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Pyrolysis of lignocellulosic biomass is an effective method for the bio-liquid and syngas productions. The multi-distributed activation energy model (DAEM) is a comprehensive tool for modelling pyrolysis kinetics. Yet, its optimal strategy regarding distribution number and shape is still an open question. Meanwhile, further developments are needed to extend the model's ability to predict the effect of particle size. This work aims to establish a robust and universal DAEM strategy for pyrolysis modelling, which is applied to the pyrolysis kinetics of different particle sizes.

To assess the models, a validation database was systematically employed after identification on the learning database. A trade-off strategy was defined by testing multi-distribution DAEMs with various distribution number and shape. Three-distribution with relevant shapes ensured good prediction with suitable conciseness, and the combination of two-Gaussian plus one exponential distributions further gave the best trade-off between prediction capacity and numerical complexity. This model showed superiority compared to other DAEMs, first-order and nth-order schemes, being determined as the optimal numerical tool in this work.

La pyrolyse de la biomasse lignocellulosique est une mé thode efficace pour la production de bio-liquide et de gaz de synthè se. Le modè le de multidistribué e d'é nergie d'activation (DAEM) est un outil robuste de modé lisation de la ciné tique de pyrolyse. Pourtant, sa straté gie optimale concernant le nombre et la forme des distributions reste une question ouverte. Parallè lement, des dé veloppements supplé mentaires sont né cessaires pour é tendre la capacité du modè le à pré dire l'effet de la taille des particules. Ce travail vise à é tablir une straté gie DAEM robuste et universelle pour la modé lisation de la pyrolyse, puis de l'appliquer à la ciné tique de pyrolyse de particules de diffé rentes tailles.

Aprè s les identifications sur la base de donné es d'apprentissage, les modè les sont systé matiquement testé s avec une base de donné es de validation. Pour la modé lisation, une straté gie optimale a é té dé finie en testant une grande diversité de nombre et forme des distributions. Trois distributions avec des formes pertinentes garantissent une bonne pré diction avec une concision approprié e. La combinaison de deux fonctions gaussiennes et d'une fonction exponentielle s'est ré vé lé e la plus performante des combinaisons DAEM testé es, et plus performante é galement que les sché mas classiques du premier et du n-iè me ordre.

Par la suite, ce choix de modè le DAEM (deux gaussiennes + une exponentielle) a é té utilisé pour dé terminer les paramè tres intrinsè ques de la poudre d'é picé a et de peuplier. La qualité de la pré diction ciné tique a permis, pour la premiè re fois, de dé terminer é galement les enthalpies de ré action à partir des signaux DSC. Des analyses expé rimentales d'é chantillons multié chelles ont ré vé lé les effets de la taille, avec notamment une plus grande carbonisation lié e aux ré actions secondaires. Cela se traduit par la corré lation né gative entre perte de masse et composition é lé mentaire.

Les identifications ont fourni des paramè tres ciné tiques du modè le DAEM pour diffé rentes tailles, à partir desquels des profils de dé volatilisation et des indices synthé tiques sont extraits pour montrer l'effet de la taille sur les trois pseudos composants. La capacité de pré diction du modè le a é té vé rifié e sur trois tailles d'é chantillons par des expé riences additionnelles effectué es avec des essais isothermes.

Enfin, les corré lations entre la masse ré siduelle adimensionnelle et la composition é lé mentaire nous ont permis de dé terminer la composition des ré actions secondaires, constitué e principalement de carbone. La composition é lé mentaire du charbon peut donc ê tre pré dite en utilisant la diffé rence de ciné tique entre une poudre fine et une taille donné e.

Afterward, two Gaussian + one exponential DAEM distributions were employed to determine intrinsic parameters for spruce and poplar powder. The quality of kinetics prediction allowed, for the first time, the enthalpies of reaction to be also determined from the DSC signals. Experimental analyses of multi-scale samples revealed the effects of particle size with carbonization enhancements, being further evidenced by the negative correlation between mass loss and elemental compositions. The DAEM identifications provided solid kinetic parameters for different sizes, from which devolatilization profiles and synthetic indices are extracted to show the effect of size on three pseudo-components. The prediction ability of the model was checked by further experiments performed at different time-temperature patterns with several particle sizes. Finally, correlations between dimensionless residual mass (DRM) and element compositions allowed us to determine the composition of secondary charring, which consists mainly of carbon. The elemental composition of char can therefore be predicted using the difference of kinetics between fine powder and a given particle size.
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General introduction

Worldwide industrial developments consume vast amount of energy sources, especially the traditional, non-renewable fossil fuels. Meanwhile their scarcity and environmental issues such as global warming increase the demand for alternative energy sources more than ever. In this context, bioenergy is globally promoted due to its merits of being renewable, carbon neutral and environmentally friendly [START_REF] Bucksch | The Swedish program for investigations concerning biofuels[END_REF].

Pyrolysis is a very promising thermochemical technology to converts biomass under anaerobic conditions into bio-oil, biochar, and gaseous products. It is also the initial step before two major thermochemical technologies: combustion and liquification, making it the key link in the BtL (biomass to liquid) industrial chain. For kinetic investigations, thermogravimetric (TG) technology is the most direct and efficient method to detect mass loss during a given temperature/time profile in real time. Besides, differential scanning calorimetry (DSC) can monitor the heat flux alongside the whole reaction history. When used simultaneously, these two technologies allow a more comprehensive analysis of pyrolysis kinetics, and facilitate the subsequent model simulations.

Biomass pyrolysis is a sophisticated phenomenon concerning both chemical (reactions)

and physical (heat and mass transfer) processes. Modelling of biomass pyrolysis is quite essential for both kinetic analyses and industrial process optimization. The distributed activation energy model (DAEM) is a comprehensive numerical tool for pyrolysis kinetics. It assumes biomass pyrolysis to occur as series of independent and parallel reactions with continuous activation energies, which account for the inherent non-uniformity of chemical bonds. The activation energies are subject to single or multiple statistic distributions, among which the multiple-distribution DAEM turns to provide more accurate descriptions. And the concepts of pseudo-components inside multi-distributions DAEM correspond well with chemical meanings of biomass constituents (i.e. hemicellulose, cellulose, and lignin).

Distribution shapes inside DAEM represent diverse kinetic behaviours. Symmetric distributions like Gaussian and logistic have been widely employed [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF]. Meanwhile, due to the asymmetric behaviour during the initial and final stages of thermal decomposition, asymmetric distributions attract growing attentions including Weibull and Gamma distributions [START_REF] Xu | Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis[END_REF]. The number of multiple-distribution scheme decides simulation accuracy and numerical complexity as well. It is a key factor that profoundly affects computational implementations. Apparently, an optimal strategy in distribution shape and number is quite crucial for model applicability (numerical complexity, prediction ability and simulation accuracy). On the other hand, model implementation always involves the kinetic identifications, in which multiple temperature profiles effectively reduce parameter uncertainties. This is a key point of the modelling strategy: the quality of fitting is just an indirect indication of the model quality. The real quality of the model should be assessed on a validation database, that must be different from the learning database. However, this crucial validation stage is barely conducted in relevant researches.

Numerous factors could affect pyrolysis kinetics including heating rate, temperature, residence time, particle size and gas atmosphere [START_REF] Kan | Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[END_REF]. Among them, particle size of raw material strongly affects the mechanisms and is, at the same time, a key characteristic of different reactor types. Particle size changes the intricate coupling between heat and mass transfer, thermo-activated reaction, heterogenous reactions between volatiles and solid phase, enthalpy transfer by change of phase. These facts greatly encourage relevant kinetic researches with comprehensive models to be conducted. Meantime, heat flux is crucial for handling thermal overshoot and temperature runaways in industrial processes. As benefits of the prediction potential of multiple-distribution DAEM, it is therefore also worthwhile to further apply the model to the determination of reaction enthalpies.

(1) Trade-off strategy of distribution number and shape in multiple-distribution DAEM

(2) Intrinsic mechanism of wood powder with two-Gaussian + one exponential DAEM, including the analysis of the heat flux to extract reaction enthalpies

(3) Effect of particle size in TG analyses and corresponding DAEM simulations.

(4) Model prediction regarding mass loss and char composition for different particle sizes

To achieve these research goals, this thesis will apply thermogravimetric apparatus, together with the developments of multiple-distribution DAEM. The two mutual-supported research approaches are illustrated in Figure 1. Experimental works are performed by thermogravimetric apparatus (TG/ DSC) and characterization methods (elementary analysis, scanning electron microscope, and tomography imaging). In the meantime, the model strategy is determined in an extensive trade-off process. Learning and validation databases include dynamic and static tests, respectively, which ensure a reliable identification/verification strategy for multiple-distribution DAEM. This provides accurate predictions and simulations of pyrolysis kinetics at various conditions (dynamic/static temperature programs, different particle sizes and different crucible types). Further the optimal model strategy is applied for kinetic determination and relevant predictions. Conversion technologies in biomass industry are introduced thereafter.

Chapter 2 reviews the existing theories in biomass pyrolysis kinetics. The DAEM formulations and relevant concepts are presented in detail. Factors affecting the pyrolysis kinetics are also reviewed.

In Chapter 3, experimental protocols and analytical techniques in research are presented, fundamental characteristics of wood samples are also displayed.

Chapter 4 presents the determination strategy regarding both distribution number and shape inside multiple-distribution DAEM. The trade-off investigations between numerical complexity and predication ability are conducted among different DAEMs. This allows us to identify the best strategy (two Gaussian plus one exponential distributions), which will be used in the rest of the work.

Chapter 5 applies the two-Gaussian + one exponential DAEM in the pyrolysis mechanism of spruce and poplar powder, and exhibits the intrinsic kinetics concerning both mass loss and heat flux. The strategy of extracting enthalpy factors from DSC signals is presented. And the prediction abilities are also checked in Van Krevelen diagram and the control of temperature rise.

Chapter 6 studies the effects of particle size with both experimental and numerical investigations. Six types of wood samples will provide sufficient thermogravimetric data including five sample shapes and two reactor conditions. The mechanisms affected by particle size are explained by transfer-induced secondary charring. The variation trends in the DAEM model will be analysed by synthetic parameters computed from the model parameters.

Model's prediction potential in mass loss will be verified for different particle shapes and further extended to determine the char compositions using kinetic differences between wood powder and given particles.

Chapter 7 will give the overall conclusions and perspectives.

This work aims to contribute to fundamental kinetic study of wood pyrolysis, specifically in the numerical strategy of three-distribution DAEM and the mechanisms with varied particle size. With credible schemes in model strategy, the detailed information in gassolid phase variation patterns get potentials in precise kinetic determinations and predictions.

Thanks to the validation stage systematically proposed in the work, the kinetic parameters could be useful for further applications, including upscaling in industrial reactors.

Chapter 1. Context 1.1 Biomass and biofuel

Biomass refers to the mass of living organisms, including plants, animals, and microorganisms, or, from a biochemical perspective, cellulose, lignin, sugars, fats, and proteins [START_REF] Houghton | Biomass[END_REF]. Biomass is the fourth largest source of energy in the world after coal, petroleum and natural gas, providing about 14% of the world's primary energy consumption [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF]. In the background that fossil fuels are anticipated to deplete within 40-50 years and cause environmental damages such as the global warming, acid rain and urban smog [START_REF] Saidur | A review on biomass as a fuel for boilers[END_REF], biomass

shows vast advantages of being renewable, carbon-neutral in its lifecycle, serving as an optimal alternative energy to cope with greenhouse gas, air pollution and fossil fuel depletions [START_REF] Parikka | Global biomass fuel resources[END_REF].

Biofuel refers to solid, liquid and gaseous fuels that are derived from renewable sources such as biomass, animal fats, plantations or waste oils [START_REF] Demirbas | Biofuels securing the planet's future energy needs[END_REF]. For example, biofuel can include bioethanol, bio-butanol, biodiesel, vegetable oil, bio-methanol, pyrolysis oil, biogas (CH4), and bio-hydrogen. As a promising substitute energy source, biofuel helps relieve pressure from depleting energy situation, decrease external energy dependence and avoid heavily environmental problems. In 2018, the share of biofuel reached a newly high 5.6% in total primary energy supply [10]. Generally, biofuel is classified into three generations based on the origin of biomass sources. The first-generation is derived from food crops like corn, wheat, sugar beet and oil seeds, usually in form of bio-diesel and bio-ethanol. Yet, the production of first-generation biofuel inevitably encounters conflicts with food and makes it less promising. The second-generation biofuel is produced from non-food biomass of lignocellulosic feedstock materials, which include by-products (cereal straw, sugar cane bagasse, forest residues), wastes (organic components of municipal solid wastes), and dedicated feedstocks (purpose-grown vegetative grasses, short rotation forests and other energy crops) [START_REF] Sims | An overview of second generation biofuel technologies[END_REF]. The second-generation biofuel has no direct conflicts with food feedstocks, also it shows advantages in wide resource range and sustainable supply. However, lignocellulosic biomass has multiple physical characteristics that require complex transformation chain to produce biofuel. The third-generation biofuel is mainly derived from algae or seaweed, they convert solar energy into chemical energy of bio-oil, carbohydrate, and proteins. Algae has a high photosynthetic efficiency, and it can help in water treatment by consuming nutrient such as nitrogen and phosphorus. Its major components are protein, lipid and soluble polysaccharide [START_REF] Wang | Research on pyrolysis characteristics of seaweed[END_REF], which favor low energy input in exchange for high hydrocarbon content in bio-oil. But the difficulties in production, harvesting and pretreatment remains important issues to the mass production of biofuel. Moreover, the algae technology requires large amount of water and nutrient within cultivation cycle [START_REF] Holma | Current limits of life cycle assessment framework in evaluating environmental sustainability-case of two evolving biofuel technologies[END_REF].

Wood

Physical structure

Wood is one of the mostly used materials in man's history, its mechanical properties make it very useful as construction and civil material. Wood is strongly orthotropic, its three material directions: longitudinal, radial, and tangential present contrasted characteristics.

Physical cell wall structures are formed in wood by secondary growth, endowing properties like water transportation, wood rigidity and strength, their typical honeycomb-like structure are evenly distributed in longitudinal direction [START_REF] Mishnaevsky | Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review[END_REF][START_REF] Kollmann | Principles of Wood Science and Technology: II Wood Based Materials[END_REF][START_REF] Panshin | Textbook of wood technology. Part 1. Formation, anatomy, and properties of wood[END_REF]. As shown in figure 1.1, the cell wall consists of several different layers with different chemical compositions and microfibril orientation. The outer layer of lamella is made of pectic substances [START_REF] Plomion | Wood formation in trees[END_REF], which provides adhesions between wood cells. Primary cell wall is made up with randomly distributed microfibrillars cellulose, hemicellulose, and lignin. Three inner layers are classified into S1, S2

and S3 layers with different orientation [START_REF] Panshin | Textbook of wood technology. Part 1. Formation, anatomy, and properties of wood[END_REF][START_REF] Timell | Occurrence of stem, branch and root compression woods, factors causing formation of compression wood, physiology of compression wood formation, inheritance of compression[END_REF]. They all consist of microfibrillars, hemicellulose and lignin with an ordered pattern. S1 is homogeneous but very thin (0.1-0.35μm). S2 is the thickest layer (1-10μm) which represents about 80% of the total cell wall thickness [START_REF] Fengel | Variation in cell cross sectional area, cell wall thickness and wall layer of spruce tracheids within an annual ring[END_REF]. S3 is the most inner layer (0.5-1.1μm) that contacts which lumen structure.

Figure 1.1-Multiscale structures of wood (high resolution tomography figure from [START_REF] Perre | Coupled heat and mass transfer in porous media: insight and perspective of multiscale modelling[END_REF] and illustration figure of cell wall from [START_REF] Plomion | Wood formation in trees[END_REF])

Chemical structure

Major macromolecules present in the cell wall consist of cellulose, hemicellulose, lignin (chemical structure in figure 1.2). In addition, the extractives and inorganic matters (alkali metal minerals) also exist. Their contents differ among species and part of tree, where the highest levels are encountered in heartwood [START_REF] Thomas | Wood: Structure and chemical composition[END_REF]. Nonetheless, the fundamental knowledge on organic and inorganic components can help build the essential understanding in wood conversion processes.

Cellulose is widely described as saturated linear polysaccharide, the chemical formula is often written as (C6H10O5) n, where n is polymerization degree. It consists of linear chains of (1,4)-D-glucopyranose units with molecular weight around 100,000 [START_REF] Mckendry | Energy production from biomass (part 1): overview of biomass[END_REF]. It occupies about 40%-50% in wood (around 42% in softwood and 45% in hardwood) [START_REF] Thomas | Wood: Structure and chemical composition[END_REF]. Cellulose usually gets fibrous structures and it is presented in cell wall of plant and in pure form in cotton fibre.

Four known crystal structures of cellulose were reported: cellulose I to IV, differing in crystal structure and amorphous proportion [START_REF] Prasad | Ethanol as an alternative fuel from agricultural, industrial and urban residues[END_REF]. As a consequence of its high degree of polymerization, crystallinity degree and its orientation, cellulose contributes mainly to the strength of wood fibre as well as in the stems of plants [START_REF] Vassilev | An overview of the organic and inorganic phase composition of biomass[END_REF].

Hemicellulose mainly consists of polysaccharides deriving from sugars (glucose, mannose, xylose, and arabinose), methylglucuronic and galaturonic acides, its average molecular weight is lower than 30,000. It constitutes around 28% in softwood and 35% in hardwood [START_REF] Rowell | The chemistry of solid wood, The chemistry of solid wood[END_REF]. Hemicellulose in hardwoods are mainly in the form of acetylglucuronoxylan (15-30%), and other components like galactose, arabinose, rhamnose, glucuronic acid and acetyl groups; meanwhile in softwood, hemicellulose mainly consists of galactoglucomannan

(5-8%) and glucomannan (10-15%) [START_REF] Anca-Couce | Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis[END_REF]. Polysaccharides in hemicellulose are heterogeneously branched, and non-covalently bonded to the surface of cellulose microfibril [START_REF] Mckendry | Energy production from biomass (part 1): overview of biomass[END_REF]. It provides matrix for cellulose and links fibrous cellulose and amorphous lignin. The less stable chemical structures make hemicellulose more reactive than cellulose, and its thermal decomposition products are more complicated than those of cellulose.

Lignin presents as three-dimensional organic structure with highly cross-linked macromolecules [START_REF] Watkins | Extraction and characterization of lignin from different biomass resources[END_REF]. Its irregular phenolic polymer consists of more than four substituted phenyl propane, and the highly branched poly-aromatic polymers endow lignin with aromatic nature. Lignin accounts for 23%-33% in softwood and 16%-25% in hardwood, it is insoluble in water and stable in nature. Different substitution patterns of aromatic rings exist in woody lignin, including: p-hydroxyphenyl (H), guaiacyl (4-hydroxy-3-methoxyphenyl, G) and syringyl (3,5-dimethoxy-4-hydroxyphenyl, S). Usually, softwood contains more G groups and less H groups, while hardwood mainly consists of G and S groups. These monomers are linked together through various kinds of ether linkages (C-O) and condensed (C-C) bonds, leading to a heterogeneous chemical structure for lignin [START_REF] Adler | Lignin chemistry-past, present and future[END_REF][START_REF] Kawamoto | Lignin pyrolysis reactions[END_REF]. Typical lignin structures mainly comprise syringyl units that interconnected through β-O-4, β-1 and β-β interunit bonds [START_REF] Lapierre | Application of new methods for the investigation of lignin structure[END_REF]. The polyphenolic component in lignin plays the role of cement [START_REF] Pandey | A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[END_REF], which holds the micro-fibrils with relatively high structural rigidity.

Figure 1.2-Chemical structures of cellulose, hemicellulose and lignin [START_REF] Deng | Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons[END_REF] The inorganic materials in biomass are usually in forms of mineral matters, including silicates, oxyhydroxides, sulphates, phosphates, carbonates, chlorides, and nitrates. SiO2, CaO and K2O are the major inorganic components in biomass [START_REF] Vassilev | An overview of the organic and inorganic phase composition of biomass[END_REF]. They are often retained in biochar or ash after thermal treatments of biomass. Inorganic's contents are usually less than 1% in softwood and can be higher than 15% in herbaceous biomass [START_REF] Dhyani | A comprehensive review on the pyrolysis of lignocellulosic biomass[END_REF].

The extractives in biomass are defined by their solubility in polar or non-polar solvents (water, ethanol, benzene, and toluene), they commonly consist of various saccharides, proteins, lipids, fats, etc. The extractives act as energy reserves and protection material from insect.

Biomass conversion technologies

Modern industry meets the needs to convert biomass into energy forms of solid, liquid, gaseous chemical products, and efficient heat for power generation. Generally, industrial processes need to deal with biomass feedstocks that are varied in energy density, size, moisture content and intermittent supply [START_REF] Sharma | Biomass conversion technologies for renewable energy and fuels: A review note[END_REF]. Moreover, the requirements of high energy density and easy transportability in bio-fuels put more emphasis on the efficient conversion technologies. As shown in figure 1.3, the existing biomass conversion technologies can be classified into two basic categories: biochemical processes and thermo-chemical processes.

Producible bio-energy depends much on the chemical/physical properties and the efficiency of extraction technologies. It is scientists' great interest to maximize the yield of applicable energies from biomass. Herein, some presentative technologies will be introduced. 

Biochemical technology

Biochemical conversion is an environmentally friendly method for producing chemical products, in which biogas (hydrogen or methane) and ethanol, are produced by bioprocesses.

The present discussions will focus on the existing technologies that produce these two forms of products.

Fermentation

Biohydrogen, as target product, can be produced in dark fermentation by strictly anaerobic or facultative anaerobic bacteria [START_REF] Nandi | Microbial production of hydrogen: an overview[END_REF]. The anaerobic bacteria grow on carbohydrate rich substrates (including glucose, starch, and cellulose), and gives organic fermentation end products, hydrogen and carbon dioxide [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF]. Carbohydrates in biomass are the preferred organic carbon sources for hydrogen productions, the major process and reactions involved in dark fermentation are shown in figure 1.4. The CSTR (continuously stirred tank reactor) is the most used bio-reactor for the continuous hydrogen productions of dark fermentation process, where biomass can be well suspended in the mixed liquor and keep the same composition as the effluent [START_REF] Ntaikou | Biohydrogen production from biomass and wastes via dark fermentation: a review[END_REF].

Figure 1.4-Major reactions and dark fermentation process [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF] Another application of the fermentation is to produce ethanol. The bio-ethanol plants usually use the feedstocks of sugarcane, sugar beet juice, corn or wheat for the first generation [START_REF] Gnansounou | Ethanol fuel from biomass: A review[END_REF]. 

Photosynthesis process

The phototrophic organisms usually apply purple bacteria, green bacteria, cyanobacteria, and algae [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF]. They convert water molecules into hydrogen ion (H + ) and oxygen, the H + is subsequently converted by hydrogenase enzymes into H2 under anaerobic conditions [START_REF] Singh | A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels[END_REF].

Direct bio-photolysis is sensitive to oxygen and suffers from limited conversion efficiency, the use of oxygen absorbers and heterocystous cyanobacteria is therefore encouraged in relevant processes [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF]. In contrast, the indirect bio-photolysis overcomes the problems by separating spatially oxygen evolution and hydrogen evolution [START_REF] Hallenbeck | Biological hydrogen production; fundamentals and limiting processes[END_REF]. One typical fixed-bed reactor of the photosynthesis process is shown in figure 1.5. The hydrogen is produced by means of batch operation, and this unit can be further coupled with fuel cells [START_REF] Saxena | Biomass-based energy fuel through biochemical routes: A review[END_REF].

Figure 1.5-Fixed bed reactor for photosynthesis process [START_REF] Tan | Photosynthesis of hydrogen and methane as key components for clean energy system[END_REF] 1.

Anaerobic digestion

Anaerobic microorganisms digest the organic material for producing biogas (methane), which can be used for electricity and heat production (figure 1.6). The microorganisms involve the degradation of organic material, and they usually require high concentration of wet biomass matters in the absence of oxygen [START_REF] Balat | Biomass energy and biochemical conversion processing for fuels and chemicals[END_REF]. Anaerobic digestion process can deal with organic waste such as livestock manure, crops, sewage sludge and solid waste. And the afterprocess material can be utilized as fertilizer, or bedding material.

The bio-reactor is an airtight container called digester, which ranges in size from around 1 m 3 (small household unit) to as large as 2000 m 3 (large commercial installation) [START_REF] Demirbas | Biomass resources for energy and chemical industry[END_REF].

Depending on different feedstocks and process systems, the biogas products usually contain methane with contents of 55%-75%, while the state-of-art technology can produce biogas containing 95% methane [START_REF] Balat | Biomass energy and biochemical conversion processing for fuels and chemicals[END_REF]. 

Thermo-chemical technology

Industrial technologies present four choices for biomass thermal conversions: combustion, gasification, pyrolysis, and liquefaction. These technologies are in different stages of development, and herein emphasis will be put on the research subject: pyrolysis.

Combustion

Combustion is an old technology which has been used since ancient time, the biomass burns in air and converts the chemical energy into heat. As the main way of bioenergy production, it responds over 90% of the global bioenergy [START_REF] Koppejan | The handbook of biomass combustion and co-firing[END_REF]. In modern industry, heat from biomass combustion is usually converted into mechanical power or electricity, figure 1.7

shows one representative combustion process that aims for power generation. Power plants produced electricity in the range of 100-3000 MW by biomass combustion, and the co-firing with coal attracts more interests because of their high conversion efficiency [START_REF] Mckendry | Energy production from biomass (part 2): conversion technologies[END_REF]. Also the onsite co-generation of heat and electricity is a practical way to elevate energy efficiency and produce cheap fuels from biomass [START_REF] Koppejan | The handbook of biomass combustion and co-firing[END_REF]. 

Liquefaction

Hydrothermal liquefaction converts biomass into liquid biofuel under specific conditions including solvent media, high pressure (5-25 MPa) and proper temperature (250-500 º C) [START_REF] Akhtar | A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[END_REF].

Main products from liquefaction are bio-crude, char, water-soluble material, and gases. Figure 1.8 illustrates an example of hydrothermal liquefaction of lignocellulose biomass [START_REF] Gollakota | A review on hydrothermal liquefaction of biomass[END_REF][START_REF] Biller | Production of biofuels via hydrothermal conversion, Handbook of biofuels production[END_REF].

The process started by decomposing biomass into reactive molecules that can repolymerize into hydrophobic and oil compounds, then the rearrangement via condensation, cyclization, and polymerization will produce new larger, hydrophobic macromolecules [START_REF] Garcia Alba | Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept[END_REF]. 

Gasification

Gasification is a thermo-chemical process that converts biomass into gaseous fuel under an oxygen-deficient environment. It removes part of oxygen in biomass and increases energy density by either dehydration or decarboxylation [START_REF] Basu | Biomass gasification, pyrolysis and torrefaction: practical design and theory[END_REF]:

Dehydration: 𝐶 𝑚 𝐻 𝑛 𝑂 𝑞 → 𝐶 𝑚 𝐻 𝑛-2𝑞 + 𝑞𝐻 2 𝑂 Decarbooxylation: 𝐶 𝑚 𝐻 𝑛 𝑂 𝑞 → 𝐶 𝑚-𝑞 2 𝐻 𝑛 + 𝑞 2 𝐶𝑂 2
The versatility of gasification is that it can be used for producing syngas, hydrogen, or other liquid fuel [START_REF] Ruiz | Biomass gasification for electricity generation: Review of current technology barriers[END_REF]. Meantime, it is usually linked with co-gasification, where the high content of moisture in biomass favours syngas production and methanol synthesis [START_REF] Chmielniak | Co-gasification of biomass and coal for methanol synthesis[END_REF]. Also, the cogeneration of gaseous fuel from biomass gasification can potentially produce bioenergy onsite. As shown in figure 1.9, the major types of industrial gasifiers are: fixed bed gasifier (updraft, downdraft and cross draft) and fluidized-bed gasifier (bubbling fluidized-bed and circulating fluidized-bed) [START_REF] Bhattacharya | A review of selected biomass energy technologies: gasification, combustion, carbonization and densification[END_REF].

Figure 1.9-Major types of biomass gasifier [START_REF] Bhattacharya | A review of selected biomass energy technologies: gasification, combustion, carbonization and densification[END_REF] 1.

Pyrolysis

Pyrolysis is a thermal decomposition route under an oxygen-free atmosphere. Overall, endothermic behaviour of biomass pyrolysis demand heat from 207 to 434 kJ/kg [START_REF] Van De Velden | Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[END_REF].

Polymers in three main components (hemicellulose, cellulose, and lignin) will melt and depolymerize into small-molecular vapours, which further condense into so-called bio-oil.

Incondensable gases (including CO, CH4, CO2, H2) also escape from decomposition. The final solid residual is rich in carbon, known as bio-char. Bio-oil from pyrolysis is a dark-brown liquid, it can be directly used in boiler or blend with vacuum gas oil in fluid catalytic cracking (FCC) units of oil refineries. Biochar can be either burned in the pyrolysis units for self-supply heat or used as reducing agent in metallurgical industry [START_REF] Chum | Biomass Pyrolysis to Hydrocarbon Fuels in the Petroleum Refining Context: Cooperative Research and Development Final Report[END_REF]. The un-condensable gas has high calorific value, which can be recirculated into reactor for heat supply, or flow to downstream process like Fisher-Tropsch process.

Figure 1.10-Flowchart of biomass pyrolysis process [START_REF] Evans | Molecular characterization of the pyrolysis of biomass[END_REF] Industrial application of biomass pyrolysis encourages reactor developments including fixed bed, fluidized bed, rotating furnace, ablative and vacuum reactors [START_REF] Wang | Lignocellulosic biomass pyrolysis mechanism: a state-of-theart review[END_REF], leading to considerable flexibility among products' yields and compositions. Three typical classifications depending on heating rates can be assigned as: Slow, fast, and flash pyrolysis.

The basic parameters of these techniques are summarized in table 1.1. Figure 1.11-Schemes and industrial fluidized bed process [START_REF] Corella | A review on dual fluidized-bed biomass gasifiers[END_REF] Volatile yields are effectively promoted by the rapid heating, high temperature and short residence time, with bio-oil yield up to 75 wt.% and higher heating value of 17 MJ/kg [START_REF] Bridgwater | Review of fast pyrolysis of biomass and product upgrading[END_REF].

Generally, small particle size is strictly required to fulfil requirements of fluidization velocity, the corresponding pre-treatment and downstream cyclone separation are usually indispensable [START_REF] Beis | Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions[END_REF]. On the other hand, surface area and heat transfer efficiency that link to particle size can affect product composition and yield.

Increasing developments have been also employed on the fixed-bed reactor (figure 1.12).

Stable biomass layer and indirect heating method make a slow heating rate for raw material, resulting in high char yield. There are two main motivations for developing fixed-bed reactor:

(1) succinct reactor design that ensure reliable and economical process; (2) liquid product that is easy for phase separations, being preferable to acquire special chemicals from bio-oil.

Figure 1.12-Fixed-bed reactor of biomass pyrolysis (adapted from [START_REF] Dutta | Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility[END_REF])

Fixed bed generally deals with large particle sizes and large batch quantity. Temperature gradients are intense inside biomass bed, where near-wall portions turn to have higher temperatures than those in reactor centre. Transport phenomena become more significant in both macroscopic feedstock bed and microscopic single particle inside fixed bed reactor.

Indeed, the particle size plays a crucial role in both fast and slow pyrolysis technologies, specific investigations should therefore be conducted for better process implement and control.

