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Abstract

The French Mediterranean region is prone to very intense flash-flood events in-
duced by heavy precipitation events (HPEs), which are responsible for considerable
human and material damage. Quantitative precipitation forecasts have improved
dramatically in recent years towards quasi-realistic rainfall estimations. Neverthe-
less, the proper estimation of the uncertainty associated with the physical processes
representation remains a challenging issue.

In this thesis, we address the predictability of intense precipitation in the French
Mediterranean region using a 30-year ensemble hindcast dataset based on the ensem-
ble prediction system PEARP, operational at Météo-France. This reforecast system
implements the same model error as PEARP, but initial and boundary conditions
are differently assessed.

In order to assess the ability of the reforecast to represent the errors of the
original model, we first verify this reforecast using some verification scores. The
lack of initial condition perturbation makes the ensmble spread of the reforecast
lower than the PEARP’s one. Though probabilistic forecast scores are weak due to
these set-up deficiencies, some skills are observed at 4-days lead time and for very
large thresholds. However, the duration of the reforecast dataset and the resolution
inherited from the operational model seem to provide enough complexity to the
rainfall reforecast distributions. Two post-processing methods, based on quantile
mapping and extended logistic regression techniques, are applied to the reforecast.
The quantile mapping approach reduces the members biases, but the benefits in
terms of probabilistic scores are lower than expected. The calibration procedure
using the extended logistic regression approach leads to better probabilistic scores,
both for low and large precipitation thresholds. The extended logistic regression
fitted on the reforecast as a learning dataset is then applied on the operational
ensemble system PEARP over a 4-month period. Though calibrated forecasts skills
are not globally improved, some high probability thresholds are slightly improved,
suggesting such methodology could be finally efficiently tuned.

The last part of this thesis further investigates systematic errors of intense pre-
cipitation forecasting using the feature-based metric SAL (Wernli et al., 2008). This
spatial metric applied to the reforecast shows that both amplitude and structure
components are controlled by deep convection parametrizations. Indeed, between
the two main deep convection schemes implemented in the model, one scheme per-
forms better, in particular for the most extreme events. A remarkable aptitude of
the model is emphasised as the ranked distribution of the very intense integrated
rainfall features is accurately represented by the model.
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Résumé

Le sud-est de la France est une région particulierement propice a ’occurrence de
crues torrentielles associées a des événements de pluies tres intenses. Ces événements
peuvent causer des pertes matérielles et humaines considérables. Les techniques de
prévision de ces pluies exceptionnelles ont nettement progressé et on parvient a
représenter des cumuls de pluie tres proches de ceux observés. Néanmoins, les in-
certitudes liées a la prévision de ces événements sont encore importantes et il reste
nécessaire d’améliorer la connaissance des processus qui y contribuent.

Dans cette these, nous nous intéressons a la prévisibilité des épisodes intenses
de pluie sur le sud-est de la France. Notre étude repose sur 'utilisation d’une base
de prévisions rétrospectives par un systeme dérivé du modele de prévision d’en-
semble opérationnel PEARP, que I'on dénomme reforecast et d’'une profondeur de
30 années. Cette version utilise plusieurs schémas physiques comme pour le systeme
d’origine mais ne peut techniquement disposer des mémes conditions initiales et de
la technique utilisée pour les perturber.

Afin de vérifier la capacité du reforecast a représenter les incertitudes du systeme
PEARP, une premiere partie de I’étude est consacrée a son évaluation. Le fait de
ne pas avoir de conditions initiales perturbées entraine un manque de dispersion du
reforecast par rapport a celle de PEARP. On observe cependant une bonne qualité
du reforecast pour des seuils de précipitation élevés et des échéances de prévision
de quatre jours. Cela montre la possibilité d’extraire d’un tel systeme de I'informa-
tion utile pour améliorer ses performances par des techniques de post-traitement ou
calibrage. Deux expériences de calibrage sont ensuite menées, I'une basée sur une
méthode de quantile mapping et la seconde sur une méthode de régression logistique
étendue, appliquées chacune sur le reforecast. Avec la premiere méthode appliquée
membre par membre, on améliore le biais de chacun des membres, mais on n’amé-
liore pas les scores probabilistes. Dans la seconde expérience, le reforecast calibré
donne de meilleurs scores quelque soit le seuil de définition de 1’événement. Cette
technique a donc été appliquée a la prévision opérationnelle, les résultats ne sont
pas aussi convaincants que ceux obtenus avec le reforecast mais on observe tout de
meéme une amélioration des prévisions pour les événements les plus intenses.

La derniere partie de I’étude a été consacrée a 1'utilisation d’une métrique basée
sur l'identification de structures cohérentes ou objets de pluie proposée par Wernli
et al. (2008). On montre que le facteur prédominant de la performance du modele
réside dans le choix du schéma de convection profonde de la paramétrisation de
chaque membre. Dans le cas de PEARP, ces schémas peuvent étre regroupés en deux
grandes familles, dont la dichotomotie se projete significativement sur la performance
de la prévision. Le schéma donnant les meilleurs résultats montre la trés bonne
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capacité du modele a reproduire la distribution du volume de pluie par objet pour
les épisodes les plus intenses.
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Introduction

In autumn, very intense precipitation events can affect the French Mediterranean
region. They may be responsible for considerable human and material damage, as
the region is prone to torrential hydrographic watershed response. An iconic case was
the Vaison-la-Romaine catastrophic flash flood (Sénési et al., 1996), which occurred

the 22 September 1992 (Fig. 1). This extreme event caused 47 fatalities.

Figure 1: A dramatic picture showing two caravans carried away by the flash-flood
occurred on 22 September 1992 in Vaison-La-Romaine, in the Vaucluse French de-
partement. From: https://www.croix-rouge.fr/Actualite/Vaison-la-Romaine-Il-y-a-
25-ans-2152

If long term territory adaptations should take into account learning from the
climatology of these episodes, a more reliable and anticipating short-range weather
warning would be immediately helpful. Improving the inclusion of all sources of
forecast uncertainty in the model at early lead times would be beneficial for security
procedures and help to reduce the societal impact.

In weather numerical modelling, the development of ensemble techniques is an
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effective method to progress in the estimation of the errors. It is also an adapted
methodology to address extreme events issues which correspond to low probability
events. These events are better analysed with large sample sizes. In order to in-
vestigate the precipitation forecast predictability at a daily scale over the French
Mediterranean region, one recommended approach is to use a large ensemble refore-
cast dataset. It corresponds to a hindcast database produced for a past period with
a model close to the one devoted to the operational forecasts (Hamill et al., 2008).
It has been shown that a large reforecast dataset can be beneficial for assessing
and improving the performances of the model. This is particularly useful in the
context of rare events, where only a few are usually observed during standard oper-
ational verification periods. This thesis takes advantage of a 30-year reforecast built
with a simplified version of the Météo-France ensemble prediction system PEARP

(Prévision d’Ensemble ARPEGE; Descamps et al., 2015).

The comparison between ensemble precipitation forecasts and observed precip-
itation over the whole period of the reforecast can be meaningful about the model
skill. A further utilisation of the reforecast as a learning dataset to improve post-
processing methods is also carried out. Issues in precipitation post-processing may
derive from the complex statistical properties associated with this predictand vari-
able. On another hand, they can be compensated as a large size training dataset

may make the statistical estimation techniques more efficient.

In this study, a deterministic and a probabilistic calibration methods are applied
on the reforecast dataset. The targeted events correspond to large daily rainfall
amounts. One of the objectives of this study is to test the ability of the reforecast
to be used as a training dataset to post-process the operational system PEARP.
Another objective of this thesis is to analyse systematic errors in HPE forecasting,
using an object oriented approach. Point-to-point verification may have inherent
limitations, notably the so-called double penalty problem (Rossa et al., 2008). Based
on the two-dimensional structure of the rainfall, feature-based metrics prevent from
this effect. We analyse consistent errors of intense precipitation forecasts with such
a metric from the reforecast dataset depending on the impacted region and on the

physical parametrizations implemented in the model.
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Introduction

Chapter 1 presents a survey about the state of the art of intense precipitation
ensemble forecasting. In chapter 2 a brief summary of the characteristics of the
Operational Ensemble System PEARP is presented. A description of the reforecast
and 24-hour precipitation reference datasets is also given in this chapter. In chapter
3 the analysis of deterministic and probabilistic scores applied to the reforecast is
shown. Chapter 4 presents a deterministic (Quantile Mapping) and a probabilistic
(Extended Logistic Regression) post-processing method applied both on the refore-
cast and on a 4-month period of the operational PEARP system. In chapter 5
the under-review article entitled “Systematic errors analysis of heavy precipitating
events prediction using a 30-year hindcast dataset” is presented. Conclusions are

given in chapter 6.
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Introduction (Frangais)

Les événements de précipitations intenses du sud-est de la France peuvent occa-
sionner des dégats et pertes humaines considérables. En effet, ces événements sont
souvent responsables de crues torrentielles en raison du relief particulier de la région.
Un événement particulierement marquant s’est produit a Vaison-la-Romaine le 22

septembre 1992 (Fig. 2), lors duquel on dénombra 47 victimes.

Fi1GURE 2: Une photo marquante de l'épisode de crues torrentielles qui toucha
Vaison-la-Romaine le 22 Septembre 1992 dans le département du Vaucluse.

[’aménagement du territoire se doit de tenir compte au mieux des avancées
récentes de la connaissance sur la climatologie de ces épisodes pour réduire la vulné-
rabilité des communes exposées. D’un autre coté, tout progres réalisé pour améliorer
I’alerte en temps réel de ces épisodes peut s’avérer tres important pour la mise en
sécurité des personnes et des biens.

La prévision météorologique de ces épisodes comporte encore une part d’incer-

titude tres importante. Le développement des techniques de prévision d’ensemble
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Introduction (Francais)

a montré que I’approche probabiliste permettra de progresser dans I’estimation des
erreurs. Par ailleurs, c’est aussi une approche adaptée aux phénomenes extrémes le
plus souvent associés a des probabilités tres faibles d’occurrence. Pour étudier la
prévisibilité associée a ces phénomenes, nous utilisons un grand échantillon de pré-
visions rétrospectives, appelé reforecast. Ces reforecasts sont contruits a partir d’une
version opérationnelle d'un systeme ensembliste en reproduisant au mieux les tech-
niques de perturbation d’ensemble, et permettent de produire des bases de données
de quelques décades destinées a apprendre et corriger les erreurs du modele original
(Hamill et al., 2008). Le fait de pouvoir évaluer un systeme proche du modéle opé-
rationnel sur d’aussi longues périodes peut apporter beaucoup dans la connaissance
du comportement de ce dernier. C’est aussi une grande opportunité d’obtenir des
scores significatifs sur des épisodes intenses peu représentés habituellement dans les
périodes courtes disponibles pour la vérification de la prévision numérique. Dans
cette these, nous utilisons un reforecast produit sur une période de 30 années et dé-
rivé du systeme de prévision d’ensemble PEARP (Prévision d’Ensemble ARPEGE)
opérationnel & Météo-France (Descamps et al., 2015) comportant notamment 10

paramétrisations physiques différentes pour représenter I'erreur de modélisation.

La prévision de pluie dans le reforecast peut étre évaluée soit en tant que pré-
vision, soit comparée attentivement aux observations. Une estimation de la perfor-
mance que le modele original obtiendrait sur de telles durées, donc sur un grand
nombre d’événements rares peut ainsi étre étudiée. Ce meéme reforecast peut éga-
lement étre avantageusement utilisé comme échantillon d’apprentissage dans des
techniques de post-processing utilisées pour améliorer le modele orginal. Nous sa-
vons que ces techniques de post-processing ou calibrage s’appliquent difficilement a
la pluie, parametre aux propiétés statistiques particulierement non homogenes. Nous
pensons que, la aussi, la durée et la taille d'un échantillon d’apprentissage tel que

celui du reforecast doit permettre de compenser cette difficulté.

Dans cette étude, deux expériences de calibrage sont effectuées. Les épisodes
considérés correspondent a des cumuls de pluie quotidienne tres élevés. Un des ob-
jectifs principaux est de montrer que le reforecast permet d’envisager d’améliorer la

performance du modele original grace aux méthodes de calibrage. Un autre objectif
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de I’étude est de diagnostiquer les erreurs systématiques de la prévision des épisodes
de pluies intenses grace a une métrique basée sur la structure spatiale de la pluie. En
effet la prévision en points de grille, a la résolution du modele, peut étre pénalisée
par des effets non désirés liés a la forte résolution, environ 10km dans notre cas.
Cet effet est appelé « double-peine », et est décrit dans Rossa et al. (2008). Il peut
étre illustré par un cas d’erreur de localisation d’'un maximum de pluie tres localisé
qui produirait une erreur négative la ou la pluie a effectivement eu lieu, et positive
la ou le modele la positionne. Une métrique liée a la structure spatiale de la pluie,
elle, permet de compenser cet effet en considérant les deux dimensions du champs
de pluie. En appliquant cette métrique nous pourrons étudier les erreurs systéma-
tiques attribuées a chaque groupe de paramétrisations physiques de PEARP et leur
dépendance en fonction de la région concernée.

Le premier chapitre présente donc I’état de ’art en matiere de prévision des phé-
nomenes de précipitations intenses. Dans le chapitre 2, les caractéristiques techniques
du modele utilisé sont présentées ainsi que le traitement préalable des données pour
la constitution des jeux de données du reforecast et de 'observation. Le chapitre
3 présente les résultats de 1’évaluation du reforecast en tant que modele avec les
scores déterministes et probabilistes utilisés en vérification de modele de prévision.
Le chapitre 4 présente les deux expériences de calibrage, basées sur les techniques de
quantile mapping et de régression logistique étendue appliquées au reforecast et au
systeme opérationnel PEARP. Le chapitre 5 reprend 'article soumis dont le sujet
est « 'analyse des erreurs systématiques de la prévision des événements pluvieux
intenses a l'aide d’un reforecast sur une période de 30 ans ». Enfin les conclusions

de la these sont présentées dans le chapitre 6.
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Chapter 1 Introduction

In this introductory chapter, a description of main features related to the for-
mation of Heavy Precipitation Events (HPEs) is proposed, followed by a focus on
precipitation ensemble forecasting issues. The third section concerns model verifi-
cation, scoring rules, and reviews some standard approaches in weather forecasting
post-processing. Finally, the last part presents the objectives and the main addressed

issues of this thesis.

1.1 The Heavy Precipitation Events

1.1.1 Characteristics of HPEs in the Mediterranean area

The Mediterranean basin is an area with peculiar geographical, morphological,
historical and societal characteristics. It covers portions of three continents: Europe
in the north, Asia in the east, and Africa in the south. The Mediterranean Sea is
connected to the Atlantic Ocean trough the strait of Gibraltar (14.5 km wide and
less than 300 m deep). Its narrow width makes the Mediterranean Sea an almost
closed basin, unique of its kind.

The Mediterranean climate is extremely diverse. It is located in a transitional
zone, at the interaction between mid-latitude and tropical variability (Lionello et al.,
2006). On the basis of the Koppen climate classification, the southern part of
the Mediterranean is characterised by a Desert climate, while its northern part is
classified as Mediterranean (also known as dry summer climate). The Mediterranean
climate is linked to mid-latitude variability, which strongly determines the seasonal
precipitation regimes. The summer period is influenced by the subtropical ridge
which keeps the atmospheric conditions very dry, with regular heat waves (Colacino
and Conte, 1995). Winter is generally mild and wet, since the subtropical ridge
migrates towards the equator. Precipitations are more intense and more frequent
during the autumn-winter season (Mehta and Yang, 2008). At this time of the year
a few cold waves can impact the basin, more likely the eastern side depending on
the position of the Siberian high-pressure system.

The Mediterranean region (Fig. 1.1) has a complex morphology, due to the ex-

istence of peninsulas, islands, basins, gulfs, and mountain ranges at different eleva-
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Figure 1.1: Mediterranean Basin with orography and sea-depth expressed in colors.
From Lionello et al. (2006).

tions. These features influence the atmospheric circulation, as well as the mesoscale

atmospheric processes, affecting the distribution and the intensity of precipitations.

Among the different classes of precipitation events, heavy precipitation regularly
occurs over the Mediterranean region, during the autumn usually when the first
cold cyclonic troughs from the North Atlantic enter the region. The interaction
of such upper level dynamics with the warm sea and the complex morphology of
the terrain makes this period propitious to the onset of these phenomena. The
accumulated rainfall amounts during these events often exceed 200 mm, and rarely
more than 500 mm in a single day (Ramis et al., 2013; Ricard et al., 2011). These
events and their associated flash floods, are often responsible for large social and
economic impacts (Llasat-Botija et al., 2007). The most severe damage occurs close
to the coast coincidentally where a quite large number of densely populated cities
are located. The exact location and intensity of such events are difficult to forecast
due to the combination of many factors of different scales and physical processes
that strongly interact. These factors, as well as a description of the main mesoscale

features of Heavy Precipitation Events are detailed in this section.

3



Chapter 1 Introduction

Figure 1.2: Percentage of top 50 large-scale precipitation events at each grid point
in colour. The averaged precipitation of the events (mm/6h)) is shown in white
contours; Results are presented for each season: winter (DJF), spring (MAM), sum-
mer (JJA) and autumn (SON) over the 1979-2012 period. From Raveh-Rubin and
Wernli (2015).

HPEs (Heavy Precipitation Events) are often characterized by a rainfall amount
that can only be reached throughout long and persistent rainfall conditions. The

duration and the spatial extension directly influence the magnitude of the damage.

In the recent years, the Mediterranean basin has been prone to numerous cases
of HPEs. Although there are several numerical case studies of HPEs, only a limited
number of studies have addressed the climatology of these phenomena over the
Mediterranean Sea. One main obstacle to HPE climatology is the necessity to have
access to a dense observation network, encompassing remote mountainous regions

and that this observation network homogeneous.

However, based on ERA-Interim Reanalysis, Raveh-Rubin and Wernli (2015)
studied the classification of intense precipitation over the whole Mediterranean Sea.
Precipitation is not extracted from in-situ observations, but integrated over a spatial
scale of 1000 km and a temporal scale of three days. The detected events are found

to be more extreme on the Western part of the Mediterranean and to occur pre-
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dominantly during the autumn, while in the Eastern Mediterranean they occur in
winter (Fig. 1.2). A limitation of ERA-Interim is that its resolution (approximately
80 km) cannot resolve heavy rainfall occurring at smaller scales. In the Spanish
Mediterranean Area, a classification of 30-year rainfall events have been conducted
by Romero et al. (1999) using a clustering classification method. They showed that
these events impact the western part of the Spanish Mediterranean Area more fre-
quently in winter and that they are associated with Rossby waves entering from
the Atlantic. Over the eastern part, intense events dominate during the autumn
in conjunction with torrential floods and are influenced by the Mediterranean dy-
namics. A ranking of daily precipitation records was performed by Ramis et al.
(2013). This latter study showed that the most extreme rainfall cases ever recorded
in Spain occurred in the Mediterranean coastlands, mainly in the Valencia region.
Over Northwestern Italy, most heavy rainfall events also occurs in autumn (Pinto
et al., 2013). The authors showed this period is related both with large-scale forcing
(large-scale troughs) and regional forcing (higher sea surface and air temperatures),
which often coexist. Precipitation intensity distribution can be also analyzed from
remote sensing data, implying data retrieved from spatial satellite imagery. For in-
stance a precipitation climatology for the Mediterranean was conducted by Mehta
and Yang (2008) over a 10-year period. Based on such data source, the maximum
rainfall is found over the mountain regions of Europe. Moreover, they observed that
eastern Mediterranean is more rainy than the western Mediterranean, by a 20%

ratio.

The role of convection in HPEs formation

During HPEs, rainfall formation is not exclusively related to convection (An-
quetin et al., 2003; Ducrocq et al., 2002; Miniscloux et al., 2001). The heaviest
convective rainfall usually occurs in regions of low level moisture, elevated instabil-
ity, and slow movement systems (Doswell, 1987; Doswell et al., 1996).

The concept of instability is directly linked to the buoyancy in the atmosphere.
Buoyancy (also called Archimedes’s buoyant force) is a force exerted upon a parcel

of fluid subjected to the gravitation field by virtue of the density difference between
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MEAN CLOUD-LAYER WIND NEGATIVE OF
THE LOW-LEVEL JET

®” ~—_ FORECAST MCS MOTION

Figure 1.3: Schematic diagram showing the motion components of an upwind-
propagating mesoscale convective system. The propagation vector is directed into
the low-level jet, while cells are advected by the mean cloud-layer wind. The combi-
nation of these two contributions nearly cancels the cell motion vector of the centroid
of the MCS, represented by the cross symbol. From Corfidi (2003).

the parcel and that of the surrounding parcels in the atmosphere. Instability refers
to the stability of the atmosphere with respect to the vertical displacement of an air
parcel, controlled by the buoyancy force. Atmosphere is unstable when buoyancy
force is directed upwards, resulting in an acceleration of the parcel to upper levels.
Atmospheric convection then indicates these vertical motions of the atmosphere.
Convection is not necessarily associated with moist processes. Specific conditions
related only with horizontal termal gradients can lead to dry convection. Otherwise,
upwards motions often result in condensation processes that enhance rainfall forma-
tion. It is commonly denoted as moist convection. HPEs are commonly associated
with deep moist convection. The upper limit of the convection is a major factor

influencing the intensity of the convection and of the associated rainfall.

Instability intensity is commonly assessed by examining the Convective Avail-
able Potential Energy (CAPE) (Doswell et al., 1998). This diagnostic is related to
the acceleration rate of the vertical motion of an air parcel above the Level of Free
Convection (LFC). Large CAPE values are generally associated with deep moist
convection. Air masses characterized by high values of equivalent potential tem-
perature are generally advected from the Mediterranean Sea, and they constitute a
favorable condition for the enhancement of convection (Trapero et al., 2013a), be-
cause the equivalent potetial temperature of an air parcel increases with increasing

temperature and increasing moisture content.
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Another key aspect for the onset of convection is the low level moisture transport
and convergence. Moisture convergence takes into account the effect of converging
winds and moisture advection. At low level, convection tends to be formed down-
stream to maximum moisture transport and near where moisture convergence is high
(Banacos and Schultz, 2005). Conversely, at upper level, divergence conditions, of-
ten related to a jet stream exit area, can favour upwards motions and can lead to a
strengthening of convection (Maddox and Doswell, 1982).

Convection can produce scattered isolated convective cells, or, when a set of ther-
modynamic ingredients are brought together, can be organized to form Mesoscale
Convective Systems (MCSs). An MCS can persist for several hours or more (e.g.,
Davolio et al., 2009; Fresnay et al., 2012; Nuissier et al., 2008; Romero et al., 2000;
Trapero et al., 2013b). One organizational mode of MCSs is the squall line (Ogura
and Liou, 1980), which consists in an elongated line of severe thunderstorms. In
some cases, MCSs driven by large scale conditions can become stationary. It is an
important factor for MCS deepening. These systems have been largely examined
in many studies and often denoted as “quasi-stationary” (QS) MCS. QS MCSs are
composed by following convective cells at different maturation stages. The matu-
ration propagation direction is opposed to the cell advection vector, resulting in a
quasi-cancellation effect (Corfidi, 2003; Doswell et al., 1996). A schematic diagram
of this mechanism from Corfidi (2003) is shown in Fig. 1.3. This effect can induce
long-duration heavy precipitation at the same location. QS MCS are very common
in the Mediterranean.

Convection is not always a sufficient factor for the production of the most intense
precipitation. Some mesoscale ingredients also partecipate to the onset and the
enhancement of HPEs. Some of these mesoscale features are detailed in the following

part.

Mesoscale ingredients associated with HPEs

A large number of HPE case studies have investigated the role of mesoscale
mechanisms that contribute to the development of heavy precipitation. The meso-

scale is an intermediary spatial scale used to describe certain atmospheric processes
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Figure 1.4: Schematic representation of the large-scale features associated with mid-
latitude prefrontal squall lines. The low-level jet advects warm moist air in the region
ahead of the cold front. MCSs are commonly observed in this prefontal area. From
Laing (2015).

and weather systems smaller than the synoptic scale (= 1000 km) and larger than
the microscale (< 1km). One important difference from the synoptic scale is that at
the meso-scale the vertical scale (often known as H) is no more negligible compared
to the horizontal scale (often known as L). In this sense, processes at this scale may

not be described using the hydrostatic approximation framework.

One mesoscale feature that is frequently involved in HPEs occurrence is the low-
level jet (LLJ). This is a narrow air current found in the lower atmosphere, typically
around the 850 hPa Geopotential height level. Moist low-level jets (LLJs) are impor-
tant in the development of heavy precipitating systems (Buzzi and Foschini, 2000;
Homar et al., 2002; Ricard et al., 2011; Romero et al., 2000), because they transport
heat and moisture, and increase instability. A schematic diagram of a squall line
formed in the area affected by the LLJ is given in Fig. 1.4. In most of the cases low-
level winds are oriented southerly, so that moist and warm air particle are advected

from the Mediterranean Sea towards the Northern lands of the Mediterranean basin.

The LLJ favours the moisture convergence in the initiation and evolution of
convective systems (e.g., Delrieu et al., 2005; Ducrocq et al., 2008a; Fresnay et al.,

2012). Convergence can be impacted by the presence of a complex terrain, which

8



Chapter 1 Introduction

can modify the circulation on the low levels (Khodayar et al., 2016).

The presence of a cold pool dynamics can take part to the triggering of the uplift
and consequently of the convection. This mesoscale feature can develop, due to the
HPEs dynamics themselves. For example, a vigorous precipitative downdraft can in-
duce latent heat cooling due to the evaporation of precipitation within subsaturated
air. This downwards flow both initiates or feeds the cold pool, whose location and
extension can also be influenced by the presence of orography. Cold pool dynam-
ics are documented in Bresson et al. (2009) or Ducrocq et al. (2008b). In the latter
study, three case studies of HPEs were examined. Where a cold pool plays an impor-
tant role on the intensity and the localization of intense precipitation. A synthetic
drawing elaborated by the authors is shown in Fig. 1.5. The first case (Cévennes
case) is a pure orographic precipitation case and no cold pool is formed. The Gard
case is characterized by the formation of a cold pool ahead of the Cévennes chain
and upstream of the low-level flow. This example shows how the convective cells are
triggered in a flat area, forced by the lifting induced by the low-level cold pool with
analogy to the orographic effect conditions. The Aude case shows simultaneous cold
pool and orographic forcing conditions.

As it has been suggested in these processes analysis, heavy precipitation can
also widely impacted by the orography. The interaction between precipitation and

orography is described thereafter.

The interaction with the orography

The orography is a factor which plays a major role in the triggering of the
convection by compelling upward motion of the air mass. This interaction with the
relief occurs quite frequently in the Mediterranean, as a consequence of its complex
morphology (see Fig. 1.1). Moreover, the presence of a steep slope raises the risk of
occurrence of associated flash floods.

A precipitation climatology covering the European Alps was presented by Frei
and Schér (1998). In this study the authors showed that the observed precipitation
amounts in the Alps region do not necessarily increase as a function of the height. In

fact, high rainfall accumulation are found along the primary flanks of the mountains
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Figure 1.5: Schematic diagram of the precipitating structures of the MCSs and the
mesoscale features of three flash-flood events. From Ducrocq et al. (2008a).
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chains. This effect, known as orographic lifting is related to the interaction of a moist
low-level streamflow with an orographic barrier (Buzzi et al., 1998). In this paper
the role of the orography in the case of the Piedmont flood of 1994 is addressed. The
authors show that, in addition to the blocking effect of a steep barrier, mountain
chains play also a crucial role at a larger scale, by modifying the pressure field of the
associated cyclone in the Mediterranean and by confining the southern prefrontal
flow in the Po valley, upstream to the Alpine region.

In addition to the increase of precipitation amounts, the presence of a relief can
play a role in the convection mechanisms. Houze (2012), shows that moist deep
convective systems are affected by channeling of airflow near mountains. This is
confirmed in (Ricard et al., 2011) with an example of a strengthening of the southern
low-level flow in a channel between the Massif Central and the Alps .

The moist air flow lifting along the slope of a mountain chain, can enhance the
convection, but it can also favour the stationarity of precipitation systems, supplied
by a moist LLJ, as shown in the Cévennes case of Fig. 1.5 (Ducrocq et al., 2008a).

Several studies (e.g., Bresson et al., 2012, 2009; Corfidi, 2003; Miglietta and
Rotunno, 2009, 2014) demonstrate that orographic effects interact with some afore-
mentioned mesoscale features, resulting in a complex set of feedback mechanisms.
In addition, mountains ranges could participate in the blocking of the cold pool
(Ducrocq et al., 2008a) and can deflect the flow around them (Bresson et al., 2012;
Buzzi and Foschini, 2000).

As already mentioned, the onset of intense precipitation is associated with warm

and humid flows.

The interaction with the Mediterranean Sea

The interaction between the low-level flows and the Mediterranean Sea has an
important impact on the HPEs. The precipitating systems are supplied in energy by
the sensible and latent heat fluxes over the Sea. We present here how this complex
interaction influences the location and the amplitude of the precipitating systems.

An experiment conducted by Buzzi et al. (1998) consisted in removing the surface

heat and moisture fluxes in the 1994 Piedmont flood case simulation. It resulted in
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Figure 1.6: Conceptual schemes for the moisture supply to HPEs with both anti-
cyclonic (on the left) and cyclonic (on the right) conditions prevailing a few days
before the event. The contribution of the different moisture sources is indicated in
percent, in blue. The arrows show the moisture transport. Their colour corresponds
to the vertical extent of the flow. From Duffourg and Ducrocq (2013).

a depletion of 10% of precipitation over the Alps, a suppression of the convection
over the sea and a reduction of 40% of precipitation over the Ligurian Apennines.
The low depletion over the Alps is mainly related to the fact that air parcel that are
subject to orographic uplift are so high that retrieving this effect has a little impact.
Moreover, as suggested by the authors, the surface fluxes from the Mediterranean
play a central role in preconditioning moist and warm conditions at low levels.
Lebeaupin et al. (2006) showed a sensitivity study of three torrential rainfall
events over France to the sea surface temperature (SST) of the Mediterranean. Two
cases are associated with QS MCS and one other case with a slow moving frontal
perturbation. For the QS MCS cases, a higher (lower) SST increases (inhibits)
the convection, resulting in larger (weaker) precipitation amounts. The increased
precipitations are also related to larger values of equivalent potential temperature
over the sea. Larger CAPE values produce a larger horizontal extension of the
convection. Another factor which explains the increase of precipitation is that latent
and sensible heat fluxes, in particular under the low-level jet, are significantly larger

when STT is warm. For the third case, the sensitivity to the SST is less important.

Several studies have shown that the moisture sources involved in HPEs does

not only originate from the Mediterranean Sea, but also from the Atlantic Ocean

12



Chapter 1 Introduction

and from tropical Africa sources (Brossier et al., 2013; Duffourg and Ducrocq, 2011,
2013). The latter study shows that the oceanic contribution can reach 45% for HPE
with cyclonic conditions prevailing before the event. If anticyclonic conditions the
major contribution is provided by the Mediterranean Sea. More specifically, for both
situations, moisture transport from the Atlantic has a larger vertical extension than

in the Mediterranean. More details are given in Fig. 1.6.

1.1.2 Climatology of HPEs in France

In this part details about the spatial distribution and temporal frequency of
HPEs in France are reported. Some case studies about extreme events are also
presented.

For the Southern France, including the Corsica region, Ricard et al. (2011) built
a mesoscale reanalysis database, covering a 5-year period. The objective of their
paper was to study mesoscale features associated with HPEs. They also computed
the frequency of HPEs, defined as daily rainfall which exceeds 150 mm, for the period
1967-2006 based on the whole French rain-gauges network (Fig. 1.7(a)). They show
that HPEs have a great inter annual variability with a maximum of occurrence in
Autumn, from September to December. Figure 1.7(b) shows the spatial distribution
of HPEs over southern France during the same period. The complex orography
favours the creation of convergence zones and the triggering of convection, following
some mechanisms described above. It can be seen that the major events are located
on the southern and eastern sides of the mountain ranges, which face the moist flows
advected from the Mediterranean Sea. Cévennes and Ardeche areas concentrate
most of the HPEs, including some records. Blanchet and Creutin (2017) confirmed
that extreme rainfall events in these specific sub regions are frequent. Rainfall events
over the Alpine area tend to be less extreme, as they rarely exceed 200 mm.

