: In this work, optimal conditions were studied in heterogeneous and structured media so that they could be applied to the brain. First, MRE accuracy and precision were investigated with optimal sampling strategies by carrying out multifrequency experiments on a set of four mechanically-calibrated phantoms that mimic the stages of liver fibrosis. Absolute quantification and significant grading could be achieved only when optimal conditions were fulfilled either prospectively by adequate multi-frequency excitation or retrospectively by data multiresampling. Second, MRE optimal conditions were investigated on a heterogeneous breast phantom containing inclusions mimicking tumor lesions stiffer than the surrounding homogeneous parenchyma. This second study allowed to show the need to set different optimal sampling factors by acquiring with multiple excitation frequencies in order to regionally determine the mechanical parameters with the best accuracy and precision and more significantly discriminate the mechanically different regions. Third, multi-frequency brain MRE was performed in order to investigate the best conditions to accurately and precisely discriminate cerebral white matter, grey matter, and the cerebellum in a healthy subject. The cerebellum was found to be less elastic and viscous than cerebral white and grey matters, which exhibited similar shear viscoelastic moduli despite their different anatomical structures. These findings corroborated results recently found in the literature and questioned the general sensitivity of the technique for mechanically characterizing brain diseases. Fourth, physical conditions analogous to microgravity were implemented in the bore of the MRI system to tune brain mechanical properties and challenge MRE sensitivity to inferred changes. During head-down tilt at rest, the expected cephalad fluid shift may increase intracranial pressure in healthy subjects like in a zero gravity spaceflight. Associated tissue stiffening was revealed with optimal MRE by a significant increase of the shear velocity and shear dynamic modulus throughout the brain, especially in the superior peripheral regions. Thereafter, brain MRE, performed in optimal conditions, could be advantageously used to detect mechanical alterations due to similar or inverse pressure changes in pathological processes like hemorrhage, hydrocephalus, or cancer with blood flow redistribution and cerebrospinal fluid accumulation or depletion.

𝑄 𝑉 𝑠 𝐺' { } 𝑓 𝑓 = {60,175,207,320} 𝑄 𝑓 𝑉 𝑠 𝐺' 𝑓 𝑉 𝑠 𝐺' C1 𝑠 {C2,C3,C4} CIRS Fs [T] TR/TE [ms] 𝒂 [mm] 𝒇 [Hz] 〈𝒔〉 ⟨𝑺𝑵𝑹⟩ 〈𝑨〉 [μm] ⟨𝑸⟩ ⟨𝑽 𝒔 ⟩ [m•s -1 ] ⟨𝑮 𝒅 ⟩ [kPa] ⟨𝑬⟩ [kPa] C1 1.
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• 3 • ± kPa ± kPa ± kPa ± kPa 𝑉 𝑠 ∆𝑉 𝑠 = 𝑉 𝑠 17°𝐻𝐷𝑇 -𝑉 𝑠 0°𝑆𝑢𝑝𝑖𝑛𝑒 𝐺′ ∆𝐺′ = 𝐺′ 17°𝐻𝐷𝑇 -𝐺′ 0°𝑆𝑢𝑝𝑖𝑛𝑒 𝐺′′ ∆𝐺′′ = 𝐺′′ 17°𝐻𝐷𝑇 - 𝐺′′ 0°𝑆𝑢𝑝𝑖𝑛𝑒 R 2 V s G′ G′′ 𝑅 2 𝐶𝑆𝐹 T 2 𝑅 2 = 1/𝑇 2 〈𝑉 𝑠 〉 𝑠𝑙 〈𝐺′〉 𝑠𝑙 〈𝐺′′〉 𝑠𝑙 𝑠𝑙 𝑅 ̂2 𝐶𝑆𝐹 〈𝑉 𝑠 〉 𝑠𝑙 〈𝐺′〉 𝑠𝑙 〈𝐺′′〉 𝑠𝑙 1 ≤ 𝑠𝑙 ≤ 9 10 ≤ 𝑠𝑙 ≤ 13 V s G ′ G′′ 𝛿𝑉 𝑠 𝑊𝑀 = +8.
