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devant le Jury composé de :
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ABSTRACT

Optimizing Resource Utilization in Distributed Computing Systems

for Automotive Applications

Anthony NASSAR
University of Bourgogne-Franche-Comté, 2020

Supervisors: Ahmed Mostefaoui, François Dessables

One of the main challenges for the automobile industry in the digital age is to pro-

vide their customers with a reliable and ubiquitous level of connected service, which is

increasingly expected and has become the norm in recent years. As we have today’s

smartphones and smart fridges, the automotive world would not be an exception. Smart

cars have been entering the market for a few years now to offer drivers and passengers

safer, more comfortable journeys, and especially more entertaining. All this by designing,

behind the scenes, high-performance IT systems while economizing these resources.

This CIFRE thesis, conducted in collaboration with Groupe PSA, a French automobile

manufacturer that includes the automobile brands Citroën, DS Automobiles, Peugeot, as

well as Opel and Vauxhall, aims to improve the allocation of platform resources through

new sources of relevant information.

The Connected Vehicle concept, which appeared in the 2000s, and consisted of

equipping vehicles with a layer of intelligence by connecting them to digital knowledge

networks, the Internet, gave automakers the ability to offer new services to drivers.

The performance of a Big Data architecture in the automotive industry relies on

keeping up with the growing trend of connected vehicles and maintaining a high quality of

service. The PSA Cloud has a particular load when it comes to providing a real-time data

processing service for all the brand’s connected vehicles. With around 200k connected

vehicles sold each year, the infrastructure is continuously challenged. Therefore, our two

contributions aim to optimize the allocation of resources taking into account the specifics

of continuous flow processing applications and to propose a modular and fine-tuned com-

ponent architecture for automotive scenarios.
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First, we go over a basic and essential process in Stream Processing Engines, a

resource allocation algorithm. The central challenge of deploying streaming applications

is how to map the operator graph, representing the application, to the available physical

resources to improve the performance of the application (improved throughput, reduced

processing time). We have targeted this problem by showing that the approach based on

inherent data parallelism does not necessarily lead to all applications’ best performance.

In fact, through a real-world application (i.e., the Eco-Driving service), we have shown that

a mapping based on insightful analysis of the specifics of the target application and the in-

frastructure’s functionality can dramatically improve application performance, thus leading

to added value. Our real experience has shown that our work improves the throughput

compared to the straight-forward approach by around 4%. This improvement enables

PSA’s infrastructure to manage nearly 800,000 additional vehicles out of the 20 million

Connected Vehicles expected by 2025.

Second, we revisit the Big Data architecture and design an end-to-end architec-

ture that meets today’s data-intensive applications’ demands. Today, connected vehicles

(CVs) can collect up to 170 different information (such as speed, temperature, fuel con-

sumption) from integrated onboard sensors and transmit them, in real-time, to an infras-

tructure, usually by 4G/5G wireless communications. This reality raises many opportu-

nities for developing new and innovative telematics services, including, among others,

driver safety, customer experience, quality and reliability, location-based services, dealer

services, infotainment, etc. It is expected that there will be around 2 billion connected cars

by the end of 2025 on the world’s roads, each of which can produce up to 30 terabytes

of data per day. In real-time or batch mode, the management of this Big Data imposes

strict constraints on the underlying data management platform. In this work, we report on

VC’s real Big Data platform, particularly the one deployed by Groupe PSA. In particular,

we present open source technologies and products used in different components of the

platform to collect, store, process, and, most importantly, exploit big data and highlight

why the Hadoop system is no longer the de-facto solution of Big Data.

This thesis contributes to the improvement of resource allocation techniques on

cloud platforms through workload characterization, the study of the specificity of deployed

applications, and the evaluation of processing operator placement algorithms. Secondly,

it details an end-to-end Big Data architecture ideal for automotive industry workflows. The

studied algorithm cannot adapt to the dynamically variable data flow. Nevertheless, we

believe that such a level of adaptability could be useful, especially to preserve a high level

of service with good data flow and less downtime due to multiple compilations.

KEYWORDS: Big Data Architecture, Query Optimization, Cloud Computing,

Hadoop Ecosystem, Stream Computing, Connected Vehicles



RÉSUMÉ

Optimisation de l’utilisation des ressources dans les systèmes

informatiques distribués pour les applications automobiles

Anthony NASSAR
Université de Bourgogne-Franche-Comté, 2020

Superviseurs: Ahmed Mostefaoui, François Dessables

L’un des principaux défis de l’industrie automobile à l’ère du numérique est de

fournir à ses clients un niveau de service connecté fiable et omniprésent, qui est de

plus en plus attendu et qui est devenu la norme ces dernières années. La plupart de nos

équipements aujourd’hui se transforme en des smart objets, ex., des smartphones, des

smart-frigos, et le monde automobile ne serait pas une exception et les smart cars depuis

quelques années font leur entrée sur le marché pour proposer aux conducteurs et aux

passagers des trajets plus sûrs, plus confortables et particulièrement plus amusant. Tout

cela en concevant, dans les coulisses, des systèmes informatiques performante tout en

économisant l’utilisation de ses ressources. Cette thèse CIFRE, menée en collaboration

avec Groupe PSA, un constructeur automobile français qui comprend les marques auto-

mobiles Citroën, DS Automobiles, Peugeot, ainsi que Opel et Vauxhall, vise à améliorer

l’allocation des ressources de la plateforme grâce à de nouvelles sources d’informations

pertinentes.

Le concept de Véhicule Connecté, apparu dans les années 2000, et qui consistait

à donner une couche d’intelligence aux véhicules en les branchant aux réseaux de con-

naissance digitales, l’Internet. En faisant cela, les constructeurs automobiles proposent

de nouveaux services aux conducteurs.

La performance d’une architecture Big Data dans l’automobile repose sur la capacité

de suivre la tendance croissante des véhicules connectés et maintenir une qualité de ser-

vice élevé. Le Cloud PSA possède une charge particulière lorsqu’il s’agit d’assurer un

service temps réel de traitement de données pour tous les véhicules connectés de la mar-

que : avec 200k véhicules connectés vendus chaque année, l’infrastructure est constam-

ment mise au défi. C’est pourquoi nos deux contributions visent à optimiser l’allocation
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des ressources en tenant compte des spécificités des applications de traitement de flux

continu et de proposer une architecture de composants modulaires et peaufiné pour les

scénarios automobiles.

Premièrement, nous passons en revue un processus de base et très essentiel dans

les Stream Processing Engines, qui est un algorithme d’allocation de ressources. Le défi

central du déploiement d’applications de streaming est la manière de mapper le graphe

des opérateurs, représentant l’application, aux ressources physiques disponibles afin

d’améliorer les performances de l’application (amélioration du débit, réduction du temps

de traitement). Nous avons ciblé ce problème en montrant que l’approche basée sur le

parallélisme des données inhérent ne conduit pas nécessairement aux meilleures perfor-

mances pour toutes les applications. En fait, à travers une application du monde réel (i.e.,

le service Eco-Driving), nous avons montré qu’une cartographie basée sur une analyse

perspicace des spécificités de l’application cible et des fonctionnalités de l’infrastructure

peut améliorer considérablement les performances de l’application, conduisant ainsi à

une valeur ajoutée. Nos expériences réelles ont montré que notre proposition s’améliore

par rapport à l’approche directe d’environ 4% en termes de débit. Cette amélioration per-

met à l’infrastructure de PSA de gérer près de 800000 véhicules supplémentaires sur les

20 millions de Véhicules Connectés attendus d’ici 2025.

Deuxièmement, nous revisitons l’architecture Big Data et concevons une architec-

ture de bout en bout qui répond aux exigences actuelles des applications gourmandes en

données. Aujourd’hui, les véhicules connectés (VC) sont capables de collecter jusqu’à

170 informations différentes (vitesse, température, consommation de carburant, etc.) à

partir de capteurs intégrés embarqués et de les transmettre, en temps réel, à une infras-

tructure, généralement par communications sans fil 4G/5G. Cette réalité soulève de nom-

breuses opportunités pour développer des services télématiques nouveaux et innovants,

y compris, entre autres, la sécurité des conducteurs, l’expérience client, la qualité et la fi-

abilité, les services géolocalisés, les services des concessionnaires, l’infodivertissement,

etc. On s’attend à ce qu’il y en ait environ 2 milliards voitures connectées d’ici fin 2025 sur

les routes du monde, dont chacune peut produire jusqu’à 30 téraoctets de données par

jour. La gestion de ce Big Data, en mode réel ou par lots, impose des contraintes strictes

à la plateforme de gestion de données sous-jacente. Dans ce travail, nous faisons rapport

de la plateforme de Big Data de VC, en particulier celle déployée par le Groupe PSA. En

particulier, nous présentons des technologies et des produits open source utilisés dans

différents composants de la plate-forme pour collecter, stocker, traiter et, plus important

encore, exploiter le Big Data et souligner pourquoi le système Hadoop n’est plus la solu-

tion de facto Big Data.

En résumé, cette thèse contribue, en premier lieu, à l’amélioration des techniques

d’allocation de ressources sur les plateformes cloud, à travers la caractérisation de la
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charge de travail, l’étude de la spécificité des applications déployées, et l’évaluation

d’algorithme de placement d’opérateurs de traitement. En second lieu, elle détaille une

architecture Big Data de bout en bout idéal pour les workflows de l’industrie automobile.

L’algorithme étudié ne peut pas s’adapter au flux de données variable dynamiquement.

Nous pensons néanmoins qu’un tel niveau d’adaptabilité pourraient être utiles, notam-

ment pour préserver un haut niveau de service avec un bon flux de données et moins de

temps d’arrêt en raison de plusieurs compilations.

MOTS-CLÉS: architecture Big Data, optimisation de requêtes, Cloud Computing,

écosystème Hadoop, Stream Computing, véhicules connectés
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INTRODUCTION

This thesis focuses on advancing the state of the art of automotive Big Data, with a spe-

cific focus on resource allocation in stream processing applications and on the general

IT architecture of the Big Data Analytics framework. The presented research was car-

ried out in the department of informatics and complex systems (DISC) of the Femto-ST

laboratory with the French automobile manufacturer’s collaboration, Groupe PSA (refer

to Appendix A). This chapter provides an introduction to the work done in this thesis. It

addresses the general context, the small set of challenges studied in this work, and then

briefly presents this thesis’s contributions.

1.1/ GENERAL INTRODUCTION

Big Data has become a central subject for various sectors, scientific disciplines, and the

whole of society. This popularity is due to the ability to produce, capture, distribute, pro-

cess and analyze vast quantities of diverse data with almost universal value, and radically

change how people live and use modern technology, how businesses work, and how sci-

ence can be conducted. Different industries such as banking, automotive, manufacturing,

or healthcare will significantly benefit from better and faster data processing, as demon-

strated by current developments in the industry such as “Internet of Things” and “Industry

4.0.” Data-driven approaches to research using Big Data technologies and analysis are

becoming increasingly popular in geosciences, astronomy, or life sciences, for example.

Users using social media, web tools, and smart devices spend growing amounts of time

online, creating and consuming vast quantities of data, and targeting tailored content,

ads, and reviews. Most of the future Big Data-related advances are still in an early stage.

However, if the numerous technical and application-specific challenges in the manage-

ment and use of Big Data are successfully tackled, there is great hope. Some of the

technological challenges have been correlated with different “V” attributes, expressly Vol-

ume, Variety, Velocity, and Veracity. Other issues relate to the security of confidential and

sensitive data to maintain a high degree of privacy and the ability to translate the vast

3



4 CHAPTER 1. INTRODUCTION

amount of data into valuable insights or better activity. The net result of all of these de-

velopments is that the existing technical environment for Big Data is not yet established.

However, there are several potential approaches within the Hadoop ecosystem but also

within the product range of various database vendors and other IT companies (such as

Google, IBM, Microsoft, Oracle). The early version of Hadoop was highly efficient only to

attain its limits in various fields, e.g., to help the processing of fast-changing data such as

data streams or process highly iterative algorithms, e.g., for graph processing or machine

learning. Besides, the Hadoop environment was essentially decoupled from the common

approaches to data processing and analysis, based on relational databases and SQL.

These factors have resulted in many additional components within the Hadoop ecosys-

tem, including general-purpose processing frameworks such as Apache Spark and Flink

and specialized components, e.g., for graph data, data sources, or machine learning.

Also, several methods now exist to combine Hadoop-like data processing with relational

database processing (“SQL on Hadoop”).

A principal facilitator for the Big Data tendency is the powerful and affordable comput-

ing platforms that allow fault-tolerant storage and processing of petabytes of data within

large computing clusters, usually fitted with thousands of processors and terabytes of

memory. Web giants such as Google and Amazon pioneered such infrastructures, but

open-source framework software such as the Hadoop ecosystem made that possible.

Originally, Hadoop was composed of a few core components, particularly its distributed

HDFS file system and the MapReduce framework for the relatively simple development

and execution of highly parallel applications to process large amounts of data on cluster

infrastructures.

The idea of an Intelligent Transportation System (ITS) was implemented to efficiently

manage traffic, improve road safety, and conserve our green environment. ITS applica-

tions are becoming more data-intensive nowadays, and their data are represented using

“5Vs of Big Data.” Big data analytics, therefore, need to be implemented to exploit such

data fully. Internet of Vehicle (IoV) links the ITS computers to cloud computing centers

where data processing is carried out. The conceptual idea of Vehicular Ad Hoc Networks

(VANETs) was introduced over a decade ago, where vehicles fitted with wireless com-

munication devices would form networks. In a VANET, communication between vehicles

(V2V) or between vehicles and infrastructure networks (V2I) can be possible. The primary

goal of VANETs is to improve road safety. Nevertheless, the idea of VANETs transformed

into the Internet of Vehicles (IoV) to meet the growing and evolving requirements of ITS’s

applications. Connected vehicles serve as hubs in the IoV world for sensing and tracking

traffic congestion status, road conditions, and environmental pollution levels. Advanced

driver assistance systems and eventually self-driving applications require many comput-

ing and communication skills to succeed in their computationally intensive and latency-

sensitive tasks. As reported by Intel, multiple sensors would be required to collect the
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necessary information on the driver’s continually changing environment and the ability to

fuse the data (approx. 1 GB/s) to make safe decisions. Meanwhile, passenger infotain-

ment technologies were growing from Internet platforms such as social media services

and email to online video sharing and multiplayer gaming and augmented and virtual re-

ality applications. Thus, the generated ITS data in the IoV environment is voluminous,

and the processing of these data requires big data analysis.

1.2/ FOCUS OF THE THESIS

As illustrated in the previous section, the challenges of Big Data are numerous and take

different shapes and forms, let alone the specific constraints added by the Intelligent

Transportation System (ITS) to the equation. From data transmission and communication

protocols to highly parallel computing platforms and, when required, latency-sensitive

engines, there is plenty of opportunities that the scientific community can grasp and ex-

plore. The work carried out in this thesis focused on, paradoxically, the big picture of the

Big Data’s solution architecture specialized for the automotive industry’s requirements,

and zoomed into the essential task of allocating physical resources to processing appli-

cations.

1.3/ MAIN CONTRIBUTIONS

The main contributions in this dissertation fall within the aforementioned processing chain

of the data produced by the Internet of Vehicles (IoV). They meet the above requirements

while considering the resources constraints present in the Cloud computing environment

and its management’s subtleties. Our research’s principal contributions—aside of the

engineering related-tasks and complementary work accomplished beside Groupe PSA

team—are summarized as follows:

1. First, we review a basic and essential process in Stream Processing Engine, a

resource allocation algorithm. A streaming application can be modeled as a di-

rected graph where vertices are operators’ instances, and edges are data streams

(i.e., continuous series of tuples). The most challenging aspect of implementing

streaming applications is figuring out how to map operators’ graphs to available

physical resources to improve performance (increasing the throughput and reduc-

ing processing time). We addressed this problem by demonstrating that relying on

inherent data parallelism does not always result in the best results for all applica-

tions. Through a real-world application (the Eco-Driving service), we demonstrated

that a mapping focused on in-depth analysis of the target application’s details and
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infrastructure features could dramatically improve application efficiency, resulting in

a noticeable improvement.

2. Second, we rethink Big Data architecture and design an end-to-end architecture

that meets the needs of today’s data-intensive applications. Connected vehicles

(CVs) can now capture up to 170 different types of data (e.g., speed, temperature,

and fuel consumption) from onboard built-in sensors and send it to infrastructure in

real-time, typically through 4G/5G wireless communications. This reality opens up

numerous possibilities for developing new and creative telematics services, such

as driver protection, customer experience, efficiency and reliability, location-based

services, dealer services, and infotainment, to name a few. By the end of 2025, it

is estimated that there will be approximately 2 billion connected cars on the road,

each capable of producing up to 30 terabytes of data every day. The underlying data

management infrastructure is put under much pressure when managing big data,

whether in real-time or in batches. In this paper, we look at the big data platform

used by real CVs, specifically the one used by Groupe PSA1. We emphasize why

the Hadoop framework is no longer the de-facto big data solution by presenting

technologies and open-source products used within various platform components

to collect, store, process, and, most importantly, exploit big data.

1.4/ PUBLICATIONS

CONFERENCE PAPER

• Anthony Nassar, Ahmed Mostefaoui, and François Dessables. ”Improving Big-

Data Automotive Applications Performance Through Adaptive Resource Allocation”.

In IEEE Symposium on Computers and Communications (ISCC), pp. 595-601,

Barcelona 2019.

SUBMITTED JOURNAL PAPER

• Ahmed Mostefaoui, Mohammed A. Merzoug, Amir Haroun, Anthony Nassar,
François Dessables. ”Automotive Bid-Data Architecture: Experimental Feedback

From Groupe PSA”. In IEEE Transactions on Vehicular Technology. Submitted

in March 2021.

1Groupe PSA: a French car manufacturer. https://www.groupe-psa.com/en/

https://www.groupe-psa.com/en/
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1.5/ DISSERTATION PLAN

The rest of this dissertation is organized as follows: Chapter 2 discusses the scientific

background of IoV in general. Chapter 3 examines the Hadoop Ecosystem that enabled

the exploitation of data by scientists. Chapter 4 zooms in to one of the most important

bricks in the Big Data ecosystem. The brick that is mainly focused on processing the

continuous flow of data, i.e., stream processing and stream engine. Chapter 5 presents

this dissertation’s first contribution, namely an automated resource allocation algorithm

for streaming applications. Chapter 6 introduces an end-to-end architecture for dealing

with Big Data automotive applications. Chapter 7 concludes the work that has been done

in this thesis.
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INTELLIGENT TRANSPORTATION

SYSTEM, VANET AND INTERNET OF

VEHICLES

“An intelligent hell would be
better than a stupid paradise.”

Victor Hugo, Ninety-Three

2.1/ INTRODUCTION

The emergence of intelligent transportation systems is mainly due to major technological

advances in the fields of wireless communication protocols and real-time and on-board

systems. Very promising, these systems make it possible to offer a wide range of new

applications, new communicating vehicles and to define an ecosystem of diversified mo-

bilities. The inherent characteristics of these systems pose new challenges in terms of

communication protocols and architectures. This chapter provides an introduction and

overview of Intelligent Transportation Systems, vehicle networks and the Vehicle Cloud

and the various relationships between them. The chapter also examines the architec-

tures and types of communication that govern these networks and discusses the different

objectives and applications that characterize these technological concepts.

2.2/ VEHICULAR AD HOC NETWORK (VANET)

The conceptual idea of Vehicular Ad Hoc Networks (VANETs) originated more than a

decade ago and has since been a highly active research area [1]. VANETs’ basic concept

11
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treats vehicles as mobile nodes that can interact in order to establish a network [2]. Be-

cause of mobility constraints, VANETs are considered to be conditional networks where

their efficiency is influenced by vehicle density and distribution and other factors such

as lousy driver conduct and high-rise buildings. The vehicles are further called unreli-

able, temporary, and random nodes. Therefore, VANETs can not guarantee the viability

of large scale consumer applications/services [3]. VANETs are, therefore, best suited to

limited-scale applications involving ad hoc services such as preventing accidents or noti-

fying drivers of road hazards.

Nevertheless, new connectivity criteria for VANETs are increasing due to the growth of

the Internet of Things (IoT) technology and the rise in the number of Internet-connected

vehicles. Another drawback of VANETs is their limited capacity to process information

that is collected by themselves and actors around them (such as mobile devices and sen-

sors) [2]. To meet the new ITS requirements, vehicles will act as a smart multi-sensor

platform with IP-based Internet networking, multiple communication systems, powerful

computational components, and the ability to communicate with other vehicles and ITS

computers [4].

2.2.1/ THE EVOLUTION OF IOV

The development of the scientific definition of VANETs culminated in the creation of the

concept of the Internet of Vehicles (IoV) [5]. As a special case of IoT, IoV thus has distinc-

tive characteristics and unique specifications to support the intelligent transport systems.

An IoV is characterized as a platform that fully realizes the integration and exchange of

information between people, vehicles, items, and the environment [6]. IoV’s primary goal

is to increase transportation safety and efficiency, boost city service quality, save the envi-

ronment, and ensure that people are happy with the transportation system services. Like

VANETs, IoV combines vehicle intelligence with vehicle networking, resulting in smart

networks with communication and computing capabilities that provide large scale trans-

port services [3].

In the IoV climate, since vehicles have permanent Internet links, they can provide informa-

tion for the different categories of ITS applications (i.e., road protection, traffic manage-

ment and control, and infotainment). As a result, the exchange of information between

sensors and electric actuators, road infrastructures, and vehicles, as well as drivers and

passengers is allowed [2]. IoV gathers a huge amount of data from a broad region of

various systems, which is in line with the idea of big data heterogeneity [7].

With the significant advantages IoV has over VANETs, it opens up several new possi-

bilities. IoV gives users, communities, and economies several different benefits. Cisco

IBSG Automotive and Economics activities expected that the advantages of using IoV

technology for each vehicle could exceed $1,400 USD per year. Also, reductions in traffic
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congestion and enhancements to road safety will produce substantial financial savings

in the public health sector. Besides, the use of real-time traffic solutions that connected

vehicles can lead to less time spent in traffic jams and improved productivity. More specif-

ically, service providers can find opportunities through IoV deployment to implement new

transportation technologies such as real-time traffic monitoring, location of parking lots,

and customer support based on the location [8].

2.2.2/ EXISTING IOV SYSTEM ARCHITECTURES

Throughout the years, many attempts have been taken to develop an ideal IoV architec-

ture that can serve as many IoV scenarios and applications as possible. In this paragraph,

we review the latest architecture of all sizes published in academic journals. Table 2.1 lists

the proposed architectures for IoV applications and gives a summary of the composition

of each.

An architecture of three layers is defined in [9], which describes the different inter-

actions between IoV system technologies. The first layer consists of all the sensors of

the vehicle that gather environmental data and detect certain essential events such as

traffic circumstances, driving habits, and ambient environmental conditions. The sec-

ond layer is for communications that support various wireless modes, Vehicle-to-Vehicle

(V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Sensor (V2S), and such as Vehicle-to-

Pedestrian (V2P). Seamless access is assured across the networking layer to various

networks such as IEEE 802.11p, IEEE 802.15.4, Wi-Fi, Bluetooth, GSM, and LTE. The

third layer has the expertise of IoV intelligence and is responsible for making decisions

under challenging circumstances (e.g., hazardous road conditions and accidents). This

layer includes tools for analytics as well as the information gathered for storing and ana-

lyzing big data.

In [5], they implemented a layered IoV protocol stack and architecture. The architec-

ture is a five-layered one. The first layer is the layer of perception that is defined by the

different forms of personal computers, RSUs, vehicles, sensors, and actuators. The sec-

ond layer is the communication layer that includes a virtual network containing different

network technologies such as Wi-Fi, WAVE, 4G/LTE, and satellite networks. The artificial

intelligence is the third layer reflecting the virtual cloud infrastructure, where the obtained

information is stored, processed, and analyzed. The fourth layer is the layer of appli-

cation that contains smart ITS applications. The last layer is the business layer, which

represents IoV’s operational management module. Besides, the author built a protocol

stack based on the proposed five-layer architecture to coordinate the current protocols.

