
HAL Id: tel-03248178
https://theses.hal.science/tel-03248178

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-aware management of scientific workflows in the
Cloud : a Cloud provider-centric vision

Emile Cadorel

To cite this version:
Emile Cadorel. Energy-aware management of scientific workflows in the Cloud : a Cloud provider-
centric vision. Distributed, Parallel, and Cluster Computing [cs.DC]. Ecole nationale supérieure Mines-
Télécom Atlantique, 2020. English. �NNT : 2020IMTA0195�. �tel-03248178�

https://theses.hal.science/tel-03248178
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

l’École Nationale Supérieure
Mines-Télécom Atlantique
Bretagne Pays de la Loire - IMT Atlantique

ÉCOLE DOCTORALE N O 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Emile CADOREL
Energy-aware management of scientific workflows in the Cloud : A
Cloud provider-centric vision

Thèse présentée et soutenue à Nantes, le 21 octobre 2020
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)
Thèse N o : 2020IMTA0195

Rapporteurs avant soutenance :

Romain ROUVOY Professeur (HDR), Université de Lille
Patricia STOLF Maîtresse de conférence (HDR), Université de Toulouse Jean-Jaurès

Composition du Jury :
Examinateurs : Frédéric DESPREZ Directeur de recherche (HDR), Inria Grenoble Rhones Alpes

Stéphane GENAUD Professeur (HDR), Université de Strasbourg
Romain ROUVOY Professeur (HDR), Université de Lille
Patricia STOLF Maîtresse de conférence (HDR), Université de Toulouse Jean-Jaurès

Dir. de thèse : Jean-Marc MENAUD Professeur (HDR), IMT Atlantique
Co-encadrante de thèse : Hélène COULLON Maîtresse assistante, IMT Atlantique

Invité(s) :
Georges DA COSTA Maître de conférence (HDR), Université de Toulouse Paul Sabatier

REMERCIEMENTS

Je souhaiterais tout d’abord remercier mes deux encadrants Jean-Marc Menaud, et
Hélène Coullon, pour leur soutien et leur contribution durant ces trois années de thèse.
Tous les travaux présentés dans les pages de ce manuscrit n’auraient pu être possibles
sans leurs précieux conseils et remarques. Je les remercie pour leur supervision avisée, sur
des questions à la fois scientifiques et pédagogiques, qui m’aura transmis une méthode de
travail efficace et éclairée, que je m’efforcerai de préserver par la suite.

J’adresse également mes remerciements aux rapporteurs de ce manuscrit, Romain
Rouvoy et Patricia Stolf, pour leur patient travail de relecture. La lisibilité et la qualité
de ce document ont pu être grandement améliorées grâce à leurs commentaires pertinents
et précis. Je remercie également Frédéric Desprez, Stéphane Genaud et Georges Da Costa,
d’avoir accepté de faire partie de mon jury de thèse.

Tout au long de ces trois années de thèse j’ai eu la chance de pouvoir interagir avec
des personnes remarquables. Je souhaite adresser un grand remerciement à l’ensemble
de l’équipe STACK pour leur accueil chaleureux et leur convivialité. Un remerciement
particulier à toutes les personnes avec qui j’ai eu l’occasion de m’asseoir pour boire un
verre et parler d’informatique ou bien d’autres sujets.

Merci aussi à toute ma famille, notamment mes grands-mères, mes oncles et tantes,
et bien évidemment mes deux frères Benoît et Paul et mes parents, dont le soutien et les
encouragements constants m’ont été d’une grande aide et ont contribué à l’aboutissement
de ce travail.

3

ABSTRACT

Computer-based scientific simulations and experimentation are generally very complex
and are composed of many parallel processes. In order to easily highlight the parallelizable
parts of such applications, and to allow efficient execution, many scientists have opted to
define their applications as scientific workflows. A scientific workflow represents an appli-
cation in the form of a set of unitary processing tasks (e.g. data formatting, performing
an analysis, etc.), linked by dependencies. Nowadays, thanks to their low cost, elasticity
and on-demand aspect, Cloud computing services are widely used for the execution of
scientific workflows. Users executing workflows on such environment manage the execu-
tion of their workflow as well as the needed resources, using a standard service such as
IaaS (Infrastructure-as-a-Service). Nevertheless, since Cloud computing services are not
specific to the nature of the application to be run, resource usage is not as optimized as
it could be.

In this thesis we propose to shift the management and the execution of scientific
workflows on the Cloud computing provider’s side in order to offer a new type of service
dedicated to scientific workflows. This new approach aims at improving resource man-
agement for a Cloud provider, by providing additional information on the nature of the
applications to be executed. This improvement leads to a reduction of the energy consump-
tion, thus to a reduction of the environmental impact of the distributed infrastructure. In
this context, two problems are raised, namely, the resolution of the scheduling problem,
and the execution of the computed planning. On the one hand, to solve the scheduling
problem, we introduce two algorithms. These algorithms solve the problem of scheduling
several scientific workflows submitted by several users, on a distributed infrastructure.
We show through experiments on real infrastructures that they offer an important gain in
terms of energy consumption. On the other hand, to be able to execute a planning com-
puted by a scheduling algorithm, we propose a new Cloud computing service called WaaS
(Workflow-as-a-Service). This service is designed as a turnkey solution for a Cloud com-
puting provider, allowing extensibility in the management of virtualization mechanisms,
extensibility in scheduling policies, and consideration of scalability issues.

4

RÉSUMÉ

Beaucoup de scientifiques réalisant des simulations ou des expériences sur ordinateur
ont pris l’habitude de développer leurs applications sous la forme de ce que l’on appelle des
workflows scientifiques. Les workflows peuvent être considérés comme un outil permettant
de séparer les différentes étapes d’une opération complexe en plusieurs tâches plus sim-
ples et interdépendantes, par exemple récupérer des données à partir d’un instrument de
mesure, formater des données ou effectuer des analyses sur les données acquises. Un work-
flow scientifique décrit donc la topologie d’une application comme un ensemble de tâches
liées entre elles par des dépendances, ces dépendances définissant l’ordre d’exécution de
chaque tâche.

En séparant le traitement de l’application en un ensemble de tâches, les traitements
qui peuvent être exécutés en parallèle sont mis en évidence. Les workflows peuvent être
composés d’un grand nombre de tâches et de dépendances, et peuvent donc devenir très
complexes. Afin d’obtenir des temps de calcul raisonnables, il est nécéssaire d’utiliser des
infrastructures offrant de nombreuses ressources de calcul pour tirer parti de la parallélisa-
tion et ainsi réduire le temps d’attente avant l’obtention des résultats. Les infrastructures
distribuées semblent être le choix idéal pour résoudre ce problème. Elles tirent parti du
regroupement d’un ensemble de machines physiques communiquant via un réseau pour
obtenir plus de puissance de calcul qu’une seule machine physique ne pourrait en fournir.

Les infrastructures distribuées peuvent être compliquées à gérer, et les scientifiques
qui développent des workflows scientifiques ne sont généralement pas des experts en in-
formatique, en gestion de matériel ou en gestions des dépendances logiciels. En effet, pour
pouvoir exécuter les workflows, les scientifiques s’appuient généralement sur des outils
appelés moteurs de workflows. Ces moteurs prennent en charge l’exécution des work-
flows scientifiques dans un environnement offrant des ressources de calculs. Ces moteurs
de workflow, en plus de permettre l’exécution automatique des workflows, sont un bon
moyen d’améliorer la réutilisation des expérimentations, car ils masquent la complexité
de l’infrastructure et sont capables de reproduire l’exécution. Cette amélioration de la
réutilisation et de la ré-éxecution permet tout autant d’améliorer le partage des résultats.

Aujourd’hui, la grande majorité des moteurs de workflow proposent d’utiliser le Cloud

5

computing comme environnement d’exécution. Le Cloud computing est devenu un envi-
ronnement très populaire ces dernières années, fournissant des ressources de calculs et
de stockage à faible coût, et à la demande. Le Cloud computing peut définir différents
types de services, offrant différents types d’abstraction des ressources mises à disposition.
Ces services s’appuient sur des technologies de virtualisation pour permettre aux utilisa-
teurs d’accéder aux ressources de calcul ou de stockage de manière élastique. L’élasticité
désignant la capacité pour un utilisateur à accéder rapidement à une ressource de calcul
ou de stockage et de pouvoir la libérer lorsqu’elle n’est plus nécessaire. Cette gestion des
ressources dans un environnement Cloud donne aux utilisateurs l’illusion de disposer d’un
nombre infini de ressources, et ceux-ci sont donc uniquement limitées par leur budget.
Dans ce contexte, les moteurs de workflows qui visent l’exécution dans un environnement
de Cloud computing ne se préoccupent pas de la gestion des ressources physiques - le sup-
port des ressources virtuelles utilisées pour l’exécution des différentes tâches des workflows
- et laissent cette préoccupation au fournisseur de Cloud.

Malheureusement, cela conduit à une déconnexion entre la réalité logicielle et la réalité
matérielle. D’un côté les fournisseurs de Cloud n’étant pas informés du type d’application
s’exécutant sur leurs ressources, ne peuvent efficacement optimiser la gestion de leur in-
frastructure physique. D’un autre côté, les moteurs de workflow, même s’ils sont informés
de la forme des applications à exécuter, ne peuvent fournir d’optimisation pour la ges-
tion de l’infrastructure physique, comme cette préoccupation est entièrement laissée au
fournisseur de Cloud. Dans cette thèse, nous introduisons une nouvelle approche pour la
gestion et l’exécution des workflows scientifiques, en plaçant les décisions d’allocation de
ressources du côté du fournisseur de Cloud, afin d’offrir un nouveau type de service de
Cloud dedié au workflows scientifiques. Grâce à cette approche, les fournisseurs de Cloud
peuvent être plus informés sur les applications tournant sur leur infrastructure, et par
conséquent peuvent prendre des décisions plus intelligentes quant à la gestion de leurs
ressources.

Contributions

Dans cette thèse est introduite une nouvelle approche pour la gestion des ressources
physiques, dédiée aux workflows scientifiques. La nouvelle approche vise à gérer l’infrastructure
physique plus efficacement qu’elle ne le serait en utilisant un service Cloud existant. Afin
de pouvoir exécuter les workflows scientifiques sur une infrastructure distribuée, en dé-

6

plaçant la gestion des workflows du côté du fournisseur de Cloud, nous proposons de nous
concentrer sur les deux étapes de l’exécution des workflows : la résolution du problème
de l’ordonnancement et l’exécution de la planification calculée. L’ordonnancement d’un
workflow scientifique consiste à créer un planning où chaque tâche du workflow est associée
à une ressource de calcul à un instant donné.

L’exécution de la planification, outre la mise à disposition et la libération des ressources,
doit pouvoir garantir le respect des dépendances entre les tâches des workflows (dépen-
dances de fichiers). En effet, chaque tâche d’un workflow scientifique, prend des fichiers
en entrée et produit des fichiers, qui doivent être transférés aux tâches qui lui succèdent.

Les contributions principales de cette thèse sont les suivantes :

— Algorithme statique d’ordonnancement de workflows scientifiques pour
l’optimisation énergétique dans un environnement de Cloud computing
- Cet algorithme d’ordonnancement est présenté comme une solution pour un four-
nisseur de Cloud qui vise à réduire la consommation d’énergie de son infrastruc-
ture physique. Cet algorithme vise à minimiser le nombre de machines physiques
nécessaires pour exécuter un ensemble de workflows scientifiques soumis par les
utilisateurs dans l’environnement de Cloud à un instant donné. En effet, l’un des
principaux coûts d’exploitation d’un fournisseur de Cloud computing est la consom-
mation d’énergie. Cette consommation peut être réduite en limitant le nombre de
machines physiques sous-utilisées [43,79]. À cette fin, dans le problème abordé dans
cette contribution, une date limite est associée à chaque workflow. L’algorithme pro-
posé est basé sur une fonction heuristique, qui ne prend en compte que les machines
physiques déjà utilisées lors de l’ordonnancement des tâches d’un workflow, tant que
le délai est respecté (ordonnancement des workflows les uns après les autres, triés
par priorité). Lorsque la date limite ne peut plus être respectée, l’algorithme fait
marche arrière et prend en compte de nouvelles machines physiques (celles qui ne
sont pas utilisées). Ce travail a été publié dans la conférence internationale Green-
Com 2019 [46].

— Algorithme dynamique d’ordonnancement de workflows scientifiques pour
l’optimisation de l’équité entre les utilisateurs et l’optimisation énergé-
tique - Cet algorithme peut être défini comme un algorithme d’ordonnancement de
workflows scientifiques pour un fournisseur de Cloud computing, qui vise à réduire
la consommation d’énergie de son infrastructure, tout en assurant l’équité entre les
utilisateurs. Comme pour notre première contribution, à chaque workflow est as-

7

sociée une date limite, l’équité entre les utilisateurs étant définie comme le respect
de la date limite associée à leurs soumissions. Cet algorithme se situe dans un con-
texte où les soumissions des utilisateurs sont faites à des moments incertains, ce qui
doit être pris en compte afin de garantir l’équité entre les utilisateurs. Comme les
nouvelles soumissions peuvent arriver à tout moment, l’algorithme est capable de
reconsidérer le planning déjà calculé contenant les anciennes soumissions. En effet,
les nouveaux workflows soumis peuvent avoir une priorité plus élevée (délais plus
courts) que les workflows déjà ordonnancés. L’autre objectif de l’algorithme (outre
l’optimisation de l’équité) est la minimisation de la consommation d’énergie, qui est
réduite en localisant les différentes tâches sur les mêmes machines physiques. Ce
travail a été publié dans la conférence internationale CCGrid 2020 [47].

— WaaS : Workflow-as-a-Service, un service de Cloud computing pour l’exécution
de workflows scientifiques - Le WaaS est un nouveau service de Cloud comput-
ing spécifiquement dédié à l’exécution de workflows scientifiques. Nous montrons que
ce choix conceptuel renforce la séparation des préoccupations entre les utilisateurs
finaux - les acteurs qui soumettent un workflow pour une exécution - et les four-
nisseurs de Cloud - les acteurs qui gèrent une infrastructure physique et fournissent
des ressources aux utilisateurs finaux. Le concept améliore également la gestion des
ressources du point de vue des fournisseurs de Cloud. Pour faciliter l’intégration
du nouveau service WaaS par les fournisseurs de Cloud, il a été conçu comme une
solution clé en main qui permet une modularité des mécanismes de virtualisation
et des politiques d’ordonnancement, ainsi que des problèmes de passage à l’échelle,
permettant aux fournisseurs de Cloud de personnaliser le service pour des besoins
spécifiques.

Toutes les contributions présentées dans ce manuscrit ont été évaluées à travers des
expérimentations menées sur une infrastructure réelle. Ces expériences ont été menées
sur la plateforme d’expérimentation Grid’5000 [13], et les codes sources utilisés dans les
expérimentations sont disponibles sur des dépôts publics afin de pouvoir reproduire les
expériences 1 2.

1. https://gitlab.inria.fr/ecadorel/workflowplatform
2. https://gitlab.inria.fr/ecadorel/waas/

8

https://gitlab.inria.fr/ecadorel/workflowplatform
https://gitlab.inria.fr/ecadorel/waas/

TABLE OF CONTENTS

1 Introduction 19
1.1 Research problem . 19
1.2 Contributions . 21
1.3 Publications . 23
1.4 Thesis organization . 23

2 Context 25
2.1 Scientific workflows: overview and challenges 26
2.2 Physical infrastructures . 27
2.3 Operating system and Virtualization . 28

2.3.1 Virtual machines . 29
2.3.2 Containers . 31

2.4 Paradigm for infrastructure management 32
2.4.1 Grid computing . 32
2.4.2 Cloud computing . 33
2.4.3 Cloud service models . 35

2.5 Scheduling of scientific workflows . 36
2.5.1 Scheduling simple tasks . 37
2.5.2 Scheduling heterogeneous applications 38
2.5.3 Scheduling with temporal knowledge 39
2.5.4 Workflow scheduling . 40

2.6 Energy efficiency and consolidation . 41
2.6.1 Data center energy consumption . 42
2.6.2 Physical machine energy consumption 43
2.6.3 Energy saving techniques . 45

2.7 Conclusion . 46

3 Related work 47
3.1 Scientific workflow scheduling . 47

9

TABLE OF CONTENTS

3.1.1 Criteria of interest . 48
3.1.2 Algorithm classification . 49
3.1.3 Scheduling on Grid computing . 52
3.1.4 Scheduling on Cloud computing . 58
3.1.5 Discussion . 64

3.2 Scientific workflow execution . 67
3.2.1 Criteria of interest . 67
3.2.2 Scientific workflow execution systems 69
3.2.3 Discussion . 70

I Workflow scheduling algorithms for Cloud providers 73

4 OnlyUsedNodes : A workflow scheduling deadline-based algorithm for
energy optimization 75
4.1 Introduction . 76
4.2 Problem modeling . 77

4.2.1 Applications and execution environment 77
4.2.2 Software and Hardware constraints 78
4.2.3 Temporal dependency constraints 79
4.2.4 Communications . 80
4.2.5 Cost modeling . 80
4.2.6 Objective . 81

4.3 OnlyUsedNodes algorithm . 82
4.3.1 Priorities and deadlines . 83
4.3.2 Backtrack scheduling algorithm . 85
4.3.3 Resource selection . 87
4.3.4 Complexity . 88

4.4 Conclusion . 89

5 NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm
for Fairness and Energy Optimization 91
5.1 Introduction . 92
5.2 Modeling and Problem Formulation . 93

5.2.1 Workflow definition . 93

10

TABLE OF CONTENTS

5.2.2 Infrastructure definition . 94
5.2.3 Scheduling problem . 94
5.2.4 Fairness objective . 97
5.2.5 Energy objective . 97

5.3 Deadline based dynamic algorithm . 99
5.3.1 Priorities and deadlines . 99
5.3.2 Scheduling near the deadline . 100
5.3.3 Panic mode . 105
5.3.4 Fitness functions . 107

5.4 Conclusion . 108

6 Evaluation of scheduling algorithms 109
6.1 Simulation . 110

6.1.1 Simple workload scheduling . 110
6.1.2 Complex workload scheduling . 115

6.2 Execution on real infrastructure - Environment description 118
6.2.1 Infrastructure . 119
6.2.2 Execution platform . 119
6.2.3 Workflows . 120

6.3 Execution on real infrastructure - OnlyUsedNodes evaluation 120
6.3.1 Scenario and performance metrics 121
6.3.2 Evaluation results . 122

6.4 Execution on real infrastructure - NearDeadline evaluation 124
6.4.1 Scenarios and performance metrics 124
6.4.2 Small workflows scheduling . 125
6.4.3 Scalability evaluation . 132
6.4.4 Analysis of the α parameter . 134

6.5 Conclusion . 137

II Automatic execution of scientific workflows 139

7 WaaS : Workflow as a Service
A Cloud service for scientific workflow execution 141
7.1 Introduction . 141

11

TABLE OF CONTENTS

7.2 WaaS : Workflow as a Service . 142
7.2.1 End-user concerns . 142
7.2.2 Cloud provider concerns and Waas architecture 144

7.3 Evaluation . 149
7.4 Conclusion . 154

8 Conclusion 155
8.1 Achievements . 155
8.2 Perspectives . 159

8.2.1 Prospects related to energy optimization 159
8.2.2 Prospects related to service oriented execution 160

Bibliography 161

12

LIST OF FIGURES

2.1 Example of scientific workflow . 26
2.2 The two types of Hypervisor . 30
2.3 Container system . 32
2.4 FIFO algorithm example . 37
2.5 Round-Robin algorithm example . 38
2.6 Wasted resources from non-elastic reservation 41
2.7 Average energy consumption distribution of 94 datacenters from 2006 to 2015 [98] 42
2.8 Distribution of the power consumption of a physical machine [83] 43
2.9 Power consumption of one ecotype machine with a variable CPU load 44

3.1 Example of workflow with synchronization task 64
3.2 Representation of delay introduced by synchronization with online (1) and

with predictive (2) algorithms . 65

4.1 Representation of the gain between communication done on the VMs (1)
and on the node (2) . 81

4.2 Table of symbols of the model of section 4.2 82
4.3 Example of scientific workflow . 84

5.1 Table of symbols of the model of section 5.2 98
5.2 Scheduling near the deadline to have free resources 101
5.3 Scheduling with low resources to have free resources 101
5.4 Collision when increasing the capacities of a VM on a server with 4 CPUs . 104
5.5 Collision when increasing the length of a VM on a server with 4 CPUs . . 104

6.1 Topology of the Montage workflow . 110
6.2 Example of result computed by the Montage workflow 111
6.3 Comparison of the number of nodes used between v-HEFT and OnlyUsedNodes

with four different deadlines D. 112

13

LIST OF FIGURES

6.4 Comparison of immediate power consumption between v-HEFT and OnlyUsedNodes
with five different deadlines D. 114

6.5 Comparison of execution time between v-HEFT and OnlyUsedNodes
with five different deadlines D. 115

6.6 Comparison of the power consumption through time between the different
simulated scenarios of Table 6.3. 118

6.7 Representation of delay introduced by synchronization with HEFT algorithm123
6.8 Power usage of the different scenario executions 128
6.9 Time violation of the different scenario executions 129
6.10 The number of successful execution under deadline 130
6.11 Number of instanciated VMs during the different scenario executions . . . 131
6.12 Distance to deadline of the workflow executions 133
6.13 Distance to deadline of each workflow with variable α parameter 135
6.14 Sum of the time violation (Eq. 5.10) and sum of the time ahead (Eq. 5.12)

with variable α parameter . 136
6.15 Power-usage and number of VMs for NearDeadlineTask and NearDead-

lineVCpu execution with a variable α parameter 137

7.1 Meta-grammar of the workflow description file 143
7.2 Example of a workflow with two tasks by using a cloud-specific-grammar

built from the meta-grammar. 145
7.3 Worker description file . 146
7.4 Example of orders in Scala AKKA implementation of a KVM Worker . . . 147
7.5 Comparison of the makespan of each submitted workflow. 152

14

LIST OF TABLES

2.1 Part of the catalog of the IaaS service of Amazon EC2 - April 2020 -
https://aws.amazon.com/ec2/pricing/on-demand/ 35

3.1 Class of the algorithm of the related work for Grid computing environment 57
3.2 Criteria of interest of the contributions of this thesis taken into account by

Grid scheduling algorithms . 58
3.3 Criteria of interest of the contributions of this thesis taken into account by

Cloud scheduling algorithms . 63
3.4 Class of the algorithm of the related work for Cloud computing environment 64
3.5 Capabilities of Cloud-oriented workflow engines of the literature. 71

4.1 Weight and ranks of the example workflow of Figure 4.3 83
4.2 Deadlines of the tasks of the example workflow of Figure 4.3 with a global

deadline of 100 seconds . 85

6.1 Description of the simulated nodes . 112
6.2 Results of the scheduling of complete workload composed of 100 Montage

workflows, where the percentages are computed based on the v-HEFT
results. 113

6.3 Percentages and deadlines of the workflows composing the complex simu-
lated workloads . 116

6.4 Results of the scheduling of the different simulated scenarios, where the
percentages are computed based on the results of the v-HEFT execution. 116

6.5 Description of the PMs of the real infrastructure used in the evaluation . . 119
6.6 Description of the 31 tasks composing Montage 31 - namely the average

and the deviation of the length, the size of the executable and the sizes of
the input and output data . 120

6.7 Description of the 619 tasks composing Montage 619 - namely the average
and the deviation of the length, the size of the executable and the sizes of
the input and output data . 121

15

https://aws.amazon.com/ec2/pricing/on-demand/

LIST OF TABLES

6.8 Power-usage and nb-used (cf. 6.3.1), with the gain computed in comparison
to v-HEFT results . 122

6.9 Description of the different scenarios of the evaluation of NearDeadline
with small workflows . 126

6.10 Power-usage (cf. 6.4.1) during the second evaluation, with gain computed
in comparison with v-HEFT results . 132

7.1 Description of the used infrastructure . 151
7.2 Number of virtual resources provisioned during the experiment 153
7.3 Distribution of the workload across clusters 153

16

LIST OF ALGORITHMS

1 HEFT algorithm . 84
2 OnlyUsedNodes algorithm . 84
3 OnlyUsedNodes single workflow scheduling 85
4 OnlyUsedNodes backtrack scheduling 86
5 OnlyUsedNodes resource selection . 87
6 NearDeadline algorithm . 100
7 Single workflow scheduling near its deadline 101
8 Single task scheduling near its deadline . 102
9 Single task scheduling near its deadline on one node 103
10 Single task scheduling near its deadline on one VM 103
11 Single task scheduling in best effort on one VM 106

17

Chapter 1

INTRODUCTION

Contents
1.1 Research problem . 19

1.2 Contributions . 21

1.3 Publications . 23

1.4 Thesis organization . 23

1.1 Research problem
Scientists performing computer-based simulations or experiments have become ac-

customed to developing their applications in the form of what is known as a scientific
workflow. Workflows can be seen as a tool to separate the different steps of a complex
operation into several simple interdependent tasks, for example retrieve data from mea-
sure instrument, format data or run analysis on acquired data. A scientific workflow thus
describes the topology of an application as a set of tasks linked together by dependen-
cies, these dependencies defining the order of execution of each task, and the files to be
transferred from a task to its successors.

By separating the application processing into a set of simple tasks, the processes that
can be performed in parallel are highlighted. Workflows can be composed of a large num-
ber of tasks and dependencies, and therefore become very complex. In order to achieve
reasonable calculation times, infrastructures offering many computing resources must be
used to take advantage of the parallelism and thus reduce the waiting time before results
are obtained. Distributed infrastructure seemed to be the perfect choice to resolve this
problem. Indeed, they take advantage of the pooling of a large number of physical ma-
chines, that communicate through a network, to obtain more computing power than a
single physical machine could possibly provide.

Distributed infrastructures can be complicated to manage, and the scientists develop-

19

Chapter 1 – Introduction

ing scientific workflows are generally not experts in computer science, hardware manage-
ment, or software dependencies management. Indeed, to be able to execute the workflows,
they generally rely on tools called workflow engines. These engines take care of the execu-
tion of workflows in an environment offering computing resources. These workflow engines
in addition to providing automatic execution of workflows are a good way to enhance re-
usability and reproducibility of experimentation and the sharing of results in scientific
communities, as they hide the complexity of the infrastructure and are able to reproduce
the execution.

Today, the vast majority of workflow engines offer to use Cloud computing as an
execution environment. Cloud computing has become a very popular environment in re-
cent years, providing low-cost computing and storage resources. Cloud computing defines
different types of services with different abstraction levels, from low-level infrastructure
services toward high-level ready to use softwares. These services rely on virtualization
technologies to give users access to computing resources in an elastic manner, when elas-
ticity refers to the ability of the user to quiclky access to computing or storage resources
and to be able to release them when they are no longer needed. This management of
resources in a Cloud environment gives to the users the illusion of having an infinite
number of resources, limited only by their budget. In this context, workflow engines that
handle Cloud environments do not worry about the management of physical resources -
the support of virtual resources used for the execution of different workflow tasks - and
leave this concern to the Cloud provider.

Unfortunately, this leads to a disconnection between the reality of software and hard-
ware world. On the one hand, Cloud providers, because they are not aware of the type
of applications running on their resources, cannot efficiently optimize the management of
their physical infrastructures. On the other hand, workflow engines, even if they are aware
of the type of applications to execute, cannot provide optimizations for the management
of the physical infrastructure, as this concerns is left entirely to the Cloud provider. In
this thesis, we introduce a new approach for the management and execution of scientific
workflows by locating the decision of resource allocation on the Cloud provider side, in
order to offer a new kind of Cloud service dedicated to scientific workflows. Thanks to
this approach, the Cloud providers can be more aware of the application running on their
infrastructures, and as a result can make smarter decisions regarding the management of
their resources.

20

1.2. Contributions

1.2 Contributions
In this thesis is introduced a new approach for the management of physical resources,

dedicated to scientific workflows. The new approach aims at managing the physical in-
frastructure more efficiently than it would be using an existing Cloud service. In order to
be able to run scientific workflows on a distributed infrastructure, by shifting workflow
management to the Cloud provider side, we propose to focus on the two steps of workflow
execution: solving the scheduling problem, and executing the computed planning. The
scheduling of a scientific workflow consists in the creation of a planning where each task
of the workflow is associated with a computational resource at a given instant.

The execution of the planning, in addition to carrying out resource provisioning and
releases, must be able to guarantee that dependencies between the workflow tasks (file
dependencies) are respected. Indeed, each task of a scientific workflow, takes files as input
and produces files, that are to be transferred to its successors tasks.

The main contributions of this thesis can be summarized as follows:

— Static scientific workflow scheduling algorithm for energy optimization
in a Cloud computing environment - This scheduling algorithm is presented
as a solution for a Cloud provider that aims to reduce the energy consumption of
its physical infrastructure. This algorithm aims to minimize the number of physical
machines required to execute a set of scientific workflows submitted by users in the
Cloud environment at a given instant. Indeed, one of the main operating costs of a
Cloud computing provider is power consumption. This consumption can be reduced
by limiting the number of underused physical machines [43,79]. To this end, in the
problem addressed in this contribution, a deadline is associated to each workflow.
The proposed algorithm is based on a heuristic function, that considers only the
already used physical machines while scheduling the tasks of a workflow as long as
the deadline is respected (scheduling the workflow one by one, sorted by priority).
When the deadline can no longer be respected, the algorithm performs a backtrack,
and considers new physical machines (unused one). This work has been published
in the GreenCom 2019 international conference [46].

— Dynamic scientific workflow scheduling algorithm for user fairness and
energy Optimization - This algorithm can be defined as a scientific workflow
scheduling algorithm for a Cloud computing provider, that aims at reducing the
energy consumption of its infrastructure, while ensuring fairness or equity between

21

Chapter 1 – Introduction

users. As for our first contribution, to each workflow is associated a deadline, the
fairness between the users being defined as the respect of the deadline associated to
their submissions. This algorithm takes place in a context where user submissions
are made at uncertain times, which must be taken into account in order to guaran-
tee fairness between users. As the new submissions can arrive at any moment, the
algorithm is able to reconsider the already computed planning containing the old
submissions. Indeed, new submitted workflows may have higher priority (shorter
deadlines) than already scheduled workflows. The other objective (in addition to
fairness optimization) of the algorithm is the minimization of the energy consump-
tion, which is reduced by locating the different tasks on the same physical machines.
This work has been published in the CCGrid 2020 international conference [47].

— WaaS: Workflow as a Service, a Cloud computing service for scientific
workflow execution - The WaaS is a new Cloud computing service specifically
dedicated to the execution of scientific workflows, with a service specific vision. We
show that this conceptual choice reinforces the separation of concerns between the
end-users - actors that submit a workflow for execution - and the Cloud providers -
actors that manage a physical infrastructure, and provide resources to the end-users.
The concept also improves resource management from the perspective of the Cloud
providers. To facilitate the integration of the new WaaS service by Cloud providers,
it has been designed as a turnkey solution that addresses modularity of virtualization
mechanisms and scheduling policies, as well as scalability issues, enabling for the
Cloud providers some customizations of the service for specific needs.

All the contributions presented in this manuscript have been evaluated through ex-
perimentation carried out on a real infrastructure. These experiments were conducted on
the Grid’5000 [13] experimental platform, and the source codes used for the execution are
available on public repositories in order to reproduce the experimentations 1 2.

1. https://gitlab.inria.fr/ecadorel/workflowplatform
2. https://gitlab.inria.fr/ecadorel/waas/

22

https://gitlab.inria.fr/ecadorel/workflowplatform
https://gitlab.inria.fr/ecadorel/waas/

1.3. Publications

1.3 Publications
Papers in International conferences

— Emile Cadorel, Hélène Coullon, and Jean-Marc Menaud. A workflow scheduling
deadline-based heuristic for energy optimization in Cloud. In GreenCom 2019
- 15th IEEE International Conference on Green Computing and Communications,
Atlanta, United States, 2019. IEEE.

— Emile Cadorel, Hélène Coullon, and Jean-Marc Menaud. Online Multi-User Work-
flow Scheduling Algorithm for Fairness and Energy Optimization. In CCGrid 2020
- 20th International Symposium on Cluster, Cloud and Internet Computing, Mel-
bourne, Australia, 2020.

Papers in National conferences

— Emile Cadorel, Hélène Coullon, and Jean-Marc Menaud. Ordonnancement multi-
objectifs de workflows dans un Cloud privé. In ComPAS 2018 - Conférence
d’informatique en Parallélisme, Architecture et Système, Toulouse, France, 2018.

1.4 Thesis organization
The rest of this manuscript is organized as follows :

The first chapter presents the context of our research. Section 2.1 presents an overview
on scientific workflows, and the challenges associated to their management. Section 2.2
presents the different types of physical infrastructures that are targeted for the execution
of scientific workflows. Section 2.3 introduces the operating systems and virtualization
mechanisms used in the physical infrastructure management paradigms presented in Sec-
tion 2.4. Section 2.5 presents the scheduling problem, and finally Section 2.6 presents the
problematics of energy consumption within infrastructures, and techniques that can be
used to reduce it.
The second chapter presents the state of the art of this thesis. Section 3.1 presents an
analysis on the literature regarding the scheduling of scientific workflows within both Grid
computing and Cloud computing environments. Section 3.2 presents the related work that
has been carried out regarding the automatic execution of scientific workflows.
The third chapter presents our first contribution on the scheduling of scientific work-
flows. This presentation is divided in two parts. Section 4.2 details the problem modeling,
Section 4.3 presents our new algorithm OnlyUsedNodes.

23

Chapter 1 – Introduction

The fourth chapter presents our second contribution on the scheduling of scientific
workflows. This presentation is divided in two parts. Section 5.2 gives a detailed model of
the problem. Then Section 5.3 presents our new algorithm NearDeadline.
The fifth chapter presents detailed evaluations of our two algorithms presented in Chap-
ter 4 and Chapter 5. This evaluation is separated in four parts. Section 6.1 present a evalu-
tion conducted on a simulator of the algorithm presented in Chapter 4. Then 6.2 presents
a environment of execution on a real infrastructure, that is used in the two evaluations
presented in Section 6.3 and Section 6.4.
The sixth chapter presents our last contribution on the execution of scientific workflows.
This presentation is divided in 2 parts. Section 7.2 details the contribution, i.e., the
submission language, the architecture and the modular aspect of the new WaaS service,
and Section 7.3 evaluates this solution on a real multi-cluster infrastructure.
The seventh chapter concludes this manuscript. In this chapter, the contributions are
summarized and conclusions about the scheduling and the execution of scientific workflows
in a virtualized distributed infrastructure are presented. This conclusion discusses the
limitations of our solutions and describes some perspectives.

24

Chapter 2

CONTEXT

The purpose of this chapter is to give a context to our contributions. First, we present
in detail the concept of scientific workflow, and the key elements necessary to be able
to execute one. Next, we present physical infrastructures that can be used to execute
scientific workflows, followed by an introduction to operating system and virtualization
mechanisms used to manage the physical machines. Thirdly, we present paradigms for
resource management in distributed infrastructures. Fourthly, we present the scheduling
problem, which must be solved in order to run scientific workflows on a distributed in-
frastructure. Finally, we present the energy concerns regarding the physical infrastructure
and the energy-saving techniques that can be used in this context.

Contents
2.1 Scientific workflows: overview and challenges 26
2.2 Physical infrastructures . 27
2.3 Operating system and Virtualization 28

2.3.1 Virtual machines . 29
2.3.2 Containers . 31

2.4 Paradigm for infrastructure management 32
2.4.1 Grid computing . 32
2.4.2 Cloud computing . 33
2.4.3 Cloud service models . 35

2.5 Scheduling of scientific workflows 36
2.5.1 Scheduling simple tasks . 37
2.5.2 Scheduling heterogeneous applications 38
2.5.3 Scheduling with temporal knowledge 39
2.5.4 Workflow scheduling . 40

2.6 Energy efficiency and consolidation 41
2.6.1 Data center energy consumption 42
2.6.2 Physical machine energy consumption 43
2.6.3 Energy saving techniques . 45

2.7 Conclusion . 46

25

Chapter 2 – Context

2.1 Scientific workflows: overview and challenges

Scientific workflows model scientific applications as a set of coarse-grained tasks linked
together by data dependencies. Scientific workflows have emerged as an alternative to ad-
hoc approaches for scientist where the efficiency and reproducibility of experimentation are
enhanced. Indeed, the concept of scientific workflow allows users to easily define multi-step
applications in distinct computational tasks, for example: retrieving data from measure
instrument, formating data or running analysis on acquired data. A workflow defines the
dependencies between the tasks, and is generally defined as a DAG (Directed Acyclic
Graph) [37,54,69,78], where the nodes model the computation tasks, and the arrows the
dependencies between the tasks. Modeling a scientific workflow as a DAG is an interesting
approach to define efficient scientific applications. Indeed, by defining an application as
a flow of unitary operations (single treatment), the parts of the global application that
can be executed in parallel are highlighted naturally. Workflows can be composed of an
arbitrary number of tasks, as well as an arbitrary number of dependencies between the
tasks.

