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Résumé en français

Le principe du résonateur de Helmholtz, par sa simplicité et son efficacité, est la technologie la
plus répandue pour jouer le rôle d’absorbant acoustique dans l’aéronautique. Les revêtements
perforés, composés d’une plaque rigide, d’une cavité en nid d’abeille et d’une plaque perforée,
sont un moyen simple de fabriquer et d’intégrer ces résonateurs à l’échelle industrielle. Dans
cette thèse, nous nous intéressons aux traitements perforés intégrés dans les turboréacteurs afin
de réduire leurs émissions sonores.

La fréquence pour laquelle l’absorption de ces revêtements est maximum, c’est à dire la
fréquence de résonance, dépend principalement de la hauteur de cavité. Certains revêtements
sont composés de plusieurs cavités empilées afin d’obtenir plusieurs résonances. Le nombre de
ces cavités détermine le nombre de degré de liberté du traitement. Des photographies montrant
des revêtements perforés à un et deux degrés de liberté sont présentées sur la figure 1.

FIGURE 1: Photographies de revêtements perforés un avec un degré de liberté
(gauche) et deux degrés de liberté (droite).

La nacelle est une structure qui entoure le moteur. Cette dernière à plusieurs fonctions. Le
positionnement des revêtements acoustiques proche des sources sonores du turboréacteur en fait
partie. Sur la figure 2, les traitements sont indiqués par des hachures. Ces derniers sont exposés à
un écoulement rasant dont la vitesse dépend largement de la position du traitement et du régime
du moteur. En conséquence de leur rugosité de surface, les revêtements sont des sources de pertes
aérodynamiques.
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Figure 1.3 – Schematic view of a high-bypass turbofan aero-engine.
Stripes represent the nacelle internal walls where acoustic liners are
placed.

The liner is usually composed of three layers: (i) a perforated
plate exposed to grazing flow, (ii) an intermediate structure in the
form of honeycomb, and (iii) a backing rigid wall, as illustrated in
Figure 1.4. This conception can be viewed as an array of Helmholtz
resonators, where the holes and honeycomb cells represent the resonator
neck and cavity, respectively. It is also commonly known as a single
degree of freedom (SDOF) acoustic liner, since air oscillating at the neck
acts as a mass, and air in the cavity acts as a spring. Therefore, its
main characteristic is high acoustic attenuation over a narrow frequency
bandwidth [5, 6]. The key idea is to match the frequency of maximum
attenuation to the fan noise fundamental tone (which is usually the
most energetic tone). Alternative conceptions are also possible and
depend on the desired attenuation characteristics. A list of them is
given is Chapter 2.

The project of new liners and the prediction of the liner efficacy
remains a challenging task. For instance, liner performance is affected
by operating conditions, namely grazing flow velocity and high sound
pressure level (SPL). The usual approach is to characterize the liner by
means of its acoustic impedance, which can be a function of liner geo-
metry [7], air temperature [8], grazing flow velocity [6, 9–13], boundary
layer thickness [14] and high SPL [15–17]. Consequently, frequency
and level of maximum attenuation are modified. Although passive li-
ners have a fixed geometrical arrangement, flow velocity and SPL vary

FIGURE 2: Vue en coupe d’un moteur et de sa nacelle par Spillere (2017). Les rayures
indiquent la position des revêtements perforés

Ces pertes peuvent être minimisées en réduisant la rugosité des traitements, qui dépend no-
tamment du diamètre des perforations et du taux de surface ouverte (ou porosité) de la plaque per-
forée. Cela est illustré par la figure 3 issue de l’étude expérimentale de Roberts (1977). L’utilisation
de revêtements micro-perforés, avec un diamètre de perforation inférieur au millimètre, est donc
une solution intéressante pour réduire la trainée aérodynamique des revêtements.

FIGURE 3: Rugosité de grain de sable équivalente en fonction de la porosité du
revêtement et de l’agencement des perforations par Roberts (1977).

Un modèle d’impédance acoustique permet de caractériser le milieu dans lequel se propage
une onde acoustique. L’impédance de surface d’un matériau correspond au rapport de la pres-
sion incidente par la vitesse normale rentrante dans le matériaux. Cette relation est valable seule-
ment pour des ondes planes. Les modèles d’impédance disponibles dans la littérature ne sont
pas adaptés pour les traitements micro-perforés, en particulier lorsqu’un écoulement tangentiel
est présent. L’objectif principal de cette thèse est d’évaluer et d’enrichir ces modèles pour étendre
leur domaine de validité aux micro-perforés. On distingue également les revêtements macro-
perforés, ayant un diamètre de perforation supérieur au millimètre. Ce manuscrit est composé de
5 chapitres, dans lequel on tente d’affiner la compréhension des phénomènes physiques avec une
complexité croissante.

Dans les chapitres 1 et 2, le régime linéaire sans écoulement est étudié, ce dernier a suscité un
intérêt scientifique important depuis Kirchhoff (1868) qui a réalisé des développements théoriques
afin de de modéliser les pertes visco-thermiques dans les tubes. Cette théorie a été simplifié par
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Zwikker et al. (1949) en appliquant l’hypothèse de tube court. Stinson (1991) a consolidé le mod-
èle de Zwikker et al. (1949) en apportant des justifications supplémentaires à leurs hypothèses.
Rayleigh (1878) a proposé une correction de longueur de tube analytique prenant en compte l’effet
de rayonnement à l’entrée d’une perforation. Plus récemment, des corrections de la conductivité
de Rayleigh on été proposées par Laurens et al. (2013) pour des trous coniques. En parallèle à cela,
les modèles numériques pour l’acoustique visco-thermique se sont développées pour être plus
efficaces et précis avec par exemple Malinen et al. (2004), Kampinga et al. (2011) et Joly et al. (2006).

Les mécanismes physiques linéaires sont récapitulés dans le chapitre 1 et un modèle relâchant
une approximation commune : l’hypothèse de tube court, est proposé. La méthode de raccorde-
ment modal est utilisée et les résultats sont comparés à des mesures en tube à impédance et au
modèle de Guess (1975). On montre que le rayonnement et que l’interaction entre les perforations
peuvent être pris en compte en utilisant des modes évanescents. Une perspective importante de
ce chapitre est d’intégrer les effets de bords visqueux pour obtenir des prédictions de résistance
acoustique précise. Cela pourrait être réalisé en utilisant des modes visqueux d’ordres élevés.

Deux modèles numériques sont développés dans le chapitre 2. Le premier modèle résout
les équations de Navier-Stokes compressible linéarisées (LNSE) et inclu une liste exhaustive de
phénomènes physiques, mais à un coût de calcul élevé. Une analyse du taux dissipation lié à
la viscosité basé sur la solution des LNSE est proposée. La figure 4 montre le taux dissipation
pour deux configurations macro-perforées (a et b) et deux configurations micro-perforées (c et d).
On constate que la répartition de la dissipation est significativement différente lorsque l’on passe
du cas macro au cas micro. Le second modèle résout l’équation de Helmholtz avec une condition
limite visco-thermique développée par Berggren et al. (2018). Il est montré que ce modèle est précis
pour les revêtements micro- et macro-perforés avec un coût de calcul bien inférieur au modèle
LNSE. Ici, une perspective intéressante serait d’utiliser ce modèle simplifié pour des géométries
complexes, cela a notamment été réalisé pour des matériaux poreux dans Cops et al. (2020) ou
dans Tissot et al. (2020) pour optimiser la forme de cavité d’un résonateur de Helmholtz.

Lorsque le niveau sonore devient important à la surface du revêtement, l’impédance varie
selon une loi non-linéaire en fonction de la vitesse acoustique dans les perforations (Komkin
et al., 2020). De plus, l’apparition de tourbillons générés aux coins des perforations induit des
pertes supplémentaires. Cet effet est mis évidence numériquement par Tam et al. (2001), Zhang
et al. (2012) ou encore par Roche et al. (2009). Dans ce régime non-linéaire, des générations
d’harmoniques apparaissent. Cela signifie que plusieurs fréquences contribuent à la vitesse acous-
tique dans les perforations. Ingard (1953) a mis évidence cet effet expérimentalement dans le do-
maine temporel et a montré que la première harmonique était dominante, permettant ainsi de
modéliser l’impédance dans le domaine fréquentiel de manière simplifiée.

Dans le chapitre 3, l’impédance des revêtements perforés dans le régime non-linéaire est
étudiée. Le modèle de Guess (1975) est modifié avec une procédure itérative permettant de prédire
la vitesse acoustique dans les perforations et une correction d’impédance non-linéaire. Ce modèle
est comparé au modèle de Laly et al. (2018b), incluant également une procédure itérative. Les deux
modèles sont comparés à des mesures réalisées en tube à impédance pour des niveaux de pression
sonore élevés. Des sources sonores en sinus glissant et en bruit blanc sont utilisées. La procédure
itérative est adaptable au type de source. Les résultats sont aussi comparés à des mesures faites
avec une onde ayant une incidence rasante au traitement perforé. Des prédictions d’impédance
raisonnables voire très précises sont obtenues avec les deux modèles. On montre que les itérations
sont essentielles pour modéliser l’impédance dans le régime non-linéaire de manière précise. Le
modèle de Guess modifié est utilisé dans le chapitre 4 dans lequel des mesures avec écoulement
sont étudiées. L’impact de l’écoulement rasant sur l’impédance d’un revêtement perforé est sig-
nificatif. Un nombre important d’études ont montrées que lorsque le nombre de Mach augmente,
la partie réelle de l’impédance augmente et sa partie imaginaire diminue. Ces tendances ont été
confirmées notamment par le travail expérimental dans Groeneweg (1969) et Tam et al. (2014) ou
l’approche théorique de Howe (1979). Des études numériques sont aussi disponibles avec Roche
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FIGURE 4: Valeur moyenne du taux de dissipation lié aux effets de cisaillement à
la fréquence de résonance de la configuration 1 à Sh = 13.4 (a), configuration 2 à

Sh = 15 (b), configuration 3 à Sh = 2.2 (c) et configuration 4 à Sh = 2.9 (d).

et al. (2010), Zhang et al. (2016), Avallone et al. (2019) et Wu et al. (2019) pour des revêtements
perforés. Cependant, la compréhension actuelle des phénomènes physiques n’est pas suffisante
pour prédire l’impédance des traitements soumis à un écoulement rasant. L’impédance dépend
des paramètres géométriques de la plaque perforée, du nombre de Mach et de l’épaisseur de
couche limite de l’écoulement cisaillé (Jing et al., 2001). Ingard (1968) a proposé une correction de
la résistance fondée sur un paramètre expérimental utilisé dans les modèles de Guess (1975), Yu
et al. (2008) et Allam et al. (2011). Une correction d’impédance est aussi disponible dans Meng et
al. (2019), déterminée à partir de la continuité de vitesse dans la couche limite. Ce dernier modèle
dépend également d’un paramètre empirique déduit d’une résistance mesurée.

Le modèle de Guess (1975) prenant en compte les effets non-linéaires (utilisés dans le chapitre
3) est modifié pour prendre en compte l’effet de l’écoulement rasant. Les corrections d’impédance
proposées par Guess (1975) et Meng et al. (2019) sont utilisées. Ces deux corrections utilisent un
paramètre expérimental. Ces paramètres sont déduits des mesures récemment réalisées par le
Laboratoire d’Acoustique de l’Université du Mans (LAUM) pour plusieurs épaisseurs de couche
limite et configurations de plaque perforée. Une tendance claire des paramètres empiriques est
identifiée. Ces derniers décroissent en fonction de l’épaisseur de couche limite de manière co-
hérente avec les résultats expérimentaux de Meng et al. (2019) et Yu et al. (2008). À la suite de cela,
une recommandation des paramètres expérimentaux et proposée suivie par une discussion des
résultats et des perspectives de modélisation.

Dans le dernier chapitre, une méthode fondée sur l’analyse résolvante introduite par Schmid
et al. (2001) est présentée. Cette dernière permet d’identifier les forçages d’un système dynamique
pour lesquels l’amplitude de la réponse est maximale. Dans notre cas, on s’intéresse à la sensibilité
de l’impédance d’une perforation à des sources non-linéaires en présence d’écoulement rasant à
partir des équations linéarisées de Navier-Stokes. De plus, la réponse du système à un terme
non-linéaire est calculée et comparée à la réponse à un terme linéaire. Cette méthode permet
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FIGURE 5: Vitesse tangentielle à une plaque perforée. (a) Réponse à une onde plane.
(b) Sensibilité de l’impédance à une source non-linéaire. (c) Réponse à un terme

non-linéaire.

de mettre en évidence les quantités effectives impactant le plus l’impédance. Un exemple pour
la vitesse tangentielle au traitement est montré sur la figure 5. La réponse à un terme linéaire est
montrée à gauche (a), le champ de sensibilité est montré au centre (b) et la réponse à un terme non-
linéaire est montrée à droite (c) pour la vitesse tangentielle au traitement. Ici, une interprétation
de la sensibilité est que l’impédance serait très impactée par une perturbation en amont de la
perforation, et que la réponse à cette perturbation serait importante en aval de la perforation.

Perspectives globales Dans cette thèse, plusieurs méthodes ont été utilisées pour modéliser
l’impédance des revêtements perforés du régime linéaire au régime non-linéaire avec écoulement.
Dans les régimes linéaires et non-linéaires, les prédictions d’impédance obtenues avec les mod-
èles présentés sont correctes. En présence d’un écoulement rasant, les prédictions présentées dans
le chapitre 4 ont montrées que les modèles existants restaient perfectibles, en particulier pour les
traitements micro-perforés. Il semble nécessaire d’améliorer la compréhension des phénomènes
physiques impactant l’impédance d’un perforé soumis à un écoulement rasant pour obtenir des
prédictions précises. L’analyse de sensibilité présentée dans le chapitre 5 s’avère être un outil
adapté à cette objectif. Des perspectives d’améliorations pouvant rendre cette technique prédic-
tive ont été présentées en conclusion du dernier chapitre. Ces perspectives constitueraient une
suite cohérente à ce travail de thèse. De plus, les travaux présentés pourraient être adaptés pour
des perforations présentant des formes coniques ou inclinées.
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Introduction

The Helmholtz resonator principle, through its simplicity and its efficiency, is the most widespread
technology employed in acoustic treatments in aeronautics. The perforated liners, composed of a
rigid plate, a honeycomb cavity and a perforated plate, are a simple way to manufacture and inte-
grate these resonators at an industrial scale. In this thesis we focus our interest on the perforated
liners integrated on turbofan engines to reduce their noise emissions.

It can be noted that the resonance frequency is mainly determined by the cavity height. A
common practice to increase the attenuation frequency range is to stack honeycomb cavities of
different heights separated by a wire mesh or a micro-perforated sheet, named septum, to obtain
a dual resonant liner. The number of cavities stages determines the number of degrees of freedom
of the treatment. On figure 6, photographs showing perforated liners with a Single Degree of
Freedom (SDOF) and Double Degrees of Freedom (DDOF) are presented.

FIGURE 6: Photographs of perforated liners with a single degree of freedom (left)
and double degrees of freedom (right).

The nacelle is a structure surrounding the jet engine which has several functions. One of them
is to damp the noise radiated by the turbofan. On figure 8, the liners are indicated by the stripes.
They are exposed to a grazing flow whose velocity depends greatly on the position of the treat-
ment and the power rating. Consequently, these liners are a source of aerodynamic losses due to
their surface roughness. Such friction losses can be minimized by reducing the surface roughness
of the liners, which, as shown experimentally by Roberts (1977), is a function of the plate porosity
and the perforation diameter. On figure 7 we can see that the roughness of a perforated plate
increases with growing porosity.
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FIGURE 7: Sand-grain grain roughness of perforated plates depending on the poros-
ity by Roberts (1977). 35

Inlet
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Figure 1.3 – Schematic view of a high-bypass turbofan aero-engine.
Stripes represent the nacelle internal walls where acoustic liners are
placed.

The liner is usually composed of three layers: (i) a perforated
plate exposed to grazing flow, (ii) an intermediate structure in the
form of honeycomb, and (iii) a backing rigid wall, as illustrated in
Figure 1.4. This conception can be viewed as an array of Helmholtz
resonators, where the holes and honeycomb cells represent the resonator
neck and cavity, respectively. It is also commonly known as a single
degree of freedom (SDOF) acoustic liner, since air oscillating at the neck
acts as a mass, and air in the cavity acts as a spring. Therefore, its
main characteristic is high acoustic attenuation over a narrow frequency
bandwidth [5, 6]. The key idea is to match the frequency of maximum
attenuation to the fan noise fundamental tone (which is usually the
most energetic tone). Alternative conceptions are also possible and
depend on the desired attenuation characteristics. A list of them is
given is Chapter 2.

The project of new liners and the prediction of the liner efficacy
remains a challenging task. For instance, liner performance is affected
by operating conditions, namely grazing flow velocity and high sound
pressure level (SPL). The usual approach is to characterize the liner by
means of its acoustic impedance, which can be a function of liner geo-
metry [7], air temperature [8], grazing flow velocity [6, 9–13], boundary
layer thickness [14] and high SPL [15–17]. Consequently, frequency
and level of maximum attenuation are modified. Although passive li-
ners have a fixed geometrical arrangement, flow velocity and SPL vary

FIGURE 8: Sectional view of a jet engine and its nacelle from Spillere (2017). The
stripes indicate the position of the perforated liners.

Hence, using micro-perforated plates (MPP), with a perforation diameter below 1 mm, has
become of interest to reduce the flow drag due to the liners. In this thesis, we also consider the
macro-perforated liners, with a perforation diameter above 1 mm. A considerable number of stud-
ies have been carried on cylindrical perforations and adapted to macro- and micro-perforated lin-
ers. However, the existing impedance models perform poorly for micro-perforates in the presence
of grazing flow. One of the purposes of the present work is to evaluate and enhance these models
in the case of micro-perforated liners.

In the linear regime without flow, Kirchhoff (1868) initiated theoretical developments to model
the viscous and thermal losses in tubes. This theory was later simplified by Zwikker et al. (1949)
with the short tube approximation. Stinson (1991) consolidated the model from Zwikker et
al. (1949) with additional justifications of its main assumptions. Rayleigh (1878) also contributed
an analytic correction to account for the radiation effect at the entrance of a tube. More recently,
corrections of the Rayleigh conductivity were proposed in Laurens et al. (2013) for conical shape
perforations. Meanwhile, numerical methods for visco-thermal acoustics have been developed to
be computationally efficient and accurate with, for instance, the work from Malinen et al. (2004),
Kampinga et al. (2010), Kampinga et al. (2011) and Joly (2010).

When the acoustic sound pressure levels at the surface of the liner is high, the impedance
has a non-linear dependence with the acoustic velocity in the perforations (Komkin et al., 2020).
Furthermore, additional dissipation appears due to the shedding vortices from the corners of the
perforations. This is highlighted with numerical methods in a number of article, for instance Tam
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et al. (2001), Zhang et al. (2012) or Roche et al. (2009). In this non-linear regime, harmonic distortion
is known to occur, as highlighted in Ingard et al. (1967). Ingard et al. (1967) showed experimentally
that in the time domain, the first harmonic is dominating, which allows to define a simplified ef-
fective velocity impacting the impedance at a given frequency. A non-linear impedance correction
was derived from the latter approach and is used in the semi-empirical models from Guess (1975)
and Allam et al. (2011).

The impact of a grazing flow on the impedance of perforated liners is significant. A number of
studies have shown that with increasing experimetal Mach number, the real part of the impedance
increases and its imaginary part decreases. These trends are confirmed by the experimental work
in Groeneweg (1969), Howe (1979) or Tam et al. (2014). Numerical investigations are also avail-
able in Roche et al. (2010), Zhang et al. (2016), Avallone et al. (2019) and in Wu et al. (2019) for
perforated plates. However, the current understanding of the underlying physics is not sufficient
to accurately predict the impedance under grazing flow, which depends on the geometrical pa-
rameters of the perforated plate, the Mach number and the shear flow boundary layer thickness
(Jing et al., 2001). Ingard (1968) proposed a grazing flow correction of the resistance relying on an
empirical parameter which is used by the models from Guess (1975), Yu et al. (2008) and Allam
et al. (2011). A correction of the impedance is also available in Meng et al. (2019) based on the
continuity of velocity across the boundary layer but also relies on an empirical parameter. For the
moment, the amount of data is not sufficient to provide a recommendation of the latter empirical
parameters based on a chosen configuration.

In the five chapters composing this manuscript, we attempt to understand the physical be-
havior of perforated liners under different circumstances. The main purpose is to model the
impedance of the treatments in order to optimize their design. The thesis begins with the in-
troduction of a simple model in the linear regime and follows a plan with increasing levels of
complexity. In the first chapter, the linear regime is treated, and in the last chapters the impact on
the impedance of the grazing flow combined to non-linearities is studied.

In chapters 1 and 2, the framework is focused on the linear regime without flow, which has
already received a significant attention from the community. In chapter 1, the linear physical
mechanisms are reviewed and a model releasing a common hypothesis is proposed. The mode-
matching method is used. In chapter 2, two numerical models are developed. The first model
solves the compressible linearized Navier-Stokes equations (LNSE), hence it is able to account
for an exhaustive list of physical mechanisms but it is computationally costly. An analysis of the
viscous dissipation based on the solution of the LNSE is presented. The second model is based on
the Helmholtz equation with a boundary condition accounting for visco-thermal losses. The latter
approach is found to be accurate and numerically cheap for both macro- and micro-perforated
liners.

In chapter 3, the impedance of perforated liners under high sound pressure level, i.e. in the
non-linear regime, is studied. The model from Guess (1975) is modified with an iteration proce-
dure to predict the non-linear impedance and the acoustic velocity in the perforations. The results
are compared with a more recent model by Laly et al. (2018b) and to impedance tube measure-
ments performed for macro- and micro-perforated plates. In addition, measurements are carried
out with a grazing incidence to the plate and considered for comparison. A good agreement is
obtained with the Guess model and the iteration procedure is shown to be primordial to obtain
accurate predictions in the non-linear regime. This serves as a basis for chapter 4, in which the
impact of the grazing flow is accounted for.

The impedance corrections accounting for the grazing flow either from Guess (1975) or from
Meng et al. (2019) are considered. Both corrections are based on empirical parameters. These
parameters are educed from measurements recently performed at the Laboratoire d’Acoustique de
l’Université du Mans (LAUM) for several flow boundary layer thicknesses and perforated plate
configurations. The trends of the empirical parameters are found to depend on the geometry of
the liner, the boundary layer thickness and the Mach number of the flow. A recommendation of
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the empirical parameters is proposed, which is shown to enhance the impedance predictions for
micro-perforated liners. A perspective to this chapter would be to understand which physical
quantity has the most impact on the impedance of liners under grazing flow. This would be
helpful to derive a grazing flow impedance correction. For that purpose, a sensitivity analysis is
performed in the last chapter.

In the last chapter, a method based on the resolvent analysis (Schmid et al., 2001) is introduced.
It allows the identification the non-linear forcings for which the harmonic response of a dynamical
system has the highest amplitude. In our case, we study the sensitivity of the impedance to non-
linearities in the presence of a grazing flow based on the compressible linearized Navier-Stokes
equations. Additionally, the response to a non-linear forcing is computed and compared to the
response to a linear forcing, here, a plane wave with a normal incidence to the plate. This method
is shown to highlight the relevant physical mechanisms impacting the impedance. Without flow,
our results are consistent with the literature. With flow, upstream/downstream behaviors are
observed. A conclusion summarizes the key findings in this thesis and provides a number of
perspectives for future work.
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Chapter 1

Impedance models in the linear regime
without flow

In this chapter, we provide a review regarding the modeling of the impedance of perforated plate
liners in the linear regime without flow. An exhaustive and standard semi-empirical model of
the physical mechanisms occurring in the linear regime without flow is described: the model
from Guess (1975). Thereafter, we propose to model the impedance by removing the very com-
mon short-tube approximation and to describe the radiation and aperture interaction effects using
higher order modes. A mode-matching model is introduced to this end. The discussion revolves
around the comparison of the mode-matching model and the mentioned semi-empirical model,
and the comparison of both these models with impedance tube measurements. The impact of the
number of modes on the impedance is also discussed. Finally, research perspectives are discussed
in the conclusion.

1.1 Introduction

In the linear regime without flow, the impedance modeling of cylindrical tubes has already been
widely discussed in the literature. Several physical mechanisms have been identified, including
the acoustic viscous and thermal effects, the radiation and the edges effects. We propose in this
section to detail these mechanisms separately, and to show a review of some proposed modeling
strategies.

1.1.1 General description

If one considers a perforated liner as illustrated by figure 1.1, which is composed by a plate with
multiple cylindrical perforations, a cavity and a back plate, two more physical effects are intro-
duced: the orifice interaction and the back plate reflection. The perforated liners can be viewed as
a periodic arrangement of Helmholtz resonators and an analogy can be made with a mass-spring
system. The mass would correspond to the air oscillating in the perforations, and the spring would
correspond to the air in the cavity.

The visco-thermal losses are caused by the presence of an acoustic viscous boundary layer and
an acoustic thermal boundary layer appearing on the rigid boundaries. Their respective thick-
nesses are defined as follows (Rienstra et al., 2018)

δV =

√
2ν

ω
δT =

√
2κ

ρ0cpω

where ν is the kinematic viscosity, κ is the thermal conductivity, cp is the heat capacity at constant
pressure, ρ0 is the density and ω is the angular frequency. At a given frequency, δV and δT are
of the same order of magnitude but the thermal boundary layer is always slightly thicker than
the viscous boundary layer. For the remainder of this thesis, an ejωt time dependence is used. In
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FIGURE 1.1: Schematic of a perforated plate liner.

the following, the radius of the perforations is denoted Rneck and the porosity of the plate, which
corresponds to the Percent of Open Area (POA), is denoted σ. We also introduce the shear number
Sh such that

Sh =
Rneck

δV
. (1.1)

Sh is large when the viscous boundary layer is thin compared to the tube radius and conversely.
Its value plays an important role in the visco-thermal dissipation mechanisms and allows to dis-
tinguish the macro-perforated liners (large value of Sh) for which Rneck > 0.5 mm from the micro-
perforated liners (low value of Sh), with Rneck < 0.5 mm.

1.1.2 Visco-thermal effects

We focus our interest on the visco-thermal losses. Kirchhoff (1868) was the first to provide a gen-
eral description of these phenomena in cylindrical tubes. His model has been simplified (Allard
et al., 2009) by Zwikker et al. (1949) which addressed the viscous and thermal effects distinctly
for a circular apertures. Among others, the Zwikker and Kosten model has further been justi-
fied by Stinson (1991). Besides, in his semi-empirical model, Guess (1975) and Maa (1998) use the
impedance of a single tube Zν derived by Crandall (1926) making the short-tube approximation.
This hypothesis can also be found in Kinsler et al. (1950) and is very common in semi-empirical
models.

In the following, we recall a brief derivation of Zν and introduce the short-tube approximation.
We begin by writing the expression of the axial velocity in the neck vneck, which can be found in
Zwikker et al. (1949),

vneck (r, z) =
∂p
∂z

1
jρ0ω

[
J0 (Kr)

J0 (KRneck)
− 1
]

, (1.2)

where K2 = −jω/ν is the square of the Stokes acoustic wave number, ω is the angular frequency,
p is the pressure and r is the radial coordinate. Ji is the ith-order Bessel function of the first kind.

According to Stinson (1991), the pressure is constant over the cross section of the tube, conse-
quence of the parallel streamlines in the perforations. Therefore, after some derivations, the axial
velocity averaged over the cross section of the neck reads

vneck =
∂p
∂z

1
jρ0ω

[
2J1 (KRneck)

KRneckJ0 (KRneck)
− 1
]

. (1.3)
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For h � λ with h the length of the tube and λ = 2πc0/ω the wavelength, c0 is the sound
speed, the pressure gradient along the axial direction is considered to be constant such that

∂p
∂z

=
pc − po

h
, (1.4)

where pc is the pressure in the cavity and po is the outside pressure. Hence, the impedance result-
ing from viscous and inertia of a small tube is

Zν =
pc − p0

vneck
= jωρ0h

[
2J1 (KRneck)

KRneckJ0 (KRneck)
− 1
]−1

. (1.5)

1.1.3 Radiation effect

We now consider the radiation effects occurring at the entrance and the exit of the tube. Ingard
et al. (1967) derived the radiation impedance Zr of a single baffled cylindrical aperture in a infinite
plane from the Rayleigh integral (Rayleigh, 1878) such that

Zr = ρ0c0

[(
1− 2

η
J1 (η)

)
+ jH1 (η)

]
, (1.6)

where H1 is the Struve function of first-order and η = 2ωRneck/c0. Using the first-order expan-
sions for J1 and H1 for small η (Pierce, 1981), we find

Zr = ρ0c0

[
π2

2

(
2Rneck

λ

)2

+ j
ω

c0
δ0

]
, for η < 1/2, (1.7)

where δ0 = 16Rneck/(3π) is considered as an end correction which, as explained by Cran-
dall (1926), can be interpreted as an added length of the tube due to the added mass of the medium
outside the cylinder. As the radiation impedance depends on the radius of the neck, the approxi-
mation (1.7) is supposed to be better for micro-perforated liners.

1.1.4 Interaction effect

The interaction effect between the perforations of a plate was modeled by Fok (1941) and In-
gard (1953) for an infinitely thin plate and further discussed by Melling (1973). Melling describes
this effect both on the resistance and the reactance when the distance separating two perforations
is small enough. On the reactance, the attached mass of both perforations interacts, while on the
resistance the shear region between the perforations is disturbed.

In Ingard (1953), the main steps to determine analytically the end correction δ12 =
z12/ (−jωρ0) corresponding to the interaction impedance z12 between two circular apertures are
as follows. First, the end correction δ11 for a single eccentric circular aperture of radius Rneck in a
circular tube of radius Rtube is determined neglecting the viscosity and using the Bessel addition
theorem. This end correction is expressed as a function of the distance between the axis of the
aperture and the axis of the tube and the ratio ε = Rneck/Rtube. Secondly, an aperture of same
radius is added at the same distance from the axis of the tube. Finally, the interaction impedance
z12, which involves the integral of a corrective pressure term taking into account the effect of the
second perforation, is derived by considering a uniform velocity in both apertures.

