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The primary objective of this research is to better understand the motion of anisotropic particles settling under gravity in a turbulent environment. This topic has several engineering and environmental implications; we are particularly interested here in small ice crystals settling and colliding in turbulent clouds. Specifically, we are asking how heavy non-spherical particles orient as they settle, and how their orientational dynamics affects their probability of collision in a turbulent flow. We perform numerical simulations to study the settling of ellipsoids, which provide a simple representation of the anisotropy of particles. As the underlying motivation of this work is to understand the dynamics in turbulent clouds of ice crystals, which are much denser than the surrounding fluid, we restrict ourselves to very heavy particles. Moreover, we focus on the case where the largest dimension of the particle is smaller than the smallest scale of the flow.

Recent developments suggested that the torque originating from the fluid inertia plays a crucial role in determining the settling orientation of anisotropic particles. In order to identify the possible regimes, and the corresponding ranges of parameters, we begin by simulating the motion of cylindrical fibers in a simplified model of two-dimensional turbulence, and we observe that fibers can settle with a random orientation, or with their broad-side down, depending on the ratio between the settling velocity and the characteristic velocity of the smallest eddies in the flow. We then proceed to study the problem in three-dimensional turbulent flows by considering the motion of both prolate and oblate ellipsoids. With the help of the experimental team at the Laboratoire de Physique at Ecole Normale Supérieure de Lyon, we tested experimentally the expression for the torque acting on the particles. Then, by using two numerical techniques, namely by numerically solving the Navier-Stokes equations and by using simplified models of turbulent flows, we study the settling orientation of ellipsoids.

This study confirms the results obtained in two-dimensions for cylindrical fibers.

Collisions of non-spherical ice crystals to form larger aggregates play a key role in the formation of precipitation. The anisotropy of the crystal shape makes its orientation a very important parameter in the problem. Therefore, fluid inertia plays a First and foremost, I would like to express my sincere gratitude to my thesis directors, Prof. Alain Pumir and Prof. Fabien Godeferd, for their constant

significant role in the collision process. In the geometric collision approximation, we study the collisions of oblate ice crystals, in order to understand the different physical mechanisms involved in the process. The numerically determined collision probabilities can be interpreted with the help of three main mechanisms. First, the turbulent fluctuations can bring particles together, at a rate that is inversely proportional to the Kolmogorov time. Second, identical particles may settle at different speed when their orientations differ. This mechanism may enhance the role of turbulence at low turbulence intensity. Last, particle inertia may induce large relative velocities, as a result of the "sling effect".

The main result of the thesis is that fluid inertia plays a leading role in the orientation of settling crystals, as well as on the dynamics of collisions between settling particles in turbulent flows.

Key words: turbulence, multiphase flows, anisotropic particles, angular dynamics, collisions, ice crystals, clouds Résumé L'objectif principal de ce travail est de mieux comprendre le mouvement des particules anisotropes qui sédimentent sous l'effet de la gravité dans un environnement turbulent. Ce sujet a plusieurs implications techniques et environnementales; nous nous intéressons particulièrement aux petits cristaux de glace qui sédimentent et entrent en collision les uns avec les autres dans les nuages turbulents.

Dans cette thèse, nous nous demandons spécifiquement comment des particules lourdes non sphériques s'orientent lorsqu'elles sédimentent, et comment leur dynamique d'orientation affecte les propriétés statistiques de collision dans un écoulement turbulent. Nous effectuons des simulations numériques pour étudier la sédimentation des ellipsoïdes, qui fournissent une représentation simple et pratique de l'anisotropie d'une grande classe de particules. Comme la motivation sous-jacente de ce travail est de comprendre la dynamique dans les nuages de cristaux de glace, beaucoup plus denses que le fluide environnant, nous nous restreignons au cas de particules très lourdes. De plus, nous nous limitons au cas où la plus grande dimension de la particule est plus petite que la plus petite échelle de l'écoulement.

De récents développements ont suggéré que le couple généré par l'inertie du fluide joue un rôle crucial dans la détermination de l'orientation de particules anisotropes en sédimentation. Afin d'identifier les régimes possibles, et les plages de paramètres correspondants, nous commençons par simuler le mouvement d'ellipsoïdes allongés à l'aide de modèles simplifiés de turbulence bidimensionnelle, et nous observons que les cristaux peuvent sédimenter avec une orientation aléatoire, ou avec leurs faces larges vers le bas, en fonction du rapport entre la vitesse de sédimentation et la vitesse caractéristique des plus petits tourbillons dans l'écoulement. Nous procédons ensuite à l'étude du problème dans des écoulements tridimensionnels. Le premier travail a consisté à valider expérimentalement, en collaboration avec le groupe expérimental du laboratoire de l'Ecole Normale Supérieure de Lyon, l'expression pour le couple agissant sur des particules. Puis, nous avons mené des études numériques, à l'aide de deux techniques numériques, en résolvant numériquement les équations de Navier-Stokes et en utilisant des modèles simplifiés d'écoulements turbulents. Cette étude confirme l'analyse menée en 2 dimensions.

Les collisions entre cristaux de glace non sphériques, conduisant à la formation d'agrégats plus grands, jouent un rôle clé dans la formation de précipitations. L'anisotropie de la forme du cristal fait de son orientation un paramètre très important dans le problème. Par conséquent, l'inertie du fluide joue un rôle important dans le processus de collision. Nous étudions les collisions dans l'approximation géométrique de cristaux de glace aplatis, afin de comprendre les différents mécanismes qui régissent les processus de collision. Les probabilités de collisions déterminées numériquement peuvent être interprétées à l'aide de 3 mécanismes principaux. Premièrement, les fluctuations turbulentes peuvent rapprocher les particules, à une vitesse inversement proportionnelle au temps de Kolmogorov. Deuxièmement, des particules identiques peuvent sédimenter avec une vitesse dépendent de leurs orientations respectives. Ce mécanisme peut renforcer l'effet de la turbulence à faible intensité. Enfin, l'inertie des particules peut induire des vitesses relatives importantes, en raison de l'"effet fronde" (sling effect).

Le principal résultat de la thèse est que l'inertie du fluide joue un rôle prépondérant dans l'orientation des cristaux en sédimentation dans les nuages, ainsi que sur leur dynamique de collisions dans les écoulements turbulents. 
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Introduction

The understanding of the motion of non-spherical particles in a turbulent flow is of fundamental importance in many engineering and environmental processes [START_REF] Andersson | Anisotropic particles in turbulence: status and outlook[END_REF][START_REF] Bagheri | On the drag of freely falling non-spherical particles[END_REF][START_REF] Voth | Anisotropic particles in turbulence[END_REF].

Settling and collision of ice crystals in clouds [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF][START_REF] Chen | The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition[END_REF][START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF], entanglement of wood fibers in paper making [START_REF] Lundell | Fluid mechanics of papermaking[END_REF], nanofibers in drug delivery [START_REF] Champion | Shape induced inhibition of phagocytosis of polymer particles[END_REF][START_REF] Geng | Shape effects of filaments versus spherical particles in flow and drug delivery[END_REF] , and transport of micro-organism in oceans [START_REF] Pedley | Hydrodynamic phenomena in suspensions of swimming microorganisms[END_REF][START_REF] Durham | Turbulence drives microscale patches of motile phytoplankton[END_REF][START_REF] Ruiz | Turbulence increases the average settling velocity of phytoplankton cells[END_REF], provide a few emblematic examples. The anisotropy in particle shape can be by design [START_REF] Nunes | Control of the length of microfibers[END_REF], for drug delivery [START_REF] Geng | Shape effects of filaments versus spherical particles in flow and drug delivery[END_REF] and bio-medical purposes [START_REF] Jun | Microfluidic spinning of micro-and nano-scale fibers for tissue engineering[END_REF], or it can occur naturally, for example, the shape of ice crystals in clouds can be columnar or plate-like, depending on their temperature [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF]. Anisotropic particles can also be a useful experimental tool to investigate the complex features of turbulent flows, which are otherwise difficult to measure. As an example, it has been noticed, from a fundamental point of view, that short buoyant fibers, transported by the flow as passive tracers, tend to align in a turbulent flow with the vorticity vector [START_REF] Pumir | Orientation statistics of small particles in turbulence[END_REF], so they can probe the velocity-gradient tensor of the flow [START_REF] Wilkinson | A model for alignment between microscopic rods and vorticity[END_REF][START_REF] Ni | Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence[END_REF].

The problem of anisotropic particles moving in turbulence is rather complex; it requires specification of many parameters to fully define the problem, for example, particle shape, size and density; fluid density and viscosity; and the flow properties. Furthermore, the anisotropic particle dynamics involves a coupling between the translational and the rotational degrees of freedom, as well as an anisotropic resistance tensor, which very significantly complicates the analysis. The frequent occurrence of anisotropic particles in nature and industrial applications has inspired a renewed interest in the field. A comprehensive review of this topic can be found in [START_REF] Voth | Anisotropic particles in turbulence[END_REF] We are specifically interested here in understanding the role of fluid inertia towards the translational, and particularly the rotational dynamics of the settling anisotropic particles, especially in a turbulent environment. The purpose of this study is to understand how fluid inertia affects the settling orientation, and eventually, the collision statistics of anisotropic particles in turbulence. In this work, we primarily focus on ellipsoids (both elongated and disk-like) of density far higher than their carrier fluid (ρ p /ρ f 1), and length smaller than the smallest length scales of the flow.

Given the importance of turbulent flows in this work, we begin, in the first section of this chapter, by a brief review of turbulence. Another crucial aspect of this work concerns the modelling of the motion of anisotropic particles. In the second section, we introduce the reader to the physics of particle motion in a viscous fluid, and how models for forces and torques acting on a moving particle evolved historically. Then in the last section, we focus on sedimenting anisotropic particles to discuss the role of fluid inertia towards their settling orientation.

Introduction to turbulence

The ubiquitous nature of turbulence is evident from our everyday experiences, be it the irregular flow coming out from water sprinklers, the swirling smoke from chimneys, or the random motion of pollutants in the air. This chaotic motion of fluid is governed by a single set of equations: the so-called Navier-Stokes equations. For an incompressible flow of fluid density ρ f , dynamic viscosity µ, and kinematic viscosity ν = µ/ρ f , the Navier-Stokes equations are given by

∂U ∂t + (U • ∇)U = - ∇p ρ f + ν∇ 2 U + f , (1.1) ∇ • U = 0, (1.2)
where p is the pressure field, f is the external force, and U = U(x, t) is the (Eulerian) fluid velocity field. Essentially, Eq. 1.1 is Newton's second law of motion and Eq. 1.2 expresses the condition of incompressibility of the fluid. The external force (f ) acting on the fluid includes forces such as gravity, and the forces that stir the fluid. In the case of suspensions of particles, one also needs to take into account the force applied by the particles on the carrier fluid. It is the ratio between the fluid inertia term (second term on the left hand side) and the dissipation term (second term on the right hand side) of Eq. 1.1 that determines the intensity of chaos in the flow. This ratio is known as the Reynolds number: it is expressed as Re= U 0 L/ν, where U 0 and L are the characteristic velocity and length scales of the flow, respectively.

Phenomenology of turbulence

A turbulent flow is composed of eddies of different sizes. Large eddies break down into smaller ones through mechanisms such as vortex stretching; this leads to a transfer of energy from larger to smaller scales. Larger scales of a turbulent flow are influenced by the domain size, and also by the stirring mechanism; smaller scales on the other hand are expected to have no memory of their origin: they are essentially universal [START_REF] Tennekes | A first course in turbulence[END_REF][START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF][START_REF] Pope | Turbulent flows[END_REF][START_REF] Davidson | Turbulence: an introduction for scientists and engineers[END_REF]. Therefore, the smaller scales in a turbulent flow are statistically homogeneous, similar at all spatial locations (except in the proximity of a solid object), and isotropic, i.e., all spatial directions are equivalent. This is known as homogeneous and isotropic turbulence.

The size of the smallest scale in the flow is determined by the rate at which the energy is transferred from larger to smaller scales. Inspection of the dissipation term in Eq. 1.1 reveals that the size of the smallest length scale needs to grow smaller in order to dissipate more energy.

Andrey Nikolaevich Kolmogorov in 1941 identified that the smallest scales (of length, time and velocity) in a turbulent flow can be determined from the average energy dissipation rate , , and the fluid kinematic viscosity, ν [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]. The expressions for the smallest scales then read

η ∼ ν 3 1/4 , (1.3) τ η ∼ ν 1/2 , (1.4) u η ∼ (ν ) 1/4 , (1.5)
where η, τ η and u η are the smallest length, time and velocity scales, respectively. They are also called Kolmogorov length, time and velocity scales. From the expression of η in Eq. 1.3, one can easily estimate the range of scales present in a turbulent flow, i.e., L/η = Re 3/4 . Therefore, very high Reynolds number flows, such as planetary atmosphere or turbulent clouds, have a huge range of scales.

At extremely high Reynolds number, there exists a range of length scales between the largest (L) and the smallest (η) scales where the rate of energy transfer from the larger to smaller scales remains constant. This range of scales is known as the "inertial range". The structure of the flow at length scales in the inertial range remains unaffected by the energy injection at the largest scales, and also by the viscosity driven dissipation at the smaller scales. A.N. Kolmogorov hypothesized that the statistical properties in the inertial range are determined universally by the average dissipation rate, , which remains finite in the limit of ν → 0 (Re → ∞). Then the velocity increment between two spatial locations can be written as

δU 2 (r) = [U (x + r) -U (x)] 2 ∼ C 2 (r ) 2/3 , (1.6)
where U is the fluid velocity in x direction, r is any distance in the inertial range in the direction of x, and C 2 is a universal constant independent of the flow Reynolds number and r. The expression in Eq. 1.6 is known as the second order structure function. In the same manner as Eq. 1.6, the p th moment of the velocity increment follows

δU p (r) ∼ C p (r ) p/3 , (1.7)
where C p are universal constants. The velocity increment relation in Eq. 1.7 is known as the longitudinal structure function. In order to appreciate the importance of structure functions, one can think of second order structure function in Eq. 1.6 as a measure of kinetic energy (per unit mass) contained by the eddies of scales ∼ r. The third moment of the velocity increment was derived from the Navier-Stokes equations by A.N. Kolmogorov for infinite Reynolds number turbulence,

δU 3 (r) = - 4 5 r .
(1.8)

The relation in Eq. 1.8 is one of the most important results in turbulence. It is known as the "Kolmogorov 4/5 law". It can be shown that the negative sign in Eq. 1.8 signifies that the energy flows from larger to smaller scales in a three-dimensional turbulent flow [START_REF] Tennekes | A first course in turbulence[END_REF][START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF][START_REF] Pope | Turbulent flows[END_REF]. Remarkably, the expression for the third order moment of velocity increment in Eq. 1.8 conforms with the p/3 scaling in Eq. 1.7. The 4/5 law remains valid even at the largest scale (L), i.e., ∼ U 3 /L. According to Frisch, 1995, the 4/5 law is a gold standard for any new theory of turbulence, which must be consistent with it.

The expression for the longitudinal-velocity structure function in Eq. 1.7 is based on Kolmogorov's self-similarity hypothesis, i.e., small scales in a turbulent flow are selfsimilar, see Frisch, 1995. However, high-Reynolds number flows manifest rare events at small scales, and as a result, energy dissipation in turbulent flows is intermittent.

Therefore, the global-averaged energy dissipation rate, , used in Eq. 1.7, does not provide the complete picture. Consequently, deviations with respect to the universal scaling of p/3 in Eq. 1.7 are observed, the more so as p increases [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF][START_REF] Iyer | Scaling exponents saturate in three-dimensional isotropic turbulence[END_REF]. This is because the rare (intermittent) events become significant for higher-order structure functions.

Numerical methods for generating turbulence

Determining the solutions of the Navier-Stokes equation is one of the greatest unresolved problem of classical physics.

there is a physical problem that is common to many fields, that is very old, and that has not been solved. It is not the problem of finding new fundamental particles, but something left over from a long time ago-over a hundred years. Nobody in physics has really been able to analyze it mathematically satisfactorily in spite of its importance to the sister sciences. It is the analysis of circulating or turbulent fluids.

Richard P. Feynman [START_REF] Feynman | The feynman lectures on physics; vol. i[END_REF] In fact, it is yet to be proven that a smooth solution of the Navier-Stokes equations exists in a three-dimensional setup for a given set of initial conditions [START_REF] Fefferman | Existence and smoothness of the Navier-Stokes equation[END_REF]. The main difficulties in solving the Navier-Stokes equations originate from the non-local nature of the pressure term, and from the non-linear nature of the inertia term, see the second term on the left hand side of Eq. 1.1. Analytical solutions mostly exist for simple laminar flow problems where either one of these terms can be ignored.

To generate a turbulent flow field in the absence of any particle, one has to rely on different techniques ranging from the numerical solution of the Navier-Stokes equation to the statistical description of turbulence. In the following we discuss a few common numerical techniques to generate a turbulent flow.

Direct numerical simulation

In direct numerical simulation, the Navier-Stokes equations are solved numerically on an array of equally spaced grid points. In order to adequately resolve the smallest time and length scales, the time step and the grid spacing must be sufficiently small. These strict requirements on temporal and spatial resolutions greatly increase the computational cost. Moreover, as mentioned in the previous section, the smallest length scale in the flow scales as η ∼ LRe -3/4 . Therefore, even with the powerful computers available today, it is extremely difficult to accurately simulate high-Reynolds number flows such planetary atmosphere and oceanic flows.

