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Notations

N the set of natural numbers
R field of real numbers
C field of complex numbers
D open unit disc
Π+ open right half plane

B the set of analytic functions from Π+ into D
H∞(Π+) the space of bounded holomorphic functions in the right half plane
H2(Π+) the Hardy space of exponent 2 of the right half plane
L∞(jR) the space of essentially bounded functions on the imaginary axis
L2(jR) the space of square integrable functions on the imaginary axis
δ(a, b) pseudo-hyperbolic distance between a and b, where a, b ∈ D
P the orthogonal projection from L2 onto H̄2 def

= L2 	H2

HΦ the Hankel operator with symbol Φ
PN polynomials of degree at most N
P+

2N non-negative polynomials of degree at most 2N
SBN polynomials of degree at most N, having no zeros inside Π+

I finite union of disjoint compact intervals over the frequencies
Sm the set of (m×m) Hermitian matrices
S+
m the set of (m×m) positive semi-definite Hermitian matrices

S−m the set of (m×m) negative semi-definite Hermitian matrices
Re(z) real part of complex number z
F ◦ L chaining of two-port scattering matrices F and L
F ∗(s) para-hermitian conjugate of matrix valued function F (s)
det(M) determinant of matrix M
tr(M) trace of matrix M
deg(p) degree of polynomial p
S scattering matrix in belevitch form associated with a 2×2 system
Tz (S) the set of transmission zeros associated with 2×2 system S

∆(P ) the Pick matrix associated with the sequence of interpolation data
(
ξk,

L22(ξk)
UP (ξk)

)
Ik identity matrix of order k
Bp×q(Π+) the set of p× q matrix valued functions F (s) which are analytic in Π+

and contractive, (F (jω))tF (jω) � Iq, ω ∈ R
Hp
k(Π+) the space of k × 1 matrix valued functions, each entry of which belongs to Hp(Π+)
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Abstract

The thesis makes an in-depth study of one of the classical problems in RF circuit design,
the problem of impedance matching. Matching problem addresses the issue of transmitting
the maximum available power from a source to a load within a frequency band. Antennas
are one of the classical devices in which impedance matching plays an important role. The
design of a matching circuit for a given load primarily amounts to find a lossless scattering
matrix which when chained to the load minimize the reflection of power in the total system.

In this work, both the theoretical aspects of the broadband matching problem and the
practical applicability of the developed approaches are given due importance. Part I of the
thesis covers two different yet closely related approaches to the matching problem. These
are based on the classical approaches developed by Helton and Fano-Youla to study the
broadband matching problems. The framework established in the first approach entails
in finding the best H∞ approximation to an L∞ function, Φ via Nehari’s theory. This
amounts to reduce the problem to a generalized eigen value problem based on an operator
defined on H2, the Hankel operator, HΦ. The realizability of a given gain is provided by
the constraint, operator norm of HΦ less than or equal to one. The second approach formu-
lates the matching problem as a convex optimisation problem where in further flexibility
is provided to the gain profiles compared to the previous approach. It is based on two rich
theories, namely Fano-Youla matching theory and analytic interpolation. The realizabilty
of a given gain is based on the Fano-Youla de-embedding conditions which reduces to the
positivity of a classical matrix in analytic interpolation theory, the Pick matrix. The con-
cavity of the concerned Pick matrix allows finding the solution to the problem by means
of implementing a non-linear semi-definite programming problem. Most importantly, we
estimate sharp lower bounds to the matching criterion for finite degree matching circuits
and furnish circuits attaining those bounds.

Part II of the thesis aims at realizing the matching circuits as ladder networks consisting
of inductors and capacitors and discusses some important realizability constraints as well.
Matching circuits are designed for several mismatched antennas, testing the robustness of
the developed approach. The theory developed in the first part of the thesis provides an
efficient way of comparing the matching criterion obtained to the theoretical limits.

Keywords: Broadband matching, Scattering parameters, Antennas, LC filters, Belevitch
representation, Nehari theorem, Hankel Operator, Analytic interpolation, Convex optimi-
sation, Positive polynomials, Schur functions, Nevanlinna-Pick.
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Résumé

La thèse étudie en profondeur l’un des problèmes classiques de la conception de circuits RF,
le problème de l’adaptation d’impédance. L’adaptation d’impédance consiste à maximiser
le transfert de puissance d’une source à une charge dans une bande de fréquences. Les
antennes sont l’un des dispositifs classiques dans lesquels l’adaptation d’impédance joue un
rôle important. La conception d’un circuit d’adaptation pour une charge donnée revient
principalement à trouver une matrice de diffusion sans perte qui, lorsqu’elle est enchâınée
à la charge, minimise la réflexion de la puissance dans l’ensemble du système.

Dans ce travail, les aspects théoriques du problème de l’adaptation et l’applicabilité pra-
tique des approches développées sont dûment pris en compte. La partie I de la thèse couvre
deux approches différentes mais étroitement liées du problème de l’adaptation large bande.
Le cadre développè dans la première approche consiste à trouver la meilleure approximation
H∞ d’une fonction L∞, Φ via la théorie de Nehari. Cela revient à réduire le problème à un
problème généralisé de valeurs propres basé sur un opérateur défini sur H2, l’opérateur de
Hankel, HΦ. La réalisabilité d’un gain donné est fournie par la contrainte, opérateur norme
de HΦ inférieure ou égale à un. La seconde approche formule le problème de l’adaptation
comme un problème d’optimisation convexe où une plus grande flexibilité est fournie aux
profils de gain par rapport à l’approche précédente. Il est basé sur deux théories riches, à
savoir la théorie de l’adaptation de Fano-Youla et l’interpolation analytique. La réalisabilité
d’un gain donné est basée sur les conditions de dé-châınage de Fano-Youla qui se réduisent
à la positivité d’une matrice classique en théorie d’interpolation analytique, la matrice
de Pick. La concavité de la matrice de Pick concernée permet de trouver la solution au
problème au moyen de l’implémentation d’un problème de programmation semi-défini non
linéaire. Ainsi, nous estimons des limites inférieures nettes au niveau d’adaptation pour les
circuits d’adaptation de degré fini et fournissons des circuits atteignant ces limites.

La partie II de la thèse vise à réaliser les circuits d’adaptation sous forme de réseaux
en échelle constitués d’inductances et de condensateurs et aborde également certaines con-
traintes importantes de réalisabilité. Les circuits d’adaptation sont conçus pour plusieurs
antennes non-adaptées, testant la robustesse de l’approche développée. La théorie développée
dans la première partie de la thèse offre un moyen efficace de comparer le niveau d’adaptation
atteint aux limites théoriques.

Mots clés: Adaptation large bande, Paramètres de diffusion, Antennes, Filtres LC,
Représentation Belevitch, Théorème de Nehari, Opérateur de Hankel, Interpolation analy-
tique, Optimisation convexe, Polynômes positifs, Fonctions Schur, Nevanlinna-Pick.
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Contribution of the Thesis

In this chapter, we will give a brief overview of the important contributions and the main
results of the work presented in the thesis. The thesis has made a substantial contribution
to the problem of impedance matching - both the theoretical aspects and the practical
applicability of the developed approaches.

The main contribution of chapter 2 constitute an approach to furnish lower bounds for
matching criterion in the case of finite degree matching networks. It is based on the original
idea by Helton which utilizes Nehari theory and non-Euclidean geometry to find optimal
matching criterion in the case of no degree constraint on the matching circuit. In this chap-
ter, the set of possible reflection coefficients of the total system (matching network together
with the load) are restricted to certain subclass of the class of Schur functions (named
reference functions) helping to gain control over the degree of the matching network to be
synthesized. A numerical implementation scheme to find the optimal finite degree matching
network with respect to the family of rational reference functions is provided. The degree
bound of the matching network obtained using the developed approach is estimated and
the computation of the best finite dimensional matching filter response obtained using this
approach on some concrete antenna examples and analytic antenna examples are presented
as well. A comparitive study of the results obtained on analytic antenna examples with the
matching bound obtained by the classical matching theory of Fano is also made.

The main contribution of chapter 3 is to provide a general formulation of the finite degree
matching problem by allowing further flexibility to the gain functions compared to chapter
2. The possible set of responses of the global system is generalized to a set of “realizable”
rational Schur functions of fixed maximal degree and having fixed transmission polynomial.
In this approach, we are able to estimate sharp lower bounds to the matching criterion for
finite degree matching circuits and furnish circuits attaining those bounds. The realizability
constraint is imposed using the Fano-Youla de-embedding conditions which reduces to a
constraint on the positivity of Pick matrix. The chapter presents the formulation of the
matching problem as a convex optimisation problem over a subset of positive polynomials of
fixed maximal degree and discusses various theoretical results concerning the problem like
existence and uniqueness results, convexity of the problem, necessary optimality conditions
and critical point equation. The concavity of the concerned pick matrix over the subset
of positive polynomials involved in the problem is also proved. This allows the numerical
implementation of the problem as a non-linear semi-definite programming problem. The
details of numerical implementation is not provided in the thesis since an elaborate descrip-
tion is present in the PhD thesis of David Mart́ınez Mart́ınez [64]. Finally some illustrations

19



Contribution of the Thesis

of the numerical implementation of the developed approach on some antenna examples are
presented. A comparison of the results obtained with the results from chapter 2 and also
the classical matching bounds derived by Fano is made. At the end of this chapter, a section
is also devoted to illustrate the connection between two approaches discussed in part I of
the thesis, serving to provide an in depth understanding of the core of these two approaches
in solving the matching problem.

Chapter 4 contributes to the development of matching techniques by considering various
practical constraints regarding the realization of the matching circuits in the case of PCB
antennas. In general, in this chapter the transmission zeros of the matching circuit to be
synthesized are fixed at either zero or infinity (or both) but a series of different problems
are solved in order to better describe the realizable circuits. The realization of the matching
circuits as ladder networks consisting of inductors and capacitors is presented. The main
contribution of the chapter constitute of describing well formulated optimisation problems
to take into consideration different practical constraints in matching circuit synthesis and
numerical implementation schemes to solve these problems as well. This includes a match-
ing circuit synthesis scheme allowing transformerless synthesis, including microstrip lines
in between the lumped elements and bounding the element values of lumped inductors and
capacitors to any desirable range as required by the user.

Chapter 5 provides a contribution of various illustrations of the results obtained by solv-
ing different problems in the thesis and their comparisons by considering different antenna
prototypes. The theoretical bounds obtained in part I of the thesis helps in providing an
idea of how far the matching criterion of the realized matching circuits is from the theoret-
ical limits. The illustrations of various PCB antennas designed together with the matching
circuits obtained from the developed approach are also made, contributing to the validation
of developed schemes in the thesis.

Chapter 6 provides a practical contribution by indicating some of the important possible
directions in which the work presented in the thesis can be carried on in the future.
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Structure of the Manuscript

In this chapter we will give a brief overview of the organization of the manuscript and
a short summary of all the chapters presented. The manuscript is based on the tem-
plate available at https://bu.univ-cotedazur.fr/fr/utiliser-nos-services/deposer-sa-these-ou-
son-memoire/deposer-sa-these-de-doctorat. The LaTeX editor Texmaker [15] is used for
writing and formatting the document. The numerical implementation of approaches dis-
cussed in the thesis have been performed in MATLAB 2018b [65] and the plots displayed in
the document have been converted to tikz format using MATLAB2TikZ toolbox [43]. Fig-
ures containing electric circuits and block diagrams are generated using the LaTeX package
circuitikz [35].

The main contents of the thesis are divided into two parts where each part consists
of three chapters. Part one covers the introductory chapter to the thesis along with two
chapters of a detailed study of the broadband impedance matching problem. In part two
of the thesis, two chapters discussing the realization of the matching circuits as ladder
networks and a study of some of the important practical constraints in the realization are
presented. Along with these two chapters, a chapter concluding the thesis and providing
future perspectives is also provided in part two.

• In chapter 1, a brief introduction to the thesis is made, providing necessary details
about the concepts and tools that would be required during the development of the
manuscript. In particular, the necessary mathematical preliminaries in the field of
functional analysis are provided along with a general introduction to the description
of RF circuits using power waves and scattering matrix. Finally some important
concepts related to the rational form of the scattering matrix of any finite lossless two
port and an introduction to the broadband impedance matching problem are provided
as well.

• Chapter 2 begins with the first formal formulation of the matching problem in the
thesis and discusses an operator theoretic approach developed by Helton to solve
it. A brief description of the Helton’s approach based on Nehari theory is provided.
Later on in the chapter, a formulation of the finite degree matching problem and
finding solution to it using Helton’s approach is presented. The realizability of gain
functions which are fixed to be specific type is characterized by the operator norm
of the Hankel operator of specific symbol being less than or equal to one. Finding
the optimal matching circuit by solving an eigen value problem based on the Hankel
operator and the degree bounds of the matching circuit obtained are discussed. The
chapter is concluded by providing some illustrations of the numerical implementation
of the developed approach on some concrete antenna examples.
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Structure of the Manuscript

• The idea of chapter 3 is to provide a more general formulation of the finite degree
matching problem by allowing further flexibility to the gain functions. The possible
set of responses of the global system is generalized to a set of “realizable” rational
Schur functions of fixed maximal degree and having fixed transmission polynomial.
The realizability constraint is imposed using the Fano-Youla de-embedding conditions
which reduces to a constraint on the positivity of Pick matrix. This allows the for-
mulation of the matching problem as a convex optimisation problem over a subset of
positive polynomials of fixed maximal degree. The chapter presents various theoreti-
cal results concerning the problem like existence and uniqueness results, convexity of
the problem, necessary optimality conditions and critical point equation. The concav-
ity of the concerned pick matrix over the subset of positive polynomials involved in
the problem is also proved. This allows the numerical implementation of the problem
as a non-linear semi-definite programming problem. In this approach, we are able
to estimate sharp lower bounds to the matching criterion for finite degree matching
circuits and furnish circuits attaining those bounds. Finally some illustrations of the
numerical implementation of the developed approach on some antenna examples are
presented. At the end of this chapter, a section is devoted to illustrate the connection
between approaches discussed in part I of the thesis to solve the matching problem
as well.

• In chapter 4, various practical constraints regarding the realization of the matching
circuits in the case of PCB antennas are taken into consideration. In general, in this
chapter the transmission zeros of the matching circuit to be synthesized are fixed at
either zero or infinity (or both) but a series of different problems are solved in order
to better describe the realizable circuits. The realization of the matching circuits
as ladder networks consisting of inductors and capacitors is presented. A matching
circuit synthesis scheme allowing transformerless synthesis, including microstrip lines
in between the lumped elements and bounding the element values of lumped inductors
and capacitors to any desirable range as required by the user is also presented.

• In chapter 5, various illustrations of the results obtained by solving different prob-
lems in the thesis and their comparisons are made by considering different antenna
prototypes. The theoretical bounds obtained in part I of the thesis helps in providing
an idea of how far the matching criterion of the realized matching circuits is from the
theoretical limits. The illustrations of some PCB antennas designed together with
the matching circuits obtained from the developed approach are also made.

• Chapter 6 provides a conclusion to the manuscript by providing a summary of all the
work that has been carried out as a part of the thesis. It also provides an overview
of some of the possible directions in which the work presented in the thesis can be
carried on in the future.
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Theory of Broadband Matching

23





CHAPTER 1

Introduction

One of the important components in the design of an RF circuit is an impedance matching
network which performs the task of minimising reflection of the power that is supposed to
be transmitted from a source to a load within a frequency band. The design of impedance
matching circuit plays a crucial role in many applications like antennas, multiplexers, am-
plifiers and other RF devices. The techniques for matching the impedance of a microwave
device over a broadband has been evolving starting from around 1940’s. The development of
scattering techniques in network theory has played a crucial role in the design of broadband
impedance matching networks.

A linear electrical network having n accessible terminal pairs (an n-port) may be ana-
lyzed in a variety of ways, for instance using impedance, admittance or transmission matrix
depending upon the type of problem dealt with. The scattering parameters form a matrix
of transformations between variables which are linear combinations of the voltages and cur-
rents in a network. The close association of scattering parameters with the power transfer
properties of a network make them useful in problems involving insertion loss and match-
ing networks. Moreover, at microwave frequencies, since the direct measurements usually
involve the magnitude and phase of a wave travelling in a given direction or of a standing
wave, scattering matrix is a representation in accordance with the direct measurements and
the ideas of incident, reflected and transmitted waves.

1.1 Power Waves

In 1960’s, K.Kurokawa introduced a new concept of waves known as incident and reflected
power waves, ai and bi respectively for the ith port of any electrical network [55]. The
main motivation behind the introduction of power waves was to replace the independent
variables, current and voltage in a circuit by these variables in order to simplify the power
calculations in circuits.

Let us consider the equivalent circuit of a generator connected to a load as shown in
figure 1.1. In figure 1.1, Eo is the open circuit voltage of the generator and ZG its internal
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−+Eo

ZG

I

ZL

+

−

V

Figure 1.1: A generator connected to a load impedance ZL

impedance. From basic circuit theory, the voltage V across the load and the current I
flowing into the load are

V = Eo
ZL

ZL + ZG
, I =

Eo
ZL + ZG

. (1.1)

The power transferred from the generator to the load is (Section 4.3, [77]),

PL =
1

2
Re{V Ī}, (1.2)

where ‘Re’ represent the real part and Ī is the complex conjugate of I. Substituting for V
and I in equation (1.2) from equations in (1.1), we have

PL =
|Eo|2

2

Re(ZL)

|ZL + ZG|2
=
|Eo|2

2

RL

(RL +RG)2 + (XL +XG)2
(1.3)

=
|Eo|2

2

1

4RG + (RL−RG)2

RL
+ (XL+XG)2

RL

, (1.4)

where ZL = RL + jXL and ZG = RG + jXG. For a given source voltage Eo and internal
impedance ZG with RG > 0, it can be easily verified from equation (1.4) that the power PL
attains the maximum value when

RL = RG and XL = −XG, (1.5)

that is ZL = ZG. It is known as the maximum power transfer theorem (Section 1.4.1, [75]).
Thus, we have the following expression for the maximal power that can be delivered to the
load,

Pmax =
|Eo|2
8RG

=
|Eo|2
8RL

. (1.6)

Now, in order to describe the power waves, it should be noted that in the analysis of
electric circuits, even though voltage and current at the terminals are generally chosen as
the independent variables, any linear transformation of them can be chosen as well, as long
as the inverse transformation exists. The incident and reflected power wave amplitudes, a
and b respectively, are defined as the following linear transformations of voltage and current
(Section 4.3, [77]),

a =
V + Z0I

2
√
R0

, b =
V − Z0I

2
√
R0

, (1.7)
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where Z0 = R0 + jX0 is known as the reference impedance. In practice, the reference
impedance is usually the characteristic impedance of transmission line used between network
analyzer and network under test and for each port, it can differ (say for the n-th port it is
denoted by Z0n). By convention, reference impedance is chosen to be 50 ohm for most of
the commercial test equipments. That being said, we keep the possibility of the reference
impedance being complex in the discussion.

It is also common in literature to find the definition of power waves in (1.7) made with
reference impedance Z0 equal to the generator impedance ZG (for example, Kurokawa’s
definition of power waves, section 1.4, [56]). In this case, referring to figure 1.1, it can be
noticed that since V + ZGI = Eo, we have

1

2
|a|2 =

|Eo|2
8RG

= Pmax. (1.8)

So, 1
2
|a|2 can be identified as the maximum power that the generator can supply to the

load in this definition of power waves. We will keep the definition of power waves using
reference impedance Z0 since this can be more useful in general (will be reasoned at the
end of the section). Inverting the transformation in (1.7), the voltage and current in terms
of the power waves follows,

V =
aZ0 + bZ0√

R0

, I =
a− b√
R0

. (1.9)

Then the power transferred from the generator to the load can be calculated using this as

PL =
1

2
Re{V Ī} =

1

2R0

Re{|a|2Z0 − abZ0 + abZ0 − |b|2Z0} (1.10)

=
1

2
|a|2 − 1

2
|b|2. (1.11)

The last equality follows since the quantity abZ0− abZ0 is pure imaginary. So, we have the
power transferred to the load to be equal to the difference between the powers of incident
and reflected power waves. The reflection coefficient Γ of the power waves a and b is defined
to be the ratio,

Γ =
b

a
. (1.12)

Making use of (1.7) and the fact that V = ZLI, we have,

Γ =
V − Z0I

V + Z0I
=
ZL − Z0

ZL + Z0

. (1.13)

This implies, when the reference impedance Z0 is equal to the conjugate of the load
impedance,

Z0 = ZL, (1.14)

we have the reflected power wave amplitude, b equal to zero. So, under the condition (1.14),
using the equations of V and I mentioned in (1.1), the power wave amplitudes can be found
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as

a =
V + Z0I

2
√
R0

=
Eo

2
√
RL

(
ZL

ZL + ZG
+

ZL
ZL + ZG

)
= Eo

√
RL

ZL + ZG
(1.15)

b =
V − Z0I

2
√
R0

Eo

2
√
RL

(
ZL

ZL + ZG
− ZL
ZL + ZG

)
= 0. (1.16)

It follows from equation (1.11) that

PL =
1

2
|a|2 =

|Eo|2
2

RL

|ZL + ZG|2
, (1.17)

which agrees with equation (1.3). The equations (1.11) and (1.17) leads us to the following
interpretation and the physical meaning of power waves : the generator sends the power
|a|2
2

towards a load irrespective of the load impedance and if the load impedance doesn’t
satisfy equation (1.14), a part of the incident power is reflected back. This reflected power

is given by |b|
2

2
and so the net power delivered to the load is |a|

2

2
− |b|2

2
.

It should be noted that the condition, Z0 = ZL doesn’t necessarily mean that the
maximal power is delivered to the load, which happens only if the conjugate matching
condition, ZL = ZG is satisfied (Maximum power transfer theorem). Referring back to the
definition of power waves using Z0 = ZG, we can see that the condition equivalent to (1.14)
will be ZG = ZL and so, in this case, not only the reflected wave amplitude is zero but
maximal power is delivered to the load as well. Following the definition 1.7, the condition
Z0 = ZL results in a zero reflected wave even when the conjugate matching condition
between generator and load impedance is not satisfied and hence can be more useful in
general.

1.2 Scattering Parameters and Chain Parameters

1.2.1 Scattering Matrix (S)

The scattering parameters for a two-port network is one of the most commonly studied and
mainly serves to quantify how energy propagates through microwave devices.

In order to describe the scattering parameters, let us consider a two-port network con-
nected to a generator and a load as shown in figure 1.2. In figure 1.2, Eo is the open circuit
voltage of the generator and ZG its internal impedance, V1 and V2, the voltages across ports
1 and 2 respectively, I1 and I2, the currents entering port 1 and port 2 respectively. For
this two-port network, the incident and reflected power waves, a1, b1 at port 1 and a2, b2 at
port 2 respectively, follows the definition as described in the previous section,

a1 =
V1 + Z01I1

2
√
R01

, b1 =
V1 − Z01I1

2
√
R01

, (1.18)

a2 =
V2 + Z02I2

2
√
R02

, b2 =
V2 − Z02I2

2
√
R02

, (1.19)
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Two-port
network

S

−+Eo

ZG

I1

ZL2

I2

+

−

V1

+

−

V2

a1

b1

a2

b2

Figure 1.2: A two-port network connected to generator and load

where Z01 = R01 + jX01 and Z02 = R02 + jX02 are the reference impedances for port 1 and
port 2 respectively.

The scattering matrix relates the reflected power waves b1, b2 to the incident power
waves a1, a2 on the two port, [

b1

b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]
. (1.20)

The matrix elements S11, S12, S21, S22 are known as the scattering parameters or the S-
parameters.

The measurements of scattering parameters, S11 and S21 are made by connecting the
port one to a generator whereas port two is terminated in a load that satisfies ZL2 = Z02.
As mentioned in (1.14), it is the condition to ensure that there will be no reflected wave
from the load, i.e a2 = 0. So, (1.20) gives,

b1 = S11a1 + S12a2 = S11a1, (1.21)

b2 = S21a1 + S22a2 = S21a1. (1.22)

This provides the definition of input reflection coefficient, S11 and forward transmission
coefficient, S21 as follows,

S11 =
b1

a1

∣∣∣∣
ZL2

=Z02

, S21 =
b2

a1

∣∣∣∣
ZL2

=Z02

. (1.23)

Similarly, for S12 and S22, reversing the roles of generator and load and denoting the load
impedance as ZL1 , under the condition ZL1 = Z01, there will be no reflected wave from the
load, i.e a1 = 0. This provides the definition of reverse transmission coefficient, S12 and
output reflection coefficient, S22 as follows,

S12 =
b1

a2

∣∣∣∣
ZL1

=Z01

, S22 =
b2

a2

∣∣∣∣
ZL1

=Z01

. (1.24)
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The scattering matrix (S-matrix) for the two-port network S consisting of these scattering
parameters,

S =

[
S11 S12

S21 S22

]
, (1.25)

completely describes the response of network to incident signals on all its ports.

1.2.2 Chain Matrix (T )

The two-port can be represented by means of chain parameters (also known as scattering
transfer parameters or T -parameters) as well, which are closely related to the corresponding
S-parameters. Following figure 1.2, chain parameters (T -parameters) relates the incident
and reflected power waves at each of the two ports by,[

b1

a1

]
=

[
T11 T12

T21 T22

] [
a2

b2

]
. (1.26)

The matrix T , consisting of these chain parameters,

T =

[
T11 T12

T21 T22

]
, (1.27)

is known as the Chain matrix (also known as T -parameter matrix).
Sometimes it is convenient to use the chain matrix over scattering matrix since it pro-

vides the utility of calculating the effect of cascading two or more 2-port networks just
by means of matrix multiplication of associated individual T -parameter matrices. If the
T -parameter matrices of N two-ports are represented by T1, T2, . . . , TN , the chain matrix,
T of the cascade of these N two-ports (from left to right), can be easily calculated using
the matrix multiplication (Section 1.5, [7]),

T = T1T2T3 . . . TN . (1.28)

Even though the direct measurement of T -parameters is difficult physically, there exists
classic conversion formulas between S-matrix and T -matrix (Section 2.2.4, [34]),[

T11 T12

T21 T22

]
=

1

S21

[
−det(S) S11

−S22 1

]
, (1.29)

where, det(S) = S11S22−S12S21 indicates the determinant of matrix S. For the conversion
from T -matrix to S-matrix, we have,[

S11 S12

S21 S22

]
=

1

T22

[
T12 det(T )
1 −T21

]
, (1.30)

where, det(T ) = T11T22 − T12T21 indicates the determinant of matrix T .
It should be noted that the scattering parameters and chain parameters are complex-

valued functions of frequency.
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1.2.3 Mathematical Preliminaries

In this section, we introduce some of the functional analysis preliminaries which are relevant
to the thesis. Throughout the thesis, the imaginary axis, jR will be the frequency axis,
unless specified differently and as usual in electronics or control theory, the frequency vari-
able is jω, where ω ∈ R. In order to describe the stability of systems under consideration,
it is necessary to define the domain of analyticity in the complex plane. We use,

Π+ = {x+ jω ∈ C : x > 0}, (1.31)

as the domain of analyticity, unless specified otherwise. An analytic function defined on
any open set, function which can be locally expressed as a convergent power series around
any point in the domain, corresponds to a stable function in the electronics terminology.
It is a classical result in complex analysis that a function is analytic in an open set U iff it
is holomorphic in U (i.e complex differentiable at every point in U) (Chapter II, Theorem
5.1 and Chapter III, Theorem 7.2, [57]). In this framework, a stable filter is one whose
scattering parameters belong to the following space, H∞(Π+) (Definition 1.2.4, [70]),

Definition 1.2.1. (Hardy space, H∞(Π+)). The space of functions, f , such that f is
holomorphic in Π+ and such that,

||f ||H∞ = sup
z∈Π+

|f(z)| <∞.

Generally, for 1 ≤ p <∞, we have the definition,

Definition 1.2.2. (Hardy space, Hp(Π+)). The space of functions, f , such that f is
holomorphic in Π+ and such that,

||f ||Hp =

(
sup
x>0

∞∫
−∞

|f(x+ jω)|pdω
) 1

p

<∞.

In particular, the closed unit ball of H∞(Π+), Schur functions, will be of great interest
in the thesis as well.

Definition 1.2.3. (Schur function). The holomorphic function, f in Π+, satisfying,

sup
z∈Π+

|f(z)| ≤ 1.

From here on, we use, B, to denote the set of Schur functions on Π+.

It can be shown that for p > 0, functions in Hp(Π+) have nontangential limits at
almost every point of jR (Theorem 2.2, [32]). This allows to speak of their boundary values
f̃(jω) = lim

x→0+
f(x + jω) a.e and the boundary function, f̃ lies in the space Lp(jR). This

leads us to the following definition (Definition 3.6, [83]),

Definition 1.2.4. ( L∞ space). The Banach space of essentially bounded (bounded on the
complement of a set of measure zero) Lebesgue measurable complex valued functions on jR
equipped with essential supremum norm,

||f ||L∞ = ess sup
ω∈(−∞,∞)

|f(jω)|.
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Generally, for 1 ≤ p <∞, we have the LP norm of f to be defined as,

||f ||Lp =

( ∞∫
−∞

|f(jω)|pdω
) 1

p

and Lp(jR) consists of all f for which ||f ||Lp <∞. For f ∈ Hp(Π+), we have its Hp norm
to be equal to that of the Lp norm of its boundary function, i.e ||f ||Hp = ||f̃ ||Lp (Theorem
17.11, [83]). We can identify f and f̃ and thus Hp(Π+) can be naturally regarded as
a closed subspace of Lp(jR) (chapter 8, [49] and chapter II, section 3, [42]). Another
important property to note is that, knowing the boundary values on an arbitrary subset of
positive measure of jR determines the function, f(z) ∈ Hp(Π+) uniquely (Ch. II, Corollary
4.2, [42]).

The basic structure of H∞ functions is also going to play an important role later on
in the thesis. It is a classical topic in functional analysis with a wide literature available
( [70], [32], [83], [49]). We introduce the two important types of functions to which every
function in H∞(Π+) can be factored into.

Definition 1.2.5. (Inner Function). An inner function is any function g(z) holomorphic
in Π+ and satisfying,

|g(z)| ≤ 1, z ∈ Π+ and |g(jω)| = 1 a.e, ω ∈ R.

Definition 1.2.6. (Outer Function). An outer function for the class H∞(Π+) is a function
of the form,

h(x+ jω) = α exp

(
1

π

∞∫
−∞

Px(ω − t) log(ψ(t))dt

)
,

where |α| = 1, ψ(t) ∈ L∞ satisfies ψ(t) ≥ 0, log(ψ(t)) ∈ L1 and Px(ω) = x
x2+ω2 is the

Poisson Kernel for right half plane.

It should be noted in particular that outer functions do not vanish in Π+. Now, we
state below the factorisation theorem (Theorem 2.5, [32]) by F.Riesz in particular for the
H∞ function.

Theorem 1.2.7. (Factorisation Theorem). Every function f(z) 6≡ 0 of the class H∞(Π+)
can be factored into the form,

f(z) = g(z)h(z),

where g is an inner function and h is an outer function in H∞(Π+).

Finally, it is useful to recollect the Maximum Modulus Principle (Chapter 4, Theorem
12, [5]) and Cauchy’s intergral formula (Chapter 4, Theorem 6, [5]) in complex analysis,

Theorem 1.2.8. (Maximum Modulus Principle). Suppose f is a holomorphic function in
an open set U of C. If f is not a constant function, then |f | does not attain a maximum
on U.
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Theorem 1.2.9. (Cauchy’s Intergral Formula). Suppose that f is analytic in an open disk
4 and γ be a closed curve in 4 oriented counterclockwise. For any point, “ a” not on γ,

η(γ, a)f(a) =
1

2πj

∫
γ

f(z)

z − adz,

where η(γ, a) is the index (winding number) of “ a” with respect to γ.

Having discussed the necessary mathematical prerequisites we are in a position to con-
tinue the discussion about two-port.

1.2.4 Properties of Two-port

A detailed construction of a rigorous theory of the physical realizability postulates of an
n-port can be found in [94]. In the work presented in [94], the connection between the
physical realizabilty of n-ports and its scattering matrix being Bounded Real was made and
it laid the foundations of linear passive network theory.

Definition 1.2.10. (Bounded Real). An n × n scattering matrix, S = S(s) is Bounded
Real if it satisfies:

• (Stability). S is analytic in Π+.

• (Passivity). In− (S(jω))tS(jω) � 0, where In represent the identity matrix of size n.

• (Reality). Each element of S(s) is real when s is real.

The reader can refer to chapters 1 and 4 of [20] for a detailed literature about the linear
circuits and systems and physical properties of n-ports. In particular, theorem 4.5.1 in [20]
provides a detailed proof of the fact that the necessary and sufficient condition for an n-port
to be physically realizable is that its scattering matrix S is bounded real.

The utility of power waves and scattering matrix in calculating the quantities like power
flow into and out of the two-port and in defining the important characteristics of two-port
becomes evident with the following calculations. For any point on the frequency axis, say

jω, denoting the vector of input and output power waves in figure (1.2) as a(jω) =

[
a1(jω)
a2(jω)

]
and b(jω) =

[
b1(jω)
b2(jω)

]
, we have,

b(jω) = S(jω)a(jω). (1.32)

Fixing the reference impedances at port 1 and port 2 as Z0 = R0 + jX0 and inverting the
linear transformations in (1.18) and (1.19), we get the voltage and current in terms of power
waves and reference impedance as follows,

V1(jω) =
a1(jω)Z0 + b1(jω)Z0√

R0

, I1(jω) =
a2(jω)− b2(jω)√

R0

, (1.33)

V2(jω) =
a2(jω)Z0 + b2(jω)Z0√

R0

, I2(jω) =
a2(jω)− b2(jω)√

R0

. (1.34)
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Then the power entering the two-port, P1(jω) and power leaving the two-port, P2(jω) can
be calculated as done in (1.11),

P1(jω) =
1

2
Re{V1(ω)I1(jω)} =

1

2
(|a1(jω)|2 − |b1(jω)|2) (1.35)

P2(jω) =
1

2
Re{V2(jω) (−I2(jω))} =

1

2
(|b2(jω)|2 − |a2(jω)|2). (1.36)

So, we have the difference in power entering and leaving the two-port,

δP (jω) = P1(jω)− P2(jω) =
1

2
(|a1(jω)|2 + |a2(jω)|2)− 1

2
(|b1(jω)|2 + |b2(jω)|2) (1.37)

=
1

2
(a(jω))ta(jω)− 1

2
(b(jω))tb(jω), (1.38)

where superscript “ t ” represents the transpose. Since we have b(jω) = S(jω)a(jω), as
mentioned in (1.32), it follows that,

δP (jω) =
1

2
(a(jω))ta(jω)− 1

2
(a(jω))t(S(jω))tS(jω)a(jω) (1.39)

=
1

2
(a(jω))t{I2 − (S(jω))tS(jω)}a(jω), (1.40)

where I2 represent the identity matrix of size two. If the two port is passive, δP (jω)
has to be positive, which implies that the matrix (I2 − (S(jω))tS(jω))) must be positive
semi-definite. Hence we have the following definition,

Definition 1.2.11. (Passivity). A (2× 2) scattering matrix S is said to be passive, if,

(S(jω))tS(jω) � I2, ω ∈ R, (1.41)

i.e, the matrix I2 − (S(jω))tS(jω) must be positive semi-definite.

Hence, one of the important characteristics of scattering parameters in the case of passive
two-ports is the fact that,

|Si,j(jω)| ≤ 1, 1 ≤ i, j ≤ 2, ω ∈ R. (1.42)

It easily follows from Maximum Modulus Principle mentioned in theorem 1.2.8 that,

|Si,j(s)| ≤ 1, 1 ≤ i, j ≤ 2, s ∈ Π+. (1.43)

This together with the fact that Sij ∈ H∞(Π+) implies that scattering parameters of any
passive two-port are Schur functions. So we have the scattering matrix S of a passive two-
port to be a Schur matrix, i.e the entries of matrix are Schur functions. We will be mostly
dealing with passive systems in the thesis, unless specified otherwise.

Going further ahead, if the two port is lossless, we have, δP (jω) = 0 and it follows from
(1.40) that the S-matrix should satisfy,

(S(jω))tS(jω) = I2 and S(jω)(S(jω))t = I2 ω ∈ R. (1.44)

This leads us to the definition,
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Definition 1.2.12. (Losslessness). A (2× 2) scattering matrix S is said to be lossless if it
satisfies,

(S(jω))tS(jω) = S(jω)(S(jω))t = I2, ω ∈ R. (1.45)

Remark 1.2.13. It should be noted that a lossless matrix is a Schur matrix (passive). Also,
definition 1.2.12 of losslessness is the matrix case of definition 1.2.5 of inner function in
the scalar case. So, equivalently, the scattering matrix satisfying equation (1.45) can be
called inner in H∞(Π+) as well.

Expanding the first matrix equality in (1.44), we get the following equations,

S11(jω)S11(jω) + S21(jω)S21(jω) = 1, (1.46)

S22(jω)S22(jω) + S12(jω)S12(jω) = 1, (1.47)

S11(jω)S12(jω) + S21(jω)S22(jω) = 0. (1.48)

Similarly, expanding the second matrix equality in (1.44), we get the following equations,

S11(jω)S11(jω) + S12(jω)S12(jω) = 1, (1.49)

S22(jω)S22(jω) + S21(jω)S21(jω) = 1, (1.50)

S11(jω)S21(jω) + S12(jω)S22(jω) = 0. (1.51)

Equation (1.48) gives, |S11(jω)|2|S12(jω)|2 = |S21(jω)|2|S22(jω)|2 and this together with
(1.46) and (1.47) gives,

|S11(jω)|2(1− |S22(jω)|2) = (1− |S11(jω)|2)|S22(jω)|2, ω ∈ R.

This yields,
|S11(jω)| = |S22(jω)|, ω ∈ R. (1.52)

So, for a lossless two-port network network, power reflection coefficients at one port is equal
to that at the other port. Inserting (1.52) into (1.46) and comparing with (1.47), we also
have,

|S12(jω)| = |S21(jω)|, ω ∈ R (1.53)

a kind of power reciprocal theorem, which is satisfied when the two-port is lossless.
Finally, we can define the notion of reciprocity, i.e the transmission of signal between

any two ports does not depend upon the direction of propogation.

Definition 1.2.14. (Reciprocity). A (2× 2) scattering matrix S is said to be reciprocal if
it satisfies,

S12(jω) = S21(jω), ω ∈ R. (1.54)

Most of the passive electrical components like resistors, inductors and capacitors are
reciprocal even though exceptions exist such as devices based on ferrites, plasmas etc. This
completes the description of properties of two-ports. Throughout the thesis, we assume
losslessness for the two-port networks which ensures that we deal with lossless scattering
matrices. Even though it is not entirely true in practice, it is a reasonable approximation
to systems where losses are not very high.
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1.3 Rational Form of Scattering Matrices

In this section, we discuss about the rational form of the scattering matrix of a finite lossless
two port. It was around the 1960’s that V. Belevitch described the scattering matrix of
any finite lossless two port as a rational (2 × 2)-matrix function of the complex variable
s = jω (Chapter 9, [12]). Before describing the Belevitch representation, it is important to
introduce some further notions about rational matrix functions.

Definition 1.3.1. (McMillan Degree). The McMillan degree of an (m×n) rational matrix
function, S(s), is the smallest non-negative integer N for which one can write,

S(s) = D + C(sIN − A)−1B, s ∈ C, (1.55)

where A,B,C and D are complex matrices of size (N ×N), (N ×n), (m×N) and (m×n)
and IN is the identity matrix of size (N × N). The representation in (1.55) is called the
realisation of S(s).

Remark 1.3.2. It should be noted that every rational (n× n) matrix function S(s) which
is finite at infinity (proper rational matrix function) admits a realisation as mentioned in
equation 1.55 (Theorem 4.1.1, [8]). More detailed literature about the linear systems, in
particular about the realisation theory can be found in [53].

Definition 1.3.3. (Para-Conjugate). For a matrix valued function S(s), the para-conjugate,
denoted by S∗(s), is defined as

S∗(s) = (S(−s̄))t, s ∈ C. (1.56)

Similarly, for a polynomial, p(s), the para-conjugate is defined as,

p∗(s) = p(−s̄), s ∈ C. (1.57)

It should be noted that on the imaginary axis, S∗ agrees with the conjugate transpose
of S and for polynomials, we have,

p∗(jω)p(jω) = p(jω)p∗(jω) = |p(jω)|2, ω ∈ R. (1.58)

Definition 1.3.4. (Stable Polynomials or Strictly Hurwitz Polynomials). A polynomial
is called “stable” (or strictly Hurwitz) if it has no roots in Π+, the closure of analyticity
domain and it will be called “stable in the broad sense” (or Hurwitz) if it has no roots in
Π+, the analyticity domain. We use SBN to denote the polynomials of degree at most N
which are “stable in the broad sense”.

Definition 1.3.5. (Blaschke Product). A function of the form εd
∗

d
, where d is a stable

polynomial of degree N and ε is a uni-modular constant is called a Blaschke product of
degree N .

Definition 1.3.6. (Degree of rational function). The degree of a rational function, f = p
q
,

denoted by deg(f), where polynomials p and q are co-prime (no common factors) is,

deg(f) = max(deg(p), deg(q)).
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1.3.1 Belevitch Representation

Lemma 1.3.7. (Determinant of Rational Lossless Matrix). The determinant of a rational
lossless matrix with McMillan degree N is a Blaschke product of degree N .

Proof. Let us denote the rational lossless matrix, S with McMillan degree N as,

S =

[
S11 S12

S21 S22

]
, (1.59)

where Sij, 1 ≤ i, j ≤ 2 are rational Schur functions. We have the expression for determinant
of S at any frequency point as,

det(S)(jω) = S11(jω)S22(jω)− S12(jω)S21(jω), ω ∈ R. (1.60)

Since the scattering matrix S is lossless, substituting for S12(jω) in the above expression
from equation (1.48), we have,

det(S)(jω) = S11(jω)S22(jω) +
S21(jω)S22(jω)

S11(jω)
S21(jω), ω ∈ R

=
S22(jω)

S11(jω)

(
S11(jω)S11(jω) + S21(jω)S21(jω)

)
, ω ∈ R

=
S22(jω)

S11(jω)
. (1.61)

The last equality follows using equation (1.46). From equation (1.52), we have, |S11(jω)| =
|S22(jω)| and this yields the fact that det(S) is uni-modular on the imaginary axis. From
equation (1.60), we also have det(S) is rational and det(S) ∈ H∞(Π+) and thus det(S) is
a Blaschke product. The degree of det(S) in the lowest form (numerator and denominator
co-prime) being equal to the McMillan degree can be referred to Chapter 1, Theorem 10-
3, [41].

Remark 1.3.8. A similar calculation for determinant of rational lossless scattering matrix,
S can be done by starting from equation 1.60. Substituting for S12(jω) from equation (1.51)
and later using equation (1.50) will yield,

det(S)(jω) =
S11(jω)

S22(jω)
, ω ∈ R. (1.62)

So, we have the following expression for det(S) at any frequency point,

det(S)(jω) =
S22(jω)

S11(jω)
=
S11(jω)

S22(jω)
, ω ∈ R. (1.63)

Remark 1.3.9. The fact that det(S) is uni-modular on the imaginary axis when S is a
rational lossless matrix can be proved more directly as well but the above calculation is useful
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to express det(S) just in terms of the reflection coefficients, S11 and S22. In the direct way,
from (S(jω))tS(jω) = I2, we have,

1 = det
(
(S(jω))tS(jω)

)
, ω ∈ R

= det(S(jω))det(S(jω)), ω ∈ R
= |det(S(jω))|2, ω ∈ R.

This yields the result.

Theorem 1.3.10. (Belevitch representation). The rational scattering matrix, S, with
McMillan degree N , of a lossless two port, can be represented as

S =
1

q

[
εp∗ −εr∗
r p

]
, (1.64)

where, p, r ∈ PN , polynomials of degree at most N , q is stable polynomial of degree N ,
satisfying the Feldtkeller equation,

qq∗ = pp∗ + rr∗, (1.65)

and ε is a uni-modular constant. We refer equation (1.65) as spectral equation and q as the
stable spectral factor of pp∗ + rr∗.

Proof. Let us denote the rational matrix, S, of the lossless two port as

S =

[
p11

q11

p12

q12

p21

q21

p22

q22

]
, (1.66)

where pij and qij, 1 ≤ i, j ≤ 2, are polynomials and qij’s in particular are stable (strictly
Hurwitz) polynomials. Let us denote the least common denominator of the polynomials qij
as qc, which will be stable as well. So let us put the above rational matrix over qc, where
the numerators are again denoted by pij for the sake of simplicity,

S =
1

qc

[
p11 p12

p21 p22

]
. (1.67)

Since the two-port is lossless, from definition 1.2.12 of losslessness, we have,

(S(jω))tS(jω) = S(jω)(S(jω))t = I2, ω ∈ R.

By definition 1.3.3 of para-conjugate, S∗(jω) and (S(jω))t are equal and hence on the
imaginary axis, we have,

S∗S = I2 and SS∗ = I2. (1.68)

Expanding the first matrix equality, we get the following equations,

p∗11p11 + p∗21p21 = q∗cqc, (1.69)

p∗11p12 + p∗21p22 = 0, (1.70)

p∗12p12 + p∗22p22 = q∗cqc. (1.71)
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Similarly, expanding the second matrix equality, we get,

p11p
∗
11 + p12p

∗
12 = qcq

∗
c , (1.72)

p11p
∗
21 + p12p

∗
22 = 0, (1.73)

p22p
∗
22 + p21p

∗
21 = qcq

∗
c . (1.74)

It follows from (1.69) and (1.74) that,

p∗11p11 = p22p
∗
22, (1.75)

and similarly from (1.69) and (1.72), we have,

p∗21p21 = p12p
∗
12, (1.76)

So, (1.75) and (1.76) implies that p11

p∗22
and p12

p∗21
are uni-modular on the imaginary axis. It

follows from (1.73),
p11

p∗22

= −p12

p∗21

(1.77)

on the imaginary axis. It should be noted that p11

p∗22
is equal to S11

S∗22
and hence it represents

det(S) which is a Blaschke product using lemma (1.3.7). This means that we have the
following representation,

p11

p∗22

= ε
θ∗

θ
,

p12

p∗21

= −εθ
∗

θ
, (1.78)

where θ is a stable polynomial and ε is a uni-modular constant. If we use h0 to represent the
polynomials consisting of the common factors of p11 and p∗22 and similarly f0 to represent
the polynomials consisting of the common factors of p12 and p∗21, we have,

p11 = εh0θ
∗ p12 = −εf0θ

∗

p21 = f ∗0 θ
∗ p22 = h∗0θ

∗

It is evident from equation (1.69) that qcq
∗
c must contain the factor θ∗θ and hence it is

possible to represent the stable polynomial qc as,

qc = q0θ,

where q0 is again a stable polynomial. This means that we have the following representation
for the scattering matrix S,

S =
1

q0θ

[
εh0θ

∗ −εf0θ
∗

f ∗0 θ
∗ h∗0θ

∗

]
, (1.79)

where, from equation (1.69), we have,

h0h
∗
0 + f0f

∗
0 = q0q

∗
0. (1.80)

For simplicity of representation, if we multiply all entries of matrix S by θ
θ
, and use the

following notations,

p = h∗0θ
∗θ, r = f ∗0 θ

∗, q = q0θ
2,
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we have the following representation for S,

S =
1

q

[
εp∗ −εr∗

r p

]
, (1.81)

where q is stable polynomial and again from equation (1.69), we have,

qq∗ = pp∗ + rr∗. (1.82)

Even though the above representation is in a reducible form (including cancellations in
equation (1.79)), it is important to note that, we have,

det(S) =
εpp∗ + εrr∗

q2
=
εqq∗

q2
= ε

q∗

q
. (1.83)

Thus, from lemma (1.3.7) it follows that q is a stable polynomial of degree N after possible
cancellations in the above representation of S and then using spectral equation, we also
have p, r ∈ PN . This completes the proof.

Another important notion associated with two-port that needs to be defined is the
transmission zero. It represents the frequencies at which no signal is transmitted through
the system. We define it as follows,

Definition 1.3.11. (Transmission Zeros). The set of transmission zeros (possibly at ∞)
associated to a lossless two port with scattering matrix S is defined as follows:

Tz (S) = {s ∈ Π+ : S12(s)S21(s) = 0}, (1.84)

where the zeros on the imaginary axis are counted for half their multiplicity.

Remark 1.3.12. It should be noted that in Belevitch form, the zeros of the expression
S12S21 in the closed right half plane are the same as the zeros of the expression, rr∗

q2 in
the closed right half plane. We will refer to the non-negative polynomial, R = rr∗ as the
transmission polynomial of scattering matrix S. We will use P+

n to denote non-negative
polynomials of degree at most n on the imaginary axis and we have R ∈ P+

2N .

1.3.2 Darlington’s Theorem

Now, we introduce another classical result related to two-ports which will be useful in the
thesis. It was around the late 1930’s that Darlington developed a synthesis procedure based
on the observaton that any given rational reflection coefficient S11 ∈ B can be realised as
a lossless two-port having as input reflection coefficient S11 and terminated on port two
by a constant impedance [27]. Darlington’s synthesis is a widely studied topic with lots of
literature available ( [12], [20] ).

To begin with, we will present the result by Darlington which states that any reflection
coefficient S11 = p

q
∈ B can be extended to a lossless two port having as input reflection

coefficient S11. We do not suppose that p and q are co-prime. The set of finite transmission
zeros of this pair (p, q) can be defined as

{s ∈ Π+ : R(s) = 0, R
def
= qq∗ − pp∗}. (1.85)
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If R = rr∗ denote the spectral factorisation of R with r∗ having roots only in Π+, the finite
transmission zeros of the pair (p, q) are the roots of r∗, which is called the transmission
zero polynomial. The multiplicity of the transmission zeros are defined as the multiplicity
of the zeros of r∗ and if deg(q) = n and deg(p) = k, the pair (p, q) by definition is said to
have n−k transmission zeros at infinity. A Darlington extension S of such a pair (p, q) is a
lossless scattering matrix satsisfying S11 = p

q
and such that Tz(S) defined in (1.84) is equal

to the set of transmission zeros of the pair (p, q). The result by Darlington states that, if
R 6≡ 0, any such extension of McMillan degree at most n takes the form

S =
1

q

[
p −εu∗

u εp∗

]
(1.86)

where ε is a uni-modular constant and u is any polynomial satisfying uu∗ = R. This can
be seen to be following immediately from Belevitch theorem : without loss of generality, let
us assume q is monic and Belevitch theorem states that there exist polynomials u, v and w
in Pn such that any extension sought for the pair (p, q) can be expressed as

S =
1

v

[
w −εu∗

u εw∗

]
where v is the unique monic polynomial satisfying vv∗ = ww∗+uu∗. By hypothesis, p

q
= w

v

and because of the degree constraint, we have uu∗ = αR for some α > 0. It follows from
the spectral equation that

ww∗

vv∗
+
uu∗

vv∗
= 1

which implies that

pp∗

qq∗
+
αR

vv∗
= 1.

This leads to the equality

qq∗ − pp∗ = R = αR
qq∗

vv∗
.

Since q and v are monic and stable and R 6≡ 0, we have v = q and so w = p and α = 1.
Thus we have the (2× 2) extension of the pair (p, q) to be in the form mentioned in (1.86).
It should be noted that if R ≡ 0, then this extension still holds true if p and q are co-prime.

An important point to be noted is that the extension in (1.86) is not necessarily recip-
rocal. To obtain reciprocity in (1.86), we must have u = −εu∗ that is εuu∗ = −u2, that is
the zeros of uu∗ must be of even order and paired. In general this may not be the case, but
we can always obtain so as follows: decompose uu∗ as

uu∗ = u1u
∗
1φφ

∗ (1.87)

where u1u
∗
1 includes all jω-axis zeros and are of even order, φ∗ and φ includes the right half

plane and left half plane zeros respectively. After multiplying (1.87) by φφ∗, we have the
modified uu∗ to be

ũũ∗ = u1u
∗
1φ

2φ∗2. (1.88)
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This modification implies that we have to multiply φφ∗ to both qq∗ and pp∗ because of
the spectral equation qq∗ − pp∗ = uu∗. Now, it can be seen that that reciprocal scattering
matrix can be accomplished as

S =
1

φq

[
φp u1φφ

∗

u1φφ
∗ ∓φ∗p∗

]
(1.89)

where the sign in S22 is minus if u1 = u∗1 and plus if u1 = −u∗1. It should be noted that
because of the surplus factor, there is an augmentation in the McMillan degree of the
scattering matrix compared to (1.86) unless we are in the case where all the transmission
zeros are on the imaginary axis. The reader can refer to theorem 5.7.1 in [20] for a more
detailed description.

Now, we are in a position to state the main result of Darlington which states that it is
always possible to realise the Darlington (2× 2) extension by a cascade of lossless circuital
sections terminated on a unit resistor (Theorem 5.7.1, [20]).

Theorem 1.3.13. (Darlington’s Theorem). Any rational reflection coefficient S11 ∈ B can
be seen as the input reflection coefficient of a lossless two-port, terminated at port two by a
constant impedance.

The lossless two-port in theorem 1.3.13 can be always chosen to be reciprocal as well.
A detailed survey of the Darlington’s procedure of synthesis including the necessary details
of realising different types of transmission zeros using the appropriate elementary sections
(Type A and B section, Brune’s section, Darlington’s C and D section) is available in
chapter 5 in [20]. One of the main utility of Darlington’s theorem in the thesis would be
to extend the measured reflection coefficient, S11 ∈ B of any given antenna to a lossless
scattering matrix S. A rational approximation can be done for the given scattering param-
eter measurements as p

q
, where p, q ∈ PN , N is any fixed positive integer and q is a stable

polynomial. Darlington’s theorem and Belevitch representation can be utilized to extend
the measured reflection coefficient of the given antenna to a lossless scattering matrix S. It
will have as S11, the rational approximation of measurement data,

S =

[ p
q

S12

S21 εp
∗

q

]
. (1.90)

The rational Schur functions S12 and S21 in the above equation satisfy the following equality
on imaginary axis,

S12S21 = −ε(qq
∗ − pp∗)
q2

, (1.91)

with ε arbitrarily chosen uni-modular constant. Most part of the thesis where the theory of
broadband matching is developed, we do not necessarily consider a reciprocal Darlington
extension as mentioned in (1.89) but a general Darlington extension mentioned in (1.86).
The reader should note that it is always possible to consider the reciprocal Darlington
extension as discussed in this section as well at the cost of a possible augmentation in the
McMillan degree of the scattering matrix of the load.

Remark 1.3.14. It should be noted that throughout the thesis wherever we mention the
degree of a lossless two-port (say degree of the load or degree of the matching network), we
imply the McMillan degree of the scattering matrix of the lossless two-port.
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1.4 Impedance Matching Problem

Finally, in the last section of this chapter, we introduce the impedance matching problem
in circuit design which is the main topic of interest in the thesis. The problem of impedance
matching in communication systems is to minimize the power reflection that is to be trans-
mitted by a generator to a given load within a frequency band. Consider figure 1.3 in

−+Eo

ZG

ZL

Figure 1.3: A generator connected to a load

which ZG represents the internal impedance of generator and ZL(jω), the impedance of
load, which is frequency dependent. It is a simple transmitting circuit intended to deliver
maximum power available from the generator to the load. It follows from the maximum
power transfer theorem stated in (1.5) that for a given source impedance, maximum power
transfer to the load happens when the load impedance is equal to the complex conjugate
of the source impedance in the frequency band of interest (say I), i.e,

∀jω ∈ I, ZL(jω) = ZG. (1.92)

Equation (1.92) is called the conjugate matching condition. The practical way of achieving
this is to introduce a matching network between load and generator so that the new load
impedance (load together with matching network) is as close as possible to the conjugate
of generator impedance in the frequency band of interest. This is depicted in figure 1.4,
where we say the load is “matched”.

ZL

Matching
Network

ZG

−
+

Eo

ZLZG

Figure 1.4: A generator connected to a matched load

Antennas are one of the classical devices in which matching plays a crucial role. When
feeding the antenna with a signal, it is not desirable that power is reflected back to the
input because it results in a loss of usable power. In addition, the unwanted reflected power
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affecting devices like generators and amplifiers can also happen. In this problem, the main
difficulty arises due the fact that antenna impedance being frequency dependent, we need
to design a matching network such that ZL(jω) is matched in the entire frequency band of
interest (one or more disjoint bands). The classical matching techniques where matching
is done at the central frequency of the band might be good enough for some applications if
the targeted band is narrow and the specifications are not so hard. This approach won’t be
sufficient most of the time when the interest is in broadband or with stringent specifications.
The applications of impedance matching are not limited to antennas but include various
other RF components such as multiplexers, filters and amplifiers as well.