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  Conditions optimales et sensibilité de l'ERM cérébrale : milieux homogènes à hétérogènes Mots clés : Élastographie, IRM, biomécanique, cerveau, conditions optimales, sensibilité Résumé : L'élastographie par résonance magnétique (ERM) est une technique d'imagerie permettant la caractérisation mécanique des tissus biologiques. Cette technique consiste à enregistrer par IRM les champs de déplacement induits par la propagation d'une onde de cisaillement générée dans un tissu cible. Des paramètres mécaniques tels que la vitesse de l'onde de cisaillement, le module d'élasticité ou de viscosité de cisaillement peuvent ensuite être déduits en inversant les équations différentielles des champs de déplacement acquis. Des travaux récents ont montré la difficulté d'une quantification absolue des paramètres mécaniques et ont permis de souligner les facteurs déterminant l'exactitude et la précision de la mesure par ERM qui peuvent finalement être ramenés à deux paramètres caractérisant essentiellement la qualité de l'échantillonnage de l'onde de cisaillement qui se propage dans le milieu étudié : le facteur d'échantillonnage spatial, 𝑠 = 𝜆/𝑎, et le facteur d'échantillonnage d'amplitude, 𝑄 = 𝑞 / ∆𝑞, où 𝜆 est la longueur d'onde de cisaillement, 𝑎, la taille du voxel, 𝑞, l'amplitude du rotationnel du champ de déplacement, et ∆𝑞 , l'incertitude de mesure associée. Ainsi, dans des milieux mécaniquement homogènes, les conditions optimales sur 𝑠 et 𝑄 doivent être remplies pour que les résultats de l'ERM soient valides. Dans ce travail de thèse, les conditions optimales ont été étudiées dans des milieux hétérogènes et structurés pour pouvoir les appliquer in vivo dans le cerveau. Premièrement, l'incertitude de mesure en ERM a été évaluée pour des stratégies d'échantillonnage optimales en réalisant des expériences multifréquences sur un ensemble de quatre fantômes homogènes calibrés mécaniquement qui reprennent les stades de la fibrose hépatique. Une quantification mécanique absolue et une