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Mme Stéphanie MONJON
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Patience.

Persévérance.

Ainsi va la vie, à bord du Redoutable.
Le Redoutable, M. Hazanavicius, 2017.
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General Introduction

Preamble

To limit global warming to less than 2°C by the end of the century, economies world-

wide must reach carbon neutrality by 2050 (IPCC, 2018). Large scale diffusion of low

carbon technologies represents an important component of international strategies to

achieve such a target and is largely driven by the implementation of environmental

policies (Grantham Research Institute, 2018; OECD, 2018). This thesis builds upon

concepts from network theory to investigate both theoretically and empirically diffu-

sion dynamics on the path toward a low carbon society. We provide analysis for three

different diffusion perspectives : clean technologies, environmental policy and the ef-

fects of economic shocks on (imported/generated) emissions. This dissertation comple-

ments different strands of the academic literature (network economics, environmental

economics) and proposes implications for policy-makers willing to meet objectives set

in the Paris Agreement (2015). First, it highlights how the structure of networks plays

a critical role in diffusion dynamics, whether these networks are social connections,

policy flows across states or sectoral economic interactions. The latter is particularly

relevant for clean technology spreading (Chapter 1 ), for which underlying social struc-

tures affect diffusion in many respects (i.e. adoption, variance, time). Governments

willing to maximize the deployment of low carbon products could take advantage of

such dimensions when designing public interventions. Regarding environmental policy

(Chapter 2 ), the analysis of diffusion across American states strongly emphasizes how

1



positions of states in the network of policy flows are critical to understand dynamics of

spreading. This work provides critical insights on states likely to foster diffusion across

the U.S. as well as the determinants of such observations. Finally, the last two contribu-

tions of the present manuscript settle in the context of resurgent calls to limit imported

emissions at the EU scale (Chapter 3 ) and the implementation of COVID-19 recovery

plans within states of the region (Chapter 4 ). In both cases, we provide insights re-

garding the potential benefits of phasing out/not bailing out2 carbon-intensive sectors

in terms of (imported) emission reductions in the whole system. Although results em-

phasize the key role of some industries, the network perspective suggests policy-makers

should take into account sectoral dependence of downstream sectors (i.e. strength of

interactions) when implementing economic instruments targeting GHG intensive sec-

tors.

In conclusion, this thesis illustrates how network structures, the positions of embedded

agents and the strength of neighborhood connections are critical dimensions to take

into account when designing policies aiming at accelerating the green transition.

The remainder of the introduction is structured as follows : we first put in per-

spective the notion of interconnectedness into perspective by discussing the advent of

the COVID-19 crisis to justify the relevance of a network approach when addressing

topics of diffusion. We then explore how network theory has slowly become a rele-

vant tool in the economic literature addressing diffusion dynamics. We conclude by

presenting the contributions of this thesis and their implications in the field of envi-

ronmental policy. Overall, this dissertation paves the way to future research at the

interface between network economics and climate economics.

2Without clearly defined environmental counterparts.
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Facing Climate Change in an Interconnected World : Short

Lessons from the COVID-19 crisis

The advent of the multifaceted COVID-19 crisis (2019) coincides with the critical

emergency to tackle climate change (European Central Bank, July 2020; World Eco-

nomic Forum, September 2020). Last year, cumulative worldwide emission levels put

the environmental system on track for a 3°C temperature rise by the end of the century

(United Nations, 2019). Limiting this rise to 1.5°C requires governments to meet the

net zero climate target by 2050 (IPCC, 2018).3 Although causing severe economic and

social damages (United Nations, 2020; International Monetary Fund, 2020), the unex-

pected COVID-19 pandemic could act as a milestone in the reduction of greenhouse

gas emissions over the next decades. In the short run, GHG emissions are expected to

fall by around 7% in 2020, representing the annual rate at which our economies should

decarbonize to reach carbon neutrality in 2050 (Liu et al., 2020). In the long run, GHG

emission trajectories will depend on forthcoming recovery plans (both domestic and/or

regional) and their ability to decouple growth and emissions by deploying clean energy

sources as well as enlarging and strengthening the corpus of environmental policies

(Allan et al., 2020; Hepburn et al., 2020). While the standard environmental policy

toolkit provides well-established instruments to pursue such objectives (i.e. command

and control measures and market-based incentives, see Kolstad, 2010), policy-makers

aiming to match economic recovery objectives with climate targets set in the Paris

Agreement (2015) could take advantage of a less investigated nonetheless ubiquitous

dimension emphasized by the ongoing pandemic crisis : the increasing interconnect-

edness of our social and economic activities (Bazilian and Gross, 2020; OECD, 2020).

Years after the 2008 global financial crisis (GFC) dramatically revealed the in-

terconnection of banks in the financial system (International Monetary Fund, 2010;

Battiston et al., 2012), the COVID-19 pandemic (2020) has highlighted how both our

3‘Net zero’ means that any emissions are balanced by absorbing an equivalent amount from the
atmosphere.

3



social and economic activities are interconnected. People are connected to each other

by social interactions, business and geographic ties along which the virus has been

propagating. Firms use each other’s inputs and outputs, engage in joint ventures and

compete on markets. Lockdown measures have severely impacted both sides of demand

and supply, creating activity contractions from upstream to downstream sectors and

vice-versa (eg. from airlines to hospitality sectors and further to local companies), thus

leading to numerous bankruptcies (The Economist, March 2020; International Mon-

etary Fund, 2020). At the international scale, governments are tied by alliances, by

geographical borders, by trade and by cross-border capital/human flows. The latter

dimension has played a critical role in the spreading of the virus, leading to mobility

restriction measures (Chinazzi et al., 2020; Zhou et al., 2020).

From a broader perspective, modern societies are continuously undergoing over-

lapping social and economic diffusion processes. Epidemics, information (Centola, 2010;

Thörnberg, 2018), ideas (Haggit et al., 2003; Jackson and Yariv, 2010), innovations

(Rogers, 1995), and more recently economic shocks (e.g. surge in energy commod-

ity prices, financial risks) are all examples of spreading phenomena. Whatever the

mechanism driving diffusion (Young, 2009), such processes propagate on underlying

structures, either social (groups of individuals) or economic (industrial value chains,

banking system) and the resulting final outcome largely depends on the strength and

the pattern of ties. For instance, whether an agent adopts an innovation or not depends

on choices made by nearby agents, i.e. our neighbours. However, the (unpriced) effects

of these neighbours on our behaviour - externalities - depend on the strength and

the pattern of ties between us and our neighbours, on our neighbours’ ties with their

neighbours, and so on. From another perspective, research on the propagation of the

financial shock during the GFC has demonstrated that the structure of connections

within the banking system has driven risk diffusion (Paltalidis et al., 2015; Hale et

al., 2016). To capture how these patterns affect diffusion, we should not only consider

the direct contacts but also the more general structure of connections in which all
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agents are embedded (be they individuals, states or industrial sectors). Economists

have been using the term networks to describe the overall structure of connections

(Elliott et al., 2019).

Networks in Economics : Some perspectives from the Litera-

ture

The Theoretical Advent of Networks in Economics

The analysis of networks in economics started in the 1990s, adding up to game theoret-

ical approaches and general equilibrium models (GEM). While the former examine the

behaviour of agents in small exclusive groups, the latter provide tools to study large

economic systems. At that time, theoretical frameworks in economics were largely built

upon concepts derived from either game theory or GEM, thus failing to account for

events and phenomena arising between these two extremes. As an illustration, mod-

els of diffusion in the 1980s had weaknesses in terms of introspection and failed to

match empirical findings (Goyal, 2015). Such observations paved the way for initial

attempts to model individuals’ decision-making embedded in a social network. Here-

after, I review the design of these first set of settings and show how they depart from

received models. I discuss the main insights and relate them to subsequent empirical

developments in the field.

Diffusion of ideas, practices or technologies are fundamental for understanding

social changes and growth. For decades, economists have investigated diffusion dy-

namics through the lens of individual characteristics (heterogeneity) and profitability

(cf. the seminal work of Grilliches (1957)). At the beginning of the 1970s, emerging

concepts of asymmetries and imperfect informations gained a prominent interest in the

field with a burgeoning literature on the economic value of information (Rothschild

and Stiglitz, 1976; Grossman and Stiglitz, 1980; Stiglitz, 1985). Starting with imper-

fect information, key questions were whether individuals would “acquire” information
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and “learn” the “optimal” action. The work of Rothschild (1974) demonstrated that

a patient and dynamic optimizing agent will stop learning, ending up locked in sub-

optimal action with positive probability. This study marked the beginning of a large

current of sophisticated works on single agent learning until the 1990s. Interestingly,

a multi-agent literature also developed in parallel. It focused on learning rational ex-

pectations and Nash equilibrium. Studies by Fudenberg and Levine (1998) and Evans

and Honkapohja (2001) fall in this category. In broad terms, this economic literature

mainly concentrated on single individuals or groups where interactions were uniform

and homogeneous.

However, previous research from various fields of social sciences (e.g. sociology,

economic geography, communications) suggested that real world interactions are at the

interface between these two situations (Katz and Lazersfeld, 1955; Coleman, 1966; Gra-

novetter, 1973, 1974; Ryan and Gross, 1943; Hagerstrand, 1967; and Rogers, 1995). In-

deed, agents tend to have interactions with a limited subset of the group. These direct

connections, their neighbours, are stable and overlap with others’ neighborhoods. For

Coleman (1966) and Hagerstand (1967), these neighbors are the conduit through which

information and influence circulate, shaping the diffusion dynamics of ideas, innova-

tions and practices. Such settings of multiple agents interacting in complex networks

make strategic reasoning models (i.e. game theoretical approach) difficult to implement

while local interaction in social networks makes anonymous competitive equilibrium

analysis implausible. The appearance of this methodological gap to capture behaviour

challenged economic theory in the 1980s and motivated new advances. A critical de-

velopment to cope with this issue was the introduction of multiple agents making

repeated choice, located in a table social network. Seminal works of Bala and Goyal

(1998, 2001) embody such a new strand. Authors developed a framework including

models of networks with individual choices and learning dynamics. The original inno-

vation was to locate rational individuals in a directed network in which individual are

not aware of the true value of different actions. In addition to experiences from the
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past, agents rely on the experience of their neighbors to make their decisions. In such a

setting, information percolates across the network. This work marks the first attempt

to evaluate how the structure of underlying social networks affects individual choices

and diffusion of actions. From another point of view, a saliant point of their work is

the introduction of a wide range of concepts from graph theory (e.g. connectedness,

hubs). This combination of individual choice and graphs is central to subsequent works

on networks in economics.

Overall, the work of Bala and Goyal (1998, 2001) marks a significant break from the

diffusion models implemented in the 1980s. As previously mentioned, economists in

the 1980s mainly tried to capture dynamics of single-agent or groups of agents learn-

ing. Research in the 1990s provides novel frameworks with the introduction of graphs

and related concepts of network analysis, thus allowing academics to examine large

interacting social groups with overlapping neighborhoods. This approach appears as

a new way of understanding diffusion patterns, for which small-group analysis (game

theory) and large-group theoretical approaches were not in adequacy. In other words,

networks fall between the “small” and the “large”. So far, this tension has been con-

tinuously driving new theoretical research in this field (Goyal, 2015).

Before moving to empirical contributions of network economics on diffusion, it

is important to mention that a branch of theoretical and empirical researches has

been investigating the issue of network formation4 following the prominent contribu-

tion of Jackson and Wolinsky (1996). This contribution has generated an extensive

set of economic applications. Examples include formation and coordination in net-

works (Goyal and Vega-Redondo, 2005; Jackson and Watts, 2002), research collabo-

ration networks formation (Goyal and Joshi, 2003), collusion networks (Belleflamme

and Bloch, 2004), information networks (Galeotti and Goyal, 2010), labor market

networks (Calvo-Armengol, 2004; Calvo-Armengol and Jackson, 2004), financial net-

works (Cabrales et al., 2012; Farboodi, 2014), free-trade agreement networks (Goyal

4Although not studied in this manuscript.
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and Joshi, 2006), peer networks (Cabrales, Calvo-Armengol, and Zenou, 2011), and

cyberattack and network design (Goyal and Vigier, 2014; Acemoglu, Malekian, and

Ozdaglar, 2014). For a general review of advances and applications in network eco-

nomics, Jackson (2008) and Bramoullé et al. (2016) provide insightful elements.

Diffusion in Networks : Evidence from the field

Following the increasing body of theoretical literature in network economics, an empiri-

cal strand of the literature addressing questions related to the role of social interactions

on diffusion patterns has flourished. Major contributions came from economists in the

field of development economics that investigated the impact of peer effects and social

networks on learning and diffusion of new products, practices and technologies. Promi-

nent examples include Bandiera and Rasul (2006), Munshi (2004), Kremer and Miguel

(2007) and Duflo et al. (2011). More recently, empirical research covered specific ques-

tions about underlying social networks (e.g. the impact of neighbors’ behaviour on

individual decision (Conley and Udry; 2010), optimal seeding strategy to maximise

diffusion (Banerjee et al., 2013)). Moreover, very recent works have emphasized the

contagious feature of technology adoption in social networks (Baranzini et al., 2017;

Beaman et al.; 2018). In the following, I specifically review these original findings as

they critically embody how network theory applied in the field - and thus acting as a

ground-breaking approach - could guide policy interventions.

In the literature of economic development, a common issue to investigate is the

diffusion of new products, be they crop technologies, insurances, with the objective of

enhancing productivity and alleviating poverty. Conley and Udry (2010) focused on the

diffusion of a new agricultural technology among farmers in Ghana. They innovated

by investigating the role of social learning in the adoption of a crop innovation. To do

so, they collected a description of farmers’ information neighborhood to reconstruct

underlying social networks and assess the impact of neighbours’ behaviour on the de-
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cision to adopt. They found that farmers tend to adapt their inputs with those of

their neighbors who were successful in the past. To confirm such a result, they intro-

duced another but known technology crop for which they observe no learning. Conley

and Udry conclude that information has value in these villages, as do network connec-

tions through which information about the innovation flows. From another perspective,

Banerjee et al. (2013) evaluated the diffusion of micro-finance practices in 43 Indian

villages, with information on underlying social networks. They were interested in as-

sessing the role of initial seeded individuals in the network (i.e. injection point) on

diffusion dynamics. After varying such injection points of information across different

villages, they found that diffusion of micro-finance practice is larger when seeded agent

displays high eigenvector centrality in the village. In other words, targeting individuals

that are in contact with well-connected individuals in the village (e.g. village leaders)

increases diffusion of the practice. These two major contributions empirically show

that underlying social networks have a prominent role in the diffusion of innovations

while, depending on their positions in such networks, individuals targeted in the first

period to introduce a new behaviour (e.g. injection point for micro-finance) define the

future dynamics of diffusion. Overall, such works mark the departure of studies on the

explicit treatment of network architecture.

More recently, Beaman et al. (2018) focused on inducing farmers to adopt a productive

new agricultural technology by implementing contagion models on rich social network

data from 200 villages in Malawi. The main objective was to identify seed farmers to

target in order to reach high levels of diffusion. To do so, they carried out a randomized

controlled trial to compare theory-driven network targeting approaches and simpler

strategies that either rely on a government extension worker or an easily measurable

proxy for the social network (geographic distance between households). Interestingly,

results are consistent with a complex contagion model in which many farmers need to

learn from multiple people before they adopt the technology themselves. This means

that without proper targeting of information, the diffusion process can stall and tech-
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nology adoption remains perpetually low. Both reduced form and structural estimates

suggest a learning environment in which most farmers need to learn about the tech-

nology from multiple people before they adopt it themselves. As a result, innovation

in social networks tends to be diffused following an epidemiological pattern of trans-

mission. The latter dimension is developed in the next section, lying at the core of this

thesis’ contribution.

As a summary, the emergence of network theory in economics started in the

1990s with the first set of models incorporating individual choice and network struc-

tures within a common framework. By implementing concepts and insights from graph

theory, it marks a major advance in the theoretical framework of diffusion analysis and

brings concepts of graph theory into the mainstream of economics. In the wake of these

theoretical works, an empirical literature has developed investigating the role of social

networks on diffusion patterns of practices, information and innovations. The research

discussed above emphasizes several elements : how structures of social networks af-

fect diffusion patterns; the role of initial seeds to launch a diffusion process; and the

contagious feature of technology diffusion in networks. In the following section, we cen-

ter our approach on the potential benefits network economics could bring to increase

the understanding of spreading phenomena aiming at combating climate change. We

present our contributions for clean technologies (Chapter 1 ), environmental policies

(Chapter 2 ) and economic shock impacts on emissions (Chapter 3 ; Chapter 4 ).

Network Economics and Diffusion : On the Path

towards a Net Zero Society

The four contributions of this thesis complement each other in the objective of offering

a global picture on how network theory could enhance the understanding of diffusion

processes on the path toward a low-carbon society. By investigating the case green
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technologies, environmental policies and economic shocks (affecting GHG emissions),

research in this manuscript highlights how the structure of underlying networks (be

they social, policy flows or economic interactions), the location of embedded agents

and the strength of connections affect diffusion processes. Such findings provide key

elements to pro-environmental policy-makers willing to implement effective interven-

tions related to diffusion issues.

Low Carbon Technologies and the role of underlying social

structures

In 2018, a special report from the Intergovernmental Panel on Climate Change (IPCC)

revealed that there is still a window to reduce GHG and limit climate change to

manageable levels. Among other elements, accelerating the deployment of low carbon

technologies to decarbonize energy systems is a key dimension of the strategy. Nu-

merous technological products are already available on the market (Hötte, 2019). So

far, we have pointed to the fact that both behaviours and technologies are diffused

via social interactions. In the academic literature, many papers have theoretically and

empirically investigated the situation in which reinforcing choices lead to accelerating

diffusion of a behavioural pattern or technology once a critical threshold in the popula-

tion has been reached (Currarini et al., 2014). In marketing and fashion, such a process

is referred to as "bandwagon effects" (Leibenstein, 1950), “positive feedback trading”

in finance (Barberis and Shleifer, 2003), while in the literature of contagious diffusion,

individuals’ adoption thresholds (Granovetter, 1978), "network externalities", "social

reinforcement", and "cascades" (Watts, 2002; Lim et al., 2016) are most commonly

used. The common ground of such approaches is the deeply rooted opinion that dif-

fusion of behaviours and technologies follows the same pattern as epidemics. In other

words, there exists a contagious feature in technology and behaviour spreading and

agents have an adoption threshold that is a positive function of the number of other

adopters (cf. Bass model (1969) for seminal work).
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The literature on diffusion in networks through contagion models provides very

interesting insights on how network structures influence diffusion. Two main diffusion

processes are frequently identified : "simple contagion" and "complex contagion" dy-

namics (Centola and Macy, 2007). While the former requires only one contact for trans-

mission (e.g. information, disease), the latter calls for multiple sources of reinforcement

to induce adoption (e.g. behavior, technology). On this issue, Centola and Macy (2007)

demonstrated that the impact of the underlying network structure changes according

to the diffusion process operating. While direct connections between agents (i.e. a

short path) allow for simple contagion phenomena to spread faster, clustering (i.e. the

tendency for nodes to form small groups) is a determinant of diffusion under complex

contagion scenarios (Centola, 2018; Beaman et al., 2018). Then, whether the goal is to

reduce the risk of contagion or to maximize the adoption of a technology, understand-

ing how network structures affect diffusion cascades (i.e. propagation) is relevant for

effective policy design.

In the context of global warming, investigating contagion of clean technologies

in social networks is relevant. The latter are subject to effects of learning (i.e. costs

tend to drop exponentially, at different rates that depend on the technology (Farmer

and Lafond, 2016)), making the analysis original in terms of diffusion. Moreover, tech-

nologies such as solar PV and wind turbines must be deployed at a large scale to limit

global warming "well-below" 2°C by the end of the 21st century (OECD, 2016). If the

existing literature on green technology diffusion is large, little attention has been paid

to network perspectives (Halleck-Vega and Mandel, 2018). Moreover, questions related

to the spreading of a costly technology in social networks (i.e. network of individuals)

and the associated impacts of a network’s structure on diffusion remain unstudied. In

the case of low-carbon technologies, these aspects are relevant as public policies are

used to support their deployment (e.g. economic instruments supporting solar PV,

biogas technology, see Blazquez, 2018 for a review). Understanding how these innova-

tions spread in networks could bring new insights for designing efficient and cost saving
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policies. From another perspective, addressing these issues is important to achieve a

faster deployment of these low-carbon goods.

As such, this thesis’ first contribution is to theoretically evaluate the contagion

pattern of clean technologies in social networks. We propose a generalization of the

Watts model (2002), a well-established contagion model implemented in the litera-

ture, to investigate how underlying social networks influence diffusion dynamics. Our

main innovation is the introduction of a technology cost function which is subject to

learning effects. Based on this, an agent will adopt the product if a certain amount of

his neighbors has adopted it and if he can afford the technology. Regarding our main

results, aggregate diffusion reaches higher levels in highly clustered networks. The

latter confirms the critical role of clustering in favouring propagation in networks. In-

terestingly, we also find that adoption cascades in clustered networks are subject to

greater variability (variance) with respect to final outcomes (i.e. adopters). The lat-

ter result has strong implications for public policy implementation. For governments

interested in maximising diffusion of green technologies, there exists a real tension

between achieving a large spreading and uncertainty in results. We argue that imple-

menting economic instruments to increase affordability of the technology for agents

less able to afford the product would limit such uncertainty. In less clustered social

structures, although propagation reaches lower levels, it occurs at an equivalent speed

as in clustered networks with a lower variability in final outcomes.

As regards policy takeaways, the use of data from social platforms would allow

governments to design actions while being aware of underlying social structures. As

these platforms grow, there is a new potential to construct tools to design more ef-

fective policies in a wide range of topic (e.g. epidemic transmission, information and

technology flows). With respect to the technology, whatever the underlying structure,

higher learning rates lead to larger adoption. Such findings emphasize the critical role

of governments in supporting the "good" product. We further discuss key policy im-
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plications, ranging from the potential to map technology spreading and predict cost

trajectories to favouring clustered organisations such as cooperatives of farmers to fa-

cilitate diffusion. Overall, this chapter theoretically shows how the shape of underlying

social structures impact the contagion of a costly clean technology. The second contri-

bution proposes an analysis of environmental policy spreading, emphasizing another

critical dimension : the position of heterogeneous agents in networks.

Diffusion of Green Policies in the U.S. : A matter of Location

in Networks

The worldwide deployment of environmental technologies is largely driven by the dif-

fusion of environmental policies (International Renewable Energy Agency, 2018). With

respect to past research on policy adoption, the case of American states has attracted

a lot of interests. Indeed, federalism is a peculiar political environment as it pro-

vides a certain amount of legislative autonomy to member states, encouraging them

to compete with or learn from one another (see Berry and Berry, 1990 for descrip-

tion). The states are connected in many ways, including history, culture, the exchange

of goods, citizens’ migration, and overlapping media markets (Gray, 1973; Shipan and

Volden, 2012). A key result of these features is that states tend to "look to each other"

when making policy (Desmarais et al., 2015).

For the specific case of environmental and climate policies, political scientists as

well as sociologists have classified the drivers of adoption as either internal (e.g. extreme

climate events, pro-climate groups) or external (e.g. states’ bilateral/international

agreements). As a result, many previous works have investigated the factors that in-

fluence policy adoption from a state-based perspective. A limit to this approach is to

fall short on capturing national dynamics of diffusion, thus leaving unclear how envi-

ronmental policies spread. For instance, is there any existing diffusion pattern across

American states ? (e.g. once California has enacted a set of policies, do we observe

14



regular patterns in terms of following states/adopters). And if yes, which states act as

facilitators of the diffusion ? (i.e. those maximising the diffusion likelihood across the

whole country). In the context of global warming, answering these questions is relevant

for at least two reasons. First, it would enhance the understanding of how diffusion

behaves in the U.S. by observing a national scale process (i.e. diffusion patterns). Sec-

ondly, identifying states facilitating the spread of environmental policies across the

U.S. would bring multiple benefits. Among these, targeting such states (i.e. governor,

representatives) to maximize the likelihood of diffusion at a larger scale would be a

relevant strategy for various types of actors (e.g. NGOs, citizens, companies’ represen-

tatives), especially those interested in passing pro-environmental laws in "big emitter"

states. From another perspective, it would also bring insights to private firms on the

possible pattern of environmental regulation diffusion. As differences in legislation

across states drive day-to-day business decisions of private actors (e.g. investments,

market strategy etc.), addressing this issue is critical in that respect too (Bradbury et

al., 1997).

Based on these observations, the second contribution is to propose a methodol-

ogy based on an epidemic-like model to estimate the network of environmental policy

diffusion across American states and evaluate the determinants from adoption data. By

doing so, we enhance the body of knowledge of environmental policy diffusion and give

policy-makers insights to maximize the spreading of green policies in the U.S.. We infer

environmental policy diffusion patterns from a constructed dataset of 74 green policies

(e.g. energy, climate, waste recycling) from 1974 to 2018. After constructing a second

database of economic, political as well as environmental features for each considered

state, we have combined both of them in order to estimate the determinants of the

network (of environmental policy flows). Precisely, we estimate, via maximum likeli-

hood, the parameters that best explain the observed patterns of environmental policy

diffusion at the U.S. scale. Findings emphasize the central role of Minnesota, California

and Florida in the diffusion process while Alaska, South Carolina and South Dakota
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are among the less integrated states. Aforementioned central states are among the

most ambitious to tackle climate change as reported in recent studies (e.g. Statista,

2019). Results also suggest a disconnected dynamic of policy transmission between

states belonging to the Northeastern region and the rest of the country. Mainly, East-

ern states tend to influence each other and are not sensitive to legislative actions

occurring outside their region. With respect to the determinants of the network, we

find that contiguity, GDP per capita and Genuine Progress Indicator are key drivers

of environmental policy diffusion. It is also found that the level of expected cost of

climate change has a negative impact on the diffusion likelihood among considered

states. Overall, this contribution offers an in-depth analysis of the environmental pol-

icy diffusion network in the U.S., calling for regular updates to capture new emerging

dynamics. It also highlights how positions of states within the network of policy flows

drive the diffusion of green policies. To go on exploring other features of diffusion in

networks, the last two contributions offer a network approach of economic interactions

across industrial systems. They highlight how the strength of connections could act as

a conduit to reduce emissions following a contraction of activity in a specific sector.

Economic shocks and Emissions

Chapter 3 and Chapter 4 propose a similar methodology - combining network theory

and input output analysis - to provide novel insights on the topic of reducing industrial

imported emissions and emissions rebound following the implementation of COVID-19

recovery packages.

Triggering reductions of imported emissions in connected sectors

In December 2019, the presentation of the EU Green Deal project has brought back

the issue of imported emissions in the E.U. political debate. The resurgent European

interest in designing border adjustment mechanisms to limit such dynamics has been

widely commented, especially by European trade partners. Such an economic instru-
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ment would target carbon-intensive imports, affecting their competitiveness on the

market with the objective to limit carbon leakage. The latter comes as a prerequi-

site to reach the climate objectives set in the Paris Agreement (2015) (Görlach and

Zelljadt, 2019).

In academia, the topic of imported emissions has gained particular attention over

the last decade as several studies point out a critical disconnection between territorial

and consumption-based emissions (Barrett et al., 2013; Karstensen et al., 2018). Re-

garding E.U. countries, France provides a good example of such dynamics : consumption-

based emissions per capita have remained stable over the last two decades (11.5 Mt

of CO2) while territorial emissions have fallen, suggesting an increase in imported

emissions (Haut Conseil pour le Climat, October 2020). These figures highlight the re-

sponsibility of such states in driving foreign countries’ territorial emissions, therefore

challenging the success of domestic environmental policies addressing carbon leak-

age. While an expanding literature has been investigating both the economic reper-

cussions of instruments targeting imported emissions and possible legislative designs,

less attention has been devoted to understanding the potential reduction of imported

emissions resulting from a loss of activity in a sector, and how this would cascade

within a network of economic sectors’ interdependencies.

The third contribution of this thesis provides a framework to quantify, in the

short run, the amount of emission reductions in a sector that could be the result of

a reduction in primary inputs flowing into another sector (i.e. a contraction of activ-

ity). Based on OECD data available for five European countries (France, Germany,

Italy, Poland and the United Kingdom), this chapter shows that industries exhibit-

ing the largest “emission reduction coefficients” are mining activities, basic metals

and computer and electronics. Such results were expected as these activities exhibit

high imported emission intensities, leading to significant amounts of internal emission

reductions. When focusing on external coefficients to examine sectors likely to have
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the strongest emission reduction impacts on the rest of the industrial system, results

suggest that mining and quarrying sectors, basic metals and chemicals products are

particularly relevant. As these sectors provide large amounts of essential inputs to

other sectors with high imported emission intensity, these findings are consistent too.

Using network theory, this contribution also identifies the cascading process of im-

ported emission reductions due to a contraction of activity in mining. Results suggest

that moving away from fossil fuels would have a particularly strong effect on sec-

tors linked to coke and refined petroleum products, basic metals and electricity and

gas. Those sectors display the strongest economic connections with mining (i.e. proxi-

mate neighbors). The latter acts as a proxy approach of sectoral exposure to phasing-

out dirty industries. For exposed sectors, it emphasizes the importance of future shifts

in their input consumption toward cleaner products to avoid stranded assets. Finally,

this chapter examines the impact of a $25 carbon tax on imported basic metals. It

highlights that exposed industries are identical across countries, with basic metals and

fabricated metal products taking the first ranks. However, the strength of the sectoral

exposure is unequal across economies (e.g. fabricated metal activity is more affected in

Poland compare to those in France or the U.K). In the short run, the latter suggests

different cost on economies following the implementation of such a uniform tax. This

outcome gives insights to understand the position of E.U. countries with respect to

the implementation of such policies.

Finally, the last contribution follows the methodology of Chapter 3 to identify

industries that should not be targeted by governments’ recovery packages (without

environmental counterparts) in order to avoid a GHG emission rebound. Again, a

critical dimension pointed by the following research is the need for industrial sectors

heavily relying on dirty sectors (i.e. strong connections with dirty sectors) to clean

their inputs in the coming years.
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Covid-19 Recovery Packages

From the end of 2020 to 2024, COVID-19 economic recovery packages will be intro-

duced by governments in the EU. These packages will shape EU’s future prosperity

and determine if targets recently set in the Green Deal (European Commission, 2019)

will be met on time. In this last contribution, we apply the approach developed in

Chapter 3 to identify industrial sectors that, if governments wish to decouple growth

and emissions in the coming decades, should not benefit from forthcoming economic

stimuli. If mining activities play a significant role (by providing inputs to other sec-

tors), other GHG intensive industries will have a particular contribution to meet the

Paris Agreement targets. For those sectors, forthcoming economic stimuli (e.g. public

investments) should be conditional on these industries developing a measurable plan

to limit GHG emissions in the future. Coke and refined petroleum products, chemicals,

other non-metallic mineral products, basic metals and electricity and gas are the most

GHG intensive sectors of our sample (France, Germany, Italy, Poland and Spain). A

decrease in their inputs (supplied by mining) generates large amounts of avoided emis-

sions. In those activities, the key challenge for forthcoming recovery plans is to ensure

a shift from dirty to low carbon inputs.

The contribution also discusses some policy recommendations to decarbonize inputs of

such sectors (e.g. storage capacity, R&D in electricity and gas activities). At the EU

regional scale, a major issue to come is the allocation of such recovery funds across

states - and further, sectors to benefit from such funds within national economies. In

this chapter, we show that economies display differences in terms of industrial struc-

tures and GHG emission levels. The latter calls for different national approaches to

tackle GHG emissions. If some countries have a large share of mining inputs in the

energy mix (e.g. Germany and Poland), a uniform implementation of tools to meet the

EU targets would cause heterogeneous impacts across economies, likely reinforcing eco-

nomic and political divisions within the Union. In the coming months, the European

Commission will have to be aware of such differences when evaluating the effectiveness
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of recovery plan allocation funds by national states. Whether the supervision of such

funds is centralised or decentralised (i.e. EU Institutions or national states), it will

have a strong impact on the EU’s ability to meet its legally mandated environmental

targets.
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Chapter 1

Network Structures, Environmental

Technology and Social Contagion

* * *

We represent a social system as a network of agents and model the process of technol-

ogy diffusion as a contagion propagating in such a network. By setting the necessary

conditions for an agent to switch (i.e. to adopt the technology), we address the question

of how to maximize the contagion of a technology subject to learning effects (e.g. solar

PV) in a network of agents. We focus the analysis on the influence of the network struc-

ture and technological learning on diffusion. Our numerical results show that clusters

of agents are critical in the process of technology contagion although they generate

high levels of variance in aggregate diffusion. Whatever the network structure, learning

effects ease the technology contagion in social networks.

* * *

This chapter is an adaptation of a research paper currently "Revised and Resubmitted" in

Climate Policy.
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1.1 Introduction

Research on diffusion in social and economic networks has focused on a wide range

of topics such as diseases (Klovdhal, 1985), rumors (Moreno, 2004), systemic risks

of bank failures (Elliott et al., 2014; Eboli, 2019), platform adoption (David, 1985)

and patenting (Aghion, 2015). These phenomena are, at least temporarily, irreversible

and share common features. First, diffusion is a social process and an individual’s

adoption behavior is highly correlated with the behavior of her contacts (i.e. network

externalities). Second, the structure of the network plays a critical role in the propa-

gation dynamics. While some processes remain contained in isolated clusters, others

spread to the whole network. Overall, these phenomena are path-dependent : their ir-

reversibility means that early history matters for the final outcome (Lim et al., 2016).