Chapter 2. Literature reviews

Chemical kinetic models of biomass pyrolysis

Significant efforts are required in kinetics models that is to create powerful tools in simulating reactor performances, understanding product evolution and optimizing process controls [START_REF] Ranzi | Chemical kinetics of biomass pyrolysis[END_REF]. Pyrolysis involves complex sets of sequential and parallel unimolecular and bimolecular reactions [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF], being quite demanding for detailed descriptions. Nonetheless, extensive kinetics schemes have been established over decades, from single-component, lumped-reaction models to the distributed activation energy model (DAEM), involving both nucleation behaviour and reactivity distribution. The most common kinetics models in biomass pyrolysis will be reviewed hereafter.

Single-component kinetics

Single-component (or one-stage) kinetics is the simplest global model. This macroscopic scheme treats biomass as one component which transforms into products with three categories: char, tar, and gas. The primary devolatilization and secondary charring are often included together. Additional measurements of product yields and thermogravimetric data are normally needed for model inputs. The one-component mechanism provides reasonable agreement with experimental observations and meaningful ideology for an overall description of numerous reactions during biomass pyrolysis. That is why many subsequent models have been developed based on this scheme, in which reaction mechanisms are coupled with transfer formulations. For instance, Di Blasi [START_REF] Blasi | Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis[END_REF][START_REF] Blasi | Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation[END_REF] coupled the one-component scheme with conservation law and momentum transfer by Darcy law, the 2D model was designed to investigate the effects of particle shrinkage and permeabilities in pyrolytic products' distribution.

Alternatively, a global mechanism [START_REF]A review of the vapor phase pyrolysis of biomass derived volatile matter[END_REF][START_REF] Jr | Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft ligninderived volatile matter[END_REF] further coupled secondary reaction mechanism with primary volatile. As shown in figure 2.2, reactive volatile matters from primary reactions convert with two competitive routes into permanent gases and refractory condensable materials, and the latter reaction is responsible for carbon deposition in solid phase.

Figure 2.2-One-component scheme of secondary reaction mechanism [START_REF]A review of the vapor phase pyrolysis of biomass derived volatile matter[END_REF][START_REF] Jr | Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft ligninderived volatile matter[END_REF] Still, one has to admit that one-component scheme is poorly constructed especially when dealing with analytical chemistry [START_REF]Biomass pyrolysis: a review of the literature part 1-carbohydrate pyrolysis[END_REF], and there still exists difficulties in determining kinetic constants after coupling secondary reactions or transfer phenomenon. Low values of activation energies could arise from the occurrence of different reactions in different temperature intervals [START_REF] Boroson | Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars[END_REF]. Moreover, the scheme is based on the analysis of existing experimental data, its global kinetics will possibly fail when predicting different heating profiles, especially when covering a higher temperature which is not included in the database of parameter identification [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF][START_REF] Wagenaar | Flash pyrolysis kinetics of pine wood[END_REF]. These limitations are the motivations for further developments of multi-component mechanisms to better represent complexed reactions. Subsequently, the majority of multi-component schemes incorporate three main constituents in biomass (i.e. hemicellulose, cellulose, and lignin). Usually, they are supposed to decompose through non-interaction reactions with independent kinetic parameters [START_REF] Vá Rhegyi | Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study[END_REF][START_REF] Cai | Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis[END_REF].

Multi-component kinetics

The superposition of three simultaneous decompositions results in the final thermogravimetric behaviours.

One representative multi-component scheme was proposed by Miller and Bellan [START_REF] Miller | A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics[END_REF] that described individual biomass component with intermediate steps and interactions (Figure shows one modified model proposed by Diebold [START_REF] Diebold | A unified, global model for the pyrolysis of cellulose[END_REF] where all reactions are assumed to be first-order and irreversible. Cellulose first converts into active cellulose, primary char, and water. Active cellulose further decomposes by three pathways: cracking directly into secondary gases, devolatilization into primary vapor or dehydrations into char and water. Hydroxyacetaldehyde is found as cellulose's primary decomposition product through ring scission, and its formation competes with char generation [START_REF] Richards | Glycolaldehyde from pyrolysis of cellulose[END_REF]. Banyasz [START_REF] Banyasz | Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution[END_REF] proposed a relevant mechanism for fast pyrolysis in figure 2.6, which mainly accounts for the release of formaldehyde, hydroxyacetaldehyde, CO and CO2. Formaldehyde and CO are indicated as the products of secondary reactions and levoglucosan in tar is major source for hydroxyacetaldehyde. Lignin decomposes over a broader temperature range, because its various oxygen functional groups have different degrees of stability. A simple illustration of lignin's decomposition scheme is shown in figure 2.9.

Figure 2.9-Lignin pyrolysis scheme [START_REF] Collard | A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[END_REF] The release of primary volatile component is mostly attributed to cleavage of propyl chains, linkages between monomers and methoxy substituents of aromatic rings. Then, a secondary charring occurs from the rearrangement of char skeleton in polycyclic aromatic structures [START_REF] Collard | A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[END_REF].

Gauthiere [START_REF] Gauthier | Pyrolysis of thick biomass particles: experimental and kinetic modelling[END_REF][START_REF] Milosavljevic | Thermal effects in cellulose pyrolysis: relationship to char formation processes[END_REF] Compared to the one-component kinetics, the multi-component includes more detailed reaction scenarios and considers specific chemical constituents, presenting as an important improvement. However, the sub-model inside multi-component kinetic mostly consists of three major components (i.e. hemicellulos, cellulose and lignin) and is essentially a onecomponent kinetic. Drawbacks of one-component scheme are possible to occur in multiplecomponent scheme as well. Notably, the prediction ability at different heating conditions is still unsatisfactory [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF]. Even though the numerical complexity is never simple in multi-component kinetic, more reaction schemes must be further included to improve model's prediction capacity [START_REF] Mé Szá Ros | Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation[END_REF].

Distributed activation energy model (DAEM)

Formulation of DAEM

DAEM was firstly proposed by Vand [START_REF] Vand | A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[END_REF] to analyse coal pyrolysis. Soon after, it was widely applied to various complex feedstocks including oil shale [START_REF] Hillier | Pyrolysis kinetics of a Green River oil shale using a pressurized TGA[END_REF], sewage sludge [START_REF] Soria-Verdugo | Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model[END_REF],

and biomass [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF]. The model primarily calculates devolatilization reactions as a series of independent, parallel and first order or nth-order reactions with different activation energies.

Every reaction group produces volatile (𝑉 𝑖 (𝑡)) at time t and follows the pseudo-nth-order rate equations as [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF]:

Where 𝑉 𝑖 ∞ is maximum volatile production from reaction 𝑖, and 𝑛 the reaction order (normally defined as natural number). The reaction rate constant, 𝑘 𝑖 , obeys an Arrhenius equation with pre-exponential factor (𝐴 𝑖 ) and activation energy (𝐸 𝑖 ):

Where R is the universal gas constant, R = 8.314 J/(mol • K), and 𝑇(𝑡) is the absolute temperature at time 𝑡. 𝐴 𝑖 is assumed to be constant (𝐴 𝑖 = 𝐴) for all reactions. The continuous function 𝑓(𝐸) defines the distribution of activation energies, which embeds the distribution of atomic interactions caused by the variability of macromolecules [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF]. Chemical components with activation energy between E and E+dE have the reaction probability: ∫ 𝑓(𝐸)𝑑𝐸 𝐸+𝑑𝐸 𝐸

.

The total integral of 𝑓(𝐸) equals 1 to keep normality:

So the integral form of conversion degree 𝑋(𝑡) is:

𝑑𝑉 𝑖 (𝑡) 𝑑𝑡 = 𝑘 𝑖 (𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡)) 𝑛 (2-1) 
𝑘 𝑖 = 𝐴 𝑖 𝑒𝑥𝑝 (- 𝐸 𝑖 𝑅𝑇(𝑡) ) (2-2) ∫ 𝑓(𝐸)𝑑𝐸 +∞ 0 = 1 (2-3) 𝑋(𝑡) = 𝑉(𝑡) 𝑉 ∞ = { 1 -∫ [1 -(1 -𝑛) ∫ 𝐴𝑒𝑥𝑝 (- 𝐸 𝑅𝑇 ) 𝑑𝑡 𝑡 𝑡 0 ] ∞ 0 1 (1-𝑛) ⁄ 𝑓(𝐸)𝑑𝐸 𝑛 ≠ 1 1 -∫ 𝑒𝑥𝑝 [-∫ 𝐴𝑒𝑥𝑝 (- 𝐸 𝑅𝑇 ) 𝑑𝑡 𝑡 𝑡 0 ] ∞ 0 𝑓(𝐸)𝑑𝐸 𝑛 = 1
(2-4)

Multi-distribution DAEM

Biomass is a complex mixture of chemical fractions and the published works proved that it is not possible to correctly represent the volatile production with one single distribution.

Instead, the biomass is represented by several components with a continuous distribution for each of them [START_REF] Bailey | Lumping analysis of reactions in continuous mixtures[END_REF].

Therefore, multiple-parallel DAEM distributions have been proposed to represent biomass [START_REF] Zhang | A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin[END_REF]. Concepts of pseudo-components have also been proposed to correspond chemical components to the reaction clusters. The common formulation of multiple-parallel DAEM expresses as:

𝑋(𝑡) = 𝑉(𝑡) 𝑉 ∞ = { 1 -∑ 𝑉 𝑚𝑎𝑥 (𝑗) 𝑁 𝑑 𝑗=1 ∫ [1 -(1 -𝑛)𝐴 𝑗 ∫ 𝑒𝑥𝑝 (- 𝐸 𝑗 𝑅𝑇 ) 𝑑𝑡 𝑡 𝑡 0 ] ∞ 0 1 1-𝑛 𝑓 𝑗 (𝐸)𝑑𝐸 𝑛 ≠ 1 1 -∑ 𝑉 𝑚𝑎𝑥 (𝑗) 𝑁 𝑑 𝑗=1 ∫ 𝑒𝑥𝑝 [-𝐴 𝑗 ∫ 𝑒𝑥𝑝 (- 𝐸 𝑗 𝑅𝑇 ) 𝑑𝑡 𝑡 𝑡 0 ] ∞ 0 𝑓 𝑗 (𝐸)𝑑𝐸 𝑛 = 1 (2-5)
Where 𝑁 𝑑 is the distribution number and 𝑉 𝑚𝑎𝑥 (𝑗) the weighting factor of its corresponding distribution 𝑓 𝑗 (𝐸).

Table 2.1 reviews several DAEM with different distribution number, ranging from 1 to 5, their degrees of freedom that relate to numerical complexities are also listed. Among them, multi-Gaussian DAEM still attracts the most attention. Moreover, comprehensive model consisting of three parallel DAEM is further claimed as the most accurate and up-to-date approach [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF]. Herein, values of degree of freedom (𝐷 𝑓 ) varies among different model types, attributing to the differences in, i) overall distribution number and, ii) independent parameter in each distribution.

The pyrolysis systems of different feedstocks could be described by different sets of distributions. The popular choices are symmetric distributions like Gaussian and logistic, meanwhile the actual reactivity distributions of certain materials tend to asymmetric [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF], which requires the corresponding asymmetric distributions such as Weibull and Gamma.

Chemical interpretations are usually attached with multiple-distributions. The two-distribution scheme is generally explained with double-stage pyrolysis [START_REF] Vá Rhegyi | Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study[END_REF]. In three-distribution DAEM, the pseudo-component with largest weighting factor is attributed to cellulose; and the pseudocomponents with largest range of activation energy is linked with lignin. While the overlapped or multiple-stage decompositions explain the schemes of four-and fivedistribution DAEM [START_REF] Chen | Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels[END_REF]. 

Mathematical shape of the function f(E)

Many trials have been done concerning the shape of the mathematical function, the most common ones are symmetric Gaussian and logistic distributions [START_REF] Cai | Logistic distributed activation energy model-Part 1: Derivation and numerical parametric study[END_REF].Meanwhile, considering that actual forms of reaction activity is asymmetric especially during initial and final stage of pyrolysis [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF], asymmetric distributions including Weibull, Gamma and Rayleigh distributions were also applied [START_REF] Lakshmanan | A new distributed activation energy model using Weibull distribution for the representation of complex kinetics[END_REF][START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF]. 

Frequency factor A and compensation effect

(1) Frequency factor A During the parameter determinations, the frequency factor (or pre-exponential factor) 𝐴 𝑖 of every reaction remains controversy among different models. Three strategies have been adopted so far. The first practice (also the most common method) is to set a fixed value in advance for all reactions, in other words, pre-setting 𝐴 𝑖 before parameter identification process. For instance, three fixed values (10 14.13 , 10 13.71 , 10 13.90 ) had been assigned to three-distribution DAEM [START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF], or all distributions shared the same value of frequency factor (5×10 11 ) [START_REF] Wang | Triple-Gaussian distributed activation energy model for the thermal degradation of coal and coal chars under a CO2 atmosphere[END_REF][START_REF] De Caprariis | Double-Gaussian distributed activation energy model for coal devolatilization[END_REF]. The second practice is to correlate frequency factor with temperature (eq. 2-6). Here 𝐴 0 is a constant value and the exponent 𝑚 ranges between -1.5 to 2.5 [START_REF] Wanjun | Approximate formulae for calculation of the integral ò T 0 T m exp (-E/RT) dT[END_REF]. It sets specific values for all reactions, but these beforehand values are still independent from parameter identifications.

The third practice is to introduce a correlation (eq. 2-7) when proceeding identification process.

It is also known as "compensation effect", this relation reflects that the change of 𝐸 can be compensated by the proper change of 𝐴 [START_REF] Vá Rhegyi | Tobacco pyrolysis. Kinetic evaluation of thermogravimetric-mass spectrometric experiments[END_REF]. Even though the correlation simplifies identification by reducing one degree of freedom, it could still harm the accuracy with multiple sets of equal-fit parameters. This effect will be discussed in detail hereafter.

(2) Compensation effect

The linear relationship (𝑙𝑛𝐴 𝑣𝑠. 𝐸 in eq.2-7) for a series of related reactions is referred as "compensation effect". It can be also written as the linearized form of Arrhenius equation as:

Where the 𝑘 𝑖𝑠𝑜 is the isokinetic rate constant, 𝑇 𝑖𝑠𝑜 is isokinetic temperature. They are treated as constants at a specific isokinetic condition [START_REF]On the compensation effect[END_REF]. It was first reported in the catalysis study, and was further found in the pyrolysis kinetics of biomass [START_REF] Chornet | Compensation effect in the thermal decomposition of cellulosic materials[END_REF][START_REF] Xu | Kinetic Compensation Effect in Logistic Distributed Activation Energy Model for Lignocellulosic Biomass Pyrolysis[END_REF] or its compositional material (cellulose, hemicellulose and lignin) [START_REF] Mui | Compensation effect during the pyrolysis of tyres and bamboo[END_REF][START_REF]Compensation effect in the pyrolysis of cellulosic materials[END_REF]. Possible causes of compensation effects had been concluded as: thermal lag [START_REF] Narayan | Thermal lag, fusion, and the compensation effect during biomass pyrolysis[END_REF], tunnel effect of electrons ions, or trivial errors in experimental data [START_REF] Cremer | The compensation effect in heterogeneous catalysis[END_REF].

On one hand, compensation effects are useful in identifying reaction mechanism, checking reaction parameters, and characterizing similar decomposition groups [START_REF] Chornet | Compensation effect in the thermal decomposition of cellulosic materials[END_REF]. On the other hand, during numerical simulation especially for the kinetic fitting in DAEM, the compensation effect causes several equally well-fit 𝐴 and 𝐸 values, this lack of uniqueness in

𝐴 = 𝐴 0 𝑇(𝑡) 𝑚 (2-6) 𝑙𝑛𝐴 = 𝑎 + 𝑏𝐸 (2-7) 𝑙𝑛𝐴 = 𝑙𝑛𝑘 𝑖𝑠𝑜 + 1 𝑅𝑇 𝑖𝑠𝑜 𝐸 (2-8)
kinetic parameters could greatly harm model accuracy and robustness. That's why this functional form was not encouraged during DAEM identification process [START_REF] Miura | A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model[END_REF][START_REF] Soria-Verdugo | Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model[END_REF].

Parameter determination and estimation

Inverse analysis of the model, which performs minimization of the gap between experimental and calculated data, is a classical way to determine the model parameters in DAEM modelling. Besides, the distribution-free method is an experiment-oriented tool for kinetic determination, which is also applied for comparing and estimating DAEM kinetics.

Both methods will be presented hereafter.

Inverse analysis

Inverse analysis consists in a computational solution of the model and on an optimization algorithm to determine kinetic parameters. The predefined configurations include:

(1) The choice of the objective function (OF), likely to measure the gap between model simulation and experiment. It is usually defined as the residual sum of squares (RSS) between experimental and calculated conversion rates, over the number of experimental points 𝑁 𝑒𝑥𝑝 :

(2) The choice of the shape and number of the distribution function f(E).

(3) Some additional assumptions likely to facilitate the optimization. For instance, constant value of A, no interactions between pseudo-components, etc.

A logic flow chart of optimization algorithm is illustrated in figure 2.11 (parameter identification process). Reasonable parameters are initially provided, optimization loop subsequently calculates OF and alters model parameters to minimize the objective function.

Many practical optimization algorithms have been applied in the model identification, which includes grid search, genetic algorithm [START_REF] Sun | Application of Genetic Algorithm in Distributed Activation Eenrgy Model of Biomass Pyrolysis[END_REF], Nelder-Mead simplex algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF], direct search [START_REF] Güneş | A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note)[END_REF], pattern search [START_REF] Cai | Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass[END_REF], simulated annealing method [START_REF] Mani | Determination of distributed activation energy model kinetic parameters using simulated annealing optimization method for nonisothermal pyrolysis of lignin[END_REF], and multistate algorithm [START_REF] Kirtania | Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola[END_REF]. Sufficient iterations ensured successful identification by ending with no difference between the penultimate and final optimization values. And finally, the process produces suitable set of kinetic parameters after the optimization. 

Distribution-free method

Distribution-free methods can determine kinetic parameters without previous assumptions, they solely rely on several sets of experimental data obtained at different heating rates. They can therefore provide reliable initial kinetic parameters for modelling sections, and act as a simple and direct comparison references for DAEM parameters.

(1) Miura-Maki method Miura and Maki first proposed a simple method to estimate values of 𝑓(𝐸) and 𝐴 [START_REF] Miura | A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data[END_REF].

In their theory, the integrated form of Arrhenius equation at a constant heating rate 𝛼 is approximated as:

Where ∆𝑉 and ∆𝑉 * are evolved volatile and total effective volatile respectively. Further approximation simplifies the equation into: at selected conversion rates of three heating rates [START_REF] Miura | A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data[END_REF] (2) Ozawa method

Ozawa method also makes approximation during the integration of Arrhenius equation, presenting a linear-regression formulation as [START_REF] Ozawa | A new method of analyzing thermogravimetric data[END_REF]:

Here 𝑥 is the conversion rate and 𝑓(𝑥) the conversion function that depends on reaction order. When reaction compound reaches a specific conversion degree, the linear fitting of 𝑙𝑛𝛼 vs.

𝑇

gives the values of activation energy (𝐸) and corresponding frequency factor 𝐴 (example in figure 2.13).

Figure 2.13-Linear plots of Ozawa method, 𝑙𝑜𝑔𝑎 vs.

1 𝑇 at selected conversion rates at four heating rates [START_REF] Ozawa | A new method of analyzing thermogravimetric data[END_REF] 𝑙𝑛𝛼 = -0.4567 𝐸 𝑅

1 𝑇 + 𝑙𝑛 ( 𝐸𝐴 𝑅 ) -𝑙𝑛 [-∫ 𝑑𝑥 𝑓(𝑥) 𝑥 𝑥 0 ] -2.315 (2-12) 
(3) Kissinger method Kissinger method is also known as peak-displacement method in quantitative thermal analysis [START_REF] Boswell | On the calculation of activation energies using a modified Kissinger method[END_REF]. The method involves presentative temperatures (𝑇 𝑝 ) corresponding to maximum reaction rate (peaks) at different heating conditions. Since the derivative form at the peak maxima should equal to 0 [START_REF] Chen | A generalized form of the Kissinger equation[END_REF], it leads to a rearranged form:

Where 𝛼 is the heating rate. A and E are the frequency factor and activation energy corresponding to the peak temperature. The slope (-

𝐸 𝑅
) and intercept (𝑙𝑛

( 𝐴𝑅 𝐸
)) from linear fitting can result in the values of A and E. Kissinger method is also an iso-conventional method based on empirical regression, the data inputs come from recognizable points in TG or DSC plots.

In comparison between the two methods, the distribution-free methods are isoconversional with empirical linear regressions, their kinetic parameters are substantially affected by the chosen temperature regions that correspond to different heating rates. The accuracy is much depended on the measurement precision and test number, and the determined values have the average implications of all biomass components. They can estimate kinetic parameter in reasonable accuracy, being a good comparison references, or checking tool in DAEM. In the case of the inverse method, the identification of parameters responsible for global mass-loss kinetics and accuracy could benefit from multiple heating rates, therefore being more powerful [START_REF] Shen | Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[END_REF]. When associated with a computational solution, this method can also take advantage of any time-temperature profiles. The objective function can also cumulate the RSS of several experimental tests to propose a global optimization.

Factors affecting biomass pyrolysis

Temperature and residence time

The temperature level basically provides necessary activation for fragmentations and secondary reactions during biomass pyrolysis, and residence time decides the reaction extents [START_REF] Solar | Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor[END_REF]. These two factors jointly affect pyrolysis kinetics, making their matching relations quite important. For instance, at the proper temperature levels between 400-550 °C, short

𝑙𝑛 𝛼 𝑇 𝑝 2 = 𝑙𝑛 ( 𝐴𝑅 𝐸 ) - 𝐸 𝑅 1 𝑇 𝑝 (2-13)
residence time favoured bio-oil production, while long residence time would promote extra char formation and gaseous production [START_REF] Miao | High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[END_REF][START_REF] Xiu | Hydrothermal pyrolysis of swine manure to bio-oil: effects of operating parameters on products yield and characterization of bio-oil[END_REF][START_REF] Lu | Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[END_REF]. residence time also matters at high temperature levels: no soot formed at 900-1500 °C with a short residence time (0.2s), yet the soot had significant production at >1000 °C when increasing residence time to 2s [START_REF] Wang | Soot formation during biomass pyrolysis: Effects of temperature, water-leaching, and gas-phase residence time[END_REF].

Relevant works also indicated their joint effects on product composition distributions.

Phenols, as the major components in oil products, had an increased proportion at higher temperatures (600-900 °C) and longer solid residence times (6 min) [START_REF] Ningbo | Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times[END_REF]. With a long residence time (>15s) at 600 °C, the formation of polynuclear aromatic tars appeared to occur via gas phase molecular weight growth reactions [START_REF] Newalkar | Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor[END_REF]. Yields of PAHs (polycyclic-aromatic hydrocarbons) in bio-oil was found generally increase as the residence time increased from 90ms to 1400ms at 800°C [START_REF] Mcgrath | An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials[END_REF]. The H/C ratio in char was found to decrease when increasing residence time from 0.3s to 1s at 800 °C [START_REF] Dupont | Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 K and 1273 K[END_REF].

Essentially, at the same residence time, pyrolysis can be divided into three stages according to different temperature ranges. The first stage below 127 °C corresponds to the removal of liquid and bound water; the second stage between 127 °C to 300-400°C has the dominant mass loss (80%-90%), attributing to the decomposition of hemicellulose and cellulose. The third section with temperature higher than 450 °C is responsible for lignin decomposition and secondary charring [START_REF] Yang | Characteristics of hemicellulose, cellulose and lignin pyrolysis[END_REF]. Temperature range between 400-550 °C and short residence time can result in the highest bio-oil yield. While further increase temperature to 600 °C, volatiles start to crack and promotes the gas yield [START_REF] Li | Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor[END_REF]. The content of polycyclic aromatic hydrocarbons (PAHs) in bio-oil increases when temperature is higher than 700 °C.

Generally, higher gas yield is obtained above 500 °C, and higher yields of H2 and CO are found at high temperatures due to secondary cracking [START_REF] Uddin | Effects of pyrolysis parameters on hydrogen formations from biomass: a review[END_REF]. The increase of temperature from 400 °C to 700 °C can further degrade semi-coke when residence time is short [START_REF] Uzun | Fast pyrolysis of soybean cake: product yields and compositions[END_REF].

In the single-particle level, inner-mass transfer efficiency decides the volatiles residence time. Short residence time at low temperature can avoid unnecessary secondary reactions.

Relatively, long residence time increases volatiles contact with high-temperature solid and the possibilities of secondary reactions [START_REF] Wang | Biomass pyrolysis in a fluidized bed reactor. Part 2: Experimental validation of model results[END_REF]. In the industrial plant, long residence time inside reactor and exportation system could cause serious product loss and blockages [START_REF] Luo | Research on biomass fast pyrolysis for liquid fuel[END_REF].

Fluidized-bed process usually releases produces quickly and achieves high bio-oil yield at high temperatures. While the long residence time and low temperature in the batch-operated fixed-bed tend to produce more bio-char. On the other hand, incomplete decomposition happens if the residence time is too short, which usually produces oxygenate bio-oil that requires further upgrading [START_REF] Bridgwater | Principles and practice of biomass fast pyrolysis processes for liquids[END_REF].

Heating rate

Heating rate distinguishes pyrolysis types (usually characterize as slow, fast, and flash pyrolysis) by reflecting different time-temperature profiles. This is a mean to act on the residence time. Slow pyrolysis is conducted under long residence time (>1h) at a temperature less than 500 °C [START_REF] Williams | The influence of temperature and heating rate on the slow pyrolysis of biomass[END_REF]. Fast pyrolysis usually occurs at high heating rate (up to 800 °C/min) with very short residence time (<10s) [START_REF] Magdziarz | Pyrolysis of hydrochar derived from biomass-Experimental investigation[END_REF]. Flash pyrolysis is characterized by much higher heating rates, e.g. 1000 °C/min and a very short residence time (<2 s), resulting in high oil yields up to 75-80% [START_REF] Magdziarz | Pyrolysis of hydrochar derived from biomass-Experimental investigation[END_REF][START_REF] Amutio | Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties[END_REF].

A fast heating rate favours major fragmentation of organic functional groups, bio-oil yield is enhanced by fast release and minor secondary reactions like tar cracking and repolymerization [START_REF] Akhtar | A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[END_REF]. By immediate volatile cooling and short residence time, an increase of 23.4% in oil yield was observed when increasing heating rate from 5 °C/min to 700 °C/min [START_REF] Pütün | Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product[END_REF]. The thermal hysteresis in different heating rate conditions also result in different characteristic temperatures, for instance, the optimum temperature of maximum oil yield will shift to high values when the heating rate is high [START_REF] Debdoubi | The effect of heating rate on yields and compositions of oil products from esparto pyrolysis[END_REF]. Meanwhile, oxygen-containing species (CO2 or CO) have higher contents in the gaseous products at high heating rates, which suggests the promotion of C-O breakages during volatile cracking in the high heating rate conditions.

Particle size

Particle size could directly affect pyrolysis kinetics in terms of reaction rate, products yield and chemical properties. Understanding of the effect of particle size can help minimize heat/mass transfer problem, and optimize residence times for better product yields [START_REF] Pütün | Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product[END_REF]. where re-condensation usually occurs. On the other hand, complex transfer tunnels prolong residence time and cause more chances for secondary reactions. The long transfer pathway also provides more catalytic surface and slower cooling for volatile, leading gas phases to repolymerize by both homogeneous and heterogeneous reactions.

Even though unexpected higher yield of liquids are possible in larger biomass particles due to different biomass types [START_REF] Akhtar | A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[END_REF] and reaction temperature up to 1000 °C [START_REF] Septien | Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000-1400 C)[END_REF], the general trends in small particles still promote bio-oil productions. Usually when matching with short residence time and fast cooling, higher bio-oil yield in small particle can be realized, attributing to the higher heating rate inside particle [START_REF] Shen | Effects of particle size on the fast pyrolysis of oil mallee woody biomass[END_REF], less physical trapping [START_REF] Zhou | Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood[END_REF] and less heat transfer limitations [START_REF] Westerhof | Effect of particle geometry and microstructure on fast pyrolysis of beech wood[END_REF]. 

Enthalpies in biomass pyrolysis

Reaction enthalpy

Reaction enthalpy in pyrolysis is defined as the energy required to drive all decomposition reactions. It is included inside the enthalpy balance [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF] as:

Where ℎ are the specific enthalpies, 𝑄 ̇ the heat flux provieded to system, 𝑆 ̇ the source term due to chemical reactions and 𝑑𝑚 the quantity of volatiles formed during the time interval 𝑑𝑡.

Indices 𝑐, 𝑠 and 𝑣 stand for crucible, sample and volatiles respectively. The therm (ℎ 𝑣 -ℎ 𝑠 ) is the enthalpy of volatilisation [START_REF] Frederick | Determination of heats of volatilization for polymers by differential scanning calorimetry[END_REF][START_REF] Suwardie | The determination of heat of curing accompanied by reactant volatilization using simultaneous thermal analysis (STA)[END_REF], together with 𝑆 , they make up the pyrolysis enthalpy.

The values of pyrolysis enthalpy are usually measured by a calorimeter [START_REF] Buryan | Pyrolysis of the waste biomass[END_REF], and they have large variability in literatures that range from endothermicity to exothermicity under different reaction conditions. Process conditions (small particle size, short residence time and high flow rate) favour quick release of volatile and avoid heterogeneous secondary reactions, overall endothermic heat is therefore promoted. Hence, fluidized bed (780-3300 kJ/kg) [START_REF] Xu | Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed[END_REF][START_REF] Daugaard | Enthalpy for pyrolysis for several types of biomass[END_REF] turns to have higher endothermic heat compared to fix bed (185-536 kJ/kg) [START_REF] Ábrego | Heat requirement for fixed bed pyrolysis of beechwood chips[END_REF] or screw reactor (1100-1600 kJ/kg) [START_REF] Yang | Estimation of enthalpy of bio-oil vapor and heat required for pyrolysis of biomass[END_REF].

High operation pressure was found to enhance exothermic pyrolysis due to the low specific volume of the high reactive volatile [START_REF] Basile | Thermal effects during biomass pyrolysis[END_REF]. Inorganic components favoured char formation which caused exothermic heat. This explains why washing pre-treatments could increase endothermicity [START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF]. The primary devolatilizations with chemical bond cleavages are endothermic, yet the secondary reactions of volatiles (both homogeneous and heterogeneous), including charring, partial oxidation, re-polymerization, cross-linking and condensation are exothermic [START_REF] Basile | Thermal effects during biomass pyrolysis[END_REF][START_REF] Di Blasi | Thermal behavior of beech wood during sulfuric acid catalyzed pyrolysis[END_REF]. The char formations were estimated as exothermic between 2000-3600 kJ/kg [START_REF] Basile | Thermal effects during biomass pyrolysis[END_REF][START_REF] Mok | Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis[END_REF]. Many researches attributed exothermic heat to the enhanced char formations at the conditions of high temperature and hindered mass/heat transfer (lidded crucible, large particle, high material layer) [START_REF] Basile | Thermal effects during biomass pyrolysis[END_REF][START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF][START_REF] Rath | Heat of wood pyrolysis[END_REF][START_REF] Park | Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis[END_REF].

Reaction heat is clearly related to the decomposition of individual constituents (hemicellulose, cellulose, and lignin) with consecutive exothermic or endothermic stages.