gradation significative n'ont pu être obtenues que lorsque les conditions optimales étaient remplies pour l'ensemble des fantômes soit prospectivement par une excitation multifréquence adéquate, soit rétrospectivement par un multi-rééchantillonnage des données. Deuxièmement, les conditions optimales de l'ERM ont été établies sur un fantôme mammaire hétérogène contenant des inclusions modélisant des lésions tumorales plus rigides que le parenchyme homogène autour. Cette étude a mis en évidence la nécessité d'un échantillonnage multiple des champs de déplacement à travers des acquisitions à différentes fréquences d'excitation afin, d'une part, de déterminer les paramètres mécaniques régionaux avec les meilleures précision et exactitude possibles et, d'autre part, de discriminer significativement mieux différentes régions mécaniques du fantôme. Troisièmement, des acquisitions d'ERM cérébrale à différentes fréquences d'excitation ont été réalisées afin d'étudier les meilleures conditions pour discriminer avec précision et exactitude la matière blanche, la matière grise et le cervelet chez un sujet sain.Le cervelet s'est avéré moins viscoélastique que les matières blanches et grises cérébrales, qui présentaient des modules viscoélastiques de cisaillement similaires en dépit de leurs structures anatomiques différentes. Enfin, des conditions physiologiques analogues à la microgravité ont été mises en place pour modifier les propriétés mécaniques du cerveau et éprouver la sensibilité de l'ERM aux changements induits. En position inclinée tête en bas, l'ERM a révélé une augmentation significative de la vitesse et des modules viscoélastiques dans tout le cerveau, en particulier dans les régions périphériques supérieures. Cette étude a permis de montrer que l'ERM cérébrale, réalisée dans des conditions optimales, pourrait être avantageusement utilisée pour détecter des altérations mécaniques dues à des changements de pression similaires ou inverses dans des processus pathologiques tels que l'hémorragie, l'hydrocéphalie ou le cancer