on finding a reasonable parameter gain while minimizing a suitable cost function [START_REF] Olalla | Robust LQR control for PWM converters: An LMI approach[END_REF]. Initially LQR was implemented for quadrotor OS4 [START_REF] Bouabdallah | PID vs LQ control techniques applied to an indoor micro quadrotor[END_REF] where LQR controller is compared with PID controller. LQR controller provides average results due to the model imperfections.

It also works under wind and other perturbations [START_REF] Cowling | A prototype of an autonomous controller for a quadrotor UAV[END_REF]. Combining with LQR and Kalman filter, LQR is transformed into the Linear Quadratic Gaussian (LQG ) algorithm while preserving the optimality of control. The idea behind is to have both optimal controller and estimator simultaneously. The LQG with integral term was tested in [START_REF] Minh | Modeling and control of quadrotor MAV using visionbased measurement[END_REF] for stabilization of quadrotor attitude which has a good result in hovering case. 

Gain-scheduling

Gain-scheduling is one of the most commonly used controller design approaches for nonlinear systems (e.g. linear parameter varying and time varying system) requiring large operating region. It has a wide application in industrial [START_REF] Ilka | Gain-Scheduled Controller Design[END_REF]. Some examples of classical gain-scheduling (linearization based) can be found in [START_REF] Ng | A simple gain scheduled PID controller with stability consideration based on a grid-point concept[END_REF], [START_REF] Reyes-Valeria | LQR control for a quadrotor using unit quaternions: Modeling and simulation[END_REF]. The main advantage of this kind of gain-scheduling is that it inherits the benefits of linear controller. However the main drawback is that each linear controller is only valid at the equilibrium point.

H ∞ control

Robust control methodology provides many techniques to control dynamical systems with unmodeled dynamics or bounded uncertainties. H ∞ is one of the important robust controllers to implement the system stabilization with guaranteed performance. Linear H ∞ controllers have been applied on the linearized model of quadrotor, for example in [START_REF] Mokhtari | Robust feedback linearization and GH/sub/spl infin//controller for a quadrotor unmanned aerial vehicle[END_REF] a mixed linear H ∞ controller with robust feedback linearization is applied to a quadrotor model. The results show that the system becomes more robust under uncertainties and measurement noise when the weight functions are chosen properly.

Nonlinear algorithms

Many nonlinear control techniques such as feedback linearization, backstepping, sliding mode control (SMC), model predictive control (MPC) and adaptive control have been applied on quadrotors to overcome the shortcomings of linear control techniques.

Feedback Linearization

Feedback linearization is a nonlinear control design methodology allowing to design a nonlinear feedback and a change of coordinates which transform the original nonlinear control system in a linear one [START_REF] Isidori | Nonlinear control systems[END_REF]. Some limitations of feedback linearization is that it requires more exact model to avoid the loss of precision due to linearization process [120]. This kind of method is frequently applied in robot control, but it still needs a control design after simplification [START_REF] Palunko | Adaptive control of a quadrotor with dynamic changes in the center of gravity[END_REF], [START_REF] Lee | Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[END_REF].

Backstepping Control

Backstepping controller is a well-known technique for underactuated system control.

The basic idea behind is to break down the controller design problem of full system to a sequence of sub-systems and then stabilize each subsystem progressively [START_REF] Kokotovic | The joy of feedback: nonlinear and adaptive[END_REF], [START_REF] Shen | Adaptive fault-tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics[END_REF]. The advantage of this method is that the algorithm converges fast and guarantees boundedness of tracking error globally. The main limitation is the problem of explosion of terms.

On quadrotor system, backstepping method can not only be used for orientation control [START_REF] Bouabdallah | Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[END_REF], but also for position control [START_REF] Madani | Backstepping control for a quadrotor helicopter[END_REF], [START_REF] Huo | Attitude stabilization control of a quadrotor UAV by using backstepping approach[END_REF] under disturbance. The results show that backstepping method may provide a better performance than PID controller.

Sliding Mode Control (SMC)

Sliding mode control is a nonlinear control algorithm that works by applying a bounded discontinuous controller to the system [START_REF] Utkin | Sliding modes in control and optimization[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], [START_REF] Plestan | Sliding mode control with gain adaptation-Application to an electropneumatic actuator[END_REF], then forces the state variables converge to the prescribed surface and finally slides on it. It is also a method to reduce the dynamical dimension of system. The main advantage of SMC is that it does not need to simplify the dynamic model by linearization theory, while guaranteeing a good tracking result. Theoretically it is insensitive with respect to the model errors and other disturbances. However, the limitation of SMC is the discontinuity of controller that leads to the chattering problem. The magnitude of chattering is proportional to the gain applied. The chattering effect of SMC can be avoided in the control input by using the continuous approximation of the sign function [START_REF] Xu | Sliding mode control of a quadrotor helicopter[END_REF]. Super twisting algorithm (STA) is anther option to improve the robustness of system and to reduce chattering magnitude at same time [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: Methodology and application[END_REF], [START_REF] Luque-Vega | Robust block second order sliding mode control for a quadrotor[END_REF]. 

Adaptive Control Algorithms

Adaptive control is the control of plants with unknown parameters, for example a time-varying system [START_REF] Diao | A nonlinear adaptive control approach for quadrotor UAVs[END_REF]. When the plant parameters change in time or unknown, the adaptive control needs to be considered to achieve or maintain the desired performance.

In the presence of uncertainties, using prior and on-line information [START_REF] Brégeault | Adaptive sliding mode control for an electropneumatic actuator[END_REF], [START_REF] Lozano | Adaptive control of robot manipulators with flexible joints[END_REF], the controller will adapt itself. Comparing with robust control, adaptive control may provide a better performance for a large domain of uncertainty. Besides using a robust controller design method in adaptive control system may drastically improve the system performance as well [START_REF] Landau | Adaptive control: algorithms, analysis and applications[END_REF]. For example, the adaptive control is able to stabilize the system with changes of gravity center of quadrotor while linear controller or feedback linearization controller may not work in this case [START_REF] Palunko | Adaptive control of a quadrotor with dynamic changes in the center of gravity[END_REF]. MPC is another nonlinear technique that has been applied on quadrotor. MPC uses dynamic model of system to estimate future system states while minimizing the error by solving optimal control problems. One important advantage of MPC is that the system subject to constraints can be stabilized through classical methods. For example, when the user gives a desired optimized reference to be tracked, the system will operate at the optimized performance while satisfying the constraints. The key limit of MPC is that the optimization is on-line and requires relatively high computation power than other controllers. In the litterature [START_REF] Raffo | MPC with Nonlinear H ∞ Control for Path Tracking of a Quad-Rotor Helicopter[END_REF] combined MPC with nonlinear H ∞ controller for path tracking of quadrotor. A MPC for position and attitude control of quadrotor subject to wind disturbances was presented in [START_REF] Alexis | Model predictive quadrotor control: attitude, altitude and position experimental studies[END_REF].

Intelligent control

Intelligent control algorithms apply method of artificial intelligent approaches to control the system. The fussy logic and the neural networks are the most widely used methods, see [START_REF] Santos | Intelligent fuzzy controller of a quadrotor[END_REF].

Artificial neural networks are inspired by the central nervous system and brain. A robust neural network control is applied to the quadrotor in [START_REF] Nicol | Robust neural network control of a quadrotor helicopter[END_REF]. This adaptive neural network control is able to stabilize the quadrotor against modeling error and wind disturbance. It demonstrates a clear improvement of achieving a desired attitude. The neural network can also directly map the system state to the actuator command by reinforcement learning and implement the trajectory tracking [START_REF] Hwangbo | Control of a quadrotor with reinforcement learning[END_REF]. As evident from the literature, no single algorithm presents the best required features. The best performance usually requires a combination of robustness, adaptability, optimality, simplicity, tracking ability, fast response and disturbance rejection. PID controller is a good enough solution, since the industry appreciates it a lot. In this thesis we propose a methodology of for upgrading linear PID algorithms to homogeneous ones, which improves the control quality of linear PID but preserves all its advantages. The number of cameras, minimum size of room, and the corresponding approximate size of volume captured by camera depend on the number of quadrotors. Their relations are listed in Table 1.2.

In our lab, one quadrotor is enough for current experiments, which requires 6 cameras. A recommended configuration of camera mounted position is presented in Fig. 1.9.

Once the cameras are well mounted at the recommended location, the cameras need connect to the USB ports of OptiHubs, and then connect the OptiHub to the ground After well mounting the cameras, the next step is to do the calibration of cameras, which is very important to have a precision location of quadrotor. Here we use several markers to locate quadrotor (Fig. 1.12). More details about calibrating cameras can be found in Quanser's documents.

Quadrotor hardware

Quadrotor system includes a powerful microcomputer called Intel Aero compute and a propulsion system. This microcomputer will focus on the calculation, send the command to propulsion system and then make the quadrotor stable.

Intel Aero Compute

The Intel Aero Compute (Fig. 1.13) has the following components • Leds: 1 tricolor and 1 orange user-programmable Led indicator

1.4.2.

Propulsion system

The Intel Aero Compute is powerful and will send the command to propulsion system, which includes three main components: ESC (electronic speed control), motor and propeller, see Fig. 1.14 and Table 1.3. The command sent to ESC is throttle command (%), which is represented by u p .

Then the output signal of ESC will drive the motor with propellers to produce T p thrust (N). The relation of u p , T p , and ω p (angular velocity of propeller) can be presented by

T p = c t ω p 1000 2 (1.37 
)

ω p = C m u p + ω b (1.38)
where the parameters c t , C m and ω b need to be determined by experiments. Table 1.4

gives the experimental results provided by QDrone producer. Besides the mechanical parameters provided in Table 1.5 will be used in research. The mapping between control input and thrust of each propeller is already designed by Quanser's engineer.

Matlab based design

The User Interface of QDrone platform is using Matlab/Simulink. Matlab is installed in the ground control station PC, the communication between quadrotor and Matlab is through the Router in Fig. To make an experiment, we need to compile the server and commander models. Next, the code of the commander must be uploaded to quadrotor through WiFi connection.

In this command Simulink model provided by Quanser, it contains the original feedback controller, and all its parameters have been well tuned by manufacturer. The main contributions of this thesis are following

• A methodology for upgrading a linear controller to homogeneous one. The homogeneous system has been studied a lot in previous works [START_REF] Zubov | Systems of ordinary differential equations with generalized-homogeneous right-hand sides[END_REF], [START_REF] Kawski | Geometric homogeneity and stabilization[END_REF], [START_REF] Bernuau | On homogeneity and its application in sliding mode control[END_REF], [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF].

However, the issues of practical implementation of homogeneous algorithms as well as their usefulness for control engineering practice have never been studied before. In our work, we proposed an easy way to apply this nonlinear homogeneous controller for the real nonlinear plant, i.e. Quanser's QDrone platform. We propose to use the gains of an already tuned linear PID controller provided by the manufacturer and design the nonlinear controller using a state dependent homogeneous scaling of these gains. Next, we develop a specific procedure of practical implementation of the homogeneous controller, which guarantees an improvement of the control quality.

The proposed methodology has been successfully validated on QDrone platform.

The experiments showed the significant improvement of control precision, time response and robustness of the upgraded system.

• A methodology for upgrading a linear observer to homogeneous one. The idea of the homogeneous observer design is similar to the homogeneous controller design. We firstly design a Luenberger observer and then use the same gain of Luenberger to construct the homogeneous observer. The experiment with QDrone shows that the homogeneous observer also improves a lot the control precision.

• A homogeneous controller design for quadrotor under time and state constraints. Due to different working conditions and requirements, quadrotor may be asked to have a faster reaction and state constraints. We use full state feedback controller rather than the classical inner and outer loop structure. The simulation results prove that the system is finite time stabilized by the proposed homogeneous controller while satisfying all required constraints. This part of the research is purely theoretical.

Outline of thesis

This thesis is organized as follows Chapter 1 presents the context and the motivation of the research. Then it reviews the state of the art of quadrotor control, and modeling. A description of the experimental platform is provided as well.

Chapter 2 surveys some mathematical tools required for analysis and design of homogeneous control systems. In particular, the elements of generalized homogeneity and implicit Lyapunov function theory are discussed.

Chapter 3 contains the main result of the thesis. It presents some algorithms for homogeneous controllers design and proposes a methodology for methodology upgrading of linear PID controller to homogeneous ones. Both theoretical and experimental results are provided in this chapter. The experiment is based on the quadrotor platform.

Chapter 4 applies the ideas from the previous chapter to the problem of homogeneous observer design and upgrades linear (Lunberger) observer. The theoretical results of this chapter are also experimentally validated on Quanser's QDrone platform.

Chapter 5 deals with the theoretical analysis of quadrotor stabilization under time and state constraints. A full state homogeneous feedback controller design in this chapter makes the quadrotor to be stabilized in finite time under state constraints.

Conclusion Finally we present the general conclusion and discuss some further research perspectives.

Chapter 2

Mathematical backgrounds

In this chapter, the mathematical tools used in this thesis will be presented. The concepts of standard and generalized homogeneity are introduced. In particular, linear geometric homogeneity is considered. As a main tool for stability analysis of system, the Lyapunov function method is briefly discussed in the second section. Finally, elements of the theory of linear matrix inequalities (LMIs) are presented in the last section.

Homogeneity

Symmetry is a kind of invariance when some characteristics of an object do not change after a certain transformation. A simple example of a symmetry can be found in the geometry. For example in Fig. 2.1, the size of triangle is scaled, but the shape is invariant with respect to the scaling (dilation), which means the triangle is symmetric with respect to the dilation. The homogeneity is a symmetry with respect to the dilation. of both linear and non-linear control theory can be applied for analysis and design of homogeneous control systems [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], [START_REF] Hong | H∞ control, stabilization, and input-output stability of nonlinear systems with homogeneous properties[END_REF], [START_REF] Siyuan | Finite-Time LMI based Quadrotor control design under time and State Constraints[END_REF].

Homogeneous control laws appear as solutions of some classical control problems such as a minimum-time feedback control for the chain of integrators, see [START_REF] Chernous' Ko | Control of nonlinear dynamical systems: methods and applications[END_REF]. Most of the high-order sliding mode control and estimation algorithms are homogeneous in a generalized sense [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]. Homogeneity allows time constraints in control systems to be fulfilled easily by means of a proper tuning of the so-called homogeneity degree, [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF].

Similarly to the linear case, stability of a homogeneous system implies its robustness (input-to-state stability) with respect to some classes of parametric uncertainties and exogenous perturbations, see [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF], [START_REF] Bernuau | On homogeneity and its application in sliding mode control[END_REF].

Many different homogeneous controllers are designed for linear plants (basically, for a chain of integrators), see e.g. [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF], [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF], [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]. Usually, the existence of homogeneous controller of a certain form has been proven, however a proper tuning of control parameters also needs to be studied [START_REF] Wang | PID tuning for improved performance[END_REF]. In addition, it is not clear if, in practice, a homogeneous controller could have a better performance than a well-tuned linear regulator. The following section provides a comparison of controller design based on homogeneity and linearity [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF].

Homogeneity vs linearity in control system design

Quality of any control system is estimated by many quantitative indices (see e.g. [START_REF] Boiko | Non-parametric Tuning og PID Controllers[END_REF],

[102], [START_REF] Utkin | Sliding Modes in Control Optimization[END_REF]), which reflect control precision, energetic effectiveness, robustness of the closed-loop system with respect to disturbances, etc. From mathematical point of view, the design of a "good" control law is a multi-objective optimization problem. The mentioned criteria frequently contradict to each other, e.g. a time optimal feedback control could not be energetically optimal but it may be efficient for disturbance rejection [START_REF] Chernous' Ko | Control of nonlinear dynamical systems: methods and applications[END_REF]. In practice, an adjustment of a guaranteed (small enough) convergence time can be considered instead of minimum time control problem, and an exact convergence of systems states to a set-point is relaxed to a convergence into a sufficiently small neighborhood of this set-point.

A well-tuned linear controller, such as PID (Proportional-Integral-Differential) algorithm, guarantees a good enough control quality in many practical cases [START_REF] Boiko | Non-parametric Tuning og PID Controllers[END_REF]. However, the further improvement of control performance using the same linear strategy looks impossible. Being a certain relaxation of linearity, the homogeneity could provide additional tools for improving control quality. In this context, it is worth knowing if there exist some theoretical features of homogeneous systems, which may be useful (in practice) for a design of an advanced control system.

Finite-time and fixed-time stabilization

Finite-time and fixed-time stability are a rather interesting theoretical feature of homogeneous systems [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], [START_REF] Lopez-Ramirez | Finite-time and fixed-time observer design: Implicit Lyapunov function approach[END_REF]. For example, if an asymptotically stable system is homogeneous of positive degree at infinity and homogeneous of negative degree at the origin, then its trajectory reaches the origin (a set point) in a fixed time independently of the initial condition [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF]. This idea can be illustrated on the simplest scalar example

ẋ(t) = u(t), t > 0, x(0) = x 0 ,
where x(t) ∈ R is the state variable and u(t) ∈ R is the control signal. The control aim is to stabilize this system at the origin such that the condition |u(x)| ≤ 1 must be fulfilled for |x| ≤ 1.

• The classical approach gives the standard linear proportional feedback algorithm

u lin (x) = -x,
which guarantees asymptotic (in fact, exponential) convergence to the origin of any trajectory of the closed-loop system:

|x(t)| = e -t |x 0 |.
• The globally homogeneous feedback of the form [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF] u f t (x) = -|x|sign(x).

stabilizes the system at the origin in a finite-time:

x(t) = 0, for t ≥ T(x 0 ).
The corresponding convergence time T depends on the initial condition x(0) = x 0 , in particular, T(x 0 ) = 2 |x 0 | for the considered control law.

• The fixed-time stabilizing controller is locally homogeneous and has the form [START_REF] Polyakov | Fixed-time stabilization of linear systems via sliding mode control[END_REF]:

u f xt (x) = - 1 2 (|x| 1/2 + |x| 3/2 )sign(x).
It guarantees a global uniform boundedness of the settling time, namely,

x(t) = 0, t ≥ 2π
for the considered control law.

Robustness issue

In general, homogeneity ensures robustness with respect to a larger class of uncertainties comparing to linear one. To show this, let us consider the simplest stabilization problem ẋ = λx + u where x ∈ R is the system state, λ > 0 is an unknown constant parameter and u ∈ R is a state feedback to be designed. Since λ is unknown then any static linear feedback u = -kx cannot guarantee a priori a boundedness of system trajectories. However, the homogeneous feedback

u = -kx 2 sign(x), k > 0
always ensures practical stabilization of the system independently of the parameter λ. Indeed, estimating the derivative of the energy V = x 2 of the system along the trajectories we derive

d dt x 2 ≤ 2λx 2 -2k|x| 3 < 0 for |x| > λ/k.
This means boundedness of system trajectories and convergence to a zone:

lim sup t→+∞ |x(t)| ≤ λ k
Therefore, the homogeneous control system is robust with respect to larger class of uncertainties than the linear control system.