The wide range of applications together with the in-depth theory that needs to mastered
in different domains have attracted many researchers to broadband matching starting from
around the 1940’s. The foundational work in matching theory goes back to the fifties where
Fano and Youla developed a synthesis procedure for matching networks ( [36], [96]). It is
based on the use of Darlington’s two-port equivalent networks and yields the necessary and
sufficient conditions to be satisfied by the functions representing the reflection coefficient
of the total system. These interpolations conditions, however, compromise the convexity
of the associated optimization problem and led to practical applications only for loads of
limited complexity and for reflection coefficients belonging to restricted classes, namely
Chebyshev or Butterworth. This method was therefore progressively replaced by a non-
convex optimization method called real frequency technique introduced by Carlin [19].
Even though this method yields reasonable results in practice, no results are known about
the global optimality of the obtained matching network. More recently, in the eighties,
J.W Helton proposed a more general approach using non-Euclidean functional analysis
( [48], [47]). In the latter, the broadband impedance matching problem is formulated as
a minimization problem of a pseudo hyperbolic distance in the supremum norm over H∞.
The optimal point, if it exists, is obtained thanks to Nehari’s theory which computes the
supremum norm distance of an L∞ function to H∞ [97]. This H∞ approach guarantees
the global optimality of the obtained response but at the cost of the absence of a degree
constraint on the circuital response. The relative mathematical complexity of this approach
together with the impossibility to realize in practice an infinite degree matching network
limited its impact in electronics.

The main contribution of this thesis is to further enhance the theory of broadband
impedance matching and at the same time take into account the practical applicability of
the developed techniques as well. We have made use of some of the classical approaches
existing in the topic like Helton’s operator theoretic approach and Fano-Youla’s global sys-
tem approach to study the broadband impedance matching problem. Together with the
theoretical study of different formulations of the matching problem developed during the
thesis, practical realization of the optimal matching networks have been given due impor-
tance as well. This has lead to the division of the thesis into two main parts, where in the
first part a detailed study of the broadband impedance matching problem is done to yield
many interesting theoretical results regarding the formulated problems, including existence
and uniqueness results, optimality conditions and critical point theory. The practical im-
plementation of developed approaches and several examples of matching filter synthesis
are illustrated as well. Furnishing lower bounds for matching criterion related to the com-
putation of finite degree matching networks is one of the important results obtained. In
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the second part of the thesis, different practical constraints for the implementation of the
matching network as per the requirements of the application are taken into consideration
as well. This has lead to the development of an approach which is able to take care of these
requirements and at the same time provide an estimate of how far the obtained matching
criterion in reality is to the theoretical lower bounds obtained in part I.

1.5 Conclusion

In this chapter, we have made a brief introduction to the thesis, giving details about
broadband impedance matching and most important tools that would be required during
the development of the manuscript. The other necessary references and results required
during the course of the thesis will be discussed as and when required. Now, we are in
a position to dive into chapter two, where we start with the first formal formulation of
impedance matching problem and then discuss an operator theoretic approach to solve
it. This approach was first introduced by J.W Helton and provides hard bounds to the
matching criterion for any given load and a specified pass band. We will make use of this
approach to solve the matching problem in the case of the finite degree matching networks.
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CHAPTER 2

Matching Problem : An Operator Theoretic Approach

2.1 Introduction

As mentioned in the previous chapter, it was J.W Helton who introduced an H∞ approach
to solve the impedance matching problem around the 1980’s. The matching problem is
casted as a quasi-convex optimization problem involving the minimization of a pseudo-
hyperbolic distance. The absence of any degree constraint on the circuital response is
here traded for the guaranteed global optimality of the obtained response. The method
developed by Helton is mainly based on a clever application of Nehari’s theorem (Theorem
15.16, [97]) : finding best H∞ approximation to any given L∞ function in the L∞-norm.
The implementation of Nehari’s theorem depends largely on an operator defined on H2,
namely the Hankel operator and Helton’s H∞ method reduces the broadband impedance
matching problem to finding singular values and singular vectors of the Hankel matrix.
In this chapter, we will give an overview of the optimisation problem solved by Helton
and subsequently illustrate the reason why its impact in the electronics world was limited,
despite its undeniable elegance. In brief terms, the relative mathematical complexity of
this procedure coupled to the impossibility to realize in practice an infinite dimensional
H∞ response have severely contributed to its limited impact in electronics.

The main contribution of this chapter would be to describe how Helton’s approach
can be utilized to furnish lower bounds for matching criterion in the case of finite degree
matching networks. The idea is to limit the set of possible reflection coefficients of the
total system (matching network together with the load) to certain subclass of the class of
Schur functions. This will help to gain control over the degree of the matching network to
be synthesized. Then the original idea of Helton’s approach based on the resolution of a
bounded extremal problem in H∞ will be used for the practical implementation. The degree
bound of the optimal matching network obtained using this approach will be estimated.
The computation and behaviour of the best finite dimensional matching filter response
obtained using this approach on some concrete antenna examples will be presented at the
end of the chapter as well.
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Matching
Network

F
ZL

a1

b1

a2

b2

L11 = a2

b2

Figure 2.1: Scalar chaining of F and L11

2.2 Matching Problem

The problem of interest is the synthesis of a matching network for a given frequency varying
load. Given the measured reflection coefficient of the load under consideration in the
frequency band of interest, say I (a finite union of disjoint compact intervals), the goal is to
design a matching network so as to minimize, when plugged on the load, the power reflected
by the load in the frequency band I. We suppose that we possess sufficiently enough values
of the load’s reflection parameter L11 in the frequency band of interest I. This is usually
obtained in practice directly from the data taken from a vector network analyzer while
measuring the scattering parameter of the load. Before stating the problem formally, it
is necessary to detail the chaining operation, so as to understand the effect of chaining a
two-port to a rational schur f , in our case, to the reflection coefficient of the load, denoted
by L11. It should be noted that from here on, whenever we speak of scattering parameters,
they will be the ones normalized to generator internal impedance. In most of the practical
scenarios, this would be 50 Ω and hence the given reflection coefficient of the load would be
the one normalised to 50 Ω. We assume the same reference impedance for the scattering
matrix of the matching circuit to be synthesized. As mentioned in equation (1.13), the
reflection coefficient of the load normalised to the reference impedance is obtained from the
frequency varying impedance of the load as follows,

L11(jω) =
ZL(jω)− Z0

ZL(jω) + Z0

, ω ∈ R, (2.1)

where Z0 is the fixed reference impedance.
In order to describe the chaining operation, let us consider figure 2.1 in which a two-port

with scattering matrix

F =

[
F11 F12

F21 F22

]
,

is connected to a one-port load with reflection coefficient L11. We suppose that all the
scattering parameters are given with respect to the same reference impedance. The scalar
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chaining of F with L11 denoted by F ◦L11 produces the overall reflection coefficient S11 = b1
a1

.
The overall reflection coefficient S11 with respect to the same reference impedance can be
easily expressed in terms of the scattering parameters of F and the reflection coefficient L11

with the help of power waves. From the definition of the scattering matrix of F , we have

b1 = F11a1 + F12a2 (2.2)

b2 = F21a1 + F22a2. (2.3)

It should be noted from the figure (2.1) that the input power wave and output power wave
at the second port of the matching network is equal to the output power wave and input
power wave respectively of the load ZL. This implies that a2 = b2L11. Substituting this for
a2 in (2.3) and calculating b2, we obtain

b2 =
F21a1

1− F22L11

. (2.4)

Now, substituting a2 = b2L11 = F21L11a1

1−F22L11
in (2.2), we get

b1 = F11a1 +
F12F21L11a1

1− F22L11

.

This yields the input reflection coefficient of the overall system S11 = b1
a1

as

S11 = F11 +
F12F21L11

1− F22L11

.

The reader can also refer to section 2.6 in [45] for a proof of the chaining equation based
on signal flow graphs.

Definition 2.2.1. (Scalar Chaining). Let us consider a two-port scattering matrix, say,

F =

[
F11 F12

F21 F22

]
,

and a rational Schur function L11 ∈ B representing a one-port reflection coefficient, where
all scattering parameters are given with respect to the same reference impedance. The scalar
chaining of F with L11 represents the one-port reflection coefficient S11 = F ◦L11 with respect
to the same reference impedance, satisfying for any given frequency,

S11(jω) = F11(jω) +
F12(jω)F21(jω)L11(jω)

1− F22(jω)L11(jω)
. (2.5)

Now, in order to describe the crux of the matching problem, let us consider figure 2.2
in which the system consisting of the matching network together with the load is depicted.
It should be duly noted that throughout the thesis, the matrix,

F =

[
F11 F12

F21 F22

]
, (2.6)
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ZL
Matching
Network

ZG

−
+

E0

F22F11

S11 L11

Figure 2.2: Matching Network Connected to One-Port Load

will represent the lossless scattering matrix (definition 1.2.12 in chapter 1) of the matching
network that needs to be synthesized, L11 the reflection coefficient of the given load and
S11, the reflection coefficient of the overall system. The lossless character of F allows us
to obtain another expression for S11 starting from the expression in (2.5). This expression
described below will play the central role in this chapter. As mentioned in equation (2.5),
we have the reflection coefficient of the system produced as a result of chaining F with L11

to be,

S11(jω) = F11(jω) +
F12(jω)F21(jω)L11(jω)

1− F22(jω)L11(jω)
(2.7)

=
F11(jω)− L11(jω)det(F (jω))

1− F22(jω)L11(jω)
(2.8)

= det(F (jω))
F22(jω)− L11(jω)

1− F22(jω)L11(jω)
(2.9)

The last equality follows, since from equation (1.62), we have det(F (jω)) = F11(jω)

F22(jω)
, when F

is a lossless scattering matrix. Now, again using the same fact, we have |det(F (jω))| = 1,
for any ω ∈ R and hence it follows that,

|S11(jω)| =
∣∣∣∣∣ F22(jω)− L11(jω)

1− F22(jω)L11(jω)

∣∣∣∣∣ , ω ∈ R. (2.10)

So, we have obtained an expression for the modulus of the reflection coefficient of the system
obtained by chaining the lossless scattering matrix F to the load with reflection coefficient
L11. It is the quantity of interest which we would like to make lower or equal to a prescribed
value in the entire passband of interest as required by the application specifications.

2.2.1 Pseudo-Hyperbolic Distance

The expression for |S11| on the imaginary axis as mentioned in equation (2.10) is having a
form which is peculiar to non-Euclidean geometry, namely the pseudo-hyperbolic distance.

Definition 2.2.2. (Pseudo-Hyperbolic Distance). The pseudo-hyperbolic distance is defined
on the unit disk, D = {s ∈ C : |s| < 1}, by,

δ(a, b) =

∣∣∣∣ a− b1− āb

∣∣∣∣, a, b ∈ D. (2.11)

50 Gibin Bose



2.2. MATCHING PROBLEM

It should be noted that being a distance, it satisfies all the properties of a metric on D :

• Non-negativity : δ(a, b) ≥ 0, Moreover δ(a, b) = 0 ⇐⇒ a = b.

• Symmetry : δ(a, b) = δ(b, a).

• Sub-additivity or Triangle inequality : δ(a, b) ≤ δ(a, c) + δ(c, b).

Moreover, an additional point which follows from the definition of the pseudo-hyperbolic
distance is

0 ≤ δ(a, b) < 1. (2.12)

Next, we state a result which will be of importance in this chapter as we go ahead : any
pseudo-hyperbolic disk is a Euclidean disk contained in the unit Euclidean disk, D. To be
precise,

Theorem 2.2.3. Any pseudo-hyperbolic disk, denoted by,

DH(c, r) = {z ∈ D : δ(z, c) < r}, (2.13)

is an Euclidean disk,

DE(C,R) = {z ∈ C : |z − C| < R}, (2.14)

where,

C =
1− r2

1− r2|c|2 c, R =
1− |c|2

1− r2|c|2 r. (2.15)

A proof to theorem 2.2.3 can be found in Chapter I, [42]. Now, we are in a position to
introduce the matching problem that was solved by J.W Helton using an operator theoretic
approach.

2.2.2 Helton’s Optimization Problem

We will continue to use the notation F , as mentioned in equation 2.6, to denote the lossless
scattering matrix of the matching circuit to be synthesized. In the infinite dimensional
setting, where the output reflection coefficient of matching network, F22, is sought for in
the set of Schur functions, B (i.e F22 ∈ H∞(Π+) and ∀ω ∈ R, |F22(jω)| ≤ 1), the matching
problem can be formulated as,

Problem. P1 : Given a passband, I and the reflection coefficient, L11 ∈ B of the load,

Find : linf = min
F22∈B

max
jω∈I

δ(F22(jω), L11(jω)),

where I is a finite union of disjoint compact intervals on the imaginary axis.

Theorem 2.2.4. Problem P1 is quasi-convex.
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Proof. The set of Schur functions, B, is clearly a convex set. For a given passband I and
the reflection coefficient L11 ∈ B of the load, let us denote the objective function by,

Ψ : B→ R
Ψ(f) = max

jω∈I
δ(f(jω), L11(jω)) (2.16)

The aim is to prove that Ψ defined on the convex set B is quasi-convex, that is, to prove
the set Cr(Ψ) defined by,

Cr(Ψ) = {f ∈ B : Ψ(f) ≤ r},

is a convex set for any fixed r ∈ R. Let f1, f2 denote two functions in Cr(Ψ). From the
definition of Cr(Ψ), we have,

∀jω ∈ I, δ(f1(jω), L11(jω)) ≤ r

∀jω ∈ I, δ(f2(jω), L11(jω)) ≤ r,

that is,

∀jω ∈ I, f1(jω) ∈ cl(DH(L11(jω), r)) (2.17)

∀jω ∈ I, f2(jω) ∈ cl(DH(L11(jω), r)), (2.18)

where ‘cl’ represents the closure. Making use of theorem 2.2.3, we have, for any jω ∈ I,

f ∈ cl(DH(L11(jω), r)) ⇐⇒ f ∈ cl(DE(C(jω), R(jω))), where,

C(jω) =
1− r2

1− r2|L11(jω)|2L11(jω) and R(jω) =
1− |L11(jω)|2

1− r2|L11(jω)|2 r.

This implies, from (2.17) and (2.18) we have,

∀jω ∈ I, f1(jω) ∈ cl(DE(C(jω), R(jω))) and f2(jω) ∈ cl(DE(C(jω), R(jω))),

i.e ∀jω ∈ I, |f1(jω)− C(jω)| ≤ R(jω) and |f2(jω)− C(jω)| ≤ R(jω). (2.19)

So, for any jω ∈ I, we have for α ∈ (0, 1),

|αf1(jω) + (1− α)f2(jω)− C(jω)| ≤ α|f1(jω)− C(jω)|+ (1− α)|f2(jω)− C(jω)|
≤ αR(jω) + (1− α)R(jω).

= R(jω)

This implies, for any jω ∈ I, we have, αf1(jω) + (1 − α)f2(jω) ∈ cl(DE(C(jω), R(jω))),
equivalently, αf1(jω) + (1−α)f2(jω) ∈ cl(DH(L11(jω), r)). This yields us the fact that for
any fixed α ∈ (0, 1), the function αf1 + (1− α)f2 ∈ B satisfies,

max
jω∈I

δ(αf1(jω) + (1− α)f2(jω), L11(jω)) = Ψ(αf1 + (1− α)f2) ≤ r.

This shows the convexity of set Cr(Ψ) and hence the proof.
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Helton’s approach to solve broadband matching problem is mainly based on a theo-
rem by Nehari to calculate the sup norm distance to H∞. A detailed literature about a
non-Euclidean functional analysis approach by Helton for solving different problems in elec-
tronics like broadband impedance matching problem and optimizing the gain of amplifiers
can be found in [48]. In order to tackle the problem of broadband matching introduced in
problem P1, Helton developed a powerful method of gain equalization. We will give below
a brief outline of Helton’s approach to broadband matching and the associated techniques
to find theoretical bounds for the gain in the passband. The transducer power gain, G is
the ratio of the power delivered to the load to the power available from the source. Given
a desired gain profile G(jω), Helton’s approach find the largest multiple αG of it which
is realizable. Throughout the original work, Helton consider the case where the reflection
coefficient of the load, L11(jω) are known within a tolerance for jω in some band I+ which
contains the passband I or the function L11 is given exactly as a rational function. Also,
for the simplicity of the exposition and the fact that it is the common industrial case, it is
assumed that |L11| does not take the value 1 on I+. The problem of gain equalization can
be stated as follows.

Problem. PGE. (Gain Equalization Problem). Given L11 ∈ B (reflection coefficient of the
load) satisfying |L11(jω)| ≤ r < 1 on the frequency band I and given a function G(jω) (the
transducer gain) on I satisfying 0 < G(jω) < 1, does there exist a lossless scattering matrix
F (s) such that

G(jω) = 1− (δ(F22(jω), L11(jω)))2, ω ∈ I ? (2.20)

If yes, find the F (s) which realizes this gain.

The method proposed by Helton provides a test based on Nehari theory and Hankel
operator to check the realizability of a given gain G. The idea then is to use this test to
find the biggest realizable gain αG where G is given and α > 0 is the constant to be found.
The key starting point of Helton approach is to consider the realizability of a given gain
G(jω) on the frequency band I for a given L11 ∈ B by replacing the equality in equation
(2.20) with an inequality ≤. The gain is completed on the imaginary axis by defining

g(jω) =

{
G(jω) jω ∈ I
0 jω /∈ I. (2.21)

So the problem can be stated as does there exist a lossless scattering matrix F (s) such that

(δ(F22(jω), L11(jω)))2 ≤ 1− g(jω), ω ∈ R. (2.22)

From theorem 2.2.3, the problem translates to finding F22 ∈ H∞(Π+) such that,

|F22(jω)− C(jω)|2 ≤ R(jω)2, ω ∈ R, (2.23)

where we have,

C(jω) =
g(jω)L11(jω)

1− |L11(jω)|2(1− g(jω))
, (2.24)

R(jω)2 =

(
1− |L11(jω)|2

1− |L11(jω)|2(1− g(jω))

)2

(1− g(jω)). (2.25)
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It should be noted that C ≡ 0 and R ≡ 1 outside the passband I. Dividing equation
(2.23) by |V (jω)|2, where V is the outer function in H∞(Π+) satisfying, V V ∗ = R2 on the
imaginary axis, we are interested in finding F22 ∈ H∞(Π+) such that,

|F22(jω)V −1(jω)− C(jω)V −1(jω)| ≤ 1, ω ∈ R, (2.26)

if it exists. Let us define Φ = CV −1 and Ψ = F22V
−1. It should be noted that the modulus

of the given load, |L11(jω)| and the gain function G(jω) fixed by the user are assumed to
be strictly less than one. This implies that the outer function V is invertible in H∞(Π+)
and we have Φ ∈ L∞(jR). Now, we are interested in solving the following classical problem
of approximation by analytic functions:

Problem. (Nehari). Given Φ ∈ L∞(jR),

min
Ψ∈H∞

||Ψ− Φ||L∞ (2.27)

and find a Ψ at which the infimum is attained if the minimum is less than or equal to one.

A detailed literature about these approximation problems can be found in Chapter
15, [97]. The solution to (2.27) and a Ψ ∈ H∞(Π+) at which the infimum in (2.27) is
attained can be obtained with the help of Hankel operators.

Definition 2.2.5. (Hankel Operator). Let φ ∈ L∞(jR) and H̄2 def
= L2	H2, the orthogonal

complement of H2 in L2. The Hankel operator with symbol φ, denoted by Hφ : H2(Π+)→
H̄2(Π+) is the operator defined by

Hφ(f) = P (φf),

where P represents the orthogonal projection from L2(jR) to H̄2(Π+).

We have the following solution to Nehari’s problem (Theorem 15.16, [97]).

Theorem 2.2.6. Let φ ∈ L∞(jR) and suppose that the Hankel operator, Hφ : H2(Π+) →
H̄2(Π+) has a maximizing vector f (vector at which Hφ attains its norm). There is a unique
best approximation of g ∈ H∞(Π+) to φ in the L∞-norm. It is given by,

g = φ− Hφ(f)

f
. (2.28)

Furthermore, we have, min
g∈H∞

||g − φ||L∞ is equal to ||Hφ||, the operator norm of Hankel

operator with symbol φ.

So, using theorem 2.2.6, we have a solution to problem stated in (2.22) if and only if
||HΦ|| is less than or equal to one and in this case, we have the minimiser,

Ψ = Φ− HΦ(W )

W
, (2.29)

where HΦ is the Hankel operator with symbol Φ and W one of its maximizing vectors. We
remind the reader that Φ = CV −1 is known by construction from the gain g and reflection
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coefficient of the load, L11. It should be noted from theorem 1.1.4 in [71] that as long as Φ is
the sum of an H∞ function and a continuous function on the imaginary axis, HΦ is compact
and have maximizing vectors. The reader can refer to section II in [47] for a methodology
proposed to find a maximizing vector from a truncation of the matrix of HΦ that is close
to the maximizing vector of infinite dimensional matrix of HΦ. The idea presented is based
on the notion of approximate realizability of a gain G for a given load L11, which means
that there is a sequence of Fn of lossless matching circuits such that the resulting gains Gn

converge uniformly to G on each closed set in the interior of I. One smooths the functions
C and R at the end points of the passband and then after truncating the matrix of HΦ, the
approximate realizabilty of the gain G can be tested using the test ||HΦ|| ≤ 1. If it holds,
there exists a lossless matching network F achieving the gain G for the load.

The solution to (2.22), namely F22 ∈ H∞(Π+) can be obtained by multiplying the outer
function V to Ψ, that is F22 = VΨ. We remind the reader that the outer function V is
known by construction from the Euclidean radius R defined in (2.25). So, the problem
of finding the biggest realizable gain of the form αG for a given gain G can be solved by
performing the above test of checking ||HΦ|| ≤ 1 on a grid of α’s where G is replaced by
αG. Beginning with a small value of α > 0, we can iterate on the gain g(jω) mentioned
in equation (2.21) by increasing the value of α until the operator norm of Hankel operator
is equal to one (say it is achieved at α̂). This provides us F̂22 which achieves the biggest
realizable gain α̂G in I, that is

α̂G(jω) = 1− (δ(F̂22(jω), L11(jω)))2, ω ∈ I. (2.30)

The idea proposed in [47] concerning the smoothing of the functions C and R in (2.24),
(2.25) and then using the approximate realizability test can be interpreted more practically
by starting off the procedure with a smooth gain function G(jω), say it vanishes at the
end points of the passband I and its derivative with repsect to the frequency variable,
denoted by G′ is Lipschitz continuous in I. This implies that the function g(jω) defined
on the imaginary axis in (2.21) is in C1. This together with the fact that |L11| ≤ r < 1
implies that the Euclidean center, C(jω) and radius, R(jω) defined in (2.24) is C1-smooth.
In addition, it should be noted that R′ is in fact Lipschitz continuous in this setting. It
also follows from (2.25) that R is a strictly positive function and so V is non-vanishing on
the imaginary axis. Theorem 1.3 in chapter III, [42] implies that for such a smooth R as
described here, its outer factor V build so using the Hilbert transform is C1-smooth. This
together with the fact that the derivative of Hilbert transform is the Hilbert transform of
the derivative (chapter 3, theorem 3, [68]) yields the symbol Φ build on the imaginary axis
as CV −1 to be C1-smooth as well. Now, it follows from theorem 2.1, chap IV in [42] that
the approximant function Ψ ∈ H∞ of such a Φ is continuous on the imaginary axis and
hence belongs to the half-plane algebra, A(Π+). In this case, theorem 1.3.9 in [69] ensures
that the harmonic extension of the approximant Ψ(jω) converges to Ψ in the sup-norm.
Thus, Runges theorem (theorem 13.6, [83]) guarantees that a rational approximation of
the optimal F̂22 can be obtained and finally Darlington’s construction (Theorem 1.3.13)
can be used to form the lossless scattering matrix F̂ (s) realizing the biggest gain α̂G. It
should be noted that in general there is no control in the final degree of the matching circuit
obtained by this scheme. With this, we conclude this short description of Helton’s approach
to broadband matching and theoretical gain-bandwidth limitations. For a given load, if we
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consider the uniform gain profile in I, say

G(jω) = l, 0 < l < 1, (2.31)

Helton’s method provides hard upper bound of α̂l for the realizable gain. Correspondingly
it provides a hard lower bound,

√
1− α̂l on the power mismatch for the same load. The

first implementation of this wide-band impedance matching technique can be found in [88].
Thus, we have the solution F̂22 ∈ B to problem P1 which achieves the optimal matching
criterion linf =

√
1− α̂l. It should be noted that the solution F̂22 to Helton’s approach

which realizes the biggest gain α̂G will be infinite dimensional. This limits the practical
usefulness of Helton’s method in providing optimal finite degree matching networks. It is
with this purpose in mind, we move to the next section, where we formulate the matching
problem in such a way that if there exists a solution to the problem, it will be guaranteed
to be realisable by finite degree matching networks.

2.3 Finite Degree Matching Problem

In this section, Helton’s approach of solving gain equalization problem will be used to solve
finite degree broadband matching problem. If there exists a solution to this problem, it
will be ensured to be a finite degree rational Schur function. Throughout the section, we
suppose that we possess a passive rational model of antenna’s reflection parameter L11

obtained via rational approximation techniques at hand of scattering measurements [1]. In
comparison to the setting described in the last section where a rational approximation of
the reflection parameter of the load is not done at the beginning but an approximation of
the matching filter response is done at the end, the current setting will be practically more
useful. In most of the practical scenarios, the measured reflection parameter of the load can
be approached very closely by a rational approximation in the frequency band of interest.
For example, a single resonance antenna can be approximated by a degree one rational
function in most of the cases. If a more accurate model is required, it is always possible
to increase the degree of the approximation and then perform the optimisation scheme to
be discussed in this section. In the practical world, degree bound on the matching circuit
is one of the major constraint concerning its realization and in the previous setting, once
the optimisation procedure is completed, it is highly likely that a response close to the
optimal response cannot be achieved with the prescribed degree bound. We will be able to
overcome this problem in the setting described in this section since the optimisation scheme
ensures the desired degree bound on the matching circuits. Before moving to the problem
formulation, it is necessary to describe rational “reference functions” which will play an
important role in the problem to guarantee finite degree for the solution, if it exists. They
will form a special class of Schur functions which will help to parameterise the modulus of
the total system formed by the chaining of matching network and the load. It is important
to note that if the McMillan degree of the load is M and that of the matching network
is Nmc, then the degree of the overall system is at most Nmc + M and so it is natural to
consider the reference functions (whose construction is explained in the next subsection) to
be of degree N = Nmc +M .

56 Gibin Bose



2.3. FINITE DEGREE MATCHING PROBLEM

2.3.1 Reference Functions

As already mentioned, the idea of introducing reference functions is to gain control over
the degree of the matching network to be synthesized. It is done at the cost of limiting
the set of possible reflection coefficients of the total system (obtained by chaining the
scattering matrix of the matching network and the reflection coefficient of the load) to
certain subclasses of the class of Schur functions. We will form a family of rational outer
reference functions {kα} parametrized by α ∈ R+, the modulus of which mimic an ideal
step function kopt:

kopt(jω) =

{
l jω ∈ I 0 < l < 1
1 jω /∈ I (2.32)

There are multiple ways to approach rationally a step function. We choose here to follow
the classical Darlington insertion loss synthesis for filters. Considering the Belevitch form
of a general loss-less rational scattering matrix (Theorem 1.3.10), modulus square of the
reflection coefficient of the total system can be expressed on the imaginary axis as :

|S11|2 =
pp∗

qq∗
=

pp∗

pp∗ + rr∗
=

1

1 + rr∗

pp∗

(2.33)

As mentioned at the beginning of the section, we suppose that we possess a passive rational
model of the loads reflection parameter L11 denoted by pL

qL
∈ B. Using Darlington’s theorem

(Theorem 1.3.13), we can represent the lossless scattering matrix of McMillan degree M of
the given load as

L =
1

qL

[
pL rL
−εr∗L εp∗L

]
, (2.34)

where, pL, rL ∈ PM and qL is a stable polynomial of degree M satisfying the Feldtkeller
equation, qLq

∗
L = pLp

∗
L + rLr

∗
L. Throughout this chapter, we will assume that all the

transmission zeros of the load are strictly inside the right half plane and in the spectral
factorisation rLr

∗
L of the transmission polynomial of the load, we choose rL to be Hurwitz.

Now, we build the reference functions by considering two cases, (i). r = rF and (ii).
r = rLrF , where rF represent the transmission polynomial associated to the scattering
matrix of the matching circuit to be synthesized. For simplicity, in both cases we will
consider rF is a non-zero constant and denote α = rF r

∗
F > 0. This corresponds to a

classical low pass network topology for the matching circuit to be synthesized (equation
9.22, [92]).

• Case (i). r = rF : In this case, we have the modulus of the input reflection coefficient
of the total system satisfying

|S11|2 =
1

1 + α|1
p
|2 (2.35)

on the imaginary axis. So, for any fixed p, the modulus of S11 can be varied monotonously
using the parameter α. Thus it is possible to form a family of rational Schur func-
tions {p

q
} where q is a solution of spectral factorisation and the modulus of the Schur

function can be parametrised using α. We will make use of Chebyshev polynomials,
one of the classical tools in Filter design in order to build these family of reference
functions.
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Definition 2.3.1. (Chebyshev Polynomials). The Chebyshev polynomial of degree N ,
denoted by TN is defined on [−1j, 1j] by the recurrence relation,

TN(s) = −2jsTN−1(s)− TN−2(s), N ≥ 2,

where T0(s) = 1 and T1(s) = −js.

It should be noted that in contrast to the usual setting of Chebyshev polynomials
on [−1, 1], we have transformed it to [−1j, 1j] since in our problem, the passband I
is normalized to [−1j, 1j]. For a fixed positive constant c, we fix pk as the Hurwitz
polynomial satisfying

pkp
∗
k = TNT

∗
N + c (2.36)

on the imaginary axis and qk the strict Hurwitz polynomial satisfying

qkq
∗
k = pkp

∗
k + α. (2.37)

Thus, we have a family {kα = pk
qk
} of rational outer functions of degree N satisfying,

|kα|2 =
|pk|2
|qk|2

=
1

1 + α
|pk|2

=
1

1 + α
|TN |2+c

(2.38)

on the imaginary axis. It should be noted that {kα} form a family of equi-oscillating
rational reference functions and |kα|2 equi-oscillate on I between the values 1/(1+α/c)
and 1/(1 + α/(c+ 1)). The reader should not confuse the subscript k in polynomials
pk and qk to be associated with degree but it is named so to mark its association with
reference function named kα. They are in fact degree N polynomials.

• Case (ii). r = rLrF : In this case, we have the modulus of the input reflection
coefficient of the total system satisfying

|S11|2 =
1

1 + α| rL
p
|2 (2.39)

on the imaginary axis. Similar to the previous case, we will make use of Chebyshev
approximation, but this time a weighted approximation because of the factor rL in
equation 2.39. We are interested in solving the problem

Find : t0 = min
p∈RMPN

max
jω∈I

∣∣∣∣ p(jω)

r̃L(jω)

∣∣∣∣2, (2.40)

where RMPN represent the monic polynomials of degree N which are real-valued on
the imaginary axis and the polynomial rL associated with the given load is normalized
to be monic, denoted by r̃L. This problem can be solved using the classical Remez
algorithm for the weighted Chebyshev approximation [60]. It can also be solved by
defining an extra variable Γ ∈ R satisfying for all jω ∈ I,

Γ ≥
∣∣∣∣ p(jω)

r̃L(jω)

∣∣∣∣2
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Figure 2.3: Reference Functions

and then using matlab solvers like fmincon to solve

min
(p,Γ)∈RMPN×R

Γ

sub :

∣∣∣∣ p(jω)

r̃L(jω)

∣∣∣∣2 − Γ ≤ 0, jω ∈ I.

The solution to problem 2.40 provides the weighted Chebyshev polynomial of degree
N . After de-normalizing the leading coefficient of the solution to be the leading
coefficient of rL, we denote it by TLN . Now, in order to build the family of reference
functions, for a fixed positive constant c, we define pk as the Hurwitz polynomial
satisfying

pkp
∗
k = TLNT

L
N

∗
+ crLr

∗
L (2.41)

and qk the strict Hurwitz polynomial satisfying

qkq
∗
k = pkp

∗
k + αrLr

∗
L. (2.42)

Thus, we have the family {kα = pk
qk
} of rational outer functions of degree N satisfying,

|kα|2 =
|pk|2
|qk|2

=
1

1 + α| rL
pk
|2 =

1

1 + α∣∣TLN
rL

∣∣2+c

(2.43)
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on the imaginary axis. Similar to case (i), {kα} form a a family of equi-oscillating
rational reference functions and |kα|2 equi-oscillate on I between the values 1/(1+α/c)
and 1/(1+α/(c+t0)). Fig. 2.3 shows a representation of some of the reference functions
in the described family {kα}. Ref 1 and Ref 2 represent two reference functions of
degree N equal to 2 and 3 respectively build by following case (i). The value of α
and c were set to α = 8, c = 2 and α = 10, c = 1 respectively in Ref 1 and Ref
2. Similarly, Ref 3 and Ref 4 represent two reference functions of degree N equal to
4 and 6 respectively build by following case (ii) where the polynomial rL was fixed,
rL(s) = −1.2s2− (5.1+1.2j)s− (3.1+2j). The value of α and c were set to α = 0.02,
c = 0.02 and α = 0.03, c = 0.02 respectively in Ref 3 and Ref 4.

In summary, we have considered two cases of reference functions representing the modulus of
the input reflection coefficient of the total system, one in which transmission zeros of the load
are not included in the reference function (case (i)) and other one in which they are included
(case (ii)). At the end of this section (subsection 2.3.4), we will illustrate the main difference
in the results obtained using these two types of reference functions in the optimisation
scheme that will be described for solving the matching problem in the next subsection. It
will become clear that there is an increase in the degree of the optimal matching circuit that
we will have to pay if we do not include the transmission zeros of the load in the reference
functions (case (i)). The reader should also note that choosing rF r

∗
F = α in the construction

of reference functions was done just for the purpose of simplicity of explanation, instead
we can consider rF to be any fixed transmission polynomial of the matching circuit to be
synthesized with no zeros inside passband I. It can be handled the same way as case (ii) in
which we can consider α to be a positive multiplicative factor for r and replace rL with rLrF
in equation (2.39). Then the same construction scheme of reference functions discussed in
case (ii) can be utilized for handling this case.

2.3.2 Bound for the Reflection Level Using H∞ Approach

Having described the family of reference functions, we move to the important part of this
chapter, that is to describe the finite degree matching problem and use Helton’s approach
to solve it. We will continue to use the notation F to denote the lossless scattering matrix
of matching circuit to be synthesized and its parameterisation using the output reflection
coefficient, F22 ∈ H∞(Π+). Following the Helton’s approach of gain equalization problem,
we are interested in finding the smallest power mismatch of the form |kα|. In the finite
dimensional setting, the problem can be formulated as,

Problem. P2 : Given a passband I, the reflection coefficient L11 ∈ B of the load and a
reference function kα of degree N as described in subsection 2.3.1, does there exist a lossless
scattering matrix F (s) such that,

∀ω ∈ R, δ(F22(jω), L11(jω)) = |kα(jω)| ? (2.44)

If yes, find the F (s) which achieves this.

We will make use of Nehari theory to provide the test based on Hankel operator to answer
problem P2. It easily follows from equations (2.38) and (2.43) that |kα| is a decreasing
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function of α on the imaginary axis for any fixed polynomial p in both the cases of reference
functions. So, the idea is to use this test to find the smallest possible power mismatch of
the form |kα|. This is done by iterating on |kα| by increasing the value of α. The first step
of solving problem P2 is to relax the equality in equation (2.44) with an inequality ≤. So
the problem reduces to finding a lossless scattering matrix F (s) such that

δ(F22(jω), L11(jω)) ≤ |kα(jω)|, ω ∈ R. (2.45)

The pseudo-hyperbolic disk, δ(F22, L11) ≤ |kα| with centre L11 and radius |kα| translates to
the following Euclidean disk using theorem 2.2.3 :∣∣∣∣F22 −

(1− |kα|2)

1− |kα|2|L11|2
L11

∣∣∣∣ ≤ (1− |L11|2)

1− |kα|2|L11|2
|kα| (2.46)

Now, following the same approach of solving gain equalization problem described in sub-
section 2.2.2, the problem can be casted as the following

Problem.
min

Ψ∈H∞
||Ψ− Φ||L∞ (2.47)

and find a Ψ at which the infimum is attained if the minimum is less than or equal to one,

where Φ = 1
V

(
1−|kα|2

1−|kα|2|L11|2

)
L11 and V is the outer function satisfying |V | =

∣∣∣∣ (1−|L11|2)
1−|kα|2|L11|2

∣∣∣∣|kα|
on the imaginary axis.

It should be noted that since we assume the load has no transmission zeros on the
imaginary axis and the function kα by construction has no zeros on the imaginary axis, the
outer function V is invertible in H∞(Π+). So, we have Φ ∈ L∞(jR) and we are interested
in finding an H∞ function in problem 2.47 whose L∞-distance to Φ is less than or equal to
one. So, using theorem 2.2.6, we have a solution to the problem described in (2.45) if and
only if ||HΦ|| ≤ 1.

Nehari Test I : The problem in (2.45) is solvable if and only if ||HΦ|| ≤ 1 where Φ
is described in the Nehari problem in (2.47).

In this case, we have the minimiser,

Ψ = Φ− HΦ(W )

W
, (2.48)

where HΦ is the Hankel operator with symbol Φ and W one of its maximizing vectors. The
solution to problem in (2.45), namely F22 ∈ H∞(Π+) can be obtained by multiplying the
outer function V to Ψ, that is F22 = VΨ.

Before answering the problem of finding the smallest possible power mismatch of the
form kα, we will show that the symbol Φ in the Nehari problem (2.47) is in a peculiar
rational form b̄g, where b is a finite Blaschke product and g is a rational H∞ function. The
importance of this form lies in the fact that it provides direct information about the the
kernel and range of the Hankel operator with this symbol. Theorem 2.4 in [71] states the
following.
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Theorem 2.3.2. Let g ∈ H∞ and b be an inner function such that b and g are coprime
(no common nonconstant inner divisors). Then

Ker Hb̄g = bH2 and clos Range Hb̄g = H̄2 	 b̄H̄2,

where H̄2 def
= L2 	H2, the orthogonal complement of H2 in L2

We had two cases of reference functions, kα = pk
qk

, described in subsection 2.3.1,

• Case (i).

|kα|2 =
|pk|2
|pk|2 + α

on the imaginary axis.

In this case, first of all, we do some elementary calculations to provide a rational
expression for the outer function V and the symbol Φ mentioned in problem 2.47.

V is the outer function satisfying |V | =

∣∣∣∣ (1−|L11|2)
1−|kα|2|L11|2

∣∣∣∣|kα| on the imaginary axis and

Φ = 1
V

(
1−|kα|2

1−|kα|2|L11|2

)
L11. We have,

L11 =
pL
qL
, where qLq

∗
L − pLp∗L = rLr

∗
L,

kα =
pk
qk
, where qkq

∗
k − pkp∗k = α.

(2.49)

Now, we will express the terms, 1− |L11|2, 1− |kα|2 and 1− |kα|2|L11|2 present in the
expressions of |V | and Φ in a rational form using (2.49). We have

1− |L11|2 = 1− pLp
∗
L

qLq∗L
=
rLr

∗
L

qLq∗L
,

1− |kα|2 = 1− pkp
∗
k

qkq∗k
=

α

qkq∗k
,

1− |kα|2|L11|2 = 1− pkp
∗
kpLp

∗
L

qkq∗kqLq
∗
L

=
xx∗

qkq∗kqLq
∗
L

,

(2.50)

where x is used to denote the Hurwitz polynomial of degree N +M satisfying

xx∗ = qkq
∗
kqLq

∗
L − pkp∗kpLp∗L. (2.51)

Substituting the required expressions from (2.50) in the expression of |V |, we have,

|V | = rLr
∗
L

qLq∗L

qkq
∗
kqLq

∗
L

xx∗

∣∣∣∣pkqk
∣∣∣∣.

This provides the rational expression of the outer function V , V =
r2
Lpkqk
x2 . Now, using

this rational expression of V and the required expressions from (2.50), we have

Φ =
1

V

(
1− |kα|2

1− |kα|2|L11|2
)
L11 =

x2

r2
Lpkqk

α

qkq∗k

qkq
∗
kqLq

∗
L

xx∗
p∗L
q∗L

= α
x

x∗
p∗LqL
r2
Lpkqk

.
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So, we have,

V =
r2
Lpkqk
x2

and Φ = α
x

x∗
p∗LqL
r2
Lpkqk

. (2.52)

It should be noted that the unstable poles of Φ are the roots of x∗ since rL, pk and
qk are Hurwitz polynomials. If we denote the roots of x∗ by β1, β2, . . . , βN+M , each
βi ∈ Π+, we have Φ = b̄g where

g =
αp∗LqL
r2
Lpkqk

and b(s) =
x∗(s)

x(s)
=

N+M∏
i=1

s− βi
s+ β̄i

. (2.53)

• Case (ii).

|kα|2 =
|pk|2

|pk|2 + α|rL|2
on the imaginary axis. (2.54)

Similar to the previous case, we can derive the following expressions in this case of
reference functions,

V =
pkqk
x2

0

, Φ = α
x0

x∗0

p∗LqL
pkqk

, (2.55)

where x0 is the Hurwitz polynomial of degree N satisfying

x0x
∗
0 = αqLq

∗
L + pkp

∗
k. (2.56)

The unstable poles of Φ are the roots of x∗0 since pk and qk are Hurwitz polynomials.
If we denote the roots of x∗0 by β1, β2, . . . , βN , each βi ∈ Π+, we have Φ = b̄g where

g =
αp∗LqL
pkqk

and b(s) =
x∗0(s)

x0(s)
=

N∏
i=1

s− βi
s+ β̄i

. (2.57)

So, the rational symbol Φ ∈ L∞ in the Nehari problem (2.47) has the following expression
in both cases of reference functions,

Φ = b̄g,

where b and g follow the equations mentioned in (2.53) and (2.57) in cases (i) and (ii)
respectively. So, it follows from theorem 2.3.2 that

Ker HΦ = bH2 and Range HΦ = H̄2 	 b̄H̄2.

So, the spaces, orthogonal complement of kernel of Hankel operator HΦ in H2 and the
image of Hankel operator are finite dimensional and are explicitly

(Ker HΦ)⊥ = H2 	 bH2 def
= H(b) = span

〈
gi =

1

s+ β̄i

〉
, (2.58)

Range HΦ = H̄2 	 b̄H̄2 def
= H(b̄) = span

〈
hi =

1

s− βi

〉
. (2.59)
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A detailed literature about the collection of analytic functions that are in the image of an
operator can be found in [38] and [39]. In particular, corollary 14.8 in [38] provides the
result, span〈gi〉 = H(b). The bases {gi} and {hi} of (Ker HΦ)⊥ and Range HΦ respectively
will be useful in the numerical implementation of the Nehari problem 2.47 as described in
the next subsection.

So, the problem of finding the smallest possible power mismatch of the form kα can be
solved by performing the Nehari test I of ||HΦ|| ≤ 1 by iterating |kα|. This can be done
by performing the test on a grid of α’s and finding the α at which ||HΦ|| = 1 (say it is
achieved at α̂). It should be noted that when L11 is a non-constant rational Schur function,
the existence of such an α̂ which is unique is guaranteed. This can be seen by the fact that
perfect matching on interval I would imply F22(jω) = L11(jω) for all ω ∈ I and this is not
possible since L11(s) corresponds to the evaluation of L∗11(s) on the imaginary axis, which
is an anti-analytic function. So, for any α > α̂, the answer to the problem in (2.45) is that
there doesn’t exist F22 ∈ B satisfying (2.45). The optimal α̂ provides us F̂22 which achieves
the smallest possible power mismatch |kα̂|, that is

δ(F̂22(jω), L11(jω)) = |kα̂(jω)|, ω ∈ R. (2.60)

Finally Belevitch theorem (Theorem 1.3.10) can be used to form the lossless scattering
matrix F̂ (s) realizing the smallest power mismatch |kα̂|. In the next subsection, we will
briefly explain the important steps in the numerical implementation of the above mentioned
approach in finding F̂22, the solution to problem P2 which realizes the smallest possible
power mismatch of the form |kα|.

2.3.3 Numerical Implementation : Generalized EVP

Even though it is more common to find Nehari theory described in the framework of Hardy
spaces of the unit disc D, H∞(D), we choose to continue in the setting of right half plane,
H∞(Π+). It should be noted that the implementation described below of the Nehari’s
solution to the extremal problem (2.47) can be easily shifted to the setting of H∞(D) using
the map, s → (s − 1)/(s + 1) sending the right half plane to the unit disk. It should
be evident from the last subsection that solving problem P2 for a reference function kα
essentially reduces to solving Nehari problem for Φ = b̄g ∈ L∞ in (2.47). For a rational
function Φ of this form, in order to find the maximizing vector of the Hankel operator, HΦ

: H2 → H̄2, we follow the steps below:

(i) Let {βi}di=1 be the poles of Φ inside the right half plane. When the reference functions
are build as in case (i), we have d = N +M and in case (ii), we have d = N .

(ii) For i = 1, 2, . . . , d, {gi} = { 1
s+β̄i
} form a basis of (Ker(HΦ))⊥ and {hi} = { 1

s−βi} form

a basis of the image of HΦ as mentioned in equations (2.58) and (2.59).
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(iii) Let the Gram matrix of the {gi}′s be denoted by G1. We have

G1 = [am,n] = 〈gm, gn〉 =
1

2π

+∞∫
−∞

1

(s− βm)

1

(s+ β̄n)
dω

=
1

2πj

+∞∫
−∞

h(s)

s− βm
ds,

where h(s) = 1
s+β̄n

. Since βn ∈ Π+, h is analytic in Π+ and hence Cauchy’s integral

formula (Theorem 1.2.9) applies to give

G1 = h(βm) =

[
1

βm + β̄n

]d
m,n=1

. (2.61)

Similarly, the Gram matrix of the {hi}′s can be calculated as,

G2 = [bm,n] = 〈hm, hn〉 =
1

2π

+∞∫
−∞

1

(s+ β̄m)

1

(s− βn)
dω

=

[
1

β̄m + βn

]d
m,n=1

. (2.62)

(iv) Denote the matrix of the Hankel operator, HΦ by A in the chosen bases {gi} and {hi}
for (Ker(HΦ))⊥ and the image of HΦ in H̄2 respectively. If we represent the rational
function Φ by :

Φ(s) =
N (s)

(s− β1)(s− β2) . . . (s− βd)(s− γ1)(s− γ2) . . . (s− γt)
, (2.63)

where βi’s are in Π+, γi’s are in Π− and N (s) a polynomial, the matrix A of dimension
(d× d) can be calculated as follows. We can use f(s) ∈ H∞(Π+) to denote

f(s) =
N (s)

t∏
i=1

(s− γi)
. (2.64)

Now, we can compute the application of the Hankel operator HΦ on some element
u = (u1, u2, . . . , ud) in (Ker HΦ)⊥. From equation 2.58, we have

u(s) =
d∑
i=1

uigi(s),
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where gi(s) = 1
s+β̄i

. The application of Hankel operator HΦ on gn for 1 ≤ n ≤ d
produces the following:

HΦ(gn) = P (Φgn) = P

(
f(s)

d∏
i=1

(s− βi)

1

s+ β̄n

)
(2.65)

=
d∑

m=1

f(βm)

(βm + β̄n)
d∏
i=1
i 6=m

(βm − βi)

1

s− βm
(2.66)

=
d∑

m=1

f(βm)

(βm + β̄n)
d∏
i=1
i 6=m

(βm − βi)
hm, (2.67)

where hm = 1
s−βm . It should be noted that (2.66) is obtained from (2.65) after doing a

partial fraction decomposition of the function Φgn. Now, (2.67) implies that we have
the (m,n)th element (1 ≤ m,n ≤ d) of the matrix of Hankel operator,

Amn =
f(βm)

(βm + β̄n)
d∏
i=1
i 6=m

(βm − βi)
=

N (βm)

(βm + β̄n)
d∏
i=1
i 6=m

(βm − βi)
t∏

j=1

(βm − γj)
.

The last equality follows from equation (2.64). Thus, we have the matrix A of the
Hankel operator HΦ,

A =



N (β1)

(β1+β̄1)
d∏
i=1
i 6=1

(β1−βi)
t∏
j=1

(β1−γj)

N (β1)

(β1+β̄2)
d∏
i=1
i 6=1

(β1−βi)
t∏

j=1
(β1−γj)

. . . N (β1)

(β1+β̄d)
d∏
i=1
i 6=1

(β1−βi)
t∏
j=1

(β1−γj)

N (β2)

(β2+β̄1)
d∏
i=1
i 6=2

(β2−βi)
t∏
j=1

(β2−γj)

N (β2)

(β2+β̄2)
d∏
i=1
i 6=2

(β2−βi)
t∏

j=1
(β2−γj)

. . . N (β2)

(β2+β̄d)
d∏
i=1
i 6=2

(β2−βi)
t∏
j=1

(β2−γj)

...
... . . .

...

N (βd)

(βd+β̄1)
d∏
i=1
i 6=d

(βd−βi)
t∏
j=1

(βd−γj)

N (βd)

(βd+β̄2)
d∏
i=1
i 6=d

(βd−βi)
t∏

j=1
(βd−γj)

. . . N (βd)

(βd+β̄d)
d∏
i=1
i 6=d

(βd−βi)
t∏

j=1
(βd−γj)


.

So, in order to find the operator norm of Hankel operator and the maximizing vector,
we are interested in solving the following problem,

Find : τ 2 = max
u∈(Ker HΦ)⊥

||Au||2
||u||2

. (2.68)

This gives ||HΦ|| = τ . We have ||Au||2 = u∗A∗G2Au and ||u||2 = u∗G1u, where G1 and G2

are Gram matrices as described in equations (2.61) and (2.62) respectively. Thus, we solve
the generalized eigenvalue problem: A∗G2Au = λG1u.
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The eigenvector corresponding to the largest eigenvalue will provide the maximizing
vector, W of the Hankel operator and the square root of largest eigenvalue will provide the
value of the minimum in (2.47). This directly provides us the solution, Ψ ∈ H∞(Π+) to
Nehari problem in (2.47),

Ψ = Φ− HΦ(W )

W
.

The solution F22 to problem 2.45 is obtained by multiplying back the outer factor V , that
is F22 = VΨ. The process is continued by iterating over α until we obtain ||HΦ|| = 1 (say
it is achieved at α̂). This provides us the solution F̂22 to problem P2 realizing the smallest
possible power mismatch of the form |kα|.

2.3.4 Degree of the Optimal Matching Circuit

In this subsection, we will provide an important result which states a bound for the degree of
rational Schur function F22 which is obtained as a solution of problem (2.45). This provides
information about the degree of optimal matching circuit obtained as a result of solving
problem P2. It should be noted that we had two cases of building the rational reference
functions kα described in subsection 2.3.1, where, in one case the transmission zeros of the
load was included in the reference and one in which it was not done. The proposition stated
below provides the estimate of degree of the matching circuit obtained in both cases.

Proposition 2.3.3. The scattering matrix of the matching circuit obtained by solving prob-
lems (2.45) and P2 satisfies the following degree bounds on its McMillan degree :

(1). In the case of reference function, kα = pk
qk

satisfying rkr
∗
k = qkq

∗
k − pkp

∗
k = α (case

(i) in subsection 2.3.1), if there exists a solution F (s) to problem 2.45, the degree of the
rational Schur function F22(s) is bounded by 2(N +M)− 1, where N is the degree of kα(s)
and M is the McMillan degree of the scattering matrix of the load. In this case, the degree
of the solution F22(s) to problem P2 is bounded by N +M − 1.

(2). If the reference function, kα = pk
qk

satisfy rkr
∗
k = qkq

∗
k − pkp

∗
k = αrLr

∗
L (case (ii)

in subsection 2.3.1),the degree of the solution F22(s) to problem 2.45 is bounded by 2N − 1,
where N is the degree of kα(s). In this case, the degree of the solution F22(s) to problem P2

is bounded by N − 1.

Proof. We will do the proof separately for both cases of reference functions.
(1). In the first case, reference function, kα = pk

qk
satisfy

rkr
∗
k = qkq

∗
k − pkp∗k = α.

In this case, as per equations in 2.52, we have the following expressions for the symbol Φ
of the Hankel operator and the outer function V ,

Φ = α
x

x∗
p∗LqL
r2
Lpkqk

, V =
r2
Lpkqk
x2

.
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As mentioned in equation (2.48), we have a solution to the problem 2.45 if and only if
||HΦ|| ≤ 1 and in this case, we have the minimiser,

Ψ = Φ− HΦ(W )

W
, (2.69)

where HΦ is the Hankel operator with symbol Φ and W one of its maximizing vectors. The
solution to problem 2.45, F22 ∈ H∞(Π+) is obtained by multiplying the outer function V to
Ψ, that is F22 = VΨ. We have W ∈ H(b) and HΦ(W ) ∈ H(b̄), where b(s) is the following
Blaschke product of degree (N +M) as per equation in (2.53)

b(s) =
x∗(s)

x(s)
=

N+M∏
i=1

s− βi
s+ β̄i

.

It should be noted that from equations (2.58) and (2.59) , we have

H(b) =
PN+M−1

x
, H(b̄) =

PN+M−1

x∗
. (2.70)

This implies that the maximizing vector W and the Hankel operator acted upon W can be
expressed as

W =
a0

x
, HΦ(W ) =

b0

x∗
, (2.71)

where a0 and b0 are polynomials of at most degree N + M − 1. In addition, in this case,
from theorem 1.4 in [71] it follows that the error function, Φ − Ψ = HΦ(W )

W
has constant

modulus on the imaginary axis and we have

b0 = τa∗0, τ ∈ C satisfying |τ | = ||HΦ|| (2.72)

and a0 is Hurwitz polynomial. So, we have

Ψ = Φ− HΦ(W )

W
=

x

x∗

(
αp∗LqL
r2
Lpkqk

− b0

a0

)
=

x

x∗

(
αp∗LqLa0 − b0r

2
Lpkqk

r2
Lpkqka0

)
. (2.73)

It should be noted that since Ψ ∈ H∞(Π+), x∗ should divide the polynomial (αp∗LqLa0 −
b0r

2
Lpkqk) which is of maximal degree 3(N + M) − 1. This follows from equation 2.71,

HΦ(a0

x
) = P (Φa0

x
) = b0

x∗
, i.e, we have

Φ
a0

x
=
αp∗LqLa0

x∗r2
Lpkqk

=
b0

x∗
+

c0

r2
Lpkqk

,

where c0 ∈ P2(N+M)−1. This implies that we have

αp∗LqLa0 − b0r
2
Lpkqk = c0x

∗. (2.74)

Substituting this in equation 2.73, we have,

Ψ =
xc0

r2
Lpkqka0

.
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So, when ||HΦ|| ≤ 1, we have the solution F22 ∈ H∞(Π+) taking the following rational
expression,

F22 = VΨ =
c0

xa0

. (2.75)

Thus, we have the degree of the solution F22(s) to problem (2.45) bounded by 2(N+M)−1.
The solution to problem P2 is obtained when ||HΦ|| = 1 and when this happen, we

claim that in the expression for F22, the polynomial x divides c0 and hence giving a degree
bound of N +M − 1 for F22. In order to prove this claim, following equation 2.74, we will
prove that the polynomial (αp∗LqLa0 − b0r

2
Lpkqk) which vanish at the roots of x∗ vanish at

the roots of x as well when ||HΦ|| = 1. From equation 2.74, for 1 ≤ i ≤ N +M , we have

α[p∗LqLa0](βi) = [b0r
2
Lpkqk](βi), (2.76)

where βi ∈ Π+ are the roots of x∗. Conjugating equation 2.76, we have

α[pLq
∗
La
∗
0](−β̄i) = [b∗0(r∗L)2p∗kq

∗
k](−β̄i),

Multiplying this equation by [rLp
∗
Lpk](−β̄i), we get

α[pLq
∗
LrLp

∗
Lpka

∗
0](−β̄i) = [b∗0(r∗L)2rLp

∗
Lpkp

∗
kq
∗
k](−β̄i). (2.77)

Recall from equation 2.51 that the Hurwitz polynomial x satisfy

xx∗ = qkq
∗
kqLq

∗
L − pkp∗kpLp∗L. (2.78)

It follows form equation (2.78) that

[qkq
∗
kqLq

∗
L](−β̄i) = [pkp

∗
kpLp

∗
L](−β̄i).