qui s'accompagnent d'une redistribution du flux sanguin et une accumulation ou une perte de liquide cérébrospinal.Title: Optimal conditions and sensitivity of brain MRE: from homogeneous to heterogeneous media Keywords: Elastography, MRI, biomechanics; brain, optimal conditions, sensitivity Abstract: Magnetic Resonance Elastography (MRE) is an imaging technique for the mechanical characterization of biological tissues. This technique consists in recording by MRI the displacement fields induced by the propagation of an induced shear wave in a target tissue. Mechanical parameters such as the shear wave velocity, shear elasticity or shear viscosity moduli can then be deduced by inverting the differential equations of the acquired displacement fields. Thus, MRE allow to map the mechanical parameters of the medium which are recognized as relevant biomarkers to characterize the pathophysiological state of biological tissues. However, the promise of absolute quantification of shear viscoelastic moduli by MRE is undermined by the multiple dependence of the results on acquisition parameters and reconstruction methods. Recent works have shown that the factors determining the accuracy and precision of MRE measurement can ultimately be subsumed with two parameters that essentially characterize how well the propagating shear wave is sampled: the spatial sampling factor, 𝑠 = 𝜆/𝑎, and the amplitude sampling factor, 𝑄 = 𝑞/𝛥𝑞, where 𝜆 is the shear wavelength, 𝑎, the voxel size, 𝑞, the amplitude of the curl of the displacement field, and 𝛥𝑞, the associated measurement uncertainty. Optimal conditions on 𝑠 and 𝑄 must be fulfilled to validate MRE outcomes as proven in mechanically homogeneous media.
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				𝑪			
				𝜎 11 𝜎 22					𝜀 11 𝜀 22	𝜺
				𝜎 33 𝜎 23	=			𝜀 33 𝜀 23
			(	𝜎 13 𝜎 12 )		(	𝜺 = (	𝜀 11 𝜀 21 𝜀 31 𝜀 12 𝜀 22 𝜀 32	)	𝜀 13 𝜀 12 )
									𝜀 13 𝜀 23 𝜀 33
		𝜀 𝑖𝑖						
		𝜀 𝑖𝑗		𝑖 ≠ 𝑗				𝑪
									𝜀 𝑖𝑗 = 𝜀 𝑗𝑖
							𝜹	
				𝐶 𝑖𝑗𝑘𝑙			𝑪
						𝜹.			𝛿 𝑖𝑗 = 𝛿 𝑗𝑖
									𝜎 𝜎 𝑖𝑗