There are three planes in the built protocol stack, including management, operation, and

security.
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Table 2.1: Summary of existing IoV architectures

Year Architecture Characteristics
2016 Golestan et al. [9] 3 layers (client, connection and cloud)

2016 Kaiwartya et al. [5]
5 layers (perceptron, coordination, AI,
application and business)

2017 Yang et al. [10]
4 layers (environment sense and control,
network access and transport, coordination
computing control and application)

2017 Contreras et al. [11]

7 layers (user interface, data acquisition,
data filtering and pre-processing,
communication, control, management
and security)

2019 Sherazi et al. [12] 3 layers (client, communication and cloud)

In 2017 Fuyung et al. [10] recently introduced a four-layer IoV architecture. The ar-

chitecture is distinct from the architectures of the past. The first layer is the sensing and

control layer of a vehicle network system. Environmental sensing is the basis for the iden-

tification of IoV services, such as autonomous vehicle services, smart traffic, and vehicle

details. Vehicle control and the object traffic system are the basis for the implementa-

tion of IoV services. The second layer is the layer of network access and transport, and

its crucial role is to accomplish network access, data collection, data analysis, and data

transfer. The third layer is the power layer for synchronization in computation. This layer

presents IoV applications with the network-wide capability of human-vehicle-environment

coordinating computation and control, such as data processing, swarm intelligence, and

resource management. The last layer is the implementation layer for delivering facilities

to satisfy the human-vehicle-environmental coordinating systems specifications.

Another group of researchers [11] suggested an IoV model architecture of seven

layers. Their architecture enables the direct interconnection of all network components

and the dissemination of data in an IoV environment. The first layer is the user experi-

ence layer that provides direct contact with the driver to organize all driver alerts through

a management interface. It also selects the best display feature to assist and decrease

driver disturbances, depending on the current situation. The data collection framework is

structured to collect data from various sources, which include internal sensors for the car,

such as a global positioning system (GPS), traffic signs, road signals. The third layer is

the layer for pre-processing and filtering the data. Throughout this layer, the data gathered

are pre-processed to reduce network traffic by removing irrelevant transmission informa-

tion. Transmission requirements are based on a service profile generated for the vehicle

having subscribed or disabled services. The communication layer is designed to select

the network most appropriate for sending the information. Selection criteria such as con-

gestion and degree of QoS across the various networks available, information relevance,

privacy, and protection, among others, are considered. The fifth layer is the layer of reg-
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ulation and management. This layer integrates and manages numerous network service

providers that are within the IoV ecosystem globally. Different tasks and procedures are

implemented to handle the collected information, e.g., traffic control, traffic engineering,

packet inspection. The sixth layer, which is the business layer, is aimed at processing the

enormous amount of information. It includes infrastructure for Cloud computing.

This layer also includes functions to store, process, and analyze information obtained

from lower layers. Decision-making is focused on a statistical analysis of the results.

Strategies to assist in the implementation of business models based on data use in ap-

plications and statistical analysis were established. The protection layer is a transversal

layer that stretches to provide direct communication through other layers. Inside the IoV

architecture, protection functions (e.g., data authentication, privacy, non-repudiation, and

confidentiality, access control, availability) can be found to help mitigating approaches to

resolve different types of security attacks.

In [12], the authors proposed a heterogeneous architecture which uses different

communication protocols. The architecture follows a three-layered approach to simplify

the functionalities of various components.

The client layer at the bottom includes intra-vehicle and inter-vehicle communications

(e.g., communication between different sensor nodes within a vehicle). It is also respon-

sible for allowing IoV to express and maintain a trustworthy Cyberspace identity. The

communication layer deals with the interconnectivity within a network of different network

components and the integration of other accessible networks within the vehicle setting.

Similarly, it is primarily the responsibility of the cloud layer to allow all IoV resources and

applications. It also provides multiple cloud-based services, such as virtualization, data

storage, and real-time interactions between different network entities.

2.3/ INTELLIGENT TRANSPORTATION SYSTEM

Intelligent Transportation Systems are a global phenomenon, attracting worldwide inter-

est from transportation professionals, automotive industry, and political decision-makers.

ITS applies advanced communication, information, and electronics technology to solve

transportation problems such as traffic congestion, safety, transport efficiency, and envi-

ronmental conservation, as represented in Figure 2.1.

The goal of ITS, we might claim, is to take advantage of the correct technology

to build ”smarter” highways, vehicles, and users. Since the ’30s, ITS has been around

and slowly creeping into our lives. The significant developments in ITS have been made

in Japan, Europe, and the United States. They have gone through three phases [14]:

preparation (1930-1980), feasibility study (1980-1995), and product development (1995-

present) as represented in Figure 2.2.
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Infotainment, and Environmental Conservation

Figure 2.1: ITS Conceptual Model. Taken from [13].

2.3.1/ HISTORY OF ITS

A./ PREPARATION (1930-1980)

Preparation is the first phase of ITS development. At the same time, IT technologies

had not yet matured enough, and the focus was all about improving the transportation

infrastructure by building new roads and bridges. The first ”original” ITS system was the

electric traffic signals implemented in 1928. At the GM pavilion of the 1939 world fair in

New York, a concept for Automated Highway Systems (AHS) was presented. However,

the ITS movement did not take root until the 60s, when the first computer-controlled traf-

fic signals in the US appeared. From the late 60s up to 1970 in the US, the Electronic

Route Guidance Systems (ERGS) was developed, which used a two-way road vehicle

communications to provide route guidance. During the 70s, the Comprehensive Auto-

mobile Traffic Control System (CACS) and the Autofahrer Leit und Information System

(ALI) were developed in Japan and Germany respectively, which are dynamic path con-

trol mechanisms focused on real traffic conditions [15]. This decade was also crucial

for ITS due to the microprocessor introduction and the start of GPS development. These

technologies are now major components of many ITS systems; nevertheless, they were

not associated with ITS.

B./ FEASIBILITY STUDY (1980-1995)

This period is marked by an explosion in industry-subsidized construction projects in Eu-

rope, Japan, and the US. These programs resulted from the underlying concepts and es-
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Figure 2.2: ITS Development Chronology in Europe, US and Japan. Taken from [13].

sential ITS technologies developed during the previous phase. In Europe, governments,

companies, and universities of 19 countries established the PROMETHEUS (Program for

European Traffic with Efficiency and Unprecedented Safety) project. Several ITS tech-

nologies were developed in this program between 1987 and 1994. In the 80s, the test

vehicle VaMoRs was demonstrated in Munich [16]. Two forward-looking TV cameras were

used in this prototype for an automatic lane and the road following. In the 90s, a group

led by Daimler-Benz developed a prototype to keep the vehicle in the lane and to keep

a safe distance with its surroundings. This work was done under the VITA II project [17].

This program was followed by DRIVE (Dedicated Road Infrastructure for Vehicle Safety in

Europe) for the development and test of the communication system for driver assistance

and traffic management [18]. Around the late 80s in the United States, the Mobility 2000

study team laid the groundwork for the establishment of the IVHS America (Intelligent

Vehicle Highway Systems) [19], which is a public-private forum for consolidating national

ITS interests and promoting international cooperation in ITS. In 1994 the USDOT (United

States Department of Transportation) changed the name from IVHS to ITS America (In-

telligent Transportation Society of America). A key project, AHS (Automated Highway

System), was conducted by NAHSC (National Automated Highway System Consortium)

composed of the US Department of Transportation, General Motors, University of Califor-

nia, and other institutions [20]. Different fully automated test vehicles have been demon-

strated on California highways under this initiative. In Japan, in the 80s, several programs

have been launched, namely RACS (Road Automobile Communication System) [27] by

the Ministry of Construction and AMTICS (Advanced Mobile Traffic Information and Com-

munication System) [21] by the National Police Agency. In the 90s, with the combined

efforts between the Ministry of Posts and Telecommunications and work on standardiza-
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tion projects, the combination of those two projects was made possible. It resulted in

the VICS (Vehicle Information and Communication System). A VICS terminal offers a

locator to view the vehicle coordinates on the map screen and allows contact with ground

stations to obtain traffic conditions for route planning. Representatives from academia

and industry coordinated VERTIS (Vehicle, Road, and Traffic Intelligent Society). That

society conducted various ITS-related activities, namely information exchanges with its

European and American counterparts, ERTICO, and ITS America. In 1996, the Ministry

of Construction and twenty-one major companies, namely Honda, Toyota, Mitsubishi, and

Nissan, formed the Advanced Cruise-Assist Highway System Research Association and

implemented on a highway various fully-automated vehicles [22].

C./ PRODUCT DEVELOPMENT (1995-PRESENT)

The previous step concentrated on establishing a technological base, with high-level ITS

functions, and this aim was successfully achieved. A unified policy was adopted around

the mid-1990s to deal consistently and harmoniously with ITS. This policy led to the

present phase, dealing with the creation of possible products. Several projects were

developed. The Chauffeur project, by Daimler-Benz and research institutes, is one ex-

ample in Europe. Their objective was to give trucks the ability to follow automatically

another truck driven by a human. The primary focus of ITS systems in the US moved to

large-scale integration and implementation by the late ’90s.

2.3.2/ CHALLENGES OF ITS

First, as the number of cars on the road increases, congestion has become an increas-

ingly significant problem worldwide. For instance, in early 2010, Beijing, China, had a

total of 4 million vehicles and produced 800 000 more in that year. Congestion will lead

to fuel consumption, air pollution, and difficulties in the implementation of public transport

plans [23]. Those problems can also raise the risk of heart failure, as a medical study

states [24].

Second, with the expansion of transport systems, especially in several developing

countries, the risks of accidents are increasing [25]. Malta et al. [26] found out that almost

three-fourths of all traffic incidents can be ascribed to human error. The U.S. Federal

Highway Administration reported that traffic incidents that occurred in cities constitute

about 50 to 60 percent of all congestion delays [27]. There is no doubt a need to reduce

traffic accidents and detect accidents once they have occurred in order to minimize their

impact.

Third, in many countries, soil resources are often limited. Building modern infras-
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tructures such as highways and freeways, therefore, is challenging. Following the terrorist

attacks in New York City on September 11, 2001, the effectiveness of transportation net-

works is increasingly tied to the capacity of a nation to manage emergencies (e.g., mass

evacuation and enhancement of security) [28, 29, 30]. A country’s competitiveness, eco-

nomic strength, and productivity depend heavily on its transport systems [31].

2.3.3/ CURRENT SOLUTIONS

The implementation of new transport policies can solve some of the problems mentioned

above. For instance, the city government of Beijing, China, placed a ban on car owners

based on odd/even license plate numbers during the 2008 Beijing Olympics to keep 50

percent of private cars off the streets. This approach has undoubtedly, to some extent,

eased congestion and the problem of air pollution. Overall, the approach works for special

events, but in nominal circumstances may not be appropriate.

Another approach is to add additional infrastructure by constructing new roads and

improving existing infrastructure, such as road widening. However, this approach can be

costly and demanding for the exploitation of already minimal land resources.

The third approach is to maximize the use of the current transportation infrastruc-

ture by evaluating the data obtained from a broad range of auxiliary instruments, such

as inductive loop detectors, sensors, receivers based on the Global Positioning System

(GPS), and microwave detectors. Ideally all three methods would be mutually compatible.

Note that data can currently be processed into useful information and can also be

used to generate new functions and services in intelligent transportation systems (ITS).

For instance, GPS data may be used to evaluate and forecast traffic user behavior, which

is a feature that is not entirely used in traditional ITS. Also, gathered vehicle data can

calculate a score, determine an ecological profile of the drivers, and help them improve

their environmental impact.

2.4/ CONCLUSION

Intelligent transportation networks result from significant technological advancements in

wireless communication protocols and real-time and onboard systems. These fascinat-

ing systems allow for a wide range of new applications, new interacting vehicles, and the

development of a diverse mobility ecosystem. In terms of communication protocols and

architectures, the inherent characteristics of these structures present new challenges.

This chapter gives an overview of Intelligent Transportation Systems, vehicle networks,

the Vehicle Cloud, and their different relationships. The architectures and types of com-
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municative systems are also examined in this chapter. The architectures and modes of

communication that control these networks are also discussed, and the various goals and

applications that define these technical concepts.

This chapter has set the background of the Big Data domain applied to the vehicular

domain. In this thesis, we work on detailing the backend architecture, that is, the Vehicle

Cloud of Groupe PSA that leverages vehicular data to provide several valuable services

for the community.
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GENERAL-PURPOSE PROCESSING

FRAMEWORK

“If one is master of one thing and
understands thing well, one has at
the same time, insight into and
understanding of many things”

Vincent Van Gogh

3.1/ THE HADOOP SYSTEM: THE ORIGINS

Back in 2004, Google published a paper [32] detailing a simple and powerful program-

ming model that allows straightforward development of scalable parallel applications to

process vast amounts of data on large clusters of commodity machines. Specifically, the

implementation mentioned in the original paper is designed mainly to achieve high per-

formance on large commodity PC clusters. One of the key benefits of this strategy is

that it isolates the application from the specifics of running a distributed program, such

as data storage problems, scheduling, and fault tolerance. The computation consists of

having a set of key/value pairs as input and produces a set of key/value pairs as output.

The user expresses the computation using two elementary functions: Map and Reduce.

The Map function takes a pair of inputs and creates a set of intermediate key/value pairs.

All intermediate values associated with the same intermediate key A are grouped by the

MapReduce system and transferred to the Reduce function. The Reduce function gets

and merges an intermediate key A with its set of values. Usually, only zero or one output

value is generated by the invocation of the Reduce function. This model’s key benefit is

that it enables massive computations as the primary mechanism for fault tolerance to be

conveniently parallelized and re-executed.

21
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3.1.1/ HADOOP / MAPREDUCE
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Figure 3.1: An overview of the execution flow of a MapReduce job

Hadoop is an open-source Java library [33] that supports distributed data-intensive

applications by implementing the MapReduce framework. It has been commonly used

for development purposes by a significant number of business firms. The MapReduce

job’s Map function calls are practically spread through multiple machines by automatically

partitioning the input data into N splits. Different machines can process the input splits in

parallel. Reduce function calls are distributed by partitioning the intermediate key space

into P pieces using a partitioning function (e.g., hash(key) mod P). The user determines

the number of partitions (R) and the partitioning function. Figure 3.1 illustrates an example

of the overall flow of a MapReduce procedure that passes through the following action

sequence:

1. The MapReduce program input data is split into N pieces, and several instances of

the program are started on a cluster of machines.

2. One instance of the program is selected to be the master copy, while the rest are

considered to be staff assigned by the master copy to their job. Mainly N map tasks

exist, and P reduces tasks to be assigned. The master selects idle workers and

assigns each or more tasks to the map and reduce tasks.
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3. A map task is assigned to a worker that processes the contents of the respective

input split and generates key/value pairs from the input data and passes each pair

to the user-defined Map function. In memory, the intermediate key/value pairs gen-

erated by the Map feature are buffered.

4. The buffered pairs are regularly written to a local disk and partitioned by the parti-

tioning function into P regions. The addresses on the local disk of these buffered

pairs are transferred back to the master, responsible for transmitting these ad-

dresses to the reduced workers.

5. When the master notifies a reduced worker of these addresses, it reads the buffered

data from the map workers’ local disks, which are then sorted by the intermediate

keys such that all instances of the same key are grouped. Sorting operation is

essential because several different main maps usually reduce the task to the same.

6. The reduction worker transfers to the Reduce feature of the user the key and the

corresponding intermediate values set. For this reduced partition, the output of the

Reduce function is appended to a final output register.

7. The master program wakes up the user program when all the map tasks and re-

duced tasks have been completed. At this point, MapReduce’s invocation in the

user program returns the program’s control to the user code.

The Hadoop project was introduced as an open-source Java library supporting data-

intensive distributed applications and cloned Google’s MapReduce framework [32]. The

Hadoop architecture consists, in theory, of two key components: the Hadoop Distributed

File System (HDFS) and the MapReduce programming model. In particular, HDFS pro-

vides the basis for distributed storage of big data, which distributes data files into data

blocks and stores them in different computer cluster nodes to allow efficient parallel pro-

cessing of data.

3.1.2/ HADOOP ENHANCEMENTS

In a heterogeneous environment with several different storage systems, the straightfor-

ward implementation of MapReduce is beneficial for managing data processing and data

loading. It also offers a versatile structure for more complicated function execution that

can be explicitly supported in SQL. However, there were some drawbacks to this simple

architecture. In the following section, we analyze some research efforts that have been

carried out by presenting different changes to the MapReduce system’s basic implemen-

tation to overcome these limitations.



24 CHAPTER 3

A./ SUPPORTING ITERATIVE PROCESSING

The simple MapReduce system does not directly support iterative data analytic appli-

cations. Instead, by issuing several MapReduce jobs manually and orchestrating their

execution using a driver program, programmers could implement iterative programs. The

HaLoop system [34] is designed to enable iterative processing of the MapReduce frame-

work by expanding the two key functionalities of the basic MapReduce framework:

1. Caching the first iteration of the immutable data and then reusing them in subse-

quent iterations.

2. Caching the reducer’s outputs, which makes it more successful to search for a fix-

point, without an additional MapReduce task.
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Figure 3.2: An overview of HaLoop architecture [34]

Figure 3.2 demonstrates HaLoop’s architecture as an updated version of the basic

structure of MapReduce. HaLoop essentially relies on the same file system and has the

same task queue structure as Hadoop, but the task scheduler and task tracker modules

are changed and the loop control, caching, and indexing modules are added to the archi-

tecture. The task tracker monitors the execution of tasks and monitors caches and indices

on the slave node and redirects the cache and index accesses to the local file system for

each task.
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B./ PROCESSING JOIN OPERATIONS

The MapReduce framework’s main drawback is that it does not support joining multiple

datasets into one mission. With additional MapReduce workarounds, however, this can

still be done. For example, users can map and reduce one data set on the fly and read

data from other datasets. The Map-Reduce-Merge model [35] has been implemented

to enable the processing of multiple datasets to tackle the restriction of the additional

processing requirements for conducting joint operations in the MapReduce system. The

structure of this model is shown in Figure 3.3.
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Figure 3.3: An overview of the Map-Reduce-Merge framework [35]

The main differences between this framework’s processing model and the original

MapReduce are that a key/value list is created from the Reduce function instead of just

the values. This change is made because the merge function requires keys to arrange

input datasets (partitioned, then either sorted or hashed), and these keys must be passed

into the function to be merged. The reduced result is, contrarily, final in the original setting.

C./ DATA AND PROCESS SHARING

The use of an analytical query processing infrastructure (e.g., Amazon EC2) can be di-

rectly mapped to monetary value with the advent of cloud computing. There may be

several possibilities for sharing their work’s execution, taking into account that various

MapReduce workers will perform similar work. This sharing will also minimize the total
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amount of work, resulting in a decrease in the monetary charges incurred when using the

production infrastructure services. The MRShare system [36] has been described as a

sharing mechanism optimized to turn a batch of queries into a new batch that will be more

effectively executed by combining jobs into groups and evaluating each group as a single

query. They presented an optimization problem based on a given cost model that aims to

extract the optimal grouping of queries to prevent redundant work from being performed

and thus result in significant savings in both processing time and money.

D./ EFFECTIVE DATA PLACEMENT

The purpose of the data placement policy in the basic implementation of the Hadoop

project is to achieve good load balancing by spreading the data uniformly across the data

servers, regardless of the planned usage of the data. For most Hadoop applications

that access only a single file, this simple data placement policy works well. However,

with tailored techniques, some other applications process data from multiple files to get

a significant performance boost. In these applications, the absence of data co-location

increases data shuffling cost, increases the network’s overhead, and decreases data

partitioning performance. CoHadoop [37] is a lightweight Hadoop extension designed to

allow related files to be co-located at the file system level while maintaining the properties

of good load balancing and fault tolerance at the same time.

3.2/ HADOOP ECOSYSTEM

The Hadoop ecosystem has been expanded throughout the years with different compo-

nents (see Figure 3.4). For example, when performing tasks with a different workflow

(e.g., joins or n stages), the MapReduce programming model’s over-simplicity and its de-

pendency on a rigid one-input and two-stage dataflow lead to situations in which inelegant

workarounds are needed. To support SQL-on-Hadoop with popular relational database

concepts such as tables, columns, and partitions, the Hive project [38] was launched. It

supports queries represented in the Hive Query Language (HiveQL), an SQL-like declar-

ative language representing a subset of SQL92, and can therefore be easily understood

by anyone familiar with SQL. These queries are compiled into Hadoop jobs automati-

cally. Hive abstracts away underlying MapReduce jobs and returns HDFS in the form

of tables (not HDFS). Pig was introduced as a high-level scripting language (Pig Latin)

that allows complex data transformations to be written. It pulls, cleans, and puts un-

structured/incomplete data from sources into a database/data warehouse. Although Hive

queries the data warehouse to perform analysis, Pig performs ETL in a data warehouse.
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Impala1 is another open-source project developed by Cloudera to provide an SQL query

engine that runs natively in Apache Hadoop with massively parallel processing. It uses

the standard Hadoop infrastructure components (e.g., HDFS, HBase, YARN) and can

read most of the file formats used commonly (e.g., Avro, Parquet). Therefore, the user

can query the data stored in the Hadoop Distributed File System (HDFS) using Impala.

Another part that has been implemented as an open-source project that supports

large-scale graph processing and clones the implementation of the Pregel framework by

Google [39] is Apache Giraph. Giraph runs graph processing jobs on Hadoop as map-

only jobs and uses HDFS to input and output data. Apache Hama2 is another deployment

project based on BSP that, like Giraph, is designed to run on top of the Hadoop infrastruc-

ture. It focuses, however, on general BSP computations and not just on the processing

of graphs. It includes algorithms for matrix inversion and linear algebra, for instance.

Another type of application that is iterative is machine learning algorithms. The Apache

Mahout3 project was built on top of the Hadoop framework to develop scalable machine

learning libraries. Apache Tajo4 is another distributed Apache Hadoop data warehouse

framework designed for low-latency and flexible ETL processes for ad-hoc queries. Tajo

can process data stored on local file systems, OpenStack Swift, Amazon S3, and HDFS.

It offers an extensible query re-write mechanism that allows SQL to query data for users

and external programs.
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Figure 3.4: Mind map of the Hadoop Ecosystem

1http://www.impala.io
2https://hama.apache.org/
3http://mahout.apache.org/
4http://tajo.apache.org/
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3.3/ SPARK

Hadoop architecture has pioneered the area of general-purpose data processing sys-

tems. However, one of the Hadoop system’s key performance drawbacks is that before

beginning the next one, it materializes the intermediate outcomes of each Map or Reduce

stage on HDFS. For instance, the data transfer speed to an SSD equals to 600MB/s.

However, the speed is ten times more (10 GB/s) when transferred to memory. Several

systems have therefore been developed to resolve the Hadoop framework’s performance

issue. The Spark project has been implemented as a large data processing engine for

general purposes that can be used for many kinds of data processing scenarios [40].

In theory, Spark was initially developed to provide interactive queries and iterative algo-

rithms with significant efficiency, as these were two prominent use cases that were not

well served by the MapReduce system. Spark, written in Scala5 [41], was created as one

of the new generation data flow engines designed to address the MapReduce system’s

limitations in the AMPLab at UC Berkeley and was open-sourced in 2010. In general, one

of the key drawbacks of the Hadoop framework is that it needs to materialize the entire

performance of each map and reduce the task into a local file on the Hadoop Distributed

File System (HDFS) before the next level can consume it. This materialization process en-

ables implementing a simple and elegant fault-tolerant mechanism for checkpoint/restart;

however, it dramatically harms the system’s performance.

Dataset and Dataframe

Spark Core Execution Engine 

Data Source API

Built-In External

SQL R Streaming
Structured
Streaming MLlib/ML GraphX

Figure 3.5: Ecosystem of Spark

5http://www.scala-lang.org/
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By loading the data into distributed memory and depending on less costly shuf-

fles during data processing, Spark brings Hadoop’s ideas to the next stage. In particu-

lar, Spark’s fundamental programming abstraction is called Resilient Distributed Datasets

(RDD) [40], which describes a logical array of data partitioned across machines gener-

ated by referencing datasets in external storage systems, or by applying different and rich

coarse-grain transformations (e.g., mapping, filtering, reducing, joining) to existing RDDs

instead of the two basic map and reduce. For example, Spark’s map transformation ap-

plies a transformation function to each element in the RDD input and returns a new RDD

with the transformation output elements. Hence, the filter transformation applies a filtra-

tion predicate to the RDD elements and returns a new RDD with only the elements that

fulfill the predicate conditions, while the union transformation returns a new RDD from the

merge of the two input RDDs. a filtration predicate to the RDD elements. In theory, provid-

ing RDD as an in-memory data structure gives the power to the functional programming

paradigm of Spark by allowing user programs to load and repeatedly query information

into the memory of a cluster. Furthermore, in some MapReduce-like parallel operations,

users can directly cache an RDD in memory across machines and reuse it. In particular,

RDDs can be manipulated by operations such as mapping, filtering, and reducing, which

take on programming language functions and send them to cluster nodes.