This equation along with the spectral equations, qkq
∗
k = pkp

∗
k + α and qLq

∗
L = pLp

∗
L + rLr

∗
L

provides

α[pLp
∗
L](−β̄i) = −[rLr

∗
Lqkq

∗
k](−β̄i), [rLr

∗
Lpkp

∗
k](−β̄i) = −α[qLq

∗
L](−β̄i). (2.79)

Substituting these values of α[pLp
∗
L](−β̄i) and [rLr

∗
Lpkp

∗
k](−β̄i) in equation 2.77, we get

[a∗0r
2
Lq
∗
Lr
∗
Lqkq

∗
kpk](−β̄i) = α[p∗Lr

∗
LqLq

∗
Lq
∗
kb
∗
0](−β̄i).

Simplifying the factor [r∗Lq
∗
Lq
∗
k](−β̄i) (note that it does not vanish since rL, qL and qk are

Hurwitz polynomials), we get

[a∗0r
2
Lpkqk](−β̄i) = α[p∗LqLb

∗
0](−β̄i).

When ||HΦ|| = 1, we have a∗0 = τ ∗b0 and b∗0 = τ ∗a0 from equation 2.72 and thus we have,

[b0r
2
Lpkqk](−β̄i) = α[p∗LqLa0](−β̄i). (2.80)

It should be noted that if the multiplier [rLp
∗
Lpk](−β̄i) in equation 2.77 is zero, then we have

the above result trivially since [rLpk](−β̄i) = 0 implies qL(−β̄i) = 0 and when p∗L(−β̄i) = 0,
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[rLqk](−β̄i) = 0 from equations in (2.79). So, equation 2.80 proves our claim that the poly-
nomial (αp∗LqLa0− b0r

2
Lpkqk) vanish at the roots of x as well when ||HΦ|| = 1 and hence the

maximal degree of solution F22 to problem P2 is N + M − 1. This completes the proof in
the first case.

(2). In the second case of reference function, kα = pk
qk

, we have

rkr
∗
k = qkq

∗
k − pkp∗k = αrLr

∗
L.

In this case, as per equations in (2.55), we have the following expressions for the symbol Φ
of the Hankel operator and the outer function V ,

Φ = α
x0

x∗0

p∗LqL
pkqk

, V =
pkqk
x2

0

. (2.81)

We will follow the same approach of previous case in order to calculate the degree bounds of
the solution in this case and hence will only present the important steps. We have a solution
to the problem 2.45 if and only if ||HΦ|| ≤ 1 and in this case, we have the minimiser,

Ψ = Φ− HΦ(W )

W
, (2.82)

We have W ∈ H(b) and HΦ(W ) ∈ H(b̄), where b(s) is the following Blaschke product of
degree N as per equation in (2.57),

b(s) =
x∗0(s)

x0(s)
=

N∏
i=1

s− βi
s+ β̄i

.

The maximizing vector W and the Hankel operator acted upon W can be expressed as

W =
a0

x0

, HΦ(W ) =
b0

x∗0
. (2.83)

where a0 and b0 are polynomials of at most degree N − 1. In addition, we have

b0 = τa∗0, τ ∈ C satisfying |τ | = ||HΦ|| (2.84)

and a0 is Hurwitz polynomial. So, we have

Ψ = Φ− HΦ(W )

W
=
x0

x∗0

(
αp∗LqL
pkqk

− b0

a0

)
=
x0

x∗0

(
αp∗LqLa0 − b0pkqk

pkqka0

)
. (2.85)

Since Ψ ∈ H∞(Π+), x∗0 should divide the polynomial (αp∗LqLa0−b0pkqk) which is of maximal
degree 3N − 1. This implies that we have

αp∗LqLa0 − b0pkqk = c0x
∗
0, (2.86)

where c0 ∈ P2N−1. Substituting this in equation 2.85, we have,

Ψ =
x0c0

pkqka0

.
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So, when ||HΦ|| ≤ 1, we have the solution F22 ∈ H∞(Π+) taking the following rational
expression,

F22 = VΨ =
c0

x0a0

. (2.87)

Thus, we have the degree of the solution F22(s) to problem (2.45) bounded by 2N − 1.
The solution to problem P2 is obtained when ||HΦ|| = 1 and when this happen, we

claim that the polynomial (αp∗LqLa0− b0pkqk) which vanish at the roots of x∗0 vanish at the
roots of x0 as well. From equation 2.86, for 1 ≤ i ≤ N , we have

α[p∗LqLa0](βi) = [b0pkqk](βi), (2.88)

where βi ∈ Π+ are the roots of x∗0. Conjugating equation 2.88, we have

α[pLq
∗
La
∗
0](−β̄i) = [b∗0p

∗
kq
∗
k](−β̄i),

Multiplying this equation by [p∗Lpk](−β̄i), we get

α[pLq
∗
Lp
∗
Lpka

∗
0](−β̄i) = [b∗0p

∗
Lpkp

∗
kq
∗
k](−β̄i). (2.89)

Recall from equation (2.56) that the Hurwitz polynomial x0 satisfy

x0x
∗
0 = αqLq

∗
L + pkp

∗
k. (2.90)

Substituting pkp
∗
k = qkq

∗
k − αrLr∗L, we also have,

x0x
∗
0 = qkq

∗
k + αpLp

∗
L. (2.91)

Equations (2.90) and (2.91) provides

α[pLp
∗
L](−β̄i) = −[qkq

∗
k](−β̄i), [pkp

∗
k](−β̄i) = −α[qLq

∗
L](−β̄i). (2.92)

Substituting these values of α[pLp
∗
L](−β̄i) and [pkp

∗
k](−β̄i) in equation 2.89, we get

[q∗Lpkqkq
∗
ka
∗
0](−β̄i) = α[b∗0qLq

∗
Lp
∗
Lq
∗
k](−β̄i) (2.93)

Simplifying the factor [q∗Lq
∗
k](−β̄i) (note that it does not vanish since qL and qk are Hurwitz

polynomials), we get

[a∗0pkqk](−β̄i) = α[p∗LqLb
∗
0](−β̄i).

When ||HΦ|| = 1, we have a∗0 = τ ∗b0 and b∗0 = τ ∗a0 from equation 2.84 and thus we have,

[b0pkqk](−β̄i) = α[p∗LqLa0](−β̄i). (2.94)

If the multiplier [p∗Lpk](−β̄i) in equation 2.89 is zero, then we have the above result trivially
since pk(−β̄i) = 0 implies qL(−β̄i) = 0 and when p∗L(−β̄i) = 0, qk(−β̄i) = 0 from equations
in (2.92). So, equation (2.94) proves our claim that the polynomial (αp∗LqLa0 − b0pkqk)
vanish at the roots of x0 as well when ||HΦ|| = 1 and hence the maximal degree of solution
F22 to problem P2 is N − 1. This completes the proof.
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Proposition 2.3.3 provides some interesting insights into the maximal degree of optimal
matching circuit obtained by the approach used in this chapter. If the reference function
is considered to have the degree N equal to the sum of the desired degree of the matching
circuit and the load (N = Nmc+M), then in case (i), the resulting optimal matching circuit
can have an extra degree of 2M − 1 and in case (ii) it can have an extra degree of M − 1
compared to the desired degree Nmc in the proposed scheme. However, the knowledge of
degree bounds of the optimal matching circuit from proposition 2.3.3 allows us to perform
the following : if the targeted McMillan degree of the scattering matrix of the matching
circuit to be synthesized is constrained to be less than or equal to Nmc as per the application
requirement,
(i). in the case of reference functions kα = pk

qk
build such that rkr

∗
k = α, the maximal degree

of kα should be constrained in the optimisation to be Nmc + 1−M ,
(ii). in the case of reference functions kα = pk

qk
build such that rkr

∗
k = αrLr

∗
L, the maximal

degree of kα should be constrained in the optimisation to be Nmc + 1.

The extra freedom of degree (which is equal to the degree of the load) in case (ii)
compared to that in case (i) provides an advantage to the reference functions in which
transmission zeros of the load are included in them (rkr

∗
k = αrLr

∗
L) in providing a better

optimal criterion compared to the ones in which they are not included. It is also more
natural to include the transmission zeros of the load in the total system to be synthesized
from the start and so it is always better to consider the reference functions described in case
(ii) in the optimisation scheme. In the next section, we provide some illustrations of the
results obtained via the numerical implementation of the optimisation scheme described in
this chapter.

2.4 Results

For a given reflection coefficient, L11 ∈ B of the load, the solution to Problem P2, when
one exists, provides the output reflection coefficient F22 of the optimal matching circuit for
reference functions of the form kα. As we have discussed, there exists a solution to Problem
P2 if and only if the operator norm of HΦ is equal to one (say it is achieved at α̂). We
call the so obtained reflection coefficient F̂22 of matching circuit an approximate solution to
Problem P1 with respect to the family of rational references {kα}. A remarkable property
of the latter is that its degree is comparable to that of the reference kα̂ as described in
proposition 2.3.3. For α = α̂, the modulus of the total system’s reflection parameter equals
that of kα̂. We will present in this section some examples of the matching results obtained
by the implementation of problem P2 using reference functions build as in case (i) and case
(ii) of subsection 2.3.1.

2.4.1 Example : Superdirective Antenna

In this example, we consider matching a superdirective antenna presented in [52] with
scattering matrix of McMillan degree, M = 2. The targeted passband for matching is 870
MHz - 900 MHz. The reflection coefficient of the this antenna, L11 is depicted in figure 2.4.
The shaded rectangle in the figure represent the targeted passband.
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Figure 2.4: Scattering parameter of load with McMillan Degree 2.

For this antenna, we will be presenting the results obtained with a matching circuit of
degree, NMC = 5 in both cases of the reference functions as described in subsection 2.3.1.

Case (i) : rkr
∗
k = α

In this case, we did the implementation of problem P2 with degree of the reference function

N = NMC + 1−M = 4

and the fixed positive constant c = 2 in equation 2.36. The iterations on α provided
α̂ = 26.1 at which ||HΦ|| = 1. The result of solving the Nehari problem mentioned in 2.47
is shown in figure 2.5 . It shows the function Φα̂ to be approximated in the problem and
the optimal Hankel approximant Ψα̂ that is obtained when ||HΦ|| = 1. The error function
in the Nehari approximation, Φα̂ − Ψα̂ is plotted in the normalized passband [−1j, 1j] in
figure 2.6. It can be noticed that the modulus of the error function is constant and equal
to one. The scattering parameter of the matching circuit of McMillan degree 5 obtained
by solving P2 is depicted in figure 2.7. The result of chaining this matching circuit to the
load is shown in figure 2.8. It can be noticed in figure 2.8 that |kα̂| and |S11| are equal and
so we have the solution to the gain equalization problem in the finite setting, problem P2.
The optimisation scheme produced a significant reduction in the maximal mismatch value
of the load in the targeted passband from -1.37 dB (L11 at 870 MHz) to -7.94 dB.

Case (ii) : rkr
∗
k = αrLr

∗
L

In this case, we did the implementation of problem P2 with degree of the reference function

N = NMC + 1 = 6

and the fixed positive constant c = 0.02 in equation 2.41. The iterations on α provided
α̂ = 0.00282 at which ||HΦ|| = 1. The scattering parameter of the matching circuit of
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McMillan degree 5 obtained by solving P2 is depicted in figure 2.9. The result of chaining
this matching circuit to the load is shown in figure 2.10. In this case, the optimisation
scheme produced a reduction in the maximal mismatch value of the load in the targeted
passband from -1.37 dB (L11 at 870 MHz) to -8.42 dB.

It should be noted that fixed value of positive constant c in problem P2 can have an
effect on the optimal criterion obtained. The best possible matching criterion (lowest value
of maximal mismatch in the passband) with the described family of reference functions can
be always obtained by solving the problem P2 on a grid of c’s and choosing the best c. The
possible variation in the optimal matching criterion obtained for different values of fixed
c in the example provided in case (i) is shown in figure 2.11. In the examples depicted,
the c providing the best matching criterion for the given load using the described family
of reference functions is chosen. As mentioned at the end of the last section, it can be
observed that the reference function in which transmission zeros of the load are included in
them (case (ii)) provides a better criterion compared to the family in which they are not
included.
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Figure 2.5: H∞ approximation result.
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Figure 2.7: Scattering parameter of the optimal matching circuit in Case (i) (NMC = 5).
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Figure 2.8: Optimal System reflection S11 obtained by solving P2 in Case (i) (N = 4).
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Figure 2.9: Scattering parameter of the optimal matching circuit in Case (ii) (NMC = 5).
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Figure 2.10: Optimal System reflection S11 obtained by solving P2 in Case (ii) (N = 6).
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Figure 2.11: Variation of optimal matching criterion with value of fixed c in Case (i).

2.4.2 Analytic Examples

In this subsection, we will consider two analytic examples of antenna, meaning the polyno-
mials representing the Belevitch representation of the scattering matrix of the antenna will
be explicitly provided. In these cases, we will discuss the results obtained by the imple-
mentation of problem P2 for different degrees of matching circuits and also its comparison
to the classical matching criterion bound obtained by Fano in [36].

(i). Degree 1 Antenna
In this example, we will consider matching an antenna with scattering matrix of McMillan
degree, M = 1. The polynomials pL, qL and rL and uni-modular constant ε in the Belevitch
representation of the scattering matrix of the load in (2.34) were fixed to be

pL(s) = s, rL(s) = −1, qL(s) = s+ 1 and ε = −1.

So, we have a load of degree 1 with L11(s) = L22(s) = s
s+1

and a transmission zero at
infinity. The targeted passband for matching is [−1j, 1j]. The reflection coefficient of the
this antenna, L11 is depicted in figure 2.12. The shaded rectangle in the figure represent
the targeted passband and Im(.) is used to denote the imaginary part.

Before presenting the results obtained by solving problem P2, we estimate the Fano
bound for this antenna. For this purpose, we initially provide the general expression of
angular derivative, ang[L22](∞) for a given reflection coefficient,

L22(s) =
pNs

N + pN−1s
N−1 + . . .+ p1s+ p0

qNsN + qN−1sN−1 + . . .+ q1s+ q0

, (2.95)
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Figure 2.12: Scattering parameter of load with McMillan Degree 1.

satisfying |L22(∞)| = 1. We have the angular derivative of L22 at infinity as follows (detailed
in the derivation of (4.71)):

ang[L22](∞) =
1

j

(
d

dω
ln

(
L22

(
1

jω

)))∣∣∣∣
ω=0

=
1

j

d
dω

(
L22

(
1
jω

))
L22( 1

jω
)

∣∣∣∣
ω=0

=
pN−1

pN
− qN−1

qN
.

(2.96)

A detailed summary of angular derivatives is provided later in subsection 4.1.1 in chapter
4. Now, we will provide a brief outline of the optimal matching criterion bound that was
provided by Fano [36] for an antenna consisting of atleast a transmission zero at infinity.
This will serve the purpose of comparison of results obtained on the analytic antenna
examples with the Fano bound. Denoting the output reflection coefficient of the overall
system (matching circuit together with load) by S22, we have the angular derivative of S22

greater than or equal to the angular derivative of L22 at infinity (proposition B.1.1), that is

ang[S22](∞) ≥ ang[L22](∞).

By denoting the overall reflection coefficient S22 ∈ B by S22 = SO22b, where SO22 is outer and
b is Blaschke product (theorem 1.2.7), it follows from the fact that the angular derivative of
the product of two functions is the sum of angular derivative of these two functions (4.3),

ang[SO22](∞) + ang[b](∞) ≥ ang[L22](∞).

That is

ang[SO22](∞) ≥ ang[L22](∞)− ang[b](∞) ≥ ang[L22](∞) (2.97)

since the angular derivative of b is non-positive (proposition 4.1.3). It follows from Riesz-
Herglotz representation [22] that the angular derivative of an outer function has an integral
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expression as described below. For z ∈ Π+, from Riesz-Herglotz representation, the evalu-
ation of logarithm of outer function SO22 is given in terms of its real part on the boundary
(equation 5, [9] and page 133, [49]),

ln(SO22(z)) =
1

π

∞∫
−∞

ln(|SO22(jω)|)
(

1

z − jω −
jω

1 + ω2

)
dω.

The representation is unique upto a purely imaginary constant. By a change of variable
from z → 1

z
,

ln

(
SO22

(1

z

))
=

1

π

∞∫
−∞

ln(|SO22(jω)|)
(

z

1− jωz −
jω

1 + ω2

)
dω

and then by differentiating with respect to z, we have

d

dz

(
ln

(
SO22

(1

z

)))
=

1

π

∞∫
−∞

ln(|SO22(jω)|)
(1− jωz)2

dω.

Taking the limit z → 0, we obtain

ang[SO22](∞) =
1

π

∞∫
−∞

ln |SO22(jω)|dω.

This together with (2.97) provides

1

π

∞∫
−∞

ln |SO22(jω)|dω ≥ ang[L22](∞). (2.98)

For the optimal S22 which minimize |S22(jω)| in an interval I = [−1j, 1j], Fano considered
Sopt22 whose modulus is constant (denoted by FB) within the passband I and zero outside,

|Sopt22 (jω)| =
{

FB jω ∈ I
0 jω /∈ I. (2.99)

Thus it follows from (2.98) that

2 ln(FB)

π
≥ ang[L22](∞)

and it provides the following expression of Fano Bound in dB

FB(in dB) = 20 log(FB) =
10πang[L22](∞)

ln 10
. (2.100)
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In this example, from (2.96), we have the angular derivative of L22(s) =
εp∗L(s)

qL(s)
= s

s+1
of

the given antenna evaluated at the transmission zero, infinity,

ang[L22](∞) = 0− 1 = −1

and so the Fano bound (FB) can be evaluated from the expression,

FB(in dB) =
10πang[L22](∞)

ln 10
= −13.64 dB. (2.101)

Now, we present the result obtained by solving problem P2. We did the implementation
with degree of reference function, N = 5. The optimisation scheme provided the optimal
c = 0.09 and α̂ = 0.166 at which ||HΦ|| = 1. The result obtained is depicted in figure 2.13
together with the Fano bound. The green shaded rectangle inside the passband is used to
denote the difference in the optimal criterion obtained and the Fano bound. The reference
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Figure 2.13: Optimal System reflection S11 obtained by solving P2 in Case (ii) (N = 5).
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function which provided ||HΦ|| = 1 was

kα̂(s) =
s5 + 0.76s4 + 1.5s3 + 0.75s2 + 0.48s+ 0.09

s5 + 1.8s4 + 2.8s3 + 2.4s2 + 1.5s+ 0.42
.

The optimal reflection coefficient of the overall system was obtained to be

S11(s) =
−s5 + 0.76s4 − 1.5s3 + 0.75s2 − 0.48s+ 0.09

s5 + 1.8s4 + 2.8s3 + 2.4s2 + 1.5s+ 0.42

and the reflection coefficient of the optimal matching filter of degree 4,

F22(s) =
−s4 − 0.28s3 − 0.44s2 + 0.31s+ 0.18

s4 + 2.2s3 + 2.9s2 + 2.3s+ 0.83
.

It can be noted that the optimal level attained using degree 4 matching filter, −11.71
dB is only 1.91 dB higher than the Fano bound for this antenna, −13.64 dB. Since the
antenna under consideration in this example is of degree 1 which has a transmission zero at
infinity, the Fano bound in this case coincides with the Helton’s bound for infinite degree
matching network (solution to problem P1). So the difference of 1.91 dB we have from
the Fano bound essentially comes from the finite degree constraint of the matching circuit
and the fixed equi-oscillating shape of reference function in problem P2. In figure 2.14, we
present the optimal level obtained by solving problem P2 using different degrees of reference
functions (N) in a tabular form. It can be noticed that as the degree of the matching circuit
(M.C) increases, we are getting closer to the Fano bound, −13.64 dB.

Degree of ref fn (N) Degree of M.C (N−1) Optimal level
2 1 -7.75 dB
3 2 -9.90 dB
4 3 -11.15 dB
5 4 -11.71 dB
6 5 -12.13 dB
7 6 -12.27 dB
8 7 -12.40 dB
9 8 -12.52 dB
10 9 -12.75 dB

Figure 2.14: Optimal level obtained by solving P2 for different N .

(ii). Degree 3 Antenna
In this example, we will consider matching an antenna with scattering matrix of McMillan
degree, M = 3. The polynomials pL, qL and rL and uni-modular constant ε in the Belevitch
representation of the scattering matrix of the load in (2.34) were fixed to be

pL(s) = −s3 + (0.1 + 0.2j)s2 + (0.09 + 0.35j)s+ (0.046 + 0.2j),

rL(s) = s2 + (0.8 + 0.6j)s+ (0.42 + 0.12j),

qL(s) = s3 + (2.022− 0.2j)s2 + (1.449 + 0.25j)s+ (0.483− 0.023j) and

ε = 1.

(2.102)
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So, we have a load of degree 3 with transmission zeros at (0.5−0.9j), (0.3+0.3j), ∞. The
targeted passband for matching is [−1j, 1j]. The reflection coefficient of the this antenna,
L11 is depicted in figure 2.15. The shaded rectangle in the figure represent the targeted
passband and Im(.) is used to denote the imaginary part.
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Figure 2.15: Scattering parameter of load with McMillan Degree 3.

Similar to the previous example, initially, we estimate the Fano bound for this antenna.
We have

L22(s) =
εp∗L(s)

qL(s)
=

s3 + (0.1− 0.2j)s2 − (0.09− 0.35j)s+ (0.046− 0.2j)

s3 + (2.022− 0.2j)s2 + (1.449 + 0.25j)s+ (0.483− 0.023j)

and from (2.96), we have the angular derivative of L22 evaluated at infinity of this antenna,

ang[L22](∞) = (0.1− 0.2j)− (2.022− 0.2j) = −1.922.

This provides the Fano bound for this antenna,

FB(in dB) =
10πang[L22](∞)

ln 10
= −26.22 dB. (2.103)

Now, we present the result obtained by solving problem P2. We did the implementation
with degree of reference function, N = 5. The optimisation scheme provided the optimal
c = 0.19 and α̂ = 0.285 at which ||HΦ|| = 1. The result obtained is depicted in figure 2.16
together with the Fano bound. The green shaded rectangle inside the passband is used to
denote the difference in the optimal criterion obtained and the Fano bound. The reference
function which provided ||HΦ|| = 1 was

kα̂(s) =
s5 + (0.97 + 0.16j)s4 + (1.6 + 0.17j)s3 + (0.89 + 0.21j)s2 + (0.45 + 0.088j)s + (0.083 + 0.0048j)

s5 + (1.7 + 0.16j)s4 + (2.6 + 0.31j)s3 + (2.1 + 0.43j)s2 + (1 + 0.27j)s + (0.25 + 0.017j)
.

The optimal reflection coefficient of the overall system was obtained to be

S11(s) =
(1.8 + 0.64j)s7 − (0.92− 0.34j)s6 + (2.1 + 0.54j)s5 − (0.31− 0.45j)s4 + (0.15 + 0.22j)s3 + (0.14− 0.084j)s2 + (0.0033 + 0.082j)s− (0.011 + 0.026j)

(1.8− 0.64j)s7 + (4.3− 0.89j)s6 + (7.2− 0.89j)s5 + (7.5− 0.044j)s4 + (5.2 + 0.73j)s3 + (2.2 + 0.61j)s2 + (0.54 + 0.27j)s + (0.071 + 0.048i)
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Figure 2.16: Optimal System reflection S11 obtained by solving P2 in Case (ii) (N = 5).

and the reflection coefficient of the optimal matching filter of degree 4,

F22(s) =
(0.77− 0.64j)s4 + (0.7− 0.59j)s3 + (0.57− 0.54j)s2 + (0.18− 0.08j)s + (0.042 + 0.0045j)

s4 + (1.8− 0.0088j)s3 + (2 + 0.073j)s2 + (0.81 + 0.24j)s + (0.14 + 0.12j)
.

In contrast to the previous analytic example in which the optimal level attained was rela-
tively close to the Fano bound, it can be observed in this example that the optimal level
attained using degree 4 matching circuit is 17.56 dB higher than the Fano bound. The con-
straint of finite degree for matching circuit and fixed equi-oscillating shape of the overall
response is still present in this example but the dominant factor contributing to the big dif-
ference in the optimal level from the Fano bound is essentially arising due to the presence of
two transmission zeros of the antenna which are at finite complex frequencies, (0.5− 0.9j)
and (0.3 + 0.3j). It can be noted that in the estimation of Fano bound in (2.100), the
restriction on the bound of |S22| in the passband is dependent of only the transmission zero
at infinity of the load, not the ones at finite frequencies. This leads to the fact that Fano
bound in (2.100) is not very tight in the kind of antenna depicted in this example which
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have transmission zeros at finite frequencies. In the first analytic example, the antenna had
only one transmission zero and it was located at infinity. In figure 2.17, we present the
optimal level obtained by solving problem P2 using different degrees of reference functions
(N) in a tabular form. It can be observed that even with high degrees of matching circuit,
we are still far from the Fano bound of −26.22 dB. So, essentially by solving problem P2, we
are able to provide a matching circuit synthesis scheme for finite degree circuits irrespective
of the location of transmission zeros of the load and in general, having optimal levels for
matching criterion which are more realistic than the Fano bound.

Degree of ref fn (N) Degree of M.C (N−1) Optimal level
4 3 -7.57 dB
5 4 -8.66 dB
6 5 -9.42 dB
7 6 -10.13 dB
8 7 -10.36 dB
9 8 -10.49 dB
10 9 -10.66 dB

Figure 2.17: Optimal level obtained by solving P2 for different N for degree 3 antenna.

Flip Zeroes of pL in Π− to Π+ in degree 3 example
The limitation of Fano bound in estimating realistic matching criterion bounds becomes

more clear by making a flip of the zeros of pL(s) which are present in the left half plane
to right half plane in the degree 3 antenna example we have just discussed. The zeros of
the polynomial pL(s) in (2.102) are (0.7 + 0.5j), (−0.2− 0.5j), (−0.4 + 0.2j). We flip the
two zeros, (−0.2− 0.5j) and (−0.4 + 0.2j) to (0.2− 0.5j) and (0.4 + 0.2j) respectively, and
hence have the new polynomial pL,

pL(s) = −s3 + (1.3 + 0.2j)s2 − (0.75− 0.07j)s+ (0.21− 0.022j),

replacing pL in (2.102). It should be noted that we have polynomials rL, qL and ε same as
in (2.102) and the modulus of L11 remains same as in (2.102), only the phase changes. The
reflection coefficient of the this antenna, L11 is depicted in figure 2.18. We have

L22(s) =
s3 + (1.3− 0.2j)s2 + (0.75 + 0.07j)s+ (0.21 + 0.022j)

s3 + (2.022− 0.2j)s2 + (1.449 + 0.25j)s+ (0.483− 0.023j)

and from (2.96), we have the angular derivative of L22 evaluated at infinity of this antenna,

ang[L22](∞) = (1.3− 0.2j)− (2.022− 0.2j) = −0.722.

It should be noted that zeros of p∗L, (−0.2− 0.5j), (−0.7 + 0.5j), (−0.4 + 0.2j) are now in

Π− making L22 =
εp∗L
qL

outer. The angular derivative of L22 is now different from the case
when L22 was not outer and we have the new Fano bound,

FB =
10πang[L22](∞)

ln 10
= −9.85 dB.
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Figure 2.18: Scattering parameter of load with McMillan Degree 3.
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Figure 2.19: Optimal System reflection S11 obtained by solving P2 in Case (ii) (N = 5).
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The flipping of zeros inside Π− of pL has increased the Fano bound significantly from
-26.22 dB to -9.85 dB. The reader can notice that after flipping the zeros of pL, L22 is
outer and it is only when when L22 is outer itself than one can “compare” the surface
above the curve of the ln(|L22|) of the load with the surface above the ln(|S22|) following
from (2.98). When L22 has zeros in Π+ its angular derivatives decreases (because of the
angular derivative of the Blaschke) which can be observed in degree 3 example by comparing
the cases : before flipping zeros (ang[L22](∞) = −1.922) and after flipping zeros of pL
(ang[L22](∞) = −0.722). This explains why different Fano bounds are obtained in each
case and the reason why Fano bound is comparatively more optimistic in the case when L22

has zeros inside Π+. In terms of the reflection coefficient of antenna measured in practical
scenarios, which is the input reflection coefficient, L11, it means Fano bound relative to
minimum phase (outer) L11 are “more optimistic” than other cases. One can say that
minimum phase load L11’s are usually easier to match than others. After flipping the zeros
in our example, L11 has all zeros inside the analyticity domain Π+ and it is more difficult
to match. The Fano bound becomes more restrictive and corresponds in this case to the
surface above the curve of ln(|L22|).

Now, we present the result obtained by solving problem P2 in this case. We did the im-
plementation with degree of reference function, N = 5. The optimisation scheme provided
the optimal c = 0.2 and α̂ = 0.0945 at which ||HΦ|| = 1. The result obtained is depicted in
figure 2.19 together with the Fano bound. The green shaded rectangle inside the passband
is used to denote the difference in the optimal criterion obtained and the Fano bound. The
reference function which provided ||HΦ|| = 1 was

kα̂(s) =
s5 + (1 + 0.16j)s4 + (1.6 + 0.17j)s3 + (0.93 + 0.22j)s2 + (0.46 + 0.093j)s + (0.087 + 0.005j)

s5 + (1.4 + 0.16j)s4 + (2.1 + 0.25j)s3 + (1.5 + 0.31j)s2 + (0.73 + 0.17j)s + (0.16 + 0.0098j)
.

The optimal reflection coefficient of the overall system was obtained to be

S11(s) =
−(1.2− 0.98j)s7 + (3.7 + 1.6j)s6 − (8.1− 0.15j)s5 + (8.8 + 1.7j)s4 − (8.7− 0.26j)s3 + (4.4− 0.4j)s2 − (1.7− 0.39j)s + (0.28− 0.076j)

(1.2 + 0.98j)s7 + (4.4− 0.93j)s6 + (10 + 0.22j)s5 + (13− 0.96j)s4 + (12 + 0.81j)s3 + (7.3 + 1.2j)s2 + (2.7 + 0.85j)s + (0.5 + 0.18j)

and the reflection coefficient of the optimal matching filter of degree 4,

F22(s) =
(0.18 + 0.98j)s4 + (0.73 + 0.29j)s3 + (0.6 + 0.33j)s2 + (0.3− 0.13j)s + (0.036− 0.05j)

s4 + (2− 0.67j)s3 + (2.3− 1.1j)s2 + (1.3− 0.93j)s + (0.099− 0.015j)
.

In figure 2.20, we present the optimal level obtained by solving problem P2 using different
degrees of reference functions (N) in a tabular form.

Degree of ref fn (N) Degree of M.C (N−1) Optimal level
4 3 -4.14 dB
5 4 -4.66 dB
6 5 -4.80 dB
7 6 -4.92 dB
8 7 -5.12 dB
9 8 -5.21 dB
10 9 -5.29 dB

Figure 2.20: Optimal level obtained by solving P2 for different N for degree 3 antenna.
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We will conclude this section here. In the final section, we will provide a short summary
of the chapter along with the main objectives of next chapter.

2.5 Conclusion

In this chapter, we have showed that Helton’s H∞ approach to matching theory, supposed to
yield a guaranteed optimal response at the cost of an infinite degree matching network can
be successfully adapted to yield finite degree matching networks by using families of rational
reference functions as described in the chapter. The McMillan degree of the scattering
matrix of the optimal matching circuit obtained using this approach is comparable to the
degree of the reference function as explained in proposition 2.3.3. This is an important
property with respect to the practical applications and the procedure can therefore be
put into practice to derive matching networks for mismatched antennas. In practice the
constraints that need to be imposed on the scattering matrix of the matching network can
be more complicated than just the McMillan degree but the degree constraint is the first
requirement. As mentioned in the structure of the manuscript, we will be addressing more
constraints regarding the practical realization of the matching circuit in the second part of
the thesis.

Another important point to note regarding the finite degree degree matching problem
described in this chapter in comparison to Helton’s original problem is the variation of gain
with respect to the parameter α. In case (i) and case (ii) of reference functions kα, we have
the following gains G1(jω) and G2(jω) respectively,

G1(jω) =
α

|pk(jω)|2 + α
, G2(jω) =

α|rL(jω)|2
|pk(jω)|2 + α|rL(jω)|2

which do not vary linearly with the parameter α contrary to the original Helton approach
where in for a fixed gain G, αG is used to perform the test on a grid of α′s. In this
approach we have limited the possible set of responses of the matching circuit chained to
the load by fixing the polynomial pk of the reference function with the help of Chebyshev
approximation. This fixes the shape of the system response and allows the parameterisation
of its modulus using α.

The optimal matching criterion possible with a finite degree matching circuit for a given
load can be limited when we have parametrised the modulus of the system response using
the one dimensional parameter α as discussed in the chapter. The natural question to
address is allowing further flexibility in the choice of reference functions. It is with this
purpose in mind we move to the next chapter. In this chapter we will generalize the set of
responses of the system to a set of “realizable” rational Schur functions of fixed maximal
degree and having a fixed transmission polynomial. The realizability constraint will be
included in the optimisation scheme using Fano and Youla’s matching theory rather than
the one proposed by Helton. This will allow the formulation of the matching problem as
a convex optimisation approach based on the theory of analytic interpolation. A detailed
description of the theory of the developed approach along with some practical examples of
matching circuit synthesis will be presented.

At the end of the next chapter, we will also provide a comparison of the approach
presented in this chapter to solve the finite degree matching problem and the one that will
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be discussed in the next chapter. Furthermore, the connection between these approaches
will be presented as well. An additional point to be noted in this chapter : it follows from
the formulas in (2.24) that when we move to the Euclidean setting, the gain appears non-
linearly in the test provided. So, in [47], Helton propose a similar kind of second test with
the help of a linear fractional coordinate change applied to the pseudo-hyperbolic disk in
(2.22). In this test, he gets the gain to appear linearly. Even though we have not described
it in this chapter, we will describe a direct way of arriving at a similar test starting from
the chaining equation at the end of the next chapter and discuss the details.
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CHAPTER 3

Matching Problem : A Convex Optimisation

Approach

3.1 Introduction

In this chapter, the impedance matching problem in communication systems is formulated
as a convex optimisation problem using two rich theories, namely Youla’s matching theory
and analytic interpolation. In comparison to the previous chapter, this chapter will provide
further flexibility to the set of responses of the system formed by chaining the matching
circuit and the load. Some close comparisons and the connection of the approaches devel-
oped in both chapters will be done at the end of this chapter. In this chapter, the set of
possible responses of the global system will be defined to be a set of “realizable” rational
Schur functions of fixed maximal degree and having a fixed transmission polynomial. The
de-embedding theory of Fano-Youla’s approach to the matching problems will be used to
include the constraints on the realizability of the system response. These de-embedding
conditions are based on the characterisation of the global system containing the Darlington
equivalent of the load. It consists of the reflection coefficient of the global system satisfying
certain conditions at the transmission zeros of the Darlington equivalent of the load.

The matching problem formulation in the chapter will provide accurate lower hard
bounds for the best feasible matching level, as well as the practical synthesis of matching
filters approaching those bounds. The much celebrated Nevanlinna-Pick theorem is utilized
to characterize the convex set of constraints of the problem and thereby essential properties
of the problem, including feasibility, existence and uniqueness of solution are studied. An
interesting result about a necessary condition for the optimality of the solution and critical
point equation of the problem under consideration is studied as well. The concavity of the
Pick matrix as a matrix-valued function with respect to the set of positive polynomials plays
a crucial role in solving the problem as a non-linear semi-definite programming problem.
Finally, the chapter will be concluded by providing some practical examples of matching
filter synthesis using the presented approach.
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Load
(L)

Matching
Filter
(F )

F22 L11F11 L22S11 S22

Figure 3.1: Global system (Matching Filter + Load) and Scattering Parameters

3.2 Formulation of the Problem

The matching problem is formulated as a convex optimization problem based on Youla’s
matching theory and the existence of finite degree matching networks that can achieve
the optimal reflection level in the desired frequency band when plugged on to the given
load is discussed. Given measured frequency data of the reflection coefficient of the load
on the frequency band of interest I, the first step is to obtain a rational approximation.
Darlington’s representation is utilized to construct an equivalent lossless two port, with the
same input reflection. Thus, we have a load characterized by its (2×2) scattering matrix, L,
while the matching filter to be synthesized is determined by its output reflection coefficient
F22. Following the Fano-Youla matching theory, physical realizability of the global system
(S), composed of the matching filter (F ) chained to the Darlington equivalent of load (L), is
first considered. The global system is characterised here by its reflection coefficient at port 2,
denoted S22. Fig. 3.1 represents the cascade operation between F and L to form S = F ◦L.
The problem of interest, namely the minimization, over the passband, of the reflection
coefficient associated with the global system, is cast to a convex optimization problem
involving Nevanlinna-Pick interpolation theory. Finally, the matching filter providing the
optimal reflection level is afterwards obtained by de-embedding the load from the “optimal”
global system.

We continue to use the setting from the last chapters, where, Π+ = {x+jω ∈ C : x > 0}
is considered as the domain of analyticity and I denote the normalized passband of interest
on the imaginary axis. Recall from definition 1.3.3 that for a rational matrix valued function
S(s),

S∗(s) = (S(−s̄))t, s ∈ C, (3.1)

represent the para-conjugate. The load (L) is supposed to be a system which does not
completely reflect all frequencies, i.e |L11| is not uniformly equal to one for all frequencies.
Before getting to the de-embeddding approach, it is necessary to introduce the chaining of
two-ports, a generalisation of chaining of one-port introduced in Chapter 2.

Definition 3.2.1. (Chaining of two-ports). The chaining of a two-port scattering matrix,
say,

F =

[
F11 F12

F21 F22

]
,
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to a two-port scattering matrix,

L =

[
L11 L12

L21 L22

]
,

which represents the load (where (1, 1)th element is the given reflection coefficient measure-
ment L11, which follows by Darlington extension, Theorem 1.3.13), the global scattering
matrix, say,

S =

[
S11 S12

S21 S22

]
,

produced as the result of chaining F with L, denoted by F ◦ L is

S =

F11 + F12F21L11

1−F22L11

F12L12

1−F22L11

F21L21

1−F22L11
L22 + L12L21F22

1−F22L11

 . (3.2)

In particular, we should note that in the above definition, the output reflection coefficient
S22 of the global system at each frequency is

S22 = L22 +
L12L21F22

1− F22L11

= det(L)

(
L∗11 − F22

1− F22L11

)
. (3.3)

3.2.1 De-embedding Approach

In this section, we will introduce the concept of de-chaining and state and prove a theorem
describing the necessary and sufficient condition for a lossless two-port two be de-chainable
from a given reflection coefficient. This will play a crucial role in the formulation of the
matching problem in the next subsection.

Definition 3.2.2. (De-chaining). A lossless two-port, L is said to be de-chainable from a
function, S22 ∈ B iff there exists F22 ∈ B, such that S22 = F22 ◦ L. Expression for F22 is
obtained by inverting (3.3),

F22 =
S22 − L22

S22L11 − det(L)
. (3.4)

Before stating the de-embedding theorem, it would be useful to recall the Rouches’s
theorem from complex analysis (Theorem 10.43, [83]), which will be used in the proof of
the same.

Theorem 3.2.3. (Rouche’s Theorem). Let f and g be two complex valued holomorphic
functions defined on an open connected subset G of C with simple closed contour ∂G. If for
z ∈ ∂G,

|g(z)| < |f(z)|,

then f and f + g have the same number of zeros inside G, counting multiplicity.
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For simplicity, throughout this chapter unless specified otherwise we will consider the
case of rational loads having only M ≥ 1 simple transmission zeros inside the analyticity
domain (Π+), say {ξ1, ξ2, . . . , ξM}. So, we will be dealing with the case of strictly contractive
load (|L11(jω)| < 1, ω ∈ R) and the trivial case of the input reflection coefficient of the
load, L11 being a constant is avoided as well. It should be noted that under the given
conditions on the input reflection coefficient L11 of the load, the transmission polynomial
of the load, RL 6≡ 0 and the L22 build in the Darlington extension of the load (1.86 in
chapter 1) cannot be zero at all the transmission zeros, ξk, 1 ≤ k ≤ M . Now, we are in a
position to introduce the de-embedding theorem which will help to characterize the set of
all reflection coefficients from which the matrix L can be de-chained.

Theorem 3.2.4. (De-embedding Theorem). Let L represent the (2 × 2) rational lossless
scattering matrix of McMillan degree M of a strictly contractive non-constant load and
ξ1, ξ2, . . . , ξM ∈ Π+ represent the M simple transmission zeros of L. The matrix L is de-
chainable of any given S22 ∈ B iff at each transmission zero ξk, the following conditions are
satisfied:

S22(ξk) = L22(ξk), 1 ≤ k ≤M. (3.5)

Proof. Let us suppose that L is de-chainable from S22. Using definition 3.2.2, there exists
F22 ∈ B, such that,

S22 = F22 ◦ L = L22 +
L12L21F22

1− F22L11

.

Since, at each transmission zero of L, ξk, 1 ≤ k ≤ M , L12(ξk)L21(ξk) = 0 and the load L
being strictly contractive, we have,

S22(ξk) = L22(ξk), 1 ≤ k ≤M.

Now, in order to prove sufficiency, let us assume that at each transmission zero of L, ξk,
1 ≤ k ≤M we have,

S22(ξk) = L22(ξk), 1 ≤ k ≤M. (3.6)

Then consider,

F22 =
S22 − L22

S22L11 − det(L)
(3.7)

=
1

det(L)

(
S22 − L22

S22L∗22 − 1

)
. (3.8)

Equation (3.8) indicates that ∀ω ∈ R, |F22(jω)| ≤ 1, since on the imaginary axis, |det(L)| =
1 and δ(S22, L

∗
22) is bounded by one. Now, we can prove that F22 is analytic in Π+. At each

ξk, 1 ≤ k ≤M , both the numerator and denominator of (3.7) vanishes,

S22(ξk)L11(ξk)− det(L)(ξk) = S22(ξk)L11(ξk)− L11(ξk)L22(ξk) = L11(ξk)(S22(ξk)− L22(ξk))

Thus, M zeros in the denominator of expression (3.7) gets cancelled with the M zeros of
numerator. Now, we will prove the fact that the denominator has no other zeros in Π+.
Since S22 ∈ B and |L11(jω)| < 1, ω ∈ R (all transmission zeros being in Π+), we have,

|S22(jω)L11(jω)| < 1, |det(L)(jω)| = 1, ω ∈ R (3.9)
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It follows from Rouche’s theorem (Theorem 3.2.3) that S22L11−det(L) has the same number
of zeros in Π+ as that of det(L), which is M . This shows that F22 is analytic in Π+. Thus,
we have a rational Schur function F22, such that S22 = F22 ◦ L and hence proving the
de-chainability of L from S22. This completes the proof.

If we use F to denote the set of all functions, S22 ∈ B such that the matrix L is de-
chainable from S22, we have the following characterisation of F from theorem 3.2.4,

F = {S22 ∈ B : S22(ξk) = L22(ξk), 1 ≤ k ≤M}. (3.10)

We are now in a position to introduce the classical Nevanlinna-Pick theorem which will play
a crucial role in this chapter. For a given load, it will provide a necessary and sufficient
condition for the existence of schur function S22 in F. Nevanlinna-Pick theorem (Section
18.1, [8] and Theorem 2.2, Chap. I, [42]) can be stated as the following.

Theorem 3.2.5. (Nevanlinna-Pick Theorem). Given a collection of points s1, s2, . . . , sd ∈
Π+ and γ1, γ2, . . . , γd ∈ C, there exists, b ∈ B, satisfying the interpolation,

b(si) = γi, i = 1, 2, . . . , d (3.11)

if and only if the Pick matrix, ∆(si, γi) =

[
1−γiγj
si+sj

]
1≤i,j≤d

is positive semi-definite.

Also, when ∆(si, γi) � 0, there is a Blaschke product of degree at most d which solves
the interpolation problem. About the uniqueness of solution, if ∆(si, γi) � 0, then the
problem has a unique solution iff det(∆(si, γi)) = 0. If det(∆(si, γi)) = 0 and d0 < d is
the rank of ∆(si, γi), then the interpolating function is a Blaschke product of degree d0. A
brief review of the Nevanlinna-Pick theorem is provided in section A.2 in Appendix A.

3.2.2 The Global Matching Problem

As mentioned in Theorem 1.3.10 in Chapter 1, any general lossless rational scattering matrix
can be expressed in Belevitch form as follows :

S =

(
S11 S12

S21 S22

)
=

1

q

(
εp∗ −εr∗
r p

)
(3.12)

where ε is a unimodular complex constant and p, q, r are complex polynomials of degree at
most N (hereinafter denoted by PN) satisfying the Feldtkeller equation qq∗ = pp∗ + rr∗.
In particular, the scattering matrix of the global system, S, can be put in Belevitch form.
Its transmission polynomial r is r = rLrF , the product of the transmission polynomials
associated to the load, rL 6≡ 0 and the matching filter, rF . We suppose that rF 6≡ 0 is
fixed by the user and let N ≥ deg(rF rL) be the target degree of the global system G. This
provides the characterisation of the global system by its output reflection coefficient, S22 = p

q

with the associated transmission polynomial R 6≡ 0 such that R = rr∗ = qq∗ − pp∗. Note
that R is a fixed non-negative polynomial of degree at most 2N , i.e R ∈ P+

2N . Following
the Fano-Youla theory of de-embedding, we define the following set of functions S22 of
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degree atmost N associated to a fix transmission polynomial R ∈ P+
2N , with the necessary

constraint that L is de-chainable from S22,

FNR =

{
S22 =

p

q
∈ F | p, q ∈ PN , qq∗ − pp∗ = R

}
(3.13)

As in previous chapters, let I be the desired passband, a finite union of disjoint compact
intervals over the frequencies. We assume that RF = rF rF

∗
is fixed and has no zeros inside

I. It should be noted that if RF has zeros inside I, this means that R vanishes at these
points as well and yields |S22(s)| to be 1 at these points. That is, in this case, we will have
points inside the passband where there is no transmission through the global system. Now,
we state the problem as,

Problem. P : Find lopt = min
S22∈FNR

max
jω∈I

|S22(jω)|.

Problem P is clearly not convex since FNR is not a convex set. Nevertheless, note that
the modulus of S22 can be expressed in function of the polynomials p and r only. With the
change of variable P = pp∗ and R = rr∗, we have on the imaginary axis:

|S22|2 =
pp∗

qq∗
=

pp∗

pp∗ + rr∗
=

P

P +R
. (3.14)

It should be noted that now we will be moving towards a formulation of the problem P in
terms of the positive polynomial P ∈ P+

2N and the fixed transmission polynomial R ∈ P+
2N

of the global system.

3.2.3 Convex Formulation

The main aim of this section is to derive a convex relaxation of problem P. Let us denote
by X, the finite set of at most 2N points on the imaginary axis where the fixed transmission
polynomial R 6≡ 0 of the global system vanishes,

X = {jω ∈ jR : R(jω) = 0}. (3.15)

Now, for the given load L, we define the following subset of P+
2N ,

Definition 3.2.6.

HN
R =

{
P ∈ P+

2N : ∃ρ ∈ F : |ρ(jω)| ≤
√

P (jω)

P (jω) +R(jω)
, jω ∈ jR \ X

}
. (3.16)

The reader can verify that under the given assumptions on the load for this chapter,
that is the load is strictly contractive and non-constant, P ≡ 0 is not in HN

R . This follows
from the fact that if 0 ∈ HN

R , then it means ρ ≡ 0 is in F which is not possible since
L22(ξk), 1 ≤ k ≤M cannot be all zero.

It should be noted that given the non-zero polynomials P,R ∈ P+
2N , an outer function

UP in H∞(Π+) with prescribed modulus on the imaginary axis except the finite number of
elements in the set X can be build,

|UP (jω)|2 =
P (jω)

P (jω) +R(jω)
, jω ∈ jR \ X. (3.17)
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To be more precise about the formation of this outer function, consider the following propo-
sition, whose proof can be found in proposition 2, [10].

Proposition 3.2.7. Let SBN represent the set of polynomials of degree at most N which
are stable in the broad sense (no zeros inside Π+). To any non-zero P ∈ P+

2N , one can
associate q ∈ SBN , such that,

P (jω) = |q(jω)|2 = q(jω)q∗(jω), ω ∈ R. (3.18)

The polynomial q is unique up to a multiplicative unimodular constant and if P has exact
degree 2N then q has exact degree N . For fixed z0 ∈ Π+, define the map Φz0 : P+

2N → SBN ,
with Φz0(P ) the unique solution to (3.18), satisfying q(z0) > 0. The map Φz0 is continuous.

Now, for any non-zero P ∈ P+
2N , the outer function UP in H∞(Π+) can be defined as

UP =
Φz0(P )

Φz0(P +R)
, (3.19)

where the function Φz0 is defined in proposition 3.2.7. The normalization at the point z0

inside the right half plane allows to avoid the ambiguity in determining the phase of the
outer function formed from a given modulus on the imaginary axis. It should be noted
that UP is a continuous function in P since Φz0 is continuous in P (Proposition 3.2.7) and
the denominator does not vanish inside Π+. Moreover UP is a rational outer function of
degree at most N satisfying |UP |2 = P

P+R
on the imaginary axis except the finite set X as

mentioned in (3.17). The dependence of UP on R is not indicated in the notation since in
our scheme, the polynomial R which represent the transmission polynomial of the global
system is fixed.

The reader can refer to chapter 8, [49] for a general exposition of Hp spaces in half
plane. In general, given the non-zero polynomials P,R ∈ P+

2N , the modulus of any outer
function U in H∞(Π+) inside the right half plane satisfying

|U(jω)| =
√

P (jω)

P (jω) +R(jω)
, jω ∈ jR \ X

can be calculated irrespective of a normalization on its phase. For x > 0,

|U(x+ jω)| = exp

(
1

π

∫ ∞
−∞

Px(ω − t) log

√
P (jt)

P (jt) +R(jt)
dt

)
, (3.20)

where Px(ω) = x
x2+ω2 represents the Poisson Kernel for the right half plane.

For a polynomial P ∈ HN
R , by definition there exists ρ ∈ B satisfying the de-embeddding

conditions for the given load and satisfying

|ρ(jω)| ≤ |UP (jω)|, jω ∈ jR \ X.

Next, we claim that for such a polynomial, it is always possible to find a corresponding
ρ ∈ F which is rational with degree at most N +M .
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Proposition 3.2.8. (Bound on the degree of ρ). Consider P ∈ HN
R . Then there exists

ρ ∈ F that is rational with degree at most N +M satisfying,

|ρ(jω)| ≤
√

P (jω)

P (jω) +R(jω)
, jω ∈ jR \ X.

Proof. Let P ∈ HN
R and UP be the outer function in H∞(Π+) of at most degree N defined

in (3.19) with prescribed modulus on jR \ X, |UP | =
√

P
P+R

. Since P ∈ HN
R , there exists

ρ ∈ B satisfying

ρ(ξk) = L22(ξk), 1 ≤ k ≤M

|ρ(jω)| ≤ |UP (jω)|, jω ∈ jR \ X.

It should be noted that the function b = ρ
UP

is holomorphic in Π+ since ρ, UP ∈ H∞(Π+)

and UP has no zeroes inside Π+. Since ρ ∈ H∞(Π+), it follows from result (ii), page 133, [49]
that if Px(ω) = x

x2+ω2 represents the Poisson Kernel for right half plane, we have, for x > 0,

|ρ(x+ jω)| ≤ exp

(
1

π

∫ ∞
−∞

Px(ω − t) log |ρ(jt)|dt
)

≤ exp

(
1

π

∫ ∞
−∞

Px(ω − t) log |UP (jt)|dt
)

= |UP (x+ jω)|.

The second inequality follows because |ρ(jt)| ≤
√

P (jt)
P (jt)+R(jt)

, jt ∈ jR \ X for P ∈ HN
R

(Definition 3.2.6), log and exp are monotonically increasing functions and Px(ω) is a positive
kernel. The last equality follows from (3.20). This yields, || ρ

UP
||∞ = sup

x>0
| ρ
UP

(x + iω)| ≤ 1,

implying b = ρ
UP
∈ B. It should be noted that b(ξk) = L22(ξk)

UP (ξk)
follows from the fact that

ρ(ξk) = L22(ξk) and UP (ξk) 6= 0. This implies that using Nevanlinna-Pick theorem, the

Pick matrix ∆(ξk,
L22(ξk)
UP (ξk)

) � 0 and hence there exists a Blaschke product, b0 (depending on

P ) of at most degree M solving the interpolation problem, f ∈ B, f(ξk) = L22(ξk)
UP (ξk)

. So, we
have ρ = b0 · UP ∈ F which is rational of at most degree N +M .

It is evident from proposition 3.2.8 that for ρ ∈ F corresponding to P ∈ HN
R , the

constraint, degree of ρ to be less than or equal to N (as in FNR ) has been relaxed, but we do
gain the important property, convexity of HN

R as proved below along with other properties.

Theorem 3.2.9. HN
R is a non-empty, closed, convex subset of P+

2N .

Proof. By definition, HN
R is a subset of P+

2N . The proof of each property follows.

• HN
R is non-empty.

The fact that HN
R is nonempty can be proved by showing the existence of a P0 ∈ P+

2N

such that there exist a ρ0 ∈ F which satisfies for all jω ∈ jR \ X,

|ρ0(jω)|2 ≤ P0(jω)

P0(jω) +R(jω)
. (3.21)
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Let us represent the lossless scattering matrix of the given load (McMillan degree M)
by

L =
1

qL

[
εp∗L −εr∗L
rL pL

]
, (3.22)

where QL
def
= qLq

∗
L = pLp

∗
L + rLr

∗
L. In the inequality (3.21), we have R = RFRL,

where RF = rF r
∗
F ∈ P+

2N−2M and RL = rLr
∗
L ∈ P+

2M as mentioned at the beginning
of the subsection 3.2.2. If we denote PL = pLp

∗
L ∈ P+

2M , it can be easily verified that
P0 = RFPL ∈ P+

2N is in HN
R since we have ρ0 = L22 = pL

qL
∈ F satisfying for all ω ∈ R,

|ρ0(jω)|2 =
PL(jω)

QL(jω)
=

PL(jω)

PL(jω) +RL(jω)
=

P0(jω)

P0(jω) +R(jω)
.

• HN
R is closed.

In order to prove that the set HN
R is closed, we consider any sequence (Pn) in HN

R

converging to a polynomial P̃ (convergence in any of the equivalent norms defined on
the finite dimensional vector space of polynomials, P2N) and prove that P̃ ∈ HN

R . If
we consider such a sequence, using the definition of HN

R , we have P̃ ∈ P+
2N , since P+

2N

is a closed set. We have a sequence of rational functions,
(

Pn
Pn+R

)
and since (Pn) ∈ HN

R ,
corresponding to each Pn, there exist ρn ∈ F satisfying the inequality in the definition
of HN

R . The sequence (ρn) ∈ F having uniform degree bound of (M +N) (proposition
3.2.8), satisfy,

|ρn(jω)|2 ≤ Pn(jω)

Pn(jω) +R(jω)
, jω ∈ jR \ X. (3.23)

The sequence,
(

Pn
Pn+R

)
converges pointwise to P̃

P̃+R
everywhere on the imaginary axis

except the finite set of zeros of (P̃ +R) on the imaginary axis (denote this set by X1).
Proposition A.1.2 in Appendix guarantees that a subsequence (ρφ(n)) of (ρn) can be
extracted such that it converges (in sup norm) to a rational Schur function ρ̃ (in lowest
form) on every compact set inside the right half plane and the pointwise convergence
holds everywhere on the imaginary axis except the finite set of limit points of poles of
(ρφ(n)), say set X2. Since ρφ(n)(ξk) = L22(ξk), where ξk’s are inside the right half plane,
pointwise convergence hold at any point in the right half plane, implying we have the
equality holding at the limit, i.e ρ̃(ξk) = L22(ξk), hence ρ̃ ∈ F. The inequality,

|ρφ(n)(s)|2 ≤ Pφ(n)(jω)

Pφ(n)(jω)+R(jω)
on the imaginary axis and the fact that

( Pφ(n)

Pφ(n)+R

)
and

(ρφ(n)) converges pointwise to P̃
P̃+R

and ρ̃ on the imaginary axis except finite sets X1

and X2 respectively yields |ρ̃(jω)|2 ≤ P̃ (jω)

P̃ (jω)+R(jω)
for all jω ∈ jR \ (X1 ∪ X2). After

cancelling the common zeros of (P̃ + R) and P̃ on the imaginary axis (elements of

finite set, X1, if it is non-empty), the continuity of |ρ̃|2 and P̃
P̃+R

on the imaginary

axis and the fact that (X1 ∪ X2) is a finite set ensures |ρ̃(jω)|2 ≤ P̃ (jω)

P̃ (jω)+R(jω)
on the

whole imaginary axis. So, we have ρ̃ ∈ F, satisfying, |ρ̃(jω)| ≤
√

P̃ (jω)

P̃ (jω)+R(jω)
, ω ∈ R

(since square root function is continuous in [0,∞)), implying P̃ ∈ HN
R , proving that

the set HN
R is closed.
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• HN
R is convex.