Elimination of an unbounded "peaking" effect

Finite-time and fixed-time stability is an interesting theoretical feature of homogeneous systems. However, a controllable linear system can be stabilized in a small neighbor-hood of a set-point even by means of a static linear feedback. A time of convergence of trajectories from the unit ball into this neighborhood can be prescribed in advance by means of an appropriate tuning of the feedback gain. Such a stabilization is sufficient for many practical problems. The reasonable question in this case: is there any advantage of a homogeneous controller comparing with a linear feedback? The answer is yes, a homogeneous controller reduces much of the peaking effect (overshoot). The details can be found in chapter 3.

Dilations in R n

In this part, we first introduce the standard dilation, weighted dilation and then present the linear geometric dilation.

Standard homogeneity

In eighteen century, Leonhard Euler firstly introduced the homogeneity with respect to uniform dilation, which is called standard homogeneity given by the following definition.

Definition 2.1.1. Let n and m be two positive integers. A mapping f : R n → R m is said to be standard homogeneous with degree µ ∈ R with respect to the uniform dilation x → λx iff

f (λx) = λ µ f (x), ∀λ > 0 (2.1) Definition 2.1.2. (Euler's theorem on standard homogeneity) Let f : R n → R m be a differen- tiable mapping. Then f is standard homogeneous of degree µ iff ∀i ∈ {1, 2, ..., m} n j=1 x j ∂f i ∂x j (x) = µf i (x), ∀x ∈ R n (2.2)
that the regularity of the homogeneous mapping f is related to its degree:

• if 0 ≤ µ < 1 then either the Lipschitz conditions are not satisfied for function f at 0 or f is constant;

• if µ < 0 then f is either discontinuous at the origin or zero vector field.

Let us present some examples:

• The continuous function

f : x = (x 1 , x 2 ) →            x 5 2 1 +x 5 2 2 x 2 1 +x 2 2 if x 0 0 if x = 0 (2.3)
is homogeneous of degree 1 2 and continues:

f (λx) = (λx 1 ) 5 2 + (λx 2 ) 5 2 (λx 1 ) 2 + (λx 2 ) 2 = λ 1 2 f (x)
• The function

f : x = (x 1 , x 2 ) →          x 1 1/2 + x 2 1/2 x 1 +x 2 if x 1 + x 2 0 0 else (2.4)
is standard homogeneous of degree -1 2 .

• The polynomial function

f : x = (x 1 , x 2 ) → x 2 1 + x 1 x 2 + x 2 2
is homogeneous of degree 2.

f (λx) = λ 2 x 2 1 + λ 2 x 1 x 2 + λ 2 x 2 2 = λ 2 f (x) ∂f (x) ∂x 1 x 1 + ∂f (x) ∂x 2 x 2 = (2x 1 + x 2 )x 1 + (2x 2 + x 1 )x 2 = 2(x 2 1 + x 1 x 2 + x 2 2 ) = 2f (x)
• The functions

x → f (x) = 1 x → f (x) = sign(x 2 1 -x 2 2 ) x → f (x) = x 1 + x 2 x 1 -x 2
are homogeneous of degree 0.

• A combination of homogeneous functions is homogeneous as well. For example, the function f given by

f (x) = sign x 1 + x 2 x 1 -x 2 (x 2 1 + x 1 x 2 + x 2 2 ) 1 4
is homogeneous of degree 0.5.

Theorem 2.1.1. Let f : R n → R n be continuous standard homogeneous vector field of a degree µ ∈ R such that the Cauchy problem

ẋ = f (x), x(0) = x 0 ∈ R n (2.5)
admits a solution x(t, x 0 ) defined for all t > 0. Then

x(λ 1-µ t, λx 0 ) = λx(t, x 0 ), λ > 0 (2.6)
where x(•, λx 0 ) is a solution to the same problem with the scaled initial condition x(0) = λx 0

The main feature of homogeneous systems is global expansion of any local result.

For example, local regularity of f (in a neighborhood of the origin) implies its global regularity, local stability of homogeneous system guarantees global stability, etc.

Weighted homogeneity

The standard homogeneity presented above is introduced by means of the uniform dilation x → λx, λ > 0. Changing the dilation rule, a generalized homogeneity can be defined. The Weighted dilation (introduced by [START_REF] Zubov | Systems of ordinary differential equations with generalized-homogeneous right-hand sides[END_REF]) is defined as follows

(x 1 , x 2 , ..., x n ) → (λ r 1 x 1 , λ r 2 x 2 , ..., λ r n x n ) (2.7)
where λ > 0 is the scaling factor and r = [r 1 , r 2 , r 3 , ..., r n ] with r i > 0 is the vector of weights, which specify dilation rate along different coordinates. If r 1 = r 2 = r 3 = ... = r n = 1 then weighted dilation becomes the uniform dilation. The transformation of coordinates for weighted dilation denoted as

x → Λ(r)x (2.8) is a linear mapping R n → R n where Λ(r) =                       λ r 1 0 0 • • • 0 0 λ r 2 0 • • • 0 0 0 λ r 3 • • • 0 • • • • • • • • • • • • • • • 0 0 0 • • • λ r n                       (2.9) Definition 2.1.3. ([119]) Let r be a vector of weights, a function f : R n → R is said to be r-homogeneous of degree µ iff f (Λ(r)x) = λ µ f (x), ∀x ∈ R n , ∀λ > 0 (2.10) Example 2.1.1. A polynomial function (x 1 , x 2 ) → x 4 1 + x 2 1 x 4 2 + x 8 2 (2.11)
is r-homogeneous of degree 8 with respect to weighted dilation

(x 1 , x 2 ) → (λ 2 x 1 , λx 2 )
but it is not homogeneous with respect to the uniform dilation

(x 1 , x 2 ) → (λx 1 , λx 2 )
Definition 2.1.4. ( [START_REF] Zubov | Systems of ordinary differential equations with generalized-homogeneous right-hand sides[END_REF]) Let r be a vector of weights, a vector field f : R n → R n is said to be r-homogeneous with degree µ iff

f (Λ(r)x) = λ µ Λ(r)f (x), ∀x ∈ R n , ∀λ > 0 (2.12)
Here we see a difference about the degrees of two definitions: a vector field is standard homogeneous of degrees µ (in Definition 2.1.1) iff it is r-homogeneous of degree µ -1 (in Definition 2.1.4). For example, every linear vector field is r-homogeneous of degree 0.

Definition 2.1.5. ([30]) The system (2.5) is r-homogeneous iff f is so. Remark 2.1.1. A vector field f is r-homogeneous of degree µ iff each coordinate function f i is r-homogeneous of degree µ + r i . Example 2.1.2. • The function φ : x → x 2 1 + x 4 2 is [2, 1]-homogeneous of degree 4.
• let α 1 , α 2 , ..., α n be strictly positive. The n-integrator system:

ẋ1 = x 2 . . . . . . ẋn-1 = x n ẋn = n i=1 k i x i α i (2.13)
is r-homogeneous of degree µ with r = [r 1 , r 2 , ..., r n ], r i > 0 iff the following relations hold

r i = r n + (i -n)µ, ∀i ∈ {1, 2, ..., n} r i α i = r n + µ, ∀i ∈ {1, 2, ..

., n}

If we chose r n = 1, it implies µ > -1, then we have

         r i = 1 + (i -n)µ, ∀i ∈ {1, 2, ..., n} α i = 1+µ 1+(i-n)µ , ∀i ∈ {1, 2, ..., n} (2.14) 
If µ = -1, then the vector field defining the system is discontinuous on each coordinate.

If µ = 0, then it is a chain of integrators of n th -order with linear feedback.

Linear geometric homogeneity

As explained in the standard and weighted homogeneity, once the dilation of system is established, many properties of nonlinear system can be studied easily. In order to extend the homogeneous property to more general systems, a more general form of dilation is introduced as follows

x → d(s)x, s ∈ R, x ∈ R n (2.15)
To become a dilation, the family of transformations d(s) : R n → R n must satisfy certain restrictions [START_REF] Husch | Topological characterization of the dilation and the translation in frechet spaces[END_REF], [START_REF] Kawski | Geometric homogeneity and stabilization[END_REF].

Definition 2.1.6. A mapping d : R → R n×n is called linear dilation in R n if it satisfies • Group property: d(0) = I n and d(t + s) = d(t)d(s) = d(s)d(t), ∀t, s ∈ R; • Continuity property: s → d(s) is continuous map, i.e. ∀t, > 0, ∃σ > 0 : |s -t| < σ ⇒ d(s) -d(t) ≤
• Limit property: lim s→-∞ d(s)x = 0 and lim s→+∞ d(s)x = +∞ uniformly on the unit sphere S := {x ∈ R n : x = 1}

In this thesis, we mainly deal with the following special form of dilation which is a matrix exponential linear dilation [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] 

d(x) = e sG d = +∞ i=0 s i G i d i! , s ∈ R (2.16)
where G d is an anti-Hurwitz matrix, that is called the generator of dilation d. The matrix

G d ∈ R n×n is defined as G d = lim s→0 d(s) -I s (2.17)
and satisfies the following property

d ds d(s) = G d d(s) = d(s)G d , s ∈ R (2.18)
Linear dilation in R n includes both uniform dilation

d 1 (s) = e s I n , s ∈ R (2.19)
and weighted dilation (it was called like this starting from [START_REF] Zubov | Systems of ordinary differential equations with generalized-homogeneous right-hand sides[END_REF]). In two dimensions case, the relation between uniform, weighted and linear dilation can be illustrated in Fig. 2.2, which depicts homogeneous curve {d(s)x : s ∈ R} of three dilation groups It is clear to see that the monotonicity of dilation depends on the norm • . For instance the dilation 2) d(s)x > 1, ∀s > 0 3) the continuous function d(•)x : R → R + is strictly increasing for any fixed x ∈ S; 4) for any x ∈ R n \{0} there exists a unique pair (s 0 , x 0 ) ∈ R × S such that x = d(s 0 )x 0 . Definition 2.1.8. ( [START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF]) The dilation d is said to be strictly monotone on R n if ∃β > 0 such that d(s) ≤ e βs for s ≤ 0.

d 2 (s) =                  e r 1 s 0 • • • 0 0 e r 2 s • • • 0 • • • • • • • • • • • • 0 0 • • • e r n s                  s ∈ R, r i > 0, i = 1,
d 1 (s) = e s I, d 2 (s) =       e 2s 0 0 e s       , d 3 (s) = e sG d
d(s) = e s       cos(s) sin(s) -sin(s) cos(s)       with G d =       1 1 -1 1       (2.22) is monotone on R 2 , if we chose the norm x = √ x P x with P = 1 1/ √ 2 1/ √ 2 1 > 0. However it is non-monotone if P = 1 3/4 3/4 1 > 0. Monotonicity of dilation means that the linear map d(s) : R n → R n is strong contraction if s < 0. Hence d(s) -1 = d(-s)
The following theorem prove that any dilation d is strictly monotone on R n if it is equipped with the weighted Euclidean norm x =

√

x P x provided that P > 0 and P satisfies (2.24).

Theorem 2.1.3. ( [START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF]) Let d be a dilation in R n then 1) all eigenvalues λ i of the matrix G d are placed in the right complex half-plane, i.e.

R(λ

i ) > 0, i = 1, 2, ..., n; (2.23)
2) there exists a matrix P ∈ R n×n such that

P G d + G d P > 0, P = P > 0 (2.24)
3) the dilation d is strictly monotone with respect to the weighted Euclidean norm 

• = √ < •, • > induced
where α = 1 2 λ max (P 1 2 G d P -1 2 + P -1 2 G d P 1 2 ) β = 1 2 λ max (P 1 2 G d P -1 2 + P -1 2 G d P 1 2 )

Canonical homogeneous norm

In this part, we introduce the canonical homogeneous norm in R n , which is used for the analysis and design of homogeneous control system.

Definition 2.1.9. A continuous function p :

R n → [0, +∞) is said to be d-homogeneous norm in R n if • p(u) → 0 as u → 0; • p(±d(s)u) = e s p(u) > 0 for u ∈ R n \{0}, s ∈ R;
where d is a dilation.

The functional p may not satisfy triangle inequality p(u +v) ≤ p(u)+p(v), so, formally, it is not even a semi-norm. However, many authors (see e.g. [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF], [START_REF] Efimov | Homogeneity for time-delay systems[END_REF], [START_REF] Bacciotti | Lyapunov Functions and Stability in Control Theory[END_REF]) call functions satisfying the above definition by "homogeneous norm". We follow this tradition. For example, if the dilation is given by d(s) = diag{e r 1 s , e r 2 s , ..., e r n s }, a homogeneous norm p : R n → [0, +∞) can be defined as follows [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF] 

p(u) = n i=1 |u i | 1 r i , u = (u 1 , u 2 , ..., u n ) ∈ R n .
For strictly monotone dilations the so-called canonical homogeneous norm [START_REF] Polyakov | On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space[END_REF] can be introduced by means of a homogeneous projection to the unit sphere, which is unique in the case of monotone dilation due to Theorem 2.1.2.

Definition 2.1.10. ( [START_REF] Polyakov | On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space[END_REF]) The function • d : R n \{0} → (0, +∞) defined as 

x d = e s x , where s x ∈ R : d(-s x )x = 1, (2.27 
x d = 1 ⇔ x = 1
The monotonicity of the dilation group guarantees that the function • d is singlevalued and continuous at the origin. 

• x d → 0 as x → 0; • if the norm in R n is defined as x = √ x P x with P ∈ R n×n satisfying (2.24) then ∂ x d ∂x = x d x d (-ln x d )P d(-ln x d ) x d (-ln x d )P G d d(-ln x d )x
(2.28)

for any x 0.

It is well known (see e.g. [START_REF] Bacciotti | Lyapunov Functions and Stability in Control Theory[END_REF]) that the norm x = √ x P x is a Lyapunov function for any stable linear system ẋ = Ax, A ∈ R n×n . In this thesis, the canonical homogeneous norm ( x d ) will be considered as a 

Generalized homogeneous functions and vectors fields

Vector fields which are homogeneous with respect to a dilation d, have many useful properties for control design and state estimation of both linear and nonlinear systems.

They are also important while analyzing the convergence rate.

Definition 2.1.11.

([85]) A function h : R n → R is said to be d-homogeneous of degree µ ∈ R if h(d(s)x) = e µs h(x), ∀x ∈ R n \{0}, ∀s ∈ R (2.29) Definition 2.1.12. ([85]) A vector field f : R n → R n is said to be d-homogeneous of degree µ ∈ R if f (d(s)x) = e µs d(s)f (x), ∀x ∈ R n \{0}, ∀s ∈ R (2.30)
Example 2.1.3. The vector field may have different degrees of homogeneity depending on the dilation group. For example the vector field

f : R n → R n , f (x) = Ax, x ∈ R n (2.31) with A = 0 I n-1 0 0 is d-homogeneous of degree µ ∈ [-1, 1] with dilation d(s) = diag{e (n+(i-1)µ)s } n i=1 . Lemma 2.1.5. ([85]) If G d ∈ R n×n is a generator of dilation, i.e. d(s) = e G d s , s ∈ R, then this vector field x → Ax is d-homogeneous of degree µ ∈ R if and only if AG d = (µI n + G d )A (2.32)
Homogeneity allows a local property (e.g. Lipschitz continuity or differentiability) to be extended globally. For example, in [START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF] it is shown that a d-homogeneous vector field is locally Lipschitz continuous (resp. differentiable) on R n \{0} if and only if it is Lipschitz continuous (differentiable) on the unit sphere x P x = 1, where P satisfies (2.24).

Homogeneity of a function (or a vector field) is inherited by mathematical object induced by this function such as derivatives or solutions of differential equations. For example, if the right hand side of the following differential equation

ξ = f (ξ), t > 0, f : R n → R n (2.33) is d-homogeneous of degree µ then x d(s)x 0 (t) = d(s)x x 0 (e µs t), t > 0
where x x 0 (t), t > 0 denotes a solution of (2.33) with the initial condition x(0) = x 0 .

Theorem 2.1.6.

([85]) Let f ∈ C(R n \{0}, R n ) be d-homogeneous of degree µ ∈ R. The next claims are equivalent.
1) The origin of the system (2.33) is asymptotically stable.

2) The origin of the system

ż = z 1+µ (I n -G d )z zP z P G d z + I n f z z (2.34)
is asymptotically stable, where z = √ z P z with P satisfying

P G d + G d P > 0, 0 < P = P ∈ R n×n .
(2.35)

3) For any matrix P ∈ R n×n satisfying (2.35) there exists a d-homogeneous vector field

Ψ : R n → R n of degree 0 such that Ψ ∈ C ∞ (R n \{0}, R n ) is diffemorphism on R n \{0}, homeomorphism on R n , Ψ (0) = 0 and ∂(Ψ (ξ)P Ψ (ξ)) ∂ξ f (ξ) < 0 if Ψ (ξ)P Ψ (ξ) = 1. (2.36) Moreover, Ψ d ∈ H d (R n ) ∩ C ∞ (R n \{0}) is Lyapunov function for the system (2.33),
where

• d is the canonical homogeneous norm induced by ξ = √ ξ P ξ.
The latter theorem particularly proves that any asymptotically stable d-homogeneous system is topologically equivalent to the standard homogeneous system (2.34) ( homeomorphic on R n and diffeomorphic on R n \{0}). The latter means that all results existing for standard and weighted homogeneous systems hold for d-homogeneous ones.

The next proposition characterizes the convergence rates of the homogeneous system.

Originally it has been proven in [START_REF] Nakamura | Smooth Lyapunov functions for homogeneous differential inclusions[END_REF] for the weighted dilation. • for µ < 0 it is globally uniformly finite-time stable, i.e. there exists a function T : R n → [0, +∞), which is locally bounded and continuous at 0, such that

x x 0 (t) = 0, ∀t ≥ T(x 0 );
• for µ = 0 it is globally uniformly asymptotically stable;

• for µ > 0 it is globally uniformly nearly fixed-time stable, ∀r > 0, ∃T = T(r) > 0 :

x x 0 (t) < r, ∀t ≥ T, ∀x 0 ∈ R n .
The definitions of finite-time and fixed-time stability mentioned in the previous proposition are discussed below.

Implicit Lyapunov function method

In this section, we consider the following system

ẋ(t) = f (x(t), t), t > t 0 , x(t 0 ) = x 0 (2.37)
where f : R n → R n is a continuous vector field with an equilibrium at the origin f (0) = 0.

Meanwhile, assume that system (2.37) has unique solution in forward time outside the origin. Denote x(t, t 0 , x 0 ) as a trajectory of (2.37).

Stability notions

Stability is one of the most important properties of system. In this part, we survey stability notions following the paper [START_REF] Polyakov | Stability notions and Lyapunov functions for sliding mode control systems[END_REF].

