
HAL Id: tel-03251092
https://theses.hal.science/tel-03251092v2

Submitted on 6 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of energy and performance of applications
on heterogeneous micro-servers

Massinissa Ait Aba

To cite this version:
Massinissa Ait Aba. Optimization of energy and performance of applications on heterogeneous micro-
servers. Distributed, Parallel, and Cluster Computing [cs.DC]. Sorbonne Université, 2020. English.
�NNT : 2020SORUS106�. �tel-03251092v2�

https://theses.hal.science/tel-03251092v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité

Informatique

Ècole doctorale Informatique, Télécommunications et Èlectronique (Paris)

Présentée par

Massinissa AIT ABA Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Optimisation de l’énergie et de la performance d’applications sur
des micro-serveurs hétérogènes

Directrice de thèse : Alix MUNIER KORDON

Encadrante de thèse : Lilia ZAOURAR

Thèse présentée et soutenue à Palaiseau, le 04/06/2020

Devant le jury composé de :

Mme. Safia KEDAD-SIDHOUM Examinatrice
M. Lionel LACASSAGNE Examinateur
M. Loris MARCHAL Rapporteur
Mme. Alix MUNIER KORDON Directrice
M. Jean-Marc NICOD Rapporteur
M. Guillaume PALLEZ Examinateur
M. Denis TRYSTRAM Examinateur
Mme. Lilia ZAOURAR Encadrante

Remerciements
Je tiens tout d’abord à remercier grandement ma directrice de thèse, Alix Munier Kordon
et mon encadrante Lilia Zaourar, pour toute l’aide qu’elles m’ont apportée tout au long
de cette thèse. Qu’elles soient aussi remerciées pour leurs disponibilités permanentes et
pour les nombreux encouragements et judicieux conseils qui ont contribué à alimenter
ma réflexion.

Merci à monsieur Lionel LACASSAGNE pour avoir accepté de présider mon jury de
thèse.

Je voudrais également remercier mes deux rapporteurs, Loris MARCHAL et Jean-
Marc NICOD, d’avoir accepté de relire en détail ce manuscrit.

Merci à madame Safia KEDAD-SIDHOUM et messieurs Guillaume PALLEZ et Denis
TRYSTRAM de l’attention qu’ils portent à mon travail en acceptant d’être membres du
jury.

Le travail qui est présenté dans ce manuscrit a été effectué au CEA List au sein
du Laboratoire LCE. Aussi, merci à messieurs Nicolas VENTROUX, David RAPHAEL
et Christian GAMRAT, de m’avoir accueilli et mis à ma disposition tous les moyens
nécessaires aussi bien techniques que financiers, afin de mener à bien ce travail.

J’aimerais ensuite remercier toutes les personnes que j’ai rencontrées au CEA tout
au long de ma thèse. En particulier, je tiens à remercier mes anciens collègues Jason L.,
Dina Y., Nermine A., Erwan L., Farouk H., Divya G., François G., Sergiu K., Amir C.,
Aymen B., David B., Kods T., Daniel V., Philippe G., Emine L., Farid L., Martin Z.
pour toutes les discussions intéressantes que nous avons pu avoir.

Je souhaite remercier également les différentes personnes que j’ai pu croiser durant
ces dernières années et qui ont su par leurs questions ou leurs conseils me permettre de
toujours pousser un peu plus mon raisonnement.

Je voudrais également remercier toutes les personnes extérieures du domaine univer-
sitaire qui m’ont, à leur façon, apporté leur aide. En premier lieu, je voudrais exprimer
ma profonde gratitude à mes parents, Malek et Hakima, ainsi que mon frère Gaya et
ma soeur Kahina, et à tous les membres de ma famille (Fatima, Mokrane, Mustapha,
Omar, Djilali...), qui ont su croire en moi et qui m’ont apporté toute leur aide quand j’en
ai eu besoin. Un grand merci à ma Sosso pour son soutien inconditionnel. Je souhaite
également remercier tous mes amis de grande date qui ont su m’apporter confiance et
écoute à tous les moments. Ainsi, je remercie particulièrement Abderrezak, Sofiane, Ab-
derrahmane, Zineb, Mounia, Amine, les deux Mehdi, Mustapha, Yanis, Raouf, Fatima,
Ahmed, Ilyes, Nacer, Said, Ali, Abdesslem, Asmaa, Sedik, Hacene et tous les autres.

Enfin, merci à toutes celles et ceux qui ont pris le temps de venir voir ma soutenance,
à celles et ceux qui m’ont aidé à organiser le pot.

ii

Contents

Contents iii

Symbols and Acronyms 1

Abstract 3

Introduction 5

1 Preliminary notions and context 9
1.1 Introduction . 9
1.2 Platform architectures . 9

1.2.1 Fully heterogeneous platform . 10
1.2.2 Hybrid platform (GPU/CPU) . 10

1.3 Scheduling strategies . 11
1.4 Application and platform models . 12
1.5 Energy model . 15

1.5.1 DVFS and DPM techniques . 15
1.5.2 Consistent model . 17
1.5.3 Inconsistent model . 17

1.6 Conclusion . 18

2 Scheduling sequential applications (chain of tasks) on heterogeneous platforms 19
2.1 Introduction . 19
2.2 Related work . 20
2.3 Mathematical model . 21
2.4 Optimal scheduling algorithm for a chain of preemptive tasks 22
2.5 An approximation scheduling algorithm for chain of non-preemptive tasks with

communication costs . 31
2.6 Experimental results . 35
2.7 Conclusion . 37

3 Scheduling parallel applications on hybrid platforms with an unlimited number
of processors 39
3.1 Introduction . 39
3.2 Notations . 40
3.3 Related work . 40
3.4 Complexity . 44
3.5 Bi-partite graphs . 47
3.6 Trees . 51
3.7 Series-Parallel graphs . 53
3.8 Conclusion . 56

4 Hybrid platform with a limited number of processors 57
4.1 Introduction . 57
4.2 Mathematical model . 58
4.3 Basic List Scheduling algorithm (without pre-allocation) 60

4.3.1 The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm 60
4.3.2 Lookahead scheduling . 61
4.3.3 Predict Earliest Finish Time algorithm (PEFT) 62
4.3.4 INCremental Subgraph Earliest Finish Time algorithm (INCSEFT) 63

4.4 Basic List Scheduling algorithm with pre-allocation 65
4.4.1 List Scheduling algorithm With Pre-Allocation (LSWPA) 65
4.4.2 Polynomial List Scheduling With Pre-Allocation (PLSWPA) 75

4.5 Numerical results . 82
4.5.1 Benchmark . 82
4.5.2 LSWPA algorithm compared to HEFT algorithm 83
4.5.3 Best value of υ for the rounding θ3 . 87
4.5.4 LSWPA algorithm evaluation using different mappings 88
4.5.5 PLSWPA compared to LSWPA and HEFT algorithms 89
4.5.6 PLSWPA compared to LSWPA and HEFT algorithms using only one pro-

cessor of type A . 91
4.5.7 PLSWPA compared to LSWPA and HEFT algorithms with consistent model 92
4.5.8 Comparison between PLSWPA, LSWPA and HEFT algorithms 93

4.6 Conclusion . 93

5 Hybrid platform with a limited number of processors with energy constraint 95
5.1 Introduction . 95
5.2 Complexity . 96
5.3 Mathematical model . 97
5.4 List Scheduling algorithm With Pre-Allocation (LSWPAe) 99
5.5 Polynomial List Scheduling algorithm With Pre-Allocation (PLSWPAe) 103
5.6 Numerical results . 107

5.6.1 Benchmark . 107
5.6.2 PLSWPAe compared to LSWPAe algorithm 108
5.6.3 PLSWPAe compared to LSWPAe algorithm if the execution time of each

task is related to its energy consumption 111
5.6.4 comparing PLSWPAe and LSWPAe algorithms using only one processor

of type A . 113
5.6.5 PLSWPAe compared to LSWPAe algorithm when E is tight 114
5.6.6 Average . 116

5.7 Conclusion . 117

6 Conclusion 119

Bibliography 123

iv

Symbols and Acronyms

Symbols

n Number of tasks
m Number of processing elements
ti Task indexed by i
T = {t1, t2, ..., tn} Set of the tasks
pj Processing element number j
M = {p1, p2, ..., pm} Set of the processing elements
θ(ti) Processor assignment of ti(ex: θ(ti) = p1 means that ti is assigned to p1)
τ(r) Type of pr(ex: τ(r) = A if r 6 ` and τ(r) = B if r > `)
G = (V,E) A directed acyclic graph
V The set of nodes in G
E The set of arcs in G
ci,j Communication rate between (ti, tj) ∈ E, if θ(ti) = pl and θ(tj) = pk
cmi,l,j,k Communication cost between (ti, tj) ∈ E, if θ(ti) = pl and θ(tj) = pk
Si Starting execution time of the task ti
Ci Completion time of the task ti
Γ+(ti) The set of the immediate successors of the task ti
Γ−(ti) The set of the immediate predecessors of the task ti

Acronyms

DAG Directed Acyclic Graph
HPC High-performance computing
CPU Central Processing Unit
GPU Graphics Processing Unit
FPGA Field-Programmable Gate Array
DVFS Dynamic voltage and frequency scaling
DPM Dynamic power management
EFT Earliest Finish Time
MIP Mixed Integer Program
NLMIP Non-Linear Mixed Integer Program

2

Résumé en français
Les applications récentes dans l’industrie ou dans la recherche nécessitent souvent des calculs
massifs. Ainsi, les applications deviennent plus exigeantes en vitesse de calcul, ce qui engendre
une très grande consommation énergétique des plateformes matérielles. Les plateformes de calcul
hétérogènes offrent un bon compromis avec une puissance de calcul importante tout en préservant
l’énergie consommée pour l’exécution d’applications parallèles de hautes performances. Elles
représentent donc de nos jours des moyens de calcul intéressants. Afin de profiter des avan-
tages offerts par l’hétérogénéité en termes de performance, la gestion efficace et automatique
des ressources de calcul est de plus en plus importante pour exécuter des applications parallèles.
Ces nouvelles architectures ont ainsi donné lieu à de nouveaux problèmes d’ordonnancement qui
allouent et séquencent les calculs sur les différentes ressources en optimisant un ou plusieurs
critères.

L’objectif de cette thèse est de déterminer un ordonnancement efficace d’une application
parallèle sur un système de ressources hétérogènes afin de minimiser le temps d’exécution total
(makespan, Cmax) de l’application tout en respectant une contrainte d’énergie.

Deux classes de plateformes hétérogènes ont été considérées dans notre travail : des archi-
tectures totalement hétérogènes qui combinent plusieurs éléments de traitement (CPUs, GPUs,
FPGAs), et des plateformes hybrides limitées à deux types de processeurs (CPU + GPU par
exemple) en très grand nombre.

Deux modèles d’exécution ont été également considérés. Le modèle consistant, où chaque
processeur Pj est caractérisé par une fréquence d’exécution fj , et chaque tâche ti est caractérisée
par un poids wi. Le temps d’exécution et l’énergie associée à une tâche ti allouée à Pj sont
respectivement wi

fj
et wi ∗ f2

j . Le modèle inconsistant, où il n’y a pas d’hypothèse sur les temps
d’exécution des tâches et les consommations d’énergie sur les différents processeurs. De plus,
dans ce travail, des délais de communication sont pris en compte entre les processeurs et les
tâches pour les deux modèles.

Nous proposons plusieurs stratégies d’ordonnancement d’applications sur les deux plateformes
avec les deux modèles d’exécution. Nous avons d’abord étudié le cas particulier d’une application
représentée par une chaîne de tâches. Nous proposons un algorithme polynomial avec une garantie
de performance par rapport à la solution optimale. Ensuite, nous nous sommes concentré sur un
cas plus général avec des applications représentées par des graphes acycliques quelconques. Nous
avons d’abord étudié le problème pour les plateformes à nombre illimité de processeurs. Nous
prouvons que le problème est NP-complet, et proposons des algorithmes polynomiaux pour des
cas particuliers de graphes. Un algorithme non polynomial avec une garantie de performance de
6 est ensuite proposé pour le problème d’ordonnancement sur ressources limitées avec et sans
contrainte d’énergie. Enfin, nous modifions cet algorithme pour obtenir un algorithme polynomial
mais avec une garantie de performance relative.

Les expériences préliminaires des algorithmes proposés en utilisant différentes applications
et des plateformes de tailles différentes ont donné de bons résultats par rapport aux méthodes
existantes dans la littérature.

3

Abstract
Recent applications, both in industry and research often need massive calculations. They have
different hardware requirements in terms of computing speed, which leads to very high energy
consumption of hardware platforms. Heterogeneous computing platforms offer a good compro-
mise with high computing power while preserving the energy consumed to run high-performance
parallel applications. They are therefore nowadays an interesting computing resource. In or-
der to exploit the advantages offered by heterogeneity in terms of performance, efficient and
automatic management of computing resources is becoming increasingly important to execute
parallel applications. These new architectures have thus given rise to new scheduling problems
that allocate and sequence calculations on the different resources by optimizing one or more
criteria.

The objective of this thesis is to determine an efficient scheduling of a parallel application
on a heterogeneous resource system in order to minimize the total execution time (makespan,
Cmax) of the application while respecting an energy constraint.

Two classes of heterogeneous platforms have been considered in our work: fully heterogeneous
architectures that combine several processing elements (CPUs, GPUs, FPGAs), and hybrid plat-
forms limited to two types of processors (CPU + GPU for example).

Two execution models were also considered. In the consistent one, each processor Pj is
characterized by an execution frequency fj , and each task ti is characterized by a weight wi.
The execution time and the energy associated to a task ti allocated to PEj are respectively wi

fj

and wi ∗ f2
j . For the inconsistent model, there is no assumption for the execution time of tasks

on the different processors. In addition, communication delays are taken into account between
processors and tasks for both models.

We propose several application scheduling strategies on both platforms with both execution
models. We first studied the particular case of an application represented by a chain of tasks.
We proposed a polynomial algorithm with a performance guarantee.

Then, we focused on a more general case with applications represented by general directed
acyclic graphs. We first studied the problem for platforms with an unlimited number of proces-
sors. We proved that the problem is NP-complete, and proposed polynomial algorithms for some
particular graph cases. A non-polynomial algorithm with a performance guarantee of 6 is then
proposed for the scheduling problem on limited resources with and without energy constraint. Fi-
nally, we modify this algorithm to obtain a polynomial algorithm, but with a relative performance
guarantee. Preliminary experiments with the proposed algorithms using different applications
and platforms of different sizes have shown good results compared to existing methods in the
literature.

4

Introduction

Today, our daily life requires massive calculations on different computing systems (desktop, data
centers) to perform various needs such as medical simulations and physical simulations. These
applications can be executed on a single processing element, but they take a long runtime. In
order to improve the performance of these applications, the past few years have seen an increasing
demand for developing efficient large computing resources. The goal is to process large amount
of computations related to high performance parallel applications.

Thus, heterogeneous computing systems become a popular and powerful commercial platform,
containing several heterogeneous processing elements such as Central Processing Unit (CPU),
Graphics Processing Unit (GPU) and some Field Programmable Array (FPGA) with different
computational characteristics. These processing elements are heterogeneous because they have
different characteristics in terms of execution time and energy consumption. The Top500 1 list,
which has been updated semiannually for the past decade, ranks the 500 most powerful computers
installed worldwide. However, using efficiently these platforms become very complicated and
very challenging. In fact, with the complexity of applications and architectures, it becomes
increasingly difficult to distribute efficiently the tasks of an application. The aim to execute
it in parallel by limiting unnecessary communication delays. Otherwise, more time is spent
communicating than computing. Several questions arise then : is parallelism useful? Should we
rather execute all the application on a single processing element? When should we parallelize?
Which part of the application will be executed on which processor?

More than a simple load balancing problem, heterogeneity leads to consider efficient schedul-
ing techniques to take into account the different resources specificities. Consequently, more and
more attention has been focused on scheduling techniques for solving the problem of optimizing
the execution of parallel applications on heterogeneous computing systems [1–5].

The most common objective function of task scheduling problems is makespan. However,
energy consumption is also an important issue to be considered. Indeed, the resulting energy
consumption of these platforms is very high and its increase must be kept reasonable. As an
example, the U.S. data centers consumed an estimated 70 billion kWh (about 1.8% of total U.S.
electricity consumption) [6]. Thus, it is time to invest in green computing, and computing servers
must be built with energy-aware resource management. This focus on energy efficiency must also
have as much as possible little impact on performance as possible. Thus, heterogeneous systems
offer the opportunity to achieve high performance while saving energy [7] and give an attractive
alternative to massively parallel servers.

The objective of this thesis is to find a generic approach to schedule parallel applications
presented by graphs of type DAG (Directed Acyclic Graph) on a heterogeneous resource system
in order to minimize both the total execution time (makespan) and the energy consumption. For
this purpose, we introduce a constraint on the total energy consumed by the platform. The aim
is then to propose efficient scheduling methods to minimize execution time while respecting an
energy constraint. In addition, these methods must guarantee the quality of the solution in the
worst case compared to the optimal solution.

We now summarize the different chapters of this thesis as follow. We give a concluding

1Top500.org ranking. URL https://www.top500.org/lists/2018/11/

chapter for the whole thesis at the end.

Chapter 1 Preliminary notions and context

The aim of this chapter is to situate the context of this thesis. We first give a brief overview
of heterogeneous platforms, in particular fully heterogeneous and hybrid platforms that are
studied in this work. We then discuss the two main scheduling strategies in the literature,
namely dynamic and static scheduling. Then, we detail the execution model of the applications
and the energy models that will be used in this thesis. Finally, we introduce some helpful
notations for the rest of the manuscript.

Chapter 2 Scheduling sequential applications (chain of tasks) on heterogeneous
platforms

This chapter presents an efficient approximation algorithm to solve a task scheduling
problem on heterogeneous platforms for the particular case of linear chains of tasks (sequential
applications). The objective is to minimize the total execution time (makespan) respecting an
energy constraint on the total energy consumed by the system. The main contribution of this
chapter is an algorithm which provides a solution with small running time, and also guarantees
the quality of the solution obtained compared to the optimal solution.

Chapter 3 Scheduling parallel applications on hybrid platforms with an unlimited
number of processors

This chapter addresses the problem of scheduling parallel applications onto a particular
case of HPC which is known as hybrid platforms. Specifically, our platform type consists
of two types of processing elements (e.g. CPU+GPU), each with an unbounded number of
resources. We have shown the intractability of the problem and proved that there does not
exist 3/2-approximation algorithms unless P=NP. We further provide some polynomial time
algorithms for special cases of graphs.

Chapter 4 Hybrid platform with a limited number of processors

In this chapter, we suppose that our hybrid platform is composed of a limited number of two
types of processing elements. First, we propose a non polynomial two-phase 6-approximation
algorithm named List Scheduling algorithm With Pre-Allocation (LSWPA). The first phase
consists in solving two models to find the type of processor assigned to execute each task
(mapping). In the second phase, we compute the start execution time of each task to generate
a feasible schedule (assignment). Then we propose a polynomial three-phase algorithm named
Polynomial List Scheduling algorithm With Pre-Allocation (PLSWPA). The first two phases
consist in solving linear models to find the mapping of the tasks. In the third phase, we compute
the assignment of the tasks.

Chapter 5 Hybrid platform with a limited number of processors with energy
constraint
This chapter presents two efficient algorithms to solve the problem of scheduling parallel appli-
cations on hybrid platforms with communication delays. The objective is to minimize the total

6

execution time (makespan) respecting an energy constraint. First, we modify LSWPA algorithm
to provide a 6-approximation algorithm LSWPAe with two phases. In the first phase, we add
some constraints to the model used for LSWPA algorithm to respect the energy constraint. The
second phase is the same as the second phase of LSWPA algorithm.

Then, we modify PLSWPA algorithm to provide a polynomial three-phase algorithm
PLSWPAe. The first two phases consist in solving linear models to find the type of processor
assigned to execute each task. We obtain a mapping that consumes at most twice the amount
of authorized energy. In the third phase, we compute the start execution time of each task to
generate a feasible schedule.

7

8

Chapter

1
Preliminary notions and con-
text

Chapter content
1.1 Introduction . 9
1.2 Platform architectures . 9

1.2.1 Fully heterogeneous platform . 10
1.2.2 Hybrid platform (GPU/CPU) . 10

1.3 Scheduling strategies . 11
1.4 Application and platform models . 12
1.5 Energy model . 15

1.5.1 DVFS and DPM techniques . 15
1.5.2 Consistent model . 17
1.5.3 Inconsistent model . 17

1.6 Conclusion . 18

1.1 Introduction

The objective of this thesis is to determine an efficient scheduling of parallel applications on a
heterogeneous resource system in order to minimize the total execution time (makespan) of the
application while respecting an energy constraint. The aim of this chapter is to describe the
context of this thesis. We first give a brief overview of heterogeneous platforms, in particular
fully heterogeneous and hybrid ones. Then, we discuss the two main scheduling strategies in the
literature, namely dynamic and static scheduling. After this, we detail the execution model of
the applications and the energy models that will be used in the rest of this thesis. Finally, a
conclusion of the chapter is given after some helpful notations for the rest of the manuscript.

1.2 Platform architectures

Nowadays, numerous services need the execution of complex applications, such as weather fore-
casting, search engines and big data medical analyzes. These applications are studied, tested and
simulated in data centers with massively parallel computing systems. Unfortunately, the result-
ing energy consumption is very high and its increase must be kept reasonable. As an example,
the U.S. data centers consumed an estimated 70 billion kWh (about 1.8% of total U.S. electricity
consumption) [6]. Thus, it is time to invest in green computing, and computing servers must be
built with energy-aware resource management. This focus on energy efficiency must also have as
little impact on performance as possible. Heterogeneous systems offer the opportunity to achieve
high performance while saving energy [7] and give an attractive alternative to massively parallel

1.2. PLATFORM ARCHITECTURES

servers. The processing elements have different characteristics in terms of execution time and
energy consumption. This heterogeneity offers several scheduling options, which makes it easier
to find efficient scheduling. Two classes of heterogeneous platforms have been considered in this
thesis, the fully heterogeneous and hybrid platforms as detailed below.

1.2.1 Fully heterogeneous platform

Recent High Performance Computing (HPC) systems have heterogeneous architectures using
accelerators (GPUs such as NVIDIA Tesla or manycore architectures like Intel Xeon Phi). Even
more heterogeneous systems can be found in micro-server systems which are designed to host
fairly high computing power in a small form factor such as Mont-Blanc [8] and Christmann
RECS|BOX [9, 10].

This kind of platforms allows tight integration of general purpose computing architectures
such as CPUs, embedded CPUs with possibly accelerators (e.g. ARM-based SoCs with GPUs or
FPGAs), GPUs, FPGAs. This enables the realization of a truly heterogeneous hyperscale server
architecture.

Figure 1.1 presents an example of a sample configured server, which can be composed of
two Intel Core-I7 4700EQ nodes (16GB memory), one NVIDIA Tesla K80 GPU, two baseboards
with four Christmann Apalis ARM nodes (Samsung Exynos 5250 - dual ARM A15 and Mali-
T604MP4) and finally a prototype FPGA board from the University of Bielefeld (Xilinx Zynq
XC7Z45 - dual ARM A9 and reconfigurable logic).

Figure 1.1: Picture of a RECS|BOX server composed of two Intel CPUs, one NVIDIA Tesla K80, eight
Samsung Exynos ARM CPUs and a Xilinx Zynq 7045.

1.2.2 Hybrid platform (GPU/CPU)

With the increasing popularity of deep learning in data centers (Facebook, Twitter, Microsoft,
Google, etc.) and video games, GPUs become quite common and powerful, enclosing great com-
putation capability. In fact, in several applications, we observe an acceleration of the execution
time of tasks if they are executed on a GPU compared to their execution time on a CPU. Thus,
Hybrid platforms are increasingly used in the field of HPC, where the number of platforms of the
Top500 equipped with accelerators has significantly increased during the last years like TGCC
Curie supercomputer1.

The NVIDIA Drive PX2 platform (see Figure 1.2) is an interesting example in this area, aimed
at providing autonomous car and driver assistance functionality. The platform has an NVIDIA
discrete GPU and an integrated NVIDIA GPU. The discrete GPU is relatively more powerful
than the integrated GPU. However, the integrated GPU has operators optimized for working

1Tgcc Curie supercomputer, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

10

CHAPTER 1.

with reduced 16-bit floating (half-precision) accuracy. Using these operators almost doubles the
execution speed on this GPU compared to a 32-bit floating (single-precision) implementation.

Figure 1.2: A NVIDIA Drive PX2 platform composed of 4 Denver cores, 8 ARM A57 cores and a 2
GPUs Pascal-based.

In this thesis, we consider the more general case where the relation between the two types of
resources can vary for different tasks. A scheduling method for the fully heterogeneous platforms
can also be applied to hybrid platforms, but one can do better for the hybrid platform in terms of
algorithms. Indeed, we will see in chapters 3, 4 and 5, that the particularity of this platform (two
types of processing elements) gives the possibility to provide more efficient scheduling algorithms.

1.3 Scheduling strategies

Taking advantage of the heterogeneous systems described above requires efficient use of resources.
In a heterogeneous environment, tasks have different execution times and power consumption that
depend on computing resources. The performance and the energy consumption of the system can
be changed by using different resource allocations. Thus, the exploitation of these heterogeneous
platforms raises new challenges in terms of application management optimization on available
resources. An important research challenge is how to assign the different tasks composing an
application to the available resources in order to maximize some performance criterion of the
heterogeneous architecture [11].

Tackling this challenge consists in determining efficient strategies to exploit these heteroge-
neous platforms by finding the best allocation of application tasks to optimize the performance
per watt ratio with respect to various constraints. For this, having the right application and hard-
ware models is paramount. On the application side, some high level optimizations have been
developed to reduce the execution time [12] and the power consumption [13]. These optimizations
provide more freedom for Design Space Exploration [14] and for embedded applications [15–17].

In this thesis, we consider a parallel application represented by a Directed Acyclic Graph
(DAG) with precedence constraints between the tasks. The mapping problem consists in the
assignment of tasks to a set of processing elements. The scheduling problem consists in sequencing
the order of task execution for each processing element such that precedence relationships between
tasks are not violated, and orchestrating inter-node data transfers to optimize the performance
per watt ratio.

Static scheduling involves mapping applications in an offline phase while dynamic mapping
is done online. In both cases, the mapping problem has been shown, in general, to be NP-

11

1.4. APPLICATION AND PLATFORM MODELS

complete [18, 19]. Thus, the development of heuristic techniques to find near-optimal solutions
for the mapping problem is an active area of research.

In dynamic scheduling, the mapping and scheduling are done online, and based on dy-
namic information such as the set of available tasks and the state of the resources. In
contrast, static scheduling means that the processor allocation, often called mapping, and
the ordering of the tasks are determined in an offline phase and based on the whole task
graph [20].

Static and Dynamic scheduling:

The advantage of static scheduling is that it can take all the tasks of the application into con-
sideration in its scheduling decisions by including the dependences and communications among
the tasks. However, scheduling on shared resources makes the use of static scheduling strategies
more complex [21]. Indeed, it is difficult to precisely predict task execution times and communi-
cation costs between processing elements.

Recently, to handle these limitations, several dynamic methods have been proposed such as
StarPU [22] and PaRSEC [7]. These methods make their decisions based on the condition of
the machine and all available tasks. Though they can lead to intensive use of some resources by
often assigning computations to the best ones and make a poor use of "slower" ones like CPUs.
Furthermore, most of task programming libraries do not take into account the energy criterion,
and only focus on minimizing the completion time.

A deep analysis was realized in [23, 24] to compare static and dynamic strategies for task
graph scheduling on heterogeneous platforms. It has been shown that static schedules may be
robust to variations in execution times for some applications. Thus, an efficient method for
executing applications on shared resources is a method that is based on both dynamic and static
aspects at the same time.

Recently, [25] have shown the ability of hybrid dynamic-static strategies to simultaneously
reduce the execution time and the amount of communications. The study shows the efficiency of
static schedulers with the help of some techniques to fix a possible load imbalance encountered
during the execution (when a processing element is idle with no remaining attributed tasks on
its memory node). It allows to make the best use of highly heterogeneous platforms.

Thus, the aim of this thesis is to propose efficient static methods, so that their association
with dynamics methods will give the most efficient solution as possible.

We propose several methods for the scheduling problem on parallel platforms. We compare
the performance of these methods to the optimal solution and lower bounds. Furthermore, the
methods proposed for the problem of scheduling without energy constraint will be compared to
Heterogeneous Earliest Finish Time (HEFT) [26] which was used as a comparison method for
several works. HEFT is a list based approach on two main phases. The first phase uses runtime
costs and communication costs to calculate ranks. After rank calculation, the assignment to the
processors will take place in the second phase using the earliest finish time of tasks. Each task
is then assigned to the processor that produces the minimal completion time.

1.4 Application and platform models

In this thesis, we consider a fully connected heterogeneous multiprocessor platform in which
M = {p1, p2, ..., pm} is a set of m heterogeneous processing elements (GPU, CPU, FPGA, ...)
denoted by pk, k = 1..m.

In the most general case, an application of n tasks can be represented by a Directed Acyclic
Graph (DAG) G = (V,E) (see figure 1.3). V is the set of nodes in G, and each node ti ∈ V
represents a task. E is the set of arcs in G, each arc represents a precedence constraint.

12

CHAPTER 1.

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

Figure 1.3: General DAG graph.

Each task ti is characterized by its execution time wi,k and its energy consumption ei,k on
a processing element pk, i = 1..n, k = 1..m. Each arc (ti, tj) ∈ E represents a precedence
constraint between the tasks ti and tj (ex: data transfer). Each arc (ti, tj) ∈ E is characterized
by a value ci,j which expresses the communication rate between ti and tj . If ti is executed on the
processing element pl and tj on pk and l 6= k, then the communication time between ti and tj is
equal to cmi,l,j,k =

ci,j
Bl,k

+ Ll,k [10, 27]. Bl,k represents the available bandwidth between pl and
pk. This bandwidth can be the one from an Ethernet link between pl and pk. Ll,k represents the
latency between pl and pk. However, other communication models [28] may exist to calculate
the value of cmi,l,j,k, i, j = 1..n, k, l = 1..m. We suppose that cmi,l,j,k = cmi,k,j,l. Let Ci be the
end date of the task ti. For any arc (ti, tj) ∈ E, Ci +wj,k ≤ Cj if both tasks are executed by the
same processing element pk. Otherwise, Ci + wj,k + cmi,k,j,l ≤ Cj where tj is executed by the
processing element pk and tj by pl 6= pk. We suppose that cmi,k,j,l = 0 if pk = pl.

For any task ti ∈ V , Γ+(ti) (resp. Γ−(ti)) denotes the set of the immediate successors (resp.
predecessors) of ti. We consider in this thesis that a task ti can be executed only after the
completion time of all its predecessors.

In scheduling, preemption is the act of temporarily interrupting the execution of a task on
a processor pj , and later resuming its execution on the same or on another processor. For
the general case of applications represented by a DAG, the preemptive scheduling problem
is NP-complete even without energy constraint [29].

Preemptive scheduling:

We do not allow duplication of tasks or preemption. A task can be executed by all processing
units. We denote by E the allowed quantity of energy consumed during the execution. The value
E represents in our case an energy bound that should not be exceeded during the execution. The
energy model used in this thesis is described below.

An application is usually represented by DAGs. Nevertheless, in some cases, it is possible for
applications to take a particular form. For example, if an application includes only sequential
tasks, it can be represented by a linear chain of tasks (see figure 1.5). Other applications may take
other forms of graphs such as Serie-Parallel graphs (see figure 1.4), out-tree graphs (see figure 1.6)
and bi-partite graph (see figure 1.7). These graph classes will be studied in Chapter 3. The fact
that the precedence graph takes a particular form may transform the complexity of the problem.
Most of the time, adding precedence constraints makes the problem harder [30].

13

1.4. APPLICATION AND PLATFORM MODELS

t0

t1

t2

t3

t4

Figure 1.4: A Serie-Parallel graph.

t0 t1 t2 t3 t4

Figure 1.5: Linear chain graph.

t0

t1

t2

t3

t4

t5

t6

t7

Figure 1.6: An out-tree graph.

t1

t0

t2

t3

t4

Figure 1.7: A bi-partite graph

Scheduling classification

The following classification is used to describe the scheduling problems treated in this thesis.
A convenient notation for theoretic scheduling problems was introduced by Graham et al. [31],
and updated by Brucker [32], where many scheduling problems can be described by a three field
notation α|β|γ such that:

• α describes the machine environment.

• β describes the characteristics of the tasks.

• γ describes the objective criterion to be minimized.

One field can contain several proprieties. In this thesis, we use the following items:

- α = Pm if there are m parallel identical processing elements. Each task ti is characterized
by its execution time wi, which is the same for all processing elements.

- α = Qm if there are m parallel processing elements with different given frequencies F =
{f1, f2, ..., fm}. Each task ti is characterized by its weight wi, and its execution time
wi,k = wi

fk
on a processing element pk.

- α = Rm if there are m parallel unrelated processing elements. Each task ti is characterized
by its execution time on a processing element pk equal to wi,k.

- β = prec: precedence relations are given between tasks. If ti precedes tj , tj may start its
execution after the finish execution time of the tasks ti.

- β = com: communication delays are given between processing elements.

14

CHAPTER 1.

- β = pmtn: tasks can be preempted and resumed possibly on another processing element.

- β = chain: if an application has a particular form of a linear chain of tasks.

- β = E: if there is an allowed quantity of energy to not exceed during the execution.

- γ = Cmax: the objective is to minimise the finish execution time of the application.

For example, Pm|prec,E|Cmax is the scheduling problem onm identical machines that minimizes
the completion time by respecting precedence constraints without communication costs while
satisfying an energy constraint E.

1.5 Energy model

The heterogeneous computation platform allows very powerful computation performance, but
requires a significant amount of energy. Due to its key importance on performance, energy-aware
scheduling problem on heterogeneous platform has been extensively studied [33, 34].

Minimizing the energy consummation of these platforms is linked to managing energy con-
sumption in Complementary Metal Oxide Semiconductor (CMOS) circuits. The main power
consumption in CMOS circuits for task execution is composed of dynamic energy consumption
and static energy consumption [35]. Dynamic power dissipation is only consumed when there
is switching activity as transistors switch states in the logic circuit. Static power is the part of
power consumption that is independent of activity and due to leakage currents.

Numerous methods and models have been reported in the literature to minimize the energy
consumption on a limited number of processing elements such as Dynamic Voltage and Frequency
Scaling (DVFS) [36, 37] and Dynamic Power Management (DPM) [38, 39] as defined below.

1.5.1 DVFS and DPM techniques

DVFS technique reduces the dynamic power dissipation by exploring the trade-off between energy
consumption and execution time by scaling down the supply voltage and frequency of a processor
while tasks are running. DVFS technique reduces the static power dissipation only by scaling
the voltage and the frequency of processors to their lowest voltage and lowest frequency.

The DPM policy is to exploit the available idle periods to reduce static power, where the
processor must not stay in active mode for the entire scheduling period. It manages the processor
transition from a low-power to an active mode to reduce the power consumption.

By using DVFS technique, the scheduling problem of minimizing the makespan remains NP-
complete even without energy constraints. In fact, by ignoring the energy constraint, we can
choose the voltage and frequency of the processors that generate the smallest execution time for
each task. Then, we find the general scheduling problem where the execution time of each task
is a fixed value, this problem is NP-complete [29, 40].

Using DVFS technique, Huang et al. [35] proposed an Enhanced Energy-aware Scheduling
(EES) heuristic to the problem of reducing energy consumption of parallel applications in hetero-
geneous distributed computing systems (data centers) by considering communication delays and
respecting a deadline D on the finish execution time of the applications. The execution times of
the tasks depend on the frequency of each processor. The method is based on two phases: EES
algorithm firstly employs the Heterogeneous Earliest Finish Time (HEFT) algorithm [26] to find
an initial task schedule without respecting the deadline D and energy consumption. This phase
determines the time slots for the task execution respecting the communication delays between
processors. The second phases focuses on the study of slack room for the non-critical tasks and
try to schedule the tasks nearby running on a uniform frequency for global optimality.

By introducing a deadline on the makespan and a constraint on the reliability, Pallez [41] have
used DVFS technique to propose a fully polynomial-time approximation scheme for the problem

15

1.5. ENERGY MODEL

of minimizing the energy consumption for the particular case of applications represented by a
linear chain of tasks without communication delays between successive tasks. The execution
times of the tasks depend on the frequency of each processor. The authors showed that there
exists no constant factor approximation algorithm for independent tasks using DVFS, unless
P=NP.

Based also on DVFS technique, Xie et al. [42] have treated the problem of minimizing the
schedule length of a DAG-based parallel application with energy consumption constraint on het-
erogeneous distributed systems considering communication delays. They decompose the problem
in two sub-problems starting by handling the problem of the energy constraint. At each task
assignment phase, the energy consumption constraint of the application can always be satisfied
by supposing that the unassigned tasks are assigned to the processor with the minimum energy
consumption. Then, they proceed to the minimization of makespan, assigning each task to the
processor that provides its earliest finish time.

By introducing a novel objective function, which takes into account makespan and energy
consumption, Lee and Zomaya [43] proposed the ECS heuristic (Energy Concious Heuristic)
taking into account communication delays and using DVFS technique. For a ready task, the
value of the objective function is calculated by varying some parameters linked to the frequencies
of the processors. The best combination which minimizes the objective function is then selected.

Dynamic power dissipation (processing elements on activity) represents the most expensive
part of the power consumption [44, 45]. Most of the work has used the DVFS technique, which
is effective for dynamic energy reduction. However, with a growing number of transistors on
computing platform and multicore technology, static power is dissipating exponentially. Thus,
DPM technique could be an interesting solution to manage the static energy consumption. For
this purpose, Ma et al. [38] have proposed an energy-efficient scheduling algorithm on homo-
geneous DVS-Unable cluster systems taking into account communication delays. The proposed
algorithm aims at the energy efficiency of data-intensive applications while maintaining the ap-
plication performance by including task clustering and task duplication techniques. Kaur et al.
[46] have proposed a static energy-efficient scheduling on heterogeneous computing system for
DAG-based parallel application considering communication delays using DPM and duplication
tasks techniques. They take into account the total energy consumption comprising processor en-
ergy (dynamic and static) and network energy (communication energy). To manage the trade-off
between makespan and energy consumption caused by duplicating tasks, an adaptive threshold
is selected thereby making the system flexible to yield energy-efficient schedule.

In general, Le Sueur and Heiser [47] have shown that on the most recent platform, the
effectiveness of DVFS is markedly reduced. Indeed, most systems still consume considerable
power when they are idle, and actual savings are only observed when the energy consumption
of processors at higher frequencies are padded with the energy consumed when they are idle.
In other words, to maintain good performance, it is better to use a high frequency if the idle
processor consumes almost the same amount of energy. Furthermore, many HPC systems do
not support DVFS technique [38] and may cause transient failures which have an impact of the
failure rate of processors and need a dynamic reliability management [48, 49]. While it only
works when the idle time is long enough, DPM technique generates a transition delay and an
energy penalty for each processor transition (active and low-power modes).

To avoid reliability problems, we assume in this thesis that the processor frequencies are fixed
and the energy consumption of each task on each processor is also fixed and does not depend
on processors transitions. The main objective of this thesis, is to minimize the completion time
of an application while managing the dynamic energy consumption, i.e., when the processing
elements are active. For this, we define a bound on the total energy consumption. The static
energy consumption is related to the duration of use of the platform, therefore, to the end time
of execution of the applications. Thus, by minimizing the completion time, we minimize the
static energy consumption. In what follows, we describe the two models used in this thesis: the

16

CHAPTER 1.

consistent and inconsistent models.

1.5.2 Consistent model

In this model, each processing element pk ∈ M is characterized by its execution frequency
fk > 1, k = 1..m. The processing elements are sorted by increasing order of their frequencies
(f1 6 f2 6 ... 6 fm). Each task ti is characterized by its weight wi, i = 1..n. We denote by W
the total weight of the tasks, W =

∑n
i=1wi.

The execution of a task ti on a processing element pk generates an execution time equal to
wi,k = wi

fk
. The execution of a task ti on a processing element pk generates an energy consumption

equal to ei,k = wi ∗ f2
k .

The aim is to find a schedule on m uniform machines that minimizes the completion time by
respecting precedence constraints with communication costs and respecting an energy constraint.
Taking into account the classification of scheduling problems previously defined, this problem
can be represented as Qm|prec,E, com|Cmax for this model.

This model is motivated by the fact that computation platforms can contain processors of the
same architecture, but with different versions (as an example, Intel CoreTM i3-4150 Processor and
Intel CoreTM i7-6700 Processor). The execution time of the different tasks of the same application
(same code with the same programming language, same compiler, identical configuration and
so on) on different processors may be relative. A single test code can be used to measure their
relative speed and the relative speed will be the same for any application. This approach may also
work if the processors used in computations have very similar architectural characteristics [50].
Furthermore, the problem of scheduling on uniform parallel machines represents an interesting
theoretical problem, and has been widely studied in literature with different formulations and
objectives [51, 52].

1.5.3 Inconsistent model

In this model, we consider the more general case where the relation between processing elements
can differ for different tasks. Thus we have to take into account that the execution time for any
task of the application depends on the processor used to execute it.

The execution of a task ti on a processing element pk generates execution time equal to wi,k.
The execution of a task ti on a processing element pk generates an energy consumption equal to
ei,k.

The aim is to find a schedule onm unrelated machines that minimizes the completion time by
respecting precedence constraints with communication costs and respecting an energy constraint.
Taking into account the classification of scheduling problems previously defined, this problem
can be represented as Rm|prec,E, com|Cmax for this model.

The consistent model represents a particular case of the inconsistent model which considered
as a more generic model. In addition to the theoretical interest of scheduling on unrelated parallel
machines [26], this model is motivated by the fact that computation platforms can contain
processors of different architectures (the number of registers, the structure of memory hierarchy,
the size of each memory level and so on). Even different applications of the same narrow class may
be executed by two different processors at significantly different relative speeds. Moreover, not
all processing elements can be programmed in the same language. Several programming models
were developed for general computing on graphical processing units (GPUs) like CUDA [53]
(Compute Unified Device Architecture) and OpenCL [54] (Open Computing Language).

17

1.6. CONCLUSION

1.6 Conclusion

This first chapter presents an overview of the fundamental concepts related to this thesis. We
briefly presented some basic concepts related to the field of parallel computing.

We first gave a brief overview of heterogeneous platforms, in particular fully heterogeneous
and hybrid platforms, and the challenges associated with their use. We have shown that the
fully heterogeneous platforms represent an interesting solution to execute complex applications,
enclosing great computation capability. In particular, the hybrid platforms, which are increas-
ingly used in the field of HPC, combining multi-core processors and hardware accelerators such
as GPUs.

We then discussed the two main scheduling strategies in the literature, namely dynamic and
static scheduling. The aim of this thesis is to propose efficient static methods, so that their
association with dynamics methods will give the most efficient solution as possible.

Finally, we detailed the execution model of the applications and the energy models that will
be used in the rest of this thesis. We have discussed the limits of DVFS and DPM techniques,
and the reliability problems related to their use. To avoid reliability problems, we assume in
this thesis that the processor frequencies are fixed and the energy consumption of each task on
each processor is also fixed and does not depend on processors transitions. The main objective
of this thesis, is to minimize the completion time of an application while respecting a bound on
the total energy consumption.

18

Chapter

2
Scheduling sequential applica-
tions (chain of tasks) on het-
erogeneous platforms

Chapter content
2.1 Introduction . 19

2.2 Related work . 20

2.3 Mathematical model . 21

2.4 Optimal scheduling algorithm for a chain of preemptive tasks . . . 22

2.5 An approximation scheduling algorithm for chain of non-
preemptive tasks with communication costs 31

2.6 Experimental results . 35

2.7 Conclusion . 37

2.1 Introduction

In this chapter, we focus on scheduling sequential applications represented by a chain of tasks
on heterogeneous resources system. An application is composed of n successive tasks, sorted
from t1 to tn, i.e., T = {t1, t2, · · · , tn}. Each task ti is characterized by its weight wi, i = 1..n.
We denote by W the total weight of all the application tasks, W =

∑n
i=1wi. The execution

platform is composed of m heterogeneous processing elements, M = {p1, p2, · · · , pm}. Each
processing element pk ∈ M is characterized by its execution frequency fk > 1, k = 1..m. The
processing elements are sorted by increasing order of their frequencies (f1 6 f2 6 · · · 6 fm).
The execution of a task ti on a processing element pk generates an execution time equal to
wi,k = wi

fk
and an energy consumption equal to ei,k = wi ∗ f2

k . Furthermore, we consider here a
communication delay cmi,l,i+1,k between each two successive tasks ti and ti+1 if ti is executed
on the processing element pl and ti+1 on pk and l 6= k. The aim is to find a schedule on m
machines that minimizes the completion time (makespan) by respecting precedence constraints
with communication costs. We also have to respect an energy constraint. Taking into account
the classification of scheduling problems previously defined in section 1.5.2, this problem can be
represented by Qm|chain,E, com|Cmax.

This model is motivated by the fact that computation platforms can contain processors of the
same architecture, but with different versions (as an example, Intel CoreTM i3-4150 Processor and
Intel CoreTM i7-6700 Processor). The execution time of the different tasks of the same application
(same code with the same programming language, same compiler, identical configuration and so
on) on different processors may be relative. Thus, for two tasks t1 and t2 and two processing

2.2. RELATED WORK

elements p1 and p2, if w1,1 = αw1,2, then w2,1 = αw2,2, with α > 0. A single test code can be
used to measure their relative speed which will be the same for any application.

Two algorithms have been proposed. The first provides the optimal solution for preemptive
scheduling. This solution is then used in the second algorithm to provide an approximate solution
for the non-preemptive scheduling.

The rest of this chapter is organized as follows. The next section discusses works related to
the problem we address. Section 2.3 presents the mathematical model used to obtain the optimal
solution for small instances. Then, we provide in Section 2.4 a polynomial-time algorithm for the
preemptive scheduling. Its solution is used to provide a new algorithm for the non-preemptive
scheduling in Section 2.5. Finally, after testing the proposed algorithm on several instances in
Section 2.6, we provide concluding remarks and future directions in Section 2.7

2.2 Related work

The problem of scheduling application tasks on uniform parallel machines has been widely stud-
ied in literature with different formulations and resolution methods [55, 56]. The problem of
obtaining the optimal schedules for a uniform processor system with m > 2 processors is known
to be NP-complete even for independent tasks and without resource consumption [57].

For independent tasks, Ji et al. [58] treated the problem of finding a schedule that mini-
mizes the total resource consumption (carbon emission, electricity usage) while the makespan
was limited by an upper bound. They showed that the problem is NP-complete, derived a tight
lower bound, and developed a heuristic algorithm for the proposed problem. For an applica-
tion composed of independent Unit Execution Time (UET) tasks, Lawler [59] proved that the
scheduling problem Qm|wi = 1|Cmax can be solved in O(n logm) time. By allowing tasks pre-
emption, Gonzalez and Sahni [60] proposed an O(n) algorithm for the problem Qm|pmtn|Cmax
with n independent tasks on m uniform processors.

To the best of our knowledge, Yeh et al. [52] are the first to treat the parallel machine
makespan problem with a constraint B on the resource consumption (ex: energy). They proposed
three heuristics to solve the problem of scheduling independent tasks on m uniform processing
elements (Qm|B|Cmax) where some tasks might be processed only on certain machines.

By considering precedence constraints without communication delays, Brucker et al. [61]
demonstrated that the problem is solvable in polynomial time for graphs of linear chains of
tasks (the precedence constraints are chain-type where every task has at most one direct pre-
decessor and at most one direct successor). They studied the problem of scheduling identi-
cal execution time tasks on two uniform processing elements (Q2|chains, wi = w|Cmax). Ku-
biak [51] demonstrated that the problem is also solvable in polynomial time for tree-graph
(Q2|tree, wi = w|Cmax). Using a platform composed of m processors with K different speeds,
a 2(K + 1)-approximation algorithm has been developed by Chudak and Shmoys [62] for DAG
scheduling problem without communication delays Qm|prec|Cmax.

Kubiak et al. [63] considered a set of k independent chains Ch1, Ch2, · · · , Chk, k > 1,
made up by UET tasks. They take into consideration the precedence constraints, with a unitary
communication delay, such that the communication time between each two successive tasks is
equal to 1 if they are executed on two different processing elements. The problem is represented as
Qm|wi = 1, chains, com = 1|Cmax. They have shown that the problem of scheduling chains of
UET tasks on uniform processors with communication delays to minimize makespan is NP-hard
in the strong sense. Finally, they presented a heuristic for Qm|wi = 1, chains, com = 1|Cmax
and proved that it generates solutions within 2m− 1 units from optimum.

We consider here a particular case of applications composed of a set of dependent tasks and
represented by a linear chain of tasks (see figure 2.1). The particularity of the structure of
these applications gives us the possibility to find a performance guarantee algorithm using the
preemptive scheduling.

20

CHAPTER 2.

