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Abstract

This thesis is formulated in three parts with eight chapters and presents a research topic dealing with controlled
processes/particles/agents in interaction.

In the first part of the dissertation, we focus our attention on the study of interacting controlled processes representing
a cooperative equilibrium, also called Pareto equilibrium. A cooperative equilibrium can be seen as a situation where
there is no way to improve the preference criterion of one agent without lowering the preference criterion of at least
one other agent. It is now known that this kind of optimization problem is related, when the number of agents goes to
infinity, to the optimal control of McKean–Vlasov processes. In the first three chapters of this thesis, we provide a precise
mathematical answer to the connection between these two optimization problems in various frameworks improving the
existing literature, in particular by taking into account the law of control while allowing a common noise situation.

More precisely, in Chapter 2, we first give a weak formulation of the McKean–Vlasov optimal control with common
noise and law of control, which is necessary to understand the optimization problem of McKean–Vlasov processes and to
analyze the behavior of cooperative equilibria when the number of agents goes to infinity. With the help of this necessary
weak formulation, using a notion of relaxed controls, in a non–Markovian framework with a common noise, a complete
analysis of the convergence of (approximate) cooperative equilibria is given in Chapter 3. Some properties of the optima
of the McKean–Vlasov optimal control problem are also proved.

Then, we pursue in Chapter 4 the analysis of the convergence of cooperative equilibria in a case where the empirical
distribution of controls is considered while allowing a common noise. Still using the weak formulation of Chapter 2,
by introducing a notion of measure–valued controlled process motivated by the Fokker–Planck equation verified by the
McKean–Vlasov processes, the characterization of the limits of the cooperative equilibria is provided within this framework
similar to the Chapter 3.

After studying the behavior of the cooperative equilibria, we conclude the first part in Chapter 5 where we spend times
in the analysis of the limit problem i.e. the McKean–Vlasov optimal control, through the establishing of the Dynamic
Programming Principle (DPP) for this stochastic control problem. Thanks to one more time the weak formulation of
Chapter 2 and an adaptation of measurable selection arguments, we give a DPP for various forms of the McKean–Vlasov
optimal control improving the existing literature in particular by considering weaker assumptions on the coefficients and
reward functions.

The second part of this thesis is devoted to the study of the interacting controlled processes now representing a Nash
equilibrium, also called competitive equilibrium. A Nash equilibrium situation in a game is a situation in which no one
has anything to gain by moving unilaterally from his own position. Since the pioneering works of Lasry and Lions [111]
and Huang, Caines, and Malhamé [84], the behavior of Nash equilibria when the number of agents goes to infinity has
been intensively studied and the associated limit game is known as Mean Field Games (MFG). In this second part, we
analyze first the convergence of the competitive equilibrium to the MFG in a framework with the law of control and with
control of volatility, then, the issue of the existence of MFG equilibrium in this context is studied.

In Chapter 6, by adapting the techniques used to study the behavior of the cooperative equilibria, with the introduction of
a new weak form of MFG equilibrium, that we coin measure–valued MFG equilibrium, and a notion of approximate strong
MFG equilibrium, we explore the convergence of competitive equilibria by taking into account the empirical distribution
of controls in a common noise case while controlling the non–common noise volatility.

We finish this second part in Chapter 7 by proving existence results of the measure–valued MFG equilibrium. The proof
is achieved by the use of a fixed point theorem, especially by Kakutani’s fixed point theorem. This existence result
induces the existence of approximate Nash equilibrium and approximate strong MFG equilibrium.
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Finally, the last part which includes only Chapter 8, is dedicated to some numerical methods to solve the McKean–Vlasov
limit problem. Inspired by the proof of the convergence of cooperative equilibrium, we give in Chapter 8 a numerical
algorithm to solve the McKean–Vlasov optimal control problem and we prove its convergence. Then, we implement our
algorithm using neural networks and test its efficiency on some application examples, namely the mean–variance portfolio
selection, the inter–bank systemic risk model and the optimal liquidation with market impact.

Keywords: Stochastic differential equation, stochastic control problem, Pareto equilibria, Nash equilibria, mean field
game, McKean–Vlasov equations, common noise, interacting particles, law of control, propagation of chaos, limit theory,
dynamic programming principle, measurable selection, HJB equation, numerical approximations, Monte–Carlo, neural
networks.
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Resumé

Cette thèse est formulée en trois parties avec huit chapitres et présente un sujet de recherche traitant des particules/
agents/ processus controllés en interactions.
Dans la première partie de cette dissertation, nous portons notre attention sur l’étude de processus controllés en interaction
représentant un équilibre coopératif, aussi appelé équilibre de Pareto. Un équilibre coopératif peut être vu comme une
situation où il n’existe pas de moyen d’améliorer la préférence d’un agent sans rabaisser la préference d’au moins un
autre agent. Il est maintenant bien connu que ce type de problème d’optimisation est lié, quand le nombre d’agents
tend vers l’infini, au contrôle optimal de l’équation de McKean–Vlasov. Dans les trois premiers chapitres de cette thèse,
nous donnons une réponse mathématique précise à la connection entre ces deux problèmes d’optimisation dans differents
cadres améliorant la littérature existante, en particulier en prenant en compte la loi du contrôle tout en considérant un
bruit commun.
Plus précisement, dans le Chapitre 2, d’abord nous donnons une formulation faible du contrôle optimal de l’équation de
McKean–Vlasov avec bruit commun et loi du contrôle, qui est nécessaire pour comprendre le problème d’optimisation
de McKean–Vlasov and analyser le comportement des équilibres coopératifs quand le nompbre d’agents va vers l’infini.
Grâce à cette indispensable faible formulation, en utilisant une notion de contrôle relaxé, dans un cadre non-Markovien
avec bruit commun, une analyse complète de la convergence des équilibres coopératifs est donnée au Chapitre 3. Quelques
propriétés des optima du problème de contrôle de McKean–Vlasov sont aussi prouvées.
Ensuite, nous poursuivons dans le Chapitre 4 l’analyse de la convergence des équilibres coopératifs dans un cas où
la distribution empirique des contrôles est considérée tout en permettant un bruit commun. Toujours en utilisant la
formulation faible du Chapitre 2, en introduisant une notion de processus contrôlés à valeur mesure motivé par l’équation
de Fokker-Planck vérifiée par les processus McKean-Vlasov, la caractérisation des limites des équilibres coopératifs est
fournie dans ce cadre similaire au Chapitre 3.
Après avoir étudié le comportement des équilibres coopératifs, nous concluons la première partie dans le Chapitre 5 où
nous passons du temps à l’analyse du problème limite c’est à dire le contrôle optimal McKean–Vlasov, en établissant le
Principe de Programmation Dynamique (PPD) pour ce problème de contrôle stochastique. Grâce une fois de plus à la
formulation faible du Chapitre 2 et une adaptation des arguments de sélection mesurable, nous donnons un PPD pour
différentes formes du contrôle optimal McKean–Vlasov améliorant la littérature existante notamment en considérant des
hypothèses plus faibles sur les coefficients et les fonctions de récompense.
La seconde partie de cette thèse est consacrée à l’étude des processus contrôlés en interaction représentant désormais un
équilibre de Nash, également appelé équilibre compétitif. Une situation d’équilibre de Nash dans un jeu est une situation
dans laquelle personne n’a rien à gagner en quittant unilatéralement sa propre position. Depuis les travaux pionniers de
Lasry and Lions [111] et Huang, Caines, and Malhamé [84], le comportement des équilibres de Nash lorsque le nombre
d’agents va à l’infini a été intensivement étudié et le jeu limite associé est connu sous le nom de jeux à champ moyen
(MFG). Dans cette seconde partie, nous analysons d’abord la convergence des équilibres compétitifs vers les MFG dans
un cadre avec la loi de contrôle et avec le contrôle de la volatilité, puis, la question de l’existence de l’équilibre MFG dans
ce contexte est étudiée.
Dans le Chapitre 6, en adaptant les techniques utilisées pour étudier le comportement des équilibres coopératifs, avec
l’introduction d’une nouvelle forme faible d’équilibre MFG, que nous nommons equilibre MFG à valeur mesure, et une
notion d’équilibre MFG fort approximatif, nous explorons la convergence des équilibres compétitifs en prenant en compte
la distribution empirique des contrôles dans un cas de bruit commun tout en contrôlant la volatilité non commune.
Nous terminons cette seconde partie dans le Chapitre 7 en prouvant des résultats d’existence de l’équilibre MFG à valeur
mesure. La preuve est obtenue par l’utilisation d’un théorème de point fixe, en particulier par le théorème de point fixe
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de Kakutani. Ce résultat d’existence induit l’existence d’un équilibre de Nash approximatif et d’un équilibre MFG fort
approximatif.

Enfin, la dernière partie qui ne comprend que le Chapitre 8, est dédiée à quelques méthodes numériques pour résoudre
le problème de contôle de McKean-Vlasov. Inspiré de la preuve de la convergence d’équilibre coopératif, nous donnons
dans le Chapitre 8, un algorithme numérique pour résoudre le problème de contrôle optimal McKean-Vlasov et nous
prouvons sa convergence. Ensuite, nous implémentons notre algorithme à partir des réseaux de neurones et testons son
efficacité sur quelques exemples d’application, à savoir la sélection de portefeuille par moyenne-variance, le modèle de
risque systémique interbancaire et la liquidation optimale avec impact de marché.

Mots-clés: Équation différentielle stochastique, problème de contrôle stochastique, équilibres de Pareto, équilibres de
Nash, jeux à champ moyen, équations de McKean–Vlasov, bruit commun, particules en interaction, loi de contrôle,
propagation du chaos, théorie des limites, principe de programmation dynamique, sélection mesurable, équation HJB,
approximations numériques, Monte–Carlo, réseaux de neurones.
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Frequently used notation

(i) Given a metric space (E, ρ), we denote by B(E) its Borel σ–algebra, and by P(E) the collection of all Borel probability
measures on E. For every constant p ≥ 1, we denote by Pp(E) the set of µ ∈ P(E) such that

∫
E
ρ(e, e0)pµ(de) <∞ for

some (and thus for all) e0 ∈ E. We equip Pp(E) with the Wasserstein distance Wp defined by

Wp(µ, µ′) :=
(

inf
λ∈Π(µ,µ′)

∫
E

∫
E

ρ(e, e′)pλ(de, de′)
)1/p

, (µ, µ′) ∈ Pp(E)× Pp(E),

where Π(µ, µ′) denotes the set of all probability measures λ on E × E such that λ(de, E) = µ and λ(E,de′) = µ′(de′).
Let µ ∈ P(E) and ϕ : E −→ R be a µ–integrable function, we write

〈ϕ, µ〉 := 〈µ, ϕ〉 := Eµ[ϕ] :=
∫
E

ϕ(e)µ(de).

Let (E′, ρ′) be another metric space and µ′ ∈ P(E′). We denote by µ⊗µ′ ∈ P(E×E′) their product probability measure.
Given a probability space (Ω,F ,P) equipped with a sub–σ–algebra G ⊂ F , we denote by (PGω)ω∈Ω the conditional
probability measure on P knowing G (whenever it exists). For a random variable ξ : Ω −→ E, we write LP(ξ) := P ◦ ξ−1

the law of ξ under P, and for any ω ∈ Ω, LP(ξ|G)(ω) := PGω ◦ ξ−1 the conditional distribution of ξ knowing G under P.

(ii) For any (E,∆) and (E′,∆′) two Polish spaces, we shall refer to Cb(E,E′) to designate the set of continuous functions
f from E into E′ such that supe∈E ∆′(f(e), e′0) < ∞ for some e′0 ∈ E′. Let N∗ be the notation of the set of positive
integers. Given non-negative integers m and n, we denote by Sm×n the collection of all m × n–dimensional matrices
with real entries, equipped with the standard Euclidean norm, which we denote by | · | regardless of the dimensions, for
notational simplicity. We also denote Sn := Sn×n, and denote by 0m×n the element in Sm×n whose entries are all 0, and
by In the identity matrix in Sn. For any matrix a ∈ Sn which is symmetric positive semi-definite, we write a1/2 the unique
symmetric positive semi-definite square root of the matrix a. Let k be a positive integer, we denote by Ckb (Rn;R) the set
of bounded maps f : Rn −→ R, having bounded continuous derivatives of order up to and including k. Let f : Rn −→ R
be twice differentiable, we denote by ∇f and ∇2f the gradient and Hessian of f .

(iii) Let T > 0, and (Σ, ρ) be a Polish space, we denote by C([0, T ],Σ) the space of all continuous functions on [0, T ]
taking values in Σ. Then C([0, T ],Σ) is a Polish space under the uniform convergence topology, and we denote by
‖ · ‖ the uniform norm. When Σ = Rk for some k ∈ N, we simply write Ck := C([0, T ],Rk), also we shall denote by
CkW := C([0, T ],P(Rk)), and for p ≥ 1, Ck,pW := C([0, T ],Pp(Rk)).
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Chapter 1

Introduction

1.1 Intuitions and preliminaries
The uncontrolled McKean–Vlasov SDE One of the main objectives of this thesis is to understand (in a certain
sense) the behavior of N–interacting controlled particles when N goes to infinity. However, let us begin by describing
the N–interacting particles (without controls) to fix the ideas, and show the main differences and difficulties with the
controlled case. Let (Ω,F,P) be a filtered probability space supporting (W i)i∈N∗ a sequence of independent Rd–valued
F–Brownian motion, and (ξi)i∈N∗ a sequence of i.i.d. F0–measurable random variables.

We start with the no–common noise situation. What we call N–interacting particles (without common noise) are
the F–adapted continuous process (X1, . . . ,XN ) governed by the following stochastic differential equation (SDE)

Xi
t = ξi +

∫ t

0
b
(
s,Xi

s∧·, ϕ
N,X
s

)
ds+

∫ t

0
σ
(
s,Xi

s∧·, ϕ
N,X
s

)
dW i

s , t ∈ [0, T ], P–a.s. (1.1.1)

ϕN,Xt := 1
N

N∑
i=1

δXi
t∧·
.

An important observation in this equation is the fact that the map (b, σ) : [0, T ]×C([0, T ];Rn)×P(C([0, T ];Rn)) −→ Rn×
Rn×d are independent of i and N, and the sequence (W i, ξi)1≤i≤N are i.i.d. Therefore, these particles are exchangeable
in the sense that: for any permutation p : {1, . . . , N} −→ {1, . . . , N}, the law of (Xp(1), . . . ,Xp(N)) is independent of
p. This is a key remark because if such a system is tractable mathematically when N goes to infinity, it is because this
system has this kind of symmetry.
Since the seminal papers of McKean Jr. [121] and Kac [91], and the monograph of Snitzman [149], the behavior when
N goes to infinity of these kind of systems has been intensively studied and is now well known and understood. Let us
give some intuition of the limit of such a system. The only interaction between the particles is through the empirical
distribution ϕN,X. If for a moment, we assume that the map (b, σ) is independent of ϕN,X i.e. defined on [0, T ] ×
C([0, T ];Rn), we can notice that the sequence (Xi)i∈N∗ is i.i.d, so that by the law of large numbers (with integrability
conditions), P–a.e. when N −→∞ the empirical distribution ϕN,Xt converges to LP(X1

t∧·), which is a deterministic value.
Now, back to our original (b, σ) with dependence w.r.t. ϕN,X, motivated by the previous observation if we have in our
mind that ϕN,Xt converges to a deterministic value µt, so when N is large enough, the sequence (Xi)i∈N∗ is quasi i.i.d,
in fact, if we replace µt by ϕN,Xt in Equation (1.1.1), we find a new sequence (X̂i)i∈N∗ which is an i.i.d sequence of
distribution X where

Xt = ξ +
∫ t

0
b
(
s,Xs∧·, µs

)
ds+

∫ t

0
σ
(
s,Xs∧·, µs

)
dWs, t ∈ [0, T ], P–a.e., (1.1.2)

with (W, ξ) having the same law as (W 1, ξ1) and independent of (W i, ξi)i∈N∗ . Formally speaking, by expecting that the
empirical distributions ϕN,Xt and ϕN,X̂t are close enough when N →∞, so share the same limit, the deterministic value
µt must verify: for a continuous function f,

EP[f(Xt∧·)] = EP[f(X̂1
t∧·)] = lim

N→∞

1
N

N∑
i=1

EP[f(X̂i
t∧·)] = lim

N→∞

1
N

N∑
i=1

EP[f(Xi
t∧·)] = 〈f, µt 〉 =⇒ LP(Xt∧·) = µt. (1.1.3)
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With the condition LP(Xt∧·) = µt, the Equation (1.1.2) is known as the McKean–Vlasov equation (without common
noise). In the case where the previous equations are well defined and admit unique solutions (for example when (b, σ) are
Lipschitz in (x, µ) uniformly in t), the convergence result lim

N→∞
ϕN,Xt = µt has been proved in many frameworks see for

instance Oelschläger [133], Gärtner [71], Graham and Méléard [74] and [149]. This result is called propagation of chaos
in the literature, a terminology coming from Mark Kac.

The use of these type of particles is to model the interaction/interdependence which can arise in the study of certain
systems in Physics, Biology, Economics, Finance, ... . The independence assumption between the sources of noise
(W i)i∈N∗ is not pertinent most of the time. Consequently, to be more accurate in our modelling, adding another source
of correlation can be very useful in practice. This motivated the research in this subject to consider the interacting
particles with common noise. Formally speaking, in Equation (1.1.1), the idea is to add a source of noise via another
Brownian motion B called common noise, independent of (ξi,W i)i∈N∗ and impacting all the N–particles. More precisely,
(X1, · · · ,XN ) follows now the dynamic

Xi
t = ξi +

∫ t

0
b
(
s,Xi

s∧·, ϕ
N,X
s

)
ds+

∫ t

0
σ
(
s,Xi

s∧·, ϕ
N,X
s

)
dW i

s +
∫ t

0
σ0
(
s,Xi

s∧·, ϕ
N,X
s

)
dBs, t ∈ [0, T ], P–a.e. (1.1.4)

ϕN,Xt := 1
N

N∑
i=1

δXi
t∧·
.

In this situation, we notice that the interactions between the particles are through the empirical distribution ϕN,X and
the Brownian motion B. The system still keeps a certain symmetry. Indeed, the map (b, σ, σ0) are independent of (i,N)
and for any permutation p : {1, . . . , N} −→ {1, . . . , N}, the law of (Xp(1), . . . ,Xp(N), B) is independent of p. Hence, the
question of the behavior of this correlated system when N →∞ can be asked mathematically. However, in contrast with
the no–common noise situation, here, we cannot expect that the limit of the empirical distribution ϕN,Xt is deterministic.
Indeed, if the map (b, σ, σ0) is independent of ϕN,X, the sequence (Xi

t∧·)i∈N∗ is conditionally independent and shares the
same conditional distribution given the σ–field Gt := σ{Bs, 0 ≤ s ≤ t}. By the law of large numbers (or at least an easy
extension taking into account of the conditional i.i.d property), one has

lim
N→∞

ϕN,Xt = LP(X1
t∧·
∣∣Gt), P–a.e.

The limit is then Gt–measurable. Therefore, in the case of dependence w.r.t. ϕN,X of (b, σ, σ0), a limit of ϕN,X cannot
be deterministic and will be at least a Gt–measurable random probability measure. In the case the limit is precisely a
Gt–measurable random probability measure µt, the same intuition used previously in the no–common noise setting allows
to say that when N is large enough, we can assume that in Equation (1.1.4) ϕN,X is equal to µt, then (Xi)i∈N∗ is quasi
conditionally i.i.d., and the new sequence (X̂i)i∈N∗ is conditionally i.i.d., where for each i, (X̂i, B,W i, ξi) has the same
distribution as (X,B,W, ξ) and

Xt = ξ +
∫ t

0
b
(
s,Xs∧·, µs

)
ds+

∫ t

0
σ
(
s,Xs∧·, µs

)
dWs +

∫ t

0
σ0
(
s,Xs∧·, µs

)
dBs, t ∈ [0, T ], P–a.e. (1.1.5)

The same line of heuristic argument as (1.1.3) leads to

µt = LP(Xt∧·
∣∣Gt).

Equation (1.1.5) is sometimes called conditional McKean–Vlasov equaiton, and the corresponding convergence result
conditional propagation of chaos. The presence of a random probability measure makes it less easy to transform the
previous formal derivations into a rigorous proof. But the rigorous proof latter has been established in Kurtz and Xiong
[101] and Dawson and Vaillancourt [53].

The controlled McKean–Vlasov SDE In a spirit of more relevant and practical modeling research, besides the
exogenous parameters (b, σ, σ0) and the noise sources ((ξi,W i)i∈N∗ , B), it can be very useful to add endogenous parameters
like controls (αi)i∈N∗ . The idea can be seen as the desire to allow particles to adapt to a particular situation, endogenously.
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For instance, in Physics, allowing the particles to move in a certain environment while minimizing their energy, in
Finance, maximizing a portfolio’s expectation value containing many assets while minimizing its variance. Mathematically
speaking, this leads to consider the

(
σ{ξi,W i

t∧·, Bt∧·, 1 ≤ i ≤ N}
)
t∈[0,T ]–predictable process α := (α1,N , . . . , αN,N ) in

order to control the process (Xα,1, . . . ,Xα,N ) governed by the SDE

Xα,i
t = ξi +

∫ t

0
b
(
s,Xα,i

s∧·, ϕ
N
s , α

i,N
s

)
ds+

∫ t

0
σ
(
s,Xα,i

s∧·, ϕ
N
s , α

i,N
s

)
dW i

s +
∫ t

0
σ0
(
s,Xα,i

s∧·, ϕ
N
s , α

i,N
s

)
dBs, t ∈ [0, T ], (1.1.6)

ϕNt := 1
N

N∑
i=1

δ(
Xi
t∧·, α

i,N
t

).
Here, in addition to the empirical distribution of states ϕN,X and the common noise B, the interactions potentially also
appear through the controls (α1,N , . . . , αN,N ). Consequently, although the map (b, σ, σ0) does not depend on (i,N), the
presence of controls (α1,N , . . . , αN,N ) makes the system less symmetrical than before. The question of the mathematical
tractability of the behavior of this system when N goes to infinity, becomes much more delicate. However, following
the intuition of the uncontrolled situation i.e. the propagation of chaos, a realistic conjecture is to consider that the
controlled system (1.1.6) is related to the controlled process Xα where

Xα
t = ξ +

∫ t

0
b
(
s,Xα

s∧·, µs, αs
)
ds+

∫ t

0
σ
(
s,Xα

s∧·, µs, αs
)
dWs +

∫ t

0
σ0
(
s,Xα

s∧·, µs, αs
)
dBs, t ∈ [0, T ], P–a.e., (1.1.7)

µt = LP(Xα
t∧·, αt

∣∣Gt),
with α a (σ{ξ,Wt∧·, Bt∧·})t∈[0,T ]–predictable process, seen as a control. We want to work with controls as general
as possible for more flexibility, which, in this case, means only (σ{ξ,Wt∧·, Bt∧·})t∈[0,T ]–predictable processes. Then a
convergence result of type “ lim

N→∞
ϕN,Xt = µt, P–a.e. ” is clearly not possible.

As we said in the preamble, the control of the system (or the particles) makes it possible to refine the modeling via an
optimization procedure which creates endogenous parameters. When we use the term optimization, it raises the natural
question of the criterion of optimization/equilibrium to consider. In this thesis, we will focus our analysis on two criteria:
cooperative equilibrium and competitive equilibrium.

1.1.1 Cooperative equilibrium or Pareto optimum
The cooperative equilibrium refers to the economic concept of Pareto optimum associated to Vilfredo Pareto, an Italian
engineer and economist. A Pareto optimum can be described as a situation where it does not exist an alternative allocation
where improvements can be made to at least one agent’s well–being without reducing any other agent’s well–being. In
our framework, this is translated mathematically by saying that α? := (α?,1,N , . . . , α?,N,N ) is a Pareto optimum if: for
any control β := (β1,N , . . . , βN,N ), one has

N∑
i=1

EP
[ ∫ T

0
L
(
t,Xα?,i

t∧· , ϕ
N
t , α

?,i,N
t

)
dt+ g

(
Xα?,i
T∧· , ϕ

N,X
T

)]
≥

N∑
i=1

EP
[ ∫ T

0
L
(
t,Xβ,i

t∧·, ϕ
N
t , β

i,N
t

)
dt+ g

(
Xβ,i
T∧·, ϕ

N,X
T

)]
. (1.1.8)

Our goal is to understand the behavior when N →∞ of the Pareto optimum. It is now known that this Pareto optimum
is related to the optimal control α? satisfying: for any control β

E
[ ∫ T

0
L
(
t,Xα?

t∧·,L
(
Xα?

t∧·, α
?
t

∣∣Gt), α?t )dt+ g
(
Xα?

T∧·,L
(
Xα?

T∧·
∣∣GT ))]

≥ E
[ ∫ T

0
L
(
t,Xβ

t∧·,L
(
Xβ
t∧·, βt

∣∣Gt), βt)dt+ g
(
Xβ
T∧·,L

(
Xβ
T∧·
∣∣GT ))].

This optimization problem is known as the stochastic control of McKean–Vlasov processes or Mean Field Control problem
(MFC). There are not many articles in the literature which treat rigorously the connection of these two problems, also
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called limit theory. When this question is raised, only special cases of (b, σ, σ0) are taken account without common noise
i.e. σ0 = 0. Let us cite Fischer and Livieri [67] who studied a mean–variance optimization problem stemming from
mathematical finance, and obtained a convergence result allowing to understand the behavior of the Pareto optimum in a
particular situation. For general setting, such a study has been made in Lacker [104] in a context without common noise
(σ0 = 0) and without the law of control, where an essential tool is a compactness argument, which is made accessible
by formulating an appropriate relaxed control, in the spirit of El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], and
by introducing suitable martingale problems, similar to those of Stroock and Varadhan [150]. The same formulation and
arguments have also been used in Bahlali, Mezerdi, and Mezerdi [15; 16; 17; 18] and Chala [50] to study stability and
approximation problems.

In the first part of this thesis, we will put our attention on the study of this connection, extending the results already
obtained on this subject. Namely, in a first step, in a general framework, we will extend the results of [104] in the case
with common noise and including the law of control. We will make a link between the (approximate) Pareto optimum
and the (approximate) optimum of the McKean–Vlasov optimal control problem. Next, following the work of Pham
and Wei [139; 138], we will study the limit problem i.e. the McKean–Vlasov optimal control problem by establishing a
Dynamic Programming Principle (DPP) with the fewest possible assumptions.

While drawing inspiration from techniques already used in the literature (mostly [104] for the limit theory, and [139; 138]
for the DPP), our techniques will turn out to be very different, and will allow us to deal with cases that could not be
taken into account before. Furthermore, the techniques will be general enough to help us understand the behavior when
N →∞ in the situation of competitive equilibrium.

1.1.2 Competitive equilibrium or Nash equilibrium
The Nash equilibrium, named after the mathematician John Forbes Nash Jr., is well known in the economic literature.
The idea behind this notion of equilibrium is the desire to define a strategy for a game in which no player has anything
to gain by changing only their own strategy. Here, in more mathematical terms, α? := (α?,1,N , . . . , α?,N,N ) is a Nash
equilibrium if: for any control β, and any i ∈ {1, . . . , N}, if we introduce the control αi,β by

αi,β :=
(
α?,1,N , . . . , α?,i−1,N , β, α?,i+1,N , . . . , α?,N,N

)
,

one has

EP
[ ∫ T

0
L
(
t,Xα?,i

t∧· , ϕ
N
t , α

?,i,N
t

)
dt+ g

(
Xα?,i
T∧· , ϕ

N,X
T

)]
≥ EP

[ ∫ T

0
L
(
t,Xαi,β ,i

t∧· , ϕNt , βt
)
dt+ g

(
Xαi,β ,i
T∧· , ϕ

N,X
T

)]
. (1.1.9)

As previously, our goal is to understand the behavior when N →∞ of the Nash equilibrium. Since the pioneering work
of Lasry and Lions [111] and Huang, Caines, and Malhamé [84], the associated limit problem is largely studied in the
literature and is known under the name of Mean Field Games (MFG). It can be described, loosely speaking, as follows:
α? is an MFG equilibria if for any β

E
[ ∫ T

0
L
(
t,Xα?

t∧·,L
(
Xα?

t∧·, α
?
t

∣∣Gt), α?t )dt+ g
(
Xα?

T∧·,L
(
Xα?

T∧·
∣∣GT ))]

≥ E
[ ∫ T

0
L
(
t,Xt∧·,L

(
Xα?

t∧·, α
?
t

∣∣Gt), βt)dt+ g
(
XT∧·,L

(
Xα?

T∧·
∣∣GT ))], (1.1.10)

where

dXt = b
(
t,Xt∧·,L

(
Xα?

t∧·, α
?
t

∣∣Gt), βt)dt+ σ
(
t,Xt∧·,L

(
Xα?

t∧·, α
?
t

∣∣Gt), βt)dWt + σ0
(
t,Xt∧·,L

(
Xα?

t∧·, α
?
t

∣∣Gt), βt)dBt.
This structure means that, when the process

(
L
(
Xα?

t∧·, α
?
t

∣∣Gt))t∈[0,T ] is fixed, a single representative player solves an
optimal control problem. A representation property of the entire population is given to the optimal control α? by the
McKean–Vlasov equation verified by Xα? . α? can be seen as an equilibrium. In contrast to the stochastic control of
McKean–Vlasov processes, the MFG literature is very large. As a main reference, let us cite the book of Carmona and
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Delarue [43; 44] and that of Cardaliaguet, Delarue, Lasry, and Lions [38] which deal with many questions related to this
problem (existence, uniqueness, convergence,...) with no control in the volatility (σ, σ0) and without law of controls.
However, most of the time, the results focus on the properties of the limit problem. The connection between Nash
equilibria and MFG is rarely treated. As major papers used for our study, we can evoke Fisher [68] and the general
analysis of Lacker [103] using the notion of weak solution without the law of control and without control of the volatility
(σ, σ0).

By an adequate adaptation of techniques used in the cooperative framework, in the second part of this thesis, we will
study the convergence of Nash equilibrium. Especially, we will extend the results of [103] by taking into account the law
of control while allowing the volatility σ to be controlled. Also, we will consider an approximate MFG equilibrium by
conceding a small error in the optimization (1.1.10), and we will show that this solution requires fewer assumptions to
be well defined and is related to the approximate Nash equilibrium. This will be possible by considering a new notion
of MFG equilibrium. We will come back to our approach later in Section 1.3 for some details.

1.2 McKean–Vlasov optimal control with common noise
1.2.1 Limits of cooperative equilibrium
1.2.1.1 Motivation

As evoked in Section 1.1, in a general framework, we cannot expect a convergence result of the type

lim
N→∞

ϕN,Xt = µt, P–a.e.

For lack of a better way, the weak convergence or convergence in distribution is the best we can hope for a possible
relationship between (approximate) cooperative equilibria and optima of the McKean–Vlasov optimal control problem
(this is also true for the case of (approximate) Nash equilibrium and MFG). Most of the time this is largely enough.
Indeed, as we have seen, the idea is to optimize a quantity which is the expectation of a functional of the particles. Thus,
taking into account the distribution of particles appears naturally, and getting a weak convergence provides a first answer
to the understanding of the behavior of such a controlled system.

A first general result is brought by Lacker [104] in the case with no–common noise (σ0 = 0) and without law of controls i.e.
with ϕN,X instead of ϕN in the coefficients (b, σ, L, g). It can be formulated as follows (with simplifications and avoiding
some technical aspects): when σ0 = 0, so Gt := {∅,Ω}, and the coefficients (b, σ)(t,x, µ, a) are continuous in (x, µ, a)
uniformly in t, Lipschitz in (x, µ) uniformly in (t, a), and with linear growth, then the sequence

(
P ◦

(
ϕN,XT

)−1)
N∈N∗

associated to the εN 1–Pareto equilibrium (α?,1,N , . . . , α?,N,N ) is relatively compact when lim
N→∞

εN = 0, and for any

convergent sub–sequence
(
P◦
(
ϕNk,XT

)−1)
k∈N∗ , there exists a sequence of (σ{ξ,Wt∧·})t∈[0,T ]–predictable controls (αk)k∈N∗

s.t. αk is a δk–optimum for the MFC problem with lim
k→∞

δk = 0, and if Xk denotes the solution of Equation (1.1.7)
associated to the controls αk, and

if P̂ := lim
k→∞

P ◦
(
ϕNk,XT

)−1 then one has lim
k→∞

P ◦
(
Xk
T∧·
)−1 ∈ supp

(
P̂
)
, (1.2.1)

where supp
(
P̂
)
is the support of the probability measure P̂ which is a probability on P(C([0, T ];Rn)). The idea of the

proof of this result is to put the interacting particles/ εN–Pareto optimum especially the empirical distribution in a good
space. Then, obtaining some estimates which ensure the relative compactness of the sequence of empirical distributions.
And finish by characterizing the limits with a martingale problem and a relaxed controls, we will come back to these
concepts a bit later. The proof is technical, and uses tools from proofs of propagation of chaos and stochastic control.
Notwithstanding seeing the proof, an important observation of the convergence in (1.2.1) is the fact that the sequence of
empirical distributions of controlled interacting particles of Equation (1.1.6) and the sequence of distributions of controlled
McKean–Vlasov processes of Equation (1.1.7) share the same accumulating points. Thus, as we said in Section 1.1.1, the

1It means in the optimization (1.1.8) verifying by the Pareto optimum, a small error εN is conceded.
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cooperative equilibrium and the optimum of the MFC problem are related. Hence, trying to understand the behavior of
the controlled interacting particles is similar to trying to understand the behavior of controlled McKean–Vlasov processes.

From the result (1.2.1), a natural question is whether this type of result is true in the case with common noise i.e. σ0 not
necessarily null. Despite the appearances, this is not an easy question. In the proof of (1.2.1), the weak convergence is
used everywhere. To simplify, the fact that in the coefficients (b, σ) of the associated McKean–Vlasov process appears a
deterministic probability LP(Xα

t∧·
)
allows to use this convergence through the continuous coefficients (b, σ), and this is an

important fact in this proof. In the situation where we have the conditional probability LP(Xα
t∧·
∣∣Gt) instead of LP(Xα

t∧·
)
,

this difference generates a huge problem. The weak convergence of sequence of controlled processes Xα can no longer be
used through the coefficients (b, σ). Indeed, the weak convergence of sequence of type LP(Xα

t∧·) does not induce in general
the convergence of sequence of random probabilities of type LP(Xα

t∧·
∣∣Gt). We then need to have another approach.

Another important observation with a view to extend this result in the case with a common noise is to notice that the
weak convergence is independent of the choice of the filtered probability space (Ω,F,P). The distribution of the random
variable does not depend on the probability space in which the random variable resides. Therefore, the question of the
writing of Equation (1.1.6) and Equation (1.1.7) in all spaces possible appears naturally. In the literature, this is called
weak formulation of (controlled) SDE, while writing of Equation (1.1.6) and Equation (1.1.7) on a fix probability space
with a point–wise uniqueness, is usually called strong formulation. The idea of the weak formulation is to keep the
fundamental properties of processes involved in the strong formulation of the SDE while allowing any strong solution
to be seen as a weak solution and any weak SDE to be approximated by a sequence of strong SDE when we have
some additional assumptions on (b, σ, σ0). Usually, the well–posedness of weak SDE requires weaker assumptions on the
coefficients (b, σ, σ0), hence the qualifier of weak. A weak formulation for Equation (1.1.6) is standard in the literature
and not really crucial for our goal here. But a weak formulation for Equation (1.1.7) i.e. the Mckean–Vlasov equation in
the case of common noise is not classic and not a trivial extension. The randomness of the probability measure µt and
the randomness of the control α may be incompatible in the sense that a naïve weak formulation will not have the good
properties previously mentioned. The noise generated by the control αt and the random probability measure µt need to
be handled carefully.

In the first part of this thesis, our goal will be to extend the result (1.2.1) in a more general setting. Thus, Chapter 2
will give a good weak formulation of the controlled conditional McKean–Vlasov SDE (1.1.7) essential to try to answer the
question of weak convergence. After, in Chapter 3, we will study the characterization of the limits of Pareto equilibria with
common noise in the case where σ0 is uncontrolled and with no law of control. And finally, in Chapter 4, in a Markovian
framework with σ0 constant, we will study the natural extension consisting in replacing the empirical distribution of
states ϕN,Xt by the empirical distribution of states and controls 1

N

∑N
i=1 δ(Xi

t,α
i,N
t ) in the coefficients (b, σ, L) i.e. the case

with law of controls. This extension, although rarely studied in the literature, is quite natural and can be very useful in
modeling in Finance for example. In this setting, we will characterize the limit of controlled interacting particles. This
will turn out to be a non–trivial case.

We want to emphasize that, while sharing some similarities with the techniques used by [104] for the proof of (1.2.1), our
techniques deviate considerably from it. Adding a common noise and later taking into account the empirical distribution
of states and controls turn out to be a difficult extension requiring radically different tools.

1.2.1.2 Towards a characterization of the limits: an essential weak formulation

Literature and motivations The notion of weak solution of SDE is standard in the literature. As mentioned
previously, the idea can be understood as the desire to be able to write the SDE on all the possible probability spaces. In
the case of control of classical SDE, in our situation it means no Mckean–Vlasov SDE (no µt or µt), this notion is largely
discussed in El Karoui and Tan [62]. To be simple, the weak formulation is obtained by weakening the measurability
requirements of the main random variables X and α (in the controlled case) while keeping the equation verified by
these variables. Thus, X and α become adapted to the general filtration of the probability space considered instead of
(σ{ξ,Wt∧·})t∈[0,T ] in the strong formulation (we recall that we have taken here σ0 = 0). Besides, the equation verified
by (X,α), the Brownian motion W and the initial value ξ is still true in the probability space considered. Therefore, any
strong controlled SDE can be seen as a weak controlled SDE, and any weak controlled SDE can be reached by a sequence
of strong controlled SDE when (b, σ) are Lipschitz for instance (see [62]).
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In the case of McKean–Vlasov SDE without common noise, the associated weak formulation is quite close to the notion of
weak formulation in the no–McKean–Vlasov case, and does not present any difficulty (see [104]). The case with common
noise is on the other hand much more delicate. Indeed, here besides X and α, we have to take into account the randomness
of µ. Following the previous ideas of weak formulation, a naïve approach is to enlarge the filtration to which µ is adapted,
that is to say letting µ be adapted to the general filtration of the space and not adapted to G := (Gt)t∈[0,T ]. But, this
approach is senseless in the Mckean–Vlasov setting with common noise because µ is adapted to the common noise B (if
we think of the interacting particles), so in general the filtration of the common noise, necessarily a sub–filtration, cannot
be replaced by the general current filtration. Besides, in general, it is not possible to approximate a F–adapted process
by a sequence of G–adapted processes, even for weak convergence. Notice also that the randomness of the control α can
interfere with the randomness of µ. The approximation of any weak controlled SDE by a sequence of strong controlled
SDE is achieved by an approximation of the control α, but α appears also in µ (through Xα and α), therefore dealing
these two randomness can be delicate. Consequently, the weakening of the adaptability of µ must be done carefully with
some additional constraint. Motivated by the weak formulation considered in Carmona, Delarue, and Lacker [49] and
the techniques of [62], we will formulate an adequate weak formulation.

Main results By borrowing some ideas of the weak formulation of [49], thanks to a notion of compatible filtration in
particular the (H) Hypothesis, and the martingale problem, we will formulate a good weak formulation for our problem
that is to say: any strong control will be a weak control, the weak formulation will be well defined with fewer assumptions,
the set of weak controls enjoys some convexity property and any weak control will be reached by a sequence of strong
controls. In these properties, the most delicate is the last one. To show this result, we will use an approximation by
discretization considered in [62] combined with the (H) Hypothesis properties of the weak control. Moreover, our proof
allows to fill a subtle technical gap in the literature related to the notion of independence and that of measurability (see
Remark 2.3.14 for more details).

1.2.1.3 Relaxed formulation and charaterization of the limits

Literature and motivations As we have seen in Section 1.2.1.1, the Pareto optimum when N →∞, and the optimum
of the MFC problem share in some sense the same accumulating points. A candidate for this set of accumulating points
is the set of relaxed controls.

In the classical optimal control theory, the set of relaxed controls has been introduced to recover a closed and convex set,
while ensuring that its elements could be appropriately approximated by strong or weak controls. The point was that
it then becomes easier in this formulation to deduce the existence and stability properties of the optimal solution, while
ensuring under mild conditions that the value of the problem is not modified.

In the no Mckean–Vlasov case, the relaxed formulation in the stochastic control problem is usually obtained by interpreting
the controlled process and the control as a probability measure on a good canonical space. This good canonical space in
this situation is C([0, T ];Rn)×M(A) where A is the set where the control take its values, and M(A) is the set of Borel
measure q on A × [0, T ] such that the marginal distribution of q on [0, T ] is the Lebesgue measure i.e. q(A × [0, t]) = t.
By using a martingale problem characterizing the SDE, a relaxed formulation is then obtained in this classical case (see
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63]).

Similarly to the previous weak formulation (or weak control), a relaxed formulation in the McKean–Vlasov setting
without common noise and without law of control is very close to the classical setting (see [104]). However, as mentioned
in Section 1.2.1.1, the case with common noise is radically different. The presence of the common noise generates some
significant technical hurdles, especially due to the appearance of the conditional distribution terms, which are generally
not continuous with respect to the joint distribution.

Main results Inspired by ideas from [63], [49] and [104], when the volatility σ0 is uncontrolled and without the presence
of the law of control, in Chapter 3 of this first part, we will provide a relaxed formulation which will be necessary to link
later the Pareto optimum when N →∞, and the optimum of the MFC problem.

This set of relaxed controls will be found by considering an enlarged canonical space for the interpretation of the controlled
process and the control as a probability measure. The canonical space will bring a particular attention to the conditional
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probability measure LP(Xα
∣∣GT ). We will also need to add a compatibility property of filtrations ( (H)–Hypothesis

condition) as in the weak formulation, and a conditional martingale problem or a family of martingale problem.

We will prove that, in this setting:

• any strong control can be seen as a relaxed control;

• put in a good space, any sequence of (approximate) Pareto optima, when N → ∞, is relatively compact and its
limits are all relaxed controls;

• any relaxed control can be approximated by a sequence of strong controls and a sequence of Pareto optima when
N →∞.

Therefore we link the Pareto optimum when N →∞, and the optimum of the MFC problem. All of this will be possible by
using the weak formulation, a technical proof of approximation involving (conditional) martingale measures, compactness
results, and a propagation of chaos proved in a slightly different context.

1.2.1.4 Measure–valued processes and limits with law of control

Literature and motivations Despite the general aspect of the previous relaxed formulation, taking into account the
empirical distribution of the controlled states and controls 1

N

∑N
i=1 δ(Xi

t,α
i,N
t ) is not possible. Considering the general

forms of control as we do, generates some continuity problem. Indeed, the continuity of the map t −→ ϕN,Xt is crucial.
But, in the case where we consider the empirical distribution 1

N

∑N
i=1 δ(Xi

t,α
i,N
t ), this type of continuity is no longer true.

Therefore, our tool of relaxed controls can not be used and we need to do something else. We want to emphasize that
this extension is quite natural and can be very useful in the application (see [126]). However, there are not many papers
in the literature which study the mean field control problem with law of control and its connection with a cooperative
equilibrium. To the best of our knowledge, only the recent papers of Laurière and Tangpi [113] (with strong assumptions)
and Motte and Pham [127] (for Mean-field Markov decision processes) treat the convergence question. Our approach on
this subject is very different of these two papers and is motivated by the Fokker–Planck equation verified by the process(
LP(Xα

t

∣∣Gt))t∈[0,T ].

Main results Recall that when N →∞, the Pareto optimum with the empirical distribution of controlled states and
controls and the optimum of the MFC problem with law of control must have the same accumulating points. By keeping
in mind this fact, in Chapter 4 of this first part, in a Markovian setting with σ0 constant and σ non–degenerate, we will
formulate a set of measure–valued controls which will play the same role as the set of relaxed controls in the case without
law of control.

In a first step, we will show that

• any strong control can be interpreted as a measure–valued control;

• put in a good space, any sequence of (approximate) Pareto optima, when N → ∞, is relatively compact and its
limits are all measure–valued controls;

• any measure–valued control can be approximated by a sequence of strong controls and a sequence of Pareto optima
when N →∞.

Consequently, we characterize the sequence of Pareto optima and show its link with the MFC problem. The characterization
is possible by the appropriate use of (controlled) Fokker–Planck equations. Inspired by the techniques developed in the
proofs of Gyöngy [76], especially [76, Lemma 2.1] (an adaptation of Krylov [98]) and [76, Proposition 4.3] which are
regularization results, we will determine the desire set of measure–valued controls thanks to a Fokker–Planck equation.
The conditions used on the coefficients are general, except the non-degeneracy of the volatility σ. This assumption is
capital to deal with the Fokker–Planck equation.



1.2. McKean–Vlasov optimal control with common noise 9

In a second step, in the case without common noise but still with the law of control, when σ is uncontrolled of type
σ(t, x, ν̄, a) = σ(t, x), we will show that it is enough to work only with the closed–loop controls

(
α(t,Xα

t ),LP(Xα
t , α(t,Xα

t )
))

instead of open–loop controls
(
α(t, ξ,Wt∧·),LP(Xα

t , α(t, ξ,Wt∧·)
))
. Indeed, we will prove that any open–loop control can

be reached by a sequence of closed–loop controls and a sequence of closed–loop Pareto optima. This result is proved
by using technical estimates on the density of the Fokker–Planck equation verified by

(
LP(Xα

t

))
t∈[0,T ] and proved in

Bogachev, Krylov, Röckner, and Shaposhnikov [31]. We want to emphasize that the classical way in the literature to
prove an equivalence between the closed–loop and open–loop does not work here. The Markovian projection with the
convexity assumption as in [104] and Lacker, Shkolnikov, and Zhang [108] can not be apply in the presence of the law of
control. The law of control cannot be recovered after projection.

1.2.2 Dynamic Programming Principle for the limit problem
1.2.2.1 Literature and motivation

In the first three chapters of the first part of this thesis, we have intensively studied the convergence of cooperative
equilibria and its link with the optima of its associated limit problem i.e. the stochastic control of McKean–Vlasov
processes. Now, we will focus on the analysis of the limit problem from a specific approach. As for stochastic control
problems, there are two known classical techniques which can be used to analyze the mean–field control problem: the
approach by the Pontryagin stochastic maximum principle and the approach by the dynamical programming principle
(DPP).

The first one, the Pontryagin stochastic maximum principle, is a strategy which allows to derive necessary and/or sufficient
conditions characterizing the optimal solution of the control problem, through a pair of processes (Y,Z) satisfying a
backward stochastic differential equation (BSDE for short), also called adjoint equation in this case, coupled with a
forward SDE, corresponding to the optimal path. Andersson and Djehiche [13] and Buckdahn, Djehiche, and Li [34] use
this approach for a specific case of the mean–field control problem, corresponding to the case where the coefficients of the
equation and the reward functions only depend on some moments of the distribution of the state and without common
noise. Still without common noise, a more general analysis of this approach is made by Carmona and Delarue [42] thanks
to the notion of differentiability in the space of probability measure introduced by Lions in his Collège de France course
[118] (see also the lecture notes of Cardaliaguet [36]). Related results were also obtained by Acciaio, Backhoff Veraguas,
and Carmona [1] for so–called extended mean–field control problem involving the law of the controls, and where a link
with causal optimal transport was also highlighted.

The second one, the dynamic programming principle, is a technique which can be simplified as the desire to transform
the global optimization problem into a recursive resolution of successive local optimization problems. This fact is an
intuitive result, which is often used as some sort of meta–theorem, but is not so easy to prove rigorously in general.
Note also that, in contrast to the Pontryagin maximum principle approach, this approach in general requires fewer
assumptions, though it can be applied in less situations. Notwithstanding these advantages, the DPP approach has long
been unexplored for the control of McKean–Vlasov equations. One of the main reasons is actually a very bleak one for
us: due to the non–linear dependency with respect to the law of process, the problem is actually a time inconsistent
control problem (like the classical mean–variance optimisation problem in finance, see the recent papers by Björk and
Murgoci [28], Björk, Khapko, and Murgoci [29], and [80] for a more thorough discussion of this topic), and Bellman’s
optimality principle does not hold in this case. However, though the problem itself is time–inconsistent, one can recover
some form of the DPP by extending the state space of the problem. This was first achieved by Laurière and Pironneau
[112], and later by Bensoussan, Frehse, and Yam [24; 25; 26], who assumed the existence at all times of a density for the
marginal distribution of the state process, and reformulated the problem as a deterministic density control problem, with
a family of deterministic control terms. Under this reformulation, they managed to prove a DPP and deduce a dynamic
programming equation in the space of density functions.

Following similar ideas, but without the assumptions of the existence of density, and allowing the coefficients and reward
functions to not only depend on the distribution of the state, but on the joint distribution of the state and the control,
Pham and Wei [139] also deduced, in a Markovian context, a DPP by looking at a set of closed loop (or feedback) controls,
in a no–common noise context. It is one of the first general result on this subject. Later, they extended this strategy to
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a common noise setting (where the control process is adapted to the common noise filtration) in [138]. Their result can
be presented as follows: if we denote by Xt,ν,α the solution of Equation (1.1.7) defined on [t, T ], starting from Xt,ν,α = ξ
where LP(ξ) = ν and controlled by α, for any τ : Ω → [t, T ] a G–stopping time, when (b, σ, σ0) are Lipschitz in (x, ν)
uniformly in (t, a) and continuous in a, and the reward functions (L, g) satisfy∣∣L(t, x, ν, a)− L(t, x′, ν′, a)

∣∣+
∣∣g(x, ν)− g(x′, ν′)

∣∣ ≤ C[1 + |x|+ |x′|+ 〈|Id|2, ν〉1/2 + 〈|Id|2, ν′〉1/2
][
|x− x′|+W2(ν, ν′)

]
,

(1.2.2)

one has

V (t, ν) = sup
α∈AB

E
[ ∫ τ

t

L
(
s,Xt,ν,α

s ,L
(
Xt,ν,α
s

∣∣Gs), αs)ds+ V
(
τ,L

(
Xt,ν,α
τ

∣∣Gτ)))], (1.2.3)

where V : [0, T ]× P(Rn)→ R is a Borel measurable function defined by

V (t, ν) := sup
α∈AB

E
[ ∫ T

t

L
(
s,Xt,ν,α

s ,L
(
Xt,ν,α
s

∣∣Gs), αs)ds+ g
(
Xt,ν,α
T ,L

(
Xt,ν,α
T

∣∣GT )))],
with AB the set of G–predictable and square integrable processes. In Chapter 5 of this first part, we will use the
DPP approach to deal with the mean–field control problem. Specifically, we will extend the previous result of [138] i.e.
result (1.2.3) in a more general setting with assumptions weaker than (1.2.2). Indeed, in the Dynamic Programming
Principle result (1.2.3), two direct questions appear: first, are the Assumption (1.2.2) necessary, can we replace them
with something weaker? Second, is it possible to consider a more general set of controls and not only a G–predictable
processes?

The first question is justified by the fact that in the proof of [138], Assumption (1.2.2) is used essentially to guarantee
the measurability of the value function V : [0, T ] × P(Rn) → R. Indeed, one of the major difficulties of this problem is
the question of the measurability of the value function. This problem is not really related to the McKean–Vlasov control
problem. It is in all DPP questions because of the expectation of V which appears in the right side of equation (1.2.3).

The second one appears because of the particularity of the mean–field control problem. In our setting, the natural
expected set of controls is the set of (σ{ξ,Wt∧·, Bt∧·})t∈[0,T ]–predictable processes. But, considering this kind of controls
is complicated in the setting of MFC with common noise. One of the reason the G–predictable processes were used in [138]
is the fact that the classical conditioning argument in DPP does not work with the (σ{ξ,Wt∧·, Bt∧·})t∈[0,T ]–predictable
processes (see Remark 5.3.6).

To bypass these difficulties, we will use the classical measurable selection arguments for the measurability issues, see
for instance El Karoui and Tan [61; 62], Dellacherie [56], Bertsekas and Shreve in [27; 146; 147; 148], and Shreve
[143; 144; 145]). And for the problem related to the set of controls, the weak formulation presented in Chapter 2 will be
very useful.

1.2.2.2 Main results

In a first step, using measurable selection arguments as in [61; 62], we prove the universal measurability of the associated
value function, and derive the stability of controls with respect to conditioning and concatenation, and finally deduce
the DPP for the weak formulation under very general assumptions on (b, σ, σ0, L, g). In a second step, we address the
DPP for the classical strong formulation. Using the DPP in weak formulation, and adding standard Lipschitz conditions
on the drift and diffusion coefficients, as in [138], but without any regularity assumptions on the reward functions, and
in a non–Markovian context, we obtain the DPP for the strong formulation of McKean–Vlasov control problems with
common noise, where the control is adapted to the “common noise” filtration G i.e. the filtration generated by the
Brownian motion B. Also, for the more general strong formulation, where the control is adapted to both ξ, W and B, we
obtain the DPP under some additional regularity conditions on the reward functions. These regularity conditions may
seem unexpected at first sight, but they seem unavoidable due to the non–linear dependency of the drift and volatility
coefficients with respect to the conditional distribution of (X,α) (see Remark 5.3.6 for a more thorough discussion).
Finally, the DPP results in the general non–Markovian context induces the same results in the Markovian one.
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1.3 Mean field games of controls with common noise and volatility σ
controlled

Understanding the behavior of Nash equilibria as the number of players goes to infinity is an old and natural question
in game theory. We refer to Aumann [14] for one of the first study of markets with continuum (infinity) traders, and
in the same spirit to Schmeidler [141] who investigated equilibrium points in nonatomic non–cooperative games. Later
Mas-colell [120] extended the results of [141] by considering strategies in terms of distributions rather than measurable
functions.

In the past decades, a modern analysis in the case of differential games has been provided simultaneously by Lasry and
Lions [111] and Huang, Caines, and Malhamé [84]. Since then, this subject has undergone intensive study: Bensoussan
and Frehse [23], Carmona and Delarue [40], Huang, Caines, and Malhamé [85; 86; 87], Kolokoltsov, Li, and Yang [96],
Ahuja [7], Cardaliaguet, Delarue, Lasry, and Lions [38], Fisher [68], Lacker [103; 45; 105; 102]. It is worth emphasizing
that most of the aforementioned papers focus on the analysis of the limit problem i.e. existence and uniqueness of the
MFG problem or construction of the approximate Nash equilibria from a MFG solution, only a few papers, namely
[111; 38; 105; 103; 68] treat the question of the convergence of Nash equilibria which is our main purpose on this part.
The techniques used to deal with these questions can be classified into two approaches: the PDE techniques and the
probabilistic techniques.

The PDE techniques are based on the introduction of dynamic value functions which characterize the optima of the
problem. Indeed, it is possible to characterize the solutions of Nash–equilibria (1.1.9) and solutions of MFG problem
(1.1.10) via value functions satisfying PDE equations. In a Markovian case, without the law of control and with σ and
σ0 constants (to simplify), the PDE system associated to the N–Nash equilibria is the following N functions (vN,i :
[0, T ]× (Rn)N → R)i∈{1,...,N} satisfying: for t ∈ [0, T ) and [x] := (x1, . . . , xN ) ∈ (Rn)N ,

−∂tvN,i(t,[x])−H
(
xi,m

N
[x], Dxiv

N,i(t, [x])
)
−

N∑
j=1,j 6=i

Dxjv
N,j(t, [x])>b?

(
xj ,m

N
[x], Dxjv

N,j(t, [x])
)

− 1
2

N∑
j=1

Tr
[
D2
xj ,xjv

N,i(t, [x])σσ>
]
− 1

2

N∑
j,k=1

Tr
[
D2
xj ,xk

vN,i(t, [x])σ0σ
>
0

]
= 0,

with vN,i(T, [x]) = g(xi,mN
[x]), where mN

[x] := 1
N

∑N
i=1 δxi, and H : Rn ×P(RN )×Rn → R is the Hamiltonian defined for

all (x,m) ∈ Rn × P(Rn) by

H(x,m, y) := b(x,m, α?(x,m, y))>y + L(x,m, α?(x,m, y)) where α?(x,m, y) ∈ arg max
a∈A

[
b(x,m, a)>y + L(x,m, a)

]
,

and b?(x,m, y) := b(x,m, α?(x,m, y)). From the functions (vN,i)i{1,··· ,N}, a N–Nash equilibrium is constructed as follows:
let X := (X1, · · · ,XN ) be the solution of

Xi
t = ξi +

∫ t

0
b?(Xi

s, ϕ
N,X
s , Dxiv

N,i(s,Xs))ds+ σW i
t + σ0Bt, for all t ∈ [0, T ],

then(
α?,1, · · · , α?,N

)
is a closed–loop2 Nash equilibrium, where for all (t, i), α?,i(t,Xt) := α?(Xi

t, ϕ
N,X
t , Dxiv

N,i(t,Xt)).

Under this viewpoint, the understanding of the behavior of the N–Nash equilibrium is reduced to understanding the
behavior of the functions (vN,i)i∈{1,...,N}. An answer is brought by [111; 38] by introducing U the solution of the Master
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equation associated to the limit MFG problem: U : [0, T ]×Rn×P(Rn)→ R satisfies: for all (t, x,m) ∈ [0, T )×Rn×P(Rn)

−∂tU(t, x,m)−H
(
x,m,DxU(t, x,m)

)
− 1

2Tr
[(
σσ> + σ0σ

>
0
)
D2
xU(t, x,m)

]
−
∫
Rn
b?
(
z,m,DxU(t, z,m)

)>
DmU(t, x,m)(z)m(dz)

− 1
2

∫
Rn

Tr
[(
σσ> + σ0σ

>
0
)
DzDmU(t, x,m)(z)

]
m(dz)

− 1
2

∫
Rn

∫
Rn

Tr
[
σ0σ

>
0 D

2
mU(t, x,m)(z, z′)

]
m(dz)m(dz′)

− 1
2

∫
Rn

Tr
[
σ0σ

>
0 DxDmU(t, x,m)(z)

]
m(dz) = 0,

with U(T, x,m) = g(x,m). We refer to [38, Section 2.2] for the exact meaning of the derivatives DmU and D2
mU. With

this PDE, [38] proves under strong assumptions that

1
N

N∑
i=1

∣∣∣vN,i(t, [x])− U(t, xi,mN
[x])
∣∣∣ ≤ CN−1 and E

[
sup
t∈[0,T ]

∣∣Xi
t −Yi

t

∣∣] ≤ CN− 1
n+8 , (1.3.1)

where Y := (Y1, · · · ,YN ) is a tuple such that LP(Yi,W i, ξi, B
)

= LP(Y,W, ξ,B) with Y solution of

Yt = ξ +
∫ t

0
b?(Ys, µs, DxU(s, Ys, µs))ds+ σWt + σ0Bt, µt = LP(Yt), for all t ∈ [0, T ].

Here α? where α?(t, Yt) := α?(Yt, µt, DxU(t, Yt, µt)) is a closed–loop MFG equilibrium.

This approach by PDE for assessing the convergence of Nash–equilibria can be powerful and provides estimates for
quantifying the rate of convergence. One of the important limitations of these techniques is the necessity to consider
strong assumptions on the coefficients (b, L, g) (especially the Lasry–Lions monotonicity). Considering more general
coefficients (b, σ, σ0, L, g) is very complicated in this context, and besides, all the PDEs require a uniqueness property.
But, it is well known that in game theory the uniqueness of equilibria is an exception not the rule. The probabilistic
approach does not suffer (most of the time) from the requiring of very strong assumptions, and the necessity of uniqueness
can be avoided.

The probabilistic approach is more diverse and uses sometimes techniques from the PDE approach. Indeed, a probabilistic
method quite close to the proof of [38] has been proposed by Carmona and Delarue [44, Chapter 6 Section 6.3]. Also,
inspired by the method of [38], Delarue, Lacker, and Ramanan [54] get more general estimates related to (1.3.1) using
techniques of large deviations and concentration of measure. One of the probabilistic approach which moves away from
the PDE method and which gives results in a more general framework is provided for the analysis of open–loop Nash
equilibria by [68] subsequently improved by [103]. Their idea is to use the notion of relaxed controls in the spirit of
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], combined with some compactness results. In the situation without
law of control and without control of volatility, they introduce a notion weak MFG equilibrium especially in [103] for
the case with common noise (see also [49]), and prove: if (α1,N , . . . , αN,N ) is an εN–approximate Nash equilibrium with
lim
N→∞

εN = 0, and

PN := 1
N

N∑
i=1

P ◦
(
ξi, B,Wi,Λi,Xi, µ̂N

)−1
, where Λi = δαi,Nt

(da)dt and µ̂N = 1
N

N∑
i=1

δ(
Xi,Wi,Λi

),
then under suitable assumptions,

the sequence (PN )N∈N∗ is relatively compact and each limit point is a weak MFG equilibrium. (1.3.2)
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From any weak MFG equilibrium, it is possible to construct approximate Nash equilibrium. Besides, the solution
formulated in (1.1.10) can be seen as a weak MFG equilibrium, and with some strong assumptions especially the Lasry–
Lions monotonicity assumption, (1.1.10) is the unique weak MFG equilibrium. Despite the absence of rate of convergence
as in (1.3.1), this probabilistic approach gives a characterization of all possible limits of Nash equilibrium and does not
require any a priori uniqueness result. In addition, the framework can be more general that the PDE approach, σ and σ0
are not necessarily constants. In the second part of this thesis we will use this approach and improve the result (1.3.2).

Motivated by the probabilistic techniques, in Chapter 6, we will deal with the question of convergence of (approximate)
Nash equilibria in a more general context. We will analyze this problem in the framework of law of control while allowing
the volatility σ to be controlled. In the proof of (1.3.2), it is clearly not possible to take into account the law of control,
the empirical distribution of controls generates some discontinuity problems. Besides, the absence of control in σ (and
σ0) plays a crucial role in the determination of the limit, and removing this assumption is not an easy task. With the
help of the Fokker–Planck equation associated to the McKean–Vlasov process and the techniques used in the proof of
the convergence of Pareto equilibria, by introducing a new weak notion of MFG equilibrium, we will characterize all the
limits of approximate open–loop Nash equilibira with the law of control and with σ controlled. We will come back on
our techniques in Section 1.3.1 below.

After having explored the issue of the convergence of (approximate) Nash equilibria, we will spend some time analyzing
the limit problem, dealing in particular with the issue of the existence of the MFG equilibrium i.e. find α? solution
of (1.1.10). There are various articles in the literature that address this issue with PDE and probabilistic approach
[25; 23; 40; 96; 38; 105; 49]. In the Markovian context, without the law of control and when σ0 = 0 (no common noise)
and σ constant, the question of existence of (1.1.10) is sometimes formulated in terms of searching (v, µ) the solution
of the system of forward Kolmogorov equation coupled with backward Hamilton–Jacobi–Bellman equation which can be
described as follows: v : [0, T ]× Rn → R satisfies the HJB equation, for all (t, x) ∈ [0, T )× Rn,

−∂tv(t, x)− sup
a∈A

[
b(x, µt, a)>∇v(t, x) + L(x, µt, a)

]
+ 1

2Tr
[
σσ>∇2v(t, x)

]
= 0,

with v(T, x) = g(x, µT ). And µ : [0, T ]→ P(Rn) is a deterministic function satisfying in the weak sense the Fokker–Planck
equation

∂tµt = −div
[
b
(
x, µt, α

?(t, x, µt,∇v(t, x))
)
µt
]

+ 1
2Tr

[
∇2µtσσ

>],
where

α?(t, x, µt,∇v(t, x)) ∈ arg max
a∈A

[
b(x, µt, a)>∇v(t, x) + L(x, µt, a)

]
.

Then if we define X? solution of the SDE

X?
t = ξ +

∫ t

0
b
(
X?
s , µs, α

?(s,X?
s , µs,∇v(s,X?

s ))
)
ds+ σWt, for all t ∈ [0, T ], with LP(X?

t ) = µt,(
α?(t,X?

t , µt,∇v(t,X?
t ))
)
t∈[0,T ] is a closed–loop MFG equilibrium. This approach has been initiated by [111] and [84],

and more papers later followed this method. An alternative way to address this question was initiated by Carmona and
Delarue [40] by the use of the Pontryagin maximum principle to reduce the MFG problem to a forward–backward SDE
of McKean–Vlasov type as follows: (X,Y, Z) solves the FBSDE

Xt = ξ +
∫ t

0
b(Xs, µs, α

?(s,Xs, µs, Ys))ds+Wt

Yt = ∇g(XT , µT )−
∫ T

t

DxH(Xs, µs, Ys, α
?(s,Xs, µs, Ys))ds+

∫ T

t

ZsdWs, for all t ∈ [0, T ],

where µt = LP(Xt) and H(x,m, y, a) := b(x, µt, a)>∇v(t, x) + L(x, µt, a).
(
α?(t,Xt, µt, Yt)

)
t∈[0,T ] is then a MFG

equilibrium. All these approaches are very technical, require strong assumptions and are difficult to use in a more
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general context especially to consider the case with common noise and the law of control. A much more flexible notion of
MFG equilibrium has been initiated by Carmona, Delarue, and Lacker [49] in the context of common noise by using the
notion of relaxed controls and by discretizing the common noise filtration. This notion generalizes the classical notion and
allows to work in a general framework. In Chapter 7, we will extend the result of [49] in the case of law of control with
control of volatility σ, by introducing a notion of measure–valued MFG equilibrium. Besides, we will provide a notion of
approximate MFG equilibrium and will give a correspondence between this notion, the approximate Nash equilibria and
the measure–valued MFG equilibrium. We will explain our methods with some details in Section 1.3.2 below.

1.3.1 Limits of competitive equilibrium
Literature and motivation As mentioned in Section 1.2.1.1 i.e the convergence of Pareto optimum, in our general
setting, the weak convergence or convergence in distribution is the best we can hope for a possible connection between
(approximate) competitive equilibrium and Mean Field Games. Our approach will be essentially based on the techniques
used in the case of convergence of cooperative equilibrium.

Fisher [68] and Lacker [103] are one of the first papers which deal with this question in a general setting. However, their
analyzes do not allow to take into account the dependence w.r.t the (conditional) distribution of controls and the control
of the volatility (σ, σ0).

Except Carmona and Lacker [45] which constructs an approximate Nash equilibrium with an uncontrolled and non-
degenerative volatility σ (σ > 0) by a weak formulation, and the recent work of Laurière and Tangpi [113] which treats
the convergence of Nash equilibria by probabilistic methods (via FBSDEs), to the best of our knowledge, there are no
other papers using probabilistic or PDE methods that answer the question of the relation between the approximate Nash
equilibria and the MFG solution in the context of law of control also called in the literature MFG of controls or extended
MFG. Indeed, the techniques used so far to treat the question of study of the limit problem turn out to be too rigid
to deal with the problem of the convergence of Nash equilibria, all the limits of approximate Nash equilibrium can not
be described by the notion considered in the literature up to now. The approach that will be developed in this chapter
is very different from those previously mentioned, and will take into account very general assumptions. Despite many
differences, the approach is in the same spirit as [103] and [68], which are, in the framework without law of control,
the most significant papers investigating the connection between the Nash equilibria and the MFG under very general
assumptions. We want to emphasize that the interesting techniques developed in [103] and [68] do not work in the case
of MFG of controls, in the presence of the law of control, since the assumptions of continuity on the coefficients are no
longer verified (see also the discussion in Section 1.2.1.4).

Our analysis will be in the same spirit as [68] and [103], but in the case of law of controls and the volatility σ can be
controlled. We will use many techniques mentioned in the case of cooperative equilibrium particularly the measure–valued
solution.

Main results In order to solve the difficulty generated by the empirical distribution of controls and the control of
the volatility σ, in a Markovian setting, we introduce the notion of measure–valued MFG equilibrium. The idea of our
notion comes from the (stochastic) Fokker–Planck equation verified by

(
LP(Xα?

t

∣∣Gt))t∈[0,T ]. This notion of MFG solution
is very close to the classical notion, the main difference is that the optimization is taken over all solutions of specific
Fokker–Planck equations and not over solutions of an SDE. This notion has already been considered in the literature
by Cardaliaguet, Delarue, Lasry, and Lions [38, Section 3.7] and in some way by Lacker [105]. Borrowing techniques
from [103], under suitable assumptions, and working in a suitable space, we prove that the sequence of Nash equilibria
is tight, and with the help of techniques used in the cooperative equillibrium, we show that every limit in distribution is
a measure–valued mean field equilibrium. And conversely, for each measure–valued mean field equilibrium, we construct
an approximate Nash equilibrium which has this measure–valued mean field equilibrium as limit. In other words, the
measure–valued solutions are the accumulating points of (approxiamte)–Nash equilibria.

In addition to these convergence results, we will provide another approximation not taken into account until now. Similarly
to approximate Nash equilibria, by considering an ε–strong solution of mean field games which is the classical strong
solution where the optimality is obtained by admitting a small error ε, we prove that the measure–valued solutions are
the accumulating points of this type of solutions when ε goes to zero.
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1.3.2 Existence of approximate Nash equilibrium and approximate strong MFG
Literature and motivation In contrast to the cooperative case where the existence of the approximate Pareto
equilibria is relatively immediate, in the competitive case the question of the existence of approximate Nash equilibria
is not an obvious one. Indeed, in the problem (1.1.9), the optimization is not a standard one. Therefore, obtaining an
approximate Nash equilibria (α?,1,N , . . . , α?,N,N ) can be difficult. As we have seen, this problem is related to the Mean
Field Games, or more precisely to a weaker form of the solution of MFG (see [49], [103], or the measure–valued solution
of MFG). Proving that there exists a solution of this form of MFG problem is equivalent to proving that there exists an
approximate Nash equilibria.

For the MFG of controls or extended MFG, the literature on this topic is quite small and usually without common noise
i.e. σ0 = 0. Gomes and Voskanyan [72], by using PDE methods, study these types of interactions in the deterministic
case i.e. σ = σ0 = 0. Strong assumptions of continuity and convexity make it possible to obtain the existence and the
regularity of the solutions. In order to explore a problem of optimal liquidation in finance, Cardaliaguet and Lehalle [37]
apply similar PDE techniques for this problem in the case without common noise, while allowing σ non–zero. With the
same philosophy, Kobeissi [94] provides some results and discusses properties of existence and uniqueness in examples.
Let us also mention Achdou and Kobeissi [3] which gives numerical approximations via finite difference for the PDE
system arising in the MFG of controls.

Probability techniques have also been used to give some results for the existence of solutions of the limit problem. Without
common noise, using a weak formulation of the MFG of controls, Carmona and Lacker [45] obtains the existence and
uniqueness of the MFG of controls by imposing an uncontrolled and non–degenerative volatility σ (σ > 0). They illustrate
their results on the price impact models (which share some similarities with those considered in [37]) and the flocking
model. Similarly, Graber [73] for the studies of models of production of an exhaustible resource, solves related existence
and uniqueness problems. Alasseur, Taher, and Matoussi [9] also focused their attention on these questions for the study
of a model for a power network with distributed local power generation and storage.

Main results With the help of the techniques used in the case of cooperative equilibria and the discretization procedure
used in [49], with a separability condition on (b, σ, L) (see Assumption 5.5.5) and a non–degeneracy condition of type
σσ> > 0, we will provide an existence result for the notion of measure–valued solution of MFG that we used for the
characterization of the approximate Nash equilibria and approximate strong solution of MFG. We want to emphasize
the fact that this existence result also proves the existence of the approximate strong solution of the MFG (of controls).
As mentioned in the previous literature, in the MFG theory, the existence of a strong MFG solution is very difficult to
obtain and requires strong assumptions. Admitting a small error ε > 0, it is possible to get the existence of an ε–strong
MFG equilibrium (approximate solution) under general assumptions. It is worth emphasizing that our results allow to
handle the case where σ is controlled i.e. the control α appears in the function σ. There are not many works that look
at the situation where the volatility is controlled.

1.4 Numerical approximation
Literature and motivation The first chapters of this thesis focused on the mathematical analysis of the behavior of
sequence of controlled interacting particles and the study of the associated limit problems. Based on this work, in the
last chapter in this thesis, we will provide some numerical algorithms to solve the mean–field control problem.

The idea in this chapter is to provide a concrete procedure to be followed in order to solve the mean field control
problem via a computer in practical example. The numerical procedure is based on the optimal control problem of the
N–interacting controlled particles when N is fixed but large. There are two classical techniques used in the literature to
solve numerically a stochastic control problem: PDE approach by finite difference and probabilistic approach by Monte
Carlo.

The PDE approach by finite difference is motivated by the characterization of the solution of optimal control problem
as the solution of the (parabolic) PDE. Then, the goal is to give a scheme to solve approximately this PDE. This will
therefore allow to solve the problem of optimal control (see for instance Achdou and Pironneau [5]). This approach has
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been used to propose some numerical methods for solving the mean–field control problem in Laurière and Pironneau
[112], Achdou and Laurière [4], Pfeiffer [136]. While being very efficient in some cases, this approach has an important
limitation related to the dimensions of the data of the problem. Indeed, it is well known that when the problem’s
dimensions (here N × n the dimension of particles (X1, . . . ,XN )) increase, the efficiency of the finite difference scheme
becomes decreases. Besides, if we want to allow the control of the volatility σ, this will considerably affect the efficiency.
In the mean field control problem, from our viewpoint, the PDE approach can not be used. To be accurate, we need to
choose N large, therefore the dimensions are very large, then the efficiency of such an algorithm is bad. Because of this
kind of curse of dimensionality, we will use a probabilistic approach by Monte–Carlo.

The Monte–Carlo approach is straightforward, and uses the stochastic control problem without (or few) transformations.
The idea is to keep the stochastic control problem but replace the expectation E by an empirical sample motivated by
the classical law of large number (see Pagès [135]). This approach can be very efficient even if the dimensions are large.
Balata, Huré, Laurière, Pham, and Pimentel [19], Fouque and Zhang [70], Carmona and Laurière [46] numerically solve
the mean–field control problem via some Monte–Carlo techniques. However, even if usually the Monte Carlo method
suffers less from the problems of dimension, in our case, as N is supposed to go to infinity, this can be a brake on the
effectiveness of this approach, especially in the optimization part.

To bypass the difficulty related to the dimension even with our Monte Carlo approach, we will use neural networks. The
past decades have shown the effectiveness of neural networks in the optimization problems involving large dimensions
in many cases (see LeCun, Bottou, Bengio, and Haffner [114], Bengio [22], LeCun, Bengio, and Hinton [115]). The
idea behind the use of the neural networks is to look for the optimum, a function most of the time, in a set of
particular functions. These particular functions are compositions of affine functions composed with a non-linearity.
The consideration of these functions is justified by the universal approximation theorem which states that any function
can be approximated by these kind of functions with the good metric. The optimization procedure becomes then much
more accessible with the help of a system of back propagation of gradients.

In this last chapter, in a spirit close to Han and E [78], Fouque and Zhang [70] and Carmona and Laurière [46], we will
provide an algorithm using the Monte Carlo approach with the help of (deep) neural network.

Note that although the methods we will propose in this chapter solve the MFC problem, they can be used to numerically
solve the MFG by using some equivalence representation result as in Carmona and Delarue [44, Chapter 6]. Some
numerical methods has been already proposed to solve the MFG in the literature by Achdou and Capuzzo-Dolcetta [2],
Achdou, Camilli, and Capuzzo-Dolcetta [6], Carlini and Silva [39], Chassagneux et al. [51].

Main results Inspired by the connection between the Pareto equilibria and the mean field control problem, we will
give a numerical scheme for solving the optimal control of Mckean–Vlasov problem with common noise and including the
law of control. It should be emphasized that we also allow the control of the volatility. We prove the convergence of this
scheme under general conditions. With the help of the open–source neural–network library Keras (written in Python),
we will implement our algorithm and compare the outputs to solutions of benchmark models obtained by analytical
formulas.
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Part I

McKean–Vlasov optimal control
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We introduce here some additional notations and then formulate the assumptions that we will use in this part. Denote
by M(E) the space of all Borel measures q(dt, de) on [0, T ] × E, whose marginal distribution on [0, T ] is the Lebesgue
measure dt, that is to say q(dt,de) = q(t,de)dt for a family (q(t, de))t∈[0,T ] of Borel probability measures on E. Let Λ
denote the canonical element on M(E), we define

Λt(ds,de) := Λ(ds,de)
∣∣
[0,t]×E + δe0(de)ds

∣∣
(t,T ]×E , for some fixed e0 ∈ E. (1.4.1)

This part share a certain number of functions which we now introduce. Let n, and d be two positive integers, and
` a non–negative one, which will be fixed throughout this part. The controlled diffusion processes have the following
coefficient functions

(b, σ, σ0) : [0, T ]× Cn × P(Cn ×A)×A −→ Rn × Sn×d × Sn×`,

and the reward value is defined with the coefficient functions

L : [0, T ]× Cn × P(Cn ×A)×A −→ R, and g : Cn × P(Cn) −→ R.

We assume the following regularity and growth conditions on the coefficient functions.

Assumption 1.4.1. The maps (b, σ, σ0, L, g) are Borel measurable and non–anticipative, in the sense that(
b, σ, σ0, L

)
(t,x, ν̄, a) =

(
b, σ, σ0, L

)
(t,x(t ∧ ·), ν̄(t), a), for all (t,x, ν̄, a) ∈ [0, T ]× Cn × P(Cn ×A)×A.

Moreover, there exist positive constants C, p, p′ and p̂, such that p′ > p ≥ 2 ≥ p̂ ≥ 0, and

(i) the function (b, σ, σ0) is continuous in (x, ν̄, a) and uniformly Lipschitz in (x, ν̄), i.e. for all (t,x, ν̄, a,x′, ν̄′) ∈
[0, T ]× Cn × P(Cn ×A)×A× Cn × P(Cn ×A)∣∣(b, σ, σ0)(t,x, ν̄, a)− (b, σ, σ0)(t,x′, ν̄′, a)

∣∣ ≤ C(‖x− x′‖+Wp(ν̄, ν̄′)
)
;

(ii) for all (t,x, ν̄, a) ∈ [0, T ]× Cn × P(Cn ×A)×A

|b(t,x, ν̄, a)| ≤ C
(

1 + ‖x‖+
(∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

) 1
p

+ ρ(a0, a)
)
,

|(σ, σ0)(t,x, ν̄, a)|2 ≤ C
(

1 + ‖x‖p̂ +
(∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

) p̂
p

+ ρ(a0, a)p̂
)

;

(iii) the function g is lower semi–continuous, for every t ∈ [0, T ], the function L is lower semi–continuous in (x, ν̄, a),
and for an additional constant CL > 0, we have for all (t,x, ν̄, ν, a) ∈ [0, T ]× Cn × P(Cn ×A)× P(Cn)×A

|g(x, ν)| ≤ C
(

1 + ‖x‖p +
∫
Cn
‖x′‖pν(dx′)

)
,

L(t,x, ν̄, a) ≤ C
(

1 + ‖x‖p +
∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

)
− CLρ(a0, a)p

′
, (1.4.2)

L(t,x, ν̄, a) ≥ −C
(

1 + ‖x‖p +
∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

)
.

Remark 1.4.2. Most of the integrability conditions in Assumption 1.4.1 are consistent with (or simply adapted from)
those in Lacker [104, Assumption A]. Basically, they are here to ensure that everything remains sufficiently integrable
to apply weak convergence techniques. In particular, (i) and (ii) are used to ensure the well–posedness of the controlled
SDEs, while the coercivity condition in Item (iii) is used to ensure the (pre–)compactness of the set of all optimal relaxed
control rules.
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Chapter 2

Strong and weak formulations

2.1 Introduction
The analysis of McKean–Vlasov optimal control problems has, in the recent years, drawn the attention of the applied
mathematics community. One of the main reasons is their close proximity mean–field games (MFGs for short), introduced
in the pioneering work of Lasry and Lions [109; 110; 111] and Huang, Caines, and Malhamé [83; 84; 85; 86; 87], as way to
describe Nash equilibria for a large population of symmetric players, interacting through their empirical distribution. We
will discuus this question in the second part of this thesis. However, we refer the interested readers to Carmona, Delarue,
and Lachapelle [47] for a more thorough discussion about the similarities and differences between these two theories.

As we said in the introduction, an important step to characterize the limits of Pareto equilibria is to provide first a good
weak formulation of the McKean–Vlasov control problem with common noise. In this chapter, our ultimate goal is to
accomplish this task by introducing the strong and the weak formulations. The strong one is given in a fixed probability
space equipped with two Brownian motions, as well as their natural filtrations. By considering more general probability
spaces and filtrations, but imposing a technical (H)–hypothesis type condition, we obtain a weak formulation of the
control problem. Our weak formulation is consistent with that of the classical optimal control problems, and enjoys
some convexity and stability properties. More importantly, by considering them as probability measures on the canonical
space, we show that any weak control rule can be approximated by strong control rules in the sense of weak convergence,
which implies the equivalence between the strong and weak formulations. We emphasise that this first result is a crucial
technical step in the proof of the DPP in Chapter 5.

The presence of the common noise generates some significant technical hurdles, especially due to the appearance of the
conditional distribution terms, which are generally not continuous with respect to the joint distribution. In the context
of MFG, this difficulty has been tackled by Carmona, Delarue, and Lacker [49], and Lacker [103]. In the context of
McKean–Vlasov optimal control problem however, we need to formulate appropriate notions of weak control rules, and
develop new techniques to ensure the approximation property. Another technical difficulty comes from the presence of
the conditional law of the control process α in the coefficient functions (for the strong and weak formulations), a situation
which has been rarely studied in the literature (see for instance Graber [73], Élie, Mastrolia, and Possamaï [65], Zalashko
[154], Pham and Wei [139], Acciaio, Backhoff Veraguas, and Carmona [1], and Basei and Pham [20]). Our equivalence
results between the strong and weak formulations is very general, and its proof is quite different from that in the case
without common noise. It allows in particular to fill a subtle technical gap in the related literature (see Remark 2.3.14
for more details).

The rest of the chapter is structured as follows. We provide in Section 2.2 the notions of strong and weak formulations
for the McKean–Vlasov stochastic control problem in a common noise and non–Markovian setting The main results of
the chapter are presented in Theorem 2.2.3 including the equivalence between the strong and weak. Most of the technical
proofs are completed in Section 2.3.

Throughout the chapter, we fix a nonempty Polish space (A, ρ) and an element a0 ∈ A, and denote M := M(A). Finally,
consider the canonical space Cn ×M (resp. Cn × A), with canonical element (X,Λ) (resp. (X,α)), and ν̂ ∈ P(Cn ×M)
(resp. ν̄ ∈ P(Cn ×A)). We define, for each t ∈ [0, T ]

ν̂(t) := ν̂ ◦ (Xt∧·,Λt)−1,
(
resp. ν̄(t) := ν̄ ◦ (Xt∧·, α)−1). (2.1.1)
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2.2 McKean–Vlasov optimal control: different formulations
We introduce here a strong and a weak formulation of the McKean–Vlasov optimal control problem.

2.2.1 A strong formulation
To give a strong formulation of the McKean–Vlasov optimal control problem, we first introduce a fixed probability space
equipped with an initial random variable X0, and two independent Brownian motionsW and B. Precisely, let us consider
the canonical space

Ω := Rn × Cd × C`,

equipped with its Borel σ–algebra F := B(Ω) and canonical element (X0,W,B). Let F := (Ft)0≤t≤T and G = (Gt)0≤t≤T
be two filtrations on (Ω,F) defined by

Ft := σ
(
(X0,Ws, Bs) : s ∈ [0, t]

)
, and Gt := σ

(
Bs : s ∈ [0, t]

)
, t ∈ [0, T ].

Let p be the constant in Assumption 1.4.1 and ν ∈ Pp(Rn). We denote by Pν the probability measure on (Ω,F), under
which X0 ∼ ν and (W,B) is a standard Rd+`–dimensional Brownian motion, independent of X0. Recall that a0 is a fixed
point in A. We denote by Ap(ν) the collection of all F–predictable, A–valued processes α = (αs)0≤s≤T satisfying

EPν
[ ∫ T

0

(
ρ(αs, a0)

)pds] <∞. (2.2.1)

Then given a control process α ∈ Ap(ν), the controlled McKean–Vlasov SDE

Xα
t = X0 +

∫ t

0
b
(
s,Xα

s∧·, µ
α
s , αs

)
ds+

∫ t

0
σ
(
s,Xα

s∧·, µ
α
s , αs

)
dWs +

∫ t

0
σ0
(
s,Xα

s∧·, µ
α
s , αs

)
dBs, t ∈ [0, T ], Pν–a.s., (2.2.2)

with µαs := LPν
(
Xα
s∧·, αs

∣∣Gs), dt⊗dPν–a.e., has a unique strong solution, that is, there is a unique F–adapted continuous
process Xα on (Ω,F) satisfying Equation (2.2.2) and EPν

[
supt∈[0,T ] |Xα

t |p
]
<∞ (see for instance Theorem 5.5.3).

Denote also µαt := LPν
(
Xα
t∧·
∣∣Gt) for all t ∈ [0, T ]. The strong formulation of the McKean–Vlasov control problem is then

given by

VS(ν) := sup
α∈Ap(ν)

EPν
[ ∫ T

0
L
(
t,Xα

t∧·, µ
α
t , αt

)
dt+ g

(
Xα
T∧·, µ

α
T

)]
. (2.2.3)

2.2.2 A weak formulation
As in the classical SDE theory, one can consider all possible probability spaces to define a weak solution of the controlled
SDE (2.2.2).

Definition 2.2.1 (Weak control). Let ν ∈ Pp(Rn), we say that a term

γ :=
(
Ωγ ,Fγ ,Pγ ,Fγ := (Fγt )0≤t≤T ,Gγ := (Gγt )0≤t≤T , X

γ ,W γ , Bγ , µγ , µγ , αγ
)
,

is a weak control associated with the initial (distribution) condition ν if

(i) (Ωγ ,Fγ ,Pγ) is a probability space, equipped with two filtrations Fγ and Gγ such that, for all t ∈ [0, T ]

Gγt ⊆ F
γ
t , and EPγ [1D∣∣Gγt ] = EPγ [1D∣∣GγT ], Pγ–a.s., for all D ∈ Fγt ∨ σ(W γ); (2.2.4)

(ii) Xγ := (Xγ
s )s∈[0,T ] is an Rn–valued Fγ–adapted continuous process and αγ := (αγs )0≤s≤T is an A–valued Fγ–

predictable process such that EPγ [‖Xγ‖p +
∫ T

0
(
ρ(αγs , a0)

)pds] <∞;
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(iii) (W γ , Bγ) is an Rd × R`–valued standard Brownian motion with respect to Fγ , Bγ is in addition adapted to Gγ ,
Fγ0 ∨ σ(W γ) is independent of GγT , and µγ (resp. µγ) is a P(Cn)–valued (resp. P(Cn × A)–valued) Gγ–predictable
process such that

µγt = LPγ(Xγ
t∧·
∣∣Gγt ), and µγt = LPγ((Xγ

t∧·, α
γ
t

)∣∣Gγt ), dPγ ⊗ dt–a.s.;

(iv) Xγ satisfies Pγ ◦ (Xγ
0 )−1 = ν and

Xγ
t = Xγ

0 +
∫ t

0
b(s,Xγ

s∧·, µ
γ
s , α

γ
s )ds+

∫ t

0
σ(s,Xγ

s∧·, µ
γ
s , α

γ
s )dW γ

s +
∫ t

0
σ0(s,Xγ

s∧·, µ
γ
s , α

γ
s )dBγs , t ∈ [0, T ], Pγ–a.s.

Remark 2.2.2. In Definition 2.2.1, Gγ plays the role of the common noise filtration, to which Bγ is adapted and
from which (X0,W

γ) is independent. In the literature on enlargement of filtrations (see Jacod [88] for instance), the
(H)–hypothesis states that for all t ∈ [0, T ]

EPγ [1D∣∣Gγt ] = EPγ [1D∣∣GγT ], for all D ∈ Fγt .
It is generally different from Condition (2.2.4), since the independence of the increment (W γ

s −W
γ
t )s∈[t,T ] from Fγt and

GγT does not imply the independence between (W γ
s −W

γ
t )s∈[t,T ] and Fγt ∨ G

γ
T . In particular, Condition (2.2.4) will be

reformulated later on as (2.3.4) and (2.3.11), which are in turn crucially used in the approximation of a weak control by
strong control rules in Lemma 2.3.10 and Lemma 2.3.11.

Let us denote by ΓW (ν) the collection of all weak controls associated with the initial condition ν, and introduce the weak
formulation of the control problem by

VW (ν) := sup
γ∈ΓW (ν)

J(γ), with J(γ) := EPγ
[ ∫ T

0
L(s,Xγ

s∧·, µ
γ
s , α

γ
s )ds+ g(Xγ

T∧·, µ
γ
T )
]
. (2.2.5)

2.2.3 Equivalence of formulations
Let us now provide the main results of this chapter i.e. the equivalence between the strong and different formulations of
the McKean–Vlasov control problem.

For γ a weak control, we introduce

Y γ := Xγ
· −

∫ ·
0
σ0(s,Xγ

s∧·, µ
γ
s , α

γ
s )dBγs and µ̂γ := LPγ((Xγ , Y γ , δαγs (da)ds,W γ

)∣∣GγT ),
for α ∈ Ap(ν), with Xα solution of Equation (2.2.2), we define

Y α· = Xα
· −

∫ ·
0
σ0
(
s,Xα

s∧·, µ
α
s , αs

)
dBs and µ̂α := LPν

((
Xα, Y α, δαs(da)ds,W

)∣∣GT ),
and consider the following subset of probability measure on Cn × Cn × Cd ×M× C` × P(Cn × Cn × Cd ×M)

PW (ν) :=
{
Pγ ◦

(
Xγ , Y γ , δαγs (da)ds,W γ , Bγ , µ̂γ

)−1 : γ a weak control with initial condition ν
}

(2.2.6)

and
PS(ν) :=

{
Pν ◦

(
Xα, Y α, δαs(da)ds,W,B, µ̂α

)−1 : α ∈ Ap(ν)
}
. (2.2.7)

Theorem 2.2.3. Let Assumption 1.4.1 hold true and ν ∈ Pp(Rn). (i) The set PW (ν) is non–empty and convex.
(ii) We have

VS(ν) = VW (ν).

If in addition ` 6= 0, then every weak control rule in PW (ν) is the limit of a sequence of strong control rules in PS(ν),
under the Wasserstein distance Wp on Pp(Ω).
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Remark 2.2.4. When ` = 0, or ` 6= 0 and σ0 = 0, the (strong formulation of the) McKean–Vlasov control problem
(2.2.3) or (2.3.6), reduces to the non–common noise context. However, in the weak formulation (2.3.7), the (conditional)
distribution term µ̂γ may still be random under a weak control rule γ ∈ ΓW (ν). In the case ` 6= 0 and σ0 = 0, the Brownian
motion B can be seen as an external noise in (2.3.6), which allows to track the randomness of µ̂γ and approximate a
weak control rule by strong control rules. This is also the main reason why we consider the case ` 6= 0 separately in
Theorem 2.2.3.(ii).

Remark 2.2.5. The results in Theorem 2.2.3 extend those in the no–common noise setting in Lacker [104]. Nevertheless,
we insist on the fact that the equivalence results, the formulation of the strong and weak control rules, and the technical
proofs below are not merely extensions of those in [104], and are in fact quite different. The main reason is that with the
presence of the common noise, the µα term in (2.2.2)–(2.2.3) is a conditional distribution term, which, in general, is not
continuous with respect to the joint distribution of (Xα, α,Wα, Bα). Moreover, the equivalence result VS = VW is also
crucially used to establish the dynamic programming principle in Theorem 5.3.4.

2.3 Proof of equivalence between strong and weak formulations
2.3.1 Strong and weak formulations on the canonical space
The above strong and weak control problem can be reformulated on a canonical space, by considering an appropriate
martingale problem.

2.3.1.1 The canonical space and admissible control rules

Recall that A is a fixed nonempty Polish space, M := M(A) denotes the space of all positive Borel measures q on
[0, T ]×A such that the marginal distribution of q on [0, T ] is the Lebesgue measure, implying that we can always write
q(dt, da) = qt(da)dt, where (qt(da))t∈[0,T ] is a Borel measurable kernel from [0, T ] to P(A). We also introduce a subset
M0 ⊂ M, which is the collection of all q ∈ M such that q(dt,da) = δψ(t)(da)dt for some Borel measurable function
ψ : [0, T ] −→ A. We will consider two canonical spaces

Ω̂ := Cn × Cn ×M× Cd, and Ω := Cn × Cn ×M× Cd × C` × P
(
Ω̂
)
.

The canonical space Ω̂ is equipped with the corresponding canonical element
(
X̂, Ŷ , Λ̂, Ŵ

)
, its Borel σ–algebra F̂ := B(Ω̂),

and its canonical filtration F̂ :=
(
F̂t
)
t∈[0,T ] defined by

F̂t := σ
((
X̂s, Ŷs, Λ̂([0, s]×D), Ŵs

)
: D ∈ B(A), s ∈ [0, t]

)
, t ∈ [0, T ].

Notice that one can choose a version of the disintegration Λ̂(dt, da) = Λ̂t(da)dt such that (Λ̂t)t∈[0,T ] is a P(A)–valued,
F̂–predictable process (see e.g. [102, Lemma 3.2.]).

Similarly, we equip the canonical space Ω with the canonical element (X,Y,Λ,W,B, µ̂), and its Borel σ–algebra F := B(Ω).
Moreover, based on µ̂, let us define three processes (µt)t∈[0,T ], (µt)t∈[0,T ] and (µ̂t)t∈[0,T ] on Ω by

(
recall (3.4.7) for the

definition of Λ̂t
)

µt := µ̂ ◦
(
X̂t∧·

)−1
, µt(dx,da) := Eµ̂

[
δ
X̂t∧·

(dx)Λ̂t(da)
]
, and µ̂t := µ̂ ◦

(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1
, t ∈ [0, T ]. (2.3.1)

We then introduce two filtrations F := (F t)t∈[0,T ] and G := (Gt)t∈[0,T ] on (Ω,F) by

F t := σ
(

(Xs, Ys,Λ([0, s]×D),Ws, Bs, 〈µ̂s, φ〉) : D ∈ B(A), φ ∈ Cb(Cn × Cn ×M× Cd), s ∈ [0, t]
)
.

and
Gt := σ

(
(Bs, 〈µ̂s, φ〉) : φ ∈ Cb(Cn × Cn ×M× Cd), s ∈ [0, t]

)
.
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To interpret the strong or weak controls as probability measures on the canonical space Ω, we will consider a controlled
martingale problem. Let us define the maps b̄ : [0, T ]× Cn ×A×P(Cn ×A) −→ Rn+n+d+`, and ā : [0, T ]× Cn ×P(Cn ×
A)×A −→ Sn+n+d+`, such that for any (t,x,y,w,b, ν̄, a) ∈ [0, T ]× Cn × Cn × Cd × C` × P(Cn ×A)×A

b̄
(
t,x,w,b, ν̄, a

)
:=


b(t,x, ν̄, a)
b(t,x, ν̄, a)

0d
0`

 , ā
(
t,x,w,b, ν̄, a

)
:=


σ(t,x, ν̄, a) σ0(t,x, ν̄, a)
σ(t,x, ν̄, a) 0n×`

Id×d 0d×`
0`×d I`×`



σ(t,x, ν̄, a) σ0(t,x, ν̄, a)
σ(t,x, ν̄, a) 0n×`

Id×d 0d×`
0`×d I`×`


>

.

Next, for all t ∈ [0, T ] and ϕ ∈ C2
b (Rn+n+d+`), we define the generator Lt by

Ltϕ
(
x,y,w,b, ν̄, a

)
:= b̄(t,x, ν̄, a) · ∇ϕ(x(t),y(t),w(t),b(t)) + 1

2Tr
[
ā(t,x, ν̄, a)∇2ϕ(x(t),y(t),w(t),b(t))

]
. (2.3.2)

This allows to define, for any ϕ ∈ C2
b (Rn+n+d+`), Sϕ := (Sϕt )t∈[0,T ] on Ω by

S
ϕ

t := ϕ(Xt, Yt,Wt, Bt)−
∫∫

[0,t]×A
Lsϕ

(
Xs, Ys,Ws, Bs, µs, a

)
Λs(da)ds, t ∈ [0, T ], (2.3.3)

where for a borel function φ : [0, T ]→ R,
∫ ·

0 φ(s)ds :=
∫ ·

0 φ
+(s)ds−

∫ ·
0 φ
−(s)ds with the convention ∞−∞ = −∞.

Definition 2.3.1. Let ν ∈ Pp(Rn). A probability P on (Ω,F) is an admissible control rule with initial condition ν if

(i) P
[
X0 = Y0, W0 = 0, B0 = 0

]
= 1, P ◦X−1

0 = ν, and (X,Λ) satisfy EP[‖X‖p +
∫∫

[0,T ]×A
(
ρ(a0, a)

)pΛt(da)dt
]
<∞;

(ii) the pair (X0,W ) is independent of GT under P, and for all t ∈ [0, T ]

µ̂t(ω̄) = PGTω̄ ◦ (Xt∧·, Yt∧·,Λt,W )−1, for P–a.e. ω̄ ∈ Ω; (2.3.4)

(iii) the process
(
S
ϕ

t

)
t∈[0,T ] is an (F,P)–martingale for all ϕ ∈ C2

b

(
Rn × Rn × Rd × R`

)
.

Let us then define for any ν ∈ Pp(Rn),

PA(ν) :=
{
All admissible control rules P with initial condition ν

}
.

Remark 2.3.2. (i) Under an admissible control rule P, B and W are standard Brownian motions, Λ is the P(A)–valued
process induced by the control process, X is the controlled process, and µ is the conditional distribution of the control
and controlled process. The process Y will only be really used to introduce the relaxed formulation (see Chapter 3 ). In
particular, when σ0 = 0 or ` = 0, we have Y = X.

(ii) Notice that µ̂t is Gt–measurable, hence, it follows that (2.3.4) is equivalent to

µ̂t(ω̄) = PGtω̄ ◦ (Xt∧·, Yt∧·,Λt,W )−1 = PGTω̄ ◦ (Xt∧·, Yt∧·,Λt,W )−1, for P–a.e. ω̄ ∈ Ω. (2.3.5)

Proposition 2.3.3. Let ν ∈ Pp(Cn) and P ∈ PA(ν). Then for P–almost every ω̄ ∈ Ω, Ŵ is an
(
F̂, µ̂(ω̄)

)
–Brownian

motion.

Proof. Let P ∈ PA(ν), 0 ≤ s ≤ t ≤ T, φ ∈ Cb(Rd), ϕ ∈ Cb(Cn×Cn×M×Cd) and ψ ∈ Cb(C`×C([0, T ]; Cn×Cn×M×Cd)).
Notice that W is an (F,P)–Brownian motion, independent of GT under P. Therefore, it follows that

EP[φ(Wt −Ws)ϕ(Xs∧·, Ys∧·,Λs,Ws∧·)ψ(Bs∧·, µ̂s∧·)
]

= EP[φ(Wt −Ws)
]
EP
[
EP[ϕ(Xs∧·, Ys∧·,Λs,Ws∧·)

∣∣Gs]ψ(Bs∧·, µ̂s∧·)
]

= EP
[
EP[φ(Wt −Ws)

∣∣Gs]EP[ϕ(Xs∧·, Ys∧·,Λs,Ws∧·)
∣∣Gs]ψ(Bs∧·, µ̂s∧·)

]
.
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This implies that

EP[φ(Wt −Ws)ϕ(Xs∧·, Ys∧·,Λs,Ws∧·)
∣∣Gs] = EP[φ(Wt −Ws)

∣∣Gs]EP[ϕ(Xs∧·, Ys∧·,Λs,Ws∧·)
∣∣Gs], P–a.s.

By (2.3.4) in Definition 2.3.1, it follows that for P–a.e. ω̄ ∈ Ω

Eµ̂(ω̄)[φ(Ŵt − Ŵs)ϕ(X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·)
]

= Eµ̂(ω̄)[φ(Ŵt − Ŵs)
]
Eµ̂(ω̄)[ϕ(X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·)

]
.

In other words, Ŵ has independent increments with respect to F̂ under µ̂(ω̄), for P–almost every ω̄ ∈ Ω.

Further, notice that under P,W is a Brownian motion independent of (B, µ̂), thenW is still a Brownian motion under the
conditional law of P knowing GT . It follows that the continuous process Ŵ has independent and (Gaussian) stationary
increment w.r.t. (F̂, µ̂(ω̄)), and hence it is an (F̂, µ̂(ω̄))–Brownian motion, for P–a.e. ω̄ ∈ Ω.

2.3.1.2 The strong formulation on the canonical space

To reformulate the strong formulation (2.2.3) of the control problem on the canonical space Ω, it is enough to consider
the class of measures induced by the controls and the controlled processes on the canonical space. Recall that for each
ν ∈ Pp(Rn), Pν is defined in Section 2.2.1 as a probability measure on (Ω,F), and that for any α ∈ Ap(ν), the controlled
McKean–Vlasov SDE (2.2.2) has a unique strong solution Xα. Let us recall

Y αt := Xα
t −

∫ t

0
σ0(s,Xα

s∧·, µ
α
s , αs)dBs, t ∈ [0, T ], Λαt (da)dt := δαt(da)dt, µ̂α := (Pν)GT

(
Xα, Y α,Λα,W

)−1
,

and

PS(ν) :=
{
Pν ◦

(
Xα, Y α,Λα,W,B, µ̂α

)−1 : α ∈ Ap(ν)
}
.

It is straightforward to see that

VS(ν) = sup
P∈PS(ν)

J
(
P
)
, with J

(
P
)

:= EP
[ ∫∫

[0,T ]×A
L
(
t,Xt∧·, µt, a

)
Λt(da)dt+ g

(
XT∧·, µT

)]
. (2.3.6)

Let
L0[A] :=

{
All Borel measurable functions φ : [0, T ]× Rn × Cd × C` −→ A

}
.

The following Proposition is the analog of Lemma 5.4.4 (see also Definition 5.4.3) in a different canonical space.

Proposition 2.3.4. We have, for all ν ∈ Pp(Rn)

PS(ν) =
{
P ∈ PA(ν) : ∃ φ ∈ L0[A], P

[
Λt(da)dt = δφ(t,X0,Wt∧·,Bt∧·)(da)dt

]
= 1
}
.

Remark 2.3.5. Notice that the map P(Cn×Cn×Cd×M) 3 µ̂ 7−→ δµt(dν̄)dt ∈M(Cn×A) is generically not continuous.
Consequently, P 7−→ J(P) is not continuous in general, even if L and g are both bounded and continuous.

2.3.1.3 The weak formulation on the canonical space

Now we also represent the set of weak control rules as a subset of PA. Let ν ∈ Pp(Rn) and γ ∈ ΓW (ν). Recall that for
any t ∈ [0, T ]

Y γt := Xγ
t −

∫ t

0
σ0(s,Xγ

s∧·, µ
γ
s , α

γ
s )dBγs , Λγt (da)dt := δαγt (da)dt, and µ̂γ := LPγ((Xγ , Y γ ,Λγ ,W γ

)∣∣GγT ).
Proposition 2.3.6. Then with J defined in (2.3.6), we have{

P ∈ PA(ν) : P
[
Λ ∈M0

]
= 1
}

=
{
Pγ ◦

(
Xγ , Y γ ,Λγ ,W γ , Bγ , µ̂γ

)−1 : γ ∈ ΓW (ν)
}
, and VW (ν) = sup

P∈PW (ν)
J
(
P
)
. (2.3.7)
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Proof. With a slight extension of Lemma 5.4.4 (taking into account the process Y and the small changes in the presentation
of the definition of weak controls ΓW (ν)), every weak control rule P ∈ PW (ν), together with the canonical space Ω and
canonical processes, can be viewed as a weak control γ ∈ ΓW (ν). Conversely, every weak control γ induces a weak control
rule P ∈ PW (ν) on the canonical space. It follows that (2.3.7) holds true (see also Corollary 5.4.6).