Overall thermal decomposition of hemicellulose is assigned as exothermic due to the presence of glucuronic acid units [START_REF] Yang | Characteristics of hemicellulose, cellulose and lignin pyrolysis[END_REF][START_REF] Werner | Thermal decomposition of hemicelluloses[END_REF], where decarboxylation of carboxylic acids groups produces carbon dioxide and releases heat. Initial melting period of cellulose is endothermic with enthalpy values between 200-710 kJ/kg [START_REF] Milosavljevic | Thermal effects in cellulose pyrolysis: relationship to char formation processes[END_REF][START_REF] Rogers | Cellulosic insulation material I. Overall degradation kinetics and reaction heats[END_REF][START_REF] Stenseng | Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[END_REF], which reflect the latent heat requirement for vaporizing primary tar [START_REF] Milosavljevic | Thermal effects in cellulose pyrolysis: relationship to char formation processes[END_REF], including depolymerization of 1,4-glycosidic bond and ring breakage of light oxygenated components [START_REF] Usino | Influence of temperature and time on initial pyrolysis of cellulose and xylan[END_REF]. The further thermal evolution of pyrolytic cellulose at higher temperatures will exhibits exothermicity in spite of no obvious mass loss, which is due to : (1) carbonization through aldol condensation, cross-linking and
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aromatic condensations [START_REF] Pastorova | Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study[END_REF] ; (2) cracking of functional groups in residue [START_REF] Yang | Characteristics of hemicellulose, cellulose and lignin pyrolysis[END_REF]. Thermal decomposition of lignin between 150 to 800 °C is tested as exothermic. The primary degradation involves the breakage of β-O-4 linkage [START_REF] Galano | A combined theoretical-experimental investigation on the mechanism of lignin pyrolysis: Role of heating rates and residence times[END_REF], its exothermicity at low temperature (<280 °C) is assigned to the release of energy stored in the lignocellulosic matrix.

When further increasing temperature to 450 °C, the complete release of accumulated heat will overlap with the important exothermicity of cross-linking reactions (cross-linked aromatic residues) [START_REF] Kifani-Sahban | A physical approach in the understanding of the phenomena accompanying the thermal treatment of lignin[END_REF][START_REF] Shrestha | A multitechnique characterization of lignin softening and pyrolysis[END_REF]. Lignin exothermic degradation is responsible for temperature attainment and overshoot in large wood cylinders and spheres [START_REF] Di Blasi | On the experimental evidence of exothermicity in wood and biomass pyrolysis[END_REF].

Specific enthalpy

The specific enthalpy (the ℎ terms in eq.2-14) is the required energy for raising sample temperature to a specific value [185], It can be expressed as:

Where 𝑚 is sample mass and 𝑇 is sample temperaure. 𝐶 𝑝 is the specific heat capacity, it is the energy required by one unit of mass to increase in one unit of temperature, its SI (international system of units) is J/(K kg).

Regarding the 𝐶 𝑝 values of biomass and remaining char during pyrolysis, their measurements are usually carried in adiabatic calorimeter [START_REF] Blokhin | Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of cellulose[END_REF], the values vary widely based on different biomass types with limited reliability and confidence intervals [START_REF] Collazo | Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis[END_REF].

Noteworthily, for biomass, heat capacity can be only measured below 150 °C as thermal decomposition starts when the temperature goes higher. Similarly, the linear regressions of char are only validated at low temperatures below 400 °C, since heat reactivities at high temperatures are much complicated for distinguishments. And due to the complicated mixture situation of unreacted biomass and bio-char, the measurements of specific heat and heat capacity that subject to conversion rates are still very rare. Up to date, we only found a computer-aided thermal analysis (CATA technique [START_REF] Strezov | Computational calorimetric investigation of the reactions during thermal conversion of wood biomass[END_REF]) which was capable of estimating specific heat during biomass pyrolysis up to 600 °C. The technique was based on the minimisations of the errors between measured and calculated temperatures, and subsequently determined the heat capacities during the whole conversion process of biomass to charcoal.

𝑑ℎ = 𝑚𝐶 𝑝 𝑑𝑇 𝑑𝑡 (2-15)
To deal with the complexity of specific heat capacity during modelling, its value is either settled as constants or estimated as a linear function of temperature [START_REF] Comesaña | TG-DSC analysis of biomass heat capacity during pyrolysis process[END_REF][START_REF] Dupont | Heat capacity measurements of various biomass types and pyrolysis residues[END_REF]. Specific heat capacity of wood char could be assumed as that of graphite [START_REF] Picard | Determination of the specific heat capacity of a graphite sample using absolute and differential methods[END_REF] (curve a in figure 2-15) , or similar linear correlations (curve b and c) [START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF][START_REF] Koufopanos | Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects[END_REF].

Figure 2.15-Specific heat capacity of biomass char (a cited from [START_REF] Picard | Determination of the specific heat capacity of a graphite sample using absolute and differential methods[END_REF], b cited from [START_REF] Koufopanos | Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects[END_REF], c cited from [START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF] )

The choices for the values of biomass follow similar principles, which could be determined by DSC measurement as ca. 1.0 kJ • kg -1 • K -1 [START_REF] Dupont | Heat capacity measurements of various biomass types and pyrolysis residues[END_REF]. Literatures [START_REF] Rath | Heat of wood pyrolysis[END_REF][START_REF] Gomez | Influence of secondary reactions on the heat of pyrolysis of biomass[END_REF] also used linear correlations for Cp of dry wood particle as: 𝐶 𝑝 = 1.11 + 4.8567(𝑇 -273.15)(kJ • kg -1 • K -1 ), and similar correlations of plenty biomass types and three main constituents were also measured [START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF][START_REF] Dupont | Heat capacity measurements of various biomass types and pyrolysis residues[END_REF][START_REF] Hatakeyama | Studies on heat capacity of cellulose and lignin by differential scanning calorimetry[END_REF].

Conclusion

This chapter mainly reviews in following aspects: Particle size causes different transfer profiles of heat and mass, hermetic and long transfer tunnels in large particle essentially cause long residence time and uneven temperature profile, which leads to more re-condensation and char formations. Reaction heat is affected by both reaction conditions and the chemical nature of major components. On the other hand, specific heat is hard to determine due to the complex mixture of char/biomass that change at different reaction extent, hence, several correlations have been applied to ease relevant modelling work.

.

Chapter 3 Materials and methods

This chapter will focus on the general experimental protocols, and the characterization methods. The strategy of experimental part is illustrated in figure 3.1, first the intrinsic kinetics will be determined on powders of two wood species (spruce and poplar), their thermogravimetric (TG) and differential scanning calorimeter (DSC) data will be further applied in modelling part for kinetic parameter identifications. Different particle size samples are prepared in the follow-up works, this second dataset will serve as input experimental data for interpretation and modelling of the effect of particle size. Spruce wood (Picea abies) used in this research comes from a 73-year-old tree from Auverge region, France, it has a density of 450 kg/m 3 when its moisture content is 33%.

Poplar wood (Populus euro-americana 'koster') comes from a 25-year-old tree in the forest Suippe, la Marne, France, its density is 364 kg/m 3 at a moisture content of 12%. This work will use five types of particle sizes for each wood samples, their morphological descriptions are listed in table 3.1. The protocols of manufacturing wood samples will be explained in detail in the afterward chapters. After the drying stage, the dynamic program raises the temperature to 800 °C at a constant heating rate. Four different rates were used here (1 °C/min, 2 °C/min, 5 °C/min and 10 °C/min).

Pyrolysis experiment

To conduct the parameter estimations based on fitting methods, the data sources are therefore very demanding to cover multiple kinetic scenarios. The multiple heating rates and high final temperature in dynamic tests cover a wide range of temperature/residence time pathways, these dominant coverages on pyrolysis kinetics could serve as solid learning database for parameters identification [START_REF] Chen | Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature[END_REF]. On the other hand, the temperature levels from 250 °C to 500 °C represent different pyrolysis degrees from initial to complete. Together with the unique long isothermal stages, they constitute a demanding database for validation purposes. 

Chapter 4 Optimal strategy to choose the number and shape of DAEM distributions

This chapter proposes a rigorous strategy to propose a good trade-off of number and shape of DAEM distributions. Rigorous identification/validation processes were quantified and further plotted as a function of the number of degrees of freedom, which allowed comprehensive comparisons in terms of prediction ability and numerical complexity. The best trade-offs in both distribution number and shape were therefore obtained hereafter. The strategy of two Gaussian + one exponential was proved to be the best compromise. It is therefore recommended for further studies and, consistently, applied to the rest of this PhD work.

• This work is published in Energy Conversion and Management [START_REF] Tian | Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[END_REF]. 

Multiple-distribution DAEM modelling of spruce pyrolysis: an investigation of the best trade-off regarding the number and shape of distributions

Introduction

Biomass pyrolysis receives substantial attention as a key thermal conversion technology in bio-refineries [START_REF] Balat | Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems[END_REF] in the production of high value-added chemicals (bio-oil, char and biogas). It also acts as the main initial process for gasification and combustion. The ability to predict constituent kinetics and thermal behaviours during pyrolysis are therefore of great importance, namely for reactor design and industrial scale-up. Thermogravimetric analysis (TGA) is an advanced technology used to study the pyrolysis mechanism relating to devolatilization, which also provides sufficient data for kinetic modelling [START_REF] Liu | Interactions of biomass components during pyrolysis: A TG-FTIR study[END_REF].

Pyrolysis is a rather complicated process with numerous chemical reactions, traditional methods of global first-and second-order kinetics are not applicable to biomass pyrolysis [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF], which encourages the development of more effective models. Among them, a lumpedkinetic model accounting for more than 30 species has been developed [START_REF] Anca-Couce | Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis[END_REF], and competitive multi-step models have helped include primary devolatilizations and homogeneous secondary reactions in biomass components [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF]. The distributed activation energy model (DAEM) has been proposed to manage the complexity of chemical reactions [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF]. In this approach, pyrolysis is assumed to proceed as independently parallel reactions with different activation energies, which are further described by distribution functions.

The DAEM has been proposed to be the most comprehensive model to represent the pyrolysis of various complex feedstocks including coal [START_REF] Pitt | The kinetic of the evolution of volatile products from coal[END_REF], oil shale [START_REF] Hillier | Pyrolysis kinetics of a Green River oil shale using a pressurized TGA[END_REF], sewage sludge [START_REF] Soria-Verdugo | Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model[END_REF], and biomass [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF]. Its prediction kinetics are believed capable of working as sub-models in further industrial simulations [START_REF] Xiong | Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds[END_REF]. Multiple-distribution DAEM is able to represent major chemical constituents [START_REF] Liu | Three pseudo-components kinetic modeling and nonlinear dynamic optimization of Rhus Typhina pyrolysis with the distributed activation energy model[END_REF] or multiple reaction stages [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF], contributing to precise simulations of kinetics. Three-distribution models are widely applied due to its comprehensiveness and excellent correspondence with hemicellulose, cellulose and lignin [START_REF] Cai | Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis[END_REF]. Meanwhile the choices of two [START_REF] Vá Rhegyi | Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study[END_REF], four [START_REF] Wu | Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy[END_REF] and five [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF] distributions are also proposed.

Concerning the mathematical forms of distribution, continuous statistic distributions are normally applied [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF]. Meanwhile finite discrete distribution is also employed, which introduces relations between activation energy and pre-exponential factor either with [START_REF] Burnham | Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters[END_REF] or without functional forms [START_REF] Miura | A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data[END_REF]. Yet differences between these two distribution types could be basically limited, since continuous distributions are necessarily discretized for computational implementations.

While symmetric distributions such as Gaussian and logistic have been widely applied in DAEMs [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF], asymmetric distributions have also attracted attentions, as partial reactivity distribution in pyrolysis tends to be asymmetric, notably during the final stages [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF].

Asymmetric distributions, including Weibull and gamma, have been assessed in several studies. Lakshmanan [START_REF] Lakshmanan | A new distributed activation energy model using Weibull distribution for the representation of complex kinetics[END_REF] first employed a Weibull DAEM to describe the thermal-chemical kinetics of multiple types of biomass. Recently, Li [START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF] found the Weibull outperformed other distributions in a study of two-and three-distribution DAEMs in polymer pyrolysis testing of both symmetric and asymmetric distributions. Xu [START_REF] Xu | Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis[END_REF] compared single-distribution DAEMs to asymmetric gamma, Rayleigh and Weibull distributions, and found that kinetic parameters relied heavily on distribution form. Alok [START_REF] Dhaundiyal | Asymptotic approximations to the isothermal pyrolysis of deodara leaves using gamma distribution[END_REF] used asymptotic expansion for gamma distribution's numerical integral in a DAEM, yet the simulation effect was poor.

Gamma distribution offers a wide range of shapes that are capable to fit various kinetic profiles. In the decomposition context, its rate parameter measures the average life-time of active component [START_REF] Boudreau | On a reactive continuum representation of organic matter diagenesis[END_REF], while its shape parameter endows multiple forms. Exponential distribution, as the degeneracy of gamma, shows particular features in lifetime distribution, stochastic process in general [START_REF] Balakrishnan | Exponential distribution: theory, methods and applications[END_REF] and reliability analysis [208]. However, to the best of our knowledge, it has never been employed in multiple-distribution DAEM.

The application of multiple-distribution DAEMs has usually focused on the corresponding distribution number with equal pseudo-components or multiple-stage processes [START_REF] De Caprariis | Kinetic analysis of biomass pyrolysis using a double distributed activation energy model[END_REF][START_REF] Lin | Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM)[END_REF], yet the effects of distribution number on prediction ability and numerical complexity have received little attention. Indeed, the increase of the distribution number in DAEMs could improve accuracy [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF], as more subtle details might be captured in addition to the reaction kinetics. However, the simultaneous growth in numerical complexity could substantially endanger model robustness. Furthermore, the determination of parameters would face local minima or even be meaningless after model identification [START_REF] Chen | Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution[END_REF]. On the other hand, single-distribution DAEM shows insufficiency for biomass pyrolysis. In particular, single-Gaussian was found inappropriate to reproduce DTG data [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF], and more than one logistic distribution was required for kinetic description [START_REF] Dong | Theoretical analysis of double Logistic distributed activation energy model for thermal decomposition kinetics of solid fuels[END_REF]. Therefore, regarding the choice of distribution number, a trade-off between a model's prediction capacity and degrees of freedom should be seriously considered.

In previous studies, kinetic parameters have generally been determined by single nonisothermal experiments, which introduce the risks of local minima or compensation effects [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF]. In this context, multiple experimental data have been proposed to reduce parameter uncertainties, especially those of activation energy and pre-exponential factors [START_REF] Soria-Verdugo | Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model[END_REF].

Pyrolysis profiles with two or more heating rates have been proved effective to distinguish between kinetic models [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF], and they could mitigate the compensation effect and more closely resemble operations in a genuine industrial system.

Generally, identification of model parameters has been based on the principle of minimizing residues between numerical calculations and the learning database, during which advanced optimization algorithms are applied such as the pattern search method [START_REF] Cai | Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass[END_REF], differential evolution algorithm [START_REF] Santos | Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse[END_REF] and genetic algorithm [START_REF] Ferreiro | A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues[END_REF]. Beyond the pursuit of high accuracy and efficiency during model identification, the more important model validations should be emphasized to assess the model's true fit qualities under different reaction conditions. Vá rhegyi [START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF] evaluated prediction ability at 40 °C/min with model determined at 4 °C/min. Scott [START_REF] Scott | An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments[END_REF] extrapolated kinetic parameters that were identified at 20 °C/min and 30 °C/min to the theoretical curve at 10000 °C/min. Lin [START_REF] Lin | General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge[END_REF] performed predictions for 15 °C/min and 25 °C/min with the model that was identified at 20 °C/min. Nonetheless, solid validations with quantifiable uncertainties were relatively rare. Only recently, Ahmad [START_REF] Ahmad | A modified DAEM: To study the bioenergy potential of invasive Staghorn Sumac through pyrolysis, ANN, TGA, kinetic modeling, FTIR and GC-MS analysis[END_REF] applied artificial neural network (ANN) for validating DAEM accuracy with histogram error distribution. And error analyses, in forms of absolute percentage error (MAPE) and root mean square error (RMSE), were employed in predicting mass loss at different heating rate [START_REF] Arenas | Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model[END_REF] and biomass type [START_REF] Soria-Verdugo | Combining the lumped capacitance method and the simplified distributed activation energy model to describe the pyrolysis of thermally small biomass particles[END_REF] for validation purposes. On the other hand, the kinetic triplets (activation energy, pre-exponential factor and reaction rate) are barely verified since the multiple temperature profiles of parameter determinations couldn't be identical for prediction tests [START_REF] Vyazovkin | ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[END_REF]. However, to assess the true model applicability in pyrolysis kinetics, it is logical and necessary to test the fitted parameters against reaction conditions that are different from those used for identification. Therefore, validation with additional temperature profiles should be conducted.

This work aims to assess the applicability of the multiple-distribution DAEM considering distribution shape (symmetry/asymmetry), and distribution number using a rigorous approach. To that purpose, a set of dynamic tests were used as learning database and a completely different dataset, consisting of static tests over a wide range of plateau temperatures, was used as a validation database. The best trade-offs between the number of degrees of freedom and the prediction quality will be determined by using up to five-Gaussian distributions. The choice of distribution shape will be tested with two extra DAEMs (three-logistic and two Gaussian + one exponential). Performance of the distributions and its correspondence with biomass constituents will be studied in the subsequent DTG simulations.

Finally, DAEM's performance in distinguishing the effect of the heating rate will be analysed.

Material and methods

Material

The biomass used in this study is European spruce (Picea abies), a softwood species.

A 73-year-old tree was originally cut from the Auvergne region, France and subsequently processed to samples. A tree log 40-50 cm in diameter, 2 m in length was cut 2 m above the bottom. It was cut axially into 2.5-cm thick boards, and a portion 10 cm from the centre was taken to make samples for pyrolysis analysis. A rectangular column 2.5×2.5×5 cm 3 was cut from the healthy sapwood part of the board, where wood properties were relatively uniform. It was first sliced and ground in a cutting mill (RETSCH SM300) with a bottom sieve of 1 mm trapezoidal holes, followed by additional grinding with a universal mill (M20-IKA). A sieve stack of 0.063 mm and 0.08 mm opening sizes was used for sieving wood powder in a vibratory sieve shaker (RETSCH AS 200) at an amplitude of 90 % for 30 min. The sieved wood powder between 0.063-0.08 mm was dried at 105 °C for 24 h and stored in a desiccator. 

𝐷𝑅𝑀(𝑡) = 𝑚 𝑡 𝑚 0 × 100% , 𝑋 𝑒𝑥𝑝 (𝑡) = 1 -𝐷𝑅𝑀(𝑡) (1) 
𝑑𝑉 𝑖 (𝑡) 𝑑𝑡 = 𝑘 𝑖 (𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡)) (2) 
in which 𝑅 is a universal gas constant and 𝑇(𝑡) is the temperature at time 𝑡. 𝐴 𝑖 is assumed as constant (𝐴) for all reactions, 𝑉(𝑡) is the total volatile production at time t, and statistical distribution 𝑓(𝐸) describes the activation energy, resulting in the integral form of conversion degree 𝑋(𝑡):

Wood is treated as the sum of multiple pseudo-components without any interactions during pyrolysis. Distributions 𝑓 𝑗 (𝐸) with a different weighting factor 𝑉 𝑚𝑎𝑥 (𝑗) are assigned to the pseudo-component 𝑗 in wood (𝑗 ∈ [1: 𝑁 𝑑 ]), 𝑁 𝑑 is the total number of distributions.

Superposition of their volatile productions provides the final formulation of biomass conversion degree as:

Distribution functions and mathematical implementation

Two common symmetric distributions, Gaussian and logistic distributions, and one asymmetric distribution, gamma distribution, were used in this study. These distributions in DAEM could represent physically the atomic interactions caused by the variability of macromolecules and their interaction in the cell wall [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF]. 

𝑋(𝑡) = 𝑉(𝑡) 𝑉 ∞ = 1 -∫ 𝑒𝑥𝑝 ∞ 0 (-∫ 𝐴𝑒 -𝐸/𝑅𝑇(𝑡) 𝑑𝑡 𝑡 𝑡 0 ) 𝑓(𝐸)𝑑𝐸 (3) 
𝑋(𝑡) = 1 -∑ 𝑉 𝑚𝑎𝑥 (𝑗) 𝑁 𝑑 𝑗=1 ∫ 𝑒𝑥𝑝 (-𝐴 ∫ 𝑒 -𝐸/𝑅𝑇(𝑡) 𝑑𝑡 𝑡 0 ) ∞ 0 𝑓 𝑗 (𝐸)𝑑𝐸 (4) 
gamma distribution can produce different curve shapes by suitable combinations of its two parameters. For instance, when 𝛼 = 1, the gamma distribution becomes an exponential distribution; when 𝛼 = 𝑘 2 (𝑘 is nature number) and 𝛽 = 0.5, it becomes a Chi-squared distribution.

Table 3. Three types of distribution used in the research Mathematical implementations were realized using the in-house MATLAB codes, including numerical discretization and integral approximation. The detailed formulation is shown hereafter.

Distributions PDF Mean Standard deviation Gaussian f(E) = 1 𝜎√2𝜋 𝑒𝑥𝑝 [- (𝐸 -𝐸 0 ) 2 2𝜎 2 ] 𝐸 0 𝜎 Logistic f(E) = 𝜋 √3𝜎 𝑒𝑥𝑝 [- 𝜋(𝐸 -𝐸 0 ) √3𝜎 ] {1 + 𝑒𝑥𝑝 [- 𝜋(𝐸 -𝐸 0 ) √3𝜎 ]} 2 𝐸 0 𝜎 Gamma f(E) = 𝛽 𝛼 ( 𝐸 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) 𝛼-1 𝑒𝑥𝑝 (-𝛽 𝐸 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) Г(𝛼) ( 𝛼 𝛽 + 1) 𝐸 𝑚𝑖𝑛 √𝛼 𝛽

(a) Gaussian distribution

In the discretization of Gaussian distribution, the domain (-∞, +∞) changed to finite intervals as [𝐸 0 -𝑛𝜎, 𝐸 0 + 𝑛𝜎], in which 𝑛 = 3 to ensure 99.9% area coverage (figure 1).

Each interval length 𝜎 was evenly divided by 𝑚 to generate fine increments: 𝑑𝐸 = 𝜎 𝑚 . Prior trials had determined the proper choice of increment number since it might cause solution oscillation with small values and long calculation time with large values [START_REF] Güneş | The influences of various parameters on the numerical solution of nonisothermal DAEM equation[END_REF]. 𝑚 = 10 was found as good compromise for both correct representation of continuous function and concision in algorithm, the discretized activation energy for reaction 𝑖 became:

The discrete form of Gaussian distribution was therefore presented as:

(b) Logistic distribution
As in symmetrical distribution, finite intervals [𝐸 0 -3𝜎, 𝐸 0 + 3𝜎] were enough for logistic distribution to ensure 99.9% area coverage. The discretization strategy of activation energy 𝐸 𝑖 was the same as equation 6, and its discretized function was expressed as

(c) Gamma distribution
Compared to common symmetric distribution, asymmetric gamma distribution had more complicated numerical implementations. The concepts of minimum (𝐸 𝑚𝑖𝑛 ) and maximum values (𝐸 𝑚𝑎𝑥 ) described the discretized activation energy. They formed a finite function domain to avoid extremely large energies which were impossible to appear in decomposition reactions.

𝐸 𝑖 = 𝐸 0 -𝑛𝜎 + (𝑖 -0.5)𝑑𝐸, 𝑖 = [1, 2𝑚𝑛] (6) 
𝑓(𝐸 𝑖 ) = 1 𝜎√2𝜋 exp (- (𝐸 𝑖 -𝐸 0 ) 2 2𝜎 2 ) (7) 𝑓(𝐸 𝑖 ) = 𝜋 √3𝜎 𝑒𝑥𝑝 [- 𝜋(𝐸 𝑖 -𝐸 0 ) √3𝜎 ] {1 + 𝑒𝑥𝑝 [- 𝜋(𝐸 𝑖 -𝐸 0 ) √3𝜎 ]} 2 (8) 
𝐸 𝑚𝑎𝑥 = 𝐸 𝑚𝑖𝑛 • (1 + 𝑛𝛼 𝛽 ) (9) 
Here 𝑛 = 5 was set to ensure a distribution function with good representation and extended in reasonable ranges. Equal partitioning of the whole interval by 𝑛 𝑔 produced fine increments 𝑑𝐸:

in which the fine interval number 𝑛 𝑔 was set as 100 to ensure accuracy as well as short solution time. Then gamma distribution discrete normalization form was obtained:

The term

( 𝐸 𝑖 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) 𝛼-1
in gamma distribution demanded preliminary determinations of discrete strategy, for instance, sudden mutations occurred when 𝛼 becomes less to the unit, which produces infinite value at zero (𝐸 𝑖 = 𝐸 𝑚𝑖𝑛 ), and invalidates the numerical value at the zero point. Careful prerequisite determinations had been performed which indicated the optimal choice of the exponential distribution, a degeneracy of gamma, to facilitate model implementation. The detailed determination process could be found in supporting materials.

Finally, numerical discretization in exponential distribution can be decided as:

For every distribution, the characteristic time-constant of the distribution reduced with the increasing temperature level. For the smallest values of the activation energies, a simple first-order derivative might fail [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF]. To avoid the difficult problem of checking the timestep for all activation energy values, the effective increment of chemical reaction 𝑑𝑉 𝑖 was computed using the exact exponential form [START_REF] Perré | A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media[END_REF][START_REF] Remond | Modeling the drying and heat treatment of lignocellulosic biomass: 2D effects due to the product anisotropy[END_REF]:

𝑑𝐸 = (𝐸 𝑚𝑎𝑥 -𝐸 𝑚𝑖𝑛 ) 𝑛 𝑔 (10) 𝑓(𝐸 𝑖 ) = 𝛽 𝛼 ( 𝐸 𝑖 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) 𝛼-1 𝑒𝑥𝑝 (-𝛽 𝐸 𝑖 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) Г(𝛼) (11) 
𝐸 𝑖 = 𝐸 𝑚𝑖𝑛 + (𝑖 -0.5)𝑑𝐸, 𝑖 = [1, 𝑛 𝑔 ] (12) 
𝑓(𝐸 𝑖 ) = 𝛽𝑒𝑥𝑝 (-𝛽 𝐸 𝑖 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 )

𝑑𝑉 = ∑ ∑[1 -𝑒𝑥𝑝(-𝑘 𝑖 𝑗 𝑑𝑡)](𝑉 𝑖 𝑗,∞ -𝑉 𝑖 𝑗 (𝑡)) 𝑁 𝑝 𝑖=1 𝑁 𝑑 𝑗=1 (13) 
in which 𝑁 𝑑 is the number of distributions, 𝑁 𝑝 is the number of increment points in each distribution. 𝐸 𝑖 𝑗 is the 𝑖th activation energy in distribution 𝑗. 𝑓 𝑗 (𝐸 𝑖 𝑗 ) were determined only once according to the numerical implementations of every distribution at the initialization stage of the simulation. During the time-increment, the values of 𝑉 𝑖 𝑗 (𝑡) were updated and stored in the calculation loop within the numerical domain. The updated conversion rate 𝑋(𝑡)

at time 𝑡 was finally obtained as follows:

Parameter identification was based on the optimization of the objective function, OF, which was the residual sum of squares (RSS) between experimental and calculated conversion rates of all data points alongside the entire reaction history:

in which 𝑁 𝑒𝑥𝑝 is the total number of experimental data and 𝑡 𝑓 is the final reaction time. Here four dynamic tests were analysed simultaneously as a learning database. This wide range of temperature-time pathways together with the large temperature range ensured quasi-complete pyrolysis was likely to provide an accurate and robust parameter determination. Regarding the different number and shape of distributions, their initial parameters were reasonably derived from the relevant literature [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF][START_REF] Zhang | A novel Gaussian-DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin[END_REF][START_REF] De Caprariis | Kinetic analysis of biomass pyrolysis using a double distributed activation energy model[END_REF][START_REF] Mishra | Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis[END_REF] to avoid local minima in the optimization algorithm. A derivative-free method of the simplex searching algorithm was adopted, and sufficient iterations ensured successful identification by ending with no difference between the penultimate and final optimization values. The whole protocol therefore consists of the following steps: i) choosing a set of reasonable initial parameters, ii) automatic minimization algorithm, iii) perturbation of model parameters to check the robustness of the solution. If a better solution is found at stage iii), steps ii) and iii) are repeated until a stable solution is found.

To assess the effect of distribution number, a series of Gaussian-DAEMs was proposed with the distribution number ranging from one to five. Concerning the shape of distributions,

𝑘 𝑖 𝑗 = 𝐴 exp (- 𝐸 𝑖 𝑗 𝑅𝑇(𝑡) ) ; 𝑉 𝑖 𝑗,∞ = 𝑉 𝑚𝑎𝑥 (𝑗) • 𝑚 0 • 𝑓 𝑗 (𝐸 𝑖 𝑗 ) ; 𝑉 𝑖 𝑗 (𝑡 = 0) = 0 (15) 𝑋(𝑡) = 1 - ∑ ∑ {[1 -𝑒𝑥𝑝(-𝑘 𝑖 𝑗 𝑑𝑡)](𝑉 𝑖 𝑗,∞ -𝑉 𝑖 𝑗 (𝑡))} 𝑁 𝑝 𝑖=1 𝑁 𝑑 𝑗=1 𝑚 0 ( 16 
)
𝑂𝐹 = ∑ ∑(𝑋 𝑒𝑥𝑝 (𝑡) -𝑋(𝑡)) 2 𝑡 𝑓 𝑡=0 𝑁 𝑒𝑥𝑝 𝑎=1 (17) 
three-logistic DAEM and two-Gaussian + one exponential DAEM were further proposed.

Herein, only one asymmetric exponential distribution was introduced since it was enough to focus on the performances of high-temperature reactions and provided sufficient flexibility in the model [START_REF] Burnham | Global kinetic analysis of complex materials[END_REF].

To measure the discrepancy between experimental data and model simulations, two evaluation indexes were applied: root mean square error (RMSE) and the maximum deviations (𝐷 𝑚 ). They had the same meaning to DRM, aiming to provide comprehensive views on the average and maximum errors in both model identification and validation phases.

For the assessment in DTG simulations, dimensionless DTG was defined as the ratio between real-time DTG signal (

𝑑𝑚 𝑑𝑡

) and initial anhydrous mass (𝑚 0 ):

Its local residue (𝑅 𝐿 (𝑡)) was defined by the differences between calculated (𝐷𝑇𝐺 𝑐𝑎𝑙 (𝑡))

and experimental values 𝐷𝑇𝐺 𝑒𝑥𝑝 (𝑡):

With its standard deviation of residue as:

Results and discussions

Determination of distribution number

Figure 2 shows the effects of Gaussian distribution number on both identification and validation stages. Initial sections of DRM curves in identifications were magnified here for

𝑅𝑀𝑆𝐸 = √ ∑ ∑ (𝑋 𝑒𝑥𝑝 (𝑡) -𝑋(𝑡)) 2 𝑡 𝑓 𝑡=0 𝑁 𝑒𝑥𝑝 𝑎=1 𝑁 𝑒𝑥𝑝 ( 18 
)
𝐷 𝑚 = 𝑀𝑎𝑥|𝑋 𝑒𝑥𝑝 (𝑡) -𝑋(𝑡)|, ∀𝑡 ∈ [0, 𝑡 𝑓 ] (19) 
𝐷𝑇𝐺(𝑡) = 1 𝑚 0 𝑑𝑚 𝑡 𝑑𝑡 (20) 
𝑅 𝐿 (𝑡) = 𝐷𝑇𝐺 𝑐𝑎𝑙 (𝑡) -𝐷𝑇𝐺 𝑒𝑥𝑝 (𝑡)

𝜎 𝑅 = √ 1 𝑡 𝑓 -1 ∑(𝑅 𝐿 (𝑡) -𝑅 𝐿 ̅̅̅ ) 2 𝑡 𝑓 𝑡=0 (21) 
comparison among five models; usually, they were challenging to describe numerically because of their very slow kinetics and absence of asymptotic behaviour [START_REF] Varhegyi | Kinetic modeling of biomass pyrolysis[END_REF]. In terms of identification stages, one-Gaussian presented very poor overlaps due to its limitations in describing the nature of multiple clusters of reactions [START_REF] Liu | Three pseudo-components kinetic modeling and nonlinear dynamic optimization of Rhus Typhina pyrolysis with the distributed activation energy model[END_REF]. Two-Gaussian demonstrated a slight improvement, yet several noticeable errors still occurred, and the initial stages were poorly produced. For the distribution number from three to five, simulations exhibited quasiperfect agreements with all experimental data, where most overlaps indicated successful identification. The increase in distribution number represented the increase of pseudocomponents, an advanced description strategy of thermal features in multi-step reactions [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF]. This was further evidenced by the improved simulation accuracy in initial sections, in which error reduction could be observed by increasing distribution number, and almost complete overlap could be realized by five-Gaussian DAEM.

