
HAL Id: tel-03255769
https://theses.hal.science/tel-03255769

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The evolution problem in general relativity
Olivier Graf

To cite this version:
Olivier Graf. The evolution problem in general relativity. General Mathematics [math.GM]. Sorbonne
Université, 2020. English. �NNT : 2020SORUS148�. �tel-03255769�

https://theses.hal.science/tel-03255769
https://hal.archives-ouvertes.fr
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Cécile Huneau, Philippe LeFloch, Jacques Smulevici and Jérémie Szeftel for having accepted to be part of
my jury. I am grateful for the interesting mathematical conversations that we have had, and I am sure, will
have in the future.
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ce que je faisais. Vous avez toujours été bienveillant·e·s et encourageant·e·s et je vous en suis, sincèrement,
très reconnaissant. Stefan, merci pour la collaboration, nos nombreuses heures de travail entre Paris et
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3“Alors là, dans une footnote on a l’impression qu’il y a 200 pages de preuve qui s’écroulent, faut me changer ça.”
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1. The Cauchy problem of general relativity
In this section we introduce Einstein equations and review the associated classical and characteristic Cauchy
problem. We then discuss general conjectures which motivate the results of this thesis. We refer to [Wal84,
Chapter 10] for further introduction on the Cauchy problem of general relativity.

1.1 Einstein vacuum equations
In the theory of general relativity, a vacuum spacetime is described by a 4-dimensional manifold M endowed
with a Lorentzian metric g, which satisfies the following Einstein vacuum equations

Ric(g)µν = 0, µ, ν = 0 . . . 3, (1.1)

where Ric(g) denotes the Ricci curvature tensor of the spacetime metric g.

The prime example of a vacuum spacetime is Minkowski space

M = R4, g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 =: η.

which is the trivial solution of (1.1).

Each component of the Ricci curvature tensor Ric(g)µν is a second-order nonlinear differential operator
on the metric components gαβ , for α, β = 0 . . . 3. Therefore, Einstein equations (1.1) form a system of 10
nonlinear coupled partial differential equations on the 10 unknowns gµν . The equations (1.1) reduce to 6
independent equations and we have the freedom to impose 4 additional equations on the metric components
gµν . This is related to the so-called general covariance of Einstein equations, i.e. that the system of
equation (1.1) is covariant under a change of coordinates. Such an additional choice of equations is called a
gauge choice.

To obtain a well-posed system of equations we consider the wave coordinates gauge, which is the following
choice of four additional equations

�g(xµ) := DαDα(xµ) = 0, µ = 0 . . . 3,

where �g is called the d’Alembertian operator associated to the Lorentzian metric g,1 and where D denotes
the spacetime covariant derivative associated to g. Under this gauge choice, it can be shown that (1.1)
rewrites as the following system of coupled nonlinear wave equations

�g (gµν) = Nµν
(

(gαβ)α,β=0···3, (∂γgδε)γ,δ,ε=0···3

)
, µ, ν = 0 . . . 3, (1.2)

where Nµν are nonlinearities, quadratic in ∂g. Thus, Einstein vacuum equations (in the wave coordinates
gauge) can be cast as a system of coupled quasilinear wave equations.

As a system of wave equations, Einstein equations (1.1) admit an initial value formulation (also called Cauchy
problem) for which local well-posedness holds. In the next sections, we review well-posedness results for the
classical and for the characteristic Cauchy problem.

1.2 The classical Cauchy problem

Initial Cauchy data for Einstein equations (1.1) are classically prescribed by a triplet (Σ, g, k) such that

� (Σ, g) is a 3-dimensional Riemannian manifold,

� k is a symmetric covariant 2-tensor on Σ,

1In Minkowski space, we have

�η = −∂20 + ∂21 + ∂22 + ∂23 .
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� (g, k) satisfy the following constraint equations on Σ

R = |k|2g − (trgk)2,

divgk = ∇(trgk),
(1.3)

where R denotes the scalar curvature of g, ∇ is the covariant derivative on (Σ, g) and for a symmetric
2-tensor F on Σ,

|F |2g := gijgklFikFjl, trgF := gijFij , (divgF )i = ∇jFij .

A vacuum spacetime (M,g) satisfies the classical Cauchy problem for Einstein equations (1.1) with Cauchy
data (Σ, g, k) if Σ properly embeds in M and g, k are the first and second fundamental forms of Σ ⊂ M.
That is, g is the induced metric by g on Σ, and

kij = −DiTj ,

where T is a unit normal to Σ in M.

Remark 1.1. The standard Cauchy data for Minkowski space (R4,η) are given by

Σ = R3, g = (dx1)2 + (dx2)2 + (dx3)2 =: δ, k = 0.

We have the following well-posedness result for the classical Cauchy problem of general relativity.

Theorem 1.2 ([Fou52, CG69]). Let (Σ, g, k) be smooth Cauchy data for Einstein vacuum equations. Then,
there exists a unique smooth vacuum spacetime (M,g) which satisfies the following properties:

� (M,g) admits (Σ, g, k) as Cauchy data,

� (M,g) is globally hyperbolic and admits Σ as a Cauchy hypersurface, i.e. Σ is achronal in M and M
coincides with the domain of dependence of Σ in M.2

� (M,g) is maximal for the inclusion among all the spacetimes satisfying the above conditions.

The spacetime (M,g) is called the maximal globally hyperbolic development of (Σ, g, k).

Remarks on Theorem 1.2

1.2a In [Fou52], the local existence result of Theorem 1.2 is obtained by a Banach-Picard iteration using
Kirchhoff-Sobolev parametrix for the Einstein equations in wave gauge (1.2).

1.2b Here and in the rest of this thesis, a smooth or C∞ manifold admits by definition an atlas of charts
such that all coordinate changes are C∞ with respect to the standard C∞-topology of Rn. As all
manifolds we consider will be smooth submanifolds of a fixed smooth 4-dimensional manifoldM and as
all vector bundles we consider will be constructed upon TM and T∗M, we shall assume that such an
atlas is fixed on M, which then canonically determines the C k-topology for all tensors on all smooth
submanifolds of M in this thesis.

1.3 The characteristic Cauchy problem
An alternative to the classical Cauchy problem where initial data are prescribed on an initial spacelike
hypersurface is to prescribe initial data on characteristic or null hypersurfaces.3

Formulations of the Cauchy problem for initial data posed on characteristic hypersurfaces is of particular
interest in the case of Einstein equations since, contrary to the classical Cauchy problem of Theorem 1.2
where initial data are posed on a spacelike hypersurface and have to satisfy elliptic constraint equations (1.3),
initial data can be freely prescribed on null hypersurfaces (see the seminal [Sac62]). The characteristic
Cauchy problem (or Goursat problem) is therefore used in numerical general relativity (see [SF82]), as well
as in the construction and control of solutions to Einstein equations (see the dynamical formation of black
holes solutions in [Chr09, KR12, AL17], the impulsive gravitational waves solutions in [LR15, LR17] or the

2We refer to [Wal84, Chapter 8] for further definitions.
3The null hypersurfaces coincide with the characteristic hypersurfaces for the underlying wave operator. See [Ren90, Section

3] for a definition of characteristic hypersurfaces for general differential operators.
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naked singularities of [RS19]).

The following theorem is a rough statement of the seminal result [Ren90] which established the local well-
posedness for the characteristic Cauchy problem (we refer to [Ren90, CP12, Luk12] for precise versions and
further discussion).

Theorem 1.3 ([Ren90]). Let C and C be two intersecting smooth 3-dimensional manifolds. Assume that
smooth characteristic initial data are given on C ∪ C, i.e.

� a foliation by Riemannian 2-surfaces on C and C respectively, coinciding with C ∩ C,

� a set of auxiliary quantities on C ∩ C.4

Then, there exists a smooth vacuum spacetime (M,g) such that

� C and C are null hypersurfaces of (M,g) and the foliations of C and C are geodesic,5

� the induced metrics by g on the foliations of C and C are conformal to the given Riemannian metrics,

� on C ∩ C, the auxiliary quantities coincide with geometric quantities associated to (M,g).4

Remarks on Theorem 1.3

1.3a The proof of Theorem 1.3 in [Ren90] relies in an extension argument in the exterior of C ∪ C and an
application of Theorem 1.2 for the classical Cauchy problem.

1.3b The characteristic initial data of Theorem 1.3 are freely prescribed. They do not have to satisfy
constraint equations as in the classical Cauchy problem.

1.4 Some conjectures in general relativity
1.4.1 The weak cosmic censorship conjecture
One of the most natural question for nonlinear evolution PDE is the large-data global-in-time existence of
solutions. In general relativity, this question is relevant for isolated systems, i.e. for Cauchy data (Σ, g, k)
which are spatially asymptotically close to the Minkowski initial data (R3, δ, 0). These data are said to be
asymptotically flat (we refer to [Bar86] for definitions).

Such solutions might collapse in finite time (see discussions in [Pen69]). The global-in-time existence
conjecture rather states that causal geodesics emanating from the asymptotic region of Σ are complete,
which more colloquially speaking corresponds to the existence of a complete future null infinity and less
colloquially to the fact that far away observers live forever. See [Wal84, Chapter 12] for precisions. The
conjecture was later modified to take into account the existence of the naked singularity solutions of [Chr94]
for which the conjecture fails, but which were proved to be non-generic [Chr99] (see also [RS19]).

Conjecture 1.4 (Weak cosmic censorship [Pen69]). For generic asymptotically flat Cauchy data, solutions
to Einstein equations admit a complete null infinity.

In the seminal works [Chr87, Chr91, Chr93, Chr99], it is shown that the weak cosmic censorship conjecture
holds true in the case of spherical symmetry for Einstein equations coupled with a scalar field.

Remark 1.5. Due to the rigidity results of [BL23], there are no non-trivial spherically symmetric solutions
to Einstein vacuum equations (1.1). Einstein equations coupled with a scalar field can be seen as one of the
simplest set of dynamical equations involving Einstein equations in spherical symmetry.

In the final article [Chr99] in which the conjecture is proved, naked singularities are considered – i.e.
singularities for which Conjecture 1.4 would fail. It is shown that suitable perturbations of their initial data
produce spacetimes with trapped surfaces surrounding the singularity, which thus verify Conjecture 1.4. It
uses a breakdown criterion obtained in [Chr93], a trapped surface formation mechanism obtained in [Chr91]

4With notations introduced in Section 2, the auxiliary quantities will coincide with the null connection coefficients trχ, trχ, ζ
associated to the geodesic foliation on C and C as well as with the initial conformal factor on C ∩ C. See [CP12] for further
discussion.

5We refer to Section 2 for a definition of geodesic foliations.
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and a local existence result for rough initial data proved in [Chr93].

It is crucial that in [Chr93] the breakdown criterion is sufficiently precise and the local existence result allows
for the existence of sufficiently rough solutions. In [Chr93], these results are obtained at the low regular-
ity level of initial data with bounded variations (which is adapted to the (1+1)-setting of spherical symmetry).

Obtaining equivalent results outside of spherical symmetry would be a major breakthrough towards the
proof of Conjecture 1.4 in general. As of today, the sharpest known such result has been obtained by the
resolution of the bounded L2 curvature conjecture which we present in the next section.

1.4.2 The bounded L2 curvature conjecture
In the case of Einstein vacuum equations (1.1) without symmetry, local existence results are naturally
formulated in terms of L2-based function spaces. In that context, the sharpest known local existence/break-
down result in terms of regularity of the initial data has been obtained by the resolution of the bounded
L2 curvature conjecture. The following is a rough statement of the bounded L2 curvature theorem obtained
in [KRS15] and the companion papers [Sze12a]–[Sze16].

Theorem 1.6 (Bounded L2 curvature theorem [KRS15]). Assume that (Σ, g, k) are Cauchy data to the
Einstein equations (1.1) such that

‖Ric(g)‖L2(Σ) +
∥∥∇≤1k

∥∥
L2(Σ)

<∞. (1.4)

Then, there exists a vacuum spacetime which admits (Σ, g, k) as Cauchy data. Moreover, if the initial data
are more regular, this additional regularity is propagated to the spacetime.

Remarks on Theorem 1.6

1.6a The L2(Σ)-bounds (1.4) are at the (low regular) level of an H2
loc(Σ)×H1

loc(Σ) bound for the initial
data (gµν , ∂x0gµν).

1.6b Theorem 1.6 is primarily to be understood as a continuation result or breakdown criterion for smooth
solutions of the Einstein vacuum equations, see [KRS15, Remark 1.2].

The proof [Chr99] of the weak cosmic censorship conjecture in spherical symmetry crucially relies on the
setting of the characteristic Cauchy problem, in particular for the trapped surface formation mechanism
of [Chr91] and for the local existence result of [Chr93] (see also motivations to the characteristic Cauchy
problem given in Section 1.3).

This raises the following question.

Question 1.7. Can we obtain a generalisation of the bounded L2 curvature theorem to initial data posed on
characteristic hypersurfaces?

The first main result of this thesis provides a positive answer to the above question by establishing a
spacelike-characteristic bounded L2 curvature theorem, which generalises Theorem 1.6 to the case of initial
data posed on a null hypersurface. See Parts II and III of this thesis. See also Section 5 of this introduction
for an overview of the result.

(a) The classical bounded L2 curvature theo-
rem [KRS15].

(b) The spacelike-characteristic bounded L2 cur-
vature theorem of this thesis.
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1.4.3 The asymptotic stability of Minkowski space
Using the initial value formulation of Theorem 1.2, we have the following statement of the asymptotic
stability conjecture for Minkowski space.

Conjecture 1.8 (Asymptotic stability of Minkowski space). For Cauchy data (Σ, g, k) close to the Minkowski
initial data, the maximal globally hyperbolic development is geodesically complete and is asymptotic to
Minkowski space (R4,η) in the limit along null and timelike geodesics.

The breakthrough result which solved the asymptotic stability conjecture for Minkowski space is the following
theorem.

Theorem 1.9 (Stability of Minkowski space [CK93]). For Cauchy data (Σ, g, k) such that

� Σ is diffeomorphic to R3,

� (Σ, g, k) is asymptotically flat ( i.e. tends to Minkowski initial data (R3, δ, 0) when r →∞)

� (g, k) (and derivatives) are close to Minkowski initial data (δ, 0) measured in an (weighted) L2-sense,

then its maximal globally hyperbolic development (M,g) is geodesically complete and admits global time and
optical functions t and u such that, measured in these coordinates, g is bounded and decays towards η.

A localised version of Theorem 1.9 was proved for initial data posed on the exterior of a 3-disk.

Theorem 1.10 (Exterior stability of Minkowski space [KN03]). For Cauchy data (Σ, g, k) such that

� Σ is diffeomorphic to R3 \ D where D denotes the disk of R3,

� the same asymptotic flatness and closeness to Minkowski space assumptions as in Theorem 1.9 hold,

then, the maximal globally hyperbolic development (M,g) admits global optical functions u, u such that,
measured in these coordinates, g is bounded and decays towards η.

Remark 1.11. In the proof of Theorem 1.9 in [CK93], the topology assumption Σ ' R3 is crucially used to
define a global time function such that its level sets are maximal hypersurfaces with prescribed asymptotic
conditions when r → ∞. The main novelty in the proof [KN03] of Theorem 1.10 is the definition of a
double-null foliation by the level sets of two optical functions u, u. It replaces the global time function and
enables a localisation of the global nonlinear stability proof [CK93] to the exterior of a disk. See discussions
in [KN03, Section 2].

Figure 1.2: The stability of Minkowski space of Theorems 1.9, 1.10 proved in [CK93] and [KN03].

In view of Theorems 1.9 and 1.10, we have the following natural question.

Question 1.12. Can we complete the result of Theorem 1.10 to re-obtain the result of Theorem 1.9? In
other words, can we prove the global nonlinear stability of Minkowski space for initial data posed on a spacelike
disk and an outgoing null hypersurface?

The second main result of this thesis provides a positive answer to the above question. See Part IV of this
thesis. See also Section 5 of this introduction for an overview of the result.
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Figure 1.3: The stability of Minkowski space of this thesis.
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2. Spacetime foliations

Einstein equations (1.1) form a well-determined system of equations, provided that additional gauge con-
ditions are prescribed. In Section 1.1, we discussed the wave coordinate gauge, which is the prescription
of four additional wave equations for the coordinates xµ. In many problems, other gauge choices are more
adapted to the geometric situation, display better regularity properties, etc.

The gauge choices we use in this thesis are naturally formulated in terms of (natural) geometric constructions
for the spacetime. They correspond to coordinate choices, such that their level sets foliate the spacetime by
geometric hypersurfaces: maximal hypersurfaces (i.e. spacelike hypersurfaces which maximise their volume),
null hypersurfaces, etc.

In this section, we review the formalisms associated to general spacetime foliations. Using these formalisms,
we give definitions for the gauge conditions used in this thesis (as well as some other classical gauge choices).
We also discuss the main features and motivations for these gauges. Most of the material of this section can
be found in [CK93, Introduction] and [CK93, Chapter 7].

2.1 Foliations by spacelike hypersurfaces
In this section, we introduce the decompositions (of the spacetime metric and its derivatives, of Einstein
vacuum equations) associated to foliations of the spacetime by spacelike hypersurfaces, which are level sets of
a time function t. This formalism is called 1 + 3 (see [ADM62]). In that context, we formulate the maximal
gauge condition and present the Einstein equations in that gauge. This gauge is used in Parts II and III of
this thesis and we discuss motivations for that choice.

2.1.1 The 1 + 3 formalism
In this section as well as in the rest of this introduction, we shall assume that (M,g) is an oriented and
time-oriented vacuum spacetime.

We consider t a time function on M, i.e. such that

g(Dt,Dt) < 0.

We note Σt its level sets, which are spacelike hypersurfaces of (M,g). We define the first fundamental form
g of Σt to be the induced Riemannian metric on Σt. We define the second fundamental form k of Σt to be
the Σt-tangent tensor given by

k(Y,Z) := −g(DY T,Z),

where here and in the following T is the future-pointing unit normal to Σt and where Y,Z ∈ TΣt.

For simplicity, we shall from now on consider functions xi which are transported without shift along the flow
of t. Such a prescription can be written as

T (xi) = 0, i = 1, 2, 3. (2.1)

We shall also assume that (t, xi) forms a coordinate system on M, and we note that the assumptions (2.1)
consist in the 3 gauge conditions

g0i = 0.

We define the time lapse n of the foliation (Σt) by

n−2 := −g(Dt,Dt).

With these definitions, the spacetime metric g in the coordinates (t, xi) decomposes as

g = −n2dt2 + gijdx
idxj .
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Using the above definitions, the Einstein vacuum equations (1.1) rewrite in these coordinates as (see [CK93,
Introduction])

∂t(gij) = −1

2
nkij ,

∂t(kij) = −∇i∇jn+ n
(
Ric(g)ij + (trgk)kij − 2kiak

a
j

)
,

(2.2a)

and

R(g) = |k|2 − (trgk)2, (div k)i = ∇i(trgk). (2.2b)

The system of equations (2.2a) is a well-determined system of evolution equations, up to a choice of time
function t, which can be turned into a choice for n or trgk.

Remark 2.1. The equations (2.2b) are the constraint equations. They hold by definition for initial Cauchy
data to Einstein equations (1.1) (see Section 1). They are propagated by the evolution equation (2.2a). In
this thesis, we always assume that we work on an a priori existing vacuum spacetime. Thus, we shall always
consider that the constraint equations are satisfied, and do not investigate further the propagation of these
equations.

2.1.2 The maximal gauge
Additionally to the 3 gauge choices (2.1), we make the following additional (and last) maximal gauge choice

trgk = 0. (2.3)

We remark that taking the trace in (2.2), this gauge choice implies the following equation for the lapse n

∆gn = n|k|2g.

Remark 2.2. One can show that for a vacuum spacetime, any compact perturbation of each separate
hypersurface Σt yield hypersurfaces with smaller volume. This justifies that the hypersurfaces Σt are called
maximal hypersurfaces.

To highlight the main features of equations (2.2) together with the maximal gauge choice (2.3), we first
introduce the electric-magnetic tensors E and H, which are the Σt-tangent tensors defined by

E(X,Y ) := R(T,X, T, Y ), H(X,Y ) := ∗R(T,X, T, Y ), (2.4)

for all X,Y ∈ TΣt and where ∗R is the Hodge dual of the spacetime curvature tensor R.

Einstein vacuum equations (1.1) together with the additional gauge choices (2.1) and (2.3) are equivalent
to the following Einstein vacuum equations in maximal gauge, which is the system of coupled quasilinear
transport-elliptic-Maxwell equations (see [CK93, pp. 8-9 and p. 146]):

the first variation transport equation for g

n−1∂tgij = −2kij , (2.5a)

the second variation transport equation for k

n−1∂tkij = −n−1∇i∇jn+ Eij − kilklj , (2.5b)

the Hodge-type elliptic equations for k

trgk = 0,

div gki = 0,

curl gkij = Hij ,

(2.5c)

the Laplace equation for n

∆gn = n|k|2g, (2.5d)
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the Poisson-type elliptic equation for g1

Ric(g)ij = Eij + kliklj , (2.5e)

and the Maxwell-type equations for E and H

trgE = trgH = 0,

div gEi = (k ∧H)i,

div gHi = −(k ∧ E)i,

n−1∂tEij + curl gHij = −n−1(∇n ∧H)ij +
1

2
(k × E)ij −

2

3
(k · E)gij ,

−n−1∂tHij + curl gEij = −n−1(∇n ∧ E)ij −
1

2
(k ×H)ij +

2

3
(k ·H)gij ,

(2.5f)

where curl g is the tensorial rotational operator with respect to the metric g and ∧, ×, · are standard tensorial
operations with respect to g. We refer to [CK93, Introduction] for definitions.

The 1 + 3 decomposition and the maximal gauge were used in a large number of work in general relativity
from which we only cite [CK93], [KRS15], [Sze12a] – [Sze16], as well as Parts II and III and Part IV of this
thesis.

The first motivation for that choice is that the system of equations (2.5) displays a clear hyperbolic
structure due to the Maxwell-type equations (2.5f) for the electric-magnetic tensors E and H. In particular,
energy estimates can be obtained for E,H.2 The metric and connection coefficients g, k and n are then
determined only by solving the transport (2.5a), (2.5b) or elliptic (2.5c), (2.5d), (2.5e) equations, for which
the electric-magnetic tensors E and H are source terms.

Remark 2.3. The time lapse n is only defined through the elliptic equation (2.5d) on each slice Σt, and
is therefore well-determined up to a choice of a boundary condition at a finite/infinite boundary. Making
such a choice is roughly equivalent to prescribing the boundary values for the maximal hypersurfaces Σt.
In [CK93, KRS15] where Σt ' R3, the chosen condition is n → 1 at spatial infinity, which physically
corresponds to considering a centre-of-mass frame for the system (see the discussion in the introduction
of [CK93]). In Parts II, III and IV where Σt is a 3-disk, we shall see that one of the crucial step is to make
an appropriate choice of (finite) boundaries for Σt (which is equivalent to a choice for n).

The second – and more specific – motivation, which is used in [CK93] and is crucial in [KRS15], [Sze12a] –
[Sze16], in Parts II and III and in Part IV of this thesis is the regularity of the foliation: from the elliptic
equations (2.5c), (2.5d) (2.5e) on Σt, the metric and connection coefficients g, k, n can be shown to have
optimal regularity in the tangential directions to Σt with respect to the source terms E and H.

2.2 Foliations by 2-spheres
In this section, we consider foliations of the spacetime by spacelike 2-spheres Su,u which are intersections
of the level sets of two functions u, u. We present the null decompositions (of the spacetime metric and
derivatives, of the Einstein equations) along orthogonal null directions to Su,u. This framework is particularly
adapted to the definition of null gauges, which are used in Part IV and for which we give motivations.

2.2.1 The null decompositions
Let Su,u be a (local) foliation of M by spacelike 2-spheres which are intersections of the level sets of two
functions u, u. We note g/ the Riemannian metric induced by g on Su,u, and we note r its area radius
4πr2 := |S|. A null pair (e3, e4) is a pair of vectorfields on M orthogonal to the 2-spheres Su,u such that

g(e4, e3) = −2, g(e4, e4) = g(e3, e3) = 0.

Remark 2.4. A null pair (e3, e4) decomposes the spacetime metric g as follows

g = −1

2
(e3)[ ⊗ (e4)[ − 1

2
(e4)[ ⊗ (e3)[ + g/,

where (e3)[, (e4)[ ∈ T∗M are the 1-forms canonically associated to e3, e4.

1In the so-called harmonic coordinates for the Riemannian metric g, the Ricci tensor Ric(g)ij can be rewritten as the
Laplace-Beltrami operator of the metric component ∆g(gij) up to lower order terms.

2The Maxwell equations (2.5f) are projections of the more general (spacetime) Bianchi equations. General energy estimates
for these equations is the subject of Section 3.
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We define the null connection coefficients relative to a null pair (e3, e4) to be the S-tangent tensors defined
by

χ(X,Y ) := g(DXe4, Y ), ξ(X) :=
1

2
g(D4e4, X), η(X) :=

1

2
g(D3e4, X),

ζ(X) :=
1

2
g(DXe4, e3), ω :=

1

4
g(D4e4, e3),

and

χ(X,Y ) := g(DXe3, Y ), ξ(X) :=
1

2
g(D3e3, X), η(X) :=

1

2
g(D4e3, X),

ζ(X) := −1

2
g(DXe3, e4), ω :=

1

4
g(D3e3, e4),

where X,Y ∈ TS. In the following, we often split up χ and χ into their trace and tracefree parts,

trχ := g/
ab
χab χ̂ab := χab −

1

2
trχg/ab,

trχ := g/
ab
χ
ab

χ̂
ab

:= χ
ab
− 1

2
trχg/ab.

The coefficients trχ, trχ are called the expansions, χ, χ are called the (null) second fundamental forms, and ζ
is called the torsion coefficient.

We define the null curvature components relative to a null pair (e3, e4) to be the S-tangent tensors defined by

α(X,Y ) := R(e4, X, e4, Y ), β(X) :=
1

2
R(X, e4, e3, e4), ρ :=

1

4
R(e3, e4, e3, e4),

α(X,Y ) := R(e3, X, e3, Y ), β(X) :=
1

2
R(X, e3, e3, e4), σ :=

1

4
∗R(e3, e4, e3, e4),

where X,Y ∈ TS and where ∗R denotes the Hodge dual of R.

We have the following null structure equations relating the null connection coefficients and the null curvature
components (see [CK93, pp. 168-170]).

We have the following first variation transport equations along e3 and e4

L/e3g/ = 2χ, L/e4g/ = 2χ,

and the following second variation equations

∇/ 3χ̂+ trχχ̂ = ∇/ ⊗̂ξ − 2ωχ̂+
(
η + η − 2ζ

)
⊗̂ξ − α,

∇/ 3trχ+
1

2
(trχ)2 = 2div/ ξ − 2ωtrχ+ 2ξ ·

(
η + η − 2ζ

)
− |χ̂|2,

∇/ 3ζ = −2∇/ ω − χ · (ζ + η) + 2ω(ζ − η) + χ · ξ + 2ωξ − β,

∇/ 3χ̂+
1

2
trχχ̂ = ∇/ ⊗̂η + 2ωχ̂− 1

2
trχχ̂+ ξ ⊗ ξ + η⊗̂η,

∇/ 3trχ+
1

2
trχtrχ = 2div/ η + 2ωtrχ− χ̂ · χ̂+ 2(ξ · ξ + |η|2) + 2ρ,

∇/ 3ξ −∇/ 4η = 4ωξ + χ ·
(
η − η

)
+ β,

∇/ 3η −∇/ 4ξ = −4ωξ − χ · (η − η) + β,

∇/ 3ω +∇/ 4ω = ξ · ξ + ζ · (η − η)− η · η + 4ωω + ρ,

∇/ 4χ̂+ trχχ̂ = ∇/ ⊗̂ξ − 2ωχ̂+
(
η + η + 2ζ

)
⊗̂ξ − α,

∇/ 4trχ+
1

2
(trχ)2 = 2div/ ξ − 2ωtrχ+ 2ξ ·

(
η + η + 2ζ

)
− |χ̂|2,

∇/ 4ζ = 2∇/ ω + χ · (−ζ + η) + 2ω(ζ + η)− χ · ξ − 2ωξ − β,

∇/ 4χ̂+
1

2
trχχ̂ = ∇/ ⊗̂η + 2ωχ̂− 1

2
trχχ̂+ ξ ⊗ ξ + η⊗̂η,

∇/ 4trχ+
1

2
trχtrχ = 2div/ η + 2ωtrχ− χ̂ · χ̂+ 2(ξ · ξ + |η|2) + 2ρ.
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2.2. Foliations by 2-spheres

We have the following elliptic equations on the 2-spheres

curl/ η = −curl/ η =
1

2
χ̂ ∧ χ̂− ξ ∧ ξ − σ,

div/ χ̂ = ∇/ trχ+ χ · ζ − trχζ + β,

div/ χ̂ = ∇/ trχ− χ · ζ + trχζ − β,
curl/ ξ = ξ ∧

(
η + η + 2ζ

)
,

curl/ ξ = ξ ∧
(
η + η − 2ζ

)
,

K = −1

4
trχtrχ+

1

2
χ̂ · χ̂− ρ.

We have the following null Bianchi equations3 relating the null connection coefficients and the null curvature
components (see [CK93, p. 161]).

∇/ 3α+
1

2
trχα = ∇/ ⊗̂β + 2ωα− 3(χ̂ρ+ ∗χ̂σ) + (ζ + 4η)⊗̂β,

∇/ 4β + 2trχβ = div/ α− 2ωβ + (2ζ + η) · α+ 3(ξρ+ ∗ξσ),

∇/ 3β + trχβ = ∇/ ρ+ ∗∇/ σ + 2ωβ + ξ · α+ 3(ηρ+ ∗ησ),

∇/ 4ρ+
3

2
trχρ = div/ β − 1

2
χ̂ · α+ ζ · β + 2(η · β − ξ · β),

∇/ 3ρ+
3

2
trχρ = −div/ β − 1

2
χ̂ · α+ ζ · β + 2(ξ · β − η · β),

∇/ 4σ +
3

2
trχσ = −curl/ β +

1

2
χ̂ · ∗α− ζ · ∗β − 2(η · ∗β + 2ξ · ∗β),

∇/ 3σ +
3

2
trχσ = −curl/ β − 1

2
χ̂ · ∗α+ ζ · ∗β − 2(η · ∗β + η · ∗β),

∇/ 4β + trχβ = −∇/ ρ+ ∗∇/ σ + 2χ̂ · β + 2ωβ − ξ · α− 3(ηρ− ∗ησ),

∇/ 3β + 2trχβ = −div/ α− 2ωβ − (−2ζ + η) · α+ 3(−ξρ+ ∗ξσ),

∇/ 4α+
1

2
trχα = −∇/ ⊗̂β + 4ωα− 3(χ̂ρ− ∗χ̂σ) + (ζ − 4η)⊗̂β.

Here L/e3 ,L/e4 and ∇/ 3,∇/ 4 are tangential projections of the Lie derivative and the covariant derivative along
e3, e4 respectively, ∇/ is the induced covariant derivative on the 2-spheres Su,u, the operators ∇/ ⊗̂, div/ , curl/
are build upon ∇/ by standard tensorial constructions and the symbols ⊗̂, | · |, ·,∧, ∗ denote standard tensorial
operations with respect to the metric g/. We refer to [CK93, Chapter 2] for precise definitions.

2.2.2 Null gauges
The null decompositions are particularly adapted to the choice of null gauges. That is, when one or both of
the functions u, u are assumed to be optical, i.e.

g(Du,Du) = 0, or g(Du,Du) = 0, (2.8)

in which case their level sets are null hypersurfaces of M. In that case, the null pair (e3, e4) is chosen to be
orthogonal to the foliation Su,u and such that e3 (or e4) is colinear to the gradient Du (or Du respectively).
The optical condition (2.8) implies a series of relations which precise the null structure equations from
Section 2.2.1. The resulting equations are combination of transport equations in the e3, e4 direction or
elliptic equations on the 2-spheres.

Null gauges are a powerful tool to capture propagation features of the Einstein equations (see [Chr09]
or [LR15, LR17] for particularly clear instances of that statement). In the context of the global stability
results [CK93, KN03, KS17] (and in many other works), it is crucially used to obtain precise decay rates. In
the context of the low regularity results [KRS15] and [Sze12a] – [Sze16] it is crucially used to construct a
parametrix and obtain precise bilinear estimates.

We review some of the main null gauge choices used in the literature.

3As the Maxwell equations of Section 2.1.2, the null Bianchi equations are projections of the spacetime Bianchi equations.
These last equations are discussed in Section 3.
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Chapter 2. Spacetime foliations

� The double null gauge is the assumption that u, u are both optical. This choice is typically done
together with a choice of two shift-free transported spherical coordinates ϑ, ϕ. It is made in a large
number of work in general relativity, from which we only cite the seminals [KN03] and [Chr09]. It
is adapted to the characteristic Cauchy problem, where initial data are posed on two transversely
intersecting null hypersurfaces (see discussions in Section 1.3).

� The maximal-null gauge is the assumption that u is optical, together with the assumption that

u = 2t− u,

where t is a maximal time function. This choice is made in [CK93] and [KRS15] and [Sze12a] – [Sze16]
and combines the above mentioned features of the null and maximal gauges.

� The geodesic-null gauge is the assumption that u is optical, together with the assumption that u is a
geodesic affine parameter of the null hypersurfaces level sets of u. We postpone that last definition to
the next Section 2.3. This gauge choice is made in [KS17] and in Part IV, in which it is used to deal
with specific geometric situations (see the introduction of Part IV).

2.3 The geodesic and canonical foliations of null hypersurfaces
In this section, we present the geodesic and canonical foliation by 2-spheres of a null hypersurface (similar
definitions hold in the spacelike case). These (gauges/initialisation of gauges) choices are used in Parts II
and III and in Part IV of this thesis.

Let H be a null hypersurface of M, which we assume is emanating from a 2-sphere S (similar definitions
hold in the case of a null hypersurface emanating from a point). Let L be a null geodesic generator of H, i.e.
such that L is everywhere null and tangent to H and satisfies the following geodesic equation

DLL = 0.

To a fixed null geodesic generator, we associate an affine geodesic parameter s on H, by

Ls = 1, s|S = 1.

We call (S′s) the geodesic foliation on H, where S′s are the level sets of s. Note that this foliation depends on
the choice of null geodesic generator L on S and on the choice of S.

Let v be a general function on H such that its level sets Sv define a (local) foliation of H by 2-spheres. We
define the null lapse Ω of the foliation (Sv) by

Ω := Lv.

To a general foliation (Sv), we associate the following null pair (e3, e4) by

e4 = L, g(e3, e4) = −2, g(e3, e3) = 0, e3 is orthogonal to Sv.

To describe the geometry of the foliation (Sv), we use the null connection coefficients from Section 2.2.1,
which make sense in the context of a null pair (only) defined on H (and not on M), that is we consider

χ, χ, ζ, η, ξ, ω.

We first note that, for a general foliation of 2-spheres on H, we have

ξ = 0, ω = 0.

Moreover, one can prove that

ζ = η −∇/ log Ω. (2.9)

With these definitions, the geodesic foliation choice, writes

Ω = 1.

14



2.3. The geodesic and canonical foliations of null hypersurfaces

In several situations, one rather perform a canonical foliation choice,4 which is the prescription of the
following elliptic equation for Ω

4/ (log Ω) = −div/ ζ − ρ+ ρ+ lower order terms,∫
Sv

log Ω = 0,
(2.10)

where ρ is the mean value on Sv of ρ.

The motivation for that choice is that it cancels the right-hand side of the null structure transport equation
for the transverse expansion trχ which reads in general

e4(trχ) +
1

2
trχtrχ = −2div/ ζ − 24/ (log Ω) + 2ρ+ lower order terms. (2.11)

In the geodesic case, the above equation writes

e4(trχ) +
1

2
trχtrχ =− 2div/ ζ + 2ρ+ lower order terms, (2.12)

while in the canonical foliation case

e4(trχ) +
1

2
trχtrχ = 2ρ+ lower order terms. (2.13)

We note that tangential derivatives of the right-hand side of (2.13) are only composed of lower order terms,
which is not the case for (2.12). This allows for an improved control of the transverse expansion trχ and
subsequently the whole transverse second fundamental form χ on H in the canonical foliation case.

In many situations, this improved regularity is necessary to obtain a sufficient control of hypersurfaces
transversely emanating from the foliation Sv. See [CK93, KN03, Nic04, Sze12a] and Parts II, III and IV.

Remark 2.5. Elliptic equation (2.10) together with the lapse definition dv
ds = Lv = Ω, forms a system of

transport-elliptic equation provided that a background geodesic foliation is given (in that case the terms in
the right-hand side of the Poisson equation (2.10) are considered as source terms). For such a system, local
existence holds by a Banach-Picard fixed point argument, and thus the canonical foliation choice can be
realised.

4The denomination canonical is used in [CK93, KN03] in the context of a last slice initialisation in a bootstrap argument. It
usually denotes foliations prescribed by elliptic equations. The terminology can be misleading since these foliations still consist
in a (gauge) choice.
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3. Bianchi equations and energy estimates

Einstein vacuum equations (1.1) together with the once contracted Bianchi identities yield the following
Bianchi equations for the spacetime curvature tensor R

DαRαβγδ = 0. (3.1)

These equations are of Maxwell-type.1 Using (3.1), one can in particular prove energy estimates for the
spacetime curvature tensor R.

In this section, we introduce the general setup to perform these estimates in the general case of the spacetime
equations (3.1). Most of the material is taken from [CK93, Chapter 7]. We then detail an example of energy
estimate which can be performed using this setup. Last, we discuss the notion of conformal Killing vectorfield
and its application to energy estimates.

3.1 Weyl fields and Bel-Robinson tensors
We follow the treatment of [CK93, Chapter 7]. In this section, as well as in the next sections, we shall
assume that M is orientable and time-orientable. We note ∈ an associated spacetime volume form.

We say that a 4-tensor W is a Weyl tensor if it has the same symmetries as the Riemann curvature tensor
and is g-tracefree, that is,

Wαβγδ = −Wβαγδ = −Wαβδ γ , Wαβγδ = Wγδαβ ,

Wαβγδ + Wαγδ β + Wαδ β γ = 0, Wβδ := Wα
βαδ = 0.

We note that the spacetime curvature tensor R of a vacuum spacetime is the prime example of a Weyl tensor.

We define the Bel-Robinson tensor of a Weyl tensor W to be

Q(W)α βγδ := Wανγ µW ν µ
β δ + ∗Wανγµ

∗W ν µ
β δ ,

where the left dual ∗W of a Weyl tensor W is defined by

∗Wαβγδ :=
1

2
∈αβµν Wµν

γδ.

We define the current J(W) of a Weyl field to be the 3-tensor

J(W)βγδ := DαWαβ γδ,

and we note that the Bianchi equations (3.1) imply J(R) = 0.

We have the following equation for the spacetime divergence of a Bel-Robinson tensor

DαQ(W)αβγδ = J(W)µγνW
µ ν
β δ + J(W)µδνW

µ ν
β γ

+ J∗(W)µγν
∗W µ ν

β δ + J∗(W)µδν
∗W µ ν

β γ ,
(3.3)

where

J∗βγδ =
1

2
Jβµν ∈µνγδ,

and we note that this in the case of W = R implies

DαQ(R)αβγδ = 0. (3.4)

The Bel-Robinson tensor satisfies the following coercivity properties:

1See for example the projected equations (2.5f) in the 1 + 3 context of Section 2.1.
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Chapter 3. Bianchi equations and energy estimates

� for a unit timelike vectorfield T , we have

Q(W)(T, T, T, T ) ' |E(W)|2 + |H(W)|2,

where the electric-magnetic decomposition E,H of W is defined as in Section 2.1.2,

� for a null pair (e3, e4) we have

Q(W) (e3 + e4, e3 + e4, e3 + e4, e3) ' |α(W)|2 + |β(W)|2 + ρ(W)2 + σ(W)2 + |β(W)|2,
Q(W) (e3 + e4, e3 + e4, e3 + e4, e4) ' |β(W)|2 + ρ(W)2 + σ(W)2 + |β(W)|2 + |α(W)|2,

where the null decomposition α, · · · , α of W is defined as in Section 2.2.1.

The above properties make the Bel-Robinson the analogue for a Weyl field of a standard energy-momentum
tensor. From the expression of its spacetime divergence in terms of the sources of the Weyl field (which
vanish in the case of the spacetime curvature tensor) we obtain (boundary and spacetime) integral identities
via a Stokes formula. From the above coercivity properties, the produced boundary terms are energy fluxes
controlling the field.

In the next section, we give a statement of Stokes theorem. We then give an example of energy estimates
that can be obtained using the tools from these two sections.

3.2 Stokes theorem
For the purpose of this section, we rewrite the volume form ∈ of M under the form

dvolM := ∈ .

For all k-form on M, we denote by i the contraction, defined by

iPω := ω(P, ·, ·, ·),

where P ∈ TM.

We have the following theorem.

Theorem 3.1 (Stokes theorem). Let D be a subdomain of M. Let ω be a 3-form on D. We have∫
D

dω =

∫
∂D

ω,

where the boundary ∂D is oriented such that the 3-form iN∂DdvolM is a positive volume form of ∂D, where
N∂D is an outgoing vectorfield to ∂D.

We have the following corollary.

Corollary 3.2. For all vectorfield P ∈ TM, we have∫
D

(divP ) dvolM =

∫
∂D

iPdvolM,

where divP := DαPα.

Proof. This follows from the formula (which is easily checked in local normal coordinates)

d (iP dvolM) = (divP ) dvolM,

and Stokes theorem.
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3.3. An example of energy estimate

3.3 An example of energy estimate
Let Σ1 and Σ2 be two spacelike hypersurfaces and H1, H2 be two null hypersurfaces enclosing a spacetime
domain D, as shown in Figure 3.1.

Let T be a future-pointing timelike vectorfield in D, which for simplicity we will assume to be unitary and
normal to the spacelike hypersurfaces Σ1 and Σ2.

We use T as multiplier vectorfield for the Bel-Robinson tensor of R, and we form the following 1-tensor

P := Q(R) (T, T, T, ·) .

Using formula (3.4) and the symmetries of the Bel-Robinson tensor (see [CK93, Chapter 7]) we have

divP =
3

2
Q(R)αβγδ

(T )π̂αβT γT δ,

where

(T )π̂αβ := DαT β + DαT β − 1

2
(DαTα) gαβ .

Figure 3.1: The spacetime domain D.

From Corollary 3.2, we have

3

2

∫
D
Q(R)αβγδ

(T )π̂αβT γT δ dvolM =

∫
∂D

iPdvolM, (3.5)

where we recall that ∂D is oriented such that iNdvolM is a positive volume form of ∂D for any outgoing
vectorfield N to ∂D.

Our goal in the rest of this section is to express the boundary terms of (3.5) in terms of contractions of the
Bel-Robinson tensor and standard integrals on the hypersurfaces Σ and H.

First, let denote by + the orientation of these hypersurfaces such that iTdvolM is a positive volume form
(i.e. the orientation given by the time-orientation of M), and by − the reverse orientation.

The boundary term of (3.5) write as (see Figure 3.1)∫
∂D

=

∫
Σ−1

+

∫
Σ+

2

+

∫
H+

1

+

∫
H−2

.

We define the canonical volume form of Σ1,Σ2 by

dvolΣ := iTdvolM,

which is positive for Σ+
1 ,Σ

+
2 .
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Chapter 3. Bianchi equations and energy estimates

Since we have P + g(P, T )T ∈ TΣ and reversing the orientation in the case of Σ1, we deduce on Σ1 and Σ2∫
Σ−1

iPdvolM =

∫
Σ+

1

g(P, T ) dvolΣ1
,∫

Σ+
2

iPdvolM = −
∫

Σ+
2

g(P, T ) dvolΣ2 .

Assume that a future-oriented null pair (e3, e4) is given on H1 and H2 (see the definition of Section 2.2.1).
Assume moreover that it is adapted to H1 and H2, i.e. that e3 ∈ TH1 and e4 ∈ TH2. For fixed null pairs,
we define the volume forms dvolH1

and dvolH2
of H1 and H2 to be

dvolH1
:=

1

2
ie4dvolM, dvolH2

:=
1

2
ie3dvolM.

Remark 3.3. For spacelike hypersurfaces and for timelike hypersurfaces there exists a canonical volume
form – provided that a spacetime orientation and time-orientation is given. For null hypersurfaces, the
definition of a volume form depends on a choice of a transverse null vectorfield (which can for example be
chosen to be orthogonal to a foliation of the hypersurface).

Since we have

P +
1

2
g(P, e3)e4 ∈ TH1,

P +
1

2
g(P, e4)e3 ∈ TH2,

and reversing the orientation in the case of H2, we deduce that∫
H+

1

iPdvolM = −
∫
H+

1

g(P, e3) dvolH1 ,∫
H−2

iPdvolM = +

∫
H+

2

g(P, e4) dvolH2
.

We now express the contractions of P :

g(P, T ) = Q(R)(T, T, T, T ),

g(P, e3) = Q(R)(T, T, T, e3),

g(P, e4) = Q(R)(T, T, T, e4).

This finally gives the following identity∫
Σ2

Q(R)(T, T, T, T ) dvolΣ2
+

∫
H1

Q(R)(T, T, T, e3) dvolH1

=

∫
Σ1

Q(R)(T, T, T, T ) dvolΣ1
+

∫
H2

Q(R)(T, T, T, e4) dvolH2
− 3

2

∫
D
Q(R)αβγδ

(T )π̂αβT γT δ dvolM.

where all hypersurfaces are positively oriented.

Assuming that T ' 1
2 (e3 +e4), and using the coercivity properties of the Bel-Robinson tensor from Section 3.1,

this gives the following energy estimate∫
Σ2

(
|E|2 + |H|2

)
dvolΣ2

+

∫
H1

(
|α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2

)
dvolH1

'
∫

Σ1

(
|E|2 + |H|2

)
dvolΣ1

+

∫
H2

(
|β|2 + |ρ|2 + |σ|2 + |β|2 + |α|2

)
dvolH2

−
∫
D
Q(R)αβγδ

(T )π̂αβT γT δ dvolM.

Remark 3.4. All volume forms above can also be expressed using coordinates and standard integrals.

In the next section, we introduce the conformal Killing vectorfields and discuss the treatment of the term∫
D
Q(R)αβγδ

(T )π̂αβT γT δ dvolM.

We also discuss alternative multiplier/commuting vectorfields.
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3.4. Conformal Killing vectorfields

3.4 Conformal Killing vectorfields
In this section, we discuss how to treat the spacetime integral terms obtained in the energy estimates of the
last section, introducing the notion of conformal Killing vectorfield. We further discuss generalisations of
energy estimates to derivatives of the spacetime curvature tensor.

3.4.1 Multiplier vectorfields
Using symmetries of the Bel-Robinson tensor (see [CK93, Chapter 7]), we have the following general formula

div (Q(W)(X,Y, Z)) = DαQ(W)αβγδX
βY γZδ +

1

2
Q(W)αβγδ

(X)π̂αβY γZδ

+
1

2
Q(W)αβγδ

(Y )π̂αβXγZδ +
1

2
Q(W)αβγδ

(Z)π̂αβXγY δ,

(3.6)

for X,Y, Z ∈ TM, and where (U)π̂ is the following traceless part of the deformation tensor of the 1-tensor U

(U)π̂µν := DµUν + DνUµ −
1

2
(DαUα) gµν .

We say that U is a conformal Killing vectorfield if

(U)π̂ = 0.

If X,Y, Z are conformal Killing vectorfields, we have from formula (3.6)

div (Q(W)(X,Y, Z)) = DαQ(W)αβγδX
βY γZδ.

In particular, in the case of W = R, we deduce from the above and (3.4) that

div (Q(R)(X,Y, Z)) = 0.

In the case of the energy estimate of Section 3.3, if the timelike vectorfield T is conformal Killing, we thus
have the following energy estimate∫

Σ2

(
|E|2 + |H|2

)
dvolΣ2 +

∫
H1

(
|α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2

)
dvolH1

'
∫

Σ1

(
|E|2 + |H|2

)
dvolΣ1 +

∫
H2

(
|β|2 + |ρ|2 + |σ|2 + |β|2 + |α|2

)
dvolH2 .

Timelike conformal Killing vectorfields are thus generally used as multiplier to perform energy estimates. For
approximate conformal Killing vectorfields, we obtain energy estimates with a spacetime integrated error
term, corresponding to the fact that π̂ ' 0 but does not vanish.

In the case of Minkowski space (R4,η), we mention the following timelike Killing vectorfields which are used
as multiplier in energy estimates

� the time translation Killing vectorfield T := ∂t,

� the conformal Morawetz Killing vectorfield K := (t2 + r2)∂t + 2tr∂r.

We refer the reader to [CK93, Bie10] for instances of energy estimates performed using (approximation of)
these vectorfields as multipliers, and to [CK90] for the full set of conformal Killing vectorfields of Minkowski
space. In Part II, we use approximate time translation Killing vectorfields as multipliers to perform local
energy estimates for R. In Part IV, we use both approximate time translation and Morawetz conformal
Killing vectorfields as multipliers to perform global energy estimates.

Remark 3.5. In the case of the Morawetz multiplier K, the weights in t, r produce the boundedness of
weighted L2-fluxes for the spacetime curvature tensor R. This can be turned into (pointwise) decay for R
via Sobolev and Klainerman-Sobolev estimates.2

2See [CK90] for an introduction to Klainerman-Sobolev estimates in that setting.
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Chapter 3. Bianchi equations and energy estimates

3.4.2 Commuting vectorfields
For a Weyl field W and a vectorfield X, we define the modified Lie derivative, which takes Weyl tensors into
Weyl tensors, by

L̂XW := LXW − 1

2
(X)[W] +

3

8
trg πW,

where π := LXg and

(X)[W]αβ γδ := πµαWµβγδ + πµ βWαµγδ + πµγWαβ µδ + πµδWαβγ µ.

We have the following formula (see [CK93, Proposition 7.1.2]) for the current of L̂XW

J(L̂XW)βγδ = L̂XJβγδ +
1

2
π̂µνDνWµβγδ +

1

2
Dαπ̂αλW

λ
βγδ

+
1

2
(Dβ π̂αλ−Dλπ̂αβ)Wαλ

γδ

+
1

2
(Dγ π̂αλ −Dλπ̂αγ)Wα λ

β δ

+
1

2
(Dδπ̂αλ −Dλπ̂αδ)W

α λ
βγ ,

(3.7)

where π̂ denotes the traceless deformation tensor of X, and where

L̂XJβγδ := LXJδγδ −
1

2

(
π̂µδ Jµγδ + π̂µγJβµδ + π̂µδ Jβγµ

)
+

1

8
trgπJβγδ.