With respect to dynamics of propagation in networks, two main diffusion pro-

cesses are frequently identified : "simple contagion" and "complex contagion" dynamics

(Centola and Macy, 2007). If the former requires only one contact for transmission

(e.g. information, disease), the latter calls for multiple sources of reinforcement to in-

duce adoption (e.g. behavior, technology). On this issue, Centola and Macy (2007)

demonstrated that the impact of the underlying network structure changes accord-

ing to the diffusion process operating. While direct connections between agents (i.e. a

short path) allow for simple contagion phenomena to spread faster, clustering (i.e. the

tendency for nodes to form small groups) is a determinant of diffusion under complex

contagion scenarios (Beaman et al., 2018; Centola, 2018). Then, whether the goal is

to reduce contagion risk or to maximize adoption of a technology, understanding how
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network structures affect diffusion cascades (i.e. propagation)1 is relevant for effective

policy design.

A critical issue to explore for network studies is the case of technology diffusion

(Halleck Vega et al., 2018). Particularly, technologies subject to effects of learning

(i.e. costs tend to drop exponentially, at different rates that depend on the tech-

nology)2 are of great interest as they are operating in different sectors (Farmer and

Lafond, 2016). For instance, this is the case for renewables (e.g. solar PV, wind tur-

bines, see IRENA, 2016) that must be deployed at a large scale to limit global warm-

ing "well-below" 2°C by the end of the 21st century (OECD, 2016). If the existing

literature on technology diffusion is large, little attention has been paid to network

perspectives (Halleck-Vega and Mandel, 2018). In particular, questions related to the

spreading of a costly technology in social networks (i.e. network of individuals) and

the associated impacts of network structures on diffusion remain unstudied. For the

case of clean technologies, these aspects are critical as public policies support the de-

ployment by implementing economic instruments (e.g. solar PV, biogas technology, see

Blazquez, 2018). Understanding how these costly innovations spread in networks could

bring new insights for designing efficient and cost saving policies. From another per-

spective, addressing these issues provide new perspectives on how to achieve a faster

deployment of low carbon goods. In the context of climate change, increasing this body

of knowledge is of great importance too.

In order to evaluate technological propagation in social networks, we build upon

the Linear Threshold Model (LTM) exposed by Granovetter (1978). Our main theo-

retical innovation is the introduction of a technology cost function subject to learning

effects. The latter gives to our approach a large scope of applications (e.g. renew-

ables). In our agent-based model, we call "a switch" an irreversible transition to new

state, such as adoption of the technology (Jackson, 2008). All agents in the network

1In this paper, we call "cascade" the dynamics of diffusion.
2See Farmer and Lafond (2016).
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are initially switched off. Then, some agents are randomly switched, i.e., seeded. Ev-

ery heterogeneous agent in the network is endowed with two individual thresholds. We

assume that agents’ thresholds are randomly and independently drawn from a uni-

form distribution at the start of the cascade (Kempe et al., 2003). In the following

periods, if the cost of the technology falls below his first threshold and if the propor-

tion of neighbors that switches exceeds his second threshold, the agent also switches

(Granovetter, 1978; Schelling, 1978). This process propagates through the network. In

our approach, one can consider neighbors as agents with shared proximity (e.g. ge-

ographic, relationship, regular contacts). Moreover, once an agent has switched, he

remains switched forever. This assumption matches clean technologies investments

(e.g. solar PV, biogas installation in agriculture) for which buyers cannot easily step

away.

Our model assumes that agents react to stimuli both from the local and global

environments (i.e. neighborhood and cost dynamics). If the social threshold is widely

documented in the literature on complex contagion and threshold models (Granovet-

ter, 1978; Watts, 2002; Dodds and Watts, 2004), we assume agents’ ability to afford the

technology to differ. To capture this feature, we introduce a cost threshold as a proxy

measure. By doing so, we can investigate the diffusion of a costly product in social

networks of heterogeneous agents. Our setting, a generalization of the Watts model

(2002), is relevant as recent studies shed lights on the contagious feature of renewable

technology adoption (see Baranzini et al., 2017). We consider technology spreading as

an epidemic dynamics processing among agents in a network (Collantes, 2007). Then,

our framework is intertwined with the "complex contagion" modelling approach as the

distribution of neighborhood thresholds will require, in most cases, multiple neighbors

having switched to make the considered agent switch.

With respect to underlying social structures, we apply our contagion model to

three different classes of networks : lattice, small-world and random networks - as
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constructed by Watts and Strogatz (1998).3 By doing so, we can investigate at a

macroscopic level how diffusion spreads according to network clustering, path length

and technological learning. If the notion of path length is obvious (average distance

between any pair of two random agents), clustering refers to the share of peers of

each node being peers among themselves (Acemoglu et al., 2011). In the literature on

diffusion in networks, clustering has been extensively considered to capture the im-

pact of network structures on diffusion (Centola and Macy, 2007; Centola, 2010; Ace-

moglu, 2011; Beaman et al., 2018). For our purpose, this approach is relevant as social

networks tend to exhibit high levels of clustering (Watts and Strogatz, 1998; Levine

and Kurzban, 2006). Therefrom, our comparative approach allows us to evaluate aggre-

gate levels of diffusion, associated cascades’ lengths and adoption speed of convergence

from low to highly clustered networks.

Our main results suggest that aggregate diffusion reaches higher levels in lattice

and small-world networks compared to random networks. The latter confirms the crit-

ical role of clustering in favouring propagation in networks. Interestingly, we also find

that adoption cascades in clustered networks are subject to greater variability (vari-

ance) with respect to final outcomes (i.e. adopters). The latter has strong implications

for public policy implementation. Indeed, for governments interested in maximising

diffusion of, for instance, green technologies, there exists a real tension between max-

imising spreading and uncertainty in results. We argue that implementing economic

instruments aiming at increasing affordability of the technology would limit such un-

certainty. In random networks, although propagation reaches lower levels, it processes

at an equivalent speed - compared to clustered networks - with a lower variability in

final outcomes. In practice, the use of data from social platforms would allow govern-

ments to design policies while being aware of underlying social structures. As these

platforms grow, there is a new potential to construct tools to design more effective

3Remember that lattice networks exhibit high levels of clustering and (comparatively) very long
path length; small-world structures demonstrate high level of clustering but with lower average path
length; random networks are subject to low clustering and low average path length.
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policies to increase the exposure of agents to clean products. For instance, govern-

ments could match data from social platforms and technology buyers to target groups

in which the product has not percolated yet. With respect to the technology, whatever

the underlying structure, higher learning rates lead to larger adoption. Such findings

emphasize the critical role of governments in supporting the "good" product. Further

policy implications of our results are developed in the conclusion part (Section 4) of

this chapter.

The theoretical literature on cascades and diffusion in networks is vast. Ir-

reversibility of our cascade dynamics (i.e. diffusion) sets the present paper apart

as a considerable part of research supposes that agents can switch multiple times

(Ellison, 1993; Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et

al., 2012). Moreover, the double diffusion-reinforcing feedback that we introduce has,

to our knowledge, never been implemented so far. Indeed, diffusion itself makes it eas-

ier for others to adopt because of the social threshold, and learning makes it easier to

adopt because of the cost threshold. In contrast to some of the previous work (Ace-

moglu et al., 2011; Yildiz et al., 2011; Singh et al., 2013), we do not look at a particular

instance of a distribution of thresholds. Instead, we assume that agents’ thresholds are

randomly and independently drawn from uniform probability distributions at the start

of the cascade (Kempe et al., 2003). This is a reasonable assumption if the social plan-

ner has no reason to believe that some thresholds are more likely than others (Lim

et al., 2016). Moreover, papers mentioned earlier (e.g. Blume, 1993; Ellison, 1993;

Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et al., 2012) usually

assume that agents play a coordination game with their neighbors and analyze the dy-

namics using tools from game theory. For certain problems, such as the possibility of

contagion, the models are equivalent (Morris, 2000; Watts, 2002; Lelarge, 2012; Adam

et al., 2012).

On the issue of technology diffusion, a recent survey on the diffusion of green technol-

ogy pointed out the fundamental role of networks (Allan et al., 2014). In some of the
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previous works mentioned, models of innovation and technology diffusion (e.g. Centola

et al., 2007; Montanari and Saberi, 2010; Acemoglu et al., 2011) provide insights on

the influence of the network topology on propagation dynamics. These models consider

a wide range of diffusion processes ranging from epidemic-like contagion to strategic

adoption and linear threshold models. Under complex contagion, research suggests that

innovations spread further across networks with a higher degree of clustering. Clusters

can promote diffusion where a seed node exists inside them, but are more difficult to

permeate when not targeted during the initial seeding phase (Halleck-Vega and Man-

del, 2018).

By implementing the linear threshold model and introducing a technology cost func-

tion, we complement the literature and contribute to a better understanding of tech-

nology diffusion dynamics. We are dealing with large complex networks of agents

interacting and switching over time (Centola et al., 2007; Centola, 2010; Acemoglu et

al., 2011). As carried out in the literature, we implement our agent-based model and

provide numerical analysis to capture cascades’ features and build our comparative

evaluation.

We proceed as follows. Section 2 describes the Watts-Strogatz algorithm (1998)

to create selected networks and expose the linear threshold model. Section 3 shows and

analyses numerical outcomes in terms of average aggregate adoption, speed of diffusion

and time of convergence for the three classes of networks. The relevant government

seeding strategy with respect to the amount of initial seeds is presented too. Finally,

Section 4 discusses the main findings as well as relevant policy implications and lays

out some directions for future research.
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1.2 Model of Cascades in Networks

In this section, we present the Watts-Strogatz algorithm to generate lattice, small-

world and random network. We then expose our two-threshold model of contagion in

networks.

1.2.1 The Network

The algorithm of Watts and Strogatz (1998) is a powerful tool to create constant

network density graphs ranging from nearest-neighbor networks (lattice) to uniform

degree random networks. As exposed in Cowan and Jonard (2004), we assume that I

=
{
1,...,N

}
represent a set of agents and for any i, j ∈ I, we define the binary variable

χ(i, j) such that χ(i, j)=1 if a connection exists between i and j, and χ(i, j)=0, if there

is no connection. Therefrom, the resulting network G =
{
χ(i, j); i, j ∈ I

}
represents

all pairwise connections between agents. The neighborhood of an agent i is the total

amount of her connections Γi =
{
j ∈ I : χ(i, j)=1

}
while a path in G connecting

i and j is a set of pairwise relationships
{
(i, i1),...,(ik, j)

}
such that χ(i, i1) =...=

χ(ik, j)=1. Finally, the distance d(i, j) between i and j is captured by the shortest

path between them.

To generate the lattice with n nearest neighbors, we consider each edge of the

graph and allocate a probability p to disconnect one of its edges, and connect it to

a node selected uniformly at random (with no self-connection (loop) and only one

connection between two agents). By setting p, we vary the graph structure from com-

pletely regular (lattice networks with p=0), through intermediate states (0<p<1), to

totally disordered (random networks with p=1). By doing so, we change the number

of edges per agent, keeping constant an average of n connections per agent and a total

of Nn/2 edges, ∀p. We denote the final network produced to be G(n;p). Figure 1.1

below shows three configurations with increasing disorder as p is increased, for N=20

and n=6.
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For the sake of neutrality in visualisation, networks are represented as circular lay-

outs. This is a common procedure in social network analysis. By placing all nodes at

equal distances from each other and from the center of the drawing, none is given a

privileged position (Huang et al., 2007).

Figure 1.1: Transition from a locally ordered network (lattice) to a disordered one (ran-
dom) via a small-world state. From left to right : p=0 (Lattice), p=0.1 (Small-World), p=1
(Random).

Based on the algorithm output, Watts and Strogatz suggest that the properties

of such networks are captured by two complementary parameters : average clustering

and average path length. Precisely, the clustering of a set S ⊆ I is the proportion of

pairwise relationships in S over the total possible number of relationships, that is :

cl(S) =
∑
i,j∈S χ(i, j)

#S(#S − 1)/2

In network science, clustering is commonly define as the share of friends of on individ-

ual who are also friends of each other. This parameter is used to measure local coher-

ence or redundancy by taking S to be the neighborhood of an agent. Then, the local

structure in the network is measured by the average neighborhood clustering C(p) =∑
i∈I cl(Γi)/N . With respect to average path length, this measure captures the average

number of edges separating two random agents (i.e. L(p)=∑
i,j∈I d(i, j)/(N(N−1)/2)).
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Although clustering and path length are strongly dependent, Watts and Strogatz

expose the existence of an interval for p over which L(p)'L(1) yet C(p)�C(1). The

small-world network arises in such interval. The latter is due to the following : with a

small amount of long distance links, their marginal effect on average path length is large

because introducing a long-range link provides a shortcut between the two nodes that

this edge connects, and for immediate neighbors as well, and so on. On the opposite,

removing one link affects the clustering of only a small number of neighborhoods and

has little effect on the population average. The evolution of path length and clustering

with p is shown in Figure 1.2, where the averaged normalized values of L(p)=L(0) and

C(p)=C(0) are plotted over a sample of 500 different graphs.

Figure 1.2: Average clustering and average path length as a function of p

We note that normalized average clustering remains almost constant when p is rea-

sonably small and falls slowly for large values of p. By contrast, average path length

decreases quickly for very small p values. Hence, for p ∈ [0.01,0.1], clustering and path

length diverge, creating a small-world region in the space of network structures. There-

from, working on these three network structures allows us to investigate the role of

clustering and path length on technology diffusion. Hereafter, we expose our two-

threshold model of technology contagion in networks.
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1.2.2 Technology Adoption

Preliminaries

We assume that technology propagates in these three classes of networks. Suppose

that G(V,E) is an unweighted and undirected connected graph representing a set of n

agents V :={1,...,n} and m links E. Neighbors of i ∈ V are denoted as Ni(G):={j|(j,

i) ∈ E} and the degree of each agent i is defined as di := |Ni(G)|. Two thresholds are

allocated to each agent i ∈ V :

• A cost threshold is a random variable µi drawn independently from a probability

distribution with support [0, 1]. The associated multivariate probability density

function for all the nodes in the graph is f1(µ). The cost threshold profile of

agents is µ := (µi)i∈V.

• A social threshold for agent i is a random variable θi drawn independently from a

probability distribution with support [0, 1]. The multivariate probability density

function for all the nodes in the graph is f2(θ). We define the social threshold

profile of agents as θ := (θi)i∈V.

As mentioned, we assume that agents’ thresholds are randomly and independently

drawn from uniform probability distributions as the government has no reason to be-

lieve that some thresholds are more likely than others (Kempe et al., 2003; Lim et

al., 2016). Then, a network Gµ,θ is a graph endowed with the two profiles of thresh-

olds.

Let Ct be the cost function of the technology at time t, bounded between [0, 1]. This

property ensures the matching between the cost function and corresponding agents’

thresholds µi. To introduce the learning characteristics, we assume α to be a techno-

logical learning effect on the cost function. As a result, shapes of the cost curve will

follow a decreasing and convex trend (matching cost trajectories observed for some

renewables (e.g. solar PV)). We then evaluate the effect of learning on diffusion by
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discretizing α over different constant rates (i.e. [0.1; 0.3; 0.5; 0.7]).4 This allows us to

capture the relationship between technological learning and diffusion. In our setting,

α is bounded between [0, 1] - meaning that the cost of the technology decreases from

1 to 0 with respect to the number of adopters S. That is :

Ct = C0 × (| ∪t−1
τ=0 Sτ |)−α

Conditions for switching

We now consider dynamics of diffusion cascades in a network Gµ,θ. The binary state

of agent i at time t is denoted xi(t) = {0, 1}, referring to off and switched. The set

of additional switches in network G at time t is defined as St(Gµ,θ). To launch the

process of diffusion, we assume the government to seed a random set of agents with

the technology at time t = 0. This subset of agents is denoted as S0 ⊆ V, at t0. Then,

at t = 1, any agent i ∈ V \ S0(Gµ,θ) will switch, i.e., i ∈ S1(Gµ,θ) if

|Ct(S0(Gµ,θ))| ≤ µi, and |S0(Gµ,θ) ∩Ni(Gµ,θ)|
|Ni(Gµ,θ)|

≥ θi.

This means that at t = 1, agents switch only if the cost of the technology is lower than

their respective threshold µi and if the proportion of their neighbors having adopted

exceeds their threshold θi. This hypothesis matches the literature on innovation diffu-

sion and complex contagion in networks (Delre et al., 2007; Beaman et al., 2018). Then,

for a given period t ≥ 0, node i ∈ V \ ∪t−1
τ=0 Sτ will switch at t, i.e., i ∈ St(Gµ,θ) if

(1) |Ct(∪t−1
τ=0Sτ (Gµ,θ))| ≤ µi, and (2) |{∪t−1

τ=0Sτ (Gµ,θ)} ∩Ni(Gµ,θ)|
|Ni(Gµ,θ)|

≥ θi.

Eq.(1) and Eq.(2) represent the necessary conditions for switching. This means that

any agent who has not switched by some period t, switches in time period t + 1 if

the cost of the technology falls below his threshold µi and if the proportion of his
4We relegate extreme scenarios α={0;1} to the Appendix, Section 1.1.
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neighbors who switched is greater or equal to his threshold θi. In other words, there

is a reinforcing feedback : the more agents adopt, the more the cost decreases leading

to more agents to adopt in the subsequent period. This pattern has been observed for

clean technologies such as solar PV (Farmer et al., 2019). For a given Gµ,θ, define the

fixed point of the process such that :

S0(X) = S(Gµ,θ, S0) —> S t(Gµ,θ) = ∅ for all t > 0.

Expected size of switches

Although not implemented in the following sections, we can estimate the expected

average size of the resulting cascade of switches from f(µ, θ), separable into two in-

dependent and non-correlated probability density functions f1(µ), f2(θ) (cf. Lim et

al., 2016). For a given graph G and S0, we can map the realization of f(µ, θ) to a set

of switches S(Gµ,θ, S0) and treat S(Gµ,θ, S0) as a random variable with a probability

distribution f(µ, θ), keeping into account the cost rule.

Therefrom, we compute the expected probability of any particular agent i switching,

given a seeded subset of agents S0, by taking the expectation with respect to f(µ, θ) :

Pi(G,S0) =
∫
Rn

∫
Rn
|S(Gµ,θ) ∩ {i}|f(µ, θ)dµdθ

Then, the expected number of switches in graph G when S0 is defined is :

E[S(G,S0)] :=
∫
Rn

∫
Rn
|S(Gµ,θ, S0)|f(µ, θ)dµdθ =

n∑
1
Pi(G,S0)
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1.3 General results and Analysis

1.3.1 Preliminaries : Numerical Setting

We consider a population of N=100 agents with n=10 connections per agent.5 Agents

are placed on three distinctive graphs created according to the Watts Strogatz al-

gorithm (1998).6 The network is fixed throughout a simulation run. Each agent is

endowed with two thresholds profiles µi and θi, drawn independently from a uni-

form probability distribution with support [0, 1]. At t0, we set the number of initial

seeds S0 ∈ [0,..., 100], randomly selected, to launch the cascade process. We test

this approach on four learning effects scenarios where α takes the respective values

[0.1; 0.3; 0.5; 0.7].7 In each single history, we randomized the agents in the seed set

and the associated thresholds allocation. Resulting cascade follows the dynamics ex-

posed in Section 2. This framework guarantees that the process eventually stops. To

examine the considered graphs, we set for every edge - following the Watts Strogatz

algorithm described above - the rewiring probability p to [0; 0.1; 1]. For each p value,

1000 different graphs are created and on each graph a single history is run. For lattice

networks (p=0), note that the structure of the network remains unchanged between

simulation runs (i.e. only thresholds and seeds vary).

We are interested in evaluating how diffusion processes in lattice, small-world

and random networks, where clustering ranges from high to low levels. To this end,

we examine the average number of aggregate adopters, length of cascades as well as

speed of adoption convergences. Such a macroscopic perspective brings insights on the

role of clustering, path length and learning in diffusion propagation. In the remainder

of the paper, the curves provided are averages over 1000 replications and presented for

each class of networks. We expose the number of aggregate final adopters, associated
5Although social networks are sparse, meaning they exhibit fewer links than the possible maximum

number of links within that network (Hu andWang, 2009), such framework is common in the literature
on complex social networks (Cowan and Jonard, 2004; Zhaoyang et al., 2018; Snellman et al., 2019).

6cf. Section 2.1 for description.
7cf. Appendix, Section 1.1 for α={0;1}.
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times of convergence as well as resulting cascades process per period. With respect to

times of convergence and per period cascading processes, we only show relevant results

(S0=[5; 35]) for clarity of presentation.

1.3.2 Understanding diffusion (I) : Seed set and Learning ef-

fects

For lattice, small-world and random networks, Figure 1.3 and Figure 1.4 hereafter

exhibit the relationship between initial seed set S0 and average aggregate diffusion

under four scenarios of learning (i.e. α=[0.1; 0.3; 0.5; 0.7]).

Figure 1.3: Aggregate diffusion as a function of initial seed sets

Overall, aggregate diffusion in the non-seed population (cf. Figure 1.4) is a non-

monotonic function of S0, concave where the function equals zero at extremes [0; 100]

(i.e. when S0=[0; 100], the diffusion is either null or full). A peak in resulting dif-

fusion (i.e. after seeding) is observed when S0 lies somewhere between 24% and 50%

(cf. Fig.1.b.). Precisely, for each network configuration, minimum diffusion peaks occur
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when α=0.1 (e.g. when S0=50, diffusion reaches 9% of adopters in random networks)

while maximum peaks are observed when α=0.7 (e.g. approximately 57% final adopters

for 26% initial agents seeded in lattice and small-world networks).

Figure 1.4: Aggregate diffusion as a function of initial seed sets (non-seed population)

With respect to clustered structures, results suggest that the more learning rate

increases, the larger the cascade is, and the lower the amount of the initial seed set

needs to be to reach high levels of spreading. This feature is captured by the following

: increasing the learning effect fosters the impact of one agent adopting on the tech-

nology cost function. In other words, with higher rates of learning, fewer new adopters

are required to reach an equivalent decrease in the cost function. Therefrom, a faster

drop in technology cost leads to a larger scope of agents whose thresholds µi is crossed

(for the same amount of initial seeds). The latter suggests that aggregate diffusion

and learning rates are intertwined with one another. To better investigate this fea-

ture, we map in the Appendix (Section 2.4) aggregate diffusion in a one threshold

scenario (social effect). Interestingly, results reinforce our findings. In a model only

based on neighborhood influence, diffusion reaches higher levels in the non-seed popu-
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lation (e.g. for 20 initial seeds, diffusion in the non-seed population reaches 67 agents

in clustered networks and 33 in random networks). Then, adding a cost threshold

contains the dynamics of adoption and increasing the learning parameter allows the

technology to percolate as the cost condition (1) is more easily met in the set of agents

(cf. Section 2.2). Overall, the higher the learning parameter is, the closer to a one

threshold scenario diffusion levels stand. This observation is particularly relevant for

policy-makers as the choice of the technology to support and its associated learning

dimension have a great influence on diffusion dynamics.

From a network approach, the aggregate amount of final adopters differs in every

scenario. Indeed, lattice and small-world networks, both exhibiting high levels of clus-

tering, perform better than random networks, whatever the levels of learning and initial

seeds - except extremes (i.e. S0=[0; 100]). Moreover, as the learning parameter grows,

the diffusion gap8 between clustered and random networks gets larger, embodying the

strong influence of learning and the critical role of clustering in diffusion. As an ex-

ample, for S0=24 and α=0.7, diffusion levels achieve nearly 81% in clustered networks

while in random networks, technology propagates to less than 54% of agents. This re-

sult matches previous research on complex contagion diffusion in networks, suggesting

that clustering is critical for innovation spreading (Centola and Macy, 2007). Following

the recent work of Centola on complex contagion (2018), we assume the process of tech-

nology diffusion to start out locally, then spilling over to nearby neighborhoods, and

ultimately percolating through the population of agents. Overall, our results suggest

that clustered structures and learning effects favour the adoption of a technology sub-

ject to learning. These networks exhibit higher diffusion levels compared to dynamics

examined in random networks.

Considering small-world networks, technology tends to diffuse a bit lower than

in lattice structures (cf. α=[0.5; 0.7]). Here, one can assume that differences between

small-world and lattice networks explain this observation. Although exhibiting high
8cf. Appendix, Section 2.1.
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level of clustering, small-worlds are less clustered than lattice structures - due to some

short paths crossing the whole network (cf. Section 2.1). Hence, we can treat small-

worlds as halfway structures between lattice and random networks. In this case, a lower

clustering coefficient explains the relative underperformance of small-worlds compared

to lattice networks. Again, note that the largest diffusion gap between clustered and

random networks is observed when the learning effect is the highest (α=0.7) for an

initial seed set fixed at 13%. We conclude that parameter α drives the diffusion and

associated adoption gaps between considered networks.

1.3.3 Understanding diffusion (II) : Cascades’ spreading

We are now interested in evaluating the heterogeneity of diffusion with respect to net-

works. We base our analysis on the variance of diffusion rate between models run as

it represents a natural measure of dispersion (Cowan and Jonard, 2004). Remember,

our results are averages over 1000 numerical replications. Moreover, studying how cas-

cades spread is relevant for questions related to policy design and associated outcomes’

uncertainty. Figure 1.5 reports the variance of aggregate diffusion as a proxy for hetero-

geneity. Interestingly, heterogeneity and diffusion behave in a similar manner. In every

scenario, a peak in heterogeneity is observed for both examples of clustered networks,

displaying highest levels of disparity in cascades outcomes. Heterogeneity increases as

a function of learning with larger ranges for clustered networks (e.g. for S0=7 and

α=0.7, aggregate diffusion variance in lattice, small-world and random equal 567, 522

and 92 respectively). Moreover, in lattice and small-world networks, an increase in

learning leads to fewer initial seeds required to reach highest levels of variance (as

observed for aggregate diffusion).

To gain more qualitative insights on this issue, we also map heterogeneity in the case

of a one threshold scenario (θi).9 We observe that in the absence of a cost thresh-

old, heterogeneity decreases as a function of initial seeds in clustered networks. In
9cf. Appendix, Section 2.4.
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our scenarios, as noticed for aggregate diffusion, an increase in learning brings levels of

variance and diffusion closer to the ones observed in a one threshold setting (θi) - high-

lighting again the critical effect of learning parameters. Moreover, in a two-threshold

setting, variance increases to reach highest peaks associated with highest levels of

diffusion while in a one threshold model, variance decreases as a function of initial

seeds. We conclude that adding a second condition to adoption (i.e. cost threshold)

also has a strong impact on heterogeneity in clustered networks compared to a one

threshold configuration. For random networks, diffusion and heterogeneity follow the

same pattern in the two designs.

To provide some perspectives to our results, levels of heterogeneity observed in

clustered networks refer to the percolating process. As exposed, the diffusion starts

out locally, then spreads to nearby neighbors, and ultimately percolates through the

network. This process tends to be subject to a clear "rigidity" in terms of diffusion

dynamics. On the one hand, if diffusion percolates, it reaches high levels of global

spread; on the other hand, if it does not propagate in the initial clusters (i.e. where

the initial agents are seeded), diffusion is capped to a low number of adopters. In

random networks, the process is smoother as short path lengths do not contain or

exacerbate diffusion. These observations complement papers on seeding strategy and

percolation in networks. As Acemoglu (2011) developed, diffusion in clustered net-

works requires at least one initial seed among clustered groups to make percolation

in the whole neighborhood possible. Here, heterogeneity of our aggregate diffusion re-

sults reinforces this view - that technology only "diffuses" in random networks while

in clustered networks, diffusion is exacerbated to one extreme or another (i.e. low or

high level). From a policy perspective, this observation is critical. Indeed, it suggests

a possible trade-off between maximising adoption and uncertainty in results. Namely,

where aggregate diffusion levels are the highest, dispersion is the largest. If there is a

strong connection between diffusion and network structures, this may indicate a policy

tension : targeting diffusion levels with lower expected variability or favouring maxi-
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mum adoption with more uncertainty in terms of final results. Because uncertainty is

critical for public policy design, this observation calls for a different policy approach

with respect to the objective targeted. In the context of climate change, this dimension

is critical as public policies tend to implement strategies dealing with peer effects and

social influence. Designing policies aiming at targeting clustered network (e.g. coop-

eratives of farmers) does not imply that diffusion will be successful. Then, to limit

variability in results, economic instruments targeting a specific class of agents could

be implemented to allow the technology to percolate within groups. Such perspectives

are discussed in conclusion of this work (Section 4).

Figure 1.5: Diffusion heterogeneity measured by variance

1.3.4 On Cascades’ lengths and Adoption dynamics

To this point, our evaluation has focused on aggregate diffusion properties. We now

turn to the transitory analysis of the model. The speed at which the technology diffuses

is a major policy concern, especially for technologies aiming at reducing greenhouse
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gases emissions (International Energy Agency, 2018). Here, we address this issue and

examine how spreading dynamics is affected by network structures. We name "time

of convergence" the number of time periods required for a cascade process (i.e. a

simulation) to stop. For ease of presentation, we only consider lattice and random

networks as small-world configurations mimic lattice curves in our results. Indeed,

in our two-threshold model, clustering tends to overcome path length dimension in

diffusion dynamics in the small-world configuration. This outcome was expected as

high levels of clustering favour diffusion (see Centola (2018) for a review). In addition,

we focus on scenarios where S0=[5; 35]10 as they exhibit the main interesting outcomes.

Then, Figure 1.6 and Figure 1.7 show the relationship between the total amount

of simulations (i.e. 1000) in percentage and the associated speed of convergence, re-

ported up to 32 time periods.

Figure 1.6: Rate of Cascades convergences as a function of time, S0=5

10cf. Appendix, Section 2.3 for other scenarios.
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Figure 1.7: Rate of Cascades convergences as a function of time, S0=35

As a reminder, random networks have little local structure and short paths con-

necting agents. In this case, simulations converge faster after the launch of the pro-

cess. Precisely, at least 70% of simulations have converged at t≤4 in most scenarios,

reaching relatively low levels of aggregate diffusion. For lattice networks, early diffusion

tends to spread slower than in random networks (e.g. at t≤4, some scenarios exhibit

rates of convergence lower than 5%, cf. α=0.7, S0=35). But the process continues

longer, and reaches higher levels of aggregate diffusion.

Again, note that the learning parameter α influences cascades’ lengths. Indeed, in-

creasing its effect leads to, in most cases, additional periods to converge, whatever the

level of initial seeds. When α=0.7, speeds of convergence in lattice networks are the

slowest observed for each period, in every scenario. By matching this observation with

aggregate number of adopters, we suggest that lower times of convergence stem from

a larger scope of agents whose thresholds θi are crossed. The latter induces a longer

and higher adoption dynamics in clustered networks.

We also observe that a larger initial seed set combined with high values of learning
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leads to S-shaped curves for cascades’ convergences. In other words, once a period

threshold is crossed, cascades tend to stop processing (cf. α=0.7, S0=35). In order to

strengthen our claim, we map in Figure 1.8 and Figure 1.9 (at the end of this section)

the associated times of convergence with respect to aggregate amount of adopters at

each period for S0=[5; 35]. This approach sheds light on two key aspects. First, diffu-

sion dynamics in lattice and random networks share common features as regards speed

and aggregate diffusion. For S0≤35, in early periods (t≤3), they perform equivalently

regarding final aggregate diffusion. Second, when the process converges in random net-

works, diffusion in clustered structures propagates to reach higher levels, increasing

the length of the cascade. This observation confirms our previous expectations.

Overall, if our results suggest that high diffusion is coupled with clustering, we

found out more heterogeneity (i.e. variance) in cascades propagating in these net-

works. Following our findings on cascades lengths, it might not be relevant for policy-

makers to favour clustered structures if the amount of diffusion targeted is low. The

latter confirms previous research suggesting that for low levels of seeds and small val-

ues of t, networks exhibiting a low degree of clustering might diffuse the innovation

further (Acemoglu et al., 2011). However, when it comes to large spread of technolo-

gies subject to learning, clustering performs better. Adding up to these results, the

next section evaluates the relevant government strategy in terms of initial seeds to

efficiently maximize diffusion in networks examined.
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Figure 1.8: Adoption dynamics as a function of time, S0=5

Figure 1.9: Adoption dynamics as a function of time, S0=35
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1.3.5 Efficient Strategy : Tipping Points in Seeding

From a government perspective, maximizing or limiting the spread of diffusion comes

with a cost of action (e.g. number of seeds in our case). These issues have been largely

documented in the literature (Kempe et al., 2003; Akbarpour et al., 2018). In the con-

text of climate change, deploying environmental-friendly technologies at least cost is

a key objective for governments - already subject to public debt. In our framework, a

cost efficient strategy for a public intervention would be to set the level of initial seeds

(i.e. cost) such that it maximizes final aggregate adoption. In other words, maximizing

the ratio between aggregate diffusion and initial seed set, in which seeding one sup-

plementary agent leads to a larger effect on aggregate diffusion. By investigating the

issue of marginal seeding, we complement our previous policy outcomes on the role of

learning and network structures in diffusion. Indeed, an increase in the learning param-

eter leads to larger diffusion and to lower associated amounts of seeds required (i.e. in

clustered networks). From a government perspective, this suggests that it could be in-

efficient to target high amounts of initial seeds to reach high levels of adoption. If this

result is critical, it fails to precisely evaluate the impact of seeding one supplementary

agent (i.e. cost) on aggregate diffusion.

To address this question, we map in Figure 1.10 below the marginal change of aggregate

diffusion divided by the number of seeds in lattice and random networks (i.e. high and

low clustered structures). If the corresponding value is positive, seeding the associated

amount of agents is beneficial for diffusion. In other words, an additional seed leads

to more than one additional adopter. On the contrary, a negative value suggests that

the size of the seed set outweighs the final diffusion benefits (i.e. adopters), even if

diffusion still increases (note here that it remains optimal to seed at a rate indicated

by the peak observed in Figure 1.4). Here again, we focus our analysis on lattice and

random structures as small-world mimic lattice structures).

From Figure 1.10, we note that the learning parameter has two main effects :
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first, moving from low to high levels of learning decreases the angular variation pattern

observed. Second, higher learning parameters lead to a smaller amount of initial seeds

subject to positive ratio values.11 Overall, the level of initial seeds having positive values

is always lower in clustered networks compared to random networks which makes a

government intervention (i.e. seeding) less costly in these configurations. The latter

matches previous observations on the impact of the learning parameter on diffusion in

clustered networks - namely, higher learning effects lead to larger diffusion with lower

amount of initial seeds required to reach maximums.