One of the most popular method to perform direct numerical simulation is by using the pseudo-spectral method, originally developed by [START_REF] Rogallo | Numerical experiments in homogeneous turbulence[END_REF]. The main idea behind the method is to consider the velocity field in Fourier space, but to calculate the non-linear term of the Navier-Stokes equation in real space, and then transform it to wave number space. This circumvents the costly evaluation of convolution in wave number space; but it introduces unwanted high wave frequencies, known as the "aliasing error". In the current work we use the direct numerical simulation code developed by Prof. E. Leveque, which is based on the pseudo-spectral method. The Eulerian velocity field, U(x, t), is discretized in a cubic (periodic) domain on an equally spaced array of N grid points in each direction. The code uses the dealiasing technique developed by [START_REF] Orszag | On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components[END_REF]: the nonlinear term is calculated from the lower 2/3 part of the wave vectors. To keep the flow statistically stationary, the velocity field is stirred with a force (per unit mass), f , acting on low wave numbers. In the current study, the flow was always forced at the lowest wave number (k = 1). The code uses the method of forcing used in [START_REF] Lamorgese | Direct numerical simulation of homogeneous turbulence with hyperviscosity[END_REF] to stir the flow.

The injected power (f • U), averaged over the entire volume, remains constant and equal to the specified energy injection rate. Time marching is achieved using second order Adams-Bashforth scheme [START_REF] Goldstine | A History of Numerical Analysis from the 16th through the 19th Century[END_REF].

Once a velocity field has developed in time, one can additionally follow the motion of particles. In the case of tracer particles, this requires additional interpolation techniques, originally developed by [START_REF] Yeung | An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence[END_REF]. The equations are typically solved using a second-order Runge-Kutta scheme. To ensure periodicity, particles leaving from one side of the box are re-injected from the opposite side. We will return to these questions later (section 2.2 and section 4.3.1).

As stated before, direct numerical simulations are computationally very demanding.

Driven by necessity, other grid-less methods to inexpensively generate turbulence like random flows were developed. In the following, we introduce kinematic simulation along with another stochastic model for generating artificial turbulence.

Kinematic simulation

Kinematic simulation is a simplified description of turbulence [START_REF] Fung | Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes[END_REF][START_REF] Ducasse | Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect[END_REF]. It allows one to run long simulation at low computational cost. In kinematic simulation, a finite number of Fourier modes are superimposed to generate a random velocity field that reproduces a few properties of turbulence. The expression for the fluid velocity is given as

U(x, t) = N k n=1 A n cos(k n • x + ω n t) + B n sin(k n • x + ω n t), (1.9)
where N k is the total number of Fourier modes. The analytical expression in Eq. 1.9 allows one to inexpensively calculate the fluid velocity and the velocity gradients at the instantaneous location of the particle. It is essential to point out that the velocity field in Eq. 1.9 is not a solution of the Navier-Stokes equations.

The orientation vectors kn , Ân and Bn must satisfy the following condition in order to satisfy the continuity equation,

A n • k n = B n • k n = 0. (1.10)
For a randomly chosen kn , another random vector is forced to be orthogonal to kn .

This new random vector is Ân , such that Ân • kn = 0. Then the direction vector Bn is either parallel (or antiparallel) to Ân (2-dimensional turbulence), or it is orthogonal to both kn and Ân (3-dimensional turbulence). The magnitudes of the amplitude vectors A n and B n are determined from the specified energy spectrum (E(k n )) of the flow;

A 2 n = B 2 n = E(k n )∆k n .
(1.11)

Homogeneous isotropic turbulence follows the Kolmogorov energy spectrum,

E(k n ) = E 0 k -5/3 n .
(1.12)

We use the Kolmogorov energy spectrum in Eq. 1.11 to ensure turbulence like statistical properties of the velocity field given in Eq. 1.9. Other choices of spectrum are discussed in [START_REF] Malik | A Lagrangian model for turbulent dispersion with turbulent-like flow structure: Comparison with direct numerical simulation for two-particle statistics[END_REF]. The angular frequency, ω n , in Eq. 1.9 is the measure of unsteadiness in the n th mode; it is chosen to be proportional to the eddy turnover time of the n th mode [START_REF] Malik | A Lagrangian model for turbulent dispersion with turbulent-like flow structure: Comparison with direct numerical simulation for two-particle statistics[END_REF],

ω n = λ k 3 n E(k n ), (1.13)
where λ is the persistence parameter and it is taken to be 0.5 [START_REF] Ducasse | Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect[END_REF]. Distribution of wave numbers between the integral (L) and the Kolmogorov (η) length scales is given by the following relation

k n = k 1 L η (n-1)/(N k -1)
.

(1.14)

All the parameters related to the flow field generation are (randomly) determined in the initial part of each simulation run. Therefore, the extent of randomness remains limited in each simulation. The random numbers are generated using the well-known method of Mersenne twister [START_REF] Matsumoto | Mersenne twister: a 623dimensionally equidistributed uniform pseudo-random number generator[END_REF]. To determine the solution for a particular set of parameters, at least eight simulations are performed with a different initialization of the random number generator. The final results are obtained by averaging the results of the individual runs.

Statistical model

An incompressible flow field with correlation length, , and correlation time, τ , can be generated using a statistical model. The expression of three-dimensional velocity field is given by Gustavsson and Mehlig, 2016 as

U(x, t) = N 3 ∇ × G, (1.15)
where components of the vector field G are Gaussian with zero mean, i.e., G i (x, t) = 0, and N 3 is a normalization factor. The correlation function of the fluctuating vector field G is given by the following expression: 

G i (x, t)G j (x , t ) = δ ij 2 U 2 0 exp - |x -x | 2 2 2 - |t -t | τ , ( 
∂U 1 ∂x 1 2 = U 2 1 2 . (1.18)
This definition of is analogous to that of the classical Taylor microscale, λ, in turbulence [START_REF] Townsend | The structure of turbulent shear flow[END_REF][START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF][START_REF] Davidson | Turbulence: an introduction for scientists and engineers[END_REF].

Both turbulence models discussed here, namely kinematic simulation and statistical model, generate a Gaussian velocity field, and therefore the statistical properties of velocity gradients for these models differ from the turbulence generated using direct numerical simulation. In the initial part of the current work we use kinematic simulation to study the orientational statistics of settling anisotropic particles in turbulence.

In the later part, turbulence is generated using direct numerical simulations. We will see in section 4.4.1 that the difference in small scale statistical properties of direct numerical simulation and Gaussian velocity models do not appear to play any significant role in determining the orientation statistics of ellipsoids settling through turbulent flows.

Particle motion in a viscous fluid

To study the motion of a solid particle, one needs to estimate the forces and the torques acting on it [START_REF] Beer | Vector mechanics for engineers[END_REF]. A particle moving in a viscous fluid moves with it a certain amount of fluid, which is a consequence of incompressibility, and the absence of relative motion between the fluid and the particle. As a result, the disturbed flow applies a force on the moving particle. Provided the volume fraction (concentration) of the particles is low, it is customary to assume that particles do not affect the carrier fluid, yet the fluid affects their positions and orientations. This is known as the one-way coupling approximation [START_REF] Elghobashi | On predicting particle-laden turbulent flows[END_REF], see

Fig. 1.1. Whereas in a suspension with a high concentration of particles, the momentum exchange becomes significant between the carrier fluid and the particle (two-way coupling), and also within the particles themselves (four-way coupling), see Fig. Even in the simplest case of spherical particles, performing numerical simulation while accurately modeling the momentum exchange between the particles and their carrier fluid is complicated. In the current work we are particularly interested in cloud physics applications, where the volume fraction of particles remains sufficiently low. To study such problems, the one-way coupling approximation is therefore sufficient. Because the flow in the vicinity of the particle is assumed to remain unaffected, its properties can be determined independently of the motion of the particle. Subsequently, motion of the suspended particles is simulated using approximations, or models to express the force (and torque) applied on them by the carrier fluid.

Even in the one-way coupling approach, to which we will restrict ourselves in the rest of this work, developing models for the force and for the torque acting on the particles rests on the description of fluid velocity and pressure fields, resulting from the flow around the particle, with prescribed boundary conditions away from it. As discussed earlier, that finding an analytical solution to the Navier-Stokes equations (Eq. 1.1 and Eq. 1.2) is extremely difficult. A way to avoid the difficulty is to reduce the complexity of the Navier-Stokes equations by imposing a set of simplifying assumptions. For example, the non-linear term in Eq. 1.1 can either be ignored or linearized, depending on the nature of the problem under consideration. Also, for time-independent problems, time derivative can be ignored. Stokes, 1851 linearized the Navier-Stokes equations for calculating the force acting on a sphere moving through a viscous fluid. He assumed that for an object moving very slowly through a viscous fluid, the non-linear fluid inertia term is negligible in comparison to the viscous term. This reduces the Navier-Stokes equations to

- ∇p ρ f + ν∇ 2 u = 0. (1.19)
The fluid velocity, U, in Eq. 1.1 has been replaced with u here, where u is the perturbation of the fluid velocity. This equation is linear, and therefore it can be solved using a number of well known methods such as Green's functions [START_REF] Duffy | Green's functions with applications[END_REF].

This simplification is called Stokes or creeping flow approximation. Stokes, 1851 used this approximation to work out the drag force experienced by a sphere moving through a viscous fluid. The expression of Stokes drag on a sphere is F drag = 6πµã|V p |, where ã is the particle half length (sphere radius) and V p is the particle velocity. It should be noted that the solutions obtained using Stokes approximation remain valid only in the limit of vanishing fluid inertia, i.e., very small particle Reynolds number, Re p → 0,

where the particle Reynolds number is defined as

Re p = ã|V p |/ν. (1.20)
Although the viscous term dominates in the vicinity of the particle, and Eq. 1.19

remains valid, at lengths proportional to 1/Re p , fluid inertia is no more negligible.

To remedy this, Oseen in 1910 linearized the Navier-Stokes equations while partially retaining the fluid inertia term. For a particle moving with velocity V p through a fluid at rest, Oseen's approximation modifies the Navier-Stokes equations to

V p • ∇u = - ∇p ρ f + ν∇ 2 u.
(1.21) Both Eq. 1.19 and Eq. 1.21 are linear, while only Eq. 1.21 accounts for the inertia of the fluid mobilized by the moving particle. Using Oseen's approximation (Eq. 1.21), [START_REF] Lamb | XV. On the uniform motion of a sphere through a viscous fluid[END_REF] proposed a correction to the Stokes drag force experienced by a sphere moving through a viscous flow. This correction improved the validity Stokes drag force, since the new expression remains valid for particle Reynolds number Re p 1.

The development of force and torque models for anisotropic particles followed the same historical path as for spheres. First came models based on the Stokes creeping flow approximation, and finite fluid inertia corrections to those models were proposed later. Oberbeck, 1876 solved the Stokes flow on an ellipsoid, moving parallel to one of its axes through a viscous fluid, to calculate the force and torque acting on it. [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] worked out the expression of Stokes torque on ellipsoids of arbitrary aspect ratio. He showed that the orientation of an ellipsoid follows a particular trajectory depending on the initial condition. Fluid-inertia (Oseen) corrections to force acting on ellipsoids translating with finite particle Reynolds number (Re p = O(1)), are given by [START_REF] Brenner | The Oseen resistance of a particle of arbitrary shape[END_REF]. This work was extended later to include particles of arbitrary shape [START_REF] Brenner | The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers[END_REF]. While the understanding of how fluid inertia affects the translational motion progressed steadily [START_REF] Brenner | The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers[END_REF][START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF], the role of fluid inertia on rotational dynamics of anisotropic particles remained poorly understood. The seminal contribution of [START_REF] Cox | The steady motion of a particle of arbitrary shape at small Reynolds numbers[END_REF] generalized the work by [START_REF] Brenner | The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers[END_REF] to propose the expression of fluid-inertia torque for sphere-like particles. [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] used the method of matched asymptotic expansion to work out the expression of the force and torque acting on a slender body, with a large aspect ratio between the long axis and the transverse direction.

It is only very recently that Dabade, Marath, and Subramanian, 2015 obtained the expression of fluid-inertia torque on ellipsoid of arbitrary shape by solving Oseen's equation using generalized reciprocal theorem [START_REF] Leal | The motion of small particles in non-Newtonian fluids[END_REF][START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]. Since ellipsoids can represent a wide variety of non-spherical particles, ranging from needle-like to plate-like, the work by [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF] an important development towards understanding how fluid-inertia affects the motion of anisotropic particles. The expression of fluid-inertia torque proposed by Dabade, Marath, and Subramanian, 2015 provides a very important extension of the work of Cox, 1965 , valid in the spherical limit, and also of the results of [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] , derived in the slender body limit, i.e., when the ratio between the semi-axes of the ellipsoids is large.

Effect of fluid inertia on settling orientation

In the absence of gravity, a stationary anisotropic particle remains motionless in a quiescent fluid. The absence of particle motion ensures that the orientation also remains fixed at its initial value. On the other hand, we expect orientation of anisotropic particles to be random in a turbulent flow in the absence of gravity. Introduction of gravity however breaks this symmetry, this forces the particle to settle with a preferred orientation that depends on particle Reynolds number, and interestingly also on particle volume fraction. The experimental work of [START_REF] Herzhaft | Experimental investigation of the sedimentation of a dilute fiber suspension[END_REF] showed that fibers in a dilute suspension, moving at a very low particle Reynolds number (Re p ≤ 10 -3 ), align such that their axis of symmetry is parallel to gravity. Also, Salmela, Martinez, and Kataja, 2007 experimentally studied dilute and semi-dilute suspension of fibers and concluded that fibers settle horizontally in the dilute suspension at Re p ≥ 0.5.

However with the increase in fiber volume fraction, fibers tend to settle vertically.

The authors identify collision between fibers as the mechanism responsible for destabilizing the stable horizontal orientation. Experiments on falling cylinders conducted by [START_REF] Jayaweera | The behaviour of freely falling cylinders and cones in a viscous fluid[END_REF][START_REF] Jayaweera | The behaviour of freely falling cylinders and cones in a viscous fluid[END_REF][START_REF] Bragg | The free fall of cylinders at intermediate Reynold's numbers[END_REF][START_REF] Bragg | The free fall of cylinders at intermediate Reynold's numbers[END_REF] showed that cylinders with particle Reynolds number Re p ≥ 0.1 fall with their maximum drag orientation (horizontal). For a non-spherical particle settling in a quiescent fluid with finite particle Reynolds number, rotation towards the stable horizontal position can only be a consequence of the torque originating from the fluid perturbed due to particle settling. Theoretical work [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF][START_REF] Klett | Orientation model for particles in turbulence[END_REF][START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF][START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF], and resolved-particle numerical simulations [START_REF] Feng | Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation[END_REF][START_REF] Jiang | Inertial torque on a small spheroid in a uniform flow[END_REF]) also point towards the horizontal settling of non-spherical particles. It is worth mentioning that the studies that used only Stokes (Jeffery's) torque to model the rotational dynamics concluded that the ellipsoids settle with their narrow edge [START_REF] Marchioli | Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow[END_REF][START_REF] Gustavsson | Tumbling of small axisymmetric particles in random and turbulent flows[END_REF][START_REF] Siewert | Orientation statistics and settling velocity of ellipsoids in decaying turbulence[END_REF][START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF], which is contrary to broadside settling of anisotropic particles in a quiescent fluid.

Given how (seemingly) weak fluid inertia (Re p 1) has a profound influence on the settling orientation of anisotropic particles, it is essential to validate the fluid-inertia torque expressions given by [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF][START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF][START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF][START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF]. A recent numerical study by [START_REF] Jiang | Inertial torque on a small spheroid in a uniform flow[END_REF] Chapter 2

Effect of fluid inertia on fibers settling in two-dimensional synthetic turbulence

Until recently, several studies assumed that the motion of anisotropic particles could be described using Stokes approximation if the particle Reynolds number, defined based on particle half length and the slip velocity, remained sufficiently small, i.e., Re p ∼ 1 [START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF].

These studies concluded that ellipsoids settle with their narrow edge first, i.e., the minimum drag orientation. However, Lopez and Guazzelli, 2017 reached the opposite conclusion from their experiments on fibers settling in a cellular flow at Re p = O(1).

Their results, both experimental and numerical, show that fluid inertia played the dominant role in determining the settling orientation at Re p = O(1), and fibers settled with their maximum drag orientation. As mentioned in the previous chapter, the motivation behind this work is to understand how fluid inertia affects the settling orientation of anisotropic particles. To this end, the work of Lopez and Guazzelli, 2017 serves as a rational starting point. We build on this work to understand the role of fluid inertia towards the settling orientation of fibers in a turbulent flow. For this purpose, we generate a two-dimensional turbulent flow using kinematic simulation.

The motion of fibers is simulated using the model given in [START_REF] Lopez | Inertial effects on fibers settling in a vortical flow[END_REF] In other words, we replace the cellular flow used by Lopez and Guazzelli, 2017 with two-dimensional synthetic turbulence (kinematic simulation). This work, done at

Chapter 2. Effect of fluid inertia on fibers settling in two-dimensional synthetic turbulence the beginning of my PhD project, started with the synthetic method of generating turbulent flows, namely kinematic simulations (discussed in section 1.1.2). It provides a way to perform long simulations at a moderate cost. As we will show in section 4.4.1, the results obtained with kinematic simulation agree very well with those obtained using full direct numerical simulation of the Navier-Stokes equations.