One of the two most extreme episodes in the pre-Alpine region was the Vaison-
La-Romaine event, with a very intense rainfall of 220 mm of rain in 3h. This event
was studied by Sénési et al. (1996), with a 10-km resolution model. They show that
a cold pool dynamics causes the quasi-stationarity of the two precipitation systems.

A case impacting the Gard area (see Fig. 1.7(b)) has been examined by Delrieu
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Figure 1.7: (a) Monthly distribution of HPEs from the period 1967-2006. (b) Lo-
cations of daily precipitation maxima above 150 mm for the HPEs occurring over

southern France during the periods 1967-2006. The two figures are adapted from
Ricard et al. (2011).
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et al. (2005) using radar and rain gauge analyses in conjunction with hydological
data, and a comprehensive sensitive study of the simulation of three torrential rain
events in French Mediterranean has been conducted by Nuissier et al. (2008) and
Ducrocq et al. (2008a).

Among the classical heavy precipitation situations associated with the orographic
interaction, the "Cévenol” events are worth quoting. Although a large part of HPEs
are associated with deep convection, some events are also associated with stratiform

precipitation impinging the Massif Central, also known as Cévenol events.

1.1.3 HPEs and the large scale circulation

The mesoscale features, the convection, as well as the interaction with the orog-
raphy require some specific large scale configurations to be set or maintained. Some
HPE case studies have shown the role played by a trough or a cut-off positioned
west of France (Fresnay et al., 2012; Nuissier et al., 2008; Ricard et al., 2011). This
cyclonic circulation induces a southeasterly flow that reaches the French Mediter-
ranean region. At the surface, a low pressure is often present over Spain and its
anticyclonic counterpart is found over the Eastern or Central Europe. This circula-
tion configuration favours the enhancement of a southerly low-level flow over western
Mediterranean.

These results can be generalized as shown by Beaulant et al. (2011); Nuissier et al.
(2011); Plaut et al. (2001); Plaut and Simonnet (2001), and Vrac and Yiou (2010).
Among the cited articles, Nuissier et al. (2011) performed a classification of four
synoptic types of large scale patterns for heavy rainfall in southern France, using a
k-means clustering method during the period 1960-2001. Two specific circulations,
the Cyclonic southwesterly (CSW) and the Cyclonic southerly (CS) represented
78% of the HPEs. For both these configurations, a large and strong upper-level
low extends southward towards the Western Mediterranean. Figure 1.8 shows the
composite of horizontal wind at 925 hPa for these two circulations associated with
HPEs. For the CWS circulation, an intense low-level jet is present along the Spanish
coast, with a maximum magnitude over the French Mediterranean coast. For the

CS circulation, a southeasterly flow originates from southeastern Tunisia to reach
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Figure 1.8: Composites of horizontal wind (arrows) at 925 hPa for CSW (a) and
CS (b) circulations associated with HPEs. The light and dark shaded areas indicate
regions where the differences between the composite features associated with HPEs
and non-HPEs (not shown) are significant for a Student t-test at confidence levels
90% and 95%, respectively. Adapted from Nuissier et al. (2011).

the northern Mediterranean coast, with maximum magnitude. Peters and Roeb-
ber (2014) confirmed the impact of synoptic-scale on the rainfall forecast error, in
particular in terms of positioning.

In this section we have proposed an overview on the main interactions and mecha-
nisms at different scales which contribute to the onset of heavy precipitations. These
ingredients have a great impact on the predictive skills of HPEs. In the case of ex-
treme events, taking into account all the various scales of the involved processes,
ensemble global forecasting constitutes a proper way to address HPE forecast un-

certainties.

1.2 The ensemble weather forecasting approach

In this section we describe the main key characteristics of an ensemble prediction
system and some issues on heavy precipitation forecasting are outlined.

Weather prediction requires a sufficient accurate description of the initial con-
ditions as well as a sufficient accurate representation of the physical laws of the
atmosphere in order to produce a reliable forecast of the evolution of the atmo-
sphere. Although operational systems are in constant evolution and improvement,

HPEs deterministic quantitative precipitation forecasting is not likely to be solved
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Figure 1.9: Schematic view of the concept of ensemble prediction. Each blue line
corresponds to an individual forecast performed with a slightly different initial con-
dition. The two curves on the left and right-hand sides of the figure represent the
underlying PDF of the atmospheric state. From https://www.ecmwf.int/sites/
default/files/the_ECMWF_Ensemble_prediction_system.pdf

within the next years. One source of error is the uncertainty related to the assimila-
tion of observations in the analysis (Bauer et al., 2015). Since the pioneering works
of Lorenz (1963) and Epstein (1969b) on the chaotic nature of the atmosphere, it is
well known that errors in initial conditions and imperfections in the model formula-
tion limit the skill range of a single deterministic forecast. It then appears essential
to use another approach for weather forecasting, no longer based on a single pre-
diction but on the representation of the PDF (Probability Density Function) of the

atmospheric state, at any time of the forecast.

The first conceptual idea, which led to the foundation of a probabilistic approach
of weather prediction, was proposed by Epstein (1969b). He derived the so-called
stochastic-dynamic equations from the Liouville equation in order to represent the
probability distribution of the state of the atmosphere. This approach is not sustain-
able with the current computing power. Leith (1974) introduced the Monte Carlo
method, which consists in selecting a sufficiently large number of different initial
conditions in order to sample the initial condition uncertainty. He showed that this

approach is a practical approximation of the stochastic—dynamic equations.

The weather services ensemble prediction systems are still based on the Monte
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Carlo approach. Figure 1.9 shows a schematic view of the ensemble forecasting
technique. At the beginning of the forecast, an ensemble of initial states is built. It
aims at sampling the underlying uncertainty of the atmospheric state (represented
by the yellow PDF on the left-hand side of the figure). Each initial state is then
evolved using a weather prediction model. A representation of model uncertainty
should also be included in the forecast. At the final time of the forecast, the ensemble
of states samples the underlying uncertainty of the predicted atmospheric state. The
PDF does not necessarily assume normal values and it can be multi-modal, as in

the example of Fig. 1.9.

1.2.1 The Ensemble Prediction Systems

The first Ensemble Prediction Systems (EPSs) were implemented in the early
1990s at the European Center for Medium Weather Forecast (ECMWF, in 1992;
Molteni et al., 1996) and at the National Centers for Environmental Prediction
(NCEP; Toth and Kalnay, 1993). Today global ensemble predictions are commonly
used in most of the major operational weather prediction centers, including GEFS at
the NCEP (Toth and Kalnay, 1997), EPS at ECMWF (Palmer, 2019), MOGREPS at
the United Kingdom Met Office (UKMO Bowler et al., 2008a), EPS at the Canadian
Meteorological Centre (CMC; Charron et al., 2009). Météo-France has developed
its global short-range ensemble prediction system known as Prévision d’Ensemble
ARPEGE (PEARP; Descamps et al., 2015).

Below the usual techniques for initial and model uncertainties representations

are described.

Representing initial uncertainties

Most of the techniques used in operational ensemble forecasting systems to rep-
resent initial uncertainty are based on two main ideas. One is to span most of
the fastest developing modes in the short-term forecast; the other is based on the
proper representation of the uncertainties of the initial state of the forecast (Mag-
nusson et al., 2008). The so-called Singular Vectors (SVs) approach is of the first

type and it is built on the maximization of perturbations growth rate over a time
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window around the initial time. A specific norm is used to measure the perturba-
tion amplitudes (Buizza and Palmer, 1995; Buizza et al., 1993). The SVs approach
is based on the idea that different directions of the phase space of the system are
characterized by different amplification rates and that at least one part of the initial
uncertainty will project onto the most unstable modes represented by the first SVs.
Restrictions of this approach are linked with the underlying hypothesis of linearity

of the evolution of the initial errors.

Trying to properly represent uncertainties in the initial state of the forecast is
the aim of Ensemble-Data Assimilation approaches (EDA). Building a reliable anal-
ysis from various sources of observations is an optimization problem based on the
discrepancy between a forecast and the observations. In these recent years, this
challenging issue has been processed with ensemble techniques to better estimate
observations co-variance errors terms in the assimilation. EDA can be based on
the so-called variational framework of data assimilation (Desroziers et al., 2014) or
within the Kalman filter framework (Evensen, 2003). In EDA systems that use
perturbed observations, each member of the ensemble assimilates pools of observa-
tions that have been slightly perturbed, using for example their error measurement
variances. Assimilating perturbed observations then produces perturbed analyses
that produce perturbed backgrounds. The cycling process of ensemble data assim-
ilation will then generates and propagates flow-dependent errors that represent the
uncertainties of the atmospheric evolution. Unlike SVs, EDA does not require an

hypotesis of linearity.

Both SVs and EDA approaches to represent initial uncertainties have drawbacks.
Although theoretically appealing, the EDA technique may suffer from a lack of rep-
resentation of all the sources of uncertainties that exists in the data assimilation
process. This could result in a lack of dispersion of the ensemble. It should be men-
tioned that in practice, and to counteract this possible under-dispersion, ECMWF
and Météo-France ensemble prediction systems are based on the use of the two

approaches together.
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Representing model uncertainties

Another source of uncertainties originates from the forecast model itself, which do
not perfectly describe all the atmospheric processes. Sources of model error can arise
from the dynamics (e.g., discretization, time-integration, transport, stabilization,...),
others are related to the physical parametrizations (e.g., convection, clouds and mi-
crophysics, boundary layer,...) and coupled processes (e.g., land-surface, sea-ice,...).
Physical parametrizations are developed in order to represent sub-grid processes.
One approach is to use stochastic perturbations of one scheme inside the model. We
cite random parameter perturbations (Bowler et al., 2008b), the stochastic backscat-
ter scheme (SKEB; Shutts, 2005; Tennant and Beare, 2014) or the stochastically
perturbed parametrization tendencies (SPPT; Buizza et al., 1999; Palmer et al.,
2009; Sanchez et al., 2016). The random parameter perturbations approach “ran-
domly” perturbs some selected parameters of the physical parametrization schemes
implemented in the model. The SPPT does not perturb the parametrization itself,
but the global tendencies provided by the scheme. The SKEB attempts to add a
fraction of the dissipated kinetic energy back into the numerical model to compen-
sate the excessive dissipation due to numerical diffusion and parametrized subgrid
scale processes.

A different approach to take into account the model uncertainties is the multi-
physics approach (Charron et al., 2009; Descamps et al., 2011). It is based on the
use of several physical parametrization schemes. The stochastic methods and the
multiphysics approach are conceptually different (Palmer, 2000). The multiphysics
approach tries to estimate different mean values obtained from the parametrizations
for any given atmospheric conditions. The stochastic approach perturbs a single
mean value in order to increment the variability for the given atmospheric condi-
tions. They are often considered mutually exclusive.

In the multiphysics approach the experimental selection of the physical schemes
is not performed to select the best schemes, but to take into account all the pos-
sible sources of model error. Therefore, the selected parametrization schemes are
commonly different in terms of formulation, or they can differ for some specific pa-

rameters to which the predictive variables are sensitive to. Météo-France ensemble
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prediction system PEARP uses this kind of approach.

1.2.2 Intense precipitation prediction using the ensemble

forecasting approach

The small spatial and temporal scales involved in the rainfall phenomenon can
lead to poorly accurate deterministic forecasts (Cherubini et al., 2002; Fritsch and
Carbone, 2004; Sukovich et al., 2014). Probabilistic forecasting using the ensemble
forecast approach can outperform a deterministic forecast by providing an estima-
tion of the spatial and temporal uncertainties, as well as the most probable rainfall
amount. A set of predicted values is more informative and skillful than a single
prediction generated by a deterministic forecast, because it provides a better esti-
mation of the predictive value of the target variable. Therefore, the predictive skill
can be extended to larger lead times than a deterministic forecast. Moreover, an
ensemble forecast is able to assess the tails of a predictive PDF, a desired property

when addressing to extreme events.

A review about the utilization of EPS for flood forecasting has been produced by
Cloke and Pappenberger (2009). They concluded that the use of the probabilistic
approach brings added value to the ensemble forecasting, but that forecasts skill need
further improvement. Thielen et al. (2009) showed that a medium-range ensemble
forecasts has been able to anticipate a risk of flood in Romania 9 to 11 days ahead.
Schumacher and Davis (2010) examined heavy rainfall predictability over 5-day pe-
riods in the central and eastern United States using the ECMWF global ensemble
forecasting system. In almost all cases, the ensemble provides very skillful 5-day
forecasts. An inter comparison between different ensemble systems with varying
configurations and spatial resolutions was performed by Herman and Schumacher
(2016) for extreme precipitation forecast. They showed that the coarse Global En-
semble Forecast System performed as well as, or better than, the high-resolution

system for extreme precipitation forecast.

The predictive PDF generated by a probabilistic forecast can be exploited to

evaluate the probability of occurrence of a specific rare event over a selected area
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(e.g., on a given model-grid point, a specific location or a selected region). Some
indexes have been defined in order to measure how extreme a given probabilistic
forecast is with respect to the model climatology. This approach requires the pro-
duction of a sufficiently large sample of forecasts, including forecasts performed in
the past, in order to have a proper estimation of the model climate. For example,
the Extreme Forecast Index (EFI; Lalaurette, 2003) and the Shift of Tails (SOT;
Zsétér, 2006) are designed to compare the estimated PDF of the issued forecasts to
the PDF of the model climate.

It is worth mentioning that convection-permitting ensemble prediction system
are developing since a few years (Clark et al., 2016; Hagelin et al., 2017; Hally
et al., 2014; Schwartz et al., 2015; Vié et al., 2012; Vincendon et al., 2011). Frogner
et al. (2019) discusses the scale-dependent predictability of precipitation produced
by a convection-permitting ensemble and the added value of a higher resolution
convection-permitting ensemble prediction systems with regard to a global EPS.
Results showed that for high-precipitation thresholds high resolution ensemble sys-
tems outperform coarser resolution EPS, but only at short lead times. For this rea-
son, convection-permitting ensemble prediction systems are considered as the state-
of-the-art models for the probabilistic forecasting of precipitation at short ranges.
However, at medium-range predictability is still mainly assessed using global EPSs,

which are based on the hydrostatic approximation assumption.

1.3 Verification and post-processing methods

Forecast verification has always been included in the development of models. It
is a necessary step to precisely learn about potential weaknesses that have to be
improved, as well as to provide information as a support for decision-making or
economic value.

The first part of this section is dedicated to the description of two categories
of precipitation verification. The first considers the forecast probability at each
point used for the comparison and the second assesses the spatial accuracy of the

predicted precipitation fields. The second part introduces some traditional post-
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processing methods used to calibrate raw ensemble precipitation forecasts with the

aim of improving predictive skill.

1.3.1 Verification of probabilistic forecasts

Ensemble forecasts are generally used to produce probability distributions, whose
quality depends on its absolute skill and its spread. The skill is related to the accu-
racy of the forecast, that is how the forecast is accurate with regard to observation,
while the spread should represent the uncertainty of the forecast.

Following Murphy and Winkler (1987), the joint distribution of forecasts and
observations provides the basis of a general framework for forecast verification. In
practical settings, both the forecasts and observations are commonly discrete vari-
ables. Following the Murphy and Winkler (1987) framework, the joint distribution

p(y, 0) can be expressed through the calibration-refinement factorization

p(y,0) = ploly)p(y), (1.1)

where p(o|y) is the conditional probability of the observation o, given the forecast y.
p(y) is the marginal distribution of the forecast, which specifies how often a given

forecast is provided. The likelihood-base rate factorization is defined as follows

p(y,0) = p(ylo)p(o), (1.2)

where p(y|o) consists in the probability of the forecast y, given the observation
0. The unconditional distribution p(o) specifies how often a given observation is
issued and is generally referred to as the sample climatological distribution. The
characteristics and the relationships between all these distributions are investigated
in the verification by means of classical tools or scoring rules.

The probabilistic verification (Casati et al., 2008; Murphy, 1990; Murphy and

Winkler, 1992) relies on the evaluation of some attributes of a probabilistic forecast:

e The Reliability measures the statistical coherence between the reference and

the associated forecast. A perfect probabilistic forecast is achieved when
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p(oly) = y, meaning that the average frequency of event occurrence equals

the forecast probability for every probability category.

e The Resolution qualifies the ability of a forecast system to classify different
observations depending on the forecast probability. It consists in the average
of the squared difference between p(o|y) and the sample climatology p(o). A
model that for each probability categories always predicts events that occur

with a frequency equal to the sample climatology shows no resolution.

e The Bias corresponds to the difference between the expected value of the

forecast and the observation. A forecast system is unbiased if E(0) = E(y).

e The Discrimination represents the ability of a probability forecast system to
vary depending on the observation occurrence. This property is related to the
probability of the forecast, conditioned by the observation p(y|o) and to the
probability of the observation p(o).

e The Sharpness is inherent to the variability of the forecast itself, more specif-
ically to the unconditional distribution of the forecast p(y). Forecasts that
frequently deviates from the climatology are sharp. The sharpness is a neces-
sary but not sufficient property for having a perfect forecast, as it has to be

reliable at the same time.

e The Uncertainty is equal to the climatological distribution and it depends only

on the p(o0) probability.

Since the number of forecasts and observations is always finite, it is not possi-
ble to completely explore the space of the joint distribution p(y,0). As a general
practice, forecasts and/or observations are sampled from a population which can be
partitioned into sub populations, depending for example on the geographical area
or the lead-time. This method is the so-called stratification process.

Based on the Murphy and Winkler (1987) framework, different scoring rules
have been developed based on more or less complex combinations of the verification
attributes previously described. Some scoring rules assess the whole forecast distri-

bution with a continuous diagnostic, like the CRPS score (Candille and Talagrand,
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2005). Other scores consider discrete events often defined as the exceeding of a spe-
cific threshold, like the Brier Score (Brier, 1950). In this latter case, the metric tends
to degenerate to perfect values when the frequency of occurrence of the event tends
to zero, making difficult the verification of rare events. The practice of selecting
extreme observations implies a stratification of the observations before the verifica-
tion. However, Lerch et al. (2017) warns about some unwanted effects associated
with this specific approach, raising questions about the problematic defined as the
“Forecaster’s Dilemma”. In fact, the restriction of the evaluation to subsets of the
available observations (the most extreme ones, in this case) may discredit forecasts
(Gneiting and Ranjan, 2011). A forecaster may give less importance to a potential
predicted extreme event, when the verification for these events lead to inconsistent
verification scores. One solution consists in using some specific weighted scoring
rules, which focus on the tail of the distributions. However, research about weighted
scoring rules is still ongoing. For example, Taillardat et al. (2019) showed that a
weighted version of the CRPS for extreme events still generates undesirable effects

on the quality of verification.

1.3.2 Precipitation verification using spatial approaches

It is common in probabilistic verification to estimate the attributes described
above by applying dedicated scoring rules. This can be carried out over a river
catchment (Roulin and Vannitsem, 2011), some grid points (Hamill, 2012) or some
location of the observations (Roulston and Smith, 2003). These approaches, espe-
cially when applied to intense events, are subject to both timing or position errors
leading to low scores (Gilleland, 2012; Mass et al., 2002). This combination of errors
is also known as the double penalty problem (Rossa et al., 2008). Spatially aggre-
gated verification techniques have been developed with the goal to evaluate forecast
skill in a manner similar to a forecaster approach and to overcome the traditional
grid-point to grid-point verification limitations.

Among spatial verification the neighbourhood technique methods (also known
as fuzzy methods) (Ebert, 2009; Mittermaier, 2013; Roberts and Lean, 2008; Skok
and Roberts, 2016; Zepeda-Arce et al., 2000) aim to upscale the constraint related to
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Figure 1.10: Schematic representations of the four categories of spatial verifica-

tion methods: neighbourhood (top-left), scale separation (top-right), feature-based

(bottom-left) and field deformation (bottom-right) methods. From Gilleland et al.
(2009).
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the point-to-point comparison to a larger space-time neighbourhood. This upscaling
procedure results in an effect similar to the processing of a filter. The top-left panel
of Fig. 1.10 gives an example of the neighbourhood approach applied to a rainfall
field, giving a smoothed version of the original one. The spatial averaging filters out
the smallest scales, reducing the time-position errors associated with the point-to-

point verification.

Another spatial verification technique is the scale separation approach (Briggs
and Levine, 1997; Lack et al., 2010; Weniger et al., 2017; Yano and Jakubiak, 2016).
Similarly to the neighbourhood methods, this approach filters the spatial signal by
selecting different scales and isolating the features at each scale of interest. The
top-right panel of Fig. 1.10 shows an example of using the scale separation on a
large-scale storm (red contours). In contrast to the neighbourhood approach, the

scale separation allows to recombine the filtered fields to reproduce the original field.

Neighbourhood and scale separation methods are based on the estimation of
errors at different spatial scales, but they do not consider displacement errors. This
error contribution can be assessed using deformation methods (Gilleland, 2011; Keil
and Craig, 2007, 2009; Venugopal et al., 2005). A forecast field is warped through
the observation field on the basis of the minimization of a selected verification score.
The transformed field is then evaluated, taking into account the displacement error.
A graphical representation of a field deformation application is shown in the bottom-

right panel of Fig. 1.10.

A fourth approach for spatial verification is the feature-based method that takes
into account displacement errors and structure errors at a given scale (AghaKouchak
et al., 2011; Davis et al., 2006, 2009; Ebert and McBride, 2000; Lack et al., 2010;
Mittermaier et al., 2015; Nachamkin, 2009; Wernli et al., 2009, 2008). This spatial
verification method is based on features identification (also called objects) from both
the forecast and the observation fields. The following step consists in verifying (using
a specific diagnostic or summary measure) the features at a given scale, depending
on the process of selection of the feature. The bottom-left panel of Fig. 1.10 shows
an example of identification of three features. It could be noted that the shape of

object 1 results from the presence of two connected local maxima.
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Figure 1.11: Example of feature definition used in the computation of the SAL
quality measure for the observation (a) and two forecasted fields (b) and (c). The
black plus signs denote the center of mass of the precipitation field in the domain.
From Wernli et al. (2009).

Among the feature-based methods it is worth mentioning the Contiguous Rain
Area (CRA; Ebert, 2001, 2008; Ebert and McBride, 2000; Weckwerth et al., 2004).
The CRA considers a region bounded by a specific precipitation threshold. The
displacement is evaluated as the translation of the forecasted feature to the ob-
served feature until a pattern-matching criterion is met. The displacement error is
then decomposed into three error metrics: location, rain volume and pattern errors.
Another well-known verification metric is the Method for Object-based Diagnostic
Evaluation (MODE; Davis et al., 2006, 2009; Gallus, 2010; Mittermaier et al., 2015).
First, a convolution procedure with a smoothing process is applied to the field. Sec-
ondly, a threshold is applied to the convolved field in order to identify the features.
The objects are then merged and matched on the basis of some attributes computed
from the features such as the separation distance and the spatial orientation. A third
method, often used for precipitation spatial verification is the Structure-Amplitude-
Location quality measure (SAL; Leoncini et al., 2013; Wernli et al., 2009; Zacharov
et al., 2013; Zimmer et al., 2008). In this approach, introduced by Wernli et al.
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(2008), features are constituted as areas where a threshold equal to a fraction of the
rainfall amount daily maximum (Wernli et al., 2008), or of the 95" percentile of all
grid-point values (Wernli et al., 2009) is exceeded. Figure 1.11 shows an example of
feature definition using as threshold 1/15" of the 95" percentile. The SAL measure
is condensed into three attributes: amplitude (A), structure (S) and location (L).
The A component is associated with the total field, while the S and L components
are feature-based. An important difference with respect to the other methods is
that SAL approach does not require a one-to-one matching between the observed
and forecasted features. More details about the SAL score will be given in chapter

5.

1.3.3 Post-processing methods for ensemble precipitation

forecasts

Although some skill improvements occurred during the recent years (Haiden
et al., 2015), medium-range ensemble forecasts can still suffer from underdispersion
and bias errors. Post-processing methods are designed to statistically characterize
the errors of a system using past forecasts and use these learning to calibrate the
current ensemble prediction system. This goal can be achieved by building calibrated

predictive distributions.

All calibration methods need to be learned on a training dataset to get robust
estimations of forecast errors. An attractive alternative to forecast archives, which
suffer from system instability, is to use a reforecast dataset, which covers a large
period (Hamill, 2012; Hamill et al., 2013; Hamill and Whitaker, 2006; Hamill et al.,
2004; Scheuerer and Hamill, 2015; Schmeits and Kok, 2010). Reforecasts are fore-
casts produced with a current operational version of the model, but integrated for
a past period. These large-sized and computationally expensive forecasts are often
produced for research applications, notably to verify model skill or to test calibration
methods. Reforecasts can also be used to have a proper estimation of the model
climate for the computation of some extreme indices as EFI or SOT, mentioned in

section 1.2.2.
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Before the application of some probabilistic calibration methods it is common
practice to first attempt to reduce the ensemble bias. It can be done by adding a
constant correction to each ensemble member of the raw forecast. Another alter-
native is to make use of the Quantile Mapping technique (QM; Hamill et al., 2017;
Hamill and Scheuerer, 2018; Hopson and Webster, 2010a; Maraun, 2013; Voisin
et al., 2010). This method computes differences between Cumulative Distribution
Functions (CDFs) drawn from observations and forecasts to correct each ensemble
member forecast. This procedure is considered as a deterministic calibration method

because it is separately applied to each member of the ensemble.

Probabilistic calibration of precipitation forecast can be particularly challenging
(e.g. in comparison to temperature) because of some specific attributes of the prob-
ability distribution of this variable. Precipitation statistical distributions cannot be
approximated by Gaussian laws and gather some peculiar properties: 1) it is non-
negative, 2) the null probability has to be prescribed separately from the rest of the
distribution, and 3) forecast uncertainty typically increases with the magnitude of

precipitation amounts, making the distribution right tailed.

A comprehensive review of the state-of-the-art of statistical postprocessing of
ensemble forecasts is beyond the scope of this study. Some of the most frequently
used univariate post-processing methods for precipitation are described hereafter:
Bayesian Model Averaging (BMA; Raftery et al., 2005), Ensemble Dressing (ED;
Roulston and Smith, 2002), Nonhomonegeous Gaussian Regression (NGR; Gneiting
et al., 2005), Logistic Regression (LR; Hamill et al., 2004) and Analogue Method
(AM; Hamill and Whitaker, 2006).

The BMA method models a probability distribution, also called kernel, con-
structed around each of the debiased values of the raw members. The calibrated
distribution then is a weighted sum of these kernels. The estimation of the weights
is achieved through a maximum likelihood technique (Raftery et al., 2005) on the
training dataset. Kernels can be the same or they can be differently selected for each
members. In this case the parameters estimation technique is performed to compute
the standard deviation of each kernel, in addition to the weights. If members are

exchangeable, weights and kernels are constrained to be equal from a member to
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Figure 1.12: Example of BMA-fitted distribution. The thick vertical line at zero
represents the BMA estimate of the probability of no precipitation and the upped
solid curve represents the probability distribution for nonzero amounts, resulting in a
contribution of the gamma distribution (lower curves) dressed around each member
(dots). The dashed vertical line represents the goy quantile upper bound of the BMA
PDF; the dashed horizontal line is the respective prediction interval. From Sloughter
et al. (2007).

another (Wilson et al., 2007). Original formulation of BMA considered kernels nor-
mally distributed. To take into account the non-Gaussianity of precipitation BMA is
adapted by applying specific distribution laws to the kernels. Sloughter et al. (2007)
and Schmeits and Kok (2010) use a gamma distribution for nonzero precipitation
and the probability of non-precipitation is estimated through a logistic regression
technique. Figure 1.12 shows an example of BMA predictive distributions for 24-h
accumulated precipitation. It is interesting to observe that raw members range be-
tween zero and 15 mm, while the right tail of the calibrated distribution extends
towards larger values. A calibrated forecast can provide a continuous probability

distribution, more informative about the right tail of the precipitation probability.

Ensemble dressing method (Roulston and Smith, 2003; Wang and Bishop, 2005)
is a kernel density smoothing technique (Wilks, 2009b), closely linked to the BMA
method. In this approach, the kernels constructed around each members are the
same as well as the weight used to compute the calibrated probability function.

Therefore, the calibrated distribution reduces to an average of kernels. The standard
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Figure 1.13: Predictive distributions of precipitation forecasts using censored non-
homogeneous regression. The short vertical lines below the densities represent the
ensemble member forecasts. From Scheuerer (2014).

deviation assigned to the kernels can be estimated following different procedures,
for example the “best” member dressing (Roulston and Smith, 2003), or the second-
moment constraint dressing (Wang and Bishop, 2005; Wilks, 2006). In the "best”
member dressing, the best member is defined as one with the lowest distance to
the observations. Then, the standard deviation of the kernels is modelled using the
RMSE between the observation and this best member in the training dataset. In
the second-moment constraint dressing, the standard deviation of kernels is modeled
from the training dataset using a combination of the RMSE computed between the
ensemble mean and the observations together with the average of the ensemble
variances. One limitation of the ensemble dressing, compared to the BMA, is that
it is only suitable for underdispersive forecasts, because the sum of the kernels is
only able to reduce the ensemble spread. Conversely, in BMA, the parametrization
of the weights and the standard deviations associated to each different kernel allows
to correct both an overdispersed and an underdispersed raw forecast.

The Nonhomonegeous Gaussian Regression (NGR) is a regression-based method
(Gneiting et al., 2005; Jewson, 2003). The calibrated distribution of precipitation
corresponds to a Gaussian probability function whose mean is defined as an opti-
mized linear combination of the ensemble members or some corresponding statistics,
which provide for one or several predictors. The standard deviation of the calibrated
distribution is modeled using a linearly corrected value of the ensemble spread of the
raw ensemble. The parameters used to model the mean and standard deviation of
the calibrated distribution are estimated by minimization of a given score (CRPS or
ignorance score) in the training dataset. Some specific nonhomogeneous regression

methods have been developed to address the specific features of the distribution
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Figure 1.14: Predictive cumulative distributions from XLR method application.
Each curve is evaluated at selected values of the ensemble precipitation mean pre-
dictor. From Wilks (2009a).

of precipitation, notably that strictly non-negative precipitation commonly exhibits
large discontinuities in its probability density at zero. A truncated distribution can
be used to describe the non-zero probability of precipitation (Hemri et al., 2014).
Another further regression largely used for the post-processing of the precipitation
forecast is the censored regression (Baran and Nemoda, 2016; Gebetsberger et al.,
2017; Scheuerer, 2014; Scheuerer and Hamill, 2015; Stauffer et al., 2017). In cen-
soring, unlike truncation, it is possible to model the non-precipitation probability
by assigning to exactly zero any probability corresponding to negative precipitation
values. Figure 1.13 shows some examples of the use of left-censored Generalized
Extreme Value (GEV) distributions as calibrated distribution laws. The horizontal
bar shows the probability of zero precipitation.

Another well-known regression-based post-processing method is the logistic re-
gression (Applequist et al., 2002; Hamill et al., 2008, 2004; Lemcke and Kruizinga,
1988; Sohn et al., 2005; Sokol, 2003; Vislocky and Young, 1989; Wilks, 2006; Wilks
and Hamill, 2007). It is a regression model from the generalized linear model frame-
work to model the conditional probability of binary events. The binary event is
defined as the exceeding of a specific precipitation threshold and regression coeffi-

cients are estimated using the maximum likelihood approach. The drawback of this
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Figure 1.15: Illustration of the analog technique for precipitation forecast. From
the top: first row represents the forecast to be calibrated (ensemble mean), the sec-
ond row represents the "closest” archived forecasts, the third row the corresponding
observations, the fourth row the predicted probability of threshold exceed, and the

fifth row the verifying observation. From Hamill and Whitaker (2006).
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procedure is that different regression coefficients have to be estimated for each given
probability. Wilks (2009a) proposed an extension of the logistic regression method
(called extended logistic regression, thereafter XLR) by including (a transformation
of) the precipitation thresholds as an additional predictor variable. Figure 1.14 gives
an example of the predictive cumulative distribution functions obtained from differ-
ent predictor values using the XLR procedure. Roulin and Vannitsem (2011) and
Hamill (2012) showed examples of applications of XLR to precipitation. Messner
et al. (2014, 2013) proposed heteroschedastic formulations of the logistic regression
for which the ensemble spread is directly used as a predictor for the dispersion of the
predictive distribution. Ben Bouallegue (2012) defined a slightly modified version of
XLR, introducing the interaction terms in the linear function of predictors.
Methods presented so far are generally carried out individually to each grid-point
of the forecast. A calibration approach that attempts to calibrate the spatial pre-
cipitation fields is the analog method (Hamill and Whitaker, 2006). This technique
is based on the similarity between the forecast and past historical forecast. The
first step consists in taking the ensemble mean or another predictor and find the
most similar past forecasts in the training dataset. The corresponding observations
are then used to make a bias adjustment and to build well-calibrated probabilistic
predictions. This process is illustrated in Fig. 1.15. Voisin et al. (2010) proposed
an alternative, defined as the analog rank method for which members are matched
individually on the basis of the ranks of forecast values in the forecast climatology.