Figure 1.10: Marginal change of aggregate diffusion divided by the number of seeds

1.4 Conclusion

For some types of technologies, the cost of a unit decreases exponentially over time. As

for hardware technologies, green technologies like solar PV follow this trend (Farmer
11Note : here we report associated seeds above which we observe no more positive values : when

α = 0.1, negative values arise when S0=25 (lattice), S0=29 (random); when α=0.3, negative values
appear when S0=14 (lattice) , S0=25 (random); when α=0.5, negative values arise when S0=10
(lattice), S0=15 (random); when α=0.7, negative values arise when S0=7 (lattice), S0=14 (random).
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and Lafond, 2016). We have shown that under a complex contagion approach, the

spreading of these technologies is clearly affected by the structure of the social net-

work over which it takes place. In the context of global warming, these findings are

critical as public policies aim at maximising their deployments by implementing eco-

nomic incentives (e.g. subsidies). In this paper, we provide clear evidences that under

a particular diffusion process (i.e. contagion), clustered organizations are critical to

spread a technology. By adding a cost dimension, we innovate with respect to previ-

ous research on epidemic diffusion in networks and gives practical insights to policy-

makers. Among those, targeting clustered organisations (e.g. favouring cooperatives of

farmers in agriculture (Viardot, 2013)) comes at a cost : greater uncertainty in global

adoption outcomes. This is the very old efficiency versus uncertainty trade-off. When

network structures result in a high average aggregate diffusion rate, they also generate

higher variances. That is, the distribution of cascade results is relatively variable. To

the extent that efficiency in policy implementation remains a governmental concern

and if diffusion of technologies is considered as a key input to develop regions - and

ease global warming-, policies aimed at inducing efficient diffusion will have to address

the consequent uncertainty in results. But whether or not this concern is real depends

on the measure used — if variance is the appropriate measure of distribution, there is

a real problem. As exposed, the impact of learning rates - on associated cost function -

remains critical for spreading. In this context, the choice of the technology to promote

is of great importance for the design of effective policies (e.g. case of renewables).

Practically, to target clustered structured, government should be aware of un-

derlying social networks in the selected population. On this issue, the growth of social

platforms and the associated increasing amount of data (e.g. social, geographic, con-

sumption) could help capturing underlying social structures and would provide pow-

erful informations for policy-makers. For instance, one objective could be to increase

the social exposure of an agent to clean products by targeting agents in her social

neighborhood. On this issue, a recent study based on PV adoption data demonstrated
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the contagious feature of such a technology (Baranzini et al., 2017) while the use of

facebook data has already been explored to capture the diffusion of epidemics across

agents (Kuchler et al., 2020). For the specific case of agriculture, the role of coopera-

tives to diffuse knowledge and technology has been pointed out over the last decade

(Joffre et al., 2019). In this field, governments could design adoption incentives relying

on membership data of cooperatives to increase likelihood of adoption. Overall, our

model paves the way to applications using such data.

From another perspective, if the underlying network is estimated, mapping the con-

tagion of a technology in a network of agents could give an estimate of the potential

future cost of the technology. By doing so, policy-makers could evaluate the learning

parameter of the technology as it is a key determinant for diffusion. However, reaching

this objective depends on first periods of diffusion (i.e. launch of the process). Then,

governments should promote key technologies able to reach a certain amount of adop-

tion. The learning dimension is a critical aspect to deploy green technologies (e.g. PV,

wind turbine) and tackle climate change.

Finally, policy-makers could limit uncertainty in results in cluster structures by giving

access to the technology to agents less able to afford such a product. Indeed, those

agents, exhibiting a low cost threshold (i.e. they cannot afford the technology if the

latter does not diffuse massively), are hampering the diffusion as they are not adopt-

ing the product. By implementing economic mechanisms to support such population

to adopt, diffusion would be less subject to heterogeneity and could reach higher lev-

els. Such policies would allow a large share of the population to adopt the technology,

creating feedback effects for the rest of the whole group.

With respect to our model, it could be extended in several obvious ways. We have

taken the network structure as given, and have examined its effect on the diffusion

process. Apart from paving the way to applications in the field of technology adoption

and diffusion, our model could be extended by investigating relevant economic ques-

tions. Indeed, we exposed the impact of learning on diffusion and the associated cost
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function but we did not investigate the optimal decreasing path of the cost function

with respect to threshold distribution. This approach would bring insights on how

should a cost decrease behave. In the wake of network science analysis, some studies

would be valuable to apprehend the impact of degree distribution on general diffusion

under a two-threshold approach. The latter would fill the gap in the literature and

would allow some comparisons with other complex contagion problems. In terms of

modelling, other models of diffusion could also be implemented such as the Indepen-

dent Cascade Model (ICM). This could bring some relevant comparisons in terms of

outcomes. Finally, in the model in this paper, there is no innovation, only diffusion

after a government random seeding action (which is proven to not be the most effec-

tive (Singh et al., 2013)). Questions related to the centrality of agents in networks and

their potential cascading powers are relevant to explore, especially if some are to be

characterized as innovators. Overall, our model could be implemented to real cases of

technology diffusion (e.g. energy technologies exhibiting experience curve patterns).
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Appendices of Chapter 1

1.1 Aggregate diffusion and variance, α=[0;1]

1) For α=0, the cost function is :

Ct = C0 × (|U t−1
τ=0Sτ |)−0 = 1

whatever the initial seed set. Then, we observe no diffusion in networks at all as the

cost remains too high.

2) For α=1, we have (for steps of 5 seeds):
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2.1 Diffusion gaps

Figure 1.11: Diffusion gaps, baseline lattice
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2.2 Cascades convergences

Figure 1.12: Cascades convergences, S0=[5; 15; 25; 35]
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2.3 Adoption convergence

Figure 1.13: Adoption dynamics with respect to time, S0=[5; 15; 25; 35]
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2.4 One threshold scenario θi

Figure 1.14: Aggregate diffusion (except initial seeds) and heterogeneity in a one threshold
scenario (neighborhood effect without cost dimension)
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2.5 Variation in cost threshold distribution

Figure 1.15: Aggregate adoption and heterogeneity for different scenarios of cost threshold
distribution over specific intervals (0,1;1); (0,2;1); (0,3;1); (0,5;1); (0,7;1), with S0=[5]
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2.6 Robustness check : Number of connections per agent &

Aggregate diffusion

2.6.1. For S0=[5]

Table 1.1: n=5

Learning effects α Lattice Small-World Random

0.1 6 6 6

0.3 10 9 7

0.5 18 15 9

0.7 36 26 10

Table 1.2: n=20

Learning effects α Lattice Small-World Random

0.1 6 6 6

0.3 9 9 8

0.5 15 13 11

0.7 26 23 12

Table 1.3: n=30

Learning effects α Lattice Small-World Random

0.1 6 6 6

0.3 9 9 7

0.5 15 14 10

0.7 23 22 16
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Table 1.4: n=40

Learning effects α Lattice Small-World Random

0.1 6 6 6

0.3 9 9 9

0.5 15 16 14

0.7 21 22 19

2.6.2. For S0=[35]

Table 1.5: n=5

Learning effects α Lattice Small-World Random

0.1 44 43 42

0.3 65 64 61

0.5 81 81 58

0.7 92 89 59

Table 1.6: n=20

Learning effects α Lattice Small-World Random

0.1 44 44 43

0.3 63 63 60

0.5 80 79 69

0.7 87 87 76
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Table 1.7: n=30

Learning effects α Lattice Small-World Random

0.1 44 44 44

0.3 62 63 61

0.5 78 79 72

0.7 86 86 79

Table 1.8: n=40

Learning effects α Lattice Small-World Random

0.1 44 44 43

0.3 62 62 60

0.5 79 77 73

0.7 86 85 79
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Chapter 2

How Environmental Policies Spread

? A Network Approach to

Diffusion in the U.S.

* * *

We reconstruct the network of environmental policies diffusion across American

states from 1974 to 2018. Our results highlight an inefficient structure, suggesting lags

in policy spreading. We identify Minnesota, California and Florida to be the main

"facilitators" of the dynamics. Targeting them ensures the maximum likelihood of pol-

icy diffusion across the country. We then evaluate the determinants of the inferred

network. Our results emphasize the role of contiguity and wealth in policy transmis-

sion. We also find sustainable economic systems as well as state’s expected economic

losses due to climate change as critical factors of environmental policy flows.

* * *

This chapter is an adaptation of a joint work with Pr. Anna Creti and Pr. Antoine Mandel.

63



CHAPTER 2. HOW ENVIRONMENTAL POLICIES SPREAD ? A NETWORK
APPROACH TO DIFFUSION IN THE U.S.

2.1 Introduction

The withdrawal of the American federal government from the Paris Agreement (2015)

has been largely debated and documented worldwide (Zhang et al., 2017; Pickering et

al., 2018). Although defined as "a major disappointment for global efforts to reduce

greenhouse gas emissions and promote global security" (United Nations, 2017), it cre-

ated unexpected new dynamics across the country. Namely, some American governors

publicly expressed their willingness to take the political lead against global warming

by setting domestic environmental policies. For example, states such as California,

Massachusetts and Minnesota are at the forefront while Wyoming, North Dakota and

Arkansas appear more reluctant to push forward pro-environmental laws (New York

Times, June 2019). If implemented at a larger scale, states’ policies could significantly

mitigate the federal decision (i.e. Paris Agreement withdrawal) and keep the country

on track with respect to its COP21 contribution (i.e. reducing U.S. emissions to at

least 26% under 2005 levels by 2025 (UNFCCC, 2016)). However, this comes with a

challenging requirement : a widely spread adoption of environmental policies across

American states.

With respect to past research on policy adoption, the case of American states

has attracted many interests. Indeed, federalism provides a peculiar political envi-

ronment by encouraging member governments to compete with or learn from one

another. U.S. states represent a salient example of such a system (e.g. Berry and

Berry, 1990). The states are connected in many ways, including history, culture, the

exchange of goods, citizens’ migration, and overlapping media markets (Gray, 1973;

Shipan and Volden, 2012). A key result of these features is that states tend to "look
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to each other" when making policy (Desmarais et al., 2015). For the specific case

of environmental and climate policies, political scientists as well as sociologists have

classified the drivers of adoption as either internal (e.g. extreme climate events, pro-

climate groups) or external (e.g. states bilateral/international agreements).1 These are

important results as they add up to the literature on environmental and climate pol-

icy shaping (Bromley-Trujillo et al., 2016). In sum, much of the previous works have

investigated the factors that influence policy adoption from a state-based perspective.

A critical limit of this approach is to fall short on observing national dynamics of

diffusion, thus leaving unclear how environmental policies spread. For instance, is

there any existing diffusion pattern across American states ? (e.g. once California

has enacted a set of policies, do we observe regular patterns in terms of following

states/adopters). And if yes, which states act as facilitators of the diffusion ? (i.e. those

maximising the diffusion likelihood across the whole country). In the context of global

warming, answering these questions is relevant for at least two reasons. First, it would

enhance the understanding of how diffusion behaves in the U.S. by capturing a na-

tional scale process (i.e. diffusion patterns). Secondly, identifying states facilitating the

spreading across the U.S. would bring multiple benefits. Among those, targeting such

states (i.e. governor, representatives) to maximize the likelihood of diffusion at a larger

scale would be a relevant strategy for various types of actors (e.g. NGOs, citizens, com-

panies’ representatives), especially those interested in passing pro-environmental laws

in "big emitter" states. From another perspective, it would also bring insights to private

firms on the possible pattern of environmental regulation diffusion. As differences in

legislation across states drive day-to-day business decisions of private actors (e.g. in-

vestments, market strategy etc.), answering this question is critical in that respect

(Bradbury et al., 1997).

Therefrom, a second intertwined issue to address is about the determinants of the

observed patterns of diffusion. Namely, what are the underlying factors driving policy

1See Massey et al. (2014) for a review.
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transmission between states-pairs ? As suggested in the aforementioned literature, do

we observe higher likelihood of transmission between states sharing common charac-

teristics ? (e.g. economic, political, climate change risks etc.). Investigating the latter

would enlarge the understanding of determinants driving diffusion and provide an

in-depth approach to pro-environmental policy diffusion across U.S. states.

In order to address these questions, this paper proposes a methodology to in-

fer, from adoption data (i.e. laws enacted), the network structure of environmental

policy transmission likelihood between American states. Precisely, environmental and

climate policies being a powerful tool to drive changes toward a cleaner economic sys-

tem (IPCC, 2019), we apply our methodology using a comprehensive dataset of 74

policies - that have spread - from 1974 to 2018. We consider environmental legisla-

tions that were not enacted at the federal scale. This allows us to map the legislative

diffusion from state to state. For each policy, data (i.e. date of the enacted law in

the state) were collected from the Database of State Incentives for Renewables &

Efficiency (DSIRE),2 the Center for Climate and Energy Solutions (C2ES) and the

United States Congress platform. As a result, our compiled database encompasses

both environmental and climate legislations, covering a large scope of policies that

tackle environmental as well as climate-related issues (e.g. renewables support, carbon

pricing, greenhouse gases reduction targets, recycling, biodiversity etc.). We assume

this approach to be relevant as climate and the environment are intertwined con-

cepts, impacting each other in sophisticated ways (e.g. physical, chemical, see IPCC

1.5 Report, 2019 for more description). Following Halleck Vega, Mandel and Millock

(2018), we provide an empirical contribution by identifying existing influences in the

environmental policy diffusion network (i.e. states-pairs) and by assessing the impacts

of different attributes (e.g. economic and political proximity, environmental features)

on the formation of the existing structure over time. Importantly, we implement an

2This database is provided by the U.S. Department of Energy and NC Clean energy Technology
Center.
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ex-post analysis of environmental policies diffusion based on enacted laws. The latter

sets our paper apart as previous research has mainly focused on the rationale of policy

adoption (e.g. emulation, competition, coercion, and learning).3

Our main conceptual innovation is to adopt a network-based approach. By doing

so, we provide a systemic perspective that accounts for the impact of each state not

only on its direct connections, but also on the global diffusion process. Indeed, a state

might be quantitatively neither the most important source nor the most important

adopter of a policy, but still play an important role as a hub in the diffusion. The fun-

damental role of such network effects has been identified in a wide range of contexts

such as epidemics and contagion processes (e.g. Pastor-Satorras and Vespignani, 2001),

social dynamics (Watts and Strogatz, 1998; Castellano et al., 2009), spatial economet-

rics (Lesage and Pace, 2009; Elhorst, 2014), or the diffusion of innovations (Rogers,

1995; Centola and Massy, 2007; Beaman et al., 2018).

From a methodological point of view, an important difficulty is that policy diffusion

networks are generally not directly observed. To address this issue, we build upon the

independent cascade model of Gomez-Rodriguez et al. (2010, 2011, 2014) and infer the

structure of the network by maximizing the likelihood of the observed patterns of poli-

cies adoption using a parametric model of diffusion. This allows us to reconstruct the

national policy diffusion network over time. We then perform a statistical analysis of

the network. It highlights a relatively inefficient organization, characterized in partic-

ular by a great heterogeneity between states in terms of centrality in the network. The

latter leads to inefficiencies and induces relatively long lags in the diffusion process. We

identify Minnesota, California and Florida as the central states in the diffusion pro-

cess (i.e. facilitators), against Alaska, South Carolina and South Dakota. Targeting

the facilitators would maximize the diffusion likelihood across the country as they

are the main hubs in the network. We also find out a relative disconnection between

Northeastern states and the rest of the country. The latter suggests that in this re-

3See Dobbin et al., (2007) for a review.
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gion, transmission activity is concentrated between neighborhood states. From these

observations, we then estimate the impact of several attributes - covering economic

and political scopes as well as environmental features (e.g. environmental-friendly eco-

nomic system, expected cost of climate change (% GDP)) - on observed diffusion

patterns. Our results suggest that contiguity and GDP per capita are among the key

drivers of policy flows. We also identify Genuine Progress Indicator, a proxy for eco-

nomic sustainability, to have significant effects (i.e. positive impacts) while states being

subject to high expected economic losses due to climate change do not favour policy

diffusion. The latter informs us on how spreading occurs across sustainable states and

those vulnerable to future climate impacts.

The remainder of the paper is organized as follows. Section 2 reviews the re-

lated literature. Section 3 outlines the methodology and Section 4 applies it to the

diffusion of environmental policies. It is then followed by an in-depth analysis of the

network. Section 5 aims at evaluating the role of several economic, political and en-

vironmental attributes in the formation process of the network. Section 6 gives some

elements of conclusion.

2.2 Related Literature : Policy adoption, Diffusion

and Network perspectives

Our work is at the interface between different strands of the academic literature. By

considering environmental policies, our paper fits in the wide literature of environmen-

tal policy while our singular network approach matches previous research on diffusion

in networks.

When considering the case of environmental policy adoption in American states,

studies have examined the role of determinants (Huang et al., 2007; Lyon and Yin, 2010)

as well as features of policy diffusion (Carley and Miller, 2012; Chandler, 2009; Mati-
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soff, 2008; Stoutenborough and Beverlin, 2008). Overall, conclusions provide disparate

results for the determinants of environmental and climate change policy adoption. With

respect to internal drivers, papers often indicate a relationship between climate change

policy adoption and political factors. In a cross-sectional study of a large set of climate

change policies, Matisoff (2008) finds citizen ideology to be the primary driver. Simi-

larly, Matisoff and Edwards (2014) identify a strong positive relationship between lib-

eralism and policy adoption. In their examination of Renewable Portfolio Standards

adoption, Huang et al. (2007) find out a significant effect through partisan control of

the state legislature. In addition, higher membership levels in environmental organiza-

tions tend to increase environmental policy activity (Newmark and Witko, 2007). This

leads Bromley-Trujillo et al. (2016) to conclude that states with political environ-

ments that are more favorable to climate change policy, will adopt at a higher rate

(e.g. more liberal states, democratically controlled states, and states with a greater

level of environmental interest group activism).

The literature also indicates that states’ economic factors influence decision to imple-

ment environmental policy. State economies that depend on manufacturing and mining

may be less likely to pass policies that could potentially harm these industries. In ad-

dition, less developed states tend to favour economic policies targeting growth as a

priority, resulting in the increase of adoptions among wealthy states (Ringquist, 1994;

Matisoff and Edwards, 2014). The latter suggests that states with economic envi-

ronments that are particularly sensitive to climate policy will adopt at a lower rate

(e.g. states with high levels of mining or manufacturing and poorer states).

With respect to external drivers of policy adoption, research has been abundant since

the pioneering work of Berry and Berry (1990). Through the use of event history anal-

ysis, scholars have determined that a number of policies are spreading across states

based on geographic proximity (Berry and Berry, 1990, 1992; Mooney and Lee, 1995;

Wong and Shen, 2002). Policy learning is argued to drive this process (Walker, 1969;

Boehmke and Witmer, 2004; Karch, 2007). Despite this rich literature on "horizontal"
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diffusion, Mooney (2001) asserts that the learning process moves beyond simple geo-

graphic proximity. For instance, states may be more likely to learn from states that

share basic characteristics (i.e. budgets, politics, and demographic (Volden, 2006)). Re-

cent research points to the importance of ideological distance between states (Chan-

dler, 2009). Grossback et al. (2004) develop a measure of ideological distance between

previous and potential adopters. Their results indicate that states use information

concerning the ideology of previous adopters when deciding to adopt. This measure

moves the literature forward in understanding the information used by states when

looking to others for guidance on policy action. Overall, determinants of environmental

policy adoption are often categorized as internal and external. From another perspec-

tive, some of the previous works have also investigated the rationale of policy diffusion

across states. As exposed by Dobbin et al., (2007), it could stem from different under-

lying forces operating across states (e.g. coercion, learning, emulation). On this issue,

Boehmke (2009) demonstrated that observing multiple policy adoptions is not neces-

sarily evidence of an influence or a flow of ideas, it could be independent responses to

the same issue.

As exposed in the introduction, the previous literature has not explored the role

of networks in the context of policy diffusion. To the best of our knowledge, the work

of Desmarais et al. (2015) and Boehmke et al. (2018) are the only attempts so far. In

their papers, they infer the national policy diffusion network. Focusing on the U.S.,

Desmarais et al. (2015) evaluate the redundancy of a policy transmission between

states to generate a global diffusion network based on 187 policies. Their results sug-

gest that diffusion ties connect states that are not geographic neighbors (contradicting

the literature) and the existence of leadership, with larger and wealthier states more

often acting as sources of diffusion. More recently, Boehmke et al. (2018) provided

a methodological contribution with respect to static and dynamic policy innovative-

ness for U.S. states. Based on a database of 728 policies covering numerous areas

(e.g. health, agriculture, transportation, domestic commerce etc.), they propose dif-
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ferent sets of comparisons with respect to latent diffusion policy pathways, using the

algorithm NetInf (Gomez Rodriguez et al., 2010). Their results suggest that New York,

California, and Minnesota are among the most redundant states in the policies diffu-

sion network.

More generally, studies on diffusion in networks have focused on innovations and tech-

nologies (Beaman et al., 2018). Recently, a network approach to the diffusion of wind

technologies (Clean Development Mechanism projects) at the world scale has been

implemented by Halleck Vega, Mandel and Millock (2018). Their conclusions indicate

a relatively inefficient organization of the network with a lack of South-South diffu-

sion links, leading to longer lags in technology spreading. Although the literature has

mainly apply network approaches to innovation diffusion, we assume our paper to fall

apart as we focus on the adoption of environmental policies. As a result, we expect

the drivers of policy diffusion to be different compared to private products and inno-

vations. Our peculiar focus on environmental policies is relevant as previous research

has not considered environmental policies per se but as a part of a larger set of policies

(e.g. in Boehmke et al. (2018), only 2% of policies deal with the environment). In ad-

dition, over the past decades we have observed an increasing amount of environmental

policy adoption in the U.S. (CCCEP, 2018). The latter gives robustness (i.e. number

of observations) to evaluate underlying diffusion dynamics and the rationale behind

it, allowing for comparisons with previous findings.

Overall, there are two main approaches. The first covers non-network studies

such as descriptive and econometric analyses of factors driving environmental policy

adoption, through internal or external intermediaries. The second focuses on under-

standing how the topology of the network affects diffusion. The present paper is at the

interface of these two research areas.
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2.3 Methodology : Inferring the network

Following Halleck Vega and Mandel (2018), the cornerstone of our approach is to use

the independent cascade model of Gomez-Rodriguez et al. (2011) to infer a network of

environmental policy diffusion from time-series of observations of the enacted date of

subsequent legislations of environmental policy within American states. The weights of

the resulting network are interpreted as the rates at which a subsequent environmental

legislation is likely to be transferred between states. These weights summarize the

effects of a number of latent variables that govern the bilateral diffusion between states

(e.g. geographic proximity, political closeness), and the systemic role that certain states

can play by serving as intermediaries in the national diffusion process.

More formally, we consider that we are given series of observations of the diffusion

of subsequent types of an environmental policy legislation. Each type c is characterized

by a cascade of adoptions4 tc = (t1c,...,tNc), which is an N -dimensional vector of

observed activation times. More precisely, for each node i, tic is an element in [t0c, t0c+

T] ∪ {∞}, which is equal to the time at which state i enacted the legislation c if finite

and is infinite if the state did not enact during a time interval of length T starting

with the first adoption at time t0c. Note that the fact that a node is assigned +∞

as activation time does not mean stricto-sensu that the node did not get activated,

but rather that his activation was discarded given the time-window considered as

relevant. The data can then be represented by a set C of cascades, one cascade for

every legislation, and denoted as C := {t1,..., t |C|}.

Our aim then is to infer from this data a diffusion network consisting in a pair

(G,A) whereG=(V,E) is a graph (i.e. a set of nodes V and a set of edges E representing

the potential diffusion paths of the environmental legislation) and A = [αj,i] is a matrix

of transmission rates, i.e. αj,i > 0 quantifies how likely it is that a policy spreads from

node j to node i if (j,i) ∈ E (and αj,i = 0 if (j,i) /∈ E). The principle of the independent

4In this paper, we call "cascade" the diffusion of a policy.
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cascade model is to infer the maximum likelihood network under the assumption that

each cascade is an independent instance of a diffusion process drawn from a parametric

model in which the probability of diffusion from node j to node i is parameterized by

the transmission rate αj,i that is to be determined.

Precisely, the building block of our approach is the probability f(ti|tj;αj,i) that

node i gets activated by node j at time ti, given node j was activated at time tj and

assuming a transmission rate αj,i between nodes j and i. One then says that node j

is the parent of node i. The functional form of f conveys the structural assumptions

about the diffusion process (see the discussion below). Now, given the conditional

density f(ti|tj;αj,i), one can infer the likelihood of a set of cascades {t1,..., t |C|} given

a network A = [αj,i] as follows (see Gomez-Rodriguez et al., 2011 for a comprehensive

discussion).

First, given a cascade tc = (t1c,...,tNc), the likelihood of node i being activated

by node j is given by :

f(ti|t1, ...tN \ ti;A) = ∑
j:tj≤ti f(ti|tj;αj,i)×

∏
j 6=k,tk≤ti

S(ti|tk;αk,i)

where S(ti|tj;αj,i) is the survival (anti-cumulative distribution) function of edge j→ i,

that is the probability that j does not cause i to activate by time ti. Indeed, assuming

a node gets activated only once, one shall consider it is activated by node j only if it

has not been activated before by another node in the cascade.

One can then compute the likelihood of the activations in a cascade before time T :

f(tc≤T ;A) = ∏
ti≤T

∑
j:tj≤ti f(ti|tj;αj,i)×

∏
k:tk<ti,k 6=j

S(ti|tk;αk,i)

Further, the likelihood of a cascade accounts for the fact that some nodes did not get

activated (we consider that nodes not activated before time T never get activated). It

is therefore given by :
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f(tc;A) = ∏
ti≤T

∏
tm>T

S(T |ti;αi,m) ∏
ti≤T

∑
j:tj≤ti f(ti|tj;αj,i)

∏
k:tk<ti,k 6=j

S(ti|tk;αk,i)

Finally, the likelihood of a set of cascades C = {t1,..., t |C|}, assuming each cascade is

independent, is the product of the likelihoods of the individual cascades given by :

f({t1, ..., t|C|};A) = ∏
tc∈C f(tc;A)

The objective of the network inference problem then is to find A = [αj,i] such that the

likelihood of the observed set of cascades C = {t1,..., t |C|} is maximized. More precisely,

we aim at solving the following maximum likelihood (ML) optimization problem:

minimize A −
∑
c∈C logf(tc;A),

subject to αj,i ≥ 0, i, j = 1, ..., N, i 6= j

In practice, we solve this minimization problem using CVX, which is a general

purpose package in MATLAB for specifying and solving convex programs (Grant and

Boyd, 2015) and the algorithm NETRATE (Gomez-Rodriguez et al., 2011), which

are publicly released open source implementations. As emphasized above, structural

assumptions about the diffusion process are embedded in the functional form cho-

sen for the function f. Our baseline assumption will be to consider that once a state

has enacted a legislation, the probabilistic rate at which it diffuses it to one of its

neighbor is constant over time (although it might depend on the neighbor under con-

sideration). This amounts to considering the diffusion follows a Poisson process and

therefore leads to an exponential model for the conditional density of diffusion over

time (Kingman, 1993). That is f(ti|tj;αj,i) = αj,ie−αj,i(ti− tj) (if tj < ti and zero oth-

erwise) where αj,i is the diffusion rate. The Poisson assumption of a constant diffusion

rate is a simple and natural benchmark in absence of specific information about the

dynamic aspects of the diffusion. In particular, a Poisson process emerges if diffusion

opportunities are distributed uniformly across time.
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Independently of the underlying diffusion model, the network inferred by maxi-

mum likelihood provides two main types of information. First, the adjacency structure

of the network indicates which routes environmental policies are likely to follow in

their diffusion. Secondly, the weight of an edge gives an estimate of the speed at which

diffusion is likely to occur between nodes.

2.4 The U.S. Environmental Policy Network

2.4.1 General Context and Data

In the United States, the Trump administration’s decision to withdraw from the Paris

Agreement (2017) has deeply changed the environmental legislation dynamics within

the country (Hejny, 2018). In the wake of this announcement, some sub-national actors

such as local states governors publicly expressed their ambition to take the political

lead in the fight against global warming (Georgetown Climate Center, 2017). The

launch of the U.S. Climate Alliance (June, 2017), a coalition of states and unincor-

porated self-governing territories in the United States that are committed to achieve

the objectives of the Paris Agreement within their borders is a salient example. Other

examples include California, Illinois, New York and Connecticut, currently creatively

pushing their portions of the electric grid away from fossil fuels (CCCEP, 2018). By

implementing aggressive environmental policies, states’ action could "mitigate" neg-

ative impacts of the federal administration’s decision (Zhang et al., 2017). However,

keeping the U.S. on track with respect to the out-dated COP21 commitments calls

these local policies to diffuse rapidly across states. This further emphasizes the need

of efficient policy diffusion to ensure that newly enacted climate laws are spreading

faster and as much as possible across the country. In this respect, very little observation

data is available on the diffusion process of environmental and climate policies. Yet,

understanding the structural properties of the diffusion network is a prerequisite to

determine key states in the process. In this perspective, the methodology we have
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introduced in Section 3 allows to infer the structure of the diffusion network from

enacted environmental and climate policies data, which is much easier to collect than

diffusion data.

To do so, we build a dataset of 74 policies (i.e. cascades) upon three initial

databases: the Database of State Incentives for Renewables & Efficiency (DSIRE), the

Center for Climate and Energy Solution (C2ES) and the US Congress Platform. Al-

ready used in the literature (Bromley-Trujillo et al., 2016), DSIRE and C2ES are

relevant databases to consider as they give details about states’ legislative action

and associated enacted time-windows. More precisely, DSIRE encompasses policies

dealing with renewables support schemes (e.g. wind energy supports, solar rebate,

sales tax incentives) and energy efficiency (e.g. smart meters policies, energy audit

refrigerator/cooling, rebate program). These policies represent more than 40% of our

dataset. C2ES refers to climate policies and related adaptation actions (e.g. climate

adaptation plan, water plan, droughts plan). Finally, we collected policies from the

Congress platform as it provides state by state laws description (enacted date, con-

tent). In this case, we built cascades based on the first occurrence of a word (e.g. GMO)

in the laws of the corresponding state.5 We gathered 27 policies targeting transporta-

tion (e.g. biofuel policies, LEV Californian standards), sustainability (e.g. composting,

plastic bag, electronic recycling program) and environmental management (pesticides

regulation, bees keeping policies, environmental cleanup, wildlife conservation).

As a result, for each cascade, we collected the enacted dates of the policy in each

state wherein the policy has been implemented. It allows us to map the cascade diffu-

sion across states as a function of time. Note that we do not look at the intensity of the

policy, our focus is more on the extensive than the intensive margin of environmental

policy diffusion. Overall, policies fit into seven categories exposed in Table 2.16 and

cover the scope of environmental and climate state-based legislative actions from 1974

5See Appendix, Section 2 for keywords list.
6For full description, see Appendix, Section 1.

76



CHAPTER 2. HOW ENVIRONMENTAL POLICIES SPREAD ? A NETWORK
APPROACH TO DIFFUSION IN THE U.S.

to 2018.

We include policies related to climate action, the energy sector (mainly renewables),

transportation, and buildings. Our primary goal was to gain as much variation in

policies as possible, while still maintaining generalizability to other climate-related

policies. In this framework, we consider states as our nodes and set the "activation"

time of a given policy in a state as the enacted date of the policy (i.e. a state become

active once the policy is enacted). By convention, the activation time of a state not

enacting the policy is set to infinity. We hence constructed the cascades spanning 51

states over a period of 45 years (1974-2018).

Table 2.1: Environmental and Climate Change Policies collected in Brief.

Scope (Number) Policies Description

Climate Policies (5) Action Plans and reduction targets

Climate Change Adaptation (9) Plans to cope with current climate damages

Renewable support (24) Promoting the use of clean energy

Energy Efficiency (9) Targeting emissions in the dwelling sector

Transportation (8) Promoting the use of clean fuels/vehicles

Circular Economy (7) Targeting recycling/products efficient use

Environmental Concerns (12) Regulating environment management/health

We then proceed with the maximum likelihood estimation of the network following

the procedure described in Section 3.
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2.4.2 Statistical Analysis of the Network

Generalities

As illustrated in Figure 2.1, the inferred network7 first provides a map of existing diffu-

sion routes and hence a much broader view than obtained from the sole consideration

of bilateral influences among states. For example, in our setting, it could be the case

that California and Oklahoma are not linked by a direct link, but that there exists

a very short path from California to Oklahoma through Minnesota, hence diffusion

would nevertheless occur relatively rapidly from California to Oklahoma. On the con-

trary, the path from California to New Jersey could be relatively long (going through

Wyoming, Florida, Maryland, Maine, Connecticut, New York, and so forth), which

would suggest a relatively long lag in the diffusion from California to New Jersey.

Figure 2.1: Reconstructed environmental policies diffusion network in the U.S. using geo-
graphical layout.

7We relegate to the Appendix, Section 9 supplementary inferred networks (i.e. Energy Network
(Renewable Support + Energy Efficiency); Environmental and Climate Network (remaining policy
categories)).
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Overall, Figure 2.1 puts forward the existence of a strongly connected network formed

by all American states. This observation suggests that every state belongs to the net-

work. In other words, there is a path connecting each pair of states. The latter matches

the literature on diffusion in a federal context as states tend to compete and mimic each

other in terms of policy implementation (Desmarais et al., 2015). From a quantitative

perspective, structural properties of the diffusion process can be characterized via a

statistical analysis of the network (Halleck Vega and Mandel, 2018). In this respect,

key features of the network are reported in Table 2.2.

Table 2.2: General properties of the network.