In Guess (1975), this mechanism is accounted for by multplying the end correction δ0 by 1−
0.7
√

σ which accounts for the interaction effect on both sides of the perforation. This multiplying
factor, which only depends on the porosity of the plate, is derived from the earlier work from
Ingard (1953).
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In Fok (1941), an analytic solution to account for the acoustic interaction effect is derived in
the case of an infinitely thin plate. Unfortunately, the paper from Fok can hardly be found and is
written in Russian. Therefore, we don’t have access to much details on the derivation performed
by Fok and we rely on the paper from Melling (1973), which briefly describes the results from
Fok (1941). The attached conductance from Fok is K = 2RneckF (ε) with

F (ε) = 1− 1.4092ε + 0.33818ε3 + 0.06793ε5

− 0.02287ε6 + 0.03015ε7 − 0.01641ε8. (1.8)

Equation (1.8) is commonly called the Fok function.

1.1.5 Back-plate reflection

Honeycomb cells are used in the cavity, forbidding any propagation in the transverse direction,
hence the liner can be considered to be locally reacting. This means that the propagation in the
cavity is normal to the plate, even if the incident wave has a non-normal incidence to the perfo-
rated plate.

Furthermore, the tangential velocity to the viscous boundary layer along the cavity walls is
low, thus the viscous losses are negligible. The thermal effects are also known to be negligible
(Ingard, 1953) in most liner application. Therefore, the cavity is assumed to be purely reactive and
its normalized impedance is the one of a perfectly reflecting back-plate

zb = − cot (k0L) , (1.9)

where k0 = ω/c0 is the wave number and L is the cavity height.

1.1.6 Viscous edge effects

In this section, we discuss the so-called viscous edge effects which occur at both end of the perfora-
tion. These dissipative effects play an important role on the resistance of a liner and are commonly
accounted for by using a correction to the length of the tube. This approach is very practical and
only requires to consider a longer tube when calculating the viscous term of the resistance. For a
Helmholtz resonator, Ingard (1953) determined through theory that the end correction accounting
for the viscous effects on both sides of the plate perpendicular to the aperture is Rneck. How-
ever, this correction is not sufficient to account for the complete edge effects which was yet to be
fully understood. Indeed, the corners of the perforation and a jet extending from the neck also
contribute to the viscous edge effects (Roche, 2011). This is highlighted in a detailed numerical
analysis in chapter 2.

Ingard rectified the Rneck end correction through experiments to fit resistance measurements
and found that the end correction is close to 2Rneck. In doing so, Ingard accounts for the remaining
contribution of the viscous edges effects, i.e. the corners and the jet.

His procedure is briefly recalled in what follows. Ingard (1953) starts by defining the dissipa-
tion due to viscosity Wν through the integral

Wν =
1
2

∫

S
RS |US|2 dS, (1.10)

in which US is the tangential velocity amplitude at any surface S calculated neglecting the vis-
cosity. RS is an approximation of the so-called "surface resistance" of an infinite plane surface
submitted to a tangential oscillatory flow and reads

RS =
1
2

√
2µρ0ω, (1.11)
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in which µ is the dynamic viscosity. Hence, this approximation is supposed to remain valid inside
the neck if Rneck is large compared to δV , i.e. for large Sh.

Ingard applies equation (1.10) to the neck and the plate of a Helmholtz resonator. He derives
the acoustic specific normalized resistance Θi of the resonator as a function of the thickness of the
plate and the aperture radius, separating the contributions from the surface of the neck and the
surfaces of the parallel walls of the plate such that

Θi = Θneck + Θplate =
2RS

ρ0c0

1
Rneck

(h + Rneck) , (1.12)

where Θneck = 2Rsh/ (ρ0c0Rneck) is the normalized resistance contribution of the neck and
Θplate = 2RS/ (ρ0c0) is the normalized resistance contribution of the plate on both sides. Thus,
the resistance contribution from the plate can be interpreted as a resistance end correction (tak-
ing only the walls of the plate into account) equal to the radius of the aperture Rneck. However,
when performing comparisons with measurements, Ingard finds that the end correction is closer
to 2Rneck than Rneck to fit the measured resistance.

A possible explanation, given by Ingard, is the fact that the corners of the perforation have a
radius smaller than the acoustic viscous boundary layer thickness, making approximation (1.11)
inapplicable. Furthermore, the amplitude of the velocity tangential to the viscous boundary layer
is expected to be large at the corners. We recall that in equation (1.10), the viscosity is neglected
when calculating the amplitude of the tangential velocity, hence this approximation is flawed at
the corners of the aperture. This explanation is confirmed by the numerical study in chapter 2
which highlights that the dissipation is strong at the corners of the perforation in the case of a
macro-perforated liner.

It is noteworthy that this early work from Ingard (1953) is done for resonators with a perfora-
tion diameter greater than 3.6 mm. Therefore, its resulting end correction shall be used with care
when considering micro-perforated liners. In fact Temiz et al. (2015) proposed end corrections to
the acoustic resistance based on numerical simulations of perforated plate liners, including macro-
and micro-perforated configurations. These end corrections translate in a multiplying factor to the
surface resistance RS used by Ingard.

Popie (2016) numerically determined an end correction to the acoustic resistance by consider-
ing a flat plate using the integral equations method. However, his correction is estimated to be
between 0.81Rneck and 0.89Rneck. This estimation is of the same order of magnitude that the end
correction determined by Ingard through theory (Rneck). Popie suggests that this correction un-
derestimation is induced by the corners region, in which a flat plate hypothesis cannot be assumed
and where a corner field shall be considered.

From this brief review, it is clear that determining a reliable expression of the viscous edges
effects end correction without measurements is challenging. The end correction determined ex-
perimentally by Ingard (1953) is shown to be accurate for both macro- and micro-perforated liners
in section 1.4, although the Sh considered in Ingard’s measurements is between 17 and 48 and the
Sh considered in the measurements presented in this thesis is between 2 and 18.5.

The objective of this chapter is to (i) further investigate the visco-thermal losses modeling in
the neck by not making the short-tube approximation and (ii) to model the radiation and interac-
tion effects without using a length correction, but by using evanescent modes. A mode-matching
(MM) model is introduced in section 1.3 to this end. The mode-matching model is compared, in
section 1.5, to a semi-empirical model accounting for all the effects listed above: the Guess (1975)
model, described in section 1.2.
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1.2 Guess impedance model

Guess (1975) is one of the most well-known semi-empirical model including all physical mech-
anisms mentioned above. It is therefore a sound basis to assess the performance of the mode-
matching model introduced in section 1.3. The losses in the neck are modeled using equation (1.5),
which provides the impedance of a single tube, the flow rate conservation is used to obtain the
non-dimensional impedance of a perforated plate zν such that

zν =
Zν

σρ0c0
. (1.13)

However, Guess approximates equation (1.13) and accounts for viscous edges effects for the high
and low frequency regimes separately. For Sh > 7.07, i.e. for the high frequency regime, we have

zν ' zν,H =

√
2νωh′

σc0Rneck
+ j

(
ωh
σc0

+

√
2νωh′

σc0Rneck

)
. (1.14)

Here, h′ = h + 2Rneck is a corrected length accounting for the viscous effects occurring at both
entrances of the perforation based on the earlier work of Ingard (1953). This equation is suitable
for macro-perforated liner, when the boundary layer thickness is thin compared to the perforation
radius. In the low frequency regime, for Sh < 0.71, the approximation is

zν ' zν,L =
8νh′

σc0(Rneck)2 + j
4ωh
3σc0

. (1.15)

It is possible to directly compute the impedance from equation (1.5) instead of using the high and
low frequency approximations, yet it is important to note that the h′ correction is not applied on
the mass inertance term ωh/ (σc0). Hence, it would not be strictly equivalent to replace h by h′ in
equation (1.5).

In addition, approximations (1.14) and (1.15) are not valid for the micro-perforated configura-
tions studied further below, for which 0.71 < Sh < 7.07. Lack of information is given to model
the impedance in this range of parameters in Guess (1975). Therefore, in this set of parameters,
the model is completed in this thesis by implementing the following linear interpolation:

zν ' zν,M = zν,L(ωL) +
zν,H(ωH)− zν,L(ωL)

ωH −ωL
ω, (1.16)

where ωH = 100ν/R2
neck and ωL = ν/R2

neck. This choice of interpolation is shown to provide
accurate prediction for 2 < Sh < 3.5 when compared to measurement in section 1.4.

Adding the remaining effects, namely the radiation, interaction and back-plate reflection, we
get the explicit normalized impedance expression provided by Guess

zGuess = zν +
2π2

σ

(
Rneck

λ

)2

+ j
(

ωδ1

σc0
− cot (k0L)

)
. (1.17)

The ωδ1/ (σc0) term is a correction to the mass inertance to account for the radiation and interac-
tion effect with the following end correction:

δ1 = δ0
(
1− 0.7

√
σ
)

. (1.18)
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FIGURE 1.2: Axi-symmetric domain used for the mode-matching model.

1.3 Mode-matching model

The mode-matching model consists in coupling models of connected domains by matching in a
weak sense the boundary conditions. The purpose of this model is to remove the short-tube ap-
proximation by accounting for the velocity profile in the neck (equation (1.2)). Another of its ob-
jectives is to account for the radiation and interaction effects explicitly through evanescent modes.
In our problem, we consider three circular domains: the exterior, which is semi-infinite, the neck
and the cavity. A unit plane wave with a normal incidence to the plate is considered. In the fol-
lowing, we consider a single perforation and further simplify the geometry to an axi-symmetric
domain as illustrated in figure 1.2.

In the following the radius of the cavity and the exterior are respectively denoted Rcav and Rext
(Rcav = Rext), the height of the cavity is L and the thickness of the plate is h. LT is the distance
between the surface of the plate and the surface for which the plane wave’s phase equals zero.

To ensure that this non-pavable single-hole model is representative of a periodic arrangement
of perforations, the porosity must correspond to that of the actual perforated plate. The cavity
radius Rcav, which is equal to the exterior radius, is chosen to achieve the target plate porosity σ
such that

σ =

(
Rneck

Rcav

)2

. (1.19)

Γs corresponds to the boundary of fictional ducts in the exterior and cavity domains.
One of the purposes of the mode-matching model is to release the short-tube approximation.

Therefore, in the neck, the normal velocity profile is imposed according to equation (1.2). The
pressure in the neck corresponds to a plane wave such that

pneck = Anecke−jkneck(z+h) + Bneckejkneckz, (1.20)

where Aneck and Bneck are the amplitudes of the waves propagating towards the positive and
negative z, respectively. kneck is a complex wave number defined by an equivalent complex density
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ρ (ω) and a complex compressibility C (ω) (Stinson, 1991) such that

kneck = ω
√

ρ (ω)C (ω). (1.21)

The respective expressions of ρ(ω) and C(ω) are given in appendix A. The expression of the axial
viscosity in the neck is

vneck = − 1
jωρ0

(
1− J0(Kr)

J0(KRneck)

)
∂pneck

∂z
. (1.22)

Sound propagation in the exterior and the cavity is modeled using the classical Helmholtz
equation in the absence of background flow

∇2 p + k2
0 p = 0, (1.23)

and using a free-slip boundary condition such that

∂p
∂n

= 0 on Γaxis, Γw and Γs. (1.24)

Boundary condition (1.24) translates in the fact that there is no mass flux on the sides and the
axis of the domain. Indeed, there is no flux through the fictional cylinder delimited by Γs. On
the parallel wall of the plate and the back-plate, the viscosity is not accounted for, hence we use
the latter free-slip boundary condition on Γw. On the wall of the neck, we impose a rigid wall
boundary condition on the velocity u = (u, v)T such that:

uneck = 0 on Γneck. (1.25)

Hence, the pressure solution to the Helmholtz equation in the (r, z) plane in the exterior and the
cavity is an infinite sum of modes (Bruneau et al., 2006), such that

pi =
∞

∑
m=0

(
Am

i e−jkz,m
i z + Bm

i ejkz,m
i z
)

Φm
i (r), with i = {ext, cav} , (1.26)

where Am
i and Bm

i are the amplitudes of the waves propagating in the positive and negative z
respectively. m is the mode index and Φm

i = J0
(
kr,m

i r
)

is the mode shape function. The radial
wave number kr,m

i and the axial wave number kz,m
i are related by the dispersion relation

(
kz,m

i

)2
= k2

0 −
(
kr,m

i

)2 , (1.27)

with kr,m
i = γ0,m/Ri and γ0,m being solutions of J′0

(
γ0,m) = 0.

The velocity in the cavity and the exterior are determined using the linearized Euler equation

vi = −
1

jρ0ω

∂pi

∂n
. (1.28)

The number of modes in the cavity and the exterior domains is truncated to N + 1 (taking into
account the mode 0). When modes are added on both sides of the plate, the coupling between the
air present in the neck with the air in the exterior and the cavity is described by the mode-matching
model. This coupling is commonly called the radiation effect.

The streamline confinement induced by the periodic layout of the perforations, also known as
the interaction effect, is described by accounting for the radial velocity in the exterior and cavity
domains. Due to the fact that some streamlines run along the parallel wall of the plate, several
modes are needed to describe their confinement correctly. It is noteworthy that the interaction
effect is implicitly depicted by adjusting Rext and Rcav to fit the plate porosity.
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The mode-matching method is implemented by enforcing the continuity of pressure and nor-
mal velocity at both the interface between the neck and the exterior and the neck and the cavity.
More details on the continuity expressions can be found in the thesis from Sergent (1996). When
matching the exterior and the neck domain, the weak formulation for the pressure continuity can
be expressed as ∫

Sneck

pneckΨneckdSneck =
∫

Sneck

pextΨneckdSneck, (1.29)

with pneck the pressure field in the neck, pext the pressure field in the exterior domain and Ψneck the
test function corresponding to the neck modal basis (see equation (A.2)). Here, Sneck is the neck
cross section. The pressure continuity is further detailed in appendix A.1. The normal velocity
continuity condition

vext(z = 0) = vneck(z = 0) for r ∈ [0; Rneck] (1.30)

and
vext(z = 0) = 0 for r ∈ [Rneck; Rext]. (1.31)

The corresponding weak formulation is expressed as

∀l ∈N

∫

Sext

vextΨl
extdSext =

∫

Sneck

vneckΨl
extdSneck, (1.32)

with vext the axial velocity field in the exterior domain, vneck the axial velocity field in the neck
and Ψl

ext the lth test function corresponding to the exterior modal basis. Sext is the exterior cross
section. The normal velocity continuity is further discussed in appendix A.2. The same equa-
tions are used when matching the cavity and the neck domains. As mentioned above, a plane
wave is implemented in the exterior domain. The ingoing plane wave with amplitude B0

ext = 1 is
implemented as

∂pext

∂n
= 2jk0B0

exte
−jk0LT + jk0 pext on Γpw. (1.33)

Using the rigid boundary condition on the back cover, a linear system is formed, giving access to
the modal amplitudes Am

ext and Bm
ext. Thus, the reflection coefficient is derived as R = A0

ext/B0
ext.

The linear system is detailed in appendix A.3. Finally, the normalized impedance is determined
using

zmm =
R + 1
R− 1

. (1.34)

1.4 Impedance tube measurements

In order to assess the validity of Guess (1975) model and the mode-matching model, measure-
ments are carried out in accordance with the NF EN ISO 10534-2 standard method. The measure-
ments are performed for a frequency range between 400 Hz and 6400 Hz but the comparisons in
the next section are done between 850 Hz and 2600 Hz. Outside this range, the measurements
are considered to be too noisy. The diameter of the tube is 29 mm. The cut-on frequency of the
first non plane mode is 6932 Hz. Two 1/4” microphones with a 20 mm spacing are used to de-
termine the surface impedance of the liners. The distance between the sample and the closest
microphone is 45.2 mm. The cavity height is L = 29 mm. Four perforated liners are considered
for measurements to investigate the impact of the liner’s geometry on the impedance. Although
this measurement method is known to be robust, the sample mounting repeatability is tested. The
sample’s impedance is measured four times. Between each measurements the perforated plate is
remounted. In the following, the mean quantity over the four measurements is plotted. The blue
zone surrounding each plot is delimited by the curves corresponding to, respectively, the mean
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Configuration σ (%) Rneck (mm) Rcav (mm) h (mm)

1 (macro) 6 0.8 3.27 1.5
2 (macro) 10 0.8 2.53 1.5
3 (micro) 1.4 0.15 1.27 0.6
4 (micro) 4.2 0.15 0.73 0.6

TABLE 1.1: Perforated plate configurations.

FIGURE 1.3: Cross-sectional view of a perforated plate with Rneck = 0.9 mm. Note
that this view does not intersect with both of the perforations axes.

minus and plus the standard deviation. The red zone is delimited by the minimum and maximum
values of the impedance.

The chosen parameters are summarized in Table 1.1. Configuration 1 and 2 correspond
to macro-perforated plates with a low and high porosity respectively. Configuration 3 and 4
are micro-perforated plates with a low and high porosity. The neck radius is kept constant
in the macro- and micro-perforated cases. The perforated plates are manufactured by me-
chanical drilling. More details on the accuracy of this manufacturing process can be found in
Drevon (2004). Figure 1.3 shows a photography of a perforated plate cut to assess the sharpness
of the corners. From a macroscopic point of view, the corners appear to be very sharp, however,
dedicated measurements would be necessary to completely characterize their geometry. The cor-
ners are known to have an important impact on the real part of the impedance (Temiz et al., 2015)
and could explain discrepancies between the measurements and the predictions in the next sec-
tion.

The diameter of the perforations is known within ±0.01 mm, which provides a good accuracy
on the overall porosity of the plate. In the macro-perforated case, the maximum relative error
on the porosity is 1.3 % while for the micro-perforated case it is 6.8 %. The Sound Pressure Level
(SPL) is set to 105 dB at the plate surface with a white noise source.

We introduce the Strouhal number

St =
2ωRneck

|
√

2up|
(1.35)

in which |up| is the Root Mean Square (RMS) value of the acoustic velocity through a perforation.
In order to remain in the linear regime, the condition St > 1 must be verified according to Temiz
et al. (2016). If this condition is respected, the particle displacement is smaller than the diameter
of the perforation and non-linear effects are unlikely to appear. Since we are using a white noise
source, this velocity |up| can be defined at least in two ways. Firstly, we can consider that the
perforation is submitted to the acoustic velocity associated with each frequency independently.
Secondly, we can use the root mean square velocity calculated over the complete frequency range.
This is defined as follows

up =
√

∑
i

u2
p,i (1.36)

in which up,i is the acoustic velocity at each frequency. The latter up is supposed to be the effective
velocity at the surface of the plate and is formed with the contribution from each frequency. In the
linear regime, using a sine-swept source instead of a white noise source makes no difference as
the impedance does not depend on the effective velocity in the neck. However, in the non-linear
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FIGURE 1.4: Mean value of the Strouhal number measured for the 4 configurations.
The red zone is delimited by the minimum and maximum measured values for con-

figuration 1 and 3.

regime, significant differences can be observed, especially on the resistance (this is discussed in
details in chapter 3).

It is necessary to check that St > 1 using both definitions of the velocity |up|. Figure 1.4 shows
the Strouhal number based on the acoustic velocity at each frequency. We can observe that the
repeatability of these measurements is satisfactory. The lowest value observed between 850 Hz
and 2600 Hz is St = 79.8 at 1120 Hz for configuration 3.

When using the root mean square velocity calculated between 400 Hz and 6400 Hz, i.e. the
complete frequency range used during the measurement, we see that its lowest value is St = 3.3.
As a consequence, it can be considered that we remain in the linear regime in the whole considered
frequency range.

1.5 Discussion

The impedance obtained from the mode-matching and Guess models are now compared with
the impedance obtained through measurements. The difference between both predictions are
highlighted and their validity range is assessed.

1.5.1 Comparison with measurements

The comparison between calculations and measurements is operated between 850 Hz and
2600 Hz. The normalized impedance is defined by z = Z/(ρ0c0). The normalized resistance Re(z)
and the normalized plate reactance Im(z) + cot (k0L) are plotted as functions of the frequency.
The normalized plate reactance is determined by removing the cavity reactance − cot (k0L) from
the total normalized reactance. This is done to better see the difference between the predictions
and the measurements, as the cavity reactance dominates the total reactance.

Figures 1.5 and 1.6 correspond the macro- and micro-perforated cases respectively. We can
observe that the mounting repeatability of the measurements is good for every samples.
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FIGURE 1.5: Left: Normalized resistance (a), and normalized plate reactance (c)
for configuration 1: a macro-perforated liner with a low porosity. Right: Normal-
ized resistance (b), and normalized plate reactance (d) for configuration 2: a macro-

perforated liner with high porosity.

The measurement (), the full Guess model ( ), the Guess model without edges effects ( ),
the Guess model without radiation, interaction and edges effects ( ) and the mode-matching
model using 15 modes ( ) are compared. In the case of the macro-perforated configurations 1 &
2, we have 10.6 < Sh < 18.5. For the micro-perforated configurations 3 & 4 we have 2 < Sh < 3.5.
This change of shear number regime allows to assess the validity of the models.

First, we observe that the mode-matching model underestimates the measured resistance for
configuration 1 to 4. On the other hand, the full Guess model provides good resistance predic-
tion. When using the Guess model without viscous edges effects ( ), we find resistance values
comparable to those given by the MM model ( ). It shows that the mode-matching model does
not account for viscous edges effects. A possible explanation to this is the fact that we consider
non-viscous modes outside the aperture and that we do not account for the thermo-viscous losses
on the wall of the plate. Furthermore, the corners velocity and pressure fields are not handled
explicitly in the MM formulation.

We now focus on minor discrepancy between the mode-matching and the Guess models. We
compute the impedance using the Guess model without radiation, interaction and viscous edges
effects ( ). It is noteworthy that the correction associated to the interaction effect has only an
impact on the imaginary part of the impedance.

According to figures 1.5 (a) and (b), the radiation has a minor impact on the real part of the
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FIGURE 1.6: Left: Normalized resistance (a), and normalized plate reactance (c)
for configuration 3: a micro-perforated liner with a low porosity. Right: Normal-
ized resistance (b), and normalized plate reactance (d) for configuration 4: a micro-

perforated liner with a high porosity.
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impedance of the macro-perforated configurations and close to no influence when considering the
micro-perforated configurations (figures 1.6 (a) and (b)), as far as Guess model is concerned. In
figures 1.5 (a) and (b) the resistance provided by the mode-matching model ( ) is close to the
resistance predicted by the Guess model without viscous edges effects ( ), which suggests that
the MM model captures correctly the real part of the radiation impedance.

The resistance computed with the mode-matching model ( ) is slightly higher than the
Guess model without viscous edges effects ( ) in figures 1.6 (a) and (b) (micro-perforated con-
figurations) and figures 1.5 (a) and (b) (macro-perforated configurations). This might indicate that
the MM model is able to represent a subtle dissipative effect that is not accounted for the Guess
model. This difference could be related to

• the fact that we take into account the velocity profile in the neck,

• the thermal losses that are taken into account in the expression of kneck, which are neglected
in the Guess model,

• or the interaction and radiation effect that are approximated more precisely in the mode-
matching model. Indeed, in the Guess model, these effects are modeled by first order series
approximation.

In Guess ( ) (figures 1.5 (c), (d) and 1.6 (c), (d)), the viscous edges effects have a limited
impact on the imaginary part the impedance. On the contrary, the radiation and interaction effects
have a meaningful influence on the plate reactance of the macro-perforated configurations 1 and
2. The plate reactance predicted by the mode-matching model ( ) is close to those computed
with the full Guess model ( ), which indicates that both the radiation and interaction effects are
correctly described by the MM model when considering both macro- and micro-perforated plates.

1.5.2 Impact of the number of modes on the impedance

In the previous section 1.4, the Guess model was compared with the mode-matching model with
N = 15 modes. In the present section, we justify this choice of value for N.

First, we inspect how the velocity in the neck is approximated at the interfaces for respectively
5, 15, 30 and 50 modes. In figure 1.7, we plot the modulus of the velocity profile in the neck and
the exterior domain at the surface of the plate for z = 0 for the 4 configurations close to their
resonance frequency, i.e. when the reactance is zero. The axial velocity profile in the neck from
Zwikker et al. (1949) is compared to the exterior velocity approximated for different numbers of
modes.
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FIGURE 1.7: Modules of the velocity along the radial coordinate for (a) configuration
1 at 1344 Hz, (b) configuration 2 at 1680 Hz, (c) configuration 3 at 1088 Hz and for (d)

configuration 4 at 1808 Hz.

As expected, increasing the number of modes improves the approximation. When switching
from 5 to 15 modes, the velocity profile approximation is substantially improved and is even better
for 30 and 50 modes. However, for the macro-perforated configurations in figures 1.7 (a) and (b)
we notice Gibbs oscillations of which the amplitudes gets smaller when the number of modes
increases. These oscillations are also visible for the micro-perforated configurations but to a lesser
extent, as the velocity profile that we seek to approximate is smoother.

In figure 1.8, we plot the impedance computed for different number of modes from 2 to 50.
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FIGURE 1.8: Impedance for different number of modes for configuration 1. (a) Nor-
malized resistance, (b) normalized plate reactance.

The number of modes has a significant impact on the velocity profile approximation. However,
according to figure 1.8, its impact on the impedance real and imaginary part is marginal when
more than 5 modes are used. The mode-matching converges very quickly, as far as the impedance
is concerned. We can hardly see a difference between the impedance obtained for 15, 30 and 50
modes, hence the choice is of 15 modes for the computation presented in the previous section 1.4.

1.6 Conclusion

The impedance modeling of the physical effects occurring in the linear regime has been reviewed,
followed by the description of the standard semi-empirical model from Guess (1975). A model
removing the short-tube approximation and accounting for the radiation and interaction effects
through higher order modes has been introduced.

From the comparisons of both models with impedance tube measurements, the modeling im-
portance of the viscous edges effects is highlighted. In order to complete the mode-matching
model, this important dissipative effects could be added by using higher order viscous modes
(Kirchhoff, 1868), allowing to consider evanescent modes in the neck and to account for viscous
losses in the exterior domain and in the cavity. This would take into account at the same time
losses occurring in the plate, in the vicinity of the jet, and due to strong gradients close to the
corners. Analytic expressions of these modes exist for slits (Stinson, 1991), but not for cylindri-
cal perforations. The development of an analytic formulation for higher order viscous modes in
cylindrical wave-guides constitutes a promising perspective as they could describe the viscous
edges effects.

Despite this lack of completeness, the mode-matching model is shown to correctly capture the
radiation and interaction effects in the linear regime. Furthermore, a limited number of modes is
necessary to reach the impedance convergence. Therefore, when the complete velocity or pressure
fields need to be determined, its efficiency is good compared to those of other model based on
numerical methods such as finite elements.

In the following chapter, we wish to investigate more precisely the dissipation mechanisms
occurring in a perforation in the linear regime and to further study the edges effects in order
to give guidelines for semi-empirical and MM modeling strategies. For this purpose, the finite
element method is used to model the impedance of perforated plate liners.
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Chapter 2

Numerical models in the linear regime

After the review of impedance models for perforated plates in chapter 1, we now move to com-
putational modeling. In the linear regime and in the absence of mean flow, the impedance of
perforated liners is driven by visco-thermal effects. In this chapter, two numerical models are
employed for predicting these visco-thermal losses. The first model is the linearized compress-
ible Navier–Stokes equations (LNSE) solved in the frequency domain. The second model is the
Helmholtz equation with a visco-thermal boundary condition accounting for the influence of the
acoustic boundary layers. These models are compared and validated against measurements. The
quantitative analysis of the dissipation rate due to viscosity, computed from the LNSE solutions
of 4 perforated plates, highlights significant differences between the edge effects of a macro- and
a micro-perforated plate. In the latter case, a jet is present at the entrances of the perforation.
The proposed numerical method to calculate the impedance of perforated liners, based on the
Helmholtz equation and a visco-thermal boundary condition, is found to be computationally
cheaper and to provide reliable predictions.

2.1 Introduction

In the linear regime without mean flow, the main dissipation mechanisms responsible for the
acoustic dissipation are the visco-thermal losses. They can be described using the theory from
Stinson (1991) for the visco-thermal losses inside the neck (discussed in the previous chapter) and
the experimental works from Ingard (1953) for the viscous dissipation close to the entrances of
the perforations. In addition, mathematical background are proposed by Laurens et al. (2013) for
the Rayleigh conductivity of cylindrical perforation and unconventional apertures. In a similar
modeling effort, Honzík et al. (2013) propose a transfer function derived from Zwikker et al. (1949)
theory to model the viscous and thermal boundary layers in small horns.

Numerical methods such as the Boundary Element Method (BEM) (Cutanda-Henríquez et
al., 2013) or the Finite Element Method (FEM) are also used to model visco-thermal acoustics.
In this chapter we focus on the FEM. In Joly et al. (2006) and Joly (2010) the FEM is used to solve
a coupled linear formulation based on the particle velocity and the temperature variation. This
approach is shown to be computationaly efficient. In the same vein, in Kampinga et al. (2011)
and Kampinga et al. (2010) the Linearized Navier-Stokes Equations (LNSE) are implemented in
COMSOL (Pryor, 2009).