The workflow tasks take input files as entry, and produce output files. These output
files are then used by other tasks of the workflow as their input files and so on, thus creating
data dependencies between tasks. A simple example of scientific workflow is presented in
Figure 2.1, where the tasks B and C depend on the task A, and need to wait the end of
its execution, but can be executed in parallel as they do not depend on each other.

A

B

C

D

E

Figure 2.1 – Example of scientific workflow

There is no accepted consensus on the technology or language that should be used to
describe the tasks making up the workflows, that are addressed in this thesis. For exam-
ple, the Montage workflow [35] is developed using the C language and can be run in a
Linux environment, when the workflow diffcyt [129], uses libraries and scripts developed
in the R language [75]. In addition, some scientists might be constrained by the scientific
equipment they use to create the input data of their workflow. For example, genomics

26

2.2. Physical infrastructures

workflows designed in [109, 111] use data produced by a vendor specific machine 1. To
convert the output files formatted by the machine into standard format, vendor specific
software running on the Windows operating system has to be used, while the other appli-
cations used in the workflow (e.g., Openswath [112]) must be executed on top of Linux.
This heterogeneity allows developers to be quite flexible in the definition of workflows,
but introduces challenges in their management. Indeed, one can therefore define a task
of a workflow as a program with hardware and software requirements. The hardware re-
quirements defining, for example, that a program may need a certain amount of memory,
or a certain amount of CPU cores, when the software requirements refers to the need of
a program to be executed in a specific environment such as a specific operating system,
along with the correctly installed libraries.

In this thesis, we also assume that the users developing workflows have only ba-
sic knowledge in computer science, and no knowledge in resource and infrastructure
management. To be able to run a scientific workflow, users typically use workflow en-
gines [27, 56, 59, 86]. These engines are middlewares that bridge the gap between the
application (i.e., the scientific workflow) and the resources available for execution. A
workflow engine manages the execution of the different tasks making up the workflow,
as well as file transfers from the generating (i.e., source) tasks to the consuming (i.e.,
destination) tasks. They are deployed on a computing infrastructure that contains from
one to several resources. The type of infrastructures on which workflow engines can be
deployed will be presented in the next section.

A workflow engine can be divided into two parts that address two different problems,
namely scheduling and execution. On the one hand, scheduling will be presented in detail
in Section 2.5. This problem is defined as the creation of a planning. A planning associates
to each task of one or multiple workflows, resource reservations on the infrastructure for
a given amount of time. On the other hand, workflow execution represents the execution
of the planning that has been calculated by the scheduler. These two parts are the two
main problems needed to be solved to easily and optimally execute scientific workflows.

2.2 Physical infrastructures
This section presents the physical infrastructure targeted for the execution of scientific

workflows. A physical infrastructure is composed of physical machines, which may contain

1. https://sciex.com/Documents/Downloads/Literature/Tech-Note-MSMSall-SWATH-Acquisition.pdf

27

https://sciex.com/Documents/Downloads/Literature/Tech-Note-MSMSall-SWATH-Acquisition.pdf

Chapter 2 – Context

different hardware components (CPU, memory, hard disk, GPU, etc.). A physical machine
can contain several CPUs, and many CPU cores, allowing several applications to run in
parallel on the same machine. In the remainder of this document, physical machines will
be referred to by the abbreviation PM or node.

A cluster is a set of PMs at the same location (same geographical point) and com-
municating through a network. By using several PMs instead of one, computing power is
improved by allowing even more concurrent computing operations. PMs within a cluster
generally communicates through the same LAN (local area network), thus the bandwidth
between them is assumed homogeneous in this document.

Multiple cluster can communicate through a network (linking the different LANs of
the clusters and creating a N-LAN), creating a more complex physical infrastructure, that
is called a multi-cluster infrastructure. The network creating a link between the clusters
of the multi-cluster infrastructure can be complex and the bandwidth between the cluster
may be heterogeneous. The clusters of a multi-cluster infrastructure are located at the
same geographical point, grouped in data centers or computing centers. Data center and
computing center referring to the capacity of their PMs to be efficient for storing or
computing respectively.

The final level of physical infrastructure that can be created is the aggregation of
several multi-cluster infrastructures, located at different geographical points. This type
of infrastructure is called a geo-distributed infrastructure in this document. As for multi-
cluster infrastructure, the bandwidth between the multi-clusters can be heterogeneous.

2.3 Operating system and Virtualization

In order to manage the various resources (hardware components) of a PM, an OS (op-
erating system) is used. An OS is a software deployed on a PM creating a bridge between
the applications and the hardware components of the PM. To perform this operation, an
OS offers system calls accessible by the applications, allowing them to communicate with
the hardware. The OS is also responsible for managing the execution of the applications
and their access to the hardware, deciding on the reservation of resources in order to avoid
resource access conflicts. The OS is the only software managing the hardware components
of a PM, and only one OS can run at a given instant on a PM.

An OS is the first software that is started on a PM, when it is powered on. The
operation of launching the operating system is called the boot process, and takes a certain

28

2.3. Operating system and Virtualization

amount of time, as the OS needs to perform some operations to be operational. Some OS
are able to manage multiple users using a PM at the same time, by dividing the resources
between the users. However, this division generally does not guarantee that a user will
not use all the resources of a PM, or create an overload, making the PM unusable for the
other users.

Virtualization technologies emerged as a solution to that problem. Indeed, virtualiza-
tion technologies such as VM (virtual machine) allows to divide the resources of a PM,
and assign a certain amount of resources to a given user. Thus, users can no longer use
more resources than those assign to them. Virtualization technologies can also be used to
manage the resources of a PM for applications with different requirements that cannot
be totally fulfilled by the OS alone. For example, applications that need to be executed
in different operating system, applications using conflicting software dependencies, etc.

2.3.1 Virtual machines

Virtual machine is a virtualization mechanism, that works as follows: on a given PM
running a specific OS (named the host OS), a software named hypervisor or Virtual Ma-
chine Monitor [106] is running. An hypervisor is able to create VM (virtual machine). A
VM is the emulation of a PM and as for a PM is composed of different hardware com-
ponents (CPU, memory, Hard drive, etc.), but those components are however emulated,
and are consequently virtual - thus for example, the term VCPU (virtual CPU) will be
used when referring to the CPU cores of a VM. An hypervisor uses the host OS to handle
and reserve the shared resources of the host PM for VMs.

Each VM has access to virtual hardware resources and have the capacity to run a
given OS. From the OS system point of view, there is no difference between a VM and a
PM. Figure 2.2 presents PMs running VMs with the two existing types of hypervisor.

There are two types of hypervisor:

— Hosted (Figure 2.2a): the hypervisor of this type are running as a standard applica-
tion and are communicating with the hardware components via the OS. Qemu [30],
VirtualBox [128] are widely used hosted hypervisors.

— Native (Figure 2.2b): the hypervisors of this type are running at the OS level, and
thus have access to the physical resources directly. With this type of hypervisor only
virtual machines are launchable on the PM. Xen [28] and VMWare ESXI [95] are
widely used native hypervisors.

29

Chapter 2 – Context

Sometimes, hypervisors are an hybrid of a hosted and a native hypervisor, such as
KVM [107] which is running along with an OS, and thus even if it has access to the
physical components, an OS is running on the PM and can run applications other than
just VMs.

PM

OS
Hypervisor

Other
Applications

VM
OS

Apps

VM
OS

Apps

VM
OS

Apps

(a) Hosted Hypervisor

PM

Hypervisor
VM
OS

Apps

VM
OS

Apps

VM
OS

Apps

(b) Native Hypervisor

Figure 2.2 – The two types of Hypervisor

As multiple VMs can be emulated on the same PM, multiple OS can be executed
at the same time on the same PM, however each one of them is running in an isolated
environment. That is to say, that each guest OS (OS running inside a VM), is aware of
the hardware components of its VM, and is isolated from the other guest OSs and from
the host OS (OS running inside the PM running the VMs). This isolation allows the
hypervisor to reserve only a subset of the PM resources for a VM, and use the remaining
resources for other VMs, or to leave these resources for other applications running on the
host OS. This isolation can also be used for security reasons as applications running inside
a VM on a guest OS are not aware of other VMs and their respective applications, and
only have access to the virtual resources emulated by the hypervisor.

A VM being the emulation of a PM, is therefore operating at the software level,
and is not different from a standard application. A single file named an image is used to
represent a template of a VM. This image stores the hard drive storage (installed softwares,
user directories, etc.), as well as information about the emulated hardware components
(number of VCPUs, quantity of RAM, etc.). This image is used by the hypervisor, in
order to create a VM. Thanks to this image file, a VM can be created easily by making
a copy of this file, on any PM running the correct hypervisor. Once the VM has been
created by the hypervisor in accordance with the description of the image file, the VM
has to be booted. Indeed, like a PM, a VM can be turned off, and has to be turned on
to be usable, and therefore the guest OS running inside the VM needs to be booted. This

30

2.3. Operating system and Virtualization

may require some time, depending on the hypervisor and the capacity of the PM running
the hypervisor. This booting process generally ranges from seconds to minutes [97].

2.3.2 Containers

Containers are another widely used virtualization mechanism. Unlike VMs, Containers
brings virtualization of the execution environment, and not of virtual hardware compo-
nents running a guest OS, that is to say containers share the same operating system as
the physical machine (or the virtual machine) that is hosting them. Containers uses the
system calls provided by the host OS in order to access to hardware components, as would
do any application, thus removing the overhead induced by emulating virtual components
in VMs. However, this makes it impossible to run different operating system on the same
PM at the same time. It is also impossible to move a container from a PM to another PM
running different OS.

Historically the idea behind the container technology was to provide the possibility of
installing different software components on a given PM without creating software conflicts.
To this end, a container creates a namespace isolation, by providing a new lib directory
(directory containing the installed softwares), than the one provided by the host OS.
Therefore software can be installed and accessed inside the container without impacting
the configuration of the host OS, and the other application running inside the PM.

The isolation of the Container is also made at the hardware management level. Indeed,
some container systems - such as Docker [8] - make it possible to reserve a subset of the
physical resources for a given container, thus ensuring that a given application will not
consume more resources than those reserved for it. This isolation is made by using the
system calls of the host OS, as unlike VMs, the hardware components used inside a
container are not emulated.

Figure 2.3 represents a PM containing three containers. Docker [8], LXC [15] and
Singularity [19] are widely used container systems.

A container can be represented by a single file, called an image. This image stores
directories, including the lib directory, and user directories. This image is used to create a
container on one PM or to be copied to another PM to create a container on it, however
a container can only be created on a PM using the correct host OS.

31

Chapter 2 – Context

PM (or VM)

OS
Container engine

Other
Applications

Container

Apps

Container

Apps

Container

Apps

Figure 2.3 – Container system

2.4 Paradigm for infrastructure management
There are many paradigms that aim to manage multi-cluster or geo-distributed infras-

tructures [63, 65, 90, 108, 120]. In this section, two main paradigms for managing multi-
cluster or geographically distributed infrastructures are presented. These two paradigms
are the main management paradigms typically used for the execution of scientific work-
flows.

2.4.1 Grid computing

Grid computing [63, 65] is a paradigm for the management of a multi-cluster or a
geo-distributed infrastructure. In Grid computing, multiple users have access to resources
via a reservation system. In this thesis, we consider that the resources that are made
accessible are PMs, even if the Grid paradigm can also give access to other resources
such as network elements (routers for example), disks, etc. In this document, we will use
Definition 2.4.1. This definition summarize the information presented in [62,64].

Definition 2.4.1. “Grid computing is a model for enabling network access to heteroge-
neous hardware resources (e.g., networks, servers, storage) to multiple users for different
usages and purposes.”

Grid computing uses a middleware, that manage the resources, and allows to hide the
complexity of the infrastructure when executing distributed applications. The middleware
can be seen as the bridge between the hardware and the software, and is in a way the OS
of a multi-cluster infrastructure. This middleware relies on the OS running on the different
PMs. The middleware is installed by the Grid computing provider and is accessible by
the users, in order to manage the resources and let the users make reservations.

32

2.4. Paradigm for infrastructure management

The middleware gLite [9], is an example of widely used and lightweight middleware
for Grid computing. It allows to retrieve the list of available resources, and to submit jobs
(basically an application) on a specific resource, as well as retrieve the list of running jobs.

2.4.2 Cloud computing

Cloud computing is a paradigm for the management of a physical infrastructure, that
can also be used to execute scientific workflows, as we will see in Section 3.1. There are
multiple ways to define Cloud computing [125]. In this thesis we will use the Defini-
tion 2.4.2 that is presented by the National institute of Standards and Technology of the
U.S. Department of Commerce [92].

Definition 2.4.2. “Cloud computing is a model for enabling convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”

The Cloud computing is provided in different kind of services by a Cloud provider.
For example Google [12], Amazon [2], Microsoft [16] and IBM [14] are Cloud providers. A
Cloud provider is defined by the NIST institute in [87] according to the Definition 2.4.3.

Definition 2.4.3. “A Cloud provider is a person, an organization; it is the entity respon-
sible for making a service available to interested parties. A Cloud Provider acquires and
manages the computing infrastructure required for providing the services, runs the cloud
software that provides the services, and makes arrangement to deliver the cloud services
to the Cloud Consumers through network access.”

The definition 2.4.2 introduces the main concept of Cloud computing, namely the
concept of on demand resource provisioning. A user can request access to new computing
or storage resources at any time, using a simple protocol. This resource is made available
by a Cloud computing provider, which typically uses virtualization mechanisms to reserve
a portion of its infrastructure, which can be easily moved or released. The notion that
allows resources to be reserved and released quickly is known as elasticity. This allows the
user who needs access to new resources to not have to worry about managing the physical
infrastructure, and moreover, to have access to more or less resources depending on the
workload evolution (quantity of resources used by the application at a given point of time),
thus reducing the cost of application execution. The term resource provisioning differs

33

Chapter 2 – Context

from a standard reservation, as we can have in a Grid computing infrastructure. Indeed,
the resource is not only reserved when provisioned, but is also configured, and unlike
a resource reservation, this resource is generally virtual, and not attached to hardware
resources. This is up to the Cloud provider to make the link between the provisioned
resources and the hardware infrastructure. Further explanation of resource provisioning
will be presented in the section 2.4.3.

Cloud infrastructures

Usually Cloud providers handle one or more data centers, that are distributed across
multiple sites and regions containing multi-cluster infrastructures. The physical infras-
tructure is generally accessible only by the Cloud provider that is managing it. The
resources are made available to the users via different services, that rely on virtualization
mechanisms.

They are multiple types of Cloud computing environments. According to [92] there are
four types of Cloud environments, to which we can add another type (Federated Cloud):

— Private Cloud. A private Cloud environment is installed and maintained for the use
of a single individual or entity (e.g., a company). The users, who can make resource
provisioning requests, are part of the entity that maintains the environment.

— Public Cloud. A Public Cloud is made available for general public use. Anyone can
reserve resources, which are usually rented at a certain price. Examples of Public
Cloud are Google Cloud [12], Amazon AWS [2], and so on.

— Community Cloud. A Community Cloud can be seen as a bridge between a private
and a public Cloud. It is a Cloud used by a community of users who share the
same problematic but do not belong to the same entity. A Community Cloud can
be managed and owned by several organizations.

— Hybrid Cloud. An Hybrid Cloud is the combination of two or more types of Cloud
environment (private, public or community). The different Cloud environments are
linked by a set of software and protocols that allow data or applications to be
exported from one environment to another. For example, this could be used to
extend a private Cloud with limited resources by a public Cloud environment.

— Federated Cloud. As with the Hybrid Cloud, a Federated Cloud is the combination
of several Cloud environments, but this time of the same type. For example, it can

34

2.4. Paradigm for infrastructure management

be used to exploit multiple Cloud offers for the deployment of applications across
several countries, taking into account geographical issues (laws, taxes, etc.).

2.4.3 Cloud service models

There are four main types of Cloud computing service models that can be used to exe-
cute a user defined code and function, and by extension scientific workflows: Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), Function-as-a-Service (FaaS) and Software-
as-a-Service (SaaS) [49,92].

IaaS - Infrastructure as a Service

The Infrastructure as a Service (IaaS) model, installed on an infrastructure by a Cloud
provider, aims at offering computing infrastructure to the user. Generally those infras-
tructure consist of a set of virtual machines communicating through a virtual network,
thus emulating a cluster of machines. The Cloud provider is in charge of the physical
resources that are hosting the virtual ones. Furthermore, the Cloud provider is in charge
of the OS that is installed on the VMs, and generally offers an access to different OSs.
The user chooses the OS that has to be installed on the VM when requesting for a new
virtual resource. Except for the OS, it is up to the clients to manage the software that
will be installed on the virtual resources they have requested. In public Cloud, each vir-
tual machines provisioned for the user will be charged to a specific price depending on
the Cloud provider policy, and on the type of virtual machine. In the Table 2.1, is pre-
sented some examples of virtual machines that can be provisioned from the Amazon Cloud
Provider [2]. For example, a user could rent four instances of t3.micro with 2 VCPUs and
1GB of RAM, and pay 0.0118$ per hour and per server, totaling 0.0472$ per hour.

Machine type Virtual CPUs Memory Pricing (USD)
t3.nano 2 0.5 GiB $0.0059 per Hour
t3.micro 2 1 GiB $0.0118 per Hour
t3.small 2 2 GiB $0.0236 per Hour

t3.medium 2 4 GiB $0.0472 per Hour
t3.large 2 8 GiB $0.0944 per Hour
t3.xlarge 4 16 GiB $0.1888 per Hour
t3.2xlarge 8 32 GiB $0.3776 per Hour

Table 2.1 – Part of the catalog of the IaaS service of Amazon EC2 - April 2020 - https:
//aws.amazon.com/ec2/pricing/on-demand/

35

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

Chapter 2 – Context

PaaS - Platform as a Service

In Platform as a Service (PaaS) model, Cloud providers deploy a computing infras-
tructure as in an IaaS, but also install softwares that will be used to execute a specific
task. For example, PaaS can be used to execute Big data applications such as Hadoop [6]
or Cassandra [5]. The Cloud provider is also in charge of the resource elasticity, letting the
users concentrate on the development of their applications (as in a FaaS). Two examples
of PaaS are HDInsight [17], and Google App Engine [10]. PaaS services are widely used
in Big Data applications.

FaaS - Function as a Service

The Function as a Service (FaaS) model is a Cloud service that aims at providing
serverless computing, where the Cloud provider manages the allocation of compute re-
sources in order to execute the functions of a user. Unlike the IaaS, the user does not
have to manage instances of virtual resources on its own, but will submit functions to be
executed by the Cloud provider. The pricing is generally based on the amount and size
of the resources used by the functions of a user, at each second of the execution, rather
than pre-purchased units of compute capacity. In order to be efficient, and execute the
function as early as possible after the submission, the Cloud provider uses containers [34]
rather than virtual machines, as they provide the ability to be provisioned in milliseconds
instead of some seconds or even minutes [96,97]. Google cloud function [11] and Amazon
lambda [1] are examples of public FaaS services.

SaaS - Software as a Service

In the Software as a Service (SaaS) model, the cloud provider gives users access to an
application running on its infrastructure. Typically, users connect to this application over
the Internet, usually using a web browser. Examples of SaaS applications include email
clients, online calendars or online document editors. SaaS is not discussed in this thesis.

2.5 Scheduling of scientific workflows

In this section, the scheduling problem is presented. This problem must be resolved
in order to execute workflows in a distributed environment. Before explaining how the

36

2.5. Scheduling of scientific workflows

resolution of this problem is related to scientific workflows execution, we will present it in
general cases.

2.5.1 Scheduling simple tasks

A scheduling problem, has to be resolved in an OS, in order to execute the different
applications running on a PM. In operating system, applications are divided into simple
tasks, named threads, which define the sequence of instructions to perform. A CPU core
can execute only one thread at a time. The scheduler is therefore an algorithm that
is assigning to each CPU core a thread, and which is launched periodically to update
the assignments, and execute the threads that have not been assigned and have been
placed in a waiting queue (when there are more threads than CPU cores). If the scheduler
is launched only once, and makes only one assignment decision, there is no temporal
dimension to the problem and therefore the problem solved is a placement problem.

In the context of scheduling in an OS, we can distinguish two types of schedulers:

— Non-preemptive: When a thread is associated to a core, the scheduler waits the end
of the thread before associating another thread to the core. In the case of an infinite
thread, a core will be indefinitely lost for the execution of other tasks.

— Preemptive: The scheduler is allowed to stop a thread under execution on a core
to place another thread. This implies that the operating system is able to stop a
thread temporarily and resume it from where it stopped.

The most basic algorithm that can be implemented is the FIFO (First In First Out).
As it stands, the first task that is submitted will be executed first and the last task
submitted will be executed last. Figure 2.4 presents an example of scheduling with this
algorithm, with one core and three threads. In this example, the length of the tasks is
represented for clarity, but is not known by the scheduler. We can see in that figure that
the algorithm is not good when long tasks are submitted first as potentially small tasks
will have to wait the end of those tasks, this is known as the convoy effect [40]. We can
also observe that this algorithm is non-preemptive.

core

2 4 6 t

T1 T2 Add task
of length 2

core

2 4 6 t

T1 T2 T3

Figure 2.4 – FIFO algorithm example

37

Chapter 2 – Context

A second algorithm that can be used in an operating system is the Round-Robin [82].
This scheduler is preemptive. The idea is that the scheduler assigns a thread to a core
during a certain amount of time (called a time slice), and then switches to the next task
in the queue. It repeats this operation until all the tasks are completed. An example of
the round robin algorithm is presented in the Figure 2.5, with one core and three threads
for a time slice of one second.
core

2 4 6 t

T1 T2 T1 T2 T1 Add task
of length 2

core

2 4 6 t

T1 T2 T3 T1 T2 T3 T1

Figure 2.5 – Round-Robin algorithm example

2.5.2 Scheduling heterogeneous applications

In many cases, the applications to execute are heterogeneous, that is to say they require
different amount of resources to be properly executed. The number of resources required by
an application can be presented as the number of threads composing the application. The
threads being dependent (operating on the same memory segments) have to be executed on
the same PM. Other requirements can be considered for an application, like the quantity of
required memory, the quantity of disk space, etc. Each one of those resource requirements
(of one application) cannot be fulfilled by splitting the demand over multiple PMs. With
the increasing complexity of the infrastructure that is composed of multiple machines, and
with the increasing requirements for resources by concurrent applications, the problem
has gain a new dimension, and became a space problem. This problem is known as the
bin-packing problem, and is defined according to Definition 2.5.1 [67].

Definition 2.5.1. Bin packing problem:
Let I be a finite set of items of size |I| ∈ N, and let s(i) ∈ N be a size for each
item i ∈ I, and V ∈ N be a bin capacity. The problem is to answer the question:
Is there a partition B = B1 . . .BK of size K ∈ N of disjoint subsets of I, such that
∀j ∈ {1, . . . , K}(∑

i∈Bj
s(i)) ≤ V ?

Generally, the research is more interested in the optimization variant of this problem,
which is to find the smallest possible value of K. For sake of simplicity in the rest of this
thesis the term bin packing problem will refer to the optimization variant. Each element of

38

2.5. Scheduling of scientific workflows

the partition B is called a bin, and in the case of placement in a distributed infrastructure
refers to the PMs. It may be possible that there is no solution to the bin packing problem,
and that all the applications don’t fit in the bins at the same time, the number of bins
being finite in the case of a multi-cluster infrastructure, as each bin is a PM. To solve
that problem and still execute all the application, the bin packing problem can be resolved
periodically - as a scheduler of an operating system - to adjust the application assignments,
assuming that the execution time of the applications are finite even if they are unknown.
Here, one can note a distinction between the scheduling and the placement problem. The
bin packing problem when resolved only at a given instant is a placement problem, when
the scheduling problem also has temporal consideration. By executing periodically the
resolution of the bin-packing problem, and thus taking into account newly submitted and
finished tasks, the problem that is resolved can be seen as a scheduling problem.

The bin-packing problem is known to be NP-hard [51,67], and therefore heuristics have
been developed to resolve it. The first heuristic that can be used is First-Fit [102, 139],
which is known to be a good heuristic to compute a relatively good solution in reasonable
amount of time. This heuristic chooses the first bin that can contain the task. Another
heuristic close to First-Fit is Best-Fit [80], this heuristic sorts the bins by usage each time
a task is assigned to a bin. Therefore, the tasks will be assigned to the bin that is the
more used at each turn.

2.5.3 Scheduling with temporal knowledge

We have seen in the previous section the problem of scheduling tasks, with unknown
execution time, consuming only one resource at a time. Then we have seen the scheduling
problem in which each task also has unknown execution time, but is consuming different
amount of resources. In this section, we will present the problem of scheduling when the
execution time of the tasks is known.

Definition 2.5.2. Job shop scheduling problem :
Let J be a set of jobs with different processing time, and M a set of machines with
different computing capacities, where ∀j ∈ J , and ∀m ∈M, timej,m is the time required
by the job j to finish on the machine m. Assuming that a machine can run only one job
at a time, define for each machine m the list Rm as a list of jobs, such as all jobs of

j ∈ J appears once and only once in the set ⋃
m∈M

Rm, and such as max
m∈M

 ∑
j∈Rm

timej,m

is minimal.

39

Chapter 2 – Context

The scheduling problem, better known as Job Shop Scheduling, is an optimization prob-
lem, that can be retrieved in different context. This problem is known to be NP-hard [118],
and its most common and simplest version can be formalized by the Definition 2.5.2 [44].

Assuming that each task is consuming exactly one resource, this problem can be seen
as an extension of the problem seen in the section 2.5.1, where each task has to be assigned
to a core. The main difference being that to each task is associated a processing time. This
enables the possibility to make prediction, and therefore schedule tasks in the future, and
create a scheduling plan. A scheduling plan or planning assigns to each task a resource
and a start instant.

In this context, we can distinguish two types of scheduler :

— Static: the scheduler generates a planning that will not change even if new infor-
mation arrives (i.e., new task submissions). This type of scheduler can be launch
periodically, and creates a planning for a certain period of time, for example creates
the planning of the next hour.

— Dynamic: the scheduler generates a planning that can be updated when new in-
formation arrives. This should not be confused with preemptive scheduler. Indeed,
it is possible to design a non-preemptive dynamic scheduler that is reconsidering
the planning only for the tasks that are not already running. Obviously, it is also
possible to design a dynamic scheduler that is preemptive.

2.5.4 Workflow scheduling

A scientific workflow can be seen as any application that is consuming resources. In
that case, its topology can be totally ignored. In order to consider a workflow as a single
application, its resource requirements has to be adapted to its high peak charge, depending
on the number of tasks that can be executed in parallel at each step of the workflow. For
example in a Cloud IaaS services a VM with sufficient resources to run the whole workflow
would be provisioned, and therefore this VM can be considered as the one task that has
to be scheduled.

By not knowing the topology of the workflow, we might also assume that the execution
time of the workflow is unknown. And therefore, we can consider the bin packing problem
as defined in Definition 2.5.1, where the items are the VMs executing the workflows, and
the bins being the PMs of the infrastructure. When the workflow execution is not using
the totality of the resources reserved by the VM, resources are wasted. An example of

40

2.6. Energy efficiency and consolidation

this phenomenon is presented in Figure 2.6. In this figure the y-axis models an imprecise
vision of the load on the infrastructure as the percentage of used resources, over the time.

load

2 4 6 t

reserved resources used resources

Figure 2.6 – Wasted resources from non-elastic reservation

In our context, we assume that the workflow topology is known and that it is therefore
possible to place the tasks composing it, one by one. This allows resources to be used
more efficiently and to take advantage of the elasticity of the executing environment. In
addition, some algorithms used to schedule scientific workflows consider execution time of
each task, in order to enhance optimization according to different criteria. The section 3.1
will present the related work around the scheduling of scientific workflows in details.

2.6 Energy efficiency and consolidation
Both Cloud and Grid computing environments are based on the same physical infras-

tructure which is a set of cluster of physical machines, regrouped in location that one can
name datacenters or multi-clusters.

The energy efficiency of datacenters has become really important in the recent years as
it raises economic and environmental concerns. It is known that Cloud datacenters have a
significant environmental impact [52,105,115] that increases year after year. For example,
in 2005, the total data center energy consumption located in the U.S. was responsible of
1% of the total US power consumption [91]. The consumption increased by 24% from 2005
to 2010, and about 4% from 2010 to 2014. In 2014, the energy consumption of datacenters
in the US was estimated to 70 billion kWh, representing 1.8% of the total U.S. electricity
consumption. According to [55], a datacenter may consume as much energy as 25,000
households. In this section, we will discuss the energy consumption of the datacenters
during their usage.

41

Chapter 2 – Context

In this thesis, the terms power and energy will be used. Although they are generally
used interchangeably in everyday language, these two terms have very different meanings.
Let us recall the definitions of these two terms. Energy consumption denoted E represents
the amount of energy consumed during a given period of time. Its unit is the joule denoted
J . Power consumption denoted P refers to the instantaneous power consumed at a given
point of time. Its unit is the watt denoted W , which is equal to one joule per second.
The energy consumption is the sum of the power consumption during a given period
of time between Tstart and Tend, as presented in Equation 2.1, where P (t) represents
the power consumption at the instant t. The unit kilowatt-hour (kWh) is generally the
most commonly used billing unit for the delivery of electricity, and also represents energy
consumption, and is equal to 3600 kilojoules (kJ).

E =
Tend∑

t=Tstart
P (t) (2.1)

2.6.1 Data center energy consumption

As presented in the section 2.4.2, Cloud infrastructures are composed of IT equipment
such as physical machines, and network devices used to connect them. IT equipment
are powered by electricity and thus are consuming energy. The energy consumption of
a datacenter is divided in two elements, the consumption of the IT equipment, and the
consumption of the air conditioning used to maintain the temperature of the equipment
that is generating heat and has to be cooled in order to continue to operate correctly [98].
Figure 2.7 represents the percentage of energy consumption of air conditioning and IT
equipment in a datacenter according to [98].

air conditioning

38.0

energy loss

12.0

IT equipment50.0

Figure 2.7 – Average energy consumption distribution of 94 datacenters from 2006 to 2015 [98]

We can see in this figure, that almost 50% of the energy consumption is used to main-

42

2.6. Energy efficiency and consolidation

tain the datacenter at a reasonable temperature and is therefore not used as computing
power. The energy consumption of the IT equipment can be divided into two different
elements, the consumption of the physical machine and the consumption of the network
devices, representing respectively, according to [83], 70% and 30% of the consumption of
the IT equipment. The consumption of the network however is not considered in the scope
of this thesis.

2.6.2 Physical machine energy consumption

Physical machines represents about 35% of the total energy consumption of a data-
centers [83]. In this section, we are detailing the different elements that consume energy
inside a physical machine.

The power consumption of a physical machine is the sum of the static power, that we
denote Pstatic, and the dynamic power consumption Pdynamic. Pstatic is the consumption
of a physical machine, only used to maintain the system wake up, we also denote this
consumption Pidle referring to the consumption of a physical machine when it is not used.
On the other hand, the consumption Pdynamic is the power consumption of the physical
machine that added to Pidle is equal to the power consumption of the physical machine
when used to perform operations. Pdynamic depends on the utilization of each hardware
component, that can be expressed as a percentage (e.g., 25% of CPU when using only one
of four available CPU). When all the resources of a physical machine are used at their
maximum, the power consumption reaches the value Pmax. The figure 2.8 represents the
power consumption of the different components of a physical machine according to [83].

CPU
43

Memory

12

Disk

4 Peripherials

17

Motherboard
8

Others

16

Figure 2.8 – Distribution of the power consumption of a physical machine [83]

According to [29] the collection of data of load usage of more than 5000 productions

43

Chapter 2 – Context

PMs shows that PMs are generally under-used as their utilization rates reached only 10%
to 50% of their full capacity most of the time. However, the power consumption of these
PMs was about 70% in average of their Pmax, even when under-used. This phenomenon
is due to the poor power efficiency of a PM, as the Pidle consumption rarely represents
less than 50% of Pmax. Moreover, in recent years with the development of multi-core
processors, the power consumption of PMs can no longer be represented by a linear
function [43, 74, 135], which implies that a PM is more energy efficient at high load than
at low load. Hence, parallel execution of tasks is more energy efficient than sequential
execution on a PM. Figure 2.9 represents the energy consumption measured on a PM
of the ecotype cluster of the Grid’5000 [13] testbed using the SeDuCe platform [103].
The other curve represents the energy consumption of an ideal PM, where the energy
consumption is totally linear to the load, and Pidle = 0.

0 0.1 0.25 0.5 0.75 1

0

50

100

150

CPU load (%)

C
on

so
(W

)

Ecotype consumption
Ideal consumption

Figure 2.9 – Power consumption of one ecotype machine with a variable CPU load

It can be noted from Figure 2.9 that, since CPU consumption is not linear to the
load, when using multiple PMs of a cluster, it is more likely that using one PM that is
100% used is less consuming than using two PMs that are 50% used, (for example for two
Ecotype PMs used at 50% the consumption would be 132 + 132 = 264W , when with only
one PM used at 100% and the other at 0%, the consumption would be 145+65 = 210W).

In order to measure the power consumption, the physical machines are generally con-
nected to power distribution units (PDUs), that are plugged between the physical machine
and the wall socket [104], and that contain watt-meters.

44

2.6. Energy efficiency and consolidation

2.6.3 Energy saving techniques

In this section are presented some methods to save energy within a multi-cluster infras-
tructure when considering only PMs. Those techniques can be used in Grid computing
environments as well as in Cloud computing environments, as the main difference be-
tween those two environments lies on the management of the infrastructure and not on
the infrastructure itself.

Shutdown technique

Unused physical machines consume a large amount of energy, as their idle power
consumption Pidle can represent 50% of their maximum power consumption Pmax. This
consumption can be drastically reduced by shutting down the physical machine when
they are not used, and thus reducing the total energy consumption of the datacenter.
This reduction of energy is due to both the idle consumption of a powered on unused PM,
and the cooling system. This technique was first investigated by [50] in 2001. However,
the transition between the on and off states of the server cannot be ignored [32,100] as it
may consume both energy and time.

Defining when to stop a physical machine is therefore a difficult optimization problem
for two main reasons. First, the number of physical machines at a given time must be
sufficient to meet the demand for computing power, as powering on a physical machine is
not instantaneous. Second, when a decision to shut down a machine is made, the machine
must remain off for a certain period of time to compensate the energy consumption of the
off phase and the on phase, and to ensure that the sum of these two energy consumptions
will be less than the energy consumption that would have resulted if the machine had
remained in idle.

DVFS - Dynamic Voltage and Frequency Scaling

Many hardware components allows to control the voltage through software. The idea
of the DVFS energy lever is that reducing the voltage of a component (for example the
CPU), will reduce the energy consumption of a PM. This will equally lead to a reduction
of the temperature of the components, and also may reduce the energy consumption
required by the cooling system. This reduction of the voltage however has an impact
on the efficiency of the components, and therefore on the efficiency of execution of the
applications running on a PM.

45

Chapter 2 – Context

Consolidation - placement algorithm

As already seen the consumption of the physical machines is not proportional to their
load. The idea of the consolidation technique is to regroup the resource demand on the
same physical machine, in order to use a less number of machine. This can be combined
with shutdown techniques, in order to select a certain number of awake physical machines
and shutdown the rest of them.

The problem of consolidation can also be seen as a bin-packing problem (See Defini-
tion 2.5.1). It has mainly be investigated in the Cloud IaaS service [53,66,85,99], in order
to regroup the VMs on the same physical machines, and use as few number of physical
machines as possible. Even, if energy saving is not always the main concern when trying
to solve the bin-packing for VM placement [113], this technique can lead to energy saving
as the used physical machines are used more efficiently and the unused ones could be
turned off.

2.7 Conclusion
In this chapter we have presented the concept of scientific workflows, as well as the

environments that may be used to efficiently execute them. We have presented the main
challenges that are raised when targeting the execution of the workflows in a distributed
environment. We have also seen that distributed infrastructure are highly energy consum-
ing, and that there are techniques that may be used to reduce the energy consumption.
In the following chapter, we will present the related work around the scheduling and the
execution of scientific workflows, in the Grid computing and the Cloud computing. This
related work will allow us to highlight some of the remaining challenges, we aimed at
solving in the contributions of this thesis.

46

Chapter 3

RELATED WORK

In this chapter, we discuss the related work that has been carried out around the
scheduling and the execution of scientific workflows. This chapter is divided into two
main sections, the first one presents the noteworthy works that have been conducted
on scientific workflow scheduling. The second section presents the works that have been
carried out around the execution of scientific workflows in a distributed environment.

Contents
3.1 Scientific workflow scheduling 47

3.1.1 Criteria of interest . 48
3.1.2 Algorithm classification . 49
3.1.3 Scheduling on Grid computing 52
3.1.4 Scheduling on Cloud computing 58
3.1.5 Discussion . 64

3.2 Scientific workflow execution 67
3.2.1 Criteria of interest . 67
3.2.2 Scientific workflow execution systems 69
3.2.3 Discussion . 70

3.1 Scientific workflow scheduling
As discussed in section 2.4, workflows can be scheduled and executed on various types

of environments. In the literature, we can observe two main targeted environments. On the
one hand, the Grid computing environment, and on the other hand the Cloud computing
environment. This section presents some interesting works related to the scheduling of
scientific workflows. This presentation will be divided into five parts, the first part presents
the different criteria that we aim to take into consideration in this thesis, the second part
presents the different classes of algorithms that can be retrieved from the literature. Then
Sections 3.1.3 and 3.1.4 offer an analysis of respectively, the algorithms dedicated to the
Grid computing, and those dedicated to the Cloud computing, that can be found in the

47

Chapter 3 – Related work

literature. This analysis uses the criteria and the classification of algorithms previously
presented. Finally the last section discusses the limitations of the state of the art solutions
to meet the criteria of this thesis.