Remark 2.3.7. By Proposition 2.3.4, it is straightforward to see that for all ν ∈ Pp(Rn)

PS(ν) =
{
P ∈ PW (ν) : ∃ φ ∈ L0[A], P

[
Λt(da)dt = δφ(t,X0,Wt∧·,Bt∧·)(da)dt

]
= 1
}
.

In particular, as expected, any strong control rule is also a weak control rule, i.e. PS(ν) ⊂ PW (ν).

2.3.2 Approximating weak control rules by strong control rules

This part is devoted to the approximation of weak control rules by strong controls. Indeed, to prove Theorem 2.2.3, the
crucial steps consist in first approximating weak control rules by strong control rules.

We first provide a moment estimate of the solution to the controlled SDEs, which will be repeatedly used in the upcoming
proofs. This is in fact an easy extension of Lacker [104, Lemmata 3.1. and 3.3.] (which are a succession of application of
Gronwall Lemma), then for brevity we omit the proof.

Lemma 2.3.8. Let Assumption 1.4.1 hold true, and q ≥ p. Then there exists a constant K > 0 such that, for each
P ∈ PW (ν), we have

EP
[

sup
t∈[0,T ]

|Xt|q
]

+ EP
[

sup
t∈[0,T ]

|Yt|q
]
≤ K

(
1 +

∫
Rn
|x′|qν(dx′) + EP

[ ∫∫
[0,T ]×A

ρ(a0, a)qΛt(da)dt
])
.

Remark 2.3.9. Notice that by a classical existence result (see Theorem 5.5.3 for the McKean-Vlasov case), we know that:
under Assumption 1.4.1, for each P ∈ PW (ν), EP[ supt∈[0,T ] |Xt|q

]
+ EP[ supt∈[0,T ] |Yt|q

]
< ∞. Lemma 2.3.8 essentially

gives precise estimations of these quantities.

Let Assumption 1.4.1 hold true, ν ∈ Pp(Rn) and P ∈ PW (ν). From the martingale problem in Definition 2.3.1 and by
using Stroock and Varadhan [150, Theorem 4.5.2], on the filtered probability space (Ω,F,F ,P), (W,B) are standard
Brownian motions, (W,X0) are independent of (B, µ̂), and there exists a F–predictable A–valued process (αt)t∈[0,T ], such
that, P–a.s.,

Xt = X0 +
∫ t

0
b
(
r,X, µr, αr

)
dr +

∫ t

0
σ
(
r,X, µr, αr

)
dWr +

∫ t

0
σ0
(
r,X, µr, αr

)
dBr, t ∈ [0, T ],

Yt = Xt −
∫ t

0
σ0
(
r,X, µr, αr

)
dBr, t ∈ [0, T ],

with Λt(da)dt = Λαt (da)dt := δαt(da)dt and

µ̂t = LP(Xt∧·, Yt∧·,Λt,W
∣∣Bt∧·, µ̂t∧·) = LP(Xt∧·, Yt∧·,Λt,W

∣∣B, µ̂), µt(dx,da) := Eµ̂
[
δ
X̂t∧·

(dx)Λ̂t(da)
]
. (2.3.8)

Let us take a sequence
(
(tmi )0≤i≤m

)
m≥1 of partitions of [0, T ], with 0 = tm0 < tm1 < · · · < tmm = T , and such that

sup
0≤i≤m−1

|tmi+1 − tmi | −→
m→∞

0.

For any integer m ≥ 1, define for simplicity the map [0, T ] 3 t 7−→ [t]m :=
∑m−1
i=0 tmi 1[tm

i
,tm
i+1)(t), as well as εm := tm1 . Let

Wm
· := Wεm∨· −Wεm and Bm· := Bεm∨· − Bεm , we define also two filtrations Fm := (Fmt )t∈[0,T ] and Gm = (Gmt )t∈[0,T ]

by
Fmt := σ

(
Xt∧·, Yt∧·,Λt,Wm

t∧·, B
m
t∧·, µ̂t∧·

)
, and Gmt := σ

(
Bmt∧·, µ̂t∧·

)
, t ∈ [0, T ].
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Lemma 2.3.10 (Approximation with piecewise constant controls). In the filtered probability space (Ω,F,F ,P), there
exists a sequence of F–predictable processes (αm)m≥1, and a sequence a F–adapted continuous processes (Xm)m≥1 such
that for any m ≥ 1

αm0 = a0, α
m
t = αm[t]m , on [0, T ], lim

m→∞
EP
[ ∫ T

0
ρ(αt, αmt )pdt

]
= 0, and lim

m→∞
EP
[

sup
s∈[0,T ]

|Xs −Xm
s |p
]

= 0, (2.3.9)

where for each m ≥ 1, (Xm
t )t∈[0,T ] is the unique strong solution of

Xm
t = X0 +

∫ t∨εm

εm

b
(
r,Xm

r∧·, µ
m
r , α

m
r

)
dr +

∫ t∨εm

εm

σ
(
r,Xm

r∧·, µ
m
r , α

m
r

)
dWm

r +
∫ t∨εm

εm

σ0
(
r,Xm

r∧·, µ
m
r , α

m
r

)
dBmr , (2.3.10)

with EP[‖Xm‖p
]
<∞ and µmt := LP(Xm

t∧·, α
m
t

∣∣Gmt ). Moreover, if we denote Λmt (da)dt := δαmt (da)dt, as well as

µ̂mt := LP(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

∣∣Gmt ) and Y mt := Xm
t −

∫ t∨εm

εm

σ0
(
r,Xm

r∧·, µ
m
r , α

m
r

)
dBmr , for all t ∈ [0, T ],

then (X0,W
m) is P–independent of (Bm, µ̂m), µ̂mt = µ̂mT ◦

(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1, and

µ̂mt = LP(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

∣∣Bmt∧·, µ̂mt∧·) = LP(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

∣∣Bm, µ̂m), P–a.s., for all t ∈ [0, T ]. (2.3.11)

Proof. First, we claim that for each m ≥ 1,

µ̂t = LP(Xt∧·, Yt∧·,Λt,W
∣∣Bmt∧·, µ̂t∧·) = LP(Xt∧·, Yt∧·,Λt,W

∣∣Bm, µ̂), P–a.s., for all t ∈ [0, T ]. (2.3.12)

Indeed, for all φ ∈ Cb(Cn × Cn ×M× Cd) and ψ ∈ Cb(C` × C([0, T ],P(Cn × Cn ×M× Cd))), it follows by (2.3.4) that

EP[〈φ, µ̂t〉ψ(Bm, µ̂)
]

= EP[φ(Xt∧·, Yt∧·,Λt,W )ψ(Bm, µ̂)
]

= EP[〈φ,LP(Xt∧·, Yt∧·,Λt,W |Bm, µ̂
)〉
ψ(Bm, µ̂)

]
.

This implies (2.3.12) by arbitrariness of (φ, ψ). We further observe that (Fm,Gm) satisfies

EP[1D
∣∣Gmt ] = EP[1D

∣∣GmT ], for all D ∈ Fmt ∨ σ(Wm) and t ∈ [0, T ]. (2.3.13)

Next, as EP[ ∫ T
0 ρ(αt, a0)pdt

]
< ∞, it follows (this is a straightforward extension of for instance Liptser and Shiryaev

[119, Lemma 4.4.]) that there exists a sequence of piecewise constant and F–predictable process αm satisfying the first
two properties in Equation (2.3.9). Without loss of generality, let us also set αmT := αmtm

m−1
.

Then given αm, let Xm be the unique Fm–adapted solution of the McKean–Vlasov SDE (2.3.10) (see also Theorem 5.5.3
for its well–posedness), with µmt := LP(Xm

t∧·, α
m
t

∣∣Gmt ). Let µ̂m, Λmt (da)dt and Y m be defined as in the statement of
Lemma 2.3.10.

The independence between (X0,W
m) and (Bm, µ̂m) follows directly from the independence of (X0,W ) and GT . Further,

by Proposition 2.3.3, W is a Brownian motion under the conditional law of P knowing GT . It follows that, for each
t ∈ [0, T ], (Wm

t+s−Wm
t )s∈[0,T−t] = (W(t+s)∨εm −Wt∨εm)s∈[0,T−t] and (Xm

t∧·, Y
m
t∧·, (Λm)t,Wm

t∧·) are independent under the
conditional law of P knowing Gmt (or GmT ). Together with (2.3.13), it follows that

µ̂mt = LP(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

∣∣Gmt ) = LP(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

∣∣GmT ), and µmt (dx,da) = Eµ̂
m
[
δ
X̂t∧·

(dx)Λ̂t(da)
]
,

and therefore
µ̂mt = µ̂mT ◦

(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1
, P –a.s., for all t ∈ [0, T ].

Since (µ̂mt )t∈[0,T ] is a function of µ̂mT , and (Bm, µ̂m) and (X0,W
m) are P–independent, it follows by using the definition

of Gm that (2.3.11) holds true.
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To conclude, it is enough to prove that limm→∞ EP[ sups∈[0,T ] |Xs −Xm
s |p
]

= 0. For any t ∈ [εm, T ], one has

Xt −Xm
t = Xεm −X0 +

∫ t

εm

(
b(r,Xr∧·, µr, αr)− b(r,Xm

r∧·, µ
m
r , α

m
r )
)
dr

+
∫ t

εm

(
σ(r,Xr∧·, µr, αr)− σ(r,Xm

r∧·, µ
m
r , α

m
r )
)
dWr +

∫ t

εm

(
σ0(r,Xr∧·, µr, αr)− σ0(r,Xm

r∧·, µ
m
r , α

m
r )
)
dBr.

Next, using Jensen’s inequality, Burkholder–Davis–Gundy inequality, the Lipschitz property of (b, σ, σ0), and the inequality

Wp

(
µt, µ

m
t

)p =Wp

(
LP(Xt∧·, αt

∣∣Gmt ),LP(Xm
t∧·, α

m
t

∣∣Gmt ))p ≤ EP
[

sup
s∈[0,t]

∣∣Xs −Xm
s

∣∣p + ρ
(
αmt , αt

)p∣∣∣Gmt ],
there exists a positive constant K, which may vary from line to line, such that

EP
[

sup
s∈[εm,t]

|Xs −Xm
s |p
]
≤ KEP

[
|Xεm −X0|p +

∫ t

εm

∣∣(b, σ, σ0)(r,Xr∧·, µr, αr)− (b, σ, σ0)(r,Xm
r∧·, µ

m
r , α

m
r )
∣∣pdr]

≤ K

(
EP[|Xεm −X0|p

]
+ EP

[ ∫ t

εm

sup
u∈[εm,r]

∣∣Xu −Xm
u

∣∣pdr]+ Cm

)
,

where

Cm := EP
[ ∫ T

0

(∣∣(b, σ, σ0)(r,X, µr, αr)− (b, σ, σ0)(r,X, µr, αmr )
∣∣p + ρ

(
αmr , αr

)p)dr
]
.

By Gronwall’s lemma (recall that all expectations appearing here are finite), we deduce that for all t ∈ [εm, T ]

EP
[

sup
s∈[εm,t]

|Xs −Xm
s |p
]
≤ K

(
EP[|Xεm −X0|p

]
+ Cm

)
,

so that

EP
[

sup
s∈[0,T ]

|Xs −Xm
s |p
]
≤ K

(
EP[|Xεm −X0|p

]
+ EP

[
sup

r∈[0,εm]
|Xr −X0|p

]
+ Cm

)
.

By Assumption 1.4.1, we have, for all r ∈ [0, T ],

|(b, σ, σ0)(r,X, µr, αr)− (b, σ, σ0)(r,X, µr, αmr )
∣∣p ≤ K

(∥∥Xr∧·
∥∥p + EP

[∥∥Xr∧·
∥∥p + ρ

(
a0, αr

)p∣∣∣GT ]+ ρ
(
a0, αr

)p)
+Kρ

(
αmr , αr

)p
.

By dominated convergence and the continuity of coefficients (b, σ, σ0), it follows that for all K > 0,

lim
m→∞

EP
[ ∫ T

0

∣∣(b, σ, σ0)(r,X, µr, αr)− (b, σ, σ0)(r,X, µr, αmr )
∣∣p1{ρ(αmr ,αr)≤K}dr

]
= 0.

In addition, since
(∥∥Xr∧·

∥∥p+ρ
(
a0, αr

)p)1{ρ(αmr ,αr)≥K} ≤
(∥∥Xr∧·

∥∥p+ρ
(
a0, αr

)p), which is P–integrable, using the uniform
integrability of the sequence (αm)m∈N? , one obtains that

lim sup
K→∞

lim sup
m→∞

EP
[ ∫ T

0

∣∣(b, σ, σ0)(r,X, µr, αr)− (b, σ, σ0)(r,X, µr, αmr )
∣∣p1{ρ(αmr ,αr)>K}dr

]
≤ lim sup

K→∞
lim sup
m→∞

KEP
[ ∫ T

0

((∥∥Xr∧·
∥∥p + ρ

(
a0, αr

)p)+ ρ
(
αmr , αr

)p)1{ρ(αmr ,αr)>K}dr
]

≤ lim sup
K→∞

sup
m>0

KEP
[ ∫ T

0
ρ
(
αmr , αr

)p1{ρ(αmr ,αr)>K}dr
]

= 0.

This implies that lim
m→∞

Cm = 0, and hence (2.3.9) does indeed hold.
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Lemma 2.3.11. In the context of Lemma 2.3.10, let m ≥ 1. In the (possibly enlarged) filtered probability space
(Ω,F,F ,P), there exists a sequence of i.i.d. random variables Um = (Umi )i≥1, with uniform distribution on [0, 1], and
P–independent of (X0, B

m,W ), together with a (σ(Um, X0,Wt∧·, B
m
t∧·))t∈[0,T ]–predictable process (γ̃mt )t∈[0,T ], such that

if we let (X̃m
t )t∈[0,T ] be the unique strong solution of

X̃m
t = X0 +

∫ t∨εm

εm

b
(
r, X̃m

r∧·, ζ
m

r , γ̃
m
r

)
dr +

∫ t∨εm

εm

σ
(
r, X̃m

r∧·, ζ
m

r , γ̃
m
r

)
dWm

r +
∫ t∨εm

εm

σ0
(
r, X̃m

r∧·, ζ
m

r , γ̃
m
r

)
dBmr ,

with ζmt := LP(X̃m
t∧·, γ̃

m
t

∣∣Bm, Um), and define further Λ̃mt (da)dt := δ
γ̃mt

(da)dt, as well as

Ỹ mt := X̃m
t −

∫ t∨εm

εm

σ0
(
r, X̃m

r∧·, ζ
m

r , γ̃
m
r

)
dBmr , and ζ̂mt := LP(X̃m

t∧·, Ỹ
m
t∧·, (Λ̃m)t,Wm

∣∣Bm, Um),
then, with (Xm, Y m,Λm,Wm, Bm, µ̂m) defined in Lemma 2.3.10, we have

LP
(
X̃m, Ỹ m, Λ̃m,Wm, Bm, ζ̂mT

)
= LP

(
Xm, Y m,Λm,Wm, Bm, µ̂m

)
. (2.3.14)

Finally, when ` = 0 and µ̂m is deterministic, then one can take (γ̃mt )t∈[0,T ] to be (σ(X0,Wt∧·))t∈[0,T ]–predictable.

Proof. Let us fix m ≥ 1, and introduce {Wm}0 = {Bm}0 := 0, and then for i ∈ {1, . . . ,m},

{Bm}i :=
(
Bm,(k−1))

1≤k≤i, {W
m}i :=

(
Wm,(k−1))

1≤k≤i , {µ̂
m}i :=

(
µ̂mtm
k

)
0≤k≤i, and {α

m}i := (αmk )0≤k≤i,

where Bm,(k−1)
t := Bm(t∨tm

k−1)∧tm
k
−Bmtm

k−1
and Wm,(k−1)

t := Wm
(t∨tm

k−1)∧tm
k
−Wm

tm
k−1

, t ∈ [0, T ].

Step 1. For each i ∈ {1, . . . ,m}, there exists (see Kurtz [99, Lemma 1.3.]) a Borel measurable function Gµi : C` ×
P(Cn × Cn ×M× Cd)i × [0, 1] −→ P(Cn × Cn ×M× Cd) such that, for any uniform random variable Umi independent of(
{Bm}i, {µ̂m}i−1

)
and Ĝµi := Gµi

(
{Bm}i, {µ̂m}i−1, U

m
i

)
, we have

LP(X0, {Bm}i, {Wm}i, {µ̂m}i−1, µ̂
m
tm
i

)
= LP(X0, {Bm}i, {Wm}i, {µ̂m}i−1, Ĝ

µ
i

)
, (2.3.15)

Above, Gµi is a function of ({Bm}i, {µ̂m}i−1, U
m
i ) rather than of (X0, {Bm}i, {Wm}i, {µ̂m}i−1, U

m
i ), since µ̂mtm

i
is actually

P–independent of (X0,W
m). We can apply a similar argument to find a Borel measurable function Gαi : Rn × (C` ×

Cd)i × P(Cn × Cn × M × Cd)(i+1) × Ai × R −→ A, and uniform random variable V mi independent of the variables(
X0, {Bm}i, {Wm}i, {µ̂m}i, {αm}(i−1)

)
such that

LP(X0, {Bm}i, {Wm}i, {µ̂m}i, {αm}(i−1), α
m
i

)
= LP(X0, {Bm}i, {Wm}i, {µ̂m}i, {αm}(i−1), G̃

α
i

)
, (2.3.16)

where
G̃αi := Gαi

(
X0, {Bm}i, {Wm}i, {µ̂m}i, {αm}(i−1), V

m
i

)
.

Observe that one can take (Um1 , . . . , Umm ) to be independent of (V m1 , . . . , V mm ). We can then find a Borel function κd :
Rd −→ [0, 1] such that LP(κd(Wiεm/m−W(i−1)εm/m

))
is a uniform distribution. Define next γ̃m0 := αm0 = a0, ζ̂0 := µ̂tm0 ∧·,

and for any i ∈ {1, . . . ,m− 1}

ζ̂mi := Gµi

(
X0, {Bm}i, {ζ̂m}(i−1), U

m
i

)
, γ̃mi := Gαi

(
X0, {Bm}i, {Wm}i, {ζ̂m}i, {γ̃m}(i−1), κ

d
(
Wiεm/m −W(i−1)εm/m

))
.

Then, for each i ∈ {0, . . . ,m}, ζ̂mi is σ(Um1 , . . . , Umi , {Bm}i)–measurable, and

γ̃mi is σ
(
X0,Wεm∧·, {Wm}i, {ζ̂m}i, {Bm}i

)
–measurable. (2.3.17)
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When ` = 0 and µ̂m is deterministic, the previous construction implies that {ζ̂m}m = {µ̂m}m is deterministic and γ̃mi is
σ
(
X0,Wεm∧·, {Wm}i

)
–measurable.

Step 2. We next prove by induction that, for each i ∈ {0, . . . ,m}

LP(X0, {Bm}i, {Wm}i, {µ̂m}i, {αm}i
)

= LP(X0, {Bm}i, {Wm}i, {ζ̂m}i, {γ̃m}i
)
. (2.3.18)

When i = 0, (2.3.18) holds true since αm0 and µ̂tm0 are deterministic constants.

Now, assume that (2.3.18) is true for some i ∈ {0, . . . ,m− 1}. First, take φ ∈ Cb(Rn × Cn × C` × Cd ×P(Cn × Cn ×M×
Cn)i ×Ai), ψ ∈ Cb(Cd), ϕ ∈ Cb(C`) and h ∈ Cb(P(Cn × Cn ×M× Cd)). Using the independence of the increments of the
Brownian motion Wm, together with (2.3.11) and (2.3.15), we have

EP
[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)
ψ
(
Wm,(i))ϕ(Bm,(i))h(µ̂mtm

i+1

)]
= EP

[
EP
[
ψ
(
Wm,(i))]EP

[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)∣∣∣Bmtm
i
∧·, µ̂

m
tm
i
∧·

]
ϕ
(
Bm,(i)

)
h
(
µ̂mtm
i+1

)]
= EP

[
EP
[
ψ
(
Wm,(i))]EP

[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)∣∣∣Bm, µ̂m]ϕ(Bm,(i))h(Ĝµi+1
)]

= EP
[
EP
[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)
ψ
(
Wm,(i))∣∣∣Bm, µ̂m]ϕ(Bm,(i))h(Ĝµi+1

)]
. (2.3.19)

Further, let ϕ1 ∈ Cb(C` × P(Cn × Cn ×M × Cd)i) and ϕ2 ∈ Cb([0, 1]), using the independence of Umi+1 and that of the
increments of the Brownian motions (Bm,Wm), and the induction hypothesis, we obtain

EP
[
EP
[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)
ψ
(
Wm,(i))∣∣∣Bm, µ̂m]ϕ1

(
Bmtm

i+1∧·
, {µ̂m}i

)
ϕ2(Umi+1)

]
= EP

[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {µ̂m}i, {αm}i

)
ψ
(
Wm,(i))ϕ1

(
Bmtm

i+1∧·
, {µ̂m}i

)]
EP
[
ϕ2(Umi+1)

]
= EP

[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {ζ̂m}i, {γ̃m}i

)
ψ
(
Wm,(i))ϕ1

(
Bmtm

i+1∧·
, {ζ̂m}i

)
ϕ2(Umi+1)

]
. (2.3.20)

Using the arbitrariness of (ϕ1, ϕ2), and a classical density argument, we can replace ϕ1
(
Bmtm

i+1∧·
, {ζ̂m}i

)
ϕ2(Umi+1) by

ϕ(Bm,(i))h
(
Gµi+1

(
Bmtm

i+1∧·
, {µ̂m}i, Umi+1

))
, for arbitrary continuous and bounded functions ϕ and h, in (2.3.20), leading to

(2.3.19) = EP
[
φ
(
X0, B

m
tm
i
∧·,W

m
tm
i
∧·, {ζ̂m}i, {γ̃m}i

)
ψ
(
Wm,(i))ϕ(Bm,(i))h

(
ζ̂mi+1

)]
,

and hence
LP
(
X0, B

m
tm
i+1∧·

,Wm
tm
i+1∧·

, {µ̂m}(i+1), {αm}i
)

= LP
(
X0, B

m
tm
i+1∧·

,Wm
tm
i+1∧·

, {ζ̂m}(i+1), {γ̃m}i
)
.

Together with the result (2.3.16), and by the independence of V mi+1 with the other variables, it follows that

LP
(
X0, {Bm}(i+1), {Wm}(i+1), {µ̂m}(i+1), {αm}i, αmi+1

)
= LP

(
X0, {Bm}(i+1), {Wm}(i+1), {ζ̂m}(i+1), {γ̃m}i, γ̃mi+1

)
,

which concludes the proof of (2.3.18) by induction.

Step 3. Under Assumption 1.4.1, the solution of SDE (2.3.10) can be expressed as function of (X0,W
m, Bm, (Λm), µ̂m).

More precisely, there exists a Borel function Hm : [0, T ]×Rn×Cd×C`×M×P(Cn×Cn×M×Cd) −→ Cn×Cn such that

(Xm
t , Y

m
t ) = Hm

t

(
X0,W

m
t∧·, B

m
t∧·, (Λm)t, µ̂mT

)
, t ∈ [0, T ], P–a.s.

Moreover, by Lemma 2.3.10, the processes (µ̂mt )t∈[0,T ] and (µmt )t∈[0,T ] are actually functions of µ̂mT .

Define γ̃mt := γ̃mi for t ∈ [tmi , tmi+1), i ∈ {0, . . . ,m− 1}, Λ̃mt (da)dt := δ
γ̃mt

(da)dt, and

ζ̂mt := ζ̂mm ◦
(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1
, and ζmt (dx,da) := Eζ̂

m
m

[
δ
X̂t∧·

(dx)Λ̂t(da)
]
, for all t ∈ [0, T ],
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and then
(X̃m

t , Ỹ
m
t ) := Hm

t

(
X0,W

m
t∧·, B

m
t∧·, (Λ̃m)t, ζ̂mT

)
.

It follows from Equation (2.3.18) that (2.3.14) holds true, and
(
X̃m, Ỹ m

)
satisfies the SDE in the statement of Lemma

(2.3.11). It remains to prove that

ζ̂mt = LP(X̃m
t∧·, Ỹ

m
t∧·, (Λ̃m)t,Wm

∣∣Bm, Um),P–a.s., for all t ∈ [0, T ]. (2.3.21)

Recall that µ̂mt = µ̂mT ◦
(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1 for all t ∈ [0, T ]. Let φ ∈ Cb(P(Cn×Cn×M×Cd)), ϕ ∈ Cb(C`×C([0, T ];P(Cn×
Cn ×M× Cd))). By Equation (2.3.18), we have

EP[〈φ, ζ̂mt 〉ϕ(Bm, ζ̂mT∧·)] = EP[〈f, µ̂mt 〉ϕ(Bm, µ̂mT∧·)] = EP[f(Xm
t∧·, Y

m
t∧·, (Λm)t,Wm

)
ϕ
(
Bm, µ̂mT∧·

)]
= EP[f(X̃m

t∧·, Ỹ
m
t∧·, (Λ̃m)t,Wm

)
ϕ
(
Bm, ζ̂mT∧·

)]
= EP[〈f,LP(X̃m

t∧·, Ỹ
m
t∧·, (Λ̃m)t,Wm

∣∣Bm, ζ̂mT∧·)〉ϕ(Bm, ζ̂mT∧·)].
This implies that

ζ̂mt = LP(X̃m
t∧·, Ỹ

m
t∧·, (Λ̃m)t,Wm

∣∣Bm, ζ̂mT∧·).
Recall from (2.3.17) that γ̃mi is σ(X0,Wεm∧·, {Wm}i, {ζ̂m}i, {Bm}i)–measurable, ζ̂mi is σ({Bm}i, Um)–measurable for
each i ∈ {0, . . . ,m−1}, and Um is independent of (X0, B

m,Wεm∧·,W
m) under P. It follows that (2.3.21) holds true.

For Proposition 2.3.12 below, let us denote by (αt)t∈[0,T ] an A–valued F–predictable process on the canonical space Ω,
satisfying that Λt(da)dt = δαt(da)dt, P–a.e., for all P ∈ PW (ν).

Proposition 2.3.12. Let Assumption 1.4.1 hold true, ν ∈ Pp(Rn) and P ∈ PW (ν).

(i) When ` 6= 0, there exists a sequence (Pm)m≥1 ⊂ PS(ν) such that

lim
m→∞

LPm(X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt
)

= LP(X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt
)
, inWp. (2.3.22)

(ii) When ` = 0, there exists a family (Pmu )u∈[0,1],m≥1 ⊂ PS(ν), such that u 7−→ Pmu is Borel measurable, and

lim
m→∞

∫ 1

0
LPmu

(
X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt

)
du = LP

(
X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt

)
, inWp. (2.3.23)

Proof. First, let (X̃m, Ỹ m, Bm,Wm, ζ̂m, ζ
m
, γ̃m, Λ̃m) be given as in Lemma 2.3.11. Using Lemma 2.3.10 and Lemma 2.3.11,

we have

lim
m→∞

LP
(
X̃m, Ỹ m, Bm,Wm, ζ̂mT , δ(ζmt ,̃γmt )(dν̄,da)dt

)
= LP

(
X,Y,B,W, µ̂, δ(µt,αt)(dν̄,da)dt

)
, inWp.

(i) When ` 6= 0, since Bεm is independent of (X0,W,B
m), one can take Um := κ

(
Bεm

)
for some measurable function

κ : R −→ [0, 1]m. Consequently, we have ζ̂mt = LP(X̃m
t∧·, Ỹ

m
t∧·, (Λ̃m)t,Wm

∣∣B), P–a.s., for all t ∈ [0, T ]. Let us then define
(S̃mt )t∈[0,T ] as the unique strong solution of

S̃mt = X0 +
∫ t

0
b
(
r, S̃m, β

m

r , γ̃
m
r

)
dr +

∫ t

0
σ
(
r, S̃m, β

m

r , γ̃
m
r

)
dWr +

∫ t

0
σ0
(
r, S̃m, β

m

r , γ̃
m
r

)
dBr,

with βmt := LP(S̃mt∧·, γ̃mt |Bt∧·) = LP(S̃mt∧·, γ̃mt |B). Denote, for all t ∈ [0, T ]

Z̃mt := S̃mt −
∫ t

0
σ0
(
r, S̃m, β

m

r , γ̃
m
r

)
dBr, and β̂mt := LP(S̃mt∧·, Z̃mt∧·, (Λ̃m)t,W

∣∣B).
Using almost the same arguments as in the proof of (2.3.9) in Lemma 2.3.10, we can deduce that

lim
m→∞

EP
[

sup
t∈[0,T ]

|S̃mt − X̃m
t |p
]

= 0,
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and moreover

lim
m→∞

LP
(
S̃m, Z̃m, B,W, β̂mT , δ(βmt ,̃γmt )(dν̄,da)dt

)
= lim
m→∞

LP
(
X̃m, Ỹ m, Bm,Wm, ζ̂mT , δ(ζmt ,̃γmt )(dν̄,da)dt

)
= lim

m→∞
LP
(
Xm, Y m, Bm,Wm, µ̂mT , δ(µmt ,αmt )(dν̄,da)dt

)
= LP

(
X,Y,B,W, µ̂, δ(µt,αt)(dν̄,da)dt

)
, inWp. (2.3.24)

Then it is enough to denote Pm := P ◦ (S̃m, Z̃m, Λ̃m,W,B, β̂mT )−1 to conclude the proof of (i).

(ii). When ` = 0, so that the process B disappears, one has ζ̂mt = LP(X̃m
t∧·, Ỹ

m
t∧·, (Λ̃m)t,Wm

∣∣Um), t ∈ [0, T ], P–a.s.,
where Um is independent of

(
X̃m, Ỹ m, Λ̃m,W

)
. Let us define (S̃mt )t∈[0,T ] as the unique strong solution of

S̃mt = X0 +
∫ t

0
b
(
r, S̃m, β

m

r , γ̃
m
r

)
dr +

∫ t

0
σ
(
r, S̃m, β

m

r , γ̃
m
r

)
dWr,

with
β
m

t := LP(S̃mt∧·, γ̃mt |Um) = LP(S̃mt∧·, γ̃mt |Um), Z̃mt := S̃mt , and β̂mt := LP(S̃mt∧·, Z̃mt∧·, (Λ̃m)t,W
∣∣Um),

As in (i), we can apply almost the same arguments as in the proof of Lemma 2.3.10 to deduce that

lim
m→∞

LP
(
S̃m, Z̃m, B,W, β̂mT , δ(βmt ,̃γmt )(dν̄,da)dt

)
= LP

(
X,Y,B,W, µ̂, δ(µt,αt)(dν̄,da)dt

)
, inWp.

Beside, it is easy to check that
LP
(
S̃m, Z̃m, Λ̃m,W,B, β̂m

∣∣∣Um) ∈ PS(ν), P–a.s.,

which concludes the proof of (ii).

Remark 2.3.13. When ` = 0, if we assume in addition that µ̂ is deterministic under P ∈ PW (ν), we can omit the term
Um in the proof of Proposition 2.3.12.(ii) by Lemma 2.3.11, and hence there is no need to consider the conditional law of
(S̃m, Z̃m, Λ̃m,W,B, β̂m) knowing Um. It follows that we can find a sequence (Pm)m≥1 ⊂ PS(ν) such that (2.3.22) holds.

Remark 2.3.14. In summary, our proof for approximating weak control by strong control rules consists in three main
steps

(i) approximate the (weak) control process by piecewise constant processes and freeze the controlled process on [0, ε];

(ii) represent the piecewise constant control process as functionals of the Brownian motions and some independent
randomness using the (H)–hypothesis type condition (3.2.1);

(iii) replace the independent randomness by the increment of the Brownian motions on [0, ε], so that the control processes
becomes functionals of the Brownian motions only.

This is quite different from the steps in Lacker [104] for McKean–Vlasov control problem without common noise, and in
spirit closer to the technical steps in El Karoui and Tan [62, Theorem 4.5.], which approximates weak control rule by
strong control rules for classical stochastic control problems. In particular, our approach allows to avoid a subtle gap in
the proof of [103, Lemma 6.7.]. In that proof, a key technical step uses implicitly the following erroneous argument (see
the paragraph after (6.19) in [103]): let W and U be two independent random variables on a probability space (Ω∗,F∗,P∗),
and f : R×R −→ R be such that Z := f(W,U) is independent of W , then Z is measurable with respect to the (completed)
σ–algebra generated by U . For a counter–example, let us consider the case that W ∼ N(0, 1) and U ∼ U [−1, 1] and that
W is independent of U , then Z := U1{W≥0} − U1{W<0} is independent of W , but not measurable w.r.t. σ(U).
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2.3.3 Proof of equivalence
(i) Let Assumption 1.4.1 hold true, and take ν ∈ Pp(Rn). The non–emptiness of PW (ν) follows by a stability result for
the martingale problem in Assumption 1.4.1. We provide a detailed proof in Theorem 2.4.2.
For the convexity of PW (ν), we first prove that PA(ν) is convex. Let us consider (P1,P2) ∈ PA(ν) × PA(ν), θ ∈ [0, 1]
and P := θP1 + (1 − θ)P2, and show that P ∈ PA(ν). First, it is direct to check that P satisfies Conditions (i) and
(iii) in Definition 2.3.1. To check Condition (ii) in Definition 2.3.1, we consider t ∈ [0, T ], f ∈ Cb(Cn × Cn ×M × Cd),
ψ ∈ Cb(C`×P(Cn×Cn×M×Cd)), ϕ ∈ Cb(Rn×Cd). Notice that under both P1 and P2, (X0,W ) has the same distribution
and is independent of (B, µ̂), it follows that

EP[ϕ(X0,W )ψ
(
B, µ̂

)]
= θEP1

[
ϕ(X0,W )ψ

(
B, µ̂

)]
+ (1− θ)EP2

[
ϕ(X0)β(W )ψ

(
B, µ̂

)]
= EP[ϕ(X0)β(W )

](
θEP1

[
ψ
(
B, µ̂

)]
+ (1− θ)EP2

[
ψ
(
B, µ̂

)])
= EP[ϕ(X0,W )

]
EP[ψ(B, µ̂)],

which implies the independence of (X0,W ) and (B, µ̂) under P. Furthermore, one has, for each i ∈ {1, 2}

EPi
[
〈f, µ̂t〉ψ

(
B, µ̂

)]
= EPi

[
f
(
Xt∧·, Yt∧·,Λt,W

)
ψ
(
B, µ̂

)]
,

then it is straightforward to obtain that

EP[〈f, µ̂t〉ψ(B, µ̂)] = EP[f(Xt∧·, Yt∧·,Λt,W
)
ψ
(
B, µ̂

)]
.

This implies that for P–a.e. ω̄ ∈ Ω

µ̂t(ω̄) = PGtω̄ ◦ (Xt∧·, Yt∧·,W,Λt)−1 = PGTω̄ ◦ (Xt∧·, Yt∧·,W,Λt)−1.

Then P also satisfies Condition (ii) in Definition 2.3.1, and hence P ∈ PA(ν). This proves that PA(ν) is convex.

Next, assume in addition that (P1,P2) ∈ PW (ν)×PW (ν), that is to say (P1,P2) ∈ PA(ν)×PA(ν) and Pi
[
Λ ∈M0

]
= 1

for i ∈ {1, 2}. It follows that P ∈ PA(ν) and P
[
Λ ∈M0

]
= 1, so that P ∈ PW (ν).

(ii) Fix ν ∈ Pp(Rn). First, one has clearly VS(ν) ≤ VW (ν). Furthermore, for any P ∈ PW (ν), by Proposition 2.3.12 and
under condition ` ≥ 1, there is a sequence of probability measures (Pm)m≥1 ⊂ PS(ν) such that

lim
m→∞

LPm(X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt
)

= LP(X,Y,Λ,W,B, µ̂, δ(µt,αt)(dν̄,da)dt
)
, (2.3.25)

in Pp
(
Ω×M(P(Cn ×A)×A)

)
under Wp. This implies in particular that Pm −→ P in Pp(Ω) under Wp.

Besides, although P 7−→ J(P) is not continuous in general (see Remark 2.3.5), the convergence in (2.3.25) is stronger
than simply Pm −→ P. With the growth and lower semi–continuity conditions of L and g in Assumption 1.4.1, and by a
slight extension of [104, Lemma 4.1], the convergence (2.3.25) implies that

VS(ν) ≥ lim
m→∞

J(Pm) ≥ J(P).

It follows that VS(ν) = VW (ν).

When ` = 0, using Proposition 2.3.12, it is enough to consider a convex combination of strong control rules and apply
the same argument as above to conclude the proof.

2.4 Appendix: existence of weak solution to the McKean–Vlasov equations
We provide here an existence result of weak solution to the McKean-Vlasov equation.



2.4. Appendix: existence of weak solution to the McKean–Vlasov equations 35

Assumption 2.4.1. The constants (p, p̂) satisfy: p ≥ (1∨p̂), 2 ≥ p̂ ≥ 0, and for all (t,x, ν̄, a) ∈ [0, T ]×Cn×P(Cn×A)×A,

|b(t,x, ν̄, a)| ≤ C
(

1 + ‖x‖+
(∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

) 1
p + ρ(a0, a)

)
,

|(σ, σ0)(t,x, ν̄, a)|2 ≤ C
(

1 + ‖x‖p̂ +
(∫
Cn×A

(
‖x′‖p + ρ(a0, a

′)p
)
ν̄(dx′,da′)

) p̂
p + ρ(a0, a)p̂

)
,

Theorem 2.4.2. Let ν ∈ P(Rn), p′ > p, p′ ≥ 2, and (b, σ, σ0) be continuous in (x, ν̄, a).

• If (b, σ, σ0) is bounded then there exists a probability measure P ∈ P(Ω) verifying the points (i), (ii), and (iii) of
definition 2.3.1 expect the integrability condition.

• If Assumption 2.4.1 is satisfied with ν ∈ Pp′(Rn) then there exists P ∈ PW (ν) satisfying EP[‖X‖p′] <∞.
Proof. Without loss of generality, we can assume that A is a singleton given by A = {a0} (otherwise, we can use a
constant control process equals to a0).
First, recall that the filtered probability space (Ω,F,F ,Pν) is defined in Section 2.2.1 and equipped with an initial random
variable X0, together with Brownian motions (W,B). For each m ≥ 1, we consider the solution (Xm

t )t∈[0,T ] of the Euler
scheme of McKean–Vlasov equation (2.2.2), that is

Xm
t := X0 +

∫ t

0
b
(
r,Xm

[r]m∧·, µ
m
[r]m , a0

)
dr +

∫ t

0
σ
(
r,Xm

[r]m∧·, µ
m
[r]m , a0

)
dWr +

∫ t

0
σ0
(
r,Xm

[r]m∧·, µ
m
[r]m , a0

)
dBr, Pν–a.s.,

where µmt := LPν (Xm
t∧·|Gt) ⊗ δa0 , [t]m = iT2−m for all t ∈

[
iT2−m, (i + 1)T2−m

)
and i ∈ {0, . . . , 2m − 1}. It is

straightforward to verify that for eachm ∈ N∗ : if Assumption 2.4.1 is satisfied with ν ∈ Pp′(Rn) EPν
[

supt∈[0,T ] |Xm
t |p

′]
<

∞ and if (b, σ, σ0) is bounded EPν
[

supt∈[0,T ] |Xm
t −X0|q

]
<∞ for all q ≥ 0.

By classical application of Gronwall Lemma like that used in Lemma 3.4.1 (see also Lacker [104, Lemmata 3.1. and
3.3.]), we can deduce that, for some constant C > 0 independent of m such that: if Assumption 2.4.1 is satisfied with
ν ∈ Pp′(Rn)

EPν
[

sup
t∈[0,T ]

|Xm
t |p

′
]
≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
, (2.4.1)

and if (b, σ, σ0) is bounded

EPν
[

sup
t∈[0,T ]

|Xm
t −X0|p

′
]
≤ C. (2.4.2)

Let us denote Y m· := Xm
· −

∫ ·
0 σ0

(
r, Sm[r]m∧·, µ

m
[r]m , a0

)
dBr, and

Pm := Pν ◦
(
Xm, Y m,Λ◦,W,B, µ̂m

)−1
, with Λ◦t (da)dt := δa0(da)dt, and µ̂m := LPν

(
Xm, Y m,Λ◦,W

∣∣GT ).
Therefore if (b, σ, σ0) is bounded, by (2.4.2), the sequence (Pm)m≥1 is relatively compact under the weak convergence
topology. Otherwise, if ν ∈ Pp′(Rn) with Assumption 2.4.1 satisfies, as p′ > p, then with the estimate (2.4.1), it follows
by [49, Proposition A.2] that (Pm)m≥1 is relatively compact under Wp. By a sub-sequence, let us assume that Pm −→ P,
as m goes to ∞, for some P ∈ P(Ω), and then show that P ∈ PW (ν).

Recall that, for each ϕ ∈ C2
b (Rn × Rn × Rd × C`), the process Sϕ is defined on Ω by (5.4.4). Similarly, we define the

processes Sϕ,m = (Sϕ,mt )t∈[0,T ] on Ω by

S
ϕ,m

t := ϕ(Xt, Yt,Wt, Bt)−
∫ t

0
Lrϕ

(
X[r]m∧·, Y[r]m∧·,W[r]m∧·, B[r]m∧·, a0, µ[r]m

)
dr.
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By the continuity of the coefficient functions (b, σ, σ0), then uniform continuity on a compact set, it is straightforward to
check that on each compact subset Ωc ⊂ Ω, one has

lim
m→∞

sup
ω̄ ∈ Ωc

∣∣Sϕ,mt (ω̄)− Sϕt (ω̄)
∣∣ = 0, for every t ∈ [0, T ]. (2.4.3)

Further, whatever if (b, σ, σ0) is bounded or if (b, σ, σ0) satisfies Assumption 2.4.1 with ν ∈ Pp′(Rn), we have

sup
m≥1

EPm[∣∣Sϕ,mt ∣∣p′] <∞, for all t ∈ [0, T ], ϕ ∈ C2
b (Rn × Rn × Rd × C`). (2.4.4)

Now, as (Pm)m∈N∗ is relatively compact, for each ε > 0, we can find a compact subset Ωε ⊂ Ω such that Pm[Ωε] ≥ 1− ε
for all m ≥ 1. For any bounded continuous function φ ∈ Cb(Cn × Cn × Cd × C` ×P(Cn × Cn × Cd)) and s ≤ t, we denote
Φs := φ

(
Xs∧·, Ys∧·,Ws∧·, Bs∧·, µ̂s

)
, with (b, σ, σ0) bounded or with (b, σ, σ0) satisfying Assumption 2.4.1 and ν ∈ Pp′(Rn),

it follows that∣∣EP[(Sϕt − Sϕs )Φs]∣∣ = lim
m→∞

∣∣EPm[(Sϕt − Sϕs )Φs]∣∣
≤ lim sup

m→∞

∣∣EPm[(Sϕt − Sϕs )Φs1Ωε

]∣∣+ lim sup
m→∞

∣∣EPm[(Sϕt − Sϕs )Φs1Ωcε

]∣∣
≤ lim sup

m→∞

[∣∣EPm[(Sϕ,mt − Sϕ,ms
)
Φs
]∣∣+

∣∣EPm[(Sϕ,mt − Sϕ,ms
)
Φs1Ωcε

]∣∣+
∣∣EPm[(Sϕt − Sϕs )Φs1Ωcε

]∣∣]
≤ Cε

p′−1
p′ ,

where the last inequality follows by Hölder’s inequality together with (2.4.4) and the fact that Pm[Ωcε] ≤ ε, for all m ≥ 1.
Let ε −→ 0, it follows that Sϕ is an (F,P)–martingale for all ϕ ∈ C2

b (Rn × Rn × Rd × C`).

Moreover, by almost the same arguments as in the proof of Proposition 3.4.6, we have for all t ∈ [0, T ],

µ̂t = LP(Xt∧·, Yt∧·,Λt,W
∣∣GT ) = LP(Xt∧·, Yt∧·,Λt,W

∣∣Gt), P∞–a.s.

Finally, it is easy to see that P ◦ (X0)−1 = ν and (B, µ̂) is independent of (W,X0) under P, then the first statement of
the theorem follows. When Assumption 2.4.1 is satisfied with ν ∈ Pp′(Rn), one has by estimate (2.4.1) combined with
Fatou Lemma, EP[‖X‖p′] <∞. Therefore we deduce the second statement.
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Chapter 3

Relaxed formulation and characterization
of the limits

3.1 Introduction
In this chapter, we are interested in establishing the limit theory for the McKean–Vlasov optimal control problem. In
other words, we wish to rigorously prove that the stochastic ontrol problem of McKean-Vlasov equation naturally arises
as the limit of a large population optimal control problem. In the uncontrolled case, this property is by now extremely
well–known, and usually referred to as “propagation of chaos”. Much effort has been devoted to it since the seminal
works of Kac [91] and McKean Jr. [121], see also the illuminating lecture notes of Snitzman [149]. Without any claim to
comprehensiveness, we refer to Oelschläger [133], and Gärtner [71] for models in the Markovian context without common
noise, to Budhiraja, Dupuis, and Fischer [35] for a large deviation principle associated to the limit theory, and also
to Méléard and Roelly-Coppoletta [125], Jourdain and Méléard [89], and Oelschläger [134] for the case of ’strong’ and
’moderate’ interactions, to Shkolnikov [142], Jourdain and Reygner [90] for rank–based models, and finally to Méléard
[124], and Graham and Méléard [74] for Boltzmann–type models.

In the controlled case, Fischer and Livieri [67] studied a mean–variance optimisation problem stemming from mathematical
finance, and obtained results in this direction. For general McKean–Vlasov controlled equations, such a limit theory has
been proved in Lacker [104] in a context without common noise, where an essential tool is a compactness argument,
which is made accessible by formulating an appropriate relaxed control for McKean–Vlasov equations, in the spirit of
El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], and by introducing suitable martingale problems, similar to those of
Stroock and Varadhan [150]. The same formulation and arguments have also been used in Bahlali, Mezerdi, and Mezerdi
[15; 16; 17; 18] and Chala [50] to study stability and approximation problems.

In the present chapter, our first main objective is to establish the corresponding limit theory. To this end, in the restricted
case where the common noise part σ0 is not controlled, and the dependence of the coefficient functions b, σ, and σ0 in
L(Xα

t∧·, αt|B) is through L(Xα
t∧·|B) only (in words, the conditional law of the control process is not included in the

coefficient function), we introduce a relaxed formulation. We subsequently prove that any relaxed control rule can be
approximated by strong control rules, in the sense of weak convergence of probability measures on the canonical space.
Besides, the relaxed formulation enjoys an additional closedness property, implying the existence of optimal control rules
under mild additional technical conditions. The closedness property and the equivalence results between the relaxed and
the strong formulations (hence with the weak formulation also see Chapter 2) are also crucially used to obtain the limit
theory.

Our main contribution lies in the fact that we are generalising several fundamental results for McKean–Vlasov control
problems to a context with common noise, including the formulation of the weak and relaxed problems, their equivalence,
and the corresponding limit theory. The presence of the common noise creates some significant technical difficulties (see
Introduction and Chapter 2). We then need to formulate appropriate notions of relaxed control rules, and develop new
techniques to ensure the approximation property. Another technical difficulty comes from the presence of the conditional
law of the control process α in the coefficient functions (for the strong formulation), this situation has been rarely studied
in the literature, and will be the subject of the next chapter.
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An important point is that our approach also bypasses a technical issue in the literature considering relaxed formulations
for McKean–Vlasov control problems without common noise, namely [104; 17], and which proves equivalence results
between several formulations. Indeed, their proofs are based on an incorrect technical result in an unpublished, and
actually inaccessible paper [122]1, see Remark 3.3.8 for more details. We instead adapt the approximation arguments in
[63] to remedy this technical gap.

The rest of the chapter is structured as follows. We introduce in Section 3.2 the notion of relaxed formulation for the
McKean–Vlasov stochastic control problem in a common noise and non–Markovian setting, and define also an N–particles
(strong) control problem. The main results of the chapter are presented in Section 3.2.3, including the existence of optimal
control, the equivalence between the strong, weak and relaxed formulations and the limit theory. Most of the technical
proofs are completed in Section 3.3.

In this chapter, we work with the following additional assumptions:

Assumption 3.1.1. There exist Borel measurable functions (b◦, σ◦, L◦) : [0, T ] × Cn × P(Cn) × A −→ Rn × Sn×d and
σ◦0 : [0, T ]× Cn × P(Cn) −→ Sn×` such that, for all (t,x, ν̄, a) ∈ [0, T ]× Cn × P(Cn ×A)×A, with ν(dx) := ν̄(dx, A)

(b, σ, L)(t,x, a, ν̄) = (b◦, σ◦, L◦)(t,x, a, ν), and σ0(t,x, a, ν̄) = σ◦0(t,x, ν).

By abuse of notations, we still write (b, σ, L, σ0) in lieu of (b◦, σ◦, L◦, σ◦0).

3.2 Relaxed formulation and limit theory without law of controls
3.2.1 The relaxed formulation
In the classical optimal control theory, the relaxed control/relaxed formulation has been introduced to recover some
closed and convex properties, while ensuring that each relaxed control could be appropriately approximated by strong or
weak control rules. The point was that it then becomes easier in this formulation to deduce the existence and stability
properties of the optimal solution, while ensuring under mild conditions that the value of the problem is not modified.
In the context of McKean–Vlasov optimal control with common noise, an appropriate relaxed formulation is not easy to
find especially because of the common noise and the presence of a control term in the volatility σ.

Usually, a relaxed formulation is presented on a canonical space with the help of martingale problem. Here, for sake of
clarity and brevity, and an easy reading, we choose to present this formulation as the weak formulation Definition 2.2.1.
This point of view is of course equivalent to the formulation on a canonical space as we will see in Section 3.3.1.

Definition 3.2.1 (relaxed control). Let ν ∈ Pp(Rn), we say that a term

β :=
(
Ωβ ,Fβ ,Pβ ,Fβ := (Fβt )0≤t≤T ,Gβ := (Gβt )0≤t≤T , X

β , Y β ,W β , Bβ , Nβ , µβ ,Λβ
)
,

is a relaxed control associated with the initial (distribution) condition ν if

(i) (Ωβ ,Fβ ,Pβ) is a probability space, equipped with two filtrations Fβ and Gβ such that, for all t ∈ [0, T ]

Gβt ⊆ F
β
t , and EPβ [1D∣∣Gβt ] = EPβ [1D∣∣GβT ], Pβ–a.s., for all D ∈ Fβt ∨ σ(W β); (3.2.1)

(ii) Xβ := (Xβ
s )s∈[0,T ] and Y β := (Y βs )s∈[0,T ] are two Rn–valued Fβ–adapted continuous process and Λβ := (Λβs )0≤s≤T

is an P(A)–valued Fβ–predictable process such that: EPβ
[
‖Xβ‖p + ‖Y β‖p +

∫ T
0
∫
A

(
ρ(a, a0)

)pΛβs (da)ds
]
<∞;

1Through personal communications with S. Méléard, it was confirmed to us that she and her co–authors discovered a mistake soon after
finishing the paper, and hence abandoned it. Nevertheless, although the original manuscript is now nowhere accessible, some of its results
have been announced in the conference proceedings [123]. More specifically, the problematic result is [123, Corollary on pages 196–197], which
has been crucially used in [17, Proposition 2.2.], and [104, Lemma 7.1.].
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(iii) (W β , Bβ) is an Rd × R`–valued standard Brownian motion with respect to Fβ, Bβ is in addition adapted to Gβ,
Fβ0 ∨ σ(W β) is independent of GβT , and µβ is a P(Cn)–valued Gβ–predictable process such that

µβt = LPβ(Xβ
t∧·
∣∣Gβt ), Pβ–a.s.;

(iv) (Xβ , Y β) satisfy: Pβ [Xβ
0 = Y β0 ] = 1, with Pβ ◦ (Xβ

0 )−1 = ν, and Y β· = Xβ
· −

∫ ·
0 σ0(s,Xβ

s∧·, µ
β
s )dBβs , Pβ–a.e.

(v) for Pβ–a.e.ω ∈ Ωβ , Nβ =
(
N1,β , . . . , Nd,β

)
is an

(
Fβ ,Pβ,G

β
T

ω

)
–martingale measure with intensity Λβt (da)dt, the

martingales (N̂ i,β)1≤i≤d are orthogonal, and satisfy: Pβ,G
β
T

ω –a.s., for all t ∈ [0, T ], W β
t =

∫∫
[0,t]×A N̂

β(da,ds), and

Y βt = Y β0 +
∫ t

0

∫
A

b(s,Xβ
s∧·, µ

β
s , a)Λβs (da)ds+

∫ t

0

∫
A

σ(s,Xβ
s∧·, µ

β
s , a)Nβ(da,ds), for all t ∈ [0, T ], Pβ,G

β
T

ω –a.s.

(3.2.2)

Let β be a relaxed control and introduce

µ̂β := LPβ((Xβ , Y β ,Λβ ,W β
)∣∣GβT ),

we define PR the set of control rules as the following subset of probability measure on Cn × Cn × Cd ×M× C` ×P(Cn ×
Cn × Cd ×M)

PR(ν) :=
{
Pβ ◦

(
Xβ , Y β ,Λβ ,W β , Bβ , µ̂β

)−1 : β a relaxed control with initial condition ν
}
. (3.2.3)

The relaxed formulation of the McKean–Vlasov control problem is then defined by, with J
(
P
)
given in (2.3.6),

VR(ν) := sup
P∈PR(ν)

J
(
P
)
.

Remark 3.2.2. Under Assumption 3.1.1, the reward function L depends on ν (instead of ν̄). In this case, and in contrast
to the general situation in Remark 2.3.5, the map P(Cn × Cn × Cd ×M) 3 µ̂ 7−→ δµt(dν)dt ∈ M(Cn) is continuous, so
that P 7−→ J(P) is lower semi–continuous (resp. continuous) as soon as L and g are lower semi–continuous and bounded
from below (resp. continuous and bounded).

Remark 3.2.3. (i) The martingale problem under P in Definition 2.3.1 involves conditional distributions in the coefficient
functions, which creates some regularity problem in the approximation procedure, since conditional distributions are
not continuous with respect to joint distributions. By considering the conditional equality (3.2.2) (or equivalently the
conditional martingale problem) under Pβ,G

β
T

ω –a.s., the µβ(ω) term in the coefficient functions becomes deterministic,
which in turn allows to avoid the regularity problem. This (conditional) equality or martingale problem is partially
inspired from a technical proof of [104], but in our context with common noise, we need to consider a family of martingale
problems (see the formulation on the canonical space in Proposition 3.3.2 ), and deal with some non–trivial measurability
issues. Notice also that the process Y γ does not play an essential role in the strong or weak formulations, but he is
crucially used in the conditional martingale problem in Proposition 3.3.2.

(ii) With our techniques, we are only able to prove the equivalence VW = VR (c.f. Theorem 3.2.4), as well as the desired
approximation results, under Assumption 3.1.1. For more general cases, it seems to be a very challenging problem that
we would like to leave for future research. We nonetheless point out the fact that the great majority of the extant literature
on either mean–field games or McKean–Vlasov control problems with common noise, does not allow for σ0 or σ to be
controlled as well, see for instance Ahuja [8], Bensoussan, Frehse, and Yam [25], Cardaliaguet, Delarue, Lasry, and Lions
[38], Carmona, Fouque, and Sun [48], Carmona, Delarue, and Lacker [49], Graber [73], Guéant, Lasry, and Lions [75],
Kolokoltsov and Troeva [95], Lacker [103], and Lacker and Webster [107]. Notable exceptions are Carmona and Delarue
[41], though the discussion in the general setting remains at a rather informal level there, the monograph by Carmona
and Delarue [44], although all the main results given have uncontrolled common noise, Pham and Wei [138], though
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the problem is considered in a Markovian setting, with feedback controls, and no limit theory is explored, Pham [137]
and Yong [152] where only linear quadratic problems are considered, Bayraktar, Cosso, and Pham [21], though no limit
theory is addressed there as well. We would also like to highlight the recent work of Acciaio, Backhoff Veraguas, and
Carmona [1] which derives a general stochastic Pontryagin maximum principle for McKean–Vlasov control problems in
strong formulation without common noise, where the coefficients depend on the joint law of the control and the state
process. The authors also consider a weak formulation for their problem, but with uncontrolled volatility and for a drift
which does not depend on the law of the controls, deriving again a stochastic maximum principle. Finally Élie, Mastrolia,
and Possamaï [65] considers a contract theory problem with a principal and mean–field agents, without common noise
and where only the drift is controlled but can depend on the law of the controls, as well as Élie, Hubert, Mastrolia, and
Possamaï [64] which also considers a contract theory problem, but with common noise and volatility controls.

3.2.2 A large population stochastic control problem with common noise
One of the main objectives of this chapter is to provide the limit theory for the McKean–Vlasov control problem, that
is, the problem VS(ν) in (2.2.3) can be seen as the limit of a large population problem. Let N be a positive integer, we
consider the canonical space

ΩN :=
(
Rn × Cd

)N × C`,
with canonical process

(
(X1

0 , . . . , X
N
0 ), (W 1, . . . ,WN ), B

)
and canonical filtration FN := (FNt )0≤t≤T defined by

FNt := σ
(
(Xi

0,W
i
s , Bs) : i ∈ {1, . . . , N}, s ∈ [0, t]

)
, t ∈ [0, T ].

Fix some (ν1, . . . , νN ) ∈ Pp(Rn)N , and define νN := ν1 ⊗ · · · ⊗ νN the corresponding product measure. We consider
the probability measure PNν on

(
ΩN ,FN ) with FN := B(ΩN ), under which X0 := (X1

0 , . . . , X
N
0 ) has distribution νN ,

and (W 1, . . . ,WN , B) is a standard Brownian motion, independent of X0. Let us denote by ANp (νN ) the collection of all
processes α := (αi)i=1,...,N , where each αi := (αit)0≤t≤T is an A–valued, FN–predictable process satisfying

EPNν
[ ∫ T

0

(
ρ(αis, a0)

)pds] <∞.
Then under standard Lipschitz conditions on the coefficient functions (see Assumption 1.4.1), for every fixed (α1, . . . , αN ) ∈
ANp (νN ), there is a unique (Rn)N–valued FN–adapted continuous process (Xα,1, . . . , Xα,N ) satisfying: for i ∈ {1, . . . , N},
EPNν

[
‖Xα,i‖p

]
<∞ and

Xα,i
t = Xi

0 +
∫ t

0
b
(
s,Xα,i

s∧·, ϕ
N
s , α

i
s

)
ds+

∫ t

0
σ
(
s,Xα,i

s∧·, ϕ
N
s , α

i
s

)
dW i

s +
∫ t

0
σ0
(
s,Xα,i

s∧·, ϕ
N
s , α

i
s

)
dBs, t ∈ [0, T ], (3.2.4)

where

ϕNs (dx,da) := 1
N

N∑
i=1

δ(Xα,is∧·,α
i
s)

(dx,da), ds⊗ dPnν–a.e., and ϕN,Xs (dx) := 1
N

N∑
i=1

δXα,is∧·
(dx), for all s ∈ [0, T ].

The value function of the large population stochastic control problem is then defined by

V NS (ν1, . . . , νN ) := sup
α∈ANp (νN )

JN (α), where JN (α) := 1
N

N∑
i=1

EPNν
[ ∫ T

0
L
(
t,Xα,i

t∧· , ϕ
N
t , α

i
t

)
dt+ g

(
Xα,i
T∧·, ϕ

N,X
T

)]
. (3.2.5)

3.2.3 Equivalence with the relaxed formulation and limit theory
Let us now provide the main results of this chapter. The first one consists in the equivalence between the different
formulations of the McKean–Vlasov control problem. Recall that the constants p, p′, and p̂ are fixed in Assumption 1.4.1.
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Theorem 3.2.4. Let Assumption 1.4.1 hold true. Suppose in addition that Assumption 3.1.1 are verified.
(i) Then, for every ν ∈ Pp(Rn), PR(ν) is a non–empty convex closed subset of Pp(Ω), under the Wasserstein topology
Wp.
(ii) For ν ∈ Pp′(Rn), and A ⊂ Rj for some j ≥ 1. Then the set PW (ν) is dense in the closed set PR(ν) under Wp, and
consequently

VS(ν) = VW (ν) = VR(ν).
If L and g are continuous in all their arguments, there exists some P? ∈ PR(ν) such that VR(ν) = J

(
P?
)
.

Remark 3.2.5. As Theorem 2.2.3, the results in Theorem 3.2.4 extend those in the no–common noise setting in Lacker
[104] and used different techniques of approximations because of the presence of the common noise.
Remark 3.2.6. A natural question that we have not addressed is that of the existence of so–called feedback controls,
since Theorem 3.2.4.(iii) only gives existence of an optimal relaxed control. It is known in classical control theory that
Filippov’s condition [66], which was notably used by Haussmann and Lepeltier [79], and by Lacker [102; 104] for MFGs
and McKean–Vlasov control problems without common noise, is usually sufficient to obtain, from any relaxed control, a
control depending on the trajectories of X only, and which achieves no worse value. In the common noise context, things
become slightly more subtle. The intuitive result is that one should be able to obtain a similar result but with controls
depending on the trajectories of both X and µ. In Lacker, Shkolnikov, and Zhang [108] will exactly prove such a result,
with the additional desirable property that the feedback controls preserve the marginal laws of (X,µ).
We next provide some results related to the limit theory, that is, the large population control problem converges to
the McKean–Vlasov control problem under technical conditions. For every ν ∈ Pp(Rn), we denote by P?R(ν) the set of
optimal relaxed controls

P?R(ν) :=
{
P ∈ PR(ν) : VR(ν) = J(P)

}
.

Let (ν1, . . . , νN ) ∈ Pp(Rn), νN := ν1 ⊗ · · · ⊗ νN and α = (α1, . . . , αN ) ∈ ANp (νN ), we define

PN (α1, . . . , αN ) := 1
N

N∑
i=1
LPNν

(
Xα,i, Y α,i, δαit(da)dt,W i, B, ϕN

)
∈ P(Ω), (3.2.6)

where Y α,i· := Xα,i
· −

∫ ·
0 σ0(s,Xα,i, ϕNs , α

i
s)dBs and ϕN := 1

N

∑N
i=1 δ

(
Xα,i,Y α,i,δ

αi
t
(da)dt,W i

).
Theorem 3.2.7. Let Assumption 1.4.1 and Assumption 3.1.1 hold true, assume that A ⊂ Rj for some j ≥ 1, and that L
and g are continuous in all their arguments. With the constants p and p′ given in Assumption 1.4.1, let (νi)i≥1 ⊂ Pp′(Rn)
be such that supN≥1

1
N

∑N
i=1
∫
Rn |x|

p′νi(dx) <∞.

(i) Let
(
PN
)
N≥1 be given by PN := PN (αN,1, . . . , αN,N ), where (αN,1, . . . , αN,N ) ∈ ANp (νN ) satisfies

J(αN,1, . . . , αN,N ) ≥ V NS (ν1, . . . , νN )− εN , for all N ≥ 1, (3.2.7)

for a sequence (εN )N≥1 ⊂ R+ satisfying limN→∞ εN = 0. Then the sequence (PN )N≥1 is relatively compact under Wp,
and for any converging subsequence

(
PNm

)
m≥1, we have

lim
m→∞

Wp

(
1
Nm

Nm∑
i=1

νi, ν

)
= 0, for some ν ∈ Pp(Rn), and lim

m→∞
Wp

(
PNm ,P∞

)
= 0, for some P∞ ∈ P?R(ν).

(ii) Assume in addition that Wp

(
N−1∑N

i=1 ν
i, ν
)
−→
N→∞

0, for some ν ∈ Pp(Rn), and let P? ∈ P?R(ν). Then we can

construct a sequence (PN )N≥1, together with (αN,1, . . . , αN,N )N≥1 satisfying (3.2.7), such that Wp

(
PN ,P?

)
−→
N→∞

0.

(iii) Finally, we have

lim
N→∞

∣∣∣∣V NS (ν1, . . . , νN
)
− VS

(
1
N

N∑
i=1

νi
)∣∣∣∣ = 0. (3.2.8)
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Proposition 3.2.8. Let Assumption 1.4.1 and Assumption 3.1.1 hold true, suppose in addition that A ⊂ Rj for some
j ≥ 1, and that L and g are continuous in all their arguments. With the constants p and p′ given in Assumption 1.4.1,
let (νm)m≥1 ⊂ Pp′(Rn) and ν ∈ Pp(Rn) be such that

sup
m≥1

∫
Rn
|x|p

′
νm(dx) <∞, and lim

m→∞
Wp

(
νm, ν

)
= 0.

Then
lim
m→∞

VS(νm) = VS
(
ν
)
. (3.2.9)

In particular, the map VS : Pp′(Rn) −→ R is continuous.

Remark 3.2.9. (i) As far as we know, the above results are new in the setting with presence of common noise. Even
without taking into account the common noise, our results in Theorem 3.2.7 and Proposition 3.2.8 are also more general
than the existing ones. In particular, by taking ` = 0, we recover the most essential results in Lacker [104] for the case
without common noise. But in Theorem 3.2.7, the initial distribution does not need to be convergent, it is only required to
have finite moments in a uniform way, and the initial condition for each agents are allowed to have different distributions.
Moreover, the continuity result of the value function VS(ν) in Proposition 3.2.8 requires less technical conditions (such
as the Lipschitz assumptions on L and g) than in [138, Lemma 3.3.].
(ii) Theorem 3.2.7 shows that any εN–optimal control of the large population stochastic control problem converges towards
an optimal control of the McKean-Vlasov stochastic control problem. In particular, when there exists a unique strong
optimal control of the McKean–Vlasov control problem, any εN–optimal control of the large population control problem
converges towards this control.

3.3 Proof of equivalence with the relaxed formulation
3.3.1 Relaxed formulation on the canonical space

As in the strong and weak formulation, we formulate the relaxed formulation on the canonical space. To do this as
mentioned in Chapter 2, we use the notion of "admissible control". We recall briefly this kind of controls (defined on the
canonical space). We have two canonical spaces

Ω̂ := Cn × Cn ×M× Cd, and Ω := Cn × Cn ×M× Cd × C` × P
(
Ω̂
)
,

equipped with the corresponding canonical element
(
X̂, Ŷ , Λ̂, Ŵ

)
, its Borel σ–algebra F̂ := B(Ω̂), and its canonical

filtration F̂ :=
(
F̂t
)
t∈[0,T ] defined by

F̂t := σ
((
X̂s, Ŷs, Λ̂([0, s]×D), Ŵs

)
: D ∈ B(A), s ∈ [0, t]

)
, t ∈ [0, T ].

and the canonical space Ω with the canonical element (X,Y,Λ,W,B, µ̂), and its Borel σ–algebra F := B(Ω). Based on
µ̂, we recall the three processes (µt)t∈[0,T ], (µt)t∈[0,T ] and (µ̂t)t∈[0,T ] on Ω by

(
recall (1.4.1) for the definition of Λ̂t

)
µt := µ̂ ◦

(
X̂t∧·

)−1
, µt(dx,da) := Eµ̂

[
δ
X̂t∧·

(dx)Λ̂t(da)
]
, and µ̂t := µ̂ ◦

(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)−1
, t ∈ [0, T ]. (3.3.1)

The two filtrations F := (F t)t∈[0,T ] and G := (Gt)t∈[0,T ] on (Ω,F) are defined by

F t := σ
(

(Xs, Ys,Λ([0, s]×D),Ws, Bs, 〈µ̂s, φ〉) : D ∈ B(A), φ ∈ Cb(Cn × Cn ×M× Cd), s ∈ [0, t]
)
.

and
Gt := σ

(
(Bs, 〈µ̂s, φ〉) : φ ∈ Cb(Cn × Cn ×M× Cd), s ∈ [0, t]

)
.
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For all t ∈ [0, T ] and ϕ ∈ C2
b (Rn+n+d+`), the generator generator Lt are defined by

Ltϕ
(
x,y,w,b, ν̄, a

)
:= b̄(t,x, ν̄, a) · ∇ϕ(x(t),y(t),w(t),b(t)) + 1

2Tr
[
ā(t,x, ν̄, a)∇2ϕ(x(t),y(t),w(t),b(t))

]
, (3.3.2)

where

b̄
(
t,x,w,b, ν̄, a

)
:=


b(t,x, ν̄, a)
b(t,x, ν̄, a)

0d
0`

 , ā
(
t,x,w,b, ν̄, a

)
:=


σ(t,x, ν̄, a) σ0(t,x, ν̄, a)
σ(t,x, ν̄, a) 0n×`

Id×d 0d×`
0`×d I`×`



σ(t,x, ν̄, a) σ0(t,x, ν̄, a)
σ(t,x, ν̄, a) 0n×`

Id×d 0d×`
0`×d I`×`


>

.

Then, for any ϕ ∈ C2
b (Rn+n+d+`), Sϕ := (Sϕt )t∈[0,T ] on Ω by

S
ϕ

t := ϕ(Xt, Yt,Wt, Bt)−
∫∫

[0,t]×A
Lsϕ

(
Xs, Ys,Ws, Bs, µs, a

)
Λs(da)ds, t ∈ [0, T ], (3.3.3)

where for a borel function φ : [0, T ]→ R,
∫ ·

0 φ(s)ds :=
∫ ·

0 φ
+(s)ds−

∫ ·
0 φ
−(s)ds with the convention ∞−∞ = −∞.

Definition 3.3.1. Let ν ∈ Pp(Rn). A probability P on (Ω,F) is an admissible control rule with initial condition ν if

(i) P
[
X0 = Y0, W0 = 0, B0 = 0

]
= 1, P ◦X−1

0 = ν, and (X,Λ) satisfy EP[‖X‖p +
∫∫

[0,T ]×A
(
ρ(a0, a)

)pΛt(da)dt
]
<∞;

(ii) the pair (X0,W ) is independent of GT under P, and for all t ∈ [0, T ]

µ̂t(ω̄) = PGTω̄ ◦ (Xt∧·, Yt∧·,Λt,W )−1, for P–a.e. ω̄ ∈ Ω; (3.3.4)

(iii) the process
(
S
ϕ

t

)
t∈[0,T ] is an (F,P)–martingale for all ϕ ∈ C2

b

(
Rn × Rn × Rd × R`

)
.

Let us then define for any ν ∈ Pp(Rn),

PA(ν) :=
{
All admissible control rules P with initial condition ν

}
.

Relaxed formulation on the canonical space In our context, when the coefficient functions (b, σ, σ0, L, g) do not
depend on the marginal distribution ν̄ or ν, so that the control problem degenerates to the classical one, the relaxed
control rule coincides with the admissible control rule PA(ν) (see above Definition 3.3.1). For general McKean–Vlasov
control problems, it is not hard to prove that PA(ν) is closed and convex. However, in general, it is not the closure of the
set of strong or weak control rules in the context with common noise (see Example 3.3.3 below). This motivated us to
consider a more restrictive case (see Definition 3.2.1 for instance), where the common noise is not controlled, for which
we are able to provide an appropriate relaxed control rule set as a subset of PA(ν), which is both convex and the closure
of PS(ν) or PW (ν).

Let us introduce a martingale problem on (Ω̂, F̂). For any (t,x, ν, a) ∈ [0, T ]× Cn × P(Cn)×A

b̂
(
t,x, ν, a

)
:=
(
b(t,x, ν, a)

0d

)
, â
(
t,x, ν, a

)
:=
(
σ(t,x, a, ν)

Id

)(
σ(t,x, a, ν)

Id

)>
,

and for all ϕ ∈ C2
b (Rn+d) and (t,x,y,w, ν, a) ∈ [0, T ]× Cn × Cn × Cd × P(Cn)×A

L̂tϕ
(
x,y,w, ν, a

)
:= b̂(t,x, ν, a) · ∇ϕ(y(t),w(t)) + 1

2Tr
[
â(t,x, ν, a)∇2ϕ(y(t),w(t))

]
. (3.3.5)

Then given a family (ν(t))0≤t≤T of probability measures in P(Cn) such that [0, T ] 3 t 7−→ ν(t) ∈ P(Cn) is Borel
measurable, and ϕ ∈ C2

b (Rn+d), we introduce a process (M̂ϕ,ν
t )t∈[0,T ] on (Ω̂, F̂) by

M̂ϕ,ν
t := ϕ

(
Ŷt, Ŵt

)
− ϕ(Ŷ0, Ŵ0)−

∫∫
[0,t]×A

L̂sϕ
(
X̂, Ŷ , Ŵ , ν(s), a

)
Λ̂s(da)ds, (t, ϕ) ∈ [0, T ]× C2

b (Rn+d). (3.3.6)

Recall that for a borel function φ : [0, T ] → R, we write
∫ ·

0 φ(s)ds :=
∫ ·

0 φ
+(s)ds −

∫ ·
0 φ
−(s)ds with the convention

∞−∞ = −∞.
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Proposition 3.3.2. Let ν ∈ Pp(Rn). A probability measure P ∈ P(Ω) is a relaxed control rule with initial condition ν

i.e. P ∈ PR(ν) if and only if P ∈ PA(ν), and moreover, for P–a.e. ω̄ ∈ Ω, the process M̂ϕ,µ(ω̄) is an
(
F̂, µ̂(ω̄)

)
–martingale

for each ϕ ∈ C2
b (Rn × Rd), where µ(ω̄) := (µt(ω̄))t∈[0,T ] is defined from µ̂(ω̄) as in (3.3.1).

Therefore,

PR(ν) =
{
P ∈ PA(ν) : P –a.e. ω̄ ∈ Ω,

(
M̂

ϕ,µ(ω̄)
t

)
t∈[0,T ] is an

(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn × Rd)
}
. (3.3.7)

Proof. Let P ∈ PR(ν). By Itô’s formula and Proposition 3.3.9, it is straightforward to check that P ∈ PA(ν) and
P –a.e. ω̄ ∈ Ω,

(
M̂

ϕ,µ(ω̄)
t

)
t∈[0,T ] is an

(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn × Rd).
Now, we take P belonging to the set of the right side of the equality (3.3.7). By Proposition 3.3.5 (see below), there
exists a family of measure–valued processes (N̂ ω̄)ω̄∈Ω such that, for P–a.e. ω̄ ∈ Ω, on an extension (Ω̂?, F̂?, µ̂(ω̄) ⊗ λ)
of (Ω̂, F̂, µ̂(ω̄) ⊗ λ) where λ is the Lebesgue measure on [0, 1], N̂ ω̄ =

(
N̂1,ω̄, . . . , N̂d,ω̄

)
is an

(
F̂?, µ̂(ω̄) ⊗ λ

)
–martingale

measure with intensity Λ̂t(da)dt, the martingales (N̂ i,ω̄)1≤i≤d are orthogonal, and satisfy µ̂(ω̄)⊗ λ–a.s.

Ŷt = X̂0 +
∫∫

[0,t]×A
b
(
r, X̂, µ(ω̄), a

)
Λ̂r(da)dr+

∫∫
[0,t]×A

σ
(
r, X̂, µ(ω̄), a

)
N̂ ω̄(da,dr), Ŵt =

∫∫
[0,t]×A

N̂ ω̄(da,ds), (3.3.8)

Moreover, let Ĥ? = (Ĥ?t )t∈[0,T ] with Ĥ?t := Gt⊗F̂?t be a filtration on Ω× Ω̂?, denote by P Ĥ? the predictable σ–algebra on
[0, T ]×Ω× Ω̂? with respect to Ĥ?. Then for all bounded P Ĥ? ⊗B(A)–measurable function f : [0, T ]×Ω× Ω̂?×A −→ R,
one can define the stochastic integral

∫∫
[0,t]×A f

ω̄(s, a)N̂ ω̄(ds,da) in such a way that

(t, ω̄, ω̂?) 7−→
(∫∫

[0,t]×A
f ω̄(s, a)N̂ ω̄(da,ds)

)
(ω̂?) is P Ĥ?–measurable.

We define Ω̃ := Ω̂? × Ω, F̃ := F̂? ⊗ G, F̃t := F̂?t ⊗ Gt, for all t ∈ [0, T ], and for ω̃ := (ω̂?, ω̄) ∈ Ω̃,

X̃(ω̃) := X̂(ω̂?), Ỹ (ω̃) := Ŷ (ω̂?), W̃ (ω̃) := Ŵ (ω̂?), B̃(ω̃) := B(ω̄), Λ̃(ω̃) := Λ̂(ω̂?), Ñ(ω̃) := N̂ ω̄(ω̂?).

We equip (Ω̃, F̃) with the probability P̃ defined as follow:

P̃(K ×A) :=
∫
A

µ̂(ω̄)⊗ λ(K)P(dω̄), for all K ∈ F̂? and A ∈ G.

Let (Pt)t∈[0,T ] be the process Pt(ω̃) := (Bt(ω̄), µ̂t(ω̄)), we introduce (G̃t := σ{Ps, s ≤ t})t∈[0,T ]. As P ∈ PA(ν), by
eq. (3.3.4), we deduce that P̃ ◦

(
X̃, Ỹ , W̃ , B̃, Λ̃, P̃G̃T ◦

(
X̃, Ỹ , W̃ , Λ̃

)−1)−1 = P ◦
(
X,Y,W,B,Λ, µ̂

)−1
, and using eq. (3.3.8),

one has (
Ω̃, F̃ , P̃, F̃ := (F̃t)0≤t≤T , G̃ := (G̃t)0≤t≤T , X̃, Ỹ , W̃ , B̃, Ñ , (P̃G̃t ◦ (X̃)−1)t∈[0,T ], Λ̃

)
is a relaxed control.

We observe that PR(ν) ⊂ PA(ν) by Proposition 3.3.2. The next example shows that PR(ν) is a proper subset of PA(ν).

Example 3.3.3. Let us consider the case where: n = d = ` = 1, ν = δ0, A = {a1, a2} ⊂ R, b = 0, σ(t,x, a, ν̄) = aIn, and
σ0 = In. Consider a filtered probability space (Ω?,F?,F?,P?) supporting an Rd+d+`–valued standard Brownian motion
(W 1,W 2, B?), let

X?
t := a1

√
2

2 W 1
t + a2

√
2

2 W 2
t +B?t , W

?
t :=

√
2

2 W 1
t +
√

2
2 W 2

t , W
?

t :=
√

2
2 W 1

t −
√

2
2 W 2

t , G?t := σ
(
(B?s ,W

?

s) : 0 ≤ s ≤ t
)
.
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By setting Y ?· := X?
· −B?· and Λ?t (da)dt := 1

2δa1(da)dt+ 1
2δa2(da)dt, it is direct to check that

P := LP?
(
X?, Y ?,Λ?,W ?, B?,LP?(X?, Y ?,Λ?,W ?, B?

∣∣G?T )) ∈ PA(ν).

However, one observes that

Y ?· =
(

1
2a1 + 1

2a2

)
W ?
· +

(
1
2a1 −

1
2a2

)
W

?

· ,

is not an Itō process under the conditional law P? knowing G?T . Consequently, one has P /∈ PR(ν).

We next show that PW (ν) ⊂ PR(ν) (see Proposition 2.3.6 for a representation of PW (ν)), where we use crucially the
fact that µ̂t is the conditional law of (Xt∧·, Yt∧·,Λt,W ), and not only of (Xt∧·,Λt).

Proposition 3.3.4. Let ν ∈ Pp(Cn), every P ∈ PW (ν) belongs to PR(ν).

Proof. It follows by Proposition 2.3.3 that the continuous process Ŵ is an (F̂, µ̂(ω̄))–Brownian motion, for P–a.e. ω̄ ∈ Ω.
Using the definition of weak control rules in Proposition 2.3.6 (see also proof of Proposition 3.3.9), it is direct to deduce
that for P–a.e. ω̄ ∈ Ω, Ŵ is an

(
F̂, µ̂(ω̄)

)
–Brownian motion, and

Ŷt = X̂0 +
∫ t

0
b
(
s, X̂·, α̂s, µs(ω̄)

)
ds+

∫ t

0
σ
(
s, X̂·, α̂s, µs(ω̄)

)
dŴs, t ∈ [0, T ], µ̂(ω̄)–a.s.,

where (α̂t)t∈[0,T ] is an F̂–predictable process satisfying Λ̂t(da)da = δα̂t(da)dt. It follows that, for P–a.e. ω̄ ∈ Ω, M̂ϕ,µ(ω̄)

is an
(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn × Rd), and hence P ∈ PR(ν).

3.3.2 Approximating relaxed controls by weak control rules
We provide here an approximation result of relaxed control rules by weak control rules. The Definition 3.2.1 although
simple to present, hides some measurability problems associated to the martingale measure Nβ . To achieving our
approximation, we need to use the canonical representation, and construct a martingale measure which share some
“good” measurability properties (see Section 3.3.4.2 for a brief reminder on the notions/properties of martingale measure
as introduced by El Karoui and Méléard [58].)

Recall that Ω̂ := Cn × Cn × M × Cd. Let us also introduce an abstract filtered probability space (Ω?,F?,F? :=
(F?t )t∈[0,T ],P?), equipped with 2(n + d) i.i.d. martingale measures (N?,i)1≤i≤2(n+d), with intensity ν0(da)dt, for some
diffuse probability measure ν0 on A, and a sequence of i.i.d. standard d–dimensional Brownian motions (W ?,i)i≥1. Let
us define

Ω̂? := Ω̂× Ω?, F̂? := F̂ ⊗ F?, F̂?t := F̂t ⊗F?t , P̂ω̄ := µ̂(ω̄)⊗ P?, for all t ∈ [0, T ], and ω̄ ∈ Ω.

The random elements (X̂, Ŷ , Λ̂, Ŵ ) and (N?,W ?,i, i ≥ 1) can then naturally be extended to Ω̂?. Let us first provide an
improved version of [58, Theorem IV–2], whose proof is completed in Appendix 3.3.4.2.

Proposition 3.3.5. Let ν ∈ Pp(Rn) and P ∈ PR(ν). Then there exists a family of measure–valued processes (N̂ ω̄)ω̄∈Ω
such that, for P–a.e. ω̄ ∈ Ω, N̂ ω̄ =

(
N̂1,ω̄, . . . , N̂d,ω̄

)
is an

(
F̂?, P̂ω̄

)
–martingale measure with intensity Λ̂t(da)dt, the

martingales (N̂ i,ω̄)1≤i≤d are orthogonal, and satisfy

Ŷt = X̂0 +
∫∫

[0,t]×A
b
(
r, X̂, µ(ω̄), a

)
Λ̂r(da)dr +

∫∫
[0,t]×A

σ
(
r, X̂, µ(ω̄), a

)
N̂ ω̄(da,dr), Ŵt =

∫∫
[0,t]×A

N̂ ω̄(da,ds), P̂ω̄–a.s.

(3.3.9)
Moreover, let Ĥ? = (Ĥ?t )t∈[0,T ] with Ĥ?t := Gt ⊗ F̂?t be a filtration on Ω× Ω̂?, denote by P Ĥ? the predictable σ–algebra on
[0, T ]×Ω× Ω̂? with respect to Ĥ?. Then for all bounded P Ĥ? ⊗B(A)–measurable function f : [0, T ]×Ω× Ω̂? ×A −→ R,
one can define the stochastic integral

∫∫
[0,t]×A f

ω̄(s, a)N̂ ω̄(ds,da) in such a way that

(t, ω̄, ω̂?) 7−→
(∫∫

[0,t]×A
f ω̄(s, a)N̂ ω̄(da,ds)

)
(ω̂?) is P Ĥ?–measurable. (3.3.10)
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Proposition 3.3.6. Let Assumption 1.4.1 and Assumption 3.1.1 hold, assume that A ⊂ Rj for j ≥ 1, and that ν ∈
Pp′(Rn) with the constant p′ given in Assumption 1.4.1. Then for every P ∈ PR(ν), there exists a sequence

(
Pm
)
m≥1 ⊂

PW (ν) such that
lim
m→∞

Wp

(
Pm,P

)
= 0.

Proof. We only provide here the proof with the additional condition that σ0 is a constant, which illustrates better our
main ideas. We refer to Section 3.3.4.3 for a proof in the general case.

First, let P ∈ PR(ν), recall from Proposition 3.3.5 that on the enlarged filtered space
(
Ω̂?, F̂?, F̂?

)
, we have a family

(N̂ ω̄)ω̄∈Ω such that N̂ ω̄ is a martingale measure with intensity Λt(da)dt under the probability measure P̂ω̄ := µ̂(ω̄)⊗ P?,
for P–a.e. ω̄ ∈ Ω, and

X̂t = X̂0 +
∫∫

[0,t]×A
b
(
r, X̂, µ(ω̄), a

)
Λ̂r(da)dr +

∫∫
[0,t]×A

σ
(
r, X̂, µ(ω̄), a

)
N̂ ω̄(da,dr) + σ0Bt(ω̄), t ∈ [0, T ], P̂ω̄–a.s.,

Ŵt =
∫∫

[0,t]×A
N̂ ω̄(da,ds), t ∈ [0, T ], P̂ω̄–a.s.

By Lemma 3.3.7 below, there exists, on (Ω̂?, F̂?), a sequence (F̂?,m)m≥1 of sub–filtrations of F̂?, together with a sequence
of family of processes

(
α̂m, (Ŵ ω̄,m)ω̄∈Ω, (X̂

ω̄,m)ω̄∈Ω
)
m≥1, where α̂m is an A–valued F̂m–predictable process for each

m ≥ 1, and for P–a.e. ω̄ ∈ Ω, Ŵ ω̄,m is an (F̂?,m, P̂ω̄)–Brownian motion, and

P̂ω̄
[

lim
m→∞

Λ̂m(da,dt) = Λ̂(da,dt)
]

= 1, lim
m→∞

Wp

(
LP̂ω̄

(
X̂ ω̄,m, Λ̂m(da,dt), Ŵ ω̄,m

)
, LP̂ω̄

(
X̂, Λ̂t(da)dt, Ŵ

))
= 0, (3.3.11)

with Λ̂m(da,dt) = δα̂mt (da)dt, and

X̂ ω̄,m
t = X̂0 +

∫ t

0
b
(
r, X̂ ω̄,m, P̂ω̄ ◦ (X̂ ω̄,m)−1, α̂mr

)
dr +

∫ t

0
σ
(
r, X̂ ω̄,m, P̂ω̄ ◦ (X̂ ω̄,m)−1, α̂mr

)
dŴ ω̄,m

r + σ0Bt(ω̄), (3.3.12)

and for each m ≥ 1
(t, ω̄, ω̂?) 7−→

(
X̂ ω̄,m
t∧· (ω̂?), (Λ̂m)t(ω̂?), Ŵ ω̄,m

t∧· (ω̂?)
)
is P Ĥ?–measurable, (3.3.13)

so that, with the predictable σ–algebra PG on [0, T ]× Ω with respect to G

(t, ω̄) 7−→ LP̂ω̄
(
X̂ ω̄,m
t∧· , (Λ̂m)t, Ŵ ω̄,m

)
is PG–measurable.

Further, let us denote Ŷ ω̄,m := X̂ ω̄,m − σ0B(ω̄) and

Pm :=
∫

Ω
LP̂ω̄

(
X̂ ω̄,m, Ŷ ω̄,m, Λ̂m, Ŵ ω̄,m, B(ω̄),LP̂ω̄

(
X̂ ω̄,m, Ŷ ω̄,m, Λ̂m, Ŵ ω̄,m

))
P(dω̄).

It follows by (3.3.11) that limm→∞Wp(P
m
,P) = 0. To conclude, it is enough to show that Pm ∈ PW (ν). Since, by

construction, Pm[Λ ∈ M0] = 1, then it is enough to show that Pm ∈ PR(ν). To this end, let us check that Pm satisfies
all the conditions in Proposition 3.3.9.

It is easy to check that Pm
[
µ̂◦ (X̂0)−1 = ν,X0 = Y0,W0 = 0, B0 = 0

]
= 1 and EPm[‖X‖p+

∫∫
[0,T ]×A |a−a0|pΛt(da)dt

]
<

∞. Furthermore, for every φ ∈ Cb(Cn × Cn ×M× Cd), ϕ ∈ Cb(P(Cn × Cn ×M× Cd)) and t ∈ [0, T ], we have

EPm[〈φ, µ̂t〉ϕ(B, µ̂)] =
∫

Ω
EP̂ω̄

[
φ
(
X̂ ω̄,m
t∧· , Ŷ

ω̄,m
t∧· , (Λ̂m)t, Ŵ ω̄,m

)]
ϕ
(
B(ω̄),LP̂ω̄

(
X̂ ω̄,m, Ŷ ω̄,m, Λ̂m, Ŵ ω̄,m

))
P(dω̄)

= EPm[φ(Xt∧·, Yt∧·,Λt,W
)
ϕ
(
B, µ̂

)]
.
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This implies that

µ̂t = (Pm)Gt ◦
(
Xt∧·, Yt∧·,Λt,W

)−1 = (Pm)GT ◦
(
Xt∧·, Yt∧·,Λt,W

)−1
, Pm–a.s.

Next, for all φ ∈ Cb(R`), ψ ∈ Cb(Cn × Cn ×M× Cd × C` × C([0, T ];P(Cn × Cn ×M× Cd))), and s ∈ [0, t], we have

EPm[φ(Bt −Bs)ψ
(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s∧·

)]
=
∫

Ω
φ
(
Bt(ω̄)−Bs(ω̄)

)
EP̂ω̄

[
ψ
(
X̂ ω̄,m
s∧· , Ŷ

ω̄,m
s∧· , (Λ̂m)s, Ŵ ω̄,m

s∧· , Bs∧·(ω̄),LP̂ω̄
(
X̂ ω̄,m
s∧· , Ŷ

ω̄,m
s∧· , (Λ̂m)s, Ŵ ω̄,m

))]
P(dω̄)

= EPm[φ(Bt(ω̄)−Bs(ω̄)
)] ∫

Ω
EP̂ω̄

[
ψ
(
X̂ ω̄,m
s∧· , Ŷ

ω̄,m
s∧· , (Λ̂m)s, Ŵ ω̄,m

s∧· , Bs∧·(ω̄),LP̂ω̄
(
X̂ ω̄,m
s∧· , Ŷ

ω̄,m
s∧· , (Λ̂m)s, Ŵ ω̄,m

))]
P(dω̄)

= EPm[φ(Bt −Bs)
]
EPm[ψ(Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s∧·

)]
,

which implies that B has independent increments with respect to (Pm,F). Besides, since Pm◦B−1 is the Wiener measure,
it follows that B is an (F,Pm)–Brownian motion. Also, as Z = X − Y = σ0B, one has immediately that Sf (defined in
(3.3.24)) is an (F◦,Pm)–martingale for all f ∈ C2

b (Rn+`). Finally, by construction, Condition (iii) in Proposition 3.3.9 is
also satisfied. Therefore, Pm ∈ PR(ν), and hence Pm ∈ PW (ν).

Lemma 3.3.7. Let us stay in the context of Proposition 3.3.6, and assume in addition that σ0 is a constant. Then on the
space (Ω̂?, F̂?), there exists a sequence (F̂?,m)m≥1 of sub–filtrations of F̂?, together with a sequence of family of processes(
α̂m, (Ŵ ω̄,m)ω̄∈Ω, (X̂

ω̄,m)ω̄∈Ω
)
m≥1, where α̂

m is an A–valued F̂?,m–predictable process for each m ≥ 1, and for P–a.e.
ω̄ ∈ Ω, Ŵ ω̄,m is an (F̂?,m, P̂ω̄)–Brownian motion, and with Λ̂m(da,dt) = δα̂mt (da)dt and X̂ ω̄,m be defined in (3.3.12), the
convergence and measurability results in (3.3.11) and (3.3.13) hold true.

Proof. We will adapt the arguments in [63, Theorem 4.9.] to approximate, under each P̂ω̄, the process

X̂t = X̂0 +
∫∫

[0,t]×A
b
(
r, X̂, µ(ω̄), a

)
Λ̂r(da,dr) +

∫∫
[0,t]×A

σ
(
r, X̂, µ(ω̄), a

)
N̂ ω̄(da,dr) + σ0Bt(ω̄), t ∈ [0, T ], P̂ω̄–a.s.,

and at the same time check the measurability property at each step.

Step 1. We first show that one can assume w.l.o.g. that A ⊂ Rj is a compact set. Indeed, for each e ≥ 1, let us denote
Ae := A ∩ [−e, e]j , πe : A −→ Ae the projection from A to Ae, and then define Λ̂e and for all ω̄ ∈ Ω, N̂ ω̄,e by∫∫

[0,T ]×A
φ(s, a)Λ̂e(da,dr) :=

∫∫
[0,T ]×A

φe(s, a)Λ̂(da,dr),
∫∫

[0,T ]×A
φ(s, a)N̂ ω̄,e(da,dr) :=

∫∫
[0,T ]×A

φe(s, a)N̂ ω̄(da,dr),

for all φ ∈ Cb([0, T ]×A) and φe(s, a) := φ(s, πe(a)). Denote also (be, σe)(t,x, ν, a) := (b, σ)(t,x, ν, πe(a)). For ω̄ ∈ Ω, let
X̂ ω̄,e be the unique solution to

X̂ ω̄,e
t = X̂0 +

∫∫
[0,t]×A

b
(
r, X̂ ω̄,e, µ(ω̄), a

)
Λ̂er(da)dr +

∫∫
[0,t]×A

σ
(
r, X̂ ω̄,e, µ(ω̄), a

)
N̂ ω̄,e(da,dr)

+ σ0Bt(ω̄), t ∈ [0, T ], P̂ω̄–a.s.

Then by similar arguments as in the proof of Lemma 2.3.10, it is standard to deduce that, for some constant C > 0
independent of e ≥ 1 and ω̄, and which may change value from line to line

EP̂ω̄
[

sup
t∈[0,T ]

|X̂ ω̄,e
t − X̂s|p

]
≤ CEP̂ω̄

[ ∫∫
[0,t]×A

∣∣((b, σ)− (be, σe)
)
(t, X̂, P̂ω̄ ◦ (X̂)−1, a)

∣∣pΛ̂t(da)dt
]
.

Using the growth conditions on (b, σ) in Assumption 1.4.1, we have∫∫
[0,T ]×A

∣∣((b, σ)− (be, σe)
)(
t, X̂, P̂ω̄ ◦ (X̂)−1, a

)∣∣pΛ̂t(da)dt ≤ C
(∥∥X̂∥∥p + EP̂ω̄

[∥∥X̂∥∥p] ∫∫
[0,T ]×A

|a|pΛ̂t(da)dt
)
.
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It follows by the dominated convergence theorem that: for P–a.e. ω̄ ∈ Ω

lim
e→∞

EP̂ω̄
[

sup
t∈[0,T ]

∣∣X̂ ω̄,e
t − X̂s

∣∣p] = 0.

Moreover, as A is a Polish subspace of Rj , then A is closed, and hence Ae is compact. This allows to reduce the problem
to the case where A is compact.

Step 2. We now assume in addition that A is compact and proceed the proof. By compactness of A, there is a sequence
of positive reel numbers (δe)e≥1 such that lime→∞ δe = 0, and for each e ≥ 1, one can find a partition (Ae1, . . . , Aee) of A
and (ae1, . . . , aee) satisfying aei ∈ Aei and |aei − a| < δe for all a ∈ Aei , i ∈ {1, . . . , e}. For ω̄ ∈ Ω, let X̂ ω̄,e be the unique
solution to the SDE

X̂ ω̄,e
t = X̂0+

e∑
i=1

∫ t

0
b
(
r, X̂ ω̄,e, P̂ω̄◦(X̂ ω̄,e)−1, aei

)
Λ̂r(Aei )dr+

∫ t

0
σ
(
r, X̂ ω̄,e, P̂ω̄◦(X̂ ω̄,e)−1, aei

)
dN̂ ω̄

r (Aei )+σ0Bt(ω̄). (3.3.14)

Using again standard arguments as in the proof of Lemma 2.3.10, we obtain that, for some constant C > 0 (independent
of e and ω̄), which may change from line to line

EP̂ω
[

sup
t∈[0,T ]

∣∣X̂ ω̄,e
t − X̂t

∣∣p] ≤ CEP̂ω
[ e∑
i=1

∫∫
[0,T ]×Ae

i

∣∣(b, σ)(r, X̂, P̂ω̄ ◦ (X̂)−1, a)− (b, σ)(r, X̂,Pω̄ ◦ (X̂)−1, aei )
∣∣pΛr(da)dr

]
.

For every fixed (r,x, ν), the map a 7−→ (b, σ)(r,x, ν, a) is continuous and hence uniformly continuous. Using dominated
convergence, it follows that, for P–a.e. ω̄ ∈ Ω,

lim
e→∞

EP̂ω̄
[

sup
t∈[0,T ]

∣∣X̂ ω̄,e
t − X̂t

∣∣p] = 0. (3.3.15)

Recall that the space Ω̂? is equipped with a sequence of i.i.d. Brownian motion (W ?,i)i≥1. Let us define, for each
i = 1, . . . , e,

Ẑω̄,e,it :=
∫ t

0
(qe,is )−1/21{qe,is 6=0}dN̂

ω̄
s (Aei ) +

∫ t

0
1{qe,is =0}dW

∗,i
s , with qe,is := Λ̂s(Aei ), for all t ∈ [0, T ].

Then it is direct to see that: for P–a.e. ω̄ ∈ Ω, (Ẑω̄,e,1, . . . , Ẑω̄,e,e) is an e–dimensional
(
F̂, P̂ω̄

)
–Brownian motion, and

one can rewrite (3.3.14), for any t ∈ [0, T ]

X̂ ω̄,e
t = X̂0+

e∑
i=1

∫ t

0
b
(
r, X̂ ω̄,e, P̂ω̄◦(X̂ ω̄,e)−1, aei

)
qe,ir dr+

∫ t

0
σ
(
r, X̂ ω̄,e, P̂ω̄◦(X̂ ω̄,e)−1, ami

)√
qe,ir dẐω̄,e,ir +σ0Bt(ω̄), (3.3.16)

and

Ŵt = Ẑω̄,et :=
e∑
i=1

∫ t

0

√
qe,ir dẐω̄,e,ir , t ∈ [0, T ], P̂ω̄–a.s. (3.3.17)

Furthermore, by considering the process (qe,ir , i = 1, . . . , e)r∈[0,T ] as a control process, and using Lemma 2.3.10, we
can assume w.l.o.g. that qe,i is an F̃–predictable process, and is in addition constant on each interval [tk, tk+1), for
0 = t0 < t1 < · · · < tK = T . Let Λ̂e(da,dt) :=

∑e
i=1 q

e,i
t δae

i
(da)dt, it follows by (3.3.15) and (3.3.17) that

P̂ω̄
[

lim
e→∞

Λ̂e(da,dt) = Λ̂(da,dt)
]

= 1, lim
e→∞

Wp

(
LP̂ω̄

(
X̂ ω̄,e, Λ̂e(da,dt), Ẑω̄,e

)
, LP̂ω̄

(
X̂, Λ̂t(da)dt, Ŵ

))
= 0. (3.3.18)

Moreover, for every e ≥ 1, it follows by (3.3.10) in Proposition 3.3.5 that one can choose (Ẑω̄,e,i)i=1,...,e such that

(t, ω̄, ω̂?) 7−→
(
Ẑω̄,e,1t∧· (ω̂?), . . . , Ẑω̄,e,et∧· (ω̂?)

)
is P Ĥ?–measurable.
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Recall that the solution X̂ ω̄,e of SDE (3.3.16) can be defined by Picard iterations (see e.g. Theorem 5.5.3), then by
similar arguments as in [140, Lemma 2.6.], one can choose X̂ ω̄,e such that

(t, ω̄, ω̂?) 7−→
(
X̂ ω̄,e
t∧· (ω̂?), (Λ̂e)t(ω̂?), Ẑ

ω̄,e,1
t∧· (ω̂?), . . . , Ẑω̄,e,et∧· (ω̂?)

)
is P Ĥ?–measurable. (3.3.19)

Step 3. We now consider the approximation of (X̂ ω̄,e)ω̄∈Ω, Λ̂e and Ẑω̄,e for a fixed e ≥ 1. For simplicity of presentation,
we consider the case e = 2, K = 2 and t1 = T/2, so that

Λ̂2(da,dt) := q2,1
t δa2

1
(da)dt+ q2,2

t δa2
2
(da)dt, q2,1

t + q2,2
t = 1, (q2,1

t , q2,2
t ) =

{
(q2,1

0 , q2,2
0 ), for t ∈ [0, t1),

(q2,1
t1 , q

2,2
t1 ), for t ∈ [t1, T ],

where (q2,1
0 , q2,2

0 ) ∈ [0, 1]2 are two deterministic constants and (q2,1
t1 , q

2,2
t1 ) are [0, 1]–valued F̂?t1–measurable random

variables.

First, we consider a further discretisation of [0, t1]: 0 = t10 < t11 < · · · < t1m = t1 with t1i := i∆t, ∆t := t1/m, and then
define two d–dimensional processes (Ŵ ω̄,m,1, Ŵ ω̄,m,2). Let Ŵ ω̄,m,1

0 = Ŵ ω̄,m,2
0 = 0, and then for each i = 0, . . . ,m− 1, let

Ŵ ω̄,m,1
t :=


Ŵ ω̄,m,1
t1
i

+
√
q2,1
0

(
Ẑω̄,2,1
t1
i
+(t−t1

i
)/q2,1

0
− Ẑω̄,2,1

t1
i

)
, t ∈ [t1i , θ1

i ],

Ŵ ω̄,m,1
θ1
i

, t ∈ (θ1
i , t

1
i+1],

with θ1
i := t1i + q2,1

0 ∆t ∈ [t1i , t1i+1],

and

Ŵ ω̄,m,2
t :=


Ŵ ω̄,m,2
t1
i

, t ∈ [t1i , θ1
i ],

Ŵ ω̄,m,2
θ1
i

+
√
q2,2
0

(
Ẑω̄,2,2
t1
i
+(t−θ1

i
)/q2,2

0
− Ẑω̄,2,2

t1
i

)
, t ∈ (θ1

i , t
1
i+1].

Namely, one “compresses” the increment of the Brownian motion Ẑω̄,2,1 from [t1i , t1i+1] to [t1i , θ1
i ] to obtain Ŵ ω̄,m,1, and

“compresses” the increment of the Brownian motion Ẑω̄,2,2 from [t1i , t1i+1] to [θ1
i , t

1
i+1] to obtain Ŵ ω̄,m,2.

Next, on [t1, T ], we take the discretisation t1 = t20 < . . . , t2m = T with t2i := t1 + i∆t, ∆t := t1/m = (T − t1)/m, and
for each i = 0, . . . ,m− 1, let θ2

i := t2i + q2,2
t1 ∆t ∈ [t2i , t2i1 ]. Notice that q2,2

t1 is an F̂?t1–random variable. It follows that the
(θ2
i )0≤i≤m−a are also random. By rewriting its definition on [0, t1] in an equivalent way, we define (Ŵ ω̄,m,1, Ŵ ω̄,m,2) on

[t1, T ] by
Ŵ ω̄,m,1
t := Ŵ ω̄,m,1

t2
i

+
√
q2,2
0

(
Ẑω̄,2,1
t2
i
+(t∧θ2

i
−t2
i
)/q2,2

0
− Ẑω̄,2,1

t2
i

)
,

Ŵ ω̄,m,2
t := Ŵ ω̄,m,2

t2
i

1{t∈[t2
i
,θ2
i
]} +

(
Ŵ ω̄,m,2
θ2
i

+
√
q2,2
0

(
Ẑω̄,2,2
t2
i
+(t−θ2

i
)/q2,2

0
− Ẑω̄,2,2

t2
i

))
1{t∈(θ2

i
,t2
i+1]},

for t ∈ (t2i , t2i+1].