This approach presents some similarities with the QM method.

Some studies focused on the intercomparison between some of the aforemen-
tioned post-processing techniques for the precipitation variable. Schmeits and Kok
(2010) compared XLR method and "modified” BMA version using a 20-yr ECMWF
ensemble reforecast dataset over the Netherlands. The modified BMA version used
an additive bias correction instead of an individual bias correction for each member
and used a logistic regression technique to estimate the probability of precipitation
for each dressing kernel. It was found that, for 24-hour area-mean and 24-hour area-
maximum precipitation, both methods have the same performance. Ruiz and Saulo

(2012) tested several calibration methods, including BMA and XLR techniques for
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a 2-year period over South America. They showed that using the spread of the raw
ensemble as an additional predictor of the ensemble mean does not improve the skill
of the calibrated forecasts. It might be due to the strong correlation between the
mean precipitation and the related prediction errors, so that the second predictor
does not introduce additional information. Incidentally, BMA and XLR significantly
improve the raw forecasts, in particular for large precipitation thresholds. No ad-
ditional value was found using the XLR with interaction terms. Scheuerer (2014)
implemented a NGR which makes use of a zero-censored GEV distribution model,
using a 1-year forecast dataset of 6-hour accumulated precipitation over Germany.
The method was compared to XLR and BMA (Sloughter et al., 2007) techniques.
XLR yields a skill score similar to that of NGR method, while BMA improvement
is less important. More specifically, the authors showed that the improvement of

NGR over XLR was not significant.

1.4 Main questions addressed and objectives

Several studies have investigated the predictability of intense rainfall events (Col-
lier, 2007; Walser et al., 2004; Walser and Schér, 2004). They show that the chaotic
aspects of the moist dynamics of the small-scale phenomena involved in these events
limit their predictability. The use of ensemble forecasting to assess the skill of fore-
casts and their associated uncertainty thereof represents an alternative approach.
The underline theme of this study is the investigation of predictability of intense
precipitation events over the Southeastern France by means of probabilistic tools.

One objective of this study is to investigate the predictive skill of probabilis-
tic quantitative precipitation forecast for hydrostatic model, especially emphasizing
large precipitation amounts. This task requires the availability of a large dataset that
includes a significant number of HPEs. A 30-year ensemble reforecast is available
with a 10-member global hydrostatic model inspired from the Météo-France op-
erational ensemble forecasting system PEARP (Prévision d’Ensemble ARPEGE).
Therefore, the main idea of the study is to use the reforecast dataset to explore

the predictability of high precipitation events and to evaluate the link between the
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forecast skill and the parametrizations used in the model. A gridded precipitation
dataset has also been constructed from Météo-France rain-gauges network in order
to dispose of an observation reference, at the same resolution of the model and over
the same period.

The second main hypothesis of this thesis is to investigate the behaviour of
standard post-processing methods for intense precipitation. In section 1.3.3, some
univariate post-processing methods for precipitation have been presented. A large
part of the presented studies have focused on the improvement provided by the
calibration for low to moderate thresholds of rainfall amount, often lower than 20
mm. In the current study, we take advantage of a large reforecast dataset to test
to which very high thresholds a post-processing method can result in a forecast
improvement. The debiasing technique of Quantile Mapping is first tested, then XLR
method is used. Tests with both methods are performed considering the reforecast
as a model. Following Roulin and Vannitsem (2011), the XLR method is performed
onto the operational system PEARP to assess whether the reforecast dataset can be
useful to calibration for an operational scope.

The third issue raised in this study is to analyse the impact of physical parametriza-
tions on the precipitation forecast. Multiphysics is designed to represent different
physical properties of the model, with the objective of sampling its associated fore-
cast uncertainty (see section 1.2.1). We aim to quantify the differences between
the forecasts performed with different physical parametrizations, using a feature-
based approach (see 1.3.2). A systematic analysis of the rainfall objects produced
by each physical package is performed, and forecast precipitation is verified across
the 30-year period using SAL quality-measure. The verification is carried out on the
intense precipitation events of the dataset and targeted sub-regions, defined trough

a clustering method applied to the observation reference dataset.
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The reforecast dataset used in this study has been built from the set-up of the
short-range ensemble prediction system PEARP (Descamps et al., 2015). The EPS
version corresponds to its 4" version, PEARP4, which operationally produced en-
semble forecasts during the 2015-2017 period. A description of the set-up of the
PEARP4 system is presented in this chapter, followed by a description of the pro-
cedure for the production of the reforecast dataset.

The last section of this chapter is devoted to the description of the method
implemented for building the 24-hour precipitation reference dataset. Rainfall data
collected from a large rain-gauge network are processed into a gridded rainfall field

with the same resolution of the reforecast and covering the same period of time.

2.1 Domain of interest

All the analysis performed in this study are carried out over the French Mediter-
ranean region (Fig. 2.1(a)). This area encompasses the Southeastern France. It
is bounded by the Pyrénées, Massif Central, and Alps mountain chains and by the
Mediterranean Sea. This particular graphical configuration, makes this region prone
to HPEs, as already described in section 1.1.2.

Some geographic features that will be used in the discussion are labelled in Fig.
2.1(c). The red ellipses refer to the mountain chains, while the Languedoc-Roussillon

region (blue borders) is indicated with regard to further commented results.

2.2 PEARP ensemble prediction system

The set-up summary given hereafter refers to PEARP4, which operated during
a 2-year period between 2015 and 2017. PEARP is a short-range global ensemble
prediction system, producing operational forecasts up to 4.5 days. It is based on the
global deterministic model ARPEGE (Action de Recherche Petite Echelle Grande
Echelle; Courtier et al., 1991) with a horizontal spectral truncation of T798 and a
mapping factor of 2.4, with a stretching pole centered over France. The horizontal

ensemble model resolution is variable and reaches a maximum of 10 km over France.

40



Chapter 2 Model set-up and observations

nnnnn

AAAAA

ooooo

Figure 2.1: a) Situation map showing the investigated area with respect to Western
Europe and the Mediterranean Sea. b) Domain of concern of the study. The model
grid is represented in blue. ¢) Location of major geographic features.
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Figure 2.2: Location of the targeting areas used for the singular vectors. Contour
intervals show the horizontal resolution in km of the PEARP4 system. Adapted
from Descamps et al. (2015).

Even though the model is hydrostatic, this horizontal resolution could be related to
the scale of meso-scale systems. There are 90 vertical levels from the ground to 50 km
height. The ensemble size is set to 35 members, including a control “unperturbed”
member, corresponding to a lower resolution version of the deterministic operational
ARPEGE forecast (T1198). The remaining 34 perturbed members are centered

around the control one at the initial step.

2.2.1 Initial condition perturbation

The initial condition perturbations of PEARP4 are built from a combination of
Météo-France ensemble data assimilation system members (AEARP; Berre et al.,
2007) and singular vectors. The ensemble data assimilation system is based on
the 4D-Var approach and model error is accounted for through the introduction of
the inflation method (Raynaud et al., 2012). 25 perturbed members are produced
with a T399 spectral truncation. 17 members among the 25 perturbed members are
randomly sampled and selected in the ensemble prediction system framework. They
are interpolated to the PEARP resolution and then linearly combined with singular

vectors by adding alternatively a positive and negative contribution with the same
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a  Optimization time (h) Norm n(a) Activation period
1 18 TE 16 Always

2 24 TE 10 Always

3 24 TE 10 Always

4 18 KE 7 1 Nov-31 May
5 18 KE 7 1 June-31 Oct
6 18 KE 7 16 Apr—15 Dec
7 18 KE 7 16 Dec—15 Apr
8 18 KE 7 1 June-30 Nov
9 18 KE 7 1 Dec-31 May
10 18 KE 7 Always

Table 2.1: Targeting areas used for singular vector computation.
Locations of areas are shown in Fig. 2.2. n(a) refers to the
number of SVs computed on the area a.

magnitude.

Singular vectors (SVs) are computed over 10 different areas, shown in Fig. 2.2.
They are computed using Total Energy Norm (TE) or Kinetic Energy Norm (KE),
depending on the target area (see Table 2.1). TE is usually employed for extratrop-
ical SVs (Palmer et al., 1998), while KE is implemented in tropical SVs during the
hurricane season (Barkmeijer et al., 2001). The optimization time is also dependent

on the area.

We as note e((ty) the deterministic analysis interpolated to the ensemble forecast

resolution. The ensemble perturbations e (ty) are computed as follows

el+(t0) = eg(to) + Q(Sel(to)

e_(to) = eo(ty) — Qde(to).

(2.1)

The index [ ranges between 1 and 17. State perturbations at time ¢, are denoted
by de;. The perturbations are computed in a reduced phase space. The operator
Q projects the perturbations from the reduced phase space into a full model phase
space by adding the extra state variables, that are typically microphysics and tur-
bulence variables, related to the physical parametrizations. The projection sets the
corresponding perturbation fields to zero. The 34 analysis fields are obtained from

the combination of the deterministic analysis state with a positive and a negative
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contributions from the 17 state perturbations. The control run is added as a 35
member. A given state perturbation results in a linear combination of one of the
17 assimilation ensemble perturbations sampled from AEARP and the SVs. The

weighting coefficients of the SV are drawn from a Gaussian distribution.

2.2.2 Model error

In PEARP, the model error is represented by a multiphysics approach (the reader
is referred to 1.2.1 to have some insight about this approach). Table 2.2 lists all the
components of the ten different physical packages. All these packages are repeatedly
assigned three times to randomly selected members of the ensemble. Five random
physical parametrization packages are finally assigned to the four unassigned re-
maining members. Member 0 refers to the control member which uses the ARPEGE
deterministic physical package.

Two turbulent diffusion schemes are considered: the Turbulent Kinetic Energy
scheme (TKE; Bazile et al., 2012; Cuxart et al., 2000) and the Louis scheme (L79;
Louis, 1979). TKE,q is a slightly modified version of TKE, in which horizontal
advection is ignored. For shallow convection different schemes are used: a mass
flux scheme introduced by Kain and Fritsch (1993) and modified by Bechtold et al.
(2001), thereafter the KFB approach, the Prognostic Condensates Microphysics and
Transport scheme (PCMT; Piriou et al., 2007)), the Eddy-Diffusivity /Kain-Fritsch
scheme (EDKF; Kain and Fritsch, 1993) and the PMMC scheme (Pergaud et al.,
2009).

The deep convection component is parametrized by either the PCMT scheme or
the Bougeault (1985) scheme (thereafter B85). The closing constraint of the equation
systems used in these two schemes is based on a relationship between the bulk mass
flux and the in-cloud vertical velocity with respect to the area covered by convection
. Two closures relations are considered, the first one (C1) based on the convergence
of humidity and the second one (C2) based on the CAPE (Convective Available
Potential Energy). B85 scheme originally uses the C1 closure, while PCMT uses
alternatively the closure (C1 or C2) which maximizes the v parameter. In practice

PCMT scheme uses most of the time the CAPE closure. The closure based on
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Turbulence Shallow convection Deep convection Oceanic flux

00 TKE KFB B85 ECUME
01 TKE KFB B85 ECUME,0q
02 L79 KFB B85m4 ECUME
03 L79 KFB CAPE ECUME
04  TKEned KFB B85 ECUME
05 TKE EDKF B85 ECUME
06 TKE PMMC PCMT ECUME
07 TKE KFB PCMT ECUME
08 TKE PCMT PCMT ECUME
09 TKE KFB B85 ECUME

Table 2.2: Physical parametrizations used in the ensemble reforecast.

the convergence of humidity is related to the moisture-based closure proposed by
Kuo (Kuo, 1974), whereby the whole available humidity is directly distributed as
precipitation or humidification of the environment. PCMT also differs from B85 as
it includes a prognostic equation for the vertical velocity that allows to take into
account the overshooting (air parcels in the updraft can rise beyond the level of
neutral buoyancy.) In physics package 2, deep convection parametrization uses a
modified version of the B85 scheme in which deep convection is triggered only if
cloud top exceeds 3000 m (B85,,,q in Table 2.2). The same trigger is used in physics
package 3 in which deep convection is parametrized using the B85 scheme along with
a CAPE closure (CAPE in Table 2.2).

The oceanic flux is solved by means of the ECUME scheme (Belamari, 2005).
In ECUME,,,q oceanic fluxes are maximized. Control member and member 9 are
characterized by the same parametrization set-up, but member 9 differs for the

modelization of orographic waves.

2.2.3 PEARP forecast dataset

In this study, a 4-month forecast dataset generated during 2016 by PEARP4 is
used. Forecasts are computed every day at 1800 UTC, over a period from the 1
September 2016 to the 31 December 2016. The number of days during this period
is 122.

24-hour accumulated precipitation is extracted from the forecast over the domain
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Spectral No. of  No. of EDA  SVs Model to(tfeast) ()
Truncation  levels members Error
PEARDP-2016  T798 (2.4) 90 35 ABARP yes multiphysics 1800 UTC(108)
every day
Reforecast T798 (2.4) 90 10 no no multiphysics 1800 UTC(108)
every 4-day

Table 2.3: Summary of the main characteristics associated with the production of
PEARP-2016 and the ensemble reforecast.

of interest on a 0.1° x 0.1° grid. The model grid overlapped to the domain of interest
is shown in Fig. 2.1(b). All values below 0.1 mm are set to zero because rain-

gauges minimum collected value corresponds to that value. This forecast dataset is

thereafter PEARP-2016.

2.3 Ensemble reforecast dataset

As hinted in section 1.3.3, a reforecast dataset can represent an opportunity to
assess a great part of the quality range of an operational EPS and potentially test
some post-processing methods.

In the current study, a reforecast based on PEARP4 is exploited. Reforecast
horizontal and vertical resolutions are the same as PEARP4. Perturbation of the
initial conditions has not been taken into account, because this task would be too
computational and technically demanding at that time. The reforecast implements
the same physical packages (see Table 2.2) as PEARP-2016. Lead time range is
also the same, up to 108-hour. PEARP-2016 is available every day at 1800 UTC,
while the reforecast has been generated every 4 days. The reforecast covers 4-month
periods (from September to December), as PEARP-2016, but the period extends
over 30 years, from 1981 to 2010. The dataset consists of ~ 900 days of forecasts per
lead time. Table 2.3 summarizes some experimental similarities and discrepancies
between the reforecast and PEARP-2016.

The initialization strategy adopted for the production of the reforecast deserves
to be looked more in detail. This operation follows the hybrid approach described
in Boisserie et al. (2016). The atmospheric state variables at the initial step are

extracted from ERA-Interim reanalysis (Dee et al., 2011), available at the ECMWFE.
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Second, the land-surface initialization parameters are interpolated from an offline
simulation of the land-surface SURFEX model (Masson et al., 2013) driven by the
3-hourly atmospheric fields from ERA-Interim. As verified by (Boisserie et al.,
2016), this procedure produces a reforecast having more skill compared to the one
which is initialized with ERA-Interim land-surface fields, specially in terms of 2-m
temperature and humidity budgets.

As for the production of PEARP-2016, 24-hour accumulated precipitation fore-
casts are extracted from the reforecast on a 0.1° x 0.1° grid over the domain of

interest. All values below 0.1 mm are set to zero.

2.4 Rainfall observation reference dataset

24-hour accumulated precipitation is derived from the in-situ Météo-France rain-
gauges network, covering the same period as the reforecast dataset. Rainfall is col-
lected from fourteen French departments over the domain shown in Fig. 2.1(b). The
observation network passes a validation test which excludes bad quality measures.

The French Mediterranean region has been quite intensively observed, with about
700 rain gauge stations over the 1960-2010 period (Fig. 2.3). A moderate number
of stations have been closed or opened during this period, resulting in a variable
number of observations over time. Then, in order to maximize the quality of the
rainfall analysis over the region, all rain-gauges available each day are included.

Figure 2.4 shows the whole rain-gauge network opened and closed during the
reforecast period (1980-2010). We can observe that the mountain chains are par-
ticularly densely covered. Observational uncertainty can be certainly found among
rain-gauges data. However, since it is extremely difficult to have a proper estimate
of the uncertainty (depending on the location, instrument and accumulated precipi-
tation), this information has been not taken into account for the construction of the
observational reference.

In this study, in order to properly estimate the model at its resolution, we aim
at providing the observation on the same grid. We intend to spatialize all available

rainfall information as a gridded field. The spatialized dataset has to be constructed
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Figure 2.3: Number of available Météo-France rain-gauges per year from 1960 to
2010.
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Figure 2.4: Rain-gauges network used for the study. Red diamonds represent the
rain-gauges selected for cross-validation testing, the red diamond size is proportional
to the RMSE computed over the whole period for each observation test using the
daily best configuration. Blue dots represent the rain-gauges selected for cross-
validation training.
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by means of spatial interpolation techniques. For the interpolation, we use Ordinary
Kriging (OK; Goovaerts and Goovaerts, 1997; Goudenhoofdt and Delobbe, 2009; Ly
et al., 2011, 2013) and Inverse Distance Weighting methods (IDW; Chen and Liu,
2012; Shepard, 1968; Teegavarapu and Chandramouli, 2005). Kriging methods can
be considered as a modeling method for which additional predictors can be included.
The elevation would be a suitable predictor used to tackle the interpolation. The
correlation between elevation and daily precipitation accumulation resulted in low
values. Then, only ordinary kriging method was taken into account, using rainfall

as unique predictor.

2.4.1 Ordinary Kriging

Ordinary kriging (OK) is a geostatistical interpolation method based on the use
of a semivariogram, which describes the variability of the spatial fields. Semivariance
is a measure of the degree of spatial dependence between values of the variable Z at

two different locations separated by the distance h:

1
v(h) =5 N(b)

N(h)
Z_:l [Z(ua +h) = Z(u,)], (2.2)

where N (h) denotes the number of point pairs distanced by the lag h. The vector h

here reduces to a scalar, since we consider spatial isotropy over the spatial domain.

A graphical example is given in Fig. 2.5. The empirical semivariogram is computed

for different values of h. Then, these points, corresponding to the semivariance at

fixed distances h, are fitted using a given theoretical model to obtain a continuous

semivariogram function (see Fig. 2.5(b)) that is used for the interpolation procedure.
The estimation of Z at a point u is given by the linear equation:

n(u)
Z(u) = Zl Aa(0)Z (1) (2.3)

where u,, are the neighbouring data points used in the interpolation and n(u) is
their corresponding total number. The weights )\, are estimated by solving a linear

equation system which requires the spatial covariance values from the semivariogram
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Figure 2.5: (a) Graphical illustration of a semivariogram. The sill denotes the
semivariance value at which the variogram levels off. The range is the lag distance h
at which the semivariogram reaches the sill value. The autocorrelation is supposed
to be zero beyond this range. The nugget represents the variability at distances
smaller than the typical sample spacing. (b) Variogram of estimation points with
an exponential function.

function.

The estimation of the weights used for the interpolation depends on the mod-
elization of the semivariogram. In this study semivariograms are modeled using
three different theoretical models: Exponential, Spherical, and Gaussian, whose ex-

pression are given below

— The Exponential semivariogram model

0, for h =0,
v(h) = (2.4)
00+01{1—exp(—h)}, for h # 0.

ag

— The Spherical semivariogram model

0, for h =0,
3
1 ={a+a |3t -L(E)], foro<ns<a, (25)
co + ¢, for h > ag.
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— The Gaussian semivariogram model

0, for h = 0,
v(h) = ] (2.6)
co+ ¢ [l—exp (—%)} , for h #0,

a

where cg is the nugget, ¢; the sill and ay the range parameters. For each day, a
sample semivariogram is computed from the full rain-gauge network and it is fitted
to the three theoretical semivariogram models. The fit is minimized by a weighted
least squares method, in order to estimate the parameters ¢y, ¢;, and ag of the
function ~(h).

Since precipitation is known to follow a non-Gaussian distribution, it is a com-
mon practice for kriging operations to first transform the target variable, to ensure
that the transformed distribution has statistical properties closer to a Gaussian law
(Erdin et al., 2012). In this study, we test ordinary kriging both with the raw

precipitation variable and with the square root transformation.

2.4.2 Inverse Distance Weighting

In a few number of cases, kriging can lead to unrealistic solutions. Then, we also
apply a parallel interpolation method known as Inverse Distance Weighting (IDW).
The interpolation weights (see eq. 2.7) depends on the inverse distance between the
estimation point and the neighbouring data points. In contrast to kriging methods,
IDW does not take into account the spatial covariance of the variable over the
domain. This method assumes that the highest weight is attributed to the closest
points. The weight is defined as follow

Aa(u) = —% g5, (2.7)

where r, is the distance between the estimation point and one neighboring data
point, corresponding to |u — u,| in the projected space. The parameter d control
the distance-decay effect. A large d value gives larger weights to closer neighbouring

points. Several studies propose d = 2 (Goovaerts, 2000; Ly et al., 2011), or d = 3
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(Burrough et al., 2015; Lu and Wong, 2008). The sensitivity to varying number of
neighbouring points n(u) can also be addressed.
Next paragraph presents the implementation of the interpolation algorithm,

based on both Ordinary Kriging and Inverse Distance Weighting methods.

2.4.3 Interpolation algorithm implementation

In order to evaluate the best interpolation method for each day of the considered
period cross-validation is performed. The procedure consists in retrieving a selected
number of observations from the sample before running the interpolation method
on the remaining observation points. We selected 55 observation points among the
full dataset. These rain-gauges are selected in order to have a regular coverage over
the domain (see Fig. 2.4), especially over the mountainous area. The interpolator
estimators are then computed at each location of the 55 chosen test points.

The algorithm selects the best interpolation method in terms of error at the test
points. The flowchart illustrating the procedure is presented in Fig. 2.6. Ordinary
Kriging is performed over the 55 test observation points using the three different
semivariogram models estimated from raw precipitation data (thereafter named as
configuration 1.R, 2.R, and 3.R), and from the root square transformed precipita-
tions (thereafter named as configuration 1.T, 2.T, and 3.T). The total number of
Ordinary Kriging configurations is 6. At the same time, IDW is performed using
four different configurations with various d values (2,3) and numbers of neighbouring
points n(u) (5,10, or all the points of the domain).

For a given day j from the 30-year dataset, the different outputs generated using
the seven configurations are compared according to the Root Mean Squared Error

(RMSE) test statistics applied to the 55 test points

4 JREAAN
RMSE[j] = \J N ; {Z(u;j) — Z(u;j)} (2.8)
where N* = 55, Z (uf;) is the predicted value at the i"" test locations u*, and

Z(uf;) is the corresponding observed value. Then for each day, the configuration

which provides the lowest RMSE value is retained. Afterwards, the interpolation
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Ordinary kriging (ﬁ Inverse distance weighting
Input data
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RMSE_min=min(RMSE))
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Perform ordinary kriging
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if Z(u)<0then Z(u)=0
Y Y
[ output Z(u) ] [ output Z(u) ]

Figure 2.6: Flowchart of the interpolation algorithm developed for the production
of the reference dataset.
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is applied over the entire domain using this configuration. Since kriging equations
do not prevent negative values of the weights ), the estimated rainfall value might
reach negative values. In these cases, values are automatically set to zero. For some
dates, no precipitation can be observed from the test rain-gauges, while at least one
of the training rain-gauges is stricly positive. For these cases, cross-validation is not
feasible and IDW is applied. The use of IDW is preferred to kriging for these specific
dates, because kriging can be unstable in certain particular conditions, leading to

aberrant values.

Figure 2.7 shows some statistics about which configuration is used for the daily
interpolation. Fig. 2.7(a) shows the use histogram of each configuration across
the 30-year dataset. The overall use of each interpolation method is 47% for OK
and 53% for IDW. Exponential model fit (1.T and 1.R) is the most frequently used
among the kriging configurations. The highest occurrence is associated with the
configuration 6, implementing IDW, with d = 2 and n = 5. This shows that in
our case IDW interpolation performs better using a reduced number of the closest

neighbourhood points.

Figure 2.7(b) presents boxplots of the RMSE computed for the 55 test points over
the whole period for each configuration. RMSE statistics between configurations is
quite similar, but the largest errors are often associated with the Gaussian model
fit semivariogram in conjunction with the square root transformation (configuration
3.R). For any configuration, upper quartile of the boxplot is always lower than 5

min.

The quality of the estimated values obtained by means of the algorithm is as-
sessed by computing the residuals on the test observation points. These set of 55 test
points are used to individually compute the RMSE over the 30-year period, using
for each day the best selected configuration. Figure 2.4 shows the obtained RMSE
statistics for each test point, whose amplitude is proportional to the red diamond
size. It is worth noting that the RMSE ranges between 2 mm and 8 mm. The largest
RMSE values are found along the Cévennes and Ardeches mountain chains. Lower
errors are present over the Pyrénees and the Alps. The magnitude of the RMSE

tends to be higher in the areas prone to intense rainfall (reference to Fig. 1.7(b)).
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Figure 2.7: a) Occurrence of each configuration in the choice for the final interpo-
lation. b) Boxplot of daily RMSE (see eq. 2.8) for each configuration. Outliers are
determined for a given value larger than @3 + 1.5 x IQ R, where ()3 is the upper
quartile and QR the interquartile range.
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Figure 2.8: Symbolic illustration of the upscaling process.

2.4.4 Final set-up for the production of the gridded precip-

itation data

As described above, interpolation is performed for a specific day using the best
interpolation configuration. We first applied the interpolation over a 0.05° resolution
grid. Then the interpolated field is upscaled on the same grid as the model one (0.1°).
This is done by performing a spatial average over the 4 grid cells surrounding the
interpolated grid-point. A graphical representation of the process is given in Fig. 2.8.
This up-scaling procedure is an attempt to reproduce the filtering effect produced
by the parametrizations of the physical processes in the model that applies below
the grid resolution. Finally, as performed on the forecasts, each value below 0.1 is
set to zero. This final product defines the observation reference dataset.

One example of the interpolated rainfall field is given in Fig. 2.9. The left panel
represents the interpolated rainfalls field at the 0.05° resolution, while the right
panel shows the same field after the upscaling process. It can be noted that the

precipitation maximum is partially smoothed after transformation.
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=}

Figure 2.9: Left: Example of 0.05° resolution precipitation field (mm) estimated by
interpolation for the 13 November 1986. Right: The same field after the upscaling
process.
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Chapter 3 Ensemble reforecast verification

The duration and experimental set-up of the reforecast may ensure to find sub-
stantial information for understanding the PEARP behaviour on HPEs. A cautious
preliminary statistical analysis over the whole dataset is needed. For that purpose,
deterministic or probabilistic scores are introduced and used, focusing on the verifi-
cation of high precipitation forecast. With this long dataset, we have the benefit that
scores for high precipitation thresholds (> 100 mm) are still representative. As de-
scribed in section 2.3, the reforecast is built using ten different physical parametriza-
tion packages. Therefore, the followed purpose is to analyse whether the 24-hour
precipitation forecast skill depends on the parametrizations. This introductory ex-
ploration is followed by an evaluation of the reforecast as a probabilistic forecast

system, in order to measure potential discrepancies with the PEARP system.

A verification procedure is based on the comparison between a probabilistic fore-
cast and a reference. Different verification approaches can be used. Hamill and
Whitaker (2006) use model interpolation on a finer grid that the original one, Wilks
(2002) or Roulston and Smith (2003) choose to interpolate model data at observa-
tions locations, in Wilks and Hamill (2007) and Wilks (2009a) the closest model
grid point is associated to the observation point, Scheuerer and Hamill (2015) pro-
pose a downscaling approach of model data by a calibration step, and Hamill et al.
(2008), Hamill (2012), Zhu and Luo (2014) analyze model and observation data over
a uniformed grid. The latter procedure relies on a remapping procedure, consisting
in upscaling the observation data to the model grid resolution (e.i. Accadia et al.
(2003)). In this study, the deterministic verification is based on the comparison be-
tween rain-gauges stations and the closest model grid point. On the other hand, the
probabilistic verification, as well as the calibration methods (presented in the chap-
ter 4), are based on the use of the gridded reference observation, whose interpolation

procedure has been presented in section 2.4.
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3.1 Deterministic forecast verification and com-

parison between physics schemes

The purpose of this sensitivity study is to depict the performance differences for
24-hour QPF (Quantitative Precipitation Forecast) related to the different physical
parametrizations implemented in the reforecast, regardless of forecast range. In
particular, we focus on the precipitation forecast skill at the extreme tail of the
rainfall amount distribution.

For this exploratory verification, the reference dataset is not based on the inter-
polated rainfall reference, as described in section 2.4, but on 211 rain-gauges stations
from the Météo-France network in southeastern France. Indeed, we wanted to com-
ply with standard verification rules for this analysis. These observations ensure a
temporal continuity at the same locations for the reference data during the 30-year
period. All comparisons between model and observations are computed using the
nearest-neighbour approach. Each observation point is associated to its nearest
model grid point, as shown by the arrows in Fig. 3.1. We first describe the ver-

ification metrics used before analyzing the corresponding scores for the reforecast.

3.1.1 Forecast verification metrics

Forecast verification can be distinguished between nonprobabilistic and prob-
abilistic verification. These two classes can be further subdivided in categorical
verification and verification of continuous predictands. The categorical verification
relates to a predictand belonging to one of a set of Mutually Exclusive Collectively
Exhaustive (MECE) categories. Nonprobabilistic verification is applied to rainfall

events corresponding to a threshold overrun.

Categorical verification

Conventionally, non probabilistic verification outcome is displayed in a I x J

contingency table of observed/forecast frequencies. The most intuitive table is the
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Figure 3.1: Model grid points (in red) and rain-gauges used for the verification. Blue
arrows connect each rain-gauge observation to the nearest grid point.
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Figure 3.2: Contingency table (a) with a = correct hit, b = false alarm,
¢ = missed and d = correct negative. The second table (b) include the corre-
sponding joint distribution of the forecasts and of the observations [p(f,0)] and the
corresponding marginal distributions p(o) and p(f). From: Wilks (2009b).
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2 x 2 contingency table (Fig. 3.2), providing the hit, false alarm, missed and correct
negative categorical frequencies. The correct hit represents the cases when the event
is both observed and forecasted. The false alarm corresponds to forecasted, but not
observed events. The missed corresponds to the cases when the event occurs but
is not forecasted. A correct negative represents an event that does not occurs and
it is not forecasted. The sum of these categories is equal to the total number of
forecast/observation pairs. The climatological frequency of the event is defined as
the fraction of occurrences of the event from the observation, with regard to the
total number of forecast/observation pairs.

Three scores (Doswell et al., 1990) can be computed from the contingency table:

e the Hit Rate (H = _f.) ranges between 0 (worst) and 1 (best). The score is
sensitive to the hits, but it ignores the false alarms and is very sensitive to the

climatological frequency of the event;

e the False Alarm Rate (F' = b%d) is sensitive to the false alarms, but it ignores

the misses. It ranges from 0 (best) to 1 (worst);

e the False Alarm Ratio (FAR = a%b) is sensitive to the false alarms, but it
ignores the misses. It is very sensitive to the climatological frequency of the

event. It ranges from 0 (best) to 1 (worst).

Low base-rate events (like HPEs) are difficult to verify because many traditional
metrics tend to trivial, non-informative limits as the climatological frequency tends
to zero. A specific metric that tends to compensate this effect is the SEDI (Symmet-
ric Extremal Dependence Index) (Ferro and Stephenson, 2011; North et al., 2013),
defined as:

log F' —log H —log(1 — F') +log(1 — H)

EDI = .
5 log F'+ log H + log(1 — F) + log(1 — H)

(3.1)

SEDI is complement symmetric, i.e. it is invariant to a relabelling of the events
as nonevents and the nonevents as the events (Stephenson, 2000). It has a fixed
range of [—1,1] and is maximized when H — 1 and F' — 0. It approaches its

minimum value when H — 0 and F' — 1. In addition, values above zero imply that
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the forecast system is better than random, values below zero imply that the forecast

system is worse.

Scalar Accuracy Measures

The two following scalar measures of forecast accuracy for continuous predictands

are commonly used. The first one is the Mean Absolute Error:
1 n
MAE:*Z |ZEf7k—CCOJC | . (32)
"=

Here (24, o4) is the k' of n pairs of forecasts and observations. MAE is null if
the forecast is perfect. We can interpret the MAE as the magnitude of the forecast
error in a given verification dataset.

