
HAL Id: tel-03253860
https://theses.hal.science/tel-03253860v1

Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability-Guided Design Space Exploration for
Safety-Critical Applications

Alexandre Chabot

To cite this version:
Alexandre Chabot. Reliability-Guided Design Space Exploration for Safety-Critical Applications. Em-
bedded Systems. Université Polytechnique Hauts-de-France, 2020. English. �NNT : 2020UPHF0007�.
�tel-03253860�

https://theses.hal.science/tel-03253860v1
https://hal.archives-ouvertes.fr

Thèse de doctorat

Pour obtenir le grade de

Docteur de l’Université Polytechnique Hauts de France

Discipline: Informatique

Présentée et soutenue par: Alexandre CHABOT.

Le 03/02/2020, à Gif-sur-Yvette

Ecole doctorale :

Sciences Pour l’Ingénieur (SPI)

Equipe de recherche, Laboratoire :

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines (LAMIH)

Laboratoire Sûreté des Logiciels (CEA/LIST/DILS/LSL)

Reliability-Guided Design Space Exploration for
Safety-Critical Applications - Exploration des

Architectures des Systèmes Embarqués Dirigée
par la Fiabilité

Président de jury et Rapporteur:

• Alberto Bosio. Professor, Ecole Centrale de Lyon

Rapporteur

• Francois Pecheux. Professor, Sorbonne Université -LIP6

Examinateurs

• Karine Heydemman. Professor, Sorbonne Université -LIP6

ii

• Ansgar Radermacher. Research Engineer, CEA LIST

• Youri Helen. Research Engineer, CEA LIST

Directeurs de thèse

• Smail NIAR. Professeur, UPHF

Co-encadrant de thèse

• Ihsen Alouani. Maitre de Conférences, UPHF

• Réda Nouacer. Ingénieur de Recherches, CEA

iii

Declaration of Authorship
I, Alexandre CHABOT, declare that this thesis titled, “Reliability-Guided De-

sign Space Exploration for Safety-Critical Applications” and the work pre-

sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-

search degree at this University.

• Where any part of this thesis has previously been submitted for a de-

gree or any other qualification at this University or any other institu-

tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always

clearly attributed.

• Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely my

own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

Date: 03 February 2020

v

“Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will

live its whole life believing that it is stupid”

Albert Einstein

vii

UNIVERSITÉ POLYTECHNIQUE DES HAUTS DE FRANCE

Abstract
Faculty Name

Department or School Name

Doctor in Computer Sciences

Reliability-Guided Design Space Exploration for Safety-Critical

Applications

by Alexandre CHABOT

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

viii

Technological advances allow the production of increasingly complex elec-

tronic systems. Nevertheless, technology and voltage scaling increased dra-

matically the susceptibility of new devices not only to Single Bit Upsets (SBU),

but also to Multiple Bit Upsets (MBU). In safety critical applications, it is

mandatory to provide fault-tolerant systems, providing high reliability while

responding to applications requirements. The problem of reliability is par-

ticularly expressed within the memory which represents more than 80% of

systems on chips.

To tackle this problem we propose a new memory reliability enhancement

techniques called DPSR: Double Parity Single Redundancy, designed to an-

swer SBU and MBU problematic. To evaluate our proposition we modify

historically used simulation single fault injection model by adding memory

monitoring and MBU injection and compare it to state of the art fault injec-

tion engines. Based on a thorough fault injection experiments, DPSR shows

promising results. It detects and corrects more than 99.6% of encountered

MBU and has a performance overhead of less than 3% in mean. Our fault in-

jection methodology shows also promising results by discovering more than

11% of incorrect behavior after fault injection than the classical single bit ran-

dom injection.

Keywords: Reliability, DPSR, SBU/MBU, Fault Injection, Memory

French Abstract :

Les avancées technologiques ont permis la production de systèmes électron-

iques de plus en plus complexes. A l’ombre de ces évolutions, la diminu-

tion de la taille des transistors ainsi que la diminution de tension ont dra-

matiquement impactés la sensibilité aux fautes de ces nouvelles plateformes

électroniques. Leur susceptibilité aux fautes multiples a également été tout

d’abord découverte puis augmentée. Dans les applications critiques, il est

obligatoire de fournir des systèmes résistants aux fautes tout en conservant

un comportement identique à celui attendu peu importe les conditions. Le

problème de fiabilité est tout particulièrement exprimé dans la mémoire car

elle représente aujourd’hui plus de 80% de la totalité de la surface des plate-

formes électroniques.

Pour adresser ce problème de fiabilité, nous avons proposé dans nos trois

ix

ans de recherche une nouvelle technique améliorant la fiabilité appellée DPSR

(Double Parity Single Redundancy traduit littéralement par Double Parité

associée à une Simple Redondance). Cette technique est désignée tout par-

ticulièrement pour contrer les soucis de fautes simples et multiples. Pour

évaluer notre technique, nous avons modifié les modèles permettant de faire

des injections simples en y ajoutant des paramètres supplémentaires comme

la surveillance de l’utilisation mémoire. Ce modèle a également été enrichi

de la possibilité d’injecter des fautes multiples. Nous avons au cours de ces

années de recherche comparé notre modèle aux modèles existants. Basé sur

de longues expérimentations, notre technique DPSR a montré des résultats

prometteurs avec plus de 99.6% de fautes mutiples corrigées et détectées

en introduisant une perte de seulement 3% de performance. Notre mod-

èle d’injection a également montré des résultats prometteurs en découvrant

plus de 11% de comportements non désirés que si on utilisait une méthode

d’injection de l’état de l’art.

Mots Clés: Fiabilité, DPSR, Fautes Multiples, Injection de Fautes, Mémoire

xi

Acknowledgements
La thèse étant un marathon plus qu’un sprint, il est indispensable de s’entourer

des bonnes personnes et il est impossible de mener une thèse à bien sans

un entourage personnel et professionnel de qualité. Cette partie de remer-

ciements me permet notamment de remercier chaque personne qui a par-

ticipé de près ou de loin, directement ou indirectement à ce que je présente

aujourd’hui. Je voudrais commencer par remercier les membres du jury qui

ont pris de leur temps . . .

Dans un second temps je voudrais remercier tout particulièrement mes

encadrants de thèse. Smail Niar qui a été un guide avec ces précieux con-

seils. Il a su gérer mes errements administratifs et s’est toujours montré bi-

enveillant vis à vis de moi. Ses remarques et son implication ont été précieux

tout au long de cette thèse. Réda Nouacer qui avec sa bonne humeur et nos

conversations autour de mon sujet mais aussi autour de la vie de chercheur

et des conseils de vie qu’il a su me donner m’ont fait grandir tout au long de

la thèse. Enfin, Ihsen Alouani a su venir me challenger scientifiquement avec

ses questions, ses remarques et sa sympathie a su faire grandir et murir des

idées que j’avais pour donner des articles. Il sortait tout juste de son doctorat

quand on s’est rencontré et aujourd’hui il est maître de conférence, une re-

connaissance méritée au vu de la qualité de son travail et de sa connaissance

en différents domaines.

Même si je ne suis pas venu souvent à Valenciennes, j’ai établi des connex-

ions avec différents doctorants du lamih. Un gros merci à Hannen, Ayoub et

Ismat pour leur gentillesse, leurs sourires et leurs bon conseils. Un merci à

tout les autres avec qui je n’ai pas eu la chance de partager autant mais qui

m’ont toujours bien accueilli.

Basé à Nano-Innov j’ai évidement lié des liens tout particuliers avec tout

les membres du laboratoire LSL. Merci à eux pour leur accessibilité et leur bi-

enveillance. Je pense notamment à Florent Kirschner qui a toujours été franc

et ravi de voir mes avancés pendant ma thèse. Un merci à Gilles et Yves

qui ont toujour été disponibles pour répondre à mes différentes questions

techniques et qui m’ont toujours accordé du temps quand j’en avais besoin.

Merci à Zaynah qui était un peu ma tata pendant la thèse, elle, qui sait la

xii

difficulté que c’est de grandir en tant que chercheur et qui a toujours su venir

partager des moments bons comme mauvais avec moi. Un merci évidement

à Frédérique qui est particulierement compétente et qui est un organe essen-

tiel du laboratoire. Merci également à Julien qui s’est montré à l’écoute de

mes questions notamment académiques. Merci à Zakaria et David pour nos

discussions et leur bonté tout au long de mes trois années. Hors du labo-

ratoire j’ai pu notamment noué des liens avec Quentin, Agnès, Onder qui

malgré les distances entre nos bureaux ont toujours montré de la curiosité

pour mon travail

Je souhaite également remercier à part les non permanants du laboratoire

qu’ils soient stagiaires, doctorants ou post doctorants. Je pense à mes co-

bureaux comme Quentin et Quentin B., Guillaume, Marc, Dongho, Thibault

et Virgile avec qui la cohabitation a toujours été agréable et qui m’ont permis

de décompresser parfois. Une grosse pensée pour Florent qui est toujours

prêt à discuter de n’importe quel sujet avec cette pointe d’humour qui fait

de la discussion un plaisir. Merci à Christophe qui est une force tranquille

et dont la bonne humeur reste inchangée peu importe l’heure de la journée.

Merci à Zinab et ne t’en fais pas tout ira bien pour toi j’en suis sûr. Evidement

merci à Hugo, mon ami qui est dorénavant bien plus qu’un simple collègue

de boulot pour nos discussions intellectuels autour du ballon rond mais aussi

et surtout autour de tout et de rien.

Enfin, je ne serais pas là sans le soutien indéfectible de toute ma famille.

Que ce soit mes grands-mères ou mon grand-père, ils ont toujours su s’investir

dans mon projet et me soutenir. Merci à mes tontons et tatas pour tout. Merci

à Gaêlle pour ta gentillesse, tes bons conseils et nos franches rigolades. Merci

à Tom pour ta candeur due à ton âge et ton sourire à chaque fois qu’on se voit.

Un énorme merci à Maman et Papa, vous êtes merveilleux et vous avez fait

de ces trois ans un long fleuve tranquille. Vous étiez là pour les bons comme

les mauvais moments, toujours derrière moi avec cette confiance et cet amour

que vous me portez sans relâche. Finalement, je vais remercier Laura, ma

compagne avec qui j’ai vécu pendant toute cette thèe et qui partage ma vie

depuis 8 ans maintenant. Tu as accepté mes départs, mes voyages, mes ho-

raires, mes travaux hors des horaires de bureaux et surtout tu m’as soutenu

tout au long des trois ans. Je ne pouvais pas rêver mieux.

xiii

xv

Contents

Declaration of Authorship iii

Abstract viii

Acknowledgements xi

1 Introduction 1

2 State of the Art 5

2.1 Fault Types . 6

2.1.1 Multiple Bit Upsets . 8

2.1.2 Probabilistic Model . 10

2.1.3 Fault Consequences . 12

2.2 Fault Injection Techniques . 14

2.2.1 Fault Injection Overview 15

2.2.2 Simulation-Based Fault Injection 17

2.3 Reliability Techniques and Means 19

2.3.1 Global View of Reliability Enchancement Techniques . 20

2.3.2 Global Memory Reliability Techniques 22

3 Double Parity bit Single Redundancy 29

3.1 Presentation and Motivation . 30

3.2 Probabilistic comparison between existing memory reliability

techniques and DPSR . 32

3.2.1 Detection . 33

3.2.2 Correction . 34

xvi

3.2.3 Memory Space . 35

3.2.4 Discussion . 36

3.3 RETG: Reliability Enhancement Technique Grade 36

4 Structure of the Fault Injector 39

4.1 Overview . 40

4.2 Memory Accesses Impact onto Fault Injection 41

4.3 Multiple Bit Upsets in the Model 42

4.4 Global Algorithm . 43

4.5 Other Injection Modes . 46

4.5.1 Random Injection . 46

4.5.2 Determined Injection . 47

5 Experimental Results 49

5.1 Experimental Setup . 50

5.2 Evaluation of our Injection Tool 53

Efficiency . 54

Representativeness . 57

5.2.1 Simulation Overhead . 59

5.3 RETG computation . 62

5.3.1 Memory Reliability Techniques impact onto performance 62

5.3.2 Mathematical Approach Verification 64

Detection Probability . 65

Correction Probability 65

5.3.3 Memory Reliability Techniques Comparison 66

5.3.4 RETG estimation . 67

6 Conclusion 69

A Appendix A 73

A.1 List of Usefull Parameters to Configure Fault Injection 73

A.2 Explications . 77

B Appendix B 79

B.1 Example of a Script Used During Test Campaign 79

B.2 Explications . 83

xvii

C Publications 85

Bibliography 87

xix

List of Figures

2.1 Failure Rate Evolution During Life Periods For An Electrical

System [21] . 8

2.2 Single and Multi Bit Upset (BU) percentages by technology

nodes in nm for SRAMs [19] . 9

2.3 Representation of Fault Injection Environment 15

2.4 Representation of a System . 19

2.5 Parity Functioning . 23

2.6 TMR Functioning . 23

2.7 PmC2 Functioning . 24

2.8 SECDED example for 8 bits data word 25

3.1 DPSR Write for 8 bits word . 32

3.2 DPSR Read for 8 bits word . 32

4.1 The Fault Injection Model . 40

4.2 Example of a set of parameters (extracted from FIDES standard) 43

4.3 Fault Injection Strategy . 47

5.1 Representation of UNISIM-VP environment for ARMv7 simu-

lations. 52

5.2 Representation of ARM7 architecture [39] which use a ARMv7

simulator. 53

5.3 Type of observed corruption with different injection procedures

on Susan smooth bench with 11000 runs for each procedure . 54

xx

5.4 Memory access locality compared to Injection locality for Su-

san Corner Mode Application. Values are given for the 10 (x-

axis) most accessed memory zones. 56

5.5 Memory access locality compared to Injection locality for Su-

san Smooth Mode Application. Values are given for the 10

(x-axis) most accessed memory zones. 56

5.6 Repartition of injected upsets patterns given by Table 4.2 (top)

and those injected by our model (bottom) 57

5.7 Single (top) and 2-BU (bottom) corruptions distribution 58

5.8 Simulation time increase after implementing fault injection mod-

ule . 60

5.9 Simulation Overhead due to read and write monitoring with-

out memory protection . 61

5.10 Distribution of Simulation Results after Read Fault Injection

on unprotected system for different application on 19000 runs 62

5.11 Computation Time modification due to memory areas number 63

5.12 Simulation Time (seconds) with fault injection for different re-

liability techniques . 64

5.13 Estimated and Observed Detection Probability of different re-

liability techniques during simulation with a realistic fault in-

jection . 65

5.14 Estimated and Observed Correction Probability of different re-

liability techniques during simulation with a realistic fault in-

jection . 66

xxi

List of Tables

2.1 Cumulative 2-Bit Event Count Normalized to 1000 for 150nm

SRAMs for Different Particle Strikes Energy (MeV) [49] 10

2.2 Pattern Injection Square . 10

2.3 Code Example 1 . 14

2.4 Fault Injection Methodologies comparison 17

2.5 Comparison of Fault Injection Tools 19

3.1 Detection probability of memory reliability techniques for 22

MeV particle strikes . 34

3.2 Correction probability of memory reliability techniques for 22

MeV particle strikes . 35

3.3 Memory Space (bits) of memory reliability techniques function

of data size . 35

3.4 Memory Space Overhead of memory reliability techniques func-

tion of data size . 35

4.1 Pattern Injection Square . 42

4.2 Pattern Flipping Probability for 40nm technology [49] 43

4.3 MBU example . 46

5.1 Performance Overhead due to memory Reliability techniques 64

5.2 Memory Reliability Techniques Comparison 67

5.3 RETGc of memory reliability techniques function of data size 68

xxiii

List of Abbreviations

MBU Multiple Bit Upset

SBU Single Bit Upset

SEU Single Event Upset

SER Soft Error Rate

VP Virtual Platform

SECDED Single Error Correction Double Error Detection

DECTED Double Error Correction Triple Error Detection

RTEG Reliability Technique Evaluation Grade

DMR Double Memory Redundancy

TMR Touble Memory Redundancy

1

Chapter 1
Introduction

T hanks to manufacturing process and integration improvements, mod-

ern mobile and embedded systems are now able to execute complex

applications and can implement advanced functionalities, such driver assis-

tant systems in autonomous automotive, drones etc. System-on-chip (SoC)

manufacturers are expecting to produce in the next coming years chips with

thousands of processing elements, very large cache memories and variety of

dedicated accelerators using sub-micron node technologies.

Consequently, future SoC architectures will be more and more complex

and the resulting hardware architectures will have a particular impact on the

energy consumption, robustness and reliability. The obtained improvement

in performance will go with a reliability downgrade due to the hardware

integration rate increase. In [29] it has been proved that the error rate in-

creases by a factor of
√

2, i.e. an increase of 40%, every 18 months due to

node technology reductions. Transistor-node size shrinking combined with

voltage reduction, create the need to tackle soft errors caused by transient

faults. This type of faults is due to environment factors, such temperature

and radiations, and corrupts data in memory and combinational units.

For this reason, next generation embedded systems have to be more re-

silient to transient faults than before. Robustness against transient faults, is

for example, a standard requirement for safety-critical applications such as

autonomous driving systems.

2 Chapter 1. Introduction

Consequently, a large number of works have been devoted to study the

impact of transient faults caused by energy particles striking in systems run-

ning safety critical applications. A large set of software and hardware solu-

tions have been proposed to detect and eventually correct the resulting faults.

Space and time redundancy solutions, such as Triple Modular Redundancy

(TMR) combined with a voting system, have been widely used to support

Single Event Upset (SEU).

Critical systems are system that needs to be highly reliable even after evo-

lution, a failure of a critical system may have dramatic consequences for en-

vironment, financial or human lifes. However, in most of the existing ap-

proaches real environmental factors are not take into account and they as-

sume only single faults. The rise of Multiple-Bit Upset (MBU) in nanometer

technologies-based SoC, creates the need of simulation tools to explore their

effect on system reliability. Indeed, solutions proposed to fight against single

faults may be not appropriate to fight againt MBU. Moreover, systems com-

plexity is rising even for critical systems. Thus a modification of the system is

more and more expensive as the system advances in its development lifetime.

In this thesis, we will present our memory reliability techniques. Our

technique called DPSR for double parity single redundancy is designed to

answer specifically MBU while keeping a good trade-off between different

criteria: computation overhead, memory area consumption, correction and

detection probability, and integration complexity. To ensure our technique

to bring an improvement to the state of the art, we have compared our ap-

proach to existing memory reliability techniques regarding the same criteria.

