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Nomenclature 

Roman symbols 

a  Weighting factor 

C  Absorption cross-section [m2.mol-1] 

pc  Thermal capacity at constant pressure [J.kg−1.K−1] 

bE  Integrated blackbody emissive power [W.m−2.sr−1] 

F  Absorption-line blackbody distribution function 

f  Dimensionless oscillating frequency [-] 

G   Incident radiative flux [W.m−2] 

g   Gravity acceleration [m.s-2] 

H  Domain size [m] or hemispherical irradiation [W.m-2] 

h  Dipole height [-] 

I  Total radiative intensity [W.m−2.sr−1] 

k  Wave number [-] 

N  Molar density [mol.m−3] 

gN  Total number of gray gases [-] 

Nu  Nusselt number [-] 

n  Surface normal unit vector [-] 

Pl  Planck number [-] 

Pr  Prandtl number [-] 

p   Pressure [Pa] 

Q  Energy source term per unit length [W.m-1] 

Q  Energy source term per unit volume [W.m-3] 

net
rQ   Net radiative flux at the walls [W.m-2] 

net
rq   Dimensionless net radiative flux at the walls [-] 
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Ra  Rayleigh number [-] 

Re  Reynolds number [-] 

S  Strain-rate tensor [-] 

s  Propagation direction unit vector [-] 

T  Temperature [K] 

t  Dimensionless time [-] 

U , V , W  Velocity components [m.s-1] 

u , v , w  Dimensionless velocity components [-] 

X , Y , Z   Cartesian coordinates [m] 

aX  Molar fraction of water vapor in air  

x , y , z   Dimensionless cartesian coordinates [-] 

  

  

Greek symbols 

   Thermal diffusivity [m2.s-1] 

  Temperature expansion coefficient [K-1] or extinction coefficient [m-1] 

  Indicator for scaled temperature or cell size 

  Change of quantity [-] 

   Emissivity [-] 

k   Kolmogorov scale [-] 

0   Temperature ratio [-] 

   Dimensionless temperature [-] 

   Absorption coefficient [m-1] 

  Thermal conductivity [W.m-1.K-1] 

  Dynamic viscosity [kg.m-1.s-1] 

,  ,       Cosines directors of the propagation direction 

   Kinematic viscosity [m2.s-1] 

   Kinetic dissipation rate [m2.s-3] 

   Mass density [kg.m-3] 
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  Scattering coefficient [m-1] 

B  Stefan-Boltzmann constant [W.m2.K-4] 

   Optical thickness [-] 

ij   Viscous stress tensor [N.m-2] 

   Scattering phase function or amplitude of perturbation [-] 

s  Dimensionless line source per unit volume [-] 

rr   Dimensionless volumetric radiative power [-] 

   Dimensionless radiative temperature [-] or stream function [-] 

   Solid angle [sr] or vorticity tensor [-] 

   Quadrature weight or vorticity [-] 

  

  

Superscript 

*   Normalized quantities 

b   Blackbody 

     Time averaged quantities 

    Fluctuating quantities 

  

  

Subscript 

BV   Brunt Väisälä 

bot   Relative to the bottom wall 

c   Critical value or relative to the convective term 

r   Relative to the radiative term 

ref   Reference quantities 

top   Relative to the top wall 

   Spectral quantities 

w   Quantities at the walls 
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rms  Root mean square 

  

  

Abbreviations 

CFL Courant-Fredrichs-Lewy 

DNS Direct Numerical simulation 

DOM Discrete Ordinates Method 

LES Large Eddy Simulation 

PDF Probability Density Function 

RANS Reynolds-Averaged Navier-Stokes equations 

RTE Radiative Transfer Equation 

SLW Spectral-Line based Weighted-sum-of-gray-gases 
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Introduction 

General framework and motivation 

Natural convection is a buoyancy-induced flow, arising from spatial density differences 

within a fluid. These density differences are mainly due to inhomogeneities in temperature 

and variations in species concentration. A thermal plume is one type of natural convection 

flow that is generated from a heat source. It can be found in many natural and artificial 

phenomena, such as smoke plume from fire, air circulation around human body, atmospheric 

circulations, and many engineering applications ranging from electronics cooling, heat 

storage in boilers, to nuclear reactors safety technologies, etc. 

Due to its relevance to many engineering applications, researches on thermal plume flows 

have received great attention. However, most of these works only consider pure convective 

plumes. If the working fluid is a radiative participating medium, this can affect plume 

behavior by the emission and the absorption of radiation, making the flow more complex. 

The lack of results in the study of three-dimensional plumes considering convection- 

radiation coupling, especially in the turbulent state, reflects the difficulty of these problems. 

In order to characterize the thermal fields and flow dynamics of plume and to understand the 

influence of gas radiation, it is necessary to study natural convection coupled with the 

radiative heat transfer for a thermal plume. We propose in this thesis to investigate 

numerically the convection-radiation coupling of thermal plumes throughout its transition 

from steady to turbulent states.  

Literature review of pure convective plumes  

The case of a fully developed buoyant plume in unbounded space has been extensively 

investigated in the past, both for plumes originating from a point source as well as plane 

plumes generated by a line source. In a pioneering work, Zeldovich (1937) described the 

natural convective plumes arising from a point and from a horizontal line source of heat. 

Later on, the classical self-similar solutions for laminar flow velocities and temperature have 

been proposed in early theoretical studies to describe such natural convective flows (Lyakhov, 

1970; Schorr & Gebhart, 1970; Fujii et al., 1973). During the same period, many experiments 

have been carried out and the experimental results were found to be in good agreement with 

the laminar theory of plume. Numerical simulations of unbounded plumes were also 
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performed in the past. Liñán and Kurdyumov (1998), as an example, investigated numerically 

laminar natural convection above a line source and used far field analytical expression to 

impose the boundary conditions on the limits of the computational domain. This is a limited 

approach because it needs the a priori knowledge of the flow under study. In order to avoid 

this difficulty, Xin et al. (2004) proposed a general formulation based on the balance between 

pressure and friction forces at the outer border of the computational domain, independent of 

the nature of the flow. This allows dealing with unsteady flow and was validated by 

experiments. 

Free plume flows are much less stable when compared to the flows adjacent to surface 

which can damp disturbances (Gebhart et al., 1988). The experiment of Forstrom and 

Sparrow (1966),  performed on a buoyant plume above a heated horizontal wire, showed that 

the laminar plume exhibits a slow, regular swaying motion in the plane perpendicular to the 

heater. Later on, Pera and Gebhart (1971) investigated numerically the stability of a laminar 

plume above a linear heat source and validated these stability predictions experimentally. 

The water experiments of Eichhorn and Vedhanayagam (1982) as well as the spindle oil 

experiments of Urakawa et al. (1983) showed that the buoyant plume not only sways in the 

plane perpendicular to the heater but also meanders along the heater direction. In addition, 

Urakawa et al. found that the meandering wave shape is stable when the heater length is an 

integral multiple of half the wave length. 

As for turbulent plume in unbounded space, Schmidt (1941) studied analytically the plume 

behaviors by using the similarity technique and conducted experiments above an electrically 

heat wire. Rouse et al. (1952) studied the characteristics of the mean flow through 

measurements of velocity and temperature distribution above a line of small gas flames. In 

the works of Turner (1986), the entrainment assumption was applied to establish an integral 

(similarity) model for velocity and temperature fields. This assumption relates the mean 

inflow velocity across the edge of a turbulent flow to the local time-averaged maximum mean 

velocity or the mean velocity over the cross-section at the level of inflow. Gebhart et al. (1988) 

collected an account of instability, transition, and turbulent transport of buoyancy-induced 

flow.  

More recently, there is a growing interest in plumes developing in a confined enclosure. 

Confined plumes are very complex flows due to their sensitivity to the presence of the walls 

and the generated thermal stratification of the fluid, and therefore can present strong 

intermittency (Hernández, 2015). Because of the confinement, it is quite difficult to find a 

general analytical approach, so numerical simulations or experiments are more commonly 

used to study such flows. Desrayaud and Lauriat (1993) investigated numerically plumes in 

air above a linear heat source in a 2D enclosure with various aspect ratios and depths of the 

immersion of the source. They determined the transitions of plume flows through Hopf or 

pitchfork bifurcations, and the critical Rayleigh number was determined by a linear 
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extrapolation method. They also found that in the case of a heat source near the bottom wall 

of a square vessel, the swaying motion of the plume begins with a periodic regime having a 

high fundamental frequency followed by a two-frequency locked regime. In the same 

configuration, Bastiaans et al. (2000) obtained a more accurate value for the critical Rayleigh 

number of 2D plume with a spectral element method.  

Following these studies, Fiscaletti et al. (2013) investigated transitional plumes within a 

water-filled tank around an horizontal cylinder by means of experiment and numerical 

simulation. The evolution of the flow throughout the bifurcation is described in their work 

and the swaying motion is evidenced by 2D visualization. On their side, Hernández (2015) 

studied numerically the steady and periodic states of thermal plume in a slender air cavity 

with a linear source on the floor of the cavity. They observed that the 3D plume oscillates 

with the same spatial phase in all the transverse planes along the source direction, with a 

slight modulation of the vertical expansion of plume. They suggested that this lock-in mode 

can be broken for Rayleigh numbers higher than the one they considered, and/or for higher 

longitudinal aspect ratios.  

Concerning turbulent simulations, not much information is available on thermal plumes 

in an entirely confined enclosure. Only in the works of Bastiaans et al. (2000), which were 

performed on a 3D turbulent plume in a confined environment. Results were obtained by 

both DNS and LES, and showed that the buoyancy force strongly affects the turbulence 

production and evolution process. Numerical studies of turbulent plumes in other 

configurations are better documented in the literature, for example, forced turbulent plume 

induced by an injected hot air (Zhou et al., 2001; Yan, 2007), pure thermal plume arising 

from a heated finite size source in an open space (Pham et al., 2007);  thermal plume 

generated by a point heat source in a ventilated enclosure (Abdalla et al., 2009), buoyant 

plume above an unbounded heated horizontal cylinder (Grafsrønningen & Jensen, 2017), and 

so on.     

Influence of radiation 

The above-mentioned works only considers thermal plumes in a transparent medium. To 

the authors knowledge, the existing works show a lack of investigation for thermal plume in 

presence of gas radiation. On the other hand, influence of participating media has been widely 

investigated in other natural convection configurations, such as the differentially heated 

cavity. 

- Gas radiation in gray media 

In a pioneering work (Lauriat, 1982) investigated numerically the convection-radiation 

coupling in a gray fluid contained inside a 2D slender cavity. Results show that radiation 
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decreases the flow intensity at low Rayleigh numbers ( 3Ra 10 ) and, in contrast, leads to an 

enhance of the flow at higher Rayleigh numbers ( 4Ra 10 ). They also discussed  influences 

of the optical thickness on the flow and heat transfer. Later on, Draoui et al. (1991) using the 

gray gas assumption studied the influence of  the radiative governing paramenters ( Pl ,  ,  ) 

in a square cavity at various Rayleigh numbers. They found that the diminution of the Planck 

number increases the dynamical effects in the central part of the cavity, thickens the boundary 

layers and decreases the thermal stratification, proving that gas radiation has an important 

influence on the temperature field and the fluid movement.  

Following their studies, Colomer et al. (2004) carried out a 3D numerical simulation of 

convection and radiation in a differentially heated cavity. They showed that the heat flux 

increases as the Rayleigh number increases. On the other hand, an increase of the optical 

thickness causes a decrease of the heat flux. They found that the limit of an optically very 

thick medium tends to the case where radiation becomes a local phenomenon and can be 

described with the Rosseland/diffusion approximation. In addition, their study compares the 

temperature fields of a 2D calculation with those extracted at mid-depth of the 3D 

configuration. The comparison shows a very good agreement between these two 

configurations, and proves that the front and rear walls have a negligible effect on the center 

of the cavity for aspect ratios / 1yL H  .  

 The effects of the optical thickness were also studied by Lari et al. (2011) in a large range 

from 0   to 100. They observed that, at a constant Ra number ( 6Ra 10 ), radiation is the 

dominant mode of heat transfer for optically thin media ( 1  ), but the phenomenon reverses 

with the increase of   until the limit of optically thick medium where the pure convection 

condition is again approached for both the thermal features and the velocity field. They also 

found that the velocity distributions decrease with the optical thickness for 2 310 Ra 10  , 

but increase for 4 610 Ra 10  , as described by Lauriat (1982). 

- Gas radiation in real gas 

Recently, many works (Colomer et al., 2007; Saury et al., 2011; Soucasse et al., 2012; 

Ibrahim et al., 2013; Soucasse et al., 2016; Billaud et al., 2017) have been focused on the 

coupling of convection and radiation in a real gas mixture. Colomer et al. (2007) investigated 

the coupling in a square cavity filled with a gas mixture of air, CO2 and H2O. They studied 

different absorption coefficient approaches in using the Spectral Line Weighted-sum-of-

gray-gases (SLW) real gas model, and compared the non-gray calculations to gray solutions 

through the Planck mean absorption coefficient. It is shown that the Planck mean 

approximation gives the worse results compared to non-gray models. The use of optimized 

coefficients was then recommended by the authors in order to reduce the number of 

calculations. 
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Soucasse et al. (2012) performed a coupled study in a cubic cavity of size equals to 1 m 

and filled with an air/CO2/H2O mixture at a reference temperature of 300 K. Simulations 

carried out at various Rayleigh numbers ( 5Ra 10 , 610  and 73 10 ) showed that radiative 

transfer has a strong influence on the temperature and velocity fields.  

In the same configuration, Cadet (2015) studied the convection-radiation coupling by 

using an air/ H2O mixture at a Rayleigh number equal to 104 10 . He found that gas radiation 

tends to homogenize the mean temperature field but to intensify the mean circulation and the 

global turbulence level. Later on, Soucasse et al. (2016) carrying out coupled simulations at 

Rayleigh numbers up to 93 10 , observed the same effect of gas radiation on the mean and 

the fluctuating fields in the cavity. They also found that gas and wall radiative transfers 

changes drastically the spatial location of intense turbulent regions. 

The work of Ibrahim et al. (2013) dealt with the influence of radiation on natural 

convection flows in a 2D square cavity with a gas mixture of dry air and water vapor. They 

found that wall radiation modifies the airflow structure, and in contrast that gas radiation has 

little influence on the flow structure. Results showed that gas radiation delays the transition 

to turbulence by the homogenization of the temperature field and the reduction of the central 

thermal stratification within the cavity. 

Billaud et al. (2017) performed a study of convection and radiation in a cubic cavity of 

air/H2O mixture at 6Ra 10 . Their results were compared with those of Soucasse et al. 

(2012), and the relative error was found to be less than 2% although the absorbing gas CO2 

is not taken into account, contrarily to the work of Soucasse et al.. Billaud et al. also discussed 

the effect of the cavity size, which has a strong influence on the temperature and velocity 

fields of the participating medium in terms of global heat transfer, boundary layer thickness 

and thermal stratification parameter. 

These different works mentioned above show that gas radiation strongly affects the 

thermal and kinetic fields of air flow, even for air at ambient temperature and low water vapor 

content. This indicates that gas radiation effects cannot be neglected in natural convection 

configurations. 

Objectives 

This study consists in a numerical investigation of convection-radiation coupling of 

thermal plumes above a line heat source in a confined cavity. The objectives include: 

1. To characterize the evolution of a 3D confined plume throughout its transition from 
steady-state to turbulent behavior. 

2. To discuss the plume features in different gas media: transparent, gray gas and real gas 
mixture. 
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3. To explore gas radiation effects on flow stability, heat transfers, thermal and kinetic fields 
of the plume. 
 

The structure of this manuscript is organized as follows:  

- Chapter 1 

After an overview of the physical problem under consideration, the governing equations 

for the convective and radiative problems are presented with their associated non-

dimensional formulations. Various approaches to represent the radiative properties of gas are 

specified, especially the SLW model.  

- Chapter 2 

The numerical methods for solving the convection governing equations and the radiative 

transfer equation are introduced in this chapter. We use the CFD SUNFLUIDH software 

coupled to a module for radiative heat transfer calculations, using the Discrete Ordinates 

Method (DOM). The numerical procedure is validated with reference to existing results, first 

for a confined 2D plume in a pure convective case, then for coupled convection-radiation 

problems in a differentially heated cavity. 

- Chapter 3 

Results of a 3D plume in pure convective case are discussed for Rayleigh numbers 

between 610  and 910 . We focus our attention on the evolution of a thermal plume throughout 

the transition from steady-state to turbulent behavior to characterize the thermal and kinetic 

properties of plumes at different flow regimes.  

- Chapter 4 

The influence of gas radiation is finally investigated by introducing different gaseous 

media: gray gases with various optical thickness and a real gas considering a (dry air - water 

vapor) mixture. Simulations are performed in the same range of Rayleigh numbers as for the 

pure convective case. The governing parameters (the Rayleigh number, the optical thickness, 

the reference temperature and the water vapor concentration) are varied to emphasize 

radiation effects on flow regimes, heat transfers, thermal and kinetic fields of the flow. 
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Chapter 1 

Physical problem and governing equations 

1.1 Problem description 

 The considered geometry is presented in Figure 1.1. It corresponds to an air-filled cubic 

cavity of size H . A thermal plume is induced by an immersed heat source along the line 

( ,  , ) (0.5 ,  , 0.25 )X Y Z H Y H , indicated in red in Figure 1.1. This is the configuration 

considered by Desrayaud and Lauriat (1993) and Bastiaans et al. (2000). The heat source is 

considered to be intangible and generates a volumetric power sQ  by unit length. The top wall 

( )Z H  and the bottom wall ( 0)Z   are maintained at the reference temperature refT , while 

the four vertical walls are considered to be adiabatic. 

For the pure convective case, a transparent medium is considered and there is no surface 

radiative effect. When radiation is accounted for, the horizontal top and bottom walls are 

supposed to be black surfaces ( 1  , with   the wall emissivity), while the vertical walls are 

purely reflecting ( 0  ). When dealing with radiative participating media, we first consider 

a fictitious gray gaseous medium whose optical thickness ( )  is varied, then a mixture of real 

gases (dry air - water vapor) with a molar fraction ( )aX  of H2O fixed over the whole cavity. 

 

 
Figure 1.1. Considered geometry. The red line corresponds to the linear heat source. 
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1.2 Natural convection 

1.2.1 Conservation equations 

The governing equations of fluid flow represent mathematical statements of the 

conservation law of physics: 

- The mass of a fluid is conserved. 

- The rate of change of momentum equals the sum of the forces on a fluid particle. 

(Newton’s second law) 

- The rate of change of total energy is equal to the sum of the rate of heat addition and 

the rate of work done on the fluid volume. (first law of thermodynamics) 

Mass conservation 

In the absence of mass sources or sinks, the equation of mass conservation is written as 

 
( )

0i

i

U

t X

 
 

 
  (1.1) 

For an incompressible fluid, the density   is invariant in space and time. The equation 

(1.1) becomes 

 0i

i

U

X





  (1.2) 

Momentum conservation 

Newton’s second law states that the rate of change of momentum equals the sum of the 

forces on the particle which can be distinguished into two types of forces. 

- Surface forces (pressure forces and viscous forces) 

- Body forces (here only the gravity force is considered) 

The momentum conservation equation is then given by 

 i j iji
iz

j i j

U UU p
g

t X X X

  
     

   
 (1.3) 

where iU  is the velocity components in the direction iX , ij  the viscous stress tensor and g  

the acceleration of gravity carried by the Z-axis. 

Additionally, the internal friction of the fluid is supposed to be Newtonian, meaning that 

the shear stress is assumed to be proportional to the strain, and  eq. (1.3) becomes 

 ( )i j ji i
iz

j i j j i

U U UU Up
g

t X X X X X

   
       

     
 (1.4) 



Chapter 1. Physical problem and governing equations 

 

9 

where   is the dynamic viscosity. 

Energy conservation 

Neglecting the pressure and viscous forces working on the fluid volume, the energy 

equation derived from the first law of thermodynamics is given by 

 
( ) ( )

( )p p i

i i i

c T c TU T
Q

t X X X

         
   

 (1.5) 

where pc  is the specific heat at constant pressure,   the thermal conductivity, and Q  the 

internal heat source per unit volume. 

We note that in the present work, a linear heat source is considered in the fluid domain. 

Thus, the energy equation becomes 

  
( ) ( )

( )p p i
s ext

i i i

c T c TU T
Q Q

t X X X

           
   

 (1.6) 

where sQ  is the volumetric power generated by the linear heat source, and extQ  stands for 

other heat sources, such as sources thermal radiation, chemical reaction, etc.  