Another common scalar accuracy measure is the Root Mean Squared Error:

n

RMSE — J i Sk — o). (3.3)

k=1

RMSE is an error metric that gives more weight to the largest errors.

3.1.2 Some deterministic verification scores on the refore-

cast

To study the impact of the physical parametrizations on HPEs rainfall forecast-
ing we compare the scores of members differing only from one component of the
physical parametrization schemes (for example, members with different vertical dif-
fusion schemes, but with the same scheme for shallow convection, deep convection
and oceanic fluxes). The reader is referred to Table 2.2 for the details about the
physics set-up. The scores are computed at each observation locations. For graphi-
cal purposes, when needed, we interpolated the scores on a finer regular grid in order
to illustrate the spatial distribution over the domain.

Rather than defining events using the same threshold at each point, we introduce
a threshold that takes into account the spatial variability of the climatological dis-

tribution. A given quantile of the local climatological distribution is chosen at each
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Figure 3.3: 24-hour rainfall amounts quantile gg9 (mm) for member 0 (a) and 4
(b) of the ensemble reforecast. Member 0 implements the TKE turbulence scheme,
member 4, the TKE,,q. Figures (c), (d) and (e) are drawn from the quantiles ggp,
qos and ggg9 of the observation climatology, respectively.
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grid-point. This ensures that the climatological event distributions are the same ev-
erywhere. This also means that the considered thresholds are spatially dependent.
Quantiles are then based on the whole 30-year period. Hereafter we note as g, the
n' quantile.

Figures 3.3(c), 3.3(d) and 3.3(e) shows some quantile values (ggo, qos, qo9) of the
24-hour observed rainfall. For these three quantile thresholds, the highest values are
located along the Cévennes mountains, with a maximum over the Ardeche mountains
(see Fig. 2.1(c)). A peculiar observation comes out from the statistical distribution
of rainfall over the southern part of Languedoc-Roussillon. ¢gp and gg5 show relatively
low values over this region, while gg9 quantile is as high as over other mountainous
areas. This suggests that only a few extreme events tend to affect this area, but

they reach the same extreme values than the region for the highest rainfall.

Sensitivity of the rainfall forecast to the Turbulence scheme

TKE and TKE,,, diffusion parametrization schemes are compared. Figures
3.3(a) and 3.3(b) show the daily rainfall quantile g9 for members 0 and 4, and Fig.
3.3(e) the corresponding quantile from the observations. We observe that the rainfall
quantile threshold qgg is slightly higher with T'K' E,,,q scheme. It is worth noting
that TKE,,,q quantiles are also closer to the observation than the control member
ones, while both members show underestimated gg9 compared to the observation.
It is not possible to compare the third turbulence scheme L79, as there are no two
members that only differ by the implementation of L.L79. We may presume that

turbulence schemes affect quite marginally rainfall forecast spatial distribution.

Sensitivity of the rainfall forecast to the Shallow Convection scheme

Shallow convection parametrization is used to represent the turbulent transport
of heat and moisture by non precipitating cumulus clouds. However, this physical
parametrization is also important as it can influence the variables involved in the
deep convection scheme and, consequently, impact rainfall forecast.

Four different Shallow Convection schemes are implemented in the PEARP multi-

physics. A comparison between KFB and EDKF shallow convection parametrization
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Figure 3.4: Top: Differences between the g5 24-hour rainfall (mm) forecast and
observation for the member 0 (a) and the member 5 (b) of the reforecast. Bottom:
FAR metric scores for members 0 (c¢) and 5 (d) with quantile ggo threshold. The
member 0 implements the KFB and member 5 the EDKF of the shallow convection
schemes.
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Figure 3.5: RMSE field of 24-hour rainfall amounts computed for members 6 (a), 7

(b) and 8 (c), implementing PMMC, KFB, and PCMT shallow convection schemes
respectively.
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schemes is done by comparing member 0 and member 5.

Figures 3.4(a) and 3.4(b) show the differences between these members and the
observation for the rainfall quantile gg5. For both schemes, the quantile qg5 is over-
estimated on the Languedoc-Roussillon region, typically upstream of the Massif
Central foothills for most of the HPEs. This behaviour is observed also for the
highest quantiles (not shown) and it is more significant for EDKF. The quantile go5
is underestimated over the mountain chain, with maximum underestimation on the
Ardeche mountains. This discrepancy may be due to an excessive amount of precip-
itation produced by the model upstream of the flux impinging the Massif Central,
resulting in a decrease of the potential precipitable water over the mountain chain.

The same underestimation is present in the Alps region.

The False Alarm Ratio (FAR, see section 3.1.1) shows similar results using quan-
tile goo as threshold (Fig. 3.4, bottom panels). In Languedoc-Roussillon region, the
FAR is maximum and it is larger for EDKF scheme (see panel (d)). The SEDI score

analysis confirms this behaviour (not shown).

The three PMMC, KFB and PCMT shallow convection parametrizations, that

are implemented in members 6, 7 and 8 are compared.

Figure 3.5 shows the RMSE scores computed for these three members. In general,
the RMSE is higher over the Cévennes, the Ardeche mountains and the Pyrénées.
Indeed, the daily rainfall climatological sample distributions tend to be more extreme
in these areas compared to the plains. This error extends to the southeastern area
of the Cévennes foothills. The comparison between the members reveals scarcely
significant differences, showing a slightly worse performance concerning the PMMC
scheme. KFB parametrization is associated to a slight higher value of SEDI score

overall (not shown). PCMT shallow convection scheme gives intermediate results.

The inter comparison between the shallow convection schemes shows that model
performances of 24-hour rainfall forecasts are barely sensitive to this kind of parametriza-

tion, although some differences are not completely negligible.
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Figure 3.6: Difference between the observed 24-hour rainfall quantiles g5 (top) and
go9 (bottom) and the model forecast for the member 0 (left) and the member 7
(right) implementing B85 and PCMT deep convection schemes, respectively (mm).
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Figure 3.7: Top: SEDI score computed for members 0 (a) and 7 (b) with a threshold
equal to the quantile gg9. Bottom: 24-hour rainfall amount RMSE computed for
members 0 (c¢) and 7 (d), implementing B85 and PCMT deep convection schemes,
respectively.
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Sensitivity of the rainfall forecast to deep convection scheme

As described in section 2.2.2, our system implements two main deep convection
frameworks, PCMT and B85. This is the only parametrization difference between
members 0 and 7. Comparing them allows describing behaviour dissimilarities be-
tween B85 and PCMT deep convection parametrization schemes. For these two
members, the shallow convection parametrization is KFB scheme.

An evaluation of the differences between these members of the reforecast and the
observation for quantiles qg5 and ggg is shown in figure 3.6. Differences in amplitude
and spatial distributions of quantile biases are more significant for deep convection
rather than for shallow convection. We can see that PCMT differences are larger
than the B85 ones over Languedoc-Roussillon region. B85 quantiles are also signif-
icantly lower than the observed ones over the Ardeche, while PCMT quantiles are
closer to the observations over this area. A moderate underestimation of quantile
values is observed on the eastern side of the domain, especially for B85 scheme.

We analyse the SEDI scores for the ggg quantile threshold on figure 3.7(a,b). It is
greater for the PCMT scheme. This may be related to the larger Hit Rates observed
for PCMT, whereas False Alarms are similar for B85 and PCMT (not shown). We
can also observe that the SEDI score reaches the maximum along the Cévennes
chain. This suggests that the predictability tends to be higher over the mountains,
where the convection is mainly triggered at a stationary location (Lin et al., 2001).

We also study the error magnitude through the RMSE score (Fig. 3.7, bottom).
The non-linearity of the RMSE metric leads to large errors where the rainfall is
higher. The RMSE values computed for PCMT scheme are high on the side of the
Cévennes foothills positioned towards the Mediterranean Sea. RMSE are reduced

for the B85 scheme.

We compare two other deep convection schemes: B85,,,q and CAPE, which are
implemented in members 2 and 3. As already detailed in section 2.3, these two
deep convection parametrization schemes correspond to versions derived from B85
scheme. B85,,,4 corresponds to a convection trigger parameter based on the cloud

top height, and CAPE scheme is based on the CAPE closure. Corresponding RMSE
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Figure 3.8: 24-hour rainfall amount RMSE for members 2 (a) and 3 (b), implement-
ing B85,,0q and CAPE deep convection schemes, respectively.

results are shown in Fig. 3.8. Differences between these two modified versions of

the same parametrization scheme appear to be negligible.

Oceanic flux

Precipitation forecasts obtained from the parametrization of oceanic flux ECUME,,,oq
exhibit daily rainfall spatial distributions and amounts similar to the standard EC-
UME scheme (not shown). The difference between the two schemes is related to a
parameter that control the evaporation fluxes over the sea. This suggests that 24-
rainfall forecast is barely sensitive to the two different parametrizations of oceanic
flux. This result may suggest that the modification of this parameter in PEARP is

too weak to produce significant difference in precipitation forecasts.

3.2 Probabilistic forecast verification

The previous section was dedicated to the exploration of the impact of the physi-
cal parametrization on the deterministic 24-hour precipitation forecast. In this part,
the ten members of the reforecast are gathered and evaluated as a reduced version of
the operational ensemble system PEARP. Even if we already think that the ensem-
ble performance would be drastically weakened by a too small number of members,

we assume that the long duration of the period, hence the meteorological variability
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explored, would help to obtain robust probabilistic diagnostics. This hypothesis is
a main keystone in this work and will also be the basic assumption assessed in the
two calibration experiments described in the next chapter.

A first exploratory analysis of the reforecast ensemble scores is performed with
some standard probabilistic verification measures.

The probabilistic forecast skills are evaluated following the recommendation pro-
posed by Hamill and Juras (2006). The authors demonstrate that an evaluation can
be erroneous if the score is computed for a fixed value on various samples spanning
many locations and dates. Indeed, the corresponding samples event frequencies may
vary significantly, and lead to a poor representation of the overall. This undesirable
behaviour is prevented by considering events whose climatological frequency is not
dependent on the sample choice. This is achieved by considering the quantile of the

local climatological distribution (Zhu et al., 2002).

3.2.1 Probabilistic forecast verification metrics

A scoring rule for a probabilistic forecast is a summary of a measure that evalu-
ates the probability distribution.

One desirable feature of scoring rules is to be proper. A score is strictly proper
if it reaches its optimal value when the predicted distribution is identical to the
verification one (Gneiting and Raftery, 2007). Only a tiny fraction of the classical
scores used in forecast verification are proper. Practically, non-proper scores are also
used but with the caution that high scores have to be interpreted carefully.

Hereinafter a survey of the scoring rules computed in this work is presented,

specifying if the score is proper and showing some basic features thereof.

Brier Score

Brier Score (Brier, 1950) is a metric largely used in verification problems involv-
ing probability forecasts for dichotomous predictands. It corresponds to the mean
squared error of the probability forecasts, considering that the observation o = 1 if
the event occur and that it is 0 otherwise. The event occurrence is usually defined

by threshold overrun. The score stands for the averages of the squared differences
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between pairs of forecast probabilities and binary observations:

k=1

where the index k& browses the n forecast-event pairs. 1w, represents the forecast
probability of the event, and oy is the event occurrence (0,1). The analogy with
RMSE metric (eq. 3.3) is clear, except that for RMSE, (yx,0x) represent the pairs
of continuous values related to the forecasts and the observations. The Brier score

is negatively oriented.

The Brier score is a proper score. In this respect, Briocker (2009) demonstrated
that the expected value of strictly proper rules allows for a decomposition into three
terms: reliability, resolution and uncertainty. A brief summary of decomposition

terms is given, following Wilks (2009b).

Given the discrete number of members of an ensemble, forecast probabilities can
take a finite number I of allowable values. I corresponds to m+1 if m is the number
of members of the ensemble. Sampled forecast values y; can be described by means
of a finite arithmetic progression as follows:

(i—1)

m

If we define N; as the number of times each forecast probability y; is used, the total

number of forecast-event pairs is the sum of the conditional sample sizes:

n= ZNi (3.6)

The marginal distribution of forecasts is then easily evaluated for each forecast
probability interval:
(3.7)

It is possible to stratify the frequency of occurrence of the event according to

the subsamples delineated by the I forecast probabilities. We may consider this
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conditional average observation relative to the forecast value y;:

0; = ploi|y;) = Z Ok (3.8)

’ keN;

where oy, correspond to the event paired with the forecast value y, op = 1 if the
event occurs, o = 0 otherwise. The sample climatology is then given by:
0=

n
> o=
k=1

I
S Nios (3.9)
=1

SRS

The Brier Score (eq. 3.4) can then be decomposed as the sum of three terms:

1< 1<
=Y Ni(y; — = Ny(o + o(1—0) . (3.10)
iz iz
———
"Reliability” ”Resolution” ?Uncertainty”

The first term represents the reliability, which is the statistical coherence between
the observation and the related forecast. A forecast is perfectly reliable if the forecast
probability matches the conditional distribution of observations for each forecast

probability category. This term is expected to be as low as possible and is generally

called REL.

The second term is the resolution term. The resolution can be defined as the
ability of a forecast system to classify the different observations according to the
corresponding forecast. If the forecast sort the events into subsamples with relative
frequencies similar to the sample climatology, the forecast system is poor in resolu-

tion. This term is then expected to be as high as possible and is usually referred as

RES.

The third term is the uncertainty term. It depends only on the sample climatol-
ogy. This term reaches its maximum for o0 equal to 0.5 and two minima are observed
for 0 = 0 and 0 = 1, i.e. when the event almost always happens or almost never
happens. In the case of HPEs, we are in the second situation and then scores can

be artificially high due to the strength of (1 — 0) term.
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Brier Skill Score

The Brier Skill Score refers to the evaluation of a prediction system with the

Brier score but with respect to a reference one:

BS
BSref.

BSS =1- (3.11)

The simplest interpretation of the BSS is that, for negative values BS is larger
than BS,.¢, which means that the probabilistic forecast has less skill than the ref-
erence. The skill score ranges between —oo < BS < 1. In this study, the reference
forecast will be defined as the climatological relative frequency computed from the
observation along the 30-year period covered by the reforecast during the September-

December season.

The combination of equations 3.11 and 3.10 yields to the following decomposition

of BSS relation:

BS _ | REL—RES+UNC _ RES - REL

BSS — 1— —
55 BS,es UNC UNC

if BS,ef =UNC

(3.12)
The relationship is verified only if BS,.; is computed from a sample climatology
equal to the frequency of occurrence of the event in the verification sample dataset.
This formulation of the Brier Skill Score infers that a forecast system skill is related

to the proportion of REL and RES. When the resolution exceeds the reliability term,

BS'S becomes negative.

CRPS

The CRPS (Continuous Ranked Probability Score; Brown, 1974; Hersbach, 2000;
Matheson and Winkler, 1976) is a scoring rule strictly proper to evaluate probabilis-
tic forecast of a continuous predictand. The score is based on the integration of

distance between the forecast and observation distributions:

crps= [ +: C(&) — C, ()] da, (3.13)
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Figure 3.9: Illustration of the Continuous Ranked Probability Score. The green line
corresponds to the CDF of the forecast, while the red line represents the Heavi-
side function corresponding to the observation. The dashed line corresponds to the
squared difference between the two curves.

where C(z) is the Cumulative Density Function (CDF) of the ensemble forecast of
the variable x and C,(x) is given by:

Co(z) = H(x — z,), (3.14)
where
0 forz<O
H(z) = (3.15)
1 forz > 0.

is the Heaviside function. A perfect score is equal to zero and it can be obtained only
in case of a deterministic forecast, or an ensemble forecast with identical members,
which targets exactly the observed value.

A graphical illustration of the CRPS definition is shown in Fig. 3.9. The CRPS
corresponds to the integrated area below the dashed curve, which is the squared
difference between the CDF of the forecast C'(z) and the Heavyside function corre-
sponding to the observation x,. An heavily scattered ensemble forecast is associated
with a stretched CDF, resulting in a high CRPS value. On the other hand, a sharp
forecast will provide a low value of CRPS, as long as the forecasted values are close

to the true value z,.
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CRPS score has the dimension of the parameter x used for the verification and
it can be interpreted as the integration of a Brier Score over all possible thresholds
or to the MAE for a deterministic forecast. CRPS is often used as it provides scores
not related to predefined classes or thresholds and as it is sensitive to the whole

range of values of the parameter of interest.

This metric can then be averaged over n points and/or cases during a given
period:
CRPS =Y CRPS(C*,z%). (3.16)

k=1

Such as for the BS (eq. 3.10), the CRPS can be decomposed as described in Candille
and Talagrand (2005). An alternative decomposition is introduced in Hersbach
(2000), who applied the decomposition for an ensemble system. In this case, a
straightforward manner to estimate the CDF lies on computing the empirical CDF
from the m members of the ensemble, assigning a probability of 1/m to each bin,
sorting the forecast data in ascending order. Then the assigned probabilities up to

and including each bin are summed to build the empirical CDF.

Using this method, the decomposition of CRPS over the n events yields to:

CRPS =Y g0, —p:)*+>_ gioi(1 — 03), (3.17)
=0

=0

Reli CRPSpot

where g; is the average width of forecast bin, x;,; — z;, or the distance between the
observed value and the corresponding closer member for the distribution outliers.
The o; can be seen as the average frequency to which the observation is found below
the middle of the ¢ interval, and p; = - is the ¢ cumulative probability of the

ensemble system.

The first term is also called a reliability term, which does not have the same
score meaning than in the Brier decomposition (see 3.10). Here this term provides
an information similar to the rank histogram (Hamill, 2001), a verification tool
that will be introduced hereinafter. C'RPS reliability tests whether, on average,
the frequency o; that the verifying observation is found below the middle of the

i" interval bin of the predictive CDF is proportional to the probability associated
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to this interval (i/m). One difference compared to the rank histogram is that the
reliability term of CRPS takes into account the width of the bins, so more weight is
given to large intervals in the predictive CDF.

The second term CRPS,q, called the potential CRPS, represents the CRPS
which would be obtained for a perfect reliable system (Reli = 0). Hersbach (2000)
shows that it is possible to further decompose C'RPS,,,; into uncertainty and resolu-
tion terms. The CRPS, is directly related to the spread of the ensemble. Indeed,
a high ensemble spread would lead to greater g;. It is also sensitive to the outliers
in the observations, corresponding to observed values that fall outside the extreme
forecasted values. Outliers induce a growth of the CRPS,,,; term. This means that
low CRPS, is obtained when the compromise between a narrow ensemble spread
and a low number of outliers is achieved.

The CRPS, the reliability and potential terms are negatively oriented and they
do not have a superior limit. The score is perfect when CRPS is null. Hereafter,

for practical reason the CRPS acronym will refer to CRPS.

The Reliability Diagram

The reliability diagram has been extensively used in verification literature (At-
ger, 2004; Jolliffe and Stephenson, 2012; Murphy and Winkler, 1987) where it stands
for the reliability as the ability of the model to produce probabilities of an event
corresponding to its observed frequency. In the decomposition terms of Brier Score
previously presented, a system is perfectly reliable if p(o;|y;) = y; for all the prob-
ability intervals. In a reliability diagram (Fig. 3.10(a)) the horizontal axis shows
the forecast probability y;, whereas the ordinate axis corresponds to the conditional
distribution of the observations o;. Therefore, the departure between the points and
the bisector is a measure of the lack of reliability. Similarly, the departure between
the points and the sample climatology lines corresponds to the square root of the
resolution term of the Brier Score. From the equation 3.12, if the BS,. is set equal
to the sample climatology of the verification dataset, then the BSS is positive as
long as the resolution RE'S term is larger than the reliability REL term. The area
represented by the gray zone in the graph shows this area of skill.
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Figure 3.10: a) Example of a reliability diagram. The horizontal and vertical lines
show the sample climatology of the event. The bisector shows a perfect forecast,
while the gray area defines the area of positive skill of the BSS. b) Example of a
discrimination diagram. Red line shows the conditional probability for dry events,
and the blue line the conditional probability for wet events. Vertical lines summa-
rize the mean of the distributions, whose values are displayed in the legend. The
discrimination distance d is also shown.

The Discrimination Diagram

The discrimination diagram measures the ability of the forecast to differentiate
the observation categories. Whereas the reliability diagram is built on the condi-
tional distribution p(o1|y;), the discrimination diagram is based on both conditional
likelihood distributions p(y;|o;) for the two dichotomous events (j = 0, or j = 1,

event non-occurrence and occurrence, respectively).

An example of discrimination diagram is shown in figure 3.10(b). The two dis-
tributions are drawn for a ten member ensemble (I = 11) and for a rain event. o,
refers to the cases when the event occurs, oy when it does not occur. Then, the more
distinct the tails of the distributions are, the more discriminant the forecast is. The
magnitude of this distinction between the two distributions is diagnosed with the

discrimination distance:

d = |p(ylor) — p(yloo)l; (3.18)

which corresponds to the absolute difference between the means of the two distri-

butions. A large value of d suggests high level of discrimination of the forecast
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Figure 3.11: a) Example of a ROC diagram. On x-axis the False Alarm Rate and
on the y-axis the Hit Rate. The diagonal denote the limit of no skills. b) Example
of a rank histogram (from: Hamill and Colucci (1997)).

system.

The ROC curve

The ROC (Relative Operating Characteristic; Hanley and McNeil, 1982; Mason,
1982) scoring rule evaluates the ability of the forecast to discriminate between events
and non-events. Like in the discrimination diagram, the ROC is conditioned by the
observations. Considering a given threshold, the contingency table elements Hit
Rate H and False Alarm Rate F are taken into account. The Hit Rate is plotted as
a function of the False Alarm Rate for various forecast probabilities. Figure 3.11(a)
shows an example of ROC diagram. The two extremes of the ROC curve are by
construction set on the origin and on (x = 1,y = 1) even when these cases are not
sampled. The perfect forecast exhibits F' = 0 and H = 1, and is associated with
an area beneath the curve equal to 1. Conversely, random forecasts would result
in the same value of F and H for all the probability thresholds, represented by the
diagonal. Beneath this line, the ROC score depicts a no skill forecast. It is worth
mentioning that, even if this scoring rule remains a basic method in meteorological

verification, AUC (Area Under the Curve) is not a proper score (Byrne, 2016), and
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it is sensitive to subsampling.

Rank Histogram

The rank histogram (Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al.,
1997) is another scoring rule aimed at evaluating the reliability of the ensemble
system. More specifically, it tries to answer the question: are the ensemble members
statistically indistinguishable from the verification data?

The histogram is built by sorting each observation among the potential m + 1
ordered bin values of the forecast. It can be considered as a frequency histogram of
counting the observations according to ascending members values. If the m ensemble
members and the observations would have been drawn from the same distribution
the histogram would be equally distributed. Figure 3.11(b) shows an example of a
rank histogram drawn from a 15 ensemble-member forecast system. The U-shape
indicates that more observations are classified outside the ensemble values, then the
ensemble values are not spread enough. Although the rank histogram is widely used
for reliability estimation, Hamill (2001) suggests it is not a sufficient condition to

determine if an ensemble is reliable.

Evaluation of the ensemble spread

The spread of the ensemble is computed assuming exchangeability between fore-

casts and observations, as in Fortin et al. (2014). It is expressed as follows:

m 12
SPREAD = e 2 3.19
$ (m — 1) n kz::lsk’ ( )
where
1 L
S}QC = — Z(xf,k — xf,k,z')2~ (320)

and n is the sample size, m the ensemble size, s7 an unbiased estimator for the

variance of the ensemble members, xy; is the it" ensemble member for the event k

and Ty is the ensemble mean for the event k. The factor (%) in equation 3.19

vanishes for large ensemble sizes. In this study, this term is retained for a 10-member
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ensemble.
The ensemble reliability can be diagnosed through the gap between the spread
and the root mean squared error of the ensemble mean. For a reliable system RMSE

and Spread are close together (Whitaker and Loughe, 1998):

RMSE = J i S @k — Ton)’ (3.21)

k=1

3.2.2 Verification scores applied the reforecast

Some of the scores described in the previous section are applied to the whole
reforecast dataset over a 4-month period of 30 years. All scores are averaged over
the 4-month period, i.e. inner season trends of rainfall events are not taken into
account in occurrence frequency.

First, considering the difference of the reforecast set-up with respect to the op-
erational system, we think it is important to assess the spread difference. To allow
this comparison, we had to process to a few data arrangements. Starting from the
PEARP-2016, described in section 2.2.3, the 35-member PEARP is resized to 10
members. We name this adapted dataset 10M-PEARP. In this way, we will com-
pare two ensembles with the same size, the same physics, but with only the initial
conditions perturbations that are missing in the reforecast dataset. This procedure
is carried out by sampling three sets of ten members from PEARP-2016. In each
set, each of the 10 members uses a different physical package which corresponds
to one of the physics of the reforecast. This sampling procedure is repeated three
times in order to increase the size of the dataset used to get comparable scores.
Bootstrapping sampling technique described in Efron and Tibshirani (1994) or in
Candille et al. (2007) is applied to the Spread/Error diagnostic. A 90% confidence
interval is chosen, based on 100 different samplings for the reforecast dataset as well
as for the 10-M PEARP dataset. The results are averaged over the whole set of the
domain.

Figure 3.12(a) shows the Spread-Error relationship for the 10-M PEARP and
the reforecast datasets. First, the ensemble spread actually grows along with lead

time. We can observe a notable gap between the 10-M PEARP spread and the
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Figure 3.12: a) Spread-error relationship. Solid lines are referred to 10-M PEARP,
dashed lines to the reforecast. In red the error, in blue the spread. b) Ratio between
the errors associated with the 10-M PEARP and the reforecast (red line), and ratio
between the spreads (blue line).
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reforecast one which is much lower. It must be related to the lack of initial condition
perturbations in the reforecast at the first lead time of the forecast. Then, this
deficiency is never compensed along the forecast. For the 10-M PEARP ensemble,
the spread seems to stop increasing after 92-hour lead time, and it is not the case
for the reforecast. The spread-error relationship is close to 1. This shows that 10-M
PEARP exhibits high reliability. Reforecast error is approximately twice compared
to the spread, suggesting a lower reliability than 10-M PEARP.

The RMSE is also depicted in Fig. 3.12(a). Reforecast values are larger than
the operational ensemble ones, but with less difference than for the spread. We
think this difference can be related to the quality of initial conditions employed
for the reforecast. Indeed, PEARP ensemble system is built from AEARP data
assimilation system, whereas the reforecast initial conditions come from the ERA-
Interim reanalysis (Berrisford et al., 2011; Dee et al., 2011). The poorer resolution
of the reanalysis can be source of larger errors in the reforecast.

The differences between the 10-M PEARP and the reforecast is further inves-
tigated in Fig. 3.12(b). We plotted the ratio between the 10-M PEARP and the
reforecast RMSFE and SPREAD. The spread ratio is bounded between 1.5 and 2.
The lowest value is achieved for the longest lead time, suggesting that the initial
condition perturbation tends to have higher impact on the spread at the first lead

times.

As already mentioned at the beginning of this chapter, probabilistic verification
is performed on the model grid points. In the following, we present the result of
the ensemble verification of the reforecast. In order to focus on the right tail of the
rainfall distribution most of the scores will be computed on the rainfall observation

reference (see section 2.4) for six quantiles thresholds: gso, gss, qoo, Gos, oo and qog 5.

The spatial dependence of these quantiles values from the interpolated rainfall
fields is shown in Fig. 3.13. We can observe that orography significantly affects the
rainfall highest events. Local maxima are located over the Cévennes and the Ardeche
mountains, except for ggg threshold. We note that depending on the quantiles, two

different rainfall regimes could be determined. Quantile thresholds below g9y exhibits
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Figure 3.13: Graphical illustration of the 24-hour rainfall amounts computed from
the observation reference for the quantile thresholds ¢so, gs5, @90, 95, G99 and qog.5.
For graphical reason the range values differ from one legend to another.

87



Chapter 3 Ensemble reforecast verification

0.020
05 )
: 0.015
% Q8o Q80
00 ) : 1 : Q85 _ | Q85
0w - | ) — w . J —
9] ] Q90 @ 0.010 Q90
@ —Q95 0 —Qo5
Q99 o Q99
-0.5 99.5 99.5
Q 0.005 Q
-1.0
0.000
3h  60h  84h  108h 3h  60h  84h  108h
Lead time Lead time
(a) Brier Skill Score (b) Reliability term of Brier Score
015
80 2 1
0.10 Q
@ Q85 CRPS
IE'zJ I —Q90 = .
. S — potential
@ 1 —Qa% = reliabilit
0 f I | Q99 1 ’
0.05 J\{_\{\! Q995
0.00 s . 0
3h  60h  84h  108h 36h  60h  8h  108h
Lead time Lead time
(¢) Resolution term of Brier Score (d) Continuous Ranked Probability Score

Figure 3.14: BSS (a), terms of BS (b,c) and CRPS (d) computed for the reforecast
dataset and for 24-hour rainfall. CRPS is decomposed in reliability and potential
terms. Error bars are estimated using a bootstrapping sampling technique and cover
the 90% interval.

an enhanced signal northwest of the Cévennes chain, while for the largest quantile
thresholds the Languedoc-Roussillon region and the southeastern side of Cévennes
chain are more affected. It is worth noting that an enhanced signal is also present
over the Pyrénées and the Alps. The first regime seems to be associated with a
westerly low-level flow, while the second one with a southerly low-level flow.

BSS and CRPS computed using a set of quantile thresholds are shown in Fig.
3.14. Scores are averaged over all the grid points of the domain. Error bars are
estimated using a bootstrapping sampling technique, based on 100 resampling for
each score. The bars cover the 90% confidence interval. First, the BSS (Fig. 3.14(a))

is positive for thresholds lower than gg5, and shows no skill for the largest thresholds
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(Gog, qoo.5)- As expected, the model is more skillful for low thresholds, and gets worse
for the longest lead times. BSS variability (errors bars) is getting larger for gog9 and
Q995 because events for that specific thresholds become extremely rare, respectively
counting only ~ 36 and ~ 18 per grid points over the 30-year period. For the
highest thresholds, there is no a clear dependence of the score with lead time. It
may be due to a misrepresentation of rare events among lead times over the whole
period with respect to the 4-day sampling of the reforecast (reforecast is run every
4-days). The reliability term of BS is globally unchanged until 92-hour lead times
(Fig. 3.14(b)). Then the reliability decreases at 108-hour lead time for almost all
quantiles. Resolution decreases with the lead time (Fig. 3.14(c)).

The CRPS score shows increasing value with the lead time (Fig. 3.9), indicating
worsening of the forecast skill. We can see that this is mainly related to the potential
term of CRPS which increases with lead time, while the reliability term remains

almost constant.

We already noted, that one main interest of the reforecast verification is that we
still have significant scores at the grid-point scale. It is confirmed by the analysis
of BSS and CRPS spatial scores (Fig. 3.14). BSS computed for the quantile go5
at 60-hours lead time is shown in Fig. 3.15(a) and at 108-hours lead time in Fig.
3.15(b). BSS shows more skill over the mountainous areas, while some negative
values (white areas) of BSS are observed over some of the plain areas. The analysis
of the corresponding reliability diagrams over some targeted points over these zones
(not shown) reveals that forecasts tend to be more skillful on the Cévennes/Ardeche
mountains, whereas poor resolution and wet bias are associated with the no-skill
forecasts points.

BSS computed for the most extreme quantile thresholds (larger than ggs, not
shown) are inconsistent due to the too small number of events. Indeed, since BS
and BS,. tend to zero for rare events, a small variation of the score can lead to a
significant variation of the BSS.

CRPS is computed for the same lead times (Fig. 3.15(c) and 3.15(d)). Due to
the sensitivity of the CRPS to the magnitude of the error, CRPS takes large values

over the relief, where 24-hour rainfall distribution exhibits larger values. This effect
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Figure 3.15: BSS of 24-hour precipitation computed on each grid-point for qg5 at
60-hour (a), 108-hour (b) lead times. CRPS of 24-hour precipitation computed on
each grid-point at 60-hour (c), 108-hour (d) lead times. Decomposition of the CRPS
of figure (d) in reliability (e) and potential (f) terms at 108-hour lead time.
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Figure 3.16: Reliability diagrams for gsg (top), geo (middle) and go5 (bottom), for 2-
days (left) and 4-days (right) forecasts. Values above red points indicate the marginal
distribution of the forecasts p(y;). Error bars are estimated using a bootstrapping
sampling technique and covers the 90% interval.
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is also observed southeastward of the Cévennes. A similar behaviour is observed in
the deterministic scores (section 3.1). We analyze the decomposed CRPS reliability
and potential terms, at 108-hour lead times (Fig. 3.15(e) and 3.15(f)). The CRPS
potential term is maximum on the same area impacted by a large CRPS while the
reliability term gets worse there, which was not the case on the domain averaged

CRPS.