For the validation stages, one-Gaussian showed poor predictive ability at all temperature levels, and two-Gaussian also performed unsatisfactorily, with obvious errors from 250 to 350 °C. The three-, four-and five-Gaussian showed similarly good predictive abilities, demonstrating excellent overlap during heating periods and only slight deviations in the isothermal plateaus. Major deviations occurred on the curves of 300 °C and 350 °C, while at the other temperatures, the models showed very good predictive abilities throughout the experiments.

Identification Validation

One effects [START_REF] Barrie | The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors[END_REF]. In this context, the strategy of three Gaussian distributions was the best tradeoff between model's complexity and prediction capability.

As for the identification process, proposed models showed similar matching relationships between 𝐷 𝑓 and RMSE, which also demonstrated the good trade-off of the three-Gaussian DAEM. Considering most studies have applied three-distribution DAEMs because they can correlate with main chemical constituents [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF][START_REF] Chen | Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[END_REF], the trade-off strategy herein provides new support for using three distributions in a model.

Determination of distribution shapes 4.2.1 Three-distribution DAEMs

As a three-Gaussian model was determined to be the optimal choice among multiple-Gaussian DAEMs, its counterpart models, three-logistic and two Gaussian + one exponential DAEM, were analysed to determine the shape of the distribution (symmetry/asymmetry).

Identification and validation effects of all three-distribution DAEMs are compared in This evident alteration was mainly caused by the third exponential distribution, which spread uniquely in the high activation energy zone due to its asymmetry, and required more weighting factors to more accurately represent chemical reactions at high temperatures.

Moreover, all three models maintained their second distribution with the largest weighting factor and narrowest range; this pseudo-component could be correlated to the high content and crystalline nature of cellulose [START_REF] Jiang | A comparative investigation of fast pyrolysis with enzymatic hydrolysis for fermentable sugars production from cellulose[END_REF]. Cai [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF] reviewed three-distribution DAEM in eight types of biomass, where parameter features were quite consistent with corresponding values herein. For instance, 𝐸 0,1 ranged between 169.71 kJ/mol to 186.77 kJ/mol which included our values; the narrowest ranging nature of second pseudo-component and the widest of the third were also confirmed here.

Vá rhegyi [START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF] tested four biomasses with the three-parallel DEAM, showing similar kinetic parameters as presented in table 5, especially that 𝐸 0,2 (185 kJ/mol) almost equalled our identified parameters. The main comparisons will be made among the three-distribution DAEMs (three-Gaussian, three-logistic, and two-Gaussian + one exponential), and four-and five-Gaussian DAEM.

Overall model trade-offs

For these models, their identification stages exhibited overall RMSE less than 9×10 -5 and the maximum deviations were reasonably small (from 1.02 to 2.74%), acting as solid proof of successful identification. Fit qualities generally increased with a decrease in heating rates and the smallest 𝐷 𝑚 always appeared at 1 °C/min, possibly caused by the low fluctuation and stable temperature profiles at low heating rates, when thermal overshoot was less obvious [START_REF] Ma | Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis[END_REF]. The overall identification ability was in the order five-Gaussian > four-Gaussian > two Gaussian + one exponential > three-Gaussian > three-logistic. Among the three-distribution DAEMs, asymmetric exponential distribution improved identification accuracy, attributing to its capability of describing the unique behaviour at high temperatures. In the validation of static tests, the models' true prediction potentials were therefore comparable and quantifiable at different temperature levels. The overall RMSE of five compared models ranged between 1.9×10 -4 to 2.4×10 -4 , which were plausibly low considering that model parameters originated from dynamic tests without any further identification. Maximum deviations were satisfactorily small in every validation stage of all models. The smallest value appeared at 250 °C (1.12% for five-Gaussian DAEM), and the largest value was at 300°C (2.36% for two Gaussian+ one exponential DAEM); such low values were considered good signs of prediction precision [START_REF] Cai | Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis[END_REF][START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF]. The accuracy benefits from the comprehensive identification database and numerical training: these two indexes reflected excellent prediction potential for the five DAEM models.

Generally, the largest errors occurred at 300 °C and 350 °C among all validation phases, yet good fits were found at the other temperature levels. Because parameters were identified over the full pyrolysis condition up to 800 °C , they faced some difficulties in describing incomplete pyrolysis, even though the prediction remained rather good, and was in agreement with the literature [START_REF] Soria-Verdugo | Evaluating the accuracy of the distributed activation energy model for biomass devolatilization curves obtained at high heating rates[END_REF] in which higher simulation errors tended to appear at low temperatures. The mass loss under mild pyrolysis at 250 °C was slow and, in addition, quite well predicted by the DAEM model. These two reasons explain the relatively small errors found for this test.

Among these models, overall prediction ability proceeded in the order of two Gaussian + one exponential > five-Gaussian > four-Gaussian > three-Gaussian > three-logistic.

Notably, the asymmetric exponential distribution exhibited excellent potential in predicting pyrolysis kinetics with plausible complexity: it provided the lowest RMSE values at 250, 300 and 500 °C, and most importantly, the lowest overall RMSE. Due to its asymmetry, exponential distribution expanded uniquely on the side of high activation energy, which only focused its accuracies in high-temperature reactions. In contrast, Gaussian and logistic distributions expanded symmetrically. When they intended to describe large ranges of high activation energies, the symmetry forced distribution to cover the same portion of low values.

It conflicted with the distribution that originally represented low activation energy; thus, overall prediction potential was not effectively elevated even with additional symmetric distributions. Beyond that, the increase in distribution number ameliorated identification accuracy in the cases of four-and five-Gaussian DAEMs, yet their overall prediction potentials were not necessarily the best. It was, therefore, indispensable to conduct model identification and validation separately, to obtain correct and comprehensive assessments of the model.

The two Gaussian + one exponential DAEM demonstrated its best performances in validation stages, proving a superior strategy for the distribution's shape. This performance was further verified in Figure 5, which depicted the match relationships between qualities in both identifications and validations (overall RMSE) and model's degrees of freedom (𝐷 𝑓 ). As noticed, even though four-and five-Gaussian had lower RMSE values during model identifications, their prediction abilities were inferior to two Gaussian+ one exponential DAEM. On the other hand, three-Gaussian and three-logistic DAEM had identically small 𝐷 𝑓 as two Gaussian + one exponential DAEM, yet they both demonstrated worse prediction potentials. Two Gaussian and one exponential successfully located both its RMSE and 𝐷 𝑓 in the low 'optimal zone' (highlighted with the red circle), which ensured accurate prediction ability while avoiding excessive numerical complexity. In this sense, two-Gaussian and one exponential provided the best trade-off between prediction ability and degrees of freedom. Independent and global first-order reaction mechanism was additionally considered herein for comparison purpose. This kinetic method often worked for simple approximation that treated biomass as single or multiple pseudo-components [START_REF] Varhegyi | Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse[END_REF][START_REF] Manya | Kinetics of biomass pyrolysis: a reformulated three-parallelreactions model[END_REF], in which each set of kinetic equation (Arrhenius equation) required at least two independent parameters, i.e. preexponential factor and global activation energy. Becidan [START_REF] Becidan | Thermal decomposition of biomass wastes. A kinetic study[END_REF] claimed 7 to 8 partial reactions were required for acceptable fit, in other words, it needed 8 to 9 independent parameters with assumption that they shared same pre-exponential factor, which was still too complicated. Its limited reaction types were unlikely appropriate descriptions of the infinite number in real pyrolysis. Worse still, the mechanism faced poor applicability in fitting multiple temperature profiles [START_REF] Vyazovkin | ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[END_REF][START_REF] Becidan | Thermal decomposition of biomass wastes. A kinetic study[END_REF]. Yet in two-Gaussian + one exponential DAEM, 10 parameters were sufficient to capture essences of massive reactions, being adequately concise and meantime powerful. From this perspective, the proposed two-Gaussian + one exponential again presented as excellent model choice for kinetic determinations.

To further confirm the superiority of two-Gaussian + one exponential DAEM, three-nthorder mechanism was also applied for comparison [START_REF] Rao | Pyrolysis rates of biomass materials[END_REF]. Herein, pre-exponential factor (A) was assumed identical in three reactions, and each scheme had its activation energy (E) and reaction order (n). The superposition of three nth-order reaction schemes was subsequently fitted in both dynamic and static tests for parameter identification and verification (table 8).

Regarding the overall RMSE in identification, 7.6× 10 -5 of two-Gaussian + one exponential DAEM was much smaller than that in three-nth-order model, revealing better fitting quality.

More importantly, this three-nth-order mechanism had worse prediction capacity compared to two-Gaussian + one exponential DAEM (RMSE=2.0 × 10 -4 in validation), yet its numerical complexity was hardly simplified (𝐷 𝑓 = 10), which again support the better performances of proposed DAEM. 

DTG simulation

DTG simulations were conducted to assess the performance of different distributions in the five comparable DAEMs. Figure 6 illustrated DTG simulations by the overall model and individual distributions at 5 °C/min. The heating rate was chosen due to its moderate baseline fluctuations; DTG simulations at other heating rates are within the supplementary material. It was obvious that the overall DTG simulations of five models overlapped substantially with experimental data, and the only visible deviations occurred near the DTG peak. For analysis, the main variations of local residue (𝑅 𝐿 (𝑡)) were manually divided into three noticeable sections here, ranging between 100-300, 300-400 and 400-800 °C, respectively. The first and third sections moderately fluctuated, and hemicellulose decomposition was mainly attributed to the first. Meanwhile, lignin decomposition and secondary reactions were responsible for the third section [START_REF] Yang | Characteristics of hemicellulose, cellulose and lignin pyrolysis[END_REF]. The second section showed the most severe fluctuations with two obvious peaks; they were believed to originate from the mixed pyrolysis of hemicellulose and cellulose [START_REF] Kan | Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[END_REF]. Cellulose decomposed rapidly within a very narrow temperature range after its crystallites melted [START_REF] Weinstetn | Pyrolysis-crystallinity relationships in cellulose[END_REF] and it partially merged with hemicellulose. Inevitably more detectable errors emerged in this section during simulations. 9. Among the DAEMs with three distributions, two Gaussian + one exponential DAEM exhibited the best simulation improvements, especially in the third section wherein the asymmetric exponential uniquely functioned. Further compared to two Gaussian + one exponential DAEM, four-Gaussian DAEM showed only slight improvements in first and second sections, and five-Gaussian DAEM improved in all three sections. However, as previously emphasized, it was not practical nor feasible to increase numerical complexity for limited error improvement.

Using the two Gaussian + one exponential DAEM as a reference, the error reduction ratios in three sections realized by four-Gaussian DAEM were 4.34 %, 1.60 %, 0 %, respectively, and 42.03 %, 10.49 %, 8.33 %, respectively, by five-Gaussian DAEM. The five-Gaussian DAEM provided the only notable improvement in the first section, which represented a very small part of pyrolysis kinetics. So, here the asymmetric exponential distribution again presented a good trade-off strategy to improve accuracy and maintain numerical concision. Separate DTG simulation further depicted each pseudo component's contribution to the overall decomposition rate (right row of Figure 6). It was always worthwhile to identify pseudo-components as the signatures of major chemical components. The totality of specific species could be described by one unique distribution, and further assist in understanding the multi-component mechanism of biomass pyrolysis. In this vein, Table 10 shows relevant thermogravimetric decomposition temperatures of the three main constituents in biomass. Generally, hemicellulose consists of polysaccharides that are heterogeneously branched and are non-covalently bonded to the surface of cellulose microfibril [START_REF] Mckendry | Energy production from biomass (part 1): overview of biomass[END_REF]. The less stable chemical structures make hemicellulose more reactive with lower temperature ranges of decomposition. Cellulose is a saturated linear polysaccharide with high polymerization and degree of crystallinity and decomposes in very narrow temperature ranges [START_REF] Prasad | Ethanol as an alternative fuel from agricultural, industrial and urban residues[END_REF]. Lignin is a set of irregular phenolic polymers consisting of more than four substituted phenyl propane, which endow lignin with large decomposition ranges during the entire pyrolysis process [START_REF] Mohan | Pyrolysis of wood/biomass for bio-oil: a critical review[END_REF]. Many published values provided reliable references for featuring pseudo-components. By comparing chemical constituents' decomposition temperatures with model calculations, it was, therefore, feasible to correspond the three pseudo-components to hemicellulose, cellulose and lignin respectively in the three-Gaussian, three-logistic and two Gaussian + one exponential DAEM, which were wellaccepted strategies [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF][START_REF] Chen | Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[END_REF]. For the four-Gaussian DAEM, first and second pseudocomponents were linked with hemicellulose and cellulose, while the third and fourth pseudocomponents possibly presented the two-stage decomposition scheme of lignin [START_REF] Chen | Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels[END_REF]. In the five -Gaussian DAEM, the first and second pseudo-components together represent hemicellulose, then the third pseudo-component was assigned to cellulose. The fourth and fifth components were attributed to two overlapped partial reactions, the scission of oxygen functional groups and rearrangement of the carbon skeleton were believed responsible for these two distributions, respectively [START_REF] Varhegyi | Kinetic modeling of biomass pyrolysis[END_REF]. Peak temperatures observed in both experimental and simulated DTG at different heating rates are listed in Table 11. The peak temperatures corresponded to the extreme reaction stage of cellulose decomposition, and they followed a decreasing trend with an increase of heating rate, which was caused by the altered pyrolysis kinetics relating to inter-particle heat transfer [START_REF] Stenseng | Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[END_REF]. In general, five models reproduced the peak temperatures accordingly at four heating rate conditions, with considerably small errors less than 5 °C. It was clear that multipledistribution DAEMs were capable of distinguishing the effects of heating rates, which has rarely been observed in relevant researches. Peak values were usually applied in Kissinger procedure for determining activation energy [START_REF] Kissinger | Reaction kinetics in differential thermal analysis[END_REF], as a direct and easy method. However, its limitations arose in merely staying at observation stage based on existing experimental data.

By comparison, multiple-distribution DAEMs herein presented a precise description of peak temperatures and confirmed the prediction abilities already proved on mass loss. Therefore, it would be safe to conclude that the proposed models could advance one step further as prediction tools in isoconversional kinetics. DAEM may be applied for the accurate description of global pyrolysis kinetics under different reaction conditions. The correlations between overall RMSE of identification and validation is further presented in supplementary figure 3, and the calculation number in one loop (𝑁 𝑐 ) is also displayed to represent the numerical complexity during parameter identifications. The nonmonotonic relation here clearly indicates the optimal position of four-test, which achieves the best trade-off between predication ability and identification errors. The obvious decrease of validation errors at initial stage (from one-test to four-test) is associated with test numbers, the increase of which gradually leads to the complete coverage of whole pyrolysis mechanism, and validation quality is guaranteed at the expense of acceptable error increase during identifications. However, the following stage (from four-test to seven-test) indicates that predication ability is no longer elevated by the increase of test number, in contrast, it brings more errors and numerical complexities. It's very possible that four-test is sufficient to cover most kinetic features, the effects of adding test number will merely express as error increase, being unnecessary and redundant.

Chapter 5 Intrinsic kinetic modelling of spruce and poplar powder

This chapter will further apply the two-Gaussian+ exponential DAEM into the intrinsic kinetic study of both spruce and poplar powder. Reliable kinetic parameters will be obtained The model equations, the discretization and computational implementation, as well as the complete set of model parameters are presented in great detail, so that the reader can use them for process modelling, including the crucial concern of thermal runaway occurring in large particles or packed beds.
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Introduction

Biofuel derived from biomass is a source of renewable energy for transportation [START_REF] Demirbas | Biofuels sources, biofuel policy, biofuel economy and global biofuel projections[END_REF].

Technologies based on thermal processes are part of the conversion route from biomass to biofuel and energy source, among which pyrolysis is often the first step before combustion, gasification or grinding. During this process, biomass decomposes under inert atmosphere in the form of gas, bio-oil, and char.

Thermogravimetric analysis (TGA) is the most common analytical method for experimental investigation of biomass decomposition [START_REF] Grønli | A round-robin study of cellulose pyrolysis kinetics by thermogravimetry[END_REF][START_REF] Antal | Cellulose pyrolysis kinetics: revisited[END_REF][START_REF] White | Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies[END_REF]. TGA detects online the evolution of mass loss, a good indicator of the alterations of biomass properties [START_REF] Almeida | Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator[END_REF]. The earliest kinetics works were performed at isothermal conditions and the decomposition rates were formulated over a certain range of temperature and pre-heating conditions [START_REF] Wagenaar | Flash pyrolysis kinetics of pine wood[END_REF][START_REF] Thurner | Kinetic investigation of wood pyrolysis[END_REF][START_REF] Ward | Experimental weight loss kinetics of wood pyrolysis under vacuum[END_REF]. Dynamic tests are, however, more widely-used for their ability to investigate a wide range of temperature and to use analytical solutions for kinetics determination. On the contrary, when analysed using analytical solutions, isothermal kinetics suffered from the noticeable weight loss during warm-up time [START_REF] Brachi | Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions[END_REF][START_REF] Lv | Torrefaction of cellulose: Validity and limitation of the temperature/duration equivalence[END_REF][START_REF] Cai | A distributed activation energy model for the pyrolysis of lignocellulosic biomass[END_REF].

The earliest kinetics works have formulated the degradation kinetics of lignocellulosic biomass or their components (cellulose, hemicelluloses, and lignin) as a set of competitive and/or consecutive reactions [START_REF] Varhegyi | Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse[END_REF][START_REF] Ramiah | Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin[END_REF][START_REF] Alves | Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions[END_REF][START_REF] Varhegyi | Is the Broido-Shafizadeh model for cellulose pyrolysis true?[END_REF][START_REF] Di Blasi | Experimental analysis of reaction heat effects during beech wood pyrolysis[END_REF][START_REF] Fisher | Pyrolysis behavior and kinetics of biomass derived materials[END_REF][START_REF] Rousset | Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modé lisation macroscopique[END_REF].

Currently, Distributed Activation Energy Model (DAEM) became the standard modelling tools for thermal degradation of biomass. This concept was developed by to model pyrolysis of coal and was later applied to lignocellulosic biomass [START_REF] Cai | Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis[END_REF][START_REF] Shen | Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[END_REF][START_REF] Teng | Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment[END_REF]. This model represents the decomposition process as a continuous series of independent and parallel reactions with different activation energies which were further described by continuous distribution functions. Analytical method was first derived to extract the distribution functions from experimental data [START_REF] Miura | A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data[END_REF]. In the case of biomass, the actual decomposition process involved complicated steps with different activation energy distributions. As multidistribution models are required, the common practice is to use a computational solution to solve a full set of distributions of any shape.

This kind of model is among the most comprehensive models for describing pyrolysis kinetics of lignocellulosic biomass and its components [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF][START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF] and already proved its prediction potential for tests that were not include in the learning database [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF]. Recent

DAEM developments include a whole set of works using multiple normal distributed

To gain accuracy, differential scanning calorimetry (DSC) could to be an effective way [START_REF] Rath | Heat of wood pyrolysis[END_REF].

Note however that, in this case, it is difficult to rely the heat flux to the mass loss evolution, hence to determine reaction enthalpies. The published reaction enthalpies range from -3800 to 418 kJ/kg for wood [START_REF] Rath | Heat of wood pyrolysis[END_REF][START_REF] Ramiah | Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin[END_REF][START_REF] Tinney | The combustion of wooden dowels in heated air[END_REF][START_REF] Kung | On the heat of reaction in wood pyrolysis[END_REF], from -510 to 322 kJ/kg for cellulose, from -455 to 79 kJ/kg for lignin and from -700 to 42 kJ/kg for hemicelluloses [START_REF] Beall | Differential calometric analysis of wood and wood components[END_REF]. Such large variations, ranging from endothermic to exothermic, point out the real difficulty to determine these heats of reaction [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF][START_REF] Rath | Heat of wood pyrolysis[END_REF]. A value of -850 kJ/kg was determined by inverse analysis for the degradation of hemicelluloses in [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF]. This value was tuned to predict the correct thermal runaway in a coupled heat and mass transfer computational code. However, one must keep in mind that this value is strongly tied to the kinetics model implemented in the code. Anyway, the temperature overshot measured inside the macro-particle [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF] or in a packed-bed [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF][START_REF] Di Blasi | Experimental analysis of reaction heat effects during beech wood pyrolysis[END_REF] proves that pyrolysis involves exothermic reactions, which is in contradiction with other published works [START_REF] Mishra | Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis[END_REF][START_REF] Wang | Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer[END_REF].

In the present paper, we propose a robust DAEM model to simulate pyrolysis of two types of lignocellulosic products (spruce and poplar) over a wide range of temperature levels and treatment durations. The inspiration for this work is i) to find best compromise between the sobriety of the number of parameters to be identified and the robustness of the model validated on very distinct experimental data and ii) to use to the DSC signal to identify heats of reaction. The whole procedure is explained in detail to allow the reader to implement the modelling strategy for its own needs. The full dataset is supplied for poplar and spruce (kinetics parameters and reaction enthalpies), which can be used for the simulation of biomass pyrolysis, including thermal runaway likely to occur in large particle or packed beds of particles.

Material and methods

Poplar (Populus euramerican cv. I-214) was selected from a 17-year-old tree (cottonwood native black poplar in the Po Valley, female). The spruce tree (Picea abies) was about 31-yearold and selected from the Brin forest, Champenoux, France. The choice of these species was motivated by two objectives: i) The selection of potential species for biofuel production due to their availability ii) the scientific interest of comparing hardwoods and softwoods in regard to their pyrolysis behaviour. Healthy trees with no apparent injury were used. Stem disks were cut from each tree at 6 m above the ground. Small blocks were selected from these disks avoiding the sapwood and the pith regions. All samples were milled by using a grinder (IKA M20

Universal mill) and subsequently sieved. The particle size fraction from 0.063 to 0.08 mm was selected in order to neglect internal heat and mass transfer limitations during pyrolysis. The ultimate analysis was conducted in elementary analyzer (FLASH 2000 CHNS/O, Thermo

Fisher Scientific) and proximate analysis was based on standard methods of ASTM E1755 and E872, they were all calculated on a dry basis. For both wood species, all tests were preformed in triplicate and the mean values were taken to ensure results accuracy and repeatability.

The experimental TGA apparatus was a thermogravimetric analyzer (STA 449 F3 Jupiter, NETZSCH) with a weighting sensitivity of 0.025 𝜇g and a balance drift lower than 2 𝜇g/hour.

The TGA-DCS sample carrier was mounted for simultaneous measurement of mass loss and heat flux. All measurements were carried out under a nitrogen flow of 50 mL/min and a protective gas flow of 20 mL/min. Dynamic tests started by heating the sample up to 100 °C for a 30-minute plateau at this temperature to eliminate the residual water, then the temperature increased to 800 °C with a constant heating rate (10, 5, 2 and 1 K/min). Static tests started by the same plateau at 100 C, then followed by a heating phase at 10 K/min to the desired temperature (250 °C, 300 °C, 350 °C, 400 °C, 450 °C and 500 °C) for a 2-hour plateau.

Blank experiments were conducted for all experimental protocols and each experiments was repeated three times. In order to exclude buoyancy effects and effect of crucible mass on heat capacity, each final result is the raw data calibrated by subtracting a blank test performed with the same protocol and the same crucible. The mass recorded at the end of 100 °C plateau was considered as oven-dry mass (𝑚 0 ) for the determination of mass loss. In equation 1, the dimensionless residual mass (DRM) is defined as the ratio of the instantaneous sample mass (𝑚 𝑠 ) over the oven-dry mass:

The dimensionless mass loss (DML, equ. 2) is simply the complement to the unity:

Modelling

DAEM formulation

The DAEM formulation (equ. 3) [START_REF] Vand | A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[END_REF] assumes that the product degrades through a large number of independent, parallel and irreversible first-order reactions 𝑖:

DRM(𝑡) = 𝑚 𝑠 (𝑡) 𝑚 0 (1) 
DML = 1 -DRM (2) 
In these equations, 𝑉 𝑖 represents the quantity of volatiles generated during reaction 𝑖, 𝑉 𝑖 ∞ is the total quantity likely to be produced by this reaction. 𝑘 𝑖 is the kinetic constant for reaction 𝑖. Its thermal activation is assumed to obey an Arrhenius law (equ. 4), defined by an activation energy 𝐸 𝑖 and a pre-exponential factor 𝐴 𝑖 (kinetics constant at infinite temperature).

A time integration of equation ( 3) allows the time evolution of 𝑉 𝑖 to be derived as:

In practice, a continuous function is used instead of equation ( 5 Assuming the pre-exponential factor to be the same for all reactions (𝐴 𝑖 = 𝐴 ∀𝑖 ), a combination of equations ( 5) and ( 6) yields equation ( 7):

Obviously, the whole set (continuous or discrete) of reactions should represent the entire product. Hence the integration over the entire range of activation energy gives the total potential of volatiles (equ. 8) that can be produced by the product:

The norm of function 𝑓 therefore equals the unit (equ. 9):

𝑑𝑉 𝑖 𝑑𝑡 = 𝑘 𝑖 (𝑉 𝑖 ∞ -𝑉 𝑖 ) (3) 
𝑘 𝑖 = 𝐴 𝑖 exp(-𝐸 𝑖 𝑅𝑇 )

(4)

𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡) = 𝑉 𝑖 ∞ exp (-∫ 𝑡 𝑡 0 𝑘 𝑖 (𝑇(𝑡))𝑑𝑡) (5) 
𝑑𝑉 ∞ = 𝑉 ∞ 𝑓(𝐸)𝑑𝐸 (6)

1 - 𝑉(𝑡) 𝑉 ∞ = ∫ ∞ -∞ 𝑒𝑥𝑝 (-∫ 𝑡 𝑡 0 𝐴𝑒 -𝐸/𝑅𝑇(𝑡) 𝑑𝑡) 𝑓(𝐸)𝑑𝐸 (7) ∑ +∞ 𝑖=-∞ 𝑉 𝑖 ∞ = 𝑉 ∞ 𝑜𝑟 ∫ +∞ -∞ 𝑑𝑉 ∞ = 𝑉 ∞ (8) ∫ +∞ -∞ 𝑓(𝐸)𝑑𝐸 = 1 (9)

Gaussian distributions

A common practice is to adopt a Gaussian function for this distribution (or a combination of Gaussian functions). Function 𝑓 is then defined by the average energy 𝐸 0 and its standard deviation 𝜎 (equ. 10) . The factor

1 𝜎√2𝜋
ensures the unit norm:

In order to use such a function in a computational code, the domain of this function, defined from -∞ to +∞, has to be restricted to a finite interval and, inside this interval, the continuous function should be approximated by a set of discrete values. As a Gaussian function is well defined by its standard deviation 𝜎, it is reasonable to limit its domain over a certain number 𝑘 of 𝜎 : [𝐸 0 -𝑘𝜎, 𝐸 0 + 𝑘𝜎] and, inside each interval of length 𝜎, approximate the function by 𝑚 increments 𝑑𝐸 of equal length, as expressed in equation:

Equation ( 12) depicts the corresponding discrete weighting factors of the Gaussian distribution:

For the discretized function to correctly represent the continuous function, 𝑘 has to be equal or greater than 3 (with 𝑘 = 3, the area under the curve is 99.7% of the total area, against 95.4% for 𝑘 = 2). Preliminary simulations have shown that a typical 𝑚 value of 10 allows a precise restitution of the kinetics (Fig. 1).

𝑓(𝐸) = 1 𝜎√2𝜋 exp (- (𝐸 -𝐸 0 ) 2 2𝜎 2 )
(10) 

𝐸 𝑖 = 𝐸 0 -𝑛𝜎 + (𝑖 -0.5)𝑑𝐸, 𝑖 = 1,2𝑘𝑚 𝑤𝑖𝑡ℎ 𝑑𝐸 = 𝜎/𝑚 (11) 
𝑓 𝑖 = 𝑓(𝐸 𝑖 ) = 1 𝜎√2𝜋 exp(- (𝐸 𝑖 -𝐸 0 ) 2 2𝜎 2 ) (12)

Gamma distributions

In the present work, we used gamma distributions as non-symmetrical distributions. The function 𝑓 is defined by a minimum energy value 𝐸 𝑚𝑖𝑛 and two independent parameters, for example, the shape parameter 𝛼 and the rate parameter 𝛽:

Where Γ is the gamma function defined as Γ(𝑧) = ∫ ∞ 0 𝑥 𝑧-1 𝑒 -𝑥 𝑑𝑥, (𝑧 > 0). To sample equation ( 13) for modeling purposes, the domain of the gamma distribution is restricted to a finite interval [0, 𝑥 𝑚𝑎𝑥 ] , where 𝑥 𝑚𝑎𝑥 is 𝑛 times the expected value ( 𝛼/𝛽 ). Function 𝑓 is therefore approached on the interval [𝐸 𝑚𝑖𝑛 , 𝐸 𝑚𝑎𝑥 ], with 𝐸 𝑚𝑎𝑥 = 𝐸 𝑚𝑖𝑛 (1 + 𝑛𝛼/𝛽). Inside this interval, the function 𝑓 is discretized in 𝑚 increments 𝑑𝐸 of equal length (equ. 14):

𝑓(𝐸) = 𝐺𝑎𝑚𝑚𝑎 ( 𝐸 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 , 𝛼, 𝛽) 𝑤ℎ𝑒𝑟𝑒 𝐺𝑎𝑚𝑚𝑎(𝑥, 𝛼, 𝛽) = 𝛽 𝛼 𝑥 𝛼-1 𝑒 -𝑥𝛽 Γ(𝛼) (13) 
𝐸 𝑖 = 𝐸 𝑚𝑖𝑛 + (𝑖 -0.5)𝑑𝐸, 𝑖 = 1, 𝑚 𝑤𝑖𝑡ℎ 𝑑𝐸 = (𝐸 𝑚𝑎𝑥 -𝐸 𝑚𝑖𝑛 )/𝑚 [START_REF] Mishnaevsky | Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review[END_REF] In this work, the gamma distributions were sampled with 𝑛 = 5 and 𝑚 = 100, which insures an accurate representation of the continuous function.

Computational implementation

Thanks to this discrete approximation, the kinetics of volatiles production is easily deduced from equation [START_REF] Xu | Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis[END_REF]. Equations ( 15) and ( 16) summarise the set of equation to be computed:

In the simulation code, the values of 𝐸 𝑖 and 𝑓 𝑖 are computed just once during the initialization procedure. On the contrary, all values of 𝑉 𝑖 have to be stored and updated along the simulation. Last refinement, the increments update along the time step of the kinetics defined by equation ( 15) is a first order approximation. However, due to thermal activation, former works [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF][START_REF] Rousset | Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modé lisation macroscopique[END_REF] told us that the combination of high temperature level and wide range of activation energy in DAEM might result in very small characteristic times (the factor 𝜏 in the time function 𝑒𝑥𝑝(-𝑡/𝜏), i.e. the inverse of 𝑘 𝑖 in equation 5). To ensure accuracy, an exact formulation of the increment of the chemical reactions during time step 𝑑𝑡 has been implemented (equ. 17) . This involves an exponential factor in the time increment expression:

As several distributions are often required to correctly represent the kinetics (we will use three distributions in the present work), equation ( 15) should be summed over all distributions.