In our configuration, the source term sQ  is positioned along the line ( ,  , )s sX Y Z . It is 

supposed to be immaterial and emitted in a very small area around the line position: 

 
 if  ( ,  Z) [ ] [ ]

2 2

0,  otherwise

s s s
s s

s ss

Q X Z
X X Z

X ZQ

         


  (1.7) 

where sX  and sZ  are the spatial extension of the heat source in Cartesian coordinates. 

1.2.2 The Boussinesq approximation 

Considering a plume flow, the body force contains a term accounting for buoyancy effects. 

We suppose the Boussinesq approximation to be valid, which implies that the density 

variations are neglected in all the terms except the one accounting for buoyancy effects. A 

further simplification is the linearization of the temperature dependency of the density, which 

yields 

 [1 ( )]ref T refT T      (1.8)  

where ( ,  )ref refT   is the reference state of the fluid, and T  is the coefficient of thermal 

expansion, [1/ ( / )]
refT TT      , equals to 1/ refT  for a perfect gaz. Adding the first term 

of this expression with the static pressure p , and defining the driving pressure  

 h ref izp p g    (1.9)   
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Then the momentum conservation equation is given by 

 
2

2

( )
( )i ji h i

ref T ref iz
j i j

U UU p U
T T g

t X X X

  
        

   
 (1.10) 

 

1.2.3 Non-dimensional formulations 

With the aid of characteristic scales of the problem, it is possible to transform the 

governing equations into a non-dimensional form. The cavity size H  is taken as the 

reference length, and the reference velocity is the diffusive velocity /refV H   where   is 

the thermal diffusivity ( / )pc    . The dimensionless temperature is defined by  

 refT T

T


 


 with /sT Q    (1.11) 

By introducing these reference quantities, the set of dimensionless equations for an 

incompressible fluid under Boussinesq hypothesis then reads 

 0i

i

u

x





 (1.12) 

 
2*

2

( )
Pr RaPri ji i

iz
j i j

u uu up

t x x x

 
     

   
 (1.13) 

 
2 2

2

( )j
s ext

j j

u H
Q

t x x T

       
   

 (1.14) 

where s  is the volumetric linear source normalized by 2/sQ H , defined as 

 

1
 if  ( ,  z) [ ] [ ]

2 2

0,  otherwise

s s
s s

s ss

x z
x x z

x z

         


  (1.15) 

The dimensionless quantities and the characteristic parameters of the problem are 

summarized in Table 1.1. 
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Dimensionless coordinates /i ix X H  

Dimensionless velocity component /i i refu U V   with /refV H   

Dimensionless temperature ( ) /refT T T     with /sT Q    

Dimensionless time dim / reft t t  with 2/ /ref reft H V H    

Dimensionless pressure * 2 2/ ( )hp p H   

Rayleigh number 3Ra β / (T sg Q H ν    

Prandtl number Pr /    

Table 1.1. Dimensionless quantities and characteristic parameters for the convective 
problem. 

1.2.4 Transition to turbulence and Hopf bifurcation 

Fluid flow can be characterized by its flow regime: laminar, turbulent or transitional. With 

the increase of the control parameter, here the Rayleigh number, flow experiences first a 

transition from steady to time-dependent motion, and then becomes more and more complex 

until a turbulent state is reached. Landau (1944) introduced the concept of transition to 

turbulence, and proposed a mechanism consisting of a sequence of bifurcations in which at 

each time a discrete frequency is added. In general, the ratio between separate frequencies is 

not an integer and a quasi-periodic motion occurs. At the end of an infinite number of discrete 

frequencies, the flow system reaches a turbulent state and has a broadband frequency 

spectrum. 

If the Rayleigh number is below a critical value Rac , the motion is steady, which can be 

represented by a single point in the phase space. Since the fluid is stable, this point attracts 

all other points, initially deviating from the stable situation. Therefore, this point is called an 

attractor. Above the critical Rayleigh number, the flow becomes unstable, and the attractor 

becomes a limit cycle, which is called a Hopf bifurcation (McCracken & Marsden, 1976). 

We emphasize that in a Hopf bifurcation, the limit cycle is a purely periodic solution which 

can be pictured as a closed curve in phase space.  

A Hopf bifurcation can be either supercritical or subcritical. In a supercritical Hopf 

bifurcation, the limit cycle grows out of the equilibrium point. In other words, right at the 

parameter of the Hopf bifurcation ( Ra = Rac ), the limit cycle has zero amplitude. If the 

bifurcation parameter is greater than the critical value ( Ra > Rac ), this amplitude grows as 

the parameters move further into the stable limit-cycle regime. In the subcritical case, the 

limit cycle is shown to be unstable when the real bifurcation parameter is less than the critical 

value (McCracken & Marsden, 1976). 

For a supercritical Hopf bifurcation, the amplitude of the perturbation in the vicinity of 

the transition satisfies the relation 
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 max min Ra Rac     (1.16) 

This signature of a supercritical bifurcation can be used to determine the critical Rayleigh 

number by linear extrapolation of the square of the amplitude of the oscillations to zero. A 

second distinctive feature of a Hopf bifurcation is the relationship between the oscillation 

frequency and the Rayleigh number in the vicinity of the bifurcation point. Since the plume 

has a thermally stratified field, the Brunt Väisälä frequency can be associated to the 

oscillation frequency of plume flow 

 BVf f  (1.17)   

and the Brunt Väisälä frequency is defined as 

 
2 4 4

2 2
dim 2 2

[( ) ]BV BV

H g H T H
f f g

z z

 
    

     
 (1.18)   

By applying an approximation of the stratification value, the Brunt Väisälä frequency at 

any horizontal planes above the heat source can be expressed as (Desrayaud & Lauriat, 1993) 

 2 2 Ra PrBVf f   with s

c

QT

z H




 
 (1.19)   

1.2.5 Turbulence and turbulence modelling 

For a turbulent flow, the parameters (velocity, temperature and so on) vary in a chaotic 

way. The flow properties can be characterized in terms of time integrated mean values (U , 

V , W , T ) and higher orders statistical moments (U  , V  , W  , T   , U T  , etc.). In fact, the 

fluid motion becomes intrinsically unsteady, and the turbulent fluctuations always have a 

three-dimensional spatial character. Furthermore, visualizations of turbulent flows reveal 

rotational flow structures, so-called turbulent eddies, with a wide range of length scales.  

Figure 1.2 presents a schematic of the turbulent kinetic energy spectrum ( )E k  in function 

of the wave number ( )k , which can be divided into three subranges: the source subrange, the 

inertial subrange and the viscous subrange. The source subrange is responsible for the 

production of energy. It is associated to the macroscopic scale of the same order of the length 

scale of the mean flow, which characterizes the length of the larger eddies. These large eddies 

are dominated by inertia effects and viscous effects are negligible. The inertial subrange 

corresponds to the intermediate range of scale which is strongly stretched by the larger eddies 

without being affected by the viscous effects. In this way the kinetic energy is handed down 

from large eddies to progressively smaller and smaller eddies, which leads to the Kolmogorov 

energy cascade 

 2/3 5/3
0( )E k K k     (1.20) 
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where 0K  is the Kolmogorov constant, and   is the viscous dissipation rate. 

The viscous subrange is associated to the last smallest scale, named the Kolmogorov scale 

k , which is dominated by viscous effects (Lesieur, 1990; Versteeg & Malalasekera, 2007). 

 
Figure 1.2. Energy spectrum of turbulence in function of the wave number k , with 

indication of the range of application of DNS, LES and RANS models. The length scales Tl  

and  Il  are respectively associated with the LES and RANS approaches. (From Hirsch 

(1998)). 

To compute the large-scale turbulent eddies, or even the small-scale eddies, there are 

mainly three families of methods in numerical simulations of turbulence, as indicated in 

Figure 1.2: 

 Direct numerical simulation (DNS) 

 Large Eddy Simulation (LES) 

 Reynolds Averaged Navier–Stokes (RANS) 

In DNS, the governing equations are numerically solved without any model, meaning that 

all the spatial and temporal scales of the flow must be captured on the computational grid and 

by the time discretization scheme. This is a formidable challenge in terms of computational 

effort, which grows with increasing Reynolds numbers, since the size of the smallest 
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turbulent eddies, the Kolmogorov scale, is inversely proportional to 3/4Re  (Hirsch, 1998). If 

we wish a resolution of n  points per unit length of the smallest eddy, the total number of 

required mesh points will scale as 3 3/4Ren .  

In LES approach, the turbulent fluctuations are computed directly only above a certain 

length scale ( )Tl . Below that scale, called the subgrid scale, the turbulence effects are 

modelled by semi-empirical laws. In this way, the spatial resolution is decreased compared 

to DNS, and also the temporal resolution requirements. This leads to a substantial decrease 

in both computer storage and work. The equations describing LES models are obtained by 

applying a spatial filter on the governing equations. By performing this filtering operation 

extra terms appear, accounting for the subgrid contributions. The subgrid contributions are 

unknown in principle, and therefore they have to be modelled in order to close the set of LES 

equations. 

Finally, the Reynolds Averaged Navier–Stokes (RANS) model is restricted to the 

computation of the averaged turbulent flow. This approach ignores the turbulent fluctuations 

and aims at computing only the turbulent averaged flow. The idea behind the equations is the 

Reynolds decomposition, whereby any quantity can be decomposed into a time-averaged 

term and a time fluctuation term. 

Application of DNS 

Although DNS requires considerable computer resources, it remains a valuable tool in 

turbulence studies. DNS can provide a database of information for improving lower level 

approximations (LES or RANS).  DNS has already led to very informative results on the 

fundamental physics of turbulence in various frameworks. A review of the state of art of 

direct numerical simulation of turbulent flows  can be found in Jiménez (2003) and Geurts 

(2003). To better understand the fundamental mechanisms of turbulent plume flow and to 

evaluate other turbulence models, DNS has been applied as a basic tool in the works of 

Bastiaans et al. (2000) and Pham et al. (2007).  

In the present work, DNS is used to resolve the governing equations, which then leads to 

severe requirements for the grid resolution. To ensure sufficient resolution, Grötzbach (1983) 

derived a formulate for direct numerical simulation to estimate the ratio between the mean 

cell size of the spatial discretization and the smallest scales of the velocity and temperature 

fields, i.e. the Kolmogorov scale k  and the thermal dissipative scale T . The Grötzbach 

(1983) requirement has been used in many studies of Rayleigh-Bénard convection, e.g. 

Kaczorowski and Wagner (2009); Vincent et al. (2012), and will be adopted here to verify 

the grid resolution. If the grid spacing between points is 1/3( )r x y z     , it must satisfy the 

following relationships (Grötzbach, 1983) 
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 3 1/4( / )kr           for    Pr 1   (1.21) 

 3 1/4( / )Tr           for    Pr 1    (1.22) 

where   is the dissipation of turbulence kinetic energy defined by 

 ij ijS S        with    
1

( )
2

ji
ij

j i

UU
S

X X


 

 
   (1.23) 

in which     denotes time-averaged quantities and    the fluctuating parts. 

1.3 Radiative transfer 

In this section, the radiative transfer equation (RTE) is described in detail and different 

models for predicting the properties of the participating gas are discussed. Finally, a complete 

description of the Spectral Line Weighted (SLW) model is given.  

1.3.1 Radiative transfer equation 

For radiative phenomena, the spectral radiative intensity is the fundamental quantity. It is 

defined as the radiative energy flux per unit solid angle, per unit frequency and per surface 

area normal to the rays. The total radiative intensity is the intensity integrated over the entire 

spectrum. 

As illustrated in Figure 1.3, the spectral intensity ( ,  )I x s  at a vector position x  emitted 

across an apparent area dS   limited by a solid angle d  along a unit direction vector s , is 

expressed by 

 ( ,  )
cos

dQ dQ
I

d dS d dS
 

  
  

x s      (1.24) 

where Q  is the radiative energy flux, and cos  the cosine angle between dS  and dS  . 

 
Figure 1.3. Illustration of the definition of the spectral radiative intensity ( ,  )I x s  along 

the direction s  in a solid angle d . 
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The radiative intensity traveling through a participating medium in the direction s  can be 

attenuated by absorption and by scattering away from the traveling direction. But at the same 

time, it also gains energy by emission as well as scattering from other directions into the 

original traveling direction s . By analyzing energy balance for an elementary control volume 

in the direction s , the radiative transfer equation (RTE) can be written as 

 

4

( , , )1
( , , ) ( ( )) ( , , )

( , , , ) ( , )
4

bI t
I t I T I t

c t

I t d


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
 


    


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 

x
x x x

x

s
s s s

s s s

 (1.25) 

where c  is the speed of light,   and   are the spectral absorption and scattering 

coefficients respectively, and   is the extinction coefficient       . ( ( ))bI T x  is the 

monochromatic radiative intensity of the black body at the frequency   and the local 

temperature ( )T x .   is the scattering phase function which is linked to the probability that 

a beam from direction s  is scattered to direction s . 

For the majority of engineering applications, the first term of eq. (1.25) can be neglected, 

as the speed of light is many orders of magnitudes superior to any other velocity scale in the 

problem. Moreover, the participating medium in this work is considered to be non-scattering 

( 0)  . Therefore, the quasi-steady form of RTE in Cartesian coordinates reduces to 

 
( ,  ) ( ,  ) ( ,  )

[ ( ( )) ( ,  )]bI I I
I T I

X Y Z
  

  

  
      

  
x x x

x x
s s s

s   (1.26) 

where ( ,  ,  ) are the cosines directors of the direction of the radiative propagation swith 

respect to the ( ,  ,  )x y z  axis. 

 Boundary conditions for RTE 

Generally, the radiative intensity leaving a wall surface which surrounds a participating 

medium can be specified and employed as boundary condition for the RTE. For an opaque 

surface that emits and reflects diffusively, the exiting intensity is independent of direction. 

Therefore, at a point wx  on the gray surface, the exiting intensity can be expressed as the sum 

of the emitted intensity and the reflected intensity 

 ( ,  ) ( ( )) ( )b w
w w w wI I T H  


  


x x xs   (1.27) 

for the directions 0w s n ,  and wn  is the inward-pointing normal vector at the wall, w  the 

wall emissivity, w  the reflectance with 1w w    , and H  the hemispherical irradiation 

(i.e., incoming radiative heat flux) defined as 
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0

( ) ( ,  )
w

w w wH I d  
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s n
s s n  (1.28) 

where, as indicated in Figure 1.4, wn  is the inward surface normal unit vector and s  is the 

direction unit vector of the incoming intensity ( ,  )wI x s .  

 
Figure 1.4. Radiative intensity reflected from a surface. 

 Radiative flux terms 

In order to correlate the radiation field with the flow field, the terms of incident radiative 

flux, radiative power per volume as well as the net radiative flux at the walls need to be 

determined. They are defined as follows: 

Incident radiative flux 

 
4

( ) ( ,  )G I d 
 x x s  (1.29) 

 
0

( ) ( )G G d


 x x  (1.30) 

Radiative flux vector 

 
4

0 0
( ) ( , )r I d d

 

    x xQ s s  (1.31) 

Volumetric radiative power 

 ( ) ( )ext rQ   x xQ  (1.32) 

 
0

( ) [ ( ) 4 ( ( ))]b
extQ G I T d



       x x x   (1.33) 

Net radiative flux at gray walls 

 
0 0

Q ( ) ( ( )) ( ,  )net b
r w w w w w wI T d H d

 

        x x x n   (1.34) 

1.3.2 Non-dimensional formulations 

In order to be consistent with the non-dimensional formulations of the convective problem, 

we consider the cavity length H  as the reference length scale.  However, the radiative 

problem requests absolute temperature levels, so the physical problem loses its symmetry 
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property around the reference temperature refT  obtained for the convective problem, and it is 

necessary to define another dimensionless temperature noted  . 

The characteristic dimensionless quantities are thus given in Table 1.2. 

Positions / H x x  

Gradient H    

Intensity ( ,  ) ( ,  ) / ( )b
refI I I T 

  x xs s  

Temperature ratio 0 / /ref ref sT T T Q      

Dimensionless radiative temperature 0( ) ( ) / 1 ( ) /refT T     x x x  

Optical thickness H    

Table 1.2. Dimensionless quantities of the radiative problem. 

With these dimensionless quantities, the radiative transfer equation for a non-scattering 

medium can be written in its non-dimensional form 

 + + + ,( ,  ) [ ( ( )) ( ,  )]bI I I   
       x x xs s s  (1.35) 

and by introducing the cosines directors of the propagation direction in Cartesian coordinates 

 ,( ,  ) ( ,  ) ( ,  )
[ ( ( )) ( ,  )]bI I I
I I

x y z

     
     

  

  
        

  
x x x

x x
s s s

s  (1.36) 

The other dimensionless radiative terms are defined below: 

Radiative intensity at the walls 

 ,( ,  ) ( ( )) ( ,  )b w
w w w w wI I H     

  


   


x x xs n    for   0w s n  (1.37) 

Hemispherical irradiation 

 
0

( ,  ) ( ,  )
w

w w w wH I d   
  

    x x
s n

n s s n   (1.38) 

Incident radiative flux 

 
4

( ) ( ,  )G I d   
 

 x x s   (1.39) 

 
0

( ) ( )G G d
  

 x x   (1.40) 

Volumetric radiative power 

 
4

0

( ) ( )rr ext
B

H
Q

T
  


x x  (1.41) 



Chapter 1. Physical problem and governing equations 

 

19 

 ,

0
( ) [ ( ) 4 ( ( ))]b

rr G I d
    

        x x x   (1.42) 

Net radiative flux at the walls 

 
4

0

1
( ) Q ( )net net

r w r w
B

q
T

 


x x   (1.43) 

 ,

0 0
( ) ( ( )) ( ,  )net b

r w w w w w wq I d H d
     

         x x x n    (1.44) 

1.3.3 Radiative properties of participative gases 

The participative gases can emit and absorb in an infinite set of distinct wavenumbers or 

frequencies, which makes the prediction of radiative properties of gaseous media a difficult 

task in the description of radiative phenomena. For sake of simplification, the gray gas 

approximation is a common practice in engineering and has been widely used in the literature 

for convection-radiation coupled flows in enclosures (Lauriat, 1982; Yücel et al., 1989; 

Draoui et al., 1991; Lari et al., 2011), as an example. 

1. Gray gas approximation 

The gray gas approximation consists in considering that the absorption coefficient   has 

no dependence on frequency, e.g. 0   . Integrating the RTE over the whole frequency 

range, the equation can be directly expressed in total quantities and the problem is faster to 

solve. After applying the gray gas approximation, we obtain 

 
4

0

( )( ,  ) ( ,  ) ( ,  )
[ ( ,  )]BTI I I

I
X Y Z

  
      

   
xx x x

x
s s s

s   (1.45) 

The total radiative intensity of blackbody is defined by 

 
4

0
( )b BT

I T d





 

  (1.46) 

where B  is the Stefan-Boltzmann constant. 

The dimensionless RTE for a gray gas is then written in the form 

 
4
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[ ( ,  )]

I I I
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x y z

      
    

      
   
x x x x

x
s s s

s   (1.47) 

and the dimensionless radiative terms are obtained below 

 4
0( ) [ ( ) 4 ( )]r G       x x x   (1.48) 

 4
w 0

( ) ( ) ( ,  )
w

net
r w w w w wq I d   

 
        x x x
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By applying this approach, the numerical solution of the radiative problems is greatly 

accelerated. But the disadvantage of this approximation is to represent the spectral behavior 

of a gas with a unique optical thickness. For the cases of gases with a large absorption 

spectrum, such as humid air that we consider in this study, the gray gas approximation is not 

appropriate. Thus, more complex models must be considered. 

2. Real gas model 

The approaches for the representation of radiative properties may by mainly distinguished 

into four groups: (1) line-by-line calculations, (2) narrow-band models, (3) wide-band models 

and (4) global models. 

(1) Line-by-line calculations 

Line-by-line calculations (Hartmann et al., 1984) represents each discrete absorption-

emission line of the entire spectrum by its intensity and half-width of the line. Such 

calculations depend on very detailed information of each single spectral line. Because of 

strongly varying values of the absorption coefficient, the spectral radiative transfer problem 

must be solved for a huge number of frequencies. Although this approach may be the most 

accurate, it is not feasible in practical configurations due to the requirement of vast amounts 

of computer resources.  

 (2) Narrow-band models 

In these models, the absorption spectrum is discretized in intervals called narrow bands 

where the Planck function is assumed to be constant. Hence, it consists in replacing the 

spectral absorption coefficient distribution by smoothened discrete values appropriately 

averaged over narrow spectral bands. In order to calculate the averaged band values, some 

information on the spacing of individual lines within the narrow band and on their relative 

strengths is needed. Various narrow band models (Hartmann et al., 1984; Soufiani & Taine, 

1987; Kim et al., 1991; Soufiani & Taine, 1997; Liu et al., 1998; Coelho, 2002) have been 

proposed for this purpose.  