Spark can communicate with a broad range of distributed storage implementations

like Hadoop Distributed File System (HDFS) [42], Cassandra, and Amazon S3. RDD

may also be generated by distributing to existing RDDs a collection of objects (e.g., a list

or set) loaded into memory or applying coarse-grained transformations (e.g., map, join,

reduce, filter ). Spark is highly based on functional programming principles. Functions

reflect the basic programming unit in Spark, where functions can only provide input and

output without state or side effects. Spark proposes two types of operations over RDDs

in principle: transformations and actions. We use transformations to construct a new

RDD from an existing one. One common transformation, for instance, is filtering data that

matches a predicate. On the other hand, actions are used to evaluate a result based

on an existing RDD and either return the results to the driver software or save them to

an external storage device (e.g., HDFS). The RDD operations flow in Spark is shown in

Figure 3.6. Other than the Spark Core API, additional libraries are par t of the Spark

ecosystem with additional functionality in the Big Data processing area (see Figure 3.5).

Table 3.1 provides an overview of some Spark’s transformations, while Table 3.2 pro-

vides an overview of some Spark’s actions. Spark offers numerous higher-level library

packages in particular, including support for SQL queries [43], graph processing [44],

streaming data, statistical programming, and machine learning [45].
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Table 3.1: A non-exhaustive list of Spark’s transformations

Transformation Description

map
Apply a transformation function to each element in the input RDD
and returns a new RDD with the elements of the transformation
output as a result

filter
Apply a filtration predicate on the elements of an RDD and returns
a new RDD with only the elements which satisfy the predicate
conditions

distinct Remove the duplicate elements of an RDD
union Return all elements of two RDDs
cartesian Return the Cartesian product of the elements of two RDDs
intersection Return the elements which are contained in two RDDs
substract Return the elements which are not contained in another RDD

Table 3.2: A non-exhaustive list of Spark’s actions

Action Description
take Return number of elements from an RDD
takeOrdered Return number of elements from an RDD based on defined order
top Return the top number of elements from an RDD
count Return the number of elements in an RDD
countByValue Return the number of times each element occurs in an RDD

reduce
Combine the elements on an RDD together according to an aggregate
function

foreach Apply a function for each element in an RDD

Data RDD Transformation RDD Action Value

Figure 3.6: Flow of operations for RDD in Spark

3.4/ KAFKA AS A MESSAGING SYSTEM

Each enterprise is becoming a data-driven company. We collect data, evaluate it, ex-

ploit it, and generate more as a result. Whether it is log messages, user behavior, stats,

machine sensors, or something else, every application creates data. Each byte of infor-

mation has a story to tell, something of significance that tells the next thing to be done.

We need to bring the information from where it is generated to where it can be processed

to know what it is. On websites such as Netflix, where our clicks on films or series of

interest are converted into recommendations revealed to us a little later, it is happening

daily if not hourly. The earlier we can do this, the more our organizations can be agile
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and receptive [46].

The less time we spend on moving knowledge around, the more we can concentrate

on the core company at hand. That skill makes pipelining in the data-driven enterprise a

critical component. How we transfer the data becomes almost as relevant as the informa-

tion itself. Therefore, for those reasons, the Hadoop Ecosystem adopted this technology

and became one main brick of it. In the following section, we briefly describe the mes-

saging paradigm of Publish/Subscribe, then we give details about the Kafka technology

used in our work to ensure a pseudo-exactly once processing of data.

3.4.1/ WHAT IS KAFKA?

Apache Kafka is based on the Publish/Subscribe messaging pattern. It consists of two

agents, the sender or publisher that sends a piece of data (message) with no particular

destination and received by a receiver. The message sent by the publisher is tagged by

identifying information, and then the receiver or subscriber subscribes to categories of

tags. Pub/Sub systems typically have an intermediating point, usually called the broker.

It is a middle point where published messages are stocked to be later on served for

interested clients.

A./ BATCHES AND MESSAGES

Within Kafka, the unit of data is called a post. For database developers, Kafka may seem

to be similar to a line or a record. As far as Kafka is concerned, a message is simply an

array of bytes, so the data found within it does not have a particular format or significance

to Kafka. There may be an optional bit of metadata for a post, referred to as a key. The

key is just a byte array and has no particular significance to Kafka, as with the post. If

messages are to be written to partitions in a more regulated way, keys are used. The

most straightforward scheme of this kind is to produce a consistent key hash and then

select the partition number for that message by selecting the total number of partitions in

the topic as the hash module’s product. This technique ensures that messages with the

same key are written on the same partition at all times.

Messages are written in batches in Kafka for performance. A batch is just a series of

messages, all of which are generated for the same subject and partition. For each mes-

sage, an individual round trip through the network will result in unnecessary overhead,

and this is minimized by grouping messages together into a batch. Batching is, of course,

a tradeoff between latency and throughput: the larger the batches, the more messages

per unit of time can be managed, yet the longer it takes to disperse each message. Usu-

ally, batches are also compressed, allowing more effective data transmission and storage
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at some processing power expense.

B./ TOPICS AND PARTITIONS

Messages are grouped into topics in Kafka. A database table or a folder in a filesystem

is the closest analogies to a topic. Additionally, topics are broken down into a variety of

partitions. Back to the definition of ”commit file,” a partition is a single file. In an append-

only mode, messages are written to it and are read from beginning to end in order. Notice

that because a topic usually has several partitions, only within a single partition, there is

no guarantee of message time-ordering across the entire topic. A topic with four partitions

is shown in Figure 3.7, with writing appended to each one’s end. Partitions are also the

way that Kafka gives redundancy and scalability. A partition can be hosted on a separate

server, which means that it is possible to horizontally scale a single subject across multiple

servers to provide output well beyond a single server’s capacity.
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Figure 3.7: Representation of a topic with multiple partitions

When discussing data inside systems like Kafka, the word stream is sometimes

used. Most often, regardless of the number of partitions, a stream is considered a single

data subject. This atomicity reflects a single source of information that is transferred

from producers to consumers. In discussing stream processing, this way of referring to

messages is most common when frameworks, some of which are Storm, Kafka Streams,

and Apache Samza, operate on real-time messages. This operation method can be

compared to how offline systems, namely Hadoop, are structured to operate later on bulk

data.

C./ PRODUCERS AND CONSUMERS

Kafka clients are machine users, and there are two specific types: producers and con-

sumers. The Kafka Connect API for data integration and Kafka Streams for stream pro-

cessing are both advanced client APIs. Specialized clients use producers and consumers
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as building blocks and have higher-level features on top. Producers generate new mes-

sages. These may be named publishers or authors in other publish/subscribe schemes.

In general, for a specific subject, a message will be produced. By default, the producer

does not care what partition a particular message is written to and balances messages

across all partitions of a topic. The producer can, in some instances, direct messages

to unique partitions. Usually, this is achieved using the message key and a partitioner

that produces a key hash and maps it to a particular partition. This mechanism ensures

that all messages created with a defined key are written to the same partition. The pro-

ducer may also use a custom partitioner that follows other business rules for mapping

messages to partitions.
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Figure 3.8: A consumer group (CG) reading from a topic

Consumers read messages. These clients may be named subscribers or readers in

other publish/subscribe schemes. One or more topics are subscribed to by the user and

read the messages in the order in which they were made. By keeping track of the offset

of messages, the user retains track of whatever messages it has already consumed. The

offset is another bit of metadata that Kafka adds to every message as it is made, an

integer value that continually increases. There is a unique offset for any message in

a given partition. A user can stop and restart without losing its position by storing the

offset of the last consumed message for each partition, either in Zookeeper or in Kafka

itself. Consumers operate as part of a group of consumers, one or more consumers

working together to consume a topic. The group ensures that only one member uses

each partition. There are three consumers in a single category consuming a subject in

Figure 3.8. Two of the consumers work from one partition each, while the third client

operates from two partitions each. Sometimes, the mapping of a consumer to a partition

is called the consumer’s possession of the partition. Consumers will, in this way, scale

horizontally to consume subjects with a large number of messages. Additionally, the

community’s remaining members will rebalance the partitions being consumed to take
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over for the absent member if a single user fails.

3.5/ CONCLUSION

MapReduce does not satisfy this interrogation because it uses HDFS, which means writ-

ing to files. Therefore, MapReduce Online [47] was created as a pipelining service to

be run continuously, but between process, a pipeline’s content was saved in HDFS. That

is not suitable for streaming applications, where the data stream should be processed

without relying on disk storage. Another solution was proposed to make the usage of

HDFS more efficient. It consisted of adopting MapReduce for incremental computations

that detect the input datasets’ changes and enables the automatic update of the MapRe-

duce jobs’ outputs by utilizing a result reuse algorithm. That was made possible by using

a modified version of the HDFS, the IncHDFS [48] (Incremental HDFS), that identifies

similarities in the input data of consecutive job runs. In reality, Hadoop is built on top of

the Hadoop Distributed File System (HDFS), a distributed file system designed to oper-

ate on commodity hardware, which is best suited for batch processing of vast volumes of

data rather than interactive applications. This limitation makes the MapReduce paradigm

unfit for event-based online Big Data processing architectures and motivates the need

to explore other paradigms and novel frameworks for large-scale event-driven analytics

solutions.

In the next chapter, we answer this question by detailing a new programming model

tailored only for stream processing. This new paradigm allowed the construction of stream

processing engines and platforms specialized in dealing with real-time data.
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SPECIFIC-PURPOSE FRAMEWORK:
BIG DATA STREAM PROCESSING

“παντα ρει (Panta Rhei),
Everything Flows...”

Heraclitus

With the ever-growing flow of data originating from the Internet of Things (IoT) ap-

plications, whether it is smart cities, log monitoring, or business intelligence challenges,

traditional processing paradigms attained their limits when it comes to storing or pro-

cessing the data. In contrast to the previous chapter, this chapter focuses on a specific

processing system, the stream processing platforms. In his book [49], Sakr highlighted

how Hadoop is becoming an obsolete solution in the world of Big Data and that it could

not be considered a “one-size-fits-all” solution since big data analytics application keep on

growing in their variety and requirements. He coined a new term to describe a shift in pro-

cessing engines’ development, a new type of engines specific to domains and dedicated

to particular axes. The term is Big Data 2.0, replacing the Hadoop traditional framework

in different use cases. Figure 4.1 shows a timeline of the introduction of new processing

systems. Since 2009, academic and industrial communities have focused on building the

new generation of domain-specific big data analytics systems such as SQL processing

platforms, graph processing platforms, and the focus of this chapter the stream process-

ing platforms.

We then present an overview of what stream processing is as a technology, describes its

history, and finally displays some examples of engines using that paradigm. We end by

speaking about one of the main dimensions of an SPE: the resource allocation problem or

query optimization, as a prerequisite to our second contribution developed in Chapter 6.

35
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  2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   2014   2015   2016   2017

Google MapReduce

Hadoop

Apache Flink

Apache Spark

Apache Mahout

Google Pregel

Apache SystemML

Apache Kafka

Apache Storm

PowerGraph

GraphLab

Apache Giraph

Cloudera Impala

Apache Samza

Apache S4

Trinity

Apache Tajo

Facebook Presto

IBM Big SQL

Apache Hive

Text General-purpose platforms

Machine Learning platforms

Stream processing platforms

Graph processing platforms

SQL processing platforms

GraphX

SparkR Keras

TensorFlow

CNTK

PyTorch

Apache Tez

Apache Phoenix

Figure 4.1: Timeline of Big Data processing platforms classified by processing type cate-
gories.

4.1/ INTRODUCTION

The availability of sensors, cell phones, and other devices has led to an explosion in

the quantity, variety, and speed of generated data, which started to require some form

of analysis. As society becomes more interconnected than ever, organizations produce

vast amounts of data due to, among other reasons, instrumented business processes,

user activity monitoring [50], wearable assistance [51], website tracking, sensors, finance,

accounting, large-scale scientific experiments. Due to the challenges that it presents to

existing infrastructure, such as data collection, storage, and processing, this data deluge

is also called big data [52].

A large part of this big data, as it is generated, is most useful when analyzed quickly.

Continuous data streams must be processed within very short delays in many evolving

application scenarios, such as in the Internet of Things (IoT) [53], smart cities, and opera-

tional monitoring of large networks. In many contexts, data streams need to be analyzed

to detect patterns, recognize faults [54], and gain insights.

Several stream processing systems and methods have been set up in a scalable and

effective manner to perform analytical tasks and to answer the above requirements. Many

systems implement a dataflow approach where incoming data items in data streams are

redirected via a direct graph of operators placed on distributed hosts performing algebra-

like or user-defined operations.

This chapter examines the stream processing computing paradigm along with the

systems that implements such concept.
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4.2/ ONLINE DATA PROCESSING ARCHITECTURE

Online1 data analysis architecture is generally multi-tiered systems comprising of many

loosely coupled components [55, 56, 57]. When it comes to structuring the architecture

in such a way, the reasons are numerous. However, improving maintainability, scalability,

and availability are always the primary goals of such architectures. Figure 4.2 provides

an overview of the components often found in the architecture for stream processing.
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Figure 4.2: Overview of an online data-processing architecture. Taken from [58].

The Data Sources (Fig. 4.2) that demands real-time processing and analysis in-

clude Web analytics, operational infrastructure monitoring, online advertising, Internet of

Things, and social media.

Most Data Collection is carried out by tools that run near the data location and com-

municate the data via TCP/IP or UDP connections, or long-range communication [59].

An online architecture for data processing may comprise multiple levels of collection

and processing, with an ad-hoc connection made between those levels. To enable more

modular systems and allow each tier to grow at different paces and thus accommodate

changes, the connection is sometimes made through message brokers and queuing sys-

tems, such as Apache ActiveMQ (2016), Kestrel (2016), and RabbitMQ (2016). Other

publish-subscribe based solutions, including DistributedLog (2016) and Apache Kafka

(2016), or managed services such as Amazon Kinesis Firehose (2015) and Azure IoT

Hub (2016). These systems are here referred to by Messaging Systems, allowing, for

instance, the processing tier to extend to several data centers and collections that need

to be modified without affecting processing.

1Hereafter use the term online to mean that “data are processed as they are being generated”
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Several models and frameworks were created over the years for processing large

volumes of data, among which MapReduce is one of the most popular [60]. Although

most frameworks process data in a batch manner, there have been numerous attempts

to adapt it to handle more interactive and dynamic workloads [61, 62]. Such solutions

handle many of today’s usage cases, but there is a growing need always to provide short

response time services and to collect data on higher rates. Data Stream Processing
systems are commonly designed to handle unbounded data streams and perform one-

pass processing. This brick is the chapter’s focus, and it includes solutions commonly

known as stream management systems and complex event processing systems.

In addition, an architecture for data processing often stores data for further process-

ing, or as support for presenting results to analysts or delivering them to other analytics

instruments. There are various approaches for Data Storage to support real-time ar-

chitecture, ranging from relational databases to key-value stores, in-memory databases,

and NoSQL databases [63]. The data processing results (i.e., Delivery tier) are given to

be used by analysts or machine learning and data mining software. Means of interfac-

ing with these tools or displaying results to be visualized by analysts include RESTful or

other browser-based APIs, Web interfaces, and other rendering solutions. There are also

many cloud providers providing data storage solutions such as Amazon, Azure, Google,

and others.

4.3/ DATA STREAM APPLICATION EXAMPLES

Streaming applications are programs that process data streams continuously. Due to

increased automation in telecommunications, healthcare, transport, retail, science, secu-

rity, emergency response, and finance, these applications have become omnipresent [64].

We address motivating scenarios in this section that inspire the need for Stream

Processing Applications (SPAs). Examples can be found in domains ranging from fi-

nancial markets, large-scale monitoring of infrastructure, manufacturing, traffic systems,

healthcare, and safety, to climate and science in general. Check the list of applications’

examples in Table 4.1.

We will exhibit two design scenarios in more detail in the rest of this section. Such

examples cover transportation and healthcare applications. Each of them exhibits specific

unique data processing and analytical characteristics [65].
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Table 4.1: List of stream processing applications (SPAs)

Field Application

Fraud Prevention
• Multi-party fraud detection
• Real-time fraud prevention

Natural Systems
• Wildfire management
• Water management

Stock Market
• Impact of weather on securities prices
• Analyze market data at ultra-low latencies

Transportation • Intelligent traffic management

Health and Life Sciences
• Neonatal ICU monitoring
• Epidemic early warning system
• Remote healthcare monitoring

Law Enforcement and Cyber Security
• Real-time multimodal surveillance
• Situational awareness
• Cyber security detection

Telephony

• CDR processing
• Social analysis
• Churn prediction
• Geomapping

4.3.1/ TRANSPORTATION GRID MONITORING AND OPTIMIZATION

Application context Road networks and vehicles are becoming more instrumented

with many different sensor types producing continuous data that can be analyzed by both

offline applications and SPAs. For example, road networks are fitted with loop sensors

that are installed under the pavement to measure traffic volumetrics, with sensors on toll

booths, as well as cameras at various points of entry and exit, and intersections.

Similarly, most public transports, as well as commercial fleets, are now equipped with

Global Positioning System (GPS) sensors that periodically report location and travel in-

formation [66].

Which of these sensors serves as a streaming data source with individual streams con-

sisting of timestamped numerical and non-numeric measurement sequences, collecting

data in various formats, and sampling at varying time intervals.

The stream processing applied to these data will allow numerous new applications, from

real-time traffic monitoring to personal travel advisors and location-based services. Those

scenarios are shown in Figure 4.3.

Real-time traffic grid monitoring includes constructing and updating a representation of

their condition, including, for example, occupancy level and average speed of different

connections in the road network. This aggregated information can be used to recognize

unusual incidents, including congestion, injuries, and other issues with infrastructure. Be-

sides, the availability of this type of live information will also allow public infrastructure

agencies to make decisions that can alleviate traffic issues in some instances.
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Figure 4.3: Stream processing in transportation. Taken from [65].

Application requirements In order to support these transport applications, the latency

between when the data are generated and when action can be taken is within minutes.

Latency is not as strict as in-network monitoring applications. However, near real-time

processing is necessary.

In addition, multiple custom stream analytics are needed for various tasks ranging from

parsing and extracting information from source data streams to data synchronization, ac-

counting for missing values, de-noise, correlation, monitoring, and forecast.

Spatio-temporal analytics are also required to combine GPS and other position readings

on maps, estimate travel direction, and distance, and calculate the shortest trajectories.

The incorporation of these various types of information across vehicles, road segments,

sensor types, and support for these complex tasks often involves the use of multimodal

(i.e., representing different types of data) and multivariate (i.e., denoting multiple random

variables) statistical analytics.

Although some of the individual low-complexity sensors (e.g., loop sensors, toll booth

sensors) produce low data streaming data, approximately hundreds of bytes per sec-

ond, a large road network may have several thousand or even millions of these sensors,

resulting in high aggregate data levels. Besides, the streaming data often contains un-

structured video and image signals with the use of multimodal information from cameras.

Such systems also need to be flexible and adaptive.

Finally, the geographic distribution of the data sources and the use of inherently insecure

network connections are a specific feature of applications in the transport domain. In

these instances, using a distributed processing application model is also advantageous

by putting computation near the sensors and hierarchically partitioning the analysis into

local and central processing, as shown in Figure 4.3.
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4.3.2/ HEALTHCARE AND PATIENT MONITORING

Application context Care for critically ill patients depends on the capture, analysis,

aggregation, and interpretation of large volumes of data. The rapid and reliable incor-

poration of this data in the sense of a modern Intensive Care Unit ( ICU) is essential for

high-quality, evidence-based decision making. However, despite the increasing presence

of new information technology (IT) devices in the ICU, many data analysis tasks are per-

formed manually by most physicians, nurses, and other healthcare providers [67].

Initially, patient monitoring in the ICU was limited to clinical examinations and observa-

tions of a limited number of physiological readings, such as heart and respiratory rate,

blood pressure, oxygen saturation, and body temperature. With advances in sensor tech-

nology, continuous monitoring of complex physiological data has become possible, en-

abling dynamic monitoring of changes in the patient’s condition.

The data from these sensors provide more information to physicians than they can man-

ually interpret, and it is not generally combined with other applicable information, such as

laboratory test results and records of admission. As a result, physicians and other care-

givers are often asked to integrate all of these disparate sets of information as best they

can before they can determine the status of their patients and prescribe an appropriate

course of treatment.

Figure 4.4: Stream processing in transportation. Taken from [65].

Application requirements Manual processing and management of healthcare data are

fraught with many difficulties. First, data inflow can be both voluminous and too complex

to process for humans without the resources of data analysis. Second, clearly periodic

data reviews may add a considerable delay between a medically relevant incident occur-

ring, and a caregiver’s (possibly necessary) reaction. Third, manual analysis can miss es-

sential subtleties in the data, mainly when the product of a combination of factors spread
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through multiple data streams is an actionable event. As a consequence, medical treat-

ment given at ICUs appears to be reactive in most cases. Often doctors respond to

incidents that happened many hours or days ago, theoretically. Clearly, reducing reaction

latency will lead to better patient outcomes. Finally, a typical ICU is an atmosphere of

busy, complicated, and stressfulness. There is a limited margin for error associated with

certain medical procedures. Often the workflow and the procedures may be both archaic

and complex. Consequently, the amount of time that healthcare providers may devote to

data analysis is often limited. By effect, the combination of all these variables results in

not using the available knowledge from sophisticated instrumentation to its full capacity

in real-time to assist in clinical management and in clinical research on a longer time

scale. Therefore, the use of continuous applications and stream processing will improve

healthcare delivery in many axes, including the automated collection of physiological data

streams and other patient data in an ICU. Moreover, it will enhance its real-time use by

electronic systems set up to detect and forecast medically critical events. These applica-

tions have a number of operational requirements.

The first criterion relates to the complex nature of the signals and the data which must

be collected and processed continuously. Such data contains periodically sampled sig-

nals varying from tens to hundreds of kilobits per second (kbps) per patient, as well as

intermittent events resulting from admission interview details, test results, and medical

interventions. Hence, data ingestion through a continuous application includes cleaning,

filtering, and data alignment operations, as well as multivariate statistical techniques to

be developed.

The second requirement regards the design of medically relevant analytics, which com-

bines the expertise of medical doctors (with domain knowledge) and computer scientists

(with knowledge of continuous data analysis).

The third criterion concerns the introduction of frameworks for collecting and preserving

audit trails of appropriate historical physiological data, along with features derived from

the data, analytical results, and patient outcomes. It is crucial since patients also re-

examine medical practices to improve health treatment.

The fourth criterion includes fault tolerance. Because of their direct effect on patient well-

being and health outcomes, Healthcare SPAs must have uninterrupted uptime with no

data loss.

The fifth criterion relates to data privacy. Data privacy must be covered in the clinical

setting in order to avoid information from leakage and accessed by unauthorized parties.

This necessity translates into a need for adequate protocols for authorization and authen-

tication, data protection, and anonymization.

The final criterion corresponds to the collection and management of knowledge across

extended time horizons across multiple patients. This requirement translates into the

need for gracefully scaling up of the network and analytics to make use of an expanded
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corpus of accumulated data.

Both of these criteria are expressed in the ICU scenario, as seen in Figure 2.4. As

shown, multiple real-time physiological streams produced by patient-embedded sensors

are combined with information from test results, treatments, and drugs to facilitate the on-

going monitoring and forecasting of their condition. A similar program, developed using

the InfoSphere Streams SPE, was implemented in Toronto’s SickKids Hospital [68].

4.3.3/ DISCUSSION

Across these applications, the analytical requirements include the need for streaming

capabilities in data intake and analysis, as well as the ability to continuously tune analytics

in response to changes in data and knowledge that have been accumulated so far. From

the system infrastructure perspective, the requirements include the capability to modify

the physical structure of the application and adapt the processing to scale up and achieve

high performance and fault tolerance while providing controlled and auditable access to

the data being processed and the results of the analytical process.

In the following sections, we will discuss information flow technologies that shaped today’s

processing systems in making the above possible and describe how we can design and

build analytics as well as production-grade applications to meet these requirements.

4.4/ INFORMATION FLOW PROCESSING TECHNOLOGIES

The requirement to process large volumes of data in real-time and generate continuous

information with actionable intelligence has attracted considerable attention from the re-

search community [69]. Several attempts have been made to develop information flow

processing technologies that paved the way for current SPEs. It is possible to group the

initial set of such information flow processing systems into four broad classes: active

databases, Continuous Query (CQ) systems, publish-subscribe systems, and Complex

Event Processing (CEP) systems. We explain these technologies in more detail in the

rest of this section, in order to provide a historical background for the advent of stream

processing technologies.