Overall Network Characteristics Exponential Model

Number of Nodes 51

Number of Links 440

Network Density 0.173

Mean Degree 8.627

Mean Path Length 2.075

Network Diameter 4

Mean Clustering Coefficient 0.211

First, the basic measure of importance of a node is the degree, which measures its

number of connections. In a directed network, one distinguishes the in-degree (number

of incoming links) and the out-degree (number of outgoing links). As regards policy dif-

fusion, they respectively measure the direct potential to adopt or spread a policy. Here,

the inferred network has 440 edges, i.e. 440 links among the 51 states. In other words,

the average degree is approximately 8.6 and the network density, i.e. the ratio be-

tween actual and total potential number of links, is 0.173. These values are in line

with those generally observed in socio-economic networks (Albert and Barabási, 2002;

Chandrasekhar, 2016). The basic measure of distance between two nodes is the short-

est path, also known as the geodesic distance, which corresponds to the length of the
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path that connects them with the smaller number of edges. The average path length

of the network is then computed by summing up all the shortest paths and dividing

by the total number of pairs. In the context of environmental policy diffusion, the av-

erage path length can be seen as a measure of the average policy distance between two

states. In our setting, it has a value of 2. This is close with respect to the random graph

benchmark8 usually satisfied by socio-economic networks (Albert and Barabási, 2002)

and for which the average path length corresponds to the log ratio between number of

nodes and average degree (1.8 in our setting).

A common property of social and economic networks is to exhibit clustering, indicating

the tendency for nodes to form small groups (Centola, 2010). The clustering coefficient

in our setting has a value of 0.211 which is in line with previous findings in economic

networks (Soramaki et al. 2006; Halleck Vega and Mandel, 2018) and greater than

in random graph (0.169). This complements our observations, suggesting some local

structural organizations. Furthermore, the diameter of the network (the shortest path

between the two most distant nodes) has a value of 4 in our setting, which is relatively

large with respect to the random graph benchmark (it ought to be close to the aver-

age path length following equation (16) in Albert and Barabási, 2002). These values

(i.e. diameter and average path length) hint at the existence of lags in the diffusion

process as well as heterogeneity in terms of nodes attributes (e.g. degree, centrality).

To gain more quantitative insights, we provide a systemic characterization of the net-

work via its degree distribution, which is constructed by computing for each potential

value of the degree, the number (or the share) of nodes assuming that particular

value. The degree distribution hence summarizes the structure of the network. The

out-degree and in-degree cumulative distributions of the environmental policy diffu-

sion network are shown in Figure 2.2 in log-log scale.
8Random graph is often used as benchmark in network analysis as some network properties could

have emerged by chance. For this reason, we turn to the random network model as a guide: if the
property is present in the model, it means that randomness can account for it. If the property is
absent in random networks, it may represent some signature of order, requiring a deeper explanation
(Albert and Barábasi, 2014).
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The distribution clearly has fatter tails than normal, consistently with the presence

of highly connected nodes in the network. Indeed, we note that 70% of nodes have

less than 10 out-degrees while 2% of nodes have more than 17 out-degrees. However,

these nodes could play different roles, either by their abilities to spread the policy

(out-degree), to contain it or both.

Figure 2.2: Cumulative distribution of states’ out-degree and in-degree.

2.4.3 Centrality Analysis : Looking for Facilitators

In this section, we analyze how centrality measures are distributed among nodes to

capture central nodes and peripheral nodes in the network. The former represents

states facilitating diffusion (hubs) suggesting a strong ability to spread a policy in

the network while the latter points out less integrated states. We base our centrality

approach on several measures developed in the literature (see Jackson, 2008 for an

overview). For clarity of presentation, we relegate centrality measures’ description and

associated tables of results in the Appendix.9

Overall, it is clear that Minnesota (Midwest), California (West) and Florida (South)

are among the most prominent states. In fact, many overlap across the different cen-
9See Appendix, Section 4, Centrality measures description; Table 2.6 - 2.19.
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trality measures. Maryland and Louisiana also appear in the top for some of the indi-

cators. In addition, it can be observed that some other states including Hawaii, Idaho

and Utah have a relative presence. These leading states are facilitating the diffusion

across the network. Namely, once such states have enacted a policy, the likelihood

for that policy to diffuse in the network is high (compared to other states). On the

opposite, states such as Alaska, South Dakota as well as South Carolina are among

the worst performers with respect to centrality indicators, suggesting a low integration

in terms of connections and positions in the network.10 As for centrality leaders, many

overlap across measures.

Although out-degree can be seen as reflecting a spreader of policy, with a higher num-

ber implying greater coverage, in-degree can also be a key indicator of the receptive-

ness to the policy. Since the diffusion process involves the accumulation of policy over

space and time arising from adoption decisions, both the ability to spread and absorb

new policies are interrelated and important. In aggregate, main hubs are Minnesota,

California and Florida while District of Columbia, South Carolina and Alaska have

less than ten connections each (worst performers). With respect to closeness central-

ity, which provides an indication of which states can reach all other reachable nodes

quickly, Minnesota, California, Florida and Massachusetts are among those taking top

positions. Again, South Carolina and South Dakota take the last rankings.

Moving to betweenness centrality measure, results are particularly insightful. As pre-

viously discussed, it determines the relative importance of a state by measuring the

amount of flows through that state to other states in the network, thus acting as a

bridge. This relates back to the importance of the network approach discussed pre-

viously, and in particular, the value of policy intermediaries encouraging interaction

within a system (IPCC, 2019). The visualization of the network based on the between-

ness indicator (Figure 2.4)11 highlights the importance of several hubs in the environ-

10Although not being a state, the District of Columbia is also among the less integrated nodes in
the network.

11See Appendix, Section 5.
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mental policy diffusion network. For example, Minnesota, California, Florida, Utah,

Hawaii and Missouri are among the top (opposite to South Carolina and Alaska). With

respect to eigenvector centrality - builds upon degree centrality, also taking into ac-

count the quality of the connections, i.e. how connected a state is to hubs in the

environmental policy network - Minnesota, Idaho, Hawaii, Missouri and Louisiana are

the most important states in the network. It should be noted that some of these are

also hubs themselves, while states such as Missouri and Idaho do not overlap with

other measures. Hence, the comparison between centrality measures reinforces the

conclusion of the previous section : there is only partial overlap between the differ-

ent centrality measures and the distribution of centrality among top nodes and less

integrated nodes is relatively uniform. In this sense, the network is multipolar with

at least three hubs : Minnesota (Midwest), California (West), Florida (South) and no

single node appears as an evident center. Although not being as predominant, New

Jersey appears as the main hub in the Northeast region, being top-ranked for several

centrality measures. As a result, it is not straightforward to identify a single node,

nor a region, as the optimal target for the inception and the diffusion of new environ-

mental and climate policies. However, our analysis suggests that a group of states are

prominent spreaders in the process.

Overtime Network Formation

In complex economic systems, a relevant topic to address is the origin of the current

structure (Desmarais et al., 2015; Halleck Vega and Mandel, 2018). Our methodol-

ogy can be used to simulate the network formation process by running the network

inference algorithm for sub-periods of increasing lengths. The results of this analysis

are presented in Section 6 of the Appendix. We expose maps for periods from 1974

to 2018, cross-cutting historical federal government political terms (Republican vs.

Democratic).

A first key observation is that the growth of the network has been remarkable, expand-
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ing considerably both in terms of size and of connectivity. Compared to Figure 2.1,

the landscape for the earliest sub-period is much less dense (11 nodes in total), made

up of a few major states such as Nebraska, Missouri, and Oregon. In the following

sub-period 1972-2000, the density of the network has increased and new leading states

have emerged (namely Nevada, New Jersey, Connecticut and New Hampshire). The

global picture suggests that much fewer states remain outside the network (e.g. North

Dakota, Tennessee, North Carolina). From this observation, we can argue that large-

scale diffusion started in the late of the 90s and the beginning of the 2000s. Overall,

several changes come into play : First, all the nodes are connected to the network

(i.e. at least four degrees per node). Second, new hubs appeared with the presence of

California, Nebraska and Colorado, although they were not reproducing any specific

regional setting. For the 1972-2016 period, the network increased in density and, im-

portantly, Minnesota and California started playing key roles in the diffusion. Though

this sub-period is similar to Figure 2.1, in general, there have been small changes in

terms of general statistics of the network (diameter, average degree) - converging to

the characteristics of the 1992-2018 inferred network.

This historical analysis sheds light on critical tipping points in terms of network for-

mation in the late 90s and the 2000s, embodying a major jump with respect to network

density and connectivity. This observation (i.e. the increase in states environmental

policies adoption) has been studied by scholars in Law and Political Science (Andrews,

2018). Research findings suggest that this take-off to stemmed from new approaches

of environmental issues. Among them, after the "environmental decade" that has wit-

nessed the launch of the National Environmental Policy Act and the Environmental

Policy Agency (Kepner, 2016), the U.S. reached a turning point in national environ-

mental policy calling for readjustments in terms of federal government’s action and

states’ roles. Indeed, the success of national laws aiming to control major sources of

pollution and encouraging conservation (e.g. federal land) came together under public

scrutiny, focusing on problems that were harder to solve with a federal action (e.g. for
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instance, tackling widely scattered sources of pollution as well as specific conservation

opportunities affecting farms and housing developments (Graham, 1998)). As a result,

state-based environmental laws progressively started to soar in the 90’s. Therefrom,

states started to influence each other, generating an unprecedented take-off in states’

environmental policy adoption (e.g. California). The historic network formation also

highlights the late appearance of California and Minnesota as key states for the dif-

fusion. We argue that the amount of environmental policy diffusion during previous

periods was too low to observe the emergence of current key states - especially those at

the forefront of clean policies in many sectors. Finally, our results indicate an unstable

centrality leadership in the network over time, suggesting possible evolution to come

with respect to diffusion patterns observed.

Regional vs Network Communities Approaches

To further investigate the local structure of the network, we implement a regional-level

analysis (geographical) as well as a network communities evaluation. By doing so, we

provide complementary perspectives on local characteristics in terms of geographic

patterns and nodes’ proximity in the network.

Our regional setting takes after that of the U.S. Census Bureau, a federal institution

which has classified American regional divisions for more than 100 years. Four regions

are then delimited : Northeast, Midwest, West and South.12 It is apparent from both

Table 2.3 and the diagonal elements of the matrix in Table 2.4 that the Northeast has

by far the lowest amount of connections (i.e. in/out-degree, total degree), especially

when considering target region figures (i.e. targeted by 13% of links). Among those,

nearly 40% are intraregional connections, indicating that activity is concentrated and

that the Northeast is not highly subject to external diffusion influence.

The South also has the largest off-diagonal elements, meaning it is the most connected

region in the diffusion network. A large majority of its out-connections is homoge-
12See Appendix, Section 3 for full description.
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neously targeted toward the Midwest, the West, and intraregional states, leaving only

10% of remaining out-degrees to the Northeast region. Overall, nearly a 32% of out-

degrees and in-degrees are associated with the South region (i.e. 32% of total network

connections). As a comparison, Northeast connections represent respectively 20%, 13%

and 17% (i.e. out-degree, in-degree, total).

Table 2.3: Regional-level statistics.

Region No. of

states

Out-degree In-degree Source

region

(%)

Target

region

(%)

Total

degree

Northeast 9 89 59 20.23 13.41 148

Midwest 12 98 109 22.27 24.77 207

West 13 113 130 25.68 29.54 243

South 17 140 142 31.82 32.27 282

Although the South has the most states coverage, it is the most targeted region as well

as the largest source area. The most interregional flows are between the South and the

West, followed by the South-Midwest pair.

Table 2.4: Matrix of intra-interregional connections.

Region Northeast Midwest West South

Northeast 23 14 24 28

Midwest 10 30 29 29

West 11 29 34 39

South 15 36 43 46

From a complex networks perspective, it is interesting to compare previous results with

a community-based approach. The notion of “community” corresponds to a subset of

nodes that are more densely connected among themselves than with the nodes outside

the subset. Several definitions and methods to detect communities have been proposed
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in the literature (see Fortunato (2010) for a review). Most algorithms can be distin-

guished in divisive, agglomerative and optimization-based (Abraham et al., 2012). In

the latter case, the goodness of the partitions is commonly assessed in terms of the so-

called “modularity” (Lambiotte et al., 2015). The modularity takes values between -1

and 1 and compares the density of the links within the communities with those across

communities. It is positive if the number of edges within groups exceeds the number

expected on the basis of chance. Then, for a given division of the network’s vertices

into some partitions, modularity reflects the concentration of edges within groups com-

pared with random distribution of links between all nodes regardless of modules. In

our case, modularity takes the value 0.425, confirming the sophisticated properties

of the network13 (Becatti et al., 2019). We map in Figure 2.3 a graph perspective of

communities of the inferred network.

Overall, communities analysis hints at the presence of cross regional states belonging to

same clusters.14 The latter suggests the existence of multiple inter-states dynamics of

diffusion across the country - providing different insights with respect to the regional

perspective. As an example, the smallest community gathers four states (Arizona,

California, Indiana and South Dakota) while the largest represents 19 states (Alaska,

Colorado, Illinois, Kansas, Kentucky, Louisiana, Michigan, Mississippi, North Dakota,

New Mexico, Nevada, Ohio, Oklahoma, Texas, Virginia, Washington, Wisconsin and

Wyoming). Interestingly, all states belonging to the Northeast region - except Penn-

sylvania - take part in the same community (i.e. red) while other regional settings

become weak nor nonexistent. These results confirm the highly concentrated intra-

states diffusion activity in the Northeast part of the U.S. and the existence of groups

of states narrowly intertwined across the country (i.e. clusters). The latter explains

the macroscopic level of clustering observed previously (i.e. 0.211).

The network of U.S. environmental policy diffusion we have observed is inefficient. Our

13Compared to random graphs.
14See Appendix, Section 4 for full description.
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Figure 2.3: Reconstructed network using Force Atlas layout. The node size in proportional to
betweenness centrality, a centrality measure capturing the notion of hubs facilitating policy
flows. Position of nodes depends on associated connections in the network.

analysis shows that network’s structure hints at the existence of lags in policy trans-

mission (e.g. network diameter) while the ability of states to spread a policy is highly

unequal. The network also exhibits characteristics matching geographic patterns. That

is, in the Northeast region of the U.S., the activity of policy transmission is highly

concentrated between states. To enhance our understanding of the current diffusion

structure, the next part evaluates the impact of several attributes on the formation

process. By doing so, we add up to the literature on policy diffusion by focusing on

the determinants of environmental policy transmission across American states. In ad-

dition, policy-makers might be interested in modifying the network to reach higher

levels of diffusion. In the context of climate change, this part brings them new insights

to foster the implementation of pro-environmental policy.
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2.5 Estimating the Determinants of the Diffusion

Network

2.5.1 Modelling strategy and data

In this section, we base our econometric approach on the recent works of Wu et al.

(2013) and Halleck Vega et al. (2018). We only expose the general framework and we

refer to their papers for the econometric approach.

We now consider diffusion rates αj,i previously exposed, as the probability for a policy

to diffuse from state j to state i. We argue that this probability depends on a range

of characteristics about the source state, the target state and their relationship. For

example, it might depend on the level of GDP of the source state, the expected climate

change economic cost (% GDP) by the end of the century in the target state, on

geographic proximity between the two states (e.g. contiguity).

Then, in all generality, one can consider three main types of variables : a first set

of variables xi := (x1
i ,· · · , xn1

i ) ∈ Rn1 characterizing the source state, a second set of

variables yj := (y1
j ,· · · , yn1

j ) ∈ Rn2 characterizing the target state, and a third set of

dyadic variables z(i,j) := (z1
(i,j),· · · , z

n1
(i,j)) ∈ Rn3 characterizing the relationship between

the two state (z(i,j) shall in general be a multi-dimensional variable accounting for the

range of bilateral features). A natural approach would then be to try to estimate the

diffusion probability between states i and j using a logistic model of the form:

αi,j = Pα,β,γ(xi, yj, zi,j) := 1
1+e−(αxi+βyj+γzi,j)

where α ∈ Rn1 , β ∈ Rn2 and γ ∈ Rn3 are the vector of coefficients associated respec-

tively to the characteristics of the source state, the target state, and their relation-

ship. Based on Halleck Vega, Mandel and Millock (2018), we then infer the determi-

nants of network formation as above using the independent cascade assumption and

maximum likelihood estimation. Precisely, we seek to find (α, β, γ) that maximize the
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likelihood of diffusion observed. This yields the following equation for the likelihood

of the set of observed cascades S = (Sv)v∈V corresponding to V different policies :

Lα,β,γ(S) = ∏
v∈V P

v
(α,β,γ)(X, Y, Z)

Therefrom, we apply this methodology to evaluate the determinants of the formation

of the environmental policy diffusion network from 1974 to 2018.

In order to proceed, we enrich our policy dataset with characteristics that can be

associated to a state as a source (of the type xi) and as a target (of the type yj) of policy

diffusion, as well as characteristics of the relationship between pairs of states (of the

type zi,j). By construction, the model accounts for the fact that the identity of previous

adopters matters because they are the only potential sources of diffusion. This applies

in particular to the initial adoption state. With respect to policy drivers, key variables

are included to capture the impacts of states’ economic and political characteristics,

as well as environmental features on policy diffusion.15 As regards the former, we

include commonly examined variables such as GDP per capita, population density,

citizen ideology as well as partisan control of state government (Berry et al., 1998;

Klarner, 2003; Desmarais et al., 2015). We add a variable dealing with the political

party in charge of the federal government overtime (e.g. Republican/ Democratic). By

doing so, we complement the literature by investigating if the federal government party

in office has an impact on the network formation process. In addition, we take into

account contiguity of states as results presented in the literature are not clear-cut. Since

this variable is dyadic by nature, it is included as a zi,j feature, with the expectation

that the impact will be positive and significant, as contiguity should facilitate diffusion

flows of environmental policies (Bromley-Trujillo et al., 2016).

For environmental variables, we focus on different types of indicators ranging from

policy directed at tackling climate change to the expected economic risks due to global

warming. Controlling for these variables allows us to estimate whether diffusion is
15For full variables description, see Appendix, Section 8.
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more likely to occur from/toward states coping with climate change in different ways

(i.e. policy, risks). We control for the level of state coal mining production as well

as the green performance of its economy. To do so, we include the Genuine Progress

Indicator (GPI) of American States constructed by Fox and Erickson (2018) for the

year 2011. This indicator, largely commented in the literature on economic welfare

assessment (Kubiszewski, 2013), "provides citizens and policy-makers fruitful insight by

recognizing economic activity that diminishes both natural and social capital. Further,

the GPI is designed to measure sustainable economic welfare rather than economic

activity alone" (cf. Maryland Department of Natural Resources). Therefrom, we can

assess if diffusion from sustainable states (i.e. greener economic system) is more likely

to occur or not. Finally, we introduce a new variable referring to the expected economic

cost of climate change for US states. Based on the analysis of Hsiang et al. (2017), a

county scale expected economic impacts (i.e. GDP losses; 8.5 RCP scenario) of global

warming at 2080-2099 horizon, we constructed an index to classify American states

with respect to their vulnerability.16 Overall, combining these indicators aims to cover

a large scope of possible environmental determinants of the network and evaluate if

states environmental attributes (e.g. policies, risks toward climate change) increase

the likelihood of states-pair diffusion.

16We sum state’s counties median expected economic losses (% of GDP) and take the average with
respect to GDP weights.
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2.5.2 Empirical results

Table 2.5: Estimation results of diffusion network approach.

From a policy point of view, the results presented in Table 2.5 provide interesting

insights on accelerating the diffusion of environmental policy in the U.S., which forms

a key component in the energy transition as highlighted in the introduction.
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First, in our models, contiguity has a strong impact on policy spreading. This cor-

roborates previous studies (e.g. Berry and Berry, 1990, 1992; Mooney and Lee, 1995;

Wong and Shen, 2002; Bromley-Trujillo et al., 2016), that neighbor states tend to

mimic each other with respect to policy implementation. This result was expected as

our regional-level analysis pointed out the following pattern : the Midwest, West and

South regions have more in-degree than out-degree. Consequently, the latter increases

the probability of neighbor states to target each other. As can be noticed, from a

source state perspective, GDP per capita is significant for each model specification. In

particular, ceteris paribus, an additional unit in the level of GDP increases the odds ra-

tio of transmission by 1.03-fold (model B). The latter suggests that wealthier states are

more likely to transmit a policy. This finding matches past research suggesting that

environmental policies are considered by wealthy countries/states (Ringquist, 1994;

Matisoff and Edwards, 2014).

Population density is associated with a decreasing likelihood of transmission for source

states. Though contradicting the literature (Volden, 2006), this result is rather intu-

itive as a large number of highly densely populated states are located in the Northeast

region where we have observed the fewest amount of diffusion links in total (i.e. out-

degree, in-degree). Although this geographic part of the U.S. exhibits a concentrated

transmission activity, this finding suggests that diffusion rates of states belonging to

this region are not larger compared to other states in the country (i.e. source perspec-

tive).

Moving to political consideration, it is expected that state partisanship control pos-

itively influence the acceleration of environmental policy diffusion. However, an un-

expected result is found as the coefficients are negative (cf. models C, D). Although

reaching relatively low levels, this contradicts with the literature (i.e. identical politi-

cal party fosters diffusion (Huang et al., 2007)). Keeping in mind that variables cover

a period from 1974 to 2018, we assume that successive political switches in different

states over that time frame scrambled states-pair partisanship proximity impacts on
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transmission. It turns out, however, that the party of the federal government ruling

the country is significant in one configuration (model A). Although it should not be

over-interpreted, this outcome is of great interest as moving from a Republican to

a Democrat leadership increases the odds of transmission (exp(0.03) = 1.03, model

A). This stems from two possible factors : as climate change has historically been

more politically considered by Democrats (Leiserowitz, 2018), blue states’ governors

tend to implement pro-environmental policies. Moreover, pro-environmental federal

ambitions can foster the willingness of states to act against global warming with clean

policies and divest from a dirty economic system (e.g. Obama Administration climate

policy).

With respect to climate change economic impacts, we have estimated the impact of

economic damages with treatment coding (with the reference group being less than

5% GDP climate change median expected economic losses =0; median economic losses

greater than 5% GDP = 1). Results are shown in the second and fourth columns. Over-

all, the impact is highly significant. With respect to targeted states facing a high

expected climate economic cost, the odds ratio of transmission are 50% lower com-

pared to the reference category (i.e. model B). As Southern states are among the most

vulnerable to climate change, our centrality analysis indicates that they are often less

integrated in the diffusion network (cf. Appendix, Section 4). These states are also more

dependent on fossil energies (Energy Information Administration, State profile, 2017),

which implies lower willingness to adopt and transmit green policies (Matisoff and Ed-

wards, 2014). To further investigate this issue, we included the source states perspective

in the same model. As expected, the odds of transmission are also lower compared to

the reference category. Here again, we argue that non-environmental-friendly states,

accounting for a large part of the considered scope, are reluctant to adopt environ-

mental policies and to transmit such actions. The same argument holds for the coal

mining state variable we have included (top coal producers tend to not transmit the

policy).

94



CHAPTER 2. HOW ENVIRONMENTAL POLICIES SPREAD ? A NETWORK
APPROACH TO DIFFUSION IN THE U.S.

On the opposite, both from source and target perspectives, Genuine Progress Indica-

tor has a significant positive impact, the greatest with contiguity. This suggests that

diffusion flows are more likely to come from sustainable states toward other greener

states (i.e. economic system). Here again, this also matches the literature ,suggesting

that wealthier states are more likely to implement environmental policies and spread

them (Volden, 2006). In addition, a majority of states belonging to the Northeast re-

gion together with identified central states in the network (i.e. facilitators) display a

high Genuine Progress Indicator. From this view, GPI’s effect on policy transmission

is consistent.

Overall, our results show that contiguity and GDP are key determinants in the net-

work formation process while environmental characteristics such as sustainable eco-

nomic systems and expected climate change economic losses are relevant indicators to

understand environmental policy flows.

2.6 Conclusion

In this paper, we propose a methodology to estimate the network of environmental

policy diffusion across American states and evaluate the determinants from adoption

data. By doing so, we contribute to the understanding of environmental policies diffu-

sion and give policy-makers insights to maximize the spreading of green policies in the

U.S.. We first infer environmental policy diffusion patterns from a built dataset cover-

ing 74 green policies (e.g. energy, climate, waste recycling) from 1974 to 2018. We then

build a database of economic, political as well as environmental features for each con-

sidered state. Finally, we combine both of them in order to estimate the determinants

of environmental policy diffusion.

Precisely, we estimate, via maximum likelihood, the parameters that best explain the

observed patterns of environmental policies diffusion at the U.S. scale. This approach

allows us to overcome the issue that bilateral diffusion events are generically not ob-
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served. We have applied this methodology to environmental policies that were enacted

across American states but not at the federal scale. Our framework treats each type

of policy enacted by member states as a different policy, but does not use informa-

tion about the strength of the policy. In this sense, our focus is much more on the

extensive than on the intensive margin of environmental policy diffusion. We apply an

epidemic-like model of network diffusion and we then assume that bilateral diffusion

can be explained by a logit model taking into account the characteristics of source and

target states as well as that of their bilateral relationship.

Our results emphasize the central role of Minnesota, California and Florida in the

diffusion process while Alaska, South Carolina and South Dakota are among the less

integrated states. These central states are among the most ambitious to tackle climate

change as reported in recent studies (e.g. Statista, 2019). Our findings also suggest a

disconnected dynamics of policy transmission between states belonging to the North-

east region and the rest of the country. Mainly, Eastern states tend to influence each

other and are not sensitive to legislative actions occurring outside their region. There-

from, we evaluated the determinants of the network structure. We find that contiguity,

economic and political aspects as measured by GDP per capita, Genuine Progress In-

dicator are key drivers of environmental policy diffusion. It is also found that the level

of expected cost of climate change has a negative impact on the diffusion likelihood

among considered states. Nevertheless, other specific characteristics are less relevant

for the diffusion per se, although they might play a crucial role in the forthcoming

years (i.e. in the large scale implementation of policies to limit climate change). As

a result, this paper offers an in-depth analysis of the environmental policy diffusion

network in the U.S., calling for regular updates to capture new emerging dynamics.
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Appendices of Chapter 2

Description of Policies Database

Adaptation to climate change: Climate Adaptation Plan, Fire prevention policies,

General Hazard Plan, Water Plan, Droughts Plan, Droughts Laws (NCLS), Flood

Programs, Adaptation plan, Harvesting Water Program;

Renewables support: Wind Energy Support, Interconnection Standards, Elec-

tricity Portfolio Standards, Standards for Electricity Power plants, Solar rebate,

Water rebate program (solar heating), Energy Efficiency Loan, Solar/Wind access

Policy, Public Funds for RES, Performance Based Incentives, Training Program, Sales

Tax Incentives, Loan Program, Personal Tax Credit, Property Tax Exemptions, Pace

Program, Grant Program, Green Purchasing Power, Hydrogen, Biogas, Solar/Wind

Permitting Standards, Mandatory Net Metering, Renewables Portfolio Standard,

Corporate Tax Credit;

Circular economy: Water Efficiency, Composting, Beverage Program Nuclear

Waste, Stewardship Recycling, Plastic Bag Recycling Policies, Electronic Recycling

Program;

Climate Policies: Carbon pricing, GHGs Regulation, Carbon Capture and Storage,

GHGs Emissions Targets, US Climate Action Plan;

Energy Efficiency: Smart Meter Policies, Energy Audits Refrigerator/Cooling,

Air Conditioner Policies, Energy Efficiency - Analysis/services, Rebate Program,

Energy Efficiency standards and targets, Building Energy Code, Energy Standards

for Public Buildings;
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Environmental Concerns: GMO Laws, Wildlife Conservation, Bees Keeping

Policies, Land conservation, Fracking/Shale gas restrictions, Pollinator Laws, Farm-

ers Markets, Drinking Water Conservation, Forests Management, Environmental

Cleanup, Pesticides, Indoor Air Quality;

Transportation : Biofuel Policies, LEV Californian standards, Motor Fuel gas

Tax Increase (2013 and so forth), Hydrogen Vehicle, Natural Gas Vehicle, Electric

Vehicle Policies, Alternative Fuel Policies, Plug in electric vehicle Policies.

US Congress Platform : Keywords List

Circular economy: Water Efficiency, Compost, Nuclear Waste, Recycling, Plastic

Recycling, Electronic Recycling;

Environmental Concerns: GMO, Wildlife, Bees, Land conservation, Shale gas,

Pesticides, Farmers Markets, Water Conservation, Forests, Environment Cleanup, Air

Quality;

Transportation : Biofuel, LEV California, Motor gas Tax, Hydrogen Vehicle,

Natural Gas Vehicle, EV, Alternative Fuel, PEV.
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Description of U.S. Census Bureau - Regions

Northeast Midwest South West

Connecticut Indiana Delaware Arizona

Maine Illinois District of Columbia Colorado

Massachusetts Michigan Florida Idaho

New Hampshire Ohio Georgia New Mexico

Rhode-Island Wisconsin Maryland Montana

Vermont Iowa North Carolina Utah

New Jersey Kansas South Carolina Nevada

New York Minnesota Virginia Wyoming

Pennsylvania Missouri West Virginia Alaska

North Dakota Alabama California

South Dakota Kentucky Hawaii

Nebraska Mississippi Oregon

Tennessee Washington

Arkansas

Louisiana

Oklahoma

Texas
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Communities description

1 - Blue 2 - Red 3 - Yellow 4 - Green

Wyoming Alabama Arizona Arkansas

Alaska Connecticut Florida California

Colorado District of Columbia Indiana Idaho

Georgia Delaware Iowa South Dakota

Illinois Massachusetts Idaho

Kansas Maryland Minnesota

Kentucky Maine North Carolina

Louisiana Missouri Oregon

Michigan Montana Pennsylvania

Mississippi Nebraska South Carolina

North Dakota New Hampshire Utah

Nevada New Jersey

Ohio New York

Oklahoma Rhodes Island

Texas Tennessee

Virginia Vermont

Washington West Virginia

Wisconsin

New Mexico
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Centrality Analysis

• The degree centrality of node i, which is simply given by its degree.

• The closeness of node i, 1/∑
jd(j,i), is based on the average distance of i and

hence measures how fast a policy adopted in one state would, on average, reach

another state in the network.

• The betweenness centrality of node i measures the share of shortest paths in the

network on which node i lies. Hence, in our context, it measures to which extent

a state can serve as a hub in the diffusion process.

• The eigenvector centrality is a recursive measure that assigns a high value to

nodes which are connected to other important nodes. In this context, it can be

seen as a measure of the total diffusion range (direct and indirect) of a policy, as

a function of the initial adopting state.
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Table 2.6: Centrality Measures (1/2).

Id Label Name In-degree Out-degree Total

degree

Closeness Betweenness Eigenvector

2 AK Alaska 5 4 9 0.403226 9.964373 0.266815

3 AL Alabama 6 8 14 0.46729 32.094172 0.33571

4 AR Arkansas 15 4 19 0.416667 41.055787 0.602801

6 AZ Arizona 10 11 21 0.505051 48.239245 0.523698

7 CA California 16 14 30 0.561798 141.143666 0.551276

8 CO Colorado 2 10 12 0.505051 14.114863 0.087953

9 CT Connecticut 6 9 15 0.490196 27.686538 0.28126

10 DC Disctrict of

Columbia

4 3 7 0.423729 5.891048 0.201624

11 DE Delaware 10 6 16 0.442478 38.776702 0.361921

12 FL Florida 13 15 28 0.561798 113.570467 0.547631

14 GA Georgia 7 7 14 0.47619 26.518929 0.307814

16 HI Hawaii 14 8 22 0.505051 115.124238 0.783867

17 IA Iowa 5 9 14 0.471698 20.424889 0.229987

18 ID Idaho 19 6 25 0.431034 60.88448 0.849111

19 IL Illinois 6 7 13 0.5 29.107493 0.27493

20 IN Indiana 6 7 13 0.462963 28.459926 0.263861

21 KS Kansas 10 7 17 0.471698 52.518223 0.491029

22 KY Kentucky 9 7 16 0.47619 49.7837 0.350142

23 LA Louisiana 19 6 25 0.42735 67.385037 0.736789

24 MA Massachusetts 4 13 17 0.555556 46.955657 0.234508

25 MD Maryland 6 17 23 0.595238 78.798627 0.19677

26 ME Maine 11 9 20 0.515464 91.453098 0.479913

27 MI Michigan 5 9 14 0.49505 34.83789 0.142184

28 MN Minnesota 23 16 39 0.568182 284.536563 1

29 MO Missouri 11 10 21 0.510204 114.052441 0.680193

31 MS Mississippi 13 8 21 0.47619 59.65885 0.580629

32 MT Montana 10 10 20 0.49505 54.12704 0.3719

33 NC North Car-

olina

9 7 16 0.47619 65.095336 0.334858

34 ND North

Dakota

7 5 12 0.423729 19.040408 0.288743

35 NE Nebraska 13 6 19 0.471698 51.14652 0.655084

36 NH New

Hamp-

shire

8 9 17 0.505051 52.300423 0.332812
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Table 2.7: Centrality Measures (2/2).