As each distribution 𝑛 has its own sampling, the discrete coefficients should be indexed by the distribution number (𝑓 𝑖 𝑛 ). Similarly, the total volatile substances likely to be produced by the distribution 𝑛 is called 𝑉 𝑛,∞ .

The final formulation for a computational solution of the DAEM model with three distributions is summarized as the change 𝑑𝑉 𝑛 of total volatiles produced over the time step 𝑛, which represents the time interval [𝑡 𝑛 , 𝑡 𝑛+1 ] with 𝑡 𝑛+1 = 𝑡 𝑛 + 𝑑𝑡:

𝑑𝑉 𝑑𝑡 = ∑ 2𝑘𝑚 𝑖=1 𝑑𝑉 𝑖 𝑑𝑡 = ∑ 2𝑘𝑚 𝑖=1 𝑘 𝑖 (𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡)) ( 15 
)
𝑘 𝑖 = 𝐴exp(- 𝐸 𝑖 𝑅𝑇(𝑡) ); 𝑉 𝑖 ∞ = 𝑓 𝑖 𝑉 ∞ ; 𝑉 𝑖 (𝑡 = 0) = 0 ( 16 
)
𝑑𝑉 𝑖 = (1 -𝑒𝑥𝑝(-𝑘 𝑖 𝑑𝑡))(𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡)) (17) 
The incremental DAEM formulation (equ. 18-20) allows any pathway time-temperature to be simulated. In the following, all simulations will be performed with the actual temperature, as recorded for each test by the TGA device.

Identification

The distribution parameters were determined by inverse analysis. The identification In equation ( 21), the experimental dimensionless residual mass 𝐷𝑅𝑀 𝑖 ℓ,𝑒𝑥𝑝 is obtained by equation ( 1) and the calculated dimensionless residual mass is tied to the DEAM model (equ. 

𝐷𝑀𝐿(𝑡 𝑁 ) = ∑ 𝑁-1 𝑛=0 𝑑𝑉 𝑛 𝐷𝑅𝑀(𝑡 𝑁 ) = 1 -𝐷𝑀𝐿(𝑡 𝑁 ) ( 20 
)
𝐹 𝑜𝑏𝑗 = 1 𝑁 𝑡𝑒𝑠𝑡𝑠 ∑ 𝑁 𝑡𝑒𝑠𝑡𝑠 ℓ=1 [ 1 (𝑖 𝑓𝑖𝑛 -𝑖 𝑖𝑛𝑖 + 1) ∑ 𝑖 𝑓𝑖𝑛 𝑖=𝑖 𝑖𝑛𝑖 (DRM 𝑖 ℓ,𝑒𝑥𝑝 -DRM 𝑖 ℓ,𝑐𝑎𝑙 ) 2 ] (21) 
conditions are computed for each increment of the Nelder-Mead algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF], using the current set of parameters, to evaluate the objective function. The computational engine is embedded in a graphical library Winteracter to create a Windows application, with fields for parameter input/output and curve plot for visual check. It can be used either to simulate desired configurations or to identified parameters values from a set of experimental data.

It is important to notice that the identification procedure is not straightforward as many local minima exist: the initial parameter guess is therefore important for the algorithm to converge towards the global minimum. The in-house graphical application allows the free parameters, the experimental tests under interest and the active time interval of each test to be chosen. In order to tune the initial guess, we usually proceed stepwise: the first distributions are optimized over a reduced range of temperatures (namely by selecting a subset of the experimental times) and additional distributions are added along with additional experimental information. Finally, all tests are optimized with the full set of parameters to refine the solution.

This is restarted several times with a large initial simplex, to check that the solution is the global minimum. The graphical output of the application and the display of residues greatly ease the procedure.

Enthalpy of reaction

The enthalpies of reaction are of utmost importance at the industrial scale to control thermal runaway and to evaluate the energetic yield over the whole transformation chain of biomass. Consequently, these values need to be included in the enthalpy balance to compute the source/sink terms due to degradation reactions. This is crucial to predict the temperature field, hence the kinetic activation at the scale of one macroscopic particle or at a level of bed of particles [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF][START_REF] Perre | A comprehensive dual-scale wood torrefaction model: Application to the analysis of thermal run-away in industrial heat treatment processes[END_REF]. Yet, the literature is still sparse in values of reaction enthalpies.

A first sight, the best way to measure enthalpies of reaction is to use isothermal tests, during which the heat capacity of sample and crucible is not involved. However, as pyrolysis reactions are quite slow, the total reaction enthalpies spread over long duration and produce in a very low signal. In such conditions (small heat flux and large durations) the drift of the heat flux baseline turns out to be larger than the signal. Instead, in the present work, we used dynamic tests, together with the robust, validated, DAEM model, to get a quite good accuracy of the identified reactions enthalpies, using the whole piece of information available with a ATG-DSC device : heat flux, temperature and mass loss. It is important to note that such an analysis would not have been possible with a simple DSC which is not able to give the mass evolution, in spite of the much better accuracy of such devices regarding heat flux.

To that purpose, the energy balance should to be properly formulated (equ. 22). In particular, the change of mass over time needs to be considered to evaluate the heat required to change the sample temperature. As the transformation occurs at constant pressure, we write the enthalpy conservation of the system (sample + crucible) between time 𝑡 and time 𝑡 + 𝑑𝑡.

Where ℎ are the specific enthalpies, 𝑄 ̇ the heat flux provided to the system, 𝑆 ̇ the source term due to chemical reactions and 𝑑𝑚 the quantity of volatiles formed during the time interval 𝑑𝑡. Indices 𝑐, 𝑠 and 𝑣 stand for crucible, sample and volatiles respectively.

Rearranging equation ( 22) in terms of derivatives truncated at the first order yields equation ( 23):

The fourth term of the right-hand side of equation ( 23) represents the enthalpy of volatilisation [START_REF] Frederick | Determination of heats of volatilization for polymers by differential scanning calorimetry[END_REF][START_REF] Suwardie | The determination of heat of curing accompanied by reactant volatilization using simultaneous thermal analysis (STA)[END_REF]. In the following, the two last terms of the right-hand side are considered lumped together to form the production of pyrolysis enthalpy 𝐻 ̇𝑝𝑦𝑟𝑜 . As the blank tests are performed with the same crucible, the thermal inertia of the crucible is canceled after blank correction. The final equation for the blank corrected test is obtained by introducing the heat capacity of the sample (equ. 24):

In the result section, the pyrolysis enthalpy 𝐻 ̇𝑝𝑦𝑟𝑜 will be identified for the predicted heat flux (right-hand side of equation 24 : sum of enthalpy production and sensible heat) to match the heat flux measured by the TGA-DSC device (-𝑄 ̇). In this calculation, we will assume that the reaction enthalpy, Δ𝐻 𝑛 , is the same for all reactions involved in a given distribution 𝑛. This is a quite strong assumption, but was required for the identification to be realistic. The enthalpy production (equ. 25) reads then as follows: 

𝑚 𝑐 ℎ 𝑠 +
-𝑄 ̇= 𝑚 𝑠 (𝑡)𝑐 𝑝,𝑠 𝑑𝑇 𝑑𝑡 + 𝐻 ̇𝑝𝑦𝑟𝑜 [START_REF] Vassilev | An overview of the organic and inorganic phase composition of biomass[END_REF] Keeping in mind that 𝑉(𝑡) is the dimensionless production of enthalpy, the final equation (equ. 26) used in the identification becomes:

Identification and validation

Identification of DAEM parameters

Dynamic experiments were used to identify the parameters of the DAEM model. It is important to remind here that the four dynamic tests were used simultaneously (equ. 21) for each species. The importance of this feature was reported in [START_REF] Soria-Verdugo | Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model[END_REF]. Note however that our learning database includes a wider range of heating rates (from 1 to 10 K/min) than in this reference. For a Gaussian distribution, 𝐸 0 is the mean activation energy, which informs on the global resilience to decomposition: pseudo-components with smaller value of 𝐸 0 are prone to decompose more easily than those with high 𝐸 0 . The standard deviation of the Gaussian distribution 𝜎 quantifies the width of activation energy values around the mean value. A distribution with a large standard deviation means that the corresponding pseudo-component decomposes over a large temperature range (or a large range of characteristic times) around the average value. The pre-exponential factor 𝐴 controls the overall reaction rates. The weighting factor 𝑉 𝑛,∞ represents the total proportion of the initial biomass that can produce volatiles.

During the identification procedure, several distributions were required to correctly represent the evolution of DRM over the whole range of experimental conditions. As our strategy was to limit the number of degrees of freedom, we tried to limit the number of distributions. Two Gaussian distributions were able to capture the behaviors for moderate temperature levels. However, the symmetry of Gaussian functions is a strong constraint regarding the behaviour of thermo-activation: with a symmetrical distribution, it is not possible to spread the kinetics over high temperature levels without spreading also the kinetics over low temperatures. This fact was already observed and led scientists to use non-symmetrical distributions [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF]. The third distribution, devoted to the behavior up to 800 °C, was therefore set as a gamma distribution. This choice was crucial to obtain a good representation

𝐻 ̇𝑝𝑦𝑟𝑜 = ∑ 𝑁 𝑛=1 ∑ 2𝑘𝑚 𝑖=1 Δ𝐻 𝑛 𝑑𝑉 𝑖 𝑛 𝑑𝑡 (25) 
-𝑄 ̇= 𝑚 0 (1 -𝑉(𝑡))𝑐 𝑝,𝑠 𝑑𝑇 𝑑𝑡 + ∑ 𝑁 𝑛=1 Δ𝐻 𝑛 (∑ 2𝑘𝑚 𝑖=1 𝑘 𝑖 𝑛 (𝑉 𝑖 𝑛,∞ -𝑉 𝑖 𝑛 (𝑡))) (26) 
with three distributions. During the optimisation procedure, the need of asymmetry for this third distribution was so strong that the minimum value of residues was obtained with a value of 𝛼 less than one, with induces an infinite value at zero. Such a function becomes very tricky to represent by discrete values : the parameters values depend on the sampling density, which is very difficult to reproduce. To avoid this side effect, we added the constraint 𝛼 ⩾ 1. The inverse procedure eventually gives 𝛼 = 1 , which limits the gamma distribution to the subset of exponential functions and reduced by one the degrees of freedom.

As the learning database includes the asymptotic behavior (temperature level and duration enough to approach equilibrium), the sum of the weighting factors of all distributions is smaller than the unit. The complement of this sum to the unity therefore represents the asymptotic value of Dimensionless Residual Mass at infinite time.

In spite of slight differences, the parameters values identified for spruce and poplar depict the same trends (Table 1). In both cases, the second distribution has the largest weighting factor, indicating the largest portion of pseudo-components described by this distribution. For both species, the standard deviation of the second distribution is very small. No kinetics difference was observed for 𝜎 → 0. This results in a unique activation energy, 183.3 kJ/mol for spruce and 181.4 kJ/mol for poplar, in good agreement with the value 185 kJ/mol obtained in [START_REF] Sonobe | Kinetic analyses of biomass pyrolysis using the distributed activation energy model[END_REF]. The second distribution is basically reduced to a simple first-order reaction (a Dirac distribution), which decreases the number of degrees of freedom by one. This is explained by the sudden and large mass loss arising at around 300 °C. Finally, the third distribution acts after the second one in terms of temperature level and its action lasts over a large range of high temperatures. Finally, the proposed DAEM model comprises three different distributions:

• a Gaussian distribution for hemicelluloses,

• a Gaussian function degenerated into a Dirac function for cellulose,

• a gamma function degenerated into an exponential function for lignins. For both species, the 3-distribution DAEM model is in excellent agreement with the experimental results (Fig. 2). This proves the ability of model to describe the pyrolysis behavior over a large range of temperatures and heating rates although we were frugal in the number of independent parameters. This qualitative assessment is confirmed by objective criteria (Table 2). The standard deviation is around or less than 0.5% and the maximum deviation, a very severe criterion, is around 1 to 1.5 %, except for spruce at 10 °C per minute, for which a slightly larger difference (2.27%) is observed at the end of the test. This difference is not obvious on the graph as the maximum deviation is obtained during the rapid mass decrease, where the curve slopes are very large. These excellent results are obtained by assuming a constant preexponential factor 𝐴, identical for all distributions (∀𝑛, 𝐴 𝑛 = 𝐴). This is in contradiction with the latest published works in which authors propose the pre-exponential factor to be a function of temperature, heating rate or average activation energy [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF][START_REF] Cai | New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[END_REF][START_REF] Sfakiotakis | Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels[END_REF][START_REF] Czajka | Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect[END_REF][START_REF] Sonobe | Kinetic analyses of biomass pyrolysis using the distributed activation energy model[END_REF]. Even with our experimental datasets that include a large range of temperature levels and residence times, it was not necessary to use such functions, neither to obtain a small residues nor to successfully validate the mode against distinct time-temperature pathways. We can therefore affirm that a constant value of A is perfectly able to reproduce the kinetics behavior over a wide range of temperature levels and heating rates. We owe this success to the strategy to identify one single set of parameters simultaneously on the entire series of tests, together with the highly asymmetrical shape of the third distribution. The temperature response of the three distributions together with these respective weighting factors confirm well-accepted trends in the pyrolysis behavior of lignocelluloses [START_REF] Chen | Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[END_REF][START_REF] Cordero | On the kinetics of thermal decomposition of wood and wood components[END_REF]. The first distribution accounts for the degradation of hemicelluloses, the most prone to thermal degradation. Hemicelluloses are linear branched polymers made by different types of monosaccharide units [START_REF] Xu | Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review[END_REF] and it decomposes in the range 225-325 °C. Poplar hemicelluloses are mainly composed of xylan, whereas spruce hemicellulose are mainly composed of glucomannan [START_REF] Wang | Lignocellulosic biomass pyrolysis mechanism: a state-of-theart review[END_REF]. In agreement with published results [START_REF] Prins | Torrefaction of wood: Part 1. Weight loss kinetics[END_REF][START_REF] Cavagnol | Inverse analysis of wood pyrolysis with long residence times in the temperature range 210-290 C: Selection of multi-step kinetic models based on mass loss residues[END_REF], this explains that spruce is more thermally stable than poplar at moderate temperatures: 𝐸 0 of the first distribution is smaller for poplar than for spruce.

As can be seen from the 𝑉 𝑚𝑎𝑥 values, the second distribution affects roughly half of the production of volatile substances with rapid degradation above 300 °C. This is undoubtedly the signature of cellulose, which represents ca. 50% of the total mass and is very resilient to degradation in crystalline state, but with a rapid thermal decomposition once melt [START_REF] Lv | TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations[END_REF].

Cellulose has macromolecular structures which are constructed by semi-crystalline array of β-1,4 glucan chains and it decomposes at 325-385 °C [START_REF] Shafizadeh | Pyrolytic reactions and products of biomass[END_REF][START_REF] Chen | A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry[END_REF]. For Gaussian distributions 1 and 2, the present results depict similar trends as those proposed by [START_REF] Chen | Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[END_REF]. However, our third distribution is very different from the very wide Gaussian distribution proposed in [START_REF] Chen | Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[END_REF]: the gamma distribution captures nicely the degradation of the most reluctant part of the biomass, which can be attributed mostly to lignins [START_REF] Poletto | Thermal decomposition of wood: Influence of wood components and cellulose crystallite size[END_REF]. Lignins present a highly branched threedimensional phenolic structure made of C6C3 units, namely, p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, in various proportions depending on the species. Lignins present a large range of decomposition temperature from 250 °C to over 500 °C. Hardwood lignins are composed of S and G units, together with trace amounts of H units. Softwood lignins consist mainly of G units and low levels of H units [START_REF] Boerjan | Lignin biosynthesis[END_REF][START_REF] Whetten | Recent advances in understanding lignin biosynthesis[END_REF]. Consequently, spruce lignins contain fewer β-O-4 bonds and more 5-5 branching structures than poplar lignins. As β-O-4 bonds are the main targets of thermal degradation [START_REF] Rousset | Effect of severe thermal treatment on spruce and beech wood lignins[END_REF][START_REF] Assor | Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood[END_REF], it is not surprising to obtain a minimum activation energy 𝐸 0 for the gamma distribution slightly smaller for poplar.

As a summary, hemicelluloses are the first components to be altered by temperature, cellulose, ca. half the cell wall mass, is very resilient before melting, but depicts a rapid degradation after melting (with a melting temperature around 300 °C) and lignins is the part of the cell wall the most resilient to degrade. This simple correspondence between the distributions and the components of the cell wall is certainly related to the absence of significant interaction between these components during pysolysis [START_REF] Cavagnol | Inverse analysis of wood pyrolysis with long residence times in the temperature range 210-290 C: Selection of multi-step kinetic models based on mass loss residues[END_REF][START_REF] Navarro | Application of the distributed activation energy model to biomass and biomass constituents devolatilization[END_REF]. 

Validation on static experiments

So far, we proved the ability of the kinetic model to represent a quite large pyrolysis database with a moderate number of identified parameters. In this section, the model will be tested on a completely different experimental database, the set of static tests. The experimental and predicted DRM curves are depicted in figure 3. It is worth mentioning that this is a true validation test : the parameters used in the model are the parameters derived from the dynamic tests of Table 2, without any further identification.

Overall, the predictions are in very good agreement, even with the static tests at moderate temperature (250 °C, 300 °C). These tests are severe due to their slow kinetics, without asymptotic behavior. Such good predictions obtained for this demanding validation confirm the resilience of the DAEM formulation in comparison with a set of simple chemical reactions occurring simultaneously or in cascade [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF][START_REF] Rousset | Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modé lisation macroscopique[END_REF]. The good agreement is confirmed by the computed residues (Table 5). This is an additional proof regarding the assumption of constant and common value for the pre-exponential factor 𝐴. The rate of decomposition, the first derivative of the differential thermogravimetry (DTG) curves, depicts more detail during the decomposition process as it is more affected by slight changes during the reactions. Comparing experiment and model prediction in terms of derivative is very challenging as it is likely to reveal any differences between the curves. For the sake of example, the results obtained for poplar are shown in figure 4. One might observe that the experimental derivative is noisy, which is a classical effect when deriving an experimental curve. Yet, the DAEM model perfectly predicts the degradation rate, both in terms of position and intensity, over the wide range of temperatures of these static tests. This is an additional and convincing proof of validation. The test at 250 °C depicts a very small DTG peak at 20 hours, due to the partial degradation of hemicelluloses occurring at this temperature level.

The peak significantly increases at 300 °C and spreads over slightly longer times. For tests at 350 °C , the shape clearly depicts a double peak by its shoulder on the left side due to the degradation of hemicelluloses followed, at around 350 °C , by the deep and narrow peak formed by the sudden degradation of cellulose. As the degradation of these two components is almost complete at 350 °C , the shape and maximum amplitude are no longer affected at higher temperature values. 

Reaction enthalpies

The DSC signal of two types of wood have been analysed to determine the reaction enthalpies. In order to reduce the problem of baseline drift and thanks to the confidence in the DAEM model provided by the validation step, the dynamic tests at 5 °C /min were used to identified the reaction enthalpies using the formulation presented in section 3.4 (equ. 26). The test at 10 °C /min was likely to present an even lower baseline shift, but has been discarded

due to its noise level. During the drying period (plateau at 100 °C ), the heat flux needed to water evaporation appears on the experimental curve. This is not present in the model as evaporation is not included in equation 26. At the end of this plateau, the temperature is constant and evaporation stops : consistently, the experimental and simulated heat fluxes are equal to zero.

After this plateau, the temperature increases linearly in time, which required the sensible heat to be supplied to the sample. The experimental overshoot is due to the control of the furnace temperature. It can be nicely reproduced by the model as the actual furnace temperature is included in equation 26. While the temperature remains low, no thermal degradations occur :

this range is suitable for the determination of the heat capacity. A first exothermic effect can be observed for both species between 60 and 70 minutes (which correspond to the temperature range 250 °C to 300 °C ). This peak can be captured by the reaction enthalpy of the first distribution. It is probably due to the charing reaction of hemicellulose, as solid char forms during the primary decomposition at 200-400 °C [START_REF] Kan | Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[END_REF][START_REF] Yang | In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[END_REF]. At 80 minutes (ca. 350 °C )

an important endothermic peak is evidenced. This corresponds to the rapid and important mass loss observed during this period. This large endothermic peak is tied to the decomposition of cellulose, which has the highest percentage in biomass and has endothermic pyrolysis characteristic, at this temperature most portion of cellulose decomposes. Afterward, the decomposition of lignin together with secondary reactions including charring and aromatization result in the last and important exothermic peak of the DSC curves [START_REF] Kifani-Sahban | A physical approach in the understanding of the phenomena accompanying the thermal treatment of lignin[END_REF][START_REF] Haykiri-Acma | Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis[END_REF].

To some extent, the decomposition and phase transformations of inorganic matters in ash might also be involved [START_REF] Vassilev | An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification[END_REF][START_REF] Febrero | Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC[END_REF].

The difference peaks and troughs of the DSC curves found in our measurements are in good agreement with the analysis performed on the different components of wood [START_REF] Chen | Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass[END_REF]. The enthalpy values determined for both spruce and poplar are summarised in table 4. The identified heat capacity is similar for spruce and poplar. These values are a bit low compared to published values [START_REF] Guo | Determination of effective thermal conductivity and specific heat capacity of wood pellets[END_REF]. Prior to the tests, the device was calibrated using sapphire as reference material and, up to 873 K, the values were in a ±5% agreement with published data [START_REF] Ditmars | Enthalpy and heat-capacity standard reference material: synthetic sapphire (a-Al2O3) from 10 to 2250 K[END_REF]. A slight production of heat by thermal degradation is likely to explain the obtained values.

The heats of reaction related to the first Gaussian distribution are slightly exothermic.

They allows the first heat flux increase at the beginning of mass loss to be obtained (-140 and -120 kJ/kg for spruce and poplar, respectively). The values obtained for the second Gaussian distribution are definitely endothermic (+339 and +338 kJ/kg for spruce and poplar, respectively). These values were needed to explain the deep decrease of the heat flux during the phase of rapid mass loss, tied to the degradation of cellulose. Finally, very large exothermic values are needed for the third distribution to explain the spectacular increase of heat flux just after the trough of the curve. This heat production should be obtained with a very limited additional mass loss, which explains the high value as the unit for the enthalpy of reaction is in kJ per kg. Note that these values are in agreement with the values obtained by [START_REF] Rath | Heat of wood pyrolysis[END_REF] in the reaction branch producing char and gas. Contrary to all other data that were similar for spruce and poplar, this third reaction enthalpy has a much higher absolute value for poplar (-4300 kJ/kg to be compared to -1900 kJ/kg for spruce). This is consistent with the peak of the heat flux values, much larger for poplar than for spruce. The same trends were observed for all tests, whatever the heating rate (not show here).

At the highest temperature levels, the predicted curves differs from the experimental curves. This is likely to be due to the change of radiative properties between the empty crucible and the crucible with the degraded sample [START_REF] Rath | Heat of wood pyrolysis[END_REF]. To address this problem, we performed tests with a lid, but, as the presence of a lid changes the mass loss, the DAEM model was not valid any more. 

Use of model

In the previous section, the DAEM parameters has been identified on the learning database. The proposed choice of distributions required only 9 independent parameters : 3 activation energy 𝐸 0 (𝑛), 3 weighting factor 𝑉 𝑛,∞ , 1 standard deviation 𝜎(1), 𝛽 and the preexponential factor 𝐴. The DAEM model was then successfully validated using very different temperature-time routes. Thanks to this success, the model was be further used to determine the enthalpies of reaction. In this section, the model is used for prediction purposes: prediction of the pathway in the Van Krevelen's diagram and the control of the temperature rise to limit the released energy.

Elemental analysis

The results of ultimate and proximate analysis for untreated spruce and poplar are summarized in table 5. The nitrogen content was lower than 0.1% for native samples and lower than 0.3% for treated samples. Sulphur was not detected in any sample. These values are, at best, of the order of the experimental accuracy and were therefore not reported in this table. The remaining biomass char of each static test has been collected to determine char yield and to perform elemental analysis (Table 6). For both spruce and poplar the H/C and O/C ratios decrease simultaneously, indicating a pathway towards pure carbon. This is a classical finding in heat treatment of biomass : H and O contents decrease due to the volatilization of organic components into gas with low molecular mass. [START_REF] Mckendry | Energy production from biomass (part 1): overview of biomass[END_REF]. At increasing temperature levels, the positions of char in this diagram move towards the down-left corner which represents highly carbonized material. The difference between spruce and poplar observed at low temperature is not visible on this diagram. On the contrary, char from poplar stands beneath that of spruce for the most severe conditions, indicating that poplar has more prone to charring than spruce for severe pyrolysis. The difference between the two species is however quite low when plotted as a function of Dimensionless Mass Loss (DML). This allowed us to propose a single set of equations fitted to predict the O/C and H/C ratios as a function of DML:

Obviously, for prediction purpose, the DML value can be predicted by the validated DAEM model for any time-temperature pathway using equations 18-20.

Process control

All the kinetic parameters as well as the reaction enthalpies confer a predictive potential to the code. Its eventual purpose is to be implemented in a multi-scale macroscopic particle model, able to deal with the non-uniform variable fields within the particle [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF] or with a packed-bed [START_REF] Perre | A comprehensive dual-scale wood torrefaction model: Application to the analysis of thermal run-away in industrial heat treatment processes[END_REF][START_REF] Perre | Coupled heat and mass transfer in biosourced porous media without local equilibrium: A macroscopic formulation tailored to computational simulation[END_REF]. Such a work is in progress in our team. Even at the micro-particle

𝑂/𝐶 = 1.134 -0.219 × exp(1.815𝐷𝑀𝐿) 𝐻/𝐶 = 0.1534 -0.0268 × exp(1.783𝐷𝑀𝐿) (27) 
scale, the prediction potential of the model can be tested. For example, limiting the heat flux due to reactions might be important to minimize the temperature perturbation during ATG tests. Figure 7 compared two different temperature pathway :

(1) A linear temperature increase from 100 °C to 650 °C in 200 minutes

(2) An optimised control : the temperature increase is controlled to limit the heat flux in the range [-0.5 mW, +0.5 mW] for a sample of 10 mg as initial mass.

For case 2), a simple PD (proportional, derivative) control was implemented, which explains the small oscillations. However, it is obvious that the obtained temperature increase allows the same temperature range to be investigated over the experiment duration (200 minutes), while avoiding the heat flux peaks. One can see that the constraint reduces the temperature increase when the kinetics produces high values of heat flux. In order to give an in-depth view of the DAEM model, we plotted the evolution of the three distribution in the case of the optimised control (Fig. 7). The first Gaussian distribution is wide with low activation energy. Consequently, this is the first one to be affected by heat. It gradually disappears, starting to the left-hand side, which represents the lowest activation energies. This peak completely disappears after ca; 50 minutes. The second peak is very narrow and no difference of kinetics may be observed over the, very small, distribution energy. Following the rapid mass loss depicted by all the previous curves, its degradation lasts over a short time interval and disappears completely very soon after the first distribution. Finally, the last distribution is non-symmetrical and depicts a very wide range of activation energies. Again, the kinetics affects the left-hand side of the distribution. After 200 minutes, most of the large values from the left-hand sides disappeared (one has to remember that the initial shape is an exponential curve). However, the right-hand side, which contains very large values of activation energy (above 200 kJ/mol) are not degraded yet. This is consistent with the lignin behaviour, whose degradation spreads over a very large temperature range. 

Conclusion

A robust three-distribution DAEM model was derived to simulate two types of lignocellulosic products over a wide range of treatment time and temperatures. The comprehensive approach includes i) parameters identification using a learning database The main outcomes of this work are as follows :

(1) The kinetics and heat flux formulation are presented in detail, as well as the computational strategy to correctly solve these equations, which is intended to serve as a guide for the reader,

(2) To use of a gamma distribution allows the model to include only 9 independent parameters,

(3) In spite of its sparcity, the model perfectly predicts the kinetics over a large range of temperature and duration, for dynamic and static tests (4) Heats of reactions were determined using the experimental DSC signal [START_REF] Houghton | Biomass[END_REF] The model has a great prediction potential, including as local model to be included in a multiscale approach

In the near future, this reaction model will be embedded in a comprehensive heat and mass transfer computational code to model the process at the level of a large particle or of a packed-bed of particles. One specific point to be addressed is the crucial question of thermal runaway. Such simulations will be compared to experimental results to check whether or not the heats of reaction identified on powders, with or without lid, remain pertinent for large particles. To the best of our knowledge, this is still an open question that deserves consideration.

Chapter 6 Thermogravimetric experiment and multi-distribution DEAM for various particle sizes.

This chapter is mainly devoted to the study of the effect of particle size on the pyrolysis kinetics. The mechanisms will be closely studied by both experimental and numerical methods. Five different particle shapes of two wood species allowed a comprehensive investigation on kinetic variations, and the proposed two-Gaussian+ exponential DAEM was used to reveal the changes of kinetic parameters when particle size changed. More importantly, model's prediction ability was validated by additional experiments performed at multiple static temperature levels, and being further extended to predict char compositions among different of particle sizes.
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Effects of particle

Abstract:

Particle size plays a crucial role in biomass pyrolysis mechanisms and their subsequent industrial uses. However, an applicable kinetic method that combines thermogravimetric data with distributed activation energy model (DAEM) adapted to the sample size is still missing.

This work investigated pyrolysis kinetics of two wood species (spruce and poplar) with five particle shapes (powder, particle, 5-mm diameter cylinders with heights of 1 mm, 2 mm, and 4 mm) and one additional reaction condition (powder with lid). The experimental data were numerically simulated by a two Gaussian + one exponential DAEM distributions.

Thermogravimetric results evidenced a significant effect of particle geometry on char yields, which increased by 81% and 66%, from powder to 4-mm high cylinders, for spruce and poplar respectively. The increase in particle size and use of a crucible lid led to an increase of exothermic heat. Elemental analysis demonstrated a contradictory relation between carbonization and mass loss, which was explained by secondary charring. Synthetic indexes built from the kinetics parameters of the DAEM model clearly depicts the effect of particle sizes. The prediction ability of the model was checked by further experiments performed at different time-temperature patterns with several particle sizes. Finally, correlations between dimensionless residual mass (DRM) and element compositions allowed us to determine the composition of secondary charring, which consists mainly of carbon. The elemental composition of char can therefore be predicted using the difference of DAEM kinetics between fine powder and a given particle size.

Introduction

Lignocellulosic biomass is an important renewable energy source for the worldwide energy supply. Its large deposits and carbon neutrality offer an enormous potential to meet future energy demands and reduce environmental pollution [START_REF] Demirbas | An overview of biomass pyrolysis[END_REF]. Pyrolysis is part of the thermochemical route to convert biomass into high value-added chemical products: bio-oil, charcoal, and gaseous fuels. It is the initial step before further thermochemical technologies such as combustion and liquification, making pyrolysis a key link in the BtL (biomass to liquid) industrial chain and subsequent exploitation. Process factors including temperature, heating rate, particle size, and residence time could effectively alter product categories and yields [START_REF] Kan | Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[END_REF][START_REF] Uddin | Effects of pyrolysis parameters on hydrogen formations from biomass: a review[END_REF][START_REF] Chen | Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature[END_REF]. Among them, the particle size specifically affects the pyrolysis mechanism in relation to volatile interaction, mass, and heat transport, which imposes strict requirements on industrial reactors [START_REF] Kumar | Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels[END_REF]. Therefore, both experimental and theoretical kinetic works are necessary to determine and predict the effect of particle size.

