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Résumé — Le liquide céphalo rachidien ou cérébro-spinal (LCS) s’écoule dans les
ventricules cérébraux, les espaces sous arachnoidiens cérébraux et spinaux. Son écoulement est
essentiel au fonctionnement normal du cerveau et sa perturbation est liée à des pathologies
cérébrales. Un paramètre crucial directement lié à sa dynamique est la pression intracrânienne
qui ne peut être mesurée que de manière invasive.

Dans cette thèse, en se basant sur l’hypothèse suivant laquelle le mouvement du LCS
est principalement dûe à la pulsation artérielle cérébrale, nous modélisons numériquement le
couplage entre l’écoulement sanguin dans la vascularisation cérébrale (VC), depuis les voies
d’apports carotidiennes et vertébrales jusqu’aux veines jugulaires, et l’écoulement du LCS
dans les espaces sous arachnoidiens cérébraux (ESAC) et spinaux (ESAS). La modélisation de
ces écoulements est basée sur les équations de Navier-Stokes unidimensionnelles (1D) dans
une configuration de tubes coaxiaux et souples. Dans le compartiment cérébral, le réseau des
ESAC est coaxial à la VC tandis que dans le compartiment spinal, le réseau des ESAS est
coaxial à la moelle épinière.

Nos conditions aux limites sont les signaux de pression des artères carotidiennes, vertébrales
et des veines jugulaires. Dans un premier temps, nous utilisons un signal de pression sinusoïdal
et par la suite un signal de pression physiologique admettant plusieurs harmoniques. Notre
modèle a permis de reproduire le caractère pulsatile du LCS et de mettre en évidence les
échanges de volume entre le compartiment crânien et spinal. Ainsi, lors d’une expansion
vasculaire, nous avons pu reproduire la chasse du LCS crânien et son déplacement dans le
canal spinal, mettant en évidence son rôle de compensation volumique. Nous avons également
pu retrouver des valeurs d’amplitude de débits de LCS cervical entre 0.5 et 3 mL/s en accord
avec des données mesurés par IRM et de pression moyenne de CSF crânien entre 2 et 8 mmHg.
La prise en compte de la compliance spinale a permis également de mettre en évidence des
valeurs de vitesse de propagtion du CSF spinal et d’atténuation de pression en accord avec
des mesures IRM.

Par la suite, nous avons procédé à une étude paramétrique dans laquelle nous nous sommes
intéressés à l’influence de la variation du volume du LCS et de la compliance des espaces
sous arachnoidiens cérébraux et spinaux sur les pressions et débits dans la VC, les ESAC et
les ESAS. Ces paramètres étant fortement liés aux pathologies crânio-spinales. Les résultats
montrent une influence non négligeable de ces paramètres sur les maxima de débit, l’amplitude
de pression et le stroke volume du LCS au niveau crânien de même que spinal. Un optimum
de stroke volume du CSF spinal était atteint pour un volume global de LCS de 216 mL. Le
modèle a permis de mettre en évidence qu’une diminution de la compliance cranio-spinale
peut augmenter la pression intracrânienne et altérer l’écoulement du LCS. Enfin, nous avons
adapté notre modèle 1D à des données spécifiques issues de mesures IRM d’une population de
personnes saines ou avec des symptômes pathologiques et obtenu de bonnes corrélations entre
les débits de LCS cervical calculés et mesurés.

Par la suite, cette étude permettra d’explorer le mécanisme d’autorégulation cérébrale sous
la forme d’un problème de contrôle optimal en boucle fermée (dit feedback ou rétro-actif)



Mots clés : Pression intracrânienne, compliance cranio-spinale, modéli-
sation 1d, couplage sang-LCS

Abstract — The cerebrospinal fluid (CSF) fills the ventricles, the cranial and spinal
subarachnoid spaces. CSF exhibits a pulsatile motion essential to normal brain function and
its flow dynamics disturbance is linked to several CSF diseases. A relevant hemodynamic
parameter, the intracranial pressure, which can be acquired only invasively is closely related to
CSF flow dynamics. The main goal of this study is to build, based on the hypothesis that the
CSF displacement is mainly driven by the cerebral arterial pulsation, a one-dimensional model
of the fluid mechanics coupling between the entire cerebral vasculature (CV) and the CSF.
The CV is composed of 34 vessels depicting the arterial network, the microcirculation and the
venous network. It starts from the carotid and vertebral arteries to the jugular veins and is
surrounded by the cranial subarachnoid spaces. This cranial vault is then coupled to a spinal
vault which consists of the spinal cord enclosed by the spinal subarachnoid spaces. Blood and
CSF are considered viscous. The blood vessels and the dura mater are assumed compliants.

The boundary conditions of the blood-CSF 1D model consist of an arterial pressure signal
at the inlet of the carotid and vertebral arteries and a venous steady pressure at the jugular
veins. First, a sinusoidal waveform of the arterial pressure signal is employed followed by a
physiological waveform signal. The study evaluates the effect of the dura mater elastance,
the CSF volume and the lumbar cistern compliance on blood and CSF dynamics as their
contributions are closely related to CSF disorders. First, the model was able to reproduce the
CSF flow pulsatility and fluids volume exchange between the cranial and spinal compartment.
We found cervical CSF peak flow between 0.5 and 3 mL/s and cranial CSF pressure between 2
and 8 mmHg which is in agreement with MRI studies. Moreover, due to the compliant spinal
subarachnoid spaces, pulse wave velocity and pulse pressure attenuation were find decreasing
under increasing spinal compliance.

A parametric analysis was conducted to quantify the effect of CSF volume and overall
cranio-spinal compliance. Our results provide evidence of an optimal spinal CSF stroke volume
for a CSF volume of 216 mL. Moreover, cranial CSF pressure was found increasing under
decreasing the overall cranio spinal compliance. Finally, the model was confronted to PC-MRI
measurements and we found good agreement between computed and measured cervical CSF
flow.

This work constitutes the object of future studies regarding the modeling of the cerebral
autoregulation mechanism as a retroactive optimal process.

Keywords:Intracranial pressure, cranio-spinale compliance, 1d modelling,
blood-csf coupling
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Chapter 1

Introduction

1



1.1 Historical facts about CSF discovery

... is a clear fluid which fills larger spaces within and around the central nervous system
(CNS) referred as subarachnoid spaces and brain ventricles. Since its first mentions, CSF
has been assigned countless origins and functions. Amongst them, Galen, a greek physician
and philosopher, considered CSF as the spirit of animal and described it as a vaporous
humor in the ventricles that provided energy to the entire body whereas Sutherland, one of
the founding father of Ostheopathy has thought of the CSF as the breath of life. Thirty
physicians and anatomists were at least involved in the CSF discovery. Among them,
four greatest physicians should be considered as equal CSF’s discoverers. The Egyptian
physician Imhotep is the most likely to be the first one to mention intracranial CSF in
vivo in 3000 B.C. Later, in 1536, the Italian anatomist Nicolo Massa described CSF within
cerebral ventricles based on postmortem autopsies. Then, two centuries later, the italian
physician Domenico Cotugno Niccolo was the first one to describe CSF around spinal
cord through experimental postmortem research. And last but not least, three centuries
later, the French physician François Magendie was the first to discover method of CSF
pressure measurement and was able to lay the scientific foundation for development of the
CSF dynamic research [30]. Illustration below titled "CSF discovery: from hieroglyphics
symbols to MRI acquisition" depicts from left to right The Papyrus of Smith by Egyptian
physician and architect Imhotep who first acknowledges the intracranial fluid presence,
François Magendie’s book title from 1842 and an MRI Sagital of neutral tube section in
which CSF is red-colored. Until now, the CSF production, absorption and circulation is
still the topics of many debates amongst the clinical community.

The cerebrospinal fluid ...
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1.2 Basic concepts of brain physiology: the relationship be-
tween the cerebrospinal fluid and the intracranial pressure

The brain is a very complex organ which demands a continuous supply of oxygen. Although, it
constitutes 2% of the body mass, its oxygen consumption accounts for 20% for the total body
oxygen consumption. Moreover, due to its lacking stores of glucose, it also needs a continuous
delivery of nutrients. Adequate oxygen and nutrients is supplied by the cerebral blood flow
(CBF) via the cerebral vasculature (cv). The brain receives a CBF of 40 to 50mL/100 g of
tissue per minute [61]. It is a vital need, as any reduction in CBF, known as cerebral ischaemia,
occuring within seconds results in loss of consciousness and within 3-8 min in a permanent
brain damage.

Factors that affect the cerebral blood flow Blood flow through a vascular segment
may be described as the ratio between the pressure difference (∆P ) accross that segment and
its vascular resistance (R). According to the Hagen-Poiseuille equation, the blood flow (BF )
through a vascular segment of length L, radius r and blood dynamic viscosity (µ), driven by a
pressure difference ∆P is given by,

BF = ∆P
R

= π∆Pr4

8µL

In the case of CBF, the driving pressure is known as the cerebral perfusion pressure (CPP),
and the resistance is a total cerebrovascular resistance (CVR) which is related to the entire
cerebral vasculature. CBF is therefore dependant upon the CPP, the CVR and the blood
dynamic viscosity. For example, it will increases if the CPP increases and the CVR decreases.
Under normal conditions, the CPP is variable and usually ranges between 70 and 90 mmHg .
Variations in CPP may occur either under normal conditions, i.e during a change in posture
or exercice or from pathological conditions such as traumatic brain injury or stroke. The CVR
is affected by the small arteries, which can regulate their radius (r) through vasodilatation
and vasoconstriction. Thus, when cerebral vasodilatation occurs, the increase in the radius of
the vessels decreases the CVR and augments CBF. On the other hand, when vasoconstriction
occurs, the CVR increases thus decreasing the CBF. This mechanism, diplayed figure 1.1a, is
the so-called cerebral autoregulation which is the brain ability to maintain CBF relatively
constant despite changes in the CPP. The normal range of autoregulation occurs between 60
and 150 mmHg of CPP, Beyond this plateau, CBF becomes pressure dependant.

Intracranial pressure The CPP is defined as the difference between the mean arterial
pressure (MAP) and the intracranial pressure (ICP) which is the pressure in the cranial vault,

CPP = MAP − ICP (1.1)

Under normal conditions, the ICP is between 10 and 20 mmHg in adults, 3 and 7 mmHg
in children and 1.5 and 6 mmHg in newborns. Following the latter equation, the CPP is
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Figure 1.1: (a) Cerebral autoregulation mechanism. (b) The relationship between intracranial
pressure and intracranial volume

dependant upon the MAP and the ICP.
The concept of ICP can be explained if we assume the brain enclosed within a rigid structure.
The brain contents may be divided into three main compartments: (1) the cerebral parenchyma
or brain tissues (80%), (2) the cerebral vasculature (10%) and (3) the cerebrospinal fluid (10%).
In an average adult, the brain tissue volume is ∼ 1400 mL; the blood volume is ∼ 150 mL;
and the cranial CSF volume is ∼ 150 mL [31, 60]. The interaction between these components
closely impacts ICP. An increase in ICP above a critical level is not tolerated because it
results in a decrease in the CPP which itself results in a decrease in CBF (as a consequence of
cerebral autoregulation failure) and consequently a risk of cerebral ischemia. Hopefully, under
normal conditions, to avoid an increase in ICP, one or more of the other compartments must
necessarily shrink. For example, in the case of a slow growing cerebral edema, the cerebral
parenchyma may undergoes deformation to compensate for increased ICP. However, in the
case of an abrupt raise in ICP, it is mainly the cerebral blood and CSF volume which will be
responsible for compensating that increase. Thus, the reduction of the vascular compartment
may consist of displacing blood by means of jugular drainage. And on the other hand, the
CSF compensation role occurs by allowing a decrease in intracranial CSF volume by means
of CSF displacement into the spinal canal. This compensatory mechanism is finite and is
dependant of the cranio-spinal compliance.

Intracranial compliance The ratio of the intracranial volume differential (∆V ) to the
intracranial pressure (∆P ) is known as the intracranial compliance (ICC). It determines the
ability of the intracranial compartment to accommodate an increase in volume without a large
increase in intracranial pressure.

ICC = ∆V
∆P , or ∆P = ∆V

ICC
(1.2)

In other words, ICC can be thought as the cranial compartment adaptive capacity that lets
it tolerate an increase in volume depending on its compensatory mechanisms. Figure 1.1b
displays the well known pressure-volume curve. It portrays the relationship between changes
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in ICP and intacranial volume and may be divided into three phases, (1) Phase 1: A high
compliance and low ICP. Despite the increase in volume, there is barely or a slight increase
in ICP. CSF and cerebral blood volume buffering mechanisms are effective, (2) Phase 2 : A
lower compliance and still a low ICP. But it starts to increase slowly as intracranial volume
rises and finally, (3) Phase 3 : an inexisting compliance and high ICP. Buffering mechanisms
are failling thus any small increase in intracranial volume results in a high increase in ICP.

1.3 Physiopathology of the cerebrospinal fluid system

During the previous section, we have demonstrated the crucial role and function of the CSF
system acting as a buffering mechanism to ensure a steady ICP under normal conditions.
However, in cases of abnormal CSF flow, the regulation of ICP is consequently disrupted.

In this section, we briefly present several prominent diseases that disrupt CSF dynamics.
But first, we need to describe elementary anatomical aspects of the Central Nervous System
(CNS).

Figure (1.2) displays the major components of the CNS. Working inwards from the skull
lies the meninges 1 , a system of three connective tissue layers. These are the dura mater, the
arachnoid and the pia mater. The interval between the arachnoid membrane and the pia mater
is called the subarachnoid space and is filled by CSF. The meninges covers the central nervous
system (CNS) 2 , composed of the brain and the spinal cord, and their vasculature. CSF is
believed to be mainly produced by ependymal cells, called the choroid plexus, which line the
ventricles 3 , a set of four connected cavities. The ventricles are connected to cranial and
spinal subarachnoid spaces through CSF filled foramina (openings) and CSF filled cisterns.
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Hydrocephalus Hydrocephalus is a pathological disorder resulting from an inappropriate
volume of CSF in the cerebral ventricles at an inappropriate pressure. Its symptom reflects
increased ICP. Imaging hydrocephalus portrays enlargement of the cerebral ventricles with
clinical evidence of inappropriately elevated pressure in the ventricles. Hydrocephalus results
from either altered malabsorption of CSF at the arachnoid vili or direct obstruction by means
of aqueductal of Sylvius stenosis. Clinical treatment of the stenosis is through removal of the
obstructing lesion.

Chiari malformation type I Chiari malformation type 1 results from the extension of
the lower part of the cerebellum (called the cerebellar tonsils) below the level of the foramen
magnum into the cervical sas resulting in a alteration of CSF flow and pulsatility in the cranial
compartement. Clinical treatment of CM1 consist of removing small sections of the bone to
ensure enlargement of the cranio-cervical junction sas.

Syringomyelia Syringomyelia is a medical condition in which one or more fluid cavities
(syrinxes) form within the spinal cord. The syrinxes often occur near locations of the spinal
cord where spinal subarachnoid space is obstructed.

Although recent and ongoing progress in medical imaging is providing numerous data and
new insights about the dynamics interactions of the CNS and its pathological disorders, yet
the underlying physiological mechanisms of the interactions between CSF dynamics, ICP and
arterial dynamics remains poorly understood. Computational model are therefore needed
to provide additional predictions and interpretation of in vivo data acquired by means of
medical imaging. Of special relevance, the strong coupling between arterial pulsations and
CSF flow which is considered crucial in elucidating the pathophysiology of cerebrovascular
and craniospinal diseases mentioned previously.

1.4 Motivation

There are numerous mathematical modelling of CSF flow in the cranium and the spinal vault.
Moreover, most of these CFD models use rigid walls and finite domains such as a short segment
of the sas which requires boundary conditions that are adjusted to meet the desired velocities.
However, there are few models accounting for closed models of the CNS, i.e the interaction
between the cranial and the spinal compartment, and accounting for compliant walls. To
date and to our knowledge, there are a few models of a full CSF flow in the CNS. The first
was developped by Lininger et al. [41] and consisted of multi-compartments model of the
vascular system, the parenchyma and the CSF system. The model was able to predict CSF
velocities through the entire CNS as driven by arterial pulsations and simulates in a simplified
manner communicating hydrocephalus. However, authors have chosen to neglect unsteady
and convective inertia terms for convenience, thus ignoring the important and well recognized
role played by waves reflection in vascular and CSF dynamics. This model was extended to a
subject specific 3D model to quantify fluid interactions between cranial and spinal CSF with a
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Figure 1.3: CSF disorders. (a) Hydrocephalus, (b) Chiari malformation type 1

particular attention given to microstructures embedded within the spinal canal such as nerve
roots. However, this model did not account for the main CSF motor function, i.e the cerebral
arterial pulsations.

One dimensional models of compliant vessels have shown the ability to describe the major
features of biological flows. Moreover, several comparison against in vivo and in vitro data
have raised confidence in applying the 1-D formulation to capture blood and CSF flow in
the craniospinal environment. In addition, due to their reduced computational expense
compared to higher dimensional computational fluid dynamics, one dimensional models allow
for parametric analysis, where specific parameters in the model can be altered to understand
their distinct contribution on pulse wave propagation.

1.5 Methodolgy

In the current study, we propose to build a global one dimensional model of the interactions
between compliant vessels of the cerebral vasculature and the CSF system. The cerebral
vaculature was based upon the work of of Zagzoule and Marc Vergnes [73] and consisted
of compliant arteries, arterioles, capillaries, veinules, veins, venous sinus and jugular veins.
The CSF system comprises compliant cranial and spinal subarachnoid spaces. The model
will be described and outcomes compared to in vivo results from Cine phase-contrast MRI
measurements. The objective is to accurately quantify the dynamic interactions between blood
flow, cranial and spinal CSF flow and therefore indirectly ICP. Moreover, the aim of this work
is to provide an appropriate coupled 1D blood-CSF modeling of the craniospinal environment
for patient- specific simulations to gain insights in estimating mechanical and medical relevant
parameters such as intracranial pressure, intracranial CSF volume and intracranial compliance.
The present work will be structured as follows, chapter 2 describes the physiology and anatomy
of the central nervous sytem with a particular attention given to the cerebral vasculature
and the CSF system. It also introduces the mechanical interactions between blood and CSF
flow. Chapter 3 presents the 1-D mathematical formulation of the governing flow equations of
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blood and CSF in a system of coaxial compliant tubes. Chapter 3 introduce the architecture
of the coupled blood-CSF models and describes the CSF system parametres which are the
CSF volume and the cranial and spinal subarachnoid spaces compliance. Chapter 4 performs
a parametric analysis in which the effect of the latter CSF system on blood and CSF pulse
wave propagation are described. Finally, in chapter 5, medical imaging data are used and
confronted to outputs of the current model.

1.6 Work context

The study was conducted at l’Institut de Mécanique des Fluides de Toulouse (IMFT) in France.
It is part of a project called ROMBA (Retro-active and Optimal Modelling of Blood flow
Autoregulation), funded by a French state program called IDEX (Initiatives d’excellence).
ROMBA project aims to simulate cerebral blood flow autoregulation described previously as
the ability of the brain to maintain constant blood flow despite changes in cerebral perfusion
pressures. The objective is a simulator tool and a clinical protocol, using the autoregulation
time course pattern to interpret the clinical status of the craniospinal system and its aging
process. ROMBA project involved researchers from four laboratories of Toulouse: the Institut
de Mathématique de Toulouse (IMT), the Institut de Mécanique des Fluides de Toulouse
(IMFT), the Centre de Recherche Cerveau et Cognition (CerCo), the Institut des Sciences du
Cerveau de Toulouse and a fifth partner being the Amiens Hospital-University.
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Chapter 2

Anatomy and physiology of the
central nervous system: a focus on
the cerebrospinal fluid, the cerebral

vasculature and the meninges

Sommaire
2.1 Introduction: an anatomical scope of the major components involved
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2.5 Cerebrospinal fluid motion and its coupling to the cerebral vasculature 15

2.1 Introduction: an anatomical scope of the major compo-
nents involved in this study

Modelling the dynamics coupling between the cerebral vasculature and the cerebrospinal fluid
requires rigorous anatomical description and understanding of the craniospinal environment.

This chapter is best treated under two main headings. Section one provides a description of
the meninges and the ventricular system. Section two provides a description of the cerebral and
spinal vasculature. And finally, section three discusses the hydrodynamic couplings between
the cerebral vasculature and the CSF.

Anatomy of the craniospinal environment Describing the CNS requires an elementary
understanding of standards used in anatomical terminology. Figure (2.1) depicts the relative
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Figure 2.1: Anatomical terminology adapted from Neurosciecne 2nd edition [51]

directional terms and planes of reference employed to specify location in the CNS and more
generally in the body. In subfigure (A), anterior and posterior refer to front and back of the
head. Superior, and inferior indicates above and below the head. Rostral and caudal refer to
direction toward the head and tail. For example, a rostral CSF flow refers to a flow direction
toward the head. A caudal CSF flow refers to a flow direction towards the end of the spinal
cord.

Subfigure (B) depicts the major planes of section used in cutting or imaging the brain.
For a body standing upright, horizontal planes (also referred to as axial or transverse planes)
are parallel to the ground. The sagittal plane is the section that divides the two hemispheres.
The coronal or frontal plane refers to sections parallel to the plane of the face.

2.2 The cranial and spinal meninges: beyond their protective
functions

The meninges are present along the cranial and the spinal compartement. They are composed
of three layers: the dura mater, the arachnoid mater, and the pia mater. These tissues
surround the brain and spinal cord and house the cerebrospinal fluid (CSF) located within
the subarachnoid space (sas).

Figure (2.2) depicts a schematic view of the cranial meninges, a longitudinal view of the
spinal cord (sc) and a section view of the sc portraying the spinal meninges.

The pia mater is the innermost layer of the meninges. It adheres to every contour of the
brain and the spinal cord. It is separated from the arachnoid by the CSF-filled subarachnoid
space. Furthermore, it is a highly vascular space containing blood vessels that supply the
underlying surface of the brain and the spinal cord.
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Figure 2.2: Cranial and spinal meninges adapted from Netter’s atlas of human anatomy 7th
edition[50]

The dura mater is the outermost layer of the meninges. In the brain, it is composed of two
layers where the outer layer is adherent to the inner skull’s surface. The deeper layer, known
as the meningeal layer divides the brain into compartments. The most prominent of these
are the falx cerebri and the tenorium cerebelli. In some locations, the two layers separate
to provides channels, the dural venous sinuses, for return flow of the venous blood. At the
foramen magnum, the cranial dura mater becomes continuous with the spinal dura mater. It
has a single layer separated from the wall of the vertebral canal by the epidural space which
contains adipose tissue and blood vessels. At the tapered caudal end of the spinal cord ,the
conus medullaris, the spinal roots extend caudally traversing a considerable distance through
the subarachnoid space of the lumbar cistern forming the cauda equina.
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Figure 2.3: The ventricular system

2.3 The brain ventricular system

The ventricular system, figure (2.3), is a series of four interconnected ventricles and their con-
necting foramina (opening). The largest of these ventricles are the lateral ventricles (one within
each of the cerebral hemispheres). These are connected to the third ventricle by two openings
called the interventricular foramen (of Monro). Later, the third ventricle opens into the cerebral
aqueduct (of Sylvius) which connects into the fourth ventricle. Finally, the fourth ventricle
is later connected to subarachnoid cisterns and opens to cranial and spinal subarachnoid spaces.