Id Label Name In-degree Out-degree Total

degree

Closeness Betweenness Eigenvector

37 NJ New Jersey 12 10 22 0.515464 94.389463 0.493553

38 NM New Mex-

ico

5 10 15 0.531915 22.768328 0.106734

39 NV Nevada 10 8 18 0.47619 51.162607 0.376089

40 NY New York 3 12 15 0.537634 34.535164 0.14357

41 OH Ohio 6 7 13 0.438596 36.367952 0.244487

42 OK Oklahoma 5 8 13 0.446429 30.605094 0.153615

43 OR Oregon 6 10 16 0.505051 55.651683 0.332255

44 PA Pennsylvania 5 10 15 0.537634 23.343624 0.211064

46 RI Rhode

Island

2 10 12 0.520833 12.871703 0.066546

47 SC South Car-

olina

1 7 8 0.47619 7.576828 0.06823

48 SD South

Dakota

8 4 12 0.381679 17.641288 0.429481

49 TN Tennessee 4 8 12 0.49505 26.905995 0.175553

50 TX Texas 8 11 19 0.505051 58.7092 0.444035

51 UT Utah 14 8 22 0.480769 118.636159 0.601942

52 VA Virginia 7 13 20 0.520833 50.923421 0.285089

54 VT Vermont 8 7 15 0.47619 46.132237 0.30207

55 WA Washington 5 9 14 0.515464 15.410143 0.2304

56 WI Wisconsin 9 11 20 0.520833 87.318358 0.420461

57 WV West Vir-

ginia

6 5 11 0.423729 23.606168 0.148295

1 WY Wyoming 14 5 19 0.413223 50.697955 0.552087
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Table 2.8: Top rankings according to centrality indicators (1/6).

Table 2.9: Top rankings according to centrality indicators (2/6).
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Table 2.10: Top rankings according to centrality indicators (3/6).

Table 2.11: Top rankings according to centrality indicators (4/6).
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Table 2.12: Top rankings according to centrality indicators (5/6).

Table 2.13: Top rankings according to centrality indicators (6/6).
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Table 2.14: Ranked last according to centrality indicators (1/6).

Table 2.15: Ranked last according to centrality indicators (2/6).
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Table 2.16: Ranked last according to centrality indicators (3/6).

Table 2.17: Ranked last according to centrality indicators (4/6).
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Table 2.18: Ranked last according to centrality indicators (5/6).

Table 2.19: Ranked last according to centrality indicators (6/6).
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Figures A - Networks

Figure 2.4: Reconstructed network using Force Atlas layout. The node size in proportional to
betweenness centrality, a centrality measure capturing the notion of hubs facilitating policy
flows.
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Figure 2.5: Reconstructed network using geographical layout. The node size in proportional
to the degree centrality.

Figure 2.6: Reconstructed network using geographical layout. The node size in proportional
to the betweenness centrality.
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Figure 2.7: Reconstructed network using geographical layout. The node size in proportional
to the weighted out-degree ranking.

Figure 2.8: Reconstructed network using geographical layout. The node size in proportional
to the weighted in-degree ranking.
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Figures B - Evolution of network

Figure 2.9: 1974-1992

Figure 2.10: 1974-2000
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Figure 2.11: 1974-2008

Figure 2.12: 1974-2016
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Figure 2.13: 1974-2018
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Determinants of Network Formation

Contiguity : Depending on the geography, 0 = not neighbors, 1 = neighbors.

GDP per capita : Overtime.

Population Density : Overtime, 0 = from 13th to 51st rank , 1 = from 1st to 12th

most densely populated states.

States Governors Colors : Depending on the party, 0 = Republican, 1 = Split, 2

= Democratic.

Federal Government Party : Depending on the party, 0 = Republican, 1 = Demo-

cratic.

Citizen Ideology : Overtime.

Climate Change Economic Impacts : We create 4 categories : 0 = -5% of

GDP losses, 1 = +5% GDP losses. Initial Dataset from Hsiang et al. (2017) :

http://www.globalpolicy.science/econ-damage-climate-change-usa.

Genuine Progress Indicator : Based on Fox and Erickson (2018), depending on

the level, low = 0, high = 1.

Coal Mining State : Based on the EIA coal data production, we select the top States

appearing in blue color in the coal data browser map (https://www.eia.gov/coal/data).
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Additional Networks

Figure 2.14: Energy Network inferred using Force Atlas Layout. Communities are colored
and the node size is proportional to the betweenness centrality indicator.

117



CHAPTER 2. HOW ENVIRONMENTAL POLICIES SPREAD ? A NETWORK
APPROACH TO DIFFUSION IN THE U.S.

Figure 2.15: Environmental and Climate Network inferred using Force Atlas Layout. Com-
munities are colored and the node size is proportional to the betweenness centrality indicator.
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Chapter 3

Triggering Reduction of Imported

Emissions in the E.U.

* * *

We implement a methodology to identify the sectors likely to trigger relevant imported

emission reductions. We show how, in a sample of five European countries, mining as

well as basic metals industries are among those with the highest emission reduction

coefficients. We then identify the relevant channels of cascades of imports contraction

across sectors. Results emphasize the key role of basic metals in reducing imported

emissions. Finally, we estimate the short run impact of a $25 carbon tax on basic

metals imported emissions. We show that affected downstream sectors are identical

across countries although disparities appear in terms of economic impacts.

* * *

This chapter is an adaptation of a joint work with Pr. Anna Creti.
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3.1 Introduction

In July 2020, the European Council exposed the NEXT GENERATION EU plan,

a €750 billion economic instrument to "support the recovery and resilience of the

economies of the Member States" following the COVID-19 chaotic crisis (Special meet-

ing of the European Council, 2020). While such instrument aims at repairing the imme-

diate economic and social damages caused by the pandemic, achieving environmental

objectives previously set by the European Commission remain a priority of the plan.

Back in December 2019, the President of the European Commission exposed her Green

Deal project for Europe with the ambition to make the continent climate-neutral by

2050 (European Commission, 2019). Among the set of announced sectoral targets,

the E.U. leader expressed a resurgent interest in tackling imported emissions to limit

carbon leakage.1 The suggested implementation of a border adjustment mechanism2

to achieve this objective has raised concerns across the globe, especially among EU

trading partners (Financial Times, January 2020). Indeed, such a policy instrument

would target carbon-intensive imports, affecting their competitiveness on the mar-

ket. Although a border tax may create trade partnership issues, it would generate an

additional revenue for the Union whilst limiting imported emissions and carbon leak-

age comes as a prerequisite to reach the climate objectives set in the Paris Agreement

(2015) (Görlach and Zelljadt, 2019).
1Carbon leakage refers to the effect in which carbon prices drive up relative costs and reduce

the relative competitiveness of EU firms such that their output falls. Some of the output transfers
to overseas producers with the rest accounted for by reduced domestic consumption, which leads to
changes in carbon dioxide emissions both within and outside the EU. Carbon leakage refers to the
increase in emissions resulting from the relocation of production (Vivid Economics, 2014).

2A trade measure designed to level the playing field between domestic producers facing costly
climate policy and foreign producers with no or little constraint on their GHG emissions (Ismer and
Neuhoff, 2007).
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The topic of imported emissions has gained a particular attention over the last decade

as researchers pointed out a critical gap between territorial and consumption-based

emissions3 (Barrett et al., 2013; Karstensen et al., 2018). Regarding E.U. coun-

tries, the United Kingdom provides a good example of such disconnection (Carbon

Brief, 2017). Indeed, in 2014 territorial emissions reached 402 million tonnes of CO2

while emissions embodied in consumption represented 656 million tonnes (Office of

National Statistics, 2019). These figures highlight the responsibility of such states in

driving foreign countries’ territorial emissions, therefore challenging the success of do-

mestic environmental policies addressing carbon leakage. From that perspective, the

E.U. political will to limit imported emissions is of significant relevance.

In academia, a large strand of the literature has focused on areas such as evaluating

the level of emissions embedded in international trade (Peters et al., 2011; Kanemoto

al., 2014; Kim et al., 2019; Simola, 2020), the legislative design of economic instru-

ments to limit such emissions (Tamioti, 2011; Holzer, 2014; Mehling et al., 2019)

and their potential impacts (Monjon and Quirion, 2011; Fisher and Fox, 2012; Droge

et al., 2019). While impacts would mainly concern intermediate demand rather than

final demand (Simola, 2020),4 targeting imported products according to their respec-

tive emissions is relevant from a carbon intensity perspective. However, if one considers

the economy as a system of industries interacting with each others (OECD, 2016), a

limit of the aforementioned approach is to fall short on capturing the dynamics of

supply/demand for imports and associated emissions. Indeed, imports of an industry

might be used directly as inputs or as output supplied to other sectors (e.g. imports

of the mining sector are consumed as inputs by that industry or supplied as inputs to

the basic metals sector).5 The reduction in production from the mining sector would

3Territorial emissions are allocated to the country and sector, where the emissions physically are
released into the atmosphere, and this principle is used for emission inventories officially reported to
the UNFCCC; Consumption-based emissions are allocated to where final consumption of goods and
services occurs. The gap between the two represents imported emissions (after removing emissions
embedded in exports).

4Industries using steel and iron ores as inputs. See Simola (2020) for full analysis.
5See E.U. inter-country supply, use and input-output tables (2019), p.17 for description.
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reduce the sector output and impact demand-side sectors. Then, following the chain

of intermediate demand, industries directly connected such as basic metals would in

turn reduce their output, including their imports. Such a cascading mechanism of

imports contraction would decrease associated emissions.6 While some studies have

explored phenomenon of economic cascades (e.g. information in financial markets (Ro-

mano, 2007), the diffusion of risks in the banking system (Battiston et al., 2017) or

the stranding of dirty assets in a low carbon economy (Cahen-Fourot et al., 2019)), the

topic of limiting imported emissions has not been investigated thoroughly, and never

from a systemic perspective.

This chapter fills this literature gap by providing an original analysis of the process

through which a reduction of imports of a specific sector would affect the demand

for imports of other sectors and reduce associated emissions. We illustrate our model

using data available for five European countries (i.e. France, Germany, Italy, Poland

and the United Kingdom).

First, we use national Input-Output (IO) tables to derive economic matrices of im-

ported emission reduction coefficients (ERC ), covering the entire range of the industrial

sectors. These coefficients capture the amount of imported emissions that would be cut

(i.e. reduced) in a sector due to a unitary drop in primary inputs7 utilised by another

(or the same) sector, considering both direct and indirect impacts. For instance, these

matrices are able to provide the imported CO2 emissions reduction in the textile sector

due to a drop in the plastics industry, both directly and through its intermediate ef-

fects on, for instance, chemicals. By doing so, we identify the industries most likely to

trigger large emission reductions and those most exposed to a reduction of imported

emissions (i.e. through the channel of another sector). The relevance of the present

analysis is to maintain a systemic perspective of the national economy, and investigate

6In the following, we name "cascading process" such a dynamics of contraction.
7We define “primary inputs” as the main factors used in production (labour, capital, land, and

others). IO tables report their factor costs (e.g. compensation of employees, consumption of fixed
capital or net operating surplus) (Miller and Blair, 2009).
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the transmission channels of imported emission contraction across industries (via a

cascading reduction of imports).

Whatever the economic system, we highlight how mining8 as well as manufacture of ba-

sic metals9 are among the sectors with the largest emission reduction coefficients.10 On

the opposite, coke and refined petroleum, basic metals and electricity and gas industries

are the most exposed to a reduction of imported emissions in economic systems. Over-

all, these activities have various ranges of impacts across economies. These results hint

at the existence of different national strategies regarding international trade openness

(i.e. sectoral level of imports), thus leading to heterogeneous exposures to an economic

instrument targeting imported emissions.

Second, we focus our study on the mining industry in order to investigate the most

relevant channels of sectoral cascades of emission reductions (imports). By doing so,

we are able to evaluate the role of sectors such as basic metals and coke and refined

petroleum in the cascading process. While countries exhibit different cascade pro-

cesses depending on the characteristics of their industrial structure, certain regular

patterns emerge. On one hand, together with basic metals (e.g. iron and steel) and

the manufacture of coke and refined petroleum products,11 electricity and gas are the

most directly exposed to emission reduction through import contraction from min-

ing. Such results suggest a strong economic connections between the mining industry

and these sectors where the former supplies the latter. On the other hand, irrespective

to their rankings in the process, chemicals and pharmaceutical products,12 machinery

8The sector encompasses coal and lignite, crude petroleum and natural gas, metal ores, other
mining and quarrying products and mining support services.

9The sector covers basic iron, steel, aluminium and ferro-alloys, tubes, pipes, hollow profiles
and related fittings, of steel Other products of the first processing of steel, basic precious and other
non-ferrous metals.

10These results are in line with the imports intensity of the sectors and associated emissions. See
OECD, STAN 2018 for a detailed description.

11Includes coke oven products and refined petroleum products.
12Sector covers basic chemicals, fertilisers and nitrogen compounds, plastics and synthetic rubber

in primary forms, pesticides and other agrochemical products, paints, varnishes and similar coatings,
printing ink and mastics, soap and detergents and other chemical products.
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and equipment13 and manufacture of other non-metallic mineral products14 are highly

present in the third and fourth layer of the cascading process. In addition, a large

share of manufacturing sectors (e.g. motor and vehicles, fabricated metal products,

electrical equipment15) are impacted by mining reduction through the channel of basic

metals. From a policy perspective, these findings emphasize that moving away from

mining would have impacts not only on emissions (Fugiel et al., 2017), but would also

generate economic effects on other sectors (i.e. from mining to downstream industries

such as machinery and equipment through the channel of basic metals). On this issue,

our findings complement the flourishing literature on assets at risk due to a low carbon

transition (Caldecott, 2017; Creti and de Perthuis, 2019) and calls for a well-designed

policy to limit such effects (e.g. loss of competitiveness due to a lack of substitutes for

inputs/imports).

Finally, we concentrate our analysis on the basic metals industry as a channel of emis-

sion reductions toward downstream industrial sectors. We simulate the full multiplied

impact of a uniform $25 per tonne carbon price16 on these products. We exclusively

focus on these imports as the E.U. has expressed a strong interest in experimenting

such a policy (Reuters, October 2019).17 Our findings suggest that, on the short run,

the majority of industries would see their imported input costs increase by less than

one per cent (in France, Germany and the United Kingdom). Apart from basic metals,

the sector of fabricated metal products is the most affected, reaching more than 1%

increase in the total cost of imported input in Italy and Poland (emphasizing how

heterogeneous are E.U. economies). By reducing competitiveness, the implementation

13Industry includes general-purpose machinery, other general-purpose machinery, agricultural and
forestry machinery, metal forming machinery and machine tools, other special-purpose machinery.

14The activities include glass and glass products, refractory products, clay building materials, other
porcelain and ceramic products, cement, lime and plaster, articles of concrete, cement and plaster,
cut, shaped and finished stone.

15The sector includes electric motors, generators, transformers and electricity distribution and
control apparatus, batteries and accumulators, wiring and wiring devices, electric lighting equipment,
domestic appliances and other electrical equipment.

16For easiness, the currency is in $ as our IO Tables are expressed in that currency.
17Precisely, we set a carbon price amount of 25$ to be aligned with the 2019 average EU-ETS

price (cf. International Carbon Action Partnership, 2020).
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of such a tool would put the sectors under pressure of competition from other clean

substitute products.

The remainder of the article is organised as follows. Section 2 reviews the related lit-

erature. Section 3 introduces the method to compute the matrices of sectoral emission

reduction coefficients. Section 4 presents the results of the analysis for five European

countries, discussing the sectors most likely to create large emission reduction coeffi-

cients and the ones most exposed to emission reductions. Section 5 focuses on under-

standing the systemic propagation of shocks starting from mining in order to identify

relevant channels of emission reductions and provides insights on the sectors easing the

dynamics. Section 6 simulates the impact of a $25 carbon tax on imported emissions

from basic metals. The economic impact on total cost of imported inputs is exposed

by sectors. Finally, Section 7 concludes.

3.2 Literature : Input-Output, Emissions embed-

ded in Trade and Border Adjustments Mecha-

nisms

Our paper connects different strands of the literature. The first is a fast growing litera-

ture that looks at the propagation of shocks in an interconnected economy (Acemoglu

et al., 2012; Acemoglu et al., 2015; Battiston et al., 2017; Cahen-Fourot et al., 2019,

King et al., 2019; Mandel et al., 2019). Based on concepts and methods borrowed from

IO approaches and network analysis, we complement these studies by providing an al-

ternative methodology to study the shock of transitioning away from carbon imports

in an economy. Following Blochl et al. (2011), Joya and Rougier (2019), Cahen-Fourot

et al. (2020) and others, we consider input-output linkages as the links of a directed

weighted network capturing the complex system of economic interconnections among

productive sectors. Unlike most of the previous research, we do not study the effect of
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demand-driven sectoral shocks on aggregate output volatility. Indeed, following the ob-

jective of our research, the origin of the shock is located into the industrial sectors. The

latter makes a supply side approach more relevant compared to a final demand per-

spective. For this reason, we consider a supply-driven IO model provided by Ghosh

(1958) and incorporate emissions data on imported products. The Ghosh model can be

implemented to estimate the relevance of industrial sectors in contributing to down-

stream economic activity through the calculation of sectoral “forward linkages” (see for

instance Aldasoro and Angeloni, 2015; Antras et al., 2012) or, in the case of this paper,

their relevance in supporting imports demand. On the theoretical side, some studies

have questioned the model’s ability to assess forward leakages due to some strong as-

sumptions such as perfect elasticity of demand (facing changes in supply) and perfect

substitutability among input factors (Oosterhaven, 1988; Galbusera and Giannopou-

los, 2018). As exposed by Dietzenbacher (1997), such criticisms can be solved when

treating the model as a price model. In our case, these issues are mitigated as we are

not considering the question of excess output supply allocation.

The second strand of the literature our paper connects is a growing bunch of works

on measuring emissions embedded in international trade. Many research studies

used MRIO (Multi-Regional Input–Output) models to estimate embodied CO2 emis-

sions in different countries (Machado et al., 2001; Lin and Sun, 2010; Makarov and

Sokolova, 2015; Jiang, 2016; Stefan et al., 2019). More recently, MRIO models were

used in the assessment of embodied CO2 emissions of developing countries (e.g. Brazil,

Russia, India, China) in a scope of trade globalization. Results emphasized that both

Russia and China were the main exporters of CO2 emissions due to massive exports of

energy and carbon intensive final demand goods (Yang, 2012; Boitier, 2012). Regarding

methodology for accounting emissions, previous papers have explored the feasibility of

using consumption-based emissions to calculate carbon emissions and determine na-

tional emission responsibilities, at both global and national levels. At the global level,

emission characteristics triggered by multinational trades have been studied (Peters
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et al., 2011). At the national level, consumption-based carbon emissions have been

assessed in many countries, such as Australia (Wood and Dey, 2009), China (Su et

al., 2010), Italy (Mongelli et al., 2006), Turkey (Tunç et al., 2007) and the U.K. (Bar-

rett et al., 2013).

Finally, a large body of studies relates to the impacts of trade measures (e.g. border

adjusmtent mechanisms) aiming at tackling carbon emissions, their associated impacts

(e.g. carbon leakage, competitiveness) and the legislative framework allowing such eco-

nomic mechanisms. First, with respect to competitiveness, previous work by Reinaud

(2005) estimates the impact of an extention of free allocation in the EU-ETS (Phase I)

on the increase of production cost incurred by emission intensive sectors. Results sug-

gest that higher cost in production raises concerns with respect to future production

and employment, leading to a possible carbon leakage outside the EU. From another

perspective, Demailly and Quirion (2006) show that output-based allocation is more

effective to mitigate carbon leakage in a free allocation setting. Regarding energy in-

tensive sectors (e.g. cement and steel), recent work of Martin, Muûls and Wagner

(2016) as well as Dechezleprêtre and Sato (2017) provide insightful reviews of studies

estimating competitiveness and leakage impacts of pricing carbon emissions. Overall, a

large part of this literature conducts numerical simulations with empirically calibrated

computable general equilibrium (CGE) models to estimate the reduction of leakage

effects through various forms of economic instruments (e.g. border carbon tax) both

at aggregate levels and in particular sectors. They tend to confirm the role of import

tariffs in limiting carbon leakage, leading to a noticeable overall reduction of emissions

as they also shrink consumption.

Second, the design and implementation of border carbon adjustment mechanisms

(BCAs) have been studied through the lens of competitiveness. Böhringer et al. (2012)

demonstrate that BCA mechanisms reduce carbon leakage while Fischer and Fox

(2012) provide a detailed model-based economic comparison of different approaches

to BCA implementation and find that a mix BCA (import and export) is more effec-
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tive to limit carbon leakage. Moreover, Helm, Hepburn and Ruta (2012) argue that the

adoption of an import-BCA by one region can provide dynamic incentives for stronger

carbon pricing in other regions (so as to capture the additional tax revenue). More

recently, Cosbey et al. (2019) carried out a global review of the main findings from the

BCA literature to date. Finally, Zachmann and McWilliams (2020) exposed a general

review of policy implications of a BCA at the EU scale, suggesting unclear effects on

carbon leakage and emphasizing potential negative impacts.

Lastly, regarding the legislative design of BCA, Ismer and Neuhoff (2004) suggested

that a BCA targeting imports and exports would fit the World Trade Organization leg-

islation if it is calculated on the basis of best available technology standard. Although

De Cendra (2006) analysis of the legality of border adjustments for exports conclude

that WTO legalisation is unclear on such a mechanism, Holzer (2014) develops that

exports would only be eligible for adjustment at the border if the costs accruing under

an European Trading Scheme could be considered an indirect tax, which is unlikely

to happen for the author. Mehling et al. (2019) take a more favourable view on the

possibility for emission permits to be classified as an indirect tax.

Overall, our paper is at the interface between different strands of the literature. The

first focuses on understanding how the structures of network affect diffusion to then

identify the propagation of economic shocks within an economy. The second are non-

network studies mostly using empirical, analytical and/or simulation tools to measure

amounts of emissions embedded in trade. Finally, the third evaluates the potential

impacts of economic instruments to limit imported emissions as well as associated

impacts (e.g. carbon leakage, competitiveness).
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3.3 Methodology & Data

3.3.1 The Emission Reduction Multiplier Matrix

Following Cahen-Fourrot et al. (2020), we start with the national inter-industry matrix

Z, a square matrix exhibiting amounts of sectoral intermediate consumption. In broad

terms, such a matrix is called "Input-Output matrix" and captures exchanges of goods

and services among industrial sectors in monetary units.18

In input-output tables (IOTs), the Z matrix usually comes with an additional set of

column vectors displaying final consumption (i.e. demand (f)) and row vectors repre-

senting value added items (v) (i.e. compensation of employees, fixed capital consump-

tion, gross operating surplus). Sectors appear both as producers of goods and services

(rows) and as consumers of intermediate inputs (columns). More specifically, IOTs are

commonly defined as monetary industry balances, where total supply xT=iTZ + v

equals total use x=Zi + f of products and services per sector.19 Therefrom, the total

amounts of all transactions over a row (industry output allocated to each category of

user (i.e. intermediate and final consumption)) equals the sum over the corresponding

column (total industry input flowing from upstream sectors - other industries and value

added items). The IOT also reports imported goods and services, which are again used

either as intermediate inputs or as final demand. Figure 3.1 below shows a stylized

version of an IOT.

In economics, IOTs have been mainly used to evaluate direct and indirect effects of

changes in final demand based on the Leontief inverse matrix (Leontief, 1951; Met-

zler, 1951; Chen, 1973; Velàzquez, 2006). Although both demand and supply dynamics

will be critical in defining the process of imported emission reductions, we believe that

the demand-driven Leontief model is not appropriate to evaluate cascades of reduc-

tion of imported emissions. Indeed, we expect that changes in consumption behaviour

18See Miller and Blair, 2009; Cahen-Fourot et al., 2020.
19Note that i is a column vector of the same dimension of Z
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Figure 3.1: A stylized Input-Output Table (Cahen-Fourot et al., 2020)
.

due to an environmental policy (e.g. carbon taxation) would generate shifts of final

demand from high to low-carbon products belonging to the same category of goods

(i.e. same NACE category) - rather than creating new patterns of consumption across

different categories of products.20 Second, as heavy polluting raw materials (e.g. coal,

gas, iron ores) are essentially consumed as inputs by other industries, "greening" im-

ports will impact production processes of goods and services rather than final demand

(Cahen-Fourot et al., 2020). As the Leontief model is useful to address questions of

changing patterns in final demand, we take an opposite view to focus on the supply

side (i.e. productive sectors).

A relevant approach for our study is the Ghosh (1958) supply-driven model.21 The

output of the Ghosh model is a matrix B = x−1Z of allocation coefficients of the

supply of a sector (i.e. output) to all other sectors. In the matrix B, each element bij

20Here, we believe that consumers will mostly shift their preferences towards energy-efficient
durable goods and electricity produced via low-carbon energy sources, rather than shifting preferences
from one category of goods to another (e.g. from manufactured goods to food products).

21Augustinovics, 1970; Beyers, 1976.
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quantifies the share of sector i’s output consumed by sector j. Then, the Ghosh matrix

G is defined as :

G=(I−B)−1

Therefrom, to capture the supply and demand patterns for imports, we implement the

proxy measurement approach developed by the U.S. National Research Council of the

National Academies (2006). Based on assumption of input similarity,22 we measure

the proportion of imports in the total supply of each sector to estimate the share of

imports that is allocated to each sub-industry. In the next part (i.e. description of

data), we provide a description of this proxy measurement approach. As a result, we

are able to estimate the share of imported products used by each industry in their total

domestic output and the matrix of coefficients B now represent the share of imports

in the total output of a sector used by other sectors. We then transpose G to be able

to read the effects of changes in sectoral primary inputs over the columns (similarly

to the Leontief system) of GT , where T denotes the matrix transposition. Each entry

gi,j of GT shows the change in output x in sector i that would result from a unitary

change of primary inputs used in sector j (through the channel of supplied imports). In

general terms, a drop (or increase) of one monetary unit in primary inputs supporting

production in sector i will generate a drop (increase) in the output of sector j by an

amount equivalent to gi,j.23 In IO analysis, primary inputs cover items appearing on

the rows below the inter-industry matrix (e.g. compensation of employees). As exposed

in Cahen-Fourrot et al. (2020), primary inputs represent the societal effort to produce

the output of a sector, captured by factor payments.

We innovate by combining the obtained Ghosh matrix with sectoral data of imported

emissions e.24 To do so, we define E i = ei/Md
i as the imported emission intensity of

sector i, where Md represents the domestic output of the sector. By multiplying the
22Import similarity : Within the product categories of the input-output table, the mixes of imports

and country-made goods are the same and therefore have the same destinations.
23Note that gi,j includes both direct and indirect effects.
24Cf. part next part for full description of data.
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diagonalised form of the vector of emission intensities by the Ghosh matrix, we find

the matrix S of emission reduction coefficients :

S=ÊGT

Each element sij of matrix S represents the change in imported emissions in sector i

generated by a unitary change of primary inputs used by sector j. For our purpose,

the elements of S capture the amount of imported emissions of a sector i that could

be reduced because of a unitary decrease in primary inputs used in the production of

goods and services of another sector j (e.g. hard coal, iron ores). The column sum of

matrix S gives a measure of the total amount of emission reductions resulting from a

unitary reduction of primary inputs in a sector j. We define this as the total emission

reduction coefficient of a sector :

sj
TOT=iTS

where n is the dimension of matrix S. In our case, we assume the values of sTOTi to be

largely driven by i emission intensity of imports and therefore, by potential amounts

of internal emission reduction from imports.25 On the opposite, to estimate external

emission reduction coefficient (i.e. the impacts of a sector reduction of primary inputs

on imported emissions of all other sectors), we proceed as follows :

sj
EXT = sj

TOT - sj
diag,

where sdiag refers to the j-th element of the diagonal of S. In the end, we define the sum

of the rows of S as the exposure of a sector to imported emission reductions (i.e. the

reduction of imported emissions following a unitary loss in primary inputs used in all

other sectors) :

si
EXP = Si

25Remember that imports might be used as inputs for the considered sector.
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Overall, this methodological approach allows us to investigate both internal and ex-

ternal emission reductions generated by sectors. A sector might have a large emission

reduction coefficients mainly driven by internal reductions - suggesting a poor eco-

nomic connection with other sectors (supply). We capture this feature in Section 5 by

constructing the channels of reduction cascades across economies.

3.3.2 Datasets : Input-Output Tables and Imported Emis-

sions

We apply the methodology described above to five European economies : France, Ger-

many, Italy, Poland as well as the United Kingdom. Although the UK might officially

leave the E.U. at the beginning of 2021 (European Commission, 2020), including the

country in our sample allows us to cover the four top economies of the region (Statista,

2020). Moreover, data available for our study are provided for the year 2015. The latter

prevents us from the Brexit referendum economic impacts (2016).

The main source of IO tables data we employ are extracted from the OECD for the

year 2015.26 More precisely, we use symmetric input-output tables at basic price by

industry.27 Although IO tables exhibit the total amount of imports for each sector

(cf. Figure 3.1, imports per sector), estimating the allocation of such imports to each

sub-sectors remains a hard task. The latter stems from the lack of accuracy regarding

the type of imports in each sectors (i.e. different types of products - exhibiting different

prices - fall in the same category (e.g. Basic metals)). To cope with this issue, we argue

that we can implement a proxy measurement form of imports sub-allocation based on

assumptions regarding the similarity of imported intermediate inputs. Namely, within

product categories of input-output tables, the mixes of imports and country-made

products are the same and therefore have the same destinations. Although acting as a

proxy measurement in which larger amount of aggregated data impact the accuracy,
26OECD Statistics : https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI42018.
27Total economy, product by product in million $.
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such approach has been promoted to address further issues such as estimating imports

embodied in exports (cf. for the U.S., U.S. National Research Council of the National

Academies (2006)). Following the similarity assumption, we measure the proportion

of imports in the total supply of each sector to estimate the share of imports that

is allocated to each sub-industry (for instance, if mining imports 90% of its total

supply, we consider this amount to be uniformly distributed across downstream sectors

(i.e. 90% of the total value supplied by mining to basic metals comes from imports)). By

doing so, we give an approximation of import allocation of a sector across each sub-

sector in the industrial system. Then, Table 3.4 in the Appendix, 1.1 lists NACE level

1 categories,28 while Table 3.1 below offers the detailed disaggregation of industries

we investigate in this paper.29 We deliberately exclude business services (Table 3.4,

from G to S) as it represents a very small share of imported emissions and covered

sectors are less likely to be targeted by a potential EU policy (e.g. administration,

accommodation services).30

Regarding imported emissions, we constructed our dataset from the OECD accounts

on CO2 emissions intensity embodied in gross imports (see Wiebe and Yamano (2016)

for full methodology description).31 More precisely, we matched our constructed IOTs

of imports and the sectoral intensity (CO2 tonnes per million $) of imported input

to calculate the total amount of imported CO2 emissions of each sector. By sum-

ming the amount of imported CO2 tonnes over each column sector, we are able to

provide the total amount of CO2 tonnes for each sector total domestic output. For

instance, if basic metals imports 5 million $ of mining and 2 million $ of coke and

28The Statistical classification of economic activities in the European Community, abbreviated as
NACE, is the classification of economic activities in the European Union (EU).

29For further descriptions, refer to the Appendix.
30Exposed by Cahen-Fourot et al. (2020) : the decarbonisation process might not be particularly

detrimental for services activities (low dirty capital levels, low demand for fossil fuel).
31OECD Statistics - CO2 emissions intensity embodied in gross imports (2015) : "This indica-

tor shows the intensity of CO2 emissions, tonne CO2 per Million USD, in gross imports of im-
porting country/region c with origin in industry i in exporting country/region partner p.". See
https://stats.oecd.org/Index.aspx?DataSetCode=IOGHG2019. Wiebe and Yamano (2016) provide
an in-depth description of methodological process to obtain CO2 emissions intensity embodied in
gross imports.
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refined petroleum products, we proceed as follow : emission intensity for imports of

mining per million $ x Imported inputs + emission intensity for imports of coke and

refined petroleum products per million x Imported inputs. We consider intensity of

CO2 emissions embodied in gross imports as it includes imports subject to be part

of future re-exportation (i.e. products to be transformed as a part of a value chain)

and provide a wider perspective of traded items, especially for exporting countries

(e.g. Germany). Tables 3.5, 3.6 (Appendix, 1.1) and Figure 3.2 below summarize the

distribution of imported emissions across each country.

Table 3.1: Breakdown of examined NACE Sectors.

Sector Code Sector description

A 1 Agriculture, forestry and fishing

B05-06 2 Mining and extraction of energy producing products

B07-08 3 Mining and quarrying of non-energy producing products

B09 4 Mining support service activities

C10-12 5 Food products, beverages and tobacco

C13-15 6 Textiles, wearing apparel, leather and related products

C16 7 Wood and of products of wood and cork (except furniture)

C17-18 8 Paper products and printing

C19 9 Coke and refined petroleum products

C20-21 10 Chemicals and pharmaceutical products

C22 11 Rubber and plastics products

C23 12 Other non-metallic mineral products

C24 13 Manufacture of basic metals

C25 14 Fabricated metal products, except machinery and equipment

C26 15 Computer, electronic and optical products

C27 16 Electrical equipment

C28 17 Machinery and equipment n.e.c.

C29 18 Motor vehicles, trailers and semi-trailers

C30 19 Other transport equipment

C31-33 20 Other manufacturing, repair and installation of machinery and equipment

D-E 21 Electricity, gas, water supply, sewerage, waste and remediation services

F 22 Construction
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Figure 3.2: Distribution of imported CO2 emissions across mining (B05-06), coke/petrol.
products (C19) and basic metals (C24)

Overall, Germany imported nearly 319 Mt of CO2 in 2015, making the country the

larger importer of our sample.32 Main sources of imported emissions came from mining,

coke and refined petroleum products, chemicals and basic metals (the latter is partic-

ularly relevant for Germany as it exhibits the largest share of industrial production

in the EU (e.g. motor vehicles, trailers and semi-trailers, machinery and equipment

(Eurostat, 2019))).

By combining IOTs and imported emissions, we are able to offer results for the indus-

trial and power sectors (i.e. NACE from A to F) in France, Germany, Italy, Poland

and the United Kingdom. In 2015, these countries represented more than 64% of the

European Union gross domestic product (Statista, 2020).

3.4 Cascading Reduction of Imported Emissions

3.4.1 Emission Reduction Coefficients

In this section, we analyse results reported in Table 3.2, namely total emission re-

duction coefficients (1), external reduction coefficients (2) and exposure to reduction

32These data cover the scope of our analysis (e.g. services are not included).
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(3). We focus on the top five sectors for each country. Given the import distribution

in the economy and leaving all else equal, the first two sets of coefficients show the

sectors that are likely to create the largest amounts of CO2 emission reduction from

imports in the economic system following a unitary drop in their primary inputs. The

third set of results exhibit instead the sectors that are likely to be most exposed to

a reduction of imported emissions from a unitary drop distributed equally across all

industries.