A considerable number of studies have been conducted to test the effect of particle size on biomass pyrolysis. Mass and heat transfer were severely affected in large particles (>1.5mm) during both pyrolysis experiments and modeling [START_REF] Kirtania | Coupling of a distributed activation energy model with particle simulation for entrained flow pyrolysis of biomass[END_REF]. Di Blasi [START_REF] Blasi | Modeling intra-and extra-particle processes of wood fast pyrolysis[END_REF] calculated that, in terms of thermal transfer, particle size affects the internal heating rate in fast pyrolysis, which decreased from 760 °C /s to 23 °C /s when the particle diameter was increased from 0.1 mm to 1 mm. Okekunle [START_REF] Okekunle | Effect of biomass size and aspect ratio on intra-particle tar decomposition during wood cylinder pyrolysis[END_REF] found the intra-particle temperature gradient increased with particle size and aspect ratio, which promoted intra-particle char formation. Perré and coworkers [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF][START_REF] Perre | A comprehensive dual-scale wood torrefaction model: Application to the analysis of thermal run-away in industrial heat treatment processes[END_REF] developed comprehensive computational models that emphasized the effect of particle size or particle beds on the evolution of the temperature profiles, with opposite effects in the heating period and during the reaction period due to exothermic reactions. A model developed by Anshu [START_REF] Bharadwaj | Effects of intraparticle heat and mass transfer on biomass devolatilization: experimental results and model predictions[END_REF] claimed more devolatilization delay occurred in larger biomass samples because of intra-particle transfer retardation. Suriapparao [START_REF] Suriapparao | Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution[END_REF] and Acma [START_REF] Haykiri-Acma | The role of particle size in the non-isothermal pyrolysis of hazelnut shell[END_REF] found higher apparent activation energy with increasing particle size due to mass transfer limitation and the intra-particle thermal gradient.

It was concluded that increasingly non-isothermal processes in large particles led to low oil and high char yields [START_REF] Herguido | Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock[END_REF][START_REF] Beaumont | Influence of physical and chemical parameters on wood pyrolysis[END_REF]. Shen [START_REF] Shen | Effects of particle size on the fast pyrolysis of oil mallee woody biomass[END_REF] postulated that a decreased heating rate in large particles was primarily responsible for lower bio-oil yield, and the fiber destruction in small particles favored high oil yield. Ayhan [START_REF] Demirbas | Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[END_REF] observed an elevated char yield when particle size increased, while a high heating rate led to char yield reduction in small particles.

Zhou [START_REF] Zhou | Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood[END_REF] proved that physical trapping of thermally ejected oligomers occurred as a function of particle size, from milled particles (0.3-0.55 mm) to cylinders (3-14 mm).

Westerhof [START_REF] Westerhof | Effect of particle geometry and microstructure on fast pyrolysis of beech wood[END_REF] argued that physical retainment of vapors or aerosols caused excessive volatile condensation in large particles and cylinders.

With an increase in particle size, the added cellular-and tissue-scale barriers have an increasing impact on pyrolysis [START_REF] Haas | Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis[END_REF]. More specifically, the effects due to size have two origins: (1) different degrees of destruction of fiber structures in milled particles; and [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF] different dimensions in an integral cylinder or chip. In the first origin scenario, milled samples lose most typical wood channel structures. Small particles usually impose less resistance on both heat and mass transfer profiles due to their microstructures; tissue expansion and lumina cell wall stretch are therefore less restricted [START_REF] Haas | Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis[END_REF], leading to easier volatile release. For the second origin scenario, geometry differences in cylinders cause hermetic spaces and anisotropic channels that can obstruct internal volatilization to varying degrees, and the vapor outflow pattern is largely affected by internal heat transfer limitations [START_REF] Westerhof | Effect of particle geometry and microstructure on fast pyrolysis of beech wood[END_REF]. The increase of particle size, in this case, delays volatile's escape inside the material matrix and offers additional possibilities for secondary charring. Moreover, axial conductivity values have been found to be three times larger for thermal transfer and fifteen times larger for mass transfer than the radial conductivity values [START_REF] Brackmann | Optical and mass spectrometric study of the pyrolysis gas of wood particles[END_REF], larger anisotropic degree in the large cylinder leads to significant temperature gradients and flow gradients, generally causing volatile blockage and char generation [START_REF] Westerhof | Refining fast pyrolysis of biomass[END_REF].

Secondary reactions in biomass pyrolysis usually occur in two competitive pathways:

charring and cracking, leading to carbon deposition and gas production, respectively. As long residence times of volatiles in hot zones favor polymerization and carbonization, the reduction of heating rate inhibits complete vaporization [START_REF] Boutin | Flash pyrolysis of cellulose pellets submitted to a concentrated radiation: experiments and modelling[END_REF], and high pressure stimulates carbonization by concentrating the vapor phase [START_REF] Antal | High-yield biomass charcoal[END_REF]. All these process parameters help secondary charring prevail over cracking. Meanwhile, other factors such as chemical compositions, density, and the presence of inorganics (alkali metals) also influence secondary charring [START_REF] Anca-Couce | Kinetic scheme of biomass pyrolysis considering secondary charring reactions[END_REF][START_REF] Richter | The effect of chemical composition on the charring of wood across scales[END_REF]. In contrast, cracking converts volatiles into small molecular gases normally accompanied by short residence times, high heating rates, or dilute vapor phases [START_REF] Zaror | Secondary char formation in the catalytic pyrolysis of biomass[END_REF].

Regarding the main constituents of biomass, hemicellulose undergoes charring through rearrangement reactions of polysaccharides and further demethylation [START_REF] Collard | A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[END_REF]; cellulose undergoes secondary charring by the depolymerization of levoglucosan [START_REF] Arseneau | Competitive reactions in the thermal decomposition of cellulose[END_REF]; lignin is a fine charring precursor due to its original high aromatic ring content, whose short substitutes cleaves increase the aromaticity and reticulation in the residue over the temperature range of 500-800 °C [START_REF] Collard | A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[END_REF].

It is worthwhile to investigate the effect of particle size using a kinetics model that can be used in complicated multi-scale simulations and operational controls in industrial processes [START_REF] Kersten | Biomass pyrolysis in a fluidized bed reactor. Part 1: Literature review and model simulations[END_REF]. The DAEM is an efficient and robust approach to represent the kinetics of complex decomposition reactions [START_REF] Vand | A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[END_REF], and at present, is widely used to model the pyrolysis of biomass [START_REF] Zhang | Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere[END_REF][START_REF] Arenas | Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model[END_REF]. The model assumes that biomass pyrolysis occurs as a series of independent and parallel reactions with continuous activation energy distributions, representing the variability of interactions due to complex macromolecular structures and their interactions in the cell wall [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF]. Three-parallel-distribution DAEM presents an even more accurate approach to the description of the pyrolysis kinetics of various lignocellulosic biomasses [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Wang | Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model[END_REF][START_REF] Chen | Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[END_REF], and the interpretation of pseudo-components as chemical constituents (hemicellulose, cellulose, and lignin) is justified as a useful method in kinetic research [START_REF] Cai | A distributed activation energy model for the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Cheng | Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes[END_REF]. The kinetic additivity of the three main constituents provides universal applicability for various biomass species [START_REF] Couhert | Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[END_REF], being crucial for single-particle reaction kinetics as well as large-scale process implementations. However, the nature of devolatilization theory in the DAEM formulation makes it difficult to account for recondensation and secondary charring reactions among different particle sizes. DAEM has rarely been applied to distinguish the effects of particle size; furthermore, the threedistribution DAEM has never been employed to distinguish the kinetics of different particle sizes. The two Gaussian + one exponential DAEM was recently proved to be very efficient in handling multiple temperature profiles and complex heat fluxes, including at the validation stage [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF]. Hence, this model was applied in the present work to analyze the pyrolysis kinetics of different particle sizes.

This study aims to investigate the effects of particle size by coupling thermogravimetric kinetics and numerical methods. Thermogravimetry (TG) and differential scanning calorimetry (DSC) will be performed at two heating rates for a wide range of particle sizes.

Elemental analyses will demonstrate that the relation between carbonization and mass loss is directly linked to the particle size. Further, Synthetic indexes will be built from the kinetics parameters of the DAEM model to clearly depict the effect of particle sizes. Importantly, the prediction ability of the model will be validated using an additional set of experiments performed with different temperature pathways: a linear increase of temperature followed by a plateau at constant temperature (different temperature levels will be performed). Finally, correlations between mass loss (ML) and element compositions will allow us to determine the composition of secondary charring. This composition will be used to predict the elemental composition of char for a given particle size.

Material and methods

Material

One gymnosperm and one angiosperm species were used in this study: European spruce (Picea abies, softwood, 450 kg/m 3 , cut from a 73-year-old tree grown in the forest in the Auvergne region, France) and poplar (Populus euroamericana 'Koster', hardwood, 364 kg/m 3 , cut from a 25-year-old tree grown in the forest in La Suippe Valley in la Marne, France). The complete sample preparation protocol is depicted in Figure 1. Second-bottom tree logs (2 m long, cut at 2 m high above the ground) of 40-50 cm diameter were used. They were cut evenly into 2.5 cm-thick boards, and the one 10 cm from the pith was taken for the present study. Rectangular sticks of 2.5 cm × 2.5 cm × 20 cm (length × width × height) were cut from a healthy sapwood part of the board to ensure uniform properties. The stick was further processed into cylinders with a diameter of 5 mm and a length of 3 cm by a lathe (PROMAC 961V), then cut into small cylinders by a precision cut-off machine (Struers, Secotom-15) with two successive sequences of 1 mm, 2 mm, and 4 mm. The rest of the stick was ground with an M20-IKA universal mill, then put into sieve stacks of 0.063 mm, 0.08 mm, 0.63 mm, and 0.8 mm opening sizes on a vibratory sieve shaker (RETSCH AS 200) at 90% amplitude for 30 minutes. The sieving cut between 0.063-0.08 mm was taken as wood powder, and the cut between 0.63-0.8 mm was taken as wood particles. The strict protocol defined here is intended to limit any difference in composition between all types of samples and to constrain the size of the small particles. Therefore, it is reasonable to assume that differences in pyrolysis behavior were derived exclusively from the particle geometry. After the preparations, all samples were dried at 105 °C in an oven for 24 h and stored in a desiccator. 1. where 𝑚 𝑡 is the remaining mass at time 𝑡, and 𝑚 0 is the anhydrous mass after the 30 minute plateau at 100 °C.

DAEM formulation

DAEM calculates the volatile contributions from parallel and irreversible first-order reactions. The integral form of conversion degree, 𝑋(𝑡), could be expressed as:

where 𝑉 ∞ is the theoretical total volatile amount, 𝑉(𝑡) is the volatile production at time 𝑡, 𝐸 is the activation energy. The important assumption of keeping pre-exponential factors of all reactions as a constant, 𝐴 0 , has been justified for accurate identification and model concision [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF][START_REF] Tian | Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[END_REF]. 𝑅 is the universal gas constant and 𝑇(𝑡) is the temperature at time 𝑡.

𝑓(𝐸) is the statistical function for describing the activation energy distribution.

Wood is treated as an aggregate of three pseudo-components based on the assumptions that no interactions exist during pyrolysis, and they correspond to three distributions (𝑓 𝑗 (𝐸))

with different weighting factors 𝑉 𝑚𝑎𝑥 (𝑗), (𝑗 = 1,2,3). The final formulation of biomass conversion degree is therefore expressed as:

𝐷𝑅𝑀(𝑡) = 𝑚 𝑡 𝑚 0 × 100%, 𝑋 𝑒𝑥𝑝 (𝑡) = 1 -𝐷𝑅𝑀(𝑡) (1) 
𝑋(𝑡) = 𝑉(𝑡) 𝑉 ∞ = 1 -∫ 𝑒𝑥𝑝 ∞ 0 (-∫ 𝐴 0 𝑒 -𝐸/𝑅𝑇(𝑡) 𝑑𝑡 𝑡 𝑡 0 ) 𝑓(𝐸)𝑑𝐸 (2) 
𝑋(𝑡) = 1 -∑ 𝑉 𝑚𝑎𝑥 (𝑗) 3 𝑗=1 ∫ 𝑒𝑥𝑝 (-𝐴 0 ∫ 𝑒 -𝐸/𝑅𝑇(𝑡) 𝑑𝑡 𝑡 0 ) ∞ 0 𝑓 𝑗 (𝐸)𝑑𝐸 (3) 
In this work, two Gaussian and one exponential distributions are chosen for the excellent trade-off between accuracy and model conciseness [START_REF] Tian | Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[END_REF]. Two Gaussian distributions are used to represent the first and second pseudo-components. They are formulated using the mean activation energy 𝐸 0 and standard deviation σ as:

The third pseudo-component is represented by an exponential distribution, one degeneracy form of the gamma distribution:

where 𝛽 is the rate parameter and 𝐸 𝑚𝑖𝑛 is the minimum activation energy. The integral term of equation 3 demands further numerical discretization for each type of distribution, which has been presented in detail in our recent works [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF][START_REF] Tian | Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[END_REF]. For better accuracy, the effective increment of chemical reaction 𝑑𝑉 𝑖 over the time step is expressed in its original exponential form [START_REF] Perré | A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media[END_REF][START_REF] Remond | Modeling the drying and heat treatment of lignocellulosic biomass: 2D effects due to the product anisotropy[END_REF]:

which gives the final form of the conversion rate 𝑋 𝑐𝑎𝑙 (𝑡) at experimental points 𝑎(𝑡 𝑎 ):

Finally, kinetic parameters in the three distributions are identified by optimizing the objective function F, which is the residual sum of squares (RSS) between the experimental conversion rate 𝑋 𝑒𝑥𝑝 (𝑡) and the calculated conversion rate 𝑋 𝑐𝑎𝑙 (𝑡). Here, 𝑁 𝑒𝑥𝑝 is the total number of experimental values:

The numerical discretization was combined with in-house MATLAB code, and the derivative-free Nelder-Mead simplex algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF] was used to minimize the objective

𝑓(𝐸) = 1 𝜎√2𝜋 exp (- (𝐸 -𝐸 0 ) 2 2𝜎 2 ) (4) 𝑓(𝐸) = 𝛽𝑒𝑥𝑝 (-𝛽 𝐸 -𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 ) (5) 
𝑑𝑉 𝑖 = [1 -𝑒𝑥𝑝(-𝑘 𝑖 𝑑𝑡)](𝑉 𝑖 ∞ -𝑉 𝑖 (𝑡)) (6) 
𝑘 𝑖 = 𝐴 0 exp (-𝐸 𝑖 𝑅𝑇(𝑡)

) ; 𝑉 𝑖 ∞ = 𝑓(𝐸 𝑖 ) • 𝑉 ∞ ; 𝑉 𝑖 (𝑡 = 0) = 0 (7)

𝑋 𝑐𝑎𝑙 (𝑡) = 1 - 1 𝑚 0 ∑ ∑ ∑ [1 -𝑒𝑥𝑝(-𝑘 𝑖 𝑗 𝑑𝑡)](𝑉 𝑖 𝑗,∞ -𝑉 𝑖 𝑗 (𝑡)) 2𝑚𝑛 𝑖=1 3 𝑗=1 𝑡=𝑡 𝑎 𝑡=0 (8) 
𝐹(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = ∑ ∑(𝑋 exp (𝑡) -𝑋 𝑐𝑎𝑙 (𝑡)) 2 𝑡 𝑎 𝑡=0 𝑁 𝑒𝑥𝑝 𝑎=1 (9) 
function. Herein, an entire set of data from two dynamic tests was used to compute the objective function. In order to avoid local minima, the initial set of parameters was derived from the solution values obtained in our previous study [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF]. In addition, intentional perturbations were applied after identification to restart the procedure and check the stability of the solution. To evaluate the discrepancy between experiments and model, two criteria, root mean square error (RMSE) and maximum deviation (𝐷 𝑚 ), were used:

Results and discussions

Thermogravimetric results

Figure 3 depicts the DRM curves of spruce and poplar at two different heating rates.

Three distinct sections could be identified for both species. In the first temperature region, the DRM was stable from 100 °C to 200 °C. At this temperature, hemicelluloses melt into the liquid form [START_REF] Hosoya | Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature[END_REF], but the production of volatiles was very limited. The second region, from 250 °C to 400 °C, exhibited the most important release of volatiles due to the decomposition of hemicelluloses and cellulose. Within this region, random fragmentation of glycosidic bonds in cellulose and hemicellulose generated volatiles with high oxygen contents and left carbonaceous residues [START_REF] Pecha | Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change[END_REF]. Lignin pyrolysis and secondary charring of volatiles mainly corresponded to the last region, from 400°C to 800 °C, where the main charring process occurred in the form of re-organization of benzene rings into polycyclic structures [START_REF] Collard | A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[END_REF].

Mass transfer limitations occurring in large particles or the crucible with lid promoted final char yields, and major differences emerged in the last temperature regions, which clearly indicated different pyrolysis mechanisms. These deviations began around 330 °C at 1 °C/min and 370 °C at 10 °C/min for both spruce and poplar. The effect of particle sizes enlarged differences at high temperatures, where the mass loss was mainly associated with the rearrangement of residue in the charring process [START_REF] Peng | The structural and thermal characteristics of wheat straw hemicellulose[END_REF], including the important conversion of aromatic structures through demethoxylation [START_REF] Brech | Characterization of biomass char formation investigated by advanced solid state NMR[END_REF], dehydration, cross-linking, and repolymerization [START_REF] Zaror | Secondary char formation in the catalytic pyrolysis of biomass[END_REF]. Spruce had an increase in DRM from 10.3 wt.% to 18.7 wt.% at 1 º C/min and from 10.0 wt.% to 14.8 wt.% at 10 º C/min, and poplar rose from 10.3 wt.% to 16.9 wt.% at 1 º C/min and from 10.0 wt.% to 16.7 wt.% at 10 º C/min. Therefore, setting the wood powder as a reference, the increase of particle size promoted char yields by 81% (1 º C/min) and 48% (10 º C/min) for spruce, and 65% (1 º C/min) and 66% (10 º C/min) for poplar. In contrast, the powder with a lid exhibited the maximum increase for all cases, confirming the charring nature of the gaseous phase in lidded crucibles [START_REF] Mok | Formation of charcoal from biomass in a sealed reactor[END_REF]. Obstruction of the mass transfer efficiency decisively promotes charring in the sample matrix [START_REF] Anca-Couce | Kinetic scheme of biomass pyrolysis considering secondary charring reactions[END_REF], either by increasing the residence time or promoting secondary reactions within the solid matrix. Therefore, increased char formation by both intra-and extra-particle mass transfer limitations caused different thermogravimetric behaviors. In light of the shift of DSC baseline over long times and the fluctuation of derivative thermogravimetry (DTG) baseline for 1 °C/min tests, DSC and DTG curves at 10 °C/min

𝑅𝑀𝑆𝐸 = √ ∑ ∑ (𝑋 𝑒𝑥𝑝 (𝑡) -𝑋 𝑐𝑎𝑙 (𝑡)) 2 𝑡 𝑎 𝑡=0 𝑁 𝑒𝑥𝑝 𝑎=1 𝑁 𝑒𝑥𝑝 (10) 𝐷 𝑚 = 𝑀𝑎𝑥|𝑋 𝑒𝑥𝑝 (𝑡) -𝑋 𝑐𝑎𝑙 (𝑡)|, ∀𝑡 ∈ [0, 𝑡 𝑎 ] (11) 
were selected here to further analyze the kinetic differences (Figure 4). The DTG and DSC signals were divided by the initial anhydrous mass of the samples. DTG curves exhibited similar trends between samples, but with noticeable differences between 300 °C and 400 °C in spruce, while more differences appeared between 270 °C and 415 °C in poplar. Major peaks appeared around the same temperatures: 370 º C for spruce and 365.5 º C for poplar, attributed to the rapid decomposition of cellulose. Plot shoulders at lower temperatures, 320-350 º C, belonged to hemicellulose decomposition, which flattened and shifted towards higher temperatures at increasing particle sizes, indicating the delayed decomposition of hemicellulose. Meanwhile, the peak temperatures for the powder sample with lid shifted from 370 º C to 365.5 º C for spruce and from 365.5 º C to 358.5 º C for poplar, attributed to the condensation of highly reactive tarry volatiles inside the lidded crucibles [START_REF] Basile | Influence of pressure on the heat of biomass pyrolysis[END_REF]. The signal was very small below this range and, as seen on the curves in Figure 4, the heat flux signal was seriously affected by radiation at higher temperatures [START_REF] Wolfinger | Influence of the emissivity of the sample on differential scanning calorimetry measurements[END_REF]. From powder to cylinders, endothermic DSC peaks (around 370 º C for spruce and 367 º C for poplar) were in good accordance with the DTG peaks of cellulose decomposition. This major endothermicity corresponded to the depolymerization of the 1,4-glycosidic bond and ring breakage of light oxygenates [START_REF] Usino | Influence of temperature and time on initial pyrolysis of cellulose and xylan[END_REF]. The transition from endothermic to exothermic in large particles was possibly caused by cellulosic char formation due to the presence of alkyl furans, benzenoid aromatics, and condensed aromatics [START_REF] Pastorova | Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study[END_REF][START_REF] Antal | The art, science, and technology of charcoal production[END_REF]. An obvious tendency of heat release was observed as the particle size increased for both wood species. Important exothermicity was assigned to carbonization including re-polymerization and cross-linking in aromatic residues [START_REF] Shrestha | A multitechnique characterization of lignin softening and pyrolysis[END_REF], in which exothermic heat had been proven to be proportional to char yield [START_REF] Basile | Thermal effects during biomass pyrolysis[END_REF]. The alteration of thermal profile therefore indicated the enhancement of exothermic charring in large particles. In contrast, for the powder sample with lid, its largest exothermicity was attributed to the hindered volatile escape that enhanced condensation and charring [START_REF] Chen | Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry[END_REF].

Detained volatiles went through severe secondary carbonizations both homogeneously and heterogeneously, evidenced by the experimental observations of carbon depositions on the inner walls of the crucible, and the lid.

The O/C and H/C ratios of residual char were indicators for carbonization degree [START_REF] Oleszczuk | Characterization of nanoparticles of biochars from different biomass[END_REF],

they were therefore coupled with the dimensionless mass loss (DML) of different particle sizes for analysis purposes (Table 3). For both wood species at both heating rates, DML decreased consistently due to secondary charring. Meanwhile, the decreasing trends of H/C

and O/C ratios indicated that char became more carbonaceous [START_REF] Uzun | Composition of products obtained via fast pyrolysis of oliveoil residue: Effect of pyrolysis temperature[END_REF] because of dehydration and demethylation. Dehydration drove the oxidation of saturated hydrocarbons to form aromatic structures, serving as the precursor for biochar [START_REF] Sun | Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure[END_REF]. And the methyl removal in demethylation decreased the H/C ratio for C enrichment in the char product [START_REF] Wiedner | Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale[END_REF]. The low temperatures of static tests (<500 °C) and powder shapes mostly triggered the decomposition of non-aromatic carbon bonds and a small amount of the aromatic groups in lignin [START_REF] Sharma | Characterization of chars from pyrolysis of lignin[END_REF], and devolatilization reactions were dominantly responsible for the changes in the DML. However, different thermochemical pathways in the dynamic tests indicated interceptions of primary volatiles that interacted with recondensation products, contributing directly to decreased DML in large particles. And the simultaneous polymerization and secondary charring reactions caused higher degrees of carbonization. These different relationships between DML and carbonization indicated the traces of enhanced charring when particle sizes increased. Cylinder shrinkages in three directions were calculated as the ratio of dimensional reduction over the initial dimensions (Figure 6). The orders of shrinkages (tangential> radial> longitudinal) for both species followed the general trend of hydric shrinkage found in wood [START_REF] Kollman | Solid Wood, Principles of wood Science and technology[END_REF]. Instead of bound water removal, devolatilizations occurring in the cell wall was here the driving force of macroscopic shrinkage [START_REF] Almeida | Mild pyrolysis of fast-growing wood species (Caribbean pine and Rose gum): Dimensional changes predicted by the global mass loss[END_REF]. However, compared to torrefaction (mild pyrolysis), where intact microfibrils of cellulose imposed a negligible longitudinal shrinkage [START_REF] John | Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada, McGraw-Hill series in forest resources[END_REF], the longitudinal shrinkage (between 20% to 27%) became significant for the intense carbonization which occurred. This indicated severe destruction of cellulose crystallites, in accordance with the previous finding that cellulose crystallinity index decreased largely (by 35%) during flash pyrolysis at 500 °C [START_REF] Nordin | An indication of molten cellulose produced in a laser beam[END_REF]. Overall, the three shrinkage values tended to decrease with the cylinder height, being consistent with the concomitant reduction of volatilization (i.e., increase in DRM).

DAEM modeling

Model identification

Kinetic parameters fitted to the two Gaussian distributions and one exponential distribution in DAEM are listed in Table 4 for all samples. The corresponding full sets of experimental and simulated DRM curves could be found in the supporting material. The root mean square error (RMSE) and maximum deviation (𝐷 𝑚 ) for each particle condition assessed the quality of identification. The reasonably low ranges of RMSE values: 0.98×10 -4 -1.64×10 - 4 for spruce and 0.47×10 -4 -0.84×10 -4 for poplar indicated very small deviations in general, which confirmed the relevance of number and shapes of the distributions [START_REF] Cai | Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis[END_REF]. Furthermore, the maximum deviation 𝐷 𝑚 presented in acceptable ranges: 2.77% -4.08% for spruce and 1.87% -3.34% for poplar. Usually, this error was not visually obvious in the curves because it tended to appear fast decomposition regions (250 °C to 350 °C), where the curve slopes were very large. Therefore, these two indexes exhibited reasonably small deviations and ensured simulation accuracies.

The general characteristics of the parameters in three distributions were consistent with previous work [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Becidan | Thermal decomposition of biomass wastes. A kinetic study[END_REF], namely the lowest content of the first Gaussian, the largest content and narrowest range of the second Gaussian, and the exponential exhibited partial overlap with the other two distributions. Herein, 𝑉 𝑚𝑎𝑥 1, the weighting factor of the first distribution, generally decreased when particle size increased from powder to 4-mm cylinder for both wood species, indicating that secondary charring could undermine the volatile contributions of the first pseudo-component (hemicellulose) in large particles. 𝑉 𝑚𝑎𝑥 1 was less affected for powder with lid, which was possibly due to the heterogeneous gaseous reactions outside particles that led to devolatilization [START_REF] Anca-Couce | Influence of heterogeneous secondary reactions during slow pyrolysis on char oxidation reactivity of woody biomass[END_REF]. The other two weighting factors followed complicated variation trends that will be further investigated in the subsequent section.

Nonetheless, the comprehensive data of various particle sizes might be a good resource for other kinetic researches.

An advantage of the robust DAEM model was that devolatilization in the three pseudocomponents can be analyzed independently. The inverse reconstruction of devolatilization profiles for each pseudo-component allows the effects of particle size to be further analyzed.

For the sake of example, the plot of three extreme sample sizes : powder, 4-mm cylinder and powder with lid are inclided as supporting material. Since kinetic parameters in each group interacted with dependences, their direct analysis might suffer from complicated interactions and unclear mechanism. Instead, synthetic indexes were built: 𝑇 𝑝 (𝑗) and 𝑉 𝑝 (𝑗), 𝑗𝜖 [1: 3] were the temperature and dimensionless volatile quantities corresponding to the maximum devolatilization rate for the three pseudocomponents (Table 5).

𝑇 𝑝 [START_REF] Bucksch | The Swedish program for investigations concerning biofuels[END_REF] generally decreased in spruce when particle size increased but was stable in poplar, possibly due to the difference in hemicellulose structure. Namely, spruce contains monosaccharide units while poplar contains glucomannan units, and the former are more easily decomposed [START_REF] Wang | Lignocellulosic biomass pyrolysis mechanism: a state-of-theart review[END_REF][START_REF] Xu | Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review[END_REF]. The decreasing trend of 𝑉 𝑝 (1) for both species indicated that the first pseudo-component reduced its devolatilization contributions in large particles. 𝑇 𝑝 [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF] underwent limited changes while particle size increased in both species. This can be explained by the cellulose crystalline structure that decomposed rapidly once reaching the melting point [START_REF] Lv | Torrefaction of cellulose: Validity and limitation of the temperature/duration equivalence[END_REF]. This stable temperature-dependent nature indicated that the 𝑇 𝑝 (2) value was more related to chemical alteration than to particle size [START_REF] Milosavljevic | Thermal effects in cellulose pyrolysis: relationship to char formation processes[END_REF]. Furthermore, the devolatilization amount of spruce second pseudo-component was more affected by the particle size, as revealed by more decrease trend of 𝑉 𝑝 [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF] in spruce compared to that in poplar. A general increase of 𝑇 𝑝 (3) in spruce indicated that the decomposition of the third pseudo-component was shifted towards higher temperatures in large particles, possibly caused by the increased activation energy of charring [START_REF] Kwiatkowski | Pyrolysis and gasification of a thermally thick wood particle-Effect of fragmentation[END_REF]. 

Model validation

Prediction of mass loss

The model parameters commented previously were identified from the learning database, which consisted of dynamic tests performed at 1 and 10 °C/min. To further assess the prediction potential of the model, these identified parameters were used to simulate static tests (Figure 7). The final DRM (Dimensionless Residual Mass) values (DRM = 1-DML) were calculated for all samples. Three temperature levels (300, 500, and 800 °C) were chosen to represent the three typical pyrolytic phases, which were located in three reaction zones: initial decomposition, major pyrolysis, and secondary reaction stages [START_REF] Akhtar | A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[END_REF][START_REF] Demirbas | An overview of biomass pyrolysis[END_REF]. For both spruce and poplar, the predicted DRM values at all three temperature levels simultaneously increased when increasing the particle size from powder to the 4-mm cylinder, as direct effect of particle size. Since the promotion of char formation by intra-particle mass transfer limitations is well-admitted [START_REF] Anca-Couce | Kinetic scheme of biomass pyrolysis considering secondary charring reactions[END_REF] and included in the learning database, these numerical predictions were logical and reasonable. Regarding the effect of temperature level, it was understandable that further devolatilization caused generally lower DRM values at 500 °C compared to those of 300 °C, and the final high-temperature decomposition of lignin and partial secondary cracking reactions caused the lowest DRM values at 800 °C.

Meanwhile, the powder with lid exhibited the largest char yield at 500 and 800 °C levels for both species, corresponding to the experimental findings of the most severe charring in powder with lid. Note however that the DRM of powder with lid found at 300°C is smaller than the two longer cylinders. Static tests at 300 °C and 500 °C were performed for the purpose of validation (Figure 8). The static test at 300 °C was a particularly demanding validation test as the kinetics was very slow at this temperature, resulting in very partial volatilization at the end of the experiment, likely to introduce prediction errors. Herein, due to the strict sampling protocol that largely limited the sample amount, only representative sample types (powder, 4-mm cylinder, powder with lid) were tested. The comparison between experiment and prediction depicted excellent trends with limited errors for all conditions. The error ranges, 1.20-3.31%

for spruce and 1.09-3.12% for poplar, were acceptable compared to previously published works proposing predictions [START_REF] Vá Rhegyi | Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[END_REF]. And it was remarkable to observe that the smaller DRM of powder with lid predicted by the model at 300 °C was confirmed by the experiment.

To conclude, kinetic differences originated from intra-particle limitations were nicely predicted by the model despite the very different time-temperature pathways of the validation database compared to the learning database. Therefore, this last section demonstrated the ability of the multi-distribution DEAM parameters to predict volatilization for contrasted pyrolysis conditions.