We analyze reliability diagrams for ggg, goo and ¢g5 quantile thresholds and for
60-hour and 108-hour lead times (Fig. 3.16). The reliability gets worse at long lead
times and for higher thresholds. If we focus on the position of the red line in the
graph, we can observe it follows a nearly flatten line above the no skill area lower
limit. It may indicate a conditional bias that could be related with the magnitude of
the forecast biases. This implies that the resolution of the ensemble is poor. More-
over, most of the points are located below the diagonal (especially for gg5 threshold).
This means that the relative frequencies are small compared to the forecast proba-
bility, which indicates a wet bias of the probabilistic forecast. This is particularly
true for high forecast probabilities except the highest one. Nevertheless, despite this
bias, forecasts still have skill, even for high threshold and long lead times (except

o5 at 108-hour).

The numerical values expressed above the points on the reliability diagram of Fig.
3.16 denote the frequency p(y) of each forecast probability categories. Reforecast
appears to be sharp because maxima of p(y) are reached for low and high forecast

probabilities. This indicates that the reforecast exhibits a good forecast confidence.

Discriminant diagrams at 84-hour lead times and for g9y and g9 thresholds are
shown in Fig. 3.17(a) and 3.17(b). We note that the mean of the distribution p(y|op)
(vertical line) is concentrated around zero as these thresholds are associated with
rare events. Conversely, when the event occurs, it appears more challenging for the
forecast to issue a probability forecast close to 1. This effect is enhanced for ggg
threshold; the forecast probability corresponding to the occurrence of the event is
0.297, meaning that a rare event is more difficult to discriminate from other events.
As a result the discrimination distance diminishes for the highest thresholds. We

also observe that this score decreases with lead times (not shown).
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Another information about the forecasts conditioned by the observation can be
drawn from the ROC diagram. We analyze the area under the ROC curve (AUC)
(Fig. 3.17(c)). The AUC decreases for the larger lead times, except for the most
extreme thresholds. The event discrimination is greater for the lowest thresholds.
However, it is worth noting that, even for the qg9 5 threshold, discrimination is still
better than random forecast (AUC>0.5).

Finally, reliability is examined also by means of the rank histogram tool (Fig.
3.17(d), 84-hour lead time), which shows a typical U-shape. Such a graph, which
suggests an under-dispersed ensemble, corroborates the spread value observed in
Fig. 3.12. As the 11-th rank is the most frequent, the ensemble reforecast has also

a global tendency to underestimate rainfall (dry bias).

3.3 Summary and Conclusions

In this chapter the evaluation of the 24-hour precipitation forecast from the
reforecast dataset has been presented. The deterministic verification member-by-
member has shown that systematic errors and scores are different from a member to
another. The main factor of these discrepancies is the deep convection parametriza-
tion, which strongly affects spatial distribution and intensity of the precipitation
forecast. The PCMT scheme produces more intense precipitation than B85 scheme,
which should be a positive compensation to the global underestimation, but it re-
sults in larger values of RMSE on the Cévennes and Ardeche chains, compared to
B85. On the other hand, the most extreme events are better forecast by PCMT
members as confirmed by the SEDI scores.

Combining all physical parametrizations, the deterministic evaluation shows that
the members of the ensemble reforecast are not exchangeable. One member with
a specific parametrization set-up exhibits errors that differ from another member
differently implemented.

The second part of this chapter has been dedicated to the probabilistic verifica-
tion of the ensemble reforecast. The comparison of the ensemble reforecast with the

reduced size ensemble (10-M PEARP) obtained from the PEARP-2016 has revealed
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a lack of dispersion of the reforecast, caused by the absence of the initial condition
perturbations.

As it is common in forecast verification, scores get worse with increasing lead
time and for increasing thresholds. The downgraded characteristics of the reforecast
do not make it possible to produce high performing probabilistic forecasts. Relia-
bility diagrams showed a quite low reliability and a wet bias. Indeed, the lack of
initial condition perturbation and the small number of members are crucial in these
deficiencies. However, it is remarkable that despite these factors, it is still possible
to observe skill in forecasting very high rainfall thresholds over the mountains, when
the qg9 can reach values over 100 mm. We assume the sample size of the reforecast
dataset and its relatively high horizontal resolution (~ 10 km) can be sources of

positive skill.
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The reforecast has been evaluated in terms of probabilistic forecast verification.
Though this assessment shows that the reforecast could not be considered as a poten-
tially fully usable ensemble forecasting model, we also conclude that the reforecast
has actual abilities to represent with some accuracy portions of the rainfall distri-
butions, in particular for intense rainfall. In section 1.3.3, some univariate post-
processing methods used for the calibration of precipitation have been described.
Most of the post-processing methods described in chapter 1 are conceived for low
precipitation values. In this chapter, two methods are tested on the reforecast with
the aim of post-processing daily ensemble precipitation forecast: Quantile Mapping
(QM) and Extended Logistic Regression (XLR). The second method is also applied
to the operational ensemble system PEARP to see if the reforecast used as a learning

dataset can lead to successful post-processing for PEARP precipitation forecasts.

Calibration methodologies are fitted through cross-validation which is basically
testing the post-processing method over data that were not used for learning. Prac-
tically, one given year is tested with the calibration trained over all the other years
of the period; for example, 1981 forecasts are calibrated using 1982-2010 as training
dataset. Periods of one year have been selected because we suppose training dataset
is still large enough (=~ 97% of the whole dataset), and the test dataset can be

considered as independent.

Deterministic calibration methods are designed to correct one given forecast.
When applied to an ensemble forecast the procedure is performed individually on
each member. On the other hand, ensemble calibration methods can operate with
each single member as predictor, or some statistics computed from the ensemble
forecast to model the predictive ensemble distributions. In this study, QM is applied
on each individual ensemble member, as it is a deterministic technique. XLR method

is tested using an ensemble statistics as predictor.
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4.1 Quantile mapping

4.1.1 Method description

The QM method (Gudmundsson et al., 2012; Hamill et al., 2017; Hamill and
Scheuerer, 2018; Hopson and Webster, 2010b; Piani et al., 2010a,b; Voisin et al.,
2010; Wood et al., 2002) basically relies on the comparison analysis between the CDF
(Cumulative Density Function) of raw forecast and the CDF of the observations.
Accordingly to the notation previously introduced in Chapter 3, we denote x, and
xy the observations and the forecasts respectively. xy, is the corrected forecasts at a
given grid-point and for a given date. QM transformation is then defined as follows:
= F, ' [Fy(zy)), (4.1)

Zf.

c

where FY is the CDF of z; and F, is the CDF of z,. Hereafter we denote the trans-
formation function F, *[F}(z)] as h(x). Practically, in the postprocessing procedure,
xy, is the calibrated forecast and xy the raw forecast from the test dataset, while

the statistical transformation h is estimated from the training dataset.

The function h can be differently modeled depending on the approximation used
for its estimation. In the current study, a nonparametric ECDF (Empirical Cumu-
lative Distribution Function) of observed and forecasted values is used, like in Wood
et al. (2002), or Hamill et al. (2017). The QM method is separately applied to each
member of the ensemble reforecast and to each grid point. Lead times are pooled
together in order to dispose of a larger sample for the estimation of the ECDFs.
Therefore, the sample size reaches 3660 cases for each grid-point. Then, the ECDF
is linearly interpolated on some selected point in order to obtain the transformation
function h. The interpolation is computed on the selected points corresponding to

the quantiles g, where k € {1,2,...,99,100}.

If some forecasted value in the test dataset exceed the maximum value of the
training dataset, a simple extrapolation is used, following Boé et al. (2007): outside
the range of the correction function, a constant correction is applied. This means

that the slope of the funtion h remains constant outside the given range. This basic
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Figure 4.1: a) ECDFs of observations and forecast (control member) for 24-hour
rainfall estimated above a grid-point for the 30-year period. The red point indicate
the grid-point used for the estimation of the ECDFs. b) Transformation function
h(z) (red line) computed for the same grid-point as (a). Black points correspond to
the values of the ECDFs drawn from the training dataset.

correction is applied in order to prevent the h function from a large slope value
in the extrapolation that would lead to unusual remapped values. As the training
dataset is 29-times larger than the test dataset, the estimation of the transformed

values through extrapolation rarely occurs.

An example of the implementation of QM on the reforecast for one selected
grid-point, for one member (the control member) and for all lead times is shown
in Fig. 4.1(a). In this example we can see that rainfall forecast CDF is below the
obserevd one. The black arrow describes the correction, which is the forecasted value
remapped on the ECDF of the observations. The two ECDF curves show for this
grid-point that dry days are more frequent than wet days, which is often the case
over that region during this season. The corresponding percentage is equal to 51%
for the observations and 58% for the forecast. In Fig. 4.1(b) the transformation
function h for the same point as in Fig. 4.1(a) is shown. The red line represents
the stepwise function h(z). In this specific case, as we presented before, values
above 63 mm, which is the maximum observed value, are remapped by adding a
constant increment. Moreover, it can be observed that, despite the large size of

the sample, the data points corresponding to the largest quantiles tend to be more
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Member ‘ 00 01 02 03 04 05 06 07 08 09

BIAS Raw reforecast -0.20 -0.27 -0.25 -0.14 -0.19 -0.02 0.30 0.19 0.12 -0.21
Corrected 0.01 0.01 001 0.02 0.02 002 0.03 0.02 0.03 0.01

MAE Raw reforecast 2.77 2.76 2.85 286 2.78 286 3.02 289 296 2.78
Corrected 283 283 293 290 284 28 286 2.79 289 2.84

Table 4.1: Bias and MAE before and after correction by means of QM. Grey columns
refer to members implementing PCMT deep convection parametrization scheme.
The remaining ones implement B85 scheme.

spaced, making the estimation of the transformation function less accurate.

4.1.2 Quantile mapping applied to the ensemble reforecast

dataset

The QM method is first separately applied to each member, as in a deterministic
calibration approach. The bias and Mean Absolute Error (MAE, as defined in
Chapter 3) are computed before and after correction for each member considering
all the grid-points together. These scores are presented in Table 4.1. The bias
is estimated for one rainfall field by subtracting the spatial and temporal average
of observations to the same average of the forecasts. We can see that B85 deep
convection parametrization (members 0, 1, 2, 3, 4, 5, and 9) is characterized by a
dry (negative) bias, and PCMT (members 6, 7, and 8) by a wet (positive) bias.
The QM method properly corrects these biases, whose magnitudes are reduced to
much lower values for all the members. A similar result has been found by Hamill
et al. (2017) applying the QM procedure on global deterministic and 20-members
ensemble 12-hour precipitation forecasts.

Table 4.1 also indicates that, for the raw reforecast, MAE is larger for members
6, 7 and 8. The QM correction performs uniformly well in correcting the biases,
but the MAE is not homogeneous after the correction. Indeed, members whose
raw forecasts are characterized by dry biases experience an increase of MAE after
calibration. Conversely, wet biased members calibration leads to a reduction of

MAE.

The MAE scores included in Table 4.1 take into account all dates from the
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Figure 4.2: MAE scores before (red points) and after (solid line) correction of QM.
MAE is computed for different 24-hour observed rainfall quantile intervals. Results
are shown for member 2 (left) and 6 (right). Member numbers refer to table 2.2.

reforecast period. Additional information can be obtained by discriminating the
MAE for different classes of observed daily rainfall. Daily rainfall amounts are
ranked and grouped between quantile intervals, with 5% steps. For example, the
MAE interval for the quantile gg5 stands for daily rainfall amounts ranging between
qoo and qos. The analysis for members 2 and 6 is shown in Fig. 4.2. These members
are selected as they show the highest negative and positive variation of MAE before
and after the QM correction. The greater the daily rainfall quantiles, the larger the
absolute errors. Largest MAE variations after calibration are observed in the middle

of the chosen quantile range, around ¢gy and gg5 for both members.

The QM correction seems to apply differently on local bias signs. We analyze
two points characterized by opposite biases in order to study this behaviour of QM
correction. Point A, located in Ardeche, is evaluated for member 2 (Fig. 4.3(a)).
It has a negative bias equal to -1.2 mm. Point B, located in Languedoc-Roussillon,
refers to member 6 (Fig. 4.3(b)). It shows a positive bias equal to +1.7 mm. These
two points and two members have been selected in order to analyze the effect of QM
correction on forecasts characterized by different signed biases. The MAE before

correction are 2.7 mm and 6.5 mm, respectively. After QM calibration they become
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Figure 4.3: Application of QM on two selected points. Results refer to member 2
(left column) and to member 6 (right column) and are designed as point A and point
B. The panel is composed by the transformation functions (top line), the histogram
of errors before (center line) and after the QM correction (bottom line).
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3.1 mm and 3.9 mm, respectively. This implies that, QM correction is worsening
the MAE in the first case and improves the MAE in the second one. The two
transformation functions h are shown in Fig. 4.3(a) and 4.3(b). The biases are
characterized by departure between the stepwise function h(x) and the bisector.
This departure is growing as a function of the rainfall amount. The distribution of
the errors before the QM correction is negatively skewed for point A and positively
for point B (Fig. 4.3(c) and 4.3(d)). Most of the errors are centered around zero,
meaning that small errors prevail. A high occurrence of strong positive errors (>
30 mm) for member 2 in point B is observed. Actually, beyond this value positive
errors spreads towards larger values (not shown). The effects of QM correction are
presented in Fig. 4.3(e) and 4.3(f). For point A the distribution of errors after QM
is flatter and slightly positively skewed. For point B most of the positive errors
associated with the raw forecast are reduced.

The results presented in Table 4.1 and Fig. 4.3 suggest that the performance of
the QM method applied to the estimation of QPF's is related to the initial bias. This
hypothesis is further explored and extended to all the grid-points by representing
the MAE difference before and after the application of QM as a function of the
bias before calibration. The corresponding scatter plot for member 6 is shown in
Fig. 4.4(a). The QPF is improved for large positive biases and gets worse for
negative biases, showing the existence of a relationship between MAE variation and
the original bias.

One possible factor for this behaviour is related to the remapping procedure.
We look at the distribution functions for points A and B, whose biases are negative
and positive respectively (Fig. 4.3(a) and 4.3(b)). We can see that for point A,
raw values ranging within a given interval becomes more scattered after correction,
while the opposite effect is observed for point B. This effect can influence the MAE
after correction, because more dispersed forecast values after correction may induce

larger errors.

Some studies have emphasized other effects of QM correction. Zhao et al. (2017)
and Hamill and Whitaker (2006) have shown that the ensemble forecating skill can

be impacted by the application of QM, with regard to the relationship between
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Figure 4.4: a) Difference between the MAE computed after and before the QM
procedure against raw bias computed for each grid-point. b) CRPSS for each grid-
point for the raw ensemble reforecast (black), and the calibrated one (red). Results
are computed pooling all the lead times together.

raw forecasts and the observations. The stronger this relationship, the more the
QM correction improves the forecast skill. This hypothesis is tested computing an
ensemble diagnostics, the Spearman’s rank correlation between the daily ensemble
mean of raw reforecast members and the observation at a given grid-point. The
rank correlation assesses how well the relationship between two variables can be
described using a monotonic function (whether linear or not). Then we use the
CRPSS score to evaluate the reforecast as an ensemble forecasting system. The
CRPSS corresponds to the skill score of the CRPS. It is evaluated by comparing the
CRPS computed from a given forecast dataset to the CRPS computed from a given
reference. CRPSS is obtained by replacing in eq. 3.11 the BS by the CRPS and the
BS,cr by the CRPS,.f. CRPS, s term is computed as the CRPS obtained using
a number of members equal to ensemble size, which are sampled from the 30-year
rainfall climatology reference.

In Fig. 4.4(b) the CRPSS values are shown for the raw (black) and the corrected
(red) ensemble reforecast against the Spearman’s correlation, all lead times pooled
together. We can observe that ensemble forecasts are more skillful than the clima-

tology (CRPSS>0) for most of the points. Globally, the CRPSS is larger when a
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forecast-observation relationship leads to high correlation. If we compare the two
CRPSS for correlation above 0.6, we can see that the number of low CRPSS values
reduces, meaning that the skill is improved after calibration. On the other hand,
correlation values below 0.6 lead to a decrease of the CRPSS values after calibration.
This result reveals some limitations related to the QM procedure. In particular, the
improvement of skill depends on the quality of the raw forecast. In that sense, we
could expect that a forecast at long lead times is generally less correlated than at

short lead times, resulting in a less efficient correction.

We apply some probabilistic score, in order to evaluate the effect of the reduction
of the bias of each member on the probabilistic skill of the ensemble reforecast for
high thresholds. This analysis is performed for each lead time. First we analyze the
impact on the reliability looking at the so-called reliability term of the Brier Score
(not shown). A slight improvement of reliability is observed for the ggo and the
gss quantile thresholds, but not for the highest values (not shown). Similarly, the
resolution term gets better for thresholds values between ggy and ggp (not shown).
These adjustments have a low impact on the modification of the BSS after calibration
(Fig. 4.5(a) for the raw reforecast and Fig. 4.5(b) for the calibrated one). More
specifically, no improvements are achieved for the most extreme quantile thresholds.
No significant improvements are observed with the CRPS neither (Fig. 4.5(c) (raw)
and Fig. 4.5(d) (calibrated)). This result suggests that the negative and positive
modifications of CRPSS presented in Fig. 4.4(b) tend to compensate each other,
resulting in a negligible variation of the CRPS computed across all grid points.

Scores are also examined point-by-point, in order to evaluate the effect of calibra-
tion depending on the location. Spatial BSS for qg5 at 60-hour lead time is computed
for the reforecast corrected with QM (Fig. 4.6(b)). Figure 4.6(a) shows the same
score, but for the BSS computed from the raw reforecast. The no skill area for the
raw reforecast in the Languedoc-Roussillon region exhibits larger BSS values after
calibration. On the Cévennes chain no significant improvements are observed. On
the opposite, scores get worse on the areas circled in red that correspond to high
mountainous areas. The bias of the raw reforecast in these areas is negative (Fig.

4.6(c)). This negative bias is associated with a low Spearman’s correlation, as shown
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Figure 4.5: BSS (top) and CRPS (bottom) computed on the reforecast dataset for
the 24-hour rainfall ensemble forecast using different quantile thresholds. Results
are computed from the raw ensemble reforecast (left) and from the calibrated one
using the QM method (right).

107



Chapter 4 Postprocessing of 24-hour Ensemble Precipitation Forecasts

Q 0.95 - Lead Time 60h Q 0.95 - Lead Time 60h

(a) BSS (raw) (b) BSS (calibrated)

Ensemble mean
Ensemble mean

BIAS [mm]
I 3

2
1
0

(c) Bias (d) Rank correlation

Figure 4.6: a) BSS of 24-hour precipitation computed on each grid-point for gos
at leads 60-hour for the raw reforecast. b) BSS of 24-hour precipitation computed
on each grid-point for ggs at leads 60-hour for the calibrated reforecast. ¢) Bias of
24-hour precipitation computed on each grid-point using the daily ensemble mean
of raw reforecast. d) Rank correlation of 24-hour precipitation computed on each
grid-point using the daily ensemble mean of raw reforecast.
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in Fig. 4.6(d). Then the poor correlation combined with a negative bias should pro-
duce an overcorrection. In this sense, the same effect observed member-by-member

is observed considering the ensemble forecast.

Reliability diagrams are computed at the longest available lead time (4-days) for
goo and shown in Fig. 4.7(a) (raw reforecast) and 4.7(b) (calibrated reforecast). We
observe that reliability for goo quantile remains unchanged after calibration. This
result corroborates the conclusion that QM procedure has a limited impact on the
reliability of the ensemble reforecast. The marginal distribution of the forecast,
represented by the values above the diagram points, is not impacted by the QM

application.

The conditional distribution p(y;|o;) is assessed, and small modifications are ob-
served for the QM corrected reforecast. Figure 4.7(c) and 4.7(d) show the discrim-
ination diagrams at 84-hour lead time for the raw and for the corrected reforecast,
respectively. The mean forecast probability conditioned by the non occurrence of
the event remains unmodified, whereas the mean forecast probability conditioned
by the occurrence of the event is larger for the corrected forecast. Consequently, the
discrimination distance is increased showing that the calibrated reforecast better
discriminates than the raw reforecast. A similar result is achieved by observing the
AUC values (4.7(f)), compared to the raw reforecast (Fig. 4.7(e)). The improvement
is greater for low threshold, even though a small AUC increment is detected also for
the largest thresholds. The rank histogram is still U-shaped after calibration (not
shown). This should indicate that forecasts could be underdispersed, which suggests

that QM procedure has a negligible effect on the spread of the reforecast.

It is interesting to investigate if a method that is supposed to take into account
ensemble statistics can produce more skillful probabilistic forecasts than the QM

procedure. This question is addressed in the next section.
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Figure 4.7: Top: reliability diagrams for g9y for 4-days forecasts are drawn. Middle:
discrimination diagrams for 84-hour lead time, for g9y quantile thresholds. Bottom:
AUC diagrams using different quantile thresholds. All graphs are drawn using the
raw (left) and the QM corrected reforecast (right).
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4.2 Logistic regression

4.2.1 Method description

Logistic regression is a nonlinear statistical model designed to estimate the prob-
ability of a definite binary event. For precipitation, the event is defined with respect
to a defined precipitation threshold. If R represent the rainfall variable, the binary
event assumes different values on the basis of the following relation R < g;, given the
quantile threshold ¢;. This probability is a function of a set of predictor variables
Xy, that can be represented as a conditional probability p(R < ¢;|xy). This latter

quantity can be expressed through the logistic regression formulation:

L+ exp (f(xy))’
where f(xy) is a linear function of the predictors x;:
N
f(xf) = Bo+ Brizpr+ Baxpo+ ..+ Bnvapn = Bo+ D Bixpie (4.3)

i=1

The terms (; correspond to the regression coefficients and [y is the intercept of the
linear function. N is the number of predictor variables involved in the regression.

The logistic regression becomes linear in a logarithmic scale:

In (p) ~ ). (14)

l=p
The term on the left-hand side of the equation is the logit function.

The parameters 3 are generally estimated using an iterative maximum likelihood
procedure (Wilks, 2009b). This procedure is based on the log-likelihood function

that in the logistic regression framework leads to the function:

L =3 log(Tu(B)). (45)

k=1
which has to be maximized and where I';, is the predicted probability for the k"
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Figure 4.8: Graphical example of extended logistic regression (left panel) and logistic
regressions (right panel) plotted on the log-odds scale. Regression lines estimated for
different quantile thresholds using XLR are parallel (left panel), while if the standard
logistic regression is implemented they cross, leading to inconsistent results (right
panel). From Wilks (2009a).

event:

P(R < q;]xp5) Tok < Q5
T, — 7 ! (4.6)

1=p(R < glxpr) Top > g5
T, is the k™ observed value and x; is the corresponding set of predictor values
associated with the k™ event. In this case, one event corresponds to a given day at
one given lead time and one grid point of the test dataset. n is the total number of

events.

In the standard logistic regression, also called separate logistic regression, each
modelled probability for a given quantile threshold p(R < g;|xy) has to be separately
computed. Each regression, relative to a given quantile g;, provides a different
estimation of the parameters 5. This separate estimation can lead to nonsense
results like p(R < q1|xs) > p(R < ¢o|xs) while ¢1 < go. A graphical example of
this undesirable effect can be visualized in the log-odds space considering one single
predictor variable, where the vertical axis is expressed in a logarithmic scale given
by In (l%p) (the logit function) against the predictor (see right panel of Fig. 4.8). In
this example the predictor is the ensemble mean. The  parameters are different for

each logistic function. Therefore different values of the slopes, controlled by the (;
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parameter, result in a crossing of the regression lines leading to inconsistent results.

The extended logistic regression (XLR, suggested by Wilks, 2009a) is conceived
to avoid this behaviour. The influence of the threshold ¢; on the regression is taken

into account by adding a function g(g;) as an additional predictor variable:

N

f(x5) = Bo+aglq;) + > Biwsa, (4.7)

=1

where « is an additional coefficient and the transformation ¢() is a monotonic func-
tion in order to preserve the consistency of the calibrated probabilities. Compared
to the separate logistic regression, the advantage is that all the estimated parame-
ters (a,) are the same for all the probability thresholds. This means that in the
example of Fig. 4.8(a), referred to extended logistic regression, regression lines do
not cross because the slope parameter f; is constant. Lines are spaced depending

on ¢(g;), which added to the , parameter determines the intercept value.

As for the separate logistic regression, the extended logistic regression is fitted
using an iterative maximum likelihood procedure on the function L(a, ). This
operation is performed by using a set of J threshold values ¢;. The I';, function is

then redefined for the k" event

(R < qi|zsp) Tok < 1,
Uw = 1p(R < gjlzpr) — p(R < gioalzpn)  gjo1 < Top < g5, (4.8)
1—p(R < qyl|zg) Tok > qJ.

The probability p corresponds to eq. 4.2, using the definition of f(xy) of eq. 4.7.

The ¢() function is also used to apply a transformation function to the precipi-
tation threshold values ¢; and then compensate its irregular distribution properties.
In this study, we tested a few different functions and obtained best results with

9(¢;) = a,/g;. This square root transformation has been largely adopted in litera-
ture (Hamill et al., 2008; Messner et al., 2014, 2013; Roulin and Vannitsem, 2011;
Scheuerer, 2014; Schmeits and Kok, 2010; Wilks, 2009a).

The set of predictors employed for the regression can be drawn from statistics of
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the ensemble forecast. Some studies suggest using a transformed value of the ensem-
ble mean of precipitation forecasts (Roulin and Vannitsem, 2011; Schmeits and Kok,
2010; Wilks, 2009a). Messner et al. (2014) included, as additional predictors, the
variance of the ensemble and Hamill (2012) included the product between the vari-
ance and the ensemble precipitation mean. In the current study, the ensemble mean
is the only predictor we used. The other ensemble predictor statistics, notably the
ensemble spread, are withdrawn because the reforecast ensemble and the PEARP
set-ups are very different. The ensemble mean of square root transformed precipi-
tation has been selected, since the corresponding corrected forecasts showed better
scores compared to the ones generated using the non transformed mean. Schmeits
and Kok (2010) proposed the same transformation. As a result of this experimental

framework, equation 4.7 becomes:

f(x5) = Bo + (g’ + Bu(a}?). (4.9)

In this study, the chosen precipitation thresholds are gsg, ¢s5, q90, o5, Go9 and
G99.5- This choice corresponds to the same quantile used in the forecast verifica-
tion (see section 3.2.2). The maximum log-likelihood is performed by means of a
quasi-Newton method based on the Broyden—Fletcher—Goldfarb—Shanno algorithm
(Fletcher, 2013). XLR method is performed for each grid point and lead time, whose
total size is 915. The cross-validation technique is also adopted here, so that the

calibration is carried out for a sliding year to year window over the 30-year period.

4.2.2 Extended logistic regression calibration applied to the

ensemble reforecast dataset

The reduced number of members in the ensemble reforecast has an impact on
the estimation of the ensemble mean. The possible misestimation of the ensemble
mean might induce a bias in the estimation of the slope of the regression in the log-
odds scale, an effect called attenuation (Carroll and Stefanski, 1990). In the case
of an additive error in a simple linear model, this bias can be accounted by using

the so-called reliability ratio (the ratio between the variance of the predictors and
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Figure 4.9: RPSS computed using the XLR method with (left) and without (right)
regression calibration implementation.

the sum of this variance and the variance of the error). In the present study, we
test this method, also called regression calibration. A formulation of this method
is presented in Roulin and Vannitsem (2011) and it has also been used by Rosner
et al. (1990, 1989). The procedure is based on replacing the misestimated predictor

with a fitted linear approximation.

In order to evaluate the impact of the regression calibration, some experimen-
tal statistical tests are carried out, using synthetic ensembles with varying sizes,
biases and spread. Results show that the ensemble mean can be better estimated
using regression calibration instead of the raw ensemble mean, except when the raw

ensemble shows a significant bias or an heterogeneous distribution.

However, we decide to test the application of the regression calibration method in
conjunction with XLR calibration on the reforecast dataset. The ensemble mean of
square root transformed precipitation is used as predictor. The Ranked Probability
Score (RPS; Epstein, 1969a; Wilks, 2009b) is used as a metric for the evaluation of
the results

N S 2
RPS =Y [P(R <l - IR <q)| | (4.10)

Jj=1

where ¢; are the quantile thresholds used in eq. 4.9 and I(.) is equal to 1 if argument
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in brackets is true and 0 if it is not. This score corresponds to the discrete definition

of CRPS (eq. 3.13). Here a mean RPS, RPS is computed for a given lead time

aggregating all the grid-points for all the days. A bootstrap technique is used in

order to evaluate the uncertainty of the score. The skill scores (RPSS) is computed:
RPS

RPSS =1— ——"— 4.11
RPS,.;’ (4.11)

where RPS,. # denotes here the score computed from the raw reforecast. Results are
shown in Fig. 4.9. Skill scores are positive for all the lead times, showing a significant
improvement given by the XLR method on the raw reforecast. Skills diminishes at
longest lead times. XLR calibration applied in conjunction with regression calibra-
tion (Fig. 4.9(a)) exhibits lower skill than the same calibration without regression
calibration implementation (see Fig. 4.9(b)). The results obtained with synthetic
ensembles are confirmed with this test on a true case. For this reason, we implement
the XLR procedure using the raw predictors, discarding the regression calibration

implementation.

Hereafter a description of the set-up of the XLR calibration procedure is given.
The approach proposed by Roulin and Vannitsem (2011) is followed. The XLR
procedure applied to the reforecast provides continuous probability density function
for the 24-hour precipitation for each day and each grid point. Calibrated members
are then sampled from this distribution. The transition from continuous probability
values to probabilities drawn from a discrete number of members of the ensemble
requires the assignment of a certain number of probabilities to be sampled from the
calibrated CDF. Since the reforecast is by construction composed by 10 members,
the number of probabilities to be assigned to remap the new members is equal to 10.
The preservation of the same number of calibrated members as in the raw reforecast
is justified by two reasons: 1) this enables to dispose of a mutual correspondence
between each raw and calibrated member to evaluate the effect of the correction
member-by-member, 2) probabilistic scores may be not artificially improved since

the ensemble size does not change after correction.

As in Katz and Ehrendorfer (2006); Roulin and Vannitsem (2011), and Roulston
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and Smith (2002) the uncertainty of this sampling due to the relatively small number
of members is taken into account by adding a fictitious member distributed equally
between the occurrence of the event and the nonoccurrence, by assigning “half” of
the fictitious ensemble to the frequency of occurrence of the event, the other half to
nonoccurrence. This procedure eliminates the possibility of obtaining an estimated
probability of zero or one, which is considered an undesirable property. Indeed, 0 or
1 probability values are theoretical values that could be achieved with an ensemble

of infinite size. Therefore, the set of probability values are assigned as follows:

_l+1/2
om+1

p(l) = p(R < z¢(1)) : (4.12)

where R is the rainfall variable, z(l) is the precipitation forecast issued by the [t

member and m is the number of members of the ensemble.

Once the probabilities p(l) are determined, the value of the precipitation z';(I)

lth

corresponding to the ["" ranked member, can be obtained by inverting the logistic

function (eq. 4.2):

In (457) = o — rley”)

(0%

(4.13)

ry(l) =

Figure 4.10(a) illustrates the remapping procedure, through the transformation
of eq. 4.13. The arrow shows the correction of the raw sixth ranked member,
associated to the assigned probability p(6), to the calibrated value x.(6). Once
the set of x’f are computed for all the assigned probabilities, precipitation values are
sorted using the same rank order as the one of the raw ensemble, in order to preserve
the rank order of the members between the raw and the calibrated forecasts. In this
manner, each raw ensemble member can be related to its corresponding calibrated

one. The whole procedure is applied separately for each lead time and grid-point.

The practical processing of zero precipitation is detailed. The probability of
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non-precipitation using the logistic regression formulation is given by

exp (B + A (z?))

. (4.14)
1+exp (B + Bu(z?))

po = p(R = Olzs) =

Then, if the probability of a null precipitation with the raw ensemble is lower than
Do, each raw member whose assigned probability p(l) is lower than py is calibrated
to zero (see Fig. 4.10(d), details are given below). Otherwise, if the probability of a
null amount of precipitation in the raw ensemble is higher than pg, only a fraction
(corresponding to the probability p(l) < pg) of the zero precipitation members, are
randomly selected and set to zero. The remaining raw forecasts that predict zero
precipitation are remapped (see Fig. 4.10(c), details are given below) to the non-zero

values obtained from eq. 4.13.

