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Abstract

This thesis is formulated in three parts with eight chapters and presents a research topic dealing with controlled
processes/particles/agents in interaction.

In the first part of the dissertation, we focus our attention on the study of interacting controlled processes representing
a cooperative equilibrium, also called Pareto equilibrium. A cooperative equilibrium can be seen as a situation where
there is no way to improve the preference criterion of one agent without lowering the preference criterion of at least
one other agent. It is now known that this kind of optimization problem is related, when the number of agents goes to
infinity, to the optimal control of McKean—Vlasov processes. In the first three chapters of this thesis, we provide a precise
mathematical answer to the connection between these two optimization problems in various frameworks improving the
existing literature, in particular by taking into account the law of control while allowing a common noise situation.

More precisely, in Chapter 2, we first give a weak formulation of the McKean—Vlasov optimal control with common
noise and law of control, which is necessary to understand the optimization problem of McKean—Vlasov processes and to
analyze the behavior of cooperative equilibria when the number of agents goes to infinity. With the help of this necessary
weak formulation, using a notion of relaxed controls, in a non—Markovian framework with a common noise, a complete
analysis of the convergence of (approximate) cooperative equilibria is given in Chapter 3. Some properties of the optima
of the McKean—Vlasov optimal control problem are also proved.

Then, we pursue in Chapter 4 the analysis of the convergence of cooperative equilibria in a case where the empirical
distribution of controls is considered while allowing a common noise. Still using the weak formulation of Chapter 2,
by introducing a notion of measure—valued controlled process motivated by the Fokker—Planck equation verified by the
McKean—Vlasov processes, the characterization of the limits of the cooperative equilibria is provided within this framework
similar to the Chapter 3.

After studying the behavior of the cooperative equilibria, we conclude the first part in Chapter 5 where we spend times
in the analysis of the limit problem i.e. the McKean—Vlasov optimal control, through the establishing of the Dynamic
Programming Principle (DPP) for this stochastic control problem. Thanks to one more time the weak formulation of
Chapter 2 and an adaptation of measurable selection arguments, we give a DPP for various forms of the McKean—Vlasov
optimal control improving the existing literature in particular by considering weaker assumptions on the coefficients and
reward functions.

The second part of this thesis is devoted to the study of the interacting controlled processes now representing a Nash
equilibrium, also called competitive equilibrium. A Nash equilibrium situation in a game is a situation in which no one
has anything to gain by moving unilaterally from his own position. Since the pioneering works of Lasry and Lions [111]
and Huang, Caines, and Malhamé [84], the behavior of Nash equilibria when the number of agents goes to infinity has
been intensively studied and the associated limit game is known as Mean Field Games (MFG). In this second part, we
analyze first the convergence of the competitive equilibrium to the MFG in a framework with the law of control and with
control of volatility, then, the issue of the existence of MFG equilibrium in this context is studied.

In Chapter 6, by adapting the techniques used to study the behavior of the cooperative equilibria, with the introduction of
a new weak form of MFG equilibrium, that we coin measure—valued MFG equilibrium, and a notion of approximate strong
MFG equilibrium, we explore the convergence of competitive equilibria by taking into account the empirical distribution
of controls in a common noise case while controlling the non—common noise volatility.

We finish this second part in Chapter 7 by proving existence results of the measure—valued MFG equilibrium. The proof
is achieved by the use of a fixed point theorem, especially by Kakutani’s fixed point theorem. This existence result
induces the existence of approximate Nash equilibrium and approximate strong MFG equilibrium.
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Finally, the last part which includes only Chapter 8, is dedicated to some numerical methods to solve the McKean—Vlasov
limit problem. Inspired by the proof of the convergence of cooperative equilibrium, we give in Chapter 8 a numerical
algorithm to solve the McKean—Vlasov optimal control problem and we prove its convergence. Then, we implement our
algorithm using neural networks and test its efficiency on some application examples, namely the mean—variance portfolio
selection, the inter—bank systemic risk model and the optimal liquidation with market impact.

Keywords: Stochastic differential equation, stochastic control problem, Pareto equilibria, Nash equilibria, mean field
game, McKean—Vlasov equations, common noise, interacting particles, law of control, propagation of chaos, limit theory,
dynamic programming principle, measurable selection, HJB equation, numerical approximations, Monte—Carlo, neural
networks.
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Resumé

Cette these est formulée en trois parties avec huit chapitres et présente un sujet de recherche traitant des particules/
agents/ processus controllés en interactions.

Dans la premiére partie de cette dissertation, nous portons notre attention sur I’étude de processus controllés en interaction
représentant un équilibre coopératif, aussi appelé équilibre de Pareto. Un équilibre coopératif peut étre vu comme une
situation ou il n’existe pas de moyen d’améliorer la préférence d’un agent sans rabaisser la préference d’au moins un
autre agent. Il est maintenant bien connu que ce type de probléeme d’optimisation est lié, quand le nombre d’agents
tend vers 'infini, au controle optimal de ’équation de McKean—Vlasov. Dans les trois premiers chapitres de cette these,
nous donnons une réponse mathématique précise a la connection entre ces deux problemes d’optimisation dans differents
cadres améliorant la littérature existante, en particulier en prenant en compte la loi du contréle tout en considérant un
bruit commun.

Plus précisement, dans le Chapitre 2, d’abord nous donnons une formulation faible du contréle optimal de I’équation de
McKean—Vlasov avec bruit commun et loi du contrdle, qui est nécessaire pour comprendre le probleme d’optimisation
de McKean—Vlasov and analyser le comportement des équilibres coopératifs quand le nompbre d’agents va vers l'infini.
Gréce a cette indispensable faible formulation, en utilisant une notion de contréle relaxé, dans un cadre non-Markovien
avec bruit commun, une analyse compléte de la convergence des équilibres coopératifs est donnée au Chapitre 3. Quelques
propriétés des optima du probleme de contréle de McKean—Vlasov sont aussi prouvées.

Ensuite, nous poursuivons dans le Chapitre 4 ’analyse de la convergence des équilibres coopératifs dans un cas ou
la distribution empirique des contrdles est considérée tout en permettant un bruit commun. Toujours en utilisant la
formulation faible du Chapitre 2, en introduisant une notion de processus controlés a valeur mesure motivé par I’équation
de Fokker-Planck vérifiée par les processus McKean-Vlasov, la caractérisation des limites des équilibres coopératifs est
fournie dans ce cadre similaire au Chapitre 3.

Apres avoir étudié le comportement des équilibres coopératifs, nous concluons la premiere partie dans le Chapitre 5 ou
nous passons du temps a ’analyse du probleme limite c’est & dire le contrdle optimal McKean—Vlasov, en établissant le
Principe de Programmation Dynamique (PPD) pour ce probléme de controle stochastique. Grace une fois de plus a la
formulation faible du Chapitre 2 et une adaptation des arguments de sélection mesurable, nous donnons un PPD pour
différentes formes du controle optimal McKean—Vlasov améliorant la littérature existante notamment en considérant des
hypotheéses plus faibles sur les coefficients et les fonctions de récompense.

La seconde partie de cette these est consacrée a ’étude des processus contrdlés en interaction représentant désormais un
équilibre de Nash, également appelé équilibre compétitif. Une situation d’équilibre de Nash dans un jeu est une situation
dans laquelle personne n’a rien a gagner en quittant unilatéralement sa propre position. Depuis les travaux pionniers de
Lasry and Lions [111] et Huang, Caines, and Malhamé [84], le comportement des équilibres de Nash lorsque le nombre
d’agents va a l'infini a été intensivement étudié et le jeu limite associé est connu sous le nom de jeux a champ moyen
(MFG). Dans cette seconde partie, nous analysons d’abord la convergence des équilibres compétitifs vers les MFG dans
un cadre avec la loi de contrdle et avec le controle de la volatilité, puis, la question de ’existence de 1’équilibre MFG dans
ce contexte est étudiée.

Dans le Chapitre 6, en adaptant les techniques utilisées pour étudier le comportement des équilibres coopératifs, avec
I'introduction d’une nouvelle forme faible d’équilibre MFG, que nous nommons equilibre MFG & valeur mesure, et une
notion d’équilibre MFG fort approximatif, nous explorons la convergence des équilibres compétitifs en prenant en compte
la distribution empirique des controles dans un cas de bruit commun tout en contrdlant la volatilité non commune.

Nous terminons cette seconde partie dans le Chapitre 7 en prouvant des résultats d’existence de ’équilibre MFG a valeur
mesure. La preuve est obtenue par 'utilisation d’un théoréme de point fixe, en particulier par le théoreme de point fixe
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de Kakutani. Ce résultat d’existence induit I’existence d’un équilibre de Nash approximatif et d’un équilibre MFG fort
approximatif.

Enfin, la derniére partie qui ne comprend que le Chapitre 8, est dédiée a quelques méthodes numériques pour résoudre
le probleme de contole de McKean-Vlasov. Inspiré de la preuve de la convergence d’équilibre coopératif, nous donnons
dans le Chapitre 8, un algorithme numérique pour résoudre le probléme de controle optimal McKean-Vlasov et nous
prouvons sa convergence. Ensuite, nous implémentons notre algorithme & partir des réseaux de neurones et testons son
efficacité sur quelques exemples d’application, a savoir la sélection de portefeuille par moyenne-variance, le modele de
risque systémique interbancaire et la liquidation optimale avec impact de marché.

Mots-clés: Equation différenticlle stochastique, probléme de controle stochastique, équilibres de Pareto, équilibres de
Nash, jeux a champ moyen, équations de McKean—Vlasov, bruit commun, particules en interaction, loi de controle,
propagation du chaos, théorie des limites, principe de programmation dynamique, sélection mesurable, équation HJB,
approximations numériques, Monte—-Carlo, réseaux de neurones.



Frequently used notation

(7) Given a metric space (E, p), we denote by B(F) its Borel o—algebra, and by P(E) the collection of all Borel probability
measures on F. For every constant p > 1, we denote by P,(E) the set of u € P(E) such that [, p(e,eg)?u(de) < oo for
some (and thus for all) ey € E. We equip P,(E) with the Wasserstein distance W, defined by

1/p

Wotpar')i= (_int [ plecerae.de))™, () € Po(E) x Po(E),
Aell(p,p') JE JE

where TI(p, ') denotes the set of all probability measures A on E x F such that A(de, E) = p and A(E,de’) = p/(de’).

Let 4 € P(F) and ¢ : E — R be a p—integrable function, we write

(o)1= () = Bl = [ plepcae)
Let (E’, p’) be another metric space and p’ € P(E’). We denote by u®p' € P(E x E’) their product probability measure.
Given a probability space (2, F,P) equipped with a sub-c-algebra G C F, we denote by (P9),cq the conditional
probability measure on P knowing G (whenever it exists). For a random variable ¢ : Q — E, we write £LF(¢) :=Po ¢!
the law of & under P, and for any w € Q, LF(¢|G)(w) := PY 0 ¢! the conditional distribution of ¢ knowing G under P.

(#) For any (E,A) and (E’, A’) two Polish spaces, we shall refer to Cy(E, E’) to designate the set of continuous functions
[ from E into E’ such that sup..z A'(f(e),ep) < oo for some e € E’. Let N* be the notation of the set of positive
integers. Given non-negative integers m and n, we denote by S™*" the collection of all m x n—dimensional matrices
with real entries, equipped with the standard Euclidean norm, which we denote by | - | regardless of the dimensions, for
notational simplicity. We also denote S™ := S"*™  and denote by 0,,x. the element in S™*"™ whose entries are all 0, and
by I,, the identity matrix in S". For any matrix a € S" which is symmetric positive semi-definite, we write a'/? the unique
symmetric positive semi-definite square root of the matrix a. Let k be a positive integer, we denote by C’f (R™;R) the set
of bounded maps f : R — R, having bounded continuous derivatives of order up to and including k. Let f : R® — R
be twice differentiable, we denote by Vf and V2f the gradient and Hessian of f.

(791) Let T > 0, and (X, p) be a Polish space, we denote by C([0,T],%) the space of all continuous functions on [0, 7]
taking values in X. Then C([0,7],%) is a Polish space under the uniform convergence topology, and we denote by
| - || the uniform norm. When ¥ = R* for some k € N, we simply write C* := C(]0,T],RF), also we shall denote by

Ch, := C([0,T], P(R¥)), and for p > 1, CiiF == C([0, T], Pp(R¥)).
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Chapter 1

Introduction

1.1 Intuitions and preliminaries

The uncontrolled McKean—Vlasov SDE One of the main objectives of this thesis is to understand (in a certain
sense) the behavior of N—interacting controlled particles when N goes to infinity. However, let us begin by describing
the N-interacting particles (without controls) to fix the ideas, and show the main differences and difficulties with the
controlled case. Let (©,[F,IP) be a filtered probability space supporting (W%);en- a sequence of independent R%-valued
F-Brownian motion, and (£%);en- a sequence of i.i.d. Fy-measurable random variables.

We start with the no-common noise situation. What we call N-interacting particles (without common noise) are
the F-adapted continuous process (X!,...,X") governed by the following stochastic differential equation (SDE)

t t
:§i+/ b(s, X, 2" )ds+/ o (s, Xin, o) aW!, t € [0,T7], P-as. (1.1.1)
0

1 O
S
=1

An important observation in this equation is the fact that the map (b, o) : [0,T]xC([0, T]; R™) x P(C([0, T]; R™)) — R™ x
R"*4 are independent of i and NN, and the sequence (W?, fi)lsig n are i.i.d. Therefore, these particles are exchangeable
in the sense that: for any permutation p : {1,..., N} — {1,..., N}, the law of (XP(1) ... XP()) is independent of
p. This is a key remark because if such a system is tractable mathematically when N goes to infinity, it is because this
system has this kind of symmetry.

Since the seminal papers of McKean Jr. [121] and Kac [91], and the monograph of Snitzman [149], the behavior when
N goes to infinity of these kind of systems has been intensively studied and is now well known and understood. Let us
give some intuition of the limit of such a system. The only interaction between the particles is through the empirical
distribution ™ X. If for a moment, we assume that the map (b,o) is independent of "X i.e. defined on [0,7] x
C([0,T];R™), we can notice that the sequence (X%);en+ is i.i.d, so that by the law of large numbers (with integrability
conditions), P-a.e. when N — oo the empirical distribution goiv’x converges to LF(X}, ), which is a deterministic value.
Now, back to our original (b, o) with dependence w.r.t. ¢™'* motivated by the previous observation if we have in our
mind that cpiv X converges to a deterministic value y;, so when N is large enough, the sequence (X);en+ is quasi i.i.d,
in fact, if we replace u; by @iv’x in Equation (1.1.1), we find a new sequence ()A(i)ieN* which is an i.i.d sequence of
distribution X where

t t
:§+/ b(s,XsA.,,us)ds—F/ U(S,Xs/\.,us)dWs, t€[0,7], P-a.e., (1.1.2)
0 0

with (W, €) having the same law as (W1, ¢1) and independent of (W?, £%);en+. Formally speaking, by expecting that the

empirical distributions goiv’x and %{v X are close enough when N — oo, so share the same limit, the deterministic value
1y must verify: for a continuous function f7

EP[f(Xin)] = EP[f(X})] = lim —Z]EP (Xi, )] = lim —ZEP (XE )] = (foe ) = LP(Xn) = pe. (1.1.3)

N—oo N N—oco N
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With the condition £F(X;a.) = j, the Equation (1.1.2) is known as the McKean-Vlasov equation (without common
noise). In the case where the previous equations are well defined and admit unique solutions (for example when (b, o) are
. o . . . N, X .
Lipschitz in (x, ¢) uniformly in ¢), the convergence result th @y " = p; has been proved in many frameworks see for
— 00

instance Oelschlager [133], Gartner [71], Graham and Méléard [74] and [149]. This result is called propagation of chaos
in the literature, a terminology coming from Mark Kac.

The use of these type of particles is to model the interaction/interdependence which can arise in the study of certain
systems in Physics, Biology, Economics, Finance, ... . The independence assumption between the sources of noise
(W%);en+ is not pertinent most of the time. Consequently, to be more accurate in our modelling, adding another source
of correlation can be very useful in practice. This motivated the research in this subject to consider the interacting
particles with common noise. Formally speaking, in Equation (1.1.1), the idea is to add a source of noise via another
Brownian motion B called common noise, independent of (£¢, W*);en+ and impacting all the N—particles. More precisely,
(X1,... , X¥) follows now the dynamic

t t t
X;:gi+/ b(s7XgA,,¢SNvX)ds+/ U(s,XéA_,wf’X)dW;—i—/ oo(s, Xir, N *)dBs, t € [0,T], P-ae. (1.1.4)
0 0 0

1 N
N,X 2 : )
Py = 7N L 5X2/\ .

In this situation, we notice that the interactions between the particles are through the empirical distribution o™X and
the Brownian motion B. The system still keeps a certain symmetry. Indeed, the map (b, o, 0¢) are independent of (i, V)
and for any permutation p: {1,..., N} — {1,..., N}, the law of (X?(") ..., X?(") B) is independent of p. Hence, the
question of the behavior of this correlated system when N — oo can be asked mathematically. However, in contrast with
the no—common noise situation, here, we cannot expect that the limit of the empirical distribution goiv X is deterministic.
Indeed, if the map (b, 0, 0¢) is independent of X the sequence (X¢, )ien~ is conditionally independent and shares the
same conditional distribution given the o—field G; := 0{B;, 0 < s < t}. By the law of large numbers (or at least an easy
extension taking into account of the conditional i.i.d property), one has

lim o)X = EP(X%A_|Qt), P-a.e.
N —o00

The limit is then G;—measurable. Therefore, in the case of dependence w.r.t. ™% of (b, c,00), a limit of @™'* cannot
be deterministic and will be at least a G;—measurable random probability measure. In the case the limit is precisely a
G;—measurable random probability measure p;, the same intuition used previously in the no—common noise setting allows
to say that when N is large enough, we can assume that in Equation (1.1.4) ¢ X is equal to py, then (X?);en- is quasi

conditionally i.i.d., and the new sequence ()A(i)ieN* is conditionally i.i.d., where for each i, (X!, B, W* ¢%) has the same
distribution as (X, B, W, ¢) and

¢
Xt :§+/ b(S7XS/\~7,U‘s)dS+/

0 0

The same line of heuristic argument as (1.1.3) leads to

Mt = [:P(th’gt)-

t

t
J(S,XS/\.,us)dVVS +/ Uo(S,XS/\,,,us)st, t€[0,T], P-a.e. (1.1.5)
0

Equation (1.1.5) is sometimes called conditional McKean—Vlasov equaiton, and the corresponding convergence result
conditional propagation of chaos. The presence of a random probability measure makes it less easy to transform the
previous formal derivations into a rigorous proof. But the rigorous proof latter has been established in Kurtz and Xiong
[101] and Dawson and Vaillancourt [53].

The controlled McKean—Vlasov SDE In a spirit of more relevant and practical modeling research, besides the
exogenous parameters (b, o, o) and the noise sources ((£%, W¢);en+, B), it can be very useful to add endogenous parameters
like controls (a*);en+. The idea can be seen as the desire to allow particles to adapt to a particular situation, endogenously.
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For instance, in Physics, allowing the particles to move in a certain environment while minimizing their energy, in
Finance, maximizing a portfolio’s expectation value containing many assets while minimizing its variance. Mathematically
speaking, this leads to consider the (O’{fl, Win., Bin, 1 <4 < N}) —predictable process @ := (abV,..., a™¥) in

order to control the process (X!, ..., X%) governed by the SDE

te[0,T]
—_ . . t J— . t —_ . . . t — .
X?”:EHL/ b(s, ?AZ.,cin,a;’N)der/ a(s,Xf;“X.moiV,a?N)dW;Jr/ a0 (s, Xon., o8 s ag™)dBs, t € [0,T], (1.1.6)
0 0 0

1 N
N ._
Pt = N ;:1 6(X1 ai,N)'

TN t

Here, in addition to the empirical distribution of states (™'* and the common noise B, the interactions potentially also
appear through the controls (o™, ... a™). Consequently, although the map (b, o, o) does not depend on (i, N), the
presence of controls (al'V, ..., a™*V) makes the system less symmetrical than before. The question of the mathematical
tractability of the behavior of this system when N goes to infinity, becomes much more delicate. However, following
the intuition of the uncontrolled situation i.e. the propagation of chaos, a realistic conjecture is to consider that the
controlled system (1.1.6) is related to the controlled process X where

ey

¢ ¢ ¢

Xp :§+/ b(s,Xg",\_,ﬁs,as)der/ o (s, X3 Ty, o) AW +/ o0(s, XS Hs, as)dBg, t € [0,T], P-ae., (1.1.7)
0 0 0

= LP(X;"A.,at’gt),

with o a (0{&, Win., Bia.})iejo,rj-Predictable process, seen as a control. We want to work with controls as general
as possible for more flexibility, which, in this case, means only (0{&, Win., Bia.})tejo,r)Predictable processes. Then a

convergence result of type “Nlim @iv A e, P—a.e. 7 is clearly not possible.
—00

As we said in the preamble, the control of the system (or the particles) makes it possible to refine the modeling via an
optimization procedure which creates endogenous parameters. When we use the term optimization, it raises the natural
question of the criterion of optimization/equilibrium to consider. In this thesis, we will focus our analysis on two criteria:
cooperative equilibrium and competitive equilibrium.

1.1.1 Cooperative equilibrium or Pareto optimum

The cooperative equilibrium refers to the economic concept of Pareto optimum associated to Vilfredo Pareto, an Italian
engineer and economist. A Pareto optimum can be described as a situation where it does not exist an alternative allocation
where improvements can be made to at least one agent’s well-being without reducing any other agent’s well-being. In
our framework, this is translated mathematically by saying that a@* := (a*"V, ..., o*™:") is a Pareto optimum if: for
any control 3 := (BN, ..., 3VN) one has

N T — - . —x - N T = . . = .
ZEP[/O Lt X5 o ap™M)dt + g( %A’?,@g’x)} > ZEP[/O L, X5, grNYdt + g(X50 o ™) |- (1.1.8)
i=1 i=1

Our goal is to understand the behavior when N — oo of the Pareto optimum. It is now known that this Pareto optimum
is related to the optimal control o* satisfying: for any control

T
| [ 200X 206 01]G) ot + (X5 £(XF |6r) |

T
zE[/ L(t,Xéi.,£(XEA.7ﬁtygt),ﬂt)dt+g(X;iA.,£(X;iA.\gT))].
0

This optimization problem is known as the stochastic control of McKean—Vlasov processes or Mean Field Control problem
(MFC). There are not many articles in the literature which treat rigorously the connection of these two problems, also
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called limit theory. When this question is raised, only special cases of (b, 0, 0q) are taken account without common noise
ie. 09 = 0. Let us cite Fischer and Livieri [67] who studied a mean-variance optimization problem stemming from
mathematical finance, and obtained a convergence result allowing to understand the behavior of the Pareto optimum in a
particular situation. For general setting, such a study has been made in Lacker [104] in a context without common noise
(o0 = 0) and without the law of control, where an essential tool is a compactness argument, which is made accessible
by formulating an appropriate relaxed control, in the spirit of El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], and
by introducing suitable martingale problems, similar to those of Stroock and Varadhan [150]. The same formulation and
arguments have also been used in Bahlali, Mezerdi, and Mezerdi [15; 16; 17; 18] and Chala [50] to study stability and
approximation problems.

In the first part of this thesis, we will put our attention on the study of this connection, extending the results already
obtained on this subject. Namely, in a first step, in a general framework, we will extend the results of [104] in the case
with common noise and including the law of control. We will make a link between the (approximate) Pareto optimum
and the (approximate) optimum of the McKean—Vlasov optimal control problem. Next, following the work of Pham
and Wei [139; 138], we will study the limit problem i.e. the McKean—Vlasov optimal control problem by establishing a
Dynamic Programming Principle (DPP) with the fewest possible assumptions.

While drawing inspiration from techniques already used in the literature (mostly [104] for the limit theory, and [139; 138]
for the DPP), our techniques will turn out to be very different, and will allow us to deal with cases that could not be
taken into account before. Furthermore, the techniques will be general enough to help us understand the behavior when
N — oo in the situation of competitive equilibrium.

1.1.2 Competitive equilibrium or Nash equilibrium

The Nash equilibrium, named after the mathematician John Forbes Nash Jr., is well known in the economic literature.
The idea behind this notion of equilibrium is the desire to define a strategy for a game in which no player has anything

to gain by changing only their own strategy. Here, in more mathematical terms, @* := (a*VV ... o*™¥") is a Nash
equilibrium if: for any control 8, and any i € {1,..., N}, if we introduce the control @” by
az‘,ﬂ . (a*’l’N, o a*’i_l’N7 5’ a*,i-{-l,N7 . a*,N,N)7
one has
P T & N _xi,N a*i  NX P T afi N afi  NX
E /() L(taxt/\-’ asot ’Oét” )dt+g(XT/<7SOT’ ) ZE /0 L(taxt/\< ' acpt aﬂt)dt—i_g(XT/\.’ aSOT’ ) . (119)

As previously, our goal is to understand the behavior when N — oo of the Nash equilibrium. Since the pioneering work
of Lasry and Lions [111] and Huang, Caines, and Malhamé [84], the associated limit problem is largely studied in the
literature and is known under the name of Mean Field Games (MFG). It can be described, loosely speaking, as follows:
a* is an MFG equilibria if for any

T
EM L(t,X?A.,z(XfA',aﬂgtya:)dt+g(X%A.,£(X%A.\9’T)>]

*

T
ZE[/ L(t,Xt/\.,E(Xf“A_,aﬂgt),,é’t)dt+g(XTA.,E(X%;\,‘QT))}, (1.1.10)
0

where
AXy = b(t, Xen, L(XP5, 07 |Ge), Be)dt + o (£, Xen, L(XFh, 0 |Ge), Be) AWe + 00 (t, Xieno L(XEn. 0F|Gr), B)d By

This structure means that, when the process (E(Xf‘i_,aﬂgt)) te(0.7] is fixed, a single representative player solves an
optimal control problem. A representation property of the entire I;Opulation is given to the optimal control a* by the
McKean-Vlasov equation verified by X . a* can be seen as an equilibrium. In contrast to the stochastic control of
McKean—Vlasov processes, the MFG literature is very large. As a main reference, let us cite the book of Carmona and
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Delarue [43; 44] and that of Cardaliaguet, Delarue, Lasry, and Lions [38] which deal with many questions related to this
problem (existence, uniqueness, convergence,...) with no control in the volatility (o, 00) and without law of controls.
However, most of the time, the results focus on the properties of the limit problem. The connection between Nash
equilibria and MFG is rarely treated. As major papers used for our study, we can evoke Fisher [68] and the general
analysis of Lacker [103] using the notion of weak solution without the law of control and without control of the volatility
(0,00).

By an adequate adaptation of techniques used in the cooperative framework, in the second part of this thesis, we will
study the convergence of Nash equilibrium. Especially, we will extend the results of [103] by taking into account the law
of control while allowing the volatility o to be controlled. Also, we will consider an approximate MFG equilibrium by
conceding a small error in the optimization (1.1.10), and we will show that this solution requires fewer assumptions to
be well defined and is related to the approximate Nash equilibrium. This will be possible by considering a new notion
of MFG equilibrium. We will come back to our approach later in Section 1.3 for some details.

1.2 McKean—Vlasov optimal control with common noise

1.2.1 Limits of cooperative equilibrium
1.2.1.1 Motivation

As evoked in Section 1.1, in a general framework, we cannot expect a convergence result of the type

lim @iv,x = g, P-a.e.

N—o0
For lack of a better way, the weak convergence or convergence in distribution is the best we can hope for a possible
relationship between (approximate) cooperative equilibria and optima of the McKean—Vlasov optimal control problem
(this is also true for the case of (approximate) Nash equilibrium and MFG). Most of the time this is largely enough.
Indeed, as we have seen, the idea is to optimize a quantity which is the expectation of a functional of the particles. Thus,
taking into account the distribution of particles appears naturally, and getting a weak convergence provides a first answer
to the understanding of the behavior of such a controlled system.

A first general result is brought by Lacker [104] in the case with no—common noise (0 = 0) and without law of controls i.e.
with ™% instead of ¢ in the coefficients (b, 0, L, g). It can be formulated as follows (with simplifications and avoiding
some technical aspects): when o9 = 0, so G; := {0,Q}, and the coefficients (b, o)(t,x, p, a) are continuous in (x, ,a)

uniformly in ¢, Lipschitz in (x, ) uniformly in (¢,a), and with linear growth, then the sequence (]P’ o ((pg’x)fl) Nen-

*,1,N *,N,N
e, )

associated to the exy!-Pareto equilibrium (a is relatively compact when Nlim ey = 0, and for any
— 00

convergent sub—sequence (]P’o (gog’“’x) 71) pen- there exists a sequence of ({&, Win.})ie[o,r—Predictable controls (a®) pen-

k

s.t. a® is a dy—optimum for the MFC problem with klim 8 = 0, and if X* denotes the solution of Equation (1.1.7)

— 00
associated to the controls o, and

if P:= lim Po (@?’“X)fl then one has lim Po (Xéi,\,)71 e supp(P), (1.2.1)

k—o0 k—o0

where supp(]IA”) is the support of the probability measure P which is a probability on P(C([0,T);R™)). The idea of the
proof of this result is to put the interacting particles/ ey—Pareto optimum especially the empirical distribution in a good
space. Then, obtaining some estimates which ensure the relative compactness of the sequence of empirical distributions.
And finish by characterizing the limits with a martingale problem and a relaxed controls, we will come back to these
concepts a bit later. The proof is technical, and uses tools from proofs of propagation of chaos and stochastic control.
Notwithstanding seeing the proof, an important observation of the convergence in (1.2.1) is the fact that the sequence of
empirical distributions of controlled interacting particles of Equation (1.1.6) and the sequence of distributions of controlled
McKean—Vlasov processes of Equation (1.1.7) share the same accumulating points. Thus, as we said in Section 1.1.1, the

1Tt means in the optimization (1.1.8) verifying by the Pareto optimum, a small error e is conceded.
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cooperative equilibrium and the optimum of the MFC problem are related. Hence, trying to understand the behavior of
the controlled interacting particles is similar to trying to understand the behavior of controlled McKean—Vlasov processes.

From the result (1.2.1), a natural question is whether this type of result is true in the case with common noise i.e. o not
necessarily null. Despite the appearances, this is not an easy question. In the proof of (1.2.1), the weak convergence is
used everywhere. To simplify, the fact that in the coefficients (b, o) of the associated McKean—Vlasov process appears a
deterministic probability £F (Xf‘A) allows to use this convergence through the continuous coefficients (b, o), and this is an
important fact in this proof. In the situation where we have the conditional probability £F (Xf‘/\i |Qt) instead of £F (XS‘A_),
this difference generates a huge problem. The weak convergence of sequence of controlled processes X< can no longer be
used through the coefficients (b, o). Indeed, the weak convergence of sequence of type £F(X¢.) does not induce in general
the convergence of sequence of random probabilities of type £F (Xta/\ ]gt). We then need to have another approach.

Another important observation with a view to extend this result in the case with a common noise is to notice that the
weak convergence is independent of the choice of the filtered probability space (2, F,P). The distribution of the random
variable does not depend on the probability space in which the random variable resides. Therefore, the question of the
writing of Equation (1.1.6) and Equation (1.1.7) in all spaces possible appears naturally. In the literature, this is called
weak formulation of (controlled) SDE, while writing of Equation (1.1.6) and Equation (1.1.7) on a fix probability space
with a point—wise uniqueness, is usually called strong formulation. The idea of the weak formulation is to keep the
fundamental properties of processes involved in the strong formulation of the SDE while allowing any strong solution
to be seen as a weak solution and any weak SDE to be approximated by a sequence of strong SDE when we have
some additional assumptions on (b, o, 0¢). Usually, the well-posedness of weak SDE requires weaker assumptions on the
coefficients (b, 0, 0¢), hence the qualifier of weak. A weak formulation for Equation (1.1.6) is standard in the literature
and not really crucial for our goal here. But a weak formulation for Equation (1.1.7) i.e. the Mckean—Vlasov equation in
the case of common noise is not classic and not a trivial extension. The randomness of the probability measure u; and
the randomness of the control @ may be incompatible in the sense that a naive weak formulation will not have the good
properties previously mentioned. The noise generated by the control a; and the random probability measure p; need to
be handled carefully.

In the first part of this thesis, our goal will be to extend the result (1.2.1) in a more general setting. Thus, Chapter 2
will give a good weak formulation of the controlled conditional McKean—Vlasov SDE (1.1.7) essential to try to answer the
question of weak convergence. After, in Chapter 3, we will study the characterization of the limits of Pareto equilibria with
common noise in the case where og is uncontrolled and with no law of control. And finally, in Chapter 4, in a Markovian
framework with o constant, we will study the natural extension consisting in replacing the empirical distribution of
states goiv’x by the empirical distribution of states and controls % Zil 5(X77,a"’”") in the coefficients (b, o, L) i.e. the case
with law of controls. This extension, although rarely studied in the literatutre,t is quite natural and can be very useful in
modeling in Finance for example. In this setting, we will characterize the limit of controlled interacting particles. This
will turn out to be a non—trivial case.

We want to emphasize that, while sharing some similarities with the techniques used by [104] for the proof of (1.2.1), our
techniques deviate considerably from it. Adding a common noise and later taking into account the empirical distribution
of states and controls turn out to be a difficult extension requiring radically different tools.

1.2.1.2 Towards a characterization of the limits: an essential weak formulation

Literature and motivations The notion of weak solution of SDE is standard in the literature. As mentioned
previously, the idea can be understood as the desire to be able to write the SDE on all the possible probability spaces. In
the case of control of classical SDE, in our situation it means no Mckean—Vlasov SDE (no fi, or ), this notion is largely
discussed in El Karoui and Tan [62]. To be simple, the weak formulation is obtained by weakening the measurability
requirements of the main random variables X and « (in the controlled case) while keeping the equation verified by
these variables. Thus, X and a become adapted to the general filtration of the probability space considered instead of
(0{& Win.})teo,r) in the strong formulation (we recall that we have taken here oo = 0). Besides, the equation verified
by (X, a), the Brownian motion W and the initial value £ is still true in the probability space considered. Therefore, any
strong controlled SDE can be seen as a weak controlled SDE, and any weak controlled SDE can be reached by a sequence
of strong controlled SDE when (b, ) are Lipschitz for instance (see [62]).
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In the case of McKean—Vlasov SDE without common noise, the associated weak formulation is quite close to the notion of
weak formulation in the no-McKean-Vlasov case, and does not present any difficulty (see [104]). The case with common
noise is on the other hand much more delicate. Indeed, here besides X and «, we have to take into account the randomness
of . Following the previous ideas of weak formulation, a naive approach is to enlarge the filtration to which  is adapted,
that is to say letting i be adapted to the general filtration of the space and not adapted to G := (G;):e[o,r7- But, this
approach is senseless in the Mckean—Vlasov setting with common noise because 7 is adapted to the common noise B (if
we think of the interacting particles), so in general the filtration of the common noise, necessarily a sub-filtration, cannot
be replaced by the general current filtration. Besides, in general, it is not possible to approximate a F—adapted process
by a sequence of G—adapted processes, even for weak convergence. Notice also that the randomness of the control « can
interfere with the randomness of zi. The approximation of any weak controlled SDE by a sequence of strong controlled
SDE is achieved by an approximation of the control «, but « appears also in & (through X“ and «), therefore dealing
these two randomness can be delicate. Consequently, the weakening of the adaptability of 7 must be done carefully with
some additional constraint. Motivated by the weak formulation considered in Carmona, Delarue, and Lacker [49] and
the techniques of [62], we will formulate an adequate weak formulation.

Main results By borrowing some ideas of the weak formulation of [49], thanks to a notion of compatible filtration in
particular the (H) Hypothesis, and the martingale problem, we will formulate a good weak formulation for our problem
that is to say: any strong control will be a weak control, the weak formulation will be well defined with fewer assumptions,
the set of weak controls enjoys some convexity property and any weak control will be reached by a sequence of strong
controls. In these properties, the most delicate is the last one. To show this result, we will use an approximation by
discretization considered in [62] combined with the (H) Hypothesis properties of the weak control. Moreover, our proof
allows to fill a subtle technical gap in the literature related to the notion of independence and that of measurability (see
Remark 2.3.14 for more details).

1.2.1.3 Relaxed formulation and charaterization of the limits

Literature and motivations As we have seen in Section 1.2.1.1, the Pareto optimum when N — oo, and the optimum
of the MFC problem share in some sense the same accumulating points. A candidate for this set of accumulating points
is the set of relaxed controls.

In the classical optimal control theory, the set of relaxed controls has been introduced to recover a closed and convex set,
while ensuring that its elements could be appropriately approximated by strong or weak controls. The point was that
it then becomes easier in this formulation to deduce the existence and stability properties of the optimal solution, while
ensuring under mild conditions that the value of the problem is not modified.

In the no Mckean—Vlasov case, the relaxed formulation in the stochastic control problem is usually obtained by interpreting
the controlled process and the control as a probability measure on a good canonical space. This good canonical space in
this situation is C'([0,T]; R™) x M(A) where A is the set where the control take its values, and M(A) is the set of Borel
measure ¢ on A x [0,7] such that the marginal distribution of ¢ on [0,77] is the Lebesgue measure i.e. ¢(A x [0,¢]) = ¢.
By using a martingale problem characterizing the SDE, a relaxed formulation is then obtained in this classical case (see
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63]).

Similarly to the previous weak formulation (or weak control), a relaxed formulation in the McKean—Vlasov setting
without common noise and without law of control is very close to the classical setting (see [104]). However, as mentioned
in Section 1.2.1.1, the case with common noise is radically different. The presence of the common noise generates some
significant technical hurdles, especially due to the appearance of the conditional distribution terms, which are generally
not continuous with respect to the joint distribution.

Main results Inspired by ideas from [63], [49] and [104], when the volatility o is uncontrolled and without the presence
of the law of control, in Chapter 3 of this first part, we will provide a relaxed formulation which will be necessary to link
later the Pareto optimum when N — oo, and the optimum of the MFC problem.

This set of relaxed controls will be found by considering an enlarged canonical space for the interpretation of the controlled
process and the control as a probability measure. The canonical space will bring a particular attention to the conditional
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probability measure EP(X “‘QT). We will also need to add a compatibility property of filtrations ( (H)-Hypothesis
condition) as in the weak formulation, and a conditional martingale problem or a family of martingale problem.

We will prove that, in this setting:
e any strong control can be seen as a relaxed control;

e put in a good space, any sequence of (approximate) Pareto optima, when N — oo, is relatively compact and its
limits are all relaxed controls;

e any relaxed control can be approximated by a sequence of strong controls and a sequence of Pareto optima when
N — o0.

Therefore we link the Pareto optimum when N — oo, and the optimum of the MFC problem. All of this will be possible by
using the weak formulation, a technical proof of approximation involving (conditional) martingale measures, compactness
results, and a propagation of chaos proved in a slightly different context.

1.2.1.4 Measure—valued processes and limits with law of control

Literature and motivations Despite the general aspect of the previous relaxed formulation, taking into account the
empirical distribution of the controlled states and controls % Zf;l (5(X7¢ i) is not possible. Considering the general
t) ot

forms of control as we do, generates some continuity problem. Indeed, the continuity of the map t — goiv X is crucial.
But, in the case where we consider the empirical distribution % Zfil 6(xi ai Ny this type of continuity is no longer true.
t

5
Therefore, our tool of relaxed controls can not be used and we need to do something else. We want to emphasize that
this extension is quite natural and can be very useful in the application (see [126]). However, there are not many papers
in the literature which study the mean field control problem with law of control and its connection with a cooperative
equilibrium. To the best of our knowledge, only the recent papers of Lauriere and Tangpi [113] (with strong assumptions)
and Motte and Pham [127] (for Mean-field Markov decision processes) treat the convergence question. Our approach on
this subject is very different of these two papers and is motivated by the Fokker—Planck equation verified by the process

(EP (Xf‘ |gt))te[0,T]’

Main results Recall that when N — oo, the Pareto optimum with the empirical distribution of controlled states and
controls and the optimum of the MFC problem with law of control must have the same accumulating points. By keeping
in mind this fact, in Chapter 4 of this first part, in a Markovian setting with oy constant and ¢ non—degenerate, we will
formulate a set of measure—valued controls which will play the same role as the set of relaxed controls in the case without
law of control.

In a first step, we will show that
e any strong control can be interpreted as a measure—valued control;

e put in a good space, any sequence of (approximate) Pareto optima, when N — oo, is relatively compact and its
limits are all measure—valued controls;

e any measure—valued control can be approximated by a sequence of strong controls and a sequence of Pareto optima
when N — oo.

Consequently, we characterize the sequence of Pareto optima and show its link with the MFC problem. The characterization
is possible by the appropriate use of (controlled) Fokker—Planck equations. Inspired by the techniques developed in the
proofs of Gyongy [76], especially [76, Lemma 2.1] (an adaptation of Krylov [98]) and [76, Proposition 4.3] which are
regularization results, we will determine the desire set of measure—-valued controls thanks to a Fokker—Planck equation.
The conditions used on the coefficients are general, except the non-degeneracy of the volatility o. This assumption is
capital to deal with the Fokker—Planck equation.
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In a second step, in the case without common noise but still with the law of control, when ¢ is uncontrolled of type
o(t,z,v,a) = o(t,z), we will show that it is enough to work only with the closed-loop controls (a(t, X{), L (X, a(t, X{)))
instead of open—loop controls (a(t, E,Win.), LF (Xto‘7 a(t, &, WM.))). Indeed, we will prove that any open—loop control can
be reached by a sequence of closed—loop controls and a sequence of closed-loop Pareto optima. This result is proved
by using technical estimates on the density of the Fokker—Planck equation verified by (EP (Xt“)) +€[0.T] and proved in
Bogachev, Krylov, Rockner, and Shaposhnikov [31]. We want to emphasize that the classical way in the literature to
prove an equivalence between the closed—loop and open—loop does not work here. The Markovian projection with the
convexity assumption as in [104] and Lacker, Shkolnikov, and Zhang [108] can not be apply in the presence of the law of
control. The law of control cannot be recovered after projection.

1.2.2 Dynamic Programming Principle for the limit problem
1.2.2.1 Literature and motivation

In the first three chapters of the first part of this thesis, we have intensively studied the convergence of cooperative
equilibria and its link with the optima of its associated limit problem i.e. the stochastic control of McKean—Vlasov
processes. Now, we will focus on the analysis of the limit problem from a specific approach. As for stochastic control
problems, there are two known classical techniques which can be used to analyze the mean—field control problem: the

approach by the Pontryagin stochastic maximum principle and the approach by the dynamical programming principle
(DPP).

The first one, the Pontryagin stochastic maximum principle, is a strategy which allows to derive necessary and/or sufficient
conditions characterizing the optimal solution of the control problem, through a pair of processes (Y, Z) satisfying a
backward stochastic differential equation (BSDE for short), also called adjoint equation in this case, coupled with a
forward SDE, corresponding to the optimal path. Andersson and Djehiche [13] and Buckdahn, Djehiche, and Li [34] use
this approach for a specific case of the mean—field control problem, corresponding to the case where the coefficients of the
equation and the reward functions only depend on some moments of the distribution of the state and without common
noise. Still without common noise, a more general analysis of this approach is made by Carmona and Delarue [42] thanks
to the notion of differentiability in the space of probability measure introduced by Lions in his College de France course
[118] (see also the lecture notes of Cardaliaguet [36]). Related results were also obtained by Acciaio, Backhoff Veraguas,
and Carmona [1] for so—called extended mean—field control problem involving the law of the controls, and where a link
with causal optimal transport was also highlighted.

The second one, the dynamic programming principle, is a technique which can be simplified as the desire to transform
the global optimization problem into a recursive resolution of successive local optimization problems. This fact is an
intuitive result, which is often used as some sort of meta—theorem, but is not so easy to prove rigorously in general.
Note also that, in contrast to the Pontryagin maximum principle approach, this approach in general requires fewer
assumptions, though it can be applied in less situations. Notwithstanding these advantages, the DPP approach has long
been unexplored for the control of McKean—Vlasov equations. One of the main reasons is actually a very bleak one for
us: due to the non-linear dependency with respect to the law of process, the problem is actually a time inconsistent
control problem (like the classical mean—variance optimisation problem in finance, see the recent papers by Bjork and
Murgoci [28], Bjork, Khapko, and Murgoci [29], and [80] for a more thorough discussion of this topic), and Bellman’s
optimality principle does not hold in this case. However, though the problem itself is time—inconsistent, one can recover
some form of the DPP by extending the state space of the problem. This was first achieved by Lauriére and Pironneau
[112], and later by Bensoussan, Frehse, and Yam [24; 25; 26], who assumed the existence at all times of a density for the
marginal distribution of the state process, and reformulated the problem as a deterministic density control problem, with
a family of deterministic control terms. Under this reformulation, they managed to prove a DPP and deduce a dynamic
programming equation in the space of density functions.

Following similar ideas, but without the assumptions of the existence of density, and allowing the coefficients and reward
functions to not only depend on the distribution of the state, but on the joint distribution of the state and the control,
Pham and Wei [139] also deduced, in a Markovian context, a DPP by looking at a set of closed loop (or feedback) controls,
in a no-common noise context. It is one of the first general result on this subject. Later, they extended this strategy to
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a common noise setting (where the control process is adapted to the common noise filtration) in [138]. Their result can
be presented as follows: if we denote by X" the solution of Equation (1.1.7) defined on [t,T], starting from X" = ¢
where £F(¢) = v and controlled by «, for any 7 : Q — [t,T] a G-stopping time, when (b,,0¢) are Lipschitz in (x,v)
uniformly in (¢,a) and continuous in a, and the reward functions (L, g) satisfy

|L(t,x,v,a) — L(t,2' .V, a)| + |g(z,v) — g(a’,V/)| < C[l + || + |2 + (1|2, )12 + (|1d]?, VI>1/2} [|x — '+ Wa(v, V)],

one has

V(t,v) = sup E
acAB

where V' : [0,T] x P(R") — R is a Borel measurable function defined by

/ " L(s, X0 L(XE|G,), a)ds + V(. c(xgm|gf)))} , (1.2.3)
t

T
Vit,v) = sup E[ / L(s,X?”“,E(XQ””}QQ,as)ds+g(X%”’a,£(X%”’°‘|QT)))},
ac AR t

with AP the set of G-predictable and square integrable processes. In Chapter 5 of this first part, we will use the
DPP approach to deal with the mean—field control problem. Specifically, we will extend the previous result of [138] i.e.
result (1.2.3) in a more general setting with assumptions weaker than (1.2.2). Indeed, in the Dynamic Programming
Principle result (1.2.3), two direct questions appear: first, are the Assumption (1.2.2) necessary, can we replace them
with something weaker? Second, is it possible to consider a more general set of controls and not only a G—predictable
processes?

The first question is justified by the fact that in the proof of [138], Assumption (1.2.2) is used essentially to guarantee
the measurability of the value function V' : [0,7] x P(R"™) — R. Indeed, one of the major difficulties of this problem is
the question of the measurability of the value function. This problem is not really related to the McKean—Vlasov control
problem. It is in all DPP questions because of the expectation of V' which appears in the right side of equation (1.2.3).

The second one appears because of the particularity of the mean—field control problem. In our setting, the natural
expected set of controls is the set of (0{&, Win., Bia.})iefo,r)—Predictable processes. But, considering this kind of controls
is complicated in the setting of MFC with common noise. One of the reason the G—predictable processes were used in [138]
is the fact that the classical conditioning argument in DPP does not work with the (o{§, Wia., Bia.})iefo,7)—predictable
processes (see Remark 5.3.6).

To bypass these difficulties, we will use the classical measurable selection arguments for the measurability issues, see
for instance El Karoui and Tan [61; 62], Dellacherie [56], Bertsekas and Shreve in [27; 146; 147; 148], and Shreve
[143; 144; 145]). And for the problem related to the set of controls, the weak formulation presented in Chapter 2 will be
very useful.

1.2.2.2 Main results

In a first step, using measurable selection arguments as in [61; 62], we prove the universal measurability of the associated
value function, and derive the stability of controls with respect to conditioning and concatenation, and finally deduce
the DPP for the weak formulation under very general assumptions on (b, 0,00, L,g). In a second step, we address the
DPP for the classical strong formulation. Using the DPP in weak formulation, and adding standard Lipschitz conditions
on the drift and diffusion coefficients, as in [138], but without any regularity assumptions on the reward functions, and
in a non-Markovian context, we obtain the DPP for the strong formulation of McKean—Vlasov control problems with
common noise, where the control is adapted to the “common noise” filtration G i.e. the filtration generated by the
Brownian motion B. Also, for the more general strong formulation, where the control is adapted to both &, W and B, we
obtain the DPP under some additional regularity conditions on the reward functions. These regularity conditions may
seem unexpected at first sight, but they seem unavoidable due to the non-linear dependency of the drift and volatility
coefficients with respect to the conditional distribution of (X,«) (see Remark 5.3.6 for a more thorough discussion).
Finally, the DPP results in the general non—-Markovian context induces the same results in the Markovian one.
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1.3 Mean field games of controls with common noise and volatility o
controlled

Understanding the behavior of Nash equilibria as the number of players goes to infinity is an old and natural question
in game theory. We refer to Aumann [14] for one of the first study of markets with continuum (infinity) traders, and
in the same spirit to Schmeidler [141] who investigated equilibrium points in nonatomic non—cooperative games. Later
Mas-colell [120] extended the results of [141] by considering strategies in terms of distributions rather than measurable
functions.

In the past decades, a modern analysis in the case of differential games has been provided simultaneously by Lasry and
Lions [111] and Huang, Caines, and Malhamé [84]. Since then, this subject has undergone intensive study: Bensoussan
and Frehse [23], Carmona and Delarue [40], Huang, Caines, and Malhamé [85; 86; 87], Kolokoltsov, Li, and Yang [96],
Ahuja [7], Cardaliaguet, Delarue, Lasry, and Lions [38], Fisher [68], Lacker [103; 45; 105; 102]. It is worth emphasizing
that most of the aforementioned papers focus on the analysis of the limit problem i.e. existence and uniqueness of the
MFG problem or construction of the approximate Nash equilibria from a MFG solution, only a few papers, namely
[111; 38; 105; 103; 68] treat the question of the convergence of Nash equilibria which is our main purpose on this part.
The techniques used to deal with these questions can be classified into two approaches: the PDE techniques and the
probabilistic techniques.

The PDE techniques are based on the introduction of dynamic value functions which characterize the optima of the
problem. Indeed, it is possible to characterize the solutions of Nash—equilibria (1.1.9) and solutions of MFG problem
(1.1.10) via value functions satisfying PDE equations. In a Markovian case, without the law of control and with ¢ and
oo constants (to simplify), the PDE system associated to the N-Nash equilibria is the following N functions (v™:? :
[0,7] x (R")N — R);eq1,.. vy satisfying: for ¢ € [0,T) and [z] := (z1,...,zn) € (R")V,

N
0™ (t,[z]) — H (4, mfi},DzivN’i(u [2])) — Z Dy, o™ (¢, [2]) T (=5, mf;c]]?Dgpij’j(t7 [2]))

J=1,j#i
1 IS
-3 Z Tr {ngvxijﬂ(t, [Qj])O’O’T:| —3 Tr [ng’xka’l(t, [.I])UOJ(—” =0,
= k=1

with v™V(T, [z]) = g(x;, miY;), where mfi} =% Zf\il 8z, and H : R® x P(RY) x R"® — R is the Hamiltonian defined for

]

all (z,m) € R" x P(R™) by

ac

and b*(x, m,y) := b(x,m,a*(x,m,y)). From the functions (UN’Z')Z-{L‘.. ,~N}» @ N-Nash equilibrium is constructed as follows:
let X := (X!,---, X") be the solution of

t
X :gi+/ b (XL, )X, Dy o™ (s, X)) ds + oW + 09 By, for all t € [0, T,
0
then

(oz*’l, e ,a*’N) is a closed-loop? Nash equilibrium, where for all (t,4), a**(t,X;) := o* (X, @iv’x, Dgcivjw(t7 X4)).

Under this viewpoint, the understanding of the behavior of the N—Nash equilibrium is reduced to understanding the
behavior of the functions (v 7i)i€{1 ~}- An answer is brought by [111; 38] by introducing U the solution of the Master

.....
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equation associated to the limit MFG problem: U : [0, T] x R™ x P(R™) — R satisfies: for all (¢,2,m) € [0,T) xR" x P(R"™)
1
—0,U(t,x,m) — H(z,m,D,U(t,x,m)) — §Tr[(UJT + 090 )D2U(t, 2, m)

- /n b (z,m,DxU(t,z,m))TDmU(t,x,m)(z)m(dz)

_ 1/ Tr|:(o'a' + 0000 ) DD Ut @ m)(Z)}m(dZ)

— - / / Tr ooog D2 U(t, x m)(z,z/)]m(dz)m(dzl)

75/71 Tr[UOUOD D, U(t,xz,m)(z )]m(dz) =0,

2 U. With

m

with U(T,xz,m) = g(x, m). We refer to [38, Section 2.2] for the exact meaning of the derivatives D,,U and D
this PDE, [38] proves under strong assumptions that

Nz -1 i i -1
[x]) t,x;,my, ’ <CN andE[ sup | X} —Y;|| <K CN =+, 1.3.1
NZ’ u(t, ) te[O’T]| =Yy (1.3.1)

where Y := (Y?!,--- | Y") is a tuple such that £° (Y, W* ¢ B) = LF(Y,W,¢, B) with Y solution of

t
Y, =¢ +/ b* (Ys, s, DoU(8,Ys, pis))ds + oWy + 0By, pe = E]P(}/t), for all t € [0, 7).
0

Here o* where a*(t,Y;) := o* (Y, pe, DU (8, Yy, 1)) is a closed—loop MFG equilibrium.

This approach by PDE for assessing the convergence of Nash—equilibria can be powerful and provides estimates for
quantifying the rate of convergence. One of the important limitations of these techniques is the necessity to consider
strong assumptions on the coefficients (b, L, g) (especially the Lasry-Lions monotonicity). Considering more general
coefficients (b, 0,00, L, g) is very complicated in this context, and besides, all the PDEs require a uniqueness property.
But, it is well known that in game theory the uniqueness of equilibria is an exception not the rule. The probabilistic
approach does not suffer (most of the time) from the requiring of very strong assumptions, and the necessity of uniqueness
can be avoided.

The probabilistic approach is more diverse and uses sometimes techniques from the PDE approach. Indeed, a probabilistic
method quite close to the proof of [38] has been proposed by Carmona and Delarue [44, Chapter 6 Section 6.3]. Also,
inspired by the method of [38], Delarue, Lacker, and Ramanan [54] get more general estimates related to (1.3.1) using
techniques of large deviations and concentration of measure. One of the probabilistic approach which moves away from
the PDE method and which gives results in a more general framework is provided for the analysis of open—loop Nash
equilibria by [68] subsequently improved by [103]. Their idea is to use the notion of relaxed controls in the spirit of
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], combined with some compactness results. In the situation without
law of control and without control of volatility, they introduce a notion weak MFG equilibrium especially in [103] for
the case with common noise (see also [49]), and prove: if (ab?,... a™") is an ex—approximate Nash equilibrium with
A}i_r)rloo ey =0, and

N
Py Z]P)O (gz B, Wz Az i AN) 1’ where A* = 5ai’N(da)dt and ﬁN Z Xl Wi A1

then under suitable assumptions,

the sequence (Py)nen- is relatively compact and each limit point is a weak MFG equilibrium. (1.3.2)
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From any weak MFG equilibrium, it is possible to construct approximate Nash equilibrium. Besides, the solution
formulated in (1.1.10) can be seen as a weak MFG equilibrium, and with some strong assumptions especially the Lasry—
Lions monotonicity assumption, (1.1.10) is the unique weak MFG equilibrium. Despite the absence of rate of convergence
as in (1.3.1), this probabilistic approach gives a characterization of all possible limits of Nash equilibrium and does not
require any a priori uniqueness result. In addition, the framework can be more general that the PDE approach, o and og
are not necessarily constants. In the second part of this thesis we will use this approach and improve the result (1.3.2).

Motivated by the probabilistic techniques, in Chapter 6, we will deal with the question of convergence of (approximate)
Nash equilibria in a more general context. We will analyze this problem in the framework of law of control while allowing
the volatility o to be controlled. In the proof of (1.3.2), it is clearly not possible to take into account the law of control,
the empirical distribution of controls generates some discontinuity problems. Besides, the absence of control in ¢ (and
00) plays a crucial role in the determination of the limit, and removing this assumption is not an easy task. With the
help of the Fokker—Planck equation associated to the McKean—Vlasov process and the techniques used in the proof of
the convergence of Pareto equilibria, by introducing a new weak notion of MFG equilibrium, we will characterize all the
limits of approximate open-loop Nash equilibira with the law of control and with o controlled. We will come back on
our techniques in Section 1.3.1 below.

After having explored the issue of the convergence of (approximate) Nash equilibria, we will spend some time analyzing
the limit problem, dealing in particular with the issue of the existence of the MFG equilibrium i.e. find o* solution
of (1.1.10). There are various articles in the literature that address this issue with PDE and probabilistic approach
[25; 23; 40; 96; 38; 105; 49]. In the Markovian context, without the law of control and when oo = 0 (no common noise)
and o constant, the question of existence of (1.1.10) is sometimes formulated in terms of searching (v, ) the solution
of the system of forward Kolmogorov equation coupled with backward Hamilton—Jacobi—Bellman equation which can be
described as follows: v : [0,7] x R™ — R satisfies the HJB equation, for all (¢,z) € [0,T) x R™,

1
—dw(t, ) — sup {b(x, e, a) " Vo(t, ) + Lz, ut,a)} + §Tr [UUTVQU(t,x)} =0,
a€A

with v(T, z) = g(z, pr). And p : [0,T] — P(R™) is a deterministic function satisfying in the weak sense the Fokker—Planck
equation

Oy = —div [b(:r,ut, a* (t,x, py, Vo(t, x)))ut] + %Tr [V2utJJT],
where
o (t, @, pe, Vo(t, ) € arg max [b(x7ut7a)TVv(t7x) + L(z, pu, a)}.
Then if we define X* solution of the SDE

t
X;=¢ —|—/ b(X7, ps, @ (8, X5, s, Vu(s, X2)))ds + oWy, for all t € [0, 7], with £7(X}) = p,
0

(o (t, X[, e, Vv(t’Xt*)))te[o ) I8 closed-loop MFG equilibrium. This approach has been initiated by [111] and [84],
and more papers later followed this method. An alternative way to address this question was initiated by Carmona and
Delarue [40] by the use of the Pontryagin maximum principle to reduce the MFG problem to a forward-backward SDE

of McKean—Vlasov type as follows: (X,Y, Z) solves the FBSDE
t
Xt = é- + / b(stum a*(SaXm//mes))ds + Wt
0
T T
Y, = VQ(XTMUT) - / DIEH(XS7H$? )/3705*(5’ Xy s, Ys))ds +/ ZsdWs, for all t € [O,TL
t t

where u; = LF(X;) and H(x,m,y,a) = b(x, ps,a) Vo(t,z) + Lz, p, a). (a*(t’Xt’u't’Y't))te[OAT] is then a MFG

equilibrium. All these approaches are very technical, require strong assumptions and are difficult to use in a more
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general context especially to consider the case with common noise and the law of control. A much more flexible notion of
MFG equilibrium has been initiated by Carmona, Delarue, and Lacker [49] in the context of common noise by using the
notion of relaxed controls and by discretizing the common noise filtration. This notion generalizes the classical notion and
allows to work in a general framework. In Chapter 7, we will extend the result of [49] in the case of law of control with
control of volatility o, by introducing a notion of measure-valued MFG equilibrium. Besides, we will provide a notion of
approximate MFG equilibrium and will give a correspondence between this notion, the approximate Nash equilibria and
the measure—valued MFG equilibrium. We will explain our methods with some details in Section 1.3.2 below.

1.3.1 Limits of competitive equilibrium

Literature and motivation As mentioned in Section 1.2.1.1 i.e the convergence of Pareto optimum, in our general
setting, the weak convergence or convergence in distribution is the best we can hope for a possible connection between
(approximate) competitive equilibrium and Mean Field Games. Our approach will be essentially based on the techniques
used in the case of convergence of cooperative equilibrium.

Fisher [68] and Lacker [103] are one of the first papers which deal with this question in a general setting. However, their
analyzes do not allow to take into account the dependence w.r.t the (conditional) distribution of controls and the control
of the volatility (o, 09).

Except Carmona and Lacker [45] which constructs an approximate Nash equilibrium with an uncontrolled and non-
degenerative volatility o (o > 0) by a weak formulation, and the recent work of Lauriére and Tangpi [113] which treats
the convergence of Nash equilibria by probabilistic methods (via FBSDEs), to the best of our knowledge, there are no
other papers using probabilistic or PDE methods that answer the question of the relation between the approximate Nash
equilibria and the MFG solution in the context of law of control also called in the literature MFG of controls or extended
MFG. Indeed, the techniques used so far to treat the question of study of the limit problem turn out to be too rigid
to deal with the problem of the convergence of Nash equilibria, all the limits of approximate Nash equilibrium can not
be described by the notion considered in the literature up to now. The approach that will be developed in this chapter
is very different from those previously mentioned, and will take into account very general assumptions. Despite many
differences, the approach is in the same spirit as [103] and [68], which are, in the framework without law of control,
the most significant papers investigating the connection between the Nash equilibria and the MFG under very general
assumptions. We want to emphasize that the interesting techniques developed in [103] and [68] do not work in the case
of MFG of controls, in the presence of the law of control, since the assumptions of continuity on the coefficients are no
longer verified (see also the discussion in Section 1.2.1.4).

Our analysis will be in the same spirit as [68] and [103], but in the case of law of controls and the volatility o can be
controlled. We will use many techniques mentioned in the case of cooperative equilibrium particularly the measure—valued
solution.

Main results In order to solve the difficulty generated by the empirical distribution of controls and the control of
the volatility o, in a Markovian setting, we introduce the notion of measure—valued MFG equilibrium. The idea of our
notion comes from the (stochastic) Fokker—Planck equation verified by (,C]P (Xto‘* ’Qt)) ref0,T)" This notion of MFG solution
is very close to the classical notion, the main difference is that the optimization is taken over all solutions of specific
Fokker—Planck equations and not over solutions of an SDE. This notion has already been considered in the literature
by Cardaliaguet, Delarue, Lasry, and Lions [38, Section 3.7] and in some way by Lacker [105]. Borrowing techniques
from [103], under suitable assumptions, and working in a suitable space, we prove that the sequence of Nash equilibria
is tight, and with the help of techniques used in the cooperative equillibrium, we show that every limit in distribution is
a measure—valued mean field equilibrium. And conversely, for each measure—valued mean field equilibrium, we construct
an approximate Nash equilibrium which has this measure—valued mean field equilibrium as limit. In other words, the
measure—valued solutions are the accumulating points of (approxiamte)-Nash equilibria.

In addition to these convergence results, we will provide another approximation not taken into account until now. Similarly
to approximate Nash equilibria, by considering an e-strong solution of mean field games which is the classical strong
solution where the optimality is obtained by admitting a small error €, we prove that the measure-valued solutions are
the accumulating points of this type of solutions when e goes to zero.
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1.3.2 Existence of approximate Nash equilibrium and approximate strong MFG

Literature and motivation In contrast to the cooperative case where the existence of the approximate Pareto
equilibria is relatively immediate, in the competitive case the question of the existence of approximate Nash equilibria
is not an obvious one. Indeed, in the problem (1.1.9), the optimization is not a standard one. Therefore, obtaining an
approximate Nash equilibria (a*%V, ..., a*"N:V) can be difficult. As we have seen, this problem is related to the Mean
Field Games, or more precisely to a weaker form of the solution of MFG (see [49], [103], or the measure—valued solution
of MFG). Proving that there exists a solution of this form of MFG problem is equivalent to proving that there exists an
approximate Nash equilibria.

For the MFG of controls or extended MFG, the literature on this topic is quite small and usually without common noise
i.e. op = 0. Gomes and Voskanyan [72], by using PDE methods, study these types of interactions in the deterministic
case i.e. 0 = 0g¢ = 0. Strong assumptions of continuity and convexity make it possible to obtain the existence and the
regularity of the solutions. In order to explore a problem of optimal liquidation in finance, Cardaliaguet and Lehalle [37]
apply similar PDE techniques for this problem in the case without common noise, while allowing o non—zero. With the
same philosophy, Kobeissi [94] provides some results and discusses properties of existence and uniqueness in examples.
Let us also mention Achdou and Kobeissi [3] which gives numerical approximations via finite difference for the PDE
system arising in the MFG of controls.

Probability techniques have also been used to give some results for the existence of solutions of the limit problem. Without
common noise, using a weak formulation of the MFG of controls, Carmona and Lacker [45] obtains the existence and
uniqueness of the MFG of controls by imposing an uncontrolled and non—degenerative volatility o (¢ > 0). They illustrate
their results on the price impact models (which share some similarities with those considered in [37]) and the flocking
model. Similarly, Graber [73] for the studies of models of production of an exhaustible resource, solves related existence
and uniqueness problems. Alasseur, Taher, and Matoussi [9] also focused their attention on these questions for the study
of a model for a power network with distributed local power generation and storage.

Main results With the help of the techniques used in the case of cooperative equilibria and the discretization procedure
used in [49], with a separability condition on (b,0, L) (see Assumption 5.5.5) and a non—degeneracy condition of type
oo > 0, we will provide an existence result for the notion of measure—valued solution of MFG that we used for the
characterization of the approximate Nash equilibria and approximate strong solution of MFG. We want to emphasize
the fact that this existence result also proves the existence of the approximate strong solution of the MFG (of controls).
As mentioned in the previous literature, in the MFG theory, the existence of a strong MFG solution is very difficult to
obtain and requires strong assumptions. Admitting a small error € > 0, it is possible to get the existence of an e—strong
MFG equilibrium (approximate solution) under general assumptions. It is worth emphasizing that our results allow to
handle the case where ¢ is controlled i.e. the control o appears in the function . There are not many works that look
at the situation where the volatility is controlled.

1.4 Numerical approximation

Literature and motivation The first chapters of this thesis focused on the mathematical analysis of the behavior of
sequence of controlled interacting particles and the study of the associated limit problems. Based on this work, in the
last chapter in this thesis, we will provide some numerical algorithms to solve the mean—field control problem.

The idea in this chapter is to provide a concrete procedure to be followed in order to solve the mean field control
problem via a computer in practical example. The numerical procedure is based on the optimal control problem of the
N-interacting controlled particles when IV is fixed but large. There are two classical techniques used in the literature to
solve numerically a stochastic control problem: PDE approach by finite difference and probabilistic approach by Monte
Carlo.

The PDE approach by finite difference is motivated by the characterization of the solution of optimal control problem
as the solution of the (parabolic) PDE. Then, the goal is to give a scheme to solve approximately this PDE. This will
therefore allow to solve the problem of optimal control (see for instance Achdou and Pironneau [5]). This approach has
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been used to propose some numerical methods for solving the mean—field control problem in Lauriere and Pironneau
[112], Achdou and Lauriere [4], Pfeiffer [136]. While being very efficient in some cases, this approach has an important
limitation related to the dimensions of the data of the problem. Indeed, it is well known that when the problem’s
dimensions (here N x n the dimension of particles (X!,...,X")) increase, the efficiency of the finite difference scheme
becomes decreases. Besides, if we want to allow the control of the volatility o, this will considerably affect the efficiency.
In the mean field control problem, from our viewpoint, the PDE approach can not be used. To be accurate, we need to
choose N large, therefore the dimensions are very large, then the efficiency of such an algorithm is bad. Because of this
kind of curse of dimensionality, we will use a probabilistic approach by Monte—-Carlo.

The Monte—Carlo approach is straightforward, and uses the stochastic control problem without (or few) transformations.
The idea is to keep the stochastic control problem but replace the expectation E by an empirical sample motivated by
the classical law of large number (see Pages [135]). This approach can be very efficient even if the dimensions are large.
Balata, Huré, Lauriére, Pham, and Pimentel [19], Fouque and Zhang [70], Carmona and Lauriére [46] numerically solve
the mean—field control problem via some Monte-Carlo techniques. However, even if usually the Monte Carlo method
suffers less from the problems of dimension, in our case, as N is supposed to go to infinity, this can be a brake on the
effectiveness of this approach, especially in the optimization part.

To bypass the difficulty related to the dimension even with our Monte Carlo approach, we will use neural networks. The
past decades have shown the effectiveness of neural networks in the optimization problems involving large dimensions
in many cases (see LeCun, Bottou, Bengio, and Haffner [114], Bengio [22], LeCun, Bengio, and Hinton [115]). The
idea behind the use of the neural networks is to look for the optimum, a function most of the time, in a set of
particular functions. These particular functions are compositions of affine functions composed with a non-linearity.
The consideration of these functions is justified by the universal approximation theorem which states that any function
can be approximated by these kind of functions with the good metric. The optimization procedure becomes then much
more accessible with the help of a system of back propagation of gradients.

In this last chapter, in a spirit close to Han and E [78], Fouque and Zhang [70] and Carmona and Lauriére [46], we will
provide an algorithm using the Monte Carlo approach with the help of (deep) neural network.

Note that although the methods we will propose in this chapter solve the MFC problem, they can be used to numerically
solve the MFG by using some equivalence representation result as in Carmona and Delarue [44, Chapter 6]. Some
numerical methods has been already proposed to solve the MFG in the literature by Achdou and Capuzzo-Dolcetta [2],
Achdou, Camilli, and Capuzzo-Dolcetta [6], Carlini and Silva [39], Chassagneux et al. [51].

Main results Inspired by the connection between the Pareto equilibria and the mean field control problem, we will
give a numerical scheme for solving the optimal control of Mckean—Vlasov problem with common noise and including the
law of control. It should be emphasized that we also allow the control of the volatility. We prove the convergence of this
scheme under general conditions. With the help of the open—source neural-network library Keras (written in Python),
we will implement our algorithm and compare the outputs to solutions of benchmark models obtained by analytical
formulas.
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We introduce here some additional notations and then formulate the assumptions that we will use in this part. Denote
by M(E) the space of all Borel measures ¢(dt,de) on [0,7] x E, whose marginal distribution on [0,T] is the Lebesgue

measure di, that is to say g(dt,de) = q(t,de)dt for a family (q(t,de)).e[o,r) of Borel probability measures on E. Let A
denote the canonical element on M(E), we define

A'(ds,de) := A(ds,de)|[0 gxB T ey (de)ds|(75 )% B for some fixed ey € E. (1.4.1)

This part share a certain number of functions which we now introduce. Let n, and d be two positive integers, and

{ a non—negative one, which will be fixed throughout this part. The controlled diffusion processes have the following
coefficient functions

(b,0,00) : [0,T] x C" x P(C™ x A) x A — R™ x S™*% x §"*¢,
and the reward value is defined with the coefficient functions
L:[0,T]xC"xP(C"xA)xA— R, andg:C" x P(C") — R.
We assume the following regularity and growth conditions on the coefficient functions.

Assumption 1.4.1. The maps (b, 0,00, L, g) are Borel measurable and non—anticipative, in the sense that
(b, o, UO,L) (t,x,0,a) = (b, o, UO,L) (t,x(tA-),0(t),a), for all (t,x,v,a) € [0,T] x C" x P(C" x A) x A.
Moreover, there exist positive constants C, p, p' and p, such thatp’ >p>2>p >0, and

(i) the function (b,o,00) is continuous in (X,U,a) and uniformly Lipschitz in (x,7), i.e. for all (t,x,v,a,x",7') €
[0,T] xC" x P(C" x A) x Ax C" x P(C" x A)

(b, 0,00)(t,x,7,a) = (b,0,00)(t,x', 7', a)| < C(||x — x| + W, (#,7));

(1) for all (t,x,v,a) € [0,T] xC*" x P(C™" x A) x A
|b(t,x,D,a)| < C(l + HXH + (/ (HX/HP + p(ao,a’):ﬂ)y(dx”da/)) P + p(CLOaa)>’
CnxA

(antx o < (1 x4 ([ (17 + pla)o(ax'da)) + plan.a)” )

Cnx

(ii1) the function g is lower semi—continuous, for every t € [0,T], the function L is lower semi—continuous in (X,V,a),
and for an additional constant Cr, > 0, we have for all (t,x,v,v,a) € [0,T] x C"* x P(C™ x A) x P(C") x A

o)l < (T4 I+ [ pviax))
Cn
L(t,x,7,a) < 0(1 +llp+ [

Cnx

(17 + plao, ") Plax da')) — Cuplag, a)”, (14.2)

L{t,x, 7,0) > c<1 + ] + / ('[P +p<ao,a’>p)ﬂ<dx',da’>).
C A

X

Remark 1.4.2. Most of the integrability conditions in Assumption 1.4.1 are consistent with (or simply adapted from)
those in Lacker [104, Assumption A]. Basically, they are here to ensure that everything remains sufficiently integrable
to apply weak convergence techniques. In particular, (i) and (it) are used to ensure the well-posedness of the controlled

SDEs, while the coercivity condition in Item (iii) is used to ensure the (pre—)compactness of the set of all optimal relazed
control rules.
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Chapter 2

Strong and weak formulations

2.1 Introduction

The analysis of McKean—Vlasov optimal control problems has, in the recent years, drawn the attention of the applied
mathematics community. One of the main reasons is their close proximity mean—field games (MFGs for short), introduced
in the pioneering work of Lasry and Lions [109; 110; 111] and Huang, Caines, and Malhamé [83; 84; 85; 86; 87], as way to
describe Nash equilibria for a large population of symmetric players, interacting through their empirical distribution. We
will discuus this question in the second part of this thesis. However, we refer the interested readers to Carmona, Delarue,
and Lachapelle [47] for a more thorough discussion about the similarities and differences between these two theories.

As we said in the introduction, an important step to characterize the limits of Pareto equilibria is to provide first a good
weak formulation of the McKean—Vlasov control problem with common noise. In this chapter, our ultimate goal is to
accomplish this task by introducing the strong and the weak formulations. The strong one is given in a fixed probability
space equipped with two Brownian motions, as well as their natural filtrations. By considering more general probability
spaces and filtrations, but imposing a technical (H)-hypothesis type condition, we obtain a weak formulation of the
control problem. Our weak formulation is consistent with that of the classical optimal control problems, and enjoys
some convexity and stability properties. More importantly, by considering them as probability measures on the canonical
space, we show that any weak control rule can be approximated by strong control rules in the sense of weak convergence,
which implies the equivalence between the strong and weak formulations. We emphasise that this first result is a crucial
technical step in the proof of the DPP in Chapter 5.

The presence of the common noise generates some significant technical hurdles, especially due to the appearance of the
conditional distribution terms, which are generally not continuous with respect to the joint distribution. In the context
of MFG, this difficulty has been tackled by Carmona, Delarue, and Lacker [49], and Lacker [103]. In the context of
McKean—Vlasov optimal control problem however, we need to formulate appropriate notions of weak control rules, and
develop new techniques to ensure the approximation property. Another technical difficulty comes from the presence of
the conditional law of the control process « in the coefficient functions (for the strong and weak formulations), a situation
which has been rarely studied in the literature (see for instance Graber [73], Elie, Mastrolia, and Possamai [65], Zalashko
[154], Pham and Wei [139], Acciaio, Backhoff Veraguas, and Carmona [1], and Basei and Pham [20]). Our equivalence
results between the strong and weak formulations is very general, and its proof is quite different from that in the case
without common noise. It allows in particular to fill a subtle technical gap in the related literature (see Remark 2.3.14
for more details).

The rest of the chapter is structured as follows. We provide in Section 2.2 the notions of strong and weak formulations
for the McKean—Vlasov stochastic control problem in a common noise and non-Markovian setting The main results of
the chapter are presented in Theorem 2.2.3 including the equivalence between the strong and weak. Most of the technical
proofs are completed in Section 2.3.

Throughout the chapter, we fix a nonempty Polish space (A, p) and an element ag € A, and denote M := M(A). Finally,
consider the canonical space C" x M (resp. C" x A), with canonical element (X, A) (resp. (X,a)), and v € P(C"™ x M)
(resp. v € P(C™ x A)). We define, for each t € [0, T

D(t) :=Uo (Xn., A, (resp. v(t) :=vo (XM.7a)_1). (2.1.1)
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2.2 McKean—Vlasov optimal control: different formulations

We introduce here a strong and a weak formulation of the McKean—Vlasov optimal control problem.

2.2.1 A strong formulation

To give a strong formulation of the McKean—Vlasov optimal control problem, we first introduce a fixed probability space
equipped with an initial random variable X, and two independent Brownian motions W and B. Precisely, let us consider

the canonical space
Q:=R"xC?x ",

equipped with its Borel o-algebra F := B({2) and canonical element (Xo, W, B). Let F := (F})o<t<r and G = (Gi)o<i<r
be two filtrations on (€2, F) defined by

Fi:=0((Xo,Ws,Bs) : s €[0,t]), and G, := 0 (B, : s € [0,1]), t € [0,T].

Let p be the constant in Assumption 1.4.1 and v € P,(R™). We denote by P, the probability measure on (2, F), under
which Xy ~ v and (W, B) is a standard R4+ _dimensional Brownian motion, independent of X,. Recall that ay is a fixed
point in A. We denote by A, (v) the collection of all F-predictable, A—valued processes a = (a)o<s<7 satisfying

EP UOT (P(Ols,cw))pds} < . (2.2.1)

Then given a control process a € A, (v), the controlled McKean-Vlasov SDE
¢ t ¢
X =X —|—/ b(s, Xon., BS, as)ds —|—/ o(s, X, B2, o) dWy +/ o0(s, Xgh S, as)dBs, t € [0,T], Py-a.s., (2.2.2)
0 0 0
with ¢ = LFv (XSD‘A,, Qg ’Qs), dt ® dP,—a.e., has a unique strong solution, that is, there is a unique F—adapted continuous
process X* on (Q, F) satisfying Equation (2.2.2) and E™ [sup,¢(o 71 | X{*[?] < 0o (see for instance Theorem 5.5.3).
Denote also pgt := L (X \gt) for all ¢ € [0,T]. The strong formulation of the McKean—Vlasov control problem is then

given by

T
Vs(v) :== s;llp( )EP" {/ L(t, X g, on)dt + g(X G, 13) |- (2.2.3)
acA, (v 0

2.2.2 A weak formulation

As in the classical SDE theory, one can consider all possible probability spaces to define a weak solution of the controlled
SDE (2.2.2).

Definition 2.2.1 (Weak control). Let v € P,(R"), we say that a term
v = (O, FL P FY = (F Jo<ier, G i= (G )o<i<r, X7, WY, BV, 17, u7, a7),
is a weak control associated with the initial (distribution) condition v if
(1) (Q,F7,PY) is a probability space, equipped with two filtrations FY and G such that, for all t € [0,T)]

G C 7], and E¥" [1p|G}] = E" [1p|G7], P7-as., for all D € F) V o(W7); (2.2.4)

(it) X7 = (X7)sep,r s an R"-wvalued FY-adapted continuous process and o” = (a])o<s<r is an A-valued F7 -
predictable process such that E¥" [|| X7||P + fOT (p(@2,a0))"ds] < oo
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(iii) (W7, B7) is an R? x R*~valued standard Brownian motion with respect to FY, BY is in addition adapted to G,
Fo vV a(W?) is independent of G, and p¥ (resp. ") is a P(C™)-valued (resp. P(C™ x A)-valued) G —predictable
process such that

ul =LY (X\.167), and 7z} = ol (Xh.,07)|G)), dP” @ dt-a.s.;

(iv) X7 satisfies PV o (X)) = v and
t t t
X7 = X3+ [ ot XT0 i ad)ds [ ot X0 0w + [ ool X0 T ad)dABY, 1 € 0.T], B
0 0 0

Remark 2.2.2. In Definition 2.2.1, G plays the role of the common noise filtration, to which BY is adapted and
from which (Xo, W?7) is independent. In the literature on enlargement of filtrations (see Jacod [88] for instance), the
(H)—hypothesis states that for all t € [0,T)

E¥' [1p|G)] =E' [1p|G7], for all D € F}.

It is generally different from Condition (2.2.4), since the independence of the increment (W7 — W) e 1) from F and
G does not imply the independence between (W3 — W) sy and F{ V GJ.. In particular, Condition (2.2.4) will be
reformulated later on as (2.3.4) and (2.3.11), which are in turn crucially used in the approzimation of a weak control by
strong control rules in Lemma 2.3.10 and Lemma 2.3.11.

Let us denote by I'yy (v) the collection of all weak controls associated with the initial condition v, and introduce the weak
formulation of the control problem by

T

Vi) = sup J(3), with J(y) =E[ | Lo X0 m s + 90| (2.2.5)
~YETw (V) 0

2.2.3 Equivalence of formulations

Let us now provide the main results of this chapter i.e. the equivalence between the strong and different formulations of
the McKean—Vlasov control problem.