An alternative to the "traditional" narrow band models is the so-called “correlated k-

distribution” (CK model) (Goody et al., 1989). In this method, it is observed that over a 

narrow spectral range, the absorption coefficient attains the same value many times and can 

be reordered in the correlated k-distribution method. This results in a smooth monotonically 

increasing function of absorption coefficient vs artificial wavenumber, and makes spectral 

integration very straightforward.  

 (3) Wide-band models 

Wide band models (Edwards & Menard, 1964; Edwards, 1976) determine the radiative 

emission or absorption over an interval of wavenumber much more important than for the 

narrow-band model. Due to the fact that the necessary calculations are relatively simple, this 
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wide band model was very popular in the past. However, nowadays, it is not commonly used 

anymore because of its low accuracy. 

(4) Global models 

Global models consider a global approach of the absorption spectrum. Among various 

global models, the models based on the discretization of the absorption coefficient by a sum 

of virtual gray gases are widely used. These models are commonly called the Weighted-Sum-

of-Gray-Gases (WSGG) models and was initially proposed by Hottel and Sarofim (1967). 

The main interest of WSGG method is its low computational cost, but this method appears 

to be a crude and approximate tool when estimating complex behavior of participating media. 

More accurate global models can be found in Denison and Webb (1993, 1995) and Rivière 

et al. (1996), where the Spectral-Line-Based Weighted-Sum-of-Gray-Gases (SLW) model 

and the Absorption Distribution Function (ADF) model are proposed. 

In the WSGG method, the nongray gas is replaced by a number of independent gray gases 

with different absorption coefficients. The total intensity (or radiative heat flux) is then 

obtained by adding the results of the gray gases contributions with different weight factors. 

The absorption coefficients are supposed to be spatially constant and to no longer depend on 

the local temperature, while the weight factors may depend on the local temperature. These 

WSGG parameters (absorption coefficients and weight factors) can be obtained with respect 

to a reference model.  

The SLW model is an extension of the WSGG method which provides accurate results 

when compared to line-by-line method. It considers that the weight factors are determined 

from a distribution function of the absorption coefficient, weighted by the Planck function. 

Goutiere et al. (2000) conducted a very complete study of the comparison between different 

gas models (CK, SNW, EWB, WSGG, SLW) in a rectangular cavity filled with CO2 and H2O 

and showed that the SLW model offers an excellent compromise between precision and 

computation time. So, many works of coupled flows in a square or cubic cavity (Colomer et 

al., 2007; Ibrahim et al., 2013; Laouar-Meftah et al., 2014; Cadet, 2015; Billaud et al., 2017) 

have been conducted with the SLW model to represent the radiative properties of 

participating medium. Therefore, the SLW model is adopted in this work, and a detailed 

description of SLW will be presented in the next section. 

The ADF model consists in replacing the wavenumber integration of the radiative heat 

fluxes by an integration over the value of the absorption coefficient. Note that the ADF model 

has been applied by (Soucasse et al., 2012; Soucasse et al., 2013, 2016) for coupled flows in 

a cavity, and the discretization was also found to be very accurate when compared to line-

by-line calculations. It is similar, in nature, to the SLW method as well as the FSK method 

developed by Modest (2003). 
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1.3.4 Implementation of the SLW model 

In this work, we will consider a perfect gas mixture of air/H2O. It is assumed that the 

molar fraction ( )ref aX X  of the absorbing specie (H2O) and the pressure ( )refP  is 

homogeneous in the gaseous medium. The absorption coefficient   is defined as   

 ( ) ( ,  )aT N C X T      (1.50) 

where C  is the absorption cross-section which will be explained in the following paragraph, 

and / ( )a refN X P RT  is the molar density of the absorbing gas. As we consider in this work 

only very moderate temperature differences according to the Boussinesq hypothesis, and 

homogeneous concentration in water vapour, the absorption cross-section is considered as a 

constant in the whole the cavity, i.e. ( ,  ) ( ,  )a ref refC X T C X T  . 

The SLW method is based on the application of the absorption-line blackbody distribution 

function ( ,  ,  )g bF C T T , which is the fraction of the blackbody emissive power ( ,  )b bE T  

emitted at temperature bT  for which the absorption cross-section ( )k gC T  is below the 

prescribed value C  

 
{ : }

( ,  ,  ) ( ,  ) / ( )
k

g b b b b bk C C
F C T T E k T E T dk


    (1.51) 

where 4( )b b B bE T T   is the integrated blackbody emissive power over the whole spectrum. 

As illustrated in Figure 1.5, the construction procedure of SLW spectral model is in the 

following way: 

First, a set of discrete values ( 0C , 1C , …, 
gNC ) is chosen between the minimum minC  and 

the maximum maxC  values of the absorption cross-section: 1j j jC C C    , 1, 2,..., gj N  

where gN  is the total number of gray gases considered in the model. Considering a gray gas 

absorption cross-section jC  specified as 1j j jC C C    , the corresponding absorption 

coefficient is defined by j jN C   , 1, 2,..., gj N . Thus, the continuous absorption section 

( )k gC T  is replaced by a histogram model spectrum with a finite number of discrete 

absorption cross-section values.  

The RTE equation with its boundary conditions for gray gases is then written as follows 
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[ ( ,  )]j j j B
j j j

I I I T
a I
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   
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x x x x

x
s s s

s   (1.52) 
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where jI  are the radiative intensity of each gray gases. Their corresponding weighting 

factors are calculated from the absorption-line blackbody distribution function 

 
1

0 min

( ,  ,  ) ( ,  ,  ),

( ,  ,  )

j j g b j g b

g b

a F C T T F C T T

a F C T T

 



 

   (1.54) 

and the absorption coefficients can be obtained by 

 1

0

,

0

j j j jN C N C C    

 

 
  (1.55) 

Once the radiative intensities of gray gases are determined, the total intensity is calculated 

as the sum of all the gray gas intensities 

 
0

( ,  ) ( ,  )
gN

j
j

I I


  x xs s   (1.56) 

 
Figure 1.5. The SLW spectral model. (From Solovjov et al. (2014)). 

To conclude, when introducing SLW model, it is necessary to choose the number of gray 

gases gN  and define the optical thickness range min max[ ,  ]  . With this range of optical 

thickness, the extremum values of C  can be obtained by  

 max/min max/min / ( )C N H     (1.57) 

Thereby, the modified radiative problem depends not only on the dimensionless 

parameters previously proposed but also on some additional quantities: the reference pressure 

refP , the reference temperature refT , the molar fraction aX  and the reference length H . 
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1.4 Convection-radiation coupling 

By introducing the radiative source term in the energy equation, the global conservation 

set of equations of the convection-radiation coupling in dimensionless form is obtained:  

 0i

i

u

x





 (1.58) 

 
2

2

( )
Pr RaPri ji h i

iz
j i j

u uu p u

t x x x

  
    

   
  (1.59) 

 
2

2

( ) 1

Pl
j

s r
j j

u

t x x

          
  

 (1.60) 

The Planck number (Pl), which characterizes the relation between the thermal conduction 

and radiation is defined as follows 

 
4 4

Pl s

B ref B ref

QT

T H T H


 
 

  (1.61) 

 Boundary conditions 

Kinetic boundary conditions 

0u v w    on all the walls. 

Thermal boundary conditions 

Horizontal walls ( 0z  , 1) are maintained at refT : 0  ; 

Left and right walls ( 0x  , 1) are purely reflecting and adiabatic: / 0x   ; 

Front and rear walls ( 0y  , 1) are purely reflecting and adiabatic: / 0y   . 

Radiative intensity 

Vertical walls are purely reflecting ( 0   and 1  ):  

1
( ,  ) ( ,  )w w wI H   

 


x xs n  for 0w s n ;  

Horizontal walls are black surfaces ( 1   and 0  ):  

,( ,  ) ( ( ))b
w wI I   

  x xs  for 0w s n . 

 Characteristic parameters 

For the case of pure convection (that is without any radiative effect), two typical 

dimensionless parameters define the problem: the Prandtl number Pr /   and the 

Rayleigh number 3Ra β / ( )T sg Q H ν   . When radiation is taken into account, other 
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dimensionless parameters are involved: the Planck number 4
0Pl /s BQ T H  , the temperature 

ratio 0 /ref sT Q    and the optical thickness H   . In the case of real gas (here a gas 

mixture of air/H2O), some additional quantities must be specified: 

- the molar fraction of water vapor aX ; 

- the reference quantities for temperature refT , length H  and pressure refP ; 

- the optical thickness range min max[ ,  ]   and the number of gray gases gN  for the SLW 

model. 

In this work, two different values of reference temperature are considered for the real 

gaseous cases: 300 KrefT   and 500 KrefT  , with different water vapor molar fractions. In 

order to focus on the influence of radiative effects only, the variations of the air properties 

with the water vapor content will be neglected and we consider only the corresponding 

thermophysical properties of dry air at the two reference temperatures: 

Case 300 KrefT   500 KrefT   

Pr  [-] 0.71 0.68 

  [W.m-1.K-1] 0.0261 0.0404 

  [m2.s-1] 52.12 10  55.55 10  

  [kg.m-3] 1.225 0.706 

Table 1.3. Thermophysical properties considered in the real gaseous cases. 

 Nusselt numbers 

In order to characterize the heat transfer at the walls of the cavity, the convective and 

radiative Nusselt numbers are defined as follows. A positive value means that the heat flux 

is in the same direction of the outgoing normal to the wall, that is gained by the fluid.  

- 2D convective and radiative Nusselt numbers averaged over the horizontal walls  
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- 1D convective and radiative Nusselt numbers averaged along the horizontal line of 

the horizontal walls at mid-depth of the cavity 
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Because the vertical walls in the cavity are considered purely reflecting and adiabatic, the 

following relationship exists between the 2D averaged Nusselt numbers on the horizontal 

walls (     indicates time-averaged values for unsteady regimes): 

 
2D 2D 2D 2D 2D

, , Nu Nu Nu Nu + Nu 1total c, top c, bottom r top r bottom     (1.68) 
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Chapter 2 

Numerical modelling 

2.1 Computational software 

To solve the governing equations, we use the finite volume CFD software SUNFLUIDH 

coupled to a module for radiative heat transfer calculations from ROCOCO code (Cadet, 

2015; Cadet et al., 2016), previously developed during a common project between LaSIE, 

LIMSI and PPRIME laboratories. SUNFLUIDH has been developed by Dr. Yann Fraigneau 

at LIMSI since 2011 for the numerical simulation of 2D and 3D unsteady incompressible and 

non-isothermal flows or flows under Low Mach number hypothesis. This code covers a large 

range of flows (natural or forced flows, reactive flows, two-phase flows, etc.), and offers the 

possibility to define complex geometries by means of immersed bodies which modelize the 

solid parts. A brief description of the numerical modelling is presented below (cf. Fraigneau 

(2013) for more details). 

2.1.1 Staggered grid 

 

 
Figure 2.1. 2D representation of staggered grids associated with the spatial discretization of 

scalar quantities (in black) and the two velocity components (in red and in blue). Empty 
circles refer to the outside nodes. 
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The discretization of different quantities is performed on staggered Cartesian grid of MAC 

type, which ensures the numerical stability of the prediction-correction method for the 

velocity/pressure coupling. A reference mesh associated with the velocity components and 

the scalar quantities is defined in Figure 2.1. The discretization nodes are different for each 

velocity component as well as for scalar quantities. We note that the staggered grid leads to 

defined ghost nodes outside the domain for the management of the boundary conditions at 

the edges of the domain. 

2.1.2 Numerical methods 

- Spatial discretization 

Let us consider the momentum equation in the following form: 

 ( ) ( )NL GP L
t


   


V

V V   (2.1) 

where ( ,  ,  )u v wV  is the velocity field, GP  the term of the pressure gradient, L  the 

operator associated with the viscous flux and NL  the convective flux operator. 

The spatial discretization is performed by a second-order centered scheme according to 

the finite volume approach with the staggered mesh described above. For the convective flux, 

a conservative formulation is applied in this work. 

- Time discretization 

The time derivative discretization adopts a second-order Backward Differentiation 

Formula (BDF2) 
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ni i i iu u u u

O t
t t

 
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 
  (2.2) 

For stability reasons, a semi-implicit formulation is applied in the time discretization of 

the other terms. The viscous term is treated implicitly and defined at the instants 1nt  , while 

the convection flux is estimated by an explicit linear extrapolation scheme 

 1 12n n nNL NL NL    (2.3) 

With the consistency of the conservation equation (1.59), the complete second order semi-

implicit formulation of the momentum equation reads 
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  (2.4) 

- Pressure-velocity coupling 

In order to enforce the mass conservation 1 0n  V , the projection method is adopted. 

It derives from the Helmholtz-Hodge decomposition which states that a vector field *V  can 
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be decomposed in a solenoidal field V  (i.e. 0 V )  and an irrotational field derived from 

the gradient of a scalar potential field  , expressed as follows 

 *  V V   (2.5) 

The resolution of the momentum equation is then performed in two steps: prediction and 

correction. First, we consider the predicted velocity field * * * *( ,  ,  )u v wV , which is 

obtained from eq. (2.4) with an explicit expression of the pressure gradient term: 
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  (2.6) 

This velocity field is not a divergence free, but from the Helmholtz-Hodge decomposition, 

it is possible to define the solenoidal velocity field 1nV  as 

 1 *n  V V   (2.7) 

Then subtracting eq. (2.4) to (2.6), applying the divergence operator on the result and 

considering that 1 0n  V , we obtain the following Poisson equation for the potential field 

  

 
*3

2 t


 


V

 with 1 *Prn np p     V  (2.8) 

Subsequently, solving the problem (2.8) enables to obtain the field 1nV  as 

 1 * 2

3
n t 

  V V   (2.9) 

and to update the pressure as 

 1 *Prn np p    V   (2.10) 

The Poisson problem is solved by a direct approach using the partial diagonalization of 

the Laplacian operator. This method is faster than iterative methods but can only be used for 

convex geometries. 

- Parallelization 

In order to increase the solver performances, the code SUNFLUIDH is parallelized 

through an MPI domain decomposition, which is used in the context of large-scale 

simulations requiring large memory resources.  

The domain decomposition is carried out according to a Cartesian topology, as presented 

in Figure 2.2. Each element of subdomains is assigned to a processor through the MPI process. 

The boundary of a subdomain forms a part of the entire domain boundary, or an interface 

that communicates with an adjacent subdomain. In order to obtain a good charge balance, 
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each subdomain contains the same number of nodes, which leads to different sub-domain 

sizes in the case of an irregular grid distribution.  

 
Figure 2.2. Example of domain decomposition in a 3D cubic cavity with a Cartesian 

topology 2 2 2   for 8 processors. 

The mesh distribution of each subdomain is defined in the same way as for the complete 

domain, that is internal cells and fictive cells that serve as overlaps between two adjacent 

subdomains to ensure the continuity at the interface. For the evaluation of the explicit terms 

in the equations, the fictive cells of the subdomains are updated at each time step. To decouple 

the problem, the Schur complement method is used to calculate the variables at the interfaces. 

2.1.3 Numerical approaches for solving the RTE 

For a radiative participating medium, the general problem of radiative heat transfer entails 

determining the radiative intensity from RTE. A brief description of several approaches to 

resolve RTE are introduced below. 

- The Spherical Harmonics Method (PN-approximation) 

First proposed by Jeans (1917), this method approximates the radiative intensity through 

a series of arbitrary high-order spherical harmonic functions. The RTE equations are then 

transformed into a set of simultaneous partial differential equations. The most commonly 

used is the P1-approximation for optically thick media. The advantage of this method is the 

conversion of the governing equations to relatively simple partial differential equations. But 

the low-order approximations are usually only accurate in media with near-isotropic radiative 

intensity. For higher-order approximations, the accuracy is only weakly improved  while the 

mathematical complexity increases extremely rapidly (Modest, 2003). 

- The Monte Carlo Method 

The Monte Carlo method is based on the statistical characteristics of physical processes. 

It considers that a large number of photon bundles carrying a fixed amount of radiative energy 

are emitted in the system. The history of these photon bundles is traced until the energy 
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carried is absorbed at a certain point in the participative media or at the wall, or until it exits 

the system. The departure point, propagation direction, spectral frequency of the ray and the 

point where the energy is absorbed are independently and randomly chosen according to 

given distribution functions. A detailed explanation of the Monte-Carlo method is given in 

references (Howell, 1969; Modest, 2003).  

The Monte Carlo method is well-known for its high accuracy resolution and it can be 

easily employed in complicated systems (such as scattering media, absorption spectrum of 

gas at high resolution…). However, its drawback is the need of a large number of rays to 

obtain statistically meaningful results. Soucasse et al. (2013) performed a Monte Carlo 

simulation of real gas radiation in a cavity with a prescribed 3D temperature field. This 

temperature field was obtained from their previous works (Soucasse et al., 2012), as the 

steady solution of coupled radiation-convection problem at 7Ra 3 10  . The Monte Carlo 

simulation was performed with the emission of 96 10  bundles and a mesh of 403 cells, and 

needs approximately 10 minutes (elapsed time) for complete convergence when using 256 

processors of a 4.7 GHz IBM power6. 

- The Ray Tracing Method 

The Ray Tracing method consists in discretizing the angular space   by generating N  

rays from each point r  of volume cells, and the RTE equation is solved for each ray. This 

has been applied in many studies, for example, Goutiere et al. (2000), effecting an assessment 

of gas models in a 2D enclosure, and Soucasse et al. (2012), simulating a coupled flow in a 

differentially heated cavity with a real gas (ADF model) at 6Ra 10 . Soucasse et al. (2012) 

used an angular discretization of 3600 directions and an 813 points mesh, which results in an 

elapsed time of 170 h with 94 processors with a 4.7 GHz IBM power6. It indicates that the 

computations using ray-tracing method is very expensive and this method is not suitable for 

turbulent flow. 

- The Discrete Ordinate Method (SN-approximation) 

First proposed by Chandrasekhar (1960), the discrete ordinate method (DOM) is based on 

a discrete representation of the directional variation of the radiative intensity. The RTE is 

solved by a set of discrete directions spanning the total solid angle range of 4 . Therefore, 

the integrals terms over solid angle, such as radiative flux, are approximated by numerical 

quadratures. 

The DOM has been widely used in recent years to solve different thermal radiation 

problems.  For example: (Coelho, 2002), used it for investigating non-gray gas radiation 

models; (Collin et al., 2005), for the study of radiative transfer in water spray; (Yücel et al., 

1989; Colomer et al., 2007; Lari et al., 2011; Ibrahim et al., 2013; Laouar-Meftah et al., 2014), 
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for radiation-convection coupling in a differentially heated cavity. This method offers a very 

good compromise between precision and cost in computing time, and will be adopted in this 

work. 

2.1.4 Implementation of DOM (SN-Approximation) 

In the discrete ordinate method, the RTE equation (1.26) with its boundary condition 

(1.27) are then solved for a set of different directions and the integrals over solid angle are 

replaced by numerical quadratures according to the relationship below 
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where m  are the variable quadrature weights associated with the direction ms , obtained with 

the Balsara (2001) approach. Thus, the RTE equation and its boundary condition become a 

system of M linear differential equations ( ( 2)M N N   for SN -approximation) 
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Moreover, the incident radiative flux G , the radiative source term rr  and the net 

radiative flux at the walls are defined by 
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In order to solve the set of equations (2.12), the finite volume technique is applied to any 

control volume of each direction ms  (cf. Figure 2.3). 
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Figure 2.3. Control volume in cartesian coordinates. The RTE is solved only on the node P 

(red dot). The intensities at the faces (blue dots) are obtained by an intermediate step.  

Considering constant radiative properties in the elementary volume V , integration of 

equations (2.12) results in 
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and to the form (2.17) when applying the finite volume approach. 
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( xA , yA , zA ) are the surfaces areas of the control volume along the directions ( x , y , z ), 

PI  is the intensity at the central node of the control volume. ( EI , WI , BI , FI , NI , SI )  are 

the intensities at the faces of the control volume and wI  the incident intensity at the wall. 

In order to obtain the relationships between the intensity at the node and at the faces read, 

we use the following interpolation schemes 
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  (2.18) 

The choice of the factors ( a , b , c ) determine different spatial differencing schemes: 

Step scheme ( 1a b c   ). This is the simplest first order spatial differencing scheme, 

stable but numerically diffusive.  
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Diamond scheme ( 0.5a b c   ). This is a second order interpolation scheme, but 

which can induce spatial oscillations, leading to physically impossible negative intensities at 

the control volume faces. 

Lathrop scheme. The Lathrop scheme (Lathrop, 1969) is a variable weighted difference 

scheme with a limiter, which can locally switch to the step scheme in order to avoid the 

appearance of negative intensities. For 3D case, the factors in Lathrop scheme are given by 
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Finally, combining (2.17) and (2.18), the intensity at node P is obtained by 
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where /x m xA a   , /y m yA b    and /z m zA c   .   