The small arrows displayed in figure (2.3) B ) portrays CSF presence within the v
entricular system, the cranial and spinal subarachnoid spaces. CSF is believed to be mainly
secreted through a plexus of cells called the Choroid Plexus (ChPs) embedded within the
ventricles [68, 63, 17], while the remaining is being produced by other CNS structures such as
the ependymal wall, cerebral parenchyma, and interstitial fluid (ISF) [34, 63, 44]. The ChPs
have a relatively simple structure. It consists of a single layer of epithelial cells lying on a
basement membrane. Beneath the epithelial basement membrane is a network of fenestrated
capillaries supplied from both the internal carotid arteries and the vertebral artery [17, 72, 65].

In the brain, the arachnoid granulations, one way valves, expands from the subarachnoid
space into the venous sinuses, especially the superior sagittal sinus, allowing CSF to drain into
the venous blood. CSF may also be absorbed through nerve pathways into the extracranial
lymphatic vessels [63] and arachnoid villi located at the origins of the spinal nerves [35, 56].
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2.4 Arterial supply and venous drainage of the CNS: a great
deal of variability

2.4.1 The brain and its need of uninterrupted blood oxygen

Arterial supply of the brain The brain, figure (2.4) A ), is mostly supplied by two pairs
of large arteries, the right and left internal carotid arteries 1 and the right and left vertebral
arteries 2 . The two vertebral arteries come together to form the basilar artery 3 . The
latter joins the two internal carotid arteries and other communicating arteries to form an
arterial ring at the base of the brain known as the circle of Willis 4 . The circle of Willis
gives rise to three pairs of main arteries, the anterior cerebral artery (ACA) 5 , the middle
cerebral artery (MCA) 6 , the posterior cerebral arteries (PCA) 7 and their communicating
posterior 8 and anterior arteries 9 . Figure (2.4) B and C illustrates the territories of
distribution of the ACA, MCA and PCA along the cortical surface. Later, the main segments
of the ACA, MCA and PCA branch into smaller vessels along the cortical surface. They are
refered as pial arteries and are surrounded by the CSF. Later, they give rise to smaller arteries
that eventually penetrate into the brain tissue, the parenchymal arterioles. The latter lie
within the Virchow–Robin space which is a continuation of the subarachnoid space and varies
considerably in depth. Finally, figure (2.4) D portrays the meningeal arteries which supply
the dura mater and lies between the inner and outer layer of the dura mater.

Venous drainage of the brain Figure (2.5) depicts the venous drainage pathways of the
brain. Unlike the majority of the rest of the body, the cerebral venous system does not follow
the cerebral arterial system and there is significant variation in anatomy between different
subjects. The venous drainage of the brain occurs via two different types of vessels: the
cerebral veins (CV) and the dural venous sinuses. Cerebral veins and dural venous sinuses
are different by their locations and their structures. On the one hand, cerebral veins 1
are located within the subarachnoid space 2 and unlike most of the body veins, they
are thin and lack muscular tissue. Moreover, except for the interna jugular vein, they do
not possess valves, thus bidirectional flow is possible. They ultimately aggregate into larger
channels until they pierce the arachnoid mater 3 and the inner layer of the dura 4 and
drain into the dural venous sinuses like the superior sagittal sinus (SSS) 2 , via venous lacuna
5 . Recall that CSF drain into the SSS via the arachnoid granulations 6 .

On the other hand, dural venous sinuses, as the superior sagittal sinus (SSS) 2 , are not
true blood vessels as they consist of the spaces between the two layers of the dura mater.

Cerebral veins may be divided into cortical cerebral veins and deep cerebral veins. Super-
ficial veins may empty into the superior sagittal sinus (SSS) 2 and deep veins may empty
into the inferior sagittal sinus (ISS) 6 or great vein of Galen 7 and the straight sinus 8 .
Venous flow is afterwards directed toward the confluence of sinuses 9 then on toward the
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Figure 2.4: Arterial supply of the brain adapted from Netter’s atlas of human anatomy 7th
edition[50]

central circulation via the transverse sinus 10 , sigmoid sinus 11 , and ultimately empties into
the jugular veins. Along the jugular vein, there are several routes that allow complementary
venous drainage in the brain in particular in the upright position.

2.4.2 The spinal cord

The spinal cord, (2.6), is mostly supplied by the anterior (ASA) and the paired posterior spinal
arteries (PSA) which derives from the vertebral artery. Radicular arteries, such as the artery
of Adamkiewicz, deriving from the aorta, anastomose with ASA and PSA and reinforce the
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blood supply to the spinal cord. Later, the ASA and PSA penetrate through the subarachnoid
space giving rise to pial arterial plexus.
Venous drainage largely follows arterial supply. An internal venoux plexus, located within the
epidural space and the subarachnoid space drain into the anterior, posterior and radicular
veins.

2.5 Cerebrospinal fluid motion and its coupling to the cerebral
vasculature

In adults, mean CSF volume is estimated to be 150 mL with a distribution of 25 ml within
the ventricles and 125 ml within the subarachnoid spaces. CSF forms at a rate of 500–600
mL/day. Therefore, the CSF is replaced three to four times per day. [11, 17].
CSF pulsates through the ventricular system. Magnetic resonance imaging (MRI) studies
have confirmed that the cardiac cycle imposes its pulsatile pattern onto the CSF dynamics
[24, 70]. CSF also flows from the cranial to the spinal SAS in systole, with flow reversal from
the spinal SAS into the cranium in diastole [28]. Besides cardiac driven pulsations, respiration
influence on the CSF oscillations has been described in many radiological studies. It produces
a modulation of the intracranial pressure resulting in a smaller additional oscillation of the
CSF [37, 21].

Freund et al. 2001 [26] suggests, using MRI that the total cerebral blood volume inflates
and deflates in each cardiac cycle by approximately 1–2 mL, the same volumetric amount as
there is CSF exchange between the cranial and spinal SAS. In addition to CSF pulsations with
no net flux, there is evidence of a small volumetric bulk component due to CSF production
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and absorption.

So long, pulsatile CSF oscillations are believed to be driven by systolic vascular dilatation
followed by diastolic contraction. From a mechanical point of view, this motion may be
explained based on a concept known as the Monro-Kellie dogma [48]. Because the skull is
a rigid box, the sum of the volumes occupied by the brain, the vasculature, the meninges,
the ventricular system and the CSF must remain constant. The spinal cord has the same
components but less rigid constraints on its total volume. Therefore, when the volume of one
of the components increases, the volume of another must decrease to compensate increase in
ICP. Thus, during a normal cardiac cycle, volume variation of the cerebral vasculature triggers
CSF displacement.

Figure (2.7) portrays the overall concept of the Monro-Kellie doctrine employed in this
study. The cranial compartment depicts the cerebral vasculature, the cranial subarachnoid
space and the cranial dura mater and is coupled to the spinal compartment composed of the
spinal dura mater, the spinal cord and the lumbar cistern. Thus, in this work, the Monro-Kellie
dogma is reduced in the brain compartment to two components being the cerebral vasculature
and the cranial subarachnoid space. Volumetric variations of the cerebral parenchym is being
neglected. Based on this concept, a simplified one-dimensional model was built involving the
following components of the CNS: the cerebral vasculature, the cranial and spinal subarachnoid
spaces and finally the spinal cord.

Moreover, the dynamic coupling between a blood vessel and a cranial subarachnoid space
has been approached using a model of two compliant and coaxial tubes as illustrated in figure
(2.7) where the interior tube represents a blood vessel and the exterior tube represents a cranial
subarachnoid-space enclosed by the dura mater. CSF flows in the annular space. By assuming
a dura mater more rigid than the blood vessel, consequently as blood vessel expands, CSF
flows out and as the blood vessel contracts, CSF flows in. Based on this coaxial configuration,
we have expanded the one dimensional cerebral vasculature of Zagzoule and Marc Vergnes
[73] and build upon it CSF flow in the cranial and spinal vault. The next chapter will be
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dedicated to describing the morphological and mechanical characteristics of this model.
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Chapter 3

The 1D craniospinal blood-CSF
model
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3.1 Introduction

In chapter 2, we have highlighted the fact that CSF oscillations and motion between the
cranial and the spinal compartment are mainly driven by dilatation and contraction of the
cerebral vasculature. In this chapter, we present the one dimensional model of blood and CSF
couplings in the cranio-spinal vault.

First, we recall the one-dimensional model of Zagzoule and Marc Vergnes [73]. Then, we
describe the geometric configuration used to model the cranial and spinal subarachnoid spaces.
Finally, we investigate their mechanical properties.

3.2 The cerebral vasculature : the 1D blood model from Zag-
zoule and Marc Vergnes

Figure (3.2) portrays the 1D cerebral vasculature model from Zagzoule and Marc Vergnes [73].
It consists of a simplified morphological scheme portraying the major segments of the brain
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Figure 3.1: Morphological an rheological data used in Zagzoule et a. 1D model [73]

arterial supply and venous drainage. Blood was assumed to be a Newtonian fluid with density
ρb = 1.06 kg.m−2 and dynamic viscosity of µb = 0.0035 Pa.s.

It starts at the paired internal carotid arteries (1, 2) and the paired vertebral arteries (3,
4) followed by the basilar artery 5 & 6, the circle of Willis (from 7 to 14), the cerebral arteries,
the middle (17, 18) and posterior (15, 16) cerebral arteries. The two anterior cerebral arteries
are represented by a single vessel (19). The vessel, 6bis, is a peripheral resistance which may
represent either the vertebrobasilar vascular system of the brain stem and the cerebellum
or a complementary drainage pathways to the jugular veins. The three following tubes are
regrouped into equivalent tubes of the principal collaterals of the cerebral arteries (20), the
pial network (21) and the intracerebral arteries (22). Tube 23 represent the microcirculation.
It includes the terminal arterioles, the pre-capillaries, the capillaries and the venulas. Tubes 24
and 25 depict respectively the intracerebral and pial veins. Vessels 26, 27, 29 and 31 portray a
group of veins draining into the major sinuses 28, 30 and 32. Finally, they ultimately drain
into the jugular veins (33, 34). Model data, including cross-section, length, number of vessels
for the equivalent tubes and elastance are shown in table (3.1). In the work of Zagzoule and
Marc Vergnes [73], the lengths, cross-sections and the number of vessels were taken from the
litterature when they were available [32, 39, 1] . The blood volume of the carotid arteries,
the vertebral arteries and the circle of Willis is 13.03 mL. For the arterial system after the
circle of Willis, it is set to 43.187 mL. The microcirculation volume is 19.36 mL and finally
the venous system volume is 96.04 mL.

Geometric assumptions and simplifications that were implemented to design this model
are discussed in [73].
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Figure 3.2: The 1d model from Zagzoule and Marc Vergnes [73]

3.3 Subarachnoid spaces

Figure (3.3) displays the architecture of the coupled 1d blood-csf model. As described
previously, red vessels depicts the cerebral vasculature ranged from vessel 1 to 34. Blue vessels
depict the coaxial cranial subarachnoid tubes, they are coaxial to blood vessels starting from
bifurcations (11-9), (7-8) and (10-12) to the transverse sinus vessel 32. Therefore, the carotid
arteries 1 and 2, the vertebral arteries 3 and 4 and the jugular veins 33 and 34 are not directly
coupled to the cranial subarachnoid spaces. Orange tubes depicts the spinal subarachnoid
spaces and the lumbar cistern vessels enclosing in grey area the spinal cord tube. The inlet
of the spinal subarachnoid spaces is assumed to be the cervical C2-C3 CSF area. Finally
green areas represent subarachnoid spaces tubes that link the cranial ones to the spinal ones.
They will be referred in this work as the cranio-cervical junction tubes. Dashed black circles
display the branching interfaces between the different vessels, they will be discussed in the
next chapter.

3.3.1 Cranial subarachnoid spaces

As explained previously, the dynamic coupling between a cerebral blood vessel and a cranial
subarachnoid space was approached using a coupled coaxial tubes modelling. The inner tube
accounts for a blood vessel, whereas the outer tube portrays the cranial subarachnoid space
confined by the cranial dura mater.
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Figure 3.3: The 1d coupled blood-csf model. Red: blood vessels, blue: cranial subarachnoid
spaces, orange: spinal subarachnoid spaces, green: CSF between the cranial and spinal vault,
grey: the spinal cord. Dotted circles depict the branching interfaces between the cranial and
the spinal vault
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As mentioned previously, pulsatile CSF oscillations are believed to be driven by systolic
vascular dilatation followed by diastolic contraction. In order to accurately model this coupling,
some crucial questions have been raised in this study : which vascular vessels contribute the
most to the pulsations of the cranial CSF flow and its displacement into the spinal canal ? Is
it the arterial system by means of its strong pulsations ? What about the compliant venous
system which blood volume is far greater than the arterial system ? Finally what about the
parenchymal matter and the microcirculation system ?

Indeed, the main arteries running along the cortical surface, the pial arteries, are the
closest to the cranial subarachnoid spaces. Thus, from a ’spatial’ point a view, their pulsations
may contribute the most to driving the CSF flow. Smaller penetrating arterioles or the
microcirculation bed, embedded within the cerebral tissue may also distend. Their systolic
expansion and thus their volumetric dilatation would need to be transmitted to the surrounding
tissues and produce CSF motion [23, 24]. In a similar way, the bed capillary may contribute
to CSF pulsations. In a first approach, we have chosen to enclose the entire global vasculature
system within the cranial CSF. For this configuration, the major brain blood supply vessels,
i.e the carotid, the vertebral arteries and the jugular veins vessels were not enclosed by the
cranial CSF as they are located outside of the cranial vault.

A second important question was raised regarding the dimensions of the cranial subarach-
noid spaces. In vivo, they have been measured by ultrasound (US), computed tomography
(CT) and magnetic resonance imaging (MRI) mainly in neonates and infants as it may be
a marker for the development of several neuropsychatric diosorders. Their width have been
acquired between the cranium and the cerebral hemisphere, refered as the craniocortical
distance and between the two hemispheres. Studies have shown variable upper limits for the
craniocortical distance width rangin from 3.3 to 5 mm in neonates [25, 47, 49] to 4 to 10 mm
in infants and adults [57, 38, 40, 33].

In this study, the sections of the cranial subarachnoid spaces were defined as follows: A
dimensionless parameter referred as CSF confinement and denoted λ, is defined as the ratio
between the sections of a blood vessel and a cranial sas.

0.1 < λcb = Abi
Aci

< 0.85 for i=6,. . . , 32. (3.1)

where Abi and Aci are respectively the sections of a blood vessel of the cv and a tube of the
cranial sas i.

For example, figure (3.4) illustrates at a full scale three values of cranial CSF confinement,
λcb (0.1, 0.5 and 0.85), for a blood vessel, of 0.5 cm. As λcb increases from 0.1 towards 0.85,
the annular CSF space and its volume, in blue, decreases.

The cranial CSF confinement was assigned a constant value along the cerebral vasculature.
For example a cranial CSF confinement of λcb = 0.7 implies following equation (3.1) :

• For the posterior cerebral arteries (15, 16), a cranial subarachnoid vessel of 0.07
0.7 = 0.1
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Figure 3.4: Cranial subarachnoid space at full-scale for three values of cranial CSF confinement
λcb

cm2 and therefore an annular CSF space area of 0.1− 0.07 = 0.03 cm2,

• For the middle cerebral arteries (17, 18), a cranial subarachnoid vessel of 0.12
0.7 = 0.17

cm2 and therefore an annular CSF space area of 0.17− 0.12 = 0.05cm2.

As the cranial CSF confinement varies between 0.1 and 0.85, cranial CSF volume varies
beteween 85 mL and 1400 mL.

3.3.2 Spinal subarachnoid spaces

In a similar manner, the spinal compartment was modeled as two coaxial tubes in which the
inner tube represents the spinal cord enclosed by the spinal pia mater and the outer tube
represents the spinal subarachnoid space (SSS) enclosed by the spinal dura mater. Since,
we are mainly interested in the CSF fluid transport in the spinal sas, the spinal cord was
considered as well a CSF-fluid filled tube.

We used a geometric coaxial tube in which the spinal cord and the spinal sas were held
constant along the spinal cord. Sections and length were partially based on the previously
published FE-FSI models of the spinal cavity [8, 7]. Spinal cord and SSS sections were taken
respectively equal to ASSS = 1.6 cm2 and ASSS = 0.78 cm2 yielding to a spinal CSF volume
of 68 mL. Moreover, the spinal subarachnoid space length was taken longer, ASSS = 70 cm,
than the spinal cord, ASC = 50 cm to account for the lumbar cistern.

Figure (3.5) depicts the cranial and spinal CSF volume for λcb values ranging between 0.1
(a cranial CSF volume of 1400 mL) and 0.85 (a cranial CSF volume of 95 mL). As stated
previously, spinal CSF volume was assumed constant and equal to 68 mL.
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Figure 3.5: CSF volume (mL) for 0.1<λcb<0.85

3.4 Cranio-spinal compliance

3.4.1 Elastic modulus of the dura mater

The mechanical compliance is the ability of a compartment to accomodate a change in volume
for a corresponding change in pressure. The overall cranio-spinal compliance is of special
interest in understanding regulation of the intracranial pressure and is determined by adding
the cranial and spinal compartments compliance. It is expected from anatomic consideration,
that both compliance contributes differently to the overall cranio-spinal compliance. From an
anatomical point of view, the spinal vault would contribute largely as the spinal CSF is less
confined by rigid structures than in the cranial vault. In vitro biomechanical charaterisation
performed by several authors has demonstrated a highly nonlinear behaviour with a longitudinal
and transverse Young’s modulus from 1.4-105 MPa (104 - 8.105 mmHg) and 0.08-7 MPa (6.102

- 5.104 mmHg) respectively[27, 54, 62, 45, 14, 18].

In previous numerical models, the dura mater was considered as a linear elastic material
model. Bertram et al.[9] and Cirovic et al. [15] have chosen the elastic modulus of the dura
mater to approximate the spinal sas wave speed measured by MRI. It was set equal to 1.25
MPa (9.103 mmHg). The spinal dura mater was also investigated by several authors [10, 46,
52] and showed an elastic Young’s modulus varying from 1-2.3 MPa (7.5 103 - 1.7 104 mmHg).

In this work, the dura mater and the spinal pia mater were as well represented by a
longitudinal Young’s modulus.

3.4.2 The lumbar cistern compliance

The lumbar segment was terminated by a 3 elements Windkessel model described in figure
(3.6). It was assigned a volumetric compliance Clw , the proximal resitance R1 is introduced
to absorb the incoming waves and reduce artificial wave reflections and The distal resistance
R2 was taken high to limit CSF outflow from the lumbar segment.
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Figure 3.6: Three elements R1R2Clw Windkessel model
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Chapter 4

The 1D flow equations in a system
of coaxial tubes
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4.1 Introduction

In this chapter, we first establish the 1D model of governing equations for single and coaxial
tubes. The 1D blood-CSF model is composed of two geometric configurations, either single
tubes such as the internal carotids arteries or coaxial tubes such as the coupled blood vessel and
cranial sas vessel. The one dimensional formulation of compliant vessels is well established and
widely used in biomechanics. Hereby, we just recall the main outlines. A detailed construction
of one-dimensional model can be found in [12]. Second, we describe the Lax Wendroff numerical
scheme employed to discretize the governing equations. In the third section, we present the
boundary conditions and finally in the fourth section, we implement a method to account for
branching or interface conditions such as bifurcations.

4.2 Mathematical Formulation

In a system of cylindrical coordinates (r, θ, z), the domain geometry is illustrated in figure (4.1).
It exemplifies a portion of a coupled vessel of blood and subarachnoid space. The subscript 1
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Figure 4.1: A one dimensional coaxial tubes where the inner tube represents a blood vessel
and the outer tube a cranial sas where CSF flows

denotes a single tube or an interior one whereas the subscript 2 denotes the exterior (annular)
tube. The axis of the vessels is aligned along the coordinate z. R1 and R2 are respectively the
interior and exterior tube radius.

4.2.1 Main assumptions for the fluid flow and the wall motion

Blood was considered newtonian having respectively a dynamic viscosity µb = 0.035 Poise
(g.cm−1.s−1) and density ρb = 1.06 g/mL. CSF was assumed close to water having dynamic
viscosity µc = 10−2 Poise and ρb = 1 g/mL.

The one dimensional model for incompressible and newtonian fluid flow in a compliant
vessel may be derived from the Navier Stokes equations, under the following simplifying
hypotheses.

When accounting for the fluid flow:

• Axial Symmetry, the dependance on θ is completely neglected. This implies that each
axial section at a fixed z position remains circular at all times. We thus neglect any
eventual collapse of the tube. Therefore, the vessel radius, R1 (R2), is solely function of
z and t.

• Constant pressure in a cross section, the pressure is taken to be constant on each axial
section, so that it depends only on z and t.

• No body forces, such as gravity.

• Dominance of axial velocity, the velocity components orthogonal to z axis are negligible
compared to the component along z. This consideration is sometimes called the Long
Wave-Length Approximation.

When accounting for the vessel structure:

• Radial displacement, the wall moves solely in the radial direction.

• Wall thickness, the effective wall thickness is relatively small and can be treated as a
membrane.
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• Small deformations gradients. We consider that the deformations gradients are relatively
small, so that the structure behaves like a linear elastic solid.

4.2.2 3D Navier Stokes equations for incompressible fluids

Remarque 4.1
Vectors are indicated using bold letters while their components will be denoted by the same
letter in normal typeface.

In Fluid mechanics, the fluid flow is governed by the following 3D incompressible Navier-
Stokes equations,


∇.u = 0, (4.1)

ρ[∂u
∂t

+ u.∇u] + ∇.[pI− τ ] = 0, (4.2)

The unknowns are the fluid velocity u = (ur, uθ, uz), the pressure p and the shear stress
tensor τ . Due to the axisymmetric assumption, the shear stress tensor is defined as:

τ =

τrr 0 τrz
0 τθθ 0
τrz 0 τzz


where I is the identity matrix.

Using the assumptions established previsouly, the 3D incompressible Navier-Stokes equa-
tions are reduced to the following system of equations ,

1
r

∂(rur)
∂r

+ ∂(uz)
∂z

= 0, (4.3)

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

+ 1
ρ

∂p

∂z
= 1
ρr

∂(rτrz)
∂r

, (4.4)

p = p(z, t), (4.5)

where τrz is the wall shear stress defined as,

τrz = µ
∂uz
∂r

(4.6)
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4.2.3 1D reduced Navier Stokes equations for a single or interior vessel

Remarque 4.2
Subscript 1 is used for the inner tube whereas subscript 2 describes the outer tube.