Hu [64] and Timkovsky [65] studied the preemptive scheduling problem without a resource
constraint and without communication delays, which is polynomially solvable for the particular
case of tree-graph scheduling on parallel identical processing elements (Pm|pmtn, tree|Cmax).
In this chapter, we propose a polynomial-time Preemptive Scheduling algorithm (PS) for the
problem of scheduling on m uniform machines for graphs represented by a linear chain of tasks
respecting an energy constraint E. This problem can be represented by Qm|pmtn, chain,E|Cmax.

Chekuriy and Benderz [66] gave a polynomial-time 6-approximation algorithm for a graph
of chains Qm|chains|Cmax without communication delays. A polynomial-time 2-approximation
algorithm was then proposed for the same problem by Woeginger [67]. Jansen and Solis-Oba
[68] have presented a polynomial time approximation scheme for Qm|chain|Cmax problem with a
performance guarantee ratio related to the number of processing elements and the ratio between
the highest and lowest processor frequency. By considering communication delays, we use the
solution of the preemptive scheduling (PS) to provide a new algorithm for the non-preemptive
scheduling Qm|chain, com,E|Cmax by respecting an energy constraint.

t0 t1 t2 t3 t4 t5 t6 t7

Figure 2.1: Linear chain graph.

Remark 1. We consider in this chapter sequential applications represented by a linear chain of
tasks. The applications are composed of n successive tasks, numbered from 1 to n. The tasks are
sequential, we switch from one processor to another only to increase or decrease the frequency of
execution. It is therefore unnecessary to use two processing elements with the same frequency.
Thus, we assume that all processors have different frequencies, i.e., f1 < f2 < · · · < fm.

2.3 Mathematical model

The problem of scheduling a linear chain of tasks on uniform parallel machines respecting an
energy constraint (Qm|chain,E, com|Cmax) can be modelled by a mixed integer constrained
program (Pch) as follows:

Data:

The data used in this model are:

• wi,k represents the execution time of ti on the processing element pk, with wi,k = wi
fk
. wi is

the weight of the task ti and fk represents the frequency of the processing element pk.

• cmi,l,i+1,k represents the communication time between ti and ti+1 if ti is executed on the
processing element pl and ti+1 on pk and l 6= k.

• ei,k is the energy consumption of the task ti on the processing element pk, with ei,k = wi∗f2
k .

• E represents energy bound on the total energy consumption of the application.

Variables:

We consider the following decision variables:

21

2.3. OPTIMAL PREEMPTIVE SCHEDULING

• xi,k equal to 1 if the task ti is executed on the processing element pk, 0 otherwise, i = 1..n
and k = 1..m.

• Si is the starting execution time of the task ti, i = 1..n.

Model:

The following model (Pch) provides the optimal solution for Qm|chain,E, com|Cmax problem.

(Pch)



∑m
k=1 xi,k = 1, ∀i = 1..n (1)∑n
i=1

∑m
k=1 xi,k ∗ ei,k ≤ E (2)

Si + xi,k1 ∗ wi,k1 + (xi,k1 + xi+1,k2 − 1)cmi,k1,i+1,k2 6 Si+1 (3)
∀k1 = 1..m, ∀k2 = 1..m ∀i = 1..n− 1 k1 6= k2

Z(min) = Sn +
∑m

k=1 xn,k ∗ wn,k

Constraints:

• The first constraint simply expresses that each task must be executed only once and on a
single processing element.

• Constraint (2) keeps the energy consumption during execution less than E.

• The third constraint describes that the task ti+1 must be executed after the completion
time of the task ti (i = 1..n− 1). The communication cost cmi,k1,i+1,k2 is added if both
tasks are executed on two different processing elements (pk1 and pk2). If xi,k1 = 1 and
xi+1,k2 = 1, then xi,k1 + xi+1,k2 − 1 = 1. Otherwise, xi,k1 + xi+1,k2 − 1 6 0.

The model (Pch) can be solved by a solver like CPLEX but only for small instances. In
the following, a polynomial method is proposed to solve the problem for large instances.
First, we propose a polynomial-time Preemptive Scheduling algorithm (PS) for the problem
Qm|pmtn, chain,E|Cmax of scheduling a linear chain of preemptive tasks on m uniform ma-
chines respecting an energy constraint E. Then, by considering communication delays, we use
the solution of the preemptive scheduling (PS) to provide a new algorithm for the non-preemptive
scheduling Qm|chain, com,E|Cmax. Finally, its performance will be compared to the optimal so-
lution obtained by the model (Pch) for small instances.

2.4 Optimal scheduling algorithm for a chain of preemptive tasks

In this section, we propose an algorithm to find the optimal solution of the preemptive scheduling
without communication cost for a chain of n preemptive tasks on a set of m processing elements.
The objective is to minimize the makespan while respecting an energy constraint. The problem
is represented by Qm|pmtn, chain,E|Cmax.

Lemma 1. A feasible solution for the problem Qm|pmtn, chain,E|Cmax can be defined by the
vector Pw = {P1, P2, · · · , Pm}, where Pk > 0 is the workload putted on the processing element
pk, k = 1..m. Thus,

∑m
k=1 Pk =

∑n
i=1wi = W , i.e., the processing time of the workload Pk

putted the processor pk is given by Pk
fk
.

Proof. The problem addressed here is the optimization of the preemptive scheduling of an ap-
plication without considering communication delays, the objective is to minimize the end of its
execution time by respecting an energy constraint. Thus, Pk > 0 can be defined as the sum of
the execution times (or a fraction) of the tasks assigned to the processing element pk.

22

CHAPTER 2.

Finally, a feasible solution for the problem Qm|pmtn, chain,E|Cmax can be defined by the
vector Pw = {P1, P2, · · · , Pm}, where Pk > 0 is the workload putted on the processing element
pk, k = 1..m.

∑m
k=1 Pk =

∑n
i=1wi = W . The tasks are assigned to the vector Pw in ascending

index order, i.e., P1 =
∑r1

i=1wi + w
′
r1+1, where w′r1+1 represents a portion of the weight of

the task tr1+1, P2 = (wr1+1 − w
′
r1+1) +

∑r2
i=r1+2wi + w

′
r2+1,· · · , Pm = (wrm−1+1 − w

′
rm−1+1) +∑n

i=rm−1+2wi. An example of a preemptive scheduling solution representation is presented below
in Example 1.

Example 1. Figure 2.2 presents an example of scheduling a chain of 5 tasks on 4 processing
elements. The vector Pw is given by Pw = {P1, P2, P3, P4} where:

P1 = w1 +
w2

2

P2 =
w2

2
+ w3

P3 =
w4

2

P4 =
w4

2
+ w5

The finish execution time (makespan) of this instance is then given by Ĉmax = P1
f1

+ P2
f2

+ P3
f3

+ P4
f4
.

Figure 2.2: Scheduling a chain of 5 tasks on 4 processing elements.

In what follows, the notion of workload is used to define a feasible solution. The next lemma
shows that the optimal solution is obtained by saturating the energy constraint E.

Lemma 2. The set of schedules that saturate energy constraint is dominant.

Proof. Let Pw = {P1, P2, · · · , Pm} be the vector of a solution obtained for an instance I. Let
Ĉmax be its makespan. Then, Ĉmax = P1

f1
+ P2

f2
+ · · ·+ Pm

fm
.

We assume that this solution does not saturate the energy constraint, i.e.,
∑m

k=1 Pk ∗ f2
k < E.

We construct another solution Pw′ = {P ′1, P
′
2, · · · , P

′
m}, P ′k > 0, such that

∑m
k=1 P

′
k ∗ f2

k = E as
follows:

1. First, we look, in ascending order, for the set of tasks that can be moved from the processing
elements {p1, p2, · · · , pl}, with l 6 m, to the fastest processing element pm, while respecting
the energy constraint E, i.e., l = max{r ∈ {1, · · · ,m}, (

∑r
k=1 Pk)f

2
m+

∑m
k=r+1 Pkf

2
k < E}.

If no tasks can be moved, then l = 0.

23

2.4. OPTIMAL PREEMPTIVE SCHEDULING

2. We move all what is executed on {p1, p2, · · · , pl} to pm if l > 0, i.e., P ′1 = 0, P ′2 = 0, · · · ,
P
′
l = 0, and P ′m = Pm +

∑l
k=1 Pk.

Furthermore, to saturate the energy constraint, we move a part of Pl+1 to Pm if∑l
k=1 Pkf

2
m +

∑m
k=l+1 Pkf

2
k < E. Finally, we set P

′
l+2 = Pl+2, P

′
l+3 = Pl+3, · · · ,

P
′
m−1 = Pm−1.

Thus, the energy consumption of the new solution is given by E = P
′
l+1f

2
l+1 + (Pl+1 −

P
′
l+1)f2

m +
∑l

k=1 Pkf
2
m +

∑m
k=l+2 Pkf

2
k . Then, the value of P ′l+1 can be calculated by

P
′
l+1 =

E−
∑l+1
k=1 Pkf

2
m−

∑m
k=l+2 Pkf

2
k

f2l+1−f2m
, and then P

′
m = Pm +

∑l
k=1 Pk + (Pl+1 − P

′
l+1). We

resume this solution as follows:

l = max{r ∈ {1, · · · ,m},
r∑

k=1

Pkf
2
m +

m∑
k=r+1

Pkf
2
k < E}

P
′
1 = 0

P
′
2 = 0

.

.

.

P
′
l = 0

P
′
l+1 =

E−
∑l+1

k=1 Pkf
2
m −

∑m
k=l+2 Pkf

2
k

f2
l+1 − f2

m

P
′
l+2 = Pl+2

P
′
l+3 = Pl+3

.

.

.

P
′
m = Pm +

l∑
k=1

Pk + (Pl+1 − P
′
l+1)

The makespan of the new solution is given by:

Ĉ
′
max =

m∑
k=1

P
′
k

fk
=
P
′
l+1

fl+1
+

m∑
k=l+2

Pk
fk

+

∑l
k=1 Pk + (Pl+1 − P

′
l+1)

fm

• This solution covers all tasks:

m∑
k=1

P
′
k = P

′
l+1 +

l∑
k=1

Pk +
m∑

k=l+2

Pk + (Pl+1 − P
′
l+1)

=

l∑
k=1

Pk +

m∑
k=l+2

Pk + Pl+1 =

m∑
k=1

Pk = W

24

CHAPTER 2.

• This solution saturates the energy constraint:

m∑
k=1

P
′
kf

2
k =

l∑
k=1

Pkf
2
m +

m∑
k=l+2

Pkf
2
k + (Pl+1 − P

′
l+1)f2

m + P
′
l+1f

2
l+1

=

l∑
k=1

Pkf
2
m +

m∑
k=l+2

Pkf
2
k + Pl+1f

2
m + P

′
l+1(f2

l+1 − f2
m)

Since P ′l+1 =
E−

∑l+1
k=1 Pkf

2
m−

∑m
k=l+2 Pkf

2
k

f2l+1−f2m
, we obtain:

P
′
l+1(f2

l+1 − f2
m) = E−

l+1∑
k=1

Pkf
2
m −

m∑
k=l+2

Pkf
2
k

Thus, we obtain
m∑
k=1

P
′
kf

2
k =

l∑
k=1

Pkf
2
m +

m∑
k=l+2

Pkf
2
k + Pl+1f

2
m + E−

l+1∑
k=1

Pkf
2
m −

m∑
k=l+2

Pkf
2
k

=
m∑

k=l+2

Pkf
2
k −

m∑
k=l+2

Pkf
2
k + Pl+1f

2
m − Pl+1f

2
m + E = E

• This solution provides better makespan, i.e., Ĉ ′max 6 Ĉmax. Indeed, since fm > fk for

k = 1..l + 1, we obtain
∑l
k=1 P

′
k

fm
=

∑l
k=1 Pk
fm

6
∑l

k=1
Pk
fk
,
P
′
l+1

fl+1
+

(Pl+1−P
′
l+1)

fm
6 Pl+1

fl+1
and∑m

k=l+2
P
′
k
fk

=
∑m

k=l+2
Pk
fk
. Finally, Ĉ ′max =

∑m
k=1

P
′
k
fk

6
∑m

k=1
Pk
fk

= Ĉmax.

In the following, we will use this result to propose a polynomial algorithm for the scheduling
problem Qm|pmtn, chain,E|Cmax, and we prove that it provides the optimal solution.

Theorem 1. The following Algorithm 1 provides the optimal solution for preemptive scheduling
without communication cost.

Algorithm 1: Preemptive scheduling (PS).
Data: Set of processing elements M = {p1, p2, · · · , pm} with f1 < f2 < · · · < fm;

weights of the tasks w1, w2, · · · , wn; energy bound E.
Result: Optimal preemptive scheduling.
begin

W =
∑n

i=1wi; k = max{r ∈ {1, · · · ,m},W ∗ f2
r 6 E}

if W ∗ f2
k < E then

Wk =
E−W∗f2k+1

f2k−f
2
k+1

Wk+1 = W −Wk

else
Wk = W , Wk+1 = 0

s = max{u ∈ {1, · · · , n},
∑u

i=1wi < Wk}; if s = ∅ then s = 0;
w
′
s+1 = Wk −

∑s
i=1wi;

Put t1 · · · ts and a part w′s+1 of ts+1 on pk;
Put ts+2 · · · tn and the rest (ws+1 − w

′
s+1) of ts+1 on pk+1.

25

2.4. OPTIMAL PREEMPTIVE SCHEDULING

We start by finding the fastest processing element pk, on which we can execute all the tasks
respecting the energy constraint. Then we look for the weight of tasks that can be assigned to
the next processing element (pk+1) in order to saturate the energy constraint. We denote by Wk

the workload assigned to the processing element pk, Wk+1 on pk+1.
From Lemma 2, the best solution is obtained when the energy constraint is saturated, i.e.,

Wkf
2
k + Wk+1f

2
k+1 = E, with Wk + Wk+1 = W . The solution of the system of two equations

with two unknowns is: Wk =
E−W∗f2k+1

f2k−f
2
k+1

and Wk+1 = W −Wk. This keeps the feasibility of the
solution:

• E −W ∗ f2
k+1 < 0 because W ∗ f2

k+1 > E, and f2
k − f2

k+1 < 0 because fk < fk+1. Thus,
Wk > 0.

• Furthermore, W >Wk > 0, induces Wk+1 = W −Wk > 0.

Complexity:

The index k is calculated with a complexity of O(m), and the workloads are assigned to the
two processors pk and pk+1 with a complexity of O(n). Thus, for an instance of n tasks and m
machines, the complexity of Algorithm 1 is O(n + m). Example 2 below shows the application
of Algorithm 1 on an instance of the problem Qm|pmtn, chain,E|Cmax.

Example 2. Consider a heterogeneous platform with 3 processing elements. Their frequencies
are given in Table 2.1. Consider an application represented by the task graph given by Figure
2.3. It contains ten tasks (n = 10) labelled from t1 to t10. The nodes are labelled with the weight
of each task. The maximum energy consumption is E = 1350.

5 5 3 3 3 3 5 3 3 5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 2.3: Linear chain graph.

Table 2.1: Frequencies of the processing elements.

pk p1 p2 p3

fk 1 2 6

The progress of algorithm 1 for this instance is given as follows:

1. Find the index k, with k = max{r ∈ {1, · · · ,m},W ∗ f2
r 6 E}: W =

∑n
i=1wi = 38, and

W ∗ f2
1 = 38 ∗ 1 = 38, W ∗ f2

2 = 38 ∗ 4 = 152, W ∗ f2
3 = 38 ∗ 36 = 1368. Thus, k = 2.

2. Since W ∗ f2
k = W ∗ f2

2 = 152 < E, we obtain: Wk = W2 =
E−W∗f23
f22−f23

= 0.5625 and
W3 = W −W2 = 37.4375.

3. s = max{u ∈ {1, · · · , n},
∑u

i=1wi < Wk} = max{u ∈ {1, · · · , n},
∑u

i=1wi < 0.5625} = ∅;
and thus, s = 0;

4. w′s+1 = w
′
1 = Wk −

∑s
i=1wi = W2 −

∑0
i=1wi = W2 = 0.5625;

5. Put w′1 on p2;

6. Put t2 · · · t10 and the rest (w1 − w
′
1) of t1 on p3.

26

CHAPTER 2.

Figure 2.4 presents a Gantt illustration of the obtained scheduling.

Figure 2.4: A Gantt illustration of the obtained scheduling.

We prove in the following that algorithm 1 provides the optimal solution for the scheduling
problem Qm|pmtn, chain,E|Cmax.

Proof of Theorem 1. Let Ĉmax be the makespan of the solution obtained by Algorithm 1: Ĉmax =
Wk
fk

+
Wk+1

fk+1
due to the precedence constraint. Let Ĉ ′max = P1

f1
+ P2

f2
+ · · ·+ Pr

fr
be another solution

on a set of r > 2 processing elements,
∑r

l=1 Pl = W . We distinguish three possible cases:

1. The first case corresponds to the one where all frequencies are lower than fk such that
f1 < f2 < · · · < fr < fk.

Hence, 1
fl
> 1

fk
, induces Pl

fl
> Pl

fk
, ∀ l = 1..r. Follows,

∑r
l=1

Pl
fl
>

∑r
l=1 Pl
fk

= W
fk
.

Finally, since fk < fk+1 induces
∑r

l=1
Pl
fl
> W

fk
> Wk

fk
+

Wk+1

fk+1
. Then, Ĉ ′max > Ĉmax.

2. The second case corresponds to the one where all frequencies are greater than fk+1 such
that fk+1 < f1 < f2 < · · · < fr. Hence,

∑r
l=1 Pl ∗ f2

l >
∑r

l=1 Pl ∗ f2
k+1 = W ∗ f2

k+1 > E.
Thus,

∑r
l=1 Pl ∗ f2

l > E, this solution is not feasible.

3. The last case corresponds to the one where f1 6 fk and fk+1 6 fr, i.e., f1 < · · · < fk <
fk+1 < · · · < fr. To study this case, we start with the following technical lemmas 3 and 4.

Lemma 3. Let A,B,C be three positive numbers such as 0 < A < B < C and W1,W2 be
two positive numbers such as W1 +W2 = W .

If W1 ∗A2 +W2 ∗ C2 = W ∗B2 then
W1

A
+
W2

C
>
W

B

Proof. By replacing W2 by (W −W1) in W1 ∗ A2 + W2 ∗ C2 = W ∗ B2, we obtain W1 =

W (C
2−B2

C2−A2). Then, by replacing W1 by (W −W2), we obtain W2 = W (B
2−A2

C2−A2).

Let ∆ = W1
A + W2

C −
W
B . We prove in the following that ∆ > 0, and thus W1

A + W2
C > W

B .

∆ =
W (C2 −B2)

A(C2 −A2)
+
W (B2 −A2)

C(C2 −A2)
− W

B
=

W

C2 −A2
(
C2 −B2

A
+
B2 −A2

C
− (C2 −A2)

B
)

We set X = B
A and Y = C

A . Observe that X > 1 because B > A, and Y > X because

27

2.4. OPTIMAL PREEMPTIVE SCHEDULING

C > B. Then, by setting B = XA and C = Y A, we obtain:

∆ =
W

Y 2A2 −A2
(
Y 2A2 −X2A2

A
+
X2A2 −A2

Y A
− (Y 2A2 −A2)

XA
)

=
W

Y 2A2 −A2
(Y 2A−X2A+

X2A−A
Y

− (Y 2A−A)

X
)

=
W

Y 2A−A
(Y 2 −X2 +

X2 − 1

Y
− (Y 2 − 1)

X
)

=
W

Y 2A−A
(
XY 3 −X3Y +X3 −X − Y 3 + Y

XY
)

=
W

Y 2A−A
(
−(X − 1)(Y − 1)(X − Y)(X + Y + 1)

XY
)

Since Y > X > 1, we have


(Y − 1) > 0
(X − 1) > 0
(X − Y) < 0

Therefore,
−(X − 1)(Y − 1)(X − Y)(X + Y + 1)

XY
> 0 and

W

Y 2A−A
> 0 because Y > 1.

Finally, ∆ > 0 induces
W1

A
+
W2

C
>
W

B
.

In the following lemma, we use the lemma 3 to prove that we can construct another
solution Ĉmax = Wk

fk
+

Wk+1

fk+1
with a better makespan than Ĉ ′max = P1

f1
+ P2

f2
+ · · ·+ Pr

fr
(with

f1 < · · · < fk < fk+1 < · · · < fr), using only the processors pk and pk+1.

Lemma 4. Let Ĉmax be the makespan of the solution obtained by Algorithm 1: Ĉmax =
Wk
fk

+
Wk+1

fk+1
. Let Ĉ ′max = P1

f1
+ P2

f2
+ · · ·+ Pr

fr
be another solution on a set of r > 2 processing

elements, where
∑r

l=1 Pl = W and f1 < · · · < fk < fk+1 < · · · < fr. If
∑r

l=1 Plf
2
l =

Wkf
2
k + Wk+1f

2
k+1 and

∑r
l=1 Pl = Wk + Wk+1 = W , then

∑r
l=1

Pl
fl
> Wk

fk
+

Wk+1

fk+1
, i.e.,

Ĉ
′
max > Ĉmax.

Proof. The proof of this lemma is divided into three steps as follows:

(a) First, we prove that it exists a frequency 0 < ϕk < fk, such that
∑k

l=1
Pl
fl
>

∑k
l=1 Pl
ϕk

.
For this purpose, let ϕl, l = 1..k, be a sequence of real numbers such as:

ϕ1 = f1

ϕl =

√∑l−1
α=1 Pαϕ

2
l−1+Plf

2
l∑l

α=1 Pα
, l = 2..k

This sequence guarantees that ϕl−1 < ϕl < fl, ∀ l = 2..k. Indeed:

Since ϕ1 = f1, ϕ
2
2 =

P1ϕ
2
1 + P2f

2
2

P1 + P2
=
P1f

2
1 + P2f

2
2

P1 + P2
.

Since f1 < f2, ϕ
2
2 >

P1f
2
1 + P2f

2
1

P1 + P2
= f2

1 . Then, ϕ
2
2 > f2

1 = ϕ2
1, induces ϕ2 > ϕ1.

Furthermore, ϕ2
2 =

P1f
2
1 + P2f

2
2

P1 + P2
<
P1f

2
2 + P2f

2
2

P1 + P2
< f2

2 , induces ϕ1 < ϕ2 < f2.

28

CHAPTER 2.

We assume that this is true for l = k − 1 , i.e., ϕk−2 < ϕk−1 < fk−1, and we prove
that the propriety remains true for l = k , i.e., ϕk−1 < ϕk < fk.

First, ϕ2
k =

∑k−1
α=1 Pαϕ

2
k−1+Pkf

2
k∑k

α=1 Pα
. And since ϕk−1 < fk−1, ϕ

2
k <

∑k−1
α=1 Pαf

2
k−1+Pkf

2
k∑k

α=1 Pα
.

Follows, since fk−1 < fk, ϕ2
k <

∑k−1
α=1 Pαf

2
k+Pkf

2
k∑k

α=1 Pα
= f2

k . Furthermore, ϕ2
k =∑k−1

α=1 Pαϕ
2
k−1+Pkf

2
k∑k

α=1 Pα
.

Then, since ϕk−1 < fk−1 < fk, ϕ
2
k >

∑k−1
α=1 Pαϕ

2
k−1+Pkϕ

2
k−1∑k

α=1 Pα
= ϕ2

k−1. Thus, ϕ2
k > ϕ2

k−1.
Finally, ϕk−1 < ϕk < fk. Now, from Lemma 3, we have:

Since f1 < ϕ2 < f2,
P1
f1

+ P2
f2
> P1+P2

ϕ2
, and since ϕ2 < ϕ3 < f3,

P1+P2
ϕ2

+ P3
f3
>

∑3
l=1 Pl
ϕ3

.

Finally, since ϕl−1 < ϕl < fl, ∀ l ∈ {2, · · · , k}, we obtain
∑l−1
l=1 Pl
ϕl−1

+ Pl
fl
>

∑l
l=1 Pl
ϕl

.

Follows,
∑k

l=1
Pl
fl
>

∑k
l=1 Pl
ϕk

.

(b) Second, we prove that it exists a frequency fk+1 < φk+1, such that
∑r

l=k+1
Pl
fl
>∑r

l=k+1 Pl
φk+1

. For this purpose, let φl, l = k + 1..r, be another sequence of real such as:
φr = fr

φl =

√∑r
α=l+1 Pαφ

2
l+1+Plf

2
l∑r

α=l Pα
, l = k + 1..r − 1

Using the same previous analysis, this sequence guarantees that fl < φl < φl+1, ∀
l = k + 1..r − 1. Thus, according to Lemma 3, we obtain:

r∑
l=k+1

Pl
fl
>

∑r
l=k+1 Pl

φk+1
(2.13a)

It results that,
r∑
l=1

Pl
fl
>

∑k
l=1 Pl
ϕk

+

∑r
l=k+1 Pl

φk+1
(2.13b)

(c) Finally, using the two results obtained before, we prove that
∑r

l=1
Pl
fl
> Wk

fk
+

Wk+1

fk+1
.

In order to apply once again Lemma 3, we decompose
∑k

l=1 Pl and
∑r

l=k+1 Pl into 4
values WL1,WL2,WR1,WR2 such that:

WL1 +WL2 =
∑k

l=1 Pl

WR1 +WR2 =
∑r

l=k+1 Pl

WL1 +WR1 = Wk

WL2 +WR2 = Wk+1

WL1ϕ
2
k +WR1φ

2
k+1 = Wkf

2
k

WL2ϕ
2
k +WR2φ

2
k+1 = Wk+1f

2
k+1

=⇒



WL1 = Wk
(φ2k+1−f

2
k)

(φ2k+1−ϕ
2
k)

WL2 = Wk+1
(φ2k+1−f

2
k+1)

(φ2k+1−ϕ
2
k)

WR1 = Wk
(f2k−ϕ

2
k)

(φ2k+1−ϕ
2
k)

WR2 = Wk+1
(f2k+1−ϕ

2
k)

(φ2k+1−ϕ
2
k)

Since ϕl−1 < ϕl < fl, ∀ l = 2..k and fl < φl < φl+1, ∀ l = k + 1..r − 1, we have:

• φ2
k+1 > f2

k+1 > f2
k , then φ

2
k+1−f2

k > 0. φ2
k+1 > f2

k+1 > f2
k > ϕ2

k, then φ
2
k+1−ϕ2

k >

0. Thus, WL1 = Wk
(φ2k+1−f

2
k)

(φ2k+1−ϕ
2
k)
> 0.

• φ2
k+1 > f2

k+1, then φ
2
k+1−f2

k+1 > 0. φ2
k+1 > f2

k+1 > f2
k > ϕ2

k, then φ
2
k+1−ϕ2

k > 0.

Thus, WL2 = Wk+1
(φ2k+1−f

2
k+1)

(φ2k+1−ϕ
2
k)

> 0.

29

2.4. OPTIMAL PREEMPTIVE SCHEDULING

• f2
k > ϕ2

k, then f
2
k − ϕ2

k > 0. φ2
k+1 > f2

k+1 > f2
k > ϕ2

k, then φ
2
k+1 − ϕ2

k > 0. Thus,

WR1 = Wk
(f2k−ϕ

2
k)

(φ2k+1−ϕ
2
k)
> 0.

• f2
k+1 > f2

k > ϕ2
k, then f

2
k+1−ϕ2

k > 0. φ2
k+1 > f2

k+1 > f2
k > ϕ2

k, then φ
2
k+1−ϕ2

k > 0.

Thus, WR2 = Wk+1
(f2k+1−ϕ

2
k)

(φ2k+1−ϕ
2
k)
> 0.

Observe that the result values are all positive. From Lemma 3, we obtain:

WL1

ϕk
+
WR1

φk+1
>
Wk

fk
and

WL2

ϕk
+
WR2

φk+1
>
Wk+1

fk+1

Thus,
WL

ϕk
+

WR

φk+1
=
WL1

ϕk
+
WR1

φk+1
+
WL2

ϕk
+
WR2

φk+1
>
Wk

fk
+
Wk+1

fk+1

From (2.13b), we have:

r∑
l=1

Pl
fl
>

∑k
l=1 Pl
ϕk

+

∑r
l=k+1 Pl

φk+1
=
WL1 +WL2

ϕk
+
WR1 +WR2

φk+1

=
WL1

ϕk
+
WR1

φk+1
+
WL2

ϕk
+
WR2

φk+1
>
Wk

fk
+
Wk+1

fk+1

Follows,
r∑
l=1

Pl
fl
>
Wk

fk
+
Wk+1

fk+1

The three steps of this lemma proof are illustrated by Figure 2.5. First, we show how
to introduce ϕl, l = 1..k, and φl, l = k + 1..r, to prove that

∑k
l=1

Pl
fl

>
∑k
l=1 Pl
ϕk

and∑r
l=k+1

Pl
fl
>

∑r
l=k+1 Pl
φk+1

. Then, we show how we use WL1 and WR1 to prove that WL1
ϕk

+
WR1
φk+1

> Wk
fk

, then WL2 and WR2 to prove that WL2
ϕk

+ WR2
φk+1

>
Wk+1

fk+1
.

Thus, the third case of the proof of theorem 1 is illustrated by the lemma 4, i.e., Ĉ ′max =∑r
l=1

Pl
fl
> Ĉmax = Wk

fk
+

Wk+1

fk+1
. Finally, Algorithm 1 provides the optimal solution for the

preemptive scheduling problem Qm|pmtn, chain,E|Cmax.

30

CHAPTER 2.

Figure 2.5: Summary of the first part of the proof.

Remark 2. The proof remains valid if
∑r

l=1 Plf
2
l 6 Wkf

2
k + Wk+1f

2
k+1. Indeed, from Lemma

2, we can obtain another solution with P
′
1, P

′
2, · · · , P

′
r, such as:

∑r
l=1 P

′
l =

∑r
l=1 Pl and∑r

l=1 P
′
l f

2
l = Wkf

2
k +Wk+1f

2
k+1. Thus, we obtain Wk

fk
+

Wk+1

fk+1
<
∑r

l=1
P
′
l
fl
<
∑r

l=1
Pl
fl
.

2.5 An approximation scheduling algorithm for chain of non-
preemptive tasks with communication costs

In this section, we solve the problem of scheduling application tasks on m machines that min-
imizes the completion time (makespan) by respecting precedence constraints with communi-
cation costs and respecting an energy constraint. Taking into account the classification of
scheduling problems previously defined in section 1.5.2, this problem can be represented by
Qm|chain,E, com|Cmax.

For this purpose, we transform the previous solution obtained for the preemptive scheduling,
using only the two processing elements pk and pk+1 used for the preemptive solution. Compared
to the preemptive scheduling, in this section we do not allow preemption of tasks and we consider
communication delays.

Theorem 2. The following Algorithm 2 provides a solution for the non-preemptive scheduling
starting from the preemptive scheduling solution obtained by algorithm 1.

The two variables α and β are used to determine the assignment of tasks. In the case
Wk+1 = 0, we put all the tasks on pk. Otherwise, algorithm 2 compares three scheduling policies
and takes the best one (which gives the smallest makespan). The three policies are calculated
as follows:

1. Starting by executing some tasks on pk, then the rest on pk+1: let Cost1(v) be the makespan
obtained by executing the first tasks (t1 to tv) on pk with

∑v
i=1wi >Wk, then the rest on

pk+1.

31

2.5. NON PREEMPTIVE SCHEDULING

Cost1(v) = {
∑v

i=1wi
fk

+ cmv,k,v+1,k+1 +

∑n
i=v+1wi

fk+1
}

This function depends on the workload of tasks assigned to each processor, and the com-
munication cost between tasks. The algorithm chooses the best index v1, such that∑v1

i=1wi >Wk and Cost1(v1) is minimal.

2. Starting by executing some tasks on pk+1, then the rest on pk: Let Cost2(v) be the
makespan obtained by executing the first tasks (t1 to tv) on pk+1, then the rest on pk
with

∑n
i=v+1wi >Wk.

Cost2(v) = {
∑v

i=1wi
fk+1

+ cmv,k,v+1,k+1 +

∑n
i=v+1wi

fk
}

This function also depends on the workload of tasks assigned to each processor, and the
communication cost between tasks. The algorithm chooses the best index v2, such that∑n

i=v2+1wi >Wk and Cost2(v2) is minimal.

3. Finally, we check if the makespan generated by using both processing elements pk and
pk+1 is smaller than the scheduling makespan obtained by executing all tasks on pk. Thus,
if

∑n
i=1 wi
fk

6 Cost1(v1) and
∑n
i=1 wi
fk

6 Cost2(v2), then the best makespan is obtained by
executing all tasks on the processing element pk.

Algorithm 2: Non-Preemptive Scheduling (NPS).
Data: Weights of the tasks w1, w2, · · · , wn; communication costs between tasks between

pk and pk+1 (cmi,k,i+1,k+1), i = 1..n− 1; energy bound E.
Result: A feasible solution for the non-preemptive scheduling.
begin

Find pk, pk+1 and Wk, Wk+1 using the Preemptive Scheduling (PS) solution
obtained by Algorithm 1;
if Wk = W then

β = n, α = 1

else
Cost1 = min{Cost1(v), v = 1..n− 1,

∑v
i=1wi >Wk}; let v1 be the best index,

i.e., Cost1(v1) = Cost1;
Cost2 = min{Cost2(v), v = 1..n− 1,

∑n
i=v+1wi >Wk}; let v2 be the best index,

i.e., Cost2(v2) = Cost2;
if Cost1 < Cost2 then

Cost = Cost1, β = v1, α = 1

else
Cost = Cost2, β = n, α = v2 + 1

if Cost > W
fk

then

Cost = W
fk
, β = n, α = 1

Put tasks between tα and tβ on the processing element pk;
Order the rest on processing element pk+1, Ĉmax= Cost.

Lemma 5. The energy consumption of the scheduling generated by NPS Algorithm 2 respects
the energy constraint for the three scheduling policies.

32

CHAPTER 2.

Proof. 1. The makespan of the first scheduling policy is given by Cost1(v) = {
∑v
i=1 wi
fk

+

cmv,k,v+1,k+1 +
∑n
i=v+1 wi
fk+1

}, obtained by executing the first tasks (t1 to tv) on pk with∑v
i=1wi >Wk, then the rest on pk+1.

Since
∑v1

i=1wi > Wk, we have
∑n

i=v1+1wi = W −
∑v1

i=1wi 6 W −Wk = Wk+1, and thus,∑n
i=v1+1wi 6 Wk+1. The energy consumption of this solution is given by

∑v1
i=1wi ∗ f2

k +∑n
i=v1+1wi ∗ f2

k+1 6Wk ∗ f2
k + (

∑n
i=v1+1wi + (

∑v1
i=1wi−Wk)) ∗ f2

k+1 since
∑v1

i=1wi >Wk

and f2
k < f2

k+1. Then, Wk ∗ f2
k + (

∑n
i=v1+1wi + (

∑v1
i=1wi−Wk)) ∗ f2

k+1 = Wk ∗ f2
k + (W −

Wk) ∗ f2
k+1 = Wk ∗ f2

k +Wk+1 ∗ f2
k+1 = E.

Finally,
∑v1

i=1wi ∗ f2
k +

∑n
i=v1+1wi ∗ f2

k+1 6 E, thus, the energy constraint is respected.

2. The makespan of the second scheduling policy is given by Cost2(v) = {
∑v
i=1 wi
fk+1

+

cmv,k,v+1,k+1 +
∑n
i=v+1 wi
fk

}, obtained by executing the first tasks (t1 to tv) on pk+1, then
the rest on pk with

∑n
i=v+1wi >Wk.

Since
∑n

i=v2+1wi > Wk, we have
∑v2

i=1wi = W −
∑n

i=v2+1wi 6 W −Wk = Wk+1, and

thus,
∑v2

i=1wi 6Wk. The energy consumption of this solution is given by
∑n

i=v2+1wi∗f2
k +∑v2

i=1wi ∗ f2
k+1 6Wk ∗ f2

k + (
∑v2

i=1wi + (
∑n

i=v2+1wi−Wk)) ∗ f2
k+1 since

∑n
i=v2+1wi >Wk

and f2
k < f2

k+1. Then, Wk ∗ f2
k + (

∑v2
i=1wi + (

∑n
i=v2+1wi−Wk)) ∗ f2

k+1 = Wk ∗ f2
k + (W −

Wk) ∗ f2
k+1 = Wk ∗ f2

k +Wk+1 ∗ f2
k+1 = E. Finally,

∑n
i=v2+1wi ∗ f2

k +
∑v2

i=1wi ∗ f2
k+1 6 E,

and thus, the energy constraint is also respected.

3. The makespan of the last scheduling policy is obtained by executing all tasks on pk. The
energy constraint is also respected in this case, since W ∗ f2

k 6 E.

Complexity

Algorithm 1 provides the optimal solution for preemptive scheduling with a complexity of O(n+
m), and we look for v1 and v2 in Algorithm 2 with a complexity of O(n). Thus, for an instance
of n tasks and m machines, the complexity of Algorithm 2 is O(n+m).

Example 3 shows the application of Algorithm 2 on an instance of the problem
Qm|chain,E, com|Cmax.

Example 3. We take the same instance used in the example 2 for PS Algorithm 1. We consider
a heterogeneous platform with 3 processing elements. Their frequencies are given in Table 2.2.
We consider an application represented by the task graph given by Figure 2.6. It contains ten
tasks (n = 10) labelled from t1 to t10. The nodes are labelled with the weight of each task.
For this example, we suppose that cmi,1,i+1,2 = cmi,1,i+1,3 = cmi,2,i+1,3 for i = 1..9. The edges
are labelled with the communication cost between tasks. The maximum energy consumption is
E=1350.

5 5 3 3 3 3 5 3 3 5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t109 9 9 9 10 10 9 11 11

Figure 2.6: Linear chain graph.

33

2.5. NON PREEMPTIVE SCHEDULING

Table 2.2: Frequencies of the processing elements.

pk p1 p2 p3

fk 1 2 6

The progress of Algorithm 2 for this instance is given as follows:

1. The application of preemptive scheduling Algorithm 1 (example 2) gives: pk = p2 with
W2 = 0.5625 and pk+1 = p3 with W3 = 37.4375.

2. Since W3 > 0, we obtain:

 Cost1 = w1
f2

+
∑10
i=2 wi
f3

+ cm1,2,2,3 = 17 with v1 = 1

Cost2 =
∑7
i=1 wi
f2

+
∑10
i=8 wi
f3

+ cm7,2,8,3 = 19 with v2 = 7

3. We check if the makespan generated by using both processing elements pk and pk+1 is
smaller than the scheduling makespan obtained by executing all tasks on pk. Since Cost1 <
Cost2, we obtain Cost = Cost1 = 17 with β = 1 and α = 1. Finally, Wf2 = 38

2 = 19 >
Cost. Thus, the best makespan is Cost1 obtained with the first scheduling policy.

4. We put the task t1 on the processing element p2 and tasks t2 to t10 on p3.

We obtain a solution with Ĉmax = Cost = 17. For this instance, our approach provides an
optimal solution. Figure 2.7 presents a Gantt illustration of the obtained scheduling.

Figure 2.7: A Gantt illustration of the obtained scheduling.

Algorithm 2 is a generic algorithm, it does not always guarantee to obtain the optimal
solution. To study the theoretical worst-case performance of our method, we prove in what follows
that Algorithm 2 solves the scheduling problem Qm|chain,E, com|Cmax with a performance
guarantee bounded by fk+1

fk
compared to the optimal solution.

Algorithm analysis

Let C?max be the optimal solution of our problem (best makespan for Qm|chain,E, com|Cmax)
and Ĉmax be the solution obtained by NPS Algorithm 2. To show the performance guarantee of
NPS Algorithm 2, we compare its solution Ĉmax to the optimal solution C?max in the worst case
as follows.

Proposition 1. The ratio between Ĉmax the solution obtained by using NPS Algorithm 2 and

the optimal solution C?max is
Ĉmax
C?max

6
W

Wk +
fkWk+1

fk+1

.

Proof. The optimal solution C ′max of the preemptive scheduling is given by C
′
max =

Wk

fk
+
Wk+1

fk+1
due to precedence constraints. In the worst case, NPS Algorithm 2 assigns all tasks to the

34

CHAPTER 2.

processing element pk, i.e., Ĉmax 6 W
fk
. Follows,

Ĉmax
C ′max

6
W
fk

Wk
fk

+
Wk+1

fk+1

6
W

Wk +
fkWk+1

fk+1

. Fur-

thermore, the optimal solution of PS Algorithm 1 represents a lower bound for the scheduling

problem Qm|chain,E, com|Cmax, i.e., C
′
max 6 C?max. Finally,

Ĉmax
C?max

6
Ĉmax
C ′max

6
W

Wk +
fkWk+1

fk+1

.

Proposition 2. The ratio between Ĉmax the solution obtained by using NPS Algorithm 2 and the
optimal solution C?max can be bounded by the ratio between the frequencies of the two processing

elements pk et pk+1, i.e.,
Ĉmax
C?max

<
fk+1

fk
.

Proof.

Since,
fk
fk+1

< 1,
Ĉmax
C?max

6
W

Wk +
fkWk+1

fk+1

<
W

fk
fk+1

(Wk +Wk+1)
=
fk+1

fk
. Finally,

Ĉmax
C?max

<
fk+1

fk
.

Remark 3. In general, the ratio Ĉmax
C?max

can be bounded by the ratio between the frequencies of

two successive processing elements. Let Υ be the value given by Υ = max{fh+1

fh
, h = 1..m− 1}.

Then, ĈmaxC?max
<

fk+1

fk
6 Υ. Finally, ĈmaxC?max

< Υ.

We have shown that the ratio between Ĉmax the solution obtained using NPS Algorithm 2
and the optimal solution C?max for the non-preemptive scheduling in the worst case depends on
the ratio between the frequencies of two successive processing element, i.e., ĈmaxC?max

<
fk+1

fk
. In what

follows, NPS Algorithm 2 is compared to the optimal solution C?max and to the lower bound C ′max
using several instances randomly generated.

2.6 Experimental results

In order to measure the efficiency of our algorithm, we performed several tests on randomly
generated instances with different dimensions. For this purpose, we developed a random instance
generator using C++ with several input parameters. General settings are the number of tasks
n and the number of processing elements m.

We denote by test_n_m the instance defined by n tasks and m processing elements. The
weights of the tasks are generated randomly over an interval [wmin, wmax], with wmin = 4 and
wmax = 100. The frequencies of the processing elements are also randomly generated over
an interval [fmin, fmax] while ensuring the heterogeneity of the system by generating different
values, where fmin = 2 and fmax = 2 ∗m. The communication costs between tasks and between
different machines are also generated randomly over an interval [cmmin, cmmax], with cmmin = 4
and cmmax = 100. The bound E is randomly generated with W ∗ f2

1 < E < W ∗ f2
m, which is a

sufficient condition to the existence of a feasible solution.
Both Algorithms 1 and 2 were implemented using C++. The exact solution is obtained

by solving the model (Pch) with CPLEX 12.5.0 [69] and the OPL script language. All tests
have been performed on a 48-core AMD Opteron 6172 server with 64 GB RAM and Debian
GNU/Linux 8.2 operating system.

The following Table 2.3 shows the results of tests on different instance sizes. We have gen-
erated 30 instances for the first eight rows (from instance test_8_3 to test_100_6), then ten
instances for the other ones (from instance test_200_9 to test_10000_11). We compared them

35

2.6. EXPERIMENTAL RESULTS

only to the lower bound (PS solution) due to the large running time (> 60 minutes) needed to
obtain the optimal solution using CPLEX.

Column PS (Preemptive Scheduling) presents the average makespan obtained by Algo-
rithm 1. Columns CPLEX present the average optimal solution (Sol) obtained by the resolution
of the model (Pch) with CPLEX and the average running time required to get it (Time). In col-
umn Opt, "X" means that the optimal solution is obtained using model (Pch) for all instances,
otherwise we put "/". The next columns of the table concern the results of NPS (Non-Preemptive
Scheduling) algorithm. Columns Sol presents the average makespan obtained by NPS Algorithm
and columns Time its average running time. Column Opt gives the number of optimal solution
obtained by NPS algorithm. Column GAP1 (resp. GAP2) presents the average ratio between
NPS algorithm and the solution obtained by CPLEX (resp. PS algorithm). Let CPLEX-solution
(Ik) be the optimal non-preemptive solution of an instance Ik. Let PS-solution (Ik) be the op-
timal preemptive solution of an instance Ik. The values of GAP1 and GAP2 are calculated for
N instances Ik, (k = 1..N), as follows:

GAP1 =

∑N
k=1(

NPS solution(Ik)−PS-solution(Ik)
PS-solution(Ik)

∗100)

N

GAP2 =

∑N
k=1(

NPS solution(Ik)−CPLEX-solution(Ik)
CPLEX-solution(Ik)

∗100)

N

Finally, column σ1 (resp. σ2) presents the standard deviation between the solutions obtained
by NPS algorithm and the solution obtained by CPLEX (resp. PS algorithm). The values of
σ1 and σ2 are calculated for N instances Ik (k = 1..N) as follows:

σ1 =

√∑N
k=1(

NPS solution(Ik)−PS-solution(Ik)
PS-solution(Ik)

∗100)2

N

σ2 =

√∑N
k=1(

NPS solution(Ik)−CPLEX-solution(Ik)
CPLEX-solution(Ik)

∗100)2

N

Obtaining the optimal solution for large instances using CPLEX is very expensive in running
time. We have therefore limited the running time for CPLEX to 60 minutes.

Table 2.3: Evaluation of the NPS heuristic compared to CPLEX.

Instances PS
CPLEX NPS

Sol Time Opt Sol Time opt GAP1 σ1 GAP2 σ2

test_8_3 37.312 51.06 0.03s X 51.54 0.000054s 29 40.43% 57.87% 0.71% 3.91%
test_12_3 54.40 77.82 0.059s X 78.16 0.000053s 28 44.94% 56.35% 0.22% 1.14%
test_15_3 58.30 78.38 0.096s X 78.62 0.000049s 29 34.26% 40.89% 0.22% 1.22%
test_20_4 48.71 63.37 0.441s X 63.98 0.000060s 25 31.29% 39.45% 0.69% 2.21%
test_30_6 37.46 42.54 7.80s X 42.54 0.000069s 30 14.59% 21.52% 0% 0%
test_50_6 65.08 77.27 15m 43s X 77.97 0.000034s 28 20 % 28.60% 0.61% 2.46%
test_70_9 43.72 46.98 1h 8min X 46.98 0.0000245s 30 7.66 % 9.74 % 0% 0%
test_100_9 56.06 181.52 60 min / 60.15 0.0009s / 7.59% 10.15% / /
test_200_9 134.688 / / / 148.15 0.000040s / 9.84% 13.00% / /
test_1000_11 502.78 / / / 522.19 0.000076s / 3.83% 4.57% / /
test_10000_11 5077.38 / / / 5117.61 0.000457s / 0.82% 0.88% / /

Average 564.09 / / / 571.62 0.00016s 94.76 % 19.56% 25.72% / /

In Table 2.3, we can notice that for the most of the instances with less than 70 tasks, our
algorithm provides the optimal solution (94.76%) with a smaller running time than CPLEX.

From the instances test_100_9 to test_10000_11, CPLEX can not provide the optimal
solution after one hour, whereas NPS provides a solution in less than one second for an instance

36

CHAPTER 2.

with 10000 tasks. Furthermore, the average GAP (resp. standard deviation) of the solutions
obtained by NPS algorithm for these instances is given by 5.52% (resp. 7, 15%) compared to the
optimal preemptive solution obtained by PS algorithm. This means that on average, the solution
obtained by NPS algorithm is smaller than 1.1 the lower bound, and thus the optimal solution.

2.7 Conclusion

This chapter presents an efficient approximation algorithm to solve a task scheduling problem
on heterogeneous platforms for the particular case of linear chains of tasks (sequential applica-
tions). Our objective is to minimize the total execution time (makespan) by respecting an energy
constraint on the total energy consumed by the system. This work has shown that finding the
optimal scheduling is not easy. Tests on large instances close to reality shows the limits of solving
the problem with a solver such as CPLEX.

The main contribution of this work is an algorithm which provides a solution with small
running time, and also guarantees the quality of the solution obtained compared to the optimal
solution. The ratio obtained depends on the frequencies of two successive processing elements
pk and pk+1 used to provide the an optimal preemptive scheduling. We proved that the ratio
between Ĉmax the solution obtained by using NPS Algorithm 2 and the optimal solution C?max
can be bounded by the ratio between the frequencies of these two processing elements, i.e.,
Ĉmax
C?max

6 fk+1

fk
. The results of this chapter were published in [70].

As part of the future, it could be interesting to focus on more general classes of graphs
like DAG. The use of the preemptive scheduling has proven to be effective for an application
represented by a linear chain of tasks. Using the same approach on all graph paths could provide
an effective method. Furthermore, it could be interesting to test NPS algorithm on real sequential
applications en real platforms.

In this chapter, we have seen that the scheduling of particular cases of applications (linear
chain of tasks) on heterogeneous platforms can be handled effectively if they satisfy the properties
of the consistent model. Unfortunately, this is not always the case, where the execution model
of several applications is inconsistent. In the following chapter, we are interested in the more
general case, which is the scheduling of applications under inconsistent model. We will focus on
hybrid platforms, and will show that scheduling on this kind of platform can be effective if we
use more specific methods designed for hybrid platforms.