Once m
PI  is obtained at the current cell (i, j, k), the intensities at the faces of the control 

volume are transmitted to the neighboring cells through  
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To solve the RTE in the global domain, a sweeping method is used as illustrated in Figure 

2.4 for a 2D case. It supposes that the 2D computation domain is swept for j  varying from 

1 to jN . For each value of j , i  varying from 1 to iN  when 0m   and 0m  . For 

negative cosine directors, the orientation of the faces as well as the dependence of the indices 

for the sweeping  are changed according to the direction of ms , as shown in Figure 2.5. The 

dependence of the indices in a 3D case for different directions ms  is given in Table 2.1. 

From a computational point of view, radiation and convection are solved on the same 

grids, but the radiative problem is solved every 5 convective time steps. The RTE is solved 

by an iterative process repeated until the absolute residual between two steps of the sum of 

the wall radiative fluxes and the volumetric radiative source over the global domain is less 

than 55 10 . 
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 mini  maxi  stepi   minj  maxj  stepj   mink  maxk  stepk  

0m   1 iN  1 0m   1 jN  1 0m   1 kN  1 

0m   iN  1 -1 0m   jN  1 -1 0m   kN  1 -1 

Table 2.1. Dependence of indices in a 3D case for different directions ms .  

 
Figure 2.4. Resolution of the RTE by sweeping the computation domain. (From Denis 

Lemonnier course on radiation phenomena-ISAE-ENSMA). 

 
Figure 2.5. Orientation of the control volume according to the direction ms . (From Denis 

Lemonnier course on radiation phenomena-ISAE-ENSMA). 
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2.2 Code Validation 

2.2.1 2D plume 

We first consider a 2D plume, previously investigated in the works of Desrayaud and 

Lauriat (1993) and Bastiaans et al. (2000). They considered a plume generated by a point 

source at the non-dimensional position ( ,  ) (0.5,  0.25)s sx z   in a square enclosure. The top 

and bottom boundaries are maintained at a given temperature 0T , while the lateral boundaries 

are adiabatic. The development of the flow from rest could be used to confirm the grid 

convergence by analyzing the time evolution of the dipole height, proposed by Bastiaans et 

al. 
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where   is the vorticity. 

Figure 2.6 plots the results obtained at Rayleigh numbers equal to 610  and 72.7 10  for 

three different uniform grids 65², 129² and 261². The time evolutions of the dipole height 

match well for the three resolutions at 6Ra 10 . Although a slight time shift is present at 
7Ra 2.7 10   in the early stages for the lower resolution 652, the three grids produce the 

same long-term evolution with a relative difference less than 1%. 

 
Figure 2.6. Time evolution of the dipole height for grid resolutions [652; 1292; 2612] at 

6Ra 10  and 72.7 10 . 

Furthermore, Desrayaud and Lauriat (1993) highlighted a transition of the 2D plume from 

stationary to mono periodic motion through a Hopf bifurcation. They determined the value 

of the critical Rayleigh number (Ra )c  close to 73.0 10  by linear extrapolation of the square 

of the amplitudes for velocity and heat flux fluctuations to a zero value. Later on, Bastiaans 

et al. (2000) obtained the critical value of 72.8 10  by using a more accurate spectral element 

method than the finite volume method used by Desrayaud and Lauriat.  



Chapter 2. Numerical modelling 

37 

 
Figure 2.7. Bifurcation diagram for the 1292 grid resolution. 

In the present study, a linear extrapolation method is applied to the square of the u-velocity 

oscillations for the uniform 652, 1292, and 2612 points grids leads to respective Rac  values 

of 72.782 10 , 72.799 10  and 72.815 10 , very close to the one obtained by Bastiaans et al. 

(2000). Figure 2.7 presents the bifurcation diagram for the 1292 grid resolution obtained for 

the horizontal velocity fluctuations at the point (0.25, 0.5). It confirms that the amplitude of 

the velocity fluctuations behaves like 1/2(Ra Ra )c , and the supercritical nature of the Hopf 

bifurcation as stated by Desrayaud and Lauriat.  

   

   
Figure 2.8. Periodic flow at 7Ra 2.81 10  . Density power spectra of u , v  and   at the 

monitoring points A and B. 

Above the critical Rayleigh value, the dynamic behavior of the oscillating flow can be 

examined by analysing the power spectra of fluctuating parameters. The spectra are estimated 

through a fast Fourier transform (FFT) algorithm with an oversampled time series data to 
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yield a sufficient effective sampling period et . The length of FFT has been chosen at 

4096N   points to obtain a good spectral resolution. Desrayaud and Lauriat (1993) obtained 

the fundamental frequency and its harmonics by applying power spectra to the periodic flow. 

In the present work, the normalized power spectra are calculated for the velocity components 

u , v  and temperature   at two monitoring points A and B (cf. Figure 2.9)  for 
7Ra 2.81 10   with the 1292 grid resolution, as shown in Figure 2.8. 

At the point A, the frequency peaks are at the same positions for velocity components and 

temperature spectra, indicating a pure periodic flow whose fundamental frequency is 

0 287.6f  . For the point B, located along the vertical centerline, only 0f  and its even 

harmonics are present for u , while they are absent for w  and  . The absence of the even or 

odd harmonics in spectra is also found in Desrayaud and Lauriat (1993). The reason is the 

symmetry of the periodical fluid motion with respect to the centerline 0.5x  . 

 
Figure 2.9. Monitoring points A and B and iso-contours of instantaneous temperature field 

at 7Ra 2.81 10  . 

2.2.2 Validation of the DOM method 

Validation of the implementation of the radiative module in SUNFLUIDH,  is done by 

considering the pure radiation case  considered by  Soucasse et al. (2012). It consists in a 

cubic cavity of size 1 mH  , with perfectly diffuse gray walls of emissivity 0.5  . The 

cavity contains a gray gas with absorption coefficient 11 m  . All the walls are maintained 

at 0 300 KT  , while the temperature field in the cavity is imposed according to: 

2 2 2
0 0 0 0( ,  ,  ) ( ( ) ( ) ( ) )T x y z T T exp x x y y z z          , with 10 KT   and ( 0x , 0y , 

0z ) = (0.25, 0.25, 0.25).  

Soucasse et al. (2012) performed the simulation with a Monte Carlo method, which can 

be considered as a reference method due to its accuracy, on a uniform grid of 423 cells. In the 

present work, the simulation is based on DOM method with a uniform grid of 803 cells. Figure 

2.10 and Figure 2.11 compare the iso-contours of the radiative flux in the planes 0 mx   

and 1 mx  , as well as the radiative volumetric power in the planes 0.25 mx   and 
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0.75 mx  . Our results using S8-approximation show a very good qualitative agreement with 

those obtained by Soucasse et al. This is also confirmed by radiative wall flux and radiative 

volumetric power profiles plotted in Figure 2.12, which presents a very good agreement with 

those obtained by the Monte-Carlo method. 

A comparison between S8- and S12-approximation (involving respectively 80 and 168 

discrete directions) is made in terms of radiative flux and radiative volumetric power along 

different x-lines. As shown in Figure 2.13, it is found that the S8-approximation is sufficient 

to resolve the radiative transfer problem.  

 

 

 

 
Figure 2.10. Iso-contours of the radiative flux at the planes 0 mx   and 1 mx  . (Top) 

present study, (bottom) reference case. 
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Figure 2.11. Iso-contours of the radiative volumetric power at the planes 0.25 mx   and 

0.75 mx  . (Top) present study, (bottom) reference case. 

 

  

(a) radiative wall flux at (A) 
0.25 my  , 1 mz   and (B)  

0.25 my  , 0 mz  . 

(b) volumetric radiative source at (A) 
0.25 my  , 0.25 mz   and (B)  

0.25 my  , 0.75 mz  . 

Figure 2.12. Profiles of radiative net flux at the walls and volumetric radiative power, 
compared with the results of Soucasse et al. (2012). 
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Figure 2.13. Comparison of S8- and S12-approximation, (a) profiles of radiative wall flux 

along the lines A( ,  0.25 m,  1 mx ) and B( ,  0.25 m,  0 mx ), (b) profiles of radiative 

volumetric power along the lines C( ,  0.25 m,  0.25 mx ) and D( ,  0.25 m,  0.75 mx ). 

2.2.3 Validation of the real gas model 

The real gas model is validated in this section by performing a case of convection-

radiation coupling in a differentially heated cavity, also based on Soucasse et al. (2012). The 

configuration considers a cubic cavity ( 1 mH  ) filled with a real gas mixture air/H2O/CO2 

at atmospheric pressure and a mean temperature 0 300 KT  .  

The simulation is carried out at 6Ra 10  with the Planck number equals to 
-7Pl 6.23 10   and the temperature ratio 0 27522  . Among the works presented by 

Soucasse et al. (2012), we applied the configuration (B) that considers a participating medium 

with emissivity 1   on the vertical isothermal walls and 0   on all the adiabatic walls. In 

the present case, we only consider an air + H2O gaseous mixture with (
2H O 2%X  ), and not 

CO2 as Soucasse et al. did. Note that the air + H2O mixture is also applied in the works of 

Billaud et al. (2017), for validation of the SLW model in the same configuration. Neglecting 

CO2 in this low 0T  configuration does not affect the results.  

Considering the numerical aspects, Soucasse et al. (2012) used a ray tracing method to 

solve the RTE equation, along with the real gas model ADF. Their calculations were 

performed on a mesh of 813 points within the flow and 403 points for the radiation field. In 

our simulations, the spatial domain is discretized with a wall-refined 1003 cells repartition 

both for the flow and the radiative problem. The angular domain decomposition is performed 

through S8 quadrature set and the spectral modelling of the real gas considers 8 gray gases. 

Table 2.2 gives a comparison of different local or global quantities. It shows a good 

agreement between the present work and the reference. The y-averaged temperature profiles 

along the lines 1z   and 0.5x  , as well as the volumetric radiative power ( r ) profiles 

reported in Figure 2.14 and Figure 2.15 agree very well with those obtained by the ray tracing 

method and prove the ability of our method in dealing with real gas radiative problems. 
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Case present reference 

, Nuc hot  7.51 7.55 

, Nu r hot  121.28 120.58 

maxu  0.232  0.231  

maxv  0.059  0.060  

maxw  0.296 0.296 

Elapsed time 

Processors 

5h 

8 

170h 

94 

Table 2.2. Convective and radiative Nusselt numbers, velocity maximums, and elapsed 
computing time, compared with Soucasse et al. (2012). 

 

  
Figure 2.14. Left: temperature profile at the line ( ,  ,  1x y ). Right: vertical temperature 

profile at the line ( 0.5,  ,  y z ). Results are compared with Soucasse et al. (2012). 

 
Figure 2.15. Profile of dimensionless radiative volumetric power along the line (x, 0.5, 0.5), 

compared with Soucasse et al. (2012). 
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2.3 Conclusion 

The numerical methods for solving the convection governing equations and the radiative 

heat transfers have been introduced in this chapter. The simulations are performed with the 

CFD software SUNFLUIDH coupled to a DOM module for the radiative problem with either 

grey gas approximation or SLW model for real gases. The code has been validated first in 

the case of a confined 2D plume in the pure convective case, through the study of the onset 

of unsteadiness of the flow compared with existing data. Then the DOM method and the real 

gas model SLW have been validated in the case of differentially heated cavity by comparison 

to reference results of the literature. In the next chapter, we will focus on a pure convective 

3D plume in a cubic cavity to study the plume behavior at different flow regimes. 
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Chapter 3 

Results for the pure convective situation 

3.1 Simulations characteristics  

In the following studies, we consider a pure convective plume generated by a line heat 

source in a confined cubic cavity, as described in section 1.1. This chapter is divided into 

three parts according to the different flow regimes: steady, transitional and turbulent. The 

numerical simulations have been carried out at Rayleigh numbers varying from 610  to 910 .  

Table 3.1 lists a summary of simulations characteristics with corresponding flow regimes.  

Regime Rayleigh Mesh 
Grid distribution  

(x, y, z) 
Time step 

Steady 610  129 129 129   Uniform 52.0 10  

Transitional 

61.2 10  

129 129 129   Uniform 

52.0 10  
62 10  51.6 10  
65 10  51.0 10  

71.2 10  67.5 10  

Turbulent 910  192 192 512   (Tanh, Tanh, Uniform) 73.0 10  

Table 3.1. Summary of simulations characteristics in pure convective case and 
corresponding flow regimes. 

All the simulations were performed with a fixed time step which corresponds to a 

maximum CFL number of 0.45. Concerning the grid distribution, we apply first a uniform 

1293 grid for simulations of steady and transitional flows. This mesh distribution is referring 

to the previous 2D configuration in which the line source occupies one cell in the xz-plane. 

For the turbulent simulation, we apply a non-uniform grid distribution in order to refine the 

computational regions close to the line heat source and to the walls by using a hyperbolic 

tangent law. This grid distribution is checked a posteriori with the Grötzbach (1983) 

requirement (cf. section 1.2.5) and is defined as follows 
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The parameters used in the non-uniform mesh, and the corresponding minimum and 

maximum cell sizes are reported in Table 3.2. The x-distribution of the grid is divided into 3 

sections to refine the regions close to the heat source and lateral walls by providing cell sizes 

equal to 31.95 10  and 34 10 , respectively. We also note that the line source region 

occupies 4 4  cells in the xz-plane which allows a similar xz-surface area as the line source 

defined in the uniform 1293 grid. In the following, the time series data are monitored at four 

points (A1, B1, A2, B2) in planes 0.25y   and 0.5. The existence of unsteady solutions 

(periodic or chaotic) can be assessed by analyzing the power spectra at these monitoring 

points. Figure 3.1 illustrates their locations on a snapshot of the temperature field at 
6Ra 1.2 10  . 

Direction  x  y z 

L  0.4961 37.8 10  0.4961 1 1 

N  94 4 94 192 512 

  0.69 Regular 1.43 1 Regular 

  1.89 Regular 1.89 1.30 Regular 

min( )  31.95 10  31.95 10  31.95 10  34 10  31.95 10  

max( )  37.25 10  31.95 10  37.25 10  36 10  31.95 10  

Table 3.2. Characterization of mesh distribution at 9Ra 10 . 

 

Figure 3.1. Monitoring points A1/2 and B1/2, the subscripts 1 and 2 represent planes 

0.25y   and 0.5y  , respectively. Iso-contours of instantaneous temperature at 
6Ra 1.2 10  . 
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3.2 Steady regime 

A 3D steady plume flow at 6Ra 10  is simulated first and compared to the corresponding 

2D one. Figure 3.2 and Figure 3.3 display the distributions of isotherms and streamlines for 

both cases. The thermal and kinetic fields of the plume (in the vertical mid-plane 0.5y   for 

the 3D case) are very close: two symmetrical large vortices are formed in which the hot fluid 

moves upward from the heat source, and then descends along the lateral walls to finally feed 

the plume entrainment region close to the source.  

Besides, the temperature field inside the bottom region strongly depends on the thermal 

boundary conditions at the bottom wall, and presents a stagnant fluid layer below the source 

as denoted by the quasi-horizontal thermoclines. The isotherms reported in Figure 3.2 (c) at 

the horizontal mid-plane ( 0.5z  ) indicate that the flow structure is mainly 2D in a large 

central part of the cavity ( 0.2 0.8y  ), while 3D effects remains limited to the vicinity of 

the front and rear walls. 

(a) (b) (c) 

   
 Figure 3.2. 6Ra 10 . Isotherms for (a) 2D case, and (b) 3D case in the vertical mid-plane 

( 0.5y  ), (c) 3D case in the horizontal mid-plane ( 0.5z  ). Contour levels (a), (b) 

(0.02:0.02:0.4), and (c) (0.05:0.01:0.1). 

  
Figure 3.3. 6Ra 10 . Stream function contours for 2D and 3D case in the mid-plane 

0.5y  . 
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3.3 Transitional regime 

3.3.1 Critical Rayleigh number 

Increasing the Rayleigh number to 61.2 10 , we observed an unsteady flow, which 

remains present for higher Rayleigh values. This indicates the existence of a transition to 

unsteadiness in the range of 6Ra = 10  to 61.2 10 . Figure 3.4 shows the bifurcation diagram 

obtained from the amplitude of the fluctuations of horizontal velocity u  at the point A2 (cf. 

Figure 3.1). As observed in the 2D case, the amplitude of the fluctuations behaves like 
1/2(Ra Ra )c , which is a typical feature of Hopf bifurcation. By using the linear extrapolation 

method on the square of the horizontal velocity fluctuations, the critical value is obtained at 
6Ra 1.01 10c   , that is a decade smaller than in the 2D case. This proves that the 3D flow is 

less stable than the 2D case.  

 
Figure 3.4. Bifurcation diagram of the amplitude of the horizontal velocity fluctuation at 

the point A2. 

6Ra 10  f  1/2(Ra Pr) / f  

1.02 73.88 11.51 

1.03 74.51 11.47 

1.05 75.11 11.49 

1.06 74.16 11.69 

1.07 74.77 11.65 

1.08 74.76 11.71 

Table 3.3. Frequencies at the monitoring point A2 compared to the Brunt Vaïsälä frequency. 

The Hopf bifurcation can also be evaluated by the relationship between the Brunt Vaïsälä 

frequency and the oscillating frequency. According to eq. (1.19), the ratio /BVf f  is nearly 

constant around the threshold, and the Brunt Vaïsälä frequency BVf  can be expressed as 

1/2(Ra Pr)  by applying an approximation of the stratification value. Table 3.3 reports the 
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dimensionless frequencies of the horizontal velocity oscillation at the point A2 in the vicinity 

of Rac . It shows that the present frequencies well support the Brunt Väisälä relationship. 

3.3.2 Periodic regime description 

Figure 3.5 presents the time evolution, starting from rest, of the total 2D Nusselt number 
2DNu total  at 6Ra 1.2 10  . It can be seen that in a first stage, the total heat flux at the walls 

increases until 2DNu 1total  . Then, after a long apparent steady state, an oscillating motion 

appears with a period 2(Nu ) 0.013D
totalT  . The normalized spectrum of 2DNu total  reported in 

Figure 3.5 shows a fundamental frequency 2(Nu )D
totalf  equals to 76.9, and its harmonics. 

  
Figure 3.5. Periodic flow at 6Ra 1.2 10  . Time evolution (left) and power spectrum 

(right) of the total Nusselt number 2DNu total . The red points are marked to identify three 

specific instants displayed in Figure 3.6. 

Figure 3.6 displays the snapshots of the thermal fields in three vertical planes 0.25y  , 

0.5 and 0.75 at three different instants within one period, as marked in Figure 3.5 (red dots). 

A swaying motion is clearly visible in the planes 0.25y   and 0.75 with opposite spatial 

phases and antisymmetric thermal distributions with respect to the vertical centerline 

0.5x y  . For symmetry reasons this swaying motion is not observed in the mid-plane 

0.5y  , but a pulsating growth of the plume.  

To explain this antisymmetric swaying motion along the y-direction, the iso-surfaces 

0.09   are illustrated in Figure 3.7 at the same three instants. We observe that a stationary 

plane wave propagates along the direction of the line heat source with a half-wavelength 

close to the cavity depth. It confirms that the 3D plume not only sways in the plane 

perpendicular to the source direction but also meanders in the cavity, as observed in the 

experimental works of Eichhorn and Vedhanayagam (1982) and Urakawa et al. (1983). 

Moreover, the plume shape is found antisymmetric along the y-direction. Its upward 

extension is almost constant in the central part of the cavity ( 0.2 0.8y  ), while the 3D 
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effects near the front ( 0y  ) and rear wall ( 1y  ) correspond to the suction of the plume 

through the wall. 

(a) 

   
(b) 

   
(c) 

   

Figure 3.6. 6Ra 1.2 10  . Snapshots of the temperature fields at three depths 
[0.25;  0.5;  0.75]y   for three different instants marked in Figure 3.5 by red points. 

Contour levels (0.02:0.02:0.4). 

   
Figure 3.7. 6Ra 1.2 10  . Iso-surfaces of 0.09   at three different instants. (marked by 

red points in Figure 3.5). 
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The periodic nature of the swaying motion is then analysed by means of the normalized 

power spectra in Figure 3.8. The spectra are given for the velocity components u , w  and the 

temperature   at two monitoring points A1 and B1 in a vertical plane ( 0.25y  ) away from 

the vertical mid-plane. A1 is placed outside the plume zone while B1 is inside the plume zone, 

but far above the heat source (see Figure 3.1 for their exact locations). At the point A1, the 

same fundamental frequency and its harmonics are observed in three spectra. The 

fundamental frequency is located at 1 38.45f   which characterizes the swaying motion of 

plume. At the point B1, only the fundamental and the odd harmonics are present for u  while 

only the even harmonics appear for w  and  . This is due to the symmetry of the periodic 

motion with respect to the centerline 0.5x  . 