Table 3.2: Emission Reduction Coefficients

France Germany Italy Poland U.K.

Total Emission Reduction Coefficients (1)

B05-06 (0.0693) B05-06 (0.0825) B07-08 (0.0424) B05-06 (0.0125) C24 (0.0045)

B09 (0.0037) B07-08 (0.0089) B05-06 (0.0284) C24 (0.0065) C27 (0.0044)

C24 (0.0007) C24 (0.0028) C24 (0.0049) C28 (0.0029) B05-06 (0.0041)

C27 (0.0006) B09 (0.0025) C26 (0.0024) C26 (0.0028) C31-33 (0.0035)

C25 (0.0006) C26 (0.0024) C23 (0.0016) C20-21 (0.0028) C26 (0.0035)

External Emission Reduction Coefficients (2)

B05-06 (0.0689) B05-06 (0.0089) B07-08 (0.0081) B05-06 (0.0012) B05-06 (0.0004)

B09 (0.0034) B07-08 (0.0018) B05-06 (0.0024) C24 (0.0005) B07-08 (0.0004)

B07-09 (0.0002) B09 (0.0008) B09 (0.0008) B07-08 (0.0004) C24 (0.0003)

C24 (0.0001) C24 (0.0001) C24 (0.0002) C20-21 (0.0003) C27 (0.0003)

C27 (0.0001) C19 (0.0001) C20-21 (0.0001) C28 (0.0003) C26 (0.0002)

Exposure to Emission Reduction Coefficients (3)

C19 (0.0420) C19 (0.0053) C24 (0.0068) C24 (0.0009) C31-33 (0.0004)

D-E (0.0222) C24 (0.0026) C19 (0.0010) D-E (0.0006) C24 (0.0004)

C20-21 (0.0027) C20-21 (0.0011) B05-06 (0.0009) C27 (0.0003) C19 (0.0003)

F (0.0026) D-E (0.0009) C20-21 (0.0008) C28 (0.0003) C30 (0.0002)

C24 (0.0011) B05-06 (0.0007) C23 (0.0007) C19 (0.0003) C27 (0.0002)

Regarding total coefficients, sectors of mining (B) are by far the most prevalent, ap-

pearing as the top sectors in France, Germany, Italy and Poland while ranking third for

the United Kingdom. At a disaggregated level, this observation is particularly true for
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carbon intensive products such as coal and natural gas (B05-06) (cf. France, Germany,

Poland and the United Kingdom). This outcome looks intuitive as a large share of

EU imports of mining comes from countries both outside and inside the region, using

dirty technological processes (e.g. for gas, EU partners are mainly Russia and North

African countries such as Algeria (Eurostat, 2019); for hard coal, the main suppliers of

the EU are Russia, Colombia, Australia and Poland (Global coal trade, Dec. 2014)).

Studying the S matrix, one can notice that imported emissions of sectors often sig-

nificantly affected by the reduction of imports originating in the B05-06 industry in-

clude those from electricity and gas industry (D-E), basic metals (C24) and chemicals

and pharmaceutical products (C20-21). These results emphasize the critical presence

of mining as inputs in their production processes (e.g. steel, chemicals). For certain

countries (e.g. France, Germany, Poland and the U.K.), the presence of D-E sector is

likely to be mainly driven by the proportion of energy producing inputs in the energy

mix (e.g. coal/gas) as well as the importance of industrial production.

In addition to B05-06 sector, activities included in category C (manufacturing) such

as C24 (basic metals) and C26 (computer and electronics) exhibit large coefficients

of emission reductions across economic systems. The latter appear to be strongly in-

tertwined with the level of imports intensity of the sectors (Eurostat, 2019), thus

highlighting a significant potential of internal reductions of emissions. Moreover, for

the specific case of basic metals industry (C24), the amount of imported emissions

for the year 2015 is significantly high.33 Combined with the import intensity of the

sector34 (U.S. Department of Commerce, 2019), we particularly expect a large inter-

nal potential for emission reductions in the basic metals industry too. The latter is

confirmed by the following analysis on external emission reductions.

External emission reduction coefficients, which abstract from internal emission reduc-

tions of a sector and thus offer an accurate representation of the effect of a drop in a sec-
33Cf. Figure 3.2, more than 10% of total imported emissions for all countries
34For instance, for steel it reached 20% of the EU consumption in 2015 (U.S. Department of

Commerce, 2019).
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toral imports on the rest of the economy, exhibit a significantly different pattern. The

relevance of import-intensive activities is drastically reduced (i.e. coefficients), even

if mining sectors still exhibit high emission reduction effects in all economies belong-

ing to our sample.35 Although levels of coefficients are not distributed equally, sectors

C20-21 (chemicals and pharmaceutical products), C24 (basic metals) and C27 (elec-

trical equipment) become the most recurrent sectors in our sample. All these sectors

appear high in the ranking of external emission reduction coefficients because they

provide significant amount of inputs to other import intensive sectors. For instance,

both sectors B05-06 and C20-21 provide substantial intermediate goods to coke and

refined petroleum products (C19) while basic metals (C24) supplies fabricated metal

products (C25) as well as machinery and equipment (C28).36 Table 3.3 offers a closer

look at industries exhibiting largest coefficients, reporting the top 5 sectoral values for

the external emission reduction coefficients originating in B.37

Table 3.3: Sectoral Emission reduction coefficients for top sectors (excluded).

France Germany Italy Poland U.K.

B05-06 (0.0817) B05-06 (0.0089) B07-08 (0.0081) B05-06 (0.0012) B05-06 (0.0004)

C19 (0.0414) C19 (0.0052) C24 (0.0060) D-E (0.0004) C19 (0.0037)

D-E (0.0212) C24 (0.0011) C23 (0.0007) C24 (0.0003) C20-21 (0.0000)

C20-21 (0.0025) C20-21 (0.0009) C27 (0.0002) C19 (0.0002) D-E (0.0000)

F (0.0010) D-E (0.0008) C20-21 (0.0002) C20-21 (0.0000) C24 (0.0000)

C24 (0.0009) C23 (0.0001) C28 (0.0002) C23 (0.0000) C23 (0.0000)

As mentioned, C19 (coke and refined petroleum products), C24 (basic metals) as well

as D-F (electricity and gas) all appear as the sectors most exposed to a reduction of

imported emissions through the channel of mining. Again, this matches previous ob-

servations that top industries in external emission reduction coefficients provide inputs

to import intensive sectors.38 Moving back to Table 3.2, several other manufacturing
35Note that mining is now ranking first in the U.K..
36Note that these sectors exhibit quite large amount of imported emissions too.
37We exclude respective country top sector itself, to abstract from internal reductions.
38Although for electricity and gas, this arguments depends on considered energy used (gas, coal).
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sectors appear among the top 5, activities C28 (machinery and equipment) and C26

(computer and electronics) for Poland and the U.K. respectively.

Finally, looking at the values of total sectoral exposure to emission reductions, we can

identify four main sectors at risk, repeatedly appearing among the sectors with the

highest row sums in S : C19 (coke and refined petroleum products); C20-21 (chemicals

and pharmaceutical products); C24 (basic metals) and D-E (electricity and gas). These

sectors, in addition to having high imports intensities, are affected by multiple relevant

inward economic links. To investigate these features, we consider the S matrix as an

adjacency matrix for a directed network (Godsil and Royle, 2013; Halleck-Vega et

al., 2018; Cahen-Fourot et al., 2020), interpreting productive sectors as the vertices of

the network and the si,j elements of S as the weight of the edges going from vertex j to

vertex i. Then, it is possible to represent the network as a circular layout. Figures 3.3

and 3.4 below show the outcome of this procedure for Germany and Poland, as they

exhibit different patterns in terms of sectors’ exposure (e.g. strength of coefficients).

Figure 3.3: Network of imported emission reduction across sectors in Germany. The size of
the node is proportional to the number of weighted incoming links (i.e. demand of a sector
to another sector).
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Figure 3.4: Network of imported emission reduction across sectors in Poland. The size of
the node is proportional to the number of weighted incoming links (i.e. demand of a sector
to another sector).

When studying networks’ characteristics, sectors exhibiting the largest numbers of

outgoing links and so able to create large cascade of emission reduction in the economy

are mining activities (B) in Germany, while chemicals and pharmaceutical, machinery

and equipment as well as basic metals are the leading industries in Poland.

However, if one considers the potential strength (weight) of the emission reduction

links, mining activities and basic metals display the largest impacts (suggesting a

strong effect of a reduction of imports from these sectors on other sectors’ imported

emissions). Interestingly, the most important emission reduction links starts from B05-

06 to electricity and gas industry as well as basic metals in Poland. The former could be

partly explained by the coal and gas dominating roles in the Polish power generation

system (International Energy Agency., Key energy statistics, 2018). For Germany, the

largest reduction connections start from B05-06 toward coke and refined petroleum

products (C19) and basic metals industry (C24).

Overall, our results emphasize different aspects : first, mining (B) is the sector the
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most subject to internal emission reductions, exhibiting strong links to internal related

activities (i.e. B07-08; B09). The sector also deeply affects basic metals and chemicals

and pharmaceutical industries. For this reason, we observe these sectors to be ranked

top in exposure category. The ranking of basic metals and chemicals as top external

emission reduction sectors suggest a strong connection of these sectors to others across

the economy - thus acting as facilitators in the shock propagation process. To better

capture this feature, we map in the next section the cascade of emission reductions

from top external coefficients activities. The latter brings us a clearer perspective on

how cascades propagates in economic systems.

3.5 Channels of Reduction Cascades

After having shown the reduction potential and the associated exposure of the entire

range of productive sectors, we now shift our attention to top external coefficients

sectors (B activities). Our objective is to better investigate the relevance of the po-

tential emission reduction of imports due to a transition away from fossil fuel imports

(e.g. coal and gas), and understand how the process originating in the fossil fuel sector

propagates throughout the economic system. To do so, we start by identifying the

most relevant emission reduction links originating from a unitary loss of primary in-

puts supporting the production of mining (i.e. the largest values appearing on the B

column of matrix S). We retain only the top q percentile of the values, and position

the affected sectors on the first layer of our cascade network. We repeat the procedure

for the sectors in the first layer, identifying the sectors within the top q percentile

of emission reductions originating in the layer. The weight of the resulting network

edges are re-weighted to take into account that the loss in primary inputs in these

sectors will be lower than one and a function of the strength of the upper edges. In

other words, the reduction links tend to be stronger the closer they are to the shock

origin, and get gradually weaker as they cascade downwards. We then repeat the same
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procedure for each layer, excluding the sectors that had already appeared in upper

layers, until no new sectors appear. The results of this procedure are shown for each

country belonging to our sample following a hierarchical layout (cf. Figure 3.6 - 3.10

in the Appendix, for q = 0.15). The numerical weight of the top 10 edges is shown for

reference.39

As expected, the sectors in the first layer of the network overlap with the ones re-

ported in Table 3.2. The strongest emission reduction link is the one flowing to coke

and refined petroleum products (C19) for France, Germany and the United King-

dom. Manufacturing activities, especially basic metals products (C24) and chemicals

and pharmaceutical (C20-21), as well as electricity and gas (D-E), also frequently ap-

pear among the sector most strongly affected by the immediate reduction caused by

B. From the electricity and gas sector (D-E), the reduction cascade often continues

affecting other non-metallic mineral products (C23) and basic metals (C24). Given

the strength of the original reduction from B to D-E, these links are often the most

relevant after the ones affecting sectors in the first layer, and are justified by both

the high imports intensity of the sectors and their large consumption of energy prod-

ucts (e.g. electricity, gas). From the coke and refined petroleum products sector (C19),

the most common cascades proceed through the chemical sector (C20-21), other non-

metallic mineral products sector (C23) and basic metals (C24). The reduction in the

basic metals sector (C24) often propagates through to the fabricated metal products

(C25), machinery and equipment (C28) and the motor vehicles sector (C29), frequently

further affecting other transport equipment (C30) and repair and installation of ma-

chinery and equipment (C31-33).

In addition to the sectors mentioned above, several other sectors frequently appear in

the cascade networks. For instance, textiles industry (C13-15) often appears on the

second or third layer of the network, regularly affected by reduction links originating

39Although most of them exhibit a weight of 0, the impact on downstream sectors remains higher
compared to other upstream industries.

145



CHAPTER 3. TRIGGERING REDUCTION OF IMPORTED EMISSIONS IN
THE E.U.

chemicals (cf. France, Germany and Italy). The sectors in the C22 category (rubber and

plastics) also often appear, largely affected by C20-21 (chemicals) and sometimes by

D-E (electricity and gas). Regarding the primary sector, agriculture (A) is not present

in the cascade networks (presumably due to low imported emission levels and small

share of imports in the total supply of the sector), while food and beverages industry

(C10-12) as well as paper and printing services (C17-18) never appear. These sectors

mainly supply services and final demand side of the economy, thus not appearing in

our framework.

Studying the structure of the networks in conjunction with the weights of its edges, we

can identify different relevant cascades across countries. Both in France and Germany,

it is possible to observe a strong reduction cascades passing through coke and refined

petroleum products (C19) and basic metals (C24), and then affecting a significant

number of manufacturing sectors (fabricated metal products, machinery and equip-

ment, electrical equipment, and other non-metallic mineral products). In other coun-

tries such as Italy and the U.K., the spreading of the aforementioned cascades across

sectors is less wide - following the same trend but with few sectors affected. Italy ex-

hibits a strong link from the textile sector to repair and installation of machinery and

equipment, emphasizing the role of the textile industry in this economic system (Euro-

stat, 2016). Moreover, Italy and Poland display several fairly long reduction cascades,

with the most prominent one passing through other non-metallic mineral products

(C23), chemicals (C20-21), textiles (C13-15) and, as mentioned, repair of machinery

(C31-33) in Italy. The cascade network of the United Kingdom is peculiar, in that it

has two particularly deep cascades originating in chemicals (C20-21), with the first one

involving several manufacturing sectors and basic metals, and the second one involving

plastics and rubber (C22) as well as motor vehicles, trailers and semi-trailers.

More generally, the main structure of the cascades we identify spreads from mining

(e.g. coal, gas, iron ores) to manufacturing sectors specialized in material production
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(steel, iron, chemicals), then affecting industrial sub-sectors supplying final demand

(e.g. vehicles motor, textile, machinery and equipment). In addition, the shape of the

cascade differs across economies, suggesting different exposure to the implementation

of economic instrument aiming at limiting imported emissions. As exposed by the

E.U., imports most likely to face carbon price are those associated with iron, steel and

aluminium (C24). In the last section, we focus on basic metals imports to evaluate the

impacts of a $25 carbon price on sectors total cost of imported inputs. The latter brings

additional insights to E.U. policy-makers to assess the potential economic impact of

such a tool.

3.6 Taxing Basic metals Imports : A simulation of

short-run impacts

In the previous sections, we identified the key role of the basic metals industry in the

propagation of emission reductions in economies (i.e. starting from mining to down-

stream sectors supplying final demand, through the channel of basic metals). This

sector encompasses different products (e.g. iron and steel) exhibiting carbon intensive

production processes (Financial Time, January 2019). To give more perspective to our

work, we first propose a short description of this industry before exposing our findings

regarding the implementation of a carbon content tax mechanism.

3.6.1 Perspectives on the Basic metals industry

First of all, the basic metals sector is the first consumer of worldwide produced energy

in the world, cumulating at 55% of the total delivered energy in 2018 (US Energy In-

formation Administration, February 2019). At the industrial level, it represented 12%

of global energy consumption. As exposed in the description of NACE sectors, this sec-

tor encompasses a wide range of products from iron and steel to aluminium and other

metal goods, mainly consumed as intermediate inputs in production processes. To be
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produced, such products require large amounts of energy inputs, notably because of

the heating process (raw ores and metals). In addition, mining inputs such as met-

allurgical coal are used for smelting iron. Another critical dimension of the sector is

its furniture for world-wide energy networks. For instance, equipment, pipelines and

wires are used by several industries such as mining, refining petroleum products and

power generation sectors to produce and transport energy (e.g. natural gas).

As this industry is highly energy intensive, it displays a quite high energy intensity per

output unit compared to other industrial sectors. From a climate policy perspective,

such intensity is heterogeneous when looking at different geographic production ar-

eas. In 2015, before Australia and New Zealand, Russia was the most energy-intensive

country for producing basic metals goods (68,000 British thermal units (Btu) per

dollar). The Russian basic metals sector production was dominated by iron and steel

manufacturing while basic metals production in Australia and New Zealand was mainly

about by aluminum manufacturing. The manufacturing of these products is the most

energy intensive in the all basic metal industry.40 In comparison, the energy inten-

sity of the U.S. basic metal industry is much lower, at 8,000 Btu/dollar, because the

industry is more diverse (production of metals) and stages such as recycling along

the production path limit additional amounts of emissions (US Energy Information

Administration, International Energy Outlook 2019).

From an environmental perspective, around 21% of global greenhouse gas (GHG) emis-

sions are generated by industrial sectors, of which steel, iron and aluminum industries

account for around 7-9% (International Energy Agency, 2018; Lehne and Preston, 2018,

Gautam et al., 2018). In a business as usual scenario (in which no more environmental

policies are implemented), we expect such sectors production to double by 2060, lead-

ing to large environmental impacts (OECD, 2019). Although the COVID-19 pandemic

might affect the dynamics of the sector, global steel demand is likely to soar by 15-40%

40Note that production of basic metals in these country is mainly due to the fact that ores resources
required to produce steel and iron are available in the ground.
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by 2050 while iron demand is also predicted to increase in the coming years (Accenture

Strategy, 2017). In the context of the European Green Deal and the recovery package

Next Generation EU, the European Commission has set a target of reducing carbon

emissions of at least 40 percent by 2030. The success of this objective is likely to de-

pend on a well-designed carbon pricing policy at the regional scale. However, higher

carbon prices can lead to carbon leakage outside the E.U., thus undermining climate

efforts. To address this perceived threat, the European Commission is currently con-

sidering the implementation of a carbon border adjustment mechanism “for selected

sectors, to reduce the risk of carbon leakage”. Such an instrument is likely to first target

steel, iron and aluminium imported products as these products are energy intensive

and exposed to potential carbon leakage (S&P Global Platts, July 2020).

3.6.2 Pricing carbon content of imported basic metals

In the wake of the E.U. willingness to target such imported products to limit carbon

leakage, this section provides a short analysis of the impacts of a $25 carbon price on

basic metals imports and the associated economic effects on the total cost of imports

used as inputs in each sector. We set this price amount to be aligned with the 2019 EU-

ETS price which was oscillating around $25 (International Carbon Action Partnership,

2020).41 As we are not including any elasticity dimension (i.e. elasticity of demand for

other energy intensive goods), the following results should be perceived as potential

short-term sectoral impacts of pricing imported emissions from basic metals.

Applying the import price increase resulting from such a tax simulates how the effect

of a uniform carbon price would be born across industries in terms of imported input

price increases. As in the Stern Review (2006), the implicit assumption of using a

fixed Input-Output methodology for our purpose is that sectors pass on the entire cost

increase associated with the carbon price (i.e. their profit margins do not change and

41Moreover, the European Commission suggested that carbon price on imports should be aligned
with ongoing EU-ETS carbon permit price (S&P Global Platts, July 2020).
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they do not change their behaviour to optimise their input costs in response to changes

in relative prices). It is also assumed that secondary energy producers and all other

industries that use any imported basic metals inputs pass on the entire cost increase

that they bear to final goods prices. In our case, we only focus on the impact on the

total cost of imported inputs. Again, this trace-through process assumes no behaviour

change or input substitution. This is a pure arithmetical analysis for a single year and

the analytical framework is therefore static (Grover et al., 2016).

Therefrom, we use IOTs constructed in Section 3 and we only consider the basic metals

CO2 intensities of imports. The latter allows us to capture the carbon content of basic

metals imports.42 By applying the methodology exposed by Grover et al. (2016), we

are able to evaluate the economic impact of a $25 carbon price on the total cost of

imported inputs across the economy.

In the short run, the introduction of a uniform $25 per tonne carbon price results in

a whole-economy imports cost increase between 0.1% and 0.24%.43 This results looks

intuitive as we only focus on imported emissions from a specific sector of the econ-

omy. However, several industries bear different proportions of this increase, with large

disparities across countries. The bar chart below shows the sectors the most affected

by a $25 per tonne carbon price. Results suggest a common pattern across countries

: industries of basic metals, fabricated metal products, electrical equipment and ma-

chinery and equipment are those the most exposed to the implementation of such an

economic instrument. Interestingly, these activities are the same (that were shown

above) to depend heavily on basic metals imported inputs. Again, this observation

confirms the role of basic metals as a channel for the emission reduction propagation

42The multiplier is calculated in two stages. First the new product price reflecting a carbon price
is calculated as: Input with carbon price = initial unit price + (carbon content (ton) per million
$ * cost per ton of carbon). Numerically for basic metals in Germany : 1 million $ (unit) + (1156
T/CO2 per million $ * 25 $) = 1 028 9000. We then multiply the value by the amount of million $
imported. Second, this is expressed as per cent change from the initial total cost of imported input
(sum of column for each sector intermediate imported inputs and then we calculate the variation
between new and initial total cost of imported inputs (see Grover et al., 2016)).

43France : 0.1%; Germany : 0.1%; Italy : 0.2%; Poland : 0.1%; U.K. : 0.1%.
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process toward other manufacturing sectors. More precisely, sectors of basic metals

and fabricated metal products are experiencing the largest increase with a variation

of more than 1% of imported inputs price in Italy and Poland, while the variation

is capped below in other countries. From a cross-economy perspective, the latter sug-

gests heterogeneous sectoral exposures to a uniform E.U. tax targeting imports, largely

driven by unequal emission intensities (and/or different imported products belonging

to Basic Metals category). Finally, although reaching low levels, the appearance of the

construction sector (F) among the most exposed sectors emphasizes the role of basic

metals as input provider to the industry.

Figure 3.5: % increase cost of sectoral domestic imported inputs, top sectors.
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Overall, this analysis sheds light on two main aspects. First, it confirms our previous

findings on the strong economic connections between the industry of basic metals and

other manufacturing activities such as fabricated metal products (C25), machinery

and equipment (C28) and electrical equipment (C27). Second, taxing imported emis-

sion from basic metals would affect, in the short-run, identical economic sectors across
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E.U. countries (e.g. France, Germany, Italy) but with an unequal strength. Namely, in

Poland and Italy, sectors mentioned above are more exposed in terms of variation of

imported input cost compared to other economies in our sample. These results suggest

that the implementation of a uniform tax across E.U. countries would generate differ-

ent sectoral impacts, depending on the economy over which it takes place. The latter

gives insights to understand the position of E.U. countries with respect to the imple-

mentation of such policies (Financial Times, June 2019). From a policy perspective,

we observe that pricing basic metals imported emissions has a low impact on the total

imported input cost of sectors (a maximum of 0.25% increase in total imported input

cost for the fabricated metal products cost, cf. bar chart). Although such sectors are

subject to heavy international competitions, our findings suggest that the potential

economic impact remains limited.

3.7 Conclusion

The presentation of the EU Green Deal project (2019) has brought back the issue

of imported emissions in the E.U. political debate. While an expanding literature has

been investigating both the economic repercussions of instruments targeting such emis-

sions and possible legislative designs, less attention has been devoted to understanding

the potential reduction of imported emissions, and how this would cascade within a

network of economic sectors’ interdependencies. This article contributes to filling this

gap by providing an original measure to quantify the amount of emission reductions

of a sector that could be reduced because of a reduction of primary inputs flowing into

another sector.

Analysing the data available for five European countries, we have shown the sectors

with the highest “emission reduction coefficients” to be linked to mining activities (B),

basic metals (C24) and computer and electronics (C26). This result is mainly driven by

the high imported emission intensity of the sectors and the consequent significance of
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sectoral internal emission reductions. When abstracting from internal effects with the

aim of identifying the sectors that are likely to have the strongest reduction impacts on

the rest of the economic system, we have found the mining and quarrying sector (B)

to be particularly relevant, together with basic metals (C24) and chemicals products

(C20-21) (for some countries (i.e. Italy and Poland)). These sectors are key in providing

essential inputs to other sectors with high imported emission intensity. Finally, we have

shown how the sectors most exposed to the risk of emission reductions include coke

and refined petroleum products (C19); Basic Metals (C24); and electricity, gas, steam

and air conditioning (D-E).

When focusing more specifically on the mining and quarrying sector in the attempt

of studying the cascading process of imported emission contraction, we have shown

how moving away from fossil fuel would have a particularly strong effect on sectors

linked to coke and refined petroleum products (C19), basic metals (C24) and electricity

and gas (D-E). We have identified regular patterns in cascade structures, such as the

links from electricity and gas (D-E) to other non-metallic mineral products (C23) and

basic metals (C24); from coke and refined petroleum products (19) to chemicals and

pharmaceutical products (C20-21) and then to rubber and plastics products (C22);

from the basic metals sector (C24) to fabricated metal products (C25), machinery and

equipment (C28) and then to other transport equipment (C30). Other sectors often

present in the cascading networks include : textiles (C13-15), electrical equipment

(C27), motor vehicles and trailers and semi-trailers (C29).

Finally, we have provided an estimate of the overall and sectoral economic impacts of

a 25$ carbon price on basic metals imported emissions across sectors. The figure is in

the range of 0.10-0.24% increase of the total imported inputs for our sample of coun-

tries. In absolute terms, Italy and Poland have the largest total increase, respectively

0.19% and 0.24%, a result driven by the emission intensities of basic metals imports.

These countries are followed by Germany (0.13%), France (0.10%) and the United

Kingdom (0.10%). From a sectoral perspective, top exposed industries are identical
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across countries, with basic metals (C24) and fabricated metal products (C25) tak-

ing the first ranks. However, the strength of the sectoral exposure is unequal across

economies (e.g. fabriacted metal activity is more affected in Poland compare to those

in France or the U.K). On the short run, the latter suggests different cost on economies

following the implementation of such a uniform tax.

The results of our analysis suggest that the reduction of imported emissions triggered

by an abrupt green transition might be substantial and systemic. While our method-

ological framework is not able to provide insights regarding the transition dynamics,

the large proportion of imports and associated emissions directly or indirectly used as

inputs across sectors indicate that cascading emission reductions is a likely scenario

to consider. This offers valuable insights for two main areas of work. First, current

research studying the implications of limiting imported emissions using trajectories

through numerical simulations might be underestimating the global repercussion of

economic effects from a transition away from mining. Second, the burgeoning liter-

ature on the macro-financial repercussions of the decarbonisation process might im-

prove its analytical power by considering the effects of activity contraction in a wider

range of productive sectors than just fossil extraction and power generation. Enhancing

these strands of research with the inclusion of imported inputs and capital utilisation

considerations will support policy-makers in the management of a rapid and smooth

transition to a low-carbon economic system.
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Appendices of Chapter 3

Tables

Table 3.4: NACE Sectors
Sector code Sector description

A Agriculture, forestry and fishing

B Mining and Quarrying

C Manufacturing

D Electricity, gas, steam and air conditioning

E Water supply; sewerage; waste management and remediation services

F Constructions and construction works

G Wholesale retail trade; repair of motor vehicles and motorcycles

H Transportation and storage

I Accommodation and food services activities

J Information and communication

K Financial and insurance activities

L Real estate activities

M Professional, scientific and technical activities

N Administrative and support service activities

O Public administration and defence: compulsory social security

P Education

Q Human health and social work activities

R Arts, entertainment and recreation

S Other services activities
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Table 3.5: CO2 emissions (Mt) in gross imports by sectors (A-F), year 2015.

Sector France Germany Italy Poland U.K.

Agriculture, forestry and fishing 3,4 9,1 3,9 1,2 3,9

Mining and extraction of energy producing

products

19,5 28,7 30,9 6,1 9,4

Mining and quarrying of non-energy produc-

ing products

1,1 4,1 1,5 0,8 1,5

Mining support service activities 0,3 0,1 0 0 0,1

Food products, beverages and tobacco 7,8 12,2 6 2,2 9,8

Textiles, wearing apparel, leather and related

products

9,6 13,4 9 3,2 16,6

Wood and of products of wood and cork (ex-

cept furniture)

1,1 2,1 1 0,4 1,8

Paper products and printing 2,9 4,9 2,3 1,5 3,4

Coke and refined petroleum products 14,1 29,1 8,5 2,6 15,3

Chemicals and pharmaceutical products 19,8 28,8 15,4 7,6 19,5

Rubber and plastics products 8,7 11,8 5,8 3,7 8,8

Other non-metallic mineral products 7 10,3 4,3 2,5 7,9

Manufacture of basic metals 18,6 44,2 39,6 12 16,9

Fabricated metal products, except machinery

and equipment

7 12,2 4,7 3,2 7,9

Computer, electronic and optical products 12,6 22,7 6,1 5,4 14,5

Electrical equipment 12,8 18,9 8,3 5,4 12,8

Machinery and equipment n.e.c. 12,1 18,9 9,6 5,4 11,2

Motor vehicles, trailers and semi-trailers 11,2 20,5 8,5 3,8 15,2

Other transport equipment 10,8 5,5 3,6 2,7 20

Other manufacturing; repair and installation

of machinery and equipment

11,6 13,3 5,5 2,1 18,6

Electricity, gas, water supply, sewerage, waste

and remediation services

3,3 7,7 2,4 6,1 2,6

Construction 0,3 0,4 0,1 0,1 0,2
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Table 3.6: CO2 emissions in gross imports, year 2015.

Country CO2 emissions (Mt)

France 195 600

Germany 318 900

Italy 177 000

Poland 78 000

United Kingdom 217 900
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Cascades Propagation

Figure 3.6: Hierarchical network of imported emission reduction cascades across economic
sectors in France.

Figure 3.7: Hierarchical network of imported emission reduction cascades across economic
sectors in Germany.
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Figure 3.8: Hierarchical network of imported emission reduction cascades across economic
sectors in Italy.

Figure 3.9: Hierarchical network of imported emission reduction cascades across economic
sectors in Poland.
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Figure 3.10: Hierarchical network of imported emission reduction cascades across economic
sectors in the United Kingdom.
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Additional Informations

A - Agriculture, forestry and fishing : Non-perennial crops; Perennial crops; planting

material: live plants, bulbs, tubers and roots, cuttings and slips; mushroom spawn;

live animals and animal products; agricultural and animal husbandry services (except

veterinary services); hunting and trapping and related services; forest trees and

nursery services; wood in the rough; wild growing non-wood products; support

services to forestry; fish and other fishing products; aquaculture products; support

services to fishing.

B - Mining and extraction of energy producing products : hard coal; lignite; crude

petroleum; natural gas, liquefied or in gaseous state; iron ores; non-ferrous metal

ores; stone, sand and clay; mining and quarrying products n.e.c.; support services to

petroleum and natural gas extraction; support services to other mining and quarrying.

C10-12 - Food products, beverages and tobacco : Preserved meat and meat products

Processed and preserved fish, crustaceans and molluscs; processed and preserved

fruit and vegetables; vegetable and animal oils and fats; dairy products; grain mill

products, starches and starch products; bakery and farinaceous products; other food

products; prepared animal feeds; beverages; tobacco products.

C13-15 - Textiles, wearing apparel, leather and related products : Textile yarn and

thread; woven textiles; textile finishing services; other textiles; wearing apparel,

except fur apparel; articles of fur; knitted and crocheted apparel; tanned and dressed

leather; luggage, handbags, saddlery and harness; dressed and dyed fur; footwear.

C16 - Wood and of products of wood and cork (except furniture) : Wood, sawn and
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planed Products of wood, cork, straw and plaiting materials

C17-18 - Paper products and printing : Pulp, paper and paperboard; articles of

paper and paperboard; printing services and services related to printing; reproduction

services of recorded media.

C19 - Coke and refined petroleum products : Coke oven products; refined petroleum

products.

C20-21 - Chemicals and pharmaceutical products : Basic chemicals, fertilisers and

nitrogen compounds, plastics and synthetic rubber in primary forms; pesticides and

other agrochemical products; paints, varnishes and similar coatings, printing ink and

mastics; soap and detergents, cleaning and polishing preparations, perfumes and

toilet preparations; other chemical products; man-made fibres; basic pharmaceutical

products; pharmaceutical preparations.

C22 - Rubber and plastics products : Rubber products; Plastic products.

C23 - Other non-metallic mineral products : Glass and glass products; refractory

products; clay building materials; other porcelain and ceramic products; cement, lime

and plaster; articles of concrete, cement and plaster Cut, shaped and finished stone;

other non-metallic mineral products.

C24 - Manufacture of basic metals : Basic iron and steel and ferro-alloys; tubes,

pipes, hollow profiles and related fittings, of steel; other products of the first pro-

cessing of steel; basic precious and other non-ferrous metals; casting services of metals.

C25 - Fabricated metal products, except machinery and equipment : Structural metal
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products; tanks, reservoirs and containers of metal; steam generators, except central

heating hot water boilers; weapons and ammunition; forging, pressing, stamping and

roll-forming services of metal; powder metallurgy; treatment and coating services

of metals; machining; cutlery, tools and general hardware; other fabricated metal

products.

C26 - Computer, electronic and optical products : Electronic components and

boards; computers and peripheral equipment; communication equipment; consumer

electronics; measuring, testing and navigating equipment; watches and clocks;

irradiation, electromedical and electrotherapeutic equipment; optical instruments and

photographic equipment; magnetic and optical media.

C27 - Electrical equipment : Electric motors, generators, transformers and electricity

distribution and control apparatus; batteries and accumulators; wiring and wiring

devices; electric lighting equipment; domestic appliances; other electrical equipment.

C28 - Machinery and equipment n.e.c. : General-purpose machinery; other general-

purpose machinery; agricultural and forestry machinery; metal forming machinery

and machine tools Other special-purpose machinery.