For v a weak control, we introduce

Y7 = XY — / oo(s, XIp., 7il,02)dBY and i7" == L7 ((X7,Y7, 6,7 (da)ds, W7)|G7),
0

for a € A,(v), with X* solution of Equation (2.2.2), we define
Yo =X* —/ oo (s,X;)‘AA,ﬁ‘;‘,as)st and fi® := L ((Xa,Yo‘,éas (da)ds, W)|QT),
0

and consider the following subset of probability measure on C" x C™ x C% x M x C* x P(C™ x C™ x C¢ x M)
Pw(v) :={P7 o (X",Y",6,7(da)ds, W, B7, ,Tﬂ)fl : v a weak control with initial condition v} (2.2.6)

and
Ps(v) = {P, o (X* Y, ba,.(da)ds, I/V,B,ﬁo‘)_1 ra € A,(v)}. (2.2.7)
Theorem 2.2.3. Let Assumption 1.4.1 hold true and v € P,(R™). (i) The set Pw (v) is non—-empty and convez.
(i) We have
VS(V) = Vw(ll)

If in addition £ # 0, then every weak control rule in Pw (v) is the limit of a sequence of strong control rules in Pg(v),
under the Wasserstein distance W, on Pp(£2).
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Remark 2.2.4. When £ = 0, or £ # 0 and oo = 0, the (strong formulation of the) McKean—Viasov control problem
(2.2.3) or (2.3.6), reduces to the non—common noise context. However, in the weak formulation (2.3.7), the (conditional)
distribution term 117 may still be random under a weak control rule v € T'yw (v). In the case ¢ # 0 and o9 = 0, the Brownian
motion B can be seen as an external noise in (2.3.6), which allows to track the randomness of ¥ and approzimate a
weak control rule by strong control rules. This is also the main reason why we consider the case £ # 0 separately in
Theorem 2.2.3.(i%).

Remark 2.2.5. The results in Theorem 2.2.3 extend those in the no—common noise setting in Lacker [104]. Nevertheless,
we insist on the fact that the equivalence results, the formulation of the strong and weak control rules, and the technical
proofs below are not merely extensions of those in [104], and are in fact quite different. The main reason is that with the
presence of the common noise, the g® term in (2.2.2)—(2.2.3) is a conditional distribution term, which, in general, is not
continuous with respect to the joint distribution of (X, a, W, B*). Moreover, the equivalence result Vo = Vi is also
crucially used to establish the dynamic programming principle in Theorem 5.3.4.

2.3 Proof of equivalence between strong and weak formulations

2.3.1 Strong and weak formulations on the canonical space

The above strong and weak control problem can be reformulated on a canonical space, by considering an appropriate
martingale problem.

2.3.1.1 The canonical space and admissible control rules

Recall that A is a fixed nonempty Polish space, M := M(A) denotes the space of all positive Borel measures ¢ on
[0,7] x A such that the marginal distribution of g on [0, 7] is the Lebesgue measure, implying that we can always write
q(dt,da) = q;(da)dt, where (g:(da)).cpo,r) is a Borel measurable kernel from [0,T] to P(A). We also introduce a subset
Mo C M, which is the collection of all ¢ € M such that q(d¢,da) = 6, (da)dt for some Borel measurable function
¥ :[0,T] — A. We will consider two canonical spaces

Q:=C"xC" xMx % and Q:=C" x C" x M x €% x C* x P(Q).

The canonical space Qis equipped with the corresponding canonical element ()? , lA/, JA\, /W), its Borel o—algebra F:=B (ﬁ),
and its canonical filtration F := (.7-/:15) +€[0.7] defined by
Fp o= a(()?s,?s,ﬁ([o,s} x D), W.): D € B(A), s € [o,t]), te0,7).

Notice that one can choose a version of the disintegration K(dt7 da) = Kt(da)dt such that (Kt)te[O,T] is a P(A)—valued,
F-predictable process (see e.g. [102, Lemma 3.2.]).

Similarly, we equip the canonical space € with the canonical element (X, Y, A, W, B, i), and its Borel o-algebra F := B(9Q).
Moreover, based on [i, let us define three processes (pt)ejo,r), (Tiy)eefo,r] and (fie)iefo,r] on Q by (recall (3.4.7) for the

definition of /A\t)

~

Mt = ZZO ()?t/\->_la ﬁt(dxada) = Eﬂ 5)/(\MA(dX)Kt(da) ) and ﬁt = ZZO ()?t/\-ai}t/\~7At7W)_l7 te [OaT] (231)

We then introduce two filtrations F := (F)ejo,r) and G := (G¢)iepo, 1) on (2, F) by
Foi= o ((Xo, Yo, A([0,5] % D), Wi, By, (fis, ) : D € B(A), 6 € Gy(C" x C" x M x €%), s € [0,1]).

and

Gri= o ((By (s, 8)) : 6 € Cy(C™ x C" x M x C%), 5 € 0,1]).
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To interpret the strong or weak controls as probability measures on the canonical space Q, we will consider a controlled
martingale problem. Let us define the maps b: [0, 7] x C" x A x P(C" x A) — R**"+d+ and @ : [0,T] x C" x P(C™ x
A) x A — S A+ guch that for any (t,x,y, w,b,7,a) € [0,T] x C" x C" x C* x C* x P(C" x A) x A

b(t7x7D’a) U(t,X,ﬂ,a) Uo(t,X,lj7a) U(t,X,ﬂ,a) Go(t,X,lj7a)
7 = e b(t,x,D,a) — = . U(ta Xa177a) Onxe a(t,x,ﬂ,a) 07L><Z
b(t,x,w,b,u,a) = 0, , a(t,x,w,b,y,a) = Loy Oy Loy Oy
0¢ Orxa Loxe Orxa Loxe

Next, for all ¢ € [0,T] and ¢ € CZ(R""+4+4) we define the generator L£; by

Lio(x,y,w,b,i7,a) := b(t,x,7,a) - Vo(x(t),y(t), w(t),b(t)) + %Tr[d(t,;g v,a)V3o(x(t),y(t), w(t), b(t))]. (2.3.2)

This allows to define, for any ¢ € CZ(R**"+4+6) '§¥ .= (S7),c(o.1) on Q by

50 = go(Xt,Yt,Wt,Bn—// Lop(Xa, Yo Wa, By Ty ) As(da)ds, ¢ € [0,7], (2.3.3)
[0,t]x A

where for a borel function ¢ : [0,T] = R, [; ¢(s)ds := [; ¢T(s)ds — [, ¢~ (s)ds with the convention oo — co = —o0.
Definition 2.3.1. Let v € P,(R"). A probability P on (2, F) is an admissible control rule with initial condition v if
(i) P[Xo =Yy, Wo =0, Bo=0] =1, Po Xy "' =v, and (X, A) satisfy IFF[||X||P+ff[0 114 (Pla0,@))"Ay(da)dt] < oo;

(ii) the pair (Xo, W) is independent of Gr under P, and for all t € [0,T)

h(w) = ﬁgT o (Xin, Yin, AL, W)L for Pa.e. @ € Q; (2.3.4)
(#it) the process (gf)te[O,T] is an (F,P)-martingale for all ¢ € CZ(R™ x R™ x R? x Rf).
Let us then define for any v € P,(R"™),
Palv) = {AH admissible control rules P with initial condition 1/}.

Remark 2.3.2. (i) Under an admissible control rule P, B and W are standard Brownian motions, A is the P(A)-valued
process induced by the control process, X is the controlled process, and i is the conditional distribution of the control
and controlled process. The process Y will only be really used to introduce the relaxed formulation (see Chapter 3 ). In
particular, when o9 =0 or £ =0, we have Y = X.

(ii) Notice that [iy is Gy—measurable, hence, it follows that (2.3.4) is equivalent to

G,
"o

fir(@) =Py PO

(Xt/\.7Y;5/\., At, W)_l = ]P)a} o (..th/\.7 }/t/\.7At, W)_l, for @*CL.@. BES ﬁ (235)

Proposition 2.3.3. Let v € P,(C") and P € P(v). Then for P-almost every & € Q, W is an (ﬁ,ﬁ(@))fBrownmn
motion.

Proof. Let Pe Pa(v),0<s <t <T, ¢ e Cyp(RY), p € Cy(C"xC"xMxC?) and ¢ € Cyp(C* x C([0, T];C™ x C* x M x C%)).
Notice that W is an (F, P)-Brownian motion, independent of Gr under P. Therefore, it follows that

=l

EF [(Wy — Wo)p(Xon.s Yanos A, Win )tb(Bons Tisn.)]
[¢(Wt - VVS)]IEﬁ [Eﬁ [(p(Xs/\w }/s/\w As> Ws/\») |§5]¢(Bs/\~7 //Zs/\-):|

E
EF [E?[qb(wt — WG| EF [o(Xon., Yon.y A%, Wip ) [Gs] (B ﬁsA.)} -



26 Chapter 2. Strong and weak formulations

This implies that
EP [p(Wi — Wo)o(Xan., Yono, A, Win ) [Gs] = B [(Ws — W) [GL]EF [0(Xon, Yon., A%, Wen)[Gs], Poaus.
By (2.3.4) in Definition 2.3.1, it follows that for P-a.e. @ € Q
EAE) [@(Wy — Wa)p(Xan-s Yan, A, Wan )] = BF®) [¢(W, — W,)] BH@ [o(Xon., Ven, A%, Wan)]-

In other words, W has independent increments with respect to F under (@), for P-almost every w € Q.

Further, notice that under P, W is a Brownian motion independent of (B, i), then W is still a Brownian motion under the

A~

conditional law of P knowing Gr. It follows that the continuous process W has independent and (Gaussian) stationary
increment w.r.t. (F,7i(@)), and hence it is an (F, 7i(w0))-Brownian motion, for P-a.e. & € €. O

2.3.1.2 The strong formulation on the canonical space

To reformulate the strong formulation (2.2.3) of the control problem on the canonical space €2, it is enough to consider
the class of measures induced by the controls and the controlled processes on the canonical space. Recall that for each
v € P,(R™), P, is defined in Section 2.2.1 as a probability measure on (€2, F), and that for any o € A,(v), the controlled
McKean-Vlasov SDE (2.2.2) has a unique strong solution X®. Let us recall

t _
Y= Xp —/0 oo(s, X, 1%, as)dBy, t € [0,T), AY(da)dt := b4, (da)dt, [ := (P,)97 (XO‘,YO‘,AO‘,W)%,

and
Ps(v) = {P, o (X, Y A% W,B,i%) " : a € A,(v)}.
It is straightforward to see that
Vs(v)= sup J(P), with J(P) := EP[// L(t, Xon-, Ty, ) A(da)dt + g(Xrn., pr) | (2.3.6)
PePs(v) [0,T]x A

Let
Lo[A] := {All Borel measurable functions ¢ : [0, 7] x R x C* x ct— A}

The following Proposition is the analog of Lemma 5.4.4 (see also Definition 5.4.3) in a different canonical space.

Proposition 2.3.4. We have, for all v € Pp(R™)

Ps(v) = {PePa(v):3 6 € Lo[A], P[A(da)dt = dy(s x,wi 5,0 (da)dt] = 1}.

Remark 2.3.5. Notice that the map P(C" x C" x C% x M) 3 [i — 05, (dv)dt € M(C™ x A) is generically not continuous.
Consequently, P~ J(P) is not continuous in general, even if L and g are both bounded and continuous.

2.3.1.3 The weak formulation on the canonical space

Now we also represent the set of weak control rules as a subset of P 4. Let v € P,(R") and v € T'w (v). Recall that for
any t € [0,T]

¢
Y, =X —/ oo(s, Xon., ml,a))dBY, A](da)dt := do7(da)dt, and fi” = c (X7, Y7, A7, W7)[G]).
0

Proposition 2.3.6. Then with J defined in (2.3.6), we have

{PePa(v) :P[AeMy| =1} ={P"o (X”,Y“’,AﬂW”,B"’,fﬂ)fl cy€lw ()}, and Vg (v) = sup  J(P). (2.3.7)
PEPw (v)
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Proof. With a slight extension of Lemma 5.4.4 (taking into account the process Y and the small changes in the presentation
of the definition of weak controls 'y (1)), every weak control rule P € Py (v), together with the canonical space Q and
canonical processes, can be viewed as a weak control v € T'y (v). Conversely, every weak control v induces a weak control
rule P € Py (v) on the canonical space. It follows that (2.3.7) holds true (see also Corollary 5.4.6). O

Remark 2.3.7. By Proposition 2.3.4, it is straightforward to see that for all v € Py(R™)

fs(l/) = {F S ﬁW(V) = ¢ (S Eo[A], @[At(da)dt = 6¢(t,X07Wt/\.7Bt/\.)(da’)dt] = 1}

In particular, as expected, any strong control rule is also a weak control rule, i.e. Ps(v) C Pw(v).

2.3.2 Approximating weak control rules by strong control rules

This part is devoted to the approximation of weak control rules by strong controls. Indeed, to prove Theorem 2.2.3, the
crucial steps consist in first approximating weak control rules by strong control rules.

We first provide a moment estimate of the solution to the controlled SDEs, which will be repeatedly used in the upcoming
proofs. This is in fact an easy extension of Lacker [104, Lemmata 3.1. and 3.3.] (which are a succession of application of
Gronwall Lemma), then for brevity we omit the proof.

Lemma 2.3.8. Let Assumption 1.4.1 hold true, and ¢ > p. Then there exists a constant K > 0 such that, for each
P e Pw(v), we have

]E[P[ sup |th} —|—EP[ sup Yt|q} < K<1—|—/ m’qu(dx’)—HEP{// p(a,o,a)th(da)dt]>.
te[0.7] t€[0,7] Rn (0,7]x A

Remark 2.3.9. Notice that by a classical existence result (see Theorem 5.5.3 for the McKean-Vlasov case), we know that:

under Assumption 1.4.1, for each P € Pw (v), EF[sup,co 7y [X:]7] + E@[supte[oﬂ |Y;]7] < oco. Lemma 2.3.8 essentially
gives precise estimations of these quantities.

Let Assumption 1.4.1 hold true, v € P,(R") and P € Py (v). From the martingale problem in Definition 2.3.1 and by
using Stroock and Varadhan [150, Theorem 4.5.2], on the filtered probability space (£, F, F,P), (W, B) are standard
Brownian motions, (W, Xo) are independent of (B, 1), and there exists a F-predictable A-valued process (a);e[o, 1], such

that, P-a.s.,
t t t
X: =X +/ b(r,X,ﬁT,aT)dr—l—/ 0'(7‘, X,ﬁr,ar)dWr —|—/ 00(7“,X,ﬁr,047p)dBr7 t € 10,7,
0 0 0
t
Y, =X, _/ UO(r,X,ﬁr,ozT)dBr, t 10,7,
0
with A¢(da)dt = AY(da)dt := §,, (da)dt and
fie = LF (Xin., Yino, A, W|Bonoy Tien.) = L8 (Xons, Yino, A W|BL ), T, (dx, da) := B [0, (dx)A¢(da)]. (2.3.8)
Let us take a sequence ((t]")o<i<m), -, of partitions of [0,T], with 0 = tf* < ¢* <--- < ¢» =T, and such that

m m
sup [ty —t"] — 0.
0<i<m—1 m—00

For any integer m > 1, define for simplicity the map [0,7] > t — [t]™ := 2?51 t;”l[t;n,tﬁl)(t), as well as &, ;= t7". Let
W™ =W, . —W., and B™ := B, . — B., , we define also two filtrations F := (?T)tE[O,T] and G = @T)te[o,ﬂ

by
Fi =0 (Xon, Yin, AW B i), and G := o (B3, ign.), t € [0, 7).
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Lemma 2.3.10 (Agproximation with piecewise constant controls). In _the filtered probability space (Q,F, F,P), there
exists a sequence of F-predictable processes (a™)m>1, and a sequence a F-adapted continuous processes (X™)m>1 such
that for any m > 1

_ T _
ag' = ag, " = afjm, on [0,T], lim EP{/O p(at,a;”)pdt} =0, and lim EP[ sup | X, — X'|P| =0, (2.3.9)

m—r oo m—r o0 56[07T]

where for each m > 1, (X{")icjo,1) 5 the unique strong solution of

tVem tVem tVem
Xtm = XO +/ b(?“ Xr/\ aﬂr ) & )dT+/ (7" Xr/\ 7ﬁr y & )dWrTn +/ (T Xr/\ 7ﬁr y & )dB:"n7 (2310)
€ € €

m m m

with E@[HX'”HP] < oo and @i}" = L’WX{X,,&,Z"’?T). Moreover, if we denote Af*(da)dt := 04 (da)dt, as well as

_ tVem
Ay = L8 (XL Y, (A, W™G)") and Y = X — / oo(r, X0 @, ) dB", for all t € [0,T],
€

m

then (Xo, W™) is P—independent of (B™, ™), iy* = [ o (Xt/\ ,Yt,\ ,A W) 1, and

iy = LF (X, Y, (A™ W B i) = CF (X, Y, (A™)E W™ | B™, ™), Pas., forallt € [0,T].  (2.3.11)
Proof. First, we claim that for each m > 1,
fie = L7 (Xen, Yino, AW B fien.) = L5 (Xen, Yino, AL, W|B™, 11, P-as., for allt € [0, 7). (2.3.12)

Indeed, for all ¢ € Cp(C™ x C™ x M x C%) and ¢ € Cp(C* x C([0,T], P(C™ x C™ x M x C%))), it follows by (2.3.4) that
EF [(¢, i)Y (B™, )] = EF [6(Xon., Yono, ALW)S(B™, )] = B (6, LF (Xin., Yino, AT, WIB™, ) ) (B™, 7).
This implies (2.3.12) by arbitrariness of (¢, ). We further observe that (F,G ') satisfies
E'[1p[G;"] = EF[1p|G7], for all D € F," v o(W™) and t € [0, 7). (2.3.13)

Next, as Eﬁ[ fOT p(at,ao)pdt} < o0, it follows (this is a straightforward extension of for instance Liptser and Shiryaev
[119, Lemma 4.4.]) that there exists a sequence of piecewise constant and F-predictable process a™ satisfying the first

two properties in Equation (2.3.9). Without loss of generality, let us also set o := CHE

Then given o™, let X™ be the unique F:nfadapted solution of the McKean—Vlasov SDE (2.3.10) (see also Theorem 5.5.3
for its well-posedness), with @}* := EP(XZ’}\_,CMMGT). Let u™, A7*(da)dt and Y™ be defined as in the statement of
Lemma 2.3.10.

The independence between (Xo, W™) and (B™, i™) follows directly from the independence of (Xq, W) and Gr. Further,
by Proposition 2.3.3, W is a Brownian motion under the conditional law of P knowing Gr. It follows that, for each
t€[0,T], (W, —W{)seo,r— = (Witts)vem — Weven )sejo,r—y and (X7, Y0, (A™)", W/} ) are independent under the
conditional law of P knowing G, (or Gr). Together with (2.3.13), it follows that

i = 8 (X0 Yo, (M) W G) = £F (X[ Vi, (™), WGy ), and ) (dx, da) = 7" o5 (dx)A(da),

and therefore o~
=g o (Xen, Yin, AL W), Paus., for all t € [0,T].

Since (f1;"):efo,1) is a function of fii, and (B™, ™) and (Xo, W™) are P-independent, it follows by using the definition
of G" that (2.3.11) holds true.
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To conclude, it is enough to prove that lim,,_, . Eﬁ[supse[o,T] | Xs — X"|P] = 0. For any t € [e,, T}, one has
t
X — Xtm = Xsm — Xo +/ (b(ra XT/\~7ﬁr5aT’) - b(r Xr/\ 7.ur y & ))d’/’

t t
+/ (O—(Ta X’l"/\-vﬁrva’r) - (T Xr/\ a;U’r e’ ))dW +/ (00(7'7 Xr/\wﬁra ar) - 0'0(7", X;r/l\7ﬁqrvn7 a:‘n))dBr
€ €

Next, using Jensen’s inequality, Burkholder-Davis—Gundy inequality, the Lipschitz property of (b, o, 0¢), and the inequality
W, (A, i)’ = Wp(ﬁﬁ(xm.,at;ET),.c@(X;’;,,a;n|§;")) < ]E]P[ swp | X = X° + p(of”, ou) ‘ }
there exists a positive constant K, which may vary from line to line, such that
EP| sup |X,— X;”|p] < KIEP[|XEM — Xol” + /t (6,0, 00)(, Xon., Tips ) — (b, 0, 00) (r, X2 T, )|pdr}
e

SE[Em,t] m
— _ t
< K(EPUXEM - Xof’] +EF U sup | X, — X;"]pdr} + cm),
€

m UE[EWHT}

where

_r T
Cp = EP[/ <|(b,o7 o0)(r, X, i, ) — (b, 0,00)(r, X, i, )| +p( ,.)p)dr].
0
By Gronwall’s lemma (recall that all expectations appearing here are finite), we deduce that for all ¢ € [g,,, T
]EP{ sup | X, — X;ﬂ < K(]E?UXEW — XolP] + cm),
SE[Em,t]

so that

Eﬂ’[ sup | X, — X;"|p} < K(EPUXSM — Xo|?] +IEP[ sup | X, — X0|p] + cm>.
s€[0,T] r€[0,em]

By Assumption 1.4.1, we have, for all r € [0, T,
(0,7, 00) (7 X, Ty ) = (b, 7,00) (7 X, s )| < K ([|Xon ||+ EF [| X || + p(ao, a0) |G| + p(ao, )" )
+Ep(a) )"

By dominated convergence and the continuity of coefficients (b, o, 0¢), it follows that for all K > 0,

m—0oQ

_ T
lim EP[/ |(b»0700)(T7Xaﬁrvar) (b,0,00)(r, X, T, ‘ ]-{p(a;",(u)<K}dT:| =0.
0

In addition, since (||XM‘ ||p+p(ao, ozr)p) Lipam,an)>ky < (||XM. ||p—|—p(a0, ozr)p), which is P-integrable, using the uniform
integrability of the sequence (a™),,en+, one obtains that

_r T
lim sup limsupEP[/ |(b, o,00)(r, X, ., ) — (b,0,00)(r, X, i, ‘ Lip(am, O,T)>K}d7’:|
0

K—oo m— 00

K—oo m—o0

_r T
< limsup limsup KE¥ {/0 ((HXM.HP + p(ao,ar)p) + p(af‘,ozr)p)l{p(a;n,%)ﬂ(}dr}

_r T
< limsup sup KIEP[/O p(o/rn,ozr)pl{p(a%arbK}dr] =0.

K—oo m>0

This implies that li_r>n Cyn = 0, and hence (2.3.9) does indeed hold. O
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Lemma 2.3.11. In the context of Lemma 2.3.10, let m > 1. In the (possibly enlarged) filtered probability space

(U, F, F,P), there exists a sequence of i.i.d. random variables U™ = (U™);>1, with uniform distribution on [0,1], and

?

P—independent of (Xo, B™, W), together with a (a(U™, Xo, Win., Bi}.))telo,1)Predictable process (3¢ )icjo,1), such that

if we let ()?F)te[o’T] be the unique strong solution of

- tVem . —m tVem - —m tVem — —m
Xtrn = XO +/ b(?",X;j;L\A, r ﬁ;n)dT‘F/ U(T,X;Y}\.,CT aﬁ;n)dW;n +/ 00(7A7X77~7\47 r ﬁ;n)dB;n,
€ € €

m m m

with ¢, = LF ()?{Xﬁ{”’Bm, U™), and define further K{”(da)dt =0 (da)dt, as well as

t

. . tVem - . R " . -
v X - / oo(r, X T M) AB™, and G 1= £F (X0, Vi, (R™), W™ | B, um),
£

m

then, with (X™, Y™ A™ W™ B™ u™) defined in Lemma 2.3.10, we have
ﬁﬁ()?m,?mjm,wm,BM,@") - cﬁ(xm,y’",Am,W%Bm,ﬁm). (2.3.14)

Finally, when £ =0 and @™ is deterministic, then one can take ({")icpo,1) to be (0(Xo, Win.))epo,r]-predictable.

Proof. Let us fix m > 1, and introduce {W™}q = {B™}( := 0, and then for i € {1,...,m},
{Bm}l = (Bm)(kil))lgkgia {Wm}l = (Wm7(k71))1gk§i ) {ﬁm}z = (ﬁ%)ogkgiv and {am}l = (Oé;cn)oﬁkﬁh

m,(k=1) ._ pm
where B, = B(tvt’,c"_l)/\t?

— B and W = ~ W teo,T].

(EVE AR

Step 1. For each i € {1,...,m}, there exists (see Kurtz [99, Lemma 1.3.]) a Borel measurable function G : C* x
P(C" x C™ x M x C%)? x [0,1] — P(C™ x C™ x M x C%) such that, for any uniform random variable U™ independent of
({B™}i, {™}ic1) and GY' := G ({B™}i, {i™}i—1, Ul™), we have

L8 (Xo, {B™}i AW™}, {A™ Yo, fign) = L7 (Xo, {B™ i AW™ i, (™ }ima, GY), (2.3.15)

Above, G is a function of ({B™};, {f™}i—1, U™) rather than of (Xo, {B™};, {W™};, {i"™}i—1, U™), since fij% is actually
P-independent of (X, W™). We can apply a similar argument to find a Borel measurable function G¢ : R™ x (C* x
Ch x P(C" x C™ x M x CH)(+1) x A" x R — A, and uniform random variable V;™ independent of the variables
(Xo, {B™}i, {W™}i, {i™}i, {@™}i—1)) such that

L5 (X0, AB™ i, AW™ b AT b @™ Y omys @) = L5 (Xoy {B™ i W™ i (8™ iy (@™ Y - 1), GF),4 (2.3.16)

where

G 1= G2 (Ko, {B™ by (Wi, {07 iy {0™ Yoy, V™).

Observe that one can take (U7",...,U}) to be independent of (Vi™,..., V). We can then find a Borel function K
R% — [0, 1] such that £ (k% (Wic /m—W(i—1)e,,/m)) is a uniform distribution. Define next 37 := off* = ag, (o := fem s
and for any 7 € {1,...,m — 1}

G = G (X0, AB™ i AC™ by, UI), A1 o= G (Xos {B™ 1o W™} AT s (7™ Y1y 5 (Wi jom = Wi 1), m) ).
Then, for each i € {0,...,m}, sz is o(U™, ..., U™, {B™};)—measurable, and

A is o (Xo, We, n, iAW}, {C™}4, {B™};) measurable. (2.3.17)
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When £ = 0 and i™ is deterministic, the previous construction implies that {C™},,, = {/i"™ }, is deterministic and ™ is
o(Xo, We, n., {W™};)—measurable.

Step 2. We next prove by induction that, for each i € {0,...,m}
L8 (Xo, {B™ }ir AW™ i, {i™ i, {0 }i) = L7 (Xo, {B™ }i AW 13, {C™ 4, (7" 1) - (2.3.18)
When i = 0, (2.3.18) holds true since af* and iz are deterministic constants.

Now, assume that (2.3.18) is true for some i € {0,...,m — 1}. First, take ¢ € Cp(R™ x C" x C* x C% x P(C™ x C" x M x
C")' x AY), 1 € Cy(CY), o € Cy(CY) and h € Cy(P(C™ x C™ x M x C%)). Using the independence of the increments of the
Brownian motion W™, together with (2.3.11) and (2.3.15), we have

EF :¢(Xo,Bz?nA., Wi no 0" Y, {am}i)zb(wm’@)so(Bm’(“)h(ﬁ?ﬁl)}
_gF _E@[w(Wm,u))}]Eﬂ(p(Xo,BZ?zA.7Wt?A., {1 }i, {a™}s) Bl%.,ﬁl%.]@(Bm’(“)h(ﬁl’fql)}
_ Eﬁ _Eﬁ[¢(Wm’(i))}Eﬁ{¢(X0,Bgn/\_,Wt?l/\_7 {//Zm}h {am}i) Bm7ﬁm]¢(3m,(i))h(éf+l):|

— B [EF [6(Xo, Bl Wit o {87, {0} (W) | B | o (B O) (G, ) . (2:3.19)

Further, let ¢1 € Cy(C* x P(C™ x C™ x M x C%)%) and ¢2 € Cy([0,1]), using the independence of U/, and that of the
increments of the Brownian motions (B, W™), and the induction hypothesis, we obtain

EP [BF [6(Xo, Bifns Wi oo {7 }i, {0 }i) o (W O) | B™, | 01 (B o (7™ i) 02Ul
= B[ 0(Xo, Bps Wit o A" Yis {0 1) (WO ) (B o ) |BF [0 (U72)]
= B |9(Xo, B pos Wit (™ 1o (7 1) 0 (WD) o1 (B AT ) 02(UI) - (2:3.20)

Using the arbitrariness of (p1,p2), and a classical density argument, we can replace @1 (BZ:.’L}HA»{Zm}z')‘P?(Uﬁl) by

W(Bm’(i))h(aﬁl

(Bt?irl/\" {fi™}:,U,)), for arbitrary continuous and bounded functions ¢ and h, in (2.3.20), leading to
(2'3'19) = EP [¢(X07 Bt?‘/\w WtT”/\w {<m}iv {:Yim}i)w(Wm’(i))(p(Bm’(i))h( 2711):| ’

and hence B B R
£F(Xo, By o Wik ao A" iy 10} ) = £7(Xo, B s Wi aos AC™ by {7701

Together with the result (2.3.16), and by the independence of V/}; with the other variables, it follows that

cr (X07 {B" }i41) AW™ } a1y A S a1y 1™}, Oé?h) =LF (Xo, {B™ } ig1)s IV i), 1C" i), 17" 1o %’L),

which concludes the proof of (2.3.18) by induction.

Step 3. Under Assumption 1.4.1, the solution of SDE (2.3.10) can be expressed as function of (Xo, W™, B™, (A™), ™).
More precisely, there exists a Borel function H™ : [0, 7] x R" x C¢ x C* x M x P(C™ x C" x M x C%) — C™ x C™ such that

(X1, Y;") = HI" (XO,Wt”AL_,Bth_7 (Am)t,ﬁq@), t€0,7], Pas.

Moreover, by Lemma 2.3.10, the processes (1i;")¢co,r)] and (12y")e[o,7] are actually functions of 17

Define 3} 1= 31" for t € [t #7), i € {0,...,m — 1}, A7*(da)dt := 6~ (da)dt, and

G = Cm o (., Vin, AL W) ™', and ) (dx, da) == ESF [5%_ (dx)T\t(da)}, for all t € [0, ],
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and then o _ R
(Xtml7)/tm) = Hzn(X07 Wtr;\lw B;r/L\v (Am)t7C;"n)

It follows from Equation (2.3.18) that (2.3.14) holds true, and ()?m,f’m) satisfies the SDE in the statement of Lemma
(2.3.11). It remains to prove that

G = LF (X, Y, (A™)E W™ | B™, U™, P-as., for all t € [0,T]. (2.3.21)

Recall that 27" = o (X;n., ?M,, AL W) forallt € [0,T). Let ¢ € Cy(P(C™xCmxMxC%), ¢ € Co(CtxC([0,T]; P(C"
C" x M x C%))). By Equation (2.3.18), we have
E* [0, G (B™, Crin )] = B [(f )0 (B™ ipa. )| = B7 [F(XiR YR, (A™) W) (B™, iy )]
=E" [f(XZ)/l\v YtT/y\l’ (Am)tv Wm)@(Bma C]m/\)] = EPRf’ ’CP(XtT;I\A YtT/I\lv (Am)t’ Wm|Bmv C$A<)>90(Bm7 C%’n/\)] .
This implies that B
C;m = ‘CP(XZ?\A }/;57/7\17 (Am)t’ Wm|Bmv C;'J/\)
Recall from (2.3.17) that 3™ is o(Xo, W=, a., {W™}i, {C™ ), {B™};)-measurable, (M is o({B™};, U™ )-measurable for
each i € {0,...,m—1}, and U™ is independent of (Xo, B™, W, ., W™) under P. It follows that (2.3.21) holds true. O

For Proposition 2.3.12 below, let us denote by (ay)icjo,7] an A-valued F-predictable process on the canonical space Q,
satisfying that A;(da)dt = 6,,(da)dt, P-a.e., for all P € Py (v).

Proposition 2.3.12. Let Assumption 1.4.1 hold true, v € P,(R") and P € Pw (v).
(i) When £ # 0, there exists a sequence (P )m>1 C Ps(v) such that

lim L7 (X, Y, A, W, B, 1L, 8z, ) (47, da)dt) = LF (X, Y, A, W, B, i, 65, a,)(d7, da)dt), in W,. (2.3.22)

m—r 00

(ii) When £ =0, there exists a family @um)ue[o,l],mzl C Ps(v), such that u — ﬁum s Borel measurable, and

i [ % (X, Y, AW, B 0z, ) (47, da)dt)du = £F (X, Y, AW, By iy 6, ) (A7, da)dt), in Wy (2:3.28)

m—r oo 0

Proof. First, let ()A(:m, }N’m, B W™ Zm,zm, A, Km) be given as in Lemma 2.3.11. Using Lemma 2.3.10 and Lemma 2.3.11,
we have

lim cﬁ(im,?M,Bm,W’” 0 =

m—r o0

(7, da)dt) - ﬁﬁ(X, Y, B,W, i, 0z, o (47, da)dt), in W,.

(i) When ¢ # 0, since B, is independent of (Xo, W, B™), one can take U™ := (B, ) for some measurable function
k: R — [0,1]™. Consequently, we have me =LF ()N(t”}\, i’}(b, (Km)t, V[/m|B)7 P-a.s., for all t € [0, T]. Let us then define
(gtm)te[oﬂ as the unique strong solution of

_ t . t _ t
S = X0+/ b(nSm’ﬁr ﬁ;")dr-i—/ U(r,Sm,b’r A )dW +/ 00(7" Sm ﬁT Y ) B,
0 0 0

with 3 = ﬁ(StA A Bia.) = LF (St/\ ,3"|B). Denote, for all ¢ € [0, 7]
~ t ~ ~ ~
Z;m = S;m _/ JO(T S ﬁr 7’Yr )dB'm and Bt =L (S?}\7ZZ7\,(Am)t7W|B)
0

Using almost the same arguments as in the proof of (2.3.9) in Lemma 2.3.10, we can deduce that

lim EP[ sup |S™ — X™|P| =0,
m—00 t€[0,T]
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and moreover

lim ﬁﬁ(@",zm B, W, B, 8 5m =) (47, da)dt) — lim £ﬁ<)~(’",}7m,Bm,W’" G 8z 5y (47, da)dt)

m—00 m—00
— lim EP(X’” Y™, BT W i S m)(dﬂ,da)dt) - ,c?(X,Y,B,W, i, 6, o) (A7, da)d ) W,  (2.3.24)
m—r00 t

Then it is enough to denote P":=Po (§m7 Z’", 1~V”, W, B, E’Tn)_l to conclude the proof of (7).

(#1). When £ = 0, so that the process B disappears, one has Ztm = E@()?ﬁ_,f/[f_, (Km)t,Wm‘Um), t € [0,T)], P-as.,
where U™ is independent of ()?m, f’m, A™ W) Let us define (Efl)te[oﬂ as the unique strong solution of

t

t
SZ"ZXO‘*‘/b(rvSm,ﬁm% )d”/ o(r, 8" B, A ) AW,
0

with
By = L (Sm A U™y = L8 (Sp A U™, Z = S, and Bt o= L7 (S, Zi, (A W™,

As in (7), we can apply almost the same arguments as in the proof of Lemma 2.3.10 to deduce that

lim cP(Sm 7, B, W, B 6 5m ~

m—r o0

,)(dp,da)dt) - ﬁﬁ(X, Y, B,W, i, 0z, o (47, da)dt), in W,.

Beside, it is easy to check that B
LP(gm,Zm,Am,W,B,Bm‘Um> € Ps(v), P-as.,

which concludes the proof of (i7). O

Remark 2.3.13. When ¢ = 0, if we assume in addition that [i is deterministic under P € Pw (v), we can omit the term
U™ in the mef of PI"OpOblthIl 2.3.12.(4%) by Lemma 2.3.11, and hence there is no need to consider the conditional law of

(8™, Z™ A™ W, B, B™) knowing U™. It follows that we can find a sequence (P Jm>1 C Ps(v) such that (2.3.22) holds.

Remark 2.3.14. In summary, our proof for approximating weak control by strong control rules consists in three main
steps

(i) approzimate the (weak) control process by piecewise constant processes and freeze the controlled process on [0, gl;

(ii) represent the piecewise constant control process as functionals of the Brownian motions and some independent
randomness using the (H)—hypothesis type condition (3.2.1);

(#it) replace the independent randomness by the increment of the Brownian motions on [0, €], so that the control processes
becomes functionals of the Brownian motions only.

This is quite different from the steps in Lacker [104] for McKean—Viasov control problem without common noise, and in
spirit closer to the technical steps in El Karoui and Tan [62, Theorem 4.5.], which approzimates weak control rule by
strong control Tules for classical stochastic control problems. In particular, our approach allows to avoid a subtle gap in
the proof of [103, Lemma 6.7.]. In that proof, a key technical step uses implicitly the following erroneous argument (see
the paragraph after (6.19) in [103]): let W and U be two independent random variables on a probability space (0, F*,P*),
and f: RxR — R be such that Z := f(W,U) is independent of W, then Z is measurable with respect to the (completed)
o—algebra generated by U. For a counter—example, let us consider the case that W ~ N(0,1) and U ~ U[—1,1] and that
W is independent of U, then Z := Ulywsoy — Ulgw<oy is independent of W, but not measurable w.r.t. o(U).
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2.3.3 Proof of equivalence

(i) Let Assumption 1.4.1 hold true, and take v € P,(R"™). The non-emptiness of Py (v) follows by a stability result for
the martingale problem in Assumption 1.4.1. We provide a detailed proof in Theorem 2.4.2.

For the convexity of Py (v), we first prove that P 4(v) is convex. Let us consider (Py,Py) € Pa(v) x Pa(v), 8 € [0,1]
and P := 0Py + (1 — §)Py, and show that P € P4(v). First, it is direct to check that P satisfies Conditions (i) and
(ii7) in Definition 2.3.1. To check Condition (ii) in Definition 2.3.1, we consider ¢ € [0,T], f € Cp(C™ x C™ x M x C%),
Y € Cp(CExP(C"xC" x M x C%)), p € Cp(R™ xC?). Notice that under both P; and Py, (X, W) has the same distribution
and is independent of (B, i), it follows that

P [ (X, W)(B, 7)) = 0P [(Xo, W)(B,7)] + (1 — O)EF: [o(X)3(W) (B, )]

= E [p(Xo) B(W)] (BE™ [0 (B. )] + (1 — 0)E™ [v:(B. 7)) = E7 [0(Xo. W)|E*[¢(B. 7).

which implies the independence of (Xo, W) and (B, 1) under P. Furthermore, one has, for each i € {1,2}

B [0, (B, )] = B [ (Xn Yon, A, W) (B, )],

then it is straightforward to obtain that

B [(f, i) (B, i)] = BE[f(Xyn., Yin, A", W) (B, )]

This implies that for P-a.e. & € Q

~ - =0t — =9 _
/J’t(w) :]P)@ O(Xt/\w}/t/\‘)WAt) ! :PQT o (Xt/\w}/t/\wWAt) 1'
Then P also satisfies Condition (i) in Definition 2.3.1, and hence P € P 4(v). This proves that P 4(v) is convex.

Next, assume in addition that (Py,Py) € Py (v) x Pw (v), that is to say (P1,P2) € Pa(v) x Pa(v) and P; [A € Mo] =1
for i € {1,2}. It follows that P € P4(v) and P[A € My| = 1, so that P € Py (v).
(ii) Fix v € P,(R™). First, one has clearly Vs(v) < Vi (v). Furthermore, for any P € Py, (v), by Proposition 2.3.12 and

under condition ¢ > 1, there is a sequence of probability measures (@m)mzl C Ps(v) such that

lim £F (X, Y, A, W, B, 1L, 8z, ) (47, da)dt) = L7 (X, Y, A, W, B, i, 6z, ) (A7, da)dt), (2.3.25)

m—ro0
in P, (Q x M(P(C™ x A) x A)) under W,. This implies in particular that P" — P in P,(Q) under W,.

Besides, although P — J(P) is not continuous in general (see Remark 2.3.5), the convergence in (2.3.25) is stronger
than simply P" — P. With the growth and lower semi—continuity conditions of L and g in Assumption 1.4.1, and by a
slight extension of [104, Lemma 4.1], the convergence (2.3.25) implies that

Vs(v) > lim J(P™") > J(P).

m—r oo

It follows that Vs(v) = Viy (v).

When ¢ = 0, using Proposition 2.3.12, it is enough to consider a convex combination of strong control rules and apply
the same argument as above to conclude the proof.

2.4 Appendix: existence of weak solution to the McKean—Vlasov equations

We provide here an existence result of weak solution to the McKean-Vlasov equation.
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Assumption 2.4.1. The constants (p, p) satisfy: p > (1Vp), 2 > p > 0, and for all (t,x,v,a) € [0, T|xC"xP(C"*"x A)x A,

(P + s, ) da))” + plans ) ).

bt x, v,a)] < C{ 1+ x| + (/
c

"X

S

(ontx ) < (e I+ ([ (0P + plao,a)olax’.aa))” + pan,a?)

ChxA
Theorem 2.4.2. Let v € P(R™), p' > p, p' > 2, and (b, 0,00) be continuous in (X,7,a).

o If (b,0,00) is bounded then there exists a probability measure P € P(Q) verifying the points (i), (i), and (iii) of
definition 2.5.1 expect the integrability condition.

o If Assumption 2.4.1 is satisfied with v € Py (R™) then there exists P € Py (v) satisfying ]EE[HXHPI] < 0.

Proof. Without loss of generality, we can assume that A is a singleton given by A = {ap} (otherwise, we can use a
constant control process equals to ag).

First, recall that the filtered probability space (2, F, F,P,) is defined in Section 2.2.1 and equipped with an initial random
variable Xy, together with Brownian motions (W, B). For each m > 1, we consider the solution (X}").c[o,7] of the Euler
scheme of McKean—Vlasov equation (2.2.2), that is

t t t
X" =Xy —|—/ b(r, X[’Zﬂ@]m/\_,ﬁmm,ao)dr —|—/ a(r, XmmA_7ﬁﬁ7n,ao)dWr +/ oo(r, X[T]m/\_,ﬁmm,ao)dBr, P,—a.s.,
0 0 0

where 7" = LP(X[7]G) ® 4o, [t]™ = iT27™ for all ¢t € [iT27™, (i + 1)T2™™) and i € {0,...,2™ — 1}. It is
straightforward to verify that for each m € N* : if Assumption 2.4.1 is satisfied with v € P,/ (R™) EF» [SUPte[o,T] \Xtm|p/} <
oo and if (b, 0, 09) is bounded EF [ sup, ¢ 7 | X;™ — Xo|?] < oo for all ¢ > 0.

By classical application of Gronwall Lemma like that used in Lemma 3.4.1 (see also Lacker [104, Lemmata 3.1. and

3.3.]), we can deduce that, for some constant C' > 0 independent of m such that: if Assumption 2.4.1 is satisfied with
v € Py (R")

EP”[ sup |X{”|P’} gc(1+/ |w|p/u(dx)), (2.4.1)

t€[0,T)

and if (b, 0, 00) is bounded

EPv[ sup | X" — X0|p/} <C. (2.4.2)
te[0,T)

Let us denote Y™ := X™ — fo oo (r, S[m Emm,ao)dBT, and

T]m/\"

P":=P,0 (Xm, Y™, AW, B,ﬁm> , with A9 (da)dt := 6, (da)dt, and @™ == L% (X", Y™, A°, W |Gr).

Therefore if (b, 0, 00) is bounded, by (2.4.2), the sequence (P ),,>1 is relatively compact under the weak convergence
topology. Otherwise, if v € P, (R™) with Assumption 2.4.1 satisfies, as p’ > p, then with the estimate (2.4.1), it follows
by [49, Proposition A.2] that (ﬁm)mzl is relatively compact under W,. By a sub-sequence, let us assume that [ P,
as m goes to 0o, for some P € P(Q), and then show that P € Py (v).

Recall that, for each ¢ € C2(R™ x R" x R% x C*), the process 57 is defined on Q by (5.4.4). Similarly, we define the
processes S = (?f’m)te[o,ﬂ on Q by

t
vam = (P(Xta Y, We, Bt) - / L:r(P(X[r]m/\w Yv[r]m/\‘a W[r]’"/\'a B[r]m/\'v aop, ﬁ[r]m)dr'
0
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By the continuity of the coefficient functions (b,0,00), then uniform continuity on a compact set, it is straightforward to
check that on each compact subset 2. C €2, one has

lim  sup ‘?f’m(@) - gf(@)’ =0, for every t € [0, 7. (2.4.3)

M7 S e,

Further, whatever if (b, 0, 0¢) is bounded or if (b, 0, 0¢) satisfies Assumption 2.4.1 with v € P (R™), we have

sup EF [|S7" "] < oo, forall t € [0,T], ¢ € CZ(R" x R" x R? x ). (2.4.4)
m>1

Now, as (pm)meN* is relatively compact, for each € > 0, we can find a compact subset Q. C Q such that P" Q] >1-¢
for all m > 1. For any bounded continuous function ¢ € Cy(C™ x C™ x C% x C* x P(C"™ x C™ x C%)) and s < t, we denote
D, = qb(Xs/\., Yon., Wen., Bsn., ﬂs), with (b, 0, 0¢) bounded or with (b, o, 0¢) satisfying Assumption 2.4.1 and v € Py (R™),
it follows that

[EF[(S7 —S7)@.]| = lim [EP[(S - 57)a.]]

m—o0

< lim sup |Eﬁm (S} - gf)éslﬁg] | + lim sup |Eﬁm (S} —50) @15
m—o00 m—00 <

< limsup [|E@"'L [(S7™ = 80™)@,]| + [BF [(S7™ = 80" @415:]| + [BF [(ST — 57) @, 155¢]

m—r oo :|

p'—1

<Ce ",

where the last inequality follows by Holder’s inequality together with (2.4.4) and the fact that P" [ﬁz] <eg, forall m>1.
Let ¢ —» 0, it follows that S¥ is an (F,P)-martingale for all o € C2(R"™ x R x R? x C*).

Moreover, by almost the same arguments as in the proof of Proposition 3.4.6, we have for all ¢ € [0, T],
fie = LY (Xin, Yin AL, W|Gr) = L5 (Xin, Yino, AL W|Gy), P -as.

Finally, it is easy to see that Po (Xo)~! = v and (B, i) is independent of (W, Xo) under PP, then the first statement of
the theorem follows. When Assumption 2.4.1 is satisfied with v € P, (R™), one has by estimate (2.4.1) combined with

Fatou Lemma, Eﬁ[HX ||”/] < 00. Therefore we deduce the second statement. 0
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Chapter 3

Relaxed formulation and characterization
of the limits

3.1 Introduction

In this chapter, we are interested in establishing the limit theory for the McKean—Vlasov optimal control problem. In
other words, we wish to rigorously prove that the stochastic ontrol problem of McKean-Vlasov equation naturally arises
as the limit of a large population optimal control problem. In the uncontrolled case, this property is by now extremely
well-known, and usually referred to as “propagation of chaos”. Much effort has been devoted to it since the seminal
works of Kac [91] and McKean Jr. [121], see also the illuminating lecture notes of Snitzman [149]. Without any claim to
comprehensiveness, we refer to Oelschliager [133], and Gértner [71] for models in the Markovian context without common
noise, to Budhiraja, Dupuis, and Fischer [35] for a large deviation principle associated to the limit theory, and also
to Méléard and Roelly-Coppoletta [125], Jourdain and Méléard [89], and Oelschléger [134] for the case of ’strong’ and
'moderate’ interactions, to Shkolnikov [142], Jourdain and Reygner [90] for rank—based models, and finally to Méléard
[124], and Graham and Méléard [74] for Boltzmann—type models.

In the controlled case, Fischer and Livieri [67] studied a mean—variance optimisation problem stemming from mathematical
finance, and obtained results in this direction. For general McKean—Vlasov controlled equations, such a limit theory has
been proved in Lacker [104] in a context without common noise, where an essential tool is a compactness argument,
which is made accessible by formulating an appropriate relaxed control for McKean—Vlasov equations, in the spirit of
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], and by introducing suitable martingale problems, similar to those of
Stroock and Varadhan [150]. The same formulation and arguments have also been used in Bahlali, Mezerdi, and Mezerdi
[15; 16; 17; 18] and Chala [50] to study stability and approximation problems.

In the present chapter, our first main objective is to establish the corresponding limit theory. To this end, in the restricted
case where the common noise part o is not controlled, and the dependence of the coefficient functions b, o, and oy in
L(XP ., aq|B) is through £(X,.|B) only (in words, the conditional law of the control process is not included in the
coefficient function), we introduce a relaxed formulation. We subsequently prove that any relaxed control rule can be
approximated by strong control rules, in the sense of weak convergence of probability measures on the canonical space.
Besides, the relaxed formulation enjoys an additional closedness property, implying the existence of optimal control rules
under mild additional technical conditions. The closedness property and the equivalence results between the relaxed and
the strong formulations (hence with the weak formulation also see Chapter 2) are also crucially used to obtain the limit
theory.

Our main contribution lies in the fact that we are generalising several fundamental results for McKean—Vlasov control
problems to a context with common noise, including the formulation of the weak and relaxed problems, their equivalence,
and the corresponding limit theory. The presence of the common noise creates some significant technical difficulties (see
Introduction and Chapter 2). We then need to formulate appropriate notions of relaxed control rules, and develop new
techniques to ensure the approximation property. Another technical difficulty comes from the presence of the conditional
law of the control process « in the coefficient functions (for the strong formulation), this situation has been rarely studied
in the literature, and will be the subject of the next chapter.
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An important point is that our approach also bypasses a technical issue in the literature considering relaxed formulations
for McKean—Vlasov control problems without common noise, namely [104; 17], and which proves equivalence results
between several formulations. Indeed, their proofs are based on an incorrect technical result in an unpublished, and
actually inaccessible paper [122]!, see Remark 3.3.8 for more details. We instead adapt the approximation arguments in
[63] to remedy this technical gap.

The rest of the chapter is structured as follows. We introduce in Section 3.2 the notion of relaxed formulation for the
McKean—Vlasov stochastic control problem in a common noise and non-Markovian setting, and define also an N—particles
(strong) control problem. The main results of the chapter are presented in Section 3.2.3, including the existence of optimal
control, the equivalence between the strong, weak and relaxed formulations and the limit theory. Most of the technical
proofs are completed in Section 3.3.

In this chapter, we work with the following additional assumptions:

Assumption 3.1.1. There exist Borel measurable functions (b°,6°,L°) : [0,T] x C" x P(C") x A — R™ x S"*4 and
08 [0, T] x C™ x P(C™) — S™** such that, for all (t,x,7,a) € [0,T] x C" x P(C" x A) x A, with v(dx) := v(dx, A)

(b,0,L)(t,x,a,v) = (b°,0°,L°)(t,x,a,v), and o¢(t, X, a,V) = oj(t,x,v).

By abuse of notations, we still write (b, o, L, a¢) in lieu of (b°,0°, L°, 03).

3.2 Relaxed formulation and limit theory without law of controls

3.2.1 The relaxed formulation

In the classical optimal control theory, the relaxed control/relaxed formulation has been introduced to recover some
closed and convex properties, while ensuring that each relaxed control could be appropriately approximated by strong or
weak control rules. The point was that it then becomes easier in this formulation to deduce the existence and stability
properties of the optimal solution, while ensuring under mild conditions that the value of the problem is not modified.
In the context of McKean—Vlasov optimal control with common noise, an appropriate relaxed formulation is not easy to
find especially because of the common noise and the presence of a control term in the volatility o.

Usually, a relaxed formulation is presented on a canonical space with the help of martingale problem. Here, for sake of
clarity and brevity, and an easy reading, we choose to present this formulation as the weak formulation Definition 2.2.1.
This point of view is of course equivalent to the formulation on a canonical space as we will see in Section 3.3.1.

Definition 3.2.1 (relaxed control). Let v € P,(R"), we say that a term
B = (Qﬂafﬁapﬂawﬂ = (]:tﬁ)OStSTaGﬂ = (gf)OStSTvXﬂaYﬁvwﬂaBﬁvNﬁa,uﬂaAﬁ)a

is a relazed control associated with the initial (distribution) condition v if

(i) (8, FP PP) is a probability space, equipped with two filtrations F° and G such that, for allt € [0,T]
G/ c 7P, and ¥’ [1D‘Qtﬂ] =¥ [1D\g§], PP-a.s., for all D € FP v o(W?); (3.2.1)

(i1) XP = (XD)se0r) and YP := (Y,)seo,1) are two R"—valued FP ~adapted continuous process and AP := (AS)o<s<r

S

is an P(A)-valued FP —predictable process such that: EF’ {HXBHP +|YA|P + fOT [4 (p(a, ao))pAf(da)ds} < o0;

IThrough personal communications with S. Méléard, it was confirmed to us that she and her co-authors discovered a mistake soon after
finishing the paper, and hence abandoned it. Nevertheless, although the original manuscript is now nowhere accessible, some of its results
have been announced in the conference proceedings [123]. More specifically, the problematic result is [123, Corollary on pages 196-197], which
has been crucially used in [17, Proposition 2.2.], and [104, Lemma 7.1.].
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(iii) (WP, BP) is an R? x Rf~valued standard Brownian motion with respect to TP, B is in addition adapted to G,
.7-"53 V o(WP) is independent of géi, and pi? is a P(C™)-valued G® -predictable process such that

wl =¥ (X10.67), PPas.;

(iv) (XP,YP) satisfy: PP[X) =Yy ] =1, with PP o (X)) = v, and Y = X' — [} o0(s, Xir., u2)dBE, PP -ace.

S

8
(v) for PP-aew € QF, NP = (NVP ... N%F) is an (FB,Pg’gT)fmartingale measure with intensity A?(da)dt, the

. 8 N
martingales (N*?)1<i<q are orthogonal, and satisfy: Pg’nga.s., for all t € 10,T), W = ff[o t]XANﬁ(da,ds), and

t t 5
vl =vy +/ / b(s,XﬁA,,uf,a)Af(da)dsqL/ / o(s, X2, 1P, a)NP(da,ds), for allt € [0,T], P9 as.
0o JA 0o JA
(3.2.2)

Let 8 be a relaxed control and introduce
~ s
n? =P ((Xﬁ,YB,AB,WﬁHgg),

we define P the set of control rules as the following subset of probability measure on C™ x C" x C% x M x C* x P(C™ x
C" x C4 x M)

Prv) = {Pﬁ o (Xﬂ, YB, AP WP, BS, ﬂﬁ)_l : 8 a relaxed control with initial condition y}. (3.2.3)
The relaxed formulation of the McKean—Vlasov control problem is then defined by, with J (@) given in (2.3.6),

Vr(v) = sup J(P).
@653(1/)

Remark 3.2.2. Under Assumption 3.1.1, the reward function L depends on v (instead of V). In this case, and in contrast
to the general situation in Remark 2.3.5, the map P(C™ x C" x C% x M) > Ji = 6, (dv)dt € M(C") 4s continuous, so
that P — J(P) is lower semi—continuous (resp. continuous) as soon as L and g are lower semi—continuous and bounded
from below (resp. continuous and bounded).

Remark 3.2.3. (i) The martingale problem under P in Definition 2.3.1 involves conditional distributions in the coefficient
functions, which creates some reqularity problem in the approximation procedure, since conditional distributions are
not continuous with respect to joint distributions. By considering the conditional equality (3.2.2) (or equivalently the

conditional martingale problem) under Pg’gifa.s., the pB(w) term in the coefficient functions becomes deterministic,
which in turn allows to avoid the regularity problem. This (conditional) equality or martingale problem is partially
inspired from a technical proof of [104], but in our context with common noise, we need to consider a family of martingale
problems (see the formulation on the canonical space in Proposition 3.3.2 ), and deal with some non—trivial measurability
issues. Notice also that the process Y7 does not play an essential role in the strong or weak formulations, but he is
crucially used in the conditional martingale problem in Proposition 3.3.2.

(i) With our techniques, we are only able to prove the equivalence Viy = Vg (c.f. Theorem 3.2.4), as well as the desired
approximation results, under Assumption 3.1.1. For more general cases, it seems to be a very challenging problem that
we would like to leave for future research. We nonetheless point out the fact that the great majority of the extant literature
on either mean—field games or McKean—Vlasov control problems with common noise, does not allow for oy or o to be
controlled as well, see for instance Ahuja [8], Bensoussan, Frehse, and Yam [25], Cardaliaguet, Delarue, Lasry, and Lions
[38], Carmona, Fouque, and Sun [48], Carmona, Delarue, and Lacker [49], Graber [73], Guéant, Lasry, and Lions [75],
Kolokoltsov and Troeva [95], Lacker [103], and Lacker and Webster [107]. Notable exceptions are Carmona and Delarue
[41], though the discussion in the general setting remains at a rather informal level there, the monograph by Carmona
and Delarue [44], although all the main results given have uncontrolled common noise, Pham and Wei [138], though
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the problem is considered in a Markovian setting, with feedback controls, and no limit theory is explored, Pham [137]
and Yong [152] where only linear quadratic problems are considered, Bayraktar, Cosso, and Pham [21], though no limit
theory is addressed there as well. We would also like to highlight the recent work of Acciaio, Backhoff Veraguas, and
Carmona [1] which derives a general stochastic Pontryagin mazimum principle for McKean—Viasov control problems in
strong formulation without common noise, where the coefficients depend on the joint law of the control and the state
process. The authors also consider a weak formulation for their problem, but with uncontrolled volatility and for a drift
which does not depend on the law of the controls, deriving again a stochastic mazimum principle. Finally Elie, Mastrolia,
and Possamal [65] considers a contract theory problem with a principal and mean—field agents, without common noise
and where only the drift is controlled but can depend on the law of the controls, as well as Blie, Hubert, Mastrolia, and
Possamai [64] which also considers a contract theory problem, but with common noise and volatility controls.

3.2.2 A large population stochastic control problem with common noise

One of the main objectives of this chapter is to provide the limit theory for the McKean—Vlasov control problem, that
is, the problem Vg(v) in (2.2.3) can be seen as the limit of a large population problem. Let N be a positive integer, we
consider the canonical space

oV = (R" x c?)V x ¢,

with canonical process ((Xg,...,Xg"),(W?,...,W¥), B) and canonical filtration FV := (F}')o<;<7 defined by

FY =0 (X, Wi, Bs) i€ {1,...,N}, s €[0,]), t € [0,T].

Fix some (v!,...,vN) € P,(R")V, and define vy := v' ® --- ® vV the corresponding product measure. We consider
the probability measure P on (O, FV) with 7V := B(Q"), under which X := (X{,..., X{") has distribution vy,
and (W1,..., W% B) is a standard Brownian motion, independent of Xy. Let us denote by AZI,V (vn) the collection of all

processes « := (a');—1,. N, where each o' := (al)o<;<r is an A-valued, FN-predictable process satisfying

EPY [/OT (p(ag,ao))”ds] < o0.

Then under standard Lipschitz conditions on the coefficient functions (see Assumption 1.4.1), for every fixed (a?,...,a) €
Al (vn), there is a unique (R™)N—valued F-adapted continuous process (X*!,..., X*N) satisfying: for i € {1,..., N},

EPY [[|X*||P] < oo and

U(SaX;l/’\%ﬁpévvazs)dWsl +/ UO(S,X?/{Z,,(péV,Oéé)dBS, te [O,T], (3'2'4)
0

. . t L i
X;%Z — Xé +/ b(S, g/’\%awév’a;)ds +/
0

0

where

N
1
o (dx, da) =~ Z(S X ai) (dx,da), ds @ dP"-a.e., and o™X (dx) := N Z&X&,% (dx), for all s € [0,T].

i=1
The value function of the large population stochastic control problem is then defined by

VAW, oY) = sup  Jn(«), where Jy(a Z]EIP’ [/ (6, X5 N ab)dt + g(Xl o). (3.2.5)

ac AN (vn)

3.2.3 Equivalence with the relaxed formulation and limit theory

Let us now provide the main results of this chapter. The first one consists in the equivalence between the different
formulations of the McKean—Vlasov control problem. Recall that the constants p, p’, and p are fixed in Assumption 1.4.1.
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Theorem 3.2.4. Let Assumption 1.4.1 hold true. Suppose in addition that Assumption 3.1.1 are verified.

(i) Then, for every v € P,(R"™), Pr(v) is a non—empty convex closed subset of P,(Q), under the Wasserstein topology
W,.

(it) For v € Py(R™), and A CRI for some j > 1. Then the set Pw (v) is dense in the closed set Pr(v) under W,, and
consequently

Vs(v) = Vw (v) = Vr(v).
If L and g are continuous in all their arguments, there exists some P € Pr(v) such that Vg(v) = J(ﬁ*).

Remark 3.2.5. As Theorem 2.2.3, the results in Theorem 3.2.4 extend those in the no—common noise setting in Lacker
[104] and used different techniques of approximations because of the presence of the common noise.

Remark 3.2.6. A natural question that we have not addressed is that of the existence of so—called feedback controls,
since Theorem 3.2.4.(ii1) only gives existence of an optimal relazed control. It is known in classical control theory that
Filippov’s condition [66], which was notably used by Haussmann and Lepeltier [79], and by Lacker [102; 104] for MFGs
and McKean—Vlasov control problems without common noise, is usually sufficient to obtain, from any relaxed control, a
control depending on the trajectories of X only, and which achieves no worse value. In the common noise context, things
become slightly more subtle. The intuitive result is that one should be able to obtain a similar result but with controls
depending on the trajectories of both X and p. In Lacker, Shkolnikov, and Zhang [108] will exzactly prove such a result,
with the additional desirable property that the feedback controls preserve the marginal laws of (X, p).

We next provide some results related to the limit theory, that is, the large population control problem converges to
—%
the McKean—Vlasov control problem under technical conditions. For every v € P,(R™), we denote by P (v) the set of
optimal relaxed controls . o B
Pr(v):={PePgr(v): Vr(v)=J(P)}.

Let (v',...,vN) € Py(R"), vy :=v' @-- - @v" and a = (o!,...,a") € Al (vy), we define

N
1 . . . _
P¥(a',... M) = S LB (XY 5, (da)dt, W, B,y ) € P(Q), (3.2.6)
1=1

i i : i ,N i = . 1V
Where Ya v = Xa L fO 0—0(87 Xa 717 908 7a19)dB5 a’nd QDN — N Zi:l 5(Xa"i,ya"i,5ui (da)dt,Wi) .

t
Theorem 3.2.7. Let Assumption 1.4.1 and Assumption 3.1.1 hold true, assume that A C R7 for some j > 1, and that L
and g are continuous in all their arguments. With the constants p and p’ given in Assumption 1.4.1, let (v%);>1 C Py (R™)
be such that supy>, % Ef\il Jgn 2P i (dz) < oo.
(i) Let (P")

N>1 be given by P = PN (™M1, . oY) where (a1, NN € A{,V(VN) satisfies

J(QN’17 . 'aO‘N’N) > VSN(Vla e -»VN) —EN, for all N 2 1’ (327)

—N
for a sequence (en)n>1 C Ry satisfying limy_oo ey = 0. Then the sequence (P )n>1 ts relatively compact under W,

. —=Nm
and for any converging subsequence (IP’ we have

)le’

N,
1 N o B .,
lim W, <N g 1/171/) =0, for some v € P,(R"), and lim WP(PNm,IP’OO) =0, for some P~ € Prv).
=1

m—r o0 m—r o0

(ii) Assume in addition that W,(N~* Zf\il viv) e 0, for some v € P,(R"), and let P* € Pr(v). Then we can
—0o0

construct a sequence (IPN)N>1, together with (o™, ... a™N) N>y satisfying (3.2.7), such that W, (@N,@*) Je 0.
- - —» 00

(#i1) Finally, we have

lim
N—o0

vyt oY) = Vs (;VZN:V)‘ = 0. (3.2.8)

i=1
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Proposition 3.2.8. Let Assumption 1.4.1 and Assumption 3.1.1 hold true, suppose in addition that A C R7 for some
j > 1, and that L and g are continuous in all their arguments. With the constants p and p' given in Assumption 1.4.1,
let (V")m>1 C Py (R™) and v € P,(R™) be such that

sup/ |x|plum(dx) < oo, and lim W,(v™ v) =0.

m>1 m— 00

Then
lim Vs(v™) = Vs(v). (3.2.9)

m—r oo

In particular, the map Vs : Py (R™) — R is continuous.

Remark 3.2.9. (i) As far as we know, the above results are new in the setting with presence of common noise. Even
without taking into account the common noise, our results in Theorem 3.2.7 and Proposition 3.2.8 are also more general
than the existing ones. In particular, by taking £ = 0, we recover the most essential results in Lacker [104] for the case
without common noise. But in Theorem 3.2.7, the initial distribution does not need to be convergent, it is only required to
have finite moments in a uniform way, and the initial condition for each agents are allowed to have different distributions.
Moreover, the continuity result of the value function Vg(v) in Proposition 3.2.8 requires less technical conditions (such
as the Lipschitz assumptions on L and g) than in [138, Lemma 3.3.].

(i) Theorem 3.2.7 shows that any €n—optimal control of the large population stochastic control problem converges towards
an optimal control of the McKean-Viasov stochastic control problem. In particular, when there exists a unique strong
optimal control of the McKean—Vlasov control problem, any €y —optimal control of the large population control problem
converges towards this control.

3.3 Proof of equivalence with the relaxed formulation
3.3.1 Relaxed formulation on the canonical space

As in the strong and weak formulation, we formulate the relaxed formulation on the canonical space. To do this as
mentioned in Chapter 2, we use the notion of "admissible control". We recall briefly this kind of controls (defined on the
canonical space). We have two canonical spaces

Q:=C"xC" x M x €% and Q:=C" x C" x M x C? x C* x P(Q),

equipped with the corresponding canonical element ()? ,?,K,W), its Borel o-algebra F o= B(ﬁ), and its canonical

filtration F := (]?t)te[o 7] defined by

Fp = a(()?s,ﬁ,ﬁ([o,s} x D),W.) : D € B(A), s € [o,t]), t [0, 7).

and the canonical space  with the canonical element (X,Y, A, W, B, i), and its Borel o—algebra F := B(Q). Based on
i, we recall the three processes (i¢)iejo,r]: (Fy)tejo,r) and (fi)iepo,r] on Q by (recall (1.4.1) for the definition of A")

Mt = //,ZO ()?t/\)_la ﬁt(dxa da) = Eﬂ |:5)?m- (dx)Kt(da)}, and ,Bt = //,ZO ()?t/\‘a)/}t/\thv /W\)_17 te [OaT] (331)

The two filtrations F := (Fy)sejo,r) and G := (G¢)sejo,r) on (€2, F) are defined by
F, = a((XS,YS,A([O,s] x D), Wy, By, (Jis, #)) : D € B(A), ¢ € Co(C" x C" x M x C%), s € [OJ]).

and

Gri= o ((By (s, 8)) : 6 € Cy(C™ x C" x M x C%), 5 € 0,1]).
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For all t € [0,T] and ¢ € CZ(R™"+"+4+) the generator generator £, are defined by

Lio(x,y, w,b,7,a) = b(t,x,,a) - Vip(x(t),y(t), w(t),b(t)) + %Tr[a(t,x,17,a)v2<p(x(t),y(t),w(t),b(t))}, (3.3.2)

where
b(t,x,v,a) o(t,x,v,a) oo(t,x,v,a) o(t,x,v,a) oo(t,x,v,a)
= _ b(t,x,v,a) _ _ o(t,x,v,a) (1) o(t,x,v,a) (1)
b(t,x,w,b,v,a) := B , a(t,x,w,b,v,a) := T T
( ) 0g ( ) Taxa Oaxe Taxa Oaxe
O¢ O¢xd Loe O¢xa Loxe

Then, for any ¢ € CHR"+4+6) 5 .= (§7)c0.r) on Q by
57 = (X, Vi, Wi, By) — // Zop(Xa, Yo, W, B, Fiy, a) As(da)ds, ¢ € [0,T], (3.3.3)
[0,t]x A

where for a borel function ¢ : [0,T] = R, [; ¢(s)ds := [, ¢T(s)ds — [, ¢~ (s)ds with the convention oo — co = —o0.
Definition 3.3.1. Let v € P,(R™). A probability P on (Q, F) is an admissible control rule with initial condition v if
(i) P[Xo =Yy, Wo=0, Bo=0] =1, PoXy"' =v, and (X, A) satisfy Eﬁ[HXHp—Fff[O’T]XA (p(ao,a))pAt(da)dt] < 00;

(ii) the pair (Xo, W) is independent of Gr under P, and for all t € [0,T)

(@) = P27 o (Xun., Yin, ALLW) L, for Poace. @ € (3.3.4)

(#i1) the process (gf) is an (F,P)-martingale for all ¢ € CZ(R™ x R™ x R? x R?).

te[0,T]
Let us then define for any v € P,(R"™),

Pa(v) := {All admissible control rules P with initial condition v}.

Relaxed formulation on the canonical space In our context, when the coefficient functions (b, 0,09, L, g) do not
depend on the marginal distribution v or v, so that the control problem degenerates to the classical one, the relaxed
control rule coincides with the admissible control rule P 4(v) (see above Definition 3.3.1). For general McKean—Vlasov
control problems, it is not hard to prove that P 4(v) is closed and convex. However, in general, it is not the closure of the
set of strong or weak control rules in the context with common noise (see Example 3.3.3 below). This motivated us to
consider a more restrictive case (see Definition 3.2.1 for instance), where the common noise is not controlled, for which
we are able to provide an appropriate relaxed control rule set as a subset of P 4(v), which is both convex and the closure

of Ps(v) or Py (v).
Let us introduce a martingale problem on (Q, ). For any (¢,x,v,a) € [0,T] x C" x P(C") x A

T
B(t,x, v, a) = <b(t))(§’ v, a)) , &(t7x, v, (],) — (0’(2‘:7)1(7@,1/)) (U(t,)l(,a,y)> 7
d 4 J

and for all ¢ € CZ(R"*?) and (t,x,y,w,v,a) € [0,T] x C" x C" x C% x P(C™) x A
~ A 1
Lip(x,y,w,v,a) :=b(t,x,v,a)  Vo(y(t), w(t)) + iTr [a(t, x,v,a)V2o(y(t), w(t))]. (3.3.5)

Then given a family (v(t))o<i<r of probability measures in P(C™) such that [0,T] > ¢ — v(t) € P(C") is Borel
measurable, and ¢ € CZ(R"™), we introduce a process (M{")e(0,r) on (Q, F) by

My = (Y, Wi) — (Yo, Wo) / / Lsp(X,Y, W, u(s),a)Ay(da)ds, (t,¢) € [0,T] x CZ(R™9). (3.3.6)
[0,t]x A
Recall that for a borel function ¢ : [0,T] — R, we write [, ¢(s)ds := [;¢T(s)ds — [, ¢~ (s)ds with the convention

o0 — o0 = —0Q.
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Proposition 3.3.2. Let v € P,(R"). A probability measure P € P(Q) is a relazed control rule with initial condition v
i.e. P € Pr(v) if and only if P € P 4(v), and moreover, for P-a.e. @ € Q, the process M#r®) s an (ITT, [i(@)) ~martingale
for each ¢ € CZ(R™ x RY), where p(@) := (pe(@))tejo,r is defined from [i(@) as in (3.3.1).

Therefore,

~

is an (F, fi(@)) -martingale for each ¢ € CF(R™ x Rd)}. (3.3.7)

Pr(v) = {F €Palv): P -a.e weQ, (]\/va“(@))

t€[0,T]

Proof. Let P € Pgr(v). By Ito’s formula and Proposition 3.3.9, it is straightforward to check that P € P4(v) and
P-ae @€, (]\/4\1‘/%M(@))te[0,T] is an (IAF, fi(w))-martingale for each ¢ € CZ(R™ x R?).

Now, we take P belonging to the set of the right side of the equality (3.3.7). By Proposition 3.3.5 (A b

exists a family of measure—valued processes (N“’) cg such that, for P-ae. @ € Q, on an extension (Q*,F* [i(®) ® \)
of (Q,F,i(@) ® ) where A is the Lebesgue measure on [0,1], N® = (N1 w7...,Nd“) is an (F*,ﬁ( ®

measure with intensity A, (da)dt, the martingales (N ©9)1<i<q are orthogonal, and satisfy fi(@) ® \-a.s.

Y, = )?OJr// b(r,)?,u(@),a)//{r(da)dqu// U(T,)?,u(@),a)ﬁa’(da,dr), Wt = // ]V‘Z’(da,ds), (3.3.8)
[0,t]xA [0,t]x A [0,t]xA

Moreover, let 0 = (ﬁ:)te[O,T] with ';qt* =G, ®]?t* be a filtration on Q x ﬁ*, denote by Pﬁ* the predictable o—algebra on

[0, 7] x Q x O* with respect to H*. Then for all bounded PE g B(A)-measurable function f : [0,7] x Q@ x Q* x A —» R,
one can define the stochastic integral ff[o fxa f°(s,0)N®(ds,da) in such a way that

(t,w,0%) — <// f2(s,a)N®(da, ds))( *)is PE _measurable.
[0,¢]x A

~ ~ ~ — ~

We define 1= Q* x Q, F := Fr ®G, Fy:=F;F @Gy, forallt € [0,T], and for @ := (&*, ) € Q,

e below), there

) fmartmgale

~ ~ ~ —~ —~ ~ ~ ~ ~

X(@) = X(&"), Y(@) =Y (@), W(®@) = W(@"), B@) = B®@), A@) := A&*), N@) := N®(&").

We equip ((NZ, F ) with the probability P defined as follow:
P(K x A) := / 1i(@) @ AM(K)P(d@), for all K € F* and A€ G.
A

Let (Py)iepo,r) be the process Pi(@) := (B(@), lit(@)), we introduce (Gt := o{P,, s < tHieo,r)- As P € Pa(v), by

eq. (3.3.4), we deduce that Po (X, Y, W, B, A, P97 o (X,V,W,A) )" =Po (X,Y,W,B,A,i) ", and using eq. (3.3.8),
one has

(Q F,P,F := (F)o<i<t,G = (Gt)o<t<T, X,Y,W, B, N, (Pgt ° (X)_l)te[o,T]7A)

is a relaxed control.
O

We observe that Pr(v) C Pa(v) by Proposition 3.3.2. The next example shows that Pr(v) is a proper subset of P 4(v).

Example 3.3.3. Let us consider the case where: n=d=0=1,v =y, A= {a1,a2} CR, b=0, o(t,x,a,7) = al,, and
oo = 1,. Consider a filtered probability space (0%, F*,F*, P*) supporting an R4+ walued standard Brownian motion
(WL, W2 B*), let

2 2 2 2 s 2 2 —
X = algwg +a2th2 + Bf, W} = gw} + gwf, W, = gwtl - gwf, Gt = o((B,W2):0<s<t).
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By setting Y* := X* — B* and A} (da)dt := 304, (da)dt + 304, (da)dt, it is direct to check that

P.= Y (X*,Y*,At W*, B, L (X5, Y4, A, W B*|g;)) ePAW).

1 1 1 1 —
Yr = <a1 + az)W* + <CL1 - CL2>WTK,

However, one observes that

2 2 2 2

is not an Ito process under the conditional law P* knowing G%. Consequently, one has P ¢ Pr(v).

We next show that Py (v) C Pr(v) (see Proposition 2.3.6 for a representation of Py (v)), where we use crucially the
fact that fi; is the conditional law of (X;a., Y., AL, W), and not only of (X;a., Ab).

Proposition 3.3.4. Let v € P,(C"), every P € Py (v) belongs to Pr(v).

Proof. Tt follows by Proposition 2.3.3 that the continuous process W is an (ﬁ, 7i(@))-Brownian motion, for P-a.e. @ € Q.
Using the definition of weak control rules in Proposition 2.3.6 (see also proof of Proposition 3.3.9), it is direct to deduce

that for P-a.e. @ € Q, W is an (IE?, ﬁ(@))fBrownian motion, and
t t
Y; = Xo +/ b(s,XA,ds,us((D))ds +/ J(s,X.,&S,uS((D))dVVs, t€[0,T), p(w)-as.,
0 0
where

(Gt )iefo,r is an I/[":fpredictable process satisfying Kt(da)da = 64, (da)dt. It follows that, for P-a.e. @ € €, MH@)
is an (F, 7i(w))-martingale for each ¢ € CZ(R™ x R?), and hence P € Pg(v). O

3.3.2 Approximating relaxed controls by weak control rules

We provide here an approximation result of relaxed control rules by weak control rules. The Definition 3.2.1 although
simple to present, hides some measurability problems associated to the martingale measure N?. To achieving our
approximation, we need to use the canonical representation, and construct a martingale measure which share some
“good” measurability properties (see Section 3.3.4.2 for a brief reminder on the notions/properties of martingale measure
as introduced by El Karoui and Méléard [58].)

Recall that Q := C" x C" x M x C% Let us also introduce an abstract filtered probability space (Q*, F*,F* :=
(Ft)tepo, 1, P*), equipped with 2(n 4 d) i.i.d. martingale measures (N*’i)lgiSQ(n+d), with intensity vo(da)dt, for some
diffuse probability measure vy on A, and a sequence of i.i.d. standard d-dimensional Brownian motions (W*?);>1. Let
us define R R N N R R R

VW =OQx Q" F =FQF Ff =FF, Py =@ @P*, forallt € [0,T], and @ € Q.

The random elements ()/(\', ?, /A\, W) and (N*,W*? i > 1) can then naturally be extended to O*. Let us first provide an
improved version of [58, Theorem IV—-2], whose proof is completed in Appendix 3.3.4.2.

Proposition 3.3.5. Let v € P,(R") and P € Pr(v). Then there exists a family of measure-valued processes (]\Af‘:’)weﬁ
such that, for P-a.e. & € Q, Ne = (]\Afl’w,...,ﬁd@) is an (ﬁ*,ﬂgg)fmartingale measure with intensity Kt(da)dt, the
martingales (N**)1<;<q are orthogonal, and satisfy

~ ~ ~

Y, = Xo+ // b(r,)?,u(@)7a)Ar(da)dr + // U(T,X,ﬂ(@)7a)ﬁa(da,d7")7 W, = // ]v@(da, ds), Pgy-a.s.
[0,¢]x A [0,¢]x A [0,¢]x A

(3.3.9)

Moreover, let H* = (ﬁ?)te[O,T] with ﬁt* =G, ®j':t* be a filtration on Q x Q*, denote by P the predictable o—algebra on

[0, 7] x  x Q* with respect to H*. Then for all bounded Pﬁ* ® B(A)-measurable function f:[0,T] x Q x O x A — R,
one can define the stochastic integral ff[o fx A f¥(s,a)N®(ds,da) in such a way that

(t,w,0%) — (//[0 . Af“(s,a)f\?(dmds)) (@*) is PE _measurable. (3.3.10)
]
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Proposition 3.3.6. Let Assumption 1.4.1 and Assumption 3.1.1 hold, assume that A C RI for j > 1, and that v €
Py (R™) with the constant p' given in Assumption 1.4.1. Then for every P € Pgr(v), there exists a sequence (Pm) C

— m>1
Pw (v) such that o
lim W, (P",P) = 0.

m—r oo

Proof. We only provide here the proof with the additional condition that oy is a constant, which illustrates better our
main ideas. We refer to Section 3.3.4.3 for a proof in the general case.

First, let P € Pg(v), recall from Proposition 3.3.5 that on the enlarged filtered space (ﬁ*,]?*,ﬁ*), we have a family
(]V “)seqm such that N¥® is a martingale measure with intensity A¢(da)dt under the probability measure Pz := ji(w) ® P*,
for P-a.e. @ € €, and

-~

X, = Xo+ // b(r,)?,,u(@),a)f\r(da)dr + // U(T,X,,u(dz),a)ﬁi(da,dr) + ooBt(w), t €[0,T], @aﬁa.s.,
[0,t]x A [0,6]x A

W, = / / N%(da,ds), ¢ € [0,T], Bo-as.
[0,¢]x A

By Lemma 3.3.7 below, there exists, on (Q*, .7?*), a sequence (F*’m)mzl of sub—filtrations of ﬁ*, together with a sequence
oe (Xw’m)@eﬁ)mgp

m > 1, and for P-a.e. @ € Q, Wem is an (ﬁ*’m,@g,)fBrownian motion, and

of family of processes (dm, (W@*m) where @™ is an A-valued I@mfpredictable process for each

I@@[ lim A™(da,dt) :K(da,dt)} =1, lim Wp(zﬁfﬂ (X=m A™(da, dt), Wo™), CFs ()A(,Kt(da)dt,W)) =0, (3.3.11)

m— o0 m—0o0
with A™(da, dt) = 04y (da)dt, and

~

t t
X7 =X +/ b(r, X" Py o (X)) &) dr +/ o(r, X Py o (XO™) ™1 &) AW ™ + 09 By(w),  (3.3.12)
0 0

r

and for each m > 1 R
(t,0,0%) — ()A(f/\’,m(@*), (A™)E(@*), W™ (@*)) is P ~measurable, (3.3.13)

so that, with the predictable o—algebra PC on [0,T] x Q with respect to G
(t,w) — P (X'f/\’,m, (A™), W“ﬁm) is PE-measurable.
Further, let us denote Y™ := X®™ _ 50 B(@) and
"= /ﬁ cFe (2@7m,?@7m71§m,wﬁ»m,3(@),cﬁw (XM,?QM,KM,W@M))@(@).

It follows by (3.3.11) that lim,, o W,(P",P) = 0. To conclude, it is enough to show that P € Py (v). Since, by
construction, P [A € Mjy] = 1, then it is enough to show that P" e Pr(v). To this end, let us check that P satisfies
all the conditions in Proposition 3.3.9.