 

Figure 3.8. 6Ra 1.2 10  . Normalized density power spectra for u , w  and   at the 
monitoring points in the plane 0.25y  .  

Point Component 1f  12 f  13 f  14 f  15 f  

1A  

u  38.45 76.90 115.35 153.80 192.87 

w  38.45 76.90 115.35 153.80 192.87 

  38.45 76.90 115.35 153.80 192.87 

1B  

u  38.45  115.35  192.87 

w   76.90  153.80  

   76.90  153.80  

Table 3.4. 6Ra 1.2 10  . Frequency peaks at the monitoring points in the plane 0.25y  . 
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As shown in Figure 3.6, the swaying plume moves alternatively between the right and left 

sides of the cavity. Consequently, the horizontal oscillation at point B1 respects a half-wave 

symmetry, i.e. 1( ) ( / 2)u t u t T    with the period 1 11/T f . This half-wave symmetry is 

responsible for the disappearance of the even harmonics in u-spectrum at point B1. As the 

oscillations for w  and   are repeated twice over one cycle of the swaying motion, their main 

frequency is twice the fundamental 1f . Figure 3.9 plots the time evolutions of  u , w  and   

at the monitoring points. It can be seen that the time evolutions of u , w  and   at point B1 

follow the relationships 1( ) ( / 2)u t u t T   ; 1( ) ( / 2)w t w t T  ; 1( ) ( / 2)t t T    . 

   

   

Figure 3.9. 6Ra 1.2 10  . Time evolution for u , w  and   at the monitoring points in the 
plane 0.25y  . 

 

Figure 3.10 and Figure 3.11 present the power spectra of u , w  and   at the monitoring 

points A2 and B2 in the mid-plane 0.5y   which exhibits a pulsating movement. The u-

spectrum at point B2 is not present here because the horizontal oscillation at this location can 

be neglected (see Figure 3.12). Table 3.5 gives the locations of the frequency peaks in the 

spectra. We observe that only the even harmonics are present for u , w  and   in the mid-

plane, with respect  to the antisymmetric mode through the y-direction. 
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Figure 3.10. 6Ra 1.2 10  . Density power spectra for u , w  and   at the point A2 in the 
plane 0.5y  . 

  

Figure 3.11. 6Ra 1.2 10  . Density power spectra for u , w  and   at the point B2 in the 
plane 0.5y  . 

Point Variable 12 f  14 f  

2A  

u  76.90 153.80 

w  76.90 153.80 

   76.90 153.80 

2B  
w  76.90 153.80 

   76.90 153.80 

Table 3.5. 6Ra 1.2 10  . Frequency peaks at the monitoring points in the plane 0.5y  . 
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Figure 3.12. 6Ra 1.2 10  . Time evolution for u , w  and   at the monitoring points in the 
plane 0.5y  . 

3.3.3 Transition to chaos 

In order to observe the transition of plume to chaos, further simulations have been carried 

out at three Rayleigh numbers 6Ra = 2 10 , 65 10  and 71.2 10 . The corresponding power 

spectra of u , w  and   at the monitoring points A1 and B1 in the plane 0.25y   are 

presented in Figure 3.13 to Figure 3.15, respectively. If dominant frequencies can be well 

identified in the spectra at 6Ra = 2 10 , they progressively disappear with the increase of Ra 

and the gradual transition to chaos. 

At 7Ra 1.2 10  , a dominant frequency peak 1 84.36f   can still be identified in all 

spectra at the point A1 and in the u-spectrum at the point B1, indicating that the swaying 

motion of the plume still exists. In addition, the well-known -5/3 Kolmogorov power law 

seems to be present in a small range of frequency in the velocity spectra at far-field point A1. 

It may indicate that the flow inside the cavity is weakly turbulent at 7Ra 1.2 10  . Besides, 

a decay following a -3 power law appears in the temperature fluctuations spectrum at the 

monitoring point B1 located in the plume plane. This slope is a typical feature of turbulent 

buoyancy induced flows, (Kotsovinos, 1991; Pham et al., 2007) as an example, and is 

interpreted as a characteristic effect of the buoyancy forces in the conversion of potential 

energy into kinetic energy (Kotsovinos, 1991). We can notice that the temperature spectrum 

at the monitoring point in the far-field of the plume (A1) is affected by both phenomenon: the 

turbulent behavior of the far field and the buoyancy induced dissipation. 
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Figure 3.13. 6Ra 2 10  . Density power spectra of velocity components u , w  and 
temperature   at the monitoring points. 

 

Figure 3.14. 6Ra 5 10  . Density power spectra of velocity components u , w  and 
temperature   at the monitoring points. 

 

 



Chapter 3. Results for the pure convective situation 

56 

 

 

Figure 3.15. 7Ra 1.2 10  . Density power spectra of velocity components u , w  and 
temperature   at the monitoring points. Dotted trendline: -5/3 power law, solid trendline: -

3 power law. 

 

Snapshots of the instantaneous thermal fields at 7Ra 1.2 10   in the planes 0.25y  , 0.5 

and 0.75 are displayed in Figure 3.16. They show that, even if the primary laminar structure 

remains above the source, the temperature field is disturbed in the rest of the cavity as the 

result of the developing instabilities. Moreover, the antisymmetric mode along the y-direction 

is destroyed at this Ra number. 

 
Figure 3.16. 7Ra 1.2 10  . Snapshots of the instantaneous temperature fields at three 

depths [0.25;  0.5;  0.75]y  . Contour levels (0.02:0.02:0.4). 
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3.4 Turbulent regime 

3.4.1 Time and grid space convergence 

To investigate the turbulent behavior of plumes, simulations were carried out at 9Ra 10  

by increasing progressively the Rayleigh number from previous results. Figure 3.17 shows 

the time evolution of the total Nusselt number 2DNu total . After a transient period up to 0.07t   

the flow is statically established, and statistics are performed up to 0.16t   (approximately 

2 hours in real time for the statistics accumulation).  

  
Figure 3.17. 9Ra 10 . Time evolution of the total Nusselt number. 

The simulation was launched on the Ada supercomputer of Idris Center using 64 

processors of a 2.67 GHz IBM x3750M4. The total CPU consumption was about 8 000 h for 

a total dimentionless time 0.16t  . 

 
Figure 3.18. 9Ra 10 . Normalized distribution of the density probability function of the 

axial velocity v  at point B2. Solid line: present results. Circular marker: Gaussian 
distribution with the same mean and standard deviation values. 

Statistically 
established 

flow  

Transient 
phase  
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Figure 3.18 presents the probability distribution functions (PDF) of the axial velocity v  

at the monitoring point B2 (cf. Figure 3.1) over the statistical time interval [0.06,  0.14]t . 

It is observed that the mean value of PDF distribution is located around 0v  , from which it 

can be deduced that the symmetry of fluid motion along the source direction is well 

established in the mid-plane 0.5y  . In addition, the PDF profile follows a  Gaussian 

distribution, which is also observed in the works of Bastiaans et al. (2000). 

To ensure sufficient grid resolution, a comparison between the grid size 1/3( )r x y z      

and the Kolmogorov scale k  is done over the global domain. It is found that the maximum 

of the ratio / kr   in the global domain equals 0.641, which well satisfies the Grötzbach 

requirement (cf. section 1.2.5). Figure 3.19 displays the distribution of this ratio in the mid-

plane 0.5y  . The Grötzbach requirement is always well respected, and the need for the finer 

grid resolution is encountered close to the top wall, that is in the impinging regions of the 

plume. 

 
Figure 3.19. 9Ra 10 . Ratio of the grid size compared to the Kolmogorov scale in the mid-

plane 0.5y  . 

 

3.4.2 Instantaneous fields 

Snapshots of the temperature  in the planes 0.5y   and 0.5x   are displayed in Figure 

3.20. It is shown that in the mid-plane 0.5y  , the laminar structure is still present above the 

source while small structures are created at larger heights where the plume becomes turbulent. 

Below the source, the thermocline is maintained but is affected by the returning eddies from 

the upper part. Along the y-direction, it can be seen that the turbulence structures also mainly 

exist in the high part of the cavity. 
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Figure 3.20. 9Ra 10 . Instantaneous fields of temperature   in the planes 0.5y   and 

0.5x  . 

For turbulent flows, the identification of the vortex structures allows to better understand 

the flow dynamics. The most widely used local methods for vortex identification are based 

on the analysis of the velocity-gradient tensor = Su +  , its symmetric and antisymmetric 

parts are strain-rate tensor S  and vorticity tensor  , respectively, and can be written as 

follows 
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We use here the Q criterion (Hunt et al., 1988) defined by 
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where  is the tensor norm, which expresses for any tensor G, as 1/2[tr( )]TG GG . 

This criterion, introduced by Hunt et al. (1988), is based on the second invariant of u  

for incompressible flows, and represents the local balance between shear strain rate and 

vorticity magnitude. Numerous analyses done on various flows (isotropic turbulence, free-

shear layers, separated flows, wall flows, etc.) show that the coherent vortices are well 

characterized by the positive iso-surfaces of Q. 

Figure 3.21 presents the distribution of Q criterion at the same instant as the snapshots of 

Figure 3.20. It can be seen that the vortices are created along the linear heat source, and 

develop and enlarge in an ascendant motion up to 0.6z  . This development of unsteady 

large structures mainly characterizes the laminar region close to the heat source, as observed 

in Figure 3.20. Further downstream, the vortices rapidly roll-up, stretch and break down to 

turbulence. In the downstream after the collision on the top wall, some vortices are also 

produced within the descending motion of plume. 



Chapter 3. Results for the pure convective situation 

60 

 
Figure 3.21. 9Ra 10 . Iso-surface of instantaneous Q criterion colored by temperature 

( 8Q 10 ). 

3.4.3 Time-averaged fields 

The distributions of time-averaged temperature  , 2D kinetic energy kE  and streamlines 

are displayed in Figure 3.22. The mean flow moves upward from the heat source, then 

descends along the lateral walls, and finally feed the plume entertainment region close to the 

source, which forms two recirculating regions in the cavity. Below the source, there exists 

always a region of quasi-horizontal thermoclines.  

(a) (b) (c) 

   

Figure 3.22. 9Ra 10 . Time averaged distributions of (a) temperature  , (b) 2D kinetic 

energy kE , and (c) stream function   in the mid-plane 0.5y  . Contour levels 

0.002 : 0.002 1[ ]: 0.  , 4 4 55 10 : 5 10[ ]: 5 10kE     and  40 : 20 : 220  . 

To visualize the spatial distribution of plume, the mean fields of kinetic energy in different 

planes are shown in Figure 3.23. It is observed that the mean flow structure is nearly uniform 

along the linear heat source direction in the central part of the cavity, and that 3D effects are 

only present near the front and rear walls. The distributions of the mean kinetic energy in the 

three y-planes also indicates that the flow structures are approximately maintained along y-

direction. 
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(a) (b)  

  
 

Figure 3.23. 9Ra 10 . Spatial distribution of time-averaged kinetic energy in the planes (a) 
[0.2;  0.5;  0.8]x   and 0.5z  , and (b) [0.2;  0.5;  0.8]y  . 

3.4.4 Second order moments and time spectra 

The distribution of temperature fluctuations at mid-depth 0.5y   is shown in Figure 3.24. 

We observe that the temperature fluctuations are more concentrated around the line source 

due to its high temperature level generated. Figure 3.25 displays the distribution of velocity 

fluctuations ( )i rmsu  and the turbulent kinetic energy 2 2 2( ) / 2rms rms rmsk u v w    in the mid-

plane 0.5y  . As described for the instantaneous fields, the velocity fluctuations and the 

turbulent kinetic energy are found more important in the upper part of cavity. The profiles of 

( )i rmsu  and rms  along the centerline 0.5x y   are plotted in Figure 3.26. It is observed that 

the velocity fluctuations reach the maximum levels near the top wall, especially for rmsu  and  

rmsv  which presents a sharp increase in the top layer. The fluctuations rmsu  also presents a 

local maximum at the heat source position due to the entrainment in the near-source region 

of plume. As for rms ,  the absolute maximum is located at the source position, and a local 

maximum is present very near the top with the impingement of the plume. 

[0.0015 : 0.0015 : 0.03]rms   

 
Figure 3.24. 9Ra 10 . Isocontours of the temperature fluctation rms  in the mid-plane 

0.5y  . 
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[50 : 50 : 500]rmsu   [50 : 50 : 700]rmsv   

  
[100 :100 : 700]rmsw   4 4 5[4 10 : 4 10 : 4 10 ]k      

  

Figure 3.25. 9Ra 10 . Isocontours of the velocity fluctations ( )i rmsu , turbulence kinetic 

energy k  in the mid-plane 0.5y  . 

 
Figure 3.26. 9Ra 10 . Vertical profiles of  the velocities and temperature fluctuations 

along the centerline 0.5x y  . 

The u , w  and   power spectra at the monitoring points A2 and B2 in the mid-plane 

0.5y   are plotted in Figure 3.27. A2 is placed outside the plume zone while B2 is inside the 

plume plane, but far above the heat source (cf. Figure 3.1). The -5/3 Kolmogorov power law 

is suspected in all the spectra, indicateing that a fully developed turbulent flow is achieved 

in the plume plane as well as in the far-field of the plume. For the temperature spectra at the 

two monitoring points, a quite rapidly decay following -3 power law is observed at the highest 
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frequencies. This is a typical feature of turbulent buoyancy induced flows (Kotsovinos, 1991), 

and was previously observed at 7Ra 1.2 10   (section 3.3.3). Besides, we notice that at point 

B2, the frequency domains of the spectra are slightly broader than at point A2, revealing a 

higher turbulence level in the plume plane. These spectra also confirm that the resolution is 

fine enough to capture the smallest scales. 

  

  

  

Figure 3.27. 9Ra 10 . Density power spectra of u , w , and   at the points A2 and point B2 
in the mid-plane 0.5y  . Dotted trendline: -5/3 power law, solid trendline: -3 power. 

3.5 Conclusion 

The evolution of a 3D plume in pure convective case (i.e. neither gas nor wall radiation) 
has been investigated throughout the transition from steady-state to turbulent behavior. The 
thermal and kinetic properties of plumes were studied at different flow regimes. We found 
that the transition to unsteadiness occurs through a supercritical Hopf bifurcation. In the 
succeeding time periodic regimes, the flow structure combines an antisymmetric oscillating 
mode along the heat source direction and a swaying motion of the plume in each transverse 
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plane with respect to the vertical centerline. The turbulent flow was finally analysed, which 
destroys the antisymmetric mode and presents turbulence structures mainly in the upper part 
of the cavity. To emphasize the influence of gas radiation on the flow behavior and thermal 
transfers, different gaseous media will be introduced in the following chapter. 
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Chapter 4 

Convection-radiation coupling  

Convection-radiation coupling is finally studied by introducing gray gas at various optical 

thicknesses (  ) or real gaseous mixture of dry air and water vapor with a fixed molar fraction 

( aX ) of H2O over the whole domain. Simulations are performed at various Rayleigh numbers 

from 106 to 109 to examine the influence of gas radiation at different flow regimes. 

4.1 Simulations characteristics 

In this chapter, the effects of governing parameters ( Ra ,  , aX , refT ) are discussed. The 

results of coupled transfers are compared with those obtained in the pure convective 

configuration, where the fluid is assumed to be transparent and the walls purely reflective. 

Table 4.1 specifies the different Rayleigh numbers considered and the flow regimes observed. 

Note that the mesh distribution and the time step used in the coupled simulations are based 

on the pure convective simulations at the same Rayleigh number. 

Regime Rayleigh Gas media 

Steady 

610  Gray gas [0.1;  0.2;  0.5;  1;  2;  5]   

62 10  

Gray gas [0.1;  0.2;  0.5]   

Real gas 2%aX   at 300 KrefT   

Real gas [2%;  10%;  20%]aX   at 500 KrefT   

65 10  Gray gas [0.1;  0.2;  0.5]   

71.2 10  Gray gas 0.5   

Transitional 71.2 10  
Gray gas [0.1;  0.2]   

Real gas 2%aX   at 300 KrefT   

Turbulent 910  
Gray gas 0.1   

Real gas 2%aX   at 300 KrefT   

Table 4.1. Considered configurations in the case of convection-radiation coupling at 
different Rayleigh numbers and corresponding flow regimes. 
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4.2 Steady regime 

4.2.1 Gray gas: effects of the optical thickness 

To study the influence of gas radiation, we applied the assumption of gray gas in this 

section. The simulations were performed at 6Ra 10  with various optical thicknesses  . 

Two additional parameters are fixed: the Planck number at 7Pl 5.61 10   and the 

temperature ratio at 0 30473.1  . Note that the simulation using gray gas approximation 

has no dependency on the reference temperature refT . 

Table 4.2 specifies the different considered configurations. Case (A) corresponds to a pure 

convection configuration, i.e. 0r   in the medium and 0net
rq   at the walls. This case has 

been documented in the previous section 3.2 and will serve as a reference to assess the 

radiation effects.  

Configuration (A) (B) (C) (D) 

Gas medium Transparent Gray gas Gray gas Gray gas 

Optical thickness 0   0.1   0.2   0.5   

Isotherm walls 0   1   1   1   

Adiabatic walls 0   0   0   0   

Table 4.2. 6Ra 10 . Different considered configurations. 

The results obtained for each configuration at 6Ra 10  reveal a steady-state regime. 

Figure 4.1 displays the steady distributions of temperature  , stream function and 2D kinetic 

energy kE  at mid-depth 0.5y   for the different cases. When gas radiation is considered, a 

decrease of the spatial spreading of the thermal field is observed. As   increases, the 

temperature field is gradually homogenized in the regions next to and above the source, as 

radiation becomes the dominant heat transfer mode in the cavity. Moreover, the temperature 

distribution in the far-field of the plume is also changed: the fluid out of the plume is quasi-

isothermal for the gray gases in contrast of the case (A), where a stratification is established 

in the cavity. It should be noticed that at 0.5  , all the isotherms tend to be concentrated 

around the heat source.  

Regarding the kinetic fields, when   increases, the maximum of the stream function and 

the density of streamlines gradually decrease, but the global flow circulation still fills the 

domain above the source. Meanwhile, a reduction of the kinetic energy is clearly visible in 

Figure 4.1. Therefore, gas radiation tends to decrease the flow intensity and to weaken the 

global circulation. 
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(A) 

   
(B) 

   
(C) 

   
(D) 

   

Figure 4.1. 6Ra 10 . Iso-contours of temperature, stream function and kinetic energy in the 
mid-plane 0.5y   for the different configurations. Contour levels of temperature 

[0.02 : 0.02 : 0.4] . Contour levels of kinetic energy [1000:1000:10000]. 

Figure 4.2 presents the distributions of radiative power ( 610r  ) at mid-depth 0.5y   

for the different gray media. When the fluid is emitting heat, the radiative source term is 

negative ( 0r  ), while a positive value indicates regions of radiative absorption ( 0r  ). 

It can be seen from Figure 4.2 that the fluid in the inner part of the cavity mainly emits heat 

and in particular the whole plume zone. Conversely, fluid areas close to the walls absorb heat 
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by radiation, and the increase of   induces a spatial extension of the absorption zones in the 

cavity. In addition, it is clearly visible that the radiative power is more important above the 

source due to the high temperature level it generates.  

    =0.1       =0.2       =0.5  

   

Figure 4.2. 6Ra 10 . Distribution of radiative power ( 610r  ) in the mid-plane 0.5y   

at different optical thicknesses. 

   
Figure 4.3. 6Ra 10 . Profiles of radiative power ( 610r  ) in the mid-plane 0.5y   along 

the lines 0.5x   (left) and 0.5z   (right) at different optical thicknesses. 

The profiles of radiative power ( 610r  ) along the centerline 0.5x y   are plotted in 

Figure 4.3 for the different gray media. As expected, the emitting radiative power reaches its 

higher values at and just above the heat source with very sharp gradients. The optically 

thicker the medium, the higher the emitting radiative power in the conduit of the plume 

(especially above the heat source) and the lower in the far field of the plume. It is also noticed 

that the radiative exchanges in the absorption region are very low when compared to the 

emission ones. 

The vertical profiles of   and w along the vertical centerline 0.5x   are shown in Figure 

4.4. Because of the absorption/re-emission mechanisms in the medium, a rapid drop of the 

temperature is produced below and above the line heat source, comparatively to case (A). It 
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also results in a decrease of the temperature values and of the temperature gradients over the 

cavity, leading to a weakening of the thermal plume and to a reduction of its spatial spreading, 

as previously observed in Figure 4.1. Besides, increasing the optical thickness leads to a 

gradual disappearance of the thermal jet impingement on the ceiling (see Figure 4.1 and 

Figure 4.4 (a)). The weakening of thermal plume by radiation also causes a weakening of the 

fluid motion. As shown in Figure 4.4 (b), by increasing the optical thickness, the vertical 

velocity decreases monotonically along the plume axis.  