C29 - Motor vehicles, trailers and semi-trailers : Motor vehicles; bodies (coachwork)

for motor vehicles; trailers and semi-trailers; parts and accessories for motor vehicles.

C30 - Other transport equipment : Ships and boats; railway locomotives and rolling

stock; air and spacecraft and related machinery; military fighting vehicles; transport

equipment n.e.c.

C31-33 - Other manufacturing : Furniture; jewellery, bijouterie and related articles;
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musical instruments; sports goods; games and toys; medical and dental instruments

and supplies; manufactured goods n.e.c.; repair services of fabricated metal products,

machinery and equipment; installation services of industrial machinery and equipment.

D-E - Electricity, gas, water supply, sewerage, waste and remediation services :

Electricity, transmission and distribution services; manufactured gas; distribution

services of gaseous fuels through mains; steam and air conditioning supply services;

natural water; water treatment and supply services; sewerage services; sewage sludge;

waste; waste collection services, waste treatment and disposal services; materials

recovery services; secondary raw materials; remediation services and other waste

management services.

F - Construction : Buildings and building construction works, roads and railways;

construction works for roads and railways; constructions and construction works

for utility projects; constructions and construction works for other civil engineering

projects; demolition and site preparation works; electrical, plumbing and other

construction installation works; building completion and finishing works; other

specialised construction works.

164



* * *





Chapter 4

COVID-19 Recovery Packages and

Industrial Emission Rebounds :

Mind the Gap

* * *

Meeting the net-zero climate target by 2050 has become a priority for the European

Commission. The success of such objective largely depends on the design of COVID-

19 economic recovery plans. In this paper we identify industrial sectors that, if gov-

ernments are willing to decouple economic growth and emissions, should not benefit

from recovery stimuli. Our results suggest that phasing-out the mining sector, a large

provider of inputs to heavy polluting activities, would have large impacts on emissions

once activity recovers. We also identify coke and refined petroleum products, chemical

products and electricity and gas activities as critical downstream industries. Greening

their output would limit GHG rebound effects in the coming months.

* * *

This chapter is an adaptation of a joint work with Pr. Anna Creti.
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4.1 Introduction

Since December 2019, the Covid-19 coronavirus has spread quickly from Asia to Eu-

rope and America, causing large-scale loss of life and severe human suffering (Financial

Times, April 2020). The pandemic represents the third and greatest economic, finan-

cial and social shock of the 21st century - after 9/11 and the global financial crisis

of 2008 (OECD, 2020). From an environmental perspective, this unexpected episode

could mark a turning point in the fight against global warming. This year, global

greenhouse gas (GHG) emissions will fall by around 7% (Liu et al., 2020), representing

the annual rate at which our economies should decarbonize to reach carbon neutral-

ity in 2050.1 Instead, emissions will rebound once mobility restrictions are lifted and

economies recover (Le Quere, 2020), unless governments take actions.

The expected decline in 2020 GHG emissions comes as a consequence of national

policies to prevent the spread of the virus (Helm, 2020).2 Indeed, G20 nations have

implemented restrictions (e.g. social distancing, mobility) slowing down economic sys-

tems (Thunström et al., 2020). On the supply side, around 81% of the global workforce

has been hit by either full or partial lockdown measures, causing unprecedented job

losses and furloughs (International Labour Office, 2020). On the demand side, con-

sumer spending has fallen as it was no longer possible to travel, including to shop

for discretionary items, go to restaurants, or for experience-based activities (Center

for Economic Policy Research, 2020). Overall, the crisis has impacted economic ac-

tivity from both demand and supply sides (World Economic Forum, 2020), calling

1This objective ensures a temperature rise below 1.5°C degree by 2100 (UNEP, 2019).
2Suggesting we have not decoupled GDP growth and carbon emissions (Helm, 2020).
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governments for unprecedented support policies.

Depending on objectives and timing, government support programs are either part of

short-term rescue plans or long-term recovery plans. With respect to the former, nu-

merous EU governments have already exposed and implemented fiscal rescue policies

(International Monetary Fund, 2020). These emergency measures come as a short run

safety net to protect business balance sheets, reduce bankruptcies and address im-

mediate human welfare concerns during lockdown periods.3 Some rescue policies also

cover emissions-intensive companies facing bankruptcy or significantly reduced rev-

enue. For instance, this has been the case for airlines companies in France, Australia

and the United States.4 To ensure the success of the Paris Agreement (2015), govern-

ment support plans (e.g. bailouts) should be conditional on these industries developing

a measurable plan of action to transition towards a net-zero emissions future.5 Indeed,

the COVID-19 crisis will reduce global GHG emissions in 2020 but the long-term im-

pact of the pandemic on emissions will be driven by forthcoming investment choices

(both public and private). At the European scale, imminent recovery packages soon to

be delivered will act as stimuli to restore economic growth in the region (Hepburn et

al., 2020). The design of such packages (e.g. sectoral economic incentives, public invest-

ments) will reshape the economy on the long-run, acting as a potential game-changer

to reach a post-carbon Union by 2050 (McKinsey & Company, 2020).

A key objective of any recovery package is to stabilise expectations, restore confi-

dence and to channel surplus desired saving into productive investment (Hepburn et

al., 2020). While most European governments have implemented rescue packages (e.g.

France, Germany, Italy, Spain and the United Kingdom), the European Commission

announced an additional budget amount of e750 billion to support most affected EU
3In April 2020, all G20 nations (including most EU member states), had signed such fiscal mea-

sures into law (see International Monetary Fund, 2020).
4Precisely, France rescue plan for Air France reached e7 billion (Les Echos, April 2020); Australian

government announced AU$715mn of unconditional Australian airline relief (through the Coronavirus
Economic Response Package (Commonwealth of Australia, 2020), and US$32bn of bailouts for US
airlines (see Courtney (2020) for a review of CARES Act).

5Which, for instance, has not been the case for Air France (Le Monde, May 2020).
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economies, representing more than e1100 billion global budget for the period 2021-

2027 (European Commission, 2020).6 If this amount is necessary for EU economies

to recover (e.g. France, Italy, Spain), an efficient long-run recovery plan should target

sectors able to rapidly create jobs and boost production across other industries in the

economy, thus stimulating GDP growth (Allan et al., 2020). Among other factors,7

those targeted sectors should display high short-run/long-run economic multipliers,

or return for every dollar of expenditure (Bussing-Burks, 2011; Ramey, 2019). Such

metrics accounts not only for the effects of the spending (government expenses, tax

reductions) in the specific sector (e.g. impact on income, output), but also for the

subsequent rounds of spending generated by the initial expenditures in other part of

the economy.8 Back during and following the 2008 global financial crisis, expansion-

ary policies, focusing on investments through the lens of economic coefficients, were

more effective at restarting economic activity than austerity-based policies (European

Central Bank, 2015; Hepburn et al., 2020). Twelve years later, the COVID-19 crisis

pushes again policy-makers to decide which key sectors to focus investments on, reflect-

ing changing technologies and the need to stimulate growth and secure job creations

for the coming years (DG Tresor, 2020).

From a climate policy approach, the sole consideration of economic multipliers to

guide forthcoming economic stimuli does not guarantee a transition toward a post-

carbon society by 2050 (Hammer and Hallegatte, 2020). Indeed, recovery plans could

be either "brown" or "green" depending on their ability to decouple emissions from

economic activity (IFRI, 2020). Sectors exhibiting high economic multipliers could be

6Although governments will have flexibility regarding the allocation of such funds, the main
priority is to reach the EU’s objectives of climate neutrality and digital transformation, to offer
social and employment support as well as to reinforce the EU’s role as a global player (European
Parliament, 2020).

7Several other factors are relevant to the design of economic recovery packages : contributions
to the productive asset base and national wealth, speed of implementation, affordability, simplicity,
impact on inequality, and various political considerations.

8In detail, economic multiplier measures the impact on activity of each additional currency unit
of spending/tax cut funded by borrowing. A multiplier of 1 means $1 extra spending boosts final
production and income by £1. A multiplier of 3 implies $1 spending boosts final income and output
by £3.
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those acting as big emitters suggesting a tension between short run economic growth

and climate targets (see European Commission, 2007). Then, to decouple GDP growth

and emissions, EU governments could be interested in understanding which industrial

sectors are driving GHG emissions9 in the economy. Following the ongoing crisis, the

willingness to design green recovery plans could lead to not supporting such indus-

tries. By doing so, large amounts of GHG emissions could be avoided once economy

recovers, putting the entire EU industrial system on track with respect to the Paris

Agreement objectives. Moreover, some industries might not be greenhouse gas (GHG)

intensive but might decrease global GHG emissions by limiting provision of inputs to

downstream dirty sectors. When designing sectoral support policies, government will

have to be aware of such intra-sector dynamics to limit emissions. This paper aims at

providing new insights on these issues.

Precisely, we consider the economy as a system of industries interacting with each

others (OECD, 2016) and capture the dynamics of supply/demand between industrial

sectors. Indeed, output of an industry might be used directly as input or as output

supplied to other sectors (e.g. output of the mining sector are consumed as inputs

by that industry or supplied as inputs to other sectors). The decrease in production

from the mining sector would decrease the sector output and impact the demand-

side sectors. Then, following the chain of intermediate demand, industries directly

connected such as basic metals would in turn reduce their output. Such a cascading

mechanism of output contraction would decrease associated GHG emissions (i.e. from

production).10 While some studies have explored phenomenon of economic cascades

(e.g. information in financial markets (Romano, 2007), the diffusion of risks in the

banking system (Battiston et al., 2017) or the stranding of dirty assets in a low carbon

economy (Cahen-Fourot et al., 2020)), the topic of industrial emissions has never been

investigated from a systemic perspective.

9Gases that trap heat in the atmosphere (e.g. carbon dioxide, methane), contributing to global
warming. See full description in the Section 2.

10In the following, we name "cascading process" such a dynamics of emission contraction.
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Overall, we propose a novel analysis of the process through which a contraction of

the gross output of a specific sector would decrease the use of inputs in other sectors

leading to a drop in associated emissions (i.e. forward oriented sectors). The supply

of essential inputs to the rest of the economy is a matter of addressing primarily

forward impact effects rather than backward effects (i.e. change in inputs affecting

upstream sectors). In the context of post COVID-19 recovery plans, this approach is

particularly relevant as supply chains have been severely hit by government restrictions

and supply dynamics will be critical to avoid inflation in the post-COVID opening time-

window (BNP Paribas - Economic Analysis, 2020). While governments will implement

economic stimuli to secure high levels of supply, our paper identifies the sectors that

should not benefit from recovery plans11 and quantifies the impacts of such deliberate

decision on emissions (i.e. avoided emissions). Providing such new results would allow

policy-makers to account for these potential "avoided" emissions when designing green

economic stimulus. We use data available for five European countries affected by the

COVID-19 pandemic (i.e. France, Germany, Italy, Poland and Spain) to illustrate our

model and achieve two main objectives.

First, we use Input-Output (IO) concepts to derive national economic matrices of emis-

sion coefficients, including the entire range of the industrial productive sectors. These

coefficients capture the amount of emissions that would be reduced in a sector due

to a unitary decrease in primary inputs12 utilised by another (or the same) sector,

considering both direct and indirect effects. For instance, these matrices are able to

provide GHG emission reductions in the textile sector due to a drop in the plastics

industry, both directly and through its intermediate effects on, for instance, chemi-

cals. By doing so, we identify industries most likely to trigger large emission reduction

cascades and those most exposed to a such a dynamics (i.e. increase in internal GHG

11Such sectors drive GHG emissions in the industrial system. Without contributions in terms of
climate strategy, government willing to achieve climate goals should not target them.

12We define “primary inputs” as the main factors used in production (labour, capital, land, and
others). IO tables report their factor costs (e.g. compensation of employees, consumption of fixed
capital or net operating surplus) (Miller and Blair, 2009).
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emissions through the channel of another sector). The novelty of the present analysis

is to maintain a systemic perspective of the national economy, and investigate the

transmission channels of GHG emission reductions across industries (i.e. emission cas-

cades). By providing a quantitative estimation of such cross-sectoral GHG emission

interactions, our paper brings relevant insights to policy-makers too.

Whatever the economic system, we highlight how mining,13 coke and refined petroleum

products14 and electricity and gas15 are among the sectors with the largest emission

coefficients. A fall in their activity (i.e. gross output) creates the largest reduction

amount of emissions in the system. Leaving all else equal, green recovery packages

should ensure their activity to not expand, and even further to contract.16 On the op-

posite, coke and refined petroleum, basic metals17 and electricity and gas industries are

the most exposed to such dynamics of emission contraction. All these activities have

various impacts in terms of GHG emission reductions (across economies), suggesting

different national strategies regarding implementation of recovery plans.

Second, we focus our study on the mining industry in order to investigate the most

relevant channels of sectoral cascades of GHG emissions that could be avoided in the

future. By doing so, we are able to evaluate the role of energy intensive sectors such

as coke and refined petroleum products, basic metals and electricity and gas in the

cascading process. While countries exhibit different cascading dynamics depending on

the peculiarities of their industrial structure, certain regular patterns emerge. On one

hand basic metals, the manufacture of coke and refined petroleum products and elec-

tricity and gas are the activities the most directly exposed to a drop in GHG emissions

13The sector encompasses coal and lignite, crude petroleum and natural gas, metal ores, other
mining and quarrying products and mining support services.

14Includes coke oven products and refined petroleum products.
15The sector mainly covers electricity, transmission and distribution services, manufactured gas,

distribution services of gaseous fuels through mains, steam and air conditioning supply services,
natural water; water treatment and supply services.

16If one assumes no shift toward cleaner production in those industries.
17The sector covers basic iron and steel and ferro-alloys, tubes, pipes, hollow profiles and related

fittings, of steel, other products of the first processing of steel, basic precious and other non-ferrous
metals.
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through a contraction of production in the mining sector. Such results suggest strong

economic connections between the mining industry and these sectors where the former

supplies the latter.18 On the other hand, irrespective to their rankings in the process,

chemicals and pharmaceutical products19 as well as manufacture of other non-metallic

mineral products20 are highly present in the third layer of the GHG cascading pro-

cess.21 The latter emphasizes the existence of a significant connection between those

activities and aforementioned energy-intensive sectors (e.g. chemicals affected by up-

stream coke and refined petroleum products activity). In addition, agriculture22 and

construction23 are often impacted by mining decreasing activity through the channel

of basic metals. From a policy perspective, these outcomes suggest that moving away

from mining would have impacts not only on emissions (Fugiel et al., 2017), but would

also generate economic effects on other sectors (i.e. from mining to downstream in-

dustries such as construction through the channel of basic metals). On this issue, our

results complement the flourishing literature on assets at risk due to a low carbon

transition (Caldecott, 2017; Creti and de Perthuis, 2019). Such findings reinforce the

importance of a well-designed recovery plan to limit GHG emission rebound effects

and to stimulate sector-based clean solutions (e.g. green inputs).

The remainder of the article is organised as follows. Section 2 introduces the method

18In some countries such as Germany and Poland, this finding is particularly relevant.
19Sector covers basic chemicals, fertilisers and nitrogen compounds, plastics and synthetic rubber

in primary forms, pesticides and other agrochemical products, paints, varnishes and similar coatings,
printing ink and mastics, soap and detergents and other chemical products.

20The activities include glass and glass products, refractory products, clay building materials, other
porcelain and ceramic products, cement, lime and plaster, articles of concrete, cement and plaster,
cut, shaped and finished stone.

21For non-metallic mineral products, the sector is present in the second or third layer, depending
on the examined country.

22The sector includes non-perennial crops, perennial crop, planting material: live plants, bulbs,
tubers and roots, cuttings and slips, mushroom spawn, live animals and animal products, agricultural
and animal husbandry services (except veterinary services), hunting and trapping and related services,
forest trees and nursery services, wood in the rough, wild growing non-wood product, support services
to forestry, fish and other fishing products; aquaculture products, support services to fishing.

23Represents buildings and building construction works, roads and railways, construction works
for roads and railways, constructions and construction works for utility projects; constructions and
construction works for other civil engineering projects, demolition and site preparation works; elec-
trical, plumbing and other construction installation works, building completion and finishing works,
other specialised construction works.
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to compute the matrices of sectoral emission coefficients. Section 3 presents the re-

sults of the analysis for five European countries, discussing the sectors most likely to

create large amounts of emission reductions and the ones most exposed to such dynam-

ics. Section 4 focuses on understanding the systemic propagation of shocks starting

from mining in order to identify relevant channels of GHG emission decline. Finally,

Section 5 discusses implications of our results for designing effective green recovery

packages to avoid a resurgent increase in industrial GHG emissions and exposes ele-

ments of conclusion.

4.2 Methodology & Data

4.2.1 The Emission Reduction Multiplier Matrix

Following Cahen-Fourrot et al. (2020), we start with the national inter-industry matrix

Z, a square matrix exhibiting amounts of sectoral intermediate consumption. In broad

terms, such a matrix is called "Input-Output matrix" and captures exchanges of goods

and services among industrial sectors in monetary units.24

In input-output tables (IOTs), the Z matrix usually comes with an additional set of

column vectors displaying final consumption (i.e. demand (f)) and row vectors repre-

senting value added items (v) (i.e. compensation of employees, fixed capital consump-

tion, gross operating surplus). Sectors appear both as producers of goods and services

(rows) and as consumers of intermediate inputs (columns). More specifically, IOTs are

commonly defined as monetary industry balances, where total supply xT=iTZ + v

equals total use x=Zi + f of products and services per sector.25 Therefrom, the total

amounts of all transactions over a row (industry output allocated to each category of

user (i.e. intermediate and final consumption)) equals the sum over the corresponding

column (total industry input flowing from upstream sectors - other industries and value

24See Miller and Blair, 2009; Cahen-Fourot et al., 2020.
25Note that i is a column vector of the same dimension of Z
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added items). The IOT also reports imported goods and services, which are again used

either as intermediate inputs or as final demand. Figure 4.1 below shows a stylized

version of an IOT.

Figure 4.1: A stylized Input-Output Table (Cahen-Fourot et al., 2020)
.

In economics, IOTs have been mainly used to evaluate direct and indirect effects of

changes in final demand based on the Leontief inverse matrix (Leontief, 1951; Met-

zler, 1951; Chen, 1973; Velàzquez, 2006). Although the demand will be critical in

defining the forthcoming dynamics of GHG emissions under recovery plans, the nov-

elty of our analysis is to adopt a supply-side perspective. Namely, we capture those

sectors providing lower amounts of inputs supplied to other sectors as a result of a one-

unit decrease in their gross value added or, generally speaking, gross domestic product

(i.e. forward oriented sectors), this allows us to capture associated decrease in emis-

sions (described hereafter). The supply of essential inputs to the rest of the economy is

a matter of addressing primarily forward impact effects rather than backward effects

(i.e. change in inputs affecting upstream sectors). In the context of post COVID-
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19 recovery plans, our methodology is relevant as the supply has been particularly

hit by governments restrictions (e.g. mobility) and supply dynamics will be critical

to meet forthcoming demand and avoid inflation (BNP Paribas - Economic Analy-

sis, 2020). Governments, while implementing economic policies to support supply-side

sectors, will have to be careful on the potential impact on GHG emissions.

A relevant approach for our study is the Ghosh (1958) supply-driven model.26 The

output of the Ghosh model is a matrix B = x−1Z of allocation coefficients of the

supply of a sector (i.e. output) to all other sectors. In the matrix B, each element bij

quantifies the share of sector i’s output consumed by sector j. Then, the Ghosh matrix

G is defined as :

G=(I−B)−1

We then transpose G to be able to read the effects of changes in sectoral primary

inputs over the columns (similarly to the Leontief system) of GT , where T denotes

the matrix transposition. Each entry gi,j of GT shows the change in output x in

sector i that would result from a unitary change of primary inputs used in sector j. In

general terms, a drop (or increase) of one monetary unit in primary inputs supporting

production in sector i will generate a drop (increase) in the output of sector j by an

amount equivalent to gi,j.27 In IO analysis, primary inputs cover items appearing on

the rows below the inter-industry matrix (e.g. compensation of employees). As exposed

in Cahen-Fourrot et al. (2020), primary inputs represent the societal effort to produce

the output of a sector, captured by factor payments.

We innovate by combining the obtained Ghosh matrix with sectoral data of GHG

emissions e.28 To do so, we define E i = ei/Md
i as the emission intensity of sector i,

whereMd represents the domestic output of the sector. By multiplying the diagonalised

form of the vector of emission intensities by the Ghosh matrix, we find the matrix S
26Augustinovics, 1970; Beyers, 1976.
27Note that gi,j includes both direct and indirect effects.
28Cf. part next part for full description of data.
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of emission reduction coefficients :

S=ÊGT

Each element sij of matrix S represents the change in emissions in sector i generated

by a unitary change of primary inputs used by sector j. For our purpose, the elements

of S capture the amount of emissions of a sector i that could be reduced because of

a unitary decrease in primary inputs used in the production of goods and services

of another sector j (e.g. hard coal, iron ores). The column sum of matrix S gives a

measure of the total amount of reduced emission resulting from a unitary reduction of

primary inputs in a sector j. We define this as the total emission coefficient of a sector

:

sj
TOT=iTS

where n is the dimension of matrix S. In our case, we assume the values of sTOTi

to be largely driven by i emission intensity and therefore, by potential amounts of

internal emission reduction. On the opposite, to estimate external emission reduction

coefficient (i.e. the impacts of a sector reduction of primary inputs on emissions of all

other sectors), we proceed as follows :

sj
EXT = sj

TOT - sj
diag,

where sdiag refers to the j-th element of the diagonal of S. In the end, we define the sum

of the rows of S as the exposure of a sector to emission reductions (i.e. the reduction

of emissions following a unitary loss in primary inputs used in all other sectors) :

si
EXP = Si

Overall, this methodological approach allows us to investigate both internal and ex-

ternal emission reductions generated by sectors. A sector might have a large emission

reduction coefficients mainly driven by internal reductions - suggesting a poor eco-

nomic connection with other sectors (supply). We capture this feature in Section 5 by

constructing the channels of reduction cascades across economies.
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4.2.2 Datasets : Input-Output Tables and Emissions

We apply the methodology described above to five European economies, heteroge-

neously affected by the pandemic crisis : France, Germany, Italy, Poland as well as

Spain (OECD, Economic Outlook, 2020; The Guardian, June 2020). The main source

of IO tables data we employ are extracted from the OECD for the year 2015.29 More

precisely, we use symmetric input-output tables at basic price by industry.30 Table 4.4

in the Appendix, 1.1 lists NACE level 1 categories,31 while Table 4.1 below offers the

detailed disaggregation of industries we investigate in this paper.32 In the following,

we deliberately exclude business services (Table 4.4, from G to S) as it represents

a small share of emissions (OECD, Air Emission Accounts).33 However, by provid-

ing inputs to other sectors, such activities can still play a significant role by driving

down emissions. Our model allows us to capture such dynamics through the channel

of external coefficients. With respect to emissions, we constructed our dataset from

the OECD - Air emission accounts on total GHG emissions per sector (CO2 eq.) for

the year 2015.34 Overall, Germany emitted more than 629 Mt (CO2 eq.), followed by

Poland (297 Mt), Italy (258 Mt), France (247 Mt) and Spain (221 Mt).35 Although

countries exhibit different patterns in terms of sectoral emissions, our dataset suggests

that agriculture, electricity and gas, chemicals, fabricated metal products and basic

metals were the largest emission intensive activities in 2015.

29OECD Statistics : https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI42018.
30Total economy, product by product in million $.
31The statistical classification of economic activities in the European Community, abbreviated as

NACE, is the classification of economic activities in the European Union (EU).
32For further descriptions, refer to the Appendix.
33Exposed by Cahen-Fourot et al. (2020) : the decarbonisation process might not be particularly

detrimental for services activities (low dirty capital levels, low demand for fossil fuel).
34OECD Statistics - "Data refer to total emissions of CO2 (CO2 emissions from energy use and

industrial processes, e.g. cement production), CH4 (methane emissions from solid waste, livestock,
mining of hard coal and lignite, rice paddies, agriculture and leaks from natural gas pipelines),
N2O (nitrous oxide), HFCs (hydrofluorocarbons), PFCs (perfluorocarbons), (SF6 +NF3) (sulphur
hexafluoride and nitrogen trifluoride), SOx (sulphur oxides, NOx (nitrogen oxides), CO (carbon
monoxide), NMVOC (non-methane volatile organic compounds), PM2.5 (particulates less that 2.5
µm), PM10 (particulates less that 10 µm) and NH3 (ammonia)".

35These data cover the scope of our analysis (e.g. services are not included, imported emissions
neither).
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By combining IOTs and data of emissions, we are able to offer results for the industrial

and power sectors (i.e. NACE from A to F) in France, Germany, Italy, Poland and

Spain. In 2015, these countries represented more than 60% of the European Union

gross domestic product (Statista, 2020).

Table 4.1: Breakdown of examined NACE Sectors.
Sector Code Sector description

A 1 Agriculture, forestry and fishing

B 2 Mining and quarrying activities

C10-12 5 Food products, beverages and tobacco

C13-15 6 Textiles, wearing apparel, leather and related products

C16 7 Wood and of products of wood and cork (except furniture)

C17-18 8 Paper products and printing

C19 9 Coke and refined petroleum products

C20-21 10 Chemicals and pharmaceutical products

C22 11 Rubber and plastics products

C23 12 Other non-metallic mineral products

C24 13 Manufacture of basic metals

C25 14 Fabricated metal products, except machinery and equipment

C26 15 Computer, electronic and optical products

C27 16 Electrical equipment

C28 17 Machinery and equipment n.e.c.

C29 18 Motor vehicles, trailers and semi-trailers

C30 19 Other transport equipment

C31-33 20 Other manufacturing, repair and installation of machinery and equipment

D-E 21 Electricity, gas, water supply, sewerage, waste and remediation services

F 22 Construction
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Figure 4.2: Distribution of total GHG emissions (CO2 eq.) across Agriculture (A), Electricity
and Gas (D-E) and Other Non-metallic mineral products (C23).
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4.3 Cascading Greenhouse Gas Emissions

4.3.1 Emission Coefficients

In this section, we analyse results reported in Table 4.2 below, namely total emission

coefficients (1), external coefficients (2) and exposure to emissions (3). We focus on the

top five sectors for each country. Given the distribution of emissions in the economy

and leaving all else equal, the first two sets of coefficients show the sectors that are

likely to generate the largest amounts of GHG emission reductions (Mt CO2 eq.) in

the economic system following a unit decrease in their primary inputs. For the purpose

of our paper, these sectors are the ones that should not be supported by forthcoming

recovery plans if governments are willing to decouple growth and emissions. On the

opposite, recovery plans could create economic incentives to engage such sectors in

cleaner production processes (cf. Section 5). The third set of results displays instead

the sectors that are likely to be most exposed to such dynamics of decreasing emissions
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from a unitary drop36 distributed equally across all industries.

Table 4.2: Emission Coefficients
France Germany Italy Poland Spain

Total Emission Coefficients (1)

B (0.0292) B (0.0190) B (0.0373) B (0.0121) B (0.0286)

C19 (0.0058) D-E (0.0055) C19 (0.0081) D-E (0.0118) C19 (0.0061)

C24 (0.0035) A (0.0051) D-E (0.0044) C19 (0.0073) C23 (0.0057)

A (0.0030) C19 (0.0044) C23 (0.0032) C24 (0.0062) D-E (0.0040)

C23 (0.0028) C24 (0.0027) C24 (0.0028) A (0.0054) C24 (0.0027)

External Emission Coefficients (2)

B (0.0287) B (0.0178) B (0.0359) B (0.0088) B (0.0280)

D-E (0.0004) C19 (0.0008) M (0.0007) C20-21 (0.0019) C20-21 (0.0008)

C19 (0.0004) G (0.0005) K (0.0007) C19 (0.0016) D-E (0.0008)

C22 (0.0004) M (0.0004) C24 (0.0006) C24 (0.0015) C22 (0.0007)

C25 (0.0004) C25 (0.0004) C19 (0.0006) C28 (0.0013) K (0.0006)

Exposure to Emission Coefficients (3)

C19 (0.0225) D-E (0.0114) C19 (0.0268) D-E (0.0142) C19 (0.0205)

D-E (0.0042) C19 (0.0083) D-E (0.0141) C19 (0.0058) D-E (0.0104)

C24 (0.0029) C24 (0.0036) C24 (0.0026) A (0.0053) C24 (0.0039)

A (0.0026) A (0.0017) C23 (0.0016) C24 (0.0029) C23 (0.0031)

C23 (0.0012) C23 (0.0017) C20-21 (0.0009) C23 (0.0021) A (0.0015)

Regarding total coefficients, sector of mining (B) is by far the most prevalent, appear-

ing as the top sector in every country of our scope.37 Studying the S matrix, one can

notice that emissions of sectors often significantly affected by the drop in primary in-

puts originating in the mining industry include those from coke and refined petroleum

products (C19), electricity and gas industry (D-E), other non-metallic mineral prod-
36In primary inputs.
37Remember that total coefficients are column sums of the S matrix, thus representing the cumula-

tive impact of a drop in a sector’s primary inputs on GHG emissions of other sectors. As to interpret
the coefficient of mining : a one unit decrease (in monetary unit = million $) in mining primary inputs
leads to a drop in GHG of 0.029 Mt (CO2 eq.) across all other sectors in the economy. Looking at
the S matrix and the impact of mining on coke and refined petroleum products (C19) we have : a
one unit decrease (in monetary unit = million $) in mining primary inputs leads to a drop in GHG
from the coke and refined petroleum industry of 0.020 Mt (CO2 eq.).
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ucts (C23) and basic metals (C24). These results emphasize the critical presence of

mining inputs in their production process (e.g. iron ores, coal). For certain countries

(e.g. Germany, Italy, Poland), the presence of D-E sector is likely to be mainly driven

by the proportion of energy producing inputs in the energy mix (e.g. coal/gas, see EU

data, Energy statistical datasheets for the year 2015).

In addition to B activities, industries included in category C (manufacturing) such

as C19 (coke and refined petroleum products), C23 (other non-metallic mineral prod-

ucts), C24 (basic metals) and D-E (electricity and gas) exhibit large coefficients of

emission reductions across economic systems.38 The latter appears to be strongly in-

tertwined with the level of emission intensity of the sectors, thus highlighting a sig-

nificant potential for an internal emission decline. Moreover, for the specific case of

other non-metallic mineral products (C23), examined EU countries were the largest

producers in the EU in 2015 (European Commission, 2017). The strong potential for

internal emission contraction in these industries is confirmed by the following analysis

on external emission coefficients. Finally, agriculture (A) is among the top sectors of

total emission coefficients in France, Germany and Poland. This outcome emphasizes

the key role of agricultural practices in climate mitigation strategies (IPCC, 2014).

External emission coefficients, which abstract from internal emissions of a sector and

thus offer an accurate representation of the effect of a sector’s activity on GHG emis-

sion decline in the rest of the economy, exhibit a different pattern. The relevance of

mining (B) as an import-intensive activity is still highly significant (i.e. coefficients),

confirming a strong economic connection (i.e. provider of inputs) between this sector

and other high polluting sectors (e.g. coke and refined petroleum products (C19) and

electricity and gas (D-E)).39 With respect to other GHG intensive sectors, coefficients

38Note that for France, D-E is not among top sectors. We expect the latter to be due to the large
share of nuclear power generation in the country.

39Note that mining external coefficients are significantly high, embodying the ability of the sector
to generate emissions in other GHG intensive sectors. Moreover, mining products are mainly imported
from outside of the EU, thus explaining low amounts of emissions for the sector (although in Poland,
the sector displays a high amount of emissions as the country is the biggest EU hard-coal producer
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are drastically reduced. Sectors C20-21 (chemicals and pharmaceutical products) be-

comes particularly relevant in Poland and Spain while C19 (coke and refined petroleum

products) and C24 (basic metals) are the most recurrent manufacturing sectors in our

sample (except in Spain). All these sectors appear high in the ranking of external emis-

sion coefficients because they provide significant amount of inputs to other productive

sectors (thus driving up emissions).40 For instance, both sectors B (mining) and C20-

21 (chemicals) provide substantial intermediate goods to coke and refined petroleum

products (C19) while basic metals (C24) supplies fabricated metal products (C25) as

well as machinery and equipment (C28). Table 4.3 below offers a closer look at indus-

tries exhibiting largest coefficients, reporting the top 5 sectoral values for the external

emission coefficients originating in mining (B).41

Table 4.3: Sectoral Emission Coefficients for top sectors (excluded).

France Germany Italy Poland Spain

B (0.0292) B (0.0190) B (0.0373) B (0.0121) B (0.0286)

C19 (0.02094) C19 (0.0072) C19 (0.0236) D-E (0.0038) C19 (0.0171)

D-E (0.0032) D-E (0.0070) D-E (0.0095) C19 (0.0027) D-E (0.0061)

C24 (0.0018) C24 (0.0022) C24 (0.0012) C24 (0.0010) C24 (0.0023)

A (0.0009) C23 (0.0004) C23 (0.0005) A (0.0004) C23 (0.0012)

C23 (0.0007) A (0.0003) C20-21 (0.0002) C23 (0.0004) C20-21 (0.0005)

As mentioned, C19 (coke and refined petroleum products), C24 (basic metals) as well

as D-E (electricity and gas) all appear as the sectors most exposed to a decrease in GHG

emissions through the channel of mining. Again, this matches previous observations

that top industries in external emission coefficients provide substantial inputs to GHG

intensive sectors.42 Moving back to Table 4.2, several other manufacturing sectors

appear among the top 5. For instance, this is the case for activities C22 (rubber

(Reuters, June 2020)).
40The low level of external emissions coefficients of energy intensive sectors is due to the fact

that downstream sectors are not huge polluting industries (e.g. machinery and equipment (C27),
construction (F)).