To realize this study we have used our methodology of fault injection us-

ing a virtual platform. Our fault injection methodology takes into account

environmental conditions, MBU and application behavior to inject realisitic

faults.

The plan of the thesis is the following. In Chapter 2 we expose a state of

Chapter 1. Introduction 3

the art arround fault injection techniques and reliability enhancement tech-

niques. To do so, we define fault types, we present a probabilistic model

used in litterature and we explain fault consequences using a code example.

We then define fault injection mechanisms and present some fault injection

methodologies while focusing more onto simulation based fault injection.

We then exposed different path of thinking about reliability enhancement

techniques while focusing more onto memory reliability techniques.

In Chapter 3, we present and motive our memory reliability technique

called DPSR. We then use a mathematical approach to validate our hopes

about our proposition. This technique is proposed to answer a lack of relia-

bility techniques designed to answer specifically MBU patterns and to fullfill

a lack of memory reliability tehcniques designed to answer MBU. This sec-

tion ends by a presentation of a proposed global criteria, the reliability eval-

uation technique grade (RETG) to evaluated reliability techniques.

In Chapter 4, we expose our fault injector. We explaine first our global

way of thinking and then we detailled: how the application behavior is taken

into account, how MBU are considered in our model, and how works our

global algorithm. We end this Chapter by presenting the other injection mode

that can be used while using our fault injection tool and why they are inter-

esting.

Chapter 5 is the sum-up of our work, in this Chapter the goal is to use our

fault injection methodology to evaluated reliability techniques. To do so, we

firstly present our experimental setup. We then first evaluate our injection

tool itself looking at efficiency, representativeness and overhead induced by

the addition of the fault injector. In a third time, we ensure our mathemati-

cal approach to be validated by real experiments and we finally obtained the

computation overhead induced by the memory reliability techniques. We

end this Chapter by computing the global criteria RETG for our DPSR tech-

niques and compare it to state of the art techniques.

Finally we conclude our work by resuming all our propositions to the

4 Chapter 1. Introduction

state of art but also by proposing evolution of our fault injection methodol-

ogy but also to DPSR.

5

Chapter 2
State of the Art

2.1 Fault Types . 6

2.1.1 Multiple Bit Upsets . 8

2.1.2 Probabilistic Model . 10

2.1.3 Fault Consequences . 12

2.2 Fault Injection Techniques . 14

2.2.1 Fault Injection Overview 15

2.2.2 Simulation-Based Fault Injection 17

2.3 Reliability Techniques and Means 19

2.3.1 Global View of Reliability Enchancement Techniques . 20

2.3.2 Global Memory Reliability Techniques 22

6 Chapter 2. State of the Art

I n this Chapter, we will first give basic definitions. We will then survey

existing methods to model and simulate single and multiple bit upset

in SoC. We will also present existing methods to improve system reliability.

In the first part we expose and define what is a fault (Section 2.1), in the same

part we talk also about Multiple Bit Upsets (MBU). Section 2.2 exposes fault

injection techniques at different levels with a zoom made onto simulation

based fault injection. We end this section with a presentation of different

ways to protect the system against faults focusing onto memory reliability

techniques in Section 2.3.

2.1 Fault Types

When functioning, embedded systems are subject to two kinds of faults. The

distinction of those faults is made upon its duration. The two types are the

following [50], [1]:

1. Permanent Fault. Permanent faults are caused by an undesired short

or open circuit. When permanent faults appear, they are in place for the

rest of the system life. For this reason, they are corrected by realizing a

maintenance of the Hardware. This maintenance may be a component

replacement or a soft/hard reset of the system. Due to functioning or

fabrication issues, permanent fault occur mainly due to three different

causes [7], [50], [47]:

• Manufacturing and Design Time: these faults comes from error in

the design or in the manufacturing process of the Hardware and

manifest as stuck at one or zero and delay.

• Wearout Mechanisms: these mechanisms are influenced by the ag-

ing of the system. Negative-Bias temperature instability, hot car-

rier injection, time-Dependent dielectric breakdown and electro-

migration are some of the mechanisms that produce this kind of

faults. All cited mechanisms induce at the beginning intermittent

faults that become permanent faults.

2.1. Fault Types 7

• Process Variations: The manufacturing induces a lot of process

variability such as a non perfect doping for example. This ran-

domness causes differences between transistors of the same chip.

Differences of behavior for the same chip can be the reason for de-

lays and thus alterate the behavior of the system.

2. Transient Fault. Transient faults are logical faults in circuit’s operation

and they occur at random mainly due to charged particle emissions

[31]. Transient faults are non-permanent faults. The system is only per-

turbed during a small amount of time. The time of the perturbation is

in general considered to be an instruction execution time at the appli-

cation level. This reduction can be explained by the fact that transient

faults are due to particle strike and thus happen for a very short mo-

ment even if the fault can stay for longer. The fault is materialized by

one or more bit flips or a flip-flop modification. This change is called

a single event and can cause a single or a multiple upset. The metric

used to evaluate the sensitivity of the system to its environment is the

soft error rate (SER) [30]. The SER is of course influenced by the type

of particle encountered in the environment. At the ground level, there

are three kinds of particles that are able to modify the state of a sys-

tem. First, alpha particle is the most type of encountered particles. Sec-

ond and third are the atmospheric neutrons that are usually separated

in two categories based on their energy. More present, atmospheric

neutrons with an energy inferior to 1 MeV and finally the atmospheric

neutrons with an energy superior to 1 MeV. In the space environment,

it exists different radiation sources such as: Van Allen radiations, solar

activity and cosmic radiations [55]. Energies of these cosmic particles

vary between some MeV and up to 1030.

These two types of faults induce a failure rate for the entire system. Fig-

ure 2.1 extracted from [21] shows the evolution of the failure rate among

three major steps of a system. In the first period the infant mortality, the sys-

tem has a higher failure rate due to permanent fault high presence especially

stuck at and process variations faults. Then the system enter in its maturity

8 Chapter 2. State of the Art

period where the system spends the main part of its lifetime. In this life pe-

riod, the failure rate is almost constant and is mainly due to transient faults.

Finally, the system enters in its wear out period, in this period the aging of

the system makes the failure rate to increase. We add to transient errors per-

manent faults due to wearout mechanisms, this period is irreversible, only

maintenance is able to reduce the failure rate rise.

FIGURE 2.1: Failure Rate Evolution During Life Periods For An
Electrical System [21]

The main focus of our study concerns transient faults and thus we make

the assumption our system is in its maturity life period. SER determines

the number of soft errors per unit time. SER unit is the FIT, one FIT rates

the number of failures expected for a device during one billion functioning

hours. FIT is used mainly into the semiconductor industry. An accurate SER

is obtained by measuring number of failures in devices operated in real uses

conditions. It necessitates a large number of devices and also specific instal-

lation. A large number of guidelines to measure the SER are provided in the

JEITA soft error rate testing guideline [20]. SER can also be measured dur-

ing accelerated conditions using raditation sources such as thermal neutron,

high energy neutron or alpha particle exposure.

2.1.1 Multiple Bit Upsets

With the aim to maintain the Moore law prediction with the reality [43], tran-

sistor size has been reduced. This shrink has a direct impact onto the sensitiv-

ity of Hardware to single upset with the apparition and the raise of multiple

faults observed for newest technologies. One of the first paper talking about

2.1. Fault Types 9

MBU in SRAMs is [53]. The phenomena of MBU has been noticed above cer-

tain thresholds and due to strong constants such as high resistance.

This phenomena of MBU is highlighted once again for SRAMs in [19] which

shows that transistor miniaturization goes with the rise of single event mul-

tiple bit upset presence.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

180 150 90 65 40

1-BU 2-BU 3-BU 4 or more BU
Technology (nm)

Normalized MBU repartition

FIGURE 2.2: Single and Multi Bit Upset (BU) percentages by
technology nodes in nm for SRAMs [19]

Figure 2.2 shows the growing presence of multiple bit upsets patterns.

For example, in SRAMs under 40nm, more than 40% of particle strikes result

in multiple bit upsets [19]. Usually, single event were linked to a single up-

set. With the rise of multiple upsets, Figure 2.2 shows that this hypothesis

is valid only only for previous technologies. Results exposed in Figure 2.2

are obtained thanks to a neutron beam representing cosmic neutron flux at

108 the intensity of what is observed at the earth surface. Such as explained

in the previous part, accelerated test are necessary to obtain results quickly

than a simple exposure to a classical environment.

In Table 2.1, we present results obtained by Radaelli et al. [49] regarding

the distribution of soft errors in 150nm commercial available SRAMs. The

second line of the table is linked to the Table 4.1. For example, a 1-2 con-

figuration corresponds to all upsets where two horizontally adjacent bits are

flipped. Even if the study has been realised onto 150nm SRAMs, results are

valid for future generations. Recent data are complex to obtain due to the

cost of the facilities needed to obtain those results. This table shows that for

10 Chapter 2. State of the Art

TABLE 2.1: Cumulative 2-Bit Event Count Normalized to 1000
for 150nm SRAMs for Different Particle Strikes Energy (MeV)

[49]

Energy Double-bit pattern
1-2 1-4 1-5 Others

22 MeV 773 136 80 11
47 MeV 681 180 117 22
95 MeV 653 192 132 23
144 MeV 686 156 133 25

TABLE 2.2: Pattern Injection Square

1 2 3
4 5 6
7 8 9

single event 2-bit upsets, it is more frequent to observe two horizontally ad-

jacent flips than two vertically adjacent ones. Multi-cell upset events tend to

be a concern especially for patterns that flip multiple bits in the same row

[19].

Even though a large sets of these results have been observed while the

memory has been studied in static mode, the work presented in [54] shows

the trend of MBU is also cocerning for the reliability of memory working into

a dynamic mode.

As explained in [19], SRAM multi-cell upsets are much more common in

newer technology nodes, and microprocessor designs need to be protected

against them. To do so, probabilistic model are proposed and will be ex-

plained in the next Section.

2.1.2 Probabilistic Model

Even though the bit SER saturates or even decreases for latest technologies,

the SER of the system is exponentially growing due to the high level of in-

tegration [12]. It is thus mandatory to consider soft errors during the devel-

opment of a critical system. To be able to study soft errors, a probabilistic

model can be used. A probabilistic model is a mathematical model allowing

exploration tools to take into account faults. It can take into account different

2.1. Fault Types 11

inputs such as environmental values, applications technology, manufactur-

ing processes. In our work we focused our study on soft errors impacting

memory. Such as previously explained in Introduction, we have decided to

focus on the memory as it represents more than 80% of electronic compo-

nents area. Nevertheless, all the study can be muted to study other hardware

parts of the system.

First, depending on the impacted memory region, the flip operation may

alter either a data value or an instruction code, but this difference between

data or instruction alteration is not taken into account when creating the fault

appearance probabilistic model. The reliability law is given by Equations

(2.1) and 2.2, where λ is the constant failure rate, R is the reliability distribu-

tion, MTTF is the mean time to failure and t is the time.

R(t) = exp(−λ ∗ t) (2.1)

MTTF = 1/λ (2.2)

This model is based on a prior evaluation of the system failure rate and

does not depend on system environmental conditions. Evolution of the fault

model have been proposed in [28] and [57] who considered environmental

conditions. In [28], failure rates are defined based on temperature while in

[57], authors take power consumption into account. FIDES global electronic

reliability engineering methodology guide is a generic approach to compute

architectures failure rates [21]. Based on FIDES guide [21], physical and pro-

cess impacts have to be considered for a precise failure rate λ computation.

FIDES work is a sum up of what can be found in the literature regarding all

criteria impacting the environment impact onto the failure rate. To compute

the physical impact on λ, environmental conditions are modeled by provid-

ing: ambient temperature, temperature cycles, relative humidity, vibrations,

saline pollution, environmental pollution, application pollution and chemi-

cal protection. Equations 2.3, 2.4 and 2.5 respectively respresent the Accel-

eration Factor of Temperature, Humidity and Vibrations. Thoses factors are

used in the reliability evaluation of a system and can be positive or negative.

These acceleration factor are most of the time forgetten when talking about

12 Chapter 2. State of the Art

electronics reliability and thus impact the probabilistic model drastically.

AFtemperature = exp(
Ea
Kb

(
1
T0
− 1

T
)) (2.3)

AFhumidity = (
H
H0

)p ∗ exp(11604 ∗ Ea ∗ 1
T0 + 273

− 1
T + 273

) (2.4)

AFvibrations = (
GRMS

GRMS0
)p (2.5)

In Equations 2.3, 2.4 and 2.5:

• Ea is the Activation Energy

• T0 is the reference temperature in which the base failure rate has been

computed, usually 20◦ C.

• T is the temperature of the environment

• Kb is the Boltzmann Constant = 8.617.10−5eV/K

• H is the relative humidity of the environment

• H0 is the reference relative humidity in which the base failure rate has

been computed, usually 70%

• p is the power of acceleration for each factor.

• GRMS is the efficient vibration.

• GRMS0 is the reference vibration, usually = 0.5GRMS

The presented probabilistic model can be used in different processes to

evaluate system reliability at different stages of the system development life-

cycle. In particular, the presented fault probabilistic model is a base of our

fault model presented later in the thesis. Indeed, it helps us to compute a

fault probability for the entire system and we have adapted this fault proba-

bility to our needs. Our fault model will be exposed in the Section 4.

2.1.3 Fault Consequences

To illustrate the subject, I will use an example code avaible in Table 2.3 that

describes a factorial computation of a number n defined before the compi-

lation phase of the application. This application is smally protected by the

2.1. Fault Types 13

if statement at the line 9 which checks if the variable result is still superior

to 0. Indeed, the result of a factorial is strictly superior to 0, this test is thus

never wrong unless there is an exterior intervention. In a case of an exterior

intervention, the result returned is -1 which corresponds basically to an error

signal send to the caller of the function. Using this application, I will give

example of different outputs that are possible after a fault occurence. Once

the fault happens, different outputs are possible for the application:

1. Silent Corruption: In this case, the fault has impacted the hardware but

has no impact on the executed task. For the given example code it can

be a fault that impact the value i while the return call is done. This will

have no impact on the application and the fault will be masked as the

variable i is a variable of the called function.

2. Detected Corruption: In this case, the fault is detected by the system.

The fault is thus seen at the system level. Actions that can be taken by

the system are: pointing out the fault, correcting the fault, restarting

the current routine, etc. In our example in Table 2.3, the fault can be de-

tected line 9. Let’s suppose the fault changes the value of the variable

“result” and set it to 0 during the for loop. Then the instruction at the

line 9 will detect this modification. The factorial function will thus re-

turn -1. This value returned by the factorial function can be interpreted

by the caller of the function as an error result.

3. Result Corruption: In this case, the fault is not detected by the system

but changes the output of the system. In our example Table 2.3, imagine

the fault happening onto the result variable during the for loop and not

making the value of result to be inferior to 0. Then the fault will not be

detected and the result will be false. The false result is finally send to

the caller and nothing is raised by called to alert the caller of a possible

error.

4. Behavioral Corruption: In this case, the fault is not detected by the sys-

tem but changes the behavior of the system. In our example Table 2.3,

if the fault happens onto the code that increments the i value (ligne 7)

then the for loop is infinite and the function factorial would never end.

14 Chapter 2. State of the Art

TABLE 2.3: Code Example 1

1. # define n 15
2. int factorial (void)
3. {
4. int i, result;
5. i = 2;
6. result = 1;
7. for (i=2; i<=n; i++)
8. {
9. if(result > 0)
10. {
11. result = result*i;
12. }
13. else
14. {
15. return -1;
16. }
17. }
18. return result;
19. }

It causes the system to be blocked into an infinite loop. In this particu-

lar case, the beahvior of the entire system is impacted and stuck inside

a loop.

2.2 Fault Injection Techniques

Fault Injection has been studied since decades now. Up to our knowledge,

the first paper dates of 1967 [26]. Nowadays, fault injection is used at dif-

ferent levels and for different applications such as Operating System, Smart

Card, Web services, etc. There are three different objectives when realising

a fault injection campaign. First, ensuring the correct functioning of error

detection and correction mechanisms. Second, evaluating the overall robust-

ness of the system [47]. Finally, reducing the risk to discover unexpected

scenario after the commercialization of the product.

2.2. Fault Injection Techniques 15

2.2.1 Fault Injection Overview

All fault injection environments are usually composed by the following com-

ponents [38]:

1. Fault injector that modifies the system current state.

2. Fault library that stores different fault types, fault locations, fault times,

and appropriate hardware semantics or software structures.

3. Workload generator which generates and stores different workload with

different data input.

4. Controller and monitor, that control and track the injection target.

5. Data collector and analyzer which perform data collection, analysis and

processing.

Fault
Injector

Fault
Library

Workload
Generator

Controller

Monitor

Data
CollectorApplication

FIGURE 2.3: Representation of Fault Injection Environment

The components just presented and exposed in Figure 2.3 vary in complexity

regarding the type of fault injection technique used. Indeed, existing fault

injection techniques can be classified in four major types:

1. Hardware Fault Injection: In this technique external equipment is used

to introduce faults into the hardware. We can cite laser for the Smart

Card testing. We can also cite the recent work made onto the use of

X-Ray in [5], which improves the injection by laser by making possible

to target a transistor precisely. This technique is only usable in mid-

dle and late design phases as the software must run onto the chosen

16 Chapter 2. State of the Art

hardware to be able to run experiments. This technique has the advan-

tage to be extremely representative of what can happen in a real system.

However, targeting a special scenario becomes harder and harder as the

technology evolves. In [5] on 60nm technology, the tool used to target

specific transistor is pretty hard to set-up and need a specific facilities;

it causes also a huge rise in price.

2. Virtual platform or Simulation-based Fault Injection: When used,

this technique imposes to dedicate time to develop a simulation tool

representative of the desired hardware [37]. Once the simulator avail-

able, the Fault injection can be applied at different levels:from transistor

up to algorithm level depending on the abstraction level of the simu-

lator. The main advantages of this solution is the early access of the

testing procedure and the possibility to test during different develop-

ment phases or scenario. It allows to target easily time and location

of the injection. Main drawbacks are the simulation time that can be

long if the system is fully simulated and the time needed to develop

the simulator.

3. Emulation-based Fault Injection: The purpose is to rise the match be-

tween the simulated hardware and the real one while maintaining a

decent testing time. This approach requires however more design time.