37

2.7. CONCLUSION

38

Chapter

3
Scheduling parallel applica-
tions on hybrid platforms with
an unlimited number of proces-
sors

Chapter content
3.1 Introduction . 39
3.2 Notations . 40
3.3 Related work . 40
3.4 Complexity . 44
3.5 Bi-partite graphs . 47
3.6 Trees . 51
3.7 Series-Parallel graphs . 53
3.8 Conclusion . 56

3.1 Introduction

This chapter addresses the problem of scheduling parallel applications onto a particular case of
HPC platforms composed of two different types of resources like CPU and GPU; these platforms
are often called hybrid platforms.

We suppose that our hybrid platform is composed of an unlimited number of two types of
processors. We also assume that there are no communication delays between the processors of
the same type.

This assumption is motivated by tightly coupled multiprocessor systems which contain mul-
tiple processing elements that are connected and may have access to a central shared memory.
This may make the communication cost negligible. If communication delays on the processing
elements of the same type are taken into account, our results can be seen as a first phase of a
new scheduling method. This method may be completed by a scheduling algorithm for identical
machines applied to the processing elements of each type.

One direction where we believe our results can be used is the convergence Big Data-HPC. Sev-
eral supercomputing centers have started to implement a convergence between Big-Data/Cloud
and HPC, where numerous small applications are running on a supercomputer [71–73]. In this
context, cloud applications are treated as second class citizen. They can use the computing
power not being used by actual HPC applications. From a typical Cloud-Computing applica-
tion, the number of nodes needed for each of its tasks is again many orders of magnitude below
that of a supercomputer. Hence, one could expect that the main challenge for those jobs will

3.2. NOTATIONS

be to determine the type of node that they need (and its property), rather than focusing on the
number of available nodes.

The problem treated in this chapter corresponds to solving a scheduling problem on two types
of identical parallel processing elements (P, P)|prec, com|Cmax as defined in section 1.5.3.

The rest of this chapter is organized as follows. After presenting the used notations in the
next section, we discuss in Section 3.3 the works related to the problem we address. Then, after
studying the complexity of the problem in Section 3.4 and proving that the problem is NP-
complete, we provide in Section 3.5, 3.6 and 3.7 some polynomial algorithms for special cases.
Finally, we provide concluding remarks and future directions in Section 3.8

3.2 Notations

We suppose in this chapter that our hybrid platform is composed of an unlimited number of
two types of processors denoted by A and B. We assume that there are no communication
delays between the processors of the same type: for all (ti, tj) ∈ E, for all (p1, p2) ∈ A × A or
(p1, p2) ∈ B × B, cmi,1,j,2 = 0.

We also assume that the communication cost between processors of different types are iden-
tical: for all (ti, tj) ∈ E, for all (p1, p2) ∈ A × B and (p3, p4) ∈ B × A, cmi,1,j,2 = cmi,2,j,1 =
cmi,3,j,4 = cmi,4,j,3. To simplify these notations, in the rest of this thesis, the communication
costs for hybrid platforms will be denoted by cmi,j for all (ti, tj) ∈ E.

For any value u ∈ {A,B}, ū = A if u = B, and ū = B otherwise. For any task ti, wi,A
(resp. wi,B) is the execution time of ti on a processor of type A (resp. B). We denote by Ci
the completion time of the task ti. For any arc (ti, tj) ∈ E, Ci + wj,u ≤ Cj if both tasks are
executed on the same type of processors u ∈ {A,B}. Otherwise, Ci +wj,u + cmi,j ≤ Cj where tj
is executed to a processor of type u and ti to a processor of type ū.

The problem addressed here consists on allocating tasks to processors such that the overall
makespan Cmax is minimized. Since there is an unbounded number of processors of each type,
it corresponds to finding an allocation θ : V → {A,B} of all tasks on each type of processors.
For an allocation θ and a path p = t1 → t2 → · · · → tp of the graph G = (V,E), we define
the length of the path p according to θ by len(p, θ) = w1,θ(t1) + 1θ(t1) 6=θ(t2)cm1,2 + w2,θ(t2) +
· · · + wp,θ(tp). The makespan MS(G, θ) is then obtained by computing the longest path of
the graph G including the corresponding duration of the tasks and the communication costs:
MS(G, θ) = maxp∈{paths of G} len(p, θ).

3.3 Related work

Recently, the problem of scheduling tasks on hybrid parallel platforms (2 types of homogeneous
machines) has attracted a lot of attention. In the case where all processors have the same
processing power and there is a cost for any communication (P |prec, com|Cmax), the problem
has been shown to be NP-hard [29] even for identical processing times. We discuss in this section
the different works related to scheduling either with two types of machines, with an unbounded
number of processors, or/and with communication costs.

Hybrid parallel platforms Different works have considered the problem of heterogeneous
parallel platforms, where there are h-type of homogeneous machines, each with a limited number
of processors in order to minimize the makespan. Even with no communication delays, the
problem is NP-hard if the number of processors is limited [31].

Several works have studied the problem of scheduling independent tasks on ` (resp. k)
processors of type A (resp. B) which is represented by (P`, Pk)||Cmax. Imreh [74] proves that
the greedy algorithm provides a solution with a performance guarantee of 2 + `−1

k , where k 6 `.

40

CHAPTER 3.

Recently, a 2-approximation algorithm has been proposed by Marchal et al. [75]. For the same
problem, Kedad-Sidhoum et al. [76] proposed two families of approximation algorithms that
can achieve an approximation ratio smaller than 3

2 + ε. By considering precedence constraints
without communication delays (P`, Pk)|prec|Cmax, Kedad-Sidhoum et al. [77] developed a tight
6-approximation algorithm for general structure graphs on hybrid parallel multi-core machines,
composed of CPUs with additional accelerators (GPUs). This work was later revisited by Amaris
et al.[78] who showed that by separating the allocation phase and the scheduling phase, they
could obtain algorithms with a similar approximation ratio but that performs significantly better
in practice.

A greedy algorithm is an algorithmic paradigm that follows the problem solving heuris-
tic of making the locally optimal choice at each step with the intent of finding a global
optimum[79]. A greedy strategy does not guarantee an optimal solution, but may yield lo-
cally optimal solutions that approximate a global optimal solution in a reasonable amount
of time. For scheduling problems, a greedy algorithm assign each task to one of its favorite
machines, chosen in a greedy strategy (minimum completion time for example).

Greedy algorithm:

Duplications to reduce communications Duplication has been often used in the context
of scheduling with communication costs. Indeed, executing a task on more than one processor
allows for its successor to be ready sooner by not waiting for the data transfer. In the context of
an unlimited number of processors, one needs to consider a polynomial number of performance
profile (computation/communication costs) for the problem to be in NP. Bajaj and Agrawal
[80] proposed a task duplication based scheduling algorithm for network of heterogeneous sys-
tems (m unrelated processors) considering precedence constraints with communication delays
Rm|prec, com|Cmax. This algorithm combines cluster based scheduling and duplication based
scheduling to find the optimal solution. A set of conditions on task computation and commu-
nication time must be satisfied. Using the same model, Colin and Chrétienne [81] proposed an
optimal method with a O(n2) complexity time when the communication delays are not too large
compared to the computation costs. Darbha and Agrawal [82] proposed another optimal solution
strategy named TDS algorithm (Task Duplication based Scheduling) with the same complexity
time O(n2). Later, Park and Choe [83] extended this work when the communications are signif-
icantly larger than computations. For the general case (no assumptions on communication and
computation costs), Wu et al. [84] proposed a genetic algorithm approach. Kwok and Ahmad [85]
wrote a large survey of many algorithms for DAG scheduling in the presence of communication
delays with duplication and a limited number of processors, Rm|prec, com|Cmax.

The closest to this work is the paper of Barthou and Jeannot [86] who studied the problem of
minimizing the makespan on unbounded platforms. They provide a polynomial-time algorithm of
complexity O(k2|E|+k|V |) for an unlimited number of processors and k ≥ 2 types of processors.
We briefly describe their algorithm for k = 2. The idea is simply to build the earliest schedule
which is optimum. Let us denote by Cj(A) (resp. Cj(B)) the completion time of the task tj ∈ V
on a processor of type A (resp. B) following the earliest schedule. These values may be computed
as follows:

• For any task tj ∈ V with Γ−(tj) = ∅, Cj(A) = wj,A and Cj(B) = wj,B. The tasks
without predecessors are executed on the best processor since the number of processors is
not limited.

• Otherwise, we get Cj(A) = wj,A + maxti∈Γ−(tj)(min(Ci(A), Ci(B) + cmi,j)) and Cj(B) =
wj,B + maxti∈Γ−(tj)(min(Ci(B), Ci(A) + cmi,j)), since the duplication of tasks is allowed.

41

3.3. RELATED WORK

Let us consider as an example an instance of the problem pictured by Figure 3.1.

1

2

3

4

5

6

ti ∈ V wi,A wi,B
t1 1 1
t2 5 2
t3 1 7
t4 2 6
t5 4 2
t6 1 2

Figure 3.1: A graph G = (V,E) and the durations of the tasks on different types of processors. The
communication delay is cmi,j = 3 for any arc (ti, tj) ∈ E.

The dates of the task earliest schedules are pictured by Figure 3.2. For example, C1(A) =
w1,A = 1 and C1(B) = w1,B = 1. For the task t2, C2(A) = w2,A + min(C1(A), C1(B) + cm1,1) =
5 + min(1, 4) = 6 and C2(B) = w2,B + min(C1(B), C1(A) + cm1,2) = 2 + min(1, 4) = 3.

ti ∈ V Ci(A) Ci(B)

t1 1 1
t2 6 3
t3 2 8
t4 8 11
t5 10 7
t6 11 13

A

B

1

1

3

2

4

5

6

Figure 3.2: The earliest schedule and a corresponding schedule with unnecessary duplicates removed. In
grey, the values considered for the schedule.

Some duplicates of tasks may be greedily removed without influence on the makespan. Let
us denote Θ : V × {A,B} → {0, 1} such that, for any couple (ti, u) ∈ V × {A,B}, Θ(ti, u) = 1 if
ti is executed by u. We observe that Θ(ti, u) ∨Θ(ti, ū) = 1 since each task is allocated to A, B
or A and B.

Let us suppose that the graph has a unique fictitious task tn such that Cmax =
min{Cn(A), Cn(B)}. Then, let u ∈ {A,B} such that Cn(u) ≤ Cn(ū). We set Θ(tn, u) = 1
and Θ(tn, ū) = 0.

Now, let us consider a task ti ∈ V such that the allocation Θ(tj , u), u ∈ {A, B} is fixed for
any successor tj ∈ Γ+(ti). Then, for u ∈ {A,B}, Θ(ti, ū) = 0 if the execution of tj on u at time
Cj(u) is sufficient to get all the transfer properties true, that is:

• For any task tj ∈ Γ+(ti) with Θ(tj , u) = 1, Ci(u) + wj,u ≤ Cj(u).

• For any task tj ∈ Γ+(ti) with Θ(tj , ū) = 1, Ci(u) + wj,ū + cmi,j ≤ Cj(ū).

In the contrary case, we must set Θ(ti, ū) = 1.
Unnecessary duplicates of tasks are then removed using the reverse topological order. Right

part of Figure 3.2 presents the earliest schedule with no additional duplicates. As an example,
task t3 has two successors t4 and t5 with Θ(t4,A) = 1, Θ(t4,B) = 0, Θ(t5,A) = 0, Θ(t5,B) = 1.
Now, since C3(A) + w4,A = 4 ≤ C4(A) and C3(A) + w5,B + cm3,5 = 7 ≤ C3(B), we can set
Θ(t3,B) = 1. Note that the two duplicates of task t1 are necessary. Indeed, observe that
C1(A) +w2,B+ cm1,2 = 6 > C2(B) thus Θ(t1,B) = 1. On the same way, C1(B) +w3,A+ cm1,3 =
5 > C3(A) thus Θ(t1,A) = 1.

42

CHAPTER 3.

This small example illustrates that all the duplicates cannot necessarily be removed without
increasing the makespan. Furthermore, duplication may lead to other problems, such as addi-
tional energy consumption and significant memory footprint. Thus, in this thesis, we consider
the problem for which the duplication of tasks is not allowed.

Communication without duplication The most famous heuristic developed for the
problem of DAG scheduling on heterogeneous platforms considering communication delays
(Rm|prec, com|Cmax) is Heterogeneous Earliest Finish Time algorithm (HEFT) [26]. It has
no performance guarantee, but performs particularly well. Other heuristics for this problem can
be roughly partitioned into two classes: clustering and list scheduling algorithms.

Clustering algorithms [87, 88] usually provide good solutions for communication-intensive
graphs by scheduling heavily communicating tasks onto the same processor. After grouping
tasks into a set of clusters using different clustering policies, clusters are mapped onto processors
using communication sensitive or insensitive heuristics.

List scheduling algorithms [89] are often used to handle a limited number of processors. Most
of them [90–93] can be decomposed in two main phases. The first one assigns priorities based
on certain task properties, typically run time and/or communication delays. The second phase
assigns tasks to processors following a priority list.

Experimentally, a comparison of different list scheduling algorithms can be found in the work
of Kushwaha and Kumar [93]. Wang and Sinnen [94] provide also a wide comparison of clustering
and list scheduling algorithms for a limited and unlimited number of processors.

Table 3.1: List of works on different applications and platforms to minimize the execution time. We
call hybrid a platform with k types of processors where there are no communication costs within a type.

Application

Platform
Unlimited processors Limited processors

Homogeneous Hybrid Heterogeneous Hybrid

processors platforms processors platforms

NP-c (folklore) 2-approx

Independent tasks P (folklore) P (folklore) [95] [76?]

(k = 2)

Dependant task without NP-c (folklore) NP-c (folklore)

communication delays P (folklore) P (folklore) 2(K + 1)−approx [62] 6-approx [77, 78]

(k = 2)

Dependant task with NP-c (general) P [86] NP-c NP-c

communication delays P (special cases): (k = 2) [80, 84] Heuristics [86]

with duplication [81–83]

Dependant task with NP-c [This chapter]: NP-c NP-c

communication delays [88, 96] NP-c [87, 90, 93]

without duplication [97] P (special cases) [91, 92]

Further models and results Considering an unlimited number of homogeneous proces-
sors, Giroudeau et al. [96] studied the problem of scheduling where all the tasks of the precedence
graph have unit execution times and considered a fix large communication delay between each
pair of successive tasks (P |prec, com = c > 2|Cmax). They proposed a polynomial-time approx-
imation algorithm with performance ratio 2(c+1)

3 , with c > 2. Using a platform composed of
m processors with K different speeds, a 2(K + 1)-approximation algorithm has been developed

43

3.4. COMPLEXITY

by Chudak and Shmoys [62] for the DAG scheduling problem without communication delays
Qm|prec|Cmax. For K = 2, the ratio is then given by 6 for (P`, Pk)|prec|Cmax problem. If there
are no communication delays, the problem R|prec|Cmax is trivial, where each task is simply
assigned to the fastest machine. For platforms with a limited number of processors, Lenstra
et al. [95] provided a 3

2 -approximation algorithm for Rm|prec|Cmax problem. Recently, a survey
was proposed by Beaumont et al. [98] for scheduling on Two Types of Resources. We summarize
all references in Table 3.1 depending on the constraint models or platforms.

3.4 Complexity

We prove by the following theorem that the scheduling problem (P, P)|prec, com|Cmax is NP-
Complete even for graphs of depth 3.

Theorem 3. The problem of deciding whether an instance of our main problem has a schedule
of length 2 is strongly NP-complete even for graphs of depth 3.

The boolean satisfiability problem is the problem of determining if there exists an inter-
pretation that satisfies a given Boolean formula. N-Satisfiability problem is a special
case of satisfiability problem, represented by a boolean expression divided to clauses, such
that every clause contains N terms. As an example, for N = 3, the following formula has
2 clauses and 3 variables x1, x2, x3:

(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3)

The question is to assign a True or False value to each variable xi in order to make the
whole formula true. The formula above is satisfiable: by choosing x1 = True, x2 = True
and x3 = True, (False ∨ True ∨ True) ∧ (True ∨ False ∨ False) = True. The formula is
not satisfiable for x1 = False, x2 = True and x3 = True.

3-Satisfiability problem:

Proof. We perform the reduction from the 3-Satisfiability (3-SAT) problem which is known
to be strongly NP-complete [57, 89]: given {C1, · · · , Cm} be a set of disjunctive clauses where
each clause contains exactly three literals over X = {x1, · · · , xn} a set of boolean variables. Is
there a truth assignment to X such that each clause is satisfied?

We write each clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 where (xi1 , xi2 , xi3) ∈ X3, and x̃k = xk or x̄k. We
are looking for a truth assignment such that

∧m
i=1Ci is true.

From an instance I1 of 3-SAT: {C1, · · · , Cm} over {x1, · · · , xn}, we construct the following
instance I2 for our problem:

• For all i ∈ {1, · · · , n}, we define 2 tasks t0(i) and t∞(i), and an edge (t0(i), t∞(i)).

• Then for each clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , 3 tasks ti(i1), ti(i2), ti(i3) are created and the
following set of edges: {(ti(i1), ti(i2)), (ti(i2), ti(i3)), (ti(i1), t∞(i1)), (t0(i2), ti(i2)), (t0(i3), ti(i3))}.

• For any j ∈ {1, · · · , n}, v?j denotes the set of all the instantiations of xj in G.

Overall, the graph G = (V,E) of depth 3 has 2n+ 3m vertices and n+ 5m edges.

44

CHAPTER 3.

We can verify that the depth of the graph is exactly three. Indeed, the paths of G are exactly:

∀j ∈ {1, · · · , n}, (t0(j) → t∞(j)). (3.1a)

∀i ∈ {1, · · · ,m}, let Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 (3.1b)
then: (ti(i1) → ti(i2) → ti(i3)); (3.1c)

(ti(i1) → t∞(i1)); (3.1d)

(t0(i2) → ti(i2) → ti(i3)); (3.1e)

(t0(i3) → ti(i3)). (3.1f)

We then define the execution and communication costs that can be written as follows:

• ∀j ∈ {1, · · · , n}, w∞(j),A = w∞(j),B = w0(j),A = w0(j),B = 0;

• ∀j ∈ {1, · · · , n}, cm0(j),∞(j) = 3;

• for all edges (ti(j), t∞(j)), (t0(j′), ti′(j′)) ∈ E, we add the communication costs:

cmi(j),∞(j) = cm0(j′),i′(j′) = 3.

Then for Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , we define the execution time costs as follows:

wi(ij),A = 1− wi(ij),B =

{
1 if x̃ij = x̄ij
0 if x̃ij = xij

(3.2)

Furthermore, we set cmi(i1),i(i2) = cmi(i2),i(i3) = 0. Finally, in the instance I2, we want to study
whether there exists a schedule θ whose makespan is not greater than 2.

t1(1) t1(2)t1(4)

t2(3) t2(4) t2(1)

t3(1) t3(2) t3(3)

t0(1) t∞(1)

t0(2) t∞(2)

t0(3) t∞(3)

t0(4) t∞(4)

Figure 3.3: Transformation of (x1 ∨ x̄4 ∨ x2)
∧

(x̄3 ∨ x̄4 ∨ x1)
∧

(x1 ∨ x2 ∨ x3) (m = 3 clauses, n = 4
variables) into the associated graph G = (V,E).

In Figure 3.3, we show an example of the construction of the associated graph for the transfor-
mation of (x1 ∨ x̄4 ∨ x2)

∧
(x̄3 ∨ x̄4 ∨ x1)

∧
(x1 ∨ x2 ∨ x3) (m = 3 clauses, n = 4 variables):

45

3.4. COMPLEXITY

• Here, the clause C1 = x1 ∨ x̄4 ∨ x2 is associated with the vertices t1(1), t1(4) and t1(2) and
the arcs set {(t1(1), t1(4)), (t1(4), t1(2)), (t1(1), t∞(1)), (t0(4), t1(4)), (t0(2), t1(2))}.

• Moreover, w1(1),A = w1(2),A = 0, w1(4),A = 1, w1(1),B = w1(2),B = 1 and w1(4),B = 0.

Note that the sets of all the instantiations of xj in G, j = 1..4, are given by:

v?1 = {t0(1), t∞(1), t1(1), t2(1), t3(1)}
v?2 = {t0(2), t∞(2), t1(2), t3(2)}
v?3 = {t0(3), t∞(3), t2(3), t3(3)}
v?4 = {t0(4), t∞(4), t1(4), t2(4)}

Let S be the set of schedules such that, ∀θ ∈ S, all tasks from v?j are scheduled by the same
type of machines, i.e, for any couple (tα(j), tβ(j)) ∈ v?j × v?j , θ(tα(j)) = θ(tβ(j)). The next lemmas
provide dominance properties on feasible schedules of I2.

Lemma 6. Any feasible solution θ of I2 belongs to S.

Proof. Let us suppose by contradiction that a feasible solution θ 6∈ S. Two cases must then be
considered:

• If there exists j ∈ {1, · · · , n} with θ(t0(j)) 6= θ(t∞(j)), then there is a communication delay
of 3 between them and len(t0(j) → t∞(j), θ) = 3.

• Otherwise, ∀j ∈ {1, · · · , n}, θ(t0(j)) = θ(t∞(j)). Thus, there exists a task ti(j) with θ(ti(j)) 6=
θ(t0(j)). If ti(j) is associated to the first term of the clause Ci, then (t0(j), ti(j)) ∈ E and
len(t0(j) → ti(j), θ) = 3. Otherwise, (ti(j), t∞(j)) ∈ E and len(ti(j) → t∞(j), θ) = 3.

The makespan of θ is at least 3 in both cases, the contradiction.

Lemma 7. For any schedule θ ∈ S, the makespan is obtained by computing the longest
path len(ti(i1) → ti(i2) → ti(i3), θ) of the graph G, i ∈ {1, · · · ,m}, i.e., MS(G, θ) =
maxi∈{1,··· ,m} len(ti(i1) → ti(i2) → ti(i3), θ).

Proof. To do this, we study the length of paths of G.

• Let j ∈ {1, · · · , n}, len(t0(j) → t∞(j), θ) = 0 since θ(t0(j)) = θ(t∞(j)) by Lemma 6.

• Let i ∈ {1, · · · ,m} associated with the clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 :

1. Let us consider first the path ti(i1) → t∞(i1). By Lemma 6, θ(ti(i1)) = θ(t∞(i1)) and
thus cmi(i1),∞(i1) = 0. Since len(t∞(i1), θ) = 0,

len(ti(i1) → t∞(i1), θ) = len(ti(i1), θ) ≤ len(ti(i1) → ti(i2) → ti(i3), θ).

2. Let us consider now the path t0(i2) → ti(i2) → ti(i3). Similarly, θ(t0(i2)) = θ(ti(i2))
hence

len(t0(i2) → ti(i2) → ti(i3), θ) = len(ti(i2) → ti(i3), θ) ≤ len(ti(i1) → ti(i2) → ti(i3), θ).

3. Lastly, for the path (t0(i3) → ti(i3)), since θ(t0(i3)) = θ(ti(i3)),

len(t0(i3) → ti(i3), θ) = len(ti(i3), θ) ≤ len(ti(i1) → ti(i2) → ti(i3), θ),

which concludes the lemma.

46

CHAPTER 3.

Assume that λ is a solution of I1, let us show that the schedule defined as follow, ∀j ∈
{1, · · · , n}, ∀tα(j) ∈ v?j ,

θλ : tα(j) 7→

{
A if λ(xj) = 1

B if λ(xj) = 0

has a makespan not greater than 2 and thus is a solution. Following Lemma 7, we must prove
that ∀i ∈ {1, · · · , n}, len(ti(i1) → ti(i2) → ti(i3), θλ) ≤ 2.

For any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , since λ(Ci) = 1, there exists j ∈ {1, 2, 3} such that
λ(x̃ij) = 1. Two cases must be considered:

1. If x̃ij = xij , then by definition, wi(ij),A = 0. Since λ(xij) = 1, θλ(ti(ij)) = A and thus
len(ti(ij), θλ) = wi(ij),A = 0.

2. Otherwise, x̃ij = x̄ij and wi(ij),B = 0. Now, as λ(xij) = 0, θλ(ti(ij)) = B and thus
len(ti(ij), θλ) = wi(ij),B = 0.

len(ti(ij), θλ) = 0 in both cases, so len(ti(i1) → ti(i2) → ti(i3), θλ) ≤ 2.

Assume now that we have a solution θ of I2, let us show that λθ(xj) = [θ(t∞(j)) = A] is
a solution to I1. Following Lemma 6, θ ∈ S. Moreover, for any clause Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , the
corresponding path of G verifies len(ti(i1) → ti(i2) → ti(i3), θ) ≤ 2. Thus, there is j ∈ {1, 2, 3}
with len(ti(ij), θ) = 0. Two cases must be considered:

1. If x̃ij = xij , then by definition, wi(ij),A = 0 and wi(ij),B = 1. So, θ(ti(ij)) = A and thus
λθ(xij) = 1.

2. Else, x̃ij = x̄ij and thus wi(ij),A = 1 and wi(ij),B = 0. So, θ(ti(ij)) = B and thus λθ(x̄ij) = 1.

So, at least one term of Ci is true following λθ, λθ is then a solution to I1. This concludes the
proof that the problem is strongly NP-complete.

Corollary 1. There is no polynomial-time algorithm for the problem with a performance bound
smaller than 3

2 unless P = NP.

Proof. By contradiction, let us suppose that there exists a polynomial-time algorithm with a
performance ratio ρ < 3

2 . This algorithm can be used to decide the existence of a schedule with a
length at most 2 for any instance I. We deduce that there exists a polynomial time algorithm to
decide the existence of a schedule of length strictly less than 3, which contradicts Theorem 3.

We have shown that the problem is NP-complete if the graph has depth 3. The natural
question that arises is whether it is already NP-complete for lower-depth graphs or particular
classes of graph. In the following, we provide some polynomial time algorithms for special cases
of graphs: bi-partite graphs, trees and series-parallel graphs.

3.5 Bi-partite graphs

In the mathematical field of graph theory, a Bi-partite graph (or bigraph) is a connected
graph whose vertices can be divided into two disjoint and independent sets V1 and V2.
Every arc connects a vertex in V1 to one in V2.

Bi-partite graph:

47

3.5. BI-PARTITE GRAPHS

We consider here a bi-partite graph G = (V,E) (e.g. see Figure 3.4). The idea of the
algorithm is first to compute, for any couple of tasks (ti, tj) ∈ E and classes (u, v) ∈ {A,B}2,
the value Di,j(u, v) defined as

Di,j(u, v) =

{
wi,u + wj,v if u = v
wi,u + wj,v + cmi,j otherwise.

Each value Di,j(u, v) corresponds to a lower bound of the schedule if θ(ti) = u and θ(ti) = v.
Thus, if there exists a schedule of length C < Di,j(u, v), then θ(ti) 6= u or θ(tj) 6= v. The
idea is then to remove successively highest values of Di,j(u, v) whereas the corresponding 2-
Satisfiability (2-SAT) system remains feasible.

t1

t0

t2

t3

t4

Figure 3.4: A bi-partite graph

Theorem 4. BiPartAlgo(G) described below provides an optimal solution in polynomial time
with a complexity of Θ(n4) when G has depth 2.

Observe that in the case of a bipartite graph G = (V,E), the paths are exactly the edges
of G. The intuition of the algorithm is then to compute first the makespan of all possible task
allocations for all edges, and then to remove pairs associated to forbidden allocations.

For any edge (ti, tj) ∈ E, 4 allocations are possible: (θ(ti), θ(tj)) ∈ {A,B}2 =
{(A,A), (A,B), (B,A), (B,B)}. We define the set of quintuplet of all these allocations:

WgPaths =
{

(Di,j(θ(ti), θ(tj)), ti, tj , θ(ti), θ(tj))
∣∣(ti, tj) ∈ E, (θ(ti), θ(tj)) ∈ {A,B}2}.

This set can be constructed in linear time by a simple iteration through all the edges of the graph
by a procedure that we call MkWgPaths(V,E).

Finally to minimize the makespan, we iteratively remove from WgPaths the allocations that
would maximize the makespan and check that there still exists a possible schedule (each task ti
is affected to only one processor).

In the rest, we use the following notation for a schedule θ and a time D:

WP(D) =
{

(ti, tj , σi, σj) s.t. (`, ti, tj , σi, σj) ∈ WgPaths and ` > D
}

PD(θ) =
∧

(ti,tj ,σi,σj)∈WP(D)

[(θ(ti) 6= σi) ∨ (θ(tj) 6= σj)]

Intuitively, WP(D) is the set of paths and allocations of length greater thanD, and the scheduling
θ ignores all these paths.

Lemma 8. Let θ be a schedule of makespan D, then PD(θ) is satisfied.

48

CHAPTER 3.

This result is a direct consequence of the fact that there should be no path of length greater
than D. Hence, for (ti, tj , σi, σj) ∈WP(D), we know that we do not have simultaneously in the
schedule (θ(ti) = σi) and (θ(tj) = σj). Hence,

¬
∨

(ti,tj ,σi,σj)∈WP(D)

[(θ(ti) = σi) ∧ (θ(tj) = σj)]

=
∧

(ti,tj ,σi,σj)∈WP(D)

[(θ(ti) 6= σi) ∨ (θ(tj) 6= σj)] = PD(θ) (3.4)

Algorithm 3: BiPartAlgo(G): polynomial algorithm for G = (V,E) a bipartite graph
1 begin
2 WgPaths← MkWgPaths(G);
3 Palg ← True; Ptmp ← True

/* Two clauses with n variables */

4 for (`, ti, tj , σi, σj) ∈ WgPaths, by decreasing value of ` do
5 Ptmp ← Palg ∧

(
(θ(ti) 6= σi) ∨ (θ(tj) 6= σj)

)
;

6 if Ptmp is not satisfiable then
7 Break

8 Palg ← Ptmp;

9 θ(t1), · · · , θ(tn)←Solve(Palg) /* Using a 2-SAT solver*/

2-Satisfiability is a computational problem of assigning values to variables, each of which
has two possible values, in order to satisfy a system of constraints on pairs of variables. It
may be solved with a complexity of O(n3) [99], where n is the number of variables in the
instance.

For example, let x1 = (θ(ti) = σi) and x2 = (θ(tj) = σj).The expression F = (x1 ∨
x2) ∧ (x̄1 ∨ x̄2) = ((θ(ti) = σi) ∨ (θ(tj) = σj)) ∧ ((θ(ti) 6= σi) ∨ (θ(tj) 6= σj)) is satisfiable
for x1 = False, x2 = True.

2-Satisfiability:

After calculating the decreasing order of WgPaths paths, Algorithm 3 eliminates the longest
allocations (`, ti, tj , σi, σj) ∈ WgPaths, by adding clauses

(
(θ(ti) 6= σi) ∨ (θ(tj) 6= σj)

)
to Palg

while it remains satisfiable. Then, the obtained system Palg is solved to get a feasible schedule.

Proof of Theorem 4. Consider an instance G of the problem. Let Dalg be the duration of the
schedule returned by BiPartAlgo(G). Clearly, Dalg = max(ti,tj)∈E(wi,θ(ti) + 1θ(i)6=θ(j)cmi,j +
wj,θ(tj) (the paths of G are exactly the edges of G). Let Palg be the set of clauses com-
puted by it (line 9). Let Walg = {(ti, tj , σi, σj)|(Di,j(σi, σj), ti, tj , σi, σj) ∈ WgPaths} s.t.
Palg =

∧
(ti,tj ,σi,σj)∈Walg

[(θ(ti) 6= σi) ∨ (θ(tj) 6= σj)]. Then by construction of Palg, we have the
following properties:

1. For all ε > 0, WP(Dalg) ⊂Walg ⊂WP(Dalg−ε), because we add paths by decreasing value
of makespan (line 4).

2. There exists (Dalg, ti0 , tj0 , σi0 , σj0) ∈ WgPaths such that Palg is satisfiable and
Palg

∧
[(θ(ti0) 6= σi0) ∨ (θ(tj0) 6= σj0)] is not satisfiable. This is the stopping condition on

line 7.

49

3.5. BI-PARTITE GRAPHS

We show the optimality of Algorithm 3 by contradiction. If it is not optimal, then Dopt <
Dalg, and Walg∪ (ti0 , tj0 , σi0 , σj0) ⊂WP(Dopt). Furthermore, according to Lemma 8, PDopt(θopt)
is satisfied, hence σopt is also a solution to Palg

∧
[(θ(ti0) 6= σi0) ∨ (θ(tj0) 6= σj0)]. This contradicts

the fact that it does not admit a solution, hence contradicting the non-optimality.

Example 4. Figure 3.5 presents a bi-partite graph and the durations of the tasks on processors
of both types A and B.

1

2

3

4

5

e1

e2

e3

e4

ti ∈ V wi,A wi,B
t1 3 2
t2 5 1
t3 2 7
t4 5 4
t5 2 7

Di,j(u, v) e1 e2 e3 e4

Di,j(A,A) 5 8 7 7
Di,j(A,B) 13 10 15 9
Di,j(B,B) 9 6 8 11
Di,j(B,A) 7 9 6 15

Figure 3.5: A bi-partite graph G = (V,E) on the left. Durations of the tasks on different type of
processors in the middle. The communication cost is cmi,j = 3 for any arc (ti, tj) ∈ E. On the right,
computation of bounds Di,j(u, v), for (ti, tj) ∈ E and classes (u, v) ∈ {A,B}2.

If we remove D3,4(B,A) = 15, then we cannot have any more θ(t3) = B and θ(t4) = A,
thus we add the clause θ(t3) = B ∨ θ(t4) = A. By removing D3,4(B,A) = 15, D2,5(A,B) =
15, D1,5(A,B) = 13, D3,4(B,B) = 11,D1,4(A,B) = 10, D3,4(A,B) = 9, D1,5(B,B) = 9 and
D1,4(B,A) = 9, we get the following set of clauses:

θ(t3) 6= B ∨ θ(t4) 6= A
θ(t2) 6= A ∨ θ(t5) 6= B
θ(t1) 6= A ∨ θ(t5) 6= B
θ(t3) 6= B ∨ θ(t4) 6= B
θ(t1) 6= A ∨ θ(t4) 6= B
θ(t3) 6= A ∨ θ(t4) 6= B
θ(t1) 6= B ∨ θ(t5) 6= B
θ(t1) 6= B ∨ θ(t4) 6= A

Setting θ(ti) 6= u to θ(ti) = ū for any couple (ti, u) ∈ V ×{A,B}, we can transform the precedent
system to get: 

θ(t3) = A ∨ θ(t4) 6= A
θ(t2) 6= A ∨ θ(t5) = A
θ(t1) 6= A ∨ θ(t5) = A
θ(t3) = A ∨ θ(t4) = A
θ(t1) 6= A ∨ θ(t4) = A
θ(t3) 6= A ∨ θ(t4) = A
θ(t1) = A ∨ θ(t5) = A
θ(t1) = A ∨ θ(t4) 6= A

A solution to this system is given by θ(t1) = A, θ(t2) = B, θ(t3) = A, θ(t4) = A and θ(t5) = B.
The corresponding schedule has thus a length equal to D1,4(B,A) = 9.

Now, if we remove D1,4(A,A) = 8, we add to this system the clause θ(t1) 6= A ∨ θ(t4) 6=
A. Observe that, if θ(t4) = A, we must set θ(t1) 6= A and we cannot verify the last clause

50

CHAPTER 3.

θ(t1) = A ∨ θ(t4) 6= A. Now, if θ(t4) 6= A, then the 6th clause θ(t3) 6= A ∨ θ(t4) = A implies
that θ(t3) 6= A whereas the 4th one θ(t3) = A ∨ θ(t4) = A implies that θ(t3) = A. Thus, the
new system has no solution and the previous allocation is optimum, i.e, θ(t1) = A, θ(t2) = B,
θ(t3) = A, θ(t4) = A and θ(t5) = B.

Complexity:

The complexity of MkWgPaths(V,E) is O(|E|). In Algorithm 3, the decreasing order of
WgPaths paths is calculated with a O(nlog2(n)) time complexity. The loop for (line 4) is un-
wound at most 3|E| times, and we verify if Ptmp is satisfiable in line 6 with a complexity of O(k),
where k 6 4|E| is the number of clauses is Ptmp. Then, since |E| 6 n2, then |E|2 6 n4, and the
complexity of the loop for is O(n4). Finally, Since the complexity of solving Palg is O(n3), the
complexity of Algorithm 3 is O(n4).

3.6 Trees

In graph theory, an out-tree G = (V,E) is a directed graph in which, for a vertex u ∈ V
called the root and any other vertex v ∈ V , there is exactly one directed path from u to
v [100].

Out-tree graph:

Let us suppose now the DAG G = (V,E) is an out-tree rooted by t1 ∈ V . For any task
ti ∈ V , the sub-tree rooted by ti is the sub-graph Gi of G = (V,E) which vertices are ti and the
successors of ti. Figure 3.6 represents an example of an out-tree graph. Figure 3.7 (resp. 3.8)
represents the sub-tree rooted by t2 (resp. t3).

1

2 3

4 5 6 7 8

Figure 3.6: An out-tree graph G

2

4 5

Figure 3.7: G2 is the sub-tree
rooted by t2.

3

6 7 8

Figure 3.8: G3 is the sub-tree
rooted by t3.

For any task u ∈ V , let us denote by DA(u) (resp. DB(u)) the lower bound of the minimal
makespan of Gu assuming that θ(u) = A (resp. θ(u) = B). For any allocation function θ, let
θ̄(u) = A if θ(u) = B, θ̄(u) = B otherwise. Then, for any task u ∈ V , we get Dθ(u)(u) =
wu,θ(u) + maxv∈Γ+(u) min(Dθ(u)(v), cmu,v +Dθ̄(u)(v)).

Let us suppose that the arc (u, v) ∈ E. Observe that, if DA(v) ≤ cmu,v + DB(v), then
DA(u) ≥ wu,A + DA(v). In the opposite, DA(u) ≥ wu,A + cmu,v + DB(v) and thus DA(u) ≥
wu,A + min(DA(v), cmu,v +DB(v)). Similarly, DB(u) ≥ wu,B + min(DB(v), cmu,v +DA(v)).

Theorem 5. For an out-tree graph G = (V,E) rooted by r ∈ V , an allocation θ may be built
such that the corresponding schedule of length D(r) verifies D(r) = min(DA(r), DB(r)) and thus
is optimal.

Proof. Let us suppose that lower bounds DA(u) and DB(u) for u ∈ V are given. Let us define
the allocation θ as θ(r) = A if DA(r) ≤ DB(r) and θ(r) = B in the opposite. For any task

51

3.6. TREES

v 6= r with (u, v) ∈ E, and an already fixed value θ(u) (equal to A or B), we set θ(v) = θ(u) if
Dθ(u)(v) < Dθ̄(u)(v) + cmu,v, and θ(v) = θ̄(u) otherwise.

For any task u, we prove that the length D(u) of the schedule of Gu for the allocation θ
verifies D(u) = Dθ(u)(u). If u is a leaf, D(u) = wu,θ(u) = Dθ(u)(u).

Now, let us suppose that Γ+(u) 6= ∅. By definition, for any arc (u, v) ∈ E, if θ(u) =
θ(v), cmu,v = 0. Then, if we set ∆θ(u, v) = D(v) + cmu,v, we get by induction ∆θ(u, v) =

Dθ(v)(v) + cmu,v and by definition of θ, ∆θ(u, v) = min(Dθ(u)(v), Dθ̄(u)(v) + cmu,v). Now,
D(u) = wu,θ(u) + maxv∈Γ+(u) ∆θ(u, v) and thus by definition of Dθ(u), D(u) = Dθ(u), which
concludes the proof.

Corollary 2. By Theorem 5, a polynomial time algorithm of time complexity O(n) can be deduced
by computing first DA, DB and then θ.

Example 5. Let us consider as an example an instance of our problem pictured by Figure 3.9.
Figure 3.10 presents the lower bound Dθ(u)(u) for (u, θ(u)) ∈ V × {A,B}. It may easily be
computed from the leaves to the root t1. For our example, let us consider t3:

DA(t3) = 4 + max
tj∈{t6,t7,t8}

(min(DA(tj), D
B(tj) + cm3,j)

= 4 + max(min(5, 4),min(2, 8),min(3, 3)) = 4 + max(4, 2, 3) = 8.

1

2 3

4 5 6 7 8

ti ∈ V wi,A wi,B
t1 2 3
t2 3 2
t3 4 2
t4 5 2
t5 3 3
t6 5 1
t7 2 5
t8 3 1

(ti, tj) ∈ E cmi,j

(t3, t6) 3
(t3, t7) 3
(t3, t8) 2
(t2, t4) 2
(t2, t5) 3
(t1, t2) 1
(t1, t3) 4

Figure 3.9: An out-tree graph G, with the durations of the tasks and communication costs.

Let D?(i) be the duration of Gi for an optimal schedule of G. It is defined by its corresponding
allocation function θ as follows:

• If DA(t1) ≤ DB(t1), we set θ(t1) = A and D?(1) = DA(t1), otherwise θ(t1) = B and
D?(1) = DB(t1).

• Let us consider now a task tj with j > 1 and the (unique) task ti with (ti, tj) ∈ E. Let
us consider σ ∈ {A,B} such that θ(ti) = σ. If Dσ(j) < Dσ̄(j) + cmi,j , then tj must be
allocated to σ, thus θ(tj) = σ and then D?(j) = Dσ(j). Otherwise, tj must be allocated
to σ̄, thus θ(tj) = σ̄ and then D?(j) = Dσ̄(j).

52

CHAPTER 3.

ti ∈ V DA(ti) DB(ti)

t1 10 10
t2 7 5
t3 8 7
t4 5 2
t5 3 3
t6 5 1
t7 2 5
t8 3 1

A

B

1 3 7

2 4 8

5 6

Figure 3.10: Lower bounds Dσ(i) for (ti, σ) ∈ V × {A,B}. An optimal allocation is associated with
the values in gray. θ(t1) = A, θ(t2) = B, θ(t3) = A, θ(t4) = B, θ(t5) = B, θ(t6) = B, θ(t7) = A and
θ(t8) = B.

For our example, DA(t1) ≤ DB(t1). Thus, we set for the root θ(t1) = A and D?(t1) =
DA(t1) = 10. For t2, DA(t2) = 7 and DB(t2)+cm1,2 = 5+1 = 6. Thus, DA(t2) > DB(t2)+cm1,2

and t2 must be allocated to B. We set θ(t2) = B and D?(t2) = DB(t2) = 5. For t3, DA(t3) = 8
and DB(t3) + cm1,3 = 7 + 4 = 11. Then, DA(t3) ≤ DB(t3) + cm1,3 and t3 must be allocated to
A. We set θ(t3) = A and D?(t3) = DA(t3) = 8. Figure 3.10 presents the allocation of the tasks
and a corresponding schedule of minimal length equal to D?(t1) = 10.

3.7 Series-Parallel graphs

Let us consider a two terminal Series Parallel digraph (2SP in short) as defined in [101, 102].
Each element of this class has a unique source s and a unique sink t with s 6= t.

It is formally defined as follows where G and H are two 2SP graphs.

• The arc (s, t) ∈ 2SP as presented in Figure 3.11;

s t

Figure 3.11: A 2SP graph with only two tasks s and t.

• The series composition of G (e.g. see Figure 3.12) and H (e.g. see Figure 3.13) is denoted
by G.H (e.g. see Figure 3.14) and is built by identifying the sink of G with the source of
H;

s

1

2 t

Figure 3.12: The graph G.

s

3

4

t

Figure 3.13: The graph H.

s

1

2 st

3

4

t

Figure 3.14: G.H: A 2SP graph
(series composition).

• The parallel composition of G (e.g. see Figure 3.12) and H (e.g. see Figure 3.13) is denoted
by G +H (e.g. see Figure 3.15) and identifies respectively the sinks and the sources of the
two digraphs.

53

3.7. SERIES-PARALLEL GRAPHS

s

1

2

3

4

t

Figure 3.15: G +H: A 2SP graph (parallel composition).

Definition 1 (Lower bound). For any element G ∈ 2SP with a source s and a sink t and for
any couple (α, β) ∈ {A,B}2, let us denote by Dαβ(G) a lower bound defined as follows of the
minimum length of a schedule of G with θ(s) = α and θ(t) = β.

• For any graph G with a unique arc e = (s, t), for any couple (α, β) ∈ {A,B}2,

Dαβ(G) =

{
ws,α + wt,β + cms,t if α 6= β
ws,α + wt,β otherwise.

• Now, if G and H are two 2SP , then for the series composition, we set Dαβ(G.H) =
minγ∈{A,B}(D

αγ(G) + Dγβ(H) − wt,γ) where t is the sink of G (wt,γ computed in Dαγ(G)

and Dγβ(H)).

• Similarly, for the parallel composition, we set Dαβ(G +H) = max(Dαβ(G), Dαβ(H)).

Definition 2 (Allocation function). We define the allocation function θ associated with a 2SP
graph G and the corresponding length D(G) as follows. We set D(G) = min(α,β)∈{A,B}2(Dαβ(G)).
We also set θ(s) and θ(t) the allocation function of the source and the sink of G as D(G) =
Dθ(s)θ(t)(G).

Now, for any series composition, let us suppose that s and t (resp. s′ and t′) are the source
and the sink of G (resp. H). We also suppose that θ(s) and θ(t′) are fixed. Then, for G.H, t = s′

and we get θ(t) = γ ∈ {A,B} such that D(G.H) = Dθ(s)θ(t)(G) +Dθ(s′)θ(t′)(H)− wt,θ(t).
If G is a 2SP graph of source s and sink t, any vertex v ∈ V − {s, t} is involved in a series

composition, and thus θ is completely defined.

Theorem 6. For any 2SP graph G of source s and sink t, D(G) = Dθ(s)θ(t)(G).

Proof. The equality is clearly true if G is an arc (s, t). Indeed, we get in this case D(G) =
min(α,β)∈{A,B}2(Dαβ(G)) = Dθ(s)θ(t)(G).

Now, let us suppose that s and t (resp. s′ and t′) are the source and the sink of G (resp. H)
and that D(G) = Dθ(s)θ(t)(G) and D(H) = Dθ(s′)θ(t′)(H). For a parallel composition, D(G+H) =
max(Dθ(s)θ(t)(G), Dθ(s′)θ(t′)(H)) = Dθ(s)θ(t)(G +H) as s = s′ and t = t′.

For the series composition, D(G.H) = D(G) + D(H) − wt,θ(t) = Dθ(s)θ(t)(G.H), since t = s′,
which concludes the proof.

Corollary 3. A polynomial-time algorithm of time complexity O(|E|) can be deduced by com-
puting lower bounds Dαβ, (α, β) ∈ {A,B}2 for each graph issued from the decomposition of G
and a corresponding allocation θ.

Example 6. Let us consider as an example an instance of our problem pictured by Figure 3.16,
which represents a 2SP graph and its associated decomposition tree. The tables presented in
Figure 3.17 show the duration of tasks on each type of processors and the communication delays.

54

CHAPTER 3.

1

2

3

4

5

+

. .

+

.

(t1, t2) (t2, t3)

(t1, t3)

(t3, t5) (t1, t4) (t4, t5)

Figure 3.16: A 2SP graph and its associated decomposition tree. Leaves correspond to arcs, while
internal nodes represent series (.) or parallel (+) compositions.

ti ∈ V wi,A wi,B
t1 5 3
t2 4 2
t3 1 5
t4 2 5
t5 3 3

(ti, tj) ∈ E cmi,j

(t1, t2) 3
(t2, t3) 2
(t1, t3) 1
(t3, t5) 4
(t1, t4) 3
(t4, t5) 5

Figure 3.17: Duration of tasks following processors class and communication delays.

Table 3.2 reports the computation of the lower bound DG(α, β), for any 2SP subgraph of
G = (V,E) and any couple (α, β) ∈ {A,B}2. For example, for G = (V,E) = G1 = G2 + G3,

DG1(A,B) = max(DG2(A,B), DG3(A,B)) = max(10, 15) = 15.

On the same way, for G2 = G4.({t3, t5}, {(t3, t5)}), setting H = ({t3, t5}, {(t3, t5)}), we get

DG2(A,B) = min(DG4(A,A) +DH(A,B)− w3,A, DG4(A,B) +DH(B,B)− w3,B

= min(10 + 1− 1, 15 + 8− 5) = 10.

H DH(A,A) DH(A,B) DH(B,A) DH(B,B)

({t1, t2}, {(t1, t2)}) 9 10 10 5
({t2, t3}, {(t2, t3)}) 5 11 5 7
({t1, t3}, {(t1, t3)}) 6 11 5 8
({t3, t5}, {(t3, t5)}) 4 1 10 8
({t1, t4}, {(t1, t4)}) 7 13 8 8
({t4, t5}, {(t4, t5)}) 5 10 13 8
G5 10 15 8 10
G4 10 15 8 10
G3 10 15 11 11
G2 13 10 11 8
G1 13 15 11 11

Table 3.2: Computation of the lower bounds DG(α, β), for any 2SP subgraph of G = (V,E)
and any couple (α, β) ∈ {A,B}2. G = (V,E) = G1 = G2 + G3, G2 = G4.({t3, t5}, {(t3, t5)}),
G3 = ({t1, t4}, {(t1, t4)}).({t4, t5}, {(t4, t5)}), G5 = ({t1, t2}, {(t1, t2)}).({t2, t3}, {(t2, t3)}) and G4 =
G5 + ({t1, t3}, {(t1, t3)}).