Next, let us define Im1 := ∪m−1
i=1 ([t1i , θ1

i ) ∪ [t2i , θ2
i )) and Im2 := ∪m−1

i=0 ([θ1
i , t

1
i+1) ∪ [θ2

i , t
2
i+1))

Ŵ ω̄,m
t :=

(
Ŵ ω̄,m,1
t−∆t + Ŵ ω̄,m,2

t−∆t
)
1{t∈[∆t,T ]}, and Λ̂2,m(da,dt) := δαmt (da)dt, with αmt := a2

11{t∈Im1 } + a2
21{t∈Im2 }.

Notice that P–a.e. ω̄ ∈ Ω, Ŵ ω̄,m,1 and Ŵ ω̄,m,2 are P̂ω̄–martingales w.r.t. their natural filtrations with quadratic variation
cm,1· :=

∫ ·
0 1Im1 (r)dr and cm,2· :=

∫ ·
0 1Im2 (r)dr respectively. Further, with the time shift appearing in its definition, the

process Ŵ ω̄,m is F̂?–adapted. Moreover, Ŵ ω̄,m is a P̂ω̄–Brownian motion on [∆t, T ] with respect to its natural filtration
(but not F̂?), and

(
Λ̂2,m, ĉm,1· , ĉm,2· , Ŵ ω̄,m,1

· , Ŵ ω̄,m,2
·

)
−→
m→∞

(
Λ̂2,

∫ ·
0
q2,1
r dr,

∫ ·
0
q2,2
r dr,

∫ ·
0

√
q2,1
r dẐω̄,2,1r ,

∫ ·
0

√
q2,2
r dẐω̄,2,2r

)
, P̂ω̄–a.s.

(3.3.20)
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Let us define X̂ ω̄,2,m = (X̂ ω̄,2,m
t )t∈[0,T ] as the unique solution, under P̂ω̄, to

X̂ ω̄,2,m
t = X̂0 +

∫ t∨∆t

∆t
b(r, X̂ ω̄,2,m

r , P̂ω̄ ◦ (X̂ ω̄,2,m)−1, αmr )dr +
∫ t∨∆t

∆t
σ(r, X̂ ω̄,2,m

r , P̂ω̄ ◦ (X̂ ω̄,2,m)−1, αmr )dŴ ω̄,m
r + σ0Bt(ω̄)

= X̂0 +
2∑
i=1

(∫ t∨∆t

∆t
b(r, X̂ ω̄,2,m

r , P̂ω̄ ◦ (X̂ ω̄,2,m)−1, a2
i )dĉm,ir +

∫ t∨∆t

∆t
σ(r, X̂ ω̄,2,m

r , P̂ω̄ ◦ (X̂ ω̄,2,m)−1, a2
i )dŴ

ω̄,m,i
r−∆t

)
+ σ0Bt(ω̄). (3.3.21)

Besides, as in Lemma 3.4.1, it is standard to obtain the following estimate, for some constant C > 0

sup
m≥1

EP̂ω̄
[

sup
t∈[0,T ]

|X̂ ω̄,2,m
t |p

′
]
≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
<∞.

Using [49, Proposition B.1], it follows that: for P–a.e. ω̄ ∈ Ω,(
LP̂ω̄

(
ĉm,1· , ĉm,2· , Ŵ ω̄,m,1

· , Ŵ ω̄,m,2
· , X̂ ω̄,2,m

·
))
m≥1

is tight under Wp.

Then along an arbitrary convergent sub-sequence (mk)k≥1 (which can potentially depend on ω̄), one has

LP̂ω̄
(
ĉmk,1· , ĉmk,2· , Ŵ ω̄,mk,1

· , Ŵ ω̄,mk,2
· , X̂ ω̄,2,mk

·
)
−→
k→∞

LP?(ĉ?,1, ĉ?,2, Ŵ ?,1
· , Ŵ ?,2

· , X̂?
·
)
weakly and under Wp,

for some random elements
(
ĉ?,1, ĉ?,2, Ŵ ?,1

· , Ŵ ?,2
· , X̂?

·
)
in (Ω?,F?,P?). By considering the martingale problem associated

with the SDE (3.3.21), it is standard to check that X̂? satisfies

X̂? = X̂0 +
2∑
i=1

∫ t

0
b(r, X̂?

r ,P? ◦ (X̂?)−1, a2
i )dĉ?,ir +

∫ t

0
σ(r, X̂?

r ,P? ◦ (X̂?)−1, a2
i )dŴ ?,i

r + σ0Bt(ω̄), P?–a.s.

Besides, by the convergence result in Equation (3.3.20), one has

LP?(X̂0, ĉ
?,1, ĉ?,2, Ŵ ?,1

· , Ŵ ?,2
·
)

= LP̂ω̄
(
X̂0,

∫ ·
0
q2,1
r dr,

∫ ·
0
q2,2
r dr,

∫ ·
0

√
q2,1
r dẐω̄,2,1r ,

∫ ·
0

√
q2,2
r dẐω̄,2,2r

)
.

Then it follows by the strong uniqueness (hence uniqueness in law) of the solution to SDE (3.3.16) that

LP?(ĉ?,1, ĉ?,2, Ŵ ?,1
· , Ŵ ?,2

· , X̂?
)

= LP̂ω̄
(∫ ·

0
q2,1
r dr,

∫ ·
0
q2,2
r dr,

∫ ·
0

√
q2,1
r dẐω̄,2,1r ,

∫ ·
0

√
q2,2
r dẐω̄,2,2r , X̂ ω̄,2

)
.

Since the limit is unique, and hence does not depend on the sub-sequence, we obtain that: for P–a.e. ω̄ ∈ Ω

LP̂ω̄
(
Λ̂2,m, Ŵ ω̄,m,1

· , Ŵ ω̄,m,2
· , Ŵ ω̄,m

· , X̂ ω̄,2,m
·

)
−→
m→∞

LP̂ω̄
(

Λ̂2,

∫ ·
0

√
q2,1
r dẐω̄,2,1r ,

∫ ·
0

√
q2,2
r dẐω̄,2,2r , Ẑω̄,2· , X̂ ω̄,2

)
.

Further, using (3.3.19) and the explicit construction of Ŵ ω̄,m and the fact that the solution X̂ ω̄,2,m of SDE (3.3.21) can
be defined by a Picard iteration, it follows that one can choose X̂ ω̄,2,m such that

(t, ω̄, ω̂?) 7−→
(
X̂ ω̄,2,m
t∧· (ω̂?), (Λ̂2,m)t(ω̂?), Ŵ ω̄,m

t∧· (ω̂?)
)
is P Ĥ?–measurable.

Finally, we observe that X̂ ω̄,2,m is only defined by SDE (3.3.21) on [∆t, T ], with ∆t = t1/e −→ 0 when e −→∞. Thus, we
can easily extend it to an SDE on [0, T ] as (3.3.12) and preserve the same convergence and measurability properties.

Remark 3.3.8. Our definition of the relaxed formulation and the proof on the approximation of relaxed control rules by
weak control rules is quite different from those used by Lacker [104] in the non–common noise context. In particular, it
allows to fill in a subtle technical gap in [104, Proof of Theorem 2.4], where the approximation procedure relies on the
erroneous martingale measure approximation result of Méléard [122], as explained in Footnote 1. Notice however that
[104, Paragraph before Theorem 2.4.] does mention the possibility of an alternative proof in the spirit of [63] and [62],
but without more details. This is exactly the program we have carried out.
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3.3.3 Proof of equivalence
(i.1) Let Assumption 1.4.1 and Assumption 3.1.1 hold true, we next show that PR(ν) is convex for ν ∈ Pp(Rn).

Let (P1,P2) ∈ PR(ν)× PR(ν), θ ∈ [0, 1], and P := θP1 + (1− θ)P2. Then P ∈ PA(ν) since (P1,P2) ∈ PR(ν)× PR(ν) ⊂
PA(ν)× PA(ν). Let also ϕ ∈ Cb(Rn × Rd), 0 ≤ s ≤ t and ζ : Ω̂ −→ R a bounded F̂s–measurable variable, then

EP[∣∣Eµ̂[M̂ϕ,µ
t ζ

]
− Eµ̂

[
M̂ϕ,µ
s ζ

]∣∣] = θEP1
[∣∣Eµ̂[M̂ϕ,µ

t ζ
]
− Eµ̂

[
M̂ϕ,µ
s ζ

]∣∣]+ (1− θ)EP2
[∣∣Eµ̂[M̂ϕ,µ

t ζ
]
− Eµ̂

[
M̂ϕ,µ
s ζ

]∣∣] = 0.

By considering a countable dense family of ϕ, 0 ≤ s ≤ t and ζ, it follows that for P–a.e. ω̄ ∈ Ω, (M̂ϕ,µ(ω̄)
t )t∈[0,T ] is an

(F̂, µ̂(ω̄))–martingale for all ϕ ∈ C2
b (Rn × Rd). This proves that P ∈ PR(ν).

(i.2) Take ν ∈ Pp(Rn), we now show that PR(ν) is closed under the Wp–topology. First, from Lemma 3.4.1, we
have PR(ν) ⊂ Pp(Ω). Let (Pm)m≥1 ⊂ PR(ν), and P ∈ P(Ω) be such that limmWp(Pm,P) = 0. Then P ∈ Pp(Ω).

Let ϕ ∈ C2
b (Rn×Rd) and f ∈ C2

b (Rn×Rn×Rd×R`), by Assumption 1.4.1, there exists some constant C > 0 such that
for all (ω̄, ω̂) ∈ Ω× Ω̂ and t ∈ [0, T ]∣∣Sft (ω̄)

∣∣ ≤ C(1 + ‖Xt∧·(ω̄)‖p +
∫
Cn
‖x‖pµ(ω̄)(dx) +

∫∫
[0,T ]×A

ρ(a0, a)pΛr(ω̄)(da)dr
)
, (3.3.22)

and ∣∣M̂ϕ,µ(ω̄)
t (ω̂)

∣∣ ≤ C(1 +
∥∥Ŷt∧·(ω̂)

∥∥p +
∫
Cn
‖x‖pµ(ω̄)(dx) +

∫∫
[0,T ]×A

ρ(a0, a)pΛ̂r(ω̃)(da)dr
)
. (3.3.23)

Let 0 ≤ s ≤ t, ζ : Cn × Cn ×M × Cd −→ R and φ : Cn × Cn ×M × Cd × C` × P(Ω) −→ R be two bounded continuous
functions. Using the regularity of the coefficient functions (b, σ, σ0), together with (3.3.22) and (3.3.23), it follows that

0 = lim
m→∞

EPm
[∣∣Eµ̂[M̂ϕ,µ

t ζ
(
X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·

)]
− Eµ̂

[
M̂ϕ,µ
s ζ

(
X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·

)]∣∣]
= EP[∣∣Eµ̂[M̂ϕ,µ

t ζ
(
X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·

)]
− Eµ̂

[
M̂ϕ,µ
s ζ

(
X̂s∧·, Ŷs∧·, Λ̂s, Ŵs∧·

)]∣∣],
and

0 = lim
m→∞

∣∣EPm [Sft φ
(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s

)
]− EPm [Sfsφ

(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s

)
]
∣∣

=
∣∣EP[Sft φ

(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s

)
]− EP[Sfsφ

(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s

)
]
∣∣.

This implies that for P–a.e. ω̄ ∈ Ω, (M̂ϕ,µ(ω̄)
t )t∈[0,T ] is an (F̂, µ̂(ω̄))–martingale for all ϕ ∈ C2

b (Rn × Rd), and (Sft )t∈[0,T ]
is an (F,P)–martingale for all f ∈ C2

b (Rn × Rn × Rd × R`).

Finally, it is straightforward to check all the other conditions in Proposition 3.3.2, and we can conclude that P ∈ PR(ν).

(ii) We assume here that A ⊂ Rj , ν ∈ Pp′(Rn). It is enough to use Proposition 3.3.6 to deduce that PW (ν) is
dense in PR(ν) with respect to Wp. Next, under Assumption 3.1.1, together with the growth condition of L and g in
Assumption 1.4.1, P 7−→ J(P) is lower semi–continuous (see Remark 3.2.2) on Pp(Ω). This is enough to prove that
VW (ν) = VR(ν).

Finally, when L and g are continuous, under Assumption 1.4.1 and Assumption 3.1.1, P 7−→ J(P) is continuous on Pp(Ω).
Let (Pm)m≥1 ⊂ PR(ν) be a sequence such that

lim
m→∞

J(Pm) = VR(ν) <∞.

The coercivity condition (1.4.2) in Assumption 1.4.1 ensures that (Pm)m≥1 is relatively compact w.r.t. Wp (see also
Proposition 3.4.6 below for a more detailed argument). By the closedness of PR(ν), it follows that there exists P ∈ PR(ν),
such that Wp(P

m
,P) −→ 0, possibly along a subsequence. Together with the continuity of J : Pp(Ω) −→ R, this implies

that P is an optimal relaxed control rule.
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3.3.4 Appendix: proof of some technical results
We finally provide here the proof of the approximation result (of relaxed control by weak control rules) in Proposition 3.3.6,
and some related technical results. Recall that Assumption 1.4.1 and Assumption 3.1.1 hold true, and A is a subset of
Rj for some j ≥ 1.

3.3.4.1 An equivalent reformulation for relaxed control rules on the canonical space

On Ω, let us introduce a filtration F◦ = (F◦t )t∈[0,T ] and a process Sf = (Sft )t∈[0,T ], for every f ∈ C2
b (Rn+`), by

F◦t := σ(Xt∧·, Yt∧·, Bt∧·, µt), and Sft := f
(
Zt, Bt

)
− ϕ(Z0, B0)−

∫ t

0

1
2Tr

[
a0(s,X, µ)∇2ϕ(Zs, Bs)

]
ds, t ∈ [0, T ],

(3.3.24)

where Z := X − Y and

a0
(
t,x, ν

)
:=
(
σ0(t,x, ν)

I`

)(
σ0(t,x, ν)

I`

)>
, for each (t,x, ν) ∈ [0, T ]× Cn × P(Cn). (3.3.25)

Denote by

PcR(ν) :=
{
P ∈ PA(ν) : P –a.e. ω̄ ∈ Ω,

(
M̂

ϕ,µ(ω̄)
t

)
t∈[0,T ] is an

(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn × Rd)
}
,

the relaxed control rules on the canonical space. We recall that PA(ν) is defined in (3.3.1).

Proposition 3.3.9. Let ν ∈ P(Rn), then a probability measure P ∈ P(Ω) belongs to PcR(ν) if and only if

(i) P
[
µ̂0 ◦ (X̂0)−1 = ν, Y0 = X0,W0 = 0, B0 = 0

]
= 1, EP

[
‖X‖p +

∫
[0,T ]×A

(
ρ(a0, a)

)pΛt(da)dt
]
< ∞, and for any

t ∈ [0, T ]
µ̂t(ω̄) = PGtω̄ ◦ (Xt∧·, Yt∧·,W,Λt)−1 = PGTω̄ ◦ (Xt∧·, Yt∧·,W,Λt)−1, for P –a.e. ω̄ ∈ Ω;

(ii) (Bt)t∈[0,T ] is an (F,P)–Brownian motion, and for each f ∈ C2
b (Rn × R`), the process

(
Sft
)
t∈[0,T ] is an (F◦,P)–

martingale;

(iii) for P–a.e. ω̄ ∈ Ω, the process
(
M̂

ϕ,µ(ω̄)
t

)
t∈[0,T ] is an

(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn × Rd).

Proof. First, let P ∈ PcR(ν), then Sϕ (recall (3.3.3)) is an (F,P)–martingale for all ϕ ∈ C2
b

(
Rn × Rn × Rd × R`

)
, which

implies immediately that (Bt)t∈[0,T ] is an (F,P)–Brownian motion and Sf is an (F◦,P)–martingale for all f ∈ C2
b (Rn×R`).

It follows that P satisfies Conditions (i)–(iii) in the statement.
Next, let P ∈ P(Ω) satisfying Conditions (i)–(iii) in the statement. To prove that P ∈ PcR(ν), we first prove that Sϕ is
an (F,P)–martingale for all ϕ ∈ C2

b (Rn × Rn × Rd × R`). To this end, let us introduce, for every ϕ ∈ C2
b (Rn × Rd), a

process Mϕ = (Mϕ
t )t∈[0,T ] on (Ω,F) by (recall also the definitions of L̂ and M̂ϕ,ν in (3.3.5) and (3.3.6))

Mϕ
t := ϕ

(
Yt,Wt

)
− ϕ(Y0,W0)−

∫∫
[0,t]×A

L̂sϕ
(
X,Y,W, µs, a

)
Λs(da)ds. (3.3.26)

Since B is an (F,P)–Brownian motion, we have, for all θ ∈ R`, 0 ≤ s ≤ t, φ ∈ Cb(Cn×Cn×Cd×M), and ψ ∈ Cb(C`×P(Ω̂)),

EP
[
Mϕ
t exp

(
θ ·Bt − |θ|2t/2

)
φ
(
Xs∧·, Ys∧·,Ws∧·,Λs

)
ψ
(
Bs∧·, µ̂s

)]
= EP

[
Eµ̂
[
M̂ϕ,µ
t φ

(
X̂s∧·, Ŷs∧·, Ŵs∧·, Λ̂s

)]
exp

(
θ ·Bt − |θ|2t/2

)
ψ
(
Bs∧·, µ̂s

)]
= EP

[
Eµ̂
[
M̂ϕ,µ
s φ

(
X̂s∧·, Ŷs∧·, Ŵs∧·, Λ̂s

)]
exp

(
θ ·Bt − |θ|2t/2

)
ψ
(
Bs∧·, µ̂s

)]
= EP

[
Mϕ
s exp

(
θ ·Bs − |θ|2s/2

)
φ
(
Xs∧·, Ys∧·,Ws∧·,Λs

)
ψ
(
Bs∧·, µ̂s

)]
.
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In other words, (Mϕ
t exp(θBs − 1

2θ〈B〉sθ
>))t∈[0,T ] is an (F,P)–martingale for any ϕ ∈ C2

b (Rn+d) and θ ∈ R`.

Furthermore, from Condition (ii) in the statement, we know that B is an (F,P)–Brownian motion, and

Y· = X· −
∫ ·

0
σ0(s,X, µ)dBs, P–a.s.

It follows by [150, Theorems 4.2.1 and 8.1.1] that Sϕ is an (F,P)–martingale for all ϕ ∈ C2
b

(
Rn×Rn×Rd×R`

)
. Moreover,

it is straightforward to check that LP(X0,W,B, µ̂
)

= LP(X0) ⊗ LP(W ) ⊗ LP(B, µ̂), i.e. X0, W and (B, µ̂) are mutually
independent under P, and therefore, P ∈ PcR(ν).

3.3.4.2 Proof of Proposition 3.3.5

3.3.4.2.1 Martingale measure, stochastic integral and their measurability We recall here the definition of the
martingale measures from El Karoui and Méléard [58], but in a special context, and then discuss the associated stochastic
integration and some measurability issues. Let us consider the Polish space A, and an abstract filtered probability space
(Ω?,F?,F?,P?), equipped with a random measure νt(da)dt on [0, T ]×A, where t 7−→ νt(da) is P(A)–valued predictable
process. Denote by PF? the predictable σ–field w.r.t. the filtration F?.
Definition 3.3.10. We will say (Nt(da))t∈[0,T ] is an (F?,P?)–martingale measure of intensity νt(da)dt if

(i) for all B ∈ B(A), (Nt(B))t∈[0,T ] is a (F?,P?)–martingale with quadratic variation
∫ ·

0 νs(B)ds, and with N0(B) = 0;
(ii) let B1, B2 ∈ B(A) be such that B1∩B2 = ∅, then (Nt(B1))t∈[0,T ] and (Nt(B2))t∈[0,T ] are two orthogonal martingales.

Given an (F?,P?)–martingale measure (Nt(da))t∈[0,T ] of intensity νt(da)dt, and a PF? ⊗ B(A)–measurable function
f : [0, T ]× Ω? ×A −→ R such that

EP?
[ ∫∫

[0,T ]×A
|f(s, a)|2νs(da)ds

]
<∞,

one can first approximate f by a sequence (fm)m≥1 of simple functions of the form fm(s, a) :=
∑m
k=1 f

m
k 1(sm

k
,tm
k

](s)1Bmk (a),
where Bmk ⊂ B(A),

smk < tmk , f
m
k is F?sm

k
–measurable, for all k = 1, . . . ,m, and lim

m→∞
EP?
[ ∫∫

[0,T ]×A

∣∣f(s, a)− fm(s, a)
∣∣2νs(da)ds

]
= 0.

Then one can define the stochastic integral, for t ∈ Q,

Nt(f) =
∫∫

[0,t]×A
f(s, a)N(da,ds) := lim

m→∞
Nt(fm) := lim

m→∞

m∑
k=1

fmk
(
Ntm

k
∧t(Bmk )−Nsm

k
∧t(Bmk )

)
, with the limit in L2,

and then, for all t ∈ [0, T ]
Nt(f) =

∫∫
[0,T ]×A

f(s, a)N(da,ds) := lim sup
Q3s↗t

Ns(f).

Notice that (Nt(f))t∈[0,T ] is an (F?,P?)–continuous martingale with quadratic variation
∫ ·

0
∫
A
f(s, a)νs(da)ds, and it is

in fact independent of the approximating sequence (fm)m≥1 (see e.g. [58, Section 1]).
Let us now consider another abstract measurable space (E, E), a family of probability measures (P?e)e∈E on (Ω?,F?,F?)
under which N is a martingale measure with intensity νt(da)dt, and the random measure νt(da)dt has the same
distribution under each P?e. In addition, the family (P?e)e∈E verifies that for all Borel function ϕ : Ω? × E −→ R
such that for each e, ϕ(·, e) is Pe–integrable, we have

E 3 e 7−→
∫

Ω?
ϕ(ω?, e)P?e(dω?) ∈ R is E–measurable. (3.3.27)

Let f : [0, T ]× Ω? ×A× E → R be PF? ⊗ B(A)× E–measurable function such that

EP?e
[ ∫∫

[0,T ]×A
|fe(s, a)|2νs(da)ds

]
<∞, for each e ∈ E. (3.3.28)
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Lemma 3.3.11. One can construct a family of processes {(Nt(fe))t∈[0,T ]
}
e∈E such that

(t, ω?, e) 7−→ Nt(fe, ω?) is PF? ⊗ E–measurable, (3.3.29)

and
Nt(fe, ω?) =

(∫∫
[0,t]×A

fe(s, a)N(da,ds)
)

(ω?), t ∈ [0, T ], P?e–a.s. for each e ∈ E. (3.3.30)

Proof. Let us first consider the simple functions f : [0, T ]×Ω?×A×E → R in form f(s, a) :=
∑m
k=1 fk1(sk,tk](s)1Bk(a),

where for each k = 1, . . . ,m,

sk < tk, fk : Ω? × E → R is F?sk ⊗ E–measurable, and Bk ∈ B(A).

Then it is clear that

(t, ω?, e) 7−→ Nt(fe, ω?) :=
m∑
k=1

fk(ω?, e)
(
Ntk∧t(ω?, Bk)−Nsk∧t(ω?, Bk)

)
is PF? ⊗ E–measurable.

Next, let f1, f2 : [0, T ]× Ω? ×A× E → R be two bounded PF? ⊗ B(A)× E–measurable functions. Assume that both f1
and f2, one can construct the stochastic integrals satisfying (3.3.29) and (3.3.30), then it is clear that for f := f1 ± f2,
Nt(f) := Nt(f1)±Nt(f2) satisfies also (3.3.29) and (3.3.30).

Further, let (fm)m≥1 be a sequence of positive bounded functions increasely converging to bounded function f pointwisely,
all f, fm are PF? ⊗B(A)×E–measurable functions, and for each m ≥ 1, one can construct Nt(fm) satisfying (3.3.29) and
(3.3.30). Then it is clear that for each e ∈ E,

Nt(fem) −→
∫∫

[0,t]×A
fe(s, a)N(da,ds) in L2(P?e), as m −→∞.

Following [129, Lemma 3.2.] combined with Condition (3.3.27), one can find a family of sub-sequence (mk(e))k≥1,e∈E
which is E–measurable and

Nt(fe) := lim sup
k→∞

Nt(femk(e)) =
∫∫

[0,t]×A
fe(s, a)N(da,ds), P?e–a.s., for each e ∈ E.

In other words, one can choose a version Nt(f) satisfying (3.3.29) and (3.3.30). By the monotone class theorem, it follows
that the statement holds true for all bounded functions f : [0, T ]×Ω?×A×E → R which is PF? ⊗B(A)×E–measurable.

Finally, let f : [0, T ]×Ω? ×A×E → R be a PF? ⊗B(A)× E–measurable function satisfying (3.3.28). For each m ∈ N∗,
define fm := f1|f |≤m, then (fm)m∈N∗ is a sequence of PF? ⊗ B(A)× E–measurable functions satisfying

EP?e
[ ∫∫

[0,T ]×A
|fe(s, a)− fem(s, a)|2νs(da)ds

]
<∞, for each e ∈ E.

Then it is enough to use the arguments in [129, Lemma 3.2] with the condition (3.3.27) again to define Nt(fe) as limit
of Nt(fem), which satisfies (3.3.29) and (3.3.30).

Proof of Proposition 3.3.5 Recall that the probability space (Ω?,F?,P?) is equipped with 2(n+ d) i.i.d. martingale
measures (N?,i)i=1,...,2(n+d) with intensity ν0(da)dt for some diffuse probability measure ν0 on A, which is extended on
(Ω̂?, F̂?, P̂ω̄) for every ω̄ ∈ Ω. We will now follow the technical steps in El Karoui and Méléard [58] to construct the
family of martingale measures (N̂ ω̄)ω̄∈Ω satisfying (3.3.9), and then check the measurability property in (3.3.10).

Let us first denote

Σ(t,x, a, ν) :=
(
σ(t,x, a, ν) 0n×n

Id 0d×n

)
, and

(
ΣΣ>)+(t,x, a, ν

)
:= lim

ε↘0

(
εId+n + (ΣΣ>)(t,x, a, ν)

)−1
, (3.3.31)
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where (ΣΣ>)+ is the pseudo–inverse of ΣΣ>. Then for all bounded Borel measurable function f : [0, T ]×A −→ R, let

Γω̄(s, f) :=
∫
A

ΣΣ>(s, X̂, a, µs(ω̄))f(s, a)Λ̂s(da), and its pseudo–inverse Γω̄,+(s, f) := lim sup
ε↘0

(
εId+n + Γ(s, ω̄, f)

)−1
.

Denote also by 1 the constant function on [0, T ]×A which equals to 1. Furthermore, let πi : Rn+d −→ R, i = 1, . . . , n+d,
be the projection function defined by πi((z) := zi for every z := (z1, . . . , z

n+d), and M̂ ω̄,i := M̂πi,µ(ω̄) be the martingale
defined in (3.3.6), whose quadratic variation process is given by

〈
M̂ ω̄,i, M̂ ω̄,j

〉
t

=
∫ t

0
Γω̄i,j(s,1)ds, t ∈ [0, T ], P̂ω̄–a.s.

(i) By [58, Theorem III-2.], there exists a P F̂ ⊗ B(A)–measurable function ϕ : [0, T ]× Ω̂×A −→ A such that

Λ̂s(ω̂, B) =
∫
A

1B(ϕ(s, ω̂, a))ν0(da), for all (s, ω̂) ∈ [0, T ]× Ω̂, B ∈ B(A).

This allows to define, for every ω̄ ∈ Ω, two independent martingale measures (Ñ?,ω̄,i)1≤i≤n+d and (Ñ?,ω̄,i)n+d+1≤i≤2(n+d)
from (N?,i)1≤i≤n+d and (N?,i)n+d+1≤i≤2(n+d) as follows. For each ω̄ ∈ Ω, let us define for all B ∈ B(A), i = 1, . . . , n+ d,

Ñ?,ω̄,i
t (B) :=

n+d∑
k=1

∫∫
[0,t]×A

1B(ϕ(s, a))Σik(s, X̂, ϕ(s, a), µs(ω̄))N?,k(da,ds), t ∈ [0, T ], P̂ω̄–a.s.,

and for all B ∈ B(A), i = n+ d+ 1, . . . , 2(n+ d),

Ñ?,ω̄,i
t (B) :=

2(n+d)∑
k=n+d+1

∫∫
[0,t]×A

1B(ϕ(s, a))Σik(s, X̂, ϕ(s, a), µs(ω̄))N?,k(da,ds), t ∈ [0, T ], P̂ω̄–a.s.

By [58, Theorem III-3.], (Ñ?,ω̄,i)1≤i≤n+d and (Ñ?,ω̄,i)n+d+1≤i≤2(n+d) are two independent martingale measures with
intensity Λ̂Σ,ω̄

t (da)× dt defined by Λ̂Σ,ω̄
t (B) := Γω̄(t,1B) for all B ∈ B(A).

Next, we define the martingale measure (Ñ ω̄,i)i=1,...,n+d, from (Ñ?,ω̄,i, M̂ ω̄,i)i=1,...,n+d as follows. For each bounded
P F̂? ⊗ B(A)–measurable function f : [0, T ]× Ω̂? ×A −→ R, and i = 1, . . . , n+ d, let∫∫

[0,t]×A
f(s, a)Ñ ω̄,i(da,ds) :=

n+d∑
k=1

∫ t

0

(
Γω̄(s, f)

(
Γω̄,+Γω̄Γω̄,+

)
(s,1)

)i,k
dM̂ ω̄,k

s

+
n+d∑
k=1

∫ t

0

∫
A

(
f(s, a)In+d − Γω̄(s, f)

(
Γω̄,+Γω̄Γω̄,+

)
(s,1)

)i,k
Ñ?,ω̄,k(da,ds).

Let us refer to the proof of [58, Proposition III-9., Theorem III-10.]) for the fact the above does define a martingale
measure (Ñ?,ω̄,i)i=1,...,n+d with intensity Λ̂Σ,ω̄

t (da)× dt, and that it satisfies Ñ i,ω̄
t (A) = M̂ ω̄,i

t , for each i = 1, . . . , n+ d.
Finally, let

Σ−1(s, ω̄, ω̂, a) := Σ(ΣΣ>)+ΣΣ>(ΣΣ>)+(s, ω̄, ω̂, a),

we define (N̂ ω̄,i)i=1,...,n+d as follows. For every bounded P F̂? ⊗ B(A)–measurable function f : [0, T ] × Ω̂? × A −→ R,
i = 1, . . . , n+ d, let

N̂ ω̄,i
t (f) :=

n+d∑
k=1

∫∫
[0,t]×A

f(s, a)Σ−1
ik (s, ω̄, a)Ñ ω̄,k(da,ds) +

∫∫
[0,t]×A

(
In+d − ΣΣ>(ΣΣ>)+)(s, ω̄, a)f(s, a)Ñ?,ω̄,n+d+i(da,ds),
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where we notice that ΣΣ>(ΣΣ>)+ is the projection from Rn+d to the range of ΣΣ>. It follows then (N̂ ω̄,i)i=1,...,d is a
martingale measure with intensity Λ̂t(da)× dt and satisfies (3.3.9).

(ii) Let us now consider a bounded P Ĥ? ⊗B(A)–measurable function f : [0, T ]×Ω× Ω̂?×A −→ R. By the above explicit
construction of N̂ ω̄, it is clear that one can rewrite the stochastic integral

∫∫
[0,t]×A

f ω̄(s, a)N̂ ω̄(ds,da) =
2(n+d)∑
i=1

∫∫
[0,t]×A

φω̄(s, a)N?,i(da,ds) +
n+d∑
i=1

∫ t

0
ψω̄s dM̂ ω̄,i

s , P̂ω̄–a.s.,

for some P Ĥ?⊗B(A)–measurable function φ : [0, T ]×Ω×Ω̂?×A −→ R, and P Ĥ?–measurable function ψ : [0, T ]×Ω×Ω̂? −→
R. Then one can apply the same arguments as in Lemma 3.3.11 to choose a good version of the stochastic integral s.t.

(t, ω̄, ω̂?) 7−→
(∫∫

[0,t]×A
f ω̄(s, a)N̂ ω̄(da,ds)

)
(ω̂?) is P Ĥ?–measurable,

i.e. (3.3.10) holds true.

3.3.4.3 Proof of Proposition 3.3.6 (general case)

We provide here the proof of the Proposition 3.3.6 when the coefficients (b, σ, σ0) verify

(b, σ)(t,x, ν̄, a) = (b, σ)(t,x, ν, a), and σ0(t,x, ν̄, a) := σ0(t,x, ν), (3.3.32)

for all (t,x, ν̄, a) ∈ [0, T ]× Cn × P(Cn ×A)×A with ν(dx) := ν̄(dx, A).

The idea of this part is to present how to extend the techniques used when σ0 is constant to this general case. We now
give the outline of the proof. In a nutshell, we want to approximate the relaxed control P by weak control rules when,
on Ω, (X,Y,B, µ̂) verifies

Y· = X· −
∫ ·

0
σ0(s,X, µ)dBs, P–a.s., (3.3.33)

and for P–a.e. ω̄ ∈ Ω, under P̂ω̄, the canonical processes (X̂, Ŷ , Λ̂, Ŵ ) verifies Ŵ· =
∫ ·

0
∫
A
N̂ ω̄(da,ds), P̂ω̄–a.s., and

Ŷt = X̂0 +
∫∫

[0,t]×A
b
(
r, X̂, µ(ω̄), a

)
Λ̂r(da,dr) +

∫∫
[0,t]×A

σ
(
r, X̂, µ(ω̄), a

)
N̂ ω̄(da,dr), for all t ∈ [0, T ], P̂ω̄–a.s. (3.3.34)

Step 1: In this first step, we rewrite (3.3.34) as an equation that takes into account only X̂, and not Ŷ . To do this,
observe that, we can find a Borel measurable function I : (t,x, π,b) ∈ [0, T ] × Cn × P(Cn) × C` −→ I(t,x, π,b) ∈ Rn

verifying I(t,x, π,b) = I(t,xt∧·, π ◦ (X̂t∧·)−1,bt∧·) and

I
(
t,X, µ,B

)
=
∫ t

0
σ0(r,X, µ)dBr, P–a.s. (3.3.35)

Therefore, using the (H)–property, i.e. for all t ∈ [0, T ], µ̂t(ω̄) = PGTω̄ ◦ (Xt∧·, Yt∧·,W,Λt)−1, for P–a.e. ω̄ ∈ Ω, we get an
equivalent formulation of (3.3.33) on Ω̂,

Ŷ· = X̂· − I
(
·, X̂, µ(ω̄), B(ω̄)

)
, P̂ω̄–a.s, for P –a.e. ω̄ ∈ Ω.

and then, a reformulation of (3.3.34) involving only X̂. We can see I
(
·, X̂, µ(ω̄), B(ω̄)

)
as a ’conditional’ stochastic

integral w.r.t B given the σ–field GT .
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Moreover, for any Rn–valued Ĥ?–adapted continuous process (Ŝt)t∈[0,T ], we can find a measurable function S : Ω ×
Cn × Cn ×M × Cd × Ω? −→ Cn such that Ŝω̄t (ω̂, ω?) = St

(
ω̄, X̂t∧·(ω̂), Ŷt∧·(ω̂), Λ̂t(ω̂), Ŵt∧·(ω̂), ω?

)
, for all (t, ω̄, ω̂, ω?) ∈

[0, T ]×Ω× Ω̂×Ω?. And, since for P–a.e. ω̄ ∈ Ω, EP̂ω̄
[

supt∈[0,T ] |Ŝω̄t |p
]
<∞, thanks to the (H)–property, we easily verify

that for P–a.e. ω̄ ∈ Ω

LP̂ω̄
(
I
(
·, Ŝω̄, β(ω̄), B(ω̄)

)
, Ŝω̄, β(ω̄), B(ω̄)

)
= PGTω̄ ⊗ P? ◦

(∫ ·
0
σ0
(
s, S

(
ω̄,X, Y,Λ,W

)
, β
)
dBs, S

(
ω̄,X, Y,Λ,W

)
, β, B

)−1
,

(3.3.36)

for any Borel measurable function β : Ω −→ P(Cn) such that (β ◦ (X̂t∧·)−1)t∈[0,T ] is a G–predictable process satisfying
EP[
∫
Cn ‖x‖

pβ(dx)] <∞.

Step 2: Now, we approximate X̂ thanks to Ŷ by a sequence of special processes. This approximation is obtained through
the same arguments used in the proof of Proposition 3.3.6 when σ0 is constant. More precisely, for any k ∈ N?, there
exists (ak1 , . . . , akk) ∈ Ak, a sub–division tk0 = 0 < · · · < tkk = T, as well as k P(A)–valued F̂?–predictable processes
(Λ̂k,1, . . . , Λ̂k,k), which are constant on each interval [tki , tki+1], and for P–a.e. ω̄ ∈ Ω, k (F̂, P̂?ω̄)–independent Brownian
motions (Ẑω̄,k,1, . . . , Ẑω̄,k,k) such that if we define

Ŷ ω̄,kt := X̂0 +
k∑
i=1

∫ t

0
b(r, X̂, µ(ω̄), aki )Λ̂k,ir dr +

∫ t

0
σ(r, X̂, µ(ω̄), aki )

√
Λ̂k,ir dẐω̄,k,ir , t ∈ [0, T ], P̂ω̄–a.s.,

and X̂ ω̄,k
· := Ŷ ω̄,k· + I

(
·, X̂, µ(ω̄), B(ω̄)

)
, we have

lim
k→∞

EP̂ω̄
[

sup
t∈[0,T ]

∣∣Ŷ ω̄,kt − Ŷt
∣∣p] = 0, then lim

k→∞
EP̂ω̄

[
sup
t∈[0,T ]

∣∣X̂ ω̄,k
t − X̂t

∣∣p] = 0.

Moreover, for each k ∈ N?

(t, ω̄, ω̃?) 7−→
(
Ỹ ω̄,kt∧· (ω̂?), X̂ ω̄,k

t∧· (ω̂?), (Λ̂1,k)t(ω̂?), . . . , (Λ̂k,k)t(ω̂?), Ẑω̄,k,1t∧· (ω̂?), . . . , Ẑω̄,k,kt∧· (ω̂?)
)
is P Ĥ?–measurable.

Next, let us introduce Xk,◦ an Rn–valued Ĥ?–adapted continuous process satisfying for P–a.e. ω̄ ∈ Ω, X ω̄,k,◦ is the
unique strong solution of: EP̂ω̄

[
‖X ω̄,k,◦‖p

]
<∞ and for all t ∈ [0, T ],

X̂ ω̄,k,◦
t = X̂0 +

k∑
i=1

∫ t

0
b(r, X̂ ω̄,k,◦, P̂ω̄ ◦ (X̂ ω̄,k,◦)−1, aki )Λ̂k,ir dr +

∫ t

0
σ(r, X̂ ω̄,k,◦, P̂ω̄ ◦ (X̂ ω̄,k,◦)−1, aki )

√
Λ̂k,ir dẐω̄,k,ir

+ I
(
t, X̂ ω̄,k,◦, P̂?ω̄ ◦ (X̂ ω̄,k,◦)−1, B(ω̄)

)
, P̂ω̄–a.s. (3.3.37)

The existence and uniqueness P–a.e. ω̄ ∈ Ω of (3.3.37) is just an extension of the classical Picard iteration scheme,
adapted in this context. Indeed, thanks to the definition of I and the fact that B is a (P,F)–Brownian motion, it is
enough to adapted the proof of Theorem 5.5.3 to show this result.
We also define Ŷ ω̄,k,◦· := X̂ ω̄,k,◦

· −I
(
·, X̂ ω̄,k,◦, P̂?ω̄ ◦ (X̂ ω̄,k,◦)−1, B(ω̄)

)
. Notice that, with the same arguments used for the

constant σ0 case (property (3.3.10) and Picard iteration argument), we can deduce that, for each k ∈ N?,

(t, ω̄, ω̂?) 7−→
(
X̂ ω̄,k,◦
t∧· (ω̂?), Ŷ ω̄,k,◦t∧· (ω̂?), (Λ̂1,k)t(ω̂?), . . . , (Λ̂k,k)t(ω̂?), Ẑω̄,k,1t∧· (ω̂?), . . . , Ẑω̄,k,kt∧· (ω̂?)

)
is P Ĥ?–measurable.

By using the definition of I (see (3.3.35)) and the observation (3.3.36), it is straightforward to check that∫
Ω
EP̂?ω̄

[∣∣∣I(t, X̂ω,k,◦,LP̂?ω̄ (X̂ω,k,◦), B(ω̄)
)
− I

(
t, X̂, µ(ω̄), B(ω̄)

)∣∣∣p]P(dω̄)

≤
∫

Ω

∫ t

0
EP̂?ω̄

[∣∣∣σ0
(
r, X̂ω,k,◦,LP̂?ω̄ (X̂ω,k,◦)

)
− σ0

(
r, X̂, µ(ω̄)

)∣∣∣p]drP(dω̄), (3.3.38)
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then thanks to this inequality, using classical techniques, we get that for some K > 0∫
Ω
EP̂?ω̄

[
sup

s∈[0,T ]
|X̂ ω̄,k,◦

s − X̂ ω̄,k
s |p

]
P(dω̄) ≤ K

∫ T

0

∫
Ω
EP̂?ω̄

[
sup
s∈[0,t]

|X̂ ω̄,k
s − X̂s|p

]
P(dω̄)dt,

and we can deduce that limk→∞
∫

Ω EP̂?ω̄
[

sups∈[0,T ] |X̂ ω̄,k,◦
s − X̂s|p

]
P(dω̄) = 0.

Step 3: Finally, we provide the weak process that we are looking for, and prove a last convergence result. Again, we use
the arguments from the constant σ0 case. For k ∈ N? fixed, there exists, for each m ∈ N?, Borel sets (Ik,1m , . . . , Ik,km ) such
that ∪ki=1I

k,i
m = [0, T ], and for P–a.e. ω̄ ∈ Ω, (Ŵ ω̄,m,1, . . . , Ŵ ω̄,m,k) are k (F̂?, P̂?ω̄)–martingales with quadratic variation

〈Ŵ ω̄,m,i〉· = ĉm,i· :=
∫ ·

0 1Ik,im (r)dr,, i ∈ {1, . . . , k}. Furthermore, all these processes verify

lim
m→∞

(
Ŵ ω̄,m,i, ĉm,i

)
=
(∫ ·

0

√
Λ̂k,ir dẐω̄,m,ir ,

∫ ·
0

Λ̂k,ir dr
)
, for each i ∈ {1, . . . , k}, P̂?ω̄–a.e. (3.3.39)

Consider X̂k,m, an Rn–valued Ĥ?–adapted continuous process s.t. for P–a.e. ω̄ ∈ Ω, X̂ ω̄,k,m is the unique strong solution
of

X̂ ω̄,k,m
t = X̂0 +

k∑
i=1

∫ t

0
b(r, X̂ ω̄,k,m, P̂ω̄ ◦ (X̂ ω̄,k,m)−1, aki )dĉm,ir +

∫ t

0
σ(r, X̂ ω̄,k,m, P̂ω̄ ◦ (X̂ ω̄,k,m)−1, aki )dŴ ω̄,m,i

r

+ I
(
·, X̂ ω̄,k,m, P̂?ω̄ ◦ (X̂ ω̄,k,m)−1, B(ω̄)

)
, t ∈ [0, T ], P̂ω̄–a.s.

Define Ŷ ω̄,k,m· := X̂ ω̄,k,m
· − I

(
·, X̂ ω̄,k,m, P̂?ω̄ ◦ (X̂ ω̄,k,m)−1, B(ω̄)

)
. We have that

(t, ω̄, ω̂?) 7−→
(
Ŷ ω̄,k,mt∧· (ω̂?), X̂ ω̄,k,m

t∧· (ω̂?), Ŵ ω̄,m,1
t∧· (ω̂?), . . . , Ŵ ω̄,m,k

t∧· (ω̂?)
)
is P Ĥ?–measurable.

Define, for each m ∈ N?, the probability on Ω?,k := Cn × Cn × (C)k × (Cd)k × C` × P(Cn × Cn × (C)k × (Cd)k),

P?,m :=
∫

Ω
LP̂ω̄

(
X̂ ω̄,k,m, Ŷ ω̄,k,m, ĉm,1, . . . , ĉm,k, Ŵ ω̄,m,1, . . . , Ŵ ω̄,m,k, B(ω̄), µ̂m(ω̄)

)
P(dω̄),

where µ̂m(ω̄) := LP̂ω̄
(
X̂ ω̄,k,m, ĉm,1, . . . , ĉm,k, Ŵ ω̄,m,1, . . . , Ŵ ω̄,m,k

)
.

Similarly to Lemma 3.4.1, by using an inequality of type (3.3.38), we get, for some constant C > 0

sup
m≥1

∫
Ω
EP̂ω̄

[
sup
t∈[0,T ]

|X̂ ω̄,k,m
t |p

′
+ sup
t∈[0,T ]

|Ŷ ω̄,k,mt |p
′
]
P(dω̄) ≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
<∞.

Then, it is straightforward to deduce that (P?,m)m∈N? is relatively compact for the Wasserstein metric Wp. Therefore,
via a convergent subsequence (mj)j≥1, we have

lim
j→∞

P?,mj = LP?
(
X?, Y ?, c1,?, . . . , ck,?,W 1,?, . . . ,W k,?, B?, µ̂?

)
,under Wp,

for some random elements
(
X?, Y ?, c1,?, . . . , ck,?,W 1,?, . . . ,W k,?, B?, µ̂?

)
in (Ω?,F?,P?). By a simple use of the observation

(3.3.36), we deduce

Y ?· = X?
· −

∫ ·
0
σ0(s,X?,LP?(X?|B?, µ̂?))dBs, P

?–a.s.

If, for all t ∈ [0, T ], we define

µ̂?t := µ̂? ◦
(
X̂?
t∧·, Ŷ

?
t∧·, ĉ

1,?
t∧·, . . . , ĉ

k,?
t∧·, Ŵ

1,?
t∧· , . . . , Ŵ

k,?
t∧·
)−1

,
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where (X̂?, Ŷ ?, ĉ1,?, . . . , ĉk,?, Ŵ 1,?, . . . , Ŵ k,?) the canonical processes on Cn × Cn × (C)k × (Cd)k, we get

µ̂?t = LP?
(
X?
t∧·, Y

?
t∧·, c

1,?
t∧·, . . . , c

k,?
t∧·,W

1,?
t∧· , . . . ,W

k,?
t∧·
∣∣µ̂?, B?), P?–a.s.

In addition, using the (conditional) martingale problem, we have, for P?–a.e. ω̄ ∈ Ω?, and for all t ∈ [0, T ]

Ŷ ?t = X̂?
0 +

k∑
i=1

∫ t

0
b(r, X̂?, µ̂?(ω̄) ◦ (X̂?)−1, aki )dĉi,?r +

∫ t

0
σ(r, X̂?, µ̂?(ω̄) ◦ (X̂?)−1, aki )dŴ i,?

r , µ̂?(ω̄)–a.s.

With the help of the (H)–property, one gets Ŷ ?· = X̂?
· −I

(
·, X̂?, µ̂?(ω̄) ◦ (X̂?)−1, B?(ω̄)

)
, P?ω̄–a.s, for P

? –a.e. ω̄ ∈ Ω?. By
(3.3.39), we deduce that

LP
(
B, β̂ ◦

(
X̂0, ĉ

1,?, . . . , ĉk,?, Ŵ 1,?, . . . , Ŵ k,?
)−1
)

= LP?
(
B?, µ̂? ◦

(
X̂?

0 , ĉ
1,?, . . . , ĉk,?, Ŵ 1,?, . . . , Ŵ k,?

)−1
)
,

where

β̂(ω̄) := LP̂?ω̄
(
X̂ ω̄,k,◦, Ŷ ω̄,k,◦,

∫ ·
0

Λ̂k,1r dr, . . . ,
∫ ·

0
Λ̂k,kr dr,

∫ ·
0

√
Λ̂k,kr dẐω̄,m,ir , . . . ,

∫ ·
0

√
Λ̂k,kr dẐω̄,m,ir

)
.

We can conclude that lim
j→∞

P?,mj is equal to

∫
Ω
LP̂?ω̄

(
X̂ ω̄,k,◦, Ŷ ω̄,k,◦,

∫ ·
0

Λ̂k,1r dr, . . . ,
∫ ·

0
Λ̂k,kr dr,

∫ ·
0

√
Λ̂k,kr dẐω̄,m,ir , . . . ,

∫ ·
0

√
Λ̂k,kr dẐω̄,m,ir , B(ω̄), β̂(ω̄)

)
P(dω̄). (3.3.40)

Since this is true for any subsequence (P?,mj )j∈N? , we deduce the convergence for the whole sequence.

By mimicking the techniques mentioned in the proof in the case where σ0 is constant, combined with (3.3.36), we conclude
that (Q?,k,m)(k,m)∈N?×N? is a sequence of weak control rules where

Q?,k,m :=
∫

Ω
LP̂ω̄

(
X̂ ω̄,k,m, Ŷ ω̄,k,m, Λ̂k,m, Ŵ ω̄,k,m, B(ω̄),LP̂ω̄

(
X̂ ω̄,k,m, Ŷ ω̄,k,m, Λ̂k,m, Ŵ ω̄,k,m

))
P(dω̄),

with Ŵ ω̄,k,m :=
∑k
i=1 Ŵ

ω̄,m,i, and Λ̂k,m(da,dt) :=
∑k
i=1 δaki 1Ik,im (t)(da)dt. Moreover, using (3.3.40), we have

lim
k→∞

lim
m→∞

Wp

(
Q?,k,m,P

)
= 0.

This concludes the proof.

3.4 Proof of limit theory
Based on the equivalence result and the closedness property of PR(ν) in Theorem 3.2.4, we can provide the proof of the
limit theory result in Theorem 3.2.7 and the continuity result in Proposition 3.2.8.

3.4.1 Approximation of McKean–Vlasov SDEs by large population SDEs
We show in this section that, for any control α ∈ Ap(ν) and the controlled process Xα defined in (2.2.2), they can be
approximated by a large population controlled SDE (Xα,1, . . . , Xα,N ) as in (3.2.4). Let us enforce Assumption 1.4.1, and
assume that A ⊂ Rj for some j ≥ 1.

We first provide a moment estimate of the solution to the N–controlled SDEs as in Lemma 2.3.8. this is in fact an easy
extension of Lacker [104, Lemmata 3.1. and 3.3.] (which are a succession of application of Gronwall Lemma), then for
brevity we omit the proof.
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Lemma 3.4.1. Let Assumption 1.4.1 hold true, and q ≥ p. Then there exists a constant K > 0 such that, for all N ≥ 1,
(ν, ν1, . . . , νN ) ∈

(
Pq(Rn)

)N+1 and (α1, . . . , αN ) ∈ ANq (νN ),

1
N

N∑
i=1

EPNν
[

sup
t∈[0,T ]

|Xα,i
t |q

]
≤ K

(
1 +

∫
Rn
|x′|q 1

N

N∑
i=1

νi(dx′) + 1
N

N∑
i=1

EPNν
[ ∫ T

0
ρ(a0, α

i
t)qdt

])
.

Recall from Section 2.2.1 that Ω := Rn×Cd×C` is equipped with the canonical element (X0,W,B), the canonical filtration
F and a sub–filtration G. We consider a probability measure P?, under which X0,W , B are mutually independent, (W,B)
is an F–Brownian motion, and X0 ∼ U [0, 1]. In particular, the probability space (Ω,F0,P?) is rich enough to support an
Rn–valued random variable of any distribution. Let ξ be an F0–measurable random variable such that E[|ξ|p] < ∞, α
be an F–predictable process satisfying the integrability condition (2.2.1). We denote by Xξ,α the unique strong solution
of the controlled McKean–Vlasov SDE

Xξ,α
t = ξ +

∫ t

0
b
(
r,Xξ,α, µξ,αr , αr

)
dr +

∫ t

0
σ
(
r,Xξ,α, µξ,αr , αr

)
dWr +

∫ t

0
σ0
(
r,Xξ,α, µξ,αr , αr

)
dBr, P?–a.s., (3.4.1)

with µξ,αr := LP?(Xξ,α
r∧· , αr)|Gr), P?–a.s. and satisfying EP?

[
‖Xξ,α‖p

]
< ∞. As for (2.2.2), Xξ,α is an F?–adapted

continuous process.
Given in addition a G–optional P(Cn ×A)–valued process µ = (µt)t∈[0,T ] satisfying the integrability condition

EP?
[ ∫∫∫

[0,T ]×Cn×A
(‖x‖p + ‖a− a0‖p)µt(dx,da)dt

]
<∞, (3.4.2)

we denote by Xξ,µ,α the unique solution of the standard SDE

Xξ,µ,α
t = ξ +

∫ t

0
b
(
r,Xξ,µ,α, µr, αr

)
dr +

∫ t

0
σ
(
r,Xξ,µ,α, µr, αr

)
dWr +

∫ t

0
σ0
(
r,Xξ,µ,α, µr, αr

)
dBr, P?–a.s., (3.4.3)

with EP?
[
‖Xξ,µ,α‖p

]
<∞.Above,Xξ,µ,α is defined as an F–adapted continuous process. In particular, one hasXξ,µξ,α,α =

Xξ,α, P?–a.s. and

LP?(Xξ,α,W,B) = LP?(Xξ′,α,W,B), and LP?(Xξ,µ,α,W,B) = LP?(Xξ′,µ,α,W,B), whenever LP?(ξ) = LP?(ξ′).

Lemma 3.4.2. Let (ξm)m≥0 be a sequence of F0–measurable random variables such that

lim
m→∞

Wp(P? ◦ (ξm)−1,P?(ξ0)−1) = 0,

and supm≥0 EP? [|ξm|p′ ] < ∞. Let φ : [0, T ] × Rn × Cd × C` −→ A be a bounded continuous function, and (αm)m≥0 be
defined by αmt := φ(t, ξm,Wt∧·, Bt∧·) for all t ∈ [0, T ]. Then, for each t ∈ [0, T ], we have

lim
m→∞

EP?
[
Wp

(
LP?

(
Xξm,αm

t∧· , αmt
∣∣Gt),LP?

(
Xξ0,α0

t∧· , α0
t

∣∣Gt))] = 0,

and, for any fixed µ = (µt)t∈[0,T ] satisfying (3.4.2),

lim
m→∞

EP?
[
Wp

(
LP?

(
Xξm,µ,αm

t∧· , αmt
∣∣Gt),LP?

(
Xξ0,µ,α0

t∧· , α0
t

∣∣Gt))] = 0.

Proof. We will only prove the first convergence result, since the second follows by almost the same arguments.
First, without loss of generality, one can use Skorokhod’s representation theorem and assume that limn→∞ ξn = ξ0, P?–
a.s. Then, using the Lipschitz properties and the polynomial growth of the coefficient functions, we have using classical
arguments (see notably Step 1 of the proof of Lemma 3.3.7), that there exists a constant K > 0 such that, for m ≥ 1,

EP?
[

sup
t∈[0,T ]

|Xξm,αm

t −Xξ0,α0

t |p
]
≤ K

(
EP?
[
|ξm − ξ0|p

]
+ EP?

[ ∫ T

0

∣∣αmt − α0
t

∣∣pdt]+ Cm

)
, (3.4.4)
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where

Cm := EP?
[ ∫ T

0

∣∣(b, σ, σ0)
(
r,Xξ0,α0

, µξ
0,α0

r , αmr
)
− (b, σ, σ0)

(
r,Xξ0,α0

, µξ
0,α0

r , α0
r

)∣∣pdr].
Next, since supm EP? [|ξm|p′ ] < ∞, for some p′ > p, then (|ξm − ξ0|p)m≥1 is P?–uniformly integrable and it follows that
limm→∞ EP?

[
|ξm − ξ0|p

]
= 0. Moreover, since φ : [0, T ]× Rn × Cd × C` −→ A is bounded continuous, we obtain that

lim
m→∞

|αmt − α0
t | = lim

m→∞
Cm = 0, and hence lim

m→∞
EP?
[

sup
t∈[0,T ]

∣∣Xξm,αm

t −Xξ0,α0

t

∣∣p] = 0.

To conclude, it is enough to notice that, as m −→ 0,

EP?
[
Wp

(
LP?

(
Xξm,αm

t∧· , αmt
∣∣Gt),LP?

(
Xξ0,α0

t∧· , α0∣∣Gt))] ≤ EP?
[∣∣Xξm,αm

t∧· −Xξ0,α0

t∧·
∣∣p]1/p + EP?

[∣∣αmt − α0
t

∣∣p]1/p −→ 0.

To proceed, let us consider, for each N ≥ 1, the space ΩN := (Rn)N × (Cd)N ×C` defined in Section 3.2.2, equipped with
canonical elements (X1

0 , . . . , X
N
0 ,W

1, . . . ,WN ) and canonical filtration FN . On ΩN , we also introduce a sub–filtration

GN := (GNt )t∈[0,T ], with GNt := σ(Bs : s ∈ [0, t]).

Given ν ∈ Pp(Rn) and a sequence (νi)i≥1 ⊂ Pp(Rn), we take the first N elements to define PNν on ΩN , under which
Xi

0 ∼ νi, and B, W i are standard Brownian motions, and (X1
0 , . . . , X

N
0 ,W

1, . . . ,WN , B) are mutually independent.

Further, in Lemma 3.4.2, we keep using the bounded continuous function φ to define the control process α. Together
with an initial random variable ξ ∼ ν, one obtain a G–optional process µξ,α in Ω. Notice that in Ω, the process µξ,α is
a functional of the common noise process B, one can then extend it as a GN–optional process in ΩN while keeping the
same notation for simplicity.

Finally, with the same bounded continuous function φ : [0, T ] × Rn × Cd × C` −→ A in Lemma 3.4.2, we introduce the
control processes (α1, . . . , αN ) by αit := φ(t,Xi

0,W
i
t∧·, Bt∧·), and then define a sequence of processes Xαi,i, i = 1, . . . , N ,

by

X
αi,i

t = Xi
0 +

∫ t

0
b
(
r,X

αi,i
, µξ,αr , αir

)
dr +

∫ t

0
σ
(
r,X

αi,i
, µξ,αr , αir

)
dW i

r +
∫ t

0
σ0
(
r,X

αi,i
, µξ,αr , αir

)
dBr, PNν –a.s. (3.4.5)

Notice that the above SDE is almost the same as (3.4.3), except that we use here (Xi
0, µ

ξ,α,W i) instead of (ξ, µ,W ).

Lemma 3.4.3. Assume that ν and (νi)i≥1 satisfy

lim
N→∞

Wp

(
1
N

N∑
i=1

νi, ν

)
= 0, and sup

N≥1

1
N

N∑
i=1

∫
Rn
|x|p

′
νi(dx) <∞.

Then

lim
N→∞

EPNν
[ ∫ T

0
Wp

(
ϕNt , µ

ξ,α
t

)
dt
]

= 0, with ϕNt (dx,da) := 1
N

N∑
i=1

δ(
X
αi,i

t∧· ,α
i
t

)(dx,da). (3.4.6)

Proof. Notice that to prove (3.4.6), it is enough to prove that, in the space (M
(
P(Cn ×A)× P(Cn ×A)

)
,Wp),

ΛN (dν̄,dν̄′,dt) := EPNν
[
δ(
ϕNt ,µ

ξ,α
t

)(dν̄,dν̄′)dt] −→
N→∞

Λ0(dν̄,dν̄′,dt) := EP?
[
δµξ,αt

(dν̄)δµξ,αt (dν̄′)dt
]
.
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First, by a trivial extension of Lemma 3.4.1 and Lemma 2.3.8, there exists a constant K independent of i ≥ 1, s.t.

EPNν
[

1
N

N∑
i=1

sup
[0,T ]

∣∣Xαi,i

t

∣∣p′ +
∫ T

0
|a0 − αit|p

′
dt
]
≤ 1
N

N∑
i=1

K

(
1 + EPNν [|Xi

0|p
′
] + EP? [|ξ|p

′
] + EPNν

[ ∫ T

0
|a0 − αit|p

′
dt
])

≤ K
(

1 +
∫
Rn
|x|p

′ 1
N

N∑
i=1

νi(dx)
)
<∞,

where the second inequality follows by the fact that φ is bounded. Since p′ > p, it follows by [49, Proposition-A.2.] and
[49, Proposition-B.1.] that (ΛN )N∈N is relatively compact in (M

(
P(Cn ×A)× P(Cn ×A)

)
,Wp).

Let (Nm)m≥1 be a subsequence such that ΛNm −→m→∞ Λ∞ under Wp. We only need to show that Λ∞ = Λ0, or
equivalently (see Proposition 3.5.1), that for every k ≥ 1, g1, . . . , gk ∈ Cb(Cn ×A), f ∈ Cb([0, T ]× P(Cn ×A)), we have∫ T

0

∫
P(Cn×A)2

k∏
i=1
〈gi, ν̄〉f(t, ν̄′)Λ∞(dν̄,dν̄′,dt) =

∫ T

0

∫
P(Cn×A)2

k∏
i=1
〈gi, ν̄〉f(t, ν̄′)Λ0(dν̄,dν̄′,dt). (3.4.7)

In the following, we provide the proof of (3.4.7) for the case k = 2, since the proof for the general case is identical.

Notice that µξ,α is GN–adapted, and Xαi,i depends only on (Xi
0,W

i, B). It therefore follows that (Xαi,i

t∧· , α
i
t) and

(Xαj ,j

t∧· , α
j
t ) are conditionally independent given the σ–algebra GNt , for all t ∈ [0, T ]. Thus for i 6= j,

EPNν
[
g1
(
X
αi,i

t∧· , α
i
t

)
g2
(
X
αj ,j

t∧· , α
j
t

)
f
(
t, µξ,αt

)]
= EPNν

[
EPNν

[
g1(Xαi,i

t∧· , α
i
t)
∣∣GNt ]EPNν

[
g2(Xαj ,j

t∧· , α
j
t )
∣∣GNt ]f(t, µξ,αt )]

.

Since f , g1, and g2 are bounded, it follows that∫ T

0

∫
P(Cn×A)2

〈g1, ν̄〉〈g2, ν̄〉f(t, ν̄′)Λ∞(dν̄,dν̄′,dt)

= lim
m→∞

∫ T

0

1
N2
m

Nm∑
i,j=1

EPNmν
[
g1
(
X
αi,i

t∧· , α
i
t

)
g2
(
X
αj ,j

t∧· , α
j
t

)
f
(
t, µξ,αt

)]
dt

= lim
m→∞

∫ T

0

1
N2
m

Nm∑
i,j=1

EPNmν
[
EPNmν

[
g1(Xαi,i

t∧· , α
i
t)
∣∣GNt ] EPNmν

[
g2(Xαj ,j

t∧· , α
j
t )
∣∣GNt ] f(t, µξ,αt )

]
dt

= lim
m→∞

∫ T

0

∫
P(Cn×A)2

〈g1, ν̄〉〈g2, ν̄〉f(t, ν̄′)EPNmν
[
δ( 1

Nm

∑Nm

i=1
LPNmν (Xα

i,i

t∧· ,α
i
t|GNt ),µξ,αt

)(dν̄,dν̄′)]dt.
Let UN be a random variable on (Ω,F0,P?) such that LP?(UN ) = 1

N

∑N
i=1 ν

i. If we note α?,Nt := φ(t, UN ,Wt∧·, Bt∧·),
we have, from Lemma 3.4.2 that, for all t ∈ [0, T ]

lim
m→∞

EPNmν
[
Wp

(
1
Nm

Nm∑
i=1
LPNmν

(
X
αi,i

t∧· , α
i
t

∣∣GNt ), µξ,αt )]
= lim
m→∞

EP?
[
Wp

(
LP?

(
XUN ,µξ,α,α?,N

t∧· , α?,Nt
∣∣Gt), LP?

(
Xξ,µξ,α,α
t∧· , αt

∣∣Gt))] = 0.

Consequently∫ T

0

∫
P(Cn×A)2

〈g1, ν̄〉〈g2, ν̄〉f(t, ν̄′)Λ∞(dν̄,dν̄′,dt) =
∫ T

0

∫
P(Cn×A)2

〈g1, ν̄〉〈g2, ν̄〉f(t, ν̄′)Λ0(dν̄,dν̄′,dt),

and the proof is concluded.
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Given a probability measure ν ∈ Pp(Rn) and a sequence (νi)i≥1 ⊂ Pp(Rn), we consider the probability spaces (Ω,F ,Pν)
and (ΩN ,FN ,PNν ), introduced respectively in Section 2.2.1 and Section 3.2.2. Let us fix a bounded continuous function
φ : [0, T ]×Rn×Cd×C` −→ A, and define a control process α := (αt)t∈[0,T ] on (Ω,F), and control processes (α1, . . . , αN )
on (ΩN ,FN ) by

αt := φ(t,X0,Wt∧·, Bt∧·), αit := φ(t,Xi
0,W

i
t∧·, Bt∧·), t ∈ [0, T ], i = 1, . . . , N. (3.4.8)

Using the control process α, (Xα, µα) is defined by (2.2.2) under Pν . In particular, in the probability space (Ω,F ,P?),
let ξ ∼ ν, and (Xξ,α, µξ,α) be defined by (3.4.1). We have P? ◦ (µξ,α)−1 = Pν ◦ (µα)−1. Next, let ξ be a random variable
on (Ω,F ,P?) satisfying P? ◦ ξ−1 = ν. We also naturally extend the G–optional process µξ,α on Ω into a GN–optional
process on ΩN . Then with the bounded control processes (α1, . . . , αN ), (Xα,i)i=1,...,N is defined by (3.2.4) under PNν ,
and (Xαi,i)i=1,...,N is defined by (3.4.5). Recall also that

ϕN,Xt (dx) := 1
N

N∑
i=1

δ(Xα,it∧·)
(dx), ϕNt (dx,da) := 1

N

N∑
i=1

δ(Xα,it∧· ,α
i
t)

(dx,da), and ϕNt (dx,da) := 1
N

N∑
i=1

δ(
X
αi,i

t∧· ,α
i
t

)(dx,da).

Proposition 3.4.4. Let α and (αi)1≤i≤N be defined in (3.4.8), together with the Borel measurable function φ : [0, T ]×
Rn × Cd × C` −→ A. Assume that

α ∈ Ap(ν), sup
N≥1

1
N

N∑
i=1

∫
Rn
|x|p

′
νi(dx) <∞, and lim

N→∞
Wp

(
1
N

N∑
i=1

νi, ν

)
= 0.

Then

lim
N→∞

EPNν
[ ∫ T

0
Wp(ϕNt , µ

ξ,α
t )dt

]
= 0, and lim

N→∞
LPNν

(
δϕNt (dν̄)dt, ϕN,X

)
= LPν

(
δµαt (dν̄)dt, µα

)
under Wp. (3.4.9)

Consequently
VS(ν) ≤ lim inf

N→∞
V NS (ν1, . . . , νN ).

Proof. (i) Using Assumption 1.4.1, together with Burkholder–Davis–Gundy inequality and Gronwall’s emma, it follows
by classical arguments that there exist positive constants K, and K ′ such that for all N ≥ 1, i = 1, . . . , N and t ∈ [0, T ]

EPNν
[

sup
r∈[0,t]

∣∣Xα,i
r −Xαi,i

r

∣∣p] ≤ KEPNν
[ ∫ t

0
Wp(ϕNr , µξ,αr )pdr

]
≤ K ′EPNν

[ ∫ t

0

(
Wp(ϕNr , ϕNr )p +Wp(ϕNr , µξ,αr )p

)
dr
]
.

Further, notice that

EPNν
[
Wp(ϕNt , ϕNt )p

]
≤ 1
N

N∑
i=1

EPNν
[

sup
r∈[0,t]

|Xα,i
r −Xαi,i

r |p
]
≤ KEPNν

[ ∫ t

0

(
Wp(ϕNr , ϕNr )p +Wp(ϕNr , µξ,αr )p

)
dr
]
,

it follows by Gronwall’s lemma and then by Lemma 3.4.3 that

lim
N→∞

EPNν
[
Wp(ϕNt , ϕNt )p

]
≤ lim
N→∞

KEPNν
[ ∫ t

0
Wp(ϕNr , µξ,αr )pdr

]
= 0, and thus lim

N→∞
EPNν

[ ∫ T

0
Wp(ϕNt , µ

ξ,α
t )pdt

]
= 0.

As an immediate consequence, we also have

lim
N→∞

LPNν
(
δϕNt (dν̄)dt, ϕN,X

)
= LPν

(
δµαt (dν̄)dt, µα

)
, under Wp.

(ii) Let us now consider an arbitrary control process α ∈ Ap(ν), so that there exists a Borel measurable function
φ : [0, T ]× Rn × Cd × C` −→ A such that αt = φ(t, ξ,Wt∧, Bt∧·) for all t ∈ [0, T ], Pν–a.s. Then there exists (see e.g. [49,
Proposition C.1.]) a sequence of bounded continuous functions (φm)m≥1 : [0, T ]× Rn × Cd × C` −→ A such that

lim
m→∞

αmt := lim
m→∞

φm(t, ξ,Wt∧, Bt∧·) = φ(t, ξ,Wt∧, Bt∧·) = αt, dPν ⊗ dt –a.e.
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Then, in the probability space (Ω,F,F ,Pν), it follows by standard arguments (see e.g. the proof of Proposition 2.3.12 or
Lemma 3.3.7) that

lim
m→∞

EPν
[

sup
t∈[0,T ]

∣∣Xαm

t −Xα
t

∣∣p] = 0, and lim
m→∞

EPν
[ ∫ T

0
Wp

(
µα

m

t , µαt
)pdt] = 0.

Finally, for each m ≥ 1, consider the bounded continuous function φm. For each N ≥ 1, on the space (ΩN ,FN ,PNν ),
we can define control processes (αm,i)1≤i≤N by αm,it := φm(t,Xi

0,W
i
t∧·, Bt∧·), t ∈ [0, T ], i ∈ {1, . . . , N}, and then define

(Xαm,1, . . . , Xαm,N ) as the unique solution of Equation (3.2.4) with control processes (αm,i)i=1,...,N .

Define then

ϕm,N,Xt (dx) := 1
N

N∑
i=1

δ(Xαm,it∧· )(dx) and ϕm,Nt (dx,da) := 1
N

N∑
i=1

δ(Xαm,it∧· ,αm,it )(dx,da).

We have, thanks to Equation (3.4.9)

lim
N→∞

LPNν
(
δϕm,Nt

(dm)dt, ϕm,N,X
)

= LPν
(
δµαmt (dm)dt, µα

m)
, underWp.

It follows then

J(α) = EPν
[ ∫ T

0

〈
L(t, ·, µαt ), µαt

〉
dt+

〈
g(·, µαT ), µαT

〉]
≤ lim
m→∞

EPν
[ ∫ T

0

〈
L(t, ·, µα

m

t ), µα
m

t

〉
dt+

〈
g(·, µα

m

T ), µα
m

T

〉]
≤ lim
m→∞

lim
N→∞

EPNν
[ ∫ T

0

〈
L(t, ·, ϕm,Nt ), ϕm,Nt

〉
dt+

〈
g(·, ϕm,N,XT ), ϕm,N,XT

〉]
≤ lim
m→∞

lim
N→∞

1
N

N∑
i=1

EPNν
[ ∫ T

0
L
(
t,Xαm,i, αm,it , ϕm,Nt

)
dt+ g

(
Xαm,i, ϕm,N,XT

)]
≤ lim inf

N→∞
V NS (ν1, . . . , νN ).

By arbitrariness of α ∈ Ap(ν), it follows that VS(ν) ≤ lim inf
N→∞

V NS (ν1, ·, νN ).

Using exactly the same arguments and Lemma 3.4.2 we can obtain the following result, whose proof is therefore omitted.

Proposition 3.4.5. Assume that

sup
m≥1

∫
Rn
|x|p

′
νm(dx) <∞, and lim

m→∞
Wp(νm, ν) = 0.

Then with the control process α defined in (3.4.8), we have

lim
m→∞

LPνm
(
δµαt (dν̄)dt, µα

)
= LPν

(
δµαt (dν̄)dt, µα

)
, under Wp, and consequently VS(ν) ≤ lim inf

m→∞
VS(νm).

3.4.2 Tightness of the optimal control rules
Let us now stay in the context of Theorem 3.2.7 and prove that the set of optimal or ε–optimal control rules is tight.
Recall that Assumption 1.4.1 and Assumption 3.1.1 hold true, A ⊂ Rj for some j ≥ 1, and both L and g are continuous
in all their arguments. Let N ≥ 1, (ν, ν1, . . . , νN ) ⊂ Pp(Rn), α ∈ A(ν) and (α1, . . . , αN ) ∈ AN (νN ). PN (α1, . . . , αN ) is
a probability measure on Ω defined by (3.2.6).
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Proposition 3.4.6. (i) In the context of Theorem 3.2.7, Let (νi)i≥1 ⊂ Pp(Rn) satisfy supN≥1
1
N

∑N
i=1
∫
Rn |x|

p′νi(dx) <
∞ and (PN )N≥1 ⊂ Pp(Ω) satisfy (3.2.7), then both ( 1

N

∑N
i=1 ν

i)N≥1 and (PN )N≥1 are relatively compact under Wp.
Moreover, for any converging subsequence (PNm)m≥1, we have

lim
m→∞

Wp

(
1
Nm

Nm∑
i=1

νi, ν

)
= 0, for some ν ∈ Pp(Rn), and lim

m→∞
Wp

(
PNm ,P∞

)
= 0, for some P∞ ∈ PR(ν).

(ii) In the context of Proposition 3.2.8, let (εm)m≥1 ⊂ R+ be such that limm→∞ εm = 0, (Pm)m≥1 be a sequence such
that

Pm ∈ PR(νm), and J(Pm) ≥ VS(νm)− εm.

Then the sequence (Pm)m≥1 is relatively compact, and moreover, any cluster point of (Pm)m≥1 belongs to PR(ν).

Proof. We will only consider (i), since the proof of (ii) is identical.

Tightness: To prove the tightness of (PN )N≥1 under Wp, it is enough to adapt the proof of [104, Proposition 3.5.]
to our context. First, let us define control processes (α0,i)i≥1 by α0,i

t ≡ a0 for all t ∈ [0, T ] and i ≥ 1, and denote
PN0 := PN (α0,1, . . . , α0,N ). By Lemma 3.4.1, there exist some constants K, K ′ > 0, such that for all N ≥ 1

J
(
PN0
)
≥ −K

(
1 + EPN0

[
sup
t∈[0,T ]

|Xt|p
])

= −K
(

1 + 1
N

N∑
i=1

EPNν
[

sup
t∈[0,T ]

∣∣Xα0,i
t

∣∣p]) ≥ −K ′(1 + 1
N

N∑
i=1

∫
Rn
|x|pνi(dx)

)
.

Since by (3.2.7)
J
(
PN
)
≥ V NS (ν1, . . . , νN )− εN ≥ J

(
PN0
)
− εN ,

it follows that J
(
PN
)
≥ −C, for some constant C independent of N . Using again Lemma 3.4.1, the coercivity condition

(1.4.2), and the growth conditions in Assumption 1.4.1, it follows that

J
(
PN
)
≤ K

(
1 +

∫
Rn
|x′|p 1

N

N∑
i=1

νi(dx′) + 1
N

N∑
i=1

EPNν
[ ∫ T

0

∣∣αi,Nt − a0
∣∣pdt])− CL 1

N

N∑
i=1

EPNν
[ ∫ T

0

∣∣αi,Nt − a0
∣∣p′dt].

Then, there exists some constant C > 0, independent of N , such that

CL
1
N

N∑
i=1

EPNν
[ ∫ T

0

∣∣αi,Nt − a0
∣∣p′dt]−K 1

N

N∑
i=1

EPNν
[ ∫ T

0

∣∣αi,Nt − a0
∣∣pdt] < C.

Since p′ > p, it follows that

sup
N≥1

1
N

N∑
i=1

EPNν
[ ∫ T

0

∣∣αi,Nt − a0
∣∣p′dt] <∞. (3.4.10)

With the condition supN≥1
1
N

∑N
i=1
∫
Rn |x|

p′νi(dx) <∞, and by similar arguments as in [104, Proposition 3.5.], it is easy
to deduce that both ( 1

N

∑N
i=1 ν

i)N≥1 and (PN )N≥1 are relatively compact under Wp.

Identification of the limit: Up to a subsequence, let us assume w.l.o.g. that

lim
N→∞

Wp

(
PN ,P

)
= 0, for some P ∈ Pp(Ω), so that lim

N→∞
Wp

(
1
N

N∑
i=1

νi, ν

)
= 0, with ν := P ◦X−1

0 ∈ Pp(Rn),

and then prove that P ∈ PR(Ω). To this end, it is enough, by Proposition 3.3.9, to prove that P satisfies the following
properties
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(i) P
[
µ̂ ◦ (X0)−1 = ν,X0 = Y0,W0 = 0, B0 = 0

]
= 1;

(ii) EP[‖X‖p +
∫

[0,T ]×A
(
ρ(a0, a)

)pΛt(da)dt
]
<∞;

(iii) µ̂ satisfies (3.3.4) under P;

(iv) (Bt)t∈[0,T ] is an (F,P)–Brownian motion;

(v) the process (Sft )t∈[0,T ] (defined in (3.3.24)) is an (F◦,P)–martingale with filtration F◦ = (F◦t )t∈[0,T ] defined by
F◦t := σ(Xt∧·, Yt∧·, Bt∧·, µt) for all f ∈ C2

b (Rn × R`);

(vi) finally, for P–a.e. ω̄ ∈ Ω,
(
M̂

ϕ,µ(ω̄)
t

)
t∈[0,T ] (defined in (3.3.6)) is an

(
F̂, µ̂(ω̄)

)
–martingale for all ϕ ∈ C2

b (Rn × Rd).

First, let us consider two bounded continuous functions h1, h2 in Cb(Rn), we have

EP[〈h1, µ̂ ◦ (X0)−1〉〈h2, µ̂ ◦ (X0)−1〉
]

= lim
N→∞

1
N2

N∑
i,j=1

EPNν
[
h1(Xi

0)h2(Xj
0)
]

= lim
N→∞

1
N2

N∑
i=1
〈h1h2, νi〉+ lim

N→∞

1
N2

N∑
i 6=j
〈h1, νi〉〈h2, νj〉

= lim
N→∞

〈
h1,

1
N

N∑
i=1

νi
〉〈

h2,
1
N

N∑
i=1

νi
〉

= 〈h1, ν〉〈h2, ν〉.

Using similar arguments, we can deduce that for all k ≥ 1 and bounded continuous functions h1, . . . , hk ∈ Cb(Rn)

EP[Πi
i=1〈hi, µ̂ ◦ (X0)−1〉

]
= Πk

i=1〈hi, ν〉, and hence P[µ̂ ◦ (X0)−1 = ν] = 1.

Besides, with the definition of PNν in Section 3.2.2, and then by (3.4.10), it is easy to deduce that

P
[
X0 = Y0,W0 = 0, B0 = 0

]
= 1, and EP

[
‖X‖p +

∫∫
[0,T ]×A

(ρ(a0, a))pΛt(da)dt
]
<∞.

Next, notice that, for all φ ∈ Cb(Cn × Cn ×M× Cd) and ψ ∈ Cb(C` × P(Ω̂)),

EP[φ(Xt∧·, Yt∧·,Λt,W
)
ψ
(
B, µ̂

)]
= lim
N→∞

EPN [φ(Xt∧·, Yt∧·,Λt,W
)
ψ
(
B, µ̂

)]
= lim
N→∞

1
N

N∑
i=1

EPNν
[
φ
(
Xi
t∧·, Y

i
t∧·, (δαi,Ns (da)ds)t,W i

)
ψ
(
B,ϕN

)]
= lim
N→∞

EPNν
[
EϕN

[
φ
(
X̂t∧·, Ŷt∧·, (Λ̂)t, Ŵ

)]
ψ
(
B,ϕN

)]
= EP

[
Eµ̂
[
φ
(
X̂t∧·, Ŷt∧·, Λ̂t, Ŵ

)]
ψ
(
B, µ̂

)]
,

which implies that µ̂ satisfies (3.3.4) under P that is, for P–a.e. ω̄ ∈ Ω,

µ̂t(ω̄) = PGTω̄ ◦
(
Xt∧·, Yt∧·,Λt,W

)−1 = PGtω̄ ◦
(
Xt∧·, Yt∧·,Λt,W

)−1
.

We next show that (Bt)t∈[0,T ] is an (F,P)–Brownian motion. First, since PNν ◦B−1 is the Wiener measure, it is clear that
P ◦B−1 is also the Wiener measure. Next, let φ ∈ Cb(Ω), for all s ∈ [0, T ], we define the random variables

Φs := φ
(
Xs∧·, Ys∧·,Λs,Ws∧·, Bs∧·, µ̂s∧·

)
on Ω, and Φis := φ

(
Xα,i
s∧·, Y

α,i
s∧· , (δαi,Nt (da)dt)s,W i

s∧·, Bs∧·, ϕ
N
s∧·
)
on (ΩN ,FN ).
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On (ΩN ,FN ), we introduce the σ–algebra FN,W := σ{W 1, . . . ,WN}. Then, for all ψ ∈ Cb(R`) and t ≥ s

EP[ψ(Bt −Bs)Φs
]

= lim
N→∞

1
N

N∑
i=1

EPNν
[
ψ(Bt −Bs)Φis

]
= lim
N→∞

1
N

N∑
i=1

EPNν
[
EPNν

[
ψ(Bt −Bs)Φis

∣∣FN,W ]]
= lim
N→∞

1
N

N∑
i=1

EPNν
[
EPNν

[
ψ(Bt −Bs)

∣∣FN,W ]EPNν
[
Φis
∣∣FN,W ]]

= lim
N→∞

1
N

N∑
i=1

EPNν
[
ψ(Bt −Bs)

]
EPNν

[
Φis
]

= EP[ψ(Bt −Bs)
]
EP[Φs].

This implies that B is an (F,P)–Brownian motion.
We finally consider the two martingale problems in Proposition 3.3.9, for which we can adapt the proofs in [104,
Proposition 5.1.]. Let ϕ ∈ C2

b (Rn ×Rd), f ∈ Cb(Rn ×R`), ψ ∈ Cb(Ω̂), φ ∈ Cb(P(Ω̂)) and β ∈ Cb(Cn × Cn × C` ×P(Cn)).
In addition, on (ΩN ,FN ), we define the processes Mϕ,i for i = 1, . . . , N by

Mϕ,i
t := ϕ

(
Y α,it ,W i

t

)
− ϕ(Y α,i0 ,W i

0)−
∫ t

0
L̂sϕ

(
Xα,i, Y α,i,W i, αi,Ns , ϕN,Xs

)
ds,

where L̂ is defined in (3.3.5). Then (Mϕ,i)i∈{1,...,N} are (PNν ,FN )–orthogonal martingales with quadratic variation(∫ t

0

∣∣σ(r,Xα,i, ϕN,Xr , αi,Ns
)
∇ϕ(Xα,i

r )
∣∣2dr

)
t∈[0,T ]

, i = 1, . . . , N.

Denote 〈(
M̂ϕ,µ
t − M̂ϕ,µ

r

)
Ψr, µ̂

〉
:= Eµ̂

[(
M̂ϕ,µ
t − M̂ϕ,µ

r

)
ψ(X̂r∧·, Ŷr∧·, Λ̂r, Ŵr∧·)

]
,

it follows by direct computation that, for some constant C > 0 whose value may vary from line to line∣∣∣EP[φ(µ̂)
〈(
M̂ϕ,µ
t − M̂ϕ,µ

r

)
Ψr, µ̂

〉]∣∣∣ = lim
N→∞

∣∣∣EPN [φ(µ̂)
〈(
M̂ϕ,µ
t − M̂ϕ,µ

r

)
Ψr, µ̂

〉]∣∣∣
≤ lim sup

N→∞
EPN [∣∣φ(µ̂)

∣∣2]1/2EPN
[∣∣〈(M̂ϕ,µ

t − M̂ϕ,µ
r

)
Ψr, µ̂

〉∣∣2]1/2
= lim sup

N→∞
CEP[∣∣φ(µ̂)

∣∣2]1/2EPNν
[∣∣∣∣ 1
N

N∑
i=1

(Mϕ,i
t −Mϕ,i

r )ψ
(
Xα,i
r∧·, Y

α,i
r∧· , (Λi)r,W i

r∧·
)∣∣∣∣2]1/2

≤ lim sup
N→∞

CEP[∣∣φ(µ̂)
∣∣2]1/2( 1

N2

N∑
i=1

EPNν
[ ∫ t

r

∣∣σ(s,Xα,i, ϕN,Xs , αi,Ns
)
∇ϕ(Xα,i

s )
∣∣2ds

])1/2

≤ lim sup
N→∞

CEP[∣∣φ(µ̂)
∣∣2]1/2( 1

N2

N∑
i=1

EPNν
[ ∫ t

r

∣∣Xα,i
s∧·
∣∣p + ρ(a0, α

i,N
s )pds

])1/2
≤ lim sup

N→∞

C√
N

= 0.

This implies that, for P–a.e. ω̄ ∈ Ω 〈(
M̂

ϕ,µ(ω̄)
t − M̂ϕ,µ(ω̄)

r

)
Ψr, µ̂(ω̄)

〉
= 0.

Similarly, with â0 defined in equation (3.3.25) and Zi := Xα,i − Y α,i, let us introduce (Sf,it )t∈[0,T ] on ΩN by

Sf,it := f
(
Zit , Bt

)
− ϕ(Zi0, B0)−

∫ t

0

1
2Tr

[
â0(s,Xα,i, ϕN,Xs )∇2ϕ(Zis, Bs)

]
ds, PNν –a.s., for all t ∈ [0, T ].

Denoting Λi(da)dt := δαi,Nt
(da)dt, and applying the same arguments as above, it follows that

EP[(Sft − Sfr )β(Xr∧·, Yr∧·, Br∧·, µr
)]

= lim
N→∞

1
N

N∑
i=1

EPNν
[(
Sf,it − Sf,ir

)
β
(
Xα,i
r∧·, Y

α,i
r∧· , Br∧·, ϕ

N,X
r

)]
= 0.
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Finally, by considering (r, t, ψ, φ) in a countable dense subset of [0, T ] × [0, T ] × Cb(Ω̂) × Cb(P(Ω̂)), it follows that the
process

(
Sft
)
t∈[0,T ] is an (F◦,P)–martingale for all f ∈ C2

b (Rn × R`), and for P–a.e. ω̄ ∈ Ω, (M̂ϕ,µ(ω̄)
t )t∈[0,T ] is an(

F̂, µ̂(ω̄)
)
–martingale for all ϕ ∈ C2

b (Rn × Rd). We then conclude that P ∈ PR(ν).

3.4.3 Proof of continuity of value function
Let ν ∈ Pp′(Rn) and (νm)m≥1 ⊂ Pp′(Rn) be such that supm≥1

∫
Rn ‖x

′‖p′νm(dx′) <∞ and limm→∞Wp(νm, ν) = 0.

We first consider two sequences (εm)m≥1 ⊂ R+ and (Pm)m≥1 such that

lim
m→∞

εm = 0, Pm ∈ PR(νm), and J(Pm) ≥ VR(νm)− εm, for all m ≥ 1.

It follows by Proposition 3.4.6 that (Pm)m∈N is relatively compact under Wp. Via a subsequence, let us assume that
Pm → P∞ under Wp, so that P∞ ∈ PR(ν). Using the continuity and growth conditions of (L, g) in Assumption 1.4.1
and Assumption 3.1.1, it follows that limm→∞ J(Pm) = J(P∞), and therefore

lim sup
m→∞

VR(νm) ≤ lim
m→∞

J(Pm) = J(P∞) ≤ VR(ν) = VS(ν).

Together with the inequality from Proposition 3.4.5, we then conclude the proof.

3.4.4 Proof of limit theory

(i) By Proposition 3.4.6, the sequence (PN )N≥1 is relatively compact underWp. Further, for any convergent subsequence
(PNm)m≥1, one has

lim
m→∞

Wp

(
1
Nm

Nm∑
i=1

νi, ν

)
= 0, for some ν ∈ Pp(Rn), and lim

m→∞
Wp

(
PNm ,P∞

)
= 0, for some P∞ ∈ PR(ν).

Moreover, under Assumption 1.4.1 and Assumption 3.1.1, it follows by (3.2.7) and Remark 3.2.2 that

lim sup
N→∞

V NS (ν1, . . . , νN ) ≤ lim
m→∞

J(PNm) = J(P∞) ≤ VR(ν) = VS(ν).

Together with Proposition 3.4.4, one obtains that

lim
N→∞

V NS (ν1, . . . , νN ) = J(P∞) = VR(ν) = VS(ν), (3.4.11)

and hence P∞ ∈ P?R(ν).
(ii) The second item is in fact a direct consequence of Proposition 2.3.12, Proposition 3.3.6 and Proposition 3.4.4.
(iii) Finally, let (Nm)m∈N be a sequence such that

lim sup
N→∞

∣∣∣∣V NS (ν1, . . . , νN )− VS
(

1
N

N∑
i=1

νi
)∣∣∣∣ = lim

m→∞

∣∣∣∣V NmS (ν1, . . . , νNm)− VS
(

1
N

Nm∑
i=1

νi
)∣∣∣∣.

One more time, through a subsequence, we can assume that

1
Nm

Nm∑
i=1

νi −→
m→∞

ν, under Wp, for some ν ∈ Pp(Rn).

Using (3.4.11) and Proposition 3.2.8, we obtain that

lim sup
N→∞

∣∣∣∣V NS (ν1, . . . , νN )− VS
(

1
N

N∑
i=1

νi
)∣∣∣∣ ≤ lim

m→∞

∣∣∣∣V NmS (ν1, . . . , νNm)− VS(ν)
∣∣∣∣+ lim

m→∞

∣∣∣∣VS(ν)− VS
(

1
N

Nm∑
i=1

νi
)∣∣∣∣ = 0,

and thus (3.2.8) holds true.
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3.5 Appendix: characterisation of probability measures on a set of probability
measures

Proposition 3.5.1. Let E be a Polish space, (Υ1,Υ2) ∈ P(P(E))× P(P(E)) be such that∫
P(E)

k∏
i=1
〈ϕi, ν〉Υ1(dν) =

∫
P(E)

k∏
i=1
〈ϕi, ν〉Υ2(dν), for all k ≥ 1, and (ϕi)i∈{1,...,k} ⊂ Cb(E). (3.5.1)

Then Υ1 = Υ2.

Proof. First, using (3.5.1), we have, for all k ≥ 1, for every family of polynomial functions (ψi)i∈{1,...,k}, and every
(ϕi)i∈{1,...,k} ⊂ Cb(E;R), ∫

P(E)

k∏
i=1

ψi(〈ϕi, ν〉)Υ1(dν) =
∫
P(E)

k∏
i=1

ψi(〈ϕi, ν〉)Υ2(dν). (3.5.2)

Since we can approximate any continuous function by polynomial functions, uniformly on compact sets, it follows that
(3.5.2) still holds true for all k ≥ 1, (ψi)i∈{1,...,k} ⊂ Cb(R;R) and (ϕi)i∈{1,...,k} ⊂ Cb(E;R). This further implies that, for
all (r1, . . . , rk) ∈ Rk ∫

P(E)

k∏
i=1

1{ν:〈ϕi,ν〉<ri}Υ1(dν) =
∫
P(E)

k∏
i=1

1{ν:〈ϕi,ν〉<ri}Υ2(dν).

In other words, Υ1[A] = Υ2[A] for all A ∈ Ψ, where

Ψ :=
{
A[r1, . . . , rm;ϕ1, . . . , ϕm] : m ≥ 1, (r1, . . . , rm) ∈ Rm and (ϕ1, . . . , ϕm) ∈ Cb(E)m

}
,

with
A[r1, . . . , rm;ϕ1, . . . , ϕm] :=

{
λ ∈ P(E) : 〈ϕi, λ〉 < ri, i = 1, . . . ,m

}
.

Notice that the weak convergence topology on P(E) is generated by the open sets in Ψ, it follows by the monotone class
theorem that Υ1 = Υ2 on the Borel σ–field of σ(Ψ).
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Chapter 4

Measure–valued controls and limit theory
with law of control

4.1 Introduction
The aim of this chapter is to provide a rigorous connection between two stochastic control problems: the stochastic control
problem of large population (or particles) interacting through the empirical distribution of their states and controls on
the one hand, and on the other hand the problem of control of stochastic dynamics depending upon the joint (conditional)
distribution of the controlled state and the control, also called extended mean field control problem.

The connection we are investigating i.e. that the stochastic control problem of large population converges towards
the mean field control problem, is often called limit theory or (controlled) propagation of chaos. In contrast with the
classical framework of McKean–Vlasov stochastic control problem which only considers the conditional distribution of
Xt, here, there is in addition the presence of the conditional distribution of (Xt, αt). Indeed, when there is no law of
control i.e. no L(Xt, αt|B) but only L(Xt|B) in (b, σ, L, g), these problems have been studied in the literature. Let us
mention the work of Snitzman [149] which shows for particular coefficients (b, σ) in the absence of control (and the law
of control), via some compactness arguments, a connection of this type. See also the papers of Oelschläger [133] and
Gärtner [71], with no control and no law of control as well, which use martingale problem in the sense of Stroock and
Varadhan [150] adapted in the context of Mckean–Vlasov equation to prove similar results under minimal assumptions.

In the controlled dynamic case but no extended type, that is to say when the dynamic depends on the control but
not its law, Fischer and Livieri [67] gets a connection between the large population stochastic control problem and the
(extended) mean field control problem for the study of a mean–variance problem arising in finance. Another interesting
work is that of Budhiraja, Dupuis, and Fischer [35], where they study the behavior of empirical measures of controlled
interacting diffusion in order to prove a large deviation principle in a McKean–Vlasov framework. Still without touching
the case with law of control, the first work that deals with the case with control under general assumptions are Lacker
[104] and Chapter 3 of this thesis. Thanks to an (extension of) martingale problem of [150], as well as relaxed controls
initiated by Fleming and Nisio [69], and developed by El Karoui, Huu Nguyen, and Jeanblanc-Picqué [63], combined with
compactness arguments adapted to the McKean–Vlasov setting, [104] proves the connection between the two problems
under general conditions on (b, σ, L, g) without common noise. Following upon these ideas, in the Chapter 3, we develop
a general overview of McKean–Vlasov or mean field control problem, and treat the case with common noise, which turns
out to be a non trivial extension.

In the presence of the law of control, this propagation of chaos result is a natural expectation. In spite of appearances.
The aforementioned techniques do not work in this context. Two main reasons can explain the unsuitable aspect of the
techniques mentioned above. Firstly, the continuity of the application t 7−→ L(Xt|B) (or t 7−→ ϕN,Xt ) plays a crucial
role. Indeed, the classical idea is to put this application in a canonical space, which is here the space C([0, T ];P(Rn))
of continuous functions from [0, T ] into the space of probability measures on Rn, and via compactness arguments and
martingale problem get this connection (see [104], and Chapter 3 for the non–Markovian case with common noise). In
our situation, this type of continuity is lost because we must take into account the application t 7−→ L(Xt, αt|B) (or
t 7−→ ϕNt ) which does not have this property since the presence of control α can generate some discontinuities. Secondly,
as highlighted in Chapter 3, proving a result of propagation of chaos is extremely related to the search of the closure
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of the set of all probabilities that are the image measure of the controlled state process, the control and the conditional
distribution of the controlled state process and control i.e. L

(
X, δαt(du)dt,L(X, δαt(du)dt|B)

)
. Unfortunately, the natural

space one might think to answer this question is not a closed set due to another problem of continuity (see Remark 4.3.1
for a more thorough discussion).

There are not many papers in the literature which study the mean field control problem with law of control and its
connection with a large population stochastic control problem. To the best of our knowledge, only the recent papers
of Laurière and Tangpi [113] (with strong assumptions) and Motte and Pham [127] (for Mean–field Markov decision
processes) treat the limit theory question. Most papers focus on the questions of existence and uniqueness of optimal
control. Acciaio, Backhoff Veraguas, and Carmona [1], with the help of Pontryagin’s maximum principle, obtain necessary
and sufficient conditions to characterize the optimum with strong assumptions on the coefficients in a no common noise
framework. Pham and Wei [138] (without common noise, with closed loop controls) and the Chapter 5 of this thesis
establish the Dynamic Programming Principle (DPP for short) and give a Hamilton–Jacobi equation on a space of
probability measures verified by the value function. Let us also mention Carmona and Lacker [45], Élie, Mastrolia, and
Possamaï [65], Cardaliaguet and Lehalle [37] and [113] who study similar problem in the mean field games framework
called mean field game of controls or extended mean field game, as well as our Chapter 6 and Chapter 7 adapt the
arguments of this chapter to the context of mean field game of controls.

In this chapter, our goal is to give some properties on the extended mean field control problem and to show its connection
with the large population stochastic control problem under general assumptions on (b, σ, L, g) (see Theorem 4.5.3 and
Theorem 4.5.1). To bypass the difficulties highlighted above, we follow the idea mentioned in Chapter 3 which is to
introduce a new optimization problem by considering a suitable set of controls. This set must be the closure of some
set of probability measures. In this framework, the appropriate space is the closure of all the probabilities that are the
distributions of the conditional distribution of the state controlled process and the conditional distribution of the state
controlled process and the control i.e. L

(
L(Xt|B))t∈[0,T ], δL(Xt,αt|B)(dm)dt

)
(for more details see Section 4.4). Taking

into account this type of probability turns out to be the key to solve the main difficulties. The characterization of its
closure is possible by the appropriate use of (controlled) Fokker–Planck equation. Inspired by the techniques developed
in the proofs of Gyöngy [76], especially [76, Lemma 2.1] (an adaptation of Krylov [98]) and [76, Proposition 4.3] which
are regularization results, we can determine the desired set thanks to a Fokker–Planck equation. The conditions used on
the coefficients are general, except the non–degeneracy of the volatility σ. This assumption is capital to prove our main
results. Apart from this assumption, our result appears to be one of the first to establish some general properties on
extended mean field control problem and to show its connection with the large population stochastic problem. Lacker
[105] used similar techniques in the context of convergence of closed loop Nash equilibria, but his analysis focuses mainly
on an adequate manipulation of [76, Theorem 4.6], while ours focuses on the techniques used for the proofs. Also, let us
mention Lacker, Shkolnikov, and Zhang [108] which establishes a correspondence between Fokker–Planck equations and
solutions of SDE in a McKean–Vlasov framework with common noise.

Also, if we restrict our study in the case without common noise and with a particular form of coefficient σ (see
Assumption 4.6.1) we prove that the stochastic control of McKean–Vlasov process with law of control over the set
of open loop control is equivalent to the same stochastic control problem over the set of closed–loop control. We want
to emphasize that unlike the classical literature on the equivalence between the open loop controls and the closed loop
controls, our approach does not use any convexity assumptions. The projection argument combined with the convexity
assumptions can not be applied in the situation of law of control. The projection can not allow to recover the law of the
control. Our techniques to prove the equivalence between closed loop and open loop controls use essentially the density of
the associated the Fokker–Planck equation, and more precisely, some estimates obtained in Bogachev, Krylov, Röckner,
and Shaposhnikov [31].

The rest of the chapter is structured as follows. Section 4.2, Section 4.3 and Section 4.4 carefully formulate first the
N–agents stochastic control problem, then the strong formulation of the extended mean field control problem and finally
the stochastic control of measure–valued processes. Next, in Section 4.5, we present the main results of this chapter:
the equivalence between the strong formulation of extended mean field control problem and the stochastic control of
measure-valued processes, and the propagation of chaos result i.e. the extended mean field control problem is, when
N goes to infinity, the limit of N–agents stochastic control problem in presence of interactions through the empirical
distribution of state and control processes. Section 4.6, in a restrictive situation, deals with the equivalence between the
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closed loop and the open loop control, and give a limit theory result in the setting of closed loop controls. Finally, Section
4.7 provides some approximation results related to the Fokker–Planck equation and Section 4.8 is devoted to the proof
of our main results.

With a Polish space E, we denote by M(E) the space of all Borel measures q(dt,de) on [0, T ] × E, whose marginal
distribution on [0, T ] is the Lebesgue measure dt, that is to say q(dt,de) = q(t, de)dt for a family (q(t, de))t∈[0,T ] of Borel
probability measures on E. We also consider the subset M0(E) ⊂M(E) which is the collection of all q ∈M(E) such that
q(dt, de) = δψ(t)(de)dt for some Borel measurable function ψ : [0, T ]→ E. Let Λ denote the canonical element on M(E),
we define

Λt∧·(ds,de) := Λ(ds,de)
∣∣
[0,t]×E + δe0(de)ds

∣∣
(t,T ]×E , for some fixed e0 ∈ E. (4.1.1)

For p ≥ 1, we write Mp(E) to designate the elements of q ∈M(E) such that q/T ∈ Pp(E × [0, T ]).

Let (`, n) ∈ N × N?, (U, ρ) be a nonempty Polish space and PnU denote the space of all Borel probability measures on
Rn × U i.e. PnU := P(Rn × U). We give ourselves the following Borel measurable functions[

b, σ, L
]

: [0, T ]× Rn × CnW × PnU × U −→ Rn × Sn×n × R and g : Rn × CnW −→ R.

Assumption 4.1.1. The functions [b, σ, L] are non–anticipative in the sense that, for all (t, x, π,m, u) ∈ [0, T ] × Rn ×
CnW × PnU × U [

b, σ, L
]
(t, x, π,m, u) =

[
b, σ, L

]
(t, x, πt∧·,m, u).

Moreover, there exist positive constants C and p such that p ≥ 2 and
(i) U is a compact space;
(ii) b and σ are continuous bounded functions, and σ0 ∈ Sn×` constant;
(iii) one has for all (t, x, x′, π, π′,m,m′, u) ∈ [0, T ]× (Rn)2 × (CnW)2 × (PnU )2 × U∣∣[b, σ](t, x, π,m, u)− [b, σ](t, x′, π′,m′, u)

∣∣ ≤ C
(
|x− x′|+ sup

s∈[0,T ]
Wp(πs, π′s) +Wp(m,m′)

)
;

(iv) for some constant θ > 0, one has, for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U ,

θIn ≤ σσ>(t, x, π,m, u);

(v) the reward functions L and g are continuous, and for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U , one has

∣∣L(t, x, π,m, u)
∣∣+ |g(x, π)| ≤ C

[
1 + |x|p + sup

s∈[0,T ]
Wp(πs, δ0)p +

∫
Rn
|x′|pm(dx′, U)

]
.

Remark 4.1.2. These assumptions are standard and in the same spirit as those used in [104] and Assumption 1.4.1,
but with some specific modifications adapted to the context of this chapter. They ensure the well-posedness of the objects
used throughout this chapter. Due to the technical aspect of our chapter, the point (i) is considered essentially to simplify
(the presentation of) the proofs. But, using the classical uniform integrability condition as in [104] and Assumption 1.4.1,
it is possible to work with U a non–bounded set of Rn for instance. The point (iv) is the least classical assumption in
the study in this problem. This is an important assumption for the proofs of our results, in particular to deal with the
Fokker–Planck equations and the different SDEs considered in the proofs (see Section 4.7).

4.2 The N–agents stochastic control problem

In this section, we present the N–agents stochastic control problem or large population control problem. The study of
this control problem when N goes to infinity is one of the main objective of this chapter.