Field Programmable Gate Arrays (FPGA) are most of the time used in

this approach to represent the future hardware and the injection is re-

alised thanks to software modules. The main advantage is the corre-

lation between the simulation engine and the future hardware and the

speed-up compared to Virtual platform low level. The drawback is of

course the time used to develop the emulator and the time consumed

by the update needed during the development of the product.

4. Software Fault Injection: this technique injects fault in the running

software either during the debugging phase or by adding source code

[38]. The lack of hardware behavior consideration is the major draw-

back of this technique as it is not representative of the final system. Fur-

thermore, the final software is modified to allow the injection, when

tested, the real softwatre is not really tested because modified. This

2.2. Fault Injection Techniques 17

TABLE 2.4: Fault Injection Methodologies comparison

Fault Injection Development Time Fault Representativeness Repeatable Speed
Hardware High High Hard Slow
VP, Simulation High Medium Easy Quick
Emulation Based Medium Medium Easy Very Quick
Software Short Small Easy Very Quick

modification imposes a careful verification when removing the added

code to ensure the system remaining reliable. During certifications pro-

cesses, the final system is evaluated and issues may happen when the

code furnished is not the tested one.

Table 2.4 is a resume of pros and cons of different fault injection presented

just above. In our work we have only considered Fault Injection by Virtual

Platform. This technique has been imposed to us due to research constraints

but has major advantages such as the repetability of operations. We have

tried to reduce the medium representativennes by improving the probabilis-

tic model. The hardware fault injection is almost never done in real envi-

ronemental conditions and is most of the time accelerated to gain money and

time. A comparison of our obtained results may be a good follow-up to our

presented work.

2.2.2 Simulation-Based Fault Injection

In this work, we focus on virtual platform-based fault injection. This group

of fault injection technique can be split in two different approaches:

1. Deterministic fault injection: The fault injection is directly processed

by the designer. Hence, all characteristics of injection are provided by

the designer to the fault injector. Indeed, the fault library in this case is

replaced by critical scenarios. This method is used to focus the analysis

onto a critic code part or instruction of the application. It is also used to

replay a scenario that have been proved to exacerbate issues when the

non deterministic fault injection find the scenario.

2. Non Deterministic Fault Injection: This injection mode can be either

applied at run-time [2] or at compile-time. If applied at compile-time,

18 Chapter 2. State of the Art

faults are injected in the target hardware or in the executed code. This

procedure is more used to test a given scenario that have raised con-

cerns regarding the system reliability. The non deterministic character-

istic of this injection comes from the impossibility to know before the

run of the system the time and the location of the fault. Indeed, time,

location and type of fault are determined by a probabilistic model. At

run-time, the fault injection type, instant and location are determined

by the Fault Library. This technique is more used to test the system as an

entire entity and to evaluate the system reliability in its environmental

conditions. It serves also to discover problematic scenario unexpected.

One of the main challenge about simulation is to select the correct level

of abstraction [10]. Indeed, determining the correct level of abstraction refers

to selecting the quantum of information included in the model to answer

questions asked. There exist different abstraction levels for simulation which

are [22]: High System level, Transaction level, Timed Transactional level,

Register-Transfer level, Gate level and Transistor level. Historically the sim-

ulation was at the same abstraction level for all components but this limi-

tation has been overpassed to allow users to determine abstraction level of

different part of the simulated system. Indeed, each part of the system is

considered has a black box and is connected to other system components by

communicaitons protocols. In conclusion, the abstraction level can be fixed

for the entire simulated system or can be mixed regarding the level of preci-

sion needed. If we want to ensure the correct functioning of an application

on a platform without performance limitation a high level of abstraction is

valid, however if a precise performance measurement is needed, then the ab-

straction level must be as close as possible of the transistor abstraction level.

The process of reducing the abstraction used decreases the simulation perfor-

mance and thus takes more time to complete. It is thus important to balance

the need of precision with the time allowed to the simulation step. Table 2.5

presents a comparison of existing and commonly used fault injection tools.

The fault injection tools presented are usually associated with different way

to determine the injection type, location and its probability. J-Swift [51] and

Ferrari [35] are examples of tool that proposes fault injection to evaluate sys-

tem robustness. However, up to our knowledge, only one work has included

2.3. Reliability Techniques and Means 19

TABLE 2.5: Comparison of Fault Injection Tools

Simulator Name
Injection Level Determinism MBU

LEON3 Simula-
tor [2]

architecture random yes

FERRARI [35] software free choice possible
J-SWIFT[51] software random possible
BITFIT [40] prototype model-based possible
SASSIFI [27] control flow random no

multiple bit upsets in their injection fault library [2]. This work has been

made for LEON3 architecture. The authors use random fault injection in

time and in memory location.

2.3 Reliability Techniques and Means

A classical system representation is given with four layers. Figure 2.4 shows

the four classical layers of a system. The hardware is explicit and contains all

chips, connexions, I/O from the physical point of view. The Driver layer is

set up upon and is the link between the hardware and the Operating System.

The Operating System is the layer allowing the Application layer to work

correctly onto its hardware, it also handles the memory management and

the scheduling of application. Finally the Application layer is the layer that

makes the job wanted by the user. It contains mainly the visble part of the

iceberg.

FIGURE 2.4: Representation of a System

20 Chapter 2. State of the Art

To protect systems against MBU, reliability techniques and means are

used at different levels of the system. Reliability techniques have different

goals when implemented which are [37]:

1. Prevention: avoiding the fault to occur on the system.

2. Tolerance: prevent failures when faults are present in the system

3. Correction: prevent failures by correct faults before propagation

4. Forecasting: evaluate the system behavior and comparing it to faulted

behavior. The goal is to determine if the technique reaches expected

results of Prevention, Detection and/or Correction.

2.3.1 Global View of Reliability Enchancement Techniques

As the system is composed of different layers, it exists reliability techniques

for every layers. It exists excellent survey talking about this subject and

grouping a lot of reliability techniques such as [42].

One of the main concept associated to reliability is redundancy. Redun-

dancy is the fact to multiply an instruction, a function, a storage or even a

component to be able to compare information obtained by different object

and compare them together to be able to detect a fault.

In the work presented in [52], authors duplicates L1 caches to be able to

detect if an error occur. The methodology is especially efficient to raise reli-

ability as L1 caches are highly accessed, they are more subject to propagate

faults. To tackle the problem, they duplicate caches. With the same spirit,

the work [56] duplicates information in the L1 cache in the same cache but at

two different places. In this work, they use dead cache block (block not used

for a long time) to hold replications of newly cache stored information. This

technique is more efficient than the previous one as less memory impacting

but is usable only when cache is not fully used. In those presented works,

only detection is faisible as variables are only stored twice in memory, it be-

comes thus impossible to determine which caches has been impacted. In the

work presented in ??, authors propose to chose between a double or a triple

cache redundancy. If the double redundancy is used, only detection is pos-

sible, in the case of a triple redundancy, the correction is possible by voting

2.3. Reliability Techniques and Means 21

for the more present value. The redundancy is also used during schedul-

ing. Works like [18] and [24] uses the parallelism of multi cores application

to replicate certains functions or certain functions parts in other cores and

compare results at the end to determine if a fault has occured. Those tech-

niques have been optimized in [32] where replications of tasks is not static but

dynamic and are induced by different mechanisms such as a result checker

and time/memory usage valdiation. Indeed, using two cores to compute the

same set of instructions is not efficient. Moreover, most of critical systems de-

velopped onto multi cores platforms are linked with static scheduling. This

staticness is due to constraints of worst case execution time ordered by crit-

ical systems. It is far more complicated to ensure worst case execution time

matching with a dynamic scheduling than with a dynamic one.

Another main concept associated to reliability is separation. Separation

consists in spliting information to reduce the risk that a fault affects the mean-

ingfull information. In the work [23], they cut the meaningfull information

in two parts. The first part is stored followed by 0 and the second part is

stored preceded with 1. In a case of a fault, the probability is divided by two

to modify the meaningfull value. However, two lines in memory are subjects

to fault, this modification raise the probability of a transient faults to happen

but is negligible compared to the gain in reliability for the system.

Another concept associated to reliability is called write back. Write back

consists in writing data in another memory section after a certain amount of

time. Works like [6], [41] stored data from L1 cache to other place (Mainly in

other Cache Levels, sometimes in global memory) after a certain amount of

time. The time where information is written back is determined by a number

of clock cycles.

All those reliability enhancement techniques are set at different layers of

the system. An emerging idea is to combine those different techniques by

taking best advantages of all of them to raise the reliability in different situa-

tions while maintening a good level of speed, memory overhead and power

consumption.

22 Chapter 2. State of the Art

An impressive work has been realised during the CLEAR project [17],

in which authors compare cross layer reliability techniques together. Tech-

niques have been applied at diffeWith the previsouly part regarding Multiple

Bit Upsets, we shown their assumption to be less and less true with the im-

provement in manufacturing process and an evolution of their work would

be to consider MBU.

Finally, in the next section, we focus onto memory reliability techniques as

memory represent more than 80% of electronic area and is thus more sensible

to particle strike. We will give an overview of global concepts and ECC (error

correcting code) to protect memory.

2.3.2 Global Memory Reliability Techniques

We present now some memory reliability techniques used to fight against

single and multiple upsets that we want to study all along our work. Some

techniques used to fight against single upsets are still used nowadays. In

all figures for this part, b0 represents the bit 0 of the work (thus the most

significant bit or the less significant bit).

1. Parity. This technique consists in adding a bit to the memory line or col-

umn to compute the number of 1 or 0 stored in the line or the column.

As shown in Figure 2.5, during the write operation, a XOR operation is

realized between all bits to store and the result is added to the stored

bits. This technique detects all single bit upsets but cannot determine

the position of the corrupted bit in memory. The correction of the error

is thus not possible.

2. Double and Triple Memory Redundancy (DMR/TMR). As shown in

Figure 2.6 DMR/TMR techniques consist in doubling or tripling the

data that is stored. In the case of the double respectively triple re-

dundancy, the data is stored twice respectively three times in memory.

Memory areas where data are stored have to be separated enough to

consider a particle strike modifying only one stored version. DMR does

not allow to correct the value perturbed as it is impossible to know the

value modified. The triple redundancy however allows to determine

2.3. Reliability Techniques and Means 23

b0 b1 b2 b3

Data to store Memory

WRITE

b0 b1 b2 b3 pw

b0 b1 b2 b3 pw

𝑝𝑤 == 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟 𝑏2 𝑥𝑜𝑟 𝑏3

b0 b1 b2 b3

READ If
pw=pr

𝑝𝑟 == 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟 𝑏2 𝑥𝑜𝑟 𝑏3

FIGURE 2.5: Parity Functioning

the line that has been perturbed. Indeed, the value is stored three times

in memory during the write operation. During the read operation, a

voter is associated to decide the correct value between the three pro-

posed and the majority determines the real value. With the hypothesis

of the gap sufficiently big between redundant memory areas, the DMR

allows to detect all kinds of errors and the TMR allows to detect and

correct all kinds of errors. The main disadvantage of this memory tech-

nique is its memory space usage.

b0 b1 b2 b3

Data to store

Memory

WRITE

b0 b1 b2 b3 @n+1

@n+2

.

.

.

.

.

.

.

.

b0 b1 b2 b3 @1

@2

Address

b0 b1 b2 b3 READ the most represented value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.b0 b1 b2 b3 @2n+1

@2n+2

WRITE

WRITE

Data read

FIGURE 2.6: TMR Functioning

With the same spirit, solutions have been developed to address specific

need of robustness by replicating different parts of the hardware such

as column, row or even part of the memory. However those solutions

are more used to protect against manufacturing errors and not against

soft errors. In addition, those solutions goes with a rise in cost and

complexity as sometimes a single erroneous bit make an entire part of

24 Chapter 2. State of the Art

the memory unusable. With process variations increase, the solution

seems to reach its limits [46], [44].

3. Parity-Based Mono-Copy Cache (PmC2). In [4], authors propose to

combine the double memory redundancy and the parity to create the

PmC2 technique. Such as shown Figure 2.7 In this technique, during

write operations, the parity bit is used and associated with a redun-

dancy procedure to store the data in another memory location. During

the read operation, the parity bit of the value read is compared to the

parity bit stored, if there is a difference, the value taken is the one stored

redundantly. This technique is a trade-off between single parity bit and

the TMR, it uses the power of detection of the parity bit and use the

redundancy to correct the fault once detected.

b0 b1 b2 b3

Data to store

Memory

WRITE

b0 b1 b2 b3 pw @1

@2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 pw @1

@2

pw= 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟
𝑏2 𝑥𝑜𝑟 𝑏3

Address

b0 b1 b2 b3

READ If
pw=pr

pr= 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟
𝑏2 𝑥𝑜𝑟 𝑏3

b0 b1 b2 b3 @n+1

@n+2WRITE

b0 b1 b2 b3 @n+1

@n+2READ If
pw!=pr

FIGURE 2.7: PmC2 Functioning

4. Single Error Correction Double Error Detection

(SECDED). Even if it exists optimized versions of the Single Error Cor-

rection Double Error Detection mechanisms [48] the principle stays the

same for all implementations. We base our study on SECDED codes

based on Hamming codes. As shown Figure 2.8 the SECDED protec-

tion can be seen as an extension of the parity bit allowing to detect

double error and correct single error. Data word represented by bx bits

are protected by adding extra information represented by the px bits.

Equations 2.6, 2.7, 2.8, 2.9, and 2.10 give an example of SECDED imple-

mentation for 8 bits data words. During the write operations, px bits

are computed and stored together and mixed with all the dx bits. A last

protection bit (called p4 Equation 2.10) is added that is a xor between

2.3. Reliability Techniques and Means 25

all the other px bits but is not represented in Figure 2.8. During the

read operations, the same operations are done to ensure that the value

protected have not been modified between the read and the write. This

solution is expensive in terms of computation time, the main advan-

tage of this technique is that it scales very well in terms of memory

footprint when the data size to protect raises. Indeed, less and less

bits are needed when the data size raise, for example, we need 2 bits

to protect 2 bits but we only need, 5 bits to protect 16 bits. SECDED

functionning is represented in 2.8, all black boxes are XOR operations

realized between bits that give the value for the parity bit. When the

data is read, all parity bits are once again computed and compared to

previously stored ones. If it exists a difference, a fault has occured.

p0 = d0⊕ d1⊕ d3⊕ d4⊕ d6 (2.6)

p1 = d0⊕ d2⊕ d3⊕ d5⊕ d6 (2.7)

p2 = d1⊕ d2⊕ d3⊕ d6 (2.8)

p3 = d4⊕ d5⊕ d6⊕ d7 (2.9)

p4 = p0⊕ p1⊕ p2⊕ p3 (2.10)

p0 p1 d0 p2 d1 d2 d3 p3 d4 d5 d6 d7

p0

p1

p2

p3

FIGURE 2.8: SECDED example for 8 bits data word

5. Double Error Correction Triple Error Detection

(DEC-TED)

First time published in the beginning of 1980s [16], this technique is

now used in the critical system development industry. Indeed, such

26 Chapter 2. State of the Art

as explained in the Section 2.1.1, the number of MBU presence is con-

stantly rising with the reduction of transistor size. Thus, for systems

needing a strong reliability aspect, they evolve from a SECDED error

correcting code to a DEC-TED code. Far more complex to implement

and thus more performance downgrading, this technique sets itself as

an intermediate between the existing SECDED and the TMR. In our ex-

periments, we implement the one proposed in [33] because of its widely

usage. The extra data stored are separated in three categories and we

are going to give an example for 32 bits data word to protect that in-

duces 16 bits of protection:

(a) The first group is composed by 7 bits evenly distributed. This

group has the same power of correction and detection of SECDED

(with more bits used).

(b) The second group is composed by 8 bits similar to the first group,

but in this case, 8 bits are used and those bits are computed dif-

ferently from the first group. Due to this feature, the system is

capable to detect triple error.

(c) The final group is composed by a single bit that is the parity of

the bit in the second group. It allows to detect single error that

may happen onto check bits and thus reduce the number of false

positive.

Even if the optimized number to double correct and triple detect faults

is 11, this scenario in real implementations is far more realistic as it

exists a granularity for memory and memory are most of the time com-

posed by power 2 data storage capacity.

6. Physical Bit Interleaving. As multiple faults number increase, and the

complexity of techniques used to fight against multiple faults will not

stop to rise, the physical bit interleaving is a solution less complex. The

principle of this solution is to interleave words together on the same

line and thanks to this procedure, multiple faults on the same line are

reduced to smaller multiple faults and thus less complex error correct-

ing code are enough to correct errors. However, during a read, the

2.3. Reliability Techniques and Means 27

entire line is read and a operation has to be made to obtain the desired

word. A table of corresponding position is stored in memory and two

interleaved words has to be accessed at two different time. it is also

more power consuming [36].

As we can identify here, solutions proposed to protect the memory are

either not efficient against multiple bit upsets, either complex and thus time

and energy consuming either hugely impacting the memory size that is unac-

ceptable for embedded systems. In the next part, we propose a new memory

reliability technique developed with awareness about multiple bit upsets and

embedded systems constraints. We will follow this proposition with a new

metric to compare reliability enhancement techniques.

29

Chapter 3
Double Parity bit Single

Redundancy

3.1 Presentation and Motivation . 30

3.2 Probabilistic comparison between existing memory reliability

techniques and DPSR . 32

3.2.1 Detection . 33

3.2.2 Correction . 34

3.2.3 Memory Space . 35

3.2.4 Discussion . 36

3.3 RETG: Reliability Enhancement Technique Grade 36

30 Chapter 3. Double Parity bit Single Redundancy

I n this Chapter, we first present and motivate our proposition of a new

memory reliability techniques called DPSR in Section 3.1. We then,

mathematically analyze our techniques compared to other techniques pre-

sented in the previous Chapter. Section 3.2 presents the detection and the

correction probability of our techniques compared to other ones, we also an-

alyze the memory overhead of different memory reliability enhancements

techniques. In Section 3.3 we present a global metric to compare with one

metric memory reliability techniques.

3.1 Presentation and Motivation

As mentionned earlier, the phenomena of MBU is becoming more urgent

with technology scaling down and the critical systems high performance re-

quirements. Actually multiple bit upsets tend to be the major type of upsets

observed [19]. Critical systems have to conserve their reliability level. To ad-

dress the problem we propose a new memory reliability enhancement tech-

nique considering MBU patterns.