41We exclude respective country top sector itself, to abstract from internal emissions.
42Although for electricity and gas, this arguments depends on considered energy used (gas, coal).
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and plastics) and C25 (fabricated metal products) in France, Germany and Spain

respectively. Note that financial and insurance activities (K) are also present in Italy

and Spain.

Finally, looking at the values of total sectoral exposure to emissions, we can identify

four main sectors, repeatedly appearing among the sectors with the highest row sums

in S : C19 (coke and refined petroleum products); C23 (other non-metallic mineral

products); C24 (basic metals) and D-E (electricity and gas). These sectors, in addition

to having high emission intensities, are affected by multiple relevant inward economic

links. To investigate these features, we consider the S matrix as an adjacency matrix

for a directed network (Godsil and Royle, 2013; Halleck-Vega et al., 2018; Cahen-

Fourot et al., 2020), interpreting productive sectors as the vertices of the network and

the si,j elements of S as the weight of the edges going from vertex j to vertex i. Then,

it is possible to represent the network as a circular layout. Figures 4.3 and 4.4 below

show the outcome of this procedure for Germany and Spain, as they exhibit different

patterns in terms of sectors’ exposure (e.g. strength of coefficients and rankings).

Figure 4.3: Network of emissions across sectors in Germany. The size of the node is propor-
tional to the number of weighted incoming links.
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Figure 4.4: Network of emissions across sectors in Spain. The size of the node is proportional
to the number of weighted incoming links.

When studying networks’ characteristics, if one considers the potential strength

(weight) of forward emission links,43 mining activities (B) as well as coke and re-

fined petroleum products (C19) and fabricated metal products (C25) are the leading

sectors in Germany while mining (B) together with chemicals (C20-21) and electricity

and gas (D-E) display the largest impacts in Spain. Interestingly, in Germany the most

important GHG emission links start from B to coke and refined petroleum products

(C19) and electricity and gas (D-E). The latter could be partly explained by the coal

and gas dominating roles in the German power generation system (International En-

ergy Agency, Key energy statistics, 2018). For Spain, top emission connections follow

the same pattern : they start from mining (B) toward coke and refined petroleum

products (C19), electricity and gas (D-E) and basic metals (C24). Comparing both

countries, one can note on Figure 4.3 and 4.4 the significant weight of emission links

from mining (B) to electricity and gas (D-E), coke and refined petroleum products

(C19) and basic metals (C24) in Germany. The latter provides a clear view of the

43Thus suggesting a strong effect of reducing gross domestic output in these sectors on other
sectors’ GHG emissions.
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strong role of mining (B) in the industrial German ecosystem.

Overall, our results emphasize different aspects : first, mining (B) is the sector the

most able to drive down external emissions, exhibiting strong links/connections to high

polluting activities.44 The sector deeply affects coke and refined petroleum products

(C19) as well as basic metals (C24) and electricity and gas (D-E) industries. For this

reason, we observe these industries to be ranked top in exposure category. Moreover,

the ranking of coke and refined petroleum products (C19), chemicals (C20-21) as well

as basic metals (C24) among the top external emission activities suggests a strong

connection of these sectors to others across the economy - thus acting as facilitators

in the shock propagation process originating from mining (B). The strength of such

edges informs policy-makers not only on the dependence of sectors to others, but also

on the ability of key industries to reduce emissions elsewhere in the economy.

In the next section, we investigate this feature. We map the cascade of GHG emis-

sion contractions from top external coefficients activities. By doing so, we are able to

capture the key sectors acting as drivers of emission reductions in the industrial sys-

tem. The latter brings us a clearer perspective on the existence of common or various

patterns of cascades of emission contractions across countries.

4.4 Channels of Emission Cascades

After having shown the emission potential and associated exposure for the entire range

of productive sectors, we shift our attention to top external multiplier activities (B

activities). Our objective is to better investigate the propagation channels of decreasing

GHG emissions due to an contraction (gross output) originating from the fossil fuel

industry (e.g. coal and gas). Precisely, we trace out the propagation process throughout

the industrial system to capture relevant patterns across economies.

We start by identifying the most relevant emission links resulting from a unitary drop
44Although mining is not emitting large amounts of emissions, cf. Table 4.5 in the Appendix.
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of primary inputs supporting the production of mining (i.e. the largest values appearing

on the B column of matrix S). We retain only the top q percentile of the values, and

position the affected sectors on the first layer of our cascade network. We repeat the

procedure for the sectors in the first layer, identifying the sectors within the top q

percentile of emissions originating in the layer. The weight of the resulting network

edges are re-weighted to take into account that the fall in primary inputs in these

sectors will be lower than one and a function of the strength of the upper edges. In

other words, the emission reduction links tend to be stronger the closer they are to the

shock origin, and get gradually weaker as they cascade downwards. We then repeat

the same procedure for each layer, excluding the sectors that had already appeared in

upper layers, until no new sectors appear. The results of this procedure are shown for

each country belonging to our sample following a hierarchical layout (cf. Figures 4.5,

4.6 and 4.7 below, for q = 0.2). The numerical weight of the top 10 edges is shown for

reference.45

Figure 4.5: Hierarchical networks of emission cascades across economic sectors in France
France (left) and Germany (right).

45Although most of them exhibit a weight of 0, the impact on downstream sectors remains higher
compared to other industries.
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Figure 4.6: Hierarchical networks of emission cascades across economic sectors in Italy (left)
and Poland (right).

Figure 4.7: Hierarchical network of emission cascades across economic sectors in Spain.

As expected, the sectors in the first layer of the network overlap with the ones reported

in Table 4.2. The strongest emission link is the one flowing from mining (B) to coke and
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refined petroleum products (C19) for France, Germany, Italy and Spain. Interestingly,

the reduction link from mining (B) to electricity and gas (D-E) has a larger weight in

Poland while reaching an identical level compare to coke and refined petroleum prod-

ucts (C19) in Germany. The latter confirms previous observations on the carbon in-

tensity of power systems in those economies. Manufacturing activities, especially basic

metals products (C24), other non-metallic mineral products (C23) as well as electric-

ity and gas (D-E), also frequently appear among the sector most strongly affected by

the immediate contraction caused by mining (B). From the electricity and gas sector

(D-E), the emission cascade often continues, further affecting chemicals (C20-21) or

other non-metallic mineral products (C23) (cf. Germany, Italy, Poland, Spain). Given

the strength of the original emission connection from mining (B) to electricity and

gas (D-E), these links are often the most relevant after the ones affecting sectors in

the first layer, and are justified by both the high emission intensity of the sectors and

their large consumption of energy products (e.g. electricity, gas). From coke and re-

fined petroleum products sector (C19), the most common cascades proceed through

the chemical sector (C20-21)46 while from basic metals sector (C24), GHG emission

cascade propagates through the construction sector (F) and agriculture (A). Although

surprising for agriculture (A), this finding looks intuitive for construction (F) as the

sector relies on a high amount of metallic materials used as inputs (e.g. tubes, pipes).

In addition to the sectors mentioned above, several other sectors frequently appear in

the cascade networks. For instance, food products activities (C10-12) often appears

on the third or fourth layer of the network, regularly affected by links originating

from agriculture (A) (cf. France, Germany, Poland and Spain). The sector in the C23

category (other non-metallic mineral products) also often appear, largely affected by B

(mining) and further impacting F industries (construction). Overall, energy intensive

sectors are highly present in the second layout of the networks, acting as propagation

facilitators toward sectors supplying final demand side of the economy. These sectors

46Note that it is relevant in every country of our sample.
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exhibit low levels of emissions, thus not appearing in the network we observe here

(e.g. textiles (C13-15), computer and electronics (C26)).

Studying the structure of the networks in conjunction with the weight of edges, we can

identify two common cascades across countries. First, in all economies except Poland,

a strong reduction cascade passes through coke and refined petroleum products (C19)

and then affects chemicals (C20-21). This dynamics is particularly relevant in France,

Italy and Spain. Although not appearing, we expect further downstream sectors to

be manufacturing sectors (rubber and plastics products (C22), paper products and

printing (C17-18)). Second, the cascade starting from mining (B) to electricity and gas

(D-E) and then impacting manufacturing sectors such as chemicals (C20-21) and other

non-metallic mineral products (C23) is widely present in our sample - and particularly

significant in Poland, Germany and Italy.

Overall, the main structure of emission cascades spreads from mining (e.g. coal, gas,

iron ores) to energy intensive manufacturing sectors (coke and petroleum products,

steel, iron, chemicals) and power generation (e.g. electricity and gas), then further af-

fecting industrial sub-sectors supplying final demand (e.g. construction, agriculture). In

addition, GHG emission cascades share common characteristics across countries, sug-

gesting the opportunity for EU governments to design green recovery packages sharing

common patterns, aiming at limiting emission rebounds in sectors identified (e.g. min-

ing (B), coke and refined petroleum products (C19), chemicals (C20-21) and electricity

and gas (D-E)). The next section concludes by discussing the implications of such re-

sults for the design of green recovery packages. Indeed, further contractions of the

identified sectors would lead to additional reduction of GHG emissions. However, it

is more than likely that governments will create incentives to green the activity of

such sectors (e.g. allocation of funds conditional on developing a climate strategy). We

expose some policy avenues that could be implemented to limit emissions to rebound

in those sectors.
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4.5 Discussions and conclusion

In the coming months, COVID-19 economic recovery packages will be introduced by

governments in the EU. These packages will shape EU’s future prosperity and de-

termine the success environmental targets recently set in the Green Deal (European

Commission, 2019). So far, we have identified industrial sectors that, if government

wish to decouple growth and emissions in the coming decades, should not be benefit

from forthcoming economic stimuli. If mining activities (B) play a significant role (by

providing inputs to other sectors), emission intensive industries will have a particu-

lar contribution to meet the Paris Agreement targets. For those sectors, forthcoming

economic stimuli (e.g. public investments) should be conditional on these industries

developing a measurable plan to limit GHG emissions in the future.

Moving back to channels of emissions, coke and refined petroleum products (C19),

chemicals (C20-21), other non-metallic mineral products (C23), basic metals (C24) and

electricity and gas (D-E) are the most GHG intensive sectors of our sample. A decrease

in their inputs (supplied by mining) generates large amounts of avoided emissions. In

those sectors, the key challenge for forthcoming recovery plans is to ensure a shift from

dirty to low carbon inputs.47 Starting from the power generation sector, which is among

the most emitting industries in some EU countries (i.e. Germany, Poland) and rank

top at the regional scale (European Environment Agency, 2020), shifting from high to

low carbon technologies has become a major issue over the last years (International

Renewable Energy Agency, 2018). For instance, the German government recently an-

nounced a total phase-out of coal-power plants by 2038, compensated by large scale

investments in renewable energy sources (RES) (Reuters, January 2020) while the

Fench National Energy Roadmap targets 36% of power generation from renewables in

the energy mix by 2028 (Le Monde, May 2020). Although official statements might

drive sectoral dynamics (e.g. private investments), barriers to the large-scale deploy-

47Not only to shift away from mining, but also because mining inputs are expected to be phased-out
from the economic system by 2050.
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ment of RES have remained strong (see Sen and Ganguly, 2017 for a review). Among

others, storage capacity issues and energy infrastructures (e.g. cost) have particularly

constrained RES expansion (Jones, 2015; Ruz and Pollitt, 2016). In the wake of cur-

rent public incentives to promote RES deployment (see Solorio and Jorgens, 2017 for

a review), forthcoming green stimulus should enlarge the scope of targeted sectors and

tackle such barriers (Allan et al., 2020; European Commission, 2020). Measures such

as public R&D support and EU cross-border cooperation could target technologies

that complement renewables (e.g. energy storage, smart grids, interconnectors). The

latter would guarantee that capacity exists to facilitate decarbonisation of further

downstream industries too (e.g. mobility and heating).48

From an economic perspective, the pandemic is unfolding in a policy environment pro-

viding strong advantages to a green design of recovery plans. Indeed, since the global

financial crisis (2007-2008) and recovery plans that followed, the cost of low-carbon

technologies (e.g. solar, wind) has sharply declined compared to other energy sources,

making large scale financing affordable and competitive (Bloomberg NEF, 2019). Im-

portantly, in the short run, green stimulus measures are economically advantageous

when compared with traditional fiscal stimuli (World Resource Institute, 2009), cre-

ating higher numbers of jobs (Pollin et al., 2008). In the long run, these public invest-

ments offer high returns by driving down costs of the clean energy transition (World

Bank, 2015). While unemployment rates in EU economies are predicted to soar in

2020 (Reuters, April 2020), such dimensions are critical to consider when shaping

green stimulus.

Moving to GHG intensive industries, transforming industrial energy usage is a major

issue to handle for governments. In our paper, we have identified coke and refined

petroleum products (C19), chemicals (C20-21) as well as basic metals (C24) to have

a significant impact on emissions. For those activities, creating incentives to produce

48Note that in some countries, decarbonising the power sector does not come as a priority compare
to, for instance, transport sectors (e.g. France).
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low-carbon output would guarantee a slowdown in industrial emissions. The develop-

ment of programs guaranteeing the purchase of cleaner output at a profitable price

could be a first step toward an environmental-friendly shift in production (Allan et

al., 2020). In this context, a significant price of carbon (e.g. internal/external car-

bon tax, EU-ETS market permit) could lead to higher investments in R&D focusing

on potential environmental friendly substitutes (CDP, 2017). In the same way, green

stimuli should contain large scale investments in greenhouse gas removal technologies

including industrial carbon capture and storage. These technologies are necessary to

contain emissions from heavy polluting industries. Although barriers exist (e.g. infras-

tructures, cost), more research and developments targeting such technologies could

bring multiple benefits in the long run (Hepburn et al, 2019). Moreover, if rapidly

deployed, such technologies could limit emissions during the transition period toward

cleaner production processes in GHG intensive industries.

To conclude, our paper has investigated industries that should not benefit from eco-

nomic recovery stimuli if EU governments wish to decouple growth and emissions once

activity recovers (OECD, 2020). Although the mining sector is identified as the sector

at the core of potential emission reductions, GHG intensive activities such as coke

and refined petroleum products and power generation activities are likely to act as

key sectors to reach a post-carbon society. The ongoing COVID-19 pandemic crisis

acts as a stalemate in the fight against climate change as recovery plans will shape

the economy for the decades to come. Reaching a carbon neutral European Union

by 2050 largely depends on the design of forthcoming recovery packages. Decoupling

emissions and economic growth will become possible if identified sectors are phased-

out or if they implement strategies to clean their production process. Although we

have discussed some potential policy strategies for such changes, the latter is unlikely

to happen without a strong support from national and EU Institutions. At the EU

regional scale, a major issue to come is the allocation of such recovery funds across

states - and further, sectors to benefit from such funds within national economies. In

194



CHAPTER 4. COVID-19 RECOVERY PACKAGES AND INDUSTRIAL
EMISSION REBOUNDS : MIND THE GAP

our paper, we have shown that economies display differences in terms of industrial

structures and GHG emission levels. The latter calls for different national approaches

to tackle GHG emissions. If some countries have a large proportion of mining inputs in

the energy mix (e.g. Germany and Poland), a uniform implementation of tools to meet

the EU targets would cause heterogeneous impacts across economies, likely reinforc-

ing economic and political divisions within the Union. In the coming months, the EU

Commission will have to be aware of such differences when evaluating the effectiveness

of recovery plan allocation funds by national states. Whether the supervision of such

funds is centralised or decentralised (i.e. EU Institutions or national states), it will

have a strong impact on the EU ability to meet its legally mandated environmental

targets.
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Appendices of Chapter 4

Tables

Table 4.4: NACE Sectors
Sector code Sector description

A Agriculture, forestry and fishing

B Mining and Quarrying

C Manufacturing

D Electricity, gas, steam and air conditioning

E Water supply; sewerage; waste management and remediation services

F Constructions and construction works

G Wholesale retail trade; repair of motor vehicles and motorcycles

H Transportation and storage

I Accommodation and food services activities

J Information and communication

K Financial and insurance activities

L Real estate activities

M Professional, scientific and technical activities

N Administrative and support service activities

O Public administration and defence: compulsory social security

P Education

Q Human health and social work activities

R Arts, entertainment and recreation

S Other services activities
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Table 4.5: Greenhouse gas emissions (Mt CO2 eq.) by sectors (A-F), year 2015

Sector France Germany Italy Poland Spain

Agriculture, forestry and fishing 90.7 75.8 39.4 44.1 50.0

Mining and extraction of energy producing

products

1.1 7.2 4.7 22.0 1.5

Food products, beverages and tobacco 11.0 9.9 6.2 5.1 3.5

Textiles, wearing apparel, leather and related

products

0.8 0.9 2.9 0.2 0.8

Wood and of products of wood and cork (ex-

cept furniture)

0.5 1.0 0.3 0,5 1,4

Paper products and printing 2,8 7.8 5.4 2.4 2.7

Coke and refined petroleum products 14.0 22.2 17.9 12.6 16.1

Chemicals and pharmaceutical products 22.8 30.2 11.8 14 11,5

Rubber and plastics products 1.5 3.2 0.4 0.7 0.0

Other non-metallic mineral products 18.8 36.0 26.2 15.6 28.1

Manufacture of basic metals 19.0 44.7 14.1 9.7 13.8

Fabricated metal products, except machinery

and equipment

1.0 3.8 0.8 0.5 0.6

Computer, electronic and optical products 0.4 1.1 0.4 0.1 0.0

Electrical equipment 0.5 1.3 0.5 0.2 0.7

Machinery and equipment n.e.c. 0.6 3.2 1.7 0.2 0.6

Motor vehicles, trailers and semi-trailers 1.0 4.6 0.3 0.3 1.0

Other transport equipment 0.4 0,5 0.0 0.1 0.2

Other manufacturing; repair and installation

of machinery and equipment

1.2 1.3 0.8 0.3 0.0

Electricity, gas, water supply, sewerage, waste

and remediation services

49.8 363.9 119.0 167.5 88.1

Construction 9.1 11.2 5.9 0,9 0,6
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Table 4.6: GHG emissions (Mt CO2 eq.), year 2015.

Country GHG emissions

France 330.7

Germany 769.5

Italy 314.2

Poland 341.7

Spain 277.9
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Additional Informations

A - Agriculture, forestry and fishing : Non-perennial crops; Perennial crops; planting

material: live plants, bulbs, tubers and roots, cuttings and slips; mushroom spawn;

live animals and animal products; agricultural and animal husbandry services (except

veterinary services); hunting and trapping and related services; forest trees and

nursery services; wood in the rough; wild growing non-wood products; support

services to forestry; fish and other fishing products; aquaculture products; support

services to fishing.

B - Mining and extraction of energy producing products : hard coal; lignite; crude

petroleum; natural gas, liquefied or in gaseous state; iron ores; non-ferrous metal

ores; stone, sand and clay; mining and quarrying products n.e.c.; support services to

petroleum and natural gas extraction; support services to other mining and quarrying.

C10-12 - Food products, beverages and tobacco : Preserved meat and meat products

Processed and preserved fish, crustaceans and molluscs; processed and preserved

fruit and vegetables; vegetable and animal oils and fats; dairy products; grain mill

products, starches and starch products; bakery and farinaceous products; other food

products; prepared animal feeds; beverages; tobacco products.

C13-15 - Textiles, wearing apparel, leather and related products : Textile yarn and

thread; woven textiles; textile finishing services; other textiles; wearing apparel,

except fur apparel; articles of fur; knitted and crocheted apparel; tanned and dressed

leather; luggage, handbags, saddlery and harness; dressed and dyed fur; footwear.

C16 - Wood and of products of wood and cork (except furniture) : Wood, sawn and
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planed Products of wood, cork, straw and plaiting materials

C17-18 - Paper products and printing : Pulp, paper and paperboard; articles of

paper and paperboard; printing services and services related to printing; reproduction

services of recorded media.

C19 - Coke and refined petroleum products : Coke oven products; refined petroleum

products.

C20-21 - Chemicals and pharmaceutical products : Basic chemicals, fertilisers and

nitrogen compounds, plastics and synthetic rubber in primary forms; pesticides and

other agrochemical products; paints, varnishes and similar coatings, printing ink and

mastics; soap and detergents, cleaning and polishing preparations, perfumes and

toilet preparations; other chemical products; man-made fibres; basic pharmaceutical

products; pharmaceutical preparations.

C22 - Rubber and plastics products : Rubber products; Plastic products.

C23 - Other non-metallic mineral products : Glass and glass products; refractory

products; clay building materials; other porcelain and ceramic products; cement, lime

and plaster; articles of concrete, cement and plaster Cut, shaped and finished stone;

other non-metallic mineral products.

C24 - Manufacture of basic metals : Basic iron and steel and ferro-alloys; tubes,

pipes, hollow profiles and related fittings, of steel; other products of the first pro-

cessing of steel; basic precious and other non-ferrous metals; casting services of metals.

C25 - Fabricated metal products, except machinery and equipment : Structural metal
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products; tanks, reservoirs and containers of metal; steam generators, except central

heating hot water boilers; weapons and ammunition; forging, pressing, stamping and

roll-forming services of metal; powder metallurgy; treatment and coating services

of metals; machining; cutlery, tools and general hardware; other fabricated metal

products.

C26 - Computer, electronic and optical products : Electronic components and

boards; computers and peripheral equipment; communication equipment; consumer

electronics; measuring, testing and navigating equipment; watches and clocks;

irradiation, electromedical and electrotherapeutic equipment; optical instruments and

photographic equipment; magnetic and optical media.

C27 - Electrical equipment : Electric motors, generators, transformers and electricity

distribution and control apparatus; batteries and accumulators; wiring and wiring

devices; electric lighting equipment; domestic appliances; other electrical equipment.

C28 - Machinery and equipment n.e.c. : General-purpose machinery; other general-

purpose machinery; agricultural and forestry machinery; metal forming machinery

and machine tools Other special-purpose machinery.

C29 - Motor vehicles, trailers and semi-trailers : Motor vehicles; bodies (coachwork)

for motor vehicles; trailers and semi-trailers; parts and accessories for motor vehicles.

C30 - Other transport equipment : Ships and boats; railway locomotives and rolling

stock; air and spacecraft and related machinery; military fighting vehicles; transport

equipment n.e.c.

C31-33 - Other manufacturing : Furniture; jewellery, bijouterie and related articles;
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musical instruments; sports goods; games and toys; medical and dental instruments

and supplies; manufactured goods n.e.c.; repair services of fabricated metal products,

machinery and equipment; installation services of industrial machinery and equipment.

D-E - Electricity, gas, water supply, sewerage, waste and remediation services :

Electricity, transmission and distribution services; manufactured gas; distribution

services of gaseous fuels through mains; steam and air conditioning supply services;

natural water; water treatment and supply services; sewerage services; sewage sludge;

waste; waste collection services, waste treatment and disposal services; materials

recovery services; secondary raw materials; remediation services and other waste

management services.

F - Construction : Buildings and building construction works, roads and railways;

construction works for roads and railways; constructions and construction works

for utility projects; constructions and construction works for other civil engineering

projects; demolition and site preparation works; electrical, plumbing and other

construction installation works; building completion and finishing works; other

specialised construction works.
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Conclusion

This dissertation has investigated how economic networks could improve the under-

standing of several diffusion dynamics (i.e. environmental technologies, green policies,

economic shock effects on emissions). The first chapter theoretically studies the impacts

of social underlying structures on technology adoption. It adds up to the literature on

diffusion in networks by introducing a cost dimension in the contagious spreading of

the technology.49 The second chapter proposes a complementary approach (empiri-

cal). Instead of postulating underlying network structures, it reconstructs the network

of environmental policy flows across US states from 1974 to 2018. The third and fourth

chapters investigate networks of economic interactions in several European industrial

systems to assess how a local contraction of activity influences emissions in downstream

activities. While the third chapter explores such dynamics for imported emissions, the

fourth follows an equivalent methodology to identify sectors that could act as drivers

of emission rebounds in the context of COVID-19 recovery plans. In the remainder of

the conclusion, we briefly review exposed contributions as well as policy implications.

Network Structures, Environmental Technology and Social

Contagion

In order to evaluate the role of underlying social network structures on technology

adoption, Chatper 1 implements a novel methodology by adding a cost perspective

to the contagious feature of adoption. The technology cost dimension, subject to ef-
49The proposed model is a generalisation of the Watts model (2002).
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fects of learning, provides a complementary tool to evaluate how innovations (e.g.

clean technologies) spreads in a population of agents. Two main lessons can be drawn

from this research. First, clustering of agents is critical for a clean technology to dif-

fuse. This results confirms the literature on complex contagion (Centola, 2018; Bea-

man, 2018). However, clusters of agents lead to more variability in terms of aggregate

adoption. Indeed, diffusion in clustered networks requires at least one initial adopter

among clustered groups to make percolation in the whole group possible. Then, in

clustered networks, diffusion is exacerbated to one extreme or another, leading to high

levels of variance. From a policy perspective, it suggests a possible trade-off between

maximising adoption and uncertainty in results. Namely, where aggregate diffusion

levels are the highest, dispersion is the largest. If there is a strong connection be-

tween diffusion and network structures, this indicates a policy tension : targeting

diffusion levels with lower expected variability or favouring maximum adoption with

more uncertainty in terms of final results. Second, effects of learning have a key role

in diffusion dynamics. Whatever the underlying social structure, higher learning rates

leads to higher aggregate adoption (and higher variance in clustered networks). The

latter is captured by the following : increasing the learning effect fosters the impact of

one agent adopting on the technology cost function. In other words, with higher rates

of learning, fewer new adopters are required to reach an equivalent decrease in the cost

function. Aggregate diffusion and learning rates are intertwined with one another.

We expose recommendations from these results, which could both be used to ease the

deployment of green technologies in a considered population. On the one hand, to

target clustered structure, government should be aware of underlying social networks

in the selected population. On this issue, the growth of social platforms and the as-

sociated increasing amount of data (e.g. social network, geographic data) could help

capturing underlying social structures and would provide powerful informations for

policy makers. On the other hand, policy makers could limit uncertainty in results in

cluster structures by giving access to the technology to agents less able to afford such a
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product. Indeed, those agents, exhibiting a low cost threshold (i.e. they cannot afford

the technology if the latter does not diffuse massively), are hampering the diffusion as

they are not adopting the product. By implementing economic mechanisms to support

such population to adopt, diffusion would be less subject to heterogeneity and could

reach higher levels. Such policies would allow a large share of the population to adopt

the technology, creating feedback effects for the rest of the group. Finally, policy mak-

ers should select the "good" innovation to promote - the one that is likely to exhibit

some learning effects, then easing the adoption in the population.

How Environmental Policies Spread ? A Network Approach

to Diffusion in the U.S.

Chapter 2 proposes a methodology to infer, from adoption data (i.e. laws enacted), the

network structure of environmental policy transmission likelihood between American

states. This work provides an empirical contribution by identifying existing influences

in the environmental policy diffusion network (i.e. states-pairs) and by assessing the

impacts of different attributes (e.g. economic and political proximity, environmental

features) on the formation of the existing structure over time. The main innovation is

a systemic perspective that accounts for the impact of each state not only on its direct

connections, but also on the global diffusion process. The main takeaways are of this

research are : First, a relatively inefficient organization, characterized in particular by

a great heterogeneity between states in terms of centrality in the network. The latter

leads to inefficiencies and induces relatively long lags in the diffusion process. Second

California, Minnesota and Florida act as central states in the diffusion process (i.e. fa-

cilitators) and there exists a relative disconnection between Northeastern states and

the rest of the country. The latter suggests that in this region, transmission activity is

concentrated between neighborhood states. Fourth, contiguity, GDP per capita, Gen-

uine Progress Indicator have significant effects (i.e. positive impacts) on policy flows

across states while states. The latter brings new insights on the understanding of en-
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vironmental policy spreading in the United States.

Among others, an important implication of our results stems from the analysis of states

facilitating the spreading of environmental policies across the country. Namely, Cal-

ifornia, Minnesota and Florida. Targeting such states (i.e. governor, representatives)

to maximize the likelihood of diffusion at a larger scale would be a relevant strategy

for various types of actors (e.g. NGOs, citizens, companies’ representatives), espe-

cially those interested in passing pro-environmental laws in "big emitter" states. From

another perspective, being aware of policy flows dynamics brings insights to private

firms on the possible pattern of environmental regulation diffusion. As differences in

legislation across states drive day-to-day business decisions of private actors (e.g. in-

vestments, market strategy etc.), our results have critical implications in that respect

too (Bradbury et al., 1997).

After evaluating issues of clean technologies and environmental policies, Chapter 3

and Chapter 4 of this thesis combine Input/Output tables (IOTs) approach and tools

from network theory to spotlight how a local shock in the industrial system impacts

generated/imported emissions.

Triggering Reduction of Imported Emissions in the E.U.

The third contribution specifically focuses on imported emissions and aims at identi-

fying industrial sectors that are likely, following a contraction of activity, to generate

cascading reduction of imported emissions in the system. Main lessons from this work

highlight the role of imported emission intensive activities such as mining activities,

basic metals and computer and electronics. Mining sector and basic metals are provid-

ing large amounts of essential inputs to other industries with high imported emission

intensity, suggesting a strong economic dependence between them (proximate neigh-

bors in the network). Moreover, this chapter emphasizes that moving away from fossil

fuel would generate effects on sectors linked to coke and refined petroleum products,
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basic metals and electricity and gas. To complement such findings, the impact of a $25

carbon tax on imported basic metals highlights that exposed industries are identical

across countries (although impacts are heterogeneous), with basic metals and fabri-

cated metal products taking the first ranks. This contribution provide insights to policy

makers on at least two dimensions. First, tackling the issue of imported emissions will

have direct effects on importing sectors (e.g. basic metals, mining) but would also

generate indirect impacts on downstream industries (e.g. fabricated metals products,

chemicals). From this perspective, there is a critical need to push downstream activi-

ties toward cleaner input uses, and to adopt a system-wide approach when designing

economic instrument aiming at limiting imports of carbon intensive products. On this

issue, the implementation of a carbon tax on basic metal reveals how sectoral exposure

is unequal across economies (e.g. fabricated metal activity is more affected in Poland

compare to those in France or the U.K). Such dimension is likely to act as an additional

barrier to the advent of this mechanism at the European scale.

COVID-19 Recovery Packages and Industrial Emission Re-

bounds : Mind the Gap

The last contribution implements the same approach to identify industrial sectors that,

if governments wish to decouple growth and emissions in the coming decades, should

not be benefit from forthcoming economic stimuli. Main outcomes suggest that coke

and refined petroleum products, chemicals, other non-metallic mineral products, basic

metals and electricity and gas are the most likely to generate emission rebounds sup-

ported by economic stimuli (France, Germany, Italy, Poland and Spain). A decrease

in their inputs (supplied by mining) generates large amounts of avoided emissions. In

terms of policy takeaways, stimuli packages should provide incentives for these activi-

ties to shift from dirty to low carbon inputs. If properly defined, including counterparts

dealing with environmental dimensions could act as a promising step. From another

perspective, results hint at the existence of differences across economies in terms of
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industrial structures and GHG emission levels. The latter calls for different national

approaches to tackle GHG emissions. If some countries have large share of mining in-

puts in the energy mix (e.g. Germany and Poland), a uniform implementation of tools

to meet the EU targets would cause heterogeneous impacts across economies, likely

reinforcing economic and political divisions within the Union.

More broadly, the present dissertation demonstrates how network economics could

enhance our understanding of diffusion dynamics on the path toward a cleaner so-

ciety. Studying clean technology diffusion, environmental policies spreading and eco-

nomic shocks effects on emissions, we have shown that network structures (Chapter 1 ),

position of embedded agents (Chapter 2 ) and the neighborhood environment (Chap-

ter 3 and 4 ) are critical aspects to take into account for the design of interventions

(e.g. public). Such elements provide new insights to reach a net zero society by 2050.

Finally, with respect to network economics, a prominent challenge for academics and

governments will be to expand the associated toolkit - from innovations in the field of

econometrics to the role of policy-makers/Institutions in collecting network data. For

the latter, enacted policies targeting the disclosure of information and of some publicly

shared social network data could pave the way to a common use of network economics

in public policy intervention. In the case of this thesis, we have demonstrated that col-

lecting social/economic data about adoption of technologies, policy flows and economic

interactions could enhance our understanding of propagating processes.
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ABSTRACT 

To limit global warming to less than 2°C by the end of the century, worldwide economies must 
reach carbon neutrality by 2050. Large scale diffusion of low carbon technologies represent an 
important component of international strategies to achieve such a target, largely driven by the 
implementation of environmental policies.  
This thesis builds upon concepts from network theory to investigate both theoretically and 
empirically diffusion dynamics on the path towards a low carbon society. It provides analysis for 
three different diffusion perspectives : clean technologies, environmental policies and effects of 
economic shocks on (imported/generated) emissions. Overall, it illustrates how network structures, 
positions of embedded agents and the strength of neighborhood connections are critical 
dimensions to take into account when designing policies aiming at accelerating the green 
transition.

MOTS CLÉS 

Réseaux - Diffusion - Technologies bas carbone - Politiques Environnementales 

RÉSUMÉ 
Pour maintenir le réchauffement climatique en dessous de 2°C d'ici la fin du siècle, les économies 
mondiales doivent atteindre la neutralité carbone d'ici 2050. La diffusion à grande échelle de 
technologies bas carbone représente une composante majeure des stratégies internationales visant 
à atteindre cet objectif, largement soutenue par la mise en œuvre de politiques environnementales. 
Cette thèse s'appuie sur la théorie des réseaux pour étudier théoriquement et empiriquement les 
dynamiques de diffusion sur le chemin d'une société bas carbone. Elle propose une analyse de trois 
perspectives de diffusion : les technologies vertes, les politiques environnementales et les effets des 
chocs économiques sur les émissions (importées/générées).  
Ce travail illustre comment les structures de réseaux (sociaux/économiques), les positions des 
agents et la force des connexions qu’ils entretiennent sont des dimensions essentielles à prendre en 
compte lors de la conception de politiques visant à accélérer la transition énergétique.

KEYWORDS 

Networks - Diffusion - Clean Technologies - Environmental Policies
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