Fiber equations of motion

The Stokes force acting on a cylinder of very large aspect ratio was initially derived by [START_REF] Batchelor | Slender-body theory for particles of arbitrary cross-section in Stokes flow[END_REF] in his slender-body theory. For a cylinder with finite aspect ratio (β), [START_REF] Cox | The motion of long slender bodies in a viscous fluid Part 1. General theory[END_REF] determined the force exerted on the cylinder as an expansion on 1/ log β to include the finite size correction. In the Stokes limit, a body translating through a quiescent fluid without any angular motion does not experience any torque, and therefore maintains its initial orientation. [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] included the effect fluid inertia to calculate the force and torque acting on a cylinder. They used matched asymptotic expansion to match the viscosity dominated inner flow with Oseen's approximation for the outer region. A simplifying modification to the model of [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] was introduced in Lopez and Guazzelli, 2017. They linearized the force model of [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF]. Specifically, they determine the force acting on a cylinder at particular orientation by interpolating between the forces at minimum and maximum drag orientations, where the forces at minimum and maximum drag orientations are calculated from the non-linear force model of [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] This linearization significantly reduces the computational cost.

We consider here fibers of length 2ã and of radius a with sufficiently large aspect ratio (β = ã/a 1), see Fig. 2.1. Three dimensionless numbers characterize the dynamics of fibers in a turbulent flow.

• The fiber Reynolds number, it is defined based on the fiber half length ã and the reference settling velocity of the fiber in a quiescent fluid, W s ,

Re p = ãW s ν , (2.1)
where ν is the kinematic viscosity of the fluid. • The fiber Reynolds number based on the local shear, i.e., a measure of convective fluid inertia due to the local shear,

Re s = ã ã τη ν = ã2 1/2 ν 3/2 , (2.2)
where τ η is the smallest time scale of the flow, known as the Kolmogorov time scale, and is the energy injection rate.

• The Stokes number, it is defined as the ratio between the fiber response time, τ p , and smallest time scale in the flow,

St = τ p τ η = 1 3 ρ p ρ f ã2 log β ντ η , (2.3) 
where ρ p and ρ f are the particle and the fluid densities, respectively.

For very small fibers (ã < η), both St and Re s are very small, therefore particle inertia and the local shear play only a negligible role. This allows us to use the over-damped dynamics and write the fiber velocity, V, as the sum of the local fluid velocity, U, and the fiber settling velocity in a quiescent fluid, W. It should be pointed out that this simple representation of particle velocity in only valid in the limit of St→ 0. For particles with finite St, one must use the forces and torques acting on the particle to simulate its motion. The fiber velocity in the limit St→ 0 reads

V = U + W. (2.4) turbulence
The velocity of the settling fiber in a quiescent fluid is a function of its orientation;

the expressions are taken from Lopez and Guazzelli, 2017,

W y = -W s cos θ sin θ G y (β, Re p ), (2.5 
)

W z = -W s (1 + sin 2 θ) G z (β, Re p , θ), (2.6)
where the fiber reference settling velocity is given as

W s = (ρ p -ρ f )a 2 g log β/(4µ).
The functions G y and G z in Eq. 2.5 and Eq. 2.6 are the corrections that account for the finite size of the fiber, and the fluid-inertia effects; their expressions (from Lopez and Guazzelli, 2017) are provided in Eq. 2.11 and Eq. 2.12, respectively.

Since we are dealing with tracer fibers, rotational dynamics also follows the overdamped approximation. The rotational velocity of the fiber is determined from the following contributions, 1. the velocity gradient tensor, Ω 0 , 2. inertia of the fluid mobilized by the settling fiber, Ω 1 and 3. the local shear, Ω 2 .

The contribution of the local shear is a function of Re s , which scales as ã2 , whereas

Re p scales as ã. Therefore Ω 2 is expected to be negligible as compared to Ω 1 for small fibers. Then the expression for the angular velocity reads

θ = Ω 0 + Ω 1 . (2.7)
Fiber rotation in a shear follows the so-called Jeffery orbits. The exact expression of torque that governs the rotation rate of ellipsoids in a shear flow was derived by [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF]. A tracer ellipsoid rotates with the rotation of the flow, which is equal to half of the vorticity. In addition, anisotropy in the shape of the ellipsoid allows the local fluid strain to play a role. To what extent the strain rate affects the rotation of the ellipsoid is determined by its shape factor, Λ. The contribution of the velocity gradient tensor towards the angular velocity of tracer ellipsoid is

Ω 0 = 1 2 ∇ × U + Λn × (E ∞ • n), (2.8)
where E ∞ is the rate of strain tensor and n is a unit vector aligned with the axis of symmetry of the ellipsoid. The shape factor for an ellipsoid of aspect ratio β is defined as

Λ = (β 2 -1)/(β 2 + 1).
(2.9)

The expression for the contribution of the fluid-velocity gradient tensor towards the angular velocity of tracer ellipsoids (Eq. 2.8) can be used for fibers with an appropriate shape factor. For cylindrical fibers, the shape factor in Eq. 2.9 takes the following form [START_REF] Mason | Particle motions in sheared suspensions: orientations and interactions of rigid rods[END_REF],

Λ fiber = (β 2 e -1)/(β 2 e + 1), (2.10) 
where β e = 0.8β.

Inertial corrections

Lopez and Guazzelli, 2017 use the following functional form for the inertial and finite size corrections; they are based on [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF],

G y (β, Re p ) = 1 + 1 log β [F ⊥ (Re p ) -2F (Re p )],
(2.11)

G z (β, Re p , θ) = 1 + 1 log β [F ⊥ (Re p ) -2F (Re p )] sin 2 θ -F ⊥ (Re p ) 1 + sin 2 θ , (2.12 
) In the limit of very small Re p , the corrections reduce to

Ω 1 = - 3 4 W s ã 1 log β F G (Re p , α). ( 2 
G y (β) = 1 + 1 log β ln 4 - 5 2 , (2.14) G z (β, Re p , θ) = 1 + 1 log β ln 4 - 1 + 5 sin 2 θ + Re p 2(1 + sin 2 θ) , (2.15 
)

Ω 1 = 5 16 1 log β W s ã Re p sin(2α).
(2.16)

Results

We pointed out in Chapter 1 that the studies that did not take into account the contribution of fluid-inertia torque arrived at the conclusion that anisotropic particles settle with their narrow edge first [START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF]. Lopez and Guazzelli, 2017 on the other hand observed in their cellular flow that the seemingly weak fluid inertia (Re p = O(1)) caused their fiber to settle horizontally. We are interested in investigating the role of fluid inertia in determining the settling orientation of fibers in turbulence. To this end, we generate a two-dimensional turbulent flow in a square domain at flow Reynolds number Re = (L/η) 4/3 = 64 using kinematic simulation. The wave vectors k n in Eq. 1.9 are forced to have integer components to ensure periodicity. The particles exiting from one side of the box are re-injected from the opposite side due to periodic boundary conditions. It should be highlighted here that the flow configuration remains fixed in all the runs.

The settling orientation of fibers depends on four parameters, 1. fiber reference settling velocity, W s , 2. fiber Reynolds number, Re p , 3. aspect ratio, β and 4. fiber half length, ã.

We see from Eq. 2.13 that the particle length 2a and the aspect ratio β appear as mere scaling factors in the equation. Therefore we fix their values: fiber aspect ratio β = 20 and λ p = ã/L = 5 × 10 -2 , where λ p is the nondimensional length of the fiber. Here we solve for three different values of particle Reynolds number, Re p = [0.5, 1.0, 1.5], and the nondimensional settling velocity, w 0 = W s /U 0 , is varied from 0 to 5, where U 0 is the root mean square (RMS) velocity of the flow, which remains fixed. We point out here that particle Reynolds number, Re p , and nondimensional settling velocity, w o , are varied independently to investigate the parametric variation.

In Fig. 2.3 and Fig. 2.4 we plot the probability distribution function of angle θ, fiber settling with its maximum drag orientation corresponds to θ = 0, see Fig. Although the (turbulent) flow considered here is very different from the cellular flow considered by Lopez and Guazzelli, 2017, the results in both cases indicate that the effect of fluid inertia on the settling orientation of fibers is significant. In fact, the contribution from fluid inertia dominates that angular dynamics so much that even the strong velocity gradients of the turbulent flow are unable to make the settling orientation random. To explore the limit at which one could observe the vertical settling of anisotropic particles in turbulence, as was seen in [START_REF] Siewert | Orientation statistics and settling velocity of ellipsoids in decaying turbulence[END_REF][START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF], we independently vary w o and Re p in the limit of very small Re p . In the limit of vanishing Re p , the contribution of inertial correction to the angular velocity dynamics (Ω 1 ) becomes negligible, therefore the orientation of settling fibers is determined independently by the turbulent velocity gradients. It was seen in [START_REF] Herzhaft | Experimental investigation of the sedimentation of a dilute fiber suspension[END_REF] that the suspension of fibers settled vertically when particle Reynolds was very low (Re p 10 -3 ). We solve for the settling orientation of fibers at three fiber Reynolds number in this limit, Re p = [1 × 10 -6 , 5 × 10 -3 , 5 × 10 -2 ].

In the limit of R p ≈ 0, not only do the most of the fibers settle vertically, but the tendency of vertical settling becomes stronger when w 0 is increased, see Fig. In Fig. 2.6 we extend the range of settling velocity and find that at very low fiber Reynolds number (Re p = 1 × 10 -6 ), increase in fiber-settling velocity results in even larger number of fibers settling vertically. Only at very high settling velocity, the fluid-inertia correction manages to form the peaks near θ ≈ ±π/2 region (red curve in Fig. 2.6a). The inertial correction gains further strength at 5 × 10 -3 , and the peaks move inward (towards θ = 0) when w 0 is further increased. Eventually, at

Re p = 5 × 10 -2 , the two peaks seen for the PDFs in Fig. 2.6b merge, and fibers predominantly settle horizontally.
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Discussion

We have studied the settling orientation of fibers in two regimes of particle Reynolds number, (a) Re p = O(1) and (b) Re p → 0. The results indicate that for a fiber sedimenting with a finite settling velocity, i.e., w o > 1, the settling orientation is horizontal in regime (a) and vertical in regime (b). It can be noticed from Eq. 2.7 that the fiber orientation is determined by the balance between the two contributions Ω 0 and Ω 1 , namely the contributions of the velocity gradient tensor and fluid inertia towards the fiber angular velocity, respectively. We define a parameter R which is the ratio between the two contributions, i.e.,

R = Ω 1 Ω 0 ≈ W s Re p /ã 1/τ η = W 2 s τ η ν = W 2 s ν 1/2 ν 1/2 = w 2 0 Re 1/2 , (2.17)
where w 0 = W s/U 0 is the nondimensional settling velocity, and ∼ U 3 0 /L is the energy injection rate. When R is large, we expect fluid inertia to dominate the settling dynamics, and fibers settle with their maximum drag orientation: regime (a). On the other hand, our results in regime (b) indicate that the turbulent velocity gradients orient the particle vertically in the absence of any contribution from the fluid inertia, i.e., R 1. However, the expression of parameter R in Eq. 2.17 indicates that the fluid-inertia contribution always dominates for fibers sedimenting with a finite settling velocity (w o > 1) in a turbulent flow (Re 1), i.e., R ∼ w 2 o Re 1/2 1. In other words, regime (b) cannot be observed in a turbulent flow. It should be noted here that w o and Re p were varied independently to study Re p → 0 regime. This parametric variation is conflicted, essentially, Re p = λw o Re, where λ is the nondimensional length of the fiber. Therefore, at finite settling velocity (w o > 1) in a turbulent flow (Re 1), Re p cannot be very small, and must be finite, and consequently fibers settle horizontally.

The trend seen in regime (b), see Fig. 2.5 and Fig. 2.6, therefore corresponds to a formal nonphysical limit.

Based on the discussion in this section we draw the following conclusions 1. fiber orientation in a turbulent flow is random in the limit of w 0 → 0, irrespective of the particle Reynolds number, 2. fluid-inertia corrections play an important role even at low particle Reynolds number (Re p = O(1)),

3. vertical settling of fibers cannot be observed in a turbulent flow.

The settling of fibers has been extensively studied in the literature. This can be attributed to the availability of models [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF][START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF], and also to the engineering and environmental importance of the problem. In the following chapters, we will extend our analysis to ellipsoids, which provide a more general representation of both elongated and flat particles.

Chapter 3

Equations of motion for ellipsoids moving in a viscous fluid

Our primary focus in this thesis is to study the effect of the torque induced by fluid inertia on the settling orientation and the collision statistics of anisotropic particles. In the previous chapter, the role of fluid inertia was analyzed for tracer fibers settling in a two-dimensional turbulent flow. To understand the effect of fluid inertia on a wide variety of anisotropic particles, we study the motion of heavy prolate (needle-like)

and oblate (plate-like) spheroids in three-dimensional turbulence. We outline here the translational and rotational equations of motion for an ellipsoid. In the second part of the chapter, we discuss the results of an ongoing experiment that attempts to validate the fluid-inertia torque expression used in this work [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF].

Equations of motion

The ellipsoids under consideration are shown in Fig. 3.1; the lengths of three semi-axes is a, a and aβ. In our convention, prolate ellipsoids have aspect ratios larger than 1, i.e., β > 1, and oblate ellipsoids aspect ratios smaller than 1 (β < 1), see Fig. 3.1. We assume that particles are sufficiently small compared to the Kolmogorov length scale, ã/η 1, where ã is half of the particle largest length: ã = aβ for prolate ellipsoids and ã = a for oblate ellipsoids. We assume that ellipsoids under consideration are far denser than the fluid, i.e., ρ p /ρ f 1. As mentioned earlier, the Stokes drag acting on ellipsoids was determined by Oberbeck, 1876, and the fluid-inertia (Oseen) correction to the Stokes drag in the limit of Re p 1 was provided by [START_REF] Brenner | The Oseen resistance of a particle of arbitrary shape[END_REF]. The equation of motion describing the displacement of the center of mass of the ellipsoids then reads

dV dt = g + 6πµã m p M St • (U -V) + 1 m p 9π 8 ρ f ã2 |U -V|M I • (U -V), (3.1) 
where g is gravity, m p = (4/3)πa 3 βρ p is the mass of the ellipsoid and U = U(x(t), t)

is the undisturbed fluid velocity at location x(t) of the particle at time instant t. The second term in Eq. 3.1 is the Stokes drag for ellipsoids. The Stokes drag tensor, M St , takes into account the anisotropy of the particle,

M St = X A nn + Y A (I -nn), (3.2)
where I is the identity matrix, X A and Y A are the drag coefficients in the direction parallel and perpendicular to the axis of symmetry (n), respectively; their values depend only on shape (β) of the ellipsoid. Their expressions, for both prolate and oblate ellipsoids, can be found in section B.1. The third term on the right hand side of Eq. 3.1 represents the fluid-inertia contribution to the force. The tensor M I is given as

M I = [3X A -(X A cos 2 α + Y A sin 2 α)]X A nn + [3Y A -(X A cos 2 α + Y A sin 2 α)]Y A (I -nn), (3.3)
where the pitch angle α is the angle between the particle slip velocity W(= V -U),

and the orientation vector, n,

α = cos -1 W • n |W| . (3.4)
For prolate ellipsoids, the pitch angle , α, takes the values of 0 and π/2 for minimum and maximum drag settling orientations, respectively. Whereas for oblate ellipsoids, α = π/2 for minimum and α = 0 for maximum drag settling orientations. The angular dynamics is modeled using the same approach adapted by [START_REF] Lopez | Inertial effects on fibers settling in a vortical flow[END_REF][START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF][START_REF] Gustavsson | Effect of particle inertia on the alignment of small ice crystals in turbulent clouds[END_REF] the torque acting on the ellipsoid (far denser than the carrier fluid) is the sum of Jeffery torque, and the torque due to the fluid inertia, which a particle would experience while settling in a quiescent fluid [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF]. Then the torque (T) experienced by a settling ellipsoid is expressed as

T = TSt + TI , (3.5)
where TSt is the Stokes (Jeffery) torque and TI is the fluid-inertia torque. The quantities written under hat ( ˆ) are expressed in the coordinate system attached to the particle. The angular equation of motion in the coordinate system attached to the ellipsoid reads

Î dω dt = T -ω × ( Î • ω), (3.6)
where Î is the ellipsoid moment of inertia, and ω is the ellipsoid angular velocity. The second term on the right hand side of Eq. 3.6 is the contribution from the non-Galilean nature of the particle coordinate system [START_REF] Beer | Vector mechanics for engineers[END_REF].

The angular equation of motion given in Eq. 3.6 in vector form is given as

d dt       ωx ωy ωz       =       Txx / Îxx Tyy / Îyy Tzz / Îzz       +       ωy ωz Îyy-Îzz Îxx ωz ωx Îzz-Îxx Îyy ωx ωy Îxx-Îyy Îzz       . (3.7)
The Stokes torque in Eq. 3.5 is the torque experienced by an ellipsoid due to the local velocity gradients. The Stokes torque is given by [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] as

TSt = 16 3 πµa 3 β       1+β 2 α 0 +β 2 γ 0 0 0 0 1+β 2 α 0 +β 2 γ 0 0 0 0 1 α 0             1-β 2 1+β 2 Ŝzy + ( Ωzy -ωx ) β 2 -1 1+β 2 Ŝxz + ( Ωxz -ωy ) Ωyx -ωz       , (3.8)
where S and Ω are the symmetric and the anti-symmetric part of the velocity gradient tensor, respectively, and ω is the ellipsoid angular velocity expressed in the coordinate system attached to the ellipsoid. The parameters α 0 and γ 0 are dimensionless, and depend only on the shape (β) of the particle; their expressions are given in section B.1.