55

3.8. CONCLUSION

For our example, possible values for D?
G are presented in grey. Clearly, we have D?

G =
min(13, 15, 11) = 11, and this value is achieved for DG(B,A), thus we set θ(t1) = B, θ(t5) = A
and D?

G = DG(B,A). On the same way, D?
G2 = DG4(B,A) +DH(B,A)− w3,A = 8 + 4− 1 with

H = ({t3, t5}, {(t3, t5)}). Thus, θ(t3) = A, D?
G4 = DG4(B,A) and D?

H = DH(A,A). One may
also verify that θ(t2) = B and θ(t3) = A.

3.8 Conclusion

In this chapter we have studied the problem of scheduling a DAG on an unbounded hybrid
platform. Specifically, our platform consists of two types of processing elements, each with an
unbounded number of resources. Moving data from one type to the other one has a communi-
cation cost. We have shown the intractability of the problem by reducing this problem to the
3-satisfiability problem. We have proved that there does not exist 3/2-approximation algorithms
unless P=NP. We further provide some polynomial time algorithms for special cases of graphs.
The results of this chapter were published in [103, 104]. While this model seems very theoretical,
we can see several applications, both in High-Performance Computing (In-Situ analysis) and in
Big Data analytics in the cloud (Geo-distributed data-Centers).

There are several extensions that we can see to this work. One direction we are interested
by, is a version of this problem where only one type has an unbounded number of resources,
and where the data is located on the other one. For example, in the context of smartphone
applications, we can model the frontend/backend context where the phone (Machine 1) has a
limited number of available processors, but can rely on sending some of the computations on a
backend machine (cloud-based), with an unbounded number of processors. Similarly to here, the
problem is a data and communication problem: given the cost to transfer data from one machine
to the other one, what is the most efficient strategy?.

In the context of two unbounded platforms, it would be interesting to find some polynomial
time algorithms with proven bounds to the optimal solution. We do not expect to be able to find
one in the general case, but we hope that with some constraints between the communication costs
and computation cost (as is often done in the context of scheduling DAGs with communication
delays), one may be able to find such algorithms. In the following chapter, we present two
efficient algorithms to solve the problem of scheduling DAG applications on a bounded hybrid
platform with communication delays.

56

Chapter

4
Hybrid platform with a limited
number of processors

Chapter content
4.1 Introduction . 57
4.2 Mathematical model . 58
4.3 Basic List Scheduling algorithm (without pre-allocation) 60

4.3.1 The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm 60
4.3.2 Lookahead scheduling . 61
4.3.3 Predict Earliest Finish Time algorithm (PEFT) 62
4.3.4 INCremental Subgraph Earliest Finish Time algorithm (INCSEFT) . . 63

4.4 Basic List Scheduling algorithm with pre-allocation 65
4.4.1 List Scheduling algorithm With Pre-Allocation (LSWPA) 65
4.4.2 Polynomial List Scheduling With Pre-Allocation (PLSWPA) 75

4.5 Numerical results . 82
4.5.1 Benchmark . 82
4.5.2 LSWPA algorithm compared to HEFT algorithm 83
4.5.3 Best value of υ for the rounding θ3 . 87
4.5.4 LSWPA algorithm evaluation using different mappings 88
4.5.5 PLSWPA compared to LSWPA and HEFT algorithms 89
4.5.6 PLSWPA compared to LSWPA and HEFT algorithms using only one

processor of type A . 91
4.5.7 PLSWPA compared to LSWPA and HEFT algorithms with consistent

model . 92
4.5.8 Comparison between PLSWPA, LSWPA and HEFT algorithms 93

4.6 Conclusion . 93

4.1 Introduction

In the previous chapter, we have studied the problem of scheduling a DAG on an unbounded
hybrid platform. Specifically, our platform consists of two types of processing elements, each
with an unbounded number of resources.

In this chapter, we suppose that our hybrid platform is composed of a limited number of two
types of processing elements denoted by A and B (NVIDIA Drive PX2 platform for example as
presented in 1.2.2). We denote by ` (resp. k) the number of processing elements of type A (resp.
B). Let m be the total number of processing elements, m = ` + k. For any value u ∈ {A,B},
ū = A if u = B, and ū = B otherwise. For any task ti, wi,A (resp. wi,B) is the execution time of
ti on a processor of type A (resp. B).

4.2. MATHEMATICAL MODEL

As defined in Chapters 1 and 3, we assume that there are no communication delays between
the processors of the same type, i.e., for all (ti, tj) ∈ E, for all (p1, p2) ∈ A × A and (p3, p4) ∈
B × B, cmi,1,j,2 = cmi,2,j,1 = 0 and cmi,3,j,4 = cmi,4,j,3 = 0. Furthermore, we assume that the
communication cost between processors of different types are identical: for all (ti, tj) ∈ E, for
all (p1, p2) ∈ A × B and (p3, p4) ∈ B ×A, cmi,1,j,2 = cmi,2,j,1 = cmi,3,j,4 = cmi,4,j,3. To simplify
these notations, in the rest of this thesis, the communication costs for hybrid platforms will be
denoted by cmi,j for all (ti, tj) ∈ E.

Let Ci be the end date of the task ti. For any arc (ti, tj) ∈ E, Ci + wj,u ≤ Cj if both tasks
are executed to a processor of type u ∈ {A,B}. Otherwise, Ci + wj,u + cmi,j ≤ Cj where tj is
executed to a processor of type u and tj to a processor of type ū.

The problem addressed here consists on allocating tasks to processors such that the overall
makespan Cmax is minimized. Contrary to a platform with an unlimited number of processing
elements, the number of tasks that can be executed in parallel here is limited. Even if several tasks
can be executed in parallel, it is necessary to take into account the number of available processing
elements and choose which tasks to execute in priority. Thus, it is important to properly use the
number of each type of processing elements to exploit the parallelism effectively.

For this purpose, we propose two algorithms: a non polynomial-time algorithm with a per-
formance ratio of 6 and a polynomial time algorithm with a relative performance guarantee.
Both methods are based on a new scheduling technique that define the pre-allocation of tasks
before the task scheduling phase. This technique allows us to have an extended view of the
entire graph that represents the application. Thus, we can make the best decisions for the
maximum number of tasks. Tests on large instances demonstrate that the proposed algorithms
achieve close-to-optimal performances. The problem treated in this chapter corresponds to solv-
ing a scheduling problem on two types of parallel processing elements (P`, Pk)|prec, com|Cmax
as defined in Section 1.5.3.

The rest of this chapter is organized as follows. The next section presents the mathematical
model used to obtain the optimal solution for small instances. Section 4.3 presents some classical
resolution methods based on list algorithms. Then, we detail in Section 4.4 the two proposed
scheduling algorithms with a performance guaranty analysis. Finally, after testing the algorithms
on several instances in Section 4.5, we provide concluding remarks and future directions in
Section 4.6

4.2 Mathematical model

This section aims at providing a modelling of the scheduling problem using a Mixed Integer
Program (MIP) for which the number of variables and constraints is polynomial.

Data:

A hybrid platform is composed of m resources P = {p1, p2, · · · , pm} of two types: A and B (e.g.
GPU+CPU). ` represents the number of processing elements of type A and k the number of
processing elements of type B, m = `+k. Let P (A) (resp. P (B)) be the set of processors of type
A (resp. B). Clearly, P (A) = {p1, p2, · · · , p`} and P (B) = {p`+1, p`+2, · · · , pm}. We denote by
τ(r) the type of the processing element pr, such that τ(r) = A if r 6 ` and τ(r) = B if r > `.
We also use the two following data:

• wi,A (resp. wi,B) is the execution time of ti on a processor of type A (resp. B).

• cmi,j is the communication delay between ti and tj if they are executed on two different
types of processing element.

58

CHAPTER 4.

Variables:

Let consider the following decision variables:

• xi,r equal to 1 if the task ti is assigned to the processor pr, 0 otherwise, i = 1..n and
r = 1..m.

• Si is the starting time of the task ti, i = 1..n.

• θ(ti) represents the processor assignment of ti (e.g. θ(ti) = p1 means that ti is assigned to
p1).

• oi,j is an intermediary variable to manage overlapping tasks on the same processing element.
For each couple of tasks ti 6= tj , i = 1..n and j = 1..n , if ti and tj are executed by the
same processing element, i.e., θ(ti) = θ(tj), then:

oi,j =

{
1 if tj is executed after the completion time of ti
0 if ti is executed after the completion time of tj .

Model:

We thus obtain the following model (Opt) composed of 4 constraints:

(Opt)



∑m
r=1 xi,r = 1, ∀i = 1..n (1)

Si + xi,rwi,τ(r) + (xi,r + xj,u − 1)cmi,j 6 Sj (2)

∀ (ti, tj) ∈ E, ∀r = 1..m, ∀u = 1..m, τ(r) 6= τ(u)

Si + xi,rwi,τ(r) 6 Sj +B × (3− xir − xjr − oi,j) (3)

Sj + xj,rwj,τ(r) 6 Si +B × (2− xir − xjr + oi,j)

∀i, j = 1..n i 6= j, (ti, tj) /∈ E, ∀r = 1..m,B = Cte

Si +
∑m

r=1 xi,rwi,τ(r) 6 Cmax, ∀i, Γ+(ti) = ∅ (4)

xi,r and oi,j ∈ {0, 1}, ∀i, j = 1..n, r = 1..m
Z(min) = Cmax

Constraints:

• First constraint (1) simply expresses that each task must be executed only once on one
processor.

• Constraint (2) describes that the task tj must be executed after the completion time of
the task ti for each couple of tasks (ti, tj) ∈ E, and the communication cost cmi,j is added
if they are executed on two different types of processing elements. If ti is executed on pr,
and tj on pu and τ(r) 6= τ(u), then xi,r + xj,u − 1 = 1. Otherwise, xi,r + xj,u − 1 6 0.

• Overlapping tasks on each processor are avoided by the constraint (3) using a large constant
B, such that if couple of tasks ti and tj are executed on the same processor, then either tj
starts after the completion time of the task ti or ti starts after the completion time of the
task tj . For each couple of tasks ti and tj , (ti, tj) /∈ E (treated by constraint 2), if ti and tj
are executed on the same processing element pr, then B×(3−xir−xjr−oi,j) = B×(1−oi,j)
and B×(2−xir−xjr+oi,j) = B×(oi,j). Depending on the value of oi,j , if B×(1−oi,j) = 0
(because oi,j = 1) then B × (oi,j) = B, and if B × (1 − oi,j) = B (because oi,j = 0) then
B × (oi,j) = 0. Thus, only one constraint becomes important, the other one will always be
feasible, such that:

59

4.3. BASIC LIST SCHEDULING ALGORITHM (WITHOUT PRE-ALLOCATION)

– Either tj starts after the completion of the task ti, where
{
Si + xi,rwi,τ(r) 6 Sj
Sj + xj,rwj,τ(r) 6 Si +B

– Or ti starts after the completion of the task tj , where
{
Si + xi,rwi,τ(r) 6 Sj +B

Sj + xj,rwj,τ(r) 6 Si

• Constraint (4) describes that Cmax is bigger than the completion time of the tasks without
successors. In other words, Cmax represents an upper bound for all paths of the graph, and
thus it bounds the end of the last task completion time. By minimizing Cmax, we minimize
the completion time of the application.

Solvers like CPLEX can be used to find the optimal solution for small instances. However, in
a practical way, generic approaches are used to solve large instances with a reasonable running
time. A state of the art for the scheduling problem on platforms with limited and unlimited
resources is provided in the previous chapter (Chapter 3). Nevertheless, in the following, we
will detail some methods that give an evaluation overview of the scheduling methods on limited
resource platforms.

4.3 Basic List Scheduling algorithm (without pre-allocation)

List scheduling algorithms are often used to handle a limited number of processors. For our gen-
eral problem, the first known algorithm named Heterogeneous Earliest Finish Time (HEFT) [26]
is decomposed into two main phases: task prioritizing phase, then processor selection phase. The
first one assigns priorities based on certain task properties, typically run time and/or communi-
cation delays. The second phase assigns the tasks to the processors using a basic list scheduling
algorithm. Several other authors improved the priority list without changing the global algo-
rithm. This section aims at presenting HEFT algorithm and several more recent improvements.

4.3.1 The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm

HEFT algorithm [26] is considered as a reference method in the literature for its lower time
complexity. It is based on two main phases:

1. Task prioritizing: this phase uses execution times and communication costs to calculate
the ranks. Task priorities are defined as rank(T) = {rank(t1), rank(t2), · · · , rank(tn)}.
rank(ti) represents a length evaluation of the longest path from the task ti to the exit
node, including the computational cost of ti and is given by:

rank(ti) =
wi,A + wi,B

2
+ max
tj∈Γ+(ti)

(cmi,j + rank(tj))

The priority list rank(T) is ordered by decreasing the values of rank(ti), i = 1..n.

2. Processor selection phase: in this phase, the first unscheduled task from the task
priority list is selected and assigned to the processing element pr that provides its Earliest
Finish Time (EFT). However, HEFT algorithm uses an insertion policy that tries to insert
a task at the earliest idle time between two already scheduled tasks on the processing
element, if the slot is large enough to execute the task. Additionally, scheduling on this
idle time slot should preserve precedence constraints. The search of an appropriate idle

60

CHAPTER 4.

time slot of a task ti on a processing element pr starts at the time equal to the ready time
of ti on pr. Algorithm 4 provides the detailed description of the HEFT Algorithm.

Algorithm 4: HEFT Algorithm
Data: rank(T) = {rank(t1), rank(t2), · · · , rank(tn)}.
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(tj) = ∅, j = 1..n};
while ready-list 6= ∅ do

ti ←− task with highest rank(ti) from the ready-list;
for all pr ∈ P do

Compute EFT (ti, pr) value using an insertion-based scheduling policy;

Assign task ti to the processor pr that minimize EFT of task ti;
Update ready-list with unscheduled tasks which their predecessors were already
executed;

Complexity:

Task priorities table is calculated for n tasks on two types of processing elements. For each
task ti (n in total), we calculate for all its successors tj ∈ Γ+(ti) (n − 1 at most) the value
(cmi,j + rank(tj)) and we take the maximum value. Thus, the complexity of the first phase is
O(n2). Furthermore, for each task (n in total), we calculate its EFT by taking into account all
its predecessors (n− 1 at most) on each available processing element (m at most). The insertion
policy is verified on a processing element by checking the non-overlapping with at most n − 1
tasks. Thus, the complexity of the second phase is O(n2m). Finally, for our model, HEFT
algorithm has a O(n2m) time complexity.

4.3.2 Lookahead scheduling

HEFT algorithm does not consider more than one task during processor assignments. The
assignment policy does not take into account the remaining unscheduled tasks. For a task ti,
HEFT algorithm chooses the best processor to minimize the EFT of ti, but this assignment
may be bad for the successors of ti. Furthermore, it was observed that there are significant
differences between the performance of HEFT depending on the scheme used for computing the
task priorities list rank(T) [105]. To enhance this strategy, Lookahead algorithm [90] presents
an interesting improvement of HEFT, where the locally optimal decisions made by the heuristic
do not rely on estimates of a single task only, but also look ahead in the schedule and take into
account some information about the impact of this decision on the direct successors of the task
being allocated. Therefore, it increases the temporal complexity of HEFT by the average number
of direct successors per task.

Based on HEFT algorithm, its main characteristic is its processor selection policy. To select
a processor for the current task ti, it iterates on all available processors and calculates the
EFT for all tasks tj ∈ Γ+(ti) on all processors. The processor selected for the task ti is the
one that minimizes the maximum EFT of all successors from ti on all resources where ti is
tested. However, direct successors of a task ti do not depend only on this task, and may not
become ready immediately after scheduling ti (as a result of a dependence to another unscheduled
predecessors). Thus, to calculate the estimated finish time of the successors of ti, Lookahead
only consider their already scheduled predecessors and ti, ignoring further delays that may arise
due to any unscheduled predecessors.

61

4.3. BASIC LIST SCHEDULING ALGORITHM (WITHOUT PRE-ALLOCATION)

Complexity:

Lookahead algorithm has the same structure as HEFT algorithm, but calculates in addition the
EFT for each task tj ∈ Γ+(ti) (n − 1 at most) of the current task ti. The EFT of each task
tj ∈ Γ+(ti) is calculated by taking into account all its predecessors tv ∈ Γ−(tj) (n − 1 at most)
on m processing elements. This increases the total complexity of the method to O(n4m2) for a
single level of forecasting (only direct successors). The authors reported that additional levels of
forecasting do not result in significant improvements for the makespan objective.

4.3.3 Predict Earliest Finish Time algorithm (PEFT)

Lookahead can significantly improve the schedule returned by HEFT, especially in cases where
the communication delays are significant. However, one of the weaknesses of this method is that
it selects a resource for a task ti based on the estimated finish time of all its direct successors,
even if they are not all on the critical path. Furthermore, the estimated finish times computed
for the successors of a task ti is rather optimistic, since they depend only on ti and already
scheduled predecessors.

PEFT algorithm [92] has tried to fix this problem by proposing the Optimistic Cost Table
(OCT). This table is computed before scheduling and represents for each pair (task, processor)
the minimum processing time of the longest path from the current task to the exit node by
assigning the best processors to each of those tasks. The table is optimistic because it does
not consider processor availability at a given time. The values stored in the cost table are used
in the processor selection phase. Rather than considering only the EFT for the task that is
being scheduled, PEFT adds to EFT the processing time stored in the table for the pair (task,
processor). All processors are tested, and the one that gives the minimum value is selected. Thus,
PEFT algorithm introduces the look ahead feature while maintaining quadratic complexity. The
detailed description of the PEFT Algorithm for our model is given as follows:

1. Compute OCT table: the OCT value of a task ti on a processor type r ∈ {A,B} is
recursively defined as follows by treating the DAG from the exit task to the entry one:

OCT (ti, r) = max
tj∈Γ+(ti)

[min
u∈{A,B}

{OCT (tj , u) + wj,u + ζi,j}]

The communication cost between two tasks ti and tj ∈ Γ+(ti) is given by ζi,j = cmi,j if
u = r, ζi,j = 0 otherwise.

2. Compute rankoct for all tasks (Task Prioritizing): to define task priorities, the average
OCT is computed for each task as follows:

rankoct(ti) =
OCT (ti,A) +OCT (ti,B)

2

The priority list rankoct(T) is ordered by decreasing the values of rankoct(ti), i = 1..n.

62

CHAPTER 4.

3. The following list algorithm is then applied:

Algorithm 5: PEFT Algorithm
Data: OCT table and rankoct(T).
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(tj) = ∅, j = 1..n};
while ready-list 6= ∅ do

ti ←− task with highest rankoct(ti) from the ready-list;
for All pr ∈ P do

Compute EFT (ti, pr) value using an insertion-based scheduling policy;
OEFT (ti, pr) = EFT (ti, pr) +OCT (ti, τ(r));

Assign task ti to the processor pr that minimize OEFT of the task ti;
Update ready-list with unscheduled tasks;

Complexity:

OCT and task priorities table rankoct(T) are calculated for n tasks on the two types of processing
elements with a complexity of O(n). Furthermore, the EFT value is calculated for each task (n
in total) by taking into account all its predecessors (n− 1 at most) on each available processing
element (m at most). The insertion policy is verified on a processing element by checking the
non-overlapping with at most (n − 1) tasks. Thus, the OEFT value is calculated for each task
with a complexity of O(n2m). Finally, PEFT algorithm improves the scheduling provided by
HEFT algorithm while maintaining the same time complexity of O(n2m).

4.3.4 INCremental Subgraph Earliest Finish Time algorithm (INCSEFT)

The common point of the three methods defined above is that they assign a single task at each
step. HEFT algorithm assigns task by task based only on task priorities. Lookahead algorithm
tried to improve it by considering the direct successors of each task before its assignment. To do
better, PEFT algorithm uses the optimistic cost table OCT in the processor selection phase. This
table contains the minimum longest path from each task to the exit node. The table is optimistic
because it does not consider processor availability at a given time. Thus, the initial OCT value
of a task can change after the assignment of some tasks that precede it. These methods can
be effective locally. But assigning only one task at each step can negatively influence overall
scheduling. INCSEFT algorithm [106] integrates an extended view of the task graph and uses
the notion of sub-graphs when assigning processors. It uses the notion of dynamically calculated
critical paths using ranks based on average task execution costs.

To construct a sub-graph, ranks are assigned to the tasks which are processed in order of
their ranks. These ranks are computed recursively in a bottom-up approach using the average
execution cost of the current node and the accumulated average execution cost of its successors.
At each step, a critical path is found by starting with the unscheduled task ti having the highest
rank. Then, an unscheduled task tj ∈ Γ+(ti) with the highest rank is added to the critical path.
The critical path is formed when the last added task has no unscheduled successors.

The tasks on a critical path are added to a sub-graph Ĝ that grows gradually in an incremental
way and then processed for the minimization of its completion time. At each step, the scheduling
of the sub-graph Ĝ is calculated without taking into account the (other) tasks that are not in
Ĝ. For the first critical path, the best processor is assigned. For the subsequent critical paths,
the processor assignment proceeds under the following two cases: all tasks in a critical path are
assigned to the most appropriate processor if the new sub-graph scheduling does not exceed the

63

4.3. BASIC LIST SCHEDULING ALGORITHM (WITHOUT PRE-ALLOCATION)

length of the previously calculated scheduling. Otherwise, a single task is assigned to the most
appropriate processor, and the other tasks are removed from the sub-graph Ĝ to form another
critical path in the next step. The algorithm ends when all the tasks are assigned, i.e., Ĝ = G.
The detailed description of INCSEFT Algorithm for our model is given as follows:

1. Compute ranks of the tasks:

rankINCSEFT (ti) =
wi,A + wi,B

2

The list rankINCSEFT (T) is ordered by decreasing the values of rankINCSEFT (ti), i = 1..n.

2. The following list algorithm is then applied:

Algorithm 6: INCSEFT Algorithm
Data: rankINCSEFT (T) table; G = (V,E).
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(tj) = ∅, j = 1..n};
ti ←− task with highest rankINCSEFT (ti) from the ready-list;
Ĝ = the critical path of the graph G built from the tasks ti to the end of the graph
by adding highest rank tasks in the incremental way;
All tasks of Ĝ are assigned to the best processor, let Ĉmax be its completion time;
Update ready-list with unscheduled tasks;
Create a sub-graph G′ which does not contain the scheduled tasks, i.e., G′ = G\Ĝ;
while ready-list 6= ∅ do

ti ←− task with highest rankINCSEFT (ti) from the ready-list;
CP = the critical path of the graph G′ built from the tasks ti to the end of the
graph by adding highest rank tasks in the incremental way;
Ĉ
′
max= makespan obtained by executing all the tasks tv ∈ CP on the best
processor taking into account the scheduled tasks from Ĝ;
if Ĉ ′max 6 Ĉmax then

Execute all tasks tv ∈ CP on the best processor;
G′ ←− G′\CP , Ĝ ←− Ĝ ∪ CP ;

else
Execute only the first task ti of CP;
G′ ←− G′\{ti}, Ĝ ←− Ĝ ∪ {ti};

Ĉmax = completion time of Ĝ;
Update ready-list with unscheduled tasks;

Complexity:

rankINCSEFT (T) table is calculated for n tasks on the two types of processing elements with a
complexity of O(n). Furthermore, for each task ti (n in total), the Critical Path CP starting
by ti is calculated by finding the tasks with the highest rank among the successors of ti (n − 1
at most). Then, a new makespan is calculated by executing all tasks tv ∈ CP (n at most) on
each processing element (m in total) by taking into account the scheduled tasks (n− 1 at most).
Thus, the complexity time of INCSEFT algorithm is given by O(n3m).

64

CHAPTER 4.

INCSEFT algorithm produces very effective near-optimal schedules. Experiments were per-
formed with a large number of task graphs using different topologies [106]. The INCSEFT
strategy performs better by producing schedules with smaller length than HEFT and Lookahead
scheduling strategies. Using an incremental approach minimizes the length of scheduling at each
step while incorporating an extended view of the graph at each scheduling step. Its weakness
is that it puts all the path on the same processor, which can be locally efficient since it avoids
communication costs. However, this method treats paths separately, and assigning tasks from
one path to the same processor may not arrange the tasks of another path.

The best way to do this is to deal with all the paths together, and make the decisions
that arrange the greatest number of paths. However, doing this for any platform (with more
than two types of processors) seems complicated. The particularity of a hybrid platform gives
us the possibility to use efficient techniques as linear programming. In the following, a new
scheduling strategy will be defined, which, unlike the previous methods, makes a pre-allocation
before starting scheduling.

4.4 Basic List Scheduling algorithm with pre-allocation

The common point of the methods mentioned above is that they decide during the scheduling
phase of the processor that will execute each task. Thus, the assignment of a task ti (or the entire
path that starts with ti as in INCSEFT algorithm) to a processor is calculated locally without
taking into account the entire graph. These methods try to make the best choice to minimize
the completion time of some tasks, without taking into account the whole graph, which may not
arrange the scheduling of the remaining tasks.

The pre-allocation technique decides in advance on which type of processors to execute each
task. Then, the scheduling algorithm decides on which processor among the processors of the
type chosen by the pre-allocation to execute each task. Forcing a task to run on one of the two
types may not locally arrange the duration of scheduling, but may arrange the scheduling of the
remaining tasks, and thus the final scheduling of all tasks.

Using the pre-allocation technique, a two-phase approach has been first developed by Kedad-
Sidhoum et al. [77] for the problem without communications delays. The first phase consists in
solving an assignment problem to find the type of processor assigned to execute each task (A or
B) using a linear model. In the second phase, a list scheduling algorithm has been proposed to
generate a feasible schedule. This algorithm achieves an approximation ratio of 6. The following
algorithms use the same technique to solve the problem with communication costs by adding new
constraints. Two algorithms are proposed: a non polynomial-time algorithm (LSWPA) with a
performance ratio of 6 and a polynomial time algorithm (PLSWPA) with a relative performance
guarantee.

4.4.1 List Scheduling algorithm With Pre-Allocation (LSWPA)

LSWPA algorithm uses two steps to keep the same ratio of 6 for the scheduling with commu-
nication costs. The first step consists in solving an assignment problem to find which type of
processor (A or B) will execute each task. Two models (P1) and (P2) are then used in the first
phase for solving the assignment problem while the precedence constraints are satisfied. The
solution obtained by the model (P1) or (P2) represents a lower bound for the final makespan.
Then, after solving the relaxation (P1

′
) (resp. (P2

′
)) of the model (P1) (resp. (P2)), the frac-

tional solution is rounded to obtain a feasible assignment of the tasks. In the second phase, a
list scheduling algorithm is used to provide a feasible schedule. In the following, the two phases
are presented in detail.

65

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

I) Phase 1: Assignment of tasks (non-polynomial mapping θ1)

To solve the assignment of tasks problem, we first propose the following Non-Linear Mixed Integer
Program (NLMIP) using the following data and decision variables for i = 1..n and j = 1..n.

Data:

For this model, we use the two following data:

• wi,A (resp. wi,B) is the execution time of ti on a processor of type A (resp. B).

• cmi,j represents the communication delay between ti and tj if they are executed on two
different types of processing elements.

Variables:

The decision variables are:

• xi =

{
1 if the task ti is assigned to a processor type A
0 if the task ti is assigned to a processor type B.

• Ci represents the completion time of the task ti.

• zi,j =

{
1 if ti and tj are assigned to a processor type A
0 if ti or tj , or both are assigned to a processor type B.

• yi,j =

{
1 if ti and tj are assigned to a processor type B
0 if ti or tj , or both are assigned to a processor type A.

Model (P1):

Based on the model given in [77], the following model is proposed:

(P1)



Ci + xjwj,A + (1− xj)wj,B + (1− |yi,j − zi,j |)cmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
zi,j 6 xi, ∀(ti, tj) ∈ E (2)
zi,j 6 xj ,∀(ti, tj) ∈ E (3)
yi,j 6 1− xi, ∀(ti, tj) ∈ E (4)
yi,j 6 1− xj ,∀(ti, tj) ∈ E (5)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(ti) = ∅ (6)
0 6 Ci 6 Cmax,∀i = 1..n, Γ+(ti) = ∅ (7)∑n

i=1 xiwi,A 6 `Cmax (8)∑n
i=1(1− xi)wi,B 6 kCmax (9)

xi, yi,j , zi,j ∈ {0, 1}, ∀i = 1..n, j = 1..n
Z(min) = Cmax

Constraints:

• Constraints (1) to (7) describe the constraints of the critical path of the graph G(V,E). If
(ti, tj) ∈ E, then:

– If ti and tj are assigned to two different types of processors, we obtain two cases:
either xi = 1 and xj = 0 or xi = 0 and xj = 1. In the two cases, we obtain yi,j = 0
and zi,j = 0 because of the four constraints (2), (3), (4) and (5). This implies that
1− |yi,j − zi,j | = 1.

– If ti and tj are assigned to the same type of processors, we obtain also two cases:

66

CHAPTER 4.

? Case 1: xi = 0 and xj = 0. From constraints (2) and (3), zi,j = 0. From
constraints (4) and (5), yi,j = 1 (minimization problem), then 1−|yi,j − zi,j | = 0.

? Case 2: xi = 1 and xj = 1. From constraints (4) and (5), yi,j = 0. From
constraints (2) and (3), zi,j = 1 (minimization problem), then 1−|yi,j − zi,j | = 0.

• Tasks without predecessors (resp. successors) are considered in the constraint (6) (resp.
(7)).

• Constraint (8) (resp. (9)) simply expresses that the makespan cannot be smaller than the
average execution time of the tasks assigned to all processors of type A (resp. B).

Linear model (P2):

The first constraint of model (P1) contains an absolute value that can be processed in the CPLEX
APIs [69], by using Cplex.abs option. To see the efficiency of CPLEX in managing the absolute
value, we have proposed another model (P2) without constraint containing an absolute value.

By adding two binary variables ai,j and bi,j and two constraints (5.1) and (5.2), we can get
rid of the absolute value and we obtain a second model (P2).

(P2)



Ci + xjwj,A + (1− xj)wj,B + (1− bi,j)(1− bi,j)(1− bi,j)cmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
zi,j 6 xi, ∀(ti, tj) ∈ E (2)
zi,j 6 xj ,∀(ti, tj) ∈ E (3)
yi,j 6 1− xi, ∀(ti, tj) ∈ E (4)
yi,j 6 1− xj ,∀(ti, tj) ∈ E (5)
(zi,j − yi,j) + 2(1− ai,j) > bi,j , ∀(ti, tj) ∈ E(zi,j − yi,j) + 2(1− ai,j) > bi,j ,∀(ti, tj) ∈ E(zi,j − yi,j) + 2(1− ai,j) > bi,j , ∀(ti, tj) ∈ E (5.1)(5.1)(5.1)
(yi,j − zi,j) + 2ai,j > bi,j ,∀(ti, tj) ∈ E(yi,j − zi,j) + 2ai,j > bi,j , ∀(ti, tj) ∈ E(yi,j − zi,j) + 2ai,j > bi,j ,∀(ti, tj) ∈ E (5.2)(5.2)(5.2)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(ti) = ∅ (6)
0 6 Ci 6 Cmax,∀i = 1..n, Γ+(ti) = ∅ (7)∑n

i=1 xiwi,A 6 `Cmax (8)∑n
i=1(1− xi)wi,B 6 kCmax (9)

xi, yi,j , zi,j , ai,j , bi,j ∈ {0, 1}, ∀i = 1..n, j = 1..n
Z(min) = Cmax

For each couple of tasks (ti, tj) ∈ E, the variable bi,j is added to manage the communication
delay between them. bi,j = 1 if ti and tj are assigned to the same type of processing elements,
0 otherwise. The variable ai,j is added to validate one of the two constraints (5.1) of (5.2) such
that:

1. If ai,j = 1, then the two constraints (5.1) and (5.2) become
{

(zi,j − yi,j) > bi,j (5.1)
(yi,j − zi,j) + 2 > bi,j (5.2)

In this case, the constraint (5.2) is not important, since (yi,j−zi,j) > −1 and then 1 > bi,j .
Thus, in this case the value of bi,j depends on the constraint (5.1).

2. If ai,j = 0, then the two constraints (5.1) and (5.2) become
{

(zi,j − yi,j) + 2 > bi,j (5.1)
(yi,j − zi,j) > bi,j (5.2)

In this case, the constraint (5.1) is not important, since (zi,j−yi,j) > −1 and then 1 > bi,j .
Thus, in this case the value of bi,j depends on the constraint (5.2).

The difference between (P1) and (P2):

The two models (P1) and (P2) are equivalent. Indeed, the variable bi,j replaces |yi,j−zi,j | ∈ {0, 1}
in (P2). We obtain two cases:

67

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

• If |yi,j − zi,j | = 0 then 2ai,j > bi,j and 2(1− ai,j) > bi,j from the two constraints (5.1) and
(5.2). Thus, bi,j = 0 for ai,j ∈ {0, 1}. Finally, |yi,j − zi,j | = bi,j = 0.

• If |yi,j − zi,j | = 1 and if (yi,j − zi,j) = 1, then 1 + 2ai,j > bi,j and −1 + 2(1 − ai,j) > bi,j
from the two constraints (5.1) and (5.2). Thus, since bi,j ∈ {0, 1}, bi,j = 1 for ai,j = 0. If
(zi,j − yi,j) = 1, then −1 + 2ai,j > bi,j and 1 + 2(1 − ai,j) > bi,j from the two constraints
(5.1) and (5.2). Then, since bi,j ∈ {0, 1}, bi,j = 1 for ai,j = 1. In the two cases, we can
have |yi,j − zi,j | = bi,j .

Thus, both models (P1) and (P2) are equivalent and give the same result. In the following, we
focus on the model (P1). The results obtained for (P1) remain valid for (P2).

What represents the solution of (P1) or (P2) without constraints 8 and 9?

By removing the constraints (8) and (9) from the model (P1), we obtain the model (PI) as
follows.

(PI)



Ci + xjwj,A + (1− xj)wj,B + (1− |yi,j − zi,j |)cmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
zi,j 6 xi,∀(ti, tj) ∈ E (2)
zi,j 6 xj ,∀(ti, tj) ∈ E (3)
yi,j 6 1− xi, ∀(ti, tj) ∈ E (4)
yi,j 6 1− xj ,∀(ti, tj) ∈ E (5)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(ti) = ∅ (6)
0 6 Ci 6 Cmax, ∀i = 1..n, Γ+(ti) = ∅ (7)
xi, yi,j , zi,j ∈ {0, 1}, ∀i = 1..n, j = 1..n
Z(min) = Cmax

The optimal solution obtained by this model represents the solution of the scheduling problem
on platforms with unlimited resources presented in the previous chapter (Chapter 3). In fact,
the number of resources is unlimited, and there are no communication delays between processors
of the same type. Thus, all tasks assigned to the same type of processing elements can all be
performed on a different processor. The problem then comes to find the best scheduling that
minimizes the completion execution time of the longest path without taking into account the
workload constraints ((8) and (9)) on each type of processor, which is exactly the aim of this
model.

Complexity:

We have previously shown by Theorem 3 that finding an optimal scheduling that minimizes
makespan on a platform with unlimited resources is strongly NP-complete even for graphs of
depth 3. Thus, we can say that the complexity of this model is at least strongly NP-complete.

Relaxed problem:

The problem of finding the optimal mapping using (P1) or (P2) is at least strongly NP-complete
even without constraints (8) and (9). We can use solvers like CPLEX to solve (P1) or (P2) only
for small instances. In order to have an easier problem, we relax the integer variables xi, yi,j and
zi,j and we obtain the model (P1

′
). We denote by x′i, y

′
i,j , z

′
i,j , all in [0, 1], the fractional value

of xi, yi,j , zi,j in the optimal solution of the model (P1
′
), with i = 1..n and j = 1..n.

We also obtain the model (P2
′
) by relaxing the integer variables xi, yi,j , zi,j and bi,j . We

denote by x′i, y
′
i,j , z

′
i,j , b

′
i,j all in [0, 1], the fractional value of xi, yi,j , zi,j , bi,j in the optimal

solution of the model (P2
′
), with i = 1..n and j = 1..n. However, ai,j must remain integer, so

that (P1
′
) and (P2

′
) are equivalent, i.e., |y′i,j−z

′
i,j | = b

′
i,j . For (ti, tj) ∈ E, if we relax ai,j ∈ {0, 1}

68

CHAPTER 4.

to a′i,j ∈ [0, 1], the solutions of (P1
′
) and (P2

′
) may be different, i.e., |y′i,j − z

′
i,j | 6= b

′
i,j . For

example, we suppose that x′i = 1 and x′j = 0. Then, from the constraints (2), (3), (4) and (5) of
(P1

′
) or (P2

′
), y′i,j = 0 and z′i,j = 0. Thus, the communication delay between ti and tj in the

model (P1
′
) will be calculated as (1 − |y′i,j − z

′
i,j |)cmi,j = (1 − 0)cmi,j = cmi,j . However, from

the constraint (5.1) and (5.2) of (P2
′
), 2a

′
i,j > b

′
i,j and 2(1− a′i,j) > b

′
i,j . For a′i,j = 0.5, we will

always have 1 > b
′
i,j , and thus (1− b′i,j)cmi,j = 0 since it is a minimization problem (b′i,j = 1). In

other words, ai,j must remain integer, so that b′i,j will be equal to |y
′
i,j− z

′
i,j |, i.e., b

′
i,j = y

′
i,j− z

′
i,j

or b′i,j = z
′
i,j − y

′
i,j .

Rounding strategy:

If x′i is integer for i ∈ 1..n, the solution obtained is feasible and optimal for (P1) and (P2),
otherwise the fractional values are rounded. We denote by xri the rounded value of the fractional
value x′i in the optimal solution of (P1

′
) or (P2

′
). We set xri = 0 if x′i <

1
2 , and x

r
i = 1 otherwise.

Let θ1 be the mapping obtained by this rounding. Each task ti is mapped in either a processor
type A or type B. Thus, θ1(ti) −→ {A,B}.

II) Phase 2: Scheduling algorithm

The second phase consists in finding the final scheduling of the tasks. Using the mapping θ1,
the proposed algorithm determines for a task order given by a priority list L, the corresponding
scheduling by executing the first ready task of the list as long as there are free processing elements.

The priority list L can be defined by different way, where n! lists are possible for an instance of
n tasks. To achieve good scheduling, the most important and influential tasks must be executed
first. For this purpose, we propose in the following several priority lists that will be used for the
experimentations.

List by using the model (P1
′
) or (P2

′
)

Two interesting lists can be extracted from the resolution of model (P1
′
) or (P2

′
), LST (List

by Start Time) and LFT (List by Finish Time). The LST (resp. LFT) list can be obtained
by sorting the tasks in ascending order of their processing start time (resp. processing finish
time) obtained by solving the model (P1

′
) or (P2

′
). Let S′i (resp. C

′
i) be the processing start

time (resp. processing finish time) of the task ti obtained by solving the model (P1
′
) or (P2

′
),

i = 1..n. Thus, LST = (ti1, ti2, · · · , tin), with S′i1 6 S
′
i2 6 · · · 6 S

′
in. LFT = (ti1, ti2, · · · , tin),

with C ′i1 6 C
′
i2 6 · · · 6 C

′
in.

List by longest path (LLP):

First, we start by defining the graph G′(V,E), with V = {t1, t2, · · · , tn} and E represents the
set of graph edges. The vertices are labelled by the execution times of the tasks according to
their assignments. The edges are labelled by the communication costs for each (ti, tj) ∈ E and
θ1(ti) 6= θ1(tj), 0 otherwise. Then, we can calculate the longest path LPi from each task ti to
its last successor. The list LLP is given by LLP = (ti1, ti2, · · · , tin), such that LPi1 > LPi2 >
· · · > LPin.

The following list algorithm is then applied using the mapping θ1 and one of the three lists
LST , LFT or LLP .

List Scheduling algorithm With Pre-Allocation (LSWPA) algorithm:

The following algorithm 7 executes task by task from the ready task list according to the order
given by list L. Thus, if two tasks are executable at a given time on a free processor, then we

69

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

chose the first tasks according to the order given by the list L. Furthermore, each task ti is
executed on one of the processors of type θ1(ti) using an insertion-based scheduling policy [26].
It tries to insert a task at the earliest idle time between two already scheduled tasks on the
processing element, if the slot is large enough to execute the task.
Algorithm 7: LSWPA algorithm
Data: mapping θ1, list L (LST , LFT , LLP).
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(tj) = ∅, j = 1..n};
while ready-list 6= ∅ do

ti ←− the first executable task from the ready-list according to the order given
by list L;
for all pr ∈ P (θ1(ti)) do

Compute EFT (ti, pr) value using an insertion-based scheduling policy;

Assign task ti to the processor pr that minimize EFT of task ti;
Update ready-list with unscheduled tasks;

Complexity:

The first phase consists in solving either a NLMIP model (P1
′
) or a MIP model (P2

′
), which

makes the complexity of the first phase exponential, its resolution therefore depends on the size
of the instance to be solved.

The second phase has the same structure as HEFT which has O(n2m) time complexity.
However, for LSWPA algorithm, the EFT of each task is calculated for either ` or k processors
according to the mapping θ1. For each task (n in total), we calculate its EFT by taking into
account all its predecessors (n − 1 at most) on each available processing element of type θ1(ti)
(at most max(`,k)). The insertion policy is verified on a processing element by checking the
non-overlapping with at most n − 1 tasks. This makes a complexity of O(max(`, k)n2) for the
second phase. Thus, the complexity time of LSWPA algorithm is exponential even if the second
phase is polynomial.

Algorithm analysis:

In Section 4.5, we perform experiments to see the efficiency of LSWPA algorithm in terms of
running time and makespan compared to HEFT. To study the theoretical worst-case performance
of our method, we prove in this section that LSWPA algorithm solves the scheduling problem
with a performance guarantee of 6 in the worst case compared to the optimal solution.

Proposition 3. The rounding previously defined satisfies the following two inequalities:

xri 6 2x
′
i

(1− xri) 6 2(1− x′i).

Proof. If 0 6 x
′
i <

1
2 , then xri = 0 6 2x

′
i. Furthermore, 2x

′
i 6 1, then 0 6 1 − 2x

′
i, follows

−xri = 0 6 1 − 2x
′
i, then 1 − xri 6 2(1 − x′i). If 1

2 6 x
′
i then 1 6 2x

′
i, follows x

r
i = 1 6 2x

′
i.

Furthermore, x′i 6 1 then −2x
′
i > −2, follows 1 − 2x

′
i > −1, then −xri = −1 6 1 − 2x

′
i, then

1− xri 6 2(1− x′i).

Let ζi,j be the value defined as ζi,j = (1−|y′i,j−z
′
i,j |) for each couple of tasks (ti, tj) ∈ E. The

communication cost between (ti, tj) ∈ E obtained by solving (P1
′
) is then given by ζi,jcmi,j =

70

CHAPTER 4.

(1− |y′i,j − z
′
i,j |)cmi,j . Thus, to minimize the communication cost between each couple of tasks

(ti, tj) ∈ E, the value of ζi,j must be minimized. In the following lemma 9, we show that by
solving the model (P1

′
), ζi,j = (1 − |y′i,j − z

′
i,j |) can take the smallest possible value for each

(ti, tj) ∈ E, such that ζi,j = (1− |y′i,j − z
′
i,j |) = (1−max(y

′
i,j , z

′
i,j)).

Lemma 9. Let C ′max be the optimal solution obtained by solving the model (P1
′
). We can get

another solution C ′′max = C
′
max, such that for each two (ti, tj) ∈ E:

1. If min{1− x′i, 1− x
′
j} > min{x′i, x

′
j}, then y

′
i,j = min{1− x′i, 1− x

′
j} and z

′
i,j = 0.

2. If min{1− x′i, 1− x
′
j} < min{x′i, x

′
j}, then y

′
i,j = 0 and z′i,j = min{x′i, x

′
j}.

Proof. From constraints (2) and (3) of model (P1
′
), z′i,j 6 min{x′i, x

′
j}. From constraints (4) and

(5) of model (P1
′
), y′i,j 6 min{1− x′i, 1− x

′
j}. Let β be the value given by β = |y′i,j − z

′
i,j |. To

minimize the communication cost (ζi,jcmi,j = (1− |y′i,j − z
′
i,j |)cmi,j) between ti and tj , we have

to maximize β. Thus, β = |y′i,j − z
′
i,j | 6 max{y′i,j , z

′
i,j} 6 max{min{1−x′i, 1−x

′
j},min{x′i, x

′
j}}.

If min{1− x′i, 1− x
′
j} > min{x′i, x

′
j}, then we can put y′i,j = min{1− x′i, 1− x

′
j} and z

′
i,j = 0 to

maximize β. Otherwise, we can put z′i,j = min{x′i, x
′
j} and y

′
i,j = 0.

In the following, we suppose that the solution obtained by solving the model (P1
′
) follows

the properties given by the Lemma 9. i,e., ζi,j always take the smallest possible value for each
(ti, tj) ∈ E. In the following, we look for the relation between the value of ζi,j and the assignment
of the tasks ti and tj .

Remark 4. The value ζi,j is always positive for each couple of tasks (ti, tj) ∈ E, i.e., ζi,j > 0.
Indeed, if y′i,j = min{1 − x′i, 1 − x

′
j} 6 1 and z′i,j = 0, then ζi,j = 1 − y′i,j > 0. Furthermore, if

z
′
i,j = min{x′i, x

′
j} 6 1 and y′i,j = 0, then ζi,j = 1− z′i,j > 0.

Lemma 10. If ti and tj are allocated to two different processing elements (xri = 0 and xrj = 1,
or xri = 1 and xrj = 0), then ζi,j > 1

2 .

Proof. Let ti and tj be two tasks assigned to two different processing elements (xri 6= xrj). We
obtain two cases:

a. If xri = 0 and xrj = 1, with x
′
i <

1
2 and x

′
j > 1

2 , then from the constraints (2) and (3),
z
′
i,j <

1
2 . Furthermore, 1− x′i > 1

2 and 1− x′j 6 1
2 , then, from the constraints (4) and (5),

y
′
i,j 6

1
2 . Finally, ζi,j = 1− |y′i,j − z

′
i,j | > 1−max{yi,j , zi,j} > 1

2 .

b. If xri = 1 and xrj = 0, with x
′
i >

1
2 and x

′
j <

1
2 Then from the constraints (2) and (3),

z
′
i,j <

1
2 . Furthermore, 1− x′i 6 1

2 and 1− x′j > 1
2 , then, from the constraints (4) and (5),

y
′
i,j 6

1
2 . Finally, ζi,j = 1− |y′i,j − z

′
i,j | > 1−max{yi,j , zi,j} > 1

2 .

Let ti and tj be two tasks, such that (ti, tj) ∈ E. We denote by Costri,j the value given by
Costri,j = 0 if xri = xrj , Cost

r
i,j = cmi,j otherwise.

Proposition 4. Costri,j 6 2ζi,jcmi,j .

Proof. If tj and tj are executed by the same processing element, Costri,j = 0 6 2ζi,jcmi,j , because
ζi,j > 0. If tj and tj are executed by two different processing elements, then Costri,j = cmi,j .
Then, from Lemma 10, ζi,j > 1

2 , then 2ζi,j > 1, follows Costri,j = cmi,j 6 2ζi,jcmi,j .

71

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

With this result, we know that by applying the rounding θ1 previously defined, the commu-
nication delay between each couple of tasks (tj , tj) ∈ E in the final scheduling can be bounded.
It will be at most twice the communication delay taken into account in the solution obtained by
the model (P1

′
) or (P2

′
) between these two tasks. In the following, we use this result to prove

the performance guarantee of our method.

Lower bound:

We denote by C
′
max the optimal solution obtained by (P1

′
) or (P2

′
), this solution is a lower

bound for the optimal solution C?max of our problem. C ′max is bounded by:

1. L(Pf): the length of the fractional critical path Pf in the optimal solution of the model

(P1
′
) or (P2

′
).

2. W f
A
` : the fractional execution times of the tasks allocated to the processing elements of type

A in the optimal solution of the model (P1
′
) or (P2

′
) divided by `, withW f

A =
∑n

i=1 x
′
iwi,A.

3. W f
B
k : the fractional execution times of the tasks allocated to the processing elements of

type B in the solution of the optimal model (P1
′
) or (P2

′
) divided by k, with W f

B =∑n
i=1(1− x′i)wi,B.

Furthermore, the solution Ĉmax obtained by LSWPA algorithm 7 is bounded by L(Pr),
W r
A
` ,

W r
B
k , the rounded values of L(Pf), W

f
A
` and W f

B
k , where W r

A
` =

∑n
i=1 x

r
iwi,A
` and W r

B
k =

∑n
i=1(1−xri)wi,B

k .

Worst case approximation ratio:

We denote by A (resp. I) the cumulative sum of periods of activity (resp. inactivity) in the
solution obtained by LSPWA algorithm, where the processors are busy (resp. idle). Let A1 =∑n

i=1 x
r
iwi,A (resp. A2 =

∑n
i=1(1 − xri)wi,B) be the cumulative sum of periods of activity of all

the processing elements of type A (resp, B), A = A1 + A2. Let I1 (resp. I2) be the cumulative
sum of periods of inactivity where all the processing elements of type A (resp. B) are busy and at
least one processor of type B (resp. A) is idle. The maximum duration where all the processing
elements of type A (resp. B) are busy is A1

` (resp. A2
k), then I1 6 kA1

` (resp. I2 6 `A2
k).