 (a) (b) 

  
 

Figure 4.4. 6Ra 10 . Vertical profiles of (a) temperature   and (b) vertical velocity w 
along the line 0.5x y  . 

The horizontal profiles of   and w  are plotted in Figure 4.5 for the different 

configurations. At the different heights, there is a significant downward shift of temperature 

values when gas radiation is accounted for. Concerning the vertical velocity, the profiles are 

quite similar in all the cases at 0.3z  , where the fluid motion has just been initiated. For 

0.5z   and 0.7z  , a decrease of the vertical velocity maxima is observed with the growth 

of  , indicating again that gas radiation reduces the strength of the plume. 

In order to compare the plume structure, the profiles of the reduced temperature av , 

where av  is the x-averaged temperature along the cavity width, are plotted in Figure 4.6 at 

mid-height 0.5z   of the mid plane 0.5y  . The maximum value of av  gradually 

decreases when   increases in the middle part of plume ( 0.4 0.6x  ), showing again the 

homogenization effect of gas radiation on temperature field.  

In addition, it is found that the middle part of these profiles respects a Gaussian distribution. 

The full widths gW  of the Gaussian distribution at the mid maximum value ( 2.355gW    , 

  being the standard deviation) are calculated for the different cases and increase with the 
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optical thickness of the gas: W  (A) 0.1107, (B) 0.1154, (C) 0.1201, (D) 0.1225, 

respectively. 

   

   

 
Figure 4.5. 6Ra 10 . Horizontal profiles of temperature   and vertical velocity w at 

various heights. 

 
Figure 4.6. 6Ra 10 . Profiles of the reduced temperature av  at the line 0.5y z  . 

Circular marker: Gaussian distribution approximating the different profiles. 

Table 4.4  compare the maximum values of temperature and velocity components in the 

mid-depth plane, as well as the convective and radiative Nusselt numbers on the isothermal 

walls. The axial velocity v  is of order 10-8 for the different cases due to symmetry at the mid-

depth. The maximum values of  , u and w decrease when gas radiation is taken into account. 

Gas radiation also redistributes the energy transfer between radiative and convective parts 

along the isothermal walls: the convective flux at the top wall decreases rapidly as   
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increases due to the homogenization effect of radiation on the temperature field, and radiation 

gradually becomes the dominant mode of heat transfer. 

Case   max  maxu  maxv  maxw  2D
, bottomNuc  2D

, topNuc  2D
r, bottomNu  2D

r, topNu  

(A) 0 0.539 94.5 85.1 10  153.9 0.192 0.807 0 0 

(B) 0.1 0.489 79.5 89.6 10  139.8 0.013 0.164 0.379 0.443 

(C) 0.2 0.486 66.4 86.8 10  125.9 0.016 0.069 0.447 0.467 

(D) 0.5 0.471 37.2 83.6 10  99.2 0.026 0.022 0.537 0.414 

Table 4.3. 6Ra 10 . Comparative results between the different configurations. The 
maximum values are evaluated in the mid plane 0.5y  . 

To study the evolution of the Nusselt numbers with the optical thickness, further 

simulations were performed at 6Ra 10  for   varying up to 3, as shown in Figure 4.7. It is 

observed that the convective fluxes at the top and the bottom walls drop down rapidly when 

radiation is considered. From 0   to 0.2, the radiative fluxes Nu r  increase on the top and 

bottom walls. Thereafter, the radiative flux at the top wall decreases with the optical thickness 

and becomes lower than that on the bottom wall. The reason is that the optical path ( l ) from 

the heat source is lower for the bottom wall than for the top wall, which  results in a higher 

attenuation by absorption ( exp( )l ) in the region below the heat source. This phenomenon 

is enhanced for an optically thicker medium, which produces a greater radiative flux at the 

bottom wall. 

 
Figure 4.7. 6Ra 10 . Convective and radiative Nusselt numbers at different optical 

thicknesses. 

Simulations have also been performed at higher Rayleigh numbers 6Ra 2 10   and 
65 10 . At these two Rayleigh numbers, a steady state regime is still observed for 0.1  , 

0.2 and 0.5, while an oscillating regime is present for a pure convective flow (cf. section 
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3.3.3). Table 4.4 gives a comparison in terms of maximum temperature, maximum velocities, 

convective and radiative heat transfer on the top and bottom walls at 6Ra 10 , 62 10  and 
65 10  for all the gas media we considered (the results for the pure convective case are the 

time averaged results).  

Case  (A)   (B)   (C)   (D)  

   0   0.1   0.2   0.5  
6Ra /10  1 2 5 1 2 5 1 2 5 1 2 5 

max  0.539 0.493 0.434 0.489 0.457 0.411 0.486 0.452 0.408 0.471 0.441 0.402 

maxu  94.5 125.2 191.4 79.5 122.4 202.1 66.4 108.9 188.7 37.2 73.3 150.7 

maxw  153.9 201.8 289.8 139.8 194.1 289.7 125.9 179.3 278.3 99.2 144.0 241.5 
2D
, bottomNuc  0.192 0.185 0.151 0.013 0.014 0.014 0.016 0.014 0.013 0.026 0.025 0.022 

2D
, topNuc  0.807 0.813 0.847 0.164 0.215 0.280 0.069 0.111 0.171 0.022 0.031 0.061 

2D
r, bottomNu  0 0 0 0.379 0.346 0.312 0.447 0.407 0.363 0.537 0.503 0.450 

2D
r, topNu  0 0 0 0.443 0.424 0.393 0.467 0.467 0.452 0.414 0.440 0.466 

Table 4.4. Comparative results between the different gas media at three Rayleigh numbers. 
The maximum values are evaluated in the mid plane 0.5y  . 

The radiation effects and the main trends observed when varying the optical thickness, 

discussed in detail for 6Ra 10 , are also valid for the other two Rayleigh numbers:  

(i) The global circulation and the maximum temperature decrease as   increases;  

(ii) Gas radiation stabilizes the plume flow, and then delays the transition to unsteadiness;  

(iii) Gas radiation influences the heat transfer distribution at the isothermal walls, and the 

radiative fluxes become the dominant mode of heat exchanges at these walls;  

(iv) The increase of the Rayleigh number strengthens the global circulation and the 

convective heat transfer at the top wall, as expected. 

4.2.2 Real gas model 

In this section, the real gas model is introduced by considering a gaseous mixture of dry 

air and water vapor at 6Ra 2 10  . Two additional parameters are fixed: the Planck number 

at 6Pl 1.12 10   and the temperature ratio at 0 15236.5  . The molar fraction of water 

vapor is fixed at 2%aX   over the whole domain, and the reference temperature is 



Chapter 4. Convection-radiation coupling 

73 

300 KrefT  . To examine the radiation behavior in real gas, solutions are compared to the 

configurations of pure convection and various gray gases.  

The different considered configurations with the corresponding observed flow regimes are 

reported in Table 4.5. It is shown that, whatever gray media or real gaseous mixture, the 

transition to unsteadiness is delayed by gas radiation. 

Configuration (A) (B) (C) (D) (E) 

Gas medium 
Transparent Gray gas Gray gas Gray gas 

Real gas 
0   0.1   0.2   0.5   

Isotherm walls 0   1   1   1   1   

Adiabatic walls 0   0   0   0   0   

Regime Unsteady Steady Steady Steady Steady 

Table 4.5. 6Ra 2 10  . Different considered configurations and corresponding flow 
regimes. 

Figure 4.8 displays the steady-state distributions of temperature, stream function, and 2D  

energy in the mid-plane 0.5y   for the different participating media, and compared to the 

time-averaged results of the pure convective flow (case A). The presence of gas radiation 

leads to a decrease in the spatial spreading of the plume, as well as a weakening of the global 

flow, whatever gray media or real gas mixture. As described in section 4.2.1, this weakening 

effect is enhanced with the increase of the optical thickness for gray gases. The corresponding 

profiles of temperature   and vertical velocity w along the centerline 0.5x   are plotted in 

Figure 4.9. It is shown that the case (E) using a real gas model is more similar with the case 

(B), for the particular conditions considered here (given H , refT , aX , etc.). 

The distributions of the radiative power at mid-depth 0.5y   are presented in Figure 4.10, 

and the corresponding profiles along the lines 0.5x   and 0.5z   are plotted in Figure 4.11. 

In gray media (case B to D), we observe again that the most part of the fluid emits heat, and 

the radiative emissions are stronger than those obtained at 6Ra 10  (cf. Figure 4.2). It is also 

seen that radiative exchanges in the absorption areas ( 0r  ) are almost negligible 

compared to emission areas, except for the real gas (case E), which shows as well, higher 

absorption levels than in the gray media. In the particular conditions considered for the real 

gas mixture, the emission regions observed for the real gas are close to the optically thin gray 

gas 0.2  . However, the absorption dominant area observed for the real gas corresponds to 

the horizontal layer of cold fluid settled at the bottom part of the cavity, but also to a specific 

area surrounding the heat source and the base of the plume conduit.  
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Figure 4.8. 6Ra 2 10  . Iso-contours of temperature, stream function and kinetic energy in 
the mid-plane 0.5y   for the different configurations. Contour levels of temperature [0.02, 

0.02, 0.4]. Contour levels of kinetic energy [1500:1500:15000]. 
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Figure 4.9. 6Ra 2 10  . Vertical profiles of temperature   (left) and vertical velocity w 

(right) along the centerline  0.5x y  . 

 (B) (C) 

  
(D) (E) 

  
Figure 4.10. 6Ra 2 10  . Distribution of radiative power ( 610r  ) in the mid-plane 

0.5y   for the different participating gas. 

From Figure 4.11, we also observe that the distribution of the radiative power along the 

centerline 0.5x   more approaches that of the case 0.2  . However, in the profile of 

0.5z  , radiative absorption is present in case (E) for the outer regions of the plume, around 

0.4x   and 0.6, but absent for all the gray gases. On the contrary, the  thermal and kinetic 

fields obtained in case (E) are more similar to those of case 0.1   (cf. Figure 4.9). This 

reflects the more complex behavior of this real gas model compared to simpler gray gas 

approximation. 



Chapter 4. Convection-radiation coupling 

76 

 
Figure 4.11. 6Ra 2 10  . Profiles of the radiative power ( 610r  ) in the mid-plane 

0.5y   along the lines 0.5x   (left) and 0.5z   (right) for the different participating 

media.  

Table 4.6 summarizes the maximum temperature and velocities values at mid-depth, and 

the convective and radiative Nusselt numbers on the isothermal walls for the different cases. 

Compared with the pure convection (case A), the general radiation effects obtained in gray 

media are also found in real gas mixture: a reduction of the maximum temperature and the 

global circulation, and a redistribution of the heat transfer at the walls compared to the pure 

convective case. Besides, the radiative fluxes obtained for the real gas are lower than those 

of gray gases, and consequently leads to higher convective transfers. 

Case (A) (B) (C) (D) (E) 

max  0.493 0.457 0.452 0.441 0.457 

maxu  125.2 122.4 108.9 73.3 119.4 

maxw  201.8 194.1 179.3 144.0 191.5 

2D
, bottomNuc  0.185 0.014 0.014 0.025 0.064 

2D
, topNuc  0.813 0.215 0.111 0.031 0.258 

2D
r, bottomNu  0 0.346 0.407 0.503 0.287 

2D
r, topNu  0 0.424 0.467 0.440 0.388 

Table 4.6. 6Ra 2 10  . Comparative results obtained in the different cases. The maximum 
values are evaluated in the mid plane 0.5y  . 

4.2.3 Effects of the water vapor concentration 

In this section, we focus on the effects of the water vapor concentration in the case of real 

gas mixture. Simulations were carried out at the reference temperature 500 KrefT   which 

allows a higher saturated water content in air compared to 300 KrefT  . Three different 
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values of the water vapor concentration are considered at 500 KrefT  : 2%aX  , 10% and 

20%, as reported in Table 4.7. At the new reference temperature, the Planck number is fixed 

at 6Pl 2.44 10   and the temperature ratio at 0 2334.5  . 

The configurations of pure convection and real gas at 2%aX   and 300 KrefT   are used 

as references to compare with these new configurations. The flow regimes corresponding to 

the different configurations are also given in Table 4.7, which reveals a steady sate for all 

radiative participating media while an unsteady state for pure convection. 

Configuration (A) (B) (C) (D) (E) 

Gas medium Transparent Real gas Real gas Real gas Real gas 

Isotherm walls 0   1   1   1   1   

Adiabatic walls 0   0   0   0   0   

refT   500 K 500 K 500 K 300 K 

aX   2% 10% 20% 2% 

T   0.214 K 0.214 K 0.214 K 0.019 K 

Regime Unsteady Steady Steady Steady Steady 

Table 4.7. 6Ra 2 10  . Configurations considered to study the effect of water vapor 
concentration. 

Figure 4.12 displays the steady-state distributions of isotherms, stream function, and 

kinetic energy in the mid-plane 0.5y   for the different real gaseous media compared to the 

time-averaged convective flow. Among the configurations at 500 KrefT  , the growth of aX  

drags a decrease of the spatial spreading of the thermal plume by increasing the 

absorption/emission effects of the mixture. Especially, at 20%aX  , the thermal plume is 

reduced in a very small region around the heat source. Consequently, the increase of aX  

decreases the stream function maximum, the density of streamlines and also the kinetic 

energy. These observations in real gas mixture confirms the results obtained in gray media, 

i.e. gas radiation tends to reduce the spatial spreading of the thermal plume, and then 

homogenize the temperature field and weakens the global circulation. Besides, for cases (B) 

and (E), in which the water vapor concentration is fixed at 2%, it is noticed that the thermal 

plume is weakened at higher refT . The reason is that changing the reference temperature at a 

fixed Rayleigh number modifies the absorption properties of the medium. 
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Figure 4.12. 6Ra 2 10  . Iso-contours of temperature, stream function and kinetic energy 

in the mid-plane 0.5y   for the different configurations. Contour levels of temperature 

[0.02 : 0.02 : 0.4] . Contour levels of kinetic energy [1500:1500:15000]. 

Figure 4.13 presents the distributions of the radiative power ( 610r  ) at mid-depth 

0.5y   for the different real gas mixtures. For configurations at 500 KrefT  , when aX  

increases, the iso-contours of dominant emission ( 0r  ) are more concentrated around 
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the heat source, while the radiation absorptions ( 0r  ) are more found in the regions 

outside the plume. Indeed, the higher is the water vapor concentration, the optically thicker 

is the gas medium, which leads to stronger radiative effects in the region close to the source 

supply. 

(B)              2%aX   (C)              10%aX   

  

(D)              20%aX   (E)  2% ( 300 K)a refX T   

  

Figure 4.13. 6Ra 2 10  . Divergence of radiative flux ( 610r  ) at mid-depth 0.5y   for 

the different configurations. 

  
Figure 4.14. 6Ra 2 10  . Divergence of radiative flux ( 610r  ) along the centerline 

0.5x   at mid-depth for the different real gases. 

The radiative power profiles along the centerline 0.5x y   are given in Figure 4.14. It 

is shown that the radiative power above the source position for 2%aX   is much higher for 
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500 KrefT   (B) than for  300 KrefT   (E), and increases rapidly with the growth of aX  

(cases C and D). The stronger is the pic of the radiative emission, the higher is the decrease 

of the temperature above the source position and the reduction of the vertical velocity, as 

shown in Figure 4.15. 

 
Figure 4.15. 6Ra 2 10  . Vertical profiles of temperature   and vertical velocity w along 

the line  0.5x y  . 

Case (A) (B) (C) (D) (E) 

max  0.493 0.442 0.404 0.375 0.457 

maxu  125.2 93.6 45.4 30.5 119.4 

maxw  201.8 163.6 116.6 99.9 191.5 

2D
, bottomNuc  0.185 0.046 0.054 0.055 0.064 

2D
, topNuc  0.813 0.089 0.030 0.025 0.258 

2D
r, bottomNu  0 0.422 0.545 0.576 0.287 

2D
r, topNu  0 0.442 0.370 0.343 0.388 

Table 4.8. 6Ra 2 10  . Comparative results obtained in the different cases. The maximum 
values are evaluated in the mid plane 0.5y  . 

The characteristic results of the maximum values at mid-depth, the convective and 

radiative Nusselt numbers in the different gas media are reported in Table 4.8. For all cases, 

the radiative fluxes are dominant in the heat exchanges at the isothermal walls. For 

configurations at 500 KrefT  , with increasing aX , the maximum temperature and velocities 

decrease rapidly due to the reinforced radiation effects. At 2%aX  , the wall radiative fluxes 

obtained at 500 KrefT   (case B) are higher than those of 300 KrefT   (case E), and the 

radiative heat transfers still increase with the water vapor concentration, and tends to more 

accumulate at the bottom wall. 
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4.3 Transitional regime 

4.3.1 Periodical behavior 

As described for the steady regime, gas radiation stabilizes the fluid motion and delays 

the transition to unsteadiness, we focus on the higher 7Ra 1.2 10   to illustrate how the 

convection-radiation coupling changes the spatiotemporal dynamics of the plume and its 

surroundings. Two additional parameters are fixed: the Planck number at 6Pl 6.73 10   and 

the temperature ratio at 0 2539.4  . Different gaseous media are investigated here: gray 

gases by varying the optical thickness   and a real gas considering a small amount of water 

vapor in air ( 2%aX   and 300KrefT  ).  

Table 4.9 specifies the simulation characteristics for the different configurations. Case (A) 

corresponds to the pure convection configuration where the fluid is assumed to be transparent 

and all the walls purely reflective. As a consequence, 0r   in the whole domain and 

0net
rq   at the walls. This case has been documented in the previous section 3.3.3, and will 

serve as a reference to assess the radiation effects.  

The flow regimes corresponding to the different test cases are also given in Table 4.9. For 

gray gas, varying   from 0 to 0.5 results in successive transitions from chaotic to steady state, 

indicating that gas radiation stabilizes the plume flow and greatly delays the transition to 

unsteadiness, as expected. The stabilization effect of gas radiation is also confirmed in the 

real gas case for which a periodic state is observed.  

Configuration (A) (B) (C) (D) (E) 

Gas medium 
Transparent 

( 0  ) 

Gray gas 

( 0.1  ) 

Gray gas 

( 0.2  ) 

Gray gas 

( 0.5  ) 
Real gas 

Isotherm walls 0   1   1   1   1   

Adiabatic walls 0   0   0   0   0   

Regime Chaotic Periodic Periodic Steady Periodic 

Table 4.9. 7Ra 1.2 10  . Different configurations considered and corresponding flow 
regimes. 

The time evolutions and spectra of total the Nusselt number for periodic plumes in the 

three periodic cases (B), (C) and (E) are presented in Figure 4.16. The values of the 

amplitudes and frequency peaks are reported in Table 4.10. It is clearly visible that the total 

heat flux at walls exhibits a periodic nature in the three cases. From 0.1   to 0.2, the 

oscillation amplitude is greatly reduced as well as the associated frequency. 
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Figure 4.16. 7Ra 1.2 10  . Time evolution and spectra of total Nusselt number 2DNu total  for 

(B) gray gas 0.1  , (C) gray gas 0.2   and (E) real gas. 

Case (B) (C) (E) 

Amplitude 0.0674 0.0035 0.0907 

Frequency 165.30 116.35 172.10 

Table 4.10. 7Ra 1.2 10  . Amplitudes and frequencies for periodic flows. 

 

Instantaneous temperature fields in the three different planes [0.25;  0.5;  0.75]y   at 

different times within one period, marked in Figure 4.16 (red dots) for the cases of 0.1   

and 0.2, are visualized in Figure 4.17 and Figure 4.18. The antisymmetric mode described in 

the pure convective plume is also observed here: the plume oscillates in each plane apart the 

mid one relatively to the vertical centerline 0.5x  , with opposite phases. With the 

augmentation of  , the gas radiation effects are strengthened, so that the plume spreading 

and its lateral oscillations are reduced. 
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(i) 

 
(ii) 

 
(iii) 

 

 Figure 4.17. 7Ra 1.2 10  . Snapshots of the iso-contours of temperature at three depths 
[0.25;  0.5;  0.75]y   over one cycle of oscillation for 0.1  . Contour levels 

(0.02:0.02:0.4). 
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(i) 

 
(ii) 

 
(iii) 

 
Figure 4.18. 7Ra 1.2 10  . Snapshots of the iso-contours of temperature at three depths 

[0.25;  0.5;  0.75]y   over one cycle of oscillation for 0.2  . Contour levels 

(0.02:0.02:0.4). 
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(B) 

 
(C) 

 
(E) 

 
Figure 4.19. 7Ra 1.2 10  . Density power spectra of u , w  and   at the point A1 for the 

different configurations. 