More numerical studies have been performed to highlight physical mechanisms in perforated
liners. This is the case in Roche et al. (2009) in which Direct Numerical Simulations are carried
out to solve the non-linear compressible Navier-Stokes equations in a 2-dimensional (2D) and a 3-
dimensional (3D) geometry. Solving the latter equations has an important computational cost but
it includes an exhaustive list of physical mechanisms. In Temiz et al. (2015) the linearized incom-
pressible Navier-Stokes equations are solved in a 2D geometry to study the impact of perforation
edge geometry on the impedance of a liner.
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In the present chapter, two different numerical models are presented and validated, with a
view to investigate the acoustic losses occurring at a perforation. The first model solves the
Helmholtz equation with a boundary condition accounting for the viscous and thermal acous-
tics boundary layers Berggren et al. (2018). This boundary condition is obtained by assuming
that the rigid wall is smooth and that its curvature radius is much greater than the viscous and
thermal boundary layers thicknesses. This so-called "Helmholtz with losses" model is compared
against a more detailed, but more costly, alternative model based on the linearized compressible
Navier–Stokes equations. A study using this set of equations can be found in Malinen et al. (2004).
Both models are solved in the frequency domain using finite elements. Their results are com-
pared with impedance tube measurements. This allows to assess the validity of the Helmholtz
with losses model. Additionally, the LNSE model allows for a detailed investigation of the losses
phenomenon of the micro-perforated and the standard macro-perforated liners (Rneck > 0.5 mm,
defined in section 2.2). The dissipation rate per mass unit due to viscous effects is computed
and the differences between micro- and macro-perforate liners are investigated. The latter in-
vestigation gives more insights into the modeling effort needed to provide accurate impedance
predictions and an explanation on the lack of accuracy of the mode-matching model developed in
the previous chapter.

The rest of this chapter is as follows. We first present the theoretical models in section 2.2.
In section 2.3, a brief description of the numerical methods is given. A comparison between the
numerical models and measurements follows in section 2.4 and the dissipation rate is analyzed
in section 2.5. In section 2.6, the convergence of the numerical models is assessed. Finally, we
conclude on the relevance of the Helmholtz with losses model in section 2.7. Note that the journal
paper Billard et al. (2021) forms the basis for this chapter.

2.2 Numerical models

In this section, two numerical models are described to predict the acoustic impedance of a perfo-
rated plate.

The geometry of the perforated plate, which is composed of a periodic arrangement of cylindri-
cal holes is simplified to a single hole. The computational domain is composed of three cylindrical
ducts corresponding to the exterior, the neck and the cavity of the liner. The geometry is further
simplified to the 2D axi-symmetrical domain Ω showed in Figure 2.1.

To ensure that this non-pavable single-hole model is representative of a periodic arrangement
of perforations, the Percentage of Open Area (POA), also known as porosity σ, must correspond
to the one of the actual perforated plate. The cavity radius Rcav, which is equal to the exterior
radius, is chosen to achieve the target plate porosity σ such that

σ =

(
Rneck

Rcav

)2

, (2.1)

where Rneck is the radius of the neck.
In Figure 2.1, the Γs boundary corresponds to a sliding surface whereas Γbc and Γneck are walls

with a no-slip condition. Γaxis is the symmetry axis of the domain Ω. An implicit time depen-
dence e+jωt is used, where ω is the angular frequency. An incoming plane wave is imposed as a
boundary condition on Γin. The LNSE and the Helmholtz equation are solved in the domain Ω to
calculate the reflected waves and, hence, the reflection coefficient and the effective impedance of
the liner.
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FIGURE 2.1: Axi-symmetric representation of the model.

2.2.1 Linearized Navier–Stokes equations

The problem is made non-dimensional by using the following quantities: the sound speed c∗0 , the
fluid density ρ∗0 and the reference length L∗ref = Rneck (recall that Rcav = Rneck/

√
σ). The symbol ∗

denotes dimensional quantities. It follows that variables are made non-dimensional as follows

x =
x∗

L∗ref
, u =

u∗

c∗0
, ρ =

ρ∗

ρ∗0
, p =

p∗

ρ∗0c∗20
, T =

T∗c∗p
c∗20

, e =
e∗

c∗20
.

u = (ur, uz)
T is the fluid velocity, ρ is the density, p is the pressure, T is the temperature, c∗p is the

specific heat capacity at constant pressure and e the specific internal energy.
The acoustic Reynolds number based on the sound speed, and the Prandlt number are defined

as follows

Rea =
ρ∗0c∗0 L∗ref

µ∗
and Pr =

c∗pµ∗

κ∗
(2.2)

where µ∗ is the dynamic viscosity and κ∗ is the thermal conductivity. Both are assumed indepen-
dent of temperature.

A perfect gas is assumed, which leads to the following relations between thermodynamic
quantities:

c2 = γrT, e =
T
γ

and p = ρrT with r =
γ− 1

γ
.

Here, c is the dimensionless sound speed, γ = c∗p/c∗v is the heat capacity ratio and c∗v is the specific
heat capacity at constant volume.
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The equations stating the conservation of mass, momentum and energy are as follows:

∂ρ

∂t
+∇ · (ρu) = 0, (2.3)

ρ
∂u
∂t

+ ρ (u · ∇)u = −∇p +∇ · τ, (2.4)

ρ

γ

(
∂T
∂t

+ u · ∇T
)
= −p∇ · u + τ : ∇u +

1
ReaPr

∇2T. (2.5)

The viscous stress tensor τ is given by

τ =
1

Rea

[
∇u + (∇u)T +

(
µB − 2

3

)
(∇ · u)I

]
, (2.6)

where I is the 2-by-2 identity matrix and µB = µ∗B/µ∗ is the normalized bulk viscosity. We follow
the Stokes hypothesis by setting µB = 2/3. This choice, which implies that the effect of dilatation
on the viscous stress tensor is ignored, is discussed in more details by Schlichting (1979).

The mass conservation equation (2.3), the momentum conservation equation (2.4) and the en-
ergy conservation equation (2.5) are linearized around a steady state defined by ρ0, u0, p0 and
T0:

ρ = ρ0 + ρ′ , u = u0 + u′ , p = p0 + p′ , T = T0 + T′ ,

in which ρ′ is the perturbed density, u′ is the perturbed velocity, p′ is the perturbed pressure and
T′ is the perturbed temperature. We consider a uniform quiescent medium, hence u0 = 0, ρ0 = 1,
c0 = 1, p0 = 1/γ and T0 = 1/(γ − 1). In addition we solve these equations in the frequency
domain assuming a e+jωt time dependence. To discuss the results, we introduce the thickness δ∗V
of the acoustic viscous boundary layer as well as the shear number Sh:

δ∗V =

√
2µ∗

ρ∗0ω
, Sh =

Rneck

δ∗V
. (2.7)

Sh relates the viscous boundary layer thickness to the radius of the perforation. It is useful to
distinguish between the macro- and micro-perforated regimes and to assess the range of validity
of the Helmholtz equation with losses. When Sh is high, the viscous boundary layer thickness is
small compared to the perforation radius.

Therefore, the linearized Navier–Stokes equations reduce to

jωρ′ +∇ · u′ = 0, (2.8)

jωu′ = −∇p′ +
ω

2Sh2∇ ·
[
∇u′ +

(
∇u′

)T
]

, (2.9)

jωT′ = −∇ · u′ + ωγ

2Sh2Pr
∇2T′. (2.10)

This set of equation is for instance implemented in Malinen et al. (2004) in the FEM software
Elmer to model the thermo-viscous effects in acoustics. In the present study we rely on the Get-
FEM library (Renard et al., 2020). An incident plane wave is defined on the upper boundary of the
domain Ω:

∇p′ · n + jkp′ = 2jkWe+jkLZ on Γin, (2.11)

where n is the outgoing normal vector, LZ = L + h + LT, and W is the amplitude of the incoming
plane wave. k is the acoustic wave number accounting for the viscosity of the fluid and neglecting
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thermal effects we obtain:

k = ω

(
1 + jω2 µB + 4

3
2Sh2

)− 1
2

. (2.12)

Further details are provided in Appendix B.1.
Equations (2.8), (2.9) and (2.10) are solved together with the following boundary conditions.

On the perforated plate and the back cover, a no-slip condition is implemented together with an
isothermal condition:

u′ = 0 , T′ = 0 on Γneck and Γbc . (2.13)

Alternatively, we will also consider the case where an adiabatic condition is imposed by setting
∇T′ · n = 0 on these surfaces. In section 2.4, we will compare numerical results obtained with
the isothermal and the adiabatic boundary conditions. We will observe that the results are very
similar and that the choice of this boundary condition is non-significant. In practical applications,
an isothermal boundary condition is considered as a good approximation, given the thermal con-
ductivities of the wall materials.

On the sides and the axis of the domain, a free-slip boundary condition is enforced with an
adiabatic condition:

u′ · n = 0 , ∇T′ · n = 0 on Γaxis and Γs . (2.14)

This free-slip condition is indeed representative of the interaction between perforations for a nor-
mal plane wave, due to the symmetry of the configuration.

The reflection coefficient R on the surface of the perforated plate is defined by

R =

(
p

W
− eikLT

)
eikLT , (2.15)

where W = 1 and p is the averaged pressure over the boundary Γin.
Thus, the normalized impedance at the surface of the perforated plate is determined using the

following expression:

z =
Z

ρ0c0
=

R + 1
R− 1

. (2.16)

2.2.2 Helmholtz with losses model

Inside the computational domain we solve the Helmholtz equation written for pressure:

∇2 p + ω2 p = 0 in Ω. (2.17)

Like for the LNSE, an incident plane wave is defined on the upper boundary of the domain by
writing

∇p · n + jωp = 2Wje+jωLZ on Γin. (2.18)

On the axis and the sides of the domain we impose a free-slip boundary condition:

∇p · n = 0 on Γaxis and Γs. (2.19)

Even though a lossless Helmholtz equation is used in the computational domain, it is still possible
to account for some visco-thermal losses through the use of a boundary condition that accounts
for these effects within the acoustic boundary layers over the solid surfaces. This approach was
first proposed and developed by Morse et al. (1968) and was recently further refined by Berggren
et al. (2018). These equivalent boundary conditions are derived by performing an asymptotic
expansion around the viscous boundary layer thickness. The boundary condition derived by
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Berggren et al. (2018) reads

∇p · n = δV
j− 1

2
∇2

T p + δTω2 (γ− 1)(j− 1)
2

p on Γneck and Γbc, (2.20)

in which ∇2
T is the tangential Laplacian defined as

∇2 p ≡ ∇2
T p +

∂2 p
∂n2 + (∇T · n)

∂p
∂n

. (2.21)

Here, ∂/∂n = n · ∇. The dimensionless viscous and thermal boundary layer thicknesses are
defined as follows

δV =
1

Sh
and δT =

1
Sh
√

Pr
.

One objective of the present chapter is to assess the applicability of this equivalent boundary
condition to predict the acoustic impedance of perforated plate liners. Equation (2.20) is derived
from the linearized compressible Navier–Stokes equations. A no-slip condition and an isothermal
condition are applied on the rigid walls. The radius of curvature of the surface should also be
large compared to the viscous boundary layer thickness. Therefore, in the case of a perforate
plate, this boundary condition is valid when the radius of the neck is much larger than δV and δT.
This limitation is stated by Mbailassem et al. (2019) in a similar approach. Since the wall model
(2.20) is not suitable for strongly curved surfaces, this model is not expected to be valid at the
corners of the hole. The corners of the perforation and their sharpness can play an important
role in the acoustic dissipation, as discussed by Morse et al. (1968). Another limitation is that the
viscous boundary layer should not interact. For a perforate plate, this occurs when δV ≥ Rneck.
Berggren et al. (2018) compared their solutions to those of Keefe (1984) for cylindrical wave guides
of radius 0.1 mm and obtained good correspondence for Sh > 2. In order to perform consistent
comparisons between the numerical models and measurements, we will not consider Sh < 2.

Equation (2.20) is derived using an isothermal boundary condition. If an adiabatic boundary
condition is used instead, the term δTω2(γ− 1)(j− 1)p/2 in (2.20) is removed because it represents
the heat flux through the thermal boundary layer.

This model based on the classical Helmholtz equation and the equivalent boundary condition
(2.20) allows to perform rapid predictions of the acoustic impedance of a perforated plate. This is
because it involves only a single variable, compared to the LNSE which involves density, velocity
and temperature. In addition, the LNSE model requires a very fine mesh to resolve the thermal
and viscous boundary layers while here the net effect of the acoustic boundary layers are directly
modeled by the equivalent boundary condition (2.20). This is especially true for high frequencies,
when the boundary layers are very thin compared to the wavelength.

2.3 Numerical method

The LNSE model and the Helmholtz model are both solved using the finite element method. The
variational formulations are detailed in B.2 and B.3. These formulations are implemented using
the GetFEM++ package (Renard et al., 2020) and the meshes are generated using Gmsh (Geuzaine
et al., 2009). Unstructured, triangular meshes are used. In the LNSE model, first order polynomials
are used to approximate the density and the temperature while second-order polynomials are
used for the velocity. In the Helmholtz model, the pressure field is approximated with second-
order polynomials.

Figure 2.2 shows an example of finite element mesh used for the LNSE model. This mesh
corresponds to configuration 3, detailed in Table 2.1 further below. The mesh is refined near the
neck to properly resolve the boundary layers. In addition, the corners of the neck are rounded
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FIGURE 2.2: Example of finite element mesh for the LNSE model. This a zoom on
the perforation of configuration 3.

Configuration σ (%) Rneck (mm) Rcav (mm) h (mm)

1 (macro) 6 0.8 3.27 1.5
2 (macro) 10 0.8 2.53 1.5
3 (micro) 1.4 0.15 1.27 0.6
4 (micro) 4.2 0.15 0.73 0.6

TABLE 2.1: Perforated plate configurations.

with a radius Rc = Rneck/100 to avoid geometrical singularities. No measurable difference is ob-
served on the predicted impedance when the computations are performed using sharp corners,
but rounded corners lead to a faster mesh convergence of the numerical model. This method is
also used by Temiz et al. (2015) to perform numerical simulations based on the linearized incom-
pressible Navier-Stokes equations.

2.4 Comparison with measurements

The results obtained from the numerical models are now compared with impedance tube mea-
surements. The measurements used here are the same as in the Chapter 1. We recall the chosen
parameters for each configuration in Table 2.1.

Figures 2.3 shows the impedances obtained for the macro-perforated plates, for which 10.6 <
Sh < 18.5 approximately. The LNS model appears to underestimate the resistance of the macro-
perforated liners. It is also the case for the Helmholtz model but to a lesser extent. However,
the significance of these differences is limited since we are looking at low resistance values. As
a result, the corresponding absolute error is low. The computed plate reactances present a good
correspondence with the measurements.

Figure 2.4 shows the impedances for the micro-perforated configurations, for which 2 < Sh <
3.5, which correspond to the validity limit of the Helmholtz model. In the micro-perforated case,
according to Figures 2.4(a) and 2.4(b), the resistance is accurately predicted by the linearized
Navier–Stokes model. The Helmholtz model also provides correct predictions of the resistance
despite the fact that it is less accurate close to its validity limit (Figure 2.4(a)), i.e. when Sh ' 2.
Good correspondence between the measured and the modelled plate reactances is visible in Fig-
ures 2.4(c) and 2.4(d).
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FIGURE 2.3: (a), (c) Normalized resistance and normalized plate reactance for con-
figuration 1: a macro-perforated case with a low porosity (Rea = 18201, Pr = 0.707).
(b), (d) Normalized resistance and normalized plate reactance for configuration 2: a

macro-perforated case with a high porosity (Rea = 18201, Pr = 0.707).
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FIGURE 2.4: (a), (c) Normalized resistance and normalized plate reactance for con-
figuration 3: a micro-perforated case with a low porosity (Rea = 3413, Pr = 0.707).
(b), (d) Normalized resistance and normalized plate reactance for configuration 4: a

micro-perforated case with a high porosity (Rea = 3413, Pr = 0.707).
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As mentioned in the previous section, the LNSE predictions are based on the isothermal con-
dition on the plate and the backing plate. It is interesting to assess whether the use of an adiabatic
condition would significantly change these predictions. This is shown in Figure 2.4(a) where the
results with an adiabatic and isothermal conditions are presented side-by-side for configuration 3.
Changing the nature of the thermal boundary condition only has a very limited influence on the
predicted impedance. This observation was expected since the dissipation is dominated by shear
effects rather than thermal effects in this particular case.

2.5 Analysis of the rate of dissipation

In order to gain more insight into the dissipation mechanisms influencing the impedance of a
perforated plate, we calculate the viscous dissipation rate Lighthill (1978). From equation (2.6),
we derive its expression, separating the dissipation due to shear and bulk effects. In the time
domain, the dissipation rate per unit mass resulting from shear stresses is

Φshear =
1

Rea

{
1
2

[
∇u + (∇u)T

]
:
[
∇u + (∇u)T

]
− 2

3
(∇ · u)2

}
, (2.22)

and the dissipation rate per unit mass due to the bulk viscosity is:

Φbulk =
1

Rea
µB (∇ · u)2 . (2.23)

The expression of Φshear and Φbulk are consistent with Batchelor (1967). In the results presented
below, the integral over the whole FEM domain of the mean value of the dissipation due to bulk
effect Φbulk was found to be negligible compared to the overall value of Φshear for all four configu-
rations. Indeed, the dissipation due to dilatation is expected to be negligible in our range of shear
number, i.e. 2 < Sh < 20. For this reason, Φbulk is not discussed further.

The dissipation rates Φshear for the macro-perforated configurations 1 & 2 and the micro-
perforated configurations 3 & 4 are shown in Figure 2.5 at their respective resonance frequencies
for rL∗ref ∈ [0; Rcav] and zL∗ref ∈ [L− 2Rneck; L + h + 2Rneck]. In both cases, an important part of
the dissipation is localized in the neck. This well-known dissipation mechanism is modelled by
the theory from Zwikker et al. (1949). In the case of a micro-perforated plate, the viscous bound-
ary layer thickness is large compared to the neck radius, thus the dissipation is spread across
the neck. In the macro-perforated configuration, for which the ratio Sh is high, the dissipation is
concentrated close to the wall of the neck.

In addition to the viscous losses in the neck, significant losses can also be seen just outside
of the neck and at its corners. However the relative magnitude of these losses varies markedly
between the macro- and micro-perforated cases. In the first case, the losses are localized mainly at
the corners of the neck, while in the second case they are found outside the neck, at its entrances.
The net effects on the acoustic impedance of the viscous losses occurring outside the neck and at
the corners edges are generally modeled using end correction terms. For instance, Guess (1975)
introduces a correction length h′ = h + 2Rneck, determined empirically. This correction originates
from Ingard (1953) and is defined as the viscous edges effects in Chapter 1. From figure 2.5, it is
clear that the viscous edges effects are not only localized on the wall of the plate and the corners
edges as suggested by Ingard (1953), but also extend outside the perforations. More recently,
it has been possible to use numerical simulations to calculate these end correction terms more
systematically. For instance, Temiz et al. (2015) solved the linearized incompressible Navier-Stokes
equations to determine the end correction for a wide range of perforates (1 < Sh < 35) covering
both micro- and macro-perforates. While the determination of an end correction is useful to build
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FIGURE 2.5: Mean value of the dissipation rate per unit mass due to shear effects
at the resonance frequency of configuration 1 at Sh = 13.4 (a), configuration 2 at

Sh = 15 (b), configuration 3 at Sh = 2.2 (c) and configuration 4 at Sh = 2.9 (d).

Configuration Sh Exterior (%) Neck corners (%) Neck (%) Wall (%)

1 (macro) 13.4 12.7 37.8 2.1 46.9
2 (macro) 15 11.1 39.4 1.6 47.5
3 (micro) 2.2 25.1 7.1 31.3 36.1
4 (micro) 2.9 25.3 7.1 31.3 36.9

TABLE 2.2: Comparison of the contributions for each configuration.

a simple formula for the acoustic impedance, the detailed analysis of the dissipation rate presented
here helps to understand where the viscous losses are located.

In order to quantitatively assess the differences in the distribution of dissipation rate between
the micro- and macro-perforated cases, the dissipation rate due to shear effects is integrated over
four domains shown in Figure 2.6. The domains correspond to: the exterior close to the hole
entrances, the neck, the wall of the neck and the corners of the neck. The contributions from these
zones are computed for the four previous configurations and compared to each others.

Table 2.2 summarizes the contributions from each zone to the overall dissipation rate for each
configuration at their respective resonance frequencies. The remaining losses in the domain do
not exceed 0.6% for each configuration.

The relative distribution of losses is significantly different between the macro-perforated cases
1 & 2 and the micro-perforated cases 3 & 4. In the first cases, the viscous boundary layer thickness
is small compared to the neck radius and the dissipation is localized mainly near the corners and
along the neck wall. The important contribution from the corners is partly due to the fact that
the ratio h/(2Rneck) is close to 1 in the macro-perforated case, meaning that the corner integration
zone extends far in the wall of the neck. Therefore, most of the losses occur close to the wall.
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This explains why, for macro-perforated configurations, the Helmholtz model with the equivalent
boundary condition (2.20) is able to provide results similar to the LNSE model. In the micro-
perforated cases, the shear number Sh is low and a significant contribution from the neck and the
wall regions is visible. In addition, about a quarter of the losses occurs in the exterior domain,
near the entrance of the holes. This highlights the presence of a jet in the linear regime when
considering micro-perforation. Despite the fact that the Helmholtz approach is not modeling this
effect, it so happens that, for this configuration, it provides correct predictions of the impedance.

2.6 Convergence of the numerical models

The convergence of the numerical models is investigated in this section. In a first stage, we com-
pare the results obtained from impedance tube measurements to computations performed with
different numbers of degrees of freedom (DOF) using the macro-perforated configuration 1.

Good convergence of the LNSE model is obtained with 36.8 kDOF (Figure 2.7(b)). This corre-
sponds to elements of size 3.34δV on the axis and 0.43δV on the surface of the neck. The size of
the elements on the edges of the perforation is the same as the size of the elements on the surface
of the neck. In fact, the normalized plate reactance in Figure 2.7(d) has already converged for a
very coarse model with just 11.4 kDOF. Figures 2.7(a) and (c) show that the Helmholtz model
converges for a number of DOF near 6.4 kDOF. This corresponds to elements of size 8.16δV on the
axis and 1.07δV on the surface of the neck. This much smaller model size is explained by the facts
that (i) the Helmholtz equation is a scalar model while the LNSE involves 4 variables, (ii) there
is no need to resolve the boundary layers with the Helmholtz model, and (iii) there is no need to
have polynomials with different orders for each variables.

Indeed, according to Kellogg et al. (1996), when solving the LNSE, it is necessary to respect the
inf-sup condition for numerical stability. In fact, this is why P1 elements are used to solve the den-
sity and the temperature, and P2 elements are used to solve the velocity. Therefore, P1 elements
might slow down the convergence rate of the numerical model. When solving the Helmholtz with
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FIGURE 2.7: (a), (c) Resistance and normalized plate reactance computed with the
Helmholtz with losses model for different numbers of DOF. (b), (d) Resistance and
normalized plate reactance computed with the LNSE model for different numbers

of DOF.
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FIGURE 2.8: Resistance (a), (b) and plate reactance (c), (d) predicted for configuration
1 as a function of the number of degrees of freedom (Rea = 18201, Pr = 0.707) for
both numerical models. The point for which the convergence is attained is indicated.

losses equations, the inf-sup condition is unnecessary as only the pressure is solved. Hence, P2
elements are used and the convergence rate might be increased.

In a second stage, the accuracy of the models is investigated by computing the impedance at
the resonance frequency of configuration 1. A series of computations is performed with increas-
ingly fine meshes. To assess the accuracy of each of these computations, the error on the predicted
impedance is calculated as follows

εr =

∣∣Z− Z f
∣∣

ρ0c0
, (2.24)

where Z f is the reference value of impedance calculated for each model using an extremely fine
mesh. This error on the impedance is shown in Figure 2.7 for configuration 1 at the resonance
frequency. It is clear that the Helmholtz model with the boundary condition (2.20) converges
more rapidly than the LNSE model. As a consequence, a converged prediction of the impedance
(εr ' 10−4) is obtained with a much smaller problem size with the Helmholtz model (around 5000
degrees of freedom, compared to around 105 degrees of freedom for the LNSE model). Addition-
naly, the rate of convergence of the models are consistent with our choices of elements. The LNS
model is close to a first order convergence while the Helmholtz with losses model is close to a
second order convergence. This provides quantitative evidence of the computational benefits of
this Helmholtz model.

2.7 Conclusion

In this chapter, two computational models were considered to predict the acoustic impedance
of perforated plates in the linear regime. Both macro- and micro-perforated configurations were
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considered and detailed comparisons with measured data from an impedance tube were used for
validation.

The model based on the linearized Navier–Stokes equations is particularly expensive to solve,
but it provides a more detailed and complete picture of the absorption mechanisms. It was used
to calculate the viscous dissipation rate for a single hole. It was observed that the overall distri-
bution of dissipation is very different between the macro- and micro-perforated cases. For the
macro-perforated case, there is a significant amount of dissipation taking place at the corners of
the perforation. In the micro-perforated case, an important contribution to the viscous dissipation
comes from the regions just above and below the neck. These contributions to the acoustic absorp-
tion are generally accounted for by introducing end correction terms that have been determined
empirically (Guess, 1975) or numerically (Temiz et al., 2015). The quantitative analysis of the dis-
sipation rate presented here provides more detailed insight into the location and significance of
these dissipation mechanisms.

The second model considered is based on the classical Helmholtz equation combined with an
equivalent boundary condition developed by Berggren et al. (2018) that accounts for the visco-
thermal losses in the acoustic thermal and viscous boundary layers. This model is much cheaper
to solve compared to the LNSE since it is a scalar model and does not require to resolve the thermal
and viscous boundary layers in the finite element mesh.

Based on comparisons with experimental data, both models are able to predict accurately the
impedance. Despite its inherent simplifications (compared to the LNSE model), the approach
based on the Helmholtz equation and the equivalent boundary condition appears to provide re-
liable predictions both for macro- and micro-perforated plates. While this can be expected for
macro-perforates since most of the losses occurs along the walls of the perforation, this is more
unexpected for micro-perforates since the underlying assumption of the equivalent boundary con-
dition are not strictly satisfied. This is however consistent with the recent results on the use of this
model to predict losses occurring in porous materials (Cops et al., 2020).

In chapter 1, we came to the conclusion that the mode-matching model is incomplete as it does
not account for viscous edges effects. This conclusion is confirmed through the visualization of
the viscous dissipation rate in this chapter. In chapters 1 and 2, the physical mechanisms in the
linear regime were studied and different modeling approaches proposed. In chapter 3, we extend
our analysis to the non-linear regime, by studying and validating several semi-empirical models.
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Chapter 3

Impedance model in the non-linear
regime

In the previous chapters, the linear regime without flow was analyzed. In this chapter, our frame-
work extends to the non-linear regime without flow. The Guess (1975) model proposes a non-
linear impedance correction depending on the velocity in the perforations. However, this velocity
depends on the unknown impedance. In Beck et al. (2015) and in Laly et al. (2018b) an iterative
procedure is used. It allows to predict the impedance and the velocity in the perforations under
high sound pressure level. The model from Guess is modifed by implementing this procedure.
The latter model is compared to impedance tube measurements performed with either a white
noise source or a sine-swept source. The iterative procedure is adapted to the type of source and
reasonable to excellent agreement is found between both the models from Guess (1975) and Laly
et al. (2018b) and the measurements. We also compute the impedance without iteration using the
Guess model to show that using the iterative process is essential to get good predictions. Further-
more, our measurements were performed on various macro- and micro-perforated. Hence the
models can be compared to an important data set and their validity limit can be explored.

3.1 Introduction

Non-linear effects can occur for perforated liners at high sound pressure levels, which correspond
to important acoustic velocities in the hole. Extensive research has been conducted on this topic
since the early experimental work of Ingard et al. (1950), Ingard (1953) and Ingard et al. (1967).
Afterwards, more theoretical work followed with Zinn (1970) and Cummings et al. (1983). The
main result from their work is the fact that the jet formation and vortex shedding due to high
velocity amplitudes increases the resistance and decreases the reactance.

More recently, numerical methods allowed to simulate the acoustic response of perforates to
high sound amplitudes. To cite but a few, numerical simulations were performed in Roche et
al. (2009), Zhang et al. (2012), and in Scarpato (2014), which highlights the physical mechanisms
in the non-linear regime. In the latter works, the vortex shedding and the jet formation are clearly
visible. An interesting observation in Roche et al. (2009) is that the absorption coefficient increases
with the sound pressure level and decreases once a certain sound pressure is reached, depending
on the frequency and the geometrical parameters of the perforated plate.

In this chapter, we focus on the impedance modeling of the perforates in the non-linear regime
and how to improve the predictions of an existing model: the Guess (1975) semi-empirical model.
This model proposes an impedance prediction that depends on the acoustic velocity in the per-
forations. However, this velocity depends on the unknown impedance. To solve this non-linear
problem, the impedance and the velocity can be determined iteratively until convergence of both
quantities. This iterative method is used in Beck et al. (2015) and in Laly et al. (2018b) and shows
good agreement with measurements performed with a sine-swept source. Hence, we modify the
Guess model by implementing this procedure. Afterwards, the modified model is compared to
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measurements carried out for sound pressure levels up to Lp = 150 dB. Either a white noise or a
sine-swept source is used. The iterative procedure is adapted to account for the effective velocity
in the perforations, depending on the source type.

The remainder of this chapter is as follows. First, we describe the well-known model from
Guess (1975) in the non-linear regime. Second, a more recent model including an iterative pro-
cedure, based on the fluid equivalent approach from Laly et al. (2018b) is introduced. Third, the
iteration procedure, which is used for both models, is detailed. Finally, the models are compared
to impedance tube measurements at high sound pressure levels for macro- and micro-perforated
plates. This allows to assess the validity range of both models for micro- and macro-perforated
plates on a wide dataset. Additionally, we compute the impedance without iteration using the
Guess model to highlight the important prediction improvement brought by the iteration pro-
cedure. Measurements with a grazing incidence to the plate are also considered to extend the
predicting possibilities of the iterative approach.