By integrating the reduced Navier-Stokes equations (4.3) and (4.4) on a generic axial
section and taking advantage of the above assumptions, one obtains the following set of two
partial differential equations,


∂A1
∂t

+ ∂Q1
∂z

= 0, (4.7)

∂Q1
∂t

+ ∂

∂z

(
β
Q2

1
A1

)
+ A1

ρ

∂P1
∂z

= 2π
ρ

√
π

A1
τrz|r=R1 , (4.8)

where P1(z,t) is the mean pressure. A1(z,t) and Q1(z,t) denotes respectively the section
area and the average volumetric flow. They are defined as,

A1(z, t) = 2π
∫ R1

0
rdr, Q1(z, t) = 2π

∫ R1

0
uzrdr, (4.9)

whereas β is a momentum correction factor defined as,

β(z, t) = 2πA1
Q2

1

∫ R1

0
ru2

zdr (4.10)

The system of equations can be expressed alternatively in terms of variables (A1, U1, P1).
By simple manipulations, one gets,


∂A1
∂t

+ ∂(AU)1
∂z

= 0, (4.11)

∂U1
∂t

+ U1
A1

(1− β)∂A1
∂t

+ βU1
∂U1
∂z

+ 1
ρ

∂P1
∂z

= 2
ρ

√
π

A1
τrz|r=R1 , (4.12)

On the one hand, the wall shear stress, τrz, as defined in (4.6) is a function of the velocity
profile. A simple case of parabolic profile is assumed for this term. Therefore, we obtain,

τrz|r=R1 = µ
∂uz
∂r
|r=R1 = −4µU1

R1
(4.13)
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where uz = 2U1

(
1− r2

R2
1

)
.

On the other hand, the coefficient β, as defined in (4.10) is likewise a function of the
velocity profile.
For a flat profile, β = 1 whereas for a parabolic profile β = 4

3. We have here considered the
choice β = 1 since it leads to considerable mathematical simplifications. Furthermore, previous
work by Doulfoukar et al. [20] shows that even in the aorta β fluctuates around 1. Other
types of profiles for the viscous term and the correction factor may be used [67, 66].

Finally, as the number of unknowns (P1, A1, U1) exceeds the number of equations, we need
to use an additional constraint in order to close this system. A common way to close the
system is to explicitly provide an algebraic relationship, known as the tube law, which links
the average section A1 to the average transmural pressure Pt. The transmural pressure Pt is
defined as,

(Pt)1 = P1 − Pext (4.14)

where Pext is the pressure exerted to the vessel by its external environment (as external tissues
or CSF). Depending on the geometry configuration, for a single or an external vessel, Pext is
taken constant, whereas for the interior tube of a coaxial vessel, Pext is taken equal to the
pressure of the external vessel.

Here we consider the case of a linear elastic tube law defined as,

(Pt)1 = (El)1

(
A1

(A0)1
− 1

)
, (4.15)

where (A0)1 is the vessel area at zero transmural pressure and (El)1 is a constant elastic
Young’s modulus. We thus neglect any eventual collapse of the tube, althoug this can be taken
into account through a suitable tube law [55].
Moreover variations of the elastic properties of the wall, not treated in the present study, may
be considered by letting the elastic Young’s modulus (El)1 be a function of the vessel area
A1. It may either simulate the different microanatomical features of the wall or consider the
presence of a vascular prothesis like a stent implantation [58].

4.2.4 1D reduced Navier-Stokes equations in a system of coaxial tubes

Upon the simplifications taken above, the system of equations (4.7) and (4.8) become,

For a single or interior vessel ,
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Figure 4.2: Wall shear stresses in a coaxial configuration



∂A1
∂t

+ ∂(A1U1)
∂z

= 0, (4.16)

∂U1
∂t

+ U1
∂U1
∂z

+ 1
ρ

∂P1
∂z

= 2
ρ

√
π

A1
τ1, (4.17)

P1 = (El)1

(
A1

(A0)1
− 1

)
+ P2, (4.18)

where,
τ1 = µ

∂uz
∂r

= −4µU1
R1

(4.19)

We recall that some vessels as the cerebral arteries (20), the pial network (21) and the intrac-
erebral arteries (22) were regrouped into equivalent tubes. For example, the microcirculation
(23) was represented by N = 202000 vessels having a total cross section area A1 = 38 cm2.
The friction term of the right hand side of the momentum equation 4.17, referred as F1 was
therefore expressed in terms of the total cross-section area A1 and the number of regrouped
vessels N as follows,

F1 = 2
ρ

√
π

A1
τ1 = −N 8πµ

ρ1

U1
A1

(4.20)

For an annular vessel ,



∂A2
∂t

+ ∂U2(A2 −A1)
∂z

+ ∂(U1A1)
∂z

= 0 (4.21)

∂U2
∂t

+ U2
∂U2
∂z

+ 1
ρ

∂P2
∂z

= − 2
√
π

ρ(A2 −A1)(τ12
√
A2 − τ2

√
A1) (4.22)

P2 = (El)2

(
A2

(A0)2
− 1

)
+ Pext, (4.23)

where Pext is taken constant for the annular space.
τ12 and τ2 are respectively the wall shear stresses at r = R1 and r = R2 due to the flow of the
annular fluid as displayed in figure (4.2).

A detailed construction of these wall shear stresses is given in Appendix (A). They are
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defined as, 
τ12 = 2µU2

γ

(
2R1
R2

2
+ 1− λ2

R1 lnλ

)
(4.24)

τ2 = 2µU2
γ

(
2
R2

+ 1− λ2

R2 lnλ

)
(4.25)

where 
γ = 1 + λ2 + 1− λ2

lnλ (4.26)

λ = R1
R2

(4.27)

Waves equations The relation between the pressure and area defines the intrinsic wave
speed in a single, c01, and a coaxial tube, c02 as follows

c1 =
√
A1
ρ1

d(P1 − P2)
dA1

, c2 =
√
A2
ρ2

dP2
dA2

(4.28)

Using (4.18) and (4.23), these wave speeds become

c1 =
√

(El)1
ρ1

, c2 =
√

(El)2
ρ2

(4.29)

The analytical expressions of the waves modes resulting from the coupled system were
given by Cirovic et Kim [15] as follow,

c2
1,2 = 1

2(c2
s + c2

c)±

√(1
2(c2

s + c2
c)
)2
− αcsc2

sc
2
c (4.30)

where α12 = 1− A1
A2

.

4.3 Numerical scheme: the two steps Lax-Wendroff scheme

The numerical method used to solve the previous hyperbolic partial differential equations is
the classical Lax-Wendroff finite difference schemes. This scheme is second-order accurate in
space and time. It must satisfy the Courant-Friedrich-Lewy (CFL) criterion,

δx

δt
> (U + c0)

where c0 is the speed of wave propagation defined in section 4.2.4 and U is the mean velocity.
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Figure 4.3: The Lax-Wendroff numerical scheme

Figure (4.3) displays the Lax-Wendroff numerical scheme. Each point M(zj , tn) in the
discretized spacetime grid (z, t) will have spatial and time coordinates defined by zj = j∆z
and t = n∆t where ∆t is the time increment and ∆z is the spatial increment.

First half step At the first half step, the system of equations is derived at the point
(j + 1

2 , n), to obtain the values of the section A and velocity U for half time step and half step

grid (j ± 1
2 , n+ 1

2)

Continuity equation :

(A1)n+1/2
j+1/2 =

(A1)nj + (A1)nj+1
2 − ∆t

2∆z
(
(A1U1)nj+1 − (A1U1)nj

)

Momentum equation :

(U1)n+1/2
j+1/2 =

(U1)nj + (U1)nj+1
2 − ∆t

2∆z

(U2
1

2 + P1
ρ

)n
j+1
−
(
U2

1
2 + P1

ρ

)n
j


+ ∆t

2 Fnj+1/2

where
Fnj+1/2 = −2

ρ

√
π

((
τ1√
A1

)n
j+1

+
(

τ1√
A1

)n
j

)

Tube law equation :

(P1)n+1/2
j+1/2 = E1

(A1)n+1/2
j+1/2

(A10)j
− 1

+ (P1)n+1/2
j+1/2

Second half step At the second half step, the latter equations are derived at the point
(j, n+ 1

2) to obtain the values of the section A and velocity U at (j, n+ 1).
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Continuity equation :

(A1)n+1
j = (A1)nj −

∆t
∆z

(
(A1U1))n+1/2

j+1/2 − (A1U1)n+1/2
j−1/2

)

Momentum equation :

(U1)nj = (U1)nj −
∆t
∆z

(U2
1

2 + P1
ρ

)n+1/2

j+1/2
−
(
U2

1
2 + P1

ρ

)n+1/2

j−1/2

+ ∆tFn+1
j

where
Fn+1
j = −2

ρ

√
π

((
τ1√
A1

)n+1/2

j+1/2
+
(

τ1√
A1

)n+1/2

j−1/2

)

Tube law equation :

(P1)n+1
j = Elc

(
(A1)n+1

j

(A10)j
− 1

)
+ (Ps)n+1/2

j+1/2

4.4 Boundary conditions

Proper initial and boundary conditions are needed to finalize our mathematical formulation.
Initial conditions do not have impact on the final solution as after a few simulations, the
results did converge to a periodic state. At the cv, the boundary conditions consists of either
the pressure since the area and pressure are related to each other by the tube law constitutive
relationship or the velocity (flow). They are imposed at the inlet of the cv, i.e the paired
carotid and vertebral arteries and the outlet of the cv, i.e the paired jugular veins.

In the theoretical and next chapter three, a time dependent pressure function was specified
as an inflow and an outflow boundary conditions whereas in chapter five, a time dependant
flow waveform driven from MRI velocites data was specified as inflow and an outflow boundary
conditions.

For instance, in the case of a pressure inflow boundary condition P1, the numerical boundary
condition is written as,

(U1)n+1
0 = (U1)n0 −

∆t
∆z

((
U2

1
2 + P1

ρ

)n
1
−
(
U2

1
2 + P1

ρ

)n
0

)
+ ∆tFn0 (4.31)

where subscript 0 denotes the entry and subscript 1 is the point ∆z distant from it.

Pressure inflow and outflow boundary conditions Following figure (4.4), a constant
pressure of 5.832 mmHg, Pb(outlet), is imposed at the outlet of the cerebral vasculature, i.e at
the outlet of the jugular veins number 33 and 34.
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Figure 4.4: Boundary conditions of the 1D blood-CSF network
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(a) A sinusoidal arterial pres-
sure signal

(b) A physiological arterial
pressure signal

(c) Fourier transform illustrat-
ing the first six harmonics

Figure 4.5: Pressure signals imposed at the inlet of the blood vascualture. Two waveforms are
considered : a sinusoidal and a physiological one

A pressure signal, Pb(inlet), is imposed at the inlet of the cerebral vasculature, i.e at the
inlet of the carotid arteries 1 & 2 and the vertebral arteries 3 & 4. Two pressure waveforms
have been considered :

• First, to model in the simplest way the arterial pressure, a sinusoidal arterial waveform,
illustrated figure (4.5a), for one period of T = 0.85 s, a mean pressure of 100 mmHg, a
systolic pressure of 120 mmHg and a diastolic one of 80 mmHg.

• Second, a physiological arterial waveform, illustrated figure 4.5b, for one period of
T = 0.85 s, a mean pressure of 105.5 mmHg, a systolic pressure of 121.5 mmHg and a
diastolic one of 87.15 mmHg.
This waveform is obtained via Fourier decomposition, using fft matlab function, of a
discrete signal acquired from [73] and re-sampled using the first six harmonic. We have
considered that higher frequencies beyond the sixth harmonic did not add very much to
the shape of the pulse waveform.

Figure 4.5c displays the amplitude spectrum of these first six harmonics. The fundamental
frequency is the heart rate f1 = 1.176 Hz (T = 0.85 or 70 bpm). For a scale matter, the
mean pressure value of 105.5 mmHg at zero Hz frequency is not plotted. This signal
may be discretized with a Fourier series following :

P1 = a0 +
6∑
i=1

ai cos(iwt) + bi sin(iwt) (4.32)

where w is the signal pulsation, w = 2π
T

, and t is the time scale. The value index zero,
a0, corresponds to the mean value. Fourier coefficients ai, bi are listed in table (4.1).
Twelve terms were used.
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Figure 4.6: Three elements R1R2Clw Windkessel model

Coefficient Value (mmHg)
a0 105.5
a1 -6.122
b1 10.54
a2 -5.025
b2 3.867
a3 -2.815
b3 -0.7914
a4 -0.5171
b4 0.5097
a5 -1.846
b5 0.1619
a6 -0.3149
b6 -0.4563

Table 4.1: Mean value, a0 and Fourier coefficients ai, bi, i = 1, 2, ..., 6 of (4.32) which captures
the arterial pulsation

The lumbar terminal three elements Windkessel model A zero-dimensional (0-D)
approach model governed by ordinary differential equations is used to relate pressure to flow
at the outflow of the lumbar cistern using a three elements Windkessel model described in
figure (4.6) where the proximal resitance R1 is introduced to absorb the incoming waves and
reduce artificial wave reflections. It corresponds to the characteristic impedance Zl of lumbar
vessel to match the propagation of forward travelling waves and defined as,

cl =
√
Elu

ρb
, Zl = ρ

cl
A0l

where cl is the intrinsic lumbar segment wall wave speed, ρb the CSF density, Elu the lumbar
segment elastic modulus and A0l the lumbar segment cross sectional area at zero transmural
pressure.

In the analogous electrical circuit described figure (4.6), Qin, Qout defines respectively
the input flow and output flow rate due to proximal resistance R1 and distal resistance R2
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whereas Qc defines the flow rate of the capacitance C, Pin, Pout and Pc are respectively the
inlet pressure, output pressure and capacitance pressure. The inlet and output flows Qin and
Qout may be described following Ohm’s low as,

Qin = Pin − Pc
R1

, Qout = Pc − Pout
R1

(4.33)

Kirhoff’s law states that Qin = Qc +Qout and finally the capacitance pressure is defined as,

dPc
dt

= Qc
C

(4.34)

A first order time discretization of the previous set of equations is written as,

Ain = AL0 −
∆t
∆x

(
(AU)nL − (AU)nL−1

)
, (4.35)

Pin = El(
Ain

A0in − 1), (4.36)

Qnin = Pin − Pcn

R1 , (4.37)

Qnout = Pcn − Pout
R2 , (4.38)

Pcn+1 = Pcn + ∆t Q
n
in

Qnout
, (4.39)

Qn+1
in = Pin − Pcn+1

R1 , (4.40)

Uin = Qn+1
in /Ain (4.41)

where Pout is a constant pressure that was assumed equal to a mean intracranial pressure of
10 mmHg and Pcn = 0 at the inital time step n=1.

4.5 Branching conditions

The 1D craniospinal model is characterized by the presence of branching. In this section, we
will address the problem of accounting for interface conditions.

Several configurations are found in the geometry structure as modeled in figure (4.4) and
detailed in B such as,

• A bifurcation of vessels, when a single (or coaxial) vessel bifurcates into two single (or
coaxial vessels). For instance, between vessels 25, 26 and 31.

• A junction of vessels occurs when two single (or coaxial) vessel join into one single ( or
coaxial) vessel. For instance, between vessels 31, 30 and 32.

• Finally an enlargement (or reduction) of vessels, defines a branching between two single
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(or coaxial) vessels of different cross-sectional areas. For instance, between vessels 20
and 21.

The flow in a branching configuration is intrinsically three-dimensional; yet it may still
be represented by means of a 1D model. In a first stage we simplify the actual geometric
structure by imposing that the branching is located exactly at one point and neglecting the
effect of branching angles.

In the following formulation, we will only address the case of a widening or a narrowing of
tubes. However, the methodology employed here is extended as well to the cases of a junction,
enlargement or reduction of vessels in a single or coaxial configuration and moreover to the
branching interfaces between the cerebral vasculature, the cranio-cervical junctions and the
spinal subarachnoid spaces.

The following subscripts are used : 1 for the interior tube and 2 for the exterior tube.

case 1 : A widening or a narrowing of tubes

Interior tube

•

a

•

b

•

c

•

d

For the interior tube, the jump conditions between the points b and c are :

(AU)1b = (AU)1c (4.42)

P1b = P1c (4.43)

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (4.44)

P1c = El1c

(
A1c
A01c

− 1
)

+ P2c (4.45)

The equations (4.42) and (4.43) express the conservation of mass and pressure between b et c.
We have 6 unkown terms and and we only have 4 equations. To complete this system, the
conservation of mass equation was derived between a et b then between c et d :∫ b

a

∂A1
∂t

dx+ (AU)n+1
1b − (AU)n+1

1a = 0 (4.46)

∫ d

c

∂A1
∂t

dx+ (AU)n+1
1d − (AU)n+1

1c = 0 (4.47)
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The derivatives and integrals are evaluated using the difference finite method and the trape-
zoidal rule. Therefore, we obtain :

∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (4.48)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1d − (AU)n+1
1c = 0 (4.49)

Using the equations (4.43), (4.44) and (4.45) and the pressure jump conditions of the exterior
tubes (P2b = P2c), we obtain :

A1c = El1b
El1c

A01c
A01b

A1b +A01c

(
1− El1b

El1c

)
(4.50)

By writing equation (4.50) for An+1
1c and An1c, we obtain:

An+1
1c −A

n
1c = El1b

El1c

A01c
A01b

(An+1
1b −A

n
1b) (4.51)

Put,

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, K1bc = El1b

El1c

A01c
A01b

By replacing (4.51) in equation (4.49) and by taking into account the conservation of mass
equation (4.42), we obtain by adding (4.48) and (4.49) :

An+1
1b =An1b + (AU)n+1

1a − (AU)n+1
1d −Ra(A

n+1
1a −An1a)−Rd(A

n+1
1d −An1d)

Ra +RdK1bc
(4.52)

Using the same procedure, we obtain Un+1
1b by subtracting the equation (4.49) from the

equation (4.48).

Un+1
1b =(AU)n+1

1a + (AU)n+1
1d −Ra(A

n+1
1a −An1a) +Rd(An+1

1d −An1d)
2An+1

1b

−
(Ra −RdK1bc)(An+1

1b −An1b)
2An+1

1b
(4.53)

4.5.0.1 Exterior tube

For the exterior tube, the jump conditions between the points b and c are :

((A2 −A1)U2)b = ((A2 −A1)U2)c (4.54)

P2b = P2c (4.55)

P2b = El2b

(
A2b
A02b

− 1
)

(4.56)
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P2c = El2c

(
A2c
A02c

− 1
)

(4.57)

As for the interior tube, the conservation of mass equation was derived between a et b
then between c et d. Therefore :∫ b

a

∂A2
∂t

dx+
(
(A2 −A1)U2 +A1U1)n+1

b − ((A2 −A1)U2 +A1U1)
)n+1

a
= 0

∫ d

c

∂A2
∂t

dx+
(
(A2 −A1)U2 +A1U1)n+1

d − ((A2 −A1)U2 +A1U1)
)n+1

c
= 0

which gives,

∆xa
2∆ta

(
An+1

2a −A
n
2a +An+1

2b −A
n
2b

)
+ ((A2 −A1)U2 +A1U1)n+1

b

− ((A2 −A1)U2 +A1U1))n+1
a = 0

∆xd
2∆td

(
An+1

2d −A
n
2d +An+1

2c −A
n
2c

)
+ ((A2 −A1)U2 +A1U1)n+1

d

− ((A2 −A1)U2 +A1U1))n+1
c = 0

As for the interior tube,

An+1
2c −A

n
2c = El2b

El2c

A02c
A02b

(An+1
2b −A

n
2b) (4.58)

Put,

∆A =A2 −A1, Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, K2bc = El2b

El2c

A02c
A02b

Using the jump condition for the interior tube, (AU)1b = (AU)1c, and by proceeding as
for the interior tube we obtain :

An+1
2b =An2b + (∆AU2 +A1U1)n+1

a − (∆AU2 +A1U1)n+1
d −Ra(An+1

2a −An2a)
Ra +RdK2bc

−
Rd(An+1

2d −An2d)
Ra +RdK2bc

(4.59)

Un+1
2b =(∆AU2 +A1U1)n+1

a + (∆AU2 +A1U1)n+1
d −Ra(An+1

2a −An2a)
2(∆A)n+1

b

+ Rd(An+1
2d −An2d)− 2(AU)n+1

1b − (Ra −RdK2bc)(An+1
2b −An2b)

2(∆A)n+1
b

(4.60)
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We notice that the parameters U , P and A of the two tubes are coupled.
Therefore, first we could calculate A2b using the equation (4.59).
From the equation (4.56), we obtain P2b.
From the equation (4.55), we obtain P2c.
From the equation (4.57), we obtain A2c.
From the equation (4.52), we obtain A1b.
From the equation (4.53), we obtain U1b.
From the equation (4.44), we obtain P1b.
From the equation (4.43), we obtain P1c.
From the equation (4.45), we obtain A1c.
From the equation (4.42), we obtain U1c.
From the equation (4.60), we obtain U2b.
From the equation (4.54), we obtain U2c.
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Chapter 5

Blood-CSF coupling effect on the
cerebral vasculature and CSF

dynamics
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5.1 Introduction

This chapter first aims to investigate and analyze the main effects of coupling blood and CSF
flow on pulse wave propagation. Several aspects are highlighted. During the first section, we
analyse the effect of CSF pulsations on blood dynamics. Thus, two models are being compared,
a model accounting for CSF coupling and a model lacking CSF coupling. In the second section,
we investigate the effect of varying the CSF confinement or CSF volume. Finally, the third
section elucidates the role played by the cranial and spinal CSF compartments compliance
during vascular brain expansion.

General considerations The following outcomes will be considered:

• The mean pressure, P̄ , and mean flow, Q̄.

• The pressure peak to peak or pulse pressure, Ppp, defined as the difference between the
maximum and minimum pressure amplitudes. Usually for clinicians, the term Pulse
Pressure accounts for the difference between the systolic and diastolic blood pressure.
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• The peak flow, Qp as ’p’ for peak.

• The stroke volume, Sv, defined as the amount of blood or CSF displaced at each cardiac
cycle.

• The pulse wave velocity (PWV) defined as the velocity at which a pulse wave propagates
from site to site.

• The phase-lag. As we made the assumption that the driving force behind CSF pulsations
is the arterial input, we used the carotid artery flow as the reference against which we
compared blood and CSF flow. It is computed as the difference between two analogous
points of two signals, divided by the total period of the wave. It is expressed in percentage
of the cardiac cycle %cc. The phase lag between the internal carotid and jugular peak
flows or cervical CSF flows reflects the pulse wave velocity through the vessels between
these 2 sites and can be used as a measure of vascular or CSF system compliance.

Remarque 5.1
Recall that the following subscripts are used : ’c-m’ refers to the curent model, the coupled
blood-CSF model, in contrast to ’u-m’ for the uncoupled blood model, i.e a model lacking CSF
coupling. ’cv’ refers to the cerebral vasculature. As for the CSF system, csas refers to the
cranial subarachnoid spaces and ssas for spinal subarachnoid spaces.

5.2 An arterial sinusoidal waveform

Boundary conditions First a sinusoidal input pressure with an apporpriate waveform
is used to model in the simplest way the arterial pressure and reproduce the physiological
conditions. The results of a physiological arterial waveform will be displayed in section 5.7. It
features a systolic blood pressure of 120 mmHg, a diastolic blood pressure of 80 mmHg, and a
period of T=0.85 s. However, temporal evolution results will be displayed in a dimensionless
time (t/T). The arterial pressure was imposed at the inlet of the cerebral vasculature, i.e the
paired carotids and vertebral arteries whereas a constant output pressure of 5.832 mmHg was
assumed at the outlet of the jugular veins 33 & 34.