We provide the solution of a double parity bit associated with a simple

redundancy. We call it DPSR (Double Parity Single Redundancy). DPSR

has the objective to cope with most encountered MBU patterns. Contrary

to different techniques considering multiple faults to be totally random, our

technique takes into account MBU pattern probabilities. The particularity of

multiple faults happening on memory is the proximity of flipped bits [19].

Regarding this particularity, we suggest to use two parity bits for the de-

tection. Such as showed later in Section 3.2.1, the proposed technique detects

more than 99.6% of encountered upsets. Adding a third bit would raise this

percentage of 0.3% but appears hard to implement as most of memory are

based on power 2 size. Using a fourth bit is enough to correct all patterns

studied in our works and is conceivable but it also raises the memory area.

This area rise is problematic as it makes particle strike on the system more

frequently modifying the memory state. That explains why we decided to

stick with only two parity bits. Finally as explained in [4], the parity bit is

3.1. Presentation and Motivation 31

easy to set up. It can be done on different system layers and can be acceler-

ated in different ways.

With the same spirit as what has been achieved in [4], we decide to add a

redundancy for the word in a separate non adjacent memory location. This

redundant storage will be useful for data recovery in case of a detected cor-

ruption. Hence, our technique deploys 2 bits to detect the fault and redun-

dancy for error correction. It’s worth noticing that depending on the required

reliability, this technique can be used for detection only, or for detection and

correction.

Figure 3.1 explains the functioning of the technique during a write oper-

ation in memory for an 8 bits word. When data is stored, two parity bits are

computed. Equations 3.1 and 3.2 give the formula for the even and the odd

parity bit in the case of an 8 bits word. Once both bits are computed, the

word is stored twice in memory. They are not stored in adjacent addresses

but rather in different memory locations. As shown in Figure 3.1, bits po and

p1 correspond, respectively, to even and odd parity bits are stored within the

original data.

During a read operation, as illustrated by Figure 3.2, the original is read.

Even and odd parity bits are computed for the read value. The freshly com-

puted even and odd parity bits are compared to stored even and odd parity

bits. If they match, we consider the data to be fault free and the read oper-

ation carries on. In the case of a mismatch, the value or the parity bits has

been corrupted. The read operations returns the redundant data.

The choice of interlaced bits to compute the two parity bits comes from

the observation that it is very unlikely to find a 2 bit upsets that have a gap

between the two flipped bits. Regarding the work [19] it is less than 2% for

2 bits upsets that make less than 0.6% of total observed patterns for 40nm

SRAM technology. Moreover, in the case of a 3 bits upsets, the only pattern

that may lead to corruption even with our solution is when three horizontally

aligned bits are flipped. The chance to observe this pattern for a 3 bits upset

32 Chapter 3. Double Parity bit Single Redundancy

is less than 0.28% that represents less than 0.028% of total observed upsets

for 40nm SRAM technology. In the next parts, we compare with more details

the proposed technique to other ones in presence of multiple bits upsets.

p0 = b0⊕ b2⊕ b4⊕ b6 (3.1)

p1 = b1⊕ b3⊕ b5⊕ b7 (3.2)

b0 b1 b2 b3 b4 b5 b6 b7

Data to Write in Memory Memory

Write

b0 b1 b2 b3 b4 b5 b6 b7 @n+1

@n+2

@n+3

@n+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 b4 b5 b6 b7 p0 p1 @1

@2

@3

@4𝑝0 = 𝑏0 𝑥𝑜𝑟 𝑏2 𝑥𝑜𝑟 𝑏4 𝑥𝑜𝑟 𝑏6

𝑝1 = 𝑏1 𝑥𝑜𝑟 𝑏3 𝑥𝑜𝑟 𝑏5 𝑥𝑜𝑟 𝑏7

𝑛 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑏𝑖𝑔 𝑡𝑜 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑠𝑡𝑟𝑖𝑘𝑒 𝑡𝑜 𝑎𝑓𝑓𝑒𝑐𝑡 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑚𝑒𝑚𝑜𝑟𝑦

𝑎𝑟𝑒𝑎𝑠

Address

FIGURE 3.1: DPSR Write for 8 bits word

b0 b1 b2 b3 b4 b5 b6 b7

Data read in Memory Memory

READ If
Eq1=Eq2=TRUE

b0 b1 b2 b3 b4 b5 b6 b7 @n+1

@n+2

@n+3

@n+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 b4 b5 b6 b7 p0 p1 @1

@2

@3

@4
Eq1: 𝑝0 == 𝑏0 𝑥𝑜𝑟 𝑏2 𝑥𝑜𝑟 𝑏4 𝑥𝑜𝑟 𝑏6

Eq2: 𝑝1 == 𝑏1 𝑥𝑜𝑟 𝑏3 𝑥𝑜𝑟 𝑏5 𝑥𝑜𝑟 𝑏7

Address

b0 b1 b2 b3 b4 b5 b6 b7

READ If
Eq1=FALSE

OR Eq2=FALSE

FIGURE 3.2: DPSR Read for 8 bits word

3.2 Probabilistic comparison between existing mem-

ory reliability techniques and DPSR

In this section we evaluate used memory reliability techniques and our tech-

nique against the data provided by [19] and exposed in the Section 2. The

3.2. Probabilistic comparison between existing memory reliability

techniques and DPSR
33

study of memory reliability techniques is made for different particle strikes

energy. The choice of the implemented reliability technique depends on dif-

ferent parameters. Thus choosing a perfect reliability protection is pratically

impossible.

Indeed, in the case of a multidimensional problem, it is almost impos-

sible to maximize all parameters. The goal in multidimensional problems

is to find solutions that are trade-off between all solutions. The choice of a

memory reliability technique is crucial and has to be a trade-off between: de-

tection, correction, memory space and speed of the reliability technique. In

this probabilistic study, we evaluate the detection probability, the correction

probability and the memory space used by the reliability technique chosen.

The only hypothesis made is that faults can occur on every bits of the word,

however even if the added data is faulted, the detection has to happen. The

probabilistic model is based on Equation 3.3 and data used are from [19]. In

Equation 3.3, pBU and pshape corresponds respectively to the probability to

observe a 1, 2, 3 or 4 BU and to the shape of upsets to inject. They both de-

pend on the memory technology and on the particle energy. Finally p f ault is

the probability to observe a given fault pattern.

p f ault = pBU(technology, particle energy) ∗ pshape(technology, particle energy)

(3.3)

3.2.1 Detection

The detection rate is the probability of a memory technique to detect a fault in

a given environment. In this Section we compare the parity (that has the same

detection rate as the PmC2 technique), with the classical DMR, SECDED tech-

niques and with the DPSR. The detection probability pdetection is computed

following Equation 3.4 where pdetection f ault equals 1 if the technique detects

the type of fault else it is 0. We assume a single fault affecting only one mem-

ory area.

As shown in Table 3.1, all techniques have the same rate for detecting

single faults. However, this rate goes down when multiple upsets appear.

34 Chapter 3. Double Parity bit Single Redundancy

TABLE 3.1: Detection probability of memory reliability tech-
niques for 22 MeV particle strikes

Parity DMR SECDED DPSR DECTED
1BU 1 1 1 1 1
2BU 0.22 1 1 0.999 0.999
3BU 0.059 1 0.999 0.994 0.999
4BU 0.010 1 0.990 0.976 0.999
Mean 0.704 1 0.999 0.996 0.999

The DMR is the best technique to detect multiple faults due to its capacity to

detect all kinds of faults, the DPSR that is our proposed technique is close to

what SECDED and DMR propose for detection rate.

pdetection = ∑
f ault

(p f ault ∗ pdetection f ault) (3.4)

3.2.2 Correction

The correction rate is the probability of a memory technique to detect and cor-

rect a fault in a given environment. The correction rate pcorrection is computed

following Equations 3.5 and 3.6 where pcorrection f ault equals 1 if the technique

corrects the type of fault else it is 0. We assume a fault affecting only one

memory area. For this Section, we compare correction rate of the PmC2 from

[4] paper, with the classical TMR and SECDED techniques and finally with

the DPSR technique. Table 3.2 shows that the proposed technique overpasses

expectation by being better than SECDED, indeed, SECDED detects up to 2

upsets but is only capable to correct single fault in a line. TMR has the best

correction rate but DPSR is close to its results.

pcorrection = ∑
f ault

(p f ault ∗ pdetection f ault ∗ pcorrection f ault) (3.5)

pcorrection = pdetection ∗ pcorrection f ault (3.6)

3.2. Probabilistic comparison between existing memory reliability

techniques and DPSR
35

TABLE 3.2: Correction probability of memory reliability tech-
niques for 22 MeV particle strikes

PmC2 TMR SECDED DPSR DECTED
1BU 1 1 1 1 0.9993
2BU 0.22 1 0.226 0.999 0.9993
3BU 0.059 1 0.0646 0.994 0.9992
4BU 0.010 1 0.010 0.976 0.9988
Mean 0.704 1 0.708 0.996 0.9991

TABLE 3.3: Memory Space (bits) of memory reliability tech-
niques function of data size

Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 9 16 5 10 9
16 bits 17 32 6 18 11
32 bits 33 64 7 34 13
64 bits 65 128 8 66 15

3.2.3 Memory Space

In this Section we compare memory techniques presented in Section 2.3.2 in

front of 4 memory word size. For this purpose, we compare the PmC2 of the

[4] paper, with the classical TMR, SECDED, DECTED techniques and with

the DPSR technique. As shown in Table 3.3, SECDED is the best for scaling

when protecting wider words. The DPSR uses one more bit to protect data

than the PmC2 techniques but as shown earlier, it has better detection and

correction rates. The worst in terms of energy and ressource utilization is

obviously the TMR technique but its detection and correction rates are very

high.

TABLE 3.4: Memory Space Overhead of memory reliability
techniques function of data size

Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 2.125 3 1.625 2.25 2.125
16 bits 2.062 3 1.375 2.125 1.687
32 bits 2.031 3 1.2185 2.0625 1.406
64 bits 2.016 3 1.125 2.031 1.234

36 Chapter 3. Double Parity bit Single Redundancy

3.2.4 Discussion

In previous Sections, we have aknowledge that DPSR shows promising re-

sults regarding Detection, Correction and Memory Space. Those criteria have

been largely studied during my work and are what my reflexion is based

on. DPSR shows of course due to its simplicity a good candidate to be im-

plemented. However, as no implementation have been realized during the

work, expressing a clear affirmation on the difficulty to implement is hard

to do. Moreover, as defined in the Introduction, a critical system is a system

that must be highly reliable even after evolution. This definition is subject

to subjectivness and area of usage. For example, banking system are consid-

ered to be critical system but the consequences are not the same if a payment

terminal is deficient or if a stock markets handler system is subject to faults.

In one case, financial impact in the case of a fault is smaller than in the other.

Thus, choices are made to match requirements regarding the benefit com-

pared to the risk. As our technique is not perfect in terms of detection and

correction, DPSR may not be considered in stock markets systems but could

be a good choice for payment terminals. Our technique does not solve MBU

rising issues alone but provides a new solution for reliability engineers to

answer faults in given circumstances.

3.3 RETG: Reliability Enhancement Technique Grade

As we can identify in previous Section, different criteria are used to com-

pare reliability techniques together. Some criteria are antagonistic such as

the correction power and the memory space used. Some criteria are really

close to each other such as the complexity of the algorithm and the power

consumption. We propose a new metric to compare easily reliability tech-

niques. We strongly think that we need to separate correction and detection

as it is impossible to correct without detecting but it is possible to detect with-

out correcting. Moreover, with cross-layer techniques, the detection is some-

times enough for a bunch of applications. We consider power consumption

and computation overhead as correlated metrics thus we stick to the compu-

tation overhead. Finally the memory overhead is also a criteria in relation

3.3. RETG: Reliability Enhancement Technique Grade 37

to the power consumption but raises also other concerns, we thus take the

memory space as a third criteria. Equations 3.7 and 3.8 are provided to un-

derstand our way to compute each of RETG criteria, regarding detection and

correction.

RETGd =
pdetection

MemOv ∗ Per f Ov
(3.7)

RETGc =
pcorrection

MemOv ∗ Per f Ov
(3.8)

In Equations 3.7 and 3.8, Per f Ov and MemOv as computed thanks to Equa-

tions 3.9 and 3.10, where Timeunprotected stands for the mean execution time

without protection and Timeprotected stands for the mean execution time with

the reliability enhancement technique use.

Per f Ov =
Timeprotected

Timeunprotected
(3.9)

MemOv =
datasize + techniquesize

datasize
(3.10)

From now, we want to compute all those parameters for all reliability tech-

niques previously presented. Such as stated in Section 2, we use a virtual

platform to evaluate those techniques. In the next Section, we explain how

works our fault injection tool and how it is representative of the environment.

As presented beforhead, DPSR appears to be a good trade-off between

highly memory impacting techniques and small correction and detection rate.

We also showed that some techniques does not scale very well when the

number of errors raise. For example, the parity bit detects only 0.704% of

MBU when double and triple upsets are taken into account which can be

unacceptable for critical systems. Then, we presented an homemade grade

to evaluate reliability enhancement techniques called RETG. The goal of this

grade is to be able to judge a technique with only one grade by grouping dif-

ferent parameters. To compute this grade for our technique we need to de-

termine the performance overhead induced by reliability enhancement tech-

niques. In the next chapter we will present our proposed tool and detailled

its functionning.

39

Chapter 4
Structure of the Fault Injector

4.1 Overview . 40

4.2 Memory Accesses Impact onto Fault Injection 41

4.3 Multiple Bit Upsets in the Model 42

4.4 Global Algorithm . 43

4.5 Other Injection Modes . 46

4.5.1 Random Injection . 46

4.5.2 Determined Injection . 47

40 Chapter 4. Structure of the Fault Injector

I n this Chapter, we present first an overview of our methodology in Sec-

tion 4.1. Then in Section 4.2 and in Section 4.3, we present respectively

how our model takes into account memory accesses and how we take into

account the MBU phenomena. Finally, we detail in Section 4.4 how our al-

gorithm works from the top up to the injection. To explain how our testing

campaign works, we provide two screen shots of all parameters available of

our virtual platform and of a simple script used to run campaign, respec-

tively in Annexe A and Annexe B. Finally, we detail other injection modes

implemented that are not detailled in our work as already largely studied in

the State of the Art but we compare our results to random injection.

4.1 Overview

Our fault injection path of thinking is exposed in Figure 4.1. The main objec-

tive of this path of thinking is to answer the three main questions during a

fault injection testing campaign:

1. What is the corresponding fault probability?

2. Where and when fault injection takes place in the memory unit ?

3. What kind of fault do we want to inject, SBU or MBU?

A major modification in our path of thinking compared to what is usually

done is that we had the question of the fault type injected. This question is in

our opinion mandatory due to the multipek bit upsets apparition increase.

Fault Injection
Model

Environmental
Conditions

Application
Behavior

Manufacturing
Process

Fault Injection
Probability

Fault
Location

Fault
Type

FIGURE 4.1: The Fault Injection Model

Our strategy started on FIDES standard to compute a base reliability for

the system. We ameliorate the model by taking into accounts MBU patterns

4.2. Memory Accesses Impact onto Fault Injection 41

exposed previously in Chapter 2 missing in fault models and we take into ac-

count the locality of memory accesses. Both improvements will be detailled

and justified in the next Section.

4.2 Memory Accesses Impact onto Fault Injection

During the simulation, we propose to take into account memory accesses.

Depending on the technology and on operating conditions, the more a mem-

ory zone is accessed, the more likely an error or not within this zone. Hence,

the memory access frequency impacts fault injection mechanism by weight-

ing the value of the failure rate for each memory area.

To do so, we divide the memory into different zones and then track each

access to the zones dynamically. Therefore, the probability to inject is differ-

ent for each memory zone as shown in Equation 4.1. In this equation, fi is

the frequency of access to the ith memory zone. πi represents the fault injec-

tion probability in the considered zone depending on fi. In the experiments

InjectionLocality is implemented using Equation 4.2 where α is a tunable co-

efficient to make the fault injection more or less focusing onto more accessed

areas. In the experiments α has been set to 1.5 for experiments.

πi = InjectionLocality(fi) (4.1)

InjectionLocality(fi) = α
fi

n
∑

i=1
fi

(4.2)

Authors in [9] mentioned a correlation between temperature and soft er-

ror rate. Temperature can increase soft error rate by up to 20%. Thus, soft er-

ror rate variation driven by temperature is valid to consider [34]. The mem-

ory thermal profile is directly related to the power density, and thereby to

the memory access frequency. In our model, we consider memory access fre-

quency as a parameter that directly impacts temperature and by consequence

reliability.

42 Chapter 4. Structure of the Fault Injector

4.3 Multiple Bit Upsets in the Model

As explained in Section 2.1.1, Multiple Bit Upsets is a phenomenon that, to

the best of our knowledge, has been rarely integrated during simulation relia-

bility evaluation using fault injection. We believe that it is important to inject

both single upsets and multiple upsets to improve representativeness of re-

sults obtained thanks to fault injection . To achieve accurate representation of

MBU phenomenon, we identify the probability of MBUs patterns. As shown

in [49], depending on the technology and the number of flipped bits during

a particle strike, different spatial patterns have different likelihood to hap-

pen. Table 4.2 is an example of data measured for a 150nm SRAM regarding

multiple bit upset [49]. An x-y-z upset means that bits x,y and z are flipped

simultaneously during the fault injection. As all memory cells accessible at a

given address have the same probability to flip, a random draw determines

the location of cell 1 for pattern in Table 4.1. Finally, the total probability is

computed and indicated in Table 4.2 in Column (1)*(2) Probability. A fact to

point in this Section is that technology has an impact of presented probabil-

ity. Indeed, with the scaling down of transistors, transistors are getting closer

and closer to each other and thus particle strike energy affect more and more

closer transistor and the probability to get multiple bit upsets raise. How-

ever, to get data from very recent technologies is pretty hard to get. First,

facilities to make studies of MBU on recent technologies are pretty expen-

sive. Finally, getting results on ultra recent technologies for critical systems

as it takes years and sometimes decades for newest hardware technologies to

reach critical systems.