For a fixed (ν1, . . . , νN ) ∈ Pp(Rn)N , let
ΩN := (Rn)N × (Cn)N × C`,
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be the canonical space, with canonical variable X0 = (X1
0, . . . ,XN

0 ), canonical processes W = (W1
s, . . . ,WN

s )0≤s≤T and
B = (Bs)0≤s≤T , and probability measure PNν under which X0 ∼ νN := ν1⊗ · · ·⊗ νN and (W, B) are standard Brownian
motions independent of X0. Let FN = (FNs )0≤s≤T be defined by

FNs := σ
{

X0,Wr, Br, r ∈ [0, s]
}
, s ∈ [0, T ].

Let us denote by AN (νN ) the collection of all U–valued FN–predictable processes. Then given α := (α1, . . . , αN ) ∈
(AN (νN ))N , denote by Xα := (Xα,1

· , . . . ,Xα,N
· ) the unique strong solution of the following system of SDEs, for each

i ∈ {1, . . . , N}, EPNν
[
‖Xα,i‖p

]
<∞,

Xα,i
t = Xi

0 +
∫ t

0
b
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i
r

)
dr +

∫ t

0
σ
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i
r

)
dWi

r + σ0Bt, for all t ∈ [0, T ], (4.2.1)

with

ϕN,Xt (dx) := 1
N

N∑
i=1

δ(
Xα,i
t

)(dx) and ϕNt (dx, du) := 1
N

N∑
i=1

δ(
Xα,i
t , αit

)(dx,du), for all t ∈ [0, T ].

Then, the value function V NS (ν1, . . . , νN ) is defined by

V NS (ν1, . . . , νN ) := sup
(α1,...,αN )

JN (α) where JN (α) := 1
N

N∑
i=1

EPNν
[ ∫ T

0
L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i
t

)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
,

(4.2.2)

which is well–posed under Assumption 4.1.1.

Remark 4.2.1. (i) Our formulation allows for coefficients depending on the path of the empirical distribution of Xα, but
can only accommodate a Markovian dependence with respect to Xα itself. In some sense, we work on a non-Markovian
framework w.r.t. the empirical distribution of Xα. Indeed, as we will see in Section 4.4, our point of view is to write the
entire problem as an optimization involving mainly the empirical distribution of Xα i.e. ϕN,X. Therefore our key variable
is ϕN,X (not Xα ) and we can deal with its path, hence the non–Markovian aspect.

(ii) Sometimes, the probability on CnW ×M(PnU )× C`

P(α1, ..., αN ) := PNν ◦
(

(ϕN,Xt )t∈[0,T ], δ(ϕNs )(dm)ds, (Bt)t∈[0,T ]

)−1
(4.2.3)

will be used to refer to (α1, . . . , αN ) ∈ (AN (νN ))N . The notation PNS (ν1, . . . , νN ) will designate all probabilities of this
type. The need for this space will become clearer in the following.

4.3 The extended mean field control problem
On a fix probability space, we formulate the classical McKean–Vlasov control problem with common noise including the
(conditional) law of control.

For a fixed ν ∈ Pp(Rn), let
Ω := Rn × Cn × C`,

be the canonical space, with canonical variable ξ, canonical processesW = (Wt)0≤t≤T andB = (Bt)0≤t≤T , and probability
measure Pν under which ξ ∼ ν and (W,B) are standard Brownian motions independent of ξ. Let F = (Fs)0≤s≤T and
G = (Gs)0≤s≤T be defined by: for all s ∈ [0, T ],

Fs := σ
{
ξ,Wr, Br, r ∈ [0, s]

}
and Gs := σ

{
Br, r ∈ [0, s]

}
.
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Let us denote by A(ν) the collection of all U -valued processes α = (αs)0≤s≤T which are F-predictable. Then given
α ∈ A(ν), let Xα be the unique strong solution of the SDE (see for instance Theorem 5.5.3): EPν

[
‖Xα‖p

]
<∞, Xα

0 = ξ,
and for t ∈ [0, T ],

Xα
t = Xα

0 +
∫ t

0
b
(
r,Xα

r , µ
α
r∧·, µ

α
r , αr

)
dr +

∫ t

0
σ
(
r,Xα

r , µ
α
r∧·, µ

α
r , αr

)
dWr + σ0Bt, (4.3.1)

with µαr := LPν
(
Xα
r

∣∣Gr) and µαr := LPν
(
Xα
r , αr

∣∣Gr), for all r ∈ [0, T ].

Let us now introduce the following McKean–Vlasov control problem by

VS(ν) := sup
α∈A(ν)

Φ(α) where Φ(α) := EPν
[ ∫ T

0
L(t,Xα

t , µ
α
t∧·, µ

α
t , αt)dt+ g(Xα

T , µ
α)
]
. (4.3.2)

Remark 4.3.1 (Discussion on a possible relaxed extended mean–field control problem). An adequate way to study the
properties of VS and/or to give a limit theory is to find the closure S(ν) of some particular space S(ν) for the Wasserstein
topology. To simplify, let us take ` = 0 (without common noise), according to the classical ideas of relaxed controls,
S(ν) :=

{
Pν ◦

(
Xα, δαt(du)dt

)−1
, α ∈ A(ν)

}
(see discussion Chapter 3 and also Lacker [104]).

Following [104] and Chapter 3, let us give an example to see why the “natural” expected relaxed controls is not a “good”
set. Let n = 1, U = [1, 2], ν = δ0, σ(t, x, π,m, u) :=

∣∣ ∫
U
u′ m(Rn,du′)

∣∣ and b = 0. Notice that S(ν) ⊂ P
(
Cn×M(U)

)
, then

the canonical space is ΩR := Cn ×M(U). Denote (X,Λt(du)dt) the canonical process and F := (F t)t∈[0,T ] the canonical
filtration. A naive relaxed controls is PR(ν) ⊂ P(Cn ×M(U)) defined by

PR(ν) :=
{
P : P(X0 = 0) = 1, (MP,f

t )t∈[0,T ] is a (P,F)–martingale ∀f ∈ C2
b (R)

}
,

where MP,f
t := f(Xt)− 1

2
∫ t

0 ∇
2f(Xs)EP[ ∫

U
u Λs(du)

]2ds.

But, PR(ν) defined in this way is not a closed set. Indeed the map q ∈ M(U) −→ qt ∈ P(U) is not continuous for the
Wasserstein topology. Therefore PR(ν) can not be the closure of S(ν). Due to this type of lack of continuity, this approach
cannot work. We need then to change the framework.

4.4 Stochastic control of measure-valued processes

As previously mentioned, the classical approach of relaxed controls is not appropriate. To bypass the difficulty generated
by the (conditional) distribution of control in this study, especially to prove the limit theory result or (controlled)
propagation of chaos, we introduce a new stochastic control problem. Motivated by the Fokker–Planck equation verified
by the couple (µα, µα) from (4.3.1), we give in this part an equivalent formulation of the extended mean-field control
problem which is less “rigid”.

4.4.1 Measure–valued rules

Recall that M := M
(
PnU
)
denotes the collection of all finite (Borel) measures q(dt, dm) on [0, T ] × PnU , whose marginal

distribution on [0, T ] is the Lebesgue measure ds, i.e. q(ds,dm) = q(s,dm)ds for a measurable family (q(s,dm))s∈[0,T ]
of Borel probability measures on PnU . Let Λ be the canonical element on M. We then introduce a canonical filtration
FΛ = (FΛ

t )0≤t≤T on M by
FΛ
t := σ

{
Λ(C × [0, s]) : ∀s ≤ t, C ∈ B(PnU )

}
.

For each q ∈ M, one has a disintegration property: q(dt, dm) = q(t, dm)dt, and there is a version of disintegration such
that (t, q) 7−→ q(t, dm) is FΛ–predictable.
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(µ,Λ, B) denotes the canonical element on Ω := CnW ×M×C`. The canonical filtration F = (F t)t∈[0,T ] is then defined by:
for all t ∈ [0, T ]

F t := σ
{
µt∧·,Λt∧·, Bt∧·

}
,

where Λt∧· denotes the restriction of Λ on PnU × [0, t] (see notation 4.1.1). Notice that we can choose a version of
disintegration Λ(dm,dt) = Λt(dm)dt with (Λt)t∈[0,T ] a P(PnU )–valued F–predictable process.

Let us consider L the following generator: for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U and any ϕ ∈ C2(Rn)

Ltϕ(x, π,m, u) := 1
2Tr

[
σσ>(t, x, π,m, u)∇2ϕ(x)

]
+ b(t, x, π,m, u)>∇ϕ(x),

also we introduce, for every f ∈ C2(Rn), Nt(f):

Nt(f) := 〈f(· − σ0Bt), µt〉 − 〈f, µ0〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

Lr[f(· − σ0Br)]
(
x, µ,m, u

)
m(dx, du)Λr(dm)dr. (4.4.1)

Notice that, under Assumption 4.1.1, the integral in the definition N(f) is well–posedness. For each π ∈ P(Rn), one
considers the Borel set Zπ which is the set of probability measures m on Rn × U with marginal on Rn equal to π i.e.

Zπ :=
{
m ∈ PnU : m(dx, U) = π(dx)

}
.

Definition 4.4.1. For every ν ∈ P(Rn), P ∈ P(Ω) is a measure–valued rule if:

• P
(
µ0 = ν

)
= 1.

• (Bt)t∈[0,T ] is a (P,F) Wiener process starting at zero and for P–almost every ω ∈ Ω, Nt(f) = 0 for all f ∈ C2
b (Rn)

and every t ∈ [0, T ] .

• For dP⊗ dt almost every (t, ω) ∈ [0, T ]× Ω, Λt
(
Z[µt]

)
= 1.

We shall denote by PV (ν) the set of all measure–valued rules with initial value ν.

4.4.2 Optimization problem
Let us define, for all (π, q) ∈ CnW ×M(PnU ),

J(π, q) :=
∫ T

0

∫
Pn
U

∫
Rn×U

L
(
t, x, π,m, u

)
m(dx,du)qt(dm)dt+

∫
Rn
g
(
x, π

)
πT (dx).

Notice that under Assumption 4.1.1, the map J : Cn,pW ×Mp(PnU )→ R is continuous (see for instance Lemma 4.7.1). We
can now define the measure–valued control problem: for each ν ∈ P(Rn),

VV (ν) := sup
P∈PV (ν)

EP[J(µ,Λ)
]
. (4.4.2)

Remark 4.4.2. (i) Definition 4.4.1is partly inspired by the Fokker–Planck equation verified by (µαt , µαt )t∈[0,T ] (see (4.3.1)
and Proposition 4.4.3), in particular the last two points characterize this Fokker–Planck aspect. Indeed, (µ,Λ) satisfy:
for all (t, f)

〈f(· − σ0Bt), µt〉 = 〈f, µ0〉+
∫ t

0

∫
Pn
U

∫
Rn×U

Lr[f(· − σ0Br)]
(
x, µ,m, u

)
mx(du)µr(dx)Λr(dm)dr,

where for each m ∈ PnU , the Borel measurable function Rn 3 x → mx ∈ P(U) verifies mx(du)m(dx, U) = m(dx, du).
This kind of control turns out to be less “rigid”. Especially, PV (ν) is a compact set for the Wasserstein topology (see
Theorem 4.5.1).
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(ii) Working with these variables seems to be the key to better understand the problem and solve the principal difficulties.
Mainly, to prove a limit theory result in this context, we make an approximation of the distribution of (µ,Λ) thanks to the
distribution of variables of type (µα, δµαt (dm)dt) and not thanks to the approximation of the law of X. This approximation
is achieved by using Fokker–Planck equations. To the best of our knowledge, looking at this kind of variable or “control”
has never been studied in the literature (except in Chapter 2 and Chapter 3, only for technical reasons).

As stated in the preamble of this part, the measure–valued control problem is motivated by the Fokker–Planck equation
verified by the couple (µα, µα) of the strong formulation. Therefore, the strong controls i.e. (µα, µα)α∈A(ν) can be seen as
a special case of measure-valued rules. By applying Itô’s formula, it is straightforward to deduce the following proposition.

Proposition 4.4.3. For each ν ∈ Pp(Rn), let us introduce

PS(ν) :=
{
Pν ◦

(
(µαt )t∈[0,T ], δµαr (dm)dr, (Bt)t∈[0,T ]

)−1
, α ∈ A(ν)

}
.

one has PS(ν) ⊂ PV (ν) and

VS(ν) = sup
Q∈PS(ν)

EQ[J(µ,Λ)].
Proof. Let f ∈ C2(Rn) and t ∈ [0, T ], denote by Nt(µ,Λ, B)(f) := Nt(f). For any α ∈ A(ν), it is obvious that
Pν(µα0 = ν) = 1 and δµαt

(
Zµαt

)
= 1 dPν ⊗ dt a.e.. After applying Itô’s formula with the process Xα

· − σ0B·, and taking
the conditional expectation w.r.t. the σ–field GT , one has Nt(µα, δµαt (dm)dt, B)(f) = 0, Pν–a.e. for all (t, f). Then
Pν ◦

(
µα, δµαt (dm)dt, B

)−1 ∈ PV (ν). Therefore PS(ν) ⊂ PV (ν). In addition, notice that

Φ(α) = EPν
[ ∫ T

0

∫
Pn
U

〈L(t, ·, µαt∧·,m, ·),m〉δµαt (dm)dt+ 〈g(·, µα), µαT 〉
]
,

consequently VS(ν) = supQ∈PS(ν) E
Q[J(µ,Λ)].

4.5 Equivalence results and limit theory
Now, we formulate the main results of this chapter.

Theorem 4.5.1 (Equivalence). Let Assumption 4.1.1 hold true and ν ∈ Pp′(Rn), with p′ > p. Then PV (ν) is convex
and compact for the Wasserstein metric Wp. Moreover

(i) When ` 6= 0, for Wp, the set PS(ν) is dense in PV (ν).

(ii) When ` = 0, for any P ∈ PV (ν), there exists a family (Pkz)(k,z)∈N∗×[0,1] ⊂ PS(ν) such that for each k ∈ N∗,

[0, 1] 3 z → Pkz ∈ P(Ω) is Borel measurable and one gets lim
k→∞

Wp

(∫ 1

0
Pkz dz, P

)
= 0.

Consequently
VV (ν) = VS(ν),

and there exists P? ∈ PV (ν) such that VS(ν) = EP?[J(µ,Λ)].
Remark 4.5.2. (i) As in Chapter 3 (see also [103] and Chapter 6 for the mean field game context), there are some
specificities when ` = 0. Indeed, when ` = 0, (µα, µα) are deterministic, but (µ,Λ) can still be random, therefore, except
in particular situation, it is not possible to approximate the non atomic measure P by a sequence of atomic measure of
type δ(µα,δµαs (dm)ds). However, a randomisation is possible as mentioned in (ii) of Theorem 4.5.1.

(ii) Theorem 4.5.1 and the following Theorem 4.5.3 are in the same spirit that Theorem 3.2.4 and Theorem 3.2.7 in
Chapter 3. The main difference is the presence of the distribution of controlled state and control, and this particularity
turns to be a non trivial extension (see discussion in section 4.3).
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Theorem 4.5.3 (Propagation of chaos). Let Assumption 4.1.1 hold true, p′ > p and (νi)i∈N∗ ⊂ Pp′(Rn) satisfying
supN≥1

1
N

∑N
i=1
∫
Rn |x

′|p′νi(dx′) <∞. Then

lim
N→∞

∣∣∣∣V NS (ν1, . . . , νN
)
− VS

( 1
N

N∑
i=1

νi
)∣∣∣∣ = 0.

Finally, we provide some properties of optimal control of our problem. For any ν ∈ P(Rn), denote by P?V (ν) the set of
optimal control i.e. P? ∈ P?V (ν) if P? ∈ PV (ν) and VV (ν) = EP?[J(µ,Λ)].
Proposition 4.5.4. Suppose that the conditions of Theorem 4.5.3 hold. Let limN→∞Wp

( 1
N

∑N
i=1 ν

i, ν
)

= 0 with ν ∈
Pp(Rn).

(i) For any sequence of non negative numbers (εN )N∈N∗ verifying lim
N→∞

εN = 0, if (PN )N∈N∗ is the sequence satisfying
PN := P(α1, . . . , αN ) (see definition (4.2.3)) with

for each N ∈ N∗, αi ∈ AN (νN ) ∀i ∈ [[1, N ]] and V NS (ν1, . . . , νN )− εN ≤ EPN [J(µ,Λ)], (4.5.1)

then
lim
N→∞

inf
P?∈P?V (ν)

Wp

(
PN ,P?

)
= 0.

(ii) Moreover, for each P? ∈ P?V (ν), there exist (εN )N∈N∗ ⊂ (0,∞) verifying lim
N→∞

εN = 0 and a sequence (P?,N )N∈N∗

satisfying P?,N := P(α?,1, . . . , α?,N ) and condition 4.5.1 s.t. lim
N→∞

Wp(P?,N ,P?) = 0.

Remark 4.5.5. The previous proposition shows that any εN–optimal control of the large population stochastic control
problem converges towards an optimal control of the McKean–Vlasov stochastic control problem in distribution sense.
In particular when there exists a unique strong optimal control of the McKean–Vlasov control problem, any εN–optimal
control of the large population control problem converges towards this control.

The next corollary is just a combination of Theorem 4.5.3 and Proposition 3.4.4. It states, if a strong control is close
enough to the optimum value of the mean field control problem, from this control, we can construct N–agents which are
close to the optimum of the N–agents stochastic control problem.

Corollary 4.5.6. Let Assumption 4.1.1 hold true. Let ν ∈ Pp′(Rn), with p′ > p, (εN )N∈N∗ be a sequence of non-negative
real such that lim

N→∞
εN = 0. Also, for each N ∈ N∗, let αN ∈ A(ν) satisfying αNt = φN (t, ξ,Wt∧·, Bt∧·) Pν a.e. for all

t ∈ [0, T ] with a Borel function φN : [0, T ]× Rn × Cd × C` → U, and

VS(ν)− εN ≤ Φ(αN ).

Then, there exists (δN )N∈N∗ ⊂ (0,∞) s.t. lim
N→∞

δN = 0 and (α1,N , . . . , αN,N ) ∈ AN (νN )N with νN := ν ⊗ · · · ⊗ ν

satisfying

αi,Nt = φN (t,Xi
0,Wi

t∧·, Bt∧·), PNν a.e. for all t ∈ [0, T ] and V NS (ν, . . . , ν)− δN ≤ JN (α1,N , . . . , αN,N ).

4.6 Case of closed loop controls (without convexity assumptions)
In this part, we show, if ` = 0 and the form of coefficients are restricted (see Assumption 4.6.1 below), our McKean–Vlasov
optimal control problem can be focused only on the closed loop controls instead of open loop controls considered so far.
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Assumption 4.6.1. Here, we assume that ` = 0, and

σ(t, x, π,m, u) = σ̃(t, x), for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U.

For simplicity, we will note σ instead of σ̃.

Let ν ∈ Pp(Rn) and (Ω?,F?,F?,P?) be a filtered probability space supporting W a Rd–valued F?–Brownian motion
and ξ a F?0 –random variable such that LP?(ξ) = ν. We denote by Am the collection of all Borel measurable function
α : [0, T ]× Rn → U. Given a α ∈ Am, Xα is a1 solution of: Xα

0 = ξ, and for t ∈ [0, T ],

Xα
t = Xα

0 +
∫ t

0
b
(
r,Xα

r , µ
α
r∧·, µ

α
r , α(r,Xα

r )
)
dr +

∫ t

0
σ
(
r,Xα

r

)
dWr, (4.6.1)

with µαr := LP?(Xα
r

)
and µαr := LP?(Xα

r , α(r,Xα
r )
)
, for all r ∈ [0, T ]. Let us define

PM(ν) :=
{
P? ◦

(
(µαt )t∈[0,T ], δµαr (dm)dr

)−1
, α : [0, T ]× Rn → U a Borel measurable map

}
.

Theorem 4.6.2. Let Assumptions 4.1.1 and 4.6.1 hold true and ν ∈ Pp′(Rn), with p′ > p. Then, any element of PS(ν)
is the limit for Wp of a sequence of elements of PM(ν). Consequently

VS(ν) = sup
α∈Am

EP?
[ ∫ T

0
L(t,Xα

t , µ
α
t∧·, µ

α
t , α(t,Xα

t ))dt+ g(Xα
T , µ

α)
]
.

Let us denote by AmN the collection of all Borel measurable function α : [0, T ] × (Rn)N → U. On (Ω?,F?,F?,P?), we
consider (W i)i∈N∗ a sequence of independent Rd–valued Brownian motion, and (ξi)i∈N∗ a sequence of iid F?0 –random
variables of law ν. Then given α := (α1, . . . , αN ) ∈ (AmN )N , denote by Xα := (Xα,1

· , . . . ,Xα,N
· ) the solution of the

following system of SDEs, for each i ∈ {1, . . . , N}, EP?[‖Xα,i‖p
]
<∞,

Xα,i
t = ξi +

∫ t

0
b
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α

i(r,Xα
r )
)
dr +

∫ t

0
σ
(
r,Xα,i

r

)
dWi

r, for all t ∈ [0, T ], (4.6.2)

with

ϕN,Xt (dx) := 1
N

N∑
i=1

δ(
Xα,i
t

)(dx) and ϕNt (dx, du) := 1
N

N∑
i=1

δ(
Xα,i
t , αi(t,Xα

t )
)(dx,du), for all t ∈ [0, T ].

Theorem 4.6.3. [Propagation of chaos closed loop] Let Assumption 4.1.1 hold true and ν ∈ Pp′(Rn) with p′ > p. Then

VS(ν) = lim
N→∞

sup
α∈Am

N

1
N

N∑
i=1

EP?
[ ∫ T

0
L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i(t,Xα
t )
)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
.

Remark 4.6.4. Theorem 4.6.2 and Theorem 4.6.3 show that we can focus our research of optimal controls over the set of
closed loop controls. An important point is to notice that we do not need to use any convexity assumptions as in classical
literature on this subject (see for instance [104] or [108]). This kind of techniques can not work in this framework. Indeed,
in the presence of law of control, the projection techniques do not allow to recover the law of the control, consequently
these techniques can no longer be used.

4.7 Approximation of Fokker–Planck equations
In this section, we give an approximation of a particular Fokker–Planck equation via a sequence of measure–valued
processes constructed from classical SDE processes interacting through the empirical distribution of their states and
controls. This result is a crucial part for the proof of Theorem 4.5.1 and Theorem 4.5.3.

1The Equation (4.6.1) does not have necessary a unique strong solution. However, this equation has a unique weak–solution (see [106] for
instance).
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4.7.1 Regularization procedures and its consequences
4.7.1.1 Regularization procedures

Some additional notations are needed for our subsequent proofs. These are mainly regularization procedures through
convolutions.

Let us take G ∈ C∞(Rn;R) satisfying G ≥ 0, G(x) = G(−x) for all x ∈ Rn and
∫
Rn G(y)dy = 1, then define the

regularizing kernel Gε(x) := ε−nG(ε−1x) for each ε > 0. Throughout this chapter

G(x) := (1 + |x|2)−n
(∫

Rn
(1 + |x′|2)−ndx′

)−1
, for all x ∈ Rn. (4.7.1)

Let ψ : [0, T ]×Rn×C`×(CnW)2×(PnU )2×U −→ Rj be a Borel function, with j ∈ N∗. For each ε > 0, one defines the function
ψε : C`× (CnW)2×P(PnU )× [0, T ]×Rn −→ Rj as follows: for every (t, x,b, π, β, q) ∈ [0, T ]×Rn×C`× (CnW)2×P((PnU )2)

ψε[b, π, β, q](t, x) :=
∫

(Pn
U

)2

∫
Rn

∫
U

ψ(t, y,bt∧·, πt∧·, βt∧·,m, ν̄, u) Gε(x− y)
(m(dz, U))(ε)(x)

m(du,dy)q(dm,dν̄), (4.7.2)

where for every m ∈ PnU , (m(dz, U))(ε)(x) :=
∫
Rn Gε(x− y)m(dy, U).

Observe that
∣∣ψε[b, π, β, q](t, x)

∣∣ ≤ supz′,b′,ζ′,m′,ν′,u′
∣∣ψ(t, z′,b′, ζ ′,m′, ν̄′, u′)

∣∣, for all (b, π, β, q, t, x). Then if ψ is bounded
ψε is uniformly bounded w.r.t ε > 0. Also notice that, given (t,b, π, β, q), for each ε > 0, the function Rn 3 x →
ψε[b, π, β, q](t, x) ∈ Rj belongs to C∞b (Rn), hence the name of regularization.

Under additional conditions on π, q and initial function ψ, one has, in some sense, “limε→0 ψ
ε = ψ” (see Proposition 4.9.2

for more details).

Lemma 4.7.1. For all ψ : [0, T ]×Rn×C`× (CnW)2× (PnU )2×U −→ R, and φ : [0, T ]×Rn → R two bounded continuous
functions. For each ε > 0, the function

(
b, ϑ, π, β, q

)
∈ C` × (CnW)3 ×M

(
(PnU )2) −→ ∫ T

0

∫
Rn
ψε[b, π, β, qt](t, x)φ(t, x)ϑt(dx)dt ∈ R,

is continuous.

Proof. Let (bk, ϑk, πk, βk, qk)k∈N ⊂ C` × (CnW)3 × M((PnU )2) and (b, ϑ, π, β, q) ∈ C` × (CnW)3 × M((PnU )2) verifying
lim
k

(bk, ϑk, πk, βk, qk) = (b, ϑ, π, β, q). Notice that,

∫ T

0

∫
Rn
ψε[b, π, β, qt](t, x)φ(t, x)ϑt(dx)dt

=
∫ T

0

∫
Rn

∫
(Pn
U

)2

∫
Rn×U

ψ(t, y,bt∧·, πt∧·, βt∧·,m, ν̄, u) Gε(x− y)
(m(dz, U))(ε)(x)

m(du,dy)qt(dm, dν̄)φ(t, x)ϑt(dx)dt

=
∫ T

0

∫
Rn

∫
C`×(CnW)2

∫
(Pn
U

)2

∫
Rn×U

ψ(t, y, g, e, e′,m, ν̄, u)φ(t, x)Hε(x,m)(du,dy)qt(dm,dν̄)ϑt(dx)Ψt(dg,de, de′)dt,

where

Hε(x,m)(du,dy) := Gε(x− y)
(m(dz, U))(ε)(x)

m(du,dy) and Ψt(dg,de,de′)dt := δ(bt∧·,πt∧·,βt∧·)(dg,de, de
′)dt.

Next, we define

Zk(du,dy,dm,dν̄,dg,de, de′,dx, dt) := 1
T
Hε(x,m)(du,dy)qkt (dm,dν̄)ϑkt (dx)δ(bkt∧·,πkt∧·,βkt∧·)(dg,de, de

′)dt,
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and

Z(du,dy,dm, dν̄,dg,de, de′,dx, dt) := 1
T
Hε(x,m)(du,dy)qt(dm,dν̄)ϑt(dx)Ψt(dg,de, de′)dt,

then (Zk)k∈N is a sequence of probability measures belongs to P
(
U × Rn × (PnU )2 × C` × (CnW)2 × Rn × [0, T ]

)
. As

lim
k→∞

(bk, ϑk, πk, βk, qk) = (b, ϑ, π, β, q), it is straightforward to see that (Zk)k∈N is relatively compact in P
(
U × Rn ×

(PnU )2×C`×(CnW)2×Rn× [0, T ]
)
and each sub-sequence converges to Z, therefore (Zk)k∈N converges to Z in a weak sense.

As the function (t, y,b, e, e′,m, ν̄, u, x) ∈ [0, T ]×Rn×C`×(CnW)2×(PnU )2×U×Rn → ψ(t, y,bt∧·, e, e′,m, ν̄, u)φ(t, x) ∈ Rn
is bounded continuous, we can conclude.

4.7.1.2 Regularization of the Fokker–Planck equation

In this part, with the help of the regularization procedure, we show it can be possible to approximate a particular solution
of a Fokker–Planck equation with “non–smooth” coefficients by Fokker–Planck equation with “smooth” coefficients, this
part is largely inspired by the proof of [76, Lemma 2.1].

Let p′ > p, ν ∈ Pp′(Rn), b ∈ C`, (nt)t∈[0,T ] and (zt)t∈[0,T ] be two P(Rn)–valued continuous processes and also
q̂t(dm,dm′)dt ∈M((PnU )2). Moreover, (n, z, q̂,b) satisfy the following equation:

〈f(t, .),nt〉 = 〈f(0, .), ν〉+
∫ t

0

[
〈∂tf(r, .),nr〉+

∫
(Pn
U

)2
〈Ar[f(r, ·)](.,b,n, z,m, ν̄, .),m〉q̂r(dm,dν̄)

]
dr,

for all (t, f) ∈ [0, T ]× C1,2
b ([0, T ]× Rn), where the generator A is defined by

Atϕ(x,b,n, z,m, ν̄, u) := 1
2Tr

[
σ̂σ̂>(t, x,b,n, z,m, ν̄, u)∇2ϕ(x)

]
+ b̂(t, x,b,n, z,m, ν̄, u)>∇ϕ(x), (4.7.3)

with (b̂, σ̂) : [0, T ]×Rn × C` × (CnW)2 × (PnU )2 × U → Rn × Sn is bounded and continuous function in all arguments, and
for each ν̄ ∈ PnU , the map (b̂, σ̂)(·, ·,b, ·, z, ·, ν̄, ·) satisfies Assumtpion 4.1.1 with constant θ independent of ν̄.

Now, let us introduce the generator of the ”regularized” Fokker-Planck equation Aε: for all (t, q̂, x) ∈ [0, T ]×P((PnU )2)×
Rn

Aεtϕ[b,n, z, q̂](x) := 1
2Tr

[
âε[b,n, z, q̂](t, x)∇2ϕ(x)

]
+ b̂ε[b,n, z, q̂](t, x)>∇ϕ(x), (4.7.4)

where for (t, x, γ, π, β,m, ν̄, u) ∈ [0, T ]×Rn × C` × (CnW)2 × (PnU )2 ×U , â(t, x, γ, π, β,m, ν̄, u) := σ̂σ̂>(t, x, γ, π, β,m, ν̄, u)
and (âε, b̂ε) are defined as (4.7.2) with the functions (â, b̂).

We are now ready to formulate our regularization/approximation result of Fokker-Planck equation. The following
proposition is proved in Appendix 4.9.1.

Lemma 4.7.2 (Regularization of Fokker–Planck equation). Let ν ∈ Pp(Rn), for each ε > 0, there exists a unique solution
(nεt)t∈[0,T ] ∈ Cn,pW of: for all f ∈ C1,2

b ([0, T ]× Rn) and t ∈ [0, T ],

〈f(t, .),nεt〉 =
∫
Rn
f(0, y)ν(dy) +

∫ t

0

[ ∫
Rn
∂tf(r, y)nεr(dy) +

∫
Rn
Aεrf(r, ·)[b,n, z, q̂r](r, y)nεr(dy)

]
dr. (4.7.5)

Moreover, if ν ∈ Pp′(Rn) and q̂t(Z[nt] × PnU ) = 1 dt–for almost every t ∈ [0, T ], then

lim
ε→0

sup
t∈[0,T ]

Wp(nεt ,nt) = 0. (4.7.6)



82 Chapter 4. Measure–valued controls and limit theory with law of control

Remark 4.7.3. (i) Let (Ω̂, F̂, F̂ ,P) be a probability space supporting W a F̂–Wiener process of dimension Rn and ξ a
F0–random variable such that LP(ξ)(dy) = ν(dy). Given ε > 0, let Y ε be the unique strong solution (well defined, see
Appendix Section 4.9.1 (more precisely the Proof of Lemma Lemma 4.7.2) )

Y εs = ξ +
∫ s

0
b̂ε[b,n, z, q̂r](r, Y εr )dr +

∫ s

0
(âε)1/2[b,n, z, q̂r](r, Y εr )dWr, for all s ∈ [0, T ], (4.7.7)

one has, by uniqueness of (4.7.5), LP(Y εs ) = nεs for all s ∈ [0, T ] where nε is the solution of (4.7.5).

(ii) We will sometimes use the previous lemma with Proposition 4.9.2, in which nε must be obtainable through a diffusion
process that has a volatility term which verifies âε[b,n, z, q̂r](r, Y εr ) ≥ θIn×n. SDE (4.7.7) allows to say nε satisfies these
conditions. Also, from Lemma Lemma 4.7.2 and the SDE representation (4.7.7), it is straightforward to see that the
measure nt(dx)dt is equivalent to the Lebesgue measure on Rn × [0, T ] (see for instance Proposition 4.9.1 ).

Remark 4.7.4. Combining Remark 4.7.3 (diffusion form (4.7.7) of nε ) with Lemma 4.7.2 (convergence result (4.7.6)),
as (b, σ) are bounded, there exists a constant C > 0, depending only of coefficients (b, σ), p and p′, such that

sup
r∈[0,T ]

∫
Rn
|x|p

′
nr(dx) ≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
and Wp

(
ns,nt

)p ≤ C|t− s|, for all (t, s) ∈ [0, T ]× [0, T ].

The next lemma is a useful result for the following, it is just a combination of Lemma 4.7.2 and Proposition 4.9.2.

Lemma 4.7.5. Let us stay in the context of Lemma 4.7.2 with ν ∈ Pp′(Rn). One has

lim
ε→0

[∫ T

0

∫
(Pn
U

)2

[ ∫
Rn

∣∣Kε(r, x,m,m′)
∣∣pnεr(dx) +Wp

(
Hε(z,m)(du)nεr(dz),m(du,dz)

)p]
q̂r(dm,dm′)dr

]
= 0,

where

Kε(s, x,m, ν̄) :=
∫
Rn×U

[
b̂, σ̂σ̂>

](
s, y,n, z,m, ν̄, u

)
H
ε(x,m)(du,dy)−

∫
U

[
b̂, σ̂σ̂>

](
s, x,n, z,m, ν̄, u

)
Hε(x,m)(du),

with Hε(x,m)(du,dy) := m(du,dy) Gε(x−y)
(m(U,dz))(ε)(x) and Hε(x,m)(du) :=

∫
Rn H

ε(x,m)(du,dy).

Proof. By Lemma 4.7.2, limε→0 supt∈[0,T ]Wp(nεt ,nt) = 0. As q̂t(Z[nt]×PnU ) = 1 dt–almost surely t ∈ [0, T ], using convex
inequality and Proposition 4.9.2,

lim
ε→0

∫ T

0

∫
(Pn
U

)2

∫
Rn

∣∣Kε(r, x,m, ν̄)
∣∣pnεr(dx)q̂r(dm,dν̄)dr

≤ lim sup
ε→0

∫ T

0

∫
(Pn
U

)2

∫
Rn

∫
Rn×U

∣∣∣[b̂, σ̂σ̂>](r, x,b,n, z,m, ν̄, u)

−
[
b̂, σ̂σ̂>

]
(r, y,b,n, z,m, ν̄, u)

∣∣∣pGε(x− y)
(nr)(ε)(x)

my(du)nr(dy)nεr(dx)q̂r(dm, dν̄)dr = 0.

For all bounded continuous function h : Rn × U → R, using Proposition 4.9.2 again,

lim
ε→0

∫ T

0

∫
(Pn
U

)2

∣∣∣ ∫
Rn×U

h(x, u)Hε(x,m)(du)nεr(dx)−
∫
Rn×U

h(z, u)m(dz,du)
∣∣∣q̂r(dm,dν̄)dr

≤ lim
ε→0

∫ T

0

∫
(Pn
U

)2

∫
Rn

∣∣∣ ∫
Rn×U

h(x, u)my
r(du)Gε(x− y)

(nr)(ε)(x)
nr(dy)−

∫
Rn×U

h(z, u)m(dz,du)
∣∣∣nεr(dx)q̂r(dm, dν̄)dr = 0,
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similarly to [150, Theorem 1.1.2.], one finds a countable family of bounded continuous functions (hk)k∈N∗ characterizing
the weak convergence, therefore by Lebesgue’s dominated convergence,

lim
ε→0

∑
k≥0

∫ T

0

∫
(Pn
U

)2

1
2k
∣∣∣ ∫

Rn×U
hk(x, u)Hε(x,m)(du)nεr(dx)−

∫
Rn×U

hk(z, u)m(dz,du)
∣∣∣q̂r(dm,dν̄)dr = 0,

then limε→0
∫ T

0
∫

(Pn
U

)2 ∆
(
Hε(z,m)(du)nεr(dz),m(du,dz)

)
q̂r(dm,dν̄)dr = 0, where ∆ is the metric characterizing the

weak convergence on PnU . As [b̂, σ̂] are bounded and ν ∈ Pp′(Rn), for (r,m) ∈ [0, T ]× PnU ,

lim
K→∞

sup
ε>0

∫
|z|+ρ(u0,u)≥K

|z|p + ρ(u0, u)p Hε(z,m)(du)nεr(dz) = 0.

This is enough to conclude that, lim
ε→0

∫ T

0

∫
(Pn
U

)2
Wp

(
Hε(z,m)(du)nεr(dz),m(du,dz)

)
q̂r(dm,dν̄)dr = 0.

4.7.2 Approximation by N–agents
Now, let us formulate the approximation result of Fokker–Planck equation by N–interacting SDE equations. In order to
achieve this, we first describe the associated framework.

Let p′ > p, ν ∈ Pp′(Rn) and
(
Ωq,Fq,Fq,Q

)
be a filtered probability space supporting (Bt)t∈[0,T ] a R`–valued Fq–adapted

continuous process, (µt)t∈[0,T ] and (ζt)t∈[0,T ] two P(Rn)–valued Fq–continuous processes, Λ a M
(
(PnU )2)–valued variable

such that (Λt)t∈[0,T ] is Fq–predictable. Besides, (µ,B, ζ,Λ) satisfy: Λt
(
Z[µt] × PnU

)
= 1, dQ⊗ dt–almost surely, and for

Q–a.e. ω ∈ Ωq,

〈f, µt〉 = 〈f, ν〉+
∫ t

0

[ ∫
Pn
U
×Pn

U

∫
Rn×U

Arf(y,B, φ(µ), ζ,m, ν̄, u)m(dy,du)Λr(dm,dν̄)
]
dr, (4.7.8)

for all t ∈ [0, T ] and f ∈ C2
b (Rn), where

Atϕ(x,b, π, β,m, ν̄, u) := 1
2Tr

[
σ̂σ̂>(t, x,b, π, β,m, ν̄, u)∇2ϕ(x)

]
+ b̂(t, x,b, π, β,m, ν̄, u)>∇ϕ(x), (4.7.9)

with, as in (4.7.3), (b̂, σ̂) is continuous in all arguments and bounded, and the map (b̂, σ̂)(·, ·,b, ·, β, ·, ν̄, ·) satisfies
Assumtpion 4.1.1 with constant C and θ independent of (b, β, ν̄) (see Assumtpion 4.1.1). Besides, φ : CnW → CnW is
a Lipschitz function s.t. for all t ∈ [0, T ], φt(π) = φt(πt∧·).

Remark 4.7.6. Notice that, (4.7.8) is an equation. Indeed, with the condition Λt
(
Z[µt]×PnU

)
= 1, dQ⊗dt–almost surely,

the process µ appears on both sides on the equality. Under the general Assumption 4.1.1, it is not difficult to show there
are processes (µ,Λ) verify equation (4.7.8) (see for instance Theorem 2.4.2 ). However, without additional assumptions,
a uniqueness result cannot be expected.

Let (Ω̂, F̂ , F̂, P̂) be another filtered probability space supporting:

• (W i)i∈N∗ a sequence of Rn–valued independent F̂–Brownian motions and (ξi)i∈N∗ a sequence of independent F̂0–
random variables s.t. LP̂(ξi) = νi ∈ Pp′(Rn),

• (µN )N∈N∗ and (ζN )N∈N∗ two sequences of P(Rn)–valued F̂–adapted continuous processes, and (BN )N∈N∗ a sequence
of R`–valued F̂–adapted continuous processes,

• (mN )N∈N∗ and (ν̄N )N∈N∗ two sequences of PnU–valued F̂–predictable processes,
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satisfying:

lim
N→∞

Wp′

(
1
N

N∑
i=1

νi, ν

)
= 0 and lim

N→∞
LP̂
(
φ(µN ), ζN ,ΛN , BN

)
= LQ(φ(µ), ζ,Λ, B

)
, inWp, (4.7.10)

where ΛNt (dm,dν̄)dt := δ(mNt , ν̄Nt )(dm, dν̄)dt.

Furthermore, let (Zi)i∈N∗ be a sequence of independent [0, 1]–valued F̂–measurable uniform variables independent of
other variables, and for each (i,N) ∈ N∗ × N∗, denote by F̂i,N := (F̂ i,Nt )t∈[0,T ] the filtration defined by:

F̂ i,Nt := σ
{
ξi,ΛNt∧·, φt∧·(µN ), ζNt∧·,W i

t∧·, B
N
t∧·, Z

i
}
, for each t ∈ [0, T ]. (4.7.11)

Proposition 4.7.7. There exists a sequence of processes (αi,N )(i,N)∈N∗×N∗ satisfying for each (i,N) ∈ N∗ × N∗, αi,N

is F̂i,N–predictable, s.t. if we let (X̂1
t , ..., X̂

N
t )t∈[0,T ] be the continuous processes unique strong solution of: for each

i ∈ {1, ..., N}, EP̂[‖X̂i‖p′ ] <∞, for all t ∈ [0, T ]

X̂i
t = ξi +

∫ t

0
b̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i,N
r

)
dr +

∫ t

0
σ̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i,N
r

)
dW i

r , P̂–a.e.

(4.7.12)

where m̂N
t (dx, du) := 1

N

∑N
i=1 δ(X̂it , α

i,N
t )(dx, du), µ̂Nt (dx) := m̂N

t (dx, U), then, one has, for a sub-sequence (Nk)k∈N∗ ⊂
N∗,

lim
k→∞

EP̂
[ ∫ T

0
Wp

(
m̂Nk
t ,mNk

t

)pdt+ sup
t∈[0,T ]

Wp

(
φt(µ̂Nk), φt(µNk)

)]
= 0,

and

lim
k→∞

LP̂
(
µ̂Nk , ζNk , Λ̂Nk , BNk

)
= LQ(µ, ζ,Λ, B), inWp with Λ̂Nks (dm, dν̄)ds := δ(m̂Nks ,ν̄

Nk
s )(dm,dν̄)ds. (4.7.13)

Remark 4.7.8. (i) Proposition 4.7.7 as well as Proposition 4.7.9 (see below) can be considered as a general characterization
of Fokker-Planck equation of type (4.7.8) via a sequence of SDE processes interacting through the empirical distribution
of the states and “controls”. These results are very useful both in the study of extended mean field control problem (see
Proposition 4.8.3) and in mean field game of controls (see Chapter 6).

(ii) Because of non-uniqueness of Fokker-Planck equation (4.7.8), the condition (4.7.10) is a crucial and essential
assumption. Furthermore, notice that, the condition (4.7.10) does not require any equation verified by the sequence(
φ(µN ), ζN ,ΛN , BN

)
N∈N∗ . Only the convergence result (4.7.10) is necessary.

(iii) Observe that, the sequence (ΛN )N∈N∗ is a subset of M0
(
(PnU )2) and not a general subset of M

(
(PnU )2). For an

understandable and easy presentation, we consider this type of sequence, but a general subset of M
(
(PnU )2) is possible (see

Proposition 4.7.10 below).

(iv) The presence of the map φ, notably in (4.7.10), specifies the required non-linearity. In particular, if φ is null, it
means that no assumption of convergence towards µ is necessary to find a sequence of SDE processes converging to µ.

Proof of Proposition 4.7.7. The proof is divided in three steps for a better understanding.

Step 1 : Approximation by regularization of F-P equation: Let ε > 0, recall that Aε is defined in (4.7.4). For all
ω ∈ Ωq, by Lemma 4.7.2, there exists a continuous process (µεt(ω))t∈[0,T ] verifying

〈f, µεt(ω)〉 = 〈f, ν〉+
∫ t

0

∫
Rn
Aεrf

[
B(ω), φ(µ(ω)), ζ(ω),Λr(ω)

]
(x)µεr(ω)(dx)dr,
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for all (f, t) ∈ C2
b (Rn;R)× [0, T ], and for Q–a.e. ω ∈ Ωq, limε→0 supt∈[0,T ]Wp(µεt(ω), µt(ω)). Also, by Lemma 4.9.4, there

is a function Φε : C` × CnW × CnW ×M
(
(PnU )2)→ CnW such that Q–a.e. ω ∈ Ωq

µεt(ω) = Φεt
(
Bt∧·(ω), φt∧·(µ(ω)), ζt∧·(ω),Λt∧·(ω)

)
, for all t ∈ [0, T ]. (4.7.14)

Step 2 : Approximation by discretization: Now, let us define for all (x,m) ∈ Rn × PnU , the probability

Hε(x,m)(du) :=
∫
Rn
m(du,dy) Gε(x− y)

(m(U,dz))(ε)(x)
.

By [30], there exists a Borel application N ε : (x,m, v) ∈ Rn×PnU × [0, 1]→ N ε(x,m)(v) ∈ U s.t. for all (x,m) ∈ Rn×PnU
and any [0, 1]–valued uniform random variable F,

P̂ ◦
(
N ε(x,m)(F )

)−1(du) = Hε(x,m)(du).

Step 2.1 : Construction of scheme of discretization: Let us consider the partition (tNk )1≤k≤2N with tNk = kT
2N , and

take a sequence of Rn–valued independent Brownian motions (Zi)i∈N∗ , independent of all of other variables. Let ϕ :
[0, T ] × Rn → [0, 1] be a Borel function such that, for all t ∈ [0, T ], LP̂(ϕ(t − tNk , Zit − ZitN

k

)) is the uniform law when
t > tNk . For all i ∈ {1, ..., N}, denote by V i,Nt := ϕ(t− tNk , Zit − ZitN

k

), when t ∈ [tNk , tNk+1), and given ε > 0, we define on

(Ω̂, F̂, F̂ , P̂), by Euler scheme, Xε,i,N := Xi as follows: Xi
0 := ξi and

Xi
t = Xi

0 +
∫ t

0
B̂
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
[s]N ,m

N
s )(V i,Ns )

)
ds

+
∫ t

0
Σ̂
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
[s]N ,m

N
s )(V i,Ns )

)
dW i

s , for all t ∈ [0, T ], i ∈ {1, ..., N},

(4.7.15)

where [s]N = tNk if tNk ≤ s < tNk+1, and, for s ∈ [tNk , tNk+1),

B̂
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tN
k
,mN

s )(V i,Ns )
)

:= b̂
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tN
k
,mN

s )(V i,Ns )
)

+B
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
,

and

Σ̂
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tN
k
,mN

s )(V i,Ns )
)

:= Σ
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
σ̂
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , N

ε(Xi
tK
k
,mN

s )(V i,Ns )
)
,

with

B
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
:=
[
b̂ε
[
BN , φ(µN ), ζN ,ΛNs

]
(s,Xi

tN
k

)−
∫
U

b̂
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
Hε(Xi

tN
k
,mN

s )(du)
]
,

and

Σ
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s

)
:=
[
âε
[
BN , φ(µN ), ζN ,ΛNs

]
(s,Xi

tN
k

)1/2
(∫

U

â
(
s,Xi

tN
k
, BN , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
Hε(Xi

tN
k
,mN

s )(du)
)−1/2

]
, (4.7.16)
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recall that ΛNs (dm,dν̄)ds := δmNs (dm)δν̄Ns dν̄)ds.

Notice that, there exists a Borel function FN : Rn×M
(
(PnU )2)×CnW×CnW×Cn×Cn×C` → Cn s.t. for each i ∈ {1, ..., N},

Xi
t = FNt

(
ξi,ΛNt∧·, φt∧·(µN ), ζNt∧·,W i

t∧·, Z
i
t∧·, B

N
t∧·
)
, for all t ∈ [0, T ], P̂–a.e. (4.7.17)

Step 2.2 : Compactness and identification of the limit: At this stage, we want to show a compactness result and
identify the limit of a certain sequence of probability measures constructed from the SDE process (X1, ..., XN ).
Using the assumptions imposed on coefficients (b̂, σ̂) (see the definition of the generator A in (4.7.9)), especially the fact
that σ̂σ̂> ≥ θIn and (b̂, σ̂) are bounded, one has that [B̂, Σ̂] are bounded and there exists a constant D > 0, such that
for all ε and N

sup
i∈{1,...,N}

EP̂
[∣∣Xε,i,N

t −Xε,i,N
s

∣∣p] ≤ D|t− s|, for all (t, s) ∈ [0, T ]× [0, T ]. (4.7.18)

Moreover, by using the fact that supN≥1
∑N
i=1
∫
Rn |x|

p′νi(dx) <∞ (see condition (4.7.10)), it is straightforward to verify
that: supN≥1

1
N

∑N
i=1 EP̂

[
supt∈[0,T ] |X

ε,i,N
t |p′

]
< ∞. Then, by [49, Proposition A.2] or/and [49, Proposition-B.1], for

each ε > 0, the sequence (PN )N∈N∗ is relatively compact in Wp, where

PN := P̂ ◦
(
ϑN , φ(µN ), ζN ,ΛN , BN

)−1
∈ P

(
CnW × CnW × CnW ×M

(
(PnU )2)× C`)

with ϑNt (dx) := 1
N

∑N
i=1 δXε,i,Nt

(dx).

Let us identify the limit of any convergent sub-sequence of (PN )N∈N∗ . For sake of clarity, denote Xi instead of Xε,i,N .

For each N ∈ N∗, i ∈ {1, ..., N}, and (s, u) ∈ [0, T ]× U, let
[
b̂ε,i,Ns , âε,i,Ns

]
:= [b̂ε, âε]

[
BN , φ(µN ), ζN ,ΛNs

]
(s,Xi

[s]N ) and[
b̂i,Ns , âi,Ns , B̂i,Ns , Σ̂i,Ns , Âi,Ns

]
(u) :=

[
b̂, â, B̂, Σ̂, Σ̂Σ̂>

](
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s , u

)
.

By Itô’s formula, for all f ∈ C∞b (Rn) and t ∈ [0, T ]

〈f, ϑNt 〉 = 〈f, ϑN0 〉+ 1
N

N∑
i=1

∫ t

0
∇f(Xi

s)Σ̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

+ 1
N

N∑
i=1

∫ t

0

[
∇f(Xi

s)B̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+ 1

2Tr
[
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
∇2f(Xi

s)
]]

ds

= 〈f, ϑN0 〉+ 1
N

N∑
i=1

∫ t

0
∇f(Xi

s)Σ̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

+ 1
N

N∑
i=1

∫ t

0

[
∇f(Xi

[s]N )B̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+ 1

2Tr
[
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
∇2f(Xi

[s]N )
]]

ds

+ 1
N

N∑
i=1

∫ t

0

[
∇f(Xi

s)−∇f(Xi
[s]N )

]
B̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
ds

+ 1
N

N∑
i=1

∫ t

0

1
2Tr

[
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)[
∇2f(Xi

s)−∇2f(Xi
[s]N )

]]
ds.

Observe that, for s ∈ (tNk , tNk+1), for each i 6= j, [B̂]i,js = [Â]i,js = 0, where

[B̂]i,js := EP̂
[
∇f(Xi

[s]N )
{
B̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}
∇f(Xj

[s]N )
{
B̂j,Ns

(
N ε(Xj

[s]N ,m
N
s )(V j,Ns )

)
− b̂ε,j,Ns

}]
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and

[Â]i,js := EP̂
[{
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(Xi

[s]N )
{
Âj,Ns

(
N ε(Xj

[s]N ,m
N
s )(V j,Ns )

)
− âε,j,Ns

}
∇2f(Xj

[s]N )
]
.

Indeed, by using the fact that: for all (x,m, e) ∈ Rn×PnU ×{1, ..., N}, P̂ ◦
(
N ε(x,m)(V e,Ks )

)−1(du) = Hε(x,m)(du), and
(V is , V js ) are independent and independent of other variables, one has

[B̂]i,js = EP̂

[
∇f(Xi

[s]N )
{
b̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
−
∫
U

b̂i,Ns (u)Hε(Xi
[s]N ,m

N
s )(du)

}
∇f(Xj

[s]N )
{
b̂i,Ns

(
N ε(Xj

[s]N ,m
N
s )(V j,Ns )

)
−
∫
U

b̂i,Ns (u)Hε(Xj
[s]N ,m

N
s )(du)

}]
= 0. (4.7.19)

By similar way, if we denote by Σi,Ns := Σ
(
s,Xi

[s]N , B
N , φ(µN ), ζN ,mN

s , ν̄
N
s

)
, one finds

[Â]i,js = EP̂

[
∇2f(Xi

[s]N )
{

Σi,Ns âi,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
(Σi,Ns )> − âε,i,Ns

}
∇2f(Xj

[s]N )
{

Σj,Ns âj,Ns
(
N ε(Xj

[s]N ,m
N
s )(V j,Ns )

)
(Σj,Ns )> − âε,j,Ns

}]

= EP̂

[
∇2f(Xi

[s]N )
{

Σi,Ns
∫
U

âi,Ns (u)Hε(Xi
[s]N ,m

N
s )(du) (Σi,Ns )> − âε,i,Ns

}
∇2f(Xj

[s]N )
{

Σj,Ns
∫
U

âj,Ns (u)Hε(Xj
[s]N ,m

N
s )(du) (Σj,Ns )> − âε,j,Ns

}]

= EP̂

[
∇2f(Xi

[s]N )
{
âε,i,Ns − âε,i,Ns

}
∇2f(Xj

[s]N )
{
âε,j,Ns − âε,j,Ns

}]
= 0. (4.7.20)

By simple calculations,

〈f, ϑNt 〉 − 〈f, ϑN0 〉 −
∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,ΛNr

]
(x)ϑN[r]N (dx)dr

= 1
N

N∑
i=1

∫ t

0
∇f(Xi

[s]N )Σ̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s +
∫ t

0

[
∇f(Xi

[s]N )
{
B̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}
+ 1

2Tr
[{
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(s,Xi

[s]N )
]

+
[
∇f(Xi

s)−∇f(Xi
[s]N )

]
B̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
+ 1

2Tr
[
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)[
∇2f(Xi

s)−∇2f(Xi
[s]N )

]]]
ds,
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consequently, there exists a constant C > 0 (independent of N) such that

EP̂

[∣∣∣〈f, ϑNt 〉 − 〈f, ϑN0 〉 − ∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,ΛNr

]
(x)ϑN[r]N (dx)dr

∣∣∣2]

≤ C

(
EP̂

[∣∣∣ 1
N

N∑
i=1

∫ t

0
∇f(Xi

[s]N )Σ̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

∣∣∣2]

+
∫ t

0
EP̂

[∣∣∣ 1
N

N∑
i=1
∇f(Xi

[s]N )
{
B̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− b̂ε,i,Ns

}∣∣∣2]ds

+
∫ t

0
EP̂

[∣∣∣ 1
N

N∑
i=1

1
2Tr

[{
Âi,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
− âε,i,Ns

}
∇2f(Xi

[s]N )
]∣∣∣2]ds

+
∫ t

0

1
N

N∑
i=1

EP̂

[∣∣∣[∇f(Xi
s)−∇f(Xi

[s]N )
]∣∣∣2 +

∣∣∣12[∇2f(Xi
s)−∇2f(Xi

[s]N )
]∣∣∣2]ds

)
.

By successively applying the results (4.7.19) and (4.7.20) and inequality (4.7.18), one gets a constant M > 0 depending
of (f, b, σ) (which changes from line to line) s.t.

EP̂

[∣∣∣〈f, ϑNt 〉 − 〈f, ϑN0 〉 − ∫ t

0

∫
Rn
Aεrf

[
BN , φ(µN ), ζN ,ΛNr

]
(x)ϑN[r]N (dx)dr

∣∣∣2]

≤M

(
EP̂

[∣∣∣∣∣ 1
N

N∑
i=1

∫ t

0
∇f(Xi

s)Σ̂i,Ns
(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)
dW i

s

∣∣∣∣∣
2]

+ 1
2N + 1

N

)

≤M

(
1
N2

N∑
i=1

EP̂

[∫ t

0

∣∣∣∇f(Xi
s)Σ̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)∣∣∣2ds
]

+ 1
2N + 1

N

)
. (4.7.21)

Remark that as ∇f and Σ̂ are bounded,

1
N2

N∑
i=1

EP̂

[∫ t

0

∣∣∣∇f(Xi
s)Σ̂i,Ns

(
N ε(Xi

[s]N ,m
N
s )(V i,Ns )

)∣∣∣2ds
]
≤M 1

N
. (4.7.22)

Thanks to inequality (4.7.18), it is straightforward to verify that

lim
N→∞

Wp

(
LP̂(ϑN , ϑN , φ(µN ), ζN ,ΛN , BN

)
,LP̂(ϑN , (ϑN[t]N )t∈[0,T ], φ(µN ), ζN ,ΛN , BN

))
= 0. (4.7.23)

Let P∞ ∈ P
(
CnW ×CnW ×CnW ×M

(
(PnU )2)×C`) be the limit of any sub-sequence (PNk)k∈N∗ of (PN )N∈N∗ , and denote by

(βϑ, βµ, βζ , β,B) the canonical process on CnW×CnW×CnW×M
(
(PnU )2)×C`. By combining inequalities (4.7.21) and (4.7.22)

with result (4.7.23), by passing to the limit, using continuity of coefficients, given ε > 0: for all (t, f) ∈ [0, T ]× C∞b (Rn)

lim
k

EP̂

[∣∣∣∣〈f, ϑNkt 〉 − 〈f, ϑNk0 〉 −
∫ t

0

∫
Rn
Aεrf

[
BNk , φ(µNk), ζNk ,ΛNkr

]
(x)ϑNk[r]Nk (dx)dr

∣∣∣∣2
]

= EP∞
[∣∣∣∣〈f, βϑt 〉 − 〈f, ν〉 − ∫ t

0

[ ∫
Rn
Aεrf

[
B, βµ, βζ , βr

]
(x)βϑr (dx)

]
dr
∣∣∣∣2
]

= 0.

Therefore, after taking a countable family of (f, t), one gets: for all (t, f) ∈ [0, T ]× C∞b (Rn)

〈f, βϑt 〉 = 〈f, ν〉+
∫ t

0

∫
Rn
Aεrf

[
B, βµ, βζ , βr

]
(x)βϑr (dx)dr, for all t ∈ [0, T ], P∞–a.e.
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from this equality, we can show the previous equality holds true for all f ∈ C2
b (Rn). For each ε > 0, by uniqueness

βϑ := Φε
(
B, βµ, βζ , β

)
with Φε : C` × CnW × CnW ×M

(
(PnU )2) → CnW a Borel function used in (4.7.14). Notice that, by

assumptions (4.7.10),

P∞ ◦
(
βµ, βζ , β,B

)−1 = lim
k

P̂ ◦
(
φ(µNk), ζNk ,ΛNk , BNk

)−1 = Q ◦
(
φ(µ), ζ,Λ, B

)−1 inWp.

This result is enough to deduce that P∞ = Q ◦
(
µε, φ(µ), ζ,Λ, B

)−1
. This is true for any limit P∞ for any sub-sequence

of (PN )N∈N∗ , therefore

lim
N→∞

P̂ ◦
(
ϑN , φ(µN ), ζN ,ΛN , BN

)−1 = Q ◦
(
µε, φ(µ), ζ,Λ, B

)−1 inWp. (4.7.24)

Step 3 : Last approximation: To finish, now, let us define X̂ε,i,N := X̂i the strong solution of

X̂i
t = ξi +

∫ t

0
b̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i
r

)
dr +

∫ t

0
σ̂
(
r, X̂i

r, B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

i
r

)
dW i

r , for all t ∈ [0, T ]

where

αit := N ε(Xi
tN
k
,mN

t )(V i,Nt ) for all t ∈ [tNk , tNk+1[, m̂N
t (dx, du) := 1

N

N∑
i=1

δ(X̂it , αit)
(dx, du) and µ̂Nt (dx) := m̂N

t (dx, U),

recall that (X1, ..., XN ) are defined in (4.7.15). It is straightforward to check that: there exists a constant D > 0
(independent of ε and N)

sup
i∈{1,...,N}

EP̂
[
|X̂i

t − X̂i
s

∣∣p] ≤ D|t− s|, for all (t, s) ∈ [0, T ]× [0, T ]. (4.7.25)
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By Bukholder-Davis-Gundy inequality, lipschitz property of coefficients and previous inequality (4.7.25),

EP̂
[

sup
s∈[0,t]

|X̂i
s −Xi

s|p
]

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− B̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr]

+ EP̂
[ ∫ t

0

∣∣∣σ̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− Σ̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr])

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− b̂(r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , α

i
r)
∣∣∣p]

+ EP̂
[ ∫ t

0

∣∣∣b(r,Xi
[r]N , B

N , φ(µN ), ζN ,mN
r , ν̄

N
r , α

i
r)− B̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr]
+ EP̂

[ ∫ t

0

∣∣∣σ̂(r, X̂i
r, B

N , φ(µ̂N ), ζN , m̂N
r , ν̄

N
r , α

i
r

)
− σ̂(r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , α

i
r)
∣∣∣pdr]

+ EP̂
[ ∫ t

0

∣∣∣σ̂(r,Xi
[r]N , B

N , φ(µN ), ζN ,mN
r , ν̄

N
r , α

i
r)− Σ̂

(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , N

ε(Xi
[r]N ,m

N
r )(V i,Nr )

)∣∣∣pdr])

≤ D̂

(
EP̂
[ ∫ t

0

∣∣∣b̂ε[BN , φ(µN ), ζN ,ΛNr
]
(r,Xi

[r]N )−
∫
U

b̂
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , u

)
Hε(mN , Xi

[s]N )(du)
∣∣∣pdr]

+ EP̂
[ ∫ t

0

∣∣∣1− Σ
(
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r

)∣∣∣pdr +
∫ t

0
Wp

( 1
N

N∑
i=1

δ(
Xi

[r]N
, αir

)(dx, du),mN
r (dx, du)

)p
dr
]

+ EP̂
[

sup
e′∈[0,T ]

Wp(φe′(ϑN ), φe′(µN )) +
∫ t

0
sup
e∈[0,r]

∣∣X̂i
e −Xi

e

∣∣pdr]+ 1
2N

)
,

then by Gronwall lemma

EP̂
[

sup
t∈[0,T ]

|X̂i
t −Xi

t |p
]
≤ D̂

(
EP̂
[

sup
e′∈[0,T ]

Wp

(
φe′(ϑN ), φe′(µN )

)]
+ 1

2N + Eε,i,N + Cε,N
)

where Cε,N := EP̂
[ ∫ T

0 Wp

(
1
N

∑N
i=1 δ

(
Xi

[r]N
, αir

)(dx, du),mN
r (dx, du)

)p
dr
]
, and

Eε,i,N

:= EP̂

[∫ T

0

∣∣∣[b̂ε, âε][BN , φ(µN ), ζN ,ΛNr
]
(r,Xi

[r]N )−
∫
U

[
b̂, â
](
r,Xi

[r]N , B
N , φ(µN ), ζN ,mN

r , ν̄
N
r , u

)
Hε(Xi

[r]N ,m
N
r )(du)

∣∣∣pdr].
Firstly, thanks to results (4.7.24) and Lemma 4.7.5, one gets

lim
ε→0

lim
N→∞

EP̂
[

sup
e′∈[0,T ]

Wp

(
φe′(ϑN ), φe′(µN )

)]
= lim
ε→0

EQ
[

sup
e′∈[0,T ]

Wp

(
φe′(µε), φe′(µ)

)]
= 0. (4.7.26)

Secondly, after calculations, it is straightforward to deduce that

1
N

N∑
i=1

Eε,i,N = EP̂

[∫ T

0

∫
Rn

∫
(Pn
U

)2

∣∣∣ ∫
U×Rn

[
b̂, â
](
r, y,BN , φ(µN ), ζN ,m, ν̄, u

) Gε(x− y)
(m(U,dz))(ε)(x)

m(du,dy)

−
∫
U×Rn

[
b̂, â
](
r, x,BN , φ(µN ), ζN ,m, ν̄, u

) Gε(x− y)
(m(U,dz))(ε)(x)

m(du,dy)
∣∣∣pΛNr (dm,dν̄)ϑN[r]N (dx)dr

]
.
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By regularity of coefficients (Assumption 4.1.1 and (b̂, σ̂) bounded), the results (4.7.24) and (4.7.23) allow to get

lim
N→∞

1
N

N∑
i=1

Eε,i,N ≤ EQ

[∫ T

0

∫
Rn

∫
(Pn
U

)2

∫
U×Rn

∣∣∣[b̂, â](r, y,B, φ(µ), ζ,m, ν̄, u
)

−
[
b̂, â
](
r, x,B, φ(µ), ζ,m, ν̄, u

)∣∣∣p Gε(x− y)
(m(U,dz))(ε)(x)

m(du,dy)Λr(dm,dν̄)µεr(dx)dr
]
,

then, by Lemma 4.7.5, lim
ε→0

lim
N→∞

1
N

N∑
i=1

Eε,i,N = 0.

Next, let us define the variable

ΥN
r (de′,de)dr := EP̂

[
δ(
mNr ,m

N
r

)(de′,de)dr] ∈M
(
(PnU )2), where mN

r (dx, du) := 1
N

N∑
i=1

δ(
Xi

[r]N
, αir

)(dx, du),

It is easy to check that the sequence (ΥN )N∈N∗ is relatively compact for the Wasserstein metric Wp. Denote by Υ∞ the
limit of any sub-sequence (ΥNk)k∈N∗ . Let Q ∈ N∗, (fq)q∈{1,...Q} : Rn × U → RQ be bounded continuous functions and
g : [0, T ]× PnU → R. One has∫ T

0

∫
(Pn
U

)2

Q∏
q=1
〈fq, e′〉g(t, e)Υ∞t (de′,de)dt = EQ

[ ∫ T

0

∫
Pn
U

Q∏
q=1

∫
Rn
〈fq(x, ·), Hε(x,m)〉µεt(dx)g(t,m)Λt(dm,PnU )dt

]
.

We prove this equality when Q = 2, the case Q ∈ N∗ follows immediately. Indeed,∫ T

0

∫
(Pn
U

)2
〈f1, e′〉〈f2, e〉g(t, e)Υ∞t (de′,de)dt = lim

k

1
Nk

1
Nk

Nk∑
i,j=1

EP̂
[ ∫ T

0
f1(Xi

[t]Nk , α
i
t

)
f2(Xj

[t]Nk , α
j
t

)
g(t,mNk

t )dt
]

= lim
k

(
1
Nk

1
Nk

∑
i 6=j

EP̂
[ ∫ T

0

∫
U

f1
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)

∫
U

f2
(
Xj

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)g(t,mNk

t )dt
]

+ 1
Nk

1
Nk

Nk∑
i=1

EP̂
[ ∫ T

0
f1
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
f2
(
Xj

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
g(t,mNk

t )dt
])

= lim
k

(
EP̂
[ ∫ T

0

∫
Rn

∫
U

f1(x, u)Hε(x,mNk
t )(du)ϑNk[t]Nk (dx)

∫
Rn

∫
U

f2(y, u)Hε(y,mNk
t )(du)ϑNk[t]Nk (dy)g(t,mNk

t )dt
]

− 1
Nk

1
Nk

∑
i=1

EP̂
[ ∫ T

0

∫
U

f1
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)

∫
U

f2
(
Xi

[t]Nk , u
)
Hε(Xi

[t]Nk ,m
Nk
t )(du)g(t,mNk

t )dt
]

+ 1
Nk

1
Nk

Nk∑
i=1

EP̂
[ ∫ T

0
f1
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
f2
(
Xi

[t]Nk , N
ε(Xi

[t]Nk ,m
Nk
t )(V i,Nkt )

)
g(t,mNk

t )dt
])

= EQ
[ ∫ T

0

∫
Pn
U

∫
Rn

∫
U

f1(x, u)Hε(x,m)(du)µεt(dx)
∫
Rn

∫
U

f2(y, u)Hε(y,m)(du)µεt(dy)g(t,m)Λt(dm,PnU )dt
]
,

where the fourth equality is true because of the same argument used in (4.7.19) and (4.7.20) i.e. for all (s, v) ∈ (tNlk , tNlk+1)×
{1, ..., Nl}, P̂ ◦

(
N ε(x,m)(V v,Nls )

)−1(du) = Hε(x,m)(du), and for i 6= j (V is , V js ) are independent and independent of
other variables, and the last equality follows from (4.7.24) and (4.7.23), and the terms starting with 1

(Nl)2

∑Nl
i=1 go to

zero because (f1, f2, g) are bounded. Hence,

Υ∞t (de′,de)dt = Υ̂t(de′,de)dt, where Υ̂t(de′,de)dt := EQ
[
δ(
Hε(x,e)(du)µεt(dx)

)(de′)Λt(de,PnU )dt
]
,
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this is true for any limit Υ∞ of any-sub-sequence. Therefore the sequence (ΥN )N∈N∗ converges towards Υ̂ for the
wasserstein metric Wp. Then, to finish, by Lemma 4.7.5,

lim
ε→0

lim
N→∞

Cε,N = lim
ε→0

lim
N→∞

EP̂
[ ∫ T

0
Wp

( 1
N

N∑
i=1

δ(
Xi

[r]N
, αir

)(dx, du),mN
r

)p
dr
]

= lim
ε→0

EQ
[ ∫ T

0

∫
Pn
U

Wp

(
Hε(x,m)(du)µεt(dx),m

)p
Λt
(
dm,PnU

)
dt
]

= 0.

All these results allow to deduce that lim
ε→0

lim
N→∞

1
N

N∑
i=1

EP̂
[

sup
t∈[0,T ]

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣p] = 0. As

EP̂
[ ∫ T

0
Wp

(
m̂N
t ,m

N
t

)pdr]
≤ EP̂

[ ∫ T

0
Wp

(
m̂N
t (dx,du), 1

N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx,du)
)pdr]+ EP̂

[ ∫ T

0
Wp

( 1
N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx,du),mN
t (dx, du)

)pdr]

≤ 1
N

N∑
i=1

EP̂
[ ∫ T

0

∣∣X̂ε,i,N,K
t −Xε,i,N

[t]N
∣∣pdt]+ EP̂

[ ∫ T

0
Wp

( 1
N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx,du),mN
t (dx, du)

)pdr]

≤ 1
N

N∑
i=1

EP̂
[ ∫ T

0

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣pdt]+ 1
2N + EP̂

[ ∫ T

0
Wp

( 1
N

N∑
i=1

δ(
Xi

[t]N
, αit

)(dx, du),mN
t (dx, du)

)pdr]

then lim
ε→0

lim
N→∞

EP̂
[ ∫ T

0
Wp

(
m̂N
t ,m

N
t

)pdr] = 0, similarly, using (4.7.26),

lim
ε→0

lim
N→∞

EP̂
[

sup
e′∈[0,T ]

Wp(φe′(µ̂N ), φe′(µN ))
]

≤ lim
ε→0

lim
N→∞

(
EP̂
[

sup
e′∈[0,T ]

Wp(φe′(µ̂N ), φe′(ϑN ))
]

+ EP̂
[

sup
e′∈[0,T ]

Wp(φe′(ϑN ), φe′(µN ))
])

≤ K lim
ε→0

lim
N→∞

(
1
N

N∑
i=1

EP̂
[

sup
t∈[0,T ]

∣∣X̂ε,i,N
t −Xε,i,N

t

∣∣p]+ 1
2N + EP̂

[
sup

e′∈[0,T ]
Wp(φe′(ϑN ), φe′(µN ))

])
= 0.

All previous result combined with measurability property (4.7.17) allowed to say (α1, ..., αN ) and (X̂1, ..., X̂N ) are the
controls and the processes we are looking for.

In Proposition 4.7.7, in fact, instead of interaction processes of type (4.7.12), it is possible to use a sequence of McKean-
Vlasov processes and obtain similar result. Let us assume conditions and inputs previously mentioned for Proposition
4.7.7 are satisfied. Let W be a (P̂, F̂)–Brownian motion, ξ be a F̂0–random variable with LP̂(ξ) = ν, and Z be a uniform
variable independent of (ξ,W ). In addition,(

ψ(µN ), ζN ,ΛN , BN
)
N∈N∗ are P̂–independent of

(
W, ξ, Z

)
. (4.7.27)

For each N ∈ N∗, define the filtrations F̂N := (F̂Nt )t∈[0,T ] and Ĝ := (ĜNt )t∈[0,T ] by

F̂Nt := σ
{
ξ,ΛNt∧·, φt∧·(µN ), ζNt∧·,Wt∧·, B

N
t∧·, Z

}
and ĜNt := σ

{
ψt∧·(µN ), ζNt∧·,Λ

N

t∧·, B
N
t∧·
}
, for all t ∈ [0, T ].

We provide, now, approximations by McKean-Vlasov processes. The proofs of the next Proposition 4.7.9 and Proposition
4.7.10 are left in Appendix 4.9.1.
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Proposition 4.7.9. There exists a sequence of processes (αN )N∈N∗ satisfying: for each N ∈ N∗, αN is F̂N–predictable,
such that if XN is the unique strong solution of: EP̂[‖XN‖p′ ] <∞, for all t ∈ [0, T ],

XN
t = ξ +

∫ t

0
b̂
(
r,XN

r , B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

N
r

)
dr +

∫ t

0
σ̂
(
r,XN

r , B
N , φ(µ̂N ), ζN , m̂N

r , ν̄
N
r , α

N
r

)
dWr, P̂–a.e.,

(4.7.28)

where m̂N
t := LP̂(XN

t , α
N
t

∣∣ĜNt ) and µ̂Nt := LP̂(XN
t

∣∣ĜNt ), then for the sub-sequence (Nk)k∈N∗ given in Proposition 4.7.7,

lim
k→∞

EP̂
[ ∫ T

0
Wp

(
m̂Nk
t ,mNk

t

)pdt+ sup
t∈[0,T ]

Wp

(
φt(µ̂Nk), φt(µNk)

)]
= 0,

and if Λ̂s(dm,dν̄)ds := δ(m̂Nks ,ν̄
Nk
s )(dm,dν̄)ds,

lim
k→∞

LP̂
(
µ̂Nk , ζNk , Λ̂, BNk

)
= LQ(µ, ζ,Λ, B), inWp. (4.7.29)

Another useful approximation Using roughly the same arguments as those used in the proof of the Proposition
4.7.7, another approximation result can be provided. This can be seen as another version of Proposition 4.7.9 where
the sequence (ΛN )N∈N∗ is not necessarily a subset of M0

(
(PnU )2) and the control that achieves the approximation is a

probability measure.

Proposition 4.7.10. Let us stay in the context of Proposition 4.7.9 with (ΛN )N∈N∗ not necessarily a subset of
M0
(
(PnU )2). There exists (βN )N∈N∗ a sequence of P(U)–valued (F̂t ⊗ B(PnU ))t∈[0,T ]–predictable processes such that if

(XN
t )t∈[0,T ] := (Xt)t∈[0,T ] is the unique strong solution of: EP̂[‖XN‖p′ ] <∞, for all t ∈ [0, T ]

Xt = ξ +
∫ t

0

∫
(Pn
U

)2

∫
U

b̂
(
r,Xr, B

N , φ(ηN ), ζN , m̂N
r [m], ν̄, u

)
βNr (m)(du) ΛNr (dm,dν̄)dr

+
∫ t

0

(∫
(Pn
U

)2

∫
U

σ̂σ̂>
(
r,Xr, B

N , φ(ηN ), ζN , m̂N
r [m], ν̄, u

)
βNr (m)(du) ΛNr (dm,dν̄)

)1/2
dWr, P̂–a.e.,

where
m̂N
t [m](dx, du) := EP̂

[
βNt (m)(du)δXNt (dx)

∣∣∣ĜNt ] and µ̂Nt := LP̂(XN
t

∣∣ĜNt ) for all t ∈ [0, T ],

then, one has, for a sub-sequence (Nj)j∈N∗ ⊂ N∗,

lim
j→∞

EP̂
[ ∫ T

0

∫
Pn
U

Wp

(
m̂kj
r [m],m

)
ΛNjr (dm,PnU )dr

]
= 0 and lim

j→∞
EP̂
[

sup
s∈[0,T ]

Wp

(
φs(µ̂Nj ), φs(µNj )

)]
= 0,

in addition if Λ̂Ns (dm,dν̄)ds :=
∫
Pn
U
δm̂N

s [e](dm)ΛNs (de, dν̄)ds,

lim
j→∞

LP̂
(
µ̂Nj , ζNj , Λ̂Nj , BNj

)
= LQ

(
µ, φ(µ), ζ,Λ, B

)
, inWp. (4.7.30)

Remark 4.7.11. With exactly the same proof, an important observation is the following: if the coefficients functions
(b̂, σ̂) are of the form of type(

b̂, σ̂σ̂>
)
(t, x,b, π, β,m, ν̄, u) :=

(
b̂?, â?

)
(t,b, π, β, ν̄) +

(
b̂◦, â◦

)
(t, x,b, π, β,m, u),

where (b̂?, â?, b̂◦, â◦) are bounded continuous functions, we can replace the convergence assumptions (4.7.10) by

lim
N→∞

Wp′

(
1
N

N∑
i=1

νi, ν

)
= 0 and lim

N→∞
LP̂
(
φ(µN ), ζN ,Λ◦,N ,Λ?,N , BN

)
= LQ(φ(µ), ζ,Λ◦,Λ?, B

)
, inWp, (4.7.31)
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with Λ◦,N := ΛNt (dm,PnU )dt, Λ?,N := ΛNt (PnU ,dν̄)dt, Λ◦ := Λt(dm,PnU )dt, and Λ? := Λt(PnU ,dν̄)dt. And then, in
Proposition 4.7.7, Proposition 4.7.9 and 4.7.10, the convergence results (4.7.13), (4.7.29) and (4.7.30) are replaced by

lim
j→∞

LP̂
(
µ̂Nj , ζNj , Λ̂Njt (dm,PnU )dt, Λ̂Njt (PnU ,dν̄)dt, BNj

)
= LQ

(
µ, φ(µ), ζ,Λ◦,Λ?, B

)
, inWp.

In other words, when the variables (m, ν̄) of (b̂, σ̂σ̂>) are ”separated”, we just need separated condition on (ΛN )N∈N∗ of
type (4.7.31).

4.7.3 Some compactness results
Assumption 4.7.12. Here, we assume that ` = 0, and

σ(t, x, π,m, u) = σ̃(t, x), for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U.

For simplicity, we will note σ instead of σ̃.

Let p′ > p, ν ∈ Pp′(Rn). We consider the sequence (nk, zk, q̂k)k∈N∗ where for each k ∈ N∗, (nkt )t∈[0,T ] and (zkt )t∈[0,T ]
are two P(Rn)–valued continuous processes and q̂kt (dm,dm′)dt ∈M((PnU )2). Moreover, (nk, zk, q̂k) satisfy the following
equation: q̂kt (Znkt × P

n
U ) = 1, dt–a.e., and

〈f(t, .),nkt 〉

= 〈f(0, .), ν〉+
∫ t

0

[
〈∂tf(r, .),nkr 〉+

∫
(Pn
U

)2

∫
Rn×U

Ar[f(r, ·)](x,nk, zk,m, ν̄k, u)mx(du)nkr (dx)q̂kr (dm,dν̄)
]
dr, (4.7.32)

for all (t, f) ∈ [0, T ]× C1,2
b ([0, T ]× Rn), where the generator A is defined by

Atϕ(x, π, ζ,m, ν̄, u) := 1
2Tr

[
σσ>(t, x)∇2ϕ(x)

]
+ b(t, x, π, ζ,m, ν̄, u)>∇ϕ(x). (4.7.33)

Let us introduce for each γ ∈ (0, 1), Cγ([s, t]×A) the space of γ–Hölder functions on [s, t]×A where (s, t) ∈ [0, T ]× [0, T ]
and A ⊂ Rn. We define the norm

‖u‖Cγ([s,t]×A) := sup
(r,a)∈[s,t]×A

|u(r, a)|+ sup
(r,a) 6=(r′,a′)

|u(r, a)− u(r′, a′)|
|r − r′|α|a− a′|α

, for all u ∈ Cγ([s, t]×A)

Lemma 4.7.13. With the previous considérations, for each k ∈ N∗, the solution of Equation (4.7.32) nk is such that
nkt (dx)dt = uk(t, x)dxdt, where uk is a locally continuous functions and satisfies: for all (t, s) ∈ (0, T ), and A ⊂ Rn
an open set with a compact closure, there exists a constant N [n, s, t, A, θ] depending on [n, s, t, A, θ] and independent of
k ∈ N∗ such that

‖uk‖Cγ([s,t]×A) ≤ N [n, s, t, A, θ], for all k ∈ N∗

Proof. For each k ∈ N∗, nkt (dx)dt = uk(t, x)dxdt has a density w.r.t. to the Lebesgue measure on Rn × [0, T ] (see [31,
Corollary 6.3.2]). Denote by W p,1 the Sobolev space of functions on Rn that are square integrable together with their
gradient. Let us define the norm ‖‖Hp,1([s,t]×A)

‖u‖Hp,1([s,t]×A) :=
(∫ t

s

‖u(t, ·)‖2Wp,1dt
)1/2

.

We note Hp′,−1([s, t]×A) the dual of Hp,1([s, t]×A), where p′ is the conjugate of p. Next, we define

‖u‖Hp,1([s,t]×A) := ‖u‖Hp,1([s,t]×A) + ‖∂tu‖Hp,−1([s,t]×A).
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By [31, Theorem 6.2.2], there exists N [n, p, s, t, A] such that for each u ∈ Hp,1

‖uk‖Cγ([s,t]×A) ≤ N [n, p, s, t, A]‖u‖Hp,1([s,t]×A).

Also, by Rademacher’s theorem we know that σσ>(t, ·) ∈ W p,1, and as the Lipschitz constant is independent of t, one
has supt∈[0,T ] ‖σσ>(t, ·)‖Wp,1 <∞. Now, by [31, Corollary 6.4.5], there exists a constant C[n, p, s, t, A] > 0

‖uk‖Hp,1([s,t]×A) ≤ C[n, p, s, t, A]
∫ T

0

∫
A

|u(r, x)|dxdr.

By [31, Theorem 6.5.3], there exists another constant C̃[n, p, s, t, A] > 0∫ T

0

∫
A

|u(r, x)|pdxdr ≤ C̃[n, p, s, t, A].

‖∂tu‖Hp,−1([s,t]×A) is also bounded by elements only depending on (n, p, s, t, A) (see for instance [31, Corollary 6.4.3] or
the proof of [31, Theorem 6.4.1]). We can conclude.

Lemma 4.7.14. In the context of Lemma 4.7.13, there exists u ∈ C([0, T ]×Rn), such that for each (t, s) ∈ (0, T )×(0, T )
and Ā ⊂ Rn a compact set, one has

lim
k→∞

sup
(r,x)∈[s,t]×Ā

∣∣uk(r, x)− u(r, x)
∣∣ = 0.

Proof. For each M ∈ N∗, denote by B(M) := {x ∈ Rn : |x| ≤M}. By Lemma 4.7.13, there exists N [n,M, θ]

‖uk‖
Cγ
(

[T/M,T (1−1/M)]×B(M)
) ≤ N [n,M, θ], for all k ∈ N∗.

Then by Arzelà–Ascoli theorem, for each M ∈ N∗, there exists uM ∈ C([0, T ] × Rn) and a sub-sequence (kMl )l∈N∗ such
that

lim
l→∞

sup
(r,x)∈[T/M,T (1−1/L)]×B(M)

∣∣ukMl (r, x)− uM (r, x)
∣∣ = 0.

By Cantor’s diagonal argument, we can find u ∈ C([0, T ] × Rn) and a sub-sequence (kl)l∈N∗ such that ukl converges
uniformly to u on each compact set of [s, t]× Ā ⊂ [0, T ]× Rn.

For each density of probability f on Rn, and q ∈M((PnU )2), we denote by

qt[f ](dm,dν̄)dt :=
∫
δ(
ex(du′)f(x)dx

)(dm)qt(de, dν̄)dt

Recall that G is defined in Equation (4.7.1). Assume that:

lim
k→∞

qkt [G](dm,dν̄)dt := q∞t [G](dm, dν̄)dt, in weakly sense, (4.7.34)

for some q∞ ∈M((PnU )2). Then, we have the following result

Lemma 4.7.15. Let us stay in the context of Lemma 4.7.14 and Lemma 4.7.13, one has

lim
k→∞

qkt [uk](dm,dν̄)dt := q∞t [u](dm,dν̄)dt in the weak sense.
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Proof. It is straightforward to show that (qk[uk])k∈N∗ is relatively compact for the weak convergence topology. If we
note q? the limit of any sub–sequence, to prove this result, it is enough to show that: for all q ∈ N∗, for any functions
(φ1, ..., φq) ∈ C(Rn × U) bounded continuous with compact support and β ∈ C([0, T ]× PnU ), one has∫ T

0

q∏
i=1
〈φi,m〉β(t, ν̄)q?t (dm,dν̄)dt =

∫ T

0

q∏
i=1
〈φi,m〉β(t, ν̄)q∞t [u](dm,dν̄)dt.

This equality is true because

lim
k→∞

∫ T

0

q∏
i=1

∫
U×Rn

φi(u, x)mx(du)uk(t, x)dxβ(t, ν̄)qkt (dm,dν̄)dt

= lim
k→∞

∫ T

0

q∏
i=1

∫
U×Rn

φi(u, x)mx(du)uk(t, x) 1
G(x)G(x)dxβ(t, ν̄)qkt (dm,dν̄)dt

= lim
k→∞

∫ T

0

q∏
i=1

∫
U×Rn

φi(u, x)u(t, x) 1
G(x)m

x(du)G(x)dxβ(t, ν̄)qkt (dm,dν̄)dt

= lim
k→∞

∫ T

0

q∏
i=1

∫
U×Rn

φi(u, x)u(t, x) 1
G(x)m

x(du)G(x)dxβ(t, ν̄)q∞t (dm,dν̄)dt,

where we use for the third equality the uniform convergence of uk to u on each compact set, and for the last equality,
the Assumption 4.7.34 and the fact that (t, x)→ φi(u, x)u(t, x) 1

G(x) is continuous bounded. We can conclude.

4.8 Proofs of equivalence and limit theory
4.8.1 Equivalence result
This section is devoted to the proof of Theorem 4.5.1. To achieve this proof, we provide an approximation of measure-
valued rule by McKean-Vlasov processes. Before starting the proofs, by shifting some probabilities, let us give a
reformulation of measure-valued rules. For all (t,b, π,m) ∈ [0, T ]× C` × CnW × PnU ,

πt[b](dy) :=
∫
Rn
δ(
y′+σ0bt

)(dy)πt(dy′), m[bt](du,dy) :=
∫
Rn×U

δ(y′+σ0bt)(dy)m(du,dy′) (4.8.1)

and any q ∈M,

qt[b](dm) :=
∫
Pn
U

δ(
m′ [bt]

)(dm)qt(dm′). (4.8.2)

In the same way, let us consider the “shift” generator L̂,

L̂t[ϕ](y,b, π,m, u) := 1
2Tr

[
σσ>(t, y + σ0bt, πt[bt],m[bt], u)∇2ϕ(y)

]
+ b(t, y + σ0bt, πt[bt],m[bt], u)>∇ϕ(y). (4.8.3)

Next, on the canonical filtered space (Ω,F) (see Section 4.4), let (ϑt)t∈[0,T ] be the P(Rn)–valued F–adapted continuous
process and (Θt)t∈[0,T ] be the PnU–valued F–predictable process defined by

ϑt(ω̄) := µt(ω̄)[−B(ω̄)] and Θt(ω̄)(dm) := Λt(ω̄)[−B(ω̄)](dm), for all (t, ω̄) ∈ [0, T ]× Ω. (4.8.4)

The next result follows immediately, so we omit the proof.

Lemma 4.8.1. Let P ∈ PV (ν). Then, Θt(Zϑt) = 1, dP ⊗ dt, a.e. (t, ω̄) ∈ [0, T ] × Ω, and P–a.e. ω̄ ∈ Ω, for all
(f, t) ∈ C2

b (Rn)× [0, T ],

Nt(f) = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

L̂rf(y,B, ϑ,m, u)m(du,dy)Θr(dm)dr.
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Next, let us provide some estimates for the different controls. The first result is standard, the second is just an application
of Lemma 4.7.2 (see also Remark 4.7.4) combined with Lemma 4.8.1.

Lemma 4.8.2 (Estimates). Under Assumption 4.1.1, for any (ν, ν1, . . . , νN ) ∈ Pp′(Rn)N+1 with p′ > p, there exists
K > 0, depending only of coefficients (b, σ) and p′, such that: for every (α1, . . . , αN ) ∈ (AN (νN ))N one has

EPN
[

sup
t∈[0,T ]

∫
Rn
|x|p

′
µt(dx)

]
≤ K

[
1 +

∫
Rn
|x′|p

′ 1
N

N∑
i=1

νi(dx′)
]
,

where PN := P(α1, ..., αN ) ∈ P(Ω) (see definition (4.2.3)), and for each P ∈ PV (ν) or α ∈ A(ν) with P = Pν ◦(
µα, δµαt (dm)dt, B

)−1

sup
t∈[0,T ]

∫
Rn
|x|p

′
ϑt(ω)(dx) + EP

[
sup
t∈[0,T ]

∫
Rn
|x|p

′
µt(dx)

]
≤ K

[
1 +

∫
Rn
|x′|p

′
ν(dx′)

]
, P-a.e. ω ∈ Ω.

In addition

Wp

(
ϑs(ω), ϑt(ω)

)p ≤ K|t− s|, for all (t, s) ∈ [0, T ]× [0, T ], P-a.e. ω ∈ Ω,

where ϑ is the process given in equation (4.8.4).

4.8.1.1 Technical lemmata

In this part, from a measure–valued rule, we will build a sequence of processes that approximate the measure–valued rule
and that are close enough to strong control rules. This part is fundamental for the proof of Theorem 4.5.1.

let ν ∈ Pp′(Rn), P ∈ PV (ν), and (Ω̃, F̃, F̃ , P̃) be a filtered probability space supportingW Rn–valued F̃–Brownian motion
and let ξ be a F̃0–random variable s.t. LP̃(ξ) = ν. Define the filtered probability space (Ω̂, F̂, F̂ , P̂) which is an extension
of the canonical space (Ω,F,P): Ω̂ := Ω̃×Ω, F̂ := (F̃t⊗F t)t∈[0,T ] and P̂ := P̃⊗P. The variables (ξ,W ) of Ω̃ and (B,µ,Λ)
of Ω are naturally extended on the space Ω̂ while keeping the same notation (ξ,W,B, µ,Λ) for simplicity. Also, let us
consider the filtration (Ĝt)t∈[0,T ] defined by

Ĝt := σ
{
Bt∧·, µt∧·,Λt∧·

}
, for all t ∈ [0, T ].

Proposition 4.8.3. Under Assumption 4.1.1, for any [0, 1]–valued uniform variable Z P̂–independent of (ξ,W,B, µ,Λ),
there exists a sequence of F̂–predictable processes (αk)k∈N∗ satisfying: for each k ∈ N∗,

αkt := Gk(t, ξ, µt∧·,Λt∧·,Wt∧, Bt∧, Z), P̂–a.e., for all t ∈ [0, T ],

with a Borel function Gk : [0, T ]× Rn × CnW ×M(PnU )× Cn × C` × [0, 1]→ U such that if we let X̂k be the unique strong
solution of: EP̂[‖X̂k‖p′ ] <∞, for all t ∈ [0, T ]

X̂k
t = ξ +

∫ t

0
b(r, X̂k

r , µ
k, µkr , α

k
r )dr +

∫ t

0
σ(r, X̂k

r , µ
k, µkr , α

k
r )dWr + σ0Bt, P̂–a.e.

where µkt := LP(X̂k
t |Ĝt) and µkt := LP̂(X̂k

t , α
k
t |Ĝt) then

lim
k→∞

[
Wp

(
δµks (dm)ds,Λs(dm)ds

)
+ sup
t∈[0,T ]

Wp(µkt , µt)
]

= 0, P̂–a.e. (4.8.5)

Therefore

lim
k→∞

LP̂
(

(µkt )t∈[0,T ], δµks (dm)ds, (Bt)t∈[0,T ]

)
= P, for the Wasserstein metricWp.
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Proof. As P ∈ PV (ν), by definition, P–a.e. ω ∈ Ω, Nt(f) = 0 for all f ∈ C2
b (Rn) and t ∈ [0, T ]. By Lemma 4.8.1, by

taking into account the extension of all variables on Ω̂, recall that (ϑt)t∈[0,T ] and (Θt)t∈[0,T ] are defined in (4.8.4), one
has Θt(Zϑt) = 1, for dP̂⊗ dt–a.e. (t, ω) ∈ [0, T ]× Ω̂, and P̂–a.e. ω ∈ Ω̂, for all (f, t) ∈ C2

b (Rn)× [0, T ],

Nt(f) = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

L̂rf(y,B, ϑ,m, u)m(du,dy)Θr(dm)dr.

Define

Γ :=
{
m ∈ PnU :

∫
Rn
|y|p

′
m(dy, U) ≤ K̂

}
,

where K̂ > 0 is such that K̂ > K

[
1 +

∫
Rn |x

′|p′ν(dx′)
]
, with K is the constant used in Lemma 4.8.2. Notice that Γ is a

compact set of Pp(Rn × U) and by Lemma 4.8.2, one has Θt(Γ) = 1, dP̂⊗ dt, a.e. (t, ω) ∈ [0, T ]× Ω̂.
As Γ is a compact set of Pp(Rn × U), there exists a family of measurable functions (hk)k∈N∗ with hk : [0, T ]×M→ PnU ,
s.t.

lim
k→∞

δhk(t,Θt∧·)(dm)dt = Θt(dm)dt, P̂ –a.e. then lim
k
LP̂(ϑ, δhk(t,Θt∧·)(dm)dt, B

)
= LP̂(ϑ,Θ, B), inWp.

In the same spirit of notations (4.8.3), introduce

[b̂, σ̂](t, y,b, π,m, u) := [b, σ](t, y + σ0bt, π[b],m[bt], u), (4.8.6)

notice that [b̂, σ̂] : [0, T ]×Rn×C`×CnW ×PnU ×U → Rn× Sn×n is continuous and for b ∈ C`, [b̂, σ̂](·, ·,b, ·, ·, ·) verify the
Assumption 4.1.1 with constant C and θ independent of b (see Assumption 4.1.1).

Now, let us apply Proposition 4.7.9 (see also Proposition 4.7.7). As
(
ϑ, δhk(t,Θt∧·)(dm)dt, B

)
k∈N∗ is P̂ independent of

(ξ,W ) and

lim
k
LP̂
(
ϑ, δhk(s,Θs∧·)(dm)ds,B

)
= LP̂(ϑ,Θs(dm)ds,B

)
, inWp,

by Proposition 4.7.9, there exists Gk : [0, T ] × Rn ×M × CnW × Cn × C` × [0, 1] → U a Borel function such that if Xk is
the unique strong solution of: for all t ∈ [0, T ]

Xk
t = ξ +

∫ t

0
b̂
(
r,Xk

r , B, ϑ
k, ϑ

k

r , α
k
r

)
dr +

∫ t

0
σ̂
(
r,Xk

r , B, ϑ
k, ϑ

k

r , α
k
r

)
dWr, P̂–a.e., (4.8.7)

where

αkt := Gk
(
t, ξ,Θk

t∧·, ϑt∧·,Wt∧·, Bt∧·, Z
)
, ϑ

k

t := LP̂(Xk
t , α

k
t

∣∣Gkt ) and ϑkt := LP̂(Xk
t

∣∣Gkt ),
with Θk

t (dm)dt := δ(
hk(t,Θt∧·)

)(dm)dt, and Gk := (Gks )s∈[0,T ] := (σ{ϑs∧·,Θk
s∧·, Bs∧·})s∈[0,T ], then

lim
j→∞

EP̂
[ ∫ T

0
Wp

(
ϑ
kj
t ,m

kj
t

)pdt+ sup
t∈[0,T ]

Wp(ϑ
kj
t , ϑt)

]
= 0 and lim

j→∞
LP̂(ϑkj ,Θkj , B

)
= LP̂(ϑ,Θ, B), inWp,

where mk
t := hk(t,Θt∧·) and (kj)j∈N∗ ⊂ N∗ is a sub-sequence. Notice that, as Gk ⊂ Ĝ, and (ξ,W,Z) are P̂ independent

of Ĝ, one has LP̂(Xk
t , α

k
t

∣∣Gkt ) = LP̂(Xk
t , α

k
t

∣∣Ĝt), P̂–a.e. for all t ∈ [0, T ]. Using equation (4.8.6),

Xk
t = ξ +

∫ t

0
b
(
r,Xk

r + σ0Br, (LP̂(Xk
s + σ0Bs|Ĝs))s∈[0,T ],LP̂(Xk

r + σ0Br, α
k
r |Ĝr), αkr

)
dr

+
∫ t

0
σ
(
r,Xk

r + σ0Br, (LP̂(Xk
s + σ0Bs|Ĝs))s∈[0,T ],LP̂(Xk

r + σ0Br, α
k
r |Ĝr), αkr

)
dWr, for all t ∈ [0, T ], P̂–a.e.
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Denote by X̂k := Xk + σ0B, one finds

X̂k
t = ξ +

∫ t

0
b
(
r, X̂k

r , (LP̂(X̂k
s |Ĝs))s∈[0,T ],LP̂(X̂r, α

k
r |Ĝr), αkr

)
dr

+
∫ t

0
σ
(
r, X̂k

r , (LP̂(X̂k
s |Ĝs))s∈[0,T ],LP̂(X̂k

r , α
k
r |Ĝr), αkr

)
dWr + σ0Bt, for all t ∈ [0, T ], P̂–a.e.

With the notation introduce in (4.8.1) and (4.8.2), it is straightforward to check that the map

(π, q,b) ∈ CnW ×M× C` →
(
π[b], qt[b](dm)dt,b

)
∈ CnW ×M× C`

is continuous. Consequently, one has

lim
j→∞

EP̂
[ ∫ T

0
Wp

(
ϑ
kj
t [Bt],m

kj
t [Bt]

)p
dt+ sup

t∈[0,T ]
Wp(ϑ

kj
t [B], ϑt[B])

]
= 0,

therefore, in Wp

lim
j→∞

LP̂
(

(LP̂(X̂kj
t |Ĝt))t∈[0,T ], δ(L̂P(X̂kls ,α

kl
s |Ĝs))

(dm)ds,B
)

= lim
j→∞

LP̂(ϑkj [B],Θkj
t [B](dm)dt, B

)
= LP̂(ϑ[B],Θt[B](dm)dt, B

)
After simple calculations, (ϑ[B],Θt[B](dm)dt, B) = (µ,Λ, B), P̂–a.e. Then

lim
j→∞

EP̂
[ ∫ T

0
Wp

(
LP̂(X̂kj

t , α
kj
t |Ĝt),m

kj
t [Bt]

)p
dt+ sup

t∈[0,T ]
Wp

(
LP̂(X̂kj

t |Ĝt), µt
)]

= 0

and hence

lim
j→∞

LP̂
(

(LP̂(X̂kj
t |Ĝt))t∈[0,T ], δ(L̂P(X̂

kj
s ,α

kl
s |Ĝs))

(dm)ds,B
)

= LP̂(µ,Λ, B) = P, inWp.

After extraction from (X̂kj , αkj )j∈N∗ , one has also the P̂–a.e. convergence (4.8.5).

4.8.1.2 Proof of Theorem 4.5.1

First, for ν ∈ Pp′(Rn), under Assumption 4.1.1, let us prove that PV (ν) is a compact set for the Wasserstein topologyWp.
Let (Pk)k∈N∗ ⊂ PV (ν), by Proposition 3.4.6, (Pk)k∈N∗ is relatively compact for the Wassertein topologyWp and any limit
P∞ of any sub-sequence belongs to PV (ν). Therefore PV (ν) is compact. By similar techniques used in Theorem 3.2.4
and Theorem 2.2.3, it is straightforward to show that PV (ν) is convex.

Next, we prove the items (i) and (ii) of Theorem 4.5.1. By applying Proposition 4.8.3, with the same notations, for
any [0, 1]–valued uniform variable Z P̂–independent of (ξ,W,B, µ,Λ), there exists a sequence of F̂–predictable processes
(αk)k∈N∗ satisfying: for each k ∈ N∗,

αkt := Gk(t, ξ, µt∧·,Λt∧·,Wt∧, Bt∧, Z), P̂–a.e., for all t ∈ [0, T ],

with Gk : [0, T ] × Rn × CnW ×M(PnU ) × Cn × C` × [0, 1] → U is a Borel function such that if X̂k is the unique strong
solution of: for all t ∈ [0, T ]

X̂k
t = ξ +

∫ t

0
b(r, X̂k

r , µ
k, µkr , α

k
r )dr +

∫ t

0
σ(r, X̂k

r , µ
k, µkr , α

k
r )dWr + σ0Bt, P̂–a.e.
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where µkt := LP(X̂k
t |Ĝt) and µkt := LP̂(X̂k

t , α
k
t |Ĝt) then

lim
k→∞

LP̂
(

(µkt )t∈[0,T ], δµks (dm)ds, (Bt)t∈[0,T ]

)
= P, for the Wasserstein metricWp.

For each k ∈ N∗, X̂k
t = Hk

t (ξ,Wt∧·, µt∧·,Λt∧·, Bt∧·, Z), for all t ∈ [0, T ], P̂–a.e. withHk : Rn×Cn×CnW×M×C`×[0, 1]→ Cn

a Borel function. Then, as (ξ,W,Z) are P̂–independent of (µ,Λ, B), one gets for all t ∈ [0, T ], LP̂(X̂k
t∧·, α

k
t |Ĝt) =

LP̂(X̂k
t∧·, α

k
t |ĜT ), P̂–a.e.. Let us introduce the process (µ̂kt )t∈[0,T ],

µ̂kt := LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λkt∧·|Ĝt), for all t ∈ [0, T ],

with Λkt (du)dt := δαkt (du)dt. For each k ∈ N∗, µ̂kt ∈ P(Cn × Cn × Cn ×M(U)), for all t ∈ [0, T ] and if (X̃, Ỹ , W̃ , Λ̃) is the
canonical process on Cn×Cn×Cn×M(U), one has µkt = Lµ̂kt (X̃t), P̂–a.e., and LP̂(X̂k

t , α
k
t |Ĝt)(dx,du) = Eµ̂kt [δ

X̃t
(dx)Λ̃t(du)],

P̂–a.e. for all t ∈ [0, T ]. It is straightforward to see that µ̂kt = LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λkt∧·|ĜT ), for each k ∈ N∗, then

µ̂kt = LP̂(X̂k
t∧·, X̂

k
t∧· − σ0Bt∧·,W,Λkt∧·|Bt∧·, µ̂kt∧·) = LP̂(X̂k

t∧·, X̂
k
t∧· − σ0Bt∧·,W,Λkt∧·|B, µ̂k), P̂–a.e., for all t ∈ [0, T ],

and (B, µ̂k) are P̂–independent of (ξ,W ). For all k ∈ N∗, denote

Qk := P̂ ◦
(
X̂k, X̂k − σ0B,Λk,W,B, µ̂k

)−1 ∈ P
(
Cn × Cn ×M(U)× Cn × C` × P(Cn × Cn × Cn ×M(U))

)
,

then Qk is a weak control (according to Proposition 2.3.6). Then by (a slight extension of) Proposition 2.3.12,
(1) when ` 6= 0, there exists a sequence αj,k ∈ A(ν), and Xαj,k the strong solution of (5.2.11) with control αj,k such that

lim
j→∞

Pν ◦
(
Xαj,k ,W,B, δ(µαj,ks , αj,ks )(dm,du)ds

)−1
= P̂ ◦

(
X̂k,W,B, δ(µks , αks )(dm, du)ds

)−1
, in Wp,

(2) when ` = 0, there exists a family of Borel functions (κkj )k,j with κkj : [0, T ] × Rn × Cn × [0, 1] → U, such that if
αj,kt [z] := κkj (t, ξ,Wt∧·, z), for z ∈ [0, 1], one gets (αj,kt [z])t∈[0,T ] ∈ A(ν) and

lim
j→∞

∫ 1

0
Pν ◦

(
Xαj,k[z],W,B, δ

(µα
j,k[z]
s , αj,ks [z])

(dm,du)ds
)−1

dz = P̂ ◦
(
X̂k,W,B, δ(µks , αks )(dm,du)ds

)−1
, in Wp,

All these results are enough to deduce the items (i) and (ii) of Theorem 4.5.1, and conclude that: for ν ∈ Pp′(Rn),
VS(ν) = VV (ν) and there exists P? ∈ PV (ν) such that VV (ν) = EP∗[J(µ,Λ)].
4.8.2 Propagation of chaos
With the help of Theorem 4.5.1, in this section we provide one of the main objective of this chapter, which is to prove
the limit theory result or (controlled) propagation of chaos.