The above notion of derivation is used together with the Bel-Robinson tensor to commute Bianchi equa-
tions (3.1) and prove energy estimates for derivatives of the curvature tensor R. This is done by considering
the following commuted and contracted Bel-Robinson tensor

Q(L̂XR)(Y1, Y2, Y3, ·),

to which we apply Stokes formula from Corollary 3.2.

From formula (3.7), we deduce that if X,Y1, Y2, Y3 are conformal Killing vectorfields, we have

div
(
Q(L̂XR)(Y1, Y2, Y3, ·)

)
= 0,

and we can thus obtain energy estimates for the commuted spacetime curvature tensor L̂XR.

In Minkowski space (R4,η), we mention the following conformal Killing vectorfields

� the four spacetime translation Killing vectorfields ∂0, ∂1, ∂2, ∂3,

� the scaling conformal Killing vectorfield t∂t + r∂r,

� the three rotation Killing vectorfields x1∂2 − x2∂1, x2∂3 − x3∂2 and x3∂1 − x1∂3.

In Part II, we use approximate timelike translation T as commuting vectorfield to obtain energy estimates
for derivatives of R. In Part IV, we use approximate spacetime translations, scaling and rotation conformal
Killing vectorfields, to control derivatives of R.
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4. The bounded L2 curvature theorem and the
stability of Minkowski space

The main results of this thesis are a bounded L2 curvature theorem (see Parts II and III) and a global
nonlinear stability of Minkowski space theorem (see Part IV) for initial data posed on a characteristic
hypersurface. Their final statements are adaptations to the characteristic setting of the statements of the
classical bounded L2 curvature theorem [KRS15] and of the global nonlinear stability of Minkowski space
theorem [CK93].

Our proofs in Parts II and III and in Part IV are based on new geometric constructions which are designed
so that the results of [KRS15] and [CK93] can respectively either be directly applied as a black box, or
re-obtained under some modifications.

In this section, we provide precised statements to the bounded L2 curvature theorem [KRS15] and to the
global nonlinear stability of Minkowski space theorem [CK93]. Since the basic scheme of proof in both
Parts II, III and Part IV follow the general features of the seminal proof in [CK93], we also give an overview
of that proof. It uses the spacetime decompositions and energy estimates which are reviewed in Sections 2
and 3.

4.1 The bounded L2 curvature theorem
We have the following precised version of the bounded L2 curvature theorem of [KRS15] and [Sze12a]–[Sze16].

Theorem 4.1 (The bounded L2 curvature theorem [KRS15], precised version). Let (Σ, g, k) be smooth
Cauchy data such that

� Σ is a maximal hypersurface, diffeomorphic to R3,

� the following L2 bounds for the curvature hold on Σ

‖Ric‖L2(Σ) +
∥∥∇≤1k

∥∥
L2(Σ)

≤ ε. (4.1)

Then, there exists ε0 > 0 such that if ε < ε0 the following holds for the smooth maximal globally hyperbolic
development (M,g) of (Σ, g, k).

� There exists a smooth time function t ranging from 0 to 1, locally foliating M by spacelike maximal
hypersurface Σt such that Σ0 = Σ.

� The following bounds hold on all hypersurfaces Σt

‖Ric‖L∞t L2(Σt) + ‖∇≤1k‖L∞t L2(Σt) . ε, (4.2)

‖n− 1‖L∞t L∞(Σt)
. ε, (4.3)

where we recall that Ric and k denote the intrinsic Ricci tensor and second fundamental form of
Σt ⊂M and where n denotes the time lapse of the foliation (Σt).

Remarks on Theorem 4.1

4.1a Theorem 4.1 is a small-data time 1 result (this is ensured by the bound (4.3) on the time lapse) that
can be turned into a large-data small-time result by a rescaling argument (see also the rough version of
Theorem 1.6 and [KRS15, Theorem 2.2]).

4.1b The L2 bounds of (4.1) and (4.2) are equivalent to L2 bounds for the full spacetime curvature tensor R
of (M,g), or alternatively to L2 bounds for the electric-magnetic decomposition E,H of R. This can
be seen using the Einstein equations in maximal gauge from Section 2.1.2. These bounds correspond
to bounds on the boundary fluxes naturally arising from energy estimates for Bianchi equations for R,
see Section 3.
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Chapter 4. The bounded L2 curvature theorem and the stability of Minkowski space

4.1c The proof of Theorem 4.1 is based on bilinear and trilinear estimates which crucially rely on a plane
wave representation formula for the wave equation on low regularity spacetimes developed in [Sze12a] –
[Sze16]. This plane wave representation formula is constructed as a Fourier integral operator which
necessitates the assumption Σ ' R3.

4.2 The global nonlinear stability of Minkowski space
We have the following precised version of the global nonlinear stability result of [CK93].

Theorem 4.2 (Stability of Minkoswki space [CK93], precised version). Let (Σ, g, k) be Cauchy data such
that:

� Σ is maximal, diffeomorphic to R3,

� Σ is asymptotically flat, i.e. there exists coordinates (x1, x2, x3) in a neighbourhood of infinity such that

(r∂)≤4

(
gij −

(
1 +

2M

r

)
δij

)
= O(r−3/2), (4.4a)

when r →∞ and where here r :=
√∑3

i=1(xi)2 and M ≥ 0, and we have the following sup-norm bound

for the curvature of (Σ, g) ∥∥(1 + d)3Ric
∥∥
L∞(Σ)

≤ ε, (4.4b)

where Ric denotes the Ricci tensor of the metric g and d denotes the geodesic distance to a fixed point
of Σ,

� the following bounds hold for curvature L2-fluxes through Σ∥∥∥(1 + d) ((1 + d)∇)
≤3
k
∥∥∥
L2(Σ)

+
∥∥∥(1 + d)3 ((1 + d)∇)

≤1
B
∥∥∥
L2(Σ)

≤ ε, (4.4c)

where B := curl g
(
Ric− 1

3Rg
)
.

Then, there exists ε0 > 0, such that if ε < ε0, the following holds for the maximal globally hyperbolic
development (M,g) of (Σ, g, k).

� (M,g) is geodesically complete.

� There exists a global time function t on M ranging from −∞ to +∞ which foliates M by maximal
spacelike hypersurfaces Σt such that Σ0 = Σ.

� There exists a future exterior region1 Mext foliated by outgoing null hypersurfaces Cu level sets of a
global optical function u ranging from −∞ to +∞ on Mext, and a past exterior region with symmetric
constructions.

� We have the following decay in the interior region Mint :=M\Mext of the spacetime curvature tensor
R of g

|E(R)|+ |H(R)| . εt−7/2. (4.5a)

� We have the following differentiated decay in the exterior region Mext of the spacetime curvature tensor
R according to its null decomposition2

|α(R)| . εr−7/2, |β(R)| . εr−7/2, |ρ(R)| . εr−3,

|α(R)| . εr−1u−5/2, |β(R)| . εr−2u−3/2, |σ(R)| . εr−3u−1/2,
(4.5b)

where here r := t− u.

� The induced metric and connection coefficients adapted to the maximal foliation Σt and maximal-null
foliation Σt and Cu satisfy decay statements consistent with (4.5a) and (4.5b).

� The spacetime (M,g) admits a past/future timelike, past/future null and spacelike infinities i−, i+,
I −,I + and i0 on which one can make sense of asymptotic quantities and their evolution equations.

1The future exterior region is of the type {u ≤ ct}.
2The null pair is adapted to the 2-spheres intersections of the maximal-null foliation of Mext by Σt and Cu.
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4.3. Overview of the proof of Theorem 4.2

Remarks on Theorem 4.2

4.2a A first stability result for initial data with stronger decay assumptions was obtained in [Fri83]. A global
stability result has been obtained in [Bie10, BZ09] using the same general techniques as in [CK93] but
under relaxed assumptions for both the regularity and decay of the initial data. A global stability
result for Minkowski space has also been obtained using wave coordinates, see [LR10].

4.2b The proof of Theorem 4.2 relies on the vectorfield method wrapped into an elaborate bootstrap argument.
It also requires the constructions of appropriate spacetime decompositions. In the next section, we
discuss these main features and give an overview of the proof of Theorem 4.2. Bootstrap arguments
underlie all the proofs of the main theorems of this thesis. The vectorfield method is used in the
global nonlinear stability result of Part IV. Constructing and controlling new geometric spacetime
decompositions is one of the main achievements of Parts II and III and Part IV.

4.3 Overview of the proof of Theorem 4.2
The proof of Theorem 4.2 in [CK93] is an elaborate bootstrap argument, which is used to deal with the
nonlinear character of Einstein equations (1.1). The main step of a bootstrap argument is to show that a set
of estimates can be obtained in a bootstrap region, where bootstrap assumptions are assumed. Applying local
existence and extension results, one obtains by a standard continuity argument that the bootstrap region
covers the whole desired spacetime and that the estimates globally hold.

4.3.1 The vectorfield method
The estimates in the proof of Theorem 4.2 are obtained using the vectorfield method, which proceeds in the
following two steps.

Step 1: global energy estimates. As a first step, global energy estimates for the Bianchi equations (3.1)
are performed. These estimates are obtained following the general framework described in Section 3, applying
Stokes formula to contracted and commuted Bel-Robinson tensors. See Section 3.3 for an example of how
such an estimate is performed.

The Bel-Robinson tensors are contracted and commuted with a set of multiplier and commuting vectorfields.
These vectorfields are chosen to be approximations of the Minkowskian conformal Killing vectorfields. In
Minkowski space, contracting and commuting by conformal Killing vectorfields produces exact conservation
laws, see the discussion in Section 3.4. From their approximations arise nonlinear error terms. The global
energy estimates hold provided that these error terms are controlled.

The outcome of the energy estimates is a control of energy boundary fluxes through hypersurfaces Σt and Cu
by the boundary flux through the initial hypersurface Σ. Assumption (4.4c) of Theorem 4.2 guarantees that
these initial boundary fluxes through Σ are controlled.

Step 2: boundedness and decay estimates. The control of the energy boundary fluxes of Step 1
can be turned into boundedness of L2 norms for (derivatives of) the spacetime curvature tensor R on the
boundary hypersurfaces. From the boundedness of the L2 norms, one obtains decay estimates for R using
Klainerman-Sobolev embeddings. As a consequence of the boundedness and decay for the spacetime curvature
R, one obtains consistent boundedness and decay for the metric and connection coefficients associated to the
maximal-null foliation. This is done using the structure equations for the maximal and null decompositions,
displayed in Sections 2.1 and 2.2. These equations schematically read

DΓ = R + DΓ + Γ · Γ.

Here D are derivatives, Γ are connection coefficients, the terms R,DΓ on the right-hand side are treated as
linear source terms and the terms Γ · Γ as nonlinear error terms.

The crux of the proof of Theorem 4.2 in [CK93] is the control of the nonlinear error terms arising in the
global energy estimates of Step 1. The approximate conformal Killing vectorfields are constructed upon the
maximal-null decompositions of the spacetime. The nonlinear error terms of Step 1 can thus be expressed in
terms of the spacetime curvature R and the connection coefficients Γ. Their control thus crucially relies on
the decay estimates obtained in Step 2.

25



Chapter 4. The bounded L2 curvature theorem and the stability of Minkowski space

4.3.2 The maximal-null foliation
The vectorfield method can be performed provided that the spacetime is decomposed along foliations by
hypersurfaces according to the framework of Section 2. In [CK93], the spacetime is foliated by the level sets
Σt of a time function t and by the level sets Cu of an optical function u.

The global time function t is constructed by imposing that its level sets Σt are maximal hypersurfaces of
M, that Σ = {t = 0} and that n→ 1 when r →∞. These last conditions are equivalent to the choice of
boundary for Σt at infinity. See also discussions in Section 2.1.2. It physically corresponds to considering a
centre-of-mass frame for the system (see the discussion in the introduction of [CK93]).

The global optical function u is constructed by an initialisation on the last slice, i.e. by imposing that the
outgoing null hypersurfaces Cu are backwards emanating from the 2-spheres of a canonical foliation on a last
slice Σ∗ corresponding to the future boundary of the bootstrap region.

That the construction of the optical function u is performed within the bootstrap argument from the last slice
of the bootstrap region, is done so that the function u asymptotically matches the corresponding Minkowskian
optical function. In that case, the null cones Cu do approach the Minkowskian null cones at infinity and
sufficient decay estimates for the induced metric and null connection coefficients can be obtained to control
the crucial energy estimates nonlinear error terms discussed in the previous section.
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5. Main results of the thesis

In Sections 5.1 and 5.2, we present the main results obtained in this thesis, which respectively answer
Questions 1.7 and 1.12 raised in Section 1.

5.1 The spacelike-characteristic bounded L2 curvature theorem
We consider the spacelike-characteristic Cauchy problem for Einstein equations (1.1), where initial data are
posed on

� a maximal spacelike hypersurface Σ diffeomorphic to the unit disk of R3,

� an outgoing null hypersurface H emanating from ∂Σ.

Remark 5.1. Initial data to the spacelike-characteristic Cauchy problem must satisfy constraint equations
as in Sections 1.2 and 1.3 of this introduction, together with compatibility conditions at the intersection
Σ ∩H. We do not intend to give a characterisation of these initial prescriptions. In Parts II and III and
in Part IV, we shall in fact assume that for smooth data a combination of the results of [Fou52, CG69]
and [Ren90] yields the existence of a smooth maximal globally hyperbolic development of Σ ∪H. The essence
of our results is a characterisation of that development provided that a specific control holds on Σ ∪H.

Figure 5.1: The spacelike-characteristic bounded L2 curvature theorem.

We obtain the following result, which is the subject of Part II (and III) of this manuscript.

Theorem 5.2 (Spacelike-characeteristic bounded L2 curvature theorem [CG19a, CG19b]). Let smooth
spacelike-characteristic initial data be given on a maximal spacelike 3-disk Σ and on a null hypersurface H
emanating from ∂Σ. Assume that

� the following bounds hold on Σ

‖Ric‖L2(Σ) +
∥∥∇≤1k

∥∥
L2(Σ)

≤ ε, (5.1)

together with mild geometric assumptions for Σ,

� the hypersurface H is foliated by a smooth geodesic foliation (S′s) ranging from s = 1 to s = 5/2, such
that S′1 = ∂Σ, and such that for the null curvature components associated to the geodesic foliation, we
have

‖α‖L2(H) + ‖β‖L2(H) + ‖ρ‖L2(H) + ‖σ‖L2(H) +
∥∥β∥∥

L2(H)
≤ ε, (5.2)

� low regularity bounds consistent with (5.1) and (5.2) hold on S′1 = Σ ∩H for the induced metric and
null connection coefficients of the geodesic foliation.
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Chapter 5. Main results of the thesis

Then, there exists ε0 > 0 such that if ε < ε0 the following holds for the smooth maximal globally hyperbolic
development (M,g) of Σ ∪H.

� There exists a smooth time function t ranging from t = 1 to t = 2, locally foliating the future of Σ ∪H
in M by spacelike maximal hypersurfaces Σt, such that Σ1 = Σ.

� The following bounds hold on Σt

‖Ric‖L∞t L2(Σt)
+
∥∥∇≤1k

∥∥
L∞t L

2(Σt)
+ ‖n− 1‖L∞t L∞(Σt)

. ε, (5.3)

together with a mild geometric control of Σt.

Remarks on Theorem 5.2

5.2a Theorem 5.2 assumes solely initial data bounds at the level of curvature in L2 and makes no symmetry
assumptions. In contrast, in the available literature the Cauchy problem for the Einstein vacuum
equations with initial data on null hypersurfaces outside of symmetry is studied under the assumption
of

� higher regularity of the full initial data, see for example [Ren90, CCM11, CP12],

� higher regularity of specific components of the initial data, see for example [Luk12, LR15, LR17].
For instance, in [LR15] the null curvature component α is only assumed to be a measure on H
while β, ρ, σ and β are assumed to be controlled up to two angular derivatives in L2.

5.2b The L2 bounds assumptions (5.1) and (5.2) on Σ and H are equivalent to a control of the boundary
fluxes naturally arising from energy estimates for the Bianchi equations for R (see Section 3).

5.2c The proof of Theorem 5.2 features an energy estimate for the Bianchi equations for R in M (using the
framework described in Section 3). The control of the spacetime error term is obtained invoking the
bounded L2 curvature theorem [KRS15] as a black box, which requires to apply the extension of initial
data procedure from [Czi18].

To apply these results, we obtain a sharp control on the metric and connection coefficients by considering
global elliptic boundary problems on each separate slice Σt. The elliptic equations are the structure
equations (2.5c), (2.5d), (2.5e) for g, k, n from the Einstein equations in maximal gauge. The boundary
conditions are (implicit) mixed Dirichlet and Neumann conditions and are related to the intrinsic
geometry of the foliation of boundaries (∂Σt)1≤t≤2.

5.2d The time function t and the maximal hypersurfaces of the foliation Σt are determined by the choice
of the boundaries ∂Σt = Σt ∩ H. The most natural choice is to impose that they coincide with
the 2-spheres S′s of the geodesic foliation on H, i.e. ∂Σt = S′t for all 1 ≤ t ≤ 2. It turns out that
the regularity of the geodesic foliation on H is not sufficient to control the maximal hypersurfaces
Σt. In Part III we prove that, under the small L2-bound assumption on H, one can deform the
geodesic foliation to the canonical foliation on H, which provides the required regularity to control the
hypersurfaces Σt (see Theorem 5.3 below).

In Part III, we obtain the following result which ensures the existence and control of the canonical foliation
of H needed in the proof of Theorem 5.2 (see Item 5.2d).

Theorem 5.3 (The canonical foliation with bounded L2 curvature [CG19a]). Under the assumptions of
Theorem 5.2, there exists a smooth canonical foliation (Sv) on H ranging from v = 1 to v = 2, such that
S1 = S′1 = Σ ∩H, and such that the following bounds hold for its associated null connection coefficients∥∥∥∥ trχ− 2

v
, trχ+

2

v
, χ̂, χ̂, ζ, Ω− 1, ∇/ Ω

∥∥∥∥
H1(H)

. ε, (5.4)

where ‖F‖H1(H) := ‖F‖L2(H) + ‖∇/ F‖L2(H) + ‖∇/ LF‖L2(H), and together with additional, refined estimates.
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5.2. The global nonlinear stability of Minkowski space for characteristic initial data

Remarks on Theorem 5.3

5.3a The crucial result of Theorem 5.3 is that the tangential derivatives of trχ and χ̂ are controlled at a
similar level as the other connection coefficients, which is not the case for the geodesic foliation. This
is obtained thanks to a simplified transport equation for trχ in the case of the canonical foliation, and
it is sufficient for the control of the maximal hypersurfaces of Theorem 5.2.

5.3b The proof of Theorem 5.3 features a triangularisation of the system of null structure equations for the
canonical foliation on H, the proof of geometric trace norms estimates at low regularity, which relies on
a comparison argument to the geodesic foliation and the use of the sharp bilinear estimates of [KR06a].

5.3c The functional calculus tools are mostly taken from [Sha14], which is the latest version of the ideas
from the groundbreaking [KR05, KR06a, KR06b] (see also [Wan09] and [Sze12a]–[Sze16]).

5.2 The global nonlinear stability of Minkowski space for charac-
teristic initial data

In Part IV of this thesis, we obtain the following theorem.

Theorem 5.4 (Global nonlinear stability of Minkowski space for characteristic initial data [Gra20]). Consider
smooth spacelike-characteristic initial data posed on a spacelike 3-disk Σ and on an outgoing null hypersurface
C emanating from ∂Σ. Assume that

� we have the following curvature fluxes bounds through Σ∫
Σ

∣∣D≤2R
∣∣2 ≤ ε2, (5.5a)

together with consistent bounds for the metric and connection coefficients,

� the null hypersurface C is future geodesically complete, foliated by the 2-spheres of a geodesic foliation
(S′s)1≤s<+∞, and for the associated null decompositions, we have the following fluxes bounds through C∫

C

( ∣∣∣∇/ ≤2
β
∣∣∣2 +

∣∣∣s∇/ ≤2
ρ
∣∣∣2 +

∣∣∣s∇/ ≤2
σ
∣∣∣2 +

∣∣∣s2∇/ ≤2
β
∣∣∣2 +

∣∣∣s2∇/ ≤2
α
∣∣∣2) ≤ ε2 (5.5b)

where ∇/ ∈ {(s∇/ ), (s∇/ 4),∇/ 3}, together with consistent bounds for the metric and connection coeffi-
cients.

There exists ε0 > 0 such that if ε < ε0, the following holds for the smooth maximal globally hyperbolic
development (M,g) of Σ ∪ C.

� The spacetime (M,g) is future causally geodesically complete.

� The spacetime (M,g) is covered by an interior and an exterior region Mint and Mext, intersecting at
a timelike transition hypersurface T =Mint ∩Mext.

� There exists a global time function t on Mint ranging up to +∞ foliating Mint by spacelike maximal
hypersurface Σt.

� There exists a global optical function u on Mext ranging up to +∞ foliating Mext by outgoing null
hypersurfaces Cu. There exists a global function u on Mext which is a geodesic affine parameter on Cu,
foliating Cu by 2-spheres Su,u. Moreover, on the transition hypersurface T , we have

u = τu, t =
1

2
(u+ u),

where 0 < τ < 1 is a fixed parameter.

� We have the following decay bounds in Mint

|E|+ |H| . εt−7/2,

together with consistent bounds for the metric and connection coefficients.
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Chapter 5. Main results of the thesis

� We have the following decay bounds in Mext1

|α| . εu−7/2, |β| . εu−7/2, |ρ| . εu−3u−1/2,

|α| . εu−1u−5/2, |β| . εu−2u−3/2, |σ| . εu−3u−1/2,

together with consistent bounds for the metric and connection coefficients.

� The spacetime (M,g) admits a future timelike and future null infinity i+ and I +. The future null
infinity I + is future geodesically complete, admits well-defined notions of Bondi mass and angular
momentum for which we obtain Bondi mass loss formula and angular momentum evolution equation
along I +, and which tend to 0 at future timelike infinity i+.

Figure 5.2: The global nonlinear stability of Minkowski space for characteristic data.

Remarks on Theorem 5.4

5.4a The closeness assumptions (5.5) match what can be obtained for an outgoing null hypersurface in [CK93]
or [KN03]. Therefore, Theorem 5.4 provides a stability result for the complementary region to the
exterior region considered in [KN03]. Together, they amount to a stability result for initial data posed
on a spacelike hypersurface.

5.4b Theorem 5.4 was conjectured to hold true in [KN03, Tay17] and its conclusions were used in [Tay17].

5.4c The basic scheme of proof of Theorem 5.4 is a vectorfield method wrapped in a bootstrap argument
as in [CK93]. See Section 4.3. The main novelty is the introduction and control of new geometric
constructions, which provide suitable spacetime decompositions to run these arguments.

5.4d Our constructions display the following new crucial geometric features.

� They virtually emanate from the future infinity of a (timelike) central axis. This guarantees
optimal decay rates. It replaces an asymptotically flat spacelike infinity which plays a similar
crucial role in [CK93, KN03].

� In the interior region, our constructions are build on spacelike maximal hypersurfaces with prescribed
boundaries and global harmonic coordinates. This makes any reference to null decompositions and
spherical foliations – which degenerate at the central axis – disappear in that region.

5.4e In the proof of Theorem 5.4, we match discontinuous gauge choices across the timelike interface T
without using the gluing procedure of [CK93, KS17]. Our matching features a mean value argument
which compensates regularity losses at the timelike interface. We believe that this new treatment gains
in concision and clarity.

1The null decomposition is taken with respect to a null pair adapted to the geodesic-null foliation of Mext.
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5.4f In the appendices of Part IV, we also provide new optimal estimates and control for harmonic
coordinates on a Riemannian manifold, only based on elementary energy and Bochner estimates. We
moreover give a full statement and proof for general limits of the metric and connection coefficients
and their derivatives in all directions at the vertex of a (general family of) null cones.
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joint work with Stefan Czimek
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1. Introduction
1.1 Einstein vacuum equations and the Cauchy problem of gen-

eral relativity
A Lorentzian 4-manifold (M,g) is called a vacuum spacetime if it solves the Einstein vacuum equations

Ric = 0, (1.1)

where Ric denotes the Ricci tensor of the Lorentzian metric g. The Einstein vacuum equations are invariant
under diffeomorphisms, and therefore one considers equivalence classes of solutions. Expressed in general
coordinates, (1.1) is a non-linear geometric coupled system of partial differential equations of order 2 for g.
In suitable coordinates, for example so-called wave coordinates, it can be shown that (1.1) is hyperbolic and
hence admits an initial value formulation.

One way of prescribing initial data for the Einstein vacuum equations is by specifying a triplet (Σ, g, k) where
(Σ, g) is a Riemannian 3-manifold and k is a symmetric 2-tensor on Σ satisfying the constraint equations,

Rscal = |k|2g − (trgk)2,

divk = d(trgk),
(1.2)

where Rscal denotes the scalar curvature of g, d the exterior derivative on (Σ, g) and for a symmetric 2-tensor
F on Σ,

|F |2g := gadgbcFabFcd, trgF := gijFij , (divF )i := ∇jFij .

Here ∇ denotes the covariant derivative on (Σ, g) and we use, as in the rest of this paper, the Einstein
summation convention. In the future development (M,g) of such initial data (Σ, g, k), Σ ⊂M is a spacelike
hypersurface with induced metric g and second fundamental form k. Hence we say that such initial data is
posed on a spacelike hypersurface.

For the purposes of this paper, it suffices to consider initial data posed on maximal spacelike hypersurfaces,
that is, satisfying trgk = 0 in addition to (1.2); see also [Bar84]. In this case, we say that (Σ, g, k) is maximal
initial data, and the constraint equations (1.2) reduce to

Rscal = |k|2g,
divk = 0,

trgk = 0.

1.2 Weak cosmic censorship and the bounded L2 curvature theo-
rem

One of the main open questions in general relativity is the so-called weak cosmic censorship conjecture
formulated by Penrose in 1969, see [Pen69].

Conjecture 1.1 (Weak cosmic censorship conjecture). Generically, all singularities forming in the context
of gravitational collapse are covered by black holes.

In the pioneering work [Chr99], Christodoulou proves the weak cosmic censorship conjecture for the Einstein
vacuum-scalar field equations in spherical symmetry. In Christodoulou’s proof, a low regularity control of the
Einstein equations is essential for analysing the dynamical formation of black holes. This strongly suggests
that a crucial step to prove the weak cosmic censorship in the absence of symmetry is to control the Einstein
vacuum equations in very low regularity.

We remark that in the (1 + 1)-setting of spherical symmetry, Christodoulou bounds the regularity of initial
data in a scale-invariant BV-norm. Outside of spherical symmetry, however, this BV-norm is not suitable
anymore and regularity should be measured with respect to L2-based spaces; we refer the reader to the
introduction of [KRS15].
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A breakthrough result in the low regularity control of the Einstein equations in absence of symmetry is the
bounded L2 curvature theorem by Klainerman-Rodnianski-Szeftel [KRS15]. Before stating it, we define the
volume radius of a Riemannian 3-manifold.

Definition 1.2 (Volume radius). Let (Σ, g) be a Riemannian 3-manifold, and let r > 0 be a real number.
The volume radius of Σ at scale r is defined by

rvol(Σ, r) := inf
p∈Σ

inf
0<r′<r

volg(Bg(p, r
′))

r′3
,

where Bg(p, r
′) denotes the geodesic ball of radius r′ centred at p ∈ Σ.

The following theorem is proved in [KRS15], see also the companion papers [Sze12a]-[Sze16]. We state a
more technical version in Section 3.6, see Theorem 3.14.

Theorem 1.3 (The bounded L2 curvature theorem, version 1). Let (Σ, g, k) be asymptotically flat, maximal
initial data for the Einstein vacuum equations such that Σ ' R3. Assume further that for some ε > 0,

‖Ric‖L2(Σ) ≤ ε, ‖k‖L2(Σ) + ‖∇k‖L2(Σ) ≤ ε and rvol(Σ, 1) ≥ 1

2
,

where Ric denotes the Ricci tensor of (Σ, g). Then:

1. L2-regularity. There is a universal constant ε0 > 0 such that if 0 < ε < ε0, then the maximal globally
hyperbolic future development (M,g) of the initial data (Σ, g, k) contains a foliation (Σt)0≤t≤1 of
maximal spacelike hypersurfaces defined as level sets of a time function t such that Σ0 = Σ and for
0 ≤ t ≤ 1,

‖Ric‖L∞t L2(Σt) . ε, ‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) . ε, inf
0≤t≤1

rvol(Σt, 1) ≥ 1

4
,

where Ric and k denote the intrinsic Ricci tensor and second fundamental form of Σt ⊂M, respectively.

2. Propagation of smoothness. Smoothness of the initial data is propagated into the spacetime up to
Σ1 = {t = 1}.

Remarks on Theorem 1.3

1. By the finite speed of propagation for the Einstein vacuum equations (1.1), Theorem 1.3 is local in
nature, and hence we do not specify here further the asymptotic flatness condition on (Σ, g, k), see
also Remark 2.3 in [KRS15].

2. Theorem 1.3 is primarily to be understood as a continuation result for smooth solutions of the Einstein
vacuum equations, see Remark 1.2 in the introduction of [KRS15]. This holds similarly for the results
of this paper.

3. The proof of Theorem 1.3 relies crucially on a plane wave representation formula for the wave equation
on low regularity spacetimes developed in [Sze12a]-[Sze16]. This plane wave representation formula is
constructed as a Fourier integral operator which necessitates the assumption Σ ' R3.

However, Christodoulou’s work [Chr99] as well as related results on the formation of trapped surfaces
[Chr09] [KR12] [KLR14] [AL17] and gravitational impulses [LR15] [LR17] consider initial data posed on null
hypersurfaces rather than on a spacelike hypersurface as assumed in Theorem 1.3. This motivates the study
of the Cauchy problem of general relativity in low regularity with initial data posed on null hypersurfaces.

1.3 The spacelike-characteristic Cauchy problem
In this paper, we consider the spacelike-characteristic Cauchy problem of general relativity, where initial data
is posed on

1. a maximal spacelike hypersurface with boundary Σ ' B1 ⊂ R3,

2. the outgoing null hypersurface H emanating from ∂Σ.
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Remark 1.4. Initial data for the Einstein vacuum equations posed on null hypersurfaces must satisfy
constraint equations, namely the so-called null structure equations, see for example [CG19a]. We do not
state them here as they do not play a role in this paper.

Remark 1.5. Initial data for the spacelike-characteristic Cauchy problem of general relativity must satisfy
additional algebraic compatibility conditions on ∂Σ, see for example Section 7.6 in [CP12]. We do not state
them here as they do not play a role in this paper.

Local existence for the spacelike-characteristic Cauchy problem for smooth initial data follows from [Fou52]
[Ren90], see Proposition 2.28.

(a) The spacelike Cauchy hypersurface of The-
orem 1.3.

(b) The spacelike-characteristic Cauchy hyper-
surface of Theorem 1.6.

Before stating our main theorem, we give preliminar definitions. We consider

� T the future-pointing unit normal to Σ,

� L the null geodesic generator of H such that g(L, T )|∂Σ = −1,

� (L, L) the null pair associated to a general foliation (Sv) of H by 2-spheres, which is defined by

g(L, L) = −2, g(L, L) = 0, L is orthogonal to Sv.

To a null pair, we associate the following null connection coefficients, which are the (Sv)-tangent tensors
defined by

χ(X,Y ) := g(DXL, Y ), ζ(X) :=
1

2
g(DXL, e3),

χ(X,Y ) := g(DX L, Y ), η(X) :=
1

2
g(D4 L,X),

(1.3)

where X,Y ∈ TSv. We moreover associate the following null curvature component to be the (Sv)-tangent
tensors defined by

α(X,Y ) := R(L,X,L, Y ), β(X) :=
1

2
R(X,L, L, L), ρ :=

1

4
R(L,L, L, L),

α(X,Y ) := R(L,X, L, Y ), β(X) :=
1

2
R(X, L, L, L), σ :=

1

4
∗R(L,L, L, L),

(1.4)

where X,Y ∈ TSv and where ∗R is the Hodge dual of R.

The next theorem is a rough version of our main result, see Theorem 2.27 for a precise statement.

Theorem 1.6 (Main result, version 1). Consider initial data for the spacelike-characteristic Cauchy problem.
Assume that for some real number ε > 0,

‖Ric‖L2(Σ) ≤ ε, ‖k‖L2(Σ) + ‖∇k‖L2(Σ) ≤ ε, rvol(Σ, 1/2) ≥ 1/4, volg(Σ) ≤ 8π. (1.5)
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Assume further that with respect to the so-called canonical foliation by spacelike 2-spheres (Sv)1≤v≤2 of H,
see Definition 2.7, it holds that

‖α‖L2(H) + ‖β‖L2(H) + ‖ρ‖L2(H) + ‖σ‖L2(H) + ‖β‖L2(H) ≤ ε,∥∥∥∥trχ− 2

v

∥∥∥∥
L∞v H

1/2(Sv)

+

∥∥∥∥trχ+
2

v

∥∥∥∥
L∞v H

1/2(Sv)

+ ‖ζ‖L∞v H1/2(Sv) ≤ ε.
(1.6)

There is a universal constant ε0 > 0 such that if 0 < ε < ε0, then the following holds for the maximal globally
hyperbolic future development (M,g) of the initial data.

1. L2-regularity. (M,g) contains a foliation (Σt)1≤t≤2 of maximal spacelike hypersurfaces defined as
level sets of a time function t with Σ1 = Σ such that for 1 ≤ t ≤ 2,

∂Σt = St

and

‖Ric‖L∞t L2(Σt) . ε, ‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) . ε,

inf
1≤t≤2

rvol(Σt, 1/2) ≥ 1

8
, volg(Σt) ≤ 32π.

2. Propagation of smoothness. Smoothness of the initial data is propagated into the spacetime up to
Σ2 = {t = 2}.

Remarks on Theorem 1.6

1. Theorem 1.6 assumes solely initial data bounds at the level of curvature in L2 and makes no symmetry
assumptions. In contrast, in the available literature the Cauchy problem for the Einstein vacuum
equations with initial data on null hypersurfaces outside of symmetry is studied under the assumption
of

� higher regularity of the full initial data, see for example [Ren90] [CCM11] [CP12],

� higher regularity of specific components of the initial data, see for example [Luk12] [LR15] [LR17].
For instance, in [LR15] the null curvature component α is only assumed to be a measure on H
while β, ρ, σ and β are assumed to be controlled up to two angular derivatives in L2.

2. The assumed geometric control (1.6) of the foliation (Sv)v≥1 on H is essential for the regularity of
the spacetime. In the authors’ companion paper [CG19a], it is shown that assuming small bounded
L2 curvature flux on H (with respect to the geodesic foliation) and further low regularity geometry
bounds on the initial sphere S1 = Σ ∩H, the canonical foliation (Sv) exists for 1 ≤ v ≤ 2 and satisfies
stronger regularity estimates than (1.6). For ease of presentation, in the rest of this paper we assume
these stronger estimates for the canonical foliation.

3. The assumptions rvol(Σ, 1/2) ≥ 1/4 and volg(Σ) ≤ 8π on Σ are only used to invoke the Cheeger-Gromov
theory developed in Section 7, see Theorem 4.1.

4. The proof of Theorem 1.6 uses as black boxes the bounded L2 curvature theorem, see Theorems 1.3 and
3.14, and the extension procedure for the constraint equations, see Theorem 3.12.

5. The methods developed in this paper and [Czi18] [Czi19a] [Czi19b] [CG19a] appear promising for a
future study of the characteristic Cauchy problem of general relativity where initial data is posed on
two transversally intersecting null hypersurfaces.

1.4 Overview of the proof of Theorem 1.6
The proof of Theorem 1.6 goes by a standard continuity argument. Let t∗ ≥ 1 be the maximal time such
that there exists a smooth family of smooth maximal spacelike hypersurfaces (Σt)1≤t≤t∗ locally foliating the
future of Σ in M and such that the following bootstrap assumptions hold for all t ∈ [1, t∗],

‖Ric‖2L2(Σt)
+
∥∥∇≤1k

∥∥2

L2(Σt)
≤ (Dε)2, (1.7)
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1.4. Overview of the proof of Theorem 1.6

where D > 0 is a fixed (large) constant.1

Our aim is to show that t∗ ≥ 2. Using classical local existence results, it can be shown that t∗ > 1 and that
the solution can be extended as long as it remains smooth. In what follows, we shall therefore restrict to the
improvement of the bootstrap assumption (1.7) which is the crucial step in the continuity argument.

In the next section, we perform the energy estimate for Bianchi equations, which is at the centre of the
improvement of the bootstrap assumption (1.7).

1.4.1 The energy estimate
From Einstein vacuum equations (1.1) and the once contracted Bianchi identities, we have the following
Bianchi equations for R

DαRαβγδ = 0. (1.8)

Let define the Bel-Robinson tensor Q(R) associated to the spacetime curvature tensor R by

Q(R)α βγδ := Rανγ µR ν µ
β δ + ∗Rανγµ

∗R ν µ
β δ .

We have the following consequence of the Bianchi equations (1.8)

DαQ(R)αβγδ = 0.

Thus, applying Stokes formula to the contracted Bel-Robinson tensor

Q(R)(T, T, T, ·),

in the spacetime domain D comprised between Σ, H and Σt yields the following energy estimate∫
Σt

Q(R)(T, T, T, T ) .
∫

Σ

Q(R)(T, T, T, T ) +

∫
H
Q(R)(T, T, T, L) +

∣∣∣∣∫
D
Q(R)αβγδD

αT βT γT δ
∣∣∣∣ , (1.9)

where we recall that T is the future-pointing unit normal to Σt and L is the null geodesic generator of H.

Let define the electric-magnetic decomposition of the spacetime curvature tensor R to be the Σt-tangent
tensors E,H such that

E(X,Y ) := R(T,X, T, Y ), H := ∗R(T,X, T, Y ),

where X,Y ∈ TΣt.

From the definition of the Bel-Robinson tensor, the electric-magnetic tensors E,H and the null decomposition
of R, one has2

Q(R)(T, T, T, T ) ' |E|2 + |H|2, Q(R)(T, T, T, L) ' |α|2 + |β|2 + |ρ|2 + |σ|2 + |β|2.

Moreover, we have the following Gauss and Gauss-Codazzi equations

Eij = Ricij − kiakaj , Hij = curlkij . (1.10)

Thus, using (1.10) and the bounds (1.5) on Σ, and from the bounds (1.6) on H, we deduce∫
Σ

Q(R)(T, T, T, T ) . ε2,

∫
H
Q(R)(T, T, T, L) . ε2,

which plugged in the energy estimate (1.9) gives∫
Σt

|E|2 + |H|2 . ε2 +

∣∣∣∣∫
D
Q(R)αβγδD

αT βT γT δ
∣∣∣∣ . (1.11)

1For the simplicity of this introduction, we do only state part of the actual bootstrap assumptions. See Section 2.
2Up to easily controlled error terms in the null decomposition case, which are due to a non-trivial slope. See also Section 1.4.3

below.
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The covariant derivatives of T rewrite in terms of k and ∇n (see Section 2.3) as

DiTj = −kij , DTTi = n−1∇in, (1.12)

and the term in the right-hand side of (1.11) is a trilinear error term which rewrites schematically as∫
D

(∇n, k) ·R ·R.

Using the bootstrap assumptions (1.7), one wishes to obtain the following control of the error term∣∣∣∣∫
D

(∇n, k) ·R ·R
∣∣∣∣ . (Dε)3, (1.13)

which plugged in the energy estimate (1.11) would give

‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. ε2 + (Dε)3 . ε2,

for ε sufficiently small. In view of (1.10), this bound should be sufficient to close the bootstrap argument
(see Section 1.4.3).

1.4.2 The extension procedure
Obtaining the trilinear error term control (1.13) at our level of regularity is the heart of the proof of the
classical bounded L2 curvature theorem.

In this paper, we circumvent this difficulty by applying the bounded L2 curvature Theorem 1.3 from the
slice Σt backwards and by performing an energy estimate in the region D.

To apply Theorem 1.3, the data (g, k) on Σt is extended to data (Σ̃, g̃, k̃) such that

Σ̃ ' R3

and

‖Ric(g̃)‖2
L2(Σ̃)

+ ‖∇̃k̃‖2
L2(Σ̃)

≤ ε′,

where 0 < ε′ < ε0, with ε0 > 0 the constant of Theorem 1.3.

Figure 1.2: Extension procedure and backward application of the bounded L2 curvature theorem.

Using the trilinear estimates of the proof of Theorem 1.3 in [KRS15] as a black box, we then obtain the
following control of the trilinear error term∣∣∣∣∫

D
(∇n, k) ·R ·R

∣∣∣∣ . ε′(Dε)2 . ε2,

for ε′ > 0 sufficiently small, and from the energy estimate, we infer

‖E‖2L2(Σt)
+ ‖H‖2L2(Σt)

. ε2. (1.14)
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Remark 1.7. In this paper, we only have the implicit bounds ε′(ε) for the extended spacetime due to the
contradiction argument used to obtain coordinates (see Section 7). We thus have to use the precise trilinear
estimates of [KRS15] (see Section 4).

The extension procedure was established in [Czi18]3 and requires to obtain H2 and H1 estimates for
respectively g and k on Σt

‖gij − δij‖H2(Σt)
≤ ε′′, (1.15)

‖kij‖H1(Σt)
≤ ε′′, (1.16)

with ε′′(ε′) > 0 sufficiently small.

The bound (1.15) is obtained by contradiction, assuming that for all ε > 0, there exists Riemannian
manifolds (Σt, g) satisfying bootstrap bounds (with bound Dε) for their Ricci curvature and fundamental
forms of the boundary ∂Σ, such that for ε′′ > 0 fixed, no coordinate system satisfying (1.15) exists. Using
Cheeger-Gromov convergence theory, we can extract a limit from these manifolds which must be isometric
to the Euclidean unit disk and thus brings a contradiction.4

The bound (1.16) is obtained from the bootstrap assumptions 1.7.

1.4.3 Improvement of the bounds on Ric and ∇≤1k
From the Gauss equation (1.10), estimate (1.14) and the bootstrap assumptions (1.7) together with Sobolev
estimates, we have

‖Ric‖L2(Σt)
. ‖E‖L2(Σt)

+ ‖k‖2L4(Σt)
. ε+ (Dε)2 . ε,

and the bounds on Ric of the bootstrap assumptions (1.7) is directly improved.

From (1.2), the maximality of Σt and equation (1.10), the second fundamental form k satisfies the following
Hodge-type elliptic equations

trk = 0, divk = 0, curlk = H. (1.17)

The standard energy estimate for (1.17) reads schematically∫
Σt

|∇k|2 .
∫

Σt

|H|2 +

∫
∂Σt

k · ∇/ k, (1.18)

where ∇/ denotes the tangential covariant derivative on ∂Σt and k · ∇/ k are contractions of k and tangential
derivative of k. To explicit this boundary term, let first decompose the tensor k into its normal and tangential
components on the boundary ∂Σt. We define N to be the outgoing unit normal to ∂Σt in Σt and the
∂Σt-tangent tensors δ, ε, η by

δ := kNN , εA := kNA, ηAB := kAB , (1.19)

where capital Latin indices range from 1 to 2 and denote the evaluation with respect to ∂Σt-tangent vectors.
With these definitions, the boundary integral in (1.18) writes∫

∂Σt

k · ∇/ k =

∫
∂Σt

ε · ∇/ δ −
∫
∂Σt

(
δ2 + |ε|2 + |η|2

)
+ trilinear error terms, (1.20)

where it should be noted that the second term appears with a favourable sign. Using this fact, the energy
estimate (1.18) and the bound (1.14) on H, we can control the full H1-norm of k on Σt, and we obtain∥∥∇≤1k

∥∥2

L2(Σt)
. ‖H‖2L2(Σt)

+

∫
∂Σt

ε · ∇/ δ + trilinear error terms

. ε2 +

∫
∂Σt

ε · ∇/ δ,
(1.21)

3In establishing such an extension procedure, the main difficulty is that the constraint equations (1.2) have to be satisfied by

the extended data (Σ̃, g̃, k̃). The result can not be obtained by a simple cut-off procedure.
4This proof by contradiction is typical from proofs of so-called “curvature pinching results” in Riemannian geometry.

See [GPL97].
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provided that the trilinear error terms can be controlled.5 Obtaining the desired improvement of the
bootstrap bound (1.7) for k thus requires to control the last boundary integral in (1.21). This can be
achieved provided that one has an H1/2-control of δ on ∂Σt.

Obtaining the H1/2-control of δ on ∂Σt will depend on the choice of the (foliation of) prescribed boundaries
∂Σt on H. Let assume that the boundaries of the maximal hypersurfaces Σt coincide with the 2-spheres of a
foliation (Sv = ∂Σt=v), as generally described in Section 1.3. There exists a slope factor ν > 0 such that the
future-directed unit normal T to Σt is related to the null vector fields L, L by6

T =
1

2
νL+

1

2
ν−1 L. (1.22)

Figure 1.3: Null decomposition on Sv.

Using relations (1.3), (1.12), the maximal condition trgk = 0, and relation (1.22), one can obtain

δ =
1

2
νtrχ+

1

2
ν−1trχ. (1.23)

Plugging this relation into the boundary integral term in (1.21), we have∫
∂Σt

ε · ∇/ δ =
1

2

∫
∂Σt

νε · ∇/ trχ+
1

2

∫
∂Σt

ν−1ε · ∇/ trχ

+
1

2

∫
∂Σt

νtrχ ε · ∇/ log ν − 1

2

∫
∂Σt

ν−1trχ ε · ∇/ log ν.

(1.24)

From this computation, we deduce two observations. First, that the required regularity on the foliation
(Sv) to estimate the boundary integral (1.24) is that the null connection coefficients trχ and trχ must be

controlled in L∞v H
1/2(Sv). Second, that from writing δ in terms of the geometric quantities trχ and trχ, one

encounters an additional factor ∇/ log ν in the boundary integral (1.24). We expect that the terms trχ, trχ
and ν are close to their value in Minkowski space, which is respectively trχ ' 2/v, trχ ' −2/v and ν ' 1.
This implies that for the two last boundary integrals in (1.24) we have

1

2

∫
∂Σt

νtrχ ε · ∇/ log ν − 1

2

∫
∂Σt

ν−1trχ ε · ∇/ log ν ' 2

v

∫
∂Σt

ε · ∇/ log ν. (1.25)

At first sight, this seems to prevent us from closing the energy estimate for k (1.21) since ν can only be
estimated using both the control of δ, ε, η and χ, χ, ζ, but the k-components δ, ε, η are only determined after
solving equation (1.17). However, using relations (1.3), (1.12), (1.19), and relation (1.22), one can obtain

ε = −∇/ log ν + ζ, (1.26)

which, plugged into the boundary integral (1.25), gives

2

v

∫
∂Σt

ε · ∇/ log ν = −2

v

∫
∂Σt

|∇/ log ν|2 +
2

v

∫
∂Σt

ζ · ∇/ ν, (1.27)

5Unlike in the case of the energy estimate (1.11) for Bianchi equations, the control of the nonlinear error terms in the energy
estimate (1.18) for the elliptic equations (1.17) is easily obtained using standard Sobolev embeddings and the respective H2

and H1 control for g and k.
6The fact that ν is not in general equal to 1 is related to a non-trivial slope between the maximal hypersurface Σt and the

null hypersurface H.
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where it should be noted that the first term has a favourable sign and that the second term is controlled if
the null connection coefficient ζ of the foliation (Sv) is bounded in L∞v H

1/2(Sv). We therefore conclude that
we can close the energy estimate for k and control the slope factor ν if the null connection coefficients trχ,
trχ and ζ, which only depend on the geometry of the foliation (Sv), are controlled in L∞v H

1/2(Sv).

These bounds coincide with the assumed bounds (1.6) of Theorem 1.6 for the canonical foliation. We refer
the reader to our companion paper [CG19a] for the proof that these estimates hold for the canonical foliation
on H under assumptions at the level of bounded L2 curvature.7

1.5 Organisation of the paper
We outline the organisation and give a reading order suggestion of the paper.

� In Section 2, we collect the definitions and formulas used in this paper. We also state and prove the
main theorem, assuming that a set of bootstrap assumptions can be improved, regularity/smoothness
can be propagated, and a smooth local existence and continuation result holds.

� In Section 4, we obtain the improvement of the (low regular) bootstrap assumptions.

� In Section 5, we obtain a propagation of regularity/smoothness result.

� In Section 6, we obtain a smooth local existence and continuation result for the spacetime and geometric
constructions of this paper.

� In Section 7, we obtain global coordinates via Cheeger-Gromov theory, which are used in Sections 4
and 5.

� In Section 3, we state functional estimates, as well as literature results which are applied in this paper.

� Appendices A – E are dedicated to the proof of functional estimates and auxiliary results.

7We shall in fact have a stronger control than L∞v H
1/2 for trχ, which is required to control the geodesic/canonical foliation

on H. We shall also have in [CG19a] a stronger control for trχ than L∞v H
1/2 – namely an L∞v H

1 control –, which is obtained

by stronger assumptions – namely an H1(S1) control of trχ – on the initial sphere S1. Since – contrary to the case of trχ – this
stronger control is not used to control the nonlinear structure of the canonical foliation, we believe that it is not necessary and
that the initial assumptions on S1 in [CG19a] can be relaxed to obtain the assumptions of the present paper.
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2. Geometric setup and main results
In this section, we introduce the notation and main equations of this paper, state the precise version of our
main result (see Section 2.12) and give its proof (see Section 2.9).

Notation. For a real number r > 1, let Br ⊂ R3 denote the open ball of radius r. Lowercase Latin letters
range over {1, 2, 3} and uppercase Latin letters over {1, 2}. Greek letters range over {0, 1, 2, 3}. We tacitly
use the Einstein summation convention. In an inequality, a constant Cα1,··· ,αk depends on the quantities
α1, · · · , αk.

2.1 Weyl tensors on vacuum spacetimes
In this section, we define Weyl tensors and the Bel-Robinson tensor of a Weyl tensor. We follow the
presentation in the introduction and Sections 7 and 8 of [CK93]. The Bel-Robinson tensor is used in this
paper to prove energy estimates for the curvature tensor, see Sections 3.4, 4 and 5.

Definition 2.1 (Weyl tensor). Let (M,g) be a vacuum spacetime. A 4-tensor W is a Weyl tensor if it has
the same symmetries as the Riemann curvature tensor and is g-tracefree, that is,

Wαβγδ =−Wβαγδ = −Wαβδ γ , Wαβγδ =Wγδαβ ,

Wαβγδ + Wαγδ β + Wαδ β γ = 0, Wβδ =Wα
βαδ = 0.

Further, let the left dual ∗W of a Weyl-tensor W be

∗Wαβγδ :=
1

2
∈αβµν Wµν

γδ

where ∈ denotes the volume form on (M,g).

We note that the Riemann curvature tensor R of a vacuum spacetime is the prime example of a Weyl tensor.

Definition 2.2 (Bel-Robinson tensor). Let W be a Weyl tensor on a vacuum spacetime (M,g). The
Bel-Robinson tensor of W is defined by

Q(W)α βγδ := Wανγ µW ν µ
β δ + ∗Wανγµ

∗W ν µ
β δ .