3.1.1 Criteria of interest

This section presents the criteria to be considered in the contributions of this thesis.
In our context, multiple users submit workflows to a Cloud computing environment for
execution. This Cloud environment is managed by a Cloud provider, who has access to
the management of the PMs that make up the underlying infrastructure. In this thesis,
we assume that the tasks composing the workflows are very heterogeneous as presented
in the section 2.1. We can list our criteria as follows:

Consideration of task heterogeneity. As previously mentioned, the tasks composing
workflows are very heterogeneous and may require the use of different operating systems to
be properly executed. They are also heterogeneous in terms of hardware resource demand
(quantity of memory, number of CPU cores, ...).

Isolation. Workflows that are submitted belong to several users. Therefore, a strong
isolation must be guaranteed for security reasons.

Energy optimization. As presented in Section 2.6, datacenters and multi-cluster infras-
tructures have a huge environmental impact. In this thesis, we are interested in reducing
the energy consumption of these infrastructures.

Submission by multiple users and Fairness. Since many users will be sharing the
same physical resources for the execution of their workflows, it is important that the
service provider provides a good quality of service. We argue that fair resource sharing is
one way to achieve this goal.

Uncertainty of execution and submissions. In this thesis, the term uncertainty will
refer to temporal information for which it is impossible to be completely certain. Two
types of uncertainty can be distinguished. On the one hand the partial uncertainty, in this
case, the information on the necessary time or the temporal instant is partially known
(e.g., the time needed to perform a task), but may vary. On the other hand, the total
uncertainty, in this case, no information is provided (e.g., a new submission). It seems
important to take both type of uncertainty into account in the scheduling algorithm in

48

3.1. Scientific workflow scheduling

order to properly manage the environment and be able to continue to consider the other
criteria (e.g., energy and fairness).

3.1.2 Algorithm classification

Before presenting the objectives (i.e., the problem they aim at solving and the metrics
they aim at optimizing) of the algorithms available in the literature, and discussing their
differences with our criteria, we present the different classes of scheduling algorithms. In
the state of the art, we can find different types of algorithms, that aim at solving the
scientific workflow scheduling problem. These algorithms can be divided into three main
classes, heuristic-based, meta-heuristic-based and exhaustive search.

The algorithms that are presented in the following subsections are used to solve
scheduling problems. In the case of complex problems, such as the scheduling problem,
there can exist multiple solutions, however those are not all equal. The optimization of an
objective, refers to the selection of the solution to the problem that gives the best result
based on the objective (e.g., with an energy minimization objective, the best solution
would be the solution that leads to a minimal energy consumption). The scheduling prob-
lem can be a single-objective problem or a multi-objective problem. A single-objective
problem is an optimization problem, in which only one objective (e.g., execution time
minimization) needs to be optimized. Conversely, a multi-objective problem has several
objectives to optimize, and these objectives are contradictory (such as minimizing energy
consumption and the execution time). Indeed, if two objectives can be optimized the
same way, the problem can be reduced to a single-objective problem. A multi-objective
optimization problem may have several optimal solutions. A solution called optimal, is a
solution to a multi-objective problem where no single objective can be improved without
deteriorating other objectives, such solution is also called a Pareto optimality. A Pareto
frontier is the set of Pareto optimality solutions.

Heuristic based algorithm

Heuristic-based algorithms are algorithms that decide at each step which branch to
follow in the search space in order to compute a unique solution. The search space is
the set of domain through wich an algorithm performs a search (by affecting values to
the variables). In a heuristic-based algorithm, the decision is made locally, with the only
information available at a given point. Heuristic-based algorithms are used to find a good

49

Chapter 3 – Related work

solution in a short amount of time. As the scheduling of scientific workflows is a complex
problem known to be NP-hard [118], heuristics-based algorithms have been widely studied
in the literature, in order to find a solution within a reasonable amount of time. We can
list in the literature three different types of heuristic algorithms in the context of scientific
workflow scheduling :

— Independent tasks scheduling: In this type of algorithm, the tasks with no depen-
dencies are scheduled first and removed from the topology of the workflow, this
creates new independent tasks. This operation is repeated until all the tasks of the
workflow are scheduled. The following contributions present an algorithm based on
an independent task scheduling heuristic: [130], [89], [22], [24], [21], [88], [76].

— List scheduling: This class contains algorithms creating a list of tasks sorted in
a given order. Once the list of tasks have been sorted, the scheduling per se is
performed, one task after the other. The sorting is made according to an heuristic
function, that tries to sort the tasks in an order that may lead to the optimization
of a given criteria. The following contributions present an algorithm based on a list
scheduling heuristic: [122], [25], [60], [116], [68], [72], [133].

— Iterative scheduling: The iterative scheduling algorithms create a first scheduling
plan with a valid solution containing all workflow tasks. It is then updated iteratively
to improve the solution and objectives. In [132], an iterative scheduling algorithm
is presented.

Meta-heuristic based algorithm

Some research has been conducted around algorithms based on meta-heuristics. Meta-
heuristics are general algorithms often inspired by nature, which are designed to solve
optimization problems. In the literature, the main meta-heuristic used for the scheduling
of scientific workflows is the genetic algorithm or GA [119]. Genetic algorithms are meta-
heuristics inspired by the process of natural selection, and are based on operations such as
mutation, crossing and selection, which are applied to a set of individuals. Each individual
represents a solution, which can be mutated and combined with other solutions. At each
step of the algorithm’s execution, only the best individuals are selected, and can move on
to the next generation. The algorithm may not converge, and must be stopped by the user
or when a given criterion is met. Genetic algorithms can be used to solve a multi-objective
problem, and compute a Pareto frontier. In the literature, the following contributions use

50

3.1. Scientific workflow scheduling

GA meta-heuristics to solve the problem of scientific workflow scheduling: [73], [131], [93],
[84], [58], [26].

Exhaustive search based algorithms

When it comes to an optimization problem known to be NP-hard, such as scheduling
scientific workflows, the only known way to find the optimal solution is to perform an
exhaustive search and browse through all branches of the search space. In the literature,
there is not much research around the exhaustive search for scientific workflow scheduling,
because the problem is very complex, and the solution computed by such an algorithm
would be obsolete once computed, due to the important time required for the compu-
tation. For this reason, the researches that have been conducted, generally only propose
partially exhaustive search. In [60], the authors propose an algorithm that performs a
semi-exhaustive search, which can be configured, by defining the number of branches that
will be browsed in the search space. As we have seen, [60] is based on a heuristic algo-
rithm list scheduling, but instead of computing a unique solution, the presented algorithm
computes a set of K solutions, keeping traces of the best K solutions at each step. The
higher the value of K, the wider the range of branches explored, and with a sufficiently
high K, the search becomes fully exhaustive.

Backtracking is a general algorithm used to find all the solutions of a given problem.
The idea of backtracking is to fully explore a branch, and return to the previous partial
solution (branch not fully explored), when a solution is found or a dead end is encountered
(a dead end being a branch of the search space that does not lead to a solution). This
algorithm makes it possible to explore the search space, by creating a tree of all the
partial solutions already explored. Unlike the exhaustive algorithm presented in [60], a
backtracking algorithm explores only one branch at a time. The difference between these
two algorithms is therefore based on the way of exploring the tree of the search space,
the backtracking algorithm performing a depth-first search, and the algorithm presented
in [60] performing a breadth-first search. The backtracking algorithm does not necessarily
traverse the entire search space and can be stopped as soon as a solution is found, in order
to reduce the time required for the computation of the solution. The algorithm presented
in [22] and [21] uses a backtracking algorithm in order to find the first solution that meets
a given criteria.

Branch and Bound is an evolution of the backtracking algorithm. This algorithm
computes the bound of the best possible solution of a given branch of the search space

51

Chapter 3 – Related work

before exploring it. This way, if the bound is lower than the current best solution found in
the search space, the branch is ignored, and the exploration can be made faster. In [117],
the branch and bound algorithm is used to resolve the problem of scheduling of a scientific
workflow.

Static and Dynamic scheduling

Most of the algorithms presented in the above subsections are static algorithms. This
means that they are capable of computing a solution (a planning) for a given problem
that will not change. However, there may be occasions when some elements of the problem
are uncertain, such as the execution time of a task, a new submission, and so on. For this
reason, some researchers have opted for dynamic or online algorithms. On the one hand,
an online algorithm is an algorithm that computes the solution only for the elements about
which there is no uncertainty. The algorithm is called periodically or when new events
occur, to compute the rest of the solution. For example, the algorithms presented in [88]
and in [25], schedule only ready tasks (independent tasks, whose parents are completed
or in progress), so the scheduling can be adapted according to the event that occurs (e.g.,
delayed task, new submission, etc.). On the other hand, a dynamic scheduler, as presented
in section 2.5.3, generates a planning in advance, but is able to modify it as the problem
evolves. For example, in [61], a dynamic algorithm is considered for solving the scheduling
problem.

3.1.3 Scheduling on Grid computing

The literature has shown interest in scheduling scientific workflows within a Grid com-
puting environment. As presented in the context chapter, Grid computing is a paradigm
for the management of a multi-cluster infrastructure. In this type of environment, re-
sources (here PM or processors) can be reserved in order to perform tasks. In a Grid
computing environment, the reserved resources do not have a virtualization layer, so
tasks are executed on the PMs directly using the operating system of the PM.

Scheduling for one user

The algorithms presented in this section are used to schedule a single workflow be-
longing to a single user. This workflow can be the fusion of several workflows, but never
belongs to several users, thus this does not raise any fairness issue - the fairness defining

52

3.1. Scientific workflow scheduling

a fair sharing of the resources between multiple users. Furthermore, in the following re-
lated work, all the required tasks are assumed to be homogeneous and to consume only
one resource, namely a processing unit (or a processor). As each task consume only one
processing unit, it is not necessary to consider how the resources are distributed among
the different PMs, there is only a need to consider the speed of communication between
processors.

In the literature, algorithms developed for Grid infrastructures can be divided into
three main categories depending on the objectives they aim at maximizing [138]: Best-
effort based algorithms, Cost-based algorithms, and Energy aware algorithms. The following
sub-sections are listing scheduling algorithms with those objectives.

A. Best-effort based algorithms

Best-effort based algorithms are used when the objective is to minimize the overall
workflow execution time, or in other words to minimize the makespan of the workflow
execution. Different algorithms have been developed to solve this scheduling problem,
with the aim of minimizing the makespan. In the following, the word makespan will be
used to refer to the overall execution time of the workflow.

[73] and [131] present algorithms that use GA techniques. The authors of these two
contributions present their mutation, crossover and selection functions for their GA algo-
rithm for scheduling interdependent tasks on a single PM containing several processors
(CPU cores). As all tasks are executed on the same PM, the communication phases (trans-
mission of a file from a task to its successors) required in distributed infrastructure is not
taken into account in these works. Indeed, all the tasks have access to the same file system
(for example the same hard drive), and thus the files are available to any tasks at any
moment.

Algorithms based on heuristics have also been studied in the literature. First, Indepen-
dent task scheduling algorithm have been adopted to solve the problem of scheduling the
scientific workflow in a Grid environment. In [130] the Myopic algorithm is introduced,
and has been implemented and used in Grid systems such as Condor DAGMan [121].
The problem solved by this algorithm is the creation of a planning for the execution of a
scientific workflow, taking into account the size of the communication between tasks and
the speed of communication between reservable processors. In addition, the fact that task
execution time may differ from one processor to another, due to the heterogeneity of the
hardware components, is also taken into account in this work.

In [89] Min-Min and Max-Min are presented. These algorithms are originally de-

53

Chapter 3 – Related work

signed for the scheduling of parallel independent tasks. However, they can be used for the
scheduling of workflows (Independent task scheduling) as for Myopic. The Min-Min al-
gorithm first retreives the independent tasks of the workflow, and schedules them, starting
its decision process with the task with the lowest execution time (on average on the reserv-
able processors). The Max-Min algorithm is similar to the Min-Min algorithm, except
that it chooses to schedule the task taking the highest execution time first. These algo-
rithms have been implemented and used in workflow engines for Grid computing [33,41].
A detailed study is presented in [42] showing that Min-Min is in average better than
Max-Min in terms of makespan minimization.

Algorithms based on List scheduling have also been used in the literature. The algo-
rithm known as HEFT (Heterogeneous Early Finish Time) [122] is a well-known List
scheduling heuristic based algorithm. This algorithm computes a rank for each task of the
workflow. The rank of a task is based on the rank of its successors, its length (average
time required to complete the task on all available processors), and the size of the file
that must be passed by the task to its successor. This rank is used to sort the tasks, with
the task having the highest rank being scheduled first. In [140] the authors conducted
experiments to evaluate the rank function used in the HEFT algorithm, and showed that
it is not always the best heuristic function according to the type of workflow that has to
be scheduled. In [48, 114] Min-Min and HEFT have been compared for the scheduling
of different workflows, and HEFT has been shown to be better than Min-Min in most
cases in terms of makespan minimization.

In [117] a branch and bound algorithm is presented for the scheduling of a scientific
workflow on a set of processors. This algorithm takes into consideration the communication
time by considering a speed of communication between the processors, and the size of the
dependencies. By using a branch and bound algorithm, the authors are able to compute
the best solution with the minimal makespan.

B. Cost-based algorithms

The Cost-based algorithms add a new metric to the scheduling problem: the cost
associated with resource reservation. This new metric creates a new objective, which is
cost minimization. By adding a new objective to the problem, it becomes a multi-objective
optimization problem, which is more difficult to solve [94]. In the literature, most of the
time, one of the two objectives is replaced by a constraint that must be satisfied in the
solution computed by the algorithm.

First, some algorithms have opted for a deadline constraint instead of a makespan

54

3.1. Scientific workflow scheduling

minimization to simplify the problem and transform it to a single-objective problem. An
algorithm for scheduling a scientific workflow in a Grid environment is presented in [76].
This algorithm takes into account a deadline for the workflow, and attempts to ensure that
the workflow makespan will not exceed its deadline while minimizing the cost of execution.
This algorithm first groups the tasks into partitions. Each partition contains tasks that
must be executed sequentially (due to dependency constraints). Once the partitions have
been computed, a deadline is assigned to each partition. Each partition is then scheduled
on the resource (processor) that gives the lowest cost while ensuring that the partition’s
sub-deadline is respected. Since the tasks in a partition must be executed by the same
resource, they are assumed to be homogeneous.

In [22], the authors present a deadline constraint algorithm. Unlike [76], this algorithm
does not create task partitions, but assigns a sub-deadline to each task in the workflow.
The deadline for each task is computed from the partial critical path of the workflow.
The critical path of a workflow is the longest execution path from the entry tasks to the
exit tasks, and the partial critical path is the longest execution path from a given task to
the exit tasks of a workflow. Once sub-deadlines are assigned, each task is scheduled one
by one by selecting the resource (processor) providing an execution time that meets the
deadline with the lowest cost.

Instead of a deadline constraint in order to remove the makespan minimization, some
researchers have opted for a budget constraint. In [25], the authors define an algorithm
that schedules a workflow in a Grid environment with makespan minimization objective,
and a budget constraint. This algorithm is a List scheduling algorithm that sorts the tasks
according to the HEFT rank function. Then, it schedules the tasks one by one, selecting
the resource (processor) that gives the best trade off between cost and efficiency, while
guaranteeing that the remaining budget is sufficient for the execution of the remaining
tasks.

C. Energy aware algorithms

In the context of Grid computing, there is a sub-part of the literature that focuses
on optimizing the energy consumption of the infrastructure that executes the scientific
workflows. The works we present in this section carry out this optimization during the
scheduling phase.

Most of the work relies on the use of DVFS technique to select the frequency of the
processors. In [93], the authors use a genetic algorithm with multi-objective optimization,
namely makespan minimization and energy optimization, creating a Pareto frontier for the

55

Chapter 3 – Related work

scheduling of a workflow on a set of processors. In [84], the authors present an algorithm
also based on GA, which solves the same problem. These two algorithms do not allow to
change the processor frequency during execution, and give a solution where a frequency
is attached to each one of them.

In [60] two algorithms based on HEFT are introduced, for the scheduling of a workflow
in a Grid environment. These algorithms do not use the DVFS technique, but compute an
estimate of the consumption of each physical machine when a task is scheduled on them
(on one of the processor of a PM, a PM being considered as a set of processors). This
estimation of the power consumption is based on a non-linear model presented in the same
paper. This function computes the energy consumption based on the number of processor
used inside a PM (processor with assigned tasks) at each instant. From this estimation, the
first algorithm MOHEFT (Multi-Objective Heterogeneous Early Finish Time) computes
a Pareto frontier composed of multiple solutions, with the goal of minimizing the makespan
and minimizing energy consumption. The second algorithm Green-HEFT chooses for
each task the resource (processor) that consumes the least energy, instead of the resource
that gives the best makespan, as HEFT would do. Indeed, as the energy consumption of a
PM is not linear in relation to its load, the energy consumption induced by the execution
of a task would not be the same, depending on its location. The algorithm Green-HEFT
is only used by the authors to compute the lower bound of the energy consumption, but
gives a bad solution in terms of makespan as using only one node will always consume
less energy than using multiple.

Scheduling for multiple users

Some works on workflow scheduling in a Grid computing have helped to reinforce
fairness among users. Fairness can be defined as a fair sharing of physical resources between
several users, proportional to their needs. In [24], the algorithm shares a set of resources
(here processors, because the heterogeneity of tasks is not taken into account) between
several workflows, each workflow belonging to a user. The algorithm considers a priority
on each task. The priority of a task is based on its number of successors (recursively) and
its rank (computed with the rank function of HEFT). The algorithm schedules first the
tasks that have the fewest remaining successors. The idea is to give the opportunity to the
new submitted small workflows to be executed before the end of the workflows already in
progress, and to avoid the convoy effect (see Section 2.5.1). The goal of this algorithm is
to minimize the makespan of all the workflows.

56

3.1. Scientific workflow scheduling

In [61], the authors consider the submission of multiple workflows belonging to multiple
users in a Grid environment. This algorithm creates groups of tasks that must be executed
by the same resource (once again, a processor). The idea of this algorithm is to find a
trade-off between parallelism and fairness between users. Indeed, the more tasks in a
group, the less parallelism there is for a given workflow, but the more resources are
available for the execution of other workflows. As for [24], the objective of this algorithm
is the minimization of the makespan of the set of workflows being executed. The algorithm
presented in [61] is a dynamic algorithm that reconsiders the computed planning when
a new submission arrives, in order to maximize fairness between already scheduled and
newly submitted tasks.

Discussion on scheduling algorithms on Grid computing

Class Related work
Heuristic based algorithm

1 Independent task scheduling [130] [89] [76] [22] [24]
2 List scheduling [122] [25] [60]
3 Iterative scheduling -
Meta-Heuristic based algorithm
4 Genetic algorithm [73] [131] [93] [84]
Exhaustive search algorithm

5 Breadth-first search [60]
6 Backtracking [22]
7 Branch and Bound [117]

Dynamic algorithm
8 Online [25]
9 Reconsidering [61]

Table 3.1 – Class of the algorithm of the related work for Grid computing environment

As one can notice, the majority of algorithms found in the literature in the context of
Grid computing do not take into account task heterogeneity. They assume that each task
consumes exactly one unit of resource, namely a processor, for a certain period of time.
This definition of the problem is very close to the Job Shop scheduling problem 2.5.2,
with the only difference that it takes into account the dependencies between tasks and
the communication time between tasks. This limitation cannot be removed naively, as
resources are spread over several PMs and tasks cannot be splited, and the problem must
gain a new dimension, and become closer to a bin-packing problem 2.5.1.

57

Chapter 3 – Related work

The second limitation that could be observed regarding the heterogeneity of tasks is
the lack of consideration for software dependencies required for a given task. As presented
in section 2.1, the tasks of scientific workflows can be very heterogeneous and may require
different operating systems and libraries. However, since the resources offered by the Grid
computing environment cannot run a specific operating system required by the user, these
types of workflows cannot be executed in such an environment.

Table 3.2 presents the criteria that we aim at taking into consideration in the contri-
butions of this thesis. This table lists the contributions presented from the related work
that take into account these criteria.

Metric Related work
Task heterogneity consideration
1 Software -
2 Hardware -

Isolation
3 Isolation -

Energy
4 Energy optimization [76] [60] [84]

Fairness
5 Multiple users and Fairness [24] [61]

Uncertainty
6 Execution time [24] [61]
7 Submission arrivals [24] [61]

Table 3.2 – Criteria of interest of the contributions of this thesis taken into account by
Grid scheduling algorithms

Table 3.1 presents the classes of algorithms used in the related work on Grid computing
environment.

3.1.4 Scheduling on Cloud computing

Cloud computing is the environment targeted by most of the latest research in the
literature for the execution of scientific workflows. As presented in section 2.4, Cloud
Computing is a paradigm for managing a multi-cluster infrastructure. In this type of
environment, resources can be reserved to perform tasks. Regarding the scheduling of
scientific workflows, the Cloud service that has been the most used is the IaaS (i.e.,
Infrastructure as a Service). Thus, the planning (solution of the scheduling problem) lists

58

3.1. Scientific workflow scheduling

the VM instances (e.g., type, number of instances, duration of the reservation, etc.), and
associate to each task the VM instance that will execute them, as well as their start time.

Scheduling one workflow

The algorithms presented in this section are used to schedule a single workflow be-
longing to a single user. This workflow can be the fusion of several workflows, but never
belongs to several users. In general, the works that can be found in the literature focus on
scheduling from the user’s point of view, when the Cloud environment is operated by a
third party (e.g. public Cloud providers such as AWS [2]). Thus, the physical infrastruc-
ture of Cloud computing is seen as an unknown black box, and it is generally assumed that
the Cloud provider is capable of providing infinite resources, and therefore the only limit
is the user’s budget. As a result, decisions on the placement of different virtual resources
are left to an internal scheduler controlled by the Cloud provider, and fairness is therefore
not taken into account in these works, as they locate the decision on the user side.

Unlike schedulers for Grid computing, scientific workflow schedulers for Cloud comput-
ing environments, that can be found in the literature, never intend to minimize only the
makespan (single-objective problem). This could be achieved relatively easily by launch-
ing as many virtual resources as needed to run the parallel parts of the workflow, but this
would result in a relatively expensive use of resources for the user. As a result, as illus-
trated in [23], most publications feature scheduling algorithms based on cost optimization.
In the context of Cloud Computing, three types of cost-based scheduling algorithms can
be distinguished: Budget constrained, Deadline constrained and Energy aware.

A. Budget constrained algorithms

The goal of this type of algorithm is to minimize the makespan of the workflow execu-
tion, when the user is limited by a budget that must be respected. Indeed, the provisioning
of each virtual resource is charged to the user by the Cloud provider.

In [48] a budget has to be met according to a public IaaS Cloud offer. In public Cloud
offers, provisioned VM instances are typically billed on an hourly basis, which means that
one VM used for two hours will cost the same as two VMs (of the same type) used for one
hour, and that a VM used for one minute will cost the same as a VM used for one hour.
In order to stay within the user’s budget, the scheduler must be able to determine how
many virtual resources to use at any given time, and when to release them knowing that
the current hour is already paid. In [48] an algorithm based on HEFT is presented. This

59

Chapter 3 – Related work

algorithm allocates the budget between the different tasks of the workflow, while ensuring
that all tasks have sufficient budget to be properly executed.

In [132] an algorithm that respects a user’s budget by minimizing overall execution
time is considered. The algorithm assigns to each task the cost and execution time on
each VM type. Then, the algorithm assigns to each task the VM type that costs the least.
The remaining budget (the user’s budget minus the cost of each task) is then allocated to
a task, modifying its allocation and putting it on a faster VM. At each reassignment, the
task reassignment that gives the best gain is selected; this gain is evaluated by calculating
the difference between the execution time of the critical path before and after the reas-
signment. The reassignment step is repeated until the remaining budget no longer allows
a task to be reassigned. In this work, each VM is billed to the user, not on an hourly
basis, but based on the time it takes to complete the task (a VM being used to execute
only one task).

In [26] a genetic algorithm is presented for the scheduling of one workflow inside a
Cloud computing environment. This algorithm initializes the population of the genetic
algorithm based on the HEFT algorithm, by generating K random solution, and adding
the solution computed by the HEFT algorithm. In this work, a solution is a planning
composed of a set of VMs with associated tasks, each VM being able to execute only one
task at a time. Then the selection phase of the individuals is based on the makespan and
the cost of each solution. The algorithm is stopped, once a solution that meets the budget
is found.

B. Deadline constrained algorithms

This type of algorithm introduces a deadline to the workflow and tries to ensure that
the workflow execution will not exceed the deadline. The objective of this type of algorithm
is to minimize the cost of execution for the user.

In [21] a deadline based algorithm for scheduling one workflow on IaaS Cloud is pre-
sented. The IC-PCPD2 (Iaas Cloud Partial Critical Path with Deadlines Distribution)
algorithm, which was originally dedicated to the Grid infrastructure in [22], prioritizes
the cheapest resource (cheapest VM type) while trying to meet the workflow deadline. In
this work, the resources are VMs, and these VMs are capable of executing only one task
at a time. As with the Grid version, this algorithm computes a deadline for each task,
allowing it to determine the cheapest resource that can be provisioned to ensure that this
deadline will not be exceeded.

In [116], an algorithm is presented for scheduling a scientific workflow with a deadline

60

3.1. Scientific workflow scheduling

constraint. The algorithm computes a sub-deadline for each task. Then, a pool of VMs
is maintained, by varying the number of VMs it contains. Each VM holds a list of tasks
that will be executed by it, where a VM can only execute one task at a time. The number
of VMs remaining in the pool is computed by a function on the number of ready tasks,
and the interest to launch or kill a VM instance (due to cost consideration). The goal
of the algorithm is to minimize the client’s budget while respecting the overall workflow
deadline.

In [133] a List scheduling algorithm is presented for the scheduling of scientific workflow
within heterogeneous VM. Unlike the algorithm that have been presented so far, the
algorithm in [133] takes into account the heterogneity of the hardware capabilities of the
VM type. Indeed, the authors consider that a VM is capable of executing as much task in
parallel as it contains VCPUs. The algorithm starts by creating partition of tasks, each
partition being the tasks that have to be executed sequentially (as for the IC-PCPD2
algorithm in [21]), and assign to each partition a deadline. It then, schedules the partition
on the VMs by choosing the VM having the most number of idle (unused) VCPUs, in
order to maximize the utilization rate of the provisioned VM instances, and minimize the
number and the duration of the instantiated VMs, and thus the overall cost. As in [21],
the tasks composing a partition are supposed homogeneous as they will be executed by
the same resource (here a VCPU of a VM instance).

C. Energy aware algorithms

As with scheduling in the Grid computing environment, research has been conducted
to minimize energy consumption. In these works, the minimization of the cost (or the user
budget) is replaced by an objective of minimizing the energy consumption.

In [72], the authors propose an algorithm to optimize the energy consumption induced
by the execution of a workflow within an IaaS Cloud environment. The proposed approach
uses DVFS technique, associating a frequency to each provisioned VM. The algorithm first
assigns a deadline to each task, allowing it to determine the VM instance that will be
used. To each VM instance, the algorithm also assign a frequency, this frequency being
the lowest possible frequency guaranteeing that the deadline of the task executed by the
VM instance is met.

In [68], a placement policy is presented for executing scientific workflows within VMs
on an infinite set of PMs, with the goal of minimizing power consumption while meeting a
user-defined deadline. As specified, the proposed approach in [68] is a placement algorithm,
and not a scheduling algorithm. Indeed, the authors assume that they have no information

61

Chapter 3 – Related work

about the time required by a task to be executed. Thus, as no temporal information is
known by the algorithm, no prediction can be performed and thus the problem is a
placement problem, and is really close to the bin packing problem (cf. Definition 2.5.1),
with the only difference that the PMs have heterogeneous capacities. The placement
algorithm is relaunched each time a task is finished in order to place its successor tasks.
The idea of the placement policy presented in [68] is based on the consolidation technique;
therefore, it places VMs on the PMs with the lowest energy consumption and shuts down
the PMs that are not being used. In this work, each task requires a number of VMs in
the infrastructure that need to be placed, to be properly executed. The VMs running a
task can be scattered over several PMs, however each VM reserve the same amount of
resources.

Scheduling multiple workflows

In [88] is presented a solution for scheduling multiple workflows with unpredictable
random arrivals, and uncertain task execution times on an IaaS Cloud environment. The
goal is to ensure that the deadline for each workflow is met, while minimizing the cost of
renting the VM in the Cloud environment for a given user. All workflows are assumed to
belong to the same user, so all resources (VMs) made available are capable of executing
the task of every workflows (with the exception of software dependency issues), as no
isolation issues are raised. In addition, the budget is common to all workflows. In this
work, a Independent task scheduling algorithm is proposed. The algorithm first associate
to each task a deadline, and then schedule them one by one, starting its decision process
with the tasks having no dependency. The algorithm associates to each VM a rental cost
(based on a hourly billing), and chooses for each task the VM that will minimize the
overall cost and guarantee the deadline.

In [58], a genetic algorithm to solve the problem of scheduling multiple workflows
with random arrivals is detailed. The authors present the three functions of a GA, for
scheduling workflows under uncertain arrivals. By using a genetic algorithm, the authors
minimize the user’s budget, while respecting the deadlines of the different workflows. In
this paper, only ready tasks (tasks whose parent tasks have been completed) are taken
into account in the scheduling phase, which is called periodically, thus taking into account
the uncertainty of the task execution time. As for [88], the objective of this algorithm is
to minimize the budget of a single user, wanting to execute several workflows.

62

3.1. Scientific workflow scheduling

Discussion on scheduling algorithms on Cloud computing

As can be observed, the majority of solutions that can be found in the literature,
provide algorithms for scheduling workflows belonging to a single user. They consider the
Cloud environment as a third party, capable of providing an infinite number of resources,
and therefore the only limitation is the budget of the user. As a result, fairness among
multiple users is never taken into account, as it is assumed to be handled by the Cloud
provider that manages the underlying physical infrastructure. In addition, as the solutions
are only managing virtual resources, energy consumption cannot be fully addressed. The
works presented in [68] and [72], consider a Cloud environment that is relatively differ-
ent from the real Cloud environment (VMs are associated to one CPU core, and does
not require any provisioning time), in addition, in [68] the decision of placement of the
VMs within the infrastructure is made on the Cloud provider side, thus by taking into
consideration the physical infrastructure itself.

Table 3.3 presents the criteria that we aim at taking into consideration in the contri-
butions of this thesis, as far as scheduling is concerned. This table lists the contributions
presented from related works, which take these criteria into account.

Metric Related work
Task heterogneity consideration
1 Software [21] [68] [88] [132] [58] [48] [116] [26]
2 Hardware -

Isolation
3 Isolation [21] [68] [88] [132] [58] [48] [116] [26]

Energy
4 Energy optimization [68] [72]

Fairness
5 Multiple users and Fairness -

Uncertainty
6 Execution time [48] [88] [58]
7 Submission arrivals [88] [58]

Table 3.3 – Criteria of interest of the contributions of this thesis taken into account by
Cloud scheduling algorithms

Table 3.4 presents the class of the algorithms used in a Cloud computing environment
that can be found in the literature.

63

Chapter 3 – Related work

Class Related work
Heuristic based algorithm

1 Independent task scheduling [21] [68] [88]
2 List scheduling [48] [116] [72] [133]
4 Iterative scheduling [132]
Meta-Heuristic based algorithm
4 Genetic algorithm [58] [26]
Exhaustive search algorithm

5 Breadth-first search -
6 Backtracking -
7 Branch and Bound -

Dynamic algorithm
8 Online [58]
9 Reconsidering [88]

Table 3.4 – Class of the algorithm of the related work for Cloud computing environment

3.1.5 Discussion

We have seen in the previous subsections the related work algorithms that resolve the
problem of scheduling scientific workflows in the Grid and Cloud environment. We have
seen that the Grid computing environment offers the possibility to take into consideration
three of our criteria: energy optimization, fairness and uncertainty.

The uncertainty of execution and submission is a criteria that can be taken into con-
sideration in both Grid and Cloud environment, as it does not require any specific man-
agement of resources, but only a specific algorithm. In the literature, two different types
of algorithms are suggested: online and dynamic algorithms. Online algorithms do not
consider the future, and only schedule the tasks that are independent, and that can be
run immediately. However, as a scientific workflows contains communications phases, we
consider important to be able to rapidly be able to know where to send the files created
by a task for its successors tasks, in order to avoid delays due to synchronizations.

A

B

C

Figure 3.1 – Example of workflow with synchronization task

64

3.1. Scientific workflow scheduling

This kind of synchronization can be explained by Figure 3.1 and Figure 3.2. In the
example, the task C has two parent tasks A and B. If we decide to schedule the task C
only when it becomes independent, we would have to wait the end of the task A and the
task B before taking any decision. However, if the task A is shorter than the task B, we
have to wait until the task B is finished before sending the files created by A to the task
C (as we do not know where to send the files), introducing delays as it can be observed
in Figure 3.2. Even so, dynamic algorithms may introduce useless replications. Indeed, if
the task C is rescheduled on a different resource after the transmissions of the files of the
task A, the files would have to be sent again.

A

B

C

1

1

2 1

(1)

A

B

C

1

1

2 2 1

(2)

1 computation 2 communication

Figure 3.2 – Representation of delay introduced by synchronization with online (1) and
with predictive (2) algorithms

The consideration of the two criteria energy and fairness, is made possible, in the Grid
environment, by taking into account the physical infrastructure, and making management
decision based on the real usage of this infrastructure. On the other side, in the Cloud
environment, such management is impossible because of the nature of the environment
that only gives the possibility to manage virtual infrastructure. The physical infrastructure
itself is hidden to the users, and consequently it is difficult to predict the impact of the
management of the virtual machines of one user on the infrastructure considering the two
criteria energy and user fairness.

However, unlike the Grid environment, the Cloud environment allows to consider the
two following criteria: task heterogeneity and isolation. Indeed, by providing access to
VMs, the users are able to choose the OSs and softwares they want, and therefore to exe-
cute highly heterogeneous tasks. As we have seen in the previous subsections, the majority

65

Chapter 3 – Related work

of the work carried out on the Grid environment also does not take into consideration the
heterogeneity of the tasks in term of hardware requirements. This limitation, in contrast
to software heterogeneity, can be taken into account inside a Grid environment by adding
a new dimension to the scheduling problem and considering space, and therefore a com-
bination of the bin-packing (Def. 2.5.1) and the scheduling problems. The execution on a
Cloud environment may also take this heterogeneity into account by considering different
types of provisionable VMs (with different hardware capabilities).

The isolation criteria, is made possible easily in the Cloud environment, as every users
provision VMs for the tasks they have to execute, and do not have access to the VMs of
the other users. This isolation, is not as easy in the Grid environment. Indeed, to make
isolation possible in a Grid environment, a full PM would have to be reserved for one user,
thus leading to under used resources when the user does not need that much resources.
As one can note, this would also lead to a decrease of the fairness.

Conclusion

In the contribution presented in Chapter 4 and Chapter 5, we detail scheduling algo-
rithms for scientific workflows by locating the decision process on the Cloud provider side.
The idea is to take advantage of both Grid and Cloud computing world, by taking into
account the management of the physical infrastructure such as in a Grid environment, and
giving access to virtual resources to the users. By considering the physical infrastructure
during the scheduling process, the energy and the fairness criteria can be addressed, as
well as the hardware heterogeneity of the tasks. On the other side, by providing virtual
resources (such as VMs), the software heterogeneity and the isolation criteria can also
be addressed. Furthermore, the algorithm presented in Chapter 5 is a dynamic algorithm
that reconsiders the computed planning when new submission arrives, and that takes into
consideration the uncertainty of the execution and communication time.

66

3.2. Scientific workflow execution

3.2 Scientific workflow execution
In the previous section, we have seen the related work on scientific workflow scheduling.

In this section, is presented the state of the art regarding the automatic execution of
scientific workflows. This section is divided in three parts. First, we will present the criteria
in which we are interested in this thesis, in order to compare them with the related work.
Then, we will present the related work around the automatic execution of workflows, and
finally the last part will discuss the limitations of the state of the art regarding the criteria
we aim at considering.

3.2.1 Criteria of interest

This subsection presents the criteria we want to consider in this thesis in regard to
the workflow execution. In our context, multiple users submit workflow for execution on a
Cloud computing environment. The Cloud provider is then giving access to a new kind of
service dedicated to scientific workflows. This service can be divided into two main parts,
the scheduling and the application of the planning computed by the scheduling algorithm.
We can list our criteria as follows :

Automatic execution. In order to execute a scientific workflow, there are six operations
that one must be able to carry out:

(a) determine the resources needed to execute the tasks of the workflow;

(b) reserve and release a resource;

(c) install on a resource the set of software dependencies required by workflow tasks;

(d) give the resources access to the input files of the tasks;

(e) execute the tasks of the workflow on a resource;

(f) retrieve the results of the execution.