4.8.2.1 Technical results: study of the behavior of processes when N goes to infinity

In this part, the properties of some sequences of probability measures on the canonical space Ω are given. Mainly, the
behavior when N goes to infinity of sequences of type (P(α1, . . . , αN ))N∈N∗ construct from the formulation of N–agents
stochastic control problem are studied. (see Section 4.2 and Remark 4.2.1).

Proposition 4.8.4. Let Assumption 4.1.1 hold true and (νi)i∈N∗ ⊂ Pp′(Rn). Recall that νN := ν1 ⊗ · · · ⊗ νN , for each
N ∈ N∗.
(i) Let (PN )N∈N∗ be the sequence satisfying PN := P(α1,N , . . . , αN,N ) (see definition (4.2.3)) with αi,N ∈ AN (νN )
∀i ∈ [[1, N ]], for each N ∈ N∗. If

sup
N≥1

1
N

N∑
i=1

∫
Rn
|x′|p

′
νi(dx′) <∞
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then (PN )N∈N∗ is pre-compact in Pp(Ω) for the metric Wp and for every P∞ ∈ P(Ω) the limit of any sub–sequence
(PNj )j∈N, P∞ ∈ PV

(
limj→∞

1
Nj

∑Nj
i=1 ν

i
)
.

(ii) Let us consider the sequence (Pk)k∈N∗ of probability measures such that Pk ∈ PV (νk) for each k ∈ N∗. If

sup
k≥1

∫
Rn
|x′|p

′
νk(dx′) <∞

then (Pk)k∈N∗ is pre-compact in Pp(Ω) for the metric Wp and for every P∞ ∈ P(Ω) the limit of any sub-sequence
(Pkj )j∈N∗ , P∞ ∈ PV

(
limj→∞ νkj

)
.

Proof. (i) Thanks to Proposition A.2 or/and Proposition B.1 of [49], as U is compact, it is easy to check that (PN )N∈N∗
is precompact on Pp(Ω) for the metric Wp.

Let P∞ be a limit and (PNj )j∈N∗ the corresponding sub–sequence. For sake of simplicity, denote (PNj )j∈N∗ = (PN )N∈N∗
and ν := limj→∞

1
Nj

∑Nj
i=1 ν

i.

Now, let us show P∞ ∈ PV (ν). Let f ∈ C2
b (Rn). For each t ∈ [0, T ], denote Nt(Bt∧·,Λt∧·, µt∧·)(f) = Nt(f) to specify

the dependence w.r.t. (B,µ,Λ) (see definition (4.4.1)). Notice that the function (t,b, π, q) ∈ [0, T ] × C` × CnW ×M →
Nt(bt∧·, qt∧·, πt∧·)(f) ∈ R is continuous and bounded. It is straightforward to check that: for all t ∈ [0, T ]

Nt
(
Bt∧·, (δϕNs (dm)ds)t∧·, ϕN,Xt∧·

)
(f) = 1

N

N∑
i=1

∫ t

0
∇f(Xα,i

r − σ0Br)σ(r,Xα,i
r , ϕN,Xr∧· , ϕ

N
r , α

i
r)dWi

r, PNν –a.e.

With the same techniques used in the proof of [104, Proposition 5.1] or Proposition 3.4.6 in Chapter 3, one has

EP∞
[∣∣(Nt(f)

∣∣2] = EP∞
[∣∣(Nt(Bt∧·,Λt∧·, µt∧·)(f)

∣∣2] = lim
N→∞

EPN
[∣∣(Nt(Bt∧·,Λt∧·, µt∧·)(f)

∣∣2]
= lim
N→∞

EPNν
[∣∣(Nt(Bt∧·, (δϕNs (dm)ds)t∧·, ϕN,Xt∧·

)
(f)
∣∣2]

= lim
N→∞

EPNν
[∣∣∣ 1
N

N∑
i=1

∫ t

0
∇f(Xα,i

r − σ0Br)σ(r,Xα,i
r , ϕN,X, ϕNr , α

i
r)dWi

r

∣∣∣2]

= lim
N→∞

1
N2

N∑
i=1

EPNν
[ ∫ t

0

∣∣∣∇f(Xα,i
r − σ0Br)σ(r,Xα,i

r , ϕN,X, ϕNr , α
i
r)
∣∣∣2dr

]
= 0.

By taking (t, f) under a countable set of [0, T ]×C2
b (Rn) then P∞–a.e. ω ∈ Ω, Nt(f) = 0 for all (t, f) ∈ [0, T ]×C2

b (Rn).
For all h ∈ Cb(Rn), the map (q, π) ∈ M × CnW −→

∫ T
0
∫
Pn
U

∣∣〈h,m(dz, U)〉 − 〈h, πt(dz)〉
∣∣2qt(dm)dt ∈ R is bounded and

continuous (see for instance Lemma 4.7.1), one finds

EP∞
[ ∫ T

0

∫
Pn
U

∣∣〈h,m(dz, U)〉 − 〈h, µt(dz)〉
∣∣2Λt(dm)dt

]

= lim
N→∞

EPNν
[ ∫ T

0

∫
Pn
U

∣∣〈h,m(dz, U)〉 − 〈h, ϕN,Xt (dz)〉
∣∣2δϕNt (dm)dt

]
= lim
N→∞

EPNν
[ ∫ T

0

∣∣∣ 1
N

N∑
i=1

[h(Xα,i
t )− h(Xα,i

t )]
∣∣∣2dt

]
= 0,

by taking h under a countable set of Cb(Rn), one concludes Λt
(
Zµt
)

= 1 P∞ ⊗ dt–a.e. It is obvious that (Bt)t∈[0,T ] is a
(P∞,F) Wiener process. Let Q ∈ N∗, and (hq)q∈{1,..,Q} : Rn → RQ be bounded functions, one has

EP∞
[ Q∏
q=1
〈hq, µ0〉

]
=

Q∏
q=1
〈hq, ν〉.
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Let us show this result when Q = 2, when Q ∈ N∗, the proof is similar.

EP∞[〈h1, µ0〉〈h2, µ0〉
]

= lim
N

1
N2

N∑
i,j=1

EPNν
[
h1(Xα,i

0 )h2(Xα,j
0 )
]

= lim
N

1
N2

N∑
i=1
〈h1, νi〉〈h2, νi〉+ 1

N2

N∑
i 6=j
〈h1, νi〉〈h2, νj〉

= lim
N
〈h1,

1
N

N∑
i=1

νi〉〈h2,
1
N

N∑
i=1

νi〉 = 〈h1, ν〉〈h2, ν〉,

by Proposition 3.5.1, P∞ ◦ (µ0)−1 = δν , then µ0 = ν, P∞–a.e. All these results allow to deduce the first statement of this
proposition.
(ii) For the second part of this proposition, notice that, thanks to Lemma 4.8.2,

sup
k∈N∗

EPk
[

sup
t∈[0,T ]

∫
Rn
|x|p

′
ϑt(dx)

]
≤ K

[
1 + sup

k∈N∗

∫
Rn
|x′|p

′
νk(dx′)

]
<∞

and

lim sup
δ→0

sup
k∈N∗

sup
τ

EPk[Wp

(
ϑ(τ+δ)∧T , ϑτ

)]
= 0,

where τ is a [0, T ]–valued F–stopping time, and recall that (ϑ)t∈[0,T ] is the P(Rn)–valued F–adapted continuous process
defined in equation (4.8.4). Then by Aldous’ criterion [92, Lemma 16.12] (see also proof of [49, Proposition-B.1] ),(
Pk ◦

(
(ϑt)t∈[0,T ]

)−1)
k∈N∗ is relatively compact for the metricWp. Then, using the fact that Pk ∈ PV (νk) for each k ∈ N∗

and the relation between (ϑ,Θ) and the canonical processes (µ,Λ) (see equation (4.8.4)), we deduce that (Pk)k∈N∗ =(
Pk ◦

(
µ,Λ, B

)−1)
k∈N∗ is relatively compact in Wp. The rest of the proof is similar to the previous proof.

Proposition 4.8.5. Let Assumption 4.1.1 hold true, ν ∈ Pp′(Rn) with p′ > p and (νi)i∈N ⊂ Pp′(Rn) such that

sup
i∈N

∫
Rn
|x′|p

′
νi(dx′) <∞ and νi Wp−→

i→∞
ν, then lim

i→∞
VS(νi) = VS

(
ν
)
.

In particular, the map VS : Pp′(Rn) −→ R is continuous.
Proof. By Theorem 4.5.1, one has VS(ν) = VV (ν), thanks to this result, the proof is similar to the proof of Proposition 3.2.8.
Let (δk)k∈N ⊂ N∗ with limk δ

k = 0 and (Pk)k∈N∗ be a sequence such that Pk ∈ PV (νk) and VV (νk)−δk ≤ EPk [J(µ,Λ)]. By
Proposition 4.8.4, (Pk)k∈N is relatively compact on (Pp(Ω),Wp) and if P ∈ P(Ω) is the limit of any sub-sequence (Pkj )j∈N∗
then P ∈ PV (ν). Using Assumption 4.1.1, by convergence of (Pkj )j∈N∗ , one has limj |EPkj [J(µ,Λ)] − EP[J(µ,Λ)]| = 0.
Therefore, one gets

lim sup
k→∞

VV (νk) ≤ lim
j→∞

EPkj [J(µ,Λ)] = EP[J(µ,Λ)] ≤ VV (ν) = VS(ν).

By Proposition 3.4.4, VS(ν) ≤ lim infj→∞ VS(νkj ), this is enough to conclude that lim
k→∞

VS(νk) = VS(ν), and deduce the
result.

4.8.2.2 Proof of Theorem 4.5.3

By combining Theorem 4.5.1, Proposition 4.8.4 and Proposition 4.8.5, this proof turns to be the same used in the proof
of Theorem 3.2.7. For the sake of completeness, we repeat the proof.
(i) By Proposition 4.8.4 (with the same notations), if the sequence (PN )N∈N∗ is such that: V NS (ν1, ..., νN ) − εN ≤
EPN [J(µ,Λ)], where (εN )N∈N∗ is sequence with limN ε

N = 0, then (PN )N∈N∗ is relatively compact on (Pp(Ω),Wp) and
for every P∞ ∈ P(Ω) the limit of the sub-sequence (PNj )j∈N∗ , P∞ ∈ PV

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
, therefore

lim sup
N→∞

V NS (ν1, ..., νN ) ≤ lim
j→∞

EPNj [J(µ,Λ)] = EP[J(µ,Λ)] ≤ VV
(

lim
j→∞

1
Nj

Nj∑
i=1

νi

)
.
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Then, as limj→∞
1
Nj

∑Nj
i=1 νi ∈ Pp′(Rn) and Assumption 4.1.1 holds true one can deduce that VV

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
=

VS

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
. By Proposition 3.4.4, VS

(
limj→∞

1
Nj

∑Nj
i=1 νi

)
≤ lim infj→∞ V

Nj
S (ν1, ..., νNj ). To recap

VS

(
lim
j→∞

1
Nj

Nj∑
i=1

νi

)
≤ lim inf

j→∞
V
Nj
S (ν1, ..., νNj ) ≤ lim sup

j→∞
V
Nj
S (ν1, ..., νNj ) ≤ VS

(
lim
j→∞

1
Nj

Nj∑
i=1

νi

)
.

(ii) Let (Nj)j∈N be the sequence corresponding to :

lim sup
N→∞

∣∣∣V NS (ν1, ..., νN )− VS
( 1
N

N∑
i=1

νi
)∣∣∣ = lim

j→∞

∣∣∣V NjS (ν1, ..., νNj )− VS
( 1
Nj

Nj∑
i=1

νi
)∣∣∣.

By the previous proof, limj→∞ V
Nj
S (ν1, ..., νNj ) = VS

(
limj→∞

1
Nj

∑Nj
i=1 ν

i
)
, as ( 1

Nj

∑Nj
i=1 ν

i)j∈N∗ is bounded in (Pp′(Rn),Wp′)
and converges in (Pp(Rn),Wp), by Proposition 4.8.5,

lim
j→∞

VS

( 1
Nj

Nj∑
i=1

νi
)

= VS

(
lim
j→∞

1
Nj

Nj∑
i=1

νi
)
,

this is enough to conclude the proof.

4.8.3 Proof of Proposition 4.5.4
Notice that, for ν ∈ Pp′(Rn), by Theorem 4.5.1, P?V (ν) is nonempty. Let us define the distance function to the set
P?V (ν), for each Q ∈ P(Ω), Ψ?(Q) := infP?∈P?V (ν)Wp

(
Q,P?

)
. It is well know that, as P?V (ν) is nonempty, the function

Ψ? : Q ∈ Pp(Ω) → R is continuous. Then by Proposition 4.8.4, (PN )N∈N∗ is pre-compact in Pp(Ω) for the metric
Wp and if P ∈ P(Ω) is the limit of any sub-sequence (PNj )j∈N∗ , one have P ∈ PV (ν). Under assumption 4.1.1,
limj→∞ EPNj [J(µ,Λ)] = EP[J(µ,Λ)]. Combining Theorem 4.5.3 and Proposition 4.8.5, one has

lim
j→∞

V
Nj
S (ν1, ..., νNj ) = VS

(
lim
j→∞

1
Nj

Nj∑
i=1

νi

)
= VS(ν) = VV (ν) ≤ EP[J(µ,Λ)],

then P ∈ P?V (ν). Hence each limit of any sub-sequence of (PN )N∈N∗ belongs to P?V (ν). Consequently, if (PNj )j∈N is
the sub-sequence corresponding to lim sup

N→∞
Ψ?(PN ) = lim

j→∞
Ψ?(PNj ), by continuity of Ψ? and the fact that any limit is

an optimal control, lim sup
N→∞

Ψ?(PN ) = 0. The second part of this proposition is just a combination of Theorem 4.5.1,

Proposition 3.4.4 and Theorem 4.5.3. This is enough to conclude the result.

4.8.4 Proofs of the case of closed loop controls
Assumption 4.8.6. Here, we assume that ` = 0, and

σ(t, x, π,m, u) = σ̃(t, x), for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U.

For simplicity, we will note σ instead of σ̃.

4.8.4.1 Proof of Theorem 4.6.2

Let p′ > p, ν ∈ Pp′(Rn). For α ∈ A(ν), we note nt := LPν (Xα
t ) and nt := LPν (Xα

t , αt) for each t ∈ [0, T ]. then the pair
(n,n) satisfies the following equation: dt–a.e., and

〈f(t, .),nt〉 = 〈f(0, .), ν〉+
∫ t

0

[
〈∂tf(r, .),nr〉+

∫
Rn×U

Ar[f(r, ·)](x,n,nr, u)nxr (du)nr(dx)
]
dr,
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for all (t, f) ∈ [0, T ]× C1,2
b ([0, T ]× Rn), where the generator A is defined by

Atϕ(x, π, ζ,m, ν̄, u) := 1
2Tr

[
σσ>(t, x)∇2ϕ(x)

]
+ b(t, x, π,m, u)>∇ϕ(x).

By [49, Proposition C.1], there exists a sequence of measurable function (αk)k∈N∗ with for each k ∈ N∗, αk : [0, T ]×Rn →
U and for each t ∈ [0, T ],

lim
k→∞

δαk(t,x)(du)G(x)dx = nxt (du)(du)G(x)dx, in the weak sense. (4.8.8)

Now, we define Xk a solution of

Xk
t = ξ +

∫ t

0
b
(
r,Xk

r ,nkr∧·,nkr , αk(r,Xk
r )
)
dr +

∫ t

0
σ
(
r,Xk

r

)
dWr,

with nkr := LPν
(
Xk
r

)
and nkr := LPν

(
Xk
r , α

k(r,Xk
r )
)
, for all r ∈ [0, T ]. By Lemma 4.7.14 and Lemma 4.7.13, there exists a

sequence of continuous functions (uk)k∈N∗ and u such that: nkt (dx)dt := uk(t, x)dxdt, and for each (t, s) ∈ [0, T ]× [0, T ]
and Ā ⊂ Rn compact

lim
k→∞

sup
(r,x)∈[s,t]×Ā

∣∣uk(r, x)− u(r, x)
∣∣ = 0.

By Equation (4.8.8) and Lemma 4.7.15, we have

lim
k→∞

δαk(t,x)(du)uk(t, x)dx = nxt (du)u(t, x)dx, in the weak sense, dt–a.e.

If we note for each t ∈ [0, T ], n∞t (dx) := u(t, x)dx We can deduce that

〈f(t, ·),n∞t 〉 = 〈f(0, .), ν〉+
∫ t

0

[
〈∂tf(r, .),n∞r 〉+

∫
Rn×U

Ar[f(r, ·)](x,n∞,nx
′

r (du′)n∞r (dx′), u)nxr (du)n∞r (dx)
]
dr.

If we define

b?(t, x, π) :=
∫
U

b(t, x, π,nx
′

r (du′)π(dx′), u)nxr (du).

By [106, Theorem 2.3], the SDE associated to the coefficients (b?, σ) has a unique law. We can deduce that n∞ = n.
Consequently

lim
k→∞

(
nk, δnkr (dm)dr

)
=
(
n, δnr (dm)dr

)
, inWp.

4.8.4.2 Proof of Theorem 4.6.3

First of all, it is obvious that: for each N ∈ N∗,

sup
α∈Am

N

1
N

N∑
i=1

EP?
[ ∫ T

0
L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i(t,Xα
t )
)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
≤ V NS (ν, . . . , ν).

Therefore, one has by Theorem 4.5.3,

lim sup
N→∞

sup
α∈Am

N

1
N

N∑
i=1

EP?
[ ∫ T

0
L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i(t,Xα
t )
)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
≤ VS(ν).

Next, let α ∈ Am, and Xα solution of: for all t ∈ [0, T ]

Xt = ξ +
∫ t

0
b
(
r,Xr,nr∧·,nr, α(r,Xr)

)
dr +

∫ t

0
σ
(
r,Xr

)
dWr, P?–a.e.
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with nr := LPν
(
Xr

)
and nr := LPν

(
Xr, α(r,Xr)

)
, for all r ∈ [0, T ]. Let us define Xα := (Xα,1

· , . . . ,Xα,N
· ) the solution of

the following system of SDEs, for each i ∈ {1, . . . , N}, EPNν
[
‖Xα,i‖p

]
<∞,

Xα,i
t = ξi +

∫ t

0
b
(
r,Xα,i

r , ϕN,Xr∧· , ϕ
N
r , α(r,Xα,i

r )
)
dr +

∫ t

0
σ
(
r,Xα,i

r

)
dWi

r, for all t ∈ [0, T ], (4.8.9)

with

ϕN,Xt (dx) := 1
N

N∑
i=1

δ(
Xα,i
t

)(dx) and ϕNt (dx, du) := 1
N

N∑
i=1

δ(
Xα,i
t , α(t,Xα,i

t )
)(dx, du), for all t ∈ [0, T ].

By [106, Theorem 2.5], one has (LP?(ϕN,X))N∈N∗ converges to LP?(n) for Wp, and for all t ∈ [0, T ] and all function
measurable bounded φ : Rn → R

lim
N→∞

〈φ, ϕN,Xt 〉 = 〈φ,nt〉, in probability sense.

Using the fact that α : [0, T ] × Rn → U is measurable bounded, we deduce that lim
N→∞

LP?(ϕN,X, δϕNt (dm)dt
)

=

LP?(n, δnt(dm)dt
)
for Wp. Consequently, by using Theorem 4.6.2, one gets

VS(ν) ≤ lim inf
N→∞

sup
α∈Am

N

1
N

N∑
i=1

EP?
[ ∫ T

0
L
(
t,Xα,i

t , ϕN,Xt∧· , ϕ
N
t , α

i(t,Xα
t )
)
dt+ g

(
Xα,i
T , ϕN,XT∧·

)]
.

We can conclude.

4.9 Appendix: some technical results
4.9.1 Technical proofs
Here we shall successively give the proofs of Lemma 4.7.2, Proposition 4.7.9 and Proposition 4.7.10.

Proof of Lemma 4.7.2. By taking, for δ > 0,

qδt (dm,dm′) := 1
δ

∫ t

(t−δ)∨0
q̂δs(dm, dm′)ds, for all t ∈ [0, T ],

using similar approach to [119, Lemma 4.4], the sequence (q̂δ)δ>0 satisfying: for each δ > 0, q̂δt (dm,dm′)dt ∈M((PnU )2),
q̂δ : t ∈ [0, T ]→ q̂δt (dm,dm′) ∈ (PnU )2 is continuous, and lim

δ→0
q̂δt = q̂t, in weakly sense for ds almost every t ∈ [0, T ].

Let us fix t0 ∈ [0, T ], φ ∈ C2
b (Rn), by [97, Chapter 2 Section 9 Theorem 10], there exists vε,δ ∈ C1,2

b ([0, t0]×Rn) satisfying:

∂tv
ε,δ(t, x) +Aεt[vε,δ(t, .)][b,n, z, q̂δt ](x) = 0 for all (t, x) ∈ [0, t0)× Rn and vε,δ(t0, x) = φ(x). (4.9.1)

Notice that, under Assumption 4.1.1, for each ε > 0, âε[b,n, z, κ](t, x) ≥ θIn×n for all (t, x, κ) ∈ [0, T ]× Rn × P((PnU )2).
By Proposition 4.9.3, for all t ∈ [0, T ], x ∈ Rn → (âε)1/2[n, z, κ](t, x) ∈ Sn×n is Lipschitz (with Lipschitz constant
independent of (t,n, z, κ)).

Let (Ω,F,F ,P) be a probability space supporting W a Rn–valued (P,F)–Wiener process, and ξ a F0–random variable
such that LP(ξ) ∈ Pp(Rn). Now, for every t ∈ [0, t0], denote by Xε,δ,t,ξ := X the continuous process unique strong
solution of:

Xs = ξ +
∫ s

t

b̂ε[b,n, z, q̂δr ](r,Xr)dr +
∫ s

t

(âε)1/2[b,n, z, q̂δr ](r,Xr)dWr for all s ∈ [t, T ], P–a.e..
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By applying Itô formula, one has (Feynman Kac’s formula)

vε,δ(t, x) = EP
[
φ(Xε,δ,t,ξ

t0 )
∣∣ξ = x

]
= EP

[
φ(Xε,δ,t,x

t0 )
]
for all (t, x) ∈ [0, t0]× Rn. (4.9.2)

By definition of âε and b̂ε (see (4.7.2)), and by using the fact that q̂δ ∈M((PnU )2), there exists a constant Cε (independent
of δ > 0) such that: for all (t, x) ∈ [0, T ]× Rn,∣∣∇2(b̂ε[b,n, z, q̂δt ], âε[b,n, z, q̂δt ])(t, x)

∣∣+
∣∣∇(b̂ε[b,n, z, q̂δt ], âε[b,n, z, q̂δt ])(t, x)

∣∣ ≤ Cε,
then by [97, Chapter 2 Section 8 Theorem 8, Theorem 7], for two unit vectors (w1, w2) ∈ Rn × Rn, there exist two
Rn–valued F–adapted continuous processes Y ε,δ,t,x,w1 := Y and Zε,δ,t,x,w1,w2 := Z such that

lim
h→0

EP
[

sup
s∈[t,t0]

∣∣∣Xε,δ,t,x+hw1

s −Xε,δ,t,x
s

h
− Ys

∣∣∣] = 0 and lim
h→0

EP
[

sup
s∈[t,t0]

∣∣∣Y ε,δ,t,x+hw2,w1

s − Y ε,δ,t,x,w1

s

h
− Zs

∣∣∣] = 0,

formally speaking, Y can be seen as the “derivative” (given a direction w1) of x→ Xx, and Z the “derivative” (given w1

and another direction w2) of Y . In addition EP[ sups∈[t,t0] |Ys|+ |Zs|
]
≤ Kε, with Kε depending on ε but not of δ.

As φ ∈ C2
b (Rn), by using the previous results and equation (4.9.2), there exists K̂ε > 0 (independent of δ) satisfying: for

all (t, x) ∈ [0, T ]× Rn ∣∣∇2vε,δ(t, x)
∣∣+
∣∣∇vε,δ(t, x)

∣∣+
∣∣vε,δ(t, x)

∣∣ ≤ K̂ε. (4.9.3)

Therefore, for all ε > 0,∣∣Aεtvε,δ(t, ·)[b,n, z, q̂t](x)−Aεtvε,δ(t, ·)[b,n, z, q̂δt ](x)
∣∣ ≤ K̂ε

(∣∣[b̂ε, âε][b,n, z, q̂t](t, x)− [b̂ε, âε][b,n, z, q̂δt ](t, x)
∣∣),

by definition (4.7.2), as lim
δ→0

q̂δt = q̂t, for ds almost every t ∈ [0, T ], one gets:

lim
δ

∣∣Aεtvε,δ(t, ·)[b,n, z, q̂t](x)−Aεtvε,δ(t, ·)[b,n, z, q̂δt ](x)
∣∣ = 0, (4.9.4)

for each ε > 0 and x ∈ Rn, for ds almost every t ∈ [0, T ].

Uniqueness: For each ε > 0 fixed, let us prove the uniqueness of (nεt)t∈[0,T ] solution of equation (4.7.5). Let n1,ε and
n2,ε be two solutions of the Fokker-Planck equation (4.7.5) mentioned in the Lemma, for any t0 ∈ [0, T ] and φ ∈ C2

b (Rn),
denote by v := vε,δ,φ,t0 solution of (4.9.1) associated to (t0, φ). One finds∫

Rn
φ(y)n1,ε

t0 (dy)−
∫
Rn
φ(y)n2,ε

t0 (dy)

=
∫ t0

0
〈∂tv(r, .),n1,ε

r 〉 − 〈∂tv(r, .),n2,ε
r 〉+ 〈Aεrv[b,n, z, q̂r](.),n1,ε

r 〉 − 〈Aεrv[b,n, z, q̂r](.),n2,ε
r 〉dr

=
∫ t0

0
〈Aεrv[b,n, z, q̂r](·)−Aεrv[b,n, z, q̂δr ](·),n1,ε

r 〉+ 〈Aεrv[b,n, z, q̂r](·)−Aεrv[b,n, z, q̂δr ](·),n2,ε
r 〉 dr,

by (4.9.4), given ε > 0, after taking δ → 0, by Lebesgue’s dominated convergence theorem,
∫
Rn φ(y)n1,ε

t0 (dy) =
∫
Rn φ(y)n2,ε

t0 (dy),
this is true for all (t0, φ) ∈ [0, T ]× C2

b (Rn), then n1,ε = n2,ε.
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Convergence of nε: Now, we show the second assertion of our lemma. Using the fact that q̂t(Z[nt]×PnU ) = 1 dt–almost
surely t ∈ [0, T ], one gets for all t ∈ [0, T ],∫

Rn
vε,δ(t, y)

∫
Rn
Gε(z − y)nt(dz)dy =

∫
Rn

∫
Rn
vε,δ(t, z − y)nt(dz)Gε(y)dy

=
∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[ ∫
Rn
∂tv

ε,δ(s, z − y)ns(dz)

+
∫

(Pn
U

)2

∫
Rn×U

As[vε,δ(s, · − y)](z,b,n, z,m, ν̄, u)m(dz,du)q̂s(dm,dν̄)
]
Gε(y) dy ds

=
∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

∫
Rn

[
∂tv

ε,δ(s, z − y)

+
∫

(Pn
U

)2

∫
U

As[vε,δ(s, · − y)](z,b,n, z,m, ν̄, u)mz(du)q̂s(dm,dν̄)
]
Gε(y) ns(dz) dy ds

=
∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[
∂tv

ε,δ(s, y)
∫
Rn
Gε(z − y) ns(dz)

+
∫

(Pn
U

)2

∫
Rn×U

b̂(s, z,b,n, z,m, ν̄, u)∇vε,δ(s, y)Gε(z − y)mz(du)ns(dz)q̂s(dm,dν̄)

+
∫

(Pn
U

)2

∫
Rn×U

1
2Tr

[
â(s, z,b,n, z,m, ν̄, u)∇2vε,δ(s, y)

]
Gε(z − y)mz(du)ns(dz)q̂s(dm,dν̄)

]
dy ds

=
∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[
∂tv

ε,δ(s, y)(ns)(ε)(y)

+
∫

(Pn
U

)2

∫
Rn×U

b̂(s, z,b,n, z,m, ν̄, u) Gε(z − y)
(m(dz′, U))(ε)(y)

m(dz,du)q̂s(dm,dν̄)∇vε,δ(s, y)(ns)(ε)(y)

+ 1
2Tr

[ ∫
(Pn
U

)2

∫
Rn×U

â(s, z,b,n, z,m, ν̄, u) Gε(z − y)
(m(dz′, U))(ε)(y)

m(dz,du)q̂s(dm,dν̄)∇2vε,δ(s, y)
]
(ns)(ε)(y)

]
dy ds

=
∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy +

∫ t

0

∫
Rn

[∂tvε,δ(r, y) +Aεr[vε,δ(r, ·)][b,n, z, q̂r](r, y)](nr)(ε)(y) dy dr,

where for each π ∈ P(Rn), we write π(ε)(x) :=
∫
Rn Gε(x− z)π(dz), for all x ∈ Rn.

Then by (4.9.1)∫
Rn
vε,δ(0, y)ν(ε)(y)dy

=
∫
Rn
φ(y)(nt0)(ε)(y)dy +

∫ t0

0

∫
Rn

[Aεr[vε,δ(r, ·)][b,n, z, q̂δr ](y)−Aεr[vε,δ(r, ·)][b,n, z, q̂r](y)](nr)(ε)(y)dydr.

By equation (4.9.2), one has∫
Rn
vε,δ(0, y)

∫
Rn
Gε(z − y)ν(dz)dy =

∫
Rn

E
[
φ(Xε,δ,0,ξ

t0 )
∣∣ξ = y

]
ν(ε)(y)dy =

∫
Rn
φ(x)nε,δt0 (dx),

where nε,δt := LP(Xε,δ,0,ξε
t ) for t ∈ [0, T ], with LP(ξε)(dy) = ν(ε)(y)dy.
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Combining the previous equality,∫
Rn
φ(y)nt0(dy) =

∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy +

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy

=
∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)nt0(dz)dy +

∫
Rn
vε(0, y)

∫
Rn
Gε(z − y)ν(dz)dy

+
∫ t0

0

∫
Rn

[
Aεrvε,δ(r, ·)[b,n, z, q̂r](y)−Aεrvε,δ(r, ·)[b,n, z, q̂δr ](y)

] ∫
Rn
Gε(z − y)nr(dz) dy dr

=
∫
Rn
φ(y)nε,δt0 (dy) +

∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)dy nt0(dz)

+
∫ t0

0

∫
Rn

[
Aεrvε,δ(r, ·)[b,n, z, q̂r](y)−Aεrvε,δ(r, ·)[b,n, z, q̂δr ](y)

] ∫
Rn
Gε(z − y)nr(dz) dy dr.

Consequently, for each ε > 0,

lim sup
δ→0

∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)nε,δt0 (dy)

∣∣∣ ≤ ∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)

∫
Rn
Gε(z − y)dy nt0(dz)

∣∣∣.
Finally

lim
ε→0

lim sup
δ→0

∣∣∣ ∫
Rn
φ(y)nt0(dy)−

∫
Rn
φ(y)nε,δt0 (dy)

∣∣∣ = 0, (4.9.5)

for any φ ∈ C2
b (Rn) and t0 ∈ [0, T ], where we used limε→0 |

∫
Rn φ(y)Gε(z − y)dy − φ(z)| = 0, for all z ∈ Rn.

Notice that ν(ε)(y)(dy) converges weakly to ν(dy). By Skorokhod’s representation theorem, one can find a probability
space (Ω̃, F̃ , P̃) supporting (ξε)ε>0 and ξ such that LP̃(ξε) = ν(ε)(y)(dy) and LP̃(ξ) = ν(dy), and limε→0 ξ

ε = ξ P̃ a.e..
And when LP(ξ) = ν ∈ Pp′(ν), one has supε>0 EP̃[|ξε|p′ ] = supε>0

∫
Rn |y|

p′ν(ε)(y)(dy) ≤ C(1 +
∫
Rn |y|

p′ν(dy)) < ∞, by
using standard techniques of uniform integrability, limε→0 EP̃[|ξε − ξ|p] = 0, recall that p′ > p. If necessary, it is possible
to enlarge the initial space, by sake of clarity and without technical problems, let us assume (Ω̃, F̃ , P̃) is equal to the
initial space (Ω,F ,P). For each ε > 0, Let Xε be the continuous process unique strong solution of

Xε
s = ξ +

∫ s

0
b̂ε[b,n, z, q̂r](r,Xε

r)dr +
∫ s

0
(âε)1/2[b,n, z, q̂r](r,Xε

r)dWr for all s ∈ [0, T ], P–a.e.

By using the regularity of (b̂ε, âε) for ε fixed, it is straightforward to find

lim
ε→0

lim
δ→0

EP
[

sup
t∈[0,T ]

∣∣Xε
t −X

ε,δ,0,ξε
t

∣∣p] = 0.

By Itô formula and uniqueness of the Fokker–Planck equation (4.7.5), nεt = LP(Xε
t ) for each t ∈ [0, T ], thanks to (4.9.5)

and previous result, one gets, in weakly convergence sense,

lim
ε

nεt = lim
ε

lim
δ

nε,δt = nt for each t ∈ [0, T ].

Therefore we proved: for each t ∈ [0, T ], nεt converges weakly to nt. To deduce the Wasserstein convergence Wp, notice
that: supε>0 supt∈[0,T ]

∫
Rn |x|

p′nεt(dx) ≤ C(1 +
∫
Rn |y|

p′ν(dy)) <∞, and

lim sup
δ′→0

sup
ε>0

sup
s∈[0,T ]

Wp

(
nε(s+δ′)∧T ,nεs

)p = lim sup
δ′→0

sup
ε>0

sup
s∈[0,T ]

Wp

(
LP(Xε

(s+δ′)∧T ),LP(Xε
s)
)p

≤ lim sup
δ′→0

sup
ε>0

sup
s∈[0,T ]

EP[∣∣Xε
(s+δ′)∧T −X

ε
s

∣∣p] ≤ Ĉ lim sup
δ′→0

δ′ = 0,
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where the last equality follows from the Holder’s property of trajectories ofXε with a constant independent of ε (essentially
because (b̂, σ̂) are bounded). By Aldous’ criterion [92, Lemma 16.12] (see also proof of [49, Proposition-B.1] ), (nε)ε>0 is
relatively compact in C([0, T ];Pp(Rn)) with the metric ∆(ν, ν′) := supt∈[0,T ]Wp(νt, ν′t) for all (ν, ν′) ∈ C([0, T ];Pp(Rn))×
C([0, T ];Pp(Rn)). As for each t ∈ [0, T ], nεt converges weakly to nt, then the limit of each sub-sequence of (nε)ε>0 is n,
consequently lim

ε→0
sup
t∈[0,T ]

Wp(nεt ,nt) = 0.

Proof of Proposition 4.7.9. Before starting, let us mention that many parts of this proof use Proposition 4.7.7 and its
associated proof.
Let us take the sequence of processes (αi,N )(i,N)∈N∗×N∗ given in Proposition 4.7.7 with LP̂(ξi) = νi = ν for each i, and
define the unique strong solution Xi,N of: for all t ∈ [0, T ]

Xi,N
t = ξi +

∫ t

0
b̂
(
r,Xi,N

r , BN , φ(µ̂i,N ), ζN , m̂i,N
r , ν̄Nr , α

i,N
r

)
dr +

∫ t

0
σ̂
(
r,Xi,N

r , BN , φ(µ̂i,N ), ζN , m̂i,N
r , ν̄Nr , α

i,N
r

)
dW i

r ,

with m̂i,N
t := LP̂(Xi,N

t , αi,Nt
∣∣ĜNt ) and µ̂i,Nt := LP̂(Xi,N

t

∣∣ĜNt ). As αi,N is F̂i,N–predictable (F̂i,N is defined in (4.7.11)),
there exists a Borel function G : [0, T ] × Rn × M

(
(PnU )2) × CnW × CnW × Cn × C` × [0, 1] → U satisfying αi,Nt =

G
(
t, ξi,ΛNt∧·, φt∧·(µN ), ζNt∧·,W i

t∧·, B
N
t∧·, Z

i
)
, dt⊗ dP̂–a.e. Define αNt := G

(
t, ξ,ΛNt∧·, φt∧·(µN ), ζNt∧·,Wt∧·, B

N
t∧·, Z

)
. Let XN

be the unique strong solution of equation (4.7.28) (associated to αN ). By independence Assumption (4.7.27), recall that
m̂N is given in equation (4.7.28),

m̂i,N
t = m̂N

t , P̂–a.e., and given the σ–field ĜNt , for i 6= j, (Xi,N
t∧· , α

i,N
t ) are independent of (Xj,N

t∧· , α
j,N
t ) (4.9.6)

and LP̂(Xi,N , ξi,ΛN , φ(µN ), ζN ,W i, BN , Zi
)

= LP̂(XN , ξ,ΛN , φ(µN ), ζN ,W,BN , Z
)
.

Let us introduce for each N ∈ N∗, the measure on [0, T ]× P(Cn × U)× P(Cn × U)

ΓNt (de,de′)dt := EP̂
[
δ(
β
N

t , LP(Xi,Nt∧· ,α
i,N
t |GNt )

)(de,de′)dt], with βNt (dx,du) := 1
N

N∑
i=1

δ(Xi,Nt∧· ,α
i,N
t )(dx,du).

As (b̂, σ̂) are bounded and ν ∈ Pp′(Rn), it is straightforward to check that supN≥1 supi∈{1,...,N} EP̂[ supt∈[0,T ]
∣∣Xi,N

t

∣∣p′] <
∞, and hence (ΓN )N∈N∗ is relatively compact for the Wasserstein metricWp. Denote by Γ∞ the limit of any sub-sequence
of (ΓN )N∈N∗ . For simplicity, we will use the same name for the sequence and the sub-sequence. One gets

Γ∞t (de, de′)dt = δe(de′)Γ∞t
(
de,P(Cn × U)

)
dt. (4.9.7)

It is enough to show that: for all Q ∈ N∗, any bounded functions (fq)d∈{1,...,Q} : Cn×U → RQ and g : [0, T ]×P(Cn×U)→
R ∫ T

0

∫
P(Cn×U)2

Q∏
q=1
〈fq, e〉g(t, e′)Γ∞t (de, de′)dt =

∫ T

0

∫
P(Cn×U)

Q∏
q=1
〈fq, e〉g(t, e)Γ∞t

(
de,P(Cn × U)

)
dt.



110 Chapter 4. Measure–valued controls and limit theory with law of control

Let us prove this result when Q = 2, the case Q ∈ N∗ is true by similar way.∫ T

0

∫
P(Cn×U)2

Q∏
q=1
〈fq, e〉g(t, e′)Γ∞t (de,de′)dt = lim

N→∞

1
N

N∑
i,j=1

EP̂
[ ∫ T

0
f1(Xi,N

t∧· , α
i,N
t

)
f2(Xj,N

t∧· , α
j,N
t

)
g(t, m̂N

t )dt
]

= lim
N→∞

1
N2

(∑
i 6=j

EP̂
[ ∫ T

0
f1(Xi,N

t∧· , α
i,N
t

)
f2(Xj,N

t∧· , α
j,N
t

)
g(t, m̂N

t )dt
]

+
N∑
i=1

EP̂
[ ∫ T

0
f1(Xi,N

t∧· , α
i,N
t

)
f2(Xi,N

t∧· , α
i,N
t

)
g(t, m̂N

t )dt
])

= lim
N→∞

(
1
N2

∑
i 6=j

EP̂
[ ∫ T

0
EP̂[f1(Xi,N

t∧· , α
i,N
t

)∣∣ĜNt ]EP̂[f2(Xj,N
t∧· , α

j,N
t

)∣∣ĜNt ]g(t, m̂N
t )dt

]

+ 1
N2

N∑
i=1

EP̂
[ ∫ T

0
f1(Xi,N

t∧· , α
i,N
t

)
f2(Xi,N

t∧· , α
i,N
t

)
g(t, m̂N

t )dt
])

= lim
N→∞

(
EP̂
[ ∫ T

0
〈f1, m̂N

t 〉〈f2, m̂N
t 〉g(t, m̂N

t )dt
]
− 1
N2

N∑
i=1

EP̂
[ ∫ T

0
EP̂[f1(Xi,N

t∧· , α
i,N
t

)∣∣ĜNt ]EP̂[f2(Xi,N
t∧· , α

i,N
t

)
g(t, m̂N

t )
∣∣ĜNt ]dt]

+ 1
N2

N∑
i=1

EP̂
[ ∫ T

0
f1(Xi,N

t∧· , α
i,N
t

)
f2(Xi,N

t∧· , α
i,N
t

)
g(t, m̂N

t )dt
])

=
∫ T

0

∫
P(Rn×U)

〈f1, e〉〈f2, e〉g(t, e)Γ∞t
(
de,P(Cn × U)

)
dt,

where we used result (4.9.6) and the fact that the terms starting with 1
(Nl)2

∑Nl
i=1 go to zero because (f1, f2, g) are

bounded.
Next, for all t ∈ [0, T ], using Lipshitz property, there exists a constant C > 0 (which changes from line to line)

EP̂
[

sup
s∈[0,t]

∣∣Xi,N
s − X̂i

s

∣∣p]

≤ CEP̂
[ ∫ t

0
sup
r∈[0,s]

∣∣Xi,N
r − X̂i

r

∣∣p + sup
r∈[0,s]

Wp

(
µ̂Nr ,

1
N

N∑
i=1

δXi,Nr

)p +Wp

(
m̂N
s ,

1
N

N∑
i=1

δ(Xi,Ns ,αi,Ns )
)pds]

≤ CEP̂
[ ∫ t

0
sup
r∈[0,s]

∣∣Xi,N
r − X̂i

r

∣∣p +Wp

(
LP((Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds],
recall that (X̂1, ..., X̂N ) are defined in equation (4.7.12) (in Proposition 4.7.7), and m̂N

t := LP̂(XN
t , α

N
t

∣∣ĜNt ) and µ̂Nt :=
LP̂(XN

t

∣∣ĜNt ).
Then by Gronwall Lemma EP̂

[
sups∈[0,T ]

∣∣Xi,N
s − X̂i

s

∣∣p] ≤ CEP̂
[ ∫ T

0 Wp

(
LP̂((Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds]. As,

EP̂
[ ∫ T

0
Wp

(
m̂N
s ,

1
N

N∑
i=1

δ(X̂i,Ns ,αi,Ns )

)pds]

≤ EP̂
[ ∫ T

0
Wp

(
m̂N
s ,

1
N

N∑
i=1

δ(Xi,Ns ,αi,Ns )
)pds]+ EP̂

[ ∫ T

0
Wp

( 1
N

N∑
i=1

δ(Xi,Ns ,αi,Ns ),
1
N

N∑
i=1

δ(X̂i,Ns ,αi,Ns )

)pds]

≤ C
(
EP̂
[ ∫ T

0
Wp

(
LP̂((Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds]+ EP̂
[ ∫ T

0

∣∣Xi,N
s − X̂i

s

∣∣pds])
≤ CEP̂

[ ∫ T

0
Wp

(
LP̂((Xi,N

s∧· , α
i,N
s

∣∣ĜNs ), βNs )pds],
therefore, by taking the sub-sequence corresponding to the lim sup, by result (4.9.7),

lim sup
l→∞

EP̂
[ ∫ T

0
Wp

(
m̂Nl
s ,

1
Nl

Nl∑
i=1

δ(X̂i,Ns ,αi,Ns )

)pds+ sup
t∈[0,T ]

Wp

(
φt(µ̂Nl), φt(µNl)

]
= 0.
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From all previous results, it is straightforward to check that

lim
N→∞

Wp

(
LP̂(µ̂N , ζN , δ(m̂Ns ,ν̄Ns )(dm,dν̄)ds,BN

)
,LP̂(γ̂N , ζN , δ(θ̂Ns ,ν̄Ns )(dm,dν̄)ds,BN

))
= 0,

where γ̂Nt := 1
N

∑N
i=1 δ(X̂i,Nt ) and θ̂t := 1

N

∑N
i=1 δ(X̂i,Nt ,αi,Nt ). Consequently, by Proposition 4.7.7

lim
k→∞

LP̂(µ̂Nk , ζNk , δ(m̂Nks ,ν̄
Nk
s )(dm,dν̄)ds,BNk

)
= lim
k→∞

LP̂(γ̂Nk , ζNk , δ(θ̂Nks ,ν̄
Nk
s )(dm,dν̄)ds,BNk

)
= LQ(µ, ζ,Λ, B),

recall that m̂N
t := LP̂(XN

t , α
N
t

∣∣ĜNt ) and µ̂Nt := LP̂(XN
t

∣∣ĜNt ).
Proof of Proposition 4.7.10. The proof of this Proposition is exactly the same as Proposition 4.7.7, we essentially recall
the main step.

Approximation by SDE : Tightness and identification of the limit process: Let us define the unique strong solution
Zε,N of:

Zε,Nt = ξ +
∫ t

0
b̂ε[BN , φ(µN ), ζN ,ΛNr ](r, Zε,Nr )dr +

∫ t

0
(âε)1/2[BN , φ(µN ), ζN ,ΛNr ](r, Zε,Nr )dWr, t ∈ [0, T ], P̂–a.e..

And for all (t, ω) ∈ [0, T ]× Ω, denote ϑε,Nt (ω) := LP̂(Zε,Nt ∣∣ĜNt )(ω), and

Pε,N := LP̂
(
ϑε,N , BN , φ(µN ), ζN ,ΛN

)
∈ P

(
CnW × C` × CnW × CnW ×M

(
(PnU )2)).

As [b̂ε, âε] are bounded, again it is straightforward to check that (Pε,N )N∈N∗ is relatively compact for the Wasserstein
metricWp. Denote by Pε,∞ the limit of any sub-sequence of (Pε,N )N∈N∗ . Therefore, under Assumption 4.1.1, by applying
similar techniques to those used in step 2.2 of proof of Proposition 4.7.7, one gets for all (f, t) ∈ C2

b (Rn;R)× [0, T ], one
gets

〈f, βt〉 =
∫
Rn
f(y)ν(dy) +

∫ t

0

∫
Rn
Aεrf

[
B, βµ, βζ , β

]
(x)βr(dx)dr, Pε,∞–a.e., (4.9.8)

where (β,B, βµ, βζ , β) is the canonical element on CnW ×C`×CnW ×CnW ×M
(
(PnU )2. Using a countable family of (f, t), we

can deduce Pε,∞–a.e. equation (4.9.8) is true for all (f, t) ∈ C2
b (Rn;R)× [0, T ].

By Lemma 4.9.4, one has β = Φε
(
B, βµ, βζ , β

)
where Φε is the function used in equation (4.7.14). Also

LPε,∞(B, βµ, βζ , β) = lim
N→∞

LPε,N (B, βµ, βζ , β) = lim
N→∞

LP̂(B,φ(µ), ζN ,ΛN
)

= LQ(B,φ(µ), ζ,Λ
)
.

Then LPε,∞(β,B, βµ, βζ , β) = LQ(µε, B, φ(µ), ζ,Λ
)
. This result is true for any limit of any sub-sequence of (Pε,N )N∈N∗ ,

consequently (Pε,N )N∈N∗ converges and

lim
N→∞

LP̂(ϑε,N , BN , φ(µN ), ζN ,ΛN
)

= LQ(µε, B, φ(µ), ζ,Λ
)
.

Last approximation: Let us consider for all (ε,N) ∈ (0,∞)×N∗, the F̂–adapted Rn–valued continuous processXε,N := X
strong solution of : for all s ∈ [0, T ]

Xs = ξ +
∫ s

0

∫
(Pn
U

)2

∫
U

b̂(r,Xr, B
N , φ(µ̂ε,N ), ζN , m̂ε,N

r [m], ν̄, u)Hε(Zε,Nr ,m)(du)ΛNr (dm,dν̄)dr

+
∫ s

0

(∫
(Pn
U

)2

∫
U

σ̂σ̂>(r,Xr, B
N , φ(µ̂ε,N ), ζN , m̂ε,N

r [m], ν̄, u)Hε(Zε,Nr ,m)(du)ΛNr (dm,dν̄)
)1/2

dWr, P̂–a.e.
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where recall that Hε(x,m)(du) :=
∫
Rn m(du,dy) Gε(x−y)

(m(U,dz))(ε)(x) and

m̂ε,N
r [m](dz,du) := EP̂

[
Hε(Zε,Nr ,m)(du)δXε,Nr (dz)

∣∣∣ĜNr ] and µ̂ε,Nr := LP̂(Xε,N
r |ĜNr ).

Combining Proposition 4.9.3 and the techniques applied in step 3 of Proof of Proposition 4.7.7, one gets

lim
ε→0

lim
N→∞

EP̂
[

sup
t∈[0,T ]

|Xε,N
t − Zε,Nt |p

]
= 0 and lim

ε→0
lim
N→∞

EP̂
[ ∫ T

0

∫
Pn
U

Wp(m̂ε,N
r [m],m)ΛNr (dm,PnU )dr

]
= 0.

Similarly, lim sup
ε→0

lim sup
N→∞

EP̂
[

sup
s∈[0,T ]

Wp

(
φ(µ̂ε,N ), φs(µN )

)]
= 0. Xε,N is the process we are looking for.

4.9.2 Convolution approximation
Let (Ω,F,F ,P) be a filtered probability space supporting W a Rn–valued F–Brownian motion and ξ a F0–random
variable verifying EP[|ξ|p] <∞, (bt, σt)t∈[0,T ] Rn×Sn bounded predictable process such that there exists θ > 0 satisfying
[σt][σt]> ≥ θIn×n. For all t ∈ [0, T ], denote by

Xt = ξ +
∫ t

0
bsds+

∫ t

0
σsdWs, P–a.e.

the following proposition is just an application of [76, Proposition 4.2] (see also [97])

Proposition 4.9.1 (equivalence of measures). With the previous considerations, the measure n on Rn × [0, T ] defined
by

n(dx, dt) := P ◦ (Xt)−1(dx)dt
is equivalent to the Lebesque measure on Rn × [0, T ].

Next, let (εk)k∈N∗ ⊂ (0,∞) such that lim
k→∞

εk = 0. Let G ∈ C∞(Rn;R) satisfying G ≥ 0, G(x) = G(−x) for x ∈ Rn, and∫
Rn G(y)dy = 1, and define Gk(x) := εk

−nG(εk−1x) and for all π ∈ P(Rn), π(k)(x) :=
∫
Rn Gk(x− y)π(dy) for all x ∈ Rn.

Also, denote by Xk the process defined by

Xk
t = ξ +

∫ t

0
bkrdr +

∫ t

0
σkrdWr for all t ∈ [0, T ], P–a.e.,

where there exists D > 0 s.t. for all k and t, |σkt |+ |bkt | ≤ D, P–a.e., [σkt ][σkt ]> ≥ θIn×n, P–a.e.. In addition EP[|ξ|p] <∞
where p ≥ 1.
Let (nt)t∈[0,T ] be a P(Rn)–valued continuous process such that nt(dx)dt is equivalent to the Lebesgue measure on
[0, T ]× Rn, and for the weak topology,

lim
k→∞

LP(Xk
t ) = nt for each t ∈ [0, T ].

The following proposition shows that it is possible to approach some bounded measurable functions via smooth functions
(bounded derivative functions) by using the marginal distributions of Xk.

Proposition 4.9.2 (regularization by convolution). For all bounded Borel measurable function ϕ : [0, T ]×Rn×Rn → Rq,
such that for all (t, z) ∈ [0, T ]× Rn, ϕ(t, ., z) : y ∈ Rn → ϕ(t, y, z) ∈ Rq is continuous, one has

lim
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)Gk(t, x− y)

(nt)(k)(x)
nt(dy)− ϕ(t, x, x)

∣∣∣nt(dx)dt = 0 (4.9.9)

and
lim
k→∞

∫ T

0

∣∣∣∣EP
[ ∫

Rn
ϕ(t,Xk

t , y)Gl(t,X
k
t − y)

(nt)(k)(Xk
t )

nt(dy)
]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt = 0.
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Proof. Mention that, as nt(dx)dt is equivalent to the Lebesgue measure on [0, T ] × Rn, there exists Borel measurable
function c : [0, T ]× Rn → R such that c(s, z) > 0 dt⊗ dx a.e. (s, z) ∈ [0, T ]× Rn, and nt(dx)dt = c(t, x)dxdt.
First, let us prove the result (4.9.9). If

Ak :=
∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)Gk(x− y)

(nt)(k)(x)
nt(dy)− ϕ(t, x, x)

∣∣∣nt(dx)dt,

one finds∣∣∣Ak − ∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, x, x)

}
Gk(x− y)c(t, y)dy

∣∣∣dxdt
∣∣∣

=
∣∣∣ ∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, x, x)

}
Gk(x− y)c(t, y)dy

∣∣∣( c(t, x)
(nt)(k)(x)

− 1
)

dxdt
∣∣∣

≤ K
∣∣∣ ∫ T

0

∫
Rn

∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣ c(t, x)
(nt)(k)(x)

− 1
∣∣∣dxdt

∣∣∣ = K
∣∣∣ ∫ T

0

∫
Rn

(nt)(k)(x)
∣∣∣ c(t, x)
(nt)(k)(x)

− 1
∣∣∣dxdt

∣∣∣
≤ K

∣∣∣ ∫ T

0

∫
Rn

∣∣∣c(t, x)− (nt)(k)(x)
∣∣∣dxdt

∣∣∣ = K
∣∣∣ ∫ T

0

∫
Rn

∣∣∣c(t, x)−
∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣dxdt
∣∣∣→k→∞= 0, (4.9.10)

where for the first inequality is true because ϕ is bounded and the last result is obtained by the classical result of
approximation by convolution.
Now, for all (t, y, δ) ∈ [0, T ] × Rn × R∗+, v(t, y, δ) := supz||y−z|≤δ |ϕ(t, y, y) − ϕ(t, z, y)|, notice that limδ→0 v(t, y, δ) = 0.
Observe that∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, y, y)

}
Gk(x− y)c(t, y)dy

∣∣∣dxdt

=
∫ T

0

∫
Rn

∣∣∣ ∫
Rn

{
ϕ(t, x, y)− ϕ(t, y, y)

}(
1|x−y|≤δ + 1|x−y|>δ

)
Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤
∫ T

0

∫
Rn
v(t, y, δ)

∫
Rn

1|x−y|≤δGk(x− y)c(t, y)dydxdt+K

∫ T

0

∫
Rn

∫
Rn

1|x−y|>δGk(x− y)c(t, y)dydxdt

≤
∫ T

0

∫
Rn
v(t, y, δ)

∫
Rn
Gk(x− y)c(t, y)dydxdt+K T

∫
Rn

1|z|>δGk(z)dz

≤
∫ T

0

∫
Rn
v(t, y, δ)c(t, y)dydt+K T

∫
Rn

1|z|>δGk(z)dz,

it is well know, for each δ > 0, limk→∞
∫
Rn 1|z|>δGk(z)dz = 0, one gets

lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
{ϕ(t, x, y)− ϕ(t, y, y)}Gk(x− y)c(t, y)dy

∣∣∣dxdt ≤ lim
δ→0

∫ T

0

∫
Rn
v(t, x, δ)c(t, x)dxdt = 0, (4.9.11)

the last inequality is true because of Lebesgue’s dominated convergence theorem.
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Finally, one has

lim sup
k→∞

Ak = lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
{ϕ(t, x, y)− ϕ(t, x, x)}Gk(x− y)c(t, y)dy

∣∣∣dxdt

= lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)c(t, y)Gk(x− y)dy −

∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

= lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy −

∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy − ϕ(t, x, x)c(t, x)

∣∣∣dxdt

+ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ϕ(t, x, x)c(t, x)−
∫
Rn
ϕ(t, x, x)Gk(x− y)c(t, y)dy

∣∣∣dxdt

≤ lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, y, y)c(t, y)Gk(x− y)dy − ϕ(t, x, x)c(t, x)

∣∣∣dxdt

+ lim sup
k→∞

K

∫ T

0

∫
Rn

∣∣∣c(t, x)−
∫
Rn
Gk(x− y)c(t, y)dy

∣∣∣dxdt = 0,

where the first equality derived from (4.9.10), the third equality follows from (4.9.11) and we find 0 because of approximation
by convolution result. Therefore limk→∞Ak = 0, then the first assertion is proved.

For the second point, let k0 ∈ N∗ one has

Sk(ϕ) :=
∫ T

0

∣∣∣∣EP
[ ∫

Rn
ϕ(t,Xk

t , y)Gk(t,Xk
t − y)

(nt)(k)(Xk
t )

nt(dy)
]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt
≤
∫ T

0

∣∣∣∣EP
[ ∫

Rn
ϕ(t,Xk

t , y)Gk(t,Xk
t − y)

(nt)(k)(Xk
t )

nt(dy)−
∫
Rn
ϕ(t,Xk

t , y)Gk0(t,Xk
t − y)

(nt)(k0)(Xk
t )

nt(dy)
]∣∣∣∣dt

+
∫ T

0

∣∣∣∣EP
[ ∫

Rn
ϕ(t,Xk

t , y)Gk0(t,Xk
t − y)

(nt)(k0)(Xk
t )

nt(dy)
]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt.
By [97, Chapter 2 Section 3 Theorem 4] and Markov inequality, for each R > 0, there exists a constant C > 0 depending
only on (D, θ, T,R) satisfying

Sk(ϕ) ≤ C
∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)Gk(t, x− y)

(nt)(k)(x)
nt(dy)−

∫
Rn
ϕ(t, x, y)Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt

+ T
EP[supt∈[0,T ] |Xk

t |p]
Rp

+
∫ T

0

∣∣∣∣EP
[ ∫

Rn
ϕ(t,Xk

t , y)Gk0(t,Xk
t − y)

(nt)(k0)(Xk
t )

nt(dy)
]
−
∫
Rn
ϕ(t, x, x)nt(dx)

∣∣∣∣dt.
By using the first statement of the proposition (see proof above), then there exists (kj)j∈N∗ ⊂ N∗ a sub-sequence such
that:

lim
j→∞

∣∣∣∣ ∫
Rn
ϕ(s, z, y)

Gkj (t, x− y)
(nt)(kj)(x)

nt(dy)− ϕ(s, z, z)
∣∣∣∣ = 0, nt(dx)dt a.e. (s, z) ∈ [0, T ]× Rn.

As nt(dx)dt is equivalent to the Lebesgue measure on [0, T ]×Rn, lim
j→∞

∣∣∣∣ ∫
Rn
ϕ(s, z, y)

Gkj (t, x− y)
(nt)(kj)(x)

nt(dy)−ϕ(s, z, z)
∣∣∣∣ = 0,

dt⊗ dx a.e. (s, z) ∈ [0, T ]× Rn. All these observations allows us to say, by Lebesgue’s dominated convergence theorem

lim sup
k0→∞

lim sup
k→∞

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
ϕ(t, x, y)Gk(t, x− y)

(nt)(k)(x)
nt(dy)−

∫
Rn
ϕ(t, x, y)Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt = 0.
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Finally, combining the previous result with the weak convergence, lim
k→∞

LP(Xk
t ) = nt for each t ∈ [0, T ], and an obvious

application of the first statement of the proposition, one gets

lim sup
k→∞

Sk(ϕ) ≤ lim sup
k0,k→∞

C

∫ T

0

∫
Rn

∣∣∣ ∫
Rn
h(t, x, y)Gk(t, x− y)

(nt)(k)(x)
nt(dy)−

∫
Rn
h(t, x, y)Gk0(t, x− y)

(nt)(k0)(x)
nt(dy)

∣∣∣n1|x|≤Rdxdt

+ lim sup
l0→∞

∫ T

0

∣∣∣ ∫
Rn

∫
Rn
h(t, x, y)Gl0(t, x− y)

(nt)(l0)(x)
nt(dy)nt(dx)dt−

∫ T

0

∫
Rn
h(t, x, x)nt(dx)

∣∣∣dt
+ T

supk>0 EP[supt∈[0,T ] |Xk
t |p]

Rp
≤ T

supk>0 EP[supt∈[0,T ] |Xk
t |p]

Rp
,

as supk>0 EP[supt∈[0,T ] |Xk
t |p] <∞, by taking R→∞, we deduce the result.

4.9.3 Some properties of Fokker-Planck equation
Let us recall a useful result on square root of matrices. Denote by S+

n the set of symmetric positive definite matrices of
dimension n ∈ N∗. The principal square root function is denoted by: f : Q ∈ S+

n 7→ f(Q) := Q1/2 ∈ S+
n .

Proposition 4.9.3. [81, Theorem 6.2] There exists a constant C(n) depending only of the dimension n ∈ N∗ such that
for any (A,B) ∈ S+

n × S+
n

|f(A)− f(B)| ≤ C(n)
[
λmin(A)1/2 + λmin(B)1/2]−1|A−B|,

where λmin(·) is the smallest eigenvalue.

Let E and E′ be two Polish spaces and [b, a] : [0, T ] × Rn × C([0, T ];E) ×M(E′) → Rn × Sn×n be a bounded Borel
functions s.t.: for all (t, π, q̂) ∈ [0, T ]× C([0, T ];E)×M(E′),

the function x ∈ Rn → [b, a](t, x, πt∧·, q̂t∧·) ∈ Rn × Sn×n belongs to C2
b (Rn) and a ≥ ρIn, (4.9.12)

for a certain ρ > 0.
Also, let us introduce, for all ϕ ∈ C2(Rn), Ltϕ[π, q̂](x) := 1

2Tr
[
a(t, x, π, q̂t∧·)∇2ϕ(x)

]
+ b(t, x, π, q̂t∧·)>∇ϕ(x).

Lemma 4.9.4. Let ν ∈ Pp(Rn). There exists a Borel function Z : C([0, T ];E) ×M(E′) → CnW s.t. if (Ω,F,F ,P) is a
filtered probability space supporting (µt)t∈[0,T ] a E–valued F–adapted continuous process and (Λ̂t)t∈[0,T ] a P(E′)–valued
F–predictable process, then, the unique P(Rn)–valued (σ{µt∧·, Λ̂t∧·})t∈[0,T ]–adapted continuous process (ϑt)t∈[0,T ] solution
of: ϑ ∈ Cn,pW , and for all (t, f) ∈ [0, T ]× C2

b (Rn),

〈f, ϑt〉 =
∫
Rn
f(y)ν(dy) +

∫ t

0

∫
Rn
Lrf [µ, Λ̂](x)ϑr(dx)dr, P–a.e. (4.9.13)

satisfies

ϑt = Zt(µt∧·, Λ̂t∧·), for all t ∈ [0, T ], P–a.e.

Proof. For the uniqueness of (4.9.13), as the coefficients [b, a] verify (4.9.12), by a slight extension of (proof of) Lemma
4.7.2, one gets that equation (4.9.13) has at most one solution.
Let W be a Rn–valued (P,F) Brownian motion and ξ be a F0–random variable of law ν, in addition, (ξ,W ) are P–
independent of (µ, Λ̂). Next, let us show the existence and find the function Z. Combining (4.9.12) and Proposition 4.9.3,
for any (t, π, q̂), the application x ∈ Rn →

(
a(t, x, πt∧·, q̂t∧·)

)1/2 ∈ Sn×n is Lipshitz, with a Lipschitz constant depends
only on a. Therefore, there exists the Rn–valued F–adapted process X unique strong solution of

Xs = ξ +
∫ s

0
b(r,Xr, µ, Λ̂)dr +

∫ s

0

(
a(r,Xr, µ, Λ̂)

)1/2dWr for all s ∈ [0, T ].
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It is well know that Xt = Ht(ξ,Wt∧·, µt∧·, Λ̂t∧·), for all t ∈ [0, T ], P–a.e. where H : Rn×Cn×C([0, T ];E)×M(E′)→ Cn
is a Borel function (independent of P).

Denote by G := (Gt)t∈[0,T ] the filtration defined by Gt := σ{µt∧·, Λ̂t∧·}, for all t ∈ [0, T ]. As (ξ,W ) are P–independent
of (µ, Λ̂), one has: for all t ∈ [0, T ], LP(Xt∧·|Gt) = LP(Xt∧·|GT ), P–a.e. then by Lemma 5.5.1, the process (βt)t∈[0,T ]
is a P(Rn)–valued G–adapted continuous process where β : (t, ω) ∈ [0, T ] × Ω → LP(Xt|Gt)(ω) ∈ P(Rn), and by
Itô’s formula (βt)t∈[0,T ] is solution of equation (4.9.13). In addition, there exists a Borel function (independent of P)
Z : C([0, T ];E)×M(E′)→ CnW such that: P–a.e., for all t ∈ [0, T ], βt = Zt(µt∧·, Λ̂t∧·).
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Chapter 5

The dynamic programming principle

5.1 Introduction

Our interest in this chapter is in the optimal control of McKean–Vlasov stochastic equations, and more precisely in the
rigorous establishment of the dynamic programming principle (DPP for short), under conditions as general as possible.
The optimal control of McKean–Vlasov dynamics is a rather recent problem in the literature. In a nutshell, the idea
behind the DPP is that the global optimization problem can be solved by a recursive resolution of successive local
optimization problems. This fact is an intuitive result, which is often used as some sort of meta–theorem, but is not so
easy to prove rigorously in general.

Note that this approach in general requires fewer assumptions, though it can be applied in less situations. Notwithstanding
these advantages, the DPP approach has long been unexplored for the control of McKean–Vlasov equations. One of the
main reasons is actually a very bleak one for us: due to the non–linear dependency with respect to the law of process, the
problem is actually a time inconsistent control problem (like the classical mean–variance optimisation problem in finance,
see the recent papers by Björk and Murgoci [28], Björk, Khapko, and Murgoci [29], and Hernández and Possamaï [80]
for a more thorough discussion of this topic), and Bellman’s optimality principle does not hold in this case. However,
though the problem itself is time–inconsistent, one can recover some form of the DPP by extending the state space
of the problem. This was first achieved by Laurière and Pironneau [112], and later by Bensoussan, Frehse, and Yam
[24; 25; 26], who assumed the existence at all times of a density for the marginal distribution of the state process, and
reformulated the problem as a deterministic density control problem, with a family of deterministic control terms. Under
this reformulation, they managed to prove a DPP and deduce a dynamic programming equation in the space of density
functions. Following similar ideas, but without the assumptions of the existence of density, and allowing the coefficients
and reward functions to not only depend on the distribution of the state, but to the joint distribution of the state and
the control, Pham and Wei [139] also deduced a DPP by looking at a set of closed loop (or feedback) controls, in a non
common noise context. They then extended this strategy to a common noise setting (where the control process is adapted
to common noise filtration) in [138]. Specialisations to linear–quadratic settings were also explored by Pham [137], Li,
Sun, and Yong [116], Li, Sun, and Xiong [117], Huang, Li, and Yong [82], Yong [152], and Basei and Pham [20].

Our approach to obtaining the DPP is very different. One common drawback of all the results we mentioned above,
is that they generically require some Markovian1 property of the system or its distribution, as well as strong regularity
assumptions on coefficient and reward functions considered. This should appear somehow surprising to people familiar
with the classical DDP theory. Indeed, for stochastic control problems, it is possible to use measurable selection arguments
to obtain the DPP, in settings requiring nothing beyond mild measurability assumptions. As a rule of thumb, one needs
two essential ingredients to prove the dynamic programming principle: first ensuring the stability of the controls with
respect to conditioning and concatenation, and second the measurability of the associated value function. The use of
measurable selection argument makes it possible to provide an adequate framework for verifying the conditioning, the
concatenation and the measurability requirements of the associated value function without strong assumptions. This
technique was followed by Dellacherie [56], by Bertsekas and Shreve in [27; 146; 147; 148], and by Shreve [143; 144; 145]

1An exception is the work of Djehiche and Hamadène [57], which considers optimal control (and also a zero–sum game) of a non–Markovian
McKean–Vlasov equation, and obtains both a characterisation of the value function and the optimal control using BSDE techniques, reminiscent
of the classical results of Hamadène and Lepeltier [77] and El Karoui and Quenez [59; 60] for the non–McKean–Vlasov case. However, their
approach does not allow for common noise, and is limited to control on the drift of the state process only.



118 Chapter 5. The dynamic programming principle

for discrete–time stochastic control problems. Later, El Karoui, Huu Nguyen, and Jeanblanc-Picqué in [63] presented a
framework for stochastic control problem in continuous time (accommodating general Markovian processes). Thanks to
the notion of relaxed control, that is to say the interpretation of a control as a probability measure on some canonical
space, and thanks to the use of the notion of martingale problems, they proved a DPP by simple and clear arguments.
El Karoui and Tan [61; 62] extended this approach to the non–Markovian case. Similar results were obtained by several
authors, among which we mention Nutz and Soner [131], Neufeld and Nutz [128; 130], Nutz and van Handel [132], Žitković
[156], and Possamaï, Tan, and Zhou [140].
Following the framework in [61; 63], we develop in this chapter a general analysis based upon the measurable selection
argument for the non–Markovian optimal control of McKean–Vlasov equations with common noise. In particular, we
investigate the case where the drift and diffusion coefficients, as well as the reward functions, are allowed to depend
on the joint conditional distribution of the path of the state process and of the control, see [139] for the case of the
joint distribution of the state process and of feedback controls (see also Yong [152] for a more specific situation) in a
non–common noise case.
Motivated by the notion of weak solution of classical SDEs, and similarly to the ideas used by El Karoui and Tan
[61], and Carmona, Delarue, and Lacker [49] in a mean–field games context, our first task is to provide an appropriate
“relaxation” of the problem. We therefore introduce a notion of weak solution of controlled McKean–Vlasov equation
with common noise similar as that used in chapter one. Notice that this is by no means a straightforward task. In
standard McKean–Vlasov stochastic control problems, the controls (open loop in that case) are adapted with respect to
the filtration generated by both the Brownian motion (W,B) (with B being the common noise) and the initial random
variable ξ (serving as an initial condition for the problem). Then, the conditional distributions considered are associated
to the filtration of B, in other words the “common noise” filtration, that is, L(Xt∧·, αt|B), where X is the state and α the
control. We call this the strong formulation. The strong formulation does not enjoy a good stability condition. To see
this, it is enough to notice that the conditional distribution is not continuous with respect to the joint distribution

(
for

instance the function L(Xt, B) 7−→ E
[∣∣E[Xt

∣∣B]∣∣2] is not continuous). To overcome this difficulty, we introduce a notion
of weak solution by considering a more general filtration F describing the adaptability of the controls, and an extended
common noise filtration G as in Chapter 2 (see also [49]). Nevertheless, more conditions on F and G are needed to ensure
that the formulation remains first compatible with the notion of strong solutions, then enjoys good stability properties for
fixed control processes, and finally ensures that weak controls can be approximated sufficiently well by strong controls.
With the help of this notion, we can then provide a weak formulation for McKean–Vlasov control problems with common
noise. By interpreting controls as probability measures on an appropriate canonical space, and using measurable selection
arguments as in [61; 62], we then move on to prove the universal measurability of the associated value function, and
derive the stability of controls with respect to conditioning and concatenation, and finally deduce the DPP for the weak
formulation under very general assumptions. Our next result addresses the DPP for the classical strong formulation.
Using the DPP in weak formulation, and by adding standard Lipschitz conditions on the drift and diffusion coefficients,
as in [138], but without any regularity assumptions on reward functions, and in a non–Markovian context, we obtain the
DPP for the strong formulation of McKean–Vlasov control problems with common noise, where the control is adapted
to the “common noise” filtration (B in this case of strong formulation). Also, for general strong formulation, where
the control is adapted to both ξ, W and B, we obtain the DPP under some additional regularity conditions on the
reward functions. These regularity conditions may seem unexpected at first sight, but they seem unavoidable due to
the non–linear dependency of the drift and volatility coefficients with respect to the conditional distribution of X (see
Remark 5.3.6 for a more thorough discussion). Finally, the DPP results in the general non–Markovian context induces
the same results in the Markovian one.
The rest of the chapter is organized as follows. After recalling briefly some notations and introducing the probabilistic
structure to give an adequate and precise definition of the tools that are used throughout the chapter, we introduce
in Section 5.2 several notions of weak and strong formulation (in a fixed probability space or in the canonical space)
for the McKean–Vlasov stochastic control problem with common noise in a non–Markovian framework, and prove some
equivalence results. Next, in Section 5.3, we present the main result of this chapter, the DPP for three formulations: weak
formulation, strong formulation, and a B–strong formulation where the control is adapted with respect to the “common
noise” filtration. We first provide all our results in the non–Markovian setting, and then in a Markovian framework.
Finally, Section 5.4 is devoted to the proof of our main results.
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Notations. (i) Given a measurable space (Ω,F), we denote by P(Ω) the collection of all probability measures on (Ω,F).
For any probability measure P ∈ P(Ω), we denote by FP the P–completion of the σ–field F , and by FU :=

⋂
P∈P(Ω) FP

the universal completion of F . Let ξ : Ω −→ R ∪ {−∞,+∞} be a random variable and P ∈ P(Ω), we define

EP[ξ] := EP[ξ+]− EP[ξ−], where ξ+ := ξ ∨ 0, ξ− := (−ξ) ∨ 0, with the convention∞−∞ := −∞.

We also use the following notation to denote the expectation of ξ under P

EP[ξ] = 〈P, ξ〉 = 〈ξ,P〉.

When Ω is a Polish space, a subset A ⊆ Ω is called an analytic set if there is another Polish space E, and a Borel subset
B ⊆ Ω×E such that A = {ω ∈ Ω : ∃e ∈ E, (ω, e) ∈ B}. A function f : Ω −→ R∪{−∞,∞} is called upper semi–analytic
(u.s.a. for short) if {ω ∈ Ω : f(ω) > c} is analytic for every c ∈ R. Any upper semi–analytic function is universally
measurable (see e.g. [27, Chapter 7]).

(ii) Let Ω be a metric space, F its Borel σ–field and G ⊂ F be a sub–σ–field which is countably generated. Following
[150], we say that (PGω)ω∈Ω is a family of r.c.p.d. (regular conditional probability distributions) of P knowing G if it
satisfies

• the map ω 7−→ PGω is G−measurable, and for all A ∈ F and B ∈ G, one has P[A ∩B] =
∫
B
PGω[A]P(dω);

• PGω
[
[ω]G

]
= 1 for all ω ∈ Ω, where [ω]G :=

⋂{
A ∈ F : A ∈ G and ω ∈ A

}
.

Let (Ω,F ,P,G = (Gt)t∈[0,T ]) be a filtered probability space, G ⊂ F be a sub–σ–field, and E a metric space. Then given a
random element ξ : Ω −→ E, we use both the notations LP(ξ|G)(ω) and PGω ◦ (ξ)−1 to denote the conditional distribution
of ξ knowing G under P. Moreover, given a measurable process X : [0, T ]×Ω −→ E, we can always define µt := LP(Xt|Gt)
to be a P(E)–valued G–optional process (see for instance Lemma 5.5.1).

(iii) Let Cns,t := C([s, t];Rn) be the space of all Rn–valued continuous functions on [s, t], for 0 ≤ s ≤ t ≤ T . When n = 0,
the space Cn and Cns,t both degenerate to a singleton.

(iv) Throughout the chapter, we fix a constant p ≥ 0, a nonempty Polish space (U, ρ) and a point u0 ∈ U . Notice that a
Polish space is always isomorphic to a Borel subset of [0, 1]. Let us denote by π such one (isomorphic) bijection between
U and π(U) ⊆ [0, 1]. We further extend the definition of π−1 to R ∪ {−∞,∞} by setting π−1(x) := ∂ for all x /∈ π(U)
and let U := U ∪ {∂}, where ∂ is the usual cemetery point. Let ν ∈ P(Ck) (resp. ν̄ ∈ P(Ck × U)) be a Borel probability
measure on the canonical space Ck (resp. Ck ×U) equipped with the canonical process X (resp. (X,α)). We denote, for
each t ∈ [0, T ],

ν(t) := ν ◦X−1
t∧·
(
resp. ν̄(t) := ν̄ ◦ (Xt∧·, α)−1).

5.2 Weak and strong formulations of the McKean–Vlasov control problem
The main objective of this chapter is to study the following (non–Markovian) McKean–Vlasov control problem, in both
strong and weak formulations, of the form

“ sup
α

E
[ ∫ T

0
L
(
t,Xα

t∧·,L
(
Xα
t∧·, αt

∣∣Gt), αt)dt+ g
(
Xα
· ,L

(
Xα
·
∣∣GT ))], ”

where G := (Gt)0≤t≤T is a filtration modeling the common noise, supporting a Brownian motion B, L
(
Xα
t∧·, αt

∣∣Gt)
denotes the joint conditional distribution of (Xα

t∧·, αt) knowing Gt, and (Xα
t )t∈[0,T ] is a McKean–Vlasov type process,

controlled by α = (αt)0≤t≤T and generated by W together with an independent Brownian motion B

“dXα
t = b

(
t,Xα

t∧·,L
((
Xα
t∧·, αt

)∣∣Gt), αt)dt+ σ
(
t,Xα

t∧·,L
((
Xα
t∧·, αt

)∣∣Gt), αt)dWt + σ0
(
t,Xα

t∧·,L
((
Xα
t∧·, αt

)∣∣Gt), αt)dBt.”
(5.2.1)
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We will provide in the following a precise definition to the above controlled SDE, depending on the strong/weak
formulation considered. Let us first specify the dimensions and some basic conditions on the coefficient functions. Let
(n, `, d) ∈ N× N× N. The coefficient functions

b : [0, T ]× Cn × P(Cn × U)× U −→ Rn, σ : [0, T ]× Cn × P(Cn × U)× U −→ Sn×d,

σ0 : [0, T ]× Cn × P(Cn × U)× U −→ Sn×`, L : [0, T ]× Cn × P(Cn × U)× U −→ R, g : Cn × P(Cn) −→ R,

are all assumed to be Borel measurable, and non–anticipative in the sense that(
b, σ, σ0, L

)
(t,x, ν̄, u) =

(
b, σ, σ0, L

)
(t,xt∧·, ν̄(t), u), for all (t,x, ν̄, u) ∈ [0, T ]× Cn × P(Cn × U)× U.

5.2.1 A weak formulation
A weak formulation of the control problem is obtained by considering all weak solutions of the controlled McKean–Vlasov
SDE (5.2.1). Here the word “weak” refers to the fact that the probability space, as well as the equipped Brownian motion,
is not assumed to be fixed, but is a part of the solution itself. This is of course consistent with the notion of the weak
solution in the classical SDE theory.

Definition 5.2.1. Let (t, ν) ∈ [0, T ]× P(Cn). We say that a term

γ :=
(
Ωγ ,Fγ ,Pγ ,Fγ = (Fγs )0≤s≤T ,Gγ = (Gγs )0≤s≤T , X

γ ,W γ , Bγ , µγ , µγ , αγ
)
,

is a weak control associated with the initial condition (t, ν) if the following conditions are satisfied:

(i) (Ωγ ,Fγ ,Pγ) is a probability space, equipped with two filtrations Fγ and Gγ such that, for all s ∈ [0, T ],

Gγs ⊆ Fγs , and EPγ [1D∣∣Gγs ] = EPγ [1D∣∣GγT ], Pγ–a.s., for all D ∈ Fγs ∨ σ(W γ); (5.2.2)

(ii) Xγ = (Xγ
s )s∈[0,T ] is an Rn–valued, Fγ–adapted continuous process, αγ := (αγs )t≤s≤T is an U–valued, Fγ–predictable

process, and with the fixed constant p ≥ 0, one has

EPγ [‖Xγ‖p
]

+ EPγ
[ ∫ T

t

(
ρ(αγs , u0)

)pds] <∞; (5.2.3)

(iii) (W γ , Bγ) is an Rd × R`–valued, Fγ–adapted continuous process; (W γ,t, Bγ,t) :=
(
(W γ,t

s )0≤s≤T , (Bγ,ts )0≤s≤T
)
,

defined by W γ,t
s := W γ

s∨t −W
γ
t , and Bγ,ts := Bγs∨t − B

γ
t , s ∈ [t, T ], is a standard (Fγ ,Pγ)–Brownian motion on

[t, T ]; Bγ,t is Gγ–adapted; Fγt ∨ σ(W γ) is Pγ–independent of GγT , and µγ = (µγs )t≤s≤T (resp. µγ = (µγs )t≤s≤T ) is
a Gγ–predictable P(Cn)–valued (resp. P(Cn × U)–valued) process satisfying

µγs = LPγ(Xγ
s∧·
∣∣Gγs ) (resp. µγs = LPγ((Xγ

s∧·, α
γ
s

)∣∣Gγs )), for dPγ ⊗ ds–a.e. (s, ω) ∈ [t, T ]× Ωγ ;

(iv) Xγ satisfies Pγ ◦ (Xγ
t∧·)−1 = ν(t) and

Xγ
s = Xγ

t +
∫ s

t

b(r,Xγ
· , µ

γ
r , α

γ
r )dr+

∫ s

t

σ(r,Xγ
· , µ

γ
r , α

γ
r )dW γ

r +
∫ s

t

σ0(r,Xγ
· , µ

γ
r , α

γ
r )dBγr , s ∈ [t, T ], Pγ–a.s., (5.2.4)

where the integrals are implicitly assumed to be well–defined.

For all (t, ν) ∈ [0, T ]× P(Cn), let us denote

ΓW (t, ν) :=
{
All weak controls with initial condition (t, ν)

}
.

Then with the reward functions L : [0, T ]×Cn×P(Cn×U)×U −→ R and g : Cn×P(Cn) −→ R, we introduce the value
function of our McKean–Vlasov optimal control problem by

VW (t, ν) := sup
γ∈ΓW (t,ν)

J(t, γ), where J(t, γ) := EPγ
[ ∫ T

t

L(s,Xγ
s∧·, µ

γ
s , α

γ
s )ds+ g(Xγ

T∧·, µ
γ
T )
]
. (5.2.5)
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Remark 5.2.2. In a weak control γ, the filtration Gγ is used to model the common noise. In particular, Bγ,t is adapted
to Gγ , and W γ,t is independent of Gγ . In the classical strong formulation, Gγ is fixed as the filtration FBγ,t generated
by Bγ,t, but for a general weak control, Gγ may be larger than FBγ,t . This will be the main difference between the strong
and weak formulations in our approach. Meanwhile, (Gγ ,Fγ) satisfies a (H)–hypothesis type condition in (5.2.2), which
is consistent with the classical strong formulation (see Section 5.2.2 below). This property will be crucial in our proof of
the DPP result for the strong formulation of the control problem, as well as in the limit theory of the McKean–Vlasov
control problem in Chapter 3 and Chapter 4.
Remark 5.2.3. (i) At this stage, the integrability condition (5.2.3) could be construed as artificial. Depending on more
concrete property of the coefficient functions (b, σ, σ0), it would play the role of an admissibility condition for the control
process, and ensure that the stochastic integrals in (5.2.4) are well–defined. For a more concrete example, consider the
case where U = R and u0 = 0. When b, σ, and σ0 are all uniformly bounded, one can choose p = 0 so that all R–valued
predictable processes would then be admissible. When σ(t, x, u, ν̄) = u, one may choose p = 2 to ensure that the stochastic
integral

∫ T
t
αγsdW γ

s is well–defined and is a square–integrable martingale. It is also possible to consider more general
types of integrability conditions, such as

EPγ
[
Φ
(∫ T

t

Ψ
(
ρ(u0, α

γ
s )
)
ds
)]

<∞,

for given maps Φ : [0,∞) −→ [0,∞) and Ψ : [0,∞) −→ [0,∞). This would for instance allow to consider exponential
integrability requirements. For the sake of simplicity, we have chosen the condition in (5.2.3), but insist that it plays no
essential role in the proof of the dynamic programming principle.
(ii) The set ΓW (t, ν) could be empty, in which case VW (t, ν) = −∞ by convention. For example, when

∫
Cn ‖x‖

pν(dx) =∞,
then ΓW (t, ν) = ∅, since (5.2.3) cannot be satisfied. Nevertheless, ΓW (t, ν) is non–empty under either one of the following
conditions (see for instance Theorem 2.4.2 for a brief proof)
• (b, σ, σ0) are bounded and continuous in (x, ν̄, u) and ν ∈ P(Cn);

• (b, σ, σ0) are continuous in (x, ν̄, u), and with the fixed constant p and other positive constants C, p′, p̂ such that
p′ > p ≥ 1 ∨ p̂, and p′ ≥ 2 ≥ p̂ ≥ 0, we have ν ∈ Pp′(Cn) and

∣∣b(t,x, ν̄, u)
∣∣ ≤ C(1 + ‖x‖+

(∫
Cn×U

(
‖x′‖p + ρ(u0, u

′)p
)
ν̄(dx′,du′)

) 1
p

+ ρ(u0, u)
)
,

∣∣(σ, σ0)(t,x, ν̄, u)
∣∣2 ≤ C(1 + ‖x‖p̂ +

(∫
Cn×U

(
‖x′‖p + ρ(u0, u

′)p
)
ν̄(dx′,du′)

) p̂
p

+ ρ(u0, u)p̂
)
,

for all (t,x, ν̄, u) ∈ [0, T ]× Cn × P(Cn × U)× U .
Remark 5.2.4. For technical reasons, we introduce an R–valued, Fγ–adapted continuous process Aγ := (Aγs )0≤s≤T by
(recall that π : U → [0, 1] is a fixed isomorphic bijection between U and π(U))

Aγs :=
∫ s∨t

t

π(αγr )dr, s ∈ [0, T ], so that π
(
αγs
)

= lim
n→∞

n
(
Aγs −A

γ
(s−1/n)∨0

)
, dPγ ⊗ ds–a.e. on Ωγ × [t, T ]. (5.2.6)

We further define a P(Cn × C × Cd × C`)–valued process µ̂γ = (µ̂γs )0≤s≤T by

µ̂γs := LPγ(Xγ
s∧·, A

γ
s∧·,W

γ , Bγs∧·
)
1{s∈[0,t]} + LPγ((Xγ

s∧·, A
γ
s∧·,W

γ , Bγs∧·
)∣∣Gγs )1{s∈(t,T ]}. (5.2.7)

The process µ̂γ can be defined to be a Gγ–adapted and Pγ–a.s. continuous process (equipping P(Cn × C × Cd × C`) with
the weak convergence topology). Indeed, by (5.2.2), we have

µ̂γs = LPγ((Xγ
s∧·, A

γ
s∧·,W

γ , Bγs∧·
)∣∣GγT ), Pγ–a.e., for all s ∈ (t, T ].

Then by Lemma 5.5.1, µ̂γ can be defined to be Pγ–a.s. continuous on both [0, t] and (t, T ]. Moreover, using the
independence property between Fγt ∨ σ(W γ) and GγT , we have, Pγ–a.s.

lim
r↘t

µ̂γr = lim
r↘t
LPγ((Xγ

r∧·, A
γ
r∧·,W

γ , Bγr∧·
)∣∣GγT ) = LPγ((Xγ

t∧·, A
γ
t∧·,W

γ , Bγt∧·
)∣∣GγT ) = LPγ(Xγ

t∧·, A
γ
t∧·,W

γ , Bγt∧·
)

= µ̂γt .
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Remark 5.2.5. It is perfectly possible for us to consider a slightly more general class of control problems allowing for
exponential discounting. More precisely, we could have an additional Borel map k : [0, T ] × Cn × P(Cn × U) × U −→ R
and consider, for fixed (t, ν) ∈ [0, T ]× P(Cn), the problem of maximising over γ ∈ ΓW (t, ν) the functional

J̃(t, γ) := EPγ
[ ∫ T

t

e−
∫ s
t
k(u,Xγu∧·,µ

γ
u,α

γ
u)du

L(s,Xγ
s∧·, µ

γ
s , α

γ
s )ds+ e−

∫ T
t
k(u,Xγu∧·,µ

γ
u,α

γ
u)du

g(Xγ
T∧·, µ

γ
T )
]
.

We refrained from working at that level of generality for notational simplicity, but our results extend directly to this
context.

5.2.2 A strong formulation
To obtain a strong formulation of the control problem, the usual approach is to consider a fixed probability space,
equipped with fixed Brownian motions and fixed Brownian filtrations. In fact, this is equivalent to fix the filtrations,
in the weak control γ, to be the Brownian filtrations (see Proposition 5.2.10 below). We will therefore present the two
equivalent definitions one after the other.

5.2.2.1 Strong formulation as a special case of weak formulation

Let us start with the main definition.

Definition 5.2.6. Let (t, ν) ∈ [0, T ] × P(Cn). A term γ =
(
Ωγ ,Fγ ,Fγ ,Pγ ,Gγ , Xγ ,W γ , Bγ , µγ , µγ , αγ

)
is called a

strong control associated with the initial condition (t, ν), if γ ∈ ΓW (t, ν) and the filtrations Gγ and Fγ are Pγ-augmented
filtrations of Gγ,◦ := (Gγ,◦s )s∈[0,T ] and Fγ,◦ := (Fγ,◦s )s∈[0,T ], which are defined by

Gγ,◦s :=
{
{∅,Ωγ}, if 0 ≤ s < t,

σ
(
Bγ,tr : r ∈ [t, s]

)
, if 0 ≤ t ≤ s ≤ T,

and Fγ,◦s :=
{
σ
(
Xγ
s∧·
)
, if 0 ≤ s < t,

σ
(
(Xγ

t∧·, B
γ,t
r ,W γ,t

r ) : r ∈ [t, s]
)
, if 0 ≤ t ≤ s ≤ T.

If, in addition, the control process αγ is Gγ–predictable, then γ is called a B–strong control.

Let us denote by ΓS(t, ν) the collection of all strong controls with initial condition (t, ν), and by ΓB
S(t, ν) the collection

of all B–strong controls with initial condition (t, ν), i.e.

ΓB
S(t, ν) :=

{
γ ∈ ΓS(t, ν) : αγ is Gγ–predictable

}
.

Remark 5.2.7. For a strong control γ ∈ ΓS(t, ν), the filtration Gγ is generated by Bγ,t, and Fγ is generated by the initial
variable Xγ

t∧· and the Brownian motion W γ,t
· and Bγ,t· . Consequently, the control process αγ is adapted to the filtration

generated by (Xγ
t∧·,W

γ,t
· , Bγ,t· ), and the common noise comes only from Bγ,t. We will show in Proposition 5.2.10 that

this is equivalent to the case with a fixed probability space equipped with fixed Brownian motions and the initial random
variable. We here define the strong control rules as special cases of weak control rules in order to avoid repeating all the
technical conditions in Definition 5.2.1.

Our proof of the dynamic programming principle for the strong formulation of the McKean–Vlasov problem relies
essentially on its equivalence to the weak formulation, which requires the following standard Lipschitz condition on
the coefficient functions. Moreover, this condition ensures the existence and uniqueness of the solution to SDE (5.2.4)
(see e.g. Theorem 5.5.3).

Assumption 5.2.8. Let the constant in (5.2.3) be p = 2. There exists a constant C > 0 such that, for all (t,x,x′, ν̄, ν̄′, u) ∈
[0, T ]× Cn × Cn × P2(Cn × U)× P2(Cn × U)× U , one has∥∥(b, σ, σ0

)
(t,x, ν̄, u)−

(
b, σ, σ0

)
(t,x′, ν̄′, u)

∥∥ ≤ C(‖x− x′‖+W2(ν̄, ν̄′)
)
, (5.2.8)

∥∥(b, σ, σ0)(t,x, ν̄, u)
∥∥2 ≤ C

(
1 + ‖x‖2 +

∫
Cn×U

(
‖y‖2 + ρ(û, u0)2)ν̄(dy,dû) + ρ(u, u0)2

)
.
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Under Assumption 5.2.8, the set ΓS(t, ν) is nonempty for all (t, ν) ∈ [0, T ] × P2(Cn) (see e.g. Theorem 5.5.3). We then
introduce the following strong formulation (resp. B–strong formulation) of the McKean–Vlasov control problem

VS(t, ν) := sup
γ∈ΓS(t,ν)

J(t, γ), and V B
S (t, ν) := sup

γ∈ΓB
S

(t,ν)
J(t, γ). (5.2.9)

Remark 5.2.9 (The case without common noise: ` = 0). In the literature, the McKean–Vlasov control problem without
common noise has also largely been studied. This contained as a special case in our setting. Indeed, when ` = 0, the
process Bγ,t degenerates to be a singleton and hence Gγs = {∅,Ωγ} for all s ∈ [0, T ]. It follows that µγ appearing in (5.2.4)
turns out to satisfy

µγs = LPγ(Xγ
s∧·, α

γ
s ), for dPγ ⊗ dt–a.e. (s, ω) ∈ [t, T ]× Ωγ ,

and the value function VS(t, ν) in (5.2.9) is the standard formulation of the control problem without common noise (see
e.g. [43]).

5.2.2.2 Strong formulation on a fixed probability space

For 0 ≤ s ≤ t ≤ T , let Cns,t := C([s, t],Rn) denote the space of all Rn–valued continuous paths on [s, t], we then introduce
a first canonical space, for every t ∈ [0, T ]

Ωt := Cn0,t × Cdt,T × C`t,T , F t := B(Ωt), (5.2.10)

with corresponding canonical processes ζ := (ζs)0≤s≤t, W := (Ws)t≤s≤T , and B := (Bs)t≤s≤T . Let W t
s := Ws∨t −Wt

and Bts := Bs∨t −Bt for all s ∈ [0, T ], and define Ft,◦ = (F t,◦s )0≤s≤T and Gt,◦ = (Gt,◦s )0≤s≤T by

F t,◦s :=
{
σ
(
ζs∧·

)
, if 0 ≤ s < t,

σ
(
(ζt∧·,W t

r , B
t
r) : r ∈ [t, s]

)
, if 0 ≤ t ≤ s ≤ T,

and Gt,◦s :=
{
{∅,Ωt}, if 0 ≤ s < t,

σ
(
Btr : r ∈ [t, s]

)
, if 0 ≤ t ≤ s ≤ T.

Let (t, ν) ∈ [0, T ]×P2(Cn), we fix a probability measure Ptν on Ωt, such that LPtν
(
ζt∧·
)

= ν(t), and (W t, Bt) are standard
Brownian motions on [t, T ], independent of ζ. Let Ft = (F ts)0≤s≤T and Gt = (Gts)0≤s≤T be the Ptν–augmented filtration
of Ft,◦ and Gt,◦, we denote by A2(t, ν) (resp. AB

2 (t, ν)) the collection of all U–valued processes α = (αs)t≤s≤T which are
Ft–predictable (resp. Gt–predictable) and such that

EPtν
[ ∫ T

t

(
ρ(u0, αs)

)2ds
]
<∞.

Then, given α ∈ A2(t, ν), let Xα be the unique strong solution (in sense of Definition 5.5.2) of the SDE, with initial
condition Xα

t∧· = ζt∧·,

Xα
s = Xα

t +
∫ s

t

b
(
r,Xα

r∧·, µ
α
r , αr

)
dr+

∫ s

t

σ
(
r,Xα

r∧·, µ
α
r , αr

)
dW t

r+
∫ s

t

σ0
(
r,Xα

r∧·, µ
α
r , αr

)
dBtr, t ≤ s ≤ T, Ptν–a.s., (5.2.11)

where µαr = LPtν
(
(Xα

r∧·, αr)
∣∣Gtr), dPtν×dr–a.e. on Ωt×[t, T ]. Notice that the existence and uniqueness of a solution to SDE

(5.2.11) is ensured by Assumption 5.2.8 (see Theorem 5.5.3). Finally, we denote for any α ∈ A2(t, ν), µαs := LPtν
(
Xα
s∧·
∣∣Gts),

s ∈ [t, T ].
We next show that the above strong formulation of the control problem with fixed probability space is equivalent to that
in Definition 5.2.6 as a special case of the weak control rules.

Proposition 5.2.10. Let Assumption 5.2.8 hold true. Then for all (t, ν) ∈ [0, T ]× P2(Cn), one has

VS(t, ν) = sup
α∈A2(t,ν)

J(t, ν, α), and V B
S (t, ν) = sup

α∈AB
2(t,ν)

J(t, ν, α), (5.2.12)

where
J(t, ν, α) := EPtν

[ ∫ T

t

L(s,Xα
s∧·, µ

α
s , αs)ds+ g(Xα

· , µ
α
T )
]
.
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Proof. We will only consider the case of VS , since the arguments for the case of V B
S are exactly the same. First, given

α ∈ A2(t, ν), let us define
γ :=

(
Ωt,F t,Ptν ,Ft,Gt, Xα,W t, Bt, µα, µα, α

)
.

Then it is straightforward to check that γ is a strong control rule (i.e. γ ∈ ΓS(t, ν)) such that J(t, γ) = J(t, ν, α).

Next, let γ ∈ ΓS(t, ν). Notice that (Xγ , αγ) is Fγ–predictable, and (µγ , µγ) is Gγ–predictable. Using for instance Claisse,
Talay, and Tan [52, Proposition 10] (with a slight extension consisting simply in having a larger F0), there exists two
Borel measurable functions Ψ1 : [0, T ]× Ωt −→ Rn × U and Ψ2 : [0, T ]× C` −→ P(Cn)× P(Cn × U) such that(

Xγ
s , α

γ
s

)
= Ψ1

(
s,Xγ

t∧·,W
γ,t
s∧·, B

γ,t
s∧·
)
,
(
µγs , µ

γ
s

)
= Ψ2(s,Bγ,ts∧·), s ∈ [0, T ], Pγ–a.s.

Then, on Ωt, let us define (X?
s , α

?
s) := Ψ1(s, ζt ∧ ·,W t

s∧·, B
t
s∧·) and (µ?s, µ?s) := Ψ2(s,Bts∧·), so that

α? ∈ A2(t, ν), and Ptν ◦
(
X?,W t, Bt, α?, µ?, µ?

)−1 = Pγ ◦
(
Xγ ,W γ,t, Bγ,t, αγ , µγ , µγ

)−1
.

This implies that X? is the unique strong solutions to SDE (5.2.11) with control α?, such that µ?s = LPtν (X?
s∧·|Gts),

µ?s = LPtν ((X?
s∧·, α

?
s)|Gts) and J(t, ν, α?) = J(t, γ).

5.3 The dynamic programming principle
The main results of our chapter consist in the dynamic programming principle (DPP) for the previously introduced
formulations of the McKean–Vlasov control problem. We will first prove the DPP for the general strong and weak
control problems introduced in Section 5.2, and then show how they naturally induce the associated results in the
Markovian case. Finally, we also discuss heuristically the Hamilton–Jacobi–Bellman (HJB for short) equations which can
be deduced for each formulation.

5.3.1 The dynamic programming principle in the general case
5.3.1.1 Dynamic programming principle for the weak control problem

To provide the dynamic programming principle of the McKean–Vlasov control problem (5.2.5), let us introduce another
canonical space

Ω? := C` × C
(
[0, T ],P(Cn × C × Cd × C`)

)
, with canonical process (B?, µ̂?) := (B?s , µ̂?s)s∈[0,T ],

and canonical filtration G? := (G?s )0≤s≤T defined by G?s := σ
{

(µ̂?r , B?r ) : r ∈ [0, s]
}
, s ∈ [0, T ]. Then, for every G?–

stopping time τ? (which can then be written as a function of B and µ̂), for all (t, ν) ∈ [0, T ]× P(Cn) and γ ∈ ΓW (t, ν),
we define (recall that µ̂γ is defined by (5.2.7))

τγ := τ?
(
Bγ,t· , µ̂γ·

)
. (5.3.1)

Theorem 5.3.1. The value function VW : [0, T ]×P(Cn) −→ R∪{−∞,∞} of the weak McKean–Vlasov control problem
(5.2.5) is upper semi–analytic. Moreover, let (t, ν) ∈ [0, T ]×P(Cn), τ? be a G?–stopping time taking values in [t, T ], and
τγ be defined in (5.3.1), one has

VW (t, ν) = sup
γ∈ΓW (t,ν)

EPγ
[ ∫ τγ

t

L(s,Xγ
s∧·, µ

γ
s , α

γ
s )ds+ VW

(
τγ , µγτγ

)]
. (5.3.2)

5.3.1.2 Dynamic programming for the strong control problems

We now consider the two strong formulations of the control problems introduced in (5.2.9), or equivalently in (5.2.12).
To formulate the DPP results, we will rather use the fixed probability space context in (5.2.12). Recall that, given initial
condition (t, ν) ∈ [0, T ] × P2(Cn), a fixed probability space (Ωt,F t,Ptν) is defined in and below (5.2.10). Let us first
consider the strong control problem V B

S .
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Theorem 5.3.2. Let Assumption 5.2.8 hold. Then the value function V B
S : [0, T ] × P2(Cn) −→ R ∪ {−∞,∞} is upper

semi–analytic. Moreover, let (t, ν) ∈ [0, T ] × P2(Cn), and τ be a Gt,◦–stopping time on (Ωt,F t,Ptν), taking values in
[t, T ], one has

V B
S (t, ν) = sup

α∈AB
2(t,ν)

EPtν
[ ∫ τ

t

L(s,Xα
s∧·, µ

α
s , αs)ds+ V B

S

(
τ, µατ

)]
. (5.3.3)

For the strong control problem VS , we need some additional regularity conditions on the coefficient functions.

Assumption 5.3.3. For all t ∈ [0, T ], the functions

(b, σ, σ0) : (x, ν̄, u) ∈ Cn × P(Cn × U)× U 7−→ (b, σ, σ0)(t,x, ν̄, u) ∈ Rn × Sn×d × Sn×`,

are continuous, and there exists a constant C > 0 such that, for all (t,x, u, ν̄) ∈ [0, T ]× Cn × U × P(Cn × U),

∣∣(L, g)(t,x, ν̄, u)
∣∣2 ≤ C(1 + ‖x‖2 +

∫
Cn×U

(
‖y‖2 + ρ(u′, u0)2)ν̄(dy,du′) + ρ(u, u0)2

)
.

Moreover, the map
(x, ν̄, u) ∈ Cn × P2(Cn × U)× U 7−→ (L, g)(t,x, ν̄, u) ∈ R× R,

is lower semi–continuous for all t ∈ [0, T ].

Theorem 5.3.4. Let Assumption 5.2.8 and Assumption 5.3.3 hold true. Let (t, ν) ∈ [0, T ] × P2(Cn), and τ be a Gt,◦–
stopping time on (Ωt,F t,Ptν) taking values in [t, T ]. Then

VS(t, ν) = VW (t, ν),

so that the value function VS : [0, T ]× P2(Cn) −→ R ∪ {−∞,∞} is upper semi–analytic, and one has

VS(t, ν) = sup
α∈A2(t,ν)

EPtν
[ ∫ τ

t

L(s,Xα
s∧·, µ

α
s , αs)ds+ VS

(
τ, µατ

)]
. (5.3.4)

Remark 5.3.5. (i) Our results for the dynamic programming for VW and VS in Theorem 5.3.1 and Theorem 5.3.4 are
new in this general framework. For the result in Theorem 5.3.2, where the control is adapted to the common noise B,
the same DPP result has been obtained in Pham and Wei [138, Proposition 3.1]. However, our result is more general
for two reasons. First, we do not require any regularity conditions on the reward functions L and g, thanks to our use
of measurable selection arguments. Second, we are able to stay in a generic non–Markovian framework with interaction
terms given by the law of both control and controlled processes, while the results of [138] are given in a Markovian context
with interaction terms given by the law of controlled process.