Let I3 be the cumulative sum of periods of inactivity where at least one processing element
of type A and one processing element of type B are idle, I = I1 + I2 + I3. Figure 4.1 represents
the occupation of processing elements during the execution of an application.

Figure 4.1: Occupation of processing elements.

We multiply Ĉmax by the number of processors, we find the cumulative sum of the periods
of activity and inactivity, (`+ k)Ĉmax = A+ I.

72

CHAPTER 4.

We look now for the ratio between Ĉmax and C?max. For this purpose, we try to bound A
and I with formulas in functions of C?max.

Proposition 5. A1 6 2`C?max and A2 6 2kC?max.

Proof. By definition, A1 =
∑n

i=1 x
r
iwi,A. From Proposition 3, xri 6 2x

′
i. Then, A1 =∑n

i=1 x
r
iwi,A 6

∑n
i=1 2x

′
iwi,A = 2W f

A 6 2`C
′
max 6 2`C?max. Furthermore, by definition,

A2 =
∑n

i=1(1−xri)wi,B. From Proposition 3, (1−xri) 6 2(1−x′i). Then, A2 =
∑n

i=1(1−xri)wi,B 6∑n
i=1 2(1− x′i)wi,B = 2W f

B 6 2kC
′
max 6 2kC?max.

Corollary 4. If for each task ti, xri is an integer, such that xri = x
′
i and (1− xri) = (1− x′i) for

i = 1..n, then the mapping θ1 is optimal. Follow, A1 =
∑n

i=1 x
r
iwi,A =

∑n
i=1 x

′
iwi,A 6 `C?max

and A2 =
∑n

i=1(1− xri)wi,B =
∑n

i=1(1− x′i)wi,B 6 kC?max.

Corollary 5. I1 6 2kC?max and I2 6 2`C?max.

Proof. I1 6 kA1
` 6 k 2`C?max

` = 2kC?max. Furthermore, I2 6 `A2
k 6 2k`C?max

k = 2`C?max.

Proposition 6. I3 6 2(`+ k)C?max.

Proof. There exists a critical path γ in the final scheduling such that the sum of the instants
where at least one processing element of type A and one of type B are idle is less than 2L(Pf).
Indeed, we assume that the tasks are stalled on the left.

Let t0 be the last task, such as during the execution of t0, there is an idle processing element
of type A and an idle processing element of type B. Let S0 be the processing start time of the
task t0.

If there is an idle processing element of type A and idle processing element of type B before
S0, then t0 has a predecessor t1 that ends before S0, the idle slots between S1 and S0 are covered
either by the execution time of the task t1 and eventually the communication cost between t1
and his successor t′0 which can be t0 or a task on the path from t1 to t0.

If there is an idle processing element of type A and idle processing element of type B before
S1, then t1 has a predecessor t2 that ends before S1 which can be obtained in the same precedent
way. Let t0, t

′
0, t1, t

′
1,· · · , t` be the maximum sequence of tasks obtained. There are no more

slots before S` where at least one processing element of type A and one processing element of
type B are idle. Let γ be the path containing all these tasks which covers all periods when at
least one processing element of type A and one processing element of type B are idle, let L(γ)
be its length. From Proposition 3, for any task ti in Pr, the processing time of ti in the final
scheduling will be at most twice the fractional solution obtained by the model (P1

′
) or (P2

′
).

For any two tasks ti, tj in Pr, from the Proposition 4, the communication cost Costri,j between
ti and tj in the final scheduling will increase by at most twice the fractional communication cost
ζi,jcmi,j obtained by the model (P1

′
) or (P2

′
).

Then, L(γ) 6 L(Pr) =
∑
ti∈Pr

(xriwi,A + (1− xri)wi,B) +
∑

(ti,tj)∈Pr

Costri,j

6
∑
ti∈Pr

(2x
′
iwi,A + 2(1− x′i)wi,B) +

∑
(ti,tj)∈Pr

2ζi,jcmi,j

6 2L(Pf)

Finally, I3 6 (`+ k)L(Pr) 6 2(`+ k)L(Pf) 6 2(`+ k)C?max

73

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

Theorem 7. The ratio between the solution Ĉmax obtained by LSWPA algorithm and the optimal
scheduling solution C?max is given by Ĉmax

C?max
6 6.

Proof. Ĉmax = A+I
`+k = A1+A2+I1+I2+I3

`+k . Then, from Proposition 5, 6 and Corollary 5, Ĉmax 6
(2`+2k+2k+2`+2(`+k))C?max

`+k = 6C?max. Finally,
Ĉmax
C?max

6 6.

Corollary 6. If the mapping θ1 is optimal, then Ĉmax
C?max

6 5.

Proof. From Corollary 4, we know that A1 6 `C?max and A2 6 kC?max. Then, Ĉmax =
A1+A2+I1+I2+I3

`+k 6 (`+k+2k+2`+2(`+k))C?max
`+k . Finally, ĈmaxC?max

6 5.

Remark 5. We can obtain the optimal solution of the assignment problem by solving the model
(P3).

(P3)



Ci + xjwj,A + (1− xj)wj,B + ζi,jcmi,j 6 Cj , ∀(ti, tj) ∈ E (1a)
xi − xj 6 ζi,j ,∀(ti, tj) ∈ E (2a)
xj − xi 6 ζi,j ,∀(ti, tj) ∈ E (3a)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(ti) = ∅ (4a)
0 6 Ci 6 Cmax, ∀i = 1..n, Γ+(ti) = ∅ (5a)∑n

i=1 xiwi,A 6 `Cmax (6a)∑n
i=1(1− xi)wi,B 6 kCmax (7a)

xi ∈ {0, 1}, ζi,j ∈ [0, 1], ∀i = 1..n, j = 1..n (8a)
Z(min) = Cmax

This model is equivalent to models (P1) and (P2), but its relaxation is different from models
(P1

′
) and (P2

′
). Indeed, the precedence constraints are represented in the models (P1) and

(P3) for each couple of tasks (ti, tj) ∈ E as follows:

(P̂1)


Ci + xjwj,A + (1− xj)wj,B + (1− |yi,j − zi,j |)cmi,j 6 Cj (1)
zi,j 6 xi (2)
zi,j 6 xj (3)
yi,j 6 1− xi (4)
yi,j 6 1− xj (5)

(P̂3)


Ci + xjwj,A + (1− xj)wj,B + ζi,jcmi,j 6 Cj (1a)
xi − xj 6 ζi,j (2a)
xj − xi 6 ζi,j (3a)

By solving the models (P1) and (P3), we can obtain one of the four following possible cases
for each couple of tasks (ti, tj) ∈ E:

1. xi = 1 and xj = 1: from constraints (2a) and (3a), we have 0 6 ζi,j . From constraints (2),
(3), (4) and (5), we have zi,j 6 1 and yi,j 6 0, and then (1− |yi,j − zi,j |) can take 0 or 1.

2. xi = 0 and xj = 0: from constraints (2a) and (3a), we have 0 6 ζi,j . From constraints (2),
(3), (4) and (5), we have zi,j 6 0 and yi,j 6 1, and then (1− |yi,j − zi,j |) can take 0 or 1.

3. xi = 1 and xj = 0: from constraints (2a) and (3a), we have 1 6 ζi,j . From constraints (2),
(3), (4) and (5), we have zi,j 6 0 and yi,j 6 0, and then ζi,j = (1− |yi,j − zi,j |) = 0.

4. xi = 0 and xj = 1: from constraints (2a) and (3a), we have 1 6 ζi,j . From constraints (2),
(3), (4) and (5), we have zi,j 6 0 and yi,j 6 0, and then ζi,j = (1− |yi,j − zi,j |) = 0.

74

CHAPTER 4.

In all cases, we can always have ζi,j = (1− |yi,j − zi,j |). Then, since the other constraints are
equivalent, models (P1) and (P3) are equivalent.

However, solving the relaxed version (P3
′
) of this model (x′i ∈ [0, 1], ∀i = 1..n) usually gives

bad solutions after rounding the fractional values. Indeed, the communication delay for each
couple of tasks (ti, tj) ∈ E is given by Cost

′
i,j = ζi,jcmi,j > |x′i − x

′
j |cmi,j . Assuming that

x
′
i = 0.4 and x

′
j = 0.6, we obtain Cost

′
i,j = ζi,jcmi,j > 0.2cmi,j and then Cost

′
i,j = 0.2cmi,j

(minimization problem). By rounding the values of x′i and x
′
j , we obtain x

r
i = 0 and xrj = 1 with

Costri,j = cmi,j = 5Cost
′
i,j . This means that we cannot deduce the performance guarantee of

a method (worse case) which uses the solution obtained by (P3
′
). Thus, rounding the solution

obtained by (P3
′
) does not guarantee the quality of LSWPA algorithm.

The complexity of the three models (P1
′
), (P2

′
) and (P3), is considered to be exponential.

An obvious question which could be asked is why we use the models (P1
′
) and (P2

′
) and not

directly (P3) which can give us the optimal assignment. To answer this question, we compare
in the following the two linear models (P3) and (P2

′
).

Comparison between (P3) and (P2
′
):

(P3) gives the optimal mapping contrary to (P2
′
), but with different complexity. Both models

contain binary variables and considered as MIP (Mixed Integer Programming) models. Thus,
we compare the complexity between the two models as follows:

• Number of binary variables Bv1 in (P2
′
): the only binary variables are ai,j ,∀(ti, tj) ∈ E.

Then, Bv1 = |E|.

• Number of binary variables Bv2 in (P3): in this model, xi ∈ {0, 1} ∀i = 1..n. Then,
Bv2 = n.

• Number of constraints which contain binary variables Cbv1 in (P2
′
): we have binary vari-

ables only on constraints (5.1) and (5.2). Then, Cbv1 = 2|E|.

• Number of constraints which contain binary variables Cbv2 in (P3): constraints which
contain binary variables are (1), (2), (3), (4), (6), (7). Then, Cbv2 > |E|+ |E|+ |E|+ 1 +
1 + n+ n = 3|E|+ 2n+ 2 > Cbv1.

In connected graphs, usually we have |E| > n, then Bv1 > Bv2. This means that we
have more binary variables in model (P2

′
) than (P3), but (P3) contains more constraints with

binary variables than (P2
′
). Both models are considered as non polynomial-time programs. In

Section 4.5.4, we compare the running time of the two models and the solutions obtained by
rounding the fractional values obtained by each model on different instances with different sizes
(number of tasks and number of processors).

Using the pre-allocation technique, LSWPA algorithm provides a solution for hybrid plat-
forms with a performance guarantee of 6. However, it is considered as a non polynomial-time
two-phase approach. Numerical evaluations illustrated in Section 4.5 demonstrate that this
method achieves a close-to-optimal performance. This method was published in [107]. However,
the running time of this method can be important for large instances. We focus in the following
on finding a polynomial-time approach which is able to maintain an interesting performance with
reasonable complexity.

4.4.2 Polynomial List Scheduling With Pre-Allocation (PLSWPA)

In order to solve large instances, we introduce a new technique of pre-allocation, where the first
phase is modified to obtain a polynomial algorithm, while keeping the second phase of LSWPA

75

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

algorithm. For this purpose, a new model is proposed to find a polynomial mapping θ2. In the
following, we use the solution obtained by solving the relaxation (P3

′
) of the model (P3) defined

previously to propose another model (P4
′
). Then, by rounding its fractional solution, we get a

feasible assignment of the tasks.

Some properties of the model (P3
′
):

As presented previously, the model (P3) is defined as follows:

(P3)



Ci + xjwj,A + (1− xj)wj,B + ζi,jcmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
xi − xj 6 ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi 6 ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(ti) = ∅ (4)
0 6 Ci 6 Cmax3,∀i = 1..n, Γ+(ti) = ∅ (5)∑n

i=1 xiwi,A 6 `Cmax3 (6)∑n
i=1(1− xi)wi,B 6 kCmax3 (7)

xi ∈ {0, 1}, ζi,j ∈ [0, 1], ∀i, j = 1..n
Z(min) = Cmax3

The optimal solution Cmax3 of this model does not take into account non-overlapping con-
straints. Thus, it computes a lower bound for the problem, C?max3 6 C?max.

Lemma 11. For each two successive tasks (ti, tj) ∈ E, constraints (2) and (3) can be written as
max(xi, xj)−min(xi, xj) 6 ζi,j. Furthermore, max(xi, xj)−min(xi, xj) = (1−min(xi, xj)) +
(max(xi, xj)− 1) = max(1− xi, 1− xj)−min(1− xi, 1− xj). Thus, constraints (2) and (3) can
also be written as max(1− xi, 1− xj)−min(1− xi, 1− xj) 6 ζi,j.

Remark 6. In each feasible solution of (P3), for each couple of tasks (ti, tj) ∈ E, we have always
max(xi, xj) = 1 or max(1− xi, 1− xj) = 1 (or both), ∀(xi, xj) ∈ {0, 1} × {0, 1}.

Corollary 7. In the optimal solution of (P3), for each couple of tasks (ti, tj) ∈ E, from
Lemma 11 we have at least max(xi, xj) = 1 or max(1− xi, 1− xj) = 1, such that:

• if max(xi, xj) = 1, then constraints (2) and (3) can be represented by:

C̃on
1

i,j : 1−min(xi, xj) 6 ζi,j

• if max(1− xi, 1− xj) = 1, then constraints (2) and (3) can be represented by:

C̃on
2

i,j : 1−min(1− xi, 1− xj) 6 ζi,j

The optimal solution obtained by the model (P3) without constraints (6) and (7) represents
the optimal solution of the scheduling problem on platforms with unlimited resources as presented
in the previous chapter (Chapter 3). This problem has been proven to be NP-complete.

In order to have an easier problem, we relax the integer variables xi for i = 1..n and we
obtain the relaxed model (P3

′
). We denote by x̃

′
i ∈ [0, 1], the fractional value of xi in the

optimal solution of the model (P3
′
).

Model (P4
′
):

Based on Lemma 11 and using the optimal solution of (P3
′
), we define another model (P4

′
). The

decision variables are x′i, and an intermediary variable y′i,j ∈ [0, 1], with i = 1..n and j = 1..n.
For all (ti, tj) ∈ E, we define the constraint Coni,j as follows:

76

CHAPTER 4.

• if min{x̃′i, x̃
′
j} >min{1− x̃′i, 1− x̃

′
j}, then Coni,j =


y
′
i,j 6 x

′
i (1)

y
′
i,j 6 x

′
j (2)

ζ
′
i,j = (1− y′i,j) (3)

From Coni,j , we have y′i,j 6 min{x′i, x
′
j}. Then, ζ ′i,j = 1 − y

′
i,j > (1 − min{x′i, x

′
j}),

which is equivalent to constraint C̃on
1

i,j . Since it is a minimization problem, we can set
ζ
′
i,j = (1−min{x′i, x

′
j}).

• if min{x̃′i, x̃
′
j} 6min{1− x̃′i, 1− x̃

′
j} then Coni,j =


y
′
i,j 6 1− x′i (1)

y
′
i,j 6 1− x′j (2)

ζ
′
i,j = (1− y′i,j) (3)

From Coni,j , we have y′i,j 6 min{1 − x′i, 1 − x
′
j}. Then, ζ ′i,j = 1 − y′i,j > (1 −min{1 −

x
′
i, 1 − x

′
j}), which is equivalent to constraint C̃on

2

i,j . Since it is a minimization problem,
we can set ζ ′i,j = (1−min{1− x′i, 1− x

′
j}).

The model (P4
′
) is then given by:

(P4
′
)



C
′
i + x

′
jwj,A + (1− x′j)wj,B + ζ

′
i,jcmi,j 6 C

′
j , ∀(ti, tj) ∈ E (1)

Coni,j ,∀(ti, tj) ∈ E (2)

x
′
iwi,A + (1− x′i)wi,B 6 C

′
i , ∀i = 1..n, Γ−(ti) = ∅ (3)

0 6 C
′
i 6 Cmax4′ , ∀i = 1..n, Γ+(ti) = ∅ (4)∑n

i=1 x
′
iwi,A 6 `Cmax4′ (5)∑n

i=1(1− x′i)wi,B 6 kCmax4′ (6)

x
′
i, y
′
i,j , ζ

′
i,j ∈ [0, 1], ∀i = 1..n, j = 1..n

Z(min) = Cmax4′

We can notice that constraints (1, 3, 4, 5, 6) of model of (P4
′
) are equivalent to constraints

(1, 4, 5, 6, 7) of model (P3
′
).

Polynomial List Scheduling With Pre-Allocation (PLSWPA) algorithm:

To obtain a feasible mapping, the same rounding strategy used to obtain θ1 is used to round the
solution obtained by the model (P4

′
), where each task ti is mapped in either a processor type

A or type B. We set xri = 0 if x′i <
1
2 , and x

r
i = 1 otherwise. We denoted by θ2 the mapping

obtained by this mapping, θ2(ti) −→ {A,B}.
PLSWPA algorithm has the same structure of LSWPA algorithm, using the mapping θ2

instead of θ1 for the first phase, and the same list algorithm in the last phase. The three steps
of PLSWPA algorithm can be summarized as follows:

1. Solve the relaxed model (P3
′
).

2. Use the solution of (P3
′
) to define another model (P4

′
), then solve (P4

′
).

3. After rounding the solutions obtained by (P4
′
), use algorithm 7 with the obtained mapping

θ2 and a priority list L (LST , LFT , LLP).

Complexity:

Mapping θ2 is based on solving two linear models with continuous variables, which are two
polynomial problems. The following table 4.1 shows the number of different types of variables
and constraints used in θ1 and θ2, where Γ = max{max(Γ−(ti),Γ

+(ti)), i = 1..n}.

77

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

Table 4.1: A comparison between the models used in θ1 and θ2

Mapping strategies mapping θ1 mapping θ2

Models model P1
′ model P2

′ model P3
′ model P4

′

Continuous variables 3|E|+ n+ 1 n+ 4|E|+ 1 n+ |E| n+ 2|E|

Discrete variables 0 |E| 0 0

Total 3|E|+ n+ 1 5|E|+ n+ 1 n+ |E| n+ 2|E|

Linear constraints
with 0 2|E| 0 0

discrete variables

Linear constraints
without 4|E|+ 2Γ + 2 5|E|+ 2Γ + 2 3|E|+ 2Γ + 2 3|E|+ 2Γ + 2

discrete variables

Non-linear constraints |E| 0 0 0

Total 5|E|+ 2Γ + 2 7|E|+ 2Γ + 2 3|E|+ 2Γ + 2 3|E|+ 2Γ + 2

The mapping θ1 is obtained using two models (P1
′
) and (P2

′
). (P1

′
) contains |E| discrete

variables and (P2
′
) contains |E| non-linear constraints. On the other hand, θ2 is obtained using

two models containing no discrete variables and without non-linear constraints. This makes
polynomial the resolution of the first phase of PLSWPA algorithm. Furthermore, the second
phase of PLSWPA and LSWPA algorithms are identical, with a O(max(`, k)n2) time complexity.

In the following, we study the performance of PLSWPA algorithm in the worst case compared
to the optimal solution.

Algorithm analysis:

We look in the following for the ratio between the solution obtained by PLSWPA algorithm
(Ĉmax1) and the optimal solution of the problem (C?max). We denote by C?max3′ (resp. C

?
max4′)

the optimal solution of the model (P3
′
) (resp. (P4

′
)). We denote by x̃?i , the value of x̃′i in the

optimal solution of (P3
′
), i ∈ 1..n.

Theorem 8. In the optimal solution obtained by the model (P3
′
), if x̃?i is an integer for all

i ∈ 1..n, then the solutions of the models (P3
′
) and (P4

′
) are equal, i.e., C?max4′ = C?max3′.

Proof. By setting the x′i value to x′i = x̃?i in (P4
′
), for all i ∈ 1..n, then for each two successive

tasks (ti, tj) ∈ E, we have two cases:

1. if min{x̃?i , x̃?j} >min{1− x̃?i , 1− x̃?j}, then Coni,j =


y
′
i,j 6 x

′
i (1)

y
′
i,j 6 x

′
j (2)

ζ
′
i,j = (1− y′i,j) (3)

Furthermore, min{x̃?i , x̃?j} = 1 (since min{x̃?i , x̃?j} is strictly greater than min{1 − x̃?i , 1 −
x̃?j}), then x̃?i = 1 and x̃?j = 1, follows x̃?i − x̃?j = 0 6 ζ̃?i,j (ζ̃

?
i,j = 0 since it is a minimization

problem). Furthermore, ζ ′i,j = (1−min{x′i, x
′
j}) = 1− 1 = 0, then ζ ′i,j = ζ̃?i,j .

2. if min{x̃?i , x̃?j} 6min{1− x̃?i , 1− x̃?j}, then Coni,j =


y
′
i,j 6 1− x′i (1)

y
′
i,j 6 1− x′j (2)

ζ
′
i,j = (1− y′i,j) (3)

78

CHAPTER 4.

• if min{1− x̃?i , 1− x̃?j} = 1, then 1− x̃?i = 1 and 1− x̃?j = 1, follows x̃?i − x̃?j = 0 6 ζ̃?i,j
with x̃?i = 0 and x̃?j = 0. Furthermore, ζ ′i,j = (1−min{1− x′i, 1− x

′
j}) = 1− 1 = 0.

• if min{1 − x̃?i , 1 − x̃?j} = 0, then x̃?i = 1 or x̃?j = 1. If x̃?i = 1 and x̃?j = 0, then
x̃?i − x̃?j = 1 6 ζ̃?i,j . If x̃?i = 0 and x̃?j = 1, then x̃?j − x̃?i = 1 6 ζ̃?i,j . Furthermore,
ζ
′
i,j = (1−min{1− x′i, 1− x

′
i}) = 1− 0 = 1. In both cases, we have ζ ′i,j = ζ̃?i,j .

Thus, the finish execution times of each task in the two models (P3
′
) and (P4

′
) are equal.

Furthermore, since
∑n

i=1 x
′
iwi,A =

∑n
i=1 x

?
iwi,A and

∑n
i=1(1− x′i)wi,B =

∑n
i=1(1− x?i)wi,B, then

the bounds imposed by constraints (5) and (6) in the two models (P3
′
) and (P4

′
) are also equal.

Finally, C?max4′ = C?max3′ .

However, finding the ratio between C?max4′ and C
?
max3′ for the general case is difficult. In the

following, we suppose that C?max4′ 6 αC?max3′ 6 αC?max3, with α ∈ R+. Therefore, the ratio that
we will now look for is relative to the solution of C?max3.

To get an idea of the α value in the general case, we performed some numerical tests. Table
4.2 shows the standard deviation between C?max4′ and C

?
max3′ for 20 randomly generated instances

of different sizes (DAG graphs). For each instance Ii, we compute αi =
C?
max4′ (Ii)

C?
max3′ (Ii)

. Then, we

compute Average GAP=
∑20
i=1 αi
20 and Standard deviation=

√∑20
i=1 α

2
i

20 .

Table 4.2: GAP and standard deviation between C?max4′ and C
?
max3′ .

Instances Number Average Standard
of tasks GAP deviation

test_1 10 1.12457 1.12871
test_2 30 1.11632 1.12065
test_3 60 1.00046 1.00046
test_4 100 1.00007 1.00007
test_5 200 1.00124 1.00126
test_6 400 1 1
test_7 500 1 1
test_8 600 1 1
test_9 800 1 1
test_10 1000 1 1
Average / 1.024266 1.025115

From Table 4.2, we can notice that α tends towards 1 when we increase the size of the
instances. What can be said, is that the solution of C?max4′ is very close to the solution of C?max3′

in the general case.

Lemma 12. The ratio between the optimal solution C?max4′ of the model P4′ and the optimal
scheduling solution C?max of our main problem is given by C?max4′ 6 αC?max.

Proof. The optimal solution Cmax3 of the model (P3) does not take into account non-overlapping
constraints, it represents a lower bound for the main problem, i.e., C?max3 6 C?max. Then,
C?max4′ 6 αC?max3′ 6 αC?max3 6 αC?max.

Let wri be the execution time of the task ti by considering the rounding θ2, where wri = wi,A
if xri = 1 and wri = wi,B if xri = 0. Let w′i be the execution time of the task ti by considering the
solution of (P4

′
), where w′i = x

′
iwi,A + (1− x′i)wi,B, i = 1..n.

79

4.4. BASIC LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION

Lemma 13. The relation between wri and w′i of each task ti is given by wri 6 2w
′
i, i = 1..n.

Proof. Mappings θ1 and θ2 are defined in the same way, i.e., xri = 0 if x′i <
1
2 , and xri = 1

otherwise. Thus, from Proposition 3, we have 2w
′
i = 2x

′
iwi,A + 2(1 − x′i)wi,B > xriwi,A + (1 −

xri)wi,B = wri , and then wri 6 2w
′
i.

Lemma 14. For two successive tasks (ti, tj) ∈ E, if ti and tj are executed by two different
processing elements, then ζ ′i,j >

1
2 .

Proof. We have two cases:

1. If min{x̃′i, x̃
′
j} >min{1− x̃′i, 1− x̃

′
j}, then from Coni,j we have ζ ′i,j = (1−min{x′i, x

′
j}):

a. If x′i <
1
2 and x′j >

1
2 , then ζ

′
i,j = (1− x′i) > 1

2 .

b. If x′i >
1
2 and x′j <

1
2 , then ζ

′
i,j = (1− x′j) > 1

2 .

2. If min{x̃′i, x̃
′
j} 6min{1−x̃′i, 1−x̃

′
j}, then from Coni,j we have ζ

′
i,j = (1−min{1−x′i, 1−x

′
j}):

a. If 1− x′i < 1
2 and 1− x′j > 1

2 , then ζ
′
i,j = x

′
i >

1
2 .

b. If 1− x′i > 1
2 and 1− x′j < 1

2 , then ζ
′
i,j = x

′
j >

1
2 .

For each couple of tasks (ti, tj) ∈ E, we denote by Costri,j the value given by Costri,j = 0 if
xri = xrj , Cost

r
i,j = cmi,j otherwise. Let Cost

′
i,j be the value given by Cost′i,j = ζ

′
i,jcmi,j .

Lemma 15. For each couple of tasks (ti, tj) ∈ E, the relation between Costri,j and Cost′i,j is
given by Costri,j < 2Cost

′
i,j .

Proof. If tj and tj are executed by the same processing element, Costri,j = 0 6 2ζ
′
i,jcmi,j ,

because ζ ′i,j > 0. If tj and tj are executed by two different processing elements, then Costri,j =

cmi,j . Then, from Lemma 14, ζ ′i,j >
1
2 , then 2ζ

′
i,j > 1, follows Costri,j = cmi,j 6 2ζ

′
i,jcmi,j =

2Cost
′
i,j .

Proposition 7. For each two successive tasks (ti, tj) ∈ E, let be lri,j = wri + Costri,j + wrj (resp.
l
′
i,j = w

′
i + Cost

′
i,j + w

′
j) the length of (ti, tj) in PLSWPA solution (resp. (P4

′
) solution), then,

we have lri,j < 2l
′
i,j.

Proof. From Lemma 13 and Lemma 15, lri,j = wri + Costri,j + wrj < 2w
′
i + 2Cost

′
i,j + 2w

′
j = 2l

′
i,j .

Thus, lri,j < 2l
′
i,j .

Lemma 16. Let Ĉmax1 be the solution obtained by using PLSWPA algorithm, then, Ĉmax1 <
6C?max4′ .

Proof. From Proposition 7, the length of each path L from G(V,E) is given by length(L)r =∑
(ti,ti+1)∈L l

r
i,i+1 6 2

∑
(ti,ti+1)∈L l

′
i,i+1 = 2length(L)

′ , where length(L)r (resp. length(L)
′) is the

length of L in PLSWPA solution (resp. (P4
′
) solution). Furthermore, the workload of the tasks

assigned to the processing elements of type A (resp. B) is given by
∑n

i=1 x
r
iwi,A = 2

∑n
i=1 x

′
iwi,A

(resp.
∑n

i=1(1−xri)wi,A = 2
∑n

i=1(1−x′i)wi,A). Finally, form lemmas 13 and 15, we proved that
models (P1

′
) and (P4′) satisfy the same properties. Thus, since the second phases of LSWPA

and PLSWPA algorithms are identical, then the result obtained by theorem 7 can be applied to
the model (P4′), i.e., Ĉmax1 < 6C?max4′ .

80

CHAPTER 4.

Theorem 9. The ratio between the solution Ĉmax1 obtained by PLSWPA algorithm and the

optimal scheduling solution C?max of our main problem is given by
Ĉmax1

C?max
< 6α.

Proof. From Lemma 12, we have C?max4′ 6 αC?max. From Lemma 16, we have Ĉmax1 < 6C?max4′ .

Then,
Ĉmax1

C?max
<

6C?max4′

C?max
6

6αC?max
C?max

6 6α.

Iterative mapping:

In order to find a more efficient rounding than θ1 and θ2 described previously, we try to assign
the tasks progressively. Let θ3 be the rounding obtained by Algorithm 8.
Algorithm 8: Rounding algorithm.
Data: model (P) ((P1

′
), (P2

′
) or (P4

′
)), υ > 2.

Result: mapping θ3.
begin

for it = 1 to bυ2 c do
Solve (P);
for j = 1 to n do

if x′j <
it
υ then

Set in (P) : x
′
j = 0

if x′j > 1− it
υ then

Set in (P) : x
′
j = 1

for l = 1 to n do
if x′l <

1
2 then

xrl = 0

else
xrl = 1

For a given integer v > 2, we solve the model (P) ((P1
′
) or (P2

′
) for LSWPA algortihm, (P4

′
)

for PLSWPA algortihm) bυ2 c times by adding new assignment constraints at each resolution.
Contrary to θ1 and θ2, we try to assign the tasks progressively, starting by setting x′j to 0 if
x
′
j < (1

υ) and x′j to 1 if x′j > 1− (1
υ) for the first resolution of (P), and finishing by setting x′j to

0 if x′j < (
bυ
2
c

υ) and x′j to 1 if x′j > 1− (
bυ
2
c

υ), where b
υ
2
c

υ 6 1
2 according to Lemma 17.

Thus, for each iteration it, we solve a model (P), then we add assignment constraints to it to
obtain another model to solve in iteration it+ 1. For each iteration it 6 bυ2 c, we add assignment
constraints for each task tj , j = 1..n, such that:

• If x′j <
it
υ , we set in (P) x

′
j = 0 as a new affectation constraint.

• If x′j > 1− it
υ , we set in (P) x

′
j = 1 as a new affectation constraint.

For example, if υ = 10, then we obtain for the first iteration it = 1 for j = 1..n:

• If x′j <
1
10 , we set in (P) x

′
j = 0 as a new affectation constraint.

• If x′j > 1− 1
10 , we set in (P) x

′
j = 1 as a new affectation constraint.

For υ = 10, algorithm 8 will have b10
2 c = 5 iterations (the model (P) will be solved 5 times

by adding new constraints at each iteration). But if υ = 20, algorithm 8 will have b20
2 c = 10

iterations, and we obtain for the first iteration it = 1 for j = 1..n:

81

4.5. NUMERICAL RESULTS

• If x′j <
1
20 , we set in (P) x

′
j = 0 as a new affectation constraint.

• If x′j > 1− 1
20 , we set in (P) x

′
j = 1 as a new affectation constraint.

After the last iteration, it may be that some tasks are not assigned, they are then assigned
using the same principle as the rounding θ1 or θ2, i.e., for each task ti with i ∈ 1..n, we set xri = 0
if x′i <

1
2 , and x

r
i = 1 otherwise.

Thus, the solution obtained by algorithm 8 depends on the value of υ. In Section 4.5.3, we
will study the behaviour of Algorithm 8 by varying the value of υ. We compare the solution
obtained by using the rounding θ3 generated for each υ value.

Remark 7. For υ = 2, we obtain the rounding θ1.

Lemma 17. For an integer v > 2, b
v
2
c
v 6 1

2 .

Proof. According to the parity of υ, we distinguish two possible cases:

1. υ is even, υ = 2λ :
bυ
2
c

υ = λ
2λ = 1

2

2. υ is odd, υ = 2λ+ 1 :
bυ
2
c

υ = λ
2λ+1 <

1
2 .

Remark 8. The specialized accelerator problem (where a set of tasks T ′ ∈ T can be executed
by only one type of processing elements, i.e., by a CPU or a GPU only). can be solved with
the same methods (LSWPA and PLSWPA). It is sufficient to set the corresponding variables
x
′
i to 0 or 1 in the models (P1

′
) or (P2

′
) for LSWPA algorithm, (P3

′
) and (P4

′
) for PLSWPA

algorithm.

4.5 Numerical results

In this section, we compare the performance of LSWPA, PLSWPA and HEFT [26] algorithms.
The benchmarks are generated by Turbine [108]. It allows us to generate random DAG graphs,
with the possibility to specify each graph characteristic (number of tasks, cost intervals, paral-
lelism degree...). In what follows, we first describe the generation of benchmarks and all used
parameters. Then, we discuss the efficiency of the first phase of LSWPA algorithm using models
(P1

′
) and (P2

′
), and then the efficiency of its second phase using the mapping θ1 and then θ3,

with the different lists (LST , LFP , LLP) given in Section 4.4.1.
Then, the most effective list (LST , LFP or LLP) for LSWPA algorithm will be used to

compare the performance of PLSWPA algorithm (using θ2 and θ3) to LSWPA and HEFT algo-
rithms.

4.5.1 Benchmark

The benchmark used for all tests is composed of ten parallel DAG applications. We denote by
test_i the instance number i. We generate 10 different applications for each test_i with i = 1..10.
The execution times of the tasks are generated randomly over an interval [wmin, wmax], wmin has
been fixed at 5 and wmax at 30. The number of successors of each task is generated randomly
over an interval [dmin, dmax], dmin has been fixed at 1 and dmax at 10.

Furthermore, communication delay for each arc was generated on an interval [cmmin, cmmax],
we set cmmin to 35 and cmmax to 50. Table 4.3 presents the size of each instance generated as
well as the number of processing elements of type A (given by `) and type B (given by k) used
to execute each instance. For Platform 1, we increase the number of processing elements while

82

CHAPTER 4.

increasing the size of the applications. For Platform 2, we only use one processor of type A and
one processor of type B.

Table 4.3: Description of the applications and the platforms.

Instances Number of
Platform 1 Platform 2

tasks ` k ` k

test_1 10 3 3 1 1

test_2 30 4 4 1 1

test_3 60 4 4 1 1

test_4 100 6 6 1 1

test_5 200 6 6 1 1

test_6 400 6 6 1 1

test_7 500 8 8 1 1

test_8 600 8 8 1 1

test_9 800 8 8 1 1

test_10 1000 12 12 1 1

4.5.2 LSWPA algorithm compared to HEFT algorithm

To study the performance of our method, we compared the ratio between each makespan value
obtained by LSWPA1 algorithm with the solution of HEFT algorithm, the optimal solution
obtained by CPLEX (if it is possible) and the lower bound C ′max obtained by (P1

′
) or (P2

′
).

The results obtained for the two platforms 1 and 2 are presented in the following.

Platform 1

Opt presents the number of instances where HEFT provides the optimal solution. We take
the number of solutions equal to the optimal solution provided by CPLEX or to the value of
the lower bound C ′max obtained by (P1

′
) or (P2

′
). Column Best HEFT presents the number

of instances where HEFT algorithm provides better or the same solution obtained by LSWPA
algorithm using the rounding θ1 or θ3 for the three lists (LST , LFT , LLP). Finally, column
Time HEFT presents the average time that was needed for HEFT to provide a solution. A
line Average is added at the end of each table which represents the average of the values of each
column.

Table 4.5 (resp. 4.6) shows the results of tests of LSWPA algorithm on 10 instances for each
application size given in column Inst using three lists (LST 2, LFP 3, LLP 4) with the rounding
θ1 (resp. θ3) on the same platform 1. For the rounding θ3, we set v = 10, which makes about
5 iterations for Algorithm 8. The next three columns concern the results of LSWPA algorithm
using LST , where the column GAP gives the average ratio between makespan obtained by
LSWPA algorithm and C ′max, GAP = LSWPA makespan−C′max

C′max
× 100. Column Best presents the

number of instances where LSWPA algorithm provides better or the same solution obtained by
using the list LST instead of LFT or LLP . Column Opt presents the number of instances
where LSWPA provides optimal solution using LST (for small instances). We take the number

1List Scheduling With Pre-Allocation (LSWPA) algorithm
2List by Start Time (LST)
3List by Finish Time (LFT)
4List by longest path (LLP)

83

4.5. NUMERICAL RESULTS

of solutions equal to the optimal solution provided by CPLEX. The next six columns concern
the results of LSWPA algorithm using the lists LFT and LLP . Column Best LS with θ1
(resp. Best LS with θ3 in table 4.6) presents the number of instances where LSWPA algorithm
provides better or the same solution obtained by using the rounding θ1 (resp. θ3) and the best
list from the three lists (LST ,LFT ,LLP) compared to the solution obtained by HEFT and
LSWPA algorithm using θ3 (resp. θ1) with the three lists (LST ,LFT ,LLP). Finally, column
Time (P1

′
) (resp. Time (P1

′
)) gives the average time that was needed for LSWPA algorithm

to provide a solution using the model (P1
′
) (resp. (P2

′
)) for the first phase.

Obtaining the optimal solution using CPLEX is very expensive in term of running time. As
an example, for the instance test_3 with 60 tasks and 4 processors of type A and 4 processors
of type B, CPLEX cannot provide the optimal solution after 14 hours. Thus, we compare our
method to the optimal solution for only the first two instances. The aim of these tables is to
compare LSWPA algorithm to HEFT algorithm, and determine which is the most efficient list
(LST , LFP or LLP) for the list algorithm used in the second phase by LSWPA. We will evaluate
after the most efficient υ value for the mapping θ3.

Table 4.4: HEFT algorithm results and CPLEX running time for platform 1.

Instances Number Number Number Time HEFT Best Time
tasks of ` of k CPLEX Gap Opt HEFT HEFT

test_1 10 3 3 5m 11.08% 5 5 0.01s
test_2 30 4 4 8h 13.48% 4 4 0.01s
test_3 60 4 4 / 22.16% / 2 0.02s
test_4 100 6 6 / 16.33% / 3 0.02s
test_5 200 6 6 / 19.31% / 4 0.04s
test_6 400 6 6 / 16.72% / 0 0.09s
test_7 500 8 8 / 15.05% / 1 0.15s
test_8 600 8 8 / 15.05% / 0 0.20s
test_9 800 8 8 / 11.79% / 0 0.33s
test_10 1000 12 12 / 15.26% / 0 0.64s
Average / / / >4h 15.62% / 19% 0.15s

Table 4.5: LSWPA algorithm results using the lists (LST , LFP , LLP) with rounding θ1 in platform 1.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with θ1 P1

′
P2

′

test_1 0% 10 10 0% 10 10 0% 10 10 10 0.04s 0.06s
test_2 4.51% 3 3 3.31% 4 4 2.35% 8 5 6 0.01s 0.11s
test_3 17.61% 0 / 17.98% 0 / 11.25% 8 / 5 0.10s 0.16s
test_4 13.39% 1 / 13.43% 1 / 7.38% 7 / 4 0.29s 0.35s
test_5 27.69% 2 / 26.06% 2 / 15.93% 7 / 6 0.76s 0.67s
test_6 25.93% 3 / 25.36% 3 / 12.82% 4 / 1 4.52s 2.64s
test_7 28.23% 1 / 26.6% 2 / 14.32% 6 / 2 6.11s 3.75s
test_8 22.79% 0 / 22.39% 1 / 11.51% 9 / 0 8.28s 4.85s
test_9 14.87% 0 / 14.07% 0 / 2.204% 10 / 3 10.82s 5.47s
test_10 20.55% 0 / 18.90% 1 / 5.32% 9 / 0 13.55s 6.65s
Average 17.55% 20% / 16.81% 22% / 8.30% 78% / 37% 4.44s 2.47s

84

CHAPTER 4.

Table 4.6: LSWPA algorithm results using the lists (LST , LFP , LLP) with rounding θ3 in platform 1.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with θ3 P1

′
P2

′

test_1 0% 10 10 0% 10 10 0% 10 10 10 0.07s 0.09s
test_2 2.92% 5 5 1.24% 5 5 0.09% 9 6 9 0.018s 0.16s
test_3 17.77% 0 / 14.16% 0 / 10.31% 8 / 5 0.17s 0.17s
test_4 15.64% 2 / 11.32% 2 / 7.76% 5 / 6 0.31s 0.34s
test_5 36.33% 2 / 25.29% 4 / 21.08% 5 / 4 0.85s 0.83s
test_6 38.07% 0 / 20.59% 0 / 9.28% 10 / 9 5.01s 2.95s
test_7 33.61% 0 / 21.66% 1 / 11.10% 8 / 8 6.71s 4.59s
test_8 36.51% 0 / 18.19% 0 / 6.96% 10 / 10 8.63s 5.28s
test_9 40.07% 0 / 13.71% 0 / 2.01% 10 / 7 11.55s 7.06s
test_10 39.33% 0 / 18.63% 0 / 4.77% 10 / 10 15.10s 8.13s
Average 26.02% 19% / 14.47% 22% / 7.33% 85% / 78% 4.84s 2.96s

From Table 4.5 and 4.6, we can notice that the list LLP is better than LFT and LST . Using
the list LLP and θ1, LSWPA algorithm provides 78% of the best solutions compared to 20%
(resp. 22%) obtained using LST (resp. LFT). Using the list LLP and θ3, LSWPA algorithm
does even better, and provides 85% of the best solutions compared to 19% (resp. 22%) obtained
using LST (resp. LFT).

Comparing to table 4.4 results, LSWPA algorithm provides a better solution than HEFT
using rounding θ1 or θ3 with the list LFT or LLP . Furthermore, LSWPA algorithm using
rounding θ3 and the list LLP is the most efficient method, with 78% of the best solutions
against 17% using θ1, and a ratio of 7.33% comparing to the lower bound C ′max.

For the running time, HEFT algorithm needs less time than LSWPA algorithm to provide a
solution, where the first iteration of the rounding algorithm 8 (θ3) takes the same time than the
time needed to provide θ1 (Remark 7). Finally, we notice that the model (P2

′
) is more efficient

than (P1
′
) in running time using rounding θ1 or θ3, where LSWPA algorithm provides a solution

in less than 3 seconds for instances of 1000 tasks using the model (P2
′
), while it needs more

than 4 seconds using the model (P1
′
). Thus, it may provide better running time for much bigger

instances.

Platform 2

For this platform, we suppose that we have only one processor of type A and one of type B.
CPLEX is more efficient than on the platform 1, but the running time is still large. For instance
test_3 with 60 tasks, CPLEX cannot provide the optimal solution after 6 hours. Thus, we
compare our method to the optimal solution for only the first two instances. Tables 4.7, 4.8 and
4.9 present the results obtained for platform 2.

Table 4.7: HEFT algorithm results and CPLEX running time for platform 2.

Instances Number Number Number Time HEFT Best Time
tasks of ` of k CPLEX Gap Opt HEFT HEFT

test_1 10 1 1 0.39s 20.58% 4 6 0.01s
test_2 30 1 1 1h40 44.31% 3 4 0.01s
test_3 60 1 1 / 29.99% / 3 0.01s
test_4 100 1 1 / 17.26% / 1 0.02s
test_5 200 1 1 / 12.17% / 0 0.03s
test_6 400 1 1 / 11.26% / 0 0.05s
test_7 500 1 1 / 12.15% / 0 0.09s
test_8 600 1 1 / 11.86% / 2 0.11s
test_9 800 1 1 / 11.21% / 0 0.14s
test_10 1000 1 1 / 11.90% / 0 0.22s
Average / / / >50m 18.26% / 16% 0.06s

85

4.5. NUMERICAL RESULTS

Table 4.8: LSWPA algorithm results using the lists (LST , LFP , LLP) with rounding θ1 in platform 2.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with θ1 P1

′
P2

′

test_1 18.57% 7 5 18.57% 7 5 17.61% 8 5 8 0.04s 0.08s
test_2 52.72% 1 1 49.55% 1 1 41.05% 6 3 5 0.30s 0.31s
test_3 44.14% 0 / 41.18% 0 / 30.69% 6 / 5 0.35s 0.35s
test_4 25.00% 0 / 24.02% 0 / 9.80% 7 / 6 0.05s 0.06s
test_5 5.94% 2 / 5.93% 3 / 0.33% 10 / 10 0.07s 0.08s
test_6 0.31% 8 / 0.31% 8 / 0.31% 10 / 4 0.40s 0.59s
test_7 1.59% 8 / 1.54% 8 / 0.34% 10 / 4 0.27s 0.37s
test_8 0.19% 10 / 0.19% 10 / 0.19% 10 / 8 0.38s 0.47s
test_9 0.61% 9 / 0.39% 9 / 0.05% 10 / 5 0.64s 0.72s
test_10 0.16% 9 / 0.16% 10 / 0.16% 10 / 5 0.88s 0.90s
Average 14.92% 54% / 14.18% 56% / 10.05% 87% / 60% 0.33s 0.39s

Table 4.9: LSWPA algorithm results using the lists (LST , LFP , LLP) with rounding θ3 in platform 2.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with θ3 P1

′
P2

′

test_1 17.26% 8 6 17.26% 8 6 16.30% 9 6 9 0.07s 0.09s
test_2 55.68% 1 1 49.07% 1 1 43.03% 6 3 3 0.33s 0.35s
test_3 60.16% 0 / 39.38% 0 / 29.21% 6 / 5 0.40s 0.40s
test_4 41.96% 0 / 23.31% 0 / 9.11% 9 / 9 0.11s 0.14s
test_5 20.52% 0 / 6.22% 2 / 0.43% 10 / 7 0.17s 0.23s
test_6 11.41% 0 / 0.15% 8 / 0.15% 10 / 10 0.62s 0.82s
test_7 8.73% 0 / 1.68% 8 / 0.19% 10 / 8 0.52s 0.82s
test_8 8.08% 2 / 0.11% 10 / 0.11% 10 / 9 0.77s 1.13s
test_9 10.90% 0 / 0.44% 9 / 0.03% 10 / 8 1.25s 1.89s
test_10 8.67% 0 / 0.08% 10 / 0.08% 10 / 8 1.32s 1.91s
Average 24.33% 11% / 9.96% 56% / 9.86% 90% / 76% 0.55s 0.77s

From Table 4.8 and Table 4.9, we can notice that the list LLP is still better than LFT and
LST . Comparing to Table 4.7 results, LSWPA algorithm also provides a better solution than
HEFT using rounding θ1 or θ3 with the list LFT or LLP . Furthermore, LSWPA algorithm
using rounding θ3 and list LLP is the most efficient method, with 76% of the best solutions and
a ratio of 9.86% comparing to the lower bound. For the running time, HEFT algorithm also
needs less time than LSWPA algorithm to provide a solution. Finally, unlike the platform 1, we
notice that the model (P1

′
) is more efficient than (P2

′
) in running time using rounding θ1 or θ3,

where LSWPA algorithm provides a solution in less than 1 second for an instance of 1000 tasks
using the two models.

These first results showed that the list LLP is the most effective for the second phase of
LSWPA algorithm. However, it is difficult to say which model P1

′ or P2
′ is more effective

(running time) for the first phase, where a solver (CPLEX in this case) can interpret each model
differently for each instance (number of discrete variables, number of non-linear constraints, ...).
Considering the results obtained for the two platforms, it can be said that P2

′ is slightly faster
than P1

′ , where the ratio between average times of the two models for the two roundings on the
two platforms is given by:

Average time of P1
′

Average time of P2′
=

4.44 + 4.84 + 0.33 + 0.55

2.47 + 2.96 + 0.39 + 0.77
=

10.16

6.59
= 1.54 seconds

86

CHAPTER 4.

In the following, we study the behaviour of θ3 by varying the value of υ as input of algorithm 8,
which will determine the average number of iterations necessary to obtain a good mapping (which
in general allows to provide a good makespan after the second phase).

4.5.3 Best value of υ for the rounding θ3

The tests previously performed have shown that the list LLP is more effective for LSWPA
algorithm using θ1 with P2

′ and θ3 with υ = 10. On tables 4.10 and 4.11, we tested other υ
values (υ = 20 and υ = 30) to see if we can get better results by using LSWPA with θ3 if we
increase the number of iterations of Algorithm 8 on the two platforms 1 and 2.

Table 4.10: Best υ for the rounding θ3 in platform 1.