Definition 2.2.1. The origin of system (2.37) is said to be Lyapunov stable if ∀ > 0 and ∀t 0 ∈ R, there exists a δ = δ( , t 0 ) ∈ R + such that if x(0) ≤ δ then x(t, t 0 , x 0 ) ≤ for all t > 0, or more compactly: ∀ > 0, ∃δ > 0 such that x(0) < δ ⇒ x(t, t 0 , x 0 ) < , ∀t ≥ 0. The above definition means, the origin is stable if small variation of initial condition close to zero implies small of variation of the system trajectory. If the attraction domain is the whole state space, the system is called Globally asymptotically stable. In general the global asymptotic stability is harder to prove than the local one, but the two coincide in the case of homogeneous system. 

) ∈ R + such that x 0 ∈ B(δ) U and t 0 ∈ R + imply x(t, t 0 , x 0 ) ∈ B( ) for t > t 0 + T.
The time-invariant attraction domain is the main difference between asymptotic attractivity and uniform asymptotic attractivity.

Definition 2.2.5. The origin of system (2.37) is said to be uniformly asymptotically stable if it is uniformly Lyapunov stable and uniformly asymptotic attractive.

If the attraction domain can be extended to R n i.e. U = R n , then an uniformly asymptotically stable (attractive) origin of system (2.37) is called globally uniformly asymptotically stable (resp. attractive). Notice that uniform asymptotic stability always implies asymptotic stability, and the converse proposition only holds for timeinvariant systems.

In order to provide a better performance for control system, the rate of transition process need to be tuned somehow. Other concepts of stability such as exponential, finite-time and fixed-time stability can be used for this purpose.

Definition 2.2.6. The origin of system (2.37) is said to be exponential stable if ∃δ ∈ R, such that x 0 ≤ δ implies

x(t, x 0 , t 0 ) ≤ C x 0 e -r(t-t 0 ) , t > t 0 (2.38) for C, r ∈ R + , t 0 ∈ R +
The inequality (2.38) guarantees that the state trajectory will exponentially converge to the origin, which is the reason why it is called exponential stability. Obviously exponential stability implies Lyapunov stability and asymptotic stability.

Besides, another concept of stability is the so-called finite-time stability. Before introducing it, we will give the definition of settling time function.

Definition 2.2.7. The function (x 0 , t 0 ) → T(x 0 , t 0 ) defined as T(x 0 , t 0 ) = inf {T ≥ 0 : x(t, x 0 , t 0 ) = 0, ∀t ≥ T} is called the settling-time function of the system (2.37).

The settling time tells the moment when the trajectory of system reach origin.

Definition 2.2.8. The origin of the system (2.37) is said to be finite-time attractive, if T(x 0 , t 0 ) < +∞ for any x 0 ∈ U (t 0 ) and any t 0 ∈ R, where U (t 0 ) is, as before, an attraction domain.

The main difference between finite-time and asymptotic attractivity is the trajectory will reach origin in a finite time T(x 0 , t 0 ) or +∞.

Definition 2.2.9. ( [START_REF] Roxin | On finite stability in control systems[END_REF]) The system (2.37) is said to be finite-time stable if it is Lyapunov stable and finite-time attractive.

In other words, finite-time stability means the system will be stabilized at origin at settling time T(x 0 , t 0 ). 

If U = R n ,
) =          sign(x 0 )tan 2 (arctan( x 0 1 2 ) -t-t 0 2 ), t ≤ t 0 + 2arctan( x 0 1 2 ) 0, t > t 0 + 2arctan( x 0 1 2 ) 
(2.40)

The solution x(t, t 0 , x 0 ) converges to origin in finite time and x(t, t 0 , x 0 ) = 0 holds for all t > t 0 + π, which means the system is globally fixed-time stable with T max = π. Theorem 2.2.1. ( [START_REF] Lyapunov | The general problem of motion stability[END_REF]) Let x = 0 be an equilibrium point for (2.37), and U ⊂ R n be a domain containing x = 0. Let V : U → R be a continuously differentiable function such that

Implicit Lyapunov function theorems

V (0) = 0, V (x) > 0 x ∈ U \ {0} (2.41) V (x) ≤ 0 x ∈ U (2.42)
Then, the equilibrium x = 0 is stable. Moreover, if

V (x) < 0 x ∈ U \ {0} (2.43)
the equilibrium x = 0 is asymptotically stable.

A classical form of Lyapunov function V is the quadratic form

V (x) = x P x = n i=1 n j=1 p ij x i x j (2.44)
where P is a positive definite symmetric matrix.

Lemma 2.2.2. ( [START_REF] Poznyak | Advanced mathematical tools for automatic control engineers: Stochastic techniques[END_REF]) If a function V : R + → R + satisfies the differential inequality

V (x(t)) ≤ -αV (x(t)) + β, α > 0, β > 0 (2.45) then lim t→∞ V (x) ≤ β α (2.46)
Example 2.2.2. Consider the pendulum dynamics with friction

θ + g l sin θ + k θ = 0 (2.

47)

Suppose x 1 = θ, x 2 = θ, a = g l then pendulum dynamics equation can be rewritten as

ẋ1 = x 2 ẋ2 = -a sin x 1 -kx 2
Let us study the stability of equilibrium point at x 1 = x 2 = 0. Propose a Lyapunov function candidate

V (x) = 1 2 x 2 2 + a(1 -cos x 1 ), x 1 ∈ [-2π, 2π] (2.48)
Obviously we have V (0) = 0 and V (x) > 0. If x 1 0 and x 2 0, the derivative of V (x) is

V (x) = a ẋ1 sin x 1 + x 2 ẋ2 = -kx 2 (2.49)
Thus the condition of (2.41) and (2.43) are satisfied, which means the point x 1 = x 2 = 0 is asymptotically stable.

Example 2.2.3. If a linear system ẋ = Ax is asymptotically stable, then V (x) = x P x can be its Lyapunov function, where the positive definite matrix P is solved by the following Lyapunov equation

A P + P A = -Q (2.50)
where Q is an arbitrary positive definite matrix.

If there exist a Lyapunov function V (x) for system ẋ = f(x), such that

S = {x|V (x) < c} (2.51)
is bounded, then S is a positively invariant set i.e. a region where every trajectory starts from there then never leaves it.

Theorem 2.2.3. ( [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]) Suppose there exists a continuous proper function V (x) : R n → R such that the following conditions hold 1) V is positive definite.

2) There exist c > 0 and α ∈ (0, 1) and an open neighborhood U ⊆ d of the origin such that

V (x) + c(V (x)) α ≤ 0, x ∈ U \ {0} (2.52)
then the origin is finite-time stable equilibrium of system (2.37) and the settling-time function is

T(x) ≤ 1 c(1 -α) V (x) 1-α (2.

53)

If additionally U = R n then the origin is a globally finite-time stable equilibrium of (2.37).

The following result provides a converse of Theorem 2.2.3

Theorem 2.2.4. ( [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]) Suppose the origin is a finite-time stable equilibrium of (2.37), and the settling-time function T(x) : U → R is continuous at 0. Let α ∈ (0, 1), then there exists a continuous function V : U → R such that the following conditions are satisfied 1) V is positive definite 2) V is real valued and continuous on U and c > 0 such that

V (x) + c(V (x)) α ≤ 0, x ∈ U (2.54) Theorem 2.2.5. ([87]) Let a continuous function V : R n → R be proper on an open connected set U : 0 ∈ int(U ). If for a real number µ ∈ (0, 1), ν ∈ R + , r µ ∈ R + , r ν ∈ R + , the following inequality V (x) ≤          -r µ V 1-µ (x) for x ∈ U : V (x) ≤ 1 -r ν V 1+ν (x) for x ∈ U : V (x) ≥ 1 t > t 0 , x ∈ U (2.55)
holds, then the origin of system (2.37) is fixed-time stable equilibrium point with the maximum settling time

T(x) ≤ T max ≤ 1 µr µ + 1 νr ν (2.56)
If U = R n and function V is radially unbounded then the origin of (2.37) is said to be globally fixed-time stable.

The above theorems state the result involving the Lyapunov function in an explicit way, however, it is challengeable to find such an explicit function for some systems, which is the main reason to use implicit method. In mathematics, the implicit function is a relation of the form G(x, y) = 0, that defines the variable x, y implicitly rather than define explicitly y = g(x). In order to find the function x → g(x) that defines the variable y, one needs to solve the equation G(x, y) = 0 with respect to y. The first question needs to be answered is under which condition there exists a unique solution of G(x, y) = 0.

The following classical result can be found in [START_REF] Khalil | Nonlinear systems[END_REF].

Theorem 2.2.6. Implicit function theorem Assume that a function

G : R n × R m → R n is continuously differentiable at each point (x, y) of an open set S ⊂ R n × R m . Let x 0 , y 0 be a point in S such that • G(x 0 , y 0 ) = 0
• Jacobian matrix ∂G ∂y (x 0 , y 0 ) is nonsingular.

Then there exits a neighborhood set U ⊂ R n of x 0 and Y ⊂ R m of y 0 such that for all x ∈ U , the equation G(x, y) = 0 has a unique solution y ∈ Y . Moreover this solution can be given as

y = g(x)
, where g is continuously differentiable at x = x 0 .

The next theorem combines Lyapunov and Implicit function theorem.

Theorem 2.2.7. ( [START_REF] Adamy | Soft variable-structure controls: a survey[END_REF]) If there exists a continuous function

Q : R + × R n → R (V , x) → Q(V , x)
satisfying the conditions

C1) Q is continuously differentiable outside the origin; C2) for any x ∈ R n \ {0} there exists V ∈ R + such that Q(V , x) = 0; C3) let Ω = {(V , x) ∈ R + × R n : Q(V , x) = 0} and lim x→0,(V ,x)∈Ω V = 0 + , lim V →0 + ,(V ,x)∈Ω x = 0, lim x →∞,(V ,x)∈Ω V = +∞ C4) ∂Q(V ,x) ∂V < 0 for all V ∈ R + and x ∈ R n \ {0}; C5) ∂Q(V , x) ∂x y < 0 for all (V , x) ∈ Ω,
then the origin of system is globally uniformly asymptotically stable. 

If continuous function Q satisfies C1)-C5),
∂Q(V , x) ∂x y ≤ cV 1-µ ∂Q(V , x) ∂V
for (V , x) ∈ Ω, then the origin of the system is globally uniformly finite-time stable

and T(x 0 ) ≤ V µ 0 cµ , where Q(V 0 , x 0 ) = 0
Theorem 2.2.9. ( [START_REF] Polyakov | Finite-time and fixed-time stabilization: Implicit Lyapunov function approach[END_REF]) If there exists two function Q 1 and Q 2 that satisfy the conditions C1) -C4) of theorem 2.2.7 and the following conditions

C7) Q 1 (1, x) = Q 2 (1, x) for all x ∈ R n {0}
C8) there exits c 1 > 0 and 0 < µ < 1 such that the inequality

∂Q 1 (x, V ) ∂x y ≤ c 1 V 1-µ ∂Q 1 (x, V ) ∂V (2.57)
holds for all V ∈ (0, 1] and x ∈ R n \{0} satisfying Q 1 (x, V ) = 0 C9) there exits c 2 > 0 and 0 < ν < 1 such that the inequality

∂Q 2 (x, V ) ∂x y ≤ c 2 V 1+ν ∂Q 2 (x, V ) ∂V (2.58)
holds for all V ≥ 1 and x ∈ R n {0} satisfying Q 2 (x, V ) = 0 then the system (2.37) is globally fixed-time stable with settling-time estimate T(x 0 ) ≤

1 c 1 µ + 1 c 2 ν .
In 

F(x) > 0 (2.59)
where F is an affine mapping of a finite-dimensional vector space X to a set of Hermitian H or a set of symmetric matrix S.

A matrix B is called Hermitian matrix if and only if

B = B * = B
If B is a real matrix, then a Hermitian matrix is called symmetric matrix. The following property of Hermitian matrix is very useful while dealing with control problem.

If a square matrix P is Hermitian if and only if it satisfies

ω, P v = P ω, v (2.60)
for any pair of vector v, ω and •, • is inner product.

In the control theory, linear matrix inequality(LMI) is general an expression in the form of

F(x) = F 0 + x 1 F 1 + x 2 F 2 + ... + x m F m > 0 (2.61)
where

• x = (x 1 , x 2 , ..., x m
) is a unknown vector of n real numbers, called decision variables.

• F 0 , F 1 , ..., F m ∈ R n×n are real symmetric matrix,i.e.

F i = F i , i = 0, 1, ..., m
• the inequality > 0 in (2.61) means that F(x) is positive definitive, which is

ω F(x)ω > 0
for any ω non-zero real vector. Since F(x) is real symmetric matrix, the eigenvalues of F(x) are also real and positive definite, i.e., λ(F(x)) > 0. In other words, the minimal eigenvalue of F(x) is positive

λ min (F(x)) > 0
It is clear that (2.59) is a strict LMI, but we may also encounter the nonstrict LMI

F(x) ≥ 0 (2.62)
Strict LMI (2.59) and nonstrict LMI (2.62) are highly related, since for any nonstrict LMI F(x), there is

F(x) = F(x) + Q ≥ Q > 0 (2.63)
for each positive definite matrix Q. In the following discussion, we will consider only the strict LMI in the form of (2.59).

Definition 2.3.2. ( [90]) A system of LMIs is a finite set of LMIs

F 1 (x) < 0, F 1 (x) < 0, ..., F m (x) < 0 (2.64)
LMIs system in (2.64) can be expressed as a single LMI in the form of following diagonal matrix:

F(x) :=                   F 1 (x) 0 • • • 0 0 F 2 (x) • • • 0 . . . . . . . . . . . . 0 0 • • • F m (x)                   < 0 (2.65)
Obviously F(x) is symmetric matrix for all x and the eigenvalue set of F(x) is the union of eigenvalues sets of F 1 (x), F 2 (x), ..., F m (x). Then we can conclude that multiple LMI constraints could always transform into a single LMI constraint.

When considering the constraints, LMIs can be written in the following form

         F(x) < 0 Ax = b (2.66)
where F : R n → S, A and b are matrices with appropriate dimension. By solving the equality Ax = b, (2.66) is equivalent to the following LMI

F(x) < 0, x ∈ M (2.67)
where the set

M = {x, x ∈ R n |b -Ax = 0}.
Example 2.3.1. Consider a linear autonomous system

ẋ = Ax (2.

68)

where A ∈ R n×n . In order to study the stability of system, here we use Lyapunov method.

Suppose there is a Lyapunov function candidate

V (x) = x P x (2.69)
where matrix P > 0 and is to be found by LMI.

If the derivative of V (x) satisfies

V (x) = x P Ax + x A P x ≤ 0 (2.70) ⇔P A + A P ≤ 0 (2.71)
then the system (2.68) is stable at the origin. Therefore, we need to seek the feasible matrix P satisfying the following two LMIs

         -P < 0 P A + A P ≤ 0 (2.72)

S-procedure and Schur complement

In order to transform a stability analysis or control deign problem to LMI, certain procedures are frequently used. In this section, we recall some of them such as S-Lemma, Schur complement and Λ-inequality. The celebrated linear algebraic result named S-Procedure (or S-Lemma) is known also as Finsler's lemma [START_REF] Yakubovich | S-procedure in nonlinear control theory[END_REF]. The following theorem is about the S-procedure for two quadratic forms.

Theorem 2.3.1. Let matrices F 0 = F 0 , F 1 = F 1 ∈ R n×n ,

the following two claims are equivalent

• ∃λ ∈ R such that the condition

F 0 + λF 1 > 0 (2.73) • z F 1 z = 0 ⇒ z F 0 z > 0 z ∈ R n \ {0} (2.74) 
The next theorem is about S-procedure for several quadratic forms.

Theorem 2.3.2. Let F 0 = F 0 , F 1 = F 1 , ..., F m = F m ∈ R n×n , if there exits τ 1 , τ 2 , ..., τ m ≥ 0 such that

F 0 ≥ τ 1 F 1 + τ 2 F 2 + • • • + τ m F m (2.75)
then we have

x F 1 x ≥ 0, ..., x F m x ≥ 0 ⇒ x F 0 x ≥ 0 (2.76)
Notice that the theorem above is only a sufficient condition, which is called lossy S-procedure.

Theorem 2.3.3. [Schur Complement]

Let F : R n → S be the following affine mapping

F =       A B C D       (2.77)
where A, D are square matrices. The following three statements are equivalent.

(1)

F < 0 (2.78) (2)          A < 0 D -CA -1 B < 0 (2.79) (3)          D < 0 A -BD -1 C < 0 (2.80)
The next auxiliary result is usually called Λ-matrix inequality.

Lemma 2.3.4. [Λ-matrix inequality]

For any matrices X, Y ∈ R n×m and any symmetric positive definite matrix Λ ∈ R n×n , the following inequality holds

X Y + Y X ≤ X ΛX + Y Λ -1 Y (2.81)
Moreover, the next one also holds

(X + Y ) (X + Y ) ≤ X (I + Λ)X + Y (I + Λ -1 )Y (2.82)
Notice that if X, Y are two scalars, it becomes a quadratic inequality.

The proofs of above results can be found in [START_REF] Poznyak | Advanced mathematical tools for automatic control engineers: Stochastic techniques[END_REF].

Examples of LMIs

By using the techniques presented above, the following examples are to show how to formulate some inequalities in the form of LMIs.

Example 2.3.2. The matrix norm constraint such as

X < 1 ⇒ I n×n -X X > 0, X ∈ R n×n (2.83) can be represented as       I n×n X X I n×n       > 0 (2.84) Example 2.3.3. The weighted norm constraint c P -1 c < 1 (2.85)
where c ∈ R n , 0 < P ∈ R n×n depending affinely on x, can be rewritten in the following form where Z(x) ∈ R n×m , 0 < P (x) ∈ R n×n depend affinely on x, can be handled by introducing a new variable Q = Q ∈ R m×m and LMIs system following

      P c c 1       < 0 (2.
T r(Q) < 1,       Q Z Z(x) P (x)       > 0 (2.90)
Example 2.3.6. Algebraic Riccati-Lurie's matrix inequality

A X + XA + XBR -1 B X + Q < 0 (2.91) is a quadratic matrix inequality of X = X , where A > 0, B > 0, Q = Q > 0, R = R > 0 are
given matrices. It can be represented as LMI via Schur complement

      -XA -A X -Q XB B X R       > 0 (2.92)
In the following two examples we will use LMI to study two basic problems of linear system: stability with bounded disturbance and observer design. 

ẋ = Ax + d(x), d(x) R n ≤ λ x R n , λ ∈ R + (2.

93)

where A ∈ R n×n is a constant matrix. The conditions we need are P > 0 and V (x) ≤ -αV (x) for all x ∈ R n and α > 0. Therefore we have

V (x) + αV (x) = 2x P (Ax + d(x)) + αx P x (2.94) = x (A P + P A + α)x + 2x P d(x) (2.95) =       x d(x)             A P + P A + αP P P 0             x d(x)       (2.96)
where d(x) satisfies

d(x) d(x) ≤ λx x ⇔       x d(x)             λ 2 I 0 0 -I             x d(x)       ≥ 0 (2.97)
Therefore we need the following two inequalities to be fulfilled.