It is easy to check that P [fio (Xo) ™t =v,Xo =Yy, Wy =0,By = 0] =1and EF” U|X||p+ff[o,:r]x,4 la—ao[PAy(da)dt] <
oo. Furthermore, for every ¢ € Cp(C™ x C" x M x C%), p € Cy(P(C™ x C™ x M x C%)) and t € [0, T, we have
7 ({9, fue (B, 7)) = /, B [ (K5, Vo, (), W) o (B(@), £F (X2, 7o, K, ) | P(ds)
— B [¢(Xin., Yin, A, W) o(B, )]
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This implies that
fie = (P™)% o (Xin, Yir, AL, W) T = (B™)97 0 (Xyn, Yin, AL W) TH P s,
Next, for all ¢ € Cy(R?), ¥ € Cy(C™ x C" x M x C% x C* x C([0, T); P(C™ x C™ x M x C%))), and s € [0,], we have
EF" [¢(B1 — B)$(Xan, Yaro A*, Wan., Ban., fisn.)
= [ o(Bi(@) — Bu(@)) B [ (RE T (R Wi B (@), £7% (R T, (R, W) [Paa)
= B o(B0) - B@)] [ [R5 T Ry WP Bun 90, €5 (R507, T3, Ry, =) B
= E7" [¢(By — BY)EF [¥(Xan, Yar, A", Wan., Bans fisn.) ]

which implies that B has independent increments with respect to (@m, F). Besides, since P" 0B~ is the Wiener measure,
it follows that B is an (F,P"")-Brownian motion. Also, as Z = X — Y = 0B, one has immediately that S/ (defined in
(3.3.24)) is an (F°,P™)-martingale for all f € CZ(R™*4). Finally, by construction, Condition (iii) in Proposition 3.3.9 is
also satisfied. Therefore, P"" € Pg(v), and hence P € Py (v). O

Lemma 3.3.7. Let us stay in the context of Proposition 3.3.6, and assume in addition that o is a constant. Then on the
space ({2, F*), there exists a sequence (F*"),>1 of sub—filtrations of F*, together with a sequence of family of processes

(@™ W) g (X ca) s :
© € Q, W™ is an (F*™, Pg)-Brownian motion, and with A™(da, dt) = dam (da)dt and X“™ be defined in (3.3.12), the
convergence and measurability results in (3.3.11) and (3.3.13) hold true.

where &™ is an A-valued I/F\*mfpredictable process for each m > 1, and for P-a.e.

Proof. We will adapt the arguments in [63, Theorem 4.9.] to approximate, under each @@, the process

X, =Xo+ // b(r,)?,u(@),a)xr(da,dr) + // U(T,X’,p(@)ﬂ)ﬁa(da,dr) +00By(@), t € [0,T], Poas.,
(0,¢] 0,t]x A

and at the same time check the measurability property at each step.

Step 1. We first show that one can assume w.lo.g. that A C R’ is a compact set. Indeed, for each e > 1, let us denote
= AN[—e,e)l, m. : A — A, the projection from A to A., and then define A° and for all @ € O, N®© by

// o(s,a)A®(da,dr) // dadr // o(s,a)N*¢(da,dr) // N®(da,dr),
0,T]x 0,T]x 0,T]x 0,T]x

for all ¢ € Cy([0,T] x A) and ¢.(s,a) := ¢(s,m.(a)). Denote also (be,0.)(t,x,v,a) = (b,o)(t,x,v,m(a)). For w € Q, let
X% be the unique solution to

9 Z %o+ / / b(r, K¢, (@), a) A%(da)dr + / / o (r, X%, u(@), a) N9 (da, dr)
[0,t]x A [0,t]xA
+00By (@), t € [0,T), Pyas.

Then by similar arguments as in the proof of Lemma 2.3.10, it is standard to deduce that, for some constant C' > 0
independent of e > 1 and w, and which may change value from line to line

Eﬁw[ sup )?f’e—fw] < CEPs [// (b, 0) — (be,ae))(t,)?,@wo()A()_l,aﬂpxt(da)dt}
te[0,T] [0t

Using the growth conditions on (b, ) in Assumption 1.4.1, we have

[ 00~ ) (0% B (01 PR < (IS & 1K) [ bR,
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It follows by the dominated convergence theorem that: for P-a.e. @ € Q

lim E** | sup |X;f”e —Xs|p
€00 t€[0,T

Moreover, as A is a Polish subspace of R7, then A is closed, and hence A, is compact. This allows to reduce the problem
to the case where A is compact.

Step 2. We now assume in addition that A is compact and proceed the proof. By compactness of A, there is a sequence
of positive reel numbers (d.).>1 such that lim. ,- d. = 0, and for each e > 1, one can find a partition (A§,..., AS) of A

and (a§,...,a%) satisfying a¢ € A¢ and |a¢ —a| < §, for all @ € A, i € {1,...,e}. For & € Q, let X% be the unique

) 8

solution to the SDE

~ ~ -~

¢
Xo—i—Z/ (r, X%° Py O(X‘“ )7L ad)A, (Af)dr—i—/ o(r, X9 Pyo(X9) ™! af)ANZ (AS)+00 By (w). (3.3.14)
0

Using again standard arguments as in the proof of Lemma 2.3.10, we obtain that, for some constant C' > 0 (independent
of e and w), which may change from line to line

Eﬁ{ sup | X7 — Xy ]<CIEP [2// )(r, X, Py 0 (X) 7Y a) — (b,0)(r, X, Py o (X)L, af) [P A, (da)dr
[0T]><A*’

te[0,T)

For every fixed (r,x,v), the map a — (b,0)(r,x,v, a) is continuous and hence uniformly continuous. Using dominated
convergence, it follows that, for P-a.e. & € €,

lim Eﬁw{ sup | X7~ X,|"| = 0. (3.3.15)
e t€[0,T)

Recall that the space Q* is equipped with a sequence of i.i.d. Brownian motion (W*%);>1. Let us define, for each
1=1,...,e,

— . t . A~ t . . ~
zZoer ;:/O (q§71)*1/21{q§,,;¢0}dN;(Af) +/O 1oy dWT, with g5 := Ay (A7), for allt € [0,7].

Then it is direct to see that: for P-a.e. © € Q, (2“7’6’1, ceey 2@’6’6) is an e—dimensional (@,I@@)fBrownian motion, and
one can rewrite (3.3.14), for any ¢ € [0, 7]

~

— t ~ ~
twefXOJrZ/ r, Xo° P, o(X%e)~t as)q e’dr+/ o(r, X9 Pyo(X“) ™!, al") ¢ AZ9 £ 00 By (@), (3.3.16)
0

and
=72 Z/ @' dZ= t € [0,T), Po-a.s. (3.3.17)

Furthermore, by considering the process (¢¢%,i = 1,. ,€)refo,7] @s a control process, and using Lemma 2.3.10, we

can assume w.l.o.g. that ¢ is an ﬁfpredlctable process, and is in addition constant on each interval [tx,txt1), for
0=tg <ty <--- <tg =T. Let A°(da,dt) := > 7, ¢;"*dac (da)dt, it follows by (3.3.15) and (3.3.17) that

@@[JE& A¢(da, dt) = K(da,dt)} =1, lim W, (cP@ (X%¢, A*(da, dt), 25, L= ()?,Kt(da)dtﬁ)) —0.  (3.3.18)

Moreover, for every e > 1, it follows by (3.3.10) in Proposition 3.3.5 that one can choose (fw’e’i)i:17,__,e such that

(t,0,0%) — (Z&_e’l(dz*), L2 “(@%)) is PE _measurable.
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Recall that the solution X% of SDE (3.3.16) can be defined by Picard iterations (see e.g. Theorem 5.5.3), then by
similar arguments as in [140, Lemma 2.6.], one can choose X“*¢ such that

(t,0,0%) —> ()A(f/\e(dj ), (A9)H (&%), Z9 (o), ...,Z\fA’_e’e(Q*)) is PH" _measurable. (3.3.19)

Step 3. We now consider the approximation of ()/(: @’E)U_J ca A and Z%¢ for a fixed e > 1. For simplicity of presentation,
we consider the case e =2, K = 2 and ¢t; = T/2, so that

2,1 2,2
~ ’ for t t
R2(da,de) = g6, (o)t + 2265 (da)dt, G+ 22 =1, (g7 “>={(q° g erte .

oo (a0, a?), for t € [t1,T],

where (g0',¢0%) € [0,1]* are two deterministic constants and (qfl’l,qff) are [0, 1]-valued ]?t*1 —measurable random
variables.

First, we consider a further discretisation of [0 t]: 0=t} <t <--- < tl =t with t! := iAt, At :=t;/m, and then
define two d-dimensional processes (W‘*’ mol Jem, 2). Let VV6U ml = Wé"’m’Q =0, and then for each i =0,...,m —1, let
- me 1 4 (2&1,2,1 - 2221> te [tl,Gl]
VV,;"J’m’1 = ittt/ K o with 9% = tl +q9 2INt € [tl tz+1]
A,7 1
ngl " (91 ’ 2+1]
and )
W“ Tt e [t 61,
W@,m,Z o
h =

wm2 22 w, 7w0,2,2
War (Ztecoype = Z277) £ L)

Namely, one “compresses” the increment of the Brownian motion Z#21 from [t},t4] to [t],0}] to obtain Weml and

“compresses” the increment of the Brownian motion Z%%?2 from [t}, ¢!, ] to [0}, t5] to obtain wams2,

Next, on [t;,T], we take the discretisation t; = t3 < ..., t2 =T w1th t2 =ty +iAt, At :=ty/m = (T —t1)/m, and
for each i = 0,...,m — 1, let 02 := 2 + ¢’ At € [tf, #2]. Notice that ¢;;” is an F7,-random variable. It follows that the

(6?)o<i<m—q are also random. By rewriting its definition on [0,1] in an equivalent way, we define (W‘*’ m1 jem, 2) on
[tl, T] by

/\(D,m,l L Trrw,m, 1 2 2 ( 5®,2,1 w21

Wi W (Zt?+(t/\027t?)/qg’2 th ) ’

' ’ . for t € (t7,7,4).
Ww ,m, 2 W 1{t€[t$70i2]} + (Ww ,m, 2 2 ,2 (Zw T 92)/(15,2 _ Z:é,?&)) 1{t€(0$ thrl]}’

Next, let us define I := U7 ' ([t},01) U [t2,602)) and I3 == U (01, L) U [02,82,))

i Y% iY4
Wt@’m = (ﬁ/\f_ygél + Wiz;Q)l{te[At7T]}, and Kz’m(da,dt) = 0oy (da)dt, with oy := a%l{teqn} + a%l{telgn}.

Notice that P-a.e. @ € Q, Weml and Wem2 are I/P@?—fmartingales w.r.t. their natural filtrations with quadratic variation
™= fo 1 ( )dr and ¢™? = Jo 11 ( )dr respectlvely Further, with the time shift appearing in its definition, the

process wem g F*fadapted Moreover, Wem s a ]P’ —Brownian motion on [At, T] with respect to its natural filtration
(but not F*), and

A2,m ~m,1 ~m,2 (rre,m,l (17w,m,2 A2 ' 2,1 . 2,2 ' 2,1 15©,2,1 . 2,2 150,2,2 ™
(A moet e Wweemt e ) N (A ,/ q dr,/ qr dr,/ gr-dzy ,/ gr°dzy >7 Ps—a.s.
0 0 0 0

m—0o0
(3.3.20)



50 Chapter 3. Relaxed formulation and characterization of the limits

Let us define X@:2m = ()?f’g’m)te[o,ﬂ as the unique solution, under Pg, to

o N tVAL . N . VAL . N o .
X;u,?,m — X, +/ b(r, XZ2m B o (X52m)=1 om)dr +/ o(r, X22m B o (X2m)~1 o™)dWE™ + 50B,(@)
At At
N 2 tVAL L N L _ tVAL L N o P
= Xo+ Z (/ b(r, X©2™m Py o (X92™) 7L o2)dem? + / o(r, X&2m Py o (X‘*”2’m)*1,a?)dW:JfZ’;)
i=1 YAt At
+ 00 Bi(@). (3.3.21)

Besides, as in Lemma 3.4.1, it is standard to obtain the following estimate, for some constant C' > 0

sup ]EP“{ sup |)?f’2’m|p,] < C’<1—|—/ :c|pll/(dx)> < o0.
m>1 te[0,T] n

Using [49, Proposition B.1], it follows that: for P-a.e. @ € €,

(E]PJJ (’C‘TI’LJ’ ’c“.m727 Ww77n717 W.w,m,Q’ Xf%?,m)) is tlght under Wp-

m>1

Then along an arbitrary convergent sub-sequence (my)g>1 (which can potentially depend on @), one has

’\7 —~_ —~_ o~ — * — — ~
EJP’W (ank;178nk727 W.w,ka’ W.w,mk,Z’ X%},Q,mk) k_) EP (/C\k’l,/c\k’Q, W*’l, W_*’Q,X_*) Weakly and under Wp7
—00

for some random elements (?:\*’1,/6\*’2, /V[7.*’1, W*’Q, )?*) in (Q*, F*,P*). By considering the martingale problem associated
with the SDE (3.3.21), it is standard to check that X* satisfies

2 t t
X=X+ / b(r, X5, P* o (X*)7), a2)der + / o(r, X5, P* o (X)L, a2)dW* + 00 By(&), P*as.

i=170 0

Besides, by the convergence result in Equation (3.3.20), one has
£ (R et et W o) = 5 (R, [ a2tan [ oan, [Jptazeen, [\fitazees).
0 0 0 0
Then it follows by the strong uniqueness (hence uniqueness in law) of the solution to SDE (3.3.16) that
EIP* (?’1,?’2,W*’1,W4*’2,X*) _ EIP’@ (/ qf’ldr,/ qf’er,/ q$’1d2f’2’17/ qg’QdZE’Q’Z,X‘D’Q).
0 0 0 0

Since the limit is unique, and hence does not depend on the sub-sequence, we obtain that: for P-a.e. @ € Q

[P (K2,m7W}D,m,l’W-Q,m,Q’/W\.GJ,m’)?.@,Zm) — [P (7\2’/ qz,ldéf,zl’/ q3’2d2f’2’2,29’2,)?‘”’2>.
Further, using (3.3.19) and the explicit construction of W™ and the fact that the solution X®2™ of SDE (3.3.21) can
be defined by a Picard iteration, it follows that one can choose X“2™ such that

(t,0,0%) — ()?f,\’?’m(@*), (AZ™)E (&%), W;}m(w*)) is PH"_measurable.

Finally, we observe that X®2™ is only defined by SDE (3.3.21) on [At, T], with At = ¢, /e —» 0 when e —» co. Thus, we
can easily extend it to an SDE on [0,7] as (3.3.12) and preserve the same convergence and measurability properties. [

Remark 3.3.8. Our definition of the relaxed formulation and the proof on the approximation of relazed control rules by
weak control rules is quite different from those used by Lacker [104] in the non—common noise context. In particular, it
allows to fill in a subtle technical gap in [104, Proof of Theorem 2.4], where the approzimation procedure relies on the
erroneous martingale measure approzimation result of Méléard [122], as explained in Footnote 1. Notice however that
[104, Paragraph before Theorem 2.4.] does mention the possibility of an alternative proof in the spirit of [63] and [62],
but without more details. This is exactly the program we have carried out.
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3.3.3 Proof of equivalence

(4.1) Let Assumption 1.4.1 and Assumption 3.1.1 hold true, we next show that 53(1/)718 convex for v € P,(R").
Let (Py,Ps) € Pr(v) x Pr(v), 0 € [0,1], and P := 6Py + (1 — Q)IP’Q Then P € PA( ) since (P1,Ps) € Pr(v) x Pr(v) C
Pa(v) x Pa(v). Let also ¢ € Co(R™ x RY), 0 < s < t and ¢ :  — R a bounded F,-measurable variable, then

B [|B* [M¢) — BF [MP#c]|] = 0EF [|B” (M) — EF [ME#c]|] + (1 — 0)E™ [|EA [M¢] — B [Mg+][] = 0

By considering a countable dense family of ¢, 0 < s < t and (, it follows that for P-a.e. & € Q, (]\/Zf’“(@))te[o,;p] is an
(F, 7i(@))—martingale for all ¢ € CZ(R™ x R?). This proves that P € Pr(v).

(1.2) Take v € Py(R"™), we now show that Pr(v) is closed under the W,-topology. First, from Lemma 3.4.1, we
have Pr(v) C Pp(Q). Let (Pr,)m>1 C Pr(v), and P € P(Q) be such that lim,, W, (P,,,P) = 0. Then P € P,(Q).

Let ¢ € C2(R™ x RY) and f € CZ(R™ x R" x R? x R?), by Assumption 1.4.1, there exists some constant C' > 0 such that
for all (@,0) € Q x Q and t € [0, 7]

sl@l<c(i+1xn@iP+ [ P + //T (@0,0)7,(@)(da)r ), (3.2

and

M) b Pu(w)(dx ao, a)P A (@) (da)dr ). 3.
@@ <014 @I+ [ dru@ @0+ [ ot opR@)aar) (332

Q —> R be two bounded continuous
h (

Let 0<s<t, (:C"xC"xMxC? — Rand ¢: C"xC”xMxCdxcfo( )
3.3.22) and (3.3.23), it follows that

functions. Using the regularity of the coefficient functions (b, o, 0¢), together wit

0= lim Eﬁm H]Eﬂ []/\Zt¢7u<()?sA'a}?QA'vKSvW\S/\'):I - Eﬂ [M%#C()A(s/\w?s/\w

m—r oo s

=)
w
>
=

~ ~

:Eﬁ[‘Eﬂ []/\Z:t¢7ILC(‘>?SA~a?SA~7KS7/W\SA~)] EH [M C(‘)? Ys/\wAS?WS/\')]H?
and
O = hm |]Eﬁm §f¢(XsA<a Y—s/\-v AS? Ws/\-a Bs/\-, //js)] - Eﬁm [§£¢(X5A; K/\-v Asv Ws/\w Bs/\w ﬁs)”
|EP S ¢(X9A ;Ys/\ 7AS SA- 7Bs/\‘7ﬁs)] - Eﬁ[gfﬁb(Xs/\wYts/\',Asa Ws/\~aBs/\~7ﬁs)]|-

This implies that for P-a.e. & € €, (_;\Z%#(@))te[oﬂ is an (Eﬁ(&)))fmartingale for all ¢ € CZ(R" x R?), and (gf)te[O,T]
is an (F, P)-martingale for all f € C2(R™ x R™ x R? x R?).

Finally, it is straightforward to check all the other conditions in Proposition 3.3.2, and we can conclude that P € Pr(v).

(1) We assume here that A C R7, v € Py(R"). It is enough to use Proposition 3.3.6 to deduce that Py (v) is
dense in Pgr(v) with respect to W,. Next, under Assumption 3.1.1, together with the growth condition of L and g in
Assumption 1.4.1, P —— J(PP) is lower semi—continuous (see Remark 3.2.2) on P,(£2). This is enough to prove that
Vw(V) = VR(I/).
Finally, when L and g are continuous, under Assumption 1.4.1 and Assumption 3.1.1, P — J(P) is continuous on P,(Q).
Let (P"),,>1 C Pr(v) be a sequence such that

lim J(P™") = Va(v) < cc.

m—r o0
The coercivity condition (1.4.2) in Assumption 1.4.1 ensures that (@m)mé is relatively compact w.r.t. W, (see also
Proposition 3.4.6 below for a more detailed argument). By the closedness of Pr(v), it follows that there exists P € Pgr(v),

such that Wp(@m,@) — 0, possibly along a subsequence. Together with the continuity of J : P,(2) — R, this implies
that P is an optimal relaxed control rule. O
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3.3.4 Appendix: proof of some technical results

We finally provide here the proof of the approximation result (of relaxed control by weak control rules) in Proposition 3.3.6,
and some related technical results. Recall that Assumption 1.4.1 and Assumption 3.1.1 hold true, and A is a subset of
R for some j > 1.

3.3.4.1 An equivalent reformulation for relaxed control rules on the canonical space

On ©, let us introduce a filtration F~ = (F7)teo,r) and a process Sf = (Sf)te[o’T], for every f € CZ(R"*), by

t
— 1
Fi = 0(Xin., Yin, Bin, pit), and Stf = f(Zt,Bt) —(Zy, By) 7/ iTr[ao(s,X, M)VQQP(ZS,BS)}ds, t€[0,T],
0
(3.3.24)
where Z := X — Y and
oo(t,x, V) a(txu)T
ao(t,x,v) == ( 0 ie ’ > < 0 ie ’ ) , for each (t,x,v) € [0,T] x C" x P(C"). (3.3.25)
Denote by

Prv) = {@ €EPa(v):P-ae weQ, (]\/Zf’#(@)) is an (@, fi(w))-martingale for each ¢ € CF (R x ]Rd)},

t€[0,T]
the relaxed control rules on the canonical space. We recall that P 4(v) is defined in (3.3.1).
Proposition 3.3.9. Let v € P(R"), then a probability measure P € P(Q) belongs to Py(v) if and only if

(i) P[pg o (Xo)™! = v,Yy = Xo,Wy = 0,By = 0] =1, EE{HXH” + f[O,T]xA (p(ao,a))pAt(da)dt] < 00, and for any

te[0,T]
(@) = P2 o (Xun., Yin, W, A) "L = BY7 o (X, Yin, W, AL, for P -ace. @ € O

(i1) (Bt)iepo,r) is an (F,P)-Brownian motion, and for each f € CZ(R™ x RY), the process (S{) is an (F°,P)-

martingale;

t€[0,T]

(iii) for P-a.e. @ € Q, the process (]\//Tf’“(@)) is an (I/B:, [(@)) —martingale for each ¢ € CZ(R™ x R?).

t€[0,T)

Proof. First, let P € Py(v), then S¥ (recall (3.3.3)) is an (F,P)-martingale for all ¢ € CZ(R™ x R™ x R? x R*), which
implies immediately that (B;);c(0,7] is an (F,P)-Brownian motion and S is an (F°,P)-martingale for all f € CZ(R"xRY).
It follows that PP satisfies Conditions (i)-(iii) in the statement.

Next, let P € P(Q) satisfying Conditions (i)—(éii) in the statement. To prove that P € Pr(v), we first prove that S* is
an (F,P)-martingale for all ¢ € CZ(R" x R" x R? x R¥). To this end, let us introduce, for every ¢ € CZ(R" x R%), a
process M¥ = (M{);cp0,7 on (2, F) by (recall also the definitions of L and M#" in (3.3.5) and (3.3.6))

My = (Y3, W) — o(Yo, Wo) — // Lop(X,Y, W, s, a) Ag(da)ds. (3.3.26)
[0,¢]x A

Since B is an (F, P)-Brownian motion, we have, for all § € R, 0 < s < t, ¢ € C,(C" xC"xC¢xM), and ¢ € Cy(C* XP(Q)),
Eﬁ :sz exp (0 ! Bt - ‘0|2t/2)¢(Xs/\a Y;/\-, Ws/\~a As)w(Bs/\w //Zs):|
= EP :EZ; |:]/\4\15Lp’u¢()?s/\~a ?s/\‘v Ws/\w KS):| exp (9 . Bt - |9|2t/2)¢(3m, ﬁs):l

= E]P [Eﬁ {Mf,u¢(j€s/\-7 }/}s/\w /Ws/\va Ks)i| exp (9 . Bt - |9|2t/2)¢(35/\> ﬁs)]

— EF :M;o exp (0- By — |0]%5/2)6(Xan., Yan., WsA.,AS)zz;(BsA.,ﬁS)].
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In other words, (M{ exp(0Bs — £0(B)s0"))icpo,7) is an (F,P)-martingale for any ¢ € CZ(R"*?) and 6 € R".
Furthermore, from Condition (i) in the statement, we know that B is an (F,P)-Brownian motion, and

Y. =X —/ oo(s, X, )dBs, P-a.s.

It follows by [150, Theorems 4.2.1 and 8.1.1] that S* is an (F, P)- martingale for all ¢ € CZ(R™ xR™ x R? x R*). Moreover,
it is straightforward to check that £F (Xo,W,B,11) = LF(Xo) ® LE(W) @ LB(B, i), i.e. Xo, W and (B,]i) are mutually
independent under P, and therefore, P € P (v). O

3.3.4.2 Proof of Proposition 3.3.5

3.3.4.2.1 Martingale measure, stochastic integral and their measurability We recall here the definition of the
martingale measures from El Karoui and Méléard [58], but in a special context, and then discuss the associated stochastic
integration and some measurability issues. Let us consider the Polish space A, and an abstract filtered probability space
(Qr, F*,F*,P*), equipped with a random measure v;(da)dt on [0,T] x A, where t — 1v;(da) is P(A)—valued predictable
process. Denote by PF" the predictable o-field w.r.t. the filtration F*.

Definition 3.3.10. We will say (N¢(da)):cjo,1) is an (F*,P*)-martingale measure of intensity vi(da)dt if
(i) for all B € B(A), (Ni(B))iejo,) s a (F*,P*)-martingale with quadratic variation [, vs(B)ds, and with No(B) = 0;
(ii) let B1, By € B(A) be such that By N\ By = 0, then (N¢(B1))icpo,1) and (N¢(Bz2))icjo,1) are two orthogonal martingales.

Given an (F*,P*)-martingale measure (N¢(da))icjo,r) of intensity v;(da)dt, and a P ® B(A)-measurable function

f:[0,T] x Q* x A — R such that
P U/ |f(s,a)2ys(da)ds} < 0,
[0,T]xA

one can first approximate f by a sequence (f™),,>1 of simple functions of the form f™(s,a) := Y -, fi"1 smem)(s) g (a),
where B* C B(A),

m—r o0

s <ti', fi'is Fin—measurable, for all k =1,...,m, and lim EF [// |f(s,a) — f™ (s, a)‘QuS(da)ds =0.
’ [0,7]x A
Then one can define the stochastic integral, for ¢t € Q,
N(f) = / / N(da,ds) := lim Ny(f™):= lim Z F (N ae(BR) = Namat(By)), with the limit in L2,

and then, for all ¢ € [0, 7]
// N(da,ds) := limsup Ns(f).
0,T]x

Q3s, 't
Notice that (N(f))iejo,r] is an (F*,P*)fcontlnuous martingale with quadratic variation [; [, f(s,a)vs(da)ds, and it is
in fact independent of the approximating sequence (f™);,>1 (see e.g. [58, Section 1]).

Let us now consider another abstract measurable space (F,£), a family of probability measures (P%).cg on (Q*, F*,F*)
under which N is a martingale measure with intensity v;(da)dt, and the random measure v;(da)dt has the same
distribution under each P¥. In addition, the family (P}).cg verifies that for all Borel function ¢ : Q* x E — R
such that for each e, ¢(-,e) is P.—integrable, we have

Ese— p(w*, e)Ps(dw*) € R is E-measurable. (3.3.27)
Q*
Let f:[0,T] x * x Ax E — R be P*" @ B(A) x & measurable function such that

EP: [// |f¢(s,a)*vs(da)ds| < oo, for each e € E. (3.3.28)
0,7
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Lemma 3.3.11. One can construct a family of processes {(Nt(fe))te[O,T]}eeE such that

(t,w*, e) — Ny(f¢,w*) is P¥ @ E-measurable, (3.3.29)

and
N(f¢,w*) = (// fe(s,a)N(da,ds)) (w*), t€[0,T], Pr-a.s. for each e € E. (3.3.30)
[0,t]x A

Proof. Let us first consider the simple functions f : [0,T] x Q* x A x E — R in form f(s,a) := >, fx L(syta1(8)1B, (a),
where for each k=1,...,m,

sk <tr, fr: Q" x E—= Ris F; ®& measurable, and By, € B(A).

Then it is clear that

m
(t,w*,e) — Ny (f¢,w*) = ka(w*,e) (Newat(w*, Be) = Ny, at(w*, By)) is P* ® £ measurable.
k=1

Next, let f1, fo : [0,T] x @* x A x E — R be two bounded P*" ® B(A) x £&-measurable functions. Assume that both f;
and fy, one can construct the stochastic integrals satisfying (3.3.29) and (3.3.30), then it is clear that for f := f; £ fo,
Ni(f) := Ni(f1) £ Ni(f2) satisfies also (3.3.29) and (3.3.30).

Further, let (f,,)m>1 be a sequence of positive bounded functions increasely converging to bounded function f pointwisely,
all f, fm are P¥ @ B(A) x £-measurable functions, and for each m > 1, one can construct Ny (f,,) satisfying (3.3.29) and
(3.3.30). Then it is clear that for each e € F,

Ne(fe) — / f¢(s,a)N(da,ds) in L*(P*), as m — oc.
[0,t]x A

Following [129, Lemma 3.2.] combined with Condition (3.3.27), one can find a family of sub-sequence (m(€))k>1.eck
which is £-measurable and

Ni(f¢) = limsup Ne(f5, (o) = //[0 t]XAfe(&a)N(da, ds), Pi-a.s., for each e € E.

k—o0

In other words, one can choose a version Ny(f) satisfying (3.3.29) and (3.3.30). By the monotone class theorem, it follows
that the statement holds true for all bounded functions f : [0, 7] x Q* x A x E — R which is P" @ B(A) x £-measurable.

Finally, let f:[0,7] x Q* x Ax E — R be a P*" @ B(A) x £ -measurable function satisfying (3.3.28). For each m € N*,
define f,, := f1|f|<m, then (fm)men- is a sequence of P" @ B(A) x £-measurable functions satisfying

EF¢ [//[ e |fe(s,a) — ¢ (s,a)|*vs(da)ds| < oo, for each e € E.
0,7]x

Then it is enough to use the arguments in [129, Lemma 3.2] with the condition (3.3.27) again to define N;(f¢) as limit
of Ni(f5,), which satisfies (3.3.29) and (3.3.30). O

Proof of Proposition 3.3.5 Recall that the probability space (*, F*,P*) is equipped with 2(n + d) i.i.d. martingale
measures (N *’i)i:17.',’2(n+d) with intensity vp(da)dt for some diffuse probability measure vy on A, which is extended on

(ﬁ*,f *,@@) for every @ € Q. We will now follow the technical steps in El Karoui and Méléard [58] to construct the
family of martingale measures (N%)_ cq satisfying (3.3.9), and then check the measurability property in (3.3.10).

Let us first denote

— O’(t,X,a,l/) Onxn T\+ N T T -1
Y(t,x,a,v) = ( 1 den> , and (X )F(t,x,a,v) := gl\r% (elagn + (X 1) (t,x,a,v)) (3.3.31)
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where (XX 7)* is the pseudo-inverse of XX 7. Then for all bounded Borel measurable function f : [0,7] x A — R, let

“(s, f) := /A EZT(S,)?, a, ps(w)) f (s, a)/A\S(da), and its pseudo-inverse I'“" (s, f) := lim sup (51d+n + (s, w, f))fl.

eNO0
Denote also by 1 the constant function on [0, 7] x A which equals to 1. Furthermore, let 7; : R"*¢ — R i =1,...,n+d,
be the projection function defined by m;((2) := z; for every z := (z1,...,2"t9), and M®? := M™#&) be the martingale

defined in (3.3.6), whose quadratic variation process is given by
—_~ . —_~ . t
<M°J”,M‘“’J>t :/ ry; ;(s,1)ds, t €[0,T7, Psa.s.
0
(7) By [58, Theorem III-2.], there exists a PF e B(A)-measurable function ¢ : [0,7] x € x A —» A such that
/A\S(@,B) = / 15(p(s,@, a))vo(da), for all (s,@) € [0,T] x Q, B € B(A).
A

This allows to define, for every & € Q, two independent martingale measures (N* Y1<i<n+a and (N © ‘)n+d+1§i§2(n+d)

from (N*%);<i<piq and (N* )n+d+19§2(n+d) as follows. For each & € €, let us define for all B € B(A),i=1,...,n+d,
N*@i(B) = Z// 1 (0(5, @) San (5, X, (s, a), s (@))N**(da, ds), t € [0,T], Po-as.,
k—1 [0,]

and for all B € B(A),i=n+d+1,...,2(n+d),

2(n+d)
NF“HB) = Y // 1(¢(s,a)) (s, X, @(s,a), s (@))N*F(da,ds), t € [0,T], Pgya.s.
k=n+d+17 7 [0:4]xA
By [58, Theorem III-3.], (N*“”)1<Z<n+d and ( )n+d+1<i<2(n+d) are two independent martingale measures with

intensity A>“(da) x dt defined by AT (B) := ' ( ) for all B € B(A).
)i=

Next, we define the martingale measure (N n+d, from (N*@ M‘:”")i:17___,n+d as follows. For each bounded

PF @ B(A)-measurable function f : [0,T] x Q* x A — R,andi=1,...,n+d, let
n+d o ik
// (s,a)N“"(da, ds) Z/ rw £)(D&HToTet) (s, 1)) dMEk
[0,1] x

n+d

+ Z/ / (s,a)lnta — FQ(S,f)(FQ’+F@F@’+)(s,1))i’kﬁ*’@’k(da,ds).

Let us refer to the proof of [58, Proposition ITI-9., Theorem III-10.]) for the fact the above does define a martingale
measure (N*®%);_; .. q with intensity A;"*(da) x dt, and that it satisfies N;"®(A) = M, for each i = 1,...,n +d.

Finally, let
Y s,0,8,a) = 2(BENHTEET(EZR ) (s, @,@,a),

we define (J/\}@’i)izl n+d as follows. For every bounded P g B(A)-measurable function f : [0,T] x 0" x A — R,

t=1,...,n4+d, let

,,,,

n-+d
N{H(f) = Z// f(s:a)55 (s,0,a) N*(da, ds) +// (In+a = ST (EET)T) (5,0, a) f (5,0) N4 (da, ds),
[0,t]x A [0,t]xA
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where we notice that XX T (XX T)* is the projection from R"*? to the range of XX 7. It follows then (ﬁ@i)i:17,,_,d is a
martingale measure with intensity A;(da) x dt and satisfies (3.3.9).

(43) Let us now consider a bounded P*" ® B(A)-measurable function f : [0, 7] x Q x 0* x A —» R. By the above explicit
construction of N¥, it is clear that one can rewrite the stochastic integral

2(n+d) n+d

// fe(s,a)N “’ds da) Z // “(s,a)N*(da,ds) +Z/ Ped M‘“, P, -a.s.,
[0,t]xA [0,¢]x

for some PH’ ®B(A)—measurable function ¢ : [0, T xQOx*xA — R, and P _measurable function ¥ [0, T]xQx o —
R. Then one can apply the same arguments as in Lemma 3.3.11 to choose a good version of the stochastic integral s.t.

(t,w,0%) — (//[o,t]fow(&a) N®(da, ds))( )ISP " —measurable,

i.e. (3.3.10) holds true. O

3.3.4.3 Proof of Proposition 3.3.6 (general case)
We provide here the proof of the Proposition 3.3.6 when the coefficients (b, o, 0¢) verify

(b,0)(t,x,v,a) = (b,0)(t,x,v,a), and oo(t,x,7,a) := oo(t, %, V), (3.3.32)
for all (t,x,v,a) € [0,T] x C" x P(C" x A) x A with v(dx) := v(dx, A).

The idea of this part is to present how to extend the techniques used when oy is constant to this general case. We now
give the outline of the proof. In a nutshell, we want to approximate the relaxed control P by weak control rules when,
on Q, (X,Y, B, ) verifies

Y =X —/ oo(s, X, u)dBs, P-as., (3.3.33)
0

—

and for P-a.e. @ € Q, under P, the canonical processes ()?,?,K, W) verifies W = Jo fA “(da,ds), Pg-a.s., and

Y, = Xo + / / b(r, X, u(@),a)A,(da,dr) + / / o(r, X, u(@),a) N®(da,dr), for all t € [0,T], Pyas. (3.3.34)
[0,t]x A [0,t]x A

Step 1: In this first step, we rewrite (3.3.34) as an equation that takes into account only X , and not Y. To do this,
observe that, we can find a Borel measurable function Z : (t,x,7,b) € [0,T] x C" x P(C") x C* — I(t,x,m,b) € R®
verifying Z(t,x, 7, b) = Z(t,X¢n., ™ 0 (X¢n.) 71, bsa.) and

t
I(t, X, 1, B) = / oo(r, X, p)dB,, P-as. (3.3.35)
0

Therefore, using the (H)-property, i.e. for all ¢ € [0,T7], fiz(©0) = @gT o (Xin., Yin, W,AH) 7L, for P-a.e. @ € Q, we get an
equivalent formulation of (3.3.33) on €,

Y. =X —Z(- X, (@), B@)), Byas, for Pae @€ Q.

and then, a reformulation of (3.3.34) involving only X. We can see I(-,)A(,,u(&}),B(o—J)) as a ’conditional’ stochastic
integral w.r.t B given the o—field Gr.
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Moreover, for any R"—valued H*— —adapted continuous process (St) [o,7], We can find a measurable function S : Q x
C™ x C™ x M x C% x 0* —» C™ such that S%(&,w ) St(w,XtA,( ), Yin (@ ),At( ),Wt/\.( ),w*), for all (t,&,d,w*) €
[0, 7] x 2 x Q x Q*. And, since for P-a.e. @ € €, EFs [supte[O’T] |§ta;|p] < 00, thanks to the (H)-property, we easily verify
that for P-a.e. 0 € Q

N . —1
LPQ (I(7§@7ﬁ(a])7B(@))7§®76(Q)5B(a})> :ﬁgT ®P* © <A O'O(S,S((D,X,Y,A, W),,B)st,S(@,X,Y,A,W),ﬂ,B) )
(3.3.36)

for any Borel measurable function 8 :  — P(C™) such that (8 o (Xt/\-)_l)te[O,T] is a G—predictable process satisfying
EF[ fen I[P B(dx)] < oo

Step 2: Now, we approximate X thanks to ¥ by a sequence of special processes. This approximation is obtained through
the same arguments used in the proof of Prop051t10n 3.3.6 when oq is constant. More precisely, for any k € N*, there

exists (af,...,af) € A* a sub-division t§ = 0 < --- < t&¥ = T, as well as k P(A)-valued F*—predictable processes
(AR1 .. A*K) which are constant on each interval [t z+1} and for P-a.e. @ € Q, k (F, P%)-independent Brownian
motions (Z®*1 . Z%kFk) such that if we define

*<>

t . o~ . ~
_XO+Z/ r, X, (@), ab) Ak ’dr+/0 o(r, X, (@), af )\ A AZoR ¢ e [0,T), Py-as.,

~

and X7% = Y 4 7(-, X, u(@), B(@)), we have

lim ]EPW{ sup ‘Y ok }/}t‘p] =0, then lim EPW{ sup |X o )?t|p] =0.
k—o0 te[0,T) k—o0 te[0,T)

Moreover, for each k € N*

(t,2,0%) — (V5@ REH@), RM)@Y),.. ., (BB @), Z5E @), 55 @) is PF - measurable,

Next, let us introduce X*° an R™valued ]IT]I*fadapted continuous process satisfying for P-a.e. @ € Q, X“*° is the
unique strong solution of: E= [|| X“*°|[P] < oo and for all t € [0, 7],

k t t
XM = Xo + Z/ b(r, X“F° Py o (XPFe) 1 o) ARidr +/ o(r, X7k Py o (XPF) 1 af)\ /AP dZE ks
; 0

~

+Z(t, X9k P o (X9k0) 71 B(@)), Pyas. (3.3.37)

The existence and uniqueness P-a.e. & € Q of (3.3.37) is just an extension of the classical Picard iteration scheme,
adapted in this context. Indeed, thanks to the definition of Z and the fact that B is a (P, [F)-Brownian motion, it is
enough to adapted the proof of Theorem 5.5.3 to show this result.

We also define V28 := X9 (., X@hke, Pr o (X@ko)-1, B(w)). Notice that, with the same arguments used for the
constant oy case (property (3.3.10) and Picard iteration argument), we can deduce that, for each k € N*|

(t, @0, &%) — (XEF(@*), Ve @%), AVM)H@*), . (AR (@%), ZERN @), .., ZeE @) is PE _measurable.
By using the definition of Z (see (3.3.35)) and the observation (3.3.36), it is straightforward to check that

A
b
< L=

(t, Xoko £Fo(Xehe) B@)) — I(t, X, p(@), B@)) ﬂ P(d)

00 (T, )?‘*”k’o, Eﬁg ()?‘”’k’o)) — 09 (7“, )?, ,u(@))

p} arP(de), (3.3.38)
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then thanks to this inequality, using classical techniques, we get that for some K > 0

/]Eﬁl{ sup | X&he X“k|i”] <K/ /EP { sup | X<k — X, |P| P(dw)dt,
Q

s€[0,T] s€[0,t]

and we can deduce that limy_, fﬁEﬁg [SUPse[o,T] |)A(fk° - )?Aﬂ@(dw) =0.

Step 3: Finally, we provide the weak process that we are looking for, and prove a last convergence result. Again, we use

the arguments from the constant o case. For k € N* fixed, there exists, for each m € N*, Borel sets (I%!, ... I%F) such
that UF_ Iﬁf = [0,7T], and for Pae we Q, (Weoml  WemF) are k (F*, P5)-martingales with quadratic variation
(Wamid) = gt = = Jo 1ri(r)dr,, i € {1,...,k}. Furthermore, all these processes verify
lim (W“’ G Z = (/ \/ AR Zemi / Ak ldr) for eachi € {1,...,k}, P%-a.c. (3.3.39)
m—roo

Consider X km - an R™-valued ]I/-]\I*fadapted continuous process s.t. for P-a.e. & € Q, X@km is the unique strong solution
of

XPhm = Xo + Ek: / t b(r, Xk By o (XORm) =1 aFydemt + /0 t o(r, XOkm By o (X¥km)~1 gk)qem
FI(, XORm BE o (XORm) =L B()), t e [0,T], Pyas.
Define Yk .= x@km _ z(-, X@km Pr o (X@km)=1 B(@)). We have that
(t,@, &%) —> (2%’”(@*), XEEm (@r), WE™ (o), ... ,V’Vtﬁ@vk(@*)) is PA" _measurable.
Define, for each m € N*, the probability on Q= xemx (CO)F x (CHF x C* x P(C™ x C™ x (C)F x (CHk),
P = /ﬁﬁw (f(@a’fvm, yokm gml amk fpeaml o jremk pg) ﬁ’n(@))ﬁ(d@),

where 3™ (@) = LF= (XWW, emol L emok Jeml WU‘J»M).

Similarly to Lemma 3.4.1, by using an inequality of type (3.3.38), we get, for some constant C > 0

sup /EP“{ sup [ XZFMPP 4 sup |}/}t@’k’m|p,]]?(dw) < C<1+/ |x|ply(dx)> < 00.
Q "

m>1 te[0,T) t€[0,T]

Then, it is straightforward to deduce that (@*’m)meN* is relatively compact for the Wasserstein metric W,. Therefore,
via a convergent subsequence (m;);>1, we have

lim P = cF (X*, Y* e W W B A*) under W,,
j—o0
for some random elements (X*,Y*, cb*, ... cM* W . Wk* B* i*) in (Q",F",P"). By asimple use of the observation

(3.3.36), we deduce
Y*=X* —/ ool(s, X*, LY (X*|B*,i*))dB,, P -a.s.
0
If, for all ¢t € [0, T], we define

~ o~k Tx Ux Alx Ak, % 1,% Tk, x\ —1
My = p 0 (Xt/\»Y;s/\ 1Cens e CEA »WtA-a-“aWt/\-) )
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where (X*,Y* éb* ... ¢F* Wh* . W¥*) the canonical processes on C" x C" x (C)* x (C4)*, we get
~x _ pP* * * 1,% k,x 1,% kok |~ ok "
py =L (Xt/\-,YtA-th/\.a s G W, W |/~L B )7 P*-a.s.

In addition, using the (conditional) martingale problem, we have, for P ae we ﬁ*, and for all ¢t € [0,T]
Y =X+ Z/ b(r, X*, " (@) o (X*) 71, af)dey™ +/ o(r, X*, 1" (@) o (X*) 7, af)dW, i (@)-a.s.
i=170 0

With the help of the (H)-property, one gets Y * = X* -Z(, X 05 (@) o (X)L, B*(@)), P.-as, for P —ac. 0 e Q. By
(3.3.39), we deduce that

P ~ S oAl hx T /\k, —1 @* . ~ A1 Ak, /\17 =L 1
c (B,ﬁo(XO,c’*,...,C’*,W’*,...,W ") ):L (B*,M*O(Xg,c’*,...,c s WL R T,

where
B(w) := P ()?wﬁk@,?w’k@,/ /A\’ﬁ’ldr,...,/ X’ﬁ’kdr,/ \/K’ﬁ’kdéfﬁm’i,...,/ \/Kﬁ’kdff’m’i).
0 0 0 0

We can conclude that lim P"" s equal to
j—oo

chﬁ ()A(Wv’w,?ka@,/ Kf’ldr,...,/ Kf’kdr,/ K’;”“défvmvi,...,/ K’?’“défﬂ”vi,B(w)ﬁ(w))IP(dw). (3.3.40)
Q 0 0 0 0

Since this is true for any subsequence (@*’mj )jen~, we deduce the convergence for the whole sequence.

By mimicking the techniques mentioned in the proof in the case where oy is constant, combined with (3.3.36), we conclude
—x,k,m

that (Q )(k,m)en+ xN+ 18 a sequence of weak control rules where

Q*,k,m — Lﬁﬁ@ (X(D,k?,m’ i}@,hm, K}kﬂn7 W@,k}ﬂ’ﬂ’ B(a}), [ﬁl;@ (Xo‘.),k,m’ i}w,kﬁm’ K]CJTL’ W@,hm))]}p(dw)’
Q

with Wekm .= S Jpemi and Ak (dg,dt) == 86 #1,..i(t)(da)dt. Moreover, using (3.3.40), we have

i=1"aj;
o ok =
Jm, S W (@ F) =0
This concludes the proof. O

3.4 Proof of limit theory

Based on the equivalence result and the closedness property of Pr(v) in Theorem 3.2.4, we can provide the proof of the
limit theory result in Theorem 3.2.7 and the continuity result in Proposition 3.2.8.

3.4.1 Approximation of McKean—Vlasov SDEs by large population SDEs

We show in this section that, for any control o € A,(r) and the controlled process X defined in (2.2.2), they can be
approximated by a large population controlled SDE (X*!,...  X®") asin (3.2.4). Let us enforce Assumption 1.4.1, and
assume that A C R/ for some j > 1.

We first provide a moment estimate of the solution to the N—controlled SDEs as in Lemma 2.3.8. this is in fact an easy
extension of Lacker [104, Lemmata 3.1. and 3.3.] (which are a succession of application of Gronwall Lemma), then for
brevity we omit the proof.
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Lemma 3.4.1. Let Assumption 1.4.1 hold true, and q > p. Then there exists a constant K > 0 such that, for all N > 1,
w1t oY) € (PuR) Y and (0. ,a") € AV (vy),

N N

> T
1 Py Ll / 1 i ’ 1 PN .
N;E [ sup |X; @ gK(H/Rn |z |qNZw(dx)+NZ]E 1 plag, ad)idt| ).

t€[0,7] i=1 i=1

Recall from Section 2.2.1 that 2 := R" x C? x C* is equipped with the canonical element (X, W, B), the canonical filtration
F and a sub-filtration G. We consider a probability measure P,, under which Xy, W, B are mutually independent, (W, B)
is an F-Brownian motion, and X, ~ [0, 1]. In particular, the probability space (2, Fo,P,) is rich enough to support an
R™—valued random variable of any distribution. Let £ be an Fy—measurable random variable such that E[|{|P] < oo, «
be an F-predictable process satisfying the integrability condition (2.2.1). We denote by X the unique strong solution
of the controlled McKean—Vlasov SDE

t t t
Xf’a :€+/b(T,X£’a,ﬁ§,’a,ar)dT‘+/J(T,Xg’a,ﬁg’a,ar)dwr+/O’0(T‘,X5’a,ﬁ£’a,ar)dBr, P.—a.s., (3.4.1)
0 0 0

with 76 = £P(X5% ,)|G), Pi-a.s. and satisfying EF[[[X&2|P] < oo. As for (2.2.2), X5 is an F*-adapted
continuous process.

Given in addition a G-optional P(C™ x A)-valued process i = (fi,):c[o, 1) satisfying the integrability condition

E[ / / /[OT] C A<||x||P+||a—ao||P>ut<dx,da>dt} < oo, (3.4.2)
T xCm x

we denote by X$7< the unique solution of the standard SDE

t t
o(r, XS T, o, )dW, + / oo(r, X" ., 0, )dB,, Pias.,  (3.4.3)
0

p— t —
XS =£—|—/ b(r,Xg’”’a,ﬁ,,,ar)dr—F/

0 0

with EF+ [HXg’T"a ||P] < 00. Above, X$7 is defined as an F-adapted continuous process. In particular, one has XEET e =
X&* P,-a.s. and

Ll (X6 W, B) = £ (X, W, B), and L+ (X$7 W, B) = L (X% W, B), whenever £ (¢) = £+ (¢").
Lemma 3.4.2. Let (§™)m>0 be a sequence of Fo-measurable random variables such that

Jim Wy (B, o (€M) R(E) ) =0,

and sup,, > EF+[|€™|P'] < oc. Let ¢ : [0,T] x R x C% x C* — A be a bounded continuous function, and (a'™)y,>o be
defined by of* := ¢(t,™, Win., Bin.) for allt € [0,T]. Then, for each t € [0,T], we have

lim EF- [Wp(cﬂl’* (X5, al?(Gy), £F (Xfi;a°,ag|gt))] =0,

m—r oo

and, for any fired fi = (fiy)refo,1] satisfying (3.4.2),
m — .m 0— 0
Tim B [, (25 (XL o] @), £ (x5 afl6,))] = o.

Proof. We will only prove the first convergence result, since the second follows by almost the same arguments.

First, without loss of generality, one can use Skorokhod’s representation theorem and assume that lim,,_,o " = &9, P,—
a.s. Then, using the Lipschitz properties and the polynomial growth of the coefficient functions, we have using classical
arguments (see notably Step 1 of the proof of Lemma 3.3.7), that there exists a constant K > 0 such that, for m > 1,

T
E™ | sup |X& 7 — X§°’a°p} < K(EP* [[€™ — €°P] + EF [ / g — a?‘pdt} + Cm>, (3.4.4)
te[0,T) 0
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where
P T 0 0 0 0 0 0 0 0 0 p
Crm:=E [/ |(b,0,00) (r, X& 15 ) = (b, 0,00) (r, X500 55, )| dr}
0

Next, since sup,,, EF* [|£m|p,] < 00, for some p’ > p, then (|¢™ — £°|P),,>1 is P,—uniformly integrable and it follows that
1My, 00 BF* [|€™ — €0[P] = 0. Moreover, since ¢ : [0,T] x R" x C% x C* — A is bounded continuous, we obtain that

lim | —ad| = hm Cy, =0, and hence lim ]EP*[ sup ’X5 o Xfo’aoﬂ =0.

m—o0 m—roo tE[O T
To conclude, it is enough to notice that, as m — 0,

m m m m 1
B W, (L7 (X80 0| Gu), £ (X5 %)) ) | < BR[| X80 = x| " LB | -}

/|
O

To proceed, let us consider, for each N > 1, the space O := (R™)N x (C4)N x C* defined in Section 3.2.2, equipped with
canonical elements (X¢,..., XV, Wl ... WN ) and canonical filtration FY. On QO we also introduce a sub-filtration

G" = (G )iero, 1), With G == 0(B, : s € [0,1]).

Given v € P,(R") and a sequence (v');>1 C P,(R"), we take the first N elements to define P on Q¥ under which
X§ ~ vt and B, W* are standard Brownian motions, and (Xg,..., X3, W1 ..., W/ B) are mutually independent.

Further, in Lemma 3.4.2, we keep using the bounded continuous function ¢ to define the control process «. Together
with an initial random variable ¢ ~ v, one obtain a G-optional process 7&® in Q. Notice that in €, the process 7& is
a functional of the common noise process B, one can then extend it as a G —optional process in QV while keeping the
same notation for simplicity.

Finally, with the same bounded continuous function ¢ : [0,7] x R x C? x C* — A in Lemma 3.4.2, we introduce the

control processes (a!,...,aN) by af := ¢(t, X3, Wi, , B;a.), and then define a sequence of processes X ', i=1,...,N,

by
i X t iy . t —a i X . t i .
X, ”:X5+/ b(r, X" ’z,ﬁf’o‘,a;)dr—k/ o(r, X i, ;)dWH/ oo(r, X" " i1, al)dB,, PY-as. (3.4.5)
0 0 0

Notice that the above SDE is almost the same as (3.4.3), except that we use here (X}, 7%, W?) instead of (£, 77, W).

Lemma 3.4.3. Assume that v and (v');>1 satisfy

E = P’
leéow < v 1/) 0, and sup g / |z|P v < 0.
Then
~ T ‘. N
lim EF {/0 W, (@) aiy )dt] =0, with @ (dx,da) := — :E o )(dx ,da). (3.4.6)

N—o00 Xl oy

Proof. Notice that to prove (3.4.6), it is enough to prove that, in the space (M(P(C" x A) x P(C" x A)), W),

K (A9, 0/, dt) = B (e (A9, 00)dt] oy K (d, 0, ) i= B |8 (d9)0p.0 (09)dl.

P My N—oo
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First, by a trivial extension of Lemma 3.4.1 and Lemma 2.3.8, there exists a constant K independent of 7 > 1, s.t.

N ) T N T
N[ 1 —a'ip’ . 1 N P ’ N A
57 s (X [ o — i ar) < 3w (1 B UG B e )+ B [ o o)
=1 =1
N

/1 i
§K<1+An|xpNZV(dm)> < o0,

i=1

where the second inequality follows by the fact that ¢ is bounded. Since p’ > p, it follows by [49, Proposition-A.2.] and
[49, Proposition-B.1.] that (KN)NGN is relatively compact in (M(P(C™ x A) x P(C™ x A)),W,).

Let (Np)m>1 be a subsequence such that KNm — oo A under W,. We only need to show that AT = KO, or
equivalently (see Proposition 3.5.1), that for every k > 1, g1,...,g91x € Cp(C™ x A), f € Cp(]0,T] x P(C™ x A)), we have

T k T k
/ / [T¢gs 20 £t 7)A™ (dw, v, dt) = / / [T¢os 212, 7K (d7,d7, dt). (3.4.7)
0 P(CrxA)? ;4 0 P(CrxA)?2 ;4
In the following, we provide the proof of (3.4.7) for the case k = 2, since the proof for the general case is identical.
Notice that & is GN-adapted, and X" depends only on (Xi, Wi B). It therefore follows that (Y?;:fi,ai) and
(X, A’], a{ ) are conditionally independent given the o—algebra G, for all ¢ € [0, T]. Thus for i # j,
N —ati N N —ati N —alj _
EFv [gl (Xt/\. aat)QQ(Xt/\ jyat)f(t e )} =E" |:E]P)" [gl(Xt/\. ;at)’gtN]EP” [QQ(Xt/\.JaO‘i)‘ggv]f(t :uf Oé):|'

Since f, g1, and g, are bounded, it follows that

T ——00
/ / (g1, ") (g, D) f(t, V')A~ (dir,d¥/, dt)
0 P(CrxA)?

= n}gnoo/ Z EP " [91 ?/:’ ,Oét)QQ(X(t]AJ7 70‘t)f(t ﬁ§ )}dt
m i,j=1
T 1 N Nom Nom pNm —al,j j
- n}grlw - S ER [Eﬂ” [gl(XM ,a)|GN] BR [g2 (X0 ) |G f(t ﬁf“)]dt
mog =1

= 1l t, 0 )EE™ |5 Noo N —ai g dw,dv’)|dt.
mgnoo/ /P(WA 0 Ll LY C 0]

i=1

Let U" be a random variable on (€2, Fy,P,) such that £LF(UV) = % Zivzl v, If we note ozZ’N = ¢(t,UN, Win., Bin.),
we have, from Lemma 3.4.2 that, for all ¢ € [0, T]

Jim 57 |, (- Zﬁ“””“" (%00 atlo)f )|
i 5 (€ (T i), 2 5 af)] o

Consequently

T T
/ / (g1, ) {ga, V) f(t, YA (A, AP, dt) = / / {g1,0){g2, D) f (2, D')Ko(dﬁ, dv’, dt),
0 P(CnxA)? 0 P(CnxA)?

and the proof is concluded. O
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Given a probability measure v € P,(R") and a sequence (v*);>1 C P,(R"), we consider the probability spaces (2, F,P,)
and (QV, FN PY), introduced respectively in Section 2.2.1 and Section 3.2.2. Let us fix a bounded continuous function
¢ :[0,T] x R" x C? x C* — A, and define a control process o := (o )sejo,7] on (€2, F), and control processes (o', ..., o)
on (N, FN) by
i = ¢(t, Xo, Win., Bin.), ot := o(t, X, Wi, Bip), t €[0,T], i=1,...,N. (3.4.8)
Using the control process a, (X%, %) is defined by (2.2.2) under P,. In particular, in the probability space (Q, F,P,),
let £ ~ v, and (X5 15) be defined by (3.4.1). We have P, o (75%)~! =P, o (u®)~!. Next, let ¢ be a random variable
n (Q, F,P,) satisfying P, o £~! = v. We also naturally extend the G-optional process > on Q into a GV—optional
process on Q. Then with the bounded control processes (al,...,a™), (X®?%),_; y is defined by (3.2.4) under PY,

and (Ya”,i)i:Lm’N is defined by (3.4.5). Recall also that

N N
X 1 N o 1
(dx) := N Zé(X?A’l")(dX)’ ¢; (dx,da) := i 25 ai o0 (dx,da), and @ N(dx,da) =N z:: <o s dx ,da).

-1 A0 Xin ’O‘
1=

Proposition 3.4.4. Let a and (a')1<;<n be defined in (3.4.8), together with the Borel measurable function ¢ : [0,T] x
R™ x C? x C* — A. Assume that

N
1 .
p 1 _— * =
ae A,(v), supNE / |z|P'v'(dz) < 0o, and lgréon(N;_lz/,u) 0.

T
lim EF [ /0 W, (o} ,ufa)dt} =0, and Nhinooﬁpy (8, (dD)dt, VX)) = L5 (672 (dD)dt, 1) under W, (3.4.9)

Consequently
Vs(v) < 1}\Ifninf vy o).
—00

Proof. (i) Using Assumption 1.4.1, together with Burkholder—-Davis—Gundy inequality and Gronwall’s emma, it follows
by classical arguments that there exist positive constants K, and K’ such that for al N >1,i=1,...,N and t € [0, T]

i t t
B | s - XP| < k8| [ el ] < w8 [ (el e w e mser)a].
rel0,t] 0 0
Further, notice that
N 1 N N ) N t
—_ Qi et — —N £«
EP (W, (el, 37 )F] < NZ]EPV [ s?opt] |xet - X |P] < KEF» [ /0 (Wp(cpiv JBP W, (BY, )p)dr},
i=1 relb,
it follows by Gronwall’s lemma and then by Lemma 3.4.3 that
t T
Jim B ] < i K| [ s =0, and s g 57 | [T ] <o

As an immediate consequence, we also have

lim £ (6 v (dv)dt, ¢ M) = L (82 (dw)dt, u*), under W,.

N—oc0

(43) Let us now consider an arbitrary control process a € Ap,(v), so that there exists a Borel measurable function
¢:[0,T] x R* x C% x C* — A such that oy = ¢(t,&, Win, Bya.) for all ¢t € [0,T], P,~a.s. Then there exists (see e.g. [49,
Proposition C.1.]) a sequence of bounded continuous functions (¢™),,>1 : [0,7] x R" x C¢ x C* — A such that

lim a == h_r}n gb (t 5 Wt/\,Bt/\ ) (b(t 6 Wt/\,Bt/\ ) = O, dIPl, ®dt —a.e.

m—0o0
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Then, in the probability space (Q,F, F,P,), it follows by standard arguments (see e.g. the proof of Proposition 2.3.12 or
Lemma 3.3.7) that

T
lim E*| sup |Xf“m—Xt°‘|p =0, and lim E®~ {/ Wp(ﬁt sy )pdt
0

m—ro0 tG[O,T] m—0o0

Finally, for each m > 1, consider the bounded continuous function ¢™. For each N > 1, on the space (QV, FN PY),
we can define control processes (a™")1<i<n by " = ¢"™(t, X§, Wir., Bir.), t € [0,T], i € {1,...,N}, and then define
(X"t .., X" N as the unique solution of Equation (3.2.4) with control processes (a™");=1.. n.

Define then
NN (dx) = NZ(SX“m i, (dx) and ™ (dx, da) =N Zéchmi7 m.iy (dx, da).

We have, thanks to Equation (3.4.9)

lim L (6
(]

N—o0 t

v (dm)dt, ™ NX) = £F (5u?m (dm)dt, uo‘m), under W,.

It follows then
T
J(a) = EP [ [ e ma (o, u%m%ﬂ

T
< & <L(tw,u?m),uf‘m>dt+<g('7u%m)7ﬂ%m>}

m—r o0

T
S dim EPI”VUO (Lt ™), o)t + (g, mNX),soz"f’N’Xﬁ

m—00 N—o0

< lim lim —Z]EP [/ L(t, X" o™ o )dt+g(X“m’i,w?’N’X)] <lminf V(0 oY),
—00

m—00 N—oo [N

By arbitrariness of a € A, (v), it follows that Vg(v) < 1}\1/11 inf V&V (u!, -, V). O
— 00

Using exactly the same arguments and Lemma 3.4.2 we can obtain the following result, whose proof is therefore omitted.

Proposition 3.4.5. Assume that

sup/ |z|” ™ (dz) < oo, and lim W (V™ v) = 0.

m>1 m—r oo
Then with the control process o defined in (3.4.8), we have

lim £5 (8o (dw)dt, u*) = Yo (672 (dw)dt, u*), under W), and consequently Vg (v) < lirri)inf Vs(v™).

m—r oo

3.4.2 Tightness of the optimal control rules

Let us now stay in the context of Theorem 3.2.7 and prove that the set of optimal or e—optimal control rules is tight.
Recall that Assumption 1.4.1 and Assumption 3.1.1 hold true, A C R/ for some j > 1, and both L and g are continuous
in all their arguments. Let N > 1, (v,v!,...,vV) C P,(R"), a € A(v) and (a,...,al) € AV (vn). PN(al,...,aV) is
a probability measure on Q defined by (3.2.6).
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Proposition 3.4.6. (i) In the context of Theorem 3.2.7, Let (v*)i>1 C Pyp(R™) satisfy supys; vazl Jzn |z v (da) <
oo and @N)Nzl C Po(Q) satisfy (3.2.7), then both (+ Zf\;l v )n>1 and @N)Nzl are relatively compact under W,.
Moreover, for any converging subsequence @Nm>m21, we have

N
1 =00 =00 _ =
lim W, ( § Vi ,,) =0, for some v € P,(R"), and lim W,(B"",P) =0, for some P~ € Pp(v).

m—r o0 m—r o0

(i3) In the context of Proposition 3.2.8, let (€m)m>1 C Ry be such that lim,, oo € = 0, (@m)mzl be a sequence such
that
P" e Pr(v™), and J(P") > Vs(v™) — epn.

Then the sequence (P),u>1 is relatively compact, and moreover, any cluster point of (P )ms1 belongs to Pr(v).

Proof. We will only consider (i), since the proof of (i¢) is identical.

Tightness: To prove the tightness of (@N) ~>1 under W, it is enough to adapt the proof of [104, Proposition 3.5.]
to our context. First, let us define control processes (a’?);>1 by a?’i = ag for all t € [0,7] and ¢ > 1, and denote
@év =PN(%!, ..., a%N). By Lemma 3.4.1, there exist some constants K, K’ > 0, such that for all N > 1

N N
—=N @N o 1 ]P’,J/V a,i|p / 1 7
J(Py ) > K<1 +E" [ sup Xt|p]) = K<1 + N ;:1 E [ sup | X7 ]) >-K (1 + N ;:1 . |z|Pr*(dz) ).

te[0,T] te[0,T]
Since by (3.2.7)
TEY) > VW N) —en > I(By ) —ew,
it follows that J (@N) > —C, for some constant C' independent of N. Using again Lemma 3.4.1, the coercivity condition
(1.4.2), and the growth conditions in Assumption 1.4.1, it follows that

N N N

_ 1 ; 1 . 1 "o ,
J(PN)<K(1+/Rn|w’|”Nzw(dm’)+NZEP'J’V[/O at’N—ao|pde_CLNZEPJ”V[/O ai™ —aof” dt).

i=1 =1 i=1

Then, there exists some constant C' > 0, independent of NV, such that

1 N N o ’ 1 N N T
Cr— EF~ {/ bl — aol” dt} - K— EFv {/ abN — ag pdt] < C.
N2 e el R 2 B el
Since p’ > p, it follows that

sup — ZEPN {/ ol — a0|p/dt] < 00. (3.4.10)

N>1

With the condition supy; + Zf\il Jgn |z[P' v (dz) < oo, and by similar arguments as in [104, Proposition 3.5.], it is easy
> 4 N
to deduce that both (% Zivzl v')n>1 and (P ) y>1 are relatively compact under W,

Identification of the limit: Up to a subsequence, let us assume w.l.o.g. that

N
_ _ _ 1 _ _
lim W, (P ,]P’) =0, for some P € P,(12), so that ngi(l)o W, (N E yz7y> =0, with v:=Po X; ' € P,(R"),

N—o0 ,
=1

and then prove that P € Pr(2). To this end, it is enough, by Proposition 3.3.9, to prove that PP satisfies the following
properties
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(Z) @[//’Zo (XO)_l = V7X0 = %aWO = 07B0 = O] = 17

(i) EF[||X||? + Joryxa (p(ao, )’ A¢(da)dt] < oo;
(iii) 1 satisfies (3.3.4) under P;
(iv) (Bp)tejo,r) is an (F,P)-Brownian motion;

(v) the process (Stf)te o,7] (defined in (3.3.24)) is an (F°,P)-martingale with filtration F~ = (F?)tepo,r) defined by
Fy = 0(Xin, Yin., Bin., jur) for all f € C2(R™ x RY);

(vi) finally, for P-a.e. @ € Q, (]\/4\;0’”(@)) (defined in (3.3.6)) is an (IAF, fi(@))-martingale for all ¢ € CZ(R" x RY).

t€[0,T]

First, let us consider two bounded continuous functions h', h? in Cy(R™), we have

EE ({10 (Xo) ) (02, o (X)) = Tim — 3™ 2% [ (Xd)3(x3)]

N—o00 N2
1,7=1
1 X

9 122 i L
_Nl'gnooNQ ‘ (h"he, V") + hm N2 v7)

i=1 z#y

1 & 1
_ 1+ 2 2
ngnoo<h,N; ><h Z > V) (2, ),
Using similar arguments, we can deduce that for all £ > 1 and bounded continuous functions k', ..., h* € Cy(R™)

EF [T}, (h', fio (Xo) ")) =TI

(2

(%, v), and hence P[io (Xo) ' =v] = 1.

Besides, with the definition of PY in Section 3.2.2, and then by (3.4.10), it is easy to deduce that
B[Xo = Yo, Wy = 0, By = 0] = 1, and Ep[nxw s plan sy <o,
[0,T]xA

Next, notice that, for all ¢ € C,(C™ x C™ x M x C%) and 1 € C,(C’ x P(Q)),

EF [¢(Xin., Yin., AL W)eh(B, 1)
N

=N ~ . 1 N i i t i 3
= lim E" [¢(Xin, Yin, A W)w(B, )] = Jim — ;EP [6(Xin., Yirs (6,0n (da)ds)', W) o (B, oy )]
= lim E™[E® [(Xin, Tin, (0, W)]0(B, 7y) | = BF [B# [6(Xin, Tin s A )]0 (B.7))

which implies that ji satisfies (3.3.4) under P that is, for P-a.e. @ € €,

ﬁt(@) = PQT o (Xt/\-7)/t/\~7At7W)_l = ﬁgt o (Xt/\ﬂ)/t/\'?At?W)_l'

We next show that (By)¢ejo,7) is an (F,P)-Brownian motion. First, since P)Y o B~! is the Wiener measure, it is clear that
Po B~! is also the Wiener measure. Next, let ¢ € Cy(Q), for all s € [0, 7], we define the random variables

D, = ¢(Xon, Yonos A, Win., Bon., fisn.) on Q, and @% = ¢(X &, Y, (0,0 (da)dt)®, Wi, Bon., Bo.) on (@Y, FN).
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On (QV, FN), we introduce the o-algebra F¥'W := o{W?', ... W¥}. Then, for all ¢ € C,(R") and ¢ > s

N N

EF [4(B; — B,)®,] = Jim 1 STER [U(B; — B,)®l] = lim % S ER [EPLV [(B) — Bs)q)i‘f_-N7W”
i=1 i=1
= I\}gnoo — Z]EIP’N [EPN Bs)’}"N’W]EP'J’V [q)é‘]_-N,WH
N N —
= lim - ;EE’ [¥(B; — B.)|EP [@1] = BF [(B, — B.)|EF[3,]

This implies that B is an (F, P)-Brownian motion.

We finally consider the two martingale problems in Proposition 3.3.9, for Which we can adapt the proofs in [104,
Proposition 5.1.]. Let ¢ € CZ(R" x R?), f € Cy(R" x RY), ¢ € Co(Q), ¢ € Co(P(Q)) and B € C,(C™ x C™ x C* x P(C™)).
In addition, on (QV, FV), we define the processes M %" fori =1,..., N by

ME" = @YV, W) — o(Yy' W) —/0 Lop(X* Y W abN, o) ds,
where L is defined in (3.3.5). Then (M #ieq1,....ny are (P, FYV)-orthogonal martingales with quadratic variation
¢
( |O—(T’X04,i7@TIY,X’O(gN)V@(XTO_t,i)de) ’ 1= la"'aN'
0

Denote - - PN . L
(Mg = M)Wy, i) s= B[ (MEH = MY (Ko, Vons, A7, W)

it follows by direct computation that, for some constant C' > 0 whose value may vary from line to line

(B [(m) ((Mip# = M), )] | = Jim |EF [0(@) (7™ - Mpe) v, )|

< limsupEF [|o(@)|’]"/*EF [|<(MW M,ﬁ"’“)\lfr,ﬁ>|2]l/2
N—o0
_ 11msupCEP[’¢ ’ ]I/QEPL\’ iZN:(MW _Mga,i),(/}(on,i y o (Ai)r Wi ) 211/2
e, N s t r A TN »PE A
7 1 o v [ [ 1z
< tmsup CBF[Jo(f"] (73 S| [ folo 04 5, 0t (e s
— 00 i=1 T
_ o121 N, 1/2 C
< limsup CE[|o()['] (N2 ;EPV {/ XL + plao, azN)pdsD =lpe oy =0

This implies that, for P-a.e. & € Q )
(M) = M), ji(@)) = 0.
Similarly, with a defined in equation (3.3.25) and Z? := X®¢ — Y% let us introduce (Stf’i)te[oj] on QO by

t
) ) ) 1 ) )
SPt = f(Zi, By) — o(Z8, Bo) —/ iTr[do(s,Xa’z,LpéV’X)VQQo(Z;,BS)]dS, PN -a.s., for all t € [0,T).
0

Denoting A*(da)dt := 6.~ (da)dt, and applying the same arguments as above, it follows that
t

Eﬁ[(stf _Svf)ﬁ(Xm-,Ym»,Br/\.er = lim —Z]EPN{ S’f’ S’f’i)ﬁ(XfA’%,Kof(?,BrA 7ap7],vx)} =0.

N—>oo
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Finally, by considering (r,t,1,¢) in a countable dense subset of [0,7] x [0,T] x C,(Q) x Cy(P(Q)), it follows that the
refo.7] 1S an (F°,P) martingale for all f € CZ(R" x RY), and for P-ae. @ € Q, (M;P7N(w))te[0’T] is an
(IEAT, fi(@))-martingale for all ¢ € CZ(R™ x R?). We then conclude that P € Pg(v). O

process (S7)

3.4.3 Proof of continuity of value function
Let v € Pp (R™) and (v"™)m>1 C Ppr(R™) be such that sup,,>; [, |2/ || v™ (da’) < oo and lim,, 0 W, (1™, v) = 0.
We first consider two sequences (g,,)m>1 C R4 and (@m)mzl such that

lim ™ =0, P" € Pr(v™), and J(P") > Vg(v™) — ™, for all m > 1.

m—r 00

It follows by Proposition 3.4.6 that (@m)meN is relatively compact under W,. Via a subsequence, let us assume that
P" — P under W,, so that P~ € Pg(v). Using the continuity and growth conditions of (L, g) in Assumption 1.4.1

m

and Assumption 3.1.1, it follows that lim,, .o J(P ) = J(P™), and therefore
limsup Ve(v™) < lim JP") = J(P) < Va(v) = Vs(v).

m—r oo

Together with the inequality from Proposition 3.4.5, we then conclude the proof. O

3.4.4 Proof of limit theory

N
(¢) By Proposition 3.4.6, the sequence (P ) n>1 is relatively compact under W,. Further, for any convergent subsequence

(@Nm)mzl, one has

N
1 = — —00 =00 _ =
lim Wp< E v, 1/) =0, for some v € Pp(R"), and lim W, (]P’Nm,]P’ ) =0, for some P~ € Pr(v).

m—oo Nim — m—roo
Moreover, under Assumption 1.4.1 and Assumption 3.1.1, it follows by (3.2.7) and Remark 3.2.2 that

limsup V& (1, ..., vN) < lim JE™) = J(P™) < Valv) = Vs(v).

N—oco m—ro0

Together with Proposition 3.4.4, one obtains that
lim V&, oY) = J(P7) = Ve(v) = Vs(v), (3.4.11)

N—o00
=00 _ =%
and hence P € Pr(v).
(it) The second item is in fact a direct consequence of Proposition 2.3.12, Proposition 3.3.6 and Proposition 3.4.4.

(#¢) Finally, let (N, )men be a sequence such that

N N,
lijrvnjilop Ve, . N = Vs <Jif Zlu)‘ = lim_ ‘VSNm(yl, VAL - VSG[ Zlu) ‘
One more time, through a subsequence, we can assume that
1 i n
N ;1/ — under W,, for some v € P,(R").

Using (3.4.11) and Proposition 3.2.8, we obtain that

N
1 ,
lim sup VSN(Vl,...,VN)—Vs(N E V’)

N—o00 i—1

< lim

m—r oo

VN = Vs (v)

+ lim
m— 00

and thus (3.2.8) holds true. O
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3.5 Appendix: characterisation of probability measures on a set of probability
measures

Proposition 3.5.1. Let E be a Polish space, (Y1,T3) € P(P(E)) x P(P(E)) be such that
k k
[ Tt = [ TTeennTa(@). forallk = 1, and (pieq,.. © Co(E). (3.5.1)
P(E) ;=1 P(E) =1
Then Y1 = Ys.

Proof. First, using (3.5.1), we have, for all k > 1, for every family of polynomial functions (W)ieﬂ
(@i)ieq1,..k} C Cp(E5R),

ky, and every

.....

k k
‘ i, ) T1(dv) = ‘ i, V) To(dv). 5.
[ T eemma) = [ TTeeta) (352

i=1 i=1

Since we can approximate any continuous function by polynomial functions, uniformly on compact sets, it follows that
(3.5.2) still holds true for all k > 1, (¢");ieq1,... k3 C Co(R;R) and (¢;)ieqa,... 13 C Co(E;R). This further implies that, for
all (rq,...,7m;) € RF

k k
/ I totormy<riy Ta(dr) :/ T tevstory<riy Taldv).
P(E) ;-1 P(E) ;-1

In other words, T1[A] = T9[A] for all A € ¥, where

U= {A[rl,...,rm;gol,...,gpm} m>1, (ri,...,rm) € R™and (¢1,-..,0m) ECb(E)m},
with
Alri, .o P @1y« ey Om] 1= {)\EP(E) i, Ay <1y, i= 1,...,m}.

Notice that the weak convergence topology on P(FE) is generated by the open sets in W, it follows by the monotone class
theorem that T; = Y5 on the Borel o—field of o (V). O
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Chapter 4

Measure—valued controls and limit theory
with law of control

4.1 Introduction

The aim of this chapter is to provide a rigorous connection between two stochastic control problems: the stochastic control
problem of large population (or particles) interacting through the empirical distribution of their states and controls on
the one hand, and on the other hand the problem of control of stochastic dynamics depending upon the joint (conditional)
distribution of the controlled state and the control, also called extended mean field control problem.

The connection we are investigating i.e. that the stochastic control problem of large population converges towards
the mean field control problem, is often called limit theory or (controlled) propagation of chaos. In contrast with the
classical framework of McKean—Vlasov stochastic control problem which only considers the conditional distribution of
X, here, there is in addition the presence of the conditional distribution of (X;,ay). Indeed, when there is no law of
control i.e. no L(X;, a¢|B) but only L£(X;|B) in (b, 0, L, g), these problems have been studied in the literature. Let us
mention the work of Snitzman [149] which shows for particular coeflicients (b, o) in the absence of control (and the law
of control), via some compactness arguments, a connection of this type. See also the papers of Oelschlager [133] and
Gértner [71], with no control and no law of control as well, which use martingale problem in the sense of Stroock and
Varadhan [150] adapted in the context of Mckean—Vlasov equation to prove similar results under minimal assumptions.

In the controlled dynamic case but no extended type, that is to say when the dynamic depends on the control but
not its law, Fischer and Livieri [67] gets a connection between the large population stochastic control problem and the
(extended) mean field control problem for the study of a mean—variance problem arising in finance. Another interesting
work is that of Budhiraja, Dupuis, and Fischer [35], where they study the behavior of empirical measures of controlled
interacting diffusion in order to prove a large deviation principle in a McKean—Vlasov framework. Still without touching
the case with law of control, the first work that deals with the case with control under general assumptions are Lacker
[104] and Chapter 3 of this thesis. Thanks to an (extension of) martingale problem of [150], as well as relaxed controls
initiated by Fleming and Nisio [69], and developed by El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], combined with
compactness arguments adapted to the McKean—Vlasov setting, [104] proves the connection between the two problems
under general conditions on (b, o, L, g) without common noise. Following upon these ideas, in the Chapter 3, we develop
a general overview of McKean—Vlasov or mean field control problem, and treat the case with common noise, which turns
out to be a non trivial extension.

In the presence of the law of control, this propagation of chaos result is a natural expectation. In spite of appearances.
The aforementioned techniques do not work in this context. Two main reasons can explain the unsuitable aspect of the
techniques mentioned above. Firstly, the continuity of the application ¢t — L(X;|B) (or t — cp;N’X) plays a crucial
role. Indeed, the classical idea is to put this application in a canonical space, which is here the space C([0,T]; P(R"™))
of continuous functions from [0,7] into the space of probability measures on R™, and via compactness arguments and
martingale problem get this connection (see [104], and Chapter 3 for the non-Markovian case with common noise). In
our situation, this type of continuity is lost because we must take into account the application ¢ — L(X;, a¢|B) (or
t — ) which does not have this property since the presence of control o can generate some discontinuities. Secondly,
as highlighted in Chapter 3, proving a result of propagation of chaos is extremely related to the search of the closure
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of the set of all probabilities that are the image measure of the controlled state process, the control and the conditional
distribution of the controlled state process and control i.e. £(X, dq, (du)dt, £(X, 84, (du)dt|B)). Unfortunately, the natural
space one might think to answer this question is not a closed set due to another problem of continuity (see Remark 4.3.1
for a more thorough discussion).

There are not many papers in the literature which study the mean field control problem with law of control and its
connection with a large population stochastic control problem. To the best of our knowledge, only the recent papers
of Lauriére and Tangpi [113] (with strong assumptions) and Motte and Pham [127] (for Mean—field Markov decision
processes) treat the limit theory question. Most papers focus on the questions of existence and uniqueness of optimal
control. Acciaio, Backhoff Veraguas, and Carmona [1], with the help of Pontryagin’s maximum principle, obtain necessary
and sufficient conditions to characterize the optimum with strong assumptions on the coefficients in a no common noise
framework. Pham and Wei [138] (without common noise, with closed loop controls) and the Chapter 5 of this thesis
establish the Dynamic Programming Principle (DPP for short) and give a Hamilton—Jacobi equation on a space of
probability measures verified by the value function. Let us also mention Carmona and Lacker [45], Elie, Mastrolia, and
Possamai [65], Cardaliaguet and Lehalle [37] and [113] who study similar problem in the mean field games framework
called mean field game of controls or exrtended mean field game, as well as our Chapter 6 and Chapter 7 adapt the
arguments of this chapter to the context of mean field game of controls.

In this chapter, our goal is to give some properties on the extended mean field control problem and to show its connection
with the large population stochastic control problem under general assumptions on (b, 0, L, g) (see Theorem 4.5.3 and
Theorem 4.5.1). To bypass the difficulties highlighted above, we follow the idea mentioned in Chapter 3 which is to
introduce a new optimization problem by considering a suitable set of controls. This set must be the closure of some
set of probability measures. In this framework, the appropriate space is the closure of all the probabilities that are the
distributions of the conditional distribution of the state controlled process and the conditional distribution of the state
controlled process and the control i.e. L(L(X¢|B))teo,r):02(x,.005)(dm)dt) (for more details see Section 4.4). Taking
into account this type of probability turns out to be the key to solve the main difficulties. The characterization of its
closure is possible by the appropriate use of (controlled) Fokker—Planck equation. Inspired by the techniques developed
in the proofs of Gyongy [76], especially [76, Lemma 2.1] (an adaptation of Krylov [98]) and [76, Proposition 4.3] which
are regularization results, we can determine the desired set thanks to a Fokker—Planck equation. The conditions used on
the coefficients are general, except the non—degeneracy of the volatility o. This assumption is capital to prove our main
results. Apart from this assumption, our result appears to be one of the first to establish some general properties on
extended mean field control problem and to show its connection with the large population stochastic problem. Lacker
[105] used similar techniques in the context of convergence of closed loop Nash equilibria, but his analysis focuses mainly
on an adequate manipulation of [76, Theorem 4.6], while ours focuses on the techniques used for the proofs. Also, let us
mention Lacker, Shkolnikov, and Zhang [108] which establishes a correspondence between Fokker—Planck equations and
solutions of SDE in a McKean—Vlasov framework with common noise.