A particle settling in a quiescent fluid experiences a torque due the fluid mobilized by the particle. For ellipsoids of arbitrary aspect ratio (β), the fluid-inertia torque is determined recently by [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF]. It reads

T I = -ρ f |U -V| 2 ã3 F (e) W |W| • n W |W| × n , (3.9)
where ã is half of the largest length of the ellipsoid, and F (e) is a dimensionless parameter that depends only on particle shape; its expressions for prolate and oblate ellipsoids are given in section B.1. The variation of function F (e) is plotted in Fig. 3.2 for both prolate and oblate ellipsoids. Particle ellipticity, e, is defined as e = 1 -(1/β) 2 for prolate and e = 1 -β 2 for oblate ellipsoids.

It should be mentioned here that the expression for the fluid-inertia torque acting on an ellipsoid, given in Eq. 3.9, agrees very well with the expressions derived for nearly spherical particles (β → 1) by [START_REF] Cox | The steady motion of a particle of arbitrary shape at small Reynolds numbers[END_REF] It can be seen from Eq. 3.1 that the fluid-inertia correction to force (third term on the right hand side) varies as ã2 where the Stokes drag (second term on the right hand side) varies with ã. Therefore, the contribution from the Stokes drag dominates the translational dynamics. Whereas both torques, namely Stokes (Jeffery's) torque in Eq. 3.8 and fluid-inertia torque in Eq. 3.9, have the same dependence on particle size (∝ a 3 ). Their relative importance is crucial in determining the orientational dynamics of settling anisotropic particles.

Here we bring the reader's attention to the fact that the equation of motion for the translational motion of the center of mass of the ellipsoids is expressed in the laboratory coordinate system, see Eq. 3.1. In contrast, the equation of angular dynamics, Eq. 3.6, is expressed in the particle frame of reference. In fact, both the force and the torque acting on the ellipsoid are expressed more naturally in the frame of reference of the particle. For example, coefficients of the Stokes drag acting on an ellipsoid moving parallel (V n) and perpendicular (V ⊥ n) to its axis of symmetry are simply is X A and Y A , respectively. Similarly, the angular resistance tensor in the expression of Stokes torque given in Eq. 3.8 is diagonal because the torque is expressed in the coordinate system attached to the ellipsoid. However, the Stokes resistance tensor, M St , takes a complex form when expressed in the laboratory frame of reference, see Eq. 3.2. The same argument follows for M I . The reason for expressing the translational motion in the laboratory coordinate system is that the velocity vector is more comprehensible in the laboratory frame of reference. For instance, for a particle settling under gravity, we expect the velocity vector in laboratory frame of reference to be dominant along the direction of gravity. Alternatively, linear velocity expressed in the frame of reference of the ellipsoid would lead to a somewhat difficult to understand expression. It so happens that the opposite is true for the angular motion. For example, the spin and the tumbling motion of an ellipsoids can easily be differentiated if the angular velocity of the particle is expressed in the frame of reference attached to the particle.

When needed, information from one frame of reference can transformed to the other frame of reference. A tensor A and a vector B, expressed in the laboratory coordinates, can be transformed in the particle coordinate system through transformations

 = RAR -1 , and B = RB, (3.10)
where R is the rotation matrix between the two coordinate systems. The use of Euler angles to calculate the rotation matrix (R) sometimes leads to singular matrix operations, otherwise referred as the "Gimbal lock" problem [START_REF] Evans | Singularity free algorithm for molecular dynamics simulation of rigid polyatomics[END_REF].

To avoid such problems, we used quaternion algebra to calculate the rotation matrices, the details are given in section B.2.

Experimental validation of fluid-inertia torque expres-

sion by [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF] This section discusses the experimental results obtained (so far) to establish the validity of the torque expression of Dabade, Marath, and Subramanian, 2015. The work is being completed and the manuscript is in preparation [START_REF] Cabrera | Orientation of fibers settling in a quiescent viscous fluid: effect of fluid inertia torque[END_REF]. This work was done in collaboration with F. Cabrera, A. Naso, N. Plihon, A. Pumir and M.

Bourgoin. The project grew out of the discussions with the fellow doctoral candidate F. Cabrera. In this experimental work, I guided the planning of the experiments; I was also involved in the analysis of the obtained results.

Dabade, Marath, and Subramanian, 2015 recently solved the Oseen's equations using a generalized reciprocal theorem to determine the expression of fluid-inertia torque on ellipsoids of arbitrary aspect ratio. Before this, the problem of fluid-inertia torque was only solved in the extreme limits of either slender body [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF][START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF], or for nearly spherical particles [START_REF] Cox | The steady motion of a particle of arbitrary shape at small Reynolds numbers[END_REF]. The value of density ratio for the fluid we used is ρ p /ρ f ≈ 12. In our experimental setup we use two orthogonally placed camera to record the orientation of settling fiber in our rectangular tank. To avoid any transient effects in our data, fiber is allowed to to relax before its orientation signal is recorded. More details on the experimental setup, measurement methods, and post processing of the recorded position and orientation signals will be presented separately (Cabrera et al., 2021, in preparation). It should be mentioned here that the corrections due to added mass effect and Basset history term, are also known to play a role in the limit of ρ p /ρ f 10.

Results

We assume that the torque acting on the settling fiber is the sum of the fluid-inertia torque and the viscous (Jeffery) torque. This approach was also adapted by [START_REF] Klett | Orientation model for particles in turbulence[END_REF][START_REF] Lopez | Inertial effects on fibers settling in a vortical flow[END_REF][START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF][START_REF] Sheikh | Importance of fluid inertia for the orientation of spheroids settling in turbulent flow[END_REF][START_REF] Gustavsson | Effect of particle inertia on the alignment of small ice crystals in turbulent clouds[END_REF]. Also, the motion of the settling fiber remains planar, i.e., angle between the orientation vector n and the plane of motion does not exceed 2.5 • . Since the settling fiber stays in a plane, the fiber displays only one degree of freedom in rotation. The equation of angular motion for the fiber then reads

I p θ = T I + T St , (3.11) 
Where T I and T St are the fluid-inertia and the Stokes torques given in Eq. 3.9 and Eq. 3.8, respectively. We first evaluate the expression of fluid-inertia torque for fiber settling in a plane. The slip velocity, |U -V|, in Eq. 3.9 is replaced with W, which is fiber slip velocity with respect to the (quiescent) fluid. Because the velocity vector, W, and orientation vector, n, are in the same plane, we can replace (W • n)/|W| with cos α and (W × n)/|W| with sin α, where α is the angle between fiber velocity and fiber axis of symmetry, see Fig. 3.3. The expression for T I then reads,

T I = -ρ f ã3 F (e)|W| 2 sin α cos α = C I |W| 2 sin α cos α. (3.12)
where C I has units of mass. Similarly, we evaluate the expression for T St from Eq. 3.8.

The z-component of T St is along n, i.e., the spin direction, which is irrelevant for the current analysis. In the absence of a flow, T St (in Eq.3.8) for a planar motion reduces to

T St = 16 3 πa 3 β 1 + β 2 α 0 + β 2 γ 0 (-θ) = -C D θ, (3.13)
where C D has units of mass× length 2 ×time -1 . Essentially, the Stokes torque expression in Eq. 3.13 is the retarding moment applied by the viscous fluid to resist the angular motion of the fiber. Then Eq. 3.11 reads (3.14) where I p = (1/6)πρ p a 5 β(3 + 4β 2 ) is the fiber moment of inertia, C I and C D are parameters of fluid inertia and damping torques, respectively.

I p θ = C I |W| 2 sin α cos α -C D θ,
In Fig. 3.4 we plot the variation of fiber angle θ with time. We see from the figure that the settling fiber orients itself towards the stable horizontal orientation, i.e., θ = 0 • .

Time is normalized by the particle response time, defined as

τ p = 2 9ν ρ p ρ f a 2 Y A , (3.15)
where Y A is the fiber drag coefficient in the direction orthogonal to the axis of symmetry, n, see Fig. 3.3. The expression for the particle response time in Eq. 3.15 is derived from the Stokes drag term in Eq. 3.1. We have color coded each realization with its particle Reynolds number, Re p , defined based on the fiber half length (ã) and the average fiber velocity for each realization. As expected, fiber velocity is higher in vertical orientation which then leads to higher values of Re p . In the limit of vanishing particle inertia, i.e., τ p → 0, fiber angular dynamics can assumed to be overdamped. Fig. 3.5 shows the ratio between fiber angular acceleration (I p θ) and the viscous resistance torque (C D θ) experienced by the fiber for each realization.

The figure shows that the fiber acceleration is sufficiently small when compared to We see from Fig. 3.6 that the experimental results agree qualitatively and semiquantitatively with the predictions of Dabade, Marath, and Subramanian, 2015, plotted using black dashed in the figure. Specifically, the torque model in Eq. 3.14 works well for fiber settling horizontally, i.e., θ → 0 and α → 90 • . On the other hand, our measurements suggest that the experimental measurements tends to slightly deviate when fiber is settling vertically (α → 0). Surprisingly, we find that the amplitude of the torque measured experimentally is very close to the amplitude predicted theoretically. This contrasts with the results of [START_REF] Jiang | Inertial torque on a small spheroid in a uniform flow[END_REF], who find numerically a weaker torque than predicted theoretically. This difference remains to be understood.

Overall, the expression of torque proposed by Dabade, Marath, and Subramanian, 2015 captures qualitatively (and semi-quantitatively) very well the fluid-inertia torque.

In the coming chapters we will use the expression of Dabade, Marath, and Subramanian, 2015 to include the fluid-inertia effects on the rotational dynamics of ellipsoids settling in three-dimensional turbulence. It should be pointed out here that the results discussed in this chapter are only a part of the ongoing experiments by F. Cabrera.

Currently, experiments are being conducted for fibers of aspect ratio β = 8 so that the validity of the fluid-inertia torque expression (by [START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF] could be established closer to the spherical limit, i.e., β → 1.

In the following part of the work, we restrict ourselves to ellipsoids in a threedimensional turbulent flow. The transport of ellipsoids is simulated using the equations of motion provided in section 3.1.

Chapter 4

Orientation of ellipsoids settling through a flow: general analysis and results in three-dimensional turbulence

The motivation behind this work is to understand how fluid inertia affects the orientational dynamics of settling anisotropic particles in turbulence. To this end, we investigate here the settling motion of ellipsoids in a three-dimensional turbulent environment. Ellipsoids provide a simple representation of a wide variety of anisotropic particles ranging from needle-like to plate-like particles. In this chapter we study the motion of the settling ellipsoids in both synthetic turbulence and the turbulence generated using direct numerical simulation. Before we proceed to the results, we evaluate the relative importance of the two torques that determine the orientation of the settling ellipsoid, i.e., the torque due to fluid inertia and the Stokes torque, see Eq. 3.7. A similar exercise was performed in section 2.3. The ratio between the two torques alone determines the orientation of the settling ellipsoid.

Relative importance of fluid-inertia torque to Stokes torque

The analysis in this section is part of the article "Importance of fluid inertia for the orientation of spheroids settling in turbulent flow", published in the Journal of Fluid Mechanics [START_REF] Sheikh | Importance of fluid inertia for the orientation of spheroids settling in turbulent flow[END_REF]. This work was done in collaboration with K. 

TI,z TSt,z ∼ 5W 2 s β 2 16νs(log β) 2 , (4.2)
where s represents the angular slip velocity |Ω -ω| or the local velocity gradients.

Since we are interested in the settling particle, the magnitude of the linear slip velocity, |U -V|, is approximated with a reference settling velocity (W s ) in the estimates given in Eq. 4.1 and Eq. 4.2. In these estimates for prolate ellipsoids (β 1), we approximate F as 1, see Fig. 3.2. It should be noted that only terms in Eq. 4.1 are responsible for change in orientation, Eq. 4.2 represents spin along the axis of symmetry of the particle, therefore it is irrelevant for our analysis. Since we are interested only in the order magnitudes, we do not consider the factor 5/8 in Eq. 4.1.

Also, for the applications we have in mind, the aspect ratio of prolate ellipsoids varies from approximately 5 to 100. Over this range of parameters, the value of log β does not change very much, and remains of O(1) for the purpose of our analysis. For β → 0, factor F in the Eq. 4.4 approaches to 2.37, see Fig. 3.2. This allows us to take, for the purpose of the present analysis, 3F/32 ∼ 1 in Eq.4.4. This leads to:

T TSt oblate ∼ W 2 s νs . (4.5)
The ratio between the two torques for prolate and oblate ellipsoids, Eq. 4.3 and Eq. 4.5, differ only by the 1/ log β factor, which, as stated earlier, is O(1) over the range of parameters considered here. Therefore we drop the 1/ log β from the Eq. 4.3 and name the common ratio R, which is defined as

R ∼ |T I | |T St | ∼ W 2 s νs ∼ |V -U| 2 ν|Ω -ω| , (4.6) 
where we recall that V -U and Ω -ω are linear and angular slip velocities of the ellipsoid, respectively. We have learned that for Re p = O(1), role of fluid inertia torque is to orient the sedimenting anisotropic particle so that it settles with its maximum drag orientation. Therefore when R 1, torque due to fluid inertia dominates, and we expect ellipsoids to settle with their broadside. Alternatively, we expect the settling ellipsoid to orient either with its narrow edge or randomly (in a turbulent flow) when R 1. In the following we attempt to estimate R for laminar and turbulent flows.

Laminar flows

We take the cellular flow, studied by Lopez and Guazzelli, 2017, as an example of a laminar flow. The magnitude of the velocity gradient, s, in Eq. 4.6, can be estimated as s ∼ U 0 /L, where U 0 and L are the characteristic velocity and length scale of the cellular flow. This leads to

R ∼ W 2 s sν ∼ W 2 s L νU 0 ∼ W s U 0 2 Re, (4.7)
where Re is the Reynolds number of the laminar flow.

It follows from Eq. 4.7 that a sufficiently small value of the Reynolds number, Re, makes it possible to satisfy both R < 1 and W s /U 0 > 1. Therefore, it is possible to observe, under these conditions, the minimum drag settling orientation predicted in [START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF] Estimation of R in the limit of Re → 0 requires a more careful treatment. If Re = 0 due to the absence of fluid motion, i.e., U 0 = 0, then R → ∞: the torque due to fluid inertia is the only torque acting on the particle in a quiescent fluid, and particles settle with their broad side down. On the other hand, Re= 0 when ν → ∞, i.e., the creeping flow limit: in this case, R → 0 and we expect Stokes torque to govern the angular dynamics. Therefore, these two cases give rise to completely different orientations, although they both formally correspond to the limit of Re → 0.

Turbulent flows

Turbulence gives rise to large velocity and velocity gradient fluctuations. We estimate the turbulent velocity gradients as the inverse of the Kolmogorov time scale, τ η ,

s ∼ 1 τ η ∼ 1/2 ν 1/2 ∼ U 0 L Re 1/2 , (4.8)
where U 0 and L are the characteristic velocity and length scales, respectively. Then the expression for R turbulent flows reads

R ∼ W s U 0 2 Re 1/2 ∼ W s u η 2 , (4.9) 
where u η = U 0 Re -1/4 is the Kolmogorov velocity scale. It should be pointed out here that we arrived at the identical expression from the analysis in section 2.3. The expression in Eq 4.9 shows that fluid-inertia torque can be neglected in a turbulent flow (high Re) only when W s /U 0 is small, i.e., no settling. In this limit, particle orientation is determined by turbulent velocity gradients alone, and therefore the orientation distribution is uniform (random orientation). This leads us to the conclusion that the minimum drag settling orientation, predicted by [START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Siewert | Orientation statistics and settling velocity of ellipsoids in decaying turbulence[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF], cannot be observed in a turbulent flow.

We conclude this section by reiterating that the settling orientation of anisotropic particles can be classified in two different regimes, R 1 and R 1. In the former regime, fluid-inertia torque dominates and we expect broadside settling of anisotropic particles, and Stokes torque determines the settling orientation in the latter regime.

For a quick estimation of settling orientation regime, the settling velocity in the expressions of R (Eq. 4.7 for laminar and Eq. 4.9 for turbulent flows) can be estimated as W s ∼ gτ p , where g is the gravitational acceleration and τ p is the particle response time, given as

τ p = 2 9ν ρ p ρ f a 2 Y A and τ p = 2 9ν ρ p ρ f βa 2 X A (4.10)
for prolate and oblate ellipsoids, respectively, where X A and Y A are the drag coefficients along and perpendicular to the axis of symmetry (n), respectively. Their expressions are given in section B.1. The expressions of the particle response times for prolate and oblate ellipsoids in Eq. 4.10 are derived from the translational equations of motion (Eq. 3.1) for ellipsoids.

In the following we numerically test the effectiveness of parameter R, defined in Eq. 4.6, in determining the settling orientation of anisotropic particles in both laminar and turbulent flows.