The following modified Lie derivative takes Weyl tensors into Weyl tensors, see Lemma 7.1.2 in [CK93].
Together with the Bel-Robinson tensor, it is used to derive higher regularity energy estimates for the Riemann
curvature tensor in Section 5.

Definition 2.3 (Modified Lie derivative). Let W be a Weyl field and X a vectorfield on a vacuum spacetime
(M,g). Define the modified Lie derivative by

L̂XW := LXW − 1

2
(X)[W] +

3

8
trg πW,

where the deformation tensor π := LXg and

(X)[W]αβ γδ := πµαWµβγδ + πµ βWαµγδ + πµγWαβ µδ + πµδWαβγ µ.

2.2 Foliations of null hypersurfaces
Let (M,g) be a vacuum spacetime and let H be an outgoing null hypersurface emanating from a spacelike
2-sphere (S1, g/). Let moreover T be a given timelike vectorfield on S1. In the following we introduce the
geometric setup of foliations on H following the notations and normalisations of [CG19a] and [KR05].

Definition 2.4 (Geodesic foliation on H). Let L be the unique H-tangential null vectorfield on S1 with
g(L, T ) = −1. Extend L as null geodesic vectorfield onto H. Let s be the affine parameter of L on H defined
by

Ls = 1 on H, s|S1
= 1.

Denote the level sets of s by S′s and the geodesic foliation by (S′s).
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Definition 2.5 (General foliations on H). Let v be a given scalar function on H. We denote the level sets
of v by Sv0 = {v = v0} and the corresponding foliation by (Sv). We define the null lapse Ω of (Sv) on H by

Ω := Lv. (2.2)

Definition 2.6 (Orthonormal null frame). Let (Sv) be a foliation on H. Let L be the unique null vector
field on H orthogonal to each Sv and such that g(L, L) = −2. The pair (L, L) is called a null pair for the
foliation (Sv). Let (e1, e2) be an orthonormal frame tangential to each Sv. The frame (L, L, e1, e2) is called
an orthonormal null frame for the foliation (Sv).

Let (Sv) be a foliation on H and let (L, L, e1, e2) be an orthonormal null frame for (Sv).

� Denote by g/ and ∇/ the induced metric and covariant derivative on Sv,

� For a given Sv-tangential n-tensor W , define

∇/ LWA1...An := Π β1

A1
· · ·Π βn

An
DLWβ1...βn ,

where Π denotes the projection operator onto the tangent space of Sv and D is the covariant derivative
on (M,g).

� Let the null connection coefficients be defined by

χAB := g(DAL, eB), χ
AB

:= g(DA L, eB), ζA :=
1

2
g(DAL, L).

Further decompose χ and χ into their trace and tracefree parts,

trχ := g/
AB
χAB , χ̂AB := χAB −

1

2
trχg/AB ,

trχ := g/
AB
χ
AB
, χ̂

AB
:= χ

AB
− 1

2
trχg/AB .

� For a given Weyl tensor W on (M,g), define its null decomposition by

αAB(W) := WALB L, β
A

(W) :=
1

2
WALLL, ρ(W) :=

1

4
WLLLL,

σ(W) :=
1

4
∗WLLLL, βA(W) :=

1

2
WALLL, αAB(W) := WALBL.

In particular, for the Riemann curvature tensor R of a vacuum spacetime, we denote the null curvature
components by

αAB := RALB L, β
A

:=
1

2
RALLL, ρ :=

1

4
RLLLL,

σ :=
1

4
∗RLLLL, βA :=

1

2
RALLL, αAB := RALBL.

� For Sv-tangent vectorfields X define

div/ X := ∇/ AX
A, curl/ X :=∈AB ∇/ AXB ,

where ∈AB := ∈ABLL.

� Define on H the positive-definite metric hv with respect to the foliation (Sv) by

hvα β := gαβ +
1

2
(L+ L)α(L+ L)β .

For a given k-tensor W on M, let on H

|W|2hv := Wα1...αkWα′1...α
′
k

(hv)
α1α

′
1 . . . (hv)

αkα
′
k . (2.3)
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In a vacuum spacetime, the following Ricci equations hold, see [CK93],

DLL = 0, DL L = 2η
A
eA,

DAL = χABeB − ζAL, DA L = χ
AB
eB + ζA L,

DLeA = ∇/ LeA + η
A
L, DAeB = ∇/ AeB +

1

2
χAB L+

1

2
χ
AB
L.

(2.4)

We turn to the definition of the canonical foliation on H.

Definition 2.7 (Canonical foliation on H). Let (Sv) be a foliation on H. We say that (Sv) is the canonical
foliation on H if v|S1

= 1 and

4/ log Ω =− div/ ζ +

(
ρ− 1

2
χ̂ · χ̂

)
−
(
ρ− 1

2
χ̂ · χ̂

)
,

log Ω = 0,

where for scalar functions f we denote by f the average of f over the 2-sphere (Sv, g/).

In [CG19a] it is shown that the canonical foliation is well-defined under the assumption of small L2 curvature
flux and small low regularity foliation geometry on the initial sphere S1, see the introduction of [CG19a].

2.3 Foliations of vacuum spacetimes by spacelike maximal hyper-
surfaces

Let t be a scalar function on a vacuum spacetime (M,g) whose level sets Σt constitute a foliation of spacelike
maximal hypersurfaces.

� Let g denote the induced metric on Σt and∇ its covariant derivative. Let4 denote the Laplace-Beltrami
operator of g.

� Let e0 := T denote the future-pointing timelike unit normal to Σt, and let (ei)i=1,2,3 be an orthonormal
frame tangent to Σt. Define the second fundamental form k of Σt by

kij :=− g(DiT, ej).

Define the foliation lapse n by

n−2 := −g(Dt,Dt),

satisfying in particular,

T = −nDt, DTT = n−1∇n, T (t) = n−1. (2.5)

We remark that the deformation tensor π := LTg can be expressed as

παβ = −2kαβ − n−1 (Tα∇βn+ Tβ∇αn) for α, β = 0, 1, 2, 3, (2.6)

where, as in the rest of this paper, k is extended to a tensor on M by k0µ = 0 for µ = 0, 1, 2, 3.

� For two symmetric g-tracefree 2-tensors V and W and a vectorfield X on Σt, define

divVi :=∇jVji,

curlVij :=
1

2

(
∈ilm ∇lV mj+ ∈jlm ∇lV mi

)
,

(V ×W )ij := ∈ ab
i ∈ cd

j VacWbd +
1

3
(V ·W )gij ,

(V ∧W )i := ∈ mn
i V l

mWln,

(X ∧ V )ij := ∈ mn
i XmVnj+ ∈ mn

j XmVin,

where ∈abc:= ∈abcT .
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� For a Weyl tensor W on a vacuum spacetime (M,g), define its electric-magnetic decomposition with
respect to T as follows,

E(W)ab := WaTbT , H(W)ab := ∗WaTbT .

In particular, for the Riemann curvature tensor R of a vacuum spacetime, let

Eab := RaTbT , Hab := ∗RaTbT .

The 2-tensors E(W) and H(W) are Σt-tangent, symmetric and g-tracefree, see Section 7.2 in [CK93].
By definition of the modified Lie derivative, see Definition 2.3, it holds that (see page 188 in [CK93])

L̂TE(W) =E
(
L̂TW

)
− k × E(W) + 2n−1∇n ∧H(W),

L̂TH(W) =H
(
L̂TW

)
− k ×H(W)− 2n−1∇n ∧ E(W),

(2.7)

where L̂TH(W) and L̂TE(W) are the g-tracefree parts of LTH(W) and LTE(W), respectively.
Moreover, by definition of the Bel-Robinson tensor, see Definition 2.2,

|E(W)|2 + |H(W)|2 = Q(W)TTTT . (2.8)

� Define the positive-definite metric ht on M by

htαβ := gαβ + 2TαTβ , (2.9)

and for n-tensors W on Σt, let

|W|2ht := Wα1...αnWα′1...α
′
n

(
ht
)α1α

′
1 . . .

(
ht
)αnα′n . (2.10)

In particular, for Weyl tensors W it holds by (7.2.1) in [CK93] and (2.8) that

|W|2ht . Q(W)TTTT = |E(W)|2 + |H(W)|2 . |W|2ht . (2.11)

In particular,

|Q(W)µνλT | . Q(W)TTTT , (2.12)

where evaluation is made with respect to an orthonormal frame (eµ)µ=0,1,2,3.

The Einstein vaccuum equations imply the following structure equations of the maximal foliation, see
equations (1.0.11a)-(1.0.14d) in [CK93]. We have the first variation equation,

LT gij = −2kij ,

the second variation equation,

DT kij = Eij − n−1∇i∇jn− kilkl j , (2.13a)

the Gauss-Codazzi equations

divki = 0, (2.13b)

curlkij =Hij , (2.13c)

the maximality of Σt,

trgk = 0, (2.13d)

the lapse equation,

4n = n|k|2g, (2.13e)

the traced Gauss equation,

Ricij = Eij + kiak
a
j , (2.13f)

and the twice-traced Gauss equation,

Rscal = |k|2g. (2.13g)

With respect to a foliation (Σt) by maximal hypersurfaces, the Bianchi equations of (M,g) can be written
as follows, see Proposition 7.2.1 in [CK93].
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Proposition 2.8 (Maxwell’s equations for E(W) and H(W)). Let (M,g) be a vacuum spacetime. Let
E(W) and H(W) be the electric-magnetic decomposition of a Weyl tensor W relative to a maximal spacelike
foliation (Σt) on M. Assume that W satisfies the inhomogeneous Bianchi equations

DαWαβ γδ = Jβγδ for β, γ, δ = 0, 1, 2, 3.

Then, with J∗βγδ := 1
2Jβµν ∈

µν
γ δ,

divE(W) = k ∧H(W) + J,

divH(W) =− k ∧ E(W) + J∗,

− L̂TH(W) + curlE(W) =− n−1∇n ∧ E(W)− 1

2
k ×H(W)− J∗,

L̂TE(W) + curlH(W) =− n−1∇n ∧H(W) +
1

2
k × E(W)− J.

(2.14)

Remarks.

1. In Appendix A, we interprete (2.14) as 3-dimensional Hodge system for E(W) and H(W) and,
interpreting L̂TE(W) and L̂TH(W) as given source terms, prove global elliptic estimates on Σt.

2. In particular, using that in a vacuum spacetime it holds that

DαRαβ γδ = 0,

it follows by Proposition 2.8 that

divE = k ∧H,
divH =− k ∧ E,

− L̂TH + curlE =− n−1∇n ∧ E − 1

2
k ×H,

L̂TE + curlH =− n−1∇n ∧H +
1

2
k × E.

(2.15)

The following commutator identity allows us to derive elliptic estimates for T (n), see (18.4) in Appendix E
in [KRS15] for a proof.

Lemma 2.9 (Commutator identity). Let f be a scalar function on a vacuum spacetime (M,g). Let (Σt) be
a foliation on M by maximal spacelike hypersurfaces given as level sets of a time function t. Then it holds
that

[4, T ]f = 2k∇2f − 2n−1∇n∇T (f)− |k|2T (f) + 2n−1k∇n∇f.

2.4 Spherical coordinates on spacelike hypersurfaces
Let (Σ, g) be a maximal spacelike hypersurface in a vacuum spacetime (M,g). Assume there exists a real
number 1 ≤ t ≤ 2 such that there is a global coordinate chart φ : Bt → Σ. Using the chart φ, define standard
spherical coordinates (r, θ1, θ2) on Σ with r ∈ [0, t]. We denote the level sets of r by Sr, and for two reals
0 ≤ r1, r2 ≤ t, let A(r1, r2) denote the coordinate annulus

A(r1, r2) := {p ∈ Σ : r1 ≤ r(p) ≤ r2}. (2.16)

Then:

� The metric g can be expressed in coordinates (r, θ1, θ2) for r > 0 as

g = a2dr2 + g/AB(bAdr + dθA)(bBdr + dθB),

where

– a is the foliation lapse,

– g/ is the induced metric on Sr,
– b is the Sr-tangent shift vector.
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� Let N be the outward pointing unit normal to Sr and let (e1, e2) denote an orthonormal frame tangent
to Sr. Define the second fundamental form of Sr for r > 0 by

ΘAB := g(∇AN, eB).

We split Θ into its trace and tracefree part,

trΘ := g/
AB

ΘAB , Θ̂AB := ΘAB −
1

2
trΘg/AB ,

Further, in coordinates (r, θ1, θ2) we can express for r > 0,

N =
1

a
∂r −

1

a
b, ΘAB = − 1

2a
∂r(g/AB) +

1

2a
(L/bg/)AB , (2.17)

where L/ denotes the Lie derivative on Sr.

� Let ∇/ and 4/ denote the induced covariant derivative and Laplace-Beltrami operator on Sr, respectively.
We note the relations (see Chapter 3 in [CK93])

∇NN = −a−1∇/ a, ∇AN = ΘABeB , divN = trΘ.

� we decompose the second fundamental form k on Σ into Sr-tangential tensors as follows,

δ := kNN , εA :=kNA, ηAB := kAB .

We note that trη = −δ because trgk = 0 on Σ by maximality.

With this notation, we can decompose ∇k as follows (see Sections 3.1 and 4.4 in [CK93]),

∇AkBC =∇/ AηBC + ΘABεC + ΘACεB , ∇NkNN =N(δ) + 2a−1∇/ a · ε,
∇NkAB =∇/ NηAB − a−1∇/ AaεB − a−1∇/ BaεA, ∇AkNN =∇/ Aδ − 2ΘACε

C ,

∇NkNA =∇/ N εA + a−1∇/ Ca η
C
A − a−1∇/ Aa δ, ∇BkNA =∇/ BεA − η C

A ΘCB + δΘAB ,

where for an Sr-tangent tensor F , ∇/ NF is defined as the projection of ∇NF onto Sr.

Further, the Gauss-Codazzi equations (2.13b) and (2.13c) imply the following relations (see Proposition
4.4.3 in [CK93]),

N(δ) + div/ ε =− δ trΘ + η ·Θ− 2a−1∇/ a · ε,
∇/ N εA −∇/ Aδ = ∗HNA/ − 2ΘACε

C − a−1∇/ Ca ηCA + a−1∇/ Aa δ,

∇/ N η̂AB +
1

2
trΘη̂AB =∗Ĥ/AB +

1

2
(∇/ ⊗̂ ε)AB +

3

2
δΘ̂AB − (a−1∇/ a ⊗̂ ε)AB ,

div/ ηA +∇/ Aδ =− ∗HNA/ + ΘACε
C − trΘ εA,

curl/ ε =HNN + Θ̂ ∧ η̂,

(2.18)

where we decomposed the source term H into Sr-tangential tensors

HNN , HNA/ := HNA, H/AB := HAB , (2.19)

and for Sr-tangential vectorfields X and Y and symmetric tracefree 2-tensors F and G, we denote

∗XA := ∈AB XB , (X⊗̂Y )AB :=XAYA +XBYA − (X · Y )g/,
∗FAB := ∈AC FCB , (F ∧G)AB := ∈ABFACGCB .

(2.20)

2.5 Relations between foliations on vacuum spacetimes and null
hypersurfaces

Let (M,g) be a vacuum spacetime. Let Σ ' B1 be a spacelike maximal hypersurface and let H denote the
outgoing null hypersurface emanating from ∂Σ. Let
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� (Sv)1≤v≤2 be a foliation on H by spacelike 2-spheres such that S1 = ∂Σ. Let (L, L, e1, e2) be an
orthonormal null frame of (Sv).

� (Σt)1≤t≤2 be a foliation onM by maximal spacelike hypersurfaces given as level sets of a time function
t such that Σ1 = Σ and such that for 1 ≤ t ≤ 2,

∂Σt = St, i.e. t = v on H. (2.21)

Let T denote the unit normal to Σt.

Definition 2.10. The slope ν on H is defined by

ν :=− g(L, T ). (2.22)

The proof of the next lemma is left to the reader.

Lemma 2.11 (Algebraic relations). On H it holds that

T =
1

2
νL+

1

2
ν−1 L, N =

1

2
νL− 1

2
ν−1 L,

L = ν−1(T +N), L = ν(T −N),
(2.23)

and further,

ΘAB =
1

2
νχAB −

1

2
ν−1χ

AB
,

ηAB =− 1

2
νχAB −

1

2
ν−1χ

AB
,

δ =− trη =
1

2
νtrχ+

1

2
ν−1trχ.

Remark 2.12. By Lemma 2.11, the definition of ν in (2.22) is equivalent to

ν−1 := −g(L, T ).

Thus, by Definition 2.4 it follows that we have the normalisation

ν = 1 on S1.

Lemma 2.13 (Slope equation). On H it holds that

ν−1∇/ Aν = −εA + ζA. (2.24)

Proof. Using (2.5), (2.22) and Lemma 2.11, we have

ν−1∇/ Aν =− ν−1∇/ A(g(L, T ))

=− ν−1
(
g(DA L, T ) + g(L,DAT )

)
=− ν−1

(
g(χ

AB
eB + ζA L, T )− g(L, kAjej)

)
= ζA + ν−1εAg(L,N)

= ζA − εA.

This finishes the proof of (2.24).

We further have the following transport equation for ν on H. It is used in Sections 4 and 5 to prove estimate
for T (n).

Lemma 2.14 (Transport equation for ν on H). It holds on H that

L(ν) = n−1N(n)− δ.
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Proof. By (2.5), (2.22) and Lemma 2.11,

L(ν) =− L (g(L, T ))

=− g(DL L, T )− g(L,DLT )

=− ν−1g(L,DT+NT )

=− g(T −N,DT+NT )

=n−1N(n)− δ,

where we used that DTT = n−1∇n, see (2.5).

Moreover, the lapse n can be expressed on ∂Σt as follows.

Lemma 2.15. It holds on ∂Σt that

n = ν−1Ω−1. (2.25)

Proof. Indeed, by (2.1) and Lemma 2.11,

Ω = L(v) = L(t) = ν−1T (t) = ν−1n−1,

where we used (2.21) and that T (t) = n−1, see (2.5).

The next lemma follows from Lemma 7.3.1 in [CK93] and Lemma 2.11.

Lemma 2.16. It holds that on H,

Q(R)LTTT =
1

4
ν3|α|2 +

3

2
ν|β|2 +

3

2
ν−1(ρ2 + σ2) +

1

2
ν−3|β|2.

Moreover, for ‖ν − 1‖L∞(H) sufficiently small,

|QµνλL| . QLTTT . (2.26)

2.6 Integration and norms
In this section, we define integration and norms.

Definition 2.17 (Norms on S). Let (S, g/) be a Riemannian 2-sphere. Let F be an S-tangent tensor on S.
For real numbers 1 ≤ p <∞, define

‖F‖pLp(S) :=

∫
S

|F |p,

where the integrals over S are with respect to the metric g/. Moreover, let

‖F‖L∞(S) := sup
S
|F |.

Definition 2.18 (Integration on H). Let 1 < v0 <∞ be a real number. Let H ⊂M be a null hypersurface
foliated by spacelike 2-spheres (Sv)1≤v≤v0 . Let f be a scalar function on H. Let

∫
H

f :=

v0∫
1

∫
Sv

Ω−1f

 dv,

where the integral over Sv is with respect to the induced metric g/ and Ω := L(v) is the null lapse of the
foliation (Sv).

Definition 2.19 (Norms on H). Let (M,g) be a vacuum spacetime and let H ⊂M be a null hypersurface.
For a real number 1 < v0 < ∞, let (Sv)1≤v≤v0 be a foliation of spacelike 2-spheres on H and denote
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Hv0 := H ∩ (Sv)1≤v≤v0 . Let 1 ≤ p < ∞ be a real number and let F be an Sv-tangent tensor on H. For
integers m ≥ 0, define

‖F‖L2(Hv0 ) :=

(∫
Hv0
|F |2

)1/2

,

‖F‖L∞
[1,v0]

Lp(Sv) := sup
1≤v≤v0

‖F‖Lp(Sv) ,

‖F‖L∞
[1,v0]

L∞(Sv) := sup
1≤v≤v0

‖F‖L∞(Sv) ,

‖F‖L∞
[1,v0]

H1/2(Sv) := sup
1≤v≤v0

‖F‖H1/2(Sv) ,

where the fractional Sobolev space H1/2(Sv) is defined in Section 3.1. Further, for tensors W on M, define

‖W‖L∞(Hv0 ) := sup
1≤v≤v0

sup
Sv

|W|hv ,

where hv denotes the positive-definite metric on H associated to the foliation (Sv), see (2.3).

Notation. For ease of presentation, we leave away the index v0 in this paper whenever it is clear what
interval we consider. For example, we write ‖·‖L2(H) instead of ‖·‖L2(Hv0 ) and ‖·‖L∞v Lp(Sv) instead of

‖·‖L∞
[1,v0]

Lp(Sv).

Definition 2.20 (Norms on M). Let t1 and t2 be two real numbers. Let (M,g) be a vacuum spacetime
foliated by spacelike hypersurfaces (Σt)t1≤t≤t2 given as level sets of a time function t onM. For Σt-tangential
tensors F define

‖F‖L∞
[t1,t2]

L2(Σt)
:= sup

t1≤t≤t2

∫
Σt

|F |2
1/2

,

where the integral over Σt is with respect to the induced metric g. Further, for tensors W on M, let

‖W‖L∞
[t1,t2]

L2(Σt)
:= sup

t1≤t≤t2

∫
Σt

|W|2ht

1/2

,

‖W‖L∞(Σt) := sup
Σt

|W|ht ,

where ht denotes the positive-definite metric associated to the foliation (Σt), see (2.10).

Notation. For ease of presentation, we leave away the index [t1, t2] in this paper whenever it is clear what
interval of integration we consider. For example, we write ‖·‖L∞t L2(Σt)

instead of ‖·‖L∞
[t1,t2]

L2(Σt)
.

2.7 Initial data regularity and norms for the spacelike-characteristic
Cauchy problem

In this section, we introduce the notions of regularity and the initial data norms used in our main result.

Weakly regular 2-spheres. First, we have the following definition of weak regularity of 2-spheres, see
[CG19a] and [Sha14]. This level of regularity allows to apply the basic calculus tools on 2-spheres of Section
3.

Definition 2.21 (Weakly regular 2-spheres). Let 1 ≤ N <∞ be an integer and c > 0 be a real number. A
Riemaniann 2-sphere (S, g/) is a weakly regular sphere with constants N, c if

� it can be covered by N coordinate patches,

� there is a partition of unity η adapted to the above coordinate patches,

� there are functions 0 ≤ η̃ ≤ 1 which are compactly supported in the coordinate patches and equal to 1
on the support of η,
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� on each coordinate patch there exists an orthonormal frame (e1, e2)

such that on each coordinate patch,

c−1 ≤
√

det g/ ≤ c,
c−1|ξ|2 ≤ g/ABξ

AξB ≤ c|ξ|2 for all ξ ∈ R2,

|∂η|+ |∂2η|+ |∂η̃| ≤ c,
‖∇/ ∂A‖L2 + ‖∇/ eA‖L4 ≤ c for A = 1, 2,

where here for ξ ∈ R2, |ξ|2 := (ξ1)2 + (ξ2)2.

Remark 2.22. In [CG19a] it is shown that for the canonical foliation, the spheres (Sv) are weakly regular
2-spheres with constants N, c uniformly controlled by the L2 curvature flux through H and low regularity
assumptions on the foliation geometry of the initial sphere S1. Therefore, for ease of presentation, in this
paper we do not explicitly indicate the dependence of estimates on N, c.

Weakly regular 3-balls. The following regularity property is related to the existence of global coordinates,
see Theorem 4.1.

Definition 2.23 (Weakly regular 3-balls). Let r > 0 and 0 < Cball < 1/2 be two real numbers. A Riemannian
3-manifold with boundary (Σ, g) is a weakly regular ball of radius r with constant Cball if there is a global
coordinate chart φ : Br → Σ such that on Br,

(1− Cball)|ξ|2 ≤ gijξiξj ≤ (1 + Cball)|ξ|2 for all ξ ∈ R2,

‖∂gij‖L2(Br) + ‖∂2gij‖L2(Br) ≤ Cball,

and moreover, for integers m ≥ 1 the higher regularity of the metric components gij can be estimated by the
Ricci tensor as follows,

∑
0≤m′≤m+2

‖∂m
′
(gij − eij)‖L2(Br) ≤ Cr

∑
0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + Cball,

where eij denotes the standard Cartesian components of the Euclidean metric.

Low regularity initial data norms. Consider initial data for the spacelike-characteristic Cauchy problem
of general relativity on the spacelike hypersurface Σ ' B1 and the outgoing null hypersurface H emanating
from ∂Σ. Let further (Sv)1≤v≤2 denote the canonical foliation on H with S1 = ∂Σ. Define

OΣ
0 := ‖k‖L2(Σ) + ‖∇k‖L2(Σ) ,

RΣ
0 := ‖Ric‖L2(Σ) ,

OH0 :=

∥∥∥∥trχ− 2

v

∥∥∥∥
L∞v L

∞(Sv)

+

∥∥∥∥trχ+
2

v

∥∥∥∥
L∞v L

∞(Sv)

+ ‖∇/ trχ‖L∞v L2(Sv) +
∥∥∇/ trχ

∥∥
L∞v L

2(Sv)

+ ‖χ̂‖L∞v L4(Sv) +
∥∥χ̂∥∥

L∞v L
4(Sv)

+ ‖ζ‖L∞v H1/2(Sv)

+ ‖∇/ Ω‖L∞v L4(Sv) + ‖∇/ Ω‖L∞v H1/2(Sv) + ‖Ω− 1 ‖L∞v L∞(Sv),

RH0 := ‖α‖L2(H) + ‖β‖L2(H) + ‖ρ‖L2(H) + ‖σ‖L2(H) +
∥∥β∥∥

L2(H)
.

Here H1/2(Sv) is an L2-based fractional Sobolev space on Sv bounding 1/2 derivatives, see Definition 3.2.

Remark 2.24. In [CG19a] it is shown that the norm OH0 can be bounded by the L2 curvature flux RH0 and
low regularity bounds on the geometry of the initial sphere S1 = Σ ∩H, see the introduction of [CG19a].
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Higher regularity initial data norms. For integers m ≥ 1, let

OΣ
m :=

∑
0≤m′≤m+1

‖∇m
′
k‖L∞(Σ),

RΣ
m :=

∑
0≤m′≤m

‖Dm′R‖L∞(Σ) +
∑

0≤m′≤m

‖∇m
′
Ric‖L∞(Σ),

OHm :=
∑

0≤m′≤m+1

∥∥∥∥∇/ m′
(

trχ− 2

v

)∥∥∥∥
L∞(H)

+

∥∥∥∥∇/ m′
(

trχ+
2

v

)∥∥∥∥
L∞(H)

+
∑

0≤m′≤m+1

∥∥∥∇/ m′ χ̂
∥∥∥
L∞(H)

+
∥∥∥∇/ m′ χ̂

∥∥∥
L∞(H)

+ ‖∇/ m′ζ‖L∞(H)

+
∑

0≤m′+m′′≤m+2

‖∇/ m′Ω‖L∞(H) + ‖∇/ m′Lm
′′
(Ω)‖L∞(H),

RHm :=
∑

0≤m′≤m

‖Dm′R‖L∞(H).

Remark 2.25. For ease of presentation of the proof of the higher regularity estimates, we give ourselves leeway
and choose L∞-based norms instead of L2-based norms for higher regularity initial data. As consequence, the
higher regularity estimates of this paper are not sharp. However, they are sufficient for the proof of the main
theorem, see Section 2.9.

Remark 2.26. In [CG19a] it is shown that for integers m ≥ 1 the norm OHm can be bounded by higher
regularity curvature fluxes and bounds on the geometry of the initial sphere S1 = Σ ∩H, see the introduction
of [CG19a].

2.8 Main result
The following is the main result of this paper.

Theorem 2.27 (Main theorem, version 2). Consider smooth initial data for the spacelike-characteristic
Cauchy problem on Σ and H, and let (Sv)1≤v≤2 denote the canonical foliation on H with S1 = Σ ∩ H.
Assume that the 2-spheres Sv are uniformly weakly regular with constants N, c and that for some real number
ε > 0,

OΣ
0 +RΣ

0 +OH0 +RH0 ≤ ε, 1/4 ≤ rvol(Σ, 1/2) ≤ 8, 2π ≤ volg(Σ) ≤ 8π. (2.27)

Then the following holds.

1. L2-regularity. Let 0 < Cball < 1/2 be a real number. There exists a universal constant ε0 > 0 such
that if 0 < ε < ε0, then the maximal smooth globally hyperbolic future development (M,g) contains a
foliation (Σt)1≤t≤2 of maximal spacelike hypersurfaces defined as level sets of a time function t with
Σ1 = Σ and such that for 1 ≤ t ≤ 2,

∂Σt = St,

Σt is a weakly regular ball of radius t with constant Cball,

and moreover,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) . ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖DT k‖L∞t L2(Σt) . ε,

‖n− 1‖L∞t L∞(Σt) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) . ε,

1/8 ≤ rvol(Σt, 1/2) ≤ 16,

π/2 ≤ volg(Σt) ≤ 32π.

(2.28)

2. Propagation of smoothness. Smoothness of the initial data is propagated into the spacetime up to
Σ2 = {t = 2}. Specifically, for 1 ≤ t ≤ 2 and integers m ≥ 1,∑

0≤m′≤m

‖Dm′R‖L∞t L2(Σt) ≤C
(
OΣ
m,RΣ

m,OHm,RHm,m
)
,

∑
0≤m′≤m+1

‖Dm′π‖L∞t L2(Σt) ≤C
(
OΣ
m,RΣ

m,OHm,RHm,m
)
,

(2.29)

where π := LTg denotes the deformation tensor of T .
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Remarks on Theorem 2.27.

1. In the proof of Theorem 2.27, we derive energy estimates for the curvature tensor R by using the
Bel-Robinson tensor Q(R), see Proposition 3.10, which in turn requires a trilinear estimate for the
corresponding error term. It is due to this trilinear estimate that we need to invoke the bounded L2

curvature theorem, see Theorem 3.14. We note that for the proof of the higher regularity estimates
m ≥ 2 of Theorem 2.27, the corresponding error term can be bounded by a classical Grönwall argument.

2. In (1) of Theorem 2.27, each hypersurface Σt is a weakly regular ball of radius t with constant Cball

which means that there are global coordinates on Σt such that ∂2gij ∈ L2(Σt). However, because these
global coordinates are constructed by Cheeger-Gromov theory on Σt (see Theorem 4.1), we have no
control on the regularity of the coordinate components gij in the t-direction.

3. In [CG19a] it is shown that the weak regularity of the 2-spheres Sv and the norm OH0 can be bounded
by the L2 curvature flux RH0 and low regularity bounds on the geometry of the initial sphere S1 = Σ∩H.
Analogously, the norms OHm can be bounded by higher regularity curvature fluxes and bounds on the
geometry of the initial sphere S1.

4. The regularity assumptions (2.27) on the canonical foliation (succesfully established in [CG19a]) are
crucial for the proof of Theorem 2.27. However, the exact definition of the canonical foliation is not
used in this paper. Thus, any other foliation with similar regularity bounds could be used to prove
Theorem 2.27.

5. The higher regularity estimates proved in Theorem 2.27 are not sharp, see Remark 2.25. Nevertheless,
they are sufficient for the proof of Theorem 2.27.

2.9 Proof of the main result
The proof of Theorem 2.27 goes by a bootstrapping argument. Let T ∈ [1, 2] be defined as

T := sup
t∗∈[1,2]

{
There is a time function 1 ≤ t ≤ t∗ as in Theorem 2.27
such that (2.28) and (2.29) hold

}
.

In the following, we show that T = 2 for ε > 0 sufficiently small.

Step 1. It holds that T > 1. Indeed, this follows from the following local existence result. Its proof is given
in Section 6.

Proposition 2.28 (Classical local existence and continuation). Consider smooth initial data for the spacelike-
characteristic Cauchy problem on Σ and H, and let (Sv)v≥1 denote a smooth foliation on H by spacelike
2-spheres such that S1 = ∂Σ. Then, for a small real number τ > 0, the maximal globally hyperbolic future
development (M,g) contains a foliation by smooth spacelike maximal hypersurfaces (Σt)1≤t≤1+τ given as
level sets of a smooth time function t such that Σ1 = Σ and for each 1 ≤ t ≤ 1 + τ ,

∂Σt = St.

Moreover, the foliation (Σt) can be locally continued in a smooth fashion as long as the foliation (Σt) and
the spacetime remain smooth.

Remarks on Proposition 2.28.

� The existence of a local maximal foliation in Proposition 2.28 follows by a classical perturbation
argument of Bruhat [Cho76], see Theorem 6.2.

� We could explicitly formulate Proposition 2.28 in terms of function spaces of finite regularity, but for
ease of presentation we choose the smooth class, that is, Ck for every integer k ≥ 0.

Step 2. Assuming that a set of bootstrap assumptions holds up to 1 < t∗0 < 2, we show that we can improve
them for ε > 0 sufficiently small. Indeed, the following proposition is proved in Section 4.

Proposition 2.29 (Improvement of bootstrap assumptions). Let (M,g) be the maximal globally hyperbolic
future development of initial data for the spacelike-characteristic Cauchy problem posed on Σ and H. Let
(Sv)1≤v≤2 be the canonical foliation on H with S1 = Σ ∩ H and assume that the Sv are weakly regular
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2-spheres with constants N, c. Let 1 < t∗0 ≤ 2 be a real number, and let t be a time function on M such that
its level sets (Σt)1≤t≤t∗0 are spacelike maximal hypersurfaces with Σ1 = Σ, satisfying for each 1 ≤ t ≤ t∗0,

∂Σt = St.

Assume that for some small ε > 0,

RΣ
0 +OΣ

0 +OH0 +RH0 ≤ ε,

and for some fixed large real number D > 0, for 1 ≤ t ≤ t∗0,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) ≤Dε,
‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(St) ≤Dε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t H1/2(St) ≤Dε,
1/8 ≤ rvol(Σt, 1/2) ≤ 16,

π/2 ≤ volg(Σt) ≤ 32π.

Let further 0 < Cball < 1/2 be a real number. There exists ε0 > 0 such that if 0 < ε < ε0, then for 1 ≤ t ≤ t∗0,

Σt is a weakly regular ball of radius t with constant Cball,

and

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) ≤D
′ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(St) + ‖DT k‖L∞t L2(Σt) ≤D
′ε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t H1/2(St) ≤D
′ε,

‖n− 1‖L∞t L∞(Σt) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) ≤D
′ε,

1/8 < rvol(Σt, 1/2) < 16,

π/2 < volg(Σt) < 32π,

for a constant 0 < D′ < D.

Step 3. The following higher regularity estimates are proved in Section 5.

Proposition 2.30 (Higher regularity estimates). Let (M,g) be the maximal globally hyperbolic future
development of initial data for the spacelike-characteristic Cauchy problem posed on Σ and H. Let (Sv)1≤v≤2

be the canonical foliation on H with S1 = Σ ∩ H and assume that Sv are weakly regular 2-spheres with
constants N, c. Let 1 < t∗0 ≤ 2 be a real number and assume that there is a time function 1 ≤ t ≤ t∗0 in M
such that its level sets Σt are maximal spacelike hypersurfaces with Σ1 = Σ and such that for 1 ≤ t ≤ t∗0 and
a real number 0 < Cball < 1/2,

∂Σt = St,

Σt is a weakly regular ball of radius t with constant Cball,

and assume moreover there is a real number ε > 0 such that for 1 ≤ t ≤ t∗0,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) . ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(St) + ‖DT k‖L∞t L2(Σt) . ε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t L4(St) + ‖∇/ ν‖L∞t H1/2(St) . ε,

‖n− 1‖L∞t L∞(Σt) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) . ε,

1/8 ≤ rvol(Σt, 1/2) ≤ 16,

π/2 ≤ volg(Σt) ≤ 32π.

For Cball > 0 and ε > 0 sufficiently small, it holds that for all integers m ≥ 1, on 1 ≤ t ≤ t∗0,∑
0≤m′≤m

‖Dm′R‖L∞t L2(Σt) ≤C
(
OΣ
m,RΣ

m,OHm,RHm,m
)
,

∑
0≤m′≤m+1

‖Dm′π‖L∞t L2(Σt) ≤C
(
OΣ
m,RΣ

m,OHm,RHm,m
)
,

where π := LTg denotes the deformation tensor of T .
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Remarks on Proposition 2.30.

1. The estimates for m = 1 require a trilinear estimate based on the null structure of the Einstein
vacuum equations, see Section 5. In Appendix E we show that this trilinear estimate follows from the
(m = 1)-estimates of the proof of the bounded L2 curvature theorem [KRS15].

2. The estimates for m ≥ 2 are based on a classical Grönwall argument together with the estimates for
m = 1; see Section 5.2.

3. The smallness of Cball > 0 and ε > 0 is only used in the proof of the case m = 1 in context of the
trilinear estimate.

Step 4. By the higher regularity estimates of Proposition 2.30, it follows that on each hypersurface Σt, the
induced data is smooth. Thus by Proposition 2.28 and Proposition 2.29, we can continue the spacetime such
that (2.28) and (2.29) hold beyond T for each T < 2, which shows by the maximality of T that T = 2. This
concludes the proof of Theorem 2.27.

2.10 Organisation of the paper
The paper is organised as follows.

� In Section 3, we recapitulate calculus inequalities and prerequisite results.

� In Section 4, we prove the low regularity estimates of Proposition 2.29.

� In Section 5, we prove the higher regularity estimates of Proposition 2.30.

� In Section 6, we prove classical local existence and continuation for the Einstein equations, see
Proposition 2.28.

� In Section 7, we prove the existence of global coordinates by Cheeger-Gromov theory, see Theorem 4.1,
which is used to establish that Σt are weakly regular 3-balls in Section 4.3.

� In Appendix A, we prove global elliptic estimates for 3-dimensional Hodge systems.

� In Appendix B, we prove the calculus Lemmas 3.6 and 3.8.

� In Appendix C, we prove a Riemannian rigidity result, see Lemma 7.4, used in the proof of existence
of global coordinates in Section 7.

� In Appendix D, we prove comparison estimates between two maximal foliations on a vacuum spacetime
used in Sections 4 and 5.

� In Appendix E, we prove the necessary trilinear estimate for the (m = 1)-higher regularity estimates,
see Proposition 5.2.
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3. Calculus inequalities and prerequisite results
3.1 Calculus on Riemannian 2-spheres
In this section, we recapitulate calculus prerequisites on weakly regular Riemannian 2-spheres (S, g/). The
following lemma is proved in [Sha14].

Lemma 3.1 (Sobolev inequalities). Let (S, g/) be a weakly regular Riemannian 2-sphere with constants N, c.
Let 1 ≤ p <∞ be a real number. Then it holds that for each tensor F on S,

‖F‖Lp(S) .‖∇/ F‖L2(S) + ‖F ‖L2(S),

‖F‖L∞(S) .‖∇/ F‖L4(S) + ‖F ‖L2(S),

where the constants depend on p,N, c and N, c, respectively.

We introduce the following fractional Sobolev spaces.

Definition 3.2 (Fractional Sobolev spaces). Let (S, g/) be a Riemannian 2-sphere and let −∞ < s <∞ be
a real number. For tensors F on S, define the norm

‖F‖Hs(S) := ‖(1−4/ )s/2F‖L2(S),

where the fractional Laplace-Beltrami operator is defined by standard spectral decomposition, see [Sha14].

The following properties of fractional Sobolev spaces are well-known, see for example Section 2 and Theorem
3.6 in [Sha14] and Section 3 and Appendix B in [CG19a].

Lemma 3.3 (Properties of fractional Sobolev spaces). Let (S, g/) be a weakly regular Riemannian 2-sphere
with constants N, c. Let F, F1 and F2 be tensors on S. Then it holds that

‖F‖L4(S) . ‖F‖H1/2(S),

‖∇/ F‖H−1/2(S) . ‖F‖H1/2(S),

‖F‖H1/2(S) . ‖F‖H1(S),

‖F1F2‖H1/2(S) .
(
‖F1‖L∞(S) + ‖∇/ F1‖L2(S)

)
‖F2‖H1/2(S),

where the constants depend on N, c.

3.2 Calculus on Riemannian 3-manifolds with boundary
In this section, we recall low regularity calculus prerequisites on compact Riemannian 3-manifolds with
boundary (Σ, g). The following Sobolev inequalities are well-known, see for example page 44 in [Sze18].

Lemma 3.4 (Sobolev inequalities on Σ). Let (Σ, g) be a compact Riemannian 3-manifold with boundary
such that, in local charts,

1

4
|ξ| ≤ gijξiξj ≤ 2|ξ|2 for all ξ ∈ R2. (3.1)

Then for each tensor F on Σ,

‖F‖L∞(Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ) + ‖∇2F‖L2(Σ),

‖F‖L6(Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ).

Remark 3.5. Assumption (3.1) is in particular satisfied by weakly regular 3-balls with suitable constant
0 < Cball < 1/2.

The following trace estimates are well-known, see for example [AF08] and [Sha14]. For completeness, a proof
is provided in Appendix B.
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Lemma 3.6 (Trace estimates onto ∂Σ). Let 1 ≤ r ≤ 2 and 0 < Cball < 1/2 be real numbers, and let (Σ, g)
be a weakly regular ball of radius r with constant Cball. Then for each tensor F on Σ, it holds that

‖F‖L4(∂Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ),

‖F‖H1/2(∂Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ).
(3.2)

Moreover, for all integers m ≥ 1,∑
0≤m′≤m

‖∇/ m′F‖H1/2(∂Σ) .
∑

0≤m′≤m+1

‖∇m
′
F‖L2(Σ) +

∑
0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + CmCball.

Remark 3.7. The first of (3.2) more generally holds under the assumption that gij ∈ C0.

The following lemma allows to estimate the L2-norm of a tensor by the L2-norm of its covariant derivative
and its boundary value; see Appendix B for a proof.

Lemma 3.8. Let 1 ≤ r ≤ 2 and 0 < Cball < 1/2 be two real numbers. Let (Σ, g) be a weakly regular ball of
radius r with constant Cball, and let F be a tensor on Σ. Then,

‖F‖L2(Σ) . ‖∇F‖L2(Σ) + ‖F‖L2(∂Σ).

For real numbers 1 ≤ r ≤ 2 and 0 < Cball < 1/2, let (Σ, g) be a weakly regular ball of radius r with constant
Cball. In Section 2.4, we defined spherical coordinates (r, θ1, θ2) on Σ and expressed the metric as follows,

g = a2dr2 + g/AB(bAdr + dθA)(bBdr + dθB).

Moreover, we defined for real numbers 1 ≤ r1 ≤ r2 ≤ 2 the annulus A(r1, r2) in (2.16). The following lemma
shows that in spherical coordinates, the metric components are estimated by the constant Cball; see Lemma
2.22 in [Czi18] for a proof.

Lemma 3.9 (Estimates for metric components in spherical coordinates). Let 1 ≤ r ≤ 2 and 0 < Cball < 1/2
be two real numbers. Let (Σ, g) be a weakly regular ball of radius r with constant Cball. Then

‖a− 1‖H2(A(r/2,r)) + ‖b‖H2(A(r/2,r)) + ‖g/AB − γAB‖H2(A(r/2,r)) .Cball,∥∥∥∥trΘ− 2

r′

∥∥∥∥
H1(A(r/2,r))

+
∥∥∥Θ̂
∥∥∥
H1(A(r/2,r))

+ ‖∇/ a‖H1(A(r/2,r)) .Cball,
(3.3)

where γAB denotes the standard round metric on Sr.

3.3 Global elliptic estimates for the Laplace-Beltrami operator on
Σ

The following global elliptic estimates are applied in this paper to the maximal lapse equation to control the
lapse n. The proof follows from a straight-forward generalisation of the estimates proved in Appendix B in
[Czi19a].

Proposition 3.10. Let 1 ≤ r ≤ 2 and 0 < Cball < 1/2 be two real numbers. Let (Σ, g) be a weakly regular
ball of radius r with constant Cball. Then for any scalar function f on Σ,∑

0≤m′≤2

‖∇m
′
f‖L2(Σ) . ‖4f‖L2(Σ) + ‖∇/ f‖H1/2(∂Σ) + ‖f‖L2(∂Σ),∑

0≤m′≤3

‖∇m
′
f‖L2(Σ) .

∑
0≤m′≤1

‖∇m
′
(4f)‖L2(Σ) +

∑
1≤m′≤2

‖∇/ m′f‖H1/2(∂Σ) + ‖f‖L2(∂Σ).

Furthermore, for integers m ≥ 1,∑
0≤m′≤m+2

‖∇m
′
f‖L2(Σ)

.
∑

0≤m′≤m

‖∇m
′
4f‖L2(Σ) +

∑
0≤m′≤m+1

‖∇/ m′f‖H1/2(∂Σ) + ‖f‖L2(∂Σ)

+ Cm

 ∑
0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + Cball

(‖4f‖L2(Σ) + ‖∇/ f‖H1/2(∂Σ) + ‖f‖L2(∂Σ)

)
.
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3.4. Energy estimates for Weyl tensors on vacuum spacetimes

3.4 Energy estimates for Weyl tensors on vacuum spacetimes
The following classical energy estimate for Weyl tensors is proved in [CK93], see the introduction and Lemma
8.1.1 therein.

Proposition 3.11 (Classical energy estimate for Weyl tensors). Let (M,g) be a vacuum spacetime bounded
by two disjoint maximal spacelike hypersurfaces Σ1 and Σ2 and an outgoing null hypersurface H, and assume
that M is foliated by the spacelike level sets (Σt)1≤t≤2 of a time function t such that {t = 1} = Σ1 and
{t = 2} = Σ2. Let T denote the timelike unit normal to Σt. Let further W be a Weyl tensor on M. Then it
holds that ∫

Σ2

Q(W)TTTT =

∫
Σ1

Q(W)TTTT +

∫
H

Q(W)LTTT

−
∫
M

DµQ(W)µTTT −
∫
M

3

2
Q(W)αβTTπ

αβ ,

(3.4)

where π := LTg denotes the deformation tensor of T , the integral over H is defined in Definition 2.18, and
L is the fixed null generator of H defined in Section 2.2.

3.5 An extension procedure for the constraint equations
The following result of [Czi18] is used as a black box in this paper.

Theorem 3.12 (Extension procedure for the constraints, [Czi18]). Let 1 ≤ r ≤ 2 be a real number. Let
(ḡ, k̄) be maximal initial data for the Einstein equations on Br ⊂ R3. There exists a universal constant ε > 0
such that if ∑

0≤m′≤2

‖∂m
′
(ḡij − eij)‖L2(Br) +

∑
0≤m′≤1

‖∂m
′
k̄ij‖L2(Br) < ε,

where eij denotes the standard Euclidean metric in Cartesian coordinates, then (ḡ, k̄) can be smoothly extended
to maximal initial data (g, k) on R3 with

(g, k)|Br = (ḡ, k̄),

such that

‖gij − eij‖H2
−1/2

(R3) + ‖kij‖H1
−3/2

(R3) .
∑

0≤m′≤2

‖∂m
′
(ḡij − eij)‖L2(Br) +

∑
0≤m′≤1

‖∂m
′
k̄ij‖L2(Br),

where H2
−1/2(R3) and H1

−3/2(R3) are weighted Sobolev spaces bounding 2 and 1 coordinate derivatives,

respectively, and measuring asymptotic flatness, see [Czi18]. In particular, the constructed maximal initial
data (g, k) on R3 satisfies

rvol(R3, 1/2) >1/4

and

‖Ric‖L2(R3) + ‖k‖L2(R3) + ‖∇k‖L2(R3) .
∑

0≤m′≤2

‖∂m
′
(ḡij − eij)‖L2(Br) +

∑
0≤m′≤1

‖∂m
′
k̄ij‖L2(Br).

More generally, in case of higher regularity, for integers m ≥ 1,

‖gij − eij‖Hm+2
−1/2

(R3) + ‖kij‖Hm+1
−3/2

(R3)

≤Cm

 ∑
0≤m′≤m+2

‖∂m
′
(ḡij − eij)‖L2(Br) +

∑
0≤m′≤m+1

‖∂m
′
k̄ij‖L2(Br)

 ,

where Hm+2
−1/2(R3) and Hm+1

−3/2(R3) are weighted Sobolev spaces bounding m+2 and m+1 coordinate derivatives,

respectively, and measuring asymptotic flatness, see [Czi18]. In particular, it holds that for integers m ≥ 1,∑
0≤m′≤m

‖∇m
′
Ric‖L2(R3) +

∑
0≤m′≤m−1

‖∇m
′
k‖L2(R3)

.Cm

 ∑
0≤m′≤m+2

‖∂m
′
(ḡij − eij)‖L2(Br) +

∑
0≤m′≤m+1

‖∂m
′
k̄ij‖L2(Br)

 .
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Remark 3.13. In [Czi18], Theorem 3.12 is proved for maximal initial data (ḡ, k̄) given on the unit ball B1.
However, it is straight-forward to generalise that result to maximal initial data given on Br for 1 ≤ r ≤ 2, as
stated in Theorem 3.12 above.

3.6 The bounded L2 curvature theorem
The following theorem is a paraphrase of Theorems 2.4 and 2.5 in [Sze12a] and Theorem 2.18 in [Sze18], and
used as a black box in this paper.

Theorem 3.14 (The bounded L2 curvature theorem, version 2). Let (Σ, g, k) be asymptotically flat maximal
initial data for the Einstein vacuum equations such that Σ ' R3. Assume moreover that for some ε > 0,

‖Ric‖L2(Σ) ≤ ε, ‖k‖L2(Σ) + ‖∇k‖L2(Σ) ≤ ε, rvol(Σ, 1/2) > 1/4.

Then.

1. L2-regularity. There is a universal constant ε0 > 0 such that if 0 < ε < ε0, then the maximal
globally hyperbolic future development (M,g) of the initial data (Σ, g, k) contains a foliation of maximal
spacelike hypersurfaces (Σt)0≤t ≤1 with Σ0 = Σ such that on each Σt,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) . ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖DT k‖L∞t L2(Σt) . ε,

‖n− 1‖L∞(M) + ‖∇n‖L∞(M) + ‖∇2n‖L∞t L2(Σt) + ‖∇T (n)‖L∞t L2(Σt) . ε,

rvol(Σt, 1/2) ≥ 1/8.