4.4.1/ ACTIVE DATABASES

Active databases are used to support applications where data transformation and event

detection tasks are continuous. They depend on the rules of Event-Condition-Action

(ECA), which capture events, the conditions surrounding these events, and the actions

to be activated when these conditions are fulfilled. ECA rules apply to data contained in



44 CHAPTER 4

the database, and external sources of events are not permitted. Events from both within

the database as well as from outside sources are permitted in open database systems.

Open, active database systems are, therefore, generally more suited to the continuous

processing of streaming data. Active databases were not designed for handling data

rates associated with data-intensive large scale scenarios. If it comes to supporting user-

defined operations, they have limitations. Active databases have greatly influenced the

design of current events programming models.

4.4.2/ CONTINUOUS QUERIES

Continuous Queries (CQs) are used to communicate requests for tracking information. A

CQ is a standing query that tracks updates of information. It returns results once the up-

dates exceed the user-specified threshold. CQs have three major components: a query,

a trigger, and a stop condition. An application also needs to implement adaptive mech-

anisms to cope with the update rate variations. Research and development behind CQ

systems were heavily inspired by techniques employed by active databases as well as

query processing on append-only databases. CQ systems rely on the regular evaluation

of queries over ever-changing databases, relying on incremental query processing strate-

gies to facilitate the re-evaluation of outstanding queries. SPEs take the operating mode

one step further by continually moving the data through the queries.

4.4.3/ PUBLISH-SUBSCRIBE SYSTEMS

Pub-subscribe is a mechanism powered by events that decouple data producers from

data consumers. Pub-sub systems can be classified into two categories: topic-based

pub-sub and content-based systems. Each publication may have one or more topics as-

sociated with it in a topic-based pub-sub system. A subscription specifies one or three

topics of interest for that publication. Most of the pub-sub content-based systems sup-

port atomic subscriptions, which are specified in individual publications. They support

composite subscriptions, which are described using concepts such as sequences and

repetition on a series of publications. CEP systems are based on the idea of complex

events that are very similar to composite subscriptions in pub-sub systems. SPEs are

similar to CEP systems in terms of their event-driven architecture, where a stream of

alerts is produced when new messages are released.

4.4.4/ COMPLEX EVENT PROCESSING SYSTEMS

CEP systems have been developed as computing platforms where events can be

recorded, analyzed, aggregated, combined, clustered, and dispatched to real-time an-



4.5. STREAM PROCESSING ENGINES 45

alytical applications. These systems usually relate precise semantics to the processing

of data items based on a set of rules or patterns that articulate the tasks for event de-

tection. Most CEP systems focus heavily on rule-based detection tasks, expressed as

a function of event sequences, logic conditions, and models of uncertainty in terms of

complex patterns defined. To sum up, CEP systems provide sophisticated support over

data streams for the rule-based complex event detection. Most of these systems use a

centralized runtime, reducing the scaling. They present solely limited assistance in the

handling of unstructured data and complex analyses.

4.4.5/ ETL AND SCADA SYSTEMS

ETL systems are used to implement moderately simple data transformation tasks.

SCADA systems support monitoring applications. ETL systems operate on offline stored

data, producing output that will also be stored. While many SCADA platforms have limited

support for event correlation, they tend not to provide in-depth analytics of the sort SPEs

focus on and usually handle much lower rate data inflows.

4.5/ STREAM PROCESSING ENGINES

The earlier information flow systems may support some of the processing and analytical

requirements associated with continuous data processing applications. Such systems

are typically adequate to incorporate small-scale and precise streaming of data process-

ing with low performance and tolerance criteria for faults.

SPAs typically incorporate optimized, adaptive, and evolving algorithms as part of their

analytical role. Besides, these applications must be flexible, scalable, and fault-tolerant

in order to accommodate greater and, in many cases, increasing workloads, with support

for low latency or real-time processing.

Such specifications contributed to the development of the computational paradigm and

SPEs for stream processing. While SPEs were developed by integrating several of the

technology ideas that pre-dated them, they also required many advances to the state-of-

the-art algorithms, analytics, and distributed computing infrastructure for processing.

We will discuss the stream processing paradigm in the remainder of this section, begin-

ning with the type of data generally processed by SPAs, as well as introducing its basic

concepts and constructs.
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4.5.1/ DATA

Data source A streaming data source is a streaming data producer, usually broken

down into a sequence of individual data items that can be consumed and analyzed by the

application.

Data sink Similarly, a stream data sink is a consumer of results, also expressed in the

form of a collection of individual data items generated by upstream applications.

Data model The following three concepts describe the stream processing data model ’s

characteristics.

The data model for stream processing can be traced back to data models that support

database technologies, accurately the relational model. Nonetheless, two main differ-

ences exist to accommodate the richer set of specifications associated with continuous

processing: first, the introduction of the stream as a primary abstraction and, second, the

incorporation of a richer and extensible collection of data types, allowing greater versa-

tility in what an application can manipulate. That said, the key components of this data

model are briefly described below.

A data tuple is a fundamental, or atomic, data item that is embedded in a data stream and

processed by an application. A tuple is similar to a database row because it has a set of

named and typed attributes. Every instance of an attribute is associated with a value.

The data schema is the type specification for the tuple and its attributes. Consequently,

the structure of the tuple is defined by its schema. A tuple attribute could be recursively

defined by another schema, making it possible to create structurally complex tuples.

With this in mind, a data stream is a conceivably infinite sequence of tuples sharing a

common schema, which is also a stream schema. Each tuple in a stream is typically

affiliated with a specific time step (or timestamp) related to when the tuple was captured

or generated, either in terms of the time of creation, time of arrival, time-to-live threshold,

or, only, a sequence number.

Structured, semi-structured, and unstructured Streaming data can typically be di-

vided into three broad classes: structured, semi-structured, and unstructured.

Structured streaming data includes data with, a priori, a known schema (or structure), and

its data items are organized into triples of name-type-value. Semi-structured streaming

data includes data with either nonexistent or not available complete schema (or struc-

ture). However, the data or some of its components are associated with self-describing

tags that differentiate its semantic elements and enforce a hierarchy of records and at-

tributes. Unstructured streaming data, on the other hand, consists of data in custom or
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proprietary formats; in many cases, it has binary encoding and may include text, audio,

video, or image data.

The data collected by an SPA is always a mixture of structured, semi-structured, and un-

structured data, where the unstructured and semi-structured components are processed

gradually, and their underlying structure is figured out step-by-step through the applica-

tion’s analytical operations.

4.5.2/ PROCESSING

When the data is available as tuples, the analytical components of the application will

process it. In this section, we will outline the basic concepts and terminology of stream

processing.

Operator The basic functional unit in an application is an operator. In the most general

form, input tuples from incoming streams are applied to an operator by an arbitrary

function, and output tuples to outgoing streams. However, it is also possible that when

operating as a data source or sink, an operator can not process any incoming streams

or produce any outgoing streams, respectively. An operator may execute many different

tasks:

(a) Edge adaptation, a process consisting of translating data from external sources

into tuples, which can be collected by downstream analytics carried out by other

operators.

(b) Aggregation, a process involves collecting and summarizing a subset of tuples from

one or more stream sources, bounded by various logical, physical, or temporal

constraints.

(c) Splitting, a process that involves partitioning a stream into several streams for bet-

ter use of data or task parallelism opportunities as well as for addressing specific

application-specific needs.

(d) Merging, a process that involves combining multiple input streams with potentially

different schemas based on the condition of matching or alignment, including tem-

poral or other explicitly defined affinities.

(e) Logical and mathematical operations, tasks that involve applying various logical and

relational processing, and mathematical functions to data items attributes.

(f) Sequence manipulation, a process that consists of reordering, delaying, or modify-

ing the temporal properties of a stream.
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(g) Custom data manipulations, tasks that involve the application of data mining, ma-

chine learning, or unstructured data processing techniques, potentially combined

with further user-defined processing.

An input port is the logical communication interface that enables the reception of tuples.

Likewise, an output port allows an operator to transmit tuples. An operator may have zero

input ports or more, as well as zero output ports or more.

As discussed above, as a result of its internal analytical or data manipulation task, an op-

erator generates typically new data. Generally, an internal analytical process has a long-

lasting requirement for continuous processing, as opposed to a process-to-completion

paradigm seen in traditional data processing projects. Besides, the analytical process is

usually temporarily limited, either because specific tasks have to be performed in a given

time or simply because the function’s execution needs to be able to keep up with the

incoming data flow.

Stream Streaming data in the form of a tuple sequence is carried through a stream

connection between the upstream operator’s output port and the downstream operator’s

input port. A stream connection can be physically implemented using a transport layer,

providing a common interface that hides a low-level transport mechanism.

Stream Processing Application Typically, an operator works in conjunction with others

by sharing tuples through streams. A set of operators and stream connections, organized

in a data flow graph, are the components that define the Stream Processing Application

(SPA).

An SPA is usually designed to perform a specific continuous analytical task. Thus, raw

data flows into its source operators, which continuously convert them into tuples and send

them for further processing by the rest of the operators in the application flow graph, until

the sink operators finally send the results to external consumers.

The flow graph structure represents the logical view of the application, in contrast to its

physical view (see Section 4.6). The flow graph can be arbitrarily complex in its structure

with multiple branches, as well as possible feedback loops, which are typically used to

provide control information back to the earlier stages of processing.

4.5.3/ SYSTEM ARCHITECTURE

The middleware2 for ingesting, analyzing, and processing of streaming information is

provided by a Stream Processing Engine (SPE). SPEs usually have two main elements:
2Middleware is the term used to denote the software which provides services beyond those available from

the operating system to other software applications.
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an application development environment and an application runtime environment.

Application development environment The application development environment

sets out the platform and methods used for applications’ implementation. This environ-

ment usually includes a (1) programming model, organized around a programming or

query language to express the internal processing logic and structure of the application,

and (2) a development environment in which the application can be interactively imple-

mented, tested, debugged, visualized and finely tuned.

Typically speaking, the continuous essence of streaming data and analytics implemented

by the SPA is best articulated by specific stream processing languages and programming

models where abstractions exist for operators, ports, streams, and stream connections.

The programming model represented by a stream processing language provides guide-

lines for manipulating data as well as to implement, join subcomponents, and configure

an application.

Mainly, a stream processing language includes constructs for (1) Defining a type system

which captures the data structure manipulated by the application; (2) defining the appli-

cation as a flow graph that translates the analytical requirements into a program that can

be run; (3) implement data-manipulation mechanisms capturing the required buffering

and subsequent operations to be performed; (4) Creating processing operators that en-

capsulate an analytical algorithm and allow application modularization and the reuse of

common functionality across applications; and, finally, (5) Defining configuration and ex-

tensibility parameters for customizing an application for a specific runtime environment.

To support the implementation of SPAs, there are four separate types of programming

languages: declarative, imperative, visual, and pattern-oriented.

Application runtime environment The runtime environment for the application in-

cludes the infrastructure that provides the resources and services to run one or more

SPAs and manage their life cycle of execution. The environment consists of a software

layer, theoretically spread through a multi-host environment where the applications are

mounted along with the management elements of the system itself.

4.5.4/ IMPLEMENTATIONS

A./ APACHE STORM

Twitter presented the Storm3 system as a distributed and fault-tolerant stream processing

system that instantiates the basic principles of the Actor theory [70]. In Storm, the central

3https://storm.apache.org

https://storm.apache.org
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abstraction is the stream. A stream is a series of unbounded tuples. Storm provides

the primitives for the distributed and efficient transformation of a source to a new stream.

Spouts and Bolts are the basic primitives Storm provide for performing stream trans-

formations. A spout is a stream-source. A bolt absorbs any number of input streams,

performs some processing, and can theoretically emit new streams. Complex stream

transformations, including computing a stream of trending topics from a tweet stream,

involve several steps and several bolts.

Spouts

Spouts

Bolts

Bolts

Bolts

Bolts

Bolts

Tuple | Tuple | Tuple

Tuple | Tuple | Tuple

Tuple | Tuple | Tuple

Tuple | Tuple | Tuple

Tuple | Tuple | Tuple

Tuple | Tuple | Tuple

Figure 4.5: A Storm stream application topology

A topology is a transformation graph of a stream where each node is a spout or a

bolt—edges in the graph shows which bolts subscribed to which streams. When a spout

or bolt emits a tuple to a stream, it sends the tuple to each bolt that has subscribed to it.

Links in topology between nodes show how the tuples should be passed around. Each

node executes in parallel in a Storm topology. We may determine how much parallelism is

required for each node in any topology, and then Storm will spawn that number of threads

across the cluster to perform the execution. Figure 4.5 portrays a topology for the Storm

study. The Storm system relies on the notion of stream grouping to determine how tuples

are being sent between components that operate. In other words, it determines how to

partition the stream among the bolt’s tasks. Storm particularly supports various types of

stream groupings, such as:

• Shuffle grouping where stream tuples are distributed randomly so that each bolt is

guaranteed to have the same number of tuples.

• Fields grouping where tuples are partitioned with the fields defined in the grouping.
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• All grouping where the tuples of the stream are copied and sent over all the bolts.

• Global grouping where a single bolt goes through the entire tube.

The Storm framework enables its users to establish their custom grouping mech-

anisms and the supported built-in stream grouping mechanisms. Apache Trident4 was

introduced as a Storm extension intended to be a high-level abstraction for real-time com-

puting. Specifically, it plays the same role as high-level batch processing tools like Pig on

the MapReduce ecosystem by offering built-in support for joins, aggregations, grouping,

functions, and filters. Storm inspired the design of many other systems that followed,

such as Apache Heron5 and Alibaba JStorm6.

B./ IBM STREAMS

IBM Streams7 is a part of the IBM Big Data analytics platform that enables user-developed

applications to ingest rapidly, analyze, and compare information as it comes from thou-

sands of sources of the data stream. IBM Streams assesses a wide variety of streaming

data — unstructured text, video, audio, geospatial, and sensor — helping companies rec-

ognize opportunities and risks and make real-time decisions. The system is designed to

manage up to a million messages or events per second. It offers a programming model

and IDE for identifying data sources, and software analytics modules called operators

fused into execution units for processing. It also provides the infrastructure to support the

composition from specific components of scalable stream processing applications. The

key components of the Framework are:

• Runtime environment : This involves framework resources and a scheduler to de-

ploy and track Streams applications through a single host or interconnected servers.

• Programming model : Streams programs can be written using a declarative lan-

guage, the Streams Processing Language (SPL). Developers use the language to

state what they want, and the runtime environment has to decide how best to service

the request. A Streams application in this model is described as a graph consisting

of operators and the streams which link them.

• Administrative interfaces and monitoring tools: streams data processing programs

at speeds much more significant than those that standard operating system control

utilities can manage effectively. IBM Streams offers the resources this environment

can manage.
4https://storm.apache.org/documentation/Trident-API-Overview.html
5https://incubator.apache.org/clutch/heron.html
6https://github.com/alibaba/jstorm
7https://www.ibm.com/cloud/streaming-analytics

https://www.ibm.com/cloud/streaming-analytics
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SPL, IBM Streams programming language, is a distributed language for the compo-

sition of data flows. It is an extensible, fully-featured language that supports user-defined

types of data. A streaming application of IBM Streams defines a directed graph com-

posed of interconnected elementary operators that operate on multiple data streams.

Data streams may come from outside the system or be generated as part of an applica-

tion internally. Fundamental building blocks for SPL programs are:

• Stream: A series of infinite ordered tuples. Operators can consume it on a tuple-

by-tuple basis or by specifying a window.

• Stream type: Defines the name of each attribute in the tuple and the data type.

• Operator: SPL’s fundamental building block, operators process stream data and

can create new streams.

• Window: A finite group of sequential tuples. It may be based on the count, time,

meaning of attributes, or punctuation marks.

• Tuple: A standardized list of attributes and the categories thereof. Any tuple on a

stream has the form determined by their type of stream.

Instance
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Node
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Figure 4.6: IBM Streams runtime execution

Figure 4.6 shows the runtime view of SPL programs on IBM Streams. An operator

in this architecture represents a reusable stream transformer, which converts some in-
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put streams into output streams. In SPL programs, operator invocation implements an

operator’s particular function, with particular input and output streams allocated, and pa-

rameters and logic specified locally. Every operator invocation names the streams for

input and output.

4.6/ RESOURCE MANAGEMENT

Frameworks, which structure data stream processing applications as a data flow graph,

usually use a logical abstraction to specify operators and how data flows between them;

this abstraction is called a logical plan here (see Figure 4.7). A developer can present

parallelization hints or specify how many instances of each operator should be instanti-

ated when constructing the physical plan that is used by a scheduler or other component

responsible for allocating resources from the available cluster resources to operator in-

stances. As shown in the figure, the same logical operator ’s physical instances can be

placed on various physical or virtual resources.

Logical
Operator

Data
Source

Operator
Instances

Data
Source

Logical Plan

Physical Plan Operator
Placement

Physical
Resources

Figure 4.7: Logical and physical operator. Taken from [58].

Since operators run simultaneously, stream graphs expose parallelism inherently, but

since many streaming applications require extreme performance, research communities

have developed optimizations that go beyond that inherent parallelism. Digital signal

processing, operating systems and networks, databases, and complex event processing

are the communities that have focused most on streaming optimizations.
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When we want to speak about resource management in the context of stream processing,

we cannot move forward without speaking about an intrinsic characteristic of the latter,

which is distributed computing. In the following section, we will review how SPEs are

distributed and how applications (SPAs) leverage this architecture. More specifically, we

will detail the logical and physical plans, how operators are placed onto resources, and

finally, the transport layer inter-operator and inter-application.

4.6.1/ DISTRIBUTED COMPUTING

A./ LOGICAL VERSUS PHYSICAL FLOW GRAPHS

An application developer usually designs and implements an application as a logical data

flow graph, where the network vertices correspond to the instances of the primitive and

composite operator and the edges for stream connections.

Unlike this logical representation, when an SPE deploys an application, it will map it to

a corresponding physical data flow graph, where the graph vertices correspond to OS

processes and the edges to transport links that can transfer tuples between operators,

possibly across hosts.

Figure 4.8a provides a logical description of an operation, including the full hierarchy of

the operator instances. There are various viewpoints of varying granularities of the logical

view, due to the presence of the composite operators. For example, Figure 4.8b shows

the same function, but the instances of the composite operator collapse, and only the

instance graph of the top-level operator is shown. A logical view always corresponds to

the topology constructed by the application developer. However, it may present different

perspectives of this topology with different levels of expansion of the composite operator.

A significant observation is that a partition of the application will cross the boundaries

created by a composite operator. The latter is merely a conceptual grouping motivated

by such issues as encapsulation and reuse of code. The former, by comparison, is a

physical grouping guided by issues like runtime efficiency and load balance.

B./ PLACEMENT

When an SPA covers several distributed hosts, the first decision a developer faces is how

various parts of an application can be assigned to different hosts. The placement method

takes two forms: placement of partitions, and placement of host.

Partition placement deals with OS processes associating to the operators. An application

partition is a group of operators allocated to the same operation. Operator fusion is the

mechanism by which they are put in the same process.

A process is a basic OS construct that represents the instance of a program being run.
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(a) Logical application view, showing the complete operator instance hierarchy.

(b) Collapsed logical application view, showing the top-level operator instances.

Figure 4.8: Logical application topologies.

This offers separate address space and separation from other device operations, as well

as its resource management (e.g., for memory, CPU cycles, and file descriptors) and

context for specific execution threads. As a result, it becomes the basic execution unit

in a distributed SPE when a partition is assigned to a process as each process can be

mounted on a separate host.

Host placement deals with the association of partitions with the hosts which make up the

runtime environment of the application. The method of assigning request partitions to

hosts is called scheduling.

The combined process of creating application partitions along with scheduling brings a

great deal of flexibility to the deployment of the SPA. Indeed, the same application will

run on several different environments, from one single host to wide host clusters without

rewriting it.

Although decisions can be delegated to the compiler (partition placement) and the ap-

plication runtime environment (host placement) for all of these processes, an application

designer can identify constraints and exert fine control over them if desired.

C./ TRANSPORT

The stream transport layer is used to implement physical connections that support logical

stream connections used in the source code of the application. Flexibility and efficiency

of the transport layer are essential for the development of scalable distributed SPAs.

Two aspects of the design of the transport layer are particularly important: first, the ability

to be malleable to meet specific performance requirements, such as the focus on latency

or throughput, and, secondly, the ability to use different types of physical connections to
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deliver the most performance while imposing the least amount of overhead, regardless of

the physical layout used by the application.

The performance requirements of the SPAs are in a continuum. However, it is important

to look at the two extremes in this continuum: latency-sensitive and throughput-sensitive

applications. Latency-sensitive applications usually have little tolerance for buffering and

batching, as tuples must move between operators as quickly as possible, ensuring that

fresh data is processed and that fresh results, including intermediate ones, are produced

quickly.

Conversely, an application that is responsive to the throughput is involved in generating

as many final results as possible in the shortest possible time. Thus, tuple buffering and

batching techniques can give this type of application a significant boost in performance,

especially in the early stages of its processing flow graph.

Selecting a physical transport Scalable SPEs have a range of different physical trans-

ports, tailored for specific situations and with different inherent costs and performance

trade-offs. For example, stream connections between fused operators sharing the same

application partition can be implemented very efficiently via function calls, since these

operators are part of the address space of the same OS process.

Of course, the same is not true for connections between operators placed on the same

host, but on different partitions for the application. In this case, one of several OS-

supported Inter-Process Communication (IPC) abstractions can be used to enforce a

physical link that corresponds to a stream: shared memory blocks, called pipes, or net-

work protocols, like TCP/IP as well as Remote Direct Memory Access (RDMA) [71] over

either InfiniBand or Ethernet.

4.6.2/ QUERY/PERFORMANCE OPTIMIZATION

Optimizing distributed applications typically requires innovation and an understanding of

algorithms and system issues that could affect their performance. A variety of techniques

and methods, including parallelization techniques that we discussed in the previous sec-

tion, are part of the resources that developers can use. We address design concepts and

implementation trends in this section that can assist in performance optimization tasks.

They focus mainly on increasing the performance of an application, but we also address

latency when it is adversely affected by the performance-driven optimizations. Perfor-

mance optimization could be time-consuming and result in reconfiguring the data flow

graph of an application, changing and improving the implementation of certain operators,

selecting or tuning their analytics, as well as modifying how an application is deployed

physically. However, it is crucial to building performance optimization skills in the context

of stream processing, as many ongoing processing applications need to process a vast
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amount of data promptly.

A./ OPERATOR REORDERING
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Figure 4.9: Adjust the order in which the operators in the graph appear.

The central principle of operator reordering is to hoist upstream selective operators

so that certain data items can be discarded early. That way, by not processing these data

objects, costly down-stream operators may spend less time. It is more profitable to put

the less costly one first if operators A and B are similarly selective. It is more profitable to

put the more selective one first if operators A and B are similarly costly.

B./ REDUNDANCY ELIMINATION
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Figure 4.10: Eliminate the redundant operators in the graph.

Eliminating redundant operators, if resources are small, is profitable. For example, if

a repetitive task takes time on a core that could be put to better use, it increases overall

efficiency by removing that task. A com-mon redundancy trigger is a compilation based on

simple templates being instantiated. Redundancy is not readily evident in some situations

and often needs to be revealed to other optimizations. Multi-tenancy is another common

cause for redundancy, where multiple users start related applications independently that

can share subgraphs.

C./ FUSION
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Figure 4.11: Merge several individual operators into one single operator.

Fusion is the dual separation of operators. Its key performance gain comes from de-

creased overhead contact and allowing conventional (non-streaming) compiler optimiza-

tions on the fused operator. However, fusion allows the same computer and theoretically
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the same thread to be shared, while using fewer resources. In other words, there is less

risk of mission or pipeline parallelism with fusion.

D./ FISSION
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Figure 4.12: Replicate an operator for data-parallel execution.

Fission is beneficial when implemented on an operator with a high processing cost

per data object when the parallelization overhead is minimal. In the ideal case, Fission

can increase throughput on N cores by a factor of N. Speedups of 8 or even 16 are not

unusual in practice, but the speedup is rarely optimal and ultimately usually caps out.

E./ LOAD BALANCING
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Figure 4.13: Adjust the order in which the operators in the graph appear.

The slowest operator typically bounds a stream graph’s throughput. Load balancing

aims to distribute the work equally so that all system nodes could run near capacity.

Therefore, load balancing profitability depends on how imbalanced the load was to start

with, and how well it can be balanced. In data parallelism (fission), load balancing can

be achieved at the splitter by routing data objects to each operator replica, giving them

about the same processing load.