Two-dimensional cellular flow

The results in this section are a part of the article "Importance of fluid inertia for the orientation of spheroids settling in turbulent flow", published in the Journal of Fluid Mechanics [START_REF] Sheikh | Importance of fluid inertia for the orientation of spheroids settling in turbulent flow[END_REF]. This work was done in collaboration with 

Ellipsoids settling in three-dimensional synthetic turbulence

Here we consider ellipsoids in three-dimensional turbulence. Turbulent flow is generated using kinematic simulation. For the convenience of the reader, we reiterate the definitions (originally defined in section 3.1). The ellipsoids under consideration have semi-axes a, a and aβ. With these conventions, prolate ellipsoids have aspect ratios larger than 1, i.e., β > 1, and oblate ellipsoids aspect ratios smaller than 1 (β < 1), see Fig. 4.2. We assume that particles are sufficiently small compared to the Kolmogorov length scale, ã/η 1, where ã is half of the particle largest length: ã = aβ for prolate ellipsoid and ã = a for oblate ellipsoid. We assume that the ellipsoids under consideration are far denser than the fluid, i.e., ρ p /ρ f 1. 

Results

A three-dimensional turbulent flow in a cube of (2π) 3 is generated using kinematic simulation, see section 1.1.2. The wave vectors, k n , in Eq. 1.9 are forced to have integer values in order to enforce periodicity in the box. The particles leaving the box from on side are re-injected from the opposite side to ensure periodicity. We use 2 7

Fourier modes to generate the flow at Re= 64. We solve for five different values of Stokes number, St= [5 × 10 -4 , 5 × 10 -3 , 0.025, 0.1, 0.4], both for prolate (β = 5)

and oblate (β = 0.02) ellipsoids, where St= τ p /τ η . For the lowest two values of St, the overdamped assumption was used to simplify the equations of motion given in section 3.1, i.e., dV/dt = 0 and dω/dt = 0. This is done to avoid the strict restriction on time step imposed by the CFL number for extremely small values of St [START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF].

As established earlier, in a turbulent flow, the regime R 1 can only be observed in the absence of settling (w 0 = W s /U 0 → 0), which leads to the trivial random orientation. Therefore, here we focus only on regimes R ≈ 1 and R ≈ 10. For an ellipsoid with fixed St, parameter R is varied by varying the non-dimensional measure of gravity called the settling number, Sv= gτ p /u η , where u η = (ν ) 1/4 is the Kolmogorov velocity scale . The settling number relates to R as R ∼ Sv 2 . The local shear effects are ignored due to the small size of the particle, Re s = ã2 /(τ η ν) 1, [START_REF] Candelier | Angular dynamics of a small particle in turbulence[END_REF]. broadside. The analysis indicates that in case of a turbulent flow, the contribution from fluid-inertia torque can only be ignored when W s /U 0 1. However, in this limit the orientation PDF is uniform.

Scaling of orientation variance

Here we explore the scaling relation between the variance of the orientation PDF and the settling number Sv. Klett, 1995 derived the orientation variance scaling for nearly spherical particles. The theory predicts that the orientation variance is proportional to Sv -2 , where Sv= gτ p /u η is the settling number. On the other hand, the overdamped theory, developed by K. Gustavsson and B. Mehlig, with our collaboration, predicts Sv -4 scaling for prolate ellipsoids of very small St [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF].

The theory also calculates the pre-factor, which depends only on the shape of the particle. The simulations to establish the validity of the overdamped theory were performed by K. Gustavsson using the statistical model (section 1.1.2), and also using kinematic simulation (section 1.1.2), which are part of this work. The simulations by K. Gustavsson also indicate a regime change at Sv= O(10 2 ) where scaling follows Sv -2 [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF].

Overdamped theory by [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF] This section outlines the overdamped theory from the article "Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence", published in the New Journal of Physics [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF]. This work was done in collaboration with K. Gustavsson, D. Lopez, A. Naso, A. Pumir and B. Mehlig. I participated in the numerical validation of the theory through the results generated using kinematic simulation.

For prolate ellipsoids with small St, the dynamics is overdamped, i.e., the angular acceleration term (I p θ) is negligible compared to the fluid-inertia and Stokes torque terms. For finite settling, Sv> 1, the characteristic time scale of the angular dynamics of tracer prolate ellipsoids is much shorter than the time scale of the fluid-velocity gradients. That is to say, the restoring (fluid-inertia) torque restores the stable orientation of the prolate particles much faster than the perturbation induced by the fluid velocity gradients. Therefore, the angular dynamics of settling tracer prolate ellipsoids very closely follows the stable horizontal orientation. The expression for the orientation variance of prolate ellipsoid reads

σ 2 nz ≈ σ 2 B (Sv 2 |A|) 2 , (4.11)
where the parameter A is defined in section C.2; it only depends on particle shape, see Fig. 4.5, and σ 2 B is the variance of the element B 12 of the tensor B = Ω+ΛS. The factor Λ is the shape factor for ellipsoids, it was previously defined in Eq. 2.9.

The tensors S and Ω are the symmetric and the anti-symmetric parts of the velocity gradient tensor. 

Scaling of orientation variance in synthetic turbulence

To check the scaling predicted in Eq. 4.11, we solve for prolate ellipsoids at β = 5, in both two and tree-dimensional turbulence generated using kinematic simulation, for For very fast settling (Sv= O(10 2 )), kinematic simulation results do not agree with Sv -2 scaling predicted in [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF]; they used the statistical model, discussed in section 1.1.2, to generate turbulence. Our results, generated using kinematic simulation, display Sv -1 scaling instead, see Fig. 4.6. In order to investigate the dis- , ). Solid black line plots the overdamped theory [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF].

agreement in high Sv scaling obtained by kinematic simulation and by the turbulence model used in [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF], we solve for a single prolate ellipsoid at St= 0.4

and Sv= 500 . We record the two components of the slip velocity (W = V -U), defined as W g = W • ĝ and W q = W • q, where q = (n -n z ĝ)/|n -n z ĝ|. At very high Sv, we expect the ellipsoid motion to be nearly one-dimensional: settling along gravity. This allows us to approximate the velocity of the ellipsoid as a sum of the settling velocity in quiescent fluid and the fluid velocity experienced by the ellipsoid, i.e.,

V z = -W g + N k i=1 A i,z sin(k i,z Z(t) + ω i t) = -W g + N k i=1 A i,z sin([k i,z V z + ω i ]t). (4.12)
The angle (k i,z V z + ω i )t in Eq. 4.12 is expected to vary at very high frequency due to a very large settling velocity, V z . Therefore a rapidly falling ellipsoid in kinematic simulation experiences the Doppler effect due to the higher frequency waves of the flow. To further understand it, we plot the correlation functions of signals W g (t) and W q (t), with two time-independent flow configurations, i.e., ω i = 0 in Eq. 4.12. In the first configuration we generate the flow with all the N k Fourier modes, and in the second configuration, the flow is generated with half the Fourier modes, corresponding to the lowest wave numbers, and dropping the highest wave numbers. scaling predicted using the statistical model for turbulence in [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF] The reason is that the time scale of the rapidly falling particle through the simulation box is very small as compared to the decorrelation time scale of the flow. In other words, the falling particle will be re-injected repeatedly, and will keep experiencing the same flow, thus will lead to erroneous statistics. Kinematic simulation is a widely used method for generating synthetic turbulence;

U = N k i=1 A i sin(k i • x + ωit) 0 0.05 0.1 0.15 0.2 -0.5 0 0.5 1 gg ( ) U = N k 2 i=1 A i sin(k i • x + ωit)
it is very effective in generating highly turbulent flows at very low numerical cost.

However, we see from our analysis that kinematic simulation can give rise to unrealistic oscillations in the velocity of rapidly falling particles. The problem had in fact been identified in earlier kinematic simulation studies [START_REF] Favier | On space and time correlations of isotropic and rotating turbulence[END_REF]. Therefore, in the next section, we discuss the results generated using direct numerical simulation (DNS) and compare our findings.

Settling of ellipsoids in direct numerical simulation of turbulence

As discussed in section 1.1.2, kinematic simulation generates synthetic turbulence by superposition of random Fourier modes, which leads to a random Gaussian velocity field. As a result, the small scale statistical properties of the velocity field generated using kinematic simulation are different from those of the solutions of the Navier-Stokes equations, i.e., the direct numerical simulation. These differences in the statistical properties of the velocity gradient tensor affect in particular the alignment of the particle with respect to the strain eigenvector [START_REF] Pumir | Orientation statistics of small particles in turbulence[END_REF].

Also, the turbulence models that generate Gaussian local velocity gradients can lead to erroneous orientation statistics for tracer particles [START_REF] Sheikh | Rotational and translational dispersion of fibres in isotropic turbulent flows[END_REF][START_REF] Chevillard | Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence[END_REF]. However, it should be pointed out that the differences in the small scale statistical properties of kinematic and direct numerical simulations are important for particles that are convected by the flow. In contrast, as we show in section 4.4.1, the complex correlation between the strain and the vorticity does not affect the orientational dynamics of heavy particles.

In this section we present the results for the settling orientation of ellipsoids, obtained using direct numerical simulation (DNS). The parameter R, introduced in section 4.1, will be used to understand the role of the two torques, namely Jeffery and fluid-inertia torques. In section 4.4.1 we compare the results obtained using kinematic and direct numerical simulations. We also study the effect of particle Stokes number (St) and ellipsoid shape (β) on the settling orientation of ellipsoids.

Results

The details about the computer code used for the direct numerical simulation are provided in section 1.1.2. A turbulent flow is generated with the energy injection rate of = 100cm 2 s -3 and with the kinematic viscosity of ν = 0.15cm 2 s -1 . The values of energy injection rate and kinematic viscosity are adjusted to ensure adequate resolution so that k max η ≥ 3, where η is the smallest length scale in the flow, known as the Kolmogorov length scale (η = (ν 3 / ) 1/4 ), and k max (= N/3) being the highest wave number. This resolution allows the accurate interpolation of the velocity gradients at the position of the ellipsoids. The flow corresponds to the Taylor Reynolds number of Re λ = 40, where the Taylor microscale is defined as λ = 15U 2 0 ν/ , U 0 is the RMS fluid velocity. The numerical integration of ellipsoid equations of motion (Eq. 3.1 and Eq. 3.7) uses the second-order Runge-Kutta scheme. The particles leaving the box from on side are re-injected from the opposite side to ensure periodicity.

Settling orientation statistics

This section shows the main results in the article "Importance of fluid inertia for the orientation of spheroids settling in turbulent flow", published in the Journal of Fluid Mechanics [START_REF] Sheikh | Importance of fluid inertia for the orientation of spheroids settling in turbulent flow[END_REF]. This work was done in collaboration with K. Gustavsson, D. Lopez, E. Lévêque, B. Mehlig, A. Pumir and A. Naso. From our analysis in section 4.1 we learn that ellipsoids align with their maximum drag orientation when the parameter R is larger than unity. In The results in this section and section. 4.3.1 indicate that the parameter R correctly predicts the dominance of the fluid-inertia torque for anisotropic particles settling in a turbulent flow.

Comparison between kinematic and direct numerical simulations

Here we compare the results from the kinematic simulation in section 4.3.1 and the two DNS runs. The direct numerical simulation results shown previously were obtained at at moderate Reynolds number, Re λ = 40, in Fig. 4.12b we also show the similar results at Re λ = 80. The results indicate a good agreement between kinematic simulation and direction numerical simulations. This is also consistent with the results of Gustavsson et al., 2017, who also observed this agreement between the settling orientation PDFs generated using the statistical model (described in section 1.1.2) and the direct numerical simulation.

The agreement between direct numerical simulation, kinematic simulation and the statistical model calls for an explanation, as the subtle correlations of the velocity gradient tensor in the solutions of the Navier-Stokes equations are ignored by the two models. We attribute this to the fast decorrelation of the velocity gradients experienced by the settling particle. For this reason, the differences in the statistics of velocity gradient tensors of kinematic simulation and direct numerical simulation do not appear to play a significant role in determining the orientation statistics of settling ellipsoids, unlike for buoyant particles.
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Effect of particle inertia and shape

This section discusses the theory that predicts the orientation variance of ellipsoids settling in turbulence. The article "Effect of particle inertia on the alignment of small ice crystals in turbulent clouds", is submitted for publication in the Journal of Atmospheric Science [START_REF] Gustavsson | Effect of particle inertia on the alignment of small ice crystals in turbulent clouds[END_REF]. This work was done in collaboration 
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where f Λ = 1 for prolate and f Λ = 2 for oblate ellipsoid. A (g) and A (p) are the drag coefficients parallel to gravity and in the plane perpendicular to gravity, respectively.

The functions C u , C B and C X are correlation functions of fluid velocity and fluidvelocity gradients, evaluated along the settling trajectories of the particle. Their definitions, along with A (g) and A (p) , are given in section C.4. It should be mentioned here that Eq. 4.13 is obtained without the inertial correction to translational dynamics (third term on the right hand side of Eq. 3.1).

We are interested in understanding the effect of particle inertia (St) and shape (β) on the orientational dynamics of settling ellipsoids. To this end, we consider ellipsoids The direct numerical simulation results are shown with symbols; empty and filled symbols are the results with and without the fluid-inertia corrections to the force acting on the moving ellipsoid (third term on the right hand size of Eq. 3.1). The colored solid lines in Fig. 4.13 are the theoretically predicted tilt-angle variance by Gustavsson et al., 2020 (Eq. 4.13). The black solid line is the overdamped theory given in Eq. 4.11 [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF]. The velocity and velocity gradient correlation functions in Eq. 4.13 (and Eq. 4.11) were analytically calculated by Gustavsson et al., 2020 using statistical turbulence model described in section 1.1.2. It can be seen from Fig. 4.13 that the theory in Eq. 4.13 describes the DNS results very well. For St= [0.11, 0.44], the fluid-inertia corrections to the force acting on the ellipsoid do not appear to play a significant role, except at the extreme vales of the aspect ratio, i.e., β 0.01 and β 100. The particle Reynolds number is at its highest values at the extreme values of β, therefore the fluid-inertia contribution toward the translation dynamics is no longer insignificant.

Chapter 5

Effect of fluid-inertia on the collision statistics of ice crystals

This chapter shows the results from the article "Collision between small oblate ice crystals in mixed-phase clouds", [START_REF] Sheikh | Rotational and translational dispersion of fibres in isotropic turbulent flows[END_REF] to be submitted to the Journal of Atmospheric Science. This work was done in collaboration with K. Gustavsson, E. Lévêque, B. Mehlig, A. Pumir and A. Naso.

Collisions of ice crystals to form larger aggregates plays a crucial role in rain initiation [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF]. The shape of ice crystals in clouds can vary from plate-like to columnar, depending on the temperature [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF][START_REF] Chen | The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition[END_REF]. The anisotropy in crystal shape makes its orientation a very important parameter in the problem. How turbulence affects the collision statistics of small droplets has been studied to great extent [START_REF] Falkovich | Acceleration of rain initiation by cloud turbulence[END_REF][START_REF] Shaw | Particle-turbulence interactions in atmospheric clouds[END_REF][START_REF] Ayala | Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation[END_REF]; review articles are provided by [START_REF] Devenish | Droplet growth in warm turbulent clouds[END_REF][START_REF] Grabowski | Growth of cloud droplets in a turbulent environment[END_REF][START_REF] Grabowski | Growth of cloud droplets in a turbulent environment[END_REF] on the growth of cloud droplets and by Pumir and Wilkinson, 2016 on collision aggregation of particles. The topic of ice crystal collision in turbulent clouds however attracted attention only recently [START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF]. In the previous studies related to ice crystal collision, the fluid-inertia torque was assumed to be negligible for Re p = O(1) [START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF]. However, it was seen in the previous chapters that the torque due to the fluid set in motion by the moving particle plays the dominant role in determining the orientation of anisotropic particles. The profound impact of fluid inertia on the settling orientation of anisotropic particles inspired us investigate the problem of ice-crystal collision in clouds. Specifically, we attempt to understand the different mechanisms that govern the crystal collision in clouds, and how fluid inertia affects the collision statistics of ice crystals. We are particularly interested in mixedphase clouds in the temperature range of -20 • C≤ T ≤ -10 • C [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF][START_REF] Chen | The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition[END_REF], where water vapour, supercooled liquid droplets, and oblate ice crystals coexist.

Collision detection

We study here the geometric collision rate [START_REF] Ayala | Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation[END_REF][START_REF] Grabowski | Growth of cloud droplets in a turbulent environment[END_REF] by ignoring the hydrodynamic interactions between the particles that come close to each other [START_REF] Batchelor | The hydrodynamic interaction of two small freely-moving spheres in a linear flow field[END_REF][START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF][START_REF] Chun | Clustering of aerosol particles in isotropic turbulence[END_REF]. Also, we use "ghost collision" approximation: the colliding particles do not exchange momentum; in a collision event, the trajectories of the colliding particles remain unaffected. These approximations have been widely used in studies related to spherical particles [START_REF] Wang | On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case[END_REF][START_REF] Ayala | Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation[END_REF][START_REF] Grabowski | Growth of cloud droplets in a turbulent environment[END_REF]. [START_REF] Voßkuhle | Multiple collisions in turbulent flows[END_REF] studied the limitation of ghost particle approximation. For spherical particles, their result indicate that the ghost collision approximation leads to an overestimation of collision kernel by up to 15% for tracer particles; however, the extent of overestimation decreases with the increasing particle inertia. The reason behind the overestimation of the collision kernel is that the tracer particles in a vortex filament remain trapped, whereas particles with large inertia are expelled from the high vorticity region, thus, decreasing the chance of multiple collisions between the particles which have already collided.