-

      x d(x)             A P + P A + αP P P 0             x d(x)       ≥ 0, and P > 0 (2.98) whenever       x d(x)             λ 2 I 0 0 -I             x d(x)       ≥ 0 (2.99)
According to the S-procedure theorem, it happens if and only if there exits a τ ∈ R and α ≥ 0

such that -       A P + P A + αP P P 0       ≥ τ       λ 2 I 0 0 -I       (2.100)
Therefore the necessary and sufficient conditions for the existence of quadratic Lyapunov function of considered system can be written by following LMIs

-       A P + P A + αP + τλ 2 I P P -τI       ≤ 0, P > 0 (2.101)
within variables τ ≥ 0, P > 0 Example 2.3.8. The Luenberger observer of the system

ẋ = Ax, A ∈ R n×n (2.102) y = Cx, C ∈ R 1×n (2.103)
can be presented by

ẋ = A x + L( ŷ -y), L ∈ R n×1 (2.104) ŷ = C x (2.105)
Then we derive the error dynamic system Chapter 3

ė = Ae + LCe (2.

Generalized homogenization of linear controller

In this chapter, we start by offering a motivating example to show one more possible advantage of homogeneous controller comparing with linear controller. Next, the second section presents the main results about upgrading a linear controller to homogeneous one. The theoretical results are supported by quadrotor experiments in the last section.

Motivating Example

Inspired by [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF], let us consider the control system

ẋ = Ax + Bu(x), A =       0 1 0 ... 0 0 0 1 ••• 0 ••• ••• ••• ••• ••• 0 0 0 ••• 1 0 0 0 ••• 0       , B =            0 0 . . . 0 1           
where x = (x 1 , x 2 , ..., x n ) is the state vector and u : R n → R is the feedback control. Initial conditions of the latter system are assumed to be bounded as follows

x(0) ≤ 1.
The control aim is to stabilize x into a ball of a small radius ε > 0 in a prescribed time

T > 0, i.e. x(t) ≤ ε, ∀t ≥ T.
Let us firstly consider the static linear feedback

u (x) = kx, k = (k 1 , k 2 , ..., k n ).
The eigenvalues {λ 1 , ..., λ n } of the closed-loop linear system ẋ = (A + Bk)x can be placed in any given set of the complex plane C by choosing the vector k. Therefore, it is possible to obtain a closed-loop system with an arbitrary fast damping speed, i.e.

∀ε > 0, ∃k ∈ R 1×n : sup

x(0) =1 x(t) < ε, t > T.
Indeed, the trajectories of this system converge to the origin exponentially fast

x(t) ≤ Ce -σ t , t > 0
where the constant C ≥ 1 depends on λ i , i = 1, 2, .., n and (λ i ) < -σ . Hence, smaller ε > 0 larger σ > 0 has to be assigned to solve the control problem, i.e. σ → +∞ as ε → 0 provided that T is fixed. Therefore, we conclude that the linear state feedback is, indeed, a possible solution of the considered stabilization problem for any fixed ε > 0.

However, the trajectories of the closed-loop linear system with fast decays have large deviations from the origin during the initial phase of the stabilization. This phenomenon is called the "peaking" effect and the large deviation is referred to as an "overshoot"

(see e.g. [START_REF] Polyak | Large deviations for non-zero initial conditions in linear systems[END_REF] for more details). In particular, it is shown by [START_REF] Izmailov | THE PEAK EFFECT IN STATIONARY LINEAR-SYSTEMS WITH MULTIVARIATE INPUTS AND OUTPUTS[END_REF] that there exists γ > 0 independent of λ i such that

sup 0≤t≤σ -1 sup x(0) =1 x(t) ≥ γσ n-1 .
For n > 1 the linear closed-loop system has infinite "overshoot" as ε → 0:

sup 0≤t≤T sup x(0) =1 x(t) → +∞ as ε → 0.
This means that for sufficiently small ε > 0 the "overshoot" may be so huge that physical (practical) restrictions of the system states would not allow it. The static linear control needs to be somehow modified to overcome this difficulty. The simplest way is to use the input saturation, which, in fact, anyway must be taken into account in practice.

However, in this case it is not clear if the saturated feedback would solve the considered stabilization problem with the prescribed time T > 0 even if saturation would not destroy stability of the system.

The infinite "peaking" effect could also be eliminated by means of a transformation of the linear controller to a homogeneous one. Indeed, let us consider the following feedback law

u h (x) = kd(-ln x d )x,
where d is the weighted dilation

d(s) = e ns 0 ••• 0 0 e (n-1)s ••• 0 ••• ••• ••• ••• 0 0 ••• e s
, s ∈ R and • d : R n → (0, +∞) is the so-called canonical homogeneous norm studied in chapter 2. Since d(s)x d = e s x d then the vector field f given by

f (x) := Ax + bu h (x) is weighted homogeneous of degree -1, i.e. f (d(s)x) = e -s d(s)f (x).
Below we show that the vector k = ( k1 , k2 , ..., kn ) can be selected to guarantee sup x(0) =1

x(t) = 0, t ≥ T for any fixed T > 0. In addition, the feedback law u h is globally bounded:

sup x∈R n |u(x)| ≤ M < +∞,
where M depends on T as follows: smaller T implies larger M. The homogeneous control stabilizes the considered system globally and in a finite time. It solves the stabilization problem considered above independently of ε > 0. Due to global boundedness of the controller it does not have the unbounded "peaking" effect discovered for the linear system as ε → 0.

The simulation results for the linear controller u(x) = kx, k = (-100 -20) and the

homogeneous controller u h (x) = k x -2 d 0 0 x -1 d
x, k = (-4.1721 -2.8718) are depicted in Fig. 3.1. Initial conditions x(0) for the numerical simulations are taken from the unit sphere. Different colors represent the trajectories with different initial positions. In both cases, trajectories of the closed-loop system converge to the origin. The homogeneous controller provides the (theoretically) exact stabilization of any solution of the closedloop system with x(0) ≤ 1 in the time T = 1, i.e. x(t) = 0 for all t ≥ 1 and for all

x(0) ≤ 1. The linear controller gain is selected to guarantee x(t) ≤ ε = 0.005 for t ≥ 1.

Even in this case the "overshoot" of the homogeneous controller is twice smaller. The "overshoot" of the linear controller increases drastically for smaller ε. It is proven in [START_REF] Izmailov | THE PEAK EFFECT IN STATIONARY LINEAR-SYSTEMS WITH MULTIVARIATE INPUTS AND OUTPUTS[END_REF] that when converges to zero, the overshoot of linear controller converges to be infinite. For x belonging to the unit sphere x d = 1, we have u h (x) = kx. This means that the homogeneous controller u h is designed by means of a certain homogeneous scaling of a linear stabilizing controller u(x) = kx. The aim of this chapter is show that an existing linear controller can be "upgraded" to a non-linear one (using the generalized homogeneity) in such a way that the new controller would provide a better control quality (at least, it will never be worst then the linear controller). The main price of this improvement is an additional computational power for the nonlinear control implementation. We develop the design scheme for a linear plant model and confirm our theoretical constructions by real experiments with the quadrotor Q-Drone of Quanser T M .

To implement the suggested scheme to linear PID controllers we extend the results of [START_REF] Mercado-Uribe | Integral Control Design using the Implicit Lyapunov Function Approach[END_REF] to the case of linear geometric dilations and MIMO systems. The results of this chapter are published in [START_REF] Wang | On Generalized Homogenization of Linear Quadrotor Controller[END_REF], [START_REF] Wang | Generalized Homogenization of Linear Controllers: Theory and Experiment[END_REF].

Homogenization of linear controllers

The PID (Proportional-Integral-Derivative) controller is the most common linear feedback law for real physical control systems. The previous sections shows that homogeneous systems may have a better robustness properties and faster convergence rate. In this section the question to be studied is : Is it possible to upgrade an existing linear (in particular PID) controller in order to make a closed-loop locally or globally d-homogeneous and improve convergence properties of the system? A scheme of the upgrade must prevent a possible degradation of the control quality and only allow its improvement.

Homogeneous Stabilization of Linear MIMO Systems

Let us consider the linear control system

ẋ = Ax + Bu(x), t > 0, (3.1) 
where x(t) ∈ R n is the system state, u : R n → R m is the feedback control, A ∈ R n×n and B ∈ R n×m are system matrices.

Definition 3.2.1. A system ẋ = f (x, u), t > 0, f : R n × R m → R n
is said to be d-homogeneously stabilizable with degree µ ∈ R if there exists a (locally or a globally bounded) feedback law u : R n → R m such that the closed-loop system is globally asymptotically stable and d-homogeneous of degree µ, where d is a dilation in R n .

In [START_REF] Zimenko | Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization[END_REF], it shows that the system (3.1) can be homogeneously stabilized with a degree µ 0 if and only if the pair {A, B} is controllable (or, equivalently, rank(B, AB, ..., A n-1 B) = n. The following theorem is the corollary of a more general theorem proved [START_REF] Polyakov | On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space[END_REF] for evolution system in Hilbert spaces (see also [START_REF] Zimenko | Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization[END_REF] for more details about the finite dimensional case). 

u(x) = K 0 x + x 1+µ d Kd(-ln x d )x (3.2) with K = Y X -1 , K 0 ∈ R n×m such that A 0 = A + BK 0 is nilpotent, dilation d generated by G d ∈ R n×n satisfying A 0 G d = (G d + µI)A 0 , G d B = B (3.3)
and X ∈ R n×n , Y ∈ R m×n solving the following algebraic system

       XA 0 + A 0 X + Y B + BY + XG d + G d X = 0, XG d + G d X > 0, X > 0, (3.4) 
where the canonical homogeneous norm has a solution K 0 with respect to G d [START_REF] Zimenko | Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization[END_REF], such that G d is anti-Hurwitz matrix. The feasibility of (3.4) is to guarantee that the system (3.1) is asymptotically stable which is proven in [START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF] and refined in [START_REF] Zimenko | Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization[END_REF]. The proof of the latter theorem follows from the following computations

• d is induced by the norm x = √ x X -1 x.
d dt x d = ∂ x d ∂x ẋ = x d x d (-ln x d )X -1 d(-ln x d )(A 0 x+ x 1+µ d BY X -1 d(-ln x d )x) x d (-ln x d )X -1 G d d(-ln x d )x (3.5)
where the formula (2.28) is utilized on the last step. Indeed, from (3.3) we derive dhomogeneity of A 0 (namely, A 0 d(s) = e µs d(s)A 0 for any s ∈ R) and B (namely, d(s)B = e s B for all s ∈ R). Hence, using (3.3) we immediately derive

d dt x d = x 1+µ d x d (-ln x d )X -1 (A 0 +BY X -1 )d(-ln x d )x x d (-ln x d )X -1 G d d(-ln x d )x = -x 1+µ d
for x 0. Obviously the homogeneous degree µ is an important parameter to impact the convergence rate of system. Remark 3.2.1. If m = 1, then there exists a unique K 0 such that [START_REF] Zimenko | Robust Feedback Stabilization of Linear MIMO Systems Using Generalized Homogenization[END_REF]. If m = 1 and the matrix A is nilpotent (like in the example about the "peaking effect" given in the introduction) then K 0 = 0. In this case, for µ = -1 any solution x(t, x 0 ) of the closed loop system (3.1), (3.2) with the initial condition x(0) = x 0 satisfies

(A + BK 0 )G d = (G d + µI)(A + BK 0 ) with µ 0 [
x(t, x 0 ) = 0, ∀t ≥ x 0 d and u(x) = Y X -1 d(-ln x d )x ≤ Y X -1 • d(-ln x d )x = Y X -1 < +∞.
The latter means that the presented homogeneous controller solves the stabilization problem without an unbounded "peaking effect". To guarantee that the settling time of the closed-loop system is bounded by a number T > 0, for all x 0 x 0 ≤ 1, we just need to add the following linear matrix inequality d (ln T)Xd(ln T) ≤ I n (3.6) to the system (3.4). The extended system of LMIs remains feasible. Indeed, if the pair X 0 , Y 0 is a solution of (3.4) then for any q > 0 the pair X = qX 0 , Y = qY 0 is a solution as well. Hence, the matrix inequality (3.6) is fulfilled for a sufficiently small q > 0. If rank(B) = m and {A, B} is controllable, then there exists K 0 such that (3.3) holds [START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF].

Comparing with linear controller design, homogeneous controller only requires additionally a monotone dilation d(s)

( XG d + G d X > 0 ).
The following corollary studies the case of the perturbed linear system. The perturbations can be modeled by a set-valued or a discontinuous function (e.g. dry friction) provided that Filippov solution exists [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]. for some κ > 0, where the canonical homogeneous norm • d is induced by x = √ x P x, P = X -1 . If, additionally,

(A + BK) P + P (A + BK) + (ρ + κ)(G d P + P G d ) ≤ 0, ρ > 0, (3.8)
and F is compact-valued, convex-valued and upper-semi continuous, then the control (3.2)

stabilizes the system ẋ ∈ Ax + Bu(x) + F(t, x), t > 0 (3.9) and d dt x(t) d ≤ -ρ x(t) 1+µ d .
Proof. The existence of solutions of closed-loop system follows from Filippov theory [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]. Stability immediately follows the following computations

d dt x d = x d x d (-ln x d )X -1 d(-ln x d ) ẋ) x d (-ln x d )X -1 G d d(-ln x d )x ≤ x 1+µ d x d (-ln x d )X -1 (A 0 +BY X -1 )d(-ln x d )x) x d (-ln x d )X -1 G d d(-ln x d )x + x d sup y∈F(t,x) x d (-ln x d )X -1 d(-ln x d )y x d (-ln x d )X -1 G d d(-ln x d )x ≤ -(ρ + κ) x µ+1 d + κ x 1+µ d ≤ -ρ x 1+µ d
Notice that the obtained differential inequality for the canonical homogeneous norm specifies the convergence rate of the closed-loop system.

In the practice, a more conservative explicit estimate can be obtained using the relation

σ 1 ( x d ) ≤ x ≤ σ 2 ( x d ) (3.10)
where σ 1 , σ 2 are class K ∞ functions ( details defined in Lemma 7.2 of [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF] where α, β defined by Theorem 2.1.3 of this thesis ). Since (3.10) shows the relation between • d and • , the disturbance estimated by • d in (3.7), can be replaced by • in practice.

In the next part, an integral controller will be introduced to compensate the static error of system.

Homogeneous Proportional Integral Controller

The linear control theory uses an integral term to improve robustness properties of a proportional feedback law. This idea is also useful for nonlinear controllers [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. A similar integrator can be added to implicit homogeneous feedback [START_REF] Mercado-Uribe | Integral Control Design using the Implicit Lyapunov Function Approach[END_REF].

Theorem 3.2.2. Let K 0 ∈ R m×n be such that A + BK 0 is nilpotent, rank(B) = m and an anti- Hurwitz matrix G d ∈ R n×n satisfy (3.3) with µ ∈ [-0.5, 1/k],
where the number k is given in Theorem 3.2.1.

Let X ∈ R n×n and Y ∈ R m×n satisfy (3.4), then for any positive definite matrix Q ∈ R m×m and any constant vector p ∈ R m the control law

u(x) = K 0 x + u hom (x) + t 0 u int (x(s))ds, (3.11) u hom (x) = x 1+µ d Y X -1 d(-ln x d )x, u int (x) = -x 1+2µ d QB P d(-ln x d )x x d (-ln x d )P G d d(-ln x d )x
stabilizes the origin of the system

ẋ = Ax + B(u + p),
where p is a constant, in a finite time if µ < 0, exponentially if µ = 0, and practically in a fixed-time if µ > 0.

Proof. Let us introduce the following virtual variable

x n+1 = p + t 0 u int (x(s))ds.
In this case the closed-loop system becomes ẋ = Ax + B(K 0 x + u hom (x) + x n+1 ), ẋn+1 = u int (x).

(3.12)

Since d(-ln x d )x = 1 then u int is globally bounded and discontinuous at x = 0 if µ = -0.5. In all other cases, the considered system has the continuous right-hand side.

Let us show that the latter system is globally asymptotically stable. For this purpose let us consider the following Lyapunov function candidate

V = 1 2 + 2µ x 2+2µ d + 1 2 x n+1 Q -1 x n+1 .
Calculating the time derivative of V along the trajectories of the closed-loop system we derive

V = x 1+2µ d ∂ x d ∂x ẋ + x n+1 Q -1 ẋn+1 = -x 2+3µ d + x 1+2µ d ∂ x d ∂x Bx n+1 - x 1+2µ x n+1 B P d(-ln x d )x x d (-ln x d )P G d d(-ln x d )x = -x 2+3µ d
where the formula (2.28) and the identity e sG d B = e s B are utilized on the last step.

Since x = 0, x n+1 = 0 is the unique equilibrium of system (3.12) and the hyperplane {(x, x n+1 ) ∈ R n+m : x = 0} does not contain non-zero trajectories of this system, then its origin is globally asymptotically stable (see, e.g. LaSalle principle [START_REF] Salle | Stability by Liapunov's Direct Method with Applications[END_REF] and its version for discontinuous ODEs [START_REF] Orlov | Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF]).

Finally, since the system (3.12) is d-homogeneous of the degree µ with respect to the dilation

d(s) =       e sG d 0 0 e s(1+µ) I m .      
then using Proposition 2.1.1 we complete the proof.

In the case of the weighted homogeneous SISO system (3.1) the presented theorem with the degree µ = -0.5 recovers the result of [START_REF] Mercado-Uribe | Integral Control Design using the Implicit Lyapunov Function Approach[END_REF].

Remark 3.2.2. Since the functional

x → x d (-ln x d )P G d d(-ln x d )x
is d-homogeneous of the degree 0 and uniformly bounded from above and from below, then its replacement in u int with a constant does not destroy the homogeneity properties of the system.

Therefore, for practical reasons the simplified integral term

u int (x) = -x 1+2µ d QB P d(-ln x d )x
can be utilized provided that the stability of the closed-loop system is preserved. This replacement could add some additional restrictions to parameters Q, X and µ. Some sufficient conditions of the quadratic-like stability of nonlinear generalized homogeneous systems presented in [START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF] can be utilized for the corresponding analysis. The stability of the obtained nonlinear system can also be studied using, for example, robustness properties of the homogeneous proportional integral controller (see [START_REF] Mercado-Uribe | Integral Control Design using the Implicit Lyapunov Function Approach[END_REF] for more details about its robustness in the case of the weighted homogeneity). The derivation of a LMI-based condition allowing the simplified form of the integral term is an interesting theoretical problem for the future research.

Notice that the parameter p is assumed to be constant in Theorem 3.2.2. In most of the practice, p is a time-varying disturbance, homogeneous controller could further minimize the effect of disturbance on the system than linear controller, since it has a higher gain than linear controller which provides a faster convergence, better precision and robustness.

Tuning parameter is always a difficult work that takes a lot of time. In the following section, the homogeneous controller is implemented via the parameters from the existing linear controller, which saves a lot of time for engineers.

Design of a homogeneous controller from an existing linear feedback

Consider again the linear system (3.1) and assume that some linear control law

u lin (x) = K lin x, K lin ∈ R m×n , x ∈ R n
is already designed.