TABLE 4.1: Pattern Injection Square

1 2 3
4 5 6
7 8 9

4.4. Global Algorithm 43

TABLE 4.2: Pattern Flipping Probability for 40nm technology
[49]

Fault Type (1) Type Probability
1-BU 0.6
2-BU 0.3
3-BU 0.1
Upset Patterns (2) Pattern Probability (1)*(2) Probability
1 1 0.6
1-2 0.773 0.2319
1-4 0.147 0.0441
1-5 0.08 0.024
1-4-5 0.92 0.092
2-4-7 0.062 0.0062
1-7-8 0.015 0.0015
1-4-7 0.003 0.0003

4.4 Global Algorithm

The flowchart in Figure 4.3 represents the proposed fault injection mecha-

nism. From the top to the Injection Module, it is our fault injection strat-

egy that is presented. In Figure 4.3, trapeziums represent data provided by

the user, rectangles stands for injection algorithm steps, diamonds represents

tests and cylinder represents database provided by the user and fixed for all

simulations. First, the system failure rate is computed based on data pro-

vided by the user. Indeed, data are provided by the user regarding the FIDES

standard such as shown in Figure 4.2. The values used nowadays in our fault

FIGURE 4.2: Example of a set of parameters (extracted from
FIDES standard)

injector are the following:

• Phase name: A system while functioning is submitted to different work-

ing conditions. Phases help to cut its life cycle into similar phases. An

example of life phases is given in the next paragraph.

44 Chapter 4. Structure of the Fault Injector

• ON/OFF: The system during its life cycle can be also in a OFF state.

This parameter is here to determine the state.

• Calendar Time(h)

• Ambiant Temperature: It expresses the environnement ambiant mean

temperature.

• Delta Temperature: It expresses the maximum temperature gap for the

given cycle.

• Cycle Duration: It expresses the cycle duration.

• Maximum Temperature: It expresses the maximum temperature en-

countered by the system in its environnement.

• Relative Humidity: It expresses the mean relative humidity per phase

in the environnement.

• Random Vibrations: It expresses the mean random vibrations per phase

in the environnement.

To sum up those informations, we can see that the life cycle of our system in a

given environnement are separated into phases that are separated into cycles.

The example given Figure 4.2 is pretty simple, but the methodology is able

to match other life cycle. If we take the example of a satellite life, a first phase

matches the launch of the satellite, a second phase matches phases where the

satellite is not hidden by the earth from the sun and a third one when the

satellite is hidden from the sun by the earth. All parameters that we can see

in Figure 4.2 are not an obligation to be set for every simulation but of course

are possible to parametrize if wanted to. To accelerate the simulation, the

computation of the failure rate is only computed once at the beginning of the

simulation when the first memory access is realized. Indeed, this computa-

tion needs a file openning and computationnal treatments, so we suppose

phases to be fixed for the entire simulation.

Second, when launched, each memory accesses are tracked. Of course,

memory accesses regarding controller or monitor are not stored in memory,

4.4. Global Algorithm 45

only memory accesses induced by the application are kept in memory. To

improve simulation speed, memory is divided into memory areas that repre-

sents a power of 2 of the memory size. We have decided to realize this opti-

misation to reduce the memory footprint of the simulation and also to reduce

the impact of the memory monitoring on the simulation time. Indeed, letting

the free choice to the user of the number of memory areas makes the sim-

ulation far more slow than only masking the address to determine the area

accessed by a read or write operations.

Third, when the random draw determines the injection moment using the

failure rate, the accesses monitoring stops and we use the formula exposed

in Section 4.2 to determine the injection location of the fault.

Fourth, the only thing missing to be able to inject the fault is the type

of fault injected. The shape of the fault is determined thanks to data pro-

vided by the user. In Table 4.3 an example of data that can be provided

by a user is given. The first Column represents the number of bits flipped.

The second column represents the probability to flip this number of bits and

the last column provides the combinaison of the probability to flip the num-

ber of bits and the probability to flip a precise combinaison if the number of

bits flipped is the one chosen. For example, injecting the 2-4-7 patterns has

0.1 ∗ 0.062 = 0.0062 probility to happen. For the moment, a maximum of

three bits upset is possible to inject, this can be easily improved if needed by

a user. We kept this limitation as far less than 0.2% of observed patterns for

40nm technology are composed by 4 or more bits upsets. We have kept this

limitation as we based our injection onto 3x3 square for patterns, the modifi-

cation can be easily overpassed if needed for future technologies.

Five, the injection is realized during either a read or a write operation. This

feature is also parametrizable by the user of the simulator. We advice the

user to inject during both operations if the goal is the representativeness, or

to inject during read operations if the goal is the number of perturbated runs.

This will be justified in the next Section.

Finally the simulation is run up to its end (that can be the normal or the

46 Chapter 4. Structure of the Fault Injector

TABLE 4.3: MBU example

Number of Cells Probability Combinaison Probabil-
ity

1 0.6 1(1)
2 0.3 1-2(0.773) 1-4(0.147) 1-

5(0.080)
3 0.1 1-4-5(0.920) 2-4-

7(0.062) 1-7-8(0.015)
1-4-7(0.003)

stoped end) and then both the golden run and the corrupted run results are

compared. The classification is today made by hand or with the help of a

script but it’s not part of the simulation engine. Critical applications have

different output and different way to express them, we decided thus to keep

this output comparison which is more a problem of post treatment than a

reliability related problem.

4.5 Other Injection Modes

4.5.1 Random Injection

In this mode, the injector is not anymore based on a set of data provided by

the user. In fact, the user is asked to provide only the failure rate. This base

failure rate allows the injector to determine the moment of the injection. This

mode is the historically mode used to test the system reliability. Once again

the injection is made during a read or a write operation. However, this mode

is not representative of the run-time environment as no information about

the system and its environment are provided. This injection is used to test

the system in a first step and is quicker than the global algorithm. The main

drawback of its mode is the randomness of the injection. All memory areas

are equally tested and is not representative of the application behavior. It

could however be used if the functioning environment is not well know by

the user.

4.5. Other Injection Modes 47

System Failure Rate
Computation

Fault Type

Injection Module

Compare

Diagnostic

 Simulation
With Injection Results

Fault Location
f(Access Profile)

Multiple Bit
 Upsets Patterns

No

Yes

Access Monitoring

Base
Hardware
Reliability

Environmental
Values

Simulation
Golden Run

No

FIGURE 4.3: Fault Injection Strategy

4.5.2 Determined Injection

In this mode, the injection is entirely or almostly determinisitc. Indeed, the

simulator allows the user to enter a list of program instructions to execute

before stopping the application execution. In this mode, the user can either

inject faults at the desired instruction or can inject faults starting at desired

instruction. This mode is used in the industry to test a given part of the ap-

plication. We know that the critic code represents in mean 15% of an entire

system [11]. This mode helps to focus more onto critic code parts. Moreover,

this mode can also be used to test again a path that has lead to an undesired

result following a fault injection. We don’t focus on this mode but it is imple-

mented and usable in our fault injector if desired by a future user.

48 Chapter 4. Structure of the Fault Injector

This chapter has presented all injections modes implemented in our tool.

In the next chapter we will use our proposed non-deterministic injection tak-

ing into account memory access and multiple bit upsets to evaluate different

memory reliability techniques. Moreover, we will evaluate the efficiency and

the representativeness of our injection tool while looking at the performance

overhead of the simulation induced by the previously exposed methodology.

49

Chapter 5
Experimental Results

5.1 Experimental Setup . 50

5.2 Evaluation of our Injection Tool 53

Efficiency . 54

Representativeness . 57

5.2.1 Simulation Overhead . 59

5.3 RETG computation . 62

5.3.1 Memory Reliability Techniques impact onto performance 62

5.3.2 Mathematical Approach Verification 64

Detection Probability . 65

Correction Probability 65

5.3.3 Memory Reliability Techniques Comparison 66

5.3.4 RETG estimation . 67

50 Chapter 5. Experimental Results

I n this chapter, we first expose our experimental setup (Section 5.1). Then,

we evaluate our tool regarding its efficiency, its representativeness and

the performed overhead induced by the injection module in Section 5.2. Af-

ter the evaluation of our injection method, we look at the missing variable

to compute RETG: the performance overhead caused by memory reliability

techniques. Section 5.3 exposes first a comparison between result expected

by mathematical approach and results obtained during simulation, it exposes

then, the performance overhead caused by memory reliability techniques.

We then conclude this chapter by computing the RETG for memory reliabil-

ity techniques studied all along this thesis.

5.1 Experimental Setup

For evaluating memory reliability techniques impact on performance we con-

ducted experiments on well-known Mi-bench benchmarks [25], all represen-

tative of branching and computing intensive algorithms. We focus on 4 ap-

plications and all of them were run with large inputs.

• Qsort: efficient sorting algorithm, still used today in a large varieties of

situations

• Bitcounts: this algorithm counts the number of bits in an array of inte-

ger in different ways. Used mainly to test the capacity of the processor

to manipulate bits.

• Rijndael (encryption and decryption): an implementation of the well-

known Advanced Encryption Standard.

• Sha: Encryption algorithm used to cipher a given input. It is used

mainly to exchange keys and to cipher some data.

• Susan: stands for Smallest Univalue Segment Assimilating Nucleus

and refers to algorithms used to filter image noise and/or find edges

and/or corners. In this thesis, edges and corners finding have been

widely used while the image noise filltering have been less used.

5.1. Experimental Setup 51

All those applications have been cross-compiled to work properly onto

our armv7 simulator [45]. We remind to the reader that it exists a differ-

ence between ARMv7 and ARM7, the difference is that ARM7 corresponds

to a family of processor cores with a three-stage pipeline and a von Neumann

memory interface. In opposite, ARMv7 corresponds to the Instruction Set Ar-

chitecture (ISA) version 7 and this type of ISA can be found in different Cor-

tex family of cores. Figure 5.1 and 5.2 shows two representations of respec-

tively UNISIM simulator and a simplified example of ARM7 architecture. In

Figure 5.1, we can see that the ISA is perfectly simulated and corresponds

exactly at the real one, however, the memory is set to be a ram only and thus

all accesses to the memory (caches or global memory) are done inside the

same adressed space. Moreover, a ELF loader is associated to the simulator

to be able to use any application on the simulator. Finally, system call are

translated for the hosting operating system that avoids to use a bare metal

OS and faciliate the usability of all C applications even with system calls.

Figure 5.2 shows a simplified representation of an ARMv7 architecture that

is based on a ARMv7 ISA. This representation is far more complex than the

UNISIM one as a lot of external components are available and adressable by

the processor. However, main components are simulated or replaced when

running an application onto UNISIM-VP. A large brands of simulators [13]

exists on the market and have different characteristics. UNISIM-VP provides

full system structural computer architecture simulators of electronic boards

and System-on-Chip (SoC) using a processor instruction set interpreter. The

whole software stack, consisting of the user programs, the operating system

and its hardware drivers, is executed directly on the simulator.

UNISIM-VP is a component-based software and is thus modular. Hard-

ware components, written in the SystemC language [3], model the real target

hardware components, such as CPU, memories, Input/Output, buses and

specialized hardware blocks. Hardware components communicate with each

other through SystemC TLM-2 [8] sockets that act like the pins of the real

hardware. The service components are not directly related to pure computer

architecture simulation. They allow initializing and driving of simulation.

52 Chapter 5. Experimental Results

ARMv7

Memory
 Bridge

ELF
Loader

Linux
System Call
Translator

RAM

Fault
Injector

GDB/
Server

Application

Host File
System

FIGURE 5.1: Representation of UNISIM-VP environment for
ARMv7 simulations.

Services range from debuggers, loaders, monitors, host hardware abstrac-

tion layer and of course our fault injection module. To make the integration

and use of Mi-Bench applications easier, a reduced version of linux operat-

ing system have been used especially for input and output files handling.

Thus applications are not runned bare-metal but thanks to an existing oper-

ating system. Our armv7 simulator is based on the following architecture :

the correct instruction set associated with different software components that

represent different components of the system. A Linux operating system has

been adapted to handle file opening, reading, writing and closing. It makes

easier to get a functionning OS than to develop a bare-metal one. A major ab-

straction of the system is that we consider the memory to be a global memory

and it exists no difference between caches, rom and ram. The choice of this

simulator was associated to the thesis and we thus decided to make a work

easily adaptable for other C++ based simulators.

UNISIM-VP has still major advantages like its transactional model that

5.2. Evaluation of our Injection Tool 53

FIGURE 5.2: Representation of ARM7 architecture [39] which
use a ARMv7 simulator.

enables to build representative and efficient simulators. Moreover, its modu-

lar architecture enable re-usability and portability of our work to other sim-

ulation platforms.

5.2 Evaluation of our Injection Tool

Experimental results are presented in terms of different criteria and metrics:

1. The efficiency: our approach is able to show reliability issues and en-

suring the system to be entirely tested (Section 5.2).

2. The representativeness: Ensuring the fault injection representativeness

of the environment and proving its added value to take into account

not only single upsets but also multiple upsets (Section 5.2).

3. The simulation speed (Section 5.2.1).

54 Chapter 5. Experimental Results

Efficiency

Figure 5.3 shows obtained results of 11000 runs with four different injections

procedures on Susan that is representative of observed behavior with other

applications. For all cases, we inject faults during write operations in mem-

ory and we divided the global memory of 16MO in 262144 areas. It represents

16 accessed addresses per area. In the SBU experiments only single bit flips

are injected and this is the type of experiments usually run during fault in-

jection simulation test campaign. In the MBU experiments, multiple bit flips

are injected using the probabilistic model given in Table 4.2. In the SBUA

and MBUA experiments, fault are injected taking into account memory area

access frequency.

The first conclusion that can be made is that by introducing memory access

8495 8402
8288 8202

2505 2598 2712 2798

2000

3000

4000

5000

6000

7000

8000

9000

SBU MBU SBUA MBUA

Silent Corruption Behavioral and Result Corruption

FIGURE 5.3: Type of observed corruption with different injec-
tion procedures on Susan smooth bench with 11000 runs for

each procedure

monitoring in the fault injection (SBUA and MBUA), more result and behav-

ioral corruptions occur. Indeed, for the same number of injections Figure 5.3

shows that, SBUA (respectively MBUA) increase the number of result and

behavioral corruptions by 8.26% (respectively 7.7%) compared to SBU (re-

spectively MBU). By consequence, rising the probability to inject faults into

the most frequently accessed areas, widely used variables are effected by the

fault injection.

The second conclusion that can be made is that by considering multiple

bit upsets in the fault injection (MBU and MBUA), more result and behav-

ioral corruptions occur compared to procedure where only single bit upset

are considered (SBU and SBUA). For the same number of injections, Figures

5.2. Evaluation of our Injection Tool 55

5.3 exacerbates that MBU and MBUA increase the number of non-silent cor-

ruptions by 3.2% in average.

Our procedure considering MBU and access frequency has been proved

to increase the number of non-silent corruptions by 11.7% for the same num-

ber of injections compared to SBU. Comparing those results to a pure random

distribution of fault injection inside the memory would be inappropriate. In

fact, among the 262144 different areas, only few of them (less than 100) are

accessed by the application and thus the difference would have been enor-

mous. Therefore, we compare our results to state of the art technique that is

SBU. We notice that during SBU injections, only accessed parts are modified

by the injection. Those promising results represents a proof of concept as Su-

san smooth mode is a representative image processing application that can

be found in critical automotive application that our fault injection procedure

shows more reliability concerns. However it has to be tested on a concrete

and bigger application to encounter limits of access monitoring.

Figures 5.4 and 5.5 give the number of accesses and of injected faults for

each memory area for Susan application with two different modes: the corner

and the smooth mode. In the experiments, among the 262144 zones, less than

100 are significant. The 10 most accessed zones for Susan Corner (respec-

tively Smooth) are ranked and presented in Figure (Figure 5.4 and 5.5).For

these 2 benchmarks, 2000 runs (respectively 4000) have been done. For the

first bench Figure 5.4 (respectively 5.5), our UNISIM fault module injected

1500 faults (respectively 4000).

As we can see in Figures 5.4 and 5.5, the most accessed area is highly prior-

itized during the choice of the injection location. As expected there is also a

correlation between the memory accesses and the number of injected faults

per area. Only a small deviation is observed for the fourth and the third areas

(probably to the sampling choice) that are replaced in Figure 5.4, but it is not

observable for Figure 5.5. This is due to the statistical model that is associ-

ated to our algorithm and as more runs have been made on the smooth mode

exotic result does not appear. The relative small number of fault injections

made in those areas due to the small number of runs makes the inversion

56 Chapter 5. Experimental Results

possible. From those figures, we can also notice that almost all areas have

been perturbed during experiments. By consequence the injection model

matches with the statistical testing mind spirit and also solves the concern

to miss some memory areas, that is unacceptable for a good system reliabil-

ity evaluation. Obviously in the context of critical system, injecting onto no

accessed by the application memory part can have an impact. However, in

our work we do not explore this aspect.

1 2 4 3 5 6 7 8 9 10

1

10

100

1000

10000

100000

Memory Accesses Injected Faults

FIGURE 5.4: Memory access locality compared to Injection lo-
cality for Susan Corner Mode Application. Values are given for

the 10 (x-axis) most accessed memory zones.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

Memory Accesses Injected Faults

FIGURE 5.5: Memory access locality compared to Injection lo-
cality for Susan Smooth Mode Application. Values are given for

the 10 (x-axis) most accessed memory zones.

5.2. Evaluation of our Injection Tool 57

71%

20%

2%
2%

5%
0%0%0%

Single Fault

MBU 1-2

MBU 1-4

MBU 1-5

MBU 1-4-5

MBU 2-4-7

60%

23%
5%

2%

9%

1%

Single Fault

MBU 1-2

MBU 1-4

MBU 1-5

MBU 1-4-5

MBU 2-4-7

FIGURE 5.6: Repartition of injected upsets patterns given by
Table 4.2 (top) and those injected by our model (bottom)

Representativeness

Figure 5.6 shows two distributions of fault patterns. The first is the patterns

distribution given Table 4.2, the second distribution is the result of 443 in-

jections made on different MiBench applications using the MBUA procedure

(representing the injection of more than 90% of patterns). Our benchmark

suite is composed of Quicksort, BasicMath, Sha, Susan (corner, edges, and

smooth mode), Rijndael and Bitcount applications with different input sizes

. Figure 5.6 indicates a correlation between both distributions, however the

correlation is not perfect. By digging into details we can see that there is an

augmentation of 11% of single bit injections and a decrease of around 11.5%

of multiple bit injections. This imperfection is due to boundary conditions for

the virtual platform global memory representation. As the memory is repre-

sented by an array of 64 bits line, multiple bit injections located on boundary

conditions are impossible to realize. For example if the cell where the pattern

injection square (Table 4.1) is located on the extreme right bit of a line, then

it’s not possible to inject a 1-2 MBU. In such a case, we decide to still inject a

fault but to reduce the number of bits flipped until the pattern is able to fit

into the memory at the desired memory cell. In the case of our example we

thus reduce the 1-2MBU injection to a SBU injection. This choice was made

to avoid losing simulations runs and explains the difference between both

distributions presented Figure 5.6.