3.2 The Guess model in the non-linear regime

In chapter 1, the model from Guess (1975) in the linear regime was compared to the mode-
matching model and impedance tube measurements. In this section, we introduce the model from
Guess including the non-linear effects depending on the acoustic velocity in the perforations. The
non-linearities are known to produce a coupling between frequencies (Ingard et al., 1967). Defin-
ing an impedance correction accounting for non-linear effects at a given frequency is not straight-
forward. In Guess (1975), the impact of the non-linearities on the impedance is predicted for a
specific frequency. In the following we briefly review how the corrections on the resistance and
the reactance in the Guess model are derived and how they can be interpreted.

Ingard et al. (1967) proposed a non-linear resistance correction based on an experimental in-
vestigation. Their experimental method is described and their modeling approach is reviewed.

A tube with a circular cross section is used. At one end of this tube, an acoustic driver is placed,
at the other end a single orifice plate is attached. The driver generates an acoustic pressure pcav
in the cavity formed by the tube, the driver and the orifice plate. This pressure is measured by a
microphone placed in the cavity wall. Ingard and Ising are able to measure the acoustic velocity
in the aperture using a hot-wire probe located at the center of the orifice. The sound pressure
level in the cavity varies from 120 dB to 157 dB in the cavity, which in this particular experimental
setup, corresponds to an acoustic peak velocity u0 in the neck varying from 2.7 m · s−1 to 41 m · s−1.
The graph showing u0 as a function of the pressure in the cavity present in Ingard et al. (1967) is
reproduced here in figure 3.1. It is clear that the relation between the pressure in the cavity and the
velocity depends on the pressure amplitude. For low amplitudes, this relation is linear (pcav ∝ u0:
dot-dashed line), and for high amplitudes it is quadratic (pcav ∝ u2

0: dashed line). The transition
between these two regimes occurs for u0 = 8.5 m · s−1, approximately.

Ingard et al. (1967) showed that for high sound pressure level, the impedance of a Helmholtz
resonator is dominated by the resistance which can be approximated by R ≈ ρ0u0. In doing
so, Ingard an Ising assumed that the resistance is frequency independent. This assumption was
validated by measuring the frequency dependence of the velocity u0, which confirmed that the
non-linear resistance is independent of the frequency when the orifice resistance at least equals
the orifice reactance.

For u0 > 8.5 m · s−1 and in order to propose a non-linear resistance correction, Ingard et
al. (1967) provided an interpretation of this behavior based on Bernoulli’s law in the time do-
main. The latter law is applied at the peak value of the velocity and the pressure, which are in
phase for high sound pressure levels. Assuming that the pressure in a perforation is close to the
average on both sides of this aperture, Ingard et al. (1967) derived the following expression of the
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FIGURE 3.1: Peak velocity in the orifice as a function of pressure amplitude in a
cavity at 150 Hz. This graph is reproduced from the data from Ingard et al. (1967).
The dashdotted and dashed line are least mean square fit to the experimental data.

non-linear resistance
Rnl =

pcav

u0
= ρ0u0(1− σ2). (3.1)

The non-linear resistance correction Rnl proposed by Ingard et al. (1967) is included in the
model from Guess such that

zGuess = zν +
2π2

σ

(
Rneck

λ

)2

+ j
(

ωδ

σc0
− cot (k0L)

)
+

1− σ2

σ

|urms|
c0

, (3.2)

where urms is the Root Mean Square (RMS) acoustic particle velocity in the neck at a given fre-
quency. The end-correction δ is further modified such that

δ =
16Rneck

3π

(
1− 0.7

√
σ
) 1 + 5 · 103M2

0

1 + 104M2
0

. (3.3)

Here, M0 = |urms|/c0 is the orifice Mach number. The term (1 + 5 · 103M2
0)/(1 + 104M2

0) results
from a fit proposed by Guess (1975) based on the analysis of Groeneweg (1969). It accounts for
the non-linear effects on the reactance. Groeneweg (1969) studied the experimental results from
Ingard (1953) and Ingard et al. (1967) to highlight the effect of pressure amplitude on δ for M0
up to 0.1. Two perforated plates configurations were treated with radius of 3.5 mm and 2.5 mm
at respectively 150 Hz and 229 Hz. Groeneweg (1969) highlighted the fact that the reactance end
correction decreases with growing orifice Mach number and that it reaches half the value of the
end correction for very low pressure amplitudes. A possible physical explanation to this by In-
gard et al. (1967), is that the inertia contribution at the exit of the perforation is removed when a
turbulent jet is present.

In Ingard et al. (1967), the measurements are performed on a single orifice with a radius of
3.5 mm. This radius is much higher than the perforation radius used in our measurements on
realistic perforated plates. Therefore, we wish to verify whether the expression of the non-linear
resistance in Guess (1975) if one knows the velocity at the surface of a perforated plate. Various
configurations with different porosities and perforation radii are considered, allowing to validate
the non-linear term in the Guess model for micro- and macro-perforated plates.

A way of proceeding to this validation consists in computing the porosity of a perforated plate
from impedance tube measurements performed with a white noise source. This porosity will be
referred to as the acoustic porosity σac. We recall that with a white noise source, the effective velocity
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at the surface of the plate corresponds to the RMS value of the velocities at each frequency. In the
following, the velocity that we consider at the surface of the plate when using a white noise source
is

urms =
√

∑
i

u2
e,i, (3.4)

where ue,i is the velocity at the frequency fi. urms is determined for a frequency varying from
400 Hz to 6400 Hz with 16 Hz steps. It is noteworthy that, in the following, the range on which we
look at the impedance is reduced, but the frequency range that defines urms is bounded between
400 and 6400 Hz. The relation between the acoustic pressure pmic at the farthest microphone from
the plate, and the acoustic pressure pe and the acoustic velocity ue,i at the surface of the plate is

pmic = pe cos(k0l) + ue,ijρ0c0 sin(k0l), (3.5)

where l is the distance between the microphone and the plate. Knowing the measured normalized
impedance at the surface of the plate z and using equation (3.5), the velocity at the surface of the
plate reads

ue,i =
pmic

ρ0c0 [z cos(k0l) + j sin(k0l)]
, (3.6)

where z = pe/ue,i.
The acoustic porosity can be determined by using the resistance from Guess in the non-linear

regime such that

ΘGuess = Θl +
1− σ2

ac
σ2

ac

|urms|
c0

. (3.7)

Here Θl = Re(zν) + 2π2R2
neck/(σλ2) is the linear resistance. Equation (3.7) shows that the resis-

tance increases linearly with the velocity with a slope aGuess = (1− σ2
ac)/σ2

ac. Hence, if we are
able to compute aGuess, σac can be determined. Impedance tube measurements are performed to
determine the averaged normalized resistance between 1504 Hz and 2992 Hz. The resistance is
observed to be constant on this frequency range. As the measurements are performed for a fre-
quency range between 400 Hz and 6400 Hz, the effective velocity at the surface of the liner urms
must be determined by the contribution of each frequency included in this range and not the
reduced range used to compute the average resistance.

The measurements are operated for five different pressure levels, namely at 120 dB, 130 dB,
140 dB, 145 dB and 150 dB. Therefore, a sufficient number of data points is obtained to compute
aGuess. The best fit to the straight line defined by equation (3.7) is calculated using the least mean
square method. We finally get

σac =

√
1

1 + aGuess
. (3.8)

The acoustic porosity is compared to the porosity characterized by optical measurements for
micro-perforated plates, or with a set of calibration standards for macro-perforated plates. This
comparison is repeated for 34 perforated plates with a porosity going from 1.4 % to 20 %, a radius
between 0.15 mm and 1.00 mm and a thickness going from 0.60 mm to 4.00 mm. The geometri-
cal parameters of each plate is detailed in Appendix C. Figure 3.2 shows a very good agreement
between the acoustic porosity and the characterized porosity especially for low porosity values.
However, we observe small discrepancies with increasing porosity. A possible explanation is that
for a high porosity, the velocity in the perforations decreases, therefore, for low sound pressure
level, the corresponding configurations might be in the linear regime and equation (3.7) might not
be valid.

The non-linear term from Ingard et al. (1967) is therefore validated for a wide range of perfo-
rated plates including micro-perforated liners, in the following detailed impedance comparisons
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FIGURE 3.2: Acoustic porosity as a function of the measured porosity for 34 config-
urations.

are performed between the predictions and the measurements.

3.3 Equivalent fluid model in the non-linear regime

In this section, we introduce a recent model accounting for the effect of high sound pressure levels
by Laly et al. (2018b). It uses the iterative procedure presented in section 3.4 on the velocity. In Laly
et al. (2018b), this model is compared to measurements with either a low radius (< 0.5 mm) or a
low porosity (< 5 %) but not both at the same time. In section 3.5, it is compared to measurements
completed on micro-perforated liners with low radius and low porosity, allowing to explore its
validity range further.

The equivalent fluid approach (Allard et al., 2009) is a method which allows to characterize a
material as an equivalent fluid by defining a complex density ρen(ω) and a complex compress-
ibility C(ω). A similar approach is used by Stinson (1991) for cylindrical perforations. The de-
gree of complexity of the equivalent fluid method was progressively improved from the Johnson-
Champoux-Allard (JCA) approach which accounts for viscous and inertial effects. Thereafter the
thermal effects where added in the model from Johnson-Champoux-Allard-Lafarge (JCAL). For
all three methods, the main assumptions are that the wavelength is much greater than the charac-
teristic length of the material, i.e. the pore size, that the separation of spatial scale is important and
that the skeleton is rigid. These assumptions must be verified to apply the homogenization theory
to the considered material and to define several physical parameters such as the resistivity and
the tortuosity, defined further below. Note that this methods are mostly used for porous materials
but to other geometries if the previous assumptions are verified (Zieliński et al., 2020).

In the linear regime, the JCA approach is used in Atalla et al. (2007) to characterize a plate with
sub-millimeter perforations. The fact that the perforation radius is small compared to the plate
thickness appears to verify the spatial scales separation and to validate the use of such model in
this context. Using this method, Atalla et al. (2007) are able to retrieve the impedance predicted by
existing models for perforated liners.

More recently, an extension of the model was developped in Atalla et al. (2007) to account for
non-linear effects. The non-linear resistance term from Zinn (1970) and the non-linear reactance
term from Maa (1994) are used for that purpose. This model will be compared to measurements
on both micro- and macro-perforated plates to assess its validity range. We recall that for macro-
perforated plates, the spatial scales separation is not guaranteed to be verified.

In this section, we describe this model and highlight its main characteristics. The resistivity
of the fluid represents the resistance encountered by a particle in the fluid and is defined as a
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function of urms such that

Rt =
8µ

σΛ2 + β
ρ0(1− σ2)

πhσC2
D

√
2urms, (3.9)

where Λ = Rneck, β = 1.6 is a constant value and CD is the discharge coefficient varying between
0.6 and 0.8. In the following we use CD = 0.76 (Laly et al., 2018a). The term 8µ/(σΛ2) can be found
in Guess (1975) and represents a low-frequency approximation of the visco-inertial impedance of
a circular aperture from Zwikker et al. (1949) in the linear regime. The right term with a urms
dependence is derived using the non-linear resistance from Zinn (1970) of a Helmholtz resonator
defined as

ΘZinn =
4

3π

1− σ2

σc0C2
D

√
2urms. (3.10)

The main difference between the non-linear resistance defined by Ingard et al. (1967) (equation
(3.2)) and that defined by Zinn (1970) (equation (3.10)) is the fact that Zinn accounts explicitly for
the vena contracta effect, which results in the appearance of the discharge coefficient CD. The vena
contracta effect corresponds to the reduction of the effective cross section area of the orifice for high
velocity amplitudes.

The tortuosity represents the length of the path followed by a particle compared to the shortest
possible path. The non-linear tortuosity α∞nl is defined with

α∞nl = 1 +
2εenl

h
, (3.11)

where εenl is a correction length accounting for the non-linear effects and interaction between
perforations

εenl =
Ψ

1 +

√
2urms

σc0

0.48
√

πΛ2

[
8

∑
n=0

an
(√

σ
)n
]

. (3.12)

Here, Ψ is set to 4/3 and the coefficients an are defined by a0 = 1.0, a1 = −1.4092, a2 =
0.0, a3 = 0.33818, a4 = 0.0, a5 = 0.06793, a6 = −0.02287, a7 = 0.003015, a8 =
−0.01614. These coefficients correspond to the Fok’s function (Fok, 1941) accounting for hole
interaction effects. The term 1/ [1 + u0/(σc0)] accounts for the non-linear effects (Maa, 1994). The
latter term appears to be consistent with the fact that the length correction decreases with an in-
creasing acoustic velocity in the perforations (Groeneweg, 1969).

Finally, the effective density (Laly et al., 2018a) is defined from the resistivity and tortuosity
expressions

ρen(ω) = ρ0α∞nl

(
1 +

Rtσ

jωρ0α∞nl

√
1 +

4jρ0ωµα2
∞nl

σ2R2
t Λ2

)
. (3.13)

This equivalent density accounts for visco-inertial effects in the linear regime and non-linear ef-
fects. The normalized impedance of a micro-perforated plate zMPP is retrieved using the following
expression:

zMPP = j
ωh

σρ0c0
ρen(ω). (3.14)

Finally the normalized impedance of the liner including the cavity reactance is given by

zLaly = zMPP − j cot (k0L) . (3.15)

In the linear regime, the model from Laly et al. (2018a) accounts for the same physical mecha-
nisms as in Guess (1975). Hence, in this regime, both models should provide the same impedance
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predictions when considering micro-perforated plates. In the non-linear regime, these models ac-
count differently for the impact of the acoustic velocity on both the resistance and the reactance.
In Laly et al. (2018a), the vena contracta effect is taken into account. Therefore, different predictions
are expected. It is noteworthy that, in the linear regime, the model from Laly et al. is expected
to be more accurate for micro-perforated liners than for macro-perforated liners. However, as the
non-linear resistance contribution is much greater than the linear resistance, this lack of accuracy
should be mitigated.

3.4 Computation of the acoustic velocity

In the non-linear regime, the impedance z of the liner is strongly dependent on the velocity in the
perforations and conversely. In the case of a plane wave with a normal incidence to the plate, the
velocity urms can be expressed as

urms =
pref10Lp/20

ρ0c0|z|σ
, (3.16)

in which pref = 2 · 10−5 Pa is the reference pressure and Lp is the sound pressure level in dB.
As the impedance is unknown, a first approach consists in using the air normalized impedance

z = 1 to approximate the value of urms. In section 3.5, this method is used with the Guess model
to highlight the relevance of the iteration procedure in the non-linear regime.

Indeed, another way to determine the impedance and the acoustic velocity in the perforation
is to use an iteration procedure (Beck et al. (2015) and Laly et al. (2018b)). This method consists in
first finding a solution to equation (3.16) by a first definition of urms in equation (3.2) (Guess) or
equation (3.15), to compute the impedance. This will give a new value of urms to be used again in
equation (3.2) or (3.15). This procedure is repeated until the acoustic velocity converges, i.e. when
the difference between two successive iterated velocities is below a prescribed tolerance (here we
use 10−7 m · s−1). The number of iteration is below 30 for the configurations used here, it results
in a very low computation time.

This iteration procedure can be adapted when either a sine-swept or a white noise source is
used in impedance tube measurements. In the case of a sine-swept source, the sound pressure
level at the surface of the sample remains the same for all frequencies. Furthermore, the effective
velocity at the surface of the liner depends on the frequency. Hence the iteration procedure must
be done for each frequency.

In the case of white noise source, the effective velocity at the surface of the plate corresponds to
urms, which is formed by the velocity contribution from each frequency (Rice, 1971), consistently
with equation (3.4). This method allows to issue a single velocity to represent the whole frequency
spectrum. As the non-linear resistance strongly depends on the acoustic velocity, it is expected to
be uniform with frequency when using a white noise source. Thus, the iteration procedure is
performed on urms and the impedance of the whole frequency spectrum.

In the linear regime, small differences are observed on the measured impedance when either
a white noise or a sine-swept source is used. However, in the non-linear regime, the measured
resistance is substantially different. This aspect is further discussed in the following comparisons
with measurements.

3.5 Comparisons with impedance tube measurements

In order to validate the modified model from Guess (1975) with iterations, impedance tube mea-
surements in the non-linear regime are performed. The model from Laly et al. (2018b) with iter-
ations on the velocity is also compared to the measurements to explore its validity range on the
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sample presented below. 3 perforated plates are tested at Lp = 130 dB and 150 dB at the surface of
the sample. The geometrical parameters for each configuration are detailed in table 3.1.

Configuration σ (%) Rneck (mm) h (mm) L (mm)

1 (macro) 10 0.8 1.50 16 (sine-swept), 19 (white noise)
2 (micro) 4.2 0.15 0.6 19
3 (micro) 1.4 0.15 0.6 19

TABLE 3.1: Perforated plate configurations.

Configuration 1 is a macro-perforated plate with a high porosity. Configuration 2 and con-
figuration 3 are micro-perforated plates with a high and a low porosity, respectively. In Laly et
al. (2018a), the equivalent fluid model was compared to impedance measurements in the non-
linear regime for configurations having either a small porosity or a small perforation radius, but
not both at the same time. Therefore, by measuring the impedance of configuration 3, we will be
able to extend the assessment of the validity domain of the model from Laly et al. and the Guess
modified model.

In the following, the normalized resistance Re(z), the normalized plate reactance Im(z) +
cot (k0L), the velocity and the absorption coefficient are plotted against frequency. The absorp-
tion coefficient reads

α = 1−
∣∣∣∣
z− 1
z + 1

∣∣∣∣
2

. (3.17)

Both the case of the sine-swept source and a white noise source are treated for a frequency range
between 500 Hz and 5000 Hz.

3.5.1 Sine-swept source

Figure 3.3 corresponds to macro-perforated configuration 1 at a sound pressure level of 130 dB
and 150 dB, respectively. Both iterative models correctly predict the impedance between 1800 Hz
and 5000 Hz. Below 1800 Hz, important discrepancies are observed between the predictions and
the measurements. However, the resistance predictions from the Guess model appear to be more
accurate than those of the model from Laly et al. This limited lack of accuracy from the equivalent
fluid model may be explained by the fact that, when considering a macro-perforated liner, the
spatial scales separation may not be sufficient for the model to be valid. This would result in poor
predictions of the linear resistance at high frequency.

It is worth noting that velocity predictions of both models are very close and accurate and
that the main differences between the models are observed on the normalized resistance. This is
consistent with the fact that the same formula (equation (3.16)) is used to compute the velocity
for both models and that the non-linear resistance term is different. Accounting for the vena con-
tracta effect in the model from Laly et al. (2018a) appears to have a limited impact on the overall
resistance when compared to the resistance prediction from Guess (1975).

The plate reactance predictions from both models are very close and are very accurate close
to the resonance frequency. The resistance also appears to be more accurately predicted close
to the resonance frequency. This is consistent with the fact that at the resonance frequency, the
impedance is purely resistive and the underlying assumption of the non-linear resistance term is
more accurate (Ingard et al., 1967).

The absorption coefficient appears to be very well predicted by both models although it is not
the case of the impedance on the whole frequency range. Therefore, one might be careful not to
assess the accuracy of the models looking at the absorption coefficient only.
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The resistance predicted without iteration is of the same order of magnitude as the measured
resistance but its shape is totally different. The resistance bump close to resonance frequency
cannot be captured without iteration. A bump is also visible on the plate reactance and is well
described by the iteration procedure.



52 Chapter 3. Impedance model in the non-linear regime

2 4
0.0

0.2

0.4

0.6

0.8

frequency [kHz]

R
e(

z)

Lp = 130 dB

2 4
0.0

0.2

0.4

0.6

0.8

frequency [kHz]

R
e(

z)

Lp = 150 dB

2 4

0.0

1.0

2.0

3.0

frequency [kHz]

Im
(z
)
+

co
t(

k 0
L)

2 4

0.0

1.0

2.0

3.0

frequency [kHz]

Im
(z
)
+

co
t(

k 0
L)

2 4
0.0
0.2
0.4
0.6
0.8
1.0

frequency [kHz]

α

2 4
0.0
0.2
0.4
0.6
0.8
1.0

frequency [kHz]

α

Measurement Guess without iteration Guess with iteration Laly et al.

2 4
0.0

10.0

20.0

frequency [kHz]

u r
m

s
[ m

·s
−

1]

2 4
0.0

10.0

20.0

frequency [kHz]

u r
m

s
[ m

·s
−

1]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3.3: (a) Normalized resistance, (c) normalized plate reactance, (e) absorption
coefficient and (g) velocity in a perforation of a macro-perforated configuration 1

using a sine-swept source at 130 dB. (b), (d), (f) and (h): same graphs at 150 dB.

We now look at the micro-perforated configuration 2 (figure 3.4). Without iterations, the re-
sistance is overestimated by 100% at Lp = 150 dB. At Lp = 130 dB it is of the correct order of
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magnitude but not of the correct shape. In this case, we can see that the iterations have a limited
impact on the reactance prediction when considering the Guess model.

Globally, the predictions from the modified Guess model are also in good agreement with
measurements. The most important discrepancies are observed on the velocity at 150 dB which is
underestimated, and the resistance which is overestimated by both iterative models. Again, the
absorption coefficient is very well predicted. In the following, we will see that the predicted α
shows good correspondence with all the measurements performed in this chapter.

At 130 dB the model from Laly et al. is more accurate than the Guess modified model and
is able to capture the plate reactance bump close to the resonance frequency. At 150 dB, the
model from Guess is slightly more accurate than the equivalent fluid model. As expected (Groe-
neweg, 1969), the measured plate reactance decreases when the sound pressure level increases.
This is also the case of the computed reactances. We can observe that the reactance discrepancy
between the two models increases at 150 dB. At the latter sound pressure level, the reactance
predicted by the Laly et al.model is more accurate.
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FIGURE 3.4: (a) Normalized resistance, (c) normalized plate reactance, (e) absorption
coefficient and (g) velocity in a perforation of a micro-perforated configuration 2

using a sine-swept source at 130 dB. (b), (d), (f) and (h): same graphs at 150 dB.
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The results of micro-perforated configuration 3 (figure 3.5) shows similar tendencies than con-
figuration 2 in terms of the accuracy of the iterative impedance models. At both sound pressure
levels, the reactance predicted by Guess appears to be more accurate than the reactance modeled
by Laly et al.

Without iterations the resistance is overestimated at Lp = 130 dB and highly overestimated at
Lp = 150 dB. The plate reactance remains in good agreement with the measurements.

At Lp = 150 dB, the velocity oscillates around a constant value of 20 m · s−1. However the
resistance decreases drastically. This behavior differs from configuration 1 and 2, for which the re-
sistance follows the same trend as the acoustic velocity. Also, the absorption coefficient decreases
significantly when passing from Lp = 130 dB to Lp = 150 dB. Such phenomenon is observed in
Roche et al. (2009) with axi-symetrical Direct Numerical Simulations (DNS) of perforated liners.
According to Roche et al. (2009), a possible explanation is that the efficiency of a perforated liner
is reduced by the non-linear dissipation mechanisms involving vortices at the entrances of the
apertures.
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FIGURE 3.5: (a) Normalized resistance, (c) normalized plate reactance, (e) absorption
coefficient and (g) velocity in a perforation of a micro-perforated configuration 3

using a sine-swept source at 130 dB. (b), (d), (f) and (h): same graphs at 150 dB.
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3.5.2 White noise source

In the case of a white noise source, we recall that the effective acoustic velocity at the surface of
the plate corresponds to urms, which is determined on the frequency range going from 400 Hz to
6400 Hz. However, the following model and measurement comparisons are made for a frequency
between 500 Hz and 5000 Hz.

Figure 3.6 shows the results obtained with the macro-perforated configuration 1. The mea-
sured normalized resistance is uniform with frequency on a majority of the frequency range. This
is consistent with the fact that the effective velocity at the surface of the liner remains constant
for every frequency. We note that the measured resistance is very high at 500 Hz and rapidly
stabilizes. This is also the case of the plate reactance. This phenomenon is also observed on the
sine-swept source measurements and is not captured by the models.

From figure 3.6 to 3.8, the impedance computed without iterations is the same as in the pre-
vious section. The resistance is still overestimated for configuration 2 and 3, especially at Lp =
150 dB but its shape is correct as the resistance remains flat when using a white noise source. For
configuration 1, we can see that the resistance computed with the air impedance is rather accurate
at both sound pressure levels. The plate reactance is correctly predicted without iterations.

The resistance predicted by the model from Laly et al. is constant with frequency at both 130 dB
and 150 dB. On the other hand, the modified Guess model predicts an increase of the resistance
with increasing frequency and appears to be more accurate than the equivalent fluid model in that
sense.

With iterations, the predicted reactances are very similar and in good agreement with measure-
ments at both sound pressure levels. The measured reactance remains almost the same for both
values of Lp although an inflection can be observed after 4 kHz. The latter phenomenon is also
observed when considering configuration 2 and 3, both on the resistance and the reactance, espe-
cially at a sound pressure levels of 150 dB. Unfortunately, we have no clear physical explanation
for this observation.

The computed and measured velocity values are indicated in table 3.2 for Lp = 130 dB and
in table 3.3 for Lp = 150 dB. The computed velocities (urms,Laly and urms,Guess), and the measured
velocities (urms,m) are of the same order of magnitude. However, we note that the measured ve-
locity is systemically overestimated by both models. Less than 30 iterations are needed to reach
convergence for every configuration. Just as for the sine-swept source case, a few seconds are
needed to compute the impedance and the velocity. The worst velocity prediction is observed for
configuration 1 at Lp = 130 dB. This might indicate that both non-linear models are valid at a min-
imum velocity value, which is consistent with Ingard et al. (1967) where the linear to non-linear
transition is around a peak velocity of 8.5 m · s−1. In Temiz et al. (2016) a criteria on the Strouhal
number in the perforations St = 2ωRneck/

∣∣∣
√

2urms

∣∣∣ is proposed to characterize the behavior of
the liner. If St > 1, the behavior is linear, if St = O(1) we are in the transition regime and if
St � 1 the regime is strongly non-linear. For configuration 1 at 500 Hz, the measured value of St
is 2.31. Hence, we are close to the transition regime at low frequency for this configuration, and
the non-linear model might not be applicable in this situation.

Configuration urms,m urms,Guess urms,Laly

1 (macro) 1.54 2.61 2.98
2 (micro) 2.22 3.07 3.38
3 (micro) 2.55 3.32 2.70

TABLE 3.2: Measured and computed urms in m · s−1 at 130 dB.
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Configuration urms,m urms,Guess urms,Laly

1 (macro) 11.90 14.47 14.13
2 (micro) 15.03 17.08 16.89
3 (micro) 16.60 17.86 17.80

TABLE 3.3: Measured and computed urms in m · s−1 at 150 dB.
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FIGURE 3.6: (a) Normalized resistance, (c) normalized plate reactance and (e) ab-
sorption coefficient of a macro-perforated configuration 1 using a white noise source

at 130 dB. (b), (d), (f): same results at 150 dB.
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In figure 3.7, the normalized resistance is overestimated at 150 dB, this was already the case
when a sine-swept source was used. At both Lp, the plate reactance and the resistance appear to
be predicted more accurately by the model from Laly et al. (2018b). The measured plate reactance
decreases with the sound pressure level, as expected. The absorption is misleading in the case as
well.
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FIGURE 3.7: (a) Normalized resistance, (c) normalized plate reactance and (e) ab-
sorption coefficient of a macro-perforated configuration 2 using a white noise source

at 130 dB. (b), (d), (f): same results at 150 dB.

For configuration 3 (figure 3.8) the resistance is again overestimated at 150 dB when using
iterations but is relatively much more accurate than the resistance computed without iterations.
For this sound pressure level, we can see that the resistance decreases from 500 Hz to 4000 Hz and
then stabilizes. On the measurements, the inflection observable at 4000 Hz is particularly visible.
This phenomenon is more pronounced with higher velocities. It can be noted that, among the
three configurations treated here, the porosity of configuration 3 is the smallest and the measured
velocity is the highest.
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FIGURE 3.8: (a) Normalized resistance, (c) normalized plate reactance and (e) ab-
sorption coefficient of a macro-perforated configuration 2 using a white noise source

at 130 dB. (b), (d), (f): same results at 150 dB.

Globally, when passing from a sine-swept source to a white noise source, the resistance is im-
pacted drastically as the effective velocity changes. The plate reactance has a similar behavior
with both sources. The predictions from Guess (1975) with iterations and Laly et al. (2018a) are
accurate when considering the macro-perforated configuration 1. The impedance models are less
accurate when studying the micro-perforated configuration 2 and 3 but still provide a very reason-
able agreement with the measurements. Accounting for the vena contracta seems to have a limited
impact on the impedance and velocity predictions. In terms of the acoustic velocity in the perfo-
ration, the validity limits of both models appear to be close to 15 m · s−1 for the micro-perforated
plate presented here. When using a sine-swept source it was closer to 20 m · s−1. A dedicated
investigation is needed to refine and understand these validity limits.

Using the iteration procedure is essential to obtain a good agreement between the Guess model
and the measurements. This is particularly true when the effective velocity in the perforation is
important, i.e. when the radius and the porosity are reduced and the sound pressure level is
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increased. Additionally, the iterations allows to obtain the correct shape for the resistance when
using a sine-swept source.

3.6 Comparisons with impedance measurements with a grazing inci-
dence

So far, the modified model from Guess (1975) and the model from Laly et al. (2018a) have been
compared to measurements performed with a plane wave with a normal incidence. In view of
comparisons with flow in chapter 4, we compare the model to measurements carried out with
a grazing incidence to the plate on the MACIA test bench. In figure 3.9, a schematic of the rig
is presented. Note that this rig is designed to measure the impedance of perforated plates un-
der grazing flow. However, in the following description we focus on the source and test section
sections.

The source section is composed of 33 compression chambers. The test section is mounted
next to the source section and is of dimensions 52.2 mm× 80 mm× 1.7 m. A cylindrical cavity of
diameter 25 mm and height 21.1 mm is mounted on the test section. The cut-on frequency of the
first non-plane mode is 3983 Hz approximately. The tests samples are of diameter 50 mm. They
are perforated on a 25 mm radius and the remaining non perforated crown is used to place the
plate on the sample holder on the cavity.