Corollary 3.2.2.1. Let the pair {A, B} be controllable, K 0 ∈ R m×n be such that the matrix 

A 0 = A + BK 0 is nilpotent and K lin ∈ R m×n be such that the matrix A + BK lin is Hurwitz. Let G d ∈ R
u lin (x) = u(x) if x = 1.
The corollary shows that if a linear controllable plant is exponentially stabilized by means of a linear feedback, then it can also be homogeneously stabilized by means of the control (3.2) using the gains of the original linear controller. These two controllers coincide on the unit sphere x P x = 1. Notice that the corresponding sphere can be always adjusted (if needed) by means of a variation of P satisfying (3.13).

Obviously when x → 0, then x d → 0 as well, in this case, the homogeneous controller (3.2) may have a infinite gain provided µ = -1. The infinite gain will lead to a serious chattering problem of system, which is not wanted in practice. In order to guarantee the homogeneous controller performance is always better than linear controller, the following saturation function is introduced.

sat a,b : R + → R + is defined as

sat a,b (ρ) =            b if ρ ≥ b, ρ if a < ρ < b, a if ρ < a, ρ ∈ R + . (3.14)
Let us consider the control law

u a,b (x) = K 0 x + Kd(-ln sat a,b ( x d ))x, (3.15) 
where d, x d , K 0 and K = K lin -K 0 are defined in Corollary 3.2.2.1. After adding the saturation function, it provides an admissible interval of the gain to improve the system performance, for example the smaller a we give, the higher gain we obtain in the homogeneous controller. The parameter b is generally setted to be 1 for finite-time controller. In the case of fixed time controller, we can select b > 1.

From (3.14) we conclude that

u 1,1 (x) = K lin x, ∀x ∈ R n and u 0,+∞ (x) = K 0 x + Kd(-ln x d )x, ∀x ∈ R n .
In other words, the pair a ∈ (0, 1] and b ∈ [1, +∞) parametrize a family of non-linear controllers which has the linear and homogeneously stabilizing feedbacks as the limit cases.

Notice that for b = 1 the controller (3.15) coincide with the linear controller outside the unit ball x P x > 1 and the gains of the linear controller are scaled by means of dilation d only close to the origin, i.e. for x P x < 1.

The following scheme for an "upgrade" of linear control to non-linear (locally homogeneous) one can be suggested :

1. Find a matrix K 0 ∈ R m×n such that A + BK 0 is nilpotent and (3.3) is satisfied.

2. Find a symmetric matrix P = P satisfying the inequalities (3.13), which is required to define the canonical homogeneous norm • d .

3. Select a = b = 1 (i.e. we start with a linear controller).

4. Increase b > 1 and decrease α < 1 while this improves the static state precision.

Theoretically, an improvement of control quality (faster transitions or better robustness) is proved by Corollary 3.2.1.1 even for the case α = 0 and β = +∞. However, the proofs of the corollaries are model-based, but any model of a system is just an approximation of the reality. In practice, a difference between a dynamic model and a real motion of the system may not allow to realize all theoretical properties of the closedloop system or, even more, it may imply a serious degradation of some performance indices, which characterize the control quality. That is why, the tuning of parameters a and b suggested above is required to guarantee that the non-linear control always has the quality which is never worse than the original linear one. It would allow a control engineer to prevent any possible degradation of the control quality during the non-linear "upgrade" of a linear control system. Below the real experiment tested on quadrotor will be presented.

Notice that if the gains of the linear controller are already optimally adjusted, then improvements provided by homogeneous controller could not be huge and the parameters a and b could, possibly, be close 1 in this case. If small variations of the parameters a and b from 1 imply degradation of the control quality, then the proposed "upgrade" is impossible.

On digital realization of implicit homogeneous feedback

In order to implement an implicit homogeneous control (e.g. (3.15)) in practice, an algorithm for computation of the canonical homogeneous norm x d is required. This norm can be computed explicitly for n ≤ 2 or approximated by an explicit homogeneous norm for n ≥ 3 (see [START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF]). However, even for the second order case, the representation of the canonical homogeneous norm is rather cumbersome, so a digital realization of the homogeneous control law requires much more computational power than the linear algorithm. Therefore, an algorithm of a digital realization of the implicit homogeneous control is required for its successful practical application. Some additional properties of the implicit homogeneous controller are established below for this purpose. 2) {t i } +∞ i=0 is an arbitrary sequence of time instances such that 0 = t 0 < t 1 < t 2 < ... and lim i→+∞ t i = +∞;

3) the switched control u has the form

u(x(t)) = x(t i ) 1+µ d Kd(-ln x(t i ) d )x(t), t ∈ [t i , t i+1 ) (3.17)
then the closed-loop system (3.9) and (3.17) is globally asymptotically stable.

Proof. I. Let us show that the sequence { x(t i ) d } +∞ i=1 is monotone decreasing along any solution of the closed-loop system. Notice that the function t → x(t) d is continuous since the solution x of the closed-loop system is a continuous function of time.

Let us define the quadratic positive definite function V i : R n → R + given by V i (x) :=

x P i x, where

P i := d (-ln x(t i ) d )P d(-ln x(t i ) d ) > 0.
On the time interval [t i , t i+1 ) we have u(x) = K i x, where

K i := x(t i ) 1+µ d Kd(-ln x(t i ) d ).
Repeating the proof of Theorem 3.2.3 we derive Vi (x(t)) ≤ -ρ x(t i )

µ d x(t) (P i G d + G d P i )x(t) < 0 for t ∈ [t i , t i+1 ), i.e. the function t → V i (x(t)) is strictly decreasing on [t i , t i+1 ).
On the one hand, for any fixed x 0 the scalar-valued function r → q(r) defined as q(r) = x d (-ln r)P d(-ln r)x, r > 0 is also strictly decreasing due to G d P + P G d > 0. On the other hand, from the definition of the canonical homogeneous norm 0)) for all t ≥ 0, i.e. the origin of the closed-loop system is Lyapunov stable. II. Since the canonical homogeneous norm • d is positive definite then the monotone decreasing sequence { x(t i ) d } ∞ i=1 converges to some limit. Let us show now that this limit is zero. Suppose the contrary, i.e. lim

• d we derive V i (x(t i )) = 1 and ∀t ∈ (t i , t i+1 ] we have V i (x(t)) -1 = x (t)d (-ln x(t i ) d )P (-ln x(t i ) d )x(t) -1 < 0 = x (t)d (-ln x(t) d )P (-ln x(t) d )x(t) -1. The latter implies x(t) d < x(t i ) d for all t ∈ (t i , t i+1 ], i.e. the sequence { x(t i ) d } +∞ i=1 is monotone decreasing and x(t) ∈ B d ( x(t i ) d ) for all t ≥ t i . Moreover, V (x(t)) ≤ V (x(
i→∞ x(t i ) d = V * > 0 or equivalently ∀ε > 0 ∃N = N (ε) : V * ≤ x(t i ) d < V * + ε, ∀i ≥ N .
The control function u(V , s) is continuous ∀s ∈ R n \{0} and ∀V ∈ R + . The latter means

x(t i ) µ+1 d Kd(-ln x(t i ) d )x -V µ+1 * Kd(-ln V * )x ≤ σ (ε) s , ∀i ≥ N ,
where σ (•) ∈ K. The definition of can be found in [START_REF] Polyakov | Finite-time and fixed-time stabilization: Implicit Lyapunov function approach[END_REF]. This means that for t > t N the closed-loop system can be presented in the form

ẋ(t) = (A + B(K * + ∆(t, ε)))x + f (t), (3.18) 
where

K * = V 1+µ * Kd(-ln V * ), f (t) ∈ F(t, x(t)) and ∆(t, ε) ∈ R m×n : ∆ ≤ σ (ε).
Let us consider the quadratic positive definite Lyapunov function candidate V * (x) =

x P * x, where

P * = d (-ln V * )P d(-ln V * ). For t > t N we have V * (x(t)) ≤ -(ρ + κ)V µ * x(t) (P * G d + G d P * )x(t)+ x (t)(P * B∆ + ∆ B P * )x(t) + f (t)P * f (t).
Hence, taking into account σ ∈ K for sufficiently small ε > 0 ( i.e for sufficiently large t N ) we have

x (t)(P * B∆ + ∆ B P * )x(t) ≤ ρ 3 V µ * x(t) (P * G d + G d P * )x(t).
Since x(t i ) d → V * as i → +∞ then for sufficiently small ε > 0 (i.e. sufficiently large t N ) the inequality (3.7) implies

f (t)P * f (t) ≤ ρ 3 + κ V µ * x(t) (P * G d + G d P * )x(t). Therefore, we have V * (x(t)) ≤ - ρ 3 V µ * x(t) (P * G d + G d P * )x(t)
and the solution of the closed-loop system decays exponential implying the existence of an instant of time t * > t N such that x(t * ) d < V * . This contradicts our supposition and means lim i→∞ x(t i ) d = 0. Hence, taking into account the Lyapunov stability proven above we conclude the global asymptotic stability of the closed-loop system with the switched homogeneous control (3.17).

The linear switched control (3.17) is obtained from the non-linear homogeneous one. It can be utilized, for example, in the case when the control system is already equipped with a linear controller allowing a dynamic change of feedback gains with 2) improvement of the obtained localization by means of the bisection method, i.e.

(V -V ) → 0.

Such an application of Algorithm 1 allows us to calculate V ≈ x(t i ) d with rather high precision but it requests a high computational capability of a control device. If the computational power is very restricted, then the Step of Algorithm 1 may be realized just once at each sampled instant of time. Theorem 3.2.3 implies practical stability of the closedloop system in this case. Indeed, Theorem 3.2.3 proves that the d-homogeneous ball Bd (V ) is a strictly positively invariant set of the the closed-loop system with the control

u(x) = V µ Kd(-ln V )). If the root of the equation d(-ln V )x(t i ) = 0 is localized (i.e.
x(t i ) ≤ V ), Algorithm 1 always selects the upper estimate of V to guarantee x(t i ) ∈ Bd (V ).

This means that x(t i ) d never leaves the ball Bd (V ) even when x(t) varies in time.

The parameters a and b defines lower and upper admissible values for V . As explained in the previous section, this restriction is caused by practical issues. For instance, the parameter a can not be selected arbitrary small due to finite numerical precision of digital devices and measurement errors, which may imply x(t i ) Bd (V ) due to the computational errors.

3.3 An "upgrade" of a linear controller for Quanser QDrone™

Linearized models

To design homogeneous controllers, let us consider the simplified model of the quadrotor system (1.35) assuming that φ and θ are small, and quadrotor has a slow motion, thus

D ≈ 0, cos θ ≈ 1, cos φ ≈ 1, sin φ ≈ φ, sin θ ≈ θ.
Denoting ξ = (x, y, ẋ, ẏ, θ, -φ, θ, -φ) and

           τ φ τ θ τ ψ            =            u 2 u 3 u 4            , u 1 = F T -mg we derive ξ = A ξ ξ + B u 2 u 3 (3.19) ψ = u 4 I zz (3.20) z = u 1 m (3.21)
where

A ξ = 0 E 0 0 0 0 gE 0 0 0 0 E 0 0 0 0 , E = 1 0 0 1 , B =            0 0 0        1 I yy 0 0 1 I xx                   . Denote Ψ =       ψ ψ      , then the subsystem (3.20) becomes Ψ = A ψ Ψ + B ψ u 4 (3.22)
where

A ψ =       0 1 0 0       , B ψ =       0 1 I zz       . Denote Z =       z ż      , then system (3.21) becomes Ż = A z Z + B z u 1 (3.23)
where

A z =       0 1 0 0       , B z =       0 1 m       .
The PID controller given by the manufacturer has the following form:

u 1 = K z       z ż      + K I Zdt,       u 2 u 3       = K ξ ξ, u 4 = K ψ       ψ ψ     
with the parameters

K ψ = -0.59 0.11 , K z = -35 -14 , K I = -4 0 K ξ =       -2.91 0 -1.45 0 -1.85 0 -0.16 0 0 -3.53 0 -1.76 0 -2.25 0 -0.20      
We use these gains of linear controller in order to design a homogeneous one.

Upgrade of linear controllers

The pairs {A ξ , B ξ }, {A z , B z } and {A ψ , B ψ } are controllable, the matrix A ξ is d ξ -homogeneous of the degree -1 with 

d ξ (s) = diag e 4s E,
P ξ =                                        226 
                                       P ψ =       18 
     
respectively. These matrices are obtained as solutions of the LMIs (3.13).

The original linear controller for z-subsystem contains the integrator. Taking into account Remark (3.2.2) and the form of the dilation d z we define its homogeneous counterpart as follows

u z (Z) = Z 1/2 d z K z d z (-ln Z d z )Z + K I t 0 d z (-ln Z d z )Z(s)ds (3.24)

Results of experiments

For practical implementation the term • d α in the homogeneous controller of each subsystems has to be replaced with sat a α ,b α ( • d α ), where α ∈ {ξ, φ, z}

The parameters 0 < a α < b β < +∞ (see Algorithm 1) has been selected for each subsystem as follows. Each pair of a, b are tuned to guarantee that the proposed nonlinear controller is always better than linear one by comparing the system state precision and robustness property.

a ξ = 0.6, a ψ = 0.65, a z = 0.3, b ξ = b ψ = b z = 1.
Quanser's linear PID controller and the proposed homogeneous PID controller are compared on the experiment, which consists in the sequential set-points (unit:

(m,m,m,rad)) tracking, which are defined as follows:

[x, y, z, ψ] =[0, 0, 0, 0] → [0, 0, 0.4, 0] → [0.2, 0, 0.4, 0] → [0.2, 0.2, 0.4, 0]
→ [0, 0, 0.4, 0] → [0, 0, 0.018, 0] Fig. 3.2 depicts the position tracking trajectory of x, y, z and ψ variables, respectively.

The homogeneous PID controller has a faster response and a higher precision. The mean value stabilization errors are compared in Table 3.1. They are given by L 2 norms of the deference between the coordinate and the reference computed in steady states. We define that the steady state starts ≈ 2.5 sec after the set-point assignment and ends at the time instant when the new set-point is assigned. The obtained improvement is more than 40%.

L
The price of this improvement is a bit more energy consumption, which is estimated by using the L 2 norm of system inputs. In this test, L 2 norm of PID controller and homogeneous PID are about 54.14 and 54.75 respectively. The difference between these norms of Quanser PID controller and the homogeneous controller is about 1.1%, i.e., the proposed homogeneous controller consumes only 1.1% more than the Quanser PID controller, but it can improve about 40% precision. The input norm of linear PID and Homogeneous PID controller are plotted in Fig. 3.3.

The robustness of the controllers is also compared by adding a mass (0.5 kg) for a couple seconds on top of the quadrotor during the flight test. The results of the experiments are depicted in Fig. 3.4. The homogeneous controller again demonstrates a better control precision.

Conclusion

In this chapter, a scheme for an "upgrade" of a linear controller to a non-linear homogeneous one is developed and verified by experiment. The homogeneous controller uses the feedback gain of linear controller and scales it in a generalized homogeneous way which depends on the norm of the system states. The main advantages of this homogeneous controller include faster convergence, better robustness and no peaking effect. Its main drawbacks are the on-line computation of x d and sometimes a saturation function is required to avoid the infinite gain of homogeneous controller. In practice, this infinite

The experiments which are tested on the quadrotor platform QDrone of Quanser T M verify the good performance of this controller. The control precision has been improved more than 40% and the energy consuming increases only about 1.1%. Meanwhile the robustness of controller proposed with respect to the external disturbance is improved a lot as well. It is worth stressing that this method for "homogeneous upgrade" of linear controller can be applied to many other dynamical systems. The same idea of upgrading linear controller to homogeneous one can be extended to observer design, which will be introduced in the next chapter. 

Generalized homogenization of Linear Observer

The methodology of a "upgrade" of linear controllers to homogeneous ones is already developed in chapter 3, where the experiments show that the set-point tracking precision on the real experiment is improved about 40% and the homogeneous controller shows its better robustness than linear controller. This chapter extends the same ideas to observers design and shows the simultaneous "upgrade" of linear controller and linear observer implies more improvement of the control quality.

Homogeneous State-Estimation of Linear MIMO Systems

Let us consider the linear system

ẋ = Ax + Bu, y = Cx, t > 0, (4.1) 
where

A ∈ R n×n , B ∈ R n×m , C ∈ R k×n are system matrices, x(t) ∈ R n is the system state, u(t) ∈ R m is a known as system input, y(t) ∈ R k is the output measured.
Definition 4.1.1. The system (4.1) is said to be d-homogeneously observable of a degree µ ∈ R if there exists an observer of the form

ż = Az + Bu + g(Cz -y), g : R k → R n (4.2)
such that the error equation

ė = Ae + g(Ce), e = z -x (4.3)
is globally uniformly asymptotically stable and d-homogeneous of the degree µ ∈ R. For shortness, the corresponding observer (4.2) is called homogeneous.

In [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF], it is shown that the system (4.1) can be homogeneously observable with a degree µ 0 if and only if the pair {A, C} is observable (i.e. rank(C, CA, ..., CA n-1 ) = n.

The following theorem refines Theorem 11.1 from [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF] allowing a selection of the observer gains L ∈ R n×k by solving LMI which is very important for the development of a scheme for an upgrade of a linear Luenberger observer. 

ρ 2 P -1 > Ξ(λ)LL Ξ (λ), ∀λ ∈ [0, 1 γ ], (4.6) 
where Ξ(λ) = λ(exp(ln λ µ (G 0 + I n )) -I n ). Then the dynamic observer (4.2) with the locally bounded function Proof. Firstly we will analyze the continuous property of function g. According to the way of construction function g, the only one possible discontinuity point of g is at σ = 0.

g ∈ C(R k \{0}, R n ) g(σ ) = exp(ln σ R k (G 0 + I n )µ)Lσ , σ ∈ R k (4.
Since g can be rewritten as follows

g(σ ) = exp(ln σ R k ((G 0 + I n )µ + I n ))L σ σ R k
then it is clear to see that g(σ ) → 0 as σ → 0 and g is continuous at σ = 0 when the matrix

I n + µ(G 0 + I n ) is anti-Hurwitz.
If the real parts of eigenvalues of the matrix I n + µ(I n + G 0 ) are negatives, then g is possibly discontinuous at the point σ = 0, but it is bounded in any neighborhood of this point. In the latter case, the solution of observer equation can be analyzed by Filippov theorem.

Secondly, the matrix A is d-homogeneous of a degree µ ∈ R if and only if (4.8) is satisfied: 

AG d = (µI n + G d )A (4.
v P LCv+ Cv µ R k v P exp(ln Cv µ R k G 0 )LCv v G d P v = e 1+µ d -ρ+v P [ Cv µ R k exp(ln Cv µ R k G 0 )-I n ]LCv v P G d v
where v = d(-ln e d )e belongs to the unit sphere, i.e. v P v = 1. According to the second linear matrix inequality of the system (4.5), the following condition holds.