Moreover, for each ω ∈ S2, there is a foliation (Hωu)ωu∈R of M by weakly regular (see remarks below)
null hyperplanes Hωu given as level sets of an optical function ωu such that

sup
ω∈S2

‖R · L‖L∞ωuL2(Hωu) . ε,

where L denotes the Hωu-tangential null vectorfield with g(T, L) = −1. Here R ·L denotes contractions
of the Riemann curvature tensor R on M with L. In addition, the following trilinear estimate holds,∣∣∣∣∣∣

∫
M

Q(R)ijTT k
ij

∣∣∣∣∣∣ . ε‖R‖2L∞t L2(Σt)
+ ε‖R‖L2(M) sup

ω∈ S2
‖R · L‖L∞ωuL2(Hωu). (3.5)

2. Higher regularity. For integers m ≥ 1, it holds that∑
0≤m′≤m

‖Dm′R‖L∞t L2(Σt) .
∑

0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + ‖∇m

′
∇k‖L2(Σ),∑

0≤m′≤m+1

‖Dm′π‖L∞t L2(Σt) .
∑

0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + ‖∇m

′
∇k‖L2(Σ),

where π := LTg denotes the deformation tensor of T .

Remarks.

1. Theorem 1.3 is the small data version of the bounded L2 curvature theorem. A corresponding large
data version is obtained in [KRS15] by a rescaling procedure.

2. We refer to Definition 5.3 in [KRS15] for a definition of weakly regular null hypersurfaces. For the
purposes of this paper, it suffices to note that weak regularity is sufficient for an application of Stokes’
theorem as in Proposition 3.11.

3. In Appendix E, we give more details about the wave parametrix formalism of [KRS15].
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4. Low regularity estimates
In this section we prove Proposition 2.29. Let ε > 0 and 1 < t∗0 < 2 be real numbers. Assume that

OΣ
0 +RΣ

0 +OH0 +RH0 ≤ ε, (4.1)

and that, for a large fixed constant D > 0 and for 1 ≤ t ≤ t∗0,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) ≤Dε,
‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(St) ≤Dε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t H1/2(St) ≤Dε,
1/4 ≤ rvol(Σt, 1/2) ≤ 8,

π/2 ≤ volg(Σt) ≤ 32π.

(4.2)

In the following, we prove that for ε > 0 sufficiently small, for 1 ≤ t ≤ t∗0,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) ≤D
′ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(St) ≤D
′ε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t H1/2(St) ≤D
′ε,

1/4 < rvol(Σt, 1/2) < 8,

π/2 < volg(Σt) < 32π.

(4.3)

for a constant 0 < D′ < D, and in addition, we show that

‖n− 1‖L∞t L∞(Σt) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) . ε,

‖DT k‖L∞t L2(Σt) . ε.
(4.4)

Notation. Pick 1 ≤ t∗ ≤ t∗0. In the following, we prove (4.3) and (4.4) on Σt∗ . As t∗ was chosen arbitrarily,
this implies (4.3) and (4.4) for 1 ≤ t ≤ t∗0.

4.1 Overview of the proof
In the following, we outline the main steps of the proof of Proposition 2.29. An important tool is the
following theorem about the existence of global coordinates which is applied in the proof of Proposition 2.29
to each hypersurface Σt. Its proof is given in Section 7 and based on the Cheeger-Gromov theory of manifold
convergence [Czi19a].

Theorem 4.1 (Existence of global regular coordinates). Let (M, g) be a compact Riemannian 3-manifold
with boundary such that M ' B1 ⊂ R3. Assume that for real numbers 1 ≤ t ≤ 2, ε > 0 and 0 < V <∞,

‖Ric‖L2(M) ≤ ε,
∥∥∥∥trΘ− 2

t

∥∥∥∥
L4(∂M)

+ ‖Θ̂‖L4(∂M) ≤ ε, rvol(M, 1/2) ≥ 1/4, volg(M) ≤ V,

where Θ denotes the second fundamental form of ∂M ⊂ M . Then for every real number 0 < Cball < 1/2
there is an ε0 > 0 such that if 0 < ε < ε0, then

(M, g) is a weakly regular ball of radius t with constant Cball,

that is,

1. H2-regularity. There is a global coordinate chart φ : Bt →M such that

(1− Cball)|ξ|2 ≤ gijξiξj ≤ (1 + Cball)|ξ|2 for all ξ ∈ R2,∑
0≤m′≤2

‖∂m
′
(gij − eij)‖L2(Bt) . Cball.

2. Higher regularity. For integers m ≥ 1 it holds that∑
0≤m′≤m+2

‖∂m
′
(gij − eij)‖L2(Bt) . CV

∑
0≤m′≤m

‖∇m
′
Ric‖L2(M) + Cm,V ,

where e denotes the standard Euclidean metric on Bt.
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Chapter 4. Low regularity estimates

We are now in position to give an overview of the proof of Proposition 2.29. As noted above, it suffices to
improve the bootstrap assumptions on Σt∗ for a fixed real number

1 ≤ t∗ ≤ t∗0.

1. Let 0 < Cball < 1/2 be a real number to be determined below. By the bootstrap assumptions (4.2)
together with Theorem 4.1, we deduce that for ε > 0 sufficiently small, Σt∗ is a weakly regular ball
of radius t∗ with constant Cball. For Cball > 0 sufficiently small, this directly improves the bootstrap
assumptions on volg(Σt∗) and rvol(Σt∗ , 1/2), see Section 4.3.

2. For Cball > 0 and ε > 0 sufficiently small, the extension procedure for the constraint equations (Theorem
3.12) can be applied to Σt∗ . This yields an extension of the maximal initial data (Σt∗ , g, k) to an
asymptotically flat maximal initial data set of size bounded by Cball, see Section 4.5.

3. For Cball > 0 sufficiently small, we can subsequently apply backwards the bounded L2 curvature
theorem (Theorem 3.14) to the above extended initial data set. This yields a foliation of the past

of Σt∗ in M by maximal hypersurfaces (Σ̃t̃)0≤t̃≤t∗ which satisfies in particular ∇̃ñ ∈ L∞(Mt∗) and
admits a trilinear estimate, see Section 4.5.

4. Using the Σ̃t̃-foliation, we apply the Bel-Robinson energy estimate for R (see Proposition 3.10) to
estimate the curvature flux through Σt∗ by the curvature fluxes through H and Σ. As the latter are
bounded by the initial data norms (see Remark 4.2 below), this improves the bootstrap assumption on

the curvature flux on Σt∗ . It is in this energy estimate that the control of ∇̃ñ ∈ L∞(Mt∗) and the

trilinear estimate for the (Σ̃t̃)0≤t̃≤t∗ -foliation are essential, see Section 4.6.

5. The second fundamental form k on Σt∗ satisfies a Hodge system. By applying global elliptic estimates
(Corollary A.6), we improve the bootstrap assumptions on ∇k ∈ L2(Σt∗). Here we use that the source
terms in the Hodge system are curvature terms which were improved in the previous step. Moreover,
here it is crucial to analyse the boundary integrals appearing in the global elliptic estimates for k.
Indeed, they admit a special structure which allows to split them up into two parts: One part which
has the right sign to control the slope ν between H and Σt∗ and the value of k on ∂Σ, and a second
part which can be estimated by the initial data norm on H. See Section 4.7 for details.

6. The bootstrap assumptions for ν on ∂Σt∗ are fully improved by using the slope equation (2.24) together
with the previously improved bounds for k and the initial data norms on H, see Section 4.10.

7. The foliation lapse n of the foliation Σt is improved by global elliptic estimates applied to the maximal
lapse equation, using that k on Σt∗ and the boundary value n = Ω−1ν−1 on ∂Σt∗ are improved in the
previous steps, see (4.38). The estimate for DT k on Σt∗ follows from the second variation equation
(2.13a), see Corollary 4.11.

Remark 4.2. To bound the curvature fluxes through H and Σ by the initial data norms on H and Σ, one
needs a comparison argument between the two maximal foliations (Σt)1≤t≤t∗ and (Σ̃)0≤t̃≤t∗ , see Lemma 4.6.
This comparison requires the control of n ∈ L∞(Mt∗), and hence in the proof of Proposition 2.29 we first
bound n− 1 of size Dε by using the smallness assumption (4.1) and the bootstrap assumptions (4.2), before
improving the curvature estimates on Σt∗ .

4.2 First consequences of the bootstrap assumptions
We first remark that by (4.1) and (4.2),∥∥∥∥trχ− 2

t

∥∥∥∥
L∞t L

∞(St)

+

∥∥∥∥trχ+
2

t

∥∥∥∥
L∞t L

∞(St)

. ε,

‖χ̂‖L∞t L4(St)
+
∥∥χ̂∥∥

L∞t L
4(St)

. ε,

‖ν − 1‖L∞t L∞(St) .Dε.

(4.5)

Using that by Lemma 2.11

trΘ− 2

t
=

1

2
νtrχ− 1

2
ν−1trχ− 2

t

=
1

2
(ν − 1)trχ+

1

2

(
trχ− 2

t

)
− 1

2
(ν−1 − 1)trχ− 1

2

(
trχ+

2

t

)
,
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4.3. Weakly regular ball property of Σt∗

we therefore have by (4.5) for ε > 0 sufficiently small that∥∥∥∥trΘ− 2

t

∥∥∥∥
L∞t L

∞(St)

.Dε. (4.6)

Moreover, using that by Lemma 2.11

Θ̂ =
1

2
νχ̂− 1

2
ν−1χ̂,

we get by (4.5) for ε > 0 sufficiently small that∥∥∥Θ̂
∥∥∥
L∞t L

4(St)
. ε. (4.7)

4.3 Weakly regular ball property of Σt∗

From (4.2), (4.6) and (4.7), we have for ε > 0 sufficiently small that

‖Ric‖L2(Σt∗ ) .Dε,∥∥∥∥trΘ− 2

t∗

∥∥∥∥
L4(St∗ )

+
∥∥∥Θ̂
∥∥∥
L4(St∗ )

.D ε,

rvol(Σt∗ , 1/2) ≥ 1/4,

volg(Σt∗) ≤ 32π.

Let 0 < Cball < 1/2 be a real number to be determined below. By Theorem 4.1, there exists ε0 > 0 such
that if 0 < ε < ε0, then Σt∗ is a weakly regular ball of radius t∗ with constant Cball, that is, there is a global
coordinate chart φ : Bt∗ → Σt∗ such that

(1− Cball)|ξ|2 ≤ gijξiξj ≤ (1 + Cball)|ξ|2 for all ξ ∈ R2,∑
0≤m′≤2

‖∂m
′
(gij − eij)‖L2(Bt∗ ) . Cball.

(4.8)

For Cball > 0 sufficiently small, it follows from (4.8) that

1/4 < rvol(Σt∗ , 1/2) < 8, π/2 < volg(Σt∗) < 32π,

which improves the bootstrap assumptions on rvol(Σt∗ , 1/2) and volg(Σt∗) in (4.2).

Remark 4.3. In this paper it generally holds that Cball � ε, see Theorem 4.1. In particular, demanding
Cball > 0 to be sufficiently small thus stipulates that ε > 0 be sufficiently small. For ease of presentation,
this is tacitly acknowledged in the following.

Remark 4.4. In particular, the above shows that the calculus results of Section 3.2 for weakly regular balls
hold on Σt.

4.4 Estimates for the lapse n on Σt∗

The lapse function n is by (2.13e) and (2.25) a solution to the following elliptic boundary value problem,

∆n =n|k|2g on Σt∗ ,

n = ν−1Ω−1 on ∂Σt∗ .
(4.9)

In this section, we use (4.1), (4.2) and global elliptic estimates to prove that for ε > 0 sufficiently small,

‖n− 1‖L∞(Σt∗ ) + ‖∇n‖L2(Σt∗ ) + ‖∇2n‖L2(Σt∗ ) . Dε. (4.10)

Remark 4.5. In accordance with the continuity argument of the proof of the main result, we do not have
any bootstrap assumptions on n in (4.2).
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On the one hand, by (4.1), (4.2) and Lemma 3.3, the boundary value n = ν−1Ω−1 satisfies for ε > 0
sufficiently small

‖n− 1‖L∞(∂Σt∗ ) . ‖ν − 1‖L∞(∂ Σt∗ ) + ‖Ω− 1 ‖L∞(∂Σt∗ )

.Dε,

‖∇/ n‖L2(∂Σt∗ ) . ‖∇/ ν‖L2(∂ Σt∗ ) + ‖∇/ Ω ‖L2(∂Σt∗ )

.Dε,

as well as

‖∇/ n‖H1/2(∂Σt∗ )

=

∥∥∥∥ 1

ν2Ω
∇/ ν +

1

νΩ2
∇/ Ω

∥∥∥∥
H1/2(∂Σt∗ )

.

(∥∥∥∥∇/ ( 1

Ων2

)∥∥∥∥
L2(∂Σt∗ )

+

∥∥∥∥ 1

Ων2

∥∥∥∥
L∞(∂Σt∗ )

+

∥∥∥∥∇/ ( 1

Ω2ν

)∥∥∥∥
L2(∂Σt∗ )

+

∥∥∥∥ 1

Ω2ν

∥∥∥∥
L∞(∂Σt∗ )

)
·
(
‖∇/ ν‖H1/2(∂Σt∗ ) + ‖∇/ Ω‖H1/2(∂Σt∗ )

)
. ‖∇/ ν‖H1/2(∂Σt∗ ) + ‖∇/ Ω‖H1/2(∂Σt∗ )

.Dε.

On the other hand, by (4.2), (4.8), (4.9) and Lemma 3.4, we have that

‖4n‖L2(Σt∗ ) = ‖n|k|2‖L2(Σt∗ )

. ‖n‖L6(Σt∗ )‖k‖2L6(Σt∗ )

. (1 + ‖n− 1‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ ))
(
‖k‖L2(Σt∗ ) + ‖∇k‖L2(Σt∗ )

)2
. (1 + ‖n− 1‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ ))(Dε)

2.

By the elliptic estimates of Proposition 3.10, we hence get that for Cball > 0 and ε > 0 sufficiently small,

‖n− 1‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ ) + ‖∇2n‖L2(Σt∗ )

. ‖4n‖L2(Σt∗ ) + ‖∇/ n‖H1/2(∂Σt∗ ) + ‖n‖L2(∂Σt∗ )

.
(
‖n− 1‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ )

)
(Dε)2 +Dε.

For ε > 0 sufficiently small, we can absorb the first term on the right-hand side into the left-hand side to get
that

‖n− 1‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ ) + ‖∇2n‖L2(Σt∗ ) . Dε.

The estimate (4.10) follows then by Lemma 3.4.

4.5 Construction of a background foliation of the past of Σt∗

LetMt∗ denote the past of Σt∗ inM. In this section, we apply backwards the bounded L2 curvature theorem
on Σt∗ to construct a background foliation of Mt∗ .

First, on the one hand, we have by (4.8) that

(1− Cball)|ξ|2 ≤ gijξiξj ≤ (1 + Cball)|ξ|2 for all ξ ∈ R2,∑
0≤m′≤2

‖∂m
′
(gij − eij)‖L2(Bt∗ ) . Cball.

(4.11)

On the other hand, by (4.2),

‖k‖L2(Σt∗ ) + ‖∇k‖L2(Σt∗ ) ≤ Dε. (4.12)

For ε > 0 sufficiently small, (4.11) and (4.12) imply by standard product estimates that∑
0≤m′≤1

‖∂m
′
kij‖L2(Bt∗ ) . Cball.
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4.6. Energy estimates for the curvature tensor on Σt∗

In particular, with (4.11), it holds that∑
0≤m′≤2

‖∂m
′
(gij − eij)‖L2(Bt∗ ) +

∑
0≤m′≤1

‖∂m
′
kij‖L2(Bt∗ ) . Cball. (4.13)

Second, using (4.13) and assuming Cball > 0 is sufficiently small, we can apply the extension procedure of
Theorem 3.12 to extend (g, k) from Σt∗ = φ(Bt∗) to an asymptotically flat maximal initial data (g′, k′) on
R3 satisfying

rvol(R3, 1/2) > 1/4,

‖Ric′‖L2(R3) + ‖k′‖L2(R3) + ‖∇′k′‖L2(R3) .Cball.
(4.14)

Here rvol(R3, 1/2), Ric′ and ∇′ denote the volume radius, the Ricci curvature and the covariant derivative
with respect to g′ on R3.

Third, by (4.14) the maximal initial data (R3, g′, k′) satisfies for Cball > 0 sufficiently small the assumptions
of the bounded L2 curvature theorem (see Theorem 3.14). Thus, Theorem 3.14 yields the following.

1. Mt∗ is foliated by spacelike maximal hypersurfaces (Σ̃t̃)0 ≤t̃≤t∗ given as level sets of a time function t̃

with Σt∗ = Σ̃t∗ and satisfying for 0 ≤ t̃ ≤ t∗,

‖R̃ic‖L∞
t̃
L2(Σ̃t̃)

.Cball, ‖k̃‖L∞
t̃
L2(Σ̃t̃)

+ ‖∇̃k̃‖L∞
t̃
L2(Σ̃t̃)

.Cball,

‖R‖L∞
t̃
L2(Σ̃t̃)

.Cball, ‖ñ− 1‖L∞
t̃
L∞(Σ̃t̃)

+ ‖∇̃ñ‖L∞
t̃
L∞(Σ̃t̃)

.Cball,
(4.15)

where R̃ic, k̃ and ∇̃ denote the induced Ricci curvature, the second fundamental form and the induced
covariant derivative on Σ̃t̃, respectively, and ñ denotes the lapse of the foliation (Σ̃t̃)0 ≤t̃≤t∗ .

2. For each ω ∈ S2, the spacetime portion Mt∗ is foliated by a family of null hyperplanes (Hωu)ωu∈R
given as level sets of an optical function ωu satisfying

sup
ω∈S2

‖R · L̃‖L∞ωuL2(Hωu) . Cball,

where L̃ is the unique Hωu-tangent null vectorfield with g(L̃, T̃ ) = −1 and T̃ denotes the future-pointing

time-like unit normal to Σ̃t̃.

3. Define the angle ν̃ between T and T̃ by

ν̃ := −g(T, T̃ ). (4.16)

The proof of the next lemma is provided in Appendix D.

Lemma 4.6 (Comparison of maximal foliations on Mt∗). For Cball > 0 and ε > 0 sufficiently small,
it holds that

‖ν̃ − 1‖L∞t L∞(Σt)
. Cball, ‖k̃‖L∞t L4(Σt) . Cball, (4.17)

where k̃ denotes the second fundamental form of Σ̃t̃.

4.6 Energy estimates for the curvature tensor on Σt∗

In this section, we prove that

‖R‖L∞
t̃
L2(Σ̃t̃)

. ε. (4.18)

Using that by construction Σt∗ = Σ̃t∗ , (4.18) implies in particular that

‖R‖L2(Σt∗ ) . ε. (4.19)

We turn to the proof of (4.18). Recall from Section 4.5 that for each ω ∈ S2, Mt∗ is foliated by families of

null hyperplanes (Hωu)ωu∈R. Applying the classical Bel-Robinson energy estimate (3.4) for W = R with T̃

67



Chapter 4. Low regularity estimates

as multiplier field over the spacetime region bounded by Σ,H,Σt∗ and Hωu (for some ω ∈ S2 and ωu ∈ R)
and subsequently taking the supremum over ω ∈ S2 and ωu ∈ R, we get that

‖R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖R · L̃‖2L∞ωuL2(Hωu)

.
∫
Σ1

Q(R)T̃ T̃ T̃ T +

∫
H

Q(R)T̃ T̃ T̃L +

∣∣∣∣∣∣
∫
Mt∗

Q(R)αβ T̃ T̃ π̃
αβ

∣∣∣∣∣∣︸ ︷︷ ︸
=:E

, (4.20)

where we used (2.11) and Lemma 2.16. The error term E on the right-hand side of (4.20) is bounded as
follows. By (2.6) the components of π̃ := L̂T̃g are

π̃T̃ T̃ = 0, π̃T̃ j = ñ−1∇j ñ, π̃ab = −2k̃ab.

Hence, by (4.15),

E =

∣∣∣∣∣∣
∫
Mt∗

Q(R)αβ T̃ T̃ π̃
αβ

∣∣∣∣∣∣
.

∣∣∣∣∣∣
∫
Mt∗

Q(R)ab T̃ T̃ k̃
ab

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Mt∗

ñ−1Q(R)T̃ j T̃ T̃ ∇̃
j ñ

∣∣∣∣∣∣
.

∣∣∣∣∣∣
∫
Mt∗

Q(R)ab T̃ T̃ k̃
ab

∣∣∣∣∣∣+
(

1 + ‖ñ− 1‖L∞(Mt∗ )

)
‖∇̃ñ‖L∞(Mt∗ )‖R‖2L∞

t̃
L2(Σ̃t̃)

.

∣∣∣∣∣∣
∫
Mt∗

Q(R)ab T̃ T̃ k̃
ab

∣∣∣∣∣∣+ Cball‖R‖2L∞
t̃
L2(Σ̃t̃)

.

(4.21)

The first term on the right-hand side of (4.21) is estimated by a localisation of the trilinear estimate (3.5)
of Theorem 3.14. Indeed, a direct inspection of its proof on page 112 in [KRS15] yields that the following
estimate holds on Mt∗ ,∣∣∣∣∣∣

∫
Mt∗

Q(R)ab T̃ T̃ k̃
ab

∣∣∣∣∣∣ .Cball‖R‖2L∞
t̃
L2(Σ̃t̃)

+ Cball‖R‖L2(Mt∗ ) sup
ω∈ S2

‖R · L̃‖L∞ωuL2(Hωu)

.Cball‖R‖2L∞
t̃
L2(Σ̃t̃)

+ Cball‖R‖L∞
t̃
L2(Σ̃t̃)

sup
ω∈ S2

‖R · L̃‖L∞ωuL2(Hωu)

.Cball‖R‖2L∞
t̃
L2(Σ̃t̃)

+ Cball

(
sup
ω∈ S2

‖R · L̃‖L∞u L2(Hωu)

)2

.

Plugging (4.21) and the above into (4.20), we get

‖R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖R · L̃‖2L∞ωuL2(Hωu)

.
∫
Σ1

Q(R)T̃ T̃ T̃ T +

∫
H

Q(R)T̃ T̃ T̃L

+ Cball‖R‖2L∞
t̃
L2(Σ̃t̃)

+ Cball

(
sup
ω∈ S2

‖R · L̃‖L∞ωuL2(Hωu)

)2

.

For Cball > 0 sufficiently small we can absorb the third and fourth term on the right-hand side into the
left-hand side, which yields

‖R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖R · L̃‖2L∞ωuL2(Hωu) .
∫
Σ1

Q(R)T̃ T̃ T̃ T︸ ︷︷ ︸
:=I1

+

∫
H

Q(R)T̃ T̃ T̃L︸ ︷︷ ︸
:=I2

,
(4.22)
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It remains to control the boundary integrals I1 and I2 on the right-hand side of (4.22).

Control of I1. Let (ei)i=1,2,3 be an orthonormal frame of Σ1. Decompose T̃ with respect to this frame into

T̃ = ν̃T + C1e1 + C2e2 + C3e3, (4.23)

and denote C0 := ν̃ − 1 and e0 := T . By (4.17), we have that

‖C0‖L∞(Σ1) . Cball. (4.24)

Using that T and T̃ are unit timelike vectors, that (e1, e2, e3) is an orthonormal frame tangent to Σ1 and
(4.24), we have that

−1 = g(T̃ , T̃ ) = −ν̃2 +

3∑
i=1

|Ci|2,

so that on Σ1,

|Ci| ≤
√
ν2 − 1 =

√
C0
√
ν + 1 .

√
Cball for i = 1, 2, 3. (4.25)

Using (2.11), (2.12), (4.1), (4.23), (4.24) and (4.25), we get that

I1 :=

∫
Σ1

QT̃ T̃ T̃ T

=

∫
Σ1

QTTTT +

∫
Σ1

CµQµTTT +

∫
Σ1

CµCνQµνTT +

∫
Σ1

CµCνCλQµνλT

.
(

1 +
√
Cball +

√
Cball

2
+
√
Cball

3
)∫

Σ1

QTTTT

. ‖R‖2L2(Σ1)

. ε2.

Control of I2. Let (N, e1, e2) be a local frame on H such that (e1, e2) is an orthonormal frame tangent to

∂Σt and N is tangent to Σt and normal to ∂Σt. Decompose T̃ into

T̃ = ν̃T + C ′1e1 + C ′2e2 + C ′3N, (4.26)

and denote C ′0 := ν̃ − 1 and e0 = T . Using (4.17), we have that

‖C ′0‖L∞(Σ1) . Cball. (4.27)

Using that T and T̃ are timelike unit, that (N, e1, e2) is an orthonormal frame and (4.27), it follows that∥∥C ′i∥∥
L∞(H)

.
√
Cball for i = 1, 2, 3. (4.28)

By Lemma 2.16, (2.26), (4.1), (4.17), (4.26), (4.27) and (4.28), we get that for Cball > 0 and ε > 0 sufficiently
small,

I2 :=

∫
H
QT̃ T̃ T̃L

=

∫
H
QTTTL +

∫
H
C ′µQµTTL +

∫
H
C ′µC ′νQµνTL +

∫
H
C ′µC ′νC ′λQµνλL

.
(

1 +
√
Cball +

√
Cball

2
+
√
Cball

3
)∫
H
QTTTL

. ‖ν̃‖3L∞(H) ‖α‖
2
L2(H) + ‖ν̃‖L∞(H) ‖β‖

2
L2(H)

+
∥∥ν̃−1

∥∥
L∞(H)

(‖ρ‖2L2(H) + ‖σ‖2L2(H)) +
∥∥ν̃−3

∥∥
L∞(H)

∥∥β∥∥2

L2(H)

. ‖α‖2L2(H) + ‖β‖2L2(H) + ‖ρ‖2L2(H) + ‖σ‖2L2(H) +
∥∥β∥∥2

L2(H)

. ε2.

To summarise, plugging the above control of I1 and I2 into (4.22), we get that for Cball > 0 and ε > 0
sufficiently small,

‖R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖R · L̃‖2L∞ωuL2(Hωu) . ε
2.

In particular, this implies (4.18) and subsequently (4.19).
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4.7 Elliptic estimates for the second fundamental form k on Σt∗

In this section we prove the following proposition to improve the bootstrap assumption (4.2) for k.

Proposition 4.7 (Global elliptic estimate for k). It holds that

‖∇k‖2L2(Σt∗ ) + ‖k‖2L2(Σt∗ ) + ‖k‖4L4(Σt∗ ) + ‖k‖2L2(∂Σt∗ ) + ‖∇/ ν‖2L2(∂Σt∗ ) . (
√
Dε)2.

Proof. Using (2.13b), (2.13c), (2.13d) and Corollary A.6, we have the following well-known classical global
elliptic estimate for k, ∫

Σt∗

|∇k|2 +
1

4
|k|4 −

∫
∂Σt∗

∇akbNkba .
∫

Σt∗

|R|2ht , (4.29)

where N denotes the outward-pointing unit normal to ∂Σt∗ ⊂ Σt∗ .

By divk = 0, see (2.13b), the boundary term on the left-hand side of (4.29) can be rewritten as

−
∫

∂Σt∗

∇akbNkba =−
∫

∂Σt∗

(
∇NkbNkbN +∇CkbNkbC

)
=−

∫
∂Σt∗

(
−∇CkbCkbN +∇CkNNkNC +∇CkANkAC

)
=

∫
∂Σt∗

∇CkACkAN +∇CkNCkNN −∇CkNNkNC −∇CkANkAC ,

(4.30)

where summation over A,C = 1, 2 indicates taking the trace with respect to a local orthonormal frame
(e1, e2) on ∂Σt∗ . Using the boundary decomposition of Section 2.4 for ∇k on ∂Σt∗ , that is,

∇CkAC =div/ ηA + ΘABε
B + trΘεA, ∇CkNC =div/ ε− η ·Θ + δtrΘ,

∇CkNN =∇/ Cδ − 2ΘCBε
B , ∇CkAN =∇/ CεA − η B

A ΘBC + δΘAC ,

where δ = kNN , εA = kNA and ηAB = kAB , and integrating by parts, we get that (4.30) becomes

−
∫

∂Σt∗

∇akbNkba =

∫
∂Σt∗

2(div/ η)Aε
A − 2ε · ∇/ δ + 3ΘABε

AεB + trΘ|ε|2

+

∫
∂Σt∗

δ2trΘ− 2δηABΘAB + ηABΘBCη
CA

=

∫
∂Σt∗

−4ε · ∇/ δ − 2 ∗HNA/ εA + 5ΘABε
AεB − trΘ|ε|2

+

∫
∂Σt∗

δ2trΘ− 2δηABΘAB + ηABΘBCη
CA,

(4.31)

where we used the following Gauss-Codazzi equation in the last equality, see (2.18),

div/ ηA =−∇/ Aδ − ∗HNA/ + Θ · ε− trΘ ε.

We can re-arrange (4.31) as

−
∫

∂Σt∗

∇akbNkba =−
∫

∂Σt∗

4ε · ∇/ δ + 2 ∈AB HBN εA

+

∫
∂ Σt∗

(
trΘ− 2

t∗

)(
3

2
|ε|2 + 2|δ|2 +

1

2
|η|2
)

+

∫
∂ Σt∗

5Θ̂ABε
AεB − 2δΘ̂ABη

AB − ηACΘ̂CBη A
B

+

∫
∂Σt∗

3

t∗
|ε|2 +

4

t∗
|δ|2 +

1

t∗
|η|2,

(4.32)
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where we used that by definition, see (2.19) and (2.20),

∗HNA/ εA =∈AB HBN εA.

Since ∂Σt∗ ⊂ H, we can use Lemmas 2.11 and 2.13, that is, the relations

εA =− ν−1∇/ Aν + ζA,

δ =
1

2
νtrχ+

1

2
ν−1trχ,

∇/ δ =∇/
(

1

2
νtrχ+

1

2
ν−1trχ

)
=

(
1

t∗

(
1 +

1

ν2

)
+

1

2

(
trχ− 2

t∗

)
− 1

2

1

ν2

(
trχ+

2

t∗

))
︸ ︷︷ ︸

=:F (ν,trχ,trχ)

∇/ ν

+
1

2
ν∇/ trχ+

1

2
ν−1∇/ trχ,

(4.33)

to rewrite the first term on the right-hand side of (4.32) as follows,

−
∫

∂Σt∗

4ε · ∇/ δ =−
∫

∂Σt∗

4ζ · ∇/ δ +

∫
∂Σt∗

4ν−1∇/ ν · ∇/ δ

=−
∫

∂Σt∗

4ζ · ∇/ δ +

∫
∂Σt∗

4ν−1F (ν, trχ, trχ)|∇/ ν |2

+

∫
∂Σt∗

2
(
∇/ ν · ∇/ trχ+ ν−2∇/ ν · ∇/ trχ

)
.

(4.34)

By (4.1) and (4.2), it holds for ε > 0 sufficiently small that on ∂Σt∗ ,

ν−1F (ν, trχ, trχ) ≥ 1

8
.

Hence, for ε > 0 sufficiently small, (4.34) yields

−
∫

∂Σt∗

4ε · ∇/ δ ≥
∫

∂Σt∗

1

2
|∇/ ν |2 +

∫
∂Σt∗

2
(
∇/ ν · ∇/ trχ+ ν−2∇/ ν · ∇/ trχ

)
−
∫

∂Σt∗

4ζ · ∇/ δ. (4.35)

Plugging (4.32) and (4.35) into (4.29), we get that for ε > 0 sufficiently small,∫
Σt∗

|∇k|2 +
1

4
|k|4 +

∫
∂Σt∗

|k|2 +

∫
∂Σt∗

|∇/ ν|2

.
∫

Σt∗

|R|2ht

︸ ︷︷ ︸
:=I1

+

∣∣∣∣∣∣∣
∫

∂Σt∗

∈AB HAN εB

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I2

+

∣∣∣∣∣∣∣
∫

∂Σt∗

(
trΘ− 2

t∗

)
|k|2

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I3

+

∣∣∣∣∣∣∣
∫

∂ Σt∗

Θ̂ABε
AεB

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I4

+

∣∣∣∣∣∣∣
∫

∂ Σt∗

δΘ̂ABη
AB

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I5

+

∣∣∣∣∣∣∣
∫

∂Σt∗

ηACΘ̂CBη A
B

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I6

+

∣∣∣∣∣∣∣
∫

∂Σt∗

ζ · ∇/ δ

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I7

+

∣∣∣∣∣∣∣
∫

∂Σt∗

∇/ ν · ∇/ trχ

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I8

+

∣∣∣∣∣∣∣
∫

∂Σt∗

ν−2∇/ ν∇/ trχ

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=I9

.

(4.36)
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In the following, we control the terms I1-I9 on the right-hand side of (4.36).

Control of I1. From (4.19), we have

I1 :=

∫
Σt∗

|R|2ht . ε2. (4.37a)

Control of I2. In the following we use, based on the control (4.8), the spherical coordinates (r, θ1, θ2) on
Bt∗ = φ−1(Σt∗) as defined in Section 2.4. Let ψ : Bt∗ → [0, 1] be a smooth radial cut-off function such that
ψ(x) = 1 for |x| ≥ 3t∗/4 and ψ(x) = 0 for |x| ≤ t∗/2, where | · | denotes the Euclidean norm on Bt∗ . Then
by the fundamental theorem of calculus, (4.2), Lemma 3.9 and the fact that due to (2.11) and (4.19),

‖E‖L2(Σt∗ ) + ‖H‖L2(Σt∗ ) . ‖R‖L2(Σt∗ ) . ε, (4.37b)

we have that ∫
∂Σt∗

∈AB HAN εB

=

t∗∫
t∗/2

∂r

ψ ∫
Sr

∈AB HAN εB

 dr

.

t∗∫
t∗/2

ψ∂r

∫
Sr

∈AB HAN εB

 dr + ‖H‖L2(Σt∗ )‖k‖L2(Σt∗ )

.

t∗∫
t∗/2

ψ

∫
Sr

(
∂r
(
∈AB HAN εB

)
+ ∈AB HAN εB a trΘ

) dr + ε(Dε)

.

t∗∫
t∗/2

ψ

∫
Sr

∂r
(
∈AB HAN εB

)
dr + ε(Dε).

(4.37c)

Using that ∂r = aN + b and ∈AB=∈ABN , we can express the integrand on the right-hand side of (4.37c) as

∂r
(
∈AB HAN εB

)
=∂r

(
∈ijN HiNkjN

)
=a∇N (∈ijN HiNkjN ) + b

(
∈AB HAN εB

)
=a∇N (∈ijN HiNkjN ) + bc∇/ c

(
∈AB HAN εB

)
,

(4.37d)

Further, using that ∇NN = −a−1∇/ a and (2.15), that is,

∇NHAN =− div/ H/A −ΘACH
C
N − trΘHAN − (k ∧ E)A,

where H/ denotes the projection of H onto Sr, the first term on the right-hand side of (4.37d) can be expressed
as follows,

a∇N (∈ijN HiNkjN )

= a ∈ijl (−a−1∇/ la)HiNkjN + a ∈ijN (∇NHiN − a−1∇/ CaHiC)kjN

+ a ∈ijN HiN (∇NkjN − a−1∇/ Ca kjC)

= a ∈ijl (−a−1∇/ la)HiNkjN + a ∈AB (∇NHAN − a−1∇/ CaHAC)εB

+ a ∈AB HAN (∇NkBN − a−1∇/ Ca kBC)

= a ∈ijl (−a−1∇/ la)HiNkjN

+ a ∈AB (−div/ H/A −ΘACH
C
N − trΘHNA − (k ∧ E)A − a−1∇/ CaHAC)εB

+ a ∈AB HAN (∇NkBN − a−1∇/ Ca kBC).

Plugging (4.37d) and the above into (4.37c) and integrating by parts on Sr the terms −a ∈AB div/ H/A εB
and bc∇/ c

(
∈AB HAN εB

)
, we get that
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∫
∂Σt∗

∈AB HAN εB

.

t∗∫
t∗/2

ψ

∫
Sr

(
∈ijl (−a−1∇/ la)HiNkjN − div/ b

(
∈AB HAN εB

)) dr

+

t∗∫
t∗/2

ψ

∫
Sr

∈AB ∇/ C(a εB)H/AC

 dr

+

t∗∫
t∗/2

ψ

∫
Sr

a ∈AB
(
−ΘACH

C
N − trΘHNA − (k ∧ E)A − a−1∇/ CaHAC

)
εB

 dr

+

t∗∫
t∗/2

ψ

∫
Sr

a ∈AB HAN (∇NkBN − a−1∇/ Ca kBC)

 dr + εDε.

By Lemmas 3.4 and 3.9, (4.2), (4.8) and (4.37b), the right-hand side can be estimated as

I2 :=

∣∣∣∣∣∣∣
∫

∂Σt∗

∈AB HAN εB

∣∣∣∣∣∣∣ . (1 + Cball)‖H‖L2(Σt∗ )

(
‖∇k‖L2(Σt∗ ) + ‖k‖L2(Σt∗ )

)
. (1 + Cball)εDε

.(
√
Dε)2.

(4.37e)

Control of I3. Using (4.2) and (4.6), we have

I3 :=

∣∣∣∣∣∣∣
∫

∂Σt∗

(
trΘ− 2

t∗

)
|k|2

∣∣∣∣∣∣∣ ≤
∥∥∥∥trΘ− 2

t∗

∥∥∥∥
L∞(∂ Σt∗ )

‖k‖2L2(∂Σt∗ )

.(Dε)3.

(4.37f)

Control of I4, I5 and I6. By Lemma 3.6 and (4.7), we have

I4 :=

∣∣∣∣∣∣∣
∫

∂ Σt∗

Θ̂ABε
AεB

∣∣∣∣∣∣∣ . ‖Θ̂‖L4(∂Σt∗ )‖ε‖L2(∂Σt∗ )‖ε‖L4(∂Σt∗ )

. ‖Θ̂‖L4(∂Σt∗ )

(
‖ε‖L2(Σt∗ ) + ‖∇ε‖L2(Σt∗ )

)2

. ‖Θ̂‖L4(∂Σt∗ )

(
‖k‖L2(Σt∗ ) + ‖∇k‖L2(Σt∗ )

)2
. ε(Dε)2.

(4.37g)

The terms I5 and I6 are bounded similarly as

I5 + I6 . ε(Dε)
2. (4.37h)
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Control of I7, I8 and I9. By (4.1), (4.2) and (4.33), we have

I7 :=

∣∣∣∣∣∣∣
∫

∂Σt∗

ζ · ∇/ δ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

∂Σt∗

F (ν, tr χ, trχ)ζ · ∇/ ν +
1

2
ζ ·
(
ν∇/ trχ+ ν−1∇/ trχ

)∣∣∣∣∣∣∣
.

(
1 + ‖ν − 1‖L∞(∂Σt∗ ) +

∥∥∥∥trχ− 2

t∗

∥∥∥∥
L∞(∂Σt∗ )

+

∥∥∥∥trχ+
2

t∗

∥∥∥∥
L∞(∂Σt∗ )

)
· ‖ζ‖L2(∂Σt∗ )

(
‖∇/ ν‖L2(∂Σt∗ ) + ‖∇/ trχ‖L2(∂Σt∗ ) + ‖∇/ trχ‖L2(∂Σt∗ )

)
. ε(Dε) + ε2.

(4.37i)

The terms I8 and I9 are bounded similarly by (4.1) and (4.2),

I8 + I9 . (
√
Dε)2. (4.37j)

Plugging (4.37a)-(4.37j) into (4.36), we get that for Cball > 0 and ε > 0 sufficiently small,∫
Σt∗

|∇k|2 +

∫
Σt∗

|k|4 +

∫
∂Σt∗

|k|2 +

∫
∂Σt∗

|∇/ ν|2 .(
√
Dε)2.

In particular, this implies by Lemma 3.8 that

‖k‖L2(Σt∗ ) . ‖∇k‖L2(Σt∗ ) + ‖k‖L2(∂Σt∗ )

. (
√
Dε)2.

Summarising the above, we have that∫
Σt∗

(
|∇k|2 + |k|2 + |k|4

)
+

∫
∂Σt∗

(
|k|2 + |∇/ ν|2

)
.(
√
Dε)2.

This finishes the proof of Proposition 4.7.

Proposition 4.7 and Lemma 3.6 yield the following corollary.

Corollary 4.8. It holds that

‖k‖H1/2(∂Σt∗ ) + ‖k‖L4(∂Σt∗ ) .
√
Dε.

4.8 Estimates for the slope ν on ∂Σt∗

We first prove the next lemma.

Lemma 4.9. It holds that

‖ν − 1‖L2(∂Σt∗ ) .
√
Dε.

Proof. Recall from Lemma 2.11 that on ∂Σt∗ ,

δ =
1

2
νtrχ+

1

2
ν−1trχ.

This can be rearranged as

δ =
1

2
ν

(
trχ− 2

t∗

)
+

1

2
ν−1

(
trχ+

2

t∗

)
+

1

νt∗
(ν + 1)(ν − 1),
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which leads to

ν − 1 =
νt∗

ν + 1

(
δ − 1

2
ν

(
trχ− 2

t∗

)
− 1

2
ν−1

(
trχ+

2

t∗

))
.

Consequently, using (4.1) and Proposition 4.7, we can estimate for ε > 0 sufficiently small,

‖ν − 1‖L2(∂Σt∗ ) . (1 +Dε)

(
‖δ‖L2(∂Σt∗ ) +

∥∥∥∥trχ− 2

t∗

∥∥∥∥
L2(∂Σt∗ )

+

∥∥∥∥trχ+
2

t∗

∥∥∥∥
L2(∂Σt∗ )

)
.
√
Dε.

This finishes the proof of Lemma 4.9.

Moreover, we have the following.

Lemma 4.10. It holds that

‖∇/ ν‖L4(∂ Σt∗ ) + ‖ν − 1 ‖L∞(∂Σt∗ ) + ‖∇/ ν‖H1/2(∂ Σt∗ ) .
√
Dε.

Proof. Indeed, by Lemma 2.13, (4.1) and Corollary 4.8, we have

‖∇/ ν‖L4(∂ Σt∗ ) . ‖ε‖L4(∂Σt∗ ) + ‖ζ‖L4(∂Σt∗ )

.
√
Dε+ ε.

Consequently, by Lemmas 3.6 and 4.9, we have

‖ν − 1‖L∞(∂Σt∗ ) . ‖∇/ (ν − 1)‖L4(∂Σt∗ ) + ‖ν − 1‖L2(∂Σt∗ )

.
√
Dε.

By the above and Lemmas 2.13, 3.3 and 3.6, (4.1) and Proposition 4.7,

‖∇/ ν‖H1/2(∂Σt∗ )

= ‖ν
(
ν−1∇/ ν

)
‖H1/2(∂Σt∗ )

.
(
‖ν‖L∞(∂Σt∗ ) + ‖∇/ ν‖L2(∂Σt∗ )

) (
‖ζ‖H1/2(∂Σt∗ ) + ‖ε‖H1/2(∂Σt∗ )

)
.
(
1 + ‖ν − 1‖L∞(∂Σt∗ ) + ‖∇/ ν‖L2(∂Σt∗ )

) (
‖ζ‖H1/2(∂Σt∗ ) + ‖ε‖L2(Σt∗ ) + ‖∇ε‖L2(Σt∗ )

)
.
√
Dε.

This finishes the proof of Lemma 4.10.

This finishes the improvement of the bootstrap assumptions (4.2).

At this point we can reapply the estimates of Section 4.4 for n to get

‖n− 1‖L∞(Σt∗ ) + ‖∇n‖L2(Σt∗ ) + ‖∇2n‖L2(Σt∗ ) .
√
Dε. (4.38)

As a consequence of the above, we can prove the following additional bound.

Lemma 4.11. It holds that

‖DT k‖L2(Σt∗ ) .
√
Dε.

Proof. Indeed, by the second variation equation (2.13a), that is,

DT kij = Eij − n−1∇i∇jn− kilkl j ,

we get that for ε > 0 sufficiently small,

‖DT k‖L2(Σt∗ ) . ‖E‖L2(Σt∗ ) + ‖∇2n‖L2(Σt∗ ) +
(
‖∇k‖L2(Σt∗ ) + ‖k‖L2(Σt∗ )

)2
.
√
Dε+ (

√
Dε)2.

This finishes the proof of Lemma 4.11.

75





5. Higher regularity estimates
In this section we prove Proposition 2.30. In Section 5.1 we prove the higher regularity estimates for m = 1
and in Section 5.2 we prove the estimates for m ≥ 2. As emphasised in Section 2.9, the case m = 1 requires
a trilinear estimate which necessitates an inspection of the wave parametrix formalism of [KRS15], see
Proposition 5.2 and its proof in Appendix E. On the contrary, the cases m ≥ 2 are proved by a classical
Grönwall argument together with straight-forward generalisations of the methods for m = 1.

5.1 Higher regularity estimates for m = 1
Assume that the spheres (Sv)1≤v≤2 of the canonical foliation on H are weakly regular 2-spheres with constants
N, c. Assume further that for real numbers 1 < t∗0 ≤ 2, ε > 0 and 0 < Cball < 1/2, it holds for 1 ≤ t ≤ t∗0
that

Σt is a weakly regular ball of radius t with constant Cball (5.1)

and moreover,

‖Ric‖L∞t L2(Σt) + ‖R‖L∞t L2(Σt) . ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(∂Σt) + ‖DT k‖L∞t L2(Σt) . ε,

‖ν − 1‖L∞t L∞(St) + ‖∇/ ν‖L∞t H1/2(St) . ε,

‖n− 1‖L∞t L∞(Σt) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) . ε,

(5.2)

In the following we show that for Cball > 0 and ε > 0 sufficiently small, it holds that for 1 ≤ t ≤ t∗0,

‖∇E‖L2(Σt) + ‖∇H‖L2(Σt) + ‖∇Ric‖L2(Σt) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball, (5.3)

‖∇2k‖L2(Σt) + ‖∇/ 2ν‖H1/2(St) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball, (5.4)

‖DR‖L2(Σt) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball, (5.5)

‖∇3n‖L2(Σt) + ‖∇2T (n)‖L2(Σt) + ‖∇T 2(n)‖L2(Σt) .O
Σ
1 +RΣ

1 +OH1 +RH1 + Cball, (5.6)

‖DTDT k‖L2(Σt) + ‖∇DT k‖L2(Σt) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball. (5.7)

The estimates (5.3), (5.4), (5.5), (5.6) and (5.7) then prove the case m = 1 of Proposition 2.30.

Remark 5.1. The smallness of Cball > 0 and ε > 0 is only used in the proof of the (m = 1)-estimates in
context of the trilinear estimate. For the cases m ≥ 2 in the next section, no further smallness assumption is
made.

Notation. Pick 1 ≤ t∗ ≤ t∗0. In the following, we prove (5.3), (5.4), (5.5) and (5.6) on Σt∗ . As t∗ was chosen
arbitrarily, this implies (5.3), (5.4), (5.5) and (5.6) for 1 ≤ t ≤ t∗0.

First, similarly as in Section 4.5, we use the bounded L2 curvature theorem (Theorem 3.14) to construct

a background foliation (Σ̃t̃)0≤t̃≤t∗ of the past of Σt∗ . For completeness, we recall the construction in the
following.

By (5.1) and (5.2), it holds for Cball > 0 and ε > 0 sufficiently small that∑
0≤m′≤2

‖∂m
′
(gij − eij)‖L2(Σt∗ ) +

∑
0≤m′≤1

‖∂m
′
kij‖L2(Σt∗ ) .Cball. (5.8)

Thus for Cball > 0 sufficiently small, we can extend (Σt∗ , g, k) by Theorem 3.12 to an asymptotically flat,
maximal initial data set on R3 which satisfies the assumptions of the bounded L2 curvature theorem (Theorem
3.14). Consequently, applying Theorem 3.14 backwards from Σt∗ , we get:

1. The past of Σt∗ in M, denoted by Mt∗ , is foliated by maximal spacelike hypersurfaces (Σ̃t̃)0≤t̃≤t∗

given as level sets of a time function t̃ with Σ̃t∗ = Σt∗ and satisfying

‖R̃ic‖L∞
t̃
L2(Σ̃t̃)

+ ‖R‖L∞
t̃
L2(Σ̃t̃)

.Cball,

‖k̃‖L∞
t̃
L2(Σ̃t̃)

+ ‖∇̃k̃‖L∞
t̃
L2(Σ̃t̃)

.Cball,

‖ñ− 1‖L∞
t̃
L∞(Σ̃t̃)

+ ‖∇̃ñ‖L∞
t̃
L∞(Σ̃t̃)

+ ‖∇̃2ñ‖L∞
t̃
L2(Σ̃t̃)

+ ‖∇̃T̃ (ñ)‖L∞
t̃
L2(Σ̃t̃)

.Cball,

(5.9)
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where R̃ic and ∇̃ denote the Ricci curvature and the covariant derivative on Σ̃t̃. Let ẽ0 := T̃ denote

the timelike unit normal to Σ̃t̃, and let Ẽ and H̃ be the electric-magnetic decomposition of R with

respect to T̃ .

2. By the higher regularity estimates of Theorems 3.12 and 3.14, it holds that for 0 ≤ t̃ ≤ t∗,

‖DR‖L∞
t̃
L2(Σ̃t̃)

+ ‖D2π̃‖L∞
t̃
L2(Σ̃t̃)

. ‖∇Ric‖L2(Σt∗ ) + ‖∇2k‖L2(Σt∗ ) + Cball.

3. For each ω ∈ S2, the spacetime Mt∗ is foliated by a family of null hyperplanes (Hωu)ωu∈R given as
level sets of an optical function ωu satisfying

sup
ω∈S2

‖R · L̃‖L∞ωuL2(Hωu) . Cball,

where L̃ is the Hωu-tangent null vectorfield with g(L̃, T̃ ) = −1.

4. Recall from (4.16) that the angle ν̃ between T and T̃ is defined by

ν̃ := −g(T, T̃ ).

By Lemma 4.6, for ε > 0 and Cball > 0 sufficiently small, the following comparison estimates hold
along the foliation (Σt)1≤t≤t∗ ,

‖ν̃ − 1‖L∞t L∞(Σt)
. Cball, ‖k̃‖L∞t L4(Σt) . Cball, (5.10)

where k̃ denotes the second fundamental form of Σ̃t̃.

In the rest of this section we proceed as follows.

� In Section 5.1.1 we prove by elliptic estimates that on Σt∗ ,

‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) . ‖L̂T̃R‖L2(Σt∗ ) +RH1 + Cball. (5.11)

� In Section 5.1.2 we use a Bel-Robinson energy estimate applied to W = L̂T̃R to prove that for
0 ≤ t̃ ≤ t∗,

‖L̂T̃R‖L2(Σt∗ ) .RΣ
1 +RH1 +

√
Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

)
+ Cball. (5.12)

This energy estimate requires a trilinear estimate for the error term.

� In Section 5.1.3, we prove by elliptic estimates for k that on Σt∗ ,

‖∇2k‖2L2(Σt∗ ) + ‖∇/ 2ν‖2L2(∂Σt∗ ) . ‖∇H‖
2
L2(Σt∗ ) + Cball

2 + ‖l.o.t.‖L1(∂Σt∗ ), (5.13)

where l.o.t. denotes lower order product terms.