Also, if we restrict our study in the case without common noise and with a particular form of coefficient o (see
Assumption 4.6.1) we prove that the stochastic control of McKean—Vlasov process with law of control over the set
of open loop control is equivalent to the same stochastic control problem over the set of closed—loop control. We want
to emphasize that unlike the classical literature on the equivalence between the open loop controls and the closed loop
controls, our approach does not use any convexity assumptions. The projection argument combined with the convexity
assumptions can not be applied in the situation of law of control. The projection can not allow to recover the law of the
control. Our techniques to prove the equivalence between closed loop and open loop controls use essentially the density of
the associated the Fokker—Planck equation, and more precisely, some estimates obtained in Bogachev, Krylov, Réckner,
and Shaposhnikov [31].

The rest of the chapter is structured as follows. Section 4.2, Section 4.3 and Section 4.4 carefully formulate first the
N-—agents stochastic control problem, then the strong formulation of the extended mean field control problem and finally
the stochastic control of measure—valued processes. Next, in Section 4.5, we present the main results of this chapter:
the equivalence between the strong formulation of extended mean field control problem and the stochastic control of
measure-valued processes, and the propagation of chaos result i.e. the extended mean field control problem is, when
N goes to infinity, the limit of N-agents stochastic control problem in presence of interactions through the empirical
distribution of state and control processes. Section 4.6, in a restrictive situation, deals with the equivalence between the
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closed loop and the open loop control, and give a limit theory result in the setting of closed loop controls. Finally, Section
4.7 provides some approximation results related to the Fokker—Planck equation and Section 4.8 is devoted to the proof
of our main results.

With a Polish space E, we denote by M(E) the space of all Borel measures ¢(d¢,de) on [0,7] x E, whose marginal
distribution on [0, 77 is the Lebesgue measure d¢, that is to say ¢(dt,de) = q(t,de)dt for a family (q(t, de))scjo, 7] of Borel
probability measures on E. We also consider the subset Mo (E) C M(E) which is the collection of all ¢ € M(E) such that
q(dt,de) = dy(+)(de)dt for some Borel measurable function ¢ : [0,T] — E. Let A denote the canonical element on M(E),
we define

A¢n.(ds,de) := A(ds, de gt 660(de)ds‘(t T)x B for some fixed e € E. (4.1.1)

)‘[O,t]x
For p > 1, we write M, (E) to designate the elements of ¢ € M(E) such that ¢/T € P,(E x [0,T]).

Let (¢,n) € N x N*, (U, p) be a nonempty Polish space and P} denote the space of all Borel probability measures on
R™ x U ie. Pj :=PR" x U). We give ourselves the following Borel measurable functions

[b,0,L] : [0,T] x R" x Cyy X Pfy x U — R™ x ™" x Rand g : R" x C}}, — R.

Assumption 4.1.1. The functions [b, o, L] are non—anticipative in the sense that, for all (t,x,m, m,u) € [0,T] x R™ x
Cyy x P x U
[b, o, L} (t,x,m,m,u) = [b, o, L} (t, 2, Tin., M, 0).

Moreover, there exist positive constants C and p such that p > 2 and

(#) U is a compact space;

(ii) b and o are continuous bounded functions, and oo € S™*¢ constant;

(iii) one has for all (t,z,x', 7, 7', m,m/,u) € [0,T] x (R™)? x (C}},)? x (PR)? x U

|[b,0)(t, z,m,m,u) — [b,o](t, ', 7" m' u)| < C(lz—a'|+ sup Wy(m,m,) + Wy(m,m'));
s€[0,T]

(iv) for some constant 6 > 0, one has, for all (t,x,m,m,u) € [0,T] x R™ x C}}, x Py x U,
01, < oo (t,z, 7, m,u);

(v) the reward functions L and g are continuous, and for all (t,z,m,m,u) € [0,T] x R™ x C}}, x P} x U, one has

|L(t,x,7r,m,u)| + |g(x, )| < C|1+4|z|P + sup Wy(mws,do)? +/ |x’|pm(dx’,U)].
s€[0,T] n

Remark 4.1.2. These assumptions are standard and in the same spirit as those used in [104] and Assumption 1.4.1,
but with some specific modifications adapted to the context of this chapter. They ensure the well-posedness of the objects
used throughout this chapter. Due to the technical aspect of our chapter, the point (i) is considered essentially to simplify
(the presentation of) the proofs. But, using the classical uniform integrability condition as in [104] and Assumption 1.4.1,
it is possible to work with U a non-bounded set of R™ for instance. The point (iv) is the least classical assumption in
the study in this problem. This is an important assumption for the proofs of our results, in particular to deal with the
Fokker—Planck equations and the different SDEs considered in the proofs (see Section 4.7).

4.2 The N—agents stochastic control problem

In this section, we present the N—agents stochastic control problem or large population control problem. The study of
this control problem when N goes to infinity is one of the main objective of this chapter.

For a fixed (v1,...,vV) € P,(R")Y, let
QN = RMHY x (cMN x ¢,
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be the canonical space, with canonical variable Xo = (X3, ..., X{"), canonical processes W = (WL ... W), .7 and
B = (Bs)o<s<r, and probability measure PY' under which X ~ vy := 11 ®---®@v" and (W, B) are standard Brownian
motions independent of Xg. Let FY = (F¥)o<;<7 be defined by

FY = 0{Xo,W,,B,, r €0,s]}, s €[0,T].

Let us denote by Ax(vy) the collection of all U-valued F¥—predictable processes. Then given a = (a?,...,a) €

(An(vn))N, denote by X := (X*', ..., X*") the unique strong solution of the following system of SDEs, for each
i€ {1,...,N}, EF [|X*|P] < oo,

t t
X&' =X+ / b(r, X, oNX N ol )dr + / o(r, X", oNX, eN,al)AWL + 0o By, for all t € [0,T], (4.2.1)
0 0
with
1 & 1 &
N, X
o (dx) = i ;6()(?”) (dz) and ¢ (dz,du) := i ;6()(?,,-7 of) (dz, du), for all ¢ € [0,T].
Then, the value function V& (1!, ..., ") is defined by
1S o[ (T : . ‘
vyt Ny = sup  JN(a) where JV (a) == ¥ ZEPV [/ L(t, X3, o X oN op)dt + g (X3, go?f_() ,
(al,...,alV) i—1 0
(4.2.2)

which is well-posed under Assumption 4.1.1.

Remark 4.2.1. (i) Our formulation allows for coefficients depending on the path of the empirical distribution of X<, but
can only accommodate a Markovian dependence with respect to X itself. In some sense, we work on a non-Markovian
framework w.r.t. the empirical distribution of X*. Indeed, as we will see in Section 4.4, our point of view is to write the
entire problem as an optimization involving mainly the empirical distribution of X* i.e. @N'X. Therefore our key variable
is VX (not X ) and we can deal with its path, hence the non—Markovian aspect.

(i1) Sometimes, the probability on Ci%, x M(Pg) x C*

—1
P(at,...,a") =P o ((gpivax)tem, S(pxvy(dm)ds, (Bt)te[O,T]) (4.2.3)

will be used to refer to (at,...,aN) € (An(vn))N. The notation PY (vt ... ,vN) will designate all probabilities of this
type. The need for this space will become clearer in the following.

4.3 The extended mean field control problem
On a fix probability space, we formulate the classical McKean—Vlasov control problem with common noise including the
(conditional) law of control.
For a fixed v € P,(R"), let
Q = R" xC" x (",

be the canonical space, with canonical variable £, canonical processes W = (W,)o<¢<7 and B = (By)o<i<T, and probability
measure P, under which £ ~ v and (W, B) are standard Brownian motions independent of £. Let F = (Fs)o<s<r and
G = (Gs)o<s<r be defined by: for all s € [0,T7],

Fs = U{f,Wr,Br, re [O,s]} and G, = U{Br, re [O,s]}.
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Let us denote by A(v) the collection of all U-valued processes a = (as)o<s<r which are F-predictable. Then given
o € A(v), let X be the unique strong solution of the SDE (see for instance Theorem 5.5.3): EF* [[| X||P] < oo, X§ =,
and for ¢ € [0, 77,

t

t
X? = X(? + / b(’f‘, ngﬂ?/\wﬁ?a Ozr)d’/’ + / U(Ta Xgmu’?/\wﬁ?v ar)dWr + GOBta (431)
0 0

with pg := L% (X2|G,) and 2 := L% (X2, ar|G,), for all 7 € [0,T].

Let us now introduce the following McKean—Vlasov control problem by

T
Vs(v) = Slj}() )q)(a) where ®(a) :=E {/0 L(t, X[, uis., iy, o)dt + g(XF, u®)|. (4.3.2)
acA(v

Remark 4.3.1 (Discussion on a possible relaxed extended mean-field control problem). An adequate way to study the
properties of Vs and/or to give a limit theory is to find the closure S(v) of some particular space S(v) for the Wasserstein
topology. To simplify, let us take £ = 0 (without common noise), according to the classical ideas of relaxed controls,

Sw) = {P, o (X, bq, (du)dt)_l7 o € A(v)} (see discussion Chapter 3 and also Lacker [104]).

Following [104] and Chapter 3, let us give an example to see why the “natural” expected relaxed controls is not a “good”
set. Letn =1,U = [1,2], v = &, o(t,x, 7, m,u) := | [, v’ m(R",du’)| and b = 0. Notice that S(v) C P(C"xM(U)), then
the canonical space is QO := C™ x M(U). Denote (X, Ay(du)dt) the canonical process and F := (Fy)eo,) the canonical
filtration. A naive relaxed controls is Pr(v) C P(C™ x M(U)) defined by

Pr(v) = {@: B(Xo=0) =1, (M )iei0.1) is o (B, F)-martingale Vf € cg(R)},

where My := f(X,) = § [y V2 F(XEF[ [, u As(dw) ds.

But, Pr(v) defined in this way is not a closed set. Indeed the map q € M(U) — ¢ € P(U) is not continuous for the
Wasserstein topology. Therefore Pr(v) can not be the closure of S(v). Due to this type of lack of continuity, this approach
cannot work. We need then to change the framework.

4.4 Stochastic control of measure-valued processes

As previously mentioned, the classical approach of relaxed controls is not appropriate. To bypass the difficulty generated
by the (conditional) distribution of control in this study, especially to prove the limit theory result or (controlled)
propagation of chaos, we introduce a new stochastic control problem. Motivated by the Fokker—Planck equation verified
by the couple (p*,z%) from (4.3.1), we give in this part an equivalent formulation of the extended mean-field control
problem which is less “rigid™.

4.4.1 Measure—valued rules

Recall that M := M(P}}) denotes the collection of all finite (Borel) measures ¢(dt,dm) on [0,T] x Pj}, whose marginal
distribution on [0, 77 is the Lebesgue measure ds, i.e. g(ds,dm) = q(s,dm)ds for a measurable family (q(s,dm))secpo, 1)
of Borel probability measures on Pf;. Let A be the canonical element on M. We then introduce a canonical filtration
FA = (FM)o<i<r on M by

FA = o{A(C x[0,s]): Vs <t,C € B(Py)}.

For each ¢ € M, one has a disintegration property: ¢(dt,dm) = ¢(t,dm)dt, and there is a version of disintegration such
that (t,q) — q(t,dm) is FA-predictable.
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(1, A, B) denotes the canonical element on € := Cji, x M x C*. The canonical filtration F = (F)ie[o,7] is then defined by:
for all t € [0,T] B
Fii= U{,U't/\wAt/\wBt/M}v

where Ay, denotes the restriction of A on P x [0,¢] (see notation 4.1.1). Notice that we can choose a version of
disintegration A(dm,dt) = Ay(dm)dt with (A¢)icjo,7) @ P(Ppy)-valued F-predictable process.

Let us consider £ the following generator: for all (¢, z,m,m,u) € [0,7] x R™ x C}, x Pt x U and any ¢ € C*(R")
L I 1 T 2 T
t(p(xaﬂ—am,u) T QTI'[O'O' (t,x,w,m,u)v <p(x)] er(t,x,?r,m, 7_1,) ch(x),

also we introduce, for every f € C%(R™), N.(f):

Ne(f) = (f(- —00By), ) — {f, o) / /n/n ., —UOBT)](x,u,m,u)m(dx,du)AT(dm)dr. (4.4.1)

Notice that, under Assumption 4.1.1, the integral in the definition N(f) is well-posedness. For each m € P(R™), one
considers the Borel set Z, which is the set of probability measures m on R™ x U with marginal on R™ equal to 7 i.e.

T = {m € Py :m(de,U) = W(dm)}.

Definition 4.4.1. For every v € P(R"), P € P(Q) is a measure—valued rule if:
° P(Ho = l/) =1.

® (Bi)icjo,r) is a (P,F) Wiener process starting at zero and for P-almost every w € Q, Ni(f) =0 for all f € CZ(R")
and every t € [0,T] .

e For dP @ dt almost every (t,w) € [0,T] x Q, Ay(Zy,,)) = 1.

We shall denote by Py (v) the set of all measure—valued rules with initial value v.

4.4.2 Optimization problem
Let us define, for all (7, q) € C};, x M(Pg),

J(m,q) == /OT/n /HXUL(t,xﬂr,m,u)m(dx,du)qt(dm)dt+/ng(x,w)wT(dx).

Notice that under Assumption 4.1.1, the map J : C;f x M, (P{;) — R is continuous (see for instance Lemma 4.7.1). We
can now define the measure—valued control problem: for each v € P(R"),

Vy(v):= sup EY[J(u,A)]. (4.4.2)
PePyv (v)

Remark 4.4.2. (i) Definition 4.4.14s partly inspired by the Fokker—Planck equation verified by (ug, [ig )ecjo,r) (see (4.3.1)
and Proposition 4.4.3), in particular the last two points characterize this Fokker—Planck aspect. Indeed, (p, A) satisfy:

for all (¢, f)
(f(- —00By), pit) = {f, po) +/0 /n /HXU L.[f(- = 00By)](, p,m, u)m® (du)p, (dz) A, (dm)dr,

where for each m € Py, the Borel measurable function R™ > x — m* € P(U) verifies m*(du)m(dz,U) = m(dz, du).
This kind of control turns out to be less “rigid”. Especially, Py (v) is a compact set for the Wasserstein topology (see
Theorem 4.5.1).
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(it) Working with these variables seems to be the key to better understand the problem and solve the principal difficulties.
Mainly, to prove a limit theory result in this context, we make an approximation of the distribution of (u, A) thanks to the
distribution of variables of type (u®, dge (dm)dt) and not thanks to the approzimation of the law of X. This approximation
1s achieved by using Fokker—Planck equations. To the best of our knowledge, looking at this kind of variable or “control”
has never been studied in the literature (except in Chapter 2 and Chapter 3, only for technical reasons).

As stated in the preamble of this part, the measure—valued control problem is motivated by the Fokker—Planck equation
verified by the couple (1, 7i%) of the strong formulation. Therefore, the strong controls i.e. (1%, 7i%)qc.4(,) can be seen as
a special case of measure-valued rules. By applying It0’s formula, it is straightforward to deduce the following proposition.

Proposition 4.4.3. For each v € Pp(R"™), let us introduce
_ o 71
Ps(v) i= {Py o (15 )retom, G (Am)dr, (Beom) s € Aw)}.

one has Ps(v) C Py (v) and

Vs(v) = sup EQ[J(u,A)].
QePs(v)

Proof. Let f € C%(R") and t € [0,7T), denote by Ny(u, A, B)(f) := N(f). For any a € A(v), it is obvious that
P, (ug =v) =1 and oo (Zu?) =1dP, ® dt a.e.. After applying [t0’s formula with the process X® — 0¢B., and taking
the conditional expectation w.r.t. the o-field Gz, one has N;(u®,dgze(dm)dt, B)(f) = 0, P,-a.e. for all (¢, f). Then

P, o (u®, 6z (dm)dt, B)71 € Py (v). Therefore Pg(v) C Py (v). In addition, notice that
T
0(@) =B | [ [ (Lt ) mig (amae + i) )|
U

consequently Vs(v) = SUPG P (1) EQ [J(/J,, A)] O

4.5 Equivalence results and limit theory

Now, we formulate the main results of this chapter.

Theorem 4.5.1 (Equivalence). Let Assumption 4.1.1 hold true and v € Py (R™), with p' > p. Then Py (v) is convex
and compact for the Wasserstein metric WW,. Moreover

(i) When £ # 0, for W,, the set Ps(v) is dense in Py (v).

(i) When £ = 0, for any P € Py (v), there ewists a family (P];)(k,z)EN*X[O,l] C Ps(v) such that for each k € N*,

k—o0

1
[0,1] > 2 — P¥ € P(Q) is Borel measurable and one gets lim W,,(/ P* dz, P) =0.
0

Consequently
W (v) = Vs(v),
and there ezists P* € Py (v) such that Vs(v) = EY" [J(u, A)].

Remark 4.5.2. (i) As in Chapter 3 (see also [103] and Chapter 6 for the mean field game context), there are some
specificities when ¢ = 0. Indeed, when £ =0, (u®,1%) are deterministic, but (u,A) can still be random, therefore, except
in particular situation, it is not possible to approximate the non atomic measure P by a sequence of atomic measure of
type (5(#a’5ﬁ§ (dm)ds)- However, a randomisation is possible as mentioned in (i4) of Theorem 4.5.1.

(ii) Theorem 4.5.1 and the following Theorem 4.5.3 are in the same spirit that Theorem 3.2.4 and Theorem 3.2.7 in
Chapter 3. The main difference is the presence of the distribution of controlled state and control, and this particularity
turns to be a non trivial extension (see discussion in section 4.3).
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Theorem 4.5.3 (Propagation of chaos). Let Assumption 4.1.1 hold true, p' > p and (v')ien~ C Py (R™) satisfying
SUDN =1 A Dy S [PV (da) < o0, Then

1
N

?

lim VSN(Vl,...,I/N)—Vs< =0.

N
N—o0 —

)

Finally, we provide some properties of optimal control of our problem. For any v € P(R"™), denote by ﬁ;(y) the set of
optimal control i.e. P* € Py, (v) if P* € Py (v) and Vi (v) = EF” [J (1, A)].

1

Proposition 4.5.4. Suppose that the conditions of Theorem 4.5.3 hold. Let limpy_, oo Wp(% Zf;l l/i,l/) =0 withv €
Pp(R™).

(i) For any sequence of non negative numbers (ex)Nen+ verifying Nlim en = 0, if (PY)nen- is the sequence satisfying
— 00

PN :=P(al,...,a") (see definition (4.2.3)) with
for each N € N*, o' € Ax(vn) Vi € [1, N] and VI (1, ..., vN) —en < EP" [J (1, A)], (4.5.1)

then

lim inf  W,(PY,P*) =0.

N—oc0 P*EP:/(V)

(ii) Moreover, for each P* € Py, (v), there exist (ex)nen- C (0,00) verifying A}gnoo en = 0 and a sequence (P*N) yens
satisfying PN :=P(a*!,...,a*N) and condition 4.5.1 s.t. A}im Wp(P*’N, P*) =0.
— 00

Remark 4.5.5. The previous proposition shows that any en—optimal control of the large population stochastic control
problem converges towards an optimal control of the McKean—Viasov stochastic control problem in distribution sense.

In particular when there exists a unique strong optimal control of the McKean—Vlasov control problem, any en—optimal
control of the large population control problem converges towards this control.

The next corollary is just a combination of Theorem 4.5.3 and Proposition 3.4.4. It states, if a strong control is close
enough to the optimum value of the mean field control problem, from this control, we can construct N—agents which are
close to the optimum of the N—agents stochastic control problem.

Corollary 4.5.6. Let Assumption 4.1.1 hold true. Let v € Py (R™), with p’ > p, (en)nen+ be a sequence of non-negative
real such that A}im en = 0. Also, for each N € N*, let o € A(v) satisfying ol = ¢N (t,&, Win., Bin.) Py, a.e. for all
— 00

t € [0,T) with a Borel function ¢" : [0,T] x R™ x C¢ x C* — U, and
Vs(v) — eny < ®(a?).

Then, there exists (On)nen+ C (0,00) s.t. A}im oy = 0 and (VN ..oV N) € Av(wn)N with vy = v ® - ®@v
—00

satisfying

ozi’N = oV (t, X, Wi, Bin), PY a.e. for allt € [0,T] and V& (v,...,v) — o < TV (BN, ... o™,

4.6 Case of closed loop controls (without convexity assumptions)

In this part, we show, if £ = 0 and the form of coefficients are restricted (see Assumption 4.6.1 below), our McKean—Vlasov
optimal control problem can be focused only on the closed loop controls instead of open loop controls considered so far.



4.7. Approximation of Fokker—Planck equations 79

Assumption 4.6.1. Here, we assume that { = 0, and
o(t,z,m,m,u) = (¢, ), for all (t,z,m,m,u) € [0,T] x R" x C}}, x Py x U.

For simplicity, we will note o instead of G.

Let v € P,(R™) and (Q*,F*, F*,P*) be a filtered probability space supporting W a R?valued F*-Brownian motion
and ¢ a Fy-random variable such that £F (¢) = v. We denote by A™ the collection of all Borel measurable function
a:[0,T] x R* — U. Given a a € A™, X is al solution of: X§ = ¢, and for t € [0, T],

t

¢
Xf‘:X(‘J’—l—/ b(r,X;’,,u?A_,ﬁf,a(r,Xﬁ‘))dr+/ o(r, X2)dW,, (4.6.1)
0 0

with p& == L5 (X2) and i == L5 (X2, a(r, X&), for all r € [0,T]. Let us define

T

fM(u) = {]P’* o ((u§)eeqo,m)s O0ge (dm)dr) "a [0,T] x R™ — U a Borel measurable map}.

Theorem 4.6.2. Let Assumptions 4.1.1 and 4.6.1 hold true and v € Py (R™), with p' > p. Then, any element of Pg(v)
is the limit for W, of a sequence of elements offM(u). Consequently

T
Vo) = sup 5| [ L0 X XD+ 9(X ) .
acAm o
Let us denote by AR the collection of all Borel measurable function « : [0,7] x (]R”) — U. On (0", F*, F*,P*), w
consider (W?);cn+ a sequence of independent R%—valued Brownian motion, and (£%);en a sequence of iid JF trandom
variables of law v. Then given a := (al,...,a") € (.A}(})N, denote by X := (X*' ..., X*") the solution of the
following system of SDEs, for each i € {1,..., N}, EF [|X*?|]P] < o0,

Xt = ¢ +/ b(r, X, om0 ol (r, X)) dr +/ o(r,X>")dW?, for all t € (0,77, (4.6.2)
0 0

with
N N

X(da) : == 25 o) (dz) and o (dz,du) == 25 X0, ab(6Xp)) (dz,du), for all t € [0,T].

Theorem 4.6.3. [Propagation of chaos closed loop] Let Assumption 4.1.1 hold true and v € Py (R™) with p’ > p. Then

T
Ve(v) = lim  sup —ZE“" [/ (6, X0, NX N (1, X9))dt 4+ g(X3, VX))

N—o0 OéE.Am

Remark 4.6.4. Theorem 4.6.2 and Theorem 4.6.3 show that we can focus our research of optimal controls over the set of
closed loop controls. An important point is to notice that we do not need to use any convexity assumptions as in classical
literature on this subject (see for instance [104] or [108]). This kind of techniques can not work in this framework. Indeed,
in the presence of law of control, the projection techniques do not allow to recover the law of the control, consequently
these techniques can no longer be used.

4.7 Approximation of Fokker—Planck equations

In this section, we give an approximation of a particular Fokker—Planck equation via a sequence of measure—valued
processes constructed from classical SDE processes interacting through the empirical distribution of their states and
controls. This result is a crucial part for the proof of Theorem 4.5.1 and Theorem 4.5.3.

IThe Equation (4.6.1) does not have necessary a unique strong solution. However, this equation has a unique weak-solution (see [106] for
instance).
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4.7.1 Regularization procedures and its consequences
4.7.1.1 Regularization procedures

Some additional notations are needed for our subsequent proofs. These are mainly regularization procedures through
convolutions.

Let us take G € C*(R";R) satisfying G > 0, G(z) = G(—=z) for all x € R" and [, G(y)dy = 1, then define the
regularizing kernel G.(z) := e "G(e 'z) for each € > 0. Throughout this chapter

-1
G(z):=(1+ |33|2)_"</ (1+ x’z)_"dx’) ,for all z € R™. (4.7.1)

Let ¢ : [0, T]xR™xC*x (C},)? x (PR)?xU — R be a Borel function, with j € N*. For each € > 0, one defines the function
P Clx (C)2 x P(PR) x [0,T) x R* — R as follows: for every (t,z,b,m,3,q) € [0,T] x R" x C* x (C%,)* x P((P1)?)

Ge(x — _
1/)6[b77TaBaQ](t,$) ::/(‘ 3)2 /n/Uw(t7y>bt/\'a7Tt/\'aBt/\-amay>u)Wm(du7dy)Q(dm7dy)7 (472)

where for every m € P, (m(dz,U)) 9 (z) == [, Ge(z — y)m(dy,U).

Observe that [¢[b, m, 3, q](t,z)| < SUD,1 by ¢t gt e [(E 2,0/, ¢C m! 0 )|, for all (b, mr, B, ¢,t, ). Then if ¢ is bounded
¢ is uniformly bounded w.r.t ¢ > 0. Also notice that, given (t,b T 67 q), for each € > 0, the function R" 5 =z —
Yelb, m, B,q(t,z) € R/ belongs to C;°(R™), hence the name of regularization.

Under additional conditions on 7, ¢ and initial function v, one has, in some sense, “lim._,o )¢ = ¥” (see Proposition 4.9.2
for more details).

Lemma 4.7.1. For all ¢ : [0,T] x R" x C* x (C,)* x (PR)? xU — R, and ¢ : [0,T] x R" — R two bounded continuous
functions. For each € > 0, the function

(b, 9,7, 8,) € C' x (Cy)? x M((PR)? —>/ [ vl Bttt 2)i da)at € B,

s continuous.

Proof. Let (bF, 9% 7% ¥ ¢F)pen C C* x (C3,)% x M((PR)?) and (b,d, 7, 8,q) € C* x (C},)3 x M((P3)?) verifying
lilgn(bk,ﬁk,ﬁk,ﬂk,qk) = (b,9, 7, 3,q). Notice that,

/ - Pe[b, 7, B, qi|(t, x)p(t, x)0 (dx)dt
Ge(r—y) ]
/ // n)2 /”XU Y(t, Y, bea., Ten-, Bin., m, U, u)( (dz, 1)) () m(du, dy)q;(dm, dv)¢(t, x)9; (dx)dt

:/ / / / / »(t,y,g,e,e ,m,v,u)p(t, ) H (z, m)(du, dy)q (dm, dv)d, (dx) ¥, (dg, de, de’)dt,
0 nJetx(Cy )2 J(PE)? /R XU

where

Ge(z —y)

) e ) 1= o )

m(du, dy) and W,(dg, de, de’)dt := § y(dg,de,de’)dt.

bin Tin,Bin-
Next, we define

1
Z*¥(du, dy, dm, dv, dg, de, de’, dz, dt) := THE(x,m)(du,dy)qf(dm,dﬂ)ﬂf(dx)é(bk Bl )(dg,de de’)dt,

AL
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and

1
Z(du, dy,dm, d, dg, de, de’, dz, dt) := THE(JJ, m)(du, dy) g (dm, d)d;(dx) ¥y (dg, de, de’)dt,

then (Z")en is a sequence of probability measures belongs to P(U x R™ x (Pg)? x C* x (Cj)* x R™ x [0,T]). As

klim (bk719k,7rk,ﬁk7qk) = (b,9, T, B,q), it is straightforward to see that (Z¥)yey is relatively compact in P(U x R™ x
—00

(PB)?xC % (C3,)? xR™ x [0, T]) and each sub-sequence converges to Z, therefore (Z*)en converges to Z in a weak sense.

As the function (¢,y,b, e, e/, m, v, u,x) € [0, T] x R" xC* x (C3,)? X (PR)2 x U xR™ — (t,y, bia.,e,€',m, v, u)p(t, x) € R"

is bounded continuous, we can conclude. O

4.7.1.2 Regularization of the Fokker—Planck equation

In this part, with the help of the regularization procedure, we show it can be possible to approximate a particular solution
of a Fokker—Planck equation with “non—smooth” coefficients by Fokker—Planck equation with “smooth” coefficients, this
part is largely inspired by the proof of [76, Lemma 2.1].

Let p > p, v € Py(R"), b € C* (n¢)cpo,r) and (z¢)icpo,r) be two P(R™)—valued continuous processes and also
§:(dm,dm’)dt € M((P)?). Moreover, (n,z,q, b) satisfy the following equation:

t
<f(t7 ‘)7 nt> = <f(07 ')v V> +/ {<8tf(7°, ')anr> + /( ) <Ar[f(rv ')]('vbv n,z,m,v, ')’m>(i7”(dm»dlj) dr,
0 P2
for all (¢, f) € [0,T] x C?([0,T] x R™), where the generator A is defined by
Avo(z,b,n,z, m,v,u) = %Tr [&&T(t,x,b,n,z,m,D,u)V2<p(x)] + lA)(t,x,b,n,z,m,ﬂ,u)TVgo(m), (4.7.3)

with (b,8) : [0,T] x R™ x C* x (C2)? x (PR)? x U — R™ x S™ is bounded and continuous function in all arguments, and
for each v € Pf}, the map (B, 6)(+,+, b, z,,U,") satisfies Assumtpion 4.1.1 with constant ¢ independent of .

Now, let us introduce the generator of the "regularized” Fokker-Planck equation AS: for all (t,q,z) € [0,T] x P((P)?) x
Rn
1 A
Asplb,n, z, §|(x) := §Tr[&€[b,n,z,cj](t,x)vzap(a:)] + b[b,n, 2z, 4|(t,z) " Vi(z), (4.7.4)

where for (t,z,v,7, 8,m,v,u) € [0,T] x R" x C* x (C},)? x (PR)? x U, a(t,z,v,w, B,m,v,u) := 66 (t,z,7v,7, 3, m,v,u)
and (a¢, b¢) are defined as (4.7.2) with the functions (@, b).

We are now ready to formulate our regularization/approximation result of Fokker-Planck equation. The following
proposition is proved in Appendix 4.9.1.

Lemma 4.7.2 (Regularization of Fokker—Planck equation). Let v € P,(R™), for each € > 0, there exists a unique solution
(0§)ecpo,1) € C of: for all f € Cy*([0,T] x R™) and t € [0,

(f(t,.),mn5) = f(O,y)V(dy)Jr/ [ th(ny)ni(dy)Jr/ AL f(r,-)[b,m, z,q,](r,y)n;(dy) | dr. (4.7.5)
R™ 0 R

Rn
Moreover, if v € Py (R") and §qi(Zn,) x Pj;) = 1 dt-for almost every t € [0,T], then

lim sup W,(n{,n;) =0. (4.7.6)
=0¢ef0,T)
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Remark 4.7.3. (i) Let ((AZ,]I?,]?, P) be a probability space supporting W a F-Wiener process of dimension R™ and £ a
Fo-random variable such that LF(€)(dy) = v(dy). Given € > 0, let Y€ be the unique strong solution (well defined, see
Appendiz Section 4.9.1 (more precisely the Proof of Lemma Lemma 4.7.2) )

:§+/ Ee[b,n,z,qr](r,Yf)dr—k/ (a)Y?b,n,z,q,](r, Y, )dAW,, for all s € [0,T], (4.7.7)
0 0

one has, by uniqueness of (4.7.5), LE(YE) = nS for all s € [0,T] where n is the solution of (4.7.5).

(it) We will sometimes use the previous lemma with Proposition 4.9.2, in which n® must be obtainable through a diffusion
process that has a volatility term which verifies a°[b,n,z, q,](r,Y,S) > 0L,x,. SDE (4.7.7) allows to say n® satisfies these
conditions. Also, from Lemma Lemma 4.7.2 and the SDE representation (4.7.7), it is straightforward to see that the
measure ng(dx)dt is equivalent to the Lebesque measure on R™ x [0,T] (see for instance Proposition 4.9.1 ).

Remark 4.7.4. Combining Remark 4.7.3 (diffusion form (4.7.7) of n® ) with Lemma 4.7.2 (convergence result (4.7.6)),
as (b, o) are bounded, there exists a constant C' > 0, depending only of coefficients (b,o), p and p', such that

sup / |x|p/nr(dx) <C (1 —|—/ |x\plu(dx)) and Wp(ns,nt)p < Clt—s|, forall (t,s) €[0,T] x[0,T].
n Rﬂ,

rel0,T]
The next lemma is a useful result for the following, it is just a combination of Lemma 4.7.2 and Proposition 4.9.2.
Lemma 4.7.5. Let us stay in the context of Lemma 4.7.2 with v € Py (R™). One has

lim l/T/ - { . |K(r,z,m,m’)|"nt(dz) +Wp(He(z,m)(du)ni(dz),m(du,dz))p} qr(dm,dm’)dr] =0,

e—0

where

K(s,z,m,v) ::/]R , [3,&&T] (s,y,n,z,m,D,u)Fe(;v,m)(du,dy) —/U [137 (’}6T] (s,w,n,z,m, 177u)H€(x7m)(du),
nx

with H (2, m)(du, dy) := m(du,dy)m(%éz% and H(z,m = [ou H (z,m)(du, dy).

Proof. By Lemma 4.7.2, limc_,0 sup;co, 71 Wp(nf, n¢) = 0. As q¢(Zjn,) X Pfy) = 1 dt-almost surely ¢ € [0, 77, using convex
inequality and Proposition 4.9.2,

lim/ / / (ryx,m,v ’ n{(dz)q,(dm,dv)dr

e—0 n n

< lim sup/ / / /
e—0 )2 n JRex U

— [b, 66—@ (r,y,b,n,z,m, D,u)‘

b 66" (r,x,b,n,z,m,ﬂ,u)

PGe(z —y)
() (z)

For all bounded continuous function h : R" x U — R, using Proposition 4.9.2 again,
T
lim / / / h(z,u)H(z,m)(du)ns(dx) — / h(z,u)m(dz,du)
e—0 n)2 R xU R xU

wf [
e—0 n, n

mY (du)n, (dy)ns(dx)q, (dm, dv)dr = 0.

4, (dm, dv)dr

qu(miy) . o wm(ds. du
/WXU (2, u)my (d)(m)()() r(dy) /Rnwh(,) (dz, du)

n{(dz)q,(dm,dv)dr = 0,
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similarly to [150, Theorem 1.1.2.], one finds a countable family of bounded continuous functions (h*)gen+ characterizing
the weak convergence, therefore by Lebesgue’s dominated convergence,

T

1

lim Z/ / —k‘ / R (2, u) HE (2, m) (du)ns (dz) — / h* (2, u)ym(dz, du)|q,(dm, dv)dr = 0,

=0 =000 Jpp)2 281 Jrnxu R7 XU

then lim._,o fOT f(pn)Q A(HE(@m)(du)nﬁ(dz),m(du,dz))dr(dm,dﬂ)dr = 0, where A is the metric characterizing the
U

weak convergence on Pfi. As [b, 6] are bounded and v € Py (R™), for (r,m) € [0,T] x Pg,

lim sup/ |2|P + p(ug, w)? H(z,m)(du)ns(dz) = 0.
|2+ p(uo,u) > K

K—oo e>0

e—0

T
This is enough to conclude that, lim / W, (H€ (z,m)(du)ng(dz), m(du, dz))qr(dm, dv)dr = 0.
o Jpn)2

4.7.2 Approximation by N—agents

Now, let us formulate the approximation result of Fokker—Planck equation by N-interacting SDE equations. In order to
achieve this, we first describe the associated framework.

Let p' > p, v € Py(R™) and (Q9, F4,F4, Q) be a filtered probability space supporting (By):e(o,r] & R*~valued Fi-adapted
continuous process, (it)sefo, 7] and (C¢)eejo,r] two P(R™)-valued F9-continuous processes, Aa M((P{})Q)fvalued variable

such that (A¢)epo,7] is F9-predictable. Besides, (u, B, ¢, A) satisfy: A (Z[m] X 73{}) =1, dQ ® dt—almost surely, and for
Q-a.e. we N9,

t
(o) = )+ | [ Lo A B¢ wym(dy, )R, (4, 40) |, (4.78)
0 U XPr R XU
for all t € [0,7] and f € C?(R™), where
Aro(z, by, B, m,v,u) := %Tr[&&T(t,x,b,w,ﬁ,m,ﬂ,u)VQ@(x)] + E(t,x,b,w,ﬁ,m, 177u)TVg0(x), (4.7.9)

with, as in (4.7.3), (13, &) is continuous in all arguments and bounded, and the map (5,6) by By, 0, ) satisfies
Assumtpion 4.1.1 with constant C' and 6 independent of (b, 3,7) (see Assumtpion 4.1.1). Besides, ¢ : Cj;, — Cy, is
a Lipschitz function s.t. for all ¢ € [0,T7], ¢¢(7) = Pe(men.).

Remark 4.7.6. Notice that, (4.7.8) is an equation. Indeed, with the condition A, (Z[M] X 73{}) =1, dQ®dt—-almost surely,
the process | appears on both sides on the equality. Under the general Assumption 4.1.1, it is not difficult to show there
are processes (1, N) verify equation (4.7.8) (see for instance Theorem 2.4.2 ). However, without additional assumptions,
a uniqueness result cannot be expected.

Let (ﬁ, F ,]@,I@) be another filtered probability space supporting:

o (W%);en+ a sequence of R™valued independent F-Brownian motions and (€%);en+ a sequence of independent Fo-
random variables s.t. LF(¢;) = v; € Py (R™),

o (V) nen+ and (¢V) yen+ two sequences of P(R™)-valued ﬁ‘fadapted continuous processes, and (BY) yen- a sequence
of R¢valued F-adapted continuous processes,
M)

o (m"Y)nen- and (7)) nen+ two sequences of Pi—valued @fpredictable processes,
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satisfying:

N
; i i _ : P Ny N 7N 5N) _ 0 - .
NIKHOOWPI(N;y ,V) =0 and ngnooﬁ (¢(u ), (Y",A, B ) =L (gb(,u)(,&B)7 in Wy, (4.7.10)

where &, (dm,dp)dt := §(,x o) (dm, d)dt.

Furthermore, let (Z%);en+ be a sequence of independent [0, 1]-valued F-measurable uniform variables independent of
other variables, and for each (i, N) € N* x N*, denote by FVV := (FZ’N)t€[07T] the filtration defined by:

-~

. N . )
FiN = 0{51, Aoy den. (™), N Wi, BN ZZ}, for each ¢ € [0, T). (4.7.11)
Proposition 4.7.7. There exists a sequence of processes (ai’N)(LN)EN*XN* satisfying for each (i, N) € N* x N*, o®
18 @’prredictable, s.t. if we let (X§7...7ng)te[oﬂ be the continuous processes unique strong solution of: for each
ie{1,..,N}, EF[| X?||P'] < oo, for all t € [0,T]

t

6(r, X5, BN o(m™), (N, mY o), alN) AW, Pae.

t
X;‘:m/ b(r, X7, BN, (™), ¢V, mN, uN, o) dr + AR
0
(4.7.12)

S—

where myY (dz, du) == + Zi\; )]
N*,

(X1, a:»,zv)(dsv,du)7 N (dx) == mY (dz,U), then, one has, for a sub-sequence (Nj)gen+ C

~ T
din 5| [T W@ a sw Wy(6:), )] <o
—0o0 0 t€[0,T)

and

Jim LF (ﬁNk,gNk,KNk,BNk) = L%, ¢, A, B), in W, with AN*(dm, dv)ds = 8 ey (dm, di)ds. (4.7.13)
—00 s s

Remark 4.7.8. (i) Proposition 4.7.7 as well as Proposition 4.7.9 (see below) can be considered as a general characterization
of Fokker-Planck equation of type (4.7.8) via a sequence of SDE processes interacting through the empirical distribution
of the states and “controls”. These results are very useful both in the study of extended mean field control problem (see
Proposition 4.8.3) and in mean field game of controls (see Chapter 6).

(it) Because of non-uniqueness of Fokker-Planck equation (4.7.8), the condition (4.7.10) is a crucial and essential
assumption. Furthermore, notice that, the condition (4.7.10) does not require any equation verified by the sequence

(p(1™), CN,KN, BN)NeN*. Only the convergence result (4.7.10) is necessary.

(iii) Observe that, the sequence (AN)nen+ is a subset of Mo ((PR)?) and not a general subset of M((Pg)?). For an
understandable and easy presentation, we consider this type of sequence, but a general subset ofM((P{}V) is possible (see
Proposition 4.7.10 below).

(iv) The presence of the map ¢, notably in (4.7.10), specifies the required non-linearity. In particular, if ¢ is null, it
means that no assumption of convergence towards p is necessary to find a sequence of SDE processes converging to p.

Proof of Proposition 4.7.7. The proof is divided in three steps for a better understanding.

Step 1 : Approximation by regularization of F-P equation: Let € > 0, recall that A€ is defined in (4.7.4). For all
w € 09, by Lemma 4.7.2, there exists a continuous process (j§(w))ejo,7) verifying

(fimi(w)) = <f,l/>+/O - ALf [Bw), d(u(w)), C(w), Ar(w)] (@) 5. (w) (da)dr,
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for all (f,t) € CZ(R™R) x [0,T], and for Q-a.e. w € Q9, lim,_,o SUPyeo,7) W,y (1 (w), pe(w)). Also, by Lemma 4.9.4, there
is a function ®¢: C* x CJ, x Cpy x M((P)?) — C}, such that Q-a.e. w € Q4

p (w) = @ (Bt/\( )ad)t/\'(/J’(w))?Ct/\~(w)aKt/\~(w))7 for all t € [0, T7. (4.7.14)

Step 2 : Approximation by discretization: Now, let us define for all (z,m) € R™ x Pf, the probability

A ) = [ o ) o

By [30], there exists a Borel application N€ : (z,m,v) € R® x Pl x [0,1] = N¢(x,m)(v) € U s.t. for all (z,m) € R" x P_
and any [0, 1]-valued uniform random variable F,

Po (N“(z,m)(F))” " (du) = H(z, m)(du).
Step 2.1 : Construction of scheme of discretization: Let us consider the partition (tllcv)lgkégN with t& = ’2“—5, and

take a sequence of R™valued independent Brownian motions (Z%);cn-«, independent of all of other variables. Let ¢ :
[0,7] x R™ — [0,1] be a Borel function such that, for all ¢ € [0,T], L*(¢(t — t}), Z{ — Z]y)) is the uniform law when
k

t>tN. For all i € {1,..., N}, denote by Vi = ot — ty, Zi — Ziy), when t € [t) 11, 1), and given € > 0, we define on
k
(Q,F, F,P), by Euler scheme, X%V := X as follows: X{ := ¢ and

t
X0 = Xgt [ B(s X BY 0. ¢, N ) (V) ) s
0
t
+/ E(s,XfS]N,BN,gﬁ(uN),CN ml, oY N(Xyn,m 5)(1/}N))dwg7 for all t € [0,T], i € {1,..., N},
0
(4.7.15)
where [s]V =t} if tf <s <t} |, and, for s € [ty . t1, ),
E(&szN,BNagb(uN)acNa é\/', £V7NE( ZN7 )(VlN)>

:B(vasz7BN?¢(MN)?<Na iv7 £V7NE( tszvmiv)(Vsl7N)> +B(S XtN7BNa¢(MN)a<Nami’V7D£V)7

and
B (s, Xiws BY 0(u™), ¢l oY N (X, m) (V)
= (s, Xjy, BY, 6(u™). ¢V, mY, 7 ) (5, Xy, BN, o(u), ¥l 7N N (X, mI) (V).
with
B(S,szzy,BN,¢(;LN),CN,méV,D£V)
. N _ _
be[BN7¢(/JN)7CN’AS ](S,XZ{CV) _Lb(s XtN7BNa¢(,uN)a<N m£V7 ivv )HE( Zﬁ7msN)(d’U;)‘|y
and

E(SvXZiV7BN’¢(;uN)ﬂ<N7mN DN)

s S

—-1/2
&E[BNaqs(MN)vgNaAiv](S7XZ£’)1/2(/U&(S7XZkN7BN;QZ)(,U’N)aCN,mivvﬂévvu)He( ZNv )(du)> ]a (4716)
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recall that Xiv(dm, dv)ds := 6,,n (dm)dpvdr)ds
Notice that, there exists a Borel function FV : R™ x MI((Pg)?) x Cph, x Cjay x C" X C* x C* — C™ s.t. for each i € {1,..., N},

Xi=FN(¢, A ben (i Ny ¢ Wi, Zin, BN, for allt € [0,T], P-a.. (4.7.17)

Step 2.2 : Compactness and identification of the limit: At this stage, we want to show a compactness result and

identify the limit of a certain sequence of probability measures constructed from the SDE process (X!, ..., XV).

Using the assumptions imposed on coefficients (b, &) (see the definition of the generator A in (4.7.9)), especially the fact
that 667 > 61,, and (13, &) are bounded, one has that [E, ZA]] are bounded and there exists a constant D > 0, such that
for all e and N

sup ]EﬁUX?FN . X;”VN|”} < D|t — 5|, for all (¢,5) € [0,T] x [0, T]. (4.7.18)
i€{1,...,N}

Moreover, by using the fact that sup -4 Zi\;l Jzn |z[P' v (dx) < oo (see condition (4.7.10)), it is straightforward to verify
that: supysq %Zf\; Ep[supte[oﬂ |Xt€’i’N|p,] < 0. Then, by [49, Proposition A.2] or/and [49, Proposition-B.1], for

each € > 0, the sequence (PY)yen- is relatively compact in Wy, where
~ _ -1
PN .— Po <19N,¢(MN),§N,AN,BN> c P(C{}V X €2, % Cly x M((PR)?) x cf)
with 9N (dz) == £ SN | O esion ().

Let us identify the limit of any convergent sub-sequence of (P ) ~Nen-. For sake of clarity, denote X* instead of X%,
For each N e N*, i € {1,...,N}, and (s,u) € [0,T] x U, let [ N oashN] = b, a<] [BN, ¢ (1 ),CN,AS }(s,X[S]N) and

s 178 )

Ei)Na&?N,Engii’NaA\?N} (u) = [87 daéaiaii—r] (SaX[is]NaBN7¢(/~LN)7CN7mN ﬂN U)

By Itd’s formula, for all f € Cp°(R™) and ¢ € [0, 7]

(. 07) = (1,99 +*Z [ AR (N Oty

Xy

LTS / VHCESEN (N (X m ) (V)W

)

1 . , N . .
b [ IR0 - VIO ] B (N (g, V) s
=1

VFX) BN (N (X, m (Vi) + éTr[ﬁi’N(N%stw,mfxv;vN))v?f(X;)]] s

0 B 7 g )0 4 3 A 0 a0 92

+y Z / [ A (VXY (V) [T = V240X ds.
Observe that, for s € (¢, Y, ), for each i # j, [B]%7 = [A]%7 = 0, where

B = B | V10X { B (6 (X)) = B b0 00 { B (N )02~ B}
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and
[ij:wﬁ[LQWKN%X@W,mfxviN»-—WZN}v%ﬂ bw){%ﬁ%waéw,mfxva»-—@%N}V%ﬂxgwﬂ

Indeed, by using the fact that: for all (z,m,e) € R" x P} x {1,..., N}, Po (N<(z, m)(Vse*K))fl(du) = H¢(xz,m)(du), and
(Vi,VJ) are independent and independent of other variables, one has

Bl =B

VA (X ) {5 (Ve @w,mfxvﬁN»-—[;%NuoH%Xﬁw»m5de}
Vf(X[Jé] ){i,gN(Ne(X[J;]N,mgv)(vsjﬁzv)) _ /U Bi,N(u)HE(X[j:S]Mmf)(du)}] =0. (4.7.19)
By similar way, if we denote by X4 : Z(s X[Z ]N,BN, d(u™N), N mi 17?7), one finds
027 By {58 65 (0 )02 (5 5]
V(X [S]N){EJ NN (N(X] e, mi Y (VM) (52M)T - a]N}]
=E@kﬂﬂXﬁw»P&NlKg&N<)H%X@Nnnfxmn<z?UT—a?W}
vEF(x {2 LA/&Nu»H%XQNnnfxdm(ziNf3—@¢N}]

_]E]P’

V2 F(X, ){AE AN _ g, N}v2f( g]N){ag%N - a;ﬂ%N}] = 0. (4.7.20)
By simple calculations,
t
) = £08) = [ [ AT B o). ¢ R ()i (o)

N t ,

1 i l_ Z_

=52 /O VI(Xfgw)ZN (N (X[s]mmiv)(Vs’J"))dWS+/O
=1

1 i i i A€ i i i i e(vi i
+ §Tr{{A§’N (NG(X[ZS]N,méV)(V;’N)) —ayg ’N}VQf(S,X[s]N)] + [VA(X) - Vf(X[s]N)]Bs’N (v (X[S]Nvmiv)(vs’N))

1
2

VA { B (N (X m (V) = b )

Tr {A\QN( (X[S]Nv )(Vz N)) [VQf( ) V2f( S]]\[)I|‘| .
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consequently, there exists a constant C' > 0 (independent of N) such that

P N N ! e N Ny ~N 7N N 2
(o) = (r08) = [ [ (B o). ,Ar]<xww<dx>dﬂ
21

/ EP“NZVJC X[s]N){B N(Ne (X[S]N7 N)(‘/Si’N))_BZ’i’N}‘Q]ds

sl11 & [ P\ i, i
c (EP “N;/o V(X )ZeN (N(X g, m ) (V) AW

11 ' 2
\NZa {0 (vt m)7) a5 o WM‘“

/ o
0

(9708 = 5|+ |3 (V27X — 92 (X)) ﬂ ds)'

By successively applying the results (4.7.19) and (4.7.20) and inequality (4.7.18), one gets a constant M > 0 depending
of (f,b,0) (which changes from line to line) s.t.

Pl =08y = [ as[BY,o™).¢% K@) dohar|
0

R

N t 2
~1 o . 1 1
P i Z,N i, N 7 _ _
N
< M LZE]/P? /t‘vf(Xi)ii,N(Ne(Xi ~ mN)(Vi’N))’QdS +i+i . (4.7.21)
= N2 gt 0 s)=s [s]NV s Hs s 9N N
Remark that as V f and S are bounded,
L EN:E@ t ’Vf(Xi)fJi’N(NE(Xi mN)(ViNY) ‘st <ML (4.7.22)
N2 pot 0 s) s [s]N oy 1Ths s = N -l
Thanks to inequality (4.7.18), it is straightforward to verify that
dim W, (25 (@, 0%, 6(u), ¢V K B, £ (08, (0 eeto my, 01V), ¢ RN BY) ) =0, (4.7.23)
—00

Let P> € P(C, x Cphy x C3, x M((P)?) x C*) be the limit of any sub-sequence (P™)zen- of (PY)yen+, and denote by
(BY, 8", B, B, B) the canonical process on Cy, x C3, X Cji, x MI((Pf)?) x C. By combining inequalities (4.7.21) and (4.7.22)
with result (4.7.23), by passing to the limit, using continuity of coefficients, given e > 0: for all (¢, f) € [0,T] x Cg°(R™)

~ 2
limEPl (f,ﬁiv’“>—<f,19év’“>—/t AS BN, (), ¢V K] ()9, (dar)dr ]
k 0 Jrn [

-

Therefore, after taking a countable family of (f,t), one gets: for all (¢, f) € [0,T] x Cp°(R")

=& \[es50) - ) - [ [ A;f[B,ﬁwﬁﬁr]<x>53<dx>]dr
0 R™

(f, By = / / ASf[B,p*, B, B,] () B2 (dz)dr, for all t € [0,T], P®-a.e
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from this equality, we can show the previous equality holds true for all f € CZ(R™). For each € > 0, by uniqueness
BY = ®<(B, B, 3, B) with @ : C* x Cp, x Cjh, x M((PE)?) — €}, a Borel function used in (4.7.14). Notice that, by
assumptions (4.7.10),

-1 1

o (BM>B<737 B)_l = 11’?1@0 (¢(MNk)7<Nk7KNk7BNk) = @ © (¢(H),<,K7 B)_ in WP'

This result is enough to deduce that P> = Qo (;f, &), ¢, A, B)_l. This is true for any limit P for any sub-sequence
of (PMV)nen-, therefore

-1

lim Po (0™, ¢(u™), ¢, A, BN = Qo (45, 6(n), ¢, K, B) " in W,. (4.7.24)

Step 3 : Last approximation: To finish, now, let us define XeiN .= Xi the strong solution of

t t
=&+ / b(r, Xi BN (™), N, mN, oV, o )dr—i—/ &(r, Xi BN (™), N, ml, oY, o L)dW;, for all t € [0, T
0 0

T ’I” T T’

where
. N
ol == N¢( tN,mgv)(V;’N) for all t € [t ¢ [, MmN (d, du) Z (dz, du) and i (de) = Y (dz, U),

recall that (X*, ..., X) are defined in (4.7.15). It is straightforward to check that: there exists a constant D > 0
(independent of € and N)

sup Eﬂ’[\fq‘ - f(;ﬂ < Dt — s|, for all (¢,5) € [0,T] x [0, T]. (4.7.25)
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y Bukholder-Davis-Gundy inequality, lipschitz property of coefficients and previous inequality (4.7.25),

<)

E [ sup |X: —X;'|P}

s€[0,t]

el
o[ [
(1

i
t

+EF /0 & (r, X3, BN (i), Nl oY k) — 6(r, Xjyw, BN (™), (N oml 5N o)
/

b(’/’ XZ BN (b(AN)vCNaﬁLv]"Vaﬁ?{V:ai) _E(T7X[ir]1\’aBN7¢(HJN)7CN7m7]"Vaﬁf{VaNe(X[ir]Nvmf"V)(V: N))’ d’l":|

oi ~ iy _ i ¢ i P
T X:HBN7¢( N) C m N 7‘) _E<T7X[T]NvBNa¢(,uN)vCN mr7 r 7N (X[T]Na N)(VTVN)>‘ d’/‘:|>

’ﬁ>

er BN, o(a™), N, mN o ai)—B(r,XfT]N,BN,cé(uN),CN,miv,f/fv,ai)

b(TvX[r]J\UBN?¢(MN)3CNam1{V7D7I~V7a;{) 7§<T7X[ir]N7BNa¢(:uN)a<N mr ) 7]"V7NE(X[T]Nﬂ )(VZ N))‘ T:|

p
dr}

) . ~ . . . p
6’(7‘, X[Zr]NvBN,QS(ﬂN)vCNamy{VvD;«Vaa;) - Z(Tv X[lr]N7BN7(ZS(/LN)vCNvmiv’invaE(X[ZT}NamiV)(VTZ’N)>’ d7“:|>

LN _N . ~ . _ . P
be[BNa(b(MN)aCNaAr ](raX[lr]N> 7/Ub(r7X[Zr]NaBNv(rb(,uN)vCNamv{VvVv{vau)He(mNaX[Zs]N)(du)‘ dT‘:|

1—E(T,XFT]N,BN,(b(uN),CN,miV,EiV)‘pdr+/ (;z]\eé - T dx ,du), iv(dx,du)>pdr]

7 ¢ . , 1
+ ]E]P[ sup. Wy(der (97), der (1)) +/ sup | X! — X;]pdr} + 21\/)
0

e’€(0,T) e€[0,r]

then by Gronwall lemma

~ e ) . ~ 1
EP{ sup |X§X§”} gD(]EP{ sup Wp(¢e,(19N),¢e,(uN)>} +2—N+E”N OE’N>

te[0,T] e’ €[0,T]
where C<N = EF [ [ W, (4 2, (o) (@00 m¥ (dz, du))pdr] , and
FeisN
= Eﬁl[)T ’ [867{16] [BN,qﬁ(uN),CN,X,{V] (r, X[ir]N) - /U [13, &] (7’, X[iT]N,BN,(;S(MN),CN,m?{V,Di\',u)HE(Xfr]N,miV)(du)’pdr] .
Firstly, thanks to results (4.7.24) and Lemma 4.7.5, one gets

lim lim Eﬁ{ sup Wp<¢€/(19N),¢e/(uN))} = limEQ[ sup Wp((be/(ué),(ée/(u))} = 0. (4.7.26)

e—0 N—o0 e el0,7] =0 e’€[0,T)

Secondly, after calculations, it is straightforward to deduce that

1 & s 7
1 Ee,i,N:EPU //
N; 0 JreJipy)
Ge(mfy)

o Lan [B’ &] (7’, x, BY, ¢(NN)a ¢Nom, o, U) Wm(dua dy) ‘PKiV (dm, dﬂ)ﬂmw (dx)dr‘| .

2 N Ny AN - Ge(z —y)
o B0 0B, 000 o st
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By regularity of coefficients (Assumption 4.1.1 and (b, ) bounded), the results (4.7.24) and (4.7.23) allow to get

lim E”N<EQ/// /
N‘)OC Z l n n UxR™

~ [b.a) (r.2. B. (). C.m.7.)|

ba ry,Bd)()C,muu)

Ge(z —y) _ o
(0, o)) @ () " A (dm, o)y (da)dr

then, by Lemma 4.7.5, lim lim — Z E&HN =

e=0N—oo N
Next, let us define the variable

TN(de',de)dr := P [6(mN ») (de’, de)dr} € M((P3)?), where m? (dz, du) =N Z 5 dac ,du),

e ]N’a

It is easy to check that the sequence (Y™V)yen- is relatively compact for the Wasserstein metric W,. Denote by T the
limit of any sub-sequence (Y™¢)pcn+. Let Q € N*, (fDgeq1,..0y 1 R* x U — R be bounded continuous functions and
g :[0,T] x Py — R. One has

/ /n)zl_[ (f9,€')g(t,e)Yee(de’, de)dt = ]E@[/ / /n (f(z, - (z,m)) s (da)g (¢, m)At(dm,P{})dt].

q=1 U q=1

We prove this equality when @ = 2, the case @ € N* follows immediately. Indeed,

T 1 g2 o0 11 & P T 1 2 j Ny,
/0 /(n2<f e (f7,e)g(t,e)Tee(de, de)dt—hmmm.jz‘;ﬂﬂ {/0 f (X[]Nk,at)f( [t]Nk’ o) g(t, my )dt}

= lim <Nk N}, 4 {/ / [t]N’“ He(X[it]Nk’min)(du)/lv]f2(X[jt]Nk’u>H€(X[t]Nk’mt )(du)g(t, miN’“)dt}
fﬁﬁZ@MfTMWWMMW%““W% N S ot |

= lim (Eﬂ”[/ // e, w)HE (2, mN*) (du) ﬁftV]ka (dzx) /n/ 2y, w)HE (y, mN )(du)ﬁfj]zvk( y)g(t, m;N’“)dt}
—ka UO / Xy ) H (X, )(du)/Uf () HE (X ™) () 1 miN’“)dt}

P i € N, lN € N, 7, N, N,
Nk Nk ZE |:/ 1( [Zt]Nka ( [t]Nk7mt k)( k))fz(Xz NkaN (X[t]Nk’mt k)(V;t k))g(tmt k)dt:|>

:EQ{ /0 / ) / /U fH (@, w)HE (2, m)(du)pg (dx) / /U fz(y,u)HE(y,m)(du)ui(dy)g(t,m)At(deD[’})dt}7

where the fourth equality is true because of the same argument used in (4.7.19) and (4.7.20) i.e. for all (s,v) € (tk " tkNj_l)

{1,..,N}, Po (Nﬁ(x,m)(V;”Nl))_l(du) = H¢(z,m)(du), and for i # j (VI ,VJ) are independent and independent of

other variables, and the last equality follows from (4.7.24) and (4.7.23), and the terms starting with ﬁ ZZV:’I go to
zero because (f1, 2, g) are bounded. Hence,

T°(de’, de)dt = Yy (de’, de)dt, where Ti(de’, de)dt := E?|§ )(de’)Kt(de,P{})dt :

(H<(2,0)(du)pg (da)
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this is true for any limit YT° of any-sub-sequence. Therefore the sequence (Y™)yen- converges towards T for the
wasserstein metric W,. Then, to finish, by Lemma 4.7.5,

. . &N _ 1 . P p
i o, 0 =t o 2| [ (5 S, )]

1N’a

e—0

— lim E@U / (e, m) (@) (), )pAt(dm,Pg)dt] — 0.
N

All these results allow to deduce that lim lim Z [ sup X”’N Xf’i’N|p} =0. As

e—=0N—oo N te[0,T)

=)

E

[ rataniyad

T N T N

P p P L N p
<E UO W, (Y (dz, du) N; mwai)(dx,du)) dr} +E M WP(N;(S(XEW i)(dx,du),mt (dz, du)) dr}

1 o7 (7T T 1 XN

- P €, i, N,K €, z N |P P - N P
< N;E [/O | X7 — XY dt} +E [/O WP(Ngé(x[iﬂwai)(dx,du),mt (da, du)) dr]

1L ST (T T 1 X

P v e, i, N €,i,N |P P N P

< NZE [/0 | XN — X0 dt} +2—N+E [/0 WP(NZé(xft]wai)(dx,du),mt (d, du)) dr]

i=1 i=1

r (T
then lim lim EF [/ W, (Y, m, )pdr} = 0, similarly, using (4.7.26),
0

e—+0 N—oo

lim lim Eﬁ[ sup Wp(qﬁef(ﬁN),aﬁeI(uN))}

e—+0 N—oo e’€[0,T]

< lim lim (Eﬁ[ sup Wp(qﬁef(ﬁN),qﬁe/(ﬁN))} +1E@{ sup Wp(¢e/(19N),¢>e/(uN))D

e—+0 N—oo GIE[O T] €/E[O,T]

< Kl i ZE””[ sup [R5 X g 1B s W (600M), 000 ) 0.

e—0 N—oo t€[0,T) e’€[0,T]

All previous result combined with measurability property (4.7.17) allowed to say (al,...,a™) and ()? L, XN ) are the
controls and the processes we are looking for.
O

In Proposition 4.7.7, in fact, instead of interaction processes of type (4.7.12), it is possible to use a sequence of McKean-
Vlasov processes and obtain similar result. Let us assume conditions and inputs prev10usly mentioned for Proposition

4.7.7 are satisfied. Let W be a (IP’ IF) ~Brownian motion, ¢ be a Fo-random variable with EP(f) = v, and Z be a uniform
variable independent of (£, W). In addition,

(1/}(,uN), CN,KN, BN)NGN* are ]IALindependent of (VV, £, Z). (4.7.27)
For cach N € N*, define the filtrations FV := (}"t )telo, ) and G:= (gtN)te[O,T] by

~ —N
FN = 0{57AtA_7¢M.(MN),¢X_,WM.,B§X.,Z} and GV := o {iun (™), ., Kon, BN}, for all ¢ € [0, 7).

We provide, now, approximations by McKean-Vlasov processes. The proofs of the next Proposition 4.7.9 and Proposition
4.7.10 are left in Appendix 4.9.1.
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Proposition 4.7.9. There exists a sequence of processes (oY )nen+ satisfying: for each N € N*, o is ﬁprredictable,
such that if XN is the unique strong solution of: EF[||XN||P'] < oo, for all t € [0,T],

t t
XiV:§+/ B(r,Xiv,BN,qs(ﬁN),cN,miV,ﬂiv,a?)dr+/ &(r, XN, BN, ¢(@™), N, mN, v, aN)dW,, P-a.e.,
0 0
(4.7.28)

~

where my¥ = L7 (X}, a{\’\ég\’) and gy = LF (XtN@tN), then for the sub-sequence (Ng)ren+ given in Proposition 4.7.7,

[ T
klim EF [/ Wp(ﬁlivk,mivk)pdt + sup W, (q&t(ﬁNk),(pt(MNk))} =0,
—o0 0 t€(0,T]

and if A, (dm, dv)ds i= 5, v, _n, (dm, d7)ds,

s Vs

lim cﬁ(ﬁNk,gNk,K,BNk) = L%, ¢, K, B), in W, (4.7.29)
k—oo

Another useful approximation Using roughly the same arguments as those used in the proof of the Proposition
4.7.7, another approximation result can be provided. This can be seen as another version of Proposition 4.7.9 where

—N
the sequence (A )nyen+ is not necessarily a subset of Mo((P{})2) and the control that achieves the approximation is a
probability measure.

Proposition 4.7.10. Let us stay in the context of Proposition 4.7.9 with (AN)NGN* not necessarily a subset of
Mo ((P3)?). There exists (BN )nen a sequence of P(U)-valued (Fy @ B(PE))ieo,r)—predictable processes such that if
(X )iepo,r) := (Xt)iepo,m) is the unique strong solution of: EF[| XN |P] < oo, for all t € [0,T]

t
X =€+ / / / b(r, X,y BY, (™), ¢, @ ], 7, 0) B (m)(du) K (dm, d)dr
0 ( {})2 U

t 1/2 R
+ ( [ 607 (X BY o). Y ) .08 () ) Af(dm,dm) aw,, P-ae,
0 ([’J‘)2 U

where .
@ [m](dz, du) := EF [ﬁgv (m)(du)dy x (da)

Q/}\tN} and iy = E]P(XtN|§tN) for all t €[0,T],
then, one has, for a sub-sequence (Nj)jen+ C N¥,

i ]Efp? /T / w T J n = i TP? i N; =
im p (M) [m], m)A," (dm, Pg)dr| =0 and lim E*| sup W, (qﬁs(u ), Ps( )) =0,
0 JPg

Jj—oo Jj—ro0 s€[0,T]

(de,dv)ds,

S

in addition if AN (dm,di)ds := Jpn 0] (dm)KN
7 Orin

lim Lﬁ(ﬁNf,ng,KNj,BNf) Sy (u,qs(u),g,ﬂ, B), inw,. (4.7.30)

Jj—oo

Remark 4.7.11. With ezactly the same proof, an important observation is the following: if the coefficients functions
(b,6) are of the form of type

(b,667)(t,,b,m, B,m, v, u) = (b*,a%)(t,b,, B,7) + (b°,a°) (t,x, b, 7, B,m,u),

where (13*, ar, l;°, a°) are bounded continuous functions, we can replace the convergence assumptions (4.7.10) by

lim W,,,( 1 Zui,u> =0 and lim c@(¢(MN),gN,A°vN,A*7N, BN) = L9(p), ¢, A° A%, B), inW,, (4.7.31)
- — 00
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with A>N = Xiv(dm,’/){})dt, AN = KiV(Pg,df/)dt, A° = Ay(dm, Pp)dt, and A* := A(Pp,dv)dt. And then, in
Proposition 4.7.7, Proposition 4.7.9 and 4.7.10, the convergence results (4.7.13), (4.7.29) and (4.7.30) are replaced by

tim £F (%, ¢, RV (dm, Py)dt, &Y (P, di)dt, BN ) = £2(n, 6(u), ¢, A% A%, B), in W),

]*}OO

. —N
In other words, when the variables (m,v) of (b,66 ") are "separated”, we just need separated condition on (A )yen- of

type (4.7.31).

4.7.3 Some compactness results
Assumption 4.7.12. Here, we assume that ¢ =0, and

o(t,z,m,m,u) = (¢, ), for all (t,z,7,m,u) € [0,T] x R" x C}3, x P{; X
For simplicity, we will note o instead of G.

Let p’ > p, v € Py (R™). We consider the sequence (n*,z*, §*)ren- where for each k € N* (nt)te[o 1) and (Zt)tE[O 7]

are two P(R")-valued continuous processes and §f (dm,dm’)dt € M((P)?). Moreover, (n*,z*, §") satisfy the following
equation: Qf(an x Pp) =1, dt-a.e., and

t
= (f(0,.),v) —l—/ [<8t / / )]z, 0", 28 m, 7% w)ym® (du)n® (dz) gk (dm, dv) |dr, (4.7.32)
0 )2 JRrxU
for all (¢, f) € [0,T] x C;’Q([O,T] x R™), where the generator A is defined by

A, m,Cm, 5 ) o= STeo0 ™ (1,2) 9% ()] + b(t, 2,7, ¢, 7, ) V(). (4.7.33)

Let us introduce for each v € (0,1), C?([s, t] x A) the space of v—Holder functions on [s, t] x A where (s,t) € [0,T] x [0, T
and A C R™. We define the norm
u(r, a) — u(r’,a')|

lullev(s.iyxa) == sup  |u(r,a)|+  sup , forallu e C7([s, 1] x A)
v([s,t]x A) (ra)els f]x A (ra)#£(r",a’) |r —r/|*la — a’|*

Lemma 4.7.13. With the previous considérations, for each k € N*, the solution of Equation (4.7.32) n* is such that
nf(dz)dt = uF(t,z)dzdt, where u* is a locally continuous functions and satisfies: for all (t,s (0,T7), and A C R”

) €
an open set with a compact closure, there exists a constant Nn,s,t, A, 0] depending on [n,s,t, A, 0] and independent of
k € N* such that

Hukch([s,t]Xm < Nin,s,t, A, 6], for allk € N*
Proof. For each k € N*, nf(dx)dt = u*(t,z)dzdt has a density w.r.t. to the Lebesgue measure on R" x [0,7] (see [31,

Corollary 6.3.2]). Denote by WP:! the Sobolev space of functions on R™ that are square integrable together with their
gradient. Let us define the norm ||||mr.1 (s, x 4)

|2l 51p.1 ([, % A) (/ ||l u(t, |Wp1dt)

We note HP~1([s, 1] x A) the dual of H”!([s, ] x A), where p’ is the conjugate of p. Next, we define

/2

ull2pa (s,xa) = llullmea (s gxa) + 10cullme.—1 (s, % A)-
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By [31, Theorem 6.2.2], there exists N[n,p, s, t, A] such that for each u € HP:!
¥l ev ((s.x 4) < N, 8,8, Al||ull2m (s, x 4)-
Also, by Rademacher’s theorem we know that oo " (t,-) € WP and as the Lipschitz constant is independent of ¢, one

has sup;co,7] loa T (t,-)|lwr1 < co. Now, by [31, Corollary 6.4.5], there exists a constant C[n,p, s, t, A] >0

T
HukHHP’l([S,t]XA) S C[n7p787t7A]/ / |U(7“, $)|dl’d’l"
0 A

By [31, Theorem 6.5.3], there exists another constant C[n,p, s, t, A] > 0

T
/ / lu(r, 2)|Pdxdr < Cln, p, s,t, A].
0o Ja

| Osut|mp. 1 ([s,x 4) is also bounded by elements only depending on (n,p, s,t, A) (see for instance [31, Corollary 6.4.3] or
the proof of [31, Theorem 6.4.1]). We can conclude.
O

Lemma 4.7.14. In the context of Lemma 4.7.13, there exists u € C([0,T] xR™), such that for each (t,s) € (0,T) x (0,T)
and A C R™ a compact set, one has

lim sup  |uF(r,2) — u(r,z)| = 0.
20 (ra)els tx A

Proof. For each M € N*, denote by B(M) := {x € R": |z| < M}. By Lemma 4.7.13, there exists N[n, M, 0]

k *
14" s (a2 013005 Bay) < N1 M, 8], for all k € N™.

Then by Arzela—Ascoli theorem, for each M € N*, there exists u™ € C([0,7] x R") and a sub-sequence (kM );en+ such
that

lim sup |uklM (r,z) — u™(r, z)| = 0.
l=00 (r2)e[T/M,T(1—1/L)]x B(M)

By Cantor’s diagonal argument, we can find v € C([0,7] x R™) and a sub-sequence (k;);en+ such that uf converges
uniformly to u on each compact set of [s,t] x A C [0,T] x R™. O

For each density of probability f on R", and q € M((P)?), we denote by

q:[f](dm,dp)dt := /5(em(du,)f(w)d$) (dm)q(de, dv)dt
Recall that G is defined in Equation (4.7.1). Assume that:
klim qf [G](dm, dp)dt := qf°[G](dm, dv)dt, in weakly sense, (4.7.34)
—00

for some q> € M((P)?). Then, we have the following result

Lemma 4.7.15. Let us stay in the context of Lemma 4.7.14 and Lemma 4.7.13, one has

klim qF[u*](dm, dp)dt := q°[u](dm, dD)dt in the weak sense.
—00
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Proof. Tt is straightforward to show that (q*[u*])ren- is relatively compact for the weak convergence topology. If we
note q* the limit of any sub-sequence, to prove this result, it is enough to show that: for all ¢ € N*, for any functions
(¢',...,09) € C(R™ x U) bounded continuous with compact support and 8 € C([0,T] x Pf¥), one has

/ B(t, 9)q (dm, di)dt — / m)B(t, 7)qe[u] (dm, di)dt.

This equality is true because

T 4q
im [ ][ / 6 (u, 2)m® (du)u (¢, 2)dz (¢, 7)ql (dm, dp)dt
UxR™

k—o0 Jq

T 4
—iim [ ][ /U e (du1.2) G(lx)G(x)de(t,ﬁ)qf(dm,dﬁ)dt

k—o0

= lim T iuxuximmu z)dzB(t, 7)qr (dm, dv
T H/zijn¢(’ Jult, 2) gy () G(2)dwB(t, )y (dm, dv)dt

k—oo Jo

T 4 ) 1
=lim [ ] /U . d)’(u,x)u(t,m)%mw(du)(l(x)dxﬂ(t,D)qfo(dm,dﬂ)dt,

k—oo Jo

where we use for the third equality the uniform convergence of u* to u on each compact set, and for the last equality,
the Assumption 4.7.34 and the fact that (¢,2) = ¢*(u, x)u(t, m)ﬁ is continuous bounded. We can conclude. O

4.8 Proofs of equivalence and limit theory

4.8.1 Equivalence result

This section is devoted to the proof of Theorem 4.5.1. To achieve this proof, we provide an approximation of measure-
valued rule by McKean-Vlasov processes. Before starting the proofs, by shifting some probabilities, let us give a
reformulation of measure-valued rules. For all (¢, b, 7, m) € [0,T] x C* x C}}, x Pg,

mlblidy)i= [ 50, @mld), mibd(dudy) = [ G (@i dy) (48.1)

nxU

and any q € M,
q:[b](dm) = /;} 5(m,[bt]) (dm)q(dm’). (4.8.2)
In the same way, let us consider the “shift” generator E,
Et[@](% b, 7, m,u) = %TT [UUT(t7 y + ooby, m[by], m[by], U)V2<p(y)] + b(t,y 4+ ooby, m[by], m[by],u)  Vo(y). (4.8.3)

Next, on the canonical filtered space (Q,F) (see Section 4.4), let (d¢)¢epo, 7] be the P(R™)—valued F-adapted continuous
process and (0¢).e[0,r7 be the Pf—valued F-predictable process defined by

9 (@) := pe(0)[-B@)] and O4(w)(dm) := Ay(@0)[—B(@)](dm), for all (t,w) € [0,T] x €. (4.8.4)
The next result follows immediately, so we omit the proof.

Lemma 4.8.1. Let P € Py (v). Then, ©,(Zy,) = 1, dP @ dt, a.e. (t,0) € [0,T] x Q, and P-a.e. @ € Q, for all
(f,t) € CZ(R™) x [0,T],

= - - [ ] o B B0 m i a)6, G
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Next, let us provide some estimates for the different controls. The first result is standard, the second is just an application
of Lemma 4.7.2 (see also Remark 4.7.4) combined with Lemma 4.8.1.

Lemma 4.8.2 (Estimates). Under Assumption 4.1.1, for any (v,v',...,vN) € Py (R™)NFL with p’ > p, there exists
K > 0, depending only of coefficients (b,o) and p', such that: for every (al,..., oY) € (Ax(vn))N one has

N
B s [ ol )| < w1 [ Sovan)
n RTI,

te[0,T] JR i—1

where PN = P(al,...,aN) € P(Q) (see definition (4.2.3)), and for each P € Py (v) or a € A(v) with P = P, o
(1, 60 (dm)dt, B) ™"

sup / |z|P 9 (w) (dz) + EP[ sup / |xp/ut(da:)} < K[l —I—/ 3:’|7"/V(dﬂc')}7 P-a.e. w € Q.
te[0,T] JR™ te[0, 7] JR™ n
In addition

Wp(ﬁs(w),ﬁt(w))p < K|t —s|, for all (t,s) € [0,T] x [0,T], P-a.e. w € Q,

where ¥ is the process given in equation (4.8.4).

4.8.1.1 Technical lemmata

In this part, from a measure—valued rule, we will build a sequence of processes that approximate the measure—valued rule
and that are close enough to strong control rules. This part is fundamental for the proof of Theorem 4.5.1.

let v € Py (R"), P € Py (v), and (Q,F, F,P) be a filtered probability space supporting W R"-valued F-Brownian motion
and let € be a Fo-random variable s.t. 575(5 ) = v. Define the filtered probability space (ﬁ, @, F , ]f]’) which is an extension
of the canonical space (2, F,P): Q:=Qx Q, F:= (ft ®?t)te[07T] and P := P®P. The variables (&, W) of Q and (B, i, A)
of § are naturally extended on the space Q while keeping the same notation (£, W, B, i, A) for simplicity. Also, let us
consider the filtration (.C?t)te[o,T] defined by

é\t = O_{Bt/\-yﬂt/\wAt/\-}a for allt € [O,T]

Proposition 4.8.3. Under Assumption 4.1.1, for any [0, 1]-valued uniform variable Z HAsz'ndependent of (6, W,B,u,\),
there exists a sequence of F-predictable processes (a*)pen= satisfying: for each k € N*,

ozf = GR(t, €, pun., Mno, Win, Bin, Z), @7@6., for allt € 10,77,
with a Borel function G* : [0,T] x R™ x C%, x M(Pg) x C" x C* x [0,1] — U such that if we let X* be the unique strong
solution of: BF[|| X*||P'] < oo, for all t € [0,T)
t

t
Xf:g-i-/ b(r,Xﬁ,uk,ﬁf,af)dr—&—/ o(r, XF, uF @k, of)dW, + 0o By, P-a.e.
0 0

where p¥ = LE(XF|Gy) and 7k = L’ﬁ()?f,aﬂ@) then

~

lim {Wp@uf(dm)ds?As(dm)ds) + sup W,(u¥, )| =0, P-ae. (4.8.5)

k—o00 te [O,T]

Therefore

klim EP((uf)te[o’T],éﬁk (dm)ds, (Bt)te[o,T]) =P, for the Wasserstein metric W,.
—00 s
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Proof. As P € Py (v), by definition, P-a.e. w € Q, Ny(f) = 0 for all f € CZ(R") and ¢ € [0,T]. By Lemma 4.8.1, by
taking into account the extension of all variables on €, recall that (J¢).c(0,r) and (©¢):ejo, 1) are defined in (4.8.4), one
has ©¢(Zg,) = 1, for dP ® dt-a.e. (t,w) € [0,T] x ©, and P-a.e. w € Q, for all (f,¢) € CE(R™) x [0,T],

N:(f) = {f,9) — (f,v) —/0 / /HXUETf(y,B,ﬂ,m,u)m(du, dy)©,(dm)dr.

Define

ri={mepy: / iyl m(dy, ) < K},

where K > 0 is such that K > K {1 + Jgn |z’plv(dx’)} , with K is the constant used in Lemma 4.8.2. Notice that I" is a

compact set of P,(R™ x U) and by Lemma 4.8.2, one has ©,(T") =1, dP ® dt, a.e. (t,w) € [0,T] x Q.
As T is a compact set of P,(R™ x U), there exists a family of measurable functions (h*)gens with h* : [0, 7] x M — Pg,
S.t.

I b6, ) (dm)dt = ©;(dm)dt, B ae. then lim CF(9, 001 .0,y (Am)dt, B) = £5(9,0, B), in W,
In the same spirit of notations (4.8.3), introduce
[b,6](t,y, b, m,m,u) := [b,c](t,y + oobe, 7[b], m[by], ), (4.8.6)
notice that [3, 6] :[0,T) x R" x C* x C, x Pt x U — R™ x S™*™ is continuous and for b € C*, [5, 6](-y-, by, -, ) verify the
Assumption 4.1.1 with constant C' and 6 independent of b (see Assumption 4.1.1).