0 < v P G d v = 0.5v (P G d + G d P )v ≤ 0.5λ max (P -1 2 G d P 1 2 + P 1 2 G d P -1 2 )
Since for any q ∈ R n we have

q LCv ≤ L q R k Cv R k .
then denoting λ := Cv R k we derive

v P [λ µ exp(ln λ µ G 0 ) -I n ]LCv ≤ L [λ µ exp(ln λ µ G 0 ) -I n ]P v R k λ.
Therefore the inequality L [λ µ exp(ln λ µ G 0 ) -I n ]P v R k λ < ρ can be represented as follows

P [λ µ exp(ln λ µ G 0 ) -I n )]LL [λ µ exp(ln λ µ G 0 ) -I n ]P < ρ 2 P λ 2 .
or, equivalently,

Ξ(λ)LL Ξ(λ) < ρ 2 P -1 .
Finally, the matrix inequality P > γC C implies λ ∈ [0, 1/γ]. Notice that the parameter µ is the homogeneous degree of system. ρ is used to tune the system's convergence rate, the bigger ρ leads to the faster convergence. γ is a parameter to relax the system conservatism.

Since sup λ∈[0,1/γ] Ξ(λ) → 0 as µ → 0 (see Proposition 11.1 in [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]) the system of matrix inequalities (4.5) and (4.6) is always feasible provided that µ is sufficiently small.

From a linear observer to a homogeneous one

Notice that for µ = 0 the homogeneous observer (4.2) and (4.7) becomes the Luenberger one with g(σ ) = Lσ , σ = Ce (4.9)

and the system of matrix inequalities (4.5) and (4.6) is reduced to

P A + A P + 2ρP + P LC + C L P < 0, P > 0, ρ > 0 (4.10)
It is well-know [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] that the feasibility of the latter inequality is the necessary and sufficient condition for the exponential stability of the error equation of the Luenberger observer (with the decay rate ρ > 0). For the similar reason with homogeneous controller design, when the homogeneous degree µ < 0, the homogeneous observer may have a infinite gain as σ → 0. In order to guarantee the homogeneous observer performance is always better than linear observer, the following saturation function sat a,b : R

+ → R + is introduced. sat a,b (ρ) = b if ρ≥b, ρ if a<ρ<b, a if ρ<a, ρ ∈ R + . (4.11)
Let us consider the following function

g a,b (x) = sat a,b ( σ µ R k ) exp(ln sat a,b ( σ µ R k )G 0 )Lσ , ( 4.12) 
where G 0 and L are defined in Theorem 4.1.1.

From (4.12) we conclude that

g 1,1 (σ ) = Lσ , g 0,+∞ (x) = σ µ R k exp(ln σ µ R k G 0 )Lσ .
In other words, the pair a ∈ (0, 1] and b ∈ [1, +∞) parameterize a family of nonlinear observers which has the Luenberger and homogeneous filters as the limit cases. A smaller a provides a bigger gain of homogeneous observer in the case of µ < 0. This motivates the following corollary for an "upgrade" of the Luenberger observer and indicates the relation between Luenberger observer and homogeneous observer. In order to apply the method proposed above, the following algorithm can be applied:

1) Take the gain L lin ∈ R k×n of the existing Luenberger observer and select the parameters G 0 ∈ R n×n and µ ∈ R such that the system of matrix inequalities (4.5) and (4.6) are feasible1 with respect to P > 0, ρ > 0 and γ > 0.

2) Select a = b = 1 (i.e. we start from a linear controller).

3) Increase b > 1 and decrease α < 1 while this improves an estimation precision or the quality of the whole control system if the estimation precision cannot be evaluated from experiments.

Theoretically, an improvement of the control quality (e.g. faster transition) follows from Proposition 2.1.1 and Theorem 4.1.1. However, the proofs are based on the system model, and any model is just an approximation of the real system. The theoretical results may not happened due to the difference between the real system and its model.

The saturation function introduced above guarantee that the nonlinear homogeneous observer always has a quality never worse than original linear one. In Section 4.3 we will illustrate the presented scheme on a real experiment with a quadrotor.

Notice that if the gains of the linear observer are already optimally adjusted, then improvements provided by homogeneous observer could not be huge and the parameters a and b could, possibly, be close to 1 in this case.

4.3 An "upgrade" of a linear filter for QDrone of Quanser T M

In this section, we will show how to apply the result presented in Section 4 to realize the control of quadrotor.

The system of QDrone was equipped with two types of sensors (External OptiTrack and on-board IMU) to measure different state variables in different frames, with different sampling frequency. Here is a short summary of output data from OptiTrack and IMU.

1. External OptiTrack: The OptiTrack system uses ultra-red camera to capture the movement of quadrotor in real-time, with a maximum sampling frequency equal to 100Hz (depending on the number of quadrotors need to be localized: in our case we localize only 1 quadrotor). This system can provide the following measurement in inertial frame: I [x, y, z, φ, θ, ψ] where (x, y, z) are the position and (φ, θ, ψ) represent the roll, pitch and yaw angle, all are in inertial frame.

2. On-board IMU: The on-board IMU sensor includes gyroscope, accelerometer, magnetometer and barometer, working with a high sampling frequency at 1000Hz.

It can provide the following measurements:

B [ φ, θ, ψ, a x , a y , a z , T x , T y , T z , P ] where ( φ, θ, ψ) are the angular velocities around (x, y, z) axis, (a x , a y , a z ) are the associated acceleration on each axis, (T x , T y , T z ) represent magnetism, and P is the air pressure, all are in body frame.

Controller implementation problems

For the QDrone platform, Quanser realized 4 independent PID controllers for the regulation of x, y, z and φ, respectively. Recently, we presented an efficient homogeneous PID controller see chapter 3, by upgrading the Quanser's PID controller, which shows a substantial improvement of the control performance. However, two important problems need to be solved when applying those mentioned methods:

1. Unavailable information: All those mentioned controllers depend not only on (x, y, z, φ, θ, ψ), but also on ( ẋ, ẏ, ż, φ, θ, ψ). However, neither the OptiTrack nor the IMU can provide the information of ( ẋ, ẏ, ż) for the controller design;

2. Asynchronous sampling frequency: As we have presented that the frequency of IMU is much higher than that of the OptiTrack system, thus the provided measurements from the OptiTrack and the IMU are not synchronized.

Quanser proposed the following two filters to solve the above problems (Fig. 4.1): 

H dif f (s) = 2500s s 2 +

Upgrade of Quanser's filters

In the above subsection, we detailed Quanser's strategy by designing two filters to realize the derivative estimation from two asynchronous readings of OptiTrack and IMU. In this subsection, we will show how to apply the theoretic result presented in Section 4 to upgrade the Quanser's filters. For this, two steps have been effectuated:

•

Step 1: we seek a linear system (LTI) which enables us to estimate the linear velocity by using the position and acceleration measurements, the same objective as the two filters proposed by Quanser;

• Step 2: Based on the obtained LTI system, using the result presented in Section 4

to upgrade it to a homogeneous one.

The following gives the details how we realize those two steps to upgrade Quanser's filters to a homogeneous observer.

Step 1: For the sake of simplicity, the following presents our method on how to estimate the linear velocity along x-axis with the OptiTrack x-axis position reading p cam x and IMU x-axis acceleration reading a imu x , and we use the same scheme to estimate the linear velocity along other axis.

Since the quadrotor is considered as a rigid body system, by applying the physical law, its dynamics can be written as follows:

ṗx = v x vx = a x (4.22)
where p x represents the x-position of the mass center of the quadrotor, v x = ẋ is the corresponding x-axis velocity and a x represents the associated x-axis acceleration.

Suppose now we have the two asynchronous readings p cam x and a imu x , we can write where where the function g, defined in (3.15), is of the following form: here are tuned to guarantee that the proposed nonlinear observer is always better than linear one by comparing the system state precision.

p x = p cam x -ω(t
Ẋ = AX + Bu = AX + Ba imu x Y = CX + ω = p cam x (4.23) where X = [p x , v x , d] , A =            0 1 0 0 0 1 0 0 0            , B = [0, 1, 0] , C = [1,
H L 1 (s) = s(l 2 s + l 3 ) s 3 + l 1 s 2 + l 2 s + l 3
g(p cam x -C X) = sat a,b ( Ce µ R k ) exp(ln sat a,b ( Ce µ R k )G 0 )LCe (4.28) with e = X -X, G 0 =            0 0 0 0 1 0 0 0 1            , L = [l 1 , l 2 , l 3 ] is given in (4. 26 

Experiment results

In this part, two experiments and their results will be presented. One is using Quanser's It is obvious to see that the nonlinear homogeneous observer proposed in this paper has a faster response and a higher precision. 

Conclusion

In this chapter, a simple method of upgrading a linear observer to a nonlinear homogeneous one is developed. The nonlinear observer uses the gains of the linear one and scale them in a generalized homogeneous way depending on the norm of the available estimation error Czy. The generalized homogeneous systems has been proved to be faster and more robust than linear ones. Theoretical results have been supported with real experiments on the quadrotor QDrone of Quanser T M . The linear filter provided by the manufacturer has been "upgraded" using the proposed method, then control precision and robustness has been improved. However, in the practice, the system needs to work under certain constraints such as state constraints and time constraints, which is the problem to be studied in the next chapter.

Chapter 5

Homogeneous stabilization under constraints

As well known, each kind of quadrotor has a limit payload capacity where the battery and processing unit is not as large as possible. This restricts the endurance time and the computation capacity of the quadrotor. Therefore one object of controller design is to make the quadrotor accomplish the task in limited period. Obviously, a simpler controller consumes less energy and responds faster than a complex one. Degradation of control precision could happen if the limits of computational power is exceeded.

In [START_REF] Rodić | Qualitative Evaluation of Flight Controller Performances for Autonomous Quadrotors[END_REF] the authors show that a quadrotor controlled by linear PID consumes 5% less energy than the same quadrotor with a complex (backstepping) controller. Control of the quadrotor under state constrains is a difficult problem even in some particular cases (see e.g. [START_REF] Metni | A UAV for bridge inspection: Visual servoing control law with orientation limits[END_REF]). In order to satisfy the input, output or state constraints, the control methods such as backstepping [START_REF] Bürger | A backstepping approach to multivariable robust constraint satisfaction with application to a VTOL helicopter[END_REF] and nested saturation [START_REF] Cao | Inner-outer loop control for quadrotor UAVs with input and state constraints[END_REF], [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] has been applied.

For linear algorithms an LMI-based schemes can be proposed in order to fulfill state constraints. Restrictions of transient times (i.e. time constraints) could be important, for example, for the trajectory tracking [START_REF] Tian | Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters[END_REF] or the formation control of quadrotors [START_REF] Du | Finite-time formation control for a group of quadrotor aircraft[END_REF] and collision avoidance. Finite-time stabilization [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], is the simplest way to fulfill this time constraint. In this chapter we design the homogeneous control for quadrotor which fulfills some time and space constraints. 101

Problem statement

The quadrotor model has been built in (1.26)- (1.31), where σ = (x, y, ẋ, ẏ, φ, θ, z, ψ, φ, θ, ż, ψ) T is the system state. The goal in this chapter is to design a controller that stabilizes the quadrotor system under the time constraint lim t→T(σ 0 ) σ (t) = 0, T(x 0 ) ≤ T max (5.1) and the state constraints:

σ 2 1 + σ 2 2 ≤ 2 1,2 , σ 2 3 + σ 2 4 ≤ 2 3,4 , |σ i | ≤ i , i = 5, ..., 12 (5.2)
where T is the settling time function, T max is the time constraint, σ 0 is the initial state of system satisfying the space constraint and the positive constants 0 < 

= Āσ + B( ū + d),        E 5 = E 6 = g        (1-∆) sin( 5 ) 5 0 0 (1 + ∆)        E 7 = E 8 = g(1 -∆)        sin( 5 ) 5 0 0 sin( 6 ) cos( 5 ) 6       
Then for any σ ∈ R 12 satisfying (5.2), for any λ ∈ [0, 1] and for any

F T ∈ mg[1 -∆, 1 + ∆]
there exist α i ≥ 0:

8 i=1 α i = 1 and 8 i=1 α i A i = A + λD Proof. If σ satisfies (5.2) and F T ∈ mg[1 -∆, 1 + ∆] then, obviously, there exist µ j ≥ 0 such that E = µ 1 E 1 + µ 2 E 3 + µ 3 E 5 + µ 4 E 7 , 4 j=1 µ j = 1.
On the other hand, since

-R 2 ṘR = ψ       0 1 -1 0       then for any λ ∈ [0, 1] there exist δ 1 , δ 2 ≥ 0 such that -λR 2 ṘR = δ 1 G 1 + δ 2 G 2 , δ 1 + δ 2 = 1.
Hence the simple calculations shows that

A + λD = A + λ Ṫ T -1 = 8 i=1 α i A i with α 1 = µ 1 δ 1 , α 2 = µ 1 δ 2 , α 3 = µ 2 δ 1 , α 4 = µ 2 δ 2 , α 5 = µ 3 δ 1 ,α 6 = µ 3 δ 2 , α 7 = µ 4 δ 1 ,α 8 = µ 4 δ 2 .
Obviously, α i ≥ 0 and 8 i=1 α i = 1. The latter lemma proves possibility of application of the so-called convex embedding approach(see e.g. [START_REF] Polyakov | Relay control design using attractive ellipsoids method[END_REF]) for control design. Introduce the following implicit Lyapunov function candidate

Q(V , ζ) := ζ T D r (V -1 )P D r (V -1 )ζ -1 (5.8) where V ∈ R + , ζ ∈ R 12 , P ∈ R 12×12 is a symmetric positive definite matrix P > 0 and D r (λ) ∈ R 12×12 is a dilation matrix of the form D r (λ) =                  λ 4 I 0 0 0 0 λ 3 I • • • 0 0 0 λ 2 I 0 0 I 0 0 0 0 λ I 0 Theorem 5.2.2. Let for some ∆ ∈ 1 cos( 5 ) cos( 6 ) -1, 1 the tuple (X, Y , γ) ∈ R 12×12 × R 4×12 × R +      X Y T 0 0 1 0 0 0 1 0 T Y τ 2 -1 √ q -1 q 1+ 1 √ q               ≥ 0 τ = mg cos( 5 ) cos( 6 )(1 + ∆) -1 (5.10)
and the controller have the following form

ū = KD r (V -1 )ζ + t 0 K I D r (V -1 )ζ(s)ds, (5.11) 
where K = Y X -1 (5.12)

K I = - P -1 I B T P ζ T D r (V -1 )(P H + HP )D r (V -1 )ζ (5.13) V ∈ R + : ζ T D r (V -1 )P D r (V -1 )ζ = 1, (5.14) 
then for any initial condition

ζ(0) = ζ 0 ζ T 0 D r ((1 -d T P I d) -1 )P D r ((1 -d T P I d) -1 )ζ 0 ≤ 1 (5.15) P = X -1
where 0 < P I = qI, P I ∈ R 4×4 such that d T P I d < 1, the system (5.5) converges to zero in a finite time

T(ζ 0 ) ≤ V (σ 0 ) γ ≤ 1 γ .
Moreover the control ū is bounded by

|| ū|| 2 R 4 ≤ (1 + 1 √ q )λ max (P -1 2 K T KP -1 2 ) + 1 √ q + 1 q (5.16)
and the state constraints (5.2) are fulfilled for all t ≥ 0.

Proof. The system (5.5) with controller (5.11) and disturbance d could be rewritten in the following form

ζ =       A + D B 0 0       ζ +       B 0 0 I       K ζ (5.17) where ζ = [ζ, ζ n+1 ] T , and suppose ζ n+1 = t 0 K I D r (V -1 )ζ(s)ds + d, K = KD(V -1 ) 0 K I D(V -1 ) 0 . Introduce the extended Lyapunov function V = V + ζ T n+1 P I ζ n+1 (5.18)
Since V is the solution of (5.14), it is easy to develop following result under the initial condition(5.15):

ζ T 0 D r ((1 -d T P I d) -1 )P D r ((1 -d T P I d) -1 )ζ 0 ≤ ζ T 0 D r (V (0) -1 )P D r (V (0) -1 )ζ 0 which is equivalent to V (0) ≤ 1 -d T P I d, d = ζ n+1 (0) V (0) = V (0) + d T P I d ≤ 1 (5.19)
In [START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF] it was shown that the implicit Lyapunov function of the form (5.8) satisfies the conditions C1)-C3) of Theorem 2.2.7. Since

∂Q(V , ζ) ∂V = -V -1 ζ T D r (V -1 )(P H + HP )D r (V -1 )ζ P = X -1
and XH + HX > 0, then ∂Q ∂V < 0 for ∀V ∈ R + and ζ ∈ R 12 \{0}. So the condition C4) of Theorem 2.2.7 also holds.

Since D r (V -1 )AD -1 r (V -1 ) = V -1 A and D r (V -1 )BKD r (V -1 )ζ = V -1 BKD r (V -1 )ζ then we have ∂Q(V , ζ) ∂ζ (Aζ + B ū + Dζ) = 2 ζ T D r (V -1 )(P A+P BK+V P D)D r (V -1 )ζ V = 2 8 i=1 α i ζ T D r (V -1 )(P A i +P BK)D r (V -1 )ζ+ζ T D r (V -1 )P Bζ n+1 V with α i ≥ 0, 8 i=1 α i = 1
where Lemma 5.2.1 is utilized on the last step under. Therefore, the inequality

V = - ∂Q(V , ζ) ∂V -1 ∂Q(V , ζ) ∂ζ (A + D)ζ + B ū ≤ 2 8 i=1 α i ζ T D r (V -1 )(P A i +P BK)D r (V -1 )ζ+ζ T D r (V -1 )P Bζ n+1 ζ T D r (V -1 )(P H+HP )D r (V -1 )ζ ≤ -γ + 2 ζ T D r (V -1 )P Bζ n+1 ζ T D r (V -1 )(P H + HP )D r (V -1 )ζ V = V + 2 ζT n+1 P I ζ n+1 ≤ -γ + 2 ζ T D r (V -1 )P Bζ n+1 ζ T D r (V -1 )(P H + HP )D r (V -1 )ζ + 2ζ T D r (V -1 )K T i P I ζ n+1 ≤ -γ ≤ 0 (5.20)
According to (5.19) and (5.20), we have

V (t) ≤ 1 ⇒ V (t) ≤ 1 (5.21)
and the system (5.17) converges to 0 in finite time

T(ζ 0 ) ≤ 1 γ (5.22)
provided that the phase constraints are fulfilled, V ≤ 1 and

F T ∈ mg[1 -∆, 1 + ∆].
To complete the proofs let us show that the phase constrains and the inclusion

F T ∈ mg[1 -∆, 1 + ∆] hold if V ≤ 1 (or, equivalently, ζ P ζ ≤ 1)
. Indeed, the required phase constraints for j = 5, ..., 12 comes from

       2 j X Xκ j κ j X 1        ≥ 0 ⇔ Xκ j e j X ≤ 2 j X ⇔ κ j e j ≤ 2 j P ⇔ ζ 2 j = ζ T κ j e j ζ ≤ 2 j ζ T P ζ ≤ 2 j
The constraints for σ 1 , σ 2 and σ 3 , σ 4 can be checked similarly taking into account that

      σ 1 σ 2             σ 1 σ 2       =       σ 1 σ 2       R R       σ 1 σ 2       =       ζ 1 ζ 2             ζ 1 ζ 2       Since ζ T D r (V -1 )P D r (V -1 )ζ = 1
, by using Young's inequality, then the norm square of controller (5.17) can be estimated as follows

|| ū|| 2 R 4 ≤ (1 + √ q -1 )ζ T D r (V -1 )K T KD r (V -1 )ζ + (1 + √ q -1 )ζ T n+1 ζ n+1 = (1 + √ q -1 )ζ T D r (V -1 )K T KD r (V -1 )ζ + (1 + √ q -1 )ζ T n+1 ζ n+1 q q Since V < 1, we have ζ T n+1 ζ n+1 q < 1, then || ū|| 2 R 4 ≤ (1 + 1 √ q )λ max (P -1 2 K T KP -1 2 ) + 1 √ q + 1 q
Similarly we derive

|| ū1 || 2 R 4 ≤ (1 + 1 √ q )λ max (P -1 2 K T 0 0 1 0 0 0 1 0 T KP -1 2 ) + 1 √ q + 1 q ≤ τ 2
which is equivalent to the last inequality of (5.10).