� In Section 5.1.4, we combine (5.11), (5.12) and (5.13) to conclude the proof of (5.3) and (5.4), that is,

‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) + ‖∇Ric‖L2(Σt∗ ) .OH1 +RH1 +OΣ
1 +RΣ

1 + Cball,

‖∇2k‖L2(Σt∗ ) + ‖∇/ 2ν‖L2(St∗ ) + ‖∇/ 2ν‖H1/2(St∗ ) .OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

� In Section 5.1.5, we prove (5.5), that is,

‖DR‖L2(Σt∗ ) .OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

� In Section 5.1.6, we prove (5.6) and (5.7), that is,

‖∇3n‖L2(Σt∗ ) + ‖∇2T (n)‖L2(Σt∗ ) + ‖∇T 2(n)‖L2(Σt∗ ) .OΣ
1 +RΣ

1 +OH1 +RH1 + Cball,

‖DTDT k‖L2(Σt) + ‖∇DT k‖L2(Σt) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball.
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5.1.1 Elliptic estimates for curvature

In this section, we prove (5.11). First we note that by construction, E = Ẽ,H = H̃, ∇̃Ẽ = ∇E and

∇̃H̃ = ∇H on Σt∗ . Therefore it suffices to prove that

‖∇̃Ẽ‖L2(Σt∗ ) + ‖∇̃H̃‖L2(Σt∗ ) . ‖L̂T̃R‖L2(Σ̃t̃)
+RH1 + Cball.

By (2.7) and (2.15), Ẽ and H̃ satisfy the following Hodge system on Σt∗ ,

d̃ivẼ = + k̃ ∧ H̃,

c̃urlẼ = + H̃(L̂T̃ R)− 3

2
k̃ × H̃ − 3ñ−1∇̃ñ ∧ Ẽ,

d̃ivH̃ =− k̃ ∧ Ẽ,

c̃urlH̃ =− Ẽ(L̂T̃R) +
3

2
k̃ × Ẽ − 3ñ−1∇̃ñ ∧ H̃,

(5.14)

where d̃iv and c̃url denote the divergence and symmetrised curl operators on Σt∗ , respectively, see (2.3).
Applying classical global elliptic estimates to the Hodge system (5.14) (see Corollary A.7) and using (5.9),
we get ∫

Σt∗

|∇̃Ẽ|2 + |∇̃H̃|2 .
∫

Σt∗

|L̂T̃R|2 +

∫
∂Σt∗

∇̃bẼaN Ẽab +

∫
∂Σt∗

∇̃bH̃aN H̃
ab + Cball

2

.
∫

Σt∗

|L̂T̃R|2 +

∫
∂Σt∗

∇bEaN Eab +

∫
∂Σt∗

∇bHaN H
ab + Cball

2,

(5.15)

where we used that ∇ = ∇̃ and E = Ẽ,H = H̃ on Σt∗ .

Using the spacetime relations

∇aEbN = DaRTbTN − kacRcbTN − kacRTbcN ,

∇aHbN = Da
∗RTbTN − kac∗RcbTN − kac∗RTbcN ,

and Lemma 3.6, we can estimate the boundary integrals on the right-hand side of (5.15) by∫
∂Σt∗

∇bEaN Eab +

∫
∂Σt∗

∇bHaN H
ab

.
∫

∂Σt∗

|DR|2ht + |R|2ht + |k||R|2ht

. ‖DR‖2L∞(H) + ‖R‖2L∞(H) + ‖k‖L1(∂Σt∗ )‖R‖2L∞(H)

. ‖DR‖2L∞(H) + ‖R‖2L∞(H) +
(
‖∇k‖L2(Σt∗ ) + ‖k‖L2(Σt∗ )

)
‖R‖2L∞(H)

. ‖DR‖2L∞(H) + ‖R‖2L∞(H) + ε‖R‖2L∞(H)

.
(
RH1
)2
.

To summarise, we get that for 0 ≤ t̃ ≤ t∗,

‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) . ‖L̂T̃R‖L2(Σ̃t∗ ) +RH1 + Cball.

This finishes the proof of (5.11).

5.1.2 Bel-Robinson energy estimate
In this section we prove (5.12), that is, we have for 0 ≤ t̃ ≤ t∗,

‖L̂T̃R‖L∞
t̃
L2(Σ̃t̃)

. RΣ
1 +RH1 +

√
Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

)
+ Cball.
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Indeed, applying the classical energy estimate (3.4) to the Weyl tensor W := L̂T̃R with multiplier field T̃
yields (similarly as in Section 4.6)

‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

.
∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T +

∫
H

Q(L̂T̃R)T̃ T̃ T̃L

−
∫
Mt∗

3

2
Q(L̂T̃R)αβT̃ T̃ π̃

αβ

︸ ︷︷ ︸
:=E1

−
∫
Mt∗

DαQ(L̂T̃R)αT̃ T̃ T̃︸ ︷︷ ︸
:=E2

.

(5.16)

The terms E1 and E2 are bounded by the following proposition proved in Appendix E.

Proposition 5.2 (Trilinear estimate for m = 1). For ε > 0 and Cball > 0 sufficiently small, it holds that

|E1|+ |E2| .Cball‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ Cball sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

+ Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

+ Cball

)2

+ Cball
2.

(5.17)

Remark 5.3. In Appendix E, we prove Proposition 5.16 by reducing (5.17) to the estimates proved in
Section 13 of [KRS15].

Plugging (5.17) into (5.16), we get that for Cball > 0 and ε > 0 sufficiently small,

‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

.
∫
H

Q(L̂T̃R)T̃ T̃ T̃L +

∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T

+ Cball‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ Cball sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

+ Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

+ Cball

)2

+ Cball
2.

For Cball > 0 sufficiently small, we can absorb the second and third term on the right-hand side into the
left-hand side and get

‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

.
∫
H

Q(L̂T̃R)T̃ T̃ T̃L︸ ︷︷ ︸
:=I1

+

∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T︸ ︷︷ ︸
:=I2

+ Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

)2

+ Cball
2.

(5.18)

In the following, we control the terms I1 and I2 on the right-hand side of (5.18).

Control of I1. By definition of the Bel-Robinson tensor Q in Definition 2.2,

Q(L̂T̃R)T̃ T̃ T̃L = (L̂T̃R)T̃µT̃ ν(L̂T̃R) ν µ

T̃ L
+ dual term.

By Definition 2.3 and using that (Σ̃t̃) is maximal,

(L̂T̃R)αβγδ :=(LT̃R)αβγδ −
1

2

(
π̃µαRµβγ δ + π̃µβRαµγ δ + π̃µγRαβµ δ + π̃µδRαβγ µ

)
,

which can be written schematically as

L̂T̃R = DR + π̃ ·R,
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and hence,

Q(L̂T̃R)T̃ T̃ T̃L = DR ·DR + π̃ ·R ·DR + π̃ · π̃ ·R ·R.

Therefore, for ε > 0 and Cball > 0 sufficiently small,

I1 :=

∫
H

Q(L̂T̃R)T̃ T̃ T̃L .
∫
H

|DR|2
ht̃

+ |π̃|ht̃ |R|ht̃ |DR|ht̃ + |π̃|2
ht̃
|R |2

ht̃

.
∫
H

|DR|2hv + |π̃|ht̃ |R|hv |DR|hv + |π̃|2
ht̃
|R |2hv

(5.19)

where we used (5.2) and (5.10) to compare ht̃ with hv on H.

By Lemma 3.6, Remark 3.7 and (5.9),∫
H

|π̃|ht̃ +

∫
H

|π̃|2
ht̃
. ‖π̃‖L∞

t̃
L2(∂Σ̃t̃)

+ ‖π̃‖2
L∞
t̃
L2(∂Σ̃t̃)

.
(
‖π̃‖L∞

t̃
L2(Σ̃t̃)

+ ‖∇̃π̃‖L∞
t̃
L2(Σ̃t̃)

)
+
(
‖π̃‖L∞

t̃
L2(Σ̃t̃)

+ ‖∇̃π̃‖L∞
t̃
L2(Σ̃t̃)

)2

.Cball + Cball
2.

Plugging this into (5.19) yields that for Cball > 0 and ε > 0 sufficiently small,

I1 . ‖R‖2L∞(H) + ‖DR‖2L∞(H) .
(
RH1
)2
. (5.20)

Control of I2. First, by (5.10), (2.8) and (2.12), that is,

|QµνλT̃ | . QT̃ T̃ T̃ T̃ for µ, ν, λ = 0, 1, 2, 3,

it follows that ∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T .
∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T̃ .
∫
Σ1

|Ẽ(L̂T̃R)|2 + |H̃(L̂T̃R)|2.

Second, by definition of L̂T̃ , see Definition 2.3, and using that (Σ̃t̃) is maximal, we have for an Σ̃t̃-tangential
frame (ẽa)a=1,2,3,

Ẽ(L̂T̃R)ab =(LT̃R)T̃ aT̃ b −
1

2

(
π̃c
T̃
RcaT̃ b + π̃caRT̃ cT̃ b + π̃c

T̃
RT̃ acb + π̃cbRT̃ aT̃ c

)
,

The Lie derivative on the right-hand side can be expressed as

(LT̃R)T̃ aT̃ b =DT̃RT̃ aT̃ b − ñ
−1∇̃cñ

(
RcaT̃ b + RT̃ acb

)
− k̃acRT̃ cT̃ b − k̃bcRT̃ aT̃ c.

From the above two, we get that for Cball > 0 and ε > 0 sufficiently small,∫
Σ1

|Ẽ(L̂T̃R)|2 . ‖|DR|ht̃‖
2
L2(Σ1) + ‖|R|ht̃‖

2
L2(Σ1)‖∇̃ñ‖

2
L∞
t̃
L∞(Σ̃t̃)

+ ‖|R|ht̃‖
2
L∞(Σ1)‖k̃‖

2
L2(Σ1)

. ‖DR‖2L∞(Σ1) + ‖R‖2L∞(Σ1)

.
(
RΣ

1

)2
,

where we used (5.9) and applied (5.10) to compare ht̃ and ht. Similarly, it follows that∫
Σ1

|H̃(L̂T̃R)|2 .
(
RΣ

1

)2
.

To summarise, we proved that

I2 :=

∫
Σ1

Q(L̂T̃R)T̃ T̃ T̃ T .
(
RΣ

1

)2
. (5.21)

Plugging (5.20) and (5.21) into (5.18) shows that

‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

.
(
RΣ

1

)2
+
(
RH1
)2

+ Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

)2

+ Cball
2.

This finishes the proof of (5.12).
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5.1.3 Elliptic estimates for k on Σt∗ for m = 1
In this section we prove (5.13), that is,

‖∇2k‖2L2(Σt∗ ) + ‖∇/ 2ν‖2L2(∂Σt∗ ) . ‖∇H‖
2
L2(Σt∗ ) + Cball

2 + ‖l.o.t.‖L1(∂Σt∗ ),

where l.o.t. denotes lower order product terms.

Analogously to Section 4.7, the idea is to use global elliptic estimates for k. We recall from (2.13b), (2.13c)
and (2.13d) that k satisfies on Σt∗ the Hodge system

divgk = 0,

curlgk =H,

trgk = 0.

Moreover, it holds by (2.15) that

divH = −k ∧ E. (5.22)

In the following, we rely on the notations of Appendix A. In particular, the above Hodge system of k implies
that

A(k)iab =∈mab Him, D(k) = 0, (5.23)

where A(k) and D(k) are given by Definition A.1.

We note that by (5.23) together with Lemma A.4, we can express the symmetrised derivative ∇k of k as(
∇k
)
a1a2b

=∇bka1a2 +
1

3
∈mba1 Ha2m +

1

3
∈mba2 Ha1m. (5.24)

By Lemmas A.2, A.4 and A.5, (5.23), (5.24), and the bounds (5.2), we get the following global elliptic
estimate, ∫

Σt∗

|∇2k|2 +

∫
∂Σt∗

(
∇k
)a1a2N

D(∇k)a1a2 −
∫

∂Σt∗

∇b
(
∇k
)
a1a2N

(
∇k
)a1a2b

.
∫

Σt∗

|∇H|2 + Cball
2.

(5.25)

By the definition of D(∇k), see Definition A.1, we can rewrite the boundary integrals on the left-hand side
of (5.25) as ∫

∂Σt∗

(
∇k
)a1a2N

D(∇k)a1a2 −
∫

∂Σt∗

∇b
(
∇k
)
a1a2N

(
∇k
)a1a2b

=

∫
∂Σt∗

(
∇k
)a1a2N ∇b(∇k)a1a2b −

∫
∂Σt∗

∇b
(
∇k
)
a1a2N

(
∇k
)a1a2b

=

∫
∂Σt∗

(
∇k
)a1a2N ∇D(∇k)a1a2D −

∫
∂Σt∗

∇D
(
∇k
)
a1a2N

(
∇k
)a1a2D

,

(5.26)

where we used that the integrals cancel each other for b = N .

Notation. To ease presentation, in the following we write l.o.t. for lower order product terms and norms
thereof.

Consider the first term on the right-hand side of (5.26). We distinguish three cases,

1. a1, a2 ∈ {1, 2},

2. a1 ∈ {1, 2}, a2 = N ,
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5.1. Higher regularity estimates for m = 1

3. a1 = a2 = N .

Control of Case 1: a1, a2 ∈ {1, 2}. In this case denote A1 := a1 and A2 := a2. By (5.2), (5.22), (5.23),
Lemma 3.6 and integration by parts on ∂Σt∗ ,∫

∂Σt∗

(
∇k
)A1A2N ∇D

(
∇k
)
A1A2D

=

∫
∂Σt∗

(
∇A1kA2N +

1

3
∈mNA1 HA2

m +
1

3
∈mNA2 HA1

m

)

· ∇D
(
∇A2

kA1D +
1

3
∈mDA2

H m
A1

+
1

3
∈mdA1

H m
A2

)
=

∫
∂Σt∗

∇/ A2
kA2N∇/ A1∇/ DkA1D + l.o.t.

=

∫
∂Σt∗

div/ εdiv/ (div/ η) + l.o.t.

=−
∫

∂Σt∗

div/ εdiv/ ∇/ δ + l.o.t.,

(5.27)

where we used (2.18) in the last equation, that is,

div/ ηA =−∇/ Aδ − ∗HNA/ + Θ · ε− trΘ ε.

Remark 5.4. The lower order boundary terms in (5.27) involving H are estimated by standard product
estimates together with trace estimates (see Lemma 3.6) and bilinear trace estimates for H on ∂Σt∗ based on
(5.22) (see the derivation of the bilinear trace estimate (4.37e) at the level of m = 0).

Using the slope equation (2.24) and (4.33) for Cball > 0 and ε > 0 sufficiently small, that is,

εA =− ν−1∇/ Aν + ζA,

∇/ δ =∇/
(

1

2
νtrχ+

1

2
ν−1trχ

)
= F (ν, trχ, trχ)︸ ︷︷ ︸

≥1/8.

∇/ ν +
1

2
ν∇/ trχ+

1

2
ν−1∇/ trχ,

we get that for Cball > 0 and ε > 0 sufficiently small,∫
∂Σt∗

(
∇k
)A1A2N ∇D

(
∇k
)
A1A2D

=

∫
∂Σt∗

ν−1F (ν, trχ, trχ)|4/ ν|2 + l.o.t.

&
∫

∂Σt∗

|4/ ν|2 + l.o.t.

&
∫

∂Σt∗

|∇/ 2ν|2 + l.o.t.,

where we applied standard elliptic estimates for 4/ on ∂Σt∗ , see Lemma 3.17 in [CG19a]. We remark that
the lower order terms in ∇/ trχ and ∇/ trχ are estimated by standard product estimates and the initial data

norm OH1 . This finishes the control of Case 1.

Control of Case 2: a1 ∈ {1, 2}, a2 = N . In this case let A1 := a1. We have by (5.2), (5.22), Lemma 3.6
and integration by parts on ∂Σt∗ ,∫

∂Σt∗

(
∇k
)A1NN ∇D(∇k)A1ND =

∫
∂Σt∗

∇A1kNN∇D∇A1kND + l.o.t.

=

∫
∂Σt∗

∇/ A1δ∇/ A1
div/ ε+ l.o.t.

=−
∫

∂Σt∗

div/ ∇/ δdiv/ ε+ l.o.t.,
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which thus reduced Case 2 to Case 1, see the right-hand side of (5.27). Hence we get that∫
∂Σt∗

(
∇k
)A1NN ∇D(∇k)A1ND &

∫
∂Σt∗

|∇/ 2ν|2 + l.o.t.

This finishes the control of Case 2.

Control of Case 3: a1 = a2 = N . Using that divk = 0, we can decrease the numbers of N ’s to reduce to
(5.27) in Case 1 as follows,∫

∂Σt∗

(
∇k
)NNN ∇D(∇k)NND =

∫
∂Σt∗

∇NkNN∇D∇DkNN + l.o.t.

=−
∫

∂Σt∗

∇AkNA∇D∇DkNN + l.o.t.

=−
∫

∂Σt∗

div/ εdiv/ ∇/ δ + l.o.t.,

where we used (5.2), (5.22) and Lemma 3.6 to estimate the error terms. Hence we have that∫
∂Σt∗

(
∇k
)NNN ∇D(∇k)NND &

∫
∂Σt∗

|∇/ 2ν|2 + l.o.t.

This finishes the control of Case 3.

To summarise, we proved that the first integral on the right-hand side of (5.26) is bounded as follows,∫
∂Σt∗

(
∇k
)a1a2N ∇D(∇k)a1a2D &

∫
∂Σt∗

|∇/ 2ν|2 + l.o.t. (5.28)

The second integral on the right-hand side of (5.26) is, after an integration by parts, equal to the first (up to
lower order product terms) and is thus similarly estimated from below.

Therefore, plugging (5.28) into (5.25) yields

‖∇2k‖2L2(Σt∗ ) + ‖∇/ 2ν‖2L2(∂Σt∗ ) . ‖∇H‖
2
L2(Σt∗ ) + Cball

2 + ‖l.o.t.‖L1(∂Σt∗ ).

This finishes the proof of (5.13).

5.1.4 Conclusion of the proof of (5.3) and (5.4)
In this section, we conclude the proof of (5.3) and (5.4), that is,

‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) + ‖∇Ric‖L2(Σt∗ ) .OH1 +RH1 +OΣ
1 +RΣ

1 + Cball,

‖∇2k‖L2(Σt∗ ) + ‖∇/ 2ν‖H1/2(∂Σt∗ ) .OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

First, we note that by (2.13f), that is,

Ricij = Eij + kiak
a
j ,

it holds that

‖∇Ric‖L2(Σt∗ ) . ‖∇E‖L2(Σt∗ ) + ‖k · ∇k‖L2(Σt∗ ). (5.29)

Combining (5.11), (5.12), (5.13) and (5.29), we get

‖∇E‖2L2(Σt∗ ) + ‖∇H‖2L2(Σt∗ ) + ‖∇2k‖2L2(Σt∗ ) + ‖∇/ 2ν‖2L2(∂Σt∗ ) + ‖∇Ric‖2L2(Σt∗ )

.
(
OH1
)2

+
(
RH1
)2

+
(
OΣ

1

)2
+
(
RΣ

1

)2
+ Cball

(
‖∇2k‖2L2(Σt∗ ) + ‖∇Ric‖2L2(Σt∗ )

)
+ Cball

2 + ‖l.o.t.‖L1(∂Σt∗ ) + ‖k · ∇k‖2L2(Σt∗ )

.
(
OH1
)2

+
(
RH1
)2

+
(
OΣ

1

)2
+ Cball

(
‖∇2k‖2L2(Σt∗ ) + ‖∇E‖2L2(Σt∗ ) + ‖k · ∇k‖2L2(Σt∗ )

)
+ Cball

2 + ‖l.o.t.‖L1(∂Σt∗ ) + ‖k · ∇k‖2L2(Σt∗ ).
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By standard product estimates applied to l.o.t. (see also Remark 5.4) and assuming that Cball > 0 is
sufficiently small to absorb terms from the right-hand side into the left-hand side, we get that

‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) + ‖∇2k‖L2(Σt∗ ) + ‖∇/ 2ν‖L2(∂Σt∗ ) + ‖∇Ric‖L2(Σt∗ )

.OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

This finishes the proof of (5.3) and (5.4).

It remains to estimate ‖∇/ 2ν‖H1/2(∂Σt∗ ). First, by Lemma 3.6 and (5.3),

‖∇/ ν‖L8(∂Σt∗ ) . ‖∇/ 2ν‖L2(∂Σt∗ ) + ‖∇/ ν‖L2(∂Σt∗ )

.OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.
(5.30)

Using the slope equation (2.24), that is,

ν−1∇/ Aν = −εA + ζA,

we have that

∇/ A∇/ Bν =ν∇/ A(ν−1∇/ Bν) + ν−1∇/ Aν∇/ Bν

=ν∇/ A(−ε+ ζ)B + ν−1∇/ Aν∇/ Bν.
(5.31)

Therefore, by Lemmas 3.3 and 3.6, (5.2) and (5.30),

‖∇/ ν‖L∞(∂Σt∗ ) . ‖∇/ 2ν‖L4(∂Σt∗ ) + ‖∇/ ν‖L2(∂Σt∗ )

. ‖∇/ ζ‖L4(∂Σt∗ ) + ‖∇/ ε‖L4(∂Σt∗ ) + ‖∇/ ν‖2L8(∂Σt∗ )

.OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

(5.32)

By Lemma 3.3 with (5.2), (5.30), (5.31) and (5.32), we get that for ε > 0 sufficiently small,

‖∇/ 2ν‖H1/2(∂Σt∗ ) . ‖∇/ ζ‖H1/2(∂Σt∗ ) + ‖∇/ ε‖H1/2(∂Σt∗ )

+
(
‖∇/ ν‖L∞(∂Σt∗ ) + ‖∇/ 2ν‖L2(∂Σt∗ )

)
‖∇/ ν‖H1/2(∂Σt∗ )

.OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

This finishes the proof of (5.3) and (5.4).

5.1.5 Proof of (5.5)
In this section we prove (5.5), that is,

‖DR‖L2(Σt∗ ) . OH1 +RH1 +OΣ
1 +RΣ

1 + Cball.

Consider first DTR where T denotes the timelike unit normal to Σt∗ . By decomposing DTR into DTRT ·T ·
and DT

∗RT ·T · (see the electric-magnetic decomposition of Weyl tensors in Section 2.3), it suffices to prove
that ∫

Σt∗

|DTRT ·T ·|2h + |DT
∗RT ·T ·|2h .

(
OH1
)2

+
(
RH1
)2

+
(
OΣ

1

)2
+
(
RΣ

1

)2
+ Cball

2. (5.33)

On the one hand,

DTRTaTb = DTEab + n−1∇cn (RcaTb −RTadb) ,

DT
∗RTaTb = DTHab + n−1∇cn (∗RcaTb − ∗RTacb) .

On the other hand, by definition of the Lie derivative and the Bianchi equations (2.14),

DTEab = L̂TEab − (kacEcb + kbcEca − k · E gab) ,

=− curlHab − (n−1∇n ∧H)ab +
1

2
(k × E)ab − (kacEcb + kbcEca − k · E gab) ,

DTHab = L̂THab − (kacHcb + kbcHca − k ·H gab)

=curlEab + (n−1∇n ∧ E)ab +
1

2
(k ×H)ab − (kacHcb + kbcHca − k ·H gab) .
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Combining the two above and using (5.2), (5.3), (5.4) and (5.12), we get that

‖DTRTaTb‖L2(Σt∗ ) + ‖DT
∗RTaTb‖L2(Σt∗ )

. ‖∇E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ )

+
(
‖∇2n‖L2(Σt∗ ) + ‖∇n‖L2(Σt∗ ) + ‖n− 1‖L2(Σt∗ ) + ‖∇k‖L2(Σt∗ ) + ‖k‖L2(Σt∗ )

)
·
(
‖∇E‖L2(Σt∗ ) + ‖E‖L2(Σt∗ ) + ‖∇H‖L2(Σt∗ ) + ‖H‖L2(Σt∗ )

)
.OH1 +RH1 +OΣ

1 +RΣ
1 + Cball.

This finishes the proof of (5.33).

It remains to bound DcR where (e1, e2, e3) is an orthonormal frame tangent to Σt∗ . By decomposing DcR
into DcRT ·T · and Dc

∗RT ·T · (see the electric-magnetic decomposition of Weyl tensors in Section 2.3), it
suffices to prove that for c = 1, 2, 3,∫

Σt∗

|DcRT ·T ·|2h + |Dc
∗RT ·T ·|2h .

(
OH1
)2

+
(
RH1
)2

+
(
OΣ

1

)2
+
(
RΣ

1

)2
+ Cball

2. (5.34)

Using the relations

DcRTaTb =∇cEab + kcdRdaTb + kcdRTaTd,

Dc
∗RTaTb =∇cHab + kcd

∗RdaTb + kcd
∗RTaTd,

we get with (5.2), (5.3) and (5.4) that

‖DcRTaTb‖L2(Σt∗ ) + ‖Dc
∗RTaTb‖L2(Σt∗ ) .OH1 +RH1 +OΣ

1 +RΣ
1 + Cball.

This finishes the proof of (5.34) and hence (5.5).

5.1.6 Proof of (5.6) and (5.7)
In this section we prove (5.6) and (5.7), that is,

‖∇3n‖L2(Σt∗ ) + ‖∇2T (n)‖L2(Σt∗ ) + ‖∇T 2(n)‖L2(Σt∗ ) .OΣ
1 +RΣ

1 +OH1 +RH1 + Cball,

and

‖DTDT k‖L2(Σt) + ‖∇DT k‖L2(Σt) .O
H
1 +RH1 +OΣ

1 +RΣ
1 + Cball.

First, by applying standard elliptic estimates (see Proposition 3.10) to the boundary value problem for n in
(4.9), that is,

∆n =n|k|2g on Σt∗ ,

n = ν−1Ω−1 on ∂Σt∗ ,
(5.35)

and using (5.3) and (5.4), it follows that for Cball > 0 sufficiently small,∑
0≤m′≤3

‖∇m
′
n‖L2(Σt∗ )

. ‖∇4n‖L2(Σt∗ ) + ‖4n‖L2(Σt∗ ) + ‖∇/ 2n‖H1/2(∂Σt∗ ) + ‖∇/ n‖H1/2(∂Σt∗ ) + ‖n‖L2(∂Σt∗ )

. ‖∇
(
n|k|2

)
‖L2(Σt∗ ) + ‖n|k|2‖L2(Σt∗ ) + ‖∇/ 2(Ω−1ν−1)‖H1/2(∂Σt∗ )

+ ‖∇/ (Ω−1ν−1)‖H1/2(∂Σt∗ ) + ‖Ω−1ν−1‖L2(∂Σt∗ )

.OΣ
1 +RΣ

1 +OH1 +RH1 + Cball.

Second, we turn to the control of T (n) and TT (n). On the one hand, by Lemma 2.9 and (2.13a), T (n)
satisfies on Σt∗ the equation

4(T (n)) =T (4n) + [4, T ]n

=T (n)|k|2 + 2nk ·DT k + 2k · ∇2n− 2n−1∇n∇T (n)− |k|2T (n)

+ 2n−1k|∇n|2

= 2nk(E − n−1∇2n+ k · k) + 2k · ∇2n− 2n−1∇n∇T (n) + 2n−1k|∇n|2

(5.36)
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On the other hand, we have by Lemma 2.14 that on ∂Σt,

T (n) = νL(n)−N(n)

= νL(ν−1Ω−1)−N(n)

=− 1

νΩ
L(ν)− 1

Ω2
L(Ω)−N(n)

=− 1

νΩ

(
n−1N(n)− δ

)
− 1

Ω2
L(Ω)−N(n),

(5.37)

which implies by Lemma 3.6, (5.2) and (5.4) that

‖T (n)‖H1/2(∂Σt∗ ) + ‖∇/ T (n)‖H1/2(∂Σt∗ ) . ‖N(n)‖H1/2(∂Σt∗ ) + ‖∇/ N(n)‖H1/2(∂Σt∗ )

+ ‖δ‖H1/2(∂Σt∗ ) + ‖∇/ δ‖H1/2(∂Σt∗ )

+ ‖L(Ω)‖H1/2(∂Σt∗ ) + ‖∇/ L(Ω)‖H1/2(∂Σt∗ )

.OΣ
1 +RΣ

1 +OH1 +RH1 + Cball.

(5.38)

Applying Proposition 3.10 to (5.36) and using (5.38), (5.2), (5.3) and (5.4), we get that

‖∇2T (n)‖L2(Σt) + ‖∇T (n)‖L2(Σt) . O
Σ
1 +RΣ

1 +OH1 +RH1 + Cball. (5.39)

The proof of the control of ∇T 2(n) follows by commuting (5.35) once more with T , applying standard elliptic
estimates (Proposition 3.10) and using Lemmas 2.14 and 3.6 and (5.2) to control the boundary value of
T 2(n); see also Appendix E in [KRS15]. This finishes the proof of (5.6).

The estimate (5.7) for DTDT k and ∇DT k follows similarly by respectively applying DT and ∇ to the second
variation equation (2.13a), that is,

DT kij = Eij − n−1∇i∇jn− kilkl j ,

and using the above estimates for R, k and n. This finishes the proof of (5.7) and the case m = 1 of
Proposition 2.30.

5.2 Higher regularity estimates for m ≥ 2
In this section we outline the proof of the cases m ≥ 2 of Proposition 2.30. The proof is based on induction
in m ≥ 1. The base case m = 1 is proved in the previous sections. In the following we discuss the induction
step m→ m+ 1.

By assumption in Proposition 2.30, the foliation (Σt)1≤t≤t∗0 satisfies for a real number ε > 0, on 1 ≤ t ≤ t∗0,

‖R‖L∞t L2(Σt) + ‖Ric‖L∞t L2(Σt) . ε,

‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(∂Σt) . ε.

For the proof by induction of Proposition 2.30, assume as induction hypothesis that for an integer m ≥ 1, it
holds that for 1 ≤ t ≤ t∗0, ∑

0≤m′≤m

‖Dm′R‖L2(Σt) +
∑

0≤m′≤m+1

‖Dm′π‖L2(Σt)

+
∑

0≤m′≤m

‖∇m
′
Ric‖L2(Σt) + ‖∇/ m′∇/ ν‖H1/2(∂Σt)

.C(OHm,RHm,OΣ
m,RΣ

m,m).

(5.40)

In the following we prove the induction step, that is, we show that for 0 ≤ t ≤ t∗0,∑
0≤m′≤m+1

‖Dm′R‖L2(Σt) +
∑

0≤m′≤m+2

‖Dm′π‖L2(Σt)

+
∑

0≤m′≤m+1

‖∇m
′
Ric‖L2(Σt) + ‖∇/ m′∇/ ν‖H1/2(∂Σt)

.C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1).

(5.41)

We proceed as follows.
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1. In Section 5.2.1, we prove that for each 0 ≤ t ≤ t∗0,∑
0≤m′+m′′≤m+1

∥∥∥∇m′L̂m′′T E
∥∥∥
L2(Σt)

+
∥∥∥∇m′L̂m′′T H

∥∥∥
L2(Σt)

. ‖L̂m+1
T R‖L2(Σt) + C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1).

(5.42)

The proof of (5.42) is based on the fact that for each 0 ≤ m′ ≤ m, E(L̂m′T R) and H(L̂m′T R) satisfy a
3-dimensional Hodge system on Σt by the Bianchi equations, see (2.7) and Proposition 2.8.

2. In Section 5.2.2, we prove that for 0 ≤ t ≤ t∗0,

‖L̂m+1
T R‖L2(Σt) .C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1). (5.43)

The proof of (5.43) is based on an energy estimate for the curvature using the Bel-Robinson tensor
together with the classical Grönwall lemma.

Remark 5.5. Contrary to the case m = 1 where the error integral in the Bel-Robinson energy estimate
is bounded by a trilinear estimate, in the case m ≥ 2 we can argue solely by the classical Grönwall
lemma and the estimates for m = 1. In particular, we do not use the bounded L2 curvature theorem
and its trilinear estimate in this case.

3. In Section 5.2.3, we show that for 1 ≤ t ≤ t∗0,∑
0≤m′≤m+1

‖∇m
′
∇k‖L2(Σt) +

∑
0≤m′≤m+1

‖∇/ m′∇/ ν‖L2(∂Σt)

.C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1).

(5.44)

The proof of (5.44) is based on standard higher regularity estimates for the Hodge system satisfied by
k.

4. In Section 5.2.4, we conclude the proof of the induction step (5.41).

5.2.1 Elliptic curvature estimates on Σt

In this section we prove (5.42), that is,∑
0≤m′+m′′≤m+1

∥∥∥∇m′L̂m′′T E
∥∥∥
L2(Σt)

+
∥∥∥∇m′L̂m′′T H

∥∥∥
L2(Σt)

. ‖L̂m+1
T R‖L2(Σt) + C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1).

By Proposition 2.8 with (2.7) for each 0 ≤ m′ ≤ m, E(L̂m′T R) and H(L̂m′T R) satisfy the following 3-
dimensional Hodge system on Σt,

divE
(
L̂m

′

T R
)
a

= +
(
k ∧H

(
L̂m

′

T R
))

a
+ J

(
L̂m

′

T R
)
TaT

,

curlE
(
L̂m

′

T R
)
ab

= +H
(
L̂m

′+1
T R

)
ab
− 3

(
n−1∇n ∧ E

(
L̂m

′

T R
))

ab

− 3

2

(
k ×H

(
L̂m

′

T R
))

ab
− J∗

(
L̂m

′

T R
)
aTb

,

divH
(
L̂m

′

T R
)
a

=−
(
k ∧ E

(
L̂m

′

T R
))

a
+ J∗

(
L̂m

′

T R
)
TaT

,

curlH
(
L̂m

′

T R
)
ab

=− E
(
L̂m

′+1
T R

)
ab
− 3

(
n−1∇n ∧H

(
L̂m

′

T R
))

ab

+
3

2

(
k × E

(
L̂m

′

T R
))

ab
− J

(
L̂m

′

T R
)
aTb

,

(5.45)

where we denoted

J
(
L̂m

′

T R
)
βγδ

:= Dα
(
L̂m

′

T R
)
αβ γδ

.
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By standard higher regularity elliptic estimates (proved by combining Lemma A.2 with Lemmas A.4 and
A.5) applied to (5.45) for 0 ≤ m′ ≤ m, it follows that∥∥∥∇∇m−m′ E (L̂m′T R

)∥∥∥
L2(Σt)

+
∥∥∥∇∇m−m′ H (L̂m′T R

)∥∥∥
L2(Σt)

.
∥∥∥∇m−m′L̂m′+1

T R
∥∥∥
L2(Σt)

+ ‖∇m−m
′
J(L̂m

′

T R)‖L2(Σt) + ‖∇m−m
′
J∗(L̂m

′

T R)‖L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1) + ‖l.o.t.‖L2(Σt∗ ),

(5.46)

where we applied (5.40), denoted lower order product terms by l.o.t. and controlled the boundary terms of
the global elliptic estimate by initial data norms analogously as in Section 5.1.1.

Further, we have that ∇m−m′J(L̂m′T R) and ∇m−m′J∗(L̂m′T R) on the right-hand side of (5.46) are lower
order product terms. Indeed, on the one hand, by definition (see also Proposition 7.1.2 in [CK93]), we have
the recursive relation

J
(
L̂m

′

T R
)

:= Dα
(
L̂m

′

T R
)
αβγδ

= L̂TJ
(
L̂m

′−1
T R

)
βγδ

+
1

2
πµνDν

(
L̂m

′−1
T R

)
µβγδ

+
1

2
Dαπαλ

(
L̂m

′−1
T R

)λ
β γδ

+
1

2
(Dβπαλ −Dλπαβ)

(
L̂m

′−1
T R

)αλ
γδ

+
1

2
(Dγπαλ −Dλπαγ)

(
L̂m

′−1
T R

)α λ

β δ

+
1

2
(Dδπαλ −Dλπαδ)

(
L̂m

′−1
T R

)α λ

βγ
,

(5.47)

with

L̂TJ
(
L̂i−1
T R

)
βγδ

:=LTJ
(
L̂i−1
T R

)
βγδ
− 1

2
π µ
β J

(
L̂i−1
T R

)
µγδ

− 1

2
π µ
γ J

(
L̂i−1
T R

)
βµδ
− 1

2
π µ
δ J

(
L̂i−1
T R

)
βγµ

.

On the other hand, it holds that by the Bianchi equations,

J(R) = J(∗R) = 0.

Combining the above two, it follows that J(L̂m′T R) and J∗(L̂m′T R) consist only of lower order product terms.

Therefore we can write (5.46) for 0 ≤ m′ ≤ m as follows,∥∥∥∇∇m−m′ E (L̂m′T R
)∥∥∥

L2(Σt)
+
∥∥∥∇∇m−m′ H (L̂m′T R

)∥∥∥
L2(Σt)

.
∥∥∥∇m−m′L̂m′+1

T R
∥∥∥
L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1) + ‖l.o.t.‖L2(Σt).
(5.48)

In particular, using that E
(
L̂m′T R

)
and E

(
L̂m′T R

)
are the electric-magnetic decomposition of L̂m′T R, (5.48)

implies the estimate∥∥∥∇∇m−m′ L̂m′T R
∥∥∥
L2(Σt)

.
∥∥∥∇m−m′L̂m′+1

T R
∥∥∥
L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1) + ‖l.o.t.‖L2(Σt)

(5.49)

Consequently, recursive application of (5.49) for 0 ≤ m′ ≤ m shows that∑
0≤m′+m′′≤m+1

∥∥∥∇m′L̂m′′T R
∥∥∥
L2(Σt)

.
∥∥∥L̂m+1

T R
∥∥∥
L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1) + ‖l.o.t.‖L2(Σt),

(5.50)
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which, using (5.40) and that L̂0
TR = R, implies∑

0≤m′+m′′≤m+1

∥∥∥∇m′L̂m′′T E
∥∥∥
L2(Σt)

+
∥∥∥∇m′L̂m′′T H

∥∥∥
L2(Σt)

.
∥∥∥L̂m+1

T R
∥∥∥
L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1) + ‖l.o.t.‖L2(Σt).

The lower order product terms on the right-hand side can be estimated by standard product estimates
together with the induction hypothesis (5.50), which yields∑

0≤m′+m′′≤m+1

∥∥∥∇m′L̂m′′T E
∥∥∥
L2(Σt)

+
∥∥∥∇m′L̂m′′T H

∥∥∥
L2(Σt)

.
∥∥∥L̂m+1

T R
∥∥∥
L2(Σt)

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1).

(5.51)

This finishes the proof of (5.42).

5.2.2 Energy estimate for the curvature
In this section we prove (5.43), that is, for 0 ≤ t ≤ t∗,

‖L̂m+1
T R‖L2(Σt ≤C

(
OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m

)
.

Applying the classical Bel-Robinson energy estimate (3.4) to the Weyl tensor L̂m+1
T R with multiplier field T

yields for 0 ≤ t ≤ t∗0,

‖L̂m+1
T R‖2L2(Σt)

.
∫
Σ1

Q(L̂m+1
T R)TTTT +

∫
H

Q(L̂m+1
T R)TTTL

−
∫
Mt

3

2
Q(L̂m+1

T R)αβTTπ
αβ

︸ ︷︷ ︸
:=E1

−
∫
Mt

DαQ(L̂m+1
T R)αTTT

︸ ︷︷ ︸
:=E2

,
(5.52)

where Mt denotes the past of Σt in M. In the following, we first control the error terms E1 and E2.

Control of E1. By Lemma 2.16,

E1 :=

∫
Mt

3

2
Q(L̂m+1

T R)αβTTπ
αβ

. ‖π‖L∞(Mt)

∫
Mt

|Q(L̂m+1
T R)αβTT |

. ‖π‖L∞(Mt)

(
1 + ‖n− 1‖L∞(Mt)

) t∫
0

∥∥∥L̂m+1
T R

∥∥∥2

L2(Σt′ )
dt′

.C
(
OHm,RHm,OΣ

m,RΣ
m,m

) t∫
0

∥∥∥L̂m+1
T R

∥∥∥2

L2(Σt′ )
dt′.

This finishes the control of E1.

Control of E2. Using that

DαQ
(
L̂m+1
T R

)
αTTT

=2
(
L̂m+1
T R

) µ ν

T T
J
(
L̂m+1
T R

)
µTν

+ 2∗
(
L̂m+1
T R

) µ ν

T T
J∗
(
L̂m+1
T R

)
µTν

,

we can estimate

E2 :=

∫
Mt

DαQ(L̂m+1
T R)αTTT .

t∫
0

∥∥∥L̂m+1
T R

∥∥∥
L2(Σt′ )

∥∥∥J (L̂m+1
T R

)∥∥∥
L2(Σt′ )

dt′. (5.53)
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Using that J
(
L̂m+1
T R

)
consists of lower order product terms (see the discussion in Section 5.2.1) together

with the elliptic estimates (5.50) and (5.51), we have that∥∥∥J (L̂m+1
T R

)∥∥∥
L2(Σt′ )

.
∥∥∥L̂m+1

T R
∥∥∥
L2(Σt′ )

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1). (5.54)

Plugging (5.54) into (5.53), we get that

E2 .
t∫

0

∥∥∥L̂m+1
T R

∥∥∥2

L2(Σt′ )
dt′ + C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1).

Plugging the above estimates for E1 and E2 into (5.52), we get that for 0 ≤ t ≤ t∗0,

‖L̂m+1
T R‖2L2(Σt)

.
∫
Σ1

Q(L̂m+1
T R)TTTT +

∫
H

Q(L̂m+1
T R)TTTL +

t∫
0

∥∥∥L̂m+1
T R

∥∥∥2

L2(Σt′ )
dt′

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1).

Therefore Grönwall’s lemma yields that for 0 ≤ t ≤ t∗0,

‖L̂m+1
T R‖2L2(Σt)

.
∫
Σ1

Q(L̂m+1
T R)TTTT

︸ ︷︷ ︸
:=I1

+

∫
H

Q(L̂m+1
T R)TTTL

︸ ︷︷ ︸
:=I2

+ C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m).

The boundary integrals I1 and I2 by initial data norms as follows,

I1 + I2 . C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1);

see also Sections 4.6 and 5.1.2. This finishes the proof of (5.43).

5.2.3 Elliptic estimate for k on Σt∗

In this section, we prove (5.44), that is,∑
0≤m′≤m+1

‖∇m
′
∇k‖L2(Σt) + ‖∇/ m′ν‖L2(∂Σt) .C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1).

By standard higher regularity elliptic estimates (see Sections A.1 and A.2) applied to the Hodge system
satisfied by k, see (2.13b), (2.13c) and (2.13d), and using the previous higher regularity estimates (5.40),
(5.42) and (5.43) we have∑

0≤m′≤m+1

‖∇m
′
∇k‖2L2(Σt∗ ) + ‖∇/ m′∇/ ν‖2L2(∂Σt∗ ) . C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1).

Indeed, the boundary integrals of the elliptic estimate are shown to bound ‖∇/ m′∇/ ν‖2L2(∂Σt∗ ) in a similar way
as in Section 5.1.3. The only difference in the analysis of the cases m ≥ 2 is that normal derivatives in the
boundary integral are systematically reduced to ∂Σt-tangential derivatives by using divk = 0 and curlk = H
(see also (2.18)) an even number of times. This is due to the fact that the integrand of the boundary integral
is a contraction of two tensors. As a consequence, the sign is conserved and the constant in the estimate is
bounded from below by a positive constant independent of m. This finishes the proof of (5.44).

5.2.4 Conclusion of (5.41)
In this section, we conclude the proof of (5.41), that is,∑

0≤m′≤m+1

‖Dm′R‖L2(Σt) +
∑

0≤m′≤m+2

‖Dm′π‖L2(Σt)

+
∑

0≤m′≤m+1

‖∇m
′
Ric‖L2(Σt) + ‖∇/ m′∇/ ν‖H1/2(∂Σt)

.C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1).
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Indeed, first, the estimate∑
0≤m′≤m+1

‖Dm′R‖L2(Σt) .C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1)

follows in a straight-forward way from the induction hypothesis estimates (5.40) and the previous estimates
(5.42) and (5.43) for ∇m′R and L̂m′T R for 0 ≤ m′ ≤ m+ 1, see also Section 5.1.5.

Second, the estimate ∑
0≤m′≤m+2

‖Dm′π‖L2(Σt) . C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1)

follows by the induction hypothesis estimates (5.40) and previous estimates (5.42) and (5.44) for ∇m′R and
∇m′k, 0 ≤ m′ = m+ 1, by using the relation between π and k and n in (2.6), the second variation equation
(2.13a) and T -derivatives thereof (see Lemma 4.11), and applying higher regularity elliptic estimates to the
maximal lapse equation for n and equations satisfied by Tm

′
(n), 0 ≤ m′ ≤ m+ 2, where the boundary value

is controlled by generalisations of Lemma 2.14; see Section 5.1.6.

Third, the estimate ∑
0≤m′≤m+1

‖∇m
′
Ric‖L2(Σt) . C(OHm+1,RHm+1,OΣ

m+1,RΣ
m+1,m+ 1)

follows by the previous estimates (5.42) and (5.44) for ∇m′R and ∇m′k, 0 ≤ m′ ≤ m + 1, by using the
traced Gauss equation (2.13f).

Fourth, the estimate

‖∇/ m′∇/ ν‖H1/2(∂Σt) .C(OHm+1,RHm+1,OΣ
m+1,RΣ

m+1,m+ 1)

follows by using the slope equation (2.24), that is,

ν−1∇/ Aν = −εA + ζA on ∂Σt.

together with (5.42), (5.43), (5.44) and Lemmas 3.6, 3.3 and 3.6. This finishes our discussion of the proof of
(5.41).
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6. Classical local existence of vacuum space-
time with maximal foliation

In this section, we prove Proposition 2.28. First, we have the following classical local existence result for the
spacelike-characteristic Cauchy problem of general relativity.

Theorem 6.1 (Classical local existence). Let there be given smooth initial data for the spacelike-characteristic
Cauchy problem on a maximal spacelike hypersurface with boundary Σ and the outgoing null hypersurface H
emanating from ∂Σ. Let (Sv)v≥1 be a smooth foliation on H by spacelike 2-spheres such that S1 = ∂Σ. Then
there exists a real number τ > 0 such that the maximal smooth globally hyperbolic future development (M,g)
has past boundary Σ ∪ (Sv)1≤v≤1+τ .

Proof. The proof follows from [Fou52] and [Ren90], see also [Luk12]. First, by classical local existence for the
spacelike Cauchy problem [Fou52] it follows that the maximal smooth globally hyperbolic future development
of the initial data on Σ, denoted by D(Σ), has past boundary Σ. Given that D(Σ) ⊂M, it follows that the
past boundary of M contains Σ.

Second, considering the induced data on ∂D(Σ) together with the characteristic initial data on H, it follows
by classical local existence for the characteristic Cauchy problem [Ren90] that there is τ > 0 such that the
past boundary of M contains Σ ∪ (Sv)1≤v≤1+τ . This finishes the proof of Theorem 6.1.

We turn to the proof of Proposition 2.28. Let Σ be a compact maximal spacelike hypersurface with boundary
and let H be the outgoing null hypersurface emanating from ∂Σ. Let (Sv)v≥1 be a smooth foliation on H
by spacelike 2-spheres Sv such that S1 = ∂Σ. Let (M,g) denote the maximal globally hyperbolic future
development of the spacelike-characteristic Cauchy problem.

In the following, we prove that there is a real number τ > 0 and a local time function t in the future of Σ
such that

� t = 1 on Σ,

� t = v on H for 1 ≤ t ≤ 1 + τ ,

� the level sets Σt of t are maximal spacelike hypersurfaces for 1 ≤ t ≤ 1 + τ .

The main ingredient for this construction is the work [Cho76] of Bruhat which shows that in shift-free
background coordinates the linearisation of the mean curvature functional is an isomorphism, see Theorem
6.2 below.

We split the construction of the time function into three steps.

1. Construction of local shift-free background coordinates (xµ)µ=0,1,2,3,

2. Construction of a family of maximal spacelike hypersurfaces in M,

3. Proof that the above family of spacelike maximal hypersurfaces can be written as level sets of a smooth
time function t satisfying t = 1 on Σ and t = v on H for 1 ≤ t ≤ 1 + τ for τ > 0 sufficiently small.

Step 1. Construction of shift-free background coordinates. First, define a scalar function x0 on
Σ ∪H by

x0 = 1 on Σ, x0 = v on H, (6.1)

where v denotes the parameter of the given foliation (Sv)v≥1 on H. By the Whitney extension theorem (see
its similar application in [Ren90] and references therein) there exists a smooth extension of x0 into M such

that its level sets (Σ̃x0)x0≥1 are spacelike and form a local foliation of the future of Σ in (M,g). We note
that by (6.1),

∂Σ̃x0 = Sx0 ⊂ H. (6.2)
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Let e0 be the future-pointing timelike unit normal to Σ̃x0 .

Second, let (xi)i=1,2,3 be given coordinates on Σ. We extend them as local coordinates (xi)i=1,2,3 ontoM as
follows. First let

xi := fi on H, (6.3)

where (fi)i=1,2,3 ∈ C∞(H) are smooth, increasing functions chosen below. Then define (xi)i=1,2,3 on M as
solution to

e0(xi) = 0 on M, xi = xi on Σ0, x
i = fi on H.

The smoothness of xi in M requires algebraic compatibility conditions on (fi)i=1,2,3 and their derivatives
at ∂Σ = H ∩ Σ. By the Whitney extension theorem (see its similar application in [Ren90] and references
therein), there exists a choice (fi)i=1,2,3 such that these compability conditions are satisfied.

By construction, (xµ)µ=0,1,2,3 locally form a coordinate system in the future of Σ. Moreover, the coordinates
are by construction shift-free, that is, e0(xi) = 0 for i = 1, 2, 3.

Step 2: Construction of a foliation of maximal spacelike hypersurfaces. In the following, for τ > 0
sufficiently small, we perturb the level sets (Σ̃x0)1≤x0≤1+τ to maximal hypersurfaces, using that Σ̃1 = Σ is
by assumption maximal. Our main tool to do so is the following paraphrase of [Cho76].

Theorem 6.2 (Construction of nearby maximal spacelike hypersurfaces by perturbation). Let m ≥ 0 be an
integer. Let (M,g) be a vacuum spacetime and let Σ ⊂M be a compact maximal spacelike hypersurface with
boundary, that is, satisfying

Hg(Σ) = 0,

where Hg(Σ) denotes the mean curvature of Σ with respect to g. Let (xµ)µ=0,1,2,3 be a shift-free coordinate
system on M such that Σ = {x0 = 1}. Let g′ be another Lorentzian metric on M such that for some ε > 0,
with respect to the coordinate system (xµ)µ=0,1,2,3,

‖g − g′‖Cm′ (M) < ε.

There are universal m′0 > 0 and ε0 > 0 such that if m′ ≥ m′0 and 0 < ε < ε0, then there is a Cm(Σ)-function
ϕ : Σ→ R such that

ϕ|∂Σ = 0,

Hg′(graphΣ(ϕ)) = 0,
(6.4)

where
graphΣ(ϕ) := {x0 = ϕ(x1, x2, x3) + 1 } ⊂ M.