4.7/ CONCLUSION

After exhibiting some of the known optimizations in the literature [72], in the next part of

the thesis ’III. Contributions,’ we dedicate a chapter on studying the fusion optimization

and we propose a fusion strategy against the grain to popular belief after exploring the

characteristics of a distributed application.
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5

BIG DATA ARCHITECTURE OF GROUPE

PSA

“The beautiful thing about
learning is nobody can take it
away from you”

B. B. King

Nowadays, connected vehicles (CVs) are able to collect up to 170 different infor-

mation (speed, temperature, fuel consumption, etc.) from onboard built-in sensors and

transmit them, in a real-time fashion, to an infrastructure, usually by 4G/5G wireless com-

munications. This reality raises many opportunities to develop new and innovative telem-

atics services, including, among others, driver safety, customer experience, quality and

reliability, location-based services, dealer services, infotainment, etc. It is expected that

there will be roughly 2 billion connected cars by the end of 2025 on the world’s roadways,

where each of which can produce up to 30 terabytes of data each day. Managing this

big data, in real or batch mode, imposes tight constraints on the underlying data man-

agement platform. In this work, we report on real CVs big data platform, specifically, the

one deployed by Groupe PSA1. In particular, we present technologies and open-source

products used within different components of the platform to gather, store, process, and,

more importantly, leverage big data and stress on why Hadoop system is not anymore

the de-facto big data solution.

In this work, we describe the experience of PSA in building an automotive Big Data

processing platform. The choices have made after comparing side by side other tech-

nologies that answered the same goal. The solution provided answered to Groupe PSA’s

requirements for a fast, reliable and ubiquitous platform for storage, cleaning and pro-

cessing of automotive data. The research work in this contribution consisted of taking

the existing architecture and re-invent it while improving its performance. In order to do
1Groupe PSA: a French car manufacturer. https://www.groupe-psa.com/en/
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so, many proofs of concepts (PoC) were developed and tested. Subsequently, the PoCs

were implemented to compose the current big data architecture studied in detail in this

chapter and evaluated for its performance.

5.1/ INTRODUCTION

In Vehicle-to-Infrastructure (V2I) communication paradigm, Connected Vehicles (CVs),

thanks to their various embedded sensors and telematics, can continuously feed the au-

tomotive infrastructure with a large amount of diverse useful data. CVs are equipped

with a transmission unit (internal or external) that allows them to connect to a network

(e.g., Internet) and communicate by sending and receiving data. For instance, currently,

each connected vehicle of Groupe PSA can report over 170 different types of data (ve-

hicle identification number, GPS coordinates, revolutions per minute, etc.) and PSA is

expecting to handle millions of vehicles by the next decade [73] (Fig. 5.1 (a) and (b)).

V2I, in contrast to V2V (Vehicle-to-Vehicle), offers many advantages that incite PSA to

exploit this paradigm for its Connected Vehicle services. Some of its advantages are

computation offloading, data persistence, network coverage, and accessibility.

A large amount of broad range data is a double-edged sword. On the one hand, it

can be of great interest to automobile manufacturers, fleet managers, vehicle owners, and

different other customers (Fig. 5.1 (c)). For example, automotive data can be leveraged to

provide services to electric vehicles (such as battery pre-conditioning and charging), and

it can also be leveraged to improve the driving experience, road safety, fleet management,

and vehicle services. Table 5.1 lists a set of services that can be developed over the

collected data and when consent and permissions are given by customers. On the other

hand, before the automotive manufacturer can itself benefit from the collected data and

can also offer information and services to its customers and partners, different challenges

related to big data (such as storage, processing, analysis, leveraging, and sharing) must

be tackled.

As regards innovative big data storage and processing, extensive research has

been conducted on this matter, and numerous efficient solutions have been proposed

to: (i) make up for the deficiency and inadequacy of traditional methods, and (ii) deal with

huge data volumes [73, 74]. Presently, research is more focused on big data leveraging

(such as advanced analytics and machine learning techniques on data lakes) [75, 76].

Despite all this work dedicated to big data challenges, to the extent of our knowledge,

little attention has been devoted to the issue of proposing an end-to-end system; a com-

plete model that is responsible for managing and protecting big automotive data flows

throughout their life cycle [73, 74]: from the basic sensing operation to gathering, pre-

processing, storage, processing, to the final leveraging and exploitation phase. An auto-
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Figure 5.1: Big data gathering and leveraging by Groupe PSA.

motive big data gathering and leveraging architecture must adhere to the following four

major requirements:

• Time and space efficiency: to provide smooth services to the final users, the

proposed solution must use highly efficient storage and processing techniques. It

must also support two mandatory processing modes; online stream computing and

data lakes1. These two points will be detailed later on in this chapter.

• Scalability: the proposed solution must be highly scalable so that it can maintain

the required performance level in front of a large number of connected vehicles,

their large diverse data, and the inevitable increase of both.

• Security: first, the proposed solution must provide a customizable secure sharing.

That is to say, vehicle owners must be able to share their data (with PSA partners,

third-party applications, and so on) while being able to control what information

can be accessed and by whom. Second, in addition to data privacy, all the nec-

essary conventional security mechanisms must also be considered (confidentiality,

integrity, and availability).

• Robustness: the proposed architecture must be robust and fault-tolerant. In case

1Data lakes were previously known as offline-batch storage and processing.
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of any failure, recovery must be instantaneous, transparent, without data losses,

and more importantly, without service interruption.

Cloud computing spans a range of classifications, types, and architecture models.

The transformative networked computing model can be classified into three principal

types: Public cloud, Private Cloud, and Hybrid cloud. Cloud computing can be offered

in various models and deployment strategies, including the most popular Software as a

Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

The underlying architecture can take numerous forms and features, including virtualized,

software-defined, and hyper-converged models, among others. Groupe PSA opted for

the Hybrid cloud [77] for several reasons. First, because it offers the advantages of both

the private and public cloud and yet remaining secure, scalable, and cost-efficient. One

of the undeniable advantages of the hybrid cloud model is to have a private on-premise

infrastructure that is directly accessible; in other words, it is not provided via the pub-

lic internet. Access time and latency are, therefore, significantly reduced compared to

public cloud services. Another advantage of a hybrid cloud model is the ability to have

an on-premise computing infrastructure that can support the average workload for busi-

ness while retaining the ability to leverage the public cloud for hot-recovery situations

where the workload exceeds the computing power of the private cloud component. For

instance, when it comes to Machine Learning/Deep Learning workloads that need a large

but temporary processing capacity for training the models, Hybrid Cloud can provide an

elastic overflow capacity and to have ”on-demand” processing capacity. Moreover, it rec-

onciles the two major types of Cloud Computing, Big Data/Hadoop infrastructure, and

the High-Performance Computing infrastructure. Hybrid cloud does that by connecting

the computing farms to the storage warehouses. In such a setting, data locality becomes

more flexible, and administrators would be able to execute or move data around to remain

close to computing resources and therefore reducing the impact of the network latency.

The impacts of adopting a hybrid cloud will be manifested in every component of the big

data architecture detailed in the rest of this chapter.

To plug the previously discussed gap while satisfying the requirements mentioned

above, the present work aims to report on a standard big automotive data model. To

be more specific, the goal is to (1) provide a detailed description of the layered big data

architecture of Groupe PSA and (2) succinctly narrate the state-of-the-art experience and

feedback of this well-known automobile group in terms of gathering, storing, processing,

and leveraging its continuous streams of vehicle-data.

The remaining of this chapter is organized into six sections, as follows. Section 5.2

gives some basic big data concepts, in particular, we re-discuss the 5 V’s of big data in

the light of automotive application. Section 5.3, the core of this chapter, describes the big

data architecture deployed by Groupe PSA and details both its layers and fundamental
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Table 5.1: Use Cases of the Connected Vehicle

Application Description

Connected Services

- Last valid position.
- Theft tracking.
- Digital maintenance book of customer’s vehicle.
- Raising vehicle alerts.
- Technical sheet of the vehicle thanks to the data of the connected
vehicle and signature via the blockchain [78, 79].
- Eco-driving score + advice to reduce consumption.

Customized Vehicle Insurance Pay-as-you-drive or the-way-you-drive
Smart Cities Traffic and parking management through detection of free spaces
Weather Temperature and humidity feedback in real-time

Added-value for OEM
- Improved product by analyzing the defects.
- Adaptation of vehicle functionality in different countries (removal
of unused functionality, for example, to lower costs).

technologies. Section 5.4 presents a few potential automotive applications and also gives

some actual services that are currently provided by the PSA platform. Section 5.5 eval-

uated the proposed architecture by studying two dimensions: the performance and the

quality of service and data. Finally, the last to sections concludes the work and suggests

directions for future research and architecture enhancements.

5.2/ THE FIVE V’S OF BIG DATA

Although many definitions have been proposed to describe and explain the big data no-

tion, no agreement on a single universal definition has been reached. In this work, the

term ”big data” is used to refer to enormous datasets which due to their five intrinsic

characteristics, known as the 5Vs, are challenging to handle:

• Volume (data size): connected vehicles generate huge amounts of data at a very

high pace. This data is sent to a dedicated automotive infrastructure to be stored

and processed for immediate (stream processing) or subsequent (historical) use.

Given the fact that traditional storing and processing solutions are inefficient in front

of these new requirements and conditions [80], many novel highly efficient tech-

niques have been proposed to solve this issue.

• Velocity (data generation speed): among the basic intrinsic characteristics of au-

tomotive data is their very high growing tendency, which requires the use of the

fastest and most efficient techniques proposed for big data storage and processing

(stream computing, distributed file systems, distributed computing, ...).

• Variety (data diversity): automotive data can be collected from numerous het-

erogeneous sources with various formats (it can be structured, semi-structured, or
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unstructured). Thus, before being stored and processed, the collected data must

be prepared and formatted to be usable.

• Veracity: the quality and trustworthiness of automotive data in terms of accuracy,

completeness and consistency.

• Value: this last and most important V means that the collected big data is useless

unless it is transformed into something meaningful and valuable. For instance, the

collected data can help automotive manufacturers provide safer and better prod-

ucts/cars in the future. It can also help them provide services and applications to

numerous customers and partners such as road safety, remote vehicle diagnostics,

and electric-vehicle services. However, as previously stated, before vehicle manu-

facturers can take full advantage of the endless possibilities of automotive data and

before they can provide all those interesting services, multiple challenges had, and

still have, to be overcome. In other words, while some challenges related to big

data have been efficiently addressed (such as data gathering, storage, processing,

and sharing), others still need more investigations and efforts (e.g., advanced data

analysis and big data leveraging using AI/machine learning approaches).

In addition to what has been said, to better meet the needs of customers and part-

ners (through the different offered automotive services), two essential data processing

modes must be considered: online stream processing and batch processing. These

modes have two distinct purposes. The online stream processing processes raw data

as it arrives (from connected vehicles) in a real or near real-time fashion, and is mainly

related to connected B2C2 services (such as fleet management and smart cities: traffic

management, management of free parking spaces, etc.). As for the batch processing

part, as its name might imply, it is dedicated to historical data processing, mainly, using

efficient artificial intelligence and machine learning mechanisms. Moreover, automotive

data (such as vehicles’ identification numbers, GPS coordinates, and speed) cannot be

shared and served to final users without being processed first. Indeed, vehicle-data must

be processed according to the pre-established customers’ preferences and consent. For

instance, it can be averaged, filtered, or aggregated while considering a particular set of

vehicles or a specific window of time. More details about all these points will be given in

the next section.

2B2C: Business-to-Customer.
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Figure 5.2: Layered big data managing architecture of Groupe PSA.

5.3/ MANAGING VEHICULAR BIG DATA: FROM GATHERING TO

LEVERAGE

The present section details the main layers of the actual big data architecture that is

currently deployed and utilized by Groupe PSA (Figure 5.2). We mention that the goal

and policy of Groupe PSA focus on utilizing efficient open-source solutions whenever they

are available and suitable for this hierarchical data leveraging structure.

As shown in Figure 5.2, the big data managing model of PSA consists of six layers:

(1) data sensing, (2) data gathering, (3) data queuing, (4) device and referential data

management, (5) data processing (with two different processing modes or sublayers),

and finally (6) data leveraging and serving. Note that the first (data sensing) layer of

this architecture is related to the connected vehicles of both Groupe PSA and its partner

brands (Figure 5.1), while all the other remaining layers, from (2) to (6), are ensured by

the PSA platform (MQTT broker, distributed streaming platform, centralized database,

automotive infrastructure, data lake, etc.).

5.3.1/ DATA SENSING

The first basic layer in this big data architecture regards sensing and communicating am-

bient environmental information from connected vehicles to a dedicated automotive sink

or base station (Figure 5.2). This essential step is mainly realized through the various

embedded sensors and telematic service units (TSUs) of vehicles, which capture auto-

motive data streams and report them via mobile wireless networks. The next paragraph

will elaborate on TSU units and then address the protocol utilized to communicate data
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from vehicles to the automotive sink.

Typically speaking, TSU units are installed in vehicles (connected to the CAN

bus [81]) and have a data rate of 1 Mbit/s (according to the ISO 11898 standard [82]).

Currently, Groupe PSA utilizes numerous kinds of TSUs, such as autonomous telematic

boxes (ATBs), approved aftermarket boxes, and third-party telematic boxes. Each utilized

TSU unit has a special application. For instance, units that are designed for extensive

monitoring can be considered to send a large range of data at a very high frequency. As

regards aftermarket TSU units, especially those that can provide features and functional-

ities (such as GPS localization) for low-end vehicles, they can be utilized to consolidate

automotive data with additional information. In fact, in addition to TSU units, V2X com-

munications3 can also be considered to send vehicles’ data to smartphones and then to

the automotive sink. In both cases (TSU or V2X), data is sent in a binary format using

the well-known lightweight MQTT protocol. As shown in Figure 5.3, this communication

paradigm connects, via a data broker, connected vehicles (publishers) with their automo-

tive infrastructure (subscriber). In other terms, using their embedded sensors and telem-

atics, vehicles gather the required data and send it, through the broker, to the automotive

infrastructure.

Generally speaking, MQTT is based on a publish/subscribe messaging paradigm,

where publishers publish about some specific topics (i.e., send messages to the MQTT

broker). Subscribers (clients) can subscribe/unsubscribe to/from any topic proposed by

the broker. The latter’s job consists of forwarding the received messages from publish-

ers to the appropriate interested subscribers (according to the recorded subscriptions).

Finally, we mention that in MQTT, the publisher-broker and broker-subscriber communi-

cations can be specified using three different levels:

• QoS level 0 (at most once): transmitters send their messages only once without

waiting for acknowledgments from receivers.

• QoS level 1 (at least once): in this case, acknowledgments are required for ev-

ery sent message. That is, messages are delivered at least once (they can be

sent/received multiple times).

• QoS level 2 (exactly once): guarantees that messages are delivered only once to

recipients (a four-step handshake process).

5.3.2/ DATA GATHERING

The main role of this intermediate layer (called also front-end layer) is (1) gathering au-

tomotive data from the previous sensing layer and (2) preparing this input by making it
3V2X: vehicle-to-everything communication (Bluetooth, ...).
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Figure 5.3: Big data sensing, gathering, queuing, and processing.

usable by the upper remaining layers. Regardless of the utilized communication protocol,

the collected automotive data have to be ingested, decoded and formatted before it can

be utilized. In the early versions of this big data architecture, the adopted communication

protocol was HTTP/HTTPS and the main tasks of this layer which was an HTTP (Web)

server were to receive the HTTP traffic, decode it, transform it into some specific format,

and finally transfer the output to the upper (data queuing) layer. In the currently deployed

architecture, as previously mentioned, the adopted protocol is MQTT. Accordingly, this

front-end layer is an MQTT broker responsible for receiving, decoding, formatting, and

handing the output to the upper layer (Figure 5.3). This choice of protocol is motivated by

numerous reasons. MQTT, which is one of the most widely adopted IoT communication

protocols, has been specifically tailored to be simple and easy to implement. Moreover,

this application-layer protocol is convenient, more suitable, and has better performance

than HTTP. Its lightweight and energy-efficient features offer light processing, fast com-

munications, and allow devices with weak capacities to communicate with each other over

low-bandwidth and unreliable networks.
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5.3.3/ DATA QUEUING

From a theoretical point of view, this layer acts as an asynchronous secure producer-

consumer queue. The aim is to cover any temporary unavailability of either the senders

(MQTT Broker) or receivers (speed processing and data lake sublayers). This way, the

real-time stream consumers and data lake will be resiliently and smoothly fed with the

collected automotive data. The senders and receivers, in this system, do not interact

directly, and messages are queued until being retrieved by the consumers.

The previously utilized message queuing (MQ) solutions (such as Message-Oriented

Middleware software (MOM) and WebSphere MQ) suffered from several performance

issues. The main one is that the adopted architecture was not fully distributed (it allowed

the utilization of only one consumer, whether in the stream speed sublayer or data lake).

To remedy this, currently, the popular and widely utilized Apache Kafka [83] is used to

ensure the main tasks of this layer (Figure 5.3).

Before addressing the processing layer which relies in an indispensable manner on

the three previously described layers (data sensing, gathering, and queuing), the next

section will talk about the device and referential data management layer which is also

very mandatory for the proper operation of the processing layer. As shown in Figure 5.2,

the three basic layers (data sensing, gathering, and queuing) and the referential layer are

independent. The former ones are responsible for automotive data gathering and prepar-

ing while the latter is in charge of managing devices (activation, deactivation, update, etc.)

and providing the necessary information required for the proper operation of the whole

architecture.

5.3.4/ DEVICE AND REFERENTIAL DATA MANAGEMENT

In the currently deployed architecture, all the necessary and crucial big data manage-

ment functions and information (related to devices, vehicle owners, customers, partners,

contracts, preferences, services, and so on) are delegated to this layer. For instance,

this referential layer is responsible for defining access policies, i.e., who4 can access to

which resource (environmental, geographical or other information). As a second exam-

ple, the type of processing or even preprocessing, such as anonymization, filtering, and

aggregation, that must be applied to the collected automotive data are dictated at this

level.

Concretely speaking, as demonstrated in Figure 5.4, this layer, which is composed

of a manager and a centralized database (that stores information mandatory for big data

leveraging), serves as a reference for the upper processing and leveraging layers (re-

4Business-to-Business (B2B), Business-to-Customer (B2C), or both.
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Figure 5.4: Detailed big data managing architecture of Groupe PSA.

sponsible for providing automotive services and applications to the final users). Vehicle

owners, partners, and PSA administrators are granted access to this database and can

interact with it through their respective spaces via the Web.

5.3.5/ DATA PROCESSING

This layer, which is considered to be the most important component of the whole PSA

architecture, is divided into two fundamental data processing sublayers: data speed pro-

cessing and data lake (Figure 5.4). While the speed sublayer is responsible for processing

the continuous data streams (online processing), the data lake sublayer stores and pro-

cesses historical automotive data with offline processing jobs (such as machine and deep

learning techniques). As shown in Figure 5.4, the data lake sublayer can be pictured as

follows. Automotive data flows continuously from the source (streams of queuing layer) to

a dedicated lake. In other terms, this lake is directly fed by raw data coming from Kafka

(Figure 5.3) and can be accessed and analyzed at any subsequent time. The next two

subsections will elaborate on these two respective sublayers.

A./ DATA SPEED PROCESSING

This sublayer is responsible for two main tasks: data stream acquisition and data stream

processing. As Figure 5.4 demonstrates, these tasks are ensured by two communicating

streaming applications (or microservices) [84]:

• Stream acquirers: the role of these microservices is retrieving fresh automotive data
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from the lower queuing layer and delivering it to the stream processors.

• Stream processors: these applications, which receive automotive data from the ac-

quirers and retrieves referential data from the reference layer (Figure 5.4), has one

fundamental task; processing the continuous data flow with strict constraints (i.e.,

online real or near real-time computing) while taking into account vehicle owners’

preferences. As previously stated, the received streaming information cannot be

shared as it is for the end-users. An aggregation function on a particular set of vehi-

cles or an average on a specific window of time must be performed before sharing.

The remainder of this subsection addresses two basic concepts: stream processing

and streaming applications.

A) Stream processing
Stream computing is a new programming paradigm that is designed for distributed and

parallel processing of unbounded data streams. This paradigm is often confused with

real-time processing, which requires a response within a certain period. To better explain

the stream processing, the following points describe some of its main characteristics:

• Data items are processed as they arrive (i.e., online).

• Events are time-based. Typically, every record is timestamped on creation.

• Operations are done in a data flow fashion/design.

• Every operation is done on one data element (or a small window of the recent data).

• An operation calculates something relatively simple.

• Each computation needs to be complete in (near) real-time to avoid congestions.

To guarantee that the input data will be processed as it arrives, all operators must

have a processing rate that is greater or at least equal to the input rate. For instance,

if data generation frequency is 100.000 events/s, but there exists one operator that can

process only 90.000 events/s, this will cause congestion that can go up to the source. To

satisfy such hard constraints, stream computing considers various levels of parallelism

(i.e., pipeline, task, and data parallelism).

B) Streaming applications
Streaming applications are programs responsible for processing continuous data

streams. In more concrete words, a streaming application is composed of a set of opera-

tors that are interconnected via stream connections (Figure 5.5). As shown in this figure,
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Figure 5.5: Streaming application example.
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Figure 5.6: Illustration of the stream runtime environment.

a streaming application can be modeled as a directed graph where vertices represent op-

erators and edges are data streams (continuous series of tuples generated by operators).

Note also that in a streaming application there are three types of operators:

• Source operators: represent the source of input data streams. These operators are

connected to an external source of data and can adapt the input data stream before

sending it out through their output ports.

• Computing operators: carry out the necessary computation. They transform input

data streams to the required output data streams by applying some operations (e.g.,

aggregation, correlation, etc.).

• Sink operators: having only input ports, these operators are usually placed at the

end of the streaming application.

As depicted in Figure 5.6, streaming applications are executed as jobs on a Stream

Runtime Environment (SRE), known also as Instance. Note that a job can be deployed

on single or multiple processing nodes. Note also that a job is a running application that is

executed as a set of Processing Elements (PEs), which execute each a set of operators.

Given that jobs can be executed on multiple hosts, PEs within a job can communicate

using Inter-Process Communication (IPC). As examples of streaming engines, we men-

tion IBM STREAMS [85] (which uses TCP as IPC) and Apache Samza [86] (which uses

Apache Kafka as IPC).
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B./ DATA BATCH PROCESSING

This sublayer has a twofold role: (a) providing efficient distributed storage for the au-

tomotive data, and (b) providing fast, efficient offline processing for the historical data.

First and foremost, it is worth mentioning that the collected automotive data is personal

and sensitive and cannot be utilized in its arrival raw state; it must be pre-processed

(anonymized and filtered) before use. To do so, the French authority responsible for data

protection (CNIL)5 has set strict laws and regulations. One of the latest European Union

(EU) regulations on data protection and privacy is the General Data Protection Regulation

(GDPR)6, and every business that has a digital presence online has to comply with those

rules. Groupe PSA is no exception to this rule; it anonymizes and filters automotive data

according to the customers’ preferences and consents. Each customer has a contract

that lists all his preferences (e.g., anonymization, partners that can access data, etc.).

These contracts can be accessed and modified by customers at any time via the Web.

Now, to be able to efficiently store the huge volumes of data generated by connected

vehicles, distributed file systems with the following features are a must:

• Efficiency : the utilized system must provide efficient fast managing of large data

volumes (such as fast read/write operations, etc.).

• Scalability : the considered distributed system must be able to support the huge and

continuously increasing volumes of automotive data both in storage and processing

(e.g., it allows adding more nodes/machines to the cluster).

• Robustness: the proposed system must be highly robust and available (for example,

through data striping and replication across multiple cluster-nodes).

Before moving to the last layer in the architecture (i.e., the leveraging and serving

layer), the following two subsections will talk more about automotive data storage and

offline processing. These two subsections will also address the products that Groupe

PSA has abandoned, and the new ones that have been considered to ensure efficient

storage and processing for historical automotive data.

A) Data Lake
Pentaho CTO James D. introduced the concept of Data Lake back in 2010. As he has

mentioned in his blog post, � If you think of a datamart as a store of bottled water –

cleansed and packaged and structured for easy consumption – the data lake is a large

body of water in a more natural state. The contents of the data lake stream in from a
5National Commission for Computing and Freedom (in French; ”Commission Nationale de l’Informatique

et des Libertés”).
6Official legal text can be found here: https://gdpr-info.eu/
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source to fill the lake and various users of the lake can come to examine, dive in, or take

samples � [87].

A ”Data Lake” is a technique facilitated by a vast data repository based on low-cost

technologies that enhance the collection, refinement, archival, and mining of raw data

within an enterprise. A data lake includes the mess of raw unstructured or multi-structured

data that, for the most part, has unrecognized value for the organization. The concept is

simple: Instead of putting data into a data store designed for specific purposes, transfer

it in its original format into a data lake. This technique reduces the upfront costs of data

ingestion, such as transformation. Once data is deposited into the lake, it is available

for analysis by all teams of the organization. The primary reason for implementing Data

Lakes is the need for improved agility and accessibility for data analysis [88]. Some of the

data lake’s capabilities are listed below:

• To capture and store raw data at scale for a low cost.