Computations were performed using the following values of the CSF network mechanical
properties:a cranial CSF confinement at zero transmural pressure of λ0cb = 0.7 It corresponds
to a total CSF volume of 130 mL which lies in the range of MRI measured CSF volumes. The
cranial and spinal dura mater were assigned an elastic modulus of El = 107 mmHg which
yielded to a cranial sas compliance of 0.02 mL/mmHg and a spinal sas compliance of 0.01
mL/mmHg.

Arterial, venous and Spinal CSF flow Figure (5.1) displays pressure and flow of the
carotid artery, the jugular vein and the cervical CSF flow. Table (5.1) details the maximum,
mean and minimum amplitudes of pressure and flow. The model predicted a global cerebral
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(a) Carotid artery P (b) Carotid artery Q (c) Jugular vein P (d) Jugular vein Q

(e) CSF C2-C3 P (f) CSF C2-C3 Q

Figure 5.1: Pressure and flow of the carotid artery, the jugular vein and the cervical CSF flow
for a sinuoidal waveform

blood flow of 10.1 cm3/s which corresponds for an average brain of 1400 g to a cerebral blood
volume (CBV) of 43.2 mL.100 g−1.min−1 which is within the normal range of CBF [61].

The model predicts a pulsatile spinal CSF flow with zero net flow, a CSF caudal flow
during systole and a CSF rostral flow during diastole, a peak flow of 0.5 mL/s and a stroke
volume of 0.2 mL which is in accordance with previous MRI observations [2, 24, 16, 5].

Inlet carotid ar-
teries 1 & 2

Inlet vertebral
arteries 3 & 4

Outlet jugular
veins 33 & 34

Cervical CSF

Pmax, Pmean, Pmin 120/100/80 120/100/80 6.2/5.8/6 10.5/7.8/5
(mmHg)

Qmax, Qmean, Qmin 4.7/3.4/2.1 2.3/1.6/0.8 5.3/4.2/3.1 0.5/10−6/-0.5
(mL/s)

Table 5.1: Maximum, mean and minimum pressure-flow amplitudes of carotid artery 1, jugular
vein 33 and cervical CSF for a sinusoidal arterial waveform

Reynolds number and Womersley number Reynolds and Womersley numbers are the
two nondimensional parameters used to specify pulsatile flow. The Reynolds number relates
the ratio of inertial to viscous forces. Hereby, we considered the peak or systolic Reynolds Rp
number (subscript p as peak). It was defined by,

Rp = ρD
up
µ

(5.1)
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It is based on the fluid peak velocity up, the fluid density ρ and kinematic voscosity µ. The
characteritic dimension D was either the diameter for a circular tube or the hydraulic diameter
for an annular tube. The hydraulic diameter being computed as 4.Area/perimeter. For
the cerebral vasculature, when vessels were regrouped into equivalent tubes such as the pial
arteries or the microcirculation, the peak Reynolds number was computed based upon the
real section and not the equivalent section.

Figure 5.2a displays the peak Reynolds number for the cv (in red) and the cranial sas (in
blue). The maximum peak Reynolds number, Rep = 400, for the cerebral vasculature was
observed at the large carotid arteries (vessel number 1 and 2). The regrouped vessels such as
the pial network (vessel 21), the intracerebral arteries (vessel 22) and the microcirculation
(number 23) displayed, although not visible, low Reynolds numbers.

Our model predicts cranial CSF flow Reynolds number of less than 50. Gupta et al. [29]
have performed 3D CFD simulations and reported Reynolds number of 114 and 20 in the
anterior and cranial SAS. Howden et al. observed using CFD simulations a maximum Reynolds
number of 15 in the ventricular system. Pahlavian et al. [53] and Loth at al. [42] performed
respectively 3D and 2D CFD simulations in the cervical spine and reported respectively peak
Reynolds number of 187 and 201. The current model predicts at the C2-C3 region a Reynolds
number of 146 which is in agreement with the latter studies.

The Womersley number quantifies the transient inertial forces in proportion to viscous
effects. It was defined as,

Wo = D

2

√
ρ
ω

µ
(5.2)

where w = 2π/T is the cardiac pulsation and D is either the diameter for a circular tube or
the hydraulic diameter for an annular tube. Figure 5.2b displays the Womersley number of
the cv (in red) and the cranial sas (in blue). Recall that for a circular tube, the Poiseuille
velocity hypothesized in our mathematical formulation is theoretically only valid for a steady
flow. However, it can be used as a first approximation for small values of Womersley numbers.
For the cv and the cranial sas, the largest value of Wo is about 11 for the transverse sinus
(number 32) and 4 for the annular cranial sas enclosing the transverse sinus. Their effects may
be considered negligible relative to the whole network. Loth at al. [42] have quantified CSF
flow Womersley numbers and has found it varying between 5 and 17. In this study, [42] has
found the greatest Womersley number in the cervical and lumbar sas.

Recall that in our study, for a simplification matter, we have assumed a quasi-steady fow
approximation. This approximation has led to assume a parabolic velocity profile in order
to approximate the wall shear stress. The validity of this approximation in the annular and
circular spinal subarachnoid space (SSS) is discussed in the undergoing publication of annexe
C. In summary, the wall shear stress was found depending on two parameters, the Womersley
number and the width of the annular SSS. We found that the more the annular SSS is narrow,
the more the average wall shear stress of a quasi-steady fow approximation is valid.
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(a) Reynolds number

(b) Womersley number

Figure 5.2: Dimensionless Reynolds and Womersley number of the cerebral vasculature (cv)
and the cranial subarachnoid spaces (csas)

Damping mechanisms due to CSF coupling For every organ in the human body, the
arterial Windkessel properties of the vasculature are known to play a significant role in buffering
arterial pulsations through elasticity of the blood vessels [71, 13]. In the brain, the arterial
Winkessel mechanism is thought to buffer acute arterial pulsations, which may be harmful
to the cerebral bed capillary network, to a more steady stream of blood. A physiologically
important aspect of pulsatility in the cranium is the Windkessel effect, the dissipation of
arterial pulsatility rendering capillary blood flow nearly pulseless. Moreover, Wagshul et al. [43]
has suggest that due to abnormal compliance of patients with chronic hydrocephalus, CSF may
also play a role as the brain’s shock absorber by allowing dissipations of intracranial pulsations
before they are able to reach the microcirculation. Later, the authors have performed changes
in ICP in dogs and have hypothesized that the intracranial compartements appear to act as a
notch filter (Band reject filter) attenuating the frequency of the heart rate relative to other
frequencies [22, 74].

Pressure and flow of the cv can be divided following two groups: on the one hand the
arterial network and on the other hand the more compliant venous network. Hereby, arterial
vessel number 21 equivalent to the arterioles and venous vessel number 31 equivalent to the
transverse sinuses were chosen respectively as representative of both the arterial and the
venous network. A similar strategie was performed for the subarachnoid spaces. On the one
hand, the cranial sas coaxial to the arterial system and on the other hand, the cranial sas
coaxial to the venous system.

Figure (5.3) portrays from left to right the temporal distribution during a dimensionless
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(a) Pressure (b) Flow (c) Area (d) Pressure (e) Flow (f) Area

Figure 5.3: From left to right : Pressure, flow and relative area temporal evolution of arterioles
(vessel 21) followed by the transverse sinus (vessel 31). c-m: coupled model, u-m: uncoupled
model

period (t/T) of pressure P , flow Q and relative section ((A(t)−A0)/A0)) of arterioles vessel
21 followed by the transverse sinuses 31. Solid lines denotes the current blood-CSF coupled
model (c-m) and dashed lines refers to the uncoupled blood model (’u-m’).

During a cardiac cycle blood pressure rises in systole and decreases in diastole (see subfigure
(a) and (d)). Due to the pressure gradient or CPP, blood flow is positive and closely follows
the pressure waveform (see subfigure (b) and (e)). Finally, the model predicts blood small
area variation (see subfigure (c and (f)).

In the c-m model, CSF pulsations were found to cause a dampening and a phase lag of
pressure and section relative to the uncoupled model u-m. The dampening was found to
impact the maximum and the minimum amplitude. However, mean flow and pressure were
not affected which implies that the maximum amplitude dampening is equal to the minimum
amplitude dampening. Moreover, in the c-m model note that CSF flow causes compression of
the venous vessels (see (f)).

Figure (5.4) displays the attenuation values of peak flow, %Qp, and peak to peak pressure,
%Ppp accross the cv. Recall that the arterial network designates vessel 1 to 22 and the venous
vessels designates vessels 24 to 34. Vessel 23 being the microcirculation. For example, the
arterial system pulse pressure (vessel 1 or 2) was found decreased by less than ∼ 2% whereas
the venous system pulse pressure was found decreased by more than ∼ 6%. CSF flow causes
more reduction to the compliant venous network than the arterial network.

Time delay of the cv relative to the carotid artery flow is displayed in figure (5.5) for the
c-m and the u-m models. CSF pulsations slightly affect the phase lag in arteries whereas
there is a significant reduced phase lag in the venous system. Note that the jugular vein peak
flow was found to occur earlier due to confinement and mainly to the great cranial elastance.
Hence, CSF coupling allows a faster transmission of the arterial pulsations to the venous
vessels via the cranial subarachnoid space.

Cranial CSF flow Figure (5.6) portrays the temporal distribution during a dimensionless
period (t/T) of flow, pressure and relative section of cranial subarachnoid spaces coaxial
to the arterioles (number 21) and the transverse sinuses (number 31). Recall that blood
and CSF pressure are coupled using the tube law equation established in section 4.2.3
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(a) Blood flow amplitude variation

(b) Blood peak to peak pressure variation

Figure 5.4: Blood peak flow and blood peak to peak pressure damping accross the coaxial
cerebral vasculature

Figure 5.5: Phase lag to carotid artery flow. c-m: coupled-model, u-m: uncoupled-model
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(a) Pressure (b) Flow (c) Area (d) Pressure (e) Flow (f) Area

Figure 5.6: From left to right, pressure, flow and relative area temporal evolution of cranial
sas coaxial to arterioles (vessel 21) and coaxial to transverse sinus (vessel 31)

Pc = Pb − (El)b(Ab/(A0)b − 1) where Pc is the CSF pressure, Pb is the blood pressure, (El)b is
the blood vessel elastance, Ab is the varying cross sectional area and (A0)b is the cross-sectional
area at zero transmurale pressure. Hence, cranial CSF pressure closely follows blood pressure
waveform (see subfigure (a) and (d). Subfigures (b) and (e) displays cranial CSF flow. The
model predicts a mean cranial CSF flow, in green dashed lines, close to zero implying that
cranial CSF flow is pulsatile flowing forwards and backwards during a cardiac cycle. Finally,
the model predicts small cranial sas area variation, subfigure (c) and (f).

Pressure drop accross the cerebral vasculature and intracranial pressure Recall
that the cerebral vaculature is composed of 34 vessels where each blood vessel starting from
the basilar artery bifurcation (vessel 7 & 8) to the transverse sinuses (vessel 32) is surrounded
by the cranial subarachnoid spaces. Figure (5.7a) portrays the predicted mean pressure of the
cerebral vasculature (cv). Figure shows that blood pressure drops unevenly as blood travels
from arteries to arterioles, capillaries, venules, and veins, and encounters greater resistance.
However, the site of the most precipitous drop, and the site of greatest resistance occurs at
the arterioles (vessel 22). Arterioles admits a greatest elastance than previous vessels, a larger
cross sectional area but individually a smaller diameter. This means more of the blood is in
contact with the vessel wall, and therefore resistance increases. This explains why vasodilation
and vasoconstriction of arterioles play more significant roles in regulating blood pressure than
do the vasodilation and vasoconstriction of other vessels.

Figure (5.7b) portrays the predicted maximum, mean and minimum pressure of the csas
(cv). CSF mean pressure remains roughly constant at about 8 mmHg. Cranial CSF peak to
peak pressure are small despite large arterial peak to peak pressure of 40 mmHg. The CSF
pressure steadiness is due to the availability of the compliant spinal canal to receive CSF. The
model supports the theory of the spinal canal’s role to attenuate CSF pressure amplitudes.

Blood and CSF fluids variations Figure (5.8) portrays volume temporal distribution of
the total coaxial blood vessels, the arterial system, the venous system, the cranial and the
spinal CSF. First of all, the brain vasculature volume, subfigure (a), was found to expands
lesser due to CSF presence. Indeed, as the arterial volume variation, subfigure (b), is slightly
affected by CSF pulsations, it is mainly the venous volume, subfigure (c) which is greatly
attenuated. Moreover, during systole, i.e the first half-period, due to CSF presence the model
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(a) Mean pressure of the cerebral vasculature (cv)

(b) Max., mean and min. of cranial CSF pressure

Figure 5.7: (a) Mean pressure of the cerebral vasculature (cv). (b) Max., mean and min. of
cranial CSF pressure

predicts a compression of the venous system instead of dilatation in a model lacking CSF
coupling.

Coaxial blood vessels were found to inflate and deflate by 0.26 mL, the same amount of
spinal CSF stroke volume of 0.26 mL reported previously.

To explain fluids exchange between blood and CSF between the cranial and spinal vaults,
their volumes were scaled and plotted in subfigure 5.8f. During the first half-period, arterial
volume expansion is regulated by both venous volume and cranial CSF volume compression.
The decrease in intracranial CSF volume is made possible by means of displacement of cranial
CSF into the spinal sas which can expand by the compliance of the dural sac.

Our model supports the theory that during systole, the arterial volume expansion is
regulated by two complementary damping mechanisms which are the venous compression and
the spinal CSF volume increase.

5.3 Effect of varying the confinement and assessment of CSF
viscosity

This section explores cranial CSF confinement effect on blood and CSF flow dynamics. A
mentionned previously, the cranial CSF confinement is a dimensionless number which relates
a blood vessel section to a cranial sas section at zero transmural pressure. λcb, may range
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(a) Coaxial blood vessels (b) Coaxial arterial vessels (c) Coaxial venous vessels

(d) Cranial CSF (e) Spinal CSF

Spinal CSF volume

Cranial CSF volume
Arterial-venous volume

(f) Scaled blood CSF volumes

Figure 5.8: Blood and CSF fluids exchanges between the arterial, venous vasculature and the
cranial and spinal CSF.

(a) Peak flow (b) Stroke volume (c) Mean pressure

Figure 5.9: Effect of CSF confinement or CSF volume on CSF peak flow, stroke volume and
mean pressure

from 0.1 (a total CSF volume of 1400 mL, a cranial CSF volume of 1332 mL and a spinal
CSF one of 68 mL) to 0.85 (a total CSF volume of 95 mL, a cranial CSF one of 28 mL and a
spinal CSF one of 68 mL).

Figure (5.9) depicts CSF flow amplitude, stroke volume, mean pressure and pulse pressure
as a function of confinement for spinal C2-C3 CSF flow and cranial sas coaxial to transverse
sinuses 31.

CSF peak flow and stroke volume Cervical CSF and cranial sas peak flow and stroke
volume reaches respectively an optimum for a CSF volume of 133 mL corresponding to a CSF
confinement of lambdacb=0.7. CSF confinement quantifies the importance of cerebral blood
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section (volume) to cranial CSF section (volume),

volume(blood)
volume(csf) = λcb

1− λcb
(5.3)

In cranial sas 31, as λcb reaches towards 0.1 or as cranial CSF volume increases, cerebral blood
volume is assumed to drag a great amount of cranial CSF volume, and consequently CSF flow
drops. Whereas, as λcb reaches towards 0.9, or as cranial CSF volume decreases, there is more
CSF contacting the vessel wall, thus higher friction and higher resistance and subsequently
decreasing flow. This demonstrates the existence of a confinement at which CSF flow and
stroke volume are maximal. A more theoretical investigation requires a closer look to the
momentum conservation equation for an annular tube. Recall that the momentum equation
of an annular tube was defined as,

ρ
∂Q2
∂t

+ ρ
∂

∂z

(
Q2

2
A2 −A1

)
+ (A2 −A1)∂P2

∂z
= 2π(R2τ2 −R2τ12) (5.4)

where the first term of the left hand side ∂Q2/∂t represents the inertial forces, the second
term portrays the convective term ∂(Q2

2/(A2 − A1))/∂z, the third term (A2 − A1)∂P2/∂z

represents the pressure term and finally the right hand side displays the viscous term 2π(R2τ2−
R2τ12). Figure (5.10) depicts temporal evolution of these four terms in cranial sas coaxial to
transverse sinus 31 for three confinement values λcb =0.3, 0.5 and 0.7.

As displayed in figure (5.10) for a confinement of λcb =0.3, inertial forces (in blue line)
dominate the viscous forces (in green line). For a confinement of λcb =0.5, inertial and viscous
forces are of the same order of magnitude and finally for a confinement of λcb =0.7, viscous
forces greatly dominates inertial forces. To finally assess the imbalance between inertial and
viscous forces, figure (5.11) compares CSF maximum flow evolution for a viscous and non
viscous CSF model. As expected, when considering CSF viscous, CSF maximum flow drops at
lower confinement due to higher friction.

Loth et al. [42] numerical and experimental study showed that the pulsatile flow of the
CSF in the spinal sas is characterised by relatively dominated inertia effects mainly near the
cervical and lumbar area, i.e where spinal sas are the largest. However, as sas gets smaller,
viscous effect increases and challenges inertia effect suggesting the need to account for CSF
viscosity at least in small annular spaces as the cranial sas. Finally, it is important to note
that the overall contribution of CSF viscosity is not negligible in the cranial sas and therefore
may affect spinal CSF.

5.4 Effect of the cranio-spinal compliance

Recall that cerebral compliance is provided mainly by the intracranial venous system, the
extracellular spaces and the CSF system. Intracranial compliance (ICC) represents the change
in volume (∆V ) per unit change in pressure (∆P ), and is exactly the inverse of elastance. In
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(a) λcb=0.3 (b) λcb=0.5 (c) λcb=0.7

Figure 5.10: Evolution during a cycle of the conservation of momentum terms for three
different confinement λcb=0.3, 0.5 and 0.7 where Tq,t = ρdQ2/dt, Tp,z = (A2 − A1)dp/dz,
Tq2,a,z = d(Aanr ∗Q2)/dz and Tf = 2π(R2τ2 −R1τ12).

Figure 5.11: Effect of CSF viscosity on cranial CSF peak flow

other words, ICC determines the ability of the intracranial compartment to accommodate an
increase in volume without a large increase in pressure. In this section, we investigate the
effect of the craniospinal compliance of subarachnoid spaces on blood and CSF pulsations.
Recall that the elastic Young modulus differs from the elastance which is the reciprocal of the
compliance.

In order to allow analogy between the cranial and the spinal compliance, their respective
elastic Young modulus will be expressed in terms of a volumetric compliance using the tube
law equation. Morevoer, the three elements Windkessel compliance will be tuned in order to
equal the compliance of the spinal dura mater.

Intrinsic relationship between a vessel compliance and the elastic modulus of its
wall Recall that a vessel compliance expressed in (mL/(dyne/cm2) is defined as,

C = ∆V/∆P (5.5)

Moreover, in our mathematical formulation of the tube law equation, a linear relation was
assumed beetween the transmural pressure Pt and the varying vessel cross-sectional area A
(or vessel volume V ) defined as,

Pt = El(
A

A0
− 1) = El(

V

V0
− 1) (5.6)
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where A0 and V0 are respectively the cross sectional area volume at zero transmural pressure
and El is the Young modulus expressed in dyne/cm2.

By combining the two previous equation (5.5) and (5.6), one might write,

∆Pt = El
∆V
V0

,
∆V
∆Pt

= V0
El
, Cl = V0

El
(5.7)

Using the latter equation, the cranial sas compliance will be defined as Clc = V0c/Elc

where Elc is the cranial dura mater elastic modulus and V0c is the cranial CSF volume. In a
similar manner, the spinal sas compliance will be defined as Cls = V0s/Els where Els is the
spinal dura mater elastic modulus and V0s is the spinal CSF volume. Finally, as mentioned
previously, the 3 element Windkessel compliance was assumed to be identical to spinal sas
compliance.

5.5 Effect of varying the cranial subarachnoid spaces compli-
ance

In this section, we investigate the cranial subarachnoid spaces compliance effect on blood and
CSF dynamics. CSF volume was assumed to be 215 mL divided into a cranial CSF volume of
147 mL and a spinal CSF one of 68 mL which lie within the range of physiological CSF volume
values [3, 63]. Usually, healthy physiological values of the Young elastic modulus of the dura
mater ranges between 600 mmHg and 5.104 mmHg as described previously in section 3.4.1.
In this study, for a theoretical perspective and to account for extreme cases of either very
compliant or very rigid dura mater, the range of the dura mater elastic Young modulus was
extended. Therefore, the cranial sas elastic modulus Elc was taken varying between 75 mmHg
and 7.5.104 mmHg which correponds to a cranial sas compliance varying between 0.002 and 2
mL/mmHg. The spinal sas elastic modulus was assumed equal to 103 mmHg whic implies
a spinal compliance of 0.07 mL/mmHg. Finally, the 3 elements Winkessel compliance was
assumed equal to 0.07 mL/mmHg.

Figure (5.12) displays cranial and spinal mean pressure, peak flow and stroke volume as
a function of the cranial sas compliance. Regarding venous flow, displayed (a) and (b), as
cranial sas compliance decreases, CSF pulsations were found to dampen venous peak flow and
pulse pressure. Whereas, as cranial sas increases, the effect of the constraint on the venous
flow weakens, and consequently peak flow and pulse pressure increase and tend to converge
towards a model lacking CSF coupling.

The model predicts that decreasing intracranial compliance increases CSF mean pressure,
pulse pressure and peak flow in the cranial and spinal vault. As demonstrated by several MRI
studies of pathological disorders, decreased intracranial compliance severly affects intracranial
pressure. For example, a previous study by Alperin et al. [4] has provided evidence that
increasing ICC compliance by means of decompression surgery in Chiari Malformations has
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(a) Pressure peak to peak (b) Peak flow

(c) Mean pressure (d) Peak flow (e) Stroke volume

(f) Mean pressure (g) Peak flow (h) Stroke volume

Figure 5.12: Effect of intracranial compliance Cld on (working from top to bottom) venous
flow, cranial CSF flow and spinal CSF flow

shown a great decrease in CSF pressure.

5.6 Effect of varying the spinal subarachnoid spaces compli-
ance

In this section, we investigate the spinal subarachnoid spaces compliance effect on blood and
CSF dynamics. CSF volume was assumed to be 215 mL divided into a cranial CSF volume
of 147 mL and a spinal CSF one of 68 mL. The spinal sas elastic modulus Elc was taken
varying between 37.5 mmHg and 7.5.104 mmHg which correponds to a spinal sas compliance
varying between 0.001 and 2 mL/mmHg. The cranial sas elastic modulus was assumed equal to
7.5.104 mmHg which implies a cranial compliance of 0.002 mL/mmHg. Finally, the 3 elements
Winkessel compliance was assumed varying and equal to the spinal sas compliance.