Prediction of char composition

As commented in the experimental section, the relation between char composition and DML revealed the presence of secondary charring when changing particle size. Assuming the elemental composition of char resulting from secondary charring is not affected by the particle size, the elemental composition can be deduced as a weighted average between primary reactions and secondary charring. Herein, wood powder is used as reference for primary reactions. This weighted average therefore allows the element contents of char (c1 to c4) to be predicted from the elemental contents of powder and secondary charring, the DRM of powder and the change of DRM with the considered particle:

Where 𝐷𝑅𝑀 𝑝𝑜𝑤𝑑𝑒𝑟 is the dimensionless residual mass of wood powder, ∆𝐷𝑅𝑀 the additional residual mass of the particle compared to powder, 𝛼 𝑖 are the contents in the char of wood powder, and 𝛽 𝑖 , the element contents in char produced by secondary charring. Indices i stands for carbon, hydrogen, oxygen, and ash. It is assumed that char from secondary charring contains no ash:

An identification process was conducted for minimizing the RMSE between 𝑐 𝑖 and actual experimental values at 10 °C/min, to obtain 𝛽 𝑖 for both wood species (Table 6). To be noted, the highly dominant content of carbon (𝛽 𝐶 ) confirms that carbonization is the major effect of secondary reactions. 

𝛽 𝐶 + 𝛽 𝐻 + 𝛽 𝑂 = 1; 𝛽 𝑎𝑠ℎ = 0 (13) The predictions using equation ( 12) together with the composition of secondary charring (Table 6) were plotted for both species (Figure 9), which depicts an excellent correlation between the change of composition and the change of DRM. The good correlation obtained for ash is consistent with the assumption on the absence of ash in secondary reactions. In practice, this observation allows a clear conclusion to be drawn. As the kinetic prediction of the DAEM model is already validated, the change of DRM between a certain particle size and powder can be predicted for any time-temperature profile. Hence, equation [START_REF] Parikka | Global biomass fuel resources[END_REF] supplied with the data of table 6, can be used to predict the elemental analysis of char whatever the conditions underwent by the particle. To that purpose, the elemental analysis of char from powder could be predicted as a function of the Dimesnsionless Residual Mass (DRM) thanks to the correlation proposed in [START_REF] Perré | A robust and frugal model of biomass pyrolysis in the range 100-800° C: Inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction[END_REF]:

This opens new possibilities in process design and control, as this method can be applied to any industrial process, provided one knows the history of conditions imposed to the particles. This could be applied, for example, to the prediction of elemental composition along the reactor height for the pyrolysis of a packed bed [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF]. 

Conclusions

This study is devoted to the effect of particle size on the pyrolysis of two wood species: spruce and poplar. Various sample geometries treated in TG/DSC allowed comprehensive analyses of the mass and heat limitations from intra-particle (powder to cylinder) and reactor type (crucible with and without lid). A negative mass loss/carbonization pathway confirmed additional charring at increasing particle size. Exothermicity from char formation was promoted by particle size (or extra-particle limitations).

From this learning database, a robust DAEM model, with two Gaussian and one exponential DAEM distributions, was derived. The DAEM model was used to simulate and predict mass loss for different time-temperature profiles. These predictions were successfully validated by additional experiments. The composition of char produced by secondary charring was determined from the linear relation found between elemental analyses and residual masses. This allows the elemental composition of char to be predicted for a given particle size for any time-temperature pathway. This prediction involves the kinetic differences between powder and a given particle, as predicted by the DAEM model.

In conclusion, this paper addresses the important question of the effect of particle size on biomass pyrolysis and proposes simulation tools to predict the kinetics and the elemental composition of char. These tools are intended for use in the design and control of industrial processes.

Devolatilization of the first pseudo-component generally occurred between 163-355 °C;

it corresponded to the hemicelluloses that were more reactive at lower temperatures [START_REF] Mckendry | Energy production from biomass (part 1): overview of biomass[END_REF], in agreement with similar temperatures reported in the literatures [START_REF] Stefanidis | A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[END_REF][START_REF] Wang | Influence of the interaction of components on the pyrolysis behavior of biomass[END_REF]. The narrow pyrolytic range and high volatile yield of the second pseudo-component closely matched cellulose, which made up the largest portion of the wood and decomposed at a specific narrow temperature range around 320 °C [START_REF] Mohan | Pyrolysis of wood/biomass for bio-oil: a critical review[END_REF][START_REF] Shafizadeh | Pyrolytic reactions and products of biomass[END_REF][START_REF] Lv | TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations[END_REF]. The temperature of the third pseudocomponent had the largest range, from 180 to 800 °C, which was consistent with lignin decomposition characteristics, in which irregular phenolic polymers endowed extended decomposition ranges [START_REF] Wang | Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[END_REF].

Among the three sample types, major differences caused by secondary charring were clearly distinguished by the devolatilization profiles of the pseudo-components. Accompanied by the enlargement of particle size and the use of lid, the first and second pseudo-components reduced their volatile formation rates and final yields, possibly due to the volatile interceptions in hemicellulose and cellulose fractions. On the other hand, the higher volatile content in the third pseudo-component of cylinder-4mm and powder with lid, could be caused by the predominance of lignin devolatilization at high temperatures that raised gas formation rate [START_REF] Blasi | Modeling chemical and physical processes of wood and biomass pyrolysis[END_REF] Supplementary Table 1 As benefits of the robust model strategy, intrinsic kinetic parameters were presented in detail for both wood species, which could serve as fundamental guidance for relevant 

Prospective

The comprehensiveness of our model will confer great potentials for several investigations fields, herein two pathways are presented that we consider valuable in the future researches:

(1) Trade-off strategy concerning the number of identification/validation tests In order to guarantee the calculation accuracy and limit numerical complexity at the same time, the test number should also be investigated by a trade-off strategy. As widely acknowledged, multiple test number could improve parameter accuracy and verification

effects. Yet the multiple heating rates/temperature levels in experiments were quite complex and time-demanding, and it didn't necessarily demand as many tests as possible. In contrast, a "turning-point" was very possible that ensured identification/validation quality at the expense of suitable tests. This trade-off has already been determined concerning verification database in chapter 4. To further apply the trade-off strategy in verification database, it required more temperature levels to be conducted in static tests in the future.

(2) Coupling between DAEM and transfer models An extended application of DAEM is to couple with transfer models, which will be applicable in more complicated situations. A 3-D model that combines DAEM with heat/mass transfer formulations can provide a more comprehensive and universal method to deal with multiple sample sizes, thermal conditions, and even large-scale process controls.

Investigations at macroscopic scale is therefore worthwhile for a better process strategy. Early works [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF][START_REF] Perré | A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media[END_REF] had established a 3-D model that included primary and secondary reactions of three components, but the kinetic parameters (weighting factor, pre-exponential factor and activation energy) still needed to cite from literature values. Thanks to the accurate kinetics described by the DAEM, it could provide parameters in the scheme (figure 7.1) and further couple into a 3-D model. [𝐵] = [𝐴] 0 𝐾 1 𝐾 4 -𝐾 1 (𝑒 -𝐾 1 𝑡 -𝑒 -𝐾 4 𝑡 ) (7-7)

[𝐶] = (1 -𝑎 4 )[𝐴] 0 𝐾 4 -𝐾 1 ((𝐾 1 𝑒 -𝐾 4 𝑡 -𝐾 4 𝑒 -𝐾 1 𝑡 ) -(𝐾 1 -𝐾 4 )) (7-8)

The total volatile:

[𝐵] + [𝐶] = [𝐴] 0 ((1 -𝑎 4 -𝑒 -𝐾 1 𝑡 ) -𝑎 4 𝐾 4 -𝐾 1 (𝐾 1 𝑒 -𝐾 4 𝑡 -𝐾 4 𝑒 -𝐾 1 𝑡 )) (7-9)

Therefore, volumetric mass rate of volatile production from three components can express as: dé cide é galement de la pré cision de la simulation et de la complexité numé rique. C'est un facteur clé qui affecte profondé ment les implé mentations informatiques.

La mise en oeuvre du modèle implique toujours les identifications cinétiques, dans lesquelles de multiples profils de tempé rature ré duisent efficacement les incertitudes des paramè tres. C'est un point-clé de la straté gie de modé lisation: la qualité ré elle du modè le doit ê tre é valué e sur une base de donné es de validation, qui doit ê tre diffé rente de la base de donné es d'apprentissage. Cependant, cette é tape cruciale de validation est à peine mené e dans les recherches pertinentes.

La taille des particules modifie le couplage entre le transfert de chaleur et de masse, la ré action thermo activé e, les ré actions hé té rogè nes entre les volatiles et la phase solide, et le transfert d'enthalpie par changement de phase. Celles-ci encouragent grandement les recherches ciné tiques pertinentes avec des modè les complets.

Cette thè se est motivé e par les avantages du DAEM dans la dé termination ciné tique de la pyrolyse, y compris l'analyse du flux thermique et de la taille des particules. Les enquê tes porteront sur les aspects suivants:

(1) Straté gie optimale entre le nombre et la forme des distributions dans le multidistribution DAEM.

(2) Dé termination du mé canisme intrinsè que par DAEM (deux gaussiennes + une exponentielle), y compris l'analyse du flux thermique pour extraire les enthalpies de ré action.

(3) Effet de la taille des particules dans les analyses TG et les simulations DAEM correspondantes.

(4) Pré diction de la perte de masse et de la composition du charbon pour diffé rentes tailles de particules.

Pour atteindre ces objectifs de recherche, cette thè se appliquera deux approches de recherche mutuellement soutenues. Ce sont des appareils thermogravimé triques, ainsi que les dé veloppements de DAEM à distribution multiple. Les travaux expé rimentaux sont ré alisé s par des appareils thermogravimé triques (TG / DSC) et des mé thodes de caracté risation (analyse é lé mentaire, SEM et imagerie tomographique). Entre-temps, la straté gie du modè le est dé terminé e dans le cadre d'un vaste processus des optimisations. Les bases de donné es d'apprentissage et de validation garantissent une straté gie d'identification / vé rification fiable pour les DAEMs. Cela fournit des pré dictions et des simulations pré cises de la ciné tique de pyrolyse dans diverses conditions. Plus tard, la straté gie de modè le optimale est appliqué e pour la dé termination ciné tique et les pré dictions.

Principaux ré sultats et conclusions

Les principales ré alisations de ce travail ont é té conclues dans trois articles de revues. La premiè re partie concerne la straté gie optimale de DAEM, les comparaisons de la capacité de pré diction et des degré s de liberté du modè le ont é té rigoureusement é tudié es sur le nombre et la forme de la distribution. Il a é té prouvé que trois distributions gaussiennes assurent une bonne pré diction avec une concision approprié e. Plus tard, la combinaison de deux distributions gaussiennes et d'une distribution exponentielle a montré la meilleure capacité de pré diction, qui a é té confirmé e comme la meilleure straté gie en ce qui concerne la forme et le nombre de distribution. De plus, ils sont plus efficaces que les sché mas classiques du premier et du n-iè me ordre.

La deuxiè me partie a appliqué le modè le optimal pour dé terminer les paramè tres ciné tiques intrinsè ques dans la pyrolyse de la poudre de bois, qui sont validé s avec pré cision. L'enthalpie de ré action a é té couplé e au modè le complet et pré sente des effets de simulation satisfaisants. Deux applications ont ensuite é té appliqué es concernantes :i) la pré diction d'une corré lation entre le rapport atomique et la perte de masse ; ii) description de l'é volution tempé rature/flux thermique.

La troisiè me partie a principalement é tudié les mé canismes par des mé thodes expé rimentales et numé riques. Cinq formes de particules diffé rentes ont permis une enquê te approfondie sur les variations ciné tiques, et le DAEM a é té utilisé pour ré vé ler les changements de paramè tres ciné tiques lorsque la taille des particules changeait. Plus tard, la capacité de pré diction du modè le a é té validé e par des expé riences supplé mentaires ré alisé es à plusieurs niveaux de tempé rature statique et é tendues pour pré dire les compositions de char parmi diffé rentes tailles de particules.
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 13 Figure 1.3-Biomass technologies for producing biofuel[START_REF] Adams | Biomass conversion technologies, Greenhouse Gas Balances of Bioenergy Systems[END_REF] 

Figure 1 . 6 -

 16 Figure 1.6-Flowchart of anaerobic digestion process [44]
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 17 Figure 1.7-Industrial biomass combustion process for power generation [47]
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 18 Figure 1.8-Flow chart of hydrothermal liquefaction process of biomass[START_REF] Gollakota | A review on hydrothermal liquefaction of biomass[END_REF][START_REF] Biller | Production of biofuels via hydrothermal conversion, Handbook of biofuels production[END_REF] 
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 1 10 illustrates a brief progress during biomass pyrolysis, the general stages during the temperature increase are: (1) Primary reactions including the removal of surface water and partial depolymerization. (2) Major mass loss (80% to 90%) of the main reaction period that relate to hemicellulose and cellulose decomposition. (3) Hot volatile inside biomass undergoes secondary reaction, homogeneously in the vapor phase and heterogeneously over the char surface. (4) The tertiary products only generate at high temperature with low yield, mainly including the cracking reactions that produce small-molecular gases.
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 2 [START_REF] Bucksch | The Swedish program for investigations concerning biofuels[END_REF] shows a typical single-component mechanism with three parallel reactions, it was first put forward by Shafizadeh and Chin[START_REF] Shafizadeh | Thermal deterioration of wood[END_REF] and then widely applied in early researches. The reaction competitions among three product classes are also indicated, where the liquid formation competes with both char and gaseous products at different temperature levels[START_REF] Di Blasi | Progress in thermochemical biomass conversion[END_REF].

Figure 2 . 1 -

 21 Figure 2.1-Overall pyrolysis mechanism by Shafizadeh and Chin[START_REF] Shafizadeh | Thermal deterioration of wood[END_REF] 

  One general pathway is to assume biomass to be a superimposition of several lignocellulosic components, it's a semi-global mechanism that involves sequential multi-step reactions of solid phase (𝐶 𝑖 ) and volatile (𝑉 𝑖 ) (figure2.3). Number of reactants or reaction steps are manually chosen based on the complexity of kinetics.
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 23 Figure 2.3-Scheme of sequential multi-step kinetics in biomass pyrolysis[START_REF] Burra | Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model[END_REF] 

2. 4 )

 4 . Essentially, every chemical component still follows the single-component mechanism with limited reactions, and their combined mechanisms give birth to the final multicomponent scheme.
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 24 Figure 2.4-Multi-component scheme proposed by Miller and Bellan [80]
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 25 Figure 2.5-Cellulose pyrolysis kinetic model by Diebold [81]
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 26 Figure 2.6-Cellulose pyrolysis kinetic model by Banyasz[START_REF] Banyasz | Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution[END_REF] 
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 27 Figure 2.7-Cellulose pyrolysis kinetic model by André s[START_REF] Anca-Couce | Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction[END_REF][START_REF] Anca-Couce | Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis[END_REF] 
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 28 Figure2.8-Hemicellulose pyrolysis scheme and HCA2 decomposition scheme[START_REF] Ranzi | Chemical kinetics of biomass pyrolysis[END_REF] 

  considered lignin decomposition as a combination of three components : LIG-C (lignin components rich in carbon), LIG-H (lignin components rich in hydrogen) and LIG-O (lignin components rich in oxygen). As shown in figure 2.10, LIG-C first decomposes into volatile, char and another carbon-rich lignin (LIG-CC), further secondary reactions occur to produce volatile and char. LIG-H and LIG-O components first transform into volatile and OH-rich lignin, subsequently the OH-rich lignin undergoes secondary reactions to produce sinapaldehyde (FE2MACR), volatile and char. Lignin tends to favor char formation due to its high content of aromatic rings.

Figure 2 .

 2 Figure2.10 Lignin pyrolysis scheme with three kinds of lignin components[START_REF] Gauthier | Pyrolysis of thick biomass particles: experimental and kinetic modelling[END_REF] 
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 211 Figure 2.11-Calculation process diagram for model parameters' identification

Figure 2 .

 2 Figure 2.12 illustrates an example of Miura-Maki method. The linear correlation between 𝛼 𝑇 2 vs.

Figure 2 .

 2 Figure 2.14 shows the mechanisms affected by particle size. When pyrolytic volatiles are generated in cell walls and subsequently diffuse into hollow lumen structures, the geometryrelated mechanism can profoundly affect reactions in gaseous/condensed phase, mass transfer (volatile diffusion, convention), and thermal transfers. With an increase in particle size, the added cellular-and tissue-scale barriers cause more hermetic spaces and channels, which can obstruct internal devolatilizations. Thermal profile requires more time to develop uniformly inside large particles, and the centripetal temperature gradients lead to low-temperature core

Figure 2 . 14 -

 214 Figure 2.14-Affecting mechanism of particle size during biomass pyrolysis

( 1 )

 1 kinetics schemes of biomass pyrolysis including one-component, multi-component; (2) formulation of DAEM and relevant concepts; (3) affecting factors in pyrolysis; (4) reaction enthalpy and specific enthalpy.The broad range of kinetic models proposed in literatures, from one-component to multidistribution DAEM, give the general views in choosing suitable models depending on the intended uses. One-component mechanism has concise formulation but less accuracy; the subsequent multi-component mechanism shows improvement by involving more sequential/parallel reactions, and sub-kinetics of three main chemical constituents also make this scheme more accurate. The DAEM approach is an excellent solution to include most reaction kinetics, further multi-distribution DAEM contributes to the most comprehensive kinetic. Both symmetric and asymmetric distributions endow different kinetic profiles.Parameter estimation methods (distribution free/ distribution fitting) help identify model parameters. The joint effects of temperature and residence time clearly influence products yields and corresponding composition distributions. Heating rate presents a synthetic driver from both temperature and residence time. High heating rate, which couples with proper temperature and short residence time, could promotes fragmentations for a high bio-oil yield.
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 31 Figure 3.1-Experimental strategy adopted in the PhD work

Figure 3 . 2 -

 32 Figure 3.2-Thermal gravimetric Analyser used in the present work: STA 449 F3 Jupiter, NETZSCH. (partial figures are taken from the website of the instrument manufacturers [195])
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 33 Figure 3.3-Temperature profiles for static (left) and dynamic (right) tests
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  TIAN a,* , Patrick Perré a,b a LGPM, CentraleSupé lec, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France b LGPM, Centre Europé en de Biotechnologie et de Bioé conomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, Franceprovided solid numerical learning database, and the optimization of residues between numerical calculation and database enabled identification of model parameters. Subsequently, validation was performed with static tests (250 to 500 °C with an interval of 50 °C and 2hisothermal stages), and their corresponding residue analysis provided a fundamental basis to assess the model's true prediction ability. The trade-off between the model's prediction ability and degrees of freedom was robustly investigated with regard to the number and shape of the distribution. As stated by the quality of validations, a series of Gaussian-DAEMs (distribution number ranged from one to five) allowed for the determination of the best trade-off when the distribution number was three. Finally, the two-Gaussian plus one exponential distribution exhibited the best overall prediction capacity among different multiple-distribution DAEMs, and was confirmed as the best strategy with regard to both distribution shape and number. A DTG simulation investigated each model's simulation effects with three assigned variation sections and justified the correspondence between pseudo-components and biomass

Figure 1 .

 1 Figure 1. Examples of Gaussian, logistic distributions (left) and gamma distributions (right) with different parameters Applying the aforementioned distributions into DAEM, the double integration (over time and energy) and the lack of an exact analytical solution required multiple precautions.

Figure 2 .

 2 Figure 2. DRM curves of identification and validation stages and corresponding simulation

Figure 3 .

 3 Figure 3. Relationships between the model's degrees of freedom and overall RMSE in

Figure 4 .

 4 Figure 4. In the general view of identification stages for three models, as expected, simulations exhibited perfect agreements with all experimental data. Three-Gaussian and three-logistic DAEMs had similar negative deviations during the initial stages of simulations, and the two Gaussian + one exponential DAEM modified these plateaus with fewer errors. In the validation stage, the two Gaussian + one exponential DAEM showed noticeable improvements at 400, 450 and 500 °C compared to those of three-Gaussian and three-logistic DAEMs.
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 4 Figure 4. DRM curves of identification and validation stages and corresponding simulation

Figure 5 .

 5 Figure 5. Degrees of freedom and overall RMSE in both identification and validation of five

Figure 6 .

 6 Figure 6. Experimental, simulated DTG curves and corresponding local residues (left), separate and overall DTG simulations (right) of five DAEM at the heating rate of 5 °C/min

  The three-Gaussian and three-logistic DAEMs had same decomposition ranges of three pseudo-components: 200-375 °C (first pseudo-component), 250-400 °C (second pseudo-component) and 100-800 °C (third pseudocomponent). Compared to these two models, two Gaussian + one exponential DAEM altered the decomposition range of first pseudo-component (200-400 °C), induced no change for second pseudo-component (250-400 °C), and increased initial decomposition temperature of the third pseudo-component (270-800 °C). For the four-Gaussian DAEM, four pseudocomponents decomposed in the temperature ranges as 220-360, 250-400, 160-550 and 100-800 °C respectively. Finally, the decomposition temperature ranges of five-Gaussian DAEM's pseudo-components were: 165-375, 200-350, 240-400, 280-520 and 100-800 °C, respectively.

  by identifications of dynamic tests and further validated by static tests. Reaction enthalpy was first coupled with the comprehensive model and present satisfactory simulation effects. Two applications were further applied concerning: (1) prediction in a correlation between atomic ratio and mass loss; (2) description of temperature/heat flux evolution. • This work is published in FUEL [162]. A robust and frugal model of biomass pyrolysis in the range 100-800 °C: inverse analysis of DAEM parameters, validation on static tests and determination of heats of reaction Patrick Perré a,b, * , Yong TIAN b , Pin Lu a , Barbara Malinowska b , Jamila El Bekri b , Julien Colin a,b a LGPM, Centre Europé en de Biotechnologie et de Bioé conomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France b LGPM, CentraleSupé lec, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France E-mail address: patrick.perre@centralesupelec.fr (Patrick Perré ) Abstract: This paper presents a robust and frugal Distributed Activation Energy Model to simulate pyrolysis of lignocellulosic biomass (spruce and poplar) over a wide range of temperature and residence time. The learning database consists of dynamic TGA-DSC experiments performed up to 800 °C at four heating rates (1, 2, 5 and 10 °C /min). By employing one nonsymmetrical distribution, three distributions and only 9 independent parameters were needed to correctly fit the experimental data: a Gaussian distribution for hemicelluloses, a Gaussian function degenerated into a Dirac function for cellulose and a gamma function degenerated into an exponential function for lignin. The robustness of the model was successfully validated with 2-hours isothermal tests (250 °C to 500 °C with increments of 50 °C). The heats of reaction were determined using the heat flux measured under fast dynamic conditions, thus reducing the crucial problem of baseline drift. The prediction potential of the model is highlighted by two examples: pathway in the Van Krevelen's diagram and control of the temperature rise to limit the heat source due to reactions.

  ) to represent a large number of reactions. This function 𝐹(𝐸) represents the fraction of volatiles produced by all reactions which have an activation energy smaller than 𝐸. The derivative of function F over the activation energy is a distribution function 𝑓(𝐸) which represents the potential of volatile production related to each energy value 𝐸:

Figure 1 .

 1 Figure 1. a) Sampling the Gaussian curve to get the discrete values 𝑓 𝑖 of function 𝑓. These values are proportional to the number of points 𝑖 within each segment of length 𝜎), b) The diversity of shapes that could be obtained with gamma distributions and its sampling obtained using 100 points over the interval [𝐸 𝑚𝑖𝑛 , 𝐸 𝑚𝑖𝑛 (1 + 𝑛𝛼/𝛽)].

  process minimises the objective function based on the difference between the experimental and calculated DRM values, computed in the sense of the mean-square error over a time interval ranging from the end of the drying plateau (time indice 𝑖 𝑖𝑛𝑖 ) to the end of the experiment (time indice 𝑖 𝑓𝑖𝑛 ). Moreover, in order to benefit from all the experimental information, this objective function 𝐹 𝑜𝑏𝑗 is computed over several tests simultaneously (the 4 dynamic tests simultaneously in the present work):

18 )

 18 through to total, dimensionless, mass of volatiles produced at time 𝑡 (DRM 𝑖 ℓ,𝑐𝑎𝑙 = 1 -𝑉 ℓ (𝑡 𝑖 )).The kinetic model is solved using an in-house software written in Fortran 95 by Patrick Perré . This code solves equation[START_REF] Timell | Occurrence of stem, branch and root compression woods, factors causing formation of compression wood, physiology of compression wood formation, inheritance of compression[END_REF] with the actual furnace temperature of each test, as collected by the TGA device, for each time 𝑡 𝑖 . The objective function is minimized using the Nelder-Mead algorithm. As all experiments are treated simultaneously, all experimental

Figure 2 .

 2 Figure 2. TG curves for dynamic experiments at different heating rates (10 °C /min, 5 °C /min, 2 °C /min and 1 °C /min) and corresponding DAEM curves based on identified parameters and temperature evolutions. Time origin is at the end of the 30-minute 100 °C plateau.

Figure 3 .

 3 Figure 3. Model validation using a set of static experiments at different plateau temperatures (250 °C, 300 °C, 350 °C, 400 °C and 500 °C).

Figure 4 .

 4 Figure 4. Model validation : experimental (black circles) and corresponding simulation (red lines) of the derivative of DML for the set of static tests Case of poplar.

Figure 5

 5 Figure 5 shows the experimental DSC signal for spruce and poplar as red lines. The model prediction, as computed using equation (26) and after parameter indetification, appears in these figures as blue dashed lines. Note that positive DSC values represent an exothermic behavior (heat removed from the sample) and negative values an endothermic behavior (heat provided to the sample).

Figure 5 .

 5 Figure 5. DSC curves to determine reaction enthalpies of spruce and poplar using the dynamic experiments at 5 °C /min.

Figure 6 .

 6 Figure 6. a) O/C and H/C ratios from char of spruce powder and poplar powder and corresponding biomass, b) O/C (open markers) and H/C (plain markers) ratios as a function of dimensionless mass loss (DML). Experimental data and fitted curves.

Figure 7 .

 7 Figure 7. Top), Temperature and heat flux evolution for a constant heating rate and for an optimised temperature profile. Bottom) Evolution of the residual parts of each distribution for the optimised temperature profile.

(

  dynamic tests with different heating rates), validation with static tests ranging from 250 °C to 500 °C and iii) the use of the measured heat flux to determine the heats of reaction. The potential of the model has been highlighted by two application examples : the prediction of the biomass pathway in the Van Krevelen's diagram and the use of the heats of reaction to control the process at the micro-particle level.

  size on the pyrolysis of spruce and poplar: thermogravimetric analyses, DAEM modelling, validation, and prediction of secondary charring Yong TIAN a* , Patrick PERRÉ a,b a LGPM, CentraleSupé lec, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France b LGPM, Centre Europé en de Biotechnologie et de Bioé conomie (CEBB), 3 Rue des Rouges Terres, 51110,

Figure 1 .

 1 Figure 1. (a) Flow chart of the preparation protocol of the wood samples; and pictures of three scales of samples (using spruce as an example): (b) powder, (c) particles, and (d) cylinders.

Figure 3 .

 3 Figure 3. Pyrolysis DRM curves of spruce and poplar samples at two heating rates.

Figure 4 .

 4 Figure 4. DTG (first row) and DSC (second row) signals normalized to the mass of spruce and poplar at 10°C/min.
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 56 Figure 5. Atomic O/C, H/C ratios vs. DML in dynamic tests with different particle sizes of

Figure 7 .

 7 Figure 7. Predictions of final DRM values of spruce and poplar samples in three static tests

Figure 8 .

 8 Figure 8. Experiment validations of residual mass for powder, 4mm cylinder and powder with lid for

Figure 9 .

 9 Figure 9. Elementary contents vs. dimensionless residual mass (DRM) of samples with different particle sizes in the 10 °C/min dynamic tests, and corresponding fitted curves

7 . 3

 73 researchers. The work also realised, for the first time, the heat flux determination and the extraction of reaction enthalpy factors based on DSC signals. Correlations were established between char compositions and dimensionless residual mass (DRM) of wood powder, allowing char contents to be predicted by DAEM. Finally, model showed a control strategy in temperature raise. Effect of particle size Both experimental observations and numerical simulations among varied particle shapes had been presented in this chapter. Five types of multi-scale samples (powder, particle, 5-mm diameter cylinders with heights of 1 mm, 2 mm, and 4 mm) plus one extra reactor (powder with lid) were employed, aiming to analyse the effects of particle size and extra-particle limitations. Thermogravimetry analyses depicted a reduction in kinetics and a gain in carbonization when the particle size increased. DSC showed the important exothermic heat that was promoted in large particle and powder with lid. The negative match relation between carbonization and mass loss in elemental analyses evidenced the charring enhancements in large particle sizes. Kinetics parameters fitted with two Gaussian and one exponential DAEM distributions ensured accurate descriptions in mechanism, potentially serving as resources for further kinetic researches, such as upscaling approaches. Synthetic indexes of the maximum devolatilizations in each pseudo-component depicted comprehensively the variation trends due to particle size. A set of successful validation tests was proposed based of time-temperature profiles different from the learning database, highlighting model's predicting ability among different particle sizes. Subsequent correlation between residual mass and element content revealed the main composition of carbon in secondary charring, endowing DAEM to predict kinetic differences compared to fine powder, hence elemental compositions for different particle sizes as a function of pyrolysis conditions.
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 71371 Figure 7.1. Possible biomass pyrolysis scheme coupling first-order primary and secondary reactions The biomass solid follows conservations in the primary reactions as: 𝜌 𝑠 𝑠 ∂𝜀 𝑠 ∂𝑡 + ∇ ⋅ (𝜌 𝑠 𝐯 𝑠 ) = -1 𝑉 𝑠 ∑(𝐾 𝑖 𝑚 𝑖 ) 3

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 1. Main features of different types of pyrolysis technology

		Heating rate	Pyrolysis temperature	Residence time	Representative	
	Type					Main product
		°C/min	(°C)	(feedstock)	reactor	
	Slow pyrolysis	5-7	227-927	>1 h	fixed bed	char
	Fast pyrolysis	300-800	327-627	0.5-10 s	fluidized bed	bio-oil
	Flash pyrolysis	>1000	327-927	<2s	fluidized bed	pyrolytic gas

*Data are cited from literatures

[START_REF] Bridgwater | Review of fast pyrolysis of biomass and product upgrading[END_REF] 

and

[START_REF] Liu | Fates of chemical elements in biomass during its pyrolysis[END_REF] 

Table 2 .

 2 

		1-DAEM with different distribution numbers	
				Independent		
	Distribution number	Distribution type	𝐷 𝑓	𝐷 𝑓 in each	Feedstock	Literature
				distribution		
		logistic	4	4	Cellulose/xylan	[2]
		Gaussian/Gamma/Logistic				
		/Rayleigh/Weibull/log-	4-5	4-5	Chlorella pyrenoidosa	[98]
		normal				
		Gaussian	3	3	peanut shell	[99]
		Gaussian	5	2	olive residue	[100]
		Gaussian	8	4	wheat, barley, oat, straw	[78]
		Gamma and Rayleigh	11	5	pine needles	[101]
		logistic	6	3	5 lignocellulosic biomasses	[102]
		Gaussian	8	2	coal, coal char	[103]
		Gaussian	12	4	13 lignocellulosic biomasses	[104, 105]
		Gaussian	15	5	tobacco stem	[106]
		Weibull	9	3	Epoxy-Hexahydrophthalic Anhydride	[107]
		Gaussian	8	2	lignin	
						[108]
		Gaussian	10	2	hemicellulose	
		Gaussian	16	3	bagasse/ sewage sludge	[109]

Table 2

 2 

	.2 lists the mathematical formulas

Table 3 .