The first operation (a) (i.e., determining on which resource to execute the tasks of the
workflow) is the resolution of a scheduling problem and has been discussed in the previous
section 3.1. The operation (b) refers to the possibility to interact with the environment
of execution in order to reserve a resource for the execution of one or multiple tasks
(e.g., be able to provision a VM in a Cloud environment). The operation (c) refers to the
capacity to install all the required software dependencies (e.g., OS, libraries, etc.) on a
given resource, in order to prepare it for the execution of the tasks. The operations (d)

67

Chapter 3 – Related work

and (f) are file operations. Operation (d) refers to the need for the workflow execution, to
transfer the files created by one task to its successor tasks, when the operation (f) refers
to the capacity of giving access to the result files of the workflow execution to the user.
The last operation (e) is the operation that consists in executing a task on a reserved
and correctly configured resource. To summarize, the criteria in which we are interested
is the automatization of those six operations, in order to follow a planning that has been
computed by a scheduling algorithm without requiring the involvment of an human being.

Resource management. One of the criteria of interest of our contribution is to have a
dedicated resource management. We have seen in the previous section around the schedul-
ing of scientific workflows, that by locating the decision process on the Cloud provider
side, better optimization can be performed in term of physical infrastructure usage. This
criterion refers to the possibility of using a physical infrastructure with a dedicated service
for the execution of scientific workflows belonging to multiple users, while being able to
use algorithms that can make optimization of the infrastructure usage itself, which would
be impossible with hidden physical infrastructure due to virtualization. This criterion can
be divided in two different sub criteria: Elastic resources, and dedicated resource manage-
ment. The elastic resource criterion is the capacity of reserve resources for a user, only
when they are required and be able to release them as soon as possible, to make them
usable for other users. When this criterion is mainly correlated to the decision of the
scheduling algorithm, the environment of execution itself must be able to give access to
elastic resources. The other criterion (dedicated resource management), is the capacity
of providing resources that are designed for the execution of scientific workflow, without
stacking virtualization technologies.

Modularity. The solution we aim at providing is intended to Cloud provider so as to
offer a new type of service for the execution of scientific workflows. Cloud providers must
be able to customize the way they want to manage their dedicated infrastructure, and
which virtualization technologies to use. For this reason, one of our criteria is to give the
ability to the Cloud provider to change the scheduling algorithm to use, as well as the
ability to change the virtualization technology, with minimal code development. Hence
mechanisms to enhance modularity are expected.

Separation of concerns. In our context, we can distinguish two different types of actors.
The users who want to execute scientific workflows, that we will call the end-users, and
the Cloud providers. These two types of actors have different concerns. On the one hand

68

3.2. Scientific workflow execution

the end-users are worrying about the development of the scientific workflows, and the
results of the execution, and do not want to manage complex infrastructures nor provision
resources; on the other hand, Cloud providers are worrying about the management of their
infrastructures. Consequently, this criteria of separation of concerns is divided into two sub
objectives : Providing a service with an hidden management for end-users, and providing
a good turnkey solution for Cloud providers.

3.2.2 Scientific workflow execution systems

Historically, the execution of scientific workflows focused on the Grid infrastructure [59,
137]. In these contributions, when the end-users wanted to run workflows, they had to
perform all the operations (operation (a) to (f)) manually. To avoid this and to facilitate
the use of the scientific workflow, a lot of work has been done to automate workflow
management and execution. In recent years, Cloud infrastructure are more likely to be
targeted by workflow engines, for maintenance and cost reason. Indeed, in many cases
private infrastructures are way more costly than on demand resources reserved on a IaaS
public Cloud, and also requires more maintenance. Thus, in this section, the focus will
be made on the execution of scientific workflows in Cloud environment. Two services are
mainly targeted in the literature, the IaaS and the FaaS (cf. Section 2.4.3).

The first set of operations that have been automated are the operations (e), (d) and
(f), i.e., the automatic execution of tasks, and the file management operations. These
operations are typically performed by what is called a workflow engine. Pegasus [56] and
Hyperflow [27] are two famous engines that are to be deployed on resources reserved by
the end-user. These resources can be either physical machines, as in a Grid environment,
or virtual machines reserved in an IaaS in the Cloud. Both these workflow engines rely
on a scheduler to determine which resource will execute the tasks (operation (a)).

The operation (c) (i.e., installation of software dependencies) is also automated by
all recent workflow engines of the literature. Indeed, these engines are nowadays all able
to execute the tasks of the workflow inside containers to handle their software depen-
dencies [123]. One can note that to handle file management operations (d) and (f), a
distributed file system is generally deployed [27, 56] in order to provide access to the file
from all resources at any times. Then the dependencies (transfers of the files) is managed
by the distributed file system itself, more than by the workflow engine.

To be able to use Pegasus or Hyperflow, an end-user has to reserve a cluster of VMs
in a IaaS Cloud service, install the workflow engine on the obtained virtual resources

69

Chapter 3 – Related work

and then launch the execution of the workflow with the engine. One may note that the
operation (b) is carried out by the end-user in this case.

Some workflow engines leverages the use of FaaS (Function as a Service) Cloud ser-
vice [4, 7, 77, 81]. The FaaS offers the opportunity to define functions (small computing
entities using specific libraries), that will be executed in a serverless environment. In the
FaaS, the deployment and management of resources are handled by the Cloud provider,
and are hidden from the end-user. Basically, the resources provisioned in a FaaS are con-
tainers inside virtual machines. By using the FaaS, the resources are provisioned when
required, and released when not used, therefore enhancing the elasticity of the solution. It
can be said that the six operations of a workflow execution are automated by the workflow
engines that leverage the FaaS paradigm.

3.2.3 Discussion

In our opinion Pegasus and Hyperflow engines suffer from two main issues from the
end-user viewpoint, particularly when using Cloud infrastructures. On the one hand, they
require from the end-user the ability to deploy an infrastructure by themselves, assuming
that the end-user composing the workflow, i.e., the scientist, is an expert in resource man-
agement. Moreover, they also expect from the end-user to manage the various dependen-
cies required by the workflow engine to be properly configured and executed. In addition
to being difficult and time-consuming, this limits the possibility of re-using the efforts
between several users. Indeed, in addition to the workflow specification, deployment and
configuration scripts have to be shared but must be adapted to different infrastructures
and user requirements. As for Pegasus and Hyperflow, the workflow engines targeting a
FaaS environment, require from the user to be set up and configured, and thus still require
some management from the end-user. If DevOps tools could help in this task (e.g., Ter-
raform [20], Ansible [3], Puppet [18] etc.) this remains an important time and technical
drawback for scientists.

On the other hand, as the end-users are responsible for resource provisioning on the
Cloud, (in the case of Pegasus and Hyperflow), they have to determine the number of
resources that will be needed for the overall execution of the workflow. This is a very
difficult task that can lead to under-used resources. Furthermore, the resource usage of a
workflow may vary during its execution lifetime (e.g., the number of parallel tasks at each
step is variable), and therefore a non elastic resource reservation seems inappropriate.
This illustrates limitations in some engines of the related work on separation of concerns

70

3.2. Scientific workflow execution

metric Related Work
Automatic execution

1 Software dependencies management (c) [4] [7] [27] [56] [77]
2 Tasks execution (e) [4] [7] [27] [56] [77]
3 File management (d) (f) [4] [7] [27] [56] [77]

Virtualization
4 Elastic resources [7] [4] [77]
5 Dedicated resource management -

Modularity
6 Modular virtual resources (Heterogeneity) [4]
7 Modular scheduler -

Separation of concerns
8 Hidden management for the end-user [4] [7]
9 Turnkey solution for the Cloud provider -

Table 3.5 – Capabilities of Cloud-oriented workflow engines of the literature.

between the end-user and the Cloud provider, and on the elasticity of resource provisioning
as illustrated in Table 3.5.

In addition, the workflow engines using a FaaS service, such as Argo [7] and Apache
Airflow [4], by using an already deployed Cloud service (Kubernetes, AWS Lambda, etc.)
assume that the management of the physical resources is already done by the Cloud
provider, and only manage virtual resources. However, the Cloud provider is not aware
of the kind of application running on its infrastructure, and thus cannot make dedicated
optimization (fair sharing of the infrastructure between multiple user, energy optimiza-
tions, etc.). Indeed, such engines are dedicated for the execution of a workflow belonging
to one user, and therefore make optimizations for this user (makespan minimization, cost
optimization, etc.). By locating the decision process on the Cloud provider side, and by
providing information about all the tasks that are to be executed on the infrastructure,
and information about the topology of the physical infrastructure, the Cloud provider
would be able to have a dedicated management of the infrastructure, and make decision
based on the metric it wants to optimize, such as energy optimization or fairness.

The Cloud services provided by Cloud computing environment often stack different
layers of virtualization (containers inside virtual machines) that can lead to performance
loss. Yet, the performance is an important matter in the case of scientific workflows.
Indeed, from the end-user viewpoint, as workflows are complex applications and can be
time consuming, an efficient execution is preferred.

Furthermore, as workflow tasks generally are CPU intensive, and consume a lot of

71

Chapter 3 – Related work

memory, traditional strategies to consolidate resources in the Cloud are therefore not
desirable as they create performance interference between hosted tasks. From the Cloud
provider viewpoint this performance loss can be translated into a diminution of the Quality
of Service that limit the adoption of their solution by scientists. This illustrates limita-
tions in the related work to get resource management strategies dedicated to workflow
execution, thus impacting the execution performance. This is summarized in Table 3.5 by
Dedicated resource management.

A final limitation can be highlighted in the existing workflow engines: their lack of
modularity. Indeed, none of them offer a way to easily introduce new kind of virtualization
mechanisms nor new schedulers (e.g., Pegasus is based on a scheduler that cannot be
changed without a major modification of the engine itself). These limitations are also
summarized in Table 3.5.

Conclusion

The contribution presented in Chapter 7 is a new service dedicated for the execution of
scientific workflows. This service is presented as a turnkey solution for Cloud provider, and
aims at achieving the separation of concern between the two types of actors that are the
end-users and the Cloud providers. This service being installed on a multi-cluster infras-
tructure as would be any Cloud service, aims at enabling the opportunity for scheduling
algorithm to efficiently consider infrastructure management. In addition, this service is
designed to be modular, such that the scheduling algorithm and the virtualization mech-
anism could be easily changed with minimal code changes.

72

Part I

Workflow scheduling algorithms for
Cloud providers

73

Chapter 4

ONLYUSEDNODES : A WORKFLOW

SCHEDULING DEADLINE-BASED

ALGORITHM FOR ENERGY OPTIMIZATION

This chapter presents a new scheduling algorithm for Cloud providers that aims to
reduce the energy consumption of the infrastructure. To this end, the algorithm attempts
to minimize the number of physical machines required to execute a set of workflows (i.e.
a workload). Indeed, one of the main operating cost of a Cloud computing provider is
the electrical consumption. This consumption can be reduced by limiting the number of
under-used physical machines [43,79].

Contents
4.1 Introduction . 76

4.2 Problem modeling . 77

4.2.1 Applications and execution environment 77

4.2.2 Software and Hardware constraints 78

4.2.3 Temporal dependency constraints 79

4.2.4 Communications . 80

4.2.5 Cost modeling . 80

4.2.6 Objective . 81

4.3 OnlyUsedNodes algorithm . 82

4.3.1 Priorities and deadlines . 83

4.3.2 Backtrack scheduling algorithm 85

4.3.3 Resource selection . 87

4.3.4 Complexity . 88

4.4 Conclusion . 89

75

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

4.1 Introduction

Generally, users who develop scientific workflows are more interested in getting the
result at a predictable time rather than as quickly as possible [127]. The scheduling algo-
rithm OnlyUsedNodes, presented in this chapter, uses the notion of deadline constraint
and the objective of energy minimization. We have seen in the context chapter, that PMs
are more energy efficient when highly loaded, due to the non-linear power consumption
of their CPUs.

Intuitively, when trying to reduce the makespan of a workflow, it is necessary to use
a large number of PMs, which is costly for the Cloud provider. Indeed, since energy
consumption cannot be represented by a linear function [74, 135] defined by the number
of used physical resources and the running time, the use of a large number of PMs for
a short time is more consuming than the use of a reduced number of PMs for a slightly
longer time interval.

Conversely, if users can extend their deadlines instead of looking for the best possible
makespan, a better energy optimization (i.e., number of PMs used) can be achieved,
resulting in a cost reduction for the Cloud provider. This cost reduction can then be
reflected in the rental prices by a business model. One can note that such business model
is above the scope of this contribution but it seems realistic to, at least partially, pass on
the savings made by the Cloud provider to the user in the rental price, in order to reward
the users who submits workflows with flexible deadlines.

In this chapter we consider a Cloud infrastructure from the provider point of view
with the possibility of provisioning virtual machines (VMs) for two reasons. On one hand,
the heterogeneity of the tasks composing the workflows makes it mandatory to load dif-
ferent operating systems (cf Section 2.1). On the second hand, a multi-user workload is
considered, thus, strong isolation, for security reasons, must be guaranteed which is made
easier by the VMs.

This chapter presents the following contributions: (1) a detailed model of the schedul-
ing problem under consideration; (2) an adaptation of the HEFT algorithm, namely
OnlyUsedNodes, that takes into account both virtualization and deadlines and that
minimizes the number of PMs used to plan a workload. The remainder of this chapter is
organized as follows. Section 4.2 details the problem modeling, Section 4.3 presents our

76

4.2. Problem modeling

new algorithm OnlyUsedNodes. Finally, the section 4.4 concludes this chapter.

4.2 Problem modeling

In this section, we present the model that describes our scheduling problem. The prob-
lem we are addressing is to create a planning containing all the tasks of the workflows
being submitted at a given instant with a deadline. Every tasks are to be executed by
virtual resources, that are used to satisfy the dependencies of the tasks and their resource
requirements. In the computed planning the capacities of the physical machines are re-
spected, as well as the deadlines of the workflows. The objective of the algorithm is to
minimize the cloud provider’s energy consumption by reducing the number of physical
machines used to execute the workflows. All the symbols presented in this section are
summarized in Table 4.2.

4.2.1 Applications and execution environment

Workflow definition - Let J be the set of tasks to be scheduled and executed. These
tasks make up the different workflows. Each workflow w ∈ W can be represented as a
DAG - Directed Acyclical Graph G = (T,D), where T ⊂ J and D is the set of data
dependencies between tasks. Each edge of the graph d ∈ D is weighted, and its weight
represents the size of the data to be transferred from one task to another and is denoted
di→j for a task i and j ∈ J . Each task has constraints that can be divided into two
categories: the hardware constraints that can be quantified, such as the number of CPU
cores, the amount of memory; and the software constraints (OS, library, etc.). In this
chapter, it is assumed that the number of instructions to execute a task is known. Such
information can be retrieved by sampling. Let succj and predj be the list of respectively
the successors and the predecessors of the task j ∈ J , such that ∀ p ∈ succj, ∃ dj→p ∈ D
and ∀ p ∈ predj, ∃ dp→j ∈ D.

Execution environment - The targeted environment is a multi-cluster infrastructure,
namely a set of clusters of PMs, where each PM is running an hypervisor, giving the ability
to provision different types of VMs on each one of them. V denotes the set of VMs - in the
planning - that are to be provisioned within the execution environment. Virtual machines
are provisioned from images, which have different hardware and software capacities. Let

77

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

N be the set of compute nodes (physical machines). A node is associated with a given
cluster.

The bandwidth between clusters is assumed to be heterogeneous, and therefore the
bandwidth between the nodes of several different clusters is also heterogeneous. Let bwNn↔m
be the bandwidth between the nodes n and m ∈ N .

Let speedNn be the speed of the node n ∈ N , as the number of instructions per CPU
core per instant (e.g., seconds). No over-provisioning of the nodes is considered in this
chapter; consequently one CPU core is reserved for one VCPU, 1MB of virtual memory
is reserved for 1MB of memory, etc.

4.2.2 Software and Hardware constraints

Let Ht,n =< ht,n,v, . . . , ht,n,|V| > be a vector, for each node n ∈ N , and for each instant
t ∈ N, where ht,n,v = 1 if and only if the VM v ∈ V is hosted by n at instant t, and
ht,n,v = 0 otherwise. Similarly let Et,v =< et,v,j, . . . , et,v,|J | > be a vector, for each v ∈ V ,
and for each instant t ∈ N, where et,v,j = 1 if and only if j ∈ J is executed by v at instant
t, and et,v,j = 0 otherwise. Let C be the set of different hardware capacities (e.g., RAM,
CPU, HDD, etc.). For each capacity k ∈ C, three vectors are defined :

— CNk , of size |N |, which represents the capacity k provided by each nodes n ∈ N ,
such that CNk (n) is the capacity k that n ∈ N can supply.

— CVk , of size |V| represents the required amount of resource k needed by each v ∈ V ,
such that CVk (v) is the amount of resource k reserved by v ∈ V .

— CJk , of size |J |, defines the amount of resource k required by each j ∈ J .

For each capacity k ∈ C, the two following constraints are defined in such a way that
over-provisioning is not considered both for physical and virtual machines:

CVk ·Ht,n ≤ CNk (n) ∀n ∈ N , ∀t ∈ N (4.1)

CJk · Et,v ≤ CVk (v) ∀v ∈ V , ∀t ∈ N (4.2)

The software requirements of the tasks are also taken into account. Thus, let S be
the set of software requirements (e.g., OS, library, language, etc.). For each software
requirement s ∈ S, a task requiring the software s must be executed by a virtual machine
possessing the software s.

78

4.2. Problem modeling

4.2.3 Temporal dependency constraints

Let speedVt,v be the speed of v ∈ V at instant t - let us remind that the speed is in
number of instructions per core (here per VCPU). As no over-provisioning is considered,
the deterioration of the VM speed is assumed to be low [101], and considered to be 5% of
the host node speed. Thus, speedVt,v = speedNn ·0.95 if and only if ht,n,v = 1. For simplicity
in the rest of the chapter, the speed of the VM v is time-independent and denoted as
follows speedVv , because a VM is associated to one and only one node (no migration).
In this chapter we assume, that the length of the tasks are sufficiently short, so that a
migration of a VM would provide no gain as it would imply time delay. However, the
migration of the VM could be an interesting orientation for a future work.

In this contribution, VMs are dynamically provisioned on demand to manage the
specific constraints of each task. A VM needs a certain amount of time to start and be
ready to perform tasks. Let startVv be the instant when v ∈ V initiates its powering on. Let
bootVv be the number of instructions to run before v ∈ V is ready for usage. And let readyVv
be the instant when v ∈ V is ready to compute tasks, such that readyVv = startVv + bootVv

speedVv
.

We define the instant when a task can start as follows:

∀j ∈ J startJj = max
p∈predj

(endJp + max(dp→j
bwN

hostJp ↔hostJj

, readyVv)), (4.3)

where v is the VM executing the task j, hostJj refers to the node hosting the VM
executing the task j ∈ J , predj is the list of predecessors of the task j, dp→j is the size of
the dependency between the task p and the task j, endJp (see Equation 4.5) is the instant
of the end of execution of the task p and bwNn↔m is the bandwidth between two physical
nodes, a clarification of the communication is given in the next subsection.

The execution time of a task j depends on its weight Wj (number of instructions)
divided by the speed of the resource that will execute the task (See Equation 4.4). This
execution time is used to compute the end time of the task (See Equation 4.5).

∀j ∈ J execJj = Wj

speedN
hostJj

· 0.95 (4.4)

∀j ∈ J endJj = startJj + execJj (4.5)

Finally, each workflow w ∈ W has a deadline deadWw such that all tasks forming the
workflow w must be finished before deadWw .

79

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

4.2.4 Communications

We have seen in Equation 4.3, that a task cannot be started before the files of its
predecessors are successfully transferred to the node that will host the VM that will
execute the task.

In this chapter the network used to transfers the files from one task to another is the
physical network that links the nodes together, and not a virtual network that is used by
the VMs. Indeed in this contribution, VMs are only considered as computing resources,
and therefore are only used to execute the tasks. As a result, communications between
different tasks are directly performed between nodes without virtualization layer. We
assume that communications require a very low CPU load [31], so this load is not taken
into account when computing the resource usage (CNcore) of the node. This assumption made
possible an overlap of communications and computations, which improves the quality (e.g.,
execution time) of workflows executions.

Figure 4.1 illustrates this claim with an example where two users are sharing the same
node. In this example, the first user uses a VM that is consuming almost all the resources
of the node (CPU cores for example), that we will call v1. This VM makes impossible to
start a new VM on the node without over-provisioning, and therefore the second user has
to wait the end of v1 to start a new VM v2 and execute the tasks.

In the first scenario (at the top of Figure 4.1), communications are performed within
the VMs. In this case, the execution is fully sequential. Indeed, the VM v1 must be stopped
before the second VM v2 can be started, as a result the communications of the second user
are also waiting the end of v1 (as they are performed within v2). In the second scenario,
on the contrary, since communications are made outside the VMs, they are performed in
parallel with the execution of the tasks of the other users, and in parallel with the booting
process of the VMs.

4.2.5 Cost modeling

Our contribution aims at minimizing the operational costs of the Cloud computing
provider. We assume that this cost is directly correlated to the data center’s power con-
sumption. It has already been discussed in the context chapter (cf Section 2.6.2), that the
CPU’s energy consumption is not a linear function defined by the load and the running
time. Therefore, reducing the number of nodes for a longer period of time is not equivalent
to using more nodes for a shorter period.

80

4.2. Problem modeling

User1 1 2 3

1 3 2 3User2
(1)

User1 1 2 3

3 1 2 3User2
(2)

1 boot 2 computation 3 communication VM lifetime

Figure 4.1 – Representation of the gain between communication done on the VMs (1) and
on the node (2)

To properly model the cost and therefore the gain of our solution, the consumption of
a node is defined accordingly to [135] and as follows:

consumptionn =
∑
t ∈ N

Pmaxn + (Pidlen − Pmaxnln 0.01) · ln cpu_loadt,n, (4.6)

cpu_loadt,n =

∑
v ∈ V

(CJcore(v) · Et,v)× ht,n,v

CNcore(n) , (4.7)

where Pidlen is the idle consumption of the node, Pmaxn is the power consumption of
the node when fully used. The cpu_load computed by Equation 4.7 is the percentage of
cores used on a CPU at a given time. The value 0.01 is an arbitrarily small value to keep
the logarithm calculable, and represents the minimal cpu_load.

One can note that we have conducted experiments on the Ecotype cluster [13] (Se-
DuCe [103] platform) that perfectly match this model (see Figure 2.9).

4.2.6 Objective

The objective considered in this contribution is to minimize the number of nodes
required to execute a set of workflows and consolidate the already used nodes, in order
to reduce the energy consumption of the infrastructure, and by extension the cost of the
Cloud provider.

81

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

Symbol Definition
Workflow

w ∈ W A workflow
j ∈ J A task
Tw ⊂ J The list of tasks of the workflow w ∈ W
di→j ∈ D A dependency between two tasks i and j ∈ J
deadWw The deadline of the workflow w ∈ W
succj The list of successor tasks of the task j ∈ J
predj The list of predecessor tasks of the task j ∈ J

Execution environment
n ∈ N A node
v ∈ V A VM
bwNn↔m the bandwidth between the node n and m ∈ N
speedNn the speed of the node n ∈ N
speedVv the speed of the VM v ∈ V

Software and Hardware constraints
k ∈ C A capacity (e.g., RAM, CPU, HDD, etc.)
CNk (n) The amount of capacity k that the node n ∈ N can supply
CVk (v) The amount of capacity k reserved by the VM v ∈ V
CJk (j) The amount of capacity k reserved by the task j ∈ J
s ∈ S A software dependency (OS, library, language, etc.)

Temporal constraints
startVv The instant of powering on of the VM v ∈ V
bootVv The number of instructions to run in the boot process of the VM v ∈ V
readyVv The ready instant of the VM v ∈ V
startJj The start instant of the task j ∈ J
endJj The end instant of the task j ∈ J
execJj The execution time of the task j ∈ J

Assignment
Ht,n The vector of hosted VM on the node n ∈ N at the instant t ∈ N
Et,v The vector of executing tasks on the VM v ∈ V at the instant t ∈ N
hostJj The node n ∈ N hosting the VM that executes the task j ∈ J

Figure 4.2 – Table of symbols of the model of section 4.2

4.3 OnlyUsedNodes algorithm
In this section, we present our deadline aware scheduling algorithm OnlyUsedNodes

based on the HEFT algorithm. As part of our algorithm, a set of workflows - each
associated with a deadline - is submitted at a given time to the Cloud provider. The
algorithm is launched following a regular clock and takes into account the VMs already

82

4.3. OnlyUsedNodes algorithm

hosted on the Cloud infrastructure. The algorithm computes a planning, that is containing
all the tasks of the submitted workflows. The planning corresponds to an instance of the
vectors H and E presented in the model section, where all the constraints are respected.

4.3.1 Priorities and deadlines

In HEFT, a priority is calculated for each task j of each workflow such that tasks with
higher priorities are scheduled first. This priority is established according to the average
completion time (on all possible nodes) of a task, denoted execJj , as well as its average
communication time (between all possible nodes), denoted comJj→p . The rank of a task is
shown in Equation 4.8.

rankJj = execJj + max
p∈succj

(
comJj→p + rankJp

)
(4.8)

Figure 4.3 presents an example of workflow and Table 4.1, lists the weight Wj, of each
task of the example. This table also presents the rank of each task, assuming that the
infrastructure is composed of two nodes with a speed of respectively 2GFlops (floating
operations per second) and 1.8GFlops, and that the bandwidth between the nodes and
between a node and itself is 10Mbps. This table presents the average execution time
of each task (based on its weight), the average communication time of each task to its
successors, and the rank of each task. One can note that the rank of A is based on the
rank of B, due to the fact that rankJB + comJA→B is greater than rankJC + comJA→C .

A B C D E F
Wj 10× 109 20× 109 10× 109 25× 109 13× 109 45× 109

execJj 5 11 5 13 7 24
comJj→p {B: 3, C: 5} {D: 8} {E: 9} {F: 8} {F: 10} {}
rankJj 72 64 55 45 41 24

Table 4.1 – Weight and ranks of the example workflow of Figure 4.3

As illustrated in the main algorithm of HEFT in Algorithm 1, once all the tasks
are sorted by rank (computeRankList function), the scheduling algorithm is launched.
This algorithm will be detailed later in Section 4.3.3.

The first operation performed by OnlyUsedNodes, as indicated in Algorithm 2, is to
order the workflows by difficulty (function sortWorkflows). This difficulty is defined
by the difference between the deadline and the average execution time of the critical path
of the workflow (on all possible nodes) accordingly to Equation 4.9. The average critical

83

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

A

B

C

D

E

F

30Mb

45Mb

78Mb

89Mb

76Mb

100Mb

Figure 4.3 – Example of scientific workflow

Algorithm 1 HEFT algorithm
function HEFT (tasks, nodes)

task_list← computeRankList (tasks, nodes) . Eq. (4.8)
for all t ∈ task_list do

scheduleEarliest(t, nodes)

path is already computed by the rank of the entry tasks of the workflow (see Equation 4.8).
In the example of Figure 4.3 and Table 4.1, the difficulty of the workflow would be 28, if
its deadline is 100 seconds.

difficultyw = deadWw −max
j∈J

(
rankJj

)
. (4.9)

Then, OnlyUsedNodes processes each workflow by decreasing difficulty unlike HEFT
that directly ranks all tasks of all submitted workflows.
Algorithm 2 OnlyUsedNodes algorithm

function OnlyUsedNodes (workflows, deadlines, nodes)
workflow_list← sortWorkflows (workflows, deadlines, nodes)
for all w ∈ workflow_list do

OnlyUsedNodes-workflow(w.tasks, nodes, deadlines[w])

For each workflow to schedule, the function OnlyUsedNodes-workflow shown
in Algorithm 3 is called. The first step of this function is to calculate the priority of
each task (computeRankList function) of the input workflow. The second step is to
compute the deadlines for each task of the current workflow. As already explained, in
OnlyUsedNodes, the user submits a workflow with a global deadline, including all the
tasks that make up the workflow. We also consider (as already explained in Section 4.2)
that the number of instructions necessary to perform each task is given when the workflow
is submitted to the scheduler. It is therefore possible to compute a time limit per task
that must not be exceeded in order to meet the overall initial deadline of the workflow.
Each task deadline will be used to avoid a full exploration of a branch of the search space
that will necessarily lead to an overdue global deadline.

84

4.3. OnlyUsedNodes algorithm

Algorithm 3 OnlyUsedNodes single workflow scheduling
function OnlyUsedNodes-workflow (tasks, nodes, deadline)

task_list← computeRankList (tasks, nodes) . Eq. (4.8)
dead_list← computeDeadlines (tasks, nodes, deadline) . Eq. (4.10)
ons← filterUsedNodes(nodes)
offs← filterUnusedNodes(nodes)
return scheduleBackTrack(0, 0, task_list, dead_list, ons, offs, false)

A B C D E F
min execJj 5 10 6 12 7 23
min comJj→p {B: 3, C: 5} {D: 8} {E: 9} {F: 8} {F: 10} {}

deadJj 36 49 51 69 67 100

Table 4.2 – Deadlines of the tasks of the example workflow of Figure 4.3 with a global
deadline of 100 seconds

The deadline of the tasks is computed in the computeDeadlines function of Al-
gorithm 3. To compute the deadline of each task, it is necessary to start with the exit
tasks of the workflow (tasks with no successors). Indeed, for the exit tasks, the time not
to be exceeded is the overall deadline of the workflow. Then for any other task j ∈ J
that has successors, the deadline is represented by Equation 4.10, where succj ⊂ T ⊂ J
is the set of successor of j. The idea is that the deadline of a task is the moment when,
even if the fastest node is used for the execution of the successors, the overall deadline of
the workflow cannot be guaranteed. Table 4.2 presents the deadline of each task of the
example workflow of Figure 4.1 with the same infrastructure as in Table 4.1.

∀j ∈ J where |succj| > 0,
deadJj = min

p∈succj

(
deadJp − min

n,m∈N

(
Wp

speedNm ·0.95 + dj→p
bwNn↔m

)) (4.10)

Finally, the OnlyUsedNodes algorithm maintains two lists of physical machines
(ons and offs lists) so that the scheduling algorithm knows which PMs will be used
to execute tasks, and which ones will not be used. The rest of this section details the
scheduling algorithm of OnlyUsedNodes and HEFT.

4.3.2 Backtrack scheduling algorithm

OnlyUsedNodes tries to minimize the number of nodes used to schedule the work-
flows of a workload. To this end, our solution extends the HEFT algorithm with a partial
backtracking heuristic. This heuristic consists in trying to perform scheduling on nodes
that already have planned task execution and VMs provisioning. As soon as this attempt

85

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

fails, because the tasks deadlines are no longer met, a backtrack is performed and a new
node is considered. This new algorithm is defined in the recursive function schedule-
BackTrack of Algorithm 4 (initially called in Algorithm 3). This function takes as input
the id of the first task (backTo), the id of the current task, the task list of the current
workflow, the list of tasks deadlines, the list of used nodes and the list of unused nodes
and the last input force that will be explained later.

Algorithm 4 OnlyUsedNodes backtrack scheduling
function ScheduleBackTrack (backTo, id, tasks, deads, ons, offs, force)

task ← tasks [id]
deadline← deads [id]
if not force and scheduleEarliest(task, ons, deadline) then

if scheduleBackTrack(backTo, id+1, tasks,
deads, ons, offs, False) then

return True
if id = backTo then

if scheduleEarliest(task, ons+ offs, deadline) then
new_ons← filterUsedNodes(ons+ offs)
new_offs← filterUnusedNodes(offs)
if scheduleBackTrack(backTo+1, id+1, tasks, deads,

new_ons, new_offs, |new_ons| == |ons|) then
return True

return False

Algorithm 4 is the main part of the OnlyUsedNodes algorithm. If the deadline
constraint cannot be met by considering used nodes only, the algorithm backtracks to the
first task that was not scheduled on an unused node. This task is the task whose id is
backTo. It may happen that an already used node offers a better makespan than an unused
node, and thus that the list new_ons and the list ons would be the same. However, the
scheduling had failed with this number of used nodes, so it is not necessary to wait for
the first step (scheduling only on the used nodes) to fail. The input parameter force is
used to this end, and is evaluated to false, only when a new node has been considered for
the scheduling of a task, thus avoiding useless backtracking.

It can be noted that in our scheduling algorithm, the maximum number of backtracks
is equal to the number of unused nodes at entry point. OnlyUsedNodes manages each
workflow one after the other by decreasing difficulty, unlike HEFT which handles all the
tasks of all workflows in a single sorted list. In OnlyUsedNodes this cannot be done,
because the backtrack part would go back to tasks that have little impact on the task
that has not been scheduled. For this reason, if all tasks are processed together, all nodes
will be used and a result close to HEFT will be observed but with worse complexity. For

86

4.3. OnlyUsedNodes algorithm

this reason, OnlyUsedNodes schedules the workflows one by one, sorted by decreasing
difficulty.

4.3.3 Resource selection

Another essential part of the OnlyUsedNodes algorithm is the resource selection
function scheduleEarliest. In HEFT, this resource selection phase does not take into
account the heterogeneity of the PMs composing the infrastructure, and assumes that
each task consume exactly one CPU core. Consequently, in the HEFT algorithm, the
resource selection is relatively trivial and consists in choosing the CPU core that will give
the lowest makespan. In our context, the tasks require different amount of resources, and
the resources are spread across PMs, and in addition VMs must be considered.

The function scheduleEarliest is called each time a task is to be scheduled by the
OnlyUsedNodes algorithm, and is detailed in Algorithm 5. Obviously, this function
takes deadlines into account,

Algorithm 5 OnlyUsedNodes resource selection
function scheduleEarliest (task, nodes, deadline)

start← 0
bestP lace← (None, 0, 0, deadline+ 1)

. A place is a tuple (node, start, duration, end) for a task
. deadline+ 1 means that the deadline is not respected

start← GetMaximumEnd(predtask)
for all n ∈ nodes do

exec← ComputeExecTime(task, n) . Eq. (4.4)
place← getPlaceOnNode(n, task, start, exec, deadline)

. Eq. (4.1, 4.2)
if place.end < bestP lace.end then bestP lace← place

if bestP lace.node 6= None then
resourceProvisioning(bestP lace.node, task,

bestP lace.start, bestP lace.duration)

This resource selection phase is specific to the problem modeled in Section 4.2. Due
to virtualization and software constraints, virtual machines must be provisioned. A VM
is provisioned for only two reasons: (1) the VMs already used by the owner of the current
workflow cannot meet the requirements of the current task to be scheduled (or the user
does not have one), and for isolation and safety reasons VMs of other users cannot be
used; (2) by starting a new VM the quality of the schedule (makespan) is enhanced.

The function GetPlaceOnNode called in Algorithm 5 is used to find a suitable
location to execute a task inside an existing or a new VM onto a specific node (physical

87

Chapter 4 – OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy
optimization

machine). First, this function looks for a placement on the existing VMs of the user that
minimizes the ending time of the task. Then, the function selects a new VM (that takes
into account the constraints of the task) and calculates the ending time of the task on
this new VM (taking into account its boot time). The place inside a VM that offers the
earliest ending time is selected. The placement found inside a VM may extend the lifetime
of that VM, thus the function must also know the capacities of the node hosting the VM.

Finally, in Algorithm 5, the function resourceProvisionning reserves the place on
the node, updates all capacities information, and eventually stores the new selected VM.
A reservation being the recording of the task, the VM and the temporal information (start
instant, estimated end time, etc.) in the planning that is computed by the scheduling al-
gorithm. One can note that this reservation may be released when the OnlyUsedNodes
algorithm backtrack on previous task scheduling.

A variation of the HEFT algorithm can be defined easily by replacing its resource
selection function by the function scheduleEarliest function of the OnlyUsedNodes
algorithm. Thus, a variation, that will be called v-HEFT in the rest of this chapter, is
defined, and takes into account the heterogeneity of the task requirements, the hetero-
geneity of the PMs, and the provisioning of VMs. The v-HEFT algorithm will be used
in the evaluation section, in order to compare the OnlyUsedNodes and the HEFT
algorithm in fair conditions.

4.3.4 Complexity

The complexity of the function getPlaceOnNode is common to both v-HEFT and
OnlyUsedNodes algorithms, thus this function is not taken into account for the com-
plexity. The complexity of v-HEFT is a function of the number of tasks in the workflow
and the number of nodes on which the scheduling solution will be done. Therefore, its
worst-case complexity v-HEFT is O(|J |× |N |), and is exactly equals to its average-case
complexity.

The complexity of our new algorithm OnlyUsedNodes, is different due to the partial
backtracking. The worst case, is when all the nodes are needed to schedule the workflow
and when the backtrack is performed when reaching the last task of the workflow. The

worst-case complexity is then O(
|J |∑
i=1

(|N |+
i∑

k=1
k)). However, this complexity is on average

far lower than the worst case, as only used nodes are explored, and for most of the tasks
the number of used nodes may be low. Section 6.1 validates this claim.