The method from Dean (1974) is used, which means that the pressure is measured at the sur-
face of the sample and the bottom of the cavity in order to get the surface impedance of the perfo-
rate. To that purpose, the sample are perforated in their center to place a 1/8′′ microphone. Two
1/8′′ microphones are mounted at the bottom of the cavity and the effective pressure is taken as
the average pressure of both microphones.

33 sources

Source section

Measurement cavity (φ = 25 mm)

Test section 52.2 mm × 80 mm × 1.7 m

FIGURE 3.9: MACIA test bench designed to perform measurements with a grazing
flow.

The measurements are performed between 600 Hz and 3300 Hz at Lp = 130 dB and between
600 Hz and 2200 Hz at Lp = 150 dB using the two microphones method (Dean, 1974). A sine-swept
source is used.

Two micro-perforated configurations. Table 3.4 shows the geometrical parameters of both
plates verified by optical measurements. Configuration 4 has a high porosity and configuration 5
has a low porosity.
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Configuration 2Rneck/h σ (%)

4 0.62 6.30
5 0.23 1.87

TABLE 3.4: Perforated plate configurations for the grazing incidence measurements.
The values of Rneck and h are not given for confidentiality reasons.

Despite the fact that the incidence is not normal to the plate, the velocity is computed in the
same manner as for the previous measurements, performed with a normal incidence. Hence we
make the assumption that the velocity in the perforation does not depend on the angle of incidence
of the plane wave. One could argue this hypothesis is correct as only the plane wave propagates
in the perforations but it as not been verified thus far.

Figures 3.10 and 3.11 compare the normalized resistance, the normalized plate reactance, the
absorption coefficient and the velocity in the perforations for the two configurations at Lp =
130 dB and Lp = 150 dB.

Regarding configuration 4, the resistance is accurately predicted by both iterative models at
both sound pressure levels. The plate reactance is slightly overestimated by the modified Guess
model. The acoustic velocity in the perforations is surprisingly very accurately predicted consid-
ering the grazing incidence of the plane wave.

The resistance predictions underestimate the measured resistance of configuration 5 after the
resonance bump at Lp = 130 dB. At Lp = 150 dB, small discrepancies can be observed between
the iterative models and the measurement. At both sound pressure levels, the plate reactance is
slightly overestimated by the modified Guess model. Here again the velocity is very well pre-
dicted.

From the previous comparisons, it appears that both iterative non-linear models are applicable
to micro-perforated liners under high sound pressure levels with a propagation of the plane wave
tangent to the perforate. In this section, the measured frequency range was quite restrained. A
possible perspective would be to perform similar measurements with a wider frequency range.
However, this can not be done on the current experimental set-up as we need to ensure the plane
wave propagation only.

3.7 Conclusion

The model from Guess (1975) includes a non-linear term depending on the acoustic velocity in
the perforation. As this velocity is unknown, a common practice is to evaluate the non-linear
impedance using the air impedance to estimate the velocity. This assumption provides reasonable
results on our macro-perforated configuration at Lp = 130 dB and Lp = 150 dB. It was inaccurate
for the micro-perforated configurations as it significantly overestimate the resistance. This is espe-
cially true for lower values of Rneck and σ and greater values of Lp, i.e. when the acoustic velocity
in the perforations is significant. When a sine-swept source is used, the model without iterations
is completely inaccurate as it cannot predict the correct shape for the resistance.

We modified the model from Guess (1975) with an iteration procedure used in Laly et
al. (2018b) and Beck et al. (2015). This method is adapted to a sine-swept source and to white
noise source. When comparing the modified Guess model to the measurements, the resistance
predictions are drastically improved for macro- and micro-perforated plates. The iteration proce-
dure has a minor impact on the plate reactance. The iterations are demonstrated to be essential
and to be applicable to a standard model such as the Guess model, which may bring perspectives
to improve any existing semi-empirical models in the non-linear regime.
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FIGURE 3.10: (a) Normalized resistance, (c) normalized plate reactance, (e) absorp-
tion coefficient and (g) velocity in a perforation of a macro-perforated configuration

4 using a sine-swept source at 130 dB. (b), (d), (f) and (h): same graphs for 150 dB.
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FIGURE 3.11: (a) Normalized resistance, (c) normalized plate reactance, (e) absorp-
tion coefficient and (g) velocity in a perforation of a macro-perforated configuration

5 using a sine-swept source at 130 dB. (b), (d), (f) and (h): same graphs for 150 dB.
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The model from Laly et al. is also shown to be in good agreement with our measurements on
micro-perforated liners. Its validity range may therefore be extended to perforates having both a
low perforation radius and a low porosity.

Globally, the equivalent fluid model from Laly et al. and the modified Guess model provide
similar predictions, although the model from Laly et al. (2018a) appears to be slightly less accurate
than the Guess (1975) model. This is expected as the equivalent fluid approach is more accurate
when the spatial scales separation is important. Moreover, accounting for the vena contracta effect
through a discharge coefficient (Laly et al., 2018a) has a limited impact on the predictions.

Additionally, good correspondence is observed between the grazing incidence measurements
and the iterative models. As the same expression is used to compute the velocity for the normal
and grazing incidence measurements, this suggests that the angle of incidence has a very limited
impact on the velocity in the perforations. A possible explanation is that only the plane wave
propagates in the perforations. In all cases, these results are encouraging for impedance predic-
tions when a grazing flow to the perforated plate is present. In the next chapter, measurements
are performed with a grazing flow and compared to semi-empirical models.
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Chapter 4

Impact of the grazing flow on the
impedance

In the non-linear regime with grazing flow, the model from Guess (1975) modified with the itera-
tion procedure as discussed in the previous chapter is used. Now, the grazing flow effect on the
impedance is investigated. The previous model is further modified by accounting for the grazing
flow effect using the correction proposed by Meng et al. (2019). In both models, an empirical factor
is identified based on the measured data for Mach numbers between 0.3 and 0.45, typical regimes
encountered in jet engines. The sound pressure level goes up to Lp = 150 dB. The dependence of
this empirical parameter with several factors is discussed.

4.1 Introduction

In the previous chapters of this thesis, the linear and non-linear phenomenon occurring in per-
forated plate liners were investigated and modeled. The last, but not the least, effect to account
for is the impact of a grazing flow on the liner impedance. In Cummings (1986), impedance mea-
surements of an orifice submitted to a tangential flow were performed. In Howe et al. (1996), the
effect of grazing flow on the Rayleigh conductivity and the impedance of an aperture was in-
vestigated analytically considering the continuity of normal displacement across the shear layer.
In Jing et al. (2001), the theory from Howe et al. (1996) was adapted to enforce the continuity of
normal velocity instead of the continuity of displacement. In Jing et al. (2001), the two approaches
were referred to as the Particle Displacement Match (PDM) and the Particle Velocity Match (PVM).
Good correspondence with measurements was observed when using the PVM for Mach numbers
up to M = 0.15. Peat et al. (2003) compared the PDM and the PVM to measurements and obtained
good agreement when considering the resistance.

More recently, Marx et al. (2010) used the Particle Image Velocimetry (PIV) to demonstrate the
presence of hydrodynamic instability over a liner. This effect is also highlighted using numerical
methods in Fabre et al. (2020). From an impedance modeling point of view, the main trend is that
when a flow tangential to a liner is present, the resistance increases, and the reactance decreases.
The semi-empirical model from Guess (1975) includes a resistance term and an end-correction on
the reactance accounting for the grazing flow effect. This model is based on the experimental work
conducted in Ingard (1968). Recently, Meng et al. (2019) introduced a model based on the PVM
which was compared to measurements for a maximum Mach number of 0.15. In both models, a
semi-empirical factor is introduced. In Guess (1975), it is proportional to the velocity fluctuation
in the perforations caused by a turbulent boundary layer. In Meng et al. (2019), it corresponds to
the convection speed of vorticity above the apertures.

In this chapter, both models are revisited. The model from Guess (1975) is further modified
to account for the grazing flow effect using the modelling proposed by Meng et al. (2019) instead
of Ingard (1968). Then, the models are compared to impedance measurements with flow using
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the two microphones method (Dean, 1974) on a data set of 21 perforated plate samples for Mach
numbers up to 0.45.

The empirical parameters are educed from the measured resistance. This allows to extract the
trends of the velocity fluctuation and the convection speed of vorticity depending on the charac-
teristics of the plate and of the grazing flow.

The quality of the fit is discussed as well as the physical meaning of the empirical parameters.
The trend of these parameters observed in Meng et al. (2019) is confirmed and appears to remain
the same at higher Mach numbers. The same trend is obtained in Yu et al. (2008). An empirical
function is proposed to refine the resistance prediction under a grazing flow with the model from
Guess (1975).

Finally, we conclude on the predictive possibilities offered by these models. We namely discuss
if a recommendation of the values of the empirical parameters, based on the geometry and the
physical characteristics of the shear flow, is possible.

4.2 Semi-empirical impedance models with grazing flow

4.2.1 Guess model with flow

The model from Guess (1975) including non-linear effects and grazing flow effects is recalled. The
expression of the impedance becomes

zGuess = zν +
2π2

σ

(
Rneck

λ

)2

+ j
[

ωδ

σc0
− cot (k0L)

]
+

1− σ2

σ

( |urms|
c0

+
|v|
c0

)
, (4.1)

where where |v| is an estimate of the magnitude of the turbulent velocity fluctuation in the perfo-
rations due to a turbulent boundary layer at the frequency of interest. The term |v| /c0 is derived
experimentally in Ingard et al. (1967) and in Ingard (1968) by considering a superimposed steady
flow through the perforation. Ingard and Ising bring the following physical explanation. The tur-
bulent boundary layer located at the surface of the perforated plate produces a fluctuating flow
through the perforation which is superimposed on the acoustic fluctuations. They assume that the
turbulent velocity fluctuations occur at a frequency much lower than the acoustic velocity fluctu-
ations and therefore act as a quasi-steady flow through the perforations. Hence, the impact of a
grazing flow on the impedance is considered to be the same as the effect of the acoustic velocity.
This leads to the fact the acoustic velocity and the turbulent velocity are simply added in equation
(4.1).

An approximation of |v| /c0 is used by Guess, based on the experimental data from Feder et
al. (1969) such that

|v|
c0
∼ kGuessM, (4.2)

where kGuess = 0.3 is an empirical coefficient determined experimentally which is supposed to
increase with growing boundary layer thickness. In Allam et al. (2011), a value of 0.15 is used for
perforated liners with a hole diameter of 1 mm, a thickness of 1 mm and for a porosity of either
0.5 %, 1 % or 2 % with a Mach number up to 0.15. It is noteworthy that this model does implicitly
account for the boundary layer thickness effect on the resistance through the choice of the empir-
ical parameter kGuess. In the following this parameter is educed from resistance measurements.

The reactance end correction δ is modified to account for the grazing flow effects. It becomes

δ =
16Rneck

3π

(
1− 0.7

√
σ
) 1 + 5 · 103M2

0

1 + 104M2
0

1
1 + 305M3 (4.3)
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where M is the Mach number in the nominal flow. Here, 1/(1 + 305M3) is a multiplying correc-
tion factor determined experimentally which can be found in Groeneweg (1969) and Rice (1971).
According to the latter end correction, the reactance is supposed to decrease with increasing Mach
numbers.

4.2.2 Impedance correction proposed by Meng et al. (2019)

Meng et al. (2019) developed a semi-empirical impedance model for a circular perforation submit-
ted to a grazing flow using the Particle Velocity Match (PVM). The effect of the boundary layer
is taken into account through the convection speed ςMeng of vorticity in the shear layer above
the aperture. ςMeng is homogeneous to a Mach number, and is considered to be function of the
dimensionless boundary layer displacement thickness δ∗/Rneck.

The main assumptions of this model are that the Mach number is small enough such that
M < 0.3, and that the aperture is acoustically compact such that k0Rneck � 1. Meng et al. (2019)
considered that the impedance at low Mach number is the same as the impedance without grazing
flow, hence the impedance of a single aperture under a grazing flow ζE is defined by its real part

ΘE = max (ΘA, Θ0) (4.4)

and its imaginary part
χE = min (χA, χ0) . (4.5)

The impedance without grazing flow, denoted by a ·0 subscript reads

ζ0 = Θ0 − jχ0 = −jk0

(
16
3π

Rneck + h
)

. (4.6)

In equation (4.6), the reactance without flow χ0 accounts for the mass inertance of the orifice and
the radiation through the well-known length correction 16Rneck/(3π). When a grazing flow over
the orifice is considered, the asymptotic impedance is defined as

ζA = ΘA − jχA, (4.7)

where its real part reads

ΘA = C1ςM− (k0Rneck)
2

ςM
(
C2 + C3t + C4t2) , (4.8)

with t = h/Rneck. The imaginary part of ζA is

χA = k0 (C5Rneck + C6h) +
(k0Rneck)

3

ς2M2

(
C7 + C8t + C9t2 + C10t3) . (4.9)

The coefficients in equations (4.8) and (4.9) are determined by evaluating the solution of the par-
ticle velocity match, which is written assuming a small plate thickness. In this case, the PVM
is an integral equation which as no analytic solution. Hence, in Meng et al. (2019), it is solved
numerically for a circular aperture. The values of these parameters are

C1 = 0.94, C2 = 0.14, C3 = 0.29, C4 = 0.13, C5 = 1.26,
C6 = 0.48, C7 = 0.030, C8 = 0.060, C9 = 0.090, C10 = 0.029.

In equation (4.9), the term accounting for the orifice reactance and radiation is modified. The
end correction accounting for radiation is decreased, and the length of the orifice is multiplied by
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C6 = 0.48. This is consistent with the fact that the reactance is expected to decrease in the presence
of a grazing flow.

In Meng et al. (2019), the resistance and the reactance obtained with respectively equation (4.4)
and (4.5) are compared with the measurements from Jing et al. (2001) for the parameters listed in
table 4.1.

Rneck (mm) h (mm) 2Rneck/h k0Rneck ςMeng δ∗/Rneck

1.5 2.0 1.5 5.54 · 10−3 0.43 1.64
2.25 2.0 2.25 8.31 · 10−3 0.45 1.08
3.5 0.5 14 3.23 · 10−2 0.53 0.7
3.5 2.0 3.5 3.23 · 10−2 0.53 0.7

TABLE 4.1: Parameters of the measured configurations in Jing et al. (2001).

The Mach number varies from 0 to 0.15. Meng et al. fit the convection speed ςMeng to the mea-
sured resistance over this Mach number range of the 4 configurations of which the parameters
are listed in table 4.1. A good correspondence is obtained between the computed and measured
resistance. However, the reactance is underestimated. A possible cause proposed by Meng et
al. is that the viscosity and the interaction effect between the perforations is neglected. Interest-
ingly, in Meng et al. (2019), the convection speed is found to decrease with growing dimensionless
displacement thickness δ∗/Rneck, though only 3 data points are available.

In this section, we intend to modify the model from Guess (1975) by removing the terms ac-
counting for the grazing flow both on the resistance and the reactance. Then, we wish to account
for the flow effect using the semi-empirical model from Meng et al. (2019). The resulting model
will be referred to as the "hybrid Guess–Meng model". By doing so, we account for the linear and
non-linear effects using the model from Guess and we account for the impact of the grazing flow
using the correction from Meng et al. The experimental parameter is also identified from a more
complete dataset.

The normalized impedance from the hybrid model is

zGuess−Meng = zν +
2π2

σ

(
Rneck

λ

)2

+ j
(

ωδ

σc0
− cot (k0L)

)
+

1− σ2

σ

|u0|
c0

+ ΘMeng + jχMeng, (4.10)

where δ is now defined by

δ =
16Rneck

3π

(
1− 0.7

√
σ
) 1 + 5 · 103M2

0

1 + 104M2
0

. (4.11)

In order to account only for the grazing flow contribution when using the model from Meng et
al. (2019), the resistance correction is defined as

ΘMeng =
ΘE −Θ0

σ
, (4.12)

and the reactance correction is
χMeng =

χE − χ0

σ
. (4.13)

Equations (4.1) and (4.10) define two impedance models with flow from the work from
Guess (1975) and Meng et al. (2019). In the following, both models are compared with measure-
ments performed with a sine-swept source. In order to account for non-linear effects, the iteration
procedure on the acoustic velocity remains the same, except that the grazing flow effect is now
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(A) Complete test bench. (B) Source, convergent and test sections.

FIGURE 4.1: Photographs of the MACIA test bench.

Centrifugal fan

Divergent Silencers

Honeycomb Heat source

33 sources

Source section

Measurement cavity (φ = 25 mm)

Divergent

Test section 52.2 mm × 80 mm × 1.7 m

FIGURE 4.2: Schematic of the MACIA test bench.

accounted for. More importantly, the empirical parameters of both models, kGuess and ςMeng, are
educed from the measured resistance before the iterations. Hence, the acoustic velocity and the
impedance predictions are impacted by the choice of kGuess and ςMeng. A least-squares fitting is
used.

4.3 Experimental set-up

In this section, we describe the experimental set-up used to measure the impedance at the surface
of the liner in the presence of a grazing flow. The measurements were performed on the MACIA
test bench by the Centre de Transfert de Technologie du Mans (CTTM). Photographs of the rig are
shown on figure 4.1.

On figure 4.2, the rig is described with a schematic. It is composed of centrifugal fan followed
by a divergent. Next, a section includes silencers, honeycomb, and heat source. A convergent
allows to reduce the cross-section, followed by the source section. A total of 33 compression
chambers are installed. Following the source section, the test section is integrated, upon which
the cavity and the sample holder can be mounted. Finally, a divergent is placed at the end of the
rig.

The 2 microphones method from Dean (1974) is used to measure the impedance at the surface
of the perforated plate. Three 1/8” microphones are located in the cavity backing the perforate
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plate. One microphone is mounted flush to the surface of the plate, and the two other microphones
are mounted at the bottom of the cavity. The effective pressure at the bottom of the cavity is taken
as the average pressure of the two microphones. The diameter of the cavity is 25 mm, which
corresponds to a cut-on frequency of the first non plane mode of 3983 Hz approximately.

The cavity can be mounted in 3 different positions along the X axis of the duct defined on the
simplified schematic in figure 4.3. The origin of the X axis is placed at the end of the convergent,
which is the beginning of the test section. By changing the position of the cavity, different bound-
ary layer thicknesses are obtained above the perforated plate without changing any other param-
eters in the measurement. Hence the effect of the boundary layer thickness on the impedance can
be isolated. The position 1, 2 and 3 are located at, respectively, X = 50 mm, X = 550 mm and
X = 1050 mm.

Grazing flow
End of the convergent

Rectangular duct

•

Test sample

•

Cavity

•

Microphones

•

•

X

Z

(0, 0)

FIGURE 4.3: Simplified schematic to illustrate the measurement method from
Dean (1974).

The boundary layer displacement thickness δ∗ was measured through a Pitot probe at the 3
positions for several Mach numbers. The displacement values at the center of the sample are
available in table 4.2. We note that δ∗ remains almost constant with increasing Mach numbers,
except for M = 0.2 at position 1. During the aerodynamic characterization, the velocity profiles
as function of the Mach number were measured at the 3 positions in test section. It was reported
that the velocity profile at position 1 and M = 0.2 was fundamentally different from the other. By
investigating the shape factor, it was found that the flow is in the transition regime at position 1.
At M = 0.2 it is closer to be laminar, and at M = 0.6 it is closer to be turbulent. At position 2 and
3, the flow was reported to be turbulent at any Mach number. As expected, δ∗ is varying with the
position. Note that the Mach indicated in table 4.2 is the Mach number at the center.
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Position X (mm) δ∗ (mm) at M = 0.2; 0.3; 0.45; 0.6

1 50 0.3
2 550 2
3 1050 3

TABLE 4.2: Approximate values of the boundary layer displacement thickness at
different Mach numbers.

In the following, we look into the measurements performed at M = 0.3 and M = 0.45 in order
to remain in the same flow regime. Note that M = 0.45 is close to the Mach numbers found in the
industrial application such as turbofan nacelles.

4.4 Perforated plates

In total, the impedances of 21 perforated plates were measured in the rig presented above.
Their parameters are shown in table 4.3 in which the plates are classified in descending order
of 2Rneck/h. In the next sections, the latter ratio appears to have an important impact on the
impedance with flow. A sine-swept source is used with a frequency varying from 600 Hz to
2200 Hz. The sound pressure level at the surface of the plate is set to Lp = 150 dB and Lp = 130 dB,
which are realistic sound pressures in a jet engine.

Sample σ (%) 2Rneck/h

1 2.17 4.21
2 6.89 4.19
3 16.70 4.12
4 5.97 1.21
5 1.96 1.02
6 1.98 1.00
7 14.23 1.00
8 2.02 0.99
9 5.70 0.98
10 6.44 0.97
11 14.65 0.95
12 10.56 0.94
13 6.14 0.88
14 6.30 0.62
15 2.00 0.59
16 5.83 0.58
17 6.18 0.47
18 14.45 0.38
19 6.20 0.35
20 6.65 0.34
21 1.87 0.23

TABLE 4.3: Perforated plates geometrical parameters. The values of Rneck and h are
not given for confidentiality reasons.
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(A) Configuration 2. (B) Configuration 12. (C) Configuration 14. (D) Configuration 21.

(E) Configuration 2. (F) Configuration 12. (G) Configuration 14. (H) Configuration 21.

FIGURE 4.4: (A), (B), (C), (D) Photography of the perforated plates with the micro-
phone flush with the surface of the plate. Figures (E), (F), (G), (H) are a zoom on the

perforations without the microphone.

Among the 21 configurations, we operate detailed comparisons between the model previously
described and the measurements for 4 configurations. The chosen configurations correspond to
samples 2, 12, 14 and 21. The photographs in figure 4.4 shows the samples, which are discs of
diameter 5 cm of varying thicknesses. The perforation at the center of the discs allows to mount
the microphone flush to the surface of the plate. The perforations are circular. Note that the
perforations are distributed on a disc of diameter of 25 mm and that the outer non-perforated rim
is used to mount the perforated plate on the sample holder.

Configurations 2 and 12 are macro-perforated plates with, respectively, a low porosity and a
high porosity. Configuration 14 and 21 are micro-perforated plates with a high and a low porosity,
respectively.

4.5 Eduction of the empirical parameters from measurements

We now educe the empirical parameters kGuess and ςMeng from the measurements performed for
the 21 configurations. The calculated resistance is fitted on the measured resistance using the least
mean square method. In this section, we focus on the 4 configurations chosen in the previous
section to assess the quality of this fit for both impedance corrections.

This procedure is performed for the 3 positions in the vein, for 2 Mach numbers (M = 0.3
and M = 0.45) and two sound pressure levels (130 dB and 150 dB). However, as the impedance
measurements from positions 2 and 3 are similar, we do not plot the impedance from position 3
on the following graphs. Also, we only plot the results at Lp = 150 dB as their trends are similar
to the results at Lp = 130 dB. The values of the empirical parameters are provided in table 4.4
(kGuess) and in table 4.5 (ςMeng).
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Conf. 2 Conf. 12 Conf. 14 Conf. 21

M = 0.3, Lp = 130 dB, Position 1 0.47 0.34 0.21 0.14
M = 0.3, Lp = 130 dB, Position 2 0.31 0.26 0.16 0.11
M = 0.45, Lp = 130 dB, Position 1 0.48 0.30 0.23 0.14
M = 0.45, Lp = 130 dB, Position 2 0.33 0.25 0.17 0.12
M = 0.3, Lp = 150 dB, Position 1 0.44 0.35 0.20 0.08
M = 0.3, Lp = 150 dB, Position 2 0.29 0.25 0.14 0.05
M = 0.45, Lp = 150 dB, Position 1 0.48 0.35 0.26 0.11
M = 0.45, Lp = 150 dB, Position 2 0.32 0.26 0.16 0.08

TABLE 4.4: Educed values of kGuess for the 4 configurations at different Mach num-
ber, sound pressure level and position in the vein.

Conf. 2 Conf. 12 Conf. 14 Conf. 21

M = 0.3, Lp = 130 dB, Position 1 0.50 0.37 0.23 0.18
M = 0.3, Lp = 130 dB, Position 2 0.34 0.30 0.17 0.16
M = 0.45, Lp = 130 dB, Position 1 0.52 0.32 0.24 0.17
M = 0.45, Lp = 130 dB, Position 2 0.35 0.27 0.18 0.15
M = 0.3, Lp = 150 dB, Position 1 0.47 0.38 0.22 0.13
M = 0.3, Lp = 150 dB, Position 2 0.31 0.29 0.15 0.10
M = 0.45, Lp = 150 dB, Position 1 0.51 0.34 0.24 0.13
M = 0.45, Lp = 150 dB, Position 2 0.34 0.29 0.18 0.12

TABLE 4.5: Educed values of ςMeng for the 4 configurations at different Mach num-
ber, sound pressure level and position in the vein.

In Guess (1975), the choice of kGuess does not impact the reactance, hence it is plotted once
under the label Guess pos. 1. In the impedance correction from Meng et al. (2019), the choice of
ςMeng does impact the reactance, therefore it is plotted for both positions in the following graphs
with labels Meng et al. pos. 1 and Meng et al. pos. 2.

For each configuration, the normalized resistance Re(z) and the normalized plate reactance
Im(z) + cot(k0L) are plotted for M = 0.3 and M = 0.45. We consider that the resistance is fitted
and the reactance is predicted.

For all 4 configurations, the normalized resistance without flow is accurately fitted by the
Guess model for each plate. On the other hand, the normalized plate reactance appears to be
slightly overestimated. The impact of the boundary layer thickness is clearly visible on the re-
sistance. The resistance is higher at position 1, i.e. when the boundary layer is in the transition
regime. For position 2 and 3, i.e. when the boundary layer is turbulent, the resistance is lower
and remains almost the same even though the displacement boundary layer thickness is different.
Therefore, in the following comparisons, only the impedance for position 1 and 2 are plotted. For
position 1 to 3 the measurements provide similar plate reactance values.

It can be noted that, as the empirical parameters are accounted for during the iteration proce-
dure, it impacts the velocity in the perforations and changes the slope of the resistance and slightly
the slope of the reactance. This is important to fit correctly the resistance. Indeed, if the grazing
flow correction was added after the iteration procedure, it would simply shift the resistance with-
out flow without impacting its slope and the fit wouldn’t be as accurate.
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With flow, the fitted resistance of sample 2 (figure 4.5) is in very good agreement with the
measurements for the 2 positions and at both Mach numbers. The measured plate reactance de-
creases with growing Mach number as previously observed in previous experimental studies, for
instance in Jing et al. (2001). Although the measured plate reactance appears to be noisy, it is
correctly predicted by both models.

When considering configuration 12, the fitted resistance is in correct agreement with the mea-
surements. Small discrepancies are visible between the two models. The full Guess model pro-
vides a reasonable plate reactance predictions. The Guess–Meng model underestimates the mea-
sured reactance.

Figure 4.7 corresponds to sample number 14. Here, both models accurately fit the measured
resistance on both positions. Again, the plate reactance is underestimated by the hybrid model.

The fitted resistance from configuration 21 (figure 4.8) is in good correspondence with the
full Guess model. However, the Guess-Meng model is less accurate. A possible explanation to
this is the fact that when the porosity is low, the impact of the grazing flow on the resistance is
limited. Hence, only a small resistance correction is needed and small values of ςMeng and kGuess
are obtained. In the case of the sample number 21, ςMeng ≈ 0.15. For small values of the convection
speed, the grazing flow resistance (equation (4.8)) in the Guess–Meng model may become small
because of the important contribution of the term

− (k0Rneck)
2

ςMengM
(C2t + C3t + C4t2). (4.14)

This would be consistent with the fact that the fit obtained with the Guess–Meng model is
slightly better for a Mach number of M = 0.45 than for M = 0.3. This situation is not encountered
in Meng et al. (2019) in which the convection speed is close to 0.5. The measured plate reactance,
which appears not to be impacted by the grazing flow is acceptably predicted by the full Guess
model. Here again, it is underestimated by Meng et al. (2019).

In a global manner, the resistance fits appear to be better when using the full Guess model
rather than the hybrid Guess–Meng model. The reactance is also better predicted by the full
Guess model. The previous fits show that both models may be modified in order to be predictive
in presence of grazing flow. For that purpose, it is necessary to recommend a value of the empirical
parameters depending on the configuration. In the next section, this perspective is explored.

4.6 Discussion on the empirical parameters kGuess and ςMeng

In the previous section, the empirical parameters kGuess and ςMeng were educed from the mea-
sured resistance. Globally, the resistance obtained with both models is in good agreement with
measurements although the grazing flow correction proposed in the model from Guess (1975) is
more accurate than the correction from Meng et al. (2019) when considering the previous 4 con-
figurations. Based on the previous resistance comparisons, the empirical parameters appear to be
relevant and deserve more interest.