Even with the simplifying assumptions mentioned above, the anisotropy in particle shape poses a great difficulty in detecting the collision. A collision detection algorithm needs to perform two main tasks. First, it must identify the potential collision pairs,

and second, it must analyze the identified potential collision pairs to conclude if they collide. The identification of potential collision pairs only requires particle positions; therefore, the first task remains unaffected by the shape of the particle. The complexity in collision detection for non-spherical particles lies in the second task where the algorithm needs to account for the anisotropy in particle shape.

Identification of potential collision pairs

For a system with N p particles, the number of collision pairs are proportional to N 2 p .

In a sufficiently large domain (compared to particle size), only a fraction of pairs have a possibility of colliding, i.e., only particles close to one another can collide. To identify the potential collision pairs, we use the "cell linked-list" algorithm, originally developed for molecular dynamics simulations to identify atom pairs within a given threshold distance [START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Haile | Molecular dynamics simulation: elementary methods[END_REF]. [START_REF] Sundaram | Numerical considerations in simulating a turbulent suspension of finite-volume particles[END_REF] proposed the implementation of this algorithm to study the collision of particles in a turbulent flow. This algorithm has recently been used by [START_REF] Siewert | Collision rates of small ellipsoids settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF] 12 that share the edges, and 8 that share the corners. Due to the periodic boundary condition (particle exiting from one face is reinserted from the opposite face), cubes at the edge of domain also have 26 neighbouring cubes. In summary, every particle in each cube is a potential collision partner with every particle in 27 cubes (26 neighbouring and its own). It is understood that the choice of a smaller cube size, L c , decreases the number of potential collision pairs. This reduction can significantly reduce the computational cost since the subsequent step, namely the collision detection for potentially colliding ice crystals, requires several operations to determine if a pair of crystals has collided. However, the size of the particle and the distance travelled by a particle between two time steps prevent the cube size from being arbitrarily small: the cube size must be sufficiently larger than the maximum dimension of the particle (2ã). Also, the cube size must be at least twice as much as the largest distance travelled by any particle in a single time step. This is to ensure that a collision event, between the two particles entering the cube from its neighbour cubes on either side, is not missed [START_REF] Voßkuhle | Multiple collisions in turbulent flows[END_REF]Siewert et al., 2014a), see Fig. 5.1. The figure illustrates that if cube size is small, i.e., L c < 2V max ∆t, where ∆t is the time step, then there is a finite probability that particles that were not neighbours, hence not labelled as potential collision pairs, collide and the collision goes undetected.

Spherical collision test for a potential collision pair of ice crystals

The between the two centers at t d min is larger than the combined radius of the enclosing spheres (show in with dotted lines in Fig. 5.2), i.e., d min > (ã + ã), then a collision event did not take place between the time instants t 1 and t 2 . On ther other hand, if the enclosing spheres overlap, i.e., d min ≤ (ã + ã), see Fig. 5.2b, then collision pair is sent for further processing to second step to determine if a collision event did take place.

Collision detection for potential collision pairs

Once a potential collision pair is identified, and passes the sphere collision test, we use the continuous collision detection algorithm proposed by [START_REF] Choi | Continuous collision detection for ellipsoids[END_REF] to confirm the collision event. Specifically, the surfaces of the two (potentially colliding) ellipsoids H and J are expressed in the forms

Q H (t) = (M -1 H (t)) T •D H •(M -1 H (t)) and Q J (t) = (M -1 J (t)) T •D J •(M -1 J (t)), (5.1) 
where M H (t) and M J (t) are 4 × 4 mobility matrices of ellipsoid H and J, respectively.

They quantify the time varying position and orientation of the ellipsoids. The matrices D H and D J contain the size of ellipsoids H and J, respectively. The definition of mobility (M(t)) and size (D) matrices, along with the a simple method to calculate M -1 (t), are given in section D.1. To detect the collision, a fourth degree polynomial is generated from the surface equations given in Eq. 5.1,

f (λ) = det(λQ H (t) -Q J (t)).
(5.2)

As shown by [START_REF] Choi | Continuous collision detection for ellipsoids[END_REF], the polynomial in Eq. 5.2 always has two positive real roots. Whether the ellipsoids H and J are colliding is determined by the nature of the other two roots of f (λ). The other roots can be either real (negative) or complex. If the other two roots are negative and distinct, the two ellipsoids are separate. In case of complex pair of roots, the ellipsoids are overlapping (" ghost colliding"). The roots take negative and equal value if the ellipsoids are touching externally. It should be pointed out here that the polynomial in Eq. 5.2 it time dependent. The algorithm in

Particle inertia

Unlike tracers, particle with finite inertia (finite St) do not exactly follow the flow.

Therefore, particles with finite St are ejected from the high vorticity regions of the flow due to their inertia. This increases the probability of particles from different parts of the flow to come together and to collide at a high relative velocity, see right panel of Fig. 5.3. To better understand the role of particle inertia, we solve for each run a case in the absence of gravity so that the contribution from the different mechanism can be distinguished. Essentially, in the absence of settling, fluid-inertia torque does not play a role (R = (W s/U 0 ) 2 Re 1/2 ), therefore, the results in the absence of gravity are exactly the same as the ones shown in [START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF].

Results

We consider oblate ice crystals in turbulent flow generated using direct numerical simulation (DNS). The details of the DNS code used here are given in section 1.1.2.

A turbulent flow is simulated in a periodic box of size 8π ≈ 25cm to solve the translational (Eq. 3.1) and the rotational (Eq.3.7) equations of motion for oblate ice crystals.

The intensity of turbulence in clouds can vary from weakly turbulent ( ∼ 1cm 2 /s 3 ) to cumulonumbi clouds where turbulence intensity is high ( 10 3 cm 2 /s 3 ). The oblate crystals considered here are significantly smaller than the smallest scale in the flow, i.e., 2ã = 2a η. Namely, we are taking here a = 150 µm, where a is the semi-major axis of the oblate crystal, which is much smaller than the value of η, listed in Table 5.1. The ice crystal density is ρ p = 0.9194g/cm 3 (ρ p ρ f ). We study four crystal aspect ratios, β = [0.005, 0.01, 0.02, 0.05], while keeping crystal semi-major axis (a) constant. It should be pointed out here that the crystals are allowed to equilibrate in the flow for at least 50τ η before collision detection is started.

Settling orientation

The results in the previous sections indicate that the distribution of settling orientation becomes increasingly narrow at the maximum drag orientation as the settling velocity to randomize the orientation. This trend can also be explained from the parameter R ≈ (W s /U 0 ) 2 Re 1/2 . An increase in β increases W s , therefore making the fluid-inertia torque, and the horizontal settling with it, dominant. On the contrary, an increase in increases the variance of the settling orientation, R(∝ β 2 / 1/2 ).

is increased (R ≈ (W s /U 0 ) 2 Re 1/2 ,

Settling velocity

In a quiescent fluid, particles settle with a steady velocity V 0 , with their maximum drag orientation. In a turbulent flow, the settling velocity is a function of particle orientation (n z ). The conditional average, V z |n z , is indicated with a white solid line in all the three panels that correspond to the three values of turbulence intensity ( ). The fluctuations in the vertical velocity of the crystals increase when turbulence intensity is increased.

At the lowest turbulence intensity, Fig. 5.6a, the crystal orientations are horizontal (n z ≈ 1), and the vertical velocities are mostly negative (settling). At higher , the crystal orientation diversifies, and the probability of crystals moving upwards (positive V z ) increases. It should be pointed out here that Fig. 5.6 was deliberately drawn for β = 0.005 crystals. For heavier crystals, i.e., β > 0.005, the orientation PDFs are almost singular for = 0.98cm 2 /s 3 , see Fig. 5.4a.

Collision statistics

The probability of collision between the particles in a system can be expressed as collision kernel, K. For a system containing N p particles in a domain of volume V, the number of collisions, N c , observed in time T can be expressed as

N c = 1 2 K × N 2 p V × T.
(5.4)

The dimension of the collision kernel is volume/time and represents flux. In order to disentangle the effects of turbulence and gravity, we solve for each run a case without gravity. The list of all the runs is provided in table D.1.

In Fig. 5.7 we plot the variation of the collision kernel with β, for all the three values of . At the lowest turbulence intensity, the collision kernel in the absence of gravity is independent of β, see the red curve in Fig. 5.7a. These crystals are essentially tracers (St 0.02), their collision rate is only determined by the turbulent velocity gradients. In comparison, at higher turbulence intensities, = [15.6, 250]cm 2 /s 3 , the collision rate (in the absence of gravity) increases with the increase in β, see crystals expelled from different parts of the flow may collide. This is known as the "Sling effect" [START_REF] Falkovich | Acceleration of rain initiation by cloud turbulence[END_REF]. This phenomenon was also re-discovered and understood as leading to "caustics" by [START_REF] Gustavsson | Collisions of particles advected in random flows[END_REF]. The collision kernel in the presence of gravity is marked with "+" and in the absence it is marked with "×". In each panel, turbulence intensity ( ) is fixed while aspect ratio (β) is varied.

In the presence of gravity, crystals settle with the different speeds, depending on their orientation. This differential settling gives rise to another mechanism of collision, see the middle panel of Fig. 5.3. We see from Fig 5 .7a that at β = 0.005, the collision kernel is significantly larger in the presence of gravity as compared to the no settling case (g = 0). This difference however diminishes with the increasing β. This is due to the fact that the increase in β (and the settling velocity), increases the role of fluid-inertia torque, which acts to orient the crystals horizontally, see Fig. 5.4a.

Therefore, the role of differential settling subsides. At higher (Fig. 5.7b), the role of differential settling becomes important, and the collision rate at β = [0.005, 0.01] is therefore higher than the collision rate in the absence of gravity. However, due to the increasing fluid-inertia torque, the collision kernel decreases with the increasing β.

The heavier crystals (β = [0.02, 0.05]) settle faster, and the fluid-inertia torque freezes their settling orientation to horizontal, rendering turbulence ineffective in displacing the crystals, which therefore leads to a collision rate even lower than the no settling case, see Fig. 5.7b. The reduction in K with the increasing β however is slower at = 15.6cm 2 /s 3 as compared to = 0.98cm 2 /s 3 , this is due to the added contribution from the sling effect: increased particle inertia. At the highest value of turbulence intensity ( = 250cm 2 /s 3 ), the sling effect dominates the collision process, with additional help from the differential settling. The collision kernel therefore increases with β. We see from the figures that in the absence of gravity, collision kernel increases with the turbulence intensity. This trend can be simply explained from the work of [START_REF] Saffman | On the collision of droplets in turbulent clouds[END_REF]. They estimated the collision kernel for the tracer spheres in turbulence. The tracer particles follow the flow, therefore the relative velocity (along the line joining the centers) of the two colliding spheres can be written as

∆V r = (V 2 -V 1 ) • r 2 -r 1 |r 2 -r 1 | , (5.5)
where r 2 -r 1 is the vector joining the two centers. The expression in Eq. 5.5 for the relative velocity difference allows us to provide a simple estimate for ∆V r . Namely, we approximate the velocity difference, at two points close to each other, by keeping only the first order in a Taylor expansion:

V 2 -V 1 ≈ (r 2 -r 1 ) • ∂ i V.
(5.6)

We estimate the separation between the centers of colliding particles as ∼ a, so an order of magnitude estimate of ∆V r is:

∆V r ∼ ā τ η . (5.7)
where ā is the radius of the spheres. Then the collision kernel can be considered as the influx of the particles through a sphere of radius ā, centered at either one of the spheres, i.e.,

K ∼ πā 2 ā τ η ∼ πā 3 ν 1/2 .
(5.8)

The estimation in Eq. 5.8 can be used to understand how turbulence affects the collision kernel of ice crystals. Since the kinematic viscosity (ν) and the crystal semimajor axis length (a) are fixed, therefore K ∝ 1/2 . Fig. 5.8a shows that in the absence of gravity, the collision kernel follows 1/2 scaling only at the lowest value of β (Fig. 5.8a). At higher β, where the inertial effects become significant, the collision kernel, K, grows faster than the 1/2 scaling, see Fig. 5.8b and Fig. 5.8c.

In the presence of gravity, the collision kernel at = 0.98cm 2 /s 3 is initially higher than compared to the non-settling case, see the blue curve in Fig. 5.8a. This gain in collisions is due to the differential settling at β = 0.005 and = [0.98, 15.6]cm 2 /s 3 , see the blue curves in Fig. 5.4a and Fig. 5.4b. At = 250cm 2 /s 3 , the fluid-velocity gradients are strong, and the collision process is almost entirely governed by the turbulence, which makes the contribution due to the differential settling insignificant.

Therefore, at β = 0.005 and = 250cm 2 /s 3 , see Fig. 5.8a, the collision rate is almost the same in the presence and in the absence of gravity. The results in all the three panels of Fig. 5.8 almost follow the same trend: the collision rate increases with .

Except, with the increasing β (Fig. 5.8a to Fig. 5.8c), the role of differential settling becomes relatively weaker: the red and the blue curve become closer. Also, the sling effect grows stronger with increasing β: the 1/2 scaling is no longer followed, see Fig. 5.8c.

In the following we discuss the role of different collision mechanisms in detail.

Turbulence

In the absence of gravity, tracer particles are advected by the flow. The collision kernel can therefore be estimated from the relation given in Eq. 5.8. At = 0.98cm 2 /s 3 , the estimation of collision kernel from Eq. 5.8 gives K ≈ 3 × 10 -5 cm 3 /s, this value is very close the collision rate calculated numerically, see the red curve in Fig. 5.8a. The expression in Eq. 5.8 predicts the dependence of K ∝ 1/2 , this is only observed for β = 0.005 crystals, see Fig. 5.8a. At higher β, Eq. 5.8 underpredicts the collision rate, this due to the added contribution from the sling effect (particle inertia).

Inertial effects

The deviation from K ∝ 1/2 seen in Fig. 5.8 at large β highlights the importance of the inertial effects. The crystals with finite St are expelled from the high vorticity regions of the flow. These expelled crystals collide with an increased relative velocity, this is known as the "Sling effect" [START_REF] Falkovich | Acceleration of rain initiation by cloud turbulence[END_REF]. To call attention to the role of sling effect in the growth of collision rate, we show in Fig. 5.9 the PDFs of the relative velocity (∆V r ) between the centers of the two colliding crystals, in the absence of gravity. The relative velocity is defined in Eq. 5.5. In the absence of any inertial effects, the magnitude of the relative velocity scales as |∆V r | ∼ a( /ν) 1/2 . Therefore the abscissa in Fig. 5.9 is normalized with a( /ν) 1/2 . The relative velocity along the centers is negative when the colliding crystals are moving towards each other. It should be pointed out here that unlike spherical particles, two crystals can collide with a positive relative velocity: when their centers are moving away from each other. This is due to the anisotropy in their shape and also due to their angular motion.

From the comparison of the three panels in Fig. 5.9 we learn that the sling effect significantly broadens the left tails of the PDFs at the highest value of , see Fig. 5.9c.

The significant broadening of the left tail at = 250cm 2 /s 3 indicates that the colliding crystal strike each other with a velocity significantly higher than that of the fluid particle. Whereas at the lowest , the PDFs in Fig. 5.9a superpose for all the values of β. This result is consistent with the constant value of K at = 0.98cm 2 /s 3 in the absence of gravity, see the red curve in Fig. 5.7a. It should be pointed out here that the contribution of the sling effect was mistakenly exaggerated in [START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF] at β = 0.02 and = 250cm 2 /s 3 . As can be seen here that the contribution of the sling effect at β = 0.02 and = 250cm 2 /s 3 does play a significant role, but the PDF in Fig. 8 of [START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF] is overestimating the effect slightly.

Differential settling

As discussed earlier, variation in the crystal orientation gives rise to the differential settling: the faster settling crystals fall onto the slower crystals. To further elaborate, we show in Fig. 5.10 the orientation PDFs of the two colliding crystals (β = 0.005), discriminated based on their vertical position. In other words, in each collision event, the crystal with the higher value of z-coordinate is labelled the "upper crystal" and the other is labelled the "lower crystal". To establish the relative importance of the three collision mechanisms shown in ∆V g ≈ 1 cm/s, which in the unit of a( /ν) 1/2 corresponds to ∆V g (ν/ ) 1/2 /(a) ≈ 22.

This is roughly the extent of the tail seen in Fig. 5.11a. It should be pointed out here that the long tail for β = 0.005 in Fig. 5.11a starts at rather low value of probability.

This highlights the fact that the differential settling is responsible for only a fraction of collisions. This is consistent with the weak differential settling seen in Fig. 5.10a at = 0.98cm 2 /s 3 for β = 0.005 crystals. In fact, turbulence is the mechanism leading to the overwhelming majority of the observed collisions, so all the three PDFs (except the the broad blue tail) superpose well in Fig. 5.11a.