It is worth stating that if some states are not constraint, the corresponding LMIs simply disappear for (5.10). If we need to minimize the input bound, the right part of inequality (5.16) need to be minimized under constraints of (5.10).

The main issue that may lead to infeasibility of (5.10) is its last LMI. To guarantee the LMIs (5.10) are always feasible, we need to select q and τ such that τ 2 > 1 q + 1 √ q . Indeed, the first and the second LMI (considered as independence of other LMIs) are feasible together. If X, Ỹ is their solution then X = r X, Y = r Ỹ is a solution as well (for any r > 0). Using Schur complement we derive that all the other LMIs are feasible as well for a sufficiently small r.

The parameter γ introduced in (5.10) is for tuning of the settling time. This time can be minimized by means of solving the semi-definite programming problem γ → γ max subject to (5.10).

Remark: When the disturbance d is zero, then we can select K I = 0 and the controller becomes the PD controller [START_REF] Siyuan | Finite-Time LMI based Quadrotor control design under time and State Constraints[END_REF].

Simulation results

3.The parameters applied in the simulation is provided by Quanser and listed in Table The initial condition here is σ 0 = [0.24; -0.27; 0; 0; 0; 0; 0.4; 0.15; 0; 0; 0; 0] which makes The simulation results show that the controller is robust and able to stabilize the quadrotor to the original position under the state and time constrains even if there are some the initial constant errors. 

Conclusion

In this chapter the problem of homogeneous stabilization of quadrotor under state constraints is studied. Convex embedding technique is utilized to construct LMIs required for tuning feedback gains. A non-linear implicit PID controller proposed provide a good performance to compensate the matched disturbance with initial constant error. For this moment, only simulation results are presented in this thesis. The future work is to implement the proposed method on the quadrotor platform.

Conclusion and perspective

Conclusion

In this thesis, the problem of upgrading linear control and estimation algorithms to nonlinear ones with an improvement of control quality is studied. It shows that such an upgrade is possible based on the concept of generalized (linear geometric) homogeneity

The whole research is conducted around quadrotor control problem. It starts with investigating the quadrotor background including its applications, advantages, challenges, dynamic model and existing control solutions. Due to the irreplaceable advantage,

Quandrotor is becoming more and more popular in our daily life by offering transportation, videography, monitoring and support in the air. However, quadrotor still have many challenges due to the nonlinearity, multi-variable and hardware limitations.

Although many kinds of controllers have been applied on quadrotor, a controller having a better performance such as better precision, more robustness and faster reaction is still an actual problem.

Homogeneous controller is a possible solution to improve the the precision, robustness and reaction time at same time. The homogeneity is a certain symmetry with respect to dilation. In this thesis we use a special kind of dilation called linear geometric dilation. The homogeneous controller can be designed by combining the homogeneity theory and implicit Lyapunov function method. Besides, the LMI is applied for stability analysis and controller design.

The main method of upgrading a linear controller to homogeneous one is presented in chapter 3. This method provides a new idea to design the nonlinear homogeneous controller, and propose an easier way to improve the performance of existing systems that governed by linear controller. Using the system state value, the homogeneous controller scales the linear feedback gain (or part of the gain) dynamically. By introducing an appropriate saturation function, we can guarantee that the homogeneous controller will never be worse than linear one. The experimental results show that the precision 115 can be improved a lot. Besides the robustness of quadrotor is significantly improved by homogeneous controller. On line calculation asks for a bit more computation power than linear controller, and the experimental results prove that the homogeneous controller consumes only 1 -1.5% more energy than linear one.

The same idea of homogeneous controller design is extended to the observer design which is presented in chapter 4. The homogeneous observer design is based on the Luenberger observer. The experimental results show that this upgrade may additionally improve the precision around 10% -49%.

Homogeneous stabilization of quadrotor under constraints is to design the homogeneous controller such that it satisfies certain restrictions of quadrotor operating condition. Convex embedding technique is utilized in chapter 5 to construct LMIs that is required for tuning feedback gains. The simulation results support the theoretical design. The experimental results may be provided in the future work.

[120] A. Zulu and S. John. "A review of control algorithms for autonomous quadrotors". In: (2016) (cit. on pp. 17, 19).

Résumé substantiel

Au cours des dernières décennies, les problèmes liés au contrôle des quadrotors attirent plus d'attention des chercheurs par rapport aux autres véhicules volants. Cependant, la plupart des produits commerciaux utilisent encore le contrôleur PID linéaire, qui offre une performance suffisamment bonne. Le développement d'un contrôleur, qui pourrait convaincre l'industrie de l'utiliser à la place du contrôleur PID linéaire, reste toujours un défi. L'objectif de cette thèse est de montrer que le contrôleur homogène est une alternative au contrôleur PID linéaire. Pour ce faire, une nouvelle méthode est proposée : mettre à niveau de l'algorithme linéaire vers un algorithme homogène. Elle utilise les avantages du contrôleur (observateur) linéaire fournis par le constructeur pour le réglage de l'algorithme homogène. Les résultats expérimentaux soutiennent les développements théoriques et confirment une amélioration significative de la qualité du contrôle du quadrotor: meilleure précision, plus de robustesse et réponse plus rapide. Chapitre 1 présente le contexte et la motivation de la recherche. Ensuite, il examine le l'état de l'art de la commande quadrirotor, qui comprend linéaire, non linéaire et intelligent contrôleurs. La plate-forme expérimentale est également considérée. La contribution et la les grandes lignes de la thèse sont présentées dans la dernière section.

C'est l'un des éléments importants de ce chapitre, nous avons introduit les équations dynamiques suivantes du système quadrotor. Le modèle de quadrotor construit dans la partie précédente est non linéaire, ce qui n'est parfois pas pratique pour la conception de contrôleurs. Un modèle simplified de 129 Dans la suite de cette thèse, la conception du contrôleur sera principalement basée sur ce modèle reformulé [START_REF] Hoffmann | Quadrotor helicopter flight dynamics and control: Theory and experiment[END_REF].

Chapitre 2 présente les outils mathématiques utilisés dans cette thèse. Les concepts d'homogénéité standard et généralisée sont introduites. En particulier, l'homogénéité géométriques linéaires est prise en compte. En tant que l'outil principal pour l'analyse de la stabilité du système, le Lyapunov méthode est brièvement abordée dans la deuxième section. Enfin, la théorie des inégalités matricielles linéaires (IMT) est présentée dans la dernière section.

Un outil mathématique important que nous avons introduit est appelé norme homogène canonique( [START_REF] Polyakov | On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space[END_REF]). The function • d : R n \{0} → (0, +∞) defined as x d = e s x , where s x ∈ R : d(-s x )x = 1, [START_REF] Huo | Attitude stabilization control of a quadrotor UAV by using backstepping approach[END_REF] is called the canonical homogeneous norm, where d is a strictly monotone dilation.

Cette norme canonique homogène est considérée comme un candidat à la fonction de Lyapunov dans la conception du contrôleur de thèse.

Dans chapitre 3, nous commençons par donner un exemple motivant pour montrer une autre possibilité avantage d'un contrôleur homogène par rapport à un contrôleur linéaire. Ensuite, le deuxième présente les principaux résultats de la mise à niveau d'un contrôleur linéaire vers un contrôleur homogène un. Les résultats théoriques sont étayés par des expériences de quadrotor dans la dernière section.

Dans ce chapitre, le contrôleur homogène que nous avons présenté est le suivant u(x) = K 0 x + u hom (x) + where p is a constant. Le contrôleur homogène (34) peut être conçu sur la base des paramètres du contrôleur PID existant et il a été testé sur la plate-forme quadrotor, ce qui le rend très potentiel pour de nombreuses applications.

La méthodologie d'une "mise à niveau" des contrôleurs linéaires vers des contrôleurs homogènes est déjà développé au chapitre 3, où les expériences montrent que la précision de suivi des points de consigne sur l'expérience réelle est amélioré d'environ 40% et le contrôleur homogène montre sa meilleure robustesse que le contrôleur linéaire. Ce chapitre 4 étend les mêmes idées à les observateurs conçoivent et montrent la "mise à niveau" simultanée du contrôleur linéaire et de l'observateur implique une plus grande amélioration de la qualité du contrôle.

Dans ce chapitre, nous présentons un observateur homogène :

The system (4.1) is said to be d-homogeneously observable with a degree µ ∈ R if there exists an observer of the form ż = Az + Bu + g(Czy), g : R k → R n De la même manière du contrôleur homogène, observateur homogène peut être conçu sur la base des paramètres du Luenberger observateur existant et il a été testé sur la plate-forme quadrotor, ce qui le rend très potentiel pour de nombreuses applications.

Le problème de la conception d'une rétroaction d'état pour le contrôle d'un système quadrotor sous des contraintes d'état et de temps est étudié dans chpiter 5. Le modèle est décomposé en trois sous-systèmes. Le premier et le second système sont utilisés pour le contrôle de l'altitude et de l'ambardée, respectivement. Le dernier sous-système est sous-actionné pour contrôler simultanément la position horizontale (x, y), le roulis φ et les angles de tangage θ. La fonction implicite de Lyapunov (ILF) est utilisée pour la conception du contrôle. La stabilité robuste du système en boucle fermée est prouvée et confirmée par des simulations.

Dans cette thèse, le problème de la mise à niveau des algorithmes de contrôle linéaire et d'estimation vers des algorithmes homogènes avec une amélioration de la qualité du contrôle est étudié. Elle montre qu'une telle mise à niveau est possible pour améliorer de manière significative les performances du système. Le contrôleur PID homogène offre une alternative potentielle au contrôleur PID.

Homogeneous quadrotor control: Theory and Experiment Résumé

Au cours des dernières décennies, les problèmes liés au contrôle des quadrotors attirent plus d'attention des chercheurs par rapport aux autres véhicules volants. Cependant, la plupart des produits commerciaux utilisent encore le contrôleur PID linéaire, qui offre une performance suffisamment bonne. Le développement d'un contrôleur, qui pourrait convaincre l'industrie de l'utiliser à la place du contrôleur PID linéaire, reste toujours un défi. L'objectif de cette thèse est de montrer que le contrôleur homogène est une alternative au contrôleur PID linéaire. Pour ce faire, une nouvelle méthode est proposée : mettre à niveau de l'algorithme linéaire vers un algorithme homogène. Elle utilise les avantages du contrôleur / observateur linéaire fournis par le constructeur pour le réglage de l'algorithme homogène. Les résultats expérimentaux soutiennent les développements théoriques et confirment une amélioration significative de la qualité du contrôle du quadrotor: meilleure précision, plus de robustesse et réponse plus rapide.

Keywords: système homogène, contrôle de quadrotor, contrôle nonlinéaire Contrôle homogène de quadrotor : Théorie et Expérience Abstract

In the past several decades, quadrotor control problems attract more attentions of the researcher comparing with other flying vehicles. However, most of the commercial products still use linear PID controller, which provides sufficiently good performance. Development of a controller, which would convince the industry to use it instead of linear PID, is still a challenge. The aim of this thesis is to show that homogeneous controller is a possible alternative to linear one. For this purpose, a new method of upgrading linear algorithm to homogeneous one is proposed. It uses the gains of linear controller/observer provided by the manufacturer for tuning of homogeneous algorithm. The experimental results support the theoretical developments and confirm a significant improvement of quadrotor's control quality : better precision, more robustness and faster response.

Mots clés : homogeneous system, quadrotor control, nonlinear control

1 1 . 2 1 . 3 53 3 82 4 4

 1121353824 Quadrotor as unmanned aerial vehicle . . . . . . . . . . . . . . . . . . . 1 Quadrotor system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 State of the art in quadrotor control . . . . . . . . . . . . . . . . . . . . . 14 1.4 Experiment setup: QDrone of Quanser . . . . . . . . . . . . . . . . . . . 20 1.5 Contribution and outline of thesis . . . . . . . . . . . . . . . . . . . . . 26 2 Mathematical backgrounds 29 2.1 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Implicit Lyapunov function method . . . . . . . . . . . . . . . . . . . . 44 2.3 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized homogenization of linear controller 61 3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Homogenization of linear controllers . . . . . . . . . . . . . . . . . . . . 64 3.3 An "upgrade" of a linear controller for Quanser QDrone™ . . . . . . . . 78 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized homogenization of Linear Observer 87 4.1 Homogeneous State-Estimation of Linear MIMO Systems . . . . . . . . 87 4.2 From a linear observer to a homogeneous one . . . . . . . . . . . . . . . 90 4.3 An "upgrade" of a linear filter for QDrone of Quanser T M . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Homogeneous stabilization under constraints 5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Controller Design with Time and state Constraint . . . . . . . . . . . . 5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 1 -

 11 Figure 1.1 -Earth (E), local (L) and body (B) axis [2]

  quadrotor orientation is described by an ordered set of three Euler angles that relate the orientation of the body axis relative to the local axis system. In Fig.1.2, X 1 , Y 1 and Z 1 are Earth frame which corresponds to local frame in Fig.1.1. The Euler angle order here is ψ, θ, φ around Z 1 , Y 2 and X 3 axes respectively. Other sequence of 3 rotations can be chosen, however once the sequence is fixed, it must be retained.

Figure 1 . 2 -

 12 Figure 1.2 -Quadrotor orientation using Euler angles [2]

Fig 1 . 3

 13 Fig 1.3 shows the general PID controller for the quadrotor.
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 13 Figure 1.3 -PID controller on quadrotor

Fig 1 . 4 Figure 1 . 4 -

 1414 Fig 1.4 shows the general LQG controller for the quadrotor

Fig 1 . 5

 15 Fig 1.5 shows a SMC for the quadrotor.
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 15 Figure 1.5 -SMC applied to quadrotor

Fig 1 . 6

 16 Fig 1.6 shows an adaptive controller for the quadrotor.
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 16 Figure 1.6 -adaptive controller applied to quadrotor

Fig 1 . 7 Figure 1 . 7 -

 1717 Fig 1.7 shows the general block diagram of an fuzzy logic controller (FLC) for the quadrotor
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 41 Positioning systemThe standard configuration of QDrone positioning system includes high speed cameras OptiTrack Flex 13 Fig.1.8.
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 18 Figure 1.8 -OptiTrack Flex 13
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 19 Figure 1.9 -6 cameras configuration (top view)

Figure 1 .Figure 1 . 12 -

 1112 Figure 1.11 -6 cameras with one OptiHub

Figure 1 .

 1 Figure 1.13 -QDrone's Inter Aero compute board

Figure 1

 1 Figure 1.16 -Server model
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 21292 Figure 2.1 -Invariant shape after dilation

(2. 21 )

 21 Figure 2.2 -uniform dilation d 1 , weighted dilation d 2 , generalized dilation d 3[START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF] 

  are strong expansions for s > 0. Other important properties of monotone dilation are listed as follows Theorem 2.1.2. ([85]) The next four conditions are equivalent 1) the dilation d is monotone;

  ) is called the canonical homogeneous norm, where d is a strictly monotone dilation. Obviously, d(s)x d = e s x d and x d =x d for any x ∈ R n and any s ∈ R. The homogeneous norm defined by (2.27) was called canonical since it is induced by a canonical norm • in R n and

Theorem 2 . 1 . 4 .

 214 ([80]) If d is a strictly monotone linear dilation on R n then • the function • d : R n \{0} → R + given by (2.27) is single-valued and positive;

Proposition 2 . 1 . 1 .

 211 ([65]) Let d be a linear dilation in R n and f : R n → R n . If the system (2.33) is d-homogeneous of degree µ ∈ R and its origin is locally uniformly asymptotically stable then

Figure 2 . 3 -

 23 Figure 2.3 -Lyapunov stability

Figure 2 . 4 -

 24 Figure 2.4 -Locally attractive

Implicit

  Lyapunov function combines two important notions from mathematical and stability analysis: Implicit Lyapunov function and Lyapunov function. A function V satisfying the following theorem (known as Lyapunov theorem) traditionally is called Lyapunov function.

  then it is called implicit Lyapunov function(ILF). C1) guarantees the smoothness of Lyapunov function. C2) and the first two limits of C3) imply the positive definite property of Lyapunov function. The third limit of C3) provides the radial unboundedness of Lyapunov function. C4) is required to have a unique Lyapunov function as a solution of equation Q(V , x) = 0. C5) is to guarantee that the derivative of Lyapunov function to be negative. Theorem 2.2.8. ([86]) If there exists a continuous function Q : R + × R → R that satisfies the conditions C1) -C4) of theorem 2.2.7 and following condition C6) there exist c > 0 and 0 < µ ≤ 1 such that

Example 2 . 3 . 7 .

 237 Let us use Lyapunov function V (x) = x P x to prove the stability of system

106 )P

 106 where e = xx. After introducing theLyapunov function V (e) = e P e, the conditions we need are (A + LC) + (A + LC) P < 0 Denote W = P L thus the final LMIs are P > 0 P A + A P + W C + C W < 0 Therefore the gain L can be found by solving the above LMIs, since many toolboxes have been developed for solving them. In this thesis, the solution of LMIs is mainly based on Matlab toolbox Yalmip and the solver "SDPT3". The above two examples use explicit Lyapunov function and LMIs to design linear controller or observer. In the following chapters, we use the canonical homogeneous norm as an implicit Lyapunov function and LMIs to design homogeneous controller and observer, and then we validate them on Quanser's QDrone platform.
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 31 Figure 3.1 -Comparison of "overshoots" for linear (left) and homogeneous (right) controllers

Theorem 3 . 2 . 1 .

 321 If the pair {A, B} is controllable and µ ∈ [-1, k -1 ], where k ≤ n and rank(B, AB, ..., A k-1 B) = n then a homogeneously stabilizing control for (3.1) can always be selected in the form

Corollary 3 . 2 . 1 . 1 .