88

4.4. Conclusion

4.4 Conclusion
This chapter tackles the scheduling of heterogeneous scientific workflows while mini-

mizing the energy consumption of Cloud providers. The OnlyUsedNodes algorithm has
been presented as a solution to this scheduling problem. OnlyUsedNodes adds dead-
lines to workflows so that the number of PMs needed to run the workload is reduced, as
well as the energy consumption. This algorithm is based on v-HEFT, a variant of HEFT
that takes virtualization into account. In Chapter 6 The OnlyUsedNodes algorithm is
compared to v-HEFT to assess the impact of the deadlines on the energy consumption
of the Cloud provider. Experiments on real infrastructure have been conducted, in order
to evaluate this algorithm.

In the next chapter, another algorithm is presented. This algorithm operates in a
different context, where instead of being static, the problem is dynamic because the users
can submit workflows at random times. Therefore, the algorithm that is presented in
the next chapter is a dynamic algorithm, which takes into account the uncertainty of
arrival. It also uses the deadline of the workflows, not only for energy optimization, as the
OnlyUsedNodes algorithm does, but also to ensure fairness between users.

89

Chapter 5

NEARDEADLINE : DYNAMIC

MULTI-USER WORKFLOW SCHEDULING

ALGORITHM FOR FAIRNESS AND

ENERGY OPTIMIZATION

This chapter introduces a new scheduling algorithm for Cloud providers. This algo-
rithm aims to guarantee fairness among users, who submit a scientific workflow for exe-
cution at a uncertain point of time on the execution environment, as well as to reduce the
energy consumption. The algorithm also takes into account the uncertain execution time
of the tasks and uncertain boot times for the virtual machines to be properly provisioned
and operational.

Contents
5.1 Introduction . 92

5.2 Modeling and Problem Formulation 93

5.2.1 Workflow definition . 93

5.2.2 Infrastructure definition . 94

5.2.3 Scheduling problem . 94

5.2.4 Fairness objective . 97

5.2.5 Energy objective . 97

5.3 Deadline based dynamic algorithm 99

5.3.1 Priorities and deadlines . 99

5.3.2 Scheduling near the deadline 100

5.3.3 Panic mode . 105

5.3.4 Fitness functions . 107

5.4 Conclusion . 108

91

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

5.1 Introduction

We have seen in the Chapter 4 an algorithm that creates a planning for the execution
of scientific workflows belonging to multiple users, from the Cloud provider side. By
locating the scheduling decision on the Cloud provider side, a better optimization of the
infrastructure can be achieved. However, in a public execution environment multiple users
are in competition for a set of resources, on which they submit different applications with
uncertain task executions at unpredictable random arrivals. Therefore a static algorithm
- as detailed in Chapter 4 - is no longer sufficient, as the problem evolves and the planning
has to be updated accordingly.

As far as we know there is no work on Grid or Cloud computing infrastructures that
aims at solving the following problematics: (1) uncertainty, that is to say juggle with the
unpredictable random arrivals of workflows, uncertain task execution times, and uncertain
VM boot times; (2) user fairness, in other word, be able to schedule a multi-user workload
with a fair sharing of the available resources; (3) energy minimization, i.e., minimizing
the energy consumption of the Cloud infrastructure.

In this chapter, as for the first contribution detailed in Chapter 4, we consider a Cloud
infrastructure from the provider point of view with the possibility of provisioning virtual
machines (VMs) for two reasons. On one hand, the heterogeneity of the tasks composing
the workflows makes it mandatory to load different operating systems (cf Section 2.1). On
the second hand, a multi-user workload is considered, thus, strong isolation, for security
reasons, must be guaranteed which is made easier by the VMs.

In addition, in this chapter each workflow is submitted with a deadline. This deadline
is used to define the fairness between the users, where an execution is considered fair
if all the deadlines of the workflows are guaranteed. This chapter presents the following
contributions: a dynamic scheduling algorithm for Cloud provider, named NearDead-
line. This algorithm, by taking into account the deadlines, schedules the workflows of
all users on a set of PMs in order to maximize the user fairness and minimize the energy
consumption. The algorithm is able to dynamically update the planning it has created,
when new submissions of workflows arrive.

The rest of the chapter is organized as follows: Section 5.2 gives a detailed model of
the problem. Then Section 5.3 presents our new algorithm NearDeadline. Finally, the
section 5.4 concludes this work.

92

5.2. Modeling and Problem Formulation

5.2 Modeling and Problem Formulation

This section presents a model that describes the scheduling problem: schedule all the
tasks of submitted workflows on virtual resources in order to satisfy task dependencies and
their resource needs, while respecting the capacity constraints of the physical machines.
The problem modeling of this chapter is close to the problem modeling presented in
Section 4.2, but have some differences due to the dynamic nature of the problem, and
the objectives that are not the same. Our objectives are to maximize the user fairness
by respecting the deadline of each users, and to minimize the energy consumption of the
physical machines. All the symbols presented in this section are summarized in Table 5.1.

5.2.1 Workflow definition

A scientific workflow can be defined as a DAG (Directed Acyclic Graph) G = (T,D)
were each vertex j ∈ T represents a task and each arrow d ∈ D represents a data
dependency between two tasks. For simplicity of further notation, let J be the set of all
tasks composing the submitted workflows over the time. For each task is associated the
following properties: (1) its needs in term of computing resources (such as the quantity of
memory it requires or the number of CPUs, etc.); (2) its software requirements (basically
the operating system, libraries and packages needed to execute the task); (3) its execution
time represented by two metrics: for a task j ∈ J , µj is the number of instructions needed
to complete j in average, and σj is the standard deviation of the execution time. Such
information can be retrieved by sampling, and in this chapter are assumed to be known.

In addition, a weight representing the size of the data that has to be transferred from
a task to another, denoted di→j ∈ D between i ∈ T and j ∈ T . It can be noted that a task
can transfer the same file to multiple successor tasks, and that a task can get multiple
files from the same ancestor task.

Each workflow is associated to a user. This user is the only one that can have access
to the files created by the tasks of the workflow. Therefore isolation must be guaranteed,
and for this reason, the VM provisioned for the execution of the task of one user, cannot
be use for the execution of the task of another user.

93

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

5.2.2 Infrastructure definition

The considered infrastructure is composed of multiple nodes (physical machines), de-
noted n ∈ N , where N is the set of all nodes. For each node are attached some properties:
(1) its computing capabilities, (the quantity of memory, the number of CPUs, etc.); (2)
its speed represented by the processor frequency (per CPU), denoted speedNn for n ∈ N .
Let bwNn↔m be the bandwidth between two nodes n and m ∈ N .

Unlike the VM of the Chapter 4 where the VMs where provisioned according to VM
templates, any VM can be provisioned on nodes, with any size and with any given operat-
ing system. Let V be the set of all VMs launched on the nodes during the execution from
the start. For each vm v ∈ V , are attached two properties: (1) its hardware capacities, in
term of VCPUs and memory; (2) its software capacities embedded in its image, basically
the installed operating system, packages and libraries. It is ensured that on a given node,
at every moment, the number of VCPUs and memory used by the hosted VMs does not
exceed its capacities. As VMs are used to execute tasks, it is also ensured that at every
moment the sum of the needs of the hosted tasks does not exceed the capacities of that
VM. In other words, in this chapter over-provisioning is forbidden on both nodes and
VMs levels. Such capacity constraints can be modeled as a classical bin packing problem.
A more formal definition of this problem has been presented in the previous chapter 4.2.
As over-provisioning is not allowed in this work the deterioration of VM computing speed
is assumed to be low [101], and considered to be 5% of the host node speed. Consequently
as every task is running in a VM, for simplicity, we will consider that the speed of all
node is actually 95% of their real speed.

5.2.3 Scheduling problem

Unlike the scheduling problem resolved in the Chapter 4 that was a static problem,
that consisted of scheduling a set of workflows submitted at the same time, the prob-
lem addressed in this chapter is dynamic. As presented in the related work chapter (see
Section 3.1.2), a dynamic problem is a problem that may evolve over time, and there-
fore the planning (solution of the problem) must evolve accordingly to still be optimal.
Indeed, new submitted workflows may have an higher priority than already scheduled
ones - tighter deadline - and therefore the computed planning must be rethought. In the
problem addressed in this chapter workflows can be submitted by users at any moment.
A workflow w ∈ W is submitted at a given time submitw, with a deadline denoted deadWw ,
by a given user userw.

94

5.2. Modeling and Problem Formulation

Let hostJj be the node hosting the VM that execute the task j ∈ J , and hostVv be the
node hosting the VM v ∈ V . For all tasks j ∈ J , are defined height temporal notations :

Notation Meaning
ESJj The estimated start time of the task
EEJj The estimated end time of the task
ELJj The estimated length of the task
ETTJi→j The estimated transfer time between i, j ∈ J
ASJj The actual start time of the task on the node n ∈ N
AEJj The actual end time of the task on the node n ∈ N
ALJj The actual length of the task
ATTJi→j) The actual transfer time between i, j ∈ J

Let succj ⊂ J be the set of tasks that succeed j ∈ J , also called the set of successors.
For each task j ∈ J :

∀p ∈ succj, ESJp ≥ EEJj + ETTJj→p (5.1)

As one may have noticed the execution time of a task follows a Gaussian distribu-
tion N (µ, σ), unlike the tasks presented in Chapter 4. Indeed, in this chapter the task
executions are considered uncertain, and may vary depending on different factors (e.g.,
depending on input data). Thus a distinction between the estimated times and the actual
times of the tasks is made in this chapter, and was not made in Chapter 4.

Representing the uncertainty of the task execution times by a Gaussian distribution is
a common approach in the state of the art [48,58,88]. The estimated execution time of a
task j ∈ J with the Gaussian distribution N (µ, σ), on a node n ∈ N with the uncertainty
x ∈]0; 1[is as follows:

Fx(µ, σ) =
∫ x

−∞

e
−(x−µ)2

2σ2

σ
√

2π
(5.2)

ELJj = Fx(µj, σj)
speedN

hostJj

(5.3)

EEJj = ESJj + ELJj (5.4)

95

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

The estimated transfer time is defined according to the following equation :

ETTJj→i = dj→i
bwN

hostJj →host
J
i

(5.5)

Likewise, after a set of experiments on a real infrastructure we have observed that the
VM boot time is uncertain. Indeed, the boot time of a VM is not static and can differ
depending on the stress that is applied to different resources of the node that is hosting
it. This observation has been highlighted in many works [97, 134, 136]. Thus, we assume
that the VM boot time follows a Gaussian distribution composed of two properties, µv,n
and σv,n, respectively the mean time and the standard deviation of the boot of v ∈ V on
a node n ∈ N . These two properties depend on the operating system of a given VM, and
the node that host it. Furthermore, they can be retrieved by sampling, and are assumed
to be known in this chapter. One can note that these properties are more static than
the task execution time uncertainty, as possible bootable operating systems are bounded
and determined by the Cloud provider, while tasks are unknown and chosen by users.
Consequently, the administrator can run benchmarks for each OS to get the average boot
times of a VM, and its standard deviation.

For each VM v ∈ V , three different temporal notations are introduced :

Notation Meaning
EP Vv The estimated instant of the VM provisioning
ESVv The estimated ready time of the VM
EEVv The estimated end time of the VM

Let Jv ⊂ J for v ∈ V be the set of tasks to execute on v, and hostVv ∈ N the hosting
node for v. For each VM v ∈ V , the following temporal constraints are defined, with
hostVv ∈ N the node hosting the VM v:

ESVv = min
j∈Jv

(ESJj) (5.6)

EEVv = max
j∈Jv

(EEJj) (5.7)

EP Vv = ESVv − Fx(µv,hostVv , σv,hostVv) (5.8)

96

5.2. Modeling and Problem Formulation

5.2.4 Fairness objective

One of the objective of this work is to ensure the fairness between the different users of
the workflow platform. The fairness is represented by the respect of the deadline of each
workflow, and thus this objective can be defined as the minimization of the maximum of
the deadline violations. The deadline violation of a workflow is defined by Equation 5.10
and the associated objective by Equation 5.11. The deadline violation is computed with
the deviation, that is equal to the makespan of the workflow (maximum actual end time
of the tasks of the workflow) minus the deadline. The value obtained by Equation 5.12
will be used in the evaluation section as a comparison metric, however the maximization
of this metric is not an objective of this contribution.

deviationw = max
j∈Tw

(AEJj)− deadWw (5.9)

violationw =

deviationw If deviationw > 0

0 Otherwise
(5.10)

Minimize(max
w∈W

(violationw)) (5.11)

aheadw =

deviationw If deviationw < 0

0 Otherwise
(5.12)

where Tw ⊂ J is the set of tasks of the workflow w, and AEJj is the actual end time
of the task j ∈ Tw.

5.2.5 Energy objective

We have seen in the context chapter (cf. Section 2.6.2) that the energy consumption of
a node is not linear to its load, and is more energy efficient when highly loaded than low
loaded (see Equation 4.6). For this reason, to optimize the energy consumption, in this
work the objective is to use the nodes at the maximum of their capacity by regrouping
the tasks on the same nodes.

97

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

Symbol Definition
Workflow

w ∈ W A workflow
j ∈ J A task
Tw ⊂ J The list of tasks of the workflow w ∈ W
di→j ∈ D A dependency between two tasks i and j ∈ J
deadWw The deadline of the workflow w ∈ W
succj The list of successor tasks of the task j ∈ J
predj The list of predecessor tasks of the task j ∈ J
submitw The instant of sumbission of the workflow w ∈ J
userw The user to whom the workflow w ∈ W belongs

Execution environment
n ∈ N A node
v ∈ V A VM
bwNn↔m the bandwidth between the node n and m ∈ N
speedNn the speed of the node n ∈ N

Workflow temporal notations
deviationw The deviation compared to the deadline of the workflow w ∈ W
violationw The deadline violation of the workflow w ∈ W
aheadw The ahead time of the workflow w ∈ W

Task temporal notations
ESJj The estimated start time of the task
EEJj The estimated end time of the task
ELJj The estimated length of the task
ETTJi→j The estimated transfer time between i, j ∈ J
ASJj The actual start time of the task
AEJj The actual end time of the task
ALJj The actual length of the task
ATTJi→j The actual transfer time between i, j ∈ J

VM temporal notations
EP Vv The estimated instant of the VM provisioning
ESVv The estimated ready time of the VM
EEVv The estimated end time of the VM

Assignment
hostVv The node hosting the VM v ∈ V
hostJj The node hosting the VM executing the task j ∈ J

Figure 5.1 – Table of symbols of the model of section 5.2

98

5.3. Deadline based dynamic algorithm

5.3 Deadline based dynamic algorithm

In this section, is introduced our new deadline-aware scheduling algorithm NearDead-
line. Our algorithm is built such that workflows belonging to different users - each associ-
ated to a deadline - can be submitted at any time to the workflow execution platform. The
algorithm is launched when new submissions are performed, with a configurable submis-
sion window (i.e., schedule all the workflows that have been submitted during a window
of t seconds). In the literature, two types of algorithm exist in order to manage a dynamic
problem: dynamic algorithms and online algorithms. In this contribution we have opted
for a dynamic algorithm, for the reasons that are discussed in Section 3.1.5 (unwanted
synchronizations).

Let us recall the two definitions: (1) the workload is the set of all submitted workflows;
(2) an expected planning is generated by the scheduling algorithm and contains all the
tasks, files and VMs running or expected to run in the future. It is similar to a planning
(cf Section 4.3) with the exception that it may be updated by the scheduler. The algo-
rithm takes into account the current expected planning and updates it, by adding the new
submitted workflows, and reconsidering the already scheduled ones.

5.3.1 Priorities and deadlines

When a new workflow is submitted to the platform, the algorithm first computes
its difficulty based on its deadline and its estimated execution time computed from its
critical path (i.e., set of tasks responsible for its overall execution time). The difficulty of
a workflow is computed by Equation 5.13. The workflow with the lowest rank is handled
first.

rankWw = deadWw −max
j∈Tw

(priorityJj) (5.13)

priorityJj = ETJj + max
p∈succj

(
ETTJj→p + priorityJp

)
(5.14)

The priority of a task presented in Equation 5.14, is used to compute the execution
time of the critical path of the workflow. For each task j ∈ J its priority corresponds to
the partial execution time of the workflow from this task. It is established according to
the average completion time of the task j on all possible nodes, denoted ETJj , as com-
puted in Equation 5.15, as well as its average communication time (between all possible

99

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

nodes) denoted ETTJj→p, for j, p ∈ J . One may note that the priority computed by
NearDeadline is the same as the rank computed by the HEFT algorithm as presented
in Section 4.3.

ETJj =

∑
n ∈ N

Fx(µj ,σj)
speedNn

|N |
(5.15)

After computing the rank of each submitted workflow (if multiple workflows are sub-
mitted at the same time), the NearDeadline algorithm sorts them by increasing rank,
and schedule them one by one. As presented in Algorithm 6, the scheduling of a workflow
is made in two different phases, the first one tries to schedule each task of the workflow, as
near as possible to their respective deadline. This first scheduling is the function sched-
uleWorkflowND. In the second phase, if this schedule fails, the workflow moves in
panic mode and will be scheduled in best effort. The rest of this section follows these two
phases.

Algorithm 6 NearDeadline algorithm
function NearDeadline(workflows, node)

Q← workflows
while |Q|! = 0 do

panic← None
Q← SortByRank(Q)
for w ∈ Q do

if not scheduleWorkflowND(Tw, nodes) then
Invalidate(j), ∀ j ∈ Tw

panic← w
break

if panic 6= None then
(Q′, P ′)← RemoveAllUnder(panic, nodes)
P ← SortByRank(panic+ P ′)
Q← Q+Q′

for all w ∈ P do
scheduleTaskBestEffort(Tw, nodes)

5.3.2 Scheduling near the deadline

The first scheduling that is performed on a workflow is made by the function sched-
uleWorkflowND, presented in Algorithm 7. The idea is to free resources as most as
possible before the deadline in case of future submissions with shorter deadlines. The Fig-
ure 5.2 shows an example illustrating this idea, where a first workflow is submitted with

100

5.3. Deadline based dynamic algorithm

load

2 4 6 t

W1

deadWW1

Add workflow W2
with deadline 4

load

2 4 6 t

W1

deadWW1

W2

deadWW2

Figure 5.2 – Scheduling near the deadline to have free resources

a smooth deadline, and afterwards a second workflow is submitted with a more difficult
deadline. The y-axis models an imprecise vision of the load on the infrastructure as the
percentage of used resources. One can note in this example that the current workload
doesn’t need to be reconsidered to place the new workflow.

Another idea could have been to schedule the workflows using a small amount of
resources, as presented in the Figure 5.3. But as discussed in Section 5.2, the energy
consumption is not linear to its executing load. Thus, using this idea would lead to under
used nodes during long period of time, which would be much worse in term of energy
consumption than using nodes during small period and leave them in idle mode the rest
of the time.

load

2 4 6 t

W1

deadWW1

Add workflow
with deadline 4

load

2 4 6 t

W1

deadWW1

W2

deadWW2

Figure 5.3 – Scheduling with low resources to have free resources

Algorithm 7 Single workflow scheduling near its deadline
function scheduleWorkflowND(tasks, nodes)

tasks← SortByBackwardRank(tasks)
for all j ∈ tasks do

if not scheduleTaskND(j, nodes) then return False
return True

101

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

To perform this scheduling, tasks need to be sorted in backward order (starting by the
exit tasks), therefore sorted by backward priority (function SortByBackwardRank).
The backward priority of a task is computed the same way as the forward priority, but by
considering the predecessors instead of the successors. Equation 5.16 shows the calculation
of the backward priority of a task j ∈ J , where predj is the list of predecessors tasks of
j :

bpriorityJj = ETJj + max
p∈predj

(
ETTJj,→p + bpriorityJp

)
(5.16)

Algorithm 8 Single task scheduling near its deadline
function scheduleTaskND(task, nodes)

loc← None
for all s ∈ nodes do

locs ← scheduleTaskOnNodeND(j, node)
if isBestND(locs, loc) then . Eq. (5.11)

loc← locs

if loc not None then
Reserve(loc)
return True

else return False

The function scheduleTaskND, detailed in Algorithm 8, reserves a location for a
task on a node. The function scheduleTaskOnNodeND, presented in Algorithm 9, is
launched on each node for a given task. For a node n ∈ N and a task j ∈ J , this function
returns a location, on a VM v ∈ Vn, where Vn ⊂ V is the list of VM hosted on node n.
The returned location is the one that optimizes the local objective evaluated by the fitness
function isBestND, which will be presented in the subsection on fitness functions. The
goal of this fitness function is to choose the location that is closest to the deadline.

deadJj =

deadWw If |succj| = 0

min
p∈succj

(
deadJp − min

n,m∈N

(
Fx(µp,σp)
speedNm

+ dj→p
bwNn↔m

))
Otherwise

(5.17)

In the function scheduleTaskOnNodeND, one can note the called function sched-
uleTaskOnVMND. This function retrieves the first location where the task can be
placed without overcharging the capacity of the VM. This place is searched between the
zero instant of the current schedule and the deadline deadJj of the task j ∈ J , of the
workflow w ∈ W (that is calculated using Equation 5.17). This function, detailed in Al-

102

5.3. Deadline based dynamic algorithm

gorithm 10, is also in charge of the VM dimensions. One may note that a VM can be
resized if it is not currently powered on, and therefore the capacity of the node must be
taken into account in this function in order to not overcharge it. The resizing of the VM
is multi dimensional, it can be either on capacity, and temporal aspects.

Algorithm 9 Single task scheduling near its deadline on one node
function scheduleTaskOnNodeND(j, n)

ELJ
j ← ComputeLenOfTask(j, n)

loc← None
zero← currentTimeStamp
for all v ∈ Vn do

if userv = userj and canRun(v, j) then
locv ← scheduleTaskOnVMND(j, v, zero,ELJ

j) . Eq. (5.8,5.6,5.7)
if isBestND(locv, loc) then . Eq. (5.11)

loc← locv

if loc is None then
new_v ← EmptyVM(osj , userj , n)
loc← scheduleTaskOnVMND(j, new_v) . Eq. (5.8,5.6,5.7)

return loc

Algorithm 10 Single task scheduling near its deadline on one VM
function scheduleTaskOnVMND(j, v, zero,ELJ

j)
LST ← deadJ

j − EL
J
j . Last Start Time, Eq. (5.17)

bootT ime← ESV
v − EPV

v . Eq. (5.8)
nodeUsage← NodeUsageWithoutVM(hostVv , v)
nodeCapas← NodeCapacities(hostVv)
MES ← ComputeMinStart(j, hostVv , predj) . Eq. (5.18)
zero← max(zero,MES)
position← LST
while position > zero+ bootT ime do

loc← (position, position+ ELJ
j)

over ← CollisionOnVM(loc, v, nodeUsage, nodeCapas)
if over is None then

return loc
else

position← over − ELJ
j

return None

As can be seen, the value MES is computed in scheduleTaskOnVMND. This
value is the minimal estimated start time of the task and is computed by Equation 5.18.
Its utility will be explained later, as it requires information given in the panic subsection.
The value zero on the other hand, is the instant of the current execution of the algorithm.
CollisionOnVM is the function in charge of checking if the VM, when adding the

103

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

new task, does not exceed the capacity of the node. There are two different types of VM
collisions. The first one is when a VM cannot be resized in capacity terms, and an example
is illustrated in the Figure 5.4. The second case is when the VM cannot be extended
in time because of node overcharge. It is illustrated in Figure 5.5. CollisionOnVM
handles multi-dimensional capacities (VCPUs, vram, disk space, . . .), but for simplicity
of explanation, the two figures represent VCPU resources only.

MESj = max
p∈predj

(EEJp + ETTJp→j) (5.18)

1

2

3

4

2 4 6 t

V2

V1 Add task of size 4
on V1 at time 2

1

2

3

4

2 4 6 t

V2

V1

Figure 5.4 – Collision when increasing the capacities of a VM on a server with 4 CPUs

1

2

3

4

2 4 6 t

V2

V1
Add task of size 2
on V1 at time 3

1

2

3

4

2 4 6 t

V2

V1

Figure 5.5 – Collision when increasing the length of a VM on a server with 4 CPUs

Let the first case scenario illustrated in the Figure 5.4, be a capacity collision, as the
collision occurs inside the VM, and changes the VM capacities; and the second case sce-
nario be a temporal collision, as the collision is external to the VM and is due to a duration
change on the VM. In the case of a capacity collision, the function CollisionOnVM re-
turns the exact location of the collision inside the VM (in the example, the instant 4). In
the case of an temporal collision, the whole VM is considered and the function returns
the location of the collision at the node level (in the example, the instant 2). It can be
noted that the VM does not always provide a possible location as they are constrained. If

104

5.3. Deadline based dynamic algorithm

none of the currently available VMs hold a valid location, a new empty VM is considered
(function EmptyVM, called in Algorithm 9).

5.3.3 Panic mode

When required resources are available on the infrastructure, the previous algorithm
scheduleWorkflowND detailed in the previous subsection performs the scheduling
of a workflow near its deadline. However, it may happen that scheduling the workflow
in time is impossible with the available remaining resources. In that case the considered
workflow moves in panic mode, as presented in Algorithm 6.

The function RemoveAllUnder, is an important part of NearDeadline. Since
there is no remaining resource to schedule the workflow in time, resources must be released
in the current expected planning to be able to find a suitable place for the new workflow.
The function RemoveAllUnder explores all the nodes and removes all the non-running
tasks belonging to workflows that are less urgent than the new panic workflow. The tasks
that are currently running, though, are not interrupted for energy and efficiency reasons.
We are aware that it can cause missed deadlines when dealing with long-term tasks.
However, it would not be difficult to add a system to handle this case by computing the
ratio between the remaining execution time and the priority of the tasks, and it would be
a possible orientation for a future work. When the function RemoveAllUnder ends, it
may happen that some running or booting VMs do not contain tasks any longer. In that
case, these VMs are killed, even if they have not been useful yet.

Finally, the function RemoveAllUnder returns two lists of workflows, a list P ′

containing all the removed workflows from the expected planning that have already been
scheduled in panic mode, and the list Q′ containing all the other removed partial work-
flows. It should be noted that those workflows (for both P ′, and Q′) might be incomplete,
as the tasks that are finished and the tasks that are currently running are not resched-
uled, or only a subset of the workflow is less urgent than the panic workflow. That is
to say, when the list Q is refilled, some tasks have ancestor that are still in the expected
planning, and therefore it explains why the valueMES must be computed in the function
scheduleTaskOnVMND. Each workflow in the list P is then scheduled in best effort
mode, using the function ScheduleTaskBestEffort.

The function ScheduleTaskBestEffort is close to the HEFT algorithm of the
related work, but with three main differences: (1) it is adapted to take into account virtual
resources; (2) it plans workflows one by one instead of mixing all the tasks of all workflows

105

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

Algorithm 11 Single task scheduling in best effort on one VM
function scheduleTaskOnVMBE(j, v, zero,ELJ

j)
MES ← ComputeMinStart(j, predj)
bootT ime← ESV

v − EPV
v

nodeUsage← NodeUsageWithoutVM(hostVv , v)
nodeCapas← NodeCapacities(hostVv)
position← max(zero,MES)
while True do

loc← (position, position+ ELJ
j)

over ← CollisionOnVM(loc, v, nodeUsage, nodeCapas)
if over is None then

return loc
if isTemporalCollision(over) and (position+ ELJ

j) >= EEV
v then

return None
else

position← over − ELJ
j

and then executing the scheduling; (3) it uses the fitness function isBestBE to choose
between multiple possible locations. The function scheduleTaskOnNodeBE, is used
in ScheduleTaskBestEffort to find a location on a node for a task.

The function scheduleTaskOnNodeBE, is almost equivalent to the function sched-
uleTaskOnNodeND. There is only two differences. First, instead of isBestND the
fitness function isBestBE is used, this function will be detailed in the subsection on
fitness function. The second difference is the call to the function scheduleTaskOn-
VMBE, instead of the function scheduleTaskOnVMND. This function retrieves the
first location where the task can be placed without overcharging the capacity of the VM.
Unlike the function scheduleTaskOnVMND, for a task j ∈ J and a VM v ∈ V this
function minimizes the makespan (the minimal EEJj), and hence searches the location
starting by the minimal ESJj of the task, defined in Equation 5.19. Algorithm 11 presents
this function.

MESj = max
p∈predj

(EEJp + ETTJp→j) (5.19)

The function scheduleTaskOnVMBE, in Algorithm 11, stops its search when the
VM is blocked and cannot grew in length.

106

5.3. Deadline based dynamic algorithm

5.3.4 Fitness functions

In the last subsections, two fitness functions isBestND and isBestBE were intro-
duced. These two functions are used to select one location between two possibilities. These
two fitness functions are heuristics that aim at maximizing the fairness, minimizing the
energy consumption and minimizing the deadline violation. The function isBestND is
used by the algorithm when scheduling a workflow near its deadline, and the function
isBestBE is used when the algorithm schedules a workflow in panic mode.

A. isBestND

The first function, isBestND, is used during the first scheduling phase. This function
is called by the scheduleTaskND function in order to choose between two locations
within two different VMs. These two VMs can be located inside two different nodes, or
inside the same node. As the energy consumption of a node is not linear to its CPU load,
it is better to execute tasks in parallel on few nodes, and avoid over distribution of the
workflows. The function isBestND computes a value that aims at comparing two VMs,
and that is denoted qualityv. The value qualityv, of a VM v ∈ V , can be computed in two
different ways. The first way corresponds to the number of tasks that are located inside
the VM. The second way is based on the number of VCPUs reserved by a VM. The first
way will be denoted nbTasks, and the second will be denoted nbVcpus.

The function isBestND, chooses the VM that has the highest quality value, and when
two VMs have the same quality, it chooses the location whose end time (EEJj) is the
closest to the deadline of the task. We assume that, as we are considering the execution
time of the task in a pessimist way with the Gaussian distribution, if the scheduling
returns a location that is before the deadline, the actual end time of the task will equally
be before the deadline.

The idea is that when the first task of the workflow is scheduled (the exit task with the
highest backward rank), a new VM will be inevitably considered. Each possible locations,
will then be in VMs, with the same quality, then the location whose end is the closest to
the deadline will be selected in the first place. Then, when the other tasks of the workflow
are scheduled, the VM that is used for the first task would have the highest quality, so it
will be selected, until it will no longer be able to guarantee a valid location, and therefore a
new VM has to be considered. Thus new VMs are instantiated only when required, leading
to a few number of VMs, and as we will see in Section 6.4, the energy consumption is
mainly correlated to the number of VM instantiated. Indeed, The boot time of the VM

107

Chapter 5 – NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness
and Energy Optimization

consumes a low amount of CPU resources, during a long period of time, even if many CPU
resources are reserved by the VM. In addition, the higher the number of VMs, the more
time is wasted by booting times, resulting in reduced fairness and deadline violations.

B. isBestBE

The second function isBestBE, is the fitness function used when dealing with best
effort scheduling. As for the function isBestND, the function isBestBE relies on the
quality of the VMs.

This function creates a vector u = < EEJj ×α, 1
qualityv

>, for a location of a task j ∈ J
on the VM v ∈ V . It then computes the distance of this vector to the vector i = < 0, 0 >,
and chooses the location whose vector u has the lowest distance to i. The parameter α is
a variable used to make vary the priority of the two objectives expressed by the makespan
and the quality of a VM. We will see in Section 6.4, that if this parameter is too low,
the algorithm will instantiate many VMs, leading to both high energy consumption and
poor fairness, and that if this parameter is too high, the algorithm will creates few VMs
leading to low distribution of the workflows execution and high deadline violation.

As two versions of the quality are defined, it is possible to define two versions of the
fitness function isBestND and two versions of the function isBestND, and thus two
versions of the algorithm NearDeadline. The first version using the nbTasks quality
will be called NearDeadlineTask, and the second one using the nbVcpus quality will
be called NearDeadlineVCpu.

5.4 Conclusion
This chapter tackles the problem of scheduling workflows of multiple users with random

arrivals and uncertain task execution times, while minimizing the energy consumption of
the Cloud infrastructure and maximizing the user fairness. The NearDeadline algo-
rithm has been presented as a solution to this problem. The NearDeadline algorithm
adds deadlines to the workflows chosen by users. These deadlines offer an opportunity
to make a smart usage of the infrastructure at disposal while respecting the user initial
wishes. In contrast to the use made of the deadline in OnlyUsedNodes, the deadline
in NearDeadline is not only used for the energy optimization, but also for the user
fairness objective. Indeed, by setting a deadline for every user, a fair planning is well
defined. An evaluation of the NearDeadline algorithm and of the OnlyUsedNodes
algorithm on a real infrastructure is presented in Chapter 6.

108

Chapter 6

EVALUATION OF SCHEDULING

ALGORITHMS

This chapter presents a detailed evaluation of the algorithms OnlyUsedNodes and
NearDeadline respectively presented in Chapter 4 and Chapter 5. This evaluation is
divided in two sections. The first part presents experimentation conducted via a simulator,
that evaluates the algorithm OnlyUsedNodes. The second part presents experimenta-
tion conducted on a real infrastructure, with real executions of workflows, that firstly
evaluates the algorithm OnlyUsedNodes and secondly the algorithm NearDeadline.

Contents
6.1 Simulation . 110

6.1.1 Simple workload scheduling . 110
6.1.2 Complex workload scheduling 115

6.2 Execution on real infrastructure - Environment description . 118
6.2.1 Infrastructure . 119
6.2.2 Execution platform . 119
6.2.3 Workflows . 120

6.3 Execution on real infrastructure - OnlyUsedNodes evaluation120
6.3.1 Scenario and performance metrics 121
6.3.2 Evaluation results . 122

6.4 Execution on real infrastructure - NearDeadline evaluation 124
6.4.1 Scenarios and performance metrics 124
6.4.2 Small workflows scheduling . 125
6.4.3 Scalability evaluation . 132
6.4.4 Analysis of the α parameter . 134

6.5 Conclusion . 137

109

Chapter 6 – Evaluation of scheduling algorithms

6.1 Simulation

In this section, we present a detailed evaluation of our OnlyUsedNodes algorithm.
All evaluations are performed on realistic workflows generated by the pegasus workflow
generator 1 [110]. The experimentations presented in this section have been conducted
using a simulator.

6.1.1 Simple workload scheduling

This section presents the experimental results when considering an homogeneous clus-
ter of physical machines, and when no tasks are already running on the cluster (i.e., initial
workload). This simplified use case offers the possibility to precisely analyze the behavior
of OnlyUsedNodes without too many parameters to take into account. This section
shows that introducing a deadline within HEFT is a way to optimize the number of ma-
chines used to execute a set of workflows, thereby reducing the energy consumption for
the Cloud provider. This section also shows that the execution time of OnlyUsedNodes
is very competitive and scalable compared to v-HEFT.

1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 Data aggregation

4 Data partitionning

5
5

5
5

5

6 Data aggregation

7

8 Pipeline

1 mProjectPP 2 mDiffFit 3 mConcatFit 4 mBgModel

5 mBackground 6 mImgTbl 7 mAdd 8 mJPEG

Figure 6.1 – Topology of the Montage workflow

1. https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

110

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

6.1. Simulation

Experimental setup

The Montage workflow depicted in Figure 6.1 is a typical case-study used to evalu-
ate scheduling algorithms [21, 39]. It is a complex workflow that integrates most of the
workflow classes characterized by Bharathi et al. in [37], and that assembles astronomical
images from mosaic. Figure 6.2 presents an example of result that can be obtained with the
Montage workflow. The simulated workload is composed of a variable number of Montage
workflows composed of 25 tasks and the simulated infrastructure is composed of 20 homo-
geneous nodes with the hardware configuration of the Grid’5000 [13] Econome cluster (see
the first row of Table 6.1). To correctly select a set of deadlines for our OnlyUsedNodes
algorithm, we ran v-HEFT to get its approximate minimum makespan.

Figure 6.2 – Example of result computed by the Montage workflow

Using the Pegasus workflow generator, only one information is provided about a task:
its execution time (in seconds). We assume in our experiments that this time was produced
by a single CPU core with a computing capacity of 2GFlops (floating operations per
second). This assumption is used to transform information on the execution time into a
number of instructions (as required by our model). We also assume that eachMontage task
has been executed with a sufficient amount of memory, and we consider in our experiments
that the memory requirements are always fulfilled. Furthermore, we consider a single VM
template that uses 4 cores. Finally, the boot time of the VM template has been configured
to 10 seconds on a 2 GFlops CPU core.

111

Chapter 6 – Evaluation of scheduling algorithms

Table 6.1 – Description of the simulated nodes

Location Name Number of nodes CPU Network
Nantes econome 22 Intel Xeon E5-2660 10 Gbps

(Sandy Bridge, 2.20GHz, 2 CPUs/node, 8 cores/CPU)
Rennes parapide 21 Intel Xeon X5570 20 Gbps

(Nehalem, 2.93GHz, 2 CPUs/node, 4 cores/CPU)
Grenoble yeti 4 Intel Xeon Gold 6130 10 Gbps

(Skylake, 2.10GHz, 4 CPUs/node, 16 cores/CPU)

Quality evaluation

Figure 6.3 represents the number of nodes used, respectively by v-HEFT and
OnlyUsedNodes, to schedule workloads with variable amounts of Montage workflows.
OnlyUsedNodes has been run with five different deadlines proportional to the makespan
computed by v-HEFT: (1) D=1, (2) D=1.3, (3) D=1.5, (4) D=2, and (5) D=3. This result
illustrates that relaxing the deadline offers more possibilities for OnlyUsedNodes to
reduce the number of nodes needed. As a result, when users can extend their deadlines,
the Cloud provider can benefits from an energy consumption reduction. Obviously this
cost reduction may be passed on the rental price for the users who then have interest in
relaxing their deadlines. One can note that even by extending the deadline from 1 (v-
HEFT) to 1.5 the number of nodes can be divided by 2. When the deadline is extended
from 1 to 3, only five of the twenty available nodes are used to schedule the workloads
while v-HEFT would use 20 machines.