The remapping procedure

The remapping procedure is illustrated in Fig. 4.10. Four example cases that
enlighten the remapping procedure have been selected. As an example, Fig. 4.10(a)
shows how a member is remapped onto the fitted logistic cumulative distribution
computed for 108-hour lead time. This example makes reference to one of the most
extreme dates (in terms of precipitation) of the reforecast. In this example, the
forecasted value is transformed into a larger value than the raw forecast. This
correction shifts all the members of the raw forecast to larger values.

Figure 4.10(b) shows another example associated with a 42 mm rainfall ensem-
ble mean forecast. In this example, the lower half of ensemble members are weakly
modified by the remapping procedure, while for the highest probabilities a large pos-
itive correction occurs. In this sense, the most intense raw members are corrected to
large precipitation values, since the fitted CDF is tailed for high probabilities. This
kind of correction leads to an increase of the dispersion of the calibrated ensemble.

Figure 4.10(c) illustrates a case of no precipitation forecast, for which the ensem-
ble mean is zero. This means that the probability of zero precipitation in the forecast
is higher than with the calibrated probability py. Only a fraction of members of the

raw forecast are remapped to non-zero precipitation values. This case shows that for

118



Chapter 4 Postprocessing of 24-hour Ensemble Precipitation Forecasts

o p— o
— T — zs====
© v o |
o o o
2 o 2o
3 o ,’// / 3 o
g i / .g
c 3 ] S I
a © s --- 36h a © 36h
P --- 60h
g i 84h g‘ . oo
, /// / -—— 108h //T/ 108h
ol T o ||t
o T T T T T T o T T T T T
0 100 300 500 700 0 20 40 60 80 100
Precipitation Precipitation
(a) (b)
o S
— ____--z==z=szSZEIZSEEE38288=S — o omossoEEEEEEEEEES
o || #7 o |
O |pFiiiimmmamanianianiaiiaai: o
2 © 2 ©
E 0-7 5 O.AZ‘[ SiSizisisiSiEiSiEiSiSiSiSiSiE S iS SR R R iR iRiEiE
3 8 R/
o Y - o Y
a © a © -
o~ B ~ | o
= 84h © 84h
o | --- 108h o | --- 108h
= T T T T I = T T T T T
0 1 2 3 4 5 0 2 4 6 8 10
Precipitation Precipitation
(c) (d)

Figure 4.10: Remapping for daily precipitation (mm) of the members of four raw
reforecast cases. The raw reforecast ensemble is presented as an ECDF in black solid
line. The ensemble cumulative distributions fitted using the logistic regression, and
drawn for the predictor issued by the raw reforecast, are represented by the dashed
curves. Each coloured curve represents the cumulative density function drawn using
the parameters estimated for different lead times. Horizontal dotted lines show the
non-precipitation probability py estimated for different lead times, using the same
colour specification as for distribution curves. The vertical red line corresponds to
the raw ensemble mean. Each panel is referred to different dates and grid-points,
selected as examples cases. The discontinuity of the curves in (c) are due to the
graphical discretization of the x-axis to 1 mm steps.
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this specific grid-point, every raw ensemble forecasts with zero mean precipitation
are remapped to non-zero mean precipitation. This correction can have an impact
on the verification scores based on low threshold values or on the verification of
rain/no rain events. The probability p, takes different values depending on the lead
time. This probability is lower for the longest lead time than for the first ones.
The last example (Fig 4.10(d)) presents a situation where the probability for
non-zero precipitation in the raw reforecast is lower than the probability py. In
this case, the members associated with the assigned probabilities lying below pg
are set to zero. The remaining ones are remapped to the fitted cumulative density
function. It is interesting to note that for all the presented cases, and for every
class of precipitation intensity, the most intense members of a given daily ensemble

forecast are always remapped towards higher values.

Effect of the calibration on the spread

The precipitation values reassignment for the ensemble members can modify the
ensemble spread. This hypothesis is addressed by computing the ensemble spread
across all the grid-points and dates for each different lead time (Fig. 4.11(a)). We
can see that the spread of the calibrated reforecast is inflated, compared to the raw
reforecast. The increase of the spread with the lead time seems to reach a limit at
108-hour lead time. Though the calibrated reforecast is still underdispersed com-
pared to the operational ensemble forecast (see Fig. 3.12). This spread modification
is found to positively impact the skill of the calibrated reforecast.

Some example cases that shows the spread modification through XLR procedure
are given. Figure 4.11(b) shows an example of the daily spread of the raw ensemble
against the daily raw ensemble mean for a given grid-point at different lead times.
Spread increases with the ensemble mean, but no distinction can be made between
the lead times. Figure 4.11(c) shows how the spread is modified after the XLR
calibration. First, the spread is shown to be directly dependent on the parameters
estimated in the extended logistic regression. The spread increases monotonically
against the ensemble mean precipitation. Since the regressions are fitted separately

for each lead time, the corresponding spread-mean relationships are different. In this
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Figure 4.11: (a) Ensemble spread computed for all grid-points, before (blue line)
and after (red line) calibration. (b) Ensemble spread (mm) from the raw reforecast
as a function of ensemble mean (mm) for a given grid-point. Each point corresponds
to a daily value, differently coloured depending on the lead time. (c) The same as
(b), but after the application of XLR. (d) As in (c), but for a different grid-point.
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Figure 4.12: BSS (top) and CRPS (bottom) computed on the reforecast dataset for
the 24-hour rainfall ensemble forecast using different quantile thresholds. Results

are computed from the raw ensemble reforecast (left) and from the calibrated one
using the XLR method (right).

example, spread at 108-hour is significantly larger than the calibrated spread at short
lead times. This behaviour is not always verified. For instance, Fig. 4.11(d) shows
that for another grid-point, 84-hour lead time exhibits a larger calibrated spread
than at 108-hour lead time. This shows that the parameters estimated through
XLR method can significantly vary depending on the grid-point and lead time.

Probabilistic scores for the calibrated reforecast

In the following part, the assessment of the XLR calibrated ensemble reforecast is
carried out through a comparison with the raw reforecast using probabilistic scores.

The focus is set on the high precipitation thresholds.

122



Chapter 4 Postprocessing of 24-hour Ensemble Precipitation Forecasts

Figures 4.12(a) and 4.12(b) show the BSS, computed for different quantile thresh-
olds, for raw and calibrated reforecast. We can observe better scores at all lead
times compared to the raw reforecast, except for gg9 and ggg95. As already observed
for BS scores, this is related to the insufficient number of cases for these extreme
events. The reliability and the resolution terms of Brier Score are both improved
(not shown). The CRPS is slightly improved (Fig. 4.12(d)). More specifically, the
reliability term gets better. As the reliability term of CRPS is related to the rank
histogram as explained by Hersbach (2000), then the increase of spread may explain
the reliability improvement.

All the probabilistic scores previously presented are computed using the 10-
members calibrated forecast, as the raw reforecast was verified for the same ensemble-
size. The number of members of an ensemble forecast affects the probabilistic scores.
An experimental test is performed in order to evaluate the sensitivity of the CRPS
score to the ensemble-size. Calibrated ensemble forecasts of varying size between
10 and 100 are sampled from the same fitted predictive cumulative functions. One
could expect that the forecasted probability distribution is better sampled with a
larger ensemble size. Figure 4.13 shows the CRPS score computed by aggregating
all lead times and grid points for different calibrated reforecast ensemble sizes. The
score gets better with the ensemble size and it tends to an asymptote for large sizes.
However, relative variations are quite small (= 1%). This result shows that the skill
of ensemble forecasting system can be improved if calibrated with a large number
of members, but weak improvements would be balanced by the computational and

technical issues related to the construction of a very large-sized ensemble.

Spatial BSS and CRPS scores

The same scores, but computed point-by-points, are then presented. If we look
at the spatial BSS maps computed for ggs, shown in Fig. 4.14(a) (raw) and 4.14(b)
(XLR calibrated) at 108-hour lead time, we note that BSS is increased everywhere
and grid-points with no skill do not appear.

This improvement is also observed for the lower thresholds (not shown). The

spatial CRPS is also globally improved as we can see in the comparison of raw
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Figure 4.13: CRPS computed aggregating all lead times and grid-points using the
calibrated ensemble adapted for different number of members.

Q 0.95 - Lead Time 108h Q 0.95 - Lead Time 108h

(a) BSS (raw) (b) BSS (XLR)

Figure 4.14: Top: BSS of 24-hour precipitation computed on each grid-point for ggs
threshold at 108-hour lead time for the raw (a) and the XLR calibrated reforecast

(b).
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Figure 4.15: Top: CRPS of 24-hour precipitation computed on each grid-point at
108-hour lead time. Middle: reliability term of the CRPS at 108-hour lead time.
Bottom: resolution term of the CRPS at 108-hour lead time. Results refer to the
raw (left) and the calibrated (right) ensemble.
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and calibrated reforecast (Fig. 4.15(a) and Fig. 4.15(b)), except for the eastern
part of the Cévennes mountains. This can be explained by the reliability and the
potential terms of the CRPS (Fig. 4.15(d) and 4.15(f)). Compared with the raw
reforecast reference (Fig. 4.15(c) and 4.15(e)), the XLR correction properly corrects
the reliability term and large CRPS values affecting especially the Cévennes area
are reduced. The potential term is mostly unchanged, except over the eastern area

of Cévennes where the potential CRPS is larger after calibration.

Reliability diagrams

The impact of the XLR correction on the reliability of the reforecast is also
evaluated by means of reliability diagrams. Reliability diagrams drawn for the raw
(left) and the calibrated (right) ensemble are shown in Fig. 4.16. They show an
important increase of reliability for ggo. Although a weak wet bias is observed,
significant reliability improvement is observed for qg5. Reliability diagrams provides
also the frequencies of probabilities p(y;) issued by the reforecast, that represent the
refinement distribution of the forecasts. Values are given above the points of the
reliability diagram for each probability (Fig. 4.16). These values are modified by
the XLR calibration compared to the raw reforecast. The forecast probability y; = 0
is reduced compared to the raw, and the corresponding frequency of occurrence is
redistributed towards larger forecast probabilities. This means that the forecaster
confidence is partially reduced for low probabilities. In the same way, the frequency
for the maximum forecast probability (y; = 1) diminishes compared to the raw. This

result reveals that the calibrated forecasts are less sharp than the raw ones.

Discrimination diagrams and other diagnostic tools

The forecast probability conditioned by the observed values is explored using the
discrimination diagrams. Fig. 4.17(a) and 4.17(b) show the discrimination diagrams
for quantile ggy for the raw and the XLR calibrated reforecast. It can be useful to
remind that this quantile threshold ranges between 0.5 mm and 7 mm, depending on
the grid-points (see Fig. 3.13(a)), and corresponds to weak rainfall amounts. The

red line, which refers to the probability of the forecast conditioned by the no event,
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raw (left) and XLR calibrated (right) reforecast. Values above points indicate the
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diagrams for gg9 quantile threshold generated from the raw (c) and the XLR cal-
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Figure 4.18: Rank histograms for 84-hour lead time. Panels refers to the raw (left)
and the XLR calibrated (right) reforecast.

shifts its maximum from 0 to 0.1 probability. This reveals the presence of a wet
bias for low precipitations induced by the XLR procedure. In other words, although
the observed values does not exceed the threshold, it often happens that at least
one member systematically exceed this value. This bias can also be observed on the
rank histogram of the calibrated ensemble. In Fig. 4.18(b) it can be seen that ranks
10 and 11 are less populated than the others. Rank histograms are significantly
improved if compared to the raw ones because the U-shape is no more established
(see examples of Fig. 4.18(b) and 4.18(a), respectively). Discrimination diagram for
a larger observed quantile threshold reveals a weak increase of the discrimination
distance compared to the raw (Fig. 4.17(d) and 4.17(c)). AUC values (Fig. 4.17(f))
get generally better, even for the most extreme thresholds (except at 108-hour lead

time).

So far the skill of the XLR calibrated ensemble has been assessed in terms of prob-
abilistic scores. Since the correspondence between the members of the raw and the
corrected forecast is known from the remapping procedure, this allows to compute
deterministic scores for each member before and after correction. For each date the

remapping of a given member depends on its rank with respect to the others. This
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Figure 4.19: MAE difference between the XLR calibrated and raw reforecast for
the members 0 (top-left), 7 (top-right) and 8 (bottom-left). Composite of 24-hour
precipitation is shown on the bottom-right panel. Results are presented for 36-hour
lead time.
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rank, for a given member, should, in theory change for every grid-point and every
day. However the use of a multiphysics approach leads to ensemble members that are
distinguishable, and the rank, for a given member may not be randomly distributed.
This effect can lead to some differences from a member to another one concerning
correction of the systematic errors. Figure 4.19 shows the MAE difference between
the XLR calibrated and raw reforecast computed for member 0, 7 and 8 for 36-hour
lead time over the 30-year period. The precipitation composite (bottom-right) cor-
responds to the averaged 24-hour observed precipitation across the 30-year period
for each grid-point. The MAE increases after calibration everywhere, except for a
subarea of Languedoc-Roussillon (brown colour). For the 108-hour lead time the
brown area is larger and it extends towards the Pyrénées chain (not shown). Score
values are similar for member 7 and 8, which implement the same deep convection
parametrization scheme (PCMT). This similarity reveals that the remapping tends
to transform the members depending on the physical schemes, because the rank of
the members tends to depend on the deep convection precipitation scheme. It is
worth noting that the MAE difference per grid-point is only partially related to the

magnitude of the corresponding observed daily rainfall mean.

4.2.3 Extended logistic regression applied to PEARP-2016

This last part of the calibration section focuses on the application of the XLR
procedure on the PEARP-2016 dataset. The logistic regression parametrized distri-
bution that is used for the calibration procedure corresponds to the one fitted on
the reforecast dataset at each grid point and lead time.

An example of the procedure for the 35-members resampling is shown in Fig.
4.20. Compared to the resampling applied to the ensemble reforecast (Fig. 4.10),
it is possible to observe a more accurate probability sampling of the probability
distribution related to the larger number of members in PEARP-2016. In Fig.
4.20(a) the ECDF drawn from the raw ensemble shows strong similarities with the
XLR functions, so that the correction is weak. In this case, the remapping procedure
has a limited impact on the individual members. Conversely, in the example of Fig.

4.20(b) the correction leads to a significant shift towards more intense values. In
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Figure 4.20: As in Fig. 4.10, but for different grid points and for two forecasts at
36-hour lead time produced by PEARP-2016. The vertical green line corresponds
to the observed value, the red one to the predicted ensemble mean.

this latter case, only one member of the raw ensemble exceeds the observed value,
while after correction 6 members within 35 are assigned to larger values than the
observed one. The correction tends to make this specific precipitation forecast more

extreme.

The BSS is used for more general probabilistic verification. The score is computed
for the raw and the calibrated PEARP-2016 forecast dataset using the relevant long-
term climatology computed from the observation reference over the 30-year period
as for the reforecast verification (Juras, 2000; Wilks, 2009b). The post-processed
PEARP-2016 ensemble gives similar results, except a weak worsening for the largest

thresholds (Fig. 4.21(b)).

Comparing to the raw ensemble, the reliability term of the Brier Score gets worse
after calibration (Fig. 4.21(d)), especially for the lowest quantile thresholds. This
result is contradictory with the same score for the reforecast, which was improved.
The resolution term (not shown) shows small modifications. On another hand we
observe that, despite the CRPS score shows less skill overall after calibration, 108-

hour lead time are improved.

The approach used here is the same as the one developed by Roulin and Vannit-

sem (2011). They calibrated the daily rainfall precipitation integrated over two small
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Figure 4.21: BSS (top), reliability term of BSS (middle), and CRPS (bottom) com-
puted on the reforecast dataset for the 24-hour rainfall ensemble forecast using
different quantile thresholds. Results are computed for the raw PEARP-2016 (left)
and for the calibrated one using the XLR method (right).
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test catchments in Belgium, using a 18-year ensemble reforecast based on ECMWF
EPS. Authors show that CRPSS is improved for at least 7-days lead time forecasts.
In the present study, the consequences of the calibration are reversed, and a weak
benefit is observed only at 108-hour lead time. This comparison reveals how the
results can be strongly conditioned by the operational ensemble system adopted as
well as the reforecast framework (model resolution, observation resolution, domain

of interest...).

The calibrated PEARP-2016 reliability is also investigated trough the reliabil-
ity diagrams (Fig. 4.22). The raw PEARP-2016 proves to be particularly skillful
in terms of reliability (left column). Only a small wet bias is observed for some
limited classes of probabilities. We observe that after calibration reliability is de-
creased. More specifically, a dry bias is added in the middle part of the forecast
probability range. The forecast probabilities are consistently too small relative to
the corresponding conditional event relative frequencies given by p(o1|y;). For the
Q9o threshold this bias is less important and also restricted to probabilities below
0.6. For the gg5 threshold, we observe a slight improvement after calibration. The
better reliability for quantile gg5 is appreciated, because it shows that forecasts for

heavy precipitation benefit from the XLR application.

This resulting dry bias for some quantile thresholds can be related to the signif-
icant differences between raw reforecast and PEARP-2016 biases. Since the XLR
function is fitted using the raw reforecast, the remapping procedure acts as reduc-
ing the wet bias observed in the reforecast. When applying XLR method to the
raw PEARP-2016, whose basic reliability is better, the remapping may lead to an

overcorrection that could cause the observed bias.

XLR calibrated forecasts tend to better discriminate large precipitation thresh-

olds (gog in this example) compared to the raw ones (Fig. 4.23(a) and 4.23(b)).

The calibration proves to slightly increase the AUC, except for 4-days forecasts
(Fig. 4.23(d)). This improvement is more significant for the largest thresholds. The
calibration degrades the rank histogram shape (Fig. 4.23(f)), introducing a shape
similar to the one observed in the rank histogram drawn from the XLR calibrated

reforecast (see Fig. 4.18(b)).
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Figure 4.22: Reliability diagrams for gsg (top), geo (middle) and gg5 (bottom), for

2-day forecasts. Left panels are referred to the raw PEARP-2016, right panel to the

calibrated version.
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Figure 4.23: Top: Discrimation diagrams for 84-hour lead time for gg9 computed
from the raw (a) and calibrated (b) PEARP-2016. Center: As in Fig. 3.17(c), but
for the raw (c) and calibrated (d) PEARP-2016 . Bottom: Rank histogram for
84-hour lead time computed from the raw (e) and calibrated (f) PEARP-2016.

136



Chapter 4 Postprocessing of 24-hour Ensemble Precipitation Forecasts

4.3 Summary and Conclusions

In the current chapter QM and XLR have been applied to the ensemble reforecast
dataset. The XLR procedure has been also applied to the PEARP-2016 ensemble,
using the reforecast as training dataset.

The results analysis showed that QM method is prone to correct biases of the
raw reforecast. The verification member-by-member reveals that MAE is reduced
only for forecasts characterized by a positive bias, in other cases MAE get worse.
QM does not explicitly address spread errors, because it is primarily meant for the
calibration of a deterministic forecast. In fact, probabilistic scores are only tightly
impacted by the QM correction. In particular, reliability and resolution are only
partially modified by the reduction of the bias. Some small improvement are found
for the discriminant ability of the calibrated reforecast.

Conversely, probabilistic scores get generally better with the application of the
XLR method on the ensemble reforecast. The correction is designed to remap the
ensemble forecasts into the fitted regression functions. After the calibration, the
ensemble spread is increased, especially for the first lead times. The benefit of the
correction is limited but significant for the largest quantile thresholds. Deterministic
scores are not improved by XLR method, demonstrating that this approach is better
for probabilistic ensemble forecast. Larger-sized ensembles can be constructed with
this post-processing method. A test based on the CRPS score has shown that
forecasts are more skillful with larger ensemble sizes.

The application of the XLR procedure on the PEARP-2016 essentially lead to
a slight degradation of the scores. The primary reason for this result relies on
some original differences between the reforecast and the operational PEARP-2016
ensemble forecast, like the conditional biases shown in the reliability diagrams. A
slight improvement for the discrimination skill, as well as the reliability, is observed

for the most extreme thresholds.
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Chapter 5 Systematic errors analysis of heavy precipitating events prediction
using a 30-year hindcast dataset

5.1 Introduction

In the previous chapter, the characteristics of the reforecast in terms of QPF
have been explored using grid-point based approaches. These techniques, especially
when applied to intense events, are subject to timing or position errors leading to
low scores (Mass et al., 2002). In the current chapter, reforecast is analyzed member-
by-member by means of an object-oriented approach, which adresses in particular
to the HPESs.

The role of the parametrizations with regard to the intense events is investigated.
The statistical analysis, which considers the spatial properties of the predicted and
observed objects from the 24-hour precipitation, is carried out on the basis of the

SAL measure (Wernli et al., 2009, 2008).
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Abstract. The western Mediterranean region is prone to devastating flash floods induced by heavy precipitation events (HPEs),
which are responsible for considerable human and material losses. Quantitative precipitation forecasts have improved dramati-
cally in recent years to produce realistic accumulated rainfall estimations. Nevertheless, there are still challenging issues which
must be resolved to reduce uncertainties in the initial conditions assimilation and the modeling of physical processes. In this
study, we analyze the HPE forecasting ability of the multi-physics based ensemble model operational at Météo-France Prévi-
sion d’Ensemble ARPEGE (PEARP). The analysis is based on 30-year (1981-2010) ensemble hindcasts which implement the
same 10 physical parametrizations, one per member, run every 4 days. Over the same period a 24-hour precipitation dataset is
used as the reference for the verification procedure. Furthermore, regional classification is performed in order to investigate the
local variation of spatial properties and intensities of rainfall fields, with a particular focus on HPEs. As gridpoint verification
tends to be perturbed by the double penalty issue, we focus on rainfall spatial pattern verification thanks to the feature-based
quality measure SAL that is performed on the model forecast and reference rainfall fields. The length of the dataset allows
to sub-sample scores for very intense rainfall at a regional scale and still get significant analysis demonstrating that such a
procedure is consistent to study model behaviour in HPE forecasting. In the case of PEARP, we show that the amplitude and
structure of the rainfall patterns are basically driven by the deep convection parametrization. Between the two main deep con-
vection schemes used in PEARP, we qualify that the PCMT parametrization scheme performs better than the B85 scheme. A
further analysis of spatial features of the rainfall objects to which the SAL metric pertains shows the predominance of large
objects in the verification measure. It is for the most extreme events that the model has the best representation of the distribution

of object integrated rain.

Copyright statement. TEXT

1 Introduction

Episodes of intense rainfall in the Mediterranean affect the climate of western Europe and can have important societal impact.
During these events, daily rainfall amounts associated with a single event can reach annual equivalent values. These rainfall

events coupled with a steep orography are responsible for associated torrential floods, which may cause considerable human
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and material losses. In particular, Southern France is prone to devastating flash fiood events such as the Aude case (Ducrocq
et al., 2003), Gard (Delrieu et al., 2005), and Vaison-La-Romaine (Sénési et al., 1996), which occurred on 12-13 November
1999, 22 September 1992 and 8-9 September 2002, respectively. For instance, in the Gard case more than 600 mm were
observed locally during a two-day event and 24 people were killed during the associated flash flooding. Extreme rainfall events
generally occur in a synoptic environment favourable for such events (Nuissier et al., 2011).

A detailed list of the main atmospheric factors which contribute to the onset of HPEs are reported by Lin et al. (2001): 1) a
conditionally or potentially unstable airstream impinging on the mountains, 2) a very moist low-level jet, 3) a steep mountain,
and 4) a quasi-stationary convective system that persists over the threat area. However, not all these factors necessarily need to
be present at the same time to produce HPEs. In Southeastern France, the Mediterranean Sea acts as a source of energy and
moisture which is fed to the atmospheric lower levels over a wide pronounced orography above the Massif Central, Pyrenees,
and South Alps areas (Delrieu et al., 2005). Extreme rainfall amounts are enhanced especially along the Southern and Eastern
foothills of mountainous chains (Frei and Schir, 1998; Nuissier et al., 2008), in particular the Southeastern part of the Massif
Central (Cévennes). Ehmele et al. (2015) emphasized the important role played by complex orography, the mutual interaction
between two close mountainous islands in this case, on heavy rainfall under strong synoptic forcing conditions. Nevertheless,
other regions are also affected by rainfall events with a great variety of intensity and spatial extension. Ricard et al. (2011)
studied this regional spatial distribution based on a composite analysis and showed the existence of mesoscale environments
associated with heavy precipitating events. Considering four sub-domains, they found that the synoptic and mesoscale patterns
can greatly differ as a function of the location of the precipitation.

Extreme rainfall events are generally associated with coherent structures slowed down and enhanced by the relief, whose
extension is often larger than a single thunderstorm cell. At some point, this mesoscale organization can turn into a self-
organization process leading to a mesoscale convective system (MCS) when interacting with their environment, which in turn
leads to high intensity rainfall (Nuissier et al., 2008).

Among the list of factors contributing to HPE creation, some are clearly only within the scope of high resolution convection
permitting models. Indeed, vertical motion and moisture processes need to be explicitly solved to get realistic representation of
convection. On the other hand, as we have just highlighted, some other factors linked with synoptic circulations or orography
representations can be well estimated in global models, in particular when horizontal resolution gets close to 15-20 km. Con-
sequently, the corresponding predictability of such factors can reach advantageous lead times for early warnings, i.e. longer
than the standard 48 hours that the limited area model may be expected to achieve. Indeed, if long term territorial adaptations
are necessary to mitigate the impact of HPEs, a more reliable and earlier alert would be beneficial in the short term. Weather
forecasting coupled with hydrological impact forecasting is the main source of information for triggering of weather warnings.
Severe weather warnings are issued for the 24-hour forecast only. However, in some cases, the forecast process could be issued
some days prior to the severe weather warnings. A better understanding of the sources of model uncertainty at such time-range
may provide a major source of improvement for early diagnosis.

Forecast uncertainties can be related to initialization data (analysis) or lateral boundary conditions, and it has been investi-

gated with both deterministic models (Argence et al., 2008) and ensemble models (Vié et al., 2010). Several previous studies
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showed that predictability associated with intense rainfall and flash-floods decreases rapidly with the event scale (Walser et al.,
2004; Walser and Schir, 2004; Collier, 2007). Several studies based on ensemble prediction systems have shown the general
ability of such models to sample the sources of uncertainty in HPE probabilistic forecasting (Du et al., 1997; Petroliagis et al.,
1997; Stensrud et al., 1999; Schumacher and Davis, 2010; World Meteorological Organization, 2012). In ensemble forecasting,
the uncertainty associated with the forecast is usually assessed by taking into account initial and model error propagation. As
for the initial uncertainty, major meteorological centers implement different methods: the most common of which are singular
vectors (Buizza and Palmer, 1995; Molteni et al., 1996) , bred vectors (Toth and Kalnay, 1993, 1997) and perturbed observa-
tion in analysis process (Houtekamer et al., 1996; Houtekamer and Mitchell, 1998). The model error is related to grid-scale
unsolved processes in the parametrization scheme and is assessed in the models with two main techniques. Some models use
stochastic perturbations of the inner-model physics scheme (Palmer et al., 2009), others use different parametrization schemes
in each forecast member (Charron et al., 2009; Descamps et al., 2011).

The global ensemble model implemented at Météo-France Prévision d’Ensemble ARPEGE (PEARP; Descamps et al., 2015)
is based on the second technique, also known as a multi-physics approach. Compared to the stochastic perturbation, the error
model distribution cannot be explicitly formulated in the multi-physics approach. It is then difficult to know a priori the
influence of the physics scheme modifications on the forecast ability of the model. This is even more the case when highly non-
linear physics with high order of magnitude processes are considered. In order to improve the understanding and interpretation
of ensemble forecasts in tense decision-making situations as well as for model development and improvement purposes, it
would be of great interest to have a full and objective analysis of the model behaviour in terms of HPE forecasting. This is one
of the main aims of this study.

In order to achieve such a systematic analysis, standard rainfall verification methods can be used. They are usually based on
grid-point based approaches. These techniques, especially when applied to intense events, are subject to time or position errors
leading to low scores (Mass et al., 2002) also known as the double penalty problem (Rossa et al., 2008). To counteract this
problem, spatial verification techniques have been developed with the goal of evaluating a forecast quality from a forecaster
standpoint. Some of these techniques are based on object-oriented verification methods (Ebert and McBride, 2000; Davis et al.,
2006a; Wernli et al., 2008; Davis et al., 2009; AghaKouchak et al., 2011; Mittermaier et al., 2015). The feature-based quality
measure SAL (Wernli et al., 2008, 2009) is used in this study. Another element required to achieve such an analysis is the
availability of forecast datasets long enough to get a proper sampling of the events to verify.

In our study, we profit from a reforecast dataset based on a simplified version of the PEARP model available over a 30 year
period. Such reforecast datasets have been previously shown to be relevant for calibrating operational models in various ways.
In Hamill and Whitaker (2006), Hamill et al. (2008), Hamill (2012) and Boisserie et al. (2015), the reforecast is used as a
learning dataset to fit statistical models to calibrate forecast error corrections that are then applied on operational forecasting
outputs. Boisserie et al. (2015) and Lalaurette (2003) have shown the possibility of using a reforecast dataset as a statistical
reference of the model to which the extremeness of a given forecast is compared. In this paper, we analyze the ensemble model
PEARP forecast predictability at lead times between day 2 and day 4 of daily rainfall amounts. This analysis is performed on

the long reforecast 30-year dataset. One aim is to determine whether a multi-physics approach could be considered as a model
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error sampling technique appropriate for a good representation of HPEs in the forecast at such lead times. In particular, the
behaviour of the different physics schemes implemented in PEARP have to be estimated individually. One main side aspect
of this work focuses on developing a methodology suitable for evaluating the performances of an ensemble reforecast in a
context of intense precipitation events using an object oriented approach. In particular, we focus on intense precipitation over
the French Mediterranean region. In addition to the analysis of diagnostics from the SAL-metric, a statistical analysis of 24-
hour rainfall objects identified in the forecasts and the observations is performed in order to explore the spatial properties of
the rainfall fields.

The data and the methodology are presented in Section 2. Section 2.1 describes the reforecast ensemble dataset and Section
2.2 details the creation of the daily rainfall reference, the HPEs statistical definition, and the regional clustering analysis.
Results arising from the spatial verification of the overall reforecast dataset are presented in Section 3.1. Section 3.2 presents
SAL diagnostics divided into all different physical parametrization schemes of the ensemble reforecast, and for the spatial

properties of individual objects. Conclusions are given in Section 4.

2 Data and methodology
2.1 PEARP hindcast

The PEARP reforecast dataset consists of a 10-member ensemble computed daily from 1800 UTC initial conditions, covering
four months (from September to December), every year of a 30-year period (1981-2010). This period has been chosen since
HPE occurrence in the considered region is largest during the autumn season (see Fig. 3 from Ricard et al., 2011). It uses
ARPEGE (Action de Recherche Petite Echelle Grande Echelle, Courtier et al. (1991)), the global operational model of Météo-
France with a spectral truncation T798, 90 levels on the vertical, and a variable horizontal resolution (mapping factor of 2.4
with a highest resolution of 10 km over France). One ensemble forecast is performed every 4 days of the four-month period up
to 108-hour lead time. Our initialization strategy follows the hybrid approach described in Boisserie et al. (2016), in which first
the atmospheric initial conditions are extracted from the ERA-Interim reanalysis (Dee et al., 2011) available at the European
Center for Medium-range Weather Forecasts. Second, the land-surface initialization parameters are interpolated from an offline
simulation of the land-surface SURFEX model (Masson et al., 2013) driven by the 3-hourly near-surface atmospheric fields
from ERA-Interim. 24-hour accumulated precipitation forecasts are extracted on a 0.1° x 0.1° grid, that defines the domain
D (see Fig. 1c¢), which encompasses Southeastern France (Fig. 1a). The reforecast dataset does not have any representation of
initial uncertainty, but it implements the same representation of model uncertainties (multiphysics approach) as in the PEARP
operational version of 2016.