Inst
Number LSWPA

of tasks
using θ1 with P2

′ using θ3 with v = 10 using θ3with v = 20 using θ3 with v = 30

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 0.050% 0.13s 10 0.05% 0.34s 10 0.05% 0.32s 10 0.05% 0.37s 10
test_2 30 0.615% 1.19s 9 0.184% 1.66s 9 0.18% 1.38s 9 0.184% 2.11s 9
test_3 60 5.80% 1.30s 2 2.98% 1.42s 4 2.98% 1.70s 4 2.98% 2.10s 4
test_4 100 5.94% 2.88s 1 4.09% 4.80s 3 4.09% 5.06s 3 4.09% 7.40s 3
test_5 200 8.08% 8.58s 3 10.41% 12.01s 3 10.41% 12.62s 3 10.41% 14.03s 3
test_6 400 8.19% 6.76s 1 6.02% 9.86s 6 6.02% 12.04s 6 6.02% 14.08s 6
test_7 500 10.22% 9.88s 0 5.80% 11.88s 4 5.80% 12.53s 4 5.80% 18.93s 4
test_8 600 4.41% 10.68s 4 3.65% 11.52s 5 3.65% 12.83s 5 3.65% 14.62s 5
test_9 800 0.65% 13.31s 7 0.65% 16.60s 7 0.65% 17.96s 7 0.65% 20.67s 7
test_10 1000 3.64% 17.24s 4 2.44% 18.96s 6 2.44% 19.95s 6 2.44% 21.47s 6

Average / 4.75% 7.19s 41% 3.62% 8.9s 57% 3.62% 9.63s 57% 3.62% 11.57s 57%

Table 4.11: Best υ for the rounding θ3 in platform 2

Inst
Number LSWPA

of tasks
using θ1 with P2

′ using θ3 with v = 10 using θ3with v = 20 using θ3 with v = 30

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 1.07% 0.02s 8 0.09% 0.06s 9 0.09% 0.11s 9 0.092% 0.17s 9
test_2 30 2.12% 0.080s 7 1.26% 0.22s 8 1.26% 0.40s 8 1.26% 0.61s 8
test_3 60 8.41% 0.11s 0 4.95% 0.31s 4 4.95% 0.55s 4 4.95% 0.89s 4
test_4 100 8.77% 0.22s 1 6.42% 0.55s 4 6.42% 0.96s 4 6.42% 1.51s 4
test_5 200 11.46% 0.75s 1 10.87% 1.40s 3 10.87% 2.37s 3 10.87% 3.62s 3
test_6 400 8.37% 1.86s 2 5.90% 3.23s 5 5.90% 5.13s 5 5.90% 7.58s 5
test_7 500 9.11% 2.22s 0 5.56% 2.60s 7 5.56% 3.41s 7 5.56% 4.76s 7
test_8 600 5.03% 4.28s 7 3.78% 4.81s 8 3.78% 5.35s 8 3.78% 7.36s 8
test_9 800 0.75% 9.91s 8 0.62% 10.51s 9 0.62% 11.77s 9 0.62% 14.21s 9
test_10 1000 3.92% 15.28s 4 2.52% 15.28s 5 2.52% 16.24s 5 2.52% 17.65s 5

Average / 5.90% 3.47s 38% 4.19% 3.89s 62% 4.19% 4.62s 62% 4.19% 5.83s 62%

We can notice that for all the generated instances, the average solutions obtained by using
υ = 20 or υ = 30 are equivalent to the solution obtained by υ = 10. Thus, we can say that for
instances of size less than 1000 tasks, υ = 10 is a good choice for the rounding θ3. For large
instances, it may be interesting to increase the value of υ to obtain better solutions.

87

4.5. NUMERICAL RESULTS

4.5.4 LSWPA algorithm evaluation using different mappings

To see the efficiency of the LSWPA algorithm using the optimal mapping obtained using the
model P3 introduced by remark 5, we have performed several tests on the two platforms 1 and
2.

Table 4.12 and Table 4.13 compare for the two platforms 1 and 2, the average running time
and the average solution obtained by LSWPA algorithm using: θ1 with the model P2

′ , then θ3

with υ = 10, then θ1 based on the solutions obtained by the relaxed model P3
′ (instead of P1

′

or P1
′), and finally the optimal mapping obtained by P3.

Table 4.12: LSWPA algorithm evaluation for platform 1.

Inst
Number LSWPA LSWPA LSWPA LSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ1 with P3
′ using θ1 with P3

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 0% 0.31s 10 0% 0.36s 10 0.91% 0.005s 9 0% 0.019s 10
test_2 30 2.41% 1.48s 7 0.94% 0.83s 9 12.67% 0.013s 4 0.35% 0.04s 9
test_3 60 5.17% 1.45s 5 5.14% 1.53s 2 12.99% 0.02s 1 4.40% 1.77s 7
test_4 100 3.28% 3.40s 4 2.07% 6.14s 6 9.79% 0.11s 1 1.34% 1.33s 5
test_5 200 11.04% 3.67s 2 9.69% 4.55s 2 53.09% 0.075s 0 9.72% 1.30s 6
test_6 400 11.22% 4.16s 2 9.67% 5.84s 4 43.07% 0.54s 0 10.15% 10.55s 4
test_7 500 9.65% 5.93s 3 9.66% 11.30s 3 46.50% 2.50s 0 6.89% 17.66s 6
test_8 600 10.41% 7.22s 0 7.71% 16.86s 3 19.44% 1.43s 0 6.12% 44.89s 7
test_9 800 5.89% 7.11s 1 4.33% 10.23s 1 7.55% 2.51s 1 2.24% 82.67s 8
test_10 1000 6.13% 8.66s 1 2.79% 8.20s 1 13.50% 8.81s 1 2.36% 438.82s 8

Average / 6.52% 4.33s 35% 5.2% 6.58s 41% 21.95 % 1.60s 17% 4.35% 59.90s 70%

Table 4.13: LSWPA algorithm evaluation for platform 2.

Inst
Number LSWPA LSWPA LSWPA LSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ1 with P3
′ using θ1 with P3

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 14.17% 3.82s 8 16.90% 0.80s 6 28.96% 0.002s 4 15.14% 0.03s 7
test_2 30 40.89% 3.13s 4 42.58% 2.52s 4 57.56% 0.015s 4 56.26% 3.74s 1
test_3 60 23.69% 4.13s 5 24.50% 2.89s 4 26.29% 0.024s 4 26.42% 18.82s 2
test_4 100 4.29% 0.19s 4 4.29% 0.37s 4 5.71% 0.04s 1 4.84% 28.13s 7
test_5 200 0.36% 0.68s 1 0.33% 0.96s 1 0.86% 0.10s 1 0.079% 28.68s 9
test_6 400 0.25% 2.19s 7 0.25% 3.13s 7 0.59% 0.78s 2 0.81% 30.72s 6
test_7 500 0.16% 3.02s 1 0.13% 3.13s 2 0.55% 1.15s 0 0.006% 18.51s 10
test_8 600 0.14% 4.39s 3 0.12% 4.94s 1 0.41% 1.96s 0 0.033% 24.18s 9
test_9 800 0.14% 7.55s 2 0.13% 9.90s 2 0.36% 4.32s 2 0.11% 14.77s 8
test_10 1000 0.099% 10.52s 1 0.11% 15.23s 0 0.27% 7.99s 0 0.005% 14.89s 9

Average / 8.42% 3.96s 36% 8.93% 4.39s 31% 12.16% 1.64s 18% 10.37% 18.25s 68%

For the platform 1, LSWPA algorithm is more effective using θ1 with (P3). However, its
average running time is 59.9 seconds, whereas average running time of LSWPA algorithm using
θ1 with P2

′ (resp. θ3 with υ = 10) is only 4.33 seconds (resp. 6.58 seconds).
Contrary to platform 1, for the platform 2, LSWPA algorithm is more effective using θ1 with

(P2
′
) and θ3 with υ = 10. Furthermore, its average execution time is only 3.96 seconds, whereas

average running time of LSWPA algorithm using (P3) is 18.25 seconds.
LSWPA algorithm is not effective when using the model (P3

′
) for both platforms 1 and 2.

Finally, we get 70% (resp. 68%) of the best solutions by using θ3 for the platform 1 (resp. 2).
What can be said for this part is that the optimal mapping is generally effective, but requires

88

CHAPTER 4.

more running time to find a solution. Thus, in the next part, we will not use the optimal
mapping, and we use P2

′ to compare the two algorithms PLSWPA and LSWPA.

4.5.5 PLSWPA compared to LSWPA and HEFT algorithms

Now we compare the performance of PLSWPA5 algorithm to LSWPA and HEFT algorithms.
We compare the ratio between each makespan value obtained by PLSWPA algorithm with HEFT
and LSWPA algorithms, the optimal solution obtained by CPLEX and the lower bound Cmax4′

obtained by (P4′).
Table 4.14 (resp. 4.16) shows the average results obtained on 10 instances given in column

Inst of each application size given in the second column using CPLEX and HEFT for the
platform 1 (resp. 2). Table 4.15 (resp. 4.17) shows the average results of tests of PLSWPA and
LSWPA algorithms using the list LLP with the rounding θ1 and θ2 with v = 10 for the platform
1 (resp. 2).

We show the average time that was needed to CPLEX to provide the optimal solution using
the model (Opt). We only have the result for the first two instances due to the large running
time for instances with more than 60 tasks (> 4 hours).

Then, we show the results obtained by HEFT algorithm, then PLSWPA and LSWPA algo-
rithm using θ1 and θ2. Column GAP gives the average ratio between the makespan obtained
by each method compared to the lower bound Cmax4′ using the following formula:

GAP =
method makespan− Cmax4′

Cmax4′
× 100.

Column Time shows the average time that was needed for each method to provide a solution.
Column Best presents the number of instances where each algorithm provides better or the same
solution than other methods. A line Average is added at the end of each table which represents
the average values of each column.

Platform 1

Table 4.14: Optimal solution using CPLEX and HEFT results for platform 1.

Inst Number Number Number CPLEX HEFT
of tasks of ` of k Optimal Time Gap Time Best

test_1 10 3 3 � 2.46s 9.65% 0.008s 6
test_2 30 4 4 � 2m50s 11.64% 0.03s 3
test_3 60 4 4 X X 8.67% 0.076s 3
test_4 100 6 6 X X 11.02% 0.20s 0
test_5 200 6 6 X X 18.51% 0.43s 1
test_6 400 6 6 X X 14.74% 1.03s 0
test_7 500 8 8 X X 10.55% 1.90s 0
test_8 600 8 8 X X 11.55% 2.30s 0
test_9 800 8 8 X X 7.30% 3.27s 0
test_10 1000 12 12 X X 9.27% 7.37s 0
Average / / / / / 11.29% 1.66s 13%

5Polynomial List Scheduling With Pre-Allocation (PLSWPA) algorithm

89

4.5. NUMERICAL RESULTS

Table 4.15: PLSWPA and LSWPA algorithms results.

Inst
Number LSWPA PLSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ2 using θ3 with υ = 10

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 2.15% 0.14s 6 0.08% 0.37s 10 4.36% 0.013s 4 0.08% 0.035s 10
test_2 30 1.93% 1.67s 8 0.54% 1.27s 10 1.37% 0.045s 8 0.94% 0.11s 9
test_3 60 6.48% 1.17s 3 4.08% 1.10s 4 4.34% 0.046s 2 3.37% 0.11s 3
test_4 100 3.51% 2.67s 4 2.46% 2.82s 5 6.69% 0.108s 2 3.99% 0.21s 6
test_5 200 9.64% 5.33s 3 11.10% 10.53s 2 12.06% 0.37s 0 9.95% 0.56s 4
test_6 400 9.20% 19.43s 2 6.74% 24.89s 7 8.80% 1.81s 2 6.06% 2.40s 6
test_7 500 5.45% 21.24s 3 4.21% 31.71s 3 6.67% 7.49s 1 4.91% 8.34s 5
test_8 600 5.58% 18.51s 3 4.93% 23.05s 6 5.71% 5.22s 1 4.71% 6.40s 6
test_9 800 2.02% 13.88s 6 1.07% 16.68s 6 1.93% 10.24s 5 0.99% 11.06s 7
test_10 1000 3.12% 14.82s 3 2.94% 15.69s 4 3.21% 11.69s 2 2.26% 13.51s 4

Average / 4.90% 9.88s 41% 3.81% 12.45s 57% 5.51% 3.69s 27% 3.72% 4.27s 60%

Platform 2

Table 4.16: Optimal solution using CPLEX and HEFT results for platform 2.

Inst Number Number Number CPLEX HEFT
of tasks of ` of k Optimal Time Gap Time Best

test_1 10 1 1 � 0.35s 33.23% 0.0016s 2
test_2 30 1 1 � 59.58s 38.11% 0.0049s 4
test_3 60 1 1 X X 25.89% 0.009s 4
test_4 100 1 1 X X 15.80% 0.017s 0
test_5 200 1 1 X X 14.56% 0.044s 0
test_6 400 1 1 X X 11.80% 0.19s 0
test_7 500 1 1 X X 11.50% 0.26s 0
test_8 600 1 1 X X 11.53% 0.61s 0
test_9 800 1 1 X X 11.78% 1.40s 0
test_10 1000 1 1 X X 12.11% 1.90s 0
Average / / / / / 18.63% 0.44s 6%

Table 4.17: PLSWPA and LSWPA algorithms results.

Inst
Number LSWPA PLSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ2 using θ3 with υ = 10

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 20.84% 0.25s 7 24.46% 0.42s 5 21.24% 0.008s 7 22.38% 0.017s 6
test_2 30 52.34% 0.600s 0 49.08% 0.88s 1 43.19% 0.028s 5 42.5% 0.0780s 3
test_3 60 24.86% 0.29s 6 27.60% 0.37s 4 24.81% 0.081s 7 27.60% 0.22s 4
test_4 100 6.85% 0.198s 8 6.58% 0.53s 9 6.46% 0.184s 9 6.46% 0.543s 9
test_5 200 1.34% 0.51s 7 0.45% 1.87s 8 1.08% 0.68s 6 0.93% 1.06s 8
test_6 400 0.25% 1.72s 7 0.19% 5.76s 9 0.31% 1.22s 6 0.31% 4.01s 6
test_7 500 0.16% 1.84s 6 0.15% 4.72s 7 0.11% 1.13s 9 0.11% 4.10s 9
test_8 600 0.32% 2.06s 6 0.036% 3.48s 7 0.237% 1.09s 7 0.125% 4.79s 7
test_9 800 0.14% 3.15s 7 0.13% 6.59s 8 0.13% 1.09s 6 0.13% 6.62s 7
test_10 1000 0.052% 4.32s 7 0.063% 7.27s 6 0.06% 4.26s 7 0.069% 7.17s 8
Average / 10.71% 1.49s 61% 10.87% 3.18s 64% 9.76% 1.17s 69% 10.06% 2.96s 67%

For both platforms 1 and 2, HEFT algorithm requires less time than PLSWPA and LSWPA al-
gorithms to provide a solution, where the rounding θ2 takes more time than θ1 for both PLSWPA
and LSWPA algorithms.

90

CHAPTER 4.

For platform 1, PLSWPA algorithm using θ3 with υ = 10 is the most efficient method with
a GAP of 3.72% and 60% of better solutions compared to other methods. Its average running
time is 4.26 seconds, which is slightly higher than the running time of PLSWPA algorithm using
θ1 (3.69 seconds) and better than LSWPA algorithm using θ1 (9.88 seconds).

For platform 2, PLSWPA algorithm using θ1 is the most efficient method with a GAP of
9.76% and 69% of better solutions compared to other methods. Its average running time is
1.72 seconds, which is slightly better than the running time of LSWPA algorithm using θ1 (1.49
seconds).

4.5.6 PLSWPA compared to LSWPA and HEFT algorithms using only one
processor of type A

In tables 4.18 and 4.19, we compare PLSWPA to LSWPA and HEFT on a platform with only
one processor of type A (` = 1) and k > 2 processors of type B.

Table 4.18: Optimal solution using CPLEX and HEFT results if ` = 1 and k > 2.

Inst Number Number Number CPLEX HEFT
of tasks of ` of k Optimal Time Gap Time Best

test_1 10 1 3 � 0.895s 19.94% 0.005s 2
test_2 30 1 4 � 31.93s 19.55% 0.021s 3
test_3 60 1 4 X X 19.32% 0.044s 1
test_4 100 1 6 X X 16.22% 0.11s 1
test_5 200 1 6 X X 13.42% 0.24s 1
test_6 400 1 6 X X 7.68% 0.60s 0
test_7 500 1 8 X X 7.42% 1.03s 0
test_8 600 1 8 X X 7.21% 1.37s 0
test_9 800 1 8 X X 6.04% 2.29s 0
test_10 1000 1 12 X X 5.30% 4.29s 0
Average / / / / / 12.21% 1s 8%

Table 4.19: PLSWPA and LSWPA algorithms results.

Inst
Number LSWPA PLSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ2 using θ3 with υ = 10

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 3.34% 0.76s 10 4.78% 0.58s 8 3.52% 0.013s 9 3.70% 0.033s 9
test_2 30 10.86% 0.922s 6 9.10% 1.60s 7 15.23% 0.038s 4 14.28% 0.09s 5
test_3 60 14.68% 3.93s 2 14.79% 3.14s 4 30.52% 0.056s 1 25.75% 0.12s 3
test_4 100 20.04% 2.96s 1 20.92% 3.21s 4 18.61% 0.098s 3 14.61% 0.193s 4
test_5 200 10.27% 1.46s 8 9.43% 1.96s 6 10.98% 0.15s 8 9.92% 0.32s 7
test_6 400 0.39% 1.93s 9 0.38% 2.31s 10 0.39% 0.88s 9 0.38% 1.27s 10
test_7 500 0.44% 2.74s 8 0.42% 3.28s 8 0.46% 1.37s 9 0.38% 1.85s 10
test_8 600 0.38% 4.94s 10 0.95% 5.68s 9 1.36% 2.89s 9 0.94% 3.44s 9
test_9 800 0.23% 5.03s 10 0.23% 5.37s 10 0.27% 4.01s 9 0.27% 4.4s 9
test_10 1000 0.31% 13.11s 9 0.24% 14.30s 10 0.58% 11.52s 9 0.36% 12.02s 9

Average / 6.09% 3.77s 73% 6.12% 4.14s 76% 8.19% 2.09s 70% 7.05% 2.36s 66%

We notice that LSWPA algorithm using θ1 with P2
′ is the most efficient method with a GAP

of 6.09%. LSWPA algorithm using θ3 with υ = 10 provides 76% of better solutions compared
to other methods. However, PLSWPA using θ2 has the most efficient average running time with
2.09 seconds.

91

4.5. NUMERICAL RESULTS

4.5.7 PLSWPA compared to LSWPA and HEFT algorithms with consistent
model

In tables 4.20 and 4.21, we compare PLSWPA to LSWPA and HEFT on platforms where the
processors of type A are faster than the processors of type B.

Table 4.20: Optimal solution using CPLEX and HEFT results if the processors of type A are faster
than the processors of type B.

Inst Number Number Number CPLEX HEFT

of tasks of ` of k Optimal Time Gap Time Best

test_1 10 3 3 � 0.32s 0% 0.008s 10
test_2 30 4 4 � 20.62s 0.12% 0.034s 9
test_3 60 4 4 X X 6.21% 0.07s 4
test_4 100 6 6 X X 3.48% 0.20s 6
test_5 200 6 6 X X 9.73% 0.42s 7
test_6 400 6 6 X X 6.03% 0.95s 3
test_7 500 8 8 X X 6.69% 1.66s 0
test_8 600 8 8 X X 6.88% 2.16s 0
test_9 800 8 8 X X 6.48% 3.29s 0
test_10 1000 12 12 X X 6.88% 6.40s 0
Average / / / / / 5.25% 1.51s 39%

Table 4.21: PLSWPA and LSWPA algorithms results.

Inst
Number LSWPA PLSWPA

of tasks
using θ1 with P2

′ using θ3 with υ = 10 using θ2 using θ3 with υ = 10

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

test_1 10 0% 0.028s 10 0% 0.071s 10 2.54% 0.010s 9 0% 0.03s 10

test_2 30 1.94% 0.071s 7 0% 0.16s 10 2.35% 0.04s 5 0.44% 0.10s 7

test_3 60 13.55% 0.34s 2 10.1% 0.54s 3 16.32% 0.046s 1 9.51% 0.10s 5

test_4 100 5.68% 0.47s 3 4.57% 0.49s 3 12.48% 0.088s 0 6.29% 0.18s 3

test_5 200 20.33% 7.56s 0 16.15% 6.54s 1 19.01% 0.19s 1 15.31% 0.37s 2

test_6 400 4.04% 2.34s 6 3.65% 2.87s 6 3.99% 0.85s 5 3.58% 1.21s 6

test_7 500 5.34% 3.60s 8 5.24% 4.33s 7 3.52% 2.19s 9 3.51% 2.63s 9

test_8 600 2.55% 5.55s 10 2.69% 6.18s 8 3.27% 3.36s 6 3.23% 3.90s 6

test_9 800 1.15% 5.95s 9 1.15% 6.7s 9 1.10% 4.62s 10 1.15% 4.95s 9

test_10 1000 2.35% 15.9s 8 2.32% 17.62s 9 2.34% 14.36s 8 2.34% 14.82s 8

Average / 5.69% 4.15s 63% 4.58% 4.42s 66% 6.69% 2.57s 54% 4.53% 2.82s 65%

We notice that PLSWPA algorithm using θ3 with υ = 10 is the most efficient method with
a GAP of 4.53%. LSWPA algorithm using θ3 with υ = 10 provides 66% of better solutions
compared to other methods. However, PLSWPA using θ2 has the most efficient average running
time with 2.57 seconds.

92

CHAPTER 4.

4.5.8 Comparison between PLSWPA, LSWPA and HEFT algorithms

In table 4.22, we give the average of the tables 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21.

Table 4.22: PLSWPA algorithm compared to LSWPA and HEFT algorithms.

Inst
HEFT LSWPA PLSWPA

GAP Time Best
using θ1 with P2

′ using θ3 with υ = 10 using θ2 using θ3 with υ = 10

GAP Time Best GAP Time Best GAP Time Best GAP Time Best

Tables 4.14 and 4.15 11.29% 1.66s 13% 4.90% 9.88s 41% 3.81% 12.45s 57% 5.51% 3.69s 27% 3.72% 4.27s 60%

Tables 4.16 and 4.17 18.63% 0.44s 6% 10.71% 1.49s 61% 10.87% 3.18s 64% 9.76% 1.17s 69% 10.06% 2.96s 67%

Tables 4.18 and 4.19 12.21% 1s 8% 6.09% 3.77s 73% 6.12% 4.14s 76% 8.19% 2.09s 70% 7.05% 2.36s 66%

Tables 4.20 and 4.21 5.25% 1.51s 39% 5.69% 4.15s 63% 4.58% 4.42s 66% 6.69% 2.57s 54% 4.53% 2.82s 65%

Average 11.84 % 1.15 s 4.12 % 6.84 % 4.82 s 59.5% 6.34 % 6.04 s 65.75 % 7.53 % 2.38s 55 % 6.34 % 3.10 s 64.5 %

From Table 4.22, it can be said that both methods LSWPA and PLSWPA are effective
methods with a general GAP smaller than 8 compared to the lower bound, and thus to the
optimal solution. However, PLSWPA algorithm has the advantage of being a polynomial time
method, and can handle large instances with an interesting running time.

4.6 Conclusion

This chapter presents two efficient algorithms to solve the problem of scheduling parallel appli-
cations on hybrid platforms with communication delays. The objective is to minimize the total
execution time (makespan).

First, we proposed a non polynomial 6-approximation algorithm LSWPA with two phases:
mapping then tasks assignment. Two models and two rounding strategies have been proposed
for the mapping. In the second phase, a list scheduling algorithm has been proposed to generate
a feasible schedule using several lists. LSWPA algorithm guarantees a ratio of 6 compared to
the optimal solution using the rounding strategy θ1. This method was published in [107].

Then we proposed a polynomial three-phase algorithm PLSWPA: the first two phases consist
in solving linear models to find the type of processor assigned to execute each task. In the third
phase, we compute the start execution time of each task to generate a feasible schedule.

Tests on large instances close to reality demonstrated the efficiency of our methods and shows
the limits of solving the problem with a solver such as CPLEX.

A proof of the performance guarantee for PLSWPA algorithm was initiated. The ratio
between the solution Ĉmax1 obtained by PLSWPA algorithm and the optimal scheduling solution
C?max is given by Ĉmax1 < 6αC?max. In future works, we will focus on finding the value of α to
have a fixed bound on the ratio between Ĉmax1 and C?max.

As part of the future, it will be interesting to study the tightness of LSWPA and PLSWPA
algorithms using rounding θ3 which provide interesting solutions.

An extension to more general heterogeneous platforms with more than two types of processors
is also interesting. The challenge is to find a good adaptation of the pre-allocation policy if we
have more than two types of processing elements.

Due to the significant energy consumption of this kind of platforms, we will study in the
following chapter the possibility of extending LSWPA and PLSWPA algorithms to solve the
problem with an energy constraint.

93

4.6. CONCLUSION

94

Chapter

5
Hybrid platform with a limited
number of processors with en-
ergy constraint

Chapter content
5.1 Introduction . 95
5.2 Complexity . 96
5.3 Mathematical model . 97
5.4 List Scheduling algorithm With Pre-Allocation (LSWPAe) 99
5.5 Polynomial List Scheduling algorithm With Pre-Allocation (PLSW-

PAe) . 103
5.6 Numerical results . 107

5.6.1 Benchmark . 107
5.6.2 PLSWPAe compared to LSWPAe algorithm 108
5.6.3 PLSWPAe compared to LSWPAe algorithm if the execution time of each

task is related to its energy consumption 111
5.6.4 comparing PLSWPAe and LSWPAe algorithms using only one processor

of type A . 113
5.6.5 PLSWPAe compared to LSWPAe algorithm when E is tight 114
5.6.6 Average . 116

5.7 Conclusion . 117

5.1 Introduction

The most common objective function of task scheduling problems is minimizing the total execu-
tion time (makespan). However, energy consumption is also an important issue to be considered.
Indeed, the resulting energy consumption of these platforms is very high and its increase must
be kept reasonable. Thus, it is time to invest in green computing, and computing servers must
be built with energy-aware resource management. This focus on energy efficiency must also have
as much as possible little impact on performance as possible. Thus, heterogeneous systems offer
the opportunity to achieve high performance while saving energy which offers several execution
possibilities with different cost consumption (execution time, energy...).

In the previous chapter, we have studied the problem of scheduling parallel applications
presented with graphs of type DAG on hybrid platforms composed of a limited number of two
types of processors denoted by A and B. The number of processing elements of type A (resp.
B) is given by ` (resp. k). The objective is to minimize the total execution time (makespan)
respecting precedence constraints with communication delays. The objective of this chapter is to
propose a generic approach in order to minimize both makespan and energy consumption. For
this purpose, we introduce a constraint on the total energy consumed by the platform. Executing

5.2. COMPLEXITY

the task ti on a processing element of type A (resp. B) generates an energy consumption
equal to ei,A (resp. ei,B). We denote by E the allowed quantity of energy consumed during
the execution. E represents in our case an energy bound that should not be exceeded during
the execution. The minimum amount of energy to execute each application is calculated as
Emin =

∑n
i=1min{ei,A, ei,B}. The maximum amount of energy to execute each application is

calculated as Emax =
∑n

i=1max{ei,A, ei,B}. Choosing E between Emin and Emax is a sufficient
condition for the existence of a solution. However, the aim is to use less energy and get a
good solution. Thus, E can be varied to find a good compromise between makespan and energy
consumption. The aim is then to propose efficient scheduling methods to minimize execution time
while respecting an energy constraint ((P`, Pk)|prec, com,E|Cmax). In addition, these methods
must guarantee the quality of the solution in the worst case compared to the optimal solution.

Contrary to the problem without energy constraint, sometimes it is not possible to execute
a task on its favorite processing element because of the limited available energy. Thus, it is
important to properly manage the energy consumption and the number of each type of processing
elements to exploit the parallelism effectively. For this purpose, we modify the two algorithms
LSWPA and PLSWPA proposed in the previous chapter. We use the same technique to solve
the problem with energy constraint by adding new constraints. Two algorithms are proposed: a
non polynomial-time algorithm with a performance ratio of 6 and a polynomial time algorithm
with a relative performance guarantee for makespan, but with at most twice authorized energy
consumption. Both methods are based on a new scheduling technique, based on the pre-allocation
of tasks before scheduling phase. This technique allows us to have an extended view of the
entire graph that represents the application. We thus make the best decisions that arrange the
maximum number of tasks.

The rest of this chapter is organized as follows. After analysing the complexity of our problem
in Section 5.2, we present in Section 5.3 the mathematical model used to obtain the optimal
solution for small instances. Then, we detail in Sections 5.4 and 5.5 the two proposed scheduling
algorithms with a performance guaranty analysis. Finally, after testing the proposed algorithm
on several instances in Section 5.6, we provide concluding remarks and future directions in
Section 5.7.

5.2 Complexity

We prove by the following theorem that our problem is NP-Complete even for the particular case
linear chain of tasks without communication delays. For this purpose, we perform a reduction
from the well-known NP-Complete problem Knapsack [57, 109] in polynomial time. In the
knapsack problem, we are given a set I of n items I = {i1, ..., in}, where each item i has a value
vi ∈ N∗ and a size si ∈ N∗. The knapsack has capacity B ∈ N∗. The goal is to find a subset of
items I ′ ⊆ I that maximizes the value

∑
i∈I′ vi of items in the knapsack such that

∑
i∈I′ si 6 B.

For C2 ∈ Q+, the decision problem KPS(I,B,C2) associated with the knapsack problem is as
follows. Is there a subset of items I ′ ⊆ I such that

∑
i∈I′ si 6 B and

∑
i∈I′ vi > C2?.

Theorem 10. Let G(V,E) be a linear chain graph and HP a Hybrid Platform. For C1 ∈ Q+, the
decision problem SCH(G,HP,C1) associated with the scheduling problem is as follows. Is there
a schedule S for G(V,E) on HP respecting an energy constraint E with a makespan Cmax 6 C1?.
SCH(G,HP,C1) in NP-Complete.

Proof.

1. First, for any given solution S of SCH(G,HP,C1), it can be verified in polynomial time
that S is feasible and Cmax 6 C1. Indeed, energy, precedence and no-overlapping con-
straints can be checked in polynomial time. Hence, SCH(G,HP,C1) ∈ NP .

96

CHAPTER 5.

2. Next, to prove that SCH(G,HP,C1) is NP-Complete, we reduce the well-known NP-
Complete problem Knapsack in polynomial time to SCH(G,HP,C1). For an arbitrary
instance of knapsack Inst{v1, · · · , vn, s1, · · · , sn, B}, an instance of SCH(G,HP,C1) is
constructed in the following way. A linear chain of tasks graph G(V,E) is constructed
as shown in Figure 5.1. It consists of n successive tasks, with a precedence constraint
between each two tasks ti and ti+1 without communication delays cmi,i+1 = 0, i = 1..n− 1.
Execution time of the task ti on a processing element of type A (resp. B) is given by wi,A
(resp. wi,B) and its energy consumption on a processing element of type A (resp. B) is
given by ei,A (resp. ei,B). We denote by E the allowed quantity of energy consumed during
the execution.

For each task ti, we set wi,B = 1 and wi,A = vi + wi,B, where wi,A > wi,B. Hence,
vi = wi,A − wi,B, i = 1..n. We also set ei,A = 0 and ei,B = si, i = 1..n; E = B and
C1 =

∑n
i=1wi,A − C2. Clearly, the construction of the instance of SCH(G,HP,C1) is

polynomial in the size of the instance of Knapsack.

Let C ′max =
∑n

i=1wi,A be an initial scheduling length (worst case) with a total energy
consumption equal to

∑n
i=1 ei,A = 0. Thus, C1 = C

′
max − C2. We want to find a subset

T ′ ⊆ T such that
∑

i∈T ′ ei,B 6 E and Cmax 6 C1, then
∑

i∈I′ si 6 B and
∑

i∈I′ vi > C2

for I ′ = T ′. Follows, Cmax =
∑n

i∈T ′ wi,B +
∑n

i∈T\T ′ wi,A =
∑n

i∈T ′ wi,B + (
∑n

i=1wi,A −∑n
i∈T ′ wi,A) =

∑n
i=1wi,A −

∑
i∈T ′(wi,A − wi,B) = C

′
max −

∑
i∈T ′(wi,A − wi,B) 6 C1, then∑

i∈T ′(wi,A − wi,B) > C
′
max − C1. Hence, since vi = wi,A − wi,B and C2 = C

′
max − C1,∑

i∈T ′ vi > C2. Furthermore, since ei,B = si for i = 1..n,
∑

i∈T ′ ei,B 6 E and E = B, we
obtain

∑
i∈T ′ si 6 B. Thus, for I ′ = T

′ , a solution obtained for the scheduling problem
corresponds to a solution of the knapsack problem.

Conversely, for I ′ ⊆ I,
∑

i∈I′ si 6 B and
∑

i∈I′ vi > C2. Hence, since
∑

i∈I′ vi =∑
i∈I′(wi,A−wi,B) and C2 =

∑n
i=1wi,A−C1, we obtain

∑
i∈I′(wi,A−wi,B) >

∑n
i=1wi,A−C1.

Follows, C1 >
∑n

i=1wi,A −
∑

i∈I′(wi,A − wi,B). Finally, for T ′ = I
′ , we have Cmax =∑n

i=1wi,A −
∑

i∈T ′(wi,A − wi,B) 6 C1. Furthermore,
∑

i∈T ′ ei,B 6 E, since
∑

i∈I′ si 6 B,
E = B and ei,B = si for i = 1..n. Thus, a solution obtained for the knapsack problem
corresponds to a solution of the scheduling problem.

t1 t2 t3 t4 ... tn
0 0 0 0 0

Figure 5.1: Linear chain of tasks.

Proposition 8. The execution of a task ti generates an energy consumption equal to at least
the minimum between ei,A and ei,B. Thus, we can transform the energy data of an instance
into E

′
= E −

∑n
i=1minimum{ei,A, ei,B}, e

′
i,A = ei,A −minimum{ei,A, ei,B} and e′i,B = ei,B −

minimum{ei,A, ei,B} for i = 1..n. Therefore, for each task ti, e
′
i,A = 0 or e′i,B = 0, i = 1..n.

In the following, we will use this simplification to handle the energy constraint. In the
next section, we present the mathematical model used to obtain the optimal solution for small
instances (small number of tasks and processors).

5.3 Mathematical model

This section aims at providing a modelling of the scheduling problem using a Mixed Integer
Program (MIP) for which the numbers of variables and constraints are polynomial. By adding a

97

5.3. MATHEMATICAL MODEL

new constraint to the model (Opt) defined in the previous chapter in section 4.2, we obtain the
model (Opte) which takes into account the energy constraint.

Data:

A hybrid platform is composed of m resources P = {p1, p2, · · · , pm} of two types: A and B (e.g.
GPU+CPU). ` represents the number of processing elements of type A and k the number of
processing elements of type B, m = `+ k. Let P (A) (resp. P (B)) be the set of processors type
A (resp. B). Clearly, P (A) = {p1, p2, · · · , p`} and P (B) = {p`+1, p`+2, · · · , pm}. We denote by
τ(r) the type of the processing element pr, such that τ(r) = A if r 6 ` and τ(r) = B if r > `.
E
′ represents the allowed energy consumption. We also use the two following data:

• wi,A (resp. wi,B) is the execution time of ti on a processor of type A (resp. B).

• e
′
i,A (resp. e′i,B) is the energy consumption of ti on a processor of type A (resp. B).

• cmi,j represents the communication delays between ti and tj if they are executed on two
different types of processing elements.

Variables:

Let us consider the following decision variables:

• xi,r equal to 1 if the task ti is assigned to the processor pr, 0 otherwise, i = 1..n and
r = 1..m.

• Si is the starting time of the task ti, i = 1..n.

• oi,j is an intermediary variable to manage overlapping tasks on the same processing element.
For each two tasks ti 6= tj , i = 1..n and j = 1..n , if ti and tj are executed by the same
processing element, then:

oi,j =

{
1 if tj is executed after the completion time of ti
0 if ti is executed after the completion time of tj

Model:

We obtain the following model (Opte) composed of 5 constraints:

(Opte)



∑m
r=1 xi,r = 1,∀i = 1..n (1)

Si + xi,rwi,τ(r) + (xi,r + xj,u − 1)cmi,j 6 Sj (2)

∀ (ti, tj) ∈ E, ∀r = 1..m, ∀u = 1..m, τ(r) 6= τ(u)
Si + xi,rwi,τ(r) 6 Sj +B × (3− xir − xjr − oi,j) (3)

Sj + xj,rwj,τ(r) 6 Si +B × (2− xir − xjr + oi,j)

∀i, j = 1..n i 6= j, (ti, tj) /∈ E, ∀r = 1..m,B = Cte
Si +

∑m
r=1 xi,rwi,τ(r) 6 Cmax,∀i, Γ+(i) = ∅ (4)∑n

i=1

∑m
r=1 xi,re

′

i,τ(r) 6 E
′

(5)

xi,r and oi,j ∈ {0, 1}, ∀i, j = 1..n, r = 1..m
Z(min) = Cmax

In addition to the four constraints ((1), (2), (3), (4)) explained in Section 4.2, we add only the
energy constraint (5), such that the energy consumption of all tasks does not exceed E

′ . Solvers
like CPLEX can be used to find the optimal solution for small instances. However, in a practical
way, generic approaches are used to solve large instances with a reasonable running time. In
the following, we propose two algorithms: a non polynomial-time algorithm (LSWPAe) with a
performance ratio of 6 and a polynomial time algorithm (PLSWPAe) with a relative performance
guarantee.

98

CHAPTER 5.

5.4 List Scheduling algorithm With Pre-Allocation (LSWPAe)

In the previous chapter, we proposed the LSWPA algorithm for the scheduling problem, with
the objective of minimizing the makespan without considering an energy constraint.

In this section, we modify this algorithm to solve the problem with an energy constraint.
For this purpose, we modify only the first phase, which is the task allocation phase, adding
some constraints. The goal is therefore to find a task assignment so that the overall energy
consumption respects the constraint E

′ . We will then show that we keep the result of the
performance guarantee of 6 for the problem of scheduling with an energy constraint.

New constraints will be added to the two models (P1) and (P2) introduced in the section
4.4.1 of the previous chapter. We will then obtain the LSWPAe algorithm which also uses two
steps as LSWPA algorithm to keep the same ratio of 6 for the scheduling with communication
costs and an energy constraint. The first step consists of solving an assignment problem to find
which type of processor (A or B) will execute each task. Two models (P1e) and (P2e) are then
illustrated in the first phase for solving the assignment problem while the precedence constraints
are satisfied and the energy constraint is respected. The solution obtained by the model (P1e)
or (P2e) represents a lower bound for the final makespan. Then, after solving the relaxation
(P1e

′
) (resp. (P2e

′
)) of the model (P1e) (resp. (P2e)), the fractional solution is rounded to

obtain a feasible assignment of the tasks. In the second phase, the assignment of the tasks and
a list scheduling algorithm are used to get a feasible schedule. In the following, the two phases
are presented in detail.

I)Phase 1: assignment of tasks

By adding new constraints and new variables to the models (P1) and (P2), we propose two new
models (P1e) and (P2e) to solve the assignment problem while the precedence constraints and
the energy constraint are satisfied. Then we solve the relaxation (P1e

′
) (resp. (P2e

′
)) of the

model (P1e) (resp. (P2e)). We get the model (P1e) by adding the constraints (1e), (2e) and
(3e) to the model (P1) using two new intermediary variables µi and υi to handle the energy
bound, i = 1..n. The new model (P1e) is then defined as follows.

(P1e)



Ci + xjwj,A + (1− xj)wj,B + (1− |yi,j − zi,j |)cmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
zi,j 6 xi,∀(ti, tj) ∈ E (2)
zi,j 6 xj ,∀(ti, tj) ∈ E (3)
yi,j 6 1− xi,∀(ti, tj) ∈ E (4)
yi,j 6 1− xj ,∀(ti, tj) ∈ E (5)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(i) = ∅ (6)
0 6 Ci 6 Cmax, ∀i = 1..n, Γ+(i) = ∅ (7)∑n

i=1 xiwi,A 6 `Cmax (8)∑n
i=1(1− xi)wi,B 6 kCmax (9)

xi > µi,∀ i = 1..nxi > µi, ∀ i = 1..nxi > µi, ∀ i = 1..n (1e)(1e)(1e)
(1− xi) > υi, ∀ i = 1..n(1− xi) > υi, ∀ i = 1..n(1− xi) > υi,∀ i = 1..n (2e)(2e)(2e)∑n

i=1((xi + (1− |µi − υi|))e
′
i,A + ((1− xi) + (1− |µi − υi|)))e

′
i,B) 6 E

′∑n
i=1((xi + (1− |µi − υi|))e

′
i,A + ((1− xi) + (1− |µi − υi|)))e

′
i,B) 6 E

′∑n
i=1((xi + (1− |µi − υi|))e

′
i,A + ((1− xi) + (1− |µi − υi|)))e

′
i,B) 6 E

′
(3e)(3e)(3e)

xi, µi, υi, yi,j , zi,j ∈ {0, 1}, ∀i = 1..n, j = 1..n
Z(min) = Cmax

Let E
′
i = (xi+(1−|µi−υi|))e

′
i,A+((1−xi)+(1−|µi−υi|))e

′
i,B be the energy consumption of

each task ti in the model (P1e), i = 1..n. We prove by the following Lemma 18 that the solution
obtained by solving the model (P1e) respects the energy constraint.

99

5.4. LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION (LSWPAE)

Lemma 18. The solution obtained by solving the model (P1e) respects the energy constraint,
i.e.,

∑n
i=1 E

′
i 6 E

′.

Proof. For each task ti, we obtain E
′
i > 0 in two cases:

1. If e′i,A = 0 then e
′
i,B > 0, two cases are possible: if xi = 0, then 0 > µi = 0. Follow,

E
′
i = (1 + (1− υi))e

′
i,B. Finally, since it is a minimization problem and 1 > υi (constraint

(2e)), E
′
i = e

′
i,B for υi = 1. If xi = 1, then 0 > υi = 0. Follow, E

′
i = (1 − µi)e

′
i,B. Finally,

since 1 > µi (constraint (1e)), E
′
i = 0 for µi = 1. In the two cases, E

′
i 6 e

′
i,B.

2. If e′i,B = 0 then e
′
i,A > 0, two cases are possible: if xi = 0, then 0 > µi = 0. Follow,

E
′
i = (1− υi)e

′
i,A. Finally, since it is a minimization problem and 1 > υi, E

′
i = 0 for υi = 1.

If xi = 1, then 0 > υi = 0. Follow, E
′
i = (1 + (1− µi))e

′
i,A. Finally, since 1 > µi, E

′
i = e

′
i,A

for µi = 1. In the two cases, E
′
i 6 e

′
i,A.

Thus, for each task ti, E
′
i 6 e

′
i,A+e

′
i,B (since e′i,A = 0 or e′i,B = 0). Finally, from the constraint

(3e) of (P1e), the total energy consumption is given by
∑n

i=1 E
′
i 6

∑n
i=1 e

′
i,A + e

′
i,B 6 E

′ .

Constraint (3e) of the model (P1e) contains an absolute value which we can get rid by adding
two binary variables, σi and τi. Then, we get a linear model (P2e) by adding the following
constraints (1e), (2e), (3e), (4e) and (5e) to the model (P2). The new model (P2e) is then
defined as follows.

(P2e)



Ci + xjwj,A + (1− xj)wj,B + (1− bi,j)(1− bi,j)(1− bi,j)cmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
zi,j 6 xi, ∀(ti, tj) ∈ E (2)
zi,j 6 xj , ∀(ti, tj) ∈ E (3)
yi,j 6 1− xi, ∀(ti, tj) ∈ E (4)
yi,j 6 1− xj ,∀(ti, tj) ∈ E (5)
(zi,j − yi,j) + 2(1− ai,j) > bi,j , ∀(ti, tj) ∈ E(zi,j − yi,j) + 2(1− ai,j) > bi,j ,∀(ti, tj) ∈ E(zi,j − yi,j) + 2(1− ai,j) > bi,j , ∀(ti, tj) ∈ E (5.1)(5.1)(5.1)
(yi,j − zi,j) + 2ai,j > bi,j ,∀(ti, tj) ∈ E(yi,j − zi,j) + 2ai,j > bi,j , ∀(ti, tj) ∈ E(yi,j − zi,j) + 2ai,j > bi,j ,∀(ti, tj) ∈ E (5.2)(5.2)(5.2)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(i) = ∅ (6)
0 6 Ci 6 Cmax,∀i = 1..n, Γ+(i) = ∅ (7)∑n

i=1 xiwi,A 6 `Cmax (8)∑n
i=1(1− xi)wi,B 6 kCmax (9)

xi > µi, ∀ i = 1..nxi > µi,∀ i = 1..nxi > µi,∀ i = 1..n (1e)(1e)(1e)
(1− xi) > υi,∀ i = 1..n(1− xi) > υi,∀ i = 1..n(1− xi) > υi, ∀ i = 1..n (2e)(2e)(2e)
(υi − µi) + 2(1− σi) > τi, ∀ i = 1..n(υi − µi) + 2(1− σi) > τi, ∀ i = 1..n(υi − µi) + 2(1− σi) > τi,∀ i = 1..n (3e)(3e)(3e)
(µi − υi) + 2σi > τi, ∀ i = 1..n(µi − υi) + 2σi > τi,∀ i = 1..n(µi − υi) + 2σi > τi, ∀ i = 1..n (4e)(4e)(4e)∑n

i=1((xi + (1− τi))e
′
i,A + ((1− xi) + (1− τi))e

′
i,B) 6 E

′∑n
i=1((xi + (1− τi))e

′
i,A + ((1− xi) + (1− τi))e

′
i,B) 6 E

′∑n
i=1((xi + (1− τi))e

′
i,A + ((1− xi) + (1− τi))e

′
i,B) 6 E

′
(5e)(5e)(5e)

xi, µi, υi, σi, τi, yi,j , zi,j , ai,j , bi,j ∈ {0, 1}, ∀i = 1..n, j = 1..n
Z(min) = Cmax

We proved in Section 4.4.1 that the two models (P1) and (P2) are equivalent. By adding
the constraints (c1)(resp. (c2)) to (P1) (resp. (P2)), we obtain the model (P1e) (resp. (P2e))
which handles the energy constraint.

(c1)


xi > µi, ∀ i = 1..n (1e)
(1− xi) > υi,∀ i = 1..n (2e)∑n

i=1((xi + (1− |µi − υi|))e
′
i,A + ((1− xi) + (1− |µi − υi|))e

′
i,B) 6 E

′
(3e)

xi, µi, υi ∈ {0, 1} ∀ i = 1..n

100

CHAPTER 5.

(c2)



xi > µi, ∀ i = 1..n (1e)
(1− xi) > υi,∀ i = 1..n (2e)
(υi − µi) + 2(1− σi) > τi, ∀ i = 1..n (3e)
(µi − υi) + 2σi > τi, ∀ i = 1..n (4e)∑n

i=1((xi + (1− τi))e
′
i,A + ((1− xi) + (1− τi))e

′
i,B) 6 E

′
(5e)

xi, µi, υi, σi, τi ∈ {0, 1} ∀ i = 1..n

We prove by the following Lemma 19 that the constraints (c1) and (c2) are equivalent, and thus
(P1e) and (P2e) are also equivalent.

Lemma 19. The constraints (c1) and (c2) are equivalent.

Proof. For each task ti, the value of τi replaces the value of |µi − υi| in (P2e), we obtain two
cases:

1. If |µi − υi| = 0, then, since 2σi > τi and 2(1 − σi) > τi (constraints (3e) and (4e) from
(c2)), then τi = 0 for σi ∈ {0, 1}.

2. If |µi − υi| = 1 then we have two cases:

(a) If (µi − υi) = 1, then 1 + 2σi > τi and −1 + 2(1− σi) > τi (constraints (3e) and (4e)
from (c2)). Since τi ∈ {0.1}, τi = 1 for σi = 0.

(b) If (µi − υi) = 1, then −1 + 2σi > τi and 1 + 2(1− σi) > τi (constraints (3e) and (4e)
from (c2)). Since τi ∈ {0.1}, τi = 1 for σi = 1.

In all cases, |µi − υi| = τi. Thus, the constraints (c1) and (c2) are equivalent for each task ti,
i = 1..n.

Therefore, the models (P1e) and (P2e) are equivalent and valid for energy constrained
scheduling. The behavior of the two models will be compared in section 5.6 on different in-
stances and platforms. In the following, we focus on the model (P1e). The results obtained for
(P1e) remain valid for (P2e).

Relaxed problem

The problem of finding the optimal mapping using (P1e) or (P2e) is at least strongly NP-
complete even without constraints (8) and (9) and energy constraint. We can use solvers like
CPLEX to solve (P1e) or (P2e) only for small instances. In order to have an easier problem,
we relax integrity variables. We obtain the model (P1e

′
) by relaxing the integer variables xi, µi,

υi, yi,j and zi,j . In the same way, we obtain the model (P2e
′
) by relaxing the integer variables

xi, µi, υi, τi, yi,j , zi,j and bi,j . However, as in the model (P2
′
) for the problem without an

energy constraint, ai,j and σi must remain integer (see Section 4.4.1). These two variables must
remain integer so that (P1e

′
) and (P2e

′
) are equivalent, i.e., |y′i,j − z

′
i,j | = b

′
i,j for each two tasks

(ti, tj) ∈ E and |µ′i − υ
′
i| = τ

′
i for i = 1..n.