It can be noted that the two parameters are of the same order of magnitude, this can be ex-
plained on the basis of equations (4.1) and (4.10). When using the grazing flow correction from
Guess, we educe kGuess with (1− σ2)kGuessM/σ. When using the hybrid model, the term with the
C1 multiplying factor is dominating in the grazing flow correction, hence it can be approximated
by 1/σC1ςMengM. Thus, we get the approximation

1− σ2

σ
kGuessM ≈ 1

σ
C1ςMengM, (4.15)
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FIGURE 4.5: Configuration 2: a macro-perforated configuration with a low porosity
- Normalized resistance (top) and normalized plate reactance (down).
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FIGURE 4.6: Configuration 12: a macro-perforated configuration with a high poros-
ity - Normalized resistance (top) and normalized plate reactance (down).
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FIGURE 4.7: Configuration 14: a micro-perforated configuration with a high porosity
- Normalized resistance (top) and normalized plate reactance (down).
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FIGURE 4.8: Configuration 21: a micro-perforated configuration with a low porosity
- Normalized resistance (top) and normalized plate reactance (down).
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which is expected to be more accurate for low values of Rneck and t. The previous equation leads
to

ςMeng ≈
1− σ2

C1
kGuess. (4.16)

In order to predict the impedance of a perforate plate under grazing flow, it is of interest
to understand how the fitted parameters kGuess and ςMeng vary. In Meng et al. (2019), the con-
vection speed is plotted as a function of the dimensionless displacement boundary layer thick-
ness δ∗/Rneck. Here, the same approach is used for a sound pressure level of Lp = 130 dB and
Lp = 150 dB, and a Mach number of M = 0.3 and M = 0.45 on figures 4.9 for kGuess and 4.10 for
ςMeng. The results for Lp = 130 dB are in Appendix D as we did not observe major differences
with the results at Lp = 150 dB. For each configuration, 3 data points are available as their are
3 positions in the vein. On these figures, the colors of the plot depends on the ratio 2Rneck/h.
According to figure 4.9, the educed data for kGuess are consistent with the recommendation from
the Goodrich model in Yu et al. (2008)

kGuess =
2

4 + 1.256
δ∗

Rneck

. (4.17)

Equation (4.17) is derived from empirical data and was validated with measurements performed
on macro-perforated liners with 2Rneck/h ≈ 1, porosity of 7.7 % to 11.8 % and Mach numbers
between 0.2 and 0.45. The trend and order of magnitude of equation (4.17) are similar to our mea-
surements, however, important discrepancies are observed. This suggests that if kGuess is chosen
based on this recommendation, the impedance prediction would not be accurate. The effect of the
2Rneck/h ratio seems to have a significant impact on the empirical parameter, as opposed to the
porosity, which appears to be secondary. A possible explanation is that the perforations becomes
more receptive to the boundary layer turbulent fluctuations with increasing radius. From a phys-
ical point of view, the variation of kGuess is supposed to indicate the variation of the fluctuating
velocity in the perforations. For a boundary layer thick compared to the radius, v increases and
conversely. This is also the case for ςMeng.

Interestingly, the boundary layer thickness impacts significantly the resistance. We recall that
in position 1 (low displacement thickness), the boundary layer is in the transition regime and in
position 2 and 3 (high displacement thickness) it is turbulent. Moreover, the impedance is not
significantly impacted when passing from position 2 to 3, increasing the boundary layer displace-
ment thickness. This suggests that the impedance might be more impacted by the nature of the
boundary layer rather than its displacement thickness.

From there, two options are available to predict the value of kGuess. The first option is to add
more physics to the current model from Guess (1975) and to understand the interaction between
the shear flow and the impedance. This the case of the model from Meng et al. (2019), but it
also relies on an empirical parameter. The second option is to attempt to derive a law from our
empirical data as in Yu et al. (2008). In this section we choose the second option. This law can be
refined by fitting the following function to our data

kGuess =
1

a + b
δ∗

Rneck

, (4.18)

where a and b are fitted parameters. Equation (4.18) can be used for each configuration and then
the trends of a and b can be extracted. It is found that a has an inverse law dependence as function
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FIGURE 4.9: Empirical parameter kGuess as a function of δ∗/Rneck for configuration
1 to 21. For sample 1 to 3, we have 4.12 ≤ 2Rneck/h ≤ 4.21 which corresponds to the
black plots; For sample 4 to 13, we have 1.21 ≤ 2Rneck/h ≤ 0.88 which corresponds
to the blue plots; For sample 14 to 17, we have 0.62 ≤ 2Rneck/h ≤ 0.47 which corre-
sponds to the red plots; For sample 18 to 21, we have 0.38 ≤ 2Rneck/h ≤ 0.23 which

corresponds to the green plots.



4.6. Discussion on the empirical parameters kGuess and ςMeng 83

Rneck/h, hence, we now use

a(Rneck/h) =
1

a0 + a1
Rneck

h

, (4.19)

where a0 and a1 are parameters to be fitted. Regarding b, a linear dependence as a function of
Rneck is observed, we therefore use

b(Rneck) = b0 + b1Rneck, (4.20)

where b0 and b1 are parameters to be fitted. The function defined by equation (4.18) is fitted on the
data obtained with the 21 configurations mixing two Mach numbers (0.3 and 0.45) and two sound
pressure levels (130 dB and 150 dB). Additionally, ςMeng (4.10) has the same trend as kGuess, hence
we propose the same function to fit the convection speed of vorticity. The values of a0, a1, b0 and
b1 are given in table 4.6 for the two empirical parameters with their respective standard deviation
in brackets.

Empirical parameter a0 a1 b0 b1

kGuess 0.231(0.007) 0.071(0.004) 0.128 (0.028) 409(56.3)
ςMeng 0.288(0.007) 0.057(0.004) 0.174 (0.024) 228(45.5)

TABLE 4.6: Values of the fitted parameters with their respective standard deviation
in brackets. These data can be used to obtain a value of kGuess or ςMeng for δ∗/Rneck

between 0 and 20.

The standard deviations of a0 and a1 are relatively low, which means that the Rneck/h depen-
dence is captured correctly. This is not the case for b0 and b1, which suggests that the radius
dependence is not dominant. A benefit of this method is that the value of kGuess for δ∗/Rneck = 0
changes as a function of the Rneck/h ratio. Also, the rate of decline is a function of the radius
Rneck. This is illustrated by figure 4.11 in which equation (4.18) is compared to the law from Yu
et al. (2008).

The final step of this study is to assess how predictive is the law proposed in equation (4.18).
For the 4 configurations, we compute the resistance with the model from Guess (1975) using the
kGuess recommendation defined by equation (4.18). We also compute the resistance using kGuess =
0.3 as prescribed by Guess (1975). The results are shown on figures 4.12 and 4.13. The value of
kGuess determined using equation (4.18) for position 1 is noted k1, for position 2 it is noted k2.

We only perform this validation for the model from Guess (1975) as it provides better resis-
tance fit and reactance predictions than the correction from Meng et al. (2019). When considering
configuration 2, we can observe that the values 0.3 and 0.28 provide accurate resistance predic-
tions for position 2. The resistance corresponding to k1 = 0.36 provides an improvement of the
prediction for position 1, but is still below the measurements. Regarding configuration 12, the
resistance corresponding to kGuess = 0.3 appears to be in good agreement with the measurements
at both positions. On the other hand, the resistance is underestimated when using the law in
equation (4.18).

In the case of configuration 14, the fit in equation (4.18) clearly improves the resistance predic-
tion compared to kGuess = 0.3 at both Mach numbers. When using kGuess = 0.3 the resistance is
overestimated. This observation is also true for configuration 21. For this configuration, using k1
and k2 improves the predictions but the resistance is still overestimated.

From the previous comparisons, it appears that equation (4.18) clearly improves the resistance
prediction for the micro-perforated configurations 14 and 21. For the macro-perforated configu-
rations 2 and 12 with high perforation radius, it provides reasonable predictions for the measured



84 Chapter 4. Impact of the grazing flow on the impedance

0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

δ∗/Rneck

ς
M

en
g

Lp = 150 dB, M = 0.3

1 - σ = 2.17% 2 - σ = 6.89% 3 - σ = 16.70% 4 - σ = 5.97% 5 - σ = 1.96%
6 - σ = 1.98% 7 - σ = 14.23% 8 - σ = 2.02% 9 - σ = 5.70% 10 - σ = 6.44%

11 - σ = 14.65% 12 - σ = 10.56% 13 - σ = 6.14% 14 - σ = 6.30% 15 - σ = 2.00%
16 - σ = 5.83% 17 - σ = 6.18% 18 - σ = 14.45% 19 - σ = 6.20% 20 - σ = 6.65%
21 - σ = 1.87% Meng et al. (2019)

0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

δ∗/Rneck

ς
M

en
g

Lp = 150 dB, M = 0.45

(a)

(b)

FIGURE 4.10: Empirical parameter ςMeng as a function of δ∗/Rneck for configuration
1 to 20. For sample 1 to 3, we have 4.12 ≤ 2Rneck/h ≤ 4.21 which corresponds to the
black plots; For sample 4 to 13, we have 1.21 ≤ 2Rneck/h ≤ 0.88 which corresponds
to the blue plots; For sample 14 to 17, we have 0.62 ≤ 2Rneck/h ≤ 0.47 which corre-
sponds to the red plots; For sample 18 to 21, we have 0.38 ≤ 2Rneck/h ≤ 0.23 which

corresponds to the green plots.
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FIGURE 4.11: Values of kGuess from Yu et al. (2008) and with equation (4.18) for
different Rneck/h ratio and radius.

resistance at position 2.
An important remark is that during the iteration procedure, the velocity in the apertures is

computed with the same formula than without flow, which relies on a plane wave assumption.
This approach was validated without flow with a plane wave propagation normal and grazing
to the perforated plate (in chapter 4), but there are no guarantee of its validity it the presence of
shear flow. At this time, it is rather unclear how to derive the velocity in the perforations from
our measurements with a grazing flow. Without flow, we consider an homogeneous velocity in
the apertures as the effective velocity. With flow, the effective velocity impacting the impedance is
unknown.

Finally, as the empirical parameters are impacted by the method used to compute the velocity
in the holes, their physical meaning should be considered with care.

4.7 Conclusion

Two semi-empirical models were compared to measurements with a grazing flow with varying
boundary layer displacement thicknesses. The first model is the model from Guess (1975) with
a grazing flow resistance correction derived from Ingard (1968) and a reactance correction based
on the experimental data from Groeneweg (1969). The second, hybrid model, is still based on the
work from Guess (1975) except the impedance correction is derived from Meng et al. (2019).

Both approaches include an empirical parameter, in the first model it is proportional to the
velocity fluctuation in the perforations v, and in the second model, the empirical parameter corre-
sponds to convection speed of vorticity above the apertures ςMeng. These parameters are educed
from the resistance measurements for 21 configurations. From the close impedance comparisons
performed for 4 configurations, it appears that the resistance fit performed with the model from
Guess is globally more accurate than the hybrid model, although the latter model provides very
reasonable agreement with the experiments. The validity domain for the use of the correction
from Meng et al. (2019) is extended and appears to be applicable for Mach numbers above 0.3. An
important remark is that including the grazing flow correction allows to obtain the correct resis-
tance slope as a function of the frequency, while simply shifting the resistance without flow by
adding the flow correction after the iteration would result in lower quality fit of the resistance.



86 Chapter 4. Impact of the grazing flow on the impedance

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.0

1.0

2.0

3.0

4.0

frequency [kHz]

R
e(

z)

Conf. 2 - M = 0.3 - k1 = 0.36, k2 = 0.28

Meas. pos. 1 Meas. pos. 2 Guess kGuess = k1, pos. 1
Guess kGuess = k2, pos. 2 Guess kGuess = 0.3

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.0

1.0

2.0

3.0

4.0

frequency [kHz]

R
e(

z)

Conf. 2 - M = 0.45 - k1 = 0.36, k2 = 0.28

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.0

0.5

1.0

1.5

2.0

frequency [kHz]

R
e(

z)

Conf. 12 - M = 0.3 - k1 = 0.25, k2 = 0.21

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.0

0.5

1.0

1.5

2.0

frequency [kHz]

R
e(

z)

Conf. 12 - M = 0.45 - k1 = 0.25, k2 = 0.21

(a) (b)

(c) (d)

FIGURE 4.12: Predicted resistance using the law in equation (4.18) and kGuess = 0.3
for configurations 2 and 12 compared to the measurements at position 1 and 2.
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FIGURE 4.13: Predicted resistance using the law in equation (4.18) and kGuess = 0.3
for configurations 14 and 21 compared to the measurements at position 1 and 2.
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The trends of kGuess and ςMeng are similar. The empirical parameters decrease with increasing
values of δ∗/Rneck following a hyperbolic law. This hyperbole is shifted for each configuration.
The latter parameters decrease with increasing values of δ∗/Rneck consistently with Yu et al. (2008)
and the data from Meng et al. (2019). As to now, we have no strong physical explanation to these
observations. An empirical function is proposed based on the measurements performed on the
21 configurations to predict the value of kGuess. This function is different from the function in
Yu et al. (2008) as its value for δ∗/Rneck = 0 depends on the ratio Rneck/h and its rate of decline
depends on the radius. When using this function to predict the resistance with the model from
Guess (1975), it is shown to be more accurate for micro-perforated and to provide reasonable
predictions for the macro-perforated plates.

Based on the method used to compute the velocity and educe the empirical parameters, the
relevance of ςMeng and kGuess is discussed. For the moment, we have no clear insights on the effec-
tive velocity in the perforations impacting the impedance in the presence of flow and the empirical
parameters shall be viewed more as corrections rather than physically based parameters. In the
following chapter, an impedance sensitivity analysis is performed to provide more insights on the
effective physical quantity impacting the impedance of a perforation under grazing flow backed
by a cavity.



89

Chapter 5

Sensitivity analysis in the presence of
non-linear effects and grazing flow

To analyze the effects of non-linearities on the impedance of a perforation backed by a cavity in
presence of a grazing flow, a sensitivity analysis is described in this chapter. For this purpose,
a finite element model solving the linearized Navier-Stokes equations is used. COMSOL Multi-
physics is used for the numerical implementation.

5.1 Introduction

Extended work has been performed on non-linear effects in acoustic treatments in recent years. In
the abscence of a grazing flow, early experimental work has been carried out by Ingard et al. (1950),
showing non-linear physical mechanisms having an impact on the impedance of a resonator with
a single perforation. The nature of these mechanisms changes as a function of the acoustic particle
velocity in the orifice and the frequency. More recently, numerical methods such as FEM allowed
to visualize more precisely these mechanisms for different sound pressure levels and frequencies.
Such studies are performed by Tam et al. (2001), Zhang et al. (2012) or Roche (2011) for a single
perforation backed by a cavity and show vortex shedding from the corners of the perforation,
obtained by solving the full Navier-Stokes equations. In the presence of a grazing flow, and still
for a single perforation backed by a cavity, Zhang et al. (2016) and Roche et al. (2010) performed
detailed numerical investigations of the velocity fields showing a huge amount of details in the
boundary layer in the presence of high sound pressure levels. For multiple orifices, Avallone et
al. (2019) conducted numerical simulations showing eddies in a large numerical domain at a Mach
number of 0.3.

However, the impact on the impedance of the non-linear effects induced by vortex shedding
and hydro-acoustic coupling needs further investigations to be fully understood and modeled. In
the previous chapter, the semi-empirical models from Guess (1975) and Meng et al. (2019) were
compared to measurements with grazing flow. Both models rely on empirical parameters to ac-
count for the grazing flow impact on the impedance. In chapter 4, these parameters were educed
from measurements and are found to depend on the grazing flow boundary layer thickness, the
geometrical characteristics of the perforated plates, and the Mach number. Some trends were
highlighted, but the physical mechanisms responsible for the latter are not yet fully understood.

In this chapter we propose a method to identify qualitatively the physical mechanisms having
a significant impact on the impedance, with and without flow. The proposed method is a partic-
ular case of the resolvent analysis introduced in Schmid et al. (2001) and used extensively in the
fluid mechanics community (see Álamo et al. (2006), McKeon et al. (2010), Dergham et al. (2013),
Towne et al. (2018), Martini et al. (2020a), Abreu et al. (2020)). A brief definition of the resolvent
analysis can be found in Herrmann et al. (2020): "Resolvent analysis identifies the most responsive
forcings and most receptive states of a dynamical system, in an input–output sense, based on its
governing equations".
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In this chapter, it is used to investigate the non-linear effects in a perforation under a grazing
flow, considered as a source to the compressible linearized Navier-Stokes equations. The response
of a single perforation to this non-linear forcing is investigated subsequently. As the initial model
forcing term corresponds to a plane wave, the comparison between a response to a plane-wave
forcing and a response to an arbitrary forcing interpreted as a missing non-linear term is possible.

The remainder of this chapter is as follow: first, we introduce the sensitivity analysis for a
simple mechanical system. Second, we apply this method to a perforation backed by a cavity to
study its impedance without and with flow. The finite element method is used. We compute the
frequency response to a linear term, i.e., a plane wave with a normal incidence with and without a
grazing flow. Thereafter, we describe the method used to obtain the impedance sensitivity of this
response to a non-linear term. We will extract the non-linear source and the associated response.
Afterward, we focus on the finite element domain corresponding to the neck region to discuss the
sensitivity fields as well as the response to a non-linear term fields. A case study without and with
a grazing flow are considered. Finally, the impedance definition is discussed and we present our
perspectives for the present method and formulate conclusive remarks.

5.2 Resolvent analysis for a simple mechanical system

The resolvent analysis corresponds to the identification of the optimal harmonic forcing of a sys-
tem.

In order to give an insight on how to interpret results from the resolvent analysis, we first
illustrate its approach for a simple mechanical system composed of two springs and two masses
under the external forces shown in figure 5.1. The left spring is clamped at its left end.

m1 m2

F1 F2

δm1 δm2

FIGURE 5.1: Simple mechanical system illustrating the resolvent analysis.

The degrees of freedom are the displacement and the velocity of each mass. Therefore, only 4
variables are obtained. The governing equations of the system can be formally written in matrix
form as follows (with an e+jωt notation)

jωx = Ax + f. (5.1)

where A is a matrix and x = (δm1, v1, δm2, v2)
T. Here, δm1 and δm2 are the displacements of the

masses, v1 and v2 are their velocities. The forcing is defined by f = Bq, where B is a rectangu-
lar matrix and q = (F1, F2)T. F1 and F2 are the forces applied on the first and second masses,
respectively.

In this case, the resolvent operator of the governing equations corresponds to

R = (jωI −A)−1 so that x = Rf. (5.2)

From an acoustic stand point, the resolvent operator corresponds to the convolution operator with
the Green function that relates the input f to the output x.

For instance, if one wants to study the total length δm = δm1 + δm2 of the system, a line vector
H such that δm = Hx can be defined. In this particular case, the resolvent analysis can be applied



5.3. Definition of the problem and frequency response 91

to the transfer function operatorHRB to find the forcing for which δm is maximum, such that the
following gain is maximum

G(ω) = max
q 6=0

∣∣∣∣
∣∣∣∣
HRBq

q

∣∣∣∣
∣∣∣∣ . (5.3)

It is important to note that the resolvent operator is intrinsic to the system and its governing
equations. On the other hand, the transfer function operator is defined according to the outputs
and the inputs of the system.

In the next step, G(ω) can be determined by computing the Singular Value Decomposition
(SVD) ofHRB to obtain

Hx = UΣVTq, (5.4)

where U is an orthonormal matrix containing in columns a basis of responses of the system and V
is an orthonormal matrix containing the corresponding forcing. Σ is a diagonal matrix composed
of the singular values representing the amplification gains. The first singular value is equal to
G(ω). V contains the optimal phase/amplitude relationship between F1 and F2 to produce the
largest displacement amplitude of the mass m2.

In a general case, H and B can be of large dimensions, producing optimal forcing/response
modes. In this particular example, since H is a line vector, U = 1, V is a column vector, and Σ
is scalar. In this simplified case, the computation of a SVD is not necessary and by defining the
sensitivity field s = VΣ, s can be determined by solving

RHs = HH, (5.5)

that is numerically tractable, even for large-scale systems. Here, ·H denotes the Hermitian trans-
pose. After normalization, V and Σ can be recovered.

In the following sections, this method is applied to a more complex problem involving the
solving of the linearized Navier-Stokes equations solved with the finite element method.

5.3 Definition of the problem and frequency response

5.3.1 Linearized Navier-Stokes equations and impedance definition

In this section, the equations being solved and the finite element domain are defined. The FEM do-
main is 2-dimensional with Cartesian coordinates and its geometry is a single perforation backed
by a cavity. Above the perforation, a half disc bounded by a Perfectly Matched Layer (PML) is im-
plemented to avoid spurious reflection. In Vandemaele et al. (2019), the linearized Navier-Stokes
equations are solved in the time domain for a similar numerical problem. In the latter study, a non-
reflecting boundary condition implemented with a half disc as well. It appears to be an efficient
method to simulate an infinite exterior domain above the perforation. In figure 5.2, L = 19 mm is
the cavity height, h = 1.5 mm is the plate thickness, δbl = 2.5 mm is the boundary layer thickness,
dcav = 2.53 mm is the cavity width, and dneck = 0.8 mm is the perforation width. We obtain the ra-
tio δbl/Rneck = 6.25, which is a realistic value located in the operating regime of the measurements
presented in the previous chapter.

The grazing flow profile is defined by u0 = (U0(y), 0)T such that a uniform flow is obtained
for y > L + h + δbl with

U0 (y) = Mc0, (5.6)

where M is the Mach number and c0 is the sound speed. A mean boundary layer is defined for
y ∈ [L + h; L + h + δbl] with the following profile

U0 (y) = Mc0 −Mc0

(
1− y− L− h

δbl

)n

, (5.7)
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FIGURE 5.2: Numerical domain for the linearized Navier-Stokes equations.
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FIGURE 5.3: Imposed velocity profile for different Mach numbers with n = 5, L =
20.5 mm, h = 1.5 mm and δbl = 2.5 mm.

where n is the polynomial power of the velocity profile in the shear region. In Gabard (2013),
equation (5.7) is used with n = 2. In this chapter we choose n = 5 in an attempt to obtain a
turbulent boundary layer profile. In figure 5.3, we plot U0 as a function of the y coordinate for
different Mach numbers.

We work in the frequency domain with an e+jωt convention. An incoming plane wave is im-
posed in COMSOL (Pryor, 2009) as a background acoustics field by implementing the following
background pressure, normal velocity, and temperature

pb = Aejk0y, vb = −
1

jωρ0

∂pb

∂y
, Tb =

αpT0 pb

ρ0Cp
, (5.8)

with A = 1 Pa the amplitude of the wave going towards the negative y. Here, αp is the coeffi-
cient of thermal expansion (unit: K−1) and Cp is the thermal capacity per unit mass at a constant
pressure. k0 = ω/c0 is the wave number. This plane wave with a normal incidence to the plate,
is imposed in the entire finite element domain except in the perfectly matched layer. This is not
expected to have an impact on the finite element solution.

The total pressure pt, velocity ut = (ut, vt)
T, and temperature Tt, fluctuations around the base

state (T0, p0, U0, v0), are introduced such that

pt = p + pb, ut = u, vt = v + vb, Tt = T + Tb, (5.9)

where p, u, v, and T are the scattered fields. The density ρt is also introduced with

ρt = ρ0
(

βT pt − αpTt
)

, (5.10)

where βT is the iso-thermal compressibility (unit: Pa−1). The boundaries in red in figure 5.2 cor-
respond to a no-slip boundary condition

ut = 0. (5.11)

The dashed blue lines correspond to a free slip boundary condition defined as

ut · n = 0. (5.12)

Finally, an iso-thermal boundary condition is implemented on the dashed blue lines and the solid
red line with

Tt = 0. (5.13)
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The Navier-Stokes equations with flow are linearized around ρ0, u0, and T0. The linearized
mass conservation equation is

jωρt +∇ · (ρtu0 + ρ0ut) = 0. (5.14)

The linearized momentum conservation is

ρ0 [jωut + (ut · ∇)u0 + (u0 · ∇)ut] + ρt (u0 · ∇)u0 = ∇ · σ. (5.15)

with σ the stress tensor defined as

σ = −ptI + µ
[
∇ut + (∇ut)

T
]
+

(
µB −

2
3

µ

)
(∇ · ut) I , (5.16)

where µ is the dynamic viscosity and µB is the bulk viscosity.
The linearized energy conservation equation reads

ρ0Cp (jωTt + ut · ∇T0 + u0 · ∇Tt) + ρtCp (u0 · ∇T0)

− αpT0 (jωpt + ut · ∇p0 + u0 · ∇pt)− αpTt (u0 · ∇p0) = ∇ · (k∇Tt) + Φ. (5.17)

In equation (5.17), Φ is the viscous dissipation function expressed as

Φ = ∇u : τ (u0) +∇u0 : τ (u) , (5.18)

where τ (u) and τ (u0) are the dissipation rate tensors corresponding to the fluctuating velocity
and to the base flow velocity

τ (u) = µ
[
∇u + (∇u)T

]
+

(
µB −

2
3

µ

)
(∇ · u) I , (5.19)

and

τ (u0) = µ
[
∇u0 + (∇u0)

T
]
+

(
µB −

2
3

µ

)
(∇ · u0) I . (5.20)

The finite element discretisation leads to the following linear system

− (A− jωI) xl = fl , (5.21)

with x = (Tt, pt, ut, vt)
T containing the unknown variables. Tt, pt, ut, and vt are vectors containing

the values of the fields Tt, pt, ut, and vt at their corresponding degrees of freedom in the FEM
mesh. P1 elements are used for the temperature and the pressure, and P2 elements are used for
the y velocity vt and the x velocity ut. An unstructured triangular mesh is utilized. A is the finite
element matrix and fl is a vector corresponding to the forcing at each degree of freedom of the
FEM mesh. In this case, fl corresponds to the plane wave imposed in the background acoustics field.

From the solution xl , we calculate the effective impedance on horizontal line 1 above the per-
foration (shown in figure 5.2), such that

Z = −

∫

l1
pt(x)dx

∫

l1
vt(x)dx

, (5.22)
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where pt is the pressure and vt is the y velocity on this line. l1 is the length of line 1. The integrals
are calculated from the finite element solution

Z = −Hpxl

Hvxl
withHpxl =

∫

l1
pt(x)dx andHvxl =

∫

l1
vt(x)dx, (5.23)

where Hp and Hv are matrices containing the integrals of the shape functions of P1 and P2 ele-
ments respectively, over line 1.

5.3.2 Frequency response to a plane wave with and without flow

The frequency response is computed between 200 Hz and 5000 Hz. The resistance and the reac-
tance obtained with and without flow are shown in figure 5.4.
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FIGURE 5.4: Normalized resistance (left) and normalized reactance (right) between
200 Hz and 5000 Hz.

As expected, the resistance increases with growing Mach number while the reactance de-
creases. On table 5.1, we give the frequency close to the resonance for which Im (Z) /(ρ0c0) ' 0
for the different Mach numbers. We observe that the resonance frequency moves towards high
frequencies when the Mach number increases. This trend is consistent with the end correction
proposed in Groeneweg (1969).

Mach number Approximate resonance frequency (Hz)

0 3393
0.2 3697
0.3 3739
0.4 3769
0.5 3794

TABLE 5.1: Approximate resonance frequency for each Mach number.

We also observe that the resistance is strong in the low frequency regime and stabilizes slowly
above 1500 Hz. Its value, especially without flow, is very low due to the 2-dimensional nature of
our problem. We now introduce the method used to compute the so-called "sensitivity" and the
linear response to an optimal forcing.
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5.4 Sensitivity and response computation with and without flow

5.4.1 Sensitivity

In the previous section, we have computed the acoustic response to a linear term (the incident
plane wave) by solving the FEM linear system below

− (A− jωI) xl = fl . (5.24)

We now study the sensitivity of the impedance to changes in the solutions xl or changes to the
forcing fl . For this purpose, we follow the resolvent method outlined in section 5.2.

More specifically, the objective is to investigate the impact of a non-linear term fnl on the
impedance. During the linearization of the Navier-Stokes equations, the non-linear terms are
removed. As this term is unknown and is not straightforward to compute, we choose to inter-
pret this missing non-linear term as a forcing on the linearized equations. Hence, we focus on
the response of the system to this non-linear forcing. Alternatively, perspectives are provided in
section 5.8 to compute this non-linear term using an iterative procedure.

We want to identify the change in external forcing δfnl that has the strongest influence on the
impedance. We perform the following substitutions

fl → fl + δfnl , xl → xl + δxnl , Z→ Z + δZ.

Although in standard resolvent analysis the non-linear forcing and response are not supposed to
be small, here, the output operator extracting impedance is a non-linear operator. This is a non-
standard situation. The associated tangent-linear operator is considered at xl , i.e. linearized over
the linear response. We are thus looking at a sensitivity of the linear response to a small non-
linearity. This assumption can be relaxed by an iterative procedure, as proposed in section 5.8,
that requires to update the linearization point to xl + xnl .

From equation (5.24), it is easy to see that

δxnl = R(ω)δfnl withR (ω) = − (A− jωI)−1 , (5.25)

where R (ω) is the resolvent operator. For small changes δxnl , we can use a Taylor expansion in
equation (5.23) to write

δZ = HZδxnl withHZ =
Hpxl

(Hvxl)
2Hv −

Hp

Hvxl
, (5.26)

whereHZ is a row vector relating changes in the impedance and the solution.
Combining the last two results from equations (5.25) and (5.26), we get

δZ = sHδfnl with s = R(ω)HHZ. (5.27)

In other words, s can be calculated by solving the following linear system

− (A− jωI)H s = HH
Z . (5.28)

The vector s is the sensitivity of the impedance to a perturbation δfnl of the forcing vector fl .
Obviously, the non-linearity δfnl is not "external" and depends on the solution, and more precisely
is a result of a convolution integral over all frequencies. This is further detailed in Appendix E in
which a triadic interaction is introduced. Due to the complexity, for the moment, δfnl is unknown,
and we study how the linearised system responds to non-linearities. Although we cannot define
a "realistic" non-linear source, an optimal non-linear forcing, i.e. a source which impacts the most
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FIGURE 5.5: Temperature (left) and pressure (right) sensitivity gains.

the impedance, can be determined through the analysis of the sensitivity. This is performed in
section 5.4.2.

From s, we extract the sensitivity fields corresponding to the temperature sT, the pressure sp,
the tangential velocity su, and the normal velocity sv with

sT = BTs, sp = Bps, su = Bus, sv = Bvs,

where BT, Bp, Bu, and Bv are rectangular matrices selecting the degrees of freedom associated to
respectively, the temperature, the pressure, the tangential (to the plate) velocity, and the normal
(to the plate) velocity. It can be noted that, since the output space is scalar, the restrictions of
the sensitivity to a given component is still optimal regarding the transfer function defined by
equation (5.26). This is not true when multiple outputs and a SVD computation are considered.