Figure (5.13) displays cranial and spinal CSF mean pressure, peak flow and stroke volume
as a function of the spinal sas compliance. The curves distribution may be divided into two
parts: a high compliance part and a low compliance part. In the low compliance part, despite
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(a) Pressure peak to peak (b) Peak flow (c) Pressure

(d) Pressure (e) Peak flow (f) Stroke volume

Figure 5.13: Effect of spinal dura mater elasic modulus Eld on cranial, spinal CSF and venous
flow.

Figure 5.14: Spinal volumetric compliance effect on spinal CSF pulse wave velocity (pwv)

the increase in spinal compliance, cranial and cervical CSF display a plateau of pressure and
a maximum followed by a plateau for peak flow and stroke volume. However, in the low
compliance part, any small decrease in the spinal compliance elicit high increases in cranial and
spinal pressure and consequently a decrease in cranial and spinal flow. This behaviour reminds
the presure-volume curve linking intracranial pressure to intracranial compliance. In the high
compliance part, spinal and cranial CSF pressure are steady, whereas as spinal compliance
decrease, CSF fails to play its buffering role, thus resulting in an increase of pressure and
ultimately a decrease of flow.

Figure (5.14) displays spinal CSF pulse wave velocity along the spinal sas between the
cervical and the lumbar region. Spinal sas pwv was found to decrease under increasing spinal
sas compliance. Moreover, the range of pulse wave velocity is in agreement with previous MRI
studies as Kalata et al. [36] where, in this study, a novel MR sequence was used to acquire
unsteady spinal CSF velocity measurements during the cardiac cycle.
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Ta-j

Ta-c

Figure 5.15: Carotid, jugular and CSF flow for a physiological input waveform

5.7 An arterial physiological waveform

In this section, we briefly presents the same results described before, although here we use a
physiological input waveform.

Figure (5.15) displays the carotid, jugular and cervical CSF flow. The model predicted a
global cerebral blood flow of 10.1 cm3/s which corresponds for an average brain of 1400 g to a
cerebral blood volume (CBV) of 43.2 mL.100 g−1.min−1.

The model predicts a pulsatile spinal CSF flow with zero net flow, a peak flow of 2.7 mL/s
and a stroke volume of 0.6 mL. Ta− v = 9.8 and Ta− c = 7.8 are the times delay occuring
between the venous and cervical CSF flow peaks compared to the arterial systolic flow peak.
These times are expressed as a percentage of the cardiac cycle. CSF cervical peak flow was
found to occur earlier than jugular peak flow.

Cerebral blood flow for a physiological and a sinusoidal waveform was found the same
however CSF stroke volume computed from a physiological waveform was found greater and
closer to physiological values [2].

Inlet carotid ar-
teries 1 & 2

Inlet vertebral
arteries 3 & 4

Outlet jugular
veins 33 & 34

Cervical CSF

Pmax, Pmean, Pmin 122/105/86 120/105/86 5.8/5.8/5.8 7.8/5/2.4
(mmHg)

Qmax, Qmean, Qmin 6/3.6/2.4 3.2/1.7/1 6/4.5/3.4 1.5/10−6/-0.6
(mL/s)

Table 5.2: Maximum, mean and minimum pressure-flow amplitudes of carotid artery 1, jugular
vein 33 and cervical CSF for a physiological arterial waveform
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(a) Cervical peak flow (b) Mean cranial CSF pressure (c) Phase lag Ta-c and Ta-v

Figure 5.16: A physiological waveform: effect of CSF volume and cranio-spinal compliance on
CSF flow. Ta-c: arterial to CSF cervical flow time delay, Ta-v: arterial to venous flow time
delay

Effect of CSF volume and cranio-spinal compliance Simulations performed using a
physiological arterial input showed overall similar distribution as using a sinusoidal waveform.
We recall here the major results described before. Figure 5.16c displays for a physiological
waveform the effect of CSF volume and cranio-spinal compliance. As mentioned previously,
an optimum stroke volume was found. However, it was found at a CSF volume of 216 mL
instead of 130 mL using a sinusoidal input. Once again, cranial CSF pressure was found to
increase by decreasing overall cranio-spinal compliance. Finally, figure (5.16) portrays the
carotid flow to venous flow and cervical flow delay as a function of intracranial compliance.
Cervical flow and venous flow occured earlier under decreasing intracranial compliance. Note
that cervical flow occurs earlier than venous flow.

5.8 Conclusion

The analysis of the 1-D has enable to identify the major CSF pulsations effect on the overall
blood and CSF dynamics in the cranial and spinl vault. These preliminary results were able to
capture the major features of blood and CSF dynamics which are in agreement with numerous
MRI studies [2, 24, 16, 5].. In the first section, the model predicts that CSF pulsations appear
to play a major role in damping cerebral pulsations mainly in the venous than the arterial
one due to the compliant nature of the venous system. Although arterial pulsations were less
attenuated than venous pulsations, it appears that our model supports the theory of Wagshul
et al. [43] that CSF may also play a role as the brain’s shock absorber and help the brain
vasculature Windkessel mechanism by allowing dissipations of intracranial pulsations before
they are able to reach the microcirculation.

The model predicts pulsatile cranial and spinal CSF flow with zero net flow. During a
cardiac cycle, the total cerebral blood volume was found to inflate and deflate by approximately
0.26 mL whereas 0.26 mL of CSF volume was displaced into the spinal sas. Cranial CSF
pressure was found to be steady accross the cranial sas and equal to 8 mmHg. Finally, the
model predicts venous volume compression and spinal CSF dilation acting as a buffering
mechanism to arterial volume expansion. Our model supports CSF crucial role in regulating
cerebral volume expansion during the cardiac cycle.
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In the second section, we have shown that an optimum CSF peak flow and srtoke volume
occured at a intracranial CSF volume of 133 mL which corresponds to a mean physiological
value of CSF volume. This optimum was demonstrated to be due to the imbalance forces
between the inertial forces and the viscous forces. Thus, viscous dissipation of CSF flow have
shown to have a major effect on CSF peak flow an pulse pressure.

In the third and fourth section, our model demonstrates that cranial and cervical flows are
strongly impacted by intracranial and spinal compliance of the sas. Cervical CSF and jugular
peak flow were found to occur earlier when decreasing intracranial compliance of the cranial
sas. These results support numerous research and studies hypothesizing that this phase lag
may be crucial factor in revealing craniospinal disorders. These results confirm findings in the
litterature [6] indicating that in patients with a hydrocephalus condition, cervical CSF flow
occured earlier than in healthy volunteers due to decreased intracranial compliance.

Finally, the CSF flow results support that greater spinal sas compliance results in greater
CSF flow pwv reduction in the the spinal canal. These indicates that if the spinal sas
compliance varies due to surgery involvment, then the CSF peak flow and pulse pressure might
be modified.

This study have shown that, the main haemodynamic effects on flow wave propagation
can be efficiently captured using a coupled 1D model of blood and CSF flow. However, the
results presented emphasize the significant influence of CSF mechanical properties on blood
and CSF flow waveforms. The next chapter will discuss the estimation of CSF volume and
cranio-spinal compliance parameters in patient-specific simulations.
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Chapter 6

Applications on patient specific
Data
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6.1 Introduction

In the previous chapter, the 1D coupled blood-CSF model have shown a great ability in
capturing the main features of blood and CSF flows. However, the medical application of
this 1D-modelling is subject to the availability of patient specific data such as pressure wave
speeds, flow velocities and anatomical geometries. This is made possible thanks to recent and
ongoing progress in medical imaging such as computer tomography, magnetic resonance and
ultrasound technologies which offer great possibilities in providing velocity waveforms and
local geometries.

In this chapter, CSF pressure and flow computed from the 1D blood-CSF model are
compared against PC MRI flow. Four volunteers underwent MRI of the brain: 2 healthy and
2 suspected of a hydrocephalus condition.

This chapter is treated under three main headings. The first section provides the measure-
ments data and their acquisition techniques. The second one explains how the 1D blood-CSF
model were adapted using these data measurements. The third part consists of analysing and
comparing CSF flow and pressure in vivo measurements against computationel outputs. The
aim of using patient specific data is first to validate the outcomes of the coupled 1D blood-CSF
model and hopefully provide insights by estimating major mechanical properties of patients.
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Mean flow (mL/s) RIC LIC RV LV RJ LJ AQ C2-C3 4V PC ImB
N-1 5.7 5.6 0.6 0.9 0.3 7 0.02 0.05 0.01 -0.06 5.5
N-2 4.6 3.8 1.2 2.3 9.5 2 0.01 -0.02 -0.01 -0.3 0.4
H-1 2.1 3.3 0.6 1.5 5.4 1.3 10−3 -0.05 0.03 0.08 0.8
H-2 3.2 3.7 0.2 0.3 1 1.5 -0.04 -0.02 0.02 0.07 4.9

Table 6.1: Mean blood and CSF flow

Section (cm2) RIC LIC RV LV RJ LJ AQ C2-C3 4V PC
N-1 0.22 0.27 0.05 0.06 0.08 0.41 0.04 1.2 0.08 1.4
N-2 0.25 0.21 0.12 0.15 0.65 0.1 0.08 1 0.03 1.1
H-1 0.16 0.2 0.07 0.11 0.58 0.19 0.07 1.3 0.04 1.6
H-2 0.22 0.23 0.03 0.03 0.06 0.07 0.05 2.1 0.01 1.5

Table 6.2: Section of blood and CSF

6.2 Data aquisition

Conventional morphologic sequences and PC-MRI measurements were acquired from Bio FLow
Image Project directed by Phd Olivier Balédent at Amiens University in France using in-house
image-processing software that automatically measured flow curves. The MRI measurements
methods are detailed in Baledent et al. [5]. CSF flow acquisition was acquired through the
C2-C3 subarachnoid space, the fourth ventricular, the aqueduct of Sylvius and the prepontine
cistern. Section through C2 to C3 were selected to measure axial vascular flow at the right
and left internal carotid (RIC and LIC) and right and left vertebral arteries (RV and LV)
and in the right and left internal jugular veins (RJ and LJ). Two healthy volunteers and two
patients suspected of a hydrocephalic disorder were investigated. The latter two patients are
part of proliphyc project directed by neurosurgeon Dr. Eric Schmidt. proliphyc which aims to
investigate the link between the CSF proteome (set of proteins) and neurological disorders.

Remarque 6.1
The following subscripts will be used in the following. RIC denotes for Right Internal Carotid,
LIC for Left Internal Carotid, RV for Right Vertebral, LV for Left Vertebral, RJ for Right
Jugular, LJ for Left Jugular, AQ for CSF Aqueduct region, C2-C3 for CSF second and third
cervical region, 4V for fourth ventricle and PC for the Prepontine Cistern. N denotes for
Normal CSF flow and H for suspected Hydrocephalus flow.

6.3 Patient specific 1D blood-CSF model

In the previous chapter, the boundary conditions used for the computations were blood
pressure signals for the input and the ouput of the cerebral vasculature. The input pressure
was assigned respectively a sinusoidal pressure and a more physiological one. It was imposed
at the inlet of the carotids and the vertebrals artries. A steady pressure signal was imposed at
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the outlet of the jugular veins. Here PC-MRI measurements were used as boundary conditions.

Table (6.1) and table (6.2) resume respectively mean flow and sections in each artery, vein
and CSF region. Although, it is a small control population, it illustrates heterogeneity and
dispersion of mean venous flow. Stoquart-El Sankari et al. [69] performed PC-MRI in 18
healthy volunteers in the supine position and showed that jugular outflow tends to favor the
right jugular vein.

The last column ImB consist of the imbalance between arterial net flow and jugular net
flow. This imbalance is described by several authors and is presumably due to accessory
venous drainage pathways besides the jugular veins [19, 59, 69, 64]. In the supine posture,
the venous outflow is primarily through the IJV while in the upright posture the IJV’s were
either partially or fully collapsed and the main pathway for venous drainage was the cerebral
venous plexus. Usually in medical imaging, to account for this imbalance in order to produce
an arteriovenous flow, which consists of the difference between the measured arterial curve
and the measured venous curve, the venous outflow is scaled using a corrected factor, α, as
α= mean arterial flow/mean venous flow [24, 5]. Venous outflow is therefore forced to equal
arterial inflow.

In this study, to ensure a mass conservation between the arterial inflow and the jugular
outflow. We have taken profit from vessel 6bis, which may act as an accessory venous drainage
to impose at its boundary the imbalance between the measured arterial and jugular flow.

6.4 CSF network parameters

In the previous chapter, effect of the CSF network parameters were investigated. They
consisted of the cranial CSF confinement or CSF volume, the spinal and cranial dura mater
elastic modulus or in other words, the cranial and spinal sas compliance. In this chapter,
cranial CSF confinement was taken ranged between λcb = 0.1 and λcb = 0.85. The cranial and
spinal compliance was taken individually varying between 75 mmHg and 7.5.104 mmHg which
correponds to a cranial and spinal sas compliance varying between 0.002 and 2 mL/mmHg.

6.5 Comparison between PC-MRI flow and 1D model flow

PC-MRI C2-C3 CSF flow discrete signal is compared against computed C2-C3 CSF flow by
means of normalised root mean square error, nrmse. It is defined as,

nrmse =

√∑n=N

n=1 (Qn
mri−Qn

m)2

N∑n=N

n=1 (Qn
mri)2

N

(6.1)
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where Qmri is the measured PC-MRI flow, Qm is the computed flow, N the number of samples
of the signals. For example, a nrmse of 0.6 means a difference between measured and computed
signal of 60%.

After running the simulations for various CSF volume and cranio-spinal compliance, the
C2-C3 cervical flow having the smallest nrmse were extracted. They are displayed in figure
(6.1). Table 6.3 resumes the deduced nrmse, CSF volume, cranial and spinal sas compliance
and pulse wave velocity in the spinal canal.

Overall, general aspect of computed flow is in good agreement of the measured flow.
Judging by the nrmse deviations, normal patients have shown better similarity than sus-
pected hydrocephalic patients. Moreover, H2 patient had a significant CSF volume and a
higher intracranial compliance. Finally, spinal compliance was found slightly higher in the
hydrocephalic patients.

nrmse CSF volume
(mL)

Intracranial
sas compliance
(mL/mmHg)

Spinal sas
compliance
(mL/mmHg)

spinal pwv
(m/s)

N-1 0.36 164 8.5.10−4 0.0951 6.5
N-2 0.46 153 8.5.10−4 0.0847 11
H-1 0.68 148 5.10−4 0.1042 7.7
H-2 0.63 314 0.0025 0.159 8.9

Table 6.3: Computed nrmse, CSF volume, cranial and spinal sas compliance and pulse wave
velocity in the spinal canal for 4 patients

6.6 Conclusion

We have proposed a methodology and a strategy which uses MRI and geometry data of
the carotid and vertebrals arteries to compute cervical CSF flow. Although, the number of
individuals investigated was relatively small, comparison between computed CSF flow and
MRI have shown good agreement. Results are promising but the control population is too
small to provide conclusive remarks and suggest a clinical status of the patients. Quite likely,
the cranio-spinal compliance is not the only issue involved in Hydrocephalus disorders as some
forms are caused by altered CSF absorption at the arachnoid granulations. Nevertheless, it
demonstrates the potential of the proposed 1d model for the investigation of CSF dynamics.
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(a) fig:N1 (b) fig:N2

(c) fig:H1 (d) fig:H2

Figure 6.1: Cervical CSF flow computed from the current model and compared to measured
PC-MRI flow
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Conclusion and perspectives

6.7 Conclusion

The cerebrospinal fluid is a biological fluid embedded within the central nervous system. The
fluid exhibits clear pulsatile motion superimposed by a bulk flow due to its production and
absorption. MRI studies suggest that arterial pulsations and respiration are the main driving
mechanisms behind CSF motion. In this work, we have focused on the arterial pulsations
effect as the CSF motor function .

In the first chapter, we have first established a strong and necessary background of the
central nervous system anatomy. We have given a particular attention to the CSF system which
includes the ventricular system and the cranial and spinal subarachnoid spaces. Furthermore,
we have described the brain blood supply and drainage and outlined the high variability of
the cerebral vasculature architecture.

In the second chapter, we have described the geometry and mechanical properties of the
proposed one-dimensional model. It consists in the cranial vault of the brain vasculature
starting at the paired carotid and vertebral arteries and ending at the jugular veins. The
blood vessels were enclosed within coaxial tubes representing the cranial subarachnoid spaces.
The cranial vault was later coupled to a spinal compartment in which the spinal subarachnoid
spaces encloses the spinal cord.

In the third chapter, we have established the one dimensional formulation of flow in a
system of coaxial and compliant tubes. We have presented the Lax Wendroff numerical scheme
and highlighted the branching conditions involved in the one dimensional architecture.

In the fourth chapter, we have explored the effect of accounting CSF pulsations on blood
pulsations. Furthermore, we have quantified the effect of CSF volume and the cranio-spinal
compliance on CSF flow dynamics. Our model was able to evidence cranial CSF pulsatility
with zero net flow and CSF motion between the cranial and spinal compartments. The model
predictions of CSF flow were in good agreement with clinical findings both in flow amplitude
and stroke volume at the cervical region. The model have demonstrated a CSF volume at
which CSF peak flow and stroke volume were optimal. Moreover, decreasing the cranio-spinal
compliance have shown to increase cranial CSF pressure whereas peak cervical flow time delay
was found to decrease. In the spinal compartment, the model predicted pulse wave velocity
values in the ranges of previous MRI work.

Therefore, in the last chapter, we have compared the cervical CSF flow of our model to
PC-MRI flow of 2 healthy patients and 2 patients with suspected hydrocephalus. The model
showed good agreement with the measured flow but was unable to provide further insights
regarding the medical status of the patients.
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6.8 Perspectives

There remains some aspects on which future work might shed the lights upon. We suggest
further investigations upon the following matters. Future studies might expand the ventricular
system by taking into account aqueducts, ventricles and cisterns and therefore explores further
coupling due to arterial pulsations. Later studies might also address the coupling between
the spinal vasculature as the epidural vein plexus and spinal CSF flow. The latter has shown
to largely influence CSF flow and pressure during abrupt increase of abdominal pressure like
coughing or sneezing. Moreover, the current model is based on a constant section of the spinal
subarachnoid spaces and spinal cord, although the spinal compartment shows a varying cross
sectional area of both the spinal subarachnoid spaces and the spinal cord with an enlargement
at the cervical and lumbar region. Cross sectional variations might bring an improvement to
the current model in terms of pulse wave velocity and pulse pressure attenuation.

Much work remains to be done in expanding the model, but the integration of the major
components of blood and CSF appears to provide a good start into understanding intracranial
dynamics.
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Appendix A

Wall shear stresses in an annular
flow

A1

A2

R2
r

R1
u

z

For a laminar flow in a cricular pipe, the pressure gradient is defined as,

dP
dz = µ

1
r

d
dr

(
r

du
dr

)
(A.1)

Following several derivations of the previous equation, we obtain the following expression of
the longitudinal velocity u :

u = r2

4µ
dP
dz +A ln r +B (A.2)

where A and B are derivatives constants.

In a annular flow, the no slip boundary conditions are written as:{
u(r=R1) = 0 (A.3)
u(r=R2) = 0 (A.4)

By replacing the latter equations in the longitudinal velocity expression A.2, we obtain
the following system of equations :

R2
1

4µ
dP

dz
+A lnR1 +B = 0 (A.5)

R2
2

4µ
dP

dz
+A lnR2 +B = 0 (A.6)
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The resolution of this system allows to obtain the expressions of A et B which are :
A = 1

4µ
dP
dz

R2
1 −R2

2
ln R2

R1

(A.7)

B = 1
4µ

dP
dz

(
−R2

2 −
R2

1 −R2
2

ln R2
R1

lnR2

)
(A.8)

By replacing the latter equations in the longitudinal velocity expression A.2, the expression
of u becomes :

u = 1
4µR

2
2
dP
dz

((
r

R2

)2
− 1 + 1− λ2

lnλ ln r

R2

)
(A.9)

where
a = R2

2 −R2
1

ln R2
R1

λ = R1
R2

Now, we will proceide at defining the mean velocity denoted U . Its expression is,

U = 1
Annular section

∫
udS = 1

π(R2
2 −R2

1)

∫ R2

R1
u2πrdr

After multiple calculations and a partial integration, the expression of the mean velocity U
becomes :

U = − 1
8µR

2
2
dP
dz

(
1 + λ2 + 1− λ2

lnλ

)

From expressions A.9 et A.9, we deduce the algebraic relation linking the longitudinal
velocity u to the mean velocity U :

u = 2U

1−
(
r
R2

)2
− 1−λ2

lnλ ln r
R2

1 + λ2 + 1−λ2

lnλ



Finally, let τp1 and τp2 be the wall shear stresses respectively at r = R1 and r = R2. Their
expressions may be written as :

τp1 = τp(r=R1) = µ

(du
dr

)
R1

(A.10)

τp2 = τp(r=R2) = µ

(du
dr

)
R2

(A.11)

In other words, after integrating the expression u, the wall shear stresses τp1 and τp2
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becomes : 
τps1 = 2µU

γ

(
2R1
R2

2
+ 1− λ2

R1 lnλ

)
(A.12)

τps2 = 2µU
γ

(
2
R2

+ 1− λ2

R2 lnλ

)
(A.13)

where
γ = 1 + λ2 + 1− λ2

lnλ
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Appendix B

Branching conditions

The following subscripts are used : 1 for the interior tube and 2 for the exterior tube.