To obtain a feasible mapping, we use the same rounding technique θ1 defined in section 4.4.1,
i.e., for each task ti for i ∈ 1..n, we set xri = 0 if x′i <

1
2 , and x

r
i = 1 otherwise. We denote by

θe1 the mapping obtained by this rounding. Each task ti is mapped in either a processor type
A or type B. Thus, θe1(ti) −→ {A,B}. We also use the iterative mapping θ3 defined in 4.4.2,
which we denote by θe3 for the scheduling problem with energy constraint, θe3(ti) −→ {A,B}.

Proposition 9. The execution of the tasks according to the mapping θe1 or θe3 keeps the energy
constraint valid.

101

5.4. LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION (LSWPAE)

Proof. Let Eri = xri e
′
i,A + (1 − xri)e

′
i,B be the energy consumption generated by the execution

of a task ti according to the mapping θe1 or θe3, i = 1..n. Let E
′
i be the fractional energy

consumption of the task ti generated by solving the model (P1e
′
) or (P2e

′
). We are going to

prove that E
′
i > Eri for each task ti, i = 1..n. For each task ti, we obtain Eri > 0 in two cases:

1. If x′i >
1
2 and Eri = e

′
i,A > 0, then e′i,B = 0, and thus E

′
i = (x

′
i + (1− |µi − υi|))e

′
i,A. Then,

since µi 6 x
′
i and υi 6 1−x′i 6 1

2 (constraint (c1)), and since |µi−υi| 6 maximum{µi, υi},
we obtain two cases:

(a) If maximum{µi, υi} = µi then E
′
i = (x

′
i+(1−|µi−υi|))e

′
i,A > (x

′
i+(1−µi))e

′
i,A. Finally,

since x′i − µi > 0 (from constraint (e1) of (c1)), then E
′
i > (x

′
i − µi + 1)e

′
i,A > e

′
i,A.

(b) If maximum{µi, υi} = υi then E
′
i = (x

′
i + (1 − |µi − υi|))e

′
i,A > (x

′
i + (1 − υi))e

′
i,A.

Finally, υi 6 1
2 6 x

′
i, then E

′
i > (x

′
i − υi + 1)e

′
i,A > e

′
i,A.

Then, since Eri = e
′
i,A, we have E

′
i > Eri .

2. If x′i <
1
2 and Eri = e

′
i,B > 0 then e′i,A = 0, and thus E

′
i = ((1 − x′i) + (1 − |µi − υi|))e

′
i,B.

Then, µi 6 x
′
i <

1
2 and υi 6 1−xi (constraint (c1)), and since |µi−υi| 6 maximum{µi, υi},

we obtain two cases:

(a) If maximum{µi, υi} = µi then E
′
i = ((1− x′i) + (1− |µi − υi|))e

′
i,B > ((1− x′i) + (1−

µi))e
′
i,B. Finally,

1
2 > x

′
i > µi, then E

′
i > (2− x′i − µi)e

′
i,B > e

′
i,B.

(b) If maximum{µi, υi} = υi then E
′
i = ((1− x′i) + (1− |µi − υi|))e

′
i,B > ((1− x′i) + (1−

υi))e
′
i,B. Finally, υi 6 1− x′i, then E

′
i > (1− x′i − υi + 1)e

′
i,B > e

′
i,B.

Then, since Eri = e
′
i,B, we have E

′
i > Eri .

In the two cases, E
′
i > Eri for i = 1..n. Finally,

∑n
i=1 Eri 6

∑n
i=1 E

′
i 6 E

′ . Thus, the execution
of the tasks according to the mapping θe1 or θe3 keeps the energy constraint valid.

Remark 9. An easier way to represent the constraint (c1) (resp. (c2)) in (P1e) (resp. (P2e)) is∑n
i=1(xie

′
i,A+(1−xi)e

′
i,B) 6 E

′ . However, solving (P1e
′
) (resp. (P2e

′
)) with this constraint, and

then apply the rounding θe1 or θe3, the resulting solution may not satisfy the energy constraint.
Indeed, let us consider the single task t1, such that wi,A = 2 and wi,B = 10, e′1,A = 20 and
e
′
1,B = 0, E

′
= 10. Hence, the optimal solution of (P1e

′
) and (P2e

′
) is C ′max = 1

2w
′
i,A+ 1

2wi,B = 6

with x′1 = 1
2 , where x

′
1e
′
1,A+ (1−x′1)e

′
i,B = 10 = E

′ . By using the rounding θe1 or θe3, we obtain
xr1 = 1, with an energy consumption equal to xr1e

′
1,A + (1 − xr1)e

′
1,B = 20 > E

′ , which is not
feasible. Thus, this constraint is not valid for this problem.

II) Phase 2: scheduling algorithm

Proposition 9 shows that the energy constraint will be satisfied by applying the mapping θe1

obtained in the first phase. For the second phase, we use Algorithm 7 proposed in 4.4.1 for the
scheduling problem without energy constraint.

The following algorithm 9 executes task by task from the ready task list according to the order
given by list L (LST 1, LFP 2, LLP 3). Thus, if two tasks are executable at a given time on a free
processor, then we chose the first tasks according to the order given by the list L. Furthermore,

1List by Start Time (LST)
2List by Finish Time (LFT)
3List by longest path (LLP)

102

CHAPTER 5.

Each task ti is executed on one of the processors of type θ1(ti) using an insertion-based scheduling
policy.
Algorithm 9: LSWPAe Algorithm
Data: mapping θe1, list L (LST , LFT , LLP).
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(tj) = ∅, j = 1..n};
while ready-list 6= ∅ do

ti ←− the first executable task from the ready-list according to the order given
by list L;
for all pr ∈ P (θe1(ti)) do

Compute EFT (ti, pr) value using an insertion-based scheduling policy;

Assign task ti to the processor pr that minimize EFT of task ti;
Update ready-list with unscheduled tasks;

Complexity:

The first phase consists in solving either a NLMIP model (P1e
′
) or a MIP model (P2e

′
), which

makes the complexity of the first phase exponential, its resolution therefore depends on the size
of the instance to be solved.

The second phase has the same structure as HEFT which has O(n2m) time complexity. How-
ever, for LSWPAe Algorithm, the Earliest Finish Time EFT (ti, pr) of each task ti is calculated
for either ` or k processors according to the mapping θe1. For each task ti (n in total), we
calculate its EFT (ti, pr) by taking into account all its predecessors (n − 1 at most) on each
available processing element of type θe1(ti) (at most max(`,k)). The insertion policy is verified
on a processing element by checking the non-overlapping with at most (n−1) tasks. This makes
a complexity of O(max(`, k)n2) for the second phase. Thus, the complexity time of LSWPAe
algorithm is exponential even if the second phase is polynomial.

Proposition 10. From Proposition 9, the mapping θe1 obtained in the phase 1 respects the energy
constraint. Furthermore, since the solution obtained by solving the model (P1e′) or (P2e′) is a
lower bound for our problem, and the second phase does not consider the energy constraint. Then,
using Algorithm 9 keeps the same ratio of 6 for the scheduling problem with an energy constraint.

Remark 10. The specialized accelerator problem (where a set of tasks T ′ ∈ T can be executed
by either a CPU or a GPU only) can be solved with the same methods. It is sufficient to set the
corresponding variable x′i to 0 or 1 in (P1e

′
) or (P2e

′
). However, the amount of energy generated

by the execution of the set of tasks T ′ must be sufficient, i.e.,
∑

ti∈T ′ x
′
iei,A + (1− x′i)ei,B 6 E

′ .

5.5 Polynomial List Scheduling algorithm With Pre-Allocation
(PLSWPAe)

We have previously shown that we can modify LSWPA algorithm to manage the energy con-
straint. We thus proposed LSWPAe algorithm that takes into account the energy constraint by
keeping the same performance guarantee ratio of 6.

In this section, we modify PLSWPA algorithm to obtain a polynomial method to solve the
scheduling problem with an energy constraint. For this purpose, we modify only the first phase,
which is the task allocation phase, adding a new constraint. To handle the energy constraint, a
new constraint will be added to the two models (P3) and (P4

′
) introduced in Section 4.4.2 of

103

5.5. POLYNOMIAL LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION
(PLSWPAE)

the previous chapter. We will then obtain the PLSWPAe algorithm which also uses three steps
as PLSWPA algorithm. However, to keep the method polynomial, the energy constraint could
not be respected in this case. Indeed, we must use only continuous variables, which will allow us
to keep the same ratio 6α. We will then demonstrate in the lemma 20 that the energy consumed
using this method is at most 2E

′ . The first step consists of solving an assignment problem to
find which type of processor (A or B) will execute each task. We obtain the model (P3e) by
adding an energy constraint to the model (P3). We then use the solution obtained by solving
the relaxation (P3e

′
) of the model (P3e) to get another model (P4e

′
). Then, by rounding its

fractional solution, we get a feasible assignment of the tasks. In the last phase, the assignment
of the tasks and a list scheduling algorithm are used to get a feasible schedule. In the following,
the three phases are presented in detail.

Phase 1: assignment of tasks (model (P3e))

By adding the constraint (1e) to the model (P3) previously defined in Section 4.4.2 for the
problem without energy constraint, we obtain the following model (P3e).

(P3e)



Ci + xjwj,A + (1− xj)wj,B + ζi,jcmi,j 6 Cj , ∀(ti, tj) ∈ E (1)
xi − xj 6 ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi 6 ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,A + (1− xi)wi,B 6 Ci, ∀i = 1..n, Γ−(i) = ∅ (4)
0 6 Ci 6 Cmax3,∀i = 1..n, Γ+(i) = ∅ (5)∑n

i=1 xiwi,A 6 `Cmax3 (6)∑n
i=1(1− xi)wi,B 6 kCmax3 (7)∑n
i=1(xie

′
i,A + (1− xi)e

′
i,B) 6 E

′
(1e)

xi ∈ {0, 1}, ζi,j ∈ [0, 1], ∀i, j = 1..n
Z(min) = Cmax3

We remind that we relax the integer variables x′i for i = 1..n to obtain an easier problem,
and we get the relaxed model (P3e

′
). We denote by x̃′i ∈ [0, 1], the fractional value of x′i in the

optimal solution of the model (P3e
′
).

Phase 2: assignment of tasks (model (P4e
′
))

Then, by using the solution of (P3e
′
), we define another model (P4e

′
). The decision variables

are x′i, and an intermediary variable y′i,j ∈ [0, 1], with i = 1..n and j = 1..n. For all (ti, tj) ∈ E,
we define the constraint Coni,j as follows:

• If min{x̃′i, x̃
′
j} >min{1− x̃′i, 1− x̃

′
j}, then Coni,j =


y
′
i,j 6 x

′
i (1)

y
′
i,j 6 x

′
j (2)

ζ
′
i,j = (1− y′i,j) (3)

From Coni,j , we have y′i,j 6 min{x′i, x
′
j}. Then, ζ

′
i,j = 1− y′i,j > (1−min{x′i, x

′
j}), which

is equivalent to the constraint C̃on
1

i,j . Since it is a minimization problem, we can set
ζ
′
i,j = (1−min{x′i, x

′
j}).

• If min{x̃′i, x̃
′
j} 6min{1− x̃′i, 1− x̃

′
j}, then Coni,j =


y
′
i,j 6 1− x′i (1)

y
′
i,j 6 1− x′j (2)

ζ
′
i,j = (1− y′i,j) (3)

From Coni,j , we have y
′
i,j 6 min{1−x′i, 1−x

′
j}. Then, ζ

′
i,j = 1−y′i,j > (1−min{1−x′i, 1−

x
′
j}), which is equivalent to the constraint C̃on

2

i,j . Since it is a minimization problem, we
can set ζ ′i,j = (1−min{1− x′i, 1− x

′
j}).

104

CHAPTER 5.

We then obtain the model (P4e
′
) as follows:

(P4e
′
)



C
′
i + x

′
jwj,A + (1− x′j)wj,B + ζ

′
i,jcmi,j 6 C

′
j ,∀(ti, tj) ∈ E (1)

Coni,j ,∀(ti, tj) ∈ E (2)

x
′
iwi,A + (1− x′i)wi,B 6 C

′
i , ∀i = 1..n, Γ−(i) = ∅ (3)

0 6 C
′
i 6 Cmax4′ , ∀i = 1..n, Γ+(i) = ∅ (4)∑n

i=1 x
′
iwi,A 6 `Cmax4′ (5)∑n

i=1(1− x′i)wi,B 6 kCmax4′ (6)∑n
i=1(x

′
ie
′
i,A + (1− x′i)e

′
i,B) 6 E

′
(1e)

x
′
i, y
′
i,j , ζ

′
i,j ∈ [0, 1], ∀i = 1..n, j = 1..n

Z(min) = Cmax4′

Rounding strategy θe2:

To obtain a feasible mapping, we use the same rounding technique θ2 defined in section 4.4.1,
i.e., for each task ti with i ∈ 1..n, we set xri = 0 if x′i <

1
2 , and x

r
i = 1 otherwise. We denote by

θe2 the mapping obtained by this rounding. We prove by lemma 20 that the solution obtained by
this rounding does not respect the energy constraint, but does not exceed twice the authorized
quantity E

′ .

Lemma 20. The energy consumption generated by the assignment of the tasks obtained by θe2

with rounding the fractional solutions x′i (obtained by solving the model P4e
′) is smaller than

2E
′ .

Proof. Let Eri = xri e
′
i,A + (1− xri)e

′
i,B be the energy consumption generated by the execution of

the task ti according to the mapping θe2, i = 1..n. Let E
′
i = x

′
ie
′
i,A+(1−x′i)e

′
i,B be the fractional

energy consumption of the task ti generated by solving the model P4e
′ . We are going to prove

that
∑n

i=1 Eri 6 2E
′ . For each task ti, we obtain Eri > 0 in two cases:

1. If x′i > 1
2 and Eri = e

′
i,A > 0 (e′i,B = 0), then xri = 1 and E

′
i = x

′
ie
′
i,A. Then, Eri =

xri e
′
i,A + (1− xri)e

′
i,B = e

′
i,A 6 2x

′
ie
′
i,A = 2E

′
i. Thus, Eri 6 2E

′
i.

2. If x′i <
1
2 and Eri = e

′
i,B > 0 (e′i,A = 0), then xri = 0 and E

′
i = (1−x′i)e

′
i,B. Furthermore, since

x
′
i <

1
2 , we have 1− x′i > 1

2 . Then, Eri = xri e
′
i,A + (1− xri)e

′
i,B = e

′
i,B < 2(1− x′i)e

′
i,B = 2E

′
i.

Thus, Eri < 2E
′
i.

In the two cases, Eri 6 2E
′
i for each task ti, i = 1..n. Finally,

∑n
i=1 Eri 6 2

∑n
i=1 E

′
i 6 2E

′ .

The behavior of PLSWPAe’s energy consumption will be compared in section 5.6 on different
instances and platforms. In the following, we summarize the three steps of PLSWPAe algorithm.

PLSWPAe algorithm:

To obtain a feasible mapping, the same rounding strategy used to obtain θe1 is applied to round
the solution obtained by the model (P4e

′
), where each task ti is mapped in either a processor

type A or type B. We set xri = 0 if x′i <
1
2 , and xri = 1 otherwise. We denoted by θe2 the

mapping obtained by this mapping, θe2(ti) −→ {A,B}.
PLSWPAe algorithm has the same structure of LSWPA algorithm, using the mapping θe2

instead of θe1 for the first phase, and the same list algorithm in the last phase. The three steps
of PLSWPAe algorithm can be summarized as follows:

1. Solve the relaxed model (P3e
′
).

105

5.5. POLYNOMIAL LIST SCHEDULING ALGORITHM WITH PRE-ALLOCATION
(PLSWPAE)

2. Use the solution of (P3e
′
) to define another model (P4e

′
), then solve (P4e

′
).

3. After rounding the solutions obtained by (P4e
′
), use Algorithm 9 with the obtained map-

ping θe2 and a priority list L (LST , LFT , LLP).

Complexity:

The rounding θe2 is obtained using two models containing only continuous variables, which
makes polynomial the resolution of the first phase of PLSWPAe algorithm. Furthermore, the
second phase of PLSWPAe and LSWPAe algorithms are identical, with a O(max(`, k)n2) time
complexity.

Remark 11. Let C?max4′ (resp. C?max3′) be the optimal solution of the model (P4e
′
) (resp.

(P3e
′
)). Let Ĉmax2e be the solution obtained by PLSWPAe algorithm and C?maxe be the optimal

scheduling solution of our main problem. For the makespan objective, PLSWPAe algorithm uses
the same technique as PLSWPA algorithm. Thus, by supposing that C?max4′ 6 αC?max3′ , with

α ∈ R+, we obtain the same performance guarantee as PLSWPA, i.e.,
Ĉmax2e

C?maxe
< 6α.

Iterative mapping θe4:

The objective of this strategy is to do several iterations to assign the tasks progressively. For a
given integer v > 2, we solve the model (P4e

′
) bυ2 c times by adding new assignment constraints

at each resolution. Contrary to θe2, we try to assign the tasks progressively, starting by setting
x
′
j to 0 if x′j < (1

υ) and x′j to 1 if x′j > 1− (1
υ) for the first resolution of (P4e

′
), and finishing by

setting x′j to 0 if x′j < (
bυ
2
c

υ) and x′j to 1 if x′j > 1− (
bυ
2
c

υ).

Algorithm 10: Rounding algorithm.
Data: model (P4e

′
), a parameter υ > 2.

Result: mapping θe4.
begin

Ec = 0;
T
′ ←− {};

for it = 1 to bυ2 c do
Solve (P);
for j = 1 to n do

if x′j <
it
υ and Ec+ ej,B 6 E

′ and tj /∈ T
′ then

Set in (P) : x
′
j = 0;

Ec = Ec+ ej,B;
T
′ ←− T ′ ∪ {tj};

if x′j > 1− it
υ and Ec+ ej,A 6 E

′ and tj /∈ T
′ then

Set in (P) : x
′
j = 1;

Ec = Ec+ ej,A;
T
′ ←− T ′ ∪ {tj};

for l = 1 to n do
if x′l <

1
2 then

xrl = 0

else
xrl = 1

106

CHAPTER 5.

However, the model (P4e
′
) may not be solvable if the amount of energy related to the

assignment of some tasks T ′ exceeds the amount of energy allowed, i.e.,
∑

ti∈T ′ x
′
iei,A + (1 −

x
′
i)ei,B > E

′ . Thus, to avoid this, we add in algorithm 10 an assignment condition, such that,
before the assignment of each task ti, we verify if it does not cause an excess of allowed energy
consumption E. For this purpose, We calculate the energy consumed Ec = after each authorised
assignment, and we make sure it does not exceed the quantity E for the next assignments.

After the last iteration, it may be that some tasks are not assigned, they are then assigned
using the same principle as the rounding θe2, i.e., for each task ti with i ∈ 1..n, we set xri = 0 if
x
′
i <

1
2 , and x

r
i = 1 otherwise. Thus, as rounding θe2, this rounding may not respect the energy

constraint E
′ , but generates an energy consumption quantity smaller than 2E

′ (Lemma 20).

Remark 12. The specialized accelerator problem (where a set of tasks T ′ ∈ T can be executed
by only one type of processing elements, i.e., by a CPU or a GPU only) can be solved with
PLSWPAe algorithm. It is sufficient to set the corresponding variables x′i to 0 or 1 in the models
(P3e

′
) and (P4e

′
). However, the amount of energy generated by the execution of the set of tasks

T
′ must be sufficient, i.e.,

∑
ti∈T ′ x

′
iei,A + (1− x′i)ei,B 6 E

′ .

5.6 Numerical results

In this section, we compare the performance of LSWPAe4 and PLSWPAe5 algorithms using
benchmarks generated by Turbine [108] as the previous chapter.

In what follows, we first describe the generation of benchmarks and all used parameters.
Then, we discuss the efficiency of LSWPAe algorithm using θe1 and θe3 compared to PLSWPAe
algorithm using θe2 and θe4.

5.6.1 Benchmark

Table 5.1: Description of the applications and the platforms.

Instances Number of
Platform 1 Platform 2

tasks ` k ` k

test_1 10 3 3 1 1

test_2 30 4 4 1 1

test_3 60 4 4 1 1

test_4 100 6 6 1 1

test_5 200 6 6 1 1

test_6 400 6 6 1 1

test_7 500 8 8 1 1

test_8 600 8 8 1 1

test_9 800 8 8 1 1

test_10 1000 12 12 1 1

The benchmark used for all tests is composed of ten parallel DAG applications. We denote by
test_i the instance number i. We generate 10 different applications for each test_i with i = 1..10.
The execution times of the tasks are generated randomly over an interval [wmin, wmax], wmin has
been fixed at 5 and wmax at 30. The degrees of the tasks (successors) are generated randomly
over an interval [dmin, dmax], dmin has been fixed at 1 and dmax at 10.

Furthermore, communication delay for each arc was generated on an interval [ctmin, ctmax],
we set ctmin to 35 and ctmax to 50. Table 5.1 presents the size of each instance generated as well

4List Scheduling With Pre-Allocation algorithm
5Polynomial List Scheduling With Pre-Allocation algorithm

107

5.6. NUMERICAL RESULTS

as the number of the processing elements of type A and type B used to execute each instance.
For Platform 1, we increase the number of processing elements by increasing the size of the
applications. For Platform 2, we only use one processor of type A and one processor of type B.

For each task ti, we generate randomly the values of energy quantities ei,A if we execute ti
on a CPU and ei,B if we execute ti on a GPU. The energy consumption of each task is generated
randomly over an interval [emin, emax], emin has been fixed at 10 and emax at 30.

The minimum amount of energy to execute each application is calculated as Emin =∑n
i=1min{ei,A, ei,B}. The maximum amount of energy to execute each application is calculated

as Emax =
∑n

i=1max{ei,A, ei,B}. Then, we randomly generate a quantity E between [Emin,Emax].
Finally, the transformation explained in Proposition 8 is used for all tests.

According to the experimental results obtained in the previous chapter in section 4.5, list LLP
is the most effective. Thus, we use only the list LLP for both methods LSWPAe and PLSWPAe.

5.6.2 PLSWPAe compared to LSWPAe algorithm

Table 5.2 and 5.3 (resp. 5.4 and 5.5) illustrate the comparison between LSWPAe and PLSWPAe
for the platform 1 (resp. platform 2). Column Time CPLEX presents the average time that was
needed to CPLEX to provide the optimal solution using the model (Opte). We only have the
result for the first two instances due to the large running time (> 4h).

The next six columns of table 5.2 (and 5.4) concern the results of LSWPAe algorithm using
LLP and θe1. Column GAP gives the average ratio between makespan obtained by LSWPAe
algorithm and C ′max (lower bound obtained by P1e

′ or P2e
′):

GAP =
LSWPAe makespan− C ′max

C ′max
× 100

Column E-cons indicates the average energy consumption of each method, calculated for each
instance size "test_size" by:

E-cons(test_size) =
100

10
∗

10∑
I=1

Energy consumed by the instance I
Energy bound E for the instance I

= 10 ∗
10∑
I=1

Energy consumed by the instance I
Energy bound E for the instance I

Column Best presents the number of instances where LSWPAe algorithm provides better
or the same solution obtained by LSWPAe using θe3 or PLSWPAe using θe2 and θe4. Column
Opt presents the number of instances where LSWPAe provides the optimal solution (for small
instances). Finally, column P1e

′ (resp. P2e
′) gives the average time that was needed for

LSWPAe algorithm to provide a solution using the model P1e
′ (resp. P2e

′) for the first phase.
We use the same six columns to illustrate the results of LSWPAe algorithm using LLP and θe3.

In the tables that illustrate the results of PLSWPAe algorithm using LLP and θe2 or θe4(5.3
and 5.5), we add two columns. Column E-cons indicates the average energy consumption of
instances that do not respect the energy constraint, calculated for each instance size "test_size"
by:

E-cons(test_size) = 10 ∗
10∑
I=1

Energy consumed Ec by the instance I if Ec > E
Energy bound E for the instance I

Thus, for this table, E-cons is calculated only for instances that respect the energy constraint.
Furthermore, column feasible provides the number of instances that respect the energy con-
straint.

108

CHAPTER 5.

Platform 1

Table 5.2: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 1.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 8.08s 4.26% 67.33% 7 7 1.05s 0.43s 0% 71.28% 10 10 1.10s 0.49s
test_2 85.02s 2.56% 68.65% 7 6 1.33s 0.82s 0.97% 68.70% 9 8 1.49s 0.97s
test_3 X 8.53% 63.64% 5 X 10.37s 10.02s 6.90% 66.09% 8 X 10.96s 10.28s
test_4 X 6.97% 58.93% 4 X 12.27s 9.02s 3.17% 62.45% 9 X 12.59s 9.34s
test_5 X 13.28% 44.40% 4 X 11.06s 12.74s 10.95% 46.37% 6 X 11.67s 13.36s
test_6 X 4.63% 75.18% 3 X 15.93s 9.85s 3.70% 75.18% 10 X 17.19s 11.01s
test_7 X 6.35% 71.45% 3 X 15.90s 8.57s 4.69% 72.32% 8 X 16.68s 9.29s
test_8 X 7.40% 78.63% 2 X 13.03s 7.77s 3.45% 78.62% 9 X 13.97s 8.6s
test_9 X 0.82% 77.62% 7 X 17.01s 11.36s 0.82% 77.90% 8 X 18.19s 12.40s
test_10 X 4.47% 77.37% 2 X 18.87s 13.98s 2.93% 77.41% 9 X 19.78s 14.79s
Average / 5.92% 68.32% 44% / 11.68s 8.45s 3.75% 69.63% 86% / 12.36s 9.05s

Table 5.3: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 1.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1_10_3 8.08s 3.56% 0.018s 7 78.26% 103.16% 8 3.50% 0.050s 7 77.04% 103.16% 8
test_2 85.02s 5.34% 0.06s 4 79.15% 103.39% 9 4.39% 0.17s 7 78.46% 0% 10
test_3 X 8.75% 0.08s 2 80.25% 0% 10 6.95% 0.21s 4 78.74% 0% 10
test_4 X 9.37% 0.14s 2 76.56% 0% 10 8.70% 0.32s 2 77.77% 0% 10
test_5 X 13.50% 0.47s 2 78.2% 0% 10 14.7% 0.81s 3 79.65% 0% 10
test_6 X 4.27% 1.34s 2 78.49% 0% 10 3.91% 1.95s 5 78.39% 0% 10
test_7 X 7.45% 1.32s 1 79.08% 0% 10 6.007% 1.8s 3 78.96% 0% 10
test_8 X 7.45% 2.20s 2 78.77% 0% 10 3.87% 2.65s 7 78.67% 0% 10
test_9 X 1.19% 5.83s 5 78.78% 0% 10 1.106% 6.39s 7 78.76% 0% 10
test_10 X 3.76% 9.49s 6 77.8% 0% 10 2.83% 9.95s 5 77.67% 0% 10
Average / 6.46% 2.09s 33% 78.53% 103.25% 97% 5.59% 2.43s 50% 78.41% 103.16% 98%

From table 5.2, we can notice that LSWPAe algorithm provides better solutions using the round-
ing θe3 compared to θe1 with a GAP of 3.75% and 86% of best solutions. We can also notice
that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

From table 5.3, we can notice that PLSWPAe algorithm provides better solutions using the
rounding θe4 compared to θe2 with a GAP of 5.59% and 50% of best solutions. Furthermore,
PLSWPAe algorithm provides 98% feasible solutions using θe4 against 97% using θe2. The
energy excess is not very important, with less than 4% using both roundings θe2 and θe4.

Comparing tables 5.2 and 5.3, we can notice that LSWPAe is more efficient than PLSWPAe
with 86% of best solutions and a GAP of 3.75%. However, PLSWPAe is more efficient in term of
running time, with an average of 2.09 seconds using θe2 against 8.45 seconds for LSWPAe using
θe1 with P2e

′ , and 2.43 seconds using θe4 against 9.05 seconds for LSWPAe using θe3 with P2e
′ .

Finally, LSWPAe is more efficient in energy consumption compared to PLSWPAe, with an
average consumption equal to 68.32% using θe1 against 78.53% for PLSWPAe using θe2 (feasible
solutions), and 69.63% using θe3 against 78.41% for PLSWPAe using θe4 (feasible solutions).

109

5.6. NUMERICAL RESULTS

Platform 2

Table 5.4: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 2.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 0.37s 16.98% 68.46% 10 3 1.20s 1.26s 18.91% 67.15% 9 3 1.27s 1.33s
test_2 157.54s 48.28% 70.16% 6 0 2.69s 2.62s 45.68% 70.86% 9 0 3.06s 2.79s
test_3 X 21.96% 78.40% 10 X 0.92s 0.66s 22.31% 78.67% 9 X 1.16s 0.86s
test_4 X 7.82% 75.02% 10 X 0.71s 0.72s 7.82% 75.02% 10 X 1.02s 1.03s
test_5 X 0.35% 77.90% 8 X 2.10s 1.54s 0.26% 77.92% 10 X 2.68s 2.093s
test_6 X 1.43% 75.79% 9 X 6.89s 4.23s 1.56% 75.80% 7 X 8.055s 5.30s
test_7 X 0.18% 77.05% 5 X 5.25s 2.93s 0.16% 77.04% 7 X 5.99s 3.6s
test_8 X 0.17% 77.13% 6 X 7.19s 3.95s 0.16% 77.12% 7 X 8.08s 4.71s
test_9 X 0.08% 78.12% 6 X 6.14s 3.25s 0.11% 78.10% 6 X 6.76s 3.78s
test_10 X 0.07% 78.10% 4 X 7.95s 5.74s 0.10% 78.12% 5 X 8.76s 6.45s
Average / 9.73% 75.61% 74% / 4.10s 2.69s 9.70% 75.58% 79% / 4.68s 3.19s

Table 5.5: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 2.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1 0.37s 9.05% 0.02s 8 67.50% 115.41% 7 14.05% 0.05s 6 71.37% 101.86% 9
test_2 157.54s 44.74% 0.04s 5 74.49% 101.07% 9 45.54% 0.13s 4 74.23% 101.07% 9
test_3 X 21.96% 0.06s 10 78.40% 0% 10 22.31% 0.17s 9 78.67% 0% 10
test_4 X 7.82% 0.10s 10 75.02% 0% 10 7.82% 0.25s 10 75.02% 0% 10
test_5 X 0.31% 0.23s 7 78.11% 0% 10 0.31% 0.51s 7 78.11% 0% 10
test_6 X 1.56% 0.9s 7 76.14% 0% 10 1.54% 1.54s 7 76.18% 0% 10
test_7 X 0.24% 0.7s 5 77.60% 0% 10 0.16% 1.5s 5 77.54% 0% 10
test_8 X 0.21% 1.13s 3 77.61% 0% 10 0.15% 1.57s 5 77.64% 0% 10
test_9 X 0.14% 1.08s 5 78.73% 0% 10 0.07% 1.35s 6 78.68% 0% 10
test_10 X 0.12% 1.80s 3 78.35% 0% 10 0.10% 2.15s 3 78.36% 0% 10
Average / 8.61% 0.60s 63% 76.19% 108.2% 96% 9.20% 0.92s 62% 76.58% 101.45% 98%

From table 5.4, we can notice that LSWPAe algorithm provides better solutions using the round-
ing θe3 compared to θe1 with a GAP of 9.70% and 79% of best solutions. We can also notice
that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

Contrary to the platform 1, we can notice from table 5.5 that PLSWPAe algorithm provides
better solutions using the rounding θe2 compared to θe4 with a GAP of 8.61% and 63% of best
solutions. However, PLSWPAe algorithm provides 98% feasible solutions using θe4 against 96%
using θe2. The energy excess is not very important using θe4, with less than 2% of authorised
energy. Using θe2, the difference may be important, where E-cons = 115.41% for the first
instance size.

Comparing tables 5.4 and 5.5, we can notice that LSWPAe is more efficient than PLSW-
PAe with 79% of best solutions. However, by using more energy than the authorized quantity,
PLSWPAe has a better average GAP, with 8.61% obtained using θe2 against 9.70% for LSWPAe
obtained using θe3. Furthermore, PLSWPAe is more efficient in term of running time, with an
average of 0.60 seconds using θe2 against 2.69 seconds for LSWPAe using θe1 with P2e

′ , and
0.92 seconds using θe4 against 3.19 seconds for LSWPAe using θe3 with P2e

′ . Finally, LSWPAe
is more efficient in energy consumption compared to PLSWPAe also on this platform, with an
average consumption equal to 75.61% using θe1 against 76.19% for PLSWPAe using θe2 (feasible
solutions), and 75.58% using θe3 against 76.58% for PLSWPAe using θe4 (feasible solutions).

110

CHAPTER 5.

5.6.3 PLSWPAe compared to LSWPAe algorithm if the execution time of
each task is related to its energy consumption

To be as close as possible to reality, we have added a hypothesis to the generation of energy
quantities, assuming that each task ti consumes more on its best processor type (the fastest for
task ti), i.e., if wi,A > wi,B then ei,A < ei,B. This hypothesis keeps right the properties previously
defined.

Platform 1

Table 5.6: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 1.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 0.29s 0.13% 79.92% 10 10 0.04s 0.27s 0.13% 81.42% 10 10 0.14s 0.44s
test_2 27.63s 5.72% 67.32% 4 2 0.70s 0.39s 1.40% 72.04% 10 7 0.65s 1.17s
test_3 X 8.47% 62.72% 3 X 1.09s 0.89s 4.27% 69.17% 8 X 1.35s 1.66s
test_4 X 9.63% 61.31% 1 X 1.25s 1.78s 3.89% 68.16% 10 X 1.33s 3.54s
test_5 X 13.69% 59.42% 1 X 3.62s 8.45s 10.55% 65.29% 9 X 4.71s 12.02s
test_6 X 5.55% 99.22% 6 X 19.42s 38.86s 5.21% 98.96% 8 X 21.75s 55.69s
test_7 X 5.99% 99.82% 3 X 63.30s 103.9s 5.31% 99.67% 9 X 65.77s 148.45s
test_8 X 2.43% 93.23% 6 X 25.41s 41.43s 2.19% 93.92% 6 X 27.42s 45.02s
test_9 X 0.48% 99.96% 5 X 20.67s 15.02s 0.37% 99.97% 9 X 21.45s 30.61s
test_10 X 1.97% 99.95% 8 X 59.34s 37.59s 2.41% 99.93% 5 X 63.75s 99.43s
Average / 5.40% 82.28% 47% / 19.48s 24.85s 3.57% 84.85% 84% / 20.83s 39.80s

Table 5.7: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 1.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1_10_3 0.29s 0.87% 0.003s 9 83.98% 107.43% 7 1.71% 0.008s 9 86.09% 103.93% 8
test_2 27.63s 9.77% 0.009s 3 82.06% 102.85% 9 7.17% 0.02s 4 84.16% 102.85% 9
test_3 X 9.44% 0.01s 1 91.09% 100.38% 8 8.49% 0.02s 2 93.29% 100.42% 9
test_4 X 9.91% 0.02s 2 90.01% 102.95% 7 5.96% 0.04s 2 92.48% 0% 10
test_5 X 11.91% 0.08s 3 96.78% 101.15% 7 12.35% 0.13s 2 97.64% 100.32% 8
test_6 X 8.41% 0.23s 0 99.60% 100.14% 6 6.66% 0.35s 3 99.82% 0% 10
test_7 X 7.16% 0.39s 1 99.75% 100.19% 4 5.27% 0.52s 5 99.84% 100.10% 6
test_8 X 4.90% 0.73s 0 99.83% 100.03% 6 4.03% 0.95s 1 99.91% 100.04% 7
test_9 X 0.49% 1.99s 2 99.91% 100.09% 6 0.53% 2.19s 2 99.90% 0% 10
test_10 X 3.68% 5.86s 4 99.94% 100.08% 4 3.48% 6.09s 4 99.86% 100.05% 8
Average / 6.65% 0.93s 25% 94.29% 101.52% 64% 5.56% 1.03s 34% 95.29% 101.1% 85%

From table 5.6, we can notice that LSWPAe algorithm provides better solutions using the round-
ing θe3 compared to θe1 with a GAP of 3.57% and 84% of best solutions. We can also notice
that P1e

′ is more efficient than P2e
′ in running time using rounding θe1 or θe3.

From table 5.7, we can notice that PLSWPAe algorithm provides better solutions using the
rounding θe4 compared to θe2 with a GAP of 5.56% and 34% of best solutions. Furthermore,
PLSWPAe algorithm provides 85% feasible solutions using θe4 against 64% using θe2. The energy
excess is not very important, with less than 8% using both roundings θe2 and θe4. Compared
to the table 5.3, we notice here that we have more solutions that are not feasible. This is
possible, because sometimes, PLSWPAe prefers to assign a task to its best processor, even if it
consumes more energy. From Lemma 20, the energy consumption of PLSWPAe algorithm does
not exceed 2E

′ .
Comparing tables 5.6 and 5.7, we can notice that LSWPAe is more efficient than PLSWPAe

with 84% of the best solutions and a GAP of 3.57%. However, PLSWPAe is more efficient in term
of running time, with an average of 0.93 seconds using θe2 against 19.48 seconds for LSWPAe
using θe1 with P2e

′ , and 1.03 seconds using θe4 against 20.83 seconds for LSWPAe using θe3

with P2e
′ .

111

5.6. NUMERICAL RESULTS

Finally, LSWPAe is very efficient in energy consumption compared to PLSWPAe, with an
average consumption equal to 82.28% using θe1 against 94.29% for PLSWPAe using θe2 (feasible
solutions), and 84.85% using θe3 against 95.29% for PLSWPAe using θe4 (feasible solutions).

Platform 2

Table 5.8: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 2.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 0.12s 18.95% 81.76% 8 3 0.7s 0.49s 17.21% 84.47% 9 3 0.75s 1.41s
test_2 27.14s 45.15% 91.13% 7 0 0.62s 0.63s 44.66% 90.94% 8 0 0.82s 1.32s
test_3 X 22.16% 99.27% 10 X 0.86s 0.67s 22.16% 99.27% 10 X 0.35s 1.35s
test_4 X 5.17% 99.70% 10 X 0.97s 1.008s 5.51% 99.67% 9 X 1.06s 2.75s
test_5 X 1.46% 99.93% 9 X 2.94s 2.23s 1.43% 99.89% 8 X 3.12s 7.08s
test_6 X 0.056% 99.95% 9 X 8.04s 4.26s 0.06% 99.95% 7 X 8.82s 11.22s
test_7 X 0.061% 99.96% 7 X 6.84s 5.58s 0.06% 99.97% 8 X 7.4s 19.86s
test_8 X 1.06% 99.97% 6 X 10.08s 4.91s 1.19% 99.97% 7 X 11.04s 18.66s
test_9 X 0.04% 99.96% 8 X 11.05s 9.007s 0.059% 99.96% 5 X 15.26s 24.81s
test_10 X 0.04% 99.97% 10 X 9.63s 8.64s 0.05% 99.96% 7 X 11.22s 24.57s
Average / 9.41% 97.16% 84% / 5.17s 3.74s 9.23% 97.40% 78% / 6.04s 11.30s

Table 5.9: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 2.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1 0.12s 11.65% 0.002s 7 82.39% 115.38% 6 19.83% 0.007s 6 88.80% 103.19% 8
test_2 27.14s 39.92% 0.007s 5 88.90% 103.83% 5 40.43% 0.01s 5 94.08% 101.77% 8
test_3 X 23.05% 0.01s 4 99.59% 100.74% 4 23.24% 0.03s 5 98.82% 100.30% 9
test_4 X 4.84% 0.01s 4 99.36% 100.55% 5 5.40% 0.04s 4 99.08% 100.60% 8
test_5 X 1.43% 0.03s 4 99.81% 100.47% 6 1.30% 0.09s 5 99.81% 100.32% 8
test_6 X 0.22% 0.15s 4 99.87% 100.16% 6 0.25% 0.27s 3 99.86% 100.11% 8
test_7 X 0.19% 0.24s 4 99.89% 100.15% 6 0.24% 0.38s 3 99.88% 100.13% 8
test_8 X 1.15% 0.38s 4 99.85% 100.11% 6 1.14% 0.57s 4 99.88% 100.11% 6
test_9 X 0.085% 0.69s 5 99.92% 100.05% 4 0.07% 0.89s 5 99.89% 100.04% 6
test_10 X 0.10% 1.17s 6 99.96% 100.04% 6 0.10% 1.45s 5 99.94% 100.03% 8
Average / 8.26% 0.26s 47% 96.95% 102.14% 54% 9.2% 0.37s 45% 98.004% 100.66% 77%

From table 5.8, we can notice that LSWPAe algorithm provides 84% of best solutions using the
rounding θe1 against 78% using θe1. LSWPAe provides a better GAP by using θe3 with 9.23%
against 9.41% using θe1. We can also notice that P1e

′ (resp. P2e
′) is more efficient than P2e

′

(P1e
′) in running time using rounding θe3 (resp. θe1).

Contrary to the platform 1, we can notice from table 5.9 that PLSWPAe algorithm provides
better solutions using the rounding θe2 compared to θe4 with a GAP of 8.26% and 47% of best
solutions. However, PLSWPAe algorithm provides 77% feasible solutions using θe4 against 47%
using θe2. The energy excess is not very important using θe4, with less than 4% of authorised
energy. Using θe2, the difference may be important, where E-cons = 115.38% for the first
instance size.

Comparing tables 5.8 and 5.9, we can notice that LSWPAe is more efficient than PLSW-
PAe with 84% of best solutions. However, by using more energy than the authorized quantity,
PLSWPAe has a better average GAP, with 8.26% obtained using θe2 against 9.23% for LSWPAe
obtained using θe3. Furthermore, PLSWPAe is more efficient in term of running time. Its average
running time is 0.26 seconds using θe2 against 3.74 seconds for LSWPAe using θe1 with P2e

′ .
Using θe4, its average running time 0.37 seconds against 6.04 seconds for LSWPAe using θe3

with P2e
′ . In this case, LSWPAe and PLSWPAe consume almost the same amount of energy.

Comparing the results of the two platforms 1 and 2, we can notice that for the platform 1,
the average value of E-cons is given by 82.28% for LSWPAe algorithm using θe1 and 84.85%

112

CHAPTER 5.

using θe3. However, for the platform 2, the average value of E-cons is given by 97.16% for
LSWPAe algorithm using θe1 and 97.40% using θe3. This can be explained by the fact that on
the platform 2, we have only one processor p1 of type A and one processor p2 of type B. Only
one task in execution can make the processor p1 or p2 busy, and this can make the switch from p1

to p2 or from p2 to p1 more profitable, where communication delays are compensated by waiting
times on each processor. Indeed, it is sometimes more profitable to switch from p1 to p2 or from
p2 to p1, to execute a task on its favourite processor (best execution time), than to wait until
the end of the task that already occupies p1 or p2. Thus, in the platform 1, we consume less
energy, because there are more processors. In this case, executing the tasks in parallel without
changing the type of processor is sometimes more effective, which is less expensive in term of
communication delays, even if some tasks are not executed on their best processors, and thus
consume less energy.

5.6.4 comparing PLSWPAe and LSWPAe algorithms using only one proces-
sor of type A

In tables 5.10 and 5.11, we compare LSWPAe to PLSWPAe on a platform with only one processor
of type A and k > 2 processors of type B.

Table 5.10: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 if ` = 1 and k > 2.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 3.06s 11.53% 70.79% 8 5 1.06s 1.05s 12.02% 67.73% 8 5 1.12s 1.11s
test_2 4019.22s 21.60% 69.69% 5 0 15.99s 20.57s 17.34% 73.34% 8 0 16.27s 20.90s
test_3 X 15.37% 72.22% 2 X 3.72s 4.16s 10.33% 71.89% 9 X 3.91s 4.35s
test_4 X 34.47% 76.44% 5 X 10.36s 8.71s 37.47% 77.87% 5 X 10.76s 9.07s
test_5 X 10.71% 72.28% 9 X 9.51s 4.08s 11.65% 72.39% 5 X 10.43s 4.91s
test_6 X 0.61% 79.52% 9 X 5.53s 4.33s 0.60% 79.55% 10 X 6.71s 5.41s
test_7 X 0.37% 77.34% 9 X 6.67s 5.16s 0.29% 77.28% 9 X 8.11s 6.44s
test_8 X 0.24% 79.74% 9 X 11.65s 6.91s 0.24% 79.64% 8 X 13.70s 8.67s
test_9 X 0.26% 76.07% 8 X 9.61s 8.60s 0.18% 76.14% 10 X 10.85s 9.68s
test_10 X 0.18% 77.11% 9 X 10.52s 10.68s 0.19% 77.14% 9 X 11.43s 11.47s
Average / 9.53% 75.12% 73% / 8.46s 7.42s 9.03% 75.29% 81% / 9.32s 7.05s

Table 5.11: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 if ` = 1 and k > 2.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1 3.06s 7.94% 0.02s 9 60.05% 103.46% 7 10.28% 0.05s 8 58.18% 102.07% 8
test_2 4019.22s 27.62% 0.08s 4 80.22% 0% 10 28.55% 0.24s 3 80.42% 0% 10
test_3 X 21.23% 0.07s 0 79.24% 0% 10 21.89% 0.17s 0 78.45% 0% 10
test_4 X 29.25% 0.16s 4 80.11% 0% 10 26.52% 0.38s 3 79.75% 0% 10
test_5 X 11.76% 0.30s 5 75.04% 0% 10 11.02% 0.70s 4 75.05% 0% 10
test_6 X 0.57% 0.94s 9 79.65% 0% 10 0.57% 1.50s 9 79.65% 0% 10
test_7 X 0.30% 1.54s 9 77.37% 0% 10 0.30% 2.27s 9 77.37% 0% 10
test_8 X 0.19% 2.26s 7 79.90% 0% 10 0.19% 3.35s 7 79.90% 0% 10
test_9 X 0.25% 4.53s 8 76.22% 0% 10 0.19% 5.10s 9 76.20% 0% 10
test_10 X 0.22% 8.23s 7 77.39% 0% 10 0.22% 8.72s 7 77.39% 0% 10
Average / 9.93% 1.81s 62% 76.51% 103.46% 97% 9.97% 2.24s 59% 76.23% 102.07% 98%

From table 5.10, we can notice that LSWPAe algorithm provides better solutions using the
rounding θe3 compared to θe1 with a GAP of 9.03% and 81% of best solutions. We can also
notice that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

From table 5.11, we can notice that PLSWPAe algorithm provides better solutions using
the rounding θe2 compared to θe4 with a GAP of 9.93% and 62% of best solutions. However,
PLSWPAe algorithm provides 98% feasible solutions using θe4 against 97% using θe2. The
energy excess is not very important, with less than 4% using both roundings θe2 and θe4.

113

5.6. NUMERICAL RESULTS

Comparing tables 5.10 and 5.11, we can notice that LSWPAe is more efficient than PLSWPAe
with 81% of the best solutions and a GAP of 9.03%. However, PLSWPAe is more efficient in
term of running time, with an average of 1.81 seconds using θe2 against 7.42 seconds for LSWPAe
using θe1 with P2e

′ , and 2.24 seconds using θe4 against 7.05 seconds for LSWPAe using θe3 with
P2e

′ .
Finally, LSWPAe is more efficient in energy consumption compared to PLSWPAe also on this

platform, with an average consumption equal to 75.12% using θe1 against 76.51% for PLSWPAe
using θe2 (feasible solutions), and 75.29% using θe3 against 76.23% for PLSWPAe using θe4

(feasible solutions).

5.6.5 PLSWPAe compared to LSWPAe algorithm when E is tight

Now we assume that E is tight, i.e., the generated value E is very close to the minimum energy
Emin needed to execute an application. The objective is to see if the non-polynomial method
LSWPAe can manage complicated instances and provide a solution with a reasonable running
time.

Platform 1

Table 5.12: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 1.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 5.53s 2.75% 80.49% 10 9 4.84s 9.04s 2.75% 80.49% 10 9 4.91s 9.12s
test_2 5948.45s 8.34% 84.93% 6 1 32.93s 18.09s 5.59% 88.48% 9 3 33.45s 18.53s
test_3 X 17.38% 86.46% 5 X 54.95s 63.86s 13.50% 91.11% 6 X 55.57s 64.41s
test_4 X 10.57% 79.77% 2 X 41.77s 45.77s 5.22% 87.15% 8 X 44.58s 46.18s
test_5 X 13.43% 86.71% 3 X 104.72s 83.60s 11.83% 92.7262% 7 X 104.90s 83.77s
test_6 X 3.23% 99.95% 8 X 128.50s 108.65s 3.38% 99.93% 8 X 128.87s 109.03s
test_7 X 2.11% 93.67% 6 X 138.84s 89.74s 1.80% 94.19% 8 X 139.23s 90.09s
test_8 X 2.89% 99.89% 7 X 193.88s 160.92s 2.67% 99.93% 8 X 194.46s 161.52s
test_9 X 0.56% 95.21% 5 X 57.06s 148.30s 0.45% 95.69% 9 X 58.17s 149.41s
test_10 X 0.93% 99.97% 6 X 277.51s 146.31s 1.01% 99.97% 8 X 278.07s 146.82s
Average / 6.21% 90.70% 58% / 103.5s 87.42s 4.82% 92.96% 81% / 104.22s 87.88s

Table 5.13: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 1.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1 5.53s -4.48% 0.03s 10 75.72% 114.64% 7 -1.21% 0.08s 9 76.34% 113.23% 7
test_2 5948.45s 7.79% 0.11s 5 92.81% 107.68% 3 10.94% 0.316s 5 95.4722% 105.516% 5
test_3 X 16.08% 0.10s 4 97.91% 104.03% 5 20.40% 0.25s 1 96.94% 100.38% 9
test_4 X 13.57% 0.19s 1 98.90% 102.65% 5 14.65% 0.41s 0 97.83% 100.46% 8
test_5 X 16.84% 0.49s 0 98.67% 101.25% 5 16.64% 0.87s 0 98.67% 100.23% 7
test_6 X 6.67% 0.58s 1 99.62% 100.47% 6 5.44% 1.24s 1 99.72% 100.14% 6
test_7 X 5.61% 0.56s 1 99.60% 100.33% 8 4.48% 0.78s 1 99.80% 100.14% 9
test_8 X 3.28% 1.28s 5 99.85% 100.37% 6 2.53% 1.55s 4 99.90% 100.10% 8
test_9 X 0.55% 3.61s 4 99.85% 100.06% 5 0.70% 3.78s 4 99.79% 100.14% 7
test_10 X 2.28% 10.15s 5 99.79% 100.16% 3 1.80% 10.73s 5 99.89% 100.09% 7
Average / 6.81% 1.71s 36% 96.27% 103.16% 53% 7.63% 2.01s 30% 96.43% 102.04% 73%

From table 5.12, we can notice that LSWPAe algorithm provides better solutions using the
rounding θe3 compared to θe1 with a GAP of 4.82% and 81% of best solutions. We can also
notice that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

From table 5.13, we can notice that PLSWPAe algorithm provides better solutions using
the rounding θe2 compared to θe4 with a GAP of 6.81% and 36% of best solutions. However,
PLSWPAe algorithm provides 73% feasible solutions using θe4 against 53% using θe2. The
energy excess becomes more important in this case, with more than 13% using both roundings

114

CHAPTER 5.