• To perform transformations on the data.

• To store many types of data in the same repository.

• To define the structure of the data when it is used, referred to as schema-on-read.

• To perform new types of data processing.

• To perform single subject analytics based on particular use cases.

The data lake comes as an improvement to what data warehouses were limited to

do. Data warehouses have been for some time the ipso facto solution for enterprises

when it comes to storing data for later usage. As the big data wave arrives, however,

businesses that have invested plenty of money constructing enterprise data warehouses

(EDW) begin building data lakes.

The enterprise data warehouse (EDW) was developed at most organizations to col-

lect information from several different sources so that reporting and analytics could be of

use to everyone. The data warehouse for businesses was designed to create a single

version of the reality that could be used recurrently. The data warehouse is a highly de-

signed system. It often has a very complicated data model, which is carefully designed

before loading the data.

Furthermore, the data warehouse supports the batch workloads and is designed for

continuous use by hundreds to thousands of concurrent users who conducted reporting or

analytics tasks. The answer is very straightforward, a hybrid and unified system includes

the data lake and the enterprise data warehouse, where users can ask questions that can

be answered by more data and more analytics with less effort.
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At first, PSA adopted the Hadoop distributed file system by Apache, also known as

HDFS (Hadoop Distributed File System) [89]. In a nutshell, this system has a master-

slave cluster architecture that is composed of one nameNode and multiple dataNodes.

While the master manages the cluster and stores meta-data files, slave nodes are respon-

sible for data (or block) storage. In other terms, to be stored in this distributed system, files

are split into blocks and then spread on the different dataNodes. Despite its distributed

nature and high availability, HDFS suffers from some limits:

• Scalability, in HDFS, does not allow scaling up the storage without the processing.

This limitation is a big issue in a hybrid cloud environment.

• The nameNode machine represents a single point of failure (SPOF) in the HDFS

cluster. When it fails, the whole system will crash, and manual interventions become

indispensable [89].

PSA DATA LAKE

Hadoop	Cluster ElasticSearch

Entreprise	Data
Warehouse

Object	Storage

Figure 5.7: Illustration of PSA Data Lake

To overcome the numerous drawbacks and limitations of HDFS, Groupe PSA has

opted for GPFS; an IBM distributed file system. Besides its full POSIX compliance feature,

GPFS has several other advantages. For instance, unlike HDFS, GPFS has no single

point of failure. This drawback is overcome by distributing both data and meta-data across

the cluster disks (also known as network shared disks or NSDs). At the same time,

Hadoop improved its file system by introducing for its NameNodes, the High Availability

feature. It enables administrators to run redundant NameNodes in the same cluster in an

Active/Passive configuration with a hot standby. This feature eliminates the NameNode

as a potential single point of failure (SPOF) in an HDFS cluster. As of Hadoop 3.0, admins

can configure more than one backup NameNode.

Concurrently, PSA invested in deploying an object storage solution [90] in the goal to

decouple the compute from the storage. Object Storage is an architecture for computer



5.3. MANAGING VEHICULAR BIG DATA: FROM GATHERING TO LEVERAGE 77

data storage that manages data as objects, an alternative to file storage that manages

data as a hierarchy of files, and blocks storage that manages data as blocks within sec-

tors and tracks. Object storage composed of extended metadata. The unique identifier

attributed to each object lets servers to retrieve it from any physical location. Use cases of

object storage include cloud storage, photos, video, audio, and large image files. Object

Storage can address the current Hadoop challenges in many ways. The key challenges

are:

• Accessibility and Durability: nameNode could still be single point for failure in

Hadoop. If nameNode fails, it would be difficult to access the rest of the cluster. With

object storage, data accessibility or data loss are prevented and secured through a

data protection mechanism known as erasure coding. Alternatively, if one instance

of Hadoop fails, the data can be made available on the other instance.

• Elasticity: Object storage works on a pay-as-you-go consumption model. Users

are only charged with what they are using at a certain time. Data can be added

anytime it is needed. Transparently, the cloud provider automatically provisions

resources on demand. Object storage is elastic, HDFS is not.

• Scalability: HDFS does not allow independent scaling. In Hadoop, compute power

and storage capacity are tightly coupled, meaning that when a resource is added,

the other must follow. On the other hand, object storage can easily scale out beyond

Petabytes. Data can be easily accessed and processed on Hadoop when it is stored

on object storage.

• Cost: A direct impact of the previously discussed point is the reduced cost of stor-

age when storage and computing are separated. Not only does this separation

lower costs, but it also increases efficiency. The cost of object storage is around the

fifth that of the Hadoop platform.

Figure 5.7 illustrates the components of the Groupe PSA Data Lake and its inter-

action with the EDW. PSA Data Lake is composed of two main components, the less

adopted solution, the Hadoop system, and the current go-to solution, the Object Storage.

In parallel, it encapsulates an Elasticsearch engine. Essentially, Elasticsearch is a tool

for indexing data, not exclusively for storing data. Elasticsearch may be incorporated in

a data lake for indexing the data stored in it. Better again, if an organization had multiple

storage systems in use to store raw source data, it is helpful for an application to consult

a master index to decide which data resides within which system. Such implementation

places Elasticsearch as a data catalog used to find data across multiple storage systems

quickly. By doing so, moving data around will become simpler. For instance, to copy data

to HDFS for a MapReduce job, or read directly from the source to load in memory to run

in Spark.
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Figure 5.8: Example of a MapReduce job.

In conclusion, Object Storage is not a replacement for Hadoop. It complements it by

presenting low-cost storage alternatives to make processing more powerful. It gives as

well flexibility in terms of data locality. Besides, it gives simple web services interfaces for

access through RESTful APIs. On the other hand, GPFS remains the desired solution

when it comes to fast fetching data for real-time processing applications.

B) Offline big data processing
Two of the most well-known and most utilized big data batch processing frameworks

are Hadoop MapReduce [91] and Apache Spark [92].

In the early deployments, Groupe PSA has chosen the former, which as its name im-

plies, consists of two distinct but closely related sets of tasks; the mappers and reducers

(Figure 5.8). The mappers split data into chunks and process them in a parallel fashion

to generate key-value pairs (tuples). As for the reducers, their role is to combine the map-

pers’ output to get a smaller set of tuples. In addition, MapReduce was designed to move

processing near the data rather than move the data to the processing. It implies collocat-

ing both the storage power and the processing power. Despite its high efficiency in terms

of one-pass computations, MapReduce had numerous disadvantages. To improve the

data lake sublayer performance and overcome the limitations imposed by MapReduce,

the second framework (i.e., Apache Spark) has been considered. The following list lists

some of the features that make Spark very useful and efficient:

• While MapReduce is recognized to be inefficient and inadequate for multi-pass com-

putations such as iterative machine learning, Spark is proven to be very efficient in

this regard [92].

• Spark is claimed to be 100x faster than MapReduce on memory and 10x on

disk [92].

• To provide a fault-tolerant distributed memory abstraction, Spark implements the

concept of resilient distributed datasets (RDDs) [93].
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• Above all this, Spark offers ease of use and development through programming

languages such as Java, Python, Scala, and R.

• Last but not least, Spark loads partitioned data into memory; therefore, there is no

need to collocate the processing and storage.

In conclusion, MapReduce’s usage today is reduced to the mere operations of back-

ups and exports of HBase tables.

5.3.6/ DATA LEVERAGING AND SERVING

This layer takes the data produced by the lower processing layer (both data lake and

speed sublayers), indexes it, and serves the result to the final users. In the following, we

will first talk about data indexing and then data serving.

Once all the data has been collected, a layer of data virtualization is needed to sim-

plify the accessibility of the data’s underlying complexity. In his book, “Data Virtualization

for Business Intelligence Systems”, Rick F. van der Lans defines data virtualization as

“The technology that offers data consumers a unified, abstracted, and encapsulated view

for querying and manipulating data stored in a heterogeneous set of data stores.” [94].

The data virtualization software aggregates structured and unstructured data sources

through a dashboard or visualization tool for the virtual viewing. The software allows for

the discovery of metadata about the data but hides the complexities associated with ac-

cessing disparate data types from different sources. Also, note that data virtualization

does not replicate data from source systems; it only stores metadata and logic for display

integration.

To index data, two different NoSQL databases must be considered: real-time random

read/write and batch queries [95]. In the currently deployed architecture, Groupe PSA has

opted for Apache HBase [96] and Apache Phoenix [97]. HBase is a distributed, column-

oriented NoSQL database modeled after Google BigTable [98]. As for Phoenix, it is an

open-source SQL engine that provides low-latency queries for data stored in HBase.

We mention that there is no precise definition of NoSQL. This term was originally

used to define a new non-SQL derivative of the conventional RDBM systems7 [99]. Re-

cently, NoSQL represents a new class of big data DBMS. So, it might also refer to ”Not

Only SQL” (to indicate that it can also support SQL-like query languages). NoSQL

databases have three common characteristics: high scalability, data replication, and

schema-lessness. First, to deal with the large increasing size of data, NoSQL databases

are distributed over clusters of machines. Second, to ensure redundancy and increase

the system reliability in front of losses, data is replicated on different machines. Third,
7RDBMS: Relational Database Management System.
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unlike traditional RDBMS, in NoSQL databases, no schema needs to be followed. Fi-

nally, we also mention that there are four basic types of NoSQL databases: key-value,

column-based, graph-based, and document-based [95].

To make the leveraged automotive data available to final users, Groupe PSA ex-

poses the data in two modes: RESTful APIs [100, 101] and MQTT. In the same con-

text, to grant third-party clients (such as mobile applications) access to the collected

personal automotive data without exposing users’ credentials, the open-standard autho-

rization protocol OAuth has been considered. Finally, as shown in Figure 5.4, note that

this data leveraging and serving layer also applies multiple artificial intelligence and ma-

chine learning techniques to make the data at hand (stored in the data lake) relevant to

numerous questions and problems of interest (such as improving all sorts of activities,

improving new products/cars, customer services, etc.).

5.4/ AUTOMOTIVE APPLICATION’S EXAMPLES

In addition to its importance and usefulness to vehicle manufacturers, automotive data

can also be very useful in a large range of customer services. In the following, we briefly

describe some possible connected vehicle applications, and also provide some actual

services that are currently deployed by Groupe PSA.

• Electric and self-driving vehicles: nowadays, self-driving and electric vehicles

are very hot topics in the auto industry. In this context, the collected automotive

data (related to vehicles themselves, the weather, etc.) can be properly leveraged

to meet the requirements of these interesting technologies and provide them with

essential services. First, regarding electric vehicles (EVs), a wide range of services

related to their battery life can be considered. We mention as examples, battery

preconditioning, services that allow EVs to have extra battery charges, informa-

tion about nearest battery charging stations, and route suggestions that take into

account both current remaining charge and charging stations. Second, as for au-

tonomous vehicles (SDVs), based on the collected automotive data, multiple driving

assistance features can also be offered to them. For example, autopilot in heavy

traffic or highways, lane-keeping, active city brake, and parking assistance.

• Vehicle management: connected vehicles (regardless of their type; electric or fuel-

based engines) send a large variety of data, including diagnostic-related ones (e.g.,

error codes, mileage or kilometers remaining before the next service, etc.). This

helps the maintenance team to get relevant information before the admission of

vehicles.
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• Mobility management and safety: by fusing and analyzing the collected automo-

tive data, drivers can be offered a faster, safer, and fuel-economic mobility experi-

ence. For instance, using automotive data, heavy traffic zones can be identified and

efficiently avoided, hence reducing pollution, time, and fuel consumption. Applica-

tions of this category can also detect and alert in real-time drivers about potential

dangers such as black ice, fog, rain, and accidents (prevent potential collisions).

• Fleet management: this automotive service can enable fleet owners (such as de-

livery cars/trucks and leasing companies) to have, in real-time, all the critical infor-

mation about their vehicles (real-time tracking). This way, fleet managers can better

organize and follow their vehicles to ensure responsible use, improve efficiency,

reduce costs, and ensure safety.

The remaining two subsections describe two examples of services that are currently

deployed via the PSA platform: eco-driving service and weather service. In the next

section, we make an ”implementation focus” on the eco-driving application by providing

implementation details.

5.4.1/ ECO-DRIVING

The goal of this service is advising drivers and helping them improve their driving (making

it eco-friendly). The current assessment of customers driving style adopted by Groupe

PSA is represented by scores. The global eco-driving score and its sub-scores are di-

vided into two types: (a) the driving style, namely a score on the driver’s behavior, and

(b) the road profile; a score related to the selected itinerary. In brief, this application aims

to accurately assess and analyze the driving style of customers by taking into account

their fuel consumption, acceleration, speed, braking, RPM, etc., and correlating them

with other pertinent environmental data (such as altitude, road’s slope, and other cus-

tomers driving). This way, the customer can be helped to improve its driving and manage

its fuel consumption. It is worth mentioning that this service does not only reduce CO2

emissions and fuel consumption [102], but it can also extend the life cycle of vehicle spare

parts through the optimized usage of the entire vehicle. The next section will go through

the specifics of this eco-driving application. More details on that, in the next Chapter 6

where the second contribution of thesis will be detailed.

5.4.2/ WEATHER SERVICE

To meet the requirements of this application which is in partnership with Météo-France8,

each connected vehicle of PSA captures the external ambient temperature, tags it with its
8The French National Meteorological Service: http://www.meteofrance.com
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current location, and then sends the result to the PSA infrastructure. The latter correlates

the received data and updates the map (Figure 5.9). The goal is to provide a precise real-

time overview of the whole country’s temperature through an updated map that displays

the different regions and departments.

Figure 5.9: Weather service of Groupe PSA.

5.5/ EVALUATION OF THE ARCHITECTURE

In this section, we evaluate the architecture. We do that by considering two dimensions:

The performance and the quality. First, evaluating performance translates into examining

technical architecture behavior when facing fluctuations in the data flow, i.e., its scalability.

We observe how PSA uses a reactive policy to deal with trends accompanying the rising

number of connected vehicles. Second, the quality dimension consists of dealing with two

sub-characteristics, which is the Quality of Data and the Quality of Service, as introduced

in their hybrid quality evaluation approach [103]. The evaluation’s goal is to support and

justify the technological choices made in this architecture.

5.5.1/ PERFORMANCE

Today, the automotive sector of Groupe PSA accounts for 1 million monthly active con-

nected vehicles’ users in France only. This number includes CVs whose owners have

agreed to transmit their data to the infrastructure. Currently, they perpetually transmit

data around 65 million messages per day on average.
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Figure 5.10: Evolution of transmitted CVs packets throughout the years.

Figure 5.10 shows the evolution of the number of PSA’s connected vehicles through-

out the years. The blue segment/layer on the bottom corresponds to eventual packets,

and the orange one corresponds to periodic packets. Those two types of packets are

complementary. As its name indicates, the periodic packets are recurrent sensor mea-

surements embedded in the vehicles and later sent to the infrastructure. However, the

eventual ones are generated following the occurrence of a set of predefined events such

as starting or stopping car engines, crash incidents, technical alerts, or even when turning

on/off the privacy mode. In an Eco-Driving application context, a typical trip is composed

of two eventual packets and several periodic packets depending on the trip length. An

interesting observation is that the number of connected vehicles is on the rise. This phe-

nomenon is explained by the trend of equipping our everyday objects with connectivity to

propose to end-users new useful services and intelligence. Vehicles and transportation

means are not an exception to this rule. The connected vehicle today proposes several

services to drivers ranging from Connected Services, Infotainment, Safety & Security to

Autonomous Driving. According to Verified Market Research9, the CVs market will be

worth $ 215.23 billion globally by 2027, with a compound annual growth rate (CGAR) at

14.56%. Groupe PSA was proactive to that trend by choosing and building throughout its

CV platform, distributed, and scalable systems while investing in hardware.

Also, the abrupt discontinuities or gaps in the graph are due to occasional system

upgrades or maintenance downtime. Those irregularities decrease in time due to the

implementation of redundancy policies. Like many other organizations, PSA Group has

to deliver business continuity. Disaster recovery plans have been implemented through

9PR Newswire: https://www.prnewswire.com/news-releases/connected-car-market-worth--215-23-billion-globally-by-2027-at-14-56-cagr-verified-market-research-301131176.
html - accessed on 11/16/2020.

https://www.prnewswire.com/news-releases/connected-car-market-worth--215-23-billion-globally-by-2027-at-14-56-cagr-verified-market-research-301131176.html
https://www.prnewswire.com/news-releases/connected-car-market-worth--215-23-billion-globally-by-2027-at-14-56-cagr-verified-market-research-301131176.html
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multi-data center redundancy with servers and other critical infrastructure at a different

location to that of their primary site. Moreover, when system updates become available,

all cluster machines are upgraded in a ”Rolling Update” fashion. In such a way, servers

update one after the other without introducing any disruptions to the services. However,

the sudden decrease in March and April of 2020 is not related to a technical problem.

It is caused by the lockdown imposed in France as a sanitary measurement against the

COVID-19’s spread.

On the contrary, on October 29, 2020, we witness the complete opposite. A sharp spike

in the number of packets sent to the infrastructure a day after the President of the French

Republic announced a second lockdown. People rushed to stores to stock up and to

perform their essential tasks.
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Figure 5.11: Number of packets transmitted per Kafka partition (over a period of 2 days).

Figure 5.11 shows the variation of the number of transmitted packets by the CVs in

a period of two days. Every day, we observe approximately the same pattern with more

or fewer data. Throughout a day, vehicles’ generated data is not constant since vehicle

usage varies and peaks in the morning and night. Those peaks correspond to people’s

movements when they leave for work and return from it, respectively. In this second

scenario, we observe a significant change of load on the infrastructure. Though it is not

sudden, it is a flow that remains variable and could change, especially in pandemic times

where people either used more or less their cars depending on if there was a lockdown

period approaching. Likewise, on weekends and holidays, the transmission frequency

is altered. Moreover, the colored segments/layers in the stacked area plot represent

the content of 24-partition Kafka topics. Currently, our Kafka production environment

is composed of 9 nodes. We configured topics of 24-partitions with a replication factor

of 3. This partitioning totals to 72 partitions in total, which corresponds to a multiple of

9. Therefore, simplifying the messages’ distribution for storage amongst the nodes. In

addition to its highspeed transmission rates and data persistence, Kafka has a reliable
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mechanism of distributing messages equally throughout the partitions; hence, throughout

the servers/brokers.

Currently, during peak times (see Figure 5.11), in a 5-min interval, the infrastruc-

ture receives around 950K messages. That is translated to around 3100 messages per

second. Therefore, to stress-test the architecture using Kafka, we batch messages of

different sizes and monitor the number of sent messages in a second. Figure 5.12 shows

that we can handle up to 7 times the load we have today with a batch size of 500k mes-

sages with the current state of the infrastructure.
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Figure 5.12: The number of records increments with the increase of the batch size.

In all previous scenarios, the architecture handled the fluctuations intelligibly. It re-

mained available to deliver with no downtime registered, mainly due to the distributed

frameworks used on all architecture levels, whether speed processing layer (e.g., IBM

Streams, Apache Flink), storage layer (e.g., Apache Kafka) or batch processing layer

(e.g., Apache Spark).

5.5.2/ QUALITY

A./ DATA QUALITY DIMENSIONS AND METRICS

Research shows that data quality is made up of many dimensions. Data quality dimen-

sions are grouped into two groups by Lee et al. [104]: intrinsic, referring to attributes that

are objective and native to the data, and contextual, referring to attributes that depend on
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the context in which the data is observed or used. Relevance, added-value, quantity, cred-

ibility, accessibility, and reputation of the data are qualitative measurements. Self-report

surveys and user questionnaires have relied heavily on these dimensions’ indicators since

they rely on decision-makers’ subjective and situational assessments for quantification.

Therefore, contextual dimensions tend to deal with information rather than data since

these dimensions are built when data is put in a situation or issue-specific context. Since

we consider data quality, not information, we restrict our quality discussion to considering

the intrinsic data quality measures [105]. Intrinsic data quality is consistently defined in

the literature in four dimensions: accuracy, timeliness, consistency, and completeness.

Before we proceed, we agree on the following definitions found in the literature:

• Accuracy: inspects the level of how well the reported information is accurate and

resembles the real world’s values and is therefore reliable.

• Timeliness: inspects the level to which extent the data can be considered as up-

to-date. The literature suggests that timeliness is divided into two sub-classes: (1)

currency, i.e., the duration since the record’s last update, and (2) volatility, which

inform about the update’s frequency.

• Completeness: inspects the level to which records would be considered complete

in content with no missing data.

• Consistency: inspects the level to which related data records remain consistent

with the predefined structure and format.

Table 5.2 resumes the quality metrics for each of the quality dimensions above. Each

metric can be calculated by applying its corresponding formula [106].

B./ QUALITY OF DATA: EVALUATING THE GATHERING LAYER

The data quality is best evaluated around two phases of the Big Data value chain, at the

reception of the data and downstream after processing. Figure 5.13 shows the different

stages of a framework proposed by Serhani et al. [103]. They present a 4-tier hybrid

model for the Big Data value chain’s quality assessment. Data quality is evaluated in both

pre and post-processing. However, process quality evaluation happens between pre and

post-processing and, at the end of the chain, where analytics occur, such as machine

learning algorithms.

In this work’s scope, we focus on the data quality at the preprocessing level, that

is, the gathering layer after transmission from vehicles to infrastructure. The quality

evaluation at the ’Processing & Analytics’ was not considered since it evaluates data

from a functional perspective and not from an infrastructure perspective as what we aim
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Figure 5.13: A hybrid model for evaluating Quality of Big Data value chain. Taken
from [103].

to do in this work.

The preprocessing in this architecture can be divided into two steps, (1) the decoding of

raw binary data arriving from Telematic boxes and (2) the preprocessing happening at

a later stage at the beginning of the stream processing chain filtering inconsistent data.

Therefore, we evaluate the two following inconsistency metrics for each of the previous

steps: (1) serialization inconsistency and (2) content inconsistency.

In a typical 24-hour period, the PSA infrastructure receives 65 million packets, of

which 130k raises an exception when processed. Therefore, the error rate is approx-

imately 0.2%. This error rate corresponds to the first inconsistency metric related to

serialization. To calculate this metric, we used the following formula from Table 5.2:

CNS Ma =
numO f InconsistentValues

totalValues .

For the content inconsistency metric, we used the Accuracy metrics AMa =
numO fCorrectValues

totalValues . The result was enormously satisfying with a low number of errors re-

lated to values’ correctness since the first serialization filtered almost all the aberrant

packets. We get a result of 99.9%.

In Figure 5.14, we see the different types of exceptions and the reason behind each,

respectively. The graph in illustrates the distribution of the exceptions raised by the plat-

form deserialization of the binary data coming from the vehicles. Four types of excep-

tions are found: DecoderException, IllegalArgumentException, DateTimeException, and

BufferUnderflowException. From the doughnut chart, it is clear that the majority of errors

originate from the DecoderException with 95.4%. The other three exceptions account for

less than 3%. The reason behind that is that DecoderException class is the most generic

exception class; therefore, errors are more prone to fall under this category.
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DecoderException - 97.47 %
DateTimeException - 1.29 %
IllegalArgumentException - 1.12 %
BufferUnderflowException - 0.13 %

(a) Error exceptions.

No valid message in frame - 95.39 %
Decoding resulted in an empty list - 3.09 %
Invalid value for MonthOfYear - 1.28 %
Others - 0.24 %

(b) Human-readable message errors.

Figure 5.14: Two pie charts showing the distribution of the exceptions and the reason
behind each, respectively.

C./ QUALITY OF SERVICE: EVALUATING THE MESSAGING SYSTEM

To evaluate the Quality of Service (QoS), we choose to assess the communication layer

that connects all architecture components thoroughly. Besides, the communication layer

can be a decisive element when it comes to architecture performance. Our platform

spans onto two separate data centers distant enough to consider applications’ deploy-

ment locations. For instance, move data closer to the processing, particularly for real-time

applications.

As described above, our Big Data architecture is composed of several interconnected

layers. In every typical Big Data architecture, several components work together to col-

lect, clean, process, and persist data. Therefore, those processes demand a robust,

fault-tolerant ubiquitous infrastructure that takes the role of a messaging system that can

dispatch all the needed data throughout the architecture reliably and efficiently.