Nine different physical parametrizations (see Table 1) are added to the one that corresponds to the ARPEGE deterministic
physical package. This set of parametrizations is the same as the one implemented in PEARP. Two turbulent diffusion schemes
are considered: the Turbulent Kinetic Energy scheme (TKE; Cuxart et al., 2000; Bazile et al., 2012) and the Louis scheme (L79;
Louis, 1979). TKE .4 is a slightly modified version of TKE, in which horizontal advection is ignored. For shallow convection,

different schemes are used: a mass flux scheme introduced by Kain and Fritsch (1993) and modified by Bechtold et al. (2001),
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Figure 1. Panel a shows a situation map of the investigated area (rectangle with red edges) with respect to Western Europe and the Mediter-
ranean Sea. Panel b shows the rain-gauges network used for the study. Red diamonds represent the rain-gauges selected for cross-validation
testing, blue dots represent the rain-gauges selected for cross-validation training. Panel ¢ shows the 0.1° x 0.1° model grid (in blue), along

with the location of three key areas. The domain D is located within the borders of the model grid (panel c).

thereafter the KFB approach, the Prognostic Condensates Microphysics and Transport scheme (PCMT; Piriou et al., 2007)),
the Eddy-Diffusivity/Kain-Fritsch scheme (EDKF) and the PMMC (Pergaud, Masson, Malardel, Couvreux) scheme (Pergaud
et al., 2009). The deep convection component is parametrized by either the PCMT scheme or the Bougeault (1985) scheme
(thereafter B85). Closing the equation system used in these two schemes means relating the bulk mass flux to the in-cloud
vertical velocity through a quantity v qualifying the convection area coverage. Two closures are considered: the first one (C1) is
based on the convergence of humidity and the second one (C2) is based on the CAPE (Convective Available Potential Energy).
B85 scheme originally uses the C1 closure, while PCMT alternatively uses the closure (C1 or C2) which maximizes the ~
parameter. Physics package 2 uses a modified version of the B85 scheme in which deep convection is triggered only if cloud top
exceeds 3000 m (B85m4 in Table 1). The same trigger is used in physics package 3 in which deep convection is parametrized

using the B85 scheme along with a CAPE closure (CAPE in Table 1). Finally the oceanic flux is solved by means of the ECUME
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Table 1. Physical parametrizations used in the ensemble reforecast.

Turbulence Shallow convection Deep convection Oceanic flux

Ref TKE KFB B85 ECUME
1 TKE KFB B85 ECUME 04
2 L79 KFB B85moa ECUME
3 L79 KFB CAPE ECUME
4 TKEmod KFB B85 ECUME
5 TKE EDKF B85 ECUME
6 TKE PMMC PCMT ECUME
7 TKE KFB PCMT ECUME
8 TKE PCMT PCMT ECUME
9 TKE KFB B85 ECUME

(Exchange Coefficients from Unified Multicampaigns Estimate) scheme (Belamari, 2005). In ECUME,,;,q4 evaporation fluxes
above sea surfaces are enhanced. Control member and member 9 are characterized by the same parametrization set-up, but

member 9 differs for the modelization of orographic waves.
2.2 Daily Rainfall Reference

24-hour accumulated precipitation is derived from the in-situ Météo-France rain-gauge network, covering the same period as
the reforecast dataset. 24-hour rainfall amounts collected from fourteen French departments within the reforecast domain D
are used (Fig. 1b). In order to maximize the rain-gauge network density within the region, all daily available validated data
covering the period have been used.

Rain-gauge observations are used to build gridded precipitation references by a statistical spatial interpolation of the obser-
vations. The aim of this procedure is to ensure a spatial and temporal homogeneity of the reference, as well as the same spatial
resolution as the reforecast dataset. Ly et al. (2013) provided a review of the different methods for spatial interpolation of
rainfall data. They showed that kriging methods outperform deterministic methods for the computation of daily precipitation.
However, both types of methods were found to be comparable in terms of hydrological modelling results. For the interpolation,
we use a mixed geo-statistical and deterministic algorithm, which implements Ordinary Kriging (OK; Goovaerts et al., 1997)
and Inverse Distance Weighting methods (IDW; Shepard, 1968). For the kriging method, three semi-variogram models (Expo-
nential, Gaussian and Spherical) are fitted to daily sample semi-variogram drawn from raw and square root transformed data
(G. Gregoire et al., 2008; Erdin et al., 2012). This configuration involves the use of six different geo-statistical interpolation
models. In addition, four different IDW versions are used, by varying the geometric form parameter d used for the estimation

of the weights (see Eq. (2) in Ly et al., 2011) and the maximum number n of neighbour stations involved in the IDW compu-
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Figure 2. Annual average of HPE occurrence per grid point (in green). The composite of daily rainfall amounts (mm/day) of the HPE dataset

is represented by the blue isohyets.

tation. Three versions are defined by fixing parameter d = 2 and alternatively assigning n values equal to 5, 10 and N (with NV
being the total number of stations available for that specific day). In the fourth version we set n = N and d = 3. For each day, a
different interpolation method is used and its selection is based on the application of a cross validation approach. We select 55
rain-gauges as a training dataset (see the red diamonds in Fig. 1c) in order to have sufficient coverage over the domain, espe-
cially on the mountainous area. Root Mean Square Error (RMSE) is used as a criterion of evaluation. For each day, the method
which minimizes the RMSE computed within the rain-gauges of the training dataset is selected and the spatial interpolation
is then performed on a regular high resolution grid of 0.05°. The highest resolution estimated points are then up-scaled to the
0.1°grid resolution of domain D, by means of a spatial average. This up-scaling procedure aims at reproducing the filtering

effect produced by the parametrizations of the model on the physical processes that occur below the grid resolution.
2.2.1 HPE database

We implement a methodology in order to select the HPEs from the daily rainfall reference. Anagnostopoulou and Tolika
(2012) have examined parametric and non-parametric approaches for the selection of rare events sampled from a dataset. Here
we adopt a non-parametric peak-over-threshold approach, on the basis of WMO guidelines (World Meteorological Organi-
zation, 2016). The aim is to generate a set of events representative of the tail of the rainfall distribution for a given region
and season. Following the recommendation of Schir et al. (2016), an all-day percentile (Py<,<1) formulation is applied. A

potential weakness of the research methodology based on the gridded observation reference is that a few extreme precipitation
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events affecting a smaller area than the grid resolution may not be identified. However, this approach has been preferred to a
classification using rain-rauges because spatial and temporal homogeneity are ensured.

We proceed as follows: first the domain is split into two sub-regions based on the occurrence of climatological intense
precipitations during the 30 year period. The sub-region A includes all the points whose climatological 99.5 percentile is lower
or equal to a threshold T, subregion B includes all the other points. Threshold 7', after several tests, has been set to 85 mm. This
choice was made in order to separate the domain into two regions characterized by different frequency and intensity of HPEs.
Subregion A designates a geographical area where a large number of cases of intense precipitation are observed. Subregion B
primarily covers the plain area, where HPE frequency is lower. For this reason, two different level thresholds values are selected
to define an event, depending on the subregion. More specifically, a day is classified as an HPE if one point of sub-region A
accumulated rainfall is greater than 100 mm or if one point of sub-region B rainfall is greater than its 99.5 percentile. The
selection led to a classification of 192 HPEs, corresponding to a climatological frequency of 5% over the 30-year period. The
24-hour rainfall amount maxima within the HPE dataset ranges from 100 mm to 504 mm. It is worth mentioning that since we
consider daily rainfall, rainfall events that would have high 48 hour or 72 hour accumulated rainfall may be disregarded. Figure
2 shows for each point of the domain the number of HPE, as well as the composite analysis of HPEs. The composite analysis
involves computing the grid point average from a collection of cases. The signal is enhanced along the Cévennes chain and
on the Alpine region. It should be noted that some points are never taken into account for the HPE selection (white points of
Fig. 2), because the required conditions have not been met. The analysis of the rainfall fields across the HPE database exhibits
the presence of patterns of different shape and size, revealing potential differences in terms of the associated synoptic and

mesoscale phenomena (not shown).
2.2.2 Clustering analysis

Clustering analysis methods can be applied to daily rainfall amounts in order to identify emergent regional rainfall patterns.
This classification is largely used for assessing the between-day spatial classification of heavy rainfall (Romero et al., 1999;
Pefarrocha et al., 2002; Little et al., 2008; Kai et al., 2011). We applied a cluster analysis, as an exploratory data analysis tool,
in order to assess geographical properties of the precipitation reference dataset. The size of the dataset is first reduced and the
signal is filtered out by means of a principal component analysis (Morin et al., 1979; Mills, 1995; Teo et al., 2011). The first
13 Principal Components (PCs), whose projection explains 90% of the variance, are retained. Then the K-means clustering
method is applied. It is a non-hierarchical method based on the minimization of the intraclass variance and the maximization
of the variance between each cluster. A characteristic of k-means method is that the number of clusters (K) into which the data
will be grouped has to be a priori prescribed. Consequently, we first have to implement a methodology to find the number of
clusters which leads to the most classifiable subsets.

The analysis is applied to the full reference dataset, including rainy and dry days. We run 2000 tests for a range of a priori
cluster numbers K that lie between 3 and 13, by varying a random initial guess each time. Then, for a given K, an evaluation
of the stability of the assignment into each cluster is performed. The number of clusters is considered stable if each cluster size

is almost constant from one test to another. K =5 is retained as the most stable number of clusters and because it suggests a



Table 2. Classification of days computed from 24-hour rainfall amounts in southern France (1981-2010), percentage of HPEs and fraction
of HPEs. HPEs(%) refers to the ratio between the number of HPEs within the cluster and the total number of HPEs. Fraction of HPEs (%)

refers to the ratio between the number of HPEs within the cluster and the total number of dates included in the corresponding cluster.

Cluster Total (%) HPEs (%) Fraction of HPEs (%)
1 14.5 11.4 43
2 53 24.0 24.6
3 1.8 30.7 922
4 75.8 2.6 0.2
5 2.6 313 65.2
Total number of days 3660 192
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Figure 3. Rainfall composites (mm/day) for the 5 clusters selected by the K-means algorithm. The bottom-right panel shows the probability

density distribution of the maximum daily rainfall (mm) for each cluster class.
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coherent regional stratification of the daily rainfall data. The final classification within the 2000 tests is selected by minimizing
the sum of the distance between the cluster centroids from each test and the geometric medians of cluster centroids computed
from all the tests. The test which minimizes this quantity has been selected as the reference classification. The results from
the cluster classification are summarized in Table 2. The clusterization shows large differences in term of cluster size, more
than 3/4 of the dataset is grouped in cluster 4, which mostly collects the days characterized by weak precipitation amounts or
dry days. The percentage of HPEs within the clusters shows that the most intense events are represented in clusters 2, 3 and 5,
among which cluster 5 shows largest proportion of HPE (65% of HPEs within this cluster). Clusters 2,3 and 5 together account
for 86% of the HPEs.

The same composite analysis as the one previously applied to HPE class, is now computed for each cluster class (Fig. 3). It
shows significant differences between clusters. Not only the relative intensity of events is different for each of the clusters, but
also the location differs. Rainfall range is weak for cluster 1 and close to zero for cluster 4. Cluster 2 includes some moderate
24-hour rainfall amounts related to generalized precipitation events and a few HPEs. For cluster 1, composite values are slightly
higher on the northwestern area of the domain, while for cluster 2, rainfall amounts values are more significant on the eastern
side of the domain D. Clusters 3 and 5 together account for 63% of the HPEs of the whole period, but rainfall events seem to
affect different areas. Cluster 3 includes most of the events impacting the Cévennes mountains and the eastern departments on
the southern side of the Alps. Cluster 5 average rainfall is enhanced along the southern side of the Cévennes, especially the
Languedoc-Roussillon region.

The bottom-right panel of Fig. 3 shows the density distributions computed from the maximum daily rainfall for each cluster.
It is worth noting that cluster rainfall distributions cover different intervals of maximum daily rainfall amounts. Cluster 4
includes all the dry days. As this paper focuses on the most severe precipitation events, results will only be shown for clusters

2, 3 and 5 for the remainder of the paper.
2.3 The SAL verification score
2.3.1 The SAL score definition

The SAL score is an object-based quality measure introduced by Wernli et al. (2008) for the spatial verification of numerical
weather prediction (NWP). It consists in computing three different components: structure S is a measure of volume and shape
of the precipitations patterns, amplitude A is the normalized difference of the domain-averaged precipitation fields, and location
L is the spatial displacements of patterns on the forecast/observation domains.

Different criteria for the identification of the precipitation objects could be implemented: a threshold level (Wernli et al.,
2008, 2009), a convolution threshold (Davis et al., 2006a, b), or a threshold level conditioned to a cohesive minimum number
of contiguous connected points (Nachamkin, 2009; Lack et al., 2010). The threshold level approach needs only one estimation
parameter, so it has been preferred to the other methods for its simplicity and interpretability. Since we focus on the patterns
associated with the HPEs, we decided to adapt the threshold definition given by T = Ty X f, Where 2,4, is the maximum

precipitation value of the points belonging to the domain and f is a constant factor (=1/15, in the paper of Wernli et al., 2008).

10
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Here the coefficient f has been raised to 1/4, because a smaller value results in excessively large objects spreading out over
most of the domain D. Choosing a higher f factor enables to obtain more realistic features within the domain considered.
Threshold levels 7'y are computed daily for the reforecast and the reference dataset. Although objects are smaller than the
domain for most of the situations, a few objects extending outside the domain are consequently limited by the boundaries of
the region concerned.

If we consider the domain D, the amplitude A is computed as follows:

_ <Rfor>D — <RUbS>D
0.5 ({(Rtor) p + (Robs) p)

€[-2,2], M

where (), denotes the average over the domain D. Ry, and Rops are the 24-hour rainfall amounts over D associated with

the forecast and the observation, respectively. A perfect score is achieved for A = 0. The domain-averaged rainfall field is

overestimated by a factor 3 if A = 1, similarly it is underestimated by a factor 3 if A = —1. The amplitude is maximal (A = 2)
if <<1§§ZZ>>Z — 400 and minimal (A = —2) if ;g;;;i -0.

The two other components require the definition of precipitation objects (thereafter {Obj}), also called features, which
represent contiguous grid points belonging to the domain D, characterized by rainfall values exceeding a given threshold. The
location L is a combined score defined by the sum of two contributions, L1 and L2. L1 measures the magnitude of the shift

between the center of mass of the whole precipitation field for the forecast (Z,,) and observation (Zops):
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where d is the largest distance between two boundary points of the considered domain D. The second metric L2 takes into

account the spatial distribution of the features inside the domain, that is the scattering of the objects:
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where M, is the integrated mass of the object n, z,, is the center of mass of the object n, N is the number of objects and Z is

the center of mass of the whole field.

12 = tho%drobg' €10,1], )

L=L1+L2€0,2]. ®)

L2 aims at depicting object differences between observed and forecasted scattering of the precipitation objects. We can notice
that the scattering variable (Eq. (3)) is computed as the weighted distance between the center of total mass and the center of
mass of each object. Therefore L is a combination of the information provided by the global spatial distribution of the fields
(L1) and the difference in scattering of the features over the domain (L2). The location score is perfect if L1 = L2 =0, so if

L =0 all the centers of mass match each other.
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The S-component is based on the computation of the integrated mass M, of one object k, scaled by the maximum rainfall

amount of the object k:

My,

Vi=——————. 6
F max R(z;x € Objy,) ©)
Then, the weighted average V' of all features is computed, in order to obtain a scaled, weighted total mass:
N
MyVy
y = Zaa Mali, @)
Zn:l ]\/[n
Vor - ‘/0 S
£ b e[-2,2). ®)

~ 0.5(Vior + Vobs)
Then, S represents the difference of both forecasted and observed volumes, scaled by their half-sum. It is important to scale
the volume so that the structure is less sensitive to the mass, meaning that it relates more to the shape and extension of the
features rather than their intensities. In particular S < 0 means that the forecast objects are large and/or flat compared to the
observations. Inversely, peaked and/or smaller objects in the forecast give positive values of .S. We refer to Wernli et al. (2008)
for the exploration of the behaviour of SAL for some idealized examples.
On the basis of the definition of the score, it can be noticed that A and L1 components are not affected by the object identifi-

cation and depend only on the total rainfall fields.
2.3.2 A selected example of the application of SAL

An example of the SAL score applied to an HPE, that occurred on the 28 Oct 2004, is shown in Fig. 4 (60-hour lead time
forecast run using the physical package n.8). For the rainfall reference, a 24-hour rainfall maximum value (121.3 mm), was
registered in the southeastern coastal region. Therefore the threshold level T’ is set to 30.3 mm. For the forecast, the maximum
value is 123.1 mm (7'y = 30.8 mm) and, in contrast with the reference, it is located on the Cévennes. The number of objects,
three, is equivalent in both fields. The value of A is 0.08, which means that the domain-averaged precipitation field of the
forecast is nearly similar to the reference one. The structure S-components is positive (0.28), which could be explained by the
larger forecast object over the Cévennes area, while the object along the southeastern coast is smaller and less intense. The
contribution of the third object is negligible for the computation of S. The L-component is equal to 0.23, with L1=0.13 and
L2=0.10. The location error L1 means that the distance between the centers of total mass (see diamonds in Fig. 4) is 13/100 of
the largest distance between two boundary points of the considered domain. This error is mostly due to the fact that the most

intense rainfall patterns are far apart from each other in the observations and the forecast.

3 Analysis of the reforecast HPE representation

An SAL verification score has been applied to the reforecast dataset to perform statistical analysis of QPF (Quantitative Precip-

itation Forecast) errors. The reforecast dataset is considered as a testbed model in order to study sources of systematic errors in
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Figure 4. SAL pattern analysis for the case of 28 October 2004, applied on the observation data (left panel), and one 60-hour lead time
forecast (right panel). Base contour of the identified objects are in red lines. Gray points stand for the rain barycenter of each pattern, gray
diamond depicts the rain barycenter for the whole field. The size of the barycenter points is proportional to the integrated mass of the

associated object.

Table 3. Contingency table computed for rainy and dry days.

Contingency table  Obs rainy day  Obs dry day

Model rainy day 3258 84
Model dry day 226 62

the forecast. The overall reforecast performance is first examined for HPE/non-HPE, then according to the clusters. In a second
step, the behaviour of the different physics schemes is analyzed by separately considering the SAL results of each reforecast
member. Similarly, the analysis is again allocated to HPE/non-HPEs and subsequently to each cluster.

For both the reforecast and the reference, we set all the days with at least one grid point beyond 0.1 mm as a rainy day.
In order to facilitate the comparison between the parametrizations, SAL verification is only performed when all the members
and the reference are classified as rainy day. Table 3 shows the contingency table of the rainy and dry days. Therefore 84 false
alarms, 226 missed cases, and 62 correctly forecast dry days are not involved in the SAL analysis. No HPE belong to the misses

and no simulated HPE belong to the false alarms. The SAL measure is then applied to the 3258 rainy days.
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Figure 5. Relationship between the daily rainfall gridpoint maximum algebric error and the A-component of the SAL score. HPEs days are
plotted in red, while other days are in black. Left panel is for LT12 lead time, right panel shows LT34 lead time. Linear regression analysis

is added to the plot.

3.1 SAL Evaluation of the HPE forecast
3.1.1 HPE/non-HPE

First the relationship between the A-component of SAL and the maximum grid-point error is investigated (Fig. 5). 36-hour and
60-hour lead times (LT12 hereafter) and 84-hour and 108-hour lead times (LT34 hereafter) are grouped together. Maximum
daily absolute errors range between -250 mm and 250 mm. Rare higher values are observed, which are likely related to strong
double penalty effects that often occur in gridpoint-to-gridpoint verification. Points are mostly scattered along the amplitude
axis showing that the error dependence on A-component is weak. Concerning HPEs, the scatter plot shows A-component
values under 1, which means that the scaled average precipitation in the forecast never exceeds three times the observation. In
contrast, A-component negative values are predominant, in particular at LT34, in relation with strong underestimations of the
domain-averaged rainfall field. Some cases of significant maximum grid-point errors in conjunction with moderate negative
A-component must be related to strong location errors. In these cases, the domain-averaged field may be similar to the observed
one while the maximum rainfall is spatially deviated. For the non-HPE, we can see that, especially for LT34, the model could
significantly overestimate both the A-component and the maximum grid-point error.

The relationship between the different SAL components might help to understand sources of model error. In Fig. 6 the S and
A components are drawn for the HPEs only. Perfect scores are reached for the points located on the origin O of the diagram.
Very few points are located on the top left-hand quadrant. This indicates that an overestimation of precipitation amplitude
associated with too small rainfall objects is rarely observed. The points, especially for LT34, are globally oriented from the

bottom left-hand corner to the top right-hand corner. This suggests a linear growth of the A-component as a function of the S-
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Figure 6. Relationship between the A-component and the S-component of the SAL score (SAL diagrams) for HPEs only, for lead times
LT12 (left) and LT34 (right). Blue triangles represent HPEs with gridpoint maximum rainfall under 200 mm/day, and red triangles for
rainfall amounts beyond 200 mm. Triangles are proportional to the rainfall value. Some main characteristics of the component distribution
are plotted, the median value (dashed lines), percentile 25% and 75% delimitate the boxes. Circles represent the limits 25%, 50% and 75%
percentiles to the best score (A=0, S=0).

component, which means that the average rainfall amount is roughly related to the structure of the spatial extension. For the two
diagrams, it can also be noticed that many of the points are situated in the lower-right quadrant, suggesting the presence of too
large and/or flat rainfall objects compared to the reference while the corresponding A-component is negative. This is supported
by the values of the medians of the distribution of the two components (dashed lines) and the quartile values (respective limits
of the boxes). The positive bias in the S-component is even stronger for the most extreme HPEs (red triangles). The distortion
of S-component error compared to A-component shows that the model has more difficulties reproducing the complex spatial
structure than simulating the average volume of a heavy rainfall. This deficiency may be related to the convection part not
represented in the parametrization scheme. It may also be related to the representation of orography at a coarse resolution.
As shown by Ehmele et al. (2015), an adequate representation of topographic features and local dynamic effects are required
to correctly describe the interaction between orography and atmospheric processes. Furthermore, initial conditions have been
shown to have a significant influence on rainfall forecasting (Kunz et al., 2018; Khodayar et al., 2018; Caldas-Alvarez et al.,
2017).
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Figure 7. A-component (left column) and S-component (right column) normalized histograms and probability density functions for clusters

2, 3 and 5. Results for lead time LT12 are plotted in black lines and results for lead times LT34 are in grey.

For each point of the diagram in Fig. 6 we compute its distance from the origin (perfect score (A=0; S=0)). The dotted circles
respectively contain the 25%, 50% and 75% points with the smallest distance. The radius of the circles are much larger for

LT34, confirming a degradation of the scores for longer lead times.
3.1.2 Clusters

We use our clustering procedure (as defined in Section 2.2.2) to analyze the characteristics of the forecast QPF errors along
with the regional properties. SAL components are stated for each day of each cluster associated with HPEs, i.e. C2, C3 and
C5. In Fig. 7, PDFs (Probability Density Functions) are drawn from the corresponding normalized histograms for the two
lead times LT12 and LT34. The distributions of the A-component are negatively-skewed for all the clusters. This shows that
the model tends to produce too weak domain-averaged rainfall in the case of heavy rainfall. This is even more important for
clusters 3 and 5. For long lead times, the distributions are flatter, showing that the left tail of the A-component PDF spreads far
away from the perfect score.

The distributions of the S-component (right panels) are positively skewed in cluster 2 and 3, while they are more centered for
cluster 5. For all the clusters, the spread of the S-component distributions is less dependent on the lead time, compared to the
A-component distributions. It is interesting to examine whether a relationship between the S-component and the intensity of

the rainfall can be identified. A Pearson correlation coefficient is computed between the daily mean of S-component estimated
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Table 4. Pearson correlation between the daily mean S-component and the maximum daily rainfall for the three cluster classifications. A t-test

is applied to the individual correlations. For the three clusters, the null hypothesis (true correlation coefficient is equal to zero) is rejected.

Cluster LTI2 LT34
2 050 0.44
3 0.59 0.50
5 0.37 0.46

within the ten members of the reforecast and the maximum observed daily rainfall for each cluster class (Table 4). A positive
correlation is found for all three clusters, which corroborates the results from Fig. 6 where HPEs correspond to the highest
S-component values. Maximum correlation is found for cluster 3. Although correlations are statistically significant, it is worth

noting that values are quite weak (in particular for cluster 5).
3.2 Sensitivity to physical parametrizations

The SAL measure is analysed separately for the ten different physical packages to study corresponding systematic errors. More
specifically, we raise the following questions: Do the errors based on an object-quality measure and computed for the different
physics implemented in an ensemble system show different rainfall structure properties? Which physical packages are more
sensitive to the intense rainfall forecast errors? As in Section 3.1, we first distinguish the results for the HPE group before the

cluster ones.
3.2.1 HPEs

Probability density distributions for each SAL component are separately computed for each physics reforecast (Fig. 8), con-
sidering only the HPEs. Colours correspond to four categories, depending on the parametrization of the deep convection. The
figure highlights that members from each of the two main parametrization schemes (B85 and PCMT) have similar behaviours.
Considering the A-component, PCMT members are more centered around zero than B85 at LT12. This effect is higher at
LT34, for which B85 and PCMT density distributions are more shifted. At LT34, more events with a positive A-component are
associated with PCMT, whereas negative values are more recurrent in B85. The A-component never exceeds +1, but significant
underestimations are observed. This range of values stems from the fact that the forecast verification is applied to a subsample
of the observation limited to the most extreme events. For these specific events, a model underestimation is more frequent than
an overestimation. At short lead times, the separation between the two deep convection schemes is also well established for
the S-component (middle left panel), but it becomes mixed up at LT34 (middle right panel). One reason for this behaviour
could be that predictability decreases at LT34, so that discrepancies in spatial rainfall structure assigned to the physics families
become less identifiable. The S-component is positively skewed in all cases (in particular for the B85 physics at LT12 lead
time). This supports the previous analysis of the S-component (Fig. 6 and 7), showing that for intense rainfall, the model mostly

produces larger and flatter rainfall signal. The results for the S-component also highlight better skills for PCMT schemes for
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Figure 8. Probability density functions of the three SAL components for the HPEs and for each physics of the reforecast system (colored
lines). Physics scheme are gathered in four categories depending on the parametrization of the deep convection: PCMT (blue), B85 (orange),

B85moa (green), CAPE (purple). Left column corresponds to lead time LT12, and right column relates to lead time LT34.
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HPE:s, especially at short lead times. Focusing on high values of S, B85 exhibits a stronger distribution tail at LT12, while both
schemes seem comparable for LT34.

For the L-component, the maxima of the density distributions are higher for PCMT at lead time LT12, implying a more
significant number of good estimations of pattern location. Regarding the tail of the L-component PDF, it is globally more
pronounced at LT34 than LT12. This means that the location of HPEs is poorly forecasted at long lead times. Concerning the
behaviour of the forecasts that use the CAPE or B85,,0,4 schemes, their A-component PDFs are close to the B85 PDFs. This is
not observed for the other components. For the S-component, the CAPE distribution follows the PCMT one at LT12. For the
L-component, B85,,,¢ PDF is close to the B85 ones, while CAPE shows different behaviour from all the other physics. The
use of a closure based on CAPE, rather than on the convergence of humidity seems to modulate the location of precipitation
produced by this deep convection parametrization scheme. Moreover, at LT34 CAPE is characterized by a lower number of

strong location errors, compared to the other physics.
3.2.2 Clusters

According to the results of the previous Section, which show that the predictability of intense rainfall events is sensitive to
the parametrization of the deep convection, we have continued to analyze the model behaviour for the four different deep
convection schemes: B85, B85,,04, CAPE, and PCMT. The link between the behaviour of the physical schemes and belonging
to a particular cluster is statistically assessed through the SAL component differences between the schemes.

Any parametric goodness-of-fit tests, which assume normality, have been discarded, because SAL values are not normally
distributed. We choose the k-sample Anderson—Darling (AD) test (Scholz and Stephens, 1987; Mittermaier et al., 2015), in
order to evaluate whether differences between two given distributions are statistically significant. It is an extension of the
two-sample test (Darling, 1957), originally developed starting from the Classic Anderson-Darling test (Anderson and Darling,
1952). The k-sample AD test is a non parametric test designed to compare continuous or discrete sub-samples of the same
distribution. In this case the test is implemented for the evaluation of the pairs of distributions.

The tests are performed for the comparison of each pair of PDFs combined from the four deep convection families and from
the three clusters classification. For the A-component, PCMT physics distributions depart significantly from B85 schemes at
all lead times, while B85,,q4 and CAPE perform as B85, meaning that the modified versions of B85 weakly affect physics
behaviour (not shown).

With respect to the S-component distributions, k-sample AD tests show significant differences between B85 and PCMT
physics for LT12, but not for the longest lead times (not shown). At LT34 we observe a convergence of the physics scheme
towards a homogeneous distribution, meaning that the differences between physics are negligible.

The test applied to the location component does not reveal significant differences between the PDFs. We suppose that the
limited dimensions of the domain employed in this study, as well as its irregular shape, may lead to a less coherent estimation
of the location, resulting in a degradation of the score significance. Since the L-component result is not informative about

HPEs, it is ignored hereafter.
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Figure 9. Empirical cumulative distribution function of the A-component computed from cluster 2 at lead time LT34 for the four classes of

physics schemes.

Once the statistical differences between the PDFs of the physics have been examined, it is interesting to compare the relative
error on the amplitude and structure components. S and A component errors are estimated by comparing the shapes of their
distributions. Empirical Cumulative Density Functions (ECDF) of S and A components are computed separately for each
cluster and lead time (LT12 and LT34). We show an example of an ECDF for cluster 2 at LT34 (Fig. 9). Forecasts are perfect
when the ECDF tends towards a Heaviside step function, which means that the distribution tends towards the Dirac delta
function centered on zero. These functions are estimated over a bounded interval, corresponding to the finite range of S and
A components. The deviation from the perfect score was quantified, by estimating the area under the ECDF curve on the left

side, and the area above the ECDF curve on the right side:

0 0 0 0
err_ = /F(x)dxf/H(a:)dxz /F(x)dx70=/F(x)dac7 ©)
L2 22 22 22
2 2 2
erry =/H(a:)d3:f/F(a:)d:rsz/F(a:)dx, (10)
0 0 0
2 0
err=err_+erry =2— /F(x)da:+ /F(x)dx, (11)
0 22

where F'(x) is the ECDF computed for A or S, H(z) is the Heaviside step function and err is the forecast error for a given
component. The lower and upper boundaries of the integrals are equal to -2 and +2, because A and S components range between
these two values by construction. Since the previous k-sample AD test highlighted significant differences within the two main

classes B85 and PCMT, the evaluation of the errors is limited to these two specific classes.
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The results of the error diagnostic err for the the A-component are shown in Fig. 10a. Errors increase with lead time. We note
that the negative errors are always at least twice as large as the positive ones. Forecasted averaged rainfall amounts are almost
always underestimated. PCMT produces overall better A-component statistics, except for cluster 3 at LT34. It is interesting to
observe that the weakest errors are associated with cluster 3, which is the most extreme one. Since cluster 3 collects a large
number of precipitation events impacting the Cévennes chain, we may suppose that the domain averaged rainfall amounts are
more predictable in situations of precipitation driven by the orography. Concerning the S-component evaluation (see Fig. 10b),
structures of rainfall patterns are better forecasted for heavy rainfall events (clusters 3 and 5), than for the remaining classes
of events. In contrast to the A-component, the S-component exhibits the highest err for B85 scheme for most of the cases
(majority of + sign in Fig. 10(b)), whereas this trend is not systematic for PCMT physics. PCMT globally performs better
than B85, except for cluster 2. As with the amplitude A, the S-component gets worse for longer lead times, resulting in a shift
to larger err_ for both B85 and PCMT physics (more - sign for LT34 in Fig. 10a, b). The lowest errors of S-component are
achieved for cluster 5. Cluster 5 HPEs are known to have specific regional properties whose influence on S-component results

should be studied with further diagnostics.
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3.2.3 Rainfall object analysis

We now analyze the physical properties of the objects, i.e. the number of objects from a rainfall field and the object integrated
volumes, according to the different clusters. All the statistics are applied separately to the B85, PCMT physics, and obser-
vations. For each day of the dataset period, the thresholds defined in subsection 2.3.1 lead to the identification of a certain
number of precipitating objects. The frequency of the number of objects per day is plotted by means of normalized histograms
for the three clusters (Fig. 11). Clusters 2 and 3 show maximum frequency for one and three object range, whereas cluster 5
is dominated by one object per day. This specific property of cluster 5 can explain the best result obtained for S-component
(Section 3.2.2). Indeed, we may assume that S-component estimation is more accurate for a one-to-one object comparison.
The other clusters frequently display rainfall accumulated bands split over the domain, typically over the Cévennes and Alpine
regions. Object identification for PCMT forecast shows that there is an overestimation of single object days compared to the
observation and to B85 physics scheme, a behaviour emphasized in clusters 3 and 5.