Let P1, P2 be distinct polynomials in HN
R . By (3.16), there exists Schur functions

ρ1, ρ2 ∈ F, satisfying at any jω ∈ jR \ X, |ρ1(jω)| ≤
√

P1(jω)
P1(jω)+R(jω)

and |ρ2(jω)| ≤√
P2(jω)

P2(jω)+R(jω)
. We need to verify, for any γ ∈ (0, 1), P3

def
= γP1 + (1− γ)P2 is in HN

R .

To begin with, we show that at every jω ∈ jR\X,
√

P (jω)
P (jω)+R(jω)

is a concave function

of P . For jω ∈ jR \ X, note x = P (jω) ≥ 0, α = R(jω) > 0 and define,√
P (jω)

P (jω) +R(jω)
= h̃(x)

def
=

√
x

x+ α
. (3.24)

The first and second derivative of h̃ with respect to the non-negative real variable x
are,

d

dx
(h̃(x)) =

α

2

x
−1
2

(x+ α)
3
2

d2

dx2
(h̃(x)) =

−α
4

[
(x+ α)

3
2x
−3
2 + 3x

−1
2 (x+ α)

1
2

(x+ α)3

]
< 0, (3.25)

showing that h̃ is a concave function in x ≥ 0. It follows that at any point on the
imaginary axis except X,√

P3(jω)

P3(jω) +R(jω)
≥ γ

√
P1(jω)

P1(jω) +R(jω)
+ (1− γ)

√
P2(jω)

P2(jω) +R(jω)
(3.26)

≥ γ|ρ1(jω)|+ (1− γ)|ρ2(jω)|
≥ |γρ1(jω) + (1− γ)ρ2(jω)|.

It should be noted that at the finite set of at most 2N points where the evaluation of

P1 and P2 are equal, we have equality in (3.26). So, we have, ρ3
def
= γρ1 + (1 − γ)ρ2,

satisfying, |ρ3(jω)| ≤
√

P3(jω)
P3(jω)+R(jω)

, jω ∈ jR \ X. Additionally, since ρ3 is a linear

combination of ρ1 and ρ2, it satisfies the de-embedding conditions in Theorem 3.2.4
as well i.e ρ3 ∈ F. Thus, P3 ∈ HN

R .

Remark 3.2.10. For every jω ∈ jR \ X, we proved in the last part of the above theorem

that the function
√

P (jω)
P (jω)+R(jω)

is concave in P . It means that we have the function |UP |
concave in P on the imaginary axis except X. It should also be noted that we in fact have
|UP |2 concave in P on the imaginary axis except X as well.

Now, we are in position to formulate the problem which will be central to this chapter.
In comparison to problem P which was casted in the setting of Schur functions, we will
now move to the setting of positive polynomials in this problem.
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Problem. PC : Find : Lopt = min
P∈HNR

max
jω∈I

P (jω)
R(jω)

.

The constraint P in HN
R in problem PC guarantees that there exists S22 ∈ B which satisfy

the de-embedding conditions for the given load (i.e S22 ∈ F) and satisfying |S22| ≤ |UP | on
the imaginary axis. However, in comparison to problem P where S22 ∈ F was restricted
to be of degree N , it should be noted that the degree bound on S22 ∈ F in problem PC is
relaxed to N + M (proposition 3.2.8). Nevertheless, in this new setting we have a convex
feasible set HN

R (theorem 3.2.9) in problem PC , obtained at the cost of a higher degree
bound on the global system. In addition, in problem PC , the objective function to be
minimized, Ψ : P+

2N → R, Ψ(P ) = max
jω∈I

P (jω)
R(jω)

is convex and so problem PC is convex. Also,

with respect to problem P, we have

∀S22 ∈ FNR , max
jω∈I
|S22(jω)| ≥

√
Lopt

Lopt + 1

which implies that lopt ≥
√

Lopt
Lopt+1

. Hence, problem PC provides a hard lower bound for

the optimal matching criterion in problem P and it is this convex relaxation of problem P
which will be studied in the remaining part of the chapter.

3.3 Analysis and Resolution of the Problem

In this section, we will do a detailed analysis of the convex optimisation problem PC .

Theorem 3.3.1. (Solution to PC). There exist Popt ∈ HN
R which solves problem PC.

Proof. Denoting the cost function as Ψ(P ) = max
jω∈I

P (jω)
R(jω)

, we have the problem PC , find :

Lopt = min
P∈HNR

Ψ(P ). It can be easily verified that the cost function Ψ(P ) is a continuous

function in P in the compact interval I. Since HN
R is a non-empty set as proved in The-

orem 3.2.9, we have, {Ψ(P ) : P ∈ HN
R} to be a non-empty set of real numbers that is

bounded below by zero and hence it has an infimum, which is a finite real number. Let us
denote, m0 = inf

P∈HNR
Ψ(P ). Now, HN

R being non-empty, we can always consider a sequence,

(Pn) ∈ HN
R such that, (Ψ(Pn)) form a decreasing sequence of real numbers, satisfying,

lim
n→∞

(Ψ(Pn)) = m0, say, ∀n ∈ N, Ψ(Pn) ≤ m0 + 1
n
. Now, we can prove that such a sequence

of positive polynomials, (Pn), itself is a bounded sequence. For any jω ∈ I, we have the
following for all n ∈ N, ∣∣∣∣Pn(jω)

R(jω)

∣∣∣∣ =
Pn(jω)

R(jω)
≤ Ψ(Pn) ≤ m0 + 1. (3.27)

The first equality follows since Pn, R ∈ P+
2N . If we denote k0 = max

jω∈I
R(jω), from equation

(3.27), for any jω ∈ I and for all n ∈ N,

Pn(jω) ≤ k0(m0 + 1). (3.28)
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Using Definition A.1.1 in Appendix for the norm of polynomials of degree at most N , we
have,

||Pn|| =
( 2N∑

j=0

|Pn(aj)|2
) 1

2

, aj ∈ I

≤
( 2N∑

j=0

k2
0(m0 + 1)2

) 1
2

= k0(m0 + 1)
√

2N + 1.

The inequality followed from equation (3.28). So, the sequence of positive polynomials (Pn)
is bounded. Since the set HN

R is closed (Theorem 3.2.9), we have a subsequence of (Pn)
in HN

R , converging to an element P̂ in HN
R and Ψ being a continuous function in P yields

Ψ(P̂ ) = m0. Since m0 is the infimum of {max
jω∈I

P (jω)
R(jω)

: P ∈ HN
R}, we have m0 = Lopt and so,

Ψ(P̂ ) = Lopt. This verifies the existence of a Popt ∈ HN
R at which Lopt is attained.

Note that we have not mentioned anything about the uniqueness of Popt which solves
problem PC , but it will be proved later to be unique. In the next section, we move to a
characterisation of the constraint set, HN

R of problem PC .

3.3.1 Characterisation of HN
R

In this subsection, we will describe how a characterisation of the set HN
R is obtained using

Nevanlinna-Pick interpolation theory ( [8], [42]). Recall from equation (3.19) that UP is a
rational outer function in H∞(Π+) of degree at most N with the prescribed modulus

|UP (jω)|2 =
P (jω)

P (jω) +R(jω)
, jω ∈ jR \ X,

where X = {jω ∈ jR : R(jω) = 0}. A practical way of the characterisation of the set

HN
R =

{
P ∈ P+

2N : ∃ρ ∈ F : |ρ(jω)| ≤ |UP (jω)|, jω ∈ jR \ X
}

is provided in the following proposition.

Proposition 3.3.2. The set HN
R defined in (3.16) is characterised by

HN
R = {P ∈ P+

2N : ∆(P ) � 0}, (3.29)

where the Pick matrix ∆(P ) = [∆ij]1≤i,j≤M is defined by,

∆ij =
1−

(
L22(ξi)

UP (ξi)

)(
L22(ξj)

UP (ξj)

)
ξi + ξj

. (3.30)
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Proof. The set HN
R consists of positive polynomials P ∈ P+

2N for which there exists a function
ρ ∈ B, satisfying,

∀k = {1, 2, . . .M}, ρ(ξk) = L22(ξk), (3.31)

∀jω ∈ jR \ X, |ρ(jω)| ≤ |UP (jω)|. (3.32)

As explained in the proof of proposition 3.2.8, this implies that for P ∈ HN
R , there exists

b = ρ
UP
∈ B satisfying,

∀k = {1, 2, . . .M}, b(ξk) =
L22(ξk)

UP (ξk)
. (3.33)

Using classical Nevanlinna-Pick theorem, there exist a Schur function, b : Π+ → D satisfying
(3.33) if and only if the Pick matrix, ∆(P ) = [∆ij]1≤i,j≤M defined by,

∆ij =
1−

(
L22(ξi)

UP (ξi)

)(
L22(ξj)

UP (ξj)

)
ξi + ξj

,

is positive semidefinite. Thus HN
R ⊆ {P ∈ P+

2N : ∆(P ) � 0} def
= H̃N

R . To prove the converse
inclusion, H̃N

R ⊆ HN
R , consider a P ∈ H̃N

R . We have, ∆(P ) � 0 and hence there exists a
Schur function b : Π+ → D such that :

∀k = {1, 2, . . .M}, b(ξk) =
L22(ξk)

UP (ξk)
(3.34)

If we define, ρ = UP · b, we have, |ρ| ≤ |UP | on the imaginary axis except X. Also, ρ ∈ F,
since UP and b are Schur functions and using equation (3.34),

ρ(ξk) = L22(ξk), 1 ≤ k ≤M. (3.35)

This implies that P ∈ HN
R , implying H̃N

R ⊆ HN
R and hence HN

R = H̃N
R .

Remark 3.3.3. The above mentioned characterisation of HN
R = {P ∈ P+

2N : ∆(P ) � 0},

where ∆ij =
1−
(
L22(ξi)

UP (ξi)

)(
L22(ξj)

UP (ξj)

)
ξi+ξj

, 1 ≤ i, j ≤ M directly provides the fact that HN
R is closed.

We have the outer function UP to be continuous in P (Proposition 3.2.7) and since the
pointwise evaluation is continuous as well, we have ∆(P ) to be continuous in P and hence
the set HN

R is closed.

3.3.2 Optimal Characteristics and Uniqueness of Popt

Proposition 3.3.4. Let ∆(P ) represent the pick matrix as defined in (3.30) and Popt the
optimal solution to problem PC. Then, ∆(Popt) is singular.

Proof. Let us suppose that at Popt ∈ HN
R at which Lopt is attained, the pick matrix is strictly

positive definite, ∆(Popt) � 0. It should be noted that |UαPopt(s)| is a strictly monotonous
function in α > 0 and for 0 < α < 1, |UαPopt| < |UPopt| on the imaginary axis. We also
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have ∆(P ) continuous in P (remark 3.3.3) and therefore all its principal minors. Under the
assumption that ∆(Popt) is strictly positive definite, there exists 0 < α̃ < 1 such that all the
principal minors of ∆(α̃Popt) including det(∆(α̃Popt)) are non-negative and by Sylvester’s
criterion (Theorem 7.2.5, [50]), we have ∆(α̃Popt) � 0. This implies that we are able to find

an α̃Popt in HN
R such that max

jω∈I
α̃Popt(jω)

R(jω)
is strictly lower than max

jω∈I
Popt(jω)

R(jω)
, contradicting the

optimality of Popt.

Proposition 3.3.5. If ρ ∈ H∞(Π+) satisfy the interpolation conditions, ρ(ξk) = L22(ξk)
and for jω ∈ jR \ X, |ρ(jω)| ≤ |UPopt(jω)|, then,

|ρ(jω)| = |UPopt(jω)|, jω ∈ jR \ X. (3.36)

Proof. Suppose there exists a set of non-zero measure such that, |ρ(jω)| < |UPopt(jω)| on
jR \ X. Since, ρ ∈ H∞(Π+) satisfy the interpolation conditions, ρ(ξk) = L22(ξk), there

exists a Schur function, bopt = ρ
UPopt

, satisfying, bopt(ξk) = L22(ξk)
UP (ξk)

and |bopt| < 1 on the

imaginary axis. Using Nevanlinna-Pick theorem, this implies ∆(Popt) � 0. This contradicts
Proposition 3.3.4 that ∆(Popt) is singular. Hence, |ρ| = |UPopt| on jR \ X.

Theorem 3.3.6. The Popt ∈ HN
R at which Lopt is attained for Problem PC is unique.

Proof. For any P ∈ HN
R , there exist ρ ∈ F such that, for jω ∈ jR \ X, |ρ(jω)| ≤ |UP (jω)|.

At the optimum, using Proposition 3.3.5, we have,

|ρopt(jω)| = |UPopt(jω)|, jω ∈ jR \ X. (3.37)

Let us suppose that there are two distinct polynomials, P1 and P2 in HN
R at which Lopt is

attained. We have,

Lopt = max
jω∈I

P1(jω)

R(jω)
= max

jω∈I

P2(jω)

R(jω)
. (3.38)

Let Y denote the finite set of at most 2N points on the imaginary axis where the evaluation
of P1 and P2 are equal. It should be noted from (3.26) that |UP | is strictly concave on the
imaginary axis except the finite set X∪Y. That is, for any γ ∈ (0, 1), if P3 = γP1+(1−γ)P2,
we have

γ|UP1(jω)|+ (1− γ)|UP2(jω)| < |UP3(jω)|, jω ∈ jR \ (X ∪ Y). (3.39)

Using (3.37), we have ρ1, ρ2 ∈ F, corresponding to P1 and P2 respectively, satisfying,

|ρ1(jω)| = |UP1(jω)|, jω ∈ jR \ X, (3.40)

|ρ2(jω)| = |UP2(jω)|, jω ∈ jR \ X. (3.41)

Now, if we consider the convex combination of ρ1 and ρ2, we have, for all jω ∈ jR\ (X∪Y),

|γρ1(jω) + (1− γ)ρ2(jω)| ≤ γ|ρ1(jω)|+ (1− γ)|ρ2(jω)|
= γ|UP1|+ (1− γ)|UP2|
< |UP3(jω)|.
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The first inequality follows from triangle inequality, the second equality from (3.40) and
(3.41) and the last strict inequality from (3.39). So, we have,

|γρ1(jω) + (1− γ)ρ2(jω)| < |UP3(jω)|, jω ∈ jR \ (X ∪ Y). (3.42)

This contradicts (3.37) since if P1 and P2 are optimal, we have, for P3 = γP1 + (1− γP2),

max
jω∈I

P3(jω)

R(jω)
= Lopt.

3.3.3 Necessary Condition for Optimality

In this subsection, a useful result regarding the minimal number of times Popt
R

attains Lopt
in the passband I in problem PC will be discussed, equivalently the minimal number of
zeroes of the polynomial, Popt − LoptR in I. Before getting to the details of the result, it
should be duly noted that the counting of zeros for the polynomial will be defined in a
specific manner as follows:

Definition 3.3.7. (Counting function). Let P ∈ P2N and jωk’s, k = 1, 2, . . . , Ñ , where
Ñ ≤ 2N be its’ zeroes in the passband I with corresponding multiplicities mk for each jωk.
Define the count nk for each jωk as follows,

nk =

⌈
mk

2

⌉
=

{
mk
2

, mk even
mk+1

2
, mk odd

, k = 1, 2, . . . , Ñ (3.43)

where, d.e represents the ceiling function. Now, we define the counting function, N (P ) for
P ∈ P2N as follows,

N (P ) =
Ñ∑
k=1

nk. (3.44)

Theorem 3.3.8. If N represent the counting function defined in (3.44), in problem PC,
we have,

N (Popt − LoptR) ≥ N + 1,

that is we have, Popt
R

equal to the value Lopt at least (N + 1) times in I if counted as per the
definition 3.3.7.

Proof. Let us denote the zeros of Popt−LoptR in I as jωk’s, k = 1, 2, . . . , Ñ , where Ñ ≤ 2N
and mk their corresponding multiplicity. We follow proof by contradiction, i.e by assuming,
N (Popt − LoptR) < N + 1, we show that there exists P̂ 6= Popt in P+

2N , satisfying,

∀ω ∈ R, P̂ (jω) ≥ Popt(jω), (3.45)

∀jω ∈ I, P̂ (jω)− LoptR(jω) ≤ 0. (3.46)
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Once we show this, we have P̂ ∈ HN
R as well, since, from equation (3.45) and proposition

3.3.5, we have almost everywhere on the imaginary axis,

|UP̂ (jω)| ≥ |UPopt(jω)| = |ρopt(jω)|. (3.47)

This together with (3.46) contradicts the uniqueness of Popt ∈ HN
R for problem PC (Theorem

3.3.6) and hence the result follows.
So, in order to prove (3.45) and (3.46), assume the optimal polynomial for problem PC ,

namely, Popt ∈ P+
2N , satisfy,

N (Popt − LoptR) < N + 1. (3.48)

Consider the polynomial,

Pε(jω) = Popt(jω) + εΦ(jω), (3.49)

where ε is a positive constant and Φ(jω) =
Ñ∏
k=1

(−1)nk(jω − jωk)
2nk =

Ñ∏
k=1

(ω − ωk)
2nk .

It should be noted that Φ(jω) has 2nk roots at each point jωk and so, using (3.48),
deg(Φ(jω)) ≤ 2N . Thus we have, Φ(jω) ∈ P+

2N . This implies Pε ∈ P+
2N and we also

have,
∀ω ∈ R, Pε(jω) ≥ Popt(jω). (3.50)

Now, we are interested in finding a strictly positive ε such that for jω ∈ I, Pε(jω) ≤
LoptR(jω), i.e

∀jω ∈ I, (Popt − LoptR)(jω) + εΦ(jω) ≤ 0. (3.51)

Defining Q = (Popt − LoptR), we have for jω ∈ I, Q(jω) ≤ 0 and we need,

∀jω ∈ I, Q(jω) + εΦ(jω) ≤ 0. (3.52)

Let t be any positive natural number. For P (jω) ∈ P2N , let P (t)(jωk) denote the value

of t-th derivative of P with respect to jω at jωk and P
(t)
ω (jωk) denote the value of t-th

derivative of P with respect to ω at jωk. Using chain rule it can be verified that,

Φ(t)
ω (jωk) = jtΦ(t)(jωk), (3.53)

Q(t)
ω (jωk) = jtQ(t)(jωk). (3.54)

Let jω ∈ I be any point in the open neighbourhood of given point jωk. Consider the Taylor
development of Φ and Q at jω. Since Φ(jω) has 2nk zeros at jωk, we have the first (2nk−1)
derivatives with respect to ω vanishing at jωk, and so,

Φ(jω) =
Φ

(2nk)
ω (jωk)

(2nk)!
(ω − ωk)2nk + o(|ω − ωk|2nk). (3.55)

If mk is even, we have mk = 2nk and since Q(jω) has 2nk zeros at jωk, we have,

Q(jω) =
Q

(2nk)
ω (jωk)

(2nk)!
(ω − ωk)2nk + o(|ω − ωk|2nk). (3.56)
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If mk is odd, we have mk = 2nk − 1 and since Q(jω) has 2nk − 1 zeros at jωk, we have,

Q(jω) =
Q

(2nk−1)
ω (jωk)

(2nk − 1)!
(ω − ωk)2nk−1 +

Q
(2nk)
ω (jωk)

(2nk)!
(ω − ωk)2nk + o(|ω − ωk|2nk). (3.57)

Since we have Φ(jω) ≥ 0 for ω ∈ R, (ω− ωk)2nk being non-negative yields Φ
(2nk)
ω (jωk) > 0.

We have Q(jω) ≤ 0 for jω ∈ I. If mk is even, (ω − ωk)
2nk being non-negative yields

Q
(2nk)
ω (jωk) < 0. If mk is odd, we have two cases : when (ω − ωk) ≥ 0, we have,

Q
(2nk−1)
ω (jωk) < 0 and when (ω − ωk) < 0, we have, Q

(2nk−1)
ω (jωk) > 0.

Now, we can evaluate Q(jω) + εΦ(jω) using the above equations. If mk is even,

Q(jω) + εΦ(jω) =

(
Q

(2nk)
ω (jωk)

(2nk)!
+ ε

Φ
(2nk)
ω (jωk)

(2nk)!

)
(ω − ωk)2nk + o(|ω − ωk|2nk) (3.58)

Denote, |Q
(2nk)
ω (jωk)

(2nk)!
| = qek. Choose εk ∈ (0, 1), such that,

εk
Φ

(2nk)
ω (jωk)

(2nk)!
≤ qek

4
(we have qek > 0,Φ(2nk)

ω (jωk) > 0). (3.59)

Then fix an open neighbourhood in I around jωk, name it Vδek
, in which |o(|ω−ωk|2nk)| ≤ qek

4

is satisfied. This will ensure that if ε ≤ εk,

∀jω ∈ Vδek
, Q(jω) + εΦ(jω) ≤ 0. (3.60)

If mk is odd, we have the following,

Q(jω) + εΦ(jω) =
Q

(2nk−1)
ω (jωk)

(2nk − 1)!
(ω − ωk)2nk−1 + o(|ω − ωk|2nk−1). (3.61)

Denote, |Q
(2nk−1)
ω (jωk)
(2nk−1)!

| = qok. Fix an open neighbourhood in I around jωk, name it Vδok
,

in which |o(|ω − ωk|2nk−1)| ≤ qok
2

is satisfied. This will ensure that, if ε ≤ εk,

∀jω ∈ Vδok
, Q(jω) + εΦ(jω) ≤ 0. (3.62)

Defining, ∪Ñk=1Vδfk
= V, where f is used to denote e or o depending upon the multiplicity

mk is even or odd respectively and by fixing εv = min
k∈{1,2,...,Ñ}

εk (clearly εv ∈ (0, 1)), we have,

if ε ≤ εv,

∀jω ∈ V, Q(jω) + εΦ(jω) ≤ 0 (3.63)

i.e, ∀jω ∈ V, Popt(jω)− LoptR(jω) + εΦ(jω) ≤ 0. (3.64)

Now, let us consider the compact interval I \ V. We have for all jω ∈ I \ V, Popt(jω) <
LoptR(jω) and Φ(jω) > 0. Let us denote k1 = min

jω∈I\V
(LoptR(jω) − P (jω)) > 0 and k2 =

max
jω∈I\V

Φ(jω) > 0. By choosing εc = k1

k2
, it can be ensured that if ε ≤ εc,

∀jω ∈ I \ V, Popt(jω)− LoptR(jω) + εΦ(jω) ≤ 0. (3.65)
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Finally, by choosing, ε̂ = min(εv, εc) (clearly ε̂ ∈ (0, 1)), it can be ensured that (3.52) is
satisfied for all jω in V and I \ V as well, i.e, we have,

∀jω ∈ I, Popt(jω)− LoptR(jω) + ε̂Φ(jω) ≤ 0. (3.66)

So, by defining, P̂ (jω) = Popt(jω) + ε̂Φ(jω), we have P̂ ∈ P+
2N and,

∀jω ∈ I, P̂ (jω) ≤ LoptR(jω). (3.67)

It satisfies, P̂ 6= P since ε̂ 6= 0. Also, since Φ(jω) ∈ P+
2N and ε̂ > 0, we have,

∀ω ∈ R, P̂ (jω) ≥ Popt(jω). (3.68)

This completes the proof of the theorem.

3.3.4 Concavity of Pick Matrix and Non-Linear SDP

In this subsection, the implementation of problem PC as a non-linear semi-definite pro-
gramming problem (SDP) is discussed. The concavity of Pick matrix which appears in the
characterisation of constraint set HN

R of problem PC will be proved first. It plays an im-
portant role in solving problem PC using non-linear semi-definite programming techniques.
Let us recall problem PC ,

Find: Lopt = min
P∈HNR

(
max
jω∈I

P (jω)

R(jω)

)
.

According to proposition 3.3.2, the set HN
R is characterised as,

HN
R = {P ∈ P+

2N : ∆(P ) � 0}.

Theorem 3.3.9. Let SM and S−M denote the set of (M × M), Hermitian matrices and
negative semi-definite Hermitian matrices respectively. The matrix valued function, A :
P+

2N → SM , defined as,
A(P ) := −∆(P ), (3.69)

maps an element in HN
R to an element in S−M , and is convex, i.e , ∀α ∈ (0, 1),

αA(P1) + (1− α)A(P2)−A(αP1 + (1− α)P2) � 0, P1, P2 ∈ P+
2N . (3.70)

Proof. The matrix valued function A maps an element in the convex set HN
R to an element

in the set S−M since ∀P ∈ HN
R , we have ∆(P ) � 0. In order to prove that the function A is

convex, let us consider the element (i, j) of ∆(P ), where 1 ≤ i, j ≤M ,

∆ij =
1−

(
L22(ξi)

UP (ξi)

)(
L22(ξj)

UP (ξj)

)
ξi + ξj

(3.71)

Consider α ∈ (0, 1) and P1, P2 ∈ P+
2N . Let us denote P = αP1 + (1−α)P2 and L22(ξi) = γi.

We need to prove that the matrix, TO
def
= ∆(P ) − α∆(P1) − (1 − α)∆(P2) is positive

semi-definite. Evaluating,

TOij = ∆ij(P )− α∆ij(P1)− (1− α)∆ij(P2),
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using (3.71) yields,

TOij =
γiγj

(ξi + ξj)

(
α

UP1(ξi)UP1(ξj)
+

(1− α)

UP2(ξi)UP2)(ξj)
− 1

UP (ξi)UP (ξj)

)
Applying a change of basis to TO by using an (M ×M) diagonal transition matrix, C with
Cii = UP (ξi), 1 ≤ i ≤M , we obtain the base changed matrix, TOB, where,

TOBij =
γiγj

(ξi + ξj)

(
αUP (ξi)UP (ξj)

UP1(ξi)UP1(ξj)
+

(1− α)UP (ξi)UP (ξj)

UP2(ξi)UP2(ξj)
− 1

)
. (3.72)

Let us denote by F ∈ H∞2 (Π+), the following vector,

F =

[√
α
UP1

UP
,
√

1− αUP2

UP

]t
. (3.73)

Evaluating F ∗(s)F (s), on the imaginary axis, we have,

F ∗F =
α|UP1|2 + (1− α)|UP2|2

|UP |2
≤ 1.

The inequality follows from the concavity of |UP |2 (Remark 3.2.10). So, by maximum

modulus theorem we have F ∈ B2×1(Π+). If we denote xi =

[√
αγiUP (ξi)
UP1

(ξi)
,
√

1− αγiUP (ξi)
UP2

(ξi)

]
and yi = γi for all i = 1, 2, ...,M , F ∈ B2×1 introduced in (3.73) satisfies the following
left-interpolation conditions,

xiF (ξi) = yi. (3.74)

It follows from the Nevanlinna-Pick theorem for left interpolation problem (Theorem A.2.2
in Appendix) that Λ(F ) � 0, where,

Λij(F ) =
xix̄j

t − yiȳj
ξi + ξj

(3.75)

=
γiγj

(ξi + ξj)

(
αUP (ξi)UP (ξj)

UP1(ξi)UP1(ξj)
+

(1− α)UP (ξi)UP (ξj)

UP2(ξi)UP2(ξj)
− 1

)
= TOBji .

The last equality follows from equation (3.72). So, we have (TOB)t � 0, implying TOB � 0,
and hence TO � 0, that is,

∆(P )− α∆(P1)− (1− α)∆(P2) � 0,

showing that ∆(P ) is concave in P. This proves the convexity of A,

αA(P1) + (1− α)A(P2)−A(P ) � 0.
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Now, the fact that A = −∆ is convex can be utilized to cast problem PC in the form
of a semi-definite programming problem. Let us denote the cost function as Ψ : P+

2N → R,

where, Ψ(P ) = max
jω∈I

P (jω)
R(jω)

. Then, we have the following minimisation problem,

Problem. SDP

Find: min
P∈P+

2N

Ψ(P )

subject to: A(P ) � 0.

We have put problem PC in the standard form of a semi-definite programming problem,
problem SDP for which algorithms exist to solve the problem. Non-linear semidefinite
programming techniques can be used to solve the problem SDP. Polynomials in P+

2N can
be characterized by means of (N + 1) × (N + 1) positive semi-definite matrices, denoted
by S+

N+1 (Theorem 2.5, [30]), i.e. the polynomial P ∈ P2N is positive iff there exist a Gram
matrix ΘP parametrising P that is positive semi-definite.

P ∈ P+
2N ⇐⇒ ∃ΘP ∈ S+

N+1 | v(s)ΘPv
t(s) = P (s), s ∈ C, (3.76)

where v(s) = [sN , sN−1, . . . , 1] is the vector of standard basis of set of polynomials PN .
The admissibility of P ∈ P+

2N is ensured by the non-linear constraint A(P ) � 0. Positivity
and admissibility constraints are implemented using the standard logarithmic barrier and
a special penalty function used in section 8.2, [89] respectively. The reader can refer to
chapter 7 and 8, [64] for a detailed description of the numerical implementation of the
SDP problem and the final product MATLAB toolbox named PUMA in [62].

3.3.5 Critical Point Equation

In this section, we will discuss about the dual problem associated to problem PC and
thereby the critical point equation for problem PC . From Theorem 3.3.9 in the previous
section, we have, ∆ : P+

2N → SM to be concave in P . We have the following problem for
which we are interested to write down the critical point equation,

Problem. PC

Find: lopt = min
P∈P2N

max
jω∈I

P (jω)

R(jω)

subject to: P (jω) ≥ 0, ω ∈ R
∆(P ) � 0.

We remind the reader that in problem PC , the polynomial R ∈ P+
2N is fixed, it doesn’t

vanish in I and ∆(P ) represent the Pick matrix defined in (3.30). ∆(P ) as proved in the
previous subsections is a continuous concave function in P . The first step is to restate
problem PC by introducing an extra variable, Γ ∈ R, which becomes the criterium to be
minimized. It is defined by the inequality Γ ≥ P (jω)

R(jω)
, ∀jω ∈ I. Now, we have
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Problem. PC

Find: lopt = min
(P,Γ)∈P2N×R

Γ

subject to: Γ− P (jω)

R(jω)
≥ 0, jω ∈ I

P (jω) ≥ 0, ω ∈ R
∆(P ) � 0.

It should be noted that for P ∈ P2N , we can always estimate Γ ∈ R as Γ = max
jω∈I

P (jω)
R(jω)

.

The main result of this subsection is the following theorem which states that the optimal
solution to problem PC , (Popt, lopt) can be obtained as the solution to an unconstrained
optimization problem as well.

Theorem 3.3.10. There exists non-negative real numbers ν̃1, ν̃2, . . . , ν̃k1, λ̃1, λ̃2, . . . , λ̃k2,

k1 ≤ 2N, k2 ≤ 2N where
k1∑
i=1

ν̃i = 1, matrix Ũ ∈ S+
M , points jω1, jω2, . . . , jωk1 in I and

points jγ1, jγ2, . . . , jγk2 in jR such that the solution to problem PC, Popt ∈ P+
2N satisfies

Popt(jωi)

R(jωi)
= lopt, i = 1, 2, . . . , k1

and it coincides with the solution to the following unconstrained optimization problem

min
P∈P2N

( k1∑
i=1

P (jωi)

R(jωi)
ν̃i −

k2∑
i=1

P (jγi)λ̃i + 〈A(P ), Ũ〉
)
, (3.77)

where

〈A(P ), Ũ〉 = tr(A(P )
t
Ũ), A(P ) =

{
−∆(P ), P ∈ P+

2N ,
+∞IM , otherwise,

“tr” represent the trace, IM denote the identity matrix of size M . Moreover, if there are
no common zeros for Popt and R on the imaginary axis and if the coefficients of Popt are
denoted by [p2N , p2N−1, . . . , p1, p0] in the standard basis {s2N , s2N−1, . . . , s, 1}, then for m =
0, 1, . . . , 2N ,

k1∑
i=1

1

R(jωi)

∂Popt(jωi)

∂pm
ν̃i −

k2∑
i=1

∂Popt(jγi)

∂pm
λ̃i +

〈
∂A(Popt)

∂pm
, Ũ

〉
= 0. (3.78)

The case when Popt and R have some common zeros on the imaginary axis, the Pick
matrix ∆(Popt) is non-differentiable and this special case is discussed separately at the
end of this subsection. A proof of the above theorem is provided in the following main
steps : (i) writing down the Lagrange dual problem of problem PC and verifying weak
duality, (ii) proving strong duality under a constraint qualification and hence verifying
complementary slackness conditions, (iii) complementary slackness conditions providing
the optimality condition. So, the proof of theorem 3.3.10 is divided into three subsections
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and a brief introduction and prerequisite to each section is provided at the beginning of
corresponding sections.

Theorem 3.3.10 is essentially stating a typical Karush-Kuhn-Tucker (KKT) condition
for problem PC . The main idea of the proof of theorem 3.3.10 is to show that strong duality
holds in the convex optimisaton problem PC (i.e the primal and dual optimal are equal,
leading to an optimal duality gap equal to zero). It will help to prove that the solution
to problem PC coincides with the solution to an unconstrained optimization problem and
thus provide the KKT conditions associated with problem PC . This is precisely presented
in the remaining part of this subsection.

(i). Dual Problem and Weak Duality

In order to introduce the Lagrange dual problem of problem PC , let us introduce positive
linear functionals, Riesz representation theorems for bounded linear functionals in the space
of continuous functions and trace operator for SM , the set of (M ×M) Hermitian matrices.

Definition 3.3.11. (Positive Linear Functional). A positive linear functional on a real
vector space V is a mapping Φ of V to R such that

Φ(αf + βg) = αΦ(f) + βΦ(g), f, g ∈ V, α, β ∈ R

and also satisfying
Φ(f) ≥ 0 whenever f ≥ 0.

Definition 3.3.12. (Bounded Linear Functional). Let (X, ||.||) be a normed vector space.
A bounded linear functional on X is a linear functional Φ such that

||Φ|| def= sup{|Φ(x)| : x ∈ X, ||x|| ≤ 1} <∞.

We remind the reader that a linear functional is bounded if and only if it is continuous
on X (Theorem 5.4, [83]). The reader can refer to chapter 2 and 6 in [83] or chapter 14, [6]
for a detailed literature about the Riesz representation theorems, an integral representation
of bounded linear functionals.

Theorem 3.3.13. Let X be a compact Hausdorff space and C(X) the vector space of
continuous real-valued functions on X. Then to each bounded linear functional Φ : C(X)→
R, there corresponds a unique finite signed Baire measure ν on X such that

∀f ∈ C(X), Φ(f) =

∫
X

fdν. (3.79)

Theorem 3.3.14. Let X be a locally compact Hausdorff space, C0(X) the space of con-
tinuous real-valued functions on X vanishing at infinity and Φ : C0(X) → R a bounded
linear functional. Then there exists a unique bounded regular signed Borel measure λ which
represents Φ in the sense that

∀f ∈ C0(X), Φ(f) =

∫
X

fdλ. (3.80)
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A general version of theorem 3.3.13 and 3.3.14 and its proof can be found in theorem
2.14 and theorem 6.19 respectively in [83]. For theorem 3.3.13, see chapter 13, theorem
25, [82]. In the case of Hermitian matrices, say for A,B ∈ SM , we define the inner product,

〈A,B〉 = tr(ĀtB), (3.81)

where “tr” represent the trace. Let us put the primal problem PC in the standard form,

Problem. PC

Find: lopt = min
(P,Γ)∈P2N×R

Γ

subject to:
P (jω)

R(jω)
− Γ ≤ 0, jω ∈ I

− P (jω) ≤ 0, ω ∈ R
−∆(P ) � 0,

where, −∆(P ) is continuous and convex in P . It should be noted that the fixed poly-
nomial R doesn’t vanish in I and since polynomials are continuous functions and for poly-
nomial p of degree less than or equal to n, p(s)

1+|s|n+1 is a continuous function vanishing at
infinity, theorem 3.3.13 and theorem 3.3.14 implies that there exist integral representation
of linear forms associated to the first two constraint functions in problem PC . Also, the
inner product defined in (3.81) can be used to define the linear form associated to the ma-
trix constraint function. Now, for measures ν on I, λ on jR and matrix U ∈ SM , we define
the Lagrangian dual function,

inf
(P,Γ)∈P2N×R

(
Γ +

∫
I

(
P

R
− Γ

)
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉

)
, (3.82)

where

A(P )
def
=

{
−∆(P ), P ∈ P+

2N ,
+∞IM , otherwise,

(3.83)

IM denote the identity matrix of size M . The definition of A(P ) ensures that in the dual
function in (3.82) the subset of polynomials in P2N which are not positive is rendered not
feasible. Since the pick matrix, ∆(P ) defined for P ∈ P+

2N is concave in P (theorem 3.3.9),
we have the matrix A(P ) defined in (3.83) convex in P ∈ P2N , that is ∀α ∈ (0, 1),

αA(P1) + (1− α)A(P2)−A(αP1 + (1− α)P2) � 0, P1, P2 ∈ P2N . (3.84)

If P1 and P2 are both in P+
2N , (3.84) follows from the concavity of pick matrix ∆(P ) and

in the case when atleast one of the polynomials is not positive, it follows trivially as well
since we have atleast one of A(P1) or A(P2) equal to +∞IM . It should be noted that the
objective function in (3.82) has the equivalent form

Γ

(
1−

∫
I
dν

)
+

∫
I

P

R
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉

)
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and if
∫
I dν 6= 1, the objective function is not bounded from below. So, we will only consider

ν satisfying, ν(I) =
∫
I dν = 1 and we have the Lagrangian associated with problem PC as

L(P, ν, λ, U) =

∫
I

P

R
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉. (3.85)

So, we have the Lagrangian dual function,

g(ν, λ, U) = min
P∈P2N

L(P, ν, λ, U) (3.86)

= min
P∈P2N

(∫
I

P

R
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉

)
. (3.87)

This leads to the following optimization problem, which is the Lagrange dual problem
associated with the problem PC ,

Problem. Pd

Find: dopt = max g(ν, λ, U)

subject to: ν(I) = 1, ν ≥ 0, λ ≥ 0, U � 0

Let us suppose that ν(I) = 1, ν ≥ 0, λ ≥ 0, U � 0. Then, clearly, for (P,Γ) ∈ P2N × R,
if P

R
|I − Γ ≤ 0, −P |jR ≤ 0 and A(P ) � 0 we have,

Γ ≥ Γ +

∫
I

(
P

R
− Γ

)
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉

=

∫
I

P

R
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉.

This follows from the facts that (Γ− P
R

) and P being non-negative on I and jR respectively,
using Riesz theorem, the linear forms represented using positive measures ν and λ as

∫
I(Γ−

P
R

)dν and
∫
jR( P

1+|ω|2N+1 )dλ are non-negative and also for matrices A,B ∈ S+
M , we have,

〈A,B〉 = tr(ĀtB) ≥ 0. So, we have,

lopt = min

{
Γ | A(P ) � 0,−P |jR ≤ 0,

P

R

∣∣
I − Γ ≤ 0

}
≥ min

{∫
I

P

R
dν +

∫
jR

( −P
1 + |ω|2N+1

)
dλ+ 〈A(P ), U〉 | P

R

∣∣
I − Γ ≤ 0,

− P |jR ≤ 0,A(P ) � 0

}
= g(ν, λ, U).

This implies that we have weak duality, that is, dopt ≤ lopt. It follows since dopt = g(ν̃, λ̃, Ũ)
for some ν̃(I) = 1, ν̃ ≥ 0, λ̃ ≥ 0, Ũ � 0 which is less than or equal to lopt as shown above.
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(ii). Strong Duality and Complementary Slackness Condition

Now, in order to prove strong duality, we will follow an epigraph variation approach similar
to the one presented in section 5.3, [14]. This method is based on the idea of defining
two non-empty disjoint convex sets and making use of Hahn Banach separation theorem
to find Lagrange multipliers which will be proved to be non-negative. Slater’s constraint
qualification will play the important role of ensuring strong duality. We suppose that we
have the Slater condition,

∃(P0,Γ0) ∈ P2N × R, satisfying,
P0

R

∣∣
I − Γ0 < 0, − P0|jR < 0, A(P0) ≺ 0. (3.88)

It should be noted that in problem PC , the existence of such a (P0,Γ0) is guaranteed, since
for example, if we fix P0 ∈ P+

2N , P0 = PL + 1, where PL = pLp
∗
L is the reflection polynomial

associated with the given load and Γ0 satisfying Γ0 > max
jω∈I

P0(jω)
R(jω)

, we have the conditions in

(3.88) satisfied. This follows, since for this P0, we have,

|UP0 |2 =
P0

P0 +R
=

PL + 1

PL + 1 +R
=

1

1 + R
PL+1

on jω

and so, |L22|2 = PL
PL+R

= 1
1+ R

PL

< |UP0|2 on jω. This implies that we have P0 in the interior

of set HN
R (the same idea as in we prove the set HN

R is non-empty in theorem 3.2.9). So we
have the pick matrix ∆(P0) � 0 implying A(P0) ≺ 0. Before getting to the details of this
section, we introduce the separating hyperplane theorem by Eidelheit (Theorem 1.13, [98])
which will be used in the proof,

Theorem 3.3.15. (Separating Hyperplane Theorem). Let A and B be two non-empty
convex subsets of a topological vector space X over R and X∗ denote the topological dual of
X. If int(A) 6= ∅ and int(A) ∩ B = ∅, where ‘int’ represents the interior, then there exist
Φ ∈ X∗ \ {0} and α ∈ R such that

∀a ∈ A, ∀b ∈ B : Φ(a) ≤ α ≤ Φ(b).

To begin the main proof of this section, we define the set B1 which can be geometrically
interpreted as a sort of epigraph of the set of values taken on by the objective and constraint
functions of problem PC ,

B1 =

{
(l, f, g, V ) ∈ R× C(I)× C0(jR)× SM | ∃(P,Γ) ∈ P2N × R :

Γ ≤ l,
P

R
− Γ ≤ f,

−P
1 + |ω|2N+1

≤ g,A(P ) � V

}
.

It can be easily verified that B1 is a convex set since the underlying problem PC is convex.
It should also be noted that the interior of B1 is non-empty since for example, for any
l > Γ0, (l, 0, 0, 0) is in the interior of B1. We define the second non-empty convex set B2,
as follows,

B2 = {(l, 0, 0, 0) ∈ R× C(I)× C0(jR)× SM | l < lopt}. (3.89)
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We claim B1 ∩ B2 = ∅. Let us suppose that the claim is not true, say (l, f, g, V ) ∈ B1 ∩ B2.
Since (l, f, g, V ) ∈ B2, we have,

l < lopt, f = 0 ∈ C(I), g = 0 ∈ C0(jR), V = 0 ∈ SM . (3.90)

Now, since (l, 0, 0, 0) ∈ B1, using definition of B1, ∃(P,Γ) ∈ P2N × R, satisfying,

Γ ≤ l < lopt, − P |jR ≤ 0,
P

R

∣∣
I − Γ ≤ 0, A(P ) � 0. (3.91)

This contradicts the optimality of Popt at which lopt is attained. So, we have B1 ∩ B2 = ∅
as claimed. Now, using the separating hyperplane theorem for disjoint convex sets B1 and
B2 (Theorem 3.3.15), there exist µ̂ ∈ R, measures ν̂, λ̂ and matrix Û ∈ SM satisfying
(µ̂, ν̂, λ̂, Û) 6= (0, 0, 0, 0) (all cannot be zero simultaneously) and α ∈ R, such that,

(l, f, g, V ) ∈ B1 =⇒ µ̂l +

∫
I
fdν̂ +

∫
jR
gdλ̂+ 〈V, Û〉 ≥ α, (3.92)

(l, f, g, V ) ∈ B2 =⇒ µ̂l +

∫
I
fdν̂ +

∫
jR
gdλ̂+ 〈V, Û〉 ≤ α. (3.93)

(3.93) implies that µ̂l ≤ α for all l < lopt. This together with the fact that lopt < ∞ in
problem PC provides

µ̂lopt ≤ α. (3.94)

Now, from (3.92) and (3.94), it follows that

∀(l, f, g, V ) ∈ B1 : µ̂l +

∫
I
fdν̂ +

∫
jR
gdλ̂+ 〈V, Û〉 ≥ µ̂lopt. (3.95)

Now, we make certain claims regarding µ̂, ν̂, λ̂ and Û .

• Claim 1 : µ̂ ∈ R satisfies, µ̂ ≥ 0. Let us suppose µ̂ < 0. Fix any l ∈ R, satisfying,
l > lopt. It should be noted that (l, 0, 0, 0) ∈ B1. So, from (3.95), we have, µ̂l ≥ µ̂lopt,
which implies, l ≤ lopt (since we assume µ̂ < 0). This contradicts l > lopt and hence,
we have, µ̂ ≥ 0 as claimed.

• Claim 2 : Measure ν̂ satisfies, ν̂|I ≥ 0. Using Riesz theorem, in order to prove the
claim it is sufficient to prove that for all f ∈ C(I) satisfying f ≥ 0, we have,

∫
I fdν̂ ≥ 0.

If, f ≥ 0, we have, (lopt, f, 0, 0) ∈ B1, and so using (3.95), we have,
∫
I fdν̂ ≥ 0. Thus,

ν̂|I ≥ 0.

• Claim 3 : Measure λ̂ satisfies, λ̂|jR ≥ 0. It follows similarly as Claim 2.

• Claim 4 : Matrix Û ∈ SM , satisfies, Û � 0. Using the fact that the positive semi-
definite cone S+

M is self-dual (Example 2.24, [14]), in order to prove the claim, it

is sufficient to prove, for all V ∈ S+
M , we have 〈V, Û〉 ≥ 0. If, V � 0, we have,

(lopt, 0, 0, V ) ∈ B1, and so using (3.95), we have, 〈V, Û〉 ≥ 0. Thus, Û � 0.
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It should be noted that for any P ∈ P2N , denoting Γ = max
jω∈I

P (jω)
R(jω)

, we have,

(Γ, P
R
− Γ, −P

1+|ω|2N+1 ,A(P )) ∈ B1 and so (3.95) implies

µ̂Γ +

∫
I

(
P

R
− Γ

)
dν̂ +

∫
jR

−P
1 + |ω|2N+1

dλ̂+ 〈A(P ), Û〉 ≥ µ̂lopt. (3.96)

Now, let us suppose the non-negative real µ̂ is strictly positive, µ̂ > 0. The positive measure
ν̃ on I can be normalized to satisfy ν̂(I) = µ̂ and for simplicity, we call this measure again
by ν̂. So, it follows from (3.96),∫

I

P

R
dν̂ +

∫
jR

−P
1 + |ω|2N+1

dλ̂+ 〈A(P ), Û〉 ≥ µ̂lopt. (3.97)

Dividing (3.97) by µ̂, we have the Lagrangian,

L

(
P,
ν̂

µ̂
,
λ̂

µ̂
,
Û

µ̂

)
≥ lopt, ∀P ∈ P2N .

Minimizing the Lagrangian over P ∈ P2N , we obtain,

g(ν̃, λ̃, Ũ) ≥ lopt, where ν̃ =
ν̂

µ̂
, λ̃ =

λ̂

µ̂
, Ũ =

Û

µ̂
. (3.98)

The results of claims 2,3 and 4, the fact that ν̂(I) = µ̂ and the assumption that µ̂ > 0
implies ν̃(I) = 1, ν̃ ≥ 0, λ̃ ≥ 0 and Ũ � 0. By weak duality, we also have g(ν̃, λ̃, Ũ) ≤ lopt.
So, g(ν̃, λ̃, Ũ) = lopt, when µ̂ > 0.

Next, we claim : µ̂ 6= 0. Let us suppose µ̂ = 0. From (3.96),∫
I

(
P

R
− Γ

)
dν̂ +

∫
jR

−P
1 + |ω|2N+1

dλ̂+ 〈A(P ), Û〉 ≥ 0.

Applying this to (P0,Γ0) that satisfies the Slater condition, P0

R

∣∣
I − Γ0 < 0, −P0|jR < 0,

A(P0) ≺ 0, we have,∫
I

(
P0

R
− Γ0

)
dν̂ +

∫
jR

−P0

1 + |ω|2N+1
dλ̂+ 〈A(P0), Û〉 ≥ 0. (3.99)

From the results of claims 2, 3 and 4, ν̂ ≥ 0, λ̂| ≥ 0, Û � 0 and so we also have,∫
I

(
P0

R
− Γ0

)
dν̂ ≤ 0,

∫
jR

−P0

1 + |ω|2N+1
dλ̂ ≤ 0, 〈A(P0), Û〉 ≤ 0. (3.100)

The inequalities in (3.99) and (3.100) leads us to the conclusion that ν̂, λ̂ and Û has to be
zero. This contradicts the fact that (µ̂, ν̂, λ̂, Û) 6= (0, 0, 0, 0) which was announced by the
hyperplane separating theorem. Thus, µ̂ 6= 0 as claimed.
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So, we have Popt and (ν̃, λ̃, Ũ) to be the points where primal and dual optimal are
attained with zero duality gap, i.e,

lopt = dopt = g(ν̃, λ̃, Ũ) (3.101)

= min
P∈P2N

(∫
I

P

R
dν̃ +

∫
jR

( −P
1 + |ω|2N+1

)
dλ̃+ 〈A(P ), Ũ〉

)
(3.102)

≤ lopt +

∫
jR

( −Popt
1 + |ω|2N+1

)
dλ̃+ 〈A(Popt), Ũ〉 (3.103)

≤ lopt. (3.104)

(3.103) follows since the minimum of Lagrangian over P ∈ P2N is less than or equal to

its value at Popt and the facts that for all jω ∈ I, Popt(jω)

R(jω)
≤ lopt and ν̃(I) = 1. (3.104)

follows since −Popt|jR ≤ 0, λ̃ ≥ 0, A(Popt) � 0, Ũ � 0. This implies that we have equality
throughout and hence we have the complementary slackness condition, i.e there exists
positive measures ν̃, λ̃ on I and jR respectively, Ũ ∈ S+

M , satisfying,∫
I

Popt
R

dν̃ = lopt, (3.105)∫
jR

( −Popt
1 + |ω|2N+1

)
dλ̃ = 0, (3.106)

〈A(Popt), Ũ〉 = 0. (3.107)

(iii). Optimality Condition

The remaining section explains the fact that integrals in equation (3.105) and (3.106) can
be replaced by finite sums. Let us denote by jω1, jω2, . . . , jωk1 , the zeros of Popt − loptR
in I. Assuming that we are not at the special case when Popt ≡ loptR, we have k1 ≤ 2N
(this special case is included in the discussion to follow in the next page : ‘Simplification at
the optimum’). Then (3.105) clearly implies that the positive measure ν̃ can have positive

mass only at these points, ν̃(jωi) = ν̃i and we have
k1∑
i=1

ν̃i = 1. So, we have

Popt(jωi)

R(jωi)
= lopt, i = 1, 2, . . . , k1

and equation (3.105) can be replaced as follows,

k1∑
i=1

Popt(jωi)

R(jωi)
ν̃i = lopt, k1 ≤ 2N. (3.108)

If the optimal Popt > 0 on jR, i.e, the constraint, P ≥ 0 is not active at the optimum,
then (3.106) clearly implies the measure λ̃ = 0. The case when Popt is identically equal
to zero cannot occur since 0 /∈ HN

R as discussed immediately after definition 3.2.6 of HN
R .

So, if we say Popt has k2 zeros on jR (k2 ≤ 2N), denote them as jγ1, jγ2, . . . , jγk2 , (3.106)
clearly implies that the positive measure λ̃ can have positive mass only at these points.
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After multiplying the positive weight 1
1+|ω|2N+1 to the measure λ̃, we name it again as λ̃ and

denote λ̃(jγi) = λ̃i. So, equation (3.106) can be replaced as follows,

k2∑
i=1

−Popt(jγi)λ̃i = 0, k2 ≤ 2N. (3.109)

Thus, to sum up, it follows from (3.107), (3.108) and (3.109) that the solution to the
following unconstrained optimization problem

min
P∈P2N

( k1∑
i=1

P (jωi)

R(jωi)
ν̃i −

k2∑
i=1

P (jγi)λ̃i + 〈A(P ), Ũ〉
)
, (3.110)

coincides with the solution to problem PC . We have Popt and (ν̃, λ̃, Ũ) to be the primal
and dual optimal with zero duality gap. Since Popt minimizes L(P, ν̃, λ̃, Ũ) over P ∈ P2N ,
if we assume that Popt has no common zeros with R on the imaginary axis, the Lagrangian
is differentiable and its gradient must vanish at Popt, that is,

k1∑
i=1

1

R(jωi)

∂Popt(jωi)

∂pm
ν̃i −

k2∑
i=1

∂Popt(jγi)

∂pm
λ̃i +

〈
∂A(Popt)

∂pm
, Ũ

〉
= 0 (3.111)

for m = 0, 1, . . . , 2N , where [p2N , p2N−1, . . . , p1, p0] denote the coefficients of Popt ∈ P+
2N

in the standard basis {s2N , s2N−1, . . . , s, 1}. In summary, the Karush-Kuhn-Tucker (KKT)
conditions are satisfied and this completes the proof of theorem 3.3.10. The reader can
note that the derivative of the matrix A(Popt) = −∆(Popt) in (3.111) with respect to the
coefficients of Popt can be calculated once we know the derivative of the outer function UPopt
with respect to the coefficients of Popt. This in fact can be calculated once we know the
Jacobian of the maps providing the spectral factor qopt of Popt + R and popt of Popt. The
calculation of this Jacobian is explained in the next chapter in (4.38).

Simplification at the optimum

In theorem 3.3.10, now let us consider the case when Popt and R have some common zeros
on the imaginary axis, denoted by jα1, jα2, . . . , jαk, where k ≤ 2N . These common zeros
can occur only outside the passband since the fixed transmission polynomial R of the global
system is assumed not to have any zeros in the passband I. It should be noted that in this
case, the Pick matrix ∆(Popt) as defined in (3.30) is non-differentiable. The common zeros
of Popt and R, represented by jαi’s are not assumed to be distinct and it should be noted
that since Popt and R are positive polynomials, these zeros on the imaginary axis necessarily
have even multiplicity. If we denote, C(s) = (s − jα1)(s − jα2) . . . (s − jαk), then C(s)

is a positive polynomial of degree k. Let us denote, R̃(s) = R(s)
C(s)
∈ P+

2N−k. It should be

noted that P̃opt = Popt
C
∈ P+

2N−k is the optimal solution for lower order version of problem

PC with optimisation space P2N replaced by P2N−k and R replaced by R̃. This can be
seen by the fact, if this is not the case, say if P̂ 6≡ Popt

C
in P+

2N−k solves the lower order

problem with a better criterion, then P̂ (s)C(s) in P+
2N which is not identically equal to Popt

solves the primal problem PC with a better criterion, contradicting the optimality of the
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solution Popt to PC . So, it follows from the previous proof that there exists non-negative

real numbers ν̃1, ν̃2, . . . , ν̃k̃1
, λ̃1, λ̃2, . . . , λ̃k̃2

, k̃1 ≤ 2N − k, k̃2 ≤ 2N − k, where
k̃1∑
i=1

ν̃i = 1,

matrix Ũ ∈ S+
M , points jω1, jω2, . . . , jωk̃1

in I and points jγ1, jγ2, . . . , jγk̃2
in jR, such that,

P̃opt = Popt
C
∈ P+

2N−k satisfies

P̃opt(jωi)

R̃(jωi)
= lopt, i = 1, 2, . . . , k̃1

and it solves the following unconstrained optimization problem

min
P∈P2N−k

( k̃1∑
i=1

P (jωi)

R̃(jωi)
ν̃i −

k̃2∑
i=1

P (jγi)λ̃i + 〈Ã(P ), Ũ〉
)
, (3.112)

where

Ã(P ) =

{
−∆̃(P ), P ∈ P+

2N−k,
+∞IM , otherwise,

∆̃(P ) represent the Pick matrix defined in (3.30) with R replaced by R̃ in the definition of
UP in (3.19). Now, as in the previous case, we have the KKT condition satisfied,

k̃1∑
i=1

1

R̃(jωi)

∂P̃opt(jωi)

∂pm
ν̃i −

k̃2∑
i=1

∂P̃opt(jγi)

∂pm
λ̃i +

〈
∂Ã(P̃opt)

∂pm
, Ũ

〉
= 0 (3.113)

for m = 0, 1, . . . , 2N − k, where [p2N−k, . . . , p1, p0] denote the coefficients of P̃opt ∈ P+
2N−k.

So, we have written down the KKT condition for problem PC in the cases when Popt and
R have common zeros or not. In this subsection, ‘Simplifications at the optimum’, we
have tackled the case, the Pick matrix ∆(Popt) as defined in (3.30) is non-differentiable by
formulating the unconstrained dual problem in a lower dimension. We will conclude this
section here and in the next section, we move to the illustration of some results of the
numerical implementation of problem PC on some antenna prototypes.