Now, let us apply Proposition 4.7.9 (see also Proposition 4.7.7). As (1976hk(t’@“\_)<dm)dt,B) is P independent of

(&, W) and

keN*

lim £7 (19, O (5.0, (dm)ds, B) = L7 (9,0,(dm)ds, B), in W,
by Proposition 4.7.9, there exists G* : [0,7] x R" x M x Cl%, x C" x C* x [0,1] — U a Borel function such that if X* is
the unique strong solution of: for all ¢ € [0, T]

t t
Xf:§+/ E(T,Xf,B,ﬂk,ﬁ’j,ak)dM/ &(r, Xk, B,0%, 35, aF)dW,, P-ace., (4.8.7)
0 0

T

where
af = GF (t,f, @f/\., Yins, Wino, Bin.s Z)a Ef = Eﬁ(tha O‘ﬂgtk) and 19? = pr?(Xﬂgf)’

with ©F(dm)dt := 5( >(dm)dt, and G* := (G¥)sci0.11 == (0{Vsn., ©F ., Bsn.})sefo, 1), then

h*(£,0¢n.)
~ T ) ~ ~
lim ]E]P{/ W, (T, mf)Pdt + sup W,(0F7,9,)| =0 and lim £F (0%, 0% B) = £F(9,0, B), in W,,
0

Jj—o0 te[0,T) Jj—o0

where mf := h¥(t,0,.) and (k;j);jen C N* is a sub-sequence. Notice that, as G* C G, and (&, W, Z) are P independent
of G, one has LF(XF, ar|GF) = £ (XF, aﬂ(jt), P-a.e. for all t € [0,T]. Using equation (4.8.6),

t e~ ~ e~ ~
XF=¢ +/ b(r, XF + 00Br, (LF(XEF + 00B,|Gs))sepo, s L5 (XF + 00B,, a%(G,), af )dr
0

t ~ ~ ~ o~ ~
+/ o(r,XF + 0oBy, (L5 (X% + 00B|Gs))seo 1), L (XE + 00By, af|G,), ok )dW,., for all t € [0,T], P-a.e.
0
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Denote by Xk =Xk 4 0oB, one finds
t ~ ~
th = 5 + / b(’/‘, X'ylﬂc7 ([-:P(Xf|gs))se[07T] ’ [’P(Xv‘y O‘f'QTL O[ﬁ)d’/’

0

t -~ AN ~ i~ A~ o~ —~
+/ o(r, X, (LF(XK1Gs))sepo ), £F(XE, 0%|G,), af ) AW, + 09 By, for all t € [0,T), P-a.e.
0

With the notation introduce in (4.8.1) and (4.8.2), it is straightforward to check that the map
(m,q,b) € Cpy x M x C* — (n[b], ¢:[b](dm)dt, b) € C, x M x C*

is continuous. Consequently, one has

sr (T _ _ P )
lim Eﬂ’[ / Wp(ﬁf] (By], m}’ [Bt]) dt+ sup W,(0™[B],9[B])| =0,
j—o0 0 t€[0,T]

therefore, in W,

lim £F ((EP()?fj |§t))te[0,T] ;0

Jj—o0

(dm)ds, B) = lim P (9% B), O [B](dm)dt, B)

(CF(XEall|GL)) j—oo

— £P(0[B), ©,[B](dm)dt, B)

After simple calculations, (9[B], ©;[B](dm)dt, B) = (u, A, B), P-a.e. Then
. P ’ Bok; ki A k; p B, ki A
lim E / Wp(ﬁ (th,atj\gt),mtJ[BtD dt + sup W, (L5(X,7|Gy), )| =0
j—o0 0 t€[0,T]

and hence

lim £F ((CP()A(tkj |§t))te[0,T]a d

j—o0

~ _rF —P
s dm)ds, B) = £P(u, A, B) =P, in W,.

After extraction from ()A(kﬂ ,aki) e+, one has also the P-a.e. convergence (4.8.5).

4.8.1.2 Proof of Theorem 4.5.1

First, for v € Pp/(R™), under Assumption 4.1.1, let us prove that Py (v) is a compact set for the Wasserstein topology Wp.
Let (Pg)ren+ C Py (v), by Proposition 3.4.6, (Pg)ken- is relatively compact for the Wassertein topology W, and any limit
P, of any sub-sequence belongs to Py (v). Therefore Py (v) is compact. By similar techniques used in Theorem 3.2.4
and Theorem 2.2.3, it is straightforward to show that Py (v) is convex.

Next, we prove the items (i) and (ii) of Theorem 4.5.1. By applying Proposition 4.8.3, with the same notations, for
any [0, 1]-valued uniform variable Z P—independent of (£, W, B, u, A), there exists a sequence of F—predictable processes
(a®)pen- satisfying: for each k € N*,

af = Gk(t7£,/,Lt/\.,At/\.7Wt/\,Bt/\, Z), @*&.e., for all t € [O,T],

with G* @ [0, 7] x R™ x CJi, x M(PR) x C" x C* x [0,1] — U is a Borel function such that if X* is the unique strong
solution of: for all ¢ € [0, T

¢ ¢
XF=¢+ / b(r, X* u* 1", oF)dr —|—/ o(r, XF, uk, @k o)W, + 0B, P-a.e.
0 0
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where ¥ := £P(XF|G,) and 1F := Eﬁ()?tk,af@t) then
klim Eﬁ((uf)te[oﬂ, dzr (dm)ds, (Bt)tE[O,T]) = P, for the Wasserstein metric W,,.
—00 s

For each k € N*| )?tk = HF(&, Win., piin-, Min., Bin., Z), for all t € [0,T], P-a.e. with H” : RnXCnXC%XMXCeX[O, 1] —
a Borel function. Then, as ({,W, Z) are P-independent of (u, A, B), one gets for all t € [0,7], EP()?fA_7af|§t) =
cF (X, aF|Gr), P-ae.. Let us introduce the process (1) tef0, 11

i =P (XE  XE . — 0oBin., W, AL, |Gy), for all t € [0,T],

with AF(du)dt := don (du)dt. For each k € N*, fiF € P(C™ x €™ x €™ x M(U)), for all t € [0,T] and if (X,Y, W, A) is the
canonical process on C" xC" xC"xM(U), one has uf = o (X,), P-ae., and LF(XF, |G, (dz, du) = EA [5;(# (dz) Ay (du)],
P-a.e. for all t € [0, 7). It is straightforward to see that 7if = ﬁﬁl;()/(\'tkA_, XE = 00Bia., W, Ak, |Gr), for each k € N*, then

ik = cP(XE  XE = 00Bin, WoAF | Ben 1) = £P(XE L XE = 00Bin., W, AF, |B, i), P-ace., for all t € [0, 7],

and (B, %) are @Andependent of (§,W). For all k € N*, denote

Q" =Po (X%, XF — goB, AF, W, B, %) " € P(C” X C" x M(U) x C" x C' x P(C™ x C" x C" x M(U))),

then @k is a weak control (according to Proposition 2.3.6). Then by (a slight extension of) Proposition 2.3.12,
(1) when £ # 0, there exists a sequence a/* € A(v), and X" the strong solution of (5.2.11) with control a/* such that

-1

-1 N
lim P, o (XO” W, B, 8 sy (dm, du)ds) —Po (Xk W, B, 8o (dm, du)ds) L in W,

]—)OO

)

(2) when ¢ = 0, there exists a family of Borel functions (x}) ; with &% : [0,7] x R™ x C™ x [0,1] — U, such that if
ol F[2] = K5 (t, &, Win., z), for z € [0,1], one gets (a{’k[z])te[oyﬂ € A(v) and

1 N R »
4, iy (@ du)ds) dz = Bo (X4, BL0ge, ap)(dm, du)ds) ., in W,

j—oo

1 )
lim P, o (Xaj’k[z],m B,6 i
0 (ks

All these results are enough to deduce the items (i) and (i) of Theorem 4.5.1, and conclude that: for v € Py (R"),
Vs(v) = Vi (v) and there exists P* € Py (v) such that Vi (v) = EP” [J (1, A)].

4.8.2 Propagation of chaos

With the help of Theorem 4.5.1, in this section we provide one of the main objective of this chapter, which is to prove
the limit theory result or (controlled) propagation of chaos.

4.8.2.1 Technical results: study of the behavior of processes when N goes to infinity

In this part, the properties of some sequences of probability measures on the canonical space  are given. Mainly, the
behavior when N goes to infinity of sequences of type (P(a?,...,a’V))yen+ construct from the formulation of N-agents

stochastic control problem are studied. (see Section 4.2 and Remark 4.2.1).

Proposition 4.8.4. Let Assumption 4.1.1 hold true and (V*)ien- C Py (R™). Recall that vy == v' @ --- @ VN, for each
N e N*.
(i) Let (PN)yen- be the sequence satisfying PV := P(a™N,...,a™N) (see definition (4.2.3)) with oV € An(vn)

Vi € [1, N], for each N € N*. If
sup NZ/ |2/ [P' v (da’)
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then (PN)yen- is pre- compact in Pp(Q) for the metric W, and for every P> € P(Q) the limit of any sub—sequence
(PNi);en, P € Py (limj o0 7 ~ Zi:l V).

(i7) Let us consider the sequence (Py)ren+ of probability measures such that Py, € Py (vF) for each k € N*. If

sup/ |2/ [P /¥ (d2’) < oo
k>1 JRn

then (Py)ren+ is_pre-compact in Pp(Q) for the metric W, and for every Pos € P(Q) the limit of any sub-sequence
(ij )jeN*7 Poo S Pv(hmjﬁoo ykj).

Proof. (i) Thanks to Proposition A.2 or/and Proposition B.1 of [49], as U is compact, it is easy to check that (P™)yen-
is precompact on P,(Q) for the metric W,.

Let P> be a limit and (P™7);cn- the corresponding sub-sequence. For sake of simplicity, denote (PY7) ey« = (PY) nen-
and v := limj_, o NL vazjl vt
J

Now, let us show P> € Py (v). Let f € CZ(R"). For each ¢ € [0,7], denote Ni(Bin., Ata., pn.)(f) = Ni(f) to specify
the dependence w.r.t. (B,u,A) (see definition (4.4.1)). Notice that the function (¢,b,m,q) € [0,T] x C* x C}}, x Ml —
Ni(bin., qin., min.)(f) € R is continuous and bounded. It is straightforward to check that: for all ¢ € [0, 7]

N t
1 ) ) )
Nt (Bt/\~a (5<P£V (dm)ds)t/\~a Qpi\kx) (f) = N Z/ Vf(X;LZ - UOBT')O-(T7 XTOL 17 @i\i\xy Spfvv :*)dW:“’ Plj/Via'e'
i=170

With the same techniques used in the proof of [104, Proposition 5.1] or Proposition 3.4.6 in Chapter 3, one has

E7 |V [*] = B [| (Ve Buns Aans min )(DIP] = Jim B [|(Ne(Bins Aons ien ) ()]

N—oo
= lim E™[|(No(Bino, (05 (dm)ds)en, o) ()]
N—o0
_ Py i ai a,i NX N i i |2
= lim E UNZ/ V(X — g0B,)o(r, X, N X N o) AW ]

. 2
lim *ZE“” [/ VIR = B o (XK, ) 0| =
By taking (¢, f) under a countable set of [0, 7] x CZ(R™) then P>®-a.e. w € Q, N;(f) = 0 for all (¢, f) € [0,T] x CZ(R™).
For all h € Cy(R"), the map (¢,7) € M x C}},, — fOT Jpn [(hym(d2,U)) — <h77rt(dz)>‘2qt(dm)dt € R is bounded and
U

continuous (see for instance Lemma 4.7.1), one finds

EP” [/OT/;} |(h,m(dz, U)) <h7ut(dz)>|2At(dm)dt}
N

= lim E¥ [/T/ [(hym(dz, U)) = (B, o X (d2))| 8, ( dm)dt] = lim E¥ [/OT m;[h(xg’i) —h(Xf"i)]‘th} -0,

N—o00

by taking h under a countable set of Cy(R™), one concludes A¢(Z,,,) =1 P @ dt-a.e. It is obvious that (By)sejo. 7] is a
(P>, F) Wiener process. Let Q € N*, and (M) geqa,..y : R" — R¥ be bounded functions, one has

Q Q
EP“[H hq,uo} H
q=1 q=1
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Let us show this result when @ = 2, when @ € N*, the proof is similar.

N N
oo 1 , 1 . )
P 1 PN 171 50y 7,2 a,g _ i 1 in/12
E [<h7uo><hauo>]—hm]\72E [ (X502 (X5 )] =i g D (W w020 4 g D (w2 0)
i,j=1 i=1 i#j
N | X
il 2
= lim(h Zj N;u>f<h,u><h,u>7
by Proposition 3.5.1, P® o (j9) =% = 6, then py = v, P®-a.e. All these results allow to deduce the first statement of this

proposition.

(#t) For the second part of this proposition, notice that, thanks to Lemma 4.8.2,

sup Epk{ sup / |:c|p,z9t(d:£)} < K[l + sup / :c'|p'1/k(dx')} < 00
keN* te[0,T] JR keN* Jrn

and

lim sup sup sup EF" [Wp (19(T+5)AT, 197)] =0,
5—0 keN* T
where 7 is a [0, T]-valued F-stopping time, and recall that (9);c[o,7) is the P(R")-valued F-adapted continuous process
defined in equation (4.8.4). Then by Aldous’ criterion [92, Lemma 16.12] (see also proof of [49, Proposition-B.1] ),
(Pk o ((ﬁt)te[o,T}) _1)k€N* is relatively compact for the metric W,. Then, using the fact that P, € Py (v k) for each k € N*
and the relation between (9, ©) and the canonical processes (i, A) (see equation (4.8.4)), we deduce that (Pg)ren =

(Pk o (,u7 A, B)f is relatively compact in W,. The rest of the proof is similar to the previous proof.

1
)keN*
O

Proposition 4.8.5. Let Assumption 4.1.1 hold true, v € Py (R™) with p’ > p and (v')ien C Py (R™) such that

sup/ |2V (dz') < oo and V' ,—> v, then hm Vs(v') = Vs (v).
ieN JRn troo

In particular, the map Vs : Py (R™) — R is continuous.

Proof. By Theorem 4.5.1, one has Vg(v) = Vi, (v), thanks to this result, the proof is similar to the proof of Proposition 3.2.8.
Let (6F)gen € N* with limg % = 0 and (P*)en+ be a sequence such that P* € Py (v*) and Vi (v%)—6F < EP* [J(p, A)]. By
Proposition 4.8.4, (P*)en is relatively compact on (P,(2), W,) and if P € P(Q) is the limit of any sub-sequence (P*7) ;¢ -
then P € Py (v). Using Assumption 4.1.1, by convergence of (P¥i),cn«, one has lim; |Eij [J (1, A)] — EP[J (1, A)]| = 0.
Therefore, one gets
lim sup W (") < lim EP™ [ (1, A)] = EP[J (1, A)) < Vir(v) = Vs (v).
—00 o

By Proposition 3.4.4, Vg(v) < liminf;_,o Vs(v*), this is enough to conclude that klim Vs(v®) = Vs(v), and deduce the
—00
result. O

4.8.2.2 Proof of Theorem 4.5.3

By combining Theorem 4.5.1, Proposition 4.8.4 and Proposition 4.8.5, this proof turns to be the same used in the proof
of Theorem 3.2.7. For the sake of completeness, we repeat the proof.
M)

(i) By Proposition 4.8.4 (with the same notations), if the sequence (PY)yen- is such that: V& (v1, .., vN) —en <

EPN[J(,u,A)], where (™) yen- is sequence with limy e/ = 0, then (PY)yen- is relatively compact on (P,(€2), W,) and
for every P> € P(Q) the limit of the sub-sequence (PYi) e+, P® € fv(limj_mc N% ZfV:Jl I/i)7 therefore

N
. N/ 1 N . pN; _ P . 1 -
limsup Vg' (v, ...,v") < lim EY 7 [J(p, A)] =E" [J(p, A)] < VV( lim N E Vi).

N—o00 j—oo Jj—oo INj “
i=1
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Then, as lim;_, Ni Zf;l v; € Py (R™) and Assumption 4.1.1 holds true one can deduce that V3, ( lim; o Ni Zi’l ui) =
J J

V5<lim7goo NL vazjl ui>. By Proposition 3.4.4, Vs(liijOO NL Zi\f:]l yi) <liminf; ,» VSNj (1, ...,vN3). To recap
: J ; :

N N
I N, N, I
V(l' —=> ‘)<1‘ inf Vg (v, ..., vN7) < i Vel (vt ., N <V<1’ —> )
s ji&wjizl”l =R Ys W v )—lﬁs;fp s W) S Vs oo Ny 2=

(43) Let (N;) en be the sequence corresponding to :

| X
limsup |V (v ...,v ( Zl/)

N—o0

By the previous proof, lim;_, VSNj (vt .., v = Vg ( lim; o0 Ni vazjl Vi) , as (Ni Zivz’l V') jen~ is bounded in (P (R™), W,/)
and converges in (P,(R™), W,), by Proposition 4.8.5,

N; N

(S5 =15 550,

J =1 N;j i=1

this is enough to conclude the proof. O

4.8.3 Proof of Proposition 4.5.4

Notice that, for v € P, (R™), by Theorem 4.5.1, f’{,( ) is nonempty. Let us define the distance function to the set
Py (v), for each Q € P(Q), U*(Q) := infp. 57 (, W, (Q,P*). It is well know that, as Py (v) is nonempty, the function

*:Q € Py(Q) — R is continuous. Then by Prop051t10n 4.8.4, (PN)nen+ is pre-compact in P,(Q) for the metric
W, and if P € P(Q) is the limit of any sub-sequence (P™i);cn+, one have P € Py (v). Under assumption 4.1.1,
lim; o0 EP™ [J(p, A)] = EP[J (1, A)]. Combining Theorem 4.5.3 and Proposition 4.8.5, one has

N;

tim V25 (0, v¥0) = Vs Jim Ni S w) = Vs(v) = V() < EP[7( A)],

—00 —oo [V,
J / 7=

then P € Py, (v). Hence each limit of any sub-sequence of (PN)yen- belongs to Py (v). Consequently, if (PNi);cy is
the sub-sequence corresponding to lim sup ¥*(PY) = hm U*(PNi), by continuity of U* and the fact that any limit is

N —oc0

an optimal control, lim sup \I/*(PN ) = 0. The second part of this proposition is just a combination of Theorem 4.5.1,
N—o0

Proposition 3.4.4 and Theorem 4.5.3. This is enough to conclude the result.

4.8.4 Proofs of the case of closed loop controls
Assumption 4.8.6. Here, we assume that £ = 0, and
o(t,z,m,m,u) =&(t,x), for all (t,z,m,m,u) € [0,T] x R" x Cy3, x Py x U.

For simplicity, we will note o instead of &.

4.8.4.1 Proof of Theorem 4.6.2

Let p' > p, v € Py (R"). For a € A(v), we note n; := L¥(X) and 1, := LP (X, ;) for each t € [0, 7). then the pair
(n,7) satisfies the following equation: d¢—a.e., and

) = GO0+ [ [@seom)+ [ Al n s s @ ()]

nxU
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for all (¢, f) € [0,T] x Cp*([0,T] x R™), where the generator A is defined by
1
Arp(w,m, ¢ m, v, u) = STr[o0 (t,2) V()] + bt 2, m,m, u) T V().

By [49, Proposition C.1], there exists a sequence of measurable function (a*)gen- with for each k € N*, o¥ : [0, T] x R™ —
U and for each t € [0,T],

klim Oak (t,2) (du)G(z)dz = 0y (du)(du)G(z)dz, in the weak sense. (4.8.8)
— 00
Now, we define X* a solution of
t ¢
Xk=¢ +/ b(r7 Xk nk, @k ok (r, Xf))dr —|—/ O‘(T, Xf)dWr7
0 0

with nf := £% (X*) and 0¥ := L% (XF, oF(r, XF)), for all r € [0,T]. By Lemma 4.7.14 and Lemma 4.7.13, there exists a
sequence of continuous functions (u*)ren- and u such that: nf(dz)dt := u*(t,z)dzdt, and for each (¢, s) € [0,7] x [0, 7]
and A C R™ compact

lim sup |uk(r, z) —u(r,z)| = 0.
k—oo (rx)€[s,t]x A

By Equation (4.8.8) and Lemma 4.7.15, we have

klim 6ak(t7z)(du)uk(t, x)dx = 0y (du)u(t, x)dz, in the weak sense, dt-a.e.
—00

If we note for each t € [0, 7], ng°(dz) := u(t,x)da We can deduce that

<f(t7 ')a n§o> = <f(07 ')7 V> +/0 [<atf(’r7 ')a n:o> + /R"xUAT[f(r, )](.’L‘, noo7ﬁf (du )nio(dx )7u)ﬁf(du>n$o(dm)} dr.
If we define
b*(t, z, ) = /U b(t,z,m, 0% (du')r(da’'), w)n® (du).

By [106, Theorem 2.3], the SDE associated to the coefficients (b*,0) has a unique law. We can deduce that n> = n.
Consequently

lim (nk,dﬁgﬁ (dm)dr) = (n, 65, (dm)dr), in W,

k—o0

4.8.4.2 Proof of Theorem 4.6.3
First of all, it is obvious that: for each N € N*,

N T
1 * i X i a,l X
sup NZEP [/ L(t, X" ,Pin. 7<Piv7az(t,X?))dt+g( T ,tijY’A_ )} <V¥w,...,v).
ac AT i—1 0
Therefore, one has by Theorem 4.5.3,

N T

1 x . . ,
limsup sup — 3 EF [/ L(t, X3, o 0 ol (6,X¢))dt + g %“,so%’.‘)} < Vs(v).
i=1 0

N—oo acAY

Next, let o € A™, and X solution of: for all t € [0,T]]

t t
Xy =¢ +/ b(r, X, npp., 0 afry XT))dr +/ a(r, XT)dWr, P*-a.e.
0 0
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with n, := £ (X,) and @, := L (X, a(r, X)), for all r € [0, T]. Let us define X* := (X XN the solution of
the following system of SDEs, for each i € {1,..., N}, ER U ] < 00,

X0 = ¢ +/ b(r, X, o, 0N alr ,xgﬂ))dH/ o(r,X3")dW?, for allt € [0,T], (4.8.9)
0 0
with
N
X (dz) : NZ: Xal)(daj) and o (dz, du) de (x5, a Xé,i))(dx,du), for all t € [0,T].

By [106, Theorem 2.5], one has (L (¢™V'X))yen- converges to LF (n) for W, and for all t € [0,7] and all function
measurable bounded ¢ : R" — R

Nlim (¢, o1 %) = (¢, n), in probability sense.
— 00

Using the fact that « : [0,7] x R — U is measurable bounded, we deduce that lim £F (@N’X,éviv (dm)dt) =

N—oc0

cr (n, 6, (dm)dt) for W,. Consequently, by using Theorem 4.6.2, one gets

N—o0 OLG.Am

T
Vs(v) < liminf sup —Z]EP {/ tXtaZ,gpivAX,gin, o (t,X))dt 4+ g(X C“,(p%\x)

We can conclude.

4.9 Appendix: some technical results

4.9.1 Technical proofs

Here we shall successively give the proofs of Lemma 4.7.2, Proposition 4.7.9 and Proposition 4.7.10.

Proof of Lemma 4.7.2. By taking, for § > 0,

1 t
q’ (dm, dm’) :== 7/ Q% (dm, dm’)ds, for all t € [0,T7,
(t—=86)V0

using similar approach to [119, Lemma 4.4], the sequence (§°)s~o satisfying: for each § > 0, ¢ (dm, dm/)dt € M((Pg)?),
q°:t€[0,7T] — & (dm,dm’) € (PR)? is continuous, and }ir% 4} = &;, in weakly sense for ds almost every t € [0, T].
—

Let us fix tg € [0,T], ¢ € CZ(R™), by [97, Chapter 2 Section 9 Theorem 10], there exists v € C’;’2([07 to] x R™) satisfying:

e (t, ) + AS[w? (t,.)][b,n,z, §’](x) = 0 for all (t,2) € [0,%9) x R™ and v*°(tg, ) = ¢(z). (4.9.1)

Notice that, under Assumption 4.1.1, for each € > 0, a‘[b,n, z, 5](t,x) > 0L, for all (¢,z,x) € [0,T] x R™ x P((P{)?).
By Proposition 4.9.3, for all ¢t € [O,T], xr € R" = (a 6)1/ [n,z, x](t,z) € S"*™ is Lipschitz (with Lipschitz constant
independent of (¢,n,z,k)).

Let (Q,F, F,P) be a probability space supporting W a R"—valued (P, F)-Wiener process, and { a Fp—random variable
such that £F(¢) € P,(R™). Now, for every t € [0,to], denote by X“%*¢ := X the continuous process unique strong
solution of:

X, :§+/ b[b,n, z, &) (r, X )dr+/ (a9)Y?b,n,z,§°)(r, X,.)dW, for all s € [t,T], P-a.c..

t
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By applying Ito formula, one has (Feynman Kac’s formula)
v (t,x) = EF [qs( COLE) e = ] —EP [¢(X;(;W)} for all (t,z) € [0, to] x R™. (4.9.2)

By definition of a¢ and b¢ (see (4.7.2)), and by using the fact that §° € M((P%)?), there exists a constant C, (independent
of § > 0) such that: for all (¢,z) € [0,T] x R",

|V2(6°[b,n, z,4]], a[b,n,2,q4]]) (t, )| + |V (6°(b,n, z,&]],a‘[b,n,2,4]) (t, 2)| < C,

then by [97, Chapter 2 Section 8 Theorem 8, Theorem 7], for two unit vectors (w!,w?) € R™ x R", there exist two
R" valued F-adapted continuous processes Yeot@:w' .=y and Zedtow'w’ .— 7 guch that
] - 0,

formally speaking, Y can be seen as the “derivative” (given a direction w!) of z — X%, and Z the “derivative” (given w
and another direction w?) of Y. In addition E* [ supc(, ;o) |Ys| + [Zs]] < K¢, with K. depending on € but not of 4.

As ¢ € CZ(R"), by using the previous results and equation (4.9.2), there exists K.>0 (independent of ¢) satisfying: for
all (t,x) € [0,T] x R™

e,0,t,x+hw' _ yedtx
Xs Xs
h

Y€,6,t,w+hw2,wl _ Y€,6,t,w,w1
s s

-~ Z,
h

lim EF [ sup
h—0 s€[t,to]

]—Oand lim E” [ sup

h—0 s€[t,to]

1

A

|V2v6’6(t,:n)| + |Vve’5(t,:£)| + |v€’6(t,x)| < K.. (4.9.3)
Therefore, for all € > 0,

[A503 (2,)[b,m, 2, @) () — A ()b, m 2, &) )] < K| 6%, 0B m, . @)1, ) — 6%, )b m, 2, 6] (7, 2)

);

by definition (4.7.2), as %in}) &’ = q, for ds almost every ¢ € [0, T], one gets:
—
ln [ 700 (1, )b, 2, ) () — Aqu (1, )b, m, 2, (2)| = (4.9.4)

for each € > 0 and = € R™, for ds almost every t € [0,T].

Uniqueness: For each € > 0 fixed, let us prove the uniqueness of (ng)te[O’T] solution of equation (4.7.5). Let n'¢ and
n*¢ be two solutions of the Fokker-Planck equation (4.7.5) mentioned in the Lemma, for any to € [0,7] and ¢ € CZ(R™),
denote by v := v5%% solution of (4.9.1) associated to (tg,®). One finds

. o(y)n;(dy) — | dly)n;(dy)

Rn
=/00<8tv(r,~)7ni‘> — (9yv(r,.),n%) + (ASv[b,n,z,d,](.),nl) — (Av[b,n,z,q,](.), n?)dr

- /0 O<Aiv[b,n’z7qr](.) — Asob,n,z,47)(-), 0y ) + (Ajolb, n, 2, §,)(-) — Atv[b, n,z,&](-), n) dr,

by (4.9.4), given € > 0, after taking 0 — 0, by Lebesgue’s dominated convergence theorem, [, ¢(y) nt
this is true for all (¢, @) € [0,T] x CZ(R™), then n¢ = n?°,

0 f ]R" nto

dy),
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Convergence of n: Now, we show the second assertion of our lemma. Using the fact that q:(Zp,) x Pr;) = 1 dt-almost
surely ¢ € |0, T, one gets for all ¢ € [0, T,

Lottt [ Gee=mm@ay= [ [ 00z = pmiias)Galmay
= [ vtow [ Glemmmanan [ [ [ [ o0z - pmaa

+ / / A0 (s, — )] 2 by, 7, m, 7 w)m(dz, du)d (dm, duﬂ G.(y) dy ds
(Pg)? nxU

:/R ve2(0,y) . Ge(z —y)v(dz)dy + /Ot/n /n {atve’é(svz k)

T / / Ao (s, — )](z by, z,m, a,u>m2<du>qs<dm,da>] Gu(y) na(dz) dy ds
()2 Ju

= /R v°(0,y) /R Ge(z —y)u(dz)dy+/0t /R [@vevé(s,y) /R Ge(z — y) ny(dz)

/ / b(s, z,b,n,z,m, 7,u) Vo (s,5)Gc(z — y)m* (du)n,(dz)qs(dm, dv)
(PL)? JR XU

okt
(Pr)2 JRP XU
t
:/ 06,6(07y)/ Ge(z—y)u(dz)dy+/ / {atv“‘s(s,y)(ns)(e)(y)
R” R 0 n
2 = Ge(Z*y) A~ — F) ()
+ b(s,z,b,n,z,m,v,u m(dz, du)qs(dm, dv)Vo®° (s, y)(ng)'c
/(3)2 /RnxU ( )(m(dzl7U))(e)(y) ( )as( ) (s, ) ()" (y)

L a - Ge(z —y) N w9 s
+ =Tr / / a(s,z,b,n,z,m,v,u m(dz, du)gs(dm, dv) V20 (s, y) | (n, (e) )| dy ds
2 [ (Pp)? JRA XU ( )(m(dz',U))(6>(y) ( )as( ) ( )}( ) (y)

+

1
2Tr [&(s, z,b,n,z,m,v, u)Vsz’é(s, y)] Gc(z — y)m*(du)ns(dz)gs(dm, dﬂ)] dy ds

- / v3(0,y) [ Glz — y)ulda)dy + / / (055 (r, ) + AS[0" (r, )] by m, 2, 4,] (1 )] (1) 9 (3) g i,
R~ R™ 0 n

where for each m € P(R"), we write 7(9)(z) := [, G )w(dz), for all z € R™.
Then by (4.9.1)

/R 0830,y (y)dy

[ o) O wdu+ [ [ A b2, 60 ) = AL ] )] n) ()

By equation (4.9.2), one has

/ 0(0,) / Gelz —y)r(da)dy = /WEWX;W)!& y]v )y = | oy (da),

where nf := LX) for ¢ € [0, 7], with £P(£9)(dy) = () (y)dy.



108 Chapter 4. Measure—valued controls and limit theory with law of control

Combining the previous equality,
o) = [ sy - [ o) [ Gle— @ty s [ o) [ Gule -y )y
R R n R n R

= [ otwmaan = [ o) [ G=pmy@ay+ [ o0 [ Gz pviasay

n R

[0 A b s @) - A b g, @6)] [ Gl - umitaz) ay dr

:/R $(y)mj;’ (dy) / ¢(y)ny, (dy) — /naﬁ(y)/nGe(Z*y)dy ny, (dz)

[0 [t b a0 - A b af0)] [ G- wneaz) ay

Rn
Consequently, for each € > 0,

timsup | [ 6(y)ne(y) — | oty ()] < |

6—0 R

o) = [ o) [ Gz =)y ()],

Rﬂ,
Finally

lig i sup | [ owmi(dy) - | oy)ns (dy)| =0, (4.9.5)

=0 50
2(Rn 3 — n
for any ¢ € CZ(R") and ty € [0,T1], where we used lim._,o | [, ¢(y)Ge(z —y)dy — ¢(z)| =0, for all z € R".

Notice that v(9)(y)(dy) converges weakly to v(dy). By Skorokhod’s representation theorem, one can find a probability
space (Q, F,P) supporting (£%)eso and & such that EP(f ) = v (y)(dy) and LF(¢) = v(dy), and limeﬂof =¢Pae.
And when LF(€) = v € P,(v), one has sup,., EF[|¢€|P'] = SUP 0 Jgn ly[P' v (y)(dy) < C(L+ [y [ylP v(dy)) < oo, by

using standard techniques of uniform integrability, lim._,¢ IEIP[|§6 ¢|P] = 0, recall that p’ > p. If necessary, it is possible
to enlarge the initial space, by sake of clarity and without technical problems, let us assume (Q F, ]P’) is equal to the
initial space (Q, F,P). For each € > 0, Let X be the continuous process unique strong solution of

=¢ +/ (b, n, z,q§,](r, X5)dr +/ (a)Y2b,n, z,q,](r, X5)dW, for all s € [0,T], P-a.e.
0 0
By using the regularity of (136, a°) for e fixed, it is straightforward to find

lim lim E? [ sup | X[ — Xf"s’o’fé‘p =0.
e—006—0 te[o T]

By It6 formula and uniqueness of the Fokker-Planck equation (4.7.5), n§ = LF(X[) for each t € [0,T], thanks to (4.9.5)
and previous result, one gets, in weakly convergence sense,

lim n§ = lim lign n{’ = n, for each t € [0, 7.
€ €

Therefore we proved: for each ¢ € [0,T], n§ converges weakly to n;. To deduce the Wasserstein convergence W,, notice
that: sup,.qsup,epo,7 Jpn [2[7 nf(dz) < C(1+ [p. [y[P v(dy)) < oo, and

limsupsup sup W( (s+6/)AT> 1 ) = limsupsup sup WP(EP(X(GSM,)ATLEP(XSe))p
0’—=0 €>0 s€[0,T] 0’—=0 €>0 s€[0,T]

< limsupsup sup EF HX(S_H;,)/\T X ] < Climsupé’ =0,
§’—=0 €>0 s€[0,T] 6'—0
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where the last equality follows from the Holder’s property of trajectories of X¢ with a constant independent of € (essentially
because (b, ) are bounded). By Aldous’ criterion [92, Lemma 16.12] (see also proof of [49, Proposition-B.1] ), ( Veso 18
relatively compact in C([0,T'; P,(R")) with the metric A(v, v') 1= supyc(o 1) Wp(vt, ) for all (v,v') € C([0,T; Pp(R ))
C([0,T7; Pp(R™)). As for each ¢ € [0,T], n§ converges weakly to n;, then the limit of each sub-sequence of (n )E>0 isn

consequently lim sup W,(nf,n;) = 0.
€=0¢e0,7)

Proof of Proposition 4.7.9. Before starting, let us mention that many parts of this proof use Proposition 4.7.7 and its
associated proof.

Let us take the sequence of processes (ai’N)(i’N)eN* «N+ given in Proposition 4.7.7 with EP(Ei) = v* = v for each i, and
define the unique strong solution X of: for all ¢ € [0, 7]

. . t/\ . . t . .
XZ’N=5’+/ b(r, XN, BY, (™), ¢, ™, 7y :VN)dr+/ o (r, XN BN (™), ¢N i, B el ) dW
0 0
~ i, N P(vi-N i, N|GN ~i,N P(yvi.N|AN iN . TN . =N .
with g™ = LF(X], 0y |GY) and iy = LF(XP7|GY). As oY is F“N-predictable (F*V is defined in (4.7.11)),
there exists a Borel function G : [0,7] x R™ x M((P#)?) x Cp, x Cpyy x C™ x C* x [0,1] — U satisfying ol =

N ) . ~ —N
G(t,fz,At/\,,qﬁtA,(uN),Ct]X,,Wt’,\,,BtJXA,ZZ), dt ® dP-a.e. Define oY := G(t,f,At/\i,gbm‘(pN),(t])’\,,WM.,BtIX,,Z). Let XV

be the unique strong solution of equation (4.7.28) (associated to o). By independence Assumption (4.7.27), recall that

m¥ is given in equation (4.7.28),

miN = mN, P-ae., and given the o—field G, for i # j, (X5, ") are independent of (X7, oY) (4.9.6)
and £F(XPN 60 K g(u™), ¢V, W, BN, 20) = £F(XN 6 K o(uN), ¢, W, BN, Z).
Let us introduce for each N € N*, the measure on [0,T] x P(C™ x U) x P(C™ x U)

I (de, de’)dt := EF V@, cr(xi N g)

t

N
_ 1
de, de’)dt |, with B, (dx, du) := T D B g (i, du).
=1

As (b, &) are bounded and v € P, (R™), it is straightforward to check that SUP N>1SUP;e(1,... N} EF [supte[O’T] |XZ’N|p | <
o0, and hence (I'V) yen- is relatively compact for the Wasserstein metric W,. Denote by I'®® the limit of any sub-sequence
of (IT'V) yen-. For simplicity, we will use the same name for the sequence and the sub-sequence. One gets

5°(de, de')dt = 5. (de)T5° (de, P(C™ x U))dt. (4.9.7)

It is enough to show that: for all Q € N*, any bounded functions (f)4eq1,...0} : C"xU — R? and g : [0, T|xP(C" xU) —
R

Q

T Q T
q AN pleel / — q o "
/0 /7>(c"xU)2 ql;[l<f ,e)g(t, e \Tye(de,de’)dt /0 ~/7>(CnxU)ql:[1<f ,e)g(t, e)T5° (de, P(C™ x U))dt.
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Let us prove this result when @ = 2, the case Q € N* is true by similar way.

T Q N T
1 ~ . ) . .
/ / [T gt e (de,de’)dt = lim — >~ ]EP[/ fl(XZ’AZ.V,ai’N)fQ(Xi’X.Vvai’N)g(t,ﬁ%iV)dt}
0 JPEerxu)2 N—oo N . 0

i,j=1

=ngnooN2<ZEP[ / FHXEY o ™) (XY ol ™) g(t dt]+ZE“’[ / FHXEY ™) (xR, ’N)g(t,m%dtD

i#£]

g (3 [t o) 8 )]
i7#]
N —~

T _ _ _ _
i Ni >_E { /0 FHXR ™) 2 (T Oéi’N)g(t,ﬁliv)dt}>
fﬁ 1 SNy g2 SN ~N 1NTP7 T Bt viN i\N }521‘1\1
:]\[]i_r}nOO |:/ <f ><f > (t my )dt:| - m;E |:/0 E [f (Xt}\_, )‘gt ] [f (Xt}\-7 )g t, mt ‘gt ]dt

1 s [ i i i i ~ ’ 0o n
+N¥E[ / f1(Xt%.v,a;N>f2(th.V,a;N)ga,miV)dt})= L o 0 gt T e, Pl )

where we used result (4.9.6) and the fact that the terms starting with (N%)"’ 25\21 go to zero because (f!, f2,g) are
bounded.

Next, for all t € [0, 7], using Lipshitz property, there exists a constant C' > 0 (which changes from line to line)
[ sup |XIN — Xl‘ }

s€[0,t]

N
i 7 —~ 1
<08 [ (XY S i WS ) 3

—

1=

<orf| [ sup (XN - R m(cﬂ”«xzx.v (62, B,
0 relo,s]

~

recall that ()A(l, ...,)?N) are defined in equation (4.7.12) (in Proposition 4.7.7), and m» := L (XtN, a{V\gAtN) and Y =
LH(XNIGY).

Then by Gronwall Lemma Eﬁl;[supse[o’T] ‘XQN — X;ﬂ < C’EP[fO (EP((XZ/{V, 5 N|QN) 7N)pds]. As,
~r T N
EP[A N; XzN 1N pds]
5[ [ v 1 Al P [ " 1 al
<E |:/0 Wp(ms ,N26(X;,N7aé,N)) d8:| + E |:/0 Wp(ﬁzlé(X;YN’ai‘N Z (RN i) S:|
o~ T o~ . . ~ —N e~ T . ~.
< c(ﬁ"“ W, (LF (XY, oM |GN), B, )”ds} +EPU | XN — X;V’ds])
0 0
[ T - N
< CE“”[ / W (LF (X', al™N|GY), B, )pds],
0

therefore, by taking the sub-sequence corresponding to the lim sup, by result (4.9.7),

1 /T
limsupEP[/ ANL Z(leN ) d8+ sup Wp(@(ﬂNl)’(bt(MNl)] =0.
0

=00 te[0,T]
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From all previous results, it is straightforward to check that

dim W, (L5 (@, 8y oy (dm, d0)ds, BY), £F(FY,CY, 6 s o (dm, di)ds, BY) ) =0,

where F 1= % Zfil 5(5(\2,N) and 0, := % Zf\;l S(QZ,N,QQ,N). Consequently, by Proposition 4.7.7

Jim ﬁﬂ"( Nie Nk, . Nkyl_/ivk)(dm,dﬂ)ds,BN’“) = lim zP( Nie Nk, 8 g ey (dm, di)ds, BNv) = £%(u, ¢, A, B),

~

recall that mD := LF (XN o |GN) and @Y = £F(XN|GN). O

Proof of Proposition 4.7.10. The proof of this Proposition is exactly the same as Proposition 4.7.7, we essentially recall
the main step.

Approximation by SDE : Tightness and identification of the limit process: Let us define the unique strong solution
ZsN of:

N5+/tif[BN,¢>< Ny, N R ZGN>dr+/< V2B, o), ¢V R |(r, ZoN)dW,, ¢ € [0,T], Poace..
0 0

And for all (t,w) € [0,T] x Q, denote 95" (w) := £F (27N |GN) (w), and
pen . £P<195 N BN ¢ (MN),gN,KN) € P(Chy x C x €y x Cy x M((PR)?)).

As [56, @] are bounded, again it is straightforward to check that (P“")yen- is relatively compact for the Wasserstein
metric W,. Denote by P the limit of any sub-sequence of (P“") yen-. Therefore, under Assumption 4.1.1, by applying
similar techniques to those used in step 2.2 of proof of Proposition 4.7.7, one gets for all (f,t) € CZ(R™;R) x [0,7T], one
gets

t
<f,ﬁt>=/Rn f(y)V(dy)+/0 . ALf[B, B*, 8¢, B] (2) B, (dz)dr, P“*-a.e., (4.9.8)

where (8, B, B*, 3¢, 3) is the canonical element on C33, x C x Ci%, x C3}, X M((P{})2 Using a countable family of (f,t), we
can deduce P©>*-a.e. equation (4.9.8) is true for all (f,t) € C7(R™;R) x [0,T7].
By Lemma 4.9.4, one has g = ®¢ (B, BH, S, ﬁ) where @€ is the function used in equation (4.7.14). Also

£ (B, g, 50, B) = lim_ P (B, B, 84, B) = Jlim (B, o), ¢V KY) = £9(B, ¢(p), ¢, B).

Then £P°7 (B ﬁc,ﬁ) = L0 (/f, B, o(u), (,K). This result is true for any limit of any sub-sequence of (P“™)yens,
consequently (P¢ ) Nen+ converges and

lim £F (99N, BN, 6(u™), ¢V, A7) = £2(u, B, 6(n), ¢, K).

N —oc0

Last approximation: Let us consider for all (¢, N) € (0,00) xN*, the Iﬁ?—adapted R™-valued continuous process XV = X
strong solution of : for all s € [0, T

:“/ / / b(r, X, BN, ¢, ¢ e ], 7, w) HE(ZEN  m) (dw) R, (dm, di)dr
71.)2 U

-~

s - 1/2
+ ( [ 00T B o), ¢ e o) (2 )(du)Af(dm,dD)) aw,, Bace.
0 ny2 JU
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where recall that H¢(x, m) = Jgn m(du,dy) o Ge(z—y)

o and

w6 [m](dz, du) = EF [HE(Z0N,m) ()3 e v (d2)

GN] and i = £7(XENIG).
Combining Proposition 4.9.3 and the techniques applied in step 3 of Proof of Proposition 4.7.7, one gets

lim lim Eﬁ{ sup | X0V — ZEN|p} =0 and hm lim EP[/ W, (m&Y [ml, )Kiv(dm,'PZ})dr =0
Pr

e—0 N—oo t€[0,7) e—0 N—oo

Similarly, lim sup lim sup EHD[ sup W, (o(1® Ny s (1 ))} = 0. X" is the process we are looking for.
=0  N—oo s€[0,T]

4.9.2 Convolution approximation

Let (,F,F,P) be a filtered probability space supporting W a R"—valued F-Brownian motion and £ a Fy—random
variable verifying EF[|¢[P] < oo, (by, at)iefo,r) R™ x S™ bounded predictable process such that there exists § > 0 satisfying
[o¢][o] T > OL,,xp. For all t € [0,T], denote by

t t
:§—|—/ bsds—l—/ osdWs, P-a.e.
0 0

the following proposition is just an application of [76, Proposition 4.2] (see also [97])

Proposition 4.9.1 (equivalence of measures). With the previous considerations, the measure n on R™ x [0,T] defined
by
n(dz,dt) :=Po (X,) ! (dx)dt

is equivalent to the Lebesque measure on R™ x [0, T].

Next, let (ex)ren+ C (0,00) such that klim er = 0. Let G € C*(R™;R) satisfying G >0, G(z) = G(—x) for x € R, and
—00

Jgn G(y)dy = 1, and define G (z) = €, "G(ep ') and for all m € P(R"), 7™ (2) := [, Gx(z — y)w(dy) for all z € R™.
Also, denote by XF* the process defined by

t t
XF=¢+ / bEdr + / okdw, for all t € [0,T), P-ae.,
0

where there exists D > 0 s.t. for all k and ¢, |oF| + [bF| < D, P-a.e., [oF][oF] T > 01,xn, P-a.e.. In addition EF[|¢[P] < oo
where p > 1.

Let (n¢)icjo,r) be a P(R™)-valued continuous process such that n;(dz)d¢ is equivalent to the Lebesgue measure on
[0,T] x R™, and for the weak topology,

lim £P(XF) =mn; for eacht € [0,T].

k—o0

The following proposition shows that it is possible to approach some bounded measurable functions via smooth functions
(bounded derivative functions) by using the marginal distributions of X*.

Proposition 4.9.2 (regularization by convolution). For all bounded Borel measurable function ¢ : [0, T] x R™ x R™ — RY,
such that for all (t,z) € [0,T] x R™, ¢(t,.,2) : y € R™ = ¢(t,y,2) € R? is continuous, one has

kli_)ngc/ /n /Rn (t,z,y) G;k(t)(i)( )) n(dy) — (¢, amx)’nt(dx)dt =0 (4.9.9)
and
T k_
lerI;o ; EP[/R @(t,Xf,y)Wnt(dy)] - / o(t, z, z)ng(dx)|dt = 0.
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Proof. Mention that, as n;(dz)dt is equivalent to the Lebesgue measure on [0,7] x R™, there exists Borel measurable
function ¢ : [0, 7] x R™ — R such that ¢(s,z) > 0 dt ® dz a.e. (s,2) € [0,T] x R", and n;(dz)dt = ¢(¢, z)dzdt.
First, let us prove the result (4.9.9). If

v

Gule — )
| et TS () = ot ) ()

one finds

T
[
0 n
B T c(t, )
_’ n ) (z)
ot t
<K‘/ / Gz —y tydy‘ ’,f —1‘dmdt‘—K‘/ / )0 (2 (’x —l‘dxdt‘
n JRn Ilt () n )(k)

SK‘/O / c(t,x)—(nt)(k)(x)’dxdt‘ :K’/O / o

where for the first inequality is true because
approximation by convolution.

Now, for all (t,y,0) € [0,T] x R™ x RY, v(t,y,0) 1= sup,|;y_.|<s |2t ¥,y) — @(t, 2,y)|, notice that lims—o v(t,y,d) = 0.
Observe that

[

[ {pltm9) — ol 2,2)} Gl — y)e(t, )y |dad

- {e(t,2,9) —(t,2,2) }Gi(e = y)elt,y dy‘( 1)dxdt‘

t,x) — Gr(r —y)c(t, y)dy’dxdt’ —rooo=0,  (4.9.10)
Rn

¢ is bounded and the last result is obtained by the classical result of

- {olt,z,y) — ot y,y) }Gr(z — y)e(t, y)dy’dxdt

. {go(t,x,y) - <p(t,y7y)}(1|m,y‘§5 + 1|mfy\>5)Gk(x - y)c(t,y)dy)dmdt

S
T T

< / / olt,y,0) / Lo y<sGu(@ — y)e(t, y)dydadt + K / / / Lo y56Gk(x — y)e(t, y)dydadt
0 n R 0 n n
T

<[]

v(t,y,d) Gr(z — y)e(t,y)dydadt + K T/ 12)>6Gr(2)dz
R Rn

T
<[] etdettadydt+ KT [ 1561600
O n R’n
it is well know, for each § > 0, limy 00 [, 1|2/>6Gr(2)dz = 0, one gets
T
lim sup/ /
k— o0 0 n

the last inequality is true because of Lebesgue’s dominated convergence theorem.

{o(t,z,y) — o(t,y,y) }Gr(x — y)c(t, y) dy‘dxdt < 1 / / (t,z,6)c(t,z)dzdt =0, (4.9.11)
R™ »
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Finally, one has

T
limsup Ay =lim sup / /
k— o0 k—o0 0 n

T
—tiwswp [ [ | [ ot petn)Gule -~y - [ ot 0)Gue - yett )y fdnde
— 00 0 n n n

[ Aol .) = (t,2,2))Gule — y)e(t,y)dy e

T
—tiwswp [ [ | [ ot netn)Gule -ty — [ plt)Gule - yettpayfande
— 00 0 n n n

T
< lim sup/ / / e(t, y,y)e(t, y)Gr(z — y)dy — o(t, z, z)c(t, I)‘dwdt
k—o0 n n
T
+ lim sup/ /
k—o0 0 n
T
< lim sup/ / / o(t,y,y)e(t,y)Gr(z — y)dy — o(t, z, x)c(t, w)‘dmdt
k—o0o 0 n R

T
+ lim supK/ /
k—o0 0 n

where the first equality derived from (4.9.10), the third equality follows from (4.9.11) and we find 0 because of approximation
by convolution result. Therefore limg_,~, Ax = 0, then the first assertion is proved.

o(t, z, x)e(t, x) — /}Rn o(t, z,x)G(x — y)c(t,y)dy’dxdt

() = | Grla = y)elt,y)dy|dadt = 0,
R’"/

For the second point, let kg € N* one has

Sk<¢>:=AT
g/OT

T
+

By [97, Chapter 2 Section 3 Theorem 4] and Markov inequality, for each R > 0, there exists a constant C' > 0 depending
only on (D, 0,T, R) satisfying

<O/ L1 et T

TE [SuPte[O,T] |Xt ] i /T
0

k_
EP[/” @(t,Xfay)CWnt(dy)] — /” @(t,x,x)nt(dx) dt

(ny

E_ k _
EP |:/" @(tv th7 y) Gk (t)7(i§t(thZ;) 1y (dy) - /” @(t7 ch, y) GkO ()t(’kiit(sz)/) ng (dy):| )dt

(ng (ny

G, (t, XF —
]EP{/" so(t’Xf,y)Wnt(dy)] - / o(t, z, z)ng(dx)

dt.

y)

Gko (ta T — y)

mfdy) = [ oltny Tl

Gro(t, XF —
EPl:/n @(t’vay)Mnt(dy)] - /n @(tvxvx)nt(dx)

By using the first statement of the proposition (see proof above), then there exists (k;)jen+ C N* a sub-sequence such
that:

nt(dy)‘ 1|w|SRdCCdt

Tr dt.

tin | [ oo, GG ) = ol

5 )

=0, n;(dz)dt a.e. (s,z) €[0,T] x R".

ij (tv T — y)
(n) %) ()

dt @ dz a.e. (s,z) € [0,T] x R™. All these observations allows us to say, by Lebesgue’s dominated convergence theorem

T
. : Gr(t,x —y) / Gro(t, 7 — y) "
1 lim t,z, dy) — t,z, 0 dy)| 1j;<gdxdt = 0.
im sup 11H8up/0 / /Rn p(t,y) ) ® () ny(dy) — | o(t,2,y) () (2) ny(dy)| 1ljzj<rdz

As n;(dx)dt is equivalent to the Lebesgue measure on [0,7] x R™, lim ‘ / w(s,2,9) n;(dy)—p(s, 2z,2)| =0,
j—o0o R™
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Finally, combining the previous result with the weak convergence, klim L¥(XF) = n; for each t € [0,T], and an obvious
—00
application of the first statement of the proposition, one gets

Gr(t,z — ) G, (t,z —y)

lim sup S*(p) < limsup C / / - h(t,x,y)—2—= ) (z) ny(dy) — h(t,m,y)wnt(dy)’nlmgﬁtd%dt

k—o0 ko,k—o0

R

. Glo(t x—y)
+hl{)n_>sotip/ ’/n /n ) (z) n,; (dy)n;(dz) dtf/ /n (t, 2, z)n.(dx) 'dt

TSUPk>o]E [SUPte[o,T] | XE1P) < TSUPk>0E [SUPte[o,T] | XF[P)
RP - Rp ’

as SuPy~g Ep[supte[o)T] | XF|P] < oo, by taking R — oo, we deduce the result.

4.9.3 Some properties of Fokker-Planck equation

Let us recall a useful result on square root of matrices. Denote by S} the set of symmetric positive definite matrices of
dimension n € N*. The principal square root function is denoted by: f: Q € S} — f(Q) := Q'/? € S;.

Proposition 4.9.3. [81, Theorem 6.2] There exists a constant C(n) depending only of the dimension n € N* such that
for any (A, B) € S} x S}
£(A) = F(B)] < C(n) [Aawin ()% + Xuin(B)/?] ' A = B,

where Amin(+) is the smallest eigenvalue.

Let E and E’ be two Polish spaces and [b,a] : [0,7] x R" x C([0,T]; E) x M(E’) — R™ x S™*" be a bounded Borel
functions s.t.: for all (¢,7,§) € [0,T] x C([0,T]; E) x M(E"),

the function z € R™ — [b,a(t, x, ma., Gin.) € R™ x S"*™ belongs to C7(R™) and @ > pl,,, (4.9.12)
for a certain p > 0.
Also, let us introduce, for all ¢ € C*(R™), Lyp[m, () := s Tr[a(t,z, 7, Gin. ) Vie(x)] + b(t, 2, 7, Gen.) T V().
Lemma 4.9.4. Let v € P,(R"™). There exists a Borel function Z : C([0,T]; E) x M(E") — Cyy st if (Q,F,F,P) isa
filtered probability space supporting (iit)iejo,r) @ E-valued F-adapted continuous process and (At)iepo,r) @ P(E')-valued

F predictable process, then, the unique P(R™)-valued (o{un., IA\M‘})tE[O’T] ~adapted continuous process (Ut)sefo, 1) solution
of: ¥ € CyF, and for all (¢, f) € [0,T] x CZ(R™),

(f,0:) = f(y)y(dy)—l—/ L, flp, A(2)9,(dz)dr, P-a.c. (4.9.13)
Rn o Jrn

satisfies
V¢ = Zi(puen., Aep.), for allt € [0,T], P-a.e.

Proof. For the uniqueness of (4.9.13), as the coefficients [b,a] verify (4.9.12), by a slight extension of (proof of) Lemma
4.7.2, one gets that equation (4.9.13) has at most one solution.

Let W be a R™valued (P,F) Brownian motion and & be a Fp-random variable of law v, in addition, (£, W) are P—
independent of (u, A). Next, let us show the existence and find the function Z. Combining (4.9.12) and Proposition 4.9.3,

for any (t,7,q), the application z € R™ — (E(t, Ty T, cjm.))l/2 € S"*™ is Lipshitz, with a Lipschitz constant depends

only on a. Therefore, there exists the R"—valued F-adapted process X unique strong solution of

1/2

§+/ b(r, Xy, i, A)dr +/ (a(r, XT,,LL,/AX)) dW, for all s € [0,T].
0

0
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It is well know that X; = Hy (&, Win., pien., Aea.), for all t € [0,T], P-a.e. where H : R" x C" x C([0, T]; E) x M(E') — C"
is a Borel function (independent of P).

Denote by G := (Gt)iepo,r) the filtration defined by G; := o{pa., Am-}, for all t € [0,T]. As (£, W) are P-independent
of (11, A), one has: for all ¢t € [0,T], LF(Xir.|Gi) = LF(Xin.|Gr), P-ace. then by Lemma 5.5.1, the process (Bt)tejo,]
is a P(R")-valued G-adapted continuous process where 3 : (t,w) € [0,T] x Q — LF(X;|G;)(w) € P(R"), and by
It6’s formula (53;):ep0,) is solution of equation (4.9.13). In addition, there exists a Borel function (independent of PP)
Z - C([0,T); E) x M(E") — C}}, such that: P-a.e., for all t € [0,T], i = Zi(uen., Ain.). O
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Chapter 5

The dynamic programming principle

5.1 Introduction

Our interest in this chapter is in the optimal control of McKean—Vlasov stochastic equations, and more precisely in the
rigorous establishment of the dynamic programming principle (DPP for short), under conditions as general as possible.
The optimal control of McKean—Vlasov dynamics is a rather recent problem in the literature. In a nutshell, the idea
behind the DPP is that the global optimization problem can be solved by a recursive resolution of successive local
optimization problems. This fact is an intuitive result, which is often used as some sort of meta—theorem, but is not so
easy to prove rigorously in general.

Note that this approach in general requires fewer assumptions, though it can be applied in less situations. Notwithstanding
these advantages, the DPP approach has long been unexplored for the control of McKean—Vlasov equations. One of the
main reasons is actually a very bleak one for us: due to the non-linear dependency with respect to the law of process, the
problem is actually a time inconsistent control problem (like the classical mean—variance optimisation problem in finance,
see the recent papers by Bjork and Murgoci [28], Bjork, Khapko, and Murgoci [29], and Herndndez and Possamai [30]
for a more thorough discussion of this topic), and Bellman’s optimality principle does not hold in this case. However,
though the problem itself is time-inconsistent, one can recover some form of the DPP by extending the state space
of the problem. This was first achieved by Lauriére and Pironneau [112], and later by Bensoussan, Frehse, and Yam
[24; 25; 26], who assumed the existence at all times of a density for the marginal distribution of the state process, and
reformulated the problem as a deterministic density control problem, with a family of deterministic control terms. Under
this reformulation, they managed to prove a DPP and deduce a dynamic programming equation in the space of density
functions. Following similar ideas, but without the assumptions of the existence of density, and allowing the coefficients
and reward functions to not only depend on the distribution of the state, but to the joint distribution of the state and
the control, Pham and Wei [139] also deduced a DPP by looking at a set of closed loop (or feedback) controls, in a non
common noise context. They then extended this strategy to a common noise setting (where the control process is adapted
to common noise filtration) in [138]. Specialisations to linear—quadratic settings were also explored by Pham [137], Li,
Sun, and Yong [116], Li, Sun, and Xiong [117], Huang, Li, and Yong [82], Yong [152], and Basei and Pham [20].

Our approach to obtaining the DPP is very different. One common drawback of all the results we mentioned above,
is that they generically require some Markovian® property of the system or its distribution, as well as strong regularity
assumptions on coefficient and reward functions considered. This should appear somehow surprising to people familiar
with the classical DDP theory. Indeed, for stochastic control problems, it is possible to use measurable selection arguments
to obtain the DPP, in settings requiring nothing beyond mild measurability assumptions. As a rule of thumb, one needs
two essential ingredients to prove the dynamic programming principle: first ensuring the stability of the controls with
respect to conditioning and concatenation, and second the measurability of the associated value function. The use of
measurable selection argument makes it possible to provide an adequate framework for verifying the conditioning, the
concatenation and the measurability requirements of the associated value function without strong assumptions. This
technique was followed by Dellacherie [56], by Bertsekas and Shreve in [27; 146; 147; 148], and by Shreve [143; 144; 145]

L An exception is the work of Djehiche and Hamadeéne [57], which considers optimal control (and also a zero-sum game) of a non—Markovian
McKean—Vlasov equation, and obtains both a characterisation of the value function and the optimal control using BSDE techniques, reminiscent
of the classical results of Hamadéne and Lepeltier [77] and El Karoui and Quenez [59; 60] for the non-McKean—Vlasov case. However, their
approach does not allow for common noise, and is limited to control on the drift of the state process only.
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for discrete—time stochastic control problems. Later, El Karoui, Huu Nguyen, and Jeanblanc-Picqué in [63] presented a
framework for stochastic control problem in continuous time (accommodating general Markovian processes). Thanks to
the notion of relaxed control, that is to say the interpretation of a control as a probability measure on some canonical
space, and thanks to the use of the notion of martingale problems, they proved a DPP by simple and clear arguments.
El Karoui and Tan [61; 62] extended this approach to the non-Markovian case. Similar results were obtained by several
authors, among which we mention Nutz and Soner [131], Neufeld and Nutz [128; 130], Nutz and van Handel [132], Zitkovi¢
[156], and Possamai, Tan, and Zhou [140].

Following the framework in [61; 63], we develop in this chapter a general analysis based upon the measurable selection
argument for the non-Markovian optimal control of McKean—Vlasov equations with common noise. In particular, we
investigate the case where the drift and diffusion coefficients, as well as the reward functions, are allowed to depend
on the joint conditional distribution of the path of the state process and of the control, see [139] for the case of the
joint distribution of the state process and of feedback controls (see also Yong [152] for a more specific situation) in a
non—common noise case.

Motivated by the notion of weak solution of classical SDEs, and similarly to the ideas used by El Karoui and Tan
[61], and Carmona, Delarue, and Lacker [49] in a mean—field games context, our first task is to provide an appropriate
“relaxation” of the problem. We therefore introduce a notion of weak solution of controlled McKean—Vlasov equation
with common noise similar as that used in chapter one. Notice that this is by no means a straightforward task. In
standard McKean—Vlasov stochastic control problems, the controls (open loop in that case) are adapted with respect to
the filtration generated by both the Brownian motion (W, B) (with B being the common noise) and the initial random
variable £ (serving as an initial condition for the problem). Then, the conditional distributions considered are associated
to the filtration of B, in other words the “common noise” filtration, that is, £(Xyn., 4| B), where X is the state and « the
control. We call this the strong formulation. The strong formulation does not enjoy a good stability condition. To see
this, it is enough to notice that the conditional distribution is not continuous with respect to the joint distribution (for

instance the function £(X¢, B) — E[|E[X,|B] |2] is not continuous). To overcome this difficulty, we introduce a notion
of weak solution by considering a more general filtration F' describing the adaptability of the controls, and an extended
common noise filtration G as in Chapter 2 (see also [49]). Nevertheless, more conditions on F and G are needed to ensure
that the formulation remains first compatible with the notion of strong solutions, then enjoys good stability properties for
fixed control processes, and finally ensures that weak controls can be approximated sufficiently well by strong controls.

With the help of this notion, we can then provide a weak formulation for McKean—Vlasov control problems with common
noise. By interpreting controls as probability measures on an appropriate canonical space, and using measurable selection
arguments as in [61; 62], we then move on to prove the universal measurability of the associated value function, and
derive the stability of controls with respect to conditioning and concatenation, and finally deduce the DPP for the weak
formulation under very general assumptions. Our next result addresses the DPP for the classical strong formulation.
Using the DPP in weak formulation, and by adding standard Lipschitz conditions on the drift and diffusion coefficients,
as in [138], but without any regularity assumptions on reward functions, and in a non-Markovian context, we obtain the
DPP for the strong formulation of McKean—Vlasov control problems with common noise, where the control is adapted
to the “common noise” filtration (B in this case of strong formulation). Also, for general strong formulation, where
the control is adapted to both £, W and B, we obtain the DPP under some additional regularity conditions on the
reward functions. These regularity conditions may seem unexpected at first sight, but they seem unavoidable due to
the non-linear dependency of the drift and volatility coefficients with respect to the conditional distribution of X (see
Remark 5.3.6 for a more thorough discussion). Finally, the DPP results in the general non-Markovian context induces
the same results in the Markovian one.

The rest of the chapter is organized as follows. After recalling briefly some notations and introducing the probabilistic
structure to give an adequate and precise definition of the tools that are used throughout the chapter, we introduce
in Section 5.2 several notions of weak and strong formulation (in a fixed probability space or in the canonical space)
for the McKean—Vlasov stochastic control problem with common noise in a non—Markovian framework, and prove some
equivalence results. Next, in Section 5.3, we present the main result of this chapter, the DPP for three formulations: weak
formulation, strong formulation, and a B—strong formulation where the control is adapted with respect to the “common
noise” filtration. We first provide all our results in the non—-Markovian setting, and then in a Markovian framework.
Finally, Section 5.4 is devoted to the proof of our main results.
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Notations. (i) Given a measurable space (£2, F), we denote by P(Q2) the collection of all probability measures on (2, F).
For any probability measure P € P((), we denote by F* the P-completion of the o-field F, and by FU := MNpep(oy F*
the universal completion of F. Let £ : @ — R U {—00,+00} be a random variable and P € P(Q2), we define

EP €] == EF[¢,] — EF[¢_], where &, := €V 0, £ := (=&) V0, with the convention co — 0o := —oo0.
We also use the following notation to denote the expectation of & under P

E°[e] = (P,&) = (¢, P).

When 2 is a Polish space, a subset A C ) is called an analytic set if there is another Polish space E, and a Borel subset
BCQOxFEsuchthat A={weQ:3e€FE, (w,e) € B}. A function f: Q@ — RU{—00, 00} is called upper semi-analytic
(u.s.a. for short) if {w € Q : f(w) > ¢} is analytic for every ¢ € R. Any upper semi-analytic function is universally
measurable (see e.g. [27, Chapter 7]).

(#4) Let Q be a metric space, F its Borel o—field and G C F be a sub—c—field which is countably generated. Following
[150], we say that (P9),cq is a family of r.c.p.d. (regular conditional probability distributions) of P knowing G if it
satisfies

e the map w — PY is G—measurable, and for all A € F and B € G, one has P[AN B] = [, PJ[A]P(dw);
e PY[[w]g] =1 for all w € Q, where [w]g :=N{A€F:AcGandw € A}.

Let (2, F,P,G = (Gt)tejo, 1)) be a filtered probability space, G C F be a sub-ofield, and E a metric space. Then given a
random element & : Q — E, we use both the notations LF(£|G)(w) and PY o (¢)~! to denote the conditional distribution
of ¢ knowing G under P. Moreover, given a measurable process X : [0,7] x Q — E, we can always define j1; := L (X¢|G;)
to be a P(E)—valued G-optional process (see for instance Lemma 5.5.1).

(ii7) Let C¢y := C([s,t];R™) be the space of all R"~valued continuous functions on [s, ], for 0 < s <t <T. When n = 0,
the space C" and C¢, both degenerate to a singleton.

(iv) Throughout the chapter, we fix a constant p > 0, a nonempty Polish space (U, p) and a point ug € U. Notice that a
Polish space is always isomorphic to a Borel subset of [0,1]. Let us denote by 7 such one (isomorphic) bijection between
U and 7(U) C [0,1]. We further extend the definition of 77! to R U {—o00, 00} by setting 7~ !(z) := 9 for all z ¢ 7(U)
and let U := U U {9}, where 9 is the usual cemetery point. Let v € P(C*) (resp. © € P(C*¥ x U)) be a Borel probability
measure on the canonical space C* (resp. C¥ x U) equipped with the canonical process X (resp. (X, a)). We denote, for
each ¢ € [0,T7,

v(t) == vo X;! (resp. v(t) :=vo (Xt/\.,a)_l).

5.2 Weak and strong formulations of the McKean—Vlasov control problem

The main objective of this chapter is to study the following (non-Markovian) McKean—Vlasov control problem, in both
strong and weak formulations, of the form

T
“supE[/ L(t, X2 £(XE at]G), )t + g (X2, £(X%|G7)) |7
0

[0}

where G := (G¢)o<i<r is a filtration modeling the common noise, supporting a Brownian motion B, C(XtaA_,at‘gt)
denotes the joint conditional distribution of (X{}., a:) knowing G;, and (X{*);cp0,r7 is a McKean-Vlasov type process,
controlled by a = (ay)o<i<7 and generated by W together with an independent Brownian motion B

“AXP =0(t, X0, L((X5h )| Ge), o) dt + o (8, X, L((Xpno n) [Ge) ) AWy + 0 (6, X3, L((Xin., ) |Ge), ar)dBy.”
(5.2.1)
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We will provide in the following a precise definition to the above controlled SDE, depending on the strong/weak
formulation considered. Let us first specify the dimensions and some basic conditions on the coefficient functions. Let
(n,¢,d) € N x N x N. The coefficient functions

b:[0,T] xC"x P(C" xU) xU — R"™, ¢:[0,T] xC" x P(C" x U) x U — S™*%,
00:[0,T] xC* x P(C" x U) x U — S L:[0,T] xC"x P(C" xU) xU — R, g:C" x P(C") — R,
are all assumed to be Borel measurable, and non—anticipative in the sense that

(b, o, UO,L)(t,X, vyu) = (b, o, UQ,L)(t,Xt/\.,f/(t),u), for all (t,x,7,u) € [0,T] x C"* x P(C" x U) x U.

5.2.1 A weak formulation

A weak formulation of the control problem is obtained by considering all weak solutions of the controlled McKean—Vlasov
SDE (5.2.1). Here the word “weak” refers to the fact that the probability space, as well as the equipped Brownian motion,
is not assumed to be fixed, but is a part of the solution itself. This is of course consistent with the notion of the weak
solution in the classical SDE theory.

Definition 5.2.1. Let (¢t,v) € [0,T] x P(C™). We say that a term
v = (O, F P Y = (F)o<s<r, G7 = (G))ocs<r, XV, W, BV, 17, 117, 7)),
is a weak control associated with the initial condition (t,v) if the following conditions are satisfied:
(1) (7, F7,P7) is a probability space, equipped with two filtrations FY and G such that, for all s € [0,T],

GY C F7, and EF' [1p]G7] = E*'[1p|G}], P7-as., for all D € FJ vV o(W7); (5.2.2)

S

(i1) X7 = (X7 )selo,m is an R™ ~valued, FY -adapted continuous process, & := (a] )i<s<1 5 an U-valued, F¥ -predictable
process, and with the fixed constant p > 0, one has

T
E“””[HXWHEP”[ | leru)as] < (529

(i) (WY,B7) is an R? x R'~valued, F¥-adapted continuous process; (W', B"t) = (W) o<s<r, (BI")o<s<r),
defined by WYt .= W1, — W], and BY*' := B}, — B}, s € [t,T), is a standard (F",P")-Brownian motion on
[t,T); BY' is G7—adapted; F; V o(W?7) is P?—independent of G1., and 7 = (u)i<s<t (resp. @7 = (A)i<s<t) is
a GY—predictable P(C™)~valued (resp. P(C™ x U)-valued) process satisfying

pl = L% (XI1.1G7) (vesp. 1 = L (X2 0?) |G7)), for dP” @ ds-a.e. (s,w) € [t,T] x Q7
(iv) X7 satisfies PV o (X))t = v(t) and
X = Xt'y—i—/s b(r, X7,ﬁl,a,7)dr+/s o(r, XfY,ﬁZ,oc;Y)dW,?—F/S oo(r, X7, 1), a))dBy, s € [t,T], P'-a.s., (5.2.4)
t t t
where the integrals are implicitly assumed to be well-defined.
For all (t,v) € [0,T] x P(C"), let us denote

Tw(t,v) = {All weak controls with initial condition (¢, V)}

Then with the reward functions L : [0,T] x C* x P(C" xU) x U — R and ¢ : C" x P(C") — R, we introduce the value
function of our McKean—Vlasov optimal control problem by

T
Vw(t,v) = esur()t )J(?f,fy)7 where J(t,7) := EF’ [/t L(s, X 0l 0))ds + g(XJr . p7) ]| (5.2.5)
yelwt,y
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Remark 5.2.2. In a weak control v, the filtration GV is used to model the common noise. In particular, Bt is adapted
to GV, and W't is independent of G”. In the classical strong formulation, G" is fived as the filtration FB™" generated
by BY't, but for a general weak control, G¥ may be larger than FB™". This will be the main difference between the strong
and weak formulations in our approach. Meanwhile, (G, F") satisfies a (H)-hypothesis type condition in (5.2.2), which
is consistent with the classical strong formulation (see Section 5.2.2 below). This property will be crucial in our proof of
the DPP result for the strong formulation of the control problem, as well as in the limit theory of the McKean—Vlasov
control problem in Chapter 3 and Chapter 4.

Remark 5.2.3. (i) At this stage, the integrability condition (5.2.3) could be construed as artificial. Depending on more
concrete property of the coefficient functions (b, o, 0q), it would play the role of an admissibility condition for the control
process, and ensure that the stochastic integrals in (5.2.4) are well-defined. For a more concrete example, consider the
case where U =R and ug = 0. When b, o, and oy are all uniformly bounded, one can choose p = 0 so that all R—valued
predictable processes would then be admissible. When o(t, z,u,v) = u, one may choose p = 2 to ensure that the stochastic
integral j;T oJdW] is well-defined and is a square—integrable martingale. It is also possible to consider more general
types of integrability conditions, such as

EF [@(/thIf(p(uo,ag))ds)] < o0,

for given maps ® : [0,00) — [0,00) and ¥ : [0,00) — [0,00). This would for instance allow to consider exponential
integrability requirements. For the sake of simplicity, we have chosen the condition in (5.2.3), but insist that it plays no
essential role in the proof of the dynamic programming principle.

(i) The set Ty (t,v) could be empty, in which case Vi (t,v) = —oo by convention. For example, when [,, ||x[|Pv(dx) = oo,
then Ty (t,v) = 0, since (5.2.3) cannot be satisfied. Nevertheless, T'w (t,v) is non—empty under either one of the following
conditions (see for instance Theorem 2.4.2 for a brief proof)

e (b,0,00) are bounded and continuous in (x,v,u) and v € P(C™);

e (b,o,00) are continuous in (X,v,u), and with the fived constant p and other positive constants C, p’, p such that
p>p>1Vp, andp >2>p >0, we have v € Py (C™) and

|b(t, x, v, u)| < 0(1 +|1x|l + (/WU (I="[|” + p(uo,u’)p)ﬂ(dx’,du’)>; + p(uo,u)>,

[(0,00) (6%, 7, ) < 0(1 TP + ( Lo+ p(uw,)p)ﬂdx,@u,oi " p(uo,mﬁ),

for all (t,x,v,u) € [0,T] xC" x P(C" xU) x U.

n o

Remark 5.2.4. For technical reasons, we introduce an R-valued, FY—adapted continuous process A7 := (AY)o<s<r by
(recall that w : U — [0,1] is a fized isomorphic bijection between U and w(U))

sVt
Al ::/ m(a))dr, s € [0,T], so that 7(a]) = lim n(A] — A
t

n—oo

’(Ys—l/n)\/0>7 dP” ® ds—a.e. on Q7 x [t, T]. (5.2.6)

We further define a P(C™ x C x C% x C*)~valued process i7" = (jil)o<s<T by
i) = L5 (X0, Ay WY, Bl ) 1 seiongy + £F (X2, AL, WY, B1L) |G L {seer)y- (5.2.7)

The process [i¥ can be defined to be a GY—adapted and PY-a.s. continuous process (equipping P(C™ x C x C? x C*) with
the weak convergence topology). Indeed, by (5.2.2), we have

oy =c" ((XIn., AL\, W7, B1,)|GY), P'-ace., forall s € (t,T).

Then by Lemma 5.5.1, 7 can be defined to be PY—a.s. continuous on both [0,t] and (t,T]. Moreover, using the
independence property between F, V o(W?7) and GJ., we have, P7-a.s.

lim 27 = lim £7((X)5, Aln s W7, BLL)|G7) = £7((X Al W7, B ) |G7) = £ (X0, AL W7 BL) = i
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Remark 5.2.5. It is perfectly possible for us to consider a slightly more general class of control problems allowing for
exponential discounting. More precisely, we could have an additional Borel map k : [0,T] x C" x P(C" xU) x U — R
and consider, for fized (t,v) € [0,T] x P(C™), the problem of maximising over v € Dy (t,v) the functional

_ T s _ T _
F(t,7) = B U o k(u’X’ZA"“Z’aZ)duL(s,Xg/\,,ﬁz,a;’)ds+e7ft k(u,sz.,uz,amdug(X%Nu%) .
t

We refrained from working at that level of generality for notational simplicity, but our results extend directly to this
context.

5.2.2 A strong formulation

To obtain a strong formulation of the control problem, the usual approach is to consider a fixed probability space,
equipped with fixed Brownian motions and fixed Brownian filtrations. In fact, this is equivalent to fix the filtrations,
in the weak control v, to be the Brownian filtrations (see Proposition 5.2.10 below). We will therefore present the two
equivalent definitions one after the other.

5.2.2.1 Strong formulation as a special case of weak formulation

Let us start with the main definition.

Definition 5.2.6. Let (¢t,v) € [0,T] x P(C™). A term v = (Q",}"’Y,FV,PW,GW,X’Y,W”’,B'ﬂﬁﬁ;ﬂ,oﬂ) is called a
strong control associated with the initial condition (t,v), if v € Tw (t,v) and the filtrations GV and FY are P7-augmented
filtrations of G7° := (GJ°)sejo,r) and FV° 1= (FJ°)sep0,1), which are defined by

o(XJh), if0<s <t

o(Xh, By, Wyt irelft,s]), if0<t<s<T.

o JO0) 0S8 <1,
S \e(Bytirelts)), f0<t<s<T,

and F)° := {

If, in addition, the control process o” is GY—predictable, then v is called a B—strong control.

Let us denote by I's(t, ) the collection of all strong controls with initial condition (¢,v), and by T'%(¢,v) the collection
of all B-strong controls with initial condition (¢,v), i.e.

et v) = {y €Ts(t,v):a”is G—predictable}.

Remark 5.2.7. For a strong control v € Us(t,v), the filtration G" is generated by BYt, and F7 is generated by the initial
variable X;,. and the Brownian motion W2t and BY". Consequently, the control process o is adapted to the filtration
generated by (X7, , W', B™"), and the common noise comes only from BYt. We will show in Proposition 5.2.10 that
this is equivalent to the case with a fized probability space equipped with fixed Brownian motions and the initial random
variable. We here define the strong control rules as special cases of weak control rules in order to avoid repeating all the
technical conditions in Definition 5.2.1.

Our proof of the dynamic programming principle for the strong formulation of the McKean—Vlasov problem relies
essentially on its equivalence to the weak formulation, which requires the following standard Lipschitz condition on
the coefficient functions. Moreover, this condition ensures the existence and uniqueness of the solution to SDE (5.2.4)
(see e.g. Theorem 5.5.3).

Assumption 5.2.8. Let the constant in (5.2.3) be p = 2. There exists a constant C > 0 such that, for all (t,x,x’, v,V u) €
[0,T] x C™ x C™ x Po(C™ x U) x Po(C™ x U) x U, one has

H (b,0,00)(t,x,0,u) — (b,0,00) (t,x', 7, u)H < CO(lx = x| + Wa(v, ")), (5.2.8)

(6., 00) (8, %, 7,u)|* < C(l il [ (P + pla o))ty i) + p(u,uo>2).

CnxU
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Under Assumption 5.2.8, the set I's(¢,v) is nonempty for all (¢,v) € [0,T] x P2(C™) (see e.g. Theorem 5.5.3). We then
introduce the following strong formulation (resp. B-strong formulation) of the McKean—Vlasov control problem

Vs(t,v):= sup J(t,7), and VE(t,v):= sup J(t,7). (5.2.9)
~vels(t,v) yerk (t,v)

Remark 5.2.9 (The case without common noise: ¢ = 0). In the literature, the McKean—Vlasov control problem without
common noise has also largely been studied. This contained as a special case in our setting. Indeed, when £ = 0, the
process BY'' degenerates to be a singleton and hence G7 = {0, QQ7} for all s € [0,T]. It follows that @ appearing in (5.2.4)
turns out to satisfy

il =LY (X]h,a2), for dPY @ dt-a.e. (s,w) € [t,T] x Q7,

and the value function Vg(t,v) in (5.2.9) is the standard formulation of the control problem without common noise (see
e.g. [43]).
5.2.2.2 Strong formulation on a fixed probability space

For 0 <s <t <T,let C¢, := C([s,t],R") denote the space of all R"-valued continuous paths on [s, ], we then introduce
a first canonical space, for every t € [0, T

Q' =Cf, x Clp x Cp, = B(QY), (5.2.10)

with corresponding canonical processes ¢ := ((s)o<s<t, W := (Wy)i<s<t, and B := (Bs)i<s<r. Let W! = Wy, — W,
and B! := Bsy; — B, for all s € [0,T], and define F*° = (F!°)g<s<r and G*° = (GL°)g<s<1 by

Fto . o(Csn.), ifO< s <t and G — {0,Q1, if0 < s <t,
T o ((Gen, WEBL) ir €[t s]), f0<t <s<T, * 7 \o(Btirelts]), if0<t<s<T.

Let (t,v) € [0, T] x P2(C™), we fix a probability measure P!, on €, such that £F+ (Gia.) = v(t), and (W*, B') are standard
Brownian motions on [t, T], independent of ¢. Let F! = (F!)o<s<r and G* = (G!)o<s<r be the P! -augmented filtration
of F° and G*°, we denote by Ax(t,v) (resp. A% (t,v)) the collection of all U-valued processes a = (s )<s<7 Which are
F'—predictable (resp. G'-predictable) and such that

EP [/tT (p(uo,as))2ds} < .

Then, given « € Ay(¢,v), let X be the unique strong solution (in sense of Definition 5.5.2) of the SDE, with initial
condition X/, = (.,

X = Xf‘Jr/ b(r, Xﬁ‘/\i,ﬁﬁ‘,ar)dwr/ o(r, XﬁA,,ﬁ?,ar)deJr/ oo(r, X, A%, a,)dBL, t < s < T, Pl-as., (5.2.11)
¢ ¢ ¢

where 7% = LF (X2, 00)|GL), dPE, xdr—a.e. on Q x [t,T]. Notice that the existence and uniqueness of a solution to SDE

(5.2.11) is ensured by Assumption 5.2.8 (see Theorem 5.5.3). Finally, we denote for any a € Ay (t, v), u® := L (X2..16Y),
selt,T].

We next show that the above strong formulation of the control problem with fixed probability space is equivalent to that
in Definition 5.2.6 as a special case of the weak control rules.

Proposition 5.2.10. Let Assumption 5.2.8 hold true. Then for all (t,v) € [0,T] x P2(C™), one has

Vs(t,v)= sup J(t,v,a), and VE(t,v) = sup J(t,v,a), (5.2.12)
acAs(t,v) acAb(t,v)

where

T
J(t,v,0) = EP [ [ 2. Xz s + g0 )|
t



124 Chapter 5. The dynamic programming principle

Proof. We will only consider the case of Vg, since the arguments for the case of V& are exactly the same. First, given
a € Ay(t,v), let us define

Y= (Qtaft>IPtuaFtaGtaXa7WtaBtaﬁaa,uaaa)'
Then it is straightforward to check that v is a strong control rule (i.e. v € T's(¢,v)) such that J(t,7v) = J(¢, v, «).