The structure of the PDFs at = 15.6cm 2 /s 3 in Fig. 5.11b is essentially similar to the ones seen in Fig. 5.11a. For instance, an increase in the turbulence intensity ( ) enhances the differential settling for β = 0.005 and β = 0.01 crystals, see Fig. 5.4b corresponding orientation PDFs. For this reason, the PDF for β = 0.01 crystals in Fig. 5.11b also has a tail, similar to the one seen for β = 0.005 crystals at β = 0.98cm 2 /s 3 (the blue curve in Fig. 5.11a). As anticipated, the differential settling is expected to play a bigger role for β = 0.005 crystal than for β = 0.01 crystals. For this reason, the tail for β = 0.005 crystals in Fig. 5.11b starts at a higher value of the probability (PDF≈ 10 -1 ) as compared to the value (PDF ≈ 10 -2 ) for β = 0.01. At the highest value of turbulence intensity, the relative importance of the differential settling as a collision mechanism decreases in comparison with the strong turbulent velocity gradients and the sling effect. This regime shift is apparent from the PDF of β = 0.005 crystals in Fig. 5.11c. The PDF looks very similar to the ones obtained at low , without any strong effect from the differential settling. In fact, the PDFs of β = 0.02 crystals at = 0.98cm 2 /s 3 , β = 0.02 crystals at = 15.6cm 2 /s 3 , and β = 0.005 crystals at = 250cm 2 /s 3 , superpose very well, see Fig. 5.12. The PDF of ∆V r at = 250cm 2 /s 3 and β = 0.005 reveals a slight hump at ∆V r τ η /a ≈ 1, which is the only detectable sign of differential settling at these values, see the blue curve in Fig. 5.11c. We can therefore conclude that for these cases, turbulence alone determines the rate of collision. For the higher values of β in Fig. 5.11c, the PDFs tails are broad due to the sling effect, similar to the one seen in Fig. 5.9c.

Discussion

From the results in the previous sections we conclude that the collision in ice crystals is a complex process involving different mechanisms that determine the collision rate in different regimes. For instance, at low turbulence intensities, the collision rate is almost entirely determined by the turbulent velocity gradients, since the differential settling and the sling effect do not appear to play any role. At the moderate intensity of turbulence, the differential settling and the turbulence intensity determine the collision rate at lower β, whereas turbulence and the sling effect govern the collision process at high β. At the larger values of turbulence intensity, the strong velocity gradients and the sling effect eclipse the role of differential settling in the collision process.

with their minimum drag increases with the the settling velocity of the particle. This minimum drag orientation is in contrast to the maximum drag orientation settling seen in a quiescent fluid. Recently, Lopez and Guazzelli, 2017 studied fibers settling in a cellular flow. Their results, both numerical and experimental, led to the conclusion that when the fiber Reynolds number is O(1), fluid inertia dominates and orients the particle towards its maximum drag orientation. In order to confirm the conclusions of Lopez and Guazzelli, 2017, we extended numerically their study to turbulent flows, by replacing the laminar cellular flow they used by a two-dimensional turbulent flow generated using kinematic simulation.

From the results and the analysis in Chapter 2 we find that fibers settling with a finite settling velocity tend to orient with their maximum drag orientation in a turbulent flow. We demonstrated that the turbulent intensity determines the variance of the settling orientation. In Chapter 3 we presented the equations of motion of ellipsoids moving through a viscous flow, when taking into account the inertia of the fluid. I then presented a validation of the expression of the torque acting on small fibers, done in collaboration with the experimental group in the Laboratoire de Physique at Ecole Normale Suérieure de Lyon. This work grew out of informal discussions with a fellow graduate student, Facundo Cabrera.

With the help of angular equations of motions of ellipsoids, we introduced a parameter R, which is the ratio between the two torques that govern the orientational dynamics;

namely, the torque generated due to the fluid mobilized by the moving particle, and the Stokes torque, which results due the fluid-velocity gradients. It should be pointed out here that in a quiescent fluid, the torque generated by the inertia of the mobilized fluid is the only torque acting on the moving particle, and this torque acts to orients the particle towards it maximum drag orientation. From the results of Chapter 4, we concluded that the minimum drag settling orientation, similar to the one predicted by [START_REF] Siewert | Orientation statistics and settling velocity of ellipsoids in decaying turbulence[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF], can only materialize in laminar flows. In contrast, for turbulent flows, ellipsoids with a finite sedimenting velocity settle with their maximum drag orientation, and the parameter R is always R 1 as soon as the settling velocity is comparable to the turbulent velocity fluctuations. In other words, the torque due to fluid inertia dominates. For ellipsoids in a turbulent flow, the torque due to fluid inertia can only be neglected for non-settling cases, R 1. In this case, the orientation of the anisotropic particles is random.

After developing an understanding of the effect of fluid inertia on the orientation of settling anisotropic particles, we studied the collision process of oblate ice crystals.

Our discussion focused on the different mechanisms that lead to collision of oblate ice crystals in clouds. To distinguish between the contributions due to gravitational settling and to other mechanisms towards the collision statistics, we systematically compared, for each set of parameters, runs with and without gravity. Our results allowed is to identify three collision mechanisms: turbulence, particle inertia and the differential settling. Namely, particles with vanishing inertia are brought together by the local fluid-velocity gradients in turbulence to cause collisions. In comparison, particles with large inertia are expelled from regions of high fluid rotation (vorticity), which leads to particles colliding with high relative velocities. The anisotropy in the shape of the particle encourages the differential settling, i.e., particles settling with different orientations settle at different velocities, thus, increasing the probability of faster settling particles to fall on the slower settling particles. This mechanism, which was particularly strong when ignoring the effect of fluid inertia, is much reduced when taking into account a more correct description of particle motion. In fact, heavy particles settle with persistent maximum drag orientation settling, which reduces the probability of differential settling.

To sum up, the main conclusion of this thesis is that the previously ignored contribution of fluid inertia actually plays a crucial role on the orientational dynamics of anisotropic particles, and as a consequence, on the probability of collision between settling crystals. For this reason, it will be important to further study the validity of the assumptions made in this work be investigated in the future studies. We stress that, in this work, a number of assumptions were made. Among others, we have neglected the role of the local shear, due to small size of the particles. In the collision part of the project we assumed ghost collision approximation for ice-crystal collisions;

this approximation overestimates the collision kernel of tracer spheres by up to 15% [START_REF] Voßkuhle | Multiple collisions in turbulent flows[END_REF]. Furthermore, the hydrodynamics interaction of the colliding where i 2 = j 2 = k 2 = ijk = -1. In the previous sections we used the bold notation to describe a vector, V is the velocity of the particle for example. In this section we resever the bold notation for quaternions and vectors will be represented with a top arrow, e.g V .

Quaternions can be written as a combination of a scalar q 0 and a vector q, in this form a quaternion is given as q = (q 0 , q). Quaternions have the following properties,

• real part: Re(q) = q 0 ,

• imaginary part: Im(q)= iq 1 + jq 2 + kq 3 ,

• conjugate: q =Re(q)-Im(q),

• norm: |q| = q 2 0 + q 2 1 + q 2 2 + q 2 3 ,

• inverse: q -1 = q/|q|.

Two quaternions q = (q 0 , q) and p = (p 0 , p) can be multiplied to give qp =    q 0 p 0 -q • p q 0 p + p 0 q + q × p    , (B.15) where q• p and q× p donate the dot and cross product of two three-dimensional vectors.

A vector (0, y) can be rotated using quaternions as (0, ŷ) = q(0, y)q, (B.16

)
where ŷ is the rotated vector and q is a unit quaternion (|q| = 1) for the rotation.

In general, any vector rotation in 3-D can be seen as a rotation of that vector along a unit vector e by an angle ψ. A unit rotation quaternion can embody this rotation as q = (cos ψ/2, e sin ψ/2) The rotations can also be represented using the rotation matrix, as given in Eq. 3.10. Where the rotation matrix R is given as

R =      
1 -2(q 2 2 + q 2 3 ) 2(q 1 q 2 + q 3 q 0 ) 2(q 1 q 3 -q 2 q 0 ) 2(q 2 q 1 -q 3 q 0 ) 1 -2(q 2 3 + q 2 1 ) 2(q 2 q 3 + q 1 q 0 ) 2(q 3 q 1 + q 2 q 0 ) 2(q 3 q 2 -q 1 q 0 ) 1 -2(q 2 1 + q 2 2 )       (B.17) 
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Figure 1 . 1 :

 11 Figure 1.1: Illustration of fluid and particle interaction.

  determined numerically the solution of the Navier-Stokes equations past an ellipsoid and compared the torque with the expression proposed by[START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF] at several aspect ratios, both prolate (fiber-like) and oblate (disk-like), and particle Reynolds number between 0.3 and ∼ 30. The results agree qualitatively very well with the prediction for the aspect ratio dependence of the torque, as well as for the angular dependence. The numerics, however indicate that the expression of torque given by Dabade, Marath, and Subramanian, 2015 overpredicts the magnitude, especially at Re p > 1.Difficulties in performing experiments on anisotropic particles also slowed down progress on the subject. Rotation rates of buoyant fibers in two and three dimensional environments were studied by[START_REF] Parsa | Rotation and alignment of rods in two-dimensional chaotic flow[END_REF][START_REF] Parsa | Rotation rate of rods in turbulent fluid flow[END_REF] found that the theoretical description of rotation rate in Jeffery, 1922 accurately described their experimental results. These two works are not directly relevant in the context of fluid-inertia torque, however they do establish the validity of the expression of[START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] for the(Stokes) torque acting on an ellipsoid.[START_REF] Lopez | Inertial effects on fibers settling in a vortical flow[END_REF] performed experiments on tracer fibers to study their settling in a cellular flow.They compared the experimental results with their model: a linearized version of the force model given by[START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF]. They observed that taking into account the fluid inertia was essential to correctly reproduce the settling orientation of the fibers.[START_REF] Roy | Inertial torques and a symmetry breaking orientational transition in the sedimentation of slender fibres[END_REF] studied settling of symmetric and asymmetric fibers, and compared their measured fiber velocity and inertia torque with the theoretical predictions of[START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF]. They found that the expression of[START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF] for the inertial torque slightly overpredicts for fibers of aspect ratio, β = 20 and Re p = 1.6 and slightly underpredicts for β = 100 and Re p = 8.6. Our work mainly focuses on the fluid-inertia torque expression proposed by Dabade, Marath, and Subramanian, 2015. In section 3.2 we discuss the results of the experiments that are being performed to establish the validity of the fluid-inertia torque expression proposed by[START_REF] Dabade | Effects of inertia and viscoelasticity on sedimenting anisotropic particles[END_REF] In the next chapter we study the effect of fluid inertia on the settling orientation of fibers. Chapter 3 outlines the equations of motion for ellipsoids moving in a viscous fluid. Then in Chapter 4, we discuss the results obtained using kinematic and direct numerical simulations, and we quantify the role of fluid inertia in determining the settling orientation of ellipsoids. Chapter 5 deals with the collision of anisotropic particles in turbulence, and how fluid-inertia torque affects the collision statistics of ice-crystals. In the final chapter we summarize our finding and provide recommendations for the future work.
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 21 Figure 2.1: Definition of the fiber angle θ with the horizontal axis.

Figure 2

 2 Figure 2.2: (a): The variation of inertial correction to angular velocity (F G ) given in Eq. 2.13 (at α = π/4). (b): Re p = O(1) region of 2.2a.

Figure 2

 2 Figure 2.3: Probability distribution functions (PDFs) of the fiber angle θ for three values of fiber Reynolds number Re p = 0.5 (left), Re p = 1.0 (center) and Re p = 1.5 (right).

  Figure 2.4: PDFs of the fiber angle θ for three values of fiber Reynolds number Re p = 0.5 (left), Re p = 1.0 (center) and Re p = 1.5 (right).

Figure 2

 2 Figure 2.5: PDFs of the fiber angle θ with three values of fiber Reynolds number Re p = 1 × 10 -6 (left), Re p = 5 × 10 -3 (center) and Re p = 5 × 10 -2 (right).

Fig. 2 .

 2 Fig. 2.5b. This trend is opposite to that seen for Re p ≈ 1 case. As Re p increases from 1 × 10 -6 to 5 × 10 -2 , the correction to angular velocity induced by fluid inertia (Eq. 2.13) becomes important, which prevents Ω 0 from dominating the rotational dynamics. Therefore we do not observe a strong vertical settling tendency for w 0 1, see Fig.2.5c. The two small peaks in the PDF of Re p = 5 × 10 -2 and w 0 = 0.8 (red curve in Fig.2.5c) indicate that some fibers strike a balance between Ω 0 and Ω 1 and settle at an orientation θ ≈ ±π/4.

  Figure 3.1: Definition of n z (projection on the vertical axis of the unit vector (n) aligned with the particle symmetry axis) for (a) prolate (b) oblate ellipsoid.

3. 2 .Figure 3 . 3 :

 233 Figure 3.3: Definition of the fiber angle θ with time. This figure is identical to Fig. 2.1, shown here again for the convenience of the reader.

  Figure 3.4: Variation of fiber angle (θ) with the horizontal.

Figure 3

 3 Figure 3.5: Variation of the ratio between fiber angular acceleration and the viscous resistance torque experienced by the fiber with time.

KFigure 4

 4 Figure 4.1: Distribution of θ (see the inset of Fig. 4.1a) for fibers of aspect ratio β = 20 in the two-dimensional cellular flow: (a) R = 10 -3 (W s /U 0 ≈ 0.283, Re = 1/80), (b) R = 0.1(W s /U 0 ≈ 2.88, Re = 1/80) and (c) R = 4.0(W s /U 0 ≈ 6.32, Re = 1/10). A uniform distribution of θ would correspond to a random orientation of fibers.
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 42 Figure 4.2: Definition of n z (projection on the vertical axis of the unit vector (n) aligned with the particle symmetry axis) for (a) prolate (b) oblate ellipsoid. This figure is identical to Fig. 3.1, shown here again for the convenience of the reader.

Fig. 4 .

 4 Fig. 4.3 shows the PDFs of n z (see Fig. 4.2 for the definition of n z ) at R ≈ 1. The PDFs
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 43 Figure 4.3: Distribution of n z for (a) prolate and (b) oblate ellipsoids in three-dimensional turbulent flow generated using kinematic simulation at R ≈ 0.6 for five different values of St. A uniform PDF represents the random orientation of the ellipsoids.
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 44 Figure 4.4: Distribution of n z for (a) prolate and (b) oblate ellipsoids in three-dimensional turbulent flow generated using kinematic simulation at R ≈ 10 for five different values of St.

Figure 4 . 5 :

 45 Figure 4.5: Variation of the parameter A in Eq. 4.11 with β. The parameter A is defined in section C.2.

St= [ 0

 0 .05, 0.1, 0.2, 0.4]. Fig. 4.6 shows how the variances of the tilt angle δφ and n z scale with Sv for different values of St. The tilt angle δφ is defined as δφ = φ -φ * , where φ * is the stable orientation of the ellipsoid; for prolate ellipsoids, φ * = π/2, see Fig. 4.2. The results in Fig. 4.6 show that the overdamped theory by Gustavsson et al., 2019 predicts very well the scaling of orientation variance in the limit of St→ 0 and Sv= O(10). In this limit, the pre-factor in Eq. 4.11 only depends on particle shape (β), the parameter A in the pre-factor of Eq. 4.11 (defined in section C.2) is plotted in Fig. 4.5. The results similar to the ones in Fig. 4.6b are part of Gustavsson et al., 2019, but only for Sv = O(10).

  Figure 4.6: Scaling of variance of orientation PDF with settling number. Parameters: β = 5, St=0.05 ( , •), St=0.1 ( , ×), St=0.2 ( , ), St=0.4 (, ). Solid black line plots the overdamped theory[START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF].

  Figure 4.9 shows the correlation functions of W g and W q for the first and the second flow configurations, shown in the left and the right panels of the figure, respectively. The left and the right panels in Fig. 4.9 compare as if the signals in left panels have been passed through a low pass filter to obtain the signals in right panels. This implies that a rapidly falling ellipsoid rides the high-frequency waves. We chose not to perform the direct numerical simulation of rapidly falling particles (Sv = O(10 2 )) to check the Sv -2

Figure 4

 4 Figure4.9: Correlation functions of W g and W q for a single particle at St= 0.4 and Sv= 500 with full (left panels) and half (right panels) Fourier modes of kinematic simulation.

  Fig. 4.10 we show the settling orientation PDFs for different values of R for both prolate (β = 5) and oblate (β = 0.02) ellipsoids at a fixed value of particle Stokes number, St= 0.1. We vary R by varying the settling number (Sv= gτ p /u η ). The values of the parameters for Fig. 4.10 are provided in tables in section C.3. We see from the figure that the PDFs are almost uniform at R ∼ 1 and below. As the settling increases, parameter R increases with it, and fluid-inertia torque dominates. The PDFs are therefore increasingly peaked at n z ≈ 0 for prolate and n z ≈ ±1 for oblate ellipsoids at higher values of R. Both of these orientations correspond to the maximum drag orientation settling.

Figure 4 .

 4 Figure 4.10: Distribution of n z for (a) prolate and (b) oblate ellipsoids in three-dimensional turbulence flow (DNS), for St= 0.1 and several values of R. In this three-dimensional flow, a uniform PDF represent the random orientation of the ellipsoids.

Fig. 4 .

 4 Fig. 4.11 shows the orientation PDFs for different values of particles Stokes numbers at R ≈ 10. The similarity in the orientation PDFs at different St shows that the Stokes numbers has only limited effect on the orientation statistics for the range of parameter R (≈ 10) and St (≤ 0.4) considered here. This result is consistent with the results generated using kinematic simulation (section 4.3.1) and the overdamped theory discussed in section 4.3.2.

Figure 4 .

 4 Figure 4.11: Distribution of n z at R ≈ 10 and several value of Stokes number, for (a) prolate and (b) oblate ellipsoids in three-dimensional turbulence flow.

Figure 4 .

 4 Figure 4.12: Comparison of distribution of n z calculated by kinematic simulation (at R = 13) and the two runs of direct numerical simulation (R ≈ 10) at St=0.1: (a) prolate (β = 5) and (b) oblate (β = 0.02) particles. DNS1 and KS, for Re λ = 40 and DNS2, for Re λ = 80.