3.4 Results

In this section, we will present some numerical illustrations of the matching results obtained
on some concrete antenna examples. Before this illustration, we will provide a brief descrip-
tion of the synthesis of the optimal global reflection for a given load of McMillan degree
M starting from the optimal solution Popt ∈ HN

R to problem PC and then the extraction of
the matching filter from this global response as well.

As discussed in proposition 3.3.2 about the characterisation of HN
R , if P ∈ HN

R i.e the
Pick matrix ∆(P ) � 0, there exist a Schur function bP (s) of at most degree M such
that the global reflection coefficient S22 = bPUP of degree at most N + M satisfy the de-
embedding conditions for the given load, S22(ξi) = L22(ξi), 1 ≤ i ≤ M . For any P ∈ HN

R ,
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the corresponding function bP (s) can be computed by the Schur recursion described in
appendix C. Let us define

EPM =

{
b ∈ B : b(ξi) =

L22(ξi)

UP (ξi)
, 1 ≤ i ≤M

}
. (3.114)

As stated in theorem C.1.1 in appendix C, the recursion procedure provides the interpolant
function bP (s) ∈ EPM of at most degree M . In the case of non-optimal feasible solution
for problem PC , i.e for P ∈ P+

2N at which ∆(P ) � 0, EPM contains more than one Schur
function and is parametrised by theorem C.1.1 as

bP (s) =
AM(s) +BM(s)fM(s)

CM(s) +DM(s)fM(s)
, (3.115)

for some fM ∈ B and the polynomials AM , BM , CM , DM ∈ PM are computed by means
of Schur recursion from the interpolation data. If we choose fM(s) = c, a uni-modular
constant, then the Schur interpolant takes the form

bP (s) =
AM(s) +BM(s)c

CM(s) +DM(s)c
, (3.116)

and as discussed in remark C.1.2 in appendix C, b(s) is a blaschke product of degree M .
This provides the global reflection S22 = bPUP of degree N + M which satisfy the de-
embedding conditions for the given load. Furthermore, at the optimal solution Popt of

problem HN
R (Pick matrix ∆(Popt) is singular), EPoptM contains only a blaschke product bPopt

of degree equal to the rank of the Pick matrix. Let us denote this degree by d ≤ M − 1.
So, we have the optimal global reflection S22 = bPoptUPopt of degree N + d which satisfy the
de-embedding conditions for the given load.

3.4.1 Extraction of the Matching Filter

Once we obtain the optimal global reflection S22, it is important in practice to compute
the matching filter which provides this S22. Following the Fano-Youla approach of the
global system synthesis, throughout this chapter, we have discussed the optimsation scheme
focused on the minimisation of the magnitude of the output reflection coefficient of the
global system, |S22(jω)| within a given passband I. It should be noted that this also
provides the optimal input reflection coefficient for the global system since we are dealing
with lossless systems (for all ω ∈ R, |S11(jω)| = |S22(jω)|). The classical matching problem
is to minimise the input reflection coefficient of the total system (matching circuit + load)
in the passband of interest.

The matching filter providing the optimal global reflection can be computed directly by
de-embedding the load from the global system. Let us denote the optimal global reflection
coefficient

S22 =
p

q
= bPoptUPopt =

a∗

a

pU
qU
, (3.117)

where bPopt = a∗

a
is a blaschke product of degree d ≤M − 1 (a ∈ Pd is a stable polynomial)

and UPopt = pU
qU

is an outer function which satisfies pU , qU ∈ PN and qUq
∗
U − pUp

∗
U = R,
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the fixed transmission polynomial stated at the beginning of subsection 3.2.2. It should be
noted that, because of the additional degree introduced by the Blaschke, with respect to
the constraint set of problem P defined in equation (3.13), the optimal global reflection S22

obtained by solving problem PC only satisfies S22 ∈ FN+d
aa∗R since qq∗ − pp∗ = aa∗R. This

means that compared to the initial fixed transmission polynomial R for the global system,
now it is aa∗R and d additional transmission zeros are introduced in the global system at
the points where the polynomial a∗ vanishes. In general, once we have the optimal global
reflection, the output reflection coefficient of the matching filter F22 can be computed by
equation (3.4) :

F22 =
S22 − L22

S22L11 − det(L)
. (3.118)

If we denote the Darlington extension of the load by

L =
1

qL

(
p∗L −r∗L
rL pL

)
,

such that rLr
∗
L

def
= RL = qLq

∗
L − pLp∗L, the de-chaining formula for F22 in (3.118) reduces to

F22 =
pqL − pLq
pp∗L − qq∗L

. (3.119)

In the above rational expression of F22, it can be noted that the numerator and the de-
nominator are of degree N + d + M . Since we have S22(ξi) = L22(ξi), 1 ≤ i ≤ M and all
ξi’s in Π+ belonging to the set of transmission zeros of the global system as well, it can be
easily verified that in the above expression for F22 there are pole-zero cancellations at ξi
and −ξ̄i, 1 ≤ i ≤ M (see section C.1 in appendix C) leading to 2M simplification. Thus,

we have F22
def
= pF

qF
, where pF , qF ∈ PN−M+d and so, we have the following scattering matrix

of McMillan degree N −M + d for the optimal matching filter,

F =
1

qF

(
p∗F −r∗F
rF pF

)
,

where the polynomial rF ∈ PN−M+d satisfies rF r
∗
F

def
= RF = qF q

∗
F − pFp∗F and RFRL = R.

So there is an additional degree d to the desired McMillan degree N −M for the matching
filter. This increase in the degree of the matching filter is the price to pay for the convex
relaxation of the problem. It should be noted that since d ≤M − 1, the maximal degree of
the optimal matching filter is N − 1. Nevertheless, it should also be noted that if the load
is of degree M = 1, there occurs no increase in the degree, S22 belongs to FNR and it solves
problem P as well. So, in practice for most of the antennas which feature single resonance,
the approach provides sharp lower bounds for the matching criterion and a procedure to
extract the matching circuit of desired degree which achieves this optimal global reflection.
When the load is of higher degree, the approach provides optimal global reflections level
that can be achieved using matching circuits of degree d more than the initial desired degree.

In addition, it should be noted that, in problem PC , for any P ∈ HN
R where P 6≡ Popt,

we are able to furnish a global reflection coefficient S22 of degree N +M as well,

S22 = bPUP , (3.120)
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where bP is a blaschke product of degree M and UP is an outer function of degree N which
satisfies |UP | > |UPopt| on the imaginary axis. So, following the same explanation above,
we can furnish a matching filter of degree N which provides this global reflection. It means
there is an increase of degree M compared to the desired McMillan degree N − M for
the matching filter. We conclude here this brief description about the extraction of the
matching filter providing the synthesized global response. In the next subsection, we will
provide a couple of examples to demonstrate the optimisation scheme discussed in this
chapter.

3.4.2 Example 1 : Superdirective Antenna

In the first example, we present the same antenna example that was illustrated in subsection
2.4.1 in chapter 2. The scattering parameter of the load with McMillan degree M = 2 is
depicted in figure 3.2. The passband I of interest represented by the shaded rectangle
extends from 870MHz to 900MHz.
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Figure 3.2: Scattering parameter of load with McMillan Degree 2.

The result of solving problem PC withN = 6 is presented in figure 3.3. The transmission
zeros of the matching circuit were all fixed at infinity (RF = 1). The solution to problem
PC provided the optimal matching circuit of McMillan degree 5 which provided a reflection

level L̂opt = 20log

(√
Lopt
Lopt+1

)
= −8.53 dB. It can be observed in figure 3.3 that the global

reflection S11 attains L̂opt at (N + 1) = 7 times in the passband I characterizing the
optimality of the obtained response as mentioned in theorem 3.3.8. By using the matching
circuit, it can be noted that the value of the maximal mismatch of the load in the passband
has been improved from -1.37 dB (L11 at 870 MHz) to -8.53 dB. The scattering parameter
of the matching circuit F22 that provides this optimal criterion is shown in figure 3.4.
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Figure 3.3: Result of problem PC with N = 6.
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Figure 3.4: Scattering parameter of the optimal matching circuit with McMillan Degree 5.
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3.4.3 Example 2 : Dual Band Antenna

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

−30

−20

−10

0

Frequency (GHz)

M
ag

n
it

u
d
e

(d
B

) L11

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
−6

−4

−2

0

2

4

Frequency (GHz)

P
h
as

e
(r

ad
)

L11

Figure 3.5: Scattering parameter of load with McMillan Degree 3.

In the second example, we present the matching results obtained for a dual band antenna
presented in [37]. The scattering parameter of the load with McMillan degree M = 3 is
depicted in figure 3.5. In this example, the targeted passband in the matching problem was
fixed to be 1.21 GHz - 1.24 GHZ (GPS L2 band), 1.26 GHz - 1.3 GHZ (Galileo E6 band)
and 1.55 GHz - 1.6 GHZ (GPS L2 band). The result of solving problem PC with N = 10
is presented in figure 3.6. The transmission zeros of the matching circuit were all fixed at
infinity (RF = 1). The solution to problem PC provided the optimal matching circuit of

McMillan degree 9 which provided a reflection level L̂opt = 20log

(√
Lopt
Lopt+1

)
= −11.46 dB.

It can be observed in figure 3.6 that the global reflection S11 attains L̂opt at (N + 1) = 11
times in the passband I characterizing the optimality of the obtained response as mentioned
in theorem 3.3.8. By using the matching circuit, it can be noted that the value of the
maximal mismatch of the load in the passband has improved significantly from -1.9 dB
(L11 at 1.3 GHz) to -11.46 dB.
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Figure 3.6: Result of problem PC with N = 10.

3.4.4 Analytic Examples

In this subsection, we will consider the two analytic examples of antenna that was pre-
sented in subsection 2.4.2 in chapter 2. In these cases, we will discuss the results obtained
by the implementation of problem PC for different degrees of matching circuits and also its
comparison to the classical matching criterion bound obtained by Fano in [36].

(i). Degree 1 Antenna
In this example, the polynomials pL, qL and rL and uni-modular constant ε in the Belevitch
representation of the scattering matrix of the load in (2.34) were fixed to be

pL(s) = s, rL(s) = −1, qL(s) = s+ 1 and ε = −1.

So, we have a load of degree 1 with L11(s) = L22(s) = s
s+1

and a transmission zero at
infinity. The targeted passband for matching is [−1j, 1j]. The reflection coefficient of the
this antenna, L11 is depicted in figure 3.7. The shaded rectangle in the figure represent the
targeted passband and Im(.) is used to denote the imaginary part.

For this antenna, as detailed in (2.101) in chapter 2, we have the Fano bound,

FB = −13.64 dB.

Now, we present the result obtained by solving problem PC with N = 5 for this antenna.
We remind the reader that throughout this chapter, in the discussion of problem PC , for
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Figure 3.7: Scattering parameter of load with McMillan Degree 1.

simplicity we considered the transmission zeros of the given load, ξi, 1 ≤ i ≤M in Π+. In
this example, for the purpose of comparing the obtained results with the Fano bound, we
consider the load with transmission zero at ∞. To handle such cases of transmission zero
on the boundary of the analyticity domain, jR, it should be noted that we can compute the
Pick matrix as the limit of the classical Pick matrix defined in (3.30) when the interpolation
points tend non-tangentially to the boundary. The reader can find a detailed description
of boundary Nevanlinna-Pick interpolation in chapter 21, [8]. In the analytic examples we
consider in this section, the given load has one transmission zero at infinity with the value
of L22 at infinity equal to 1. In order to handle this case, we can obtain the new Pick matrix
as the limit of the Pick matrix [∆]1≤i,j≤M ,

∆ij =
1− L22(ξi)

UP (ξi)

L22(ξj)

UP (ξj)

ξi + ξj
, (3.121)

defined in (3.30) when the interpolation point, say ξ1 tends non-tangentially to infinity. In
order to detail this, let us consider the interpolation problem : Let ξ1 =∞, ξm, 2 ≤ m ≤M
be distinct points in Π+ and let γm, 2 ≤ m ≤ M be complex numbers such that |γm| <
1, 2 ≤ m ≤ M and γ1 = 1; under which conditions, there exists a function f ∈ H∞(Π+)
such that

f(ξm) = γm, 1 ≤ m ≤M, ||f ||H∞ ≤ 1. (3.122)

For the problem with all the interpolation points in Π+, i.e ξm, 1 ≤ m ≤ M in Π+ and
γm : complex numbers such that |γm| < 1, 1 ≤ m ≤ M , it follows from Nevanlinna-Pick
theorem that the interpolation problem is solvable if and only if the matrix

∆ =

[
1− f(ξm)f(ξn)

ξm + ξn

]
1≤m,n≤M

(3.123)

is positive semi-definite. To deal the case when ξ1 = ∞ and f(∞) = γ1 = 1, we will
multiply the first line and column in matrix in (3.123) by ξ1 and ξ1 respectively and then
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take the limit of the Pick matrix [∆]1≤i,j≤M when ξ1 tends non-tangentially to infinity.
Denoting δ1 = 1

ε1
, we obtain the first element of the modified Pick matrix, ∆̃ as

∆̃11 = lim
δ1→0

1

|δ1|2
1− |f( 1

δ1
)|2

( 1
δ1

+ 1
δ1

)
= lim

δ1→0

1− |f( 1
δ1

)|2

(δ1 + δ1)
.

Applying L’Hôpital’s rule and from the assumption that f(∞) = 1, we have

∆̃11 = −f ′(∞) = −ang[f ](∞).

We can obtain the non-diagonal elements in the first row of ∆̃ as, for 2 ≤ n ≤M ,

∆̃1n = lim
δ1→0

1

δ1

1− f( 1
δ1

)f(ξn)
1
δ1

+ ξn
= 1− f(ξn).

Similarly, the non-diagonal elements in the first column of ∆̃ can be obtained as, for 2 ≤
m ≤M ,

∆̃m1 = lim
δ1→0

1

δ1

1− f(ξm)f( 1
δ1

)

ξm + 1
δ1

= 1− f(ξm).

Thus, for problem in (3.122), we have the (M ×M) Pick matrix as follows :

∆̃ =



−ang[f ](∞) 1− f(ξ2) 1− f(ξ3) . . . 1− f(ξM)

1− f(ξ2) ∆22 ∆23 . . . ∆2M

1− f(ξ3) ∆32 ∆33 . . . ∆3M

...
...

... . . .
...

1− f(ξM) ∆M2 ∆M3 . . . ∆MM


, (3.124)

where ∆ is the classical Pick matrix defined in (3.123). Now, in the analytic examples we
consider, in problem in (3.122), we have f = L22

UP
, where the given load satisfies, L22(∞) = 1

and in the construction of UP in (3.19), we assume UP (∞) = 1. Thus, by the calculation
described above, in problem PC if one interpolation point is at infinity (ξ1 = ∞) and
L22(∞) = 1, the theory described in this chapter can be used with the modification in the
Pick matrix as shown in (3.124), where we have,

−ang[f ](∞) = ang[UP ](∞)− ang[L22](∞), (3.125)

1− f(ξi) = 1− L22(ξi)

UP (ξi)
, 2 ≤ i ≤M, (3.126)

1− f(ξi) = 1− L22(ξi)

UP (ξi)
, 2 ≤ i ≤M, (3.127)

∆ij =
1− L22(ξi)

UP (ξi)

L22(ξj)

UP (ξj)

ξi + ξj
, 2 ≤ i, j ≤M. (3.128)
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The positive semi definite character of the Pick matrix imposed the non negativity of its
diagonal terms. As shown by equation (3.125) the condition at infinity translates as,

ang[UP ](∞) ≥ ang[L22](∞)

which is exactly the Fano condition applied to the exterior factor UP . It is therefore readily
seen than when the load is of degree one with a transmission zero at infinity the condi-
tion imposed by the Pick matrix positivity is equivalent to the restriction that yields the
Fano bound. For more complex loads with additional transmission zeros, Fano’s condition
appears only as one of many scalar conditions weighing on UP . A complete set of such
conditions can be derived by Sylvester’s criterion that asks for the non negativity of all
principal minors of the Pick matrix.

The numerical result obtained by considering this modification in the Pick matrix and
solving problem PC is depicted in figure 3.8 together with the Fano bound. The green
shaded rectangle inside the passband is used to denote the difference in the optimal criterion
obtained and the Fano bound. The optimal system reflection was obtained to be
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Figure 3.8: Optimal System reflection S22 obtained by solving PC for N = 5.

S22(s) = bPopt(s)UPopt(s), (3.129)
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where

bPopt(s) = 1, UPopt(s) =
s5 + 1.1s4 + 1.7s3 + 1.1s2 + 0.58s+ 0.13

s5 + 2.1s4 + 3.2s3 + 3s2 + 1.8s+ 0.55
.

The output reflection coefficient of the degree 4 matching filter providing this optimal
response was found be to

F22(s) =
−0.5s4 − 0.27s3 − 0.18s2 + 0.16s+ 0.13

−0.5s4 − 1.3s3 − 1.8s2 − 1.4s− 0.55
.

As expected, the optimal level attained using degree 4 matching circuit by solving convex
problem PC , −11.95 dB for this example is better (lower) than the one obtained using
equi-oscillating response in chapter 2 (−11.71 dB). This is in agreement with the theory
developed in chapter 2 and 3 since we haven’t fixed the shape of global response in problem
PC compared to the global response in problem P2. In figure 3.9, we present the optimal
level obtained by solving problem PC using different degrees of reference functions, UP in a
tabular form. Similar to the equi-oscillating optimal response in chapter 2, it can be noticed
that the optimal level attained is close to the Fano bound (difference of 1.69 dB) and as the
degree of the matching circuit (M.C) increases, the optimal level attained is getting closer
to the Fano bound. Since this antenna is of degree one with the only transmission zero at
infinity, the difference of the optimal level attained from the Fano bound comes only from
the finite degree constraint of matching circuit we have in problem PC . In problem P2 in
chapter 2, we had the additional constraint of fixed equi-oscillating shape as well for the
global response.

Degree of UP (N) Degree of M.C (N−1) Optimal level
2 1 -8.36 dB
3 2 -10.28 dB
4 3 -11.32 dB
5 4 -11.95 dB
6 5 -12.36 dB
7 6 -12.63 dB
8 7 -12.83 dB
9 8 -12.97 dB
10 9 -13.08 dB

Figure 3.9: Optimal level obtained by solving PC for different N .

We also present a table of comparison of the optimal matching criterion obtained by
solving problem P2 (chapter 2) and problem PC (chapter 3) in figure 3.10. As expected, the
optimal level attained in problem PC is better (lower) than the one obtained in problem
P2 for each degree of matching circuit.
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Degree of M.C Optimal level in P2 Optimal level in PC

1 -7.76 dB -8.36 dB
2 -9.90 dB -10.28 dB
3 -11.15 dB -11.32 dB
4 -11.71 dB -11.95 dB
5 -12.13 dB -12.36 dB
6 -12.27 dB -12.63 dB
7 -12.40 dB -12.83 dB
8 -12.52 dB -12.97 dB
8 -12.75 dB -13.08 dB

Figure 3.10: Comparison of optimal level obtained by solving P2 and PC .

(ii). Degree 3 Antenna
In this example, we consider the same degree 3 antenna that was presented in subsection
2.4.2 in chapter 2. The polynomials pL, qL and rL and uni-modular constant ε in the
Belevitch representation of the scattering matrix of the load in (2.34) were fixed to be

pL(s) = −s3 + (0.1 + 0.2j)s2 + (0.09 + 0.35j)s+ (0.046 + 0.2j),

rL(s) = s2 + (0.8 + 0.6j)s+ (0.42 + 0.12j),

qL(s) = s3 + (2.022− 0.2j)s2 + (1.449 + 0.25j)s+ (0.483− 0.023j) and

ε = 1

as in (2.102). So, we have a load of degree 3 with transmission zeros at (0.5− 0.9j), (0.3 +
0.3j), ∞. The targeted passband for matching is [−1j, 1j]. The reflection coefficient of the
this antenna, L11 is depicted in figure 3.11. The shaded rectangle in the figure represent
the targeted passband and Im(.) is used to denote the imaginary part. For this antenna,
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Figure 3.11: Scattering parameter of load with McMillan Degree 3.
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as detailed in (2.103) in chapter 2, we have the Fano bound,

FB =
10π(−1.922)

ln 10
= −26.22 dB.
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Figure 3.12: Optimal System reflection S22 obtained by solving PC for N = 5.

Similar to the previous example, we present the result obtained by solving problem
PC using modified Pick matrix as detailed in last example with N = 5 for this antenna.
The result obtained is depicted in figure 3.12 together with the Fano bound. The green
shaded rectangle inside the passband is used to denote the difference in the optimal criterion
obtained and the Fano bound. The optimal system reflection was obtained to be

S22(s) = bPopt(s)UPopt(s), (3.130)

where

bPopt(s) =
s2 − (0.55− 0.17j)s + (0.1− 0.15j)

s2 + (0.55 + 0.17j)s + (0.1 + 0.15j)
,

UPopt(s) =
s5 + (0.71 + 0.079j)s4 + (1.4 + 0.14j)s3 + (0.6 + 0.1j)s2 + (0.33 + 0.081j)s + (0.055 + 0.00091j)

s5 + (1.5 + 0.079j)s4 + (2.3 + 0.21j)s3 + (1.7 + 0.25j)s2 + (0.81 + 0.17j)s + (0.18 + 0.0035j)
.
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The output reflection coefficient of the degree 4 matching filter providing this optimal
response was found be to

F22(s) =
−(0.5− 0.17j)s4 − (0.35− 0.14j)s3 − (0.33− 0.11j)s2 − (0.084− 0.002j)s− (0.02 + 0.0083j)

−(0.5 + 0.17j)s4 − (0.76 + 0.24j)s3 − (0.76 + 0.3j)s2 − (0.26 + 0.2j)s− (0.033 + 0.068j)
.

In figure 3.13, we present the optimal level obtained by solving problem PC using different
degrees of reference functions, UP in a tabular form.

Degree of UP (N) Degree of M.C (N−1) Optimal level
4 3 -7.79 dB
5 4 -9.07 dB
6 5 -9.85 dB
7 6 -10.35 dB
8 7 -10.67 dB
9 8 -10.87 dB
10 9 -11.01 dB

Figure 3.13: Optimal level obtained by solving PC for different N .

As expected, the optimal level attained using degree 4 matching circuit by solving convex
problem PC , −9.07 dB for this example is better (lower) than the one obtained using equi-
oscillating response in chapter 2 (−8.66 dB). We also present a table of comparison of the
optimal matching criterion obtained by solving problem P2 (chapter 2) and problem PC

(chapter 3) for different degrees of matching circuit (M.C) in figure 3.14.

Degree of M.C Optimal level in P2 Optimal level in PC

3 -7.57 dB -7.79 dB
4 -8.66 dB -9.07 dB
5 -9.42 dB -9.85 dB
6 -10.13 dB -10.35 dB
7 -10.36 dB -10.67 dB
8 -10.49 dB -10.87 dB
9 -10.66 dB -11.01 dB

Figure 3.14: Comparison of optimal level obtained by solving P2 and PC .

Similar to the equi-oscillating response in chapter 2, the optimal levels obtained by
solving problem PC for different degrees of matching circuit are relatively far from the
Fano bound in this example (−26.22 dB). As explained in last chapter, this is due to the
fact that the antenna under consideration has two transmission zeros at finite complex
frequencies which are not taken into account in the derivation of Fano bound in (2.100).

Flip Zero of pL in degree 3 example - making L22 outer
Now, we consider the same degree 3 antenna example with zeros of pL in Π− flipped to
Π+ as did in chapter 2. The polynomials pL, qL and rL and uni-modular constant ε in the
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Belevitch representation of the scattering matrix of the load in (2.34) were now fixed to be

pL(s) = −s3 + (1.3 + 0.2j)s2 − (0.75− 0.07j)s+ (0.21− 0.022j),

rL(s) = s2 + (0.8 + 0.6j)s+ (0.42 + 0.12j),

qL(s) = s3 + (2.022− 0.2j)s2 + (1.449 + 0.25j)s+ (0.483− 0.023j) and

ε = 1.

It should be noted that zeros of p∗L, (−0.2− 0.5j), (−0.7 + 0.5j), (−0.4 + 0.2j) are now

in Π− making L22 =
εp∗L
qL

outer. The angular derivative of L22 is now ang[L22](∞) = −0.722
which is different from the case when L22 was not outer and we have the new Fano bound,

FB =
10πang[L22](∞)

ln 10
= −9.85 dB.

As we mentioned in chapter 2, the flipping of zeros inside Π− of pL has increased the Fano
bound significantly from -26.22 dB to -9.85 dB. Now, we present the result obtained by
solving problem PC using modified Pick matrix using degree of reference function, N = 5
in this case. The optimal system reflection was obtained to be

S22(s) = bPopt(s)UPopt(s), (3.131)

where,

bPopt(s) =
s2 − (0.14 + 3.2j)s + (0.19 + 0.075j)

s2 + (0.14− 3.2j)s + (0.19− 0.075j)
,

UPopt(s) =
s5 + (0.84 + 0.2j)s4 + (1.5 + 0.15j)s3 + (0.72 + 0.21j)s2 + (0.39 + 0.074j)s + (0.052 + 0.0051j)

s5 + (1.3 + 0.2j)s4 + (1.9 + 0.25j)s3 + (1.3 + 0.31j)s2 + (0.62 + 0.15j)s + (0.12 + 0.011j)
.

The output reflection coefficient of the degree 4 matching filter providing this optimal
response was found be to

F22(s) =
−(0.5 + 0.46j)s4 − (0.39− 0.16j)s3 − (0.4− 0.018j)s2 − (0.068− 0.17j)s− (0.0022− 0.016j)

−(0.5− 0.46j)s4 − (0.67− 1.1j)s3 − (0.7− 1.4j)s2 − (0.27− 0.86j)s− (0.052− 0.019j)
.
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Figure 3.15: Optimal S22 obtained by solving PC for N = 5 for outer L22.

In figure 3.16, we present the optimal level obtained by solving problem PC for this
antenna using different degrees of reference functions, UP in a tabular form.

Degree of UP (N) Degree of M.C (N−1) Optimal level
4 3 -4.25 dB
5 4 -4.76 dB
6 5 -5.05 dB
7 6 -5.26 dB
8 7 -5.40 dB
9 8 -5.51 dB
10 9 -5.59 dB

Figure 3.16: Optimal level obtained by solving PC for different N for outer L22.

We also present a table of comparison of the optimal matching criterion obtained by
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solving problem P2 (chapter 2) and problem PC (chapter 3) for different degrees of matching
circuit (M.C) in figure 3.17 for this antenna with outer L22.

Degree of M.C Optimal level in P2 Optimal level in PC

3 -4.14 dB -4.25 dB
4 -4.66 dB -4.76 dB
5 -4.80 dB -5.05 dB
6 -4.92 dB -5.26 dB
7 -5.12 dB -5.40 dB
8 -5.21 dB -5.51 dB
9 -5.29 dB -5.59 dB

Figure 3.17: Comparison of optimal level obtained by solving P2 and PC .

Before concluding the chapter, we will devote a section to make a comparison of the
approaches discussed in chapter 2 and chapter 3 to solve the matching problem and present
the connection between these approaches.

3.5 Nehari Theory and Nevanlinna-Pick Theory

In chapter 2, we have used Nehari theory and the realizability test based on the Hankel
operator to solve the matching problem, whereas in this chapter, it is based on the interpo-
lation theory and positivity of Nevanlinna-Pick matrix. We will make a brief comparison
of these approaches and then present the connection between two approaches. This will
be done by demonstrating an elegant way of arriving at the Pick matrix positivity con-
straint presented in this chapter starting from the norm constraint on the Hankel operator
discussed in chapter 2.

In comparison to the approach presented in chapter 2, it should be noted that in this
chapter we have provided further flexibility to the modulus of realizable global response
by parameterizing it using the set of positive polynomials in P+

2N . A brief summary of the
important points in the presented approaches in both chapters is given below for the sake of
comparison. In chapter 2, we had the following important steps in the presented approach.

• Relaxed Problem : Does there exist F22 ∈ B such that

|δ(F22(jω), L11(jω))| ≤ |kα(jω)|, ω ∈ R ? (3.132)

• Optimisation over a class of reference functions kα whose modulus on the imaginary
axis is parametrised by the real parameter α,

Case (i). |kα|2 =
|pk|2

|pk|2 + α|rL|2
, Case (ii). |kα|2 =

|pk|2
|pk|2 + α

.

• kα is realizable if and only if ||HΦ|| ≤ 1, where the symbol Φ of the Hankel operator is

Φ = 1
V

(
1−|kα|2

1−|kα|2|L11|2

)
L11 and V is the outer function satisfying |V | =

∣∣∣∣ (1−|L11|2)
1−|kα|2|L11|2

∣∣∣∣|kα|
on the imaginary axis.
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• At the optimal α̂, we have ||HΦ|| = 1 and hence |S11(jω)| = |kα̂(jω)|.

In the current chapter, we have the following main steps in the presented approach.

• Relaxed Problem : Does there exist F22 ∈ B such that

|(F22 ◦ L)(jω)| ≤ |UP (jω)|, ω ∈ R ?

• Optimisation over a class of reference functions UP whose modulus on the imaginary
axis is parametrised by P ∈ P+

2N ,

|UP |2 =
P

P +R
.

• UP is realizable if and only if ∆(P ) � 0, where ∆ij =
1−
(
L22(ξi)

UP (ξi)

)(
L22(ξj)

UP (ξj)

)
ξi+ξj

, 1 ≤ i, j ≤M .

• At the optimal Popt, we have ∆(Popt) singular and hence |S22(jω)| = |UPopt(jω)|.

In both chapters, we are able to furnish optimal matching circuits of maximal McMillan
degree N − 1 by using reference functions of degree N .

3.5.1 Pick Matrix Positivity from Nehari Test

In this subsection we will give a brief overview of the classical connection between Hankel
operators and Nevanlinna-Pick matrix to an analytic interpolation problem. Then, we will
illustrate this connection in our setting with respect to the approaches discussed in chapter
2 and 3 for solving the matching problem.

Hankel Operator and Nevanlinna-Pick Matrix

The connection of Hankel operators and Nevanlinna-Pick matrix to analytic interpolation
problems are quite classic (Chapter 1, Section 4, [71]). In order to briefly describe this
connection, we consider the following problem: Let ξm, 1 ≤ m ≤ M be distinct points in
Π+ and let γm, 1 ≤ m ≤ M be complex numbers such that |γm| < 1, 1 ≤ m ≤ M ; under
which conditions, there exists a function f ∈ H∞(Π+) such that

f(ξm) = γm, 1 ≤ m ≤M, ||f ||H∞ ≤ 1. (3.133)

The problem (3.133) can be easily reduced to a problem about the Hankel operators. Let
g be an arbitrary function in H∞(Π+) for which g(ξm) = γm, 1 ≤ m ≤ M . For example,
g can be constructed as the Lagrange interpolating polynomial that assumes at each value
ξm, the corresponding value γm. If b is the Blaschke product with zeros at ξm,

b(s) =
M∏
m=1

s− ξm
s+ ξm

,
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then a function f ∈ H∞(Π+) interpolates the values γm at ξm if and only if f has the form
f = g− bh, h ∈ H∞. So, it follows from Nehari theorem (Theorem 2.2.6) that the problem
in (3.133) is solvable if and only if

inf
h∈H∞

||g − bh||∞ = inf
h∈H∞

||b̄g − h||∞ = ||Hb̄g|| ≤ 1,

where Hb̄g is the Hankel operator with symbol b̄g. The condition ||Hb̄g|| ≤ 1 can be easily
reformulated in terms of the interpolation data as well (Chapter 1, Theorem 4.1, [71]):

Theorem 3.5.1. The interpolation problem in (3.133) is solvable if and only if the matrix[
1− γmγn
ξm + ξn

]
1≤m,n≤M

is positive semi-definite.

The matrix in theorem 3.5.1 is the Nevanlinna-Pick matrix associated with the interpo-
lation data in problem (3.133). Having described this classical connection between Hankel
operators and Nevanlinna-Pick matrix to analytic interpolation problem in (3.133), we are
in a position to connect the approaches discussed in chapter 2 and chapter 3.

Nehari Test and Pick Matrix Test for Matching Problem

In order to easily depict the connection between approaches discussed in chapter 2 and
chapter 3, we consider the following setting : we are given a passband I, reflection coef-
ficient L11 ∈ B and a reference function kα = pk

qk
of degree N as described in case (ii) in

subsection 2.3.1 in chapter 2 which satisfies qkq
∗
k−pkp∗k = αrLr

∗
L. We will consider the Dar-

lington extension L of the load with transmission zeros ξ1, ξ2, . . . , ξM in Π+ and consider
the problem: does there exist F22(s) ∈ H∞(Π+) such that

|(F22 ◦ L)(jω)| ≤ |kα(jω)|, ω ∈ R ? (3.134)

If yes, find the F22 which achieves this. It should be noted that this problem is equivalent
to the problem (2.45) stated in chapter 2, but after considering the Darlington extension of
the load and then using port 2 of the global system to state the problem. By the definition
of chaining operation in (3.3), the inequality in (3.134) implies that on the imaginary axis,∣∣∣∣L22 +

L12L21F22

1− F22L11

∣∣∣∣ ≤ |kα|. (3.135)

We define the Blaschke product b(s) with zeros ξm, 1 ≤ m ≤M ,

b(s) =
r∗L
rL

=
M∏
m=1

s− ξm
s+ ξm

. (3.136)

So, problem (3.134) is equivalent to finding F22 ∈ H∞(Π+) such that∣∣∣∣bL22 +
bL12L21F22

1− F22L11

∣∣∣∣ ≤ |kα| (3.137)
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on the imaginary axis. That is,

|Φ(jω)−Ψ(jω)| ≤ 1, ω ∈ R, (3.138)

where

Φ =
1

kα
bL22, Ψ = − 1

kα

bL12L21F22

1− F22L11

. (3.139)

It should be noted that kα, bL12L21 and 1−F22L11 are invertible outer functions in H∞(Π+)
and so if F22 ∈ H∞(Π+) satisfy (3.134), Ψ belongs to H∞(Π+) as well. Furthermore, we
can also prove that, if Ψ ∈ H∞(Π+) satisfies (3.138), then F22 is in H∞(Π+) and satisfies

|F22| ≤ 1 on the imaginary axis. This can be seen as follows, let us denote V = − bL12L21

kα
which is an invertible outer function in H∞(Π+). From the equation for Ψ in (3.139), it
follows that

F22 =
Ψ

V + ΨL11

. (3.140)

We have Ψ = V F22

1−F22L11
and

V + ΨL11 = V +
V F22L11

1− F22L11

=
V

1− F22L11

. (3.141)

We have V
1−F22L11

an invertible outer function in H∞(Π+) and hence equation (3.141) implies

that 1
V+ΨL11

is in H∞(Π+) as well. This implies that F22 ∈ H∞(Π+). Moreover, if Ψ ∈
H∞(Π+) satisfies (3.138), we have F22 ∈ H∞(Π+) of the form in (3.140) satisfying (3.135).
This implies that δ(F22(jω), L11(jω)) ≤ |kα(jω)| for all ω ∈ R and hence |F22| ≤ 1 on the
imaginary axis. So, the problem reduces to the classical Nehari problem:

Problem. Given Φ ∈ L∞(jR),
min

Ψ∈H∞
||Φ−Ψ||L∞ (3.142)

and find a Ψ at which the infimum is attained if the minimum is less than or equal to one.

Let us denote g = L22

kα
∈ H∞. So, similar to the Nehari Test I that was discussed in

chapter 2 to solve the problem in (2.45), we are able to propose the following test using the
Nehari theorem for solving the problem in (3.134).

Nehari Test II : The problem in (3.134) is solvable if and only if ||Hbg|| ≤ 1, where

Hbg is the Hankel operator with symbol bg.

It should be noted that unlike in chapter 2, we are able to arrive at this test without
passing through the non-Euclidean setting. This condition can be equivalently expressed
as the positivity of Nevanlinna Pick matrix as follows. Since b and g are coprime (no com-
mon nonconstant inner divisors), it follows from Theorem 2.4 in [71] that Ker Hb̄g = bH2

and we have the orthogonal complement of kernel of Hankel operator HΦ in H2,

(Ker HΦ)⊥ = H2 	 bH2 = span

〈
fm(s)

def
=

b(s)

s− ξm

〉
. (3.143)
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The condition ||Hbg|| ≤ 1 holds if and only if

H∗b̄gHbg ≤ IM , (3.144)

where H∗
b̄g

represents the adjoint of Hb̄g and IM the identity matrix of size M ×M . So, we
have for any complex numbers cm, 1 ≤ m ≤M ,

M∑
m,n=1

cmc̄n〈Hbgfm, Hbgfn〉 ≤
M∑

m,n=1

cmc̄n〈fm, fn〉. (3.145)

We have,

Hbgfm = P

(
g

s− ξm

)
= P

(
g − g(ξm)

s− ξm
+

g(ξm)

s− ξm

)
=

g(ξm)

s− ξm
. (3.146)

So,

〈Hbggm, Hbggn〉 = g(ξm)g(ξn)

〈
1

s− ξm
,

1

s− ξn

〉
= g(ξm)g(ξn)

1

ξm + ξn
. (3.147)

The last equality follows using Cauchy’s integral theorem. We also have,

〈fm, fn〉 =

〈
b

s− ξm
,

b

s− ξn

〉
=

1

ξm + ξn
. (3.148)

Thus, it follows from (3.145) that

M∑
m,n=1

cmc̄n
1− g(ξm)g(ξn)

ξm + ξn
≥ 0. (3.149)

That is the problem in (3.142) is solvable if and only if the matrix

[1− L22(ξm)

kα(ξm)

L22(ξn)
kα(ξn)

ξm + ξn

]
1≤m,n≤M

is positive semi-definite. Thus, we have arrived at the Pick matrix positivity constraint as
stated in proposition 3.3.2 with reference function UP replaced by the reference function
kα.

Remark 3.5.2. It should be noted that solving the Nehari problem in (3.142) with L∞

function to be approximated, Φ = 1
kα
bL22 is a possible alternative to the Nehari problem in

(2.47) in chapter 2 which had Φ = 1
V

(
1−|kα|2

1−|kα|2|L11|2

)
L11. The reference function kα enters

the formulas in (3.139) in the Nehari test linearly in this new setting (this was not the case
in (2.47)).
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3.5.2 Nehari Test II for Finite Degree Matching Probelm

Before concluding this section, we will discuss some more important details of solving the
problem in (3.134) using the Nehari test II discussed in the previous subsection. As done
in chapter 2, the idea is to find the smallest possible power mismatch of the form kα. That
is to solve the problem : does there exist F22(s) ∈ H∞(Π+) such that

|(F22 ◦ L)(jω)| = |kα(jω)|, ω ∈ R ? (3.150)

If yes, find the F22 which achieves this. This can be done by performing the Nehari test
II of ||HΦ|| ≤ 1 by iterating |kα|. The test can be performed on a grid of α’s and the
solution to problem in (3.150) can be obtained once we find the α̂ at which ||HΦ|| = 1 (a
possible update rule for α is suggested at the end of this subsection). The same numerical
implementation scheme discussed in subsection 2.3.3 in chapter 2 can be used to solve the
Nehari problem in (3.134).

Now, we will provide an important result about the estimate of the degree of the rational
Schur function F22 and F̂22 obtained as the solution of problems in (3.134) and (3.150)
respectively. As discussed in the proof of the proposition (2.3.3) in chapter 2, if we denote
the maximizing vector of the Hankel operator in Nehari problem in (3.142) by W , we have

W =
a0

rL
, HΦ(W ) =

b0

r∗L
, (3.151)

where a0 and b0 are polynomials of at most degree M − 1. In addition, it from theorem 1.4
in [71] that

b0 = τa∗0, τ ∈ C satisfying |τ | = ||HΦ|| (3.152)

and a0 is Hurwitz polynomial. So, the error function in Nehari approximation,

Φ−Ψ =
HΦ(W )

W
= τ

a∗0
a0

rL
r∗L
. (3.153)

It follows from the equations in (3.139) that

Φ−Ψ =
b̄

kα
(F22 ◦ L) =

S22

kα

rL
r∗L
, (3.154)

where S22 = F22 ◦ L is the output reflection coefficient of the global system. Comparing
equations in (3.153) and (3.154), we have the ouput reflection coefficient of the global
system,

S22
def
=
p

q
= τ

a∗0
a0

kα =
τa∗0pk
a0qk

. (3.155)

It should be noted that S22 is of at most degree N +M − 1 and we have,

qq∗ − pp∗ = a0a
∗
0(qkq

∗
k − |τ |2pkp∗k). (3.156)

At the optimal α, namely α̂ at which ||HΦ|| = 1, we have |τ | = 1 and hence we have,

|Ŝ22(jω)| = |kα̂(jω)|, ω ∈ R,
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the smallest possible power mismatch of the form kα. Also, Ŝ22 = p̂
q̂

satisfies,

q̂q̂∗ − p̂p̂∗ = a0a
∗
0(qkq

∗
k − pkp∗k) = α̂a0a

∗
0rLr

∗
L (3.157)

which implies that the global system contains the transmission zeros of the load. The
reflection coefficient of the matching filter providing the optimal global reflection can be
obtained by de-chaining the load from Ŝ22,

F̂22 =
Ŝ22 − L22

Ŝ22L11 − det(L)
. (3.158)

As explained in subsection 3.4.1, since the optimal global system contains the transmission
zeros of the load, the de-chaining gives F̂22 =

pF̂
qF̂

, where pF̂ , qF̂ ∈ PN−1 and thus we have

the optimal matching filter of McMillan degree N − 1. In the non-optimal feasible case,
i.e when ||HΦ|| < 1, it follows from equation (3.156) that the global system synthesized
doesn’t contain the transmission zeros of the load. This implies that the matching filter
obtained in this case by de-chaining the load from S22 will be of degree N +M − 1.

An important point to note, comparing the global reflection coefficient obtained in two
approaches (3.117 and 3.155) is that among all the possible H∞ functions, Nehari test
II provides the minimal norm solution S22 = F22 ◦ L to the problem in 3.134. When it
comes to the degree of the matching filter, considering the non-optimal feasible situations
in the described approaches (pick matrix strictly positive definite and operator norm of
Hankel operator strictly less than one), it follows from the explanation in this section and
subsection 3.4.1 that the extraction of matching filter from S22 synthesized in (3.117 : Pick
matrix approach) provides a better degree (lower) than the S22 synthesized in (3.155: Nehari
approach). Before concluding this section, we will provide a couple of remarks concerning
the Nehari test II and its implementation.

Remark 3.5.3. (Monotonocity of Hankel Operator Norm). Let us consider the problem
in (3.134) using reference functions kα1 and kα2 where α1 < α2 ≤ α̂. It should be noted
that for any ω ∈ R, |kα1(jω)| > |kα2(jω)|. For the reference functions kα1 and kα2, let us
denote the Hankel symbol defined in (3.139) as Φα1 and Φα2 and the the global reflection
coefficients obtained via Nehari test II as Sα1

22 = Fα1
22 ◦ L and Sα2

22 = Fα2
22 ◦ L respectively.

We have,

|Sα2
22 (jω)| ≤ |kα2(jω)| < |kα1(jω)|, ω ∈ R (3.159)

and so Fα2
22 is a solution to the problem in (3.134) with reference function kα1 as well. From

Nehari theorem, we have

||HΦα1
|| =

∣∣∣∣∣∣∣∣Sα1
22

kα1

∣∣∣∣∣∣∣∣
L∞
≤
∣∣∣∣∣∣∣∣Sα2

22

kα1

∣∣∣∣∣∣∣∣
L∞

<

∣∣∣∣∣∣∣∣Sα2
22

kα2

∣∣∣∣∣∣∣∣
L∞

= ||HΦα2
||.

The first inequality follows since Sα1
22 is build from the best H∞ approximant Ψα1 to Φα1

in the L∞-norm and the second strict inequality follows since for any ω ∈ R, |kα1(jω)| >
|kα2(jω)|.
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Remark 3.5.4. (Update Rule for α). In order to solve the problem in (3.150) using Nehari
test II, a possible update rule for α is described in this remark. Let αi denote an α at which
||HΦαi

|| < 1. From equation (3.155), on the imaginary axis we have

|Sαi22 |2 = |τi|2|kαi |2 = |τi|2
|pk|2

|pk|2 + αi|rL|2
,

where |τi| = ||HΦαi
||. At the next iteration, imposing the following condition on the nor-

malized passband [−1j, 1j],

|Sαi22(jω)|2 ≤ |kαi+1
(jω)|2,

we have the following upper bound on αi+1 in the passband,

αi+1 ≤
(1− |τi|2|pk|2) + αi|rL|2

|τi|2|rL|2
.

Thus,

αi+1 = max
jω∈[−1j,1j]

(1− |τi|2|pk(jω)|2) + αi|rL(jω)|2
|τi|2|rL(jω)|2

is a possible update for αi. Starting from an α0 at which ||HΦα0
|| < 1, this update can be

used to find the α̂ at which the operator norm of ||HΦ|| become equal to one.

We conclude here this section about the brief description of the comparisons and the
connection between approaches discussed in chapter 2 and chapter 3 to solve the matching
problem.

3.6 Conclusion

In this chapter, we have presented a convex optimisation approach for broadband impedance
matching problem mainly based on Youla’s matching theory and theory of analytic interpo-
lation. Most of the important theoretical aspects regarding the developed approach along
with some illustrations of practical implementation have been done. As it is usual in classi-
cal filter synthesis, the transmission polynomial of the global system to be synthesized was
supposed to be fixed. Then the positivity of the Pick matrix based on the de-embedding
conditions was used to test the realizability criterion. As we have discussed, the solution
to convex formulation of the global matching problem (problem PC) gives us Popt ∈ HN

R

and bPoptUPopt provides the optimal global system of maximal McMillan degree N +M − 1.
Hence, this provides an efficient method of finding optimal matching circuits of maximal
McMillan degree N − 1 for a given load and a class of realizable Schur functions with fixed
transmission polynomial. We have also provided a brief overview of the comparisons and
the connection of approaches discussed in part I of the thesis to solve the matching prob-
lem. This study has made a clear link between the Nehari approach and Nevanlinna-Pick
approach with reference to the broadband matching problem.

With this chapter, we conclude part I of the thesis. We have made a theoretical study
of the broadband matching problem in this part along with the illustration of the methods
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developed on some antenna examples. The second part of the thesis will move further
ahead in the practical direction. In this part, the matching problems will be formulated
in such a way as to easily take into account more practical considerations concerning the
realization of the matching circuit. We will formulate the matching problems in the real
setting and present results obtained by using the matching circuits obtained on some an-
tenna prototypes. A direct formulation of the matching problem where it is casted over the
set of reflection polynomials of the matching circuit (of finite degree) which we are seek-
ing will be made. The practical constructability of matching circuits as ladder networks
consisting of inductors and capacitors and methods to ensure transformerless synthesis of
circuits, bounding element values of capacitors and inductors and including microstrip lines
in between the elements will be presented as well.
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CHAPTER 4

Matching Problem in Real Setting and Ladder

Network Synthesis

4.1 Introduction

In this chapter, we will do a detailed study of the different realizability constraints that
need to be taken into account in the case of matching circuit synthesis using L,C compo-
nents. The problem of impedance matching circuit synthesis has been evolving for around
past 80 years and the reader can find a a good amount of literature related to the topic
(some of these are [73], [95], [58], [93], [90], [3], [51]). In comparison to the approaches
developed in chapter 2 and 3 of the thesis, the problems studied in this chapter will impose
additional constraints on the matching circuit to be synthesized in order to meet different
specifications as required by the application. We will introduce the matching problem in
the real setting where broadband matching problem is casted directly over the set of reflec-
tion polynomials of matching network (p in PR,N , polynomials of degree at most N with
real coefficients). The importance of this problem lies in the fact that it is the simplest
formulation of the matching problem in such a way that the optimal matching circuit can
be realized using finite number of inductors and capacitors. As the chapter progress, it
will also be clear that in this setting many practical constraints concerning the realization
of the matching circuit can be easily incorporated and implemented as well. Some of the
important theoretical results like existence of the solution for this optimisation problem and
a result about the characterisation of the optimal solution will be done. Later on in the
chapter, a series of different, yet closely related problems are introduced in order to tackle
the problems of transformerless synthesis of the matching circuit, bounding the values of
the lumped elements in the matching circuit to desired ranges as required by the user and
presence of microstrip lines in between the lumped elements. A description about the nu-
merical implementation of different problems considered in the chapter will be provided.
An example of the numerical illustration of each problem introduced and the realization
of the optimal matching circuit obtained using ladder networks will be done as well. For
any given load, the matching criterion provided in this chapter will be inferior to the one
in chapter 3 of the thesis for a fixed McMillan degree of the matching circuit but the op-
timal scattering matrix is ensured to meet the additional specifications of realizability as
discussed.
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Throughout the numerical implementations discussed in this chapter, the transmission
zeros of the scattering matrix of the matching circuit to be synthesized will be fixed at either
zero or infinity (or both) in order to ensure the realizability of the matching circuit using
series or parallel inductors or capacitors. In the scattering matrix of the matching circuit
to be synthesized, this corresponds to fixing r = sn, 0 ≤ n ≤ N and it is a choice made
for the practical ease of realization of the circuit. The angular derivative of the reflection
coefficient at the transmission zero on the imaginary axis will play an important role in
parameterising the S-matrix of these elementary L,C-sections. In the next subsection, we
will provide a brief description of angular derivatives.

4.1.1 Angular Derivatives

Definition 4.1.1. (Angular Derivative). Let S represent the (2 × 2) scattering matrix of
a lossless system having α0 = jω0, ω0 ∈ R as a transmission zero on the imaginary axis
(possibly α0 = ∞ as well). Then the angular derivative of S22 at α0 is defined as the
quantity,

ang[S22](α0) = S22(α0)S ′22(α0),

where S ′22(α0) represent the quantity d
ds

(S22(s))
∣∣
s=α0

= 1
j
d
dω

(S22(jω))
∣∣
ω=ω0

.

It should be noted that in definition 4.1.1, since α0 is a transmission zero of a lossless
scattering matrix S on the imaginary axis, we have,

|S22(α0)| = |S11(α0)| = 1. (4.1)

Remark 4.1.2. The angular derivative of S22 is the derivative of phase of S22 with respect
to the frequency. It easily follows from the equalities,

d

dω

(
ln(S22(jω))

)∣∣∣∣
ω=ω0

= j ang[S22](jω0),

d

dω

(
ln(S22(jω))

)∣∣∣∣
ω=ω0

= j
d

dω

(
Im
(

ln(S22(jω))
))∣∣∣∣

ω=ω0

,

where Im(.) represents the imaginary part. Thus, we have the following equalities for the
angular derivative of S22 at α0 = jω0,

ang[S22](α0) = −j d
dω

(
ln(S22(jω))

)∣∣∣∣
ω=ω0

=
d

dω

(
Im
(

ln(S22(jω))
))∣∣∣∣

ω=ω0

=
d

dω

(
arg
(
S22(jω)

))∣∣∣∣
ω=ω0

.

(4.2)

A useful property of the angular derivatives easily follows from the first equality in (4.2),

ang[S11S22](α0) = ang[S11](α0) + ang[S22](α0). (4.3)
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From Cauchy-Riemann equations, we also have,

d

dω

(
Im
(

ln(S22(jω))
))∣∣∣∣

ω=ω0

=
d

dx

(
Re
(

ln(S22(x+ jω0))
))∣∣∣∣

x=0

,

where Re(.) represents the real part. Thus we have the following equation for angular
derivative of S22 at α0 = jω0 as well,

ang[S22](α0) =
d

dx

(
Re
(

ln(S22(x+ jω0))
))∣∣∣∣

x=0

=
d

dx

(
ln
(
|S22(x+ jω0)|

))∣∣∣∣
x=0

.

Now, we will state and prove an important property of angular derivatives. For a detailed
review about the angular derivatives we refer the reader to Chapter 21, [8].

Proposition 4.1.3. The angular derivative of reflection coefficient of a lossless system at
a simple transmission zero, α0 = jω0 on the imaginary axis,

ang[S22](α0) = S22(α0)S ′22(α0),

is a non-positive real quantity (i.e ang[S22](α0) ≤ 0). Moreover, if S22 is not a uni-modular
constant function, it satisfies,

ang[S22](α0) < 0.

Proof. Let us denote m(ω) = |S22(jω)|2 = S22(jω)S22(jω), where ω is real. Since by
assumption, α0 = jω0 is a transmission zero of S on the imaginary axis, m(ω) attains a
maximum at ω = ω0. So, we have,

0 =
dm

dω
(ω0)

= −jS ′22(jω0)S22(jω0) + jS22(jω0)S ′22(jω0)

= j

(
S22(jω0)S ′22(jω0)− S ′22(jω0)S22(jω0)

)
= −2 Im(S22(jω0)S ′22(jω0)).

This implies S22(α0)S ′22(α0) = ang[S22](α0) is a real quantity. Now, in order to prove that
ang[S22](α0) is non-positive, let us define, for r > 0,

M(r) =
|S22(jω0 + r)|2 − 1

2r
.

By definition M(r) < 0 for any r > 0. We can compute the limit as r → 0 to get,

0 ≥ lim
r→0

M(r)

= lim
r→0

|S22(jω0 + r)|2 − 1

2r

= lim
r→0

S22(jω0 + r)S ′22(jω0 + r) + S ′22(jω0 + r)S22(jω0 + r)

2

= Re(S22(jω0)S ′22(jω0))

= S22(jω0)S ′22(jω0).
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The last equality follows since we have already proved S22(α0)S ′22(α0) = ang[S22](α0) is a
real quantity. So, we have,

ang[S22](α0) ≤ 0.

Now, let us assume that S22 is not a uni-modular constant function. We claim that
ang[S22](α0) = S22(α0)S ′22(α0) < 0. Suppose that S ′22(α0) = 0. Since we assume that
S22 is not a uni-modular constant, there should exist atleast one non-vanishing derivative
of S22 at α0. Let us say S

(k)
22 , where k > 1 is the first non-vanishing derivative. For any

point in an open neighbourhood of α0, it follows from the Taylor series expansion,

S22(α0 + s) = S22(α0) + S
(k)
22 (α0)sk + o(sk)

= S22(α0)
(
1 + S22(α0)S

(k)
22 (α0)sk

)
+ o(sk).

Since |S22| ≤ 1 in Π+, it follows that,

∀r ≥ 0 and ∀θ ∈ [−π/2, π/2],
∣∣1 + S22(α0)S

(k)
22 (α0)rkejkθ

∣∣ ≤ 1.

This is a contradiction since the argument kθ ranges over [0, 2π] in this case. This yields
S ′22(α) 6= 0 and hence, ang[S22](α0) < 0 when S22 is not a uni-modular constant.

Remark 4.1.4. The angular derivative of S22 can be related to the derivative of modulus
square of S22 in the x-direction. We have,

d

dx

(
S22(jω0 + x)S22(jω0 + x)

)∣∣∣∣
x=0

= 2 Re(S22(jω0)S ′22(iω0))

= 2 Re(ang[S22](α0))

= 2 ang[S22](α0).

The last equality follows from proposition 4.1.3.