 

Case Variable 1f  12 f  13 f  14 f  

(B) 

u  82.65 165.30 247.95 330.60 

w  82.65 165.30 247.95 330.60 

  82.65 165.30 247.95 330.60 

(C) 

u  58.17 116.35 174.53 232.71 

w  58.17 116.35 174.53 232.71 

  58.17 116.35 174.53 232.71 

(E) 

u  86.05 172.10 258.16 344.21 

w  86.05 172.10 258.16 344.21 

  86.05 172.10 258.16 344.21 

Table 4.11. 7Ra 1.2 10  . Frequency peaks at the monitoring point A1 for the different 
configurations. 
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Figure 4.19 and Figure 4.20 present the power spectra of u , w  and   for the periodic 

flows at the monitoring points A1 and B1, respectively. Note again that point A1 is located 

laterally away from the centerline of the plane 0.25y   and the point B1 is in the centerline 

(cf. Figure 3.1). From Figure 4.19, it is observed that at the point A1, for each case separately, 

the three variables u , w  and   have the same fundamental frequency and harmonics, as 

reported in Table 4.11. We observe that as   increases, the frequency 1f  decreases and the 

number of harmonics is reduced, meaning that the plume motion is stabilized by gas radiation. 

At the point B1, only 1f  and its odd harmonics are present in the u-spectrum while only even 

harmonics are present for w  and  . The reason is the symmetry of the fluid motion already 

described in the pure convective case. 

 

(B) 

(C) 

 
(E) 

 
Figure 4.20. 7Ra 1.2 10  . Density power spectra of u , w  and   at the point B1 for the 

different configurations. 
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Case Variable 1f  12 f  13 f  14 f  

(B) 

u  82.65  247.95  

w   165.30  330.60 

   165.30  330.60 

(C) 

u  58.17  174.53  

w   116.35  232.71 

   116.35  232.71 

(E) 

u  86.05  258.16  

w   172.10  344.21 

   172.10  344.21 

Table 4.12. 7Ra 1.2 10  . Frequency peaks at the monitoring point B1 for the different 
configurations. 

4.3.2 Time-averaged fields 

Figure 4.21 displays the spatial distributions of time-averaged fields of temperature  , 2D 

kinetic energy 2 2( ) / 2kE u w   and streamlines of the time-averaged flow in the mid-plane 

0.5y   for the different configurations. When gas radiation is involved, whatever gray media 

or real gas mixture, the spatial spreading of the thermal plume is reduced, as observed in the 

steady cases. With the increase of the optical thickness, the temperature field is gradually 

homogenized in the cavity, because radiation becomes the dominant heat transfer mode. 

Accounting gas radiation also changes the temperature distribution in the far-field of the 

plume. The fluid outside the plume plane is quasi-isothermal for the gray gases (cases B, C, 

D), and the thermal stratification established in the case A is not found in these cases. The 

real gas case (E) appears as an intermediate case between cases A and B, with a horizontal 

fluid layer of cold gas still present in the bottom part of the cavity.  

Regarding the kinetic energy, the gas radiation effect is not monotonic. For weak values 

of   (case B), kE  slightly increases when compared to the pure convective case A, in 

particular in the plume plane. For higher optical thicknesses   (cases C and D), the radiation 

effects are enhanced and the kinetic energy kE  is weakened, but the global flow circulation 

still fills the domain above the source.  

The dipole positions for the different configurations are [0.76, 0.77, 0.74, 0.73, 0.77] for 

respectively cases (A) to (E). The change of the dipole location follows the kinetic energy 

evolution, with a slight upward shift of the main vortices from the pure convection (case A) 

to cases 0.1   and real gas (cases B and E), and a moderate downward shift for   varying 

from 0.1 to 0.5 (cases B to D). The horizontal profiles of temperature and velocity at different 

heights are then plotted in Figure 4.22. A downward shift is present in temperature profiles 
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at the different heights. For vertical velocity profiles, we notice that the profile shapes and 

the maxima are quite similar in all the cases, contrarily to the steady state cases (see Figure 

4.5). 

(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
Figure 4.21. 7Ra 1.2 10  . Iso-contours of time-averaged temperature, stream function and 
kinetic energy in the mid-plane 0.5y   for the different configurations. Contour levels of 

temperature [0.01:0.01:0.4]. Contour levels of kinetic energy [0:8000:80000]. 
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Figure 4.22. 7Ra 1.2 10  . Horizontal profiles of temperature   and vertical velocity w  at 

different heights.  

(B) (C) 

  
  (D) (E) 

  
Figure 4.23. 7Ra 1.2 10  . Distribution of radiative power ( 610r  ) at mid-depth 

0.5y   in different participating gas. 
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The distributions of the time-averaged radiative power ( 610r  ) at mid-depth 0.5y   

are presented in Figure 4.23, and the corresponding profiles along the lines 0.5x   and 

0.5z   are plotted in Figure 4.24. They show that the fluid is mainly emitting ( 0r  ) in 

most part of the cavity while the regions of dominant absorption ( 0r  ) are reduced to the 

vicinity of the top wall and to the bottom part of the cavity, mainly under the source. The 

radiative power reaches its higher values above the source, and the horizontal spreading of 

the emission zone seems to be relatively unaffected by the radiative properties of the fluid 

(Figure 4.24 (b)). As observed in steady state cases ( 6Ra 2 10  ), radiative exchanges in the 

absorption areas are almost negligible compared to emission areas, except for the real gas 

(case E). In this case, higher absorption levels are observed than in the other cases, and a 

specific absorption area is found surrounding the heat source. 

(a) (b) 

  
Figure 4.24. 7Ra 1.2 10  . Profiles of radiative power ( 610r  ) along the lines (a) 

0.5x   and (b) 0.5z   in different participating gas. 

(a) (b) 

  
Figure 4.25. 7Ra 1.2 10  . Vertical profiles of temperature   and vertical velocity w  

along the line  0.5x y  . 
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Because of the absorption/emission mechanisms in the medium, the optically thicker is 

the medium, the more important is the radiative power and the less is the slope of the radiative 

power profile at the source location (cf. Figure 4.24). Compared to the pure convective case, 

this induces a higher drop of the temperature profile as observed in Figure 4.25 (a), and then 

the weakening of the thermal plume and the reduction of its spatial extension. 

The vertical velocity profiles along the centerline for the different cases are plotted in 

Figure 4.25 (b). For the transitional regime, the vertical velocity varies with the optical 

thickness in a different manner from that observed in steady state (Figure 4.4). The decrease 

in temperature differences in the cavity leads to a decrease in the plume velocity and the 

subsequent global flow for optically thicker ones (cases C and D), where the plume 

temperature is rapidly lower comparatively to case A. However, we observe an acceleration 

of the plume in the case of a thin optical medium (cases B and E), although the plume 

temperature is here again lower than in case A (but to a lesser extent than cases C and D). 

For the real gas mixture considered here, whereas the radiative absorption regions are close 

to those of case 0.2   and 0.5  (Figure 4.23), the resulting temperature and vertical velocity 

distributions finally much resembles to those of case 0.1  , which again proves the more 

complex behavior of real gas model than the simplified gray gas approximation. 

Case (A) (B) (C) (D) (E) 

Gas medium 
Transparent Gray gas Gray gas Gray gas 

Real gas 
0   0.1   0.2   0.5   

max  0.379 0.3617 0.3624 0.3619 0.3614 

maxw  404.4 424.3 397.1 378.0 424.5 

, maxkE  48.04 10  49.0 10  47.88 10  47.14 10  49.01 10  
2D
, bottomNuc  0.135 0.014 0.012 0.019 0.056 
2D

, topNuc  0.863 0.311 0.230 0.106 0.346 
2D
r, bottomNu  0 0.297 0.330 0.401 0.242 

2D
r, topNu  0 0.376 0.427 0.472 0.355 

Table 4.13. 7Ra 1.2 10  . Comparative results between the different configurations.  

Table 4.13 summarizes the maximum values of temperature, vertical velocity and kinetic 

energy in the mid-depth plane as well as the Nusselt numbers on the isothermal walls for the 

different cases. When gas radiation is taken into account, the maximum of temperature is 

kept rather constant whatever the participating medium, but it is reduced of around 4% when 

compared to case (A). Gas radiation also redistributes the energy transfer along the isothermal 

walls between radiative and convective parts. As found in steady plumes, the growth of   
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decreases the convective heat transfer due to the homogenization effect of gas radiation on 

the temperature field, and radiation gradually becomes the dominant mode of heat transfer. 

In the particular conditions considered here ( H , refT , refX , etc.), the results obtained for the 

real gas are comparable to those obtained for the thinner optical gray gas. 

 

4.4 Turbulent regime 

Finally, the effects of gas radiation on turbulent plumes are investigated at 9Ra 10  by 

considering three configurations, as listed in Table 4.14. Case (A) corresponds to pure natural 

convection, case (B) the gray gas approximation with 0.1  , and a real gas case (C), with 

aX  fixed at 2% at a reference temperature 300 KrefT  . The Planck number is fixed at 
4Pl 5.61 10   and the temperature ratio at 0 30.4  . 

Configuration (A) (B) (C) 

Gas medium Transparent Gray gas ( 0.1  ) Real gas  

Isotherm walls 0   1   1   

Adiabatic walls 0   0   0   

Transient time 0.07 0.04 0.04 

Statistical time 0.09 0.09 0.09 

Total CPU time 
Processors 

8, 000 h 
64 

16, 000 h 
512 

88,000h 
512 

Table 4.14. 9Ra 10 . Different configurations considered and corresponding CPU time. 

Simulations of cases (B) and (C) were performed on the supercomputer Jean-Zay of Idris 

center by using 512 processors of a 2.5 GHz Intel Cascade Lake 6248. The total CPU 

consumption for the different configurations are reported in Table 4.14. Statistics of the flow 

have been obtained over a dimensionless time interval of 0.09 for all cases. 

 

4.4.1 Time and grid space convergence 

Figure 4.26 shows the probability distribution functions (PDF) of the axial velocity v  at 

the monitoring point B2 obtained for the different configurations. It can be seen that all the 

PDF profiles have a null mean value. Besides, the PDF profiles are quite similar between 

gray gas and real gas cases, but differ from the transparent one.  
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Figure 4.26. 9Ra 10 . Normalized PDF of the axial velocity v  at the point B2 for the 

different configurations. 

To ensure the grid resolution, the ratio between the grid size 1/3( )r x y z      and the 

Kolmogorov scale k  was checked a posteriori for each configuration. The maximum of this 

ratio / kr   is: case (A) 0.64 , case (B) 0.69 , case (C) 0.67 , which well satisfies the 

Grötzbach requirement for turbulent flow modelling (cf. section 1.2.5).  

4.4.2 Instantaneous flow description 

Temperature snapshots in the planes 0.5y   and 0.5z   are presented in Figure 4.27. 

When gas radiation is considered, the plume behavior appears to be less chaotic than that in 

the pure convective situation. It seems that in cases (B) and (C), the spatial structures are 

fewer and mainly located near the top wall.  

Figure 4.28 displays a more global visualization of the flow structures for the different 

cases, by using the positive iso-value surfaces of the Q criterion (cf. section 3.4.2). In the 

more chaotic case (A), the vortices are produced within the ascending motion as well as the 

downstream motion after the impact on the top wall, and the transition to turbulence seems 

to occur around mid-height of the cavity.  

For the participating media (B) and (C), gas radiation delays the transition to turbulence 

further upstream above the heat source, and induces less vortices in the cavity. It is also 

observed that these unsteady structures are mainly produced close to the top wall and may be 

related to the impact phenomenon, which is consistent with the observations in Figure 4.27, 

indicating again the stabilization effect of gas radiation on the flow. 
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(A) 

   
(B) 

  

 

(C) 

  

 

Figure 4.27. 9Ra 10 . Instantaneous fields of temperature   in the planes 0.5y   and 

0.5x   for the configurations (A) pure convection, (B) gray gas and (C) real gas. 

(A) (B) (C) 

Figure 4.28. 9Ra 10 . Iso-surface of instantaneous Q criterion colored by temperature for 

the configurations (A) pure convection, (B) gray gas, and (C) real gas ( 8Q 10 ). 
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4.4.3 Time-averaged and fluctuating fields 

Figure 4.29 and Figure 4.30 display the time-averaged temperature fields and the 

horizontal profiles at three heights in the mid-plane 0.5y  . As already observed in steady 

and transient regimes, gas radiation leads to a reduction of the temperature variations in the 

cavity and to the homogenization of the horizontal fluid layers near the isothermal walls. 

However, the decrease in the mean temperature values is not found in the area slightly above 

the heat source (see Figure 4.30 at 0.3z  ). It should be noted that in the radiative 

participating media, the maximum temperature is almost the same when compared to pure 

convection (cf. Table 4.15).  

(A)  (B) (C) 

  
Figure 4.29. 9Ra 10 . Time-averaged temperature contours   in the plane 0.5y   for the 

different configurations at. Contour levels 0.002 : 0.002 1[ ]: 0.  . 

 

   

 

Figure 4.30. 9Ra 10 . Horizontal profiles of temperature   at different heights.  

The stream function of the time averaged flow and the 2D mean kinetic energy field in the 

mid-plane are shown in Figure 4.31 and Figure 4.32, respectively, as well as some horizontal 

profiles ( w , u , and kE ) in Figure 4.33. It can be seen that the general structure of the mean 

flow (vertical plume and lateral recirculation regions) is always preserved. But when 
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radiation is accounted for, the lateral expansion of the plume is narrowed (see Figure 4.32 

and Figure 4.33 (c)). This narrowing of the fluid motion in the plume plane induces an 

acceleration of the flow above the source and then results in a higher kinetic energy in the 

plume plane, as found in the transitional cases that gas radiation enhances the flow dynamics 

in an optically thin medium. 

 

 

(A)  (B) (C) 

Figure 4.31. 9Ra 10 . Distributions of time-averaged streamlines   in the plane 0.5y   

for the different configurations. Contour levels  40 : 20 : 220  . 

 

(A)  (B) (C) 

Figure 4.32. 9Ra 10 . Time-averaged 2D kinetic energy contours kE  in the plane 

0.5y   for the different configurations. Contour levels 4 4 55 10 : 5 10 : 5.5[ ]10kE    . 
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(a) 

   
(b) 

   
(c) 

   
 

 

Figure 4.33. 9Ra 10 . Horizontal profiles of (a) vertical velocity w , (b) horizontal velocity 

u  and (c) 2D kinetic energy kE  at different heights.  
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Figure 4.34. 9Ra 10 . Horizontal profiles of reduced temperature av    at different 

heights.  

The horizontal profiles of the reduced temperature av    are then plotted in Figure 4.34. 

Contrarily to what was found for the steady state (cf. Figure 4.6), the maximum values of 

av    are increased in cases (B) and (C) when compared with pure convection, which is 

probably because in the convective case, the higher turbulence level of plume flow tends to 

decrease the thermal stratification ( / z  ) outside the plume. 

Figure 4.35 and Figure 4.36 show respectively the distributions of temperature 

fluctuations rms  and turbulence kinetic energy k  in the mid-plane 0.5y   for the different 

configurations. We can note the centerline symmetry of the fields is roughly preserved, which 

indicates a satisfactory degree of convergence of the statistics. For all the configurations, 

large thermal fluctuations are located around the heat source position, while the turbulent 

kinetic energy is more important in the upper part of the cavity, that is in the turbulent region 

of the plume and return flow.  

 

(A) (B) (C) 

Figure 4.35. 9Ra 10 . Distribution of temperature fluctations rms  in the mid-plane 

0.5y  . Contour levels (0.0015:0.0015:0.03). 
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(A) (B) (C) 

Figure 4.36. 9Ra 10 . Distribution of turbulent kinetic energy k  in the mid-plane 0.5y  . 

Contour levels ( 44 10 : 44 10 : 54 10 ). 

 

The corresponding profiles of rms  and k  at different heights are given in Figure 4.37. In 

cases (B) and (C), the fluctuations exhibit higher maximum values and narrower distributions 

in the plume core when compared to the pure convective case. But the higher turbulent 

quantities levels outside the plume observed in the latter case and the broader spatial 

distribution (Figure 4.37 (b), 0.7z  ) indicates a more developed turbulent flow than those 

obtained with radiation. 

(a) 

   
(b) 

        

Figure 4.37. 9Ra 10 . Horizontal profiles of (a) temperature fluctuation  rms  and (b) 

turbulent kinetic energy k  at different heights. 
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The description of the mean fields mentioned above only concerns the mid-depth plane 

0.5y  . To examine the 3D structure of the flow, Figure 4.38 displays the time-averaged 

kinetic energy in different x-planes. Compared to the pure convective case, the kinetic energy 

fields in cases (B) and (C) are enhanced near the top wall while they are weakened near the 

left and right walls ( 0x   and 1), indicating that gas radiation changes the kinetic energy 

distribution in the overall cavity. It is also noticed that in the real gas mixture (case (C)), the 

kinetic energy fields are more concentrated around the mid-depth 0.5y  .  

The redistribution of the mean kinetic energy can be related to the turbulence kinetic 

energy field, as shown in Figure 4.39. In accordance to what observed on the horizontal k 

profiles, turbulence is more present near the top wall and less developed in the lateral planes 

0.2x   and 0.8 for participating media. 

(A) (B) (C)  

   

 

Figure 4.38. 9Ra 10 . Spatial distribution of time-averaged kinetic energy in the planes
[0.2;  0.5;  0.8]x   and 0.5z   for the different cases. 

(A) (B) (C)  

   

 

Figure 4.39. 9Ra 10 . Spatial distribution of turbulence kinetic energy in the planes
[0.2;  0.5;  0.8]x   and 0.5z   for the different cases. 

The distributions of time-averaged radiative power ( 610r  ) at mid-depth 0.5y   are 

presented in Figure 4.40, and the corresponding profiles along the lines 0.5x   and 0.5z   

are shown in Figure 4.41. As observed at lower Ra numbers, the fluid is mainly emitting 
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( 0r  ) in the most part of the cavity with an intensity much greater than that of the 

absorption regions. The radiative power reaches its maximum level above the heat source.  

For the real gas mixture (case (C)), the radiative power is much larger than that in case (B) 

for the area above the source supply. However, for the regions laterally away from the 

centerline, the radiative power obtained in case (C) is lower than that in case (B) (cf. Figure 

4.41 (right)).  

Figure 4.42 plots the distribution of mean temperature and vertical velocity along the 

centerline 0.5x y  . It is shown that radiative heat transfer enhances the temperature decay 

rapidly, excepted for the source location, where the maximum temperature is slightly 

increased (see Table 4.15). Due to these energy redistributions and temperature evolutions, 

the plume dynamics are reinforced above the heat source, which was also observed in 

unsteady plumes for optically thin medium. 

 

(B)  (C) 

  
Figure 4.40. 9Ra 10 . Distribution of the time-averaged radiative power ( 610r  ) at 

mid-depth 0.5y   in the cases of gray medium and real gas mixture. 

 
Figure 4.41. 9Ra 10 . Profiles of mean radiative power ( 610r  ) along the lines 0.5x   

(left) and 0.5z   (right)  at the mid-depth 0.5y   in the cases of gray medium and real gas 

mixture. 
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Figure 4.42. 9Ra 10 . Profiles of temperature   (left) and vertical velocity w  (right) along 

the centerline  0.5x y  . 

Table 4.15 summarizes the maximum temperature and velocity values at mid-depth 

0.5y  , and also the convective and radiative Nusselt numbers over the isothermal walls for 

the three cases. Due to the energy redistribution by gas radiation, there is an increase of the 

maximum vertical velocity and kinetic energy in the present real gas mixture or thin gray 

medium, when compared to the pure convective case. Gas radiation also influences the heat 

transfer along the isothermal walls by decreasing the convective fluxes. 

Case (A) (B) (C) 

Gas medium Transparent Gray gas Real gas 

max  0.1249 0.1274 0.1260 

maxw  31.01 10  31.03 10  31.09 10  

, maxkE  55.17 10  55.32 10  55.99 10   

2D
, bottomNuc  0.109 0.017 0.048 

2D
, topNuc  0.890 0.511 0.570 

2D
r, bottomNu  0 0.211 0.154 

2D
r, topNu  0 0.260 0.227 

Table 4.15. 9Ra 10 . Comparative results between the different configurations. 

 

4.4.4 Time spectra 

Figure 4.43 and Figure 4.44 presents the power spectra of vertical velocity and 

temperature at the monitoring points A2 and B2 in the mid-plane 0.5y   (see Figure 3.1 for 

their exact locations). In the convective case (A), the −5/3 power law of the Kolmogorov 
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decay is present in each spectrum, which corresponds to the inertial region of the spectrum. 