	𝜀 𝜎 𝑖𝑗 (𝜀 𝑘𝑙 ) = 𝜎 𝑖𝑗 (0) + ( 𝜕𝜀 𝑘𝑙 𝜕𝜎 𝑖𝑗 𝜆 𝜇 1 𝜇 2 + ⋯ 𝜇 2 = 𝜇	𝜎 = 𝐸 • 𝜀 𝜀 𝑘𝑙 =0 ) 𝜀 𝑘𝑙 + 1 2	( 𝜕𝜀 𝑘𝑙 𝜕𝜀 𝑚𝑛 𝜕 2 𝜎 𝑖𝑗 𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 )	𝜀 𝑘𝑙 =0 𝜀 𝑚𝑛 =0	𝜀 𝑘𝑙 𝜀 𝑚𝑛	𝜇 1 =
			𝜎 𝑖𝑗 (0) = 0 𝐶 𝑖𝑗𝑘𝑙 = 𝜆𝛿 𝑖𝑗 𝛿 𝑘𝑙 + 𝜇(𝛿 𝑖𝑘 𝛿 𝑗𝑙 + 𝛿 𝑖𝑙 𝛿 𝑗𝑘 )
									𝜆	𝜇	𝜎 𝑖𝑗
		𝜀 𝑖𝑗	𝝈			𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝜎 11 𝜎 21 𝜎 31 with nine components 𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑘𝑙 𝜀 𝑘𝑙	𝜇	𝜆
				𝐶 𝑖𝑗𝑘𝑙	𝝈 = ( 𝜎 12 𝜎 22 𝜎 32 𝜎 13 𝜎 23 𝜎 33 𝐶 𝑖𝑗𝑘𝑙 = ( 𝜕𝜎 𝑖𝑗 𝜀 𝑘𝑙 =0 ) 𝜕𝜀 𝑘𝑙 ) 𝜎 𝑖𝑗 = 𝜆(𝜀 11 + 𝜀 22 + 𝜀 33 )𝛿 𝑖𝑗 + 2𝜇𝜀 𝑖𝑗	𝜎 𝑖𝑖
	𝑪	𝑖 ≠ 𝑗	𝐶 𝑖𝑗𝑘𝑙 𝜆 𝜎 𝑖𝑗	𝐸 𝜀 𝑘𝑙 𝜇 𝐸 =	𝜇(3𝜆 + 2𝜇) 𝜆 + 𝜇	𝐾	𝜎 𝑖𝑗 𝜈	𝑪
	𝜎 𝑖𝑗 = 𝜎 𝑗𝑖 3 4 𝜎 𝑖𝑗 𝜀 𝑘𝑙				𝑪 𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 𝐾 = 𝜆 + 2 𝜇 3 𝜆 𝜈 = 2(𝜆 + 𝜇)	𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑖𝑗𝑙𝑘

𝑖𝑗𝑘𝑙

  𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝑁 𝑀𝐸𝐺 , 𝜃) = 𝛾𝑇 𝑒𝑥𝑐 𝑁 𝑀𝐸𝐺 𝑨 𝑀𝐸𝐺 𝑨 sin(𝒌 • 𝒓 + 𝜃)

		𝒖		𝑆𝑁𝑅							𝒖 𝑻
	𝒖 𝑳 𝑇 𝑒𝑥𝑐	𝜎 0	𝑇𝑅 𝑆𝑁𝑅	𝑛 2 𝒖(𝒓, 𝑡) = 𝜇∇ 2 𝒖(𝒓, 𝑡) + (𝜆 + 𝜇)𝛁(𝛁𝒖(𝒓, 𝑡)) 𝑇 𝑒𝑥𝑐 𝑚 𝑁 𝐺𝐴𝑃 𝑆𝑁𝑅 = 𝑀 𝜎 𝜋 𝑀 • √2 -2 𝒖 = 𝒖 𝑻 + 𝒖 𝑳 = 𝜎 0 𝜌𝜕 𝑡 𝜕 2 𝑢 𝑙 2 𝑢 𝑖 (𝒓, 𝑡) = 𝐶 𝑖𝑗𝑘𝑙 𝜕𝑥 𝑗 𝜕𝑥 𝑘 ∇ • 𝒖 𝑻 = 𝟎 𝑢 𝑖 (𝒓, 𝜃) = 𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝜃) 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺𝑖 ∆𝜑 = atan ( 𝑆𝑁𝑅 ) 1 𝜌𝜕 𝑡 𝒖(𝒓, 𝑡) 𝑢 𝑖 𝑖 ∈ ∆𝜑, ∇ × 𝒖 𝑳 = 𝟎	𝑖 ∈	𝑇𝐼
						𝒖(𝒓, 𝜃) = 𝑨 sin(𝒌 • 𝒓 + 𝜃) 𝑆𝑁𝑅 𝜕𝒖 𝑳 𝜕𝑡 2 = 𝜆 + 2𝜇 𝜌	𝑖 ∈ ∇ 2 𝒖 𝑳
	𝑇𝐸	𝑇𝐸	𝑉 𝑇	𝒖	𝑇𝐴 𝑆𝑁𝑅 ∆𝑢	𝑇𝐴 ∆𝜑 ≃ 𝜕𝒖 𝑻 𝜕𝑡 2 = 𝑆𝑁𝑅 1 𝜇 ∇ 2 𝒖 𝑻 𝜌 ∆𝜑	𝑓 𝑒𝑥𝑐 𝜇	𝑉 𝐿	𝑇𝐸	𝜆	𝑇 2 < ∆𝑢
						𝑁 𝑀𝐸𝐺 ∆𝑢 =	1 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 𝑉 𝐿 = √ 𝜆 + 𝜇 𝑆𝑁𝑅 • 1 𝜌	𝐹𝑂𝑉
		𝜑 𝑖 (𝒓, 𝑡)				∆𝑢 =	𝑢 𝑖 (𝒓, 𝑡) 𝜋(1 -𝑞 2 ) 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 sin(𝜋𝑞) 𝜇 𝑉 𝑇 = √ 𝜌	•	𝑆𝑁𝑅 1	∆𝑢 𝑖
		𝑆𝑁𝑅 𝑀 𝑅 𝜑			∆𝑢 𝑖 𝑀 𝐼	∆𝑞 𝑖		𝑆	𝑖	∆𝑞 𝑖	𝑀	𝑞 𝑖 𝑞 𝑖 𝑉 𝐿	𝑞 𝑖
						𝑀 = √ 𝑀 𝑅 ∆𝑞 𝑖	2 + 𝑖𝑀 𝐼	2	𝑞 𝑖	∆𝑞 𝑖
		𝑁 𝑀𝐸𝐺			𝜑 = atan ( 𝒒	𝑀 𝐼𝑚 𝑀 𝑅	)
									𝑀		𝜎 0
		∆𝑡 = 𝜃 𝜔 𝑒𝑥𝑐 ⁄		𝑢 𝐿 𝑢 𝑇	𝑀 𝑅 𝜎 0 = 𝜎√2 -	𝜃 2 𝜋	𝑀 𝐼	𝜎