The sensitivity field can be seen as an operator relating a source variation and an impedance
variation. The unit of this field is different for each variable. The unit of the source terms
is determined according to the energy conservation equation (5.17) for the heat source (unit:
kg ·m−1 · s−3), acting on the temperature. The mass conservation equation (5.14) for the mass
source (unit: kg ·m−3 · s−1), acting on the pressure. The moment conservation equation (5.15) for
the force source (unit: kg ·m−2 · s−2), acting on the tangential and normal velocity. The impedance
is expressed in kg ·m−2 · s−1, hence, the unit of the temperature sensitivity is m−1 · s2, the pressure
sensitivity is in m, and the tangential and normal velocity sensitivities are in s.

The individual sensitivity fields are normalized by their L2-norms, which can be seen as am-
plification gains, defined as

σs,T =
√

sH
TMP1sT in s2, σs,p =

√
sH

pMP1sp in m2, σs,u =
√

sH
uMP2su in m · s,

and σs,v =
√

sH
vMP2sv in m · s,

whereMP1 andMP2 are the mass matrices associated to P1 and P2 elements on the computational
domain.

In figures 5.5 and 5.6, we plot the sensitivity amplification gain for each variable for different
Mach numbers.

The temperature and pressure sensitivity gains appear to be stronger in the low frequency and
to rapidly decrease when the frequency increases. The impact of the Mach number on both these
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FIGURE 5.6: Tangential (left) and normal velocity (right) sensitivity gains.

quantities is small. However, between 2000 Hz and 5000 Hz the sensitivity is slightly increased by
increasing the Mach number.

Without flow, the tangential velocity gain is lower than the normal velocity sensitivity gain.
When flow is added, the amplitude of σs,u is clearly intensified, suggesting a drastic change of
physical mechanism.

The amplitude of σs,v and σs,u are of the same order of magnitude close to 4 kHz, that is close
to the resonance frequency. Furthermore, the tangential velocity sensitivity gain appears to be
minimal close to the resonance frequency with and without flow. Without flow, this minimum is
reached at 3481 Hz. With flow it is 4028 Hz and it does not change with the Mach number. This
is consitent with the resonance frequency shift observed when computing the frequency response
to a plane wave in section 5.3.2.

5.4.2 Response to a non-linear optimal forcing

The impedance variation δZ is the largest when s and δfnl are colinear, based on equation (5.27).
Therefore the optimal forcing to change the impedance is given by s. In the following, TF [·]
denotes the Fourier transform.

This optimal forcing can be interpreted as the contribution of the non-linear terms that were
initially ignored in the governing equations. The non-linear terms dropped when writing the
LNSE are

• TF [∇ · (ρtut)] in the mass conservation equation,

• TF [ut · ∇ut] in the momentum equation,

• TF [ut · ∇pt] and TF [ut · ∇Tt] in the energy conservation equation.

Here we focus on the term TF [ut · ∇ut] in the momentum equation which is responsible for
coupling the acoustic and vorticity fields. This term acts as a force on the acoustic field. For this
reason we retain only the force terms from the optimal forcing (i.e. the source for the momentum
equation in s). We thus define the so-called optimal non-linear forcing

fopt
nl = Bus, (5.29)

where Bu is a rectangular matrix selecting the degrees of freedom corresponding to the tangential
and normal velocity associated to the momentum conservation equation (5.15). In doing so, we
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FIGURE 5.7: Amplification rates corresponding to the non-linear optimal forcing, the
tangential and normal velocities sensitivities.

have identified the most effective non-linearity, without having to explicitly compute the interac-
tions over frequencies. This of course does not give insight if this non-linearity is present in the
flow. To become predictive, the projection of TF [ut · ∇ut] onto the optimal forcing would lead to
the amplitude of the non-linear response.

In order to better characterize the forcing, post-processing of a numerical temporal database
would be helpful to define Bu, for instance by defining its columns based on Proper Orthogonal
Decomposition (POD) or spectral POD modes (Towne et al., 2018). In any case, the amplitude is not
determined since only the response gains are available. For a proper scaling, iterative strategies
as in Symon et al. (2019) for instance, could be considered.

The amplification gain σu,nl of the non linear optimal forcing reads

σu,nl =

√(
fopt

nl

)H
WP2fopt

nl in m · s, (5.30)

where

WP2 =

(MP2 0
0 MP2

)
. (5.31)

Note that the amplification gain of the non-linear forcing can be calculated with σu,nl =√
σ2

s,u + σ2
s,v. In figure 5.7, we plot the gain of the non-linear forcing as a function of the frequency.

The gain of the non-linear forcing is stronger with flow than without flow. This is due to the
contribution of the tangential velocity, which becomes significant when a flow is added.

Now, we normalize the non-linear forcing by its L2-norm such that

f̃opt
nl =

fopt
nl

σu,nl
in m−1. (5.32)

The linear response xnl = (Tr, pr, ur, vr)
T to the normalized optimal non-linear forcing is computed

by solving
− (A− jωI) xnl = f̃opt

nl . (5.33)
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FIGURE 5.9: Tangential (left) and normal velocity (right) to the plate response gains.

From xnl we extract the response fields corresponding to the temperature Tr, the pressure pr, the
tangential velocity ur, and the normal velocity vr with

Tr = BTxnl , pr = Bpxnl , ur = Buxnl , vr = Bvxnl .

The latter fields are normalized by their respective L2-norm defined as

ϑr,T =
√

TH
r MP1Tr in K ·m, ϑr,p =

√
pH

r MP1 pr in Pa ·m,

ϑr,u =
√

uH
r MP2ur in m2 · s, and ϑr,v =

√
vH

r MP2vr in m2 · s.

In figure 5.8 the amplification gains of the response are plotted for the temperature and the pres-
sure. In figure 5.9, the response gains are plotted for the tangential and the normal velocities.

Temperature and pressure responses appear to have a similar behavior. Without flow, a peak
can be observed at 3000 Hz. When adding flow, the peak is smoothed and decreases with increas-
ing Mach number.



5.5. Case study without flow 101

The tangential velocity response gain increases significantly when a flow is present. On the
other hand, the normal velocity response gain remains of the same order of magnitude when
M = 0.2. For the 4 variables, the response gain decreases when the Mach number increases,
suggesting that the impedance is less responsive to a non-linear perturbation when the grazing
flow is strong. For the moment, the ambiguity is not raised if this stabilizing effect is due to a
stronger velocity or compressibility effects.

5.5 Case study without flow

In this section, we focus on the neck region of the finite element domain. This region is where
most of the physical phenomenon impacting the impedance occurs. The fields corresponding to
the response to a plane wave are discussed, as well as the sensitivity and the response to a non-
linear optimal forcing. A frequency of 3500 Hz is kept throughout this study. According to the
response gains presented in section 5.4.2, we expect to have important non-linear effects at this
frequency in the presence of a grazing flow. In order to remain consistent in our analysis, we also
choose 3500 Hz for the case without flow.

The sensitivity fields are normalized by their L2-norms as follows

s̃T =
sT

σs,T
, s̃p =

sp

σs,p
, s̃u =

su

σs,u
, s̃v =

sv

σs,v
,

and are now expressed in m−1.
The response fields, that are shown after the sensitivity fields, are normalized by their L2-

norms as well, such that

T̃r =
Tr

ϑr,T
, p̃r =

pr

ϑr,p
, ũr =

ur

ϑr,u
, ṽr =

vr

ϑr,v
,

and expressed in m−1.
Iso-contour plotted with solid lines correspond to the positive values and iso-contour with

dashed lines are plotted for negative values.

In figure 5.10, the real part, the imaginary part, and the absolute value of the three types of
temperature fields are shown. To illustrate how to interpret these results, we start with the real
part of sensitivity field Re(s̃T). In figure 5.10(b), the resistance would be significantly impacted by
a heat source positioned inside the cavity. When looking at the imaginary part of the sensitivity
Im(s̃T), it appears that the reactance is sensitive to a heat source located in the thermal boundary
layer inside the cavity. It can be noted that for both the real and the imaginary parts, the sensitivity
is zero on the boundary of the finite element domain at the edge of the thermal boundary layer,
which is consistent with the implemented iso-thermal boundary condition.

On the sensitivity imaginary part, we can observe a clear contrast between the neck and the
exterior domain. Indeed, above the plate, a heat source would increase the reactance. On the
opposite, a heat source in the cavity or the neck would decrease the reactance. We also note that
the amplitudes of the real and imaginary parts of s̃T and T̃r are very close one to another.

We now compare the response to a non-linear forcing T̃r to the response to a plane wave Tt.
The phase between the two responses is different and appears to be inverted when looking at
the imaginary parts. Globally, the absolute value of T̃r translates a similar response to the plane
wave response. The main difference is that the response in the neck is more homogeneous when
considering a non-linear forcing rather than the plane wave forcing.

The pressure fields are presented in figure 5.11. It appears that the pressure fields are very
similar to the temperature fields. Furthermore, the amplitudes of |s̃T|,

∣∣s̃p
∣∣,
∣∣T̃r
∣∣ and |p̃r| are close.
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FIGURE 5.10: (a), (b), (c) are respectively, the real parts of the temperature response
to a plane wave, the sensitivity to a heat source, and the temperature response to an
optimal non-linear forcing. (d), (e), (f): Imaginary parts. (g), (h), (i): Absolute values.
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FIGURE 5.11: (a), (b), (c) are respectively, the real parts of the pressure response to a
plane wave, the sensitivity to a mass source, and the pressure response to an optimal

non-linear forcing. (d), (e), (f): Imaginary parts. (g), (h), (i): Absolute values.
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The tangential velocity sensitivity fields shown in figure 5.12 highlight that the impedance is
very sensitive to a force applied at the corners of the perforation. Another sensitive location is the
edges of line 1. Consistently with the rigid wall boundary condition, the sensitivity is zero on the
wall of the neck and the wall of the plate.

The main difference between ut and ũr is noticed on the phase of the fields. The imaginary
parts seem to have the same sign, and the real parts signs seem to be opposed, which suggests a
phase quadrature between the response to plane wave and the response to a non-linear forcing.
This may be explained on the basis of the momentum conservation equation (2.4). In the frequency
domain, the unsteady term jωû where u = ûejωt, can be compared with TF [(u · ∇)u]. In the linear
regime, the term jωû is dominating, as opposed to the non-linear regime where TF [(u · ∇)u] is
dominating. This would be consistent with the work from Ingard (1953) in the non-linear regime.
More importantly, the jω term could explain the appearance of a phase quadrature between the
responses to a linear and non-linear sources.

More details on the non-linear term TF [(u · ∇)u] can be found in appendix E, in which the
role of triadic interactions is developed for the momentum conservation equation.

Both responses are similar when looking at their absolute values, besides the fact that the two
responses do not have the same phase when looking at their real and imaginary parts. This means
that the first resolvent mode may be sufficient to describe the physical mechanisms in the non-
linear regime. Indeed, if the shapes had been different, several resolvent modes would have been
necessary to represent the response to a plane wave, thus rejecting the hypothesis of dominance
of the first mode in terms of singular values. However, this can not be directly verified with the
current sensitivity analysis as it accounts for the first resolvent mode only.

Regarding the normal velocity sensitivity in figure 5.13, it appears that the resistance would
decrease if a force was located in the viscous boundary layer inside the neck and especially on the
corners of the aperture. On the opposite, it would increase if a force was applied at the surface of
the plate on line 1. The reactance is sensitive to a force located in the whole neck and on line 1 as
well.

Similarly, as for the tangential velocity, the imaginary parts of vt and ṽr are similar and have
the same sign. On the other hand, their real parts seem to be of opposite signs. Here again, this
may be the consequence of a phase quadrature and the same explanation as previously may be
given.

It is worth noting that, according to figures 5.13 (h) and (i), the sensitivity and the response to
a non linear term are homogeneous and strong in the neck, which is consistent with the non-linear
correction proposed in Ingard et al. (1967). Indeed, Ingard et al. consider that the effective velocity
impacting the impedance is the normal velocity in the neck.

We further highlight the difference between the velocity fields obtain with a non-linear forcing
and a plane wave forcing by computing the vorticity in each case. The vorticity computed from
the normalized tangential and normal velocity obtained with a non-linear source is

ω̃r = ∇×
(

ũr
ṽr

)
in m−2. (5.34)

The voriticity computed from the tangential and normal velocity computed with a plane wave
source is

ωt = ∇×
(

ut
vt

)
in s−1. (5.35)

The real and imaginary parts of the corresponding fields are plotted below, in figure 5.14. The
vorticity obtained with the optimal forcing seems to show vortex emerging at the corners of the
perforation, which would be consistent with the response of perforated liner submitted to a high
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|ũr|

0 500 1,000 1,500
[
m−1]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.12: (a), (b), (c) are respectively, the real parts of the tangential velocity re-
sponse to a plane wave, the sensitivity to a force and the tangential velocity response
to an optimal non-linear forcing. (d), (e), (f): Imaginary parts. (g), (h), (i): Absolute

values.



106 Chapter 5. Sensitivity analysis in the presence of non-linear effects and grazing flow

18

19

20.5

21.5

y
[m

m
]

Re (vt)

−4 −2 0 2 4

·10−2

18

19

20.5

21.5

y
[m

m
]

Im (vt)

−2 0 2

·10−2

Re (s̃v)

−200 0 200

Im (s̃v)

−500 0 500

Re (ṽr)
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−500 0 500

−0.75 1.25 3.25
18

19

20.5

21.5

x [mm]

y
[m

m
]

|vt|

0 2 4

·10−2

[
m · s−1

]

−0.75 1.25 3.25

x [mm]

|s̃v|

0 200 400 600
[
m−1

]

−0.75 1.25 3.25

x [mm]

|ṽr|
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sound pressure level. Such effects are highlighted numerically with direct numerical simulations
(DNS) by Roche (2011) for various sound pressure levels. Tam et al. (2001) also computed the
density field from the compressible Navier-Stokes equations and showed the shedding of vortices
near the mouth of a slit resonator. In a similar manner, Zhang et al. (2012) solved numerically
the same set of equations for a cavity backed with a circular orifice under various sound pressure
levels and displayed the vorticity emerging at the corners of the orifice.

In order to gain more insights on the viscous dissipation difference between the response to a
plane wave and the response to a non-linear term, we now focus our interest on the rate of viscous
dissipation per unit mass due to shear effects. When considering the plane wave response, in the
time domain, it is defined as (Batchelor, 1967)

Φshear = µ

[
∇ut + (∇ut)

T − 2
3
∇ · utI

]
:

1
2

[
∇ut + (∇ut)

T
]

in Pa · s. (5.36)

When considering the response to a non-linear source, the normalized velocity ũr is used and we
get

Φ̃shear = µ

[
∇ũr + (∇ũr)

T − 2
3
∇ · ũrI

]
:

1
2

[
∇ũr + (∇ũr)

T
]

in Pa · s−5 ·m−4. (5.37)

The rate of dissipation due to bulk effects was found to be negligible in comparison to the dissi-
pation due to shear effects. Hence, it is not discussed further in the following. In figure 5.15, the
mean values Φ̃shear and Φshear are shown in the frequency domain. Regarding the plane wave re-
sponse, the dissipation is located in the viscous boundary layers inside the neck and at the corners
of the perforations, a detailed analysis of this distribution is available in chapter 2. When consid-
ering the response to a non-linear forcing, the dissipation distribution is significantly different. It
is mainly located at the corners and extends along the plate. The viscous boundary layer in the
neck is now a secondary zone.

Without flow, figures 5.10 to 5.13 show results consistent with the behavior of a Helmholtz res-
onator. For instance, the impedance is very sensitive to a heat source located in the cavity. If the
latter source is situated above the perforation, it has only a small impact on the impedance. The
corners of the aperture and the viscous boundary layers in the neck can also be considered has
sensitive zones when looking at the velocity sensitivity fields. The vorticity (figure 5.14) appears
to highlight vortex shedding when a non-linear source is used. There again, this physical mech-
anism is well-known for Helmholtz resonators (Roche, 2011). Regarding the viscous dissipation
(figure 5.15), an important fact highlighted by figure 5.15 is that the dissipation due to shear ef-
fects is mainly localized at the corners of the perforation when considering a non-linear source. We
recall that, when using a plane wave as a source, the dissipation is distributed mostly in the vis-
cous boundary layer inside the neck and the corners of the aperture. The resemblance of the two
response fields indicates that the first resolvent mode is likely to be dominating. This is encourag-
ing in terms of model reduction perspectives. Nevertheless, this assumption needs to validated by
computing a full resolvent analysis for instance, requiring efficient numerical algorithms (Moarref
et al. (2013); Brynjell-Rahkola et al. (2017); Martini et al. (2020b); Ribeiro et al. (2020)).

5.6 Case study with flow

In this section, the same graphs as in section 5.5 are shown with the presence of a grazing flow
with a Mach number of 0.3 in the homogeneous part of the flow. As in section 5.5, we focus on
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the frequency 3500 Hz, for which we expect to have non-linear effects with important amplitudes
according to the response gains in section 5.4.2.

In figure 5.16, the real part, the imaginary part, and the absolute values of the fields corre-
sponding to the plane wave response Tt, the sensitivity s̃T, and the response to a non-linear forcing
T̃r are shown. According to Re(s̃T), the resistance is sensitive to a heat source located above and
upstream of the aperture. We can also see that Re(s̃T) is not negligible in the thermal boundary
layer inside the cavity.

Im(s̃T) shows that the reactance is sensitive to a temperature variation upstream from the
perforation. It is also the case inside the cavity. We remind that the cavity is a sensitive region
without flow as well. The temperature response to a plane wave and to a non-linear forcing are
alike, a strong pressure gradient can be observed in the downstream corner region both on the
real and the imaginary parts.

It can be noted that the temperature sensitivity is zero on the boundary of the finite element
domain, accordingly with the iso-thermal boundary condition Tt = 0.

According to figure 5.17, the pressure has a behavior similar to the temperature. This is already
the case without flow. The impedance is sensitive to a perturbation in the upstream region of the
aperture and inside the cavity. An important difference with temperature fields is the presence of
a clear contrast on sensitivity field on line 1.

Here again, a high pressure gradient is present in the region of the downstream corner.
An important remark regarding the analysis with flow is that the sensitivity and the response

to a non-linear term are not alike anymore. As opposed to the case study without flow, these
fields are not symmetrical. It is physically consistent with the convective non-normality induced
by the flow in this case (Sipp et al., 2010). A forcing is present upstream, and a response is present
downstream.

According to the resemblance of |p̃r| and |p̃t|, the first resolvent mode is still dominating. This
remark can be generalized to the fields of the 4 model variables presented in this section.
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The fields corresponding to the tangential velocity are shown in figure 5.23. The sensitivity
indicates that the impedance would be significantly impacted by a force applied upstream from
the aperture. The corners play a secondary role on the impedance, as opposed to the case without
flow. The response to a plane wave and to the non-linear forcing are similar, especially their real
parts. The imaginary part Im(ũr) shows a strong response all over the entrance of the aperture, in
contrast with Im(ut) which shows a response more localized on the downstream corner region.

The normal velocity responses and sensitivity are presented in figure 5.19. Re(s̃v) shows that
the resistance is sensitive to perturbations in the region of the upstream corner and, with a lower
intensity, in the neck. The imaginary part of s̃v indicates that the reactance is receptive to a force
applied at the upstream corner and in the viscous boundary layer inside the neck. Line 1 appears
to be a sensitive region as well, which is consistent with how the impedance is defined in this
study.

The real parts of vt and ṽr are very similar with a strong gradient in the downstream corner
region. A second order difference is that the upstream corner region of Re(ṽr) is higher in am-
plitude than for Re(ṽt). The imaginary part of ṽr presents a rather homogeneous response from
the neck, although a strong velocity gradient is present at the downstream corner. Globally, when
looking at the absolute values of vt and ṽr, the main difference between the two fields is situated
at the upstream corner of the aperture where |ṽr| is non negligible as opposed to |vt|.

Figure 5.19(h) shows that the effective velocity impacting the impedance is no longer evenly
distributed in the neck and that the upstream corner is of importance.

In order to gain more insight on the comparison between the plane wave response and the
non-linear source response, the vorticity is computed in both cases and shown in figure 5.20. We
can see that Re(ωt) and Re(ω̃r) are very similar. On the other hand, Im(ωt) and Im(ω̃r) have a
similar structure in the neck but the region above the aperture is rather different. Indeed, in the
case of Im(ω̃r), the vorticity extends slightly higher above the aperture than Im(ωt).

The vorticity downstream sweep observed for ω̃r is also observed by Zhang et al. (2016) in a
numerical study performed with a grazing flow and high sound pressure levels.

The mean value of the dissipation for both responses is computed according to equations (5.36)
and (5.37) and shown in figure 5.21. It can be observed that for Φshear and Φ̃shear, the dissipation
is very strong at the downstream corner. The mean value of Φ̃shear highlights that the dissipation
is lower at the upstream corner but not negligible.

We now formulate global remarks in figures 5.16 to 5.21. When a grazing flow is added, the
upstream-downstream symmetry is broken, this is consistent with the observations from Zhang
et al. (2016). The sensitivity fields for all 4 model variables show that the impedance is strongly im-
pacted by a perturbation located upstream from the aperture. As such a perturbation is advected
above the aperture, this phenomenon appears to be physically plausible. The upstream corner
and the region above the aperture are also receptive zones. An important remark is that the re-
sponse to a plane wave and the response to an optimal non-linear forcing are similar. Although
small differences can be observed between the two responses, the main structure with a strong
gradient at the downstream corner are comparable for each model variable. This is also translated
by the vorticity and the dissipation due to shear effects. The latter remark indicates that, in the
presence of a grazing flow, the first resolvent mode might be dominating the structure of the flow.
Indeed, we recall that our output space is scalar, which means that only the first resolvent mode is
analyzed throughout this study. Therefore, the resemblance between the two responses might in-
dicate that the first mode is sufficient to accurately model the behavior of a single aperture under
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FIGURE 5.21: (a), (b): Mean values of the shear dissipation for respectively the re-
sponse to the plane wave, and the response to the non-linear term for M = 0.3.

grazing flow. This is consistent with the fact that we are focusing on a frequency close to reso-
nance. However, it would be necessary to account for higher order resolvent modes to validate
this hypothesis. Thus, this validation can not be performed with the sensitivity analysis used so
far.

5.7 Choice of another line to define the impedance with flow

The impedance is a quantity representative of the acoustic properties of a material. The definition
of the impedance on line 1 is known to be relevant in the linear regime. However, when non-linear
effects and a grazing flow are added, this definition might not be applicable due to the complexity
of the physical phenomenon occurring. Defining an impedance above the flow boundary layer
would round this fact, but it would represent the acoustic characteristics of the system composed
of the liner and the boundary layer, and not only of the liner.

Alternatively, the impedance can be defined on line 1 using a "measure" of the acoustic pres-
sure and normal velocity above the boundary layer on line 2 indicated in figure 5.2. Using, this
new definition, we perform the sensitivity analysis and compute the response to the non-linear
optimal forcing.

To this end, we evaluate the pressure on line 1 at the surface of the plate using the plane wave
hypothesis in the boundary layer. We get

∫

l1
pt(x) dx =

[
p2

l2
ejk0δbl + A

(
ejk0L − ejk0(L+δbl)ejk0δbl

)]
l1, (5.38)

where p2 =
∫

l2
pt(x) dx, and l2 denotes the length of line 2. We recall that A = 1 Pa is the

amplitude of the plane wave imposed in the finite element domain.
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Likewise, the normal velocity integral on line 1 is expressed as a function of the normal velocity
integral over line 2 with

∫

l1
vt(x) dx =

[
v2

l2
ejk0δbl − A

ρ0c0

(
ejk0L − ejk0(L+δbl)ejk0δbl

)]
l1, (5.39)

with v2 =
∫

l2
vt(x) dx.

In a similar manner to the previous sensitivity analysis, a first-order Taylor series is used to
express the impedance perturbation δZ as a function of the non-linear perturbation δxnl :

δZ = HZ,2δxnl . (5.40)

where

HZ,2 =
ejk0δbl

l2

ejk0δbl

l2
Hp,2xnl + A

(
ejk0L − ejk0(L+δbl)ejk0δbl

)

[
ejk0δbl

l2
Hv,2xnl −

A
ρ0c0

(
ejk0L − ejk0(L+δbl)ejk0δbl

)]2Hv,2

− ejk0δbl

l2

Hp,2

ejk0δbl

l2
Hv,2xnl −

A
ρ0c0

(
ejk0L − eik0(L+δbl)jk0δbl

) . (5.41)

Here,
∫

l2
pt(x)dx = Hp,2xl and

∫

l2
vt(x)dx = Hv,2xl .

In order to assess the impact of the impedance definition line, we compare the sensitivity
results obtained with line 1 and line 2 at 3500 Hz and M = 0.3 in figure 5.22 and the response
results in figure 5.23. The same colorbar scale is used when comparing the fields.

It can be observed that the sensitivity fields computed with line 1 and 2 are slightly different
although they have the same structure. The region upstream from the aperture remains a sensitive
zone for impedance.

The responses to a non-linear optimal forcing have a very similar structure when moving from
line 1 to line 2. The response is important immediately above the aperture and in the downstream
region.

It appears that the choice of a different line for the impedance definition has a limited impact
on the sensitivity and response fields. The structures of the latter remain the same. This brings
more confidence in the use of the sensitivity analysis on the impedance of a perforated plate. It
can be noted that the robustness of this method may be due to the fact that the first resolvent mode
is dominating.

5.8 Perspectives with an iterative procedure

In this section we explain how an iterative procedure could improve the present approach to
become predictive. The diagram in figure 5.24 illustrates the method. A similar approach can be
found in Symon et al. (2019).

From the linearized Navier-Stokes equations, we first compute a response to a plane wave
which gives an initial value of ut(ω) for a determined frequency range. The sensitivity analysis
is performed to focus our interest on the mode of the non-linear response impacting the most the
impedance. Keeping only the most amplified modes (in singular value and/or among frequen-
cies) allows to reduce the order of our model and to highlight the relevant physics.



118 Chapter 5. Sensitivity analysis in the presence of non-linear effects and grazing flow

−0.75 1.25 3.25
18

19

20.5

21.5

x [mm]

y
[m

m
]

Line 1 - |s̃u|

0 500 1,000 1,500 2,000
[
m−1]

−0.75 1.25 3.25
18

19

20.5

21.5

x [mm]

Line 2 - |s̃u|

0 500 1,000 1,500 2,000
[
m−1]

(a) (b)
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(right).
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0 500 1,000 1,500
[
m−1]

−0.75 1.25 3.25
18

19

20.5

21.5

x [mm]

Line 2 - |ũr|
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FIGURE 5.23: Tangential velocity response to a non-linear optimal forcing computed
using line 1 (left) and line 2 (right).
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and response of the
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ITF [ulin(ω) + unl(ω)]

Convective term:
TF [u′t(t) · ∇u′t(t)]
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FIGURE 5.24: Diagram of the iteration procedure. Here, ITF[·] stands for the inverse
Fourier transform and TF[·] for the forward Fourier transform.

Then, we perform an inverse Fourier transform using the values of ut(ω) = ulin(ω) + unl(ω)
in order to mix the frequency contribution and to obtain the velocity u′t(t) in the time domain.
Thereafter, the convective term fnl = TF [u′t(t) · ∇u′t(t)] is determined in the frequency domain.
Finally, the response of the LNSE to this non-linear term is computed on the considered frequency
range. This procedure is repeated until convergence of the velocity amplitude.

A major benefit of this procedure is that it gives access to a realistic non-linear term, including
the contribution of multiple frequencies, impacting the most the impedance. This is illustrated
in appendix E, in which an example of triadic interaction on the momentum conservation equa-
tion involving the convective non-linear term is presented. Thereafter, quantitative information
regarding the model variables are available and could help the understanding of the non-linear
physical mechanisms in the presence of a grazing flow. For instance, this could lead to a defini-
tion of an effective quantity to define the non-linear impedance with flow, as in the model from
Ingard (1968) where this effective quantity is the velocity in the neck.

5.9 Conclusion

A sensitivity analysis, which is a specific case of the more general resolvent analysis, was intro-
duced to investigate the behavior of a single perforation backed by a cavity to non-linearities.

The response gains to an optimal non-linear source are computed for each model variables.
An interesting fact is that these gains decrease with growing Mach number. This indicates that
the non-linearities have a lower impact on the impedance when the velocity of the grazing flow
increases.

Cases without flow and with flow at a Mach number of 0.3 are presented in detail.
Without flow, the main characteristics of a Helmholtz resonator are retrieved. The resistance

appears to be sensitive to a heat source located inside the cavity and the reactance is sensitive
to a heat source situated in the thermal boundary layer inside the cavity. The impedance is also
shown to be sensitive to a pressure perturbation inside the cavity. The tangential velocity sen-
sitivity shows that the corners of the aperture form a very sensitive zone. The normal velocity
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sensitivity highlights the importance of the viscous boundary layers inside the neck on the re-
sistance (Zwikker et al., 1949). The important impact of the neck region on the reactance is also
shown.

When comparing the response to a plane wave and the response to a non-linear source, a phase
quadrature seems to be present between the two responses. The vorticity fields seems to highlight
vortex shedding from the corner of the aperture when using a non-linear source. Furthermore, the
dissipation fields clearly show that the main shear dissipation region is located at the corners of
the perforation when using a non-linear source. We recall that when using a plane wave source,
i.e. a linear source, the dissipation is located mostly in the viscous boundary layer of the neck and
the corners of the aperture.

With flow at M = 0.3, the sensitive zones highlighted without flow become secondary. The
most sensitive regions are now located upstream of the aperture, at the upstream corner and im-
mediately above the neck. The shear dissipation fields show that most of the losses occur at the
downstream corner of the aperture when either a plane wave or a non-linear source is used. The
effective velocity impacting the impedance is dominated by the upstream corner. Hence, comput-
ing the velocity in the perforations using the same approach as without flow is questionable. The
impact of the line upon which the impedance is defined on the sensitivity and response computa-
tions is investigated. Regarding the tangential velocity fields, it appears to have mostly an impact
on the amplitude rather than on the structure of fields. Therefore, our method remains valid as it
focuses on highlighting physical mechanisms.