4.2 Matching Problem in Real Setting

We will use the same setting of matching circuit chained to the given load as introduced
in chapter 2 (figure 4.1) to formulate the matching problem in the real setting. Let the
given passband of interest be denoted by the union of frequency ranges a1Hz to b1Hz,
a2Hz to b2Hz,. . ., amHz to bmHz, where 0 ≤ a1 < b1 < a2 < b2 < . . . < am < bm.
It will be normalized to be between 0 and 1j on the imaginary axis and we denote I =
[ a1

bm
j, b1

bm
j] ∪ [ a2

bm
j, b2

bm
j] ∪ . . . ∪ [am

bm
j, 1j]. The reflection coefficient of the load is denoted by

a non-constant Schur function, L11 ∈ B and we assume its modulus to be not uniformly
equal to one for all frequencies in the passband. Throughout the chapter, we also assume

L11(−jω) = L11(jω), ω ∈ R. (4.4)

It guarantees that the time domain impedance of the load is real (Equation 4.22, [77]). We
are interested in finding the scattering matrix of the matching network, F which minimize
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ZL
Matching
Network

ZG

−
+

E0

F22 = p
qpF11

S11 L11

Figure 4.1: Matching Network Connected to One-Port Load

in I the modulus of input reflection coefficient of the system obtained by chaining the
matching network to the load. Belevitch theorem will be used to represent the scattering
matrix F of the matching network to be synthesized. Let us denote,

F =

(
F11 F12

F21 F22

)
=

1

q

(
εp∗ −εr∗
r p

)
,

where ε is a unimodular constant and p, q, r are polynomials of degree at most N with real
coefficients (hereinafter denoted by PR,N) satisfying the Feldtkeller equation, qq∗ = pp∗+rr∗.
It should be noted that we restrict to this subspace of PN since we are interested in realizing
the matching circuit with real L,C components. Furthermore, we assume the transmission
polynomial R = rr∗ of the matching circuit is fixed and r 6≡ 0 has no zeroes inside the
passband I. As mentioned in chapter 2, we have the modulus of the input reflection of
the chained system equal to the pseudo-hyperbolic distance between F22 and L11 on the
imaginary axis,

|S11(s)| =
∣∣∣∣∣ F22(s)− L11(s)

1− F22(s)L11(s)

∣∣∣∣∣ =

∣∣∣∣∣
p(s)
q(s)
− L11(s)

1− p(s)
q(s)

L11(s)

∣∣∣∣∣ .
Let us denote by SBR,N the polynomials of degree at most N with real coefficients which
are stable in the broad sense (no zeros in Π+). It should be noted that in figure 4.1,
we have used the notation, F22 = p

qp
. The subscript in q is used to denote that for any

given polynomial p ∈ PR,N , the polynomial q ∈ SBR,N satisfying the spectral equation can
be determined from p. To be precise, this follows from the following proposition proved
in [10],

Proposition 4.2.1. To any non zero Q ∈ P+
2N , one can associate q ∈ SBN such that for

any s = jω, ω ∈ R, we have,

Q(s) = |q(s)|2 = q(s)q∗(s). (4.5)

The polynomial q(s) is unique upto a unimodular constant and if Q has exact degree 2N
then q has exact degree N . Moreover, for fixed z0 > 0, the map

fz0 : P+
2N \ {0} → SBN

with fz0(Q) the unique solution to (4.5) meeting q(z0) > 0 is continuous.
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So, when the polynomial r 6≡ 0 in PR,N is fixed, it follows from proposition 4.2.1 that
for any p ∈ PR,N one can associate qp ∈ SBR,N as follows

p
g−→ pp∗ + rr∗

def
= Q

fz0−→ qp.

The map fz0 ◦ g : PR,N → SBR,N is continuous. From here on we will use qp instead of
q to mark the above association of q with p. Now, we are in a position to formulate the
matching problem in the real setting,

Problem. P. Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4) and a polynomial r ∈ PR,N
which doesn’t vanish in I, where N is the target degree of the matching circuit,

Find: l̂ = min
p∈PR,N

max
s∈I

∣∣∣∣ p(s)
qp(s)
− L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣
where: qpq

∗
p = pp∗ + rr∗ and qp ∈ SBR,N .

It should be noted that l̂ 6= 0 since L11(s) corresponds to the evaluation on the imaginary
axis of L∗11(s) which is an anti-analytic function and hence it is not possible to find F22 =
p
qp
∈ B satisfying, for all s ∈ I, F22(s) = L11(s).

4.2.1 Existence of Solution

Theorem 4.2.2. (Solution to P). There exist p̂ ∈ PR,N which solves problem P.

Proof. Let us denote the cost function in problem P as Ψ(p) = max
s∈I

∣∣∣∣ p(s)
qp(s)

−L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣. The

continuity of the cost function ψ : PR,N → R follows from the following facts. The map
fz0 ◦ g associating qp to a given p is continuous (proposition 4.2.1) and the evaluation map

p → p(s)
qp(s)

for s ∈ I is continuous since the polynomial r doesn’t vanish in I. This implies

that the function φ : PR,N × I → R defined as φ(p, s) =

∣∣∣∣ p(s)
qp(s)

−L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣ is continuous and

hence the cost function Ψ(p) = max
s∈I

φ(p, s) is continuous (Corollary 5.4.2, [74]). We have

{Ψ(p) : p ∈ PR,N} to be a non-empty set of real numbers that is bounded below by zero
and hence it has an infimum, which is a finite real number. Let us denote m̂ = inf

p∈PR,N
Ψ(p).

We can consider a sequence, (pn) ∈ PR,N such that (Ψ(pn)) form a decreasing sequence of
real numbers satisfying lim

n→∞
(Ψ(pn)) = m̂, say,

∀n ∈ N,Ψ(pn) ≤ m̂+
1

n
. (4.6)

Now, we can prove that such a sequence of polynomials, (pn), itself is a bounded sequence.
If (pn) is unbounded (norm defined in A.1.1 in Appendix), it follows that for all s ∈ I,
lim
n→∞

| pn(s)
qpn (s)

|2 = lim
n→∞

(1 + | r(s)
pn(s)
|2)−1 = 1 and hence lim

n→∞
Ψ(pn) = 1. This contradicts the fact

that (pn) is a minimizing sequence since for p ≡ 0, we have, ψ(p) = max
s∈I
|L11(s)| < 1. So,
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we have the sequence (pn) to be bounded. The set PR,N being closed, we have a subsequence
of (pn) in PR,N converging to an element p̂ in PR,N and the continuity of the function Ψ

ensures Ψ(p̂) = m̂. Since m̂ is the infimum of {Ψ(p) : p ∈ PR,N}, we have m̂ = l̂ and so

Ψ(p̂) = l̂. This verifies the existence of p̂ ∈ PR,N at which l̂ is attained.

4.2.2 Minimal Number of Critical Points

In this section, we will provide an interesting result characterising the optimal solution
in problem P . It states that if the solution to problem P is denoted by p̂ ∈ PR,N , then

δ( p̂(s)
qp̂(s)

, L11(s)) = l̂ atleast dN
2
e + 1 times in I, where d.e represent the ceiling function. A

formal statement of the result and its proof will be given after some preparatory work. We
will introduce a theorem discussing about the directional directive of max functions and a
lemma concerning the pseudo-hyperbolic distance. We will also state a problem discussed
in [10] concerning pointwise matching which will be useful in the proof of the main result
of this section. Theorem 5.4.7 in [74] states the directional differentiability properties of
max functions involving continua.

Theorem 4.2.3. Consider the function

Ψ(x) = max
y∈Y

φ(x, y). (4.7)

Suppose that

• φ : Rn × Rm → R is continuous,

• ∇xφ(., .) exists and is continuous, and

• Y ⊂ Rm is compact.

Then the directional derivative dΨ(x;h) exist for all x, h ∈ Rn and is given by,

dΨ(x;h) = max
y∈Ŷ (x)

〈∇xφ(x, y), h〉, (4.8)

where

Ŷ (x) = {y ∈ Y : Ψ(x) = φ(x, y)}. (4.9)

A more complete version of theorem 4.2.3 and its proof can be found in Theorem 5.4.7,
[74]. Now we will state and prove a lemma concerning the pseudo-hyperbolic distance
function.

Lemma 4.2.4. For any a ∈ D, if we consider the function, f : D→ R,

f(z) =

∣∣∣∣ z − a1− āz

∣∣∣∣2,
unless z = a, there exists a strict descent direction for f at z.
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Proof. Let us denote the differential dz = h. The differential of f at z ∈ D can be calculated
as follows

df =

(
z − a
1− āz

)(
h̄

1− az̄ +
(z̄ − ā)h̄

(1− az̄)2

)
+

(
z̄ − ā
1− az̄

)(
h

1− āz +
(z − a)h

(1− āz)2

)
= 2Re

[(
z̄ − ā
1− az̄

)(
h

1− āz +
(z − a)h

(1− āz)2

)]
=

2

|1− āz|2 Re

[(
(z̄ − ā) +

|z − a|2
(1− āz)

)
h

]
=

2

|1− āz|2 Re

[(
z̄ − ā+

∣∣∣∣ z − a1− āz

∣∣∣∣2(1− az̄)

)
h

]
. (4.10)

So, if we take h0 = (a− z) +
∣∣ z−a

1−āz

∣∣2(āz − 1), using (4.10), we have the differential of f for
this particular h0, denoted as df0 to be

df0 =
−2

|1− āz|2
∣∣∣∣(z − a) +

∣∣ z − a
1− āz

∣∣2(1− āz)

∣∣∣∣2 ≤ 0. (4.11)

If we assume df0 = 0, we have

(z − a)

(
1 +

z̄ − ā
|1− āz|2 (1− āz)

)
= 0

i.e. (z − a)(1− āz)
(
1− az̄ + z̄ − ā

)
= 0.

This gives z = a, z = 1
ā

or z = a−1
1−ā . Since | 1

ā
| > 1 and |a−1

1−ā | = 1, we have df0 < 0 for all
z ∈ D \ {a} and hence the result.

Now, we will introduce a special version of problem P̂ discussed in [10]. In [10], it is
discussed in the lower half plane setting, but we will continue in the right half plane setting
as done throughout the thesis. The discussion that is following will play an important role
in parameterising the set of polynomials p ∈ PR,N in problem P in the main theorem of
this subsection.

Problem. P̂R. Given dN
2
e distinct points (s1, s2, . . . sdN

2
e) each in jR, dN

2
e interpolation

conditions (c1, c2, . . . cdN
2
e) in DdN2 e and a polynomial r 6≡ 0 in PR,2dN

2
e−1, find (p, qp) a couple

of polynomials of degree at most 2dN
2
e − 1 such that,

p

qp
(sk) = ck, k = 1, 2, . . . ,

⌈
N

2

⌉
p

qp
(s̄k) = c̄k, k = 1, 2, . . . ,

⌈
N

2

⌉
qpq
∗
p = pp∗ + rr∗

where qp is stable in the broad sense and for fixed z0 > 0, qp(z0) > 0.
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The reader can refer to [10] for a general version of problem P̂R and a proof about the
existence and uniqueness of a solution to problem P̂R. Since we are interested in the real
setting, we have considered this special case of problem P̂ where the interpolation conditions
are conjugate at the conjugate points. In this setting, we can show that the couple of
polynomials (p, qp) have real coefficients. If we assume that the solution to problem P̂R
is (p̂, qp̂), a pair of complex polynomials of degree at most 2dN

2
e − 1, it follows from the

conditions in the problem P̂R that

¯̂p

q ¯̂p

(sk) = ck, k = 1, 2, . . . ,

⌈
N

2

⌉
¯̂p

q ¯̂p

(s̄k) = c̄k, k = 1, 2, . . . ,

⌈
N

2

⌉
q ¯̂pq
∗
¯̂p = ¯̂p ¯̂p

∗
+ rr∗,

where ¯̂p represent the polynomial obtained by conjugating the coefficients of p̂. It should be
noted that q ¯̂p = q̄p̂ is stable in the broad sense and satisfy q ¯̂p(z0) > 0. If the coefficients of
the polynomial p̂ are not real, this contradicts the uniqueness of solution (p̂, qp̂) to problem

P̂R. Remark 4.1 applied to Theorem 10 in [10] states this result. This implies that the
polynomial p̂ is in PR,2dN

2
e−1 and so the polynomial qp̂ associated to p̂ following proposition

4.2.1 is in PR,2dN
2
e−1 as well. The key result upon which the existence and uniqueness of the

solution to problem P̂R is proved in [10] is the following (Theorem 10, [10]).

Theorem 4.2.5. The evaluation map E defined from PR,2dN
2
e−1 to D2dN

2
e,

p
E−→



p(s1)
qp(s1)

...
p(sdN2 e

)

qp(sdN2 e
)

p(s̄1)
qp(s̄1)

...
p(s̄dN2 e

)

qp(s̄dN2 e
)


is a homeomorphism from PR,2dN

2
e−1 onto D2dN

2
e and the restriction of E to those p in

PR,2dN
2
e−1 having no common imaginary zero with r is a diffeomorphism onto its image.

Now, we are in a position to state and prove the important result of this section con-
cerning the number of critical points of problem P . Let p̂ ∈ PR,N denote the optimum for

problem P at which l̂ 6= 0 is attained. We define the set of critical points for problem P as
the following,

Î(p̂) =

{
s ∈ I : δ

(
p̂(s)

qp̂(s)
, L11(s)

)
= l̂

}
. (4.12)
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Theorem 4.2.6. Let p̂ ∈ PR,N denote the solution to problem P and Î(p̂) represent the set

of critical points of problem P as defined in (4.12). The number of elements in the set Î(p̂)
is atleast dN

2
e+ 1, where d.e represent the ceiling function.

Proof. We follow proof by contradiction by assuming the cardinality of set Î(p̂) is strictly
less than dN

2
e+ 1. In this case, we will show that there exists p0 ∈ PR,N such that

∀s ∈ I, δ
(
p0(s)

qp0(s)
, L11(s)

)
< l̂. (4.13)

This will contradict the optimality of p̂ for problem P and hence the result follows. In
order to prove (4.13), let us assume the set Î(p̂) has only dN

2
e elements and denote them

as s1, s2, . . . , sdN
2
e in I. Since the polynomial r ∈ PR,N doesn’t vanish in I, it follows from

theorem 4.2.5 that the map E defined from PR,2dN
2
e−1 to D2dN

2
e,

p
E−→



p(s1)
qp(s1)

...
p(sdN2 e

)

qp(sdN2 e
)

p(s̄1)
qp(s̄1)

...
p(s̄dN2 e

)

qp(s̄dN2 e
)


def
=



c1
...

cdN
2
e

cdN
2
e+1

...

c2dN
2
e


(4.14)

is a diffeomorphism from PR,2dN
2
e−1 onto its image. It should be noted that, for i =

1, 2 . . . dN
2
e, cdN

2
e+i = c̄i and if we define c = (c1, c2, . . . , c2dN

2
e)
t, we have E−1(c) = p.

For the ease of notation, we denote

ui =


si, 1 ≤ i ≤ dN

2
e

s̄i, dN2 e+ 1 ≤ i ≤ 2dN
2
e.

If the normalized pass band on the imaginary axis is I = [ a1

bm
j, b1

bm
j]∪[ a2

bm
j, b2

bm
j]∪. . .∪[am

bm
j, 1j],

where 0 ≤ a1 < b1 < a2 < b2 < . . . < am < bm, we denote by I∗ = [−1j,−am
bm
j] ∪

[− bm−1

bm
j,−am−1

bm
j] ∪ . . . ∪ [− b1

bm
j,− a1

bm
j]. For p ∈ PR,2dN

2
e−1, we define,

∆u(p)
def
= δ

(
p(u)

qp(u)
, L11(u)

)
, u ∈ I ∪ I∗. (4.15)

If we denote ĉi = p̂(ui)
qp̂(ui)

, 1 ≤ i ≤ 2dN
2
e where p̂ is the solution to problem P , then we have,

ĉ = (ĉ1, ĉ2, . . . , ĉ2dN
2
e)
t E−1

−−→ p̂ (4.16)

and also since L11(ūi) = L11(ui),

∆ui(p̂) = δ(ĉi, L11(ui)) = l̂, 1 ≤ i ≤ 2

⌈
N

2

⌉
. (4.17)

We have the following results,

156 Gibin Bose



4.2. MATCHING PROBLEM IN REAL SETTING

• Φ : D2dN
2
e × (I ∪ I∗)→ R+, defined by

Φ(c, u)
def
= ∆u ◦ E−1(c) = ∆u(p) = δ

(
p(u)

qp(u)
, L11(u)

)
, u ∈ I ∪ I∗. (4.18)

is continuous. Since the evaluation map E is a homeomorphism, E−1, the map c
giving p is continuous in D2dN

2
e. ∆u is continuous at E−1(c) = p as well since p giving

qp is continuous in PR,2dN
2
e−1 (proposition 4.2.1), the evaluation map p → p(u)

qp(u)
for

u ∈ I∪ I∗ is continuous since the polynomial r doesn’t vanish in I and δ( p(u)
qp(u)

, L11(u))

is the pseudo-hyperbolic distance between p(u)
qp(u)

and L11(u). So, we have Φ to be the

composition of two continuous maps and hence continuous.

• ∇cΦ(., .) exists and is continuous. Given any (c, u) ∈ D2dN
2
e× (I∪ I∗), from definition

4.18, we have, Φ(c, u) = ∆u◦E−1(c). Since we assume the polynomial r doesn’t vanish
in I, we have E−1 to be differentiable at c with respect to c and for any u ∈ (I ∪ I∗),
∆u is also differentiable at p with respect to the coefficients of p. This yields for any
(c, u) ∈ D2dN

2
e × (I ∪ I∗),

∇cΦ(c, u) = ∇p∆u(p)∇cE
−1(c). (4.19)

We have ∇cΦ to be continuous at (c, u) because we have E to be C∞ smooth around p
(Corollary 3, [10]) and E is a diffeomorphism as well. This implies∇cE

−1 is continuous
at c and we also have ∇p∆u continuous at p as well.

• (I ∪ I∗) ⊂ jR is compact.

If we define

Ψ(c) = max
u∈I∪I∗

Φ(c, u), (4.20)

according to theorem 4.2.3, we have the directional derivative dΨ(c;h) existing for all

c, h ∈ D2dN
2
e and is given by

dΨ(c;h) = max
u∈Î0(c)

∇cΦ(c, u) · h, (4.21)

where, Î0(c) = {u ∈ (I ∪ I∗) : Ψ(c) = Φ(c, u)}. For ui, i = 1, 2, . . . , 2dN
2
e, since l̂ 6= 0, i.e,

ĉi 6= L11(ui) , it follows from lemma 4.2.4 that there exists a direction at ui,

dci = L11(ui)− ĉi + (l̂)2(L11(ui)ĉi − 1), 1 ≤ i ≤ 2

⌈
N

2

⌉
(4.22)

such that

∇ciΦ(ĉ, ui)dci < 0, i = 1, 2, . . . , 2

⌈
N

2

⌉
, (4.23)

PhD Thesis 157



CHAPTER 4. MATCHING PROBLEM IN REAL SETTING AND LADDER
NETWORK SYNTHESIS

where ∇ci denote the derivative with respect to ci. So, if we take the direction h0 =
(dc1, dc2, . . . , dc2dN

2
e)
t, then we have,

dΨ(ĉ;h0) = max
u∈Î0(ĉ)

∇cΦ(ĉ, u) · h0

= max
u∈Î0(ĉ)

∇cΦ(ĉ, u) · (dc1, dc2, . . . , dc2dN
2
e)
t

= max

{
∇ciΦ(ĉ, ui)dci, i = 1, 2, . . . , 2

⌈
N

2

⌉}
< 0. (4.24)

The last inequality follows from equation (4.23). It shows that there exists c0 = ĉ + εh0 ∈
D2dN

2
e such that c0

E−1

−−→ p0 ∈ PR,2dN
2
e−1 which satisfies for sufficiently small positive ε,

Ψ(c0) = Ψ(ĉ) + dΨ(ĉ; εh0) + o(||εh||) < Ψ(ĉ). (4.25)

It follows from the definition 4.20 of Ψ(c) that

max
u∈I∪I∗

Φ(c0, u) < l̂.

The definition 4.18 of Φ(c, u) implies that the polynomial p0 ∈ PR,N satisfy

max
s∈I

δ

(
p0(s)

qp0(s)
, L11(s)

)
< l̂.

This contradicts the optimality of p̂ and hence completes the proof.

4.2.3 Numerical Implementation of Problem P
In this section, we will describe the numerical implementation of problem P . Some of
the matlab notations will be used throughout this chapter for the purpose of simplified
explanation: .∗ for element-wise multiplication, ./ for element-wise right division, ∗ for
matrix multiplication and ones(m,n) for matrix of size m × n whose entries are all one.
We recall the matching problem in the real setting,

Problem. P. Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4) and a polynomial r ∈ PR,N
which doesn’t vanish in I, where N is the target degree of the matching circuit,

Find: l̂ = min
p∈PR,N

max
s∈I

∣∣∣∣ p(s)
qp(s)
− L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣
where: qpq

∗
p = pp∗ + rr∗ and qp ∈ SBR,N .

We will be using a simplified criterion to implement the problem numerically. The
square of the pseudo-hyperbolic distance in the criterion of problem P can be written as,∣∣∣∣ p(s)

qp(s)
− L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣2 =

∣∣∣∣p(s)− qp(s)L11(s)

qp(s)− p(s)L11(s)

∣∣∣∣2. (4.26)
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The numerator of the expression in the right side of the equality can be expressed as the
following at any s ∈ I,

|p− qpL11|2 = |p|2 + |qpL11|2 − pqpL11 − pqpL11

= |p|2 + |pL11|2 + |rL11|2 − pqpL11 − pqpL11

= |qp − pL11|2 − |r|2(1− |L11|2).

The last equality follows since |qp|2 = |p|2 + |r|2 on jR. Substituting this in equation (4.26),
we have, ∣∣∣∣ p(s)

qp(s)
− L11(s)

1− p(s)
qp(s)

L11(s)

∣∣∣∣2 = 1−
∣∣∣∣ r(s)

qp(s)− p(s)L11(s)

∣∣∣∣2(1− |L11(s)|2). (4.27)

Making use of equation (4.27), we can write down problem P with simplified criterion as
follows,

Problem. Psc. Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4) and a polynomial r ∈ PR,N
which doesn’t vanish in I, where N is the target degree of the matching circuit,

Find: l̂sc = min
p∈PR,N

max
s∈I

∣∣∣∣qp(s)− p(s)L11(s)

r(s)

∣∣∣∣2 1

1− |L11(s)|2
where: qpq

∗
p = pp∗ + rr∗ and qp ∈ SBR,N .

The solution to problem Psc provides the optimal p ∈ PR,N for problem P and it can be
easily deduced that,

l̂ =

√
1− (l̂sc)−1. (4.28)

So, we will be discussing the numerical implementation of problem Psc. Throughout the
numerical implementations discussed in this chapter, we will consider the polynomial r to be
fixed of the form r = sn, 0 ≤ n ≤ N , where N is the target degree of the matching network
to be synthesized. We consider transmission polynomial of this form since it corresponds to
some of the fundamental topologies of LC circuits that can be realized easily for practical
applications. Let us denote the points in the passband of interest (after normalization)
where the reflection coefficient measurement of the load, L11 is given as {s1, s2, . . . , sk}. We
assume that the measurement data of L11 is available at sufficiently enough points in the
passband I and problem Psc is implemented numerically using this set of discrete points in
I. A rational approximation of the scattering parameter of the load L11 is not necessary
in the numerical implementation. Nevertheless, it should be noted that the problem is
not convex and what we are discussing below is the implementation scheme to find a local
minima. The problem Psc can be solved practically by defining an extra variable Γ ∈ R,
satisfying,

Γ ≥
∣∣∣∣qp(si)− p(si)L11(si)

r(si)

∣∣∣∣2 1

1− |L11(si)|2
, i = 1, 2, . . . , k (4.29)

PhD Thesis 159



CHAPTER 4. MATCHING PROBLEM IN REAL SETTING AND LADDER
NETWORK SYNTHESIS

and then solving the following problem,

min
(p,Γ)∈PN×R

Γ

sub :

∣∣∣∣qp(si)− p(si)L11(si)

r(si)

∣∣∣∣2 1

1− |L11(si)|2
− Γ ≤ 0, i = 1, 2, . . . , k.

Derivatives of Criterion and Constraint

The polynomial p ∈ PR,N can be parametrised using its coefficients, say cp = [pN , . . . , p1, p0]t ∈
RN+1 in the standard basis {sN , sN−1, . . . , s2, s, 1}, i.e, we have,

∀s ∈ jR, p(s) = pNs
N + pN−1s

N−1 + . . .+ p2s
2 + p1s+ p0. (4.30)

Thus, the gradient of the criterion with respect to the optimisation variable, [pN , . . . , p0,Γ]t ∈
RN+2 is trivial and is equal to [0, 0, . . . , 0, 1]t ∈ RN+2. To evaluate the gradient of the con-
straint with respect to the optimisation variable, let us denote the constraint function as,
for s ∈ jR,

C(s) =
|G(s)|2

1− |L11(s)|2 − Γ, (4.31)

where, G(s) = qp(s)−p(s)L11(s)

r(s)
. The polynomial qp is obtained as the minimum phase spectral

factor of the positive polynomial Q
def
= pp∗+ rr∗. A Newton-Raphson iterative algorithm as

proposed in [66] is used to calculate this. It should be noted that the factorisation Q = qpq
∗
p

is unique upto a uni-modular constant and so for qp to be uniquely defined, we impose the
constraint qp(1) > 0 as well. In order to express the gradient of constraint at the data
points, let us define the following vectors,

Lval = [L11(s1), L11(s2), . . . , L11(sk)]
t (4.32)

rval = [r(s1), r(s2), . . . , r(sk)]
t (4.33)

Gval = [G(s1), G(s2), . . . , G(sk)]
t. (4.34)

The vectors Lval and rval are available directly from the given data and fixed r respectively
and the vector Gval can be obtained after the polynomial qp is obtained. It should be noted
that the objective Γ can be obtained as max(|Gval|2./(1− |Lval|2)) and the evaluation of
the constraint C(s) at the data points as |Gval|2./(1 − |Lval|2) − Γ. The derivative of
polynomial p with respect to its coefficients at the data points is denoted by dp and it is
equal to the following Vandermonde matrix of size k × (N + 1),

dp =


sN1 sN−1

1 . . . s1 1
sN2 sN−1

2 . . . s2 1
...

... . . .
...

...
sNk sN−1

k . . . sk 1

 . (4.35)

So, we have the gradient of constraint with respect to optimisation variable evaluated at
the data points,

∇C = [der,−ones(k, 1)]t,
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(N+2)×k matrix, where, der = 2.∗Re(dG.∗Gval)./(1−Lval.∗Lval) is of size k×(N+1)
and

dG = (dqp − dp. ∗ Lval)./rval,
derivative with respect to coefficients of p evaluated at the data points. So, it remains to
calculate the derivative of polynomial q with respect to the coefficients of p at the given
data points. In order to calculate this, denote the positive polynomial pp∗ as P ∈ P+

2N . It
can be noted that the coefficients of odd powers of P in the standard basis are zero and so,
let us denote the coefficients of even powers as cP = [PN , PN−1, . . . , P1, P0] ∈ RN+1. That
is, we have,

P = PNs
2N + PN−1s

2N−2 + . . .+ P1s
2 + P0. (4.36)

Let us define a map between the vector cp ∈ RN+1 and cP ∈ RN+1 as,

F : RN+1 → RN+1, F(cp) = cP . (4.37)

The Jacobian matrix of the map F for a given polynomial p ∈ PR,N can be computed to
have the following structure,

• If N is even,

JF(p) =



pN
pN−2 −pN−1 pN
pN−4 −pN−3 pN−2 −pN−1 pN

...
...

...
...

...
p2 −p3 p4 −p5 p6 . . . . . . pN
p0 −p1 p2 −p3 p4 . . . . . . pN−2 −pN−1 pN

p0 −p1 p2 . . . . . . pN−4 −pN−3 pN−2

p0 . . . . . . pN−6 −pN−5 pN−4
...

...
...

...
...

p0 −p1 p2

p0


• If N is odd,

JF(p) =



−pN
−pN−2 pN−1 −pN
−pN−4 pN−3 −pN−2 pN−1 −pN

...
...

...
...

...
−p3 p4 −p5 p6 −p7 . . . −pN
−p1 p2 −p3 p4 −p5 . . . . . . pN−1 −pN

p0 −p1 p2 −p3 . . . . . . pN−3 −pN−2 pN−1

p0 −p1 . . . . . . pN−5 −pN−4 pN−3
...

...
...

...
...

p0 −p1 p2

p0
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It should be noted that the Jacobian matrix of the map F for polynomial qp, JF(qp) follows
the same equation as described above in odd and even degree cases where we have the
corresponding coefficients of polynomial qp instead of that of p. Let us denote the Jacobian
matrix of the function p giving qp by J . We have the spectral equation, qpq

∗
p = pp∗+rr∗ and

the polynomial r is fixed in our optimisation problem. Considering the maps p→ qp → qpq
∗
p

and the one which directly computes p→ pp∗ + rr∗, we have,

JF(qp) ∗ J = JF(p) (4.38)

and hence J = (JF(qp))
−1 ∗ JF(p). This yields, dqp = dp ∗ J , where dp is defined in (4.35)

and we have the complete calculation of derivatives of the criterion and constraint C(s).
In addition, we impose constraints to fix the sign of p

qp
at infinity or zero depending on the

fixed transmission polynomial r as well. The objective gradient and constraint gradient is
then provided to the matlab non-linear programming solver fmincon to find the solution
for problem Psc.

Example : Superdirective Antenna

We present in figure 4.2 the same example of superdirective antenna presented in chapter 2
and 3 with reflection coefficient denoted by L11 to illustrate the result obtained by solving
problem Psc. The passband of interest is 870 MHz - 900 MHz, the target degree N of
matching circuit was fixed to be equal to 5 and all the transmission zeros were fixed at zero
(r = s5).

820 840 860 880 900 920 940
−12

−10

−8

−6

−4

−2

0

Frequency (MHz)

M
ag

n
it

u
d
e

(d
B

)

L11

F22

S11

Level = -7.47 dB

Figure 4.2: Result of solving problem Psc with N = 5 and r = s5
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It should be noted that we were able to significantly reduce the maximal mismatch
value of the load in the given passband from around -1.37 dB (L11 at 870 MHz) to -7.47
dB. The 4 critical points (d5

2
e + 1) at which S11 attains -7.47 dB which is clear from the

figure certifies the optimality of the obtained response according to theorem 4.2.6. So, the
obtained F22 provides a characterisation of the matching circuit to be synthesized and the
next important step is to obtain the electronic circuit realizing the scattering matrix F .

4.3 Synthesis of LC Matching Circuits

In this section, we will discuss the realization of optimal matching network by circuits
consisting of inductors, capacitors and possibly an impedance transformer. Initially, we will
derive the scattering matrix of basic L,C sections that will be useful in our optimisation
schemes.

4.3.1 Elementary L,C Sections

In this subsection we will derive the scattering matrix of two sections : a series impedance Z
and a parallel admittance Y . In particular, this will provide us the scattering matrix of an
inductor or capacitor connected in series or parallel. Initially, we will derive the scattering
matrix of a series impedance Z by considering the figure 4.3.

−+Vin

Z0

Z

Z0

+

−

v1

+

−

v2

i1 i2

Figure 4.3: Series Impedance Z connected to a Voltage Source

From the circuit in figure 4.3, we have the following equations,

i1 = −i2 (4.39)

v1 − v2 = Zi1 = −Zi2. (4.40)

We can derive the scattering matrix of a series impedance Z with positive real reference
impedance Z0 by making use of the above equations and the definition of power waves.
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From the definition of power waves in chapter 1 (equations 1.18 and 1.19), we have,

a1 =
v1 + Z0i1

2
√
Z0

, b1 =
v1 − Z0i1

2
√
Z0

, (4.41)

a2 =
v2 + Z0i2

2
√
Z0

, b2 =
v2 − Z0i2

2
√
Z0

. (4.42)

It follows from these equations that

a1 − b1 = i1
√
Z0, (4.43)

a2 − b2 = i2
√
Z0. (4.44)

Considering b1 = v1−Z0i1
2
√
Z0

and substituting for v1 and i1 from equations (4.39) and (4.40),
we have,

b1 =
v2 + Zi1 + Z0i2

2
√
Z0

= a2 +
Zi1

2
√
Z0

.

The second equality follows from the definition of a2 in equation (4.42). Now, substituting
for i1 from equation (4.43) and rearranging, we have,

b1 =

(
Z

2Z0 + Z

)
a1 +

(
2Z0

2Z0 + Z

)
a2. (4.45)

Similarly, considering b2 = v2−Z0i2
2
√
Z0

and substituting for v2 and i2 from equations (4.39) and

(4.40) respectively, we have,

b2 =
v1 + Zi2 + Z0i1

2
√
Z0

= a1 +
Zi2

2
√
Z0

.

The second equality follows from the definition of a1 in equation (4.41). Now, substituting
for i2 from equation (4.44) and rearranging, we have,

b2 =

(
2Z0

2Z0 + Z

)
a1 +

(
Z

2Z0 + Z

)
a2. (4.46)

So, from equations (4.45) and (4.46), we have,[
b1

b2

]
=

[
Z

2Z0+Z
2Z0

2Z0+Z

2Z0

2Z0+Z
Z

2Z0+Z

][
a1

a2

]
, (4.47)

and thus the S-matrix of a series impedance Z is

S =

[
Z

2Z0+Z
2Z0

2Z0+Z

2Z0

2Z0+Z
Z

2Z0+Z

]
. (4.48)
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It can be expressed as the S-matrix of a series admittance Y with reference admittance Y0

as

S =

[
Y0

2Y+Y0

2Y
2Y+Y0

2Y
2Y+Y0

Y0

2Y+Y0

]
. (4.49)

Thus, using (4.48) and (4.49), we have the S-matrix of a series inductor having impedance,
Z = Ls and that of series capacitor having admittance, Y = Cs, to be :

SserL =

[
Ls

2Z0+Ls
2Z0

2Z0+Ls

2Z0

2Z0+Ls
Ls

2Z0+Ls

]
=

1

s+KserL

[
s KserL

KserL s

]
, (4.50)

SserC =

[
Y0

2Cs+Y0

2Cs
2Cs+Y0

2Cs
2Cs+Y0

Y0

2Cs+Y0

]
=

1

s+KserC

[
KserC s

s KserC

]
, (4.51)

where, KserL
def
= 2Z0

L
and KserC

def
= Y0

2C
. Now, in a similar manner we can derive the scattering

matrix of a parallel admittance Y by considering figure 4.4.

−+Vin

Y0

Y0Y

+

−

v1

+

−

v2

i1 i2

Figure 4.4: Parallel Admittance Y connected to a Voltage Source

From the circuit in figure 4.4, we have the following equations,

v1 = v2 (4.52)

i1 + i2 = v1Y = v2Y. (4.53)

We can derive the scattering matrix of a parallel admittance Y with reference admittance
Y0 by making use of the above equations and the definition of power waves. From the
definition of power waves, we have,

a1 =
v1Y0 + i1

2
√
Y0

, b1 =
v1Y0 − i1

2
√
Y0

, (4.54)

a2 =
v2Y0 + i2

2
√
Y0

, b2 =
v2Y0 − i2

2
√
Y0

. (4.55)

It follows from these equations that

a1 + b1 = v1

√
Y0 (4.56)

a2 + b2 = v2

√
Y0 (4.57)
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Considering b1 = v1Y0−i1
2
√
Y0

and substituting for v1 and i1 from equations (4.52) and (4.53)
respectively, we have,

b1 =
v2Y0 + i2 − v1Y

2
√
Y0

= a2 −
v1Y

2
√
Y0

.

The second equality follows from the definition of a2 in equation (4.55). Now, substituting
for v1 from equation (4.56) and rearranging, we have,

b1 =

( −Y
2Y0 + Y

)
a1 +

(
2Y0

2Y0 + Y

)
a2. (4.58)

Similarly, considering b2 = v2Y0−i2
2
√
Y0

and substituting for v2 and i2 from equations (4.52) and

(4.53) respectively, we have,

b2 =
v1Y0 + i1 − v2Y

2
√
Y0

= a1 −
v2Y

2
√
Y0

.

The second equality follows from the definition of a1 in equation (4.54). Now, substituting
for v2 from equation (4.57) and rearranging, we have,

b2 =

(
2Y0

2Y0 + Y

)
a1 +

( −Y
2Y0 + Y

)
a2. (4.59)

So, we have, [
b1

b2

]
=

[ −Y
2Y0+Y

2Y0

2Y0+Y

2Y0

2Y0+Y
−Y

2Y0+Y

][
a1

a2

]
, (4.60)

and thus the S-matrix of a parallel admittance Y is

S =

[ −Y
2Y0+Y

2Y0

2Y0+Y

2Y0

2Y0+Y
−Y

2Y0+Y

]
. (4.61)

It can be expressed as the S-matrix of a parallel impedance Z with reference impedance
Z0 as,

S =

[ −Z0

2Z+Z0

2Z
2Z+Z0

2Z
2Z+Z0

−Z0

2Z+Z0

]
. (4.62)

Thus, using equations (4.62) and (4.61), we have the S-matrix of a parallel inductor having
impedance Z = Ls and that of parallel capacitor having admittance Y = Cs to be :

SparL =

[ −Z0

2Ls+Z0

2Ls
2Ls+Z0

2Ls
2Ls+Z0

−Z0

2Ls+Z0

]
=

1

s+KparL

[
−KparL s

s −KparL

]
, (4.63)

SparC =

[ −Cs
2Y0+Cs

2Y0

2Y0+Cs

2Y0

2Y0+Cs
−Cs

2Y0+Cs

]
=

1

s+KparC

[
−s KparC

KparC −s

]
, (4.64)

where KparL
def
= Z0

2L
and KparC

def
= 2Y0

C
.
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4.3.2 Circuit with Impedance Transformer

The solution to problem Psc obtained via the numerical implementation discussed in the
previous subsection provides us the optimal reflection polynomial popt for the matching
problem in the real setting. In this subsection we discuss the realization of the optimal
matching network as an LC circuit having the reflection coefficient F22 = popt

qpopt
. Elementary

sections of inductor or capacitor having S-matrix as discussed in subsection 4.3.1 can be
de-chained from F22 sequentially (refer definition 3.2.2 for de-chaining). From subsection
4.3.1 it should be clear that a transmission zero at zero can be realized by a series capacitor
or a parallel inductor and they have the S-matrices as follows respectively,

SserC =

[
Y0

2Cs+Y0

2Cs
2Cs+Y0

2Cs
2Cs+Y0

Y0

2Cs+Y0

]
=

1

s+KserC

[
KserC s

s KserC

]
, (4.65)

SparL =

[ −Z0

2Ls+Z0

2Ls
2Ls+Z0

2Ls
2Ls+Z0

−Z0

2Ls+Z0

]
=

1

s+KparL

[
−KparL s

s −KparL

]
, (4.66)

where KserC = Y0

2C
and KparL = Z0

2L
. Similarly a transmission zero at infinity can be

realized by a series inductor or a parallel capacitor and they have the S-matrices as follows
respectively,

SserL =

[
Ls

2Z0+Ls
2Z0

2Z0+Ls

2Z0

2Z0+Ls
Ls

2Z0+Ls

]
=

1

s+KserL

[
s KserL

KserL s

]
, (4.67)

SparC =

[ −Cs
2Y0+Cs

2Y0

2Y0+Cs

2Y0

2Y0+Cs
−Cs

2Y0+Cs

]
=

1

s+KparC

[
−s KparC

KparC −s

]
, (4.68)

where, KserL = 2Z0

L
and KparC = 2Y0

C
. In order to explain the de-chaining of a transmission

zero at zero or infinity from the optimal F22, let us denote,

F22 =
popt
qpopt

=
pNs

N + pN−1s
N−1 + . . .+ p1s+ p0

qNsN + qN−1sN−1 + . . .+ q1s+ q0

. (4.69)

Let us initially consider the case when F22 has a transmission zero at zero (we have,
|F22(0)| = 1). Following the definition of angular derivative in definition 4.1.1, we have

ang[F22](0) =
F ′22(0)

F22(0)
=

1

F22(0)

(
qopt(0)p′opt(0)− popt(0)q′opt(0)

(qopt(0))2

)
=
q0

p0

(
p′opt(0)

q0

− p0

q0

q′opt(0)

q0

)
=
p1

p0

− q1

q0

.

In the case of transmission zero at infinity, after doing a change of variable from s→ 1
s

and
then doing the calculation similar to the above yields

ang[F22](∞) =
pN−1

pN
− qN−1

qN
.
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So, we have the angular derivative of F22 at zero and infinity as follows:

ang[F22](0) =
p1

p0

− q1

q0

(4.70)

ang[F22](∞) =
pN−1

pN
− qN−1

qN
. (4.71)

Now, depending on the value of F22 at the transmission zero, we can realize the transmission
zero using a series or parallel L or C.

• Transmission zero at zero and F22(0) = 1, i.e p0 = q0.
In this case, a series capacitor with S-matrix as shown in equation (4.65) can be used
to de-chain the transmission zero at zero from F22. A simple calculation yields the
angular derivative of S22 of the series capacitor at zero as

ang[SserC22 ](0) =
−1

KserC

. (4.72)

The value of KserC is thus chosen by equating ang[SserC22 ] to the angular derivative of
F22 at zero mentioned in equation (4.70). So, we have,

KserC =
−1

ang[F22](0)
= −

(
p1

p0

− q1

q0

)−1

.

It also gives the value of capacitance of the capacitor in Farad after de-normalising
(the factor bm Hz, highest frequency of the passband) the frequency,

C =
−Y0ang[F22](0)

4πbm
Farad =

−Y0

4πbm

(
p1

p0

− q1

q0

)
Farad.

• Transmission zero at zero and F22(0) = −1, i.e p0 = −q0.
In this case, a parallel inductor with S-matrix as shown in equation (4.66) can be
used to de-chain the transmission zero at zero from F22. The angular derivative of
S22 of a parallel inductor at zero can be calculated to be

ang[SparL22 ](0) =
−1

KparL

. (4.73)

The value of KparL is thus chosen by equating ang[SparL22 ](0) to the angular derivative
of F22 at zero mentioned in equation (4.70). So, we have,

KparL =
−1

ang[F22](0)
= −

(
p1

p0

− q1

q0

)−1

.

It gives the value of inductor in Henry as

L =
−Z0ang[F22](0)

4πbm
Henry =

−Z0

4πbm

(
p1

p0

− q1

q0

)
Henry.
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• Transmission zero at infinity and F22(∞) = 1, i.e pN = qN .
In this case, a series inductor with S-matrix as shown in equation (4.67) can be used
to de-chain the transmission zero at infinity from F22. The angular derivative of S22

of a series inductor at infinity can be calculated to be

ang[SserL22 ](∞) = −KserL. (4.74)

The value of KserL is thus chosen by equating ang[SserL22 ](∞) to the angular derivative
of F22 at infinity mentioned in equation (4.71). So, we have,

KserL = −ang[F22](∞) =
qN−1

qN
− pN−1

pN
.

It gives the value of inductor in Henry as

L =
−Z0

πbmang[F22](∞)
Henry =

−Z0

πbm

(
pN−1

pN
− qN−1

qN

)−1

Henry.

• Transmission zero at infinity and F22(∞) = −1, i.e pN = −qN .
In this case, a parallel capacitor with S-matrix as shown in equation (4.68) can be
used to de-chain the transmission zero at infinity from F22. The angular derivative of
S22 of a parallel capacitor at infinity can be calculated to be

ang[SparC22 ](∞) = −KparC . (4.75)

The value of KparC is thus chosen by equating ang[SparC22 ](∞) to the angular derivative
of F22 at infinity as mentioned in equation (4.71). So, we have,

KparC = −ang[F22](∞) =
qN−1

qN
− pN−1

pN
.

It gives the value of inductor in Henry as

C =
−Y0

πbmang[F22](∞)
Farad =

−Y0

πbm

(
pN−1

pN
− qN−1

qN

)−1

Farad.

So, we have the complete S-matrix description of sections that can be used to realize a
transmission zero of the optimal matching network with scattering matrix F . We can make
use of the de-chaining formula mentioned in equation 3.4 to de-chain elementary sections
from F22. Let us denote the S-matrix of first elementary section to be de-chained from F22

by E (E represent one of the scattering matrices SserC , SparL, SserL or SparC). We can

calculate the new reflection coefficient which is denoted by F
[1]
22 obtained after de-chaining

this elementary section from F22 as follows,

F
[1]
22 =

F22 − E22

F22E11 − det(E)
.
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We can do a sequential de-chaining of the remaining (N − 1) transmission zeros using ele-
mentary sections with scattering matrices denoted by E[1], E[2], . . . , E[N−1]. The reflection
coefficient at each stage after de-chaining elementary section can be calculated as,

F
[i+1]
22 =

F
[i]
22 − E[i]

22

F
[i]
22E

[i]
11 − det(E[i])

, i = 1, 2, . . . , N − 1.

This yields us N sections of inductors or capacitors each in series or parallel depending upon
the fixed transmission zeros of the matching circuit and a final resistor. The terminating
resistor value Z can be evaluated from the reflection coefficient F

[N ]
22 which is obtained after

de-chaining all N transmission zeros. We have,

Z = Z0

(
1 + F

[N ]
22

1− F [N ]
22

)
.

In the practical applications where it is desirable to be terminating with the reference
impedance Z0, we would require an impedance transformer. The value of scalar F

[N ]
22 unless

equal to zero, an impedance transformer at the end of LC circuit converting the terminating
impedance Z to Z0 can satisfy this requirement. In the next subsection, we will discuss
about the possibilities to avoid this impedance transformer at the end of the LC matching
circuit since it can be undesirable in some practical applications. Along with the increased
total cost of the matching circuit, the presence of impedance transformer can also sometimes
lead to other practical difficulties in the realisation of the matching circuit especially when
designing matching circuits for small sized PCB antennas.

Example : Superdirective Antenna

The matching circuit providing the response in figure 4.2 is shown in figure 4.5. The element
values of the components in the matching circuit are calculated using the de-chaining process
described in subsection 4.3.2. It should be noted that the circuit is terminating in 166.6µΩ
and hence for the antenna to be matched to 50Ω, we require an impedance transformer at
the end of the matching circuit with impedance ratio, 167 ∗ 10−6 : 50 (equivalently turn
ratio of 1:547).

1.3pF

533.1pH

59.4pF

662.3fH

48.8nF 166.6µΩ

Figure 4.5: Matching circuit providing the result in fig 4.2

4.3.3 Transformerless Synthesis

In this subsection, we will derive the necessary and sufficient conditions to be imposed on
the coefficients of the reflection polynomial p of the matching network in order to ensure
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a circuit with no transformer at the end. These conditions depend on the chosen topology
of the matching circuit, which in turn is determined by the location of transmission zeros
of the filter. We will show that these conditions are straightforward and easily derivable
in the case when all transmission zeros of the matching circuit are chosen at zero or at
infinity. Let us consider a degree N matching circuit with transmission zeros possible at
infinity and zero. We will discuss the transformerless conditions by dividing the possible
combinations of location of transmission zeros into three general types : matching circuit
with N transmission zeros at infinity, N transmission zeros at zero, matching circuit having
atleast one transmission zero at both zero and infinity.

(i) All Transmission zeros of the S-matrix of matching circuit at infinity

−+Vin

L1 L3
LN

1 ΩC2 C4 CN−1

Figure 4.6: Degree N low pass ladder mid-series

−+Vin

L2 LN−1

1 ΩC1 C3 CN−2 CN

Figure 4.7: Degree N low pass ladder mid-shunt

Figure 4.6 and figure 4.7 represent the two possible realization circuits of a matching
circuit with degree N scattering matrix having all transmission zeros at infinity. These
are known as low pass ladder circuits since all the transmission zeros of the scattering
matrix of the circuit are at infinity. The terminating resistance unlike the previous
section, now is imposed to be fixed to a given value (usually the reference impedance
50 ohm in practical applications). This allows the realization of matching networks
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only using inductors and capacitors, avoiding the requirement of an impedance trans-
former. Throughout this subsection, we will use the normalized impedance value of
1 ohm for the terminating resistance. The transformerless condition in this case is
discussed in the next theorem. The theorem describes the condition that ensures that
an impedance transformer is not required in the realization of the matching circuit.

Theorem 4.3.1. Let S = 1
q

[
εp∗ −εr∗

r p

]
denote the scattering matrix of a degree N

lossless two port in the Belevitch form. The polynomials p(s) and q(s) are assumed
to have real coefficients and the polynomial r(s) is assumed to be equal to 1. The
necessary and sufficient condition for the two-port to be realizable as a lossless low
pass ladder circuit terminating at a unit resistor is

p(0) = 0, (4.76)

i.e, if, p(s) = aNs
N + aN−1s

N−1 + . . .+ a1s+ a0, we have a0 = 0.

Proof. In order to prove the necessity, let us consider de-chaining N transmission zeros
at infinity from the given scattering matrix, S. From equations (4.50) and (4.64), we
have the general form of scattering matrix of a low pass element to be :

Slp =
1

s+ ρ

[
γs ρ

ρ γs

]
, (4.77)

where, ρ = 2Z0

L
, γ = 1 in the case of series inductor with inductance L Henry and

ρ = 2Y0

C
, γ = −1 in the case of parallel capacitor with capacitance C Farad. Let us

denote by pi, qi and ri, the polynomials of S matrix at the ith stage of de-chaining.
i.e after de-chaining i transmission zeros at infinity from the given S matrix, where
1 ≤ i ≤ N . Using de-chaining formula, after first extraction of transmission zero at
infinity, we have,

p1

q1

=

p
q
− γs

s+ρ
p
q
γs
s+ρ
− det(Slp)

(4.78)

=

p
q
− γs

s+ρ
p
q
γs
s+ρ
− s−ρ

s+ρ

(4.79)

=
(p− γq)s+ ρp

(pγ − q)s+ ρq
. (4.80)

So, we have,
p1(0)

q1(0)
=
p(0)

q(0)
(4.81)

and it easily follows that,

p(0)

q(0)
=
p1(0)

q1(0)
=
p2(0)

q2(0)
= . . . =

pN−1(0)

qN−1(0)
=
pN(0)

qN(0)
. (4.82)
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Since we assume there is no transformer at the end of the circuit, we have pN
qN

= 0 and

hence from (4.82), we have p(0)
q(0)

= 0, where q(0) <∞ implying p(0) = a0 = 0 proving

the necessity. The sufficiency also follows easily from the equalities in (4.82). Under
the assumption a0 = 0, we have from (4.82) the last section at the end of de-chaining
N transmission zeros at infinity to satisfy

pN(0)

qN(0)
= 0. (4.83)

Since the last section is composed of constant real polynomials, we immediately have,
pN = 0. Since rN = 1, using spectral equation qNq

∗
N = pNp

∗
N + rNr

∗
N and normalisa-

tion, qN(1) > 0, we have, qN = 1. This implies the S-matrix at the end of de-chaining

N transmission zeros at infinity is,

[
0 1

1 0

]
, completing the proof.

Example : Superdirective Antenna

The result of solving problem Psc with N = 5 when all the transmission zeros of
the matching circuit were fixed at infinity (r = 1) and the transformerless condition
a0 = 0 was imposed is presented in figure 4.8. The matching circuit providing the
response in figure 4.8 is shown in figure 4.9. We have provided the value of elements
using reference impedance 50 ohm, instead of the normalized reference impedance 1
ohm as discussed in the above theorem.
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Figure 4.8: Result of solving problem Psc with N = 5, r(s) = 1 and a0 = 0
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1.8pH

1.7pF

235.0nH

371.7fF

138.9nH 50.0Ω

Figure 4.9: Matching circuit providing the result in fig 4.8

It should be noted that the matching criterion provides a significant reduction in the
maximal mismatch value of the load in the given passband which was around -1.37
dB (L11 at 870 MHz) before matching to -6.41 dB. Also, the additional constraint has
ensured that the matching circuit is now terminating in 50 ohm and hence we have
avoided the use of an impedance transformer. Now, we will discuss the transformerless
condition when all the transmission zeros of the matching circuit are fixed at zero.

(ii) All Transmission zeros of the S-matrix of matching circuit at zero

−+Vin

C1 C3 CN

1 ΩL2 L4 LN−1

Figure 4.10: Degree N high pass ladder mid-series

−+Vin

C2 CN−1

1 ΩL1 L3 LN−1 LN

Figure 4.11: Degree N high pass ladder mid-shunt

174 Gibin Bose



4.3. SYNTHESIS OF LC MATCHING CIRCUITS

Figure 4.10 and figure 4.11 represent the two possible realization circuits of a matching
circuit with degree N scattering matrix having all transmission zeros at zero. These
are known as high pass ladder circuits since all the transmission zeros of the scattering
matrix of the circuit are at zero. The transformerless condition in this case is described
in the next theorem. It provides the necessary and sufficient condition for a matching
circuit with all transmission zeros at zero to be realizable without using an impedance
transformer.

Theorem 4.3.2. Let S = 1
q

[
εp∗ −εr∗

r p

]
denote the scattering matrix of a degree N

lossless two port in the Belevitch form. The polynomials p(s) and q(s) are assumed
to have real coefficients and the polynomial r(s) is assumed to be equal to sN . The
necessary and sufficient condition for the two-port to be realizable as a lossless high
pass ladder terminating at a unit resistor is :

aN = 0, (4.84)

where, p(s) = aNs
N + aN−1s

N−1 + . . .+ a1s+ a0.

Proof. In order to prove the necessity, let us consider de-chaining N transmission
zeros at zero from the given scattering matrix S. From equations (4.51) and (4.63),
we have the general form of scattering matrix of a high pass element to be :

Shp =
1

s+ ρ

[
γρ s

s γρ

]
, (4.85)

where, ρ = Y0

2C
, γ = 1 in the case of series capacitor with capacitance C Farad and

ρ = Z0

2L
, γ = −1 in the case of parallel inductor with inductance L Henry. Let us

denote by pi, qi and ri, the polynomials of S matrix at the ith stage of de-chaining.
i.e after de-chaining i transmission zeros at zero from the given S matrix, where
1 ≤ i ≤ N . Using de-chaining formula, after first extraction of transmission zero at
zero, we have,

p1

q1

=

p
q
− γρ

s+ρ
p
q
γρ
s+ρ
− det(Shp)

(4.86)

=

p
q
− γρ

s+ρ
p
q
γρ
s+ρ
− ρ−s

s+ρ

(4.87)

=
ps+ ρ(p− γq)
qs+ ρ(γp− q) (4.88)

So, we have,
p1

q1

(∞) =
p

q
(∞), (4.89)

and it easily follows that,

p

q
(∞) =

p1

q1

(∞) =
p2

q2

(∞) = . . . =
pN−1

qN−1

(∞) =
pN
qN

(∞). (4.90)
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Since we assume there is no transformer at the end, we have, pN
qN

= 0, and hence from

(4.90), we have, p
q
(∞) = 0, i.e,

aN = 0, (4.91)

proving the necessity. The sufficiency also follows easily from the equality (4.90).
Under the assumption aN = 0, we have from (4.90), the last section at the end of
de-chaining N transmission zeros at infinity to satisfy

pN
qN

(∞) = 0. (4.92)

Since the last section is composed of constant real polynomials, we immediately have
pN = 0. Since rN = 1, using spectral equation, qNq

∗
N = pNp

∗
N + rNr

∗
N and normalisa-

tion, qN(1) > 0, we have, qN = 1. This implies the S-matrix at the end of de-chaining

N transmission zeros at infinity is

[
0 1

1 0

]
, completing the proof.

Example : Superdirective Antenna

The result of solving problem Psc with N = 5 when all the transmission zeros of the
matching circuit were fixed at zero (r = s5) and the transformerless condition a5 = 0
was imposed is presented in figure 4.12. The matching circuit providing the response
in figure 4.12 is shown in figure 4.13. The reference impedance used is 50 ohm.
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Figure 4.12: Result of solving problem Psc with N = 5, r(s) = s5 and a5 = 0
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1.4pF

2.6nH

3.7pF

4.9nH

1.3pF 50.0Ω

Figure 4.13: Matching circuit providing the result in fig 4.12

It should be noted that the optimal criterion obtained, -6.58 dB is lesser than the one
in figure 4.2 (-7.47 dB) which was obtained by solving problem Psc with N = 5 and
r(s) = s5. This was expected because of the additional transformerless constraint we
have imposed but it still provides significant reduction in the power mismatch. The
matching circuit is now terminating in 50 ohm and we do not require an impedance
transformer in the circuit. Now, we will discuss the transformerless condition when
the transmission zeros of the matching circuit are present at both zero and infinity.

(iii) Transmission zeros of the S-matrix of matching circuit at zero and infinity
The case when there are transmission zeros present at both zero and infinity, the
constraint to be imposed on the coefficients of p becomes less straightforward since it
depends upon the order of extraction of transmission zeros. The number of possible
combinations increase rapidly with each increasing degree. The case when there are
only two transmission zeros; one at infinity and one at zero is presented below. A
general condition on the coefficients of p in the case when there are N transmission
zeros where there is atleast one at zero and one at infinity even though possible is
not done here since its numerical implementation can be less straight forward as well.
An alternative synthesis scheme based on the chaining of elementary L,C sections
will be provided in the next section where in the problem of transformerless synthesis
is solved out more naturally. We will conclude this subsection by describing the
transformerless condition for a degree 2 matching circuit with one transmission zero
at infinity and one at zero.

Degree 2 matching circuit : 1 transmission zero at infinity and 1 at zero

As mentioned, since the transformerless condition depends upon the order of extrac-
tion of transmission zeros and also the sign of the value of the reflection coefficient at
each transmission zero, we can subdivide the degree 2 case into four main types. This
includes LC resonator in series, LC resonator in parallel, circuit with only inductors
and circuit with only capacitors. It should be clear at the end of this subsection
that even in this case there are two different constraints depending upon the chosen
topology of the matching circuit.

(a) Series LC resonator
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Let us denote the polynomials in the Belevitch form of degree 2 scattering matrix by

p(s) = a2s
2 + a1s+ a0,

q(s) = b2s
2 + b1s+ b0,

r(s) = s.