  Fig.4.2. The expression of tilt-angle variance given byGustavsson et al., 2020 reads 

Figure 4

 4 Figure 4.13: Tilt-angle variance as a function of particle aspect ratio (β) at Sv= 22.3 and three values of St: St= 0.11 (red), St= 0.44 (green) and St= 2.2 (blue). The results obtained using DNS are shown with symbols; empty and filled symbols are DNS results with and without the inertial correction to force, respectively. The colored solid lines are variance predictions of Eq. 4.13. The black solid line is the overdamped theory (Eq. 4.11).

  to identify the potential collision pairs of ellipsoids moving in a turbulent flow. The details on the implementation, along with other algorithms, can be found in Siewert et al., 2014a. The main idea behind the algorithm is to divide the domain into smaller cubes. Particles in each cube can only collide with the particles inside the cube or with the particles in the neighbouring cubes. Each cube has 26 neighbouring cubes: 6 that share the faces,

Figure 5 . 1 :

 51 Figure 5.1: Illustration of missed collision due to a small cube size.

  cell-linked list algorithm significantly reduces the number of potential collision pairs by only considering particles in 27 cubes as potential colliding partners instead of the whole domain. The size of the problem can be further reduced by interpolating the trajectory of the potential collision pair.

  Figure 5.2: Motion of a potential ice crystal collision pair. The dotted lines are representing the imaginary spheres enclosing the crystals. The direction of instantaneous velocities are shown with the arrows. A pair passes the spherical collision test when the spheres enclosing the crystals overlap at some instant t dmin between time instants t 1 and t 2 . (a) Crystals separated at time instant t 1 . (b) Crystals in sphere collision at intermediate time instant t dmin . (c) Crystals separated at at time instant t 2 .

Fig. 5 .

 5 Fig. 5.2 illustrates the motion of a potential collision pair between time instant t 1 and t 2 , the dotted line represent an imaginary sphere enclosing the crystal, i.e., its diameter is equal to the largest dimension (2ã) of the crystal. As can be seen from Fig.5.2a and Fig.5.2c, an event leading to a collision between two crystals cannot be determined alone from the information at the two time instants. Therefore, based on the initial and final positions of the crystals, time instant at which the centers of

  Here we consider three values of turbulent intensities, = [0.98, 15.62, 250]cm 2 /s 3 . The fluid density and kinematic viscosity are ρ f = 1.413 × 10 -3 g/cm 3 and ν = 0.1132cm 2 /s. The spatial domain is resolved with N = [384, 768, 1536] points in each direction for the three values of turbulence intensities ( ) considered. The values of are adjusted to ensure adequate resolution: k max η ≈ 3, where k max (= N/3) is the highest wave number considered. The corresponding Taylor Reynolds numbers for the three turbulent dissipation rates are Re λ = [56, 95, 151]. Properties of the three turbulent flows are listed in table 5.1.

  Figure 5.4: Cumulative probability distribution function (Π(n z )) of settling orientation n z , defined in Eq. 5.3.

Fig. 5 .

 5 figure shows that the variation in the settling velocity from n z = 0 to n z = 1 is largest for the largest value of . The average settling velocity ( V g ) of the crystals is compared with their settling velocity in the quiescent fluid, see Fig.5.5b. It can be seen from the figure that at the lowest turbulence intensity, ( = 0.98cm 2 /s 3 ), only β = 0.005 crystals settle noticeably faster than they would in a quiescent fluid. This is due to the fact that β = 0.005 crystals do not follow the persistent horizontal settling, see the blue curve in Fig.5.4a, contrary to the heavier crystals, β = [0.01, 0.02], which settle with a much stronger alignment, due to the very strong fluid-inertia torque.

Fig. 5 .Figure 5

 55 Fig. 5.5b shows that the average settling velocity increases with increasing , it is a consequence of larger variation in the settling orientation due the enhanced turbulent agitation, see Fig. 5.4.

Fig. 5 .

 5 Fig. 5.7b and Fig. 5.7c. At these higher values of , the Stokes number of the crystals is finite, St∼ 0.1 for = 15.6cm 2 /s 3 and St∼ 0.3 for = 250cm 2 /s 3 . Therefore,

Figure 5 . 7 :

 57 Figure5.7: Collision kernel of a suspension of crystals. The collision kernel in the presence of gravity is marked with "+" and in the absence it is marked with "×". In each panel, turbulence intensity ( ) is fixed while aspect ratio (β) is varied.
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 58 Figure5.8: Collision kernel of a suspension of crystals. The collision kernel in the presence of gravity is marked with "+" and in the absence it is marked with "×". In each panel, aspect ratio (β) is fixed while turbulence intensity ( ) is varied.

Fig. 5 .

 5 Fig. 5.8 is the transpose of Fig. 5.7: collision kernel is plotted as a function of turbulence intensity ( ), for the three different values of aspect ratio (β = [0.005, 0.01, 0.02]).
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 59 Figure 5.9: Probability distribution function of the relative velocity between the centers of the two colliding crystals in the absence of gravity.

Figure 5

 5 Figure5.10: Distribution of n z for the colliding crystals: upper crystal (dashed black line) and lower crystal (dashed dotted red line). Orientation of n z for all crystals is also plotted for reference with blue solid line.

  Figure 5.11: Probability distribution function of the relative velocity between the centers of the two colliding crystals in the presence of gravity.

Fig. 5

 5 Fig.5.3, we analyze the velocity difference between the two colliding crystals, ∆V r , in the presence of gravity. Fig.5.11 shows the PDFs of the relative velocity (along the line joining the centers, as defined in Eq. 5.5) of the two colliding crystals. Remarkably, at the lowest turbulence intensity, = 0.98cm 2 /s 3 , the PDFs of the relative velocities superpose extremely well, except for the broad tail starting in the lower region (PDF≈ 5×10 -3 ) of the blue curve (β = 0.005), see Fig.5.11a. We recall that the settling orientation at the lowest value of turbulence intensity is persistently horizontal for β = 0.01 and β = 0.02 crystals; whereas the orientation PDF of β = 0.005 crystals shows some variation, see Fig.5.4a. The slight variation from the horizontal settling for β = 0.005 crystals leads to the differential settling, which results in the extended left tail in the blue curve of Fig.5.11a. To further understand the broad tail, we estimate the magnitude of the difference in the settling velocity for β = 0.005 crystals (at = 0.98cm 2 /s 3 ) from Fig.5.5a . The figures shows that the difference in the settling velocity between the vertical and the horizontal orientation of β = 0.005 crystals is

Figure 5

 5 Figure 5.12: Comparison of the PDFs in Fig. 5.11 where turbulence is the dominant mechanism of crystal collision.

  Fig. 4.11b: Sv≈ 2: prolate particles for C u , C B , C X , A (g) and A (p) introduced in Eq. 4.13The definitions given in this section rely on the definition of X A and Y A for both prolate and oblate ellipsoids from section B.1. The parameter A for ellipsoids is given from[START_REF] Gustavsson | Effect of particle inertia on the alignment of small ice crystals in turbulent clouds[END_REF] as List of runs of section 5.3

  Gustavsson, D. Lopez, E. Lévêque, B. Mehlig, A. Pumir and A. Naso. Starting from the angular equation of motion, Eq. 3.7, we estimate the relative importance of the two torques by calculating the ratio R = | TI |/| TSt | for settling ellipsoids.

	We attempt to simplify this ratio for slender ellipsoids (β	1), it reduces to
	TI,x TSt,x	∼	TI,y TSt,y	∼	5W 2 s 8νs log β	,	(4.1)

Table 5 .

 5 1: Properties of the three turbulent flows generated using direct numerical simulation.

	Flow	I	II	III
	(cm 2 /s 3 )	0.98	15.6	250
	Re λ	56	95	151
	τ η (s)	0.341 0.085 0.021
	T L (s)	1.96	0.70	0.26
	U 0 (cm/s) 2.18	5.72	14.4
	N	384	768	1536
	η (cm)	0.203 0.101 0.050

  Table C.6: Table for Fig. 4.10b: St= 0.1: oblate particles Table C.7: Table for Fig. 4.11a: Sv≈ 2: prolate particles Table C.8: Table for

	R	w o	Sv	Re p	S
	1 0.6 0.20 0.35 0.051 1.04
	2 1.0 0.37 0.64 0.084 1.15
	3 2.2 0.54 1.00 0.123 1.14
	4 4.8 0.81 1.54 0.181 1.20
	5 8.0 1.03 2.02 0.222 1.20
	R	St	w o	Re p	S
	1 10 0.01 1.08 0.047 1.07
	2 10 0.04 1.06 0.091 1.10
	3 11 0.10 1.13 0.147 1.12
	4 12 0.40 1.28 0.332 1.12
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The results in Fig. 4.13 suggest that the aspect ratio (β) only weakly affects the orientation PDF variance ( δφ 2 ). However, particle inertia, quantified by the Stokes number, St, significantly increases the orientation variance when the settling number (Sv) crosses a certain threshold value.

The settling orientation was studied for fibers in Chapter 2 and for ellipsoids in this chapter. We introduced a parameter R that estimates the ratio between the contributions of the fluid inertia and the fluid-velocity gradients towards the angular dynamics of the settling anisotropic particle. Based on the results we conclude the parameter R effectively estimates the role of the two contributions. We conclude that the fluid-inertia torque plays a significant role in determining the orientation of settling anisotropic particles. For particles settling in a turbulent flow, corrections due to fluid inertia can only be ignored in the absence of settling, i.e.,

R

1 only when (W s /U 0 ) 2 → 0 in a turbulent flow. For particles settling with a finite velocity in a turbulent flow, i.e., (W s /U 0 ) 2 ∼ 1, fluid-inertia torque dominates (R = (W s /U 0 ) 2 Re 1), and particles settle with their maximum drag orientation.

Furthermore, the settling orientation is only weakly dependent on particle shape, provided the settling number and the Stokes number are fixed. This concludes the settling orientation part of the work. In the next chapter we discuss the role of fluid-inertia torque towards the collision statistics of oblate ice crystals. [START_REF] Choi | Continuous collision detection for ellipsoids[END_REF] determines the collision instant (t col ) of the two colliding ellipsoids, i.e., time at which Eq. 5.2 has two negative and equal roots.

Collision mechanisms

Prior to the discussion on the results, we outline here the three mechanisms responsible for crystal collisions, as demonstrated later in this work. 

Turbulence

For tracer crystals (St→ 0), motion is simply the advection by the flow. In this limit, the collision between the crystals is due to the relative motion caused by the fluidvelocity gradients. As indicated in the illustration given in Fig. 5.3, tracer crystals are brought together by the local fluid-velocity gradients.

Differential settling

The settling velocity of a non-spherical particle is a function of its orientation. As anticipated, particle settling with its narrow edge aligned with the gravity settles faster than the particle settling with its broadside perpendicular to gravity. This differential in the settling velocity encourages the faster settling particles to fall on the slower settling particles. This mechanism is illustrated in the middle panel of Fig. 5.3.

Chapter 6

Summary, conclusions and recommendations

In this thesis, we investigated the effect of fluid inertia on the orientation of anisotropic particles settling in a turbulent environment. One of our main interest was in the collision dynamics of ice crystals in mixed-phase clouds, containing small ice crystals, whose shape can vary from columnar-like to plate-like, depending on the temperature range. In our investigation, we simplified the (sometimes complicated) shape of crystals by ellipsoids, and studied their settling orientation. With the application of cloud crystal collision in mind, we restricted ourselves to particles far denser than the fluid and far shorter than the smallest eddy size in the turbulent flow. In order to develop an understanding of the different regimes of the orientational dynamics of ellipsoids settling in turbulence, we generate turbulent flows using both the numerical solution of Navier-Stokes equations and using the statistical modeling of turbulence.

A crucial question discussed in this study concerns the force and torque acting on an anisotropic particle. Until recently, several studies used the expressions derived from the creeping flow approximation, therefore ignoring the effect of fluid inertia. It was however noticed, that the particle Reynolds number, defined based on half of the particle largest length and on the slip velocity of the particle, is not so small, and is in fact O(1) [START_REF] Siewert | Orientation statistics and settling velocity of ellipsoids in decaying turbulence[END_REF][START_REF] Gustavsson | Statistical model for the orientation of nonspherical particles settling in turbulence[END_REF][START_REF] Jucha | Settling and collision between small ice crystals in turbulent flows[END_REF][START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF]. These studies led to the conclusion that anisotropic particles settle with their minimum drag orientation when using the force and torque deduced from the creeping flow approximation. They also indicate that the bias of particle orientation to settle particles was also neglected.

Moreover, we plan to extend our work on collision to investigate the collision process of oblate ice crystals with supercooled liquid droplets. This work would be an extension of [START_REF] Naso | Collision rate of ice crystals with water droplets in turbulent flows[END_REF] where this problem was also studied by neglecting the effect of fluid inertia on the angular dynamics of oblate ice crystals. In the future, we also plan to study the collision process of prolate ice crystals in clouds.

Appendix A

Appendix A

A.1 Expressions for F (Re p ), F ⊥ (Re p ) and F g (Re p , α) from section 2.1

where c α = cos α, γ is Euler constant and E 1 is the exponential integral function, defined as

and F (e)

The expressions for the parameters involved in the equation of motion of ellipsoids are given in this section.

F (e) = -πe 2 (420e + 2240e 3 + 4249e 5 -2152e 7 ) 315((e 2 + 1)tanh -1 e -e) 2 ((1 -3e 2 )tanh -1 e -e)

+

πe 2 (420 + 3360e 2 + 1890e 4 -1470e 6 )tanh -1 e 315((e 2 + 1)tanh -1 e -e) 2 ((1 -3e 2 )tanh -1 e -e) (B.7) -πe 2 (1260e -1995e 3 + 2730e 5 -1995e 7 )(tanh -1 e) 2 315((e 2 + 1)tanh -1 e -e) 2 ((1 -3e 2 )tanh -1 e -e) ,

where e = 1 -(1/β) 2 .

B.1.2 Oblate ellipsoid

(B.9)

where e = 1 -β 2 .

B.2 Quaternion algebra for solving ellipsoid equations of motions

Quaternions are a very useful tool for three-dimensional rotation of vectors. They can be understood as the extended form of the complex numbers where a quaternion has three imaginary components, i.e.

Particle orientation represented with unit quaternion can be updated using the fol-

where ω is angular velocity of the particle in the coordinate system attached to the particle.

B.3 Expressions of parameters C I and C D introduced in

Eq. 3.14

The expression for the drag coefficient, C D , in equation 3.14 is given from [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] as

Whereas the expression of fluid inertia torque coefficient in equation 3.14 is given from Dabade, Marath, and Subramanian, 2015 as: The ratio between the two coefficients C I and C D is independent of particle size and only depends on β and ν, it is given as

we plot the ratio in figure B.1.

Appendix C

Appendix C

C.1 Tables for section 4.3.1 Re s 1 0.69 5 × 10 -4 0.35 0.002 5 × 10 -6 2 0.67 5 × 10 -3 0.34 0.006 5 × 10 -5 3 0.67 0.025 0.34 0.014 3 × 10 -4 4 0.62 0.1 0.33 0.027 1 × 10 -3 5 0.6 0.4 0.27 0.053 5 × 10 -3 Re s 1 13 5 × 10 -4 1.6 0.009 5 × 10 -6 2 13 5 × 10 -3 1.6 0.03 5 × 10 -5 3 12 0.025 1.5 0.061 3 × 10 -4 4 13 0.1 1.6 0.13 1 × 10 -3 5 12 0.4 1.7 0.28 5 × 10 -3 Re s 1 9.8 5 × 10 -4 1.16 0.011 1 × 10 -5 2 10 5 × 10 -3 1.13 0.034 1 × 10 -4 3 9.7 0.025 1.15 0.073 6 × 10 -4 4 10 0.1 1.12 0.16 2 × 10 -3 5 10 0.4 1.36 0.37 1 × 10 -2

C.2 The overdamped theory

The parameter A for prolate ellipsoid is given from [START_REF] Gustavsson | Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence[END_REF] as

The definitions of the parameters introduced in the Eq. C.1 (for prolate) are as follows

where parameters X A , Y A , α 0 , γ 0 and F (e) for prolate ellipsoid are given in section B.1.1.

C.3 Tables for section 4.4.1

We also list normalized slip velocity, S = |U -V|/V z , where V z is the settling velocity. The definitions of A (g) , A (p) , A and A ⊥ for prolate ellipsoid are given as

and for oblate ellipsoid

The correlation functions C u , C B and C X are defined as For an ellipsoid with three semi axes d x , d y and d z , the size matrix is defined as

For the oblate ellipsoids under consideration d x = d y = a and d z = aβ. The mobility matrix is given as

where V(t) is the particle velocity, and R(t) is the rotation matrix defined in Eq. B.17.

Inverse mobility matrix M -1 (t) can be simply be calculated as

3)

It must be pointed out here that to calculate the matrix M(t) between time instants t 1 and t 2 , we estimate the velocity, V(t), of the particles from the positions at these to instants of time. However, the orientation matrix, R(t), is only calculated at time instant t 1 . In other words, matrix R(t) remains constant between the two instants.

This leads to a polynomial (defined in Eq. 5.2) quadratic in time. However, if time varying R(t) is considered, a higher-order polynomial in time will be generated. Not only would this complicate the computational handling of the polynomial (the resulting polynomial would be 4 th degree in λ and higher-order in t), but it would also make it difficult to analyze the multiple roots of time.

D.1. Definition of mobility M(t) and size D matrices