(ii) From our point of view, the formulations VW and VS in (5.2.5) and (5.2.9) seem to be more natural, because they should
be the ones arising naturally as limit of finite population control problems (see Lacker [104] for the case without common
noise, and Chapter 3 and Chapter 4 for the context with common noise and law of control). Indeed, for the problem with
a finite population N , when the controller observes the evolution of the empirical distribution of (X1, . . . , XN ), it is more
reasonable to assume that he/she uses the information generated by both (Xt∧·,W,B) (as in the definition of VS), rather
than just the information from B (as in the definition V B

S ), to control the system. In this sense, the formulation V B
S may

not be the most natural strong formulation for McKean–Vlasov control problems with common noise.

Remark 5.3.6. The DPP result for VS in Theorem 5.3.4 has been proved under additional regularity conditions, namely
the ones given in Assumption 5.3.3. This should appear as a surprise to readers familiar with the measurable selection
approach to the DPP for classical stochastic control problems. We will try here to give some intuition on why, at least if
one uses our method of proof, there does not seem to be any way to make do without these aditional assumptions.

Let us consider the classical conditioning argument in the proof of the DPP. Given a control process α := (αs)s∈[t,T ] ∈
A2(t, ν), which is adapted to the filtration generated by (Xt∧·,W

t
s , B

t
s)s∈[t,T ], we consider some time to ∈ (t, T ], and the

filtration G̃ := (G̃s)s∈[t,T ], generated by Bt. Then, under the r.c.p.d. of Ptν knowing G̃to , the process (αs)s∈[to,T ] will be
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adapted to the filtration generated by (Xto∧·,W
to
s , B

to
s )s∈[to,T ] together with (W t

s)s∈[t,to]. Because of the randomness of
(W t

s)s∈[t,to], we cannot consider (αs)s∈[to,T ] as a ‘strong‘ control process under the r.c.p.d. of Ptν knowing G̃to .

To bypass this difficulty, we will need to use the equivalence result VS = VW together with the DPP results for VW given
by Theorem 5.3.1. The equivalence result will be proved in Chapter 2 under the integrability and regularity conditions in
Assumption 5.2.8 and Assumption 5.3.3.

5.3.2 Dynamic programming principle in the Markovian case
With the DPP results in the general non–Markovian context of Theorem 5.3.1, Theorem 5.3.2 and Theorem 5.3.4, we can
easily establish the DPP results for the control problems in the Markovian setting. In fact, we will consider a framework
which is slightly more general than the classical Markovian formulation, by considering the so–called updating functions,
as in Brunick and Shreve [33].

Let E be a non–empty Polish space. A Borel measurable function Φ : Cn −→ C([0, T ], E) is called an updating function
if it satisfies

Φt(x) = Φt(x(t ∧ ·)), for all (t,x) ∈ [0, T ]× Cn,
and for all 0 ≤ s ≤ t ≤ T(

Φr(x)
)
r∈[s,t] =

(
Φr(x′)

)
r∈[s,t], whenever Φs(x) = Φs(x′), and

(
x(r)− x(s)

)
r∈[s,t] =

(
x′(r)− x′(s)

)
r∈[s,t].

The intuition of the updating function Φ is the following: the value of Φt(x) depends only on the path of x up to time
t, and for 0 ≤ s < t, Φt(x) depends only on Φs(x) and the increments of x between s and t. On the canonical space Cn,
let X := (Xt)t∈[0,T ] be the canonical process. We also define a new process Zt := Φt(X), t ∈ [0, T ]. Let us borrow some
examples of updating functions from [33].

Example 5.3.7. (i) The most simple updating function is the running process itself, that is

Φt(x) := x(t), with E = Rn.

(ii) Let M i
t (x) := max0≤s≤t xi(s) for i = 1, · · · , n, t ∈ [0, T ], and At(x) :=

∫ t
0 x(s)ds, t ∈ [0, T ]. Then the running

process, together with the running maximum and running average process, is also an example of updating functions

Φt(x) :=
(
x(t),Mt(x), At(x)

)
, with E = Rn × Rn × Rn.

Throughout this subsection, we fix an update function Φ. In this context, one can in fact define the value function on
[0, T ]×P(E) under some additional conditions. Given ν̄ ∈ P(Cn×U) (resp. ν ∈ P(Cn)), let us consider X (resp. (X,α))
as canonical element on the canonical space Cn (resp. Cn × U), and then define

[ν̄]◦t := ν̄ ◦ (Φt(X), α)−1 ∈ P(E × U)
(
resp. [ν]◦t := ν ◦ (Φt(X))−1 ∈ P(E)

)
, t ∈ [0, T ].

Assumption 5.3.8. For a fixed updating function Φ : Cn −→ C([0, T ], E), there exist Borel measurable functions
(b◦, σ◦, σ◦0 , L◦, g◦) : [0, T ]× E × U × P(E × U) −→ Rn × Sn×d × Sn×` × R× R, such that(

b, σ, σ0, L, g
)
(t,x, ν̄, u) =

(
b◦, σ◦, σ◦0 , L

◦, g◦
)
(t,Φt(x), [ν̄]◦t , u), for all (t,x, u, ν̄) ∈ [0, T ]× Cn × U × P(Cn × U).

Let t ∈ [0, T ], and ν◦ ∈ P(E), we define first the following sets

V(t, ν◦) :=
{
ν ∈ P(Cn) : [ν]◦t = ν◦

}
,

Γ◦W (t, ν◦) :=
⋃

ν∈V(t,ν◦)

ΓW (t, ν), Γ◦S(t, ν◦) :=
⋃

ν∈V(t,ν◦)

ΓS(t, ν), ΓB,◦
S (t, ν◦) :=

⋃
ν∈V(t,ν◦)

ΓB
S(t, ν),

as well as the value functions, with J(t, γ) defined in (5.2.5),

V ◦W (t, ν◦) := sup
γ∈Γ◦

W
(t,ν◦)

J(t, γ), V ◦S (t, ν◦) := sup
γ∈Γ◦

S
(t,ν◦)

J(t, γ) and V B,◦
S (t, ν◦) := sup

γ∈ΓB,◦
S

(t,ν◦)
J(t, γ).
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Remark 5.3.9. When the updating function is the running process given by Φt(x) := x(t), the problems V ◦W , V ◦S and
V B,◦
S are of course exactly the classical Markovian formulation of the control problems.

Lemma 5.3.10. Let Assumption 5.3.8 hold true, and fix some t ∈ [0, T ]. Then, for any (ν1, ν2) ∈ P(Cn)× P(Cn) such
that [ν1]◦t = [ν2]◦t , one has

VW (t, ν1) = VW (t, ν2), VS(t, ν1) = VS(t, ν2) and V B
S (t, ν1) = V B

S (t, ν2).

Consequently, for all ν ∈ P(Cn), one has

VW (t, ν) = V ◦W (t, [ν]◦t ), VS(t, ν) = V ◦S (t, [ν]◦t ), and V B
S (t, ν) = V B,◦

S (t, [ν]◦t ).

Proof. We will only consider the equality for VW , the arguments for VS and V B
S will be the same. First, we can consider ν2

as a probability measure defined on the canonical space Cn with canonical process X, and containing the random variable
Zt := Φt(X). Then, on (a possible enlarged) probability space (Cn,B(Cn), ν2), there exists a Borel measurable function
ψ : E×[0, 1] −→ Cn, together with a random variable η with uniform distribution on [0, 1], which is independent of Zt, such
that ν2◦

(
Zt, X·

)−1 = ν2◦
(
Zt, ψ(Zt, η)

)−1
. Next, consider an arbitrary γ1 :=

(
Ω1,F1,P1,F1,G1, X1,W 1, B1, µ1, µ1, α1) ∈

ΓW (t, ν1). Without loss of generality (that is up to enlargement of the space), we assume that there exists a random
variable η with uniform distribution on [0, 1] in the probability space (Ω1,F1

0 ,P1), and which is independent of the
random variables (X1,W 1, B1, µ1, µ1, α1).

We then define γ2 as follows. Let Z1
s := Φs(X1), for all s ∈ [0, T ], so that, by definition, P1 ◦

(
Z1
t

)−1 = [ν1]◦t = [ν2]◦t .
Next, let

X2
s :=

ψs
(
Z1
t , η
)
, if s ∈ [0, t],

X2
t +X1

s −X1
t , if s ∈ (t, T ].

It follows by the properties of ψ and those of the updating function Φ that

P1 ◦
(
X2
t∧·
)

= ν2(t), and Φs(X2) = Φs(X1), s ∈ [t, T ]. (5.3.5)

Let µ2
s := LP1((X2

s∧·, α
1
s )|G1

s

)
, µ2

s := LP1(
X2
s∧·|G1

s

)
, for s ∈ [t, T ], and γ2 :=

(
Ω1,F1,F1,P1,G1, X2,W 1, B1, µ2, µ2, α1).

Using Assumption 5.3.8 and (5.3.5), we have γ2 ∈ ΓW (t, ν2) and J(t, γ2) = J(t, γ1), implying VW (t, ν1) = VW (t, ν2).

Now we provide the dynamic programming principle for the Markovian control problem under Assumption 5.3.8.

Corollary 5.3.11. Let Assumption 5.3.8 hold true, t ∈ [0, T ] and ν◦ ∈ P(E). Let τ? be a G?–stopping time taking values
in [t, T ] on Ω◦ and (τγ)γ∈Γ◦

W
(t,ν◦) be defined from τ? as in (5.3.1), and τ be a Gt,◦–stopping time taking values in [t, T ]

on Ωt. Then one has the following dynamic programming results.

(i) The function V ◦W : [0, T ]× P(E) −→ R ∪ {−∞,∞} is upper semi–analytic and, with Zγs := Φs(Xγ
· ),

V ◦W (t, ν◦) = sup
γ∈Γ◦

W
(t,ν◦)

EPγ
[ ∫ τγ

t

L◦
(
s, Zγs , [µγ ]◦s, αγs

)
ds+ V ◦W

(
τγ , [µγ ]◦τγ

)]
. (5.3.6)

(ii) Let Assumption 5.2.8 hold true, then V B,◦
S : [0, T ] × P(E) −→ R ∪ {−∞,∞} is upper semi–analytic, and with

Zαs := Φs(Xα
· ), one has

V B,◦
S (t, ν◦) = sup

α∈AB
2(t,ν◦)

EPtν
[ ∫ τ

t

L
(
s, Zαs , [µα]◦s, αs

)
ds+ V B,◦

S

(
τ, [µα]◦τ

)]
. (5.3.7)

(iii) Let Assumption 5.2.8 and Assumption 5.3.3 hold, then V ◦S (t, ν◦) = V ◦W (t, ν◦), and with Zαs := Φs(Xα
· ),

V ◦S (t, ν◦) = sup
α∈A2(t,ν◦)

E
[ ∫ τ

t

L
(
s, Zαs , [µα]◦s, αs

)
ds+ V ◦S

(
τ, [µα]◦τ

)]
. (5.3.8)
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Proof. We will only consider the case VW , the arguments for VS and V B
S will be the same.

Let JVK := {(t, ν, ν◦) ∈ [0, T ]×P(Cn)×P(E) : [ν]◦t = ν◦}. Notice that Φ : Cn −→ C([0, T ], E) is Borel, then (t, ν) 7−→ [ν]◦t
is also Borel, and hence JVK is a Borel subset of [0, T ]×P(Cn)×P(E). Further, one has V ◦W (t, ν◦) = sup(t,ν,ν◦)∈JVK VW (t, ν)
from Lemma 5.3.10, and VW is upper semi–analytic by Theorem 5.3.1. It follows by the measurable selection theorem
(e.g. [61, Proposition 2.17]) that V ◦W : (t, ν◦) ∈ [0, T ]× P(E) −→ V ◦W (t, ν◦) ∈ R ∪ {−∞,∞} is also upper semi–analytic.
Finally, using the DPP results in Theorem 5.3.1, it follows that

V ◦W (t, ν◦) = sup
ν∈V(t,ν◦)

VW (t, ν) = sup
ν∈V(t,ν◦)

sup
γ∈ΓW (t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ VW

(
τγ , µγτγ

)]
= sup
ν∈V(t,ν◦)

sup
γ∈ΓW (t,ν)

EPγ
[ ∫ τγ

t

L◦
(
s, Zγs , [µγ ]◦s, αγs

)
ds+ V ◦W

(
τγ , [µγ ]◦τγ

)]
= sup
γ∈Γ◦

W
(t,ν)

EPγ
[ ∫ τγ

t

L◦
(
s, Zγs , [µγ ]◦s, αγs

)
ds+ V ◦W

(
τγ , [µγ ]◦τγ

)]
.

5.3.3 Discussion: from dynamic programming to the HJB equation
One of the classical applications of the DPP consists in giving some local characterisation of the value function, such
as in proving that it is the viscosity solution of an HJB equation. This was achieved in Pham and Wei [139] for
the control problem V ◦S in the setting with σ0 ≡ 0), and in Pham and Wei [138] for the control problem V ◦,BS (for
Φt(x) := x(t), with E = Rn). It relies essentially on the notion of differentiability with respect to probability measures
due to Lions (see e.g. [118] and Cardaliaguet’s notes [36, Section 6]), and Itō’s formula along a measure (see e.g. Carmona
and Delarue [41, Proposition 6.5 and Proposition 6.3]). We will now provide some heuristic arguments to derive the HJB
equation from our DPP results for both V B,◦

S and V ◦S , with updating function Φt(x) = x(t).

Let us first recall briefly the notion of the derivative, in sense of Fréchet, ∂νV (ν) for a function V : P2(Rn) −→ R. Consider
a probability space (Ω,F ,P) rich enough so that, for any ν ∈ P2(Rn), there exists a random variable Z : Ω −→ Rn
such that LP(Z) = ν. We denote by L2(Ω,F ,P) the space of square–integrable random variables on (Ω,F ,P). Let
V : P2(Rn) −→ R, we consider Ṽ : L2(Ω,F ,P) −→ Rn, the lifted version of V , defined by Ṽ (X) := V (LP(X)).
Recall that Ṽ is said to be continuously Fréchet differentiable, if there exists a unique continuous application DṼ :
L2(Ω,F ,P) −→ L2(Ω,F ,P), such that, for all Z ∈ L2(Ω,F ,P),

lim
‖Y ‖2→0

∣∣Ṽ (Z + Y )− Ṽ (Z)− E
[
Y >DṼ (Z)

]∣∣
‖Y ‖2

,

where ‖Y ‖2 := E[|Y |2]1/2 for any Y ∈ L2(Ω,F ,P). We say that V is of class C1 if Ṽ is continuously Fréchet differentiable,
and denote for any ν ∈ P2(Rn), ∂νV (ν)(Z) := DṼ (Z), P–a.s., for any Z ∈ L2(Ω,F ,P) such that LP(Z) = ν. Notice that
one has ∂νV (ν) : Rn 3 y 7−→ ∂νV (ν)(y) ∈ Rn and this function belongs to L2(Rn,B(Rn), ν). Besides, the law of DṼ (Z)
is independent of the choice of Z. Similarly, we also define the derivatives P2(Rn) × Rn 3 (ν, y) 7−→ ∂y∂νV (ν)(y) ∈ Sn
and

P2(Rn)× Rn × Rn 3 (ν, y, y′) 7−→ ∂2
νV (ν)(y, y′) := ∂ν

[
∂νV (ν)(y)

]
(y′) ∈ Sn.

In the following, we say V is a “smooth function”, if all the above Fréchet derivatives are well defined and are continuous.
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5.3.3.1 HJB equation for the common noise strong formulation

Let us consider the control problem V B,◦
S and repeat the arguments in [138] in a heuristic way. Given a “smooth function”

V : [0, T ]× P2(Rn) −→ R, (t, ν) ∈ [0, T ]× P2(Rn), and γ ∈ ΓB
S(t, ν), it follows from Itô’s formula that, for s ∈ [t, T ],

V
(
s, µγs

)
= V

(
t, ν
)

+
∫ s

t

∫
Rn

(
∂tV

(
r, µγr

)
+ ∂νV

(
r, µγr

)
(y) · b

(
r, y, µγr ⊗ δαγr , α

γ
r

))
µγr (dy)dr

+ 1
2

∫ s

t

∫
Rn

Tr
[
∂x∂νV

(
r, µγr

)
(y)
(
σ>σ + σ>0 σ0

)
(r, y, µγr ⊗ δαγr , α

γ
r )
]
µγr (dy)dr

+ 1
2

∫ s

t

∫
(Rn)2

Tr
[
∂2
νV
(
r, µγr

)
(y, y′)σ>0 (r, y, µγr ⊗ δαγr , α

γ
r )σ0(r, y′, µγr ⊗ δαγr , α

γ
r )
]
µγr (dy)µγr (dy′)dr

+
∫ s

t

∫
Rn×U

∂νV
(
r, µγr

)
(x) · σ0(r, y, µγr ⊗ δαγr , α

γ
r )µγr (dy)dBr. (5.3.9)

As γ ∈ Γ◦,BS (t, ν), for Lebesgue–almost every r ∈ [t, T ], αγr is a measurable function of (Bu − Bt)u∈[t,r]. Considering
piecewise constant control process, αγ would be a deterministic constant on a small time horizon [t, t+ ε]. By replacing
V in (5.3.9) by V B,◦

S and taking supremum as in DDP (5.3.3) (but over constant control processes), this leads to the
Hamiltonian

HB[V ]
(
t, ν
)

:= sup
u∈U

{∫
Rn

((
L+ [V ]1

)(
t, y, ν ⊗ δu, u

))
ν(dy) +

∫
(Rn)2

[V ]2
(
t, y, u, y′, ν ⊗ δu, u

)
ν(dy)ν(dy′)

}
,

where for any (r, y, u, y′, u′, ν̄) ∈ [0, T ]× Rn × U × Rn × U × P(Rn × U)

[V ]1(r, y, ν̄, u) := ∂νV (r, ν)(y) · b(r, y, ν̄, u) + 1
2Tr

[
∂x∂νV (r, ν)(y)(σ>σ + σ>0 σ0)(r, y, ν̄, u)

]
,

and
[V ]2(r, y, u, y′, u′, ν̄) := 1

2Tr
[
∂2
νV
(
r, ν
)
(y, y′)σ>0 (r, y, ν̄, u)σ0(r, y′, ν̄, u′)

]
.

Heuristically, V B,◦ should satisfy the HJB equation

−∂tV B,◦
S (t, ν)−HB[V B,◦

S

](
t, ν
)

= 0, (t, ν) ∈ [0, T )× P2(Rn), V B,◦
S (T, ·) = g(·).

We refer to [138] for a detailed rigorous proof of the fact that V B,◦ is a viscosity solution of the above HJB equation
under some technical regularity conditions.

5.3.3.2 HJB equation for the general strong formulation

Similarly, for the control problem V ◦S , we consider a strong control rule γ ∈ Γ◦S(t, ν), where for Lebesgue–almost every
r ∈ [t, T ], the control process αγr is a measurable function of both (Bu − Bt)u∈[t,r], (Wu −Wt)u∈[t,r] and Xt∧·. As the
control process αγ is adapted to the filtration generated by (Xt∧·,W

γ,t, Bγ,t), by considering adapted piecewise constant
control processes, the control process on the first small interval [t, t+ε) should be a measurable function of Xt∧·. Similarly
to Pham and Wei [139] in a non–common noise setting and by considering the Itô formula (5.3.9), this would formally
lead to the Hamiltonian

H[V ]
(
t, ν
)

:= sup
a∈L2

ν

{∫
Rn

(
L+ [V ]1

)(
t, y, ν ◦ (â)−1, a(y)

)
ν(dy) +

∫
(Rn)2

[V ]2
(
t, y, a(y), y′, a(y′), ν ◦ (â)−1)ν(dy)ν(dy′)

}
,

where â : Rn 3 x 7−→ (x, a(x)) ∈ Rn × U , and L2
ν of all ν–square integrable functions a : (Rn,B(Rn), ν) −→ U .

Heuristically, V ◦S should be a solution of the HJB equation

−∂tV ◦S (t, ν)−H[V ◦S ]
(
t, ν
)

= 0, (t, ν) ∈ [0, T )× P2(Rn), V B,◦
S (T, ·) = g(·).

As explained above, the difference between the HJB equations for V B,◦
S and V ◦S comes mainly from the fact that the control

process αγ , for γ ∈ Γ◦S(t, ν), depends on the initial random variable condition, which in turn modifies the Hamiltonian
function which appears in the PDE. Finally, we also refer to Wu and Zhang [151] for a discussion of the McKean–Vlasov
control problem in a non–Markovian framework without common noise.
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5.4 Proofs of dynamic programming principle
We now provide the proofs of our main DPP results in Theorems 5.3.1, 5.3.2 and 5.3.4, where a key ingredient is
the measurable selection argument. We will first reformulate the control problems on an appropriate canonical space
in Section 5.4.1, and then provide some technical lemmata for the problems formulated on the canonical space in
Section 5.4.2, and finally give the proofs of the main results themselves in Section 5.4.3.

5.4.1 Reformulation of the control problems on the canonical space
5.4.1.1 Canonical space

In order to prove the dynamic programming results in Section 5.3, we first reformulate the controlled McKean–Vlasov
SDE problems on an appropriate canonical space. This is going to be achieved by the usual way, that is to say by
considering appropriately defined controlled martingale problems. Recall that n, d and ` are the dimensions of the spaces
in which X, W and B take values, U = U ∪{∂} and that π−1 maps R∪{∞,−∞} to U . Let us introduce a first canonical
space by

Ω̂ := Cn × C × Cd × C` with canonical process (X̂, Â, Ŵ , B̂), and α̂t := π−1
(

lim
n→+∞

n
(
Ât − Â0∨(t−1/n)

))
, t ∈ [0, T ].

Denote by C([0, T ],P(Ω̂)) be the space of all continuous paths on [0, T ] taking values in P(Ω̂), which is a Polish space
for the uniform topology (see e.g. [10, Lemmata 3.97, 3.98, and 3.99]), we introduce a second canonical space by

Ω := Ω̂× C
(
[0, T ],P(Ω̂)

)
, with canonical process (X,A,W,B, µ̂) and canonical filtration F = (F t)0≤t≤T .

Let F := B(Ω) be the Borel σ–field on Ω. Notice that for any t ∈ [0, T ], µ̂t is a probability measure on Ω̂, we then define
two processes µ = (µt)0≤t≤T and µ = (µt)0≤t≤T on Ω by

µt := µ̂t ◦
(
X̂t∧·, α̂t

)−1
, µt := (µ̂t) ◦

(
X̂t∧·

)−1
.

Define also the U–valued process α = (αt)0≤t≤T on Ω by

αt := π−1
(

lim
n→+∞

n
(
At −A0∨(t−1/n)

))
, t ∈ [0, T ].

Finally, for any t ∈ [0, T ], we introduce the processes W t := (W t
s)s∈[0,T ] and Bt := (Bts)s∈[0,T ] by

Bts := Bs∨t −Bt, and W t
s := Ws∨t −Wt, s ∈ [0, T ],

and the filtration Gt := (Gts)0≤s≤T by

Gts :=
{
{∅,Ω}, if s ∈ [0, t),
σ
(
(Btr, µ̂r) : r ∈ [0, s]

)
, if s ∈ [t, T ].

(5.4.1)

5.4.1.2 Controlled martingale problems on the canonical space

We now reformulate the strong/weak control problem as a controlled martingale problem on the canonical space Ω, where
a control (term) can be considered as a probability measure on Ω. To this end, let us first introduce the corresponding
generator. Given the coefficient functions b, σ and σ0, for all (t,x,w,b, ν̄, u) ∈ [0, T ]×Cn×Cd×C`×P(Cn×U)×U , let

b̄
(
t, (x,w,b), ν̄, u

)
:=
(
b, 0d, 0`

)
(t,x, ν̄, u), (5.4.2)

and

ā
(
t, (x,w,b), ν̄, u

)
:=

 σ σ0
Id×d 0d×`
0`×d I`×`

 σ σ0
Id×d 0d×`
0`×d I`×`

> (t,x, ν̄, u), (5.4.3)
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and then introduce the generator L, for all ϕ ∈ C2
b (Rn+d+`),

Ltϕ
(
x,w,b, ν̄, u

)
:=

n+d+`∑
i=1

b̄i(t, (x,w,b), ν̄, u)∂iϕ(xt,wt,bt) + 1
2

n+d+`∑
i,j=1

āi,j(t, (x,w,b), ν̄, u)∂2
i,jϕ(xt,wt,bt).

We next define a process |S| =
(
|S|t
)

0≤t≤T by

|S|t :=
∫ t

0

(
|b̄|+ |ā|

)
(s,X,W,B, µs, αs)ds,

and then, for all ϕ ∈ C2
b (Rn+d+`), let Sϕ = (Sϕt )t∈[0,T ] be defined by

S
ϕ

t := ϕ(Xt,Wt, Bt)−
∫ t

0
Lsϕ

(
X,W,B, µs, αs

)
ds, t ∈ [0, T ], (5.4.4)

where for φ : [0, T ] → R,
∫ t

0 φ(s)ds :=
∫ t

0 φ
+(s)ds −

∫ t
0 φ
−(s)ds with the convention ∞ −∞ = −∞. Notice that on

{|S|T <∞}, the process Sϕ is R–valued. To localise the process Sϕ, we also introduce, for each m ≥ 1,

τm := inf
{
t : |S|t ≥ m

}
, and Sϕ,mt := S

ϕ

t∧τm = S
ϕ

t 1{τm≥t} + S
ϕ

τm1{τm<t}, t ∈ [0, T ]. (5.4.5)

Notice that the process |S| is left–continuous, τm is a F+–stopping time on Ω, and Sϕ,m is an F–adapted uniformly
bounded process.

Definition 5.4.1. Let (t, ν̂) ∈ [0, T ]×P(Ω̂). A probability P on (Ω,F) is called a weak control rule with initial condition
(t, ν̂) if

(i) the process α = (αs)t≤s≤T satisfies

P
[
αs ∈ U

]
= 1, for Lebesgue–a.e. s ∈ [t, T ], and EP

[ ∫ T

t

(
ρ(u0, αs)

)pds] <∞;

(ii) the process µ̂ = (µ̂s)0≤s≤T satisfies

µ̂s = P ◦ (Xs∧·, As∧·,W,Bs∧·)−11{s∈[0,t]} + PG
t

T ◦ (Xs∧·, As∧·,W,Bs∧·)−11{s∈(t,T ]}, P− a.s. (5.4.6)

with P ◦ (Xt∧·, At∧·,Wt∧·, Bt∧·)−1 = ν̂(t);

(iii) EP[‖X‖p] <∞, P[|S|T <∞] = 1, the process Sϕ is an (F,P)–local martingale on [t, T ], for all ϕ ∈ C2
b

(
Rn×Rd×R`

)
.

Given ν ∈ P(Cn), we denote by V(ν) the collection of all probability measures ν̂ ∈ P(Ω̂) such that ν̂ ◦ X̂−1 = ν, and let

P̂W (t, ν̂) :=
{
All weak control rules P with initial condition (t, ν̂)

}
, and PW (t, ν) :=

⋃
ν̂∈V(ν)

P̂W (t, ν̂).

Remark 5.4.2. Let P ∈ PW (t, ν) for some t ∈ [0, T ] and ν ∈ P(Cn). Notice that for s ∈ (t, T ], µ̂s is Gts–measurable,
then by (5.4.6), one has

µ̂s = PG
t

s ◦ (Xs∧·, As∧·,W,Bs∧·)−1, P–a.s.

Further, as the canonical process (µ̂s)s∈[0,T ] is continuous, it follows that

LP(Xt∧·, At∧·,W,Bt∧·
)

= µ̂t = lim
s↘t

µ̂s = lim
s↘t
LP((Xs∧·, As∧·,W,Bs∧·

)∣∣GtT ) = LP((Xt∧·, At∧·,W,Bt∧·
)∣∣GtT ), P–a.s.
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This implies that Ft ∨ σ(W ) = σ(Xt∧·, At∧·,W,Bt∧·) is independent of GtT , which is consistent with the conditions in
Definition 5.2.1.

Finally, under P, (µ̂s)s∈[0,t] is completely determined by ν̂(t). More precisely, one has

µ̂t(dx,da,dw,db) =
∫

Ω̂×Cd
δ(x′,a′,w′⊕tw?,b′)(dx,da,dw,db) ν̂(t)(dx′,da′,dw′,db′)LP(W t

)
(dw?), P–a.s.

where W t is a (F,P)–Brownian motion on [t, T ], by the martingale problem property in Definition 5.4.1.

Definition 5.4.3. Let (t, ν) ∈ [0, T ]× P2(Cn). A probability P on (Ω,F) is called a strong control rule (resp. B–strong
control rule) with initial condition (t, ν), if P ∈ PW (t, ν) and moreover there exists some Borel measurable function
φ : [0, T ]× Ωt −→ U

(
resp. φ : [0, T ]× C`t,T −→ U

)
such that

αs = φ
(
s,Xt∧·,W

t
s∧·, B

t
s∧·
) (

resp. φ
(
s,Bts∧·

))
, P–a.s., for all s ∈ [t, T ].

Let us then denote by PS(t, ν) (resp. PB
S(t, ν)) the collection of all strong (resp. B–strong) control rules with initial

condition (t, ν).

5.4.1.3 Equivalence of the reformulation

We now show that every strong/weak control (term) induces a strong/weak control rule on the canonical space, and any
strong/weak control rule on the canonical space can be induced by a strong/weak control (term).

Lemma 5.4.4. (i) Let t ∈ [0, T ] and ν ∈ P(Cn). Then for every γ ∈ ΓW (t, ν), one has

Pγ := Pγ ◦
(
Xγ , Aγ ,W γ , Bγ , µ̂γ

)−1 ∈ PW (t, ν). (5.4.7)

Conversely, given P ∈ PW (t, ν), there exists some γ ∈ ΓW (t, ν) such that Pγ ◦
(
Xγ , Aγ ,W γ , Bγ , µ̂γ

)−1 = P.

(ii) Let t ∈ [0, T ], ν ∈ P2(Cn), and Assumption 5.2.8 hold true. Then for every γ ∈ ΓS(t, ν)
(
resp. ΓB

S(t, ν)
)
, one has

Pγ := Pγ ◦
(
Xγ , Aγ ,W γ , Bγ , µ̂γ

)−1 ∈ PS(t, ν)
(
resp. PB

S(t, ν)
)
. (5.4.8)

Conversely, given P ∈ PS(t, ν)
(
resp. PB

S(t, ν)
)
, there exists some γ ∈ ΓS(t, ν)

(
resp. ΓB

S(t, ν)
)
such that Pγ◦

(
Xγ , Aγ ,W γ , Bγ , µ̂γ

)−1 =
P.

Proof. (i) First, let γ ∈ ΓW (t, ν) and Pγ := Pγ ◦
(
Xγ , Aγ ,W γ , Bγ , µ̂γ

)−1. First, it is straightforward to check that

Pγ [αs ∈ U ] = 1, for dt–a.e. s ∈ [t, T ], EPγ [‖X‖p] <∞ and EPγ
[ ∫ T

t

(ρ(u0, αs))pds
]
<∞.

Further, as the integrals in (5.2.4) are well defined, one has |S|T < ∞, Pγ–a.s. Moreover, by Itô’s formula, the process(
S
ϕ

s

)
s∈[t,T ] defined in (5.4.4) is an (F,Pγ)–local martingale, for every ϕ ∈ C2

b

(
Rn × Rd × R`

)
.

Next, notice that Bt,γ and µ̂γ are adapted to Gγ , one has, for all (s, β, ψ) ∈ (t, T ]× Cb
(
Ω̂
)
× Cb

(
C` × C([0, T ];P(Ω̂))

)
,

EPγ [〈β, µ̂s〉ψ(BtT∧·, µ̂T∧·)] = EPγ [〈β, µ̂γs 〉ψ(Bγ,tT∧·, µ̂γT∧·)] = EPγ [〈β,LPγ((Xγ
s∧·, A

γ
s∧·,W

γ , Bγs∧·
)∣∣GγT )〉ψ(Bγ,tT∧·, µ̂γT∧·)]

= EPγ [β(Xγ
s∧·, A

γ
s∧·,W

γ , Bγs∧·
)
ψ
(
Bγ,tT∧·, µ̂

γ
T∧·
)]

=EPγ [β(Xs∧·, As∧·,W,Bs∧·
)
ψ
(
BtT∧·, µ̂T∧·

)]
= EPγ [〈β,LPγ((Xs∧·, As∧·,W,Bs∧·

)∣∣GtT )〉ψ(BtT∧·, µ̂T∧·)].
This implies that µ̂s = LPγ((Xs∧·, As∧·,W

γ , Bγs∧·
)∣∣GtT ), Pγ–a.s. for all s ∈ (t, T ]. By the same argument and using the

fact that Fγt ∨ σ(W γ) is independent of GγT , one can easily check that µ̂s = LPγ (Xs∧·, As∧·,W·, Bs∧·) for s ∈ [0, t], and
that Pγ ◦X−1

t∧· = ν. This implies that Pγ ∈ PW (t, ν).



5.4. Proofs of dynamic programming principle 133

Assume in addition that γ ∈ ΓS(t, ν) so that αγ is Fγ–predictable. Then there exists a Borel measurable function
φ : [t, T ]×Ωt −→ U such that αγs = φ

(
s,Xγ

t∧·,W
γ,t
s∧·, B

γ,t
s∧·
)
, for all s ∈ [t, T ], Pγ–a.s. (see e.g. Claisse, Talay, and Tan [52,

Proposition 10]). This implies that αs = φ
(
s,Xt∧·,W

t
s∧·, B

t
s∧·
)
, Pγ–a.s. for all s ∈ [t, T ], and it follows that Pγ ∈ PS(t, ν).

(ii) Let P ∈ PW (t, ν) for some ν ∈ P(Cn). By Stroock and Varadhan [150, Theorem 4.5.2], one knows that (W,B) are
(F,P)–Brownian motions on [t, T ], and

Xs = Xt +
∫ s

t

b(r,X·, µr, αr)dr +
∫ s

t

σ(r,X·, µr, αr)dWr +
∫ s

t

σ0(r,X·, µr, αr)dBr, P–a.s.,

Moreover, with the filtration Gt defined in (5.4.1), and in view of Remark 5.4.2, it is straightforward to check that

γ :=
(
Ω,F ,F,P,Gt, X,W,B, µ, µ, α

)
∈ ΓW (t, ν).

If, in addition, P ∈ PS(t, ν), so thatA is a (σ
(
Xt∧r∧·,W

t
r∧·, B

t
r∧·
)
)r∈[t,T ]–adapted continuous process. Using Corollary 5.5.4

and the fact that µ̂s = LP((Xs∧·, As∧·,W,Bs∧·)
∣∣Btr∈[t,s], µ̂s∧·

)
, P–a.s., for all s ∈ [t, T ], one can deduce that µ̂s =

LP((Xs∧·, As∧·,W,Bs∧·)
∣∣Btr∈[t,s]

)
, P–a.s., for all s ∈ [t, T ]. Let G̃t be the filtration generated by Bt, F̃t be the filtration

generated by (Xt∧·,W
t, Bt), and G̃t,P, F̃t,P be the corresponding P–augmented filtrations. Then µ̂ is G̃t,P–predictable,

and X is F̃t,P–predictable. Then it follows that

γ′ :=
(
Ω,F , F̃t,P,P, G̃t,P, X,W t, Bt, µ, µ, α

)
∈ ΓS(t, ν).

(iii) Finally, the results related to PB
S(t, ν) and ΓB

S(t, ν) can be deduced by almost the same arguments as for PS(t, ν)
and ΓS(t, ν).

Remark 5.4.5. From Lemma 5.4.4, we can easily deduce that under Assumption 5.2.8, for P ∈ PS(t, ν) or P ∈ PB
S(t, ν),

the canonical process µ̂ satisfies

µ̂s = LP((Xs∧·, As∧·,W,Bs∧·)
∣∣Bts∧·) = LP((Xs∧·, As∧·,W,Bs∧·)

∣∣Bt), P–a.s., for all s ∈ [0, T ].

A direct consequence of Lemma 5.4.4 is that we can now reformulate equivalently the weak/strong formulation of the
McKean–Vlasov control problem on the canonical space.

Corollary 5.4.6. Let (t, ν) ∈ [0, T ]× P(Cn), one has

VW (t, ν) = sup
P∈PW (t,ν)

J(t,P), where J(t,P) := EP
[ ∫ T

t

L
(
s,X, µs, αs

)
ds+ g

(
X,µT

)]
. (5.4.9)

Moreover, when Assumption 5.2.8 holds true and ν ∈ P2(Cn), one has

VS(t, ν) = sup
P∈PS(t,ν)

J(t,P), and V B
S (t, ν) = sup

P∈PB
S(t,ν)

J(t,P).

5.4.2 Technical lemmata
We provide in this section some technical results related to the sets P̂W (t, ν̂).

Lemma 5.4.7. Both graph sets

JP̂W K :=
{

(t, ν̂,P) : P ∈ P̂W (t, ν̂)
}
and JPW K :=

{
(t, ν,P) : P ∈ PW (t, ν)

}
are analytic subsets of, respectively, [0, T ]× P(Ω̂)× P(Ω) and [0, T ]× P(Cn)× P(Ω). Moreover, the value function

VW : [0, T ]× P(Cn) −→ R ∪ {−∞,∞},

is upper semi–analytic.
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Proof. For 0 ≤ r ≤ s ≤ T , m ≥ 1, χ ∈ Cb(Ω), ϕ ∈ C2
b (Rn ×Rd ×R`), φ ∈ Cb(Ω̂), ψ ∈ Cb(C` ×C([0, T ];P(Ω̂))), we define

ξr∧· := χ
(
Xr∧·, Ar∧·,Wr∧·, Br∧·, µ̂r∧·

)
,

and the following Borel measurable subsets of [0, T ]× P(Ω̂)× P(Ω):

K1 :=
{

(t, ν̂,P) :
∫ T

t

P[αθ ∈ U ]dθ = T − t, EP[‖X‖p] <∞, EP
[ ∫ T

t

(ρ(u0, αθ))pdθ
]
<∞

}
,

K2,m
r,s [χ, ϕ] :=

{
(t, ν̂,P) : EP[Sϕ,mr ξr∧·

]
= EP[Sϕ,ms ξr∧·

]}
,

K3
s [φ] :=

{
(t, ν̂,P) : EP[∣∣〈φ, µ̂t∧s〉 − EP[φ(X[t∧s]∧·, A[t∧s]∧·,W,B[t∧s]∧·)

]∣∣] = EP[∣∣〈φ, µ̂t(t)〉 − 〈φ, ν̂(t)〉
∣∣] = 0

}
,

K4
s [φ, ψ] :=

{
(t, ν̂,P) : EP[〈φ, µ̂t∨s〉ψ(Bt, µ̂)

]
= EP[φ(X[t∨s]∧·, A[t∨s]∧·,W,B[t∨s]∧·)ψ(Bt, µ̂)

]}
.

The above Borel measurable sets allow to characterise the graph set JP̂W K. Indeed, K1 contains the probabilities on
Ω such that the canonical element α takes its values in U and not in U ∪ {∂}, K2,m

r,s [χ, ϕ] reduces the set P(Ω) to the
set of probabilities on Ω that solves a (local) martingale problem, while the probabilities which satisfy the “fixed point
property”, i.e. the canonical process µ̂ is equal to the conditional distribution of canonical process (X,A,W,B), are
contained in K3

s [φ] and K4
s [φ, ψ].

Let us consider a countable dense subset X of
(
r, s,m, χ, ϕ, φ, ψ

)
in

[0, T ]2 × N× Cb(Ω)× C2
b (Rn × Rd × R`)× Cb(Ω̂)× Cb(C` × C([0, T ];P(Ω̂))),

where 0 ≤ r ≤ s ≤ T . By the above remarks, it is straightforward to check that

JP̂W K =
⋂
X

(
K1[h] ∩K2,m

r,s [χ, ϕ] ∩K3
s [φ] ∩K4

s [φ, ψ] ∩K5
s [φ, ψ]

)
,

and hence it is a Borel subset of [0, T ]×P(Ω̂)×P(Ω). Furthermore, since P(Ω̂) 3 ν̂ 7−→ ν̂ ◦ (X)−1 ∈ P(Cn) is continuous,
the set

JPW K =
{

(t, ν,P) : (t, ν̂,P) ∈ JP̂W K, ν̂ ◦ (X)−1 = ν
}
,

is an analytic subset of [0, T ]×P(Cn)×P(Ω). Finally, use the (analytic) measurable selection theorem (see e.g. El Karoui
and Tan [61, Proposition 2.17]), it follows that

VW (t, ν) = sup
(t,ν,P)∈JPW K

J(t,P),

is upper semi–analytic as desired.

We next prove a stability result w.r.t. the “conditioning” of P̂W (t, ν̂).

Lemma 5.4.8. Let (t, ν̂) ∈ [0, T ] × P(Ω̂), P ∈ P̂W (t, ν̂), τ̄ be a Gt–stopping time taking values in [t, T ], and
(
PG

t

τ̄

ω̄

)
ω̄∈Ω

be a family of r.c.p.d. of P knowing Gtτ̄ . Then

PG
t

τ̄

ω̄ ∈ P̂W
(
τ̄(ω̄), µ̂τ̄(ω̄)(ω̄)

)
, for P–a.e. ω̄ ∈ Ω.

Proof. Let P ∈ P̂W (t, ν̂). First, it is easy to check that for P–a.e. ω̄ ∈ Ω, one has PG
t

τ̄

ω̄ [αs ∈ U ] = 1, for Lebesgue–almost

every s ∈ [τ̄(ω̄), T ], and EPG
t
τ̄
ω̄

[ ∫ T
τ̄(ω̄)

(
ρ(u0, αs)

)pds] <∞.

Next, notice that for all s ∈ [0, T ], β ∈ Cb(Cn × C × Cd × C`), ψ ∈ Cb(C` × C([0, T ],P(Ω̂))) and Z ∈ Gtτ̄ ,

EP[〈β, µ̂s〉ψ(Bτ̄ , µ̂)1Z∩{τ̄≤s}
]

= EP[β(Xs∧·, As∧·,W,Bs∧·)ψ(Bτ̄ , µ̂)1Z∩{τ̄≤s}
]
,
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so that, for P–a.e. ω̄ ∈ Ω and any τ̄(ω̄) ≤ s ≤ T ,

EPG
t
τ̄
ω̄

[
〈β, µ̂s〉ψ(Bτ̄s∧·, µ̂s∧·)

]
= EPG

t
τ̄
ω̄

[
β(Xs∧·, As∧·,W,Bs∧·)ψ(Bτ̄s∧·, µ̂s∧·)

]
.

By considering a countable dense set of maps (β, ψ) ∈ Cb(Cn × C × Cd × C`)× Cb(C` × C([0, T ],P(Ω̂))), it follows that

µ̂s = LPG
t
τ̄
ω̄

(
Xs∧·, As∧·,W,Bs∧·|G

τ̄(ω̄)
T

)
, PG

t

τ̄

ω̄ –a.s., for all s ≥ τ̄(ω̄), for P–a.e. ω̄ ∈ Ω.

Similarly, one can prove that, for P–a.e. ω̄, and s ≤ τ̄(ω̄),

µ̂s = LPG
t
τ̄
ω̄ (Xs∧·, As∧·,W,Bs∧·), P

Gtτ̄
ω̄ –a.s.,

and hence, for P–a.e. ω̄ ∈ Ω,

µ̂s = LPG
t
τ̄
ω̄ (Xs∧·, As∧·,W,Bs∧·)1{s∈[0,τ̄(ω̄)]} + LPG

t
τ̄
ω̄ (Xs∧·, As∧·,W,Bs∧·|G

τ̄(ω̄)
T )1{s∈(τ̄(ω̄),T ]}, P

Gtτ̄
ω̄ –a.s.

Finally, it is clear that for P–a.e. ω̄, one has EPG
t
τ̄
ω̄

[
‖X‖p

]
<∞ and PG

t

τ̄

ω̄

[
|S|T <∞

]
= 1. Moreover, let ϕ ∈ C2

b (Rn×Rd×
R`), so that the localised process Sϕ,m = S

ϕ

τm∧· is a (F,P)–martingale on [t, T ]. Fix T ≥ r > s ≥ t, J ∈ Fs and K ∈ Gtτ̄ ,
we have

EP
[
EPG

t
τ̄
.
[
S
ϕ

τm∧r1J
]
1K∩{τ̄≤s}

]
= EP[Sϕτm∧r1J∩K∩{τ̄≤s}] = EP[Sϕτm∧s1J∩K∩{τ̄≤s}] = EP

[
EPG

t
τ̄
.
[
S
ϕ

τm∧s1J
]
1K∩{τ̄≤s}

]
.

This implies that

EPG
t
τ̄
ω̄

[
S
ϕ

τm∧r1J
]

= EPG
t
τ̄
ω̄

[
S
ϕ

τm∧s1J
]
, for P–a.e. ω̄.

By considering countably many s, r, J , it follows that Sϕ is a
(
F,PG

t

τ̄

ω̄

)
–local martingale on [τ̄(ω̄), T ] for P–a.e. ω̄ ∈ Ω.

We hence conclude the proof.

We next provide a stability result for PW under concatenation. For any constant M > 0, let us introduce

PMt :=
{
P ∈ P(Ω) : EP[‖X‖p]+EP

[∫ T

t

(
ρ(u0, αs)

)pds] ≤M}, PMW (t, ν) := PW (t, ν)∩PMt , P̂MW (t, ν̂) := P̂W (t, ν̂)∩PMt ,

and
VMW (t, ν) := sup

P∈PMW (t,ν)
J(t,P).

Notice that VMW (t, ν)↗ VW (t, ν) as M ↗∞. Moreover, as in Lemma 5.4.7, the graph set{
(t, ν,M,P) : P ∈ PMW (t, ν)

}
is analytic, and (t, ν,M) 7−→ VMW (t, ν) ∈ R ∪ {−∞,∞} is upper semi–analytic. (5.4.10)

Lemma 5.4.9. Let t ∈ [0, T ], ν̂1, ν̂2 ∈ P(Ω̂) and ν ∈ P(Cn) be such that ν̂1 ◦ X−1
t∧· = ν̂2 ◦ X−1

t∧· = ν(t). Then for all
P1 ∈ P̂W (t, ν̂1), there exists P2 ∈ P̂W (t, ν̂2) satisfying

P1 ◦
(
X,At,W t, Bt

)−1 = P2 ◦
(
X,At,W t, Bt

)−1
,

where At· := A·∨t −At, so that J(t,P1) = J(t,P2). Consequently, one has

VW (t, ν) = sup
P∈P̂W (t,ν̂1)

J(t,P), and VMW (t, ν) = sup
P∈P̂M

W
(t,ν̂1)

J(t,P).

The proof is almost the same as that of Lemma 5.3.10, and hence it is omitted.
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Lemma 5.4.10. Let (t, ν) ∈ [0, T ]× P(Cn), P ∈ PW (t, ν), τ̄ be a Gt–stopping time taking values in [t, T ], ε > 0. Then
there exists a family of probability measures (Q̄ε

t,ν̂,M
)(t,ν̂,M)∈[0,T ]×P(Ω̂)×R+

such that (t, ν̂,M) 7−→ Q̄ε
t,ν̂,M

is universally

measurable, and for every (t, ν̂,M) s.t. P̂MW (t, ν̂) 6= ∅, one has

Q̄ε
t,ν̂,M

∈ P̂MW (t, ν̂) and J
(
t, Q̄ε

t,ν̂,M

)
≥

{
VMW (t, ν)− ε, when VMW (t, ν) <∞,
1/ε, when VMW (t, ν) =∞,

with ν := ν̂ ◦ X̂−1. (5.4.11)

Moreover, there exists a P–integrable, Gtτ̄–measurable r.v. M̂ : Ω→ R+ such that for all constant M ≥ 0, one can find a
probability measure PM,ε ∈ PW (t, ν) satisfying PM,ε|F τ̄ = P|F τ̄ and(

Q̄ε
τ̄(ω̄),µ̂τ̄(ω̄)(ω̄),M+M̂(ω̄)

)
ω̄∈Ω is a version of r.c.p.d. of PM,ε knowing Gtτ̄ .

Proof. The existence of the family of probability measures ((Q̄ε
t,ν̂,M

)(t,ν̂,M)∈[0,T ]×P(Ω̂)×R+
) satisfying (5.4.11) follows by

(5.4.10) and Lemma 5.4.9, together with the measurable selection theorem (see e.g. [61, Proposition 2.21]).

With P ∈ PW (t, ν), we consider a family of r.c.p.d. (Pω̄)ω̄∈Ω of P knowing Gtτ̄ , and define

M̂(ω̄) := EPω̄
[
‖X‖p +

∫ T

τ̄

(
ρ(αs, u0)

)pds],
so that Pω̄ ∈ P̂M̂(ω̄)

W

(
τ̄(ω̄), µ̂τ̄(ω̄)(ω̄)

)
for P–a.e. ω̄, by Lemma 5.4.8. In particular, P̂M̂(ω̄)

W

(
τ̄(ω̄), µ̂τ̄(ω̄)(ω̄)

)
is nonempty for

P–a.e. ω̄ ∈ Ω. For a fixed constant M ≥ 0, let

Q̄εω̄ := Q̄ε
τ̄(ω̄),µ̂τ̄(ω̄)(ω̄),M̂(ω̄)+M

.

Notice that, for P–a.e. ω̄ ∈ Ω,

µ̂τ̄(ω̄)(ω̄) = Pω̄ ◦ (Xτ̄(ω̄)∧·, Aτ̄(ω̄)∧·,W,Bτ̄(ω̄)∧·)−1 = Q̄εω̄ ◦ (Xτ̄(ω̄)∧·, Aτ̄(ω̄)∧·,W,Bτ̄(ω̄)∧·)−1,

then

LQ̄
ε
ω̄
(
Xτ̄(ω̄)∧·, Aτ̄(ω̄)∧·,Wτ̄(ω̄)∧·, Bτ̄(ω̄)∧·, µ̂τ̄(ω̄)∧·

)
= LQ̄

ε
ω̄
(
Xτ̄(ω̄)∧·, Aτ̄(ω̄)∧·,Wτ̄(ω̄)∧·, Bτ̄(ω̄)∧·

)
⊗ LQ̄

ε
ω̄
(
µ̂τ̄(ω̄)∧·

)
= LPω̄

(
Xτ̄(ω̄)∧·, Aτ̄(ω̄)∧·,Wτ̄(ω̄)∧·, Bτ̄(ω̄)∧·, µ̂τ̄(ω̄)∧·

)
. (5.4.12)

In particular, one has

Q̄εω̄
[
Btτ̄(ω̄)∧· = (ω̄b)tτ̄(ω̄)∧·, µ̂τ̄(ω̄)∧· = ω̄ν̂τ̄(ω̄)∧·

]
= 1, for P–a.e. ω̄ = (ω̄x, ω̄a, ω̄w, ω̄b, ω̄ν̂) ∈ Ω. (5.4.13)

Let us then define a probability measure PM,ε on Ω by

PM,ε[K] :=
∫

Ω
Q̄ω̄(K)P(dω̄), for all K ∈ F .

By (5.4.12), one has PM,ε = P on F τ̄ , and moreover, (Q̄εω̄)ω̄∈Ω is a family of r.c.p.d. of PM,ε knowing Gtτ̄ . To conclude
the proof, it is enough to check that PM,ε ∈ PW (t, ν).

First, it is clear that PM,ε[αs ∈ U ] = 1, for Lebesgue–almost every s ∈ [t, T ], and

EPM,ε
[ ∫ T

t

(
ρ(u0, αs)

)pds] ≤ EP
[ ∫ τ̄

t

(
ρ(u0, αs)

)pds]+ EP[M̂] <∞.
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Next, for each β ∈ Cb(Ω̂), ψ ∈ Cb(C` × P(Ω̂)), h ∈ Cb(C`) and s ∈ [t, T ], one has

EPM,ε[β(Xs∧·, As∧·,W,Bs∧·)ψ(Bτ̄ , µ̂)h(Btτ̄∧·)
]

=
∫
ω̄

EQ̄
ε
ω̄
[
β(Xs∧·, As∧·,W,Bs∧·)ψ(Bτ̄ , µ̂)h(Btτ̄∧·)

]
P(dω̄)

=
∫
ω̄

EQ̄
ε
ω̄
[
β(Xs∧·, As∧·,W,Bs∧·)ψ(Bτ̄ , µ̂)

]
h(Btτ̄(ω̄)∧·(ω̄))P(dω̄)

=
∫
ω̄

EQ̄
ε
ω̄
[
EQ̄

ε
ω̄
[
β(Xs∧·, As∧·,W,Bs∧·)

∣∣G τ̄(ω̄)
T

]
ψ(Bτ̄ , µ̂)

]
h(Btτ̄(ω̄)∧·(ω̄))P(dω̄)

=
∫
ω̄

EQ̄
ε
ω̄
[
〈β, µ̂s〉ψ(Bτ̄ , µ̂)

]
h(Btτ̄(ω̄)∧·(ω̄)))P(dω̄)

=
∫
ω̄

EQ̄
ε
ω̄
[
〈β, µ̂s〉ψ(Bτ̄ , µ̂)h(Btτ̄∧·))

]
P(dω̄)

= EPM,ε[〈β, µ̂s〉ψ(Bτ̄ , µ̂)h(Btτ̄∧·)
]
,

where the second and fifth equalities are due to Equation (5.4.13), and the fourth follows by the fact that Q̄εω̄ ∈
P̂W (τ̄(ω̄), µ̂τ̄(ω̄)(ω̄)). Notice that Btu = Btτ̄∧u +Bτ̄u for any u ∈ [t, T ], the above equality implies that

µ̂s = LPM,ε(Xs∧·, As∧·,W,Bs∧·
∣∣GtT ), PM,ε–a.s.

Finally, we easily check that PM,ε[|S|T < ∞] = 1 and EPM,ε [‖X‖p] ≤ EP[‖X‖p] + M < ∞. For a fixed test function
ϕ ∈ C2

b (Rn+d+`), we consider the localised stopping times τm defined in (5.4.5) and τ ω̄k (ω̄′) := τ̄(ω̄) ∨ τk(ω̄′) for each
ω̄ ∈ Ω. We know that τ ω̄k ≤ τ ω̄k+1, for any k ∈ N, that τ ω̄k −→

k→∞
∞, and that (Sϕs∧τ ω̄

k
)s∈[τ(ω̄),T ] is an (F, Q̄εω̄)–martingale for

all k ∈ N. Notice that for all s ∈ [t, T ] and A ∈ Fs, the map

ω̄ 7−→ EQ̄
ε
ω̄

[
S
ϕ

s∧τm∧τ ω̄k
1A1s>τ̄(ω̄)

]
is Gtτ̄–measurable.

Then for s ≤ r ≤ T,

EPM,ε[Sϕs∧τm1A
]

= EPM,ε[Sϕs∧τm1A1s≤τ̄
]

+ EPM,ε[Sϕs∧τm1A1s>τ̄
]

= EP[Sϕs∧τm1A1s≤τ̄ ] + lim
k→∞

∫
Ω
EQ̄

ε
ω̄
[
S
ϕ

s∧τm∧τ ω̄k
1A1s>τ̄(ω̄)

]
P(dω̄) = EP[Sϕs∧τm1A1s≤τ̄

]
+ EPM,ε[Sϕr∧τm1A1s>τ̄

]
= EP[Sϕτ̄∧τm1A1s≤τ̄1r<τ̄

]
+ EP[Sϕτ̄∧τm1A1s≤τ̄1τ̄≤r

]
+ EPM,ε[Sϕr∧τm1A1s>τ̄

]
= EP[Sϕr∧τm1A1s≤τ̄1r<τ̄

]
+ EPM,ε[Sϕτ̄∧τm1A1s≤τ̄1τ̄≤r

]
+ EPM,ε[Sϕr∧τm1A1s>τ̄

]
= EPM,ε[Sϕr∧τm1A1s≤τ̄1r<τ̄

]
+ EPM,ε[Sϕr∧τm1A1s≤τ̄1τ̄≤r

]
+ EPM,ε[Sϕr∧τm1A1s>τ̄

]
= EPM,ε[Sϕr∧τm1A

]
,

which means that (Sϕu)u∈[t,T ] is an (F,PM,ε)–local martingale, and hence PM,ε ∈ PW (t, ν).

5.4.3 Proof of the main results
5.4.3.1 Proof of Theorem 5.3.1

First, VW is upper semi–analytic by Lemma 5.4.7. Further, let τ̄ be a Gt–stopping time taking value in [t, T ], it follows
by Lemma 5.4.8 that, for every P ∈ PW (t, ν)

J(t,P) = EP
[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+ EP
[ ∫ T

τ̄

L(s,Xs∧·, µs, αs)ds+ g
(
XT∧·, µT

)∣∣∣∣Gtτ]]
≤ EP

[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+ VW
(
τ̄ , µτ̄

)]
≤ sup

P′∈PW (t,ν)
EP′
[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+ VW
(
τ̄ , µτ̄

)]
.
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Notice that a Gt–stopping time on Ω can be considered as a G?–stopping time τ? on Ω?. Then by the way how τγ is
defined from τ? in (5.3.1) and Lemma 5.4.4, we obtain the inequality

VW (t, ν) ≤ sup
γ∈ΓW (t,ν)

EPγ
[ ∫ τγ

t

L(s,Xγ
s∧·, µ

γ
s , α

γ
s )ds+ VW

(
τγ , µγτγ

)]
. (5.4.14)

We now consider the reverse inequality, for which one can assume w.l.o.g. that

VW (t, ν) <∞, and sup
P′∈PW (t,ν)

EP′
[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+ VW
(
τ̄ , µτ̄

)]
> −∞. (5.4.15)

Let P ∈ PW (t, ν) be a weak control rule, then by Lemma 5.4.10, for some F τ̄–measurable P–integrable r.v. M̂ : Ω→ R+,
one has a family of probability measures (PM,ε)M≥0 in PW (t, ν) such that

EP
[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+
(
V
M+M̂(ω̄)
W

(
τ̄ , µτ̄

)
− ε
)
1
{VM+M̂(ω̄)
W

(τ̄ ,µτ̄ )<∞}

]
+ 1
ε
P
[
V
M+M̂(ω̄)
W (τ̄ , µτ̄ ) =∞

]
≤ EP

[ ∫ τ̄

t

L(s,Xs∧·, µs, , αs)ds+ E
Q̄ε

τ̄,µ̂,M+M̂

[ ∫ T

τ̄

L(s,Xs∧·, µs, αs)ds+ g
(
XT∧·, µT

)]]
= EPM,ε

[ ∫ T

t

L(s,Xs∧·, µs, αs)ds+ g
(
XT∧·, µT

)]
≤ VW (t, ν).

If P
[
VM+M̂
W (τ̄ , µτ̄ ) =∞

)
] > 0 for some M ≥ 0, then by taking ε −→ 0, one finds VW (t, ν) =∞ which is in contradiction

to (5.4.15). When P
[
VM+M̂
W (τ̄ , µτ̄ ) = ∞

]
= 0 for all M ≥ 0, let M −→ ∞ and then take the supremum over all

P ∈ PW (t, ν), it follows that

sup
P′∈PW (t,ν)

EP′
[ ∫ τ̄

t

L(s,Xs∧·, µs, αs)ds+ VW
(
τ̄ , µτ̄

)]
− ε ≤ VW (t, ν).

Notice that ε > 0 is arbitrary, and again by the way how τγ is defined from τ? (equivalent to τ̄ on Ω) and Lemma 5.4.4,
we can conclude the proof with (5.4.14).

5.4.3.2 Proof of Theorem 5.3.4

Let (t, ν) ∈ [0, T ]×P2(Cn) and Assumption 5.3.3 hold, by Theorem 2.2.3 (letting p̂ = p = 2 in the assumptions), one has

VS(t, ν) = VW (t, ν).

Therefore VS : [0, T ]× P2(Cn) −→ R ∪ {−∞,∞} has the same measurability as VW : [0, T ]× P2(Cn) −→ R ∪ {−∞,∞}.

Next, let τ be a Gt,◦–stopping time on (Ωt,F t,Ptν) taking value in [t, T ], we denote τγ := τ(Bγ,t) for γ ∈ ΓS(t, ν). Then
by the formulation equivalence result in Proposition 5.2.10, the DPP result (5.3.4) is equivalent to

VS(t, ν) = sup
γ∈ΓS(t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ VS(τγ , µγ)

]
.

Recall that under Assumption 5.2.8 and by Theorem 5.5.3, one has

EPγ
[

sup
s∈[0,T ]

|Xγ
s |2
]
<∞.
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Then by Lemma 5.4.8 and the fact that VS = VW , it follows that

VS(t, ν) = sup
γ∈ΓS(t,ν)

J(t, γ) = sup
γ∈ΓS(t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+

∫ T

τγ
L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ g

(
Xγ
T∧·, µ

γ
T

)]
≤ sup
γ∈ΓS(t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ VS(τγ , µγ)

]
.

Further, by Theorem 5.3.1, we have

VS(t, ν) = VW (t, ν) = sup
γ∈ΓW (t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ VW (τγ , µγ)

]
≥ sup
γ∈ΓS(t,ν)

EPγ
[ ∫ τγ

t

L
(
s,Xγ

s∧·, µ
γ
s , α

γ
s

)
ds+ VS(τγ , µγ)

]
,

and hence the proof is concluded.

5.4.3.3 Proof of Theorem 5.3.2

In this part, we use the results and techniques of Theorem 5.3.1 to show the DPP for V B
S . We start by proving the

universal measurability of V B
S . For this, we consider an equivalent formulation of V B

S , which is more appropriate for our
purpose.

5.4.3.3.1 An equivalent reformulation for V B
S Let Ω̃? := C` be the canonical space with canonical process B̃?,

and P̃? be the Wiener measure, under which B̃? is an `–dimensional standard Brownian motion. Let F̃? = (F̃?t )t∈[0,T ] be
the canonical filtration. Recall that we consider a fixed Borel map π : U ∪ {∂} → R∪ {−∞,∞}. We denote by U the set
of F̃?–predictable processes θ taking values in R, such that EP̃?[ ∫ T

0
∣∣θt∣∣2dt

]
<∞. Define a metric d? on U by

d?(η, θ)2 := EP̃?
[ ∫ T

0

∣∣ηt − θt∣∣2dt
]
, for all (η, θ) ∈ U × U ,

so that (U , d?) is a Polish space (see e.g. Brezis [32, Theorems 4.8 and 4.13]). Next, let θ ∈ U , and define Aθt :=
∫ t

0 θsds,
t ∈ [0, T ]. We consider then the map Υ : U −→ P(C` × C) defined by

Υ(θ) := P̃? ◦
(
B̃?· , A

θ(B̃?· )
·

)−1
, θ ∈ U .

Let us introduce, for all t ∈ [0, T ], ν ∈ P2(Cn) and ν̂ ∈ P2(Ω̂) such that ν = ν̂ ◦ X̂−1,

P?S(t, ν) :=
{
P ∈ PW (t, ν) : P ◦

(
B·, A·

)−1 ∈ Υ
(
U
)
, and Bt∧· is P–independent of (Bt, A)

}
,

and
P̂?S(t, ν̂) := P̂W (t, ν̂) ∩ P?S(t, ν).

Lemma 5.4.11. Let (t, ν) ∈ [0, T ]×P2(Cn) and ν̂ ∈ P(Ω̂) be such that ν̂ ◦ X̂−1 = ν. Then under Assumption 5.2.8, one
has P?S(t, ν) ⊆ PB

S(t, ν) and
V B
S (t, ν) = sup

P∈P?S(t,ν)
J(t,P). (5.4.16)

Proof. First, take γ ∈ ΓB
S(t, ν). W.l.o.g., we can assume that there exists an independent Brownian motion B̃ in the

space (Ωγ .Fγ ,Pγ), and let B?,γ· := Bγt∨· −B
γ
t + B̃t∧·, then

γ′ :=
(
Ωγ ,Fγ ,Pγ ,Fγ ,Gγ , Xγ ,W γ , B?,γ , µγ , µγ , αγ

)
∈ PB

S(t, ν).
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Recall that αγ is Gγ–predictable and Gγ is the augmented filtration generated by Bγ,t, then for some Borel function
φ : [t, T ] × C` → U , one has αγs = φ(s,Bγ,ts∧·), s ∈ [t, T ], Pγ–a.s. Let Aγ

′

· :=
∫ ·

0 π
(
φ(s,Bγ,ts∧·)

)
ds and µ̂γ′ be defined as in

(5.2.7), it follows that P′ := Pγ ◦
(
Xγ , Aγ

′
,W γ , Bγ

′
, µ̂γ

′)−1 ∈ PW (t, ν) satisfies P′◦(B,A)−1 ∈ Γ(U) and J(t,P′) = J(t, γ).
Then J(t, γ) = J(t,P′) ≤ supP∈P?S(t,ν) J(t,P) and hence V B

S (t, ν) ≤ supP∈P?S(t,ν) J(t,P).

Next, given P ∈ P?S(t, ν), since P◦
(
B,A

)−1 ∈ Υ
(
U
)
, there exists θ? ∈ U such that P◦

(
B·, A·

)−1 = P̃? ◦
(
B̃?· , A

θ?(B̃?· )
· )

)−1
.

Thus π
(
αs(ω)

)
= θ?s(Bs∧·(ω)), for dP ⊗ dt–a.e. (s, ω̄) ∈ [t, T ] × Ω. As P ∈ PW (t, ν), we know P[αs ∈ U ] = 1 for

dt–a.e. s ∈ [0, T ], therefore π
(
αs(ω̄)

)
= θ?s(Bs∧·(ω̄)) ∈ π(U) and αs(ω̄) = π−1(θ?s(Bs∧·(ω̄))

)
∈ U , for dP ⊗ dt–a.e.

(s, ω̄) ∈ [0, T ] × Ω. Further, since (Bt, A) is P–independent of Bt∧·, it follows that there is a Borel measurable function
φ : [0, T ] × C` −→ R such that As = φ(s,Bts∧·), s ∈ [0, T ], P–a.s., and therefore P ∈ PB

S(t, ν). This implies that
P?S(t, ν) ⊆ PB

S(t, ν), and the equality (5.4.16).

We are now ready to prove the measurability of V B
S .

Lemma 5.4.12. The graph sets

JP?SK :=
{

(t, ν,P) ∈ [0, T ]× P2(Cn)× P(Ω) : P ∈ P?S(t, ν)
}
, and JP̂?SK :=

{
(t, ν̂,P) : P ∈ P̂?S(t, ν̂)

}
,

are analytic sets in respectively [0, T ]×P2(Cn)×P(Ω) and [0, T ]×P2(Ω̂)×P(Ω). Consequently, V B
S : [0, T ]×P2(Cn) −→

R ∪ {−∞,∞} is upper semi–analytic.

Proof. We will only consider the case of P?S , while the proof is almost the same for P̂?S . First, notice that

Υ : U −→ P(C` × C),

is continuous and injective, so that Υ
(
U
)
is a Borel subset of P(C` × C) (see e.g. Kechris [93, Theorem 15.1]). It follows

that

D1 :=
{

(t, ν,P) ∈ [0, T ]× P2(Cn)× P(Ω) : P ◦
(
B·, A·

)−1 ∈ Υ
(
U
)}
,

is a Borel subset of [0, T ]× P(Cn)× P(Ω), as the map

Γ1 : [0, T ]× P2(Cn)× P(Ω) 3 (t, ν,P) 7−→ P ◦
(
B·, A·

)−1 ∈ P(C` × C),

is Borel measurable. Similarly

D2 :=
{

(t, ν,P) ∈ [0, T ]× P2(Cn)× P(Ω) : Bt∧· is P–independent of (Bt, A, µ̂)
}
,

is also a Borel subset of [0, T ]× P(Cn)× P(Ω). Indeed, for all (h, ψ) ∈ Cb(C`)× Cb
(
C` × C

)
, the function

Γh,ψ : [0, T ]× P2(Cn)× P(Ω) 3 (t, ν,P) 7−→
(
EP[h(Bt∧·)ψ(Bt, A)]− EP[h(Bt∧·)]EP[ψ(Bt, A)]

)
∈ R,

is continuous. By consider a countable dense subset R ⊂ Cb(C`)× Cb
(
C` × C

)
, it follows that

D2 =
⋂

(h,ψ)∈R

Γ−1
ϕ,ψ{0},

is a Borel set. Finally, notice that

JP?SK = JPW K ∩ D1 ∩ D2,

and we then conclude the proof by Lemma 5.4.7 and Lemma 5.4.11.
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Recall that for each M > 0, PMt is defined in Section 5.4.2, we similarly introduce, for (t, ν) ∈ [0, T ] × P2(Cn) and
ν̂ ∈ P2(Ω̂) such that ν = ν̂ ◦ X̂−1,

PB,M
S (t, ν) := PB

S(t, ν)∩PMt , P?,MS (t, ν) := P?S ∩P
B,M
S (t, ν), P̂B,M

S (t, ν̂) := PB
S(t, ν̂)∩PMt , P̂?,MS (t, ν̂) := P?S ∩P̂

B,M
W (t, ν̂).

By Lemma 5.4.9, it is clear that

V B,M
S (t, ν) := sup

P∈PB,M
S (t,ν)

J(t,P) = sup
P∈P?,MS (t,ν)

J(t,P) = sup
P∈P̂B,M

S
(t,ν̂)

J(t,P) = sup
P∈P̂?,M

S
(t,ν̂)

J(t,P) ↗ V B
S (t, ν), as M ↗∞.

Lemma 5.4.13. (i) Let (t, ν) ∈ [0, T ]×P2(Cn), P ∈ PB
S(t, ν), τ̄ a Gt–stopping time taking values in [t, T ], and

(
PG

t

τ̄

ω̄

)
ω̄∈Ω

be a family of r.c.p.d. of P knowing Gtτ̄ . Then PG
t

τ̄

ω̄ ∈ P
B
S

(
τ̄(ω̄), µτ̄(ω̄)(ω̄)

)
, for P–a.e. ω̄ ∈ Ω.

(ii) The graph set
{

(t, ν̂,M,P) : P ∈ P̂?,MS (t, ν̂)
}
is analytic. Further, let (t, ν) ∈ [0, T ] × P2(Cn), P ∈ PB

S(t, ν), τ̄ be
a Gt–stopping time taking values in [t, T ], and ε > 0. Then there exists a family of probability measures and a family
of probability measures (Q̄ε

t,ν̂,M
)(t,ν̂,M)∈[0,T ]×P(Ω̂)×R+

such that (t, ν̂,M) 7−→ Q̄ε
t,ν̂,M

is universally measurable, and for

every (t, ν̂,M) s.t. P̂B,M
S (t, ν̂) 6= ∅, one has

Q̄ε
t,ν̂,M

∈ P̂B,M
S (t, ν̂), and J

(
t, Q̄ε

t,ν̂,M

)
≥

{
V B,M
S (t, ν)− ε, when V B,M

S (t, ν) <∞,
1
ε , when;V B,M

S (t, ν) =∞,
for ν = ν̂ ◦ X̂−1. (5.4.17)

Moreover, there is a Gtτ̄–measurable and P–integrable r.v. M̂ : Ω → R+ such that for all constant M > 0, there exists
PM,ε ∈ PB

S(t, ν) such that PM,ε|F τ̄ = P|F τ̄ and(
Q̄ε
τ̄(ω̄),µ̂(ω̄),M+M̂(ω̄)

)
ω̄∈Ω

is a version of the r.c.p.d. of Pε,M knowing Gtτ̄ .

Proof. (i) Let P ∈ PB
S(t, ν), then there exists a Borel measurable function φ : [t, T ]× C` −→ U such that

αs = φ
(
s,Bts∧·

)
, for all s ∈ [t, T ], P–a.s.

Let us consider the concatenated path (ω̄ ⊗t w̄)s := ω̄t∧s + w̄s∨t − w̄t and define a Borel measurable function φω̄ by

φω̄
(
s, w̄b

)
:= φ

(
s, ω̄b ⊗τ̄(ω̄) w̄b

)
, for s ∈ [τ̄(ω̄), T ], ω̄ = (ω̄x, ω̄a, ω̄w, ω̄b, ω̄µ̂), w = (wx,wa,ww,wb,wµ̂) ∈ Ω.

Then by a classical conditioning argument, it is easy to check that for P–a.e. ω̄ ∈ Ω,

αs = φω̄
(
s,B

τ̄(ω̄)
s∧·

)
, for all s ∈ [τ̄(ω̄), T ], PG

t

τ̄

ω̄ –a.s.

Using Lemma 5.4.8 and Definition 5.4.3, it follows that PG
t

τ̄

ω̄ ∈ P
B
S

(
τ̄(ω̄), µτ̄(ω̄)(ω̄)

)
, for P–a.e. ω̄ ∈ Ω.

(ii) Using Lemma 5.4.12, it is easy to see that the graph set
{

(t, ν,M,P) : P ∈ P?,MS (t, ν)
}
is analytic. Then one can

apply the same arguments as in Lemma 5.4.10 to obtain a measurable family (Q̄εt,ν,M )(t,ν,M)∈[0,T ]×P(Cn)×R+ such that

Q̄εt,ν,M ∈ P
?,M

S (t, ν) and J(t, Q̄εt,ν,M ) ≥ (V B,M
S (t, ν)− ε)1{V B,M

S
<∞} + 1

ε
1{V B,M

S
=∞}.

To proceed, we will define a family (Q̄ε
t,ν̂,M

)(t,ν̂,M)∈[0,T ]×P(Ω̂)×R+
from the family (Q̄εt,ν,M )(t,ν,M)∈[0,T ]×P(Cn)×R+ as follows.

For all (t, ν̂) ∈ [0, T ]×P(Ω̂), let ν := ν̂◦X̂−1. Then on the probability space (Ω,FT , Q̄εt,ν,M ), we consider a F t–measurable
random element (A′s,W ′s, B′s)s∈[0,t] such that

Q̄εt,ν,M ◦ (Xt∧·, A
′
t∧·,W

′
t∧·, B

′
t∧·)−1 = ν̂(t).
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Define
A′s := A′t +As −At, W ′s := W ′t +W t

s , B
′
s := B′t +Bts, for s ∈ [t, T ],

µ̂′s := LQ̄
ε
t,ν,M (Xs∧, A

′
s∧,W

′, B′s∧)1{s∈[0,t]} + LQ̄
ε
t,ν,M (Xs∧, A

′
s∧,W

′, B′s∧|G
t

T )1{s∈(t,T ]}.

Let
Q̄ε
t,ν̂,M

:= Q̄εt,ν,M ◦
(
X,A′,W ′, B′, µ̂′

)
, so that J(t, Q̄ε

t,ν̂,M
) = J(t, Q̄εt,ν,M ) and hence satisfies (5.4.17).

Let P ∈ PB
S(t, ν), as in Lemma 5.4.10, for M > 0, we let

M̂(ω̄) := E
[
‖X‖p +

∫ T

τ̄

(
ρ(αs, u0)

)pds∣∣∣∣Gtτ̄](ω̄), and Q̄εω̄ := Q̄ε
τ̄(ω̄),µ̂τ̄(ω̄)(ω̄),M̂(ω̄)+M

.

Again, as in the proof of Lemma 5.4.10, one has Q̄εω̄ satisfies (5.4.12) and (5.4.13), which allows defining PM,ε by

PM,ε[K] ∈
∫

Ω
Q̄ω̄[K]P(dω̄), for all K ∈ F ,

so that PM,ε ∈ PW (t, ν), PM,ε = P on F τ̄ and (Q̄εω̄)ω̄∈Ω is a family of r.c.p.d. of PM,ε knowing Gtτ̄ .

Finally, it is enough to prove that PM,ε ∈ PB
S(t, ν). Let s ∈ [t, T ], h ∈ Cb(R) and ψ ∈ Cb(C`), then

EPM,ε[Ash(As)ψ
(
Bts∧·

)
1s>τ̄

]
= EPM,ε[EQ̄ε· [Ash(As)ψ

(
Bts∧·

)]
1s>τ̄

]
= EPM,ε

[
EQ̄

ε
·

[
EQ̄

ε
·
[
As
∣∣Bts∧·]h(As)ψ

(
Bts∧·

)]
1s>τ̄

]
= EPM,ε

[
EPM,ε

[
EPM,ε[As∣∣Gtτ̄ ∨ σ(Bts∧·)

]
h(As)ψ

(
Bts∧·

)∣∣∣Gtτ̄]1s>τ̄]
= EPM,ε[EPM,ε[As∣∣Bts∧·]h(As)ψ

(
Bts∧·

)
1s>τ̄

]
,

where the second equality follows by the fact that Q̄εω̄ ∈ P
B
S(τ̄(ω̄), ν′) for some ν′ ∈ P(Cn) and hence h(As) = h(φ(Bτ̄(ω̄)

s∧· )),
Q̄εω̄–a.s., for some Borel measurable function φ, and the last quality follows by the fact that on {s > τ̄}, EPM,ε[As∣∣Gtτ̄ ∨
σ(Bts∧·)

]
= EPM,ε[As∣∣Bts∧·]. Further, as PM,ε|F τ̄ = P|F τ̄ and P ∈ PB

S(t, ν), one can use similarly argument to find that

EPM,ε[Ash(As)ψ
(
Bts∧·

)
1s≤τ̄

]
= EPM,ε[EPM,ε[As∣∣Bts∧·]h(As)ψ

(
Bts∧·

)
1s≤τ̄

]
.

This implies that

EPM,ε
[(
As − EPM,ε[As∣∣Bts∧·])h(As)ψ

(
Bts∧·

)]
= 0, and hence As = EPM,ε[As∣∣Bts∧·], PM,ε–a.s.

In other words, A is a continuous process, adapted to the PM,ε–augmented filtration generated by Bt, then there exists
a Borel measurable function φ̂ : [t, T ] × C` −→ U such that As = φ̂(s,Bts∧·), for all s ∈ [t, T ], PM,ε–a.s., and hence
PM,ε ∈ PB

S(t, ν), which concludes the proof.

5.4.3.3.2 Proof of Theorem 5.3.2 The proof is almost the same as that of Theorem 5.3.1. First, one has the
measurability of V B

S by Lemma 5.4.12. Next, notice that a Gt,◦–stopping time τ on Ωt can be considered as a special
Gt–stopping time τ̄ on Ω. then using the conditioning argument in Lemma 5.4.13, it follows that

V B
S (t, ν) ≤ sup

P∈PB
S(t,ν)

E
[ ∫ τ

t

L(s,Xs∧·, µs, αs)ds+ V B
S

(
τ, µτ

)]
.

Finally, it is enough to use the concatenation argument in Lemma 5.4.13 and sending M → ∞ to obtain the reverse
inequality

V B
S (t, ν) ≥ sup

P∈PB
S(t,ν)

EP
[ ∫ τ

t

L(s,Xs∧·, µs, αs)ds+ V B
S

(
τ, µτ

)]
.



5.5. Appendix: some technical results on controlled McKean–Vlasov SDEs 143

5.5 Appendix: some technical results on controlled McKean–Vlasov SDEs
Let us first recall a technical optional projection result.

Lemma 5.5.1. Let E be a Polish space, (Ω,F ,P) be a complete probability space, equipped with a complete filtration
G := (Gt)t≥0.

(i) Given an E–valued measurable process (Xt)t∈[0,T ], there exists a P(E)–valued G–optional process β such that

βτ = LP(Xτ

∣∣Gτ), P–a.s., for all G–stopping times τ.

(ii) Assume in addition that X is a continuous process, and that the G–optional σ–field is identical to the G–predictable
σ–field. Then one can choose β to be an a.s. continuous process.

Proof. (i) The existence of such process β is ensured by, e.g. Kurtz [100, Theorem A.3] or Yor [153, Proposition 1].
(ii) When X is a continuous process, it follows again by [100, Theorem A.3] (or [153, Proposition 1]) that β is càdlàg
P–a.s. Further, let ϕ ∈ Cb(E) and (τn)n≥1 be a increasing sequence of uniformly bounded G–stopping times2. One has
〈ϕ, βτn〉 = EP[ϕ(Xτn)|Gτn ], P–a.s., and hence limn→∞ EP[〈ϕ, βτn〉] = EP[〈ϕ, βlimn τn〉]. Then it follows by Dellacherie [55,
Theorem IV–T24] that (〈ϕ, βt〉)t∈[0,T ] is left–continuous, P–a.s. By considering a countable dense family of functions ϕ
in Cb(E), one concludes that β is also left–continuous a.s.

Let (Ω,F ,P) be a complete probability space, F = (Fs)s≥0 a complete filtration, supporting two independent F–Brownian
motions B? and W ?, which are respectively Rd– and R`–valued. Let us fix a Rn–valued, F–adapted continuous process
(ξs)s≥0, a U–valued F–predictable process (αs)s≥0, a complete sub–filtration G = (Gs)s≥0 of F, and denote W ∗,ts :=
W ?
s∨t −W ?

t and B∗,ts := B?s∨t −B?t . We will study the following SDE with data (t, ξ, α,G): Xs = ξs for all s ∈ [0, t], and
with µr := LP(Xr∧·, αr|Gr),

Xs = ξt +
∫ s

t

b
(
r,Xr∧·, µr, αr

)
dr +

∫ s

t

σ
(
r,Xr∧·, µr, αr

)
dW ?

r +
∫ s

t

σ0
(
r,Xr∧·, µr, αr

)
dB?r , for all s ≥ t, P–a.s. (5.5.1)

Definition 5.5.2. A strong solution of SDE (5.5.1), with data (t, ξ, α,G), on [0, T ], is an Rn–valued F–adapted continuous
process X = (Xt)t≥0 such that E

[
sups∈[0,T ] |Xs|2

]
<∞ and (5.5.1) holds true.

Theorem 5.5.3. Let 0 ≤ t ≤ T , Assumption 5.2.8 hold true, E
[

sups∈[0,t] |ξs|p
]
< ∞ and E

[ ∫ T
t
ρ(u0, αs)pds

]
< ∞ for

some p ≥ 2. Then

(i) there exists a unique strong solution Xt,ξ,α of (5.5.1) on [0, T ] with data (t, ξ, α,G). Moreover, it holds that
E
[

sups∈[0,T ]
∣∣Xt,ξ,α

s

∣∣p] <∞;

(ii) assume in addition that (ξt∧·,W ?, B?t∧·) is independent of G, and Bt is G–adapted, and there exists a Borel measurable
function φ : [0, T ]× Cn × Cd × C` −→ U such that

αs = φ
(
s, ξt∧·,W

?,t
s∧·, B

?,t
s∧·
)
, P–a.s., for all s ∈ [0, T ].

Then, with As :=
∫ s∨t
t

π(αr)dr, there exists a continuous process (µ̂t)t∈[0,T ] such that for all s ∈ [0, T ]

µ̂s = LP((Xt,ξ,α
s∧· , As∧·,W

?, B?s∧·)
∣∣GT ) = LP((Xt,ξ,α

s∧· , As∧·,W
?, B?s∧·)

∣∣Gs) = LP((Xt,ξ,α
s∧· , As∧·,W

?, B?s∧·)
∣∣B∗,ts∧·), P–a.s.

Proof. (i) We follow [150, Theorem 5.1.1] to prove the existence and uniqueness of a strong solution to (5.5.1). Let Sp
be defined by

Sp :=
{
Y := (Ys)s∈[0,T ] : Rn–valued and F–adapted and continuous process such that EP[‖Y ‖pT ] <∞},

2Which is G–predictable time as soon as the G–optional σ–field is identical to the G–predictable σ–field.
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where ‖x‖s := supr∈[0,s] |xr| for s ∈ [0, T ] and x ∈ Cn. For all Y ∈ Sp, we define, with µs := LP(Ys∧·, αs∣∣GT ),
Ψ(Y ) := (Ψ(Y )s)0≤s≤T by

Ψ(Y )s := ξt∧s +
∫ t∨s

t

b
(
r, Yr∧·, µr, αr

)
dr +

∫ t∨s

t

σ
(
r, Yr∧·, µr, αr

)
dW ?

r +
∫ t∨s

t

σ0
(
r, Yr∧·, µr, αr

)
dB?r .

Then, for (Y 1, Y 2) ∈ Sp × Sp, with µis := LP(Y is∧·, αs∣∣GT ), i ∈ {1, 2}, one has

EP
[∥∥Ψ(Y 1)−Ψ(Y 2)

∥∥p
s

]
≤ 3pEP

[
sup
v∈[t,s]

∣∣∣∣ ∫ v

t

(
σ
(
r, Y 1

r∧·, µ
1
r , αr

)
− σ

(
r, Y 2

r∧·, µ
2
r, αr

))
dW ?

r

∣∣∣∣p]
+ 3pEP

[
sup
v∈[t,s]

∣∣∣∣ ∫ v

t

(
σ0
(
r, Y 1

r∧·, µ
1
r , αr

)
− σ0

(
r, Y 2

r∧·, µ
2
r, αr

))
dB?r

∣∣∣∣p]
+ 3pEP

[∣∣∣∣ ∫ s

t

∣∣b(r, Y 1
r∧·, µ

1
r , αr

)
− b
(
r, Y 2

r∧·, µ
2
r, αr

)∣∣dr∣∣∣∣p].
Notice that, for all r ∈ [t, T ],

W2
(
µ1
r , µ

2
r

)p ≤ Wp

(
µ1
r , µ

2
r

)p =Wp

(
LP((Y 1

r∧·, αr)|Gr),LP((Y 2
r∧·, αr)|Gr)

)p
≤ EP

[
‖Y 1

r∧· − Y 2
r∧·‖p

∣∣∣Gr].
Then by Burkholder–Davis–Gundy inequality, Jensen’s inequality and Assumption 5.2.8, there is some constant CT > 0
such that

EP
[
‖Ψ(Y 1)−Ψ(Y 2)‖ps

]
≤ CT

∫ s

t

EP
[
‖Y 1

r∧· − Y 2
r∧·‖pr

]
dr. (5.5.2)

Besides, by Assumption 5.2.8

E
[
‖Ψ(0)‖p

]
≤ C

(
1 + EP

[
sup
r∈[0,t]

|ξr|p
]

+ EP
[ ∫ T

t

ρ(u0, αr)pdr
])
.

Then by taking Y 2 = 0, (5.5.2) implies that Ψ(Y ) ∈ Sp whenever Y ∈ Sp. Moreover, for any positive integer n

EP
[
‖Ψn(Y 1)−Ψn(Y 2)‖ps

]
≤ CT

∫ s

t

EP
[
‖Ψn−1(Y 1)−Ψn−1(Y 2)‖pr

]
dr

≤ (CT )2
∫ s

t

∫ r

t

EP
[
‖Ψn−2(Y 1)−Ψn−2(Y 2)‖pv

]
dvdr

≤ (CT )n
∫

1{s≥v1≥v2≥...≥vn≥t}E
P
[
‖Y 1 − Y 2‖pvn

]
dv1 . . . dvn

≤ (CT )nEP
[
‖Y 1 − Y 2‖ps

] (s− t)n

n! .

Let Y ∈ Sp, X0 := Y , and Xn := Ψn(Y ), for n ≥ 1, it follows that

EP[‖Xn −Xn+1‖ps
]
≤ (CT )nEP

[
‖Y −Ψ(Y )‖ps

] (s− t)n

n! , and hence EP
[∑
n≥1
‖Xn −Xn+1‖pT

]
<∞,

which implies that the sequence (Xn)n≥1 converges uniformly, P–a.s., to some X ∈ Sp. Finally, it is straightforward to
see that X is the unique strong solution of (5.5.1) with data (t, ξ, α,G).

(ii) Let ν := P ◦ (ξt∧·)−1. We recall that the canonical space Ωt := Cn0,t × Cdt,T × C`t,T was introduced in Section 5.2.2.2,
with corresponding canonical processes ζ = (ζs)0≤s≤t, W = (Ws)t≤s≤T , and B = (Bs)t≤s≤T . and filtration Ft,◦, Gt,◦.
Moreover, under Ptν , W t

s := Ws∨t −Wt and Bts := Bs∨t − Bt are standard Brownian motion on [t, T ] independent of ζ,
and Ft and Gt are the Ptν–augmented filtration of Ft,◦ and Gt,◦.
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Define α̃s := φ(s, ζt∧·,W t
s∧·, B

t
s∧·), for all s ∈ [t, T ]. There exists a unique solution Y α of Equation (5.5.1) on Ωt,

associated with (t, ζt∧·, α̃,Gt). As Y α is an Ft–adapted continuous process, there exists an Borel measurable function
Ψ : [0, T ]× Cn × Cd × C` → Rn such that

Y αs = Ψs(ζt∧·,W t
s∧·, B

t
s∧·), s ∈ [0, T ], Ptν–a.s.

Next, on the probability space (Ω,F ,P), let us define

Xα
s := Ψs(ξt∧·,W ∗,ts∧·, B∗,ts∧·).

Then it is clear that Xα is the unique solution, on (Ω,F,F ,P), of Equation (5.5.1), associated with (t, ξt∧·, α,FB
?,t), where

FB?,t := (FB?,ts )s∈[0,T ] is the P–augmented filtration generated by B?,t. Moreover, as (ξt∧·,W ?, B?t∧·) is independent of
G, and B?,t is G–adapted, one has, for all s ∈ [t, T ],

µs = LP((Xα
s∧·, αs)

∣∣B?,ts∧·) = LP((Ψs∧·(ξt∧·,W ?,t
s∧·, B

?,t
s∧·), φ(s, ξt∧·,W ?,t

s∧·, B
∗,t
s∧·))

∣∣B∗,ts∧·)
= LP((Ψs∧·(ξt∧·,W ?,t

s∧·, B
?,t
s∧·), φ(s, ξt∧·,W ?,t

s∧·, B
?,t
s∧·))

∣∣Gs)
= LP((Xα

s∧·, αs)
∣∣Gs), P–a.s.

This implies that Xα is also a solution of Equation (5.5.1) associated with (t, ξt∧·, α,G), and hence Xt,ξ,α = Xα by
uniqueness of solution to Equation (5.5.1).

Further, as As is a Borel measurable function of (ξt∧·,W ?,t
s∧·, B

?,t
s∧·), it follows by the same argument that, for all s ∈ [0, T ],

µ̂s := LP(Xt,ξ,α
s∧· , As∧·,W

?, B?s∧·
∣∣GT ) = LP(Xt,ξ,α

s∧· , As∧·,W
?, B?s∧·

∣∣Gs) = LP(Xt,ξ,α
s∧· , As∧·,W

?, B?s∧·
∣∣B?,ts∧·), P− a.s.

Finally, using Lemma 5.5.1, one can choose the process µ̂ to be continuous.

Let us consider the following system of SDE, where a solution is a couple of F–adapted continuous processes (X, µ̂) such
that: for some ν̂0 ∈ P(Cn × C × Cd × C`), EP[‖X‖2 +W2(µ̂, ν̂0)2] <∞, Xs = ξs for s ∈ [0, t], and

Xs = ξt +
∫ s

t

b
(
r,Xr∧·, µr, αr

)
dr +

∫ s

t

σ
(
r,Xr∧·, µr, αr

)
dW ?

r +
∫ s

t

σ0
(
r,Xr∧·, µr, αr

)
dB?r , s ∈ [t, T ], P–a.s., (5.5.3)

and µr := LP(Xr∧·, αr|B∗,tr∧·, µ̂r∧·) for all r ≥ t, and with As :=
∫ s∧t
t

π(αr)dr, µ̂s = LP(Xs∧·, As∧·,W
?, B?s∧·

∣∣Bt,∗s∧·, µ̂s∧·)
for all s ≥ 0, and finally (ξt∧·,W ?, B?t∧·) is independent of (B∗,t, µ̂).

Corollary 5.5.4. Let Assumption 5.2.8 hold true, and assume that there exists a Borel measurable function φ : [0, T ]×
Cn × Cd × C` −→ U such that

αs = φ
(
s, ξt∧·,W

?,t
s∧·, B

?,t
s∧·
)
, for dP⊗ dt –a.e. (s, ω) ∈ [t, T ]× Ω, and E

[ ∫ T

t

ρ(u0, αs)2ds
]
<∞.

Then, Equation (5.5.3) has a unique solution (X, µ̂), where X is the strong solution of Equation (5.5.1) with data
(t, ξ, α,FB?,t), with FB?,t being the P–augmented filtration generated by B?,t and

µ̂s = LP(Xs∧·, As∧·,W
?, B?s∧·

∣∣B?,ts∧·), s ∈ [t, T ], P–a.s.

Proof. Given a solution (X, µ̂) to Equation (5.5.3), we notice thatX is a strong solution of Equation (5.5.1) associated with
data (t, α, ξ,FB?,t,µ̂), where FB?,t,µ̂ := (FB?,t,µ̂s )s∈[0,T ] with FB

?,t,µ̂
s := σ(B?,ts∧·, µ̂s∧·). As (ξt∧·,W ?, B?t∧·) is independent

of (B?,t, µ̂), it is then enough to apply Theorem 5.5.3 to conclude that X is the strong solution of Equation (5.5.1) with
data (t, ξ, α,FB?,t).
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Part II

Mean Field Game of Controls with
common noise and controlled volatility
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The general assumptions used throughout this part are now formulated. The dimensions (n, `) ∈ N∗ × N, the nonempty
Polish space (U, ρ) and the horizon time T > 0 are fixed and PnU denote the space of all Borel probability measures on
Rn × U i.e. PnU := P(Rn × U). We are given the following Borel measurable functions[

b, σ, L
]

: [0, T ]× Rn × CnW × PnU × U −→ Rn × Sn×n × R and g : Rn × CnW −→ R.

Assumption 5.5.5. [b, σ, L] are Borel measurable in all their variables, and non–anticipative in the sense that, for all
(t, x, u, π,m) ∈ [0, T ]× Rn × U × CnW × PnU[

b, σ, L
]
(t, x, u, π,m) =

[
b, σ, L

]
(t, x, u, πt∧·,m).

Moreover, there are positive constants C and p such that p ≥ 2, and

(i) U is a compact nonempty polish set;
(ii) b and σ are bounded continuous functions, and σ0 ∈ Sn×` is a constant;
(iii) for all (t, x, x′, π, π′,m,m′, u) ∈ [0, T ]× Rn × Rn × CnW × CnW × PnU × PnU × U, one has∣∣[b, σ](t, x, π,m, u)− [b, σ](t, x′, π′,m′, u)

∣∣ ≤ C
(
|x− x′|+ sup

s∈[0,T ]
Wp(πs, π′s) +Wp(m,m′)

)
;

(iv) Non–degeneracy condition: for some constant θ > 0, one has, for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U ,

θIn ≤ σσ>(t, x, π,m, u);

(v) the reward functions L and g are continuous, and for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U , one has

∣∣L(t, x, π,m, u)
∣∣+ |g(x, π)| ≤ C

[
1 + |x|p + sup

s∈[0,T ]
Wp(πs, δ0)p +

∫
Rn
|x′|pm(dx′, U)

]
;

(vi) Separability condition: There exist continuous functions (b◦, b?, a◦, a?, L◦, L?) satisfying

[b, σσ>](t, x, π,m, u) := [b?, a?](t, π,m) + [b◦, a◦](t, x, π, u) and L(t, x, π,m, u) := L?(t, x, π,m) + L◦(t, x, π, u),

for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U.

Remark 5.5.6. Most of these assumptions are classical in the study of mean field games and control problems (see Lacker
[103], Assumption 1.4.1 and Assumption 4.1.1 ). Only the “separability condition” and the “non–degeneracy condition”
can be seen as non–standard. However, in the context of Mean field games of controls, these conditions are used by
many authors, for instance Cardaliaguet and Lehalle [37] (only the separability condition), Carmona and Lacker [45] and
Laurière and Tangpi [113]. These are essentially technical assumptions.
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Chapter 6

Convergence of Nash equilibria

6.1 Introduction
Since the pioneering work of Lasry and Lions [111] and Huang, Caines, and Malhamé [84], mean field games (MFG)
have been the subject of intensive research in recent years. Due to the diversity of applications, particularly in models
of oil production, volatility formation, population dynamics and economic growth (see Carmona and Delarue [43] for an
overview), the study of MFG has attracted increasing interest in the field of applied mathematics.
The MFG can be seen as symmetric stochastic differential games with infinite many players. Indeed, a MFG solution
can be used to construct approximate Nash equilibrium for the corresponding N–player games for large N, and, for each
N–Nash equilibrium of the N–player games, this Nash equilibrium converges towards a solution of the MFG when N
tends to infinity.
So far, this study has been conducted considering that the interactions between the players are realized only through
the empirical distribution of the state processes, we refer to Lacker [103] for a general analysis of this case (see also
Fisher [68]). The goal of this chapter is to give a general analysis of the case where the interactions is given through the
empirical distribution of the state processes and controls.
Except the recent work of Laurière and Tangpi [113] which treats the convergence of Nash equilibria in the MFG of
controls framework by probabilistic methods (via FBSDEs), to the best of our knowledge, there are no other papers using
probabilistic or PDE methods that answer the question of the convergence of εN–Nash equilibria to the MFG solution
in this context. Indeed, the techniques used so far to treat the question of study of the limit problem turn out to be too
rigid to deal with the problem of the convergence of Nash equilibria, all the limits of approximate Nash equilibrium can
not be described by the notion considered in the literature up to now. Although using probabilistic point of view, our
approach is very different from these previously mentioned, and considers very general assumptions.
In order to solve the difficulty generated by the empirical distribution of controls, we introduce the notion of measure-
valued MFG equilibrium. This notion is precisely defined in Section 6.3.2. The idea of our notion comes from the
(stochastic) Fokker-Planck equation verified by the pair (µ?, µ?). This notion of MFG solution is very close to the
classical notion, the main difference is that the optimization is taken over all solutions of specific Fokker-Planck equations
and not to a solution of an SDE. This notion are already been considered in the literature by Cardaliaguet, Delarue,
Lasry, and Lions [38] (Section 3.7.) and in some way by Lacker [105]. Borrowing techniques from [103], under suitable
assumptions, we prove that the sequence of empirical measure flows (ϕN,X, ϕN ) is tight in a suitable space, and with
the help of techniques introduced in Chapter 4, we show that every limit in distribution is a measure-valued mean
field equilibrium. And conversely, for each measure–valued mean field equilibrium, we construct an approximate Nash
equilibrium which has this measure–valued mean field equilibrium as limit.
Consequently, there is a perfect symmetry between approximate Nash equilibrium and ε–strong MFG equilibrium, and our
notion of measure–valued MFG equilibrium are the accumulating points of approximate Nash equilibrium and ε–strong
MFG equilibrium. Therefore, if there exists a measure-valued MFG equilibrium or an approximated Nash equilibrium,
there is necessarily an ε–strong MFG equilibrium with ε > 0. The question of the existence of the measure–valued solution
will be evoked in the next chapter.
It is worth emphasizing that our results allow to handle the case where σ is controlled i.e. the control α appears in the
function σ. There are not many works that look at the situation where the volatility is controlled. Let us also mention, in



152 Chapter 6. Convergence of Nash equilibria

this chapter, despite general assumptions considered we are limited by some conditions that we must have for technical
reasons, a separability condition on (b, σ, L) (see assumption 1.4.1) and a non–degeneracy volatility condition of type
σσ> > 0.

The rest of the chapter is organized as follows. We provide in Section 6.2 and Section 6.3 the definition of the N–player
games and the corresponding MFG of controls, before stating in Section 6.4 the main limit Theorem 6.4.1, and its
converse, Theorem 6.4.2. Most of the technical proofs are completed in Section 6.5.

As in Chapter 4, with a Polish space E, we denote by M(E) the space of all Borel measures q(dt,de) on [0, T ]×E, whose
marginal distribution on [0, T ] is the Lebesgue measure dt, that is to say q(dt, de) = q(t,de)dt for a family (q(t, de))t∈[0,T ]
of Borel probability measures on E. Let Λ denote the canonical element on M(E), we define

Λt∧·(ds,de) := Λ(ds,de)
∣∣
[0,t]×E + δe0(de)ds

∣∣
(t,T ]×E , for some fixed e0 ∈ E. (6.1.1)

For p ≥ 1, we use Mp(E) to designate the elements of q ∈M(E) such that q/T ∈ Pp(E × [0, T ]).

In this section, we first introduce an N–player game, and the definition of εN–Nash equilibria. Next, we formulate the
notions of approximate strong and measure-valued MFG solutions which will be essential to describe the limit of the
Nash equilibria.

6.2 The N–players games
For (ν1, ..., νN ) ∈ Pp(Rn)N , let

ΩN := (Rn)N × (Cn)N × C`,

be the canonical space, with canonical variable X0 = (X1
0, . . . ,XN

0 ) and canonical processes W = (W1
s, . . . ,WN

s )0≤s≤T
and B = (Bs)0≤s≤T , and probability measure PNν under which X0 ∼ νN := ν1 ⊗ · · · ⊗ νN and (W, B) are standard
Brownian motion independent of X. Let FN = (FNs )0≤s≤T be defined by

FNs := σ
{

X0,Wr, Br, r ∈ [0, s]
}
, 0 ≤ s ≤ T.

Let us denote by A(νN ) the collection of all U–valued processes α = (αs)0≤s≤T which are FN–predictable. Then given a
control rule/strategy α := (α1, . . . , αN ) ∈ A(νN )N , denote by X·[α] := (X1

· [α], . . . ,XN
· [α]) the unique strong solution of

the following system of SDEs: for each i ∈ {1, . . . , N}, EPNν [‖Xi‖p] <∞, for all t ∈ [0, T ],

Xi
t[α] = Xi

0 +
∫ t

0
b
(
r,Xi

r[α], ϕN,X,α, ϕN,αr , αir
)
dr +

∫ t

0
σ
(
r,Xi

r[α], ϕN,X,α, ϕN,αr , αir
)
dWi

r + σ0Bt, (6.2.1)

with

ϕN,αr (dx, du) := 1
N

N∑
i=1

δ(
Xi
r[α], αir

)(dx, du) and ϕN,X,αr (dx) := 1
N

N∑
i=1

δ(
Xi
r[α]
)(dx) for all r ∈ [0, T ].

The reward value of player i associated with control rule/strategy α := (α1, . . . , αN ) is then defined by

Ji[α] := EPNν
[ ∫ T

0
L
(
t,Xi

t[α], ϕN,X,α, ϕN,αt , αit
)
dt+ g

(
Xi
T [α], ϕN,X,α

)]
,

and for β ∈ A(νN ), one introduces the strategy (α[−i], β) ∈ A(νN )N by

(α[−i], β) :=
(
α1, . . . , αi−1, β, αi+1, . . . , αN

)
.

Definition 6.2.1. For any ε := (ε1, . . . , εN ) ∈ (R+)N , α is a ε–Nash equilibrium if

Ji[α] ≥ sup
β∈A(νN )

Ji
(
(α[−i], β)

)
− εi, for each i ∈ {1, . . . , N}.
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6.3 Mean field games of controls
6.3.1 ε–Strong mean field game equilibrium
On a fix probability space, we formulate the classical MFG problem with common noise including the (conditional) law
of control.

For a fixed ν ∈ Pp(Rn), let
Ω := Rn × Cn × C`

be the canonical space, with canonical variable ξ and canonical processes W = (Wt)0≤t≤T and B = (Bt)0≤t≤T , and
probability measure Pν under which ξ ∼ ν and (W,B) are standard Brownian motion independent of ξ. Let F = (Fs)0≤s≤T
and G = (Gs)0≤s≤T be defined by

Fs := σ
{
ξ,Wr, Br, r ∈ [0, s]

}
and Gs := σ

{
Br, r ∈ [0, s]

}
.