−+Vin

L1
C2

1 Ω

Figure 4.14: Series LC Resonator connected to a Voltage Source

Since we consider the transmission zeros at infinity and zero to be realised by a series
inductor and series capacitor respectively as shown in figure 4.14, we have :

a2 = b2, a0 = b0. (4.93)

The driving point input impedance of the loss-less two port when the output port is
terminated in 1 Ω can be calculated as follows,

z =
q + p

q − p (4.94)

=
(b2 + a2)s2 + (b1 + a1)s+ (b0 + a0)

(b1 − a1)s
(4.95)

=

(
b2 + a2

b1 − a1

)
s+

(
b1 + a1

b1 − a1

)
+

(
b0 + a0

b1 − a1

)
1

s
(4.96)

This implies, we have,

L1 =
b2 + a2

b1 − a1

, C2 =
b1 − a1

b0 + a0

,
b1 + a1

b1 − a1

= 1. (4.97)

So, the necessary condition for the circuit to be transformerless is,

b1 + a1 = b1 − a1,

that is,
a1 = 0. (4.98)
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(b) Parallel LC resonator

Let us denote the polynomials in the Belevitch form of degree 2 scattering matrix by

p(s) = a2s
2 + a1s+ a0,

q(s) = b2s
2 + b1s+ b0,

r(s) = s.

−+Vin 1 ΩC1 L2

Figure 4.15: Parallel LC Resonator connected to a Voltage Source

Since we consider the transmission zeros at infinity and zero to be realised by a parallel
capacitor and parallel inductor respectively as shown in figure 4.15, we have :

a2 = −b2, a0 = −b0. (4.99)

The input admittance of the two port when the output port is terminated in a unit
resistor can be calculated as follows,

y =
q − p
q + p

(4.100)

=
(b2 − a2)s2 + (b1 − a1)s+ (b0 − a0)

(b1 + a1)s
(4.101)

=

(
b2 − a2

b1 + a1

)
s+

(
b1 − a1

b1 + a1

)
+

(
b0 − a0

b1 + a1

)
1

s
(4.102)

This implies, we have,

C1 =
b2 − a2

b1 + a1

, L2 =
b1 + a1

b0 − a0

,
b1 − a1

b1 + a1

= 1. (4.103)

So, the necessary condition for the circuit to be transformerless is,

b1 − a1 = b1 + a1,

that is,
a1 = 0. (4.104)

(c) Circuit with only inductors

PhD Thesis 179



CHAPTER 4. MATCHING PROBLEM IN REAL SETTING AND LADDER
NETWORK SYNTHESIS

Let us denote the polynomials in the Belevitch form of degree 2 scattering matrix by

p(s) = a2s
2 + a1s+ a0,

q(s) = b2s
2 + b1s+ b0,

r(s) = s.

−+Vin

L1

1 ΩL2

Figure 4.16: Inductor only circuit

Since we consider the transmission zeros at infinity and zero to be realised by a series
inductor and parallel inductor respectively as shown in figure 4.16, we have :

a2 = b2, a0 = −b0. (4.105)

The input impedance of the two port when the output port is terminated in a unit
resistor can be calculated as follows,

z =
q + p

q − p (4.106)

=
(b2 + a2)s2 + (b1 + a1)s

(b1 − a1)s+ (b0 − a0)
. (4.107)

We have the partial fraction expansion of the above expression to be,

z =

(
b2 + a2

b1 − a1

)
s+

β

b1 − a1

+
γ

(b1 − a1)s+ (b0 − a0)
, (4.108)

where,

β = (b1 + a1)−
(
b2 + a2

b1 − a1

)
(b0 − a0), (4.109)

γ = −β
(
b0 − a0

b1 − a1

)
. (4.110)

So, we can extract the transmission zero at infinity using series inductor with induc-
tance, L1 = b2+a2

b1−a1
Henry and we have the impedance

z(1) =
β

b1 − a1

+
γ

(b1 − a1)s+ (b0 − a0)
, (4.111)

180 Gibin Bose



4.3. SYNTHESIS OF LC MATCHING CIRCUITS

the remainder after extraction. The corresponding admittance, y(1) = 1
z(1) can be

calculated to be,

y(1) =
(b1 − a1)2s+ (b1 − a1)(b0 − a0)

β(b1 − a1)s+ β(b0 − a0) + γ(b1 − a1)

=
(b1 − a1)2s+ (b1 − a1)(b0 − a0)

β(b1 − a1)s

=

(
b1 − a1

β

)
+

(
b0 − a0

β

)
1

s
.

The second equality follows from equation (4.110). We can extract the transmission
zero at zero using parallel inductor with inductance, L2 = β

b0−a0
Henry and the re-

mainder after extraction is b1−a1

β
. So, the necessary condition for the circuit to be

terminating in a unit resistor with no transformer is,

b1 − a1 = β (4.112)

= (b1 + a1)−
(
b2 + a2

b1 − a1

)
(b0 − a0). (4.113)

The second equality follows from equation (4.109). If we make use of the spectral
equation qq∗ = pp∗ + rr∗ as well, the condition can be expressed just in terms of
coefficients of p. After some basic calculation it can be shown that the condition
simplifies to

a2
1 − 4a2

0a
2
2 = 0,

that is,
a1 = ±2a0a2. (4.114)

(d) Circuit with only capacitors

Let us denote the polynomials in the Belevitch form of degree 2 scattering matrix by

p(s) = a2s
2 + a1s+ a0,

q(s) = b2s
2 + b1s+ b0,

r(s) = s.

−+Vin

C2

1 ΩC1

Figure 4.17: Capacitor only circuit
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Since we consider the transmission zeros at infinity and zero to be realised by a parallel
capacitor and series capacitor respectively as shown above, we have :

a2 = −b2, a0 = b0. (4.115)

The input admittance of the two port when the output port is terminated in a unit
resistor can be calculated as follows,

y =
q − p
q + p

(4.116)

=
(b2 − a2)s2 + (b1 − a1)s

(b1 + a1)s+ (b0 + a0)
(4.117)

We have the partial fraction expansion of the above expression to be,

y =

(
b2 − a2

b1 + a1

)
s+

β

b1 + a1

+
γ

(b1 + a1)s+ (b0 + a0)
, (4.118)

where,

β = (b1 − a1)−
(
b2 − a2

b1 + a1

)
(b0 + a0) (4.119)

γ = −β
(
b0 + a0

b1 + a1

)
(4.120)

So, we can extract the transmission zero at infinity using parallel capacitor with
capacitance, C1 = b2−a2

b1+a1
Farad and we have the admittance,

y(1) =
β

b1 + a1

+
γ

(b1 + a1)s+ (b0 + a0)
, (4.121)

the remainder after extraction. The corresponding impedance, z(1) = 1
y(1) can be

calculated to be,

z(1) =
(b1 + a1)2s+ (b1 + a1)(b0 + a0)

β(b1 + a1)s+ β(b0 + a0) + γ(b1 + a1)

=
(b1 + a1)2s+ (b1 + a1)(b0 + a0)

β(b1 + a1)s

=

(
b1 + a1

β

)
+

(
b0 + a0

β

)
1

s
.

The second equality follows from equation (4.120). We can extract the transmission
zero at zero using series capacitor with capacitance, C2 = b0+a0

β
Farad and the re-

mainder is b1+a1

β
. So, the necessary condition for the circuit to be terminating in a

unit resistor with no transformer is,

b1 + a1 = β (4.122)

= (b1 − a1)−
(
b2 − a2

b1 + a1

)
(b0 + a0). (4.123)
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The second equality follows from equation (4.119). If we make use of the spectral
equation qq∗ = pp∗ + rr∗ as well, the condition can be expressed just in terms of
coefficients of p. After some basic calculation it can be shown that the condition
simplifies to

a2
1 − 4a2

0a
2
2 = 0,

that is,

a1 = ±2a0a2. (4.124)

We conclude this section with the remark that in the degree two case, even if we change
the order of extraction (element 1 becomes the second element and element 2 becomes
the first element), a calculation similar to done above will yield the same condition for
transformerless synthesis in each case. In the case of series and parallel LC resonators
(iii.a and iii.b), even if we change the order of extraction, we have the same circuit and
the condition for no impedance transformer in the realisation of the circuit is a1 = 0. In
the case of other two circuits (iii.c and iii.d), if we change the order of extraction (in iii.c,
parallel inductor becomes the first element followed by series inductor and similarly in iii.d,
now series capacitor becomes first element followed by parallel capacitor), the condition
for no impedance transformer in the realisation of the circuit is same as iii.c and iii.d :
a1 = ±2a0a2. It should also be noted that all the conditions mentioned for degree 2 case
are not only necessary for transformerless synthesis but sufficient as well. Even though
it has not been described explicitly, it can seen that under the respective conditions for
each circuit, the element values of inductors and capacitors as mentioned in each case
will allow a transformerless synthesis, proving the sufficiency. The number of equivalent
circuit topologies increase rapidly with the increase in the number of components allowed
in the matching network (degree N in problem P). Due to this reason rather than deriving
a general trasformerless condition on the coefficients of p for any degree, we introduce
in the next section an approach based on the chaining of elementary sections allowing
transformerless synthesis more directly.

4.4 Synthesis of L,C Matching Circuits : Elementary

Chaining Approach

In this section, we will discuss the formulation of the matching problem in the real setting
using an elementary chaining approach. We will make use of the angular derivatives of
the reflection coefficients of the basic LC sections at the transmission zeros in order to
parametrise the polynomials involved in the problem; namely p and q. In order to describe
this, let us recall the scattering matrix of basic LC sections realizing the transmission zeros
at zero and infinity and the angular derivatives of the reflection coefficient at the transmis-
sion zeros. As explained in subsection 4.3.2, we have the scattering matrix of elementary
sections as follows. Let us denote the S-matrix of a low pass section (transmission zero at
infinity) which can be realised using a series inductor or parallel capacitor by Slp and the
S-matrix of a high pass section (transmission zero at zero) which can be realised using a
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series capacitor or parallel inductor by Shp. We have,

Slp =
1

ρlps+ 1

[
γρlps 1

1 γρlps

]
, Shp =

1

s+ ρhp

[
γρhp s

s γρhp

]
, (4.125)

where, in the case of low pass section (transmission zero at infinity),

• series inductor with inductance L Henry : ρlp = L
2Z0

= −(ang[Slp22](∞))−1, γ = 1

• parallel capacitor with capacitance C Farad : ρlp = C
2Y0

= −(ang[Slp22](∞))−1, γ = −1

and in the case of high pass section (transmission zero at zero),

• series capacitor with capacitance C Farad : ρhp = Y0

2C
= −(ang[Shp22 ](0))−1, γ = 1

• parallel inductor with inductance L Henry : ρhp = Z0

2L
= −(ang[Shp22 ](0))−1, γ = −1.

In this approach, we will be following a method of chaining of elementary sections, each
of which is characterised by their respective ρ’s to build the matching network. The topol-
ogy of the matching network will be fixed by fixing the sequence of chaining of elementary
sections. The formulation of the matching problem remains the same as problem P imple-
mented in subsection 4.2.3, except that now polynomials p ∈ PR,N and q ∈ SBR,N will be
parametrised using ρ = [ρ1, ρ2, . . . , ρN ]t ∈ RN

+ and also the fact that the underlying set of
reflection coefficients of the matching circuit, pρ

qρ
∈ B is built by the chaining of elementary

LC sections. So, compared to problem P , the possible set of responses of the matching
circuit in this approach is more restrictive but provides the advantage of transformerless
matching circuit directly. Each ρi, 1 ≤ i ≤ N represent ρlp or ρhp described above of the
elementary sections. The chosen topology of matching circuit determines the formula of
each ρi. Now, the matching problem can be formulated over the set of these vectors of
strictly positive elements.

Problem. B. Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4) and a polynomial r = sn,
0 ≤ n ≤ N , where N is the target degree of the matching circuit,

Find: l̂ = min
ρ∈RN+

max
s∈I

∣∣∣∣ pρ(s)

qρ(s)
− L11(s)

1− pρ(s)

qρ(s)
L11(s)

∣∣∣∣
where: qρq

∗
ρ = pρp

∗
ρ + rr∗, pρ ∈ PR,N , qρ ∈ SBR,N

and pρ
qρ

is the output reflection coefficient of the matching circuit consisting of N elementary

L,C sections chained in a given fixed order.

4.4.1 Numerical Implementation of Problem B
Similar to what was done in the numerical implementation of problem P described in
subsection 4.2.3, we will be solving problem B numerically using a simplified criterion. We
can write down problem B with simplified criterion as,
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Problem. Bsc.Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4) and a polynomial r = sn,
0 ≤ n ≤ N , where N is the target degree of the matching circuit,

Find: l̂sc = min
ρ∈RN+

max
s∈I

∣∣∣∣qρ(s)− pρ(s)L11(s)

r(s)

∣∣∣∣2 1

1− |L11(s)|2
where : qρq

∗
ρ = pρp

∗
ρ + rr∗, pρ ∈ PR,N , qρ ∈ SBR,N

and pρ
qρ

is the output reflection coefficient of the matching circuit consisting of N elementary

L,C sections chained in a given fixed order.

The solution to problem Bsc provides the optimal ρ ∈ RN
+ for problem B and it can be

easily deduced that

l̂ =

√
1− (l̂sc)−1. (4.126)

Similar to problem P , we assume the reflection coefficient measurement of the load, L11 is
given at sufficiently many points {s1, s2, . . . , sk} ∈ I and the problem Bsc is implemented
on these discrete set of points. The problem Bsc can be solved practically by defining an
extra variable Γ ∈ R, satisfying,

Γ ≥
∣∣∣∣qρ(si)− pρ(si)L11(si)

r(si)

∣∣∣∣2 1

1− |L11(si)|2
, i = 1, 2, . . . , k

and then solving the following problem,

min
(ρ,Γ)∈RN+1

+

Γ

sub :

∣∣∣∣qρ(si)− pρ(si)L11(si)

r(si)

∣∣∣∣2 1

1− |L11(si)|2
− Γ ≤ 0, i = 1, 2, . . . , k. (4.127)

The algorithm to solve problem Bsc will be developed based on an iterative scheme on
the polynomials p, q and r of the scattering matrix obtained by chaining elementary LC
sections. We will make use of the chain matrices of elementary sections to derive the
iterations of these polynomials. From the correspondance relationship between S-matrix
and T -matrix (equation 1.29 in chapter 1), the chain matrices of Slp and Shp denoted by
T lp and T hp respectively can be easily shown to be the following :

T lp =

[
1− ρlps γρlps

−γρlps 1 + ρlps

]
, T hp =

1

s

[
s− ρhp γρhp

−γρhp s+ ρhp

]
. (4.128)

The iteration formulas of the polynomials can be derived by considering the general scat-
tering matrix of a lossless two-port,

S =
1

q

[
εp∗ −εr∗

r p

]
. (4.129)
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The corresponding chain matrix T of S is

T =
1

r

[
−εq∗ εp∗

−p q

]
. (4.130)

The iteration formulas for the chaining of elementary sections to S can be developed by
the multiplication of chain matrix of the chained elementary section (T lp or T hp) on the
right to T . Then the scattering matrix of the chained system can be obtained using the
correspondance relationship from T to S-matrix. This gives us the polynomials in the
Belevitch form of chained system as follows:

• Chaining a low pass section (transmission zero at infinity)

T↑ = T ∗ T lp (4.131)

p↑ = p(−ρlps+ 1) + γρlpsq (4.132)

q↑ = −γρlpsp+ q(ρlps+ 1) (4.133)

r↑ = r (4.134)

• Chaining a high pass section (transmission zero at zero)

T↑ = T ∗ T hp (4.135)

p↑ = p(s− ρhp) + γρhpq (4.136)

q↑ = −γρhpp+ q(s+ ρhp) (4.137)

r↑ = sr (4.138)

So, once the sequence of chaining of N elementary sections is fixed (in the direction such
that last section will be chained to the load), we can make use of the above iteration
formulas to calculate the polynomials pρ and qρ in the Belevitch form of degree N scattering
matrix formed by chaining these elementary sections. If we denote the chain matrix of fixed
elementary sections in the order of chaining as TE1 , TE2 , . . . , TEN , where each TEi represent
T lp or T hp depending upon the chosen topology of matching network, we can define the
iterations,

T1 =TE1

T2 =T1T
E2

T3 =T2T
E3

...

TN =TN−1T
EN

The chain matrices Ti, 1 ≤ i ≤ N are represented by

Ti =
1

ri

[
−εq∗i εp∗i

−pi qi

]
. (4.139)
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At each stage of iteration of the elementary chain matrix multiplication, the iterations of
polynomials follow the set of formulas (4.132),(4.133), (4.134) or (4.136), (4.137), (4.138)
depending upon the chaining section at each stage. At the end of chaining of N sections,
the polynomials pN = pρ and qN = qρ of the degree N scattering matrix in the Belevitch
form is obtained. The polynomial rN will be equal to the fixed polynomial r.

Derivatives of Criterion and Constraint

After deriving the polynomials pρ and qρ using the iterations formulas mentioned above, we
are in a position to calculate the gradient of criterion and constraint of problem 4.127 at the
data points {s1, s2, . . . , sk}. The gradient of the criterion with respect to the optimisation
variable (ρ,Γ) = [ρ1, ρ2, . . . , ρN−1, ρN ,Γ]t ∈ RN+1

+ is trivial and is equal to [0, 0, . . . , 0, 1]t ∈
RN+1. To evaluate the gradient of the constraint with respect to the optimisation variable,
let us denote the constraint function as, for s ∈ jR,

C(s) =
|G(s)|2

1− |L11(s)|2 − Γ, (4.140)

where, G(s) = qρ(s)−pρ(s)L11(s)

r(s)
. In order to express the gradient of constraint at the data

points, let us define the following vectors,

Lval = [L11(s1), L11(s2), . . . , L11(sk)]
t (4.141)

rval = [r(s1), r(s2), . . . , r(sk)]
t (4.142)

Gval = [G(s1), G(s2), . . . , G(sk)]
t. (4.143)

It should be noted that the vectors Lval and rval are available directly from the given data
and fixed r respectively and the vector Gval can be obtained after the polynomials pρ and
qρ are obtained using the iterations as described before. The objective Γ can be obtained as
max(|Gval|2./(1− |Lval|2)) and the evaluation of the constraint C(s) at the data points as
|Gval|2./(1− |Lval|2)−Γ. We have the gradient of constraint with respect to optimisation
variable, evaluated at the data points,

∇C = [der,−ones(k, 1)]t,

(N + 1)× k matrix, where, der = 2. ∗ Re(dG. ∗Gval)./(1− Lval. ∗ Lval) is of size k ×N .
The derivative of G with respect to ρ evaluated at the data points, denoted by dG is

dG = (dqρ − dpρ. ∗ Lval)./rval,

where dqρ and dpρ denote the derivative of qρ and pρ with respect to ρ respectively evaluated
at the data points. The matrices dqρ, dpρ and dG are of size k×N . So, it remains to calculate
the matrices dpρ and dqρ to complete the derivative calculations. The derivatives dpρ and
dqρ can be evaluated iteratively by taking the derivative with respect to ρ of the chaining
equations mentioned in (4.132),(4.133), (4.136) and (4.137). Let us denote by Up(s), the
upper triangle matrix with (i, j)-th element, j ≥ i, representing the derivative of pj with
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respect to ρi at a data point s ∈ {s1, s2, . . . , sk} :

Up(s) =



dp1

dρ1
(s) dp2

dρ1
(s) . . . dpN−1

dρ1
(s) dpN

dρ1
(s)

0 dp2

dρ2
(s) . . . dpN−1

dρ2
(s) dpN

dρ2
(s)

...
...

. . .
...

...

0 0 . . . dpN−1

dρN−1
(s) dpN

dρN−1
(s)

0 0 . . . 0 dpN
dρN

(s)


,

Similarly, Uq(s) denote the upper triangle matrix with (i, j)-th element, j ≥ i, representing
the derivative of qj with respect to ρi at a data point s ∈ {s1, s2, . . . , sk} :

Uq(s) =



dq1
dρ1

(s) dq2
dρ1

(s) . . . dqN−1

dρ1
(s) dqN

dρ1
(s)

0 dq2
dρ2

(s) . . . dqN−1

dρ2
(s) dqN

dρ2
(s)

...
...

. . .
...

...

0 0 . . . dqN−1

dρN−1
(s) dqN

dρN−1
(s)

0 0 . . . 0 dqN
dρN

(s)


,

The matrices Up(s) and Uq(s) can be calculated at any data point {s1, s2, . . . , sk} using the
following iterations:

• Chaining a low pass section (transmission zero at infinity)

dp1

dρ1

(s) = γs,
dq1

dρ1

(s) = s. (4.144)

for i= 2 : N,

dpi
dρi

(s) = −spi−1(s) + γi−1sqi−1(s) ; (4.145)

dqi
dρi

(s) = −γi−1spi−1(s) + sqi−1(s) ; (4.146)

end
for i= 1 : N-1
for j= i+1 : N

dpj
dρi

(s) = (−ρjs+ 1)
dpj−1

dρi
(s) + γj−1ρjs

dqj−1

dρi
(s) ; (4.147)

dqj
dρi

(s) = −γj−1ρjs
dpj−1

dρi
(s) + (ρjs+ 1)

dqj−1

dρi
(s) ; (4.148)

end
end
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• Chaining a high pass section (transmission zero at zero)

dp1

dρ1

(s) = 1,
dq1

dρ1

(s) = 1. (4.149)

for i= 2 : N,

dpi
dρi

(s) = −pi−1(s) + γi−1qi−1(s) ; (4.150)

dqi
dρi

(s) = −γi−1pi−1(s) + qi−1(s) ; (4.151)

end
for i= 1 : N-1
for j= i+1 : N

dpj
dρi

(s) = (s− ρj)
dpj−1

dρi
(s) + γj−1ρj

dqj−1

dρi
(s) ; (4.152)

dqj
dρi

(s) = −γj−1ρj
dpj−1

dρi
(s) + (s+ ρj)

dqj−1

dρi
(s) ; (4.153)

end
end

The last column of matrices Up(s) and Uq(s) evaluated at si provides the i-th row of matrices
dpρ and dqρ. So, we have the derivatives of pρ and qρ with respect to ρ at the data points,

dpρ =



dpN
dρ1

(s1) dpN
dρ2

(s1) . . . dpN
dρN−1

(s1) dpN
dρN

(s1)

dpN
dρ1

(s2) dpN
dρ2

(s2) . . . dpN
dρN−1

(s2) dpN
dρN

(s2)

...
... . . .

...
...

dpN
dρ1

(sk)
dpN
dρ2

(sk) . . . dpN
dρN−1

(sk)
dpN
dρN

(sk)

 ,

dqρ =



dqN
dρ1

(s1) dqN
dρ2

(s1) . . . dqN
dρN−1

(s1) dqN
dρN

(s1)

dqN
dρ1

(s2) dqN
dρ2

(s2) . . . dqN
dρN−1

(s2) dqN
dρN

(s2)

...
... . . .

...
...

dqN
dρ1

(sk)
dqN
dρ2

(sk) . . . dqN
dρN−1

(sk)
dqN
dρN

(sk)

 .

Thus, we have the complete calculation of derivatives of the criterion and constraint
C(s) of problem in 4.127. In addition, we impose the constraint ρi > 0 for i = 1, 2, . . . , N
as well. The objective gradient and constraint gradient is then provided to the matlab
non-linear programming solver fmincon to find the solution for problem B. This completes
the description of implementation of problem B using iterations of polynomials p and q
parametrised using the angular derivatives. The solution to problem B yields the optimal
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ρ ∈ RN
+ denoted by ρ̂ = [ρ̂1, ρ̂2, . . . , ρ̂N ]t. This directly provides the optimal matching

network terminating with reference impedance Z0. The values of inductors or capacitors of
the matching network can be obtained from ρ̂ depending upon the chosen topology of the
circuit. After de-normalising the frequency (factor bm Hz : highest frequency of passband),
we have the following equations which follow from the equations in 4.125 . In the case of
low pass section (transmission zero at infinity) at the i-th position (1 ≤ i ≤ N),

• series inductor : L = Z0ρ̂i
πbm

Henry

• parallel capacitor : C = Y0ρ̂i
πbm

Farad

and in the case of high pass section (transmission zero at zero) at the i-th position,

• series capacitor: C = Y0

4πbmρ̂i
Farad

• parallel inductor : L = Z0

4πbmρ̂i
Henry.

Example : Superdirective Antenna

The result of solving problem Bsc with N = 5 when 3 transmission zeros of the matching
circuit were fixed at zero and the remaining 2 at infinity (r = s3) is presented in figure 4.18.
The order of chaining of transmission zeros of the matching circuit (starting from the load)
were fixed to be ∞, 0,∞, 0, 0 and the elementary sections realising the transmission zeros:
parallel C, series C, series L, parallel L and series C respectively. The matching circuit
providing the response in figure 4.18 is shown in figure 4.19.
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d
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Figure 4.18: Result of solving problem Bsc with N = 5 and r(s) = s3
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1.6pF

17.7nF 373.5nH

533.8nH

148.2fF 50.0Ω

Figure 4.19: Matching circuit providing the result in fig 4.18

The matching circuit provides a significant reduction in the maximal mismatch value
of the load in the given passband from around -1.37 dB (L11 at 870 MHz) to -6.5 dB and
also the elementary chaining approach has ensured matching circuit with no impedance
transformer as shown in figure 4.19. An iteration scheme to solve problem Bsc for all
the possible combinations of chaining of elementary sections for a fixed degree N was
implemented as well. Some other matching circuits providing response very close to S11 in
figure 4.18 for superdirective antenna is shown below. Matching circuits 2, 3 and 4 shown
in figures 4.20, 4.21 and 4.22 have r(s) fixed to be equal to s2, s5 and s4 respectively.

1.6pF

48.4pF 677.0pH

8.0nH

707.4aF

50.0Ω

Figure 4.20: Matching circuit 2 providing response close to S11 in fig 4.18

44.2µH

1.5pF

1.2nH

14.8pF

921.0pH

50.0Ω

Figure 4.21: Matching circuit 3 providing response close to S11 in fig 4.18
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1.5pF

791.8pH 31.1pF

5.2pF

2.8nH

50.0Ω

Figure 4.22: Matching circuit 4 providing response close to S11 in fig 4.18

It should be noted that alternative to the way the iterations and derivatives are de-
fined in this section, they can be defined directly using chain matrix as well. Motivated by
the requirement of implementing microstrip lines in between the LC sections, the imple-
mentation directly using chain matrix is discussed in the next section. The chain matrix
formalism is important since the scattering matrix of microstrip lines does not have a ratio-
nal form and we no longer have a scheme of iterating polynomials as described in equations
(4.132),(4.133), (4.134), (4.136), (4.137) and (4.138).

4.5 Synthesis of L,C Matching Circuits with Fixed

Microstrip Lines

In this section, we will discuss the formulation and implementation of the matching problem
in the real setting in such a way as to include in the optimisation fixed microstrip lines in
between the L,C sections of matching circuit. In the realization of matching networks using
lumped elements on PCB, microstrip lines between the lumped inductors and capacitors can
have an effect on the expected results of matching. This signifies the practical importance
of this section. The effective dielectric constant ε of a microstrip line is given approximately
by (equation 3.195, [77])

ε =
εr + 1

2
+
εr − 1

2

1√
1 + 12 d

w

, (4.154)

where w is the width of the microstrip line, d is the thickness of the dielectric substrate
having relative permittivity εr. The characteristic impedance, Zc of the microstrip line can
be calculated as (equation 3.196, [77])

Zc =


60√
ε

ln

(
8 d
w

+ w
4d

)
for w

d
≤ 1

120π√
ε(w
d

+1.393+0.667 ln(w
d

+1.444))
for w

d
> 1.

(4.155)

Let us consider a microstrip line with charactersitic impedance equal to the fixed ref-
erence impedance Z0. The scattering matrix of this microstrip line with effective dielectric

192 Gibin Bose



4.5. SYNTHESIS OF L,C MATCHING CIRCUITS WITH FIXED MICROSTRIP
LINES

constant ε and length l for the reference impedance Z0 is

SML =

[
0 exp(−2πl

√
ε

c0
s)

exp(−2πl
√
ε

c0
s) 0

]
, (4.156)

where c0 denote the speed of light. The corresponding chain matrix is

TML =

[
exp(−2πl

√
ε

c0
s) 0

0 exp(2πl
√
ε

c0
s).

]
(4.157)

We will continue to use the elementary chaining approach discussed in the last section
with the difference that we have to take care of the chaining of microstrip lines in between
each elementary section. The parameterisation of the reflection coefficient of the matching
circuit will be done using ρ = [ρ1, ρ2, . . . , ρN ]t, the angular derivatives of the reflection
coefficient of elementary L,C sections that was introduced in the last section. The matching
problem can be formulated as:

Problem. H. Given a passband I, non-constant reflection coefficient L11 ∈ B of the load
which is strictly contractive in I and satisfying equation (4.4),

Find: l̂ = min
ρ∈RN+

max
s∈I

∣∣∣∣ Sρ22(s)− L11(s)

1− Sρ22(s)L11(s)

∣∣∣∣,
where Sρ22 is the output reflection coefficient of matching network consisting of N elementary
L,C sections chained in a given fixed order and having microstrip lines of fixed electrical
and physical properties in between each sections.

For simplicity of derivative calculations, we solve problemH after squaring δ(Sρ22(s), L11(s))
in the criterion. As in the previous section, let us denote the points in the passband of
interest where the measured reflection coefficient of the load L11 is given as {s1, s2, . . . , sk}.
The problem H can be solved practically by defining an extra variable Γ ∈ R, satisfying,

Γ ≥
∣∣∣∣ Sρ22(si)− L11(si)

1− Sρ22(si)L11(si)

∣∣∣∣2, i = 1, 2, . . . , k (4.158)

and then solving the following problem,

min
(ρ,Γ)∈RN+1

+

Γ

sub :

∣∣∣∣ Sρ22(si)− L11(si)

1− Sρ22(si)L11(s)

∣∣∣∣2 − Γ ≤ 0, i = 1, 2, . . . , k. (4.159)

4.5.1 Numerical Implementation of Problem H
For a fixed topology of the matching circuit, the evaluation of Sρ22 at the data points can
be easily done with the help of chain matrices of elementary L,C sections and microstrip
line. If we denote the chain matrices of N elementary sections in the matching circuit by
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T ρ1 , T ρ2 , . . . , T ρN (in the order of chaining) and the chain matrix of microstrip line of fixed
length and width present between the sections by TML, the overall chain matrix of the
matching circuit, denoted by T can be evaluated at any frequency as,

T ρ = T ρ1 ∗ TML ∗ T ρ2 ∗ TML ∗ T ρ3 ∗ . . . ∗ T ρN−1 ∗ TML ∗ T ρN . (4.160)

Each T ρi represent the chain matrix of elementary L,C sections. The value of ρi in each
case depend upon the fixed sequence of chaining of sections. We have the chain matrix of
elementary sections

T lp =

[
1− ρlps γρlps

−γρlps 1 + ρlps

]
, T hp =

1

s

[
s− ρhp γρhp

−γρhp s+ ρhp

]
(4.161)

where ρlp, ρhp and γ satisfy the equations mentioned in (4.125). Then the scattering matrix
of matching circuit denoted by Sρ can be evaluated using the conversion,

Sρ =
1

T ρ22

[
T ρ12 −det(T ρ)

1 −T ρ21

]
, (4.162)

So, once we have the chain matrix T ρ, we have the evaluation of Sρ22 at any data point,

Sρ22(s) = −T
ρ
21(s)

T ρ22(s)
. (4.163)

Now, we are in a position to calculate the gradient of criterion and constraint of problem
4.159 at the data points {s1, s2, . . . , sk}.

Derivatives of Criterion and Constraint

The gradient of the criterion with respect to the optimisation variable,
(ρ,Γ) = [ρ1, ρ2, . . . , ρN−1, ρN ,Γ]t ∈ RN+1

+ is trivial and is equal to [0, 0, . . . , 0, 1]t ∈ RN+1.
To evaluate the gradient of constraint with respect to the optimisation variable, let us
denote the constraint function as, for s ∈ jR,

C(s) = |G(s)|2 − Γ, (4.164)

where, G(s) =
Sρ22(s)−L11(s)

1−Sρ22(s)L11(s)
. In order to express the gradient of constraint at the data

points, let us define the following vectors,

Lval = [L11(s1), L11(s2), . . . , L11(sk)]
t (4.165)

Sval = [Sρ22(s1), Sρ22(s2), . . . , Sρ22(sk)]
t (4.166)

Gval = [G(s1), G(s2), . . . , G(sk)]
t. (4.167)

It should be noted that the vector Lval is available directly from the given data and
the vectors Sval and Gval can be obtained after calculating Sρ22 at the data points using
equation 4.163. The objective Γ can be obtained as max(|Gval|2./(1 − |Lval|2)) and the
evaluation of the constraint C(s) at the data points as |Gval|2./(1− |Lval|2)−Γ. We have
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the gradient of the constraint with respect to optimisation variable evaluated at the data
points,

∇C = [der,−ones(k, 1)]t,

(N + 1)× k matrix, where, der = 2. ∗ Re(dG. ∗Gval) is of size k ×N . the derivative of G
with respect to ρ evaluated at the data points, denoted by dG is

dG =
(
(1− Sval. ∗ Lval). ∗ dSρ22 + (Sval − Lval). ∗ Lval. ∗ dSρ22

)
./
(
1− Sval. ∗ Lval

)
.2

where dSρ22 denote the derivative of Sρ22 with respect to ρ evaluated at the data points and
is of size k × N . So, it remains to calculate the matrix dSρ22. From equation (4.163), we
have

dSρ22 =
T ρ21val. ∗ dT ρ22 − T ρ22val. ∗ dT ρ21

(T ρ22val).
2

where T ρ21val = [T ρ21(s1), T ρ21(s2), . . . , T ρ21(sk)]
t and T ρ22val = [T ρ22(s1), T ρ22(s2), . . . , T ρ22(sk)]

t

can be obtained directly from equation (4.160) of T ρ. In order to calculate the matrices
dT ρ22 and dT ρ21, it should be noted that we have the derivatives of elementary chain matrices
T lp and T hp with respect to ρlp and ρhp respectively at any data point s ∈ {s1, s2, . . . , sk} :

dT lp

dρlp
(s) =

[
−s γs

−γs s

]
,

dT hp

dρhp
(s) =

1

s

[
−1 γ

−γ 1

]
. (4.168)

So, the derivative of matrix T ρ with respect to ρ = [ρ1, ρ2, . . . , ρN ] at any point s ∈
{s1, s2, . . . , sk} can be calculated using the following derivative calculations:

dT ρ

dρ1

(s) =
dT ρ1

dρ1

(s) ∗ TML ∗ T ρ2 ∗ TML ∗ T ρ3 ∗ . . . ∗ T ρN−1 ∗ TML ∗ T ρN

dT ρ

dρ2

(s) = T ρ1 ∗ TML ∗ dT
ρ2

dρ2

(s) ∗ TML ∗ T ρ3 ∗ . . . ∗ T ρN−1 ∗ TML ∗ T ρN

...

dT ρ

dρN
(s) = T ρ1 ∗ TML ∗ T ρ2 ∗ TML ∗ T ρ3 ∗ . . . ∗ T ρN−1 ∗ TML ∗ dT

ρN

dρN
(s)

where dT ρi
dρi

(s), 1 ≤ i ≤ N follow either of the equations mentioned in (4.168) depending

upon the elementary section at i-th position. So, we have the matrices dT ρ22 and dT ρ21 from
the above calculations:

dT ρ22 =



dT ρ22

dρ1
(s1)

dT ρ22

dρ2
(s1) . . .

dT ρ22

dρN−1
(s1)

dT ρ22

dρN
(s1)

dT ρ22

dρ1
(s2)

dT ρ22

dρ2
(s2) . . .

dT ρ22

dρN−1
(s2)

dT ρ22

dρN
(s2)

...
... . . .

...
...

dT ρ22

dρ1
(sk)

dT ρ22

dρ2
(sk) . . .

dT ρ22

dρN−1
(sk)

dT ρ22

dρN
(sk)


,
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dT ρ21 =



dT ρ21

dρ1
(s1)

dT ρ21

dρ2
(s1) . . .

dT ρ21

dρN−1
(s1)

dT ρ21

dρN
(s1)

dT ρ21

dρ1
(s2)

dT ρ21

dρ2
(s2) . . .

dT ρ21

dρN−1
(s2)

dT ρ21

dρN
(s2)

...
... . . .

...
...

dT ρ21

dρ1
(sk)

dT ρ21

dρ2
(sk) . . .

dT ρ21

dρN−1
(sk)

dT ρ21

dρN
(sk)


.

Thus, we have the complete calculation of derivatives of the criterion and constraint C(s) of
problem 4.159. Just as in the last section, we impose the constraint ρi > 0 for i = 1, 2, . . . , N
as well and then the matlab non-linear programming solver fmincon is used to find the
solution for problem H. This completes the description of implementation of problem H.
Once the optimal ρ of problem H is obtained, the computation of inductance and capacitor
values of the optimal matching network follows the same equations mentioned at the end
of section 4.4.

Example : Superdirective Antenna

The result of solving problem H with N = 5 when all the transmission zeors of the ele-
mentary sections in the matching circuit were fixed at zero is presented in figure 4.23. The
elementary sections in the order of chaining to the load were fixed to be series C, parallel L,
series C, parallel L and series C and microstrip lines of length equal to 1.5 mm were fixed
to be present between the elementary sections. For the purpose of illustration, the width
of the microstrip line was fixed to be 1.5 mm and dielectric substrate thickness of 0.8 mm
with relative permittivity εr = 4.4. This provides effective dielectric constant, ε = 3.39 and
characteristic impedance of the microstrip line equal to 50 Ω according to the equations
in 4.154 and 4.155. The matching circuit providing the response in figure 4.23 is shown in
figure 4.24.
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Figure 4.23: Result of solving problem H with N = 5 and r(s) = s5

17.7nF 1.50mm

44.2µH

1.50mm 528.2fF 1.50mm

19.1nH

1.50mm 720.7fF 50.0Ω

Figure 4.24: Matching circuit providing the result in fig 4.23

The optimal criterion obtained, -5.16 dB can be noticed to be not as good as the one in
figure 4.12 (-6.58 dB) which was obtained by solving problem Psc with N = 5 and r(s) = s5

and transformerless condition a5 = 0. The topology of the circuits in both cases (figure
4.13 and figure 4.24) are the same except the addition of fixed microstrip lines in between
the L,C elements in the circuit in figure 4.24. The provided example clearly illustrates
the impact of introducing microstrip lines on the element values of the optimal matching
circuit and the optimal matching criterion and hence signifies the practical importance of
problem H.

In figure 4.25, we have provided a comparison of the results obtained on superdirective
antenna example by solving different problems discussed in the thesis using degree 5 match-
ing circuit : problem PC in chapter 3 (convex optimistion approach) and problems P ,B
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(matching circuit with real components having impedance transformer and constrained to
have no impedance transformer respectively) and problem H (where microstrip lines are
included between the LC components). The figures are placed in the order : top left, top
right, bottom left, bottom right respectively.

Figure 4.25: Result of problems PC ,P ,B and H : -8.5 dB,-7.5 dB,-6.6 dB,-5.2 dB.

We conclude this section by stating that the elementary chaining approach (where
parametrisation is done using angular derivatives) for the matching problem described in
sections 4.4 and 4.5 provides a number of advantages compared to the parametrisation over
coefficients of p described in subsection 4.2.3 :

• The computation of q ∈ SBR,N from p ∈ PR,N , which involves the spectral factorisation
can be avoided.

• It avoids the impedance transformer at the end of the matching circuit without impos-
ing any extra constraints since the construction of the circuit is done by elementary
chaining of L,C sections.

• It facilitates the option of adding fixed microstrip lines in between the L,C components
in the optimisation and provide the optimal L,C values taking into consideration these
transmission lines.

• If required, it provides an easy and efficient way to bound the values of L,C com-
ponents in the optimisation to any range required as per the application or user re-
quirements. This can be done by adding extra constraints of upper bound and lower
bound on ρ in the optimisation. If we denote the lower bound and upper bound of
inductance values as Llb and Lub Henry and that of capacitance values as Clb and Cub
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Farad respectively, we can add the following additional constraint on ρi, 1 ≤ i ≤ N
in the optimisation. In the case of low pass section (transmission zero at infinity) at
the i-th position,

(a) series inductor : πbmLlb
Z0
≤ ρi ≤ πbmLub

Z0

(b) parallel capacitor :πbmClb
Y0
≤ ρi ≤ πbmCub

Y0

and in the case of high pass section (transmission zero at zero) at the i-th position,

(a) series capacitor: Y0

4πbmCub
≤ ρi ≤ Y0

4πbmClb

(b) parallel inductor : Z0

4πbmLub
≤ ρi ≤ Z0

4πbmLlb
.

We would like to make the remark that all the problems discussed in this chapter are non-
convex and so the numerical implementation schemes discussed do not guarantee a unique
optimum. This is the main difference in comparison to the chapter 3 convex optimisation
approach, but nevertheless the problems discussed in this chapter allows us to find local
optima that satisfy the necessary practical constraints. Finally, before concluding this
chapter, we will provide an interesting remark concerning the possible number of equivalent
circuit topologies that can realize a given scattering matrix of lossless two-port. It should
be noted that even though in this chapter, we have not discussed the realization of a
transmission zero of an S-matrix at a finite non-zero point on the imaginary axis, this can
be easily included in the optimisation schemes discussed as well. This will provide matching
circuits consisting of LC series resonators connected in parallel and LC parallel resonators
connected in series. In the remark provided below, we consider circuits consisting of only
elementary L,C sections that was described in section 4.3, that is series or parallel inductor
or capacitor.

Remark 4.5.1. There exist 4 ∗ 3N−1 (with some circuit repetitions for N ≥ 2) possible
number of equivalent circuit topologies that can realize a given degree N lossless scattering
matrix whose transmission zeros are allowed to be at zero or infinity.

The proof of remark 4.5.1 easily follows since the first element of N element circuit has
4 possibilities (series or parallel inductor/capacitor) and all the remaining N − 1 positions
have 3 options each. It should be noted that in the above count, for example with N = 2,
there are 2 circuit repetitions : one circuit with a series inductor and a series capacitor and
another circuit with a parallel inductor and a parallel capacitor. This repetition increases
with N and for a general N ≥ 2, to have the exact number of equivalent circuit topologies
with no repetition of circuits within them, we have to subtract this repetition count from
4 ∗ 3N−1. This is not presented here since the main interest of remark 4.5.1 was to provide
an insight into the exponential increase of equivalent circuit topologies with the number of
components N . We conclude this section here and in the next section, we will provide a
conclusion to the chapter.

4.6 Conclusion

In this chapter, we initially introduced the matching problem in the real setting and its
numerical implementation. The natural parameterisation based on the coefficients of the
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polynomial variable, p ∈ PR,N in the optimisation problem was used for the implementa-
tion of the problem. Some important theoretical results including the existence of solution
and characterisation of the solution based on the number of critical points were also made.
A study of the constraints that need to imposed on the coefficients of polynomial p was
done in order to ensure a transformerless synthesis of the matching circuit. A section was
also devoted to an elementary chaining approach based on the angular derivatives of the
reflection coefficients of the basic L,C sections. This provided a more direct way of trans-
formerless synthesis of the matching circuit possible, along with the option to bound the
element values of L,C elements to specific ranges required by the user if required. Finally,
motivated by the requirement to include microstrip lines in between the elementary L,C
sections, a section devoted to the formulation of the problem based on chain matrices was
also made. In general, in this chapter, we have discussed some of the practical constraints
that are important in the matching network synthesis like transformerless circuit, bounding
the L,C values as per the user requirement, taking into consideration the microstrip lines
between lumped inductors and capacitors in the matching circuit and showed that they can
be easily included in the optimisation schemes.

In the next chapter, we will give an illustration of the numerical implementations of the
different optimisation schemes developed throughout the thesis on some concrete antenna
examples. The results obtained from part I of the thesis and the current chapter will
provide an idea of the theoretical bounds of the matching criterion for the given load in
the desired passband and the criterion obtained after considering the necessary practical
constraints. The realization of the optimal response using matching circuit consisting of
lumped inductors and capacitors will be done. The illustrations of some basic prototypes
of antenna designed together with these matching circuits and their reflection coefficient
measured in the Vector network Analyzer will be provided as well.
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CHAPTER 5

Realisation : Lumped Element Matching Networks

5.1 Introduction

In this chapter we will present different prototypes of PCB antennas designed together
with the matching circuit obtained from the optimisation schemes developed in the thesis.
Matching of antenna prototypes at different ranges in the frequency band are chosen to
test the robustness of the developed matching techniques. A dual band matching example
will also be provided. The results of the numerical implementation of different optimisation
schemes introduced in the thesis will be illustrated for the presented prototypes. This will
provide a comparison of the matching criterion obtained by solving the generalised matching
problem in chapter 3 with the matching problems in real setting introduced in chapter 4.
For a given degree of the matching circuit, the first part of the thesis provides hard bounds
on the possible matching level obtainable. The solution to the matching problems in the real
setting in the second part of the thesis take into consideration different practical necessities
of the realization of the circuits and hence provides the optimum under these constraints.

The combined results obtained from both parts of the thesis provides a complete descrip-
tion of the matching criterion possible for the antenna prototype in the targeted passband.
The theoretical bounds obtained from the global system approach in chapter 3 helps to
give an estimate of the level of drop in the matching criterion after imposing the necessary
practical constraints. The electromagnetic simulation software High Frequency Structure
Simulator (Ansys HFSS [2]) will be used to validate the matching circuit responses and also
to simulate the scattering measurement of antenna prototypes together with the matching
circuits calculated. The S11 measurement obtained from the Vector Network Analyzer will
be illustrated for all the prototypes presented. The measurements before and after adding a
matching circuit to the antenna will be presented, certifying the robustness of the developed
matching procedures.

5.2 Prototype 1 : 169 MHz Antenna

In the first example, we present a prototype of a simple monopole antenna targeted to be
matched at 169 MHz ISM band. This ISM band is ideal for sensors or devices that are
located in hard to reach places since it provides good RF performance in terms of coverage
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and building penetrations. The S11 measurement of the antenna without any matching
circuit obtained using a network analyzer (reference impedance = 50 ohm) is depicted
in figure 5.1. The targeted passband for matching, 167 MHz to 171 MHz is represented
using the rectangle in the figure. It can be noticed that the antenna is very reflective in
the prescribed passband and to be precise, the S11 measurement at the end points of the
passband are -0.077 dB and -0.084 dB.
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Figure 5.1: Scattering parameter of the load

In accordance with the spirit of the thesis, we will solve this matching problem initially
using the global system approach developed in chapter 3 and then present the results
obtained in the case of matching problem formulation in the real setting described in chapter
4. This will provide a description about the bounds for the matching criterion possible for
any chosen degree of the matching circuit and also the effect of the practical constraints
imposed.

In figure 5.2 the result of solving matching problem formulated using the global system
approach (problem PC in chapter 3) is presented. The rational approximation of given
load data was done using a degree one system in the frequency band of interest. The target
degree of the global system was fixed to be three (N = 3) and all the transmission zeros of
the matching circuit were fixed at infinity, in particular RF = 1. It can be noted that we
were able to significantly reduce the maximal mismatch value of the load in the passband
from -0.077 dB to -6.86 dB. The 4 critical points (N+1) in the passband at which S11 attains
−6.86 dB characterize the optimality of the obtained response. Since the McMillan degree
of the load is 1, the matching criterion obtained corresponds to the theoretical matching
limit possible with degree 2 matching circuit.
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Figure 5.2: Result of global system approach (problem PC) with N = 3
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Figure 5.3: Result of matching problem in real setting (problem P) with N = 2

The result of solving matching problem in the real setting (problem P in chapter 4) is
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presented in figure 5.3. We did not impose the transformerless condition and the target
degree of the matching circuit was fixed to be two (N = 2) with transmission zeros one
at zero and one at infinity (r(s) = s). The optimal matching criterion obtained, -4.19
dB is lesser than the one obtained by solving problem PC as expected but still provides
a significant improvement compared to L11. The 2 critical points (dN

2
e + 1) at which S11

attains -4.19 dB in the passband characterize the optimality of the obtained response. In
order to calculate the element values of the optimal matching circuit, the de-chaining of the
transmission zeros were performed in the order: one at zero and then the one at infinity.
The matching circuit thus obtained, providing the result in figure 5.3 is depicted in figure
5.4. It should be noted that the circuit is not terminating in 50 ohm since we have not
imposed any transformerless condition in problem P .

3.8pF

30.9pF

26.4Ω

Figure 5.4: Matching circuit providing the result in fig 5.3

Now, the result of solving matching problem using the elementary chaining approach,
where parametrisation of F22 is done using the angular derivatives is depicted in figure 5.5.
The problem under consideration is problem H where fixed microstrip lines are included
between the elementary sections as well. Again the target degree of the matching circuit
is fixed to be two but with microstrip lines of length 1.5 mm and effective dielectric con-
stant 3.3 included between the elements. The elementary sections in the order of chaining
were fixed to be series capacitor (transmission zero at zero) and then parallel capacitor
(transmission zero at infinity) to be in accordance with the circuit topology in figure 5.4.
It can be noticed in figure 5.5 that we are able to attain almost the same criterion, -4.18
dB compared to the solution of problem P in figure 5.3.

A validation of the matching response obtained was performed using Ansys Designer for
circuit simulation in HFSS. It was done by connecting a port containing antenna L11 data
at the left of the circuit in figure 5.7 and simulating the response at a 50 Ω port connected
after the last element. The response obtained, denoted by S11 HFSS CS is plotted in figure
5.5 and can be observed to be exactly agreeing with S11.
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Figure 5.5: Result of matching problem in real setting (problem H) with N = 2

The Smith chart representation of S11 in figure 5.5 is depicted in figure 5.6.
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Figure 5.6: Smith chart representation of S11 in figure 5.5

The matching circuit providing the result in figure 5.5 is depicted below. It should be
noted that now the circuit is terminating in 50 ohm and microstrip line is included between
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the elements as well.

3.9pF 1.50mm

28.4pF

50.0Ω

Figure 5.7: Matching circuit providing the result in fig 5.5

Before realizing the matching circuit on the pcb, a monte carlo kind of analysis was
performed as well to test the sensitivity of the circuit in figure 5.7. The LC element values
and transmission line length was sampled uniformly in a range of original values (values
in the circuit in figure 5.7) plus or minus a small percentage of variation and the resulting
response of circuit chained to the antenna was obtained for each sample. The result of this
analysis using a maximum of 3 percent variation on the L,C element values of the above
circuit and transmission line length with 20 samples is presented below.
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Figure 5.8: Monte Carlo analysis of global response in fig 5.5

It can be noted from the sensitivity analysis that the circuit in figure 5.7 is not very
sensitive to small variations in the component values and transmission line length. We
would like to point out to the reader that this need not be the case in general, some circuits
can be extremely sensitive as well. From the different possible combinations of matching
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circuit topologies, in this chapter, we have chosen to consider only the circuits that are
not very sensitive since they are supposed to be realized practically. Realizing extremely
sensitive circuits can be practically very challenging.

Now, we are in a position to include the matching circuit in the pcb design of the
antenna. The nearest element values available in the Johanson capacitor kit 0603 0.3pF-
82pF was chosen (3.9pF, 28pF). The pcb antenna with 2 component matching circuit
soldered is shown in figure 5.9. The dimensions are length = 255 mm, width = 155 mm
and FR-4 epoxy substrate thickness of 1.6 mm.

Figure 5.9: 169 MHz PCB Antenna with 2 component matching circuit

The result of S11 measurement of the antenna measured using a VNA anlayzer after
adding the 2 component matching circuit shown in figure 5.7 is presented in figure 5.10.
The corresponding Smith Chart representation is provided in figure 5.11. It can be noticed
that even though the matching criterion obtained is not in exact agreement that to the
simulated result in figure 5.5, we are able to provide matching in the target band. The
main reason behind the deviation in the obtained response compared to simulation is the
fact that we have considered lossless matching circuit throughout the theory developed,
whereas in reality in the practical realisation, there are losses in the LC components and in
the matching circuit. When plotting the reflection coefficient of the antenna together with
the matching circuit, these losses contribute to the fact that matching criterion is better
than the simulated ones using lossless circuit.
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Figure 5.10: S11 measurement of the designed antenna with 2 component matching circuit
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Figure 5.11: S parameter chart of the designed antenna with 2 component matching circuit

Nevertheless, compared to the initial S11 measurement of the antenna depicted in fig-
ure 5.1, we have been able to remarkably improve the matching criterion in the targeted
passband. This concludes the study of degree 2 matching circuit.
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Figure 5.12: Result of global system approach (problem PC) with N = 6

Next, the result of matching using a circuit with 5 components is presented for the same
antenna in the same target passband, 167 MHz-171 MHz. Initially we present in figure
5.12 the result of solving matching problem formulated using the global system approach
(problem PC). The target degree of the global system was fixed to be six (N = 6) and all
the transmission zeros of the matching circuit were fixed at infinity, in particular RF = 1.
It can be noted that we are able to significantly reduce the maximal mismatch value of
the load in the passband from -0.077 dB to -11.54 dB. The 7 critical points (N + 1) in
the passband at which S11 attains −11.54 dB characterize the optimality of the obtained
response. Since the McMillan degree of the load is 1, the matching criterion obtained
corresponds to the theoretical matching limit possible with degree 5 matching circuit.

The result of solving matching problem H where parametrisation of F22 is done using
the angular derivatives is depicted in figure 5.13. The capacitor and inductor values in
the matching circuit were bounded to be in the ranges 0.3pF-82pF and 1.5nH-220nH by
fixing bounds on the angular derivatives and fixed microstrip lines of length 1.5 mm and
effective dielectric constant 3.3 were included between the elements as well. The target
degree of the matching circuit was fixed to be five (N = 5) and the elementary sections in
the order of chaining were fixed to be series capacitor, parallel inductor, series inductor,
parallel capacitor and series capacitor.
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Figure 5.13: Result of matching problem in real setting (problem H) with N = 5

The Smith chart representation of S11 in figure 5.13 is depicted in figure 5.14.
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Figure 5.14: Smith chart representation of S11 in figure 5.13

The matching circuit providing the result in 5.13 is depicted in figure 5.15. A validation
of the matching response obtained was performed using Ansys Designer for circuit simula-
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tion. The response obtained, denoted by S11 HFSS CS is plotted in figure 5.13 and can be
observed to be agreeing with S11.

3.5pF 1.50mm

1.9nH

1.50mm 7.1nH 1.50mm

82.0pF

1.50mm 7.0pF 50.0Ω

Figure 5.15: Matching circuit providing the result in fig 5.13

A monte carlo kind of analysis to test the sensitivity of the circuit on transmission
length was done. It was done using a maximum of 5 percent variation on the transmission
line length with 20 samples of transmission line length considered uniformly in this range.
The result is presented below and it can be observed that the circuit response is not very
sensitive to small variation in the transmission line length.
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Figure 5.16: Monte Carlo analysis of global response (S11) in fig 5.13

Now the matching circuit in figure 5.15 was included in the pcb design of antenna by
element wise soldering. The nearest element values available in the Johanson capacitor
kit 0603 0.3pF-82pF and TDK chip inductors kit 0603 1.5nH-220nH was chosen. The pcb
antenna after soldering these elements is shown below.

PhD Thesis 211



CHAPTER 5. REALISATION : LUMPED ELEMENT MATCHING NETWORKS

Figure 5.17: 169 MHz PCB Antenna with 5 component matching circuit

The result of S11 measurement of the antenna measured using a VNA anlayzer after
adding the 5 element matching circuit is presented in figure 5.18. The corresponding Smith
Chart representation is provided in figure 5.19.

100 120 140 160 180 200 220 240 260 280 300

−14

−12

−10

−8

−6

−4

−2

0

Frequency (MHz)

M
ag

n
it

u
d
e

(d
B

)

S11

Figure 5.18: S11 measurement of the designed antenna with 5 component matching circuit
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Figure 5.19: S parameter chart of the designed antenna with 5 component matching circuit

As mentioned in the degree 2 matching circuit case, the losses in the components of the
matching circuit contributes to the deviation in the response obtained in reality compared
to the simulation. Nevertheless, compared to the initial S11 measurement of the antenna
depicted in figure 5.1, we have been able to improve the matching criterion significantly.
Also, it provides a better result than the one compared to matching circuit with 2 compo-
nents as well (figure 5.10). This concludes the study of matching of 169 MHz antenna and
now we move to the second example of matching 433 MHz antenna.

5.3 Prototype 2 : 433 MHz Antenna

In the second example, we present a prototype of a simple monopole antenna targeted to
be matched at 433 MHz ISM band. The S11 measurement of this antenna obtained using a
network analyzer is depicted in figure 5.20. The targeted pass band 427 MHz to 439 MHz
is represented using the rectangle in the figure. The S11 measurement at the end points of
the passband are -0.110 dB and -0.116 dB.