20 40 60 80 100
0

5

10

15

20

Number of workflows

N
um

be
r
of

m
ac
hi
ne
s
us
ed

v-HEFT
D = 1
D = 1.3
D = 1.5
D = 2
D = 3

Figure 6.3 – Comparison of the number of nodes used between v-HEFT and OnlyUsedNodes
with four different deadlines D.

112

6.1. Simulation

Energy consumption evaluation

Figure 6.4 shows estimated immediate power consumption (in Watt) of the nodes
for the execution of 100 Montage workflows, scheduled by both v-HEFT and On-
lyUsedNodes algorithm with different deadlines. This consumption has been estimated
according to real power consumption measured on a cluster of Grid’5000 (Ecotype). One
can note that, as expected, power consumption is reduced when the deadlines are delayed.

v-HEFT OnlyUsedNodes
Deadline - ×1 ×1.3 ×1.5 ×2 ×3
Nb nodes 20 20 (-0%) 14 (-30%) 11 (-45%) 8 (-60%) 5 (-75%)
Makespan 157 164 (×1.04) 200 (×1.27) 233 (×1.48) 311 (×1.98) 462 (×2.94)

Energy (Joules) 333,777 299,519 (-10.26%) 298,352 (-10.6%) 282,602 (-15.3%) 282,887 (-15.2%) 278,266 (-16.6%)

Table 6.2 – Results of the scheduling of complete workload composed of 100 Montage
workflows, where the percentages are computed based on the v-HEFT results.

The cost for the Cloud provider is mainly correlated to the energy consumption
(Joules). The energy consumption is the sum of power consumption (per second) dur-
ing the execution of the workload. As already explained, it has been shown that energy
consumption cannot be modeled by a linear function [74, 135] defined by the number of
machines and the running time (see Equation 4.6). As a result, reducing the number
of nodes may induce a reduction of the global energy consumption (i.e., the cost) even
if the time required to finish the workload is longer. Table 6.2 illustrates this claim by
showing the results obtained for the five different deadlines when scheduling 100 work-
flows, in terms of the number of nodes used (the maximum number during the overall
execution), the total makespan needed to run the workload, as well as the energy con-
sumption. In this experiment, unused machines are considered powered off, and nodes
are turned off when they have finished their computations. As expected, the makespan
increases with the deadline by using OnlyUsedNodes, thus the overall time spent to ex-
ecute the complete workload is longer than v-HEFT, but the deadlines of the workflows
are respected. Moreover, the total energy consumption is almost reduced of 17% when
using OnlyUsedNodes compared to v-HEFT. Therefore, the number of nodes has a
direct impact on the energy consumption of the Cloud provider. One can note, though,
that the execution with D=2, has a cost a bit higher than the execution with the D=1.5,
meaning that the diminution of the number of nodes does not always counterbalance the
makespan extension. When using a deadline equivalent to the makespan of v-HEFT, the
energy consumption still decreases. This is due to the dispersion of the tasks induced by

113

Chapter 6 – Evaluation of scheduling algorithms

the makespan minimization objective of the v-HEFT algorithm, that always chooses the
location with the lowest makespan even if a location with an almost equivalent makespan
was available but with a lower energy consumption. One can note from Figure 6.4, that
at time t = 100, the energy consumption of OnlyUsedNodes with D = 1 is far lower
than the energy consumption of v-HEFT, indeed at time t = 100 only 11 nodes are being
used by OnlyUsedNodes instead of 20 for v-HEFT.

0 100 200 300 400 500
0

1,000

2,000

3,000

Time (t)

Po
we

r
co
ns
um

pt
io
n
(in

W
at
t) v-HEFT

D = 1
D = 1.3
D = 1.5
D = 2
D = 3

Figure 6.4 – Comparison of immediate power consumption between v-HEFT and On-
lyUsedNodes with five different deadlines D.

Performance evaluation

Figure 6.5 shows the execution time taken by both v-HEFT and OnlyUsedNodes
to compute the scheduling solution of the previous experiment. First, one can note that
adding a backtrack system in OnlyUsedNodes does not deteriorate the efficiency of the
algorithm because OnlyUsedNodes iterates on already used nodes instead of all nodes
for v-HEFT.

We can compute the number of scheduling operations performed by each algorithm
by using the complexity we introduce in Part 4.3.4. In the case of the scheduling of 100
workflows, for v-HEFT algorithm, the number of operations is j × n, with j = 100
and n = 20, that is to say 2000 operations - by a factor of 25 which is the number
of tasks forming the Montage workflow. For OnlyUsedNodes algorithm, the number of
operations depends on the number of nodes under usage when a workflow is scheduled. The

114

6.1. Simulation

number of operations can be estimated by using the values returned by our experiments
when scheduling a variable number of workflows (Figure 6.3). As a result, the number
of scheduling operations needed with a deadline D = 1.3 is approximately 930, which
is 46.5%, of the number of operations of v-HEFT algorithm. This number is validated
by experiments where the time taken by OnlyUsedNodes algorithm (1.211 seconds)
is half the time taken by v-HEFT algorithm (2.423 seconds). This result validates our
claim about the complexity - that is to say that the complexity of the scheduling phase
by only considering the already used nodes is in average far better than the worst case
complexity - and that the execution speed of the algorithm is competitive in comparison
with v-HEFT.

20 40 60 80 100
0

0.5

1

1.5

2

2.5

Number of workflows

Ex
ec
ut
io
n
tim

e
(s
)

v-HEFT
D = 1
D = 1.3
D = 1.5
D = 2
D = 3

Figure 6.5 – Comparison of execution time between v-HEFT and OnlyUsedNodes
with five different deadlines D.

6.1.2 Complex workload scheduling

In this section, we evaluate OnlyUsedNodes on a set of more complex scenarios
from both workload and infrastructure perspectives. As for the first evaluation, the ex-
perimentations are simulated.

115

Chapter 6 – Evaluation of scheduling algorithms

Experimental setup

First, we consider a multi-site infrastructure composed of three different clusters. This
infrastructure is a subset of the Grid’5000 testbed that uses the Renater 2 network for
communications, which allows inter-cluster communications with a bandwidth of 10 Gbps.
Table 6.1 gives a description of the three clusters and their associated nodes.

Second, the considered type of workload is more heterogeneous in this experiment.
Table 6.3 details the considered workloads composed of five different kind of workflows
(all generated by the Pegasus workflow generator). We assume that, in a real-case, the
percentage of complex workflows is less important than simple ones. Finally, benchmarks
also use different deadlines for each kind of workflow. In the scenario A the deadlines are
approximately the makespan returned by v-HEFT execution.

Name % A B C D
Montage 30% 150 150 150 150

CyberShake 10% 1000 1000 1000 1000
Inspiral 6% 1500 2000 (×1.3) 2200 (×1.45) 2200 (×1.45)
Sipht 4% 4000 4000 4000 4000

Pipeline 50% 250 250 250 400 (×1.6)

Table 6.3 – Percentages and deadlines of the workflows composing the complex simulated
workloads

v-HEFT A B C D
Makespan 5202 5422 5422 5422 5431
Nb nodes 47 35 (-26%) 35 (-26%) 36 (-23%) 34 (-28%)
Time (s) 27.258 9.601 (-64.8%) 9.705 (-64.4%) 10.185 (-62.6%) 9.338 (-65.7%)

Energy (Joules) 9,183,968 8,395,508 (-8.6%) 8,487,680 (-7.6%) 8,555,411 (-6.8%) 8,276,282 (-9.9%)

Table 6.4 – Results of the scheduling of the different simulated scenarios, where the
percentages are computed based on the results of the v-HEFT execution.

In the following experiments, each set of workflows are owned by a specific user, i.e., all
the pipeline workflows belongs to the first user, Montage workflows belongs to the second
one, etc. The four workloads presented in the Table 6.3 are submitted twice, meaning that
the scheduling algorithm is called two times. Thus, tasks under execution are taken into
account in this experiments. The first submission is done at t = 500, and the second one
at t = 1500. Finally, at t = 0 half of the nodes are powered on and are half used. This
simulated workload ends at t = 1000.

2. https://pasillo.renater.fr/weathermap/weathermap_metropole.html

116

https://pasillo.renater.fr/weathermap/weathermap_metropole.html

6.1. Simulation

Evaluation

Figure 6.6 shows the estimated immediate power consumption (in Watt) of the nodes
for the execution of the different scenarios (A to D). As for the first experiment 6.1.1, the
unused nodes are considered powered off and nodes are powered off as soon as they have
finished their tasks. Table 6.4 shows the results obtained for the four different scenarios
in terms of the number of nodes, the total makespan and the energy consumption needed
to run each workload twice. Moreover, the execution time of the scheduling algorithm is
given.

As expected, the global makespan of the solution returned by our algorithm is less
good than the makespan of the v-HEFT solution. However, the makespan minimization
is not the optimization objective of OnlyUsedNodes. One can observe that even in
the scenario A, where the deadlines are almost the makespan returned by v-HEFT,
the number of nodes used to schedule the workload is reduced. Actually, as v-HEFT
minimizes the makespan for each task it favors empty nodes that offers the best makespan
even when already used nodes offers almost the same makespan. As a result, the nodes are
not used at their full capacity (under used). In contrast, our algorithm will favor nodes
that are already used, and will smooth the power consumption of the nodes over the time
as we can observe in Figure 6.6.

In the scenarios B and C, one can note that the number of nodes used to schedule
the workload is greater than in the scenario A, despite the deadline relaxing of Inspiral
workflows. This effect is due to the scheduling at two different times. Indeed, as the first
schedule is not aware of the second one, the resources usage of the Inspiral workflows
will be smoothed and the local makespan of their execution will exceed the arrival of the
second scheduling. This involves a lower number of available resources for the scheduling
of the second set of workflows at t = 1500, and causes an increase on the number of needed
nodes. The last scenario D validates this observation. In this scenario the deadlines of
the Pipeline workflows are relaxed to give them more time to be executed even if the
resources are used by Inspiral workflows. As expected, the number of used resources is
reduced, and the global makespan delayed.

As in the simple evaluation, the total energy consumption observed is directly corre-
lated to the number of nodes used to schedule the workload. In the scenarios B and C, the
energy consumption is a bit higher than in A, for the same reasons than explained earlier.
In all cases, the energy consumption is reduced compared to the v-HEFT (Table 6.4).

117

Chapter 6 – Evaluation of scheduling algorithms

0 1,000 2,000 3,000 4,000 5,000
0

2,000

4,000

6,000

Time (s)

Po
we

r
co
ns
um

pt
io
n
(in

W
at
t) v-HEFT

OnlyUsedNodes A
OnlyUsedNodes B
OnlyUsedNodes C
OnlyUsedNodes D

Figure 6.6 – Comparison of the power consumption through time between the different
simulated scenarios of Table 6.3.

In the best case, the diminution of the consumption is up to almost 10%, which can be
translated to a diminution of the cost for the Cloud provider. We have seen in the con-
text chapter that consumption of PMs represents 35% of the total energy consumption of
datacenters, and that in 2014, the energy consumption of US datacenters was estimated
to 70 billion kWh (See Section 2.6). By doing a very rough calculation, with a kWh at
0.11€ (average price of a kWh in France in 2020 3), 10% of gain in energy consumption
can be translated into 270 millions of euros. Even if we are aware that workflow execution
represent a small portion of the total usage of datacenters, such diminution could have a
significant impact on the cost for the Cloud provider.

6.2 Execution on real infrastructure - Environment
description

To evaluate the performances of the OnlyUsedNodes and the NearDeadline algo-
rithms, we have conducted experiments on a real infrastructure. Those experiments were
performed on the SeDuCe platform [103], a scientific testbed integrated to Grid’5000 [13],
that monitor the electrical consumption of the nodes described in Table 6.5. This section

3. https://www.edf.fr/sites/default/files/contrib/entreprise/cgv-prix-de-marche/
2020/fichecre_tarif_bleu_non_residentiel_1er_aout_2020_.pdf

118

https://www.edf.fr/sites/default/files/contrib/entreprise/cgv-prix-de-marche/2020/fichecre_tarif_bleu_non_residentiel_1er_aout_2020_.pdf
https://www.edf.fr/sites/default/files/contrib/entreprise/cgv-prix-de-marche/2020/fichecre_tarif_bleu_non_residentiel_1er_aout_2020_.pdf

6.2. Execution on real infrastructure - Environment description

presents the execution setup of the experimentation that will be presented in the rest of
this chapter.

6.2.1 Infrastructure

The infrastructure used in all our evaluations is the Ecotype cluster of the experimental
platform Grid’5000, presented in Table 6.5. All the VMs launched during the experiments
use the Ubuntu 18.04 operating system, with the hypervisor KVM. The image is replicated
on each compute node. Unlike our simulated experiments, in all following evaluations the
nodes are powered on at any time, thus consuming at least the idle consumption.

Location Name Number of nodes CPU Memory Storage Network
Nantes ecotype 48 Intel Xeon E5-2630L v4 128 GiB 400 GB SSD 2 x 10 Gbps

1.80GHz, 2 CPUs/node,
10 cores/CPU

Table 6.5 – Description of the PMs of the real infrastructure used in the evaluation

6.2.2 Execution platform

For all evaluations we implemented a platform by using the library Scala Akka. This
platform of execution is a simplified version of the WaaS (a centralized version) that is
presented in Chapter 7. The architecture of the platform is modular and allows to indif-
ferently choose one scheduling algorithm or another. Therefore algorithms comparisons
can be performed in fair conditions.

The platform is based on a Master Worker architecture with three modules: master,
scheduler and worker. Each node runs an instance of the worker daemon that is
responsible for the provisioning of VMs on the node, and that answers simple orders such
as starting a task on a given VM, downloading a file from another node, etc. The master
is in charge of applying the configurations that are transmitted to it by the scheduler.
A configuration is the set of tasks, VMs and files that are currently running or need
to be launched or sent immediately. A configuration unlike a planning does not contain
information about the future. In order to apply a configuration, the master sends orders
to the workers. The master is the entry point of the platform, meaning that the users
submit new workflows to it. The file transfers are performed at the node level instead of
the VM level, as it as been explained in Section 4.2.4 of Chapter 4. The source code of

119

Chapter 6 – Evaluation of scheduling algorithms

the platform, the different algorithms, and all the experimental results can be accessed
on a public git repository 4.

6.2.3 Workflows

We evaluate the algorithms by running the realistic workflowMontage presented in [78]
and depicted in Figure 6.1. There are two different versions of the Montage workflow used
in these evaluations. A version composed of 31 tasks, and a version composed of 619 tasks.
Table 6.6 and Table 6.7 lists the different tasks of respectively Montage 31 and Montage
619, and presents for each task its execution time (on an Ecotype node), its amount of
input data and the amount of data it creates. All executions presented in the results have
been correctly computed, i.e., producing the correct result of the Montage workflow (an
example of result is presented in Figure 6.2).

Name Quantity µ (s) σ (s) size (MB) input (MB) output (MB)
mProject 6 23 3 4.5 1.5 8
mDiffFit 3 2 1 18 16 1
mConcatFit 3 2 1 0.5 1 1
mBgModel 3 2 1 0.1 1 1
mBackground 6 2 1 4.4 8 8
mImgtbl 3 2 1 4.5 8 1
mAdd 3 2 1 8.8 16 1
mJPEG 4 2 1 5.1 1 1
Sum 31 37 10 169.5 187 114

Table 6.6 – Description of the 31 tasks composing Montage 31 - namely the average and
the deviation of the length, the size of the executable and the sizes of the input and output
data

6.3 Execution on real infrastructure - OnlyUsedNodes
evaluation

This section presents an experimentation that compares the OnlyUsedNodes and
the v-HEFT algorithm. In this experimentation, unlike the first simulated experimenta-
tion, v-HEFT and OnlyUsedNodes uses the resources selection algorithm presented in
Section 5.3 of Chapter 5, and that is used by the NearDeadline algorithm. Therefore,
instead of selecting the size of a VM in a set of predefined VM templates (cf. Section 4.3.3),

4. https://gitlab.inria.fr/ecadorel/workflowplatform

120

https://gitlab.inria.fr/ecadorel/workflowplatform

6.3. Execution on real infrastructure - OnlyUsedNodes evaluation

Name Quantity µ (s) σ (s) size (MB) input (MB) output (MB)
mProject 90 23 3 4.5 1.5 8
mDiffFit 423 2 1 18 16 1
mConcatFit 3 2 1 0.5 1 1
mBgModel 3 8 1 0.1 1 1
mBackground 90 2 1 4.4 8 8
mImgtbl 3 2 1 4.5 8 1
mAdd 3 2 1 8.8 16 1
mJPEG 4 2 1 5.1 1 1
Sum 619 43 10 8,477 7,705 1,879

Table 6.7 – Description of the 619 tasks composing Montage 619 - namely the average
and the deviation of the length, the size of the executable and the sizes of the input and
output data

the algorithm computes the size of the VM based on the amount of resources used by the
tasks it will execute (cf. Algorithm 10 and Algorithm 11).

This evaluation is divided in two parts. The first part presents the scenario and the
evaluation metrics. The second part presents the results of the experimentation.

6.3.1 Scenario and performance metrics

Parameters of the execution environment

The execution environment used in this evaluation is the environment presented in
Section 6.2. The boot time of the ubuntu VMs is assumed to take 40 seconds, this esti-
mation has been acquired by sampling. In this evaluation, the uncertainty is not taken
into account, thus the value σ presented in Table 6.6 and Table 6.7 are not used, and
the time taken by the tasks is assumed to be the µ value. The execution is performed on
25 nodes of the Ecotype cluster, with one node dedicated to both the master and the
scheduler modules, and the others dedicated to instances of the worker module.

Scenario composition

The workload of this evaluation is composed of 10 Montage 619 workflows submitted
at time t = 0. Each workflow belongs to one user, meaning that the VMs used to execute
the tasks of one workflow cannot be used to execute the tasks of another one. The deadline
of the workflows is made variable and vary from 100 to 600 seconds, by increment of 100
seconds. A deadline of 200 seconds is a tight deadline, considering that by using almost
all the nodes (22 of the 24), one Montage 619 workflow needs around 150 seconds to be

121

Chapter 6 – Evaluation of scheduling algorithms

executed, and takes approximately 300 seconds using only one node (when scheduled by
the v-HEFT algorithm).

Performance metrics

There are two performance metrics in this evaluation, the number of nodes being
used at some point in the experimentation, named nb-used and the energy consump-
tion power-usage. The last metric, named power-usage, is the power consumption of the
physical machines during a period of T seconds, divided by the maximal possible power
consumption during the same period of time. The period T seconds is the maximal du-
ration of execution of a scenario in these evaluations. The real power consumption of the
nodes is retrieved thanks to the SeDuCe platform [103], which monitors the electrical
consumption of the nodes using Power Distribution Units (PDUs).

6.3.2 Evaluation results

Table 6.8 presents the power-usage of the different execution, as well as the number
of used nodes, and the makespan.

v-HEFT OnlyUsedNodes
Deadline - 100 200 300 400 500 600
power-usage (with T = 539 (s)) 70.1% 70.2% 62.5% 60.4% 60.4% 59.9% 59.5%
Energy (Joules) 1,267,849 1,270,559 1,131,243 1,093,689 1,092,629 1,084,747 1,076,537
Gain 0% +0.1% -10.8% -13.8% -13.8% -14.6% -15.1%
nb-used 24 24 20 10 9 7 5
Makespan 427 473 244 315 416 457 539

Table 6.8 – Power-usage and nb-used (cf. 6.3.1), with the gain computed in comparison
to v-HEFT results

The v-HEFT algorithm does not take into consideration that the workflows belongs
to multiple users (except for VM privacy, where a task can be executed only by a VM
of its user), and merge all of them into one big workflow. In addition, it spreads the
tasks on a maximum of nodes, as the makespan minimization is the objective of the
algorithm. For this reason, when the algorithm schedules the mDiffFit tasks, almost all
the infrastructure is reserved for one user, leading to the need to start new VMs for the
mDiffFit tasks of the second user, and so on. In fact, the v-HEFT algorithm almost
instantiates new VMs for each level of tasks of the Montage workflow, creating big time
losses due to VM booting. An example of this phenomenon is illustrated in Figure 6.7. For

122

6.3. Execution on real infrastructure - OnlyUsedNodes evaluation

this reason the makespan of the v-HEFT execution is not the best possible makespan, and
OnlyUsedNodes is able to have a better makespan than v-HEFT when the deadline is
tight but still feasible (e.g., the makespan of v-HEFT is 423 seconds, when the makespan
of OnlyUsedNodes with a deadline of 300 seconds is 315). However, when the deadline is
too tight, OnlyUsedNodes has to use all the nodes, and results the same behavior as v-
HEFT, with the exception that the synchronization instead of being at the granularity of
the tasks (e.g., mConcatFit waiting for all mDiffFit tasks of all users), is at the granularity
of the workflows (e.g., the workflow of second user waits the end of the workflow of the
first user), thus resulting with a makespan far from the deadline (i.e., 473 instead of 100
seconds, even if a deadline of 100 seconds is in principle impossible to guarantee), and a
high energy consumption, as it can be seen in Table 6.8.

load

t

. . .
Boot
VMs
for

user 1

Execute
mDiffFit
tasks
of

user 1

. . .
Boot
VMs
user 4

Execute
mDiffFit
tasks
of

user 4

. . .
Boot
VMs
for

user 1

Execute
mConcatFit

tasks
of

user 1

Figure 6.7 – Representation of delay introduced by synchronization with HEFT algorithm

One can note that the makespan is sometimes over the deadline, when using the
OnlyUsedNodes algorithm, this is due to the fact that no uncertainty is taken into
account, and thus sometimes tasks takes more time to be executed than the time estimated
by the algorithm. To validate this hypothesis, we have executed the OnlyUsedNodes
algorithm with the uncertainty system presented in Equation 5.2 of Section 5.2, using the
x parameter with a value of 0.7, and a deadline of 300 seconds. This execution, instead
of using 10 nodes, used 15 nodes, and had a makespan of 297 seconds, instead of 315
seconds. This execution by using 5 more nodes, consumed more energy as its power-usage
was 61.7% instead of 60.4%.

From Table 6.8, we can claim that the gain of energy consumption observed in the
simulation results of Section 6.1, is also observed on a real infrastructure execution. One
can note a correlation between the number of used nodes, and the energy consumption, and
that the OnlyUsedNodes algorithm has the expected behavior even when scheduling
big workflows composed of hundreds of tasks.

123

Chapter 6 – Evaluation of scheduling algorithms

6.4 Execution on real infrastructure - NearDeadline
evaluation

This evaluation section shows comparisons between NearDeadlineTask, NearDead-
lineVCpu, v-HEFT, and OnlyUsedNodes. Unfortunately, as the algorithms propos-
ing online workflow scheduling with uncertainty in the state of the art consider a different
problem (e.g., different infrastructure) they cannot be adapted in our context without
strong modifications. Consequently our evaluation does not present experimental com-
parison with them.

This evaluation is divided in four parts. The first part presents the scenario composition
and the metrics of evaluation. A first evaluation is performed on 10 nodes, with small
workflows composed of 31 tasks, this evaluation aims at evaluating the quality of the
algorithms with an easily controllable workload. The second evaluation is performed on
25 nodes with bigger workflows composed of 619 tasks, and is intended to evaluate the
scalability of the contribution. A third evaluation is meant to evaluate the impact of the
parameter α - of the fitness function isBestBE presented in Section 5.3.4 - on the quality
of the execution, and the different metrics.

6.4.1 Scenarios and performance metrics

Parameters of the execution environment

The execution environment used in the three following evaluations is the environment
presented in Section 6.2. The properties µv,n and σv,n used for the estimation of the
booting time of the ubuntu VMs, acquired by sampling are set to respectively 31 seconds,
and 20 seconds. The certainty parameter x presented in Equation 5.2 of Section 5.2, has
been set to 0.7 for both VM and task execution times. This is the value that gives us
the best results, being a good trade-off between a too optimistic and a too pessimistic
accounting of the uncertainty. In the following evaluations, the uncertainty parameters are
used for every algorithm (NearDeadline, v-HEFT, and OnlyUsedNodes), meaning
that every algorithm will have the same estimation of the required time for each task.

Scenarios composition

Our evaluations are conducted on a multi-user scenarios where each user submits one
workflow at a given instant, with a given deadline. We have divided the workload into two

124

6.4. Execution on real infrastructure - NearDeadline evaluation

subsets, the workload that arrives at time 0, named initial workload, and the workload
composed of workflows with unknown arrivals (for the algorithm), named the interfering
workload. A scenario consists in five different variables, that are defined as follows:

— nb_init: the number of users submitting a workflow at time 0;

— nb_inter : the number of users submitting a workflow at a different arrival;

— dead_init: the deadline of the workflows in the initial workload;

— dead_inter : the deadline of the workflows in the interfering workload;

— arrival: the arrival time of the workflows in the interfering workload.

Performance metrics

The performance metrics are based on the objectives presented in the Section 5.2.
The first metric, named time-violation, is the sum of violationw of Equation 5.10 for each
w ∈ W . The second metric, named nb-succeed, is the number of workflows that have
successfully been executed before their deadline. The last metric, named power-usage, is
the power consumption of the physical machines during a period of T seconds, divided
by the maximal possible power consumption during the same period of time. The period
T seconds is the maximal duration of execution of a scenario in these evaluations. The
real power consumption of the nodes is retrieved thanks to the SeDuCe platform, which
monitors the electrical consumption of the nodes using Power Distribution Units (PDUs).

6.4.2 Small workflows scheduling

This section aims at evaluating the performance of the NearDeadline algorithm
with a small infrastructure and small workflows, in order to have an easily controllable
workload. We have used 10 nodes of the Ecotype cluster, with one node dedicated to
both the master and the scheduler modules, and the others dedicated to instances
of the worker module. The parameters used in this evaluation are those presented in
Section 6.4.1. The α parameter of the isBestND fitness function of the NearDead-
line algorithm, is set to 1

250 . This choice will be explained in the third evaluation in
Section 6.4.4.

Scenarios
The scenarios of this evaluation are presented in Table 6.9, that lists the values of the

five parameters presented in Section 6.4.1: nb_init, nb_inter, dead_init, dead_inter and

125

Chapter 6 – Evaluation of scheduling algorithms

scenario nb_init nb_inter dead_init (s) dead_inter (s) arrival (s)
A 50 15 300 {250, 200, 150, 100} each 10
B 50 15 300 200 {at 0, at 10, at 50, at 150}
C 50 {5, 10, 15, 20} 300 200 each 10
D 50 15 {300, 250, 200, 150} 200 each 10

Table 6.9 – Description of the different scenarios of the evaluation of NearDeadline
with small workflows

arrival. The scenario (A), where each interfering workflow arrives each 10 seconds from
the instant 0, aims at showing the impact of the variation of the deadline of the workflows
in the interfering workload. In the second scenario (B) all the workflows of the interfering
workload arrive at the same time, but this arrival time is made varying. The scenario (C)
makes the number of interfering workflows vary when they arrive each 10 seconds. The
last scenario (D) aimed at showing the impact when the deadline of the initial workload
varies.

Evaluation results

Figure 6.8 represents the power-usage metric for the execution of the different sce-
narios (cf. Table 6.9) with the different algorithms. The first observation that can be
made, is that our algorithm NearDeadline is always able to minimize the energy con-
sumption compared to v-HEFT. This is due to the dispersion, i.e., distribution, of the
tasks among all the nodes induced by the makespan minimization. To prevent task dis-
persion, OnlyUsedNodes, places the tasks on already used nodes and therefore tries
to consolidate before using a new node. One can note that OnlyUsedNodes is of-
ten better than NearDeadlineTask and NearDeadlineVCpu for minimizing energy
consumption, as for the scenario (A) for instance. In this scenario, both NearDead-
lineTask and NearDeadlineVCpu reconsider the expected planning, kill VMs and
launch new ones, and therefore consume more energy, when OnlyUsedNodes will not
change anything. This is illustrated by the number of VMs required by NearDead-
lineTask and NearDeadlineVCpu, as it can be seen in Figure 6.11 that shows the
number of VMs instantiated during the execution. However, NearDeadlineTask and
NearDeadlineVCpu are far better than OnlyUsedNodes in optimizing the user fair-
ness, as it can be seen in the Figure 6.9 and 6.10, that respectively shows the time
violation and nb succeed metrics. Figure 6.9 illustrates that NearDeadlineTask and
NearDeadlineVCpu are able to adapt their expected planning to the submission of new

126

6.4. Execution on real infrastructure - NearDeadline evaluation

workflows at different arrivals.
In the scenario (A), both v-HEFT and OnlyUsedNodes place the new workflows

at the end of their planning, and therefore, the more the deadlines of the interfering
workflows are tight, the more the time violation will be high. For NearDeadlineTask
and NearDeadlineVCpu, however, this does not have such a significant impact. The
time violation for v-HEFT and OnlyUsedNodes are always correlated to the fact that
they do not reconsider the previous planning in every scenarios.

The scenario (D) aimed at showing the impact of the variation of dead_init. In the
fourth variation, for the value 150, no algorithm is able to guarantee the deadline for the
initial workload, but there is probably no solution to successfully perform this execution in
time. In addition, NearDeadlineTask and NearDeadlineVCpu are still able to over-
come v-HEFT and OnlyUsedNodes in both energy and user fairness objectives. In this
(D) scenario, as the deadline gets shorter for the initial workload, the interfering workload
has a lower priority, to the point that in the two last executions (with a deadline of 200
and 150 for the initial workload), the NearDeadlineTask and NearDeadlineVCpu
algorithm does not make any reconsideration of the initial expected planning, and thus the
energy consumption succeed to be even lower than the one of OnlyUsedNodes. One
can observe some correlation between the number of instantiated VMs and the energy
consumption for both NearDeadlineTask and NearDeadlineVCpu algorithms.

The scheduling algorithm is executed simultaneously to the workflow execution. Hence,
knowing the duration for each decision taken is difficult to evaluate. But one can note that
the solving time of NearDeadlineTask and NearDeadlineVCpu is necessarily small
enough for the algorithm to give an expected planning that maximizes the user fairness in
most case.

127

Chapter 6 – Evaluation of scheduling algorithms

NearDeadlineTask NearDeadlineVCpu OnlyUsedNodes v-HEFT

250 200 150 100

0.72

0.74

0.76

0.78

0.8

0.
74

0.
76

0.
78 0.

78

0.
73

0.
76

0.
76

0.
78

0.
72 0.

73

0.
72 0.
72

0.
79

0.
79

0.
79

0.
79

po
we

r
us
ag
e

(A: dead_inter)
at 0 at 10 at 50 at 150

0.7

0.72

0.74

0.76

0.78

0.
7 0.
7

0.
72 0.

72

0.
7 0.

71 0.
71

0.
72

0.
7

0.
71

0.
71 0.

71

0.
74

0.
77

0.
77

0.
77

po
we

r
us
ag
e

(B: arrival)

5 10 15 20

0.7

0.75

0.8

0.85

0.
71

0.
74

0.
76 0.

78

0.
7

0.
73

0.
76 0.

77

0.
68

0.
71 0.

72 0.
730.

74

0.
77

0.
79

0.
82

po
we

r
us
ag
e

(C: nb_inter) 300 250 200 150

0.7

0.72

0.74

0.76

0.78

0.8

0.
75

0.
74

0.
71 0.
71

0.
75

0.
72

0.
71

0.
71

0.
73 0.
73

0.
73

0.
73

0.
79

0.
79

0.
79

0.
79

po
we

r
us
ag
e

(D: dead_init)

Figure 6.8 – Power usage of the different scenario executions

128

6.4. Execution on real infrastructure - NearDeadline evaluation

NearDeadlineTask NearDeadlineVCpu OnlyUsedNodes v-HEFT

250 200 150 100

0

500

1,000

1,500

0 0 0 260 0 0 2225 11

19
9

1,
28

9

0

21
6

82
1

1,
57

1

tim
e
vi
ol
at
io
n

(A: dead_inter)
at 0 at 10 at 50 at 150

0

200

400

600

800

0 0 0 00 0 0 00

60
7

25
0

0

36
0

82
5

24
2

0

tim
e
vi
ol
at
io
n

(B: arrival)

5 10 15 20

0

100

200

300

0 0 0 00 0 0 07 5 7 5

17
7

18
2

21
6

26
0

tim
e
vi
ol
at
io
n

(C: nb_inter)
300 250 200 150

0

1,000

2,000

0 5 89

96
8

0 0 80

92
6

3 9

19
3

1,
30

6

21
6

21
6

52
5

2,
49

7

tim
e
vi
ol
at
io
n

(D: dead_init)

Figure 6.9 – Time violation of the different scenario executions

129

Chapter 6 – Evaluation of scheduling algorithms

NearDeadlineTask NearDeadlineVCpu OnlyUsedNodes v-HEFT

250 200 150 100
40

50

60

65 65 65

60

65 65 65

6362 61

45

43

65

56

50 50

nb
su
cc
ee
d

(A: dead_inter)
at 0 at 10 at 50 at 150

50

55

60

65 65 65 65 6565 65 65 6565

56

57

65

50 50 50

65

nb
su
cc
ee
d

(B: arrival)

5 10 15 20

50

55

60

65

70

55

60

65

70

55

60

65

70

54

59

64

69

51

53

56

61

nb
su
cc
ee
d

(C: nb_inter)
300 250 200 150

0

20

40

60

65 64

55

41

65 65

56

42

63 63

48

42

56 56

43

6

nb
su
cc
ee
d

(D: dead_init)

Figure 6.10 – The number of successful execution under deadline

130

6.4. Execution on real infrastructure - NearDeadline evaluation

NearDeadlineTask NearDeadlineVCpu OnlyUsedNodes v-HEFT

250 200 150 100

100

150

200

250

300

13
1

20
9

25
4

28
2

11
4

17
8 19

5

23
4

10
2

10
5

94 93

23
3

23
3

23
3

23
3

nb
V
M
s

(A: dead_inter)
at 0 at 10 at 50 at 150

50

100

150

200

69

87 85

6769

87 83

68

87

10
0

10
0

10
1

17
3

20
3

20
3

20
2

nb
V
M
s

(B: arrival)

5 10 15 20

50

100

150

200

250

300

13
6

20
5

20
9 21

9

12
4

16
7 17

8 18
3

73

94 93 98

19
5 21

4 23
3

26
5

nb
V
M
s

(C: nb_inter) 300 250 200 150

50

100

150

200

250

20
9

14
9

69 69

17
8

10
6

69 69

10
2

10
2

96 96

23
3

23
3

23
3

23
3

nb
V
M
s

(D: dead_init)

Figure 6.11 – Number of instanciated VMs during the different scenario executions

131

Chapter 6 – Evaluation of scheduling algorithms

6.4.3 Scalability evaluation

This second evaluation aims at evaluating the performance of the NearDeadline
algorithm in a bigger infrastructure with bigger workflows, in order to evaluate the scala-
bility of the solution. In this evaluation, the workflow Montage composed of 619 tasks is
used. We have used 25 nodes of the Ecotype cluster, presented in Table 6.5, with one node
dedicated to both the master and the scheduler modules, and the others dedicated to
instances of the worker module. The parameters used in this second evaluation are the
same as those presented in Section 6.4.1. As for the first evaluation of NearDeadline
algorithm, the parameter α has been set to 1

250 . This chosen value is argumented in the
third evaluation of Section 6.4.4.

Scenario

In this evaluation, the workflow Montage 619 is used, and the value nb_init is set to
20 workflows, and nb_inter to 10. All the workflows of the interfering workload arrives at
the same time t = 50. In this evaluation, the number of tasks is 9.2 times higher than the
number of tasks in the second evaluation, for a number of compute nodes around 2.6 times
higher. The value of dead_init is set to 1000, and the value of dead_inter is set to 300.
As already mentioned, the Montage workflow, composed of 619 tasks, takes around 150
seconds to be executed when scheduled by the v-HEFT algorithm, and this execution
uses 22 of the 24 compute nodes of the infrastructure. Thus this scenario represents a
workload that highly loads the infrastructure.