B.0.0.1 Case 2

•

a

•

b

•

c

•

d

• e

• f

The jump conditions between the points b, c and e are :

(AU)1b = (AU)1c (B.1)

((A2 −A1)U2)b = (AU)2e (B.2)

P1b = P1c

P2b = P2e

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.3)

P1c = El1c

(
A1c
A01c

− 1
)

(B.4)

P2b = El2b

(
A2b
A02b

− 1
)

(B.5)

P2e = El2e

(
A2e
A02e

− 1
)

(B.6)

∫ b

a

∂A1
∂t

dx+ (AU)n+1
1b − (AU)n+1

1a = 0 (B.7)

75



∫ d

c

∂A1
∂t

dx+ (AU)n+1
1d − (AU)n+1

1c = 0 (B.8)

∫ f

e

∂A2
∂t

dx+ (AU)n+1
2f − (AU)n+1

2e = 0 (B.9)

∫ b

a

∂A2
∂t

dx+
(
(A2 −A1)U2 +A1U1)n+1

b − ((A2 −A1)U2 +A1U1)
)n+1

a
= 0 (B.10)

Therefore,
∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (B.11)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1d − (AU)n+1
1c = 0 (B.12)

∆xa
2∆ta

(
An+1

2a −A
n
2a +An+1

2b −A
n
2b

)
+ ((A2 −A1)U2 +A1U1)n+1

b

− ((A2 −A1)U2 +A1U1))n+1
a = 0 (B.13)

∆xf
2∆tf

(
An+1

2f −A
n
2f +An+1

2e −A
n
2e

)
+ (AU)n+1

2f − (AU)n+1
2e = 0 (B.14)

Given that,
An+1

2e −A
n
2e = El2b

El2e

A02e
A02b

(An+1
2b −A

n
2b) (B.15)

An+1
1c −A

n
1c = El1b

El1c

A01c
A01b

(An+1
1b −A

n
1b) + El2b

El1c

A01c
A02b

(An+1
2b −A

n
2b) (B.16)

Put,

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, Rf =

(
∆xf
2∆tf

)

K1bc =El1b
El1c

A01c
A01b

, K2be = El2b
El2e

A02e
A02b

, K2b1c = El2b
El1c

A01c
A02b

By adding (B.11) and (B.12) and using (B.1) and (B.16),

[Ra +RdK1bc](An+1
1b −A

n
1b) +RdK2b1c(An+1

2b −A
n
2b)

= −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) + (AU)n+1

1a − (AU)n+1
1d (B.17)

By substracting equation (B.12) from (B.11),

(AU)n+1
1b = 1

2(−[Ra −RdK1bc](An+1
1b −A

n
1b) +RdK2b1c(An+1

2b −A
n
2b)

−Ra(An+1
1a −A

n
1a) +Rd(An+1

1d −A
n
1d) + (AU)n+1

1a + (AU)n+1
1d ) (B.18)
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By adding (B.13) and (B.14) and using (B.2) and (B.15),

[Ra +RfK2be](An+1
2b −A

n
2b) +Rf (An+1

2f −A
n
2f ) +Ra(An+1

2a −A
n
2a)

+ (AU)n+1
2f + (AU)n+1

1b − ((A2 −A1)U2 +A1U1))n+1
a = 0 (B.19)

By replacing (B.18) in (B.19),

[−Ra2 + RdK1bc
2 ](An+1

1b −A
n
1b) + [Ra +RfK2be + RdK2b1c

2 ](An+1
2b −A

n
2b)

= Ra
2 (An+1

1a −A
n
1a)−

Rd
2 (An+1

1d −A
n
1d)−

(AU)n+1
1a

2 − (AU)n+1
1d

2
−Rf (An+1

2f −A
n
2f )−Ra(An+1

2a −A
n
2a)− (AU)n+1

2f

+ ((A2 −A1)U2 +A1U1))n+1
a (B.20)

Using equations (B.17) and (B.20),(
An+1

1b −An1b
An+1

2b −An2b

)
= M−1

(
Z1
Z2

)
(B.21)

with,

M =
(
Ra +RdK1bc RdK2b1c
−Ra

2 + RdK1bc
2 Ra +RfK2be + RdK2b1c

2

)
And,

Z1 = −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) + (AU)n+1

1a − (AU)n+1
1d

Z2 =Ra
2 (An+1

1a −A
n
1a)−

Rd
2 (An+1

1d −A
n
1d)−

(AU)n+1
1a

2 − (AU)n+1
1d

2
−Rf (An+1

2f −A
n
2f )−Ra(An+1

2a −A
n
2a)− (AU)n+1

2f

+ ((A2 −A1)U2 +A1U1))n+1
a

By susbstracting (B.14) from (B.13), we obtain

[Ra −RfK2be](An+1
2b −A

n
2b) +Ra(An+1

2a −A
n
2a)−Rf (An+1

2f −A
n
2f )

+ 2 (AU)n+1
2e − (AU)n+1

2f + (AU)n+1
1b − ((A2 −A1)U2 +A1U1))n+1

a = 0

Therefore,

Un+1
2e = 1

2An+1
2e

(−[Ra −RfK2be](An+1
2b −A

n
2b)−Ra(An+1

2a −A
n
2a) (B.22)

+Rf (An+1
2f −A

n
2f ) + (AU)n+1

2f − (AU)n+1
1b + ((A2 −A1)U2 +A1U1))n+1

a ) (B.23)

From equation (B.21), we obtain An+1
1b and An+1

2b .
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From equation (B.3) and (B.5) ,we obtain Pn+1
1b and Pn+1

2b . Immediately, we obtain Pn+1
1c and

Pn+1
2e .

From equation (B.4) and (B.6) ,we obtain An+1
1c and An+1

2e .
From equation (B.11) or (B.18), we obtain Un+1

1b .
From equation (B.12) or (B.1), we obtain Un+1

1c .
From equation (B.14) or (B.23), we obtain Un+1

2e .
From equation (B.13) or(B.2), we obtain Un+1

2b .

B.0.0.2 case 3

•

a

•

b

•

c

•

d

• e

• f

The jump conditions between the points b, c and e are :

(AU)1b = (AU)1c (B.24)

(AU)2e = [(A2 −A1)U2]c (B.25)

P1b = P1c

P2e = P2c

P1b = El1b

(
A1b
A01b

− 1
)

(B.26)

P1c = El1c

(
A1c
A01c

− 1
)

+ P2c (B.27)

P2c = El2c

(
A2c
A02c

− 1
)

(B.28)

P2e = El2e

(
A2e
A02e

− 1
)

(B.29)

Given that, ∫ b

a

∂A1
∂t

dx+ (AU)n+1
1b − (AU)n+1

1a = 0 (B.30)∫ e

f

∂A2
∂t

dx+ (AU)n+1
2e − (AU)n+1

2f = 0 (B.31)
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∫ d

c

∂A1
∂t

dx+ (AU)n+1
1d − (AU)n+1

1c = 0 (B.32)

∫ d

c

∂A2
∂t

dx+
(
(A2 −A1)U2 +A1U1)n+1

d − ((A2 −A1)U2 +A1U1)
)n+1

c
= 0 (B.33)

Therefore,
∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (B.34)

∆xf
2∆tf

(
An+1

2f −A
n
2f +An+1

2e −A
n
2e

)
+ (AU)n+1

2e − (AU)n+1
2f = 0 (B.35)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1d − (AU)n+1
1c = 0 (B.36)

∆xd
2∆td

(
An+1

2d −A
n
2d +An+1

2c −A
n
2c

)
+ ((A2 −A1)U2 +A1U1)n+1

d

− ((A2 −A1)U2 +A1U1))n+1
c = 0 (B.37)

Given that,
An+1

2c −A
n
2c = El2e

El2c

A02c
A02e

(An+1
2e −A

n
2e) (B.38)

An+1
1c −A

n
1c = El1b

El1c

A01c
A01b

(An+1
1b −A

n
1b)−

El2e
El1c

A01c
A02e

(An+1
2e −A

n
2e) (B.39)

Put,

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, Rf =

(
∆xf
2∆tf

)

K1bc =El1b
El1c

A01c
A01b

, K2ec = El2e
El2c

A02c
A02e

, K2e1c = El2e
El1c

A01c
A02e

By adding (B.34) and (B.36) and using (B.24) and (B.39),

[Ra +RdK1bc](An+1
1b −A

n
1b)−RdK2e1c(An+1

2e −A
n
2e)

= −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) + (AU)n+1

1a − (AU)n+1
1d (B.40)

By substracting equation (B.36) from (B.34),

[Ra −RdK1bc](An+1
1b −A

n
1b) +RdK2e1c(An+1

2e −A
n
2e) +Ra(An+1

1a −A
n
1a)

−Rd(An+1
1d −A

n
1d)− (AU)n+1

1a − (AU)n+1
1d + 2(AU)n+1

1c ) = 0 (B.41)
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Therefore,

(AU)n+1
1c = 1

2(−[Ra −RdK1bc](An+1
1b −A

n
1b)−RdK2e1c(An+1

2e −A
n
2e)

−Ra(An+1
1a −A

n
1a) +Rd(An+1

1d −A
n
1d) + (AU)n+1

1a + (AU)n+1
1d (B.42)

By adding (B.35) and (B.37) and using (B.25) and (B.38),

[Rf +RdK2ec](An+1
2e −A

n
2e) +Rf (An+1

2f −A
n
2f ) +Rd(An+1

2d −A
n
2d)

− (AU)n+1
2f − (AU)n+1

1c + ((A2 −A1)U2 +A1U1))n+1
d = 0 (B.43)

By replacing (B.42) in (B.43),

[Ra2 −
RdK1bc

2 ](An+1
1b −A

n
1b) + [Rf +RdK2ec + RdK2e1c

2 ](An+1
2e −A

n
2e)

= −Ra2 (An+1
1a −A

n
1a) + Rd

2 (An+1
1d −A

n
1d) + (AU)n+1

1a
2 + (AU)n+1

1d
2

−Rf (An+1
2f −A

n
2f )−Rd(An+1

2d −A
n
2d) + (AU)n+1

2f

− ((A2 −A1)U2 +A1U1))n+1
d (B.44)

Using equations (B.40) and (B.44),(
An+1

1b −An1b
An+1

2e −An2e

)
= M−1

(
Z1
Z2

)
(B.45)

with,

M =
(
Ra +RdK1bc −RdK2e1c
Ra
2 −

RdK1bc
2 Rf +RdK2ec + RdK2e1c

2

)
And,

Z1 = −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) + (AU)n+1

1a − (AU)n+1
1d

Z2 =− Ra
2 (An+1

1a −A
n
1a) + Rd

2 (An+1
1d −A

n
1d) + (AU)n+1

1a
2 + (AU)n+1

1d
2

−Rf (An+1
2f −A

n
2f )−Rd(An+1

2d −A
n
2d) + (AU)n+1

2f

− ((A2 −A1)U2 +A1U1))n+1
d

By susbstracting (B.37) from (B.35), we obtain

[Rf −RdK2ec](An+1
2e −A

n
2e) +Rf (An+1

2f −A
n
2f )−Rd(An+1

2d −A
n
2d)

− (AU)n+1
2f − ((A2 −A1)U2 +A1U1))n+1

d + (AU)n+1
1c + 2 (AU)n+1

2e = 0
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Therefore,

Un+1
2e = 1

2An+1
2e

(−[Rf −RdK2ec](An+1
2e −A

n
2e)−Rf (An+1

2f −A
n
2f )

+Rd(An+1
2d −A

n
2d) + (AU)n+1

2f + ((A2 −A1)U2 +A1U1))n+1
d − (AU)n+1

1c ) (B.46)

From equation (B.45), we obtain An+1
1b and An+1

2e .
From equation (B.26) and (B.29) ,we obtain Pn+1

1b and Pn+1
2e . Immediately, we obtain Pn+1

1c
and Pn+1

2c .
From equation (B.27) and (B.28), we obtain An+1

1c and An+1
2c .

From equation (B.36) or (B.42), we obtain Un+1
1c .

From equation (B.34) or (B.24), we obtain Un+1
1b .

From equation (B.35) or (B.46), we obtain Un+1
2e .

From equation (B.37) or (B.25), we obtain Un+1
2c .

B.1 A jonction of tubes

B.1.1 Case 1

•

a

•

b

•

d

•

c

•

e

•

f

B.1.1.1 Interior tube

For the interior tube, the jump conditions between the points b, c and e are :

(AU)1b + (AU)1c = (AU)1e (B.47)

P1b = P1c = P1e (B.48)

P1e = El1e

(
A1e
A01e

− 1
)

+ P2e (B.49)

P1c = El1c

(
A1c
A01c

− 1
)

+ P2c (B.50)
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P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.51)

The conservation of mass equation was derived between a and b, d and c, e and f . We obtain :

∆xf
2∆tf

(
An+1

1f −A
n
1f +An+1

1e −A
n
1e

)
+ (AU)n+1

1f − (AU)n+1
1e = 0 (B.52)

∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (B.53)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1c − (AU)n+1
1d = 0 (B.54)

Given that,
An+1

1b −A
n
1b = El1e

El1b

A01b
A01e

(An+1
1e −A

n
1e)

An+1
1c −A

n
1c = El1e

El1c

A01c
A01e

(An+1
1e −A

n
1e)

Put,

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, Rf =

(
∆xf
2∆tf

)

K1eb =El1e
El1b

A01b
A01e

, K1ec = El1e
El1c

A01c
A01e

Adding (B.52), (B.53), (B.54) gives

An+1
1e =An1e +

(AU)n+1
1a + (AU)n+1

1d − (AU)n+1
1f −Ra(A

n+1
1a −An1a)

Rf +RaK1eb +RdK1ec

−Rd(An+1
1d −An1d)−Rf (An+1

1f −An1f )
Rf +RaK1eb +RdK1ec

(B.55)

Substracting (B.52) from (B.53) and (B.54) gives

Un+1
1e =

(AU)n+1
1a + (AU)n+1

1d + (AU)n+1
1f −Ra(A

n+1
1a −An1a)−Rd(A

n+1
1d −An1d)

2An+1
1e

+Rf (An+1
1f −An1f ) + (Rf −RaK1eb −RdK1ec)(An+1

1e −An1e)
2An+1

1e
(B.56)
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B.1.1.2 Exterior tube

For the exterior tube, the jump conditions between the points b, c and e are :

((A2 −A1)U2)b + ((A2 −A1)U2)c = ((A2 −A1)U2)e (B.57)

P2b = P2c = P2e (B.58)

P2e = El2e

(
A2e
A02e

− 1
)

(B.59)

P2b = El2b

(
A2b
A02b

− 1
)

(B.60)

P2c = El2c

(
A2c
A02c

− 1
)

(B.61)

The conservation of mass equation was derived between a et b, d et c and e et f . We obtain :

∆xa
2∆ta

(
An+1

2b −A
n
2b +An+1

2a −A
n
2a

)
+ ((A2 −A1)U2 +A1U1)n+1

b

− ((A2 −A1)U2 +A1U1)n+1
a = 0 (B.62)

∆xd
2∆td

(
An+1

2d −A
n
2d +An+1

2c −A
n
2c

)
+ ((A2 −A1)U2 +A1U1)n+1

c

− ((A2 −A1)U2 +A1U1)n+1
d = 0 (B.63)

∆xf
2∆tf

(
An+1

2f −A
n
2f +An+1

2e −A
n
2e

)
+ ((A2 −A1)U2 +A1U1)n+1

f

− ((A2 −A1)U2 +A1U1)n+1
e = 0 (B.64)

Put,

∆A =A2 −A1, Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
Rf =

(
∆xf
2∆tf

)
, K2eb = El2e

El2b

A02b
A02e

, K2ec = El2e
El2c

A02c
A02e

Adding (B.62), (B.63) and (B.64) gives

An+1
2e =An2e + (∆AU2 +A1U1)n+1

a + (∆AU2 +A1U1)n+1
d

Rf +RaK2eb +RdK2ec

−(∆AU2 +A1U1)n+1
f −Ra(An+1

2a −An2a)−Rd(A
n+1
2d −An2d)

Rf +RaK2eb +RdK2ec

−Rf (An+1
2f −An2f )

Rf +RaK2eb +RdK2ec
(B.65)
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Substracting (B.62), (B.63) from (B.64) gives

Un+1
2e =

(∆AU2 +A1U1)n+1
a + (∆AU2 +A1U1)n+1

d + (∆AU2 +A1U1)n+1
f

2(A2 −A1)n+1
e

+Rf (An+1
2f −An2f )−Ra(An+1

2a −An2a)−Rd(A
n+1
2d −An2d)

2(A2 −A1)n+1
e

+(Rf −RaK2eb −RdK2ec)(An+1
2e −An2e)− 2(AU)n+1

1e
2(A2 −A1)n+1

e
(B.66)

We notice that the parametres U , P and A of the two tubes are coupled.
Therefore, first we could calculate A2e using the equation (B.65).
From the equation (B.59), we obtain P2e. Immediately we obtain P2b and P2c.
From the equation (B.60) and (B.61), we obtain A2c and A2b.
From the equation (B.55), we obtain A1e.
From the equation (B.56), we obtain U1e.
From the equation (B.49), we obtain P1e. Immediately we obtain P1b and P1c.
From the equation (B.50) and (B.51), we obtain A1c and A1b.
From the equation (B.53) and (B.54), we obtain U1c and U1b.
From the equation (B.66), we obtain U2e.
From the equation (B.62) and (B.63), we obtain U2c and U2b.

B.1.2 Case 2

•

a

•

b

•

d

•

c

•

e

•

f

• g

• h

The jump conditions between the points b, c, e and g are :

(AU)1b + (AU)1c = (AU)1e (B.67)

P1b = P1c = P1e (B.68)
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P1e = El1e

(
A1e
A01e

− 1
)

(B.69)

P1c = El1c

(
A1c
A01c

− 1
)

+ P2c (B.70)

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.71)

((A2 −A1)U2)b + ((A2 −A1)U2)c = (AU)2g (B.72)

P2b = P2c = P2g (B.73)

P2g = El2g

(
A2g
A02g

− 1
)

(B.74)

P2b = El2b

(
A2b
A02b

− 1
)

(B.75)

P2c = El2c

(
A2c
A02c

− 1
)

(B.76)

Giving that,

∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (B.77)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1c − (AU)n+1
1d = 0 (B.78)

∆xf
2∆tf

(
An+1

1f −A
n
1f +An+1

1e −A
n
1e

)
+ (AU)n+1

1f − (AU)n+1
1e = 0 (B.79)

∆xa
2∆ta

(
An+1

2b −A
n
2b +An+1

2a −A
n
2a

)
+ ((A2 −A1)U2 +A1U1)n+1

b

− ((A2 −A1)U2 +A1U1)n+1
a = 0 (B.80)

∆xd
2∆td

(
An+1

2d −A
n
2d +An+1

2c −A
n
2c

)
+ ((A2 −A1)U2 +A1U1)n+1

c

− ((A2 −A1)U2 +A1U1)n+1
d = 0 (B.81)

∆xh
2∆th

(
An+1

2h −A
n
2h +An+1

2g −A
n
2g

)
+ (AU)n+1

2h − (AU)n+1
2g = 0 (B.82)

And,
An+1

2b −A
n
2b = El2g

El2b

A02b
A02g

(An+1
2g −A

n
2g) (B.83)
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An+1
2c −A

n
2c = El2g

El2c

A02c
A02g

(An+1
2g −A

n
2g) (B.84)

An+1
1c −A

n
1c = El1e

El1c

A01c
A01e

(An+1
1e −A

n
1e)−

El2g
El1c

A01c
A02g

(An+1
2g −A

n
2g) (B.85)

An+1
1b −A

n
1b = El1e

El1b

A01b
A01e

(An+1
1e −A

n
1e)−

El2g
El1b

A01b
A02g

(An+1
2g −A

n
2g) (B.86)

By adding (B.77), (B.78) and (B.79) and using (B.85) and (B.86),

[Rf +RaK1eb +RdK1ec](An+1
1e −A

n
1e)− (RaK2g1b +RdK2g1c)(An+1

2g −A
n
2g)

= −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d − (AU)n+1

1f (B.87)

Writing (B.79)-(B.77)-(B.78) gives,

[Rf −RaK1eb −RdK1ec](An+1
1e −A

n
1e) + (RaK2g1b +RdK2g1c)(An+1

2g −A
n
2g)

−Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) +Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d + (AU)n+1

1f − 2 (AU)n+1
1e (B.88)

Therefore,

(AU)n+1
1e =1

2([Rf −RaK1eb −RdK1ec](An+1
1e −A

n
1e)

+ (RaK2g1b +RdK2g1c)(An+1
2g −A

n
2g)−Ra(An+1

1a −A
n
1a)

−Rd(An+1
1d −A

n
1d) +Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d + (AU)n+1

1f ) (B.89)

Writing (B.80), (B.81) and (B.82) and using (B.83) and (B.84),

[Rh +RaK2gb +RdK2gc](An+1
2g −A

n
2g) +Rh(An+1

2h −A
n
2h) +Ra(An+1

2a −A
n
2a)

+Rd(An+1
2d −A

n
2d) + (AU)n+1

1e − ((A2 −A1)U2 +A1U1)n+1
a

− ((A2 −A1)U2 +A1U1)n+1
d + (AU)n+1

2h = 0 (B.90)
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By replacing (B.89) in (B.90),

[Rf2 −
RaK1eb

2 − RdK1ec
2 ](An+1

1e −A
n
1e)

+ (RaK2g1b
2 + RdK2g1c

2 +Rh +RaK2gb +RdK2gc)(An+1
2g −A

n
2g)

= Ra
2 (An+1

1a −A
n
1a) + Rd

2 (An+1
1d −A

n
1d)−

Rf
2 (An+1

1f −A
n
1f ) (B.91)

− (AU)n+1
1a

2 − (AU)n+1
1d

2 −
(AU)n+1

1f
2 −Rh(An+1

2h −A
n
2h)−Ra(An+1

2a −A
n
2a)

−Rd(An+1
2d −A

n
2d) + ((A2 −A1)U2 +A1U1)n+1

a + ((A2 −A1)U2 +A1U1)n+1
d

− (AU)n+1
2h (B.92)

Using equations (B.87) and (B.92)(
An+1

1e −An1e
An+1

2g −An2g

)
= M−1

(
Z1
Z2

)
(B.93)

with,

M =
(
Rf +RaK1eb +RdK1ec −RaK2g1b −RdK2g1c
Rf

2 −
RaK1eb

2 − RdK1ec
2

RaK2g1b

2 + RdK2g1c

2 +Rh +RaK2gb +RdK2gc

)

And,

Z1 =−Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d − (AU)n+1

1f

Z2 =Ra
2 (An+1

1a −A
n
1a) + Rd

2 (An+1
1d −A

n
1d)−

Rf
2 (An+1

1f −A
n
1f )

− (AU)n+1
1a

2 − (AU)n+1
1d

2 −
(AU)n+1

1f
2 −Rh(An+1

2h −A
n
2h)

−Ra(An+1
2a −A

n
2a)−Rd(An+1

2d −A
n
2d) + ((A2 −A1)U2 +A1U1)n+1

a

+ ((A2 −A1)U2 +A1U1)n+1
d − (AU)n+1

2h

(B.82)-(B.80)-(B.81)

[Rh −RaK2gb −RdK2gc](An+1
2g −A

n
2g)− (AU)n+1

1e + (AU)n+1
2h

+ ((A2 −A1)U2 +A1U1)n+1
a + ((A2 −A1)U2 +A1U1)n+1

d − 2 (AU)n+1
2g = 0
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Therefore,

Un+1
2g = 1

2An+1
2g

([Rh −RaK2gb −RdK2gc](An+1
2g −A

n
2g)− (AU)n+1

1e + (AU)n+1
2h

+ ((A2 −A1)U2 +A1U1)n+1
a + ((A2 −A1)U2 +A1U1)n+1

d ) (B.94)

where

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, Rf =

(
∆xf
2∆tf

)

Rh =
( ∆xh

2∆th

)
, K1eb = El1b

El1e

A01e
A01b

, K1ec = El1c
El1e

A01e
A01c

K2gb =El2g
El2b

A02b
A02g

, K2gc = El2g
El2c

A02c
A02g

, K2g1b = El2g
El1b

A01b
A02g

K2g1c =El2g
El1c

A01c
A02g

From equation (B.93), we obtain An+1
1e and An+1

2g .
From equation (B.69) and (B.74) ,we obtain Pn+1

1e and Pn+1
2g . Immediately, we obtain Pn+1

1b ,
Pn+1

1c , Pn+1
2b , Pn+1

2c .
From equation (B.70), (B.71), (B.75) and (B.76) ,we obtain An+1

1b , An+1
1c , An+1

2b , An+1
2c .

From equation (B.89) or (B.79), we obtain Un+1
1e .

From equation (B.77) and (B.78) we obtain Un+1
1b and Un+1

1c .
From equation (B.94) or (B.82), we obtain Un+1

2g .
From equation (B.80) and (B.81) we obtain Un+1

2b and Un+1
2c .