Next, let v € T's(t, ). Notice that (X7, «”) is FY—predictable, and (u”,m") is G¥—predictable. Using for instance Claisse,
Talay, and Tan [52, Proposition 10] (with a slight extension consisting simply in having a larger Fy), there exists two
Borel measurable functions ¥ : [0,7] x Qf — R™ x U and Wy : [0,7] x C* — P(C™) x P(C™ x U) such that

(X7,00) =Wy (s, X7\, WKL, BIL), (u2,17) = Wa(s, BIY), s €[0,T], PT-as.
Then, on Qf, let us define (X*,a%) := Uy (s, (t A -, Wi, B, ) and (u, k) := ¥a(s, BL,.), so that
a* € As(t,v), and P! o (X*,Wt,Bt,a*,ﬁ*,,u*)fl =P7o (X7, W%t,B%t,aW,ﬁV,/ﬂ)fl.

This implies that X* is the unique strong solutions to SDE (5.2.11) with control o*, such that p* = £Fv (X20.1GY),
AL = L5 (X2 00)|G) and J(tv,0%) = T (t,7). 0

5.3 The dynamic programming principle

The main results of our chapter consist in the dynamic programming principle (DPP) for the previously introduced
formulations of the McKean—Vlasov control problem. We will first prove the DPP for the general strong and weak
control problems introduced in Section 5.2, and then show how they naturally induce the associated results in the
Markovian case. Finally, we also discuss heuristically the Hamilton—Jacobi-Bellman (HJB for short) equations which can
be deduced for each formulation.

5.3.1 The dynamic programming principle in the general case
5.3.1.1 Dynamic programming principle for the weak control problem

To provide the dynamic programming principle of the McKean—Vlasov control problem (5.2.5), let us introduce another
canonical space

Q" :=C" x C([0,T],P(C" x C x C* x C")), with canonical process (B*, i) := (B}, i})se[0.1]»

and canonical filtration G* := (G})o<s<r defined by G* := o{ (i, B;) : v € [0,5]}, s € [0,T]. Then, for every G*-
stopping time 7* (which can then be written as a function of B and @), for all (¢,v) € [0,T] x P(C™) and v € T'w (¢, v),
we define (recall that 7 is defined by (5.2.7))

=7 (B ). (5.3.1)

Theorem 5.3.1. The value function Viy : [0,T] x P(C") — RU{—00, 00} of the weak McKean—Viasov control problem
(5.2.5) is upper semi-analytic. Moreover, let (t,v) € [0,T] x P(C™), 7" be a G*—stopping time taking values in [t,T], and
77 be defined in (5.3.1), one has

ks
Vi (t,v)= sup EY [/ L(s, Xn, 0, al)ds + Vi (77, 1l |- (5.3.2)
yeTw (t,v) t

5.3.1.2 Dynamic programming for the strong control problems

We now consider the two strong formulations of the control problems introduced in (5.2.9), or equivalently in (5.2.12).
To formulate the DPP results, we will rather use the fixed probability space context in (5.2.12). Recall that, given initial
condition (t,v) € [0,T] x P2(C™), a fixed probability space (Qf, F*,P!) is defined in and below (5.2.10). Let us first
consider the strong control problem VéB.
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Theorem 5.3.2. Let Assumption 5.2.8 hold. Then the value function V2 : [0,T] x P2(C") — R U {—o00,00} is upper
semi—analytic. Moreover, let (t,v) € [0,T] x P2(C"), and T be a Gt°—stopping time on (Qf, Ft,PL), taking values in
[t,T], one has

VE(t,v)= sup ]EPZ[/ L(s, X2\ 1%, a)ds + V& (1, 12) |- (5.3.3)
acAS(t,v) t

For the strong control problem Vg, we need some additional regularity conditions on the coefficient functions.

Assumption 5.3.3. For allt € [0,T], the functions
(b,0,00) : (x,0,u) € C" x P(C" x U) x U > (b,0,00)(t,x,7,u) € R™ x S*4 5 §7*¢

are continuous, and there exists a constant C > 0 such that, for all (t,x,u,v) € [0,T] x C"* x U x P(C™ x U),

(L, g)(t, %, 7,u)|* < C<1 + [I]|* + / (Iyl* + p(u', u)*) (dy, du') + p(uvuO)2>-

CnxU

Moreover, the map
(x,7,u) € C" x Po(C™ x U) x U > (L, g)(t,x,v,u) € R x R,

is lower semi—continuous for all t € [0,T).

Theorem 5.3.4. Let Assumption 5.2.8 and Assumption 5.3.3 hold true. Let (t,v) € [0,T] x P2(C™), and 7 be a G"°~
stopping time on (Qf, F*,P) taking values in [t,T]. Then

Vs(t,v) = Vip(t,v),

so that the value function Vg : [0,T] x P2(C™) — R U {—o00, 00} is upper semi-analytic, and one has

Vs(t,v) = sup E]P’f/[/ L(s, X3\, 02, as)ds + Vg (7, 1) |- (5.3.4)
a€As(t,v) t

Remark 5.3.5. (i) Our results for the dynamic programming for Vi and Vs in Theorem 5.3.1 and Theorem 5.3.4 are
new in this general framework. For the result in Theorem 5.3.2, where the control is adapted to the common noise B,
the same DPP result has been obtained in Pham and Wei [138, Proposition 3.1]. However, our result is more general
for two reasons. First, we do not require any regularity conditions on the reward functions L and g, thanks to our use
of measurable selection arguments. Second, we are able to stay in a generic non—Markovian framework with interaction
terms given by the law of both control and controlled processes, while the results of [138] are given in a Markovian context
with interaction terms given by the law of controlled process.

(#4) From our point of view, the formulations Viy and Vs in (5.2.5) and (5.2.9) seem to be more natural, because they should
be the ones arising naturally as limit of finite population control problems (see Lacker [104] for the case without common
noise, and Chapter 3 and Chapter 4 for the context with common noise and law of control). Indeed, for the problem with
a finite population N, when the controller observes the evolution of the empirical distribution of (X, ..., X™N), it is more
reasonable to assume that he/she uses the information generated by both (Xia., W, B) (as in the definition of Vs), rather
than just the information from B (as in the definition VéB), to control the system. In this sense, the formulation VéB may
not be the most natural strong formulation for McKean—Viasov control problems with common noise.

Remark 5.3.6. The DPP result for Vg in Theorem 5.3.4 has been proved under additional reqularity conditions, namely
the ones given in Assumption 5.3.3. This should appear as a surprise to readers familiar with the measurable selection
approach to the DPP for classical stochastic control problems. We will try here to give some intuition on why, at least if
one uses our method of proof, there does not seem to be any way to make do without these aditional assumptions.

Let us consider the classical conditioning argument in the proof of the DPP. Given a control process o := (as)se[tﬂ S
Az (t,v), which is adapted to the filtration generated by (Xin., W!, BY)scpi 1), we consider some time t, € (t,T], and the

filtration G := (Gs)set,1)» generated by B*. Then, under the r.c.p.d. of P, knowing @O, the process (ais)seft,, ) will be
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adapted to the filtration generated by (Xi n., Wk, Ble)sep, m together with (W!)sep .. Because of the randomness of

(Wh)selt.r,)» we cannot consider (as)sepe, 1) as a ‘strong control process under the r.c.p.d. of P!, knowing G, .

To bypass this difficulty, we will need to use the equivalence result Vg = Vi together with the DPP results for Vyy given
by Theorem 5.3.1. The equivalence result will be proved in Chapter 2 under the integrability and reqularity conditions in
Assumption 5.2.8 and Assumption 5.3.3.

5.3.2 Dynamic programming principle in the Markovian case

With the DPP results in the general non-Markovian context of Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.4, we can
easily establish the DPP results for the control problems in the Markovian setting. In fact, we will consider a framework
which is slightly more general than the classical Markovian formulation, by considering the so—called updating functions,
as in Brunick and Shreve [33].

Let E be a non—empty Polish space. A Borel measurable function ® : C™ — C([0,T7], F) is called an updating function

if it satisfies
D, (x) = Py(x(t A +)), for all (¢t,x) € [0,T] x C",

and forall 0 < s<t<T
(@,.(x))re[s,ﬂ = ((b,.(x’))re[&t], whenever ®,(x) = ®,(x'), and (x(r) — x(s))re[s’t] = (x'(r) - x’(s))re[s,t].

The intuition of the updating function ® is the following: the value of ®;(x) depends only on the path of x up to time
t, and for 0 < s < t, ®;(x) depends only on ®4(x) and the increments of x between s and ¢t. On the canonical space C",
let X := (X¢)e[0,r) be the canonical process. We also define a new process Z; := ®4(X), t € [0,T]. Let us borrow some
examples of updating functions from [33].

Example 5.3.7. (i) The most simple updating function is the running process itself, that is
®,(x) :=x(t), with £ =R".

(i) Let M}(x) := maxo<s<¢X'(s) fori = 1,---,n, t € [0,T], and A;(x) := fot x(s)ds, t € [0,T]. Then the running
process, together with the running mazimum and running average process, is also an example of updating functions

Py(x) := (x(t), My(x), A(x)), with E = R™ x R" x R".

Throughout this subsection, we fix an update function ®. In this context, one can in fact define the value function on
[0,T] x P(E) under some additional conditions. Given v € P(C" x U) (resp. v € P(C™)), let us consider X (resp. (X))
as canonical element on the canonical space C™ (resp. C" x U), and then define

0] == o (®:(X),a)t € P(E x U) (resp. V]S :=rvo (P(X)) ! € 73(E'))7 t€[0,T].

Assumption 5.3.8. For a fized updating function ® : C" — C([0,T),E), there exist Borel measurable functions
(b°,0°,05,L°,9°) : [0,T] x Ex U x P(E x U) — R" x S"*4 x S"*¢ x R x R, such that

(b,a, UO,L,g) (t,x,v,u) = (bo,GO,US,LO,QO)(t,‘I)t(X), [7]7,u), for all (t,x,u,v) € [0,T] x C" x U x P(C" x U).
Let t € [0,T], and v° € P(E), we define first the following sets
Vit,v%) = v € PC"): [ = v°),
Iyt = | Twtv), Tetr) = |J Tstw), Igtr?) = |J T,
veV(t,v°) veV(t,w°) veV(t,v°)

as well as the value functions, with J(t, ) defined in (5.2.5),

Vi (t,v°) = sup  J(t,7), V§(t,v°):= sup J(t,y) and VSB’O(t,VO) = sup  J(t,7).
veTy, (t,v°) YET L (t,v°) ’yEF[g’O(t,VO)
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Remark 5.3.9. When the updating function is the running process given by ®,(x) := x(t), the problems Vi3, V§ and
VéB’o are of course exactly the classical Markovian formulation of the control problems.

Lemma 5.3.10. Let Assumption 5.3.8 hold true, and fix some t € [0,T]. Then, for any (v1,v2) € P(C™) x P(C™) such
that [11]; = [v2]f, one has

Vv (t,v1) = Viw (t,1a), Vis(t,1n) = Vs(t,va) and Va (t,v1) = Ve (t, va).
Consequently, for all v € P(C™), one has
Viv (t,v) = Vip (4, [V]7), Vs(t,v) = V(5 [V]5), and V3 (t,v) = Vi (¢, [V];).

Proof. We will only consider the equality for Vjy, the arguments for Vg and VéB will be the same. First, we can consider v
as a probability measure defined on the canonical space C™ with canonical process X, and containing the random variable
Zy := ®4(X). Then, on (a possible enlarged) probability space (C™, B(C™), v2), there exists a Borel measurable function
¥ Ex[0,1] — C™, together with a random variable n with uniform distribution on [0, 1], which is independent of Z;, such
that vo0(Z;, X.)_1 =120 (Zy, (24, 77))_1. Next, consider an arbitrary v, := (Q, F*, P, F', G, X!, W', BY it ut,al) €
Tw (t,v1). Without loss of generality (that is up to enlargement of the space), we assume that there exists a random
variable 7 with uniform distribution on [0,1] in the probability space (Q!, F&,P!), and which is independent of the
random variables (X, W', BY u! ut, at).

-1

We then define 2 as follows. Let Z} := ®,(X"), for all s € [0,T], so that, by definition, P! o (Z}) ~ = [11]7 = [1a]?.
Next, let
v ¥s(Z¢.m), if s € [0,4],
’ X2+ X1 X} ifs e (t,7).
It follows by the properties of ¢ and those of the updating function ® that
P'o (X7,.) = »(t), and 4(X?) = ,(X"), s € [t,T]. (5.3.5)

Let 7i2 := L5 ((X2,,ab)|G), p2 := L7 (X2,|GY), for s € [t,T], and 7, := (QF, F,F!,PY, G, X2, W, BL, 7%, i, ).
Using Assumption 5.3.8 and (5.3.5), we have v2 € T'w (¢, v2) and J(t,v2) = J(t,71), implying Viy (t,11) = Viw (t,12). O

Now we provide the dynamic programming principle for the Markovian control problem under Assumption 5.3.8.

Corollary 5.3.11. Let Assumption 5.3.8 hold true, t € [0,T] and v° € P(E). Let 7* be a G*—stopping time taking values
in [t,T) on Q° and (77)yerg, (1,v0) be defined from 7% as in (5.3.1), and T be a GH° —stopping time taking values in [t,T)]
on Q. Then one has the following dynamic programming results.

(i) The function Vi3, : [0,T] X P(E) — RU {—o00,00} is upper semi-analytic and, with Z] := ®4(X),

~

Vi (t,v°)= sup EF [/ L°(s, 2], [1]2, ) ds + Vig (77, [,u"’]iw)} . (5.3.6)
t

YETY, (t,v°)

(i) Let Assumption 5.2.8 hold true, then Vg’o 2 [0,T) x P(E) — R U {—00,00} is upper semi—-analytic, and with
Z% = 0,(X%), one has

Ve ©(t,r?) = sup EPZU L(&Z?,[u"]§7as)d8+V§B’°(ﬂW]?)} (5.3.7)
t

acAE(t,v°)

(49¢) Let Assumption 5.2.8 and Assumption 5.3.3 hold, then V§(t,v°) = Vi3, (t,v°), and with Z$ := ®,(X?),

VS(t,v°) = sup IE[/ L(s, ¢, 53, as)ds + VS (7, [,uo‘]i)} . (5.3.8)
acAs(t,v°) t
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Proof. We will only consider the case Vi, the arguments for Vs and V& will be the same.

Let [V] := {(t,v,v°) € [0, T]x P(C") x P(E) : [v]? = v°}. Notice that ® : C* — C([0, T}, E) is Borel, then (¢,v) — [V]?
is also Borel, and hence [V] is a Borel subset of [0, 7] xP(C") x P(E). Further, one has Vi, (t,v°) = sup(, ,, yo)epvy Vv (£, )
from Lemma 5.3.10, and Vjy is upper semi—analytic by Theorem 5.3.1. It follows by the measurable selection theorem
(e.g. [61, Proposition 2.17]) that Vi}, : (t,v°) € [0,T] x P(E) — Vi3, (¢,v°) € RU{—00, 00} is also upper semi—analytic.
Finally, using the DPP results in Theorem 5.3.1, it follows that

~

Viy(t,v°) = sup Vw(t,v)= sup sup  EF [/ L(s7X;’,\,7ug,a3)ds—&—VW(T“’,MZV)]
veVv(t,v°) veV(t,ve) yel'w (t,v) t

ikl
= sup sup  EY [/ L°(s, 2], @72, al)ds + Vi, (77, [,Lﬂ]iw)}
veV(t,v°) velw (t,v) t

= sup ]EPW{/ Lo(s,Zg,[ﬁ”};az)ds—i—VVC{,(T”,[NW]%)].
t

YETY, (tv)

5.3.3 Discussion: from dynamic programming to the HJB equation

One of the classical applications of the DPP consists in giving some local characterisation of the value function, such
as in proving that it is the viscosity solution of an HJB equation. This was achieved in Pham and Wei [139] for
the control problem Vg in the setting with o9 = 0), and in Pham and Wei [138] for the control problem Vg /B (for
D, (x) := x(t), with E = R™). Tt relies essentially on the notion of differentiability with respect to probability measures
due to Lions (see e.g. [118] and Cardaliaguet’s notes [36, Section 6]), and Ito’s formula along a measure (see e.g. Carmona
and Delarue [41, Proposition 6.5 and Proposition 6.3]). We will now provide some heuristic arguments to derive the HJB
equation from our DPP results for both VéB *® and V3§, with updating function ®;(x) = x(t).

Let us first recall briefly the notion of the derivative, in sense of Fréchet, 0,V (v) for a function V' : Py(R™) — R. Consider
a probability space (€, F,PP) rich enough so that, for any v € Py(R™), there exists a random variable Z : Q@ — R"
such that LF(Z) = v. We denote by L£2(Q2, F,P) the space of square-integrable random variables on (2, F,P). Let
V @ Py(R") — R, we consider V : £L2(Q, F,P) — R, the lifted version of V, defined by V(X) := V(LF(X)).

Recall that V is said to be continuously Fréchet differentiable, if there exists a unique continuous application DV :
L£2(Q, F,P) — L£2(Q, F,P), such that, for all Z € L2(Q, F,P),

\V(Z+Y)-V(Z)-E[YTDV(2)]|
1V ll20 Y]z ’

where ||[Y |2 := E[[Y|2]/2 for any Y € £2(Q, F,P). We say that V is of class C1 if V is continuously Fréchet differentiable,
and denote for any v € Py(R™), 8,V (v)(Z) := DV(Z), P-as., for any Z € L2(Q, F,P) such that £F(Z) = v. Notice that
one has 9,V (v) : R" 3 y — 8,V (v)(y) € R™ and this function belongs to L2(R™, B(R"),v). Besides, the law of DV (Z)
is independent of the choice of Z. Similarly, we also define the derivatives Po(R™) x R™ 3 (v,y) — 0,0,V (v)(y) € S"

and
P2(R") x R* x R" 3 (v,y,y") — RV (¥)(y,y') == 0, [0,V () (y)](y) € S™.

In the following, we say V is a “smooth function”, if all the above Fréchet derivatives are well defined and are continuous.
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5.3.3.1 HJB equation for the common noise strong formulation

Let us consider the control problem Vg ’® and repeat the arguments in [138] in a heuristic way. Given a “smooth function”
V:[0,T] x P2(R") — R, (t,v) € [0,T] x Po(R™), and v € T'5(¢,v), it follows from Itd’s formula that, for s € [t,T7,

V(S,uq = ( / / 815 T ,ur +a V(r ur)( ) - b(r,y,uz®5az,a;’)>u;/(dy)dr
%/t /n Tr[0:0,V (r, 1) () (0 "0 + 00 00) (r,y, 1] ® S, 07))] 1] (dy)dr
%/t / (ny2 [02V (r 13) (y,9) o0 (.9, 187 © By @)oo (1 ' 17 @ S ) i (dy)pd (dy')dr
+/ / OV () (@) - 00 (r s 7 @ Ba, 0 )i (dy)A By (5.3.9)
™ x
As v € T%"(t,v), for Lebesgue almost every r € [t,T], ) is a measurable function of (B, — Bt)uejr - Considering

piecewise constant control process, @” would be a deterministic constant on a small time hOI‘lZOIl [t,t + €]. By replacing

V in (5.3.9) by Vg° and taking supremum as in DDP (5.3.3) (but over constant control processes), this leads to the
Hamiltonian

HE[V] (t,v) == sup { /n ((L-i— [V]l)(t,y,u®5u,u)>u(dy) + /(]RH)Q[V]Q(t,y?u,y’,u<§§>5u,u)l/(dy)1/(dy')}7

uelU

where for any (r,y,u,y’, v, v) € [0,T] x R" x U x R" x U x P(R"™ x U)

[V]l(r,y, v,u) =0, V(r,v)(y) - b(r,y,v,u) + %Tr [8:,38,,V(r, l/)(y)(O'TO' + O’JU())(’)”,y, ﬂ,u)],
and )
VI2(r,y,u, /0, ) == §Tr[(‘33V(7“, v) (y,y)og (r,y, 7, u)oo(r, y, ).
Heuristically, V®° should satisfy the HJB equation
9V (t,v) — HE[VG®](t,v) =0, (t,v) €[0,T) x Po(R"), Vg°(T,-) = g(-).

We refer to [138] for a detailed rigorous proof of the fact that VB is a viscosity solution of the above HJB equation
under some technical regularity conditions.

5.3.3.2 HJB equation for the general strong formulation

Similarly, for the control problem Vg, we consider a strong control rule v € I'g(¢,v), where for Lebesgue—almost every

€ [t,T], the control process ;) is a measurable function of both (B, — Bt)ue[t,r]s (Wu — Wi)ue[t,r] and X¢a.. As the
control process o7 is adapted to the filtration generated by (Xya., W't, BY!), by considering adapted piecewise constant
control processes, the control process on the first small interval [t, ¢4¢) should be a measurable function of X;,.. Similarly
to Pham and Wei [139] in a non—common noise setting and by considering the Itd formula (5.3.9), this would formally
lead to the Hamiltonian

HV](t.v) = sup {/ (L+[V}l)(t,y,uo(&)‘1,a(y))V(dy)+/( )Q[V]2(t,y,a(y),y’,a(y) vo(a)” )V(dy)V(dy’)},
acly n n

where @ : R" > 2 + (z,a(z)) € R® x U, and L2 of all v-square integrable functions a : (R", B(R"),v) — U.

Heuristically, V§ should be a solution of the HJB equation

-0 VS (t,v) — H[VS](t,v) =0, (t,v) €[0,T) x Po(R"), VL]QB’O(T7 ) =g().

As explained above, the difference between the HJB equations for V;B "® and V¢ comes mainly from the fact that the control
process 7, for v € T'g(¢,v), depends on the initial random variable condition, which in turn modifies the Hamiltonian
function which appears in the PDE. Finally, we also refer to Wu and Zhang [151] for a discussion of the McKean—Vlasov
control problem in a non—-Markovian framework without common noise.
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5.4 Proofs of dynamic programming principle

We now provide the proofs of our main DPP results in Theorems 5.3.1, 5.3.2 and 5.3.4, where a key ingredient is
the measurable selection argument. We will first reformulate the control problems on an appropriate canonical space
in Section 5.4.1, and then provide some technical lemmata for the problems formulated on the canonical space in
Section 5.4.2, and finally give the proofs of the main results themselves in Section 5.4.3.

5.4.1 Reformulation of the control problems on the canonical space
5.4.1.1 Canonical space

In order to prove the dynamic programming results in Section 5.3, we first reformulate the controlled McKean—Vlasov
SDE problems on an appropriate canonical space. This is going to be achieved by the usual way, that is to say by
considering appropriately defined controlled martingale problems. Recall that n, d and ¢ are the dimensions of the spaces
in which X, W and B take values, U = U U{d} and that 7= maps RU{oo0, —co} to U. Let us introduce a first canonical
space by

Q:=C" x C x C% x C* with canonical process ()?,AjW,E), and oy := 7T_1( lim n(gt — A\O\/(tfl/n))>7 te0,T].

n——+00

Denote by C([0,T], P(€)) be the space of all continuous paths on [0,7] taking values in P(€Q), which is a Polish space
for the uniform topology (see e.g. [10, Lemmata 3.97, 3.98, and 3.99]), we introduce a second canonical space by

0:=0x C([o, 17, P(SA))), with canonical process (X, A, W, B, i) and canonical filtration F = (F;)o<<7-

Let F := B(Q) be the Borel o-field on Q. Notice that for any ¢ € [0, T, fi; is a probability measure on (Al, we then define
two processes p = (pt)o<i<r and @ = (f,)o<i<r on ) by

Tty = i 0 ()?t/\wat)ilv pe = (fie) o (Xt/\~)71~

Define also the U-valued process @ = (& )o<i< on 2 by

Qg = 7T71( m TL(At — AO\/(t—l/n)))a te [O,T}

n—-+4oo
Finally, for any ¢ € [0, 7], we introduce the processes W' := (W{)¢jo,7] and B' := (BL)c(0,1) by
B! := By — By, and W! := Wy, — Wy, s € [0,T],

and the filtration G := (?i)ogng by

— ) {0,9Q}, ifs €[0,1),
o {0((3%1%) re(0,s)), if s € [t,T). (5.4.1)

5.4.1.2 Controlled martingale problems on the canonical space

We now reformulate the strong/weak control problem as a controlled martingale problem on the canonical space Q, where
a control (term) can be considered as a probability measure on €. To this end, let us first introduce the corresponding
generator. Given the coefficient functions b, o and oy, for all (¢,x, w, b, 7, u) € [0,T] x C* x C¢ x C* x P(C" x U) x U, let

E(t, (x,w,b),D,u) = (b, Od,Og) (t,x,v,u), (5.4.2)
and
T
g (o) g (o)
&(t, (Xa W, b)) v, u) = | laxa Oaxe Tixa Ogxe (t, X, U, 'U/)7 (543)

Orxa  Loxe Orxa  Loxe
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and then introduce the generator £, for all ¢ € CZ(R"T4+),

nt-d4-4 ntd+L
Lio(x,w,b, 7, u) = Z bi(t, (x,w,b), v, u)dip(xs, Wi, by) + 3 Z a; ;(t, (x,w,b),, u)aﬁjw(xt,wt,bt).
i=1 ij=1

We next define a process |S| = (|§|t)0<t<T by
— t —
Slei= [ (B1+ lal) 5. X W, B r, ),
0
and then, for all ¢ € CZ(R"F4*) let S¥ = (S7);c(0.7) be defined by
t
S7 = o(Xy, Wy, By) —/ Lop(X, W, By, @,)ds, t € [0,T], (5.4.4)
0

where for ¢ : [0,T] — R, fo s)ds = fo ot (s)ds — fo s)ds with the convention co — 0o = —oo. Notice that on
{|S|7 < oo}, the process S is R-valued. To localise the process S°, we also introduce, for each m > 1,

T o= inf {t: [S|; > m}, and SP™ =S, =8, 1(, >0 + 50 1ir <y, t €[0,T). (5.4.5)

Notice that the process |S| is left—continuous, 7, is a F+-stopping time on 2, and S¥™ is an F-adapted uniformly
bounded process.

Definition 5.4.1. Let (t,7) € [0,T] x P(Q). A probability P on (0, F) is called a weak control rule with initial condition
(t,v) if

(i) the process @ = (Qs)i<s<T Satisfies

r 4T
@[@S € U] =1, for Lebesgue—a.e. s € [t,T], and EP[/ (p(uo,as))pds] < o0
t

(73) the process ji = (is)o<s<T Satisfies
~ = _ =01 _ =
ps =Po (Xs/\~7 Asp, W, Bs/\~) 11{56[0,15]} +P" o (Xs/\~; Asp, W, Bs/\~) 11{s€(t,T]}7 P—a.s. (546)
with @ (@) (Xt/\.7 At/\., VVYt/\.7 Bt/\.)_l = /V\(t),
(iii) EP[||X||P] < oo, P[[S|r < o0] = 1, the process S° is an (F,P)~local martingale on [t,T), for all p € CZ(R"xRIxRY).
Given v € P(C"), we denote by V(v) the collection of all probability measures v € P () such that o X! = v, and let

P (t,v) = {All weak control rules P with initial condition (¢, ?) } and Py (t,v) U PW t,D)
VEV(V)

Remark 5.4.2. Let P € Py (t,v) for some t € [0,T] and v € P(C™). Notice that for s € (t,T), Jis is ?meeasumble,
then by (5.4.6), one has
ﬁs = ng o (Xs/\-7As/\»a VV7 Bs/\-)_la @—a_s'

Further, as the canonical process (fis)scjo,r) 95 continuous, it follows that

L5 (Xun, Aun, W, Byn.) = fiy = lim i, = lim CF((Xans Asp s W, Bon)|Gr) = LF((Xin, Ain, W, Bin ) [07), Pras.

SN\t
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This implies that Fy V o(W) = o(Xin., Ain., W, Bia.) is independent of ?tT, which is consistent with the conditions in
Definition 5.2.1.

Finally, under P, (Fis)sefo,g s completely determined by U(t). More precisely, one has
7t (dx, da, dw, db) :/\ O(x 0’ w'a,we by (X, da, dw, db) ﬁ(t)(dx’,da',dw’,db')ﬁﬂWt)(dw*), P-as.
Qxcd
where W* is a (F,P)-Brownian motion on [t,T], by the martingale problem property in Definition 5.4.1.

Definition 5.4.3. Let (t,v) € [0,T] x P2(C"). A probability P on (Q,F) is called a strong control rule (resp. B-strong
control rule) with initial condition (t,v), if P € Pw(t,v) and moreover there exists some Borel measurable function
¢:[0, T xQ — U (resp. ¢ :10,T] x CﬁT — U) such that

a, = ¢(s, Xen., Wia, BLn.) (vesp. (s, BL,.)), P-as., for all s € [t, T].

Let us then denote by Pgs(t,v) (resp. ﬁi(t, v)) the collection of all strong (resp. B-strong) control rules with initial
condition (t,v).
5.4.1.3 Equivalence of the reformulation

We now show that every strong/weak control (term) induces a strong/weak control rule on the canonical space, and any
strong/weak control rule on the canonical space can be induced by a strong/weak control (term).

Lemma 5.4.4. (i) Let t € [0,T] and v € P(C"). Then for every v € I'w (t,v), one has
B =P o (X7, A7, W, B, 0") " € Pw(t,v). (5.4.7)

Conversely, given P € Py (t,v), there exists some v € Ty (t,v) such that P7 o (X"f, AV, W7, BY, ﬁ’y)_l =

P.

(ii) Let t € [0,T], v € P2(C™), and Assumption 5.2.8 hold true. Then for every v € I's(t,v) (resp. I'%(t,v)), one has
P :=Po (X7, A7, W7, Bﬂfﬂ)fl € Ps(t,v) (resp. f]g(t, V). (5.4.8)

gonversely, givenP € Ps(t,v) (resp. fg(t, V)), there exists somey € T'g(t,v) (resp. I, 1/)) such that IP”YO(XV7 AV, W7, BY, ﬁ'*)_l

P.

Proof. (i) First, let v € T'w (¢, v) and PP=Po (X”’, AV, W7 BY, fﬂ)fl. First, it is straightforward to check that

_ _ T
P'la, e U] =1, for dt-a.e. s € [t,T], EF’ [ X]P] < o0 and EF’ {/ (p(uo,as))pds} < 00.
t
Further, as the integrals in (5.2.4) are well defined, one has |S|7 < oo, P'as. Moreover, by It6’s formula, the process
(Sf)se[t,T] defined in (5.4.4) is an (F,P")-local martingale, for every ¢ € CZ(R™ x R? x R).
Next, notice that B and 17 are adapted to G7, one has, for all (s, 3,%) € (t,T] x C,, (ﬁ) x Cy (CL] X C’([O,T];P((AZ))),
B [(8,71s) v (Brn.sfirn )] = BT [(8, i) (BE ipa )] = BT [(8, £7 (Xon Aln W, BIL)|G1)) (BEA B )]

= EP‘Y [B(X;A7 AZ/\<7 WV’ Bg/\)w(B%’/i, ﬁ%/\)] :]Eﬁw [/B(XS/\W AS/\-) VV7 BS/\')’L/}(B%/\~7 //ZT/\~):|
=B [(8, L7 (Xon Aspes W, Bon) [Gp) Vb (Bl Tirn. )]
This implies that s = ¥ ((XsA., An., W”,B;Y/\,) |§;), P'oas. forall s e (t,T]. By the same argument and using the

fact that F; V o(W?7) is independent of G7., one can easily check that fiy = ¥ (Xsn-s Asn., W, Bga.) for s € [0,¢], and
that P’ o X;;! = v. This implies that P’ € Py (£, ).
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Assume in addition that v € T'g(t,v) so that a” is FY-predictable. Then there exists a Borel measurable function
¢ [t,T] x Q' — U such that a] = ¢(s, X\, Wi, BI{), for all s € [t, T], P7-a.s. (see e.g. Claisse, Talay, and Tan [52,
Proposition 10]). This implies that a, = (j)(s, Xin, WE, ., B;A,), P'-as. foralls € [t,T], and it follows that P’ e Ps(t,v).

(i) Let P € Pw (t,v) for some v € P(C"). By Stroock and Varadhan [150, Theorem 4.5.2], one knows that (W, B) are
(F, P)-Brownian motions on [¢,T], and

stXtJr/ b(r,X.,ﬂr,@r)dr—i—/ U(T,X.7ET,ET)dWT+/ oo(r, X, 1i,, @, )dB,, P-a.s.,
t t t

Moreover, with the filtration @' defined in (5.4.1), and in view of Remark 5.4.2, it is straightforward to check that
= (65?7F7@7@t7X7WBaﬁ7Maa) € FW(t7V)

If, in addition, P € Pg(t,v), so that Aisa (o(Xearn., Wi, BEA.))reft, r1-adapted continuous process. Using Corollary 5.5.4
and the fact that [, = LF((Xsn., Asp., W, BsA~)|Bie[t,S]7ﬁsA~)v P-a.s., for all s € [t,7], one can deduce that fiy =
LE((Xsn., Asn., W, Bsa. )}Bre[t N ), P-as., for all s € [t,T]. Let G! be the filtration generated by B, F! be the filtration

generated by (X, W', B'), and G'P, FYF be the corresponding P-augmented filtrations. Then 7i is G'*F-predictable,
and X is FtF—predictable. Then it follows that

(Q FF G“P X, Wt B 7%#75) e Ts(t,v).

(#i7) Finally, the results related to flfg(t, v) and T'%(¢,v) can be deduced by almost the same arguments as for Pg(t,v)
and g (¢, v). O

Remark 5.4.5. From Lemma 5.4.4, we can easily deduce that under Assumption 5.2.8, for P € Pg(t,v) or P € ﬁi (t,v),
the canonical process [i satisfies

fis = LT ((Xsn, Asnos Wy Bop )| BLA) = L7 ((Xon., Asn, W, Bop )| BY), Prass., for all s € [0, 7.

A direct consequence of Lemma 5.4.4 is that we can now reformulate equivalently the weak/strong formulation of the
McKean—Vlasov control problem on the canonical space.

Corollary 5.4.6. Let (t,v) € [0,T] x P(C™), one has
_r /T
Vi (t,v) = sup J(t,P), where J(t,P):=EF [/ L(S,X, ﬁs,as)ds + g(X, ,uT) ) (5.4.9)

PePw (t,v) t

Moreover, when Assumption 5.2.8 holds true and v € P2(C™), one has
Vs(t,v)= sup J(t,P), and Va(t,v)= sup J(t,P).
PePs(t,v) PPy (t,v)

5.4.2 Technical lemmata
We provide in this section some technical results related to the sets Pw (t, ).

Lemma 5.4.7. Both graph sets
[Pw] := {(t,0,P) : P € Pw(t,9)} and [Pw] := {(t.,v,P) : P € P (t,v)}
are analytic subsets of, respectively, [0,T] x P(Q) x P(Q) and [0,T] x P(C") x P(Q). Moreover, the value function
Vi 1 [0,T] x P(C") — RU {—o0, 0},

s upper semi—analytic.
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Proof. For 0 <r <s<T,m>1,x€CyQ), p€ CZ(R" xR xR¥), ¢ € Cy(Q), ¥ € Cy(Ct x C([O,T];P((AZ))), we define
5r/\~ = X(X'r/\~; Ar/\~7 Wr/\-7 B’r/\~a ﬁr/\~)a

and the following Borel measurable subsets of [0, 7] x P(€) x P(Q):

T T
K':= {(t,D,IP) :/ Plag € U]d0 =T —t, E¥[|| X|]*] < o0, EPU
t t

K2 x. ¢l = {(t.7,P) : EF [S"6,0] = EF[SY7600] ),
KSW] = {(Lﬁ, P) : EPH<¢>/A‘MS> —E* [¢(X[tAs]A~a A[t/\s]/\w W, B[t/\s]/\-)} H = EP[|<¢7 ﬁt(t» - ((b, ﬁ(t)>H = 0}7

K2(6,9] = {(69,B) : B [(,Firva)$(B', )] = EF [6(Xpvapns Appvsines Wi B JU(BL, )] |-

(P(Uo,ae))pde] < 00}7

The above Borel measurable sets allow to characterise the graph set [[ﬁw]] Indeed, K! contains the probabilities on
Q such that the canonical element @ takes its values in U and not in U U {8}, K2!"[x, ¢] reduces the set P(£2) to the

set of probabilities on Q that solves a (local) martingale problem, while the probabilities which satisfy the “fixed point
property”, i.e. the canonical process [ is equal to the conditional distribution of canonical process (X, A, W, B), are
contained in K3[¢] and K2[a,1].

Let us consider a countable dense subset X of (7‘, S, M, X, P, Dy w) in
[0,T]? x N x Cp(Q) x C2(R" x R? x RY) x Cy(Q) x C,(C* x C([0,T); P())),

where 0 < r < s <T. By the above remarks, it is straightforward to check that

[Pl = () (K10 0 K22, ) 0 K2 () 0 K, 6] 0 K216, 9],

X

and hence it is a Borel subset of [0, 7] x P(Q) x P(Q). Furthermore, since P(2) > ¥ —s vo(X)~! € P(C") is continuous,
the set o B B R
[Pw] = {(t, v,P): (t,0,P) € [Pw], Do (X)"! = V},

is an analytic subset of [0, 7] x P(C™) x P(€2). Finally, use the (analytic) measurable selection theorem (see e.g. El Karoui
and Tan [61, Proposition 2.17]), it follows that

VW (tv V) = sup J(t7ﬁ)7
(t,v,P)e[Pw]

is upper semi—analytic as desired. O

We next prove a stability result w.r.t. the “conditioning” of 73W(t, v).

=t

Lemma 5.4.8. Let (t,7) € [0,T] x P(ﬁ), Pe ﬁw(t,ﬁ), T be a @tfstopping time taking values in [t, T], and (@g?)
be a family of r.c.p.d. of P knowing ?tf Then

@weQ

=t

- ~

ﬁgr c PW (7’—(@), ﬁ;(@)(dz)), for @fa.e. w e ﬁ

Proof. Let P € 73W(t, ). First, it is easy to check that for P-a.e. @ € €2, one has @g? [@s € U] =1, for Lebesgue—almost
,gt?
every s € [7(w),T], and EFs [ffT(@) (p(uo,as))pds] < 0.

T

Next, notice that for all s € [0,7], B € C,(C™ x C x C% x CY), ¢ € G (C* x C([0,T],P(R))) and Z € atf,

Eﬁ“ﬂa ﬁsﬂb(B%a ﬁ)lzm{%gs}] = Eﬁ[B(Xs/\-a As/\~a W, Bs/\-)w(Bﬁfa ﬁ)lZﬁ{?Ss}] )



5.4. Proofs of dynamic programming principle 135

so that, for P-a.e. @ € Q and any 7(0) < s < T,

=t

EP2 ({8, By (BT flan)] = B2 [8(Xun, Aunes W, Bun J(B . on. )]

By considering a countable dense set of maps (3,10) € Cy(C™ x C x C% x C*) x Cy(C* x C([0,T], P(R))), it follows that

F95 —7(@)y 0o = —
he = LF2 (XsA.,AsA.,VV,BsA.\gT( )), ]P’nga.s., for all s > 7(w), for P-a.e. w € Q.

Similarly, one can prove that, for P-a.e. @, and s < 7(@),

gt gt
l/fzs = [']P‘D (Xs/\‘a As/\~a I/V, Bs/\‘)v P@Tfa-s-a

and hence, for P-a.e. @ € ,

—¢ —t

e = £72 (Xups Aune W Bun L pacionoy + £50
s = ( SA-s LAsny VYV, s/\<) {SE[O,T(UJ)]}—'_

7

—7 (@ gL
(Xs/\wAs/\-aW, Bs/\<|gT( ))1{36(%(J)),T]}7 IPJ; —a.s.

Finally, it is clear that for P-a.e. @, one has o [ X][P] < oo and ?g? [|S|7 < oo] = 1. Moreover, let ¢ € CZ(R™ x R? x
R?), so that the localised process S¥™ = ?fmA_ is a (F,P)-martingale on [t,T]. Fix T >r >s>t J € F,and K € ?t;,
we have

(57 rslo) knir<s |

—r oot - _— =1 =g
E [EP [Sfm/\7'1.]]1Kﬂ{7_'§5}:| :Epﬁfm/\rlJﬂKﬂ{?Ss}] :EP[Sfm/\leme{%gs}] =E* [EP'
This implies that
—gt —gt _
EFe" [S7 ., 15] =EF" [S7 1], for P-ace. w.
By considering countably many s,r,.J, it follows that S is a (F, Fg?)flocal martingale on [7(@),T] for P-a.e. @ € Q.
We hence conclude the proof. O

We next provide a stability result for Py, under concatenation. For any constant M > 0, let us introduce

M —

_ T N . -
P, = {PeP@) :EF[IX|"]+E° [/t (pluo, @) ds| < M}, Pry(t,v) =P (t,0) P, PR (D) = Pur(t,) NP,

and B
Vi (t,v) ;= sup J(t,P).
PP (t,v)

Notice that V% (t,v) S Vw(t,v) as M 7 co. Moreover, as in Lemma 5.4.7, the graph set
{(t,v, M,P) :Pe f%(t, v)} is analytic, and (t,v, M) — Vii/ (t,v) € RU {—00, 00} is upper semi-analytic. (5.4.10)

Lemma 5.4.9. Let t € [0,T], 01,05 € P(Q) and v € P(C™) be such that Dy o X;,' = vy 0 X;;1 = v(t). Then for all
Py € Py (t, 1), there exists Py € Py (t,Va) satisfying

Py o (X, AL, W' B =Pyo (X, A W B

where A := Ay — Ay, so that J(t,Py) = J(t,Py). Consequently, one has

Viv(t,v) = sup J(,P), and Viif (t,v) = sup  J(t,P).
PePw (,01) BePM (t,01)

The proof is almost the same as that of Lemma 5.3.10, and hence it is omitted.
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Lemma 5.4.10. Let (t,v) € [0,T] x P(C™), @76 Pw(t,v), T be a @tfstopping time taking values in [t,T], € > 0. Then

there exists a family of probability measures (Q;Z\7M)(t,;,M)€[(],T]><P(§)><]R+ such that (t,U, M) — Qi,;,M is universally

measurable, and for every (t,U, M) s.t. ﬁ%(t,ﬁ) # 0, one has

VM (t,v) — e, when Vi (t,v) < oo, S

E . e PM(y, dJ(tQ° ithy :=Do X L. 5.4.11
Qt’”’M w () an ( Q ) {1/5 WhenVW(t V) = o0, wih v 2= 1vo ( )

Moreover, there exists a P—integrable, ?; ~measurable r.v. M : Q — Ry such that for all constant M > 0, one can find a

probability measure P ¢ Pw (t,v) satisfying @M’EE? = @\f? and

(Qa( A @) M )) = is a version of r.c.p.d. of B knowing ?tf
T(W 7 (@) w w

Proof. The existence of the family of probability measures ((Q ~ satisfying (5.4.11) follows by

)(t D.M)E[0,T]xP(Q) xR )
(5.4.10) and Lemma 5.4.9, together with the measurable selectlon theorem (see e.g. [61, Proposition 2.21]).

With P € Py (t,v), we consider a family of r.c.p.d. (Pg)_g of P knowing g_ and define

. _ T

W@ =B 1K + [ (ol )]

B e PM@ (=(5) To (i M(@) .
so that Pg € Py, (T(@), fir () (@) for P-a.e. @, by Lemma 5.4.8. In particular, PW (T(@), iz () (@)) is nonempty for
P-a.e. @ € Q. For a fixed constant M > 0, let
€0 = Q) pry @ @M
Notice that, for P-a.e. @ € Q,
Tz () (@) = Pg o (Xr@)nes Ar@ns W, Brn) ™' = QF o (Xr@)ns Ar@ins Ws Braya) ™,

then

ﬁQ; (X‘F(LD)/\-aAF(D)/\~7W?(£))/\-aBT(w)/\ ;Nf(w ) EQ ( T(w)/\'7A?(@)/\WW‘F(@)/\'?B‘F(@)/\ ) ® EQ (NT(w)/\ )

= L% (Xr@yner Ar@yne Wr@ne Briayne: Br@an.). (5.4.12)
In particular, one has
Q5 [Bhioyn. = (@) eoyn Br@n. = @] = 1, for Prae. 0 = (@, 0%, 0", 0" &") € Q. (5.4.13)
Let us then define a probability measure FM’E on Q by
/ Qs(K , for all K € F.

By (5.4.12), one has P =P on Fz, and moreover, (QS )sen is a family of r.c.p.d. of B " knowing ?tf To conclude
the proof, it is enough to check that P e Pw (t,v).

First, it is clear that @M’E[ES € U] = 1, for Lebesgue-almost every s € [t,T], and

=M, e

B { /t ' (p(uo,as))pds} SEP{ /t ’ (p(uo,ozs))pds] +EP[H] < .
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Next, for each 8 € C(Q), ¥ € Co(CY x P(Q)), h € Cy(C) and s € [t, T], one has

E@MYE [/B(Xs/\-7As/\-;WBS/\-)w(B?aﬂ)h(B-tF/\-)] = / EQE [B(Xs/\7As/\amBs/\)qb(B%)ﬁ)h(Bf'—/\)}@(d@)

@

/@ B [B(Xons Agns Wi Bop JO(BT, )] h(BL o). (@) P(d)

= / E [E% [B(Xon., Asns W, Ban ) |G [ (BT, )] (B oy . (@) B(d0)
= [ B3 AB ) M Bl (@) P(2)

— [ B [(8, i) 0(B7, f))h(BL, )| B(dw)

= EP [<57ﬂs>¢(3%7ﬁ)h(3§-/\)]a
where the second and fifth equalities are due to Equation (5.4.13), and the fourth follows by the fact that Q% €
Pw (T(w), fiz(@)(@)). Notice that Bf, = BL,, + Bj, for any u € [t, T], the above equality implies that

ZZS = EP " (XS‘/\ 5A€/\ 7W B@/\ |gT) ME —a.s.

Finally, we easily check that FM’€[|§|T < 0] =1 and EF [1X 7] < EF[|X||P] + M < oc. For a fixed test function
© € CEHR"4+H we consider the localised stopping times 7,,, defined in (5.4.5) and 7% (&) := T(w) V 73,(@’) for each
@ € Q. We know that 77 < 777, , for any k € N, that 77 200 and that (SsM )selr(@),] is an (F, Q5)-martingale for

all k € N. Notice that for all s € [t,T] and A € Fg, the map
@ +— B9 [SMT nrelalssr@) } is ?t;fmeasurable.

Then for s <r <T,

E@M’E [gs‘PATm 1A] = ]E@MYE Bf/\rm 1A15<f] + E@ME S‘f/\rm 14 18>7’}
= E@[gf/\fr 1A].s<‘r} + khm EQ Bs/\‘rm/\‘r 1A15>T(W)] (dw E rS/\T 1A15<T] - ]EP BN\T 1A13>T]

A)OOQ

E [S-,—/\Tm]-A]-s<T]-r<T] +EP [S-,—/\-,— 1A]-s<7'17'<r] +EP Ef/\q—m 1A15>?}
E [ST/\T 1A1.5<T17<T] + ]E]P |F7fA7-7n ]-A]-sg?]-?grjl + EP ) Bf/\‘]—mlAlS>7—']
EF S0 Talecrlyar] +EF [SP0 Talecrlec] B [SPn, 1ales] =EF 8%, 14],

which means that (57 71 is an (F, @M’E —local martingale, and hence ?M’E € Pw(t,v). O
wJu€lt,T] gale, 3

5.4.3 Proof of the main results
5.4.3.1 Proof of Theorem 5.3.1

First, Vi is upper semi—analytic by Lemma 5.4.7. Further, let 7 be a G —stopping time taking value in [t, T], it follows
by Lemma 5.4.8 that, for every P € Py (t,v)

—t

7

_ T _ T
J(t,P) = EP[/ L(s, Xsn., s, 05)ds + EF [/ L(s, Xsn., s, 05 )ds + g(XTA., MT)
t T

< EIP[/ L(s, Xon., By, 005 )ds + Viv (7, ,U*‘r):|
t

IN

sup RP {/ L(S,Xs/\.,/is,as)ds+Vw(7',u7-):|.
ﬁleﬁw(t,y) t
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Notice that a @tfstopping time on Q can be considered as a G*-stopping time 7* on Q*. Then by the way how 77 is
defined from 7* in (5.3.1) and Lemma 5.4.4, we obtain the inequality

~

Viw(t,v) < sup EF [/ L(s, X\, 1), a))ds + Viy (T’Y,[LZ»Y):|. (5.4.14)
t

~yel'w (tﬂ/)

We now consider the reverse inequality, for which one can assume w.l.o.g. that

Vi (t,v) < oo, and sup EF [/ L(s, X4n., s, a5 )ds + Vi (7_'““7)] > —o0. (5.4.15)
PePw(ty) t

Let P € Py (t,v) be a weak control rule, then by Lemma 5.4.10, for some F-—measurable P-integrable r.v. M:Q— R4,
one has a family of probability measures (@M’E) M>o0 in Py (t,v) such that

1_ o~
+ fIP’[VVJI\,/[+M(W)('F,u;) = oo}

5[ [T — M+M(@) (=
" [/t L(S’XSA"MS’QS)dSJr (VW (TJL?) e)l{VvﬁHa(”)(r,uTkooJ €

— e

7 o R T
< EP[/ L(Sst/\-aﬁs7 7as)ds +E #aM+M |:/ L(S,Xs/\.,ﬁs,as)ds +g(XT/\-,MT>:|:|
t 7

—M,e

T
= EP |:/ L(S7Xs/\~aﬁsvas)d8 +g(XT/\'7'U’T):| < VW(t’U)'
t

If @[VV]‘\//H‘M(?, r) = oo)] > 0 for some M > 0, then by taking ¢ — 0, one finds Viy (¢,v) = oo which is in contradiction

to (5.4.15). When ?[VVJ[\//”M(%,Nf) = o0o] = 0forall M > 0, le¢ M — oo and then take the supremum over all
P € Pw (t,v), it follows that

sup EP [/ L(s, Xsn., g, 0s)ds + Vi (?,u;) —e < Vw(t,v).
P ePw(t,w) t

Notice that £ > 0 is arbitrary, and again by the way how 77 is defined from 7* (equivalent to 7 on Q) and Lemma 5.4.4,
we can conclude the proof with (5.4.14). O

5.4.3.2 Proof of Theorem 5.3.4
Let (t,v) € [0,T] x P2(C™) and Assumption 5.3.3 hold, by Theorem 2.2.3 (letting p = p = 2 in the assumptions), one has
Vs(t,v) =V (t,v).

Therefore Vg : [0,T] X P2(C™) — R U {—00, 00} has the same measurability as Vi : [0,T] X P2(C") — RU {—00, c0}.
Next, let 7 be a G*°—stopping time on (Qf, F!,P!) taking value in [t, T], we denote 77 := 7(B™"') for v € I's(t,v). Then
by the formulation equivalence result in Proposition 5.2.10, the DPP result (5.3.4) is equivalent to
rald
Vs(t,v) = sup EF [/ L(s, XJn. 1, a))ds + Vs (77, u7)|.
’)’Er‘s(t,lj) t
Recall that under Assumption 5.2.8 and by Theorem 5.5.3, one has

]E]PW{ sup |Xg2] < 0.
s€[0,T)
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Then by Lemma 5.4.8 and the fact that Vg = Viy, it follows that

T T
Vs(t,v) = sup J(t,7)= sup ET [/ L(s, X\, 1], a))ds —|—/ L(s, XJr., 1], a)ds +g(X%/\_,u})]
vel's(t,v) vyels(t,v) t T

< sup EP’Y |:/ L(stZ/\wuzaO‘Z)ds+VS(777M’Y)]'
~y€ls(t,v) t
Further, by Theorem 5.3.1, we have

~

Vs(t,v) =Vw(t,v) = sup EP [/ L(S,Xg/\_,ﬁz,oz;’)ds + Vw(T’Y,,u'Y):|
’Yerw(t,l/) t

> sup EF [/ L(SngA.vﬁz»aZ)dS + VS(T’YvFL’Y)] )
t

~v€Ts(t,v)

and hence the proof is concluded. O

5.4.3.3 Proof of Theorem 5.3.2

In this part, we use the results and techniques of Theorem 5.3.1 to show the DPP for VéB. We start by proving the
universal measurability of VE. For this, we consider an equivalent formulation of VEQB, which is more appropriate for our
purpose.

5.4.3.3.1 An equivalent reformulation for VéE Let Q* := C’ be the canonical space with canonical process E*,

and P* be the Wiener measure, under which B* is an ¢-dimensional standard Brownian motion. Let F* = (]?t* )telo, 1) be
the canonical filtration. Recall that we consider a fixed Borel map 7 : U U {0} — RU {—o00,00}. We denote by U the set

of F*fpredictable processes 6 taking values in R, such that Eﬁ* [ fOT |9t|2dt] < 00. Define a metric d* on U by
~ T /T )
d*(n,0)* :=EF [/ |7)t — 9t| dt}7 for all (n,0) e x U,
0

so that (U, d*) is a Polish space (see e.g. Brezis [32, Theorems 4.8 and 4.13]). Next, let § € U, and define AY := fot 0sds,
t € [0,T]. We consider then the map Y : U — P(C’ x C) defined by

~ - oy —1
Y(0) :=P* o (BﬁA?KB»)) L0l
Let us introduce, for all ¢ € [0,T], v € P2(C™) and T € P5(Q) such that v = Do X1,

Py(t,v) == {PePw(tv):Po (B‘,A,)_1 € Y(U), and By,. is P-independent of (B*, A)},

and N R .
Ps(t, V) == Pw(t, V) N Pglt,v).
Lemma 5.4.11. Let (t,v) € [0,T] x Po(C") and v € P(Q) be such that Do X~' = v. Then under Assumption 5.2.8, one
—* =B
has Pg(t,v) C Pg(t,v) and B
Vét,v)= sup J(,P). (5.4.16)
PePy(t,v)

Proof. First, take v € F%(t,u). W.l.o.g., we can assume that there exists an independent Brownian motion B in the
space (. F7,P7), and let B*" := B},. — B} + Byx., then

= (0, FLPYFT,GY, X, W, BY R, 10, 67) € Palt,v).
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Recall that o is G7—predictable and G” is the augmented filtration generated by B, then for some Borel function

¢ [t,T] x C* = U, one has o) = ¢(s, BIY), s € [t,T], P'-a.s. Let A7 := I m(¢(s, BIY))ds and " be defined as in

(5.2.7), it follows that P’ := P70 (X7, A, W“*,B’Y/,,ﬂ’/)_1 € P (t,v) satisfies P o(B, A)~! € T(U) and J(t,P) = J(t,7).
— _ _

Then J(t,v) = J(t,P) < SUDBCP” (1,) J(t,P) and hence VE(¢,v) < SUPFCB" (1.0) J(t,P).

Next, given P € Pg(t, ) since Po (B, A) € T (U), there exists 6* € U such that Po (B.,A.)_1 = P*o (B* A? (B )))
Thus 71'(043 )) = 05(Bsa.(w)), for dP ® dt-ae. (s,w) € [t,T] x Q. As P € Pw/(t,v), we know Pla, € U] = 1 for
dt-a.e. s € 0,71, therefore T(0s(@)) = 02(Bsp.(w)) € m(U) and @s(w) = 7 1 (02(Bsn.(@))) € U, for dP ® dt-a.e.

(s,w) € [0, T] x Q. Further, since (B!, A) is P-independent of Bi,., it follows that there is a Borel measurable function
¢ :[0,T] x C* — R such that A, = ¢(s,B!,.), s € [0,T], P-ass., and therefore P € fg(t,y). This implies that
Py(t,v) C flfg(t, v), and the equality (5.4.16). O
We are now ready to prove the measurability of V2.

Lemma 5.4.12. The graph sets

[Pl = {(t,v,P) € [0,T] x Po(C") x P(Q) : P € Py(t,v)}, and [Pi] := {(t,7,P) : P € PL(t, D)},

are analytic sets in respectively [0,T] x Po(C™) x P(Q) and [0,T] x P2(Q) x P(Q). Consequently, VE . [0,T) x Po(C™) —
R U{—o00,00} is upper semi-analytic.

Proof. We will only consider the case of fg, while the proof is almost the same for 73§ First, notice that
T:U— P x0),

is continuous and injective, so that Y (&) is a Borel subset of P(C’ x C) (see e.g. Kechris [93, Theorem 15.1]). It follows
that

D' := {(t,1,P) € [0,T] x Po(C") x P(Q) : Po (B,A)""

eTU)},
is a Borel subset of [0,T] x P(C") x P(Q), as the map
Ty :[0,T] x Po(C™) x P(Q) 3 (t,1,P) — Po (B,A) " € P(C’ x ),
is Borel measurable. Similarly
D* := {(t,v,P) € [0,T] x P2(C") x P(Q) : Byn. is P-independent of (B', A, i)},
is also a Borel subset of [0,7] x P(C™) x P(Q). Indeed, for all (h,1) € C(C*) x Cp(C* x C), the function
Ph : [0,7) x Po(C") x P(Q) 3 (1,0, F) > (EF[(Bun (B, A)] — EF [A(Bin JET (B, 4)]) € R,

is continuous. By consider a countable dense subset R C Cy(C*) x C,, (Ce X C)7 it follows that

-1
ﬂ pr{o}’
(h¥)ER
is a Borel set. Finally, notice that
[Ps] = [Pw] nD' ND?,

and we then conclude the proof by Lemma 5.4.7 and Lemma 5.4.11. O
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Recall that for each M > 0, PM is defined in Section 5.4.2, we similarly introduce, for (¢,v) € [0,T] x Po(C™) and
U € P2(2) such that v =D o X1,

PNt ) = Pat,)nPM, PoM (t ) = PunPo (t,v), PEM(t,0) = Po(t,D)NPM, PyM(t,) == PynPEM (t,D).
By Lemma 5.4.9, it is clear that

V;B’M(tg/) = sup JtHLP)= sup JtLP)= sup J(GLP)= sup J(tP) S VE(tv), as M S oo.
BePg ™ (

-~

t,v) PeP ™ (t,v) BPePEM (t,0) BPePL M (t,0)

Lemma 5.4.13. (i) Let (t,v) € [0,T] x Po(C"), P € flg(t, v), T a@tfstoppz'ng time taking values in [t,T), and (@g?)weﬁ

be a family of r.c.p.d. of P knowing ?tf Then ?g? € f]g (F(@), pr(5)(@)), for P-a.e. @ € Q.

(ii) The graph set {(t,0, M,P) : P € 73§’M(t,17)} is analytic. Further, let (t,v) € [0,T] x Po(C"), P € 5%(121/), T be
a @tfstopping time taking values in [t,T], and € > 0. Then there erists a family of probability measures and a family

of probability measures (QfﬁM)(tﬁM)e[o TIxP@) xRy such that (t,U, M) — Qi;M is universally measurable, and for

every (t, U, M) s.t. ﬁg’M(t, U) # 0, one has

B,M
vV

B,M
A SBM () = (t,v) —e, when Vg™ (t,v) < oo,
Qi;’M € Py (t,v), and J(t,Qi;)M) > { o o

orv="00X"1 5.4.17
1, when; Vg’M(t, V) = 00, f ( )

Moreover, there is a ?t;fmeasumble and P—integrable r.v. M:Q— Ry such that for all constant M > 0, there exists

P e fﬁ(u v) such that @Mﬂff =Pz and
e . . —e,M . —t
(Q%(@),ﬁ(w),Mw\//}(@))@eﬁ is a version of the r.c.p.d. of P knowing G-.

Proof. (i) Let P € fﬁ(t, v), then there exists a Borel measurable function ¢ : [t, 7] x C* — U such that
= czS(s,BzA,), for all s € [t,T], P-a.s.

Let us consider the concatenated path (& ®; W)g 1= Wyas + Wsyv¢ — Wy and define a Borel measurable function ¢ by

~

¢Q(s,v_vb) = gb(s,d)b Rr (@) v_vb), for s € [7(@),T], @ = (@%,&0% &%, & o"), w= (Wi,wa,ww,wb,wﬁ) €.
Then by a classical conditioning argument, it is easy to check that for P-a.e. & € €,
a, = ¢ (s, Bg@) for all s € [T(w),T], P, —a.s.

Using Lemma 5.4.8 and Definition 5.4.3, it follows that @g% € ﬁ]g (%(@), u;(@)(d))), for P-a.e. @ € Q.

(ii) Using Lemma 5.4.12, it is easy to see that the graph set {(t,v, M,P) : P € fg’M(t, v)} is analytic. Then one can
apply the same arguments as in Lemma 5.4.10 to obtain a measurable family (Q§7V,M)(t7V,M)e[O7T]Xp(Cn)X]R+ such that

1

M —
(t,v) and J(t,Q5,, 1) > (Ve (t,v) — €)1 Ve ooy T 2L vE M sy

Q;I/,M € ?;
To proceed, we will define a family (Q;L\,M)(t,;\,JVI)G[O,T] < P@)xR, from the family (Qf)V’M)(t,,,’M)E[O’T] xP(cryxr, as follows.
For all (¢,7) € [0, T]xP(£2), let v := vo X ~!. Then on the probability space (Q, Fr, Qf’V’M), we consider a F;measurable
random element (A, W{, BY).e[o,+ such that

Q;I_/,M o (Xt/\-a Af&/\-’ Wt//\-a Bg/\-)71 = D(t)
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Define
A=A+ Ay — Ay, W= W/+ WL BL:=B,+ B, for s € [t,T],

S
. 5e 5 —t
;U’; = ‘CQt’V’M (Xs/\7 Als/\7 W/7 B;/\)l{se[o,t]} + ‘CQt’V’M (XS/\7 Als/\v W/’ BgA|gT)1{5€(th}}'
Let B B _ -
Q5 = Qv © (X, A", W' B, [i'), so that J(t, Q; =) = J(t, Qf, ) and hence satisfies (5.4.17).

Let P € fg(t, v), as in Lemma 5.4.10, for M > 0, we let
T

(@) = E[IXIP + [ (e u0)" (] @), and @5 = @3

(@) s (@) (@), M(@)+ M

Again, as in the proof of Lemma 5.4.10, one has Q% satisfies (5.4.12) and (5.4.13), which allows defining B by

—M,e

P K] € /5 Qo[K|P(dw), for all K € F,

so that P ° € Pw(t,v), P =P on F and (Q%) is a family of r.c.p.d. of Pe knowing th

51<l9)
Finally, it is enough to prove that B ¢ f]z(t, v). Let s € [t,T], h € Cy(R) and ¢ € Cy(CY), then
[Ah(A)Y (Bl ) 1snr] = BF [E2 [Ah(AL)0(BLy)] Less]

=B [EY[BY [4,|BL, ) h(A)u (B, [ 1]

M, e

, [E@M@ [AL[GL v o(BL )| h(A)S(BL )

—M,e

]E]P’

EP ?t;} 1s>‘F:|

= BF R AL| B (A (B ) 14ss],

where the second equality follows by the fact that Q% € ﬁz(%(@), V') for some v/ € P(C™) and hence h(A;) = h(qS(B;(\U?))),
— —M,e —_
Q% -a.s., for some Borel measurable function ¢, and the last quality follows by the fact that on {s > 7}, EF [As}gtf \%

o(BiL)] = EF [As’Bﬁ/\.] Further, as @M’E&? = Ef% and P € 512(@ v), one can use similarly argument to find that

=M, e =M, e =M, e
EY [Ash(A)Y (Bl )1s<z] =EF  [EF [Ag| B Jh(A) (BLs ) 1s<r].
This implies that
—M,e —M,e =M, —
EF [(As —EF [AS|B§A‘]>h(AS)¢(B§A,)} —0, and hence 4, = EF [4,|B!, ], P""*-as.
In other words, A is a continuous process, adapted to the @M’E—augmented filtration generated by B, then there exists
a Borel measurable function ¢ : [t,T] x C* — U such that A, = ¢(s, Bt,.), for all s € [t,T], @M’Efa.s., and hence

PV e ﬁg(t, v), which concludes the proof. O

5.4.3.3.2 Proof of Theorem 5.3.2 The proof is almost the same as that of Theorem 5.3.1. First, one has the
measurability of ngB by Lemma 5.4.12. Next, notice that a G°—stopping time 7 on Q! can be considered as a special

@' stopping time 7 on €. then using the conditioning argument in Lemma 5.4.13, it follows that
Va(t,v) < sup E[/ L(s,XsA.,ﬁs,as)ds—i—VéB(T, MT)].
PePy(t,v) t

Finally, it is enough to use the concatenation argument in Lemma 5.4.13 and sending M — oo to obtain the reverse
inequality

VE(t,v) >  sup EP[/ L(s,XsA.,ﬁS,as)ds—i—VéB(T, ,uf)}.
PePy(t,v) t
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5.5 Appendix: some technical results on controlled McKean—Vlasov SDEs

Let us first recall a technical optional projection result.

Lemma 5.5.1. Let E be a Polish space, (Q,F,P) be a complete probability space, equipped with a complete filtration
G = (Gt)t>0-

(i) Given an E-valued measurable process (X¢)ie(o,), there exists a P(E)-valued G-optional process 8 such that
B, =LF (XT ‘QT), P-a.s., for all G-stopping times 7.

(it) Assume in addition that X is a continuous process, and that the G—optional o—field is identical to the G—predictable
o—field. Then one can choose B to be an a.s. continuous process.

Proof. (i) The existence of such process £ is ensured by, e.g. Kurtz [100, Theorem A.3] or Yor [153, Proposition 1].

(79) When X is a continuous process, it follows again by [100, Theorem A.3] (or [153, Proposition 1]) that B is cadlag
P-a.s. Further, let ¢ € Cy(E) and (7,)n>1 be a 1ncreasmg sequence of uniformly bounded G-stopping times?. One has
(0, Br,) = E¥[0(X,,)|Gr, ], P-a.s., and hence lim,, o, EF[{¢, B, )] = EF[(, Biim, +,)]. Then it follows by Dellacherie [55,
Theorem IV-T24] that ({p, Bt>)t€[0,T] is left—continuous, P-a.s. By considering a countable dense family of functions ¢
in Cy(E), one concludes that § is also left—continuous a.s. O

Let (2, F,P) be a complete probability space, F = (Fs)s>0 a complete filtration, supporting two independent F-Brownian
motions B* and W*, which are respectively R?- and R¢valued. Let us fix a R”valued, F-adapted continuous process
(&5)s>0, a U-valued F-predictable process (as)s>0, a complete sub-filtration G = (Gs)s>0 of F, and denote W}t :=
W2, — Wy and B! := B%,, — Bf. We will study the following SDE with data (¢,£,«,G): X = & for all s € [0,¢], and
with 7, := LF( M.,ar|gr)

X, =& —|-/ b(r, X,»A.,ﬁr,ozr)dr—k/ a(r, X,«/\.,ﬁr,ozr)dWr* —|—/ 00(7‘, X,»/\‘,ﬁr,ozr)dB:, for all s > ¢, P-a.s. (5.5.1)
t t t

Definition 5.5.2. A strong solution of SDE (5.5.1), with data (t,€, ., G), on [0,T], is an R™"—valued F—adapted continuous
process X = (X¢)i>0 such that IE[supse 0,17 | X,|?| < 00 and (5.5.1) holds true.

Theorem 5.5.3. Let 0 < t < T, Assumption 5.2.8 hold true, ]E[supse[oﬂf] |&6]P] < oo and IEU;T p(uo, as)Pds] < oo for
some p > 2. Then

(i) there ewists a unique strong solution X“& of (5.5.1) on [0,T] with data (t,&,,G). Moreover, it holds that
E[Supse[O,T] |X§’€’a’p] < 005

(1) assume in addition that (En., W*, Bf,.) is independent of G, and B* is G-adapted, and there exists a Borel measurable
function ¢ : [0,T] x C™ x C* x C* — U such that

as = (s, &n, WL, BIY), P-as., for all s € [0,T7].

sVt

Then, with As := [, " m(a,)dr, there exists a continuous process ([it)ic(o,) such that for all s € [0,T)]
.ZZS = ‘CP((X;f-,a? AS/\'a W*7 B;/\) |gT) = EP((X;’A?’&’ As/\~7 W*v B:/\”gs) = ‘C]P’((X;’/s’av AS/\‘) W*’ B:/\) ’B:/’\t)a ]P)fa-S'

Proof. (i) We follow [150, Theorem 5.1.1] to prove the existence and uniqueness of a strong solution to (5.5.1). Let SP
be defined by

8P :={Y := (Ys)seo,r] : R"—valued and F-adapted and continuous process such that EF [||Y||}] < oo},

2Which is G-predictable time as soon as the G-optional o—field is identical to the G—predictable o—field.
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where [|x||s = sup,cp 4 [Xr| for s € [0,T] and x € C". For all Y € SP, we define, with 1, := EP(YS/\.,ozS‘QT),
YY) = (V(Y)s)ozs<r by

tVs tVs tVs
YY) i=net [ W Yonssia)drd [ (Yo @ )AW; [ oo(r Yon o).
t t t
Then, for (Y!,Y?) € 87 x 8P, with 71, := L (Y], ,as|Gr), i € {1,2}, one has

o) - wy?)|] < 3PEP[ sup

vE[t,s]

|

/ (o (r YA o) — o(r, Y2 T2 00) ) AW
t

v p
+38| sw | [ (ool ¥hmhan) oo ¥E . a)an] |
vE[t,s] t
s p
+3PEP|:/ ‘b(r’y;l/\»aﬁivoﬁ")_b(n}/rz/\»aﬁg)a?”)‘dr :|
t

Notice that, for all r € [t, T,

W (B4 7)< Wy (L 72)" = W (£ (VA 00)1Ge), 7 (VR an)lG)) < BF[IVA = V2P

G-

Then by Burkholder-Davis—Gundy inequality, Jensen’s inequality and Assumption 5.2.8, there is some constant Cp > 0
such that

B let) - v < o[8[ -2 e (5:52)

Besides, by Assumption 5.2.8

elieo) < (148 s jer] 5[ [t arar]).

rel0,t]

Then by taking Y2 = 0, (5.5.2) implies that ¥(Y) € S? whenever Y € SP. Moreover, for any positive integer n
B (o) - v v e] <o B (et - e e
t
<@r? [ [ B[l - ez e
t Ji

< (CT)"/1{szmzvzz...2vn2t}Ep[HYl - Y2||33,,L]dv1 ... do,

(s—0)"
nl

< (Cr)"EF[IY! - Y?|2]
Let Y € 8P, X :=Y, and X" := ¥U"(Y), for n > 1, it follows that

_t n
EF[| X" — X" 2| < (Cp)"EF|||Y — w(Y)|P u, and hence EF X" — X P < oo,
s s n| T
’ n>1

which implies that the sequence (X™),>1 converges uniformly, P-a.s., to some X € SP. Finally, it is straightforward to
see that X is the unique strong solution of (5.5.1) with data (¢, &, a, G).

(ii) Let v :=TP o (&a.)~". We recall that the canonical space QF := Cf, x CZT X Cf,T was introduced in Section 5.2.2.2,
with corresponding canonical processes ¢ = ((s)o<s<ts W = (Ws)i<s<r, and B = (Bs)i<s<r. and filtration F*°, G"°.
Moreover, under IE”f,7 W; = Weye — Wy and Bﬁ := Bgy¢ — By are standard Brownian motion on [t, T] independent of ¢,
and F* and G are the P! —augmented filtration of F*° and G*°.
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Define as = ¢(s,in., Win., Bts), for all s € [t,T]. There exists a unique solution Y of Equation (5.5.1) on QF,
associated with (£, (ia., @, G?). As Y is an F'-adapted continuous process, there exists an Borel measurable function
U :[0,T] x C™ x C% x C* — R™ such that

Y'a = \I’S(Ct/\w W;/\sz/\‘)? s € [O7T]7 ]P)ltjfa's'

S

Next, on the probability space (2, F,P), let us define
X;X = \Ijs(ft/\w W:/’\ta B:/\t)

Then it is clear that X is the unique solution, on (2, F, F,P), of Equation (5.5.1), associated with (¢, &., «, IFB*’t), where
FB"" = (.FSB*"t)SE[O’T] is the P-augmented filtration generated by B**. Moreover, as ({a., W*, Bf,.) is independent of
G, and B*! is G-adapted, one has, for all s € [t, T],
fis = L5 (X320, )| BIR) = L5 ((Won (Eonns WKL BIR), S5, Eunes WK, BIX))| BIX)
= L ((Wan (Eon WL BiR), 0(s, onns WiRL, BiR))|Gs)
= ,CP((X;"A_,aS)’gS), P-a.s.
This implies that X is also a solution of Equation (5.5.1) associated with (t,&a.,a, G), and hence X*% = X by

uniqueness of solution to Equation (5.5.1).

Further, as A is a Borel measurable function of (&4., W' 2 B:,\t), it follows by the same argument that, for all s € [0, 7],

fis == LE (XL Agn, W*, B2, |Gr) = LE (XL, Agn, W*, B2, |Gs) = LF(XLS, Agp, W, BEy | BIX), P — ass.

Finally, using Lemma 5.5.1, one can choose the process ji to be continuous. U
Let us consider the following system of SDE, where a solution is a couple of F-adapted continuous processes (X, i) such
that: for some Dy € P(C™ x C x C x C*), EP[||X||> + Wa(7, 70)?] < 00, X, =& for s € [0,1], and

X, =& +/ b(r, Xr,\.,ﬁr,ozr)drdr/ J(r, XM,,ﬁr,ar)dWr* +/ 00(7’, Xr,\.,ﬁr,ozr)dB;f, s € [t,T], P-as., (5.5.3)

t t t

and 7, := LP(X,n., an|BiA firn.) for all 7 > ¢, and with A, := [ w(a,)dr, fis = L7 (Xop, Asn, W, Bia | BE Tisn.)
for all s > 0, and finally (&., W*, Bf,.) is independent of (B** ).

Corollary 5.5.4. Let Assumption 5.2.8 hold true, and assume that there exists a Borel measurable function ¢ : [0,T] x
C" x C? x C* — U such that

T
oy = <{)(3,§M.,W;}\t_,B;‘}f,), for dP @ dt —a.e. (s,w) € [t,T] x 2, and ]E[/ p(uo,a5)2ds} < 0.
t
Then, Equation (5.5.3) has a unique solution (X,[), where X is the strong solution of Equation (5.5.1) with data
(t,f,a,IF‘B*’t), with FB™ being the P—augmented filtration generated by B** and
fis = L5 (Xop., Agp, W*, B2\ | BiY), s € [t,T], P-as.

Proof. Given a solution (X, i) to Equation (5.5.3), we notice that X is a strong solution of Equation (5.5.1) associated with
data (t,a,f,FB*’t’ﬁ), where FB™"# 1= (]—'f*’t’;)se[oj] with }'SBM’? = (B fisn.). As (€., W*, Bf,) is independent
of (B*!,1i), it is then enough to apply Theorem 5.5.3 to conclude that X is the strong solution of Equation (5.5.1) with
data (t,&, o, FB™"). O
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Part 11

Mean Field Game of Controls with
common noise and controlled volatility
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The general assumptions used throughout this part are now formulated. The dimensions (n,¢) € N* x N, the nonempty
Polish space (U, p) and the horizon time T > 0 are fixed and P[; denote the space of all Borel probability measures on
R™ x U ie. Pj :=PR"™ x U). We are given the following Borel measurable functions

[b,0,L] : [0,T] x R* x C}y X Pfy x U — R™ x ™" x Rand g : R" x C}}, — R.

Assumption 5.5.5. [b,0, L] are Borel measurable in all their variables, and non—anticipative in the sense that, for all
(t,z,u,m,m) € [0,T] x R* x U x Cy, x Py

[b7 o, L} (t,z,u,m,m) = [b7 o, L} (t, z,u, men., ).

Moreover, there are positive constants C and p such that p > 2, and

(i) U is a compact nonempty polish set;
(ii) b and o are bounded continuous functions, and oo € S"*¢ is a constant;
(it2) for all (t,z, 2’ ,m, 7', m,m’,u) € [0,T] x R" x R™ x C}}, x C}s, X Pt x Pt x U, one has

|[b,)(t, z,m,m,u) — [b, a](t,x',ﬂ",m’,u)‘ < C’(\x — 2|4+ sup W,(ms, ) + Wy(m, m'));
s€[0,T]

(tv) Non-degeneracy condition: for some constant @ > 0, one has, for all (t,z,7,m,u) € [0,T] x R" x C};, x Pj; x U,

01, < oo (t,z,m,m,u);
(v) the reward functions L and g are continuous, and for all (t,z,m,m,u) € [0,T] x R™ x C}}, x P} x U, one has
|L(t,x,7r,m,u)} +lg(z,m)| < C1+ |z + sup W,(ms,do)? +/ |x/|pm(dz’,U)];
s€[0,T] n

(vi) Separability condition: There exist continuous functions (b°,b*,a°, a*, L°, L*) satisfying

[b,o0 "|(t, z,m,m,u) := [b*,a*](t,m,m) + [b°,a°)(t, z, m,u) and L(t,z,m,m,u) = L*(t,z,m,m)+ L°(t,z, 7, u),
for all (t,x,m,m,u) € [0,T] x R™ x Cj3, x Pjy x U.

Remark 5.5.6. Most of these assumptions are classical in the study of mean field games and control problems (see Lacker
[103], Assumption 1.4.1 and Assumption 4.1.1 ). Only the “separability condition” and the “non—degeneracy condition”
can be seen as non-standard. However, in the context of Mean field games of controls, these conditions are used by
many authors, for instance Cardaliaguet and Lehalle [37] (only the separability condition), Carmona and Lacker [45] and
Lauriere and Tangpi [113]. These are essentially technical assumptions.
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Chapter 6

Convergence of Nash equilibria

6.1 Introduction

Since the pioneering work of Lasry and Lions [111] and Huang, Caines, and Malhamé [84], mean field games (MFQG)
have been the subject of intensive research in recent years. Due to the diversity of applications, particularly in models
of oil production, volatility formation, population dynamics and economic growth (see Carmona and Delarue [43] for an
overview), the study of MFG has attracted increasing interest in the field of applied mathematics.

The MFG can be seen as symmetric stochastic differential games with infinite many players. Indeed, a MFG solution
can be used to construct approximate Nash equilibrium for the corresponding N—player games for large N, and, for each
N-Nash equilibrium of the N—player games, this Nash equilibrium converges towards a solution of the MFG when N
tends to infinity.

So far, this study has been conducted considering that the interactions between the players are realized only through
the empirical distribution of the state processes, we refer to Lacker [103] for a general analysis of this case (see also
Fisher [68]). The goal of this chapter is to give a general analysis of the case where the interactions is given through the
empirical distribution of the state processes and controls.

Except the recent work of Lauriere and Tangpi [113] which treats the convergence of Nash equilibria in the MFG of
controls framework by probabilistic methods (via FBSDEs), to the best of our knowledge, there are no other papers using
probabilistic or PDE methods that answer the question of the convergence of e y—Nash equilibria to the MFG solution
in this context. Indeed, the techniques used so far to treat the question of study of the limit problem turn out to be too
rigid to deal with the problem of the convergence of Nash equilibria, all the limits of approximate Nash equilibrium can
not be described by the notion considered in the literature up to now. Although using probabilistic point of view, our
approach is very different from these previously mentioned, and considers very general assumptions.

In order to solve the difficulty generated by the empirical distribution of controls, we introduce the notion of measure-
valued MFG equilibrium. This notion is precisely defined in Section 6.3.2. The idea of our notion comes from the
(stochastic) Fokker-Planck equation verified by the pair (u*,7*). This notion of MFG solution is very close to the
classical notion, the main difference is that the optimization is taken over all solutions of specific Fokker-Planck equations
and not to a solution of an SDE. This notion are already been considered in the literature by Cardaliaguet, Delarue,
Lasry, and Lions [38] (Section 3.7.) and in some way by Lacker [105]. Borrowing techniques from [103], under suitable
assumptions, we prove that the sequence of empirical measure flows (VX o) is tight in a suitable space, and with
the help of techniques introduced in Chapter 4, we show that every limit in distribution is a measure-valued mean
field equilibrium. And conversely, for each measure—valued mean field equilibrium, we construct an approximate Nash
equilibrium which has this measure—valued mean field equilibrium as limit.

Consequently, there is a perfect symmetry between approximate Nash equilibrium and e-strong MFG equilibrium, and our
notion of measure—valued MFG equilibrium are the accumulating points of approximate Nash equilibrium and e-strong
MFG equilibrium. Therefore, if there exists a measure-valued MFG equilibrium or an approximated Nash equilibrium,
there is necessarily an e-strong MFG equilibrium with € > 0. The question of the existence of the measure-valued solution
will be evoked in the next chapter.

It is worth emphasizing that our results allow to handle the case where o is controlled i.e. the control a appears in the
function o. There are not many works that look at the situation where the volatility is controlled. Let us also mention, in
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this chapter, despite general assumptions considered we are limited by some conditions that we must have for technical

reasons, a separability condition on (b, o, L) (see assumption 1.4.1) and a non—-degeneracy volatility condition of type
T

co’' > 0.