More details about the magnitude of the objects can be produced by computing the integrated mass per object, M}, (see
subsection 2.3.1). First, for each day, objects are sorted from the largest to the smallest integrated mass. Integrated mass
distribution of the two heaviest objects (noted O, and O-) are then dispatched as a function of the number of objects for each
cluster on Fig. 12. First, the range value of M is highly variable from one cluster to another. Maximum values are observed
for cluster 3, while the magnitude for clusters 2 and 5 is comparable. The decrease of the mass for O, is clearer for cluster 3,
meaning that a high number of objects over the domain leads to a natural decrease of the M value of the heaviest ones. We
think that a part of the total integrated mass is then redistributed to the other objects. This is confirmed by Oz curves since its
mass increases with the number of objects. Conversely, for cluster 5, O mass increases with the number of the objects, while
O4 is almost stable. The gap between O and O2 masses is maximum in the most extreme clusters (3 and 5). This suggests
that when computing the volume V (see Eq. 7) and L2 (see Eq. 4), the weighted average is dominated by the object O,. This
implies that the verification could be considered as a single to single object metric.

We now examine the ratio between the daily maximum rainfall of objects Oy and O,. This ratio ranges between 1.5 and 3
which means that O, represents the essential contribution of the daily rainfall peak. Since O base area tends to be significantly
larger that Oy, the information related to the inner object maximum rainfall is diluted in the large base area, resulting in a flat
weak mean intensity of the object. This last result appears to support the fact that SAL metric gives more weight to the object
that contains the most intense rainfall.

The comparison between the model reforecast physics and the observations is addressed using the whole distribution of daily
mass M from the objects O; identified across the full reforecast dataset, where ¢ ranges between 1 and the total number N of
objects. We proceed separately for each physical package. For a given scheme and cluster, the quantile values corresponding
to the selected dataset are sorted in ascending order, and then plotted versus the quantiles calculated from observations (Fig.
13). Half of the quantile distributions are not visible as they correspond to very weak pattern masses. For cluster 2 and PCMT
physics most of the distribution of object mass is close to the observations, however all other physics distributions are skewed to

the right compared to the observations for values below 10000 mm. This behaviour is also observed for cluster 5 and it involves
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Figure 11. Normalized histograms of the daily number of SAL patterns, for B85 physics scheme (red), PCMT (blue), observation (green).

Panels correspond to the 3 clusters classification.
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PCMT physics as well, for values between percentile 0.5 and percentile 0.7. Overall, in the quantile-quantile plot for cluster 5,
the PCMT outperforms B85. In cluster 3, discrepancies between PCMT, B85, and the observations are of opposite sign, with
PCMT being slightly above the observations, while B85 showing a weak underestimation. CAPE physics distribution is left
skewed compared to the observations and to the other physics. These results highlight some interesting properties of the models
in predicting the rainfall objects. Except for some deviation concerning a few extreme cases of cluster 2 and a small portion of
distributions of cluster 5, object mass distribution of physics is similar to the distribution drawn from the observation, especially
for cluster 3. This means that the forecast is able to reproduce the same proportion of rainfall amounts inside a feature as the

observations, even concerning the extreme right tail of the distributions, which corresponds to the major events of the series.

4 Summary and conclusions

In this study we have characterized the systematic errors of 24-hour rainfall amounts from a reforecast ensemble dataset,
covering a 30-year fall period. A 24-hour rainfall observation reference has been produced on a regular grid with a resolution
identical to the model in order to run point-to-point verification. We applied an object-based quality measure in order to evaluate
the performance of the forecasts of any kind of HPE. Then, we took advantage of a rainfall clustering to analyze the dependence
of systematic errors on clusters.

The selection of the HPEs within the reference dataset was based on a peak-over-threshold approach. The spatial regional
discrepancies between HPEs are highlighted on the basis of the k-means clustering of the 24-hour rainfall. Finally, we analyzed
the rainfall object properties respectively in the model and in the observation to underline the rainfall field object properties for
which the model acts distinctly.

The peak-over-threshold criterion lead to the selection of 192 HPEs, confirming that the most impacted regions are the
Cévennes area and part of the Alps. The composite analysis for the five clusters shows that each cluster is associated with
a specific class and location of 24-hour precipitation events. It was found that 86% of the number of HPEs are included in
clusters 2, 3 and 5. Cluster 2 and 3 HPEs predominantly impact the Cévennes and Alps area, while cluster 5 HPEs are located
over the Languedoc-Roussillon region. Moreover clusters 3 and 5 include the most extreme ones. Only diagnostics for clusters
2,3 and 5 are considered.

The SAL object-quality measure has been applied distinctly to the ten physics schemes (one per member) of the reforecast
dataset and compared to the rainfall reference. It shows that the model’s overall behaviour for HPE forecasting is characterized
by negative A-components and positive S-components. As in grid-point rainfall verification, all the SAL components get
worse as a function of lead time. The model HPE rainfall objects tend to be more extended and less peaked. Even though their
corresponding domain-average amplitude is weaker, it does not mean that the event maximum intensity is always weaker. This
result is important showing to modelers that even for intense rainfall events when orography interaction and quasi-stationarity
meso-scale systems play a great role, the model tends to reproduce rainfall patterns with greater extension, rather than both

smaller extension and weaker intensity patterns.
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In order to show regional disparities in the model behaviour, the SAL diagnostics have been divided according to the clusters
and it shows interesting results. First, the A component negative contribution for the whole sample is higher, showing that in
average more underestimation than overestimation is observed for the Amplitude SAL-component. It is notably the case for
the most extreme clusters (over the Cévennes and over the Languedoc-Roussillon). However, when considering both positive
and negative contributions to the integrated A-component, the most extreme cluster (cluster 3) leads to better scores. This
could mean that the variability of the A-component is postively reduced for the most intense events. This is quite surprising
and could reinforce the role of orography in this error decrease. As for the S-component distribution, we showed it is slightly
positively skewed for cluster 2 and 3, while for cluster 5 the distribution of the S-component is more centered. Likewise for
the A-component the integrated balance of positive and negative S-component contributions lead to better results for cluster 3
and 5. It is even more remarkable for cluster 5, for which the S-component reaches the best score. Though it is difficult at this
point to determine whether this characterizes an actual contrast in the model behaviour or if it is due to the physical properties
of the cluster 5 events. One hypothesis could be related to the large number of single objects characterizing this cluster.

The impact of the different physics schemes has also been investigated, and it mostly emphasized the role of the deep
convection physical parameterization. Considering the SAL diagnostics, the two main deep convection schemes, B85 and
PCMT, clearly determine the behaviour of the model in HPE forecasting until lead time ranges longer than three days, after
which no significant differences appear. This difference is clearly in favour of the PCMT scheme which performs better than
B85 for both SAL A and S components and in the majority of the subsampled scores considering the HPEs or the regional
clusters. However, this PCMT asset is not huge, and both physics schemes can contribute to good or bad forecasts. The main
significant difference is for the S-component for the most intense rainfall, which shows that PCMT better approximates the
structure of the rainfall patterns in these cases.

In light of the ability of our method to produce significant results even after several subsampling steps, we decided to study
further statistical characterization of the SAL rainfall objects. It has been shown that in most cases, one large object stands out
among other smaller objects, which often gathers the most part of the rain signal. For cluster 5, characterized by the Languedoc-
Roussillon HPEs, the rainfall distribution could even be considered as a single object rainfall field. Then we focused on the
ranked distributions (quantile-quantile analysis) of the object masses to compare the overall rainfall climatology of the model
with the reference. First, this analysis showed that in particular the weakest precipitation are overestimated by all physics
schemes. However, looking at the object mass distributions for the whole period, we find they are relatively close between all
the physics schemes and the observation for most extreme rainfall events, especially for the PCMT deep convection scheme.
This statistical result implies that a global model should be able to reproduce a reliable distribution of rainfall objects along a
long time period, e.g. the climate of the model and of the observations are close to each other. Therefore, in the case of PEARP,
most of the forecast errors are mainly related to a low consistency between observed and forecasted fields, rather than to an
inability of the prediction system to produce intense precipitation amounts.

This last result, objectively quantified for high rainfall event thresholds (around 100 mm to 500 mm) on a long enough
period, is important for two reasons. The first one concerns atmospheric modelers, showing that the physics schemes are able

to reproduce climatological distributions of the most challenging rainfall events. On this basis, future research could investigate
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other sources of uncertainties like from the analysis setup and implement ensuing model improvements. The model physics
perturbation technique should then play a greater role in the control of the ensemble dispersion. In this perspective, the novel
reanalysis ERAS would be interesting to use, in particular its perturbed members, to improve the uncertainty from initial
conditions in the reforecast. The second lesson to be learned from this study is that it is worth focusing on the study of a model
behaviour on intense events forecasting as it provides important learning to ensemble model end-users, in particular in the
context of decision making based on weather forecast. Quantifying systematic errors could also be used to favorably improve
their inclusion in nested forecast tools processes.

In terms of methodology, this study also highlights that the combination of SAL verification and clustering is a relevant
approach to show systematic errors associated with regional features for intense precipitation forecasting. This achievement is
only enabled by the availability of a long reforecast dataset. This methodology could be further extended to a different model
and another geographic region, on the condition of sampling a large number of HPEs.

The inter-comparison between some model physics deep convection schemes and their role in HPEs predictability shows it
is of course very sensitive for designing multi-physics type of ensemble forecasting systems. While the sensitivity to the initial
perturbations was not studied in this work, the forecast of intense rainfall seems to be mainly driven by the classes of deep
convection parametrizations. Since physical parametrization set-up is built by replicated schemes, the model error representa-
tion might lack an exhaustive sampling of the forecasted trajectories. Using more than two deep convection parametrization

schemes may improve the representation of model errors, at least for heavy precipitation events.
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Chapter 5 Systematic errors analysis of heavy precipitating events prediction
using a 30-year hindcast dataset

5.3 Summary and conclusions

In this chapter, the feature-based quality measure SAL has been applied to the
reforecast dataset using the observation gridded dataset as reference. This dataset
has been stratified using a peak-over threshold approach and a clustering method.
Results showed that Amplitude and Structure components of the rainfall objects
are basically driven by the deep convection parametrization. Between the two main
deep convection schemes used in PEARP, PCMT parametrization scheme performs
better than the B85 scheme. A statistical comparison of A and S component dis-
tributions between the four deep convection parametrization schemes implemented
in the reforecast, showed the presence of two classes of parametrizations with two
distinct behaviours.

A further analysis of spatial features of the rainfall objects has shown the pre-
dominance of large objects and a better representation of objects distribution of the

most extreme events.
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Chapter 6 Conclusions and perspectives

6.1 Conclusions

In this study, we addressed the predictability of extreme rainfall events in the
French Mediterranean region. A 30-year reforecast dataset has been used with a
model set-up the closest possible to the operational ensemble prediction system
PEARP. The reforecast and the operational PEARP are based on a mutliphysics
scheme to assess the same model error, but the reforecast does not implement per-
turbed initial conditions. The number of ensemble members reduces from 35 mem-
bers in PEARP to 10 members in the reforecast. We assumed that a long reforecast
dataset would enable to make a robust and significant statistical analysis, regarding
the significant number of intense events across the 30-year period. We assessed the
overall model skill, following a point-to-point verification and also a feature-based
approach, and we applied two post-processing methods for the calibration of 24-hour
accumulated precipitation forecast. The comparison between the reforecast and the
observations, as well as the post-processing procedure, were based on a unique grid

resolution for both field datasets.

The main assumption that the reforecast could properly sample a significant
portion of the operational model phase space, in particular around the HPEs spec-
trum window is assessed by verification scores. The reforecast is proved to have
some skill in HPEs forecasting, even for the highest thresholds and at the longest
lead times. The reduced member size and the lack of initial condition perturba-
tion should specifically question the ensemble spread of the reforecast against the
operational ensemble forecast. Indeed, it is significantly lower. Based on these

assessments, two post-processing experiments have been carried out.

A first deterministic post-processing method has been applied to the reforecast,
based on a quantile mapping technique. This calibration technique is based on
different non-parametric cumulative distribution functions to remap each member.
We showed that this deterministic calibration correctly reduces biases member-by-
member, but does not systematically reduce the rainfall mean absolute error. Indeed,
the mean absolute error is reduced when the member is associated with a positive

bias, and conversely increased if the member shows a negative bias. The probabilistic
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scoring rules after calibration are marginally affected. We found slight better scores
where the correlation between forecast-observation is stronger. Probabilistic scores
are hardly affected by Quantile Mapping correction. These results show that the
correction of the error from the ranked distribution of rainfall performed member-

by-member may not be sufficient for complete a calibration of rainfall forecast.

Alternatively, we applied the extended logistic regression as an ensemble prob-
abilistic calibration approach on the reforecast dataset. The calibration is different
at each lead time and grid-point of the domain. A set of calibrated members are
sampled from the parametrized Logistic Regression functions that models the cal-
ibrated probability density function. The effect of the calibration on the ensemble
spread is larger for the first lead times and reduced at the end of the forecast. The
calibrated ensemble gets better especially for low rainfall thresholds but some im-
provement is observed for high precipitation thresholds too. This shows that Logistic
Regression is an appropriate method that provides a fair estimation of the calibrated
predictive distribution. A further experiment has been held by applying the same
Logistic Regression on PEARP operational forecasts over a 4-month period. The
PEARP calibrated ensemble forecast scores do not show consistent improvements.
Some skills are still observed for the highest thresholds. The main reason for this
poor performance of the calibration of the operational ensemble using a downgraded
version of the model may be related to the differences in terms of ensemble prop-
erties. Some reforecast biases are overcorrected by the post-processing and lead to

miscorrection of the operational ensemble.

Probabilistic verification and post-processing methods are often conceived to be
performed on model grid-points. A limitation related to these approaches is that
their spatial dependency restrains the potential to tackle the spatial structure of the
precipitation fields. Therefore, in the second part of this study we investigated the
analysis of the systematic errors of the reforecast using a feature-based approach
(SAL metric). First, the sub-regional properties of the HPEs have been highlighted
by clusters obtained from a k-means classification. This classification shows that
HPEs, defined from a peak-over-threshold approach are grouped into three of the

five clusters that connect to local well-known rainfall events types. The SAL metrics,
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separately applied to the different clusters, reveals specific error dependencies on
regional attributes. The most intense precipitation events are related to negative
error in the feature amplitude, indicating an overall underestimation of the mean
precipitation field. Rainfall clusters related to the Cévennes and the Alps areas are
characterized by a positive bias of structure SAL-component, which correspond to
forecast fields that are too flat and extended compared to the observed ones. On
the other hand, this behaviour has not been observed for cluster events affecting
the Languedoc-Roussillon region. When we apply the SAL metric to the different
members of the reforecast, significant different scores are obtained depending on
the two different deep convection parametrization schemes. In particular, PCMT
scheme performs better than B85 scheme at first lead times for both amplitude and
structure SAL components. Further, we analyze some features properties involved
in the computation of the SAL metric. First, the analysis of the object integrated
precipitation amounts has shown that for the highest rainfall events the ratio between
the rainfall volume and spatial extension is high. The highest density objects are
found for HPEs. Then, if we consider the ranked distribution of object rainfall
amount, it revealed that the model is able to reproduce the distribution of the

object rainfall for the cluster that collect the most extreme HPEs.

One main relevant point raised in this study has been the impact of the model
error representation using the multiphysics approach on the HPEs predictability.
The comparison between physics schemes using deterministic forecast verification
has shown that deep convection parametrization strongly affects spatial distribution
and intensity of the precipitation fields. The effects induced by the other physical
parametrizations (i.e., turbulence, shallow convections, and oceanic flux) led to neg-
ligible differences in the scores. Similarly, the SAL-metric showed that the quality
of the forecast for intense rainfall in terms of spatial structure and averaged ampli-
tude is also mainly driven by the deep convection parametrizations. PCMT scheme
leads to lower point-by-point forecast skill compared to B85 scheme, but it out-
performs B85 scheme when considering an object-oriented approach. These results
could mean that a multiphysics approach for the model error representation could

have some limitations. Since physical parametrization set-up is only based on these
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two main deep convection schemes, the multiphysic approach implemented in the
PEARP model might lack of a more exhaustive sampling of the model uncertainty

for heavy precipitation forecast.

6.2 Perspectives

In this study we analysed some challenging issues about ensemble prediction of
intense precipitation. Experiments with two post-processing methods are scarcely
beneficial for the improvement of intense precipitation forecasts, despite the large
size of the learning dataset. Indeed, the frequency occurrence of these events is so
small that a regular representation in the training dataset is not guaranteed. On
another hand, we found that the forecast skill for such rare events is difficult to assess.
Some scores tend to degenerate towards non-informative values (e.g., Brier Score)
for such lightly subsampled events. Scores based on a continuous representation
variable (e.g., CRPS) are not specifically informative for the extreme events. Then,
we underline some perspectives that can be drawn out of this work.

We showed that the lack of initial condition perturbation in the reforecast dataset
has a significant impact on the predictive distributions. We suggest that recent en-
semble reanalysis, like ERA5 (i.e., ERA5: Hersbach, 2016), which contains 10 per-
turbed members could be considered. The use of this ensemble reanalysis system in
the PEARP reforecast may be a potential solution. Although it would not exactly
be a replication of the operational ensemble system framework, it would offer an
opportunity to sample the uncertainties due to the initialization. The combination
of 10-member EDA with the ten physical packages implemented in PEARP could
potentially enlarge the size of the reforecast to 100 members.

The inter comparison among the physical packages used in PEARP has shown
that HPEs forecast is mostly controlled by two deep convection parametrizations,
which are replicated in several packages. Model error might be better represented
by introducing additional physical paremetrization to the ensemble system. One
issue related to this implementation is related to the necessity of development and

update of a large number of different parametrization schemes. An alternative so-
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lution could be to replace the multiphysics approach with other methods, such as
random parameter perturbations or as the stochastically perturbed parameterization

tendencies.

The SAL analysis has emphasized that the model forecast includes meaningful
information at the spatial scale of the event. The evaluation of the reforecast as
well as the post-processed ensemble using point-to-point methodologies have shown
some deficiencies. Some studies have suggested to take into account the event spatial
variability through a neighbourhood approach (e.g., Scheuerer, 2014; Scheuerer and
Hamill, 2015). It is based on a spatial resampling of the ensemble which, as a conse-
quence, enlarges the sample dataset to provide a better estimation of predictors in
post-processing. Different weights can be given to the neighbourhood grid points as
a function of the distance from the targeted grid-point involved in the calibration. A
further implementation should be to assign weights to the spatiotemporal neighbor-
hood depending on the errors forecast of the neighbourhood points in the training
dataset with respect to the observed ones over the targeted point (e.g., Scheuerer

and Hamill, 2018; Scheuerer et al., 2017).

The quantile mapping procedure has shown potential skill in reducing the biases
of the ensemble members, while the extended logistic regression enhanced proba-
bilistic skill of ensemble forecasts. It could be practicable to combine these two
methods, or to apply quantile mapping as a debiasing procedure to further perform

a one selected post-processing method, as proposed by Hamill et al. (2017).

Diagnosis of errors associated to the object-based SAL metric analysis pointed
out that intense precipitation forecast depends on the area considered and on phys-
ical parametrizations categories. We think it would be possible to extend the scope
of the relationship between HPEs probabilistic quantitative precipitation forecasts
and the large scale circulation. Nuissier et al. (2011) have shown that some specific
large scale circulation patterns are correlated with the HPEs on the French domain
used in the current study. Model predictability could be enhanced by assuming
the existence of large scale atmospheric predictors favouring intense precipitation,
that would likely be more predictable. Large scale variable could be introduced in

post-processing methods as predictors which may enhance the predictability. This
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procedure should be regarded as a downscaling approach.
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Conclusions

Dans ce travail de these on a étudié la prévisibilité des fortes précipitations
dans le sud-est de la France a 1’aide d’'une approche probabiliste de la prévision.
Un jeu de prévisions rétrospectives, ou re-jeu, couvrant une période de 30 ans, avec
une version du modele la plus proche possible du systeme opérationnel PEARP,
a été utilisé. Le re-jeu de prévisions a été construit avec la méme représentation
de l'erreur de modélisation, basée sur une approche dite « multi-physiques », que
PEARP mais sans représentation de l'incertitude initiale. I1 comporte 10 membres
contre 35 pour le systeme opérationnel. Le parti pris de cette étude est que la longue
période temporelle que couvre le re-jeu de prévisions permet une meilleure analyse
statistique des épisodes de pluies intenses. La qualité générale du re-jeu a été évaluée
a la fois par des scores en points de grille, et par des scores prenant en compte la
structure spatiale de la pluie. Nous avons aussi appliqué deux méthodes de calibrage
sur la prévision de cumul quotidien de pluie. Il est également a noter qu’un travail
a été effectué pour que toutes les données manipulées, observations ou prévisions,

aient la meéme résolution spatiale.

Dans une premiere partie la capacité du re-jeu a représenter le climat du modele,
au sens d’'un espace de phase physique, et en particulier dans le domaine des fortes
pluies a été évaluée par des méthodes standard de vérification de modeles de pré-
vision. Nous avons montré que le re-jeu répond positivement a cette hypothese par
des prévisions de dépassement de seuil significativement performantes y compris aux
plus longues échéances. La dispersion de I’ensemble rejoué est cependant plus faible
que celle du modele opérationnel, ceci en raison du nombre plus faible de membres

et de I'absence de perturbations de conditions initiales.

Dans un second temps, et nonobstant les lacunes observées du re-jeu de prévi-
sions, deux méthodes de correction a posteriori ont été testées dans le but d’évaluer
les possibilités de calibrer le systeme opérationnel a I’aide du re-jeu. Ici encore on a
fait 'hypothese que la longue période temporelle couverte par le re-jeu de prévisions

était un atout dans ’application de ces méthodes.

Une premiere expérience a consisté a calibrer le re-jeu de prévisions a l'aide d’une
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méthode de calibrage déterministe. La méthode dite du « quantile mapping » a été
appliquée au re-jeu de prévisions en utilisant une approche de validation croisée.
La correction a été basée sur 1'utilisation de plusieurs fonctions de répartitions non-
paramétriques pour recaler chaque membre en chaque point de grille du domaine. Il a
été montré que ce calibrage déterministe permet de réduire les biais individuels mais
que cela n’impliquait pas obligatoirement une baisse de I’erreur absolue moyenne. Il
a été observé que 'erreur absolue moyenne n’était diminuée que dans les cas ou les
prévisions comportaient un biais positif. Au contraire, 'erreur absolue moyenne était
dégradée dans le cas d’un biais initial négatif des prévisions. Les évaluations a 1'aide
de scores probabilistes ont montré un faible impact du calibrage avec une faible amé-
lioration (dégradation) en lien avec une forte (faible) corrélation entre observations et
prévisions. Les résultats obtenus avec cette approche « quantile mapping » montrent
qu’elle doit plutot étre considérée comme une technique de correction déterministe
de biais plutot que comme un moyen de calibrer complétement un systeme probabi-
liste. Une autre approche, connue sous le nom de « régression logistique étendue » a
également été appliquée. Avec cette méthode, le calibrage s’effectue de facon diffé-
renciée en chaque point de grille et pour chaque échéance de prévision. Les prévisions
brutes sont corrigées a ’aide de fonctions de régression paramétriques, déterminées
en utilisant une approche par validation croisée. Contrairement au « quantile map-
ping », la régression logistique a un fort impact sur la dispersion de I’ensemble qu’elle
tend a augmenter. Cet impact apparait comme tres fort sur les premieres échéances
puis tend a décroitre. Ceci peut s’expliquer par une compensation, sur les premieres
échéances, de la non-prise en compte de 'incertitude initiale par le re-jeu. Globa-
lement les scores obtenus avec cette approche sont meilleurs, particulierement pour
les faibles seuils de précipitations mais aussi parfois pour des seuils plus élevés. De
facon assez surprenante, les scores individuels de chaque membre de I’ensemble ne
sont que peu améliorés apres calibrage. Ces résultats montrent que I'approche par
« régression logistique » peut étre vue principalement comme un outil pour le cali-
brage probabiliste. Cette méme technique a ensuite été appliquée, sur une période de
quatre mois, au systeme opérationnel PEARP. Les fonctions de régression apprises

en utilisant le re-jeu ont été utilisées pour calibrer PEARP. Les résultats obtenus
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sont moins consistants dans ce cas et plutot orientés vers une faible amélioration due
au calibrage. Ce résultat montre que le succes du calibrage dépend fortement du fait
que le systeme utilisé pour 'apprentissage est le plus proche possible du systeme a

calibrer.

Les scores d’évaluation des prévisions probabilistes et les techniques de correction
a posteriori sont généralement appliqués point de grille par point de grille. Une limite
connue de cette approche est qu’elle ne tient pas compte des propriétés spatiales
du champ que l'on évalue ou que 'on cherche a calibrer. Dans la seconde partie
de ce travail on a donc utilisé une approche « objet » (au travers du score SAL)
pour caractériser les erreurs des prévisions du re-jeu. Une technique de clustering
(approche « k-means ») a tout d’abord été utilisée pour mettre en lumiere le caractere
régional des épisodes de fortes pluies. Cette classification a montré que les épisodes
de pluies intenses se retrouvaient dans trois des cing classes de pluies obtenues et que
leur localisation était représentative de la régionalisation de ces épisodes. Le score
SAL a ensuite été appliqué pour mieux mettre en avant la dépendance des erreurs de
prévision a la localisation des épisodes. Les épisodes les plus intenses sont caractérisés
par une sous-estimation globale de la valeur moyenne du cumul de précipitation. Sur
les Cévennes et les Alpes les structures obtenues sont généralement trop étalées par
rapport a celles détectées dans l'observation. Cette caractéristique n’a cependant
pas été observée sur les épisodes touchant le Languedoc-Roussillon. Les résultats
de I'application du score SAL ont ensuite été analysés sous 'angle des différentes
physiques du re-jeu de prévisions. Il a été observé que les scores étaient tres sensibles
au choix du schéma de représentation de la convection profonde. L’utilisation du
schéma PCMT permet d’obtenir de meilleurs résultats que ceux obtenus avec le
schéma B85, en particulier aux premieres échéances et pour les erreurs de structure
et d’amplitude. La grande taille de notre échantillon de situations a par ailleurs
permis une étude du score SAL appliqué aux propriétés des structures pluvieuses.
Cette analyse a notamment montré que ceux associés a la classe de pluie comprenant

les événements les plus intenses présentaient un ratio volume/extension tres élevé.

Un point tres important de cette étude a été 1’évaluation de la représentation de

I’erreur modele a I’aide de I'approche multi-physiques. Il a été montré que I'impact
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le plus important dans le choix des physiques concernait le schéma de convection
profonde. L’application du score SAL a lui aussi montré que la qualité des prévisions
des structures de pluie était d’abord affectée par le choix du schéma de convection
profonde. Si le schéma PCMT a obtenu de moins bons scores que le schéma B85 dans
une évaluation déterministe, il a montré de meilleurs résultats lors de I’évaluation par
objets précipitants. Ces résultats semblent indiquer que I’approche multi-physiques a
des limites. Dans la mesure ot les différentes physiques ne dupliquent que deux sché-
mas de convection profonde, la PEARP peut souffrir d'un manque de représentation

de l'ensemble des erreurs de modélisation.

Perspectives

Dans ce travail de these, des points importants de la problématique de la prévision
probabiliste des épisodes de pluies intenses ont été étudiés. Les résultats obtenus
ont montré que les méthodes classiques de calibrage, méme basées sur une longue
période d’apprentissage, n’apportaient que peu d’amélioration a la prévision des
épisodes intenses. La rareté de ces derniers implique sans doute des faiblesses dans
la représentation fidele de leur distribution statistique méme sur de longues périodes
d’apprentissage, ce qui peut expliquer en partie ces résultats. Un autre point a mettre
en lumiere est la difficulté a valider des prévisions pour ces épisodes intenses et rares.
La plupart des scores classiques sont inutilisables ou non-indicatifs sur des cas aussi
rares (que ce soit par exemple le score de Brier ou la CRPS). Quelques perspectives
intéressantes de I’ensemble du travail effectué se dégagent cependant.

Nous avons montré que la non prise en compte des erreurs de prévision liées
a l'incertitude des conditions initiales était préjudiciable. La récente disponibilité
de réanalyses telles que ERA5 (Hersbach, 2016) qui contient 10 membres d’analyses
perturbées est une réelle opportunité pour palier ce probleme. Méme si cela ne serait
toujours pas un moyen de dupliquer fidelement la version complete du systeme de
prévision opérationnel, cela permettrait, en combinant ces réanalyses perturbées et
les 10 schémas de paramétrisation physique différents, d’envisager la création d’'un

ensemble atteignant potentiellement 100 membres.
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L’inter-comparaison des schémas de paramétrisation physiques a montré que la
prévision des épisodes de pluies tres intenses est surtout sensible au composant
dédié a la représentation de la convection profonde dont deux versions différentes
seulement sont dupliquées au sein de I’ensemble. Nous pensons qu’ajouter d’autres
schémas permettrait de mieux prendre en compte les sources d’erreurs de prévision
de fortes pluies, méme si cela alourdirait de fagon notoire la mise au point et la
maintenance d’'un tel systeme. Une alternative serait de remplacer I’approche multi-
physiques par d’autres méthodes, comme les perturbations aléatoires des parametres

des schémas physiques, ou encore les perturbations stochastiques des tendances.

La vérification avec la métrique SAL a montré que la prise en compte de la struc-
ture spatiale de la pluie permet d’obtenir une information plus pertinente dans la
prévision. Certaines études ont montré, que ce soit pour des méthodes de vérification
ou de calibrage, que la prise en compte d’un voisinage autour d’un « point de grille »
considéré permettait une meilleure prise en compte de la variabilité spatiale du phé-
nomene. Des études comme (e.g., Scheuerer, 2014; Scheuerer and Hamill, 2015) ont
démontré que 'augmentation de 1’échantillonnage par utilisation des plus proches
voisins donne de bons résultats. Grace au ré-échantillonnage du signal contenu dans
ce voisinage, les prédicteurs utilisés dans les méthodes de calibrage sont mieux esti-
més. Des poids peuvent étre alloués aux points voisins en fonction de leur distance
au point de grille considéré. D’autres méthodes suggerent 1'utilisation de poids liés
a la performance générale de la prévision en ces points estimés sur la période d’ap-
prentissage comme dans Scheuerer et al. (2017) et Scheuerer and Hamill (2018).
Nous avons montré que la méthode « quantile mapping » permet une réduction cor-
recte des biais par membre. De méme la régression logistique permet d’améliorer la
représentation de la distribution statistique de I'ensemble. Il semblerait intéressant
de concevoir 1'utilisation en série de ces deux méthodes combinant ces deux qualités
majeurs. Hamill et al. (2017) par exemple a montré en particulier tout l'intérét d’uti-
liser le « quantile mapping » pour débiaiser I’ensemble avant d’utiliser une méthode

de calibrage.

L’étude des résultats obtenus avec le score SAL ont montré que la qualité des

prévisions des épisodes intenses de pluie dépendait de la zone géographique impactée.
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Chapter 6 Conclusions et perspectives (Frangais)

Il a également été montré le role crucial du schéma de convection profonde dans la
qualité des prévisions. Une perspective du présent travail pourrait étre d’étudier plus
en profondeur, pour les épisodes de fortes pluies, I'impact de la circulation de grande
échelle sur la qualité des prévisions probabilistes. Nuissier et al. (2011) ont montré
la corrélation qui existe entre le type de circulation a grande échelle et la survenue
des épisodes de fortes pluies en France. La prévision des ces épisodes pourrait donc
étre améliorée en prenant mieux en compte les environnements de grande échelle

favorables a leur survenue.
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Résumé : Le sud-est de la France est une région particulierement propice
a l'occurrence de crues torrentielles associées a des événements de pluies tres in-
tenses. Cette these se focalise sur la prévisibilité des ces évenements, en reposant
sur 'utilisation d’une base de prévisions rétrospectives (reforecast) par un systéme
dérivé du modele de prévision d’ensemble opérationnel PEARP. Une premiere partie
de I'étude est consacrée a son évaluation du systeme PEARP et a l'utilisation des
techniques de post-traitement ou calibrage pour améliorer ses performances. Une
technique est basée sur une méthode de quantile mapping et la seconde sur une
méthode de régression logistique étendue, appliquées chacune sur le reforecast. La
deuxieme technique est ensuite appliquée au systeme opérationnel. La derniere par-
tie de I’étude a été consacrée a l'utilisation d’une métrique de vérification basée sur
Iidentification de structures cohérentes ou objets de pluie.
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