B.1.3 Case 3

•

a

•

b

•

d

•

c

•

e

•

f

• g

• h

The jump conditions between the points b, c, e and g are :
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(AU)1b + (AU)1c = (AU)1e (B.95)

P1b = P1c = P1e (B.96)

P1e = El1e

(
A1e
A01e

− 1
)

(B.97)

P1c = El1c

(
A1c
A01c

− 1
)

(B.98)

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.99)

((A2 −A1)U2)b = (AU)2g (B.100)

P2b = P2g (B.101)

P2g = El2g

(
A2g
A02g

− 1
)

(B.102)

P2b = El2b

(
A2b
A02b

− 1
)

(B.103)

Given that,

∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1b − (AU)n+1
1a = 0 (B.104)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1c − (AU)n+1
1d = 0 (B.105)

∆xf
2∆tf

(
An+1

1f −A
n
1f +An+1

1e −A
n
1e

)
+ (AU)n+1

1f − (AU)n+1
1e = 0 (B.106)

∆xa
2∆ta

(
An+1

2b −A
n
2b +An+1

2a −A
n
2a

)
+ ((A2 −A1)U2 +A1U1)n+1

b

− ((A2 −A1)U2 +A1U1)n+1
a = 0 (B.107)

∆xh
2∆th

(
An+1

2h −A
n
2h +An+1

2g −A
n
2g

)
+ (AU)n+1

2h − (AU)n+1
2g = 0 (B.108)

And,
An+1

2b −A
n
2b = El2g

El2b

A02b
A02g

(An+1
2g −A

n
2g) (B.109)

An+1
1c −A

n
1c = El1e

El1c

A01c
A01e

(An+1
1e −A

n
1e) (B.110)
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An+1
1b −A

n
1b = El1e

El1b

A01b
A01e

(An+1
1e −A

n
1e)−

El2g
El1b

A01b
A02g

(An+1
2g −A

n
2g) (B.111)

Put,

Ra =
( ∆xa

2∆ta

)
Rd =

( ∆xd
2∆td

)
Rf =

(
∆xf
2∆tf

)

Rh =
( ∆xh

2∆th

)
K1eb = El1e

El1b

A01b
A01e

K1ec = El1e
El1c

A01c
A01e

K2gb =El2g
El2b

A02b
A02g

K2g1b = El2g
El1b

A01b
A02g

By adding (B.104), (B.105) and (B.106) and using (B.110) and (B.111),

[Rf +RaK1eb +RdK1ec](An+1
1e −A

n
1e)−RaK2g1b(An+1

2g −A
n
2g)

= −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d − (AU)n+1

1f (B.112)

Writing (B.106)+(B.105)-(B.104) gives,

[Rf −RaK1eb +RdK1ec](An+1
1e −A

n
1e) +RaK2g1b(An+1

2g −A
n
2g)−Ra(An+1

1a −A
n
1a)

+Rd(An+1
1d −A

n
1d) +Rf (An+1

1f −A
n
1f ) + (AU)n+1

1f − (AU)n+1
1d + (AU)n+1

1a

− 2 (AU)n+1
1b = 0 (B.113)

Therefore,

(AU)n+1
1b =1

2([Rf −RaK1eb +RdK1ec](An+1
1e −A

n
1e) +RaK2g1b(An+1

2g −A
n
2g)

−Ra(An+1
1a −A

n
1a) +Rd(An+1

1d −A
n
1d) +Rf (An+1

1f −A
n
1f )

+ (AU)n+1
1f − (AU)n+1

1d + (AU)n+1
1a ) (B.114)

By adding (B.107) and (B.108) and using (B.109) and (B.84),

[Rh +RaK2gb](An+1
2g −A

n
2g) +Rh(An+1

2h −A
n
2h) +Ra(An+1

2a −A
n
2a)

+ (AU)n+1
1b − ((A2 −A1)U2 +A1U1)n+1

a + (AU)n+1
2h = 0 (B.115)
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By replacing (B.114) in (B.115),

[Rf2 −
RaK1eb

2 + RdK1ec
2 ](An+1

1e −A
n
1e)

+ [RaK2g1b
2 +Rh +RaK2gb](An+1

2g −A
n
2g)

= (AU)n+1
1d

2 − (AU)n+1
1a

2 −
(AU)n+1

1f
2 + Ra

2 (An+1
1a −A

n
1a)−

Rd
2 (An+1

1d −A
n
1d)

− Rf
2 (An+1

1f −A
n
1f )−Rh(An+1

2h −A
n
2h)−Ra(An+1

2a −A
n
2a)

+ ((A2 −A1)U2 +A1U1)n+1
a − (AU)n+1

2h (B.116)

Using equations (B.112) and (B.92)(
An+1

1e −An1e
An+1

2g −An2g

)
= M−1

(
Z1
Z2

)
(B.117)

with,

M =
(
Rf +RaK1eb +RdK1ec −RaK2g1b
Rf

2 −
RaK1eb

2 + RdK1ec
2

RaK2g1b

2 +Rh +RaK2gb

)
And,

Z1 =−Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

+ (AU)n+1
1d − (AU)n+1

1f

Z2 =(AU)n+1
1d

2 − (AU)n+1
1a

2 −
(AU)n+1

1f
2 + Ra

2 (An+1
1a −A

n
1a)−

Rd
2 (An+1

1d −A
n
1d)

− Rf
2 (An+1

1f −A
n
1f )−Rh(An+1

2h −A
n
2h)−Ra(An+1

2a −A
n
2a)

+ ((A2 −A1)U2 +A1U1)n+1
a − (AU)n+1

2h

Writing (B.108)-(B.107) gives,

[Rh −RaK2gb](An+1
2g −A

n
2g) +Rh(An+1

2h −A
n
2h)−Ra(An+1

2a −A
n
2a)

+ (AU)n+1
2h − 2(AU)n+1

2g − (AU)n+1
1b + ((A2 −A1)U2 +A1U1)n+1

a = 0 (B.118)

Therefore,

Un+1
2g = 1

2An+1
2g

([Rh −RaK2gb](An+1
2g −A

n
2g) +Rh(An+1

2h −A
n
2h)

−Ra(An+1
2a −A

n
2a) + (AU)n+1

2h − (AU)n+1
1b

+ ((A2 −A1)U2 +A1U1)n+1
a ) (B.119)
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From equation (B.117), we obtain An+1
1e and An+1

2g .
From equation (B.97) and (B.102) ,we obtain Pn+1

1e and Pn+1
2g . Immediately, we obtain Pn+1

1b ,
Pn+1

1c and Pn+1
2b .

From equation (B.98), (B.99) and (B.103), we obtain An+1
1c , An+1

1b and An+1
2b .

From equation (B.104) or (B.114), we obtain Un+1
1b .

From equation (B.105) and (B.106) we obtain Un+1
1c and Un+1

1e .
From equation (B.119) or (B.108), we obtain Un+1

2g .
From equation (B.100) or (B.107) we obtain Un+1

2b .

B.2 A Bifurcation of tubes

B.2.1 Case 1

•

e

•

f

•

b

•

a

•

c

•

d

B.2.1.1 Interior tube

For the interior tube, the jump conditions between the points b, c and e are :

(AU)1b + (AU)1c = (AU)1e (B.120)

P1b = P1c = P1e (B.121)

P1e = El1e

(
A1e
A01e

− 1
)

+ P2e (B.122)

P1c = El1c

(
A1c
A01c

− 1
)

+ P2c (B.123)

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.124)

The conservation of mass equation was derived between a et b, d et c and e et f . We obtain :

∆xf
2∆tf

(
An+1

1f −A
n
1f +An+1

1e −A
n
1e

)
+ (AU)n+1

1e − (AU)n+1
1f = 0 (B.125)
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∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1a − (AU)n+1
1b = 0 (B.126)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1d − (AU)n+1
1c = 0 (B.127)

Giving that,
An+1

1b −A
n
1b = El1e

El1b

A01b
A01e

(An+1
1e −A

n
1e)

An+1
1c −A

n
1c = El1e

El1c

A01c
A01e

(An+1
1e −A

n
1e)

Put,

Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
, Rf =

(
∆xf
2∆tf

)

K1eb =El1e
El1b

A01b
A01e

, K1ec = El1e
El1c

A01c
A01e

Adding (B.125), (B.126) and (B.127) gives,

An+1
1e =An1e +

(AU)n+1
1f − (AU)n+1

1a − (AU)n+1
1d −Ra(A

n+1
1a −An1a)

Rf +RaK1eb +RdK1ec

−Rd(An+1
1d −An1d)−Rf (An+1

1f −An1f )
Rf +RaK1eb +RdK1ec

(B.128)

Substracting (B.125) and (B.126) from (B.127) gives,

Un+1
1e =

(AU)n+1
1a + (AU)n+1

1d + (AU)n+1
1f +Ra(An+1

1a −An1a) +Rd(An+1
1d −An1d)

2An+1
1e

−Rf (An+1
1f −An1f )− (Rf −RaK1eb −RdK1ec)(An+1

1e −An1e)
2An+1

1e
(B.129)

B.2.1.2 Exterior tube

For the exterior tube, the jump conditions between the points b, c and e are :

((A2 −A1)U2)b + ((A2 −A1)U2)c = ((A2 −A1)U2)e (B.130)

P2b = P2c = P2e (B.131)

P2e = El2e

(
A2e
A02e

− 1
)

(B.132)
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P2b = El2b

(
A2b
A02b

− 1
)

(B.133)

P2c = El2c

(
A2c
A02c

− 1
)

(B.134)

The conservation of mass equation was derived between a et b, d et c and e et f . We obtain :

∆xa
2∆ta

(
An+1

2b −A
n
2b +An+1

2a −A
n
2a

)
+ ((A2 −A1)U2 +A1U1)n+1

a

− ((A2 −A1)U2 +A1U1)n+1
b = 0 (B.135)

∆xd
2∆td

(
An+1

2d −A
n
2d +An+1

2c −A
n
2c

)
+ ((A2 −A1)U2 +A1U1)n+1

d

− ((A2 −A1)U2 +A1U1)n+1
c = 0 (B.136)

∆xf
2∆tf

(
An+1

2f −A
n
2f +An+1

2e −A
n
2e

)
+ ((A2 −A1)U2 +A1U1)n+1

e

− ((A2 −A1)U2 +A1U1)n+1
f = 0 (B.137)

Put,

∆A =A2 −A1, Ra =
( ∆xa

2∆ta

)
, Rd =

( ∆xd
2∆td

)
Rf =

(
∆xf
2∆tf

)
, K2eb = El2e

El2b

A02b
A02e

, K2ec = El2e
El2c

A02c
A02e

Adding (B.135), (B.136) and (B.137) gives, :

An+1
2e =An2e +

(∆AU2 +A1U1)n+1
f − (∆AU2 +A1U1)n+1

a

Rf +RaK2eb +RdK2ec

−(∆AU2 +A1U1)n+1
d −Ra(An+1

2a −An2a)−Rd(A
n+1
2d −An2d)

Rf +RaK2eb +RdK2ec

−Rf (An+1
2f −An2f )

Rf +RaK2eb +RdK2ec
(B.138)
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Substracting (B.135) and (B.136) from (B.137) gives,

Un+1
2e =

(∆AU2 +A1U1)n+1
a + (∆AU2 +A1U1)n+1

d + (∆AU2 +A1U1)n+1
f

2(A2 −A1)n+1
e

−Rf (An+1
2f −An2f ) +Ra(An+1

2a −An2a) +Rd(An+1
2d −An2d)

2(A2 −A1)n+1
e

−(Rf −RaK2eb −RdK2ec)(An+1
2e −An2e)− 2(AU)n+1

1e
2(A2 −A1)n+1

e
(B.139)

We notice that the parametres U , P and A of the two tubes are coupled.
Therefore, first we could calculate A2e using the equation (B.138).
From the equation (B.132), we obtain P2e. Immediately we obtain P2b and P2c.
From the equation (B.133) and (B.134), we obtain A2c and A2b.
From the equation (B.128), we obtain A1e.
From the equation (B.129), we obtain U1e.
From the equation (B.122), we obtain P1e. Immediately we obtain P1b and P1c.
From the equation (B.123) and (B.124), we obtain A1c and A1b.
From the equation (B.126) and (B.127), we obtain U1c and U1b.
From the equation (B.139), we obtain U2e.
From the equation (B.135) and (B.136), we obtain U2c and U2b.

B.2.2 Case 2

•

e

•

f

•

b

•

a

•

c

•

d

•g

•h

The jump conditions between the points b, c, e and g are :

(AU)1b + (AU)1c = (AU)1e (B.140)

P1b = P1c = P1e (B.141)
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P1e = El1e

(
A1e
A01e

− 1
)

+ P2e (B.142)

P1c = El1c

(
A1c
A01c

− 1
)

(B.143)

P1b = El1b

(
A1b
A01b

− 1
)

+ P2b (B.144)

((A2 −A1)U2)b + (AU)2g = ((A2 −A1)U2)e (B.145)

P2b = P2e = P2g (B.146)

P2g = El2g

(
A2g
A02g

− 1
)

(B.147)

P2b = El2b

(
A2b
A02b

− 1
)

(B.148)

P2e = El2e

(
A2e
A02e

− 1
)

(B.149)

Giving that,

∆xa
2∆ta

(
An+1

1a −A
n
1a +An+1

1b −A
n
1b

)
+ (AU)n+1

1a − (AU)n+1
1b = 0 (B.150)

∆xd
2∆td

(
An+1

1d −A
n
1d +An+1

1c −A
n
1c

)
+ (AU)n+1

1d − (AU)n+1
1c = 0 (B.151)

∆xf
2∆tf

(
An+1

1f −A
n
1f +An+1

1e −A
n
1e

)
+ (AU)n+1

1e − (AU)n+1
1f = 0 (B.152)

∆xa
2∆ta

(
An+1

2b −A
n
2b +An+1

2a −A
n
2a

)
+ ((A2 −A1)U2 +A1U1)n+1

a

− ((A2 −A1)U2 +A1U1)n+1
b = 0 (B.153)

∆xf
2∆tf

(
An+1

2e −A
n
2e +An+1

2f −A
n
2f

)
+ ((A2 −A1)U2 +A1U1)n+1

e

− ((A2 −A1)U2 +A1U1)n+1
f = 0 (B.154)

∆xh
2∆th

(
An+1

2h −A
n
2h +An+1

2g −A
n
2g

)
+ (AU)n+1

2h − (AU)n+1
2g = 0 (B.155)

And,
An+1

2b −A
n
2b = El2g

El2b

A02b
A02g

(An+1
2g −A

n
2g) (B.156)
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An+1
2e −A

n
2e = El2g

El2e

A02e
A02g

(An+1
2g −A

n
2g) (B.157)

An+1
1c −A

n
1c = El1e

El1c

A01c
A01e

(An+1
1e −A

n
1e) + El2g

El1c

A01c
A02g

(An+1
2g −A

n
2g) (B.158)

An+1
1b −A

n
1b = El1e

El1b

A01b
A01e

(An+1
1e −A

n
1e) (B.159)

By adding (B.150), (B.151) and (B.152) and using (B.140), (B.158) and (B.159),

[Rf +RaK1eb +RdK1ec](An+1
1e −A

n
1e) +RdK2g1c(An+1

2g −A
n
2g)

= −Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f )− (AU)n+1

1a

− (AU)n+1
1d + (AU)n+1

1f (B.160)

Writing (B.150)+(B.152)-(B.151) gives,

[Rf +RaK1eb −RdK1ec](An+1
1e −A

n
1e)−RdK2g1c(An+1

2g −A
n
2g)

+Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d) +Rf (An+1

1f −A
n
1f ) + (AU)n+1

1a

− (AU)n+1
1d − (AU)n+1

1f + 2 (AU)n+1
1c (B.161)

Therefore,

(AU)n+1
1c =1

2(−[Rf +RaK1eb −RdK1ec](An+1
1e −A

n
1e) +RdK2g1c(An+1

2g −A
n
2g)

−Ra(An+1
1a −A

n
1a) +Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f )

− (AU)n+1
1a + (AU)n+1

1d + (AU)n+1
1f ) (B.162)

By adding (B.153), (B.154) and (B.155) and using (B.156), (B.157), (B.140) and (B.145),

[Rh +RaK2gb +RfK2ge](An+1
2g −A

n
2g) +Ra(An+1

2a −A
n
2a) +Rf (An+1

2f −A
n
2f )

+Rh(An+1
2h −A

n
2h) + ((A2 −A1)U2 +A1U1)n+1

a − ((A2 −A1)U2 +A1U1)n+1
f

+ (AU)n+1
2h + (AU)n+1

1c = 0 (B.163)
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By replacing (B.162) in (B.163)

(−Rf2 −
RaK1eb

2 + RdK1ec
2 ](An+1

1e −A
n
1e)

+ [RdK21gc
2 +Rh +RaK2gb +RfK2ge](An+1

2g −A
n
2g) =

Ra
2 (An+1

1a −A
n
1a)−

Rd
2 (An+1

1d −A
n
1d) + Rf

2 (An+1
1f −A

n
1f ) + (AU)n+1

1a
2

− (AU)n+1
1d

2 −
(AU)n+1

1f
2 −Ra(An+1

2a −A
n
2a)−Rf (An+1

2f −A
n
2f )

−Rh(An+1
2h −A

n
2h)− ((A2 −A1)U2 +A1U1)n+1

a + ((A2 −A1)U2 +A1U1)n+1
f

− (AU)n+1
2h (B.164)

Using equations (B.160) and (B.164)(
An+1

1e −An1e
An+1

2g −An2g

)
= M−1

(
Z1
Z2

)
(B.165)

with,

M =
(
Rf +RaK1eb +RdK1ec RdK2g1c

−Rf

2 −
RaK1eb

2 + RdK1ec
2

RdK2g1c

2 +Rh +RaK2gb +RfK2ge

)

And,

Z1 =−Ra(An+1
1a −A

n
1a)−Rd(An+1

1d −A
n
1d)−Rf (An+1

1f −A
n
1f )− (AU)n+1

1a

− (AU)n+1
1d + (AU)n+1

1f

Z2 =Ra
2 (An+1

1a −A
n
1a)−

Rd
2 (An+1

1d −A
n
1d) + Rf

2 (An+1
1f −A

n
1f ) + (AU)n+1

1a
2

− (AU)n+1
1d

2 −
(AU)n+1

1f
2 −Ra(An+1

2a −A
n
2a)−Rf (An+1

2f −A
n
2f )

−Rh(An+1
2h −A

n
2h)− ((A2 −A1)U2 +A1U1)n+1

a

+ ((A2 −A1)U2 +A1U1)n+1
f − (AU)n+1

2h

Writing (B.154)+(B.153)-(B.155) gives,

[−Rh +RaK2gb +RfK2ge](An+1
2g −A

n
2g) +Ra(An+1

2a −A
n
2a)

+Rf (An+1
2f −A

n
2f )−Rh(An+1

2h −A
n
2h) + ((A2 −A1)U2 +A1U1)n+1

a

− ((A2 −A1)U2 +A1U1)n+1
f − (AU)n+1

2h + 2(AU)n+1
2g + (AU)n+1

1c

= 0
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Therefore,

Un+1
2g = 1

2An+1
2g

([Rh −RaK2gb −RfK2ge](An+1
2g −A

n
2g)−Ra(An+1

2a −A
n
2a)

−Rf (An+1
2f −A

n
2f ) +Rh(An+1

2h −A
n
2h)− ((A2 −A1)U2 +A1U1)n+1

a

+ ((A2 −A1)U2 +A1U1)n+1
f + (AU)n+1

2h − (AU)n+1
1c ) (B.166)

From equation (B.165), we obtain An+1
1e and An+1

2g .
From equation (B.142) and (B.147) ,we obtain Pn+1

1e and Pn+1
2g . Immediately, we obtain Pn+1

1b ,
Pn+1

1c , Pn+1
2b , Pn+1

2e .
From equation (B.143), (B.144), (B.148) and (B.149), we obtain An+1

1c , An+1
1b , An+1

2b and An+1
2e .

From equation (B.162) or (B.151), we obtain Un+1
1c .

From equation (B.150) and (B.152) we obtain Un+1
1b and Un+1

1e .
From equation (B.166) or (B.155), we obtain Un+1

2g .
From equation (B.153) and (B.154) we obtain Un+1

2b and Un+1
2e .
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Appendix C

A one dimensional model of the
Cerebrospinal Fluid Flow in the
spinal canal: study of the fluid

viscosity and the steady/unsteady
flow effects

The following article has been submited to the Physics of Fluids journal and is currently
undergoing reviews.
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A one dimensional model of the Cerebrospinal Fluid
Flow in the spinal canal: study of the fluid viscosity

and the steady/unsteady flow effects

Maher M., Cathalifaud P., Zagzoule M.

Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS,
INPT, UPS, Toulouse, France

Abstract

In this study, a one dimensional-model (1-D) for the flow in elastic pipes is used

to simulate the dynamics of the Cerebrospinal Fluid (CSF) in the spinal canal.

The modelling is based around two coaxial tubes filled with CSF. The inner

tube represents the Spinal Cord (SC) and the outer one represents the Spinal

Subarachnoid Space (SSS). The conservation of mass and momentum in 1D is

applied to the two coupled tubes. The modelling accounts for the viscosity of

the CSF. Specific attention is given to the effect of the CSF viscosity on the

wave propagtion modes. Moreover, this work confronts the wall shear stress of

a quasi-steady flow approximation used in 1-D modelling against the wall shear

stress for an unsteady flow in an annuli.

Keywords: Spinal canal, coaxial tubes, 1D model, Cerebropsinal Fluid,

conicity, viscosity

1. Introduction

The Cerebrospinal fluid (CSF) is a fluid close to water which is mainly contained

in cavities in the brain called ventricles and anatomic spaces called cranial and

spinal subarachnoid spaces (SSS). The SSS is an annular space surrounding the

spinal cord (SC). Three protective membranes, called the meninges lies within5

Preprint submitted to Journal of Physics of Fluids May 13, 2019
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the spinal cord. The pia-matter adheres to the surface of the spinal cord. The

dura-matter and the arachnoid-matter envelop the SSS.

The CSF circulation depends on the arterial pulse wave and displays a pulsat-

ing motion between the cranial and the spinal compartment. Additional factors

such as the respiratory waves and the subject’s posture also modulates the CSF10

dynamics (Haughton and Mardal, 2014; Sakka et al., 2011).

CSF velocity wave in the spinal canal is of interest as a potential indicator

of CSF system pressure and compliance. It is considered an important fac-

tor influencing the pathogenesis of craniospinal disorder such as hydrocephalus,

chiari malformation and syringomyelia (Luciano and Dombrowski, 2007; Flana-15

gan, 2015). Several analytical (Lockey et al., 1975; Cirovic, 2009; Cirovic and

Kim, 2012; Elliott et al., 2017; Berkouk et al., 2003; Carpenter et al., 2003)

and computational studies (Bertram, 2009; Bertram et al., 2005) have used the

idealised geometry of coaxial and compliant tubes to understand the dynamics

of the CSF in the spinal canal. Based on MRI flow measurements in a healthy20

volunteer, Loth et al. (2001) computed a linearized Navier-Stokes model of the

CSF flow in the spinal subarachnoid space (SSS). It has been observed that the

Womersley number ranged from 5 to 17. It relates flow pulsatility (unsteady or

inertial forces) to fluid viscosity (viscous forces), and is used to characterize flow

dynamics. For normal physiological flow rates and CSF fluid properties, results25

have shown that for large annular gaps, inertial effects tend to dominate the flow

field and for small annular gaps, viscous effect dominate the flow. Reduction

of the SSS radius occur in CSF related disorders. For example in Chiari mal-

formations where the cerebellar tonsils herniates into the cervical spinal canal

or in syringomyelia where spinal cord swells. This reduction will change the30

hydrodynamic system from interia dominated to mixed (inertia+viscous) an in

extreme cases, to a viscous dominated flow. Since then in posterior studies,

to the best of our knowledge, the CSF viscosity is usually being neglected in

1-D modelling of the flow in the spinal canal. In this study, we developp a

one-dimensionnal (1-D) modelling of the spinal canal as coaxial and compliant35

tubes with particular attention to the viscosity of the CSF in the SSS.