 3 1-Morphological descriptions of wood samples used in the research

	Particle type	Powder	Particle	Cylinder-1mm	Cylinder-2mm	Cylinder-4mm
				diameter:5 mm	diameter:5 mm	diameter:5 mm
	Dimension Size	0.063-0.08 mm	0.63-0.8 mm			
				height:1 mm	height:2 mm	height:4 mm

The basic chemical information of two wood samples is listed in table

3

.2, the ultimate and approximate analyses are conducted in Thermo Fisher Scientific FLASH 2000 organic elementary analyser and Nabertherm LV/9/11 furnace by the standards of ASTM E1755, E872. The chemical composition analysis is based on a standard method of NREL (National Renewable Energy Laboratory, U.S. Department of Energy). Table 3.2-Properties of spruce and poplar on dry basis

Table 1

 1 

	lists the basic chemical information of sprue sample. The ultimate and
	proximate analyses of the wood sample (density 450 kg/m 3 ) on a dry basis were conducted
	using a Thermo Fisher Scientific FLASH 2000 organic elementary analyser and Nabertherm
	LV/9/11 furnace, respectively, following the ASTM E1755 and E872 standards. The chemical
	composition analysis was based on the standard method of NREL (National Renewable

Energy Laboratory, U.S. Department of Energy).

Table 1 .

 1 Results of proximate, ultimate and chemical composition analyses of European spruce powder on a dry basis 𝑚 𝑡 is the remaining mass at time 𝑡, and 𝑚 0 the dry mass, determined as the mass after the 30-minute plateau at 100 °C.All dynamic and static tests were repeated twice to ensure accuracy. Standard deviations (SD) of all DRM data between two duplicate tests were calculated for verifications, herein table 2 lists two indexes: mean and maximum values of SD. The mean values got very limited range between 0.12% to 0.48%, and the maximum values that represented severe situation, was ranged between 0.30% to 1.81%. They both provided solid proofs of small errors between two duplicates and ensured the repeatability of experimental data.

	2.2 Experimental method
	Pyrolysis of spruce powder was performed in a thermogravimetric analyser (TGA, STA
	449 F3 Jupiter, NETZSCH). TG signals were detected at data acquisition intervals of 0.1 min.
	For each test, a ca. 10-mg sample was evenly spread in an alumina crucible. Measurements
	were conducted under a pure nitrogen (99.999%) purge and protective gases at 50 ml/min and
	20 ml/min, respectively.

Dynamic tests consisted of four different heating rates (1 °C/min, 2 °C/min, 5 °C/min and 10 °C/min) during the pyrolysis stages. The entire temperature program started by increasing the temperature from 30 °C to 100 °C at 10 °C/min, then maintaining it for 30 min to eliminate the residual bound water present in sample. The temperature was linearly increased to 800 °C at the four aforementioned heating rates, then cooled to room temperature under the nitrogen purge. The thermogravimetric data from dynamic tests were set as a learning database for the subsequent model identification process.

Static tests served as a model validation database. Similar to the dynamic tests above, the wood sample was heated from 30 °C to 100 °C at 10 °C/min and held for 30 min. Then the temperature was raised to the plateau at 10 °C/min, and an isothermal period maintained at

Table 2 .

 2 Mean and maximum values of standard deviations (SD) of DRM values in

	duplicate tests

. Model formulation 3.1 DAEM formulation The

  

distributed activation energy model (DAEM) treats biomass pyrolysis as numerous parallel and irreversible first-order reactions, among them, decomposition rate of reaction 𝑖 is: in which 𝑉 𝑖 ∞ represents maximum volatile production from reaction 𝑖, and 𝑉 𝑖 (𝑡) is the generated volatile at time t. Reaction rate constant 𝑘 𝑖 is defined by the Arrhenius equation with the pre-exponential factor (𝐴 𝑖 ) and activation energy (𝐸 𝑖 ):

Table 3

 3 

	𝑘 𝑖 = 𝐴 𝑖 𝑒𝑥𝑝 (-	𝐸 𝑖 𝑅𝑇(𝑡)	)

summarizes their mathematical formulas of probability density function (PDF), mean value and standard deviation. Their representative curves are depicted in Figure 1. Gaussian distribution, also known as normal distribution, is formulated by its mean value (𝐸 0 ) and standard deviation value (𝜎). Its PDF curve is symmetrical and bell-shaped. Logistic distribution is another important symmetric probability distribution. It resembles Gaussian distribution but has heavier tails (larger kurtosis value) and thinner peaks around the mean value. The gamma distribution is defined by the shape parameter 𝛼 and the rate parameter 𝛽. A minimum activation energy (𝐸 𝑚𝑖𝑛 ) must be added to obtain sufficient degrees of freedom to define the kinetics. The factor 𝐸-𝐸 𝑚𝑖𝑛 𝐸 𝑚𝑖𝑛 therefore scales the gamma distribution. The flexibility of the

Table 4 .

 4 Identified model parameters of five multiple-Gaussian DAEMs

	DAEM type	Distributions	𝑉 𝑚𝑎𝑥	𝐴(× 10 13 𝑠 -1 )	𝐸 0 (kJ/mol)	𝜎 (kJ/mol)
	One-Gaussian	1st Gaussian	0.8345	1.56	183.78	10.59
		1st Gaussian	0.7153		175.70	6.74
	Two-Gaussian	2nd Gaussian	0.1574	0.36	215.68	54.00
		1st Gaussian	0.2125		170.82	5.77
	Three-Gaussian	2nd Gaussian	0.5001	1.37	185.28	1.31×10 -9
		3rd Gaussian	0.1553		224.67	45.80
		1st Gaussian	0.1660		170.90	4.21
		2nd Gaussian	0.4954		186.02	6.99×10 -7
	Four-Gaussian	3rd Gaussian	0.1205	1.75	190.40	25.91
		4th Gaussian	0.0950		259.17	49.18
		1st Gaussian	0.0583		162.40	6.05
		2nd Gaussian	0.1347		172.05	5.74×10 -3
	Five-Gaussian	3rd Gaussian	0.5284	1.70	185.87	4.01×10 -4
		4th Gaussian	0.0347		208.19	6.64
		5th Gaussian	0.1182		244.74	49.57

Table 5 .

 5 Identified model parameters of three-distribution DAEM

	DAEM type	Distributions	𝑉 𝑚𝑎𝑥	𝐴(× 10 13 𝑠 -1 )	𝐸 0 or 𝐸 𝑚𝑖𝑛 (kJ/mol)	𝜎 (kJ/mol)
		1st Gaussian	0.2125		170.82	5.77
	Three-Gaussian	2nd Gaussian	0.5001	1.37	185.28	1.31×10 -9
		3rd Gaussian	0.1553		224.67	45.80
		1st Logistic	0.2233		171.25	6.63
	Three-Logistic	2nd Logistic	0.4959	1.43	185.50	2.51×10 -6
		3rd Logistic	0.1496		227.80	48.87
		1st Gaussian	0.2816		173.19	8.79
	Two Gaussian + one exponential	2nd Gaussian	0.4199	1.67	186.15	1.66×10 -7
		Exponential	0.1940		175.96	α=1, β=0.43

Table 6

 6 and 7 list the values of RMSE and 𝐷 𝑚 among all proposed models during identification and validation stages, respectively. Herein, the individual and overall values of RMSE were distinguished by their different data number according to eq. 18. Since the one-Gaussian and two-Gaussian DAEMs had poor prediction abilities, they will not be discussed in detail hereafter. The hybrid model type (one Gaussian+ one logistic+ one exponential) was

previously tested, but the numerical complexity and unobvious improvements in simulation quality didn't encourage us to make further investigations. But still we list its corresponding data in both table 6 and 7.

Table 6 :

 6 Parameter identification qualities in the dynamic tests with an average residual sum of squares and maximum deviations under each heating rate

				RMSE (× 10 -5 )					𝐷 𝑚 (%)	
	DAEM type									
		1°C/min 2°C/min 5°C/min 10°C/min Overall	1°C/min	2°C/min 5°C/min 10°C/min
	One-Gaussian	31.5	35.5	47.2	50.4	35.9	6.50	6.82	6.17	5.26
	Two-Gaussian	12.2	17.1	27.9	33.6	17.0	4.16	4.86	4.66	4.29
	Three-Gaussian	5.0	8.0	16.6	22.4	8.5	1.68	1.42	1.34	2.71
	Four-Gaussian	4.0	6.6	14.4	20.7	7.2	1.21	1.56	1.44	2.59
	Five-Gaussian	3.7	6.2	14.2	20.4	6.9	1.02	1.36	1.41	2.49
	Three-Logistic	5.2	8.2	16.6	22.5	8.7	1.71	1.46	1.30	2.74
	Gaussian + logistic + exponential	4.2	7.1	14.8	21.5	7.6	1.32	1.56	1.43	3.23
	Two-Gaussian + one exponential	4.2	7.2	14.8	20.9	7.5	1.27	1.57	1.43	2.54

Table 7 :

 7 Validation qualities in the static tests with an average residual sum of squares and maximum deviations under each heating rate

				RMSE (× 10 -4 )					𝐷 𝑚 (%)		
	DAEM type													
		250°C 300°C 350°C 400°C 450°C 500°C Overall	250°C 300°C 350°C 400°C 450°C 500°C
	One-Gaussian	3.9	6.5	9.7	9.9	6.5	4.3	6.8	2.22	5.71	5.45	5.06	5.09	5.14
	Two-Gaussian	7.1	4.7	4.3	2.3	2.3	2.1	3.7	3.12	4.20	3.91	4.00	4.09	4.03
	Three-Gaussian	1.8	3.9	3.4	2.3	1.9	1.0	2.4	1.29	2.20	1.99	1.46	1.54	1.51
	Four-Gaussian	2.0	3.8	2.5	1.4	1.3	1.1	2.0	1.32	2.24	1.77	1.59	1.53	1.54
	Five-Gaussian	2.3	3.9	2.2	1.1	1.4	1.1	2.0	1.12	2.05	1.76	1.50	1.47	1.44
	Three-Logistic	1.8	3.9	3.4	2.3	1.9	1.0	2.3	1.22	2.17	2.01	1.42	1.51	1.48
	Gaussian + logistic + exponential	1.6	4.1	2.4	1.7	1.3	1.1	2.0	1.22	2.34	1.84	1.73	1.68	1.69
	Two-Gaussian + one exponential	1.5	3.8	2.4	1.7	1.3	1.0	1.9	1.22	2.36	1.67	1.60	1.70	1.67

Table 8 .

 8 Identified parameters of three-nth-order model and overall RMSE in identification and validation stages

	Pseudo-component	𝑉 𝑚𝑎𝑥	A (𝑠 -1 )	E (kJ/mol)	n	Overall RMSE in identification	Overall RMSE in validation
	First	0.3234		152.88	0.83		
	Second	0.4728	2.98× 10 11	165.53	1.10	1.9× 10 -4	4.5 × 10 -4
	Third	0.2931		227.95	0.69		

Table 9 .

 9 The sectional standard deviation of DTG residue at the heating rate of 5°C/min

	of five models

Table 10 .

 10 Summary of individual biomass component's decomposition temperature range

	Heating rate		Decomposition temperature range (°C)		
					Reference
	(°C/min)	Hemicellulose	Cellulose	lignin	
	10	220-315	315-400	>400	[235]
	10	200-320	280-360	140-600	[236]
	20	200-350	260-430	200-500	[237]
	20	253-308	319-368	259-482	[238]
	20	244-324	294-371	197-653	[239]
	50	250-350	350-500	>500	[240]
	60	200-327	327-450	200-550	[199]
	<5	225-325	324-375	250-500	[241]

Table 11 .

 11 Peak decomposition temperature from experiments and model simulations

	Heating rate						
		Experimental	Three-Gaussian	Three-Logistic	Two Gaussian+ one exponential	Four-Gaussian	Five-Gaussian
	(°C/min)						
	1	366.58	363.58	363.58	362.59	362.59	362.59
	2	354.73	351.73	352.23	350.73	350.73	351.23
	5	339.06	337.08	337.08	335.88	336.08	336.48
	10	329.44	326.64	326.64	325.13	325.43	325.83
	distributions were proposed to account for distribution shapes. Exponential distribution	
	allowed good simulations for high-temperature reactions, and together with two Gaussian	
	distribution, they exhibited as the best strategy in terms of both prediction capacity and	
	numerical concision. The overall DTG simulation at 5 °C/min was analysed within three	
	major variation sections, where two-Gaussian + one exponential DAEM achieved obvious
	error reduction with plausible numerical concision. Degradation temperature ranges by	

Conclusion

A rigorous strategy of both identification and validation was applied in the DAEM for analysing the effects of distribution number and shape. First, in a series of Gaussian-DAEMs with distribution number ranging from one to five, three-distribution was determined as the best trade-off between prediction ability and degrees of freedom. Logistic and exponential separate DTG simulations evidenced the correspondences between pseudo-components and chemical components, and DAEM's was able to distinguish the effect of heating rate on the peak decomposition temperature.

Subsequently, the choice of multi-test follows the low-to-high sequence of heating rates, for instance, two-test is based on 1 and 2 °C /min, three-test is based on 1, 2 and 5 °C /min, high-heating rate will be subsequently added when increasing the test number. Supplementary table 2 compares the qualities in both identifications and validations among different test number, and one-test of 1 °C/min is chosen because of the best validation quality among its counterparts.

For identification, overall RMSE increases with the increase of test number, attributing to the accumulations of simulation errors. And obvious increase of RMSE is introduced by the tests at high heating rate (> 15 °C/min). Moreover, it warns that identification errors are not solid proves for model's fitting quality, otherwise single test would be the best choice because of its lowest error in identification. That's why the more important prediction

Table 1 :

 1 DAEM parameters of spruce and poplar identified on dynamic pyrolysis experiments. Parameters in red represent meaningless parameters related to the degeneration of distribution functions (Gaussian to Dirac and gamma to exponential).

	Biomass	Distribution	𝑉 𝑚𝑎𝑥	𝐸 0 (𝑘𝐽 ⋅ 𝑚𝑜𝑙 -1 )	𝜎, 𝛼 𝑜𝑟 𝛽(𝑘𝐽 ⋅ 𝑚𝑜𝑙 -1 )	𝐴 (𝑠 -1 )
		1 (Gaussian)	0.2344	168.5	𝜎 = 7.51	
	Spruce	2 (Gaussian)	0.4927	183.3	𝜎 = 0.089	9.67 × 10 12
		3 (gamma)	0.1563	182.8	𝛽 = 2.812; 𝛼 = 1	
		1 (Gaussian)	0.2584	163.6	𝜎 = 6.62	
	Poplar	2 (Gaussian)	0.4928	181.4	𝜎 = 0.128	7.03 × 10 12
		3 (gamma)	0.1630	181.3	𝛽 = 2.205; 𝛼 = 1	

Table 2 :

 2 Learning procedure on dynamic tests : quality of the model with the best fit of parameters for each temperature level assessed as the standard deviation and the maximum error.

		Heating rate	Standard deviation	Maximum deviation
		(°C/min)	(% DRM)	(% DRM)
		10	0.45	2.27
	Spruce	5	0.43	1.22
		2	0.35	1.57
		1	0.58	1.56
		10	0.53	1.43
	Poplar	5	0.43	1.09
		2	0.55	1.31
		1	0.50	1.00

Table 3 :

 3 Validation step on static tests : quality of prediction with the parameters fitted on the learning database for each plateau temperature assessed as the standard deviation and the

			maximum error.	
		Temperature	Standard deviation	Maximum deviation
		(°C)	(% DRM)	(% DRM)
		250	0.39	1.22
		300	1.62	2.87
	Spruce	350	1.48	1.92
		400	0.42	2.14
		450	0.44	2.18
		500	0.51	2.17
		250	0.32	0.53
		300	1.21	1.64
	Poplar	350	0.96	1.33
		400	0.33	1.66
		450	0.83	1.93
		500	0.55	1.49

Table 4 :

 4 Enthalpy for decomposition reactions obtained for spruce and poplar by adjustment on the 5 °C /min dynamic tests. Positive value indicates endothermic reaction, and negative value exothermic reaction.

	Biomass	𝐶 𝑝 (𝐽/(𝑘𝑔 • 𝐾))	∆𝐻 1 (𝑘𝐽/𝑘𝑔)	∆𝐻 2 (𝑘𝐽/𝑘𝑔)	∆𝐻 3 (𝑘𝐽/𝑘𝑔)
	Spruce	720	-140	+339	-1900
	Poplar	650	-120	+308	-4300

Table 5 :

 5 Ultimate and proximate analysis of native spruce and poplar.

	Biomass type	Proximate analysis (wt.%)	Ultimate analysis (wt.%)
		VM	Ash	FC	C	H	O
	Spruce	84.93	0.29	14.77	47.07	5.97	43.65
	Poplar	86.29	0.37	13.34	48.06	5.95	43.76

Table 6 :

 6 Char yield and ultimate analysis of pyrolysis char from spruce and poplar powder in

			static tests.		
	Temperature (°C)	C(wt.%)	H(wt.%)	O(wt.%)	Char yield (wt.%)
	250	50.77	5.7	39.69	76.67
	300	65.26	4.27	24.53	27.87
	350	71.01	3.09	19.19	24.70
	Spruce				
	400	74.28	3.05	15.24	21.54
	450	79.22	3.11	12.42	19.45
	500	82.67	2.88	9.49	17.42
	250	50.30	5.65	40.10	76.55
	300	62.28	4.75	28.32	32.94
	350	70.90	3.23	19.99	21.57
	Poplar				
	400	74.44	2.86	16.44	18.94
	450	77.11	2.87	13.21	16.91
	500	81.50	2.63	9.62	15.73

Figure 6 plots the O/C and H/C ratios found for the different plateau temperatures in a Van Krevelen's diagram

Table 1 .

 1 Proximate and ultimate analysis of spruce and poplar the different particle sizes were obvious. The powder presented broken, fragmented pieces, with damaged lumens and inner cell wall structures were largely exposed. Particle samples preserved the cellular structure of wood: cells retained partial intact structures and exposed lumens at the edges. As expected, wood cylinders maintained the original anatomical structure of wood. Spruce, despite obvious annual rings, had a uniform anatomical pattern that consisted mainly of tracheids. As a diffuse ring-porous hardwood, poplar presented two contrasting sizes of pore: vessels and fibers. Their temperature programs began with the same sequence, heating powder samples from 30 °C to 100 °C at 10 °C/min and holding for 30 minutes. Then the temperature was raised at a rate of 10 °C/min to the plateau temperature (from 250 °C to 500 °C by an increment of 50 °C plus one test at 800 °C). The plateau temperature was maintained for 2 h, followed by cooling to 30 °C with unchanged nitrogen sweeping.Temperature and sensitivity calibrations were performed specific to crucible type, temperature rate, and gas type. The certified standards (NETZSCH calibration set) include indium, tin, bismuth, zinc, aluminum, and silver. The accuracy of the DSC signal was also checked with sapphire, according to the NETZSCH handbook. Blank tests were conducted before every sample test with the same crucible to keep the same buoyancy effects and ensure the same heat capacity. Dimensionless residual mass (DRM) and conversion rate (𝑋 𝑒𝑥𝑝 ) were used to process TG signals:

		Proximate analysis (wt.%)	Ultimate analysis (wt.%)
	Biomass type						
		Volatile	Ash	FC	C	H	O
	Spruce	84.93	0.29	14.78	47.07	5.97	43.65
	Poplar	86.29	0.37	13.34	48.06	5.95	43.76
	The microstructures of the samples are shown in Figure 2. Powder and particles were
	analyzed by environmental scanning electron microscopy (ESEM, FEI Quanta electron
	microscope), and cylinders were examined using 3D X-ray tomography (RX Solutions
	EasyTom XL Ultra 150-160). For both spruce and poplar, the differences in microstructure

between

Table 2

 2 

lists the final DRM values (final char yields) of all particle types under all conditions. Owing to the open microstructure and fast release of volatiles, powder presented the lowest DRM values in all cases. Yet, together with the particle size enlargement from powder to the 4 mm-cylinder, kinetic differences turned into noticeable char yield increases.

Table 2 .

 2 Final DRM values (wt.%) of all sample types of spruce and poplar at 1 º C/min and 10 º C/min

		Spruce		Poplar	
	Sample type				
		1 º C/min	10 º C/min	1 º C/min	10 º C/min
	powder	10.31	10.00	10.27	10.01
	particle	12.64	12.30	10.59	12.33
	cylinder, 1 mm	12.82	13.35	11.61	14.93
	cylinder, 2 mm	18.24	13.91	14.80	15.66
	cylinder, 4 mm	18.67	14.82	16.92	16.66
	powder with lid	20.03	16.78	17.10	19.50

Table 3 .

 3 Atomic O/C, H/C ratios and corresponding DML values in dynamic tests with different the supporting material). Two opposite relations were identified: dynamic tests had increasing DML values that matched with decreasing carbonization degree (increases in O/C and H/C), while static tests showed the opposite relation between DML and carbonization.

			particle sizes of spruce and poplar		
				1 °C /min			10 °C /min
	Wood type	Particle condition					
			O/C	H/C	DML(%)	O/C	H/C	DML(%)
		powder	0.032	0.20	89.69	0.032	0.24	90.00
		particle	0.027	0.15	87.36	0.029	0.18	87.70
		cylinder, 1mm	0.026	0.16	87.18	0.028	0.15	86.65
	Spruce						
		cylinder, 2mm	0.026	0.12	81.76	0.027	0.14	86.09
		cylinder, 4mm	0.025	0.12	81.33	0.023	0.15	85.18
		powder with lid	0.023	0.11	79.97	0.019	0.12	83.22
		powder	0.037	0.16	89.73	0.037	0.17	89.99
		particle	0.034	0.15	89.41	0.035	0.18	87.67
		cylinder, 1mm	0.033	0.15	88.39	0.034	0.17	85.07
	Poplar						
		cylinder, 2mm	0.033	0.15	85.20	0.032	0.15	84.34
		cylinder, 4mm	0.029	0.13	83.08	0.032	0.14	83.34
		powder with lid	0.027	0.13	82.90	0.031	0.13	80.50

Data at 10 °C/min, chosen as reference, were further compared with those of wood powder obtained in the isothermal tests in Figure

5

(detailed data from the static tests can be found in

Table 4 .

 4 

			Powder	with lid	0.1620	0.4179	0.2496	8.24×10 13	171.86	193.10	169.37	7.51	-9 5.76×10	0.26	0.81	2.79
	poplar		Cylinder	4 mm	0.0951	0.4622	0.2777	7.30×10 13	174.11	192.72	158.54	1.34	-7 2.45×10	0.32	0.58	2.22
	sizes of spruce and	Poplar	Cylinder Cylinder	2 mm 1 mm	0.1183 0.1316	0.4960 0.5136	0.2452 0.2713	8.03×10 12 1.03×10 12	163.75 154.10	181.73 171.15	148.15 137.76	1.84 1.47	-7 1.61×10 -7 4.79×10	0.40 0.63	0.48 0.60	2.12 2.26
	for different particle		Particle Powder		0.1402 0.1704	0.5258 0.4902	0.2461 0.2556	3.75×10 12 1.94×10 13	160.52 169.05	178.31 186.39	143.99 150.29	2.75 4.43	2.83×10 -6 -7 2.84×10	0.51 0.51	0.47 0.84	1.87 3.34
	two + one parameters DAEM exponential Gaussian Identified	Spruce	Powder Cylinder Cylinder Cylinder Particle Powder	with lid 4 mm 2 mm 1 mm	0.1520 0.1070 0.1140 0.1115 0.1130 0.1670	0.3643 0.4149 0.4248 0.4801 0.4683 0.4704	0.2866 0.2862 0.2540 0.3129 0.3168 0.2913	4.66×10 14 1.07×10 15 1.90×10 15 1.55×10 14 3.60×10 16 8.19×10 15	184.69 187.12 191.18 182.40 209.56 201.30	201.21 206.80 209.95 197.38 224.08 216.58	180.32 184.00 188.35 160.88 185.94 176.10	12.55 12.53 10.23 1.20 2.12 3.86	-6 4.98×10 -6 1.27×10 -7 7.37×10 -8 5.93×10 -3 7.21×10 -7 9.82×10	0.24 0.26 0.27 0.56 0.31 0.49	1.34 1.58 1.64 1.07 0.98 1.11	2.77 3.74 3.78 2.92 4.08 3.46
		Biomass	Size condition		𝑉 𝑚𝑎𝑥 1	𝑉 𝑚𝑎𝑥 2	𝑉 𝑚𝑎𝑥 3	A0( s -1 )	E0_1(kJ/mol)	E0_2(kJ/mol)	Emin(kJ/mol)	Ơ1(kJ/mol)	Ơ2(kJ/mol)	β	) RMSE -4 (×10	𝐷 𝑚 (%)

Table 5 .

 5 Synthetic values of three pseudo-components in spruce and poplar in dynamic tests at 10°C/min.

		Spruce
	Pseudo-component	Peak values

*𝑇 𝑝 (𝑗): Peak temperature, °C. 𝑉 𝑝 (𝑗): Dimensionless volatile, 10 -4 . 𝑗: Pseudo-component, 𝑗𝜖[1: 3] .

Table 6 .

 6 Identified element content parameters in two wood species at 10 °C/min

	Wood Species	𝛽 𝐶	𝛽 𝐻	𝛽 𝑂
	Spruce	0.9885	4.4712 × 10 -10	0.01149
	Poplar	0.9582	9.1484 × 10 -3	0.03265

  . Elemental analyses of char in static tests of wood powder

				spruce powder					poplar powder		
	Temperature (°C)	250	300	350	400	450	500	250	300	350	400	450	500
	C (wt.%)	50.77	65.26 71.01 74.28 79.22 82.67	50.30	62.28	70.90 74.44 77.11 81.50
	H (wt.%)	5.70	4.27	3.09	3.05	3.11	2.88	5.65	4.75	3.23	2.86	2.87	2.63
	O (wt.%)	39.69	24.53 19.19 15.24 12.42	9.49	40.10	28.32	19.99 16.44 13.21	9.62
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Supporting material 1. Choice of exponential distribution

Supplementary Figure 1. Identified gamma distributions with two initial calculation points Supplementary figure 1 shows the gamma distribution curves after model identification using two scenarios of initial calculation points. When the initial discretion point was set to 𝐸 𝑚𝑖𝑛 , to obtain suitable coverage, the curve peak of the gamma distribution was pushed toward 𝐸 𝑚𝑖𝑛 where it manifested as an almost vertical line. In this case, α was obligated to remain larger than 1 to avoid an invalid value (NaN), and the optimization algorithm manipulated it to infinitely approach but never equal to 1. In contrast, when setting the initial point as (𝐸 𝑚𝑖𝑛 + 0.5𝑑𝐸), the gamma formulation faced no risk of becoming an invalid value, it crossed over the critical point and identified 𝛼 < 1, but still, the optimization process manipulated it to infinitely approach 1. Both strategies coincidentally demonstrated best performances when the distribution was in the exponential shape, revealing that exponential distribution (𝛼 = 1) was the optimal strategy to best represent gamma distribution during model identification. Therefore, 𝛼 = 1 will be manually set in corresponding DAEMs, and the initial point will be set to 𝐸 𝑚𝑖𝑛 + 0.5𝑑𝐸 to better realize numerical integration and avoid invalid values. [START_REF] De Caprariis | Kinetic analysis of biomass pyrolysis using a double distributed activation energy model[END_REF], three [START_REF] Chen | Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[END_REF][START_REF] Chen | Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[END_REF] or even five [START_REF] Lin | Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM)[END_REF] normal distributions are proposed to get a good fit with the experimental data.

Trade-off in test number

Many works were devoted to the refinement of the pre-exponential factor A (also called the frequency factor). Some authors proposed this factor to depend on temperature: 𝐴 = 𝐴 0 𝑇 𝑛 [START_REF] Cai | New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[END_REF]. Sfakiotakis and Vamvuka [261] proposed this factor to depend on the heating rate (HR). A linear relationship between the logarithm of the pre-exponential factor A and the mean value of the activation energy distribution was also introduced [START_REF] Xu | Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis[END_REF][START_REF] Czajka | Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect[END_REF]. In all proposals, the authors claimed, and proved, that this allows the quality of the fit to be improved. This is not so surprising as any additional degree of freedom in the inverse procedure necessarily reduces the residues. Other improvements concerned the shape of the distribution functions.

As Gaussian distributions are still widely used, other shapes, such as Logistic, Uniform and Weibull function have been proposed [START_REF] Cai | An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[END_REF][START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF].

However, the complexity of this approach, namely the number of degrees of freedom, together with the well-known compensation effect make it difficult to propose an unambiguous set of model parameters [START_REF] Soria-Verdugo | Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model[END_REF][START_REF] Chornet | Compensation effect in the thermal decomposition of cellulosic materials[END_REF]. Thus, any kinetics model based on inverse analysis should include two steps: i) Parameters identification on a learning database and ii)

Model validation using alternating time-temperature pathways.

Yet, to the best of our knowledge, we found only two works that includes the validation step. Lin et al [START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF] used experimental data performed at 20 K/min as learning database and used the identified parameters to successfully predict tests performed at 15 K/min and 25 K/min. In [START_REF] Li | Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis[END_REF], the same team used the identified model to predict the distribution of activation energies.

Besides, the heats of reaction are of utmost importance to properly simulate the intricate heat and mass coupling occurring during the thermo-chemical process, either inside particles large enough for the fields to be non-uniform [START_REF] Turner | An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200-260 C[END_REF]or in a bed of particles [START_REF] Cavagnol | Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale[END_REF][START_REF] Perre | A comprehensive dual-scale wood torrefaction model: Application to the analysis of thermal run-away in industrial heat treatment processes[END_REF].

Unfortunately, the literature remains sparse regarding the heats of reaction, even though this information is of crucial importance to consider the thermal runaway that is likely to appear in industrial processes. Former studies on the determination of reaction enthalpies encountered difficulties like large errors in pyrolysis calculation [START_REF] Reed | The high heat of fast pyrolysis for large particles[END_REF], uncertainty, and unknown accuracies [START_REF] Daugaard | Enthalpy for pyrolysis for several types of biomass[END_REF]. The lack of precision is often attributed to the experimental conditions, which includes the sample size, the nature of the atmosphere, and the presence of impurities.
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Chapter 7 Conclusions and perspective

Experimental and modelling tools had been applied for two wood species: spruce and poplar, allowing a comprehensive kinetic study that covered numerical strategy, intrinsic mechanism, complicated heat/mass transfer phenomenon and chemical compositions. This works comprised successive and complementary sections as: (1) model determination by the trade-off strategy; (2) intrinsic kinetic determination from wood powder pyrolysis; (3) effects of particle size and corresponding model predictions. Their main conclusions will be summarized hereafter.

Model determination

Both the dynamic and static databases, that covered wide range of treatment time and temperature levels, had been employed to ensure comprehensive model assessments during identification and validation. The trade-off strategy was conducted between root mean square error (RMSE) and degrees of freedom (𝐷 𝑓 ), which presented prediction ability and numerical complexity respectively. Three-distribution DAEM exhibited the best trade-off among a series of multi-Gaussian-DAEMs that ranged distribution number from one to five. Further the two-Gaussian+ exponential DAEM presented the best prediction ability and numerical conciseness, which also showed superiority over first-order and nth-order models, being determined as the final strategy regarding distribution number and shape. The subsequent DTG simulation well verified model's advantages in reducing error with considerable numerical concision, and established correspondences between pseudo-components and chemical constituents. Also, the model had shown its good capacity in distinguishing the effects of heating rates.

Intrinsic kinetic

Wood powder of spruce and poplar had been pyrolyzed with both dynamic and static temperature programs. The sufficient dynamic tests acted as learning database for determining intrinsic parameters in two-Gaussian + exponential DAEM. Subsequently the solid validations with static databased verified model's prediction capacities.

where 𝜌 𝑠 𝑠 , 𝜀 𝑠 and 𝑉 𝑠 are average density, fraction volume and total volume of solid phase, 𝐯 𝑠 is the velocity. 𝑐 1 , 𝑐 2 , 𝑐 3 are the contents of three components and they are identified from DAEM model (intrinsic parameters). The mass terms here will be determined by DAEM, and then coupled into mass conservation and the atomic conservation for determining secondary reactions. Subsequently, these terms will be coupled into mass conservations (solid conservation, volatile conservation) and energy conservations.