Similar to the example studied in the previous section, we will solve the matching
problem initially using the global system approach developed in chapter 3 and then present
the results obtained in the case of matching problem formulation in the real setting described
in chapter 4. In figure 5.21 the result of solving matching problem formulated using the
global system approach (problem PC) is presented. The rational approximation of the given
load data was done using a degree one system in the frequency band of interest. The target
degree of the global system was fixed to be three (N = 3) and all the transmission zeros
of the matching circuit were fixed at infinity (RF = 1). It can be noted that we are able
to significantly reduce the maximal mismatch value of the load in the passband from -0.11
dB to -7.47 dB. Since the McMillan degree of the load is 1, the matching criterion obtained
corresponds to the theoretical matching limit possible with degree 2 matching circuit.
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Figure 5.20: Scattering parameter of the load
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Figure 5.21: Result of global system approach (problem PC) with N = 3
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Figure 5.22: Result of matching problem in real setting (problem P) with N = 2

The result of solving matching problem in the real setting (problem P) is presented
in figure 5.22. We did not impose the transformerless condition and the target degree of
the matching circuit was fixed to be two (N = 2) with transmission zeros one at zero and
one at infinity (r(s) = s). The optimal matching criterion obtained, -4.82 dB provides a
significant improvement compared to L11. The 2 critical points (dN

2
e + 1) at which S11

attains -4.82 dB in the passband characterize the optimality of the obtained response. In
order to calculate the element values of the optimal matching circuit, the de-chaining of the
transmission zeros were performed in the order: one at zero and then the one at infinity.
The matching circuit thus obtained, providing the result in figure 5.22 is depicted in figure
5.23. It should be noted that the circuit is not terminating in 50 ohm since we have not
imposed any transformerless condition in problem P .

1.2pF

5.7pF

51.3Ω

Figure 5.23: Matching circuit providing the result in fig 5.22

Now, the result of solving the matching problem in the real setting using the elemen-
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tary chaining approach where parametrisation of F22 is done using the angular derivatives
is depicted in figure 5.24. The problem under consideration is problem H where fixed mi-
crostrip lines are included between the elementary sections as well. The target degree of
the matching circuit was fixed to be two but with microstrip lines of length 1.5 mm and
effective dielectric constant 3.23 included between the elements. The elementary sections
in the order of chaining were fixed to be series capacitor (transmission zero at zero) and
then parallel capacitor (transmission zero at infinity) to be in accordance with the circuit
topology in figure 5.23. It can be noticed in figure 5.5 that we are able to attain almost the
same criterion, -4.82 dB compared to the solution of problem P in figure 5.23.

A validation of the matching response obtained was performed using Ansys Designer
for circuit simulation and is represented by S11 HFSS CS in figure 5.24. It was obtained
by connecting a port containing antenna L11 data at the left of the circuit in figure 5.26
and simulating the response at a 50 Ω port connected after the last element. The response
obtained can be observed to be exactly agreeing with S11.
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Figure 5.24: Result of matching problem in real setting (problem H) with N = 2

The Smith chart representation of S11 in figure 5.24 is depicted in figure 5.25.
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Figure 5.25: Smith chart representation of S11 in figure 5.24

The matching circuit providing the above result is depicted below. It should be noted
that now the circuit is terminating in 50 ohm and microstrip line is included between the
elements as well.

1.2pF 1.50mm

5.5pF

50.0Ω

Figure 5.26: Matching circuit providing the result in fig 5.24

Before realizing the matching circuit on the pcb, a monte carlo analysis was performed
as well. The result of this analysis using a maximum of 3 percent variation on the L,C
element values of the above circuit and transmission line length with 20 samples is presented
below.
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Figure 5.27: Monte Carlo analysis of global response in fig 5.24

The nearest element values available in the Johanson capacitor kit 0603, 0.3pF-82pF
was chosen to solder the matching circuit components into the pcb antenna (1.2pF, 5.6pF).
The pcb antenna with 2 component matching circuit soldered is shown in figure 5.28. The
dimensions are length = 100 mm, width = 60 mm and FR-4 epoxy substrate thickness of
0.8 mm.

Figure 5.28: 433 MHz PCB Antenna with 2 component matching circuit
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The result of S11 measurement of the antenna measured using a VNA anlayzer after
adding the 2 component matching circuit in figure 5.26 is presented in figure 5.29. The
corresponding Smith Chart representation of figure 5.29 is provided in figure 5.30.
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Figure 5.29: S11 measurement of the designed antenna with 2 component matching circuit
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Figure 5.30: S parameter chart of the designed antenna with 2 component matching circuit

As mentioned in prototype 1 realization, the losses in the matching circuit components
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has lead to the matching criterion in realization being better than the simulation. However,
it can be noticed that the matching criterion obtained is close to the simulated result in
figure 5.24 and compared to the initial S11 measurement of the antenna depicted in figure
5.20, we have been able to remarkably improve the matching criterion in the targeted
passband. This concludes the study of matching of 433 MHz antenna.

5.4 Prototype 3 : 433 MHz and 868 MHZ Dual Band

Antenna

In this section, we present dual band matching example for the monopole antenna prototype
described in section 5.3. The S11 measurement of this antenna obtained using a network
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Figure 5.31: Scattering parameter of the load

analyzer is depicted in figure 5.31. The targeted pass band 427 MHz to 439 MHz and 860
MHz to 876 MHZ is represented using the rectangle in the figure. The S11 measurement at
the end points of the passband are -0.110 dB, -0.116 dB and -0.356 dB, -0.321 dB.

In figure 5.32 the result of solving matching problem formulated using the global system
approach (problem PC) is presented. The rational approximation of the given load data
was done using a degree two system in the frequency band of interest. The target degree of
the global system was fixed to be five (N = 5) and all the transmission zeros of the matching
circuit were fixed at infinity (RF = 1). It can be noted that we are able to significantly
reduce the maximal mismatch value of the load in the passband from -0.11 dB to -8.8 dB.
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Figure 5.32: Result of global system approach (problem PC) with N = 5
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Figure 5.33: Result of matching problem in real setting (problem H) with N = 4
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Figure 5.34: Smith chart representation of S11 in figure 5.33

The result of solving matching problem in the real setting using the elementary chaining
approach where parametrisation of F22 is done using the angular derivatives is depicted in
figure 5.33. The Smith chart representation of S11 in figure 5.33 is depicted in figure 5.34.
The problem under consideration is problem H where fixed microstrip lines are included
between the elementary sections as well. The target degree of the matching circuit was fixed
to be four (N = 4) with microstrip lines of length 1.5 mm and effective dielectric constant
3.23 included between the elements. The elementary sections in the order of chaining were
fixed to be series capacitor, parallel capacitor, series inductor and parallel inductor. The
capacitor and inductor values in the matching circuit were bounded to be in the ranges
0.3pF-82pF and 1.5nH-220nH by fixing bounds on the angular derivatives. The matching
circuit providing the result in figure 5.33 is depicted in figure 5.35. S11 HFSS CS in figure
5.33 represent the response obtained in Ansys Designer in HFSS for circuit simulation of
circuit in figure 5.35 connected to load L11.

974.0fF 1.50mm

3.6pF

1.50mm 1.5nH 1.50mm

12.4nH

50.0Ω

Figure 5.35: Matching circuit providing the result in fig 5.33
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Figure 5.36: Monte Carlo analysis of global response in fig 5.33

The result of monte carlo analysis using a maximum of 3 percent variation on the L,C
element values of the matching circuit and transmission line length with 20 samples is
presented in figure 5.36. The nearest element values available in the Johanson capacitor
kit 0603, 0.3pF-82pF was chosen to solder the matching circuit components into the pcb
antenna. The pcb antenna with 4 component matching circuit soldered is shown in figure
5.37.

Figure 5.37: 433 MHz and 868 MHZ Dual band Antenna with 4 component matching circuit
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Figure 5.38: S11 measurement of the designed antenna with matching circuit

+j30

+j5

+j2

+j1

+j0.5

+j0.2

-j30

-j5

-j2

-j1

-j0.5

-j0.2

0.0 ∞305210.
5

0.
2

S11

427 MHz

439 MHz

860 MHz

876 MHz

Figure 5.39: S parameter chart of the designed antenna with matching circuit

The result of S11 measurement of the antenna measured using a VNA anlayzer after
adding the matching circuit in figure 5.35 is presented in figure 5.38. The corresponding
Smith Chart representation of figure 5.38 is provided in figure 5.39. As mentioned in
other prototype realizations, the losses in the matching circuit components has lead to the
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matching criterion in realization being better than the simulation. However, the matching
criterion obtained is close to the simulated result in figure 5.33 and compared to the initial
S11 measurement of the antenna depicted in figure 5.31, we have been able to remarkably
improve the matching criterion in the targeted passband. This concludes the study of dual
band matching example.

5.5 Conclusion

In this chapter, different optimisation schemes introduced in the thesis have been tested
on concrete antenna examples. We have presented two PCB antennas designed to be
matched in single bands around 169 MHz and 433 MHz and also a dual band antenna to
be matched around 433 MHz and 868 MHz. A systematic study of the implementation of
the matching problems described in part I and part II of the thesis have been done. The
implementation of global system approach discussed in chapter 3 (problem PC) provided
theoretical matching bounds for each antenna in the specific passband when considering
finite degree matching circuits. The implementation of the matching problems in the real
setting (problems considered in chapter 4) provided optimal matching criterion after taking
into account various practical constraints necessary for the realization of the matching
circuit. The presentation of the results obtained after taking into consideration the practical
necessities along with the results of global system approach provided an idea of how far
the performance of realized matching circuits are from the hard bounds of matching level
possible for the given degree.

The next chapter, which is the final chapter of the thesis provides a brief conclusion to
the thesis along with some future perspectives of the work presented.
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CHAPTER 6

Conclusion and Future Perspectives

In this chapter, we will give a brief conclusion to the thesis along with a discussion about
some of the possible directions of future work related to the topic. The thesis has made
a detailed study of one of the classical problems in RF circuit design, the problem of
impedance matching. Along with the theoretical aspects of broadband matching problem,
practical applicability of the developed approaches to solve the problem were given due
importance in the thesis. Part I of the thesis included an introductory chapter to the thesis
along with two other chapters which studied the broadband matching problem using two
different yet closely related approaches.

• In chapter 1 of the thesis a brief introduction to the broadband matching problem was
made along with the necessary prerequisites of functional analysis and the concepts
of RF engineering necessary for the problem.

• In chapter 2, a formulation of the finite degree matching problem was provided and an
approach to solve the problem using Nehari theory was described. The gain functions
were fixed to be from a specific family and its modulus parametrised using a one
dimensional real parameter. The degree bounds of the matching circuit obtained using
the approach were discussed and some illustrations of the numerical implementation
of the developed approach on concrete antenna examples were provided as well.

• In chapter 3, a generalized formulation of the finite degree matching problem was
provided based on the de-embedding theory of Fano-Youla. The possible set of re-
sponses of the global system were generalized to a set of “realizable” rational Schur
functions of fixed maximal degree and having fixed transmission polynomial and the
realizability constraint was imposed using the positivity of Pick matrix. The chapter
formulated the matching problem as a convex optimisation problem over a subset of
positive polynomials of fixed maximal degree and discussed various theoretical results
concerning the problem. The numerical implementation of the problem as a non-linear
semi-definite programming problem and some illustrations of the implementation of
the developed approach on antenna examples were presented as well. A section was
devoted at the end of this chapter to study the connection between two approaches
discussed in part I of the thesis to solve the matching problem. A possible future
direction of this work is to discuss the case of loads having transmission zeros on the
imaginary axis and possibly generalize the theory presented in the chapter with the
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help of boundary Nevanlinna Pick interpolation. An important step in this direction,
generalizing the de-chaining conditions and de-embedding theorem when there are
transmission zeros of the load present on the imaginary axis is presented in theorem
B.2.1 in Appendix.

Part II of the thesis included two chapters which discussed the realization of the matching
circuits as ladder networks and the current chapter concluding the thesis.

• Chapter 4 of the thesis discussed various practical constraints concerning the realiza-
tion of the matching circuits. The transmission zeros of the matching circuit to be
synthesized were fixed at either zero or infinity (or both) and a series of different prob-
lems were solved in order to better describe the realizable circuits. The realization of
the matching circuits as ladder networks consisting of inductors and capacitors was
presented. A matching circuit synthesis scheme allowing transformerless synthesis,
including microstrip lines in between the lumped elements and bounding the element
values of lumped inductors and capacitors to any desirable range as required by the
user were also presented. A possible future direction of the work presented in the
chapter is to study the implementation of matching circuit having transmission zero
at finite non-zero frequency. This kind of transmission zero can be realized using
series LC resonator in parallel or parallel LC resonator in series. Especially in the
case of matching antennas in the frequency range where it is highly reflective, opti-
mal placement of some transmission zeros which are finite and non-zero outside the
targeted passband could provide better matching criterion compared to the case of
transmission zeros located at zero or infinity. Some numerical implementations in this
direction were carried out by optimizing the location of this kind of a transmission
zero and the remaining transmission zeros of the matching circuit fixed at zero or
infinity. The problem was formulated as follows:

Problem. PFTz. Given a passband I, non-constant reflection coefficient L11 ∈ B of
the load which is strictly contractive in I and satisfying equation (4.4) and a polynomial
r0 = sk where 0 ≤ k ≤ N−2, where N ≥ 2 is the target degree of the matching circuit

Find: l̂ = min
(p,α)∈PR,N×(jR\I)

max
s∈I

∣∣∣∣ p(s)
q(s)
− L11(s)

1− p(s)
q(s)

L11(s)

∣∣∣∣
where: r = (s− α)(s+ α)r0,

qq∗ = pp∗ + rr∗ and q ∈ SBR,N .

The numerical implementation of this problem can be carried out similar to problem
P in chapter 4. The derivative calculation of the constraint with respect to the non-
fixed part of the polynomial r can be performed similarly to that of with respect to
polynomial p.
(1). In the first example, we consider the 169 MHz antenna (passband : 167 MHz-171
MHz) presented in section 5.2 in chapter 5 and solve problem PFTz with N = 3 and
r0 = s. The optimisation places the transmission zero at finite non-zero frequency at
α = 0.85j which corresponds to a transmission zero at 145 MHz and produces the
result as depicted in figure 6.1.
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Figure 6.1: Result of solving PFTz with N = 3 and r0 = s
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Figure 6.2: Smith chart representation of S11 in figure 6.1

The Smith chart representation of S11 in figure 6.1 is depicted in figure 6.2.
(2). In the second example, we consider the 433 MHz antenna presented in section
5.3 in chapter 5.
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Figure 6.3: Result of solving PFTz with N = 3 and r0 = s
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Figure 6.4: Smith chart representation of S11 in figure 6.3

In this example, we solve problem PFTz for passband 430 MHz - 440 MHz and 790
MHz- 862 MHz, N = 3 and r0 = s. The optimisation places the transmission zero
at finite non-zero frequency at α = 1.012j which corresponds to a transmission zero
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at 872 MHz and produces the result as depicted in figure 6.3. The Smith chart
representation of S11 in figure 6.3 is depicted in figure 6.4. So, the results presented in
the case of matching circuits including some finite transmission zeros on the imaginary
axis are promising and can be specifically useful in the case of matching antennas in
the frequency bands where it is highly reflective. A further study in this direction
by testing more examples and realizing the matching circuits can be practically very
useful.

• Chapter 5 of the thesis provided illustrations of the results obtained by solving dif-
ferent matching problems formulated in the thesis and made a comparison between
them. The illustrations of some prototypes of PCB antennas designed together with
the matching circuits obtained from the developed approach were also made.

• The current chapter has provided a brief conclusion to the thesis along with some
possible future perspectives related to the work presented.
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APPENDIX A

Schur Functions and Nevanlinna-Pick Theorem

A.1 Polynomial Norm and Convergence of Rational

Schur Functions

Definition A.1.1. Given a set of (N + 1) data points, {(a0, b0), (a1, b1), . . . (aN , bN)}, P (s)
defined as follows is the unique polynomial of degree N which interpolates the given data,

P (s) =
N∑
i=0

biLi(s) (A.1)

where,

Li(s) :=
N∏

j=0,k 6=i

s− ak
ai − ak

. (A.2)

The set of Lagrange polynomials,

L = {L0(s), L1(s), . . . LN(s)} (A.3)

form a basis for the set of all polynomials of degree at most equal to N . So for any polynomial
P (s) of degree less than or equal to N , we have,

P (s) =
N∑
i=0

biLi(s), bi ∈ R (A.4)

and the norm can be defined as,

||P || =
(

N∑
i=0

|bi|2
) 1

2

=

(
N∑
i=0

|P (ai)|2
) 1

2

. (A.5)

We consider the interpolation points ai on the imaginary axis (ai = jωi, ωi ∈ R, 0 ≤ i ≤ N),
in particular in the interval I (passband of interest).
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Proposition A.1.2. For every sequence of rational Schur functions having a uniform de-
gree bound, there exists a subsequence which converges to a rational Schur function on every
compact set inside the right half plane and the convergence holds pointwise on the imaginary
axis as well except a set of finite points.

Proof. Let (fn) = ( Pn
Qn

) be a sequence of rational Schur functions with uniform degree

bound. Now, using Definition A.1.1 for the norm, let us normalize the sequence (fn) as
follows,

(fn) =

( Pn
||Qn||
Qn
||Qn||

)
(A.6)

Since
(

Qn
||Qn||

)
is a sequence of polynomials with unit norm, we have a subsequence

(
Qnd
||Qnd ||

)
which converges to a polynomial Q̃ on every compact set inside the right half plane and

the convergence holds pointwise on the imaginary axis as well. The zeros of
(

Qn
||Qn||

)
being

in the open left half plane implies Q̃ can have finite number of zeros on the imaginary axis
and the rest in the open left half plane. Let,

E1 = {s ∈ jR : Q̃(s) = 0} (A.7)

Since (fn) forms a sequence of Schur functions, we have,

∀s ∈ jR,
∣∣∣∣PnQn

(s)

∣∣∣∣ ≤ 1 (A.8)

⇒ ∀s ∈ jR, |Pn(s)| ≤ |Qn(ω)| (A.9)

⇒ ∀s ∈ jR, |Pn(s)|
||Qn||

≤ |Qn(s)|
||Qn||

(A.10)

Now, we can prove that Pn
||Qn|| is bounded in the defined norm. Using (A.10), we have,

∀s ∈ jR, |Pn(s)|
||Qn||

≤ |Qn(s)|
||Qn||

=
|Qn(s)|(

N∑
j=0

|Qn(aj)|2
) 1

2

(A.11)

So, we have,

∀s ∈ jR, |Pn(s)|
||Qn||

≤ |Qn(s)|(
N∑
i=0

|Qn(jωi)|2
) 1

2

(A.12)

⇒ ∀s = jωi,
|Pn(s)|
||Qn||

≤ 1 (A.13)

This yields the boundedness of sequence Pn
||Qn|| in the defined norm, since we have,

∣∣∣∣∣∣∣∣ Pn
||Qn||

∣∣∣∣∣∣∣∣ =

(
N∑
i=0

∣∣∣∣Pn(jωi)

||Qn||

∣∣∣∣2
) 1

2

≤
(

N∑
i=0

1

) 1
2

=
√
N + 1
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The inequality follows from (A.13). So, we have a subsequence
( Pnd
||Qnd ||

)
of
(

Pn
||Qn||

)
which

converges to a polynomial P̃ on every compact set inside the right half plane and converging
pointwise on the imaginary axis as well. Let,

E2 = {s ∈ jR : P̃ (s) = 0} (A.14)

From (A.10), it follows that E2 ⊆ E1 and so after cancelling the common zeros of P̃ and
Q̃ on the imaginary axis (if it exists), and renaming them as P and Q respectively, (A.8)
yields,

∀s ∈ jR,
∣∣∣∣PQ(s)

∣∣∣∣ ≤ 1 (A.15)

So, we have the function P
Q

to be Schur. Now for any compact set K inside the right half
plane, we have,

lim
n→∞

sup
s∈K

∣∣∣∣PndQnd

(s)− P

Q
(s)

∣∣∣∣ = 0 (A.16)

This proves the existence of a subsequence (
Pnd
Qnd

) of (fn) which converges to Schur

function P
Q

on every compact set inside the right half plane. We also have,

lim
n→∞

∣∣∣∣PndQnd

(s)− P

Q
(s)

∣∣∣∣ = 0, s ∈ jR \ E1 (A.17)

So, we have the convergence holding pointwise on the imaginary axis as well, except the
set E1. This completes the proof.

A.2 Nevanlinna-Pick Theorem

The importance of Nevanlinna-Pick theorem (stated in 3.2.5) in characterising the con-
straint set HN

R of problem PC should have been clear from subsection 3.3.1 in chapter 3.
We devote this section to give a proof to the necessity part of Nevanlinna-Pick theorem for
matrix valued functions. We switch to the more general version of Nevanlinna-Pick theo-
rem which deals with matrix valued functions since it was useful in proving the concavity
of Pick matrix in chapter 3. Before getting into the details, we recall some already used
notations and also define some new notations.

• For any given k ∈ N, Ik represent the identity matrix of order k.

• Let Bp×q(Π+) denote the set of p× q matrix valued functions F (ω) which are analytic

in Π+ and contractive, (F (jω))tF (jω) � Iq, ω ∈ R.

• For all z ∈ Π+, let us denote ργ(z) = γ + z. We have, Π+ = {γ ∈ C : ργ(γ) > 0} and

jR = {γ ∈ C : ργ(γ) = 0}. Also, (ργ(z)) = γ + z = ρz(γ).

• Hp(Π+) denotes the space of scalar valued Hardy functions of class p over Π+, where,
1 ≤ p ≤ ∞.
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• Hp
k(Π+) denotes the space of (k × 1) matrix valued functions, each entry of which

belongs to Hp(Π+).

• Lpk(jR) denotes the space of (k × 1) matrix valued functions, each entry of which
belongs to Lp(jR).

• The symbol p is used to denote the orthogonal projection of L2
k(jR) onto H2

k(Π+).

• For f, g ∈ L2
k(jR), 〈f, g〉 denote the inner product,

〈f, g〉 =
1

2π

∫ +∞

−∞
(g(jω))tf(jω)dω.

Before stating the Nevanlinna-Pick theorem for matricial case, we prove a lemma which
will be useful in the proof of Nevanlinna-Pick theorem.

Lemma A.2.1. If F ∈ Bp×q(Π+), then,

p

(
F
t
ξ

ργ

)
=

(F (γ))tξ

ργ
, (A.18)

for every choice of γ ∈ Π+ and ξ ∈ Cp.

Proof. Let us denote f = p

(
F
t
ξ

ργ

)
. For any η ∈ Cq and α ∈ Π+, we have,

〈
f,

η

ρα

〉
=

1

2π

∫ +∞

−∞

ηt

(ρα(jω))
f(jω)dω.

Since ρα(jω) = α + jω, we get,〈
f,

η

ρα

〉
=
ηt

2π

∫ +∞

−∞

f(jω)

α− jωdω

=
ηt

2πj

∫ +∞

−∞

f(u)

α− udu (where u = jω)

= ηtf(α).

The last equality follows from Cauchy’s formula for H2
q (Π+). So, we have,

ηtf(α) = 〈f, η
ρα
〉

=

〈
F
t
ξ

ργ
,
η

ρα

〉 (
∵

η

ρα
∈ H2

q (Π+) for α ∈ Π+

)
=

〈
ξ

ργ
,
Fη

ρα

〉
=

(〈
Fη

ρα
,
ξ

ργ

〉)t
. (A.19)
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From the definition of inner product, we have,〈
Fη

ρα
,
ξ

ργ

〉
=

1

2π

∫ +∞

−∞

ξ
t

(ργ(jω))

F (jω)η

ρα(jω)
dω.

Since ργ(jω) = γ + jω, we get,〈
Fη

ρα
,
ξ

ργ

〉
=

1

2π

∫ +∞

−∞

ξ
t

(γ − jω)

F (jω)η

ρα(jω)
dω

=
1

2πi

∮
T

ξ
t

(γ − u)

F (u)η

ρα(u)
du (where u = jω)

=
ξ
t
F (γ)η

ρα(γ)
. (A.20)

The last equality follows from Cauchy’s formula for H2
p (Π+). Substituting (A.20) in (A.19),

we obtain,

ηtf(α) =
ηt(F (γ))tξ

(ρα(γ))
=
ηt(F (γ))tξ

ργ(α)
.

So, we have,

f(α) =
(F (γ))tξ

ργ(α)
∀α ∈ Π+.

Hence,

p

(
F
t
ξ

ργ

)
=

(F (γ))tξ

ργ
.

Now, we are in a position to state and prove the Nevanlinna-Pick theorem for matrix
valued functions. We will be proving only the necessity part of the theorem, that is the
positivity of Pick matrix under the given conditions. For the proof of sufficiency and also
to have a detailed review of matricial Nevanlinna-Pick interpolation and generalizations,
we refer the reader to chapter 18, [8]. We are more interested in the necessity part of
the theorem since it plays the crucial role in the characterisation of the constraint set in
problem PC .

Theorem A.2.2. (Nevanlinna-Pick Theorem for Left-Interpolation Problem). Given n
points, γ1, γ2 . . . γn, each in Π+, direction vectors x1, . . . , xn, each in C1×p and y1, . . . , yn,
each in C1×q, there exists F ∈ Bp×q(Π+), satisfying the interpolation problem,

xiF (γi) = yi, i = 1, 2, . . . , n, (A.21)

iff the Pick matrix ∆(F ) = {∆ij(F )}ni,j=1, defined by,

∆ij(F ) =
xix̄j

t − yiȳjt
ργj(γi)

(A.22)

is positive semi-definite.
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Proof. Let us assume there exists F ∈ Bp×q(Π+), satisfying the interpolation problem
(A.21). Denote ξi = x̄i

t for i = 1, 2, . . . , n. We have ξ1, ξ2 . . . , ξn ∈ Cp. It follows from
Lemma A.2.1 that, if F ∈ Bp×q(Π+), then, for i = 1, 2, . . . n, we have,

ΨF

(
ξi
ργi

)
def
= p

(
F
t
ξi

ργi

)
= (F (γi))

t ξi
ργi

=
ȳi
t

ργi
. (A.23)

Let us define g ∈ H2
p (Π+) as,

g =
n∑
k=1

ckξk
ργk

, ck ∈ C.

Using Lemma A.2.1, we have,

ΨF (g) = p(F
t
g) =

n∑
k=1

(F (γk))
tckξk

ργk
. (A.24)

We have,

||g||2 − ||ΨF (g)||2 = ||g||2 − ||p(F t
g)||2

≥ 0. (A.25)

The last inequality follows because, ||p(F t
g)||2 ≤ ||F t

g||2 since orthogonal projection is a

contraction and ||F t
g||2 ≤ ||g||2 follows since F ∈ Bp×q(Π+). Now, for any i, j ∈ {1, 2 . . . n},

let us evaluate the quadratic form associated to ΨF ,

Q

(
ξi
ργi

,
ξj
ργj

)
=

〈
ξi
ργi

,
ξj
ργj

〉
−
〈

ΨF

(
ξi
ργi

)
,ΨF

(
ξj
ργj

)〉
=

〈
ξi
ργi

,
ξj
ργj

〉
−
〈
p

(
F
t ξi
ργi

)
, p

(
F
t ξj
ργj

)〉
=

〈
ξi
ργi

,
ξj
ργj

〉
−
〈
F
t ξi
ργi

, p

(
F
t ξj
ργj

)〉
=

〈
ξi
ργi

,
ξj
ργj

〉
−
〈
ξi
ργi

, F
F (γj)

t
ξj

ργj

〉
(From Lemma A.2.1)

=

〈
ξi
ργi

,
ξj − FF (γj)

t
ξj

ργj

〉

=

(〈
ξj − FF (γj)

t
ξj

ργj
,
ξi
ργi

〉)t
. (A.26)

From the definition of inner product, we have,〈
ξj − FF (γj)

t
ξj

ργj
,
ξi
ργi

〉
=

1

2π

∫ +∞

−∞

ξi
t

(ργi(jω))

(
ξj − F (jω)F (γj)

t
ξj

ργj(jω)

)
dω.
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Since ργi(jω) = γi + jω, we get,〈
ξj − FF (γj)

t
ξj

ργj
,
ξi
ργi

〉
=
ξi
t

2π

∫ +∞

−∞

1

(γi − jω)

(
ξj − F (jω)F (γj)

t
ξj

ργj(jω)

)
dω

=
ξi
t

2πj

∫ +∞

−∞

1

(γi − u)

(
ξj − F (u)F (γj)

t
ξj

ργj(u)

)
du

= ξi
t
(
ξj − F (γi)F (γj)

t
ξj

ργj(γi)

)
= ξi

t
(
Ip − F (γi)F (γj)

t

ργj(γi)

)
ξj.

Substituting this in (A.26), we obtain,

Q

(
ξi
ργi

,
ξj
ργj

)
= ξj

t
(
Ip − F (γj)F (γi)

t

ργi(γj)

)
ξi.

So, for g =
∑n

k=1
ckξk
ργk

, we have,

||g||2 − ||p(F t
g)||2 =

n∑
i,j=1

c̄jξ
t

j

(
Ip − F (γj)F (γi)

t

ργi(γj)

)
ξici

=
n∑

i,j=1

c̄jxj

(
Ip − F (ωj)F (ωi)

t

ργi(γj)

)
x̄i
tci

=
n∑

i,j=1

c̄j

(
xjx̄i

t − yj ȳit
ρωi(ωj)

)
ci

=
n∑

i,j=1

c̄j∆ji(F )ci.

It follows from equation (A.25) that,

n∑
i,j=1

c̄j∆ji(F )ci ≥ 0, (A.27)

which is valid for every choice of complex constants c1, c2, . . . , cn. This establishes the
necessity, Pick matrix, ∆(F ) � 0.

It should be noted that we can have a transposed version of Theorem A.2.2 which gives
us the following result (Example 18.5.2, [8]).

Theorem A.2.3. (Nevanlinna-Pick Theorem for Right-Interpolation Problem). Given n
points, γ1, γ2 . . . γn, each in Π+, direction vectors u1, . . . , un, each in Cp and v1, . . . , vn, each
in Cq, there exists F ∈ Bp×q(Π+), satisfying the interpolation problem,

F (γi)ui = vi, i = 1, 2, . . . , n, (A.28)
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if and only if the Pick matrix ∆(F ) = {∆ij(F )}ni,j=1, defined by,

∆ij(F ) =
ūi
tuj − v̄itvj
ργi(γj)

(A.29)

is positive semi-definite.

240 Gibin Bose



APPENDIX B

General Chaining Conditions and De-embedding

B.1 General Chaining Conditions

In this section, we will describe the general chaining conditions that are satisfied when
we allow the scattering matrix L of the load to have transmission zeros on the imaginary
axis (in addition to the transmission zeros in Π+). At the end of the section, we will also
introduce the general de-embedding theorem, a generalisation of Theorem 3.2.4. This is a
first step towards the possible generalisation of the matching theory presented in chapter
3 based on the Nevanlinna-Pick interpolation on the boundary. Initially we will prove a
proposition stating the necessary conditions that will be satisfied by the reflection coefficient
of a system obtained by chaining a lossless scattering matrix L together with a reflection
coefficient F22 ∈ B. The conditions will be specified at the transmission zeros of the lossless
scattering matrix representing the given load, L. In the case of a simple transmission zero
on the imaginary axis, we will prove that the angular derivative at the transmission zero
can only increase or remain the same during the chaining operation.

Proposition B.1.1. (Chaining Conditions). Let L represent the (2× 2) lossless scattering
matrix of a given system and F22 ∈ B be any given reflection coefficient of a lossless system.
We assume that the reflection coefficient L11 is strictly contractive at some point on the
imaginary axis. Let ξ0 and α0 = jω0 represent simple transmission zeros of L in Π+ and
on the imaginary axis respectively. The reflection coefficient S22 = F22 ◦ L obtained by
chaining F22 and L satisfies the following,

S22(ξ0) = L22(ξ0),

S22(α0) = L22(α0),

ang[S22](α0) ≥ ang[L22](α0).

Proof. From the chaining equation, we have,

S22 = L22 +
L12L21F22

1− F22L11

(B.1)

By definition, at the transmission zero ξ0 of L in Π+, we have,

L12(ξ0)L21(ξ0) = 0. (B.2)
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From equation B.2 and the fact that 1− F22L11 doesn’t vanish at ξ0 ∈ Π+ under the srict
contractive nature of L11 at some point on the imaginary axis, it follows,

L12(ξ0)L21(ξ0)F22(ξ0)

1− F22(ξ0)L11(ξ0)
) = 0.

Thus, we have,

S22(ξ0) = L22(ξ0).

Now, let us consider the simple transmission zero α0 = jω0 of L on the imaginary axis. It
should be noted that from equations 1.47 and 1.53 in Chapter 1, for the lossless scattering
matrix L, at the transmission zero α0 on the imaginary axis, we have,

L12(α0) = L21(α0) = 0.

We claim that the term 1 − F22L11 in the denominator of second term in the chaining
equation B.1 if zero at α0 can only have a simple zero. This is possible only if F22(α0) =
L11(α0). In this case, F22L11 is a a non-constant Schur function with uni-modular value at
α0. By proposition 4.1.3, we have ang[F22L11](α0) < 0 and hence derivative of 1 − F22L11

is non-vanishing at α0. This implies only one pole-zero cancellation in the second term in
equation B.1 is possible. This yields,

S22(α0) = L22(α0).

Let us denote the second term in chaining equation by φ = g
h
, where g = L12L21F22 and

h = 1− F22L11. Under the condition F22(α0) 6= L11(α0), φ has double zero at α0 and hence
ang[S22](α0) = ang[L22](α0) follows from chaining equation B.1. Now, let us consider the
case, F22(α0) = L11(α0). In this case, the derivative of φ can be calculated at α0 with the
help of L’Hospital’s rule to yield,

φ′(α0) =
g′′(α0)

2h′(α0)
.

After calculating the second derivative of g and first derivative of h at α0, we get,

φ′(α0) =
L′12(α0)L′21(α0)L11(α0)

−(ang[F22](α0)) + ang[L11](α0))
.

Thus, from chaining equation B.1, we have,

S ′22(α0) = L′22(α0) +
L′12(α0)L′21(α0)L11(α0)

−(ang[F22](α0)) + ang[L11](α0))
.

Multiplying this equation throughout by S22(α0) and using the second chaining condition
S22(α0) = L22(α0) yields,

ang[S22](α0) = ang[L22](α0) +
L′12(α0)L′21(α0)L11(α0)L22(α0)

−(ang[F22](α0)) + ang[L11](α0))
. (B.3)
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For the lossless scattering matrix L, from equation 1.51, we have,

L11(jω)L21(jω) + L12(jω)L22(jω) = 0.

The above equation upon differentiation with respect to ω and evaluated at α0 yields,

L′21(α0) = L′12(α0)L22(α0)L11(α0).

Substituting this for L′21(α0) in equation B.3, we have,

ang[S22](α0) = ang[L22](α0) +
|L′12(α0)|2

−(ang[F22](α0)) + ang[L11](α0))
.

The second term is non-negative from proposition 4.1.3 and hence we have,

ang[S22](α0) ≥ ang[L22](α0).

This completes the proof.

B.2 General De-embedding

Now, we are in a position to introduce the general de-embedding theorem. It states that
the conditions mentioned in proposition 4.1.3 is necessary and sufficient for the matrix L
to be de-chainable from S22.

Theorem B.2.1. (General De-embedding Theorem). Let L represent the (2 × 2) loss-
less scattering matrix of a given load having a reflection coefficient L11 which is strictly
contractive at some point on the imaginary axis . Let ξ1, ξ2, . . . , ξm represent the m trans-
mission zeros of L in Π+ with corresponding multiplicities M(ξk) and α1, α2, . . . , αl be the
l transmission zeros of L on the imaginary axis (possibly at infinity) with corresponding
multiplicities M(αk). The matrix L is de-chainable of any given S22 ∈ B iff :

∀i ∈ {0, 1, . . . ,M(ξk)− 1}, S(i)
22 (ξk) = L

(i)
22 (ξk), 1 ≤ k ≤ m,

∀i ∈ {0, 1, . . . , 2M(αk)− 2}, S(i)
22 (αk) = L

(i)
22 (αk), 1 ≤ k ≤ l,

For i = 2M(αk)− 1, L22(αk)

(
L

(i)
22 (αk)− S(i)

22 (αk)

)
≤ 0, 1 ≤ k ≤ l.

Even though we are not providing a complete proof of the above theorem, it should be
noted that the proof of necessity is a consequence of Proposition B.1.1 in the case of higher
order transmission zeros. The proof of sufficiency, after some elementary calculations can
be obtained based on Rouches theorem.
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APPENDIX C

Schur Recursion with Interpolation Conditions Inside

the Right Half Plane

C.1 Schur Recursion

In this section, we will discuss the classical approach of Nevanlinna to describe all the
functions f ∈ B that solve the following interpolation problem :

Problem 1. Let ξ1, ξ2, . . . , ξM be distinct points in Π+ and γ1, γ2, . . . , γM ∈ D. Find f ∈ B
such that

f(ξi) = γi, 1 ≤ i ≤M. (C.1)

For m ≤M , let us define

Em = {f ∈ B : f(ξi) = γi, 1 ≤ i ≤ m}. (C.2)

It should be noted that Em ⊂ Em−1 . . . ⊂ E2 ⊂ E1 and E1 is non-empty if and only if
|γ1| ≤ 1. In addition, if |γ1| = 1, it follows from maximum modulus theorem that f(s) = γ1

is the only function in E1. We are interested in finding a parametrisation of EM . In the case
when there are infinite number of interpolation conditions, the reader can refer to chapter
IV, section 6 in [42] for a detailed review of Nevanlinna’s parametrisation of

E∞ =
⋂
m

Em

and a proof showing that E∞ contains inner functions. We will restrict the discussion to
the case of finite number of interpolation conditions.

Let us initially consider the case with one interpolation condition. If f ∈ E1,

f − γ1

1− γ1f
=
s− ξ1

s+ ξ1

f1 (C.3)

for some f1 ∈ B. This can be easily verified, if we invert (C.3), we have

f1 =
s+ ξ1

s− ξ1

f − γ1

1− γ1f
(C.4)
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which implies that |f1(jω)| ≤ 1 for all ω ∈ R because | jω+ξ1
jω−ξ1 | = 1 and δ(f(jω), γ1) ≤ 1

for all ω ∈ R. Furthermore, it can be noted that f−γ1

1−γ1f
is in B when f ∈ E1 and in the

expression for f1 in (C.4), there occurs a pole-zero cancellation at s = ξ1. This implies that
f1 ∈ B. Conversely, whenever f1 ∈ B, the expression in (C.3) defines an f ∈ E1. This can
be verified by rewriting (C.3) as

f =
γ1 − ξ1−s

s+ξ1
f1

1− γ1
ξ1−s
s+ξ1

f1

. (C.5)

Since ξ1−s
s+ξ1

f1 is in B, it follows that f ∈ B and we also have f(ξ1) = γ1. So, we have f ∈ E1.

We can rewrite (C.3) as

f(s) =
A1(s) +B1(s)f1(s)

C1(s) +D1(s)f1(s)
, (C.6)

where

A1(s) = γ1(s+ ξ1), B1(s) = (s− ξ1),

C1(s) = s+ ξ1, D1(s) = γ1(s− ξ1).

So, (C.6) is the parametrisation in the case of simple interpolation problem f(ξ1) = γ1,
f ∈ B.

Now let us suppose further that f ∈ E2. Then (C.3) helps to determine the value of
f1(ξ2) such that this happens. We have,

f1(ξ2) =
γ2 − γ1

1− γ1γ2

ξ2 + ξ1

ξ2 − ξ1

def
= γ

(1)
2 . (C.7)

Now E2 is described by just (C.7) instead of the original two conditions. Repeating the

previous reasoning, E2 is non-empty if and only if |γ(1)
2 | ≤ 1. Furthermore, if |γ(1)

2 | = 1,

then the only function f1 satisfying (C.7) is f1(s) = γ
(1)
2 and in this case, E2 contains only

the Blaschke product,

f(s) =
A1(s) +B1(s)γ

(1)
2

C1(s) +D1(s)γ
(1)
2

=
γ1 − ξ1−s

s+ξ1
γ

(1)
2

1− γ1
ξ1−s
s+ξ1

γ
(1)
2

.

Now, let us suppose |γ(1)
2 | < 1, i.e E2 contains more than one element. Following the same

argument as before, f ∈ E2 iff f1(ξ2) = γ
(1)
2 and this happens if and only if

f1 − γ(1)
2

1− γ(1)
2 f1

=
s− ξ2

s+ ξ2

f2 (C.8)

for some f2 ∈ B. Rewriting the above expression, we get

f1 =
γ

(1)
2 (s+ ξ2) + (s− ξ2)f2

(s+ ξ2) + γ
(1)
2 (s− ξ2)f2

. (C.9)
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Substituting the above expression of f1 in (C.6) and doing an elementary calculation yields,

f(s) =
A2(s) +B2(s)f2(s)

C2(s) +D2(s)f2(s)
, (C.10)

where

A2(s) = (s+ ξ2)

(
A1(s) + γ

(1)
2 B1(s)

)
, B2(s) = (s− ξ2)

(
γ

(1)
2 A1(s) +B1(s)

)
,

C2(s) = (s+ ξ2)

(
C1(s) + γ

(1)
2 D1(s)

)
, D2(s) = (s− ξ2)

(
γ

(1)
2 C1(s) +D1(s)

)
.

So, (C.10) provides the parametrisation in the case of interpolation problem f(ξ1) = γ1,
f(ξ2) = γ2, f ∈ B.

We can proceed by induction, always assuming Em contain more than one function.
Then, for 1 ≤ k ≤ m, f ∈ Em if and only if there are f0, f1, . . . , fk in B where f0 = f such
that

fk−1(ξi) = γ
(k−1)
i , k ≤ i ≤ m,

where γ
(0)
i = γi and for l = 2, 3, . . . ,m,

γ
(l−1)
i

def
=

(
γ

(l−1)
i − γ(l−1)

l−1

1− γ(l−1)
l−1 γ

(l−1)
i

)(
ξi + ξl−1

ξi − ξl−1

)
, i = l, l + 1, . . . ,m

satisfy |γ(l−1)
i | < 1 and such that

fk−1 − γ(k−1)
k

1− γ(k−1)
k fk−1

=
s− ξk
s+ ξk

fk. (C.11)

Rewriting (C.11), we obtain

fk−1 =
γ

(k−1)
k (s+ ξk) + (s− ξk)fk

(s+ ξk) + γ
(k−1)
k (s− ξk)fk

. (C.12)

Now, by induction (C.12) and (C.6) gives

f(s) =
Am(s) +Bm(s)fm(s)

Cm(s) +Dm(s)fm(s)
, (C.13)

where

Am(s) = (s+ ξm)

(
Am−1(s) + γ(m−1)

m Bm−1(s)

)
,

Bm(s) = (s− ξm)

(
γ

(m−1)
m Am−1(s) +Bm−1(s)

)
,

Cm(s) = (s+ ξm)

(
Cm−1(s) + γ(m−1)

m Dm−1(s)

)
,

Dm(s) = (s− ξm)

(
γ

(m−1)
m Cm−1(s) +Dm−1(s)

)
.

(C.14)

are polynomials of degree at most m. So we have the following result (Lemma 6.1, Chap
IV, [42]),
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Theorem C.1.1. (Nevanlinna Characterisation of Em). Let ξ1, ξ2, . . . , ξM be distinct points
in Π+ and γ1, γ2, . . . , γM ∈ D. For m ≤M , if

Em = {f ∈ B : f(ξi) = γi, 1 ≤ i ≤ m} (C.15)

and the polynomials Am, Bm, Cm, Dm are defined by (C.14), then f(s) ∈ Em if and only if
f(s) satisfies (C.13) for some fm ∈ B. Furthermore, if the set Em is a singleton, the unique
interpolating function is a Blaschke product of degree m̃ < m.

Remark C.1.2. By setting fm(s) = c in (C.13) where |c| = 1,

f(s) =
Am(s) +Bm(s)c

Cm(s) +Dm(s)c
,

is in Em and f(s) is a rational function of degree at most m. In fact the reader can refer
to Lemma 6.2 and Exercise 20 in chapter IV, [42] for a proof which shows that f(s) is a
Blaschke product of degree m in this case.

C.2 Fano-Youla Characterisation

In this section, we will give a brief outline of the physical interpretation of Schur recursion
in terms of chaining of lossless scattering matrices to Schur functions. We will continue to
use the notations as in the previous section.

L

f1 ∈ B L22

f ∈ E1

Figure C.1: Fano-Youla Characterisation of f ∈ E1

Let us consider the set E1, the case with one interpolation condition. The equation (C.4)
represents an elementary Schur reduction step. In terms of Fano-Youla characterisation,
as shown below, this is equivalent to the notion that a lossless scattering matrix can be
de-chained from f . Let us consider the chaining diagram in figure C.1 where L is a lossless
(2× 2) scattering matrix. From the de-chaining formula mentioned in (3.4), we have

f1 =
f − L22

L11f − det(L)
. (C.16)

In order to interpret it with respect to Schur reduction in (C.4), we can rewrite (C.4) as

f1 =
f − γ1

−γ1
s−ξ1
s+ξ1

f + s−ξ1
s+ξ1

and identify

L22 = γ1, L11 = −γ1
s− ξ1

s+ ξ1

, det(L) = −s− ξ1

s+ ξ1

. (C.17)
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From (C.17) and since L is lossless, we have

L12L21 = (1− |γ1|2)
s− ξ1

s+ ξ1

, L12L
∗
12 = L21L

∗
21 = 1− |γ1|2.

So, a possible choice of L, if we impose L21(ξ1) = 0 is

L =
1

s+ ξ1

[
−γ1(s− ξ1)

√
1− |γ1|2(s+ ξ1)√

1− |γ1|2(s− ξ1) γ1(s+ ξ1)

]
. (C.18)

Thus if f ∈ E1, a (2× 2) matrix of the form (C.18) can be de-chained from f . Conversely,
if the matrix L in (C.18) is de-chainable from f ∈ B, from the chaining equation in (3.3),
we have

f = f1 ◦ L = L22 +
L12L21f1

1− f1L11

= det(L)

(
L∗11 − f1

1− f1L11

)
, (C.19)

where f1 ∈ B and it implies that f(ξ1) = γ1 and hence f ∈ E1. So, we have the Fano-Youla’s
characterisation of E1: f ∈ E1 if and only if there exists a lossless scattering matrix L of
the form in (C.18) such that f = f1 ◦ L, where f1 ∈ B. It should be noted that computing
from (C.19), the expression for f , we obtain

f = det(L)

(
L∗11 − f1

1− f1L11

)
= −

(
s− ξ1

s+ ξ1

)(−γ1
s+ξ1
s−ξ1 − f1

1 + γ1
s−ξ1
s+ξ1

f1

)
=
γ1(s+ ξ1) + (s− ξ1)f1

(s+ ξ1) + γ1(s− ξ1)f1

which is the same as equation (C.6) obtained in Nevanlinna parametrisation of E1.

LM

LM21(ξM) = 0

· · ·
L2

L2
21(ξ2) = 0

L1

L1
21(ξ1) = 0

fM ∈ B f1 = f2 ◦ L2 L1
22fM−1 = fM ◦ LM

f ∈ EM

Figure C.2: Fano Youla Characterisatio of f ∈ EM

In general, the Schur recursion with M interpolation condition can be physically inter-
preted as the chaining of elementary blocks L1, L2, . . . , LM in the form (C.18), where each
block Li has transmission zero at ξi, 1 ≤ i ≤ M . It is represented in figure (C.2). In
addition, at each step of elementary chaining, we have

L1
22(ξ1) = γ1

(f 1 ◦ L1)(ξ2) = γ2

(f 2 ◦ L2 ◦ L1)(ξ3) = γ3

...

(fM ◦ LM ◦ . . . ◦ L2 ◦ L1)(ξM) = γM .
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It should be noted that if we denote L = LM ◦ LM−1 ◦ . . . L1, then the matrix L has
transmission zeros at ξi and L22(ξi) = γi for 1 ≤ i ≤ M . So, for f ∈ EM , we have the
characterisation f = fM ◦ L, where fM ∈ B. As mentioned in the Nevanlinna characterisa-
tion, it should be noted that, if at the m-th stage of recursion, the reflection coefficient Lm22

becomes uni-modular, then the recursion stops and provides a unique interpolating function
f of degree m− 1.
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[9] L. Baratchart, J. Leblond, and F. Seyfert. Constrained extremal problems in the Hardy
space H2 and Carleman’s formulas, 2009.

[10] L. Baratchart, M. Olivi, and F. Seyfert. Boundary nevanlinna-pick interpolation with
prescribed peak points. Application to impedance matching. SIAM Journal on Math-
ematical Analysis, 2017.

[11] B. Beauzamy. Introduction to Banach Spaces and Their Geometry. Information Re-
search and Resource Reports. North-Holland, 1985.

[12] V. Belevitch. Classical network theory. Holden-Day series in information systems.
Holden-Day, 1968.

[13] H. W. Bode. Network Analysis and Feedback Amplifier Design. Bell Telephone Labo-
ratories series. Van Nostrand, 1945.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Berichte über verteilte messys-
teme. Cambridge University Press, 2004.

251



BIBLIOGRAPHY

[15] P. Brachet. Texmaker. https://www.xm1math.net/texmaker, 2018.

[16] D. Braess. Nonlinear Approximation Theory. Springer-Verlag, Berlin, Heidelberg,
1986.

[17] R. J. Cameron, R. Mansour, and C. M. Kudsia. Microwave Filters for Communication
Systems: Fundamentals, Design and Applications. Wiley, 2007.

[18] H. Carlin. The scattering matrix in network theory. IRE Transactions on Circuit
Theory, 3(2):88–97, 1956.

[19] H. J. Carlin. A new approach to gain-bandwidth problems. Circuits and Systems,
IEEE Transactions on, 24(4):170–175, apr 1977.

[20] H. J. Carlin and P. P. Civalleri. Wideband circuit design. Electronic engineering
systems series. Boca Raton, Fla. CRC Press, 1998.

[21] H. J. Carlin and B. S. Yarman. The double matching problem: Analytic and real
frequency solutions. Circuits and Systems, IEEE Transactions on, 30(1):15–28, jan
1983.

[22] W. Cauer. The Poisson integral for functions with positive real part. Bulletin of the
American Mathematical Society, 38(10):713 – 717, 1932.

[23] W. K. Chen and P. Hammond. Theory and Design of Broadband Matching Networks:
Applied Electricity and Electronics. Applied electricity and electronics. Elsevier Sci-
ence, 2013.

[24] E. Cheney. Introduction to Approximation Theory. International series in pure and
applied mathematics. McGraw-Hill Book Company, 1966.

[25] F. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical Society
series of monographs and advanced texts. Wiley, 1983.

[26] J. Conway. Functions of One Complex Variable I. Graduate Texts in Mathematics.
Springer, 1978.

[27] S. Darlington. Synthesis of reactance 4-poles which produce prescribed insertion loss
characteristics: Including special applications to filter design. Journal of Mathematics
and Physics, 18(1-4):257–353, 1939.

[28] E. de Klerk. Aspects of semidefinite programming: Interior point algorithms and se-
lected applications. Number 65 in Applied optimization, ISSN 1384-6485. Kluwer Aca-
demic Publishers, Netherlands, 2002. Pagination: xvi, 283.

[29] R. Douglas. Banach Algebra Techniques in Operator Theory. Graduate Texts in Math-
ematics. Springer New York, 1998.

[30] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applica-
tions. Springer Publishing Company, Incorporated, 2007.

252 Gibin Bose



BIBLIOGRAPHY

[31] N. Dunford and J. Schwartz. Linear Operators: General theory. Linear Operators.
Interscience Publishers, 1958.

[32] P. Duren. Theory of Hp Spaces. Dover books on mathematics. Dover Publications,
2000.

[33] H. Dym. J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and
Interpolation. Number 71 in Conference board of the mathematical sciences: Regional
conference series in mathematics. American Mathematical Soc., 1989.

[34] W. Egan. Practical RF System Design. Wiley - IEEE. Wiley, 2004.

[35] S. Erhardt, R. Giannetti, S. Lindner, and M. Redaelli. CircuiTikZ.
https://ctan.org/pkg/circuitikz, 2019.

[36] R. M. Fano. Theoretical Limitations on the Broadband Matching of Arbitrary
Impedances. Technical report: Research Laboratory of Electronics. MIT Res. Lab.
of Electronics, 1947.

[37] F. Fezai, A. A. Nour, J. Sence, T. Monédière, F. Torres, R. Chantalat, S. Bila, and
B. Jarry. Low-profile dual-band circularly polarized microstrip antenna for GNSS ap-
plications. In 2015 9th European Conference on Antennas and Propagation (EuCAP),
pages 1–4, 2015.

[38] E. Fricain and J. Mashreghi. The Theory of H(b) Spaces, volume 1 of New Mathematical
Monographs. Cambridge University Press, 2016.

[39] E. Fricain and J. Mashreghi. The Theory of H(b) Spaces, volume 2 of New Mathematical
Monographs. Cambridge University Press, 2016.

[40] P. Fuhrmann. A Polynomial Approach to Linear Algebra. 01 2011.

[41] P. Fuhrmann. Linear Systems and Operators in Hilbert Space. Dover Books on Math-
ematics. Dover Publications, 2014.

[42] J. B. Garnett. Bounded Analytic Functions. Pure and Applied Mathematics. Elsevier
Science, 1981.

[43] E. Geerardyn. MATLAB2TikZ. https://github.com/matlab2tikz/matlab2tikz, 2019.

[44] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems
and their L∞ -error bounds. International Journal of Control, 39(6):1115–1193, 1984.

[45] G. Gonzalez. Microwave Transistor Amplifiers: Analysis and Design. Prentice Hall,
1997.

[46] R. Gudipati and W. K. Chen. Explicit formulas for the design of broadband matching
bandpass equalizers with Chebyshev response. In Circuits and Systems, 1995. ISCAS
’95., 1995 IEEE International Symposium on, volume 3, pages 1644—-1647 vol.3, apr
1995.

PhD Thesis 253



BIBLIOGRAPHY

[47] J. W. Helton. Broadbanding: Gain Equalization Directly From Data. IEEE Transac-
tions on Circuits and Systems, 1981.

[48] J. W. Helton. Non-Euclidean functional analysis and electronics. Bull. Amer. Math.
Soc. (N.S.), 7(1):1–64, 07 1982.

[49] K. Hoffman. Banach Spaces of Analytic Functions. 01 1962.

[50] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[51] A. Jeff, D. Arceo, and P. Hansen. Optimal lossy matching by pareto fronts. Circuits
and Systems II: Express Briefs, IEEE Transactions on, 55:497 – 501, 07 2008.

[52] B. L. G. Jonsson, S. Shi, L. Wang, F. Ferrero, and L. Lizzi. On methods to determine
bounds on the q -factor for a given directivity. IEEE Transactions on Antennas and
Propagation, 65(11):5686–5696, 2017.

[53] T. Kailath. Linear Systems. Information and System Sciences Series. Prentice-Hall,
1980.

[54] P. Koosis. Introduction to Hp Spaces. Cambridge Tracts in Mathematics. Cambridge
University Press, 2 edition, 1999.

[55] K. Kurokawa. Power waves and the scattering matrix. IEEE Transactions on Mi-
crowave Theory and Techniques, 13(2):194–202, 1965.

[56] K. Kurokawa. An Introduction to the Theory of Microwave Circuits. Electrical science
series. Academic Press, 1969.

[57] S. Lang. Complex Analysis. Graduate Texts in Mathematics. Springer New York, 2003.

[58] Lizhong Zhu, Boxiu Wu, and Chuyu Sheng. Real frequency technique applied to the
synthesis of lumped broad-band matching networks with arbitrary nonuniform losses
for mmics. IEEE Transactions on Microwave Theory and Techniques, 36(12):1614–
1620, 1988.

[59] D. Luenberger. Optimization by Vector Space Methods. Professional Series. Wiley,
1997.

[60] V. Lunot, F. Seyfert, S. Bila, and A. Nasser. Certified Computation of Optimal Multi-
band Filtering Functions. IEEE Transactions on Microwave Theory and Techniques,
56(1):105–112, 2008.

[61] O. Mangasarian. Nonlinear Programming. Classics in Applied Mathematics. Society
for Industrial and Applied Mathematics, 1994.

[62] D. M. Martinez, F. Seyfert, A. Cooman, and M. Olivi. Software PUMA-HF:
https://project.inria.fr/puma, 2018.

[63] R. Martinez-Avendano and P. Rosenthal. An Introduction to Operators on the Hardy-
Hilbert Space. Graduate Texts in Mathematics. Springer New York, 2007.

254 Gibin Bose



BIBLIOGRAPHY

[64] D. Martinez Martinez. Methodologies and synthesis tools for functions filters loaded by
complex impedances. Theses, Université de Limoges, June 2019.
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