The sensitivity analysis could be applied to more complex models. For instance, a model
with a periodic arrangement of perforations, which is more realistic when compared to an actual
perforated liners. Alternatively, the grazing flow could also be solved using a RANS (Reynolds-
averaged Navier-Stokes) model. The geometrical characteristics of the perforations, namely their
radius and their length are known to have an impact on the impedance. This is also the case
of the boundary layer thickness. Hence, a parametric study could be envisaged and the physical
mechanisms underlying the impact of non-conventional or complex geometries on the impedance
could be explored and quantified.

In the present study, we have computed an optimal non-linear forcing which is not physically
realistic. However, the forcing and the solution to the system could be predicted by using an
iterative procedure. Indeed, one could use the sensitivity analysis the reduce the order of the
model and to focus on the impedance. Thereafter, a forcing and its associated response could be
computed iteratively until convergence, as explained in section 5.8. A similar approach is used in
Symon et al. (2019). For a sine-swept source, this would need to be performed for each frequency,
while for a white noise source it would be for all the frequencies. One of the main benefits of such
method is to gain access to the whole perturbed fields of the model variables as opposed to only
an effective quantity as used in Ingard et al. (1967).
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Conclusion

In this manuscript, different models and methods are developed to study the acoustic impedance
of perforated plate liners with various geometrical parameters. The starting point is that the micro-
perforated liners are of interest to reduce the flow drag of jet engines. However, the current models
are not accurate when considering micro-perforated liners under grazing flow. Therefore, we in-
vestigate the impact on the impedance of having sub-millimeter perforation and a low porosity.
This thesis begins with a simple model in the linear regime without flow and unfold with in-
creasing physical complexity. Chapters 1 and 2 are dedicated to the linear regime without flow.
Chapter 3 focuses on the non-linear regime. Chapters 4 and 5 deal with the non-linear regime in
presence of a grazing flow. In this general conclusion, we recall the main results of each chapter
and provide possible perspectives.

In the first chapter, the physical mechanisms occurring in the linear regime without flow are
reviewed. The semi-empirical model from Guess (1975), which accounts for viscous losses inside
and outside the perforations, the radiation and hole interaction is introduced. Subsequently a
model based on the mode-matching (MM) method is presented. Due to its construction, the latter
approach allows to release the short tube approximation and to describe the complete velocity
profile based on the theory from Stinson (1991). It accounts for the radiation and hole interac-
tion effects through evanescent modes at the entrances of the perforation. Having compared both
models to impedance measurements, the mode-matching model resistance predictions underesti-
mate the measured resistance significantly. This is due to the fact that the mode-matching does not
account for the viscous edges effects which are included with an empirical correction in the model
from Guess (1975) following the work from Ingard (1953). However, the MM method allows to
capture correctly the radiation and hole interaction effects without relying on an end correction,
as opposed to Guess (1975). Another result is that releasing the short tube approximation and
modeling the velocity profile has a minor impact on the impedance prediction. In order to ob-
tain an exhaustive model, an interesting perspective would be to use higher order viscous modes
(Kirchhoff, 1868) outside the perforation to account for viscous edges effects. Moreover, the MM
model could be adapted for conical shape apertures and small horns based on the visco-thermal
transfer function in Honzík et al. (2013).

Remaining in the linear regime, finite element models are used in chapter 2. The linearized
compressible Navier-Stokes equations are solved as well as the Helmholtz equation with a bound-
ary condition including the effect of the viscous and thermal acoustic boundary layers (Berggren et
al., 2018). Both models are found to be accurate when compared to impedance tube measurements
for macro- and micro-perforated plates. The dissipation rate due to shear effects is computed from
LNSE solution. Accordingly with the shear number values, it is shown that the viscous dissipation
is distributed in a different manner when considering a macro- or a micro-perforate. Interestingly,
a quarter of the overall dissipation occurs outside the perforation in the micro-perforated case and
the corner region is secondary. In the macro-perforated case, the dissipation is concentrated close
to the walls as the boundary layer is small compared to the perforation radius. Consequently, the
dissipation is strong near the corners. Based on the results from chapter 1 and 2, it is interest-
ing to note that the empirical end correction from Ingard (1953) remains accurate both for macro-
and micro-plates although the viscous edges effects are differently distributed from one case to
another. We recall that Ingard performed measurements for perforation in the macro-perforated
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regime. From a more numerical point of view, the "Helmholtz with losses" model is found to con-
verge much faster than the LNSE model. This is explained by several facts, the Helmholtz model
uses only 1 variable instead of 4 for the LNSE, the acoustic boundary layers do not need to be
accurately discretised and there is no need for representing the velocity in a smoother space than
the state variables (Kellogg et al., 1996). Surprisingly, this model is able to accurately predict the
impedance. Due to its underlying assumptions, it is not supposed to be accurate at the corners of
the perforations and to account for viscous edges effects as it carries a wall model. Nevertheless,
this is consistent with recent results from Cops et al. (2020) in which the same model is used in
porous materials.

In chapter 3, the model from Guess (1975) is modified with an iterative procedure to predict
the non-linear impedance and the acoustic velocity in the perforations for high sound pressure
levels. This procedure is used in Beck et al. (2015) and in the model from Laly et al. (2018a) for a
sine-swept source. The non-linear resistance from Guess is based on the early experimental work
from Ingard et al. (1967), and the model from Laly et al. is based on the equivalent fluid approach
with the non-linear resistance from Zinn (1970) which accounts for the vena contracta effect. The
non-linear term from Ingard et al. (1967) is validated for a wide range of perforated plates under a
white noise source. Both Guess and Laly et al. models are compared to impedance tube measure-
ments using either a sine-swept or a white noise source for macro- and micro-perforated plates.
The iterative procedure is adapted to both sources. The impedance and velocity predictions from
the two approaches are found to be in reasonable to good agreement with the measurements. We
observe discrepancies between the two models, which could be explained by the vena contracta
modeling in Laly et al. (2018b). Globally the modified Guess model is slightly more accurate than
the recent model from Laly et al. This might be explained by the fact that the spatial scales sepa-
ration assumption inherent to an equivalent fluid approach is not respected for macro-perforated
plate. Additionally, the predictions are in good agreement with measurements performed with a
plane wave having a grazing incidence to the perforated plate.

In the fourth chapter, the impact of the grazing flow on the impedance is studied. The model
from Guess is used and the grazing flow resistance correction from Ingard (1968) is accounted for
during the iteration procedure introduced in chapter 4. Alternatively, the impedance correction
from Meng et al. (2019) is used. We recall that both corrections depend on an empirical parameters.
Educed here from the measurement performed at the LAUM for a number of perforated plate and
three different boundary layer thicknesses. The measurements are at Lp = 130 dB or Lp = 150 dB
and M = 0.3 or M = 0.45. The boundary layer displacement thickness is found to have an
important impact on the resistance, however, it appears that once the boundary layer is fully
developed, the displacement thickness has only a limited impact on the impedance. The Mach
number also has a significant impact on the impedance. The resistance increases and the reactance
decreases with increasing Mach number, consistently with the litterature. The fluctuating velocity
due to a turbulent boundary layer and the convection speed of vorticity are found to decrease
with growing boundary layer displacement thickness following an inverse law, consistently with
Yu et al. (2008) and Meng et al. (2019). The relevance of this velocity is discussed in terms of an
effective quantity impacting the impedance. Furthermore, we propose an empirical function for
kGuess different from the one of Yu et al. (2008) as its value at δ∗/Rneck = 0 depends on the ratio
Rneck/h and its rate of decline depends on the radius. When computing the resistance with the
modified model from Guess, this function clearly improves the prediction for plates with low
perforation radius and porosity, compared to the initial value of kGuess = 0.3 in Guess (1975).
Moreover, in the macro-perforated case, it does not deteriorate the predictions.

The last chapter introduces a method based on the resolvent analysis. This sensitivity anal-
ysis is performed on the linearized Navier-Stokes equations with and without mean flow on a
perforation submitted to a plane wave and backed by a cavity. Without flow, the main charac-
teristics of a Helmholtz resonator are retrieved. Additionally, it is found that the dissipation is
mostly concentrated at the corners of the aperture when submitted to a non-linear forcing. Vortex
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shedding from the corners is also highlighted. With flow, the sensitive zone identified without
flow becomes secondary. The region upstream from the perforation and the upstream corners are
the most sensitive region to a non-linear source. The response to a non-linear forcing is strong
downstream of the perforation and at the downstream corner. The viscous dissipation is mainly
localized in the downstream corner region when considering both the responses to a plane wave
and to the non-linear forcing. Both with and without flow, the response to a plane wave and the
response to a non-linear forcing are similar. This suggests that the first resolvent mode is dominat-
ing and is an encouraging observation in terms of reduced-order modeling. Following this study,
the impact of the line upon which the impedance is defined is discussed and redefined above the
boundary layer. The sensitivity and response fields obtained with both lines appear to be similar.
This provides more confidence in the use of the sensitivity analysis to study the impedance. This
method can lead to a number of perspectives. It could be used for various geometrical parameters
of perforated plates and shear flow boundary layers. Also, a periodic boundary condition could
be implemented to obtain a more realistic layout. The angle of incidence of the plane wave could
be varied. An iterative procedure could be introduced to compute the non-linear convective term.
In doing so, the current sensitivity analysis could be improved to become predictive.

Global perspectives In this thesis, several methods were developed to model the impedance
of perforated liners from the linear regime to the non-linear regime with flow. In the linear and
non-linear regimes, the prediction provided by the presented models are correct both for macro-
and micro-perforated liners. In chapter 4, it is shown that, in the non-linear regime with grazing
flow, the impedance predictions are perfectible, especially for micro-perforates. The underlying
physics impacting the impedance in the presence of a grazing flow needs further investigations to
obtain accurate predictions. The sensitivity analysis introduced in chapter 5 is a suitable method
to reach this objective. Perspectives allowing to make this approach predictive were presented
and would be a consistent continuation of this thesis. Furthermore, the presented studies can be
adapted for perforations with a conical or tilted shape.
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Appendix A

Details of the mode-matching
formulation

A.1 Pressure continuity

A.1.1 Interface between the neck and the exterior

The pressure continuity derivations is detailed for the boundary between the exterior domain and
the neck. In the exterior domain, the pressure field reads

pext(r, z) =
∞

∑
m=0

(
Am

exte
−jkz,m

ext z + Bm
exte

jkz,m
ext z
)

Ψm
ext, (A.1)

with
Ψm

ext = J0 (kr,m
ext r) . (A.2)

m is the mode index and J0 is the Bessel function of order zero of the first kind. The radial wave
number kr,m

ext and the axial wave number kz,m
ext are related by the dispersion relation

(kz,m
ext )

2
= k2

0 − (kr,m
ext )

2 , (A.3)

where k0 = ω/c0 and kr,m
ext = γ0,m/Rext in which γ0,m are the solutions of J′0

(
γ0,m) = 0. Only the

axi-symmetrical modes are accounted for. In the neck, the pressure field is

pneck(z) = Anecke−jkneck(z+h) + Bneckejkneckz. (A.4)

The axial wave number accounting for viscous and thermal effects kneck, derived in Stinson (1991),
is

kneck = ω
√

ρ (ω)C (ω). (A.5)

Here ρ(ω) is the equivalent complex density and C(ω) is the equivalent complex compressibility
defined respectively as

ρ (ω) = ρ0

[
1− 2

KRneck

J1 (KRneck)

J0 (KRneck)

]−1

, (A.6)

and

C (ω) =
1

γP0




1 +
2 (γ− 1)

Rneck

√
ν′

−jωγ

J1

(√
−jωγ

ν′
Rneck

)

J0

(√
−jωγ

ν′
Rneck

)




, (A.7)

where P0 is the atmospheric pressure, γ is the adiabatic coefficient and ν′ = κ/
(
ρ0cp

)
.
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At the interface between the neck and the exterior for z = 0, we wish to approximate the
relation pneck = pext on the cross section of the neck such that

∫ Rneck

0
pneckΦneckrdr =

∫ Rneck

0
pextΦneckrdr. (A.8)

Here, we choose the test function Φneck = 2/R2
neck. The modes from the exterior domain are

projected onto the neck plane wave. As the modes from the neck are orthogonal, equation (A.8)
can be written as

Anecke−jkneckh + Bneck =
N

∑
m=0

Em (Am
ext + Bm

ext) , (A.9)

where

Em =
2J1 (Rneckkr,m

ext )

Rneckkr,m
ext

, (A.10)

and N is the index of the highest order mode accounted for.

A.1.2 Interface between the neck and the cavity

The same derivations are performed for the interface between the neck and the cavity for z = −h.
The pressure field in the cavity is

pcav(r, z) =
∞

∑
m=0

(
Am

cave−jkz,m
cav(z+h+L) + Bm

cavejkz,m
cav(z+h)

)
Ψm

cav, (A.11)

with Ψm
cav = J0 (kr,m

cav) and (kz,m
cav)

2
= k2

0 − (kr,m
cav)

2. Here, kr,m
cav = γ0,m/Rcav. The pressure continuity

between the neck and the cavity is

Aneck + Bnecke−jkneckh =
N

∑
i=0

Gm
(

Am
cave−jkz,m

cavL + Bm
cav

)
, (A.12)

where

Gm =
2J1 (Rneckkr,m

cav)

Rneckkr,m
cav

. (A.13)

A.2 Axial velocity continuity

A.2.1 Interface between the neck and the exterior

The axial velocity continuity is detailed for the boundary between the exterior domain and the
neck. The axial velocity field in the exterior domain is described by

vext =
1

ρ0ω

∞

∑
m=0

kz,m
ext

(
Am

exte
−jkz,m

ext z − Bm
exte

jkz,m
ext z
)

Ψm
ext. (A.14)

In the neck, the velocity profile accounting for viscosity reads

vneck =
∂pneck

∂z
1

jωρ0
Ψneck (A.15)

with

Ψneck =
J0(Kr)

J0(KRneck)
− 1, (A.16)
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and K =
√
−jω/ν is the Stokes wave number. Hence,

vneck =
kneck

ρ0ω

(
Anecke−jkneck(z+h) − Bneckejkneckz

)
Ψneck. (A.17)

We enforce the axial velocity continuity vext = vneck on the surface Sext for z = 0 with the weak
formulation

∀m ∈N

∫ Rext

0
vextΦm

extrdr =
∫ Rneck

0
vneckΦm

extrdr, (A.18)

in which we choose the test function

Φm
ext =

J0 (kr,m
ext r)

∫ Rext

0
J2
0 (k

r,m
ext r) rdr

. (A.19)

Equation (A.18) implies that vext(z = 0) = 0 on Sext\Sneck, imposing naturally a free-slip boundary
condition on the surface of the plate. The modes from the exterior duct are orthogonal, hence the
axial velocity continuity is

∀m ∈N kz,m
ext (Am

ext − Bm
ext) = kneck

(
Anecke−jkneckh − Bneck

)
Fm, (A.20)

in which

Fm = 2

∫ Rneck

0

[
1− J0(Kr)

J0 (KRneck)

]
J0 (kr,m

ext r) rdr

R2
ext
[
J2
0 (k

r,m
ext Rext) + J1 (kr,m

ext Rext)
] . (A.21)

A.2.2 Interface between the neck and the cavity

The same derivations are performed in the cavity. The velocity in the cavity field reads

vcav =
1

ρ0ω

∞

∑
m=0

kz,m
cav

(
Am

cave−jkz,m
cav(z+h+L) − Bm

cavejkcav
z,m(z+h)

)
Ψm

cav. (A.22)

By following the same steps as for the continuity between the exterior and the neck, the axial
velocity continuity between the cavity and the neck is

∀m ∈N kr,m
cav

(
Am

cave−jkcav
z,m L − Bm

cav

)
= kneck

(
Aneck − Bnecke−jkneckh

)
Hm, (A.23)

in which

Hm = 2

∫ Rneck

0

[
1− J0(Kr)

J0 (KRneck)

]
J0 (kr,m

cavr) rdr

R2
cav
(
J2
0 (k

r,m
cavRcav) + J1 (kr,m

cavRcav)
) . (A.24)

A.3 Linear system

The incident plane wave amplitude is fixed to B0
ext = 1. Therefore, the reflection coefficient is

R = A0
ext. To solve the linear system, we need to use the perfectly reflecting boundary condition

on the back plate of the cavity, which leads to the following relation:

∀m ∈N Am
ext = Bm

exte
−jkz,m

cavL. (A.25)
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We now have 5 equations ((A.8), (A.12), (A.18), (A.23), (A.25)) for 5 unknowns modal amplitudes
in the case in which only the plane wave is matched in the exterior and the cavity domains. These
5 equations can be reduced to a linear system for the modal amplitudes Bm

ext, Am
cav, Bm

cav, Aneck and
Bneck. The size of the linear system is 5 + 3N.
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Appendix B

Weak formulations of the numerical
models

B.1 LNSE plane wave derivations

On the upper boundary Γin of the computation domain, an incoming plane wave of the form
e+jωt+jkz is generated by using the following Robin boundary condition:

∇p′ · n + jkp′ = 2jkWejkLZ on Γin, (B.1)

where LZ = L + h + LT and W is the amplitude of the plane wave. The numerical implementation
is formulated using the acoustic Reynolds number based on the sound speed Rea instead of the
shear number Sh which is used for the post-processing of the results. The wavenumber k remains
to be determined together with the associated expression for the other variables of the linearized
Navier–Stokes equations. To that end we use the fact that these variables are also of the form
e+jωt+jkz to modify equations (2.8), (2.9) and (2.10) and write:

ρ′ = − k
ω

u′ · n , p′ = −α

k
u′ · n , T′ = − k

β
u′ · n , p′ = [(γ− 1)T′ + ρ′]/γ , (B.2)

with

α = ω− jk2

Rea

(
µB + 4

3

)
, β = ω− jk2 γ

ReaPr
.

From these relations, and assuming that thermal effects are small, one can recover the definition
of the wavenumber (2.12) of the dispersion relation. One can also obtain the boundary conditions
for the linearized Navier–Stokes equations corresponding to an incoming plane wave:

∇ρ′ · n + jkρ′ =
2k3

ωα
jWejkLZ , (B.3)

∇
(
u′ · n

)
· n + jku′ · n =

−2k2

α
jWejkLZ , (B.4)

∇T′ · n + jkT′ =
2k3

αβ
jWejkLZ . (B.5)

These expressions are used below in the variational formulation of the LNSE.
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B.2 LNSE weak formulations

B.2.1 Mass equation

The weak formulation of the mass conservation equation is

∫

Ω
q

∂ρ′

∂t
dΩ =

∫

Ω
u′ · ∇q dΩ−

∫

Γ
qu′ · n dΓ , (B.6)

where q is a test function. Incorporating the plane-wave boundary condition (B.4) in equation
(B.6) yields

∫

Ω
q

∂ρ′

∂t
dΩ =

∫

Ω
u′ · ∇q dΩ +

1
jk

∫

Γin

q(n · ∇)(u′ · n)dΓ +
2k
α

WejkLZ

∫

Γin

q dΓ . (B.7)

B.2.2 Momentum equation

The boundary including the axis and the free-slip boundaries is written Γs = Γaxis∪ Γext,lat∪ Γcav,lat.
The weak formulation of the momentum equation reads

∫

Ω
v · ∂u

∂t
dΩ =

1
γ

∫

Ω
(∇ · v) [(γ− 1)T′ + ρ′]dΩ (B.8)

− 1
Rea

∫

Ω
∇v :

[
∇u′ +

(
∇u′

)T
]
+
(
µB − 2

3

)
(∇ · v)

(
∇ · u′

)
dΩ

− 1
γ

∫

Γ
(v · n) [(γ− 1)T′ + ρ′]dΓ

+
1

Rea

∫

Γ
v ·
[
∇u′ +

(
∇u′

)T
]

n +
(
µB − 2

3

)
v · n

(
∇ · u′

)
dΓ

where v is a test function. Using the boundary conditions (B.3) to (B.5), we find

ρ0

∫

Ω
v · ∂u

∂t
dΩ =

1
γ

∫

Ω
(∇ · v) [(γ− 1)T′ + ρ′]dΩ (B.9)

− 1
Rea

∫

Ω
∇v :

[
∇u′ +

(
∇u′

)T
]
+
(
µB − 2

3

)
(∇ · v)

(
∇ · u′

)
dΩ

+
1

jγk

∫

Γin

(v · n) (n · ∇) [(γ− 1)T′ + ρ′]dΓ

−
[

2WeikLZ − 2Wik2eikLZ

α

(
µB + 4

3
Rea

)] ∫

Γin

v · n dΓ

− ik
Rea

(
µB + 4

3

) ∫

Γin

(v · n)
(
u′ · n

)
dΓ .

B.2.3 Energy equation

The weak formulation of the energy equation corresponds to

∫

Ω
ε

∂T′

∂t
dΩ = −

∫

Ω

(
∇ · u′

)
ε− γ

ReaPr
∇ε · ∇T′ dΩ +

γ

ReaPr

∫

Γ
ε∇T′ · n dΓ ,
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where ε is a test function. Replacing ∇T′ · n by the plane-wave boundary condition (B.5) on Γin,
the weak formulation become

∫

Ω
ε

∂T′

∂t
dΩ =−

∫

Ω

(
∇ · u′

)
ε− γ

ReaPr
∇ε · ∇T′ dΩ (B.10)

− jk
γ

ReaPr

∫

Γin

εT′ dΓ

+
2Wjk3ejkLZ

αβ

γ

ReaPr

∫

Γin

ε dΓ.

B.3 Weak formulation of the Helmholtz model

The variational formulation for the Helmholtz equation is as follows:

−
∫

Ω
∇p · ∇η dΩ +

∫

Γ
∇p · nη dΓ + ω2

∫

Ω
pη dΩ = 0, (B.11)

where η is a test function.
An incoming plane wave is implemented on the upper boundary of the domain:

∂p
∂n

+ jωp = 2WjejωLZ on Γin . (B.12)

The boundary condition (2.20) is implemented on Γw.
These boundary conditions are introduced in (B.11) to give

∫

Ω
−∇p · ∇η + ω2 pη dΩ +

∫

Γw

−δV
j− 1

2
∇T p · ∇Tη − δTω2 (j− 1) (γ− 1)

2
pη dΓw (B.13)

+
∫

Γin

−jωpη + 2jωejωLZ η dΓin = 0.
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Appendix C

Details on the measured samples in the
non-linear regime

Table C.1 summarizes the geometrical parameters used to validate the non-linear resistance term
from Ingard et al. (1967) with impedance tube measurements performed with a white noise source.
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Porosity (%) Radius (mm) Thickness (mm)

1,4 0.15 0.6
1.8 0.15 0.6
2.1 1.5 4.0
2.8 0.15 0.6
2.9 0.15 1.2
4.1 1.5 4.0
4.2 0.15 0.6
4.6 0.25 0.6
4.9 0.15 1.2
6.0 1.0 2.1
6.0 0.8 2.1
6.0 0.4 2.1
6.0 0.8 1.5
6.0 1.0 1.5
6.0 0.4 1.5
6.0 0.6 1.5
6.0 1.0 0.9
8.0 0.4 0.9
8.0 0.8 0.9
8.0 0.8 2.1
10.0 1.0 1.5
10.0 0.8 1.5
10.0 0.8 2.1
10.0 0.8 0.9
10.0 0.4 1.5
12.0 0.4 0.9
12.0 0.8 2.1
14.0 0.8 2.1
14.0 0.8 0.9
16.0 0.8 2.1
16.0 0.8 0.9
16.0 0.8 1.5
18.0 1.0 1.5
18.0 0.8 1.5
20.0 0.8 2.1
20.0 0.8 0.9

TABLE C.1: List of the measured samples.
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Appendix D

Results at Lp = 130 dB

For completeness, we include in this appendix the educed empirical parameters obtained at Lp =
130 dB in figures D.1 and D.2. The trends remain the same as for Lp = 150 dB.
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Appendix E

Example of triadic interaction

Non-linear effects are known to occur for high sound pressure levels and to be the cause of har-
monic distortion. In the work form Ingard et al. (1967), the resulting frequency interactions are not
explicitly accounted for and it assumed that the first harmonic is dominating.

A more robust approximation of the interaction between frequencies can be found using the
triadic interaction (Cavalieri et al. (2019), McKeon et al. (2010)). The triadic interaction accounts for
the impact of two frequencies ω1 and ω2 whose the sum equals the frequency of interest. Hence,
we shall have ω1 + ω2 = ω. It is useful to define a non-linear forcing as in Chapter 5. It can be
noted that this property is based on the orthogonality of the Fourier base.

An illustration of this approximation can be performed using the momentum conservation
equation (2.4) in which the non-linear term ρ (u · ∇)u is present.

First, we introduce the Fourier transform and its inverse

f̂ (ω) =
∫ +∞

−∞
f (t)e−jωtdt, f (t) =

1
2π

∫ +∞

−∞
f̂ (ω)e+jωtdω. (E.1)

Here, the quantities expressed in the frequency domain are denoted with a hat.
Secondly, in equation (2.4), we inject the inverse Fourier transform of the pressure and the

velocity to obtain

ρ
∂

∂t

[∫ +∞

−∞
û(ω)e+jωtdω

]
+

ρ

2π

∫ +∞

−∞

∫ +∞

−∞
[û(ω1) · ∇] û(ω2)ej(ω1+ω2)tdω1dω2

= −∇
∫ +∞

−∞
p̂(ω)e+jωtdω +∇ ·

∫ +∞

−∞
τ [û(ω)] e+jωtdω. (E.2)

We apply the Fourier transform to the previous equation and we obtain for a time period T

ρ
∂u
∂t

+
1

2T
ρ

2π

∫ +T

−T

∫ +∞

−∞

∫ +∞

−∞
[û(ω1) · ∇] û(ω2)ej(ω1+ω2−ω)tdω1dω2dt = −∇p +∇ · τ(u), (E.3)

We now compute the limit of the previous equation (E.3) for T → +∞ and we use the relation

lim
T→+∞

1
2T

∫ +T

−T
ej(ω1+ω2−ω)tdt = δ(ω1 + ω2 −ω). (E.4)

Hence, the non-linear term is non-zero if ω = ω1 + ω2 and become

ρ

2π

∫

ω=ω1+ω2

[û(ω1) · ∇] û(ω2)dω. (E.5)
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The time convolution can be obtained by operating the change of variables such that ω1 = ω′ and
ω2 = ω−ω′, we get

ρ
∂u
∂t

+
ρ

2π

∫

ω=ω1+ω2

[
û(ω′) · ∇

]
û(ω−ω′)dω = −∇p +∇ · τ(u). (E.6)

Equation (E.6) highlights that the non-linear term can be approximated by a convolution over all
frequencies. This strategy is used implicitly when defining the non-linear optimal forcing in the
sensitivity analysis presented in Chapter 5.
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Titre : Étude de traitements acoustiques perforés pour l’aéronautique. 

Mots clés : traitements micro-perforés, pertes visco-thermiques, non-linéarités, écoulement rasant, 
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Résumé : Le principe du résonateur de 
Helmholtz, par sa simplicité et son efficacité, est 
la technologie la plus répandue pour jouer le 
rôle d’absorbant acoustique. Les revêtements 
perforés sont un moyen simple de fabriquer et 
d’intégrer ces résonateurs à l’échelle 
industrielle. Les revêtements micro-perforés, 
ayant un diamètre de perforation inférieur au 
millimètre, permettent d’atténuer les émissions 
sonores des turboréacteurs tout en réduisant 
leur trainée aérodynamique. Pourtant, les 
modèles existants échouent encore à la 
prédiction des performances de ces 
revêtements. Pour cette raison, l’auteur 
propose, dans cette thèse de doctorat, d’évaluer 
et d’enrichir ces modèles afin d’étendre leur 
domaine de validité aux traitements micro-
perforés.  

La thèse commence par l’étude des pertes 
visco-thermiques dans le régime linéaire sans 
écoulement en relâchant certaines hypothèses 
et en développant un modèle numérique précis 
et peu coûteux numériquement. Une analyse 
du taux de dissipation est également 
présentée. Par la suite, notre analyse s’étend 
au régime non-linéaire dans lequel le modèle 
de Guess est modifié avec une procédure 
itérative, qui s’avère être essentielle pour 
l’obtention d’une impédance précise. La fin de 
la thèse s’articule sur les effets non-linéaire en 
présence d’écoulement par une étude 
empirique cohérente avec la littérature. 
Finalement, une analyse de sensibilité permet 
de mettre en évidence les quantités effectives 
impactant le plus l’impédance en présence 
d’écoulement.  

 

Title : Study of perforated liners for aeronautics. 
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models, sensitivity analysis. 

Abstract : The Helmholtz resonator, through its 
simplicity and efficiency, is the most widespread 
technology employed in acoustic treatments. 
Perforated liners are a simple way to 
manufacture and integrate these resonators at 
an industrial scale. In this thesis, micro-
perforated liners, allowing to reduce the sound 
emissions from a turbofan and its flow drag, are 
studied. The domain of validity of the existing 
models excludes these liners, with a perforation 
diameter below one millimeter. For this reason, 
the author proposes, in this doctoral thesis, both 
to evaluate and upgrade these models 
especially when it comes to micro-perforated 
treatments. 

We start by studying the visco-thermal losses 
in the linear regime without flow, relaxing some 
hypotheses and developing an accurate 
numerical model, shown to be computationally 
efficient. In parallel, an analysis of the 
dissipation rate is presented. Then, our 
framework extends to the non-linear regime in 
which we modify the model from Guess with an 
iterative procedure, which is essential to obtain 
accurate impedance predictions. The last 
chapters focus on the non-linear regime with 
flow with an empirical investigation consistent 
with existing works. A sensitivity analysis is 
finally presented, which provides more insight 
on the quantities impacting the most the 
impedance in the presence of shear flow.  
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