The rest of the chapter is organized as follows. We provide in Section 6.2 and Section 6.3 the definition of the N—player
games and the corresponding MFG of controls, before stating in Section 6.4 the main limit Theorem 6.4.1, and its
converse, Theorem 6.4.2. Most of the technical proofs are completed in Section 6.5.

As in Chapter 4, with a Polish space E, we denote by M(E) the space of all Borel measures ¢(dt, de) on [0,T] x E, whose
marginal distribution on [0, T is the Lebesgue measure dt, that is to say q(dt,de) = q(t,de)dt for a family (q(¢, de)):eo,1)
of Borel probability measures on E. Let A denote the canonical element on M(F), we define

Ain.(ds,de) := A(ds,de)‘[o gxe T 5eo(de)ds|(t TIx B for some fixed ey € E. (6.1.1)

For p > 1, we use M, (E) to designate the elements of ¢ € M(E) such that ¢/T € P,(E x [0,T]).

In this section, we first introduce an N—player game, and the definition of ey—Nash equilibria. Next, we formulate the
notions of approximate strong and measure-valued MFG solutions which will be essential to describe the limit of the
Nash equilibria.

6.2 The N—players games

For (v1,...,vV) € P,(R")V, let
o = RMY x (M x ¢,

be the canonical space, with canonical variable Xy = (X, ..., X}’) and canonical processes W = (WL ... W), r
and B = (Bs)o<s<r, and probability measure IP’IJ,V under which Xg ~ vy == ® --- @ vV and (W, B) are standard
Brownian motion independent of X. Let FY = (FN)o<s<r be defined by

S

]_-N

= U{XO7WT,BT, re [075]}, 0<s<T.

Let us denote by A(vy) the collection of all U-valued processes a = (as)o<s<7 which are FN-predictable. Then given a

control rule/strategy @ := (al,...,a”) € A(vy)Y, denote by X.[a] := (X![a],...,X"[a]) the unique strong solution of

the following system of SDEs: for each i € {1,..., N}, EFY [||X{||P] < oo, for all ¢ € 0,77,

t t
Xi[a] = X} —|—/ b(r, XL [al, pNxe @iv’a,ozf_)dr —|—/ o(r, X! [al, VX N af,)de. + 09By, (6.2.1)
0 0
with
N
N (dz, du) =N 2(5 dx du) and ¢N*%(dx) z_: dm for all r € [0,T7.
The reward value of player i associated with control rule/strategy @ := (a!,...,a”) is then defined by

N T . — a . . —
Jifa] .= E® [/O L(t, X{[al, o™ %%, " ,aé)dt+g(XHa]pr’X’“)}
and for 8 € A(vy), one introduces the strategy (@ =%, 3) € A(vy)N by
(a[_i]vﬁ) = (alv e 70[1‘—175,041’-1—1’ e ’aN)'
Definition 6.2.1. For any € := (e1,...,ex) € (RN, @ is a e-Nash equilibrium if

Ji[a) > sup J; (( ~i] ,B)) — €, for eachi € {1,...,N}.
BeEA(vN)
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6.3 Mean field games of controls

6.3.1 ¢-Strong mean field game equilibrium

On a fix probability space, we formulate the classical MFG problem with common noise including the (conditional) law
of control.

For a fixed v € P,(R™), let
Q= R"xC"xC"

be the canonical space, with canonical variable £ and canonical processes W = (Wy)o<i<r and B = (By)o<i<T, and
probability measure P, under which £ ~ v and (W, B) are standard Brownian motion independent of £. Let F = (Fs)o<s<r
and G = (Gs)o<s<T be defined by

Foi=0{&{,W,,B,, 7€1[0,s]} and Gs :=0{B,, r€[0,s]}.

Let us denote by A(v) the collection of all U-valued F—predictable processes. Then given o € A(v), let X* be the unique
strong solution of the SDE (e.g. Theorem 5.5.3): EF*[|| X¥|P] < 0o, X§ =&, and for t € [0,7],

t t
X = X5+ [ WX s o)+ [ o{n X2 T 0, ) AW, + 00 (6.3.1)
0 0

with ¢ == L% (X2, o |Gy) for all r € [0, 77, and also denote pu := LF(X|G,) with r € [0, 7.

Given a € A(v), and X solution of (6.3.1), for every o/ € A(v), let us introduce the unique strong solution X*" of:
EFv [[| X ||P] < 00, X$'™ = ¢, and for ¢ € [0,T],

t t
X = X" +/ b(r, X2 ali?A.,ﬁng/r)dr"'/ o(r, X5, uin B2, al)dW, + oo By, Py-a.e., (6.3.2)
0 0
and the value function ¥
T ’ !
U(a,a’) :=EP [/ L(t, X% ugs iy a)dt + g(X30%  u®) | (6.3.3)
0

Definition 6.3.1. For any € € [0,00), we say « is an e-strong MFG equilibrium, if

U(a,a) > sup VY(a,a’) —e. (6.3.4)
a’ € A(v)

For all « € A(v), let us define

-1
P*:=P,o0 ((N?)te[O,T]y (N?)tE[O,T]a6(ﬁ$)(dm)dta6(ﬁ$)(dm/)dt73) :
Ps(v) and for each € € [0,00), Pg(v)[e] denote the subsets of P(Cpy x Cpy x M(PE) x M(P{) x C*) defines as follows
Ps(v) :={P% witha € A(v)} and Posw)]e := {P*, with v is an e-strong MFG equilibrium}.

In other words, Pg(v) is the subset of all controlled McKean-Vlasov processes of type (6.3.1), and Pg(v)[e] consists of
all e-strong MFG equilibria. In what follows, the use of these forms of sets will become clearer.

6.3.2 Measure—valued MFG equilibrium

Inspired by the Fokker—planck equation satisfied by the couple (LF~ (X22|G,), LP (X o/s|gs))se[0 7]
(6.3.2)) and the discussion in Chapter 4, we carefully formulate the notion of measure-valued control rules which is
essential for the notion of measure—valued MFG equilibrium that will be introduced just after.

(see Equation
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6.3.2.1 Measure—valued control rules

Denote by M := M(P}%) the collection of all finite (Borel) measures ¢(dt, de) on [0, T] x Pf;, whose marginal distribution on
[0, 7] is the Lebesgue measure ds, i.e. g(ds,de) = g(s,de)ds for a measurable family (q(s,de))scjo,7] of Borel probability

measures on Pp;. Let A be the canonical element on M. We then introduce a canonical filtration FA = (ftA)ogth on M
by
Fi=o{A(C x[0,5]) :Vs<t,CeB(PE)}.

For each g € M, one has the disintegration property: ¢(dt,de) = ¢(t,de)dt, and there is a version of the disintegration
such that (¢,q) — q(t,de) is FA-predictable.

The canonical element on Q= Cyy x Cy x Ml x M x C* is denoted by (u,(,A°, A, B). Then, the canonical filtration
F = (Ft)icjo,r] is defined by: for all t € [0,7]]

Foi=0{pien., Cenos Afn.s Aens Bin. },

with A7,. and A4s. denote the restriction of A° and A on [0,t] x P} (see definition 6.1.1). Notice that we can choose a
version of the disintegration A(dm,dt) = A;(dm)dt (resp A°(dm,dt) = Af(dm)dt) such that (A¢)sepo,r) (resp (Af)iejo, 1))
a P(Pg)-valued F-predictable process. Let us also introduce the “fiz common noise” filtration (at)te[O,T] by

?t = J{Ct/\-> A, Bt/\~}-

We consider £ the following generator: for (¢, z,m,m/,u) € [0,7] x R™ x C}, x Pt x U, and ¢ € C?(R")

Lip(x,m,m! u) = Lyo(x,m,u) + Loz, m,m’), (6.3.5)
where
Lio(x,mu) = %’I‘r[ao(t,x,wt/\.,u)Vng(x)] +0°(t, x, ., u) T Veo(z), (6.3.6)
and
Loz, mm') = %Tr (0% (8, mn., ) V2p()] + B (t, mem, ') T Vi (@), (6.3.7)

Also, for every f € C2(R™), let us define N,(f) := Ny[ui, A°, ¢, A](f) by
Nl A%, A = = ouB)op) — oo~ [ [ B 0B )
- [ =Bl msamar 638
and for each € P(R"), the Borel set Z, by
L = {m e Ppm(de,U) = w(daz)}.

Definition 6.3.2 (measure-valued control rule). For every v € P(R"), we say P € P(Q) is a measure—valued control
rule if:

° P(,uozy) =1.

e (Bt)iejo1) s @ (P,F) Wiener process starting at zero and for P-almost every w € Q, Ni(f) =0 for all f € CZ(R")
and every t € [0,T].
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e Forallt e |[0,T],
LY (A5n.1Ge) = LV (A30.|Gr), P -ace. (6.3.9)

e For dP ® dt almost every (t,w) € [0,T] x Q, A{(Z,,) = 1.
We shall denote Py () the set of all measure—valued control rules with initial value v.

Remark 6.3.3. To do an analogy with Section 6.3.1 ( the strong “point of view” ), in order to give a better intuition of
this definition, here, p plays the role of (LF» (X[ |Gt))tefo,r), A° that of 55%( )(dm)ds, ¢ and A represent the

fized measures pu and oge (dm’)ds, and B is the common noise.

!
X2 ar|g,

The next example shows that, because of condition (6.3.9), the set Py () cannot be closed in general. As Py (v) is not
closed, the proofs become much more delicate (see for instance Proposition 6.5.8 and also Lemma 7.4.2).

Example 6.3.4. Let us consider to simplify T =2, n=1,£=0, U =[0,1], b(t,z,m,u) =u, and o = 1. Let ((AZ,IE?, @) be

~

a probability space supporting a [0, 1]—uniform random variable U, and a F-Brownian motion W independent of U. We
consider for each integer k > 2,

ok = Uligpo,) + Luea, lic(r,z) and BE = 1lyea, for allt € [0,T] where Ay := Uf;é [j/k, Jjlk+ 1/2k).
Let us define for any integer k > 2, the processes X = fo Brds +W., mk := 5046 (du)m(dz) with m € C)y, fized, also
b = LP(XF|U), AF(dm)dt = 8, (dm)dt, and AP°(dm)d == 5, x.c (dm)dt

where m° = Ok (du)uk(dz). It is straightforward to check that

Lﬁ(uk,ﬂ,Ak’o,Ak) € Pv(do) for each k € N*,

and (E@(uk,ﬂ,Ak"’,Ak))keN* is relatively compact for the weak topology. For P> € P(Q) a limit of any sub-sequence,
one notices that for all t € [0,1/2]

EP™ { /0 t(Id,m(du,R))AZ(dm)ds] _ EP” [ /O t(Id,m(du,R))AZ(dm)ds‘Am}
£ EP™ [ /O t(Id,m(du,R))Az(dm)ds‘ATA} - /O (1, m(du, R)) A (dm)ds, P -ace.

therefore the condition (6.3.9) is not verified, then P> ¢ Py (dp).

Now, using the measure-valued control rules, we introduce the notion of (e-) measure-valued MFG solution.

6.3.2.2 MFG solution
For all (m,¢°,n,q) € (C%, x M)?, one defines

-

Definition 6.3.5. For all v € P(R") and € € [0,00), P* is an e-measure-valued MFG solution if P* € Py (v), and for
every P € Py (v) such that LY (¢, Ay(dm)dt, B) = L (¢, A¢(dm)dt, B), one has

(L°(t,-,m,-),m)q; (dm) + /73" (L*(t,-,n,m'), myqe(dm’) | dt + (g(-,n), 77).

n
U

EP [J(u, A°, ¢ A)] > EP [T(1, A°, ¢ A)] — e, (6.3.10)
and for P* almost every w € Q,
Af(dm)dt = Ay (dm’)dt and ¢ = p. (6.3.11)

When € = 0, we just say P* is a measure—valued MFG solution.
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For any v € P(R™), Py, (v)]e] is defined by
Py(w)e = {All e-measure-valued MFG solutions associated with the initial condition v},

again when € = 0, we shall denote Py, (v)[0] by Py (v).

Remark 6.3.6. Looking at this kind of measure-valued solution is largely inspired by the notion considered in Chapter 4 in
the McKean-Vlasov setting. However, our notion of (e-) measure-valued MFG solution enters completely in the framework
of MFG solutions considered in Carmona, Delarue, and Lacker [49]. Notice in particular the presence of equality (6.3.9),
which corresponds to the point (4) of [49, Definition 3.1]. Also called (H)-hypothesis, this means the fact that: at time
t € [0,7T], any additional randomization of the "control” Ay must be conditionally independent of future information
given current information at time t. Condition (6.3.11) is the analog of the well-known consistency property in the MFG
framework. Without taking into account the law of control, one of the main differences of this notion of MFG solutions
is the optimality conditions (6.3.10) and (6.3.4). Here, sometimes a small error € is authorized. With this condition, the
MFG solutions turn out to be more flexible (see the Theorem 6.4.1 and Theorem 6.4.2).

Remark 6.3.7. Notice that the previous definitions of the strong MFG equilibrium and N -players games cover the case
without common noise. Indeed, for the non common noise case, it is enough to take cp = 0 and £ = 0 (see the previous
chapters). When g =0 and £ # 0, B can be seen as an additional noise.

The next proposition ensures that our measure—valued MFG solution definition using Fokker—Planck equation indeed
generalizes the classical notion.

Proposition 6.3.8. Let p' > p and v € Py (R™). Then for all € € [0,00), Pg(v)[e] € Py (v)]e].

Proof. Let a be an e-strong MFG equilibrium, and its corresponding probability P* € fg (v)[€]. Tt is straightforward to
check that P* € Py (v). Let P € Py (v) such that £F" (¢, Ay(dm)dt, B) = L£F (¢, A¢(dm)dt, B).

By Lemma 6.5.2, there exists a sequence of Borel functions (7*)gen- satisfying for each k € N*, % : [0, T] x R™ x C" x
C' % [0,1] = U s.t. if 4f(2) := v*(t, &, Win., Bin., 2), Py—ace. for all (t,z) € [0,7] x [0,1], one has (v¢(z))sef0,1] € A(v) for
each z € [0,1] and the value function W (e, v*(2)) (see definition (6.3.3)) satisfies: [0,1] 3 z = ¥(a, 7*(2)) € R is Borel
and

1
lim U(a,v"(2))dz = EP [J (1, A°, ¢, A)].

k—oo Jq

Consequently,
1
EP" [J(u, A%, ¢, A)] = (@) > lim [ W(a,7%(z))dz — e = EP [J(u, A%, ,A)] — e,

k—o0 Jq

as obviously A;(dm)dt = A9 (dm)dt and p = ¢, P*-a.e., we can deduce that P* € ﬁ:/(u)[e], and conclude the proof O

6.4 Limit theorems

The main results of this chapter are now given in the following two theorems.

Theorem 6.4.1 (Limit Theorem). Let Assumption 5.5.5 hold true, € € [0,00), (€;)ien- C (0,00), and v € Py (R™) with
p > p.
(i) For each N € N*, let @™ be a (e1,...,en)-Nash equilibrium, then the sequence (PY)yen- with PN := PN[a"] e
P(Q) is relatively compact in W,(Q) where
-1
(am')ds, B)

aN a
PN[aN] = ]P’,]jv o (((piv’x’ )te[O,T]7 (‘pé\f’x’ )tE[O,Tb(S(Soi\I,EN)(dm)dSﬂ 5(@5’31\])
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and

N

if lim — Zei = €, then each limit point P°° is an e-measure—valued MFG solution.
N—oco N =1

(ii) Let (P¥)ren+ C Ps(v) such that P* € Pg(v)[ex], for each k € N*. Then (P*)ren- is relatively compact in W,(9),
and

if klim €x =€, then each limit point P> is an e-measure—valued MFG solution.
— 00

In particular when € = 0, P is a measure—valued MFG solution.

Theorem 6.4.2 (Converse Limit Theorem). Let Assumption 5.5.5 hold true, € € [0,00), v € Py (R™) with p’" > p, and
P* € Py (v)[e].

(i) There exists a sequence (e )ken+ C [0,00) satisfying limsupy,_, ., €x € [0, €] such that:

(i.1) if € # 0, one can find a sequence (PF)pen- with PE € Py(v)[ex] for each k € N*, and P* = klim Pk, for the
—00

metric Wy. -
(i.2) if £ =0, one can get a sequence (P¥)(; . en+xjo1] C Ps(v) with for each k € N*, z — P¥ is Borel measurable
and

1 1
/ PFdz € Py (v)[ex] and lim Prdz = P*, in W,.
0

k—oo Jo

(#4) There exists a sequence of positive numbers (€;);en+ such that limsupy_, oo % Zfil €; € [0,€], and for each N € N*,
a (e1,...,en)-Nash equilibrium @ = (a¥N, ... a™N) such that

N _n -1
P* = lim P} o ((‘Piv’x’a Jeepo.1) (910 )te[o,Tb5(¢5,5N)(dm)d3a5(wév,afv (dm’)ds,B) ; for Wy,

N—o0

)

Remark 6.4.3. Theorem 6.4.2 and Theorem 6.4.1 give a general characterization of solutions of MFG of controls by
connecting measure-valued MFG solutions, approximate Nash equilibria and approximate strong MFG solutions. In the
presence of law of control or empirical distribution of controls, our limit theorem results seem to be the first which give this
kind of characterizations under relative general assumptions. FEspecially, approzimate strong MFG solutions and their
convergence result have never been considered in the literature. Notice that they also contain part of the most results of
the case without the distribution of controls mentioned in Lacker [103]. Let us emphasize there is no existence result in
these theorems, all results are given after assuming existence results. In Chapter 7 (see below), we discuss some existence
results.

The next corollaries are just a combination of Theorems 6.4.2 and 6.4.1. The first mentions the closedness of ﬁ/ and
the second a correspondence between approximate Nash equilibria and e-strong MFG solution.

Corollary 6.4.4. Suppose that the conditions of Theorem 6.4.2 and Theorem 6.4.1 hold. For each € € [0,00), Py, (v)[€]
is a closed set for the Wasserstein metric W,,.

Corollary 6.4.5. Let us stay in the context of Theorems 6.4.2 and 6.4.1 with £ # 0. For any @ a (e1,...,ex)-Nash
equilibrium, with limy_, %Zivﬂ ¢ = 0, there exists, for each convergent sub-sequence (PN*[@™*))nen+, a sequence
(P*)ren+ such that:

for each k € N*, P* € Pg(v)[6)] with lim 8 =0, and lim W, (PVe[@k], PF) = 0.
k—o0 k—oo
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6.5 Proofs of limit theorems

6.5.1 Limit of Nash equilibria

In this section, we show some technical results needed to prove our first limit theorem result, namely Theorem 6.4.1.
Before proceeding, let us give a reformulation of the measure-valued control rules which will be necessary for our proof. To
make an analogy with the strong point of view, we want here to get a Fokker-Planck equation involving £ (X% —0¢B|G7)
instead of £F (X ®|Gr). To do this, all coefficients must be shifted. Let us define, for all (t, b, 7, m) € [0,T]xC*xC}, x PL,

mlbl(dy) = [ 3, Q). mibddudy)i= [ 3o (dymidu,dy), (6.5.1)

X

and any g € M,
g [bl(dm)dt = / B (o) (. (6.5.2)

In the same way, let us consider the “shift” generator EO,

~

1
Lylely b, u) o= ST [a®(t,y + ooby, 7, u) V0 (y)] + 0°(t,y + ooby, 7', u) T Ve(y), (6.5.3)
and also

[0°,a°](t,y, b, 7', u) := [b°,a°](t,y + ooby, 7', u) and [b,6](t, y, b, w’,m’, u) := [b,0](t,y + ooby, 7', m’, ).

~

Notice that the functions [b, 6] : [0, 7] x R™ x C* x CJ}, x U — R™ x S"*™ is continuous and for each b € C*, [b,5](-,-, b, -,-)
verify the Assumption 5.5.5.

Next, on the canonical filtered space (2, F), let us define the P(R")-valued F-adapted continuous process (Vt)tefo, ) and
the Pp—valued F-predictable process (©y)icpo,7] by

V(@) = pe(0)[-B(@0)] and O4(@)(dm) := AL (@)[—B(@)](dm), for all (t,&) € [0,T] x Q. (6.5.4)
Lemma 6.5.1. Let v € Py (R") with p’ > p, and P € Py(v). Then, ©(Zy,) = 1, dP @ dt, a.e. (t,0) € [0,T] x Q, and
P-a.e. 0 € Q, for all (f,t) € CZ(R™) x [0,T],

=i - - [ L BN BLCmdud0)O )

‘/o / , / LY (1w € )9 (dy) Ap(dm )

Moreover, there exists a sequence (G*)yen-, such that for each k € N*, G* : [0, T] x C* x C}, x M(Py) x [0,1] — PE is a
continuous function and

lim

P / _ pP / .
Jm | L (%k(t,Bm.,cM.,Am,n) (dm )dt,B,(,A)dnfE (@t(dm )dt,B@,A), inW,. (6.5.5)

Proof. The first point is just a reformulation of the process N(f). For (6.5.5), as P € Py (v), and © is a function of
(A°, B) one has: for all t € [0, T

EP (@t/\' |§t> = [,P(@t/\. |§T)7 P —a.e.,

recall that G; := 0{(a., A¢n., Bin.}. By (an easy extension of) Lemma 4.8.2,
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sup / |2|P 9, (w) (dz) +EP{ sup / x|p/ut(dx)} < K[l +/ |:U/ply(dx’)}, P-a.e. w € Q.
n 1 JRrn R™

t€[0,T] tel0,T

Define T' := {m €EPl: Jpn ly|P" m(dy,U) < R’}, where K > 0 is such that K > K{l + fan |17’|”l1/(dx’)}7 with

K is a constant previously used. Notice that I' is a compact set of P,(R" x U), and one has ©,(I') = 1, dP ® dt,
a.e. (t,w) € [0,T] x Q. By Proposition 7.4.1, there exists a sequence (G*)en~, such that for each k € N*, GF :
[0,T] x C* x C3}, x M(Pp) x [0,1] — Py is a continuous function and

hm/ EP (1Ben on o ) (B2 B G, A) dn = LP <@t(dm’)dt, B¢, A).

6.5.1.1 Technical lemmas

To take into account some additional randomness necessary to prove our result, let us introduce the filtered probability
space (Q,F, F,P,) which is defined as follows: € := [0,1]x[0, 1] xQ, F := (B([0, 1]®[0, 1]) ® F¢)1e[o,r] and P, := ARARP,,
with A the Lebesgue measure on [0,1]. Let (Z, N) be the canonical variables on [0,1] x [0,1], we extend naturally
the variables (Z, N) of [0,1] x [0,1] and the variables (Xo, W, B) of Q on the space €, to simplify the same notation
(Z,N, X0, W, B) is kept. Also the filtration (gAt)te[O,T] is defined by

G = o{N, Bip.}, for allt € [0,T].

Let us emphasize, after extension of all variables defined on (Q,F,F,P,), we keep the same notation on (Q, I/E‘\, F , I?Pl,)

The following lemma establishes a result which implies that any measure—valued control rule satisfying some technical
conditions can be approximated by processes of type X** (see Definition 6.3.2).

Lemma 6.5.2. Let Assumption 5.5.5 hold true, v € Py (R™) with p' > p, and P € Py (v). For any sequence (a*)gen+ C
A(v), there exists a sequence of U-valued F—predictable processes (V¥ )en such that: if

D a® ’ -1 ’ -1
lim P, o ((ut )te[O,T],(S(H?k)(dm )ds, B) =Po (C,At(dm )dt, B) ,

k—o0

then, with the unique strong solution X of:

t

t
th = §—|—/ b(r7 Xf,,uo‘k,ﬂfk,'yf)dr +/ U(r, Xf,/ﬂk,ﬂffk,vf)dWr + 09Bt, forallt €[0,T], P,-a.e..
0 0

one has

1 -1

lim B, o (uk-f,(sﬁkj (dm)ds, 7, 5 &, (dm')ds, B) ~—Po (p,A:(dm)ds,g,At(dm’)dt,B> ,

j—o0 (m& J

where for all t € [0,T), p¥ := Eﬁ"(fﬂét), and [iF = £§"()?f,yf|§t) and (k;)jen C N* is a sub—sequence.

Proof. Step 1: Reformulation: For P € Py (v), by definition, P-a.e. w € Q, Ni(f) = 0 for all f € CZ(R") and
t € [0,T]. By Lemma 6.5.1, recall that (J¢):e[0,7) and (04 )seo,r) is defined in (6.5.4), one has ©;(Zy,) = 1, dP @ dt, a.e.
(t,w) € [0,T] x 2, and P-a.e. w €, for all (f,t) € CZ(R"™) x [0,7],

0=(f,%) — //H/RHXUEO (y, B, ¢, u)ym(du, dy)©,(dm) dr—/ /n Rn/j *fy, ¢, m )9, (dy) A, (dm')dr.
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Step 2 : Approxrimation: By Lemma 6.5.1, there exists a sequence (G!);en-, such that for each [ € N*, G': [0,T] x C* x
Cyhy x M(Pf;) x [0,1] = Pp; is a continuous function and

im [P (5

=00 Jo

61 (18 con hon ) (@) B G, A)dn = £° (8y(dm')dt, B,¢, A).

Now, we apply Proposition 4.7.9 (see also Proposition 4.7.7). First, there exists a sub-sequence (Ix)gen+ C N*, such that
if A¥(dm')ds := 5ﬁak (dm’)ds, and

m} := G (t, Byn., gy, Aby . N) and ©F (dm)dt := de (dm)dt,
one has

~ . -1 1
lim B, o (@’;(dm)ds,ua’”,Ak,B) — lim [ P (5@ (Brnon on ) (dm)dt,(,A,B)dn=L‘P<®t(dm)dt,g,A,B>.

k—o0 l—oo Jg

Next, under Assumption 5.5.5, by Proposition 4.7.9 (with separability condition see Remark 4.7.11), as (X, W) is P,
independent of (B7uak,ﬁak)keN*, there exists a Borel function R¥ : [0,7] x R x €}, x M x M x C" x C* x [0,1] — U,
and if we let X* be the unique strong solution of: for all ¢ € [0, 7],

t t
XF=Xo+ / b(r, XF, B, " 12" A )dr + / 6(r, XE B, p i AR aw,, B, ae.,
0 0

where G := (gf)sE[O,T] = (U{:U'?/Iid @I;A~’ Alg/\wBs/\})SE[O,T]a

= RR(t Xo, ps, 08, AL Win, Bin, Z), 0 o= L8 (XF,F|GF) and 0% := 7+ (XF|gF),

k— o0

e T
then lim EF~ { / Wp(ﬁf,mf)pdt] =0, and
0

lim £ (9%, VF5 5™ AR B) = £P(9,0,¢, A, B), in W,
j—o0

where VF(dm)dt := o5« (dm)dt and (kj)jen- C N* is a sub-sequence.

Step 3 : Rewriting: Notice that, as G* C @, and (Xo, Z,W) are @,ﬁindependent of @, one has Eﬁ" (th,yﬂgf) =
£ (XF, ’yt’“|§’7t), P,a.e. forall t € [0, T]. Using definition of [b, 4] (see the equations (6.5.3)),

t t
Xf =¢ +/ b(r, Xf + UOB,.,/,LO‘k,ﬁf.‘k,’yf)dr +/ 0(7‘, Xf + UoBr,uo‘k,ﬁfk,%’?)dWr, for all t € [0,T], P,—a.e..
0 0

Denote X* := X* + oo B, one finds

~

¢ ¢
Xk =¢ +/ b(r, Xff,uak,ﬁ?k,'yff)dr —|—/ o(r, Xf,u"‘k,ﬁﬁ‘k,'yff)dWr + 0oBy, forall t € [0,T], P,-a.e..
0 0

It is straightforward to check that the function
(7',q,b) € Cly x M x C* — (n'[b], ¢;[b](dm)dt, b) € C33, x M x C*

is continuous. Consequently, one has
: P, ((pP, Tk | P
s (£ (X216 om0

— lim £P (9% [B], ;' [B](dm)dt,uakj,6(7akj)(dm’)ds,B) = LP (9[B], 0,[B](dm)dt,(, A, B), inW,.
I

J—00 s

ok /
(P (@9 0591,y (A8 177, 8 vy () s, B)
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~

After calculations (9[B], ©;[B](dm)dt, B) = (u, A°, B), P,—a.e. Then

[N k. -~
(LF (X7 a7 1Gs))

lim £Fv ((CP" ()?51 ‘gAS))se[o,T] 9

j—o0

kj ° .
(dm)ds, u* ,6(ﬁakj)(dm')ds,3) = L7 (u, A (dm)dt, ¢, A, B), in W,

s

()A(k, ¥*)ren- is the sequence we are looking for.
O

Now, we consider the case of N-player games. Loosely speaking, we will show that: given the controls @'V := (041, oo ),
replace one control o’ by another £ has no effect on the empirical distribution (™% oN:@) (see Definition 6.2.1)
when N goes to infinity.

Let v € P,(v) and Assumption 5.5.5 hold true. Given N € N*, (al,...,a) € A(vn)Y and sV € A(vn). Let us
introduce, for each i € {1,..., N}, the unique strong solution X of: for all t € [0, 7],

T

t t
X} =Xj+ / b(r, X5, N XA N 5N ydr + / o(r, X7, VX QN NYAWL + 00 By, P -ae.,
0 0

where (o™X oN:@) correspond to the empirical distributions associated with the controls @ := (a!,...,aN) (see

Definition 6.2.1)

Lemma 6.5.3. There exists a constant K > 0 (depending only on the p-moment of v ) such that: if @™~ := (a[_i],liN),
for each i € {1,...,N}, one has

_N —N,—i i 1 3
(EH"VN{ sup W, (g 07 o %8 )} +EPVN[ S |XZ_X2[O{N’_ZHPD =AN
te[0,1] t€[0,T]

Consequently, limsup W, (QN, @N) =0, where

N—o00

K Py

N
N . l N i[=N,—i1 N,X,aVt ‘ , -1
Q = N Zzzlpy e} (X [Oé ]790 75( N N,ENv—t)(du,dm )dt) ,
and

N
~ 1 ~. - -1
QN = N E ]P)JVV o (Xl, QON’X’O‘N,(S(K?, SDN’EN) (du, dm')dt) .
i=1 )

Tt

Proof. This proof is a successive application of the Gronwall’s lemma. For j € {1,..., N} with j # ¢, for all ¢ € [0,T],
one finds

EFY { sup | X7 [@ 7] —xg[aN]y”]
s€[0,t]

(e[ )

t ) _ s _
<o(E] [ s [RUETT - XIVP 4 sup Wy T (N ) ),
0 s€(0,r] s€[0,7]

0] (r X, X N ) o] (r XE V), VX T )

then by Gronwall’s lemma,

t ) B o B
B | sup (U] - XU | < (B | [ sup W (XG5 )
s€[0,t] 0 s€[0,r]
(6.5.6)
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Next, using result (6.5.6),

_N,—i — —N,—i —N
EPIJ,V |: Sl[lp] Wp (Soé\/,XyOtN ’SDéV7X70N)p + Wp (SO£V704 7%0?[70[ )p:|
s€[0,t

1L v . - . p(miv,af;)p
< C’( ZIEPV [ sup |XJ[a@™ 77 —Xi[aNHp] +7N )

IA
Q
7 N
‘)—‘
IX I
M=~
&=

t
N —N,—i —N —N,—i —N
P |:/O sup Wp(@i\/,x,a 7905’)(’& )P +Wp<¢TN,a 7()Oi\/',a )pdT:|

j=1,ji s€[0,r]
1 py i =N, —i i~ p(“z]tv’ai)p
e |, e e+ S
N -1 p~ ! NXaV "t NXaVv\P NaV—t  NaV\P
SC N EV 0 S%P]Wp(ws’ ’ ﬂws’ ’ ) +WP(SOT" 7507" )d’l”
se|0,r

+ I]Rn |I|p1/(dx) + Sup(u,u’)EUXU p(uvu/)p
N N ’

by Gronwall’s lemma again,

N vxE w0 Na LJePr(de) | supgeuxw p(u )’
]Eﬂl’f,v[ sup W N, xXaV 7 N,xXaV p+W N,aN 7 N,aV p] <C(fR | + , )
se[oli)t] p(@s (ps ) p(@t (pt ) — N N
(6.5.7)
To finish,

EP { sup |Xi[aN’*i] — X’;ﬂ
s€0,t]

t . . - _ _
< C(I[-E]PIVV [/ |[b, o] (r, XL[@™ 7], goN’X’aN’ﬂ,gofy’aNﬂ,/ifﬂV) — [b,o](r, X}, <pN7X7aN,go7]}I"’N,n7JY) pdr])
0

N t . . ~. —N,—i —N —N,—i —N
SC(EP" {/0 Zt[ép}lxi[@N’ - X P+ Zt[gp]Wp(soiv’X’“ A M o L (N A )per,

and thanks to Gronwall’s lemma and result (6.5.7), one has

. . ~. n pV(dJC) Sup( ')EUXU p(u,ul)p
IEPIVV[ sup |X:[@V ) - X¢ p] §0T<fR il + —= ,
SG[O’T” ol J= Xl N N

It is enough to conclude. O

For similar reasons to those mentioned in Lemma 6.5.2, for each N € N* the space (QN,IFN,.FN,IP’IJY) needs to be
enlarged. Let us introduce the filtered probability space (QN,FN, FN PY) as follows: OV :=[0,1] x [0,1] x QN FN :=
(B([0,1]®[0,1]) @ F )¢ejo,r) and I@,ﬂv = A®A®PY with A the Lebesgue measure on [0, 1]. Let (Z, N) denote the canonical
variables on [0, 1] x [0, 1], we extend naturally the variables (Z, N) of [0, 1] x [0, 1] and the variables (Xo, W, B) of Q" on
the space (AZN, and keep the same notion (Z,N, X, W, B). After extension of all variables defined on (QV,FN, FN PN),
the same notation are kept on (QN,FN, FN PBN).

The next result is the analog of Lemma 6.5.2 for the N-player games. To summarize, it states that any measure-valued
control rule which verifies a particular constraint is the average limit of N-SDE processes of type (6.2.1).
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Lemma 6.5.4. Let Assumption 5.5.5 hold true, v € Py (v) with p’ > p, P € Py (v) and a sequence (a');en+ s.t. for each
N eN*, (at,...,a™) Cc A(vy) and

lim ]P’N ((pN’X’a, 5(¢N -

N—oo ¢

=) (dm/)dt, B)fl =P o (¢, Ay(dm/)dt, B)

There exists a sequence of Borel functions (¢~ )G, NYE{L,..,N}xN* satisfying ¢>N : [0, T] x (RM)N x (CHN x C* x [0,1] x
[0,1] = U, s.t. if for all t € [0,T], ’yZ’N is defined by vy’ N g N(t Xo, Win., Bin. ,Z,N), one has

N T
— Py i[~N,—i Q- GVt i [N, i o
Jim =) ER [/ L<t,Xt[OéN’ ], XA o ,%’N>dt+g(XT[aN’ ™% )] =E"[J(n, A%, ¢ A)],

N,—i .

where & Ny = (of,. TN Qe

:(a[_2]5717 ) "7a 7’}/7 ’a R

Proof. By Lemma 6.5.1, there is a sequence (G');en-, such that for each I € N*, G' : [0, T] x C* x C5, x M(Py) x [0,1] —
P(R™ x U) is a continuous function and

1
. P _ prP
lllglo ; L ((5@ (6 Benonaon ) (dm’)dt,B,C,A) dn=L (@t(dm’)dt, B¢, A).

Now, we apply Proposition 4.7.7. One can find a sub-sequence (Iy)yen+ C N*, such that if AN (dm’)ds := 6 y =~ (dm)ds,

mY = GV (t, By, o AN N) and O (dm)dt := O (dm)dt,
one has

-1

N —o00 l—o0

_ -1 1
lim BV o (@iv(dm)ds,goév’x’aN,AN7B) = Jim | CP(%z(t,Bm,gw )Am’n>(dm)dt,§,A,B>dn:Po(G),C,A,B)

Under Assumption 5.5.5, by Proposition 4.7.7 (with separability condition see Remark 4.7.11), there exists a Borel
function RY : [0, T] x R™ x C3, x M x M x C" x C* x [0,1] = U s.t. if (X?);eq1,... v} is the unique strong solution of: for
all t € [0, 7]

t t
Xi=Xi+ / b(r, X}, BN X N 41N Ydr 4 / 6 (r, X5 B o™X G N aW, B ae
0 0
where

N N
i, N 7 Ot 1
N = RN (4, X8, o % ON AN WL B, Z) = § : i ANy, and O = > Oxi,

=1

~r T
then lim EF {/ Wp(ﬁiv,miv)pdt] =0, and
0

N—o00

lim L5 (0N, VN N XY AN BY = £P(9,0,¢,A, B), in W,

j—o0

with VN (dm)dt := o5 (dm)dt and (Nj)jen- C N* is a sub-sequence.
As in the proof Lemma 6.5.2, we can rewrite (Xi)ie{1,__.,1v}~ Notice that, for all ¢ € [0,T]

t t
= Xp [ 60X 0B T G ) [ (X 00 VKT N S AW, B e
0 0
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Denote X' := X' + ¢oB, for all t € [0, 7],
t

t
X=X} +/ b(r, Xi’(pN,X,aN’gOiV,aN7%z;,N)dr_,’_/ o (r, X1, GNXFT N LNV AW 4 g0 By, BY ac.
0 0

~N
As the function (7/,¢,b) € C}j, x M x C* — (7’[b], ¢;[b](dm)dt,b) € Cp, x M x C* is continuous, if we note 9, :=

LN 5 GN._ LN s
N Qi1 (5(Xzﬁ:,N), and 9} := % > ;4 6)(;" one has

lim £ <1§Nj,5§zvj (dm)ds, @Nj’X’ENj,AiV-" (dm/)ds, B)

Jj—o0

— lim £F (9™ (B, ;9 [B](dm)dt, o™i ANi (dm’)ds, B) = LT (9[B], ©,[B](dm)dt, ¢, A, B),  in W,

j—o0

One knows (V[B], ©:[B](dm)dt, B) = (u, A°, B), P-a.e. then

lim P (5%' =, (dm)ds, NI X T AN () ds, B) = £P (1, A (dm)dt, ¢, A, B), in W, (6.5.8)

Jj—oo
Let us define
Vi .— (gl

thanks to Lemma 6.5.3, for each i € {1,..., N},

T
~ _ N, ~ . ) ) 1
(EP{,V [/ Wp((pi\f,a’v’(p;d,a]v )dr} + E}Pﬁv[ sup | X" Xz[azv,—zﬂp]) <K—,
0 te[0,T] LV

and lim sup W, (QN, @N) =0, where QY := % Zfil Lﬁy (Xi[an—i], @N’X’HNH,(S(’YLN LPN’EN,—i) (duw, dm’)ds) and @N =
N—oo s »Fs
% 27{11 EPI]IV (5(\'1’ ¢N7X7EN ’ 5(7;‘,1\71(‘9?7’51\’) (du, dm’)ds) .

Therefore, using Assumption 5.5.5 (especially the separability condition), the previous result combined with (6.5.8) allow
to get that

1 4 ; ; GVt Nahoi g i ~N,—i N
= lim NZEW[/ L(t, X[a ], VX oV 4Ny ar 4 g (X [at i, VXA
, 0

= ;IZEW[ /O Lt X, oV o N )dt 4 g (X, V) | = EP [, A%, A)].

6.5.1.2 Proof of Theorem 6.4.1 (Limit Theorem)

First point (i) By using Proposition 4.8.4 (a slight extension® ), one finds (P™V)yen- is relatively compact where

aN aN -1
PV =P} o ((%{V’X’ Jeeio,r): (0r )te[o,T],(S@év,aN (dm)dsaawév,EN (dm/)d&B) ;

LConsisting in taking into account a canonical space of type Q := Cyy X C, x M x M x ¢t and not Q := Chy X M x C¢ as in Chapter 4
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and each limit point P> of any sub-sequence belongs to Py (v). Next, let us show that P> € Py, (v)[¢]. To simplify, the
sequence (PY)yen- and its sub-sequence share the same notation.

Let P € Py (v) such that £ (C A B) = LP” (C,A,B). By Lemma 6.5.4, there exists (Ri’N)(i,N)E{l,A..,N}xN* a sequence
of Borel functions R*" : [0, T x (]R”)N x (CHN x C* x [0,1] x [0,1] — U, s.t. if we denote by

WZ’N = RHN (t, X0, Win., Bin., Z, N)’

for all ¢t € [0,T], and

aN’_i::(a_i],/ﬁi’N):(al,... i—1 i,N i+1“. N)

then

Nlﬂnooﬁ ZEP [ / (6, X @], VXA N N 4t g g (X[, N XA | = BP [ (A%, G A)].

Notice that, by independence of Z and N with of the other all variables
| X
= Ji (@, k5N (2,n))) A(dz)A(dn)
/0,1]x[o1]NZ ( )
T . . —N,—i NV~ N . . _N,—i
/ L(t, Xi @], X o AN de + g (X @ T, M) |,
0
where Iii’N(ZJl) = RWN (t,Xo,WM.7Bt/\.,z,n), for all (t,z,n) € [0,7] x [0,1] x [0,1]. Therefore

EP” [J(1, A, ¢, A)] = lim —ZJ

N—oco N

> i (/ ZJ a1 N(g, )))/\(d)/\(d)_iz]v: ‘)—EP[J( AOCA)]_
_Ngnoo [01 Ol]N z n N € - Hy » S

then EF™ [J(p, A°,(,A)] > EP[J(1, A°,(,A)] — ¢, for any P € Py (v) such that LP((,A,B) = L7 ((,A,B). 1t is
straightforward to deduce that for P> almost every w € Q, Ag(w)(dm)dt = Ay(w)(dm’)dt and {(w) = p(w). We conclude
that P> € Py, (v)[e].

Second point (ii) The proof of this second part is similar to previous proof. By using Proposition 4.8.4 (a slight
extension), one gets (P*)en- is relatively compact where PF € Pg(v)[ex] i.e. there exists o a e;—strong MFG equilibrium
s.t.

. -1
P¥:=P, 0 ((M? Jte(o,T]s (ﬂt )te[OT (La (dm)ds, ‘La (dm')ds, B)

Each limit point P> of any sub-sequence belongs to fv(ul . Let us prove that P> € f;(u) [€]. Again to simplify, (P*)en-
and its sub-sequence share the same notation. Let P € Py (v) such that £ (C:, At(dm’)dt,B) = [P7 (C,At(dm’)dt, B).
By Lemma 6.5.2, there exists a sequence of U—valued I/F\fpredictable processes (7¥)ren~ such that: if X* is the strong
solution of

t

t
Xk :§—|-/ b(r’vaMak,ﬂf‘kwf)dr""/ o(r, XE e 7:“’7" ,%)dW + 00By, forall t € [0,T], P,a.e..
0 0



166 Chapter 6. Convergence of Nash equilibria

then

~ . . —1 —1
lim P, o (,uj,ém(dm)dr, u 5 (dm')ds,B) —Po (,u,Aj(dm)dr,C,At(dm’)dt,B) ,

j—o0 Hs

where for all t € [0,T], uF := CP (XF|Gy), and ¥ := L (XF,7¥|Gy), and (k i)jen= C N* is a sub-sequence.
Then using Assumption 5.5.5 (especially separability condition), and P ,—independence of (N, Z) with the other variables,
one gets

EP™ [ (1, A°, ¢, A)] = lim EP [J(, A°, ¢, A)]

1=

~ T
: ki afi —afi K ki aF o
Z llm (EPV |:/ L(t?Xt s Hn. s Hy 77tk)dt+g(XT )y l):| _ekj> :EP[‘](/‘}”A aCaA)] B
0

j—o0

Obviously, for P*— a.e. w € Q, A?(w)(dm)dt = Ay(w)(dm’)dt and ((w) = p(w), we deduce that P> € Py ().

6.5.2 The converse limit result

This part is devoted to the proof of Theorem 6.4.2. We focus on the approximation of any measure-valued MFG solution
rule by a sequence of approximate strong MFG solutions. The approximation by approximate Nash equilibria follows
from this approximation.

When ¢ =0 and so B disappears, we need some additional randomness to get our desired results. Throughout this part,
in order to consider the cases £ = 0 or ¢ # 0, for each ¢ € {0, 1}, let us consider the filtered probability space (Qq F,F, Py )
which is defined as follows: Q := [0,1]7x Q, F := (B([0, 1]¢ )@ Ft)efo,r) and P? := A® 4@ P, with A the Lebesgue measure

n [0,1]. Let H denote the canonical variables on [0, 1]%, the variable H of [0 1]9 and the variables (X, W, B) of Q are

naturally extended on the space Q for simplicity the notation stays (H, Xo, W, B). Denote by (gt)te[O,T] the filtration
defined by

G, = o{Byn., H}, for all t € [0, 7).
Again, after extension of all variables defined on (2, F, F,P, ), the same notation on (Qq, F,F, ]IAD,%) are kept.

6.5.2.1 Some useful results
First, we give some results on weak McKean-Vlasov processes. This part is largely inspired by Chapter 2
Let v € P,(R™) and (Q,F, F,P) be a filtered probability space supporting
e a R™* valued (F,P) Brownian motion (W, B) and a R"valued Fy-random variable Xq such that £F(X,) = v

e a U-valued F-predictable process (a¢)¢ejo,7-

Denote by Q¢ the space C x M(U) x C™, ()~(,L~{, W) the canonical variable on Qg, F the associated canonical filtration.
Let us consider a R™ x P(Qg)—valued F-adapted continuous process (X, i) verifying:

t t
X, =xo+/ b(th,M,H?,ar)dr+/ o (1, X, 11, % 60) AW, + 0By, 1 € [0,7), (6.5.9)
0 0
and
fiv = L5 (XonUin, W] Bunes Fion. ) = £ (Xon Ui, W| B, )

with g = UA()E) oy = Eﬁ()?t,&t), and Uy (du)ds := dq, (du)ds, where (a¢)icpo,r) is the F-predictable process s.t.
Uy (du)ds := 85, (du)ds, in addition, (B, i) are P-independent of (Xo, W).



6.5. Proofs of limit theorems 167

Lemma 6.5.5. Let Assumption 5.5.5 hold true.
(i) If £ # 0, then ¢ = 0, H disappears, and there exists a sequence (a*)pen- C A(v) such that

T
Mg s

lim £ (Xa’“,W,B,\?{f,é(

k—o0

—_— (dm,du)ds) — P (X, W, B, jir 6

s s

)(dm,du)ds>, in W, (6.5.10)
where UF (du)ds = dqr (du)ds, and
Pk = P (X?Ak_,qu., W\g“t) Sy (ij\k_,qu_, W\g}), for allt €[0,T), B,-ae.

In addition, for each sequence (Y¥)ren- C A(v), there exists a sequence of Borel functions (¢F)pen« satisfying ¢F :
[0,T] x R® x C" x C* x C([0,T);P(c)) — U, such that if we let X** be the R"—valued F-adapted continuous process
solution of

t t
Xta’k = Xo +/ b(Tan’kvﬂakaﬁ?k,df)dr"_/ 0(T7Xg’k,p,ﬁr,¢f)dwr +00By, t € (0,77,
0 0
with ¢F = ¢*(r, Xo, Wyn., Bra.s firn.), dP @ dt-a.e., then one gets

lim W, <1f% o (Xak”k, )

k—oco

—1 —1
- k)(dm,dm’,du)ds> ,Po (Xa»k,ﬁ, 8o 3t ¢k)(dm,dm',du)dt> ) =0, (6.5.11)

(e 78

with 3 = L5 (X" 7F(G,), and @ = L7 (XP*, 0 | Bun.Fien.) for all t € [0,T).

(ii) If £ = 0, then B disappears and the previous results (i) i.e. (6.5.10) and (6.5.11) stay true with G, = o{H} for all
t € [0, T]. Moreover when [i is deterministic, ¢ = 0.

Remark 6.5.6. The techniques used to prove Lemma 6.5.5 are essentially borrowed from Proposition 2.3.12. The result
(6.5.10) is a particular case of Proposition 2.3.12, while (6.5.11) is proved by adapting the techniques of the proof of
(6.5.10). The result (6.5.11) is crucial for the transition from measure-valued MFG solution to the approximate strong
MFG solution as we will see in the proof in Proposition 6.5.8.

Proof. This proof is essentially a mimicking of the proofs of Lemma 2.3.10 Lemma 2.3.11 and Proposition 2.3.12, we
recall the main points used to finish our proof. Let (ex)ren+ C (0,00) such that klim €r = 0.

— 00
There exists the unique strong solution X* of:

€x Vi €rVt
Xf:Xo+/ b(r,Xf,u’“,ﬁ’ﬁ,af)dH/ o(r, XF, u" ik, af )AWE + 00 B, t € [0, 7], P-a.e.,

€L €k

k

with 7 = LP(th,aﬂBfAi,ﬁt,\.), uy = LP(XﬂBt’“A,,ﬁM.), a¥ is a piece wise constant control s.t. liinOz =a,af =0

when t € [0, ¢], and Wk .= Wev. — W, Bk .= Be,v. — B, . Using similar techniques as Lemma 2.3.10, one has

lim ]E]P[ sup | X} —Xt|”] =0. (6.5.12)
k—o0 te[0,7T]

Notice that for all k € N*, if U (du)dt := d,p (du)dt, and iy == LF(Xf U WBE,, Tien.), for all ¢ € [0, T, one has
fy = L8 (XE L ub  WBE, Bty = £F (XE, U, W|BF, %), Poae.

and (B, i*) are P-independent of (Xg, W) and under Assumption 5.5.5, there exists a Borel measurable function F* :
R™ x C" x C* x C([0,T); P(Qg)) x M(U) — C™ such that X* = F¥(Xo, W* B* % U*), P-a.e.
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Next by (an extension of) Lemma 2.3.11, on (Q¢,F, F,P9), there exist a [0,1]-valued uniform random variable vk
independent of (¢, B¥, W), and a (o{V*, &, Wia., BE,. }tefo,r)-predictable process (¥ )te[o,7] such that: if ( )tE[O ) is
the unique strong solution of

tVeg tVer
:g+/ b(r, X, f,gr, )dr+/ o(r, XF, jf,gr, KYAWE + oo BF, for all t € [0,T], P4-a.e.,

€k €k
with Gy := L7 (XF,5F|B*, VF) and ¢k := £F(XF| B, V%), for all £ € [0,T], then one has
cF ()?’f,z,?’f,wk,Bk,Zk) s (Xk,uk,Wk,Bk,ﬁk), (6.5.13)

where UF (du)dt := (5Ak (dw)dt, and Ct = (thA Uk ,W¥|B* V¥, for all t € [0, 7], Pi-a.c.

(i) When ¢ # 0, VF = ¢(Bc, x.), where ¢: C* — [0,1] a Borel function s.t. i (¢(Be,A.)) is a uniform law on [0, 1]. Let
us introduce the unique strong solution Z 7k of:

t t
:£+/ (r Z P ,vr,a )dr+/ (7" Z 0P ,vr,a )dW +ooBy, t €[0,T], Pe I-a.e.,
0 0
with oF := Eﬁg( k Ak|Bt,\ ) and vy = CF (Zk|BM ), then one finds
lim E@{ sup |ZF )?f}”} —0. (6.5.14)
k—ro0 te[0,T)

The results (6.5.12), (6.5.13) and 6.5.14 allow to deduce the first part of the lemma.

Now, let (1% : [0,T] x R™ x C" x C* — U)ren- be a sequence of Borel measurable functions. Define the unique strong
solution Z¥+* of

t t
E_gy / b(r, 9%, oF T ) dr + / o (r, Z9%, oF T W) AW, + 0By, t € 0,T], B9 ac.
0 0

where recall that o} = o (Zk aF|Bin.), v — [P (ZHBM,), and ¥F = F(t,&, Win., Bia.). Also, one introduces the
unique strong solution S¥* of
N eVt N koA erVt R koA N
Spk =g [ (ST A [ o(nBpk R T AW + 0Bl te 0.T), B
€k €k

1T R
with a piece wise constant control )% satisfying lim E™ { / p(F, wf)dt] =0, and ¥F = 0 with ¢ € [0, €], and recall
0

that Ct = ﬁpq (Xt ,’yk‘Bk V’“) and ¢F := CPq (X’“|Bk Vk) Using (6.5.14), one gets

lerEOEPE [ up | Zk §;¢v’“|P] =0. (6.5.15)
telo,

Under Assumption 5.5.5, one has S¥-F = H¥(¢, W, BF, ‘) 'Y’“) with H? : R" x C" x C* x C([0,T); P(Qg)) x M(U) — C™
a Borel function and Y¥(du)dt := 65 (du)dt
There exists a Borel function 8 : [O T] x R™ x C" x C* x C([0,T); P(Qg) x C* — U such that

Eﬁﬁg (€7Wk7Bk7E7 Tk) = Eﬁg (XO7Wk7Bk767 Bk)’
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with BF(du)dt := (555 (+Xo0.W5 55, . MJW%A»)(du)dt. Similarly to the first part (see Lemma 2.3.11 again), as we know
that the law of (¢, Wk, Bk, Z) under I@g and the law of (Xo, W*, B* [i*) under P are the same (see equation (6.5.13)),
using the independence of We, A. (w.r.t. P4 and P), if S** := H* (X, Wk, B* ik, ®F), where

OF (du)dt := 6 >(du)dt, one finds LF(SP*, Wk, B ik ®F) = £ (§¥k wk B Ck YR,

(6.5.16)

B (£.Xo, Wl BE, %, Wy n.

AP EA

and S := S®* satisfies
€xVt eVt
sk = X, +/ b(r, SO, uk ik, 68 dr +/ o(r, SOF, uk ik, oF) AW} + 0By, t € [0,T], P-a.e.
€L €k
where ¢ = B¥(t,Xo, WE ., BF ,1if\., We,a.). Notice that ¢¥ = 0 for dP ® dt-a.e. (t,w) € [0,€;] x Q, and ¢* is a
(U{XO, Win., Bin-s ﬁf/\_})te[ojrpredictable process. Let X®* be the strong solution of:

t t
XPF =X + / b(r, X0, 7%, oF)dr + / o (r, XPF, 1, 1%, ¥ AW, + 0By, t € [0,T), —ace.
0 0

then one has

lim EP[ sup |SP* — Xf’k‘p} =0.
k—o0 te[0,T]

—k ;  —k e 5 _ ; gk Pa S
Denote ¢, := LE(XP*, ¢F|B, i), ¥y = LE(ZF, f|BR, VP), & = LF(SPF, ¢F| B, i), 0, == LT (SP", BF|BF, VF), and

~

VF =L (Z), (0ar (du)ds);n., WF| B, V), to summarize, by combining (6.5.17), (6.5.16) and (6.5.15),

(6.5.17)

) (dm, du)dt)  CF (ZW“’ W,B,V*,§ (st 57 o) (A A’ du)dt))

Uy

. P k ~
hmksup W, (L’ <X¢ W, B’M’é(ﬁt o

i P(xok m ! P(apk 17k nk ok
ghmksupwp(c (X ,W,B,u,é(ﬁ?@f@?)(dm’dm,du)dt),ﬁ (s W B 6

et ap) (A am/, du)dt>>

+ limsup W (ﬁp (SM, Wk Bk Gk, 3 ) (dm, o, du)dt)  CF (§¢7’2 Wk Bk k. Bzt 5t o) (A, du)dt))

) (dm, du)dt)>

—k —k k
(AR

+ limsup W, (Ei;'q’ (gw’k, Wk, B, Eka 5( ;
k

P2 (S k Sk
Zi,gf’ﬁf)(dm,dm/,du)dt),ﬁ (Z WB,VE 5

EATRD
=0.
This is enough to deduce the second part of point (i) of this lemma.

(i) When ¢ = 0, it is enough to use the same technique as Proposition 2.3.12 i.e. B disappears, V¥ = H, and use the
variable H for the conditioning and repeat the exact proof like previously to obtain the result. In the case where [ is
deterministic, as mentioned in Lemma 2.3.11, V¥ (then H) disappears. There is no conditioning, and the proof is exactly

the same.
O

Let v € P,y (R™), in the next lemma, we stay on the filtered probability space introduced in Lemma 6.5.5 i.e. (ﬁq, @, j-:, @3)
for ¢ € {0, 1}. Recall that the notations on (Q4,F, F,P?) for all the variables defined on (Q,F, F,P,) stay identical.

Lemma 6.5.7. Under Assumption 5.5.5, for any a € A(v), there exists a sequence (ai’N)(LN)e{L.__,N}XN* satisfying for
each N € N*, (&"N);eq1,. Ny C A(vn) s.t.

.....

_ -1 —~ —1
lim PY o (QDN’X’QN,%N,EN (dm/)ds,B) —Pio (m,aﬁg (dm’)ds,B) :

N—oc0
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where @ = (aN, ..., a"N).

In addition, for any sequence (5i’N)(i,N)e{1,...,N}><N* satisfying for each N € N*, (f@'i’N)ie{l,m,N} C A(vn), there exists
a family of Borel functions ((Z;i’Mk)(i)N,k)E{l,_”’N}XN*XN* with ¢#NF 2 [0,T] x R™ x €™ x C¢ x [0,1] = U such that if
¢;’N’k = ¢i’N’k(ta X07Wt/\-7Bt/\-7H)7 cmd

. ~ X —1
pilVk .= P1 o (,ﬂka, 1, Oeion .k (dm)ds, oo (dm’)ds,B) ,

with @ N = P (Xta’wNYk,QSi’Nﬂ@) and pNF(dz) = Ed N (da, U), then one gets

N N
A | —[—i] i 1 AR °
lim lim 'N;Ji((a[ ]VK’N))_NZEP [J(p, A 7C,A)]‘=O.

N—00 k—00 :
i=1

Proof. Notice that (u®, %) are G-adapted then B—measurable in that case, consequently these variables can be extended
on (QN,FN, FN PN). The notation stays the same. Using (an extention of) Proposition 3.4.4, there exists (1/11’N)(i,N) a

sequence of Borel functions ¢V : [0, T] x R x C" x C* — U, such that if o™ := ¢"N (¢, X4, Wi, | By,.) for all t € [0,T],
and &V = (a®N ..., a%N), then one has

T

i Epﬁ’ NXaV o NaV¥ _a dtl = o.
N e teSE%,pT] W (Lpt i ) i 0 e (th 7Mt>

Next, by easy adaptation of Lemma 6.5.3 (successive application of Gronwall Lemma), there exists a sequence (C'y) yen-

converging to zero when N goes to infinity satisfying: for each i € {1,..., N}, if &V~ := (@~ %, k»N),

T

N N N~ N R a.ri N

EP [ / Wp(cpiv’ JAg)dt + sup Wp(npiv’x’ ,u?)} + EFv [ sup |X}/[(a R - X ’p} < Cy,
0 t€[0,T) te[0,T)

where X@+"" denote the unique strong solution of
a Ki.N . t i, N i N t i, N i N .
X = Xj —|—/ b(?", XOrT e, S, K )dT —I—/ 0(7‘, D G T T )dW; + 09 B;.
0 0

Therefore, limsup W, (QY,QY) = 0, where Q¥ := L YN P (Xi[aNfi],gpN’XﬂN"",a( n gDN,EN,ﬂ-)(du,dm’)dt),
N—00 Fe Py
and @ o= & S, £ (x5 (du d)t).

Thanks to this result and some techniques used in proof of Lemma 6.5.4 (with the separability condition), one has

N T
; 1 Py i=N,—i1 NXza¥~t Na¥Tt o iN i —N.—i7 N.X.aN i
ngnoo N;Eu {/0 L(t,Xt[a RPAES Lol a i )dt+g(XT[0é =1, N )
]. N IPN T o Hi,N o —a i N o Hi’N o
e | [ e e g0 =0
i=1

By the same techniques used in the proof of Lemma 6.5.5, for all ¢ € {0,1} (whatever £ = 0, or £ # 0, see also
Proposition 2.3.12), there exists, for each (i, N), (¢*V*)cn+ a family of Borel functions ¢»V-* : [0, T] x R" xC" x C* x [0, 1]
such that if ¢"™NF := §ENE (¢ € Win., Bia., H),

~ i,N,k -1 i, . -1
lim P9 o (X‘W BTN . ¢i,N,k)(dm’,du)dt,W,B> —PVo (X“’” Y oues N)(dm’,du)dt,Wl,B) ,
t ot

—a
k—00 (g my

we can conclude the proof.
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The following result is a combination of Lemma 6.5.5 and Lemma 7.4.2. Let v € P,/(R™), we continue to work on the

filtered probability space introduced in Lemma 6.5.5 i.e. (Q4,F, F,P?) for g € {0, 1}. Recall that, for the variables defined
n (Q,F, F,P,), after extension on (Q4,F, F,P?), we use the same notation.

The next proposition provides first an approximation of Fokker—Planck process mentioned in Proposition 4.8.3. And in

second, for a particular sequence of processes of type X aa (see Definition 6.3.2), it shows that there exists a sequence
of measure-valued control rules that has the same limit.

Proposition 6.5.8. Let Assumption 5.5.5 hold true and € > 0. For any P € Py, (v)[€], there exists a sequence (a*)pen- C
A(v) such that

—1
lim P9 o (ua’“,ua’“,aﬁ?k (dm)ds,éﬁ?k(dm')ds,B) =P, inW,.

k—o0

Besides, for any sequence (3% )pen- C A(v), there exists a sequence (QF)pen~ satisfying QF € Py (v) with QkO(C, A, B)_1 =

Po (C,A,B)71 for each k € N* and

lim W, ( o (¥, pu® s + (dm)ds, 0_ .k (dm')ds,B)_l,Qk) =0, (6.5.18)
k—o0 s Hs

where pf = LT (Xf‘k’ﬁk ’ét) and Tf = L% (Xto‘k"@k,ﬁﬂ@) for all t € [0,T]. In addition when £ # 0 then ¢ = 0 and H
disappears, and when £ = 0, one has ¢ = 1.

Remark 6.5.9. We emphasize that it is not easy to find a sequence of measure-valued control rules verifying (6.5.18).
Indeed, notice that the set Py (v) is not a closed set in general. Therefore a classical compactness argument does not

work here. Lemma 6.5.5 and Lemma 7.4.2 as well as the approximation result of Proposition 4.8.3 are very important
for the proof of this proposition.

Proof. let (ﬁ IF‘ ]-' ﬁ) be a filtered probability space supporting a R"— Brownian motion W and a ﬁo random variable
f s.t. EP(f) = v. Let us introduce the filtered probability space (Q,F, F,P) which is defined as follows: ) := € x €,

=(Fk® ]:t)te o,7) and P := P ® P. The variables (&, W) of Q and the variables (B, i, A°, ¢, A) of Q are extended on
the space € while keeping the same notion (&, W, B, u, A°, ¢, A). Also denote by (Gt)iejo,r) the filtration defined by

?t = G{BtA~;<tA~7AtA~}a for all t € [O,T]

AsP e f:, (v)[€], by Proposition 4.8.3, for any uniform variable Z P-independent of (&, W, B, i, A°, ¢, A), there exists a
sequence of F-predictable processes (af)jen- satisfying for each j € N*,

a{ = GI(t, &, pun., M., Win, Bin, Z), @fa.e., for all ¢t € [0,T],

where G7 : [0,T] x R™ x CJ}, x M(Pp) x C" x C* x [0,1] — U is a Borel function s.t. if X7 is the unique strong solution
of: for all t € [0,T]

t t o~ . — . ~
X7 :§—|—/ b(r, X7, 117, EP(Xﬂ,a{;|§T),ai)dr —|—/ o(r, X7, w?, LY (X2, 021G,), ad)dW, + 09 By, P-a.e.
0 0
where 1 = £P(X7(G,), and [ := £ﬁ5()?tj7a§ |G¢), then
lim [Wp ((LJ (dm)dt, At(dm)dt> + sup W,(ud, )| =0, P-a.e.

Jj—o0 te[0,T)

and consequently

lim £§((ﬂg)te[07T},5ﬁj (dm)dt, (Bt)te[O,T]) =Po (uA, B)fl, for the Wasserstein metric W,.

Jj—o0
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Recall that, as P € Py (v)[d, u = ¢ and A = A°, P-ace.. Define for all ¢ € [0,T], i} = Lﬁ()?fA_,ug’A_,W@), and
Ul (du)ds := 04 (du)ds. It is straightforward to check that: for each ¢ € [0,7], il = Eﬁ()?gA_,UgA,,W‘GT)v =
Lﬁ()?g/\.,utjh,W’BM.,ZZ{/\‘) = £ﬁ<)?gA.,Ug/\,,W‘B,ﬂj>, and (B, i) are P-independent of (&, W).

Let j € N* be fixed, for each ¢ € {0,1}, by Lemma 6.5.5, there exists a sequence (a*7)en- C A(v) such that

lim £7 (X“ C W, B,k L ak,j)(dm,du)dt) LH”(XJ W, B, i, .

t

o) (. du)dt), in W,,

where U¥ (du)ds := 6 r.; (du)ds, and
Ak,y gpq (XtaA d L{M’J,W]Qt) =P (ngvvj)ufﬂ,w@qﬂ), for all t € [0, T7, @g—a.e..

In addition, for each sequence (7%7)zen- C A(v), there exists a sequence of Borel functions (¢*7)pen- with ¢*7 :
[0, T] x R" x C" x C* x C([0, T]; P(C™ x M(U) x C™)) — U, such that if X*J is a R"—valued F-adapted continuous process
solution of

X/ :§+/ b(T,vaJ7uJ’ﬁi,¢7’f7J)dr+/ o(r, XM, pd il ¢ AW, + 09 By, t € 0,T], P-a.e.
0 0

where ¢F+J 1= ¢FI(r & W, BT/\‘,;?ZLA_), dP ® dt—a.e., then one gets

RO

s

lim W, <£P3 (x o™t ko L

k—o0

,(dm, dm’, du)ds), ﬁP’( J,ﬁj,a(ﬁj - d)k,j)(dm,dm/,du)dt)) =0,
tIt 1t
(6.5.19)
with 97 = CF (Xf‘k"j’vk’j ‘Q\t), Ef’j = [P (Xf‘kyj”k?j,vf’j@t% and 7/ = Eﬁ(jf’j,¢ic’j|Bt/\~7ﬁ{/\_) for all t € [0,T].
Mention that when ¢ # 0, then ¢ = 0 and H disappears, and when £ =0, ¢ = 1.
Next, as Jlig)lo (%{ (dm)dt,uj) = (A, p) P ae., (ﬁg,ﬁ{,ug)te[oﬂ is (G¢)iejo,r—adapted and (A, p, B) is P-independent of

(W,€), by Lemma 7.4.2 (see Appendix of Chapter 3), there exists (P*7) ien-xn+ C Py (v) such that e’ (¢, A, B) =
cP (C, A, B) and

lim sup lim sup W, (Pk’j, cF (uk’j, W, (5ﬁk,j (dm)ds, 5@ (dm/)ds, B)) =0, (6.5.20)

Jj—o0 k—o0

where 75 = Eﬁ()/(\'f’j|Bm.7ﬁ{/\_) and pil = Cﬁl;()?f’”Bmi,ﬁ{A_), for all ¢ € [0,T].
The results (6.5.19) and (6.5.20) are enough to deduce that
lim sup lim sup W, (EP?' (ﬂk’j, ,uo‘w Ok (dm)ds, 6_.x.; (dm')ds, B) , Pk’j> =0,
j—oo k— oo s s

and conclude the result.

6.5.2.2 Proof of Theorem 6.4.2 (Converse Limit Theorem)

First point (i) Let P € Py (v)[¢] be an e-measure-valued solution. By Proposition 6.5.8, first, there exists a sequence

(") ken C A(v) s.t

. ~1
lim IP’q (uak,uak,éﬁak (dm)dr, §ﬁak (dm’)dr, B) =P, in W,.

k—o0
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Let us introduce, for each o’ € A(v),

oy T ’ : ’
\I/(ak7 O/) = EPZ |:/ L(ta X?k7a 7/1/?/]\‘aﬁ?k7a1/5)dt + g(X;k,a ?/’(‘ak):| and ek = Sl;p( )q}(ak7 al) - Epk [J(/’[” AO? C’ A):Ia
0 a’'eA(v

with P := fP’g o (p"‘k,/ﬂk,%gk (dm)ds, 6ﬁgk (dm/)ds, B) 71.
Remark that ¢* > 0, for all k. There exists a sequence (Y¥)zen C A(v) verifying

U(a¥, %) —BP [T (1, A%, ¢, A)] > b —27F,
By the second part of Proposition 6.5.8, there exists a sequence (Q¥)ren+ C Py (v) satisfying QF o (C,A,B)_1 =
Po (C,A,B)_1 for each k¥ € N* and h/?isip ’\I/(ozk,’yk) _EQ [J(u, AO,C,A)H = 0. Then, as P is a e-rmeasure-valued
MFG solution,

€> limsupIEQk [J(,LL,AO,C,A)} —EF [J(,LL,AO,C,A)} > limsup (o, 7*) — EF [J(,u,AO,C,A)] > lim sup €*.

k—o0 k—o0 k—o0

Then lim sup €” € [0, €], and

k—o0

~

T
EF [/ Lt X0 i o )dt + Q(X%kvﬂ%k)} > sup ®(af a’) — €, for each k,
0 a’eA(v)

we can conclude.

= € € _1 —_
Second point (ii) Let € € [0,00) and P¢ :=P% o (uo‘ s 1Y O ggacy (dm)dt, 5(ﬁ?e)(dm’)dt,3) € Ps(v)le], by Lemma
6.5.7, there exists a sequence (a%*N); ny:=(a"")(; n) such that o € A(vy), and

_ -1 -1
lim PY o (@N’X’O‘N,(S o (dm’)dt) - (,ﬁ,aﬁa (dm’)dt) :
N—o00 (2 t

where @ = (a®V,...,a*V), and a := .

In addition, for any sequence (mi’N’k)(i,N)e{lqu}XN* satisfying for each N € N*, (/ﬁi’N)ie{l’m’N} C A(vn), there exists

a sequence ((bi’N’k)(i7N7k)€{17___7N}XN*XN* C A(v) such that if
. ~ _ -1
piNk .= P o (ua’“N’k, 1, Oain . (dm)ds, dga (dm')ds, B) ,

) -~ LNk~ ) -~ iNk . ~
where pf""* = LEL(X[?TT|Gy) and mp N o= LFH (X0 9™ |Gy), then one gets

N N
: : 1 —N\—i i 1 BIE °
lim lim ‘N;Ji[((af\’) ,H,N)},N;EP [ (e, A ,C,A)}’().

N—00 k—0c0

Define

N = sup  J[((@™) 7 a")] - Jifa).
a’'€A(vn)

There exists a sequence of controls (REJ’N)(LN)E{L__’N}XN* satisfying J; [((EN)_i, /<f>i7N)} —J; WN] > oW N — 27N for
each i € {1,..., N}. Therefore, as P¢ € Pg(v)[¢] i.e. a e-strong MFG solution,

M=

1
€> (lim sup lim sup —
N—oo k—oo

EPi,N,k [J(Ua A°C, A)] _EP* [J(,u7 A°, ¢, A)])
i=1
N

N N
> lim sup (% S (@) RN — % S° AaN]) > limsup % SN,
=1 =1

N—o0 N —oc0 -
=1

Combined this result with the first point (see proof above), we can conclude.
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Chapter 7

Existence of e—strong solution and
measure—valued solution of mean—field
games

7.1 Introduction

In this chapter, under some general assumptions, we study the question of the existence of the measure—valued solution
used to characterize the limit of the approximate Nash—equilibria and approximate strong MFG solution in the previous
chapter. Recall that the notions of approximate strong MFG solution and approximate Nash—equilibria are exactly the
classical notions mentioned in the literature except the fact that the optimum is ac hived by admiting a small error e
(see Chapter 6). As we proved, there is a perfect symmetric between these three notions: measure-valued MFG solution,
approximate strong solution and approximate Nash equilibria. Consequently, our resultat of existence of measure—valued
MFG solution implies the existence of approximate Nash—equilibria and approximate strong MFG equilibria. It is well
known in the MFG theory that the existence of a strong MFG solution is very difficult to obtain and requires strong
assumptions. Admitting a small error € > 0, it is possible to get the existence of an e-strong MFG equilibrium under
general assumptions.

In a framework with the (conditional) law of control and control of the volatility o, we prove an existence result using
largely the same discretized techniques as in Carmona, Delarue, and Lacker [49] combined with some arguments evoked
in Lacker [102]. In addition, the methods mentioned in chapter three will prove to be very useful.

The rest of the chapter is structured as follows. We provide in Section 7.2 the definition of the measure—valued solution
and the different notions of the approximate strong MFG solution while mentioning the existence corresponding existence
results in Theorem 7.2.4 and Theorem 7.2.6. The technical proofs are completed in Section 7.3.

7.2 Measure-valued solution and e—strong solution
Definition 7.2.1 (measure—valued solution). Let v € P,(R™), we say that a term
0= (2%, F¢, P8 F = (Ff)o<i<r, G = (GF)o<e<r, B, p*, A®7),
is a measure—valued MFG solution associated with the initial (distribution) condition v if
(i) (Q2,F°,P?) is a probability space, equipped with two filtrations F? and G2 such that, for allt € [0, T)

G¢ C Ff, and E¥ [1p|Gf] = ¥ [1p|G2], P?-aus., for all D € Ff; (7.2.1)

(id) p®* = (u2*)sep,m i an P(R™)-wvalued G°-adapted continuous process and A®* := (A2*)o<s<r is an P(Pg)-
valued GO —predictable process such that EF* [suDseio.7] Jon 2s]P 1™ (d2)] < o0;

(iii) B® is an R*~valued standard Brownian motion with respect to F¢, B¢ is in addition adapted to G°.
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(tv) For any p a P(R™)-valued Fe-adapted continuous process and A is an P(P[)-valued Fe—predictable process such
that: EF [subseo,r) Jan 12 ]1Pps(da)] < 00, A(Zy,) =1 dt @ dP?a.e., and P2-a.e, for all (f,t) € C3(R™) x [0,T]

(f(- =00Bt), i)

=t [ | [ it aomle @)+ [ (€A = Bl e am)ar

0 v

we have

E7 [ (2% A%, 2% A9%)] > EF [T (u, A, p*, A7)
(v) The pair (ue*, A®*) salisfies: Af’*(Zﬂf,*) =1dt®dP%a.c., and , P¢-a.e, for all (f,t) € CZ(R™) x [0, 7]

(f(- —o0By), uf™)

—mw+ATL

Proposition 7.2.2. Let Assumption 5.5.5 hold true. For any v € Py (R™), one has

(CXfC = 00By)](y p,m'), p2 ) AR (dm') + /

<xm~wwmuwﬁmMMNMﬂm
P

i il
f:/(y) = {]P’Q o (ug’*,AQ’*,uQ’*, AQ’*,BQ)_l, 0 a measure-valued MFG solution with initial condition 1/}

Definition 7.2.3. (Approzimate strong open loop MFG solution)
Let v € P,(R™), and
Q= R"xC"x (',
be the canonical space, with canonical variable & and canonical processes W = (Wy)o<i<r and B = (By)o<i<T, and
probability measure P, under which & ~ v and (W, B) are standard Brownian motion independent of {. Let F = (Fy)o<i<t
and G = (Gy)o<i<r be defined by
Fi = 0{§,W,.,B7., re [O,t]} and G = a{BT., r e [O,t]}.

Let us denote by A(v) the collection of all U-valued F-predictable processes.

For each € > 0, we say the process (fiy)ie[o,] is an e-strong MFG solution if:
(i) (Fg)eepo,m) i a P(R™ x U)-valued (Gt)seo, ) -predictable process

(ii) 1 satisfies: [, = LT (X}, af|B), dt @ AP, -a.e. where o* € A(v), and X* is the unique strong solution of

t t
Xr=¢ +/ b(r, Xr*7u,~A.7ﬁ,,7a:)dr+/ U(r, X;,NTA.7ﬁT,a:)dWT + ooBy, for allt € 10,T], P,-a.e.,
0 0

where p(dz) = [, (dz, U).

(#it) For any o € A(v), and X the unique strong solution of

¢ t
X, =¢ +/ b(r, XT,MM.,ET7aT)dr —l—/ a(r, XT,MTA.,ET,aT)dWT + 0¢By, forallt € 0,T], P,-a.e.,
0 0

one has

T T
EPU |:/ L(th;a Mt/\wﬁt?a:)dt + g(X;"vl’('):l > EPV |:/ L(taXtvlth/\wﬂta at)dt + g(XTal*") — €
0 0
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Theorem 7.2.4. Under Assumption 5.5.5, for any v € Py (R™), there exists at least one measure—valued MFG solution.
Consequently, for each € > 0, there exists at least one e-strong MFG equilibrium.

Now, we consider that £ = 0, and
o(t,x,m,m,u) = &(t, ), for all (¢t,z,m,m,u) € [0,T] x R" x Cy, x P; x U.
For simplicity, we will note ¢ instead of .

Definition 7.2.5. (Approzimate strong Markovian MFG solution) Let v € P,(R™) and (Q,F, F,P) be a filtered probability
space supporting W a R%-valued F-Brownian motion and & a Fo-random variable such that LF(£) = v.

For each € > 0, we say the process (fiy)ie[o,) is €-strong Markovian MFG solution if:

(i) (Fi¢)tepo,m) is such that: for each t € [0,T), i, is at value in P(R"™ x U) and the map @ : [0,T] >— T, is Borel
measurable.

(ii) 11 satisfies: 11, = LF (X}, a*(t, X})), dt—a.e., where a* : [0,T] — R™ — U is a Borel measurable function, and X*
is the solution of

t t
Xr=¢ -|—/ b(r, X7t ney By @ (1, X:))dr —|—/ 0'(7”, X;‘)dWT7 for allt € [0,T], P-a.e.,
0 0

where p(dz) = fi,(dz, U).

(i4i) For any Borel measurable function o : [0,T] x R™ — U, and X the solution of
t ¢
X, =¢ +/ b(r, Xy Py Ty (T, Xr))err/ U(r, XT)dWT, for allt € [0,T], P-a.e., (7.2.2)
0 0
one has

T T
IE]P)|:\/ L(t7X;7NtA-7Mt7a*(tht*))dt+g(X;7/~L):| 2 EP|:/ L(t7Xta/J't/\'vﬁtVO[(tht))dt+g(XT7/1’) — €&
0 0

Theorem 7.2.6. Let v € Py (R"), and Assumption 5.5.5 hold true. For any p a measure-valued MFG solution such
that there exists (n*,q*) € Cj,, x M(P) satisfying (puf*, AP*) = (n*,q*), PP-a.e., there exists a sequence (¢)e>o S.t.
for each € > 0, € is an e—strong Markovian MFG solution and

li_{% (;f,c;ﬁ; (dm)dt) = (n*,q"), inW,, P-a.e.

Consequently, for each € > 0, there at least one e—strong Markovian MFG solution.

7.3 Proof of existence

7.3.1 Measure—valued no common noise MFG equilibrium
7.3.1.1 Technical results

In this part, we discuss of the case without common noise. Let g = 0 (or £ = 0.) Given v € Py (R"™), with p’ > p. In
order to proof our theorem, a more adequate framework and other definitions are necessary. Let us introduce the notion
of deterministic measure-valued no common noise control rule

Definition 7.3.1. Given (n,q) € C};" x M(P,(R" x U)), (n°,q°) € C};, x M(Pp}) is a deterministic measure-valued no
common noise control rule if: recall that Ny is defined in equation (6.3.8),

e nj = v, and N¢[n°,q°,n,q|(f) =0 for all f € CZ(R"™) and every t € [0,T] .
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e For dt almost every t € [0,T], qf (Zng) = 1.

R(n,q) will denote the set of all deterministic measure-valued no common noise control rules defined as previously. We
also consider

R*(n,q) := ar max J(n°,q°n,q),
(n,q):=arg  max (n°,q°,n,q)

where recall that

Notice that by Lemma 4.8.2, R(n,q) C C)¥ x M(P,(R" x U)).

<LO (tv 51, ')7m>q§ (dm) + / <L* (tv 5T ml)v n§>qt(dml) dt + <g(" Il), n;’>'

n n
U P U

Definition 7.3.2. (n*,q*) € C)}7 x M(P,(R"™ x U)) is a deterministic measure—valued no common noise MFG solution
if (n*,q*) € R*(n*,q*). We shall denote 8* all deterministic measure—valued no common noise MFG solutions.

Mention that in the following, it will be more convenient to look at R as a set valued function:

R:(n,q) € Cf x M(P,(R" x U)) = R(n,q) C Cpy’ x M(P,(R" x U)).

Continuity of R In the next propositions, it is shown that R is both upper and lower hemicontinuous, and this is
enough to conclude that R is continuous. We refer to [10, chapter 17] for an overview on set valued function.

Lemma 7.3.3. (Lemma 4.8.2) There exists a constant C' > 0 (depend only of coefficients [o,b] and v), such that for
any (n,q) € CyF x M(P,(R™ x U)), and (n°,q°) € R(n,q), one has

sup / |x\Pln§(dx)§C(l+/ |x|p/u(dx)>.

t€[0,T)
Furthermore, for any (t,s) € [0,T] x [0,T], one gets W, (n$,n2)” < CJt — s|.

Proposition 7.3.4. (Upper Hemicontinuity) Let (n,q) € Cyf x M(P,(R™ x U)). R(n,q) is a compact set of )y’ x
M(P,(R"™ x U)). In addition for any sequence (n*,q")ren- C C)37 x M(P,(R"™ x U)) such that klim (n*. q%) = (n,q),
—00

let (n°* q°*%) € R(n*, q") for each k € N*, then (n°*, q°*)ren- is relatively compact and each limit point belongs to
R(n,q).