Moreover, we have the bound

‖ϕ‖Cm(Σ) ≤ Cε,

where the constant C > 0 depends on (M,g), Σ and m.

Remarks. In Theorem 6.2, due to the first of (6.4), the boundary of ∂Σ is not perturbed.

Proof of Theorem 6.2. The proof is based on the implicit function theorem. It is shown in [Cho76] that the
linearisation of the mean curvature functional under graphs in shift-free coordinates is an isomorphism. We
refer the reader to [Cho76] for more details.

In the following we use Theorem 6.2 to construct for sufficiently small τ > 0 a family of functions

(ϕ1+τ ′ : Σ̃1+τ ′ → R)0≤τ ′≤τ (6.5)

such that

ϕ1+τ ′ |∂Σ̃1+τ′
= 0,

Hg(graphΣ̃1+τ′
(ϕ1+τ ′)) = 0,

(6.6)
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where

graphΣ̃1+τ′
(ϕ1+τ ′) := {x0 = ϕ1+τ ′(x

1, x2, x3) + (1 + τ ′) }.

We note in particular that (6.6) implies that

∂
(

graphΣ̃1+τ′
(ϕ1+τ ′)

)
= ∂Σ̃1+τ ′ = S1+τ ′ . (6.7)

We turn to the construction of (6.5). By (6.3), the hypersurfaces Σ̃x0 vary smoothly in x0 with respect to

the coordinates (x0, x1, x2, x3). Therefore, for τ > 0 sufficiently small, the hypersurfaces (Σ̃1+τ ′)0≤τ ′≤τ are
diffeomorphic to each other. That is, for τ > 0 sufficiently small, there exists a family of diffeomorphisms

(Ψτ ′ : R4 → R4)0≤τ ′≤τ

such that

Ψτ ′(Σ̃1+τ ′) = Σ̃1,

and moreover, for any given integer m ≥ 0 and real number ε > 0, it holds that for τ > 0 sufficiently small,
with respect to the background coordinates (xµ)µ=0,1,2,3,

‖(Ψτ ′)∗g − g‖Cm(V ) ≤ ε, (6.8)

for 0 ≤ τ ′ ≤ τ , where (Ψτ ′)∗g denotes the push-forward of g under Ψτ ′ and V is a fixed open coordinate
neighbourhood of Σ.

By (6.8) and the maximality of Σ1, we can apply Theorem 6.2 to get that for τ > 0 sufficiently small, there
is a family of functions

(ϕ′1+τ ′ : Σ1 → R)0≤τ ′≤τ

such that

ϕ′1+τ ′ |∂Σ1
= 0,

HΨ∗
τ′g

(graphΣ1
(ϕ′1+τ ′)) = 0.

In particular, using the diffeomorphism Ψτ ′ , it follows that for 0 ≤ τ ′ ≤ τ ,

ϕ′1+τ ′ ◦Ψτ ′ |∂Σ̃1+τ′
= 0,

Hg(graphΣ̃1+τ′
(ϕ′1+τ ′ ◦Ψτ ′)) = 0.

To summarise, for τ > 0 sufficiently small, we can define the family of functions (6.5) by taking

ϕ1+τ ′ := ϕ′1+τ ′ ◦Ψτ ′ : Σ̃1+τ ′ → R.

Step 3: Analysis of the time function. Consider the mapping

Φ : (t, x1, x2, x3) 7→ (x0 = ϕt(x
1, x2, x3) + t, x1, x2, x3). (6.9)

Remark 6.3. Denoting by Σt the level sets of t, it follows by (6.2), (6.7) and (6.9) that

Σt = graphΣ̃t
(ϕt), ∂Σt = ∂Σ̃t = St.

To show that (t, x1, x2, x3) is a smooth coordinate system, we show that Φ is a smooth diffeomorphism from
a neighbourhood of {t = 1} to a neighbourhood of {x0 = 1}. By the inverse function theorem, it suffices to
show that the Jacobian of Φ, denoted by DΦ, is invertible at t = 1. This follows in a standard way (we leave
details to the reader) from

∂tϕt|t=1 = 0. (6.10)
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Chapter 6. Classical local existence of vacuum spacetime with maximal foliation

In the following we prove (6.10). One the one hand, ϕ1+τ ′ satisfies for each 0 ≤ τ ′ ≤ τ the maximal surface
equation

Hg(graphΣ̃1+τ′
(ϕ1+τ ′)) = 0. (6.11)

On the other hand, using that

ϕ1+τ ′ |τ ′=0 = 0, ϕ1+τ ′ |∂Σ̃1+τ′
= 0 for 0 ≤ τ ′ ≤ τ,

it follows that

∂τ ′ϕ1+τ ′ |∂Σ̃1
= 0. (6.12)

Consequently, differentiating (6.11) in τ ′ and using (6.12) shows that ∂τ ′ϕ1+τ ′ |τ ′=0 lies in the kernel of the
linearisation of the mean curvature functional at t = 0. By Theorem 6.2 (see also the given remarks on the
proof) this kernel is trivial and therefore

∂τ ′ϕ1+τ ′ |τ ′=0 = 0. (6.13)

This finishes the proof of (6.10) and hence shows that (t, x1, x2, x3) is a smooth local coordinate system. In
other words, the time function t is well-defined. This finishes the proof of Proposition 2.28.
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7. Existence of global coordinates by Cheeger-
Gromov theory

In this section we prove Theorem 4.1 by applying the Cheeger-Gromov theory developed in [Czi19a]. Theorem
4.1 is a low regularity curvature pinching result and its proof is based, like other curvature pinching results (see
for example [GPL97]), on a convergence result and a rigidity result, see Lemmas 7.3 and 7.4 below, respectively.

In the following, we first introduce the necessary definitions and prerequisite results before turning to the
proof of Theorem 4.1.

Notation. We denote diffeomorphism equivalence and isometry of manifolds by ' and ∼=, respectively.
Moreover, given a scalar function f on a subset U of Euclidean 3-space, let

‖f‖H2(U) :=
∑

0≤m′≤2

‖∂m
′
f‖L2(U).

Definition 7.1 (H2-convergence of functions and tensors). Let (M, g) be a compact Riemannian 3-manifold
with boundary. Let (ϕi) be a finite number of fixed charts covering M . A sequence of functions (fn)n∈N on
M is said to converge in H2 as n → ∞, if for each ϕi, the pullbacks (ϕi)

∗fn converge in H2 as n → ∞.
The convergence of a sequence of tensors on M in H2 is defined similarly.

Definition 7.2 (H2-convergence of manifolds with boundary). A sequence (Mn, gn) of compact Riemannian
3-manifolds with boundary is said to converge to a Riemannian manifold with boundary (M, g) in the
H2-topology as n→∞, if for large n there exist diffeomorphisms Ψn : M →Mn such that (Ψn)∗gn → g in
the H2-topology on M .

The following convergence result is applied in the proof of Theorem 4.1.

Lemma 7.3 (H2-convergence). Let (Mn, gn) be a sequence of smooth compact Riemannian 3-manifolds
with boundary such that Mn ' B1 ⊂ R3 and for real numbers 1 ≤ t ≤ 2 and 0 < V <∞,

‖Ricn‖L2(Mn) → 0 as n→∞,∥∥∥∥trΘn −
2

t

∥∥∥∥
L4(∂Mn)

+ ‖Θ̂n‖L4(∂Mn) → 0 as n→∞,

rvol(Mn, 1/2) ≥ 1/4,

volgn(Mn) ≤V.

(7.1)

Then, there is a smooth compact Riemannian 3-manifold (M, g) with M ' B1 ⊂ R3 such that as n→∞,

(Mn, gn)→ (M, g) in the H2-topology, (7.2)

that is, for large n there are global diffeomorphisms Ψn : M →Mn such that, with respect to a fixed chart on
M , for i, j = 1, 2, 3, ∑

0≤m′≤2

‖∂m
′
((Ψ∗ngn)ij − gij) ‖L2 → 0 as n→∞. (7.3)

Moreover, for integers m ≥ 1,∑
0≤m′≤m+2

‖∂m
′
((Ψ∗ngn)ij − gij) ‖L2

≤CV
∑

0≤m′≤m

‖(n)∇m
′
Ricn‖L2(Mn) + Cm,V

∑
i,j=1,2,3

∑
0≤m′≤2

‖∂m
′
((Ψ∗ngn)ij − gij) ‖L2 ,

(7.4)

where (n)∇ and Ricn denote the covariant derivative and Ricci curvature on (Mn, gn).
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Chapter 7. Existence of global coordinates by Cheeger-Gromov theory

Proof of Lemma 7.3. The H2-convergence (7.2) of the sequence (7.1) follows directly by the low regularity
pre-compactness result established in [Czi19a], see Theorem 4.1 and Corollary 3.11 therein, together with
H2-regularity elliptic estimates for boundary harmonic coordinates, see Section 4 in [Czi19a]. We note that
the limit manifold is flat by (7.1).

The higher regularity estimates (7.4) follow by construction from the above H2-convergence together with
the methods of proof of the pre-compactness result in [Czi19a]. More precisely, an inspection of the so-called
center-of-mass construction used to prove the fundamental theorem of convergence theory (see Theorem
3.6 in [Czi19a] as well as Theorem 11.3.6 and its proof in [GPL97]) leads, together with the established
H2-convergence, directly to (7.4). This finishes the proof of Lemma 7.3.

In the proof of Theorem 4.1, we also use the following rigidity result. A proof is provided in Appendix C.

Lemma 7.4 (Rigidity result). Let (M, g) be a smooth compact Riemannian 3-manifold with boundary such
that M ' B1 ⊂ R3 and for a real number 1 ≤ t ≤ 2,

Ric = 0 on M, tr Θ =
2

t
, Θ̂ = 0 on ∂M.

Then,
(M, g) ∼= (Bt, e).

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. The proof follows in a straight-forward way from Lemmas 7.3 and 7.4 by contradiction.
For completeness, we provide full details. Let (Mn, gn) be a sequence of smooth compact Riemannian 3-
manifolds with boundary such that Mn ' B1 ⊂ R3 and for real numbers 1 ≤ t ≤ 2 and 0 < V <∞,

‖Ricn‖L2(Mn) ≤
1

n
,∥∥∥∥trΘn −

2

t

∥∥∥∥
L4(∂Mn)

+ ‖Θ̂n‖L4(∂Mn) ≤
1

n
,

rvol(Mn, 1/2) ≥ 1/4,

volgn(Mn) ≤V.

(7.5)

Given 0 < Cball < 1/2, assume there do not exist an integer N ≥ 1, real numbers CV > 0 and Cm,V > 0 and
a family of global charts

(ϕn : Bt →Mn)n≥N

such that on Bt, for i, j = 1, 2, 3,∑
0≤m′≤2

‖∂m
′
((gn)ij − eij) ‖L2(Bt) . Cball,

(1− Cball)|ξ|2 ≤ (gn)ijξ
iξj ≤ (1 + Cball)|ξ|2 for all ξ ∈ R2.

(7.6)

and for integers m ≥ 1,∑
0≤m′≤m+2

‖∂m
′
((gn)ij − eij) ‖L2(Bt) .CV

∑
0≤m′≤m

‖∇m
′
Ricn‖L2(Mn) + Cm,V , (7.7)

where we abused notation by writing gn instead of Ψ∗ngn.

By Lemma 7.3, there is a smooth limit manifold (M, g) such that

(Mn, gn)→ (M, g) in the H2-topology as n→∞, (7.8)

and the estimates (7.3) and (7.4) hold.

By (7.5) and (7.8), it follows that (M, g) satisfies

Ric = 0 in M, trΘ =
2

t
, Θ̂ = 0 on ∂M,
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so by Lemma 7.4,

(M, g) ∼= (Bt, e), (7.9)

which trivially admits global smooth coordinates.

Therefore, on the one hand, by (7.3), (7.8) and (7.9), we get that for n large there are global diffeomorphisms
Ψn : B1 →Mn satisfying ∑

0≤m′≤2

‖∂m
′
((gn)ij − eij) ‖L2(Bt) → 0 as n →∞. (7.10)

On the other hand, by (7.4) and (7.9), for integers m ≥ 1,∑
0≤m′≤m+2

‖∂m
′
((gn)ij − eij) ‖L2(Bt)

≤CV
∑

0≤m′≤m

‖(n)∇m
′
Ricn‖L2(Mn) + Cm,V

∑
i,j=1,2,3

∑
0≤m′≤2

‖∂m
′
((gn)ij − eij) ‖L2(Bt)

.CV
∑

0≤m′≤m

‖∇m
′
Ricn‖L2(Mn) + Cm,V ,

where we used (7.9) and (7.10). This yields a contradiction to (7.6) and (7.7), and hence finishes the proof
of Theorem 4.1.

99





A. Global elliptic estimates for Hodge systems
In this section we discuss global elliptic estimates for general Hodge systems on compact Riemannian
3-manifolds with boundary Σ. This is a slight generalisation of the elliptic estimates in [CK93] where
non-compact manifolds without boundary are considered.

A.1 General Hodge systems
In this section, we introduce tools and results to obtain elliptic estimates for general Hodge systems. They
are applied in Sections A.2 and A.3 to the specific Hodge systems of this paper. We have the following
notation.

Definition A.1. Let m ≥ 0 be an integer. For a given totally symmetric (m+ 2)-tensor F , define

A(F )a1 ...am+1bc :=∇cFa1...am+1b −∇bFa1...am+1c,

D(F )a1...am+1
:=∇cFa1...am+1c.

The following lemma is a straight-forward generalisation of Lemma 4.4.1 in [CK93] to manifolds with
boundary. The proof is by integration by parts and left to the reader.

Lemma A.2 (Fundamental integral identity for Hodge systems). Let (Σ, g) be a compact Riemannian
3-manifold with boundary and let m ≥ 0 be an integer. Let F be a totally symmetric (m+ 2)-tensor on Σ.
Then it holds that∫

Σ

|∇F |2 =

∫
Σ

1

2
|A(F )|2 + |D(F )|2

−
∫
Σ

m+1∑
i=1

(
Rl

aibcFa1...l...am+1c + Ricl bFa1...am+1l

)
F a1...am+1b

−
∫
∂Σ

F a1...am+1ND(F )a1...am+1
+

∫
∂Σ

∇bFa1...am+1NF
a1...am+1b.

In this paper we use Lemma A.2 to derive (higher regularity) elliptic estimates of Hodge systems. As Lemma
A.2 applies only to symmetric tensors, one introduces the symmetrised derivative as follows.

Definition A.3 (Symmetrised derivative). Let m ≥ 0 be an integer. For a given totally symmetric
(m+ 2)-tensor F , let

(∇F )a1...am+2c :=
1

m+ 3

(
∇cFa1...am+2

+

m+2∑
i=1

∇aiFa1...c...am+2

)
.

The symmetrised derivative is related to the standard derivative as follows.

Lemma A.4. Let m ≥ 0 be an integer. Let F be a totally symmetric (m+ 2)-tensor. Then, schematically,

∇F = ∇F +A(F ).

Proof of Lemma A.4. By direct calculation,

∇bFa1...am+2 = (m+ 3)(∇F )a1...am+2b −
m+2∑
i=1

∇aiFa1...b...am+2

= (m+ 3)(∇F )a1...am+2b −
m+2∑
i=1

∇aiFa1...ai−1ai+1...am+2b

= (m+ 3)(∇F )a1...am+2b −
m+2∑
i=1

(
∇bFa1...am+2

+A(F )a1...ai−1ai+1...am+2bai

)
= (m+ 3)(∇F )a1...am+2b − (m+ 2)∇bFa1...am+2 −

m+2∑
i=1

A(F )a1...ai−1ai+1...am+2bai
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Appendix A. Global elliptic estimates for Hodge systems

which shows that

∇bFa1...am+2
= (∇F )a1...am+2b −

1

m+ 3

m+2∑
i=1

A(F )a1...ai−1ai+1...am+2bai .

This finishes the proof of Lemma A.4.

The Hodge systems satisfied by a tensor F and its symmetrised derivative ∇F are related as follows.

Lemma A.5. Let F be a totally symmetric (m+ 2)-tensor. Then it holds that

A(∇F ) =∇A(F ) + R · F,
D(∇F ) =∇A(F ) +∇D(F ) + R · F,

where R · F denotes contractions between R and F .

Proof. First,

A(∇F )a1···am+2bc =∇c
(
∇F

)
a1···am+2b

−∇b
(
∇F

)
a1···am+2c

=
1

m+ 3
∇c

(
∇bFa1···am+2

+

m+2∑
i=1

∇aiFa1···b···am+2

)

− 1

m+ 3
∇b

(
∇cFa1···am+2

+

m+2∑
i=1

∇aiFa1···c···am+2

)

=
1

m+ 3
(∇c∇b −∇b∇c)Fa1···am+2

+
1

m+ 3

m+2∑
i=1

((∇c∇ai −∇ai∇c)Fa1···b···m+2 − (∇b∇ai −∇ai∇b)Fa1···c···m+2)

+
1

m+ 3

m+2∑
i=1

∇ai
(
∇cFa1···b···am+2

−∇bFa1···c···am+2

)︸ ︷︷ ︸
=A(F )a1···ai−1ai+1···am+2bc

,

where we can further express

(∇c∇b −∇b∇c)Fa1···am+2 =

m+2∑
i=1

Rd
aibcFa1···d···am+2 .

Second,

D(∇F )a1···am+2
=∇c

(
∇F

)
a1···am+2c

=
1

m+ 3
∇c
(
∇cFa1···am+2 +

m+2∑
i=1

∇aiFa1···c···am+2

)

=
1

m+ 3
∇c∇cFa1···am+2

+
1

m+ 3

m+2∑
i=1

∇c∇aiFa1···c···am+2
,

where the first term on the right-hand side equals

∇c∇cFa1···am+2
=∇cA(F )a1···am+2c +

(
∇c∇am+2

−∇am+2
∇c
)
Fa1···am+1c +∇am+2

D(F )a1···am+1
,

and for the sum on the right-hand side,

∇c∇aiFa1···c···am+2 = (∇c∇ai −∇ai∇c)Fa1···c···am+2 +∇aiD(F )a1···ai−1ai+1···am+2 .

This finishes the proof of Lemma A.5.

Higher regularity estimates for Hodge systems are proved by induction, using the basic integral identity of
Lemma A.2, the relation between ∇ and ∇ of Lemma A.4 and the recursive relations of Lemma A.5. In the
next sections we discuss more specifically the Hodge systems which appear in this paper.
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A.2. Elliptic estimates for the second fundamental form k

A.2 Elliptic estimates for the second fundamental form k
Let (M,g) be a vacuum spacetime and let Σ ' B1 be a compact spacelike maximal hypersurface in M. By
(2.13b), (2.13c) and (2.13d), the second fundamental form k of Σ satisfies the following Hodge system,

divgk = 0,

curlg k =H,

trg k = 0.

In the notation of Definition A.1, k satisfies in particular

A(k)iab =∈mab Him, D(k) = 0. (A.1)

Lemma A.2 together with (A.1) yields the following corollary (see Section 8.3 in [KR10] for the case of
manifolds without boundary).

Corollary A.6 (Fundamental global elliptic estimate for k). Let (M,g) be a vacuum spacetime and let
Σ ' B1 be a compact spacelike maximal hypersurface in M. Then it holds that∫

Σ

|∇k|2 +
1

4
|k|4 −

∫
∂Σ

∇akbNkba .
∫
Σ

|R|2ht ,

where N denotes the outward-pointing unit normal to ∂Σ ⊂ Σ, T denotes the timelike unit normal to Σ and
ht denotes the positive-definite norm on Σ defined with T , see (2.9).

Proof. By Lemma A.2 with F = k, we have∫
Σ

|∇k|2 =

∫
Σ

1

2
|H|2 −

∫
Σ

(
Rl

abcklc + Ricl bkal

)
kab +

∫
∂Σ

∇bkaNkab. (A.2)

In dimension n = 3, the full Riemann curvature tensor is determined by Ric, yielding

Rl
abcklck

ab = 2Ricjlk
jikl i −

1

2
Rscal|k|2.

Plugging this into (A.2), we get∫
Σ

|∇k|2 =

∫
Σ

1

2
|H|2 −

∫
Σ

(
3Ricl bkalk

ab − 1

2
Rscal|k |2

)
+

∫
∂Σ

∇bkaNkab. (A.3)

On the one hand, by (2.13f) and (2.13g), we have

Eij = Ricij − kimkmj , Rscal(g) = |k|2g.

On the other hand, in dimension n = 3, it holds for symmetric tracefree 2-tensors F that

3tr(F 4) ≥ |F |4.

Hence it follows from (A.3) that∫
Σ

1

2
|H|2 =

∫
Σ

|∇k|2 + 3Ricsakbsk
ba − 1

2
|k|4 −

∫
∂Σ

∇akbNkba

=

∫
Σ

|∇k|2 + 3(Esa + k s
m k

m
a)kbsk

ba − 1

2
|k|4 −

∫
∂Σ

∇akbNkba

≥
∫
Σ

|∇k|2 + 3Esakbsk
ba +

1

2
|k|4 −

∫
∂Σ

∇akbNkba.

Using that |E|2 + |H|2 . |R |2ht by (2.8) and (2.11), we obtain∫
Σ

|∇k|2 +
1

4
|k|4 −

∫
∂Σ

∇akbNkba .
∫
Σ

|R|2ht .

This finishes the proof of Corollary A.6.
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A.3 Elliptic estimates for the curvature tensor
Let (M,g) be a vacuum spacetime and let (Σt) be a maximal foliation on M. Let T denote the timelike
unit normal to Σt. We recall from Proposition 2.8 and (2.7) that for a Weyl tensors W satisfying the
inhomogeneous Bianchi equations

DαWαβ γδ = Jβγδ,

it holds that

divE(W)a = + (k ∧H(W))a + JTaT ,

curlE(W)ab = +H
(
L̂TW

)
ab
− 3

(
n−1∇n ∧ E(W)

)
ab

− 3

2
(k ×H(W))ab − J

∗
aTb,

divH(W)a =− (k ∧ E(W))a + J∗TaT ,

curlH(W)ab =− E
(
L̂TW

)
ab
− 3

(
n−1∇n ∧H(W)

)
ab

+
3

2
(k × E(W))ab − JaTb.

(A.4)

Interpreting (A.4) as coupled Hodge system for E(W) and H(W) with the right-hand side as source terms,
Lemma A.2 yields the following global elliptic estimates on Σ.

Corollary A.7 (Elliptic estimates for E(W) and H(W)). Let E(W) and H(W) be solutions to (A.4) on
Σt. Then it holds that∫

Σt

|∇E(W)|2 + |∇H(W)|2

.
∫
Σt

|L̂TW|2ht + |J |2 +
∑

0≤m′≤2

‖∇m
′
(n− 1)‖2L2(Σt)

+
∑

0≤m′≤1

‖∇m
′
k‖2L2(Σt)

+

∫
∂Σt

∇bE(W)aN E(W)ab +

∫
∂Σt

∇bH(W)aN H(W)ab

−
∫
∂Σt

JTaT E(W)aN −
∫
∂Σt

J∗TaT H(W)aN .
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B. Proof of Lemmas 3.6 and 3.8
In this section we prove Lemmas 3.6 and 3.8.

B.1 Proof of Lemma 3.6
We have to show that on weakly regular balls (Σ, g) of radius 1 ≤ r ≤ 2 with constant 0 < Cball < 1/2, it
holds that

‖F‖L2(∂Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ),

‖F‖L4(∂Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ),
(B.1)

and moreover,

‖F‖H1/2(∂Σ) . ‖F‖L2(Σ) + ‖∇F‖L2(Σ), (B.2)

and for integers m ≥ 1,∑
0≤m′≤m

‖∇/ m′F‖H1/2(∂Σ) .
∑

0≤m′≤m+1

‖∇m
′
F‖L2(Σ)

+
∑

0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + CmCball.

(B.3)

First, the estimates (B.1) are straight-forward, see for example Lemma 3.26 and Corollary 3.27 in [Sze18] for
a concise proof.

We turn to the proof of (B.2). On the one hand, by Sections 7.50 to 7.56 in [AF08], for each coordinate
patch U ⊂ ∂Br and smooth open set V ⊂ Br with U ⊂

(
V ∩ ∂Br

)
, it holds that

H1(V ) ↪→ H1/2(U),

where H1/2(U) denotes a local coordinate-defined fractional Sobolev space on U .

On the other hand, if gij ∈ H2(Br) then in particular g/AB ∈W 1,4(∂Br) in local coordinates. By Proposi-
tion 3.2 in [Sha14], this control suffices to compare the coordinate-defined spaces H1/2(U) with the space
H1/2(∂Br) defined in Definition 3.2, see also Appendix B of [Sha14]. This finishes the proof of (B.2).

The higher regularity trace estimate (B.3) is a straight-forward generalisation of (B.2) using that on a weakly
regular ball we have by definition, for i, j = 1, 2, 3,∑

0≤m′≤m+2

‖∂m
′
(gij − eij)‖L2(Br) .

∑
0≤m′≤m

‖∇m
′
Ric‖L2(Σ) + CmCball.

This finishes the proof of Lemma 3.6.

B.2 Proof of Lemma 3.8
Let 1 ≤ r0 ≤ 2 and 0 < Cball < 1/2 be two real numbers. Let (Σ, g) be a weakly regular ball of radius r0

with constant Cball. Let F be a tensor on Σ. We have to show that

‖F‖L2(Σ) . ‖∇F‖L2(Σ) + ‖F‖L2(∂Σ).

Define spherical coordinates (r, θ1, θ2) with r ∈ [0, r0] and (θ1, θ2) ∈ S2 on Σ ' Br0 as in Section 2.4. Let γ
and dµγ on Sr denote the standard round metric of radius r > 0 and its volume element, respectively. Denote

by
◦
γ and dµ◦

γ
the standard round metric on the unit sphere and its volume element, respectively. Note that
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γ = r2 ◦γ. By the fundamental theorem of calculus and using that ∂Σ = Sr0 , we have for 0 < r ≤ r0,

∫
Sr

|F |2g dµ◦γ =

r∫
r0

∂r′

 ∫
Sr′

|F |2gdµ◦γ

 dr′ +

∫
∂Σ

|F |2gdµ◦γ

=

r∫
r0

 ∫
Sr′

∇∂r′F · F dµ◦γ

 dr′ +

∫
∂Σ

|F |2gdµ◦γ

≤
∥∥|∂r|2g∥∥L∞(Σ)

 r∫
r0

∫
Sr′

|∇F |2gdµ◦γdr
′


1/2 r∫

r0

∫
Sr′

|F |2gdµ◦γdr
′


1/2

+

∫
∂Σ

|F |2gdµ◦γ .

Using that by definition of the spherical coordinates on Br0 and the weakly regular ball property of (Σ, g),

|∂r|2g = grr =
xi

r

xj

r
gij ≤ (1 + Cball)

xi

r

xj

r
eij = 1 + Cball,

we can estimate the right-hand side as follows,

∫
Sr

|F |2g dµ◦γ .

 r∫
r0

∫
Sr′

|∇F |2gdµ◦γdr
′


1/2 r∫

r0

∫
Sr′

|F |2gdµ◦γdr
′


1/2

+

∫
∂Σ

|F |2gdµ◦γ

.
1

r2

 r∫
r0

∫
Sr′

|∇F |2gdµγdr′


1/2 r∫

r0

∫
Sr′

|F |2gdµγdr′


1/2

+

∫
∂Σ

|F |2gdµ◦γ

.
1

r2

 ∫
Br0

|∇F |2gdµe


1/2 ∫

Br0

|F |2gdµe


1/2

+

∫
∂Σ

|F |2gdµ◦γ

.
1

r2
‖∇F‖L2(Br0 )‖F‖L2(Br0 ) +

∫
∂Σ

|F |2gdµ◦γ ,

where dµe denotes the measure with respect to the standard Euclidean metric e in Cartesian coordinates,
and we used in the last inequality that Σ is a weakly regular ball to compare the Euclidean integral with the
g-dependent norm.

Multiplying the above by r2 and using that by Lemmas 3.6, 3.6 and 3.9,∫
∂Σ

|F |2gdµr20 ◦γ . ‖F‖
2
L2(∂Σ),

we get that for 0 < r ≤ r0, ∫
Sr

|F |2g dµγ . ‖∇F‖L2(Σ)‖F‖L2(Σ) +
r2

r2
0

∫
∂Σ

|F |2gdµr20 ◦γ

. ‖∇F‖L2(Σ)‖F‖L2(Σ) +
r2

r2
0

‖F‖2L2(∂Σ).

(B.4)

By (B.4) and using that (Σ, g) is a weakly regular ball of radius r0, we get that

‖F‖2L2(Σ) .
∫
Br0

|F |2gdµe .
r0∫

0

∫
Sr

|F |2g dµγ

 dr . ‖∇F‖L2(Σ)‖F‖L2(Σ) + ‖F‖2L2(∂Σ),

which implies that

‖F‖L2(Σ) . ‖∇F‖L2(Σ) + ‖F‖L2(∂Σ).

This finishes the proof of Lemma 3.8.
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C. Proof of Lemma 7.4
In this section we prove Lemma 7.4. Let (M, g) be a smooth compact Riemannian 3-manifold with boundary
such that M ' B1 ⊂ R3 and for a real number 1 ≤ t ≤ 2,

Ric = 0 on M, tr Θ =
2

t
, Θ̂ = 0 on ∂M. (C.1)

We have to prove that
(M, g) ∼= (Bt, e).

First, by the Gauss equation

2K = (trΘ)
2 − |Θ|2 +Rscal − 2Ric(N,N),

it follows that the Gauss curvature of (∂M, g/) is constant K = 1
t2 . Hence by classical differential geometry,

there exist coordinates (θ1, θ2) on ∂M such that

g/ = t2
(
(dθ1)2 + sin2(θ1)(dθ2)2

)
. (C.2)

Second, by the smoothness of (M, g), there exists in an open neighbourhood U ⊂M of ∂M ⊂M a so-called
Gaussian coordinate system (r, θ1, θ2), see for example Section 3.3 in [Wal84], which coincide with (C.2) on
∂M and are such that for some small real number δ > 0,

U = {r ∈ (t− δ, t]},
U ∩ ∂M = {r = t},
∇∂r∂r = 0,

∂r|∂M is normal to ∂M,

g(∂r, ∂r) = 1.

In such coordinates it holds that

g = dr2 + g/ABdθ
AdθB .

Third, we claim that the Riemannian manifold (M, g) smoothly extends onto R3 \ Bt when identifying
∂M = ∂Bt ⊂ R3. It suffices to show that the induced metric

g̃/AB(r, θ1, θ2) :=

{
γAB(r, θ1, θ2), if r ≥ t,
g/AB(r, θ1, θ2) if t− δ < r ≤ t,

is smooth across {r = t}. Here γAB(r, θ1, θ2) is the standard round metric of radius r.

By (C.2), it follows that g̃/ is continuous across {r = t}. Further, on the one hand, on ∂Bt ⊂ R3, it holds
that

∂rγAB |r=t =2t
◦
γAB , ∂

2
rγAB |r=t = 2

◦
γAB , ∂

m′

r γAB |r=t = 0 for m′ ≥ 3, (C.3)

where
◦
γAB denotes the metric components of the standard round metric on S2.

On the other hand, by construction of (r, θ1, θ2) it holds on U that

∂rg/AB =2g(∇r∂A, ∂B) = 2g(∇A∂r, ∂B). (C.4)

By (C.1), (C.2) and (C.4), on ∂M we thus have that

∂rg/AB |r=t =2ΘAB = 2t
◦
γAB , (C.5)

Differentiating (C.4) in r yields

∂2
rg/AB =2g(∇r∂A,∇r∂B) + 2g(∂A,∇r∇r∂B)

=2g(∇A∂r,∇B∂r) + 2g(∂A,∇r∇B∂r)
=2g(∇A∂r,∇B∂r) + 2g(∂A,Rm(∂r, ∂B)∂r) + 2g(∂A,∇B∇r∂r)
=2g(∇A∂r,∇B∂r),

(C.6)
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where we used that Rm = 0 in (M, g) and ∇∂r∂r = 0 in Gaussian coordinates in U . From (C.5) and (C.6)
and using that a = 1, it follows that

∂2
rg/AB |r=t = 2t−2 ◦γ

CD
t
◦
γACt

◦
γBD = 2

◦
γAB . (C.7)

Differentiating (C.4) further in r shows that

∂m
′

r g/AB |r=t = 0 for m′ ≥ 3. (C.8)

Comparing (C.3) with (C.5), (C.7) and (C.8) shows that all r-derivatives of g/ agree on r = t. Hence (M, g)
smoothly extends as Riemannian manifold onto (R3 \Bt, e).

The resulting smooth Riemannian 3-manifold is in particular flat, complete and has cubic volume growth of
geodesic balls. By Proposition 4.4 in [Czi19a] it must therefore be isometric to (R3, e). We conclude that by
the above construction,

(M, g) ∼= (R3 \
(
R3 \Bt

)
, e) ∼= (Bt, e).

This finishes the proof of Lemma 7.4.
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D. Comparison estimates between two maxi-
mal spacelike foliations

In this section we prove Lemma 4.6. By assumption, for real numbers D > 0 and ε > 0, Mt∗ is foliated
by maximal spacelike hypersurface (Σt)1≤t ≤t∗ given as level sets of a time function t with Σ1 = Σ and
satisfying

‖R‖L∞t L2(Σt) + ‖Ric‖L∞t L2(Σt) ≤Dε,
‖∇k‖L∞t L2(Σt) + ‖k‖L∞t L2(Σt) ≤Dε,

‖n− 1‖L∞(Mt∗ ) + ‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt) .Dε.

(D.1)

Let T denote the timelike unit normal to Σt.

Moreover, by assumption there is another foliation on Mt∗ (constructed by the bounded L2 curvature

theorem) of maximal hypersurfaces (Σ̃t̃)0≤t̃ ≤t∗ given as level sets of a time function t̃ with Σt∗ = Σ̃t∗ and
satisfying

‖R‖L∞
t̃
L2(Σ̃t̃)

+ ‖R̃ic‖L∞
t̃
L2(Σ̃t̃)

.Cball,

‖∇̃k̃‖L∞
t̃
L2(Σ̃t̃)

+ ‖k̃‖L∞
t̃
L2(Σ̃t̃)

+ ‖Dπ̃‖L∞
t̃
L2(Σ̃t̃)

.Cball,

‖ñ− 1‖L∞(Mt∗ ) + ‖∇̃ñ‖L∞(Mt∗ ) + ‖∇̃2ñ‖L∞
t̃
L2(Σ̃t̃)

.Cball,

(D.2)

where R̃ic, ∇̃ and k̃ denote the Ricci curvature, covariant derivative and the second fundamental form on Σ̃t̃,

respectively. Let T̃ denote the timelike unit normal to Σ̃t̃.

We need to show that for ε > 0 and Cball > 0 sufficiently small, for 1 ≤ t ≤ t∗,

‖ν̃ − 1‖L∞t L∞(Σt)
.Cball, (D.3)

‖k̃‖L∞t L4(Σt) .Cball, (D.4)

where the angle ν̃ between T and T̃ is defined as

ν̃ := −g(T, T̃ ). (D.5)

The proof of (D.3) and (D.4) is based on a standard continuity argument going backwards in t and starting

at Σt∗ = Σ̃t∗ where by construction

ν̃ = 1, k = k̃.

In the following, we only discuss the bootstrap assumption and its improvement.

Bootstrap assumption. Let 1 ≤ t∗0 < t∗ be a real. Assume that for a large constant M > 0, for t∗0 ≤ t ≤ t∗,

‖ν̃ − 1‖L∞t L∞(Σt)
≤MCball. (D.6)

First consequences of the bootstrap assumption. Let (ẽi)i=1,2,3 be an orthonormal frame on Σ̃t̃ and

let ẽ0 = T̃ . Expressing T as

T = ν̃T̃ + g(T, ẽi)ẽi,

and using that g(T, T ) = −1, it follows that

−1 = −|ν̃|2 +
∑

i=1,2,3

|g(T, ẽi)|2.

This implies by the bootstrap assumption (D.6) for Cball > 0 sufficiently small that for t∗0 ≤ t ≤ t∗,

‖g(T, ẽi)‖L∞t L∞(Σt)
.
√
MCball. (D.7)
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Let (ei)i=1,2,3 be the orthonormal frame tangent to Σt constructed by the Gram-Schmidt method applied to
the Σt-tangential frame

(ẽ1 + g(ẽ1, T )T, ẽ2 + g(ẽ2, T )T, ẽ3 + g(ẽ3, T )T ),

and set moreover e0 := T . By the Gram-Schmidt construction and (D.6) and (D.7), we get that for Cball > 0
sufficiently small, for t∗0 ≤ t ≤ t∗,

3∑
i=1

‖g(ei, ẽi)− 1‖L∞t L∞(Σt)
+
∑
j 6=i

‖g(ẽi, ej)‖L∞t L∞(Σt)
+
∥∥∥g(T̃ , ei)

∥∥∥
L∞t L

∞(Σt)


.
√
MCball.

(D.8)

Improvement of the bootstrap assumption. First, by definition of ν̃, see (D.5), and using that
DTT = n−1∇n,

T (ν̃) =− g(DTT, T̃ )− g(T,DT T̃ )

=−
(
g(T̃ , ei)g(DTT, ei) + g(T, ẽµ)g(T, ẽi)g(ẽi,Dẽµ T̃ )

)
=−

(
g(T̃ , ei)(n

−1∇ein)− g(T, ẽj)g(T, ẽi)k̃ij + ν̃g(T, ẽi)(ñ
−1∇̃ẽi ñ)

)
.

(D.9)

Define shift-free coordinates (t, x1, x2, x3) on Mt∗ by transporting (x1, x2, x3) from Σt∗ backwards along T .
Then it holds that ∂t = n−1T , and we get from (D.9) that

∂tν̃ = −n−1
(
g(T̃ , ei)(n

−1∇ein)− g(T, ẽj)g(T, ẽi)k̃ij + ν̃g(T, ẽi)(ñ
−1∇̃ẽi ñ)

)
.

Integrating this equation in t, using that ν̃|t=t∗ = 1 and applying (D.1), (D.2), (D.6), (D.7), (D.8) and
Lemma 3.4, we get that for ε > 0 and Cball > 0 sufficiently small, for t∗0 ≤ t ≤ t∗, it holds that

‖ν̃ − 1‖L∞t L4(Σt)

. ‖g(T̃ , ei)‖L∞(Mt∗ )‖∇ein‖L4(Mt∗ )

+ ‖g(T, ẽi)‖L∞(Mt∗ )‖g(T, ẽj)‖L∞(Mt∗ )‖k̃ij‖L4(Mt∗ )

+ ‖ν̃‖L∞(Mt∗ )‖g(T, ẽi)‖L∞(Mt∗ )‖∇̃ẽi ñ‖L4(Mt∗ )

. ‖g(T̃ , ei)‖L∞(Mt∗ )

(
‖∇n‖L∞t L2(Σt) + ‖∇2n‖L∞t L2(Σt)

)
+ ‖g(T, ẽi)‖L∞(Mt∗ )‖g(T, ẽj)‖L∞(Mt∗ )

(
‖k̃‖L∞

t̃
L2(Σ̃t̃)

+ ‖∇̃k̃‖L∞
t̃
L2(Σ̃t̃)

)
+ ‖ν̃‖L∞(Mt∗ )‖g(T, ẽi)‖L∞(Mt∗ )

(
‖∇̃ñ‖L∞

t̃
L2(Σ̃t̃)

+ ‖∇̃2ñ‖L∞
t̃
L2(Σ̃t̃)

)
.
√
MCball(Dε) +

√
MCballCball.

(D.10)

Second, by definition of ν̃ in (D.5), for i = 1, 2, 3,

∇ei ν̃ =− g(DeiT, T̃ )− g(T,Dei T̃ )

=−
(
g(T̃ , ej)kij + g(T, ẽj)g(ei, ẽµ)g(ẽj ,Dẽµ T̃ )

)
=−

(
g(T̃ , ej)kij − g(T, ẽj)g(ei, ẽl)k̃lj + g(T, ẽj)g(ei, T̃ )(ñ−1∇̃ẽj ñ)

)
By (D.1), (D.2), (D.8) and Lemma 3.4, we have for Cball > 0 and ε > 0 sufficiently small,

‖∇ei ν̃‖L∞t L4(Σt)
. ‖g(T̃ , ej)‖L∞(Mt∗ )‖kij‖L∞t L4(Σt)

+ ‖g(T, ẽj)‖L∞(Mt∗ )‖g(ei, ẽl)‖L∞(Mt∗ )‖k̃lj‖L∞t L4(Σt)

+ ‖g(T, ẽj)‖L∞(Mt∗ )‖g(ei, T̃ )‖L∞(Mt∗ )‖∇̃ẽj ñ‖L∞t L∞(Σt)

.
√
MCballDε+

√
MCball‖k̃lj‖L∞t L4(Σt) + (MCball)Cball.

(D.11)

By (D.10), (D.11) and Lemma 3.4), it follows that

‖ν̃ − 1‖L∞(Mt∗ ) .
√
MCball(Dε+

√
MCballCball) +

√
MCball‖k̃lj‖L∞t L4(Σt). (D.12)

To estimate the remaining term ‖k̃lj‖L∞t L4(Σt) on the right-hand side of (D.12), we apply the following
technical lemma whose proof is postponed to the end of this section.
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Lemma D.1 (Technical lemma). Under the assumption of (D.1), (D.2), (D.6) for Cball > 0 and ε > 0
sufficiently small, it holds for every scalar function f on Mt∗ that for t∗0 ≤ t ≤ t∗,

‖f‖L∞t L4(Σt)
. ‖Df‖1/4

L∞
t̃
L2(Σ̃t̃)

‖f‖3/4
L∞
t̃
L6(Σ̃t̃)

+ ‖f‖L4(Σt∗ ) .

Applying Lemma D.1 to f = k̃ij , we have for ε > 0 and Cball > 0 sufficiently small, for t∗0 ≤ t ≤ t∗,

‖k̃lj ‖L∞t L4(Σt) . ‖D(k̃lj)‖1/4L∞
t̃
L2(Σ̃t̃)

‖k̃lj ‖3/4L∞
t̃
L6(Σ̃t̃)

+ ‖k̃lj‖L4(Σt∗ )

.
(
‖Dπ̃‖L∞

t̃
L2(Σ̃t̃)

+ ‖π̃‖L∞
t̃
L4(Σ̃t̃)

‖Ã‖L∞
t̃
L4(Σ̃t̃)

)1/4

‖k̃ ‖3/4
L∞
t̃
L6(Σ̃t̃)

+ ‖k‖L4(Σt∗ )

.Cball
1/4Cball

3/4 +Dε,

(D.13)

where Ã denotes the connection 1-form defined by

(Ãµ)αβ := g(Dẽµ ẽβ , ẽα), for µ, α, β = 0, 1, 2, 3,

and we used that the foliation (Σ̃t̃)0≤t̃ ≤t∗ constructed by the bounded L2 curvature theorem (Theorem 3.14,

see also [KRS15]) satisfies in addition to (D.2) the following bound on 0 ≤ t̃ ≤ t∗,

‖Ã‖L∞
t̃
L4(Σ̃t̃)

. Cball.

Plugging (D.13) into (D.12), we get that for Cball > 0 and ε > 0 sufficiently small, for t∗0 ≤ t ≤ t∗,

‖ν̃ − 1‖L∞t L∞(Σt)
.
√
MCball(Dε+ Cball +

√
MCballCball)

≤M ′Cball,

for a constant 0 < M ′ < M . This improves the bootstrap assumption (D.6) and hence finishes the proof of
(D.3). The estimate (D.4) follows directly from (D.13). This finishes the proof of Lemma 4.6.

It remains to prove Lemma D.1. Let (t, x1, x2, x3) denote the shift-free coordinate system constructed above.
Using that trk = 0 on Σt for 1 ≤ t ≤ t∗, (D.1), (D.2) and ∂t = n−1T , we have for Cball > 0 and ε > 0
sufficiently small, on t∗0 ≤ t ≤ t∗,

∫
Σt

f4 dµg =

t∫
t∗

∂t′

 ∫
Σt′

f4 dµg

 dt′ +

∫
Σt∗

f4 dµg

= 4

t∫
t∗

 ∫
Σt′

∂tff
3 dµg

 dt′ +

∫
Σt∗

f4 dµg

.
∫
Mt∗

|Df |ht |f |3 +

∫
Σt∗

f4 dµg

.
∫
Mt∗

|Df |ht̃ |f |
3 +

∫
Σt∗

f4 dµg

. ‖Df‖L∞
t̃
L2(Σ̃t̃)

‖f‖3L∞
t̃
L6(Σ̃t̃)

+

∫
Σt∗

f4 dµg,

where we used (D.6) to compare the positive-definite norms ht̃ and ht. This finishes the proof of Lemma
D.1.
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E. Proof of Proposition 5.2
In this section, we prove Proposition 5.2, that is, the claim that for

E1 :=

∫
Mt∗

3

2
Q(L̂T̃R)αβT̃ T̃ π̃

αβ , E2 :=

∫
Mt∗

DαQ(L̂T̃R)αT̃ T̃ T̃ , (E.1)

it holds that

|E1|+ |E2| .Cball‖L̂T̃R‖2
L∞
t̃
L2(Σ̃t̃)

+ Cball sup
ω∈S2

‖L̂T̃R · L̃‖2L∞ωuL2(Hωu)

+ Cball

(
‖∇Ric‖L2(Σt∗ ) +

∥∥∇2k
∥∥
L2(Σt∗ )

+ Cball

)2

+ Cball
2.

(E.2)

The trilinear estimate (E.2) follows from the trilinear estimates proved in Sections 11-13 of [KRS15]. As the
latter are stated and proved in [KRS15] using a wave parametrix construction, in the next section we first
recapitulate the notation and the wave parametrix construction of [KRS15]. Subsequently, in Sections E.2
and E.3 we prove the bound (E.2) for E1 and E2.

E.1 Recapitulation of the wave parametrix formalism of [KRS15]
In this section, we recapitulate the wave parametrix formalism and the trilinear estimates of [KRS15] relevant
to our paper. We adopt the notation of [KRS15] and suppress the tilde notation in the following.

Let (M,g) be a vacuum spacetime foliated by maximal spacelike hypersurfaces (Σt)0≤t≤1. Let e0 := T
denote the timelike unit normal to Σt and let (ei)i=1,2,3 be an orthonormal frame on Σt. The connection
1-form A is defined by

(Aµ)αβ := g(Deµeβ , eα) for µ, α, β = 0, 1, 2, 3.

The indices l,m of (Ai)lm are interpreted as internal and the 1-form Aµdx
µ as having values in the Lie

algebra of so(3, 1).

Denoting A0 := A0, Aj := Aj , j = 1, 2, 3, the second fundamental form k of Σt can be expressed as

kij = −(Ai)0j , (E.3)

and the spacetime curvature tensor R as

Rijlm = ∂l(Am)ij − ∂m(Al)ij − ([Al, Am])ij , (E.4)

where i, j, l,m = 1, 2, 3.

In [KRS15] it is shown that Ai satisfies the following structural equations (see Lemmas 6.5 and 13.1 in
[KRS15])

Ai = (curlB)i + Ei,

∂Ai = (curl(∂B))i + E′i,
(E.5)

where the curl of a 1-form ω is defined by

(curlω)i =∈ jl
i ∂j(ωl),

and E and E′ are error terms with better regularity.

In Sections 7.2 and 13.2 of [KRS15] it is shown that the 1-forms Bi and ∂Bi of (E.5) satisfy non-linear wave
equations which exhibit a null structure. Exploiting the null structure, the following energy estimates for B
and ∂B are derived in [KRS15].

113



Appendix E. Proof of Proposition 5.2

Proposition E.1 (Energy estimates for B and ∂B). Denoting the initial data norms on Σ = Σ0 by

Q0(Σ) := ‖Ric‖L2(Σ) + ‖∇k‖L2(Σ),

Q1(Σ) := ‖∇Ric‖L2(Σ) + ‖Ric‖L2(Σ) + ‖∇2k‖L2(Σ) + ‖∇k‖L2(Σ).

it holds that

‖∂2B‖L∞t L2(Σt) + sup
ω∈S2

‖∇/ (∂B)‖L∞ωuL2(Hωu) + sup
ω∈S2

‖L(∂B)‖L∞ωuL2(Hωu) . Q0, (E.6)

and

‖∂∂2B‖L∞t L2(Σt) + sup
ω∈S2

∥∥∇/ (∂2B)
∥∥
L∞ωuL

2(Hωu)
+ sup
ω∈S2

∥∥L(∂2B)
∥∥
L∞ωuL

2(Hωu)
.Q1, (E.7)

where ∂ ∈ {∂0, ∂1, ∂2, ∂3}. Here, for fixed ω ∈ S2, (Hωu)ωu∈R is a foliation of the vacuum spacetime M by
null hyperplanes (see also Theorem 3.14).

Proof. The estimate (E.6) follows directly from Proposition 7.4 and Lemma 8.3 in [KRS15] (see also (9.13) and
the bottom of page 186 therein). The estimate (E.7) follows directly from Proposition 13.2 in [KRS15].

Further, in Section 10 of [KRS15], see in particular Theorem 10.8, a parametrix for the wave equation is
constructed. As shown in Sections 11.2 and 13.3.2, applying the parametrix construction to B and ∂B and
using the special curl-structure of (E.5) allows to prove general trilinear estimates for error terms appearing
in Bel-Robinson energy estimates. We refer also to Section 11.1 of [KRS15] for instructive similar proofs of
bilinear estimates.

In slightly more detail, the rough idea of proof for the trilinear estimates is as follows. First, consider an
error term of the form ∫

M

C(U, ∂φ)

where U is a tensor, φ is a solution to the wave equation (typically, φ = B or φ = ∂B) and C denotes a
contraction between U and ∂φ. By plugging in the wave parametrix for φ and assuming energy estimates
such as (E.6) for φ (with Q0 sufficiently small), it can be shown that∣∣∣∣∣∣

∫
M

C(U, ∂φ)

∣∣∣∣∣∣ . Q0 sup
ω∈S2

‖C(U,N)‖L2
ωu
L1(Hωu), (E.8)

where C(U,N) denotes a contraction between U and N , the unit normal to Hωu ∩ Σt along Σt. In our cases
of interest, the tensor U is composed of R and derivatives of solutions to a scalar wave equation. Therefore
if one can show that C(U,N) only contains terms of the form

R · L, ∇/ ψ and L(ψ), (E.9)

where ψ is a solution to a wave equation, then one can apply the energy estimates for R and ψ to bound the
right-hand side of (E.8), see the explanatory Remark 11.1 and the discussion in Section 11.2 in [KRS15].

Coming back to this paper, to prove (E.2) it thus suffices to verify that all terms in E1 and E2 are of the
form C(U, ∂φ) (with φ solving a wave equation) leading to contractions C(U,N) which contain at least one
of (E.9). This is exactly the content of the following Sections E.2 and E.3.