Evaluation results

Figure 6.12 presents the distance between the makespan and the deadline (see Equa-
tion 5.9). The x-axis represents the deviation of the workflow executions to the deadline
in seconds, with the represented values being the minimum value, the lower quartile, the
average, the upper quartile and the maximum value.

v-HEFT OnlyUsedNodes NearDeadlineTask NearDeadlineVCpu
power-usage (with T = 1312 (s)) 74.2% 64.3% 62.8% 62.7%
Energy (Joules) 4,030,664 3,496,220 3,411,950 3,408,759
Gain 0% -13.3% -15.4% -15.5%

Table 6.10 – Power-usage (cf. 6.4.1) during the second evaluation, with gain computed in
comparison with v-HEFT results

132

6.4. Execution on real infrastructure - NearDeadline evaluation

−500 0 500 1,000 1,500

NearDeadlineVCpu

NearDeadlineTask

OnlyUsedNodes

v-HEFT

Figure 6.12 – Distance to deadline of the workflow executions

As already discussed in Section 6.3.2, The v-HEFT algorithms does not take into
consideration that the workflows belong to multiple users, and instantiates new VMs for
each level of tasks of the Montage workflow, creating big time loss due to VM booting.
When the interfering workload is submitted at time t = 50, all the resources are yet re-
served for the initial workload, and as no reconsideration is made by v-HEFT algorithm,
the workflows are scheduled after the end of the initial workload. For all this reasons, not
a single deadline is respected.

The algorithm OnlyUsedNodes, succeeds in creating a small number of VMs when
the deadlines can be met with a reduced number of nodes (initial workload). But when
deadlines are tights, due to the arrival of the interfering workload, all the nodes in the
infrastructure are needed, and the algorithm start to take the same decisions as the v-
HEFT algorithm, and schedule the new submitted workflows after the already scheduled
ones. However, the problem raised by the v-HEFT algorithm (global synchronization)
is not present in the algorithm OnlyUsedNodes because the workflows are scheduled
one by one instead of being merged together. Nevertheless, in term of fairness, the first
submitted workflow will have a much better makespan than the last one submitted, that
is why a significant variance can be observed in Figure 6.12.

One can note that both NearDeadlineTask and NearDeadlineVCpu algorithms
are far better than v-HEFT and OnlyUsedNodes in user fairness, as the deadlines are
more respected. To this observation, we can also add that the workflow executions never
finish very far from their deadlines, unlike the OnlyUsedNodes algorithm, which some-
times schedules workflow to be finished 500 seconds before their deadline. Consequently,

133

Chapter 6 – Evaluation of scheduling algorithms

when using NearDeadlineTask and NearDeadlineVCpu, free resources are avail-
able for the execution of the workflows with tight deadline, leading to an enhancement of
user fairness.

Table 6.10 shows the power usage of each execution. NearDeadlineTask and
NearDeadlineVCpu have approximately similar results, and shown to be more effective
than v-HEFT and OnlyUsedNodes in energy consumption minimization when the
workload is high. Indeed, because OnlyUsedNodes uses all the available nodes, once
the interfering workload is submitted, it then has the same behavior as v-HEFT, and
spread the tasks across all the nodes, and consume much energy. On the other hand,
NearDeadlineTask and NearDeadlineVCpu algorithms, by giving priority to VMs
that are already containing many tasks or with many VCPUs, are able to minimize the
energy consumption.

6.4.4 Analysis of the α parameter
This third evaluation aims at showing the impact of the α parameter used in the

objective function isBestBE, during the panic mode. The α parameter is used in the
fitness function in order to make vary the priority of the two following objectives: the
minimization of the makespan of a task, and the maximization of the quality of the VM
that will execute the task. Recall that the quality of a VM presented in Section 5.3.4
is greater for a VM that have more VCPU when using NearDeadlineVCpu or more
tasks when using NearDeadlineTask. The greater the value of the α parameter, the
greater the priority of the makespan over the priority of the quality and by extension of
the consolidation.

In this evaluation, the workload is composed only of initial workload with a tight dead-
line that is almost impossible to meet, such that the panic modes of both the NearDead-
lineTask and NearDeadlineVCpu algorithms are evaluated. We have used 25 nodes
of the Ecotype cluster, with one node dedicated to both the master and the scheduler
modules, and the others dedicated to instances of the worker module. The initial work-
load is composed of 10 Montage workflows composed of 619 tasks. The init deadline is set
to 250 seconds, which is a tight deadline, considering that by using almost all the nodes
(22 of the 24), one Montage 619 workflow needs around 150 seconds to be executed, and
takes approximately 300 seconds using only one node (when scheduled by the v-HEFT
algorithm). The parameter α is made varying between 1

1 and 1
400 . For readability reasons,

in the following figures the inverse of the parameter α, namely 1
α
is used between 1 to

400.

134

6.4. Execution on real infrastructure - NearDeadline evaluation

Evaluation results

The x-axis of Figure 6.13 represents the deviation of the workflow executions to the
deadline in seconds (cf. Equation 5.9). The represented values being the minimum value,
the lower quartile, the average, the upper quartile and the maximum value. The y-axis
of Figure 6.13 is the variation of the α parameter. The parameter α has an impact on
the distribution of the execution across the nodes. The smaller the α parameter, the
lower the distribution of the tasks across the nodes, and as a result the makespan of
a workflow becomes also higher. Indeed, as α decreases, the priority of the makespan
decreases relative to the consolidation. However, if the distribution of the tasks is low, the
number of required nodes for one workflow is also low, and thus the fairness between the
users is enhanced.

−100 0 100 200 300

1
50
100
150
200
250
300
350
400

t(s)

1/
α

(a) NearDeadlineTask

−100 0 100 200 300

1
50
100
150
200
250
300
350
400

t(s)

1/
α

(b) NearDeadlineVCpu

Figure 6.13 – Distance to deadline of each workflow with variable α parameter

From Figure 6.13, one can note that with α = 1
1 , the best makespan (minimal value of

the distance to the deadline) is 100 seconds before its deadline, or about 150 seconds, as
it would be with the v-HEFT algorithm, due to a high distribution of the tasks across
the nodes. It can be observed that with α ≤ 1

250 , the fairness between the users is almost
optimal, the variance of the distance to deadline being very low, meaning that all the
users have almost the same deadline violation. With α = 1

250 , not only the variance is low,
but the deadline violations are the lowest as it can be observed in Figure 6.14. In this
figure are represented two values: the sum of violation of the deadlines of all the executed
workflows (cf. Equation 5.10), denoted Time violation; and the sum of the ahead time

135

Chapter 6 – Evaluation of scheduling algorithms

(cf. Equation 5.12), denoted Time ahead. The maximization of the time ahead is not
an objective of the NearDeadline algorithm, but is a great indicator of the fairness
between user. Indeed, if the time ahead is high, the resources are used by users who
could have used less resources and still guarantee the deadline of their workflow, and thus
deprive the other users from resources, leading them to have high deadline violation. In
Figure 6.14, as the time ahead decreases the time violation also decreases, until a peak,
where the makespan objective has too low priority, and thus faster execution could have
been performed, without deteriorating the fairness.

Time ahead Time violation

0 100 200 300 400

0

200

400

600

800

1,000

1/α

t(
s)

(a) NearDeadlineTask

0 100 200 300 400
0

200

400

600

800

1,000

1,200

1/α

t(
s)

(b) NearDeadlineVCpu

Figure 6.14 – Sum of the time violation (Eq. 5.10) and sum of the time ahead (Eq. 5.12)
with variable α parameter

Figure 6.15a presents the energy consumption recorded during the executions of the
workflows with a varying α parameter. Figure 6.15b presents the number of instantiated
VMs during the same executions. One can observe a correlation between the α parameter
and the number of instantiated VMs, which is expected (less distribution meaning fewer
VMs). This correlation can also be observed between the α parameter and the energy con-
sumption, the lower the α parameter the lower the energy consumption. This correlation
can be explained by the energy lost during the VM booting processes, which consume
energy but produce no results, thus if there are fewer VM, the sum of consumption of the
boot processes is also lower.

136

6.5. Conclusion

0 100 200 300 400

0.62

0.64

0.66

0.68

0.7

0.72

1/α

po
we

r-
us
ag
e

NearDeadlineTask
NearDeadlineVCpu

(a) Percentage of energy consumption with
variable α parameter

0 100 200 300 400

50

100

150

200

1/α

N
b
of

V
M
s

NearDeadlineTask
NearDeadlineVCpu

(b) Number of instanciated VMs with variable
α parameter

Figure 6.15 – Power-usage and number of VMs for NearDeadlineTask and
NearDeadlineVCpu execution with a variable α parameter

6.5 Conclusion

In this chapter, multiple experimentations have been presented. Simulations on re-
alistic workloads have shown a reduction in the number of nodes by up to 28% for an
estimated 10% energy consumption reduction for the Cloud provider, when using the
OnlyUsedNodes algorithm in comparison to the v-HEFT algorithm. Further experi-
mentation on a real infrastructure, have shown that this reduction is still observed, when
executing real workflows. The evaluation on real infrastructure have shown a reduction
in the energy consumption up to 15% for a reduction of 79% in term of number of used
nodes.

In a second part, the NearDeadline algorithm has been compared to v-HEFT and
the OnlyUsedNodes algorithms, on real experiments on a real infrastructure. Experi-
ments have shown real benefits in the reduction of both deadline violation, and thus in user
fairness as well as in energy optimization. Indeed, as v-HEFT and OnlyUsedNodes
does not reconsider the planning they have computed, when new submissions arrive with
higher priorities, they are placed at the end of the planning, resulting in a poor fairness
optimization. Conversely, by reconsidering the expected planning NearDeadline is able
to enhance the fairness. NearDeadline as the OnlyUsedNodes algorithm is able of

137

Chapter 6 – Evaluation of scheduling algorithms

minimizing the energy consumption, and experimentation have shown a reduction of the
energy consumption up to 15% in comparison with v-HEFT.

In this evaluation, the parameter α of the NearDeadline algorithm has been investi-
gated. Experimentations that aim at finding the best possible values for the α parameter,
in different infrastructures and for different workflows, could be the object of interesting
future works.

138

Part II

Automatic execution of scientific
workflows

139

Chapter 7

WAAS : WORKFLOW AS A SERVICE

A CLOUD SERVICE FOR SCIENTIFIC

WORKFLOW EXECUTION

This chapter presents the definition of a new Cloud service designed specifically for
the execution of scientific workflows, with a specific-service-vision. We show that this
conceptual choice enhances separation of concerns between end-users and Cloud providers,
and enhances resource management from the Cloud provider viewpoint. Furthermore, to
facilitate the integration of the new WaaS service by Cloud providers, it is designed as
a turnkey solution that handles modularity of virtualization mechanisms and scheduling
policies, as well as scalability issues.

Contents
7.1 Introduction . 141

7.2 WaaS : Workflow as a Service 142

7.2.1 End-user concerns . 142

7.2.2 Cloud provider concerns and Waas architecture 144

7.3 Evaluation . 149

7.4 Conclusion . 154

7.1 Introduction

Scientific workflows often become very complex and difficult to manage. Thus, in order
to execute a workflow, an end-user (i.e., a scientist) will generally use a workflow engine or
a workflow management system, such as Pegasus [56], DEWE [86], or Hyperflow [27] for
instance, that will automatically orchestrate the different execution steps. These systems
are designed in a way to be used and deployed by the end-users, and not by a Cloud
provider. Indeed, for instance, Pegasus and Hyperflow uses existing resource provisioning
mechanisms like those of AWS, and DEWE uses existing Function-as-a-Service (FaaS).

141

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

This conceptual vision will be called existing-service-vision in the rest of this chapter.
As existing services of the Cloud are not specific to scientific workflows, this conceptual
choice requires additional work for the scientist: resource provisioning, configuration etc.
This can be a challenging task, especially when considering that end-users are generally
not experts in resource management and system configuration.

The remainder of this chapter is organized as follows. Section 7.2 details the contribu-
tion, i.e., the submission language, the architecture and the modular aspect of the new
WaaS service, and Section 7.3 evaluates this solution. Finally, Section 7.4 concludes this
work.

7.2 WaaS : Workflow as a Service

In this section the WaaS Cloud service is presented. This new Cloud service aims
to be specific to scientific workflows and aims to be offered by Cloud providers on their
distributed infrastructures. The WaaS addresses the limitations of the related work in
terms of virtualization, modularity and separation of concerns. Indeed, the WaaS service
has been designed with the separation of the concerns between two actors in mind, namely
the end-user, who is the scientist writing tasks and composing them, and the Cloud
provider, responsible for virtual and physical resource management.

This section is divided into two parts. The first part presents the operations performed
by an end-user wishing to run a scientific workflow, while the second part presents how
the service can be deployed and customized by a Cloud provider. This second part also
presents a detailed view of the service architecture and its different modules. In this
section, the presentation focuses on the objectives presented in Table 3.5 of Section 3.2,
on the related work of the automatic execution of scientific workflows.

7.2.1 End-user concerns

As presented in the Chapter 2, a scientific workflow is a succession of tasks with file
dependencies, which can be described by a DAG. In our context, the end-user’s job is to
develop the different tasks of the workflow and to describe the workflow topology. As ex-
plained in a Section 2.1, the tasks that make up the workflows can be very heterogeneous.
In the WaaS, the workflow topology must be given by the end-user in a Yaml [124] de-
scription file. Figure 7.1 presents the meta-grammar of the workflow description language,

142

7.2. WaaS : Workflow as a Service

and Figure 7.2 presents an example of a workflow. In the WaaS the meta-grammar of the
workflow description has to be implemented and customized by the Cloud provider to get
its specific grammar. This will be detailed later.

1 f i l e s : # list of files
2 - id : v a l u e # file ID
3 name: v a l u e # file name
4 type : o u t p u t # O p t i o n a l
5 ∗ add i t i o n a l op t i ona l a t t r i b u t e s
6 t a sk s : # list of tasks
7 - app: v a l u e # Name of e x e c u t a b l e
8 hardware : # list of H a r d w a r e r e q u i r e m e n t s
9 key1 : v a l u e 1
10 key2 : v a l u e 2
11 . . .
12 os :
13 name : v a l u e # Name of o p e r a t i n g system
14 so f tware : # list of s o f t w a r e d e p e n d e n c i e s
15 - value1
16 - . . .
17 output : # list of file r e f e r e n c e s
18 - value1
19 - . . .
20 input : # list of file r e f e r e n c e s
21 - value1
22 - . . .
23 params : v a l u e # e x e c u t i o n p a r a m e t e r s
24 ∗ add i t i o n a l op t i ona l a t t r i b u t e s

Figure 7.1 – Meta-grammar of the workflow description file

In the Yaml description file, two main elements are required, the specifications of files
and tasks. The files section is a list of all the files that are created during the workflow
execution and transmitted from tasks to tasks. Each file is specified by an ID and a
name. A file whose type is output (optional), is a file that the end-user wants to retrieve
at the end of the execution. Similarly, The tasks section is a list of all the tasks of a
workflow. For each task is associated the path and name of the executable file to run, as
well as the associated execution parameters, the hardware requirements of the task, the
needed operating system with attached software dependencies, its input files as well as its
output files (as references to the files list). The end-user has the ability to specify a list of

143

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

software dependencies which must be installed before launching the task. All provisioning
and installation operations are automated by the WaaS, and the user does not have to
manage any of them (close to Docker File mechanism).

One can note that for each file, or task, optional attributes can be added. Those
optional attributes depend on the type of scheduler that the Cloud provider chooses to
deploy, and on the type of hardware and operating systems available in their specific
infrastructure. Thus, it is up to the Cloud provider to define the specific grammar of
the description file accepted in its service, by defining the list of attributes required in
the Yaml description file. Figure 7.2 presents an example of a workflow. The example
file corresponds to the workflow depicted on the left-side of the figure. In the example, a
few optional parameters have been added by the Cloud provider: the size of the files to
transfer between tasks; the duration of each task as a number of instructions; the demand
in terms of CPUs and memory.

Once the end user has described her/his workflow, developed the tasks and created
the input files, he/she submits the workflow to the service. This submission can be made
on a simple web interface, or via a single command line. Once the workflow has been
correctly executed by the Cloud provider the result files (output files) of the workflow will
be available to the end-user via a web link. The end user does not have any other work
to do, so it can be said that WaaS objective 8 - Hidden management for the end-user -
of Table 3.5 regarding separation of concerns is achieved.

7.2.2 Cloud provider concerns and Waas architecture

The entire execution of the workflow, i.e., the scheduling, the resource management,
the execution of the tasks as well as the file management, is made by the WaaS service on
the Cloud provider side. The service is composed of two main modules, the Master and
the Worker modules. The Master module is responsible of a cluster of Workers, where
each worker is attached to one physical machine (i.e., node). A cluster is composed of
multiple nodes. The bandwidth within a cluster is supposed homogeneous.

Master module

The Master module is hosted by one of the nodes of the infrastructure, and is accessible
from the outside of the cluster in order to receive submission requests from end-users. It
contains a scheduler submodule. This scheduler is responsible of the following decisions:

144

7.2. WaaS : Workflow as a Service

T1

T2

inter.txt

out.txt

1 f i l e s :
2 - id : F i l e 1
3 name: i n t e r . t x t
4 s i z e : 1 0 0 0 # Kbytes
5 - id : F i l e 2
6 name: o u t . t x t
7 s i z e : 2 0 9 6 # Kbytes
8 type : o u t p u t
9 t a sk s :
10 - app: T1
11 l en : 2 2 0 0 0
12 needs :
13 cpu : 1
14 memory : 1 0 2 4
15 os : u bun tu18 . 0 4
16 output :
17 - F i l e 1
18 - app: T2
19 l en : 3 4 0 0 0
20 needs :
21 cpu: 2
22 memory: 2 0 4 8
23 os : u bun tu18 . 0 4
24 input :
25 - F i l e 1
26 output :
27 - F i l e 2
28 params: − i i n t e r . t x t −o ou t . t x t

Figure 7.2 – Example of a workflow with two tasks by using a cloud-specific-grammar
built from the meta-grammar.

where (on which resource), and when to execute a task. In the WaaS the role of the
scheduler is abstracted as a set of interfaces as follows. The scheduler provides for each
task a slot s ∈ S such as s =< t, b, e, r >, where t ∈ V is a task of a workflow G = (V,A),
b, e ∈ N are the starting and ending times of the task, and r ∈ R is the virtual resource
that will execute the task. A virtual resource is defined as follows r =< b, a, e, k, n >,
where b, a, e ∈ N are respectively the starting instant, the availability instant of the
resource (after the boot process), and the ending instant (killing of the resource) of the
virtual resource. The attribute k ∈ K represents the capacities of the VM, such as vCPU,
or memory. The attribute n is the node that will host the virtual resource. Depending
on available information, the scheduler can determine the ending time of a task, or may
set an infinite lifetime for the task slot, and its associated virtual resource. As long as
the scheduler is designed with the correct communication interface, any kind of scheduler

145

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

can be used in this submodule, thus achieving the objective 7 - Modular scheduler - of
Table 3.5.

The set of virtual resources and the tasks affectations to resources is called a planning.
The Master module is triggered when new events occur (e.g., new submission or new mon-
itoring information from workers). In case of a new submission, the scheduler submodule
is called, otherwise the planning continues to be applied by the Master module.

1 name: v a l u e
2 hardware :
3 # hardware capacities
4 key1 : v a l u e 1
5 . . .
6 os :
7 # OS and boot times
8 key1 : v a l u e 1
9 . . .
10 ∗ op t i ona l a t t r i b u t e s :

(a) Meta-grammar of a worker description

1 name: node_1
2 speed : 2 2 0 0
3 hardware :
4 cpus : 16
5 memory: 1 6 3 8 4
6 os :
7 ubuntu: 30

(b) Example of description of a worker by
using a cloud-specific-grammar built from
the meta-grammar of Figure 7.3a.

Figure 7.3 – Worker description file

Worker module

One Worker module is deployed on each node of the Cloud infrastructure dedicated
to scientific workflows. When deployed a Worker module registers itself to the Master
module responsible of the cluster. To the registration is attached information, that can
be customized by the Cloud provider, and that are described by a Yaml file. The meta-
grammar of this description file is presented in Figure 7.3a, and an example is given in
Figure 7.3b by using one possible specification of this meta-grammar for a given Cloud
provider. The hardware attributes defines the hardware capabilities of a node, and one
can note the relation with the hardware requirements of a task presented in Figure 7.1.
The os section lists all the virtual resources that can be provisioned on the nodes and the
number of seconds it will require in average. One can note again the relation with the os
requirements of a task presented in Figure 7.1. The attributes of a node are typically used
by the scheduler of the Master module.

A Worker module is responsible of all the virtual resources, all the tasks that will be
executed, and all the files that will be transferred on the node. The Worker module is not
capable of making decisions and simply answers to the orders sent by the Master module.

146

7.2. WaaS : Workflow as a Service

There are four orders that can be treated by a Worker:

— launch a virtual resource;

— kill a virtual resource;

— execute a task on the virtual resource;

— download a file for the task from a remote node.

It can be noted that the number of orders is small, and that only the three first depends
on the type of virtualization. Therefore, defining new types of Worker to manage different
types of virtual resources is not difficult. In addition, unlike the public FaaS, the virtual
resources provisioned by the Worker module may be unstacked and may run directly on
the physical node, thus, better performance can be provided. One may also note, that
a version of Worker module providing bare metal execution can also be easily specified.
In the evaluation section 7.3, an implementation of different worker module using the
library Scala AKKA is presented. An example of the orders launch a VM and kill a VM
are presented in Figure 7.4. In this example, the parameters os, is the name of the image
used to produce the VM, the parameters capas is a dictionary containing the hardware
information of the VM, the parameter user is the name of the user that will have access
to the VM provisioned - this parameter is used to mount the local directory (on the node)
containing all the files belonging to that user -, and finally the parameter script is the list
of commands to run once the VM is booted before launching any task on it - this script
is used to install the software dependencies.

1 case DaemonProto .LaunchVM (mid , id , os , capas , user , s c r i p t) =>
2 log . i n f o (s " Launch vm : $id , with $os o f $capas \
3 f o r $user with $ s c r i p t ")
4 KVM. launchVM (mid , id , os , capas , user , s c r i p t , masterModule)
5
6 case DaemonProto . KillVM (mid , id) =>
7 log . i n f o (s " K i l l vm : $ id ")
8 KVM. killVM (mid , id , masterModule)

Figure 7.4 – Example of orders in Scala AKKA implementation of a KVM Worker

A cluster can contain heterogeneous Worker modules, e.g., Workers providing container
virtualization, along with workers providing VM virtualization. The objectives 5 and 6 -
Dedicated resource management as no stacking of the virtualization is made, and Modular
virtual resources - of Table 3.5 are achieved thanks to the Worker module.

147

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

The last order is used to transfer files created by a task of the workflow during the
execution, and ensures the dependencies between the tasks. To enable the transfer of
the different files, each module instance (master and workers) is running along with a
file server, that is hosting all the files produced during the execution of the workflows.
When a Worker module requires access to files, it will simply get them by a file download
request. In the workflow definition, multiple tasks could depend on the same file. For
this reason, when multiple tasks are to be executed by the same Worker, and have the
same file dependency, the file transfers are merged in order to prevent multiple copies of
the files that would be useless. All the file transfers are managed by the Worker module
automatically, thus achieving the objective 3 - Automatic file management - of Table 3.5.
In addition, all the task executions are launched by the Worker, achieving the objective
2 - Automatic task execution.

As specified previously, the operating system that can be provisioned may be cus-
tomized by deriving from a standard OS. All the dependencies are automatically installed
by the Worker module. This achieves the objective 1 - Software dependencies manage-
ment - of Table 3.5.

Finally, virtual resources are provisioned only when required by the workers, and
resources can be released when becoming useless, therefore, resource provisioning is elastic.
This achieves the objective 4 - Elastic resources - of Table 3.5.

Multiple cluster infrastructure - Federation of services

Until now we have described the WaaS that manages the resources of a single cluster
of nodes. Unlike the solution presented in the state of the art, the WaaS is designed
to be deployed by Cloud providers on their infrastructures as a new specific service.
Therefore, the WaaS is designed to handle multiple workflow submissions from many
users simultaneously. Most of the time the infrastructures offered by Cloud providers
are composed of multiple clusters (assuming that a cluster refers to a single local area
network). In the case of multi-cluster, scalability issues are raised, e.g., a single Master
managing many Workers, heterogeneous bandwidth, bottlenecks, etc. The problem of
scalability addressed in this chapter is due to the number of events that need to be
handled by the Master module. By dividing the planning execution between multiple
Master modules, the number of events that are managed by a single Master are reduced
(less Worker, tasks, files and virtual resources to manage), thus enhancing the scalability
of the solution.

148

7.3. Evaluation

One solution would have been to deploy as many WaaS services as the number of
clusters, and let the end-users choose on which cluster to execute their workflows. However,
in case of big workflows or when clusters are highly loaded, a workflow can be poorly
executed on a single cluster, while using multiple clusters could improve the execution
quality. For this reason, we have opted for a federated service where each cluster is handled
by one Master and where a Leader is deployed to federate the Master modules. In this
federated version, the Leader is the only one making decisions and possessing a scheduler
submodule.

Thus, instead of calling the scheduler, each Master module receives a planning to apply
from the Leader module. The planning received by a Master module only involves the
nodes of the cluster under its supervision, as well as only the tasks that will be executed on
this cluster. Workers from different clusters are not accessible from two different clusters.
However, the different Master modules can communicate to handle file transfers from one
cluster to another.

In this section, a new Cloud service for the execution of scientific workflows has been
described. This service is usable in a context of multiple cluster infrastructure providing
a good turnkey solution for Cloud provider. This achieves the objective 9 - Turnkey
solution for the Cloud provider - of Table 3.5.

To conclude one can note that since a distributed infrastructure with several clusters is
targeted, decentralized scheduling algorithms would be more suitable. However, there is a
plethora of scheduling algorithms in the literature that have been designed for centralized
decision making. The WaaS service has been designed so that these algorithms can be
used without any modification. Considering distributed scheduling algorithms could be
the subject of future work, in order to solve scalability issues in terms of decision making.

7.3 Evaluation

In this section, a detailed evaluation of the WaaS Cloud service is presented. Each
section refers to the achievements of the objectives of Table 3.5. Furthermore the exper-
imental protocol is detailed hereafter. All codes and results are available on a public git
repository 1.

1. https://gitlab.inria.fr/ecadorel/waas/

149

https://gitlab.inria.fr/ecadorel/waas/

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

Experimental protocol

In this section is presented the experimental protocol used to validate the WaaS cloud
service. Indeed, this section presents the experimental infrastructure as well as the appli-
cation executed within experiments.

WaaS service implementation

The WaaS service has been implemented using the library Scala Akka, the source
code of this implementation is available on the git repository. The architecture of the
platform has been presented in Section 7.2. The Scala Akka library is an actor oriented
library. In the WaaS service implementation, each module is an actor answering and send-
ing messages to the other modules. Four different scheduling algorithms of the literature
have been implemented, HEFT [122], Min-Min, Max-Min [89] and OnlyUsedNodes.
HEFT, Min-Min and Max-Min have originally been designed for Grid scheduling, and
have been adapted to be able to schedule virtual resources. This adaptation uses the re-
source selection algorithms presented in Section 5.3 (cf. Algorithm 10 and Algorithm 11).
Furthermore, two different Workers have been implemented, one providing KVM virtual
machines, and one providing Docker containers. Unfortunately, even if the utilization of
dynamic algorithm is in theory possible, the implementation does not provide a possibility
to update the planning of the Master modules, when the scheduler has modified them.
Thus, the execution of NearDeadline is not possible with this implementation, even if
it is not a conceptual problem of the WaaS.

Execution infrastructure

The experimentation has been run on a distributed infrastructure composed of two
different clusters. Those two clusters are part of the Grid’5000 [13] experimental plat-
form, and are presented in Table 7.1. The WaaS Cloud service has been deployed on this
infrastructure with five Master modules. One of them handles the cluster Econome, and
each of the four others handles a sub cluster composed of 11 nodes of Ecotype. In other
words, Ecotype is divided in four sub clusters for the experiments. On the one hand, the
Worker providing Docker virtualization has been instantiated and deployed both on the
nodes of two of the Ecotype sub clusters, and on the nodes of the Econome cluster. On the
other hand, the Worker providing KVM virtualization has been instantiated and deployed
on the nodes of the two remaining sub clusters of Ecotype. The bandwidth between the
Ecotype and Econome clusters is 10 Gbps.

150

7.3. Evaluation

Name Nodes CPU Memory Storage Network
Econome 22 Intel Xeon E5-2660 64 GB 2.0 TB 10Gbps

2.20GHz, 2 CPUs/node HDD SATA
8 cores/CPU

Ecotype 44 Intel Xeon E5-2630L v4 128 GB 400 GB SSD 2 x 10Gbps
1.80GHz, 2 CPUs/node
10 cores/CPU

Table 7.1 – Description of the used infrastructure

Workload

The Montage workflow is a typical case-study used to evaluate workflow engines and
scheduling algorithms [21, 39, 77, 81]. It is a complex workflow that integrates most of
the workflow classes characterized by Bharathi et al. in [37]. The simulated workload is
composed of 100 Montage workflows, each of them composed of 619 tasks. Table 6.7 lists
the different tasks of Montage 619, and presents for each task its execution time (on an
Ecotype node), its amount of input data and the amount of data it creates. The execution
of these workflows has been performed four times using the four implemented scheduling
algorithms (HEFT, Min-Min, Max-Min and OnlyUsedNodes). Each workflow is
submitted by a new client when the Leader is ready to receive a new submission (i.e., has
treated the last one and updated the planning, so approximately every 3 to 4 seconds).
The average duration of the workload execution for the four execution is 24 minutes.

Results

End-user concerns

The submission of the Montage workflow composed of 619 tasks has been made 400
times in the experiment. The end-users did not have to make any modification, even
when different scheduling algorithms were deployed. The end-users also did not have to
worry about the virtualization technologies that have been used, and chosen by the Cloud
provider, and no resource management has been asked to the end-user. Therefore, the
objective 8 is correctly achieved (Hidden management for the end-user - See Table 3.5).
One can note that the description file of the Montage workflow in our experiments has
been generated automatically by the workflow generator provided by Pegasus, and was
easily adapted for the WaaS with a transformation script. This file 2 is 11977 lines long.

2. https://gitlab.inria.fr/ecadorel/waas/tree/master/apps/Montage_619/flow.yaml

151

https://gitlab.inria.fr/ecadorel/waas/tree/master/apps/Montage_619/flow.yaml

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

0 20 40 60 80 100
0

200

400

600

800

1,000

Workflow

M
ak

es
pa

n
(in

se
co
nd

s)

HEFT
OnlyUsedNodes
Min−Min
Max−Min

Figure 7.5 – Comparison of the makespan of each submitted workflow.

Modular scheduler

In this experimentation, we aimed at showing that different scheduling algorithms
could be used or added by Cloud providers with minimal modifications. The code of
these scheduling algorithms can be found on the git repository 3, where only one file of
about 100 lines is required for each scheduler. The objective 7 (Modular scheduler - See
Table 3.5) is therefore correctly achieved. Each scheduler has a different behavior and uses
the infrastructure in a different way. We do not intend to compare the performances and
results of the different algorithms, however, in order to validate the scheduler modularity
Figure 7.5 presents the makespan of the Montage workflow (i.e., execution time of the
workflow) with the four different algorithms.

Modular Worker

Two different Workers have also been deployed on the infrastructure, providing dif-
ferent types of virtualization. We do not intend to compare the different virtualization
techniques but to illustrate the ability of the WaaS to integrate and handle different Work-
ers. The code of the Workers can be found on the git repository 4, where only one file differs
from KVM to Docker. This file is 200 lines long for Docker and 500 for KVM. Table 7.2

3. https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/
leader/scheduling

4. https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/
daemon/

152

https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/leader/scheduling
https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/leader/scheduling
https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/daemon/
https://gitlab.inria.fr/ecadorel/waas/tree/master/source/src/main/scala/com/orch/daemon/

7.3. Evaluation

Virtualization HEFT OnlyUsedNodes Min-Min Max-Min
Docker 4728 1197 4923 3981
KVM 1749 0 1539 1658

Table 7.2 – Number of virtual resources provisioned during the experiment

Cluster HEFT OnlyUsedNodes Min-Min Max-Min
Ecotype-1 17095 21636 16752 16922
Ecotype-2 10815 21777 11248 11244
Ecotype-3 6051 0 5927 6196
Ecotype-4 6434 0 6144 6342
Econome-1 21505 18487 21829 21196

(a) Number of tasks executed

Cluster HEFT OnlyUsedNodes Min-Min Max-Min
Ecotype-1 287402 211825 281331 287402
Ecotype-2 104329 175991 112066 115575
Ecotype-3 65892 18 64917 65692
Ecotype-4 68613 17 65363 74851
Econome-1 174047 143578 177889 169672
estimation all 570891 498031 571523 570716

(b) Number of messages processed

Table 7.3 – Distribution of the workload across clusters

lists the number of virtual resources provisioned by KVM Workers, and Docker Workers
in our experiment. VMs provisioned with KVM where Ubuntu 18.04 virtual machines,
and each provisioning took 59 seconds, when the provisioning of the Docker container
(also Ubuntu 18.04 container) took in average 3 seconds. Econome nodes have HDD in-
stead of SSD harddrives, thus booting time is way slower on Econome than on Ecotype,
explaining the difference between the boot times observed in this experimentation and
the boot time observed in the experimentation presented in Chapter 6. The heterogeneity
of virtual resources is not possible in other workflow engines. Furthermore, the solution
provided by the WaaS service is elastic. For instance, with the HEFT algorithm, the
execution of the first submitted workflow used 22 virtual resources with duration ranging
from 11 seconds to 114 seconds with an average of 62 seconds. These virtual resources
have executed 20 to 60 tasks each, with an average of 28 tasks. The makespan of the
workflow in the experiment was 118 seconds. This shows that resources are created and
deleted in an elastic manner, i.e., with shorter lifetime than the overall makespan. The
objectives 4, 5 and 6 are validated (Elastic resources, Dedicated resource management,
Modular virtual resources (Heterogeneity) - See Table 3.5).

Multiple cluster infrastructure

This experimentation also shows the capability of the WaaS service to use a dis-
tributed infrastructure composed of multiple clusters. Table 7.3a lists the number of tasks
that have been executed in each cluster. Every scheduler took approximately the same
time to schedule one workflow, with an average of 2.5 seconds. The bottleneck of the
execution is not located in the scheduling algorithm, but on the number of messages that

153

Chapter 7 – WaaS : Workflow as a Service
A Cloud service for scientific workflow execution

are transmitted, as illustrated in Table 7.3b by the number of messages treated by each
Master module during the execution. Furthermore, the last line of this table shows an
approximation of the number of messages that would have been treated if only one Mas-
ter module had been used. The distribution of the work between the different clusters is
correlated to the scheduler that is used, however, it may be noted that in all cases the
workload is dispatched between multiple clusters.

7.4 Conclusion
In this chapter has been presented a new Cloud service for the execution of scientific

workflows, namely the Workflow-as-a-Service. Unlike the related work, the WaaS adopts a
specific-service-vision and is therefore presented as a turnkey solution for Cloud providers.
In this chapter, we have shown that this conceptual approach of the workflow engine im-
proves the separation of concerns between the end user, who is only responsible for the
specification of the workflow, and the Cloud provider, who is responsible for the resource
management and configuration. In addition, this approach, by leveraging its specificity
for scientific workflows, improves the elasticity and optimality of resource scheduling and
provisioning. To facilitate the adoption by the Cloud provider and improves the flexibil-
ity of the service, the WaaS has been made modular, thus facilitating the definition of
new types of virtualization for Worker modules, and the integration of new schedulers
into Master modules. Finally, the WaaS has been designed to be scalable, even when
considering a complex distributed infrastructure with multiple clusters. The service has
been tested on a real distributed infrastructure divided in five clusters, with four different
scheduling algorithms, and two types of virtualization systems (KVM and Docker), and
has shown consistency during the execution of hundreds of workflows.

154

Chapter 8

CONCLUSION

In this chapter, we first concludes the work and the contributions of this thesis on
the scheduling and the execution of scientific workflows . Then perspectives for potential
future works are discussed.

Contents
8.1 Achievements . 155

8.2 Perspectives . 159

8.2.1 Prospects related to energy optimization 159

8.2.2 Prospects related to service oriented execution 160

8.1 Achievements

In this thesis, we investigated the problem of the scheduling and the execution of sci-
entific workflows. Effective execution of scientific workflows requires the use of complex
multi-cluster infrastructure, but scientists developing these applications are not experts
in infrastructure management. For this reason, most users (scientists) have opted for the
use of workflow engines that aim to bring the execution of the workflow within a Cloud
computing environment. However, these workflow engines assume that the physical in-
frastructure under the Cloud computing environment is managed by the Cloud provider
and thus these engines have no impact on the placement of the virtual resources used to
execute workflow tasks. In addition, Cloud providers have no information about the ap-
plication that is running within their infrastructure, and therefore are not able to perform
strong optimization regarding resource usage, such as energy consumption or resource
sharing. This could lead to under-used physical machines, and under-optimized energy
consumption. Nevertheless, energy consumption in datacenters is a major issue as it has
a direct significant environmental impact, and has to be taken into account.

In this thesis, we shifted the problems of workflow tasks scheduling, and workflow
execution from the user side to the Cloud provider side. To this end, new information
about the topology of the application that are to be executed are made available to

155

the Cloud provider. By doing this we provided better optimization in terms of physical
infrastructure usage and thus a better energy optimization as well as a good fairness
among the users submitting workflows for execution.