θe2 and θe4 for the first instance size. The negative GAP is justified by the fact that PLSWPAe
used more energy than the authorized quantity E (> 13%), thus we obtain a good solution even
if we compare to the lower bound.

Comparing tables 5.12 and 5.13, we can notice that LSWPAe is more efficient than PLSWPAe
with 81% of the best solutions and a GAP of 4.82%. However, PLSWPAe is more efficient in term
of running time, with an average of 1.71 seconds using θe2 against 87.42 seconds for LSWPAe
using θe1 with P2e

′ , and 2.01 seconds using θe4 against 87.88 seconds for LSWPAe using θe3

with P2e
′ .

Finally, LSWPAe is more efficient in energy consumption compared to PLSWPAe, with an
average consumption equal to 90.70% using θe1 against 96.27% for PLSWPAe using θe2 (feasible
solutions), and 92.96% using θe3 against 96.43% for PLSWPAe using θe4 (feasible solutions).

Platform 2

Table 5.14: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3 for the platform 2.

Instances Time LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
CPLEX Gap E-cons Best Opt P1e

′
P2e

′ Gap E-cons Best Opt P1e
′

P2e
′

test_1 0.91s 22.66% 77.71% 9 4 1.88s 1.62s 20.64% 80.39% 10 4 1.94s 1.67s
test_2 8018.95s 45.41% 89.85% 9 0 20.88s 19.78s 43.73% 92.78% 10 0 21.07s 19.99s
test_3 X 9.14% 98.42% 10 X 41.76s 62.78s 9.14% 98.42% 10 X 42.14s 63.11s
test_4 X 4.94% 99.35% 10 X 52.42s 53.08s 4.94% 99.35% 10 X 52.88s 53.50s
test_5 X 0.25% 99.93% 10 X 75.25s 58.69s 0.25% 99.93% 10 X 76.45s 59.81s
test_6 X 0.02% 99.96% 7 X 74.55s 79.21s 0.02% 99.96% 9 X 75.41s 80.01s
test_7 X 0.01% 99.96% 8 X 147.42s 117.47s 0.01% 99.97% 9 X 148.13s 118.11s
test_8 X 0.01% 99.97% 9 X 104.45s 108.23s 0.01% 99.97% 8 X 105.37s 109.12s
test_9 X 0.01% 99.98% 0 X 129.34s 101.74s 0.01% 99.97% 0 X 130.71s 103.01s
test_10 X 0.02% 99.96% 0 X 51.66s 51.66s 0.02% 99.96% 0 X 53.06s 54.75s
Average / 8.24% 96.50% 72% / 69.96s 65.42s 7.87% 97.07% 76% / 70.71s 66.30s

Table 5.15: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4 for the platform 2.

Instances Time PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
CPLEX Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

test_1 0.91s 22.16% 0.01s 7 87.02% 109.27% 4 26.28% 0.04s 5 85.45% 108.05% 6
test_2 8018.95s 38.10% 0.06s 7 95.02% 101.96% 3 37.62% 0.20s 7 96.76% 101.98% 3
test_3 X 9.28% 0.13s 6 97.79% 102.12% 5 9.31% 0.39s 7 98.17% 102.33% 9
test_4 X 7.14% 0.17s 3 99.02% 100.97% 6 7.14% 0.48s 3 99.02% 100.97% 6
test_5 X 0.2% 0.55s 5 99.62% 100.68% 6 0.49% 1.41s 3 99.54% 100.06% 9
test_6 X 0.21% 0.63s 2 99.72% 100.26% 4 0.31% 1.10s 0 99.67% 100.08% 8
test_7 X 0.18% 0.64s 1 99.80% 100.26% 6 0.25% 1.10s 1 99.78% 100.18% 8
test_8 X 0.13% 0.87s 1 99.86% 100.15% 5 0.18% 1.43s 0 99.81% 100.15% 7
test_9 X 0.07% 1.92s 0 99.82% 100.11% 5 0.09% 2.85s 0 99.83% 100.10% 6
test_10 X 0.09% 3.49s 0 99.94% 100.12% 7 0.09% 4.10s 0 99.94% 100.12% 7
Average / 7.75% 0.84s 32% 97.76% 101.59% 51% 8.17% 1.31s 26% 97.79% 101.40% 69%

From table 5.14, we can notice that LSWPAe algorithm provides better solutions using the
rounding θe3 compared to θe1 with a GAP of 7.87% and 76% of best solutions. We can also
notice that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

From table 5.15, we can notice that PLSWPAe algorithm provides better solutions using
the rounding θe2 compared to θe4 with a GAP of 7.75% and 32% of best solutions. However,
PLSWPAe algorithm provides 69% feasible solutions using θe4 against 51% using θe2. The
energy excess becomes more important in this case, with more than 08% using both roundings
θe2 and θe4 for the first instance size.

Comparing tables 5.14 and 5.15, we can notice that LSWPAe is more efficient than PLSW-
PAe with 76% of best solutions. However, by using more energy than the authorized quantity,
PLSWPAe has a better average GAP, with 7.75% obtained using θe2 against 7.87% for LSWPAe

115

5.6. NUMERICAL RESULTS

obtained using θe3. Furthermore, PLSWPAe is more efficient in term of running time, with
an average of 0.84 seconds using θe2 against 65.42 seconds for LSWPAe using θe1 with P2e

′ ,
and 1.31 seconds using θe4 against 66.30 seconds for LSWPAe using θe3 with P2e

′ . Finally,
LSWPAe is more efficient in energy consumption compared to PLSWPAe, with an average con-
sumption equal to 96.50% using θe1 against 97.76% for PLSWPAe using θe2 (feasible solutions),
and 97.07% using θe3 against 97.79% for PLSWPAe using θe4 (feasible solutions).

For both platforms, we can see that LSWPAe algorithm is impacted by the tightness of the
value of E, where the running time become very important (ex: > 4 minutes for an instance of
1000 tasks in the platform 1).

5.6.6 Average

In table 5.16, we give the average of the tables 5.2, 5.4, 5.6, 5.8, 5.10, 5.12 and 5.14. In table 5.17,
we give the average of the tables 5.3, 5.5, 5.7, 5.9, 5.11, 5.13 and 5.15.

Table 5.16: LSWPAe algorithm evaluation using the list LLP with θe1 and θe3.

Instances LSWPAe algorithm using LLP and θe1 LSWPAe algorithm using LLP and θe3
Gap E-cons Best P1e

′
P2e

′ Gap E-cons Best P1e
′

P2e
′

Table 5.2 5.92% 68.32% 44% 11.68s 8.45s 3.75% 69.63% 86% 12.36s 9.05s
Table 5.4 9.73% 75.61% 74% 4.10s 2.69s 9.70% 75.58% 79% 4.68s 3.19s
Table 5.6 5.40% 82.28% 47% 19.48s 24.85s 3.57% 84.85% 84% 20.83s 39.80s
Table 5.8 9.41% 97.16% 84% 5.17s 3.74s 9.23% 97.40% 78% 6.04s 11.30s
Table 5.10 9.53% 75.12% 73% 8.46s 7.42s 9.03% 75.29% 81% 9.32s 7.05s
Table 5.12 6.21% 90.70% 58% 103.5s 87.42s 4.82% 92.96% 81% 104.22s 87.88s
Table 5.14 8.24% 96.50% 72% 69.96s 65.42s 7.87% 97.07% 76% 70.71s 66.30s
Average 7.77% 83.67% 64.57% 31.76s 28.57s 6.85% 84.68% 80.71% 32.59s 32.08 s

From table 5.16, we can notice that in general, LSWPAe algorithm provides better solutions
using the rounding θe3 compared to θe1 with a GAP of 6.85% and 80.71% of best solutions. We
can also notice that P2e

′ is more efficient than P1e
′ in running time using rounding θe1 or θe3.

Table 5.17: PLSWPAe algorithm evaluation using the list LLP with θe2 and θe4.

Instances PLSWPAe algorithm using LLP and θe2 PLSWPAe algorithm using LLP and θe4
Gap Time Best E-cons E-cons feasible Gap Time Best E-cons E-cons feasible

Table 5.3 6.46% 2.09s 33% 78.53% 103.25% 97% 5.59% 2.43s 50% 78.41% 103.16% 98%
Table 5.5 8.61% 0.60s 63% 76.19% 108.2% 96% 9.20% 0.92s 62% 76.58% 101.45% 98%
Table 5.7 6.65% 0.93s 25% 94.29% 101.52% 64% 5.56% 1.03s 34% 95.29% 101.1% 85%
Table 5.9 8.26% 0.26s 47% 96.95% 102.14% 54% 9.2% 0.37s 45% 98.004% 100.66% 77%
Table 5.11 9.93% 1.81s 62% 76.51% 103.46% 97% 9.97% 2.24s 59% 76.23% 102.07% 98%
Table 5.13 6.81% 1.71s 36% 96.27% 103.16% 53% 7.63% 2.01s 30% 96.43% 102.04% 73%
Table 5.15 7.75% 0.84s 32% 97.76% 101.59% 51% 8.17% 1.31s 26% 97.79% 101.40% 69%
Average 7.78 % 1.17s 42.57% 88.07% 103.3% 73.14% 7.90% 1.47s 43.71% 88.39% 101.69% 85.42%

From table 5.17, we can notice that PLSWPAe algorithm provides better solutions using the
rounding θe2 compared to θe4 with a GAP of 7.78%. However, PLSWPAe algorithm provides
43.71% of the best solutions and 98% feasible solutions using θe4 against 42.57% of the best
solutions and 73.14% feasible solutions using θe2.

Comparing tables 5.16 and 5.17, we can notice that LSWPAe is more efficient than PLSWPAe
with 80.71% of the best solutions and a GAP of 6.85%. However, PLSWPAe is more efficient
in term of running time, with an average of 1.17 seconds using θe2 against 28.57 seconds for
LSWPAe using θe1 with P2e

′ , and 1.47 seconds using θe4 against 32.08 seconds for LSWPAe
using θe3 with P2e

′ .

116

CHAPTER 5.

Furthermore, LSWPAe is more efficient in energy consumption compared to PLSWPAe, with
an average consumption equal to 83.67% using θe1 against 88.07% for PLSWPAe using θe2

(feasible solutions), and 87.68% using θe3 against 88.39% for PLSWPAe using θe4 (feasible
solutions).

In general, it can be said that both methods LSWPAe and PLSWPAe are effective methods
with a general GAP smaller than 8 compared to the lower bound, and thus to the optimal
solution. However, PLSWPAe algorithm has the advantage of being a polynomial time method,
and can handle large instances with an interesting running time. By adding the energy constraint,
we can notice that the running time of LSWPA (LSWPAe by adding the energy constraint)
becomes more important for both platforms 1 and 2. However, the average running time of
PLSWPAe does not differ too much from PLSWPA since both are polynomial.

From table 5.17, the average over-consumption of energy for PLSWPAe is given by E-cons =
3.3% using θe2 and E-cons = 1.69% using θe4. A solution to address this excess (if it is considered
unacceptable), is to use PLSWPAe algorithm by fixing the amount of energy to Ê which must be
smaller than E. Thus, PLSWPAe may provide a feasible solution with an energy consumption
larger than Ê but smaller than E. Otherwise, the value of Ê must be decreased until a feasible
solution is found.

5.7 Conclusion

This chapter presents two efficient algorithms to solve the problem of scheduling parallel appli-
cations on hybrid platforms with communication delays. The objective is to minimize the total
execution time (makespan) respecting an energy constraint.

First, we modified LSWPA algorithm to provide a 6-approximation algorithm LSWPAe with
two phases: mapping then assignment. For the first phase, two models and two rounding strate-
gies have been proposed for the mapping which respects the energy constraint. In the second
phase, a list scheduling algorithm has been proposed to generate a feasible schedule. LSWPAe
algorithm guarantees a ratio of 6 compared to the optimal solution using the rounding strategy
θe1. This method was published in [110].

Then, we modified PLSWPA algorithm to provide a polynomial three-phase algorithm
PLSWPAe: the first two phases consist in solving linear models to find the type of processor
assigned to execute each task. We obtain a mapping that consumes at most twice the amount
of authorized energy. In the third phase, we compute the starting execution time of each task to
generate a feasible schedule.

Tests on large instances demonstrated the efficiency of our methods and shows the limits of
solving the problem with a solver such as CPLEX.

We proved by lemma 20 that the energy consumption of PLSWPAe algorithm using the
mapping θe2 is smaller than 2E

′ . However, experimental results showed that on average, the
energy excess is not very important (less than 0.1E

′ in general). Thus, it will be interesting to
investigate this rounding strategy to provide another polynomial one, which may respect the
energy constraint.

As part of the future, it will be also interesting to study the tightness of LSWPAe (resp.
PLSWPAe) algorithm using rounding θe3 (resp.θe4) which provide interesting solutions.

An extension to more general heterogeneous platforms with more than two types of processors
is also interesting. The challenge is to find a good adaptation of the pre-allocation policy if we
have more than two types of processing elements.

117

5.7. CONCLUSION

118

Chapter

6
Conclusion

In this thesis, we have studied two of the main challenges for parallel computing: makespan
and energy performance. The objective is to find a generic approach to schedule parallel
applications presented with graphs of type DAG (Directed Acyclic Graph) on a heterogeneous
resource system in order to minimize both the total execution time (makespan) and the energy
consumption. For this purpose, we introduced a constraint on the total energy consumed
by the platform. We designed many efficient heuristics with a performance guarantee on
general problems that were shown NP-complete beforehand. We first gave a brief overview
of heterogeneous platforms, in particular fully heterogeneous and hybrid platforms, and the
challenges associated with their use. We have shown that the fully heterogeneous platforms
represent an interesting solution to execute complex applications, enclosing great computation
capability. In particular, the hybrid platforms, which are increasingly used in the field of HPC,
combining multi-core processors and hardware accelerators such as GPUs. We then discussed
the two main scheduling strategies in the literature, namely dynamic and static scheduling.
Then, we have discussed the limits of DVFS and DPM techniques, and the reliability problems
related to their use. Our main contributions are stated in the following paragraphs.

As a first contribution, we presented in chapter 2 an efficient approximation scheduling al-
gorithm on uniform machines (Consistent model) for the particular case of linear chains of tasks
(sequential applications). Each processing element pk ∈M is characterized by its execution fre-
quency fk > 1, k = 1..m. Each task ti is characterized by its weight wi, i = 1..n. The execution
of a task ti on a processing element pk generates an execution time wi,k = wi

fk
and an energy con-

sumption ei,k = wi∗f2
k . The objective is to minimize the total execution time (makespan) respect-

ing an energy constraint on the total energy consumed by the system (Qm|chain,E, com|Cmax).
This model is motivated by the fact that computation platforms can contain processors of the
same architecture, but with different versions (as an example, Intel CoreTM i3-4150 Processor
and Intel CoreTM i7-6700 Processor). The execution time of the different tasks of the same appli-
cation (same code with the same programming language, same compiler, identical configuration
and so on) on different processors may be relative.

This work has shown that finding the optimal scheduling is not easy. Tests on large instances
close to reality shows the limits of solving the problem with a solver such as CPLEX. The
main contribution of this work is an algorithm which provides a good solution (usually very
close to the optimal solution) with small running time, and also guarantees the quality of
the solution obtained compared to the optimal solution. The ratio obtained depends on the
frequencies of two successive processing elements pk and pk+1 used to provide the an optimal
preemptive scheduling. We proved that the ratio between Ĉmax the solution obtained by using
NPS algorithm 2 and the optimal solution C?max can be bounded by the ratio between the
frequencies of these two processing elements, i.e., ĈmaxC?max

6 fk+1

fk
.

Then, we studied the problem of scheduling parallel applications onto a particular case of
HPC which is known as hybrid platforms. Specifically, our platform consists of two types (A and
B) of processing elements (e.g. CPU+GPU). For any task ti, wi,A (resp. wi,B) is the execution

time of ti on a processor of type A (resp. B). In this model, we consider the more general
case where the relation between the two types of processing elements can differ for different
tasks (inconsistent model). The consistent model represents a particular case of the inconsistent
model which considered as a more generic model. We assume that there are no communication
delays between the processors of the same type. This assumption is motivated by tightly coupled
multiprocessor systems which contain multiple processing elements that are connected and may
have access to a central shared memory. This may make the communication cost negligible. The
aim is to find a schedule that minimizes the completion time by respecting precedence constraints
with communication costs and respecting an energy constraint.

In addition to the theoretical interest of scheduling on unrelated parallel machines, this
model is motivated by the fact that computation platforms can contain processors of different
architectures (the number of registers, the structure of memory hierarchy, the size of each memory
level and so on). Even different applications of the same narrow class may be executed by
two different processors at significantly different relative speeds. Moreover, not all processing
elements can be programmed in the same language. Several programming models were developed
for general computing on graphical processing units (GPUs) like CUDA (Compute Unified Device
Architecture) and OpenCL (Open Computing Language).

For platforms composed of an unlimited number of two types of processors, we have shown
in Chapter 3 the intractability of the problem by reducing this problem to the 3-satisfiability
problem. We proved that the scheduling problem (P, P)|prec, com|Cmax is NP-Complete even
for graphs of depth 3. We also proved that there does not exist 3/2-approximation algorithms
unless P=NP. Finally, we provided some polynomial time algorithms for special cases of graphs:
Bi-partite graphs, trees and series-parallel graphs.

For hybrid platforms composed of a limited number of two types of processing elements,
we presented in Chapter 4 two efficient algorithms that minimize the total execution time
((P`, Pk)|prec, com|Cmax). First, we proposed a non polynomial 6-approximation algorithm
LSWPA with two phases: mapping then assignment. Two models and two rounding strategies
have been proposed for the mapping. In the second phase, a list scheduling algorithm has been
proposed to generate a feasible schedule using several lists. LSWPA algorithm guarantees a ratio
of 6 compared to the optimal solution using the rounding strategy θ1. Then we proposed a
polynomial three-phase algorithm PLSWPA: the first two phases consist in solving linear models
to find the type of processor assigned to execute each task. In the third phase, we compute the
start execution time of each task to generate a feasible schedule.

Finally, we presented in Chapter 5 two efficient algorithms to solve the problem of
scheduling parallel applications on hybrid platforms by adding an energy bound E. The
objective is to minimize the total execution time (makespan) respecting an energy con-
straint ((P`, Pk)|prec, com,E|Cmax). First, we modified LSWPA algorithm to provide a 6-
approximation algorithm LSWPAe with two phases: mapping then assignment. Two models
and two rounding strategies have been proposed for the mapping which respects the energy con-
straint. In the second phase, a list scheduling algorithm has been proposed to generate a feasible
schedule. LSWPAe algorithm guarantees a ratio of 6 compared to the optimal solution using the
rounding strategy θe1. Then, we modified PLSWPA algorithm to provide a polynomial three-
phase algorithm PLSWPAe: the first two phases consist in solving linear models to find the type
of processor assigned to execute each task. We obtain a mapping that consumes at most twice
the amount of authorized energy. In the third phase, we compute the start execution time of
each task to generate a feasible schedule. We proved that the energy consumption of PLSWPAe
algorithm is smaller than 2E. However, experimental results showed that on average, the energy
excess is not very important (less than 0.1E

′ in general).
Tests on large instances demonstrated the efficiency of our methods and shows the limits of

solving the problem with a solver such as CPLEX. Furthermore, we have given in this thesis
great attention to performance guarantees. All the proposed methods guarantee performance in

120

CHAPTER 6.

the worst case (with a fixed or relative ratio).

Throughout the thesis, we pointed out at the end of each chapter some future work that
remains to be done. Those, along with the following three main directions for each part form
the immediate research that could follow the thesis in the short term.

Chapter 2 presents an efficient approximation algorithm to solve scheduling tasks problem
on heterogeneous platforms containing uniforms processing elements for the particular case of
linear chains of tasks (sequential applications). The objective is to minimize the total execution
time (makespan) respecting an energy constraint on the total energy consumed by the system
(Qm|chain,E, com|Cmax).

The use of the preemptive scheduling has proven to be effective for an application represented
by a linear chain of tasks. As part of the future, it could be interesting to focus on more general
classes of graphs like DAG. Using the same approach on all graph paths (chains of tasks) could
provide an effective method. Furthermore, it could be interesting to test NPS algorithm on real
sequential applications en real platforms.

For this model, we consider the more general case where the relation between processing
elements can differ for different tasks. Thus we have to take into account that the execution time
for any task of the application depends on the processor used to execute it. The aim is to find a
schedule on m unrelated machines (two types) that minimizes the completion time by respecting
precedence constraints with communication costs and respecting an energy constraint.

In Chapter 3, we treated the problem with unlimited processing elements without energy
constraint. There are several extensions that we can see to this work. One direction we are
interested by, is a version of this problem where only one type has an unbounded number of
resources, and where the data is located on the other one. For example, in the context of
smartphone applications, we can model the frontend/backend context where the phone (Machine
1) has a limited number of available processors, but can rely on sending some of the computation
on a backend machine (cloud-based), with an unbounded number of processors. Similarly to
here, the problem is a data and communication problem: given the cost to transfer data from one
machine to the other one, what is the most efficient strategy?. In the context of two unbounded
platforms, it would be interesting to find some polynomial time algorithms with proven bounds
to the optimal solution. We do not expect to be able to find one in the general case, but we hope
that with some constraints between the communication costs and computation cost, one may be
able to find such algorithms.

In Chapter 4, we treated the problem with limited processing elements. A proof of the
performance guarantee for PLSWPA algorithm was initiated. The ratio between the solution
Ĉmax1 obtained by PLSWPA algorithm and the optimal scheduling solution C?max is given by
Ĉmax1 < 6αC?max, with α > 1. In future works, it will be interesting to find the value of α to
have a fixed bound on the ratio between Ĉmax1 and C?max.

In Chapter 5, we proposed two algorithms LSWPAe and PLSWPAe to solve the problem with
an energy constraint. We proved that the energy consumption of PLSWPAe algorithm using the
mapping θe2 is smaller than 2E. However, experimental results showed that on average, the
energy excess is not very important (less than 0.1E

′ in general). Thus, it will be interesting to
investigate this rounding strategy to provide another polynomial one, which may respect the
energy constraint.

Experimental results showed that LSWPA and PLSWPA algorithms using rounding θ3 and
LSWPAe (resp. PLSWPAe) algorithm using rounding θe3 (resp.θe4) provide interesting solu-
tions. Thus, it will be also interesting study the tightness of LSWPA and PLSWPA algorithms
using rounding θ3. It will be also interesting study the tightness of LSWPAe (resp. PLSWPAe)
algorithm using rounding θe3 (resp.θe4).

121

An extension to more general heterogeneous platforms with more than two types of processor
is also interesting. The different algorithms proposed in the literature do not allow the possibility
of finding a performance guarantee. We showed that pre-allocation policy is efficient to deal with
all graph paths together, and make the decisions that arrange the greatest number of tasks. This
technique gives more possibilities to provide a performance guarantee. The challenge is to find
a good adaptation of this policy if we have more than two types of processing elements.

Finally, in this thesis we proposed efficient static methods, so that their association with
dynamics methods will give the most efficient solution as possible. It will be interesting to test
these methods on real applications, with the association to several dynamic methods to find the
most efficient hybrid method.

122

Bibliography

[1] Linshan Shen and Tae-Young Choe. Posterior task scheduling algorithms for heterogeneous
computing systems. In International Conference on High Performance Computing for
Computational Science, pages 172–183. Springer, 2006.

[2] E Ilavarasan, P Thambidurai, and R Mahilmannan. High performance task scheduling
algorithm for heterogeneous computing system. In ICA3PP, volume 2005, pages 193–203.
Springer, 2005.

[3] Shaikhah AlEbrahim and Imtiaz Ahmad. Task scheduling for heterogeneous computing
systems. The Journal of Supercomputing, 73(6):2313–2338, 2017.

[4] Anne Benoit, Loïc Pottier, and Yves Robert. Resilient co-scheduling of malleable appli-
cations. The International Journal of High Performance Computing Applications, 32(1):
89–103, 2018.

[5] Stavan Satish Karia. Alternative Processor within Threshold: Flexible Scheduling on Het-
erogeneous Systems. Rochester Institute of Technology, 2017.

[6] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin, Jonathan
Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William Lintner. United
states data center energy usage report. 2016.

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,
and Jack J Dongarra. Parsec: Exploiting heterogeneity to enhance scalability. Computing
in Science & Engineering, 15(6):36–45, 2013.

[8] Nikola Rajovic, Alejandro Rico, Filippo Mantovani, Daniel Ruiz, Josep Oriol Vilarrubi,
Constantino Gomez, Luna Backes, Diego Nieto, Harald Servat, Xavier Martorell, et al. The
mont-blanc prototype: An alternative approach for hpc systems. In SC’16: Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 444–455. IEEE, 2016.

[9] René Griessl, Meysam Peykanu, Jens Hagemeyer, Mario Porrmann, Stefan Krupop, Lars
Kosmann, Patrick Knocke, Michal Kierzynka, Ariel Oleksiak, et al. Fpga-accelerated het-
erogeneous hyperscale server architecture for next-generation compute clusters. 2015.

[10] Lilia Zaourar, Massinissa Ait aba, David Briand, and Jean-Marc Philippe. Task man-
agement on fully heterogeneous micro-server system: Modeling and resolution strategies.
Concurrency and Computation: Practice and Experience, 30(23):e4798, 2018.

[11] Fips consortium. FiPS project website - http://fips-project.eu/ .

[12] L. Lacassagne, D. Etiemble, A Hassan-Zahraee, A. Dominguez, and P. Vezolle. High level
transforms for SIMD and low-level computer vision algorithms. In ACM Workshop on
Programming Models for SIMD/Vector Processing (PPoPP), pages 49–56, 2014.

BIBLIOGRAPHY

[13] H. Ye, L. Lacassagne, J. Falcou, D. Etiemble, L. Cabaret, and O. Florent. High level
transforms to reduce energy consumption of signal and image processing operators. In IEEE
International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 247–254, 2013.

[14] A. Petreto, A. Hennequin, , T. Koehler, T. Romera, Y. Fargeaix, B. Gaillard, M. Bouyer,
Q. L. Meunier, and L. Lacassagne. Energy and execution time comparison of optical flow
algorithms on SIMD and GPU architectures. In IEEE International Conference on Design
and Architectures for Signal and Image Processing (DASIP), pages 1–6, 2018.

[15] A. Petreto, T. Romera, F. Lemaitre, I. Masliah, B. Gaillard, M. Bouyer, Q. L. Meunier, and
L. Lacassagne. A new real-time embedded video denoising algorithm. In IEEE International
Conference on Design and Architectures for Signal and Image Processing (DASIP), pages
1–6, 2019.

[16] A. Petreto, T. Romera, F. Lemaitre, Manuel Bouyer, B. Gaillard, P. Menard, Q. Meu-
nier, and L. Lacassagne. Real-time embedded video denoiser prototype. In International
Symposium on Optronics in Defense and Security (Optro), pages 1–8, 2020.

[17] N. Rambaux, J. Vaubaillon, L. Lacassagne, D. Galayko, G. Guignan, M. Birlan,
M. Capderou, F. Colas, F. Deleflie, F. Deshours, A. Hauchecorne, P. Keckhut, A.C.
Levasseurd-Regourd, J.L. Rault, and B. Zanda. Meteorix: a cubesat mission dedicated
to the detection of meteors and space debris. In ESA Space Safety Programme Office,
NEO and Debris Detection Conference (ESA NDDC), pages 1–9, 2019.

[18] Hassan Barada, Sadiq M Sait, and Naved Baig. Task matching and scheduling in hetero-
geneous systems using simulated evolution. 2001.

[19] Shoukat Ali, Jong-Kook Kim, Howard Jay Siegel, Anthony A Maciejewski, Yang Yu, Shri-
ram B Gundala, Sethavidh Gertphol, and Viktor K Prasanna. Greedy heuristics for re-
source allocation in dynamic distributed real-time heterogeneous computing systems. In
PDPTA, pages 519–530, 2002.

[20] Oliver Sinnen. Task scheduling for parallel systems, volume 60. John Wiley & Sons, 2007.

[21] Emmanuel Agullo, Berenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner,
and Toru Takahashi. Task-based fmm for heterogeneous architectures. Concurrency and
Computation: Practice and Experience, 28(9):2608–2629, 2016.

[22] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
Starpu: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 2011.

[23] Olivier Beaumont, Lionel Eyrauld-Dubois, Abdou Guermouche, and Thomas Lambert.
Comparison of static and runtime resource allocation strategies for matrix multiplication.
In 2015 27th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 170–177. IEEE, 2015.

[24] Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj Kumar. Are static
schedules so bad? a case study on cholesky factorization. In Parallel and Distributed
Processing Symposium, pages 1021–1030. IEEE, 2016.

[25] Lionel Eyraud-Dubois and Thomas Lambert. Using static allocation algorithms for matrix
matrix multiplication on multicores and gpus. In ICPP 2018-47th International Conference
on Parallel Processing, 2018.

124

BIBLIOGRAPHY

[26] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE transactions on parallel
and distributed systems, 13(3):260–274, 2002.

[27] Abdessamad Ait El Cadi, Omar Souissi, Rabie Ben Atitallah, Nicolas Belanger, and Ab-
delhakim Artiba. Mathematical programming models for scheduling in a cpu/fpga archi-
tecture with heterogeneous communication delays. Journal of Intelligent Manufacturing,
29(3):629–640, 2018.

[28] R Giroudeau and JC König. Scheduling with communication delays. In Multiprocessor
scheduling, theory and applications. IntechOpen, 2007.

[29] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and System
sciences, 10(3):384–393, 1975.

[30] Damien Prot and Odile Bellenguez-Morineau. A survey on how the structure of precedence
constraints may change the complexity class of scheduling problems. Journal of Scheduling,
21(1):3–16, 2018.

[31] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling: a survey. In
Annals of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

[32] Peter Brucker. Scheduling algorithms. new york: Springer. 2007.

[33] Sergio Nesmachnow, Bernabé Dorronsoro, Johnatan E Pecero, and Pascal Bouvry. Energy-
aware scheduling on multicore heterogeneous grid computing systems. Journal of grid
computing, 11(4):653–680, 2013.

[34] Jing Mei and Kenli Li. Energy-aware scheduling algorithm with duplication on hetero-
geneous computing systems. In Proceedings of the 2012 ACM/IEEE 13th International
Conference on Grid Computing, pages 122–129. IEEE Computer Society, 2012.

[35] Qingjia Huang, Sen Su, Jian Li, Peng Xu, Kai Shuang, and Xiao Huang. Enhanced
energy-efficient scheduling for parallel applications in cloud. In 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 781–
786. IEEE, 2012.

[36] Sanjeev Baskiyar and Kiran Kumar Palli. Low power scheduling of dags to minimize
finish times. In International Conference on High-Performance Computing, pages 353–
362. Springer, 2006.

[37] Nirmal Kaur, Savina Bansal, and Rakesh Kumar Bansal. Towards energy efficient schedul-
ing with dvfs for precedence constrained tasks on heterogeneous cluster system. In 2015
2nd International Conference on Recent Advances in Engineering & Computational Sci-
ences (RAECS), pages 1–6. IEEE, 2015.

[38] Yan Ma, Bin Gong, and Lida Zou. Energy-efficient scheduling algorithm of task dependent
graph on dvs-unable cluster system. In 2009 10th IEEE/ACM International Conference
on Grid Computing, pages 217–224. IEEE, 2009.

[39] Vishnu Swaminathan and Krishnendu Chakrabarty. Pruning-based, energy-optimal, deter-
ministic i/o device scheduling for hard real-time systems. ACM Transactions on Embedded
Computing Systems (TECS), 4(1):141–167, 2005.

[40] Johnson D.S. Garey, M.R. Computers and intractability: A guide to the theory of np-
completeness. pages 238–239. W.H. Freeman and Co., 1979.

125

BIBLIOGRAPHY

[41] Guillaume Pallez (Aupy) and Anne Benoit. Approximation algorithms for energy, relia-
bility, and makespan optimization problems. Parallel Processing Letters, 26(01):1650001,
2016.

[42] Guoqi Xie, Xiongren Xiao, Renfa Li, and Keqin Li. Schedule length minimization of
parallel applications with energy consumption constraints using heuristics on heterogeneous
distributed systems. Concurrency and Computation: Practice and Experience, 2016.

[43] Young Choon Lee and Albert Y Zomaya. Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling. In Cluster Computing and the Grid,
2009. CCGRID’09. 9th IEEE/ACM International Symposium on, pages 92–99. IEEE, 2009.

[44] Vasanth Venkatachalam and Michael Franz. Power reduction techniques for microprocessor
systems. ACM Computing Surveys (CSUR), 37(3):195–237, 2005.

[45] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao.
Energy-aware server provisioning and load dispatching for connection-intensive internet
services. In NSDI, volume 8, pages 337–350, 2008.

[46] Nirmal Kaur, Savina Bansal, and Rakesh Kumar Bansal. Duplication-controlled static
energy-efficient scheduling on multiprocessor computing system. Concurrency and Com-
putation: Practice and Experience, 29(12):e4124, 2017.

[47] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: The laws of
diminishing returns. In Proceedings of the 2010 international conference on Power aware
computing and systems, pages 1–8, 2010.

[48] Adam Manzanares. Energy Efficient Pre-Fetching-Models to Implementation. PhD thesis,
2010.

[49] Milad Ghorbani Moghaddam, Alexandre Yamamoto, and Cristinel Ababei. Investigation of
dvfs based dynamic reliability management for chip multiprocessors. In 2015 International
Conference on High Performance Computing & Simulation (HPCS), pages 563–568. IEEE,
2015.

[50] Jack Dongarra and Alexey L Lastovetsky. High performance heterogeneous computing,
volume 78. John Wiley & Sons, 2009.

[51] Wieslaw Kubiak. Optimal scheduling of unit-time tasks on two uniform processors under
tree-like precedence constraints. Zeitschrift für Operations Research, 33(6):423–437, 1989.

[52] Wei-Chang Yeh, Mei-Chi Chuang, and Wen-Chiung Lee. Uniform parallel machine schedul-
ing with resource consumption constraint. Applied Mathematical Modelling, 39(8):2131–
2138, 2015.

[53] Nvidia. embedded systems developer kits and modules. online at
http://www.nvidia.com/object/embeddedsystemsdev-kits-modules.html.

[54] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard
for heterogeneous computing systems. Computing in science & engineering, 12(3):66, 2010.

[55] Min Ji and TC Edwin Cheng. An fptas for parallel-machine scheduling under a grade of
service provision to minimize makespan. Information Processing Letters, 108(4):171–174,
2008.

126

BIBLIOGRAPHY

[56] Christos Koulamas and George J Kyparisis. A modified lpt algorithm for the two uni-
form parallel machine makespan minimization problem. European Journal of Operational
Research, 196(1):61–68, 2009.

[57] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

[58] Min Ji, Jen-Ya Wang, and Wen-Chiung Lee. Minimizing resource consumption on uniform
parallel machines with a bound on makespan. Computers & Operations Research, 40(12):
2970–2974, 2013.

[59] Eugene Leighton Lawler. Preemptive scheduling of. precedence-constrained jobs on parallel
machines. In Deterministic and stochastic scheduling, pages 101–123. Springer, 1982.

[60] Teofilo Gonzalez and Sartaj Sahni. Preemptive scheduling of uniform processor systems.
Journal of the ACM (JACM), 25(1):92–101, 1978.

[61] Peter Brucker, Johann Hurink, and Wieslaw Kubiak. Scheduling identical jobs with chain
precedence constraints on two uniform machines. Mathematical methods of operations
research, 49(2):211–219, 1999.

[62] Fabián A Chudak and David B Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds. Journal
of Algorithms, 30(2):323–343, 1999.

[63] Wieslaw Kubiak, Bernard Penz, and Denis Trystram. Scheduling chains on uniform pro-
cessors with communication delays. Journal of Scheduling, 5(6):459–476, 2002.

[64] Te C Hu. Parallel sequencing and assembly line problems. Operations research, 9(6):
841–848, 1961.

[65] Vadim G Timkovsky. Identical parallel machines vs. unit-time shops and preemptions
vs. chains in scheduling complexity. European Journal of Operational Research, 149(2):
355–376, 2003.

[66] Chandra Chekuriy and Michael Benderz. An efficient approximation algorithm for mini-
mizing makespan on uniformly related machines. Optimization (IPCO), page 1, 1998.

[67] Gerhard J Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Operations Research Letters, 26(3):107–109, 2000.

[68] Klaus Jansen and Roberto Solis-Oba. Approximation algorithms for scheduling jobs with
chain precedence constraints. In International Conference on Parallel Processing and Ap-
plied Mathematics, pages 105–112. Springer, 2003.

[69] IBM. Ibm ilog cplex v12.5 user’s manual for cplex, http://www.ibm.com. 2013.

[70] Massinissa Ait Aba, Lilia Zaourar, and Alix Munier. Approximation algorithm for schedul-
ing a chain of tasks on heterogeneous systems. In In Proceedings of the 23rd International
European Conference on Parallel and Distributed Computing (Euro-Par’17), Parallel Pro-
cessing Workshops, pages 353–365. Springer, 2017.

[71] M Asch, T Moore, R Badia, M Beck, P Beckman, T Bidot, F Bodin, F Cappello,
A Choudhary, B de Supinski, et al. Big data and extreme-scale computing: Pathways
to convergence-toward a shaping strategy for a future software and data ecosystem for sci-
entific inquiry. The International Journal of High Performance Computing Applications,
32(4):435–479, 2018.

127

BIBLIOGRAPHY

[72] Xi Yang, Chengkun Wu, Kai Lu, Lin Fang, Yong Zhang, Shengkang Li, Guixin Guo, and
YunFei Du. An interface for biomedical big data processing on the tianhe-2 supercomputer.
Molecules, 22(12), 2017. ISSN 1420-3049. doi: 10.3390/molecules22122116.

[73] Ioan Raicu, Ian T Foster, and Yong Zhao. Many-task computing for grids and super-
computers. In Many-Task Computing on Grids and Supercomputers, 2008. MTAGS 2008.
Workshop on, pages 1–11. IEEE, 2008.

[74] Csanad Imreh. Scheduling problems on two sets of identical machines. Computing, 70(4):
277–294, 2003.

[75] Louis-Claude Canon, Loris Marchal, and Frédéric Vivien. Low-Cost Approximation Algo-
rithms for Scheduling Independent Tasks on Hybrid Platforms. In Euro-Par 2017: 23rd
International European Conference on Parallel and Distributed Computing, Santiago de
Compostela, Spain, August 2017. Springer. URL https://hal.inria.fr/hal-01559898.

[76] Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram. A family of
scheduling algorithms for hybrid parallel platforms. International Journal of Foundations
of Computer Science, 29(01):63–90, 2018.

[77] Safia Kedad-Sidhoum, Florence Monna, and Denis Trystram. Scheduling tasks with prece-
dence constraints on hybrid multi-core machines. In IPDPSW, pages 27–33. IEEE, 2015.

[78] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trystram. Generic algo-
rithms for scheduling applications on hybrid multi-core machines. In European Conference
on Parallel Processing, pages 220–231. Springer, 2017.

[79] TH Cormen, CE Leiserson, RL Rivest, and C Stein. Introduction to algorithms, chap. 16.
Greedy Algorithms. MIT Press, Cambridge, 2001.

[80] Rashmi Bajaj and Dharma P Agrawal. Improving scheduling of tasks in a heterogeneous
environment. IEEE Transactions on Parallel and Distributed Systems, 15(2):107–118, 2004.

[81] Jean-Yves Colin and Philippe Chrétienne. Cpm scheduling with small communication
delays and task duplication. Operations Research, 39(4):680–684, 1991.

[82] Sekhar Darbha and Dharma P Agrawal. Optimal scheduling algorithm for distributed-
memory machines. IEEE transactions on parallel and distributed systems, 9(1):87–95, 1998.

[83] Chan-Ik Park and Tae-Young Choe. An optimal scheduling algorithm based on task du-
plication. In Parallel and Distributed Systems, 2001. ICPADS 2001. Proceedings. Eighth
International Conference on, pages 9–14. IEEE, 2001.

[84] Annie S Wu, Han Yu, Shiyuan Jin, K-C Lin, and Guy Schiavone. An incremental ge-
netic algorithm approach to multiprocessor scheduling. IEEE Transactions on parallel and
distributed systems, 15(9):824–834, 2004.

[85] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406–471, 1999.

[86] Denis Barthou and Emmanuel Jeannot. Spaghetti: Scheduling/placement approach for
task-graphs on heterogeneous architecture. In Euro-Par 2014 Parallel Processing, pages
174–185. Springer International Publishing, 2014.

[87] Cristina Boeres, Vinod EF Rebello, et al. A cluster-based strategy for scheduling task on
heterogeneous processors. In Computer Architecture and High Performance Computing.
SBAC-PAD 2004. 16th Symposium on, pages 214–221. IEEE, 2004.

128

https://hal.inria.fr/hal-01559898

BIBLIOGRAPHY

[88] Tao Yang and Apostolos Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9):951–
967, 1994.

[89] Michael R Garey and David S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

[90] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira. Dag scheduling us-
ing a lookahead variant of the heterogeneous earliest finish time algorithm. In Parallel,
Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International Con-
ference on, pages 27–34. IEEE, 2010.

[91] Minhaj Ahmad Khan. Scheduling for heterogeneous systems using constrained critical
paths. Parallel Computing, 38(4-5):175–193, 2012.

[92] Hamid Arabnejad and Jorge G Barbosa. List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table. IEEE Transactions on Parallel and Distributed Systems,
25(3):682–694, 2014.

[93] Sunita Kushwaha and Sanjay Kumar. An investigation of list heuristic scheduling algo-
rithms for multiprocessor system. IUP Journal of Computer Sciences, 11(2), 2017.

[94] Huijun Wang and Oliver Sinnen. List-scheduling vs. cluster-scheduling. IEEE Transactions
on Parallel and Distributed Systems, 2018.

[95] Jan Karel Lenstra, David B Shmoys, and Eva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271, 1990.

[96] Rodolphe Giroudeau, Jean-Claude Konig, Farida Kamila Moulai, and Jérôme Palaysi.
Complexity and approximation for precedence constrained scheduling problems with large
communication delays. Theoretical Computer Science, 401(1-3):107–119, 2008.

[97] Tao Yang and Apostolos Gerasoulis. A fast static scheduling algorithm for dags on an
unbounded number of processors. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 633–642. ACM, 1991.

[98] Olivier Beaumont, Louis-claude Canon, Lionel Eyraud-Dubois, Giorgio Lucarelli, Loris
Marchal, Clément Mommessin, Bertrand Simon, and Denis Trystram. Scheduling on two
types of resources: a survey. arXiv preprint arXiv:1909.11365, 2019.

[99] Donald E Knuth. Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional, 2014.

[100] Gary Gordon and Elizabeth McMahon. A greedoid polynomial which distinguishes rooted
arborescences. Proceedings of the American Mathematical Society, 107(2):287–298, 1989.

[101] Robert E. Tarjan Valdes, Jacobo and Eugene L. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982. doi: 10.1137/0211023. URL
https://doi.org/10.1137/0211023.

[102] B. Schoenmakers. A new algorithm for the recognition of series parallel graphs. CWI report.
CS-R. CWI, 1995.

[103] Massinissa Ait aba, Guillaume Pallez (Aupy), and Alix Munier-Kordon. Scheduling on two
unbounded resources with communication costs. In In International European Conference
on Parallel and Distributed Computing (Euro-Par), 2019.

129

https://doi.org/10.1137/0211023

BIBLIOGRAPHY

[104] Massinissa Ait aba, Guillaume Pallez (Aupy), and Alix Munier-Kordon. Scheduling on
Two Unbounded Resources with Communication Costs. Research Report RR-9264, Inria,
March 2019. URL https://hal.inria.fr/hal-02076473.

[105] Henan Zhao and Rizos Sakellariou. An experimental investigation into the rank function
of the heterogeneous earliest finish time scheduling algorithm. In European Conference on
Parallel Processing, pages 189–194. Springer, 2003.

[106] Minhaj Ahmad Khan. Task scheduling for heterogeneous systems using an incremental
approach. The Journal of Supercomputing, 73(5):1905–1928, 2017.

[107] Massinissa Ait aba, Lilia Zaourar, and Alix Munier. Approximation algorithm for schedul-
ing applications on hybrid multi-core machines with communications delays. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
36–45. IEEE, 2018.

[108] Bruno Bodin, Youen Lesparre, Jean-Marc Delosme, and Alix Munier-Kordon. Fast and
efficient dataflow graph generation. In Proceedings of the 17th International Workshop on
Software and Compilers for Embedded Systems. ACM, 2014.

[109] Michael R Garey and David S Johnson. Computers and intractability. a guide to the theory
of np-completeness. a series of books in the mathematical sciences, 1979.

[110] Massinissa Ait aba, Lilia Zaourar, and Alix Munier. Efficient algorithm for scheduling
parallel applications on hybrid multi-core machines with communications delays and energy
constraint. Concurrency and Computation: Practice and Experience, 2019.

130

https://hal.inria.fr/hal-02076473

BIBLIOGRAPHY

131

	Contents
	Symbols and Acronyms
	Abstract
	Introduction
	Preliminary notions and context
	Introduction
	Platform architectures
	Fully heterogeneous platform
	Hybrid platform (GPU/CPU)

	Scheduling strategies
	Application and platform models
	Energy model
	DVFS and DPM techniques
	Consistent model
	Inconsistent model

	Conclusion

	Scheduling sequential applications (chain of tasks) on heterogeneous platforms
	Introduction
	Related work
	Mathematical model
	Optimal scheduling algorithm for a chain of preemptive tasks
	An approximation scheduling algorithm for chain of non-preemptive tasks with communication costs
	Experimental results
	Conclusion

	Scheduling parallel applications on hybrid platforms with an unlimited number of processors
	Introduction
	Notations
	Related work
	Complexity
	Bi-partite graphs
	Trees
	Series-Parallel graphs
	Conclusion

	Hybrid platform with a limited number of processors
	Introduction
	Mathematical model
	Basic List Scheduling algorithm (without pre-allocation)
	The Heterogeneous-Earliest-Finish-Time (HEFT) Algorithm
	Lookahead scheduling
	Predict Earliest Finish Time algorithm (PEFT)
	INCremental Subgraph Earliest Finish Time algorithm (INCSEFT)

	Basic List Scheduling algorithm with pre-allocation
	List Scheduling algorithm With Pre-Allocation (LSWPA)
	Polynomial List Scheduling With Pre-Allocation (PLSWPA)

	Numerical results
	Benchmark
	LSWPA algorithm compared to HEFT algorithm
	Best value of for the rounding 3
	LSWPA algorithm evaluation using different mappings
	PLSWPA compared to LSWPA and HEFT algorithms
	PLSWPA compared to LSWPA and HEFT algorithms using only one processor of type A
	PLSWPA compared to LSWPA and HEFT algorithms with consistent model
	Comparison between PLSWPA, LSWPA and HEFT algorithms

	Conclusion

	Hybrid platform with a limited number of processors with energy constraint
	Introduction
	Complexity
	Mathematical model
	List Scheduling algorithm With Pre-Allocation (LSWPAe)
	Polynomial List Scheduling algorithm With Pre-Allocation (PLSWPAe)
	Numerical results
	Benchmark
	PLSWPAe compared to LSWPAe algorithm
	PLSWPAe compared to LSWPAe algorithm if the execution time of each task is related to its energy consumption
	comparing PLSWPAe and LSWPAe algorithms using only one processor of type A
	PLSWPAe compared to LSWPAe algorithm when E is tight
	Average

	Conclusion

	Conclusion
	Bibliography