58 Chapter 5. Experimental Results

Furthermore, Figure 5.6 helps also to understand the 3.2% difference ob-

served between SBU(A) and MBU(A) for Figure 5.3 described in Section 5.2.

As we based our MBU onto a realistic model exposed Table 4.2, the differ-

ence is not as sensible as if we would have considered only MBU in MBU

and MBUA injections procedures.

17%

32%

51%

32%

32%

36%

Silent Data Corruption Behavioral Corruption

Result Corruption
Silent Corruption

FIGURE 5.7: Single (top) and 2-BU (bottom) corruptions distri-
bution

Figure 5.7 shows the normalized distribution of corruptions regarding the

single bit upset (top graphic) and the 2 bits upset (bottom graphic). Results

were obtained through the MBUA injection procedure based on MBU pat-

terns exposed in Table 4.2. The benchmark is composed of Quicksort, Basic-

Math, Sha, Susan (Corner, Edges, and Smooth mode), Rijndael and Bitcount

applications with different inputs size. Results have been obtained after a

run of 1500 injections for each applications tha represent around 6500 single

injections and 2500 double injections.

First, all type of injections have in majority resulted to an unwanted be-

havior. In 68.10% of cases for single bit upset and in 83.10% of cases for 2-bit

upset, the result of the application is not conform to the golden run. Those

results are explained by the absence of robustness mechanisms in our tested

applications. Second, it is showed that a 2-Bit upsets injection has a higher

chance to make the result different from the golden one. Indeed, 2-Bit injec-

tions have leaded to 15.0% more of non-silent data corruption compared to

5.2. Evaluation of our Injection Tool 59

single bit injection. This recrudescence is due to the fact that the memory is

more modified with a 2-bit injection than with a single bit injection and thus

new weaknesses are discovered. Such as exposed in Section 2, multiple bit

upset represents 40% of observed phenomena in 40nm technology and it’s

going to increase with the transistor miniaturization. It is thus mandatory to

include MBU injection in new injection procedures.

5.2.1 Simulation Overhead

Figure 5.8 shows the time increase after implementing our fault injection

module as a service for the UNISIM armv7 virtual platform. We compared

simulation time of two runs. The first run made without the injection ser-

vice and the second made with a single fault injection following the MBUA

procedure (access monitoring is stopped after injection). Runs ended with a

behavioral corruption have been removed from results as they are not repre-

sentative of our injection module performance. Indeed, a behavioral corrup-

tion may lead to an infinite loop or to an execution issue and thus to a crash of

the simulation that is not meaningful for our time performance purpose. We

have compared simulation times for Susan corner, edges and smooth modes

with a large input, Rijndael encrypt and decrypt mode for large and small in-

puts, Sha with large and small inputs, Basicmath for small inputs, Bitcounts

for large and small inputs, and QuickSort for large and small inputs. Those

applications represent a mix of instructions and computation intensive ap-

plications.

First, Figure 5.8 shows that the addition of our injection module has im-

pacted the simulation time under 5.0% in the worst case and by less than

3.0% in mean.

Second, the input size does not impact the same way the simulation time.

Indeed, for the QuickSort application, the simulation time augmentation is

smaller for a larger than for a smaller input. However the Sha application

exacerbates the opposite behavior. We attribute this simulation augmenta-

tion to the dynamic monitoring of memory accesses prior to injection.

60 Chapter 5. Experimental Results

Third, the Simulation time is not modified by the number of memory ar-

eas wanted by the user as the memory division is base on a base-2 division,

this allows to reduce drastically the sorting of access regarding the address

accessed. This simulator is accompanied with a fault injection module pre-

FIGURE 5.8: Simulation time increase after implementing fault
injection module

sented in [14]. This fault injection module is configurable with environmen-

tal conditions as well as the probability to observe different MBU patterns.

Moreover, the injection module takes into account the behavior of the appli-

cation by monitoring memory accesses and influencing the injection to be in

highly accessed memory areas to be as efficient as possible. The choice of

memory areas influence the time and the location of the fault injection.

In [14] fault injections are only performed during write operations. This

limitation has been over-passed in the used version of the simulator because

we improved the injector to be able to inject both during read and write op-

erations without considerable impact on the simulation performance. As ex-

posed in Figure 5.9, the worst case is an increase of 8.13% simulation time

for one run with monitoring and injection compared to a free run without ac-

cesses monitoring and without fault injection. This result is acceptable for a

highly linked application to the memory as in [14], the simulation overhead

on large benches was in the worst case of 5% when only write operation

5.2. Evaluation of our Injection Tool 61

were subject to fault injection. Results comparison between Figure 5.8 and

5.9 is impossible to make as improvements of the simulation engine has been

made and as experimental conditions have changed (PC older of more than

one year, modification of the compiler, better understanding of performance

tests processing). We can only make conclusions about each Figure but it is

impossible to compare them.

Moreover, as shown in Figure 5.10, three outcomes are possible for a sys-

tem under fault injection: the system crashes (STOP FUNCTIONING), or it

ends but with a result different from the golden result (RESULT CORRUP-

TION) or it ends with the same result as with a fault free simulation (NO

IMPACT). Figure 5.10 shows that 95% of simulation runs made on a not pro-

tected system with different applications are useful when injecting onto read

operations. This is more precise than with only injection onto write opera-

tions where more than 20% of simulation fault injection runs on unprotected

systems resulted in no corruption.

0.88%

8.13%

5.08%

4.27%

0.58%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

Qsort Bitcounts Rijndael E Rijndael D Sha

Time Overhead(%)

FIGURE 5.9: Simulation Overhead due to read and write mon-
itoring without memory protection

The user has the choice to set up the number of memory areas, however,

the number of areas is set to be a power of 2. Indeed, if the choice of areas is

set to be free for the user, the simulation speed overhead is to high. Indeed,

letting the free choice to the user of the number of memory areas make the ac-

cess address handling far more less effcient. On the other hand, scaling with

a power of 2 makes the address access handling based on a simple masking

of the address to determine the access area. As we can see in Figure 5.11,

62 Chapter 5. Experimental Results

e

92.83%

4.30% 13.37%

STOP FUNCTIONNING NO IMPACT RESULT CORRUPTION

FIGURE 5.10: Distribution of Simulation Results after Read
Fault Injection on unprotected system for different application

on 19000 runs

the computation time overhead is almost stable when scaled onto a power 2

of memory area even with a large numbers of memory areas. This was not

the case when scaled onto a free memory area number, previously obtained

results are accessible through ??.

5.3 RETG computation

5.3.1 Memory Reliability Techniques impact onto performance

Figure 5.12 shows simulation time on different applications when different

reliability techniques are applied. Data are collected among 5 benchmarks

presented Section 5.1. For all implemented reliability techniques and for

each application 25 runs were done to compute the mean simulation time.

The mean simulation time is of course made on simulations that have ter-

minated correctly. The "Reference Simulation" time corresponds to the sim-

ulation time for different benchmarks when no faults are injected and no

monitoring is made. The "No Technique" times correspond to Simulation

time when injections are realized but no reliability techniques are used to

protect against fault injection. The difference between Reference Simula-

tion times and No Technique corresponds to the overhead due to fault injec-

tion algorithm and is the same for all runs comparing reliability techniques.

5.3. RETG computation 63

1 10 10
0

10
00

10
00
0

10
00
00

10
00
00
0

10
00
00
00

5
6
7
8
9

10
Basicmath small

Memory Area

Co
m

pu
ta

t
on

 T
im

e
(s

)

1 10 10
0

10
00

10
00
0

10
00
00

10
00
00
0

10
00
00
00

210
215
220
225
230
235

Basicmath large

Memory Areas

Co
m

pu
ta

t
on

 T
im

e
(s

)

1 10 10
0

10
00

10
00
0

10
00
00

10
00
00
0

10
00
00
00

30
32
34
36
38
40
42
44
46
48
50

Qsort large

Memory Areas

Co
m

pu
ta

t
on

 T
im

e
(s

)
1 10 10

0
10
00

10
00
0

10
00
00

10
00
00
0

10
00
00
00

10
10,5
11

11,5
12

12,5
13

13,5
14

Susan Smooth large

Memory Areas

Co
m

pu
ta

t
on

 T
im

e
(s

)

FIGURE 5.11: Computation Time modification due to memory
areas number

This figure exacerbates two important points. First, all benchmarks present

less than 15% simulation time overhead for all techniques. More accurately

we can point out two groups. The first one is composed by Parity, DMR„

PmC2, TMR, Parity+Redundancy and our technique DPSR-opti, all simula-

tion times are really closed to each other. The second group is composed

with SECDED, DPSR and DECTED where we can see a slight overhead in-

crease, especially for computing intensive applications that communicate a

lot with the memory such as QSort. DPSR shows an overhead similar to

SECDED and DECTED due to the decomposition of the value stored in bits

to be able to compute different parity bits. However, unless what has been

presented in [15], the new version of the DPSR technique is part of the less

performance impacting reliability techniques. Indeed, optimizations have

been put in place such as what was expected in the conclusion of our previ-

ous article [15]. Indeed, we have change our way to compute parity bit and

more than using a switch case on the storage size, we have used a loop well

known by binary expert that consists in cutting the stored word in two parts

and xor each part together up to getting two bits. Both bits represents even

and odd parity bit of the word and it makes us win a lot of computation time.

64 Chapter 5. Experimental Results

TABLE 5.1: Performance Overhead due to memory Reliability
techniques

PmC2 TMR SECDED DPSR DECTED
1.015 1.020 1.09 1.025 1.138

All other techniques have been implemented following at the same level and

inside the memory, only SECDED and DECTED are based on the Hamming

approaches.

41,02 41,59
42,55 42,45 42,55 42,52 42,67

46,40 46,36

42,75

49,20

31,39

32,94 33,65 33,78 33,67 33,69 33,74 33,93 33,93
33,33 34,00

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

Reference
Simulation

No
Protection

Parity DMR PmC² TMR PmC²+DMR SECDED DPSR DPSR Opti DEC-TEC

qsort_large bitcnts rijndael rijndael sha

Simulation Time with Fault Injection for different reliability techniques

FIGURE 5.12: Simulation Time (seconds) with fault injection
for different reliability techniques

5.3.2 Mathematical Approach Verification

In this section, the goal is to ensure the mathematical approach to be valid

and to compare memory reliability techniques presented in previous Section

with the DPSR. Our experimental setup keeps the fault injector presented

in the previous Chapter. We run at least 300 times our algorithm for each

reliability enhancement technique and for 7 seven different mi-bench appli-

cations by injecting one fault for each run and we separate the results of the

simulation in three categories. First, the reliability technique permits to de-

tect the fault but can not correct it. Second, the reliability technique permits

5.3. RETG computation 65

to detect and correct the fault. Third, the fault is not detected by the relia-

bility technique. The injection has been done with MBU patterns up to 3 bit

upsets, we do not have injected more than 3 bit upsets.

Detection Probability

As shown in Figure 5.13, the detection probability modeled Section 3.2.1 and

the one observed after simulation are close to each other. As expected, Parity

does not detect a lot of bit upsets, however, SECDED and DMR detects ev-

erything on our runs. DPSR has not detected 2 faults injected on more than

300 for 7 different applications injections. Small deviations from the mathe-

matical approach are due to the probabilistic model used to inject faults. By

injecting more faults we would have closed the negligible gap existing be-

tween probabilistic and simulation approaches. By only adding one more bit

in memory space for the DPSR detection we have improved by more than

30% the detection rate of the parity bit.

0.681

1.000 1.000 0.987

0.704

1.000 0.999 0.996

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parity DMR SECDED DPSR

Estimated and Measured Detection Probability

Simulation Detection Estimated Detection

FIGURE 5.13: Estimated and Observed Detection Probability
of different reliability techniques during simulation with a real-

istic fault injection

Correction Probability

As shown in Figure 5.14, the correction probability mathematically obtained

Section 3.2.2 and the one observed after Simulation are close to each other

(even if there is a slight difference for SECDED due to the probabilistic model).

We can observe a efficiency reduction of SECDED for the correction com-

pared to the detection. Indeed, in our model inspired by the work in [49],

66 Chapter 5. Experimental Results

it’s pretty rare to observe a double bit upset, that is not in the same line, this

type of multiple upsets is not corrected with the use of SECDED even if it

detects it. Such as expected, the DPSR has the same probability to detect and

to correct a fault. It remains close to the TMR correction rate that is the most

expensive in terms of memory space.

0.682

1.000

0.863

0.987

0.704

1.000

0.708

0.996

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PmC2 TMR SECDED DPSR

Estimated and Measured Correction Probability

Simulation Correction Estimated Correction

FIGURE 5.14: Estimated and Observed Correction Probability
of different reliability techniques during simulation with a real-

istic fault injection

5.3.3 Memory Reliability Techniques Comparison

In this section we summarize all results obtained so far and give a global

view about the efficiency of our reliability technique compared to the exist-

ing spectrum of memory reliability techniques. Table 5.2 is a sum up of all

data found during our work on 8 bits word size. We can clearly see that

DPSR shows promising results and is an intermediate between a protection

represented by the DECTED technique where the objective is to reduce the

impact onto memory size and allow a higher scalability and the TMR where

the goal is set onto the reliability at the cost of the memory space. The closest

concurrent of DPSR is DECTED, Regardless the main advantage of DECTED

to be extremely scalable, DPSR overpasses DECTED from the performance

and easiness to implement points of view. Another concurrent of DPSR is

SECDED but has been over-passed in all criteria expect from the memory

size usage point of view. In a context of critical systems and in technology

5.3. RETG computation 67

TABLE 5.2: Memory Reliability Techniques Comparison

PmC2 TMR SECDED DECTED DPSR
Detection 0.6824 1 1 1 0.9867
Correction 0.6824 1 0.8633 0.999 0.9867
Memory
Space

9 16 5 9 10

Simulation
Overhead

2.826% 2.623% 6.473% 13.8% 2.50%

improvement our solution will be better and better as more and more multi-

ple bits upsets would be induced by a single particle strike.

DPSR is an intermediate choice between an extreme protection using a lot

of memory space and a poor correction rate. DPSR presents an interesting

trade-off between protection, memory space and performance. Performance

optimization of the DPSR technique made after the publication of our previ-

ous work [15] has for sure improve its quality.

5.3.4 RETG estimation

Finally, we have all data necessary to compute the RETG estimation for all

presented techniques and thus be able to classify them. We use data ob-

tained in Table 5.2 to compute RETG. Table 5.3 gives all RETG detection val-

ues found for different memory word size and different memory reliability

techniques. In this section, we can see that our technique comes into a good

place and is a concurrent to the DECTED technique. The choice between

both techniques has to be based on the requirements in terms of protection

and memory overhead compared to the time overhead. In a averagely criti-

cal application our DPSR technique appears to be a good choice. However,

for a huge need of reliability a TMR has to be selected. Finally, for a embed-

ded critical system without execution time barriers, the DECTED seems to

remain the good trade-off.

Table 5.3 shows also the scaling of techniques compared to memory size

word to protect. We can see that our technique scales pretty well but less

68 Chapter 5. Experimental Results

TABLE 5.3: RETGc of memory reliability techniques function of
data size

Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 0.229 0.249 0.259 0.304 0.306
16 bits 0.234 0.249 0.285 0.316 0.354
32 bits 0.237 0.249 0.305 0.323 0.393
64 bits 0.238 0.249 0.318 0.326 0.421

than DECTED and SECDED that are recognised for their scalability. Indeed,

DPSR uses the redundancy thus the scalability cannot be as good as other

techniques scalability.

This chapter is concluded by an RETG estimation of different memory re-

liability techniques in which we included our proposed technique : DPSR.

In the last chapter of our work we will conclude about the contributions

brought to the state of the art during my thesis and how my work can be

improved in the future.

69

Chapter 6
Conclusion

C ritical systems development has always been a challenging and com-

plex task. Regarding the importance to reach a high reliability level

while maintaining a good level of performance, several techniques have been

developped and studied during the last decades. From tools and develop-

ment methodologies to concrete propositions of reliability enhancement at

different layers of systems, it is not an easy task to chose between all those

propositions to match the system requirements. For highly critical systems,

it exists different qualification processes that must be passed to allow a prod-

uct to be commercialized.

To cope with those requirements, we have presented our two contribu-

tions. Firstly, we work on memory reliability enhancement techniques by de-

signing a new memory reliability technique called DPSR. This technique has

the advantage to be easily implementable and to respect the hardware con-

straints by always demanding multiple of 2 more data and two more bits to

protect the critical data. It presents to be a good trade-off between all impor-

tant parameters involved in critical systems design, namely:correction and

detection probability, memory and time overhead and implementation com-

plexity. With the exposed evaluation metric called RETG we showed that our

technique sets itself in a good trade-off between memory consumption, time

overhead, reliability increase. Of course, the impact on the momory is pretty

high and can be limited if only the detection is mandatory, we can then only

use two parity bits to detect errors. If the desired behavior is the corruption

70 Chapter 6. Conclusion

then the redundancy has to be used.

Secondly, we proposed a fault injection tool and methodology to evalu-

ate systems reliability by injecting faults into the memory at run-time. This

technique has the advantage to be tunable by the user while maintaining a

small performance overhead. This technique has been implemented as an

extension of UNISIM-VP an instruction set simulator. The extension comes

with minor changes to the simulator but is easily transposable to other sim-

ulation platforms. Indeed, the extension is just bounded to the simulator, the

big modification inside the simulator is limited to memory calls. We have

added a flag to these calls to be able to determine if a fault has to be injected.

The fault injection is today linked to the memory, but it can be linked to other

components of the simulated system. Finally, we used our new version of the

simulator to evaluate the effectiveness of memory fault reliability enhance-

ment techniques included our DPSR technique. Moreover, we have ensured

that our mathematical prediction of detection and correction probability was

correct by measuring them also under fault injections.