In the following, we evaluate our choice of the messaging system at PSA Group, Apache

Kafka. We test the performance of this system on different levels. Kafka connects several

clusters of machines, each specialized with a particular task, as shown in Figure 5.15a,

such as stream processing, batch processing, storage, and visualization platforms. The

fundamental element of Kafka is the client instance running on those clusters. Clients can

be producers or consumers. In this evaluation, we test data transmission performance

from the producer and consumer clients running on different systems to the Kafka cluster,

i.e., the Kafka brokers. We consider a Kafka cluster of four nodes deployed on one of the

PSA Group data-centers (DC-A). The several services shown in Figure 5.15a are not but

a subset of services. This test will evaluate Kafka’s QoS by analyzing the throughput and

latency from the Kafka clients to Kafka brokers. The services for which the communica-
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tion client-server will be tested are the following: (1) HTTP servers taking on the job of

decoding the transmitted data, (2) streaming servers incubating stream processing appli-

cations, and (3) visualization services of data to help decision-makers on getting better

insights of their products.

To study the impact of deploying an application on a particular data center, we ran

the corresponding Kafka clients (consumer or producer) of the above services on two

separate data centers distant of more than 700 km: DC-A and DC-B. To test Kafka’s

client performance, we consider different parameters: the throughput, the size of the
message, the batch’s size, and the number of messages sent or received.

We have not imposed any throughput constraints for our load and stress tests so

that the Kafka client can take full advantage of the infrastructure’s capabilities. Moreover,

we set the size of 1 KB for the sent messages since it would be the closest to a CV ap-

plication’s real-world scenario. The test consisted of sending one million 1 KB messages

with no limitations on the throughput.

The graph in Figure 5.15b illustrates the throughput of several applications to the

Kafka brokers deployed on DC-A. The columns show that applications, when deployed

on DC-A, produce higher throughput, and this is due to their co-locality in the same data-

center. Likewise, the latency is lower when services are closest to the Kafka brokers, see

Figure 5.15c.

Different compression types were used and compared side by side, as illustrated in

Figure 5.16. Again, the Kafka client was run in DC-A, which explains the higher through-

put compared to DC-B. The histogram shows that the snappy compression algorithm wins

in both data-centers’ data transmission.

In conclusion, applications or platforms that need high throughput and low latency

data transmission, such as stream processing applications, were deployed in the data

center closest to where the data is stored. However, for applications such as batch pro-

cessing or visualization tools that build graphs about daily, monthly, or yearly data, can be

placed as separate data. Although we choose data and task placement preference, the

multi-datacenter deployment is always considered for the disaster recovery plan.

5.6/ DISCUSSION

Despite its efficiency and robustness, the presented architecture is far from being optimal

and still suffers from several shortcomings. For instance, recall that in the original MQTT

protocol, the role of the broker is limited to data forwarding from connected vehicles (pub-

lishers) to the automotive infrastructure (subscriber). This causes the infrastructure to be

continuously overloaded with huge amounts of useless automotive data. To overcome
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this issue, a new variant of MQTT dedicated to connected vehicles (called MQTT-CV)

can be considered [107]. The advantage of this new variant is that it gives the broker

the ability to process, filter, and feed the infrastructure with only data that satisfies its

conditions and requirements. Note also that the presented architecture is unidirectional

(vehicle-to-infrastructure (V2I) communications). However, as we have seen, for some

automotive applications and services (such as self-driving/electric vehicles, safety, and

vehicle management), the infrastructure must be able to communicate with its connected

vehicles (infrastructure-to-vehicle (I2V) paradigm). Finally, we point out that there is a new

work regarding the redesign of the speed processing sublayer, where both the adopted

structure and technologies are reviewed. The goal is to switch to a more scalable and

modular platform of microservices.

5.7/ CONCLUSION

This chapter aimed to propose a complete (efficient, scalable, secure, and robust) model

that is concerned with managing and protecting big automotive data throughout its life

cycle (i.e., from data sensing, gathering, storing, processing, to the final data leveraging

step). Although numerous researches have been done and still undergoing on efficient

big data storage, processing, and leveraging, to the best of our knowledge, not much

research has been done regarding this axis. To bridge this gap, in this chapter, we have

thoroughly described how Groupe PSA (the second largest car manufacturer in Europe)

gathers, stores, processes, and leverages its big data. These different tasks, along with

the technologies and products that ensure them, were presented in a structured manner

using the actual layered big data managing architecture deployed by PSA. In addition to

the architecture description, we have also presented some potential automotive applica-

tions and gave some actual services that are presently provided by the PSA platform.
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Table 5.2: Data quality metrics and dimensions. Taken from [103].

Formula Description
Timeliness metrics
T Ma = 1 − (CMa/V Mb) 1 - Currency/Volatility

T Mb = numO f ProcessedRecs/totalRecs/timePeriod
Percentage of the completed processed
records within a time limit

Currency metrics
CMa = currentT ime − updateT ime Time of update

CMb = updateT ime − storageT ime
Difference between time of update and
time of storage

Volatility metrics

V Ma = ConstantT imePeriodValue
Time length for which data remains
valid

V Mb = (storageT ime − updateT ime)/totalT ime
Volatility: (time of data – time of
update)/total time

Accuracy metrics

AMa = numO fCorrectValues/totalValues
The ratio between the number of
correct values stored and the total
number of values.

AMb = AvgUsrResponse User survey
Completeness metrics

CMPMa = numO f EmptyValues/totalValues
The ratio of the number of empty of
null values over the total number of
values.

CMPMb = AvgUsrResponse User survey

CMPMc = actualTotalS ize/expectedTotalS ize
The total size of the stored records over
the expected size of the data

Consistency metrics

CNS Ma = numO f InconsistentValues/totalValues
The ratio of the total number of
inconsistent values over the total
number of values

CNS Mb = numO f Violations
The total number of values violating
constraints and rules
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ADAPTIVE RESOURCE ALLOCATION IN

BIG DATA AUTOMOTIVE

INFRASTRUCTURE

“The measure of intelligence is the
ability to change”

Albert Einstein

Automotive applications, based on connected vehicles (CVs), are emerging as

promising applications in several domains ranging from road security applications to

smart city applications. CVs can collect, thanks to onboard sensors, up to 170 differ-

ent readings (outside temperature, etc.), which are sent to a central big data automotive

platform. To cope with this huge amount of data, researchers and engineers developed

new paradigms, such as stream computing, in which a set of operators continuously

processes data (i.e., the notion of stream). Hence, a streaming application can be mod-

eled as a directed graph where vertices are operators’ instances, and edges are data

streams (i.e., continuous series of tuples). The central challenge in deploying streaming

applications is the way to map operators’ graph, representing the application, to avail-

able physical resources in order to enhance the application’s performance (increasing the

throughput, reducing the processing time). In this chapter, we target this issue by show-

ing that the approach based on inherent data parallelism does not necessarily lead to the

best performance for all applications. In fact, through a real-world application (i.e., the

Eco-Driving service), we show that a mapping based on insightful analysis of the target

application’s specifics and the infrastructure’s features can significantly improve the ap-

plication performance, leading thus, to a noticeable impact. Our real experiments show

that our proposal improves over the straightforward approach by about 4% in terms of

throughput. This improvement allows PSA’s infrastructure to handle nearly 800 thousand

of additional vehicles over the expected 20 million CVs by 2025.

93
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This work has been published in IEEE Symposium on Computers and Communica-

tions (ISCC), 2019.

6.1/ INTRODUCTION

Nowadays, connected vehicles (CVs) with sensing and communication capabilities are a

reality. In fact, since 2015, all manufactured cars of PSA (Peugeot-Citroen French cars

manufacturer) are connected. They can collect up to 170 readings ranging from external

temperature to the angle of the steering wheel and sending them to a central infrastruc-

ture through 4G/5G communication channels. CVs raise many extraordinary business

opportunities in several domains, including services for safe driving, security, etc. The

success of all those services depends on the infrastructure’s ability to gather, process,

and derive adequate information in real or near real-time in order to deliver it to the re-

quested application. For instance, Groupe PSA is developing a set of services provided

to its clients, called “Eco-Driving”. This service needs first to collect information about the

driving behavior of the client, the infrastructure gathers then this information and derives

a trip score with constructive advice if needed; more details about the implementation of

this service are provided in Section 6.3.1.

CVs generate, in a continuous way, such a massive amount of data that traditional

data processing approaches are not able to efficiently support. For example, PSA in-

frastructure expects to support simultaneously up to twenty million vehicles. Hence the

infrastructure is facing many challenging issues: significant data volume, generated con-

tinuously, in addition to the fact that usually, its feedback (i.e., processing results) must be

in real or near-real-time.

To overcome these issues, new approaches, based on big data technologies, have

emerged and adopted. They make use of the stream computing paradigm. In this

paradigm, data is processed continuously through elementary operators. A stream appli-

cation is organized as a directed graph: vertices are operators instances, and edges are

data streams, as shown in Figure 6.1, where each stream is an infinite sequence of data

items, and each operator ingests data objects from incoming streams and outputs data

objects on outgoing streams.

The design and the implementation of a stream application consist of two steps:

1. Application graph modeling: In this first step, the application is modeled as a

direct graph in which the sources are the application’s inputs streams, and the out-

put is the expected results. The vertices are data operators (filtering, aggregation,

etc.) that operate on intermediate data streams (i.e., graph edges). The number
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Figure 6.1: A streaming application with fused colored zones

of operators, their nature (single-input/single-output, multiple-inputs/single-output,

etc.) as well as their complexity (computational, intermediate storage, etc.) is

dependent on the target application requirements.

2. Graph mapping: Once the application streaming graph has been defined and vali-

dated (i.e., which conforms to the expected results), the second step consists in its

”mapping” on the available physical, usually distributed, infrastructure. This map-

ping takes into account the target application requirements in terms of performance

(increasing throughput, reducing processing delays, etc.), as well as the available

resources of the target infrastructure. This process is known as “resource allocation

process” (RAP).

Whereas the first step requires a particular modeling effort from the application de-

velopers, the second step is almost left to the streaming engine (i.e., IBM Streams[108]).

The latter inherently produces parallel executions of the operators whenever it is possible;

i.e., operators are deployed on separate hosts and run simultaneously. For instance, in

Figure 6.1, colored boxes represent the corresponding hosts.

Considering a practical application of CVs (Eco-Driving service deployed in Groupe

PSA), we focus in this chapter on the second step. Our objective is to look for any possi-

ble improvement over the straightforward automatic approach because, in the automotive

application, any apparent “tiny” improvement in the infrastructure performance will lead

to a high impact on the overall application, in particular on the number of concurrently

supported vehicles. The question was: “does the automatic approach (i.e., inherent op-

erator’s parallelism) always derive the better RAP with regard to the infrastructure perfor-

mance?”

To answer this question, we conducted an insight analysis of both the applications

specifics and the available infrastructure features. Based on this analysis and some in-

frastructure parameters measurements, specifically host’s communications delays, we

have proposed a new RAP which performs operator fusion (see below for details) based

not only on intrinsic parallelism but also includes intercommunication delays. The ob-
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tained experimental results show an improvement of our approach about 4% over the

straightforward approach in term of infrastructure throughput saving. In term of applica-

tion benefits this improvement allow PSA infrastructure to handle roughly 800 thousands

additional vehicles over the expected 20 millions vehicles.

The rest of the chapter is organized as follows: Section 6.2 reviews the basic notions

of streaming applications. Section 6.3 exhibits the real-world service of Eco-Driving and

its implementation as a streaming application. Next, two strategies of operator placement

are reviewed, tested, and assessed: the no fusion and auto-optimization strategies. Later,

an enhancement that takes into consideration the specifics of our application is proposed,

followed by experimental results to validate our work in Section 6.4. Finally, we end with

a conclusion and a brief discussion about future works in Section 6.5.

6.2/ SPEED PROCESSING SUBLAYER

The previous Chapter 5 detailed the actual architecture deployed at Groupe PSA for big

data analytics applications leveraging the data acquired from connected vehicles. We

refer back to it in this section to highlight the technology behind the processing layer

where the real-time applications run.

The big data managing model of PSA consists of six layers: (1) data sensing, (2)

data gathering, (3) data queuing, (4) device and referential data management, (5) data

processing (with two different processing modes or sublayers), and finally (6) data lever-

aging and serving. The layered architecture is shown in Figure 5.2. All layers except for

the data sensing layer (layer 1) are under the governance and ownership of Groupe PSA,

whereas the data sensing layer is related to both the Groupe and its partner brands.

We give a brief description of the data processing layer where the real-time process-

ing is being executed—the core layer of this work.

In the data processing layer, two sublayers exist, the speed sublayer and the batch

sublayer, as shown in Figure 5.2. While the former is responsible for processing the

continuous data streams (online processing), the latter stores and processes historical

automotive data with offline processing jobs (such as machine and deep learning tech-

niques). Following, we review the speed sublayer where the real-time applications are

deployed. Moreover, we discuss the framework used at this level and the challenges we

faced when deploying an application.

In this work, we are interested in the speed processing sublayer due to our appli-

cation requirements. Nevertheless, before speaking about the needs, we detail the main

component in the speed sublayer. This sublayer is responsible for two main tasks: data

stream acquisition and data stream processing. While the data stream acquisition deals
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Table 6.1: A brief description of InfoSphere Streams main components

Component Description Our work
Tuple Typically, the data in a tuple represents the

state of something at a specific point in time.
An individual piece of data in a stream.

Our tuples are composed of 26 variables ei-
ther sent by the cars to the infrastructure or
data enriched from our databases about the
car itself.

Operator An SPL operator manipulates the tuple data
from the incoming stream and produces the
results in the form of an output stream.

More than forty operators are used in
our case, mainly distributed between
source/sink operators and process-
ing/transformation operators. Refer to
Figure 6.3 to see a simplified diagram of the
application.

Processing
Element (PE)

Execution units created after the compi-
lation of a stream processing application,
which represents concretely the operator
and streams relationships that make up its
dataflow graph.

The challenge of getting the right number of
PEs are tackled in the next section.

with retrieving fresh automotive data from the lower queuing layer and delivering it to

the stream processors, the data stream processing incubates stream processors that will

retrieve the necessary referential data then run accordingly the stream processing appli-

cations.

Stream computing is a new programming paradigm that is designed for distributed

and parallel processing of unbounded data streams. This paradigm is often confused

with real-time processing, which requires a response within a certain time span. We can

characterize a stream processing application by the following points:

• Data items are processed as they arrive (i.e., online).

• Events are time-based. Typically, every record is timestamped on creation.

• Operations are done in a data flow fashion/design.

• Every operation is done on one data element (or a small window of the recent data).

• An operation calculates something relatively simple.

• Each computation needs to be complete in (near) real-time to avoid congestions.

As depicted in Figure 6.2, streaming applications are executed as jobs on a Stream

Runtime Environment (SRE), known also as Instance. Note that single or multiple pro-

cessing nodes may be used to deploy a job.

Currently, at Groupe PSA, IBM Streams takes the role of the running Stream Pro-

cessing Engine. As its name suggests, this platform is owned and supported by IBM. It
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Figure 6.2: Illustration of the stream runtime environment.

enables the development and execution of applications that process information in data

streams. In other words, it allows continuous and fast analysis of massive volumes of

moving data. IBM Streams consists of a programming language and an integrated de-

velopment environment (IDE) for applications and a runtime system that can execute the

applications on a single or distributed set of hosts. Besides, it offers the IBM Streams Pro-

cessing Language (SPL) interface for end-users to operate on data streams. SPL offers

numerous operators, the ability to import data from external sources and export results

outside the system, and an option for extending the underlying system with user-defined

operators. Deploying stream processing applications creates a dataflow graph supported

by the underlying runtime system. The main components of streams processing applica-

tions are tuples, data streams, operators, processing elements (PEs), and jobs. A more

detailed look into those concepts shown in Table 6.1.

Moreover, IBM Streams provides several fusion schemes that specify how operators

are fused into processing elements before compiling and running the application. The

fusion scheme used can influence the runtime performance of the application. Therefore,

in the following sections, we study closely two logically distinct schemes and assess them,

subsequently examining its impact on the application performance and its limits. Next, we

expose our proposition for enhancing the mechanism of process-operator allocation.

6.3/ A CASE-STUDY APPLICATION

Many connected vehicle services or applications can be developed today as a streaming

application and deployed in a centralized environment. The centrality allows the stream-

ing application to process data from a myriad of sources and whereas the flexibility allows

to scale up or down, adapting to the flow rate of data transmitted to the infrastructure.

Before diving into details, we recall that our aim in studying this use-case is to il-

lustrate, throughout a real industrial application, among numerous others, our proposed

approach. It has to be noted that our proposal can easily be used or extended to any

other automotive application. More precisely, we discuss two placement strategies, i.e.,

proposed by the system and considered as state-of-the-art solutions. Then we compare
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them to our proposal.

Our claim is that because of the huge amount of data in an automotive application,

approaches that rely on the application’s specifics as well as on the platform’s features

can improve over straightforward ones.

6.3.1/ ECO-DRIVING SERVICE DESCRIPTION

In one of its numerous digital services, Groupe PSA provides a service known as Eco-

Driving. Eco-Driving makes it possible to score a driver according to their behavior and

the characteristics of their journey, in addition, it advises the customer based on their

weak points so that they can improve their driving. Further, the global score of Eco-

Driving and its sub-scores are divided into two parts:

• The driving style, namely a score on the driver’s behavior

• The road profile, namely a score related to the itinerary selected

Table 6.2: List of computed criteria by category

Subscores Eco-Driving
Drive Attitude Road Profile
Acceleration Speed/consumption
Braking Slope
Engine speed Cold Trips
Stop & Start

Each category of the above is composed of several fields of information used to

compute its corresponding score. The driving style, for instance, takes into consideration

the acceleration, braking, engine speed and the number of occurrence of Start & Stop

functionality. Further, the road profile category focuses on the average speed and fuel

consumption, slope and cold trips. Refer to Table 6.2 for a summary of the attributes

used to calculate each sub-score. Every score can have a value ranging from 0 to 10.

These scores are accompanied by two labels, powered by internal configuration tables

and set by the business team:

1. an appreciation message

2. a tip on how to enhance client’s behavior

6.3.2/ APPLICATION ARCHITECTURE

At the time of writing, our servers deal with about 400k trips daily composed of thousands

of tuples. Those trips need to be processed, as fast as possible, and be delivered back to
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the client so they can get to review their performance before failing to remember their driv-

ing experience. Therefore, a fast, reliable and ubiquitous technology is needed to meet

those requirements. Hence, the Eco-Driving application was developed and implemented

in the Speed layer of our architecture described in section 6.2 in the form of a streaming

application.

Eco-Driving application is composed of PEs deployed on hosts that communicates

with each other either through the network or directly through shared local memory, de-

pending on the deployment model or strategy used. Our work is built upon the compo-

nents of InfoSphere Streams1. Figure 6.3, visualizes a simplified version of the data-flow

graph of the developed application, and it exhibits the main operators and their ties be-

tween each other. Figure 6.4, visualizes a screen-shot of the complete graph of the

streaming application in the Stream Studio IDE provided by IBM.

The application consists of three regions, notably, the ingestion region, processing

and post-processing region and finally the dissemination region. It is in the core part

of the application where the heavy work is done. The calculations, being independent

and consuming the same data as input, were distributed in a parallel mode to speed up

processing. As a result, we had several operators in parallel and functionally separated.

At the end of the processing, a barrier blocks the flow until all the results are ready to be

grouped and forwarded downstream.

Figure 6.3: A simplified graph of the developed application

1The Eco-Driving application was developed using an earlier version of IBM Streams, InfoSphere Streams
3.2.1.
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Figure 6.4: A screen-shot of the application in Streams Studio IDE

6.3.3/ DATASET

The dataset used in this project is a private time series dataset where data points are

recorded every second by the vehicles’ sensors and then sent through the network

to Groupe PSA’s cloud. Every 60 data points are aggregated into one packet, thus,

reducing the flow rate to a packet per minute, where each contains information about

the elapsed 60 seconds. The testing vehicle fleet consists of hundreds of Groupe PSA

vehicles traveling all over the French metropolitan territories. Trips and data points

schema are defined below:

Trips A trip consists of several packets/tuples depending on the length of the trip. For

instance, a trip of 20 minutes will produce 20 packets/tuples along the journey, one every

minute.

Schema Each packet or tuple is composed of 31 attributes used by the application to

determine the EcoDriving score. The main attributes with their corresponding data types

are listed in Table 6.3.

6.3.4/ FUSION STRATEGIES

InfoSphere Streams propose several fusion schemes, already introduced in section 6.2.

Two of the available options that interest us in this work are:



102 CHAPTER 6

Table 6.3: Tuples schema of the dataset used for experimenting with EcoDriving applica-
tion

Attribute Data type Attribute Data type
packetType int16 . . . . . .
virtual uint8 consoTotal float32
modePacketType int64 kmTotal float32
vin string conso float32
vink string coordgps string
tripId uint64 srcsignalgps int32
timestamp string freinurgent int32
counter int32 contactveh int32
altitude int32 nivcarb int32
tempHuile int32 etatmoteur int32
speed float32 cap int32
rpm float32 stopStartFn int64

• No fusion: each operator will be assigned to a PE. Hereafter, we refer to this

approach as the Straightforward Approach.

• Optimized fusion: the compiler will figure out how to best fuse operators to be

hosted by one or more PEs. Hereafter, we refer to this approach as the SPE built-in

Approach.

In the following sections, we develop each one of the enumerated approaches

above. Then we test and assess them before proposing our enhancement.

Straightforward approach Since our application was parallel by design, the first call

was to use the no fusion option. That is, assign a PE for every operator and distribute

the operators in the parallel region to all given resources. As a result, data processing

will become simultaneous and independent and ultimately introduce a gain in time and in

performance.

SPE built-in approach The second placement scheme consists of applying profile-

driven optimization. Before moving forward to results, we explain this optimization briefly.

When operators are not fused into PEs, they communicate via the transport layer, de-

noting that every tuple must be serialized, transmitted over the network, and deserialized
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on reception. However, when fused, they communicate through function calls, and tuples

are passed from one operator to the next using memory references. Therefore, this could

significantly reduce the cost of communication and improve both latency and throughput.

The fusion process can be automated by using the compiler’s features to optimize

the fusion based on a profile. In this mode, the compiler will select the combination of

the operators to be hosted by one or more PEs, while maintaining the constraints speci-

fied by the user. The process is called fusion optimization. It requires a step for profiling

wherein the application is first to run in profiling mode, to characterize the resource use

of the CPU consumption and data traffic for each of the operators making up the appli-

cation. In summary, there are two main steps involved in performing profile-driven fusion

optimization: profiling (run-time) and optimizing (compile-time).

What characterizes a practical optimization approach is a robust profiling frame-

work. IBM researchers [109] describe rigorously the profiling mechanism implemented

in InfoSphere Streams in their published work. In short words, it consists of three main

steps, namely code instrumentation, statistics collection, and statistics refinement. Code

instrumentation is used to inject profiling instructions into the processing elements gen-

erated at compile time. During the runtime process, statistics collection executes those

instructions to collect raw statistics on operators’ communication and computation char-

acteristics. Statistic refinement consists of post-processing the resulting raw statistics into

well-formatted statistics suitable for consumption by the fusion optimizer.

Those steps were executed automatically after running the compilation. As an input,

we provided two parameters for the statistics collection step: sampling fraction s = 0.001

to collect metrics once in every 1/s = 1000 tuples and a reservoir size S = 500 that will

keep a random subset of 500 values from the metric values collected, as recommended

by the platform.

The resulting fusion scheme grouped all operators in one PE; as a consequence,

the flow rate went up to about eight times compared to the no fusion scheme.

6.3.5/ PROPOSED APPROACH

The developed solution of Eco-Driving service should be able to sustain any future load

possibly produced following the expected boom in the market of connected vehicles in the

upcoming years. Therefore, the current version of the project, with its default allocation

strategy, i.e., the no fusion strategy, was deemed to be unsatisfying. The likely rate of the

data flow for a similar application is expected to be higher than what it is currently.

Based on what was discussed earlier, we propose an alternative approach that

considers the strong points of both previous approaches and takes into consideration the
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particular features of the considered application. Hence, two main particularities could

be identified:

• the application architecture is composed of three functionally different and inde-

pendent regions

• the composition of each trip is made of several tuples that are aggregated, pro-

cessed, and ejected downstream after the reception of the end-of-trip signal.

As a result, we proposed a fusion strategy conform to the three-tier architecture

shown above in Figure 6.3.

Figure 6.5: An illustration showing the selectivity between the regions

First, the ingestion and the parallel region are decoupled; therefore, the processing

operators become independent of the ingestion process and its underlying threads. In

such a way, we take advantage of what is known as the pipeline parallelism: the concur-

rent execution of an operator 1 and an operator 2 handling consecutive data objects, as

shown in Figure 6.6. Therefore, the application, simultaneously, processes the data in the

parallel region while preparing and pre-processing the next in the ingestion region.