Proof. By Lemma 7.3.3, one finds

sup sup / |z|"'n?(dz) < 0o and lim sup sup Wp(nf,n?tH)AT) =0,
(n°,q°)€R(n,q) t€[0,7] JR" 070 (n°,q°)ER(n,q) t€[0,7]

as U is a compact set and for dt almost every ¢ € [0,T], qf (Zn?) =1, one has

T ’
sup / / Wo (m, mo)p qy (dm)dt < oo, for any mg € P,(R" x U).
(n°,q°)eR(n,q) JO Pp (R xU)

Then by Aldou’s criterion [92, Lemma 16.12], R(n, q) is a compact set of Cy;f x M(P,(R™ x U)).

By similar way, the sequence (n°*, q°*)pen- is relatively compact. By passing to the limit in equation verified by
(n°* q>* n* q*) i.e. Ny[n>* q°* n* q*](f) =0, for each (¢, f) € [0,T] x CZ(R™) (see for instance lemma 4.7.1), it is
straightforward to check that each limit belongs to R(n,q) (see Proposition 4.8.4). O

Proposition 7.3.5. (Lower Hemicontinuity) Let (n,q) € C;7 x M(P,(R" x U)), (n*, q")ren~ be a sequence of elements
of CoF x M(P,(R™ x U)) such that klim (n*,q") = (n,q), and (n°,q°) € R(n,q). There exists (n°7,q°7) € R(n*i, q*),
— 0

for each j € N* where (kj)jen+ C N* is a sub-sequence with lim (n°7, q°7) = (n°,q°).
]A)OO
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Proof. As klim (nk, q*, q°) = (n,q,q°), by Lemma 7.4.2 and /or Proposition 4.7.10, there exists (n’°, q>7) € R(n"*,q"),
— 00

for each j € N* where (k;);en- is a sub-sequence with lim (n’°, q°7) = (n°,q°). O
J—00

Theorem 7.3.6. The set S* is nonempty and compact.

Proof. Under assumption 5.5.5, it straightforward to verify that J : (C}yf x M(P,(R™ x U)))? — R is continuous. As R is
continuous because it is upper and lower hemicontinuous, and has nonempty compact convex values by Berge Maximum
theorem [10, Theorem 17.31], R* has nonempty compact convex values, is upper hemicontinuous and consequently its

graph Gr(R*) := {(n,q,n,q) : (1,q) € R*(n,q)} is closed. Let (n,q) € K if (n,q) € C};¥ x M(P,(R" x U)) and:

T ’
sup / 2P ny (d) +/ / Wy (m,mo)p q:(dm)dt < M,
te[0,T] JR™ 0 Pp(R*xU)

where my is an element of P,/ (R” x U) and M < oo is defined by

T , ,
samswp{ [0 [ W mom)” ap(ampar+ 0 (14 [ el vian). 0.a%) € R (G x MR x 0)
0 JP,(RrxU) R"

and in addition
Wp(nt,ns)p < C|t — s, for all (¢,s) € [0,T] x [0,T].

Thanks to the above techniques, it is obvious that K is a compact set of Cyy7 x M(P,(R™ x U)), and R* is a set valued
function of K into himself i.e. R*: (n,q) € K —» R*(n,q) C K.

Let E be a Polish space, denote M(FE) the set of signed measure on E. Equipped of the weak convergence topology
Tw = 0(M(E),Cy(E)) generated by the bounded continuous function, M(E) is a locally convex Hausdorff space.
Accordingly, C([0,T]; M(R™)) is a locally convex Hausdorff space. Likewise M(P}} x [0,T7) is a locally convex Hausdorff
space equipped of 7 := o (M(Pg x [0,T]), Cp(Pg x [0,T7])). Then C([0,T]; M(R™)) x M(Pg x [0,T7]) is a locally convex
Hausdorff space. One can see K as a subset of C([0, T]; M(R™)) x M(P; x [0,T7]). As the topology of C([0, T]; M(R™)) x
M(Pp) % [0,T7]) induced on K is equivalent to the topology of Cj}, x M(P(R™ x U)), we deduce that K which a compact
set of Cyf x M(P,(R™ x U))(C Cyi, x M(P()) is also a compact set of C([0,T]; M(R™)) x M(P(R" x U) x [0,T7).
To conclude, we apply the fixed point theorem of Kakutani-Fan—Glicksberg (see [10, Corollary 17.55]) to deduce S* is
nonempty and compact. Therefore we can find (n*,q*) € R*(n*, q*). O

7.3.1.2 Proof of existence of strong measure—valued no common noise MFG solution

Now let us prove the main result of this part. If P*(dm,dq,dn’,dq’,db) := d(n« g n+,q+)(d7m, dg,dn’,dg') Ps(db) € P(Q),
it is straightforward to check that P* is a strong relaxed no common noise MFG solution where Pp is the RY Wiener
measure.

7.3.2 Existence of Measure-valued MFG equilibrium with common noise
7.3.2.1 Technical results

We place ourselves on the probability space (2,F,P,) defined in 6.3.1. We use the same discretized techniques as in
Carmona, Delarue, and Lacker [49].

For each k € N*, let t¥ := i27*T for i = 0,...,2*. For each positive integer k, we choose a partition 7% := {C},...,CF}
of R into k measurable sets of strictly positive Lebesgue measure, such that 7%%! is a refinement of 7* for each k, and
B(R*) := o(U 7). For each 1 < ¢ < 2% and i = (iy,...,i4) € {1,...,k}9, we define Sik’q as follow

Sf’q ={beC': by —by €Cf Vjc{l, .. .q}.
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The Sik’q’s, i€ {1,...,k}9, form a finite partition (of cardinal k%) of C*. Now, we introduce

H’; = {Sf’q s ie {1, ...,k}q},

with II§ := {C’}, notice that cardinal of H’; is finite. For any k > 0, the filtration (O'(HZ))q:()w.Qk is the filtration
generated by the discretization of the canonical process, we have a(l‘[’;) C G and O'(HZ) C J(HZH). For t € (0,77,
we note [t|x := t’; when tf; <t< tZH. Let TIx(t) equal H’;, where ¢ is the largest integer such that t’; < t, and let
Gk = o(II"(t)) = g[’;]k. (GF)tejo,m) is a filtration and

Gi a( U gf>.
k=0

Let us introduce for each b € C¢,
[b,&, L](t,y,b,m,m,u) := [b,0, L] (t,y + ooby, 7[b], m[by],u) and §(y, b, 7) := g(y + oobr, 7[b]),

recall that 7[b] and m[b] are defined in 6.5.1. Notice that [b,&, L] : [0,T] x R™ x C* x Cl}, x Pt x U — R™ x " x R
and § : R" x C* x C* — R are continuous and for b € C’, [lA),&,f/](-, b, ) and §(-,b,-) verify the Assumption 5.5.5
with constant C' and 6 independent of b (see Assumption 5.5.5). We also note a := 66" .
For each k € N*| let consider the continuous process (Bk)te[O,T] defined as Bf := EF» [Bt|g{,2], then B* takes a finite

number |H’2“k| of value in C%.

Lemma 7.3.7. Under the previous considerations, we have lim E'| sup |BY¥ — B,||.
k—o00 se[0,7]

Proof. Let us define for each k € N*, P¥ := P, o (B’“,B)_1 € P(C* x CY). As, B is P,~Brownian motion, by classical
argument it is straightforward to show that (P*) kefo,] is relatively compact for the Wasserstein metric W,. Denote by
P> the limit of any sub-sequence, and (H', H?) the canonical process on C’ x C*. We use the same notation for the
sequence and its sub-sequence.

Now, we apply the same techniques as in proof of [49, Lemma 3.6] (thrid step.) Given ky € N*, as g§2° C Gk, for all

k > ko. Assume ¢ = 1. For any bounded continuous function ¢ : C* - R, and C € g;fP, for all t € [0,T1], one has by [49,
Lemma A.4]

B [H]1gzeod(HY)] = lim B [Bf1p,cc6(BY)] = lim E™ [Bi1p,eco(B")] =B [HfLzeod(H)].
this is true for any t € [0,T), ko, ¢ and C, as G; = O'(Uzio Qf), we conclude that H' = H? P®-a.e. Consequently
lim EP~ { sup |BF — BS] = klim EP { sup |H! — HSQ@ =EF” { sup |H! — HZ?|| =0.

— 00

k—oo s€[0,T) s€[0,T) s€[0,T)

For the case ¢ > 1, we proceed coordinates by coordinates. O

For each k € N*, let M* denote the set of functions (¢,A) : C* — CyF x M(P,(R"™ x U)) that are Gh-measurable such
that for each ¢ € [0, T, (¢, A¢) is Gf—measurable. Notice that any (¢, A) € M* is constant on S for each S € II5,. Since

k
G4 := o(Il%,) is finite, the space M" is homeomorphic to a closed subset of (Cyy) x M(P,(R™ x U)))M2k!, Hence, M* is
a metrizable closed convex subset of a locally convex topological vector space.
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Let us introduce
t
Nl a*ma b= (L) = (f) = [ [ Zela) b wm(du.dy)a (dm)dr
o Jpn JrRexu

[ [ b n @) (@
o Jpp Jre
where
Z:\)c; [90] (yv bv 7‘-/7 U) = %TI" [ao(t7 Y+ O'Obta Wl[b]a U)VQSO(y)] + b° (ta Y+ UObt7 W/[b]v u)Tvﬁa(y)a
and Lf[g](y, b, 7', m) := 3Tr[a*(t, 7'[b], m[b]) V2p(y)] + b*(t, 7' [b], m[b]) T Vi (y).

Definition 7.3.8. Given ({,A) € M*, (u, A°) € M* is a measure-valued with k—finite common noise control rule if:
o P,(1o =v) =1, and Ny[u, A°, ¢, A, B¥)(f) = 0, for all f € CZ(R") and every t € [0,T], P, -a.e.
e For dt almost every t € [0,T], Ag(Z,,) =1, P,-a.c.

RF(¢,A) will denote the set of all measure-valued control rules with k-finite common noise defined as previously. We
also consider

k% L P, [T o k
R¥*(C,A) -—arg(M)Aglea%(M)E [J (1, A, ¢, A, BY)],

where

. T
J(n°,q°,n,q,b) ::/ [/
0 P

Definition 7.3.9. (¢*, A*) € M* is a measure—valued MFG solution with k—finite common noise if (C*, A*) € RF*({*, A*).
We shall denote S** all measure—valued with k—finite common noise MFG solutions.

(L2 (t, b,m, ), m)ag (dm) + / (L* (1, b, m,m'),nd)qe(dm') [ dt + (3, b, n),n3).

n n
U PU

As mention in the no common noise case, it will be more convenient to look at R* as a set valued function:
RE 1 (CF X M(P,(R™ x U))r 5 (¢, A) = RE(C,A) € (CRF x M(P,(R™ x U))) M.
Theorem 7.3.10. For each k € N*, the set S¥* is nonempty and compact.

Proof. In definition 7.3.8, Ny[u,A°, ¢, A, B¥](f) = 0 P,—a.e. is equivalent to the TI%, |[-equation: for each C € II%,,
with w € {B € C} fixed, Ny[u(w), A°(w), C(w), Alw), B¥(w)](f) = 0, and A? (Zy,) = 1, P,~a.e. is equivalent to to the
|TI%, |[-equations: for each C' € II%,, with w € {B € C} fixed, A{(w)(Z,,,(w)) = 1. Then, by using exactly the same proof
as in the no common noise (with \Hgk |-equations instead of one equation), we prove that R¥ is continuous.

Next, under assumption 5.5.5, the map

(CIP > M(P(R™ x U))Marl x (CIoP % MU(P, (R™ x U)ol 5 (1, A%, ¢, A) = BP [T (1, A°, ¢, A, B¥)] € R

is continuous, therefore, we proceed as in the no common case (proof of Theorem 7.3.6) i.e. applying Berge Maximum
Theorem and later the fixed point Theorem of Kakutani-Fan-Glicksberg to deduce that S¥* is nonempty and compact. [
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7.3.2.2 Proof of existence of measure—valued MFG solution with common noise

For each k € N*, let (¢F*, AF*) € M* be a measure-valued MFG solution with k—finite common noise. We define the
sequence of probabilities (P*),en- by: for each k € N*

Pk =P, o (¢"*[B], AR*[BY], (b [BY), AP [BY), BY)

where ¢**[B*], Ak*[B¥] are defined as in (6.5.1) and (6.5.2). Under Assumption 5.5.5, as v € P, (R™), it is straightforward
to show that (P*)en- is relatively compact in W,. Let P* be a limit of any sub-sequence, we will show P*° is a measure—
valued MFG solution with common noise. For simplicity, we note (P¥),en- and its sub-sequence with the same notation.
Optimality condition. Let P € Py (v) st. LF ((,At(dm)dt,B) =P (C,At(dm)dt,B). If we consider the canonical
processes (V¢ )efo,7] and (O¢)¢e(o,r) defined in (6.5.4), we can verify that:

N, [19, o, ([—B],A[—B],B} (f) =0, for all f € CZ(R™) and every ¢ € [0,T], P —a.e,

for dt almost every ¢ € [0,T], ©;(Zy,) = 1, P-a.c. and £~ (g[—B}, A¢[—B](dm)dt, B) =P (g[—B], A¢[-B](dm)dt, B).
As the map
(7',q,b) € Cy x M x C* — (7'[~b], ¢:[~b](dm)dt, b) € Cpi, x M x C*
is continuous, we find that
lim £~ (C’“’*,Af’*(dm)dt,B’“) = lim £ (g[fB],At[fB](dm)dt, B) . (C[fB],At[fB](dm)dt,B)

o (([—B}, A[—B](dm)dt, B).

By Proposition 4.7.10 combined with Ité formula (see also Remark 4.7.11), under the enlarged space (ﬁ,ﬁq,@g) of
(Q,F,P,) defined in the preamble of Section 6.5.2, there exist the sequence of U((tk/’\f,Af/’\f,BfA_7H)t€[O7T]7adapted
continuous processes (9%)ren- and the sequence of o(¢5*, A%*, B, | H), [0, 7)—Predictable processes (©%),cn- such that

N, [19’2 QF, Ch AR B’“} (f) =0, for all f € CZ(R™) and every ¢ € [0,T], P -a.e,
for dt almost every ¢ € [0, 7], OF (Zﬁf) =1, Pl-a.c. and
lim £7 (19’2 OF, ¢k AB* (dm)dt, B’“) =P (19, O, ([~ B], A[—B](dm)dt, B).

Under Assumption 5.5.5, using the fact that for each k € N*, (¢¥* A¥*) € MF is a measure-valued MFG solution
with k—finite common noise and that H is independent of other variables (see definition of (2, F%,P%) in the preamble of
Section 6.5.2), one finds

EP‘X’ [J(,U7A07C7A)] _ klggo ]Eﬁ;?’ [j(ck’*,[\k’*,Ck’*,Ak’*,Bk)] > lim Eﬁl’?‘; [j(ﬁk,Qk,Ck’*,Ak’*7Bk)]

k—o0

- EP [j\(ﬂa 63 C[iB]v A[,B], B)] = ]EP [‘](:U’? on g? A)] .

Fized point and F-K equation. Using broadly the same previous arguments, we can check that: B is a (F, P>)-Brownian
motion starting at zero,

N, [M,Az g,A} (f) = N, [19, 0, ¢[-B],A[-B], B] (f) =0, for all f € C2(R") and every t € [0,T], P® -a.e,

for d¢ almost every t € [0,T1], Ag(Z,,) =1, P°-a.e. and P (A° = A, u = () = 1. We can conclude that P> Py (v).
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7.3.3 Strong Markovian MFG equilibrium

Let P* € f’{,(u) (see Definition 6.3.5 for the equivalence with the canonical space) be a measure-valued MFG solution
such that there exists (n*,q*) € C};, x M(P}}) satisfying (u, A) = (n*,q*), P*~a.e. By Theorem 4.6.2, there exists a
sequence (a***)pen-, such that for each k € N*, a*F : [0,T] x R® — U is a Borel function, and on a filtered probability
space (Q*,F*, P*) supporting W a R” Brownian motion and ¢-a Fy-random variable with £F" (¢) = v, X** is a solution
of

t t
Xk =¢ +/ b(r, X%, w1 o (r, X2F))dr +/ o(r, X F)dW,, for allt € [0,T], P*-a.e.,
0 0
= LF(XPR ookt XPR)), dt @ dP*—ae, pF = £F7(X}F), and one has

lim (,uk,éﬁ? (dm)dt) = (n*,q*)7 in W, P*-a.e.

k—o0
Now, we show there is a sequence (€x)ren+, such that e > 0, klim er = 0, and ﬁk is an e,—strong Markovian MFG
—00

solution. Denote by .A™ the set of Borel function « : [0,7] x R® — U, and for any o € A™, X*F the associated solution
¢ ¢
Xk =¢ —|—/ b(r, D LT T (3 Xf’k))dr —|—/ o(r, Xf"k)dWT, for all t € [0,T], P-a.e..
0 0

With 7% .= L8 (X2F at, X2F)) and p&* .= £F" (XF), we define

€k = sup J(/,La’k,6ﬁo¢,k(dm)dt7ﬂ,k,6ﬁk (dm)dt) — J(,uk,(Sﬁk (dm)dt,uk,%k (dm)dt).
acAm ¢ : ¢ ¢

By construction for each k € N*, ¢, > 0. We choose o € A™ such that

J(ua’“vk,aﬁak,k(dm)dt, pF, S (dm)dt) — J (¥, 8ge (dm)dt, p*, 6 (dm)dt) > e — 1/2.

—1
Using Proposition 4.8.4 (for instance), we can show the sequence (IP o (/ﬂk’k, 5ﬁak,k(dm)dt,,uk, Ok (dm)dt) )k is
t eN*

relatively compact in W,, and as limit of (4, %) pen- is deterministic, one has that any limit P of any sub-sequence of
. -1 — oo *
(P ° (Mak’k:(sﬁa’“,k (dm)dt, u*, O (dm)dt) )k N belongs to Py (v) with £ ((,A) = LY (¢, A). As P* is a measure—
t t eN*
valued MFG equilibrium, we deduce that

0 > limsup J(m"“vk, 0o i (dm)dt, w0 (dm)dt) — J (p*, 6 (dm)dt, p*, 6 (dm)dt).

k—o0

Therefore klim e, = 0, and 7 is an e,-strong Markovian MFG solution for each k € N*.
— 00

7.4 Appendix: some technical results

7.4.1 Density of controls
Let E, E° and E* be three polish spaces, and (Q,F, F,P) be a filtered probability space supporting
e a F-valued F-adapted continuous process (¥¢):efo,1]-
e a P(E*)-valued F-predictable process (®;):e[o, 77, and a P(E°)-valued F-predictable process (®7)¢cjo,77-
All these variables satisfy
LE (@55 [Din., Pin.) = L5(DF,.]9, @), for allt € [0,T], Pae., (7.4.1)

where ®;(de*)dt is considered as an element of M(E*) and ®§(de®)dt as an element of M(E®).
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Proposition 7.4.1. With the previous considerations, there exists a [0, 1]-valued uniform variable N independent of all
variables, and a sequence (G*)ren+ satisfying for each k € N*, G* : [0,T] x C([0,T]; E) x M(E*) x [0,1] — P(E®°) is a
continuous function such that

lim £F (ék (t,0en., ®sn, N) (deO)dw,@) -y ((I)?(de")dt,q?,(l)).

k—o0

Moreover, if T° C E° is a compact set s.t. ®2(T°) =1, dP ® dt-a.e., there exists a sequence (G*¥)ren- such that for each
ke N* GF:[0,T] x C([0,T); E) x M(E*) x [0,1] = E° is a continuous function and

lim £F (%k (10 ) (A7)0, <1>) =c* (@;(deO)dt, 9, q>).

k—o0

Proof. Let tff =0 < --- <t} = T for each K € N*, with lim sup|tX — & || = 0, denote [t]¥ = ZkKﬂ e Lieer o5y,
K—oo = PRI

and define
0"
95 (de?) := K/ @2 (de®)ds, for each ¢t € [0,7] and K € N*.
(15— £)vo

By mimicking the proof of [119, Lemma 4.4], the sequence of P(E°)-valued F-predictable processes (®°%)gen- is such
that: Klim 9 (W) = ®9(w), for the weak convergence topology, for dP @ dt a.e. (t,w) € [0,T] x Q, &5 = VE (¢, 2, )
— 00

with a Borel function VE : [0,7] x M(E°) — P(E°) and & = <I>;;<K when ¢ € [t t5 ), for every k € {1,...,K}.
k
Notice that for each K, by assumption 7.4.1, one has
LR @5 [0, @ip.) = LT (D759, @), for all ¢ € [0,T], P ace. (7.4.2)

and if ®2(I'°) = 1 one has )" (I'°) = 1.
For every 1 < k < K, there exists a Borel function F¥ : M(E®) x C([0,T]; E) x M(E*) x [0,1] — M(E°) and uniform

random variable N* independent of (q>:;f< o 19tkKA., <I>t£<,\‘) such that
k—1

L"P(Fk, (I)O’K ﬂtkK/\., q)tklf/\.) _ LP((I)O,K (DO,K ﬂtkK/\A,(btg/\.),

K ) KA. K 9
tk—l/\' tk A+ tk71A~

where F' := FF(O% 0y, , Bpic, NF).

KA
Now denote 7° := @:K[j\ (which can be assumed not random), and by recurrence: for all 1 < k < K
0
’Yk = Fk (’Yk_la ﬁtif/\-a (I)t]{_(/\-a Nk)a
notice that 7" is o{ﬁth/\., D5 ps N',..., N¥}—measurable and belongs to M(E®), (N*),, can be taken i.i.d and independent

of the other variables.

Now let us prove that

LE(0, . A0, 8) = LF (955 ...,@j};f v, @), (7.4.3)

tEA A
we proceed by recurrence i.e. let us prove for each k

‘CP(’YOW"a’ykaﬁtf/\wq)tkk/\.) — L:]P((PO’K ...,<I>°K

)
K K
tot A LA

isno ®yrp). (7.4.4)
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For k = 0, this is obvious. Assume that (7.4.4) is true for k, we verify for (k+1). Let ¢ : M(E°)* - R, G : C([0,T); E) x
M(E*) — R Borel functions,
P o,K o,K _ P P o, K o,K
B [0(@55 . 055 )G (Drge nos @uss, 1) | = B [EF[0(@545 o @55 )10, @] G (01 0 @i, )]

k+1

= B [EF [0 (@51 - @5 ) [0 @t | G (D 1 @i )]

tEAD R 7 k1
= EP {]EP {fb(’Vo; cee a’Yk) |19tkK/\~a ‘I)tkK/\-] G(ﬁthﬂ/\_, (I)tkK+l/\-):|

:EP{EP{¢(’YO,...,’}/k)|'l9,q):|G('l9tK Ao Pux /\)} ZEP[¢(’YO7-~-”7k)G(ﬁtK A.,‘I’t§+1A.)}7

k41 k41 k41

where the result (7.4.2) is used for the second equality, the third follows from the recurrence hypothesis (7.4.4), and the
fourth because of the result (7.4.2) again. This is true for all (¢, G), then

P(.0 E _ pP (50K 0, K
T CRN AN ST IS I S ( SN Je oW N P
the previous equality allows us to get
P/ o0, K o, K o, K _ pP (x50, K o,K —k+1
L (<I>té(/\.7 ey (I)tf/\-’ﬁtfﬂ/\-’ <I>t£<+1A,, <I>t£(+1/\,) =L (@té(A', ceey (I)tkKA"ﬂtkKH/\" <I>t£(+l,\,,F )

_ prP(. 0 k k+1
_‘C (’7 7""7 719t£(+1/\»aq)t£_(+1/\~ﬂ7 )7

therefore (7.4.4) is true for (k + 1), consequently (7.4.3) is true. As v% € M(E°) and the law equality (7.4.3), it is
straightforward to check that

B (de®) = AF, (de®), dP ® dt-a.e. (t,w) € [tkK,tkKH) x Q,
then 7% is J{ﬁm., dyn, N, ... NE }ﬂrl(ﬁ&;usurable7 and therefore there exists a Borel measurable function GE : [0,T] x
C([0,T); E) x M(E*) x [0,1]% — P(E°) s.t. v (de®)dt = GE(t, 94p., Pip., NV, ..., N¥)(de®)dt, P-a.c.. And one has
. P/ K T P o,K _ rP o
Klgnooﬁ ('y 7197<I>) —Kh_r>noo£ (<I> ,19,<I>) L (<I> ,19,<I>).
If I° C E° is a compact set s.t. ®°(I°) = 1, dP ® dt-a.e., we saw earlier that &)™ (I'°) = 1, dP @ dt-a.e., for all K,

therefore, by law equality (7.4.3), vX(I'°) = 1, dP ® dt-a.e.. It is a classical result that for each K € N*, there exists
a sequence of I'>valued (0{7/5.})sc[0,7) Predictable processes (m%9),cn+ such that lim§ wc.q(dm/)dt = /< (dm/)dt,
q t

P-a.e.. Then, there exists a Borel function G¥:9 : [0, 7] x C([0,T]; E) x M(E*) x [0,1]% — E° verifying
th’q = GBIt 040, Dy, N1, ... NE), Pae., for each ¢ € N*.
Consequently
; : P / RTINS I ¢ — i PP (0 K _ ,P(go
lim lim £ (5m£«,q(dm )ds, 9, <I>) = h}r{nﬁ (’y U, <I>) = h}r{nﬁ (CI) U, <I>) L (<I> 7197@).

K—o00 g—o0

Next, we will show that we can chose an approximation of GK and GK+ continuous. If

1 9
Q= B (8, g, ) (da”sda® ) ar,

Q¥ is an element of P([O,T] x C([0,T]; E) x M(E*) x [0, 1]K), by [49, Proposition C.1.], for each K, there exists a
sequence (@K’j)jeN such that G : [0, T] x C([0, T); E) x M(E*) x [0,1]% — P(E°) is continuous and lim GFI = GK,

Jj—o0
Qf-a.e. If QK =Po (19, o N ... ,NK)fl(da,dnl, ...,dnf)dt, it is straightforward to see that Q is equivalent to Q,
and therefore
lim lim CP(@K’j(t,ﬁm.,@M.,Nl,...,NK)(deo)dt,ﬁ,CI)) = lim £°(y",9,®) =lm L (5,9, @) = L7(2°,9, ),
K—00 j—00 K—oo K
we deal the function G¥+¢ by similar way for the case I'° C E° a compact set s.t. ®¢(I'°) = 1, dP ® dt-a.e., all these
results are sufficient to conclude. O
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7.4.2 Approximation by measure—valued control rules

In this section we provide some convergence result for a sequence of particular measure-valued control rule Py (see
definition 6.3.2). This result is useful to prove the limit theorem Theorem 6.4.1. To simplify, it is shown that: for a
convergent sequence of measure—valued control rules satisfying some conditions, we can find another sequence of measure—
valued control rules sharing the same limit and keeping certain properties of the limit.

In order to correctly formulate our result, let us mention some notations, they are motivated by those used in Chapter 4.

Let v € Py (R™) with p’ > p, (Q,F, F,P) be a probability space supporting
e a R™"* Brownian motion (W, B) and a Fy-random variable ¢ s.t. LF(¢) =v
e a Pp—valued F-predictable process (A})icpo,r) and a P(R™)-valued F-continuous process ((f):efo,1)
e a sequence of Borel functions (¢*)yen- s.t. for each k € N*, ¢% : [0,T] x R™ x C" x C* x Cp3, x M(Pp) — U.

e a sequence of P(R")-valued F-adapted continuous process (¢¥)ren+, and a sequence of Pl—valued F-predictable
processes (m*)pens-.

Next, let us introduce for all k € N*, the unique strong solution X* of: for all ¢ € [0, 7T

t t
X =g [ bt b ob)ar o [ a(n X8 ¢l 6E)aW, + 0B,
0 0
with AF(dm’)dt := 5m1: (dm/)dt, and ¢f = ¢*(t,&, Win., Bin., CE, AFL).

Denote by puf = LF(XF|Bin., Cf AL, BE = LE(XF, ¢F|Bin., (fr., ARy, for all ¢ € [0,T], and AYF(dm)dt =
dzx (dm)dt. Also, the filtration G := (G¢)e(o,7) is defined by

Gi = 0{Gn., Afr., Bin.}, forallt € [0,T].

Lemma 7.4.2. If for each k € N*, (AF, Cf)te[o,T] is G—adapted, (B, A*,(*) is P—independent of (W,§), and
lim (A%, ¢F) = (A%, %), in W, P-a.ec., (7.4.5)
k—o0

then there exists for each k € N*, a P(R")-valued G-adapted continuous process fi* and a Pl —valued G-predictable
process A°F solution of: for every (t, f) € [0,T] x CZ(R"),

- — B ,Nk = ,V t E: T Br " *7'7 X:)kd d
= oomit) = 1)+ [ (515 = ooBenc )| As ampar
t
+/ / LEf(- — o0B)](z, ¢, m) )ik (dx) Ak (dm)dr, P-a.e.,
o Jpp Jrn
with K?’k(Z;k) =1, dP® dt-a.e. such that: if
Q" i= £7 (", ¢, A7 (dm)dt, A7 (dm)dt, B),

QF € Py (v) for each k € N*, and

Jim W, (27 (", ¢, AT (dm)at, AF (am')at, B), Q).
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Proof. Let us take a convergent sub-sequence of (E]P (uk, CFAY ’k(dm)dt, AF(dm)dt, B)) N (possible because it is relatively
compact see for instance Proposition 4.8.4), denote by P its limit, one uses the same notation for the sub-sequence.
The limit satisfies: N;(f) = 0, P®-a.e., for all ¢ € [0,7] and f € CZ(R"), where recall that (u,(,A° A, B) is the
canonical variable on Q := (C}},)? x M(PR)2 x C*, and A$(Z,,) = 1, dP® @ dt-a.e. (t,w) € [0,T] x Q. Notice that, as
lerr;O(Ak7Ck) = (A*,¢"), in W, P-a.e., one has

Jim W, (EP(C’“,A?’k(dm)dt,Af(dm)dt,B),LP(C*,A;”k(dm)dt,A:(dm)dt,B)> =0.
—00

Then, by taking into account the conditions (7.4.5), it is enough to apply Section 4.9.1 (see also Proposition 4.7.7) and

It6’s formula to conclude the proof.
O
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Part 111

Numerical approximations
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Chapter 8

Numerical methods

8.1 Introduction

In this chapter, we propose a numerical algorithm to solve the McKean—Vlasov control problem. Motivated by the results
of Chapter 3 and Chapter 4 i.e. Theorem 3.2.7 and Theorem 4.5.3, we solve numerically the mean—field control problem.
Our numerical procedure is based on a discretization of the large population stochastic control problem.

Indeed, first of all, we formulate a discretized form of the large population stochastic control problem by discretization in
time with controls as function of finite samples of Brownian motions. The controls are no longer function of the trajectory
of Brownian motions, only a finite value of Brownian motions matters in this situation (see Equation (8.2.3)). Then,
when simultaneously the size of the discretization in time goes to zero and the number of agents goes to infinity, we prove
that this discretized large population stochastic control problem has the same limit as the “normal” large population
stochastic control problem i.e. the McKean—Vlasov control problem.

In the second time, based on this result, we give an algorithm to solve the McKean—Vlasov control problem using neural
networks. As our problem involves a lot of data (infinite in theory), we suffer from the curse of dimensionality, therefore,
using neural networks is natural and simplify the implementation. We implement our algorithm thanks to the open—source
library keras, and test its efficient on three example.

Notice that, our idea is very close to Han and E [78], Fouque and Zhang [70] and Carmona and Lauriere [46], which use
similar methods to solve the mean—field control problem via neural networks. Despite the fact that we do not have a
rate of convergence like [46], our result is more general in the sense that we work in a framework with assumptions less
stronger, with law of controls and common noise while allowing to control the no—common noise volatility o. Further, it
should be emphasized that although our algorithm is intended for solving the mean—field control problem, it can be used
to solve mean field games by using the equivalence result between MFG and MFC in certain contexts as formulated in
Carmona and Delarue [43, Chapter 6].

The rest of the chapter is structured as follows. In Section 8.2, we recall first the strong formulation of McKean—Vlasov
control problem, then provide the discretized form of the large population stochastic control problem and finally formulate
the convergence result. The numerical implementation is given in Section 8.3 with the numeric examples. The technical
proofs are completed in Section 8.4.

We use in this chapter some notations of Chapter 2, Chapter 3 and Chapter 4. We recall them for a better reading. Let
M(E) bethe space of all Borel measures ¢(d¢,de) on [0,7] x E, whose marginal distribution on [0, 7] is the Lebesgue
measure di, that is to say ¢(dt,de) = ¢(t,de)dt for a family (q(t,de)).e[o,r) of Borel probability measures on E. Let A
denote the canonical element on M(E), we define

A'(ds,de) := A(ds, de + de, (de)ds‘(t T)x B’ for some fixed e € E.

>‘[O,t]><E

Throughout the chapter, we fix a nonempty Polish space (A4, p) and an element ag € A, and denote M := M(A). Finally,
consider the canonical space C"™ x M (resp. C™ x A), with canonical element (X, A) (resp. (X, a)), and v € P(C"™ x M)
(resp. 7 € P(C™ x A)). We define, for each t € [0, 7]

U(t) == o (Xen, A7, (vesp. v(t) := v o (Xyn, ) h).
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8.2 McKean—Vlasov optimal control and main results

Here, we recall the strong formulation of the McKean—Vlasov optimal control problem, and introduce the discretized
large population control problem which will be necessary to give a numerical algorithm using neural networks to solve
the McKean—Vlasov optimal control problem. In all this part, we work under the Assumption 1.4.1 with oy constant.

8.2.1 A strong formulation

Let us consider the canonical space
Q:=R" xC?x C,

equipped with its Borel o—algebra F := B({2) and canonical element (Xo, W, B). Let F := (F})o<i<r and G = (Gy)o<i<r
be two filtrations on (€2, F) defined by

Fr:=0((Xo0,Ws,Bs) : s €[0,t]), and G, :=0(Bs : s € [0,1]), t € [0,T].

Let p be the constant in Assumption 1.4.1 and v € P,(R™). We denote by P, the probability measure on (2, F), under
which Xy ~ v and (W, B) is a standard R*¢_dimensional Brownian motion, independent of Xj. Recall that ag is a fixed
point in A. We denote by A, (v) the collection of all F-predictable, A—valued processes o = (a5 )o<s<T satisfying

EP UOT (p(as,ao))pds} < o0.

Then given a control process a € A,(v), the controlled McKean-Vlasov SDE
t t
X =X, +/ b(s, X3 1S, as)ds +/ o(s, X, B2, 05)dW, + 00By, t € [0,T], P,as., (8.2.1)
0 0

with g2 = LFv (X?A,, Qg ]gs), dt ® dP,—a.e., has a unique strong solution, that is, there is a unique F-adapted continuous
process X on (12, F) satisfying Equation (8.2.1) and EF~ [supte[O}T] | X2 P] < oo

Denote also pg := LF (X4 |G,) for all t € [0,T]. The strong formulation of the McKean—Vlasov control problem is then
given by

T
Vs(v) :== s;llp( )EP“ {/ L(t, Xp g, o) dt + g(XFa, 13) |- (8.2.2)
acAp (v 0

8.2.2 A discretized large population stochastic control problem with common noise

Now, in this section, we formulate the discretized form of the large population stochastic control problem. Let N be
a positive integer, m" € N* such that limy__,. m? = oo, t;-v = jm—lN for each j € {1,...,m"}, and for all ¢ € [0,T],

N ._ \"™MN 4N
[t] = Zj:l tj 1te[t§¥,t;¥+1)-

Let (Q*,F*, F*,IP*) be a filtered probability space supporting N-i.i.d. R"-valued random variables Xy := (X}, ..., X) of
distribution v € P,(R"™), the sequences of independent random variables of normal distribution (UZ)(i,k)e{l,...,N} «{1,...mN}
and (VN )peqa,... mny. Moreover, Xo, (UL) i mye(t,...Nyx{1,...m¥}> and (V¥ ) o~y are independent.

Let us introduce the following assumption that we will use for the discretization of the SDEs:

Assumption 8.2.1. Let H: Ry X C" x P(C™ x A) x A x [0,1] = R™ satisfying: for any normal random variable U,
(h,x,v,a) ERy x C" x P(C" x A) x A,

EF" [

H(h,x,7,a, U)ﬂ + ‘]Eﬂ’* H(h,x,7,a,U)] — b(x,p,a)h‘
+ ’EP* [H(h,x,v,a,U)H(h,x,v,a, U)T] — o0 (x,7,a)h| < (h)

where P : Ry — R, s.t. }lbh% h™'(h) = 0, and supj,s.o h=3/%(h) < oo.
—
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We denote by Ay the collection of all bounded measurable functions ¢ : [0,7] x R™ x (R% x RY)™" — A. Then, with the
function H verifying Assumption 8.2.1, for every fixed ¢ € Ay, let us define the continuous process (X1 ., X%N) by:
fori€{1,...,N}, X§" := X} and for all j € {0,...,m~ — 1}, X&' = X§, V' =0,

0 0

Y =Y+ H(1/m", X% o, Gy, Uj) and X = XR YR YR+ o0\ [1/mNVY (8.2.3)
J J J J J J

where gbij_\, = q{)(t;y7X8, (\/1/mNU,iAj,\/1/7711\’Vk]>]\j)1<k<mN)7 {(U;,VjN), 1<i<N1<j< mN} independent
normal random variables, ()/(\'45717 . ,)/(\'¢’N) denotes the linear interpolation process of {(Xf]_\’,l, . ,Xﬁ_@N), 1<ji< mN}
J J

on interval [0, T7,
N
gptN (dx) de tN’ . dx), and o™¥ (dx) : N;(SX"” (dx), for all s € [0,T].
The value function of the discretized large population stochastic control problem is then defined by

VY (v) = ¢S1i{) JIn(6), where Jy(¢) := N Z EY {L(t;y,)?d)’i,gagy,(éijy)l/mjv +g()?¢’i,g0N’X) . (8.2.4)
ECAN ,

Remark 8.2.2. Considering a general form of the discretized diffusion (8.2.3) with the function H allows different
possible schemes and not only the Fuler’s scheme. The Euler’s scheme corresponds to

H(h,x,7,a,U) := b(x,7,a)h + o(x, 7, a)VhU.

In the case n =1, another scheme is possible by considering the cumulative distribution function F(h,x,v,a): R — [0,1]
of b(x,7,a)h + o(x,7,a)VhU and define

H(h,x,v,a,U) :=inf{y : F(h,x,7,a)(y) > B(U)},

where B is a function s.t. the law of B(U) is uniform.

8.2.3 Main results
Assumption 8.2.3. There exist Borel measurable functions (b°,0°,L°) : [0,T] x C™ x P(C") x A — R™ x S"*? such
that, for all (t,x,v,a) € [0,T] x C™ x P(C™ x A) x A, with v(dx) := v(dx, A)
(b,o,L)(t,x,a,v) = (b°,0°, L°)(t, x,a,v).
By abuse of notations, we still write (b, o, L) in lieu of (b°,0°, L°).

Assumption 8.2.4. There exist a constant 0 > 0, and Borel measurable functions (b*,0*, L*) : [0, T|xR"xC([0,T]; P(R™)) x
AXPR" x A) — R" x S and o € S*** such that, for all (t,x,7,v,a) € [0,T] x C" x P(C" x A) x P(C") x A, with
vf(dz,da) :==vo (Xt,oz)_l(dx,da) and v} (dz) :=vo (Xt)_l(dx)

(b,0, L)(t,x,a,7) = (b*, 0%, L*)(t, ¢, V., U, a), oo(t,x,v) = o and 01, < oo (t,x%,a,D).
By abuse of notations, we still write (b, o, L, 0¢) in lieu of (b*,o*, L*,0}).

Theorem 8.2.5. Let Assumption 1.4.1 hold true. Under Assumption 8.2.3 or Assumption 8.2.4, for any v € P, (R"),
one has
lim |Vg'(v) = Vs(v)| = 0.

N—o00
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8.3 Numerical implementation through neural networks

8.3.1 Description of the implementation

Description of the neural network We use a feedforward neural network which is a composition of layer functions.
The set of layer functions with input dimension d;, output dimension ds, and activation function p : R — R denoted
LY, 4, is defined by

dy
Lgl,dz = {¢ ‘RM 5 R%2 st 3b € R and w € S®2*% satisfying V (i, z) € [1,dz] x RY, ¢(z); = p(bi + Zwijxj) }
j=1

The set of feedforward neural network functions with A hidden layers, one output layer, the activation function p is then
defined

NP[dy, .., dgyn] = {¢ (R% s R s Vi€ [0,H 1], 3¢ €L, and ¢y € LY 4 satisfying ¢ = gp o ... 0 ¢H}.

Now, we define a new optimization problem involving the feedforward neural networks. For v € P,(R™), let us introduce,
for an activation function p, (dq,...,ds) € (N*)7

V() = sup In(9),
¢ € NP[(d+£)xmN +2, di,...,d%, h)

where Jy is defined in (8.2.4). Thanks to the universal approximation theorem, the following result is just an application
of Theorem 8.2.5.

Proposition 8.3.1. Let us stay in the context of Theorem 8.2.5. Then
lim lim |V 1(v) = Vs(v)| =0.

N —o00 g—0

Algorithm Based on the previous result, we give an algorithm for solving the McKean-Vlasov control problem.
Let t,IC\Crl -tV = 1/m" = Ay, M € N, (fé%{j)e{l N1, M}) a sequence of independent random variables s.t.

LP(EW) = v for all (i, 5), and (Up?) ik jye 1, Ny 1, m¥ {1, ) and (V) (k. je(1,.m¥ (1,0} @ sequence of Lid
random variables of normal distribution. For ¢ € N?[(d + ¢) x m" + 2, ¢, h], let us define: ng’w = &;’, and for each
ke{l,...,m"},

Y;]I{; W Yt(ﬁ,’i’j—f—H(l/m X¢17J ('DtN’ (th, U%J) and X;#N%J X;i’NhJ_’_Yt?ILJ Yt%id_’_o.o /1/mNij

k+1 k k41 k41
2% ©,J 2%
where gi)tkN = ( V& ,(\/ANUk,/\k,v V,Ak)1<k,<mN),

N N
: 1 ; 1
©NI(dx, da) := ¥ § 0 S0 gio)(dx, da), ds @ dP*-a.e., and NI (dx) = N § 054, (dx), for all s € [0, 7).

i=1

The optimization problem which we implement is

Vng,]\/[(Vl’.‘.’VN) = sup JN(d)),
PENP[(d+£)xmN 42, dy,...,d3, h]
where
13 et -
Inar(@) = 37 D0~ DS LY, X QNI G A 4 g (RO, N9,
j=1 i=1 k=1
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The parameters of our model through the function ¢ are

6 = (bla(wl,l;“-awl,dl))' "7(bh);(wh,17~" )wh,d"}.{))’

we will note Jy a(0) instead of Jy a(¢) in the following pseudo—algorithm.

Data:
e An initial parameter 6y. A sequence of learning rates.

o M samples of: (£"');cq1,. 3y of distribution v (initial law), (Ué’l)(i,k)e{l,...,N}x{1,...,mN} and (V) )peq1,....mny of

normal distribution

Result: Learning ¢ by the parameters 6 through a SGD
1 Initialization of 6;
2 for ¢:=1,...,Q do

end

3 Compute VJn,a(6,4) by Back—propagation;

4 if |VJn,m(0g)| is small enough then

5 ‘ Stop now;

6 else

7 | Otherwise, the parameter is updating: 0441 = aq0, + (1 — aq) V1 (6g);
8 end

9

8.3.2 Numerical results
8.3.2.1 Example 1: mean—variance portfolio selection

As first example to illustrated our algorithm, we use the mean—variance optimization problem. This problem consists in
minimizing a cost functional of the form:

J(a) = gVar(XT) - E[X7],

with n > 0, with a dynamic for the wealth process X := X controlled by the amount a; valued in A = R invested in
one risky stock at time t € [0, 7],

¢ ¢ ¢
X, =xzo+ / r(s)Xsds + / asp(s)ds + / a9 (s)dWs.
0 0 0

where r is the interest rate, p and ¥ > 0 are the excess rate of return (w.r.t. the interest rate) and volatility of the
stock price. This model fits the context of Linear—quadratic McKean—Vlasov problem and has been studied in with some
“McKean—Vlasov” techniques Pham and Wei [139]. Also studied under another approach by Zhou and Li [155], Fischer
and Livieri [67] and Andersson and Djehiche [13]. The analytic form of the optimal control is given by

af = 19p?((tt>) [:L'O exp (/Otr(s)ds) + %exp (/OT gzii; ds — /tTr(s)ds> - Xt*}, for all t € [0, T7,

where X* is the optimal wealth process with portfolio strategy a*. We use o* and J(a*) as benchmark to test our
algorithm in Figure 8.1. We can see that the difference between the estimated value of J(a*) and the true value decrease
w.r.t. the number of iterations of the SGD method of our algorithm. The two graphs are really quite close. This result
is in adequacy with the theoretical result of Theorem 8.2.5.

8.3.2.2 Example 2: inter—bank systemic risk model

As second example, we consider a model of inter-bank borrowing and lending studied in Carmona, Fouque, and Sun [48],
and Pham and Wei [138] where the log-monetary reserve of each bank in the asymptotics when the number of banks
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Figure 8.1: Difference between optimal value J(a*) and its estimated

tend to infinity, is governed by the McKean-Vlasov equation:

t t
Xt:z0+/ [((E[Xs|B] — X.) + a] ds+/ (00 + o1 X)[\/1— p2dW, + pdB.]., t € [0,T].
0 0

with K > 0 the rate of mean-reversion in the interaction from borrowing and lending between the banks, 09 > 0, o7 € R
are the affine coefficients of the volatility of the bank reserve, and there is a common noise B for all the banks. Moreover,
all banks can control their rate of borrowing/lending to a central bank with the same policy « in order to minimize a
cost functional of the form

o T 2 n 2 c 2
J(a) =E l /0 507 — qon(BX,| B] = X) + 2 (E[X,] — X,)?]dt + o (E[X7|B] - X7)? |,

where ¢ > 0 is a positive parameter for the incentive to borrowing (a; > 0) or lending (o < 0), and > 0,, ¢ > 0 are
positive parameters for penalizing departure from the average. The optimal control is given by
oy = —(28(@t) + ¢)(X{ — xo — o0pBy), t € 0,77,

where X™* is the optimal log-monetary reserve controlled by the rate of borrowing/lending o*,

(=) (exp((6F — 07 )(T — 1)) —1) —c(d* exp((0* —d")(T 1)) —d")
d=exp((60+ — 6 ) (T —1t)) — o+ —cexp((dt —6-)(T —1t)) — 1 ’

Bt) =5

and

+ o ot
5 = —(Ii—l—q—?)ﬂ: (k+q—7)2+n—q2.

Similarly to the previous example, we displayed in Figure 8.2, the difference between the estimated value of J(a*) and
the value of J(a*) depending on the number of iterations. We can observed the same decrease.
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Figure 8.2: Difference between optimal value J(a*) and its estimated

8.3.2.3 Example 3: optimal liquidation with market impact

Consider a market where a group of agents have a position on a certain asset which they want to liquidate by a fixed time
T > 0. Trades of all market participants reflect on a permanent and a temporary market impact. The optimal trades
will be a result of the trade-off between trading slowly to reduce the market impact (or execution/liquidity cost), and
trading fast to reduce the risk of future uncertainty in prices; This kind of model has been studied under different forms
by Almgren and Chriss [11], Alvaro Cartea and Jaimungal [12], Cardaliaguet and Lehalle [37], Carmona and Lacker [45],
Acciaio, Backhoff Veraguas, and Carmona [1]. The asymptotic formulation of this problem takes the following form: S
is the price process modeled by

t
st=50+/ AE[ay]ds + o Wi, ¢ € [0, 7],
0

where A > 0, and AE[ay] is the permanent market impact to which all agents contribute. The inventory process Q is
governed by

t
@ =Qo+ [ auds,
0
with Qg (possibly random) being the initial inventory to deplete by time T. The wealth process is given by
t
X = —/ as(Ss + kag)ds, t € (0,77,
0

where ka; represents the temporary market impact which influences each agent. Using the control process a which is
the trading speed, the goal is to minimize

T
J(a) := IE[(;S/O Qdt — Qr(Sr — AQr) — X1/,
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le—6 optimal liquidation with market impact le—6 Market impact
1.2 4 = activation = softsign === yarepsilon = 107 (-5)
== activation = relu == varepsilon = 10"(-6)
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1.0 4
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Figure 8.3: Difference between optimal value J(a*) and its estimated: on the left different activation functions and on
the right different ¢ values

where ¢ is a risk aversion parameter, Qr (St — AQr) is the liquidation value of the remaining quantity at terminal time
(with a liquidation/execution penalization). The optimal control is given by

dy exp(—y(T —t)) — da exp(y(T — t)) 2)\¢(exp(—71) + exp(7t))
dy exp(—T) + dg exp(yT) (di exp(—T) + dz exp(YT))(c1 exp(—T) + ca exp(yT))’

ay = QoY + E[Qo]

where

dl = \/(ZS]C*A, d2 = \/¢k+A, C1 = 2d1+)\, Co 1= 2d27>\, and’y:: \/(,ZS/]C.

To be able to test our theoretical result in this example, we need some modifications. Indeed, here the assumptions of
Theorem 8.2.5 are no longer true. The non—degeneracy assumptions of volatility ¢ is not verified. To stay in the context
of theorem, we replace the dynamic of Q by Q. = Q. + ¢W. with W a Brownian motion independent of W and ¢ a
positive value close to zero. We perform our algorithm with this modification and compare with the true value J(a*).
We observe a decrease in the difference of the two values when the number of iterations increases. Another graph shows
J(a*) and its estimated for different values of e.

8.4 Proofs

8.4.1 Proof of Theorem 8.2.5
Lemma 8.4.1. Let Assumption 1.4.1 hold true, v € Py (R"™), and a € Ay (v). For any N € N*, there exists a family
of Borel bounded functions (¢™)nen- satisfying ¢~ : [0, T] x R® x (R? x RZ)_mN — U s.t. if we let (X1, ..., XN be
defined on (0*,F*,P*) by: fori € {1,...,N}, for all j € {0,..m" — 1}, X;é]\}z = X¢,

0

x5 :Xﬁf+b(t§y,)?¢’i,<pi\;’y,¢i§y)l/m1v—|—O(tév,)A(¢’i,<pi\;7y,q§i§v)\/1/mNU;+00 1/mNVN, (8.4.1)

j+1
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where (th = <t§v, X, (\/1/mNU,iAj, \/1/711]\’1/,€]\A’J.)1§k§mN)7 ()?45717 . ,)A(¢7N) denotes the linear interpolation process
of {(Xle, .. .,Xf’]@N), 1<5< mN} on interval [0,T],
i i

2

N(dx, da) 6 i) (dx,da), ds @ dPY-a.e., and o™X (dx) := ), for alls € [0,T],
N Xd’ v

then if ®* := 6 L (da)dt, ® :=dq,(da)dt,
[s)

N
1 ~a . P, [ s
PN (dx, da, de) NZ: %o g (@)S)(dx,da,de) and 11§ (dx,da,de) := L (X, a,, @ ‘gs)(dx,da,de)
one has
lim £7° (‘525 (d)ds, @vi) — P (5;? (dﬁ)ds,/ﬂ), in W,.

Proof. step 1: Under Assumption 1.4.1, by (an easy extension) Lemma 2.3.10, in the filtered probability space (2, F, F,P,),
M)

there exists a sequence of F-predictable processes (V) y>1, and a sequence a F-adapted continuous processes (S™)y>1

such that: sup >4 EFv {fo p(ag, ¥ )P dt] < o0, for any N >1

T
) = ag, ol :afy],v, on [0,7], lim EP”[/ plag, ¥ )P dt] =0, and hm EFv [ sup |Xs —Sév|p] =0, (8.4.2)
0

N—oo —0o0 5€[0,T]

where S¥ is the process defined by Euler scheme: S} = X, and for all ¢ € [0, T,

tVen o tVen N _N tVen
SN = X, +/ b([rN, SN, B, i\’)dr+/ o ([N, SN, B, ,aﬁv)dW;VJr/ oodBY, (8.4.3)
EN EN EN
where SV denotes the linear interpolation process of {SN, 1 < j < m™} on interval [0, 77, BY = P (SN, a[Gy),
J

BN = L (SN|Gr), en = t), WN := W.yey — Wey and BN := By, — B.,.

step 2: Let N € N* be fixed. Forall 1 < j < m”, we define EJN = [P (St]YV/\  (a ﬁ\f 1)1<k<j, (W Wt]}f\, )1§kgj‘g:r) €
P(C™ x U7 x (RH)7).

By similar method used in Lemma 2.3.11, there exists a sequence i.i.d uniform random variables (Uf )1<j<mn~ independent

of other variables and a family of Borel functions (G;"N)1<J<mzv and (Gf’N)léjSmN satisfying for all j € {1,....,m"},
GO R x RY x (R x (RY) x [0,1 — U and GV« (RY) x [0,1)7 — P(C" x U7 x (R?)7) such that

ch (Xo, (B 1<i<mn s (05 )1<j<mn (Wt WtN 1gi<my (Bt];V,v - Bf}/[l)lgsmfv)
= ,C]PV (XO, (C]Nhgjgva (’Y]N)lgjgmN7 (Wt?[\’ B Wtjév.\’_l)lfjﬁmN7 (Bg\’ - Bg.v_l)lﬁjfmlv)’ (844)

where

=Gy N<X0,W (W = WX BN - B U;f)lgkgj) and (N = Gf’N((Bin - BZZvA,sz)lsw)-

k—1

Notice that as (B\JN )1<j<mn~ is B-measurable, when £ = 0, we can remove the variables (Uf )1<j<mn~ . Thanks to particular
form of SN of (2.3.10), for each j € {1,...m"}, there exists a Borel function H’ : R" XP(CxUT x (R)7) x (RY)7 x (R)T —
R"™ s.t.

StN = H’ (Xoﬁjv7 (o 1<rsss Wi = Wi Di<isys (BN — Bt]ZV_l)lngj)'
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Let Z{¥ = Xy, and for each j € {1,...,m"}, one defines (ZZYV, ...,ZtJYV ) by and
1 mN
ZtN = H (Xo,zfv7 (i iy (Wiy = Wik iy (Bly = Bt]ivY_l)lﬁij)‘
Therefore by (8.4.4), one has
‘CPU <(Stjy.v)0§j§mN7(Bj y ] 7W WtN 7B£2,V _Bg_\fil)lgjgml\’)

_‘CIP (( tN)O<_]<mN (Cj ?’Y] 7Wt1\’ th\’ 17B1{2r\’ _Bg\’_l)lﬁjgml\’> (845)
and

P, N N B
C =L ( tNA- v(’Yk 1)1<k<;) (W WtN )1<k<j‘(B N BtkN717Uk)1§k§j)

— rPb 8
=L (ZtN/\ »(% 1)1<k<) (Wtfg’ - Wt 1<k<]‘B U 1<k§j>’
where ZV denotes the linear interpolation process of {Z., 1 <j <m"N} on interval [0, T].
i
. e B . . o B
Step 3: Asif £ =0, (U, )1§k§j can be removed, then by similar methods used in Proposition 2.3.12, (U} )1gkgj can be

replaced by a function of Bt]\{v and the equality (8.4.5) remains true. Let us define RV by Euler scheme
tVen

tVen N _N tVen R _N
szfv = Xo +/ b([r]NvRNaer afYrJ’V)dr‘i’/ U([T]NaRNaar 777]“V)dW7{V +/ UOdij’vv

EN EN EN
where 4 := N for t € [tV 1)), RN denotes the linear interpolation process of {R%/V, 1 <j <m"} on interval [0, 7],

giv = LP (Rt/\ Vi ‘Qt ), 0N = P (RN|QT) Observe that: for each N € N*,
'yév = ¢ (S,AXVO7 (W[s /\tN]N - W[s' A tN 1]N,B[§/\tN]N - B[g /\t 1]N>1<k< N) for all s € [O,T‘]7
with ¢™ : [0,7] x R™ x (R4 x RZ) — U a Borel function, RtN = Z) forall j € {1,...,m"}, and

T
EF [ sup |R£V|p/] < C’(l +/ |z|P v(dz) 4 sup EF» [/ p(ag,v,fv)p/dt]).
t€[0,T] n N>1 0

t

Let us introduce ©" := 5(91\; +5) (dv, du)dt, and

QY= £ (RY,8", 0%, WY, BY) € P(C" x M(P(C" x U) x U) x P(C") x €% x C*).

It is straightforward to show that (QV) x> is relatively compact in W,. Let Q> the limit of any sub-sequence of (QV)y>1.
For simplicity we keep the same notation for the sequence and the sub-sequence. Let us show

Q> (X 81, o (A7, du)dt, uT,W,B). (8.4.6)

Let M € N*, (rq,...,rar) € [0,T]M, a bounded continuous function ® : (R"XRdXRZ)M xP(C")xM(P(C"xU)xU) = R

Denote by Zi\’ — [P (Z;’X),#V’(Btfz\, — Bg\il) and CN = [P (2N|(Btlg\, — Bizf_v )

' 1gjgmN) one has

1<j<my)
E [‘1> ((Xm Wi, Br)1<i<ms 15 0, a0) (A7, du)dt)]

= lim EP |: ((S[JV]N7W[T]N,B[T]N)1<Z<M7B 66t

N—oco

o (7, du)dt)}

= lim EP” |:(I) ((Z[”]N, W[Ti]N 5 B[Ti]N)lgiSMa C ) 5(Ei\”7t1\r)(dﬁa du)dt)}

N—oc0

1

= lim E™ (@ (R 1, Wi, BY s hisican, 07,8 (A7, du)at) | = B [@ (K, Wh,, B iicar, B Ad7, du)at) |

N—o00
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where (X, A, W, B) is the canonical process on C" x M(P(C"xU)xU) x P(C™) xC%x C*. The previous result is true for
all (r1,...,7m,) and @, we can deduce (8.4.6), for any sub-sequence, then li]{[n QN = P (X, 8z, o) (AU, du)dt, pr, W, B)
in W,,.

Now, by Euler scheme again, let us define X~ by:

t t t
XN =X, +/ b([r)N, XN, Y ) )dr+/ o ([N, XN, @ A ) dw, +/ o0dB,, (8.4.7)
0 0 0

where XV denotes the linear interpolation process of {Xt]}fv, 1<5< mN} on interval [0, 77, ﬁiv = LP ()?tN, %N|gt) =
3

EPV(‘)?ngv’YtN|Bt{V’(BgV—B£YV )

1<j<mN)’ AR ()A(N|QT). By similar technique as Equation (2.3.9), it straightforward
j—1 ==

to show that limpy_, s EF» {supse[o’ﬂ |RN — X;Vp} = 0. Consequently,

li £ (XN S, N)(dz;,du)dwNw,B) —lim £ (RN,@N,GN,WN,BN) e (X, 6(ﬁt7at)(dﬁ,du)dt,uT,W,B).
(8.4.8)

Step 4: As XV satisfies (8.4.7), there exists KV : R" x C? x C* — C™ a Borel function s.t. XV =K~ (X,, W, B), P,-a.e..
In the space (Q*,F* P*), for each N € N*, let (W1,...,W¥ B) be a F*-~Brownian motion, and define the filtration on
(Q%), (Ge)ieo,r) = (0(Bea)t)iepo, ), and Z4N .= KN(X{, W, B). In other words Z*" is the strong solution of: for all
t e (0,7,

ZZ’N =X+ / b([r]N, Zl’N,ﬁi,V,'yﬁ’N)dr + / 0([7’]N, Z”N,ﬁfy,vﬁ’N)dWﬁ + / oodB,., P*-a.e.
0 0 0
with 4N = QS (s X, (W[S AN VV[is N tkN,l]N’B[S A NN = B a tkNil]N)lngmN>, EZN d-enotes the linear interpolation
process of {ZZ{’VN’ 1<5< mN} on interval [0, T, and 7N = L (XtN, 7{V|gt) =" (ZZ’N,’YZ’N‘gt), N = B (XN|QT) =
£ (2i=N]gT). Using techniques of Lemma 3.4.3! and the law of large numbers, one gets

lim EP*UTW (£ (KA, OV G) )t 4+ W, (u™ N)] =0 (8.4.9)
o P t o t >Vt t D s y 4.

N—o0
with TV := 0,y (da)dt, TN = 3, ~(da)dt, §; (dx, da,de) = %zﬁla( n i

Zin. e )(Fi’N)t
1 N
N g i=1 (SZi,N (dX)

To finish, let us introduce by Euler scheme (X1, ..., XN:N): for i € {1,..., N}, and all ¢ € [0,T],

)(dx,da7de)7 and ¥V (dx) =

PN _ (6~ N [~ N N (&~
X[i]N :X6+/ b([ ] X’L ,CP[S]N, )d5+/ U([ ] XZ 7%0[ ]N; )dWZ / UOstv
0 0 0

where @%N(dx, du) := %Zi\; (Xj;,v zN)(dx,da), (fl’N,...,XN’N) denotes the linear interpolation process of
[N A’

{(thl’VN, o ,thyy’N), 1<5< mN} on interval [0,T]. As in Proposition 3.4.4, thanks to (8.4.9), we find

T
lim E U W, (N, P (XN, AN, (TN Gt) } EY [ sup |X0N — zbN p} =0, 8.4.10
lim_ (@£ (XA ()]G ) Z s | | (8.4.10)

where " (dx, da, de) := & vazl 6()?Z)AJY N i) (dx,da, de). By noticing that we can rewrite the process (X% ..., XV:IV)

under the form (8.4.1), by Combining (8.4.8), (8.4.9) and (8.4.10), we can deduce our result. O

LAn easy extension taking into account the dependence w.r.t. N of K.
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Denote M := M(P(C™ x A) x A). We will consider two canonical spaces
Q:=C"xC" x M, and Q:=C* x P(Q).

We equip the canonical space Q with the canonical element (B, i), and its Borel o-algebra F := B(Q). We then introduce
the filtration G := (G¢)¢ejo,r) on (2, F) by

G, = a((Bs, (isy @) : & € Cy(C" x C™ x M), s € [O,t]).

The canonical space O is equipped with the corresponding canonical element ()/(\' , 17', IA\), its Borel o-algebra F = B(Q),

and its canonical filtration F := (.7-}) defined by

t€[0,T]
Fp = a(()?s,f/s,ﬁ([o,s] x D)) : D e B(P(C" x A) x A), s € [o,t]), te0,7].

Notice that one can choose a version of the disintegration K(dt, dv,da) = A (dv, da)dt such that (/A\t)te[o,T] isa P(P(C™x
A) x A)-valued, F-predictable process (see e.g. [102, Lemma 3.2.]).

We next introduce a martingale problem on (Qﬁ) For all p € C}(R"4) and (t,x,y,w,7,a) € [0,T] x C" x C" x C¢ x
PC*x A)x A

Etcp(x,y,w, v,a) :=b(t,x,v,a) - Vo(y(t), w(t) + %Tr la(t,x, 7,a)Vp(y(t), w(t))]. (8.4.11)

Then, we introduce a process (]\Zw)te[oﬂ on (9, F) by

MY = o(Vi) — o(Vo) — // Lsp(X,Y,7,a)Ay(d7,da)ds, (t,¢) € [0,T] x CZ(R™). (8.4.12)
[0,t]xP(CxA)x A
Recall that for a borel function ¢ : [0,T] — R, we write [, ¢(s)ds := [, ¢T(s)ds — [, ¢~ (s)ds with the convention
00 — 00 = —00.

Definition 8.4.2. Let v € P(R"), then a probability measure P € P(Q) belongs to Pr(v) if and only if
(3) Blfio o (%o) ™ = v, Yo = Xo, By = 0] = 1, EP [EA[|X"]] + EF [Rr [f[o,w (plao, @) Re(da)dt] | < oo

) (Bt)te[o 71 is an (F, @) ~Brownian motion, and for P-a.e. @ € Q, Y. = X. — 0¢B.(@), [i(®)-a.e., and the process
(Mf)te[o 7] is an ( (@)) —martingale for each ¢ € CZ(R™).

(iii) For any Borel bounded function f : [0,T] x C" x P(C™ x A) x A — R, one has for P-a.e. & € Q,

T T
IE”{/ / / f(t,Xt,z/,a)At(dz/,da)dt} :/ / / flt,x,v,a)v(dx,da)A(dv, A)dt, p(w)-a.e.
0 P(CnxA)JA 0 P(CrxA)JCrxA

Proposition 8.4.3 (Proposition 3.3.5). For anyP € Pr(v7), on an extension (ﬁ* = Qx[0,1],F* := (FB([0, 10))teqo,r))
of (Q IF) there exists a family of measure—valued processes (N“) weq such that, for P-a.e. @€ Q, Ne = (]\71":’, . ,]/\\fd@)

is an (@ ,i(@) ® X)—martingale measure with intensity At(dl/,da)dt, the martingales (N“J)lglgd are orthogonal, and
satisfy

}/}t = )?o + // b(r,)/(\',m,a)f\r(dl?,da)dr + // U(T,)/(\',D,a)]/\?“_’(dﬂ,da,dr), a(w) ® A—a.s.
[0,t]xP(CrxA)x A [0,t]xP(C"xA)x A
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Moreover, let H* = (ﬁ?)te[o,T] with ﬁ: =G, ®ﬁt* be a filtration on Q@ x Q*, denote by PE the predictable o—algebra on
[0,T] x Q x Q* with respect to H*. Then for all bounded PE" ® B(P(C™ x A) x A)-measurable function f : [0,T] x Q x
Q* x P(C" x A) x A — R, one can define the stochastic integral ff[o X P(Cnx A)x A f9(s,v,a)N¥(ds,dv,da) in such a
way that

t,o,0%) — “(s,0,a V@ v,da,ds) | (&*) is A*fmeasura e.
o o epEen e N®(dp,da,d Pl bl
0,t] xP(C™ x

Lemma 8.4.4. Let Assumption 1.4.1 hold true, v € Py (R™). For any N € N*, let (X®1,..., X®N) be defined in (8.4.1)
on (QN,FN.P,), and

1 N

N ._ N & 71 fe) Gy —
PY :=P*o (BY,0n) € P(Q), where py = i ;5()?%71,%% S oy (@7 ,da)dt)’ (8.4.13)
with BN = B[%N +t— [t]NV[gN and i = qﬁft]N. Then the sequence (PN)nen= is relatively compact in W, and any
limit point belongs to Pr(v).

Proof. By recurence, we can check that: there exists a constant C' > 0 s.t. for each i

EF [ Yol ?;¢7i|3] < C(m™)32¢(1/mN)|t — s| and EF” { sup |Y¢ Z| ] < C(l —|—/ |xp/1/(dx)>.
Rn

te[0,T]

Using similar techniques to Chapter 3, we can show (PV)yen- is relatively compact in W, (to explicit). Let P be a

limit for any sub-sequence, let us show P~ € Pr(v). L
It is easy to Verlfy the first pomt of Definition 8.4.2 (see also Chapter 3), the fact that B is a (I, ]P’OO) Brownian motion

and that for P -ae. @€ Q, V. = X. — 09B.(0), fi(w)-a.e. follow as well.

Let us verify the martingale problem and the point (#3i). On (*, F*), we define the processes (M#*N N#&N) for
it=1,...,N by

M7 = (V) — (Y5 — /0 Lignp(X2 Y ol al)ds,
and

NEEN = oY) — oY) — LN

S éi N i opri
k+1 o 1 kt,D(X Y 7‘pt§§vat§j’Uk+1)7

where
1
Lip(x,y, v, a,u) == H(1/m" xin.,7,a,u) - V(y(t)) + §Tr[HHT(1/mN,XM., v,a,u)Vp(y(1))].
Also, let us introduce the filtration

FN o= a{Xg,...,X(§V7U,§,,...U,gY,v,gY; K < k}

k+1 o
the o-algebra F. Let ¢ € C2(R™), ¢ € Cy(Q) and ¢ € Cy(P(Q)). Deﬁne

notice that for each i # 7, (N ©iN A p ;‘;VZ - M z) and (N il +]1N M I M ﬁv’j ) are conditionally P* independent given
k

Ul = ’(/)(X,,(‘X/{Z'.,YTO/(\’?, (Ai)r) and U’ := 1/)()?r/\-,}/}rm7 (K)T),
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one has
B (o) ( (Mg — M) W )| = Jim [B7 [03) (M — M) Wi )|
—~ — N 1/2
< timsupE” [lo(@)|") *E” [[((Mw — M) Wi )]
—00
. 212 o | 1 N 291/2
= limsup CE" [|¢(m)|] ""E" [NZ(M[‘;Z M[“’f )Win } =0.
N—oo i—1
Indeed,
1 N 2 1 N 2
P* i i P* K i
E {NZ(MH = M) W }]E {NEZ(MQVHMZW‘I’MN ]
i=1 1= k

2 N
]:EP*{ ! DD (ME = M)W (MY Mé&j)\I’{T]N}

k+1 (1™ q+1

N
—Z (M5 —M*“)xlffr] (Mgzvfl—M‘?;J)\I/{T]N}

k+1

[ 3 5 (0, M (Y, 5

,j=1 k A
2 & N ,
= EF {NQ > (MZZVL —M‘“)\IIET]NEP" {(Mgzvjl M) ¥n | P, ”
i,j=1k<gq
]' K3 1
e [T g a0 vy
1#£]
1 N 2
P* Ji K i
by S E | |0, -z |
k =1

N
| 2 i i i
=E" [QZZ(Mﬁv M[f} )‘I’[T]N]EP'J’V {(Mtivjl Méﬂ N30+JlN folN) [r] N

dl

7| (g, - Mg - N N

dl

[r]N

q
1 * i i i 7
+WZ {ZEP { Mﬁv Mﬁv le+1N+Nif+1N) [r]N
k

N 2
;‘(Mtfﬁ - ME) W ”

k+1

<c Y E [E“" [¢>(1/m )+ [H(1/m™, X% o) $in, Usiy)] !féVH
q
ZEP*[ZEP[ (1/m™N —|—‘H(l/mN,)A((b’i,wigy7¢igaU£+1)‘3’flév}
i#]

« . * N 2
EP [¢(1/m —|—’H(1/m Xm,cptw,%N»UiH) |~7:k H ZEP |:Z‘ Mﬁvz _MfNZ)‘I/[r}N’ ]

k+1

< C’(mN¢>(1/mN) +mNe(1/m™N)? + ;7)
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For the last point (ii%), let a continuous bounded function f : [0,7] x C" x P(C"™ x A) x A — R,

T 7| T (T R R T N
g [E“ { B [ / / / f(t,Xt,y,a)At(du,da)dt] - / / / £t %, 7, a)5(dx, da) A, (d, A)dtm
0 P(CnxA)JA P(CrxA) JCrxA
s (T S
Jim B [ Nz;/o P X005 o) dtf/ Zf t, X9 ,at)dtH =0,
by taking a countable set of continuous functions f, we deduce the point (iii). Therefore, P™ belongs to Prv). O

Proof of Theorem 8.2.5 Let Assumption 1.4.1 hold true. For each N € N*| in the space (Q*,F*,P*), let us take a
Borel function ¢V : [0,T] x R™ x (R? x Re)mN — U, satisfying for each i € {1,...m"™}, EF” [fOT p(a0,¢fs]N)pds] < 00,
where we denote by (sz\, = ¢(tjy7Xé, (\/1/mNU,iAj, \/1/mNVkJXj)1<k<mN>, and Jy(¢") > V& (v) — 27V, By Lemma
8.4.4, if we define

N
N . N =~ 71 e) -1 N _ pN N
PY :=P*o (BY,5n) € P(Q), where @y _NZ R Pori g (@5 da)at) By = Bpyn + 1/t = NV
and of = gbfﬂ ~. Then the sequence (PY)yen- is relatively compact in W, and any limit point is a relaxed control.
by Proposition 8.4.3, for each limit point P, on an extension (Q* := Q x [0,1],F* := (F; ® B([0,1]))sef0,7]) of (2, F),
there exists a family of measure-valued processes (Na)oeﬁ such that, for P-a.e. @ € Q, N¥ = (NB&, .., ]vd"‘_’) is an

’(w,a

(I/E‘\*, n(w) ® )\)fmartingale measure with intensity /A\t (dv,da)dt, the martingales (N %) 1<i<q are orthogonal, and satisfy

Y, = X + // b(r,)A(7m,a)Kr(dz7,da)dr + // U(T,)A(J,a)Z\Af‘:’(dD,da,dr), p(w) ® A-a.s.
[0,t]xP(CrxA)x A [0,t] xP(CrxA)x A

Moreover, let = (ﬁf)te[o,T] with 7—72 =G, ® ]?t* be a filtration on Q x ﬁ*, denote by ’Pﬁ* the predictable o—
algebra on [0,T] x © x Q* with respect to H*. Then for all bounded PE" @ B(P(C™ x A) x A)-measurable function
F[0,T]xQxQ*xP(C"x A) x A — R, one can define the stochastic integral ff[o HxP(Cnx A)x A 9(s,7,a)N“(ds,dr, da)
in such a way that

(t,w,0%) — (// f9(s,7,a)N®(dir, da ds))( *)is PH' _measurable.
[0,t]xP(C*x A)x A

First case : Assumption 8.2.3

If we define W. = ffo JxA N®(da,ds) on €, and
P [ DO (R R W B, LN (R,7,R17) ) B,
a

according to Proposition 3.3.2, P is a weak control, and consequently, under Assumption 8.2.3, by Theorem 3.2.7

limsup V& (v) < limsup Jy(¢™) < Vs(v). (8.4.14)

N—oc0 N—oc0

Second case : 8.2.4 If we define

P /ﬁ £ (0 (K07 oy Aeld7, A, (Bo)iegor) ) Pd),
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according to Definition 4.4.1, P is a measure-valued rule, and consequently, under 8.2.4, we have the same result (8.4.14).
To finish our proof, we want to show that

Vs(v) < liminf V& (v).
N—o0

Let o € Ay (v), by Lemma 8.4.1, For any N € N*, there exists a family of Borel bounded functions (¢™V) yen- satisfying
&V [0, T]) x R™ x (R? x Re)"”N — U s.t. if welet (X%1 ... X?N) be defined on (Q*,F*,P*) by: for i € {1,..., N}, for
all j € {0,...,m"N — 1}, X' = X,
0

ij\,;1 = X(z}’, + b(tN,)?¢’i, c,oi\]fy,qﬁi;y)l/m]v + o(tj-v,)?qﬁ’i, goigy,gzﬁi?,) 1/mNU; + 09 1/mNVjN, (8.4.15)
where gbiN = gb(t;»v, Xg, (\/ 1/mNU,2Aj, \/1/mNVk1Xj)1<k<mN), ()/(:‘b’l, e )?¢’N) denotes the linear interpolation process
of {(Xf&l, e ,XZ’I;,N), 1<5< mN} on interval [0, 7],

1 & 1 &
N (dx, da) := v Z (0 or)(dx,da), ds @ dP-a.e., and VX (dx) = ¥ > g, (dx), for all s € (0,7,

i=1

then if ¢ := %fS]N (da)dt, ® := §,_(da)dt,

N
1
>N — ~a Py s
o, (dx,da,de) := N 221 R . (@) (dx,da,de) and [ig(dx, da,de) := L (X, ag, D°|Gs) (dx, da, de)

one has

1i1{,n£]? (5A (dv)ds, oV ) =L (5@; (dﬁ)ds,ua), in W,

If we define for i € {1,..., N}, XJ'" := X{ and for all j € {0,...,m~ — 1}, Xf = X¢, Y‘ﬁ,l =0,

7 =20 (1 mY, R G, o, Uf) and R = RIS+ 20— Z3 + 00y [1/mN VY

Jjt+1 7+1

(1§¢’1, el R¢7N) (resp (qu,l, . Z¢’N)) denotes the linear interpolation process of {(Rf&l, . ,Rf&N), 1<j5< mN}
J J
(resp {(ij\’,l, .. .7Zt¢1\}N), 1<j< mN} ) on interval [0, T], and
i i

1 N

&N (dx, da) =¥ Za(R oy (dx.da), ds @ dPY-a.c., and VX (dx) = 5 > 65, (dx), for all s € (0,7,
=1

it is straightforward to check (similarly to Lemma 8.4.4)
P* (N ~NY—1 sP* (nN 7N *1)
Jim W, (27 (BN, 2Y) 727 (BN, 9M) T,

where

1 N

= — Ofe =~ and Py 1= E 5
XN =% Z (X2, X6im0oBN, 8 N i) (d7,da)dt) UN (X2, XovimooBN, 5, N ai )(dz‘/,da)dt)’
i=1 t ot =1

with BN = B[JXN + 4/t — [t}NV[gN and of := (bft],v. Therefore,
Vs(v) < liminf V& (v),
N—oo

then finally ]\}im V& (v) = Vs(v).
— 00
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RESUME

Cette these est formulée en trois parties avec huit chapitres et présente un sujet de recherche traitant des particules/ agents/
processus controllés en interactions.

Dans la premiére partie de cette dissertation, nous portons notre attention sur I'étude de processus controllés en interaction
représentant un équilibre coopératif, aussi appelé équilibre de Pareto. Un équilibre coopératif peut étre vu comme une
situation ou il n’existe pas de moyen d’améliorer la préférence d’'un agent sans rabaisser la préference d’au moins un autre
agent. Il est maintenant bien connu que ce type de probléme d’optimisation est li¢, quand le nombre d’agents tend vers l'infini,
au contréle optimal de I'équation de McKean-Vlasov. Dans les trois premiers chapitres de cette thése, nous donnons une
réponse mathématique précise a la connection entre ces deux probléemes d’optimisation dans differents cadres améliorant
la littérature existante, en particulier en prenant en compte la loi du contrdle tout en considérant un bruit commun.

La seconde partie de cette thése est consacrée a I'étude des processus contrblés en interaction représentant désormais un
équilibre de Nash, également appelé équilibre compétitif. Une situation d’équilibre de Nash dans un jeu est une situation
dans laquelle personne n’a rien a gagner en quittant unilatéralement sa propre position. Depuis les travaux pionniers de
Lasry and Lions [111] et Huang, Caines, and Malhamé [84], le comportement des équilibres de Nash lorsque le nombre
d’agents va a l'infini a été intensivement étudié et le jeu limite associé est connu sous le nom de jeux a champ moyen (MFG).
Dans cette seconde partie, nous analysons d'abord la convergence des équilibres compétitifs vers les MFG dans un cadre
avec la loi de contrdle et avec le contréle de la volatilité, puis, la question de I'existence de I'équilibre MFG dans ce contexte
est étudiée.

Enfin, la derniére partie est dédiée a quelques méthodes numériques pour résoudre le probléme de contble de McKean-
Vlasov. Inspiré de la preuve de la convergence d’équilibre coopératif, nous donnons un algorithme numérique pour résoudre
le probléme de contr6le optimal McKean-Vlasov et nous prouvons sa convergence. Ensuite, nous implémentons notre
algorithme a partir des réseaux de neurones et testons son efficacité sur quelques exemples d’application, a savoir la
sélection de portefeuille par moyenne-variance, le modele de risque systémique interbancaire et la liquidation optimale avec
impact de marché.

MOTS CLES

Equation différentielle stochastique, probléme de controle stochastique, équilibres de Pareto, équilibres de Nash,
jeux a champ moyen, équations de McKean-Vlasov, approximations numériques, réseaux de neurones.

ABSTRACT

This thesis is formulated in three parts with eight chapters and presents a research topic dealing with controlled
processes/particles/agents in interaction.

In the first part of the dissertation, we focus our attention on the study of interacting controlled processes representing a
cooperative equilibrium, also called Pareto equilibrium. A cooperative equilibrium can be seen as a situation where there is
no way to improve the preference criterion of one agent without lowering the preference criterion of at least one other agent.
It is now known that this kind of optimization problem is related, when the number of agents goes to infinity, to the optimal
control of McKean—Vlasov processes. In the first three chapters of this thesis, we provide a precise mathematical answer to
the connection between these two optimization problems in various frameworks improving the existing literature, in particular
by taking into account the law of control while allowing a common noise situation.

The second part of this thesis is devoted to the study of the interacting controlled processes now representing a Nash
equilibrium, also called competitive equilibrium. A Nash equilibrium situation in a game is a situation in which no one has
anything to gain by moving unilaterally from his own position. Since the pioneering works of Lasry and Lions [111] and
Huang, Caines, and Malhamé [84], the behavior of Nash equilibria when the number of agents goes to infinity has been
intensively studied and the associated limit game is known as Mean Field Games (MFG). In this second part, we analyze first
the convergence of the competitive equilibrium to the MFG in a framework with the law of control and with control of volatility,
then, the issue of the existence of MFG equilibrium in this context is studied.

Finally, the last part is dedicated to some numerical methods to solve the McKean—Vlasov limit problem. Inspired by the proof
of the convergence of cooperative equilibrium, we give a numerical algorithm to solve the McKean—Vlasov optimal control
problem and we prove its convergence. Then, we implement our algorithm using neural networks and test its efficiency
on some application examples, namely the mean—variance portfolio selection, the inter-bank systemic risk model and the
optimal liquidation with market impact.

KEYWORDS

Stochastic differential equation, stochastic control problem, Pareto equilibria, Nash equilibria, mean {j
McKean-Vlasov equations, numerical approximations, neural networks.
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