Note that in Section 5.1 we apply the bounded L2 curvature theorem to a maximal hypersurface Σ̃t∗ which
satisfies by construction the bounds

Q0(Σ̃t∗) .Cball,

Q1(Σ̃t∗) . ‖∇Ric‖L2(Σt∗ ) + ‖∇2k‖L2(Σt∗ ) + Cball.
(E.10)

The above bounds therefore precisely lead to the estimate (E.2).
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E.2. Control of E1

E.2 Control of E1
Recall from (E.1) that

E1 :=

∫
Mt∗

3

2
Q(L̂TR)αβTTπ

αβ .

The Weyl tensor L̂TR has the same symmetries as R and thus, an inspection of Section 11.2 in [KRS15]
directly yields the trilinear estimate

E1 .Cball‖L̂TR‖2L∞t L2(Σt)
+ Cball‖L̂TR‖L2(Mt∗ ) sup

ω∈S2
‖L̂TR · L‖L∞ωuL2(Hωu)

.Cball‖L̂TR‖2L∞t L2(Σt)
+ Cball sup

ω∈S2
‖L̂TR · L‖2L∞ωuL2(Hωu).

E.3 Control of E2
Recall from (E.1) that

E2 :=

∫
Mt∗

DαQ(L̂TR)αTTT .

By explicit calculation (see Propositions 7.1.1 and 7.1.2 in [CK93]) and expanding in an orthonormal frame
(T, ei), i = 1, 2, 3, it holds that

DαQ(L̂TR)αTTT

= (L̂TR) a b
T T

(
παβDαRβaTb + (divπ)βRβaTb

)
+ (L̂TR) a b

T T

(
(Daπαβ −Dβπαa)Rαβ

Tb + (DTπαβ −DβπαT )Rα β
a b

)
+ (L̂TR) a b

T T

(
(Dbπαβ −Dβπαb)R

α β
aT

)
+ dual terms.

(E.11)

Careful inspection of the right-hand side of (E.11) based on further decomposition with respect to (T, ei), i =
1, 2, 3 shows that each term is controlled by either

1. applying the wave parametrix construction of [KRS15] (to φ = B or to φ = ∂B, depending on the
term) and using that the resulting contractions C(U,N) lead to terms of the desired form (E.9). Once
this is shown, the estimate (E.2) follows from the estimates of [KRS15], see Proposition E.1 and the
discussion in Section E.1,

2. by cancelling each other out with another term from the right-hand side of (E.11),

3. by directly applying the precise estimates of the bounded L2 curvature theorem.

In the following, for explicitness, we discuss in correspondence to the above the control of three representative
terms of the right-hand side of (E.11). Namely, we prove the control of

T1 :=(L̂TR) A B
T T DiRjATBk

ij ,

T2 :=(L̂TR) A B
T T RCTNARCN

TB ,

T3 :=(L̂TR) A B
T T DiπjT Ri j

A B ,

where A,B,C = 1, 2 denotes frame elements tangential to Hωu ∩ Σt.

Control of T1. Consider the integral∫
Mt∗

T1 =

∫
Mt∗

(L̂TR) A B
T T DiRjATBk

ij .

Using (E.3) and (E.5), that is,

kij = −(Ai)0j , Ai = (curlB)i + Ei, (E.12)
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we can write ∫
Mt∗

T1 =

∫
Mt∗

C(U, ∂B) +

∫
Mt∗

(L̂TR) ·DR · E, (E.13)

where B solves the wave equation, U is a tensor involving L̂TR and DR, C(U, ∂B) is a contraction thereof
and E is an error term with better regularity. Using the wave parametrix formalism and energy estimates for
B (see Proposition E.1 and (E.8)) and the improved regularity of E (see [KRS15] for details), we get that∫

Mt∗

T1 .Q0 sup
ω∈S2

‖C(U,N)‖L2
ωu
L1(Hωu) +Q0‖L̂TR ·DR‖L∞t L1(Σt). (E.14)

It remains to show that C(U,N) contains terms of the form (E.9). From (E.12) and (E.13), we have that

C(U, ∂B) =(L̂TR) ·DiR(curlB)i

=(L̂TR) ·DiR ∈ j·
i ∂jB,

where we supressed the internal indices of B. Therefore

C(U,N) =(L̂TR) ·DiR· ∈ j·
i Nj

=(L̂TR) ·DiR· ∈ N ·
i

=(L̂TR) ·DAR

=(L̂TR) · ∇/ AR,

(E.15)

where A is tangential to Hωu, we used that ∈ N ·
i = 0 for i = N , and we suppressed lower order error terms.

Plugging (E.15) into (E.14) and using (E.4) and (E.5) to write

Rijlm = ∂l(Am)ij − ∂m(Al)ij − ([Al, Am])ij = ∂2B

and applying Proposition E.1 and (E.10), we get that∫
Mt∗

T1 .Q0 sup
ω∈S2

∥∥∥L̂TR · ∇/ R
∥∥∥
L2
ωu
L1(Hωu)

+Q0‖L̂TR ·DR‖L∞t L1(Σt) +Q2
0

.Q0

(∥∥∥L̂TR
∥∥∥2

L2(Mt∗ )
+ sup
ω∈S2

∥∥∇/ (∂2B)
∥∥2

L∞ωuL
2(Hωu)

)
+Q0

(∥∥∥L̂TR
∥∥∥2

L∞t L
2(Σt)

+
∥∥∂∂2B

∥∥2

L∞t L
2(Σt)

)
+Q2

0

.Cball

∥∥∥L̂TR
∥∥∥2

L∞t L
2(Σt)

+ Cball

(
‖∇Ric‖L2(Σt∗ ) + ‖∇2k‖L2(Σt∗ ) + Cball

)2
+ Cball

2.

This finishes the control T1.

Control of T2. By the (anti)-symmetries of the curvature tensor, we have that

T2 := (L̂TR) A B
T T RCTNARCN

TB

= (L̂TR) 1 2
T T

(
RCTN1R

CN
T2 + RCTN2R

CN
T1

)
+ (L̂TR) 1 1

T T

(
RCTN1R

CN
T1 −RCTN2R

CN
T2

)
= (L̂TR) 1 2

T T

(
R1TN1R

1N
T2 + R1TN2R

1N
T1 + R2TN1R

2N
T2 + R2TN2R

2N
T1

)
+ (L̂TR) 1 1

T T

(
R1TN1R

1N
T1 −R1TN2R

1N
T2 + R2TN1R

2N
T1 −R2TN2R

2N
T2

)
.

Given that Rµν = 0, it holds that

R1TN1R
1N

T2 + R1TN2R
1N

T1 + R2TN1R
2N

T2 + R2TN2R
2N

T1

= R1NT1 (R1NT2 + R1TN2) + R2TN2 (R2TN1 + R2NT1)

= R1TN1 (R2TN1 + R1TN2)−R1TN1 (R2TN1 + R2NT1)

= 0,
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and

R1TN1R
1N

T1 −R1TN2R
1N

T2 + R2TN1R
2N

T1 −R2TN2R
2N

T2

= (−R2TN2)(−R2TN2)−R2TN1R2NT1 + R1TN2R1NT2 −R2TN2R2TN2

=0.

Therefore, the term turns out to vanish, that is,

T2 := (L̂TR) A B
T T RCTNARCN

TB = 0.

This finishes our discussion T2.

Control of T3. Recall that

T3 :=(L̂TR) A B
T T DiπjT Ri j

A B .

Using that

πiT = n−1∇in, (A0)0i = −n−1∇in,

together with estimate (5.6) of [KRS15], that is,

‖∂A0‖L∞t L3(Σt) . Q0,

we get by (E.10) and the estimates of the bounded L2-curvature theorem that∫
Mt∗

(L̂TR) A B
T T DiπjT Rj i

A B . ‖L̂TR‖L∞t L2(Σt)‖∂A0‖L∞t L3(Σt)‖R‖L∞t L6(Σt)

.Q0(Q1)2

.Cball

(
‖∇Ric‖L2(Σt∗ ) + ‖∇2k‖L2(Σt∗ ) + Cball

)2
.

This finishes the control of T3.
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1. Introduction
1.1 Einstein vacuum equations
A Lorentzian 4-manifold (M,g) is called a vacuum spacetime if it solves the Einstein vacuum equations

Ric = 0, (1.1)

where Ric denotes the Ricci tensor of the Lorentzian metric g. Expressed in general coordinates, (1.1) is a
non-linear coupled system of partial differential equations of order 2 for g. In so-called wave coordinates,
it can be shown that (1.1) is a system of nonlinear wave equations. It therefore admits an initial value
formulation. Moreover, the characteristic hypersurfaces of these equations are the null hypersurfaces of the
spacetime (M,g).

1.2 The weak cosmic censorship conjecture and the bounded L2

curvature theorem
The global behaviour of solutions to (1.1) is subject to the celebrated conjecture of weak cosmic censorship
formulated by Penrose [Pen69].

Conjecture 1.1 (Weak cosmic censorship conjecture, [Pen69]). For generic initial data, all singularities
forming in gravitational collapse are hidden in a black hole region.

In the seminal work [Chr99], it is shown that the conjecture holds true in the case of spherical symmetry
for Einstein equations coupled with a scalar field. The result relies on the sharp breakdown criterion and
local existence result proved in [Chr93] at the level of data with bounded variation, which is adapted to the
(1 + 1)-setting of spherical symmetry.

In the case of Einstein vacuum equations (1.1) without symmetry, local existence results are naturally
formulated in terms of L2-based function spaces (see the discussion in the introduction of [KRS15]). In this
context, the sharpest known local existence result in terms of regularity of the initial data is the celebrated
bounded L2 curvature theorem (see [KRS15] and the companion papers [Sze12a]–[Sze16]). The following is a
rough statement of that result.

Theorem 1.2 (Bounded L2 curvature theorem, [KRS15]). For initial data to the Einstein equations (1.1)
on a spacelike hypersurface Σ such that the spacetime curvature tensor R is bounded in L2(Σ), there exists a
local Cauchy development that satisfies Einstein equations (1.1).

In the proof [Chr99] of the weak cosmic censorship conjecture in spherical symmetry, it is crucial that the
local existence result in [Chr93] is formulated on null hypersurfaces, in order to highlight a trapped surface
formation mechanism (see [Chr91], [Chr99] and also [LL18] for further discussion).

The aim of the present paper is to initiate the proof of a local existence result for initial data on null
hypersurfaces with no symmetry assumption, assuming only finite L2 curvature. Together with the companion
paper [CG19b], this will amount to a proof of a spacelike-characteristic bounded L2 curvature theorem
that generalises the bounded L2 curvature Theorem 1.2 to the case of initial data posed on a characteristic
hypersurface instead of a spacelike hypersurface (see Section 1.6 for further discussion).

1.3 Null hypersurfaces, foliations and geometry
In various problems, foliating vacuum spacetimes by null hypersurfaces is a powerful tool to capture the
propagation features of the Einstein equations. We refer the reader for example to [CK93], [KRS15], [Sze12a]–
[Sze16], where the spacetimes are foliated by a mixed spacelike-null foliation (one family of null hypersurfaces
and one family of spacelike hypersurfaces), and for example to [Chr09], [KN03], [LR15] where the spacetimes
are foliated by a double null foliation (two families of transversely intersecting null hypersurfaces).

When using mixed spacelike-null foliations, the family of null hypersurfaces is typically determined by
prescribing the corresponding induced foliation on an initial spacelike hypersurface. This is equivalent to
prescribing the values of an optical function u, whose level sets are the null hypersurfaces, on the initial

121



Chapter 1. Introduction

spacelike hypersurface. In particular, the regularity of the induced foliation on the initial spacelike hypersur-
face determines the regularity of the corresponding foliation by null hypersurfaces and hence needs to be
carefully picked depending on the situation (see the different constructions of the optical functions in [CK93]
and in [Sze12a] for example).

The family of spacelike hypersurfaces is itself typically determined by defining them to be maximal hypersur-
faces and fixing their asymptotics towards spacelike infinity or prescribing their finite boundary. In case
of spacelike-null foliations these boundaries can be naturally prescribed by choosing the induced foliation
on an initial null hypersurface, see [Bar84]. Similarly, in double null foliations, the two families of null
hypersurfaces are entirely determined by the foliation they induce on two transversely intersecting initial
null hypersurfaces.

A standard choice of foliation on initial null hypersurfaces is the geodesic foliation (see below for a definition
and [Chr09], [Luk12], [LR15] for examples where this foliation is used as an initial foliation). In more specific
situations, other foliations have to be considered: the so-called canonical foliation on null hypersurfaces
in [KN03] and [Nic04] (see also Definition 1.4) for its additional regularity features, the so-called constant
expansion and constant mass aspect function foliations in [Sau08] to obtain monotonicity properties for the
Hawking mass.

In this paper, we consider foliations on an outgoing truncated null hypersurface H emanating from a spacelike
2-sphere S, given by the level sets Sv of a scalar function v ∈ [1, 2] and we assume that the first leaf of this
foliation coincides with S, i.e. S = Sv=1. Given a null geodesic generator L of H, we define the null lapse Ω
of the foliation (Sv) to be

Ω := Lv.

The geodesic foliation corresponds to Ω = 1 and we call its parameter s. Note that it depends on the choice
of L, which we assume to be fixed, here and in the rest of the paper.
We denote by L the null vector field orthogonal to Sv and transverse to H such that g(L, L) = −2. The
geometry of the foliation (Sv) on H is described by the induced metric g/ on the 2-spheres Sv by g, the
intrinsic null second fundamental form χ, the torsion ζ and the extrinsic null second fundamental form χ,
respectively defined by

χ(X,Y ) := g(DXL, Y ), ζ(X) :=
1

2
g(DXL, L), χ(X,Y ) := g(DX L, Y ),

where X,Y are Sv-tangent vectors and D denotes the covariant derivative on (M,g). The quantities χ, ζ
and χ are called the null connection coefficients. In the following, we often split up χ and χ into their trace
and tracefree parts,

trχ := g/
AB
χAB , χ̂AB := χAB −

1

2
trχg/AB ,

trχ := g/
AB
χ
AB
, χ̂

AB
:= χ

AB
− 1

2
trχg/AB .

Geometrically, the intrinsic second fundamental form χ measures how the spheres Sv and their first funda-
mental form g/ change along H and the extrinsic second fundamental form χ measures how the 2-spheres Sv
change in the null direction transverse to H given by L. In particular, we see that the geometry of hyper-
surfaces emanating from the 2-spheres Sv transversely toH must critically depend on the regularity of χ on Sv.

We also have the following decomposition of the spacetime curvature tensor R into the null curvature
components relative to L and L.

α(X,Y ) := R(X,L, Y, L), β(X) :=
1

2
R(X,L, L, L), ρ :=

1

4
R(L, L, L, L),

σ :=
1

4
∗R(L,L, L, L), β(X) :=

1

2
R(X, L, L, L), α(X,Y ) :=R(L,X, L, Y ),

where X and Y are Sv-tangent vectors. We define the L2 curvature flux through H by

RH :=
(
‖α‖2L2(H) + ‖β‖2L2(H) + ‖ρ‖2L2(H) + ‖σ‖2L2(H) + ‖β‖2L2(H)

)1/2

. (1.2)
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1.4 Regularity of the foliation on H
Our goal in this paper is to provide a local initial foliation (Sv) on H such that the geometry of a family
of hypersurfaces transverse to H emanating from the 2-spheres Sv can be locally controlled under the
assumption of finite L2 curvature flux. One needs to control the intrinsic and extrinsic geometry of the
foliation (Sv), that is, to provide bounds on H for the null lapse Ω, the induced metric g/ and the null
connection coefficients χ, ζ and χ of the foliation (Sv) assuming only a control on the L2 curvature flux.

Here and in the rest of the paper, all quantities specific to the geodesic foliation will be noted with a prime.

In [KR05], the following groundbreaking result is proved for the geodesic foliation.

Theorem 1.3 (Control of the geodesic foliation, [KR05]). Let (M,g) be a vacuum spacetime. Let H be
an outgoing null hypersurface emanating from a spacelike 2-sphere (S, g/) foliated by the geodesic foliation
associated to the affine parameter s going from s|S = 1 to s = 2. Let I ′S denote low regularity norms on
χ′, ζ ′ and χ′ on S (see Section 2.11 for a definition). Assume that

I ′S +R′H ≤ ε.

Then, there exists ε0 > 0 such that if ε < ε0, the following bounds hold∥∥∥∥ trχ′ − 2

s
, χ̂′, ζ ′

∥∥∥∥
H1(H)

. ε,∥∥∥∥ trχ′ +
2

s
, χ̂′
∥∥∥∥
L2(H)

. ε,

where ‖F‖H1(H) := ‖F‖L2(H) + ‖∇/ F‖L2(H) + ‖∇/ LF‖L2(H) (see Definition 2.5). This holds together with

additional, more specific estimates for χ′, ζ ′ and χ′ (see Section 2.11 for further estimates which are used in
this paper, and see [KR05] for the full estimates).

Remarks.

1. The smallness assumption on I ′S implies that the 2-sphere S is close to the Euclidean 2-sphere of radius
1 in a weak sense, and the smallness assumption on R′H implies that the null curvature components
are close to their (trivial) value in Minkowski spacetime in L2 on H.

2. The proof of Theorem 1.3 is obtained by analysing the so-called null structure equations and null
Bianchi equations which are consequences of geometric constraints and the Einstein equations (1.1)
and relate g/

′
, χ′, ζ ′, χ′ to α′, β′, ρ′, σ′, β′, see Sections 2.3 and 2.4 and [CK93] and [KR05] for details.

3. Sharp bilinear and trace estimates and geometric Littlewood-Paley theory are used in the proof of
Theorem 1.3, see also [KR06a] [KR06b] and the subsequent [AS16] [AS14] [Sha14] [Sze12a]–[Sze16]
[Wan09].

4. This theorem gives a local control of the geodesic foliation in terms of the L2 curvature flux. In [AS14,
AS16], a global control on the geodesic foliation was obtained provided that the (weighted) L2 curvature
flux is sufficiently close to Schwarzschild data. In [Wan09], a local control result was obtained when H
is the null cone emanating from a point.

5. The control of the extrinsic coefficients trχ′ and χ̂′ in Theorem 1.3 is significantly weaker than the
control of trχ′ and χ̂′ on H.

One needs bounds for trχ and χ̂ comparable to the ones for trχ and χ̂ in order to control transversely
emanating hypersurfaces. As outlined above, one does not obtain such bounds using the techniques
from [KR05, KR06a, KR06b] in the case of the geodesic foliation.

In the next section we turn to the study of the canonical foliation on H, which was defined in [KN03]
and [Nic04] for its improved regularity features for trχ and χ̂ (see the discussion in [KN99]). Relying on the
same ideas, we can obtain a similar regularity improvement for trχ and χ̂ which is sufficient for the proof

of the spacelike-characteristic bounded L2 curvature theorem in our companion paper [CG19b] (see also
Section 1.6 for more details).
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1.5 The canonical foliation and a first version of the main result
In this section, we introduce the canonical foliation on H. Notation and more precise definitions are given in
Section 2.

Definition 1.4 (Canonical foliation). A foliation (Sv) on H is called canonical foliation, if the null lapse Ω
satisfies

4/ (log Ω) = −div/ ζ + ρ− 1

2
χ̂ · χ̂− ρ+

1

2
χ̂ · χ̂,∫

Sv

log Ω = 0.
(1.3)

where 4/ denotes the induced Laplace-Beltrami operator on Sv, and div/ the divergence operator acting on
Sv-tangent vector fields, ρ and χ̂ · χ̂ denote the average of ρ and χ̂ · χ̂ on Sv respectively.

Remark 1.5. In this paper, we use the definitions for the connection coefficients from [KR05], for this
choice makes the null lapse Ω disappear from the null structure equations (see Section 2.3). This accounts
for the apparent discrepancy with the original canonical foliation definition (see Definition 3.3.2 in [KN03]).

The following is a first version of the main result of this paper, see Theorem 2.36 for the precise version.

Theorem 1.6 (Existence and control of the canonical foliation, version 1). Let (M,g) be a vacuum spacetime.
Let H be an outgoing null hypersurface emanating from a spacelike 2-sphere (S, g/) and foliated by a smooth
geodesic foliation associated to the affine parameter s taking values between s|S = 1 and s = 5/2. Assume
that we have the following bounds

IS +R′H ≤ ε, (1.4)

for the initial data norm IS at S1 and the L2 curvature flux R′H (with respect to the geodesic foliation).
There exists ε0 > 0 such that if ε < ε0, the following holds.

1. L2-regularity. The canonical foliation (Sv) on H is well-defined from v = 1 to 2 and∥∥∥∥ trχ− 2

v
, trχ+

2

v
, χ̂, χ̂, ζ, Ω− 1, ∇/ Ω

∥∥∥∥
H1(H)

. ε, (1.5)

Additional, more specific estimates hold for χ, ζ, Ω and χ (see Theorem 2.36).

2. Higher regularity. The smoothness of the geodesic foliation implies smoothness of the canonical
foliation.

Remarks.

1. In Theorem 1.6, the regularity of trχ and χ̂ is improved compared to Theorem 1.3. In particular,

the regularity of χ is sufficient for the spacelike-characteristic bounded L2 curvature theorem in the
companion paper [CG19b] (see also Section 1.6).

2. The canonical foliation displays better regularity features for χ than the geodesic foliation because of a
simplified transport equation for trχ. More precisely, while in the geodesic foliation it holds that

L(trχ′) +
1

2
trχ′trχ′ =− 2div/ ζ ′ + 2

(
ρ′ − 1

2
χ̂′ · χ̂′

)
+ 2|ζ ′|2

where a low regularity curvature term is present on the right-hand side, in the canonical foliation we
have

L(trχ) +
1

2
trχtrχ = 2ρ− χ̂ · χ̂+ 2|∇/ Ω− ζ|2,

where the right-hand side has improved tangential regularity (see Lemma 2.22). This allows for an
improved control of trχ and subsequently χ̂ on H.

3. The methods in the proof of Theorem 1.6 are reminiscent of [KR05, KR06a, KR06b] and the subsequent
[AS14, AS16], [Sha14] and [Wan09] where the geodesic foliation is studied (see also [Sze12a]–[Sze16]).
A new difficulty that arises in our analysis is that, in contrast to the geodesic foliation where Ω ≡ 1, the
null lapse Ω has only low regularity and hence must be treated with care (see Sections 2, 4, 5 and 6).
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4. The functional calculus tools are listed in Section 3 and are mostly taken from [Sha14], which is
the latest version of the ideas from the groundbreaking [KR05, KR06a, KR06b] (see also [Wan09]
and [Sze12a]–[Sze16]).

5. The quantity IS contains the same norms as I ′S in Theorem 1.3 together with additional norms on trχ′

and χ′ in order for the new bounds to hold. These additional norms are at the same level of regularity
as the required norms for trχ′ and χ̂′.

6. We use that the geodesic connection coefficients are controlled by Theorem 1.3 and that a small change
of foliation leaves the null curvature components, the second fundamental form χ and some geometric
norms essentially invariant (see Sections 2, 4, 5 and 6).

7. The proof of Theorem 1.6 implies in particular that if a given canonical foliation on H has small initial
norm IS at S and small L2 curvature flux RH with respect to the canonical foliation on H, then the
foliation geometry on H is controlled as stated in Theorem 1.6 with IS and RH on the right-hand side.
Since such a formulation would require that the canonical foliation a priori exists, we prefered to state
the smallness assumptions with respect to the geodesic foliation.

1.6 The spacelike-characteristic Cauchy problem of general rela-
tivity in low regularity

Our motivation for the main Theorem 1.6 in this paper is its application to the authors’ spacelike-characteristic
bounded L2 curvature theorem [CG19b]. First we define the volume radius of a Riemannian 3-manifold.

Definition 1.7 (Volume radius). Let (Σ, g) be a Riemannian 3-manifold with boundary, and let r > 0 be a
real number. The volume radius of Σ at scale r is defined by

rvol(Σ, r) := inf
p∈Σ

inf
0<r′<r

volg(Bg(p, r
′))

(r′)3
,

where Bg(p, r
′) denotes the geodesic ball of radius r′ centred at p ∈ Σ.

Theorem 1.8 (The spacelike-characteristic bounded L2 curvature theorem, [CG19b]). Consider smooth
initial data for the Einstein vacuum equations posed on a maximal spacelike hypersurface Σ ' B ⊂ R3 and
the outgoing null hypersurface H emanating from S := ∂Σ. Assume that for some ε > 0,

IS +R′H ≤ ε, ‖Ric‖L2(Σ) ≤ ε, ‖k‖L2(Σ) + ‖∇k‖L2(Σ) ≤ ε,
rvol(Σ, 1/2) ≥ 1/4, volg(Σ) <∞,

where the initial foliation geometry IS and the L2 curvature flux R′H are the same as in Theorem 1.6, and
Ric and k denote the Ricci tensor and second fundamental form of Σ ⊂M. Then:

1. L2-regularity. There is a universal constant ε0 > 0 such that if 0 < ε < ε0, then the maximal globally
hyperbolic development of (M,g) contains a future region of Σ ∪ H which is foliated by maximal
spacelike hypersurfaces Σt given as level sets of a time function t such that Σ1 = Σ and

∂Σt = St on H,

where (St)1≤t≤2 is the canonical foliation on H, and the following control holds for 1 ≤ t ≤ 2,

‖Ric‖L∞t L2(Σt) . ε, ‖k‖L∞t L2(Σt) + ‖∇k‖L∞t L2(Σt) . ε,

inf
1≤t≤2

rvol(Σt, 1/2) ≥ 1

8
, volg(Σt) <∞.

2. Higher regularity. Smoothness is propagated from initial data into M up to t = 2.

Remarks.

1. In the proof of Theorem 1.8, the boundary regularity of the hypersurfaces Σt is directly related to
the regularity of the canonical foliation (Sv) on H. More specifically, for the control of k on ∂Σt, it is
necessary to have a control for ∥∥∥∥ trχ− 2

v
, trχ+

2

v
, ζ

∥∥∥∥
L∞v H

1/2(Sv)

.

These estimates are obtained by H1(H) to H1/2(Sv) trace estimates and the H1(H) estimates (1.5) of
Theorem 1.6.
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2. In addition to the estimates of this paper, the proof of Theorem 1.8 relies on the bounded L2 curvature
theorem [KRS15], the extension procedure for the constraint equations [Czi18], Cheeger-Gromov
convergence theory on manifolds (with boundary) in low regularity [Czi19a, Czi19b], and global
estimates for maximal spacelike hypersurfaces.

1.7 Overview of the proof of Theorem 1.6
1.7.1 The null structure equations
General properties of the Riemann curvature tensor together with Einstein vacuum equations (1.1) imply
that the induced metric g/, the null lapse Ω and the null connection coefficients χ, ζ and χ for a general
foliation of H by 2-spheres Sv satisfy a system of null structure equations on H, which is the following system
of coupled quasilinear transport and elliptic equations (see [CK93, pp. 168–170]):

the first variation transport equation for g/

L/ Lg/ = 2χ, (1.6a)

the second variation transport equations for χ, χ, ζ

∇/ Ltrχ+
1

2
(trχ)2 = −|χ̂|2, (1.6b)

∇/ Lχ̂+ trχχ̂ = −α, (1.6c)

∇/ Ltrχ+
1

2
trχtrχ = −2div/ ζ − 24/ (log Ω) + 2

(
ρ− 1

2
χ̂ · χ̂

)
+ 2|ζ +∇/ log Ω|2, (1.6d)

∇/ Lχ̂+
1

2
trχχ̂ = −∇/ ⊗̂ζ − (∇/ ⊗̂∇/ ) log Ω− 1

2
trχχ̂+ n.l.t. , (1.6e)

∇/ Lζ + trχζ = −1

2
trχ∇/ log Ω− β + n.l.t. , (1.6f)

the Hodge-type elliptic equations for ζ

div/ ζ = −ρ− µ+ n.l.t. ,

curl/ ζ = σ + n.l.t. ,
(1.6g)

the transport equation for the mass aspect function µ

∇/ Lµ+
3

2
trχµ =

1

2
trχ4/ log Ω + n.l.t. , (1.6h)

the Hodge-type elliptic Codazzi equations for χ̂ and χ̂

div/ χ̂ =
1

2
∇/ trχ− ζ · χ̂+

1

2
ζtrχ− β, (1.6i)

div/ χ̂ =
1

2
∇/ trχ+ ζ · χ̂− 1

2
ζtrχ+ β, (1.6j)

and the Gauss equation for the Gauss curvature K of the 2-spheres Sv

K = −1

4
trχtrχ− ρ+

1

2
χ̂ · χ̂, (1.6k)

where n.l.t. denotes (additional) nonlinear error terms.

The system of null structure equations has the null curvature components α, β, ρ, σ, β as source terms. Using

the initial small L2-bound (1.4), and provided that the foliation (Sv) is close to the geodesic foliation (S′s) of
H, one can obtain the following L2-control of the null curvature components

‖α‖2L2(H) + ‖β‖2L2(H) + ‖σ‖2L2(H) + ‖ρ‖2L2(H) +
∥∥β∥∥2

L2(H)
. ε2. (1.7)

Our goal is to estimate the induced metric g/ and the null connection coefficients χ, χ, ζ, ∇/ ≤1Ω using the
null structure equations (1.6), the bound (1.7) on the null curvature source terms, and bounds from the
regularity assumptions at the sphere S1 = Σ ∩H.1

1Bounds for g/ and the null connection coefficients on the first sphere S1 are needed when integrating the transport equation
in the L-direction.
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1.7.2 Linear estimates and the geodesic foliation case
Estimates can only be obtained when (an equation for) the null lapse Ω is fixed –i.e. once the foliation has
been chosen.2 Let first assume that the geodesic foliation choice Ω = 1 has been made and try to obtain the
desired H1(H) estimates for ζ, trχ and trχ at the linear level. Using equation (1.6f) for ∇/ Lζ, taking the

L2(H)-norm and using the bound (1.7), one obtains

‖∇/ Lζ‖L2(H) . ‖β‖L2(H) + l.o.t.

. ε,
(1.8)

provided that the lower order terms are controlled. Using the Hodge-type elliptic equation (1.6g) for ζ, the
bound (1.7) and an appropriate elliptic energy estimate, one obtains

‖∇/ ζ‖L2(H) + ‖ζ‖L2(H) . ‖ρ‖L2(H) + ‖σ‖L2(H) + ‖µ‖L2(H)

. ε+ ‖µ‖L2(H) .
(1.9)

Using the transport equation (1.6h) for the mass aspect function µ at the linear level and integrating in the
L-direction one deduces that

‖µ‖L2(H) . ‖µ‖L∞v L2(Sv)

. ‖µ‖L2(S1) + ‖4/ log Ω‖L1
vL

2(Sv)

. ε,

(1.10)

since Ω = 1 and where we used the initial control (1.4) on the sphere S1. Using the bounds (1.8), (1.9)
and (1.10), we deduce that

‖ζ‖H1(H) . ε,

which gives the desired estimate for ζ.

We turn to obtaining the same estimate for trχ. One does not have an elliptic equation of the type (1.6g) by
which the tangential derivatives of trχ would be controlled in L2(H). Fortunately, there are no curvature
source terms in the transport equation (1.6b) for trχ. Commuting this transport equation with a tangential
derivative ∇/ , one thus obtains that ∇/ L∇/ trχ are only lower order terms. Integrating this equation in the
L-direction we therefore have

‖∇/ trχ‖L∞v L2(Sv) . ‖∇/ trχ‖L2(S1) + l.o.t. . ε, (1.11)

where we used the initial control (1.4) for ∇/ trχ on S1 and provided that the lower order terms are controlled.
Estimating ∇/ Ltrχ is done by a direct inspection of equation (1.6b) and we deduce the desired H1(H) (and
L∞v H

1(Sv)) control for trχ.

For the null component trχ, one does not have an elliptic equation of the type (1.6g). One can only rely on
the transport equation (1.6d). Unlike in the transport equation (1.6b) for trχ, there are curvature and high
order source terms to equation (1.6d), which namely reads at the linear level and when Ω = 1

∇/ Ltrχ = 2ρ− 2div/ ζ + l.o.t.

To obtain an H1(H) control of trχ, one would need to control the null curvature term ρ and the high order

term div/ ζ at an L1
vH

1(Sv) level.3 Such a control cannot be obtained with the assumed L2(H) regularity (1.7)
for the curvature. The geodesic foliation choice thus fails – at the linear level – to provide the required
regularity for the study of the spacelike-characteristic bounded L2 curvature theorem.

The canonical foliation choice (1.3) is designed so that the transport equation (1.6d) for trχ writes

∇/ Ltrχ+
1

2
trχtrχ = 2ρ− χ̂ · χ̂+ 2|∇/ log Ω + ζ|2, (1.12)

where it should be noted that the higher order terms on the right-hand side are now constant in the tangential
direction. By commuting the transport equation (1.12) with tangential derivatives, we therefore deduce
that at the linear level ∇/ L∇/ trχ is only composed of lower order terms. Arguing as for the null connection

coefficient trχ, one can then obtain the desired H1(H) estimate for trχ.

2As for Einstein vacuum equations, the system of null structure equations (1.6) is determined only up to a gauge choice,
which in this case geometrically corresponds to a choice of foliation on H.

3The (weaker) L∞v H
1/2(Sv) control required in the proof of Theorem 1.8 would also require higher regularity than bounded

L2 curvature.
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1.7.3 Construction and control of the canonical foliation
In this section, we give a sketch of proof for the existence and control from v = 1 to v = 2 of the canonical
foliation (Sv) and – motivated by the study of the linear case in Section 1.7.2 – for the obtention of the
desired H1(H) estimates for its null connection coefficients.

Using the smooth background geodesic foliation, this reduces to proving that solutions to the quasilinear sys-
tem of transport and elliptic null structure equations (1.6) together with the additional elliptic equation (1.3)
for the null lapse Ω exist and remain controlled from v = 1 to v = 2. This time 1 existence result has to
be obtained using only low regularity smallness assumptions on the initial sphere S1 and the L2-smallness
assumption (1.7) on the null curvature source terms.

The proof of Theorem 1.6 thus goes by a standard continuity argument relying on bootstrap assumptions for
the estimates (1.5), on propagation of regularity, and on an higher regularity local existence and continuation
result. In the rest of this section, we shall review the key elements for the improvement of the bootstrap
assumptions.

To improve the set of bootstrap assumptions for estimates (1.5), we have to show that we can estimate the
H1(H) norms of the null connection coefficients one-by-one in a suitable order by the L2(H) norm of the
null curvature components. This virtually amounts to a triangularisation of the system of null structure
equations (1.6) and (1.3). It has to take into account the presence of a non-trivial null lapse Ω and differs from
the geodesic foliation case studied in [KR05] because of the intertwined equations for ζ, µ and log Ω (1.6f),
(1.6g), (1.6h) and (1.3).

Provided that this can be done, we obtain the desired H1(H) control (1.5) for the null connection coefficients
arguing as in the linear case of Section 1.7.2, using standard elliptic energy estimates, (deriving) and
integrating the transport equations. Here the improved form of the transport equation for trχ (1.12), which

is a consequence of the canonical foliation choice, is crucial to establish the desired H1 estimate for trχ (and

subsequently the desired H1 control of χ̂).

The main difficulty is to control the nonlinear error terms arising in the null structure transport equa-
tions (1.6b), (1.6h) and (1.12) using only the low regularity smallness assumptions on the initial sphere
S1 and the L2-smallness assumption (1.7). Integrating these equations in the L-direction and taking the
L2-norm in the tangential direction requires to deal with error terms of the form∥∥∥∥∫ 2

1

A ·R dv

∥∥∥∥
L2(S)

(1.13)

where A denotes the null connection coefficients trχ − 2
v , χ̂, ζ and ∇/ Ω and where R is only bounded in

L2(H) (such as the null curvature components). Using Hölder estimates, the control of (1.13) is achieved
provided that the following crucial geometric trace norms estimates for χ̂, ζ and ∇/ Ω

sup
ω∈S

∫ 2

1

|χ̂(v, ω)|2 dv + sup
ω∈S

∫ 2

1

|ζ(v, ω)|2 dv + sup
ω∈S

∫ 2

1

|∇/ Ω(v, ω)|2 dv . ε2, (1.14)

and the following uniform bound for trχ ∥∥∥∥trχ− 2

v

∥∥∥∥
L∞(H)

. ε, (1.15)

can be obtained.4

In the case of the geodesic foliation, the control of the geometric trace norms for χ̂ and ζ was obtained in
the seminal series of papers [KR05] [KR06a] [KR06b]. This required to prove sharp bilinear estimates for
transport equations, using Besov spaces and Littlewood-Paley calculus, and therefore to make sense to a
Littlewood-Paley theory for tensors on the 2-spheres S′s relying only on low regularity geometric estimates
(see [KR06a], [KR06b] and also [Sha14]). In this paper, we obtain the bounds for the corresponding con-
nection coefficients χ̂ and ζ in the canonical foliation using a comparison argument with the background
geodesic foliation, taking advantage of the estimates proved for the geodesic foliation in [KR05]. This uses

4Note that estimate (1.15) follows from estimate (1.14) for χ̂ by integrating the transport equation (1.6b).
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that the null curvature fluxes, the geometric norms and the null connection coefficients χ and ζ are essentially
invariant if the two foliations are close in an appropriate sense.

Obtaining the last geometric trace norm estimate

sup
ω∈S

∫ 2

1

|∇/ Ω(v, ω)|2 dv . ε2

is the most delicate point of our analysis.5 To this end, we highlight that equation (1.3) displays the
appropriate structure to apply the sharp bilinear estimate theorem of [KR06b]. Applying this theorem
requires to use the geometric Littlewood-Paley theory and geometric Besov spaces developed in [Sha14].

1.8 Organisation of the paper
We outline the organisation and give a reading order suggestion.

� In Section 2, we collect definitions and formulas which are used in this paper. We also state and prove
the main theorem, provided that bootstrap assumptions can be improved, higher regularity/smoothness
of the canonical foliation can be propagated on H and local existence for the canonical foliation can be
obtained.

� In Section 3, we state the key functional results in low regularity which are taken from [Sha14].

� In Section 4, we obtain the improvement of (low regularity) bootstrap assumptions on H.

� In Section 5, we show that higher regularity/smoothness of the geodesic foliation implies higher
regularity/smoothness of the canonical foliation.

� In Section 6, we prove a local existence and continuation result for the canonical foliation.

� In Appendices A and B, we prove auxiliary formulas and functional estimates.

5This estimate is also the key to close the aforementioned comparison argument.
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2. Geometric setup and main results
In this section, we introduce the geometric setup of this paper, give a precise statement of our main result
(see Section 2.12) as well as a proof, assuming that the results from Sections 3, 4, 5, 6 can be obtained.

2.1 Foliations on null hypersurfaces
In this section, we set up foliations on null hypersurfaces following the notations (and normalisations) of
[KR05]. Let (M,g) be a Lorentzian 4-manifold and let S ⊂M be a spacelike 2-sphere. Let H denote the
outgoing null hypersurface emanating from S.

Definition 2.1 (Geodesic foliation on H). Let L be an H-tangential null vector field on S orthogonal to S.
Extend L as null geodesic vector field onto H. Define the affine parameter s of L on H by

Ls = 1 on H, s|S = 1.

Denote the level sets of s by

S′s0 = {s = s0}

and denote the geodesic foliation by (S′s).

Definition 2.2 (General foliations on H). Let v be a given scalar function on H. We denote the level sets
of v by

Sv0 = {v = v0},

and the foliation by (Sv). We define the null lapse Ω of (Sv) on H by

Ω := Lv. (2.1)

Definition 2.3 (Orthonormal null frame). Let (Sv) be a foliation on H. Let L be the unique null vector
field on H orthogonal to the 2-spheres Sv and such that g(L,L) = −2. The pair (L, L) is called a null
pair for the foliation (Sv). Let (e1, e2) be an orthonormal frame tangential to the 2-spheres Sv. The frame
(L, L, e1, e2) is called an orthonormal null frame for the foliation (Sv).

Remark 2.4. Let (Sv) be a foliation on H, (L, L) an associated null pair and X an H-tangent vector field.
Decomposing X onto an orthonormal null frame for the foliation (Sv) and using (2.1) we have

Xv = −1

2
Ωg(L,X). (2.2)

Definition 2.5. Let (Sv) be a foliation on H. We denote by g/ and ∇/ the induced Riemannian metric and
covariant derivative on the 2-spheres Sv and define for any Sv-tangential k-tensor T the derivative ∇/ LT by

∇/ LTA1...Ak := Π β1

A1
· · ·Π βk

Ak
DLTβ1...βk ,

where Π denotes the projection operator onto the tangent space of S, D is the covariant derivative on (M,g)
and we tacitly use, as in the rest of this paper, the Einstein summation convention.

Here and in the following, indices A,B,C,D,E ∈ {1, 2} denote evaluation of Sv-tangent tensors on the
components (e1, e2) of an orthonormal frame (L, L, e1, e2) for the foliation (Sv).

Definition 2.6 (Null connection coefficients). We define the null connection coefficients, to be the Sv-tangent
tensors such that

χAB := g(DAL, eB), χ
AB

:= g(DA L, eB),

ζA :=
1

2
g(DAL, L), η

A
:=

1

2
g(DL L, eA),

(2.3)

Lemma 2.7. The connection coefficients η and ζ and the null lapse Ω verify

η = −ζ −∇/ (log Ω). (2.4)
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Proof. Using equations (2.1) and (2.2), we have

η
A

= −1

2
g(L,DLeA)

= −1

2
g(L,DAL)− 1

2
g(L, [L, eA])

= −ζA + Ω−1[L, eA](v)

= −ζA −∇/ A(log Ω),

as desired.

We have the following relations between covariant derivatives and null connection coefficients (see [CK93]),

DLL = 0, DL L = 2η
A
eA,

DAL = χABeB − ζAL, DA L = χ
AB
eB + ζA L

DLeA = ∇/ LeA + η
A
L, DAeB = ∇/ AeB +

1

2
χAB L+

1

2
χ
AB
L.

(2.5)

If the orthonormal null frame is such that ∇/ LeA = 0, we call it Fermi propagated.

We have the following decomposition of χ and χ into their trace and tracefree parts

trχ := g/
AB
χAB , χ̂AB := χAB −

1

2
trχg/AB ,

trχ := g/
AB
χ
AB
, χ̂

AB
:= χ

AB
− 1

2
trχg/AB .

Definition 2.8 (Null curvature components). We define the null curvature components to be the Sv-tangent
tensors such that

αAB := R(L, eA, L, eB), βA :=
1

2
R(eA, L, L, L),

ρ :=
1

4
R(L,L, L, L), σ :=

1

4
∗R(L,L, L, L),

β
A

:=
1

2
R(eA, L, L, L), αAB := R(L, eA, L, eB),

where ∗R denotes the Hodge dual of R, given by ∗Rαβγδ = 1
2∈αβµνR

µν
γδ, with ∈ the volume form associated

to the metric g.

2.2 Tensor calculus on 2-spheres
We introduce the following notation.

Definition 2.9 (Hodge duals). For a Sv-tangent 1-tensor φ, we define its left Hodge dual by

∗φA :=∈/ABφB ,

where ∈/AB :=∈ABLL. Similarly, for a Sv-tangent symmetric 2-tensor φ, let

∗φAB :=∈/ACφCB .

Definition 2.10 (Sv-tangent tensor calculus). For Sv-tangent r-tensors φ, φ(1) and φ(2), we define

φ(1) · φ(2) := g/
A1B1 · · · g/ArBrφ(1)

A1···Arφ
(2)
B1···Br , |φ|

2 = φ · φ,

and

div/ φA2···Ar := g/
AB∇/ AφBA2···Ar curl/ φA2···Ar =∈/AB∇/ AφBA2···Ar .

For a 1-form φ, we define

(∇/ ⊗̂φ)AB := ∇/ AφB +∇/ BφA − div/ g/AB .
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For 1-forms φ(1) and φ(2) we define

(φ(1)⊗̂φ(2))AB :=φ
(1)
A φ

(2)
B + φ

(1)
B φ

(2)
A − g/ABφ

(1) · φ(2),

φ(1) ∧ φ(2) := ∈/ABφ(1)
A φ

(2)
B .

For symmetric 2-tensors φ(1) and φ(2) we define the wedge product,

(φ(1) ∧ φ(2)) :=∈/ABg/CDφ(1)
ACφ

(2)
BD.

2.3 Null structure equations on H
The Einstein vacuum equations (1.1) induce the following null structure equations on H, see ([CK93], pp.
168-170). We have the first variation equation,

L/ Lg/ = 2χ,

the null transport equations,

∇/ Ltrχ+
1

2
(trχ)2 = −|χ̂|2,

∇/ Lχ̂+ trχχ̂ = −α,

∇/ Ltrχ+
1

2
trχtrχ = 2div/ η + 2ρ− χ̂ · χ̂+ 2|η|2,

∇/ Lχ̂+
1

2
trχχ̂ = (∇/ ⊗̂η)− 1

2
trχχ̂+ (η⊗̂η),

∇/ Lζ +
1

2
trχζ =

1

2
trχη − χ̂ · (ζ − η)− β,

the torsion equation,

curl/ η = −curl/ ζ = −σ +
1

2
χ̂ ∧ χ̂,

and the Gauss-Codazzi equations,

K = −1

4
trχtrχ− ρ+

1

2
χ̂ · χ̂,

div/ χ̂− 1

2
∇/ trχ = −ζ · χ̂+

1

2
ζtrχ− β,

div/ χ̂− 1

2
∇/ trχ = ζ · χ̂− 1

2
ζtrχ+ β,

where K denotes the Gauss curvature of Sv.

Remark 2.11. Only the trace and the symmetrised traceless part of the transport equation for χ are stated
in [CK93]. By rederiving the equation, or simply using the null transport equation for the traced and the
symmetrised traceless tensor together with the torsion equation, one has more generally the following transport
equation for the full tensor χ

∇/ LχAB + χACχCB = 2∇/ AηB + 2η
A
η
B

+ ρg/AB + σ ∈/AB .

Remark 2.12. Similarly, only the divergence part of Codazzi equations are stated in [CK93]. By rederiving
the equation, or simply using the Gauss-Codazzi equation for div/ χ̂, more generally it holds that

curlχ = −ζ · ∗χ̂+
1

2
trχ ∗ζ − ∗β.
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2.4 Null Bianchi identities on H
The Einstein vacuum equations (1.1) further yield the following null Bianchi identities on H, see ([CK93], p.
161).

∇/ Lα+
1

2
trχα =− (∇/ ⊗̂β)− 3χ̂ρ+ 3 ∗χ̂σ + ((ζ − 4η)⊗̂β), (2.7a)

∇/ Lβ + trχβ =−∇/ ρ+ ∗∇/ σ + 2χ̂ · β − 3ηρ+ 3 ∗ησ, (2.7b)

∇/ Lρ+
3

2
trχρ =div/ β − 1

2
χ̂ · α+ ζ · β + 2η · β, (2.7c)

∇/ Lσ +
3

2
trχσ =− curl/ β +

1

2
χ̂ ∧ α− ζ ∧ β − 2η ∧ β, (2.7d)

∇/ Lβ + 2trχβ =div/ α+ (2ζ + η) · α. (2.7e)

Definition 2.13 (Renormalised null curvature components). Let the renormalised curvature components ρ̌,
σ̌, β̌ be

ρ̌ := ρ− 1

2
χ̂ · χ̂, σ̌ := σ − 1

2
χ̂ ∧ χ̂, β̌ := β + 2χ̂ · ζ. (2.8)

We have the following transport equations for ρ̌, σ̌ and β̌.

Lemma 2.14. The renormalised null curvature component ρ̌, σ̌ and β̌ satisfy

∇/ Lρ̌+
3

2
trχρ̌ =div/ β + ζ · β + 2η · β − 1

2
(∇/ ⊗̂η) · χ̂+

1

4
trχ|χ̂|2 − 1

2
(η ⊗ η) · χ̂, (2.9a)

∇/ Lσ̌ +
3

2
trχσ̌ =− curl/ β − ζ ∧ β − 2η ∧ β − 1

2
χ̂ ∧ (∇/ ⊗̂η)− 1

2
χ̂ ∧ (η ⊗ η) (2.9b)

∇/ Lβ̌ + trχβ̌ =−∇/ ρ+ ∗∇/ σ + 2(∇/ ⊗̂η) · ζ − 3ηρ+ 3 ∗ησ (2.9c)

− trχζ · χ̂+ trχη · χ̂+ 2ζ · (η⊗̂η)− 2χ̂ · χ̂ · (ζ − η).

Proof. From p. 14 in [KR05], we have the first two equations. Using Bianchi equation (2.7b) and the null
structure equation for χ̂ and ζ from Section 2.3, we have

∇/ Lβ̌ + trχβ̌ =∇/ Lβ + trχβ + 2

(
∇/ Lχ̂+

1

2
trχχ̂

)
· ζ + 2χ̂ ·

(
∇/ Lζ +

1

2
trχζ

)
=−∇/ ρ+ ∗∇/ σ + 2χ̂ · β − 3ηρ+ 3 ∗ησ

+ 2ζ ·
(
∇/ ⊗̂η − 1

2
trχχ̂+ η⊗̂η

)
+ 2χ̂ ·

(
1

2
trχη − χ̂ · (ζ − η)− β

)
=−∇/ ρ+ ∗∇/ σ + 2(∇/ ⊗̂η) · ζ − 3ηρ+ 3 ∗ησ

− trχζ · χ̂+ trχη · χ̂+ 2ζ · (η⊗̂η)− 2χ̂ · χ̂ · (ζ − η),

as desired.

2.5 Commutation formulas on H
The next proposition follows from p. 159 in [CK93].

Proposition 2.15 (Commutation formulas). For an Sv-tangent r-tensor φ, it holds that

[∇/ L,∇/ B ]φA1···Ar =− 1

2
trχ∇/ BφA1···Ar − χ̂BC∇/ CφA1···Ar + (η

B
+ ζB)∇/ LφA1···Ar

+

r∑
i=1

(χAiBηC − χBCηAi+ ∈/AiC
∗βB)φA1···C···Ar .

(2.10)
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For an Sv-tangent 1-form φ, it holds that

[∇/ L,div/ ]φ =− 1

2
trχdiv/ φ− χ̂ · ∇/ φ+ (η + ζ) · ∇/ Lφ (2.11)

+ trχη · φ− η
A
φCχAC + β · φ, ,

[∇/ A,4/ ]φB =− 3K∇/ AφB + 2g/ABKdiv/ φ+ 2 ∈/ABKcurl/ φ (2.12)

+ g/ABφ ·K − φA∇/ BK.

where K denotes the Gauss curvature of Sv. For a scalar function φ, it holds that

[∇/ L,∇/ B ]φ =− 1

2
trχ∇/ Bφ− χ̂BC∇/ Cφ+ (η

B
+ ζB)Lφ, (2.13)

[∇/ L,4/ ]φ =− trχ4/ φ− 2χ · ∇/ 2φ+ (η + ζ) · (∇/ ∇/ L +∇/ L∇/ )φ (2.14)

+ (trχη − div/ χ) · ∇/ φ− η
A
χAB∇/ Bφ

+ (div/ η + div/ ζ)∇/ Lφ+ β · ∇/ φ,
[∇/ A,4/ ]φ =−K∇/ Aφ. (2.15)

Proposition 2.16. For any scalar function f on H, it holds that

Ω−1L
(
f
)

= Ω−1Lf + Ω−1trχf − Ω−1trχ · f,

where f denotes the mean value of f on Sv.