2
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Furthermore, when accounting for the CSF viscosity, in order to solve the 1-D

governing equation, one must make an assumption on the local velocity profile

or the unsteady nature of the flow for a proper estimation of the wall shear40

stresses in both circular and annular section. The Womersley number gives a

strong indication on the profile. In general, for Wo < 1, in a circular tube the

fluid velocity profile is parabolic and the flow rate is in phase with the pressure

gradient. The fluid profile loses its parabolic shape when Wo > 1, and a phase

lag between pressure and flow rate becomes more pronounced as the Womersley45

number reaches ten or more (Womersley, 1955).

The present work first presents the 1-D geometry and governing equations for a

viscous CSF. The wall shear stresses in the coaxial geometry are evaluated on

the assumption of a quasi-steady flow state. Next, wave propagation modes are50

characterized. An analytical solution of the wave equation is proposed for an

inviscid CSF flow and for a viscous one. Finally, using the work of Tsangaris

(1984), an analytical solution of the wall shear stresses in annular section of a

viscous flow due ton an oscillating pressure is presented. The limitations of the

quasi-steady flow assumption in an annular section is discussed. Accordingly,55

the theoretical study of an unsteady flow in a circular annuli can be viewed as

fundamental and independent of the particular application to the spinal CSF

system.

2. Geometry and approximations60

The idealized geometry around which the theory is based is illustrated in Figure

1. It consists of two coaxial and elastic tubes. The inner tube represents the

SC which is envelopped by the pia-matter. The outer tube represents the SSS

and is filled with CSF. The dura-matter envelops the SSS.

3
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Ac

As

Spinal cord (SC)

Spinal Subarachnoid space (SSS) Us
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z
Dura-matter Pia-matter

Rs

Rc

Figure 1: Idealised geometry of the spinal canal. The inner and elastic tube represents the

spinal cord and is envelopped by the pia-matter. The outter and elastic tube represents the

spinal subarachnoid space and is envelopped by the dura-matter.

In this work, for simplification reason, we have chosen to consider to cosnider65

the SC a thin walled tube filled with CSF. Actually, the SC consists of nervous

tissues.

We consider the CSF as a viscous (µcsf = 10−3 Pa.s−1), incompressible and

newtonian fluid. We make the hypothesis that the wave length is long compared

to the tubes radius and that the flow is axisymmetric. Therefore, by integrating70

the fluid mass and momemtum conservation equations over the cross-sections of

the SC and the SSS, we obtain the 1-D flow model for the spinal CSF flow.

3. Governing equations

The governing equations consists of two coupled 1-D system for the SC and for

the SSS. Suffices c and s denotes respectively for the SC and the SSS. For the75

SC, we have 



∂Ac
∂t

+
∂(UcAc)

∂z
= 0

∂Uc
∂t

+ Uc
∂Uc
∂z

+
1

ρ

∂Pc
∂z

=
2
√
π

ρ
√
Ac
τc

(1)

For the SSS, we have





∂As
∂t

+
∂Us(As −Ac)

∂z
+
∂(UcAc)

∂z
= 0

∂Us
∂t

+ Us
∂Us
∂z

+
1

ρ

∂Ps
∂z

= − 2
√
π

ρ(As −Ac)
(
√
Asτcs −

√
Acτsd)

(2)
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where z and t are respectively axial coordinate and time, A is the cross-sectional

area, U and P are the axial velocity and pressure of the CSF respectively av-

eraged over the cross sectional area, τc is the wall shear stress at (r = Rc) due

to the friction between the CSF in the SC and the pia-matter, τcs is the wall

shear stress at (r = Rc) due to the friction between the CSF in the SSS and the

pia-matter and τsd the wall shear stress at (r = Rs) due to the friction between

the CSF in the SSS and the dura-matter.

The wall shear stresses τc, τcs and τsd are expressed as




τc = µ

(
∂uc
∂r

)

r=Rc

τcs = µ

(
∂us
∂r

)

r=Rc

τsd = µ

(
∂us
∂r

)

r=Rs

At this point to solve the system of the coupled equations, we need to make an

assumption on the local velocity profile in order to obtain an estimation of the

above wall shear stresses. For a simplification matter, we assume a quasi-steady

flow approximation. ”Quasi steady” does not mean ”approximately steady” (i.e,

not changing very much in time). Rather ”Quasi steady” means that at any

time the instantaneous fow rate is determined by the instantaneous pressure

gradient. In the last section of this paper, we will discuss the validity of this

hypothesis in the SSS.

For the SC, this assumption leads to the commonly known Hagen-Poiseuille flow

whose velocity profile is

uc = 2Uc

(
1−

(
r

Rc0

)2
)

According to (3), the wall shear stress, τc, is thus given by

τc = −4µ
Uc
Rc0

For the SSS, giving the pressure gradient for a laminar steady flow in a straight

rigid tube
∂ps
∂z

= µ
1

r

∂

∂r

(
r
∂us
∂r

)
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And using the no-slip boundary conditions at (r = Rc) and (r = Rs)




us(r=Rc) = 0

us(r=Rs) = 0

We obtain the axial velocity us

us =
1

4µ
R2
s0

∂ps
∂z

((
r

Rs0

)2

− 1 +
1− λ2

lnλ
ln

(
r

Rs0

))
(3)

where λ =
Rc0
Rs0

.

Introducing the averaged axial velocity

Us =
1

π(R2
s0 −R2

c0)

∫ Rs0

Rc0

us2πrdr = − 1

8µ
R2
s0

∂ps
∂z

(
1 + λ2 +

1− λ2
lnλ

)

We obtain the expression of the axial velocity us in an annuli as a function of

the averaged axial velocity Us80

us = 2Us




1−
(

r
Rs0

)2
− 1−λ2

lnλ ln
(

r
Rs0

)

1 + λ2 + 1−λ2

lnλ


 (4)

After derivating the expression of us, we obtain

τcs =
2µUs
γ

(
2Rc0
R2
s0

+
1− λ2
Rc0 lnλ

)

τsd =
2µUs
γ

(
2

Rs0
+

1− λ2
Rs0 lnλ

)

where γ = 1 + λ2 +
1− λ2

lnλ
.

Strictly speaking, the above wall shear stresses hold for a steady flow in a rigid

tube, but they are considered acceptable for a quasi-steady flow and for small

perturbations.

Finally, to close the system of the governing equations (1) and (2), we introduce85

a relation between the pressure and the cross-section area which is commonly

called a tube law. In our model, the transmural pressure is related to the cross

section area through the following elastic linear tube law

∆P = El

(
A

A0
− 1

)
(5)
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where ∆P is the transmural pressure, El is the elastance of the tube and de-

notes its mechanical properties, A0 is the cross-section area at zero transmural90

pressure. Using this tube law for the SC and SSS tubes and assuming a constant

pressure surrounding the dura-matter, we obtain




∆P = Pc − Ps = Elc

(
Ac
A0c
− 1

)

Ps = Els

(
As
A0s
− 1

) (6)

where Elc is the elastance of the pia-matter and Els is the elastance of the

dura-matter. Elc and Els are assumed constant.

The solution of the coupled system (1), (2) and (6) is numerically solved using95

the two step Lax Wendroff Scheme. One-dimensional grid with 1001 nodes and

a time step increment of 2.10−5 is used. The convergence criteria was 10−6 of

the residual imbalance of the mass conservation.

4. Waves equations100

When free from any constraint, the speeds of the Young’s mode in the pia-

matter, cc, and in the dura-matter, cs, are as follow

cc =

√
Ac
ρ

d(Pc − Ps)
dAc

(7)

cs =

√
As
ρ

dPs
dAs

(8)

When the pia-matter and dura-matter are coupled, the speeds of the two waves

modes observed are (Cirovic, 2009)105

c21,2 =
1

2
(c2s + c2c)±

√(
1

2
(c2s + c2c)

)2

− αcsc2sc2c (9)

where αcs = 1− Ac
As

.

The speeds of these two waves corresponds to the eigenvalues of the system

formed by equations (1) and (2).
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4.1. Inviscid CSF

For this case, the momentum equations of the SC (1) and the SSS (2) could110

be written respectively in the following form, omitting the friction term on the

right-hand side of the equations

∂Qc
∂t

+
Ac
ρ

∂Pc
∂z

= 0 (10)

∂Qs
∂t

+
(As −Ac)

ρ

∂Ps
∂z

= 0 (11)

where Qc and Qs are respectively the averaged CSF flow in the SC and the SSS.

Following the transmural pressure (6)

∂∆P

∂z
=
∂Pc
∂z
− ∂Ps

∂z

And using the momentum equations (10) and (11), we obtain

∂2∆P

∂z2
= − ρ

Ac

∂2Qc
∂z∂t

+
ρ

(As −Ac)
∂2Qs
∂z∂t

(12)

For the limiting case where the dura-matter is much stiffer than the pia-matter,115

which most closely approximates the limiting situation of a SSS fully obstructed

with arachnoid scar tissue, the SSS section could be considered constant rela-

tively to the SC section, implying
∂Qc
∂z

= −∂Qs
∂z

.

Therefore, the equation (12) becomes :

∂2∆P

∂z2
+

ρ

As

(
1

1− αcs
+

1

αcs

)
∂2Qc
∂z∂t

= 0 (13)

Morevover, using the SC wave speed expression (7), the continuity equation of120

the SC could be written as

∂2∆P

∂t2
+
ρc2c
Ac

∂2Qc
∂z∂t

= 0 (14)

By combining equations (13))and (14), it yields the wave equation

∂2∆P

∂t2
− c2cαcs

∂2∆P

∂z2
= 0 (15)

In this limiting case, the speeds of the waves modes are c1 = cc
√
αcs and the

second is c2 ' cs, as the dura-matter is assumed rigid. This case has been dealt

8
109



in the litterature by (Berkouk et al., 2003; Cirovic, 2009; Cirovic and Kim, 2012;125

Carpenter et al., 2003).

4.2. Viscous CSF

By proceeding in a similar way as previously, for the limiting case where the

dura-matter is much stiffer than the pia-matter, it yields the following damped130

wave equation
∂2∆P

∂t2
− αcsc2c

∂2∆P

∂z2
+ β

∂∆P

∂t
= 0 (16)

where β = αcsσc + σs(1− αcs), σc = − 8πµ

ρAc0
, σs = − 8πµ(1− λ2)

ργ(As0 −Ac0)
,

γ = 1 + λ2 +
1− λ2

lnλ
and λ =

Rc0
Rs0

.

Equation (16) has a similar form to the telegraphers equation that describes

the propagation and attenuation of electrical signals on telegraph lines. For an135

inviscid CSF, which means that β = 0, it yields ki = 0, kr = cc
√
αcs and thus

the wave equation (15).

To solve (16), we assume a periodic pressure perturbation

∆P = P̂t expiωt expi(kr+iki)z (17)

where w represents the pulsation, kr is the wave speed and ki is the attenuation

coefficient. Equation (17) is assumed time-continuous. The wave damping con-140

sidered here is spatial. By substituting equation (17) in equation (16), it yields

the following expressions of kr and ki

ki = − ω

cc
√
αcs


−1 +

√
1 + β2

ω2

2




1
2

(18)

kr = cc
√
αcs


 2

1 +
√

1 + β2

ω2




1
2

(19)

(Note : mettre figure entre csf visqueux et non visqueux et commentaire ...)
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5. Verification and validation145

Numerical results are confronted to (Cirovic and Kim, 2012) study case where

the CSF was assumed inviscid. Thus, the friction term due to the viscosity of

the CSF which correponds to the right-hand side of the momentum equations

equations (1) and (2) are removed.

Geometrical and mechanical properties of (Cirovic and Kim, 2012) idealized

geometry are used. The length of the model is 0.5 m, the elastance of the pia-

matter is 0.125 MPa, the elastance of the dura-matter is 0.14 MPa, the radius

of the SC is 0.5 mm, the radius of the SSS is 0.85 mm and the density of the

CSF is 103 kg.m−3. A pulse excitation is initiated in the SSS. It consists of a

half-sine pressure wave with a duration of 10−2s and an amplitude of 100 Pa

defined as

f(t) =





100 sin(wt) for t ≤ 10−2s

0 for t > 10−2s

where ω =
2π

T
, T = 2.10−2s.

The boundary conditions consist of zero velocity of the CSF at the cranial end

and at the caudal end. In the SSS, it consists of the pressure signal (Ps = f(t))

at the cranial end and zero velocity at the caudal end.

Numerical results were highly consistent with (Cirovic and Kim, 2012). Results150

shows two waves propagating along the geometry. The speeds at which the

waves propagate are c1 = 7.4m/s and c2 = 14.7m/s.

The purpose of this study case was to verify our two step Lax Wendroff nu-

merical scheme. The wave propagation behaviour will not be discussed here as

this case has been well documented and studied previously in the litterature155

(Cirovic, 2009; Cirovic and Kim, 2012) and (Berkouk et al., 2003; Carpenter

et al., 2003).
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6. Quasi-steady flow approximation

The oscillatory flow of a viscous, incompressible fluid in a straight, circular pipe

with rigid walls is well known. A dimensionless number that serve as a general160

purpose indicator of the nature of unsteady flow is the Womersley number, Wo,

Wo = R

√
ωρ

µ
(20)

where w is taken as the frequency of the oscillatory pressure gradient, R is the

radius of the tube, ρ and µ are respectively the density and the viscosity of the

fluid.

In this section, particular interest is given for the annular SSS. Tsangaris (1984)

is the first to derive an analytical expression for the velocity for laminar, incom-

pressible, and viscous flow in a circular annulus tube with rigid walls under a

periodic oscillatory pressure gradient.

In a cylindrical coordinate system r, θ and z, the exact complex solution of this

axial velocity uosc is

uosc(r
′) = − i

W 2
o

(
1− aI0(x) + bK0(x)

c

)

where I0 and K0 are respectively the modified Bessel functions of the first and

second kind, Rc is the radius of the SC, Rs is the radius of the SSS, r′ is a

dimensionless radius r′ =
r

Rs
, λ =

Rc
Rs

is the ratio of the SC radius to the SSS165

one, x = Woi
1
2 r′, a = K0(λWoi

1
2 )−K0(Woi

1
2 ), b = I0(Woi

1
2 )− I0(λWoi

1
2 ) and

c = I0(Woi
1
2 )K0(λWoi

1
2 )− I0(λWoi

1
2 )K0(λWoi

1
2 ).

Tsangaris (1984) have obtained the amplitude and the phase difference angle of

the velocity as a function of the Womersley number, Wo, and the ratio of the

annular radi r′.170

Figures 2 and 3 shows the velocity amplitude U and the phase difference δ for

two different values of λ (λ = 0.1, 0.5) and various values of the frequency

parameter Wo (Wo = 0, 1, 3, 5, 8, 10).

For small values of Wo, for instance Wo = 1, the velocity amplitude is the same

as that for the steady flow and the phase angle δ is almost constant and equal175
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Figure 2: Amplitude distribution of the oscillatory flow over the cross section for an annuli

for λ=0.1, 0.5 and W0 = 0, 1, 3, 5, 8, 10 (Tsangaris, 1984)

to zero. This means that the flow for small values of Wo behaves as a quasi-

steady Poiseuille flow in phase with pressure gradient. For greater values of

Wo, the velocity amplitude and the phase angle δ are decreased for the same

value of λ. Moreover, for greater values of Wo, the velocity amplitude remains

approximately the same by varying λ.180

Now, the expression of the velocity uosc is used to express the wall shear stresses

(3) in the momentum equation of the SSS (2)

τsd = µ
∂uosc
∂r′

∣∣∣∣
r′=1

=
i
3
2

Woc

(
aI1(Woi

1
2 )− bK1(Woi

1
2 )
)

τcs = µ
∂uosc
∂r′

∣∣∣∣
r′=λ

=
i
3
2

Woc

(
aI1(λWoi

1
2 )− bK1(λWoi

1
2 )
)

A dimensionless ”average” wall shear stress in the annular section corresponding

to the right hand side of the momentum equation (2) is defined as

τw =
Rsτsd −Rcτcs
Rc +Rs

=
τsd − λτcs

1 + λ
(21)

Figure 4a displays the variation of the amplitude of the ”averaged” wall shear

stress in the annuli, τw, for different values of the Womersley number Wo and

the radius ratio λ.185

It shows that
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Figure 3: Phase angle distribution of the oscillatory flow over the cross section for an annuli

λ=0.1, 0.5 and W0 = 0, 1, 3, 5, 8, 10 (Tsangaris, 1984)
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Figure 4: Amplitude of the ”average” wall shear stress τw for different values of the Womersley

number as a function of the radii ratio λ
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• For a weakly unsteady flow, for instance Wo < 2, the amplitude of τw

varies in a quasi-linear way with the radius ratio λ.

• For a strongly unsteady flow, for instance Wo > 8, the amplitude of τw is

quasi-constant with a radius ratio λ between 0 and 0.5.190

• For λ > 0.8, the amplitude of τw remain the same regardless the nature

of the unsteady flow.

The velocity profile tend to exhibit a Poiseuille shape and loses its phase

lag with the pressure gradient. The more the annuli is confined, the more

the average wall shear stress τw of a quasi-steady flow approximation is195

valid.

Before proceeding further, please note that the definition of the Womersley

number used by Tsangaris (1984) for an annuli takes into account as a charac-

teristic length the outer radius of the annuli, neglecting the effect of the inner

radius. Thereafter, we define a local Womersley number based on the inner and200

the outer radius : a hydraulic radius. The hydraulic radius Rh was calculated

based on the cross-sectional area and wetted perimeter as

Rh = 2
π(R2

s −R2
c)

2π(Rc +Rs)
= Rs −Rc (22)

The local Womersley number, Woh, is then equal to

Woh = (Rs −Rc)
√
ωρ

µ
= Wo(1− λ) (23)

Therefore, the ”average” wall shear stress (21) is rescaled as a function of the

local Womersley number Woh.205

Figure 4b shows the variation of τw for different values of Woh as a function of

λ.

Remarks held previously remain invariable except that the amplitude of τw is

no longer quasi-constant with a radius ratio λ between 0 and 0.5. However,

the area of validity of the quasi-steady flow assumption noticed at Figure 4a210

has become wider in Figure (4b) by taking into account the inner radius. The

quasi-steady flow assumption is considered acceptable when the minimum value
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Figure 5

of the radius ratio λ is around 0.6.

MRI data from the Visible Human Project (VHP) provide outlines of the cord

and of the SSS/dura interface at 49 sites along the spinal cord. At each cross-215

section, Bertram (2009) computed the area of each closed outline and the radius

of a circle having the same area was calculated. Figure 5 displays these results.

The radius ratio λ is computed based on these data. Except near the skull and

the base of the spine, hydraulic radius λ is greater than 0.6. It can be assumed

that when accounting for the CSF viscosity, the quasi-steady flow approximation220

for this area is acceptable.
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Appendix D

CSF cervical flow computed from
1D model vs. MRI Data

The following poster was presented during the 8th World Congress of Biomechanics held from
8 to 12 July, 2018 in Dublin Ireland
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CSF cervical flow computed from 1D model vs. MRI Data
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Motivation

The first objective of this study is to build a 1D model of the dynamics couplings between the
blood cerebral vasculature, the cranial CSF, the spinal CSF and the spinal cord. Particular
attention is given to the effect of mechanical properties of the CSF network on the cervical
(C2-C3) CSF flow.
The second objective is to compare the 1D model outputs to MRI Data from healthy and
suspected pathological (hydrocephalus) patients.

Methods

The figure shown below presents the 1D craniospinal CSF-blood coupled model. Blood flows
from carotids and vertebrals vessels to jugular veins. Blood volume expanison triggers
CSF displacement into the Spinal Canal. Each blood vessel is enclosed within a vessel
representing the dura mater in which the CSF flows.
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For the blood vessel, we have :



∂Ab

∂t
+
∂(UbAb)

∂z
= 0

∂Ub
∂t

+ Ub
∂Ub
∂z

+
1

ρb

∂Pb
∂z

=
2
√
π

ρb
√
Ab
τb

For the spinal and cranial SS, we have :



∂Ac

∂t
+
∂Uc(Ac − Ab)

∂z
+
∂(UcAc)

∂z
= 0

∂Uc
∂t

+ Uc
∂Uc
∂z

+
1

ρc

∂Pc
∂z

= − 2
√
π

ρc(Ac − Ab)
(
√

(Ac)τcb −
√

(Ac)τcs)

System closure: a tube law

Pt = El

(
A

A0
− 1

) A is the cross-sectional area, U is the axial mean
velocity, P is the pressure and τ is the wall shear
force. (1)

Results : Input Blood Signal and resulting

Cervical CSF Signal

In the litterature, CSF pressure amplitudes values ranges between 2 and 6 mmHg. C2-C3
CSF peak flow ranges between 1 and 4 mL/s. Figure belows presents the resulting C2-C3
CSF pressure amplitude and peak flow for two types of blood pressure input : a sinusoidal
pulse and an arterial one. Figures shows 3 cardiac cycles.

Blood Pressure (mmHg) C2-C3 CSF Peak Flow
(mL/s)

C2-C3 CSF Peak Pressure
(mmHg)

Results: What are the mechanical properties of

the CSF network ?

We chose to characterize the CSF network using 3 parametres :

•The confinement
Blood Vessel Section

Dura Section
. A chosen confinement = A given CSF volume.

MRI Data from litterature suggests total CSF volume vary between 150 mL and
300 mL.

•The compliance of the lumbar dura. CSF lumbar dura pressure is closely linked to
Intracranial Pressure (ICP).

•The global elastance of the cranial and spinal dura.

Figures belows presents the effect of the CSF network parametres on the Cervical CSF
peak Flow and pressure amplitude.

Elastance of the Dura
(mmHg/mL)

Confinement Compliance of the lumbar
dura (mL/mmHg)

Results: Patient Specific 1D Model vs MRI Data

MRI Data from healthy and pathological patients providing flow signals and surface area
of the Carotids, the Vertebrals, the Jugular Veins and the Cervical CSF region(C2-C3).

3 Healthy Patients

2 suspected Pathological (hydrocephalus) Patients

1D Model

MRI Data

Discussion

We found good agreement between 1D Model and MRI Data. Results suggests that the
Dura elastance is around 106 mmHg/mL, the compliance of the lumbar dura is around
10−4 mL/mmHg except for suspected pathological patient 4 where the Dura elastance is 10
times higher. Future work will be focusing on the optimal control modelling of the Cerebral
Autoregulation mechanism.
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