Let us denote by A(ν) the collection of all U–valued F–predictable processes. Then given α ∈ A(ν), let Xα be the unique
strong solution of the SDE (e.g. Theorem 5.5.3): EPν [‖Xα‖p] <∞, Xα

0 = ξ, and for t ∈ [0, T ],

Xα
t = Xα

0 +
∫ t

0
b
(
r,Xα

r , µr∧·, µ
α
r , αr

)
dr +

∫ t

0
σ
(
r,Xα

r , µr∧·, µ
α
r , αr

)
dWr + σ0Bt, (6.3.1)

with µαr := LPν
(
Xα
r , αr

∣∣Gr) for all r ∈ [0, T ], and also denote µαr := LPν
(
Xα
r

∣∣Gr) with r ∈ [0, T ].

Given α ∈ A(ν), and Xα solution of (6.3.1), for every α′ ∈ A(ν), let us introduce the unique strong solution Xα,α′ of:
EPν [‖Xα,α′‖p] <∞, Xα,α′

0 = ξ, and for t ∈ [0, T ],

Xα,α′

t = Xα,α′

0 +
∫ t

0
b
(
r,Xα,α′

r , µαr∧·, µ
α
r , α

′
r

)
dr +

∫ t

0
σ
(
r,Xα,α′

r , µαr∧·, µ
α
r , α

′
r

)
dWr + σ0Bt, Pν–a.e., (6.3.2)

and the value function Ψ

Ψ(α, α′) := EPν
[ ∫ T

0
L(t,Xα,α′

t , µαt∧·, µ
α
t , α

′
t)dt+ g(Xα,α′

T , µα)
]
. (6.3.3)

Definition 6.3.1. For any ε ∈ [0,∞), we say α is an ε–strong MFG equilibrium, if

Ψ(α, α) ≥ sup
α′∈A(ν)

Ψ(α, α′)− ε. (6.3.4)

For all α ∈ A(ν), let us define

Pα := Pν ◦
(

(µαt )t∈[0,T ], (µαt )t∈[0,T ], δ(µαr )(dm)dt, δ(µαr )(dm′)dt, B
)−1

.

PS(ν) and for each ε ∈ [0,∞), P?S(ν)[ε] denote the subsets of P
(
CnW × CnW ×M(PnU )×M(PnU )× C`

)
defines as follows

PS(ν) :=
{

Pα, with α ∈ A(ν)
}

and P?S(ν)[ε] :=
{

Pα, with α is an ε–strong MFG equilibrium
}
.

In other words, PS(ν) is the subset of all controlled McKean-Vlasov processes of type (6.3.1), and P?S(ν)[ε] consists of
all ε–strong MFG equilibria. In what follows, the use of these forms of sets will become clearer.

6.3.2 Measure–valued MFG equilibrium
Inspired by the Fokker–planck equation satisfied by the couple

(
LPν (Xα,α′

s |Gs),LPν (Xα,α′

s , α′s|Gs)
)
s∈[0,T ] (see Equation

(6.3.2)) and the discussion in Chapter 4, we carefully formulate the notion of measure–valued control rules which is
essential for the notion of measure–valued MFG equilibrium that will be introduced just after.
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6.3.2.1 Measure–valued control rules

Denote byM := M
(
PnU
)
the collection of all finite (Borel) measures q(dt, de) on [0, T ]×PnU , whose marginal distribution on

[0, T ] is the Lebesgue measure ds, i.e. q(ds,de) = q(s,de)ds for a measurable family (q(s,de))s∈[0,T ] of Borel probability
measures on PnU . Let Λ be the canonical element on M. We then introduce a canonical filtration FΛ = (FΛ

t )0≤t≤T on M
by

FΛ
t := σ

{
Λ(C × [0, s]) : ∀s ≤ t, C ∈ B(PnU )

}
.

For each q ∈ M, one has the disintegration property: q(dt,de) = q(t, de)dt, and there is a version of the disintegration
such that (t, q) 7−→ q(t, de) is FΛ–predictable.

The canonical element on Ω := CnW × CnW ×M ×M × C` is denoted by (µ, ζ,Λ◦,Λ, B). Then, the canonical filtration
F = (F t)t∈[0,T ] is defined by: for all t ∈ [0, T ]

F t := σ
{
µt∧·, ζt∧·,Λ◦t∧·,Λt∧·, Bt∧·

}
,

with Λ◦t∧· and Λt∧· denote the restriction of Λ◦ and Λ on [0, t] × PnU (see definition 6.1.1). Notice that we can choose a
version of the disintegration Λ(dm,dt) = Λt(dm)dt (resp Λ◦(dm, dt) = Λ◦t (dm)dt) such that (Λt)t∈[0,T ] (resp (Λ◦t )t∈[0,T ])
a P(PnU )–valued F–predictable process. Let us also introduce the “fix common noise” filtration (Gt)t∈[0,T ] by

Gt := σ
{
ζt∧·,Λt∧·, Bt∧·

}
.

We consider L the following generator: for (t, x, π,m′, u) ∈ [0, T ]× Rn × CnW × PnU × U , and ϕ ∈ C2(Rn)

Ltϕ(x, π,m′, u) := L◦tϕ(x, π, u) + L?tϕ(x, π,m′), (6.3.5)

where

L◦tϕ(x, π, u) := 1
2Tr

[
a◦(t, x, πt∧·, u)∇2ϕ(x)

]
+ b◦(t, x, πt∧·, u)>∇ϕ(x), (6.3.6)

and

L?tϕ(x, π,m′) := 1
2Tr

[
a?(t, πt∧·,m′)∇2ϕ(x)

]
+ b?(t, πt∧·,m′)>∇ϕ(x). (6.3.7)

Also, for every f ∈ C2(Rn), let us define Nt(f) := Nt[µ,Λ◦, ζ,Λ](f) by

Nt[µ,Λ◦, ζ,Λ](f) := 〈f(· − σ0Bt), µt〉 − 〈f, µ0〉 −
∫ t

0

∫
Pn
U

∫
Rn
L?r [f(· − σ0Br)](x, ζ,m′)µr(dx)Λr(dm′)dr

−
∫ t

0

∫
Pn
U

〈L◦r [f(· − σ0Br)](·, ζ, ·),m〉Λ◦r(dm)dr, (6.3.8)

and for each π ∈ P(Rn), the Borel set Zπ by

Zπ :=
{
m ∈ PnU : m(dx, U) = π(dx)

}
.

Definition 6.3.2 (measure–valued control rule). For every ν ∈ P(Rn), we say P ∈ P(Ω) is a measure–valued control
rule if:

• P
(
µ0 = ν

)
= 1.

• (Bt)t∈[0,T ] is a (P,F) Wiener process starting at zero and for P–almost every ω ∈ Ω, Nt(f) = 0 for all f ∈ C2
b (Rn)

and every t ∈ [0, T ].
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• For all t ∈ [0, T ],

LP(Λ◦t∧·∣∣Gt) = LP(Λ◦t∧·∣∣GT ), P –a.e. (6.3.9)

• For dP⊗ dt almost every (t, ω) ∈ [0, T ]× Ω, Λ◦t
(
Zµt
)

= 1.

We shall denote PV (ν) the set of all measure–valued control rules with initial value ν.
Remark 6.3.3. To do an analogy with Section 6.3.1 ( the strong “point of view” ), in order to give a better intuition of
this definition, here, µ plays the role of (LPν (Xα,α′

t |Gt))t∈[0,T ], Λ◦ that of δLPν (Xα,α
′

s , α′|Gs)
(dm)ds, ζ and Λ represent the

fixed measures µα and δµαs (dm′)ds, and B is the common noise.

The next example shows that, because of condition (6.3.9), the set PV (ν) cannot be closed in general. As PV (ν) is not
closed, the proofs become much more delicate (see for instance Proposition 6.5.8 and also Lemma 7.4.2).

Example 6.3.4. Let us consider to simplify T = 2, n = 1, ` = 0, U = [0, 1], b(t, x, π, u) = u, and σ = 1. Let (Ω̂, F̂, P̂) be
a probability space supporting a [0, 1]–uniform random variable U, and a F̂–Brownian motion W independent of U. We
consider for each integer k ≥ 2,

αkt := U1t∈[0,1) + 1U∈Ak1t∈(1,2] and βkt := 1U∈Ak for all t ∈ [0, T ] where Ak := ∪k−1
j=0
[
j/k, j/k + 1/2k

)
.

Let us define for any integer k ≥ 2, the processes Xk
· =

∫ ·
0 β

k
s ds+W·, m̂

k
t := δαkt (du)πt(dx) with π ∈ C1

W fixed, also

µkt := LP̂(Xk
t

∣∣U), Λkt (dm)dt := δm̂kt (dm)dt, and Λk,◦t (dm)dt := δmk,◦t
(dm)dt

where mk,◦
t := δαkt (du)µkt (dx). It is straightforward to check that

LP̂(µk, π,Λk,◦,Λk) ∈ PV (δ0) for each k ∈ N∗,

and
(
LP̂(µk, π,Λk,◦,Λk))

k∈N∗ is relatively compact for the weak topology. For P∞ ∈ P(Ω) a limit of any sub-sequence,
one notices that for all t ∈ [0, 1/2]

EP∞
[ ∫ t

0
〈Id,m(du,R)〉Λ◦s(dm)ds

]
= EP∞

[ ∫ t

0
〈Id,m(du,R)〉Λ◦s(dm)ds

∣∣∣Λt∧·]
6= EP∞

[ ∫ t

0
〈Id,m(du,R)〉Λ◦s(dm)ds

∣∣∣ΛT∧·] =
∫ t

0
〈Id,m(du,R)〉Λ◦s(dm)ds, P∞–a.e.,

therefore the condition (6.3.9) is not verified, then P∞ /∈ PV (δ0).
Now, using the measure–valued control rules, we introduce the notion of (ε–) measure–valued MFG solution.

6.3.2.2 MFG solution

For all (π, q◦, η, q) ∈ (CnW ×M)2, one defines

J
(
π, q◦, η, q

)
:=
∫ T

0

[ ∫
Pn
U

〈L◦
(
t, ·, η, ·

)
,m〉q◦t (dm) +

∫
Pn
U

〈L?
(
t, ·, η,m′

)
, πt〉qt(dm′)

]
dt+ 〈g(·, η), πT 〉.

Definition 6.3.5. For all ν ∈ P(Rn) and ε ∈ [0,∞), P? is an ε–measure–valued MFG solution if P? ∈ PV (ν), and for
every P ∈ PV (ν) such that LP?(ζ,Λt(dm)dt, B

)
= LP(ζ,Λt(dm)dt, B

)
, one has

EP?[J(µ,Λ◦, ζ,Λ)
]
≥ EP[J(µ,Λ◦, ζ,Λ)

]
− ε, (6.3.10)

and for P? almost every ω ∈ Ω,

Λ◦t (dm)dt = Λt
(
dm′

)
dt and ζ = µ. (6.3.11)

When ε = 0, we just say P? is a measure–valued MFG solution.
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For any ν ∈ P(Rn), P?V (ν)[ε] is defined by

P?V (ν)[ε] :=
{
All ε–measure–valued MFG solutions associated with the initial condition ν

}
,

again when ε = 0, we shall denote P?V (ν)[0] by P?V (ν).

Remark 6.3.6. Looking at this kind of measure-valued solution is largely inspired by the notion considered in Chapter 4 in
the McKean-Vlasov setting. However, our notion of (ε–) measure-valued MFG solution enters completely in the framework
of MFG solutions considered in Carmona, Delarue, and Lacker [49]. Notice in particular the presence of equality (6.3.9),
which corresponds to the point (4) of [49, Definition 3.1]. Also called (H)–hypothesis, this means the fact that: at time
t ∈ [0, T ], any additional randomization of the "control" Λ◦t must be conditionally independent of future information
given current information at time t. Condition (6.3.11) is the analog of the well–known consistency property in the MFG
framework. Without taking into account the law of control, one of the main differences of this notion of MFG solutions
is the optimality conditions (6.3.10) and (6.3.4). Here, sometimes a small error ε is authorized. With this condition, the
MFG solutions turn out to be more flexible (see the Theorem 6.4.1 and Theorem 6.4.2).

Remark 6.3.7. Notice that the previous definitions of the strong MFG equilibrium and N -players games cover the case
without common noise. Indeed, for the non common noise case, it is enough to take σ0 = 0 and ` = 0 (see the previous
chapters). When σ0 = 0 and ` 6= 0, B can be seen as an additional noise.

The next proposition ensures that our measure–valued MFG solution definition using Fokker–Planck equation indeed
generalizes the classical notion.

Proposition 6.3.8. Let p′ > p and ν ∈ Pp′(Rn). Then for all ε ∈ [0,∞), P?S(ν)[ε] ⊂ P?V (ν)[ε].

Proof. Let α be an ε–strong MFG equilibrium, and its corresponding probability Pα ∈ P?S(ν)[ε]. It is straightforward to
check that Pα ∈ PV (ν). Let P ∈ PV (ν) such that LPα(ζ,Λt(dm)dt, B

)
= LP(ζ,Λt(dm)dt, B

)
.

By Lemma 6.5.2, there exists a sequence of Borel functions (γk)k∈N∗ satisfying for each k ∈ N∗, γk : [0, T ]× Rn × Cn ×
C`× [0, 1]→ U s.t. if γkt (z) := γk(t, ξ,Wt∧·, Bt∧·, z), Pν–a.e. for all (t, z) ∈ [0, T ]× [0, 1], one has (γt(z))t∈[0,T ] ∈ A(ν) for
each z ∈ [0, 1] and the value function Ψ

(
α, γk(z)

)
(see definition (6.3.3)) satisfies: [0, 1] 3 z → Ψ

(
α, γk(z)

)
∈ R is Borel

and

lim
k→∞

∫ 1

0
Ψ
(
α, γk(z)

)
dz = EP[J(µ,Λ◦, ζ,Λ)

]
.

Consequently,

EPα[J(µ,Λ◦, ζ,Λ)
]

= Ψ
(
α, α

)
≥ lim
k→∞

∫ 1

0
Ψ
(
α, γk(z)

)
dz − ε = EP[J(µ,Λ◦, ζ,Λ)

]
− ε,

as obviously Λt(dm)dt = Λ◦t (dm)dt and µ = ζ, Pα–a.e., we can deduce that Pα ∈ P?V (ν)[ε], and conclude the proof

6.4 Limit theorems
The main results of this chapter are now given in the following two theorems.

Theorem 6.4.1 (Limit Theorem). Let Assumption 5.5.5 hold true, ε ∈ [0,∞), (εi)i∈N∗ ⊂ (0,∞), and ν ∈ Pp′(Rn) with
p′ > p.

(i) For each N ∈ N∗, let αN be a (ε1, . . . , εN )–Nash equilibrium, then the sequence (PN )N∈N∗ with PN := PN [αN ] ∈
P
(
Ω
)
is relatively compact in Wp(Ω) where

PN [αN ] := PNν ◦
(

(ϕN,X,α
N

t )t∈[0,T ], (ϕN,X,α
N

t )t∈[0,T ], δ(ϕN,α
N

s )
(dm)ds, δ

(ϕN,α
N

s )
(dm′)ds,B

)−1
,
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and

if lim
N→∞

1
N

N∑
i=1

εi = ε, then each limit point P∞ is an ε–measure–valued MFG solution.

(ii) Let (Pk)k∈N∗ ⊂ PS(ν) such that Pk ∈ PS(ν)[εk], for each k ∈ N∗. Then (Pk)k∈N∗ is relatively compact in Wp(Ω),
and

if lim
k→∞

εk = ε, then each limit point P∞ is an ε–measure–valued MFG solution.

In particular when ε = 0, P∞ is a measure–valued MFG solution.

Theorem 6.4.2 (Converse Limit Theorem). Let Assumption 5.5.5 hold true, ε ∈ [0,∞), ν ∈ Pp′(Rn) with p′ > p, and
P? ∈ P?V (ν)[ε].

(i) There exists a sequence (εk)k∈N∗ ⊂ [0,∞) satisfying lim supk→∞ εk ∈ [0, ε] such that:

(i.1) if ` 6= 0, one can find a sequence (Pk)k∈N∗ with Pk ∈ P?S(ν)[εk] for each k ∈ N∗, and P? = lim
k→∞

Pk, for the
metric Wp.

(i.2) if ` = 0, one can get a sequence (Pkz)(k,z)∈N∗×[0,1] ⊂ PS(ν) with for each k ∈ N∗, z 7→ Pkz is Borel measurable
and ∫ 1

0
Pkzdz ∈ P?V (ν)[εk] and lim

k→∞

∫ 1

0
Pkzdz = P?, inWp.

(ii) There exists a sequence of positive numbers (εi)i∈N∗ such that lim supN→∞ 1
N

∑N
i=1 εi ∈ [0, ε], and for each N ∈ N∗,

a (ε1, . . . , εN )–Nash equilibrium αN = (α1,N , . . . , αN,N ) such that

P? = lim
N→∞

PNν ◦
(

(ϕN,X,α
N

t )t∈[0,T ], (ϕN,X,α
N

t )t∈[0,T ], δ(ϕN,α
N

s )
(dm)ds, δ

(ϕN,α
N

s )
(dm′)ds,B

)−1
, forWp.

Remark 6.4.3. Theorem 6.4.2 and Theorem 6.4.1 give a general characterization of solutions of MFG of controls by
connecting measure-valued MFG solutions, approximate Nash equilibria and approximate strong MFG solutions. In the
presence of law of control or empirical distribution of controls, our limit theorem results seem to be the first which give this
kind of characterizations under relative general assumptions. Especially, approximate strong MFG solutions and their
convergence result have never been considered in the literature. Notice that they also contain part of the most results of
the case without the distribution of controls mentioned in Lacker [103]. Let us emphasize there is no existence result in
these theorems, all results are given after assuming existence results. In Chapter 7 (see below), we discuss some existence
results.

The next corollaries are just a combination of Theorems 6.4.2 and 6.4.1. The first mentions the closedness of P?V and
the second a correspondence between approximate Nash equilibria and ε–strong MFG solution.

Corollary 6.4.4. Suppose that the conditions of Theorem 6.4.2 and Theorem 6.4.1 hold. For each ε ∈ [0,∞), P?V (ν)[ε]
is a closed set for the Wasserstein metric Wp.

Corollary 6.4.5. Let us stay in the context of Theorems 6.4.2 and 6.4.1 with ` 6= 0. For any αN a (ε1, . . . , εN )–Nash
equilibrium, with limN→∞

1
N

∑N
i=1 εi = 0, there exists, for each convergent sub-sequence (PNk [αNk ])k∈N∗ , a sequence

(Pk)k∈N∗ such that:

for each k ∈ N∗, Pk ∈ P?S(ν)[δk] with lim
k→∞

δk = 0, and lim
k→∞

Wp

(
PNk [αNk ],Pk

)
= 0.
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6.5 Proofs of limit theorems
6.5.1 Limit of Nash equilibria
In this section, we show some technical results needed to prove our first limit theorem result, namely Theorem 6.4.1.
Before proceeding, let us give a reformulation of the measure-valued control rules which will be necessary for our proof. To
make an analogy with the strong point of view, we want here to get a Fokker-Planck equation involving LPν (Xα−σ0B|GT )
instead of LPν (Xα|GT ). To do this, all coefficients must be shifted. Let us define, for all (t,b, π,m) ∈ [0, T ]×C`×CnW×PnU ,

πt[b](dy) :=
∫
Rn
δ(
y′+σ0bt

)(dy)πt(dy′), m[bt](du,dy) :=
∫
Rn×U

δ(y′+σ0bt)(dy)m(du,dy′), (6.5.1)

and any q ∈M,

qt[b](dm)dt :=
∫
Pn
U

δ(
m′ [bt]

)(dm)qt(dm′)dt. (6.5.2)

In the same way, let us consider the “shift” generator L̂◦,

L̂◦t [ϕ](y,b, π′, u) := 1
2Tr

[
a◦(t, y + σ0bt, π′, u)∇2ϕ(y)

]
+ b◦(t, y + σ0bt, π′, u)>∇ϕ(y), (6.5.3)

and also

[b̂◦, â◦](t, y,b, π′, u) := [b◦, a◦](t, y + σ0bt, π′, u) and [b̂, σ̂](t, y,b, π′,m′, u) := [b, σ](t, y + σ0bt, π′,m′, u).

Notice that the functions [b̂, σ̂] : [0, T ]×Rn×C`×CnW ×U → Rn×Sn×n is continuous and for each b ∈ C`, [b̂, σ̂](·, ·,b, ·, ·)
verify the Assumption 5.5.5.

Next, on the canonical filtered space (Ω,F), let us define the P(Rn)–valued F–adapted continuous process (ϑt)t∈[0,T ] and
the PnU–valued F–predictable process (Θt)t∈[0,T ] by

ϑt(ω̄) := µt(ω̄)[−B(ω̄)] and Θt(ω̄)(dm) := Λ◦t (ω̄)[−B(ω̄)](dm), for all (t, ω̄) ∈ [0, T ]× Ω. (6.5.4)

Lemma 6.5.1. Let ν ∈ Pp′(Rn) with p′ > p, and P ∈ PV (ν). Then, Θt(Zϑt) = 1, dP⊗ dt, a.e. (t, ω̄) ∈ [0, T ]× Ω, and
P–a.e. ω̄ ∈ Ω, for all (f, t) ∈ C2

b (Rn)× [0, T ],

Nt(f) = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

L̂◦r [f ](y,B, ζ, u)m(du,dy)Θr(dm)dr

−
∫ t

0

∫
Pn
U

∫
Rn
L?r [f ](y, ζ,m′)ϑr(dy)Λr(dm′)dr.

Moreover, there exists a sequence (Gk)k∈N∗ , such that for each k ∈ N∗, Gk : [0, T ]× C` × CnW ×M(PnU )× [0, 1]→ PnU is a
continuous function and

lim
k→∞

∫ 1

0
LP
(
δ
Gk
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm′)dt, B, ζ,Λ)dn = LP
(

Θt(dm′)dt, B, ζ,Λ
)
, inWp. (6.5.5)

Proof. The first point is just a reformulation of the process N(f). For (6.5.5), as P ∈ PV (ν), and Θ is a function of
(Λ◦, B) one has: for all t ∈ [0, T ]

LP(Θt∧·
∣∣Gt) = LP(Θt∧·

∣∣GT ), P –a.e.,

recall that Gt := σ{ζt∧·,Λt∧·, Bt∧·}. By (an easy extension of) Lemma 4.8.2,
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sup
t∈[0,T ]

∫
Rn
|x|p

′
ϑt(ω)(dx) + EP

[
sup
t∈[0,T ]

∫
Rn
|x|p

′
µt(dx)

]
≤ K

[
1 +

∫
Rn
|x′|p

′
ν(dx′)

]
, P-a.e. ω ∈ Ω.

Define Γ :=
{
m ∈ PnU :

∫
Rn |y|

p′m(dy, U) ≤ K̂
}
, where K̂ > 0 is such that K̂ > K

[
1 +

∫
Rn |x

′|p′ν(dx′)
]
, with

K is a constant previously used. Notice that Γ is a compact set of Pp(Rn × U), and one has Θt(Γ) = 1, dP ⊗ dt,
a.e. (t, ω) ∈ [0, T ] × Ω. By Proposition 7.4.1, there exists a sequence (Gk)k∈N∗ , such that for each k ∈ N∗, Gk :
[0, T ]× C` × CnW ×M(PnU )× [0, 1]→ PnU is a continuous function and

lim
k

∫ 1

0
LP
(
δ
Gk
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm′)dt, B, ζ,Λ)dn = LP
(

Θt(dm′)dt, B, ζ,Λ
)
.

6.5.1.1 Technical lemmas

To take into account some additional randomness necessary to prove our result, let us introduce the filtered probability
space (Ω̂, F̂, F̂ , P̂ν) which is defined as follows: Ω̂ := [0, 1]×[0, 1]×Ω, F̂ := (B([0, 1]⊗[0, 1])⊗Ft)t∈[0,T ] and P̂ν := λ⊗λ⊗Pν ,
with λ the Lebesgue measure on [0, 1]. Let (Z,N) be the canonical variables on [0, 1] × [0, 1], we extend naturally
the variables (Z,N) of [0, 1] × [0, 1] and the variables (X0,W,B) of Ω on the space Ω̂, to simplify the same notation
(Z,N,X0,W,B) is kept. Also the filtration (Ĝt)t∈[0,T ] is defined by

Ĝt := σ{N,Bt∧·}, for all t ∈ [0, T ].

Let us emphasize, after extension of all variables defined on (Ω,F,F ,Pν), we keep the same notation on (Ω̂, F̂, F̂ , P̂ν).

The following lemma establishes a result which implies that any measure–valued control rule satisfying some technical
conditions can be approximated by processes of type Xα,α′ (see Definition 6.3.2).

Lemma 6.5.2. Let Assumption 5.5.5 hold true, ν ∈ Pp′(Rn) with p′ > p, and P ∈ PV (ν). For any sequence (αk)k∈N∗ ⊂
A(ν), there exists a sequence of U–valued F̂–predictable processes (γk)k∈N∗ such that: if

lim
k→∞

P̂ν ◦
(

(µα
k

t )t∈[0,T ], δ(µαks )(dm
′)ds,B

)−1
= P ◦

(
ζ,Λt(dm′)dt, B

)−1
,

then, with the unique strong solution X̂ of:

X̂k
t = ξ +

∫ t

0
b
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dr +

∫ t

0
σ
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dWr + σ0Bt, for all t ∈ [0, T ], P̂ν–a.e..

one has

lim
j→∞

P̂ν ◦
(
µkj , δ

µ
kj
s

(dm)ds, µα
kj
, δ

(µα
kj
s )

(dm′)ds,B
)−1

= P ◦
(
µ,Λ◦s(dm)ds, ζ,Λt(dm′)dt, B

)−1
,

where for all t ∈ [0, T ], µkt := LP̂ν (X̂k
t |Ĝt), and µkt := LP̂ν (X̂k

t , γ
k
t |Ĝt), and (kj)j∈N∗ ⊂ N∗ is a sub–sequence.

Proof. Step 1 : Reformulation: For P ∈ PV (ν), by definition, P–a.e. ω ∈ Ω, Nt(f) = 0 for all f ∈ C2
b (Rn) and

t ∈ [0, T ]. By Lemma 6.5.1, recall that (ϑt)t∈[0,T ] and (Θt)t∈[0,T ] is defined in (6.5.4), one has Θt(Zϑt) = 1, dP⊗ dt, a.e.
(t, ω) ∈ [0, T ]× Ω, and P–a.e. ω ∈ Ω, for all (f, t) ∈ C2

b (Rn)× [0, T ],

0 = 〈f, ϑt〉 − 〈f, ν〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

L̂◦rf(y,B, ζ, u)m(du,dy)Θr(dm)dr −
∫ t

0

∫
Pn
U

∫
Rn
L?rf(y, ζ,m′)ϑr(dy)Λr(dm′)dr.
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Step 2 : Approximation: By Lemma 6.5.1, there exists a sequence (Gl)l∈N∗ , such that for each l ∈ N∗, Gl : [0, T ]× C` ×
CnW ×M(PnU )× [0, 1]→ PnU is a continuous function and

lim
l→∞

∫ 1

0
LP
(
δ
Gl
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm′)dt, B, ζ,Λ)dn = LP
(

Θt(dm′)dt, B, ζ,Λ
)
.

Now, we apply Proposition 4.7.9 (see also Proposition 4.7.7). First, there exists a sub-sequence (lk)k∈N∗ ⊂ N∗, such that
if Λks(dm′)ds := δ

µα
k
s

(dm′)ds, and

mk
t := Glk

(
t, Bt∧·, µ

αk

t∧·,Λkt∧·, N
)
and Θk

t (dm)dt := δmk
t
(dm)dt,

one has

lim
k→∞

P̂ν ◦
(

Θk
s(dm)ds, µα

k

,Λk, B
)−1

= lim
l→∞

∫ 1

0
LP
(
δ
Gl
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm)dt, ζ,Λ, B
)

dn = LP
(

Θt(dm)dt, ζ,Λ, B
)
.

Next, under Assumption 5.5.5, by Proposition 4.7.9 (with separability condition see Remark 4.7.11), as (X0,W ) is P̂ν
independent of (B,µαk , µαk)k∈N∗ , there exists a Borel function Rk : [0, T ] × Rn × CnW ×M ×M × Cn × C` × [0, 1] → U ,
and if we let Xk be the unique strong solution of: for all t ∈ [0, T ],

Xk
t = X0 +

∫ t

0
b̂
(
r,Xk

r , B, µ
αk , µα

k

r , γkr
)
dr +

∫ t

0
σ̂
(
r,Xk

r , B, µ
αk , µα

k

r , γkr
)
dWr, P̂ν–a.e.,

where Gk := (Gks )s∈[0,T ] := (σ{µαks∧·,Θk
s∧·,Λks∧·, Bs∧·})s∈[0,T ],

γkt := Rk
(
t,X0, µ

αk

t∧·,Θk
t∧·,Λkt∧·,Wt∧·, Bt∧·, Z

)
, ϑ

k

t := LP̂ν
(
Xk
t , γ

k
t

∣∣Gkt ) and ϑkt := LP̂ν
(
Xk
t

∣∣Gkt ),
then lim

k→∞
EP̂ν

[ ∫ T

0
Wp

(
ϑ
k

t ,mk
t

)pdt] = 0, and

lim
j→∞

LP̂ν
(
ϑkj , V kj , µα

kj
,Λkj , B

)
= LP(ϑ,Θ, ζ,Λ, B), inWp,

where V kt (dm)dt := δ
ϑ
k

t

(dm)dt and (kj)j∈N∗ ⊂ N∗ is a sub-sequence.

Step 3 : Rewriting: Notice that, as Gk ⊂ Ĝ, and (X0, Z,W ) are P̂ν–independent of Ĝ, one has LP̂ν
(
Xk
t , γ

k
t

∣∣Gkt ) =
LP̂ν

(
Xk
t , γ

k
t

∣∣Ĝt), P̂ν–a.e. for all t ∈ [0, T ]. Using definition of [b̂, σ̂] (see the equations (6.5.3)),

Xk
t = ξ +

∫ t

0
b
(
r,Xk

r + σ0Br, µ
αk , µα

k

r , γkr
)
dr +

∫ t

0
σ
(
r,Xk

r + σ0Br, µ
αk , µα

k

r , γkr
)
dWr, for all t ∈ [0, T ], P̂ν–a.e..

Denote X̂k := Xk + σ0B, one finds

X̂k
t = ξ +

∫ t

0
b
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dr +

∫ t

0
σ
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dWr + σ0Bt, for all t ∈ [0, T ], P̂ν–a.e..

It is straightforward to check that the function

(π′, q,b) ∈ CnW ×M× C` →
(
π′[b], qt[b](dm)dt,b

)
∈ CnW ×M× C`

is continuous. Consequently, one has

lim
j→∞

LP̂ν
((
LP̂ν (X̂kj

s |Ĝs)
)
s∈[0,T ], δ(L̂Pν (X̂

kj
s ,α

kj
s |Ĝs))

(dm)ds, µα
kj
, δ

(µα
kj
s )

(dm′)ds,B
)

= lim
j→∞

LP̂ν
(
ϑkj [B], V kjt [B](dm)dt, µα

kj
, δ

(µα
kj
s )

(dm′)ds,B
)

= LP(ϑ[B],Θt[B](dm)dt, ζ,Λ, B
)
, inWp.
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After calculations (ϑ[B],Θt[B](dm)dt, B) = (µ,Λ◦, B), P̂ν–a.e. Then

lim
j→∞

LP̂ν
((
LP̂ν (X̂kj

s |Ĝs)
)
s∈[0,T ], δ(L̂Pν (X̂

kj
s ,α

kj
s |Ĝs))

(dm)ds, µα
kj
, δ

(µα
kj
s )

(dm′)ds,B
)

= LP(µ,Λ◦t (dm)dt, ζ,Λ, B
)
, inWp.

(X̂k, γk)k∈N∗ is the sequence we are looking for.

Now, we consider the case ofN–player games. Loosely speaking, we will show that: given the controls αN :=
(
α1, . . . , αN

)
,

replace one control αi by another κN has no effect on the empirical distribution (ϕN,X,α, ϕN,α) (see Definition 6.2.1)
when N goes to infinity.

Let ν ∈ Pp(ν) and Assumption 5.5.5 hold true. Given N ∈ N∗, (α1, . . . , αN ) ∈ A(νN )N and κN ∈ A(νN ). Let us
introduce, for each i ∈ {1, . . . , N}, the unique strong solution X̃i of: for all t ∈ [0, T ],

X̃i
t = Xi

0 +
∫ t

0
b
(
r, X̃i

r, ϕ
N,X,αN , ϕN,α

N

r , κNr
)
dr +

∫ t

0
σ
(
r, X̃i

r, ϕ
N,X,αN , ϕN,α

N

r , κNr
)
dWi

r + σ0Bt, PNν -a.e.,

where (ϕN,X,α, ϕN,α) correspond to the empirical distributions associated with the controls αN :=
(
α1, . . . , αN

)
(see

Definition 6.2.1)

Lemma 6.5.3. There exists a constant K > 0 (depending only on the p–moment of ν ) such that: if αN,−i :=
(
α[−i], κN

)
,

for each i ∈ {1, . . . , N}, one has(
EPNν

[
sup
t∈[0,T ]

Wp

(
ϕN,X,α

N

t , ϕN,X,α
N,−i

t

)]
+ EPNν

[
sup
t∈[0,T ]

∣∣X̃i
t −Xi

t[αN,−i]
∣∣p]) ≤ K 1

N
.

Consequently, lim sup
N→∞

Wp

(
QN , Q̃N

)
= 0, where

QN := 1
N

N∑
i=1

PNν ◦
(

Xi[αN,−i], ϕN,X,α
N,−i

, δ(
κNt ,ϕ

N,αN,−i
t

)(du,dm′)dt)−1
,

and

Q̃N := 1
N

N∑
i=1

PNν ◦
(
X̃i, ϕN,X,α

N

, δ(
κNt ,ϕ

N,αN

t

)(du,dm′)dt)−1
.

Proof. This proof is a successive application of the Gronwall’s lemma. For j ∈ {1, . . . , N} with j 6= i, for all t ∈ [0, T ],
one finds

EPNν
[

sup
s∈[0,t]

∣∣Xj
s[αN,−i]−Xj

s[αN ]
∣∣p]

≤ C
(
EPNν

[ ∫ t

0

∣∣∣[b, σ](r,Xj
r[αN,−i], ϕN,X,α

N,−i
, ϕN,α

N,−i

r , αjr
)
−
[
b, σ
](
r,Xj

r[αN ], ϕN,X,α
N

, ϕN,α
N

r , αjr
)∣∣∣pdr])

≤ C
(
EPNν

[ ∫ t

0
sup
s∈[0,r]

∣∣Xj
s[αN,−i]−Xj

s[αN ]
∣∣p + sup

s∈[0,r]
Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

r , ϕN,α
N

r

)pdr]),
then by Gronwall’s lemma,

EPNν
[

sup
s∈[0,t]

∣∣Xj
s[αN,−i]−Xj

s[αN ]
∣∣p] ≤ C(EPNν

[ ∫ t

0
sup
s∈[0,r]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

r , ϕN,α
N

r

)pdr]).
(6.5.6)
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Next, using result (6.5.6),

EPNν
[

sup
s∈[0,t]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

t , ϕN,α
N

t

)p]

≤ C
(

1
N

N∑
j=1

EPNν
[

sup
s∈[0,t]

|Xj
s[αN,−i]−Xj

s[αN ]|p
]

+
ρ
(
κNt , α

i
t

)p
N

)

≤ C
(

1
N

N∑
j=1,j 6=i

EPNν
[ ∫ t

0
sup
s∈[0,r]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

r , ϕN,α
N

r

)pdr]

+ 1
N

EPNν
[

sup
s∈[0,t]

∣∣Xi
s[αN,−i]−Xi

s[αN ]
∣∣p]+

ρ
(
κNt , α

i
t

)p
N

)
≤ C

(
N − 1
N

EPNν
[ ∫ t

0
sup
s∈[0,r]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

r , ϕN,α
N

r

)pdr]

+
∫
Rn |x|

pν(dx)
N

+
sup(u,u′)∈U×U ρ

(
u, u′

)p
N

)
,

by Gronwall’s lemma again,

EPNν
[

sup
s∈[0,t]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

t , ϕN,α
N

t

)p] ≤ C(∫Rn |x|pν(dx)
N

+
sup(u,u′)∈U×U ρ

(
u, u′

)p
N

)
.

(6.5.7)

To finish,

EPNν
[

sup
s∈[0,t]

∣∣Xi
s[αN,−i]− X̃i

s

∣∣p]
≤ C

(
EPNν

[ ∫ t

0

∣∣[b, σ](r,Xi
r[αN,−i], ϕN,X,α

N,−i
, ϕN,α

N,−i

r , κNr
)
−
[
b, σ
](
r, X̃i

r, ϕ
N,X,αN , ϕN,α

N

r , κNr
)∣∣pdr])

≤ C
(
EPNν

[ ∫ t

0
sup
s∈[0,r]

|Xj
s[αN,−i]− X̃i

s|p + sup
s∈[0,r]

Wp

(
ϕN,X,α

N,−i

s , ϕN,X,α
N

s

)p +Wp

(
ϕN,α

N,−i

r , ϕN,α
N

r

)pdr]),
and thanks to Gronwall’s lemma and result (6.5.7), one has

EPNν
[

sup
s∈[0,T ]

|Xi
s[αN,−i]− X̃i

s|p
]
≤ CT

(∫
Rn |x|

pν(dx)
N

+
sup(u,u′)∈U×U ρ

(
u, u′

)p
N

)
.

It is enough to conclude.

For similar reasons to those mentioned in Lemma 6.5.2, for each N ∈ N∗, the space (ΩN ,FN ,FN ,PNν ) needs to be
enlarged. Let us introduce the filtered probability space (Ω̂N , F̂N , F̂N , P̂Nν ) as follows: Ω̂N := [0, 1]× [0, 1]× ΩN , F̂N :=
(B([0, 1]⊗ [0, 1])⊗FNt )t∈[0,T ] and P̂Nν := λ⊗λ⊗PNν , with λ the Lebesgue measure on [0, 1]. Let (Z,N) denote the canonical
variables on [0, 1]× [0, 1], we extend naturally the variables (Z,N) of [0, 1]× [0, 1] and the variables (X0,W, B) of ΩN on
the space Ω̂N , and keep the same notion (Z,N,X0,W, B). After extension of all variables defined on (ΩN ,FN ,FN ,PNν ),
the same notation are kept on (Ω̂N , F̂N , F̂N , P̂Nν ).

The next result is the analog of Lemma 6.5.2 for the N–player games. To summarize, it states that any measure-valued
control rule which verifies a particular constraint is the average limit of N–SDE processes of type (6.2.1).
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Lemma 6.5.4. Let Assumption 5.5.5 hold true, ν ∈ Pp′(ν) with p′ > p, P ∈ PV (ν) and a sequence (αi)i∈N∗ s.t. for each
N ∈ N∗, (α1, . . . , αN ) ⊂ A(νN ) and

lim
N→∞

P̂Nν ◦
(
ϕN,X,α, δ(

ϕN,αt

)(dm′)dt, B)−1
= P ◦

(
ζ,Λt(dm′)dt, B

)−1
.

There exists a sequence of Borel functions (φi,N )(i,N)∈{1,...,N}×N∗ satisfying φi,N : [0, T ]× (Rn)N × (Cd)N × C` × [0, 1]×
[0, 1]→ U, s.t. if for all t ∈ [0, T ], γi,Nt is defined by γi,Nt := φi,N

(
t,X0,Wt∧·, Bt∧·,Z,N

)
, one has

lim
N→∞

1
N

N∑
i=1

EP̂Nν
[ ∫ T

0
L
(
t,Xi

t[αN,−i], ϕN,X,α
N,−i

, ϕN,α
N,−i

t , γi,Nt

)
dt+ g

(
Xi
T [αN,−i], ϕN,X,α

N,−i
)]

= EP[J(µ,Λ◦, ζ,Λ)
]
,

where αN,−i := (α[−i], γi,N ) =
(
α1, . . . , αi−1, γi,N , αi+1, . . . , αN

)
.

Proof. By Lemma 6.5.1, there is a sequence (Gl)l∈N∗ , such that for each l ∈ N∗, Gl : [0, T ]×C`×CnW ×M(PnU )× [0, 1]→
P(Rn × U) is a continuous function and

lim
l→∞

∫ 1

0
LP
(
δ
Gl
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm′)dt, B, ζ,Λ)dn = LP
(

Θt(dm′)dt, B, ζ,Λ
)
.

Now, we apply Proposition 4.7.7. One can find a sub-sequence (lN )N∈N∗ ⊂ N∗, such that if ΛNs (dm′)ds := δ
ϕN,α

N

s

(dm)ds,

mN
t := GlN

(
t, Bt∧·, ϕ

N,X,αN
t∧· ,ΛNt∧·,N

)
and ΘN

t (dm)dt := δmN
t

(dm)dt,

one has

lim
N→∞

P̂Nν ◦
(

ΘN
s (dm)ds, ϕN,X,α

N

s ,ΛN , B
)−1

= lim
l→∞

∫ 1

0
LP
(
δ
Gl
(
t,Bt∧·,ζt∧·,Λt∧·,n

)(dm)dt, ζ,Λ, B
)

dn = P ◦
(
Θ, ζ,Λ, B

)−1
.

Under Assumption 5.5.5, by Proposition 4.7.7 (with separability condition see Remark 4.7.11), there exists a Borel
function RN : [0, T ]×Rn ×CnW ×M×M×Cn ×C` × [0, 1]→ U s.t. if (Xi)i∈{1,...,N} is the unique strong solution of: for
all t ∈ [0, T ]

Xi
t = Xi

0 +
∫ t

0
b̂
(
r,Xi

r, B, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dr +

∫ t

0
σ̂
(
r,Xi

r, B, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dWi

r, P̂Nν –a.e.,

where

γi,Nt := RN
(
t,Xi

0, ϕ
N,X,αN
t∧· ,ΘN

t∧·,ΛNt∧·,Wi
t∧·, Bt∧·,Z

)
, ϑ

N

t := 1
N

N∑
i=1

δ(Xit ,γ
i,N
t ), and ϑ

N
t := 1

N

N∑
i=1

δXit ,

then lim
N→∞

EP̂ν
[ ∫ T

0
Wp

(
ϑ
N

t ,mN
t

)pdt] = 0, and

lim
j→∞

LP̂
Nj
ν
(
ϑNj , V Nj , ϕNj ,X,α

Nj
,ΛNj , B

)
= LP(ϑ,Θ, ζ,Λ, B), inWp,

with V Nt (dm)dt := δ
ϑ
N

t

(dm)dt and (Nj)j∈N∗ ⊂ N∗ is a sub-sequence.
As in the proof Lemma 6.5.2, we can rewrite (Xi)i∈{1,...,N}. Notice that, for all t ∈ [0, T ]

Xi
t = Xi

0 +
∫ t

0
b
(
r,Xi

r + σ0Br, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dr +

∫ t

0
σ
(
r,Xi

r + σ0Br, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dWi

r, P̂Nν –a.e.
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Denote X̂i := Xi + σ0B, for all t ∈ [0, T ],

X̂i
t = Xi

0 +
∫ t

0
b
(
r, X̂i

r, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dr +

∫ t

0
σ
(
r, X̂i

r, ϕ
N,X,αN , ϕN,α

N

r , γi,Nr
)
dWi

r + σ0Bt, P̂Nν –a.e.

As the function (π′, q,b) ∈ CnW × M × C` →
(
π′[b], qt[b](dm)dt,b

)
∈ CnW × M × C` is continuous, if we note ϑ̂

N

t :=
1
N

∑N
i=1 δ(X̂it ,γ

i,N
t ), and ϑ̂

N
t := 1

N

∑N
i=1 δX̂it

, one has

lim
j→∞

LP̂
Nj
ν

(
ϑ̂Nj , δ

ϑ̂
Nj

s

(dm)ds, ϕNj ,X,α
Nj
,ΛNjs (dm′)ds,B

)
= lim
j→∞

LP̂
Nj
ν
(
ϑNj [B], V Njt [B](dm)dt, ϕNj ,X,α

Nj
,ΛNjs (dm′)ds,B

)
= LP(ϑ[B],Θt[B](dm)dt, ζ,Λ, B

)
, inWp.

One knows (ϑ[B],Θt[B](dm)dt, B) = (µ,Λ◦, B), P–a.e. then

lim
j→∞

LP̂
Nj
ν

(
ϑ̂Nj , δ

ϑ̂
Nj

s

(dm)ds, ϕNj ,X,α
Nj
,ΛNjs (dm′)ds,B

)
= LP(µ,Λ◦t (dm)dt, ζ,Λ, B

)
, inWp. (6.5.8)

Let us define

αN,−i := (α[−i], γi,N ) =
(
α1, . . . , αi−1, γi,N , αi+1, . . . , αN

)
,

thanks to Lemma 6.5.3, for each i ∈ {1, . . . , N},(
EP̂Nν

[ ∫ T

0
Wp

(
ϕN,α

N

r , ϕN,α
N,−i

r

)
dr
]

+ EP̂Nν
[

sup
t∈[0,T ]

|X̂i,N
t −Xi

t[αN,−i]|p
])
≤ K 1

N
,

and lim sup
N→∞

Wp

(
QN , Q̃N

)
= 0, whereQN := 1

N

∑N
i=1 LP̂Nν

(
Xi[αN,−i], ϕN,X,αN,−i , δ(

γi,Ns ,ϕN,α
N,−i

s

)(du,dm′)ds) and Q̃N :=

1
N

∑N
i=1 LP̂Nν

(
X̂i, ϕN,X,α

N

, δ(
γi,Ns ,ϕN,α

N

s

)(du,dm′)ds).
Therefore, using Assumption 5.5.5 (especially the separability condition), the previous result combined with (6.5.8) allow
to get that

lim
N→∞

1
N

N∑
i=1

Ji
(
(α[−i], γi,N , )

)
= lim
N→∞

1
N

N∑
i=1

EP̂Nν
[ ∫ T

0
L
(
t,Xi

t[αN,−i], ϕN,X,α
N,−i

, ϕN,α
N,−i

t , γi,Nt
)
dt+ g

(
Xi
T [αN,−i], ϕN,X,α

N,−i)]

= lim
N→∞

1
N

N∑
i=1

EP̂Nν
[ ∫ T

0
L
(
t, X̂i

t , ϕ
N,X,αN , ϕN,α

N

t , γi,Nt
)
dt+ g

(
X̂i
T , ϕ

N,X,αN )] = EP[J(µ,Λ◦, ζ,Λ)
]
.

6.5.1.2 Proof of Theorem 6.4.1 (Limit Theorem)

First point (i) By using Proposition 4.8.4 (a slight extension1 ), one finds (PN )N∈N∗ is relatively compact where

PN := PNν ◦
(

(ϕN,X,α
N

t )t∈[0,T ], (ϕN,X,α
N

t )t∈[0,T ], δϕN,α
N

s

(dm)ds, δ
ϕN,α

N

s

(dm′)ds,B
)−1

,

1Consisting in taking into account a canonical space of type Ω := Cn
W × C

n
W ×M×M× C` and not Ω := Cn

W ×M× C` as in Chapter 4
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and each limit point P∞ of any sub–sequence belongs to PV (ν). Next, let us show that P∞ ∈ P?V (ν)[ε]. To simplify, the
sequence (PN )N∈N∗ and its sub-sequence share the same notation.

Let P ∈ PV (ν) such that LP(ζ,Λ, B) = LP∞(ζ,Λ, B). By Lemma 6.5.4, there exists (Ri,N )(i,N)∈{1,...,N}×N∗ a sequence
of Borel functions Ri,N : [0, T ]× (Rn)N × (Cd)N × C` × [0, 1]× [0, 1]→ U, s.t. if we denote by

γi,Nt := Ri,N
(
t,X0,Wt∧·, Bt∧·,Z,N

)
,

for all t ∈ [0, T ], and

αN,−i := (α[−i], κi,N ) =
(
α1, . . . , αi−1, κi,N , αi+1, . . . , αN

)
,

then

lim
N→∞

1
N

N∑
i=1

EP̂Nν
[ ∫ T

0
L
(
t,Xi

t[αN,−i], ϕN,X,α
N,−i

, ϕN,α
N,−i

t , γi,Nt
)
dt+ g

(
Xi
T [αN,−i], ϕN,X,α

N,−i)]
= EP[J(µ,Λ◦, ζ,Λ)

]
.

Notice that, by independence of Z and N with of the other all variables∫
[0,1]×[0,1]

1
N

N∑
i=1

Ji
(
(α[−i], κi,N (z,n))

)
λ(dz)λ(dn)

= 1
N

N∑
i=1

EP̂Nν
[ ∫ T

0
L
(
t,Xi

t[αN,−i], ϕN,X,α
N,−i

, ϕN,α
N,−i

t , γi,Nt
)
dt+ g

(
Xi
T [αN,−i], ϕN,X,α

N,−i)]
,

where κi,Nt (z,n) := Ri,N
(
t,X0,Wt∧·, Bt∧·, z,n

)
, for all (t, z,n) ∈ [0, T ]× [0, 1]× [0, 1]. Therefore

EP∞[J(µ,Λ, ζ,Λ)
]

= lim
N→∞

1
N

N∑
i=1

Ji[αN ]

≥ lim
N→∞

(∫
[0,1]×[0,1]

1
N

N∑
i=1

Ji
(
(α[−i], κi,N (z,n))

)
λ(dz)λ(dn)− 1

N

N∑
i=1

εi

)
= EP[J(µ,Λ◦, ζ,Λ)

]
− ε,

then EP∞[J(µ,Λ◦, ζ,Λ)
]
≥ EP[J(µ,Λ◦, ζ,Λ)

]
− ε, for any P ∈ PV (ν) such that LP(ζ,Λ, B) = LP∞(ζ,Λ, B). It is

straightforward to deduce that for P∞ almost every ω ∈ Ω, Λ◦t (ω)(dm)dt = Λt(ω)
(
dm′

)
dt and ζ(ω) = µ(ω). We conclude

that P∞ ∈ P?V (ν)[ε].

Second point (ii) The proof of this second part is similar to previous proof. By using Proposition 4.8.4 (a slight
extension), one gets (Pk)k∈N∗ is relatively compact where Pk ∈ P?S(ν)[εk] i.e. there exists αk a εk–strong MFG equilibrium
s.t.

Pk := Pν ◦
(

(µα
k

t )t∈[0,T ], (µα
k

t )t∈[0,T ], δµαks
(dm)ds, δ

µα
k
s

(dm′)ds,B
)−1

.

Each limit point P∞ of any sub-sequence belongs to PV (ν). Let us prove that P∞ ∈ P?V (ν)[ε]. Again to simplify, (Pk)k∈N∗
and its sub-sequence share the same notation. Let P ∈ PV (ν) such that LP(ζ,Λt(dm′)dt, B) = LP∞(ζ,Λt(dm′)dt, B).
By Lemma 6.5.2, there exists a sequence of U–valued F̂–predictable processes (γk)k∈N∗ such that: if X̂k is the strong
solution of

X̂k
t = ξ +

∫ t

0
b
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dr +

∫ t

0
σ
(
r, X̂k

r , µ
αk , µα

k

r , γkr
)
dWr + σ0Bt, for all t ∈ [0, T ], P̂ν–a.e..
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then

lim
j→∞

P̂ν ◦
(
µj , δµjr (dm)dr, µα

kj
, δ

µα
kj
s

(dm′)ds,B
)−1

= P ◦
(
µ,Λ◦r(dm)dr, ζ,Λt(dm′)dt, B

)−1
,

where for all t ∈ [0, T ], µkt := LP̂ν (X̂k
t |Ĝt), and µkt := LP̂ν (X̂k

t , γ
k
t |Ĝt), and (kj)j∈N∗ ⊂ N∗ is a sub-sequence.

Then using Assumption 5.5.5 (especially separability condition), and P̂ν–independence of (N,Z) with the other variables,
one gets

EP∞[J(µ,Λ◦, ζ,Λ)
]

= lim
j→∞

EPkj [J(µ,Λ◦, ζ,Λ)
]

≥ lim
j→∞

(
EP̂ν

[ ∫ T

0
L(t, X̂kj

t , µ
αkj
t∧· , µ

αkj
t , γkt )dt+ g(X̂kj

T , µ
αkl )

]
− εkj

)
= EP[J(µ,Λ◦, ζ,Λ)

]
− ε.

Obviously, for P∞– a.e. ω ∈ Ω, Λ◦t (ω)(dm)dt = Λt(ω)
(
dm′

)
dt and ζ(ω) = µ(ω), we deduce that P∞ ∈ P?V (ν)[ε].

6.5.2 The converse limit result
This part is devoted to the proof of Theorem 6.4.2. We focus on the approximation of any measure-valued MFG solution
rule by a sequence of approximate strong MFG solutions. The approximation by approximate Nash equilibria follows
from this approximation.

When ` = 0 and so B disappears, we need some additional randomness to get our desired results. Throughout this part,
in order to consider the cases ` = 0 or ` 6= 0, for each q ∈ {0, 1}, let us consider the filtered probability space (Ω̂q, F̂, F̂ , P̂qν)
which is defined as follows: Ω̂ := [0, 1]q×Ω, F̂ := (B([0, 1]q)⊗Ft)t∈[0,T ] and P̂qν := λ⊗ q⊗Pν , with λ the Lebesgue measure
on [0, 1]. Let H denote the canonical variables on [0, 1]q, the variable H of [0, 1]q and the variables (X0,W,B) of Ω are
naturally extended on the space Ω̂, for simplicity the notation stays (H, X0,W,B). Denote by (Ĝt)t∈[0,T ] the filtration
defined by

Ĝt := σ{Bt∧·,H}, for all t ∈ [0, T ].

Again, after extension of all variables defined on (Ω,F,F ,Pν), the same notation on (Ω̂q, F̂, F̂ , P̂qν) are kept.

6.5.2.1 Some useful results

First, we give some results on weak McKean-Vlasov processes. This part is largely inspired by Chapter 2

Let ν ∈ Pp(Rn) and (Ω,F,F ,P) be a filtered probability space supporting

• a Rd+`–valued (F,P)–Brownian motion (W,B) and a Rn–valued F0–random variable X0 such that LP(X0) = ν.

• a U–valued F–predictable process (αt)t∈[0,T ].

Denote by ΩG the space Cn ×M(U)× Cn, (X̃, Ũ , W̃ ) the canonical variable on ΩG, F̃ the associated canonical filtration.
Let us consider a Rn × P(ΩG)–valued F–adapted continuous process (X, µ̂) verifying:

Xt = X0 +
∫ t

0
b
(
r,Xr, µ, µ

α
r , αr

)
dr +

∫ t

0
σ
(
r,Xr, µ, µ

α
r , αr

)
dWr + σ0Bt, t ∈ [0, T ], (6.5.9)

and

µ̂t = LP
(
Xt∧·,Ut∧·,W

∣∣Bt∧·, µ̂t∧·) = LP
(
Xt∧·,Ut∧·,W

∣∣B, µ̂)
with µt := Lµ̂(X̃t), µαt := Lµ̂(X̃t, α̃t

)
, and Us(du)ds := δαs(du)ds, where (α̃t)t∈[0,T ] is the F̃–predictable process s.t.

Ũs(du)ds := δα̃s(du)ds, in addition, (B, µ̂) are P–independent of (X0,W ).
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Lemma 6.5.5. Let Assumption 5.5.5 hold true.
(i) If ` 6= 0, then q = 0, H disappears, and there exists a sequence (αk)k∈N∗ ⊂ A(ν) such that

lim
k→∞

LP̂ν
(
Xαk ,W,B, V̂ kT , δ

(
µα

k
s ,αks

)(dm, du)ds
)

= LP
(
X,W,B, µ̂T , δ(

µαs ,αs

)(dm,du)ds
)
, inWp, (6.5.10)

where Uks (du)ds := δαks (du)ds, and

V̂ kt := LP̂ν
(
Xαk

t∧·,Ukt∧·,W
∣∣Ĝt) = LP̂ν

(
Xαk

t∧·,Ukt∧·,W
∣∣ĜT), for all t ∈ [0, T ], P̂ν–a.e.

In addition, for each sequence (γk)k∈N∗ ⊂ A(ν), there exists a sequence of Borel functions (φk)k∈N∗ satisfying φk :
[0, T ] × Rn × Cn × C` × C([0, T ];P(ΩG)) → U, such that if we let Xα,k be the Rn–valued F–adapted continuous process
solution of

Xα,k
t = X0 +

∫ t

0
b
(
r,Xα,k

r , µα
k

, µα
k

r , φkr
)
dr +

∫ t

0
σ
(
r,Xα,k

r , µ, µαr , φ
k
r

)
dWr + σ0Bt, t ∈ [0, T ],

with φkr := φk(r,X0,Wr∧·, Br∧·, µ̂r∧·), dP⊗ dt–a.e., then one gets

lim
k→∞

Wp

(
P̂ν ◦

(
Xαk,γk , V̂ k, δ(µαks ,γks ,γ

k
s )(dm,dm

′,du)ds
)−1

,P ◦
(
Xα,k, µ̂, δ(µαt ,φ

k

t ,φ
k
t )(dm,dm

′,du)dt
)−1

)
= 0, (6.5.11)

with γkt := LP̂ν
(
Xαk,γk

t , γkt
∣∣Ĝt), and φkt := LP(Xα,k

t , φkt
∣∣Bt∧·, µ̂t∧·) for all t ∈ [0, T ].

(ii) If ` = 0, then B disappears and the previous results (i) i.e. (6.5.10) and (6.5.11) stay true with Ĝt = σ{H} for all
t ∈ [0, T ]. Moreover when µ̂ is deterministic, q = 0.

Remark 6.5.6. The techniques used to prove Lemma 6.5.5 are essentially borrowed from Proposition 2.3.12. The result
(6.5.10) is a particular case of Proposition 2.3.12, while (6.5.11) is proved by adapting the techniques of the proof of
(6.5.10). The result (6.5.11) is crucial for the transition from measure-valued MFG solution to the approximate strong
MFG solution as we will see in the proof in Proposition 6.5.8.

Proof. This proof is essentially a mimicking of the proofs of Lemma 2.3.10 Lemma 2.3.11 and Proposition 2.3.12, we
recall the main points used to finish our proof. Let (εk)k∈N∗ ⊂ (0,∞) such that lim

k→∞
εk = 0.

There exists the unique strong solution Xk of:

Xk
t = X0 +

∫ εk∨t

εk

b
(
r,Xk

r , µ
k, µkr , α

k
r

)
dr +

∫ εk∨t

εk

σ
(
r,Xk

r , µ
k, µkr , α

k
r

)
dW k

r + σ0B
k
t , t ∈ [0, T ], P–a.e.,

with µkt := LP(Xk
t , α

k
t

∣∣Bkt∧·, µ̂t∧·), µkt := LP(Xk
t

∣∣Bkt∧·, µ̂t∧·), αk is a piece wise constant control s.t. lim
k
αk = α, αkt = 0

when t ∈ [0, εk], and W k
· := Wεk∨· −Wεk , B

k
· := Bεk∨· −Bεk . Using similar techniques as Lemma 2.3.10, one has

lim
k→∞

EP
[

sup
t∈[0,T ]

∣∣Xk
t −Xt

∣∣p] = 0. (6.5.12)

Notice that for all k ∈ N∗, if Ukt (du)dt := δαkt (du)dt, and µ̂kt := LP(Xk
t∧·,Ukt∧·,W

∣∣Bkt∧·, µ̂t∧·), for all t ∈ [0, T ], one has

µ̂kt = LP(Xk
t∧·,Ukt∧·,W

∣∣Bkt∧·, µ̂kt∧·) = LP(Xk
t∧·,Ukt∧·,W

∣∣Bk, µ̂k), P–a.e.
and (B, µ̂k) are P–independent of (X0,W ) and under Assumption 5.5.5, there exists a Borel measurable function F k :
Rn × Cn × C` × C([0, T ];P(ΩG))×M(U)→ Cn such that Xk = F k(X0,W

k, Bk, µ̂k,Uk), P–a.e.
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Next by (an extension of) Lemma 2.3.11, on (Ω̂q, F̂, F̂ , P̂qν), there exist a [0, 1]–valued uniform random variable V k
independent of (ξ,Bk,W ), and a (σ{V k, ξ,Wt∧·, B

k
t∧·})t∈[0,T ]–predictable process (γ̂kt )t∈[0,T ] such that: if (X̂k

t )t∈[0,T ] is
the unique strong solution of

X̂k
t = ξ +

∫ t∨εk

εk

b
(
r, X̂k

r , ζ
k
r , ζ

k

r , γ̂
k
r

)
dr +

∫ t∨εk

εk

σ
(
r, X̂k

r , ζ
k
r , ζ

k

r , γ̂
k
r

)
dW k

r + σ0B
k
t , for all t ∈ [0, T ], P̂qν–a.e.,

with ζkt := LP̂qν
(
X̂k
t , γ̂

k
t

∣∣Bk, V k) and ζkt := LP̂qν
(
X̂k
t

∣∣Bk, V k), for all t ∈ [0, T ], then one has

LP̂qν
(
X̂k, Ûk,W k, Bk, ζ̂k

)
= LP

(
Xk,Uk,W k, Bk, µ̂k

)
, (6.5.13)

where Ûkt (du)dt := δ
γ̂kt

(du)dt, and ζ̂kt := LP̂qν
(
X̂k
t∧·, Ûkt∧·,W k

∣∣Bk, V k), for all t ∈ [0, T ], P̂qν–a.e.

(i) When ` 6= 0, V k = φ(Bεk∧·), where φ : C` → [0, 1] a Borel function s.t. LP̂qν (φ(Bεk∧·)) is a uniform law on [0, 1]. Let
us introduce the unique strong solution Ẑk of:

Ẑkt = ξ +
∫ t

0
b
(
r, Ẑkr , v

k, vkr , α̂
k
r

)
dr +

∫ t

0
σ
(
r, Ẑkr , v

k, vkr , α̂
k
r

)
dWr + σ0Bt, t ∈ [0, T ], P̂qν–a.e.,

with vkt := LP̂qν
(
Ẑkt , α̂

k
t

∣∣Bt∧·) and vkt := LP̂qν
(
Ẑkt
∣∣Bt∧·), then one finds

lim
k→∞

EP̂qν
[

sup
t∈[0,T ]

∣∣Ẑkt − X̂k
t

∣∣p] = 0. (6.5.14)

The results (6.5.12), (6.5.13) and 6.5.14 allow to deduce the first part of the lemma.

Now, let (ψk : [0, T ] × Rn × Cn × C` → U)k∈N∗ be a sequence of Borel measurable functions. Define the unique strong
solution Ẑψ,k of

Ẑψ,kt = ξ +
∫ t

0
b
(
r, Ẑψ,kr , vk, vkr , ψ

k
r

)
dr +

∫ t

0
σ
(
r, Ẑψ,kr , vk, vkr , ψ

k
r

)
dWr + σ0Bt, t ∈ [0, T ], P̂qν–a.e.

where recall that vkt = LP̂qν
(
Ẑkt , α̂

k
t

∣∣Bt∧·), vkt = LP̂qν
(
Ẑkt
∣∣Bt∧·), and ψkt := ψk(t, ξ,Wt∧·, Bt∧·). Also, one introduces the

unique strong solution Ŝψ,k of

Ŝψ,kt = ξ +
∫ εk∨t

εk

b
(
r, Ŝψ,kr , ζk, ζ

k

r , ψ̂
k
r

)
dr +

∫ εk∨t

εk

σ
(
r, Ŝψ,kr , ζk, ζ

k

r , ψ̂
k
r

)
dW k

r + σ0B
k
t , t ∈ [0, T ], P̂qν–a.e.

with a piece wise constant control ψ̂k satisfying lim
k→∞

EP̂qν
[ ∫ T

0
ρ(ψ̂kt , ψkt )dt

]
= 0, and ψ̂kt = 0 with t ∈ [0, εk], and recall

that ζkt := LP̂qν
(
X̂k
t , γ̂

k
t

∣∣Bk, V k) and ζkt := LP̂qν
(
X̂k
t

∣∣Bk, V k). Using (6.5.14), one gets

lim
k→∞

EP̂qν
[

sup
t∈[0,T ]

|Ẑψ,kt − Ŝψ,kt |p
]

= 0. (6.5.15)

Under Assumption 5.5.5, one has Ŝψ,k = Hk(ξ,W k, Bk, ζ̂, Υ̂k) with Hk : Rn × Cn × C` ×C([0, T ];P(ΩG))×M(U)→ Cn
a Borel function and Υ̂k

t (du)dt := δψ̂kt
(du)dt.

There exists a Borel function βk : [0, T ]× Rn × Cn × C` × C([0, T ];P(ΩG)× Cn → U such that

LP̂qν
(
ξ,W k, Bk, ζ̂, Υ̂k

)
= LP̂qν

(
X0,W

k, Bk, ζ̂, β̂k
)
,
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with β̂kt (du)dt := δ
βkt

(
t,X0,Wk

t∧·,B
k
t∧·,ζ̂

k
t∧·,Wεk∧·

)(du)dt. Similarly to the first part (see Lemma 2.3.11 again), as we know

that the law of (ξ,W k, Bk, ζ̂) under P̂qν and the law of (X0,W
k, Bk, µ̂k) under P are the same (see equation (6.5.13)),

using the independence of Wεk∧· (w.r.t. P̂qν and P), if Sφ,k := Hk(X0,W
k, Bk, µ̂k, Φ̂k), where

Φ̂kt (du)dt := δ
βk
(
t,X0,Wk

t∧·,B
k
t∧·,µ̂

k
t∧·,Wεk∧·

)(du)dt, one finds LP(Sφ,k,W k, Bk, µ̂k, Φ̂k
)

= LP̂qν
(
Ŝψ,k,W k, Bk, ζ̂k, Υ̂k

)
,

(6.5.16)

and S := Sφ,k satisfies

Sφ,kt = X0 +
∫ εk∨t

εk

b
(
r, Sφ,kr , µk, µkr , φ

k
r

)
dr +

∫ εk∨t

εk

σ
(
r, Sφ,kr , µk, µkr , φ

k
r

)
dW k

r + σ0B
k
t , t ∈ [0, T ], P–a.e.

where φkt := βk(t,X0,W
k
t∧·, B

k
t∧·, µ̂

k
t∧·,Wεk∧·). Notice that φks = 0 for dP ⊗ dt–a.e. (t, ω) ∈ [0, εk] × Ω, and φk is a

(σ
{

X0,Wt∧·, Bt∧·, µ̂
k
t∧·
}

)t∈[0,T ]–predictable process. Let Xφ,k be the strong solution of:

Xφ,k
t = X0 +

∫ t

0
b
(
r,Xφ,k

r , µ, µαr , φ
k
r

)
dr +

∫ t

0
σ
(
r,Xφ,k

r , µ, µαr , φ
k
r

)
dWr + σ0Bt, t ∈ [0, T ], –a.e.

then one has

lim
k→∞

EP
[

sup
t∈[0,T ]

∣∣Sφ,kt −Xφ,k
t

∣∣p] = 0. (6.5.17)

Denote φkt := LP(Xφ,k
t , φkt |B, µ̂), ψkt := LP̂qν (Ẑψ,kt , ψkt |Bk, V k), κkt := LP(Sφ,kt , φkt |B, µ̂), θkt := LP̂qν (Ŝψ,kt , βkt |Bk, V k), and

V̂ kt := LP̂qν
(
Ẑkt∧·, (δα̂ks (du)ds)t∧·,W k

∣∣Bk, V k), to summarize, by combining (6.5.17), (6.5.16) and (6.5.15),

lim sup
k
Wp

(
LP
(
Xφ,k,W,B, µ̂, δ(

µαt ,φ
k

t ,φ
k
t

)(dm,dm′,du)dt
)
,LP̂qν

(
Ẑψ,k,W,B, V̂ k, δ(

vkt ,ψ
k

t ,ψ
k
t

)(dm,dm′,du)dt
))

≤ lim sup
k
Wp

(
LP
(
Xφ,k,W,B, µ̂, δ(

µαt ,φ
k

t ,φ
k
t

)(dm,dm′,du)dt
)
,LP

(
Sφ,k,W k, Bk, µ̂k, δ(

µkt ,κ
k
t ,φ

k
t

)(dm,dm′,du)dt
))

+ lim sup
k
Wp

(
LP
(
Sφ,k,W k, Bk, µ̂k, δ(

µkt ,κ
k
t ,φ

k
t

)(dm,dm′,du)dt
)
,LP̂qν

(
Ŝψ,k,W k, Bk, ζ̂k, δ(

ζ
k

t ,θ
k

t ,β
k
t

)(dm,dm′,du)dt
))

+ lim sup
k
Wp

(
LP̂qν

(
Ŝψ,k,W k, Bk, ζ̂k, δ(

ζ
k

t ,θ
k

t ,β
k
t

)(dm, dm′,du)dt
)
,LP̂qν

(
Ẑψ,k,W,B, V̂ k, δ(

vkt ,ψ
k

t ,ψ
k
t

)(dm, dm′,du)dt
))

= 0.

This is enough to deduce the second part of point (i) of this lemma.

(ii) When ` = 0, it is enough to use the same technique as Proposition 2.3.12 i.e. B disappears, V k = H, and use the
variable H for the conditioning and repeat the exact proof like previously to obtain the result. In the case where µ̂ is
deterministic, as mentioned in Lemma 2.3.11, V k (then H) disappears. There is no conditioning, and the proof is exactly
the same.

Let ν ∈ Pp′(Rn), in the next lemma, we stay on the filtered probability space introduced in Lemma 6.5.5 i.e. (Ω̂q, F̂, F̂ , P̂qν)
for q ∈ {0, 1}. Recall that the notations on (Ω̂q, F̂, F̂ , P̂qν) for all the variables defined on (Ω,F,F ,Pν) stay identical.

Lemma 6.5.7. Under Assumption 5.5.5, for any α ∈ A(ν), there exists a sequence (αi,N )(i,N)∈{1,...,N}×N∗ satisfying for
each N ∈ N∗, (αi,N )i∈{1,...,N} ⊂ A(νN ) s.t.

lim
N→∞

PNν ◦
(
ϕN,X,α

N

, δ
ϕN,α

N

s

(dm′)ds,B
)−1

= P̂qν ◦
(
µα, δµαs (dm′)ds,B

)−1
,
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where αN = (αi,N , . . . , αi,N ).

In addition, for any sequence (κi,N )(i,N)∈{1,...,N}×N∗ satisfying for each N ∈ N∗, (κi,N )i∈{1,...,N} ⊂ A(νN ), there exists
a family of Borel functions (φ̂i,N,k)(i,N,k)∈{1,...,N}×N∗×N∗ with φ̂i,N,k : [0, T ] × Rn × Cn × C` × [0, 1] → U such that if
φi,N,kt := φ̂i,N,k(t,X0,Wt∧·, Bt∧·,H), and

Pi,N,k := P̂qν ◦
(
µα,i,N,k, µα, δµα,i,N,ks

(dm)ds, δµαs (dm′)ds,B
)−1

,

with µα,i,N,kt := LP̂qν (Xα,φi,N,k

t , φi,N,kt

∣∣Ĝt) and µα,i,N,kt (dx) := µα,i,N,kt (dx, U), then one gets

lim
N→∞

lim
k→∞

∣∣∣∣ 1
N

N∑
i=1

Ji
(
(α[−i], κi,N )

)
− 1
N

N∑
i=1

EPi,N,k[J(µ,Λ◦, ζ,Λ)
]∣∣∣∣ = 0.

Proof. Notice that (µα, µα) are G–adapted then B–measurable in that case, consequently these variables can be extended
on (ΩN ,FN ,FN ,PNν ). The notation stays the same. Using (an extention of) Proposition 3.4.4, there exists (ψi,N )(i,N) a
sequence of Borel functions ψi,N : [0, T ]×Rn×Cn×C` → U, such that if αi,Nt := ψi,N (t,Xi

0,Wi
t∧·, Bt∧·) for all t ∈ [0, T ],

and αN = (αi,N , . . . , αi,N ), then one has

lim
N→∞

EPNν
[

sup
t∈[0,T ]

Wp

(
ϕN,X,α

N

t , µαt
)

+
∫ T

0
Wp

(
ϕN,α

N

t , µαt
)
dt
]

= 0.

Next, by easy adaptation of Lemma 6.5.3 (successive application of Gronwall Lemma), there exists a sequence (CN )N∈N∗
converging to zero when N goes to infinity satisfying: for each i ∈ {1, . . . , N}, if αN,−i := (α−i, κi,N ),

EPNν
[ ∫ T

0
Wp

(
ϕN,α

N,−i

t , µαt
)
dt+ sup

t∈[0,T ]
Wp

(
ϕN,X,α

N,−i

t , µαt
)]

+ EPNν
[

sup
t∈[0,T ]

∣∣Xi
t[(α−i, κi,N )]−Xα,κi,N

t

∣∣p] ≤ CN ,
where Xα,κi,N denote the unique strong solution of

Xα,κi,N

t = Xi
0 +

∫ t

0
b
(
r,Xα,κi,N

r , µαr∧·, µ
α
r , κ

i,N
r

)
dr +

∫ t

0
σ
(
r,Xα,κi,N

r , µαr∧·, µ
α
r , κ

i,N
r

)
dWi

r + σ0Bt.

Therefore, lim sup
N→∞

Wp

(
QN , Q̃N

)
= 0, where QN := 1

N

∑N
i=1 LPNν

(
Xi[αN,−i], ϕN,X,αN,−i , δ(

κi,Nt ,ϕN,α
N,−i

t

)(du,dm′)dt),
and Q̃N := 1

N

∑N
i=1 LPNν

(
Xα,κi,N , µα, δ(

κi,Nt ,µαt

)(du,dm′)dt).
Thanks to this result and some techniques used in proof of Lemma 6.5.4 (with the separability condition), one has

lim
N→∞

∣∣∣∣∣ 1
N

N∑
i=1

EPNν
[ ∫ T

0
L
(
t,Xi

t[αN,−i], ϕN,X,α
N,−i

, ϕN,α
N,−i

t , κi,Nt
)
dt+ g

(
Xi
T [αN,−i], ϕN,X,α

N,−i)]

− 1
N

N∑
i=1

EPNν
[ ∫ T

0
L(t,Xα,κi,N

t , µαt∧·, µ
α
t , κ

i,N
t )dt+ g(Xα,κi,N

T , µαT )
]∣∣∣∣∣ = 0.

By the same techniques used in the proof of Lemma 6.5.5, for all q ∈ {0, 1} (whatever ` = 0, or ` 6= 0, see also
Proposition 2.3.12), there exists, for each (i,N), (φ̂i,N,k)k∈N∗ a family of Borel functions φ̂i,N,k : [0, T ]×Rn×Cn×C`×[0, 1]
such that if φi,N,kt := φ̂i,N,k(t, ξ,Wt∧·, Bt∧·,H),

lim
k→∞

P̂qν ◦
(
Xα,φi,N,k , µα, δ(µαt ,φ

i,N,k
t )(dm

′,du)dt,W,B
)−1

= PNν ◦
(
Xα,κi,N , µα, δ(µαt ,κ

i,N
t )(dm

′,du)dt,Wi, B
)−1

,

we can conclude the proof.
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The following result is a combination of Lemma 6.5.5 and Lemma 7.4.2. Let ν ∈ Pp′(Rn), we continue to work on the
filtered probability space introduced in Lemma 6.5.5 i.e. (Ω̂q, F̂, F̂ , P̂qν) for q ∈ {0, 1}. Recall that, for the variables defined
on (Ω,F,F ,Pν), after extension on (Ω̂q, F̂, F̂ , P̂qν), we use the same notation.
The next proposition provides first an approximation of Fokker–Planck process mentioned in Proposition 4.8.3. And in
second, for a particular sequence of processes of type Xα,α′ (see Definition 6.3.2), it shows that there exists a sequence
of measure-valued control rules that has the same limit.

Proposition 6.5.8. Let Assumption 5.5.5 hold true and ε > 0. For any P ∈ P?V (ν)[ε], there exists a sequence (αk)k∈N∗ ⊂
A(ν) such that

lim
k→∞

P̂qν ◦
(
µα

k

, µα
k

, δ
µα

k
s

(dm)ds, δ
µα

k
s

(dm′)ds,B
)−1

= P, inWp.

Besides, for any sequence (βk)k∈N∗ ⊂ A(ν), there exists a sequence (Qk)k∈N∗ satisfying Qk ∈ PV (ν) with Qk◦
(
ζ,Λ, B

)−1 =
P ◦

(
ζ,Λ, B

)−1 for each k ∈ N∗ and

lim
k→∞

Wp

(
P̂qν ◦

(
µk, µα

k

, δµks (dm)ds, δ
µα

k
s

(dm′)ds,B
)−1

,Qk

)
= 0, (6.5.18)

where µkt := LP̂qν
(
Xαk,βk

t

∣∣Ĝt) and µkt := LP̂qν
(
Xαk,βk

t , βkt |Ĝt
)
for all t ∈ [0, T ]. In addition when ` 6= 0 then q = 0 and H

disappears, and when ` = 0, one has q = 1.

Remark 6.5.9. We emphasize that it is not easy to find a sequence of measure–valued control rules verifying (6.5.18).
Indeed, notice that the set PV (ν) is not a closed set in general. Therefore a classical compactness argument does not
work here. Lemma 6.5.5 and Lemma 7.4.2 as well as the approximation result of Proposition 4.8.3 are very important
for the proof of this proposition.

Proof. let (Ω̃, F̃, F̃ , P̃) be a filtered probability space supporting a Rn– Brownian motion W and a F̃0–random variable
ξ s.t. LP̃(ξ) = ν. Let us introduce the filtered probability space (Ω̂, F̂, F̂ , P̂) which is defined as follows: Ω̂ := Ω̃ × Ω,
F̂ := (F̃t ⊗ F t)t∈[0,T ] and P̂ := P̃ ⊗ P. The variables (ξ,W ) of Ω̃ and the variables (B,µ,Λ◦, ζ,Λ) of Ω are extended on
the space Ω̂ while keeping the same notion (ξ,W,B, µ,Λ◦, ζ,Λ). Also denote by (Gt)t∈[0,T ] the filtration defined by

Gt := σ
{
Bt∧·, ζt∧·,Λt∧·

}
, for all t ∈ [0, T ].

As P ∈ P?V (ν)[ε], by Proposition 4.8.3, for any uniform variable Z P̂–independent of (ξ,W,B, µ,Λ◦, ζ,Λ), there exists a
sequence of F̂–predictable processes (αj)j∈N∗ satisfying for each j ∈ N∗,

αjt := Gj(t, ξ, µt∧·,Λt∧·,Wt∧, Bt∧, Z), P̂–a.e., for all t ∈ [0, T ],

where Gj : [0, T ]× Rn × CnW ×M(PnU )× Cn × C` × [0, 1]→ U is a Borel function s.t. if X̂j is the unique strong solution
of: for all t ∈ [0, T ]

X̂j
t = ξ +

∫ t

0
b(r, X̂j

r , µ
j ,LP̂(X̂j

r , α
j
r|Gr), αjr)dr +

∫ t

0
σ(r, X̂j

r , µ
j ,LP̂(X̂j

r , α
j
r|Gr), αjr)dWr + σ0Bt, P̂–a.e.

where µjt := LP(X̂j
t |Gt), and µ

j
t := LP̂(X̂j

t , α
j
t |Gt), then

lim
j→∞

[
Wp

(
δµjt

(dm)dt,Λt(dm)dt
)

+ sup
t∈[0,T ]

Wp(µjt , µt)
]

= 0, P̂–a.e.

and consequently

lim
j→∞

LP̂
(

(µjt )t∈[0,T ], δµjt
(dm)dt, (Bt)t∈[0,T ]

)
= P ◦

(
µ,Λ, B

)−1
, for the Wasserstein metricWp.
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Recall that, as P ∈ P?V (ν)[ε], µ = ζ and Λ = Λ◦, P–a.e.. Define for all t ∈ [0, T ], µ̂jt := LP̂
(
X̂j
t∧·,U

j
t∧·,W

∣∣Gt), and
U js (du)ds := δαjs(du)ds. It is straightforward to check that: for each t ∈ [0, T ], µ̂jt = LP̂

(
X̂j
t∧·,U

j
t∧·,W

∣∣GT), µ̂jt =

LP̂
(
X̂j
t∧·,U

j
t∧·,W

∣∣Bt∧·, µ̂jt∧·) = LP̂
(
X̂j
t∧·,U

j
t∧·,W

∣∣B, µ̂j), and (B, µ̂) are P̂–independent of (ξ,W ).

Let j ∈ N∗ be fixed, for each q ∈ {0, 1}, by Lemma 6.5.5, there exists a sequence (αk,j)k∈N∗ ⊂ A(ν) such that

lim
k→∞

LP̂qν
(
Xαk,j ,W,B, µ̂k,jT , δ(

µα
k,j
t ,αk,jt

)(dm,du)dt
)

= LP̂
(
X̂j ,W,B, µ̂jT , δ

(
µjt ,α

j
t

)(dm,du)dt
)
, inWp,

where Uk,js (du)ds := δαk,js (du)ds, and

µ̂k,jt = LP̂qν
(
Xαk,j

t∧· ,U
k,j
t∧· ,W

∣∣Ĝt) = LP̂qν
(
Xαk,j

t∧· ,U
k,j
t∧· ,W

∣∣ĜT), for all t ∈ [0, T ], P̂qν–a.e..

In addition, for each sequence (γk,j)k∈N∗ ⊂ A(ν), there exists a sequence of Borel functions (φk,j)k∈N∗ with φk,j :
[0, T ]×Rn×Cn×C`×C([0, T ];P(Cn×M(U)×Cn))→ U, such that if X̂k,j is a Rn–valued F–adapted continuous process
solution of

X̂k,j
t = ξ +

∫ t

0
b
(
r, X̂k,j

r , µj , µjr, φ
k,j
r

)
dr +

∫ t

0
σ
(
r, X̂k,j

r , µj , µjr, φ
k,j
r

)
dWr + σ0Bt, t ∈ [0, T ], P̂–a.e.

where φk,jr := φk,j(r, ξ,Wr∧·, Br∧·, µ̂
j
r∧·), dP̂⊗ dt–a.e., then one gets

lim
k→∞

Wp

(
LP̂qν

(
Xαk,j ,γk,j , µ̂k,j , δ(µαk,js ,ϑ

k,j

s ,γk,js )(dm, dm
′,du)ds

)
,LP̂(X̂k,j , µ̂j , δ(µjt ,µ

k,j
t ,φk,jt )(dm,dm

′,du)dt
))

= 0,

(6.5.19)

with ϑk,jt := LP̂qν
(
Xαk,j ,γk,j

t

∣∣Ĝt), ϑk,jt := LP̂qν
(
Xαk,j ,γk,j

t , γk,jt
∣∣Ĝt), and µk,jt := LP̂(X̂k,j

t , φk,jt
∣∣Bt∧·, µ̂jt∧·) for all t ∈ [0, T ].

Mention that when ` 6= 0, then q = 0 and H disappears, and when ` = 0, q = 1.

Next, as lim
j→∞

(
δµjt

(dm)dt, µj
)

=
(
Λ, µ

)
P̂ a.e., (µ̂jt , µ

j
t , µ

j
t )t∈[0,T ] is (Gt)t∈[0,T ]–adapted and (Λ, µ,B) is P̂–independent of

(W, ξ), by Lemma 7.4.2 (see Appendix of Chapter 3), there exists (Pk,j)(k,j)∈N∗×N∗ ⊂ PV (ν) such that LPk,j(ζ,Λ, B) =
LP(ζ,Λ, B) and

lim sup
j→∞

lim sup
k→∞

Wp

(
Pk,j ,LP̂(µk,j , µj , δµk,js (dm)ds, δµjs(dm

′)ds,B
))

= 0, (6.5.20)

where µk,jt := LP̂(X̂k,j
t |Bt∧·, µ̂

j
t∧·) and µ

k,j
t := LP̂(X̂k,j

t |Bt∧·, µ̂
j
t∧·), for all t ∈ [0, T ].

The results (6.5.19) and (6.5.20) are enough to deduce that

lim sup
j→∞

lim sup
k→∞

Wp

(
LP̂qν

(
ϑk,j , µα

k,j

, δ
ϑ
k,j

s

(dm)ds, δ
µα

k,j
s

(dm′)ds,B
)
,Pk,j

)
= 0,

and conclude the result.

6.5.2.2 Proof of Theorem 6.4.2 (Converse Limit Theorem)

First point (i) Let P ∈ P?V (ν)[ε] be an ε–measure-valued solution. By Proposition 6.5.8, first, there exists a sequence
(αk)k∈N∗ ⊂ A(ν) s.t.

lim
k→∞

P̂qν ◦
(
µα

k

, µα
k

, δ
µα

k
r

(dm)dr, δ
µα

k
r

(dm′)dr,B
)−1

= P, inWp.
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Let us introduce, for each α′ ∈ A(ν),

Ψ(αk, α′) := EP̂qν
[ ∫ T

0
L(t,Xαk,α′

t , µα
k

t∧·, µ
αk

t , α′t)dt+ g(Xαk,α′

T , µα
k

)
]
and εk := sup

α′∈A(ν)
Ψ(αk, α′)− EPk[J(µ,Λ◦, ζ,Λ)

]
,

with Pk := P̂qν ◦
(
µα

k

, µα
k

, δ
µα

k
s

(dm)ds, δ
µα

k
s

(dm′)ds,B
)−1

.

Remark that εk ≥ 0, for all k. There exists a sequence (γk)k∈N ⊂ A(ν) verifying

Ψ(αk, γk)− EPk[J(µ,Λ◦, ζ,Λ)
]
≥ εk − 2−k.

By the second part of Proposition 6.5.8, there exists a sequence (Qk)k∈N∗ ⊂ PV (ν) satisfying Qk ◦
(
ζ,Λ, B

)−1 =
P ◦

(
ζ,Λ, B

)−1 for each k ∈ N∗ and lim sup
k→∞

∣∣Ψ(αk, γk) − EQk[J(µ,Λ◦, ζ,Λ)
]∣∣ = 0. Then, as P is a ε–rmeasure-valued

MFG solution,

ε ≥ lim sup
k→∞

EQk[J(µ,Λ◦, ζ,Λ)
]
− EP[J(µ,Λ◦, ζ,Λ)

]
≥ lim sup

k→∞
Ψ(αk, γk)− EP[J(µ,Λ◦, ζ,Λ)

]
≥ lim sup

k→∞
εk.

Then lim sup
k→∞

εk ∈ [0, ε], and

EP̂qν
[ ∫ T

0
L(t,Xαk

t , µα
k

t∧·, µ
αk

t , αkt )dt+ g(Xαk

T , µα
k

T )
]
≥ sup
α′∈A(ν)

Φ(αk, α′)− εk, for each k,

we can conclude.

Second point (ii) Let ε ∈ [0,∞) and Pε := P̂qν ◦
(
µα

ε

, µα
ε

, δ(µαεt )(dm)dt, δ(µαεt )(dm′)dt, B
)−1
∈ PS(ν)[ε], by Lemma

6.5.7, there exists a sequence (αε,i,N )(i,N):=(αi,N )(i,N) such that αi,N ∈ A(νN ), and

lim
N→∞

PNν ◦
(
ϕN,X,α

N

, δ
ϕN,α

N

t

(dm′)dt
)−1

= P̂qν
(
µα, δµαt (dm′)dt

)−1
,

where αN = (αi,N , . . . , αi,N ), and α := αε.
In addition, for any sequence (κi,N,k)(i,N)∈{1,...,N}×N∗ satisfying for each N ∈ N∗, (κi,N )i∈{1,...,N} ⊂ A(νN ), there exists
a sequence (φi,N,k)(i,N,k)∈{1,...,N}×N∗×N∗ ⊂ A(ν) such that if

Pi,N,k := P̂qν ◦
(
µα,i,N,k, µα, δµα,i,N,ks

(dm)ds, δµαs (dm′)ds,B
)−1

,

where µα,i,N,kt := LP̂qν (Xα,φi,N,k

t

∣∣Ĝt) and µα,i,N,kt := LP̂qν (Xα,φi,N,k

t , φi,N,kt

∣∣Ĝt), then one gets

lim
N→∞

lim
k→∞

∣∣∣∣ 1
N

N∑
i=1

Ji
[
((αN )−i, κi,N )

]
− 1
N

N∑
i=1

EPi,N,k[J(µ,Λ◦, ζ,Λ)
]∣∣∣∣ = 0.

Define
cε,i,N := sup

α′∈A(νN )
Ji
[
((αεN )−i, α′)

]
− Ji[αε

N ].

There exists a sequence of controls (κε,i,N )(i,N)∈{1,...,N}×N∗ satisfying Ji
[
((αεN )−i, κε,i,N )

]
− Ji[αε

N ] ≥ cε,i,N − 2−N , for
each i ∈ {1, ..., N}. Therefore, as Pε ∈ P?S(ν)[ε] i.e. a ε–strong MFG solution,

ε ≥
(

lim sup
N→∞

lim sup
k→∞

1
N

N∑
i=1

EPi,N,k[J(µ,Λ◦, ζ,Λ)
]
− EPε[J(µ,Λ◦, ζ,Λ)

])
≥ lim sup

N→∞

( 1
N

N∑
i=1

Ji
[
((αεN )−i, κε,i,N )

]
− 1
N

N∑
i=1

Ji[αε
N ]
)
≥ lim sup

N→∞

1
N

N∑
i=1

cε,i,N .

Combined this result with the first point (see proof above), we can conclude.
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Chapter 7

Existence of ε–strong solution and
measure–valued solution of mean–field
games

7.1 Introduction
In this chapter, under some general assumptions, we study the question of the existence of the measure–valued solution
used to characterize the limit of the approximate Nash–equilibria and approximate strong MFG solution in the previous
chapter. Recall that the notions of approximate strong MFG solution and approximate Nash–equilibria are exactly the
classical notions mentioned in the literature except the fact that the optimum is ac hived by admiting a small error ε
(see Chapter 6). As we proved, there is a perfect symmetric between these three notions: measure–valued MFG solution,
approximate strong solution and approximate Nash equilibria. Consequently, our resultat of existence of measure–valued
MFG solution implies the existence of approximate Nash–equilibria and approximate strong MFG equilibria. It is well
known in the MFG theory that the existence of a strong MFG solution is very difficult to obtain and requires strong
assumptions. Admitting a small error ε > 0, it is possible to get the existence of an ε–strong MFG equilibrium under
general assumptions.

In a framework with the (conditional) law of control and control of the volatility σ, we prove an existence result using
largely the same discretized techniques as in Carmona, Delarue, and Lacker [49] combined with some arguments evoked
in Lacker [102]. In addition, the methods mentioned in chapter three will prove to be very useful.

The rest of the chapter is structured as follows. We provide in Section 7.2 the definition of the measure–valued solution
and the different notions of the approximate strong MFG solution while mentioning the existence corresponding existence
results in Theorem 7.2.4 and Theorem 7.2.6. The technical proofs are completed in Section 7.3.

7.2 Measure-valued solution and ε–strong solution
Definition 7.2.1 (measure–valued solution). Let ν ∈ Pp(Rn), we say that a term

% :=
(
Ω%,F%,P%,F% := (F%t )0≤t≤T ,G% := (G%t )0≤t≤T , B

%, µ%,?,Λ%,?
)
,

is a measure–valued MFG solution associated with the initial (distribution) condition ν if

(i) (Ω%,F%,P%) is a probability space, equipped with two filtrations F% and G% such that, for all t ∈ [0, T ]

G%t ⊆ F
%
t , and EP%[1D∣∣G%t ] = EP%[1D∣∣G%T ], P%–a.s., for all D ∈ F%t ; (7.2.1)

(ii) µ%,? := (µ%,?s )s∈[0,T ] is an P(Rn)–valued G%–adapted continuous process and Λ%,? := (Λ%,?s )0≤s≤T is an P(PnU )–
valued G%–predictable process such that EP%[ sups∈[0,T ]

∫
Rn ‖xs‖

pµ%,?s (dx)
]
<∞;

(iii) B% is an R`–valued standard Brownian motion with respect to F%, B% is in addition adapted to G%.
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(iv) For any µ a P(Rn)–valued F%–adapted continuous process and Λ is an P(PnU )–valued F%–predictable process such
that: EP%[ sups∈[0,T ]

∫
Rn ‖xs‖

pµs(dx)
]
<∞, Λt(Zµt) = 1 dt⊗ dP%--a.e., and P%–a.e, for all (f, t) ∈ C2

b (Rn)× [0, T ]

〈f(· − σ0Bt), µt〉

= 〈f, ν〉+
∫ t

0

[ ∫
Pn
U

〈L?r [f(· − σ0Br)](·, µ%,?,m′), µr〉Λ%,?r (dm′) +
∫
Pn
U

〈L◦r [f(· − σ0Br)](·, µ%,?, ·),m〉Λr(dm)
]
dr,

we have

EP%[J(µ%,?,Λ%,?, µ%,?,Λ%,?)
]
≥ EP%[J(µ,Λ, µ%,?,Λ%,?)

]
.

(v) The pair (µ%,?,Λ%,?) satisfies: Λ%,?t (Zµ%,?t ) = 1 dt⊗ dP%–a.e., and , P%–a.e, for all (f, t) ∈ C2
b (Rn)× [0, T ]

〈f(· − σ0Bt), µ%,?t 〉

= 〈f, ν〉+
∫ t

0

[ ∫
Pn
U

〈L?r [f(· − σ0Br)](·, µ%,m′), µ%,?r 〉Λ%,?r (dm′) +
∫
Pn
U

〈L◦r [f(· − σ0Br)](·, µ%,?, ·),m〉Λ%,?r (dm)
]
dr.

Proposition 7.2.2. Let Assumption 5.5.5 hold true. For any ν ∈ Pp′(Rn), one has

P?V (ν) =
{
P% ◦

(
µ%,?,Λ%,?, µ%,?,Λ%,?, B%

)−1
, % a measure–valued MFG solution with initial condition ν

}
Definition 7.2.3. (Approximate strong open loop MFG solution)
Let ν ∈ Pp(Rn), and

Ω := Rn × Cn × C`,

be the canonical space, with canonical variable ξ and canonical processes W = (Wt)0≤t≤T and B = (Bt)0≤t≤T , and
probability measure Pν under which ξ ∼ ν and (W,B) are standard Brownian motion independent of ξ. Let F = (Ft)0≤t≤T
and G = (Gt)0≤t≤T be defined by

Ft := σ
{
ξ,Wr, Br, r ∈ [0, t]

}
and Gt := σ

{
Br, r ∈ [0, t]

}
.

Let us denote by A(ν) the collection of all U -valued F-predictable processes.

For each ε > 0, we say the process (µt)t∈[0,T ] is an ε–strong MFG solution if:

(i) (µt)t∈[0,T ] is a P(Rn × U)–valued (Gt)t∈[0,T ]–predictable process

(ii) µ satisfies: µt = LPν (X?
t , α

?
t |B), dt⊗ dPν–a.e. where α? ∈ A(ν), and X? is the unique strong solution of

X?
t = ξ +

∫ t

0
b
(
r,X?

r , µr∧·, µr, α
?
r

)
dr +

∫ t

0
σ
(
r,X?

r , µr∧·, µr, α
?
r

)
dWr + σ0Bt, for all t ∈ [0, T ], Pν–a.e.,

where µt(dx) = µt(dx, U).

(iii) For any α ∈ A(ν), and X the unique strong solution of

Xt = ξ +
∫ t

0
b
(
r,Xr, µr∧·, µr, αr

)
dr +

∫ t

0
σ
(
r,Xr, µr∧·, µr, αr

)
dWr + σ0Bt, for all t ∈ [0, T ], Pν–a.e.,

one has

EPν
[ ∫ T

0
L(t,X?

t , µt∧·, µt, α
?
t )dt+ g(X?

T , µ)
]
≥ EPν

[ ∫ T

0
L(t,Xt, µt∧·, µt, αt)dt+ g(XT , µ)

]
− ε.
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Theorem 7.2.4. Under Assumption 5.5.5, for any ν ∈ Pp′(Rn), there exists at least one measure–valued MFG solution.
Consequently, for each ε > 0, there exists at least one ε–strong MFG equilibrium.

Now, we consider that ` = 0, and

σ(t, x, π,m, u) = σ̃(t, x), for all (t, x, π,m, u) ∈ [0, T ]× Rn × CnW × PnU × U.

For simplicity, we will note σ instead of σ̃.

Definition 7.2.5. (Approximate strong Markovian MFG solution) Let ν ∈ Pp(Rn) and (Ω,F,F ,P) be a filtered probability
space supporting W a Rd–valued F–Brownian motion and ξ a F0–random variable such that LP(ξ) = ν.

For each ε > 0, we say the process (µt)t∈[0,T ] is ε–strong Markovian MFG solution if:

(i) (µt)t∈[0,T ] is such that: for each t ∈ [0, T ], µt is at value in P(Rn × U) and the map µ : [0, T ] 3→ µt is Borel
measurable.

(ii) µ satisfies: µt = LP(X?
t , α

?(t,X?
t )), dt–a.e., where α? : [0, T ] → Rn → U is a Borel measurable function, and X?

is the solution of

X?
t = ξ +

∫ t

0
b
(
r,X?

r , µr∧·, µr, α
?(r,X?

r )
)
dr +

∫ t

0
σ
(
r,X?

r

)
dWr, for all t ∈ [0, T ], P–a.e.,

where µt(dx) = µt(dx, U).

(iii) For any Borel measurable function α : [0, T ]× Rn → U, and X the solution of

Xt = ξ +
∫ t

0
b
(
r,Xr, µr∧·, µr, α(r,Xr)

)
dr +

∫ t

0
σ
(
r,Xr

)
dWr, for all t ∈ [0, T ], P–a.e., (7.2.2)

one has

EP
[ ∫ T

0
L(t,X?

t , µt∧·, µt, α
?(t,X?

t ))dt+ g(X?
T , µ)

]
≥ EP

[ ∫ T

0
L(t,Xt, µt∧·, µt, α(t,Xt))dt+ g(XT , µ)

]
− ε.

Theorem 7.2.6. Let ν ∈ Pp′(Rn), and Assumption 5.5.5 hold true. For any ρ a measure–valued MFG solution such
that there exists (n?,q?) ∈ CnW ×M(PnU ) satisfying (µρ,?,Λρ,?) = (n?,q?), Pρ–a.e., there exists a sequence (µε)ε>0 s.t.
for each ε > 0, µε is an ε–strong Markovian MFG solution and

lim
ε→0

(
µε, δµεt (dm)dt

)
= (n?,q?), inWp, P–a.e.

Consequently, for each ε > 0, there at least one ε–strong Markovian MFG solution.

7.3 Proof of existence
7.3.1 Measure–valued no common noise MFG equilibrium
7.3.1.1 Technical results

In this part, we discuss of the case without common noise. Let σ0 = 0 (or ` = 0.) Given ν ∈ Pp′(Rn), with p′ > p. In
order to proof our theorem, a more adequate framework and other definitions are necessary. Let us introduce the notion
of deterministic measure-valued no common noise control rule

Definition 7.3.1. Given (n,q) ∈ Cn,pW ×M(Pp(Rn × U)), (n◦,q◦) ∈ CnW ×M(PnU ) is a deterministic measure-valued no
common noise control rule if: recall that Nt is defined in equation (6.3.8),

• n◦0 = ν, and Nt[n◦,q◦,n,q](f) = 0 for all f ∈ C2
b (Rn) and every t ∈ [0, T ] .
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• For dt almost every t ∈ [0, T ], q◦t
(
Zn◦t

)
= 1.

R(n,q) will denote the set of all deterministic measure-valued no common noise control rules defined as previously. We
also consider

R?(n,q) := arg max
(n◦,q◦)∈R(n,q)

J
(
n◦,q◦,n,q

)
,

where recall that

J
(
n◦,q◦,n,q

)
:=
∫ T

0

[ ∫
Pn
U

〈L◦
(
t, ·,n, ·

)
,m〉q◦t (dm) +

∫
Pn
U

〈L?
(
t, ·, π,m′

)
,n◦t 〉qt(dm′)

]
dt+ 〈g(·,n),n◦T 〉.

Notice that by Lemma 4.8.2, R(n,q) ⊂ Cn,pW ×M(Pp(Rn × U)).

Definition 7.3.2. (n?,q?) ∈ Cn,pW ×M(Pp(Rn × U)) is a deterministic measure–valued no common noise MFG solution
if (n?,q?) ∈ R?(n?,q?). We shall denote S? all deterministic measure–valued no common noise MFG solutions.

Mention that in the following, it will be more convenient to look at R as a set valued function:

R : (n,q) ∈ Cn,pW ×M(Pp(Rn × U))→ R(n,q) ⊂ Cn,pW ×M(Pp(Rn × U)).

Continuity of R In the next propositions, it is shown that R is both upper and lower hemicontinuous, and this is
enough to conclude that R is continuous. We refer to [10, chapter 17] for an overview on set valued function.

Lemma 7.3.3. (Lemma 4.8.2) There exists a constant C > 0 (depend only of coefficients [σ, b] and ν), such that for
any (n,q) ∈ Cn,pW ×M(Pp(Rn × U)), and (n◦,q◦) ∈ R(n,q), one has

sup
t∈[0,T ]

∫
Rn
|x|p

′
n◦t (dx) ≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx)

)
.

Furthermore, for any (t, s) ∈ [0, T ]× [0, T ], one gets Wp

(
n◦t ,n◦s

)p ≤ C|t− s|.
Proposition 7.3.4. (Upper Hemicontinuity) Let (n,q) ∈ Cn,pW ×M(Pp(Rn × U)). R(n,q) is a compact set of Cn,pW ×
M(Pp(Rn × U)). In addition for any sequence (nk,qk)k∈N∗ ⊂ Cn,pW ×M(Pp(Rn × U)) such that lim

k→∞
(nk,qk) = (n,q),

let (n◦,k,q◦,k) ∈ R(nk,qk) for each k ∈ N∗, then (n◦,k,q◦,k)k∈N∗ is relatively compact and each limit point belongs to
R(n,q).

Proof. By Lemma 7.3.3, one finds

sup
(n◦,q◦)∈R(n,q)

sup
t∈[0,T ]

∫
Rn
|x|p

′
n◦t (dx) <∞ and lim

δ→0
sup

(n◦,q◦)∈R(n,q)
sup
t∈[0,T ]

Wp

(
n◦t ,n◦(t+δ)∧T

)
= 0,

as U is a compact set and for dt almost every t ∈ [0, T ], q◦t
(
Zn◦t

)
= 1, one has

sup
(n◦,q◦)∈R(n,q)

∫ T

0

∫
Pp(Rn×U)

Wp

(
m,m0

)p′q◦t (dm)dt <∞, for any m0 ∈ Pp(Rn × U).

Then by Aldou’s criterion [92, Lemma 16.12], R(n,q) is a compact set of Cn,pW ×M(Pp(Rn × U)).
By similar way, the sequence (n◦,k,q◦,k)k∈N∗ is relatively compact. By passing to the limit in equation verified by
(n◦,k,q◦,k,nk,qk) i.e. Nt[n◦,k,q◦,k,nk,qk](f) = 0, for each (t, f) ∈ [0, T ]× C2

b (Rn) (see for instance lemma 4.7.1), it is
straightforward to check that each limit belongs to R(n,q) (see Proposition 4.8.4).