This new approach to the management of scientific workflows has introduced a new
problem. Indeed, by locating the scheduling decisions on the Cloud provider side, the
scheduling problem to resolve is different from the problems that are resolved in the state
of the art. Instead of virtual machines, that can provide infinite resources only limited
by the end-user budget, limited number of physical machines providing limited number
of resources had to be considered. In addition, the scheduling algorithm had to take
into account that multiple users are sharing the same physical infrastructure. Once the
scheduling problem has been resolved, the planning, that has been computed, has to be
efficiently applied.

The problem resolved in this thesis can be separated into two sub problems: the
resolution of the scheduling problem and the execution of the computed planning.

To resolve the scheduling problem we have presented two scheduling algorithms:

— Static scientific workflow scheduling algorithm for energy optimization
in a Cloud computing environment - The objective of this algorithm - named
OnlyUsedNodes and presented in Chapter 4 - is to minimize the number of phys-
ical machines required for the execution of a set of scientific workflows submitted
by different users. In the problem resolved by this algorithm, a deadline is attached
to every workflow. This deadline is used to transform the problem from a multi-
objective problem (makespan and energy optimization) to a single objective prob-
lem. Thanks to a partial backtracking heuristic, the algorithm is able to reduce the
number of required PMs, and by extension the energy consumption. This partial
backtracking heuristic considers only already used PMs when scheduling the tasks
of a workflow, and backtrack when the deadline of the workflow can no longer be
met. As the deadline cannot be met, a new PM is considered for the scheduling of
the workflow.
The OnlyUsedNodes algorithm considers virtual resources (Virtual Machines or
containers) to resolve the problem of software dependencies of the applications, and
also to give access only to a sub part of the resources of a PM to a user, and therefore
enhance the resource usage of each PM. Thanks to that mechanism multiple users
could use the same PM at the same time, while the isolation of the computation is
still guaranteed.

156

Simulations (see Section 6.1) have shown a reduction of the number of required
nodes as well as a reduction of the energy consumption of the infrastructure. Further
experimentation (see Section 6.4) have shown that energy reduction is also observed
on a real infrastructure and when executing real case scientific workflows.

— Dynamic scientific workflow scheduling algorithm for user fairness and
energy optimization - The objective of this algorithm - named NearDeadline
and presented in Chapter 5 - is to reduce the energy consumption of the physical
infrastructure of a Cloud provider, answering to the submissions of multiple users.
To every submitted workflow is attached a deadline that has to be met. This dead-
line allows to transform the problem from a multi-objective problem (energy and
makespan minimization) to a single objective problem, with energy optimization
objective. The deadline is also used to define the concept of user fairness, where
a computed planning is consider fair when the deadlines of all the workflows (be-
longing to different users) are met, or when the deadline violation is distributed
equally among the users. Unlike, OnlyUsedNodes, this algorithm considers that
new submissions with higher priority may arrive at uncertain time, and therefore
that the planning may have to be reconsidered in order to guarantee the fairness
between the users. This algorithm is based on a two phase scheduling. The first
phase tries to schedules a submitted workflow near its deadline - with the purpose
of using as few resources as possible. When the first phase fails, the second phase
schedule the workflows in best effort mode, after the workload with lower priority
has been removed from the planning.
As for OnlyUsedNodes, this algorithm relies on virtualization mechanisms in
order to provide better resource usage of each PM and therefore optimize the energy
consumption. This virtualization mechanisms are also used to guarantee the software
requirements of the tasks. Experiments on a real infrastructure (see Section 6.4) have
shown real benefits in term of equity and energy consumption, in comparison with
state of the art algorithm.

Once the planning has been computed, the Cloud provider has to be able to apply
it and perform the operations on the infrastructure. To this end, we have proposed the
following contribution:

— WaaS: Workflow as a Service, a Cloud computing service for scientific
workflow execution - The WaaS - presented in Chapter 7 - is a new Cloud
service for the execution of scientific workflows. All the decisions are performed on

157

the Cloud provider side (scheduling, resource provisioning, file transfers, etc.), so
as to reinforce the separation of concerns between the end-users (scientist) and the
Cloud provider, in addition of improving the resource management from the Cloud
provider’s perspective. The planning computed by a scheduling algorithm lists the
resources that have to be provisioned and the tasks that are to be executed on this
resources. Depending on the size of the infrastructure and the size of the workload,
a planning may contain many resources and many task assignments, and therefore
the planning execution must be efficient in order to respect the decisions made by
the scheduling algorithm.
The WaaS service has been designed to facilitate the integration by a Cloud provider
that may want to use different virtualization mechanisms, or different scheduling
algorithms. To this purpose, the WaaS is designed as a turnkey solution composed
of customizable modules giving the opportunity to the Cloud provider to extend
the solution with minimal modifications. This solution also allows the usage of a
complex multi-cluster infrastructure, by providing a federation of sub-services, thus
enhancing the resolution of scalability issues.
As the separation of concern is a major objective of the WaaS, the ease of use
from the end-user point of view has also been investigated. Indeed, the end-users
by using the service, only need to define the topology, the applications (executable
tasks of the workflow), and the input files of their workflows. The topology of a
workflow, is described by a single file, that contains all the required information
for the Cloud provider, and that can be differently treated depending on the Cloud
provider information requirements. As the end-users never have to manage anything
but the description of their workflows, we claim that the separation of concern is
correctly achieved.
The service has been tested on a real distributed infrastructure (see Section 7.3)
divided in five clusters, with four different scheduling algorithms, and two types of
virtualization systems (KVM and Docker), and has shown consistency during the
execution of hundreds of workflows.

158

8.2 Perspectives

The contributions of this thesis could be extended in different ways. In this section is
discussed research direction that could lead to promising results.

8.2.1 Prospects related to energy optimization

Powering off unused PMs

In our work in Chapter 4, the algorithm OnlyUsedNodes computes a static plan-
ning with objective of energy minimization by using as few machine as possible. It could
be interesting to consider the shutdown technique in order to remove the idle energy con-
sumption of the unused nodes, and minimize even more the energy consumption. In that
case, the energy consumption of the power on and power off operations would have to be
taken into account in the model, in order to define whether or not it is interesting to power
off a machine, considering that it may have to be powered on at the next submission in-
terval. This technique could also be investigated for the algorithm NearDeadline. Such
technique has already been investigated in general cases [32, 100], but could be adapted
to the specific case of scientific workflows.

Using DVFS when deadlines are flexible

In Chapter 4 and 5 a deadline is associated to each workflow in order to reduce the
scheduling problem to a single objective problem, and help in minimizing the energy con-
sumption. This deadline is used in the proposed algorithms to minimize the number of
resources needed, and consolidate the nodes under usage. In addition to the consolida-
tion technique, the DVFS technique could be investigated, by reducing the frequency of
the PMs while the deadline of the workflow can be easily met. This technique could be
used in both OnlyUsedNodes and NearDeadline, by computing the lowest possible
frequency that still guarantee the respect of the deadlines. DVFS technique has already
been investigated for the scheduling of scientific workflow in the state of the art, but
in the context of Grid environment [84, 93]. An adaptation in the context of virtualized
environment with heterogeneous applications could be an interesting future work.

159

8.2.2 Prospects related to service oriented execution

Enhancing the scalability of the scheduling phase

The WaaS could gain in scalability by decentralizing scheduling decisions. This could
be done in different ways. First, by using decentralized algorithms, which is for the mo-
ment impossible, since all the scheduling decisions are made inside the Leader module
that is unique and thus centralized. Second, by selecting before each scheduling decision
the clusters that are the most promising for the execution. To this end, the size of the
submitted workload would have to be computed in order to define the upper bound in
term of number of required resources. This bound could be used to create a virtual cluster
(cluster composed of machines that may belong to different clusters) on which the work-
load could be scheduled. That way, virtual clusters would be created on the fly, and the
scheduling of high workload could be done in parallel as long as there is no intersection
between the virtual clusters.

Cohabitation with other kind of services

We have seen in our work that creating a service oriented execution of scientific work-
flows is a good way of achieving separation of concerns between the end users and the
Cloud provider. However, it can be understandable that Cloud providers may be reluc-
tant to reserve a part of their infrastructure only for the execution of scientific workflows,
provided that this part of the infrastructure may sometime be underused. It would be
interesting to investigate the possibility to make cohabit an existent Cloud service, such
as IaaS or FaaS with the WaaS, and use the resources that are not used by those services
in order to execute workflows. That way, higher infrastructure usage would be possible.

160

BIBLIOGRAPHY

[1] Amazon Lambda. url: https://aws.amazon.com/fr/lambda/.

[2] Amazon Web Services. url: https://aws.amazon.com.

[3] Ansible. url: https://www.ansible.com/.

[4] Apache Airflow. url: https://airflow.apache.org/.

[5] Apache Cassandra url: http://cassandra.apache.org/.

[6] Apache Hadoop url: http://hadoop.apache.org/.

[7] Argo Workflows. url: https://argoproj.github.io/argo/.

[8] Docker. url: https://www.docker.com/.

[9] gLite. url: http://grid-deployment.web.cern.ch/grid-deployment/
glite-web/.

[10] Google App Engine. url: https://cloud.google.com/appengine.

[11] Google Cloud functions. url: https://cloud.google.com/functions.

[12] Google Cloud. url: https://cloud.google.com.

[13] Grid’5000. url: https://www.grid5000.fr.

[14] IBM Cloud. url: https://cloud.ibm.com/login.

[15] Linux Containers. url: https://linuxcontainers.org/.

[16] Microsoft Azure. url: https://azure.microsoft.com/.

[17] Microsoft HDInsight. url: https://azure.microsoft.com/en-us/services/
hdinsight/.

[18] Puppet. url: https://puppet.com/.

[19] Singularity. url: https://singularity.lbl.gov/.

[20] Terraform. url: https://www.terraform.io/.

[21] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Generation Com-
puter Systems, 29(1):158 – 169, 2013. Including Special section: AIRCC-NetCoM
2009 and Special section: Clouds and Service-Oriented Architectures.

161

https://aws.amazon.com/fr/lambda/
https://aws.amazon.com
https://www.ansible.com/
https://airflow.apache.org/
http://cassandra.apache.org/
http://hadoop.apache.org/
https://argoproj.github.io/argo/
https://www.docker.com/
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/
http://grid-deployment.web.cern.ch/grid-deployment/glite-web/
https://cloud.google.com/appengine
https://cloud.google.com/functions
https://cloud.google.com
https://www.grid5000.fr
https://cloud.ibm.com/login
https://linuxcontainers.org/
https://azure.microsoft.com/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/
https://puppet.com/
https://singularity.lbl.gov/
https://www.terraform.io/

[22] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema. Cost-driven scheduling of
grid workflows using partial critical paths. IEEE Transactions on Parallel and
Distributed Systems, 23(8), 2012.

[23] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi. Cost optimization ap-
proaches for scientific workflow scheduling in cloud and grid computing: A review,
classifications, and open issues. Journal of Systems and Software, 113:1 – 26, 2016.

[24] H. Arabnejad and J. Barbosa. Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems. In 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with Applications, 2012.

[25] H. Arabnejad and J. G. Barbosa. A budget constrained scheduling algorithm for
workflow applications. Journal of Grid Computing, 12(4):665–679, Dec 2014.

[26] H. Aziza and S. Krichen. A hybrid genetic algorithm for scientific workflow schedul-
ing in cloud environment. Neural Computing and Applications, May 2020.

[27] B. Balis. Hyperflow: A model of computation, programming approach and en-
actment engine for complex distributed workflows. Future Generation Computer
Systems, 55:147 – 162, 2016.

[28] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev., 37(5), Oct. 2003.

[29] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Com-
puter, 40(12):33–37, 2007.

[30] D. Bartholomew. Qemu: a multihost, multitarget emulator. Linux Journal,
2006(145):3, 2006.

[31] M. Bencivenni, D. Bortolotti, A. Carbone, A. Cavalli, A. Chierici, S. Dal Pra,
D. Girolamo, L. dell’Agnello, M. Donatelli, A. Fella, D. Galli, A. Ghiselli, D. Gre-
gori, A. Italiano, R. Kumar, U. Marconi, B. Martelli, M. Mazzucato, M. Onofri,
and S. Zani. Performance of 10 gigabit ethernet using commodity hardware. IEEE
Transactions on Nuclear Science, 57:630–641, 05 2010.

[32] A. Benoit, L. Lefèvre, A.-C. Orgerie, and I. Raïs. Reducing the energy consump-
tion of large-scale computing systems through combined shutdown policies with
multiple constraints. The International Journal of High Performance Computing
Applications, 32(1):176–188, 2018.

162

[33] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng,
J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,
G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, M. Patel,
D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan. New grid scheduling and
rescheduling methods in the grads project. International Journal of Parallel Pro-
gramming, 33(2):209–229, Jun 2005.

[34] D. Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, 1(3):81–84, 2014.

[35] G. B. Berriman, J. C. Good, A. C. Laity, A. Bergou, J. Jacob, D. S. Katz, E. Deel-
man, C. Kesselman, G. Singh, M.-H. Su, and R. Williams. Montage: A grid enabled
image mosaic service for the national virtual observatory. Astronomical Data Anal-
ysis Software and Systems (ADASS) XIII, 2003.

[36] L. Bertram, A. Ilkay, B. Chad, H. Dan, J. Efrat, J. Matthew, L. E. A., T. Jing, and
Z. Yang. Scientific workflow management and the kepler system. Concurrency and
Computation: Practice and Experience, 18(10):1039–1065, 2006.

[37] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su, and K. Vahi. Charac-
terization of scientific workflows. In 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pages 1–10, 2008.

[38] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey on meta-
heuristics for stochastic combinatorial optimization. Natural Computing, 8(2):239–
287, Jun 2009.

[39] L. F. Bittencourt and E. R. M. Madeira. Hcoc: a cost optimization algorithm for
workflow scheduling in hybrid clouds. Journal of Internet Services and Applications,
2(3):207–227, Dec 2011.

[40] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The convoy phenomenon. SIGOPS
Oper. Syst. Rev., 13(2):20–25, Apr. 1979.

[41] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task
scheduling strategies for workflow-based applications in grids. volume 2, pages 759
– 767 Vol. 2, 06 2005.

[42] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous

163

distributed computing systems. Journal of Parallel and Distributed Computing,
61(6):810 – 837, 2001.

[43] R. Buyya, A. Beloglazov, and J. H. Abawajy. Energy-efficient management of data
center resources for cloud computing: A vision, architectural elements, and open
challenges. CoRR, abs/1006.0308, 2010.

[44] J. Błażewicz, E. Pesch, and M. Sterna. The disjunctive graph machine representa-
tion of the job shop scheduling problem. European Journal of Operational Research,
127(2):317 – 331, 2000.

[45] E. Cadorel, H. Coullon, and J.-M. Menaud. Ordonnancement multi-objectifs de
workflows dans un Cloud privé. In ComPAS 2018 - Conférence d’informatique en
Parallélisme, Architecture et Système, pages 1–8, Toulouse, France, July 2018.

[46] E. Cadorel, H. Coullon, and J.-M. Menaud. A workflow scheduling deadline-based
heuristic for energy optimization in Cloud. In GreenCom 2019 - 15th IEEE In-
ternational Conference on Green Computing and Communications, Atlanta, United
States, 2019. IEEE.

[47] E. Cadorel, H. Coullon, and J.-M. Menaud. Online Multi-User Workflow Scheduling
Algorithm for Fairness and Energy Optimization. In CCGrid2020 - 20th Interna-
tional Symposium on Cluster, Cloud and Internet Computing, Melbourne, Australia,
Nov. 2020.

[48] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert. Budget-aware scheduling
algorithms for scientific workflows with stochastic task weights on heterogeneous iaas
cloud platforms. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 15–26, May 2018.

[49] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski. Serverless programming
(function as a service). In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017.

[50] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing
energy and server resources in hosting centers. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, page 103–116, New York,
NY, USA, 2001. Association for Computing Machinery.

[51] E. Coffman, M. Garey, and D. Johnson. Bin packing with divisible item sizes.
Journal of Complexity, 3(4):406 – 428, 1987.

164

[52] G. Cook, J. Lee, T. Tsai, A. Kong, J. Deans, B. Johnson, and E. Jardim. Clicking
clean:who is winning the race to build a green internet? Greenpeace Inc., 2017.

[53] H. Coullon, G. Le Louët, and J.-M. Menaud. Virtual Machine Placement for Hybrid
Cloud using Constraint Programming. In ICPADS 2017, Shenzhen, China, Dec.
2017.

[54] S. B. Davidson and J. Freire. Provenance and scientific workflows: Challenges and
opportunities. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, page 1345–1350, New York, NY, USA, 2008.
Association for Computing Machinery.

[55] M. Dayarathna, Y. Wen, and R. Fan. Data center energy consumption modeling:
A survey. IEEE Communications Surveys Tutorials, 18(1):732–794, 2016.

[56] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
and M. Livny. Pegasus: Mapping scientific workflows onto the grid. In M. D.
Dikaiakos, editor, Grid Computing. Springer Berlin Heidelberg, 2004.

[57] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-science: An
overview of workflow system features and capabilities. Future Generation Computer
Systems, 25(5):528 – 540, 2009.

[58] F. Deng, M. Lai, and J. Geng. Multi-workflow scheduling based on genetic algo-
rithm. In 2019 IEEE 4th International Conference on Cloud Computing and Big
Data Analysis (ICCCBDA), 2019.

[59] R. Duan, T. Fahringer, R. Prodan, J. Qin, A. Villazón, and M. Wieczorek. Real
world workflow applications in the askalon grid environment. In P. M. A. Sloot,
A. G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors, Advances in Grid
Computing - EGC 2005, pages 454–463, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[60] J. J. Durillo, V. Nae, and R. Prodan. Multi-objective energy-efficient workflow
scheduling using list-based heuristics. Future Generation Computer Systems, 36:221
– 236, 2014. Special Section: Intelligent Big Data Processing Special Section: Be-
havior Data Security Issues in Network Information Propagation Special Section:
Energy-efficiency in Large Distributed Computing Architectures Special Section:
eScience Infrastructure and Applications.

165

[61] R. Ferreira da Silva, T. Glatard, and F. Desprez. Controlling fairness and task
granularity in distributed, online, non-clairvoyant workflow executions. Concurrency
and Computation: Practice and Experience, 26(14), 2014.

[62] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[63] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. 01 2003.

[64] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. The International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

[65] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-
degree compared. In 2008 Grid Computing Environments Workshop, pages 1–10,
2008.

[66] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer
and System Sciences, 79(8):1230 – 1242, 2013.

[67] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, pages 238–239. W.H. Freeman and Co., 1979.

[68] M. Ghose, P. Verma, S. Karmakar, and A. Sahu. Energy efficient scheduling of scien-
tific workflows in cloud environment. In 2017 IEEE 19th International Conference
on High Performance Computing and Communications; IEEE 15th International
Conference on Smart City; IEEE 3rd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pages 170–177, 2017.

[69] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers. Examining the challenges of scientific workflows.
Computer, 40(12):24–32, 2007.

[70] A. Gupta, L. Kalé, D. Milojicic, P. Faraboschi, R. Kaufmann, V. March, F. Gioachin,
C. Suen, and B. Lee. The who, what, why and how of high performance computing
applications in the cloud. volume 1, 12 2013.

[71] R. A. Haidri, C. P. Katti, and P. C. Saxena. Cost effective deadline aware scheduling
strategy for workflow applications on virtual machines in cloud computing. Journal
of King Saud University - Computer and Information Sciences, 2017.

166

[72] H. A. Hassan, S. A. Salem, and E. M. Saad. A smart energy and reliability aware
scheduling algorithm for workflow execution in dvfs-enabled cloud environment.
Future Generation Computer Systems, 112:431 – 448, 2020.

[73] E. S. H. Hou, N. Ansari, and Hong Ren. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems, 5(2):113–120,
1994.

[74] C. Hsu and S. W. Poole. Power signature analysis of the specpower_ssj2008 bench-
mark. In (IEEE ISPASS) IEEE International Symposium on Performance Analysis
of Systems and Software, pages 227–236, April 2011.

[75] W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho,
H. C. Bravo, S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen,
R. A. Irizarry, M. Lawrence, M. I. Love, J. MacDonald, V. Obenchain, A. K. Oleś,
H. Pagès, A. Reyes, P. Shannon, G. K. Smyth, D. Tenenbaum, L. Waldron, and
M. Morgan. Orchestrating high-throughput genomic analysis with bioconductor.
Nature Methods, 2015.

[76] Jia Yu, R. Buyya, and Chen Khong Tham. Cost-based scheduling of scientific work-
flow applications on utility grids. In First International Conference on e-Science
and Grid Computing (e-Science’05), 2005.

[77] Q. Jiang, Y. Lee, and A. Zomaya. Serverless execution of scientific workflows. 2017.

[78] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi. Char-
acterizing and profiling scientific workflows. Future Generation Computer Systems,
29(3), 2013. Special Section: Recent Developments in High Performance Computing
and Security.

[79] M. Kaplan, W. Forrest, and N. Kindler. Revolutionizing data center energy effi-
ciency. Technical report, 2008.

[80] C. Kenyon et al. Best-fit bin-packing with random order. In SODA, volume 96,
pages 359–364, 1996.

[81] J. Kijak, P. Martyna, M. Pawlik, B. Balis, and M. Malawski. Challenges for schedul-
ing scientific workflows on cloud functions. In 2018 IEEE 11th International Con-
ference on Cloud Computing (CLOUD), 2018.

[82] L. Kleinrock. Analysis of a time-shared processor. Naval Research Logistics Quar-
terly, 11(1):59–73, 1964.

167

[83] D. Kliazovich, P. Bouvry, and S. U. Khan. Greencloud: a packet-level simulator
of energy-aware cloud computing data centers. The Journal of Supercomputing,
62(3):1263–1283, 2012.

[84] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya. Energy efficient genetic-
based schedulers in computational grids. Concurrency and Computation: Practice
and Experience, 27(4):809–829, 2015.

[85] G. Le Louët and J.-M. Menaud. OptiPlace: designing cloud management with
flexible power models through constraint programing. In International Conference
on Utility and Cloud Computing, Dresden, Germany, Dec. 2013.

[86] L. Leslie, C. Sato, Y. Lee, Q. Jiang, and A. Zomaya. Dewe: A framework for dis-
tributed elastic scientific workflow execution. Conferences in Research and Practice
in Information Technology Series, 163:3–10, 01 2015.

[87] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, and L. B. D. Lea. Nist cloud computing
reference architecture. Technical report, Gaithersburg, MD, United States, 2011.

[88] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, and N. Najjari. Online
multi-workflow scheduling under uncertain task execution time in iaas clouds. IEEE
Transactions on Cloud Computing, 2019.

[89] M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, and R. Freund. Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous computing
systems. pages 30–44, 02 1999.

[90] G. Mateescu, W. Gentzsch, and C. J. Ribbens. Hybrid computing—where hpc meets
grid and cloud computing. Future Generation Computer Systems, 27(5):440 – 453,
2011.

[91] V. Mathew, R. Sitaraman, and P. Shenoy. Energy-aware load balancing in content
delivery networks. Proceedings - IEEE INFOCOM, 09 2011.

[92] P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, United States, 2011.

[93] M.-S. Mezmaz, N. Melab, Y. Kessaci, Y.-C. Lee, E.-G. Talbi, A. Zomaya, and
D. Tuyttens. A parallel bi-objective hybrid metaheuristic for energy-aware schedul-
ing for cloud computing systems. Journal of Parallel and Distributed Computing,
71:1497–1508, 11 2011.

[94] K. Miettinen. Nonlinear Multiobjective Optimization. 1999.

168

[95] A. Muller and S. Wilson. Virtualization with Vmware Esx Server. Syngress Pub-
lishing, first edition, 2005.

[96] T. L. Nguyen and A. Lebre. Virtual Machine Boot Time Model. In PDP 2017
- 25th Euromicro International Conference on Parallel, Distributed and Network-
based Processing, pages 430 – 437, St Peterbourg, Russia, Mar. 2017.

[97] T. L. Nguyen and A. Lebre. Conducting Thousands of Experiments to Analyze
VMs, Dockers and Nested Dockers Boot Time. Research Report RR-9221, INRIA,
2018.

[98] J. Ni and X. Bai. A review of air conditioning energy performance in data centers.
Renewable and Sustainable Energy Reviews, 67:625 – 640, 2017.

[99] V. Nitu, B. Teabe, L. Fopa, A. Tchana, and D. Hagimont. Stopgap: elastic vms to
enhance server consolidation. Software: Practice and Experience, 47(11):1501–1519,
2017.

[100] A. Orgerie, L. Lefèvre, and J. Gelas. Save watts in your grid: Green strategies
for energy-aware framework in large scale distributed systems. In 2008 14th IEEE
International Conference on Parallel and Distributed Systems, pages 171–178, 2008.

[101] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance evaluation of
virtualization technologies for server consolidation. 2007.

[102] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics for vector bin packing.
January 2011.

[103] J. Pastor and J. M. Menaud. Seduce: a testbed for research on thermal and power
management in datacenters. In 2018 26th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2018.

[104] J. pastor and J. M. Menaud. Seduce: Toward a testbed for research on thermal
and power management in datacenters. In Proceedings of the Ninth International
Conference on Future Energy Systems, e-Energy ’18, page 513–518, New York, NY,
USA, 2018. Association for Computing Machinery.

[105] M. Poess and R. Nambiar. Energy cost, the key challenge of today’s data centers:
A power consumption analysis of tpc-c results. PVLDB, 1:1229–1240, 08 2008.

[106] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third gen-
eration architectures. Commun. ACM, 17(7):412–421, July 1974.

[107] A. Qumranet, Y. Qumranet, D. Qumranet, U. Qumranet, and A. Liguori. Kvm:
The linux virtual machine monitor. Proceedings Linux Symposium, 15, 01 2007.

169

[108] R. Rajak. A comparative study: Taxonomy of high performance computing (hpc).
International Journal of Electrical and Computer Engineering, 8:3386–3391, 10
2018.

[109] L. Reiter, O. Rinner, P. Picotti, R. Hüttenhain, M. Beck, M.-Y. Brusniak, M. O.
Hengartner, and R. Aebersold. mprophet: automated data processing and statistical
validation for large-scale srm experiments. Nature Methods, 8:430 EP –, 03 2011.

[110] M. A. Rodriguez and R. Buyya. Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds. IEEE Transactions on Cloud Comput-
ing, 2(2):222–235, April 2014.

[111] H. L. Röst, Y. Liu, G. D’Agostino, M. Zanella, P. Navarro, G. Rosenberger, B. C.
Collins, L. Gillet, G. Testa, L. Malmström, and R. Aebersold. Tric: an automated
alignment strategy for reproducible protein quantification in targeted proteomics.
Nature Methods, 13:777 EP –, 08 2016.

[112] H. L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinovic, O. T. Schu-
bert, W. Wolski, B. C. Collins, J. Malmström, L. Malmström, and R. Aebersold.
Openswath enables automated, targeted analysis of data-independent acquisition
ms data. Nature Biotechnology, 32(3):219–223, 2014.

[113] K. S and M. Nair. Bin packing algorithms for virtual machine placement in cloud
computing: a review. International Journal of Electrical and Computer Engineering
(IJECE), 9:512, 02 2019.

[114] D. Sahu, K. Singh, M. Manju, D. Taniar, L. Tuan, L. Son, M. Abdel-Basset, and
H. Viet Long. Heuristic search based localization in mobile computational grid.
IEEE Access, PP:1–1, 06 2019.

[115] A. Shehabi, S. Smith, D. Sartor, M. Herrlin, R. Brown, J. Koomey, E. Masanet,
N. Horner, I. Azevedo, and W. Lintner. United states data center energy usage
report, 06 2016.

[116] J. Shi, J. Luo, F. Dong, and J. Zhang. A budget and deadline aware scientific
workflow resource provisioning and scheduling mechanism for cloud. In Proceedings
of the 2014 IEEE 18th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 672–677, 2014.

[117] D. Sirisha and G. Vijayakumari. Exploring the efficacy of branch and bound strategy
for scheduling workflows on heterogeneous computing systems. Procedia Computer

170

Science, 93:315 – 323, 2016. Proceedings of the 6th International Conference on
Advances in Computing and Communications.

[118] Y. Sotskov and N. Shakhlevich. Np-hardness of shop-scheduling problems with three
jobs. Discrete Applied Mathematics, 59(3):237 – 266, 1995.

[119] M. Srinivas and L. M. Patnaik. Genetic algorithms: a survey. Computer, 27(6):17–
26, 1994.

[120] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms
(2nd Edition). 2006.

[121] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor: A Distributed Job
Scheduler, page 307–350. MIT Press, Cambridge, MA, USA, 2001.

[122] H. Topcuouglu, S. Hariri, and M.-y. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.,
13(3):260–274, Mar. 2002.

[123] K. Vahi, M. Rynge, G. Papadimitriou, D. Brown, R. Mayani, R. Ferreira da Silva,
E. Deelman, A. Mandal, E. Lyons, and M. Zink. Custom execution environments
with containers in pegasus-enabled scientific workflows. In 2019 15th International
Conference on eScience (eScience), pages 281–290, 2019.

[124] W. [van der Aalst] and A. [ter Hofstede]. Yawl: yet another workflow language.
Information Systems, 30(4):245 – 275, 2005.

[125] L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds:
Towards a cloud definition. Computer Communication Review, 39:50–55, 01 2009.

[126] C. Vecchiola, S. Pandey, and R. Buyya. High-performance cloud computing: A
view of scientific applications. I-SPAN 2009 - The 10th International Symposium
on Pervasive Systems, Algorithms, and Networks, 10 2009.

[127] J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific workflow systems,
1997.

[128] J. Watson. Virtualbox: bits and bytes masquerading as machines. Linux Journal,
2008(166):1, 2008.

[129] L. M. Weber, M. Nowicka, C. Soneson, and M. D. Robinson. diffcyt: Differential
discovery in high-dimensional cytometry via high-resolution clustering. bioRxiv,
2019.

171

[130] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows in
the askalon grid environment. SIGMOD Rec., 34(3):56–62, Sept. 2005.

[131] A. S. Wu, H. Yu, S. Jin, K. . Lin, and G. Schiavone. An incremental genetic
algorithm approach to multiprocessor scheduling. IEEE Transactions on Parallel
and Distributed Systems, 15(9):824–834, 2004.

[132] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li. End-to-end delay minimization for
scientific workflows in clouds under budget constraint. IEEE Transactions on Cloud
Computing, 3(2):169–181, 2015.

[133] H. Wu, X. Chen, X. Song, C. Zhang, and H. Guo. Scheduling large-scale scientific
workflow on virtual machines with different numbers of vcpus. The Journal of
Supercomputing, Apr 2020.

[134] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, K. Chadwick, and S. Noh.
A reference model for virtual machine launching overhead. IEEE Transactions on
Cloud Computing, 4(3):250–264, 2016.

[135] W. Wu, W. Lin, and Z. Peng. An intelligent power consumption model for vir-
tual machines under cpu-intensive workload in cloud environment. Soft Computing,
21(19):5755–5764, Oct 2017.

[136] B. Xavier, T. Ferreto, and L. Jersak. Time provisioning evaluation of kvm, docker
and unikernels in a cloud platform. In 2016 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), 2016.

[137] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec., 34(3):44–49, Sept. 2005.

[138] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow Scheduling Algorithms for
Grid Computing, pages 173–214. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[139] M. Yue. A simple proof of the inequality ffd (l) ≤ 11/9 opt (l) + 1, ∀l for the ffd
bin-packing algorithm. Acta Mathematicae Applicatae Sinica, 7:321–331, 1991.

[140] H. Zhao and R. Sakellariou. An experimental investigation into the rank func-
tion of the heterogeneous earliest finish time scheduling algorithm. In H. Kosch,
L. Böszörményi, and H. Hellwagner, editors, Euro-Par 2003 Parallel Processing,
pages 189–194, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

172

Titre : Prise en compte de l’énergie dans la gestion des workflows scientifiques dans le Cloud :
Une vision centrée sur le fournisseur de service

Mot clés : Workflows scientifiques ; fournisseur de services de Cloud ; ordonnancement ; exé-

cution ; optimisation energétique ; systèmes distribués ; infrastructures distribuées

Résumé : Les simulations scientifiques par
ordinateur sont généralement très complexes
et se caractérisent par de nombreux proces-
sus parallèles. Afin de mettre en évidence
les parties parallèlisables, et de permettre
une exécution efficace, de nombreux scienti-
fiques ont choisi de définir leurs applications
sous forme de workflows. Un workflow scien-
tifique représente une application comme un
ensemble de tâches de traitement unitaires,
liées par des dépendances. De nos jours,
grâce à leur faible coût, leur élasticité et leur
aspect à la demande, les services de cloud
computing sont largement utilisés pour l’exé-
cution de workflows. Les utilisateurs utilisant
ce type d’environnement gèrent l’exécution de

leur workflow, ainsi que les ressources néces-
saires, à l’aide de service standards tel que
le IaaS (Infrastructure-as-a-Service). Néan-
moins, comme les services de cloud ne sont
pas spécifiques à la nature de l’application
à exécuter, l’utilisation des ressources phy-
siques n’est pas aussi optimisée qu’elle pour-
rait l’être. Dans cette thèse, nous proposons
de déplacer la gestion et l’exécution des work-
flows du côté du fournisseur de Cloud afin
d’offrir un nouveau type de service dédié aux
workflows. Cette nouvelle approche rend pos-
sible une amélioration de la gestion des res-
sources et une réduction de la consommation
d’énergie et de ce fait l’impact environnemen-
tal de l’infrastructure utilisée.

Title: Energy-aware management of scientific workflows in the Cloud: A Cloud provider-centric
vision

Keywords: Scientific workflows; cloud service provider; scheduling: execution; energy effi-

ciency; distributed systems; distributed infrastructures

Abstract: Scientific computer simulations are
generally very complex and are character-
ized by many parallel processes. In order to
highlight the parts that can be parallelized,
and to enable efficient execution, many sci-
entists have chosen to define their applica-
tions as workflows. A scientific workflow rep-
resents an application as a set of unitary pro-
cessing tasks, linked by dependencies. Today,
because of their low cost, elasticity, and on-
demand nature, cloud computing services are
widely used for workflow execution. Users us-
ing this type of environment manage the exe-
cution of their workflow, as well as the neces-

sary resources, using standard services such
as IaaS (Infrastructure-as-a-Service). How-
ever, because cloud services are not specific
to the nature of the application to be executed,
the use of physical resources is not as opti-
mized as it could be. In this thesis, we pro-
pose to move the management and execution
of workflows to the cloud provider’s side in or-
der to offer a new type of service dedicated to
workflows. This new approach makes it possi-
ble to improve resource management and re-
duce energy consumption and thus the envi-
ronmental impact of the infrastructure used.

	Introduction
	Research problem
	Contributions
	Publications
	Thesis organization

	Context
	Scientific workflows: overview and challenges
	Physical infrastructures
	Operating system and Virtualization
	Virtual machines
	Containers

	Paradigm for infrastructure management
	Grid computing
	Cloud computing
	Cloud service models

	Scheduling of scientific workflows
	Scheduling simple tasks
	Scheduling heterogeneous applications
	Scheduling with temporal knowledge
	Workflow scheduling

	Energy efficiency and consolidation
	Data center energy consumption
	Physical machine energy consumption
	Energy saving techniques

	Conclusion

	Related work
	Scientific workflow scheduling
	Criteria of interest
	Algorithm classification
	Scheduling on Grid computing
	Scheduling on Cloud computing
	Discussion

	Scientific workflow execution
	Criteria of interest
	Scientific workflow execution systems
	Discussion

	I Workflow scheduling algorithms for Cloud providers
	OnlyUsedNodes : A workflow scheduling deadline-based algorithm for energy optimization
	Introduction
	Problem modeling
	Applications and execution environment
	Software and Hardware constraints
	Temporal dependency constraints
	Communications
	Cost modeling
	Objective

	OnlyUsedNodes algorithm
	Priorities and deadlines
	Backtrack scheduling algorithm
	Resource selection
	Complexity

	Conclusion

	 NearDeadline : Dynamic Multi-User Workflow Scheduling Algorithm for Fairness and Energy Optimization
	Introduction
	Modeling and Problem Formulation
	Workflow definition
	Infrastructure definition
	Scheduling problem
	Fairness objective
	Energy objective

	Deadline based dynamic algorithm
	Priorities and deadlines
	Scheduling near the deadline
	Panic mode
	Fitness functions

	Conclusion

	Evaluation of scheduling algorithms
	Simulation
	Simple workload scheduling
	Complex workload scheduling

	Execution on real infrastructure - Environment description
	Infrastructure
	Execution platform
	Workflows

	Execution on real infrastructure - OnlyUsedNodes evaluation
	Scenario and performance metrics
	Evaluation results

	Execution on real infrastructure - NearDeadline evaluation
	Scenarios and performance metrics
	Small workflows scheduling
	Scalability evaluation
	Analysis of the parameter

	Conclusion

	II Automatic execution of scientific workflows
	WaaS : Workflow as a Service A Cloud service for scientific workflow execution
	Introduction
	WaaS : Workflow as a Service
	End-user concerns
	Cloud provider concerns and Waas architecture

	Evaluation
	Conclusion

	Conclusion
	Achievements
	Perspectives
	Prospects related to energy optimization
	Prospects related to service oriented execution

	Bibliography