 3211 Let conditions of Theorem 3.2.1 hold and F : R × R n ⇒ R n satisfy the following inequality sup y∈F(t,x) d(-ln x d )y x d (-ln x d )P G d d(-ln x d )x ≤ κ x µ d , ∀x ∈ R n \{0}, ∀t ≥ 0 (3.7)

  n×n be a generator of the dilation d such that(3.3) holds for µ = -1. If a matrix P = P ∈ R n×n satisfies the system of linear matrix inequalities (A + BK lin ) P + P (A + BK lin ) < 0G d P + P G d > 0, P > 0 (3.13)then the control u given by (3.2) with µ = -1 and K = K lin -K 0 d-homogeneously stabilizes the origin of the system (3.1) in a finite-time, where • d is the canonical homogeneous norm induced by the norm x = √ x P x. Moreover, u lin (x) = u(x) for x ∈ S = {x ∈ R n : x = 1}. The proof immediately follows from the identity (A + BK lin ) P + P (A + BK lin ) = (A 0 + BK) P + P (A 0 + BK) and Theorem 3.2.1. Finally, for x = 1 we have x d = 1, d(-ln x d ) = d(0) = I n , i.e.

Theorem 3 . 2 . 3 .

 323 If all conditions of Corollary 3.2.1.1 hold for G d (as in Theorem 3.2.1) then for any fixed r > 0 the closed d-homogeneous ball B d (r) is a strictly positively invariant compact set 1 of the closed-loop system (3.9) with the linear control u r (x) = r 1+µ Kd(-ln r)x.(3.16)

  e 3s E, e 2s E, e s E , s ∈ R The matrix A φ is d φ -homogeneous of the degree -1 with d φ (s) = diag e 2s , e s , s ∈ R and the matrix A z is d z -homogeneous of the degree -0.5 with d z (s) = diag e 1s , e 0.5s , s ∈ R Moreover, the matrices A ξ , A ψ and A z are nilpotent. For all subsystems we apply Corollary 3.2.2.1 and derive controllers of the form (3.2) with K 0 = 0 and the canonical homogeneous norms ξ d ξ , ψ d ψ and z d z computed using the weighted Euclidean norms with the shape matrices
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 323334 Figure 3.2 -Quadrotor position tracking comparison in x, y, z and ψ

Theorem 4 . 1 . 1 .. 4 )

 4114 Let C ∈ R k be a full row rank matrix and G 0 ∈ R n×n satisfy (4.4)AG 0 = (G 0 + I n )A, CG 0 = 0 (4Let µ ∈ R be such that real parts of the eigenvalues of I n + µ(I n + G 0 ) are non-negative. LetP ∈ R n×n , L = P -1 C ∈ R n×k , ρ > 0,γ > 0 and µ ∈ R satisfy (4.5) and (4.6) P A + A P + C L P + P LC + 2ρP < 0, (I n + µG 0 ) P + P (I n + µG 0 ) > 0, P > γ 2 C C, (4.5)

7 )

 7 makes the error equation (4.3) to be globally uniformly asymptotically stable and d-homogeneous of degree µ ∈ R and ∃c > 0 : d dt e(t) d < -c e(t) µ+1 d for all t > 0 : e(t) 0, where the dilation d is generated by G d = I n + µG 0 and • R k is the standard Euclidean norm in R k . Moreover, since the matrix I n + µ(I n + G 0 ) is anti-Hurwitz, g is continuous at zero.

8 )

 8 Since G 0 satisfies (4.4) then the matrix G d = I n + µG 0 will satisfy the(4.8). Now the first term of right hand side of (4.3) is d-homogeneous of degree µ. Then the function e → g(Ce) will be proved to be d-homogeneous of degree µ. Indeed, given that Cd(s) = C exp(s) andCG d = C implies that CG i d = C for ∀s ∈ R. Hence, the following relation gives that function g(Ce) is also d-homogeneous of degree µ g(Cd(s)e) = exp(s)Ce µ R k exp(ln exp(s)Ce µ R k G 0 )LC exp(s)e = exp((µ + 1)s) exp(µsG 0 )g(Ce) = exp(µs)d(s)g(Ce)Finally from second inequality of (4.5) we conclude that the dilation d is strictly monotone[START_REF] Polyakov | Sliding Mode Control Design Using Canonical Homogeneous Norm[END_REF]. Meanwhile the canonical homogeneous norm • d induced by the weighted Euclidean norm e = √ e P e is well defined and smooth on R n \{0}. Since canonical norm • d is positive definite and continuously differentiable, it is expected to be a Lyapunov function for the error equation. Indeed, using the first matrix inequality of system (4.5) and the formula (2.28) then we drive the derivative of e d d dt e d = e d e d (-ln e d )P d(-ln e d )(Ae+g(Ce)) e d (-ln e d )P G d d(-ln e d )e = e 1+µ d e d (-ln e d )[P Ad(-ln e d )e+P g(Cd(-ln e d )e)] e d(-ln e d )P G d d(-ln e d )e

  Assume that the Luenberger observerż = Az + Bu + g(Czy) (4.13)such that the error equationė = Ae + g(σ ), g(σ ) = L lin σ , σ = Ce (4.14)is already designed.
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 41 Figure 4.1 -Quanser's filter

and H L 2 Step 2 :Figure 4 . 2 -

 2242 Figure 4.2 -Bode diagram of transfer functions H Q 1 , H Q 2 and H L 1 , H L 2

  ), and the parameters a, b, µ, detailed in Section 4, are with the following values during our experiment test, µ = -0.25, x and y direction: a = 0.1, b = 2, z direction: a = 0.25, b = 1. Each pair of a, b

filters and homogeneous controller proposed in chapter 3 . 5 ,

 35 Fig. 4.3-4.6 present the position stabilization trajectory of x, y, z and ψ respectively.
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 44 Figure 4.4 -Quadrotor position stabilization comparisons on y

Figure 4 . 5 -

 45 Figure 4.5 -Quadrotor position stabilization comparisons on z

Figure 4 . 6 -

 46 Figure 4.6 -Quadrotor position stabilization comparisons on ψ
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 55 Suppose that the state constraints are given as| ψ| ≤ 1, |φ| ≤ π

1 γ

 1 σ T 0 P σ 0 = 0.958 < 1, d = ( 3 3 0.4 1 ) T and γ = 0.21. Fig. 5.1 and Fig. 5.2 depict that position and attitude converge to zero in finite time by implicit PID controller which means that full states will converge to zero less than = 4.77s. Since the full state of the system is considered together in the controller design, the position and attitude state will converge together in the simulation. The constraint of ψ, θ, φ are satisfied and confirmed by Fig. 5.2 and Fig. 5.3. In the Fig. 5.4, it is clear to see the property of finite-time stability.

Fig. 5 .

 5 Fig. 5.5 and Fig. 5.6 depict that position and attitude cannot converge to the desired position without integrator term (Part of results in this chapter is published in [101]).
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 515253545556 Figure 5.1 -Quadrotor position x, y, z by implicit PID controller

  φ sin θ cos ψ + sin φ sin ψ) φ sin θ sin ψsin φ cos ψ) la plupart des cas d'expérimentation, le φ et le θ sont censés être petits, telle que cos θ ≈ 1, cos φ ≈ 1 et sin θ ≈ θ, sin φ ≈ φ.

d

  Kd(-ln x d )x,u int (x) =x 1+2µ d QB P d(-ln x d )x x d (-ln x d )P G d d(-ln x d )xqui peut stabiliser l'origine du système ẋ = Ax + B(u + p),

( 35 )

 35 telle que l'équation d'erreurė = Ae + g(Ce), e = zx (36)est globalement asymptotiquement stable et d-homogène avec degré µ ∈ R. Ensuite, la fonction délimitée g est définie sous la forme suivanteg(σ ) = exp(ln σ R k (G 0 + I n )µ)Lσ , σ ∈ R k (37)Enfine, l'équation d'erreur[START_REF] Ilka | Gain-Scheduled Controller Design[END_REF] est garantie d'être globalement asymptotiquement stable et d-homogène avec le degré µ ∈ R.
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Table 1 .

 1 Since most of quadrotor control algorithms are model based, it is indispensable to deduce a precise dynamical model for quadrotor. The most popular methods of quadrotor modeling are based on Newton-Euler equation and Euler-Lagrange equation which will be recalled hereafter. The dynamic model presented below assumes that the Coriolis Force and hub force are relatively smaller terms.

	Picture	Organization	Recent Research
		ETH	search and rescue; precision farming;
		Autonomous Systems Lab	swarm quadrotor; aerial service
		EPFL	aerial delivery; version based swarm; em-
		Laboratory of intelligent system	bodied flight; accurate control
		University of Pennsylvania GRASP Laboratory	docking module
		University of South California ACT lab	crazy swarm; mixed reality
		University of South California BDML lab	quadrotor perching
		UTC Heudiasyc lab	formation control transportation
		university of Zurich	drone racing; exploration; agile drone
		Robotics and Perception Group	flight; multi-robot system
		Qanser	commercial product

1 -Quadrotor platforms for research 1.2.1.1 Coordinate frames

  Lyapunov function candidate for a class of homogeneous systems. It is easy to see that this Lyapunov function candidate is defined implicitly in (2.27). How to use this Lyapunov function candidate to design the homogeneous controller is presented in Chapter 3.

  Obviously, for time-invariant system, if it is finite-time stable then the settling time does not depend on initial time t 0 , i.e T = T(x 0 ). Notice that finite-time stability of time-invariant system does not imply the uniformly finite-time stable generally, which is different with Lyapunov and asymptotic stability. Besides uniform finite-time stability usually is the property of sliding mode system and more detail can be found in[START_REF] Levant | Quasi-continuous high-order sliding-mode controllers[END_REF]. Definition 2.2.12. ([START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] ) The origin of system (2.37) is said to be fixed-time attractive, if it is uniformly finite-time attractive with an attractive domain U and the settling time function T(t 0 , x 0 ) is bounded, i.e. there exists a T max ∈ R + such that T(x 0 , t 0 ) < T max if t 0 ∈ R and x 0 ∈ U . Definition 2.2.13.[START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] The origin of system 2.37 is said to be fixed-time stable if it is Lyapunov stable and fixed-time attractive.The origin of (2.37) is said to be globally fixed-time stable if the attraction domain U = R n . In the globally stable case, fixed-time stable has a faster convergence than finite-time.

	Example 2.2.1. The system			
	ẋ = -x	1 2 -x	3 2 , x ∈ R, t > t 0	(2.39)
	has following solutions for t > t 0			

then the origin of (2.37) is called globally finite-time stable. Proposition 2.2.2. (

[START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]

) If the origin of system (2.37) is finite-time stable then it is asymptotically stable and x(x, t 0 , x 0 ) = 0 for t > t 0 + T 0 (t 0 , x 0 ). Definition 2.2.10. The origin of system (2.37) is said to be uniformly finite-time attractive, if it is finite-time attractive with a time-invariant attraction domain U ⊆ R n . Definition 2.2.11. (

[START_REF] Orlov | Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems[END_REF]

) The origin of system (2.37) is said to be uniformly finite-time stable, if it is uniformly Lyapunov stable and uniformly finite-time attractive with a timeinvariant attraction domain U ⊆ R n . The origin of (2.37) is said to be globally uniformly finite-time stable if U = R n .

x(t, t 0 , x 0

  chapters 3-5, we use the canonical homogeneous norm (see Definition 1.1.10) as an implicit Lyapunov function candidate for a homogeneous system. In many cases, such a selection allows us to reduce the tuning of parameters of homogeneous controller/observer by solving system of Linear Matrix Inequalities considered in the next

section 2.3 Linear Matrix Inequalities 2.3.1 Definitions and illustrative examples Definition 2.3.1

. ([13]) A linear matrix inequality is an inequality

Table 3 .

 3 

	2 Error (m) Linear Homogeneous Improvement
	error x L 2	0.0226	0.0127	43.8%
	error y L 2	0.0136	0.0067	50.7%
	error z L 2	0.0203	0.0076	62.5%
	error ψ L 2	0.0043	0.0017	60.4%

1 -Mean values of stabilization error

  To overcome the second problem, Quanser designed another filter to fusion the reading from IMU (noted as a imu ) and the estimated derivative (via the differentiation through the filter H dif f defined in (4.15)) of the reading from the OptiTrack (noted as p cam ). Given those two measurements with different sampling frequencies, the following two transfer functions:

	100s + 2500 was used to calculate the estimated derivative ṗ of the input signal p(t), i.e.. (4.15) s p(s) = H dif f (s)p(s) s s 2 + 4s + 0.1 H low (s) = 4s + 0.1 s 2 + 4s + 0.1 are used to realize the data fusion functionality. Precisely, with the OptiTrack (4.16) (4.17) reading p cam (t), Quanser computes its derivative ṗcam (t) by s pcam (s) = H dif f (s)p cam (s) Due to the fact that ṗcam (t) is with low frequency (100Hz) while the on-board frequency is 1000Hz (the same frequency as that of IMU), therefore a further improvement on the estimation of ṗcam (t) by using the reading of IMU is realized via the transfer functions defined in (4.16-4.17) as follows: s pf us (s) = H low (s)s pcam (s) + H high (s)a imu (s) (4.18) In summary, with the reading of OptiTrack p cam (t) and IMU a imu (t), by taking into account the asynchronous frequency, Quanser uses the following transfer function to calculate the estimated derivative ṗf us (t): s pf us (s) = H Q 1 (s)p cam (s) + H Q 2 (s)a imu (s) (4.19) with H Q 1 (s) = H low (s)H dif f (s) = 2500(4s+0.1)s (s 2 +4s+0.1)(s 2 +100s+2500) (4.20) and H Q 2 (s) = H high (s) = s s 2 + 4s + 0.1 (4.21) With the position reading of OptiTrack (x, y, z) and the acceleration reading of IMU (a x , a y , a z ) (those two types of readings need to be transformed into the same frame), 2. Data fusion: H high (s) = Quanser uses (4.19) to get the estimated linear velocity ( ẋ, ẏ, ż), which is required to
	implement PID controller.

  ) and a x = a imu x + d(t) where ω(t) represents the x-axis position measurement error between OptiTrack and the real position p x , and d(t) represents the x-axis acceleration measurement error between IMU and the real acceleration a x . Generally

	d(t) can be approximated as a high-order polynomial function of t, but in our study
	d(t) is assumed to be constant, i.e. ḋ = 0. Hence, model (4.22) can be re-written into the
	following LTI model with noisy output:

  0, 0], and u = a imu x . of X if the gain L = [l 1 , l 2 , l 3 ] is chosen such that A -LC is Hurwitz.Obviously, a more reasonable choice of L is to approximate the two transfer functions H Q 1 and H Q 2 defined in (4.20) and (4.21), since Quanser takes lots of time to find out those two optimal transfer functions. To this aim, by applying the Laplace

	It is easy to verify that (4.23) is observable by checking the rank condition. Hence
	the following Luenberger observer is designed	
	Ẋ = A X + Ba imu x + L(p cam x -C X)	(4.24)
	and it is clear that X will converge to a neighborhood (depending on the bound of the
	noise ω) transformation to (4.24), a straightforward calculation yields the following relation:
	X2 (s) = H L 1 (s)p cam x + H L 2 (s)a imu x	(4.25)

Table 4
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	.1. Notice that Table 4.1 is the additional

  1,2 , 3,4 , 7 , 8 , 9 , 10 , 11 , 12 < +∞

	0 < 5 , 6 <	π 2	such that cos( 5 ) cos( 6 ) ≥	1 2	(5.3)
	define the space constraints.				
	5.2 Controller Design with Time and state Constraint	
	For the considered state vector σ , the system model (1.26)-(1.31) can be represented in
	the form				
		σ			

A set Ω is said to be a strictly positively invariant for a dynamical system if x(t 0 ) ∈ Ω ⇒ x(t) ∈ intΩ, t ≥ t 0 , where x denotes a solution x of this system.

Computational procedures for solving the system of nonlinear matrix inequalities of the form (4.5) and (4.6) are developed in[START_REF] Lopez-Ramirez | Finite-time and fixed-time observer design: Implicit Lyapunov function approach[END_REF] for a linear dilations with diagonal matrix G d .

Proof. Let us denote K r = r 1+µ Kd(-ln r), P r = d (-ln r)P d(-ln r), ρ r = r µ ρ, κ r = r µ κ.

In this case, multiplying (3.8) 

Hence, the time derivative of the Lyapunov function candidate V (x) = x P r x, x ∈ R n along a trajectory of the closed-loop linear system we have

where f (t) a.e.

∈ F(t, x(t)). For x(t)

). The latter immediately implies that B d (r) is strictly positively invariant set of the closed-loop linear system. Now we assume that the value x(t) d can be changed only in some sampled instances of time and let us show that the corresponding linear switched feedback robustly stabilizes the perturbed linear system. According to the corollary, the proposed sampled-time realization of the implicit homogeneous controller guarantees asymptotic stabilization of the closed-loop system independently of the dwell time (a time between to sampling instants). Such property is rather unusual for sampled and switched control systems with additive disturbances [START_REF] Liberzon | Switching in systems and control[END_REF]. However, without any assumption on the dwell-time we cannot estimated the convergence rate of this system. Obviously, if the dwell time tends to zero the convergence rate tends to the rate of the original continuous system. Some advanced schemes for a discrete-time approximation of homogeneous control systems are developed in [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF]. They preserve the convergence rate(e.g. finite/fixed time) of the origin continuous-time homogeneous system in its discrete-time counterpart.

However, this algorithm still needs on-line computation of the canonical homogeneous norm (or its discrete-time analog). Fortunately, rather simple numerical procedures can be utilized for this purpose.

Let we have some sequence of time instants 0 = t 0 < t 1 < t 2 < ... and lim t i = +∞. Let a, b be the parameters of the sat function defined in the previous section. 

satisfy the system of LMIs 
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Perspective

Following the encouraging results of homogeneous controller, several important research directions can be proposed for the future.

• Robustness analysis: In general, the stability and robustness analysis answers the following four questions: 1. (Norminal stability) Is the closed-loop system stable when the plant is known exactly? 2. (Robust stability) Is the closed-loop system stable when there is uncertainty in our knowledge of the plant? 3. (Nominal performance) Does the closed-loop system meet the performance specification when the plant is known exactly? 4. (Robust performance) Does the closedloop system meet the performance specification when there is uncertainty in our knowledge of the plant? This thesis answers the first and third question with details. There are still two questions concerning model uncertainty to be studied deeply. Uncertainty is always a challenge for the control engineer. Therefore, the question, how the model uncertainty effects the closed-loop system stability and performance, is very important for successful application of the proposed control design methodology. Combining with homogeneous controller, many methods such as input state stability and attractive (invariant) ellipsoid method may provide a possible solution to solve this problem. One more issue, if one of the quadrotor's motor broken in the air, how the quadrotor behaves in this case ?

• Applications: The homogeneous controller can be applied to many other systems such as electric drives, robots, etc. Since homogeneous controller seems to be more robust than linear controller, it may be very useful for control of systems operating under disturbances and uncertainty conditions.

Many research topics around homogeneous control systems are still open so far.