Second, the parallel region is separated from the dissemination region, where the

data flow rate is reduced by a factor of 1500 after being processed by the parallel region,

as shown in Figure 6.5. This phenomenon is due to the second characteristic identified

earlier. We considered here that the average duration of a trip is 25 minutes, hence,

the 1500 seconds. The selectivity of an operator is its data rate measured in output

data items per input data item. For instance, in our case, the parallel region produces

one output data item for every 1500 input data items and has a selectivity of 6.66 × 10−4.

By decoupling the last two regions, we improve performance by reducing the number of

useless function calls between the two when they are merged.
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Figure 6.6: Data parallelism in stream applications

6.4/ EXPERIMENTAL EVALUATION

6.4.1/ STRAIGHTFORWARD APPROACH RESULTS

Assigning one PE to every single operator did not yield satisfying results. In an automobile

company context and for this kind of application, to process five trips per second does not

correspond to Groupe PSA’s requirements for this project. Furthermore, the improvement

it brought was negligible to what was already in place as a solution, i.e., a statistical

sequential processing solution using the SPSS tool2. The application processed the same

rate of trips with about three times the resource utilization rate.

6.4.2/ SPE BUILT-IN APPROACH RESULTS

Likewise, applying the profile-driven optimization to the application did not yield satisfying

results. With the knowledge that operators deployed on different PEs communicate using

TCP, two metrics were monitored to validate the hypothesis that the three main steps

for transferring tuples: serialization at the source, transmission over the network and

deserialization at the destination, are the logical explanation to the system’s load and

degraded performance.

2IBM SPSS Modeler is a data mining software application from IBM. It is used to conduct other analytic
tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without
programming.
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To simplify the work done up to this point, we consider the following scenario. We

suppose that the application incorporates in its graph three essential parts. In the begin-

ning, we have the ingestion region, followed by the parallel region; finally, the dissemina-

tion region, as shown in Figure 6.7.

Figure 6.7: Illustration of the metrics used for the allocation process

Next, we define each one of the metrics used to study the application’s behavior over

different fusion strategies:

tcompound corresponds to the aggregated processing time of each tuple belonging to

a trip, and that passed through the whole graph, refer to (6.1). Therefore, in this variable

we take into consideration the time of transmission of data items between operators as

shown in Figure 6.7 by the thick black arrows.

tcompound = tc =
N∑

k=1

Toutk − Tink (6.1)

where Tout and Tin correspond to the timestamp of the date when a tuple exited and

entered the composite, respectively.

tunit corresponds to the aggregated sum of three sub-metrics ti, tp and td, which

simply represents the time the tuples progressed in every region, refer to (6.2). The max

is used to obtain the longest execution time of an operator in the parallel region. Even
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Figure 6.8: The application runs faster with merged operators rather than distributed
ones, that is, one operator per PE

though we are considering the max of this region, the margin between processing times of

operators is negligible. Contrarily, we include here only the computation time in operators

as shown in Figure 6.7 by the double-headed arrows under the operators.

tunit = tu =
N∑

k=1

tik +max(tpk ) + tdk (6.2)

where ti, tp and td correspond to the time span needed for the tuple to finish execution in

the ingestion, parallel and dissemination region, respectively. N corresponds to the total

number of tuples for a given trip.

Normally, for the transmission not to be the reason behind the lagging flow rate,

condition (6.3) must be satisfied:

tcompound = tunit + λs (6.3)

where λs is the time allocated by system calls.

Table 6.4 shows the results of the two strategies for 20 trips comparing them side

by side. This number of trips was chosen randomly from the bigger set of 28 trips for

layout constraints. The results show that there is a remarkable difference between the

two processing times. Looking at the average of the results, we find that in the No Fusion

approach there is nearly one second of difference between the real computation time,

tunit and the time aggregating processing time and the transmission cost along with it,

tcompound. However, when fused the tcompound decreases remarkably.

This huge difference is explained by the fact that the initialization of the packet to be
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Table 6.4: The two metrics side by side calculated with two different deployment modes
in ms

No Fusion Built-in optimization
Trip tu (ms) tc (ms) tu (ms) tc (ms)

1 1.21 367.89 0.75 3.60
2 0.65 205.62 0.79 2.36
3 0.78 213.34 1.95 5.25
4 0.65 89.71 1.51 2.63
5 0.66 238.12 1.24 2.44
6 0.94 380.94 1.24 3.34
7 0.84 514.79 1.50 4.04
8 1.41 866.91 2.05 5.41
9 5.25 2572.06 7.73 55.61
10 2.09 1204.90 2.58 8.53
11 2.44 1267.26 2.54 8.95
12 2.01 936.99 3.67 7.73
13 2.33 1110.22 3.73 8.74
14 0.52 241.06 0.36 2.35
15 1.84 810.26 2.89 6.87
16 0.38 246.64 0.34 1.82
17 7.83 4306.97 99.92 113.90
18 0.32 191.12 0.49 1.52
19 4.28 1589.39 5.91 38.95
20 0.65 251.58 1.00 2.60

AVG 1.85 880.29 7.11 14.33

sent through the network consumes enormously compared to when it is in the same PE.

Looking closely, most of the calculations in the parallel region had somehow low complex-

ity algorithms. Leading us to the following conclusion: when the time of processing of a

tuple is significantly faster than the time of transmission, it is then not efficient to distribute

the processing on different nodes.

6.4.3/ THE PROPOSED APPROACH RESULTS

To apply the work described in 6.3.5, InfoSphere Streams provides directives to develop-

ers to co-locate or ex-locate operators in a PE. We used this feature to our convenience

to divide our application into the three regions as shown in Figure 6.3. The application

was ran 12 times with a sample of 28 trips for the four scenarios. The results and the

corresponding standard deviation are shown in Figure 6.8.

The tests were divided into four categories: (a) Distributed and PE-based processing

time, (b) Distributed and operator-based processing time, (c) Merged and PE-based

processing time and (d) Merged and operator-based processing time. Where PE-based

processing time is the computed value of tcompound and operator-based is the computed

value of tunit, presented in section 6.4.

The four scenarios are the following:

1. Distributed and PE-based processing time. In this scenario, all operators are exe-
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cuted by a single process and occupy one PE. Technically, PE-based processing

time is calculated by starting a timer when the first tuple of a trip enters until the last

one is processed, signaling the end of the trip. In that way, everything that happens

in between the execution of two consecutive tuples is included. To do so, we

considered one operator from the parallel region for extracting the processing time

of the application since all operators in that region execute concurrently and almost

equally and that the parallel region accounts for the most resource-consuming

part. Moreover, the significant part of the execution is supposedly spent on the

transmission of tuples between processes/operators, and the processing time is

negligible. The tcompound metric was used in this category.

2. Distributed and operator-based processing time. In this scenario, all operators here

as well are distributed. Operator-based processing time is the actual code execu-

tion time running inside of an operator for every tuple in the trip. The timer starts

at the reception of a tuple and pauses when the processing ends. It later resumes

after receiving the next tuple. The result is the sum of the elementary processing

times. Therefore, we calculated in every operator the execution time, and then we

aggregated this time by calculating the tunit. For the time elapsed in the parallel

region, tp, we selected the slowest operator as a reference as it is the extreme case.

3. Merged and PE-based processing time. When merged, all operators coexist in

one PE/process. Therefore, the computation of the tcompound not only included the

processing time in every code section of an operator but the system and function

calls occurring in the inter-operator communication in the process.

4. Merged and operator-based processing time. We calculated the processing time

inside of every operator and aggregated those values by calculating the tunit.

Moreover, the processing time of a trip is proportional to the size of a trip. Therefore,

comparing trips side by side is relevant and the difference in the processing time is only

due to the different number of tuples forming a trip as shown in Figure 6.9.

Finally, Figure 6.10 shows the throughput achieved from different fusion strategies,

relative to our proposed enhancement. The results show that our work performs 10, and

1.04 (4%) times better compared to No Fusion and Built-in optimization, respectively.

Having all that knowledge, we were able to pinpoint a particularity of the scenario at

hand, which contradicts the common beliefs or one’s intuition. Being that operators were

embedding simple algorithms/calculations, the processing time was fast enough to make

the upstream operator, which is ingesting the data into the parallel region of operators,
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Figure 6.9: The merged fusion strategy performs better than the distributed one over
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to become a bottleneck and slow down the traffic. Moreover, the operator was mainly

serializing and transmitting, through the local network, every copy to its downstream op-

erators whose numbers happens to be 10. Refer to Figure 6.3, for a general overview of

the application graph of operators. Therefore, parallelizing and distributing operators onto

different PEs was not the optimal answer to the problem due to the fact that when multi-

ple trivial calculations comes into play, if their execution time is less than the transmission

itself, then parallelism is inappropriate but sequential processing is.

6.5/ CONCLUSION

In this chapter, we have proposed an enhancement for operator placement strategies.

We have used real-world application, Groupe PSA’s Eco-Driving service, to showcase

how built-in optimization is generic and could sometimes propose a less efficient opti-

mization. Conversely, when specifics are taking into account, we were able to gain 4%

of throughput compared to what the SPE has to offer. In the automobile industry con-

text, this increase in throughput adds around 800k additional vehicles to the 20M already

existing or could only use the saved resources in other matters that interest the Group

differently. As future works, we are interested in reviewing the current Lambda architec-

ture that proves to be limited in specific scenarios, notably the fault tolerance aspect of

it. Another alternative that was proposed by the CEO of Confluent, Jay Kreps, the Kappa

architecture, could be explored [110]. The idea is to use one stream processing engine

for both batch and stream jobs accompanied by a log-persistent messaging system such

as Kafka. Moreover, we plan on devising an algorithm that would consider developers’
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inputs as descriptive data for the application. Then, the algorithm with all the information

provided will propose an efficient strategy scheme for deploying such applications.
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7

GENERAL CONCLUSION

7.1/ SUMMARY OF THE PHD THESIS

In this thesis, resource allocation optimization has been studied to ensure flawless, fast,

and efficient data processing in stream processing engines and a proposal of an all-in-

all architecture devised ideally for automotive Big Data applications. This dissertation

comprises two parts: the first part covers the scientific and technological background of

collecting and processing Big Data in the automotive context, whereas the second one

presents the contributions made in this thesis.

The first part began by presenting the main concepts and technologies that led to

smarter and more secure driving experience and allowed researchers to unlock new sci-

entific challenges. For that reason, a history of Intelligent Transportation System was pro-

vided, then focused on one of the pillars of ITS, the Vehicular Network (VANET), which

itself evolved into becoming the Internet of Vehicles (IoV). That enhancement made the

cars connected to the grid and created a new challenge in the domain of data collection

and analysis.

Second, we speak about the developed technology to deal precisely with the kind of sce-

narios developed in the first part. Hadoop Ecosystem or general-processing platform was

made to deal with numerous big data applications in the Internet of Things (IoT). Hadoop

platform allowed the agenda of ITS to move forward by implementing those massive com-

puting platforms to deal with the vast amount of data being generated by millions of cars

and sensors on the road.

Third, and after illustrating the technologies made for generally dealing with data-intensive

data, we focus on one of the processing platform axes, the streaming processing. This

chapter went through the history of stream processing engines and then described what

this system is composed of. We listed then the challenges that can appear in the domain.

Finally, some academic and commercial engines were surveyed.

The second part of this dissertation presented the contributions. The first research

focused on a basic and essential task in Stream Processing Engine, a resource alloca-

115
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tion algorithm. We tackled a central challenge in this work when deploying streaming

applications, that is the process to map operators of a streaming application to available

physical resources to enhance the application’s performance. We addressed this problem

by demonstrating that the inherent data parallelism approach could not be considered in

all application scenarios as the generic solution. We targeted this issue by showing that

the approach based on inherent data parallelism does not necessarily lead to the best

performance for all applications. In fact, through a real-world application (i.e., the Eco-

Driving service), we showed that a mapping based on insightful analysis of the target

application’s specifics and the infrastructure’s features could significantly improve the ap-

plication performance, leading thus, to a noticeable impact. The experiments backed by

real data showed that our proposal improves over the straightforward approach by about

4% in terms of throughput. This enhancement allowed PSA’s infrastructure to handle

nearly 800 thousand additional vehicles over the expected 20 million CVs by 2025.

In the second research, we conceived a novel end-to-end architecture that answers

data-intensive applications’ requirements. Today, connected vehicles (CVs) can collect up

to 170 different information (speed, temperature, fuel consumption, etc.) from onboard

built-in sensors and transmit them, in a real-time fashion, to an infrastructure, usually

by 4G/5G wireless communications. This reality brings with it many opportunities for

developing new and innovative telematics services, including driver safety, customer ex-

perience, infotainment, quality and reliability, dealer services, location-based services,

etc. Approximately 2 billion connected cars are projected to be on the world’s roadways

by the end of 2025, where each of them will produce up to 30 terabytes of data every day.

Managing this Big Data in individual or batch mode imposes tight restrictions on the data

processing software underlying it. In this chapter, we discussed precisely the architecture

deployed by Groupe PSA on real CVs big data platform. Moreover, we presented tech-

nologies and open-source products used within different platform components to gather,

store, process, and, more importantly, leverage big data.

We believe that the solutions proposed in this thesis for various challenges in the

phases of stream processing applications and analysis in an IoV-scenario application

can serve as additional and efficient solution choices or tools to address the challenges

mentioned above in the automotive industries.

7.2/ PERSPECTIVES

We are witnessing a significant change in how we observe and understand the world

around us. The big data phenomena challenged existing scientific methodologies and

techniques and invited researchers to review how they work. The first paradigm of re-

search methodology was initially mainly focused on experiments. The second paradigm
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of theoretical science was focused primarily on the study of different theorems and laws.

In reality, however, the theoretical analysis turned out to be too abstract and hard to

implement in several situations for dealing with different practical issues. Researchers

then began using simulation-based approaches that contributed to the third paradigm

of computational science. In 2007, Jim Gray distinguished computational science from

data-intensive research. Gray claimed that the fourth paradigm is not only a revolution in

scientific research but also a revolution in people’s thinking [111].

Likewise, big data analytics is becoming the backbone of every 21st-century enterprise.

For example, in the business domain, opportunities to use big data tools to raise sales, cut

costs, and manage risks are a representative sample of a long list of useful applications

that will continue to evolve and develop. In particular, the lag in the use of big data tech-

nologies and applications has become the leading factor in the loss of strategic business

advantages. Thus, any enterprise’s ability to collect, store, process, and analyze vast

data quantities would be a new landmark indicator for its intensity, capacity, and potential

growth. Groupe PSA has also been subject to that revolution and decided to grasp the

momentum to move with the trend. Companies like Groupe PSA understood this trend

and invested heavily in the infrastructure, and they now contribute to the advancement

of the field by discovering new potential scenarios that can profit from this new research

paradigm to give value for the companies.

Despite the high expectations of the big data paradigm’s promises and potentials, there

are still many obstacles to harnessing its full strength [112]. In this thesis, we tackled

the physical resource management problem. However, the management problem can

have other faces and on other levels. We have seen a rise in the many types of data

and the complexity of it. Second, we are witnessing a growth in the number of proposed

large-scale processing platforms, making inter-platform compatibility a primordial task.

Therefore, to help make platforms interoperable, the future focus should be invested in

studying and benchmarking large-scale processing systems to propose an independent

data scientist platform.

In a potential future work, the experience shared on the big data architecture in the

automotive context can be developed to produce an all-inclusive architecture allowing

many platforms to coexist. Practically, there is not so far a single platform that can, in

any application scenario, outperform all other systems for different workloads. Moreover,

moving data from one system to another for analytics jobs is supposedly more efficient

and reliable and is a laborious and time-consuming task for engineers. As a result, users

are obliged to focus on one platform even though it will not provide the best performance.

Lastly, a research effort can be put in converging the world of Big Data analytics that

masters the art of getting insights out of data in offline and online mode, with the world

of High-Performance Computing (HPC) that can perform quadrillions of calculations per

second. This marriage between the two could allow technologies such as the Internet of
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Things (IoT), Artificial Intelligence (AI), and 3D imaging that produces data exponentially,

to take benefit of the lightning-fast, highly reliable IT infrastructure to process, store, and

analyze massive amounts of data.
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A

APPENDIX: PRESENTATION OF

GROUPE PSA

A.1/ PRESENTATION OF GROUPE PSA

The PSA Group, formerly called PSA Peugeot Citroën, is a French automobile manufac-

turer, created in 1810.

A.1.1/ MARKET AND ACTIVITIES

A./ ECONOMIC SITUATION

The PSA Group was, in 2018, the second European car manufacturer, with a turnover of

74 billion euros.

The creation and sale of cars is its core business, and with its three main brands,

Peugeot, Citroën and DS, more than 3.9 million cars were sold in 2017.

With more than 170,000 points of sale throughout the world, its main sales market

is Europe, but it is also very present on other continents, being the number 1 in China, for

example.

Groupe PSA also has industrial sites all over the world, as seen in Figure A.1.

To follow a period of crisis, between 2012 and 2014, the group decided to launch a

new plan, called Push to Pass, which consists of reducing the various expenses within

the company, without compromising production, in order to provide a higher operating

margin, which returned to positive in 2015, after 3 years of recession.

This plan can be summarized in five phases for the company:

• From the product to the customer, trying to stand out from its competitors by con-
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Figure A.1: Establishment of Groupe PSA industrial sites around the world

tinuing to divide its different ranges of vehicles according to its brands.

• From ownership to experience, giving more character to your cars, so that buying a

car is no longer just out of necessity, but also out of pleasure.

• From car to mobility, continuing to research in various areas of innovation, such as

autonomous driving.

• From a single activity to a portfolio of activities, by diversifying its activity, because

even if its core business remains the automotive sector, new opportunities are avail-

able to it, such as the sale of data collected by its cars.

• From local to global, continuing to make progress in markets abroad, particularly in

Asia, which is experiencing strong competition in the automotive sector.

B./ ACTIVITIES

The profits of this company are generated mainly from the sale of cars of its three main

brands (Peugeot, Citroën and DS). By providing a clear demarcation for the public of

each of these brands, the group succeeds in being the 7th largest car manufacturer in

the world.

In addition to selling cars, the group has commercial activities in two other sectors:

• The automotive equipment sector, through the Faurecia group, which produces

automotive equipment, such as seats, windshield wipers, bumpers, etc. for all car
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brands.

• The financial sector, through Banque PSA Finance, which allows the group’s car

buyers to obtain financing at lower rates when purchasing their vehicles. The latter,

which has the status of a financial institution, will soon be joined (probably merged)

by the GM Europe bank, which the PSA Group acquired at the same time as the

Opel and Vauxhall brands.

A.1.2/ MAIN BRANDS

A./ PEUGEOT

The Peugeot brand, created in 1810, is now present in more than 160 countries, through

more than 10,000 points of sale. It aims to be a generalist medium / high-end brand with

a global vocation, combining Requirement, Allure and Emotion.

In 2018, its sales increased by 6.2%, from 1,312,082 to 1,393,431 vehicles sold

worldwide.

B./ CITROËN

The Citroën company, founded in 1919, was bought by Peugeot in 1976. It aims to be the

group’s mid-range brand, so as not to compete directly with Peugeot or DS.

It saw its sales increase by 6.2% in 2018, going from 1,171,746 to 1,244,394 units

sold.

C./ DS AUTOMOBILES

The DS brand, created in 2009, was initially a line within the Citroën brand, but stood out

from it in June 2014, by becoming a brand, to give these different lines of cars two distinct

identities.

By being the group’s top-of-the-range brand, and by offering a personalization of

each of its models, it attracts a small audience, mainly on the European market.

Its sales increased by 12.6%, in 2018, from 74,201 to 83,550 vehicles sold.

D./ OPEL

This German automobile brand, created in 1862, was bought in March 2017 by Groupe

PSA for the sum of $ 1.4 billion.
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Initially, the PSA Group will focus on helping Opel to fill its deficit, so that this brand

can subsequently become another of the main brands of the group.

Its sales are down slightly, by -1.3% in 2018.

E./ VAUXHALL

This English car brand, created in 1857, was acquired in March 2017 at the same time

as the Opel brand; both previously belonging to the GM Europe group.

In the same way as for Opel, the PSA Group will try to adapt the company’s pro-

cesses to those of the group, gradually, while providing it with financial support.
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25000 Besançon, France

Title: Optimizing Resource Utilization in Distributed Computing Systems for Automotive Applications

Keywords: Big Data Architecture, Query Optimization, Cloud Computing, Hadoop Ecosystem, Stream Computing,
Connected Vehicles

Abstract:

One of the main challenges for the automobile industry in the
digital age is to provide their customers with a reliable and
ubiquitous level of connected services. Smart cars have been
entering the market for a few years now to offer drivers and
passengers safer, more comfortable, and entertaining journeys.
All this by designing, behind the scenes, computer systems that
perform well while conserving the use of resources.
The performance of a Big Data architecture in the automotive
industry relies on keeping up with the growing trend of connected
vehicles and maintaining a high quality of service. The Cloud
at Groupe PSA has a particular load on ensuring a real-time
data processing service for all the brand’s connected vehicles:
with 200k connected vehicles sold each year, the infrastructure
is continuously challenged.
Therefore, this thesis mainly focuses on optimizing resource
allocation while considering the specifics of continuous flow
processing applications and proposing a modular and fine-tuned
component architecture for automotive scenarios.

First, we go over a fundamental and essential process in Stream
Processing Engines, a resource allocation algorithm. The central
challenge of deploying streaming applications is mapping the
operator graph, representing the application logic, to the available
physical resources to improve its performance. We have targeted
this problem by showing that the approach based on inherent
data parallelism does not necessarily lead to all applications’ best
performance.
Second, we revisit the Big Data architecture and design an end-
to-end architecture that meets today’s demands of data-intensive
applications. We report on CV’s Big Data platform, particularly
the one deployed by Groupe PSA. In particular, we present
open source technologies and products used in different platform
components to collect, store, process, and, most importantly,
exploit big data and highlight why the Hadoop system is no
longer the de-facto solution of Big Data. We end with a detailed
assessment of the architecture while justifying the choices made
during design and implementation.

Titre : Optimisation de l’utilisation des ressources dans les systèmes informatiques distribués pour les
applications automobiles

Mots-clés : architecture Big Data, optimisation de requêtes, Cloud Computing, écosystème Hadoop, Stream
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Résumé :

L’un des principaux défis de l’industrie automobile à l’ère du
numérique est de fournir à ses clients un niveau fiable et
omniprésent de services connectés. Les voitures intelligentes font
leur entrée sur le marché depuis quelques années maintenant
pour offrir aux conducteurs et aux passagers des trajets plus sûrs,
plus confortables et plus divertissants. Tout cela en concevant,
dans les coulisses, des systèmes informatiques performants tout
en préservant l’utilisation des ressources.
La performance d’une architecture Big Data dans l’industrie
automobile repose sur le maintien de la tendance croissante
des véhicules connectés et le maintien d’une qualité de service
élevée. Le Cloud du Groupe PSA a un souci particulier
d’assurer un service de traitement des données en temps réel
pour tous les véhicules connectés de la marque: avec 200k
véhicules connectés vendus chaque année, l’infrastructure est
constamment remise en question.
Par conséquent, cette thèse se concentre principalement sur
l’optimisation de l’allocation des ressources tout en considérant
les spécificités des applications de traitement en flux continu et en
proposant une architecture de composants modulaire et affinée
pour les scénarios automobiles.

Premièrement, nous passons en revue un processus fondamental
et essentiel dans Stream Processing Engines, un algorithme
d’allocation de ressources. Le défi central du déploiement
d’applications de streaming consiste à mapper le graphe
opérateur, représentant la logique de l’application, aux ressources
physiques disponibles pour améliorer ses performances. Nous
avons ciblé ce problème en montrant que l’approche basée
sur le parallélisme des données inhérent ne conduit pas
nécessairement aux meilleures performances de tous les types
d’applications.
Deuxièmement, nous revisitons l’architecture Big Data et
concevons une architecture de bout en bout qui répond
aux exigences d’aujourd’hui des applications gourmandes en
données. Nous faisons rapport de la plateforme Big Data de
CV, notamment celle déployée par le Groupe PSA. En particulier,
nous présentons des technologies et des produits open source
utilisés dans différents composants de plate-forme pour collecter,
stocker, traiter et, surtout, exploiter le Big Data et souligner
pourquoi le système Hadoop n’est plus la solution de facto du Big
Data. Nous terminons par un bilan détaillé de l’architecture tout
en justifiant les choix effectués lors de la conception et de la mise
en œuvre.
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