Proposition 7.3.5. (Lower Hemicontinuity) Let (n,q) ∈ Cn,pW ×M(Pp(Rn×U)), (nk,qk)k∈N∗ be a sequence of elements
of Cn,pW ×M(Pp(Rn×U)) such that lim

k→∞
(nk,qk) = (n,q), and (n◦,q◦) ∈ R(n,q). There exists (n◦,j ,q◦,j) ∈ R(nkj ,qkj ),

for each j ∈ N∗ where (kj)j∈N∗ ⊂ N∗ is a sub-sequence with lim
j→∞

(n◦,j ,q◦,j) = (n◦,q◦).
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Proof. As lim
k→∞

(
nk,qk,q◦

)
= (n,q,q◦), by Lemma 7.4.2 and/or Proposition 4.7.10, there exists (nj,◦,q◦,j) ∈ R(nkj ,qkj ),

for each j ∈ N∗ where (kj)j∈N∗ is a sub-sequence with lim
j→∞

(nj,◦,q◦,j) = (n◦,q◦).

Theorem 7.3.6. The set S? is nonempty and compact.

Proof. Under assumption 5.5.5, it straightforward to verify that J : (Cn,pW ×M(Pp(Rn×U)))2 → R is continuous. As R is
continuous because it is upper and lower hemicontinuous, and has nonempty compact convex values by Berge Maximum
theorem [10, Theorem 17.31], R? has nonempty compact convex values, is upper hemicontinuous and consequently its
graph Gr(R?) :=

{(
n,q, ñ, q̃

)
: (ñ, q̃) ∈ R?(n,q)

}
is closed. Let (n,q) ∈ K if (n,q) ∈ Cn,pW ×M(Pp(Rn × U)) and:

sup
t∈[0,T ]

∫
Rn
|x|p

′
nt(dx) +

∫ T

0

∫
Pp(Rn×U)

Wp′
(
m,m0

)p′qt(dm)dt ≤M,

where m0 is an element of Pp′(Rn × U) and M <∞ is defined by

M := sup
{∫ T

0

∫
Pp(Rn×U)

Wp

(
m,m0

)p′q◦t (dm)dt+ C
(

1 +
∫
Rn
|x|p

′
ν(dx)

)
, (n◦,q◦) ∈ R?

(
Cn,pW ×M(Pp(Rn × U))

)}
,

and in addition

Wp

(
nt,ns

)p ≤ C|t− s|, for all (t, s) ∈ [0, T ]× [0, T ].

Thanks to the above techniques, it is obvious that K is a compact set of Cn,pW ×M(Pp(Rn × U)), and R? is a set valued
function of K into himself i.e. R? : (n,q) ∈ K → R?(n,q) ⊂ K.

Let E be a Polish space, denote M(E) the set of signed measure on E. Equipped of the weak convergence topology
τω := σ

(
M(E), Cb(E)

)
generated by the bounded continuous function, M(E) is a locally convex Hausdorff space.

Accordingly, C([0, T ];M(Rn)) is a locally convex Hausdorff space. LikewiseM(PnU × [0, T ]) is a locally convex Hausdorff
space equipped of τ qω := σ

(
M(PnU × [0, T ]), Cb(PnU × [0, T ])

)
. Then C([0, T ];M(Rn))×M(PnU × [0, T ]) is a locally convex

Hausdorff space. One can see K as a subset of C([0, T ];M(Rn))×M(PnU × [0, T ]). As the topology of C([0, T ];M(Rn))×
M(PnU )× [0, T ]) induced on K is equivalent to the topology of CnW ×M(P(Rn×U)), we deduce that K which a compact
set of Cn,pW × M(Pp(Rn × U))(⊂ CnW × M(PnU )) is also a compact set of C([0, T ];M(Rn)) × M(P(Rn × U) × [0, T ]).
To conclude, we apply the fixed point theorem of Kakutani–Fan–Glicksberg (see [10, Corollary 17.55]) to deduce S? is
nonempty and compact. Therefore we can find (n?,q?) ∈ R?(n?,q?).

7.3.1.2 Proof of existence of strong measure–valued no common noise MFG solution

Now let us prove the main result of this part. If P?(dπ,dq,dπ′,dq′,db) := δ(n?,q?,n?,q?)(dπ,dq,dπ′,dq′)PB(db) ∈ P(Ω),
it is straightforward to check that P? is a strong relaxed no common noise MFG solution where PB is the R` Wiener
measure.

7.3.2 Existence of Measure-valued MFG equilibrium with common noise
7.3.2.1 Technical results

We place ourselves on the probability space (Ω,F,Pν) defined in 6.3.1. We use the same discretized techniques as in
Carmona, Delarue, and Lacker [49].

For each k ∈ N∗, let tki := i2−kT for i = 0, . . . , 2k. For each positive integer k, we choose a partition πk := {Ck1 , . . . , Ckk}
of R` into k measurable sets of strictly positive Lebesgue measure, such that πk+1 is a refinement of πk for each k, and
B(R`) := σ(∪∞k=1π

k). For each 1 ≤ q ≤ 2k, and i = (i1, . . . , iq) ∈ {1, ..., k}q, we define Sk,qi as follow

Sk,qi :=
{

b ∈ C` : btk
j
− btk

j−1
∈ Ckij , ∀j ∈ {1, . . . , q}

}
.
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The Sk,qi ’s, i ∈ {1, . . . , k}q, form a finite partition (of cardinal kq) of C`. Now, we introduce

Πk
q :=

{
Sk,qi : i ∈ {1, ..., k}q

}
,

with Πk
0 := {C`}, notice that cardinal of Πk

q is finite. For any k ≥ 0, the filtration (σ(Πk
q ))q=0,...,2k is the filtration

generated by the discretization of the canonical process, we have σ(Πk
q ) ⊂ Gtkq and σ(Πk

q ) ⊂ σ(Πk
q+1). For t ∈ [0, T ],

we note [t]k := tkq when tkq ≤ t < tkq+1. Let Πk(t) equal Πk
q , where q is the largest integer such that tkq ≤ t, and let

Gkt := σ(Πn(t)) = Gk[t]k . (Gkt )t∈[0,T ] is a filtration and

Gt = σ

( ∞⋃
k=0
Gkt
)
.

Let us introduce for each b ∈ C`,

[b̂, σ̂, L̂](t, y,b, π,m, u) := [b, σ, L](t, y + σ0bt, π[b],m[bt], u) and ĝ(y,b, π) := g(y + σ0bT , π[b]),

recall that π[b] and m[bt] are defined in 6.5.1. Notice that [b̂, σ̂, L̂] : [0, T ]× Rn × C` × CnW × PnU × U → Rn × Sn×n × R
and ĝ : Rn × C` × C` → R are continuous and for b ∈ C`, [b̂, σ̂, L̂](·, ·,b, ·, ·, ·) and ĝ(·,b, ·) verify the Assumption 5.5.5
with constant C and θ independent of b (see Assumption 5.5.5). We also note â := σ̂σ̂>.
For each k ∈ N∗, let consider the continuous process (Bk)t∈[0,T ] defined as Bkt := EPν [Bt

∣∣GkT ], then Bk takes a finite
number |Πk

2k | of value in C`.

Lemma 7.3.7. Under the previous considerations, we have lim
k→∞

EPν
[

sup
s∈[0,T ]

|Bks −Bs|
]
.

Proof. Let us define for each k ∈ N∗, Pk := Pν ◦
(
Bk, B

)−1 ∈ P(C` × C`). As, B is Pν–Brownian motion, by classical
argument it is straightforward to show that (Pk)k∈[0,T ] is relatively compact for the Wasserstein metric Wp. Denote by
P∞ the limit of any sub-sequence, and (H1, H2) the canonical process on C` × C`. We use the same notation for the
sequence and its sub-sequence.
Now, we apply the same techniques as in proof of [49, Lemma 3.6] (thrid step.) Given k0 ∈ N∗, as Gk0

T ⊂ GkT , for all
k ≥ k0. Assume ` = 1. For any bounded continuous function φ : C` → R, and C ∈ Gk0

T , for all t ∈ [0, T ], one has by [49,
Lemma A.4]

EP∞[H1
t 1H2

t ∈Cφ(H1)
]

= lim
k→∞

EPν
[
Bkt 1Bt∈Cφ(Bk)

]
= lim
k→∞

EPν
[
Bt1Bt∈Cφ(Bk)

]
= EP∞[H2

t 1H2
t ∈Cφ(H1)

]
.

this is true for any t ∈ [0, T ], k0, φ and C, as Gt = σ

(⋃∞
k=0 Gkt

)
, we conclude that H1 = H2 P∞–a.e. Consequently

lim
k→∞

EPν
[

sup
s∈[0,T ]

|Bks −Bs|
]

= lim
k→∞

EPk
[

sup
s∈[0,T ]

|H1
s −H2

s |
]

= EP∞
[

sup
s∈[0,T ]

|H1
s −H2

s |
]

= 0.

For the case ` > 1, we proceed coordinates by coordinates.

For each k ∈ N∗, letMk denote the set of functions (ζ,Λ) : C` → Cn,pW ×M(Pp(Rn × U)) that are GkT –measurable such
that for each t ∈ [0, T ], (ζt,Λt) is Gkt –measurable. Notice that any (ζ,Λ) ∈Mk is constant on S for each S ∈ Πk

2k . Since
GkT := σ(Πk

2k) is finite, the spaceMk is homeomorphic to a closed subset of (Cn,pW ×M(Pp(Rn × U)))|Π
k

2k
|. Hence,Mk is

a metrizable closed convex subset of a locally convex topological vector space.
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Let us introduce

N̂t[n◦,q◦,n,q,b] := 〈f,nt〉 − 〈f, ν〉 −
∫ t

0

∫
Pn
U

∫
Rn×U

L̂◦r [f ](y,b,n, u)m(du,dy)q◦r(dm)dr

−
∫ t

0

∫
Pn
U

∫
Rn
L?r [f ](y,b,n,m′)n◦r(dy)qr(dm′)dr,

where

L̂◦t [ϕ](y,b, π′, u) := 1
2Tr

[
a◦(t, y + σ0bt, π′[b], u)∇2ϕ(y)

]
+ b◦(t, y + σ0bt, π′[b], u)>∇ϕ(y),

and L?t [ϕ](y,b, π′,m) := 1
2Tr
[
a?(t, π′[b],m[b])∇2ϕ(y)

]
+ b?(t, π′[b],m[b])>∇ϕ(y).

Definition 7.3.8. Given (ζ,Λ) ∈Mk, (µ,Λ◦) ∈Mk is a measure–valued with k–finite common noise control rule if:

• Pν(µ0 = ν) = 1, and N̂t[µ,Λ◦, ζ,Λ, Bk](f) = 0, for all f ∈ C2
b (Rn) and every t ∈ [0, T ], Pν–a.e.

• For dt almost every t ∈ [0, T ], Λ◦t
(
Zµt
)

= 1, Pν–a.e.

Rk(ζ,Λ) will denote the set of all measure–valued control rules with k–finite common noise defined as previously. We
also consider

Rk,?(ζ,Λ) := arg max
(µ,Λ◦)∈R(ζ,Λ)

EPν
[
Ĵ
(
µ,Λ◦, ζ,Λ, Bk

)]
,

where

Ĵ
(
n◦,q◦,n,q,b) :=

∫ T

0

[ ∫
Pn
U

〈L̂◦
(
t, ·,b,n, ·

)
,m〉q◦t (dm) +

∫
Pn
U

〈L?
(
t, ·,b, π,m′

)
,n◦t 〉qt(dm′)

]
dt+ 〈ĝ(·,b,n),n◦T 〉.

Definition 7.3.9. (ζ?,Λ?) ∈Mk is a measure–valued MFG solution with k–finite common noise if (ζ?,Λ?) ∈ Rk,?(ζ?,Λ?).
We shall denote Sk,? all measure–valued with k–finite common noise MFG solutions.

As mention in the no common noise case, it will be more convenient to look at Rk as a set valued function:

Rk : (Cn,pW ×M(Pp(Rn × U)))|Π
k

2k
| 3 (ζ,Λ)→ Rk(ζ,Λ) ⊂ (Cn,pW ×M(Pp(Rn × U)))|Π

k

2k
|.

Theorem 7.3.10. For each k ∈ N∗, the set Sk,? is nonempty and compact.

Proof. In definition 7.3.8, N̂t[µ,Λ◦, ζ,Λ, Bk](f) = 0 Pν–a.e. is equivalent to the |Πk
2k |–equation: for each C ∈ Πk

2k ,

with ω ∈ {B ∈ C} fixed, N̂t[µ(ω),Λ◦(ω), ζ(ω),Λ(ω), Bk(ω)](f) = 0, and Λ◦t
(
Zµt
)

= 1, Pν–a.e. is equivalent to to the
|Πk

2k |–equations: for each C ∈ Πk
2k , with ω ∈ {B ∈ C} fixed, Λ◦t (ω)

(
Zµt(ω)

)
= 1. Then, by using exactly the same proof

as in the no common noise (with |Πk
2k |–equations instead of one equation), we prove that Rk is continuous.

Next, under assumption 5.5.5, the map

(Cn,pW ×M(Pp(Rn × U)))|Π
k

2k
| × (Cn,pW ×M(Pp(Rn × U)))|Π

k

2k
| 3 (µ,Λ◦, ζ,Λ)→ EPν

[
Ĵ
(
µ,Λ◦, ζ,Λ, Bk

)]
∈ R

is continuous, therefore, we proceed as in the no common case (proof of Theorem 7.3.6) i.e. applying Berge Maximum
Theorem and later the fixed point Theorem of Kakutani-Fan-Glicksberg to deduce that Sk,? is nonempty and compact.
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7.3.2.2 Proof of existence of measure–valued MFG solution with common noise

For each k ∈ N∗, let (ζk,?,Λk,?) ∈ Mk be a measure–valued MFG solution with k–finite common noise. We define the
sequence of probabilities (Pk)k∈N∗ by: for each k ∈ N∗

Pk := Pν ◦
(
ζk,?[Bk],Λk,?[Bk], ζk,?[Bk],Λk,?[Bk], Bk

)−1
,

where ζk,?[Bk],Λk,?[Bk] are defined as in (6.5.1) and (6.5.2). Under Assumption 5.5.5, as ν ∈ Pp′(Rn), it is straightforward
to show that (Pk)k∈N∗ is relatively compact inWp. Let P∞ be a limit of any sub-sequence, we will show P∞ is a measure–
valued MFG solution with common noise. For simplicity, we note (Pk)k∈N∗ and its sub-sequence with the same notation.

Optimality condition. Let P ∈ PV (ν) s.t. LP∞(ζ,Λt(dm)dt, B
)

= LP(ζ,Λt(dm)dt, B
)
. If we consider the canonical

processes (ϑt)t∈[0,T ] and (Θt)t∈[0,T ] defined in (6.5.4), we can verify that:

N̂t

[
ϑ,Θ, ζ[−B],Λ[−B], B

]
(f) = 0, for all f ∈ C2

b (Rn) and every t ∈ [0, T ], P –a.e,

for dt almost every t ∈ [0, T ], Θt

(
Zϑt
)

= 1, P–a.e. and LP∞
(
ζ[−B],Λt[−B](dm)dt, B

)
= LP

(
ζ[−B],Λt[−B](dm)dt, B

)
.

As the map

(π′, q,b) ∈ CnW ×M× C` →
(
π′[−b], qt[−b](dm)dt,b

)
∈ CnW ×M× C`

is continuous, we find that

lim
k
LPν

(
ζk,?,Λk,?t (dm)dt, Bk

)
= lim

k
LPk

(
ζ[−B],Λt[−B](dm)dt, B

)
= LP∞

(
ζ[−B],Λt[−B](dm)dt, B

)
= LP

(
ζ[−B],Λt[−B](dm)dt, B

)
.

By Proposition 4.7.10 combined with Itô formula (see also Remark 4.7.11), under the enlarged space (Ω̂, F̂q, P̂qν) of
(Ω,F,Pν) defined in the preamble of Section 6.5.2, there exist the sequence of σ(ζk,?t∧· ,Λ

k,?
t∧·, B

k
t∧·,H)t∈[0,T ]–adapted

continuous processes (ϑk)k∈N∗ and the sequence of σ(ζk,?t∧· ,Λ
k,?
t∧·, B

k
t∧·,H)t∈[0,T ]–predictable processes (Θk)k∈N∗ such that

N̂t

[
ϑk,Θk, ζk,?,Λk,?, Bk

]
(f) = 0, for all f ∈ C2

b (Rn) and every t ∈ [0, T ], P̂qν –a.e,

for dt almost every t ∈ [0, T ], Θk
t

(
Zϑkt

)
= 1, P̂qν–a.e. and

lim
k
LPqν

(
ϑk,Θk, ζk,?,Λk,?t (dm)dt, Bk

)
= LP

(
ϑ,Θ, ζ[−B],Λt[−B](dm)dt, B

)
.

Under Assumption 5.5.5, using the fact that for each k ∈ N∗, (ζk,?,Λk,?) ∈ Mk is a measure–valued MFG solution
with k–finite common noise and that H is independent of other variables (see definition of (Ω̂, F̂q, P̂qν) in the preamble of
Section 6.5.2), one finds

EP∞[J(µ,Λ◦, ζ,Λ)
]

= lim
k→∞

EP̂qν
[
Ĵ(ζk,?,Λk,?, ζk,?,Λk,?, Bk)

]
≥ lim
k→∞

EP̂qν
[
Ĵ(ϑk,Θk, ζk,?,Λk,?, Bk)

]
= EP[Ĵ(ϑ,Θ, ζ[−B],Λ[−B], B)

]
= EP[J(µ,Λ◦, ζ,Λ)

]
.

F ixed point and F–K equation. Using broadly the same previous arguments, we can check that: B is a (F,P∞)–Brownian
motion starting at zero,

Nt

[
µ,Λ◦, ζ,Λ

]
(f) = N̂t

[
ϑ,Θ, ζ[−B],Λ[−B], B

]
(f) = 0, for all f ∈ C2

b (Rn) and every t ∈ [0, T ], P∞ –a.e,

for dt almost every t ∈ [0, T ], Λ◦t
(
Zµt
)

= 1, P◦–a.e. and P∞
(
Λ◦ = Λ, µ = ζ

)
= 1. We can conclude that P∞ ∈ P?V (ν).
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7.3.3 Strong Markovian MFG equilibrium
Let P? ∈ P?V (ν) (see Definition 6.3.5 for the equivalence with the canonical space) be a measure–valued MFG solution
such that there exists (n?,q?) ∈ CnW ×M(PnU ) satisfying (µ,Λ) = (n?,q?), P?–a.e. By Theorem 4.6.2, there exists a
sequence (α?,k)k∈N∗ , such that for each k ∈ N∗, α?,k : [0, T ]× Rn → U is a Borel function, and on a filtered probability
space (Ω?,F?,P?) supporting W a Rn–Brownian motion and ξ–a F0–random variable with LP?(ξ) = ν, X?,k is a solution
of

X?,k
t = ξ +

∫ t

0
b
(
r,X?,k

r , µkr∧·, µ
k
r , α

?(r,X?,k
r )

)
dr +

∫ t

0
σ
(
r,X?,k

r

)
dWr, for all t ∈ [0, T ], P?–a.e.,

µkt = LP?(X?,k
t , α?,k(t,X?,k

t )), dt⊗ dP?–a.e, µkt = LP?(X?,k
t ), and one has

lim
k→∞

(
µk, δµkt (dm)dt

)
=
(
n?,q?

)
, inWp P?–a.e.

Now, we show there is a sequence (εk)k∈N∗ , such that εk > 0, lim
k→∞

εk = 0, and µk is an εk–strong Markovian MFG
solution. Denote by Am the set of Borel function α : [0, T ]×Rn → U, and for any α ∈ Am, Xα,k the associated solution

Xα,k
t = ξ +

∫ t

0
b
(
r,Xα,k

r , µkr∧·, µ
k
r , α(r,Xα,k

r )
)
dr +

∫ t

0
σ
(
r,Xα,k

r

)
dWr, for all t ∈ [0, T ], P–a.e..

With µα,kt := LP?(Xα,k
t , α(t,Xα,k

t )) and µα,kt := LP?(Xα,k
t ), we define

εk := sup
α∈Am

J
(
µα,k, δµα,kt

(dm)dt, µk, δµkt (dm)dt
)
− J

(
µk, δµkt (dm)dt, µk, δµkt (dm)dt

)
.

By construction for each k ∈ N∗, εk > 0. We choose αk ∈ Am such that

J
(
µα

k,k, δ
µα

k,k
t

(dm)dt, µk, δµkt (dm)dt
)
− J

(
µk, δµkt (dm)dt, µk, δµkt (dm)dt

)
≥ εk − 1/2k.

Using Proposition 4.8.4 (for instance), we can show the sequence
(
P ◦

(
µα

k,k, δ
µα

k,k
t

(dm)dt, µk, δµkt (dm)dt
)−1)

k∈N∗
is

relatively compact in Wp, and as limit of (µk, µk)k∈N∗ is deterministic, one has that any limit P∞ of any sub-sequence of(
P ◦

(
µα

k,k, δ
µα

k,k
t

(dm)dt, µk, δµkt (dm)dt
)−1)

k∈N∗
belongs to PV (ν) with LP∞(ζ,Λ) = LP?(ζ,Λ). As P? is a measure–

valued MFG equilibrium, we deduce that

0 ≥ lim sup
k→∞

J
(
µα

k,k, δ
µα

k,k
t

(dm)dt, µk, δµkt (dm)dt
)
− J

(
µk, δµkt (dm)dt, µk, δµkt (dm)dt

)
.

Therefore lim
k→∞

εk = 0, and µk is an εk–strong Markovian MFG solution for each k ∈ N∗.

7.4 Appendix: some technical results
7.4.1 Density of controls
Let E, E◦ and E? be three polish spaces, and (Ω,F,F ,P) be a filtered probability space supporting

• a E–valued F–adapted continuous process (ϑt)t∈[0,T ].

• a P(E?)–valued F–predictable process (Φt)t∈[0,T ], and a P(E◦)–valued F–predictable process (Φ◦t )t∈[0,T ].

All these variables satisfy

LP(Φ◦t∧·∣∣ϑt∧·,Φt∧·) = LP(Φ◦t∧·∣∣ϑ,Φ), for all t ∈ [0, T ], P a.e., (7.4.1)

where Φt(de?)dt is considered as an element of M(E?) and Φ◦t (de◦)dt as an element of M(E◦).
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Proposition 7.4.1. With the previous considerations, there exists a [0, 1]–valued uniform variable N independent of all
variables, and a sequence (Ĝk)k∈N? satisfying for each k ∈ N∗, Ĝk : [0, T ] × C([0, T ];E) ×M(E?) × [0, 1] → P(E◦) is a
continuous function such that

lim
k→∞

LP
(
Ĝk
(
t, ϑt∧·,Φt∧·, N

)
(de◦)dt, ϑ,Φ

)
= LP

(
Φ◦t (de◦)dt, ϑ,Φ

)
.

Moreover, if Γ◦ ⊂ E◦ is a compact set s.t. Φ◦t (Γ◦) = 1, dP⊗ dt–a.e., there exists a sequence (Gk)k∈N∗ such that for each
k ∈ N∗, Gk : [0, T ]× C([0, T ];E)×M(E?)× [0, 1]→ E◦ is a continuous function and

lim
k→∞

LP
(
δ
Gk
(
t,ϑt∧·,Φt∧·,N

)(de◦)dt, ϑ,Φ) = LP
(

Φ◦t (de◦)dt, ϑ,Φ
)
.

Proof. Let tK0 = 0 < · · · < tKK = T for each K ∈ N∗, with lim
K→∞

sup
k
|tKk − tKk−1| = 0, denote [t]K =

∑K
k=1 t

K
k 1t∈[tK

k
,tK
k+1),

and define

Φ◦,Kt (de◦) := K

∫ [t]K(
[t]K− 1

K

)
∨0

Φ◦s(de◦)ds, for each t ∈ [0, T ] and K ∈ N∗.

By mimicking the proof of [119, Lemma 4.4], the sequence of P(E◦)–valued F–predictable processes (Φ◦,K)K∈N∗ is such
that: lim

K→∞
Φ◦,Kt (ω) = Φ◦t (ω), for the weak convergence topology, for dP⊗ dt a.e. (t, ω) ∈ [0, T ]×Ω, Φ◦,Kt = V K(t,Φ◦t∧·)

with a Borel function V K : [0, T ] ×M(E◦) → P(E◦) and Φ◦,Kt = Φ◦,K
tK
k

when t ∈ [tKk , tKk+1), for every k ∈ {1, . . . ,K}.
Notice that for each K, by assumption 7.4.1, one has

LP(Φ◦,Kt∧· ∣∣ϑt∧·,Φt∧·) = LP(Φ◦,Kt∧· ∣∣ϑ,Φ), for all t ∈ [0, T ], P a.e. (7.4.2)

and if Φ◦t (Γ◦) = 1 one has Φ◦,Kt (Γ◦) = 1.

For every 1 ≤ k ≤ K, there exists a Borel function Fk : M(E◦) × C([0, T ];E) ×M(E?) × [0, 1] → M(E◦) and uniform
random variable Nk independent of

(
Φ◦,K
tK
k−1∧·

, ϑtK
k
∧·,ΦtK

k
∧·
)
such that

LP(Fk,Φ◦,K
tK
k−1∧·

, ϑtK
k
∧·,ΦtK

k
∧·
)

= LP(Φ◦,K
tK
k
∧·,Φ

◦,K
tK
k−1∧·

, ϑtK
k
∧·,ΦtK

k
∧·
)
,

where Fk := Fk
(
Φ◦,K
tK
k−1∧·

, ϑtK
k
∧·,ΦtK

k
∧·, N

k
)
.

Now denote γ0 := Φ◦,K
tK0 ∧·

(which can be assumed not random), and by recurrence: for all 1 ≤ k ≤ K

γk := Fk
(
γk−1, ϑtK

k
∧·,ΦtK

k
∧·, N

k
)
,

notice that γk is σ
{
ϑtK
k
∧·,ΦtK

k
∧·, N

1, . . . , Nk
}
–measurable and belongs toM(E◦), (Nk)k can be taken i.i.d and independent

of the other variables.

Now let us prove that

LP(γ0, . . . , γK , ϑ,Φ
)

= LP(Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
K
∧·, ϑ,Φ

)
, (7.4.3)

we proceed by recurrence i.e. let us prove for each k

LP(γ0, . . . , γk, ϑtK
k
∧·,ΦtK

k
∧·
)

= LP(Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
k
∧·, ϑtKk ∧·

,ΦtK
k
∧·
)
. (7.4.4)
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For k = 0, this is obvious. Assume that (7.4.4) is true for k, we verify for (k+ 1). Let φ : M(E◦)k → R, G : C([0, T ];E)×
M(E?)→ R Borel functions,

EP
[
φ
(
Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
k
∧·

)
G
(
ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
= EP

[
EP
[
φ
(
Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
k
∧·

)∣∣ϑ,Φ]G(ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
= EP

[
EP
[
φ
(
Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
k
∧·

)∣∣ϑtK
k
∧·,ΦtK

k
∧·

]
G
(
ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
= EP

[
EP
[
φ
(
γ0, . . . , γk

)∣∣ϑtK
k
∧·,ΦtK

k
∧·

]
G
(
ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
= EP

[
EP
[
φ
(
γ0, . . . , γk

)∣∣ϑ,Φ]G(ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
= EP

[
φ
(
γ0, . . . , γk

)
G
(
ϑtK
k+1∧·

,ΦtK
k+1∧·

)]
,

where the result (7.4.2) is used for the second equality, the third follows from the recurrence hypothesis (7.4.4), and the
fourth because of the result (7.4.2) again. This is true for all (φ,G), then

LP(γ0, . . . , γk, ϑtK
k+1∧·

,ΦtK
k+1∧·

)
= LP(Φ◦,K

tK0 ∧·
, . . . ,Φ◦,K

tK
k
∧·, ϑtKk+1∧·

,ΦtK
k+1∧·

)
,

the previous equality allows us to get

LP(Φ◦,K
tK0 ∧·

, . . . ,Φ◦,K
tK
k
∧·, ϑtKk+1∧·

,ΦtK
k+1∧·

,Φ◦,K
tK
k+1∧·

)
= LP(Φ◦,K

tK0 ∧·
, . . . ,Φ◦,K

tK
k
∧·, ϑtKk+1∧·

,ΦtK
k+1∧·

,Fk+1)
= LP(γ0, . . . , γk, ϑtK

k+1∧·
,ΦtK

k+1∧·
, γk+1),

therefore (7.4.4) is true for (k + 1), consequently (7.4.3) is true. As γK ∈ M(E◦) and the law equality (7.4.3), it is
straightforward to check that

γKt∧·(de◦) = γkt∧·(de◦), dP⊗ dt–a.e. (t, ω) ∈ [tKk , tKk+1)× Ω,

then γKt∧· is σ
{
ϑt∧·,Φt∧·, N1, . . . , NK

}
–measurable, and therefore there exists a Borel measurable function ĜK : [0, T ]×

C([0, T ];E)×M(E?)× [0, 1]K → P(E◦) s.t. γKt (de◦)dt = ĜK(t, ϑt∧·,Φt∧·, N1, . . . , NK)(de◦)dt, P–a.e.. And one has

lim
K→∞

LP(γK , ϑ,Φ) = lim
K→∞

LP(Φ◦,K , ϑ,Φ) = LP(Φ◦, ϑ,Φ).
If Γ◦ ⊂ E◦ is a compact set s.t. Φ◦t (Γ◦) = 1, dP ⊗ dt–a.e., we saw earlier that Φ◦,Kt (Γ◦) = 1, dP ⊗ dt–a.e., for all K,
therefore, by law equality (7.4.3), γKt (Γ◦) = 1, dP ⊗ dt–a.e.. It is a classical result that for each K ∈ N∗, there exists
a sequence of Γ◦–valued (σ{γKt∧·})t∈[0,T ]–predictable processes (mK,q)q∈N∗ such that lim

q
δmK,q

t
(dm′)dt = γKt (dm′)dt,

P–a.e.. Then, there exists a Borel function GK,q : [0, T ]× C([0, T ];E)×M(E?)× [0, 1]K → E◦ verifying

mK,q
t = GK,q(t, ϑt∧·,Φt∧·, N1, . . . , NK), P–a.e., for each q ∈ N∗.

Consequently

lim
K→∞

lim
q→∞

LP(δmK,q
s

(dm′)ds, ϑ,Φ
)

= lim
K
LP(γK , ϑ,Φ) = lim

K
LP(Φ◦,K , ϑ,Φ) = LP(Φ◦, ϑ,Φ).

Next, we will show that we can chose an approximation of ĜK and GK,q continuous. If

QK := 1
T
EP
[
δ(
ϑt∧·, Φt∧·, N1,...,NK

)(daϑ,daΦ,dn1, . . . ,dnK)
]
dt,

QK is an element of P
(

[0, T ] × C([0, T ];E) ×M(E?) × [0, 1]K
)
, by [49, Proposition C.1.], for each K, there exists a

sequence (ĜK,j)j∈N such that ĜK,j : [0, T ]×C([0, T ];E)×M(E?)× [0, 1]K → P(E◦) is continuous and lim
j→∞

ĜK,j = ĜK ,

QK–a.e. If Q̃K := P ◦
(
ϑ,Φ, N1, . . . , NK

)−1(da,dn1, . . . ,dnK)dt, it is straightforward to see that Q̃ is equivalent to Q,
and therefore

lim
K→∞

lim
j→∞

LP
(
ĜK,j(t, ϑt∧·,Φt∧·, N1, . . . , NK)(de◦)dt, ϑ,Φ

)
= lim
K→∞

LP(γK , ϑ,Φ) = lim
K
LP(Φ◦,K , ϑ,Φ) = LP(Φ◦, ϑ,Φ),

we deal the function GK,q by similar way for the case Γ◦ ⊂ E◦ a compact set s.t. Φ◦t (Γ◦) = 1, dP ⊗ dt–a.e., all these
results are sufficient to conclude.
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7.4.2 Approximation by measure–valued control rules
In this section we provide some convergence result for a sequence of particular measure–valued control rule PV (see
definition 6.3.2). This result is useful to prove the limit theorem Theorem 6.4.1. To simplify, it is shown that: for a
convergent sequence of measure–valued control rules satisfying some conditions, we can find another sequence of measure–
valued control rules sharing the same limit and keeping certain properties of the limit.
In order to correctly formulate our result, let us mention some notations, they are motivated by those used in Chapter 4.

Let ν ∈ Pp′(Rn) with p′ > p, (Ω,F,F ,P) be a probability space supporting

• a Rn+` Brownian motion (W,B) and a F0–random variable ξ s.t. LP(ξ) = ν

• a PnU–valued F–predictable process (Λ?t )t∈[0,T ] and a P(Rn)–valued F–continuous process (ζ?t )t∈[0,T ]

• a sequence of Borel functions (φk)k∈N∗ s.t. for each k ∈ N∗, φk : [0, T ]× Rn × Cn × C` × CnW ×M(PnU )→ U.

• a sequence of P(Rn)–valued F–adapted continuous process (ζk)k∈N∗ , and a sequence of PnU–valued F–predictable
processes (mk)k∈N∗ .

Next, let us introduce for all k ∈ N∗, the unique strong solution Xk of: for all t ∈ [0, T ]

Xk
t = ξ +

∫ t

0
b
(
r,Xk

r , ζ
k,mk

r , φ
k
r

)
dr +

∫ t

0
σ
(
r,Xk

r , ζ
k,mk

r , φ
k
r

)
dWr + σ0Bt,

with Λkt (dm′)dt := δmk
t
(dm′)dt, and φkt := φk(t, ξ,Wt∧·, Bt∧·, ζ

k
t∧·,Λkt∧·).

Denote by µkt := LP(Xk
t

∣∣Bt∧·, ζkt∧·,Λkt∧·), µkt := LP(Xk
t , φ

k
t

∣∣Bt∧·, ζkt∧·,Λkt∧·), for all t ∈ [0, T ], and Λ◦,kt (dm)dt :=
δµkt (dm)dt. Also, the filtration G := (Gt)t∈[0,T ] is defined by

Gt := σ{ζ?t∧·,Λ?t∧·, Bt∧·}, for all t ∈ [0, T ].

Lemma 7.4.2. If for each k ∈ N∗, (Λkt , ζkt )t∈[0,T ] is G–adapted, (B,Λ?, ζ?) is P–independent of (W, ξ), and

lim
k→∞

(Λk, ζk) = (Λ?, ζ?), inWp, P–a.e., (7.4.5)

then there exists for each k ∈ N∗, a P(Rn)–valued G–adapted continuous process µ̃k and a PnU–valued G–predictable
process Λ̃◦,k solution of: for every (t, f) ∈ [0, T ]× C2

b (Rn),

〈f(· − σ0Bt), µ̃kt 〉 = 〈f, ν〉+
∫ t

0

∫
Pn
U

[
〈L◦r [f(· − σ0Br)](·, ζ?, ·),m〉

]
Λ̃◦,kr (dm)dr

+
∫ t

0

∫
Pn
U

∫
Rn
L?r [f(· − σ0Br)](x, ζ?,m′)µ̃kr (dx)Λ?r(dm′)dr, P–a.e.,

with Λ̃◦,kt
(
Z
µ̃kt

)
= 1, dP⊗ dt–a.e. such that: if

Qk := LP
(
µ̃k, ζ?, Λ̃◦,kt

(
dm
)
dt,Λ?t

(
dm
)
dt, B

)
,

Qk ∈ PV (ν) for each k ∈ N∗, and

lim
k→∞

Wp

(
LP(µk, ζk,Λ◦,kt (

dm
)
dt,Λkt

(
dm′

)
dt, B

)
,Qk

)
.
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Proof. Let us take a convergent sub-sequence of
(
LP(µk, ζk,Λ◦,kt (dm)dt,Λkt (dm)dt, B

))
k∈N∗ (possible because it is relatively

compact see for instance Proposition 4.8.4), denote by P∞ its limit, one uses the same notation for the sub–sequence.
The limit satisfies: Nt(f) = 0, P∞–a.e., for all t ∈ [0, T ] and f ∈ C2

b (Rn), where recall that (µ, ζ,Λ◦,Λ, B) is the
canonical variable on Ω := (CnW)2 ×M(PnU )2 × C`, and Λ◦t (Zµt) = 1, dP∞ ⊗ dt–a.e. (t, ω) ∈ [0, T ] × Ω. Notice that, as
lim
k→∞

(Λk, ζk) = (Λ?, ζ?), in Wp, P–a.e., one has

lim
k→∞

Wp

(
LP(ζk,Λ◦,kt (dm)dt,Λkt (dm)dt, B

)
,LP(ζ?,Λ◦,kt (dm)dt,Λ?t (dm)dt, B

))
= 0.

Then, by taking into account the conditions (7.4.5), it is enough to apply Section 4.9.1 (see also Proposition 4.7.7) and
Itô’s formula to conclude the proof.
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Part III

Numerical approximations
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Chapter 8

Numerical methods

8.1 Introduction
In this chapter, we propose a numerical algorithm to solve the McKean–Vlasov control problem. Motivated by the results
of Chapter 3 and Chapter 4 i.e. Theorem 3.2.7 and Theorem 4.5.3, we solve numerically the mean–field control problem.
Our numerical procedure is based on a discretization of the large population stochastic control problem.

Indeed, first of all, we formulate a discretized form of the large population stochastic control problem by discretization in
time with controls as function of finite samples of Brownian motions. The controls are no longer function of the trajectory
of Brownian motions, only a finite value of Brownian motions matters in this situation (see Equation (8.2.3)). Then,
when simultaneously the size of the discretization in time goes to zero and the number of agents goes to infinity, we prove
that this discretized large population stochastic control problem has the same limit as the “normal” large population
stochastic control problem i.e. the McKean–Vlasov control problem.

In the second time, based on this result, we give an algorithm to solve the McKean–Vlasov control problem using neural
networks. As our problem involves a lot of data (infinite in theory), we suffer from the curse of dimensionality, therefore,
using neural networks is natural and simplify the implementation. We implement our algorithm thanks to the open–source
library keras, and test its efficient on three example.

Notice that, our idea is very close to Han and E [78], Fouque and Zhang [70] and Carmona and Laurière [46], which use
similar methods to solve the mean–field control problem via neural networks. Despite the fact that we do not have a
rate of convergence like [46], our result is more general in the sense that we work in a framework with assumptions less
stronger, with law of controls and common noise while allowing to control the no–common noise volatility σ. Further, it
should be emphasized that although our algorithm is intended for solving the mean–field control problem, it can be used
to solve mean field games by using the equivalence result between MFG and MFC in certain contexts as formulated in
Carmona and Delarue [43, Chapter 6].

The rest of the chapter is structured as follows. In Section 8.2, we recall first the strong formulation of McKean–Vlasov
control problem, then provide the discretized form of the large population stochastic control problem and finally formulate
the convergence result. The numerical implementation is given in Section 8.3 with the numeric examples. The technical
proofs are completed in Section 8.4.

We use in this chapter some notations of Chapter 2, Chapter 3 and Chapter 4. We recall them for a better reading. Let
M(E) bethe space of all Borel measures q(dt, de) on [0, T ] × E, whose marginal distribution on [0, T ] is the Lebesgue
measure dt, that is to say q(dt,de) = q(t,de)dt for a family (q(t, de))t∈[0,T ] of Borel probability measures on E. Let Λ
denote the canonical element on M(E), we define

Λt(ds,de) := Λ(ds,de)
∣∣
[0,t]×E + δe0(de)ds

∣∣
(t,T ]×E , for some fixed e0 ∈ E.

Throughout the chapter, we fix a nonempty Polish space (A, ρ) and an element a0 ∈ A, and denote M := M(A). Finally,
consider the canonical space Cn ×M (resp. Cn × A), with canonical element (X,Λ) (resp. (X,α)), and ν̂ ∈ P(Cn ×M)
(resp. ν̄ ∈ P(Cn ×A)). We define, for each t ∈ [0, T ]

ν̂(t) := ν̂ ◦ (Xt∧·,Λt)−1,
(
resp. ν̄(t) := ν̄ ◦ (Xt∧·, α)−1).
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8.2 McKean–Vlasov optimal control and main results
Here, we recall the strong formulation of the McKean–Vlasov optimal control problem, and introduce the discretized
large population control problem which will be necessary to give a numerical algorithm using neural networks to solve
the McKean–Vlasov optimal control problem. In all this part, we work under the Assumption 1.4.1 with σ0 constant.

8.2.1 A strong formulation
Let us consider the canonical space

Ω := Rn × Cd × C`,
equipped with its Borel σ–algebra F := B(Ω) and canonical element (X0,W,B). Let F := (Ft)0≤t≤T and G = (Gt)0≤t≤T
be two filtrations on (Ω,F) defined by

Ft := σ
(
(X0,Ws, Bs) : s ∈ [0, t]

)
, and Gt := σ

(
Bs : s ∈ [0, t]

)
, t ∈ [0, T ].

Let p be the constant in Assumption 1.4.1 and ν ∈ Pp(Rn). We denote by Pν the probability measure on (Ω,F), under
which X0 ∼ ν and (W,B) is a standard Rd+`–dimensional Brownian motion, independent of X0. Recall that a0 is a fixed
point in A. We denote by Ap(ν) the collection of all F–predictable, A–valued processes α = (αs)0≤s≤T satisfying

EPν
[ ∫ T

0

(
ρ(αs, a0)

)pds] <∞.
Then given a control process α ∈ Ap(ν), the controlled McKean–Vlasov SDE

Xα
t = X0 +

∫ t

0
b
(
s,Xα

s∧·, µ
α
s , αs

)
ds+

∫ t

0
σ
(
s,Xα

s∧·, µ
α
s , αs

)
dWs + σ0Bt, t ∈ [0, T ], Pν–a.s., (8.2.1)

with µαs := LPν
(
Xα
s∧·, αs

∣∣Gs), dt⊗dPν–a.e., has a unique strong solution, that is, there is a unique F–adapted continuous
process Xα on (Ω,F) satisfying Equation (8.2.1) and EPν

[
supt∈[0,T ] |Xα

t |p
]
<∞.

Denote also µαt := LPν
(
Xα
t∧·
∣∣Gt) for all t ∈ [0, T ]. The strong formulation of the McKean–Vlasov control problem is then

given by

VS(ν) := sup
α∈Ap(ν)

EPν
[ ∫ T

0
L
(
t,Xα

t∧·, µ
α
t , αt

)
dt+ g

(
Xα
T∧·, µ

α
T

)]
. (8.2.2)

8.2.2 A discretized large population stochastic control problem with common noise
Now, in this section, we formulate the discretized form of the large population stochastic control problem. Let N be
a positive integer, mN ∈ N∗ such that limN−→∞mN = ∞, tNj := j 1

mN
for each j ∈ {1, ...,mN}, and for all t ∈ [0, T ],

[t]N :=
∑mN
j=1 t

N
j 1t∈[tN

j
,tN
j+1).

Let (Ω?,F?,F?,P?) be a filtered probability space supporting N–i.i.d. Rn–valued random variables X0 := (X1
0 , ..., X

N
0 ) of

distribution ν ∈ Pp(Rn), the sequences of independent random variables of normal distribution (U ik)(i,k)∈{1,...,N}×{1,...,mN}
and (V Nk )k∈{1,...,mN}. Moreover, X0, (U ik)(i,k)∈{1,...,N}×{1,...,mN}, and (V Nk )k∈{1,...,mN} are independent.

Let us introduce the following assumption that we will use for the discretization of the SDEs:

Assumption 8.2.1. Let H : R+ × Cn × P(Cn × A) × A × [0, 1] → Rn satisfying: for any normal random variable U,
(h,x, ν̄, a) ∈ R+ × Cn × P(Cn ×A)×A,

EP?
[∣∣H(h,x, ν̄, a, U)

∣∣3]+
∣∣∣EP?[H(h,x, ν̄, a, U)

]
− b(x, ν̄, a)h

∣∣∣
+
∣∣∣EP?[H(h,x, ν̄, a, U)H(h,x, ν, a, U)>

]
− σσ>(x, ν̄, a)h

∣∣∣ ≤ ψ(h)

where ψ : R+ → R+ s.t. lim
h→0

h−1ψ(h) = 0, and suph>0 h
−3/2ψ(h) <∞.
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We denote by AN the collection of all bounded measurable functions φ : [0, T ]×Rn× (Rd×R`)mN → A. Then, with the
function H verifying Assumption 8.2.1, for every fixed φ ∈ AN , let us define the continuous process (Xφ,1, . . . , Xφ,N ) by:
for i ∈ {1, . . . , N}, Xφ,i

0 := Xi
0 and for all j ∈ {0, . . . ,mN − 1}, Xφ,i

tN0
= Xi

0, Y
φ,i

tN0
= 0,

Y φ,i
tN
j+1

= Y φ,i
tN
j

+ H
(
1/mN , X̂φ,i, ϕNtN

j
, φitN

j
, U ij

)
and Xφ,i

tN
j+1

= Xφ,i

tN
j

+ Y φ,i
tN
j+1
− Y φ,i

tN
j

+ σ0

√
1/mNV Nj (8.2.3)

where φi
tN
j

:= φ
(
tNj , X

i
0,
(√

1/mNU ik∧j ,
√

1/mNV Nk∧j
)

1≤k≤mN

)
,
{

(U ij , V Nj ), 1 ≤ i ≤ N, 1 ≤ j ≤ mN
}

independent

normal random variables, (X̂φ,1, . . . , X̂φ,N ) denotes the linear interpolation process of
{

(Xφ,1
tN
j

, . . . , Xφ,N

tN
j

), 1 ≤ j ≤ mN
}

on interval [0, T ],

ϕNtN
j

(dx) := 1
N

N∑
i=1

δ(
X̂φ,i
tN
j

,φi
tN
j

)(dx), and ϕN,X(dx) := 1
N

N∑
i=1

δ
X̂φ,i

(dx), for all s ∈ [0, T ].

The value function of the discretized large population stochastic control problem is then defined by

V NS (ν) := sup
φ∈AN

JN (φ), where JN (φ) := 1
N

N∑
i=1

mN−1∑
j=0

EP?
[
L
(
tNj , X̂

φ,i, ϕNtN
j
, φitN

j

)
1/mN + g

(
X̂φ,i, ϕN,X

)]
. (8.2.4)

Remark 8.2.2. Considering a general form of the discretized diffusion (8.2.3) with the function H allows different
possible schemes and not only the Euler’s scheme. The Euler’s scheme corresponds to

H(h,x, ν̄, a, U) := b(x, ν̄, a)h+ σ(x, ν̄, a)
√
hU.

In the case n = 1, another scheme is possible by considering the cumulative distribution function F (h,x, ν̄, a) : R→ [0, 1]
of b(x, ν̄, a)h+ σ(x, ν̄, a)

√
hU and define

H(h,x, ν̄, a, U) := inf{y : F (h,x, ν̄, a)(y) > β(U)},

where β is a function s.t. the law of β(U) is uniform.

8.2.3 Main results
Assumption 8.2.3. There exist Borel measurable functions (b◦, σ◦, L◦) : [0, T ] × Cn × P(Cn) × A −→ Rn × Sn×d such
that, for all (t,x, ν̄, a) ∈ [0, T ]× Cn × P(Cn ×A)×A, with ν(dx) := ν̄(dx, A)

(b, σ, L)(t,x, a, ν̄) = (b◦, σ◦, L◦)(t,x, a, ν).

By abuse of notations, we still write (b, σ, L) in lieu of (b◦, σ◦, L◦).

Assumption 8.2.4. There exist a constant θ > 0, and Borel measurable functions (b?, σ?, L?) : [0, T ]×Rn×C([0, T ];P(Rn))×
A×P(Rn×A) −→ Rn× Sn×d and σ?0 ∈ Sn×` such that, for all (t,x, ν̄, ν, a) ∈ [0, T ]×Cn×P(Cn×A)×P(Cn)×A, with
ν̄?t (dx, da) := ν̄ ◦

(
Xt, α

)−1(dx, da) and ν?t (dx) := ν ◦
(
Xt

)−1(dx)

(b, σ, L)(t,x, a, ν̄) = (b?, σ?, L?)(t,xt, ν?t∧·, ν̄?t , a), σ0(t,x, ν) = σ?0 and θIn ≤ σσ>(t,x, a, ν̄).

By abuse of notations, we still write (b, σ, L, σ0) in lieu of (b?, σ?, L?, σ?0).

Theorem 8.2.5. Let Assumption 1.4.1 hold true. Under Assumption 8.2.3 or Assumption 8.2.4, for any ν ∈ Pp′(Rn),
one has

lim
N→∞

∣∣V NS (ν)− VS(ν)
∣∣ = 0.
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8.3 Numerical implementation through neural networks
8.3.1 Description of the implementation
Description of the neural network We use a feedforward neural network which is a composition of layer functions.
The set of layer functions with input dimension d1, output dimension d2, and activation function ρ : R → R denoted
Lρd1,d2

is defined by

Lρd1,d2
:=
{
φ : Rd1 → Rd2 s.t. ∃ b ∈ Rd2 and w ∈ Sd2×d1 satisfying ∀ (i, x) ∈ [[1, d2]]× Rd1 , φ(x)i = ρ

(
bi +

d1∑
j=1

wijxj

)}
.

The set of feedforward neural network functions with H hidden layers, one output layer, the activation function ρ is then
defined

Nρ[d1, ..., dH+1] :=
{
φ : Rd0 → RdH+1 s.t. ∀ i ∈ [[0,H− 1]], ∃ φi ∈ Lρdi,di+1

and φH ∈ LId
dH,dH+1

satisfying φ = φ0 ◦ ... ◦ φH
}
.

Now, we define a new optimization problem involving the feedforward neural networks. For ν ∈ Pp(Rn), let us introduce,
for an activation function ρ, (d1, . . . , dH) ∈ (N?)H,

VN,qS (ν) := sup
φ ∈ Nρ[(d+`)×mN+2, d1,...,dH, h]

JN (φ),

where JN is defined in (8.2.4). Thanks to the universal approximation theorem, the following result is just an application
of Theorem 8.2.5.

Proposition 8.3.1. Let us stay in the context of Theorem 8.2.5. Then

lim
N→∞

lim
q→∞

∣∣VN,qS (ν)− VS(ν)
∣∣ = 0.

Algorithm Based on the previous result, we give an algorithm for solving the McKean-Vlasov control problem.

Let tNk+1 − tNk = 1/mN := ∆N , M ∈ N∗, (ξi,j(i,j)∈{1,...,N}×{1,...,M}) a sequence of independent random variables s.t.
LP(ξi,j) = ν for all (i, j), and (U i,jk )(i,k,j)∈{1,...,N}×{1,...,mN}×{1,...,M} and (V jk )(k,j)∈{1,...,mN}×{1,...,M} a sequence of i.i.d
random variables of normal distribution. For φ ∈ Nρ[(d + `) ×mN + 2, q, h], let us define: Xφ,i,j

0 = ξi,j0 , and for each
k ∈ {1, . . . ,mN},

Y φ,i,j
tN
k+1

= Y φ,i,j
tN
k

+ H
(
1/mN , X̂φ,i,j , ϕNtN

k
, φi,j

tN
k

, U i,jk
)

and Xφ,i,j

tN
k+1

= Xφ,i,j

tN
k

+ Y φ,i,j
tN
k+1
− Y φ,i,j

tN
k

+ σ0

√
1/mNV jk

where φi,j
tN
k

:= φ
(
tNk , ξ

i,j
0 ,
(√

∆NU i, jk′∧k,
√

∆NV jk′∧k
)

1≤k′≤mN

)
,

ϕN,js (dx,da) := 1
N

N∑
i=1

δ(X̂φ,i,j ,φi,js )(dx,da), ds⊗ dP?–a.e., and ϕN,X,j(dx) := 1
N

N∑
i=1

δ
X̂φ,i,j

(dx), for all s ∈ [0, T ].

The optimization problem which we implement is

VN,q,MS (ν1, . . . , νN ) := sup
φ∈Nρ[(d+`)×mN+2, d1,...,dH, h]

JN (φ),

where

JN,M (φ) := 1
M

M∑
j=1

1
N

N∑
i=1

mN∑
k=1

L
(
tNk , X̂

φ,i,j , ϕN,j
tN
k

, φi,j
tN
k

)
∆N + g

(
X̂φ,i,j , ϕN,X,j

)
.
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The parameters of our model through the function φ are

θ :=
(
b1, (w1,1, . . . , w1,d1), . . . , (bh), (wh,1, . . . , wh,dH)

)
,

we will note JN,M (θ) instead of JN,M (φ) in the following pseudo–algorithm.

Data:
• An initial parameter θ0. A sequence of learning rates.

• M samples of: (ξi,1)i∈{1,...,N} of distribution ν (initial law), (U i,1k )(i,k)∈{1,...,N}×{1,...,mN} and (V 1
k )k∈{1,...,mN} of

normal distribution

Result: Learning φ by the parameters θ through a SGD
1 Initialization of θ;
2 for q:=1,. . . ,Q do
3 Compute ∇JN,M (θq) by Back–propagation;
4 if |∇JN,M (θq)| is small enough then
5 Stop now;
6 else
7 Otherwise, the parameter is updating: θq+1 = aqθq + (1− aq)∇JN,M (θq);
8 end
9 end

8.3.2 Numerical results
8.3.2.1 Example 1: mean–variance portfolio selection

As first example to illustrated our algorithm, we use the mean–variance optimization problem. This problem consists in
minimizing a cost functional of the form:

J(α) := η

2Var(XT )− E[XT ],

with η > 0, with a dynamic for the wealth process X := Xα controlled by the amount αt valued in A = R invested in
one risky stock at time t ∈ [0, T ],

Xt = x0 +
∫ t

0
r(s)Xsds+

∫ t

0
αsρ(s)ds+

∫ t

0
αsϑ(s)dWs.

where r is the interest rate, ρ and ϑ > 0 are the excess rate of return (w.r.t. the interest rate) and volatility of the
stock price. This model fits the context of Linear–quadratic McKean–Vlasov problem and has been studied in with some
“McKean–Vlasov” techniques Pham and Wei [139]. Also studied under another approach by Zhou and Li [155], Fischer
and Livieri [67] and Andersson and Djehiche [13]. The analytic form of the optimal control is given by

α?t = ρ(t)
ϑ2(t)

[
x0 exp

( ∫ t

0
r(s)ds

)
+ 1
η

exp
(∫ T

0

ρ2(s)
ϑ2(s)ds−

∫ T

t

r(s)ds
)
−X?

t

]
, for all t ∈ [0, T ],

where X? is the optimal wealth process with portfolio strategy α?. We use α? and J(α?) as benchmark to test our
algorithm in Figure 8.1. We can see that the difference between the estimated value of J(α?) and the true value decrease
w.r.t. the number of iterations of the SGD method of our algorithm. The two graphs are really quite close. This result
is in adequacy with the theoretical result of Theorem 8.2.5.

8.3.2.2 Example 2: inter–bank systemic risk model

As second example, we consider a model of inter-bank borrowing and lending studied in Carmona, Fouque, and Sun [48],
and Pham and Wei [138] where the log-monetary reserve of each bank in the asymptotics when the number of banks
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Figure 8.1: Difference between optimal value J(α?) and its estimated

tend to infinity, is governed by the McKean-Vlasov equation:

Xt = x0 +
∫ t

0
[κ(E[Xs|B]−Xs) + αs] ds+

∫ t

0
(σ0 + σ1Xs)[

√
1− ρ2dWs + ρdBs]., t ∈ [0, T ].

with κ ≥ 0 the rate of mean-reversion in the interaction from borrowing and lending between the banks, σ0 > 0, σ1 ∈ R
are the affine coefficients of the volatility of the bank reserve, and there is a common noise B for all the banks. Moreover,
all banks can control their rate of borrowing/lending to a central bank with the same policy α in order to minimize a
cost functional of the form

J(α) := E

[∫ T

0

[1
2α

2
t − qαt(E[Xt|B]−Xt) + η

2 (E[Xt]−Xt)2]dt+ c

2(E[XT |B]−XT )2
]
,

where q > 0 is a positive parameter for the incentive to borrowing (αt > 0) or lending (αt < 0), and η > 0,, c > 0 are
positive parameters for penalizing departure from the average. The optimal control is given by

α?t = −(2β(t) + q)(X?
t − x0 − σ0ρBt), t ∈ [0, T ],

where X? is the optimal log-monetary reserve controlled by the rate of borrowing/lending α?,

β(t) := 1
2

(q − η2)
(

exp((δ+ − δ−)(T − t))− 1
)
− c
(
δ+ exp((δ+ − δ−)(T − t))− δ−

)
δ− exp((δ+ − δ−)(T − t))− δ+ − c exp((δ+ − δ−)(T − t))− 1 ,

and

δ± := −(κ+ q − σ2
1

2 )±
√

(k + q − σ2
1

2 )2 + η − q2.

Similarly to the previous example, we displayed in Figure 8.2, the difference between the estimated value of J(α?) and
the value of J(α?) depending on the number of iterations. We can observed the same decrease.
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Figure 8.2: Difference between optimal value J(α?) and its estimated

8.3.2.3 Example 3: optimal liquidation with market impact

Consider a market where a group of agents have a position on a certain asset which they want to liquidate by a fixed time
T > 0. Trades of all market participants reflect on a permanent and a temporary market impact. The optimal trades
will be a result of the trade-off between trading slowly to reduce the market impact (or execution/liquidity cost), and
trading fast to reduce the risk of future uncertainty in prices; This kind of model has been studied under different forms
by Almgren and Chriss [11], Álvaro Cartea and Jaimungal [12], Cardaliaguet and Lehalle [37], Carmona and Lacker [45],
Acciaio, Backhoff Veraguas, and Carmona [1]. The asymptotic formulation of this problem takes the following form: S
is the price process modeled by

St = s0 +
∫ t

0
λE[αs]ds+ σWt, t ∈ [0, T ],

where λ ≥ 0, and λE[αt] is the permanent market impact to which all agents contribute. The inventory process Q is
governed by

Qt = Q0 +
∫ t

0
αsds,

with Q0 (possibly random) being the initial inventory to deplete by time T. The wealth process is given by

Xt = −
∫ t

0
αs(Ss + kαs)ds, t ∈ [0, T ],

where kαt represents the temporary market impact which influences each agent. Using the control process α which is
the trading speed, the goal is to minimize

J(α) := E
[
φ

∫ T

0
Q2
tdt−QT (ST −AQT )−XT

]
,
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Figure 8.3: Difference between optimal value J(α?) and its estimated: on the left different activation functions and on
the right different ε values

where φ is a risk aversion parameter, QT (ST −AQT ) is the liquidation value of the remaining quantity at terminal time
(with a liquidation/execution penalization). The optimal control is given by

α?t := Q0γ
d1 exp(−γ(T − t))− d2 exp(γ(T − t))

d1 exp(−γT ) + d2 exp(γT ) + E[Q0] 2λφ(exp(−γt) + exp(γt))
(d1 exp(−γT ) + d2 exp(γT ))(c1 exp(−γT ) + c2 exp(γT )) ,

where

d1 :=
√
φk −A, d2 :=

√
φk +A, c1 := 2d1 + λ, c2 := 2d2 − λ, and γ :=

√
φ/k.

To be able to test our theoretical result in this example, we need some modifications. Indeed, here the assumptions of
Theorem 8.2.5 are no longer true. The non–degeneracy assumptions of volatility σ is not verified. To stay in the context
of theorem, we replace the dynamic of Q by Q̃· = Q· + εW̃· with W̃ a Brownian motion independent of W and ε a
positive value close to zero. We perform our algorithm with this modification and compare with the true value J(α?).
We observe a decrease in the difference of the two values when the number of iterations increases. Another graph shows
J(α?) and its estimated for different values of ε.

8.4 Proofs
8.4.1 Proof of Theorem 8.2.5
Lemma 8.4.1. Let Assumption 1.4.1 hold true, ν ∈ Pp′(Rn), and α ∈ Ap′(ν). For any N ∈ N∗, there exists a family
of Borel bounded functions (φN )N∈N∗ satisfying φN : [0, T ] × Rn × (Rd × R`)mN → U s.t. if we let (Xφ,1, . . . , Xφ,N ) be
defined on (Ω?,F?,P?) by: for i ∈ {1, . . . , N}, for all j ∈ {0, ...mN − 1}, Xφ,i

tN0
= Xi

0,

Xφ,i

tN
j+1

= Xφ,i

tN
j

+ b
(
tNj , X̂

φ,i, ϕNtN
j
, φitN

j

)
1/mN + σ

(
tNj , X̂

φ,i, ϕNtN
j
, φitN

j

)√
1/mNU ij + σ0

√
1/mNV Nj , (8.4.1)
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where φi
tN
j

:= φ
(
tNj , X

i
0,
(√

1/mNU ik∧j ,
√

1/mNV Nk∧j
)

1≤k≤mN

)
, (X̂φ,1, . . . , X̂φ,N ) denotes the linear interpolation process

of
{

(Xφ,1
tN
j

, . . . , Xφ,N

tN
j

), 1 ≤ j ≤ mN
}

on interval [0, T ],

ϕNs (dx,da) := 1
N

N∑
i=1

δ(X̂φ,i,φis)
(dx,da), ds⊗ dPNν –a.e., and ϕN,X(dx) := 1

N

N∑
i=1

δ
X̂φ,i

(dx), for all s ∈ [0, T ],

then if Φi := δφi
[s]N

(da)dt, Φ := δαs(da)dt,

ϕ̂Ns (dx,da,de) := 1
N

N∑
i=1

δ(
X̂φ,is∧·,φ

i

[s]N
, (Φi)s

)(dx,da,de) and µ̂αs (dx,da,de) := LPν
(
Xα
s∧·, αs,Φs

∣∣Gs)(dx,da,de)

one has

lim
N
LP?

(
δ
ϕ̂Ns

(dν̄)ds, ϕN,X
)

= LPν
(
δ
µ̂αs

(dν̄)ds, µα
)
, inWp.

Proof. step 1: Under Assumption 1.4.1, by (an easy extension) Lemma 2.3.10, in the filtered probability space (Ω,F,F ,Pν),
there exists a sequence of F–predictable processes (αN )N≥1, and a sequence a F–adapted continuous processes (SN )N≥1

such that: supN≥1 EPν
[ ∫ T

0 ρ(a0, α
N
t )p′dt

]
<∞, for any N ≥ 1

αN0 = a0, α
N
t = αN[t]N , on [0, T ], lim

N→∞
EPν

[ ∫ T

0
ρ(αt, αNt )pdt

]
= 0, and lim

N→∞
EPν

[
sup

s∈[0,T ]
|Xs − SNs |p

]
= 0, (8.4.2)

where SN is the process defined by Euler scheme: SN0 = X0, and for all t ∈ [0, T ],

SNt = X0 +
∫ t∨εN

εN

b
(
[r]N , ŜN , βNr , αNr

)
dr +

∫ t∨εN

εN

σ
(
[r]N , ŜN , βNr , αNr

)
dWN

r +
∫ t∨εN

εN

σ0dBNr , (8.4.3)

where ŜN denotes the linear interpolation process of
{
SN
tN
j

, 1 ≤ j ≤ mN
}
on interval [0, T ], βNt := LPν

(
ŜNt∧·, α

N
t

∣∣Gt),
βN := LPν

(
ŜN
∣∣GT ), εN = tN1 , W

N
· := W·∨εN −WεN and BN· := B·∨εN −BεN .

step 2: Let N ∈ N∗ be fixed. For all 1 ≤ j ≤ mN , we define β̂Nj := LPν
(
ŜN
tN
j
∧·, (α

N
tN
k−1

)1≤k≤j ,
(
WN
tN
k

−WN
tN
k−1

)
1≤k≤j

∣∣∣GT) ∈
P
(
Cn × U j × (Rd)j

)
.

By similar method used in Lemma 2.3.11, there exists a sequence i.i.d uniform random variables (Uβi )1≤j≤mN independent
of other variables and a family of Borel functions (Gα,Nj )1≤j≤mN and (Gβ,Nj )1≤j≤mN satisfying for all j ∈ {1, ...,mN},
Gα,Nj : Rn × Rd × (Rd)j × (R`)j × [0, 1]j → U and Gβ,Nj : (R`)j × [0, 1]j → P

(
Cn × U j × (Rd)j

)
such that

LPν
(
X0, (β̂Nj )1≤j≤mN , (αNj )1≤j≤mN , (WN

tN
j
−WN

tN
j−1

)1≤j≤mN , (BNtN
j
−BNtN

j−1
)1≤j≤mN

)
= LPν

(
X0, (ζ̂Nj )1≤j≤mN , (γNj )1≤j≤mN , (WN

tN
j
−WN

tN
j−1

)1≤j≤mN , (BNtN
j
−BNtN

j−1
)1≤j≤mN

)
, (8.4.4)

where

γNj = Gα,Nj

(
X0,W

N
tN1
, (WN

tN
k
−WN

tN
k−1

, BNtN
k
−BNtN

k−1
, Uβk )1≤k≤j

)
and ζ̂Nj = Gβ,Nj

(
(BNtN

k
−BNtN

k−1
, Uβk )1≤k≤j

)
.

Notice that as (β̂Nj )1≤j≤mN is B–measurable, when ` = 0, we can remove the variables (Uβi )1≤j≤mN . Thanks to particular
form of ŜN of (2.3.10), for each j ∈ {1, ...mN}, there exists a Borel functionHj : Rn×P

(
Cn×U j×(Rd)j

)
×(Rd)j×(R`)j →

Rn s.t.

SNtN
j

= Hj
(
X0, β̂

N
j , (αNk )1≤k≤j , (WN

tN
k
−WN

tN
k−1

)1≤k≤j , (BNtN
k
−BNtN

k−1
)1≤k≤j

)
.
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Let ZN0 = X0, and for each j ∈ {1, ...,mN}, one defines (ZN
tN1
, ..., ZN

tN
mN

) by and

ZNtN
j

= Hj
(
X0, ζ̂

N
j , (γNk )1≤k≤j , (WN

tN
k
−WN

tN
k−1

)1≤k≤j , (BNtN
k
−BNtN

k−1
)1≤k≤j

)
.

Therefore by (8.4.4), one has

LPν
(

(SNtN
j

)0≤j≤mN , (β̂Nj , αNj ,WN
tN
j
−WN

tN
j−1

, BNtN
j
−BNtN

j−1
)1≤j≤mN

)
= LPν

(
(ZNtN

j
)0≤j≤mN , (ζ̂Nj , γNj ,WN

tN
j
−WN

tN
j−1

, BNtN
j
−BNtN

j−1
)1≤j≤mN

)
(8.4.5)

and

ζ̂Nj = LPν
(
ẐNtN

j
∧·, (γ

N
k−1)1≤k≤j ,

(
WN
tN
k
−WN

tN
k−1

)
1≤k≤j

∣∣∣(BNtN
k
−BNtN

k−1
, Uβk

)
1≤k≤j

)
= LPν

(
ẐNtN

j
∧·, (γ

N
k−1)1≤k≤j ,

(
WN
tN
k
−WN

tN
k−1

)
1≤k≤j

∣∣∣B, (Uβk )1≤k≤j),
where ẐN denotes the linear interpolation process of

{
ZN
tN
j

, 1 ≤ j ≤ mN
}
on interval [0, T ].

Step 3: As if ` = 0,
(
Uβk
)

1≤k≤j can be removed, then by similar methods used in Proposition 2.3.12,
(
Uβk
)

1≤k≤j can be
replaced by a function of BN

tN1
and the equality (8.4.5) remains true. Let us define RN by Euler scheme

RNt = X0 +
∫ t∨εN

εN

b
(
[r]N , R̂N , θNr , γNr

)
dr +

∫ t∨εN

εN

σ
(
[r]N , R̂N , θNr , γNr

)
dWN

r +
∫ t∨εN

εN

σ0dBNr ,

where γNt := γNj for t ∈ [tNj , tNj+1), R̂N denotes the linear interpolation process of
{
RN
tN
j

, 1 ≤ j ≤ mN
}
on interval [0, T ],

θ
N

t := LPν
(
R̂Nt∧·, γ

N
t

∣∣Gt), θN := LPν
(
R̂N
∣∣GT ). Observe that: for each N ∈ N∗,

γNs = φN
(
s,X0,

(
W[s ∧ tN

k
]N −W[s ∧ tN

k−1]N , B[s ∧ tN
k

]N −B[s ∧ tN
k−1]N

)
1≤k≤mN

)
, for all s ∈ [0, T ],

with φN : [0, T ]× Rn × (Rd × R`)mN → U a Borel function, RN
tN
j

= ZN
tN
j

for all j ∈ {1, ...,mN}, and

EPν
[

sup
t∈[0,T ]

|RNt |p
′
]
≤ C

(
1 +

∫
Rn
|x|p

′
ν(dx) + sup

N≥1
EPν

[ ∫ T

0
ρ(a0, γ

N
t )p

′
dt
])
.

Let us introduce ΘN := δ(
θ
N

t ,γ
N
t

)(dν̄,du)dt, and

QN := LPν
(
RN ,ΘN

, θN ,WN , BN
)
∈ P

(
Cn ×M

(
P(Cn × U)× U

)
× P

(
Cn
)
× Cd × C`

)
.

It is straightforward to show that (QN )N≥1 is relatively compact inWp. Let Q∞ the limit of any sub-sequence of (QN )N≥1.
For simplicity we keep the same notation for the sequence and the sub-sequence. Let us show

Q∞ = LPν
(
X, δ(µt,αt)(dν̄,du)dt, µT ,W,B

)
. (8.4.6)

LetM ∈ N∗, (r1, ..., rM ) ∈ [0, T ]M , a bounded continuous function Φ :
(
Rn×Rd×R`

)M×P(Cn)×M
(
P(Cn×U)×U

)
→ R.

Denote by ζNt := LPν
(
ẐNt∧·, γ

N
t

∣∣(BN
tN
j

−BN
tN
j−1

)
1≤j≤mN

)
and ζN := LPν

(
ẐN
∣∣(BN

tN
j

−BN
tN
j−1

)
1≤j≤mN

)
one has

EPν
[
Φ
(

(Xri ,Wri , Bri)1≤i≤M , µT , δ(µt,αt)(dν̄,du)dt
)]

= lim
N→∞

EPν
[
Φ
(

(SN[ri]N ,W
N
[ri]N , B

N
[ri]N )1≤i≤M , β

N , δ(βNt ,αNt )(dν̄,du)dt
)]

= lim
N→∞

EPν
[
Φ
(

(ZN[ri]N ,W
N
[ri]N , B

N
[ri]N )1≤i≤M , ζ

N , δ(ζNt ,γNt )(dν̄,du)dt
)]

= lim
N→∞

EPν
[
Φ
(

(RN[ri]N ,W
N
[ri]N , B

N
[ri]N )1≤i≤M , θ

N ,ΘN (dν̄,du)dt
)]

= EQ∞
[
Φ
(

(X̃ri , W̃ri , B̃ri)1≤i≤M , µ̃, Λ̃(dν̄,du)dt
)]
,
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where (X̃, Λ̃, µ̃, W̃ , B̃) is the canonical process on Cn×M
(
P(Cn×U)×U

)
×P

(
Cn
)
×Cd×C`. The previous result is true for

all (r1, ..., rm) and Φ, we can deduce (8.4.6), for any sub-sequence, then lim
N

QN = LPν
(
X, δ(µt,αt)(dν̄,du)dt, µT ,W,B

)
in Wp.

Now, by Euler scheme again, let us define XN by:

XN
t = X0 +

∫ t

0
b
(
[r]N , X̂N , µNr , γ

N
r

)
dr +

∫ t

0
σ
(
[r]N , X̂N , µNr , γ

N
r

)
dWr +

∫ t

0
σ0dBr, (8.4.7)

where X̂N denotes the linear interpolation process of
{
XN
tN
j

, 1 ≤ j ≤ mN
}
on interval [0, T ], µNt := LPν

(
X̂N
t , γ

N
t

∣∣Gt) =

LPν
(
X̂N
t , γ

N
t

∣∣BtN1 , (BNtNj −BNtNj−1

)
1≤j≤mN

)
, µN := LPν

(
X̂N

∣∣GT ). By similar technique as Equation (2.3.9), it straightforward

to show that limN→∞ EPν
[

sups∈[0,T ] |RNs −XN
s |p
]

= 0. Consequently,

lim
N
LPν

(
XN , δ(µNt ,γNt )(dν̄,du)dt, µN ,W,B

)
= lim

N
LPν

(
RN ,ΘN

, θN ,WN , BN
)

= LPν
(
X, δ(µt,αt)(dν̄,du)dt, µT ,W,B

)
.

(8.4.8)

Step 4: As XN satisfies (8.4.7), there exists KN : Rn×Cd×C` → Cn a Borel function s.t. XN = KN (X0,W,B), Pν–a.e..
In the space (Ω?,F?,P?), for each N ∈ N∗, let (W 1, ...,WN , B) be a F?–Brownian motion, and define the filtration on
(Ω?), (Gt)t∈[0,T ] := (σ(Bt∧·)t)t∈[0,T ], and Zi,N := KN (Xi

0,W
i, B). In other words Zi,N is the strong solution of: for all

t ∈ [0, T ],

Zi,Nt = Xi
0 +

∫ t

0
b
(
[r]N , Ẑi,N , µNr , γi,Nr

)
dr +

∫ t

0
σ
(
[r]N , Ẑi,N , µNr , γi,Nr

)
dW i

r +
∫ t

0
σ0dBr, P?–a.e.

with γi,Ns := φN
(
s,Xi

0,
(
W i

[s ∧ tN
k

]N−W
i
[s ∧ tN

k−1]N , B[s ∧ tN
k

]N−B[s ∧ tN
k−1]N

)
1≤k≤mN

)
, Ẑi,N denotes the linear interpolation

process of
{
Zi,N
tN
j

, 1 ≤ j ≤ mN
}
on interval [0, T ], and µNt = LPν

(
X̂N
t , γ

N
t

∣∣Gt) = LP?(Ẑi,Nt , γi,Nt
∣∣Gt), µN = LPν

(
X̂N

∣∣GT ) =

LP?(Ẑi,N ∣∣GT ). Using techniques of Lemma 3.4.31 and the law of large numbers, one gets

lim
N→∞

EP?
[ ∫ T

0
Wp

(
ψ
N

t ,LPν
(
X̂N
t , γ

N
t , (ΓN )t

∣∣Gt) )dt+Wp

(
ψN , µN

)]
= 0, (8.4.9)

with ΓN := δγNt (da)dt, Γi,N := δγi,Nt
(da)dt, ψNt (dx,da,de) := 1

N

∑N
i=1 δ

(
Zi,Nt∧· ,γ

i,N
t , (Γi,N )t

)(dx,da,de), and ψN (dx) :=
1
N

∑N
i=1 δZi,N (dx).

To finish, let us introduce by Euler scheme (X1,N , ..., XN,N ): for i ∈ {1, . . . , N}, and all t ∈ [0, T ],

Xi,N
[t]N = Xi

0 +
∫ [t]N

0
b
(
[s]N , X̂i,N , ϕN[s]N , γ

i,N
s

)
ds+

∫ [t]N

0
σ
(
[s]N , X̂i,N , ϕN[s]N , γ

i,N
s

)
dW i

s +
∫ [t]N

0
σ0dBs,

where ϕN[t]N (dx,du) := 1
N

∑N
i=1 δ

(
Xi,N

[t]N∧·
,γi,Nt

)(dx,da), (X̂1,N , . . . , X̂N,N ) denotes the linear interpolation process of{
(X1,N

tN
j

, . . . , XN,N

tN
j

), 1 ≤ j ≤ mN
}
on interval [0, T ]. As in Proposition 3.4.4, thanks to (8.4.9), we find

lim
N→∞

EP?
[ ∫ T

0
Wp

(
ϕNt ,LPν

(
X̂N
t , γ

N
t , (ΓN )t

∣∣Gt) )dt
]

+ 1
N

N∑
i=1

EP?
[

sup
s∈[0,T ]

|X̂i,N
s − Zi,Ns |p

]
= 0, (8.4.10)

where ϕNt (dx,da,de) := 1
N

∑N
i=1 δ

(
X̂i,Nt∧· ,γ

i,N
t ,(Γi,N )t

)(dx,da,de). By noticing that we can rewrite the process (X1,N , ..., XN,N )
under the form (8.4.1), by Combining (8.4.8), (8.4.9) and (8.4.10), we can deduce our result.

1An easy extension taking into account the dependence w.r.t. N of KN .
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Denote M := M
(
P(Cn ×A)×A

)
. We will consider two canonical spaces

Ω̂ := Cn × Cn ×M, and Ω := C` × P
(
Ω̂
)
.

We equip the canonical space Ω with the canonical element (B, µ̂), and its Borel σ–algebra F := B(Ω). We then introduce
the filtration G := (Gt)t∈[0,T ] on (Ω,F) by

Gt := σ
((
Bs, 〈µ̂s, φ〉

)
: φ ∈ Cb(Cn × Cn ×M), s ∈ [0, t]

)
.

The canonical space Ω̂ is equipped with the corresponding canonical element
(
X̂, Ŷ , Λ̂

)
, its Borel σ–algebra F̂ := B(Ω̂),

and its canonical filtration F̂ :=
(
F̂t
)
t∈[0,T ] defined by

F̂t := σ
((
X̂s, Ŷs, Λ̂([0, s]×D)

)
: D ∈ B

(
P(Cn ×A)×A

)
, s ∈ [0, t]

)
, t ∈ [0, T ].

Notice that one can choose a version of the disintegration Λ̂(dt, dν̄,da) = Λ̂t(dν̄,da)dt such that (Λ̂t)t∈[0,T ] is a P
(
P(Cn×

A)×A
)
–valued, F̂–predictable process (see e.g. [102, Lemma 3.2.]).

We next introduce a martingale problem on (Ω̂, F̂). For all ϕ ∈ C2
b (Rn+d) and (t,x,y,w, ν̄, a) ∈ [0, T ]× Cn × Cn × Cd ×

P(Cn ×A)×A

L̂tϕ
(
x,y,w, ν̄, a

)
:= b(t,x, ν̄, a) · ∇ϕ(y(t),w(t)) + 1

2Tr
[
a(t,x, ν̄, a)∇2ϕ(y(t),w(t))

]
. (8.4.11)

Then, we introduce a process (M̂ϕ
t )t∈[0,T ] on (Ω̂, F̂) by

M̂ϕ
t := ϕ

(
Ŷt
)
− ϕ(Ŷ0)−

∫∫
[0,t]×P(Cn×A)×A

L̂sϕ
(
X̂, Ŷ , ν̄, a

)
Λ̂s(dν̄,da)ds, (t, ϕ) ∈ [0, T ]× C2

b (Rn). (8.4.12)

Recall that for a borel function φ : [0, T ] → R, we write
∫ ·

0 φ(s)ds :=
∫ ·

0 φ
+(s)ds −

∫ ·
0 φ
−(s)ds with the convention

∞−∞ = −∞.

Definition 8.4.2. Let ν ∈ P(Rn), then a probability measure P ∈ P(Ω) belongs to PR(ν) if and only if

(i) P
[
µ̂0 ◦ (X̂0)−1 = ν, Y0 = X0, B0 = 0

]
= 1, EP[Eµ̂[‖X̂‖p]

]
+ EP

[
Eµ̂
[ ∫

[0,T ]×A
(
ρ(a0, a)

)pΛ̂t(da)dt
]]
<∞.

(ii) (Bt)t∈[0,T ] is an (F,P)–Brownian motion, and for P–a.e. ω̄ ∈ Ω, Ŷ· = X̂· − σ0B·(ω̄), µ̂(ω̄)–a.e., and the process(
M̂ϕ
t

)
t∈[0,T ] is an

(
F̂, µ̂(ω̄)

)
–martingale for each ϕ ∈ C2

b (Rn).

(iii) For any Borel bounded function f : [0, T ]× Cn × P(Cn ×A)×A→ R, one has for P–a.e. ω̄ ∈ Ω,

Eµ̂
[ ∫ T

0

∫
P(Cn×A)

∫
A

f(t, X̂t, ν̄, a)Λ̂t(dν̄,da)dt
]

=
∫ T

0

∫
P(Cn×A)

∫
Cn×A

f(t,x, ν̄, a)ν̄(dx,da)Λ̂t(dν̄, A)dt, µ̂(ω̄)–a.e.

Proposition 8.4.3 (Proposition 3.3.5). For any P ∈ PR(ν̄), on an extension
(
Ω̂? := Ω̂×[0, 1], F̂? := (F̂t⊗B([0, 1]))t∈[0,T ]

)
of (Ω̂, F̂), there exists a family of measure–valued processes (N̂ ω̄)ω̄∈Ω such that, for P–a.e. ω̄ ∈ Ω, N̂ ω̄ =

(
N̂1,ω̄, . . . , N̂d,ω̄

)
is an

(
F̂?, µ̂(ω̄) ⊗ λ

)
–martingale measure with intensity Λ̂t(dν̄,da)dt, the martingales (N̂ i,ω̄)1≤i≤d are orthogonal, and

satisfy

Ŷt = X̂0 +
∫∫

[0,t]×P(Cn×A)×A
b
(
r, X̂,m, a

)
Λ̂r(dν̄,da)dr +

∫∫
[0,t]×P(Cn×A)×A

σ
(
r, X̂, ν̄, a

)
N̂ ω̄(dν̄,da,dr), µ̂(ω̄)⊗ λ–a.s.
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Moreover, let Ĥ? = (Ĥ?t )t∈[0,T ] with Ĥ?t := Gt ⊗ F̂?t be a filtration on Ω× Ω̂?, denote by P Ĥ? the predictable σ–algebra on
[0, T ]× Ω× Ω̂? with respect to Ĥ?. Then for all bounded P Ĥ? ⊗ B(P(Cn × A)× A)–measurable function f : [0, T ]× Ω×
Ω̂? × P(Cn × A) × A −→ R, one can define the stochastic integral

∫∫
[0,t]×P(Cn×A)×A f

ω̄(s, ν̄, a)N̂ ω̄(ds,dν̄,da) in such a
way that

(t, ω̄, ω̂?) 7−→
(∫∫

[0,t]×P(Cn×A)×A
f ω̄(s, ν̄, a)N̂ ω̄(dν̄,da,ds)

)
(ω̂?) is P Ĥ?–measurable.

Lemma 8.4.4. Let Assumption 1.4.1 hold true, ν ∈ Pp′(Rn). For any N ∈ N∗, let (Xφ,1, . . . , Xφ,N ) be defined in (8.4.1)
on (ΩN ,FN ,Pν), and

PN := P? ◦
(
BN , ϕ̂N

)−1 ∈ P(Ω), where ϕ̂N := 1
N

N∑
i=1

δ(
X̂φ,i,Ŷ φ,i, δ(ϕN

t
, αi
t
)(dν̄,da)dt

), (8.4.13)

with BNt = BN[t]N +
√
t− [t]NV N[t]N and αit := φi[t]N . Then the sequence (PN )N∈N∗ is relatively compact in Wp and any

limit point belongs to PR(ν).

Proof. By recurence, we can check that: there exists a constant C > 0 s.t. for each i

EP?[∣∣Ŷ φ,it − Ŷ φ,is

∣∣3] ≤ C(mN )3/2φ(1/mN )|t− s| and EP?
[

sup
t∈[0,T ]

∣∣Ŷ φ,it

∣∣p′] ≤ C(1 +
∫
Rn
|x|p

′
ν(dx)

)
.

Using similar techniques to Chapter 3, we can show (PN )N∈N∗ is relatively compact in Wp (to explicit). Let P∞ be a
limit for any sub-sequence, let us show P∞ ∈ PR(ν).
It is easy to verify the first point of Definition 8.4.2 (see also Chapter 3), the fact that B is a (F,P∞) Brownian motion
and that for P∞–a.e. ω̄ ∈ Ω, Ŷ· = X̂· − σ0B·(ω̄), µ̂(ω̄)–a.e. follow as well.

Let us verify the martingale problem and the point (iii). On (Ω?,F?), we define the processes (Mϕ,i,N , Nϕ,i,N ) for
i = 1, . . . , N by

Mϕ,i,N
t := ϕ

(
Ŷ φ,it

)
− ϕ(Ŷ φ,i0 )−

∫ t

0
L̂[s]Nϕ

(
X̂φ,i, Ŷ φ,i, ϕN[s]N , α

i
s

)
ds,

and

Nϕ,i,N
k+1 := ϕ

(
Ŷ φ,i
tN
k+1

)
− ϕ(Ŷ φ,i

tN
k

)− LNtN
k
ϕ
(
X̂φ,i, Ŷ φ,i, ϕNtN

k
, αitN

k
, U ik+1

)
,

where

Ltϕ
(
x,y, ν̄, a, u

)
:= H(1/mN ,xt∧·, ν̄, a, u) · ∇ϕ(y(t)) + 1

2Tr
[
HH>(1/mN ,xt∧·, ν̄, a, u)∇2ϕ(y(t))

]
.

Also, let us introduce the filtration

FNk := σ
{
X1

0 , ..., X
N
0 , U

1
k′ , ...U

N
k′ , V

N
k′ : k′ ≤ k

}
,

notice that for each i 6= j,
(
Nϕ,i,N
k+1 ,Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
and

(
Nϕ,j,N
k+1 ,Mϕ,j

tN
k+1
−Mϕ,j

tN
k

)
are conditionally P? independent given

the σ–algebra FNk . Let ϕ ∈ C2
b (Rn), ψ ∈ Cb(Ω̂) and φ ∈ Cb(P(Ω̂)). Define

Ψi
r := ψ

(
Xα,i
r∧·, Y

α,i
r∧· , (Λi)r

)
and Ψi

r := ψ
(
X̂r∧·, Ŷr∧·, (Λ̂)r

)
,
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one has ∣∣∣EP∞[φ(µ̂)
〈(
M̂ϕ

[t]N − M̂
ϕ
[r]N
)
Ψ[r]N , µ̂

〉]∣∣∣ = lim
N→∞

∣∣∣EPN [φ(µ̂)
〈(
M̂ϕ

[t]N − M̂
ϕ
[r]N
)
Ψ[r]N , µ̂

〉]∣∣∣
≤ lim sup

N→∞
EPN [∣∣φ(µ̂)

∣∣2]1/2EPN
[∣∣〈(M̂ϕ

[t]N − M̂
ϕ
[r]N
)
Ψ[r]N , µ̂

〉∣∣2]1/2
= lim sup

N→∞
CEPN [∣∣φ(µ̂)

∣∣2]1/2EP?
[∣∣∣∣ 1
N

N∑
i=1

(Mϕ,i
[t]N −M

ϕ,i
[r]N )Ψi

[r]N

∣∣∣∣2]1/2
= 0.

Indeed,

EP?
[∣∣∣∣ 1
N

N∑
i=1

(
Mϕ,i

[t]N −M
ϕ,i
[r]N
)
Ψi

[r]N

∣∣∣∣2] = EP?
[∣∣∣∣ 1
N

N∑
i=1

∑
k

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣∣2]

= EP?
[∣∣∣∣ 1
N

N∑
i=1

∑
k

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣∣2] = EP?
[

1
N2

N∑
i,j=1

∑
k,q

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N
(
Mϕ,j

tNq+1
−Mϕ,j

tNq

)
Ψj

[r]N

]

= EP?
[

2
N2

N∑
i,j=1

∑
k<q

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N
(
Mϕ,j

tNq+1
−Mϕ,j

tNq

)
Ψj

[r]N

]

+ EP?
[

1
N2

N∑
i,j=1

∑
k

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N
(
Mϕ,j

tN
k+1
−Mϕ,j

tN
k

)
Ψj

[r]N

]

= EP?
[

2
N2

N∑
i,j=1

∑
k<q

(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]NE
PNν
[(
Mϕ,j

tNq+1
−Mϕ,j

tNq

)
Ψj

[r]N

∣∣∣∣FNq ]]

+ 1
N2

∑
k

EP?
[∑
i 6=j

EPNν
[(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣∣FNk ]EPNν
[(
Mϕ,j

tN
k+1
−Mϕ,j

tN
k

)
Ψj

[r]N

∣∣∣∣FNk ]]

+ 1
N2

∑
k

EP?
[ N∑
i=1

∣∣∣(Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣2]

= EP?
[

2
N2

N∑
i,j=1

∑
q

(
Mϕ,i
tNq
−Mϕ,i

[r]N
)
Ψi

[r]NE
PNν
[(
Mϕ,j

tNq+1
−Mϕ,j

tNq
−Nϕ,j,N

q+1 +Nϕ,j,N
q+1

)
Ψj

[r]N

∣∣∣∣FNq ]]

+ 1
N2

∑
k

EP?
[∑
i 6=j

EP?
[(
Mϕ,i

tN
k+1
−Mϕ,i

tN
k

−Nϕ,i,N
k+1 +Nϕ,i,N

k+1
)
Ψi

[r]N

∣∣∣∣FNk ]EP?
[(
Mϕ,j

tN
k+1
−Mϕ,j

tN
k

−Nϕ,j,N
k+1 +Nϕ,j,N

k+1
)
Ψj

[r]N

∣∣∣∣FNk ]]

+ 1
N2

∑
k

EP?
[ N∑
i=1

∣∣∣(Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣2]
≤ C

∑
q

EP?
[
EP?
[
φ(1/mN ) +

∣∣H(1/mN , X̂φ,i, ϕNtNq , φ
i
tNq
, U iq+1

)∣∣3∣∣FNq ]]
+ 1
N2

∑
k

EP?
[∑
i 6=j

EP?
[
φ(1/mN ) +

∣∣H(1/mN , X̂φ,i, ϕNtN
j
, φitN

k
, U ik+1

)∣∣3∣∣FNk ]

EP?
[
φ(1/mN ) +

∣∣H(1/mN , X̂φ,j , ϕNtN
k
, φj
tN
k

, U ik+1
)∣∣3∣∣FNk ]]+ 1

N2

∑
k

EP?
[ N∑
i=1

∣∣∣(Mϕ,i

tN
k+1
−Mϕ,i

tN
k

)
Ψi

[r]N

∣∣∣2]
≤ C

(
mNφ(1/mN ) +mNφ(1/mN )2 + 1

N

)
.
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For the last point (iii), let a continuous bounded function f : [0, T ]× Cn × P(Cn ×A)×A→ R,

EP∞
[
Eµ̂
[∣∣∣∣Eµ̂[ ∫ T

0

∫
P(Cn×A)

∫
A

f(t, X̂t, ν̄, a)Λ̂t(dν̄,da)dt
]
−
∫ T

0

∫
P(Cn×A)

∫
Cn×A

f(t,x, ν̄, a)ν̄(dx,da)Λ̂t(dν̄, A)dt
∣∣∣∣]]

lim
N→∞

EP?
[∣∣∣∣ 1
N

N∑
i=1

∫ T

0
f(t, X̂φ,i

t , ϕNt , α
i
t)dt−

∫ T

0

1
N

N∑
i=1

f(t, X̂φ,i
t , ϕNt , α

i
t)dt

∣∣∣∣] = 0,

by taking a countable set of continuous functions f, we deduce the point (iii). Therefore, P∞ belongs to PR(ν).

Proof of Theorem 8.2.5 Let Assumption 1.4.1 hold true. For each N ∈ N∗, in the space (Ω?,F?,P?), let us take a
Borel function φN : [0, T ] × Rn × (Rd × R`)mN → U, satisfying for each i ∈ {1, ...,mN}, EP?[ ∫ T

0 ρ(a0, φ
i
[s]N )pds

]
< ∞,

where we denote by φi
tN
j

:= φ
(
tNj , X

i
0,
(√

1/mNU ik∧j ,
√

1/mNV Nk∧j
)

1≤k≤mN

)
, and JN (φN ) ≥ V NS (ν) − 2−N . By Lemma

8.4.4, if we define

PN := P? ◦
(
BN , ϕ̂N

)−1 ∈ P(Ω), where ϕ̂N := 1
N

N∑
i=1

δ(
X̂φ,i,Ŷ φ,i,δ(ϕt, αit)

(dν̄,da)dt
) BNt = BN[t]N +

√
t− [t]NV N[t]N

and αit := φi[t]N . Then the sequence (PN )N∈N∗ is relatively compact in Wp and any limit point is a relaxed control.
by Proposition 8.4.3, for each limit point P, on an extension

(
Ω̂? := Ω̂ × [0, 1], F̂? := (F̂t ⊗ B([0, 1]))t∈[0,T ]

)
of (Ω̂, F̂),

there exists a family of measure–valued processes (N̂ ω̄)ω̄∈Ω such that, for P–a.e. ω̄ ∈ Ω, N̂ ω̄ =
(
N̂1,ω̄, . . . , N̂d,ω̄

)
is an(

F̂?, µ̂(ω̄)⊗ λ
)
–martingale measure with intensity Λ̂t(dν̄,da)dt, the martingales (N̂ i,ω̄)1≤i≤d are orthogonal, and satisfy

Ŷt = X̂0 +
∫∫

[0,t]×P(Cn×A)×A
b
(
r, X̂,m, a

)
Λ̂r(dν̄,da)dr +

∫∫
[0,t]×P(Cn×A)×A

σ
(
r, X̂, ν̄, a

)
N̂ ω̄(dν̄,da,dr), µ̂(ω̄)⊗ λ–a.s.

Moreover, let Ĥ? = (Ĥ?t )t∈[0,T ] with Ĥ?t := Gt ⊗ F̂?t be a filtration on Ω × Ω̂?, denote by P Ĥ? the predictable σ–
algebra on [0, T ] × Ω × Ω̂? with respect to Ĥ?. Then for all bounded P Ĥ? ⊗ B(P(Cn × A) × A)–measurable function
f : [0, T ]×Ω×Ω̂?×P(Cn×A)×A −→ R, one can define the stochastic integral

∫∫
[0,t]×P(Cn×A)×A f

ω̄(s, ν̄, a)N̂ ω̄(ds,dν̄,da)
in such a way that

(t, ω̄, ω̂?) 7−→
(∫∫

[0,t]×P(Cn×A)×A
f ω̄(s, ν̄, a)N̂ ω̄(dν̄,da,ds)

)
(ω̂?) is P Ĥ?–measurable.

F irst case : Assumption 8.2.3

If we define Ŵ· =
∫∫

[0,·]×A N̂
ω̄(da,ds) on Ω̂, and

P :=
∫

Ω
Lµ̂(ω̄)⊗λ

(
X̂, Ŷ , Λ̂, Ŵ , B,Lµ̂(ω̄)⊗λ(X̂, Ŷ , Λ̂, Ŵ ))P(dω̄),

according to Proposition 3.3.2, P is a weak control, and consequently, under Assumption 8.2.3, by Theorem 3.2.7

lim sup
N→∞

V NS (ν) ≤ lim sup
N→∞

JN (φN ) ≤ VS(ν). (8.4.14)

Second case : 8.2.4 If we define

P :=
∫

Ω
Lµ̂(ω̄)

((
µ̂ ◦ (X̂t)−1)

t∈[0,T ], Λ̂t(dν̄, A)dt, (Bt)t∈[0,T ]

)
P(dω̄),
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according to Definition 4.4.1, P is a measure-valued rule, and consequently, under 8.2.4, we have the same result (8.4.14).
To finish our proof, we want to show that

VS(ν) ≤ lim inf
N→∞

V NS (ν).

Let α ∈ Ap′(ν), by Lemma 8.4.1, For any N ∈ N∗, there exists a family of Borel bounded functions (φN )N∈N∗ satisfying
φN : [0, T ]×Rn × (Rd ×R`)mN → U s.t. if we let (Xφ,1, . . . , Xφ,N ) be defined on (Ω?,F?,P?) by: for i ∈ {1, . . . , N}, for
all j ∈ {0, . . . ,mN − 1}, Xφ,i

tN0
= Xi

0,

Xφ,i

tN
j+1

= Xφ,i

tN
j

+ b
(
tNj , X̂

φ,i, ϕNtN
j
, φitN

j

)
1/mN + σ

(
tNj , X̂

φ,i, ϕNtN
j
, φitN

j

)√
1/mNU ij + σ0

√
1/mNV Nj , (8.4.15)

where φi
tN
j

:= φ
(
tNj , X

i
0,
(√

1/mNU ik∧j ,
√

1/mNV Nk∧j
)

1≤k≤mN

)
, (X̂φ,1, . . . , X̂φ,N ) denotes the linear interpolation process

of
{

(Xφ,1
tN
j

, . . . , Xφ,N

tN
j

), 1 ≤ j ≤ mN
}
on interval [0, T ],

ϕNs (dx,da) := 1
N

N∑
i=1

δ(X̂φ,is∧·,φ
i
s)

(dx,da), ds⊗ dP?–a.e., and ϕN,X(dx) := 1
N

N∑
i=1

δ
X̂φ,i

(dx), for all s ∈ [0, T ],

then if Φi := δφi
[s]N

(da)dt, Φ := δαs(da)dt,

ϕ̂Ns (dx,da,de) := 1
N

N∑
i=1

δ(
X̂φ,is∧·,φ

i

[s]N
, (Φi)s

)(dx,da,de) and µ̂αs (dx,da,de) := LPν
(
Xα
s∧·, αs,Φs

∣∣Gs)(dx,da,de)

one has

lim
N
LP?

(
δ
ϕ̂Ns

(dν̄)ds, ϕN,X
)

= LPν
(
δ
µ̂αs

(dν̄)ds, µα
)
, inWp.

If we define for i ∈ {1, . . . , N}, Xφ,i
0 := Xi

0 and for all j ∈ {0, ...,mN − 1}, Xφ,i

tN0
= Xi

0, Y
φ,i

tN0
= 0,

Zφ,i
tN
j+1

= Zφ,i
tN
j

+ H
(
1/mN , R̂φ,i, ϕ̃N,X

tN
j

, φitN
j
, U ij

)
and Rφ,i

tN
j+1

= Rφ,i
tN
j

+ Zφ,i
tN
j+1
− Zφ,i

tN
j

+ σ0

√
1/mNV Nj

(R̂φ,1, . . . , R̂φ,N ) (resp (Ẑφ,1, . . . , Ẑφ,N )) denotes the linear interpolation process of
{

(Rφ,1
tN
j

, . . . , Rφ,N
tN
j

), 1 ≤ j ≤ mN
}

(
resp

{
(Zφ,1

tN
j

, . . . , Zφ,N
tN
j

), 1 ≤ j ≤ mN
} )

on interval [0, T ], and

ϕ̃Ns (dx,da) := 1
N

N∑
i=1

δ(R̂φ,is∧·,φis)
(dx,da), ds⊗ dPNν –a.e., and ϕ̃N,X(dx) := 1

N

N∑
i=1

δ
R̂φ,i

(dx), for all s ∈ [0, T ],

it is straightforward to check (similarly to Lemma 8.4.4)

lim
N→∞

Wp

(
LP?(BN , χ̂N)−1

,LP?(BN , ψ̂N)−1
)
,

where

χ̂N := 1
N

N∑
i=1

δ(
X̂φ,i,X̂φ,i−σ0BN , δ(ϕN

t
, αi
t
)(dν̄,da)dt

) and ψ̂N := 1
N

N∑
i=1

δ(
X̂φ,i,X̂φ,i−σ0BN , δ(ϕ̃N

t
, αi
t
)(dν̄,da)dt

),
with BNt = BN[t]N +

√
t− [t]NV N[t]N and αit := φi[t]N . Therefore,

VS(ν) ≤ lim inf
N→∞

V NS (ν),

then finally lim
N→∞

V NS (ν) = VS(ν).
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MOTS CLÉS

Équation différentielle stochastique, problème de contrôle stochastique, équilibres de Pareto, équilibres de Nash,
jeux à champ moyen, équations de McKean–Vlasov, approximations numériques, réseaux de neurones.

RÉSUMÉ

Cette thèse est formulée en trois parties avec huit chapitres et présente un sujet de recherche traitant des particules/ agents/
processus controllés en interactions.

Dans la première partie de cette dissertation, nous portons notre attention sur l’étude de processus controllés en interaction
représentant un équilibre coopératif, aussi appelé équilibre de Pareto. Un équilibre coopératif peut être vu comme une
situation où il n’existe pas de moyen d’améliorer la préférence d’un agent sans rabaisser la préference d’au moins un autre
agent. Il est maintenant bien connu que ce type de problème d’optimisation est lié, quand le nombre d’agents tend vers l’infini,
au contrôle optimal de l’équation de McKean–Vlasov. Dans les trois premiers chapitres de cette thèse, nous donnons une
réponse mathématique précise à la connection entre ces deux problèmes d’optimisation dans differents cadres améliorant
la littérature existante, en particulier en prenant en compte la loi du contrôle tout en considérant un bruit commun.

La seconde partie de cette thèse est consacrée à l’étude des processus contrôlés en interaction représentant désormais un
équilibre de Nash, également appelé équilibre compétitif. Une situation d’équilibre de Nash dans un jeu est une situation
dans laquelle personne n’a rien à gagner en quittant unilatéralement sa propre position. Depuis les travaux pionniers de
Lasry and Lions [111] et Huang, Caines, and Malhamé [84], le comportement des équilibres de Nash lorsque le nombre
d’agents va à l’infini a été intensivement étudié et le jeu limite associé est connu sous le nom de jeux à champ moyen (MFG).
Dans cette seconde partie, nous analysons d’abord la convergence des équilibres compétitifs vers les MFG dans un cadre
avec la loi de contrôle et avec le contrôle de la volatilité, puis, la question de l’existence de l’équilibre MFG dans ce contexte
est étudiée.

Enfin, la dernière partie est dédiée à quelques méthodes numériques pour résoudre le problème de contôle de McKean-
Vlasov. Inspiré de la preuve de la convergence d’équilibre coopératif, nous donnons un algorithme numérique pour résoudre
le problème de contrôle optimal McKean-Vlasov et nous prouvons sa convergence. Ensuite, nous implémentons notre
algorithme à partir des réseaux de neurones et testons son efficacité sur quelques exemples d’application, à savoir la
sélection de portefeuille par moyenne-variance, le modèle de risque systémique interbancaire et la liquidation optimale avec
impact de marché.

ABSTRACT

This thesis is formulated in three parts with eight chapters and presents a research topic dealing with controlled
processes/particles/agents in interaction.

In the first part of the dissertation, we focus our attention on the study of interacting controlled processes representing a
cooperative equilibrium, also called Pareto equilibrium. A cooperative equilibrium can be seen as a situation where there is
no way to improve the preference criterion of one agent without lowering the preference criterion of at least one other agent.
It is now known that this kind of optimization problem is related, when the number of agents goes to infinity, to the optimal
control of McKean–Vlasov processes. In the first three chapters of this thesis, we provide a precise mathematical answer to
the connection between these two optimization problems in various frameworks improving the existing literature, in particular
by taking into account the law of control while allowing a common noise situation.

The second part of this thesis is devoted to the study of the interacting controlled processes now representing a Nash
equilibrium, also called competitive equilibrium. A Nash equilibrium situation in a game is a situation in which no one has
anything to gain by moving unilaterally from his own position. Since the pioneering works of Lasry and Lions [111] and
Huang, Caines, and Malhamé [84], the behavior of Nash equilibria when the number of agents goes to infinity has been
intensively studied and the associated limit game is known as Mean Field Games (MFG). In this second part, we analyze first
the convergence of the competitive equilibrium to the MFG in a framework with the law of control and with control of volatility,
then, the issue of the existence of MFG equilibrium in this context is studied.

Finally, the last part is dedicated to some numerical methods to solve the McKean–Vlasov limit problem. Inspired by the proof
of the convergence of cooperative equilibrium, we give a numerical algorithm to solve the McKean–Vlasov optimal control
problem and we prove its convergence. Then, we implement our algorithm using neural networks and test its efficiency
on some application examples, namely the mean–variance portfolio selection, the inter–bank systemic risk model and the
optimal liquidation with market impact.

KEYWORDS

Stochastic differential equation, stochastic control problem, Pareto equilibria, Nash equilibria, mean field game,
McKean–Vlasov equations, numerical approximations, neural networks.
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