As a perspectives, we propose to consider the power consumption as a

different metric to evaluate memory reliability techniques. Given the limited

power budget of embedded systems, power consumption is also an impor-

tant metric to consider. This thesis focused on memory fault injection, even if

it is justified by the area occuped by the memory for newest systems, it could

be interesting to transpose our methodology to other system’s components.

This would have the main advantage to allow the user to compare reliabil-

ity techniques on different components and why not combined techniques.

Working on multi-cores platforms could also bring different evolutions to

our work and should be a follow-up to our work as it seems to be the future

of critical systems with the development of standard in the automotive and

aeronautic areas. We also think that prototyping our two contributions on an

FPGA could give more accurate results.

Finally, with the development of higher computation possibilities, arti-

ficial intelligence and especially machine learning trends to come into the

world of critical systems especially in space exploration. The issue for the

Chapter 6. Conclusion 71

moment is the data provided to the alogirthm to learn. A virtual platform

may be the way to furnish a data input to the machine learning solver.

73

Appendix A
Appendix A

A.1 List of Usefull Parameters to Configure Fault Injection 73

A.2 Explications . 77

A.1 List of Usefull Parameters to Configure Fault

Injection

SystemC 2.3 .1 − A c c e l l e r a −−− Feb 8 2017 1 5 : 0 4 : 0 0

Copyright (c) 1996 −2014 by a l l Contr ibutors ,

ALL RIGHTS RESERVED

S t a r t i n g s imulat ion .

The Appl icat ion has been perturbated during i t s execut ion by read

i n j e c t i n g ; a s i n g l e f a u l t ; a t ; 1 0 7 2 3 0 0 6 1 6 ; area ;261793

Program e x i t e d with s t a t u s 0

Simulat ion f i n i s h e d

Simulat ion run−time parameters :

F a u l t I n j e c t i o n . a c c e l e r a t i o n − f a c t o r 1

a l l o w t o tune t h e number o f f a u l t i n j e c t e d

F a u l t I n j e c t i o n . a c t i v a t i o n −energy 0 .001

Energy A c t i v a t i o n g i v e n in eV

F a u l t I n j e c t i o n . allow −multiple − i n j e c t i o n f a l s e

Do we make p o s s i b l e m u l t i p l e i n j e c t i o n

74 Appendix A. Appendix A

F a u l t I n j e c t i o n . base − f a i l −lambda 1e −05

I t i s t h e b a s e f a i l u r e v a l u e

F a u l t I n j e c t i o n . enable −debug− i n f o f a l s e

I s t h e s i m u l a t o r p r i n t s debug i n f o

F a u l t I n j e c t i o n . f u l l −access −wri t ten f a l s e

Do we p r i n t a l l a c c e s s e d a r e a s

F a u l t I n j e c t i o n . humidity − a c c e l e r a t i o n −power 1

A c c e l e r a t i o n power f o r humid i ty c o n s t r a i n t

F a u l t I n j e c t i o n . immediate− i n j e c t i o n f a l s e

Do we i n j e c t a f a u l t f o r t h e nex t memory a c c e s s

F a u l t I n j e c t i o n . i n j e c t i o n −method 4

I n j e c t i o n Method Chosen (1 p u r e l y random , 2 FIDES ,

3 g i v e n p r o b a b i l i t y , 4 FIDES+ a c c e s s s t o r a g e)

F a u l t I n j e c t i o n . mechanical −power 1 . 5

A c c e l e r a t i o n power f o r t h e m e c a n i c h a l c o n s t r a i n t

F a u l t I n j e c t i o n . mult iple −b i t −upset f a l s e

Enab l e The I n j e c t i o n Of M u l t i p l e B i t Upset

F a u l t I n j e c t i o n . path −to −MBU− f i l e

/path/mbu_config . csv

Allow t o g i v e s t h e pa th t o MBU f i l e

F a u l t I n j e c t i o n . path −to −access −storage − f i l e

/path/a c c e s s . csv

Path t o t h e a c c e s s s t o r a g e f i l e

F a u l t I n j e c t i o n . path −to − i n j e c t e d − r e s u l t s − f i l e

/path/path/TechniqueImpactOnPerformance . csv

Path t o t h e I n j e c t e d R e s u l t s f i l e

F a u l t I n j e c t i o n . re ference −temperature 20

R e f e r e n c e T e m e p e r a t u r e g i v e n in K

F a u l t I n j e c t i o n . re ference − v i b r a t i o n s 0 . 5

R e f e r e n c e V i b r a t i o n l e v e l in t h e c o n s i d e r e d env i ronment

F a u l t I n j e c t i o n . storage − s i z i n g 1048576

Determine t h e number o f p a r t s f o r t h e memory a c c e s s s t o r a g e s i z e

(must be a power o f 2)

A.1. List of Usefull Parameters to Configure Fault Injection 75

.

.

.

.

memory . b y t e s i z e 4294967295

memory s i z e in b y t e s

memory . cycle −time 31250 ps

memory c y c l e t ime

memory . i n i t i a l −access −number−value 0

G l o b a l number o f a c c e s s a t t h e s t a r t o f t h e s i m u l a t i o n

memory . i n i t i a l −byte −value 0x00

i n i t i a l v a l u e f o r a l l b y t e s o f memory

memory . i n j e c t i o n _ f a u l t _ a l l o w e d t rue

I s t h e f a u l t i n j e c t i o n a l l o w e d

memory . mbu−allowed t rue

I s M u l t i p l e B i t Upset a l l o w e d

memory . memory−access −s torage t rue

Memory A c c e s s s t o r e d

memory . memory_temperature 25

Tempera ture o f t h e memory

memory . org 0 x00000000

memory o r i g i n / b a s e a d d r e s s

memory . read −l a t e n c y 31250 ps

memory r e a d l a t e n c y

memory . read −only f a l s e

e n a b l e / d i s a b l e read −on ly p r o t e c t i o n

memory . robustness −technique −used 9

C h o i c e o f t h e r o b u s t n e s s t e c h n i q u e used

memory . verbose f a l s e

e n a b l e / d i s a b l e v e r b o s i t y

memory . write − l a t e n c y 0 s

memory w r i t e l a t e n c y

p a t h _ t o _ r e s u l t s _ f i l e

/home/ac250711/Documents/ r e s u l t s . csv

76 Appendix A. Appendix A

Path t o c s v R e s u l t s f i l e

Simulat ion formulas :

Simulat ion s t a t i s t i c s :

F a u l t I n j e c t i o n . platform − r e l i a b i l i t y 6 .81102 e −06

Computed Value o f t h e P l a t f o r m R e l i a b i l i t y (0 i f no t computed)

cpu . cpu−time 54451725218750 ps

The p r o c e s s o r t ime

cpu . i n s t r u c t i o n −counter 517005940

Number o f i n s t r u c t i o n s e x e c u t e d .

memory . a c c e s s 351091838

Number o f a c c e s s t o memory

memory . debug−a c c e s s 0

Number o f memory debug a c c e s s

memory . dissasembly −a c c e s s 0

Number o f memory d i s s a s e m b l y a c c e s s

memory . f a u l t −disable −a c c e s s 513996

Number o f memory f a u l t d i s a b l e a c c e s s

memory . f a u l t −enable −a c c e s s 350577842

Number o f memory f a u l t e n a b l e a c c e s s

memory . loader −a c c e s s 0

Number o f memory l o a d e r a c c e s s

memory . memory−a c c e s s 0

Number o f memory memory a c c e s s

memory . os−a c c e s s 0

Number o f memory os a c c e s s

memory . read −counter 263704676

r e a d a c c e s s c o u n t e r (not a c c u r a t e when us ing SystemC TLM 2 . 0 DMI)

memory . undefined −a c c e s s 0

Number o f memory u n d e f i n e d a c c e s s

memory . write −counter 86873158

w r i t e a c c e s s c o u n t e r (not a c c u r a t e when us ing SystemC TLM 2 . 0 DMI)

A.2. Explications 77

s imulat ion time : 52 .77 seconds

simulated time : 54 .4517 seconds (e x a c t l y 54451725218750 ps)

host s imulat ion speed : 9 .79735 MIPS

time d i l a t a t i o n : 0 .969115 times slower than t a r g e t machine

A.2 Explications

This list is a sort of usefull parameters printed at the end of the simulation

in which some of them are let to the user to be able to customize as wanted

the simulation. All the lines starting with a # are comment lines that help the

suer understand each parameters. So, I will not list all of them. The pattern

for arguments is pretty simple to handle. the first word is the a keyword

that stands for the component of the simulator that is targeted. For example

«memory.size in byte» stands for the memory size allowed to the memory

of the simulated platform. If not indicated, it means the variable is global

for the simulator (such as the path to results file). This set of parameters is

also a way for the user to gain information about the simulation such as the

memory.read counter that gives the total number of meaningfull read opera-

tions made during the simulation. At the end of the previous Section we can

also see: the simulation time, the simulated time, and the dilatation of the

simulation time compared to the simulated time. The dilatation is an indica-

tor of the speed of the simulation as it is the fraction between the simulated

time and the simulation time. It gives information about the computation

power needed to complete the simulation. Finally, when the simulation is

perturbated by a fault injection, a sentence like the one «The Application

has been perturbated during its execution by read injecting ;a single fault; at

;1072300616; area ;261793». In this case, the fault is a single upset and has

been injected into the area 261793 at the address 1072300616.

This resume of the simulation is the best way for the user to both ensure

everything has worked fine and also to check if all parameters have been

correctly setup.

79

Appendix B
Appendix B

B.1 Example of a Script Used During Test Campaign 79

B.2 Explications . 83

B.1 Example of a Script Used During Test Cam-

paign

P a r a m e t e r s D e c l a r a t i o n

ArmemuPath=/home/ac250711/Documents/ t e s t 1 /armemu

BenchAutomotivePath=path

BenchSecurityPath=path

CrossCompilerPath=path/arm−cortex_a9 −linux −gnueabihf

FaultImpactPath=path/TechniqueImpactOnPerformance . t x t

NumberOfIterations =10

NumberOfIterations2=1

MaximalDurationOfAnIteration =60

DurationOfSleep=1

F a u l t e d R e s u l t F i l e =output_small . smoothing_faulted .pgm

STORAGE_SIZING_MAX=1048576

STORAGE_SIZING=1048576

turn on debug mode : s e t −x

##

QSORT LARGE

80 Appendix B. Appendix B

##

cd path/qsor t

export CROSS_COMPILE=path/arm−cortex_a9 −linux −gnueabihf −

make c lean

make q s o r t _ l a r g e

i =0

while [$ i −ne $NumberOfIterations2] ;

do

$ArmemuPath/bin/unisim −armemu− 0 . 8 . 0 −s l inux −os . utsname− r e l e a s e = 3 . 0 . 4

−s cpu . enable −dmi= f a l s e

−s memory . i n j e c t i o n _ f a u l t _ a l l o w e d = f a l s e

−s memory . memory−access −s torage= f a l s e

−s F a u l t I n j e c t i o n . enable −debug− i n f o = f a l s e

−s F a u l t I n j e c t i o n . storage − s i z i n g =$STORAGE_SIZING

q s o r t _ l a r g e input_ large . dat > output_large . t x t

i =$ (($ i + 1))

done

Here Without p r o t e c t i o n

i =0

while [$ i −ne $NumberOfIterations2] ;

do

t imeout −s SIGINT $MaximalDurationOfAnIteration

$ArmemuPath/bin/unisim −armemu− 0 . 8 . 0

−s l inux −os . utsname− r e l e a s e = 3 . 0 . 4

−s cpu . enable −dmi= f a l s e

−s memory . i n j e c t i o n _ f a u l t _ a l l o w e d = t rue

−s F a u l t I n j e c t i o n . i n j e c t i o n −method=4

−s memory . memory−access −s torage= t rue

−s F a u l t I n j e c t i o n . enable −debug− i n f o = f a l s e

−s F a u l t I n j e c t i o n . base − f a i l −lambda =0.00001

−s F a u l t I n j e c t i o n . storage − s i z i n g =$STORAGE_SIZING

−s F a u l t I n j e c t i o n . path −to − i n j e c t e d − r e s u l t s − f i l e =path

−s memory . robustness −technique −used=0

q s o r t _ l a r g e input_ large . dat > out put_ lar ge_ f au l ted . t x t

B.1. Example of a Script Used During Test Campaign 81

We examine t h e ou t pu t o f t h e run with t h e i n j e c t i o n and

compare i t t o t h e run w i t h o u t f a u l t i n j e c t i o n .

i f [− f output_small . smoothing_faulted .pgm]

then

DIFF=$ (d i f f output_large . t x t ou tput _ la rge_ fau l te d . t x t)

i f [" $DIFF " != " "]

then

FaultThatHasAnImpact=$ (($FaultThatHasAnImpact + 1)) ;

DIFF2=$ (d i f f output_large . t x t o utpu t_ l arge _ fa u l t ed . t x t | wc − l)

e c h o $DIFF2 ;

i f [" $DIFF2 " −gt " 8 "]

then

echo " The f a u l t i n j e c t e d has modified the behavior "

>> $FaultImpactPath ;

FaultThatHasModifiedTheBehavior=

$ (($FaultThatHasModifiedTheBehavior + 1)) ;

e lse

echo " The f a u l t i n j e c t e d has modified the r e s u l t "

>> $FaultImpactPath ;

f i

e l se

echo " The f a u l t i n j e c t e d has not impacted "

>> $FaultImpactPath ;

f i

rm " $ F a u l t e d R e s u l t F i l e "

e lse

echo " The f a u l t i n j e c t e d has stopped the c o r r e c t funct ionning "

>> $FaultImpactPath ;

f i

#To a v o i d m u l t i p l e t i m e s t h e same s e e d

s leep $DurationOfSleep

i =$ (($ i + 1))

done

82 Appendix B. Appendix B

Here with DECTED p r o t e c t i o n

i =0

while [$ i −ne $NumberOfIterations] ;

do

t imeout −s SIGINT $MaximalDurationOfAnIteration

$ArmemuPath/bin/unisim −armemu− 0 . 8 . 0

−s l inux −os . utsname− r e l e a s e = 3 . 0 . 4

−s cpu . enable −dmi= f a l s e

−s memory . i n j e c t i o n _ f a u l t _ a l l o w e d = t rue

−s F a u l t I n j e c t i o n . i n j e c t i o n −method=4

−s memory . memory−access −s torage= t rue

−s F a u l t I n j e c t i o n . enable −debug− i n f o = f a l s e

−s F a u l t I n j e c t i o n . base − f a i l −lambda =0.00001

−s F a u l t I n j e c t i o n . storage − s i z i n g =$STORAGE_SIZING

−s F a u l t I n j e c t i o n . path −to − i n j e c t e d − r e s u l t s − f i l e =path

−s memory . robustness −technique −used=9

q s o r t _ l a r g e input_ large . dat > out put_ lar ge_ f au l ted . t x t

We examine t h e ou t pu t o f t h e run with t h e i n j e c t i o n

#and compare i t t o t h e run w i t h o u t f a u l t i n j e c t i o n .

i f [− f output_small . smoothing_faulted .pgm]

then

DIFF=$ (d i f f output_large . t x t ou tput _ la rge _ fau l te d . t x t)

i f [" $DIFF " != " "]

then

FaultThatHasAnImpact=$ (($FaultThatHasAnImpact + 1)) ;

DIFF2=$ (d i f f output_large . t x t o utpu t_ l arge _ fa u l te d . t x t | wc − l)

e c h o $DIFF2 ;

i f [" $DIFF2 " −gt " 8 "]

then

echo " The f a u l t i n j e c t e d has modified the behavior "

>> $FaultImpactPath ;

B.2. Explications 83

FaultThatHasModifiedTheBehavior=

$ (($FaultThatHasModifiedTheBehavior + 1)) ;

e lse

echo " The f a u l t i n j e c t e d has modified the r e s u l t "

>> $FaultImpactPath ;

f i

e l se

echo " The f a u l t i n j e c t e d has not impacted the a p p l i c a t i o n "

>> $FaultImpactPath ;

f i

rm " $ F a u l t e d R e s u l t F i l e "

e lse

echo " The f a u l t i n j e c t e d has stopped the c o r r e c t funct ionning "

>> $FaultImpactPath ;

f i

#To a v o i d m u l t i p l e t i m e s t h e same s e e d

s leep $DurationOfSleep

i =$ (($ i + 1))

done

B.2 Explications

The previous section exposes an example of scripts used to obtain results

thanks to our fault injection methodology. This example is extracted from

a script evaluating the DECTED techniques exposed in Chapter 2. The pa-

rameters section helps the user to determine the number of runs for each

loop and set up paths to different files. Then comes the cross compilation

(available in the UNISIM-VP package). In this example, we first run the sim-

ulation without protection and without fault injection to obtain a base for the

comparison of performance overhead. Then we change to true the parameter

allowing the fault injection (memory. fault injection allowed). We use our

methodology to inject faults by changing the injection-method to 4 and run

this simulation. Of course, in this case no protection are used, we thus have

84 Appendix B. Appendix B

the overhead bringed to the simulation time by the injection module. We fi-

nally protect the memory by modifying the robustness technique used to 9

which corresponds to DECTED.

This type of script is mandatory to evaluate reliability of a system with

non-deterministic fault injection. Indeed, a large numbers of runs is needed

and cannot be handled by human. I consider to arround one million my

number of runs realized during my thesis on large benchmarks.

85

Appendix C
Publications

1. Chabot A., Alouani I., Niar S., Nouacer R. (2021). A Memory Relia-

bility Enhancement Technique for Multi Bit Upsets. Journal of Signal

Processing Systems, 93(4), 439-459 March

2. Chabot A., Alouani I., Niar S., Nouacer R. (2019). A New Memory Re-

liability Technique For Multiple Bit Upsets Mitigation. ACM Interna-

tional Conference on Computing Frontiers, Sardinia, Italy, may

3. Chabot A., Alouani I., Nouacer R., Niar S. (2018). A Comprehensive

Fault Injection Strategy for Embedded Systems Reliability Assessment.

IEEE International Symposium on Rapid System Prototyping (RSP), oc-

tober

4. Chabot A., Alouani I., Niar S., Nouacer R. (2018). A Fault Injection Plat-

form for Early-Stage Reliability Assessment. Workshop on Rapid Sim-

ulation and Performance Evaluation: Methods and Tools RAPIDO’18,

Manchester UK, january .

87

Bibliography

[1] 3rd IEEE International Symposium on High-Assurance Systems Engineer-

ing (HASE ’98), 13-14 November 1998, Washington, D.C, USA, Proceed-

ings. IEEE Computer Society, 1998. ISBN: 0-8186-9221-9. URL: http://

ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5939.