  𝒒 𝒊 (𝒓, 𝜔) = 𝜇 𝑖 ∇ 2 𝒒(𝒓, 𝜔) + 𝜁 𝑖 ∂ 𝑡 ∇ 2 𝒒(𝒓, 𝜔) 𝒒 𝒊 = |𝒒 𝒊 | • 𝑒 𝑗(𝜔 𝑒𝑥𝑐 𝑡+𝒌 𝒊 𝒓 𝒊 ) -𝜌𝜔 𝑒𝑥𝑐 2 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 ) = 𝜇 𝑖 ∇ 2 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 ) + 𝑗𝜔 𝑒𝑥𝑐 𝜁 𝑖 ∇ 2 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 )

			𝑢	∆𝑢	𝑢 𝑇
		𝜌𝜕 𝑡 2 𝒖(𝒓, 𝑡) = 𝜇∇ 2 𝒖(𝒓, 𝑡) + 𝜁𝜕 𝑡 ∇ 2 𝒖(𝒓, 𝑡) 𝑢 𝐿 ∆𝜑
	𝑆 𝑆𝐸	∇ × 𝒖 𝐿	𝑆 𝐺𝐸		∇𝒖 𝑇
	𝜂 𝑖𝑗𝑘𝑙	𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑘𝑙 𝜀 𝑘𝑙 (𝑡) + 𝜂 𝑖𝑗𝑘𝑙 𝜌𝜔 2 𝒖(𝒓, 𝝎) = 𝜇∇ 2 𝒖(𝒓, 𝝎) + 𝑗𝜔 𝑒𝑥𝑐 𝜁∇ 2 𝒖(𝒓, 𝝎) 𝜕𝜀 𝑘𝑙 𝜕𝑡 ∇(∇𝒖) ∇(∇𝒖) = ∇(∇(𝒖 𝑇 + 𝒖 𝐿 )) ∇(∇𝒖) = 𝛁 𝟐 𝒖 𝐿 + ∇ × (∇ × 𝒖 𝐿 ) ∇(∇𝒖) = 𝛁 𝟐 𝒖 𝐿 𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝜃) 𝑢(𝒓, 𝜃) = 𝛾𝑇 𝑒𝑥𝑐 𝑨 𝑀𝐸𝐺 ∆𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝜃) ⇔ ∆𝑢(𝒓, 𝜃) = 𝛾𝑇 𝑒𝑥𝑐 𝑨 𝑀𝐸𝐺
		⇔ ∆𝑢(𝒓, 𝜃) = 𝑆 𝑆𝐸 • ∆𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝜃)	
	• 𝜌𝜕 𝑡 2 𝒖(𝒓, 𝑡) = 𝜇∇ 2 𝒖(𝒓, 𝑡) + (𝜆 + 𝜇)𝛁(𝛁𝒖(𝒓, 𝑡)) + 𝜁𝜕 𝑡 ∇ 2 𝒖(𝒓, 𝑡) + (𝜉 + 𝜁)𝜕 𝑡 𝛁(𝛁𝒖(𝒓, 𝑡)) 𝒖(𝒓, 𝑡) 𝒖(𝒓, 𝑡) 𝜌𝜔 • ~• 𝒖 𝒊 (𝒓, 𝑡) = 𝑨 𝟎 . 𝑒 𝑗(𝜔 𝑒𝑥𝑐 𝑡-𝒌 𝒊 𝒓 𝒊 ) 𝑘 𝑖 𝑖 𝑖 ∈ {1,2,3} 𝜆 𝜌~1 • 𝜁 𝜔 𝑒𝑥𝑐 ∇𝒖 ≈ 0 𝜉 𝜇 𝐿𝐹𝐸 = ( 𝜔 𝑒𝑥𝑐 2𝜋 ) 2 • 𝜆 2 𝒖 𝜇 𝑖 𝜁 𝑖 𝒒 = ∇ × 𝒖 𝜋(1 -𝑞 2 ) 𝑢(𝒓, 𝜃) = 𝜑(𝒓, 𝜃) • 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 sin(𝜋𝑞) 𝜋(1 -𝑞 2 ) ⇔ ∆𝑢(𝒓, 𝜃) = ∆𝜑(𝒓, 𝜃) • 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 sin(𝜋𝑞) 𝑖 𝜕 𝑡 𝑖 ∈ {1,2,3}. 𝑖 ∈ {1,2,3} 𝜔 𝑒𝑥𝑐 𝒌 𝒊 𝑖 ∈ {1,2,3}. 𝐺 ′ 𝐺 ′′ -𝜌𝜕 𝑡 𝐺 * = 𝐺 ′ + 𝑗𝐺 ′′ 𝐿 94 352 𝐿 𝑐 0 = 340.5 m • s -1 𝑓 𝑛 = (2𝑛 -1) • 𝑐 0 4𝐿 𝑛 ∈ ℕ ⇔ ∆𝑢(𝒓, 𝜃) = 𝑆 𝐺𝐸 • ∆𝜑(𝒓, 𝜃) 𝑆 𝑆𝐸 = 𝜑(𝒓, 2𝑇 𝑀𝐸𝐺 , 𝜃) 𝑢(𝒓, 𝜃) = 𝛾𝑁 𝑀𝐸𝐺 𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 𝑆 𝐺𝐸 = 𝜑(𝒓, 𝜃) 𝑢(𝒓, 𝜃) = 𝛾𝑇 𝑒𝑥𝑐 𝐴 𝑀𝐸𝐺 sin(𝜋𝑞) 𝜋(1 -𝑞 2 ) 𝐺 ′ 𝐺 ′′ 𝐺 * 𝐺 ′ 𝐺 ′′ 𝑖 𝒒 𝐺 𝑖 ′ 2 𝐺 * = 𝜇 + 𝑗𝜔 𝑒𝑥𝑐 𝜁 𝐺 𝑖 * = 𝐺 𝑖 ′′ ′ + 𝑗𝐺 𝑖 𝐺 𝑖 * = 𝜇 𝑖 + 𝑗𝜔 𝑒𝑥𝑐 𝜁 𝑖 𝐺 𝑖 * = -𝜌𝜔 𝑒𝑥𝑐 2 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 ) 𝛁 𝟐 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 ) , with 𝑖 ∈ {1,2,3}	𝒒 𝐿	•	𝜉 𝑖
		𝜆 ′ = -𝜌𝜔 𝑒𝑥𝑐 𝐺 𝑖 2 𝑅𝑒 (		𝜇 ∇𝒖 ≈ 0
		𝜆		∇(∇𝒖)

2 𝒖(𝒓, 𝝎) = 𝜇∇ 2 𝒖(𝒓, 𝝎) + (𝜆 + 𝜇)𝛁(𝛁𝒖(𝒓, 𝝎)) 𝜌𝜔 2 𝒖(𝒓, 𝝎) = 𝜇∇ 2 𝒖(𝒓, 𝝎) + (𝜆 + 𝜇)𝛁(𝛁𝒖(𝒓, 𝝎)) + 𝑗𝜔 𝑒𝑥𝑐 𝜁∇ 2 𝒖(𝒓, 𝝎) + 𝑗𝜔 𝑒𝑥𝑐 (𝜉 + 𝜁)𝛁(𝛁𝒖(𝒓, 𝝎)) 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 )

𝛁 𝟐 𝒒 𝒊 (𝒓, 𝜔 𝑒𝑥𝑐 ) ) , with 𝑖 ∈

{1,2,3}