In the temperature fluctuations spectrum, a decay following a 3  power law appears at the 

two monitoring points due to the thermal turbulent dissipation.  

When radiation is taken into account, the energy contained in the spectra of velocity and 

temperature spectra decreases on a smaller range of frequencies compared to the pure 

convective ones. We also notice that the existence range of 5 / 3  Kolmogorov power law is 

notably reduced in the spectra at the point A2. It can be deduced that gas radiation reduces 

the appearance of both thermal and dynamic small-scale structures in the flow. Besides, the 

3  power law is always present in the  -spectra, but appears earlier for cases (B) and (C) at 

point A2 when compared to pure convection. It suggests that gas radiation affects the 

conversion of the potential energy into kinetic energy and produces less chaos in the far field 

of the plume. At point B2, located in the plume plane, the frequency domains of the spectra 

are slightly broader than at point A2 for all the three cases, revealing a higher turbulence level 

in the plume plane despite the radiation effects. 

Figure 4.43. 9Ra 10 . Density power spectra of velocity components w  and temperature 
  at the point A2. Dotted trendline: -5/3 power law, solid trendline: -3 power law. 

(A) 

(B) 

(C) 



Chapter 4. Convection-radiation coupling 

104 

Figure 4.44. 9Ra 10 . Density power spectra of velocity components w  and temperature 
  at the point B2. Dotted trendline: -5/3 power law, solid trendline: -3 power law. 

4.5 Transfers at the walls 

In order to investigate the evolution of the relative influence between convection and 

radiation in the thermal transfers at the top and bottom walls, the radiative and convective 

Nusselt numbers are compared in Figure 4.45 and Figure 4.46 at the different Rayleigh 

numbers considered for the cases: (A) pure convection; (B) gray gas ( 0.1  ) and (C) real 

gas mixture ( 2%aX   and 300 KrefT  ) . We remind that in all the cases, the total of the 

heat exchanges at the walls equals 1. For case (A), the convective flux increases at the top 

wall and decreases at the bottom wall with increasing Rayleigh numbers. When radiation is 

accounted for (cases B and C), the total radiative transfers are higher than the convective 

ones in a first step, but when Ra is increased, the convective transfers grow up and 

progressively exceed the radiative ones. This occurs at 8Ra 5 10   for the gray gas (case B) 

and at 7Ra 9 10   for the real gas (case C). 

(A) 

  
(B) 

  
(C) 
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     Top wall            Bottom wall        Total convective Nu 

   
Figure 4.45. Convective Nusselt number at the top and bottom walls, and the total 

convective Nusselt number at different Rayleigh numbers for the three cases. 

     Top wall            Bottom wall        Total radiative Nu 

   
Figure 4.46. Radiative Nusselt number at the top and bottom walls, and the total radiative 

Nusselt number at different Rayleigh numbers for cases (B) and (C). 

4.6 Conclusion 

In this chapter, the convection-radiation coupling was simulated in different gas media, 

and it was found that the gas radiation effects on thermal and kinetic fields of plume depends 

on the flow regime. For steady state flow, gas radiation tends to reduce the spatial spreading 

of the thermal plume and to homogenize the temperature field away from the heat source. 

Gas radiation also results in a weakening of the global circulation and then delays the 

transition to unsteadiness.  

For transient state, gas radiation greatly decreases the time oscillation amplitude as well 

as the associated frequency. The time-averaged results of the unsteady flows show that gas 

radiation still weakens the thermal field of the plume, but has little effects on the mean kinetic 

field. Nevertheless, the flow is accelerated in the central core of the plume for the optically 

thinner media ( 0.1   and real gas), and decelerates for optically thicker ones ( 0.2   and 

0.5 ), compared to the pure convective situation.  

For turbulent regime, accounting for radiation leads to a less chaotic behavior of the plume, 

compared to pure convection. Radiative heat transfer induces a smoothing of the mean 

temperature field in most of the cavity, except in the region around the heat source, where 
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the maximum temperature slightly increases. Moreover, the reinforcement of flow dynamics 

observed in the transitional case is also observed in turbulent plume.  
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Conclusions and perspectives 

The general objective of this thesis was to characterize the evolution of a 3D confined 

plume from steady state to turbulent behavior, and to assess a better understanding and 

prediction of the influence of gas radiation on the thermal plume in different flow regimes: 

steady, transitional and turbulent. Different gas media were studied in this work: transparent 

medium, gray gas approximation and real gaseous mixture (dry air - water vapor). The 

numerical approach based on the CFD SUNFLUIDH code coupled to the ROCCOCO 

radiative module proved to be efficient to deal with radiation-convection problems, and 

simulations were carried out for a range of Rayleigh number varying from 106 up to 109. 

Main conclusions 

The pure convective case (i.e. neither gas nor wall radiation) was investigated first. The 

plume behavior was examined in different flow regimes. For steady state flows, two 

symmetrical fluid loops are formed in the cavity. In each transverse plane of this 3D cubic 

cavity, the thermal and kinetic properties of the flow are very similar to those of the 2D case 

in the most part of the cavity, excepting the regions close to the front and rear walls. By 

increasing the Rayleigh number, the transition to unsteadiness occurs through a supercritical 

Hopf bifurcation, which is more than a decade before that in the 2D case. In the succeeding 

time periodic regime, the flow structure combines an antisymmetric stationary plane wave 

along the heat source direction with respect to the vertical mid-plane and a swaying motion 

of the plume in each transverse plane with respect to the vertical centerline. Then, turbulent 

behavior was studied at 9Ra 10 . The plume is first laminar just above the heat source, and 

then undergoes a transition with the creation of small structures in the upper part of the cavity 

where the plume becomes fully turbulent. The well-known -5/3 Kolmogorov power law is 

shown in the velocity and temperature spectra, followed by a 3  power law due to the 

turbulent thermal dissipation. 

The influence of gas radiation was then studied by introducing different gaseous media: 

fictious gray gases with various optical thickness and real gaseous mixture (dry air - water 

vapor). Simulations of convection-radiation coupled phenomena were performed in the same 

range of Rayleigh numbers than for the pure convective case.  
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In steady regime, gas radiation tends to homogenize the temperature field away from the 

source. This leads to a decrease of the spatial extension of the thermal plume and to a 

progressive disappearing of the thermal jet impingement at the roof. Gas radiation also 

induces a weakening of the global circulation and then delays the transition to unsteadiness. 

The heat transfer at the isothermal walls is strongly affected by gas radiation, and the radiative 

flux becomes the dominant mode of heat exchange. By using the gray gas approximation, it 

was found that the increase of the optical thickness enhances gas radiation effects on the 

thermal plume. Next, for the real gas mixture, a parametric study conducted for water vapor 

concentration and reference temperature, confirms that the optically thicker is the medium, 

the stronger is the attenuation of the thermal and kinetic fields of the flow. 

For the transitional pure convective situation ( 7Ra 1.2 10  ), the increase of the optical 

thickness produces successively periodic flow and steady flow, instead of the chaotic 

behavior observed in pure convection. This indicates again that gas radiation stabilizes the 

plume flow and delays the transition to unsteadiness. When periodic flows are observed for 

both gray and real gases, the fundamental frequency and the oscillation amplitude decrease 

with the growth of the optical thickness. Once again, gas radiation reduces the spatial 

extension of the thermal plume and homogenizes the mean temperature field, but contrarily 

to the steady state results, the structure of the mean kinetic field is almost unchanged. 

Nevertheless, gas radiation leads to an acceleration of the fluid for the thinner optical media, 

and to a deceleration for optically thicker ones. 

In turbulent regime ( 9Ra 10 ), the distribution of the vortex structures shows that the 

chaotic behavior of the plume is reduced with radiative participating media. Due to radiation 

effects, both thermal and mechanical RMS fluctuations are decreased in the downstream 

recirculation region after the impingement on the top wall. A weakening of the mean thermal 

field is observed in radiative participating media, except at the heat source location where the 

maximum temperature grows. Gas radiation also reinforces the dynamics of the mean flow 

above the source, as observed in the transitional case. 

Perspectives 

Extending the study of the influence of water vapor concentration to turbulent plumes can 

be a future extension of this work in order to consider a more pronounced influence of 

radiation on the turbulent regime. This could be done, as an example by considering a real 

gas mixture with higher water vapor concentration (for example 10%aX  ) at the reference 

temperature 500 KrefT   and at the same injected energy sQ . 

Another perspective is the investigation of gas radiation effects on double-diffusive plume 

in a real gas mixture. The double-diffusive phenomenon has already been investigated in the 
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case of a differentially heated cavity. Moufekkir et al. (2012), as an example, studied 

numerically the double diffusion in a differentially heated square cavity filled with a binary 

gray gas. They observed that, when the solutal buoyancy is dominant, the influence of 

radiation is considerable on the thermal field and negligible on the kinetic and concentration 

fields. However, when thermal buoyancy is dominant, radiation influences significantly the 

flow structure, as well as the concentration and the temperature fields. In the same 

configuration, Laouar-Meftah et al. (2014) studied the double-diffusive convection in an air-

H2O mixture. They found that the variation of the gas absorption with the local concentration 

of H2O induces a strong coupling between the concentration and thermal fields. These works 

proved that radiation has an important influence on double diffusive convection, and this 

comprehensive problem is worth studying. 

There is also a need to carry out simulations for more realistic of practical situations, at 

higher Rayleigh numbers and/or temperature differences. This requires to use alternative 

approaches to DNS. Large Eddy Simulation (LES) is an attractive choice in reducing the 

computational effort, and has yet been applied to turbulent thermal plumes (Bastiaans et al., 

2000; Zhou et al., 2001; Pham et al., 2007; Yan, 2007). However, compared to DNS, LES 

approach requires the modelling of the sub-grid scales, so it is necessary to evaluate the 

performance of different sub-grid models, with potentially, the influence of the radiative heat 

transfer on the small scale. 
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Appendix A 

Numerical simulations parameters 

This appendix serves to provide the lists of the simulations presented in this work, and 

also to give the numerical parameters applied in simulations of pure convective case and 

convection-radiation coupling.  

A.1 Simulations of pure convective case 

The parameters of the numerical simulations in pure convection for 2D and 3D cases at 

the different regimes are reported in Table A.1. The simulations of 2D configuration are 

studied in section 2.2.1 to validate the numerical code, while those of 3D configuration are 

analyzed in Chapter 3. In 3D configuration, the spatial discretization, chosen for the 
6 710 Ra 1.2 10    range, is consistent with those of 2D configuration. For the highest Ra 

number ( 9Ra 10 ), a non-uniform mesh is used to refine the regions near the lateral walls 

and the heat source, and the parameters applied in mesh are detailed in section 3.1. All 

simulations were carried out with a fixed timestep which corresponds to a maximum of CFL 

number of 0.45.  

Dimension Regime Ra Mesh Timestep Initial solution 

2D 
Steady 

610  129 129  52.0 10  0iu  , 0   

72.7 10  129 129  65.0 10  610 -2D converged 

Periodic 72.81 10  129 129  65.0 10  72.7 10 -2D converged 

3D 

Steady 610  (3 43) (3 43) 129     52.0 10  0iu  , 0   

Periodic 61.2 10  (3 43) (3 43) 129     52.0 10  0iu  , 0   

Transitional 

62 10  (3 43) (3 43) 129     51.6 10  610 -3D converged 
65 10  (3 43) (3 43) 129     51.0 10  62 10 -3D converged 

71.2 10  (3 43) (3 43) 129     67.5 10  65 10 -3D converged 

Turbulent 910  (4 48) (4 48) (4 128)      73.0 10  810 -3D converged 

Table A.1. List of simulations and numerical parameters in pure convective case. 

A.2 Simulations of convection-radiation coupling 
The parameters of the numerical simulations considering gas radiation, analyzed in 

Chapter 4, are shown in Table A.2. For unsteady flows, the dimensionless time period for 

obtaining the statistical values, statt  , is given. The radiation and convection are solved on 

the same grids, but the radiative problem is solved every 5 convective time steps.  



 

 

 

Ra Case Gas medium    (K)refT  
aX  Regime Mesh 

Convective 
time step statt  Initial solution 

610  

A Transparent 0 - - Steady (3 43) (3 43) 129     52 10  - 0iu  , 0   

B Gray gas 0.1 - - Steady (3 43) (3 43) 129     52 10  - 610 -A converged 
C Gray gas 0.2 - - Steady (3 43) (3 43) 129     52 10  - 610 -B converged 
D Gray gas 0.5 - - Steady (3 43) (3 43) 129     52 10  - 610 -C converged 

(a) 62 10  

A Transparent  0 - - Transitional (3 43) (3 43) 129     51.6 10  0.16 610 -A converged 

B Gray gas 0.1 - - Steady (3 43) (3 43) 129     51.6 10  - (a) 62 10 -A converged 
C Gray gas 0.2 - - Steady (3 43) (3 43) 129     51.6 10  - (a) 62 10 -B converged 
D Gray gas 0.5 - - Steady (3 43) (3 43) 129     51.6 10  - (a) 62 10 -C converged 
E Real gas - 300 2% Steady (3 43) (3 43) 129     51.6 10  - (a) 62 10 -A converged 

(b) 62 10  

A Transparent  0 - - Transitional (3 43) (3 43) 129     51.6 10  0.16 610 -A converged 
B Real gas - 500 2% Steady (3 43) (3 43) 129     51.6 10  - (b) 62 10 -A converged 
C Real gas - 500 10% Steady (3 43) (3 43) 129     51.6 10  - (b) 62 10 -B converged 
D Real gas - 500 20% Steady (3 43) (3 43) 129     51.6 10  - (b) 62 10 -C converged 
E Real gas - 300 2% Steady (3 43) (3 43) 129     51.6 10  - (b) 62 10 -A converged 

71.2 10  

A Transparent  0 - - Transitional (3 43) (3 43) 129     67.5 10  0.06 65 10 -A converged 
B Gray gas 0.1 - - Periodic (3 43) (3 43) 129     67.5 10  0.06 71.2 10 -A converged 
C Gray gas 0.2 - - Periodic (3 43) (3 43) 129     67.5 10  0.06 71.2 10 -B converged 
D Gray gas 0.5 - - Steady (3 43) (3 43) 129     67.5 10  - 71.2 10 -C converged 
E Real gas - 300 2% Periodic (3 43) (3 43) 129     67.5 10  0.06 71.2 10 -B converged 

910  

A Transparent  0 - - Turbulent (4 48) (4 48) (4 128)     73.0 10  0.09 810 -A converged 
B Gray gas 0.1 - - Turbulent (8 24) (8 24) (8 64)      73.0 10  0.09 910 -A converged 
C Real gas - 300 2% Turbulent (8 24) (8 24) (8 64)      73.0 10  0.09 910 -B converged 

Table A.2. List of simulations and numerical parameters in convection-radiation coupling and compared to the pure convective case. 
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For convection-radiation coupled simulations, the RTE equation is solved by the DOM 

method. The convergence of the total number of discrete directions is confirmed in the case 

of gray gas at 0.5   and 6Ra 10  by comparing S8- and S12-approximation. Figure A.1 

plots the volumetric radiative power along the lines 0.5x   and 0.5z   in the vertical mid-

plane, implying that the S8-approximation is sufficient for the discretization of the DOM 

method which is used for all simulations considering radiation. 

 

Figure A.1. Comparison of S8- and S12-approximation. Profiles of radiative power along the 

lines 0.5x   and 0.5z   at 0.5   and 6Ra 10 . 

In the cases of real gaseous mixture, various molar fractions aX  of water vapor in air are 

considered, as well as different reference temperatures refT . In order to predict radiative 

properties of gaseous mixtures, the SLW model is applied with a Lathrop scheme in this work. 

In the case of real gas at 300KrefT  , the radiative properties are estimated by considering 8 

gray gases, including one clear component and seven others whose optical thickness varies 

in the range [0.01, 104]. As for the cases at 500KrefT  , the range for the 7 absorbing 

component is extended to [0.01, 105]. Table A.3 reports the optical thickness of each gray 

gas using in SLW model.  

 

 (K)refT  aX  1  2  3  4  5  6  7  8  

300 2% 0 0.026 0.19 1.3 10 70 501 3612 

500 2~10% 0 0.031 0.31 3.1 31 310 3100 31000 

Table A.3. Optical thicknesses evaluated at the reference temperature for the SLW model. 
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Appendix B 

SUNFLUIDH performances 

The simulations presented in this work were completed by using a local machine for the 
6 710 Ra 1.2 10    range, or a supercomputer of Idris center for 9Ra 10 , as reported in 

Table B.1. The calculating performance of code SUNFLUIDH is also given in Table B.1, 

according to the different gas media. 

 

Gas medium Machine Processors 
Performance 

(s/(cell.timestep)) 

Transparent 

Local machine 
2.0 GHz Intel 

Xeon(R) E5-26200 
9 

79.6 10  

Gray gas 61.5 10  

Real gas 65.9 10  

Transparent 
Cluster Ada 

(Idris center) 

2.67 GHz IBM 

x3750M4 
64 84.6 10  

Gray Gas 
Cluster Jean-zay 

(Idris center) 

2.5 GHz Intel 

Cascade Lake 6248 
512 81.4 10  

Real gas 
Cluster Jean-zay 

(Idris center) 

2.5 GHz Intel 

Cascade Lake 6248 
512 87.4 10  

Table B.1. SUNFLUIDH performances. 
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Simulations numériques de panaches thermiques dans une cavité confinée en 
présence de couplage convection-rayonnement volumique 

Résumé :  
 
Ce travail est une étude numérique d’un panache thermique confiné en présence de rayonnement de gaz. Le panache 
est généré par une source de chaleur linéaire immergée dans une cavité cubique remplie d’air. Le but principal est de 
caractériser l’évolution du panache tout au long de sa transition depuis le régime stationnaire jusqu’à la turbulence, et 
d’explorer les effets du rayonnement de gaz sur la stabilité, les transferts de chaleur, les champs thermiques et 
cinétiques du panache. 
 
Les simulations numériques DNS sont effectuées pour des nombres de Rayleigh de 106 à 109 avec un logiciel CFD de 
volumes finis couplé à un module de transferts radiatifs. La situation de convection pure est étudiée en premier lieu 
pour caractériser les champs thermiques et cinétiques du panache dans différents régimes d’écoulement. Ensuite, le 
couplage convection-rayonnement est introduit en considérant un gaz gris ou un gaz réel (mélange air – vapeur d’eau). 
Les effets de l’épaisseur optique sont analysés en détail pour le modèle de gaz gris. Les résultats montrent que le 
rayonnement stabilise le panache et retarde la transition à l’instationnarité. Le rayonnement homogénéise également le 
champ thermique et réduit l’extension spatiale du panache. Cependant, l’effet sur le champ cinétique dépend du régime 
d’écoulement. A l’état stationnaire, le rayonnement de gaz diminue la circulation globale tandis que pour les états 
transitoires et turbulents, il augmente la dynamique de l’écoulement pour des milieux optiques minces. Ces tendances 
générales sont confirmées pour le mélange de gaz réel par une étude paramétrique de la concentration de vapeur d’eau 
et de la température de référence. 
 
Mots clés : panache thermique, couplage convection-rayonnement de gaz, modèle de gaz réel, DNS, transition à 
l’instationnarité, turbulence 

Numerical study of a confined thermal plume at different flow regimes under 
the influence of gas radiation 

Summary :  
 
This work presents a numerical investigation of a confined thermal plume under the influence of gas radiation. Plume 
flow is generated by a linear heat source of constant power density immersed in a cubic cavity. The main aim of this 
thesis is to characterize the evolution of the plume throughout its transition from steady-state to turbulent regime, and 
to explore the gas radiation effects on flow stability, heat transfers, thermal and kinetic fields of the plume. 
 
DNS numerical simulations are performed over a Rayleigh number range from 106 to 109 by applying a finite volume 
CFD software coupled to a module for radiative heat transfer calculations. The pure convective situation is studied 
first to characterize the thermal and kinetic fields of the plume in different flow regimes. Next, the convection-radiation 
coupling is introduced by considering either gray gas or real gas (air - H2O mixture) media. The effects of optical 
thickness are analyzed in details for gray gas model. Results show that gas radiation stabilizes the plume flow and 
delays the onset of unsteadiness. Gas radiation also homogenizes the thermal field and reduces its spatial spreading. 
However, radiation effect on the kinetic field depends on the flow state. For steady state, gas radiation decreases the 
global flow circulation while for transient and turbulent states, it enhances the flow dynamics in optically thin medium. 
These general trends of radiation are also confirmed in real gas mixture through a parametric study of water vapor 
concentration and reference temperature. 
 
Keywords : thermal plume, convection-radiation coupling, gas radiation, real gas model, DNS, transition to 
unsteadiness, turbulence  
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