[2] H. Abbasitabar, H. R. Zarandi, and R. Salamat. “Susceptibility Analy-

sis of LEON3 Embedded Processor against Multiple Event Transients

and Upsets”. In: 2012 IEEE 15th International Conference on Computa-

tional Science and Engineering. 2012, pp. 548–553. DOI: 10.1109/ICCSE.

2012.81.

[3] Accellera. SystemC Standard Download page. 2011. URL: http://www.

accellera.org/downloads/standards/systemc.

[4] I. Alouani et al. “Parity-based mono-Copy Cache for low power con-

sumption and high reliability”. In: 2012 23rd IEEE International Sympo-

sium on Rapid System Prototyping (RSP). 2012, pp. 44–48. DOI: 10.1109/

RSP.2012.6380689.

[5] Stéphanie Anceau et al. “Nanofocused X-Ray Beam to Reprogram Se-

cure Circuits”. In: Cryptographic Hardware and Embedded Systems – CHES

2017. Vol. 10529. Lecture Notes in Computer Science. Springer, 2017,

pp. 175–188. DOI: 10.1007/978-3-319-66787-4_9.

[6] G. . Asadi et al. “Balancing Performance and Reliability in the Memory

Hierarchy”. In: IEEE International Symposium on Performance Analysis of

Systems and Software, 2005. ISPASS 2005. 2005, pp. 269–279. DOI: 10.

1109/ISPASS.2005.1430581.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5939
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5939
https://doi.org/10.1109/ICCSE.2012.81
https://doi.org/10.1109/ICCSE.2012.81
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc
https://doi.org/10.1109/RSP.2012.6380689
https://doi.org/10.1109/RSP.2012.6380689
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1109/ISPASS.2005.1430581
https://doi.org/10.1109/ISPASS.2005.1430581

88 Bibliography

[7] A. Avizienis et al. “Basic concepts and taxonomy of dependable and

secure computing”. In: IEEE Transactions on Dependable and Secure Com-

puting 1.1 (2004), pp. 11–33. ISSN: 1545-5971.

[8] John Aynsley. OSCI TLM-2.0 language reference manual. JA32. Open Sys-

temC Initiative. 2009.

[9] M. Bagatin et al. “Temperature dependence of neutron-induced soft

errors in {SRAMs}”. In: Microelectronics Reliability 52.1 (2012), pp. 289

–293. ISSN: 0026-2714.

[10] P. Benjamin et al. “Simulation modeling at multiple levels of abstrac-

tion”. In: 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

Vol. 1. 1998, 391–398 vol.1. DOI: 10.1109/WSC.1998.745013.

[11] Alessandro Birolini. Reliability Engineering: Theory and Practice. Mar. 2010.

ISBN: 978-3-642-14951-1. DOI: 10.1007/978-3-642-14952-8.

[12] S. Borkar. “Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation”. In: IEEE Micro

25.6 (2005), pp. 10–16. ISSN: 0272-1732. DOI: 10.1109/MM.2005.110.

[13] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper: Ex-

ploring the Level of Abstraction for Scalable and Accurate Parallel Multi-

Core Simulations”. In: International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC). Nov. 2011, 52:1–52:12.

[14] A. Chabot et al. “A Comprehensive Fault Injection Strategy for Embed-

ded Systems Reliability Assessment”. In: 2018 International Symposium

on Rapid System Prototyping (RSP). 2018, pp. 22–28. DOI: 10.1109/RSP.

2018.8631986.

[15] Alexandre Chabot et al. “A New Memory Reliability Technique for

Multiple Bit Upsets Mitigation”. In: Proceedings of the 16th ACM Inter-

national Conference on Computing Frontiers. CF ’19. Alghero, Italy: ACM,

2019, pp. 145–152. ISBN: 978-1-4503-6685-4. DOI: 10.1145/3310273.

3321564. URL: http://doi.acm.org/10.1145/3310273.3321564.

https://doi.org/10.1109/WSC.1998.745013
https://doi.org/10.1007/978-3-642-14952-8
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1109/RSP.2018.8631986
https://doi.org/10.1109/RSP.2018.8631986
https://doi.org/10.1145/3310273.3321564
https://doi.org/10.1145/3310273.3321564
http://doi.acm.org/10.1145/3310273.3321564

Bibliography 89

[16] C. L. Chen and M. Y. Hsiao. “Error-correcting Codes for Semiconductor

Memory Applications: A State-of-the-art Review”. In: IBM J. Res. Dev.

28.2 (Mar. 1984), pp. 124–134. ISSN: 0018-8646. DOI: 10.1147/rd.282.

0124. URL: http://dx.doi.org/10.1147/rd.282.0124.

[17] Eric Cheng et al. “CLEAR: Cross-Layer Exploration for Architecting

Resilience - Combining Hardware and Software Techniques to Tolerate

Soft Errors in Processor Cores”. In: CoRR abs/1604.03062 (2016). arXiv:

1604.03062. URL: http://arxiv.org/abs/1604.03062.

[18] M. Cirinei et al. “A Flexible Scheme for Scheduling Fault-Tolerant Real-

Time Tasks on Multiprocessors”. In: 2007 IEEE International Parallel and

Distributed Processing Symposium. 2007, pp. 1–8. DOI: 10.1109/IPDPS.

2007.370342.

[19] Anand Dixit and Alan Wood. “Impact of New Technology on Soft Error

Rates”. In: Reliability Physics Symposim (IRPS) (2011), pp. 486–492.

[20] Japan Electronics and Information Technology Industries Association.

JEITA SER Testing Guideline. 2005, p. 36.

[21] FIDES-Group. Reliability Methodology for Electronic Systems. 2010.

[22] D. D. Gajski and R. H. Kuhn. “New VLSI Tools”. In: Computer 16.12

(Dec. 1983), pp. 11–14. ISSN: 0018-9162. DOI: 10.1109/MC.1983.1654264.

URL: http://dx.doi.org/10.1109/MC.1983.1654264.

[23] K. R. Gandhi and N. R. Mahapatr. “Energy-Efficient Soft-Error Protec-

tion Using Operand Encoding and Operation Bypass”. In: 21st Inter-

national Conference on VLSI Design (VLSID 2008). 2008, pp. 45–51. DOI:

10.1109/VLSI.2008.116.

[24] A. Girault and H. Kalla. “A Novel Bicriteria Scheduling Heuristics Pro-

viding a Guaranteed Global System Failure Rate”. In: IEEE Transac-

tions on Dependable and Secure Computing 6.4 (2009), pp. 241–254. DOI:

10.1109/TDSC.2008.50.

[25] M. R. Guthaus et al. “MiBench: A Free, Commercially Representative

Embedded Benchmark Suite”. In: WWC ’01 (2001), pp. 3–14.

https://doi.org/10.1147/rd.282.0124
https://doi.org/10.1147/rd.282.0124
http://dx.doi.org/10.1147/rd.282.0124
https://arxiv.org/abs/1604.03062
http://arxiv.org/abs/1604.03062
https://doi.org/10.1109/IPDPS.2007.370342
https://doi.org/10.1109/IPDPS.2007.370342
https://doi.org/10.1109/MC.1983.1654264
http://dx.doi.org/10.1109/MC.1983.1654264
https://doi.org/10.1109/VLSI.2008.116
https://doi.org/10.1109/TDSC.2008.50

90 Bibliography

[26] F. H. Hardie and R. J. Suhocki. “Design and Use of Fault Simulation for

Saturn Computer Design”. In: IEEE Transactions on Electronic Computers

EC-16.4 (1967), pp. 412–429. ISSN: 0367-7508. DOI: 10.1109/PGEC.1967.

264644.

[27] S. K. S. Hari et al. “SASSIFI: An architecture-level fault injection tool

for GPU application resilience evaluation”. In: 2017 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).

2017, pp. 249–258. DOI: 10.1109/ISPASS.2017.7975296.

[28] A. S. Hartman, D. E. Thomas, and B. H. Meyer. “A case for lifetime-

aware task mapping in embedded chip multiprocessors”. In: 2010 IEEE/ACM/I-

FIP International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS). 2010, pp. 145–154.

[29] A. Hava et al. “Integrated circuit reliability prediction based on physics-

of-failure models in conjunction with field study”. In: 2013 Proceedings

Annual Reliability and Maintainability Symposium (RAMS). 2013, pp. 1–6.

DOI: 10.1109/RAMS.2013.6517737.

[30] Peter Hazucha and Christer Svensson. “Impact of CMOS technology

scaling on the atmospheric neutron soft error rate”. In: Nuclear Science,

IEEE Transactions on 47 (Jan. 2001), pp. 2586 –2594. DOI: 10.1109/23.

903813.

[31] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. “Fault injection techniques

and tools”. In: Computer 30.4 (1997), pp. 75–82. ISSN: 0018-9162.

[32] Jia Huang et al. “A Framework for Reliability-Aware Design Explo-

ration on MPSoC Based Systems”. In: Design Automation for Embedded

Systems 16 (Nov. 2012). DOI: 10.1007/s10617-013-9105-6.

[33] IBM. IBM DS8880 Architecture and Implementation. 2019. URL: https://

books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=

DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&

hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#

v=onepage&q=DECTED%20ibm&f=false.

https://doi.org/10.1109/PGEC.1967.264644
https://doi.org/10.1109/PGEC.1967.264644
https://doi.org/10.1109/ISPASS.2017.7975296
https://doi.org/10.1109/RAMS.2013.6517737
https://doi.org/10.1109/23.903813
https://doi.org/10.1109/23.903813
https://doi.org/10.1007/s10617-013-9105-6
https://books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#v=onepage&q=DECTED%20ibm&f=false
https://books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#v=onepage&q=DECTED%20ibm&f=false
https://books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#v=onepage&q=DECTED%20ibm&f=false
https://books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#v=onepage&q=DECTED%20ibm&f=false
https://books.google.fr/books?id=nSyKDwAAQBAJ&pg=PA376&lpg=PA376&dq=DECTED+ibm&source=bl&ots=76oc2xFLRQ&sig=ACfU3U3pLE0Vood2WAdVNMCxpYmpTTpuhw&hl=fr&sa=X&ved=2ahUKEwjhteDp39PpAhVlyoUKHcp0BuAQ6AEwBXoECAsQAQ#v=onepage&q=DECTED%20ibm&f=false

Bibliography 91

[34] Y. Kagiyama et al. “Bit error rate estimation in SRAM considering tem-

perature fluctuation”. In: Thirteenth International Symposium on Quality

Electronic Design (ISQED). 2012, pp. 516–519.

[35] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. “FERRARI: a flex-

ible software-based fault and error injection system”. In: IEEE Transac-

tions on Computers 44.2 (1995), pp. 248–260. ISSN: 0018-9340.

[36] J. Kim et al. “Multi-bit Error Tolerant Caches Using Two-Dimensional

Error Coding”. In: 40th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 2007). 2007, pp. 197–209. DOI: 10.1109/MICRO.

2007.19.

[37] M. Kooli and G. Di Natale. “A survey on simulation-based fault injec-

tion tools for complex systems”. In: 2014 9th IEEE International Confer-

ence on Design Technology of Integrated Systems in Nanoscale Era (DTIS).

2014, pp. 1–6.

[38] M. Kooli et al. “Software testing and software fault injection”. In: 2015

10th International Conference on Design Technology of Integrated Systems in

Nanoscale Era (DTIS). 2015, pp. 1–6.

[39] Ravi Kumar. “ARM Architecture - Working Features”. In: (2013). URL:

https://www.eeweb.com/profile/ravi-kumar-6/articles/arm-

architecture-working-features.

[40] D. Li, J. S. Vetter, and W. Yu. “Classifying soft error vulnerabilities

in extreme-Scale scientific applications using a binary instrumentation

tool”. In: SC ’12: Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis. 2012, pp. 1–11. DOI:

10.1109/SC.2012.29.

[41] Lin Li et al. “Soft error and energy consumption interactions: a data

cache perspective”. In: Proceedings of the 2004 International Symposium

on Low Power Electronics and Design (IEEE Cat. No.04TH8758). 2004, pp. 132–

137. DOI: 10.1109/LPE.2004.240852.

[42] S. Mittal and J. S. Vetter. “A Survey of Techniques for Modeling and

Improving Reliability of Computing Systems”. In: IEEE Transactions

https://doi.org/10.1109/MICRO.2007.19
https://doi.org/10.1109/MICRO.2007.19
https://www.eeweb.com/profile/ravi-kumar-6/articles/arm-architecture-working-features
https://www.eeweb.com/profile/ravi-kumar-6/articles/arm-architecture-working-features
https://doi.org/10.1109/SC.2012.29
https://doi.org/10.1109/LPE.2004.240852

92 Bibliography

on Parallel and Distributed Systems 27.4 (2016), pp. 1226–1238. DOI: 10.

1109/TPDS.2015.2426179.

[43] Gordon E. Moore. “Creaming more components onto integrated cir-

cuits”. In: Electronics 38.8 (1965).

[44] Nhon Quach. “High availability and reliability in the itanium proces-

sor”. In: IEEE Micro 20.5 (2000), pp. 61–69. ISSN: 0272-1732. DOI: 10.

1109/40.877951.

[45] Reda Nouacer, Gilles Mouchard, and Daniel Gracia-Perez. “UNISIM

Virtual Platforms”. In: (Jan. 2012). RAPIDO’12 - 4th Workshop on: Rapid

Simulation and Performance Evaluation: Methods and Tools.

[46] S. Ozdemir et al. “Yield-Aware Cache Architectures”. In: 2006 39th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO’06).

2006, pp. 15–25. DOI: 10.1109/MICRO.2006.52.

[47] Ludovic Pintard. “From safety analysis to experimental validation by

fault injection - Case of automotive embedded systems. (Des analyses

de sécurité à la validation expérimentale par injection de fautes ? Le

cas des systèmes embarqués automobiles)”. PhD thesis. University of

Toulouse, France, 2015.

[48] M. K. Qureshi and Z. Chishti. “Operating SECDED-based caches at

ultra-low voltage with FLAIR”. In: 2013 43rd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN). 2013, pp. 1–

11. DOI: 10.1109/DSN.2013.6575314.

[49] D. Radaelli et al. “Investigation of multi-bit upsets in a 150 nm technol-

ogy SRAM device”. In: IEEE Transactions on Nuclear Science 52.6 (2005),

pp. 2433–2437. ISSN: 0018-9499.

[50] S Rehman, Muhammad Shafique, and J Henkel. Reliable software for

unreliable hardware: A cross layer perspective. Jan. 2016, pp. 1–192. DOI:

10.1007/978-3-319-25772-3.

[51] B. P. Sanches, T. Basso, and R. Moraes. “J-SWFIT: A Java Software Fault

Injection Tool”. In: 2011 5th Latin-American Symposium on Dependable

Computing. 2011, pp. 106–115.

https://doi.org/10.1109/TPDS.2015.2426179
https://doi.org/10.1109/TPDS.2015.2426179
https://doi.org/10.1109/40.877951
https://doi.org/10.1109/40.877951
https://doi.org/10.1109/MICRO.2006.52
https://doi.org/10.1109/DSN.2013.6575314
https://doi.org/10.1007/978-3-319-25772-3

Bibliography 93

[52] Seongwoo Kim and A. K. Somani. “Area efficient architectures for in-

formation integrity in cache memories”. In: Proceedings of the 26th Inter-

national Symposium on Computer Architecture (Cat. No.99CB36367). 1999,

pp. 246–255. DOI: 10.1109/ISCA.1999.765955.

[53] Y. Song et al. “Experimental and analytical investigation of single event,

multiple bit upsets in poly-silicon load, 64 K*1 NMOS SRAMs”. In:

IEEE Transactions on Nuclear Science 35.6 (1988), pp. 1673–1677. DOI:

10.1109/23.25520.

[54] G. Tsiligiannis et al. “Multiple-Cell-Upsets on a commercial 90nm SRAM

in dynamic mode”. In: 2013 14th European Conference on Radiation and

Its Effects on Components and Systems (RADECS). 2013, pp. 1–4. DOI:

10.1109/RADECS.2013.6937429.

[55] Raoul Velazco, Pascal Fouillat, and Ricardo Reis. Radiation Effects on

Embedded Systems. Berlin, Heidelberg: Springer-Verlag, 2007. ISBN: 1402056451.

[56] Wei Zhang et al. “ICR: in-cache replication for enhancing data cache

reliability”. In: 2003 International Conference on Dependable Systems and

Networks, 2003. Proceedings. 2003, pp. 291–300. DOI: 10.1109/DSN.2003.

1209939.

[57] D. Zhu and H. Aydin. “Reliability-Aware Energy Management for Peri-

odic Real-Time Tasks”. In: IEEE Transactions on Computers 58.10 (2009),

pp. 1382–1397. ISSN: 0018-9340.

https://doi.org/10.1109/ISCA.1999.765955
https://doi.org/10.1109/23.25520
https://doi.org/10.1109/RADECS.2013.6937429
https://doi.org/10.1109/DSN.2003.1209939
https://doi.org/10.1109/DSN.2003.1209939

94 Bibliography

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	State of the Art
	Fault Types
	Multiple Bit Upsets
	Probabilistic Model
	Fault Consequences

	Fault Injection Techniques
	Fault Injection Overview
	Simulation-Based Fault Injection

	Reliability Techniques and Means
	Global View of Reliability Enchancement Techniques
	Global Memory Reliability Techniques

	Double Parity bit Single Redundancy
	Presentation and Motivation
	Probabilistic comparison between existing memory reliability techniques and DPSR
	Detection
	Correction
	Memory Space
	Discussion

	RETG: Reliability Enhancement Technique Grade

	Structure of the Fault Injector
	Overview
	Memory Accesses Impact onto Fault Injection
	Multiple Bit Upsets in the Model
	Global Algorithm
	Other Injection Modes
	Random Injection
	Determined Injection

	Experimental Results
	Experimental Setup
	Evaluation of our Injection Tool
	Efficiency
	Representativeness

	Simulation Overhead

	RETG computation
	Memory Reliability Techniques impact onto performance
	Mathematical Approach Verification
	Detection Probability
	Correction Probability

	Memory Reliability Techniques Comparison
	RETG estimation

	Conclusion
	Appendix A
	List of Usefull Parameters to Configure Fault Injection
	Explications

	Appendix B
	Example of a Script Used During Test Campaign
	Explications

	Publications
	Bibliography