Proof. Using the null structure equations from Section 2.3, we have

Ω−1L

(∫
Sv

f

)
=

d

dv

(∫
Sv

f

)
=

∫
Sv

Ω−1 (Lf + trχf) .

We therefore deduce

Ω−1L(f) =− Ω−1L (log (|Sv|)) f + Ω−1 (Lf + trχf)

=− Ω−1trχ · f + Ω−1 (Lf + trχf),

where |Sv| denotes the area of Sv. This proves the desired result.

2.6 The mass aspect function on H
Definition 2.17. Let the mass aspect function µ on H be defined by

µ :=− ρ̌− div/ ζ. (2.16)

We have the following transport equation for µ.

Lemma 2.18. The mass aspect function µ verifies

L(µ) + trχµ =
1

2
trχρ̌− 1

2
trχdiv/ η − 2ζ · β + (ζ − η) · ∇/ trχ+ χ̂ · ∇/ ζ

+
1

2
χ̂ · ∇/ η + trχ

(
|ζ|2 − ζ · η − 1

2
|η|2
)
− 1

4
trχ|χ̂|2

+ 2χ̂ · ζ · η − 1

2
χ̂ · η · η.

Proof. Using the transport equation for ζ from the null structure equations from Section 2.3 and commutation
formula (2.11), we have

L(div/ ζ) =div/ ∇/ Lζ + [∇/ L,div/ ]ζ

=div/

(
− 1

2
trχζ +

1

2
trχη − χ̂ · (ζ − η)− β

)
− 1

2
trχdiv/ ζ − χ̂ · ∇/ ζ + (η + ζ) · ∇/ Lζ + trχη · ζ − η · ζ · χ+ β · ζ

=− trχdiv/ ζ +
1

2
trχdiv/ η − div/ β + F1,
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where

F1 :=− 1

2
ζ · ∇/ trχ+

1

2
η · ∇/ trχ− div/ χ̂ · (ζ − η)− χ̂ · (∇/ ζ −∇/ η)

− χ̂ · ∇/ ζ + (η + ζ) ·
(
− 1

2
trχζ +

1

2
trχη − χ̂ · (ζ − η)− β

)
+ trχη · ζ − η · ζ · χ+ β · ζ.

From the above and transport equation (2.9a) for ρ̌, we have

L(µ) + trχµ =− L(ρ̌)− trχρ̌− L(div/ ζ)− trχdiv/ ζ

=
3

2
trχρ̌− div/ β + F2 − trχρ̌

− 1

2
trχdiv/ η + div/ β − F1

=
1

2
trχρ̌− 1

2
trχdiv/ η + F2 − F1,

where the nonlinear term F2 is given by

F2 := −ζ · β − 2η · β +
1

2
(∇/ η) · χ̂− 1

4
trχ|χ̂|2 +

1

2
η · η · χ̂.

Rearranging the nonlinear term F2 − F1 then gives the desired result.

2.7 The canonical foliation on H
Definition 2.19 (Canonical foliation). Let H be an outgoing null hypersurface emanating from a spacelike
2-sphere S. A foliation (Sv) of H is called a canonical foliation if the null lapse Ω satisfies the following
elliptic equation on the leaves Sv

4/ (log Ω) = −div/ ζ + ρ̌− ρ̌,∫
Sv

log Ω = 0,
(2.17)

where ρ̌ is the average of ρ̌ on the 2-sphere Sv.
In the following, we will moreover consider canonical foliations with v|S = 1.

Remark 2.20. Using (2.16), the elliptic equation (2.17) can also be rewritten

4/ (log Ω) = −2div/ ζ − µ+ µ,

= 2(ρ̌− ρ̌) + µ− µ.
(2.18)

Notation. From now on, primed quantities on H will correspond to the geodesic foliation of H, while
unprimed quantities correspond to the canonical foliation. Moreover, we call S1 = S = S′1.

As a first consequence of Definition 2.19, we note that in a canonical foliation, the quantities η and trχ
satisfy the following equations.

Lemma 2.21. In a canonical foliation, η satisfies the following equation

div/ η = −ρ̌+ ρ̌. (2.19)

Proof. Using relation (2.4) and the elliptic equation (2.17), we have

div/ η = −div/ ζ −4/ (log Ω)

= −ρ̌+ ρ̌,

as desired.

Lemma 2.22. In a canonical foliation, trχ satisfies the next null transport equation

L(trχ) +
1

2
trχtrχ = 2ρ̌+ 2|η|2. (2.20)
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Proof. Using the transport equation for trχ from Section 2.3 and relation from Lemma 2.21, we have

L(trχ) +
1

2
trχtrχ = 2div/ η + 2ρ̌+ 2|η|2

= 2ρ̌+ 2|η|2,

as desired.

Lemma 2.23. In a canonical foliation, the transport equation for the mass aspect function can be written
in the following form

L(µ) + trχµ =trχρ̌− 1

2
trχρ̌− 2ζ · β + (ζ − η) · ∇/ trχ+ χ̂ · ∇/ ζ

+
1

2
χ̂ · ∇/ η + trχ

(
|ζ|2 − ζ · η − 1

2
|η|2
)
− 1

4
trχ|χ̂|2

+ 2χ̂ · ζ · η − 1

2
χ̂ · η · η.

(2.21)

For convenience, we summarise the full null structure equations in a canonical foliation

L/ Lg/ = 2χ, (2.22a)

∇/ Ltrχ+
1

2
(trχ)2 = −|χ̂|2, (2.22b)

∇/ Lχ̂+ trχχ̂ = −α, (2.22c)

∇/ Lχ+ χ · χ = 2∇/ η + 2η η + ρg/ + σ ∈/, (2.22d)

∇/ Ltrχ+
1

2
trχtrχ = 2ρ̌+ 2|η|2, (2.22e)

∇/ Lχ̂+
1

2
trχχ̂ = (∇/ ⊗̂η)− 1

2
trχχ̂+ (η⊗̂η), (2.22f)

∇/ Lζ +
1

2
trχζ =

1

2
trχη + χ̂ · (η − ζ)− β, (2.22g)

curl/ η = −curl/ ζ = −σ̌, (2.22h)

K = −1

4
trχtrχ− ρ̌, (2.22i)

div/ χ̂− 1

2
∇/ trχ = −ζ · χ̂+

1

2
ζtrχ− β, (2.22j)

div/ χ̂− 1

2
∇/ trχ = ζ · χ̂− 1

2
ζtrχ+ β, (2.22k)

div/ η = −ρ̌+ ρ̌, (2.22l)

curlχ = −ζ · ∗χ̂+
1

2
trχ ∗ζ − ∗β, (2.22m)

4/ (log Ω) = −div/ ζ + ρ̌− ρ̌. (2.22n)

2.8 Comparison of foliations
In this section, we derive equations that are used to compare a geodesic foliation and a canonical foliation
starting from a common sphere S.
We first introduce the derivative of the geodesic parameter s in the canonical foliation.

Definition 2.24. We define the Sv-tangent 1-form Υ to be

Υ := ∇/ s.

We have the following proposition.

Proposition 2.25 (Null frame comparison). Let (e′A)A=1,2 and (eA)A=1,2 be Fermi propagated null frames
respectively for the geodesic and the canonical foliation, such that e′A = eA on S. For A = 1, 2, it holds that

eA
′ = eA −ΥAL, (2.23)

and

L′ = L− 2ΥAeA + |Υ|2L. (2.24)
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Proof. It is straight-forward to verify that the vectors eA −ΥAL, A = 1, 2, are S′s-tangent vector fields that
coincide with eA

′ on S. Moreover, for any X ∈ TS′s, we have

g(X,DL(eA −ΥAL)) = g(X, η
A
L− L(ΥA)L)

= 0.

Thus, the vectors eA −ΥAL are Fermi propagated with respect to the geodesic foliation and we deduce that
they coincide with eA

′ on H.

One then directly checks that the vector field

Z := L− 2ΥAeA + |Υ|2L

satisfies g(Z, eA
′) = g(Z,Z) = 0 and g(Z,L) = −2.

We have the following definition of the projection of tensors from one foliation to another, see also Section
2.2 in [AS16].

Definition 2.26. Let φ′ be a S′s-tangent r-tensor. We define the projection (φ′)† to be the Sv-tangent
r-tensor defined by

(φ′)†A1···Ar = (φ′)†
(
eA1

, · · · , eAr
)

:= φ′
(
e′A1

, · · · , e′Ar
)

= φ′A1···Ar . (2.25)

Reciprocally, for φ a Sv-tangent r-tensor, we define the projection (φ)‡ to be the S′S-tangent r-tensor defined
by

(φ)‡A1···Ar = (φ)‡
(
e′A1

, · · · , e′Ar
)

:= φ
(
eA1

, · · · , eAr
)

= φA1···Ar . (2.26)

We introduce the following projection of Υ.

Definition 2.27. We define the S′s-tangent 1-form Υ′ to be

Υ′ := −(Υ)‡.

We have the following relation between Υ′ and the derivative of v in the geodesic foliation.

Lemma 2.28. We have

Υ′ = Ω−1∇/ ′v.

Proof. We have

∇/ ′Av = (eA −ΥAL)v = −ΩΥA = ΩΥ′A,

as desired

We have the following correspondences for Sv-tangential derivatives of projected tensors.

Proposition 2.29 (Projection calculus). Let r ≥ 1 be an integer. Let φ′ be an S′s-tangent r-tensor. Then it
holds that

∇/ L(φ′)†A1···Ar =(∇/ ′Lφ′)
†
A1···Ar ,

∇/ A(φ′)†A1···Ar =(∇/ ′φ′)†AA1···Ar + ΥA(∇/ ′Lφ′)
†
A1···Ar

+ χAAiΥB(φ′)†A1···B···Ar − χABΥAi(φ
′)†A1···B···Ar

(2.27)

Similarly, for a given Sv-tangent r-tensor φ, it holds that

∇/ ′Lφ
‡
A1···Ar =(∇/ Lφ)‡A1···Ar ,

∇/ ′Aφ
‡
A1···Ar =(∇/ φ)‡AA1···Ar + Υ′A(∇/ Lφ)‡A1···Ar

+ χ′AAiΥ
′
B(φ)‡A1···B···Ar − χ

′
ABΥ′Ai(φ)‡A1···B···Ar .

(2.28)
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Proof. First, using that both frames (e1, e2) and (e′1, e
′
2) are Fermi propagated, we have

∇/ L(φ′)†A1···Ar = L
(
(φ′)†(eA1

, · · · , eAr )
)

= L
(
φ′(e′A1

, · · · , e′Ar )
)

= ∇/ ′Lφ′(e′A1
, · · · , e′Ar )

= (∇/ ′Lφ′)†(eA1
, · · · , eAr )

= (∇/ ′Lφ′)
†
A1···Ar .

Second,

∇/ A(φ′)†A1···Ar =eA
(
φ′A1···Ar

)
− (φ′)†

(
eA1

, · · · ,∇/ AeAi , · · · , eAr
)
,

and

eA
(
φ′A1···Ar

)
=e′A

(
φ′A1···Ar

)
+ ΥAL

(
φ′A1···Ar

)
=∇/ ′Aφ′A1···Ar + φ′

(
e′A1

, · · · ,∇/ ′Ae′Ai , · · · , e
′
Ar

)
+ ΥA∇/ ′Lφ′A1···Ar .

Therefore, we deduce

∇/ A(φ′)†A1···Ar =(∇/ ′φ′)†AA1···Ar + ΥA(∇/ ′Lφ′)
†
A1···Ar

+ φ′
(
e′A1

, · · · ,∇/ ′Ae′Ai − g(∇/ AeAi , e
′
B)e′B , · · · , e′Ar

)
.

(2.29)

To compute the third term on the right-hand side of (2.29), write

g(∇/ AeAi , e
′
B) =g

(
DAeAi −

1

2
χAAi L−

1

2
χ
AAi

L, e′B

)
=g(DAeAi , e

′
B)− χAAiΥB

=g(De′A−Υ′AL
(e′Ai + ΥAiL), e′B)− χAAiΥB

=g(De′A
e′Ai , e

′
B) + ΥAig(De′A

L, e′B)− χAAiΥB

=g(De′A
e′Ai , e

′
B) + ΥAiχ

′
AB − χAAiΥB .

where we used (2.5), (2.24) and the fact that both frames are Fermi propagated. Moreover, it follows from
(2.23) that χ′AAi = χAAi , and therefore

φ′
(
e′A1

, · · · ,∇/ ′Ae′Ai − g(∇/ AeAi , e
′
B)e′B , · · · , e′Ar

)
= −ΥAiχAB(φ′)†A1···B···Ar + χAAiΥB(φ′)†A1···Ar .

(2.30)

Plugging (2.30) into (2.29) concludes the proof of (2.27). In view of (2.23) and Lemma 2.28, the proof of
(2.28) follows by replacing ΥA by Υ′A. This finishes the proof of Proposition 2.29.

We have the following transport equation for Υ.

Lemma 2.30. We have

∇/ LΥ =−∇/ (log Ω)− χ ·Υ. (2.31)

Proof. Using commutation formula (2.10) and Ls = 1, we have

∇/ LΥA =∇/ L∇/ s
=∇/ L(s) + [∇/ L,∇/ ]As

=−∇/ A(log Ω)− χAB∇/ Bs,

as desired.

We have the following comparison between null curvature components and connection coefficients and
projected null curvature components and connections coefficients. The proofs are postponed to Appendix A.
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Proposition 2.31 (Null curvature component comparison). The following relations hold.

αAB =(α′)†AB ,

βA =(β′)†A + ΥB(α′)†AB ,

ρ =ρ′ + Υ · (β′)† + Υ ·Υ · (α′)†,
σ =σ′ −Υ · ( ∗β′)† −Υ ·Υ′ · ( ∗α′)†,

β
A

=(β′)†A − 3ρ′ΥA + 3σ′ ∗ΥA − 2
(
Υ · ( ∗β′)†

) ∗ΥA

+ |Υ|2β′A − 2
(
Υ ·Υ · (α′)†

)
ΥA + |Υ|2Υ · (α′)†A.

(2.32)

Proposition 2.32 (Null connection coefficients comparison). The following relations hold.

χAB =(χ′)†AB ,

ζA =(ζ ′)†A + (χ′)†ABΥB ,

η
A

=(η′)†A +∇/ LΥA,

χ
AB

=(χ′)†AB + 2ΥA(η′)†B − 2ΥB(ζ ′)†A + 2∇/ AΥB − |Υ|2χ′AB .

(2.33)

2.9 Norms on H
In this section, we define norms on H. Throughout this section, we denote by (S̃ṽ)1≤ṽ≤v∗ either the geodesic
foliation (S′s) or the canonical foliation (Sv).

Definition 2.33 (S̃ṽ-mixed norms). Let v∗ ≥ 1. Let F be an S̃ṽ-tangent tensor. We define the mixed norms
on H with respect to the foliation (S̃ṽ)ṽ∈[1,v∗],

‖F‖Lpṽ([1,v∗])Lq :=

(∫ v∗

1

‖F‖p
Lq(S̃ṽ)

dṽ

) 1
p

,

‖F‖LqLpṽ([1,v∗]) :=

∥∥∥∥∥
(∫ v∗

1

|F |p dṽ

) 1
p

∥∥∥∥∥
Lq(S1)

.

Definition 2.34. Let v∗ ≥ 1 and let F be an S̃ṽ-tangent tensor. Define

N ṽ,[1,v∗]
1 (F ) := ‖F‖H1/2(S1) + ‖F‖L2

ṽ([1,v∗])L2 +
∥∥∥∇̃/ F∥∥∥

L2
ṽ([1,v∗])L2

+
∥∥∥∇̃/ LF

∥∥∥
L2
ṽ([1,v∗])L2

,

where ∇̃/ and ∇̃/ L denote the induced covariant derivatives on S̃ṽ. Moreover, for m ≥ 1, define

N ṽ,[1,v∗]
m (F ) :=

∑
k≤m−1

∥∥∥∇̃kF∥∥∥
H1/2(S1)

+
∑
k≤m

∥∥∥∇̃kF∥∥∥
L2
ṽ([1,v∗])L2

,

where ∇̃ ∈ {∇̃/ , ∇̃/ L}. We refer to Section 3.2 for a precise definition of the space of tensors H1/2(S1).

2.10 Weak regularity of 2-spheres
In this section, we define the weak regularity assumption on S1, see [Sha14] Section 2.4.

Definition 2.35. Let N ≥ 1 be an integer and C > 0 a real number. A Riemaniann 2-sphere (S, g/) is
weakly regular with constants N, c if it can be covered by N coordinate patches (x1, x2) with a partition of
unity η adapted to the coordinate patches and with functions 0 ≤ η̃ ≤ 1 that are compactly supported in the
patches and equal to 1 on the support of η, and if on each patch there exists an orthonormal frame (e1, e2)
such that for a, b = 1, 2 and A = 1, 2,

c−1 ≤
√

det g/ ≤ c, (2.34)

c−1
(
(ξ1)2 + (ξ2)2

)
≤ g/abξ

aξb ≤ c
(
(ξ1)2 + (ξ2)2

)
, ∀(ξ1, ξ2) ∈ R2, (2.35)

|∂xaη|+ |∂xa∂xbη|+ |∂xa η̃| ≤ c, (2.36)

‖∇/ ∂xa‖L2(S) + ‖∇/ eA‖L4(S) ≤ c. (2.37)
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2.11 Norms for the geodesic and canonical foliation geometry
In this section, we introduce norms to measure the geometry of the geodesic foliation and the canonical
foliation on H at the level of bounded L2 curvature. The definitions of the Besov spaces B0(S) and fractional
Sobolev space H1/2(S) are postponed to Section 3.2.

Norms for null connection coefficients of the geodesic foliation on S1.

I ′S1
:= ‖trχ′ − 2‖L∞(S1) + ‖∇/ trχ′‖B0(S1) +

∥∥trχ′ + 2
∥∥
L∞(S1)

+
∥∥∇/ trχ′

∥∥
L2(S1)

+ ‖µ′‖B0(S1) + ‖ζ ′‖H1/2(S1) + ‖χ̂′‖H1/2(S1) +
∥∥χ̂′∥∥

H1/2(S1)
.

Norms for null connection coefficients of the canonical foliation on S1.

IS1
:= ‖trχ− 2‖L∞(S1) +

∥∥trχ+ 2
∥∥
L∞(S1)

+ ‖∇/ trχ‖B0(S1) +
∥∥∇/ trχ

∥∥
L2(S1)

+ ‖µ‖B0(S1) + ‖ζ‖H1/2(S1) + ‖χ̂‖H1/2(S1) +
∥∥χ̂∥∥

H1/2(S1)

+ ‖∇/ log Ω‖H1/2(S1) +
∥∥η∥∥

H1/2(S1)
+ ‖log Ω‖L2(S1) + ‖Ω− 1‖L∞(S1) + ‖µ‖L2(S1) .

Norms for null connection coefficients of the geodesic foliation on H.

O′[1,s∗] :=

∥∥∥∥trχ′ − 2

s

∥∥∥∥
L∞s ([1,s∗])L∞

+ ‖χ̂′‖L∞L2
s([1,s

∗]) + ‖ζ ′‖L∞L2
s([1,s

∗])

+N s,[1,s∗]
1

(
trχ′ − 2

s

)
+N s,[1,s∗]

1 (χ̂′) +N s,[1,s∗]
1 (ζ ′).

Norms for null connection coefficients of the canonical foliation on H.

O[1,v∗] :=N v,[1,v∗]
1

(
trχ− 2

v

)
+N v,[1,v∗]

1 (χ̂) +N v,[1,v∗]
1 (ζ) +N v,[1,v∗]

1 (η)

+N v,[1,v∗]
1

(
trχ+

2

v

)
+N v,[1,v∗]

1 (χ̂)

+ ‖Ω− 1‖L∞v ([1,v∗])L∞ + ‖L(log Ω)‖L2
v([1,v∗])L4 +N v,[1,v∗]

1 (∇/ log Ω)

+

∥∥∥∥trχ− 2

v

∥∥∥∥
L∞v ([1,v∗])L∞

+ ‖χ̂‖L∞L2
v([1,v∗]) + ‖ζ‖L∞L2

v([1,v∗])

+
∥∥η∥∥

L∞L2
v([1,v∗])

+

∥∥∥∥trχ+
2

v

∥∥∥∥
L∞v ([1,v∗])L∞

+
∥∥∇/ trχ

∥∥
L2L∞v ([1,v∗])

+ ‖µ‖L2L∞v ([1,v∗]) +
∥∥∇/ trχ

∥∥
L2L∞v ([1,v∗])

.

Norms for null curvature components of the geodesic foliation on H.

R′[1,s∗] := ‖α′‖L2
s([1,s

∗])L2 + ‖β′‖L2
s([1,s

∗])L2 + ‖ρ′‖L2
s([1,s

∗])L2

+ ‖σ′‖L2
s([1,s

∗])L2 +
∥∥β′∥∥

L2
s([1,s

∗])L2 .

Norms for null curvature components of the canonical foliation on H.

R[1,v∗] := ‖α‖L2
v([1,v∗])L2 + ‖β‖L2

v([1,v∗])L2 + ‖ρ‖L2
v([1,v∗])L2

+ ‖σ‖L2
v([1,v∗])L2 +

∥∥β∥∥
L2
v([1,v∗])L2 .

2.12 Main results
The following is the main result of this paper.
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Theorem 2.36 (Existence and control of the canonical foliation, version 2). Let (M,g) be a smooth
spacetime and H be a smooth null hypersurface emanating from a spacelike 2-sphere S. Assume that the
geodesic foliation (S′s) starting at S with s = 1 is well-defined and smooth up to s = 5/2. Let N ≥ 1 be
an integer and c > 0 be a real number and assume that S is weakly regular with constants N, c. Assume
moreover that for some ε > 0,

I ′S1
+R′[1,5/2] +O′[1,5/2] ≤ ε. (2.38)

Then, there is a universal constant ε0 > 0 such that if 0 < ε < ε0, the following holds.

1. Existence of the canonical foliation. The canonical foliation (see Definition 2.17) is well-defined
from v = 1 to v = 2, and we have the following comparison estimate with respect to the geodesic
foliation,

‖Ω− 1‖L∞v ([1,2])L∞ . ε, ‖Υ‖L∞v ([1,2])L∞ . ε. (2.39)

2. L2-regularity. There is a constant C = C(N, c) > 0 such that the canonical foliation is uniformly
weakly regular with constants N,C for v = 1 to v = 2, and moreover,

IS1
+R[1,2] +O[1,2] . ε. (2.40)

3. Smoothness. The canonical foliation is smooth up to v = 2.

Remarks.

1. The comparison estimate (2.39) implies in particular that |s − v| . ε, so that the foliations remain
close to each other.

2. Using the conclusions of [KR05], we have that under the assumption I ′S1
+R′[1,5/2] ≤ ε, control of the

geodesic connection coefficient norm O′[1,5/2] . ε can be obtained. The smallness hypothesis (2.38) can

therefore be replaced by I ′S1
+R′[1,5/2] ≤ ε and involves only L2-norms of curvature components on H

and low regularity connection coefficients bounds on S1.

3. Using the a priori estimates from the previous remark, together with a topological assumption on the
hypersurface H could lead to existence and non-degeneracy for the geodesic foliation from s = 1 to
s = 5/2. For simplicity, we rather make the existence and smoothness of the geodesic foliation from
s = 1 to s = 5/2 an assumption.

4. The null curvature components are essentially invariant by a change of foliation (see Proposition 2.31)
and so is the smallness assumption R ≤ ε. Regarding the previous remarks, it is consistent however to
assume it for the geodesic foliation, since we rely on its existence and on the control on the connection
coefficient norm O′[1,5/2] . ε to obtain existence for the canonical foliation together with bounds for
the corresponding canonical foliation connection coefficients.

5. The equations for the canonical foliation reduce to a system of coupled quasilinear elliptic and transport
equations on H (see equations (2.22b)-(2.22n)), having curvature components as source terms, which
are essentially invariant under a change of foliation. Thus, Theorem 2.36 can be seen as a small
data time 1 existence result for which the smallness is measured in terms of L2(H)-norms of the null
curvature components.

6. The desired bound for trχ is obtained as part of the estimates (2.40), which are all needed to obtain
existence and control of the canonical foliation on the interval 1 ≤ v ≤ 2.

7. Here and in the rest of the paper, smooth means C∞ with respect to the C∞-topology of the manifolds
M, H, etc.

8. The smoothness of the canonical foliation is a consequence of the smoothness of the geodesic foliation
and is obtained by higher regularity comparison estimates (see Step 3 in Section 2.13 and Section 5).
Since we only work with smooth foliations, we did not seek any sharpness in these higher regularity
estimates. For example in the proof of Proposition 2.40, we assume Ck-regularity with k arbitrarily
large of the geodesic foliation to prove Ck

′
-regularity with k′ � k of the canonical foliation.
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2.13 Proof of Theorem 2.36
The proof of Theorem 2.36 relies on a bootstrap argument which we set up and prove in this section, assuming
for the moment the local existence result and estimates that will be proved in Sections 4, 5 and 6.

Let D > 0 be a fixed (large) constant and let v∗ ∈ [1, 2]. We say that a foliation (Sv)1≤v≤v∗ satisfies the
bootstrap assumptions BADε,[1,v∗], if

‖Ω− 1‖L∞v ([1,v∗])L∞ + ‖Υ‖L∞v ([1,v∗])L∞ +O[1,v∗] ≤ Dε.

We say that a foliation (Sv)1≤v≤v∗ is regular if v is a C1-function and if

∑
l≤5

(∥∥∇/ ls
∥∥
L∞v ([1,v∗])L2 +

∥∥∇/ l(Ω− 1)
∥∥
L∞v ([1,v∗])L2

)
<∞.

We define V ∈ [1, 2] as

V := sup
v∗∈[1,2]

{
There exists a regular function v on H taking values

from 1 to v∗ and such that the assumptions BADε,[1,v∗] are satisfied

}
,

and we show in the rest of this section that V = 2.

Step 1 It holds that V > 1. Indeed, this follows by the next local existence result.

Theorem 2.37 (Local existence and continuation for the canonical foliation). Let (M,g) be a smooth
vacuum spacetime and H ⊂M a smooth null hypersurface foliated by a well-defined and smooth geodesic
foliation (S′s)1≤s≤s∗ . Let v∗ ∈ [1, 2] be a real number. Assume there exists a C1-function v on H taking
values from 1 to v∗ and defining a canonical foliation. Assume moreover that

‖s‖H5(Sv∗ ) <∞, ‖Ω− 1‖L∞(Sv∗ ) <
1

100

and that Sv∗ is close to the Euclidean 2-sphere in a weak sense (see Definition 3.14). There exists δ > 0 and a
C1-function v taking values from 1 to v∗ + δ, coinciding with v on {1 ≤ v ≤ v∗} and such that (Sv)1≤v≤v∗+δ
is a canonical foliation.

Remarks on Theorem 2.37

1. In Theorem 2.37, the time of existence δ depends on
∑
l≤5

∥∥∇/ l(s− v∗)
∥∥
L2(Sv∗ )

and
∥∥g/′∥∥

C5(H)
(see

Section 6).

2. The proof of Theorem 2.37 is made by a fixed-point argument for a more general system of coupled
quasilinear elliptic and transport equations and is detailed in Section 6. The required assumption
|Ω− 1| < 1/100 at the initial sphere v = s = 1 and its weak sphericality are consequences of the low
regularity bounds (2.42) proved in Proposition 2.38 (see also Section 4.1 and Remark 4.1).

3. A local existence result for canonical foliations is proved in [Nic04] but under the stronger smallness
assumption

R′2 ≤ ε,

where R′2 contain L∞-norms of curvature components on H. Similarly, a local existence result was
proved in [Sau08] for general foliations under L∞(H)-smallness assumptions on the curvature. As such
smallness conditions can not be assumed in our low regularity setting, we give a new proof of a stronger
local existence result.
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Step 2 For v∗ ∈ [1, 2] we can improve BADε,[1,v∗] to BAD′ε,[1,v∗] for a real number D′ < D. We first show
that the assumptions of Theorem 2.36 imply that the canonical connection coefficients are controlled on S1.

Proposition 2.38 (Connection coefficients bounds on S1). Assume that for some real ε > 0,

I ′S1
≤ ε. (2.41)

There exists ε0 > 0 small such that if 0 < ε < ε0, then we have

IS1
. ε. (2.42)

The proof of Proposition 2.38 is carried out in Section 4.1 and goes by direct comparison between the
geodesic and the canonical connection coefficients. Namely most of the coefficients are identical since the
first 2-spheres of the two foliations coincide, S′s=1 = S = Sv=1.

Then the next proposition shows that we can improve the bootstrap assumptions.

Proposition 2.39 (Low regularity estimates). Assume that for some real number ε > 0 and that

R′[1,5/2] +O′[1,5/2] ≤ ε, IS1
≤ ε.

Let 1 < v∗ ≤ 2 and assume that the canonical foliation (Sv)1≤v≤v∗ is regular and satisfies the bootstrap
assumptions BADε,[1,v∗] with D > 0 a fixed constant. There exists ε0 > 0 such that if 0 < ε < ε0, then the
canonical foliation satisfies the bootstrap assumptions BAD′ε,[1,v∗] for a real number D′ < D.

Proposition 2.39 is proved in Section 4. The first step is to show that under the bootstrap assumptions
BADε,[1,v∗], the null curvature components in the canonical foliation are comparable to the geodesic null
curvature components

R[1,v∗] . R′[1,5/2]. (2.43)

Then, under the bounds (2.43) and weak regularity of S1 with constants N, c, we can show that the foliation
(Sv) is uniformly weakly regular and spherical with constants depending only on N, c, ε (see Definitions 3.1
and 3.14). At this level of regularity, calculus inequalities can be derived on H with constants depending only
on N, c, ε. Using these inequalities together with the null structure equations (2.22b)-(2.22n), the bounds
obtained on S1 (2.42) and the obtained bounds for the null curvature components (2.43), it follows that
there exists ε0 > 0 small enough such that if 0 < ε < ε0, then the bootstrap assumptions BADε,[1,v∗] can be
improved to BAD′ε,[1,v∗].

Step 3 The canonical foliation is regular on [1, V ]. Indeed, we show more generally the following proposition.

Proposition 2.40 (Higher regularity comparison estimates). Assume that the geodesic foliation (S′s) is
smooth and well-defined from 1 ≤ s ≤ 5/2, and assume that for 1 < v∗ < 2 and for some real number ε > 0
the canonical foliation (Sv)1≤v≤v∗ is regular and satisfies the bootstrap assumptions BAε,[1,v∗]. There exists
ε0 > 0 such that if 0 < ε < ε0 then, we have for all integers m ≥ 0∑

l+k≤m

∥∥∇/ l
L∇/ k(s− v)

∥∥
L∞v ([1,v∗])L2 . C

(∥∥g/ ′∥∥
Cm+2(H)

,m
)
.

The proof of Proposition 2.40 goes by standard Grönwall argument and is carried out in Section 5. In
particular, for m = 6, this gives the desired regularity result in our continuity argument.

By continuity, we therefore deduce that the canonical foliation is regular on the full interval [1, V ]. Addition-
ally, using these higher regularity estimates, one can deduce the smoothness of the canonical foliation.

Step 4 The foliation can be continued past V for V < 2. Using the estimates from Step 2 and 3, the
assumptions of the local existence and continuation Theorem 2.37 are satisfied and therefore we deduce that
the canonical foliation can be extended past V which therefore implies that V ≥ 2.
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2.14 Organisation of the paper
The rest of the paper is organised as follows.

� In Section 3, we state the calculus prerequisites that hold under weak regularity conditions for a
foliation on H.

� Section 4 is dedicated to the proof of the low regularity bounds for the canonical connection coefficients
on the sphere S1 and the improvement of the bootstrap assumptions.

� Section 5 is dedicated to the proof of higher regularity bounds for the canonical foliation.

� Section 6 is dedicated to the proof of the local existence Theorem 2.37.
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3. Calculus prerequisites
In this section, we state the necessary calculus prerequisites for Sections 4, 5 and 6. The results are based
on the pioneering works [KR05], [KR06a] and [KR06b] (see also [Wan09]), with further improvements and
simplifications taken from [Sha14], whose presentation we shall follow and whose calculus results we shall
use as a black box.

3.1 Uniform weak regularity of foliations
We now state the definition of uniform weak regularity for a foliation which allows to develop uniform
calculus on the leaves of the foliation (see [Sha14] Sections 3.3 and 4.3).

Definition 3.1. Let N ≥ 1 be an integer and C > 0 a real number. Let v∗ > 1 be a real number. We say
that a foliation (Sv)1≤v≤v∗ on H is uniformly weakly regular with constants N,C, if the 2-sphere S1 is weakly
regular with constants N,C in the sense of Definition 2.35, the following bounds are satisfied

‖Ω− 1‖L∞v L∞ ≤ 1/10,

‖trχ‖L∞v L∞ ≤ C,

‖χ̂‖L∞L2
v
≤ C,

N1(χ) +N1(Ω) ≤ C,

(3.1)

and there exists a Sv-tangent 3-tensor Ψ satisfying

∇/ LΨABC =Ω∇/ A(Ω−1χBC)− Ω∇/ C(Ω−1χBA), (3.2)

such that

‖Ψ‖L4L∞v
≤ C. (3.3)

Remarks.

1. For simplicity these assumptions are stronger than necessary and imply in particular assumptions (F2)
of Section 4.5 in [Sha14] with constants N,C and B ≡ C, since the tensor k in [Sha14] reads in the
present paper k ≡ Ω−1χ.

2. Under the assumptions (3.1) (3.2) (3.3), one can deduce that each 2-sphere Sv is weakly regular in
the sense of Definition 2.35 with uniform constants N,C ′, where C ′(N,C) > 0 (see Proposition 4.13
in [Sha14]).

3. The assumption (3.3) is designed so that using the local frames (eA)A=1,2 defined on the first 2-sphere S,
the regularity of their associated Fermi propagated frames on H is transported, i.e. ‖∇/ eA‖L4L∞v

≤ C.

This regularity is then sufficient in [Sha14] for running a scalarisation procedure for tensorial estimates
and then comparing geometric Besov norms for scalars to coordinate-based Besov norms (see Sections
4,5 and Appendix A in that paper).

4. From the weak regularity of each 2-sphere Sv, we deduce in particular that

C−1 .
√

det(g/) . C,

uniformly on H. As a consequence, for all Sv-tangent tensor F and for all 1 ≤ p ≤ q ≤ ∞, we have

‖F‖LqLpv . ‖F‖LpvLq ,

where the constant depends only on N,C.

Notations. Here and in the rest of this section, we take out any reference to v∗ in the LpLq-norms for ease
of notation and we moreover denote Nm := N v

m.
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3.2 Littlewood-Paley theory and Besov spaces
In this section, we define Littlewood-Paley projections and Besov spaces on Riemannian 2-spheres (S, g/).

Let 4/ denote the Laplacian on (S, g/). Interpreting −4/ as a positive self-adjoint unbounded operator acting
on tensors in L2(S), we have the spectral decomposition (see [Sha14] for details)

−4/ =

∞∫
0

λdEλ.

We define the corresponding Littlewood-Paley operators as follows.

� Let φ ∈ C∞(R) be a function such that suppφ ⊂ {1/2 ≤ |ξ| ≤ 2} and∑
k∈Z

φ(2−2kξ) = 1 for all ξ ∈ R \ {0}.

� For each k ∈ Z, define the Littlewood-Paley operator acting on tensors in L2(S) by

Pk = φ(−2−2k4/ ), P− = δ{0}(−4/ ),

where δ{0}(−4/ ) denotes the L2-projection onto the kernel of −4/ .

� For k ∈ Z, define the aggregated operators

P<k = P− +
∑
l<k

Pl,

where the summation is in the strong operator topology. In particular,

P<0 +
∑
k≥0

Pk = 1. (3.4)

Using the Littlewood-Paley operators, we next define Besov spaces.

Definition 3.2 (Geometric tensorial Besov space). For a S-tangent tensor F we define the norms

‖F‖B0(S) :=
∑
k≥0

‖PkF‖L2(S) + ‖P<0F‖L2(S),

We have moreover the following v-integrated Besov spaces.

Definition 3.3 (Geometric tensorial v-integrated Besov spaces). Define for a Sv-tangent tensor F on H,

‖F‖P0
v

:=
∑
k≥0

‖PkF‖L2
vL

2 + ‖P<0F‖L2
vL

2 ,

‖F‖Q1/2
v

:=

∑
k≥0

2k ‖PkF‖2L∞v L2 + ‖P<0F‖2L∞v L2

1/2

.

Remark 3.4. The space B0(S) corresponds to the L2(S)-based Besov space on S with parameters s = 0
and a = 1 in [Sha14].

The v-integrated spaces P0
v and Q1/2

v correspond to the L2(S)-based v-integrated Besov space with parameters
respectively s = 0, a = 1 and p = 2 and s = 1/2, a = 2 and p =∞ in [Sha14].

Finally, set for real numbers s ∈ R and S-tangent tensors F ,

‖F‖Hs(S) := ‖(I −4/ )s/2F‖L2(S),

where the fractional Laplace operator is defined as in [Sha14]. With this definition, we have

‖F‖H1(S) ' ‖∇/ F‖L2(S) + ‖F‖L2(S) .

The next lemma is proved in Appendix B.

Lemma 3.5. For an S-tangent tensor F , we have

‖∇/ F‖H−1/2(S) . ‖F‖H1/2(S) .
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3.3 Sobolev inequalities on 2-spheres
The next lemma is proved in Section 2.5 in [Sha14].

Lemma 3.6 (Classical Sobolev inequalities on S). Let (S, g/) be weakly regular 2-sphere with constants N,C.
Then for a scalar function f and for an S-tangent tensor F , we have

‖F‖L4(S) .‖∇/ F‖
1/2
L2(S)‖F‖

1/2
L2(S) + ‖F‖L2(S),

‖F‖L∞(S) .‖∇/ 2F‖1/2L2(S)‖F‖
1/2
L2(S) + ‖F‖L2(S),

‖F‖L∞(S) .‖∇/ F‖L4(S) + ‖F‖L4(S),

where the constants depend only on N,C.

The next lemma follows from Proposition 3.3 in [Sha14].

Lemma 3.7 (Besov-Sobolev inequalities on S). Let (S, g/) be a weakly regular 2-sphere with constants N,C.
Then for an S-tangent tensor F , we have

‖F‖L4(S) . ‖F‖H1/2(S) ,

where the constant depends only on N,C.

3.4 Sobolev inequalities on H
Let H be a null hypersurface.

Lemma 3.8 (Classical Sobolev inequalities on H). Let (Sv) be a uniformly weakly regular foliation on H
with constants N,C. Then for an Sv-tangent tensor F on H,

‖F‖L4L∞v
.N1(F ),

‖F‖L6
vL

6 .N1(F ),

‖F‖L∞v L∞ .N1(∇/ F ) +N1(F ),

‖F‖L2
vL

4 . ‖∇/ F‖
1
2

L2
vL

2 ‖F‖
1
2

L2
vL

2 + ‖F‖L2
vL

2 .

All constants in these estimates depend only on N,C.

We have the following Besov-Sobolev estimate, see Proposition 5.3 in [Sha14].

Lemma 3.9 (Besov-Sobolev inequalities on H). Let (Sv) be a uniformly weakly regular foliation on H with
constants N,C. Let F be a Sv-tangent tensor. We have

‖F‖Q1/2
v
.N1(F ),

where the constant depends only on N,C.

We have the following product estimate in Besov spaces, see Theorem 3.6 in [Sha14].

Lemma 3.10 (Besov product estimates). Let (Sv) be a uniformly weakly regular foliation on H with
constants N,C. Let F and G be two Sv-tangent tensors. We have

‖FG‖P0
v
.N1(F )(‖G‖L2

vL
2 + ‖∇/ G‖L2

vL
2),

where the constant depends only on N,C.

3.5 Null transport equations on H
We have the following LpL∞v -estimates for solutions of null transport equations. .

Lemma 3.11 (LpL∞v -estimates for transport equations). Let (Sv) be a uniformly weakly regular foliation of
H with constants N,C. Let κ be a real number. For F an Sv-tangent tensor satisfying on H

∇/ LF + κtrχF = W,

and for all 1 ≤ p ≤ ∞, we have

‖F‖LpL∞v . ‖F‖Lp(S1) + ‖W‖LpL1
v
,

where the constant depends only on N,C, p, κ.
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Proof. The proof follows by applying Proposition 4.6 in [Sha14] to the transport equation obtained for the
renormalised quantity exp

(∫ v
1

Ω−1trχdv′
)
F and using the uniform weak regularity bounds (3.1) for Ω and

trχ. Details are left to the reader.

Remark 3.12. Proposition 4.6 in [Sha14] does not require assumption (3.3). This will be used when proving
that assumption (3.3) holds.

3.6 L∞L2
v trace estimate

By Theorem 5.7 in [Sha14], we have the next trace estimate.

Lemma 3.13 (Trace estimate). Let (Sv) be a uniformly weakly regular foliation with constants N,C and let
F be a Sv-tangent tensor such that

∇/ F = ∇/ LP + E.

Then

‖F‖L∞L2
v
.N1(P ) + ‖E‖P0

v
+N1(F ),

where the constant only depends on N,C.

Proof. This is Theorem 5.7 in [Sha14] together with the bounds (3.1) of Definition 3.1 and Sobolev Lemma 3.8.

3.7 Uniform weak sphericality
In order to have uniform estimates for Hodge systems on 2-spheres Sv, we introduce the following definition
of uniform weak sphericality (see Section 6.1 in [Sha14]).

Definition 3.14. Let N ≥ 1 be an integer and C,Dsph > 0 be reals. We say that a 2-sphere S is weakly
spherical with constants N,C,Dsph and radius R if it is weakly regular in the sense of Definition 2.35 with
constants N,C and if the Gauss curvature K of S can be written as

K − 1

R2
= div/ Ψ + Θ,

where

‖Ψ‖H1/2(S) + ‖Θ‖L2(S) ≤ Dsph.

We say that a foliation (Sv) of H is uniformly weakly spherical with constants N,C,Dsph if it is uniformly
weakly regular in the sense of 3.1 with constants N,C and such that the Gauss curvature K of Sv can be
written as

K − 1

v2
= div/ Ψ + Θ,

where

‖Ψ‖Q1/2
v

+ ‖Θ‖L∞v L2 ≤Dsph.

Remark 3.15. From the Definition 3.3 of the Besov space Q1/2
v , it is clear that every 2-sphere Sv of a

uniformly weakly spherical foliation is weakly spherical with radius v and uniform constants.

3.8 Bochner identities on 2-spheres and consequences
We first recall the Bochner identity on spheres (see [KR05], p. 483 and p. 488).

Lemma 3.16 (Bochner identities). Let (S, g/) be a Riemannian 2-sphere. For scalar functions f on S, we
have ∫

S

|∇/ 2f |2 =

∫
S

|4/ f |2 −
∫
S

K|∇/ f |2,

where K denotes the Gauss curvature of S. For an S-tangent 1-form F , we have∫
S

|∇/ 2F |2 =

∫
S

|4/ F |2 − 2

∫
S

K|∇/ F |2 +

∫
S

K|div/ F |2 +

∫
S

K2|F |2.
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3.9. Hodge systems on 2-spheres

The Bochner identities of Lemma 3.16 imply the next estimates, see Section 6 in [Sha14].

Lemma 3.17 (Bochner estimates). For a weakly spherical 2-sphere S of radius 1 with constants N,C,Dsph,
there exists a universal constant D0 > 0 such that if Dsph < D0, then the following holds.

1. For scalar function f on S, we have∥∥∇/ 2f
∥∥
L2(S)

+ ‖∇/ f‖L2(S) . ‖4/ f‖L2(S) .

2. For an S-tangent 1-form F , we have∥∥∇/ 2F
∥∥
L2(S)

. ‖4/ F‖L2(S) + ‖∇/ F‖L2(S) + ‖F‖L2(S) .

Moreover, for a uniformly weakly spherical foliation (Sv) of H with constants N,C,D, with Dsph < D0, the
following holds.

1. For scalar functions f on H, we have∥∥∇/ 2f
∥∥
L2
vL

2 + ‖∇/ f‖L2
vL

2 . ‖4/ f‖L2
vL

2 .

2. For a Sv-tangent 1-form F , we have∥∥∇/ 2F
∥∥
L2
vL

2 . ‖4/ F‖L2
vL

2 + ‖∇/ F‖L2
vL

2 + ‖F‖L2
vL

2 .

3.9 Hodge systems on 2-spheres
In this section, we recall standard Hodge theory on Riemannian 2-spheres, see for example [CK93].

Definition 3.18. Let (S, g/) be a Riemannian 2-sphere. We define the Hodge operators D/ 1 and D/ 2 that act
respectively on S-tangent 1-forms φ and on S-tangent traceless symmetric 2-tensors ψ by

D/ 1φ := (div/ φ, curl/ φ),

(D/ 2ψ)A := div/ ψA.

We denote by ∗D/ 1 and ∗D/ 2 their L2-adjoint. For scalar functions f, h on S and for a S-tangent 1-form φ,
we have

∗D/ 1(f, h) = −∇/ Af + ∗∇/ Ah,

∗D/ 2φ = −1

2
∇/ ⊗̂φ.

Remarks.

1. The following identities hold (see [CK93]),

D/ 1
∗D/ 1 = −4/ , D/ 1

∗D/ 1 = −4/ +K,

D/ 2
∗D/ 2 = −1

2
4/ − 1

2
K, ∗D/ 2D/ 2 = −1

2
4/ +K.

(3.5)

2. The operator D/ 1 is a bijection between the space of vector fields and the space of pairs of functions
with vanishing mean.

3. The operator D/ 2 is a bijection between the space of symmetric tracefree 2-tensors and the orthogonal
complement of the space of conformal Killing vector fields.

4. We denote by D/ −1
1 and D/ −1

2 the inverses of D/ 1 and D/ 2 composed with the projections onto their
respective domain.

We have the following L2-estimates for Hodge systems, see Proposition 6.5 in [Sha14].
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Chapter 3. Calculus prerequisites

Lemma 3.19 (Estimate for Hodge systems). For a weakly spherical 2-sphere of radius 1 S with constants
N,C,Dsph, there exists D0 > 0 such that if Dsph < D0, the following holds. For an S-tangent tensor of
appropriate type F , we have ∥∥∇/ D/ −1F

∥∥
L2(S)

+
∥∥D/ −1F

∥∥
L2(S)

. ‖F‖L2(S) ,∥∥∇/ (∗D/ 1)−1F
∥∥
L2(S)

+
∥∥(∗D/ 1)−1F

∥∥
L2(S)

. ‖F‖L2(S) ,

where D/−1 ∈
{
D/ −1

1 ,D/ −1
2

}
and the constants depend only on N,C. For a uniformly weakly spherical foliation

(Sv) of H with constants N,C,Dsph, there exists D0 > 0 such that if Dsph < D0, the following holds. For
an Sv-tangent tensor of appropriate type F , we have∥∥∇/ D/ −1F

∥∥
L2
vL

2 +
∥∥D/ −1F

∥∥
L2
vL

2 . ‖F‖L2
vL

2 ,∥∥∇/ (∗D/ 1)−1F
∥∥
L2
vL

2 +
∥∥(∗D/ 1)−1F

∥∥
L2
vL

2 . ‖F‖L2
vL

2 ,

where D/ −1 ∈
{
D/ −1

1 ,D/ −1
2

}
and the constants depend only on N,C.

We have the following elliptic estimates. The proof is postponed to Appendix B.

Lemma 3.20. For a weakly spherical 2-sphere S of radius 1 with constants N,C,Dsph, there exists a
universal constant D0 > 0 such that if Dsph < D0, then the following holds.
Assume that f satisfies the equation

4/ f = div/ P + h, (3.6)

then

‖∇/ f‖L2(S) +
∥∥f − f∥∥

L2(S)
. ‖P‖L2(S) + ‖h‖L4/3(S) .

Moreover, for a uniformly weakly spherical foliation (Sv) of H with constants N,C,D, with Dsph < D0, the
following holds. Assume that f satisfies (3.6) then,

‖∇/ f‖L2
vL

2 +
∥∥f − f∥∥

L2
vL

2 . ‖P‖L2
vL

2 + ‖h‖L2
vL

4/3 ,

where the constants only depend on N,C.

The next lemma follows from Proposition 6.10 and Theorem 6.8 in [Sha14].

Lemma 3.21 (Elliptic estimates in fractional Sobolev spaces). For a weakly spherical 2-sphere S with
constants N,C,Dsph, there exists a constant D0 > 0 such that if Dsph < D0, then the following holds.

1. Let f be a scalar function on S and X a S-tangent 1-form satisfying

4/ f = div/ X,

∫
S

f = 0.

Then,

‖∇/ f‖H1/2(S) + ‖f‖L2(S) . ‖X‖H1/2(S) .

2. For an S-tangent 1-form F , we have∥∥∥∗D/ −1
1 F

∥∥∥
H1/2(S)

. ‖F‖H−1/2(S) .

152



4. Low regularity estimates
This section is dedicated to the proofs of Propositions 2.38 and 2.39 (see Step 2 in Section 2.13). Let
(S′s)1≤s≤5/2 denote the geodesic foliation on H, and assume that for some ε > 0,

I ′S1
+R′[1,5/2] +O′[1,5/2] ≤ ε. (4.1)

� In Section 4.1, we show that, for ε small enough, we have IS1
. This proves Proposition 2.38.

� From Section 4.2 on, we assume that 1 < v∗ < 2 is a real number and that the canonical foliation
(Sv)1≤v≤v∗ is regular. We suppose further that for a fixed large constant D, for 1 ≤ v ≤ v∗,

‖Ω− 1‖L∞v ([1,v∗])L∞ + ‖Υ‖L∞v ([1,v∗])L∞ +O[1,v∗] ≤ Dε. (4.2)

� We prove in Sections 4.2- 4.7 that for ε > 0 sufficiently small, we can improve (4.2), i.e. we show that,

‖Ω− 1‖L∞v ([1,v∗])L∞ + ‖Υ‖L∞v ([1,v∗])L∞ +O[1,v∗] +R[1,v∗] ≤ D′ε

for a constant 0 < D′ < D. This proves Proposition 2.39.

Notation. To ease the notations, we suppress all references to v∗ in the following and we denote by

Nm := N v
m and by N ′m := N s,5/2

m .

4.1 Bounds for the connection coefficients on S1
This section is dedicated to the proof of Proposition 2.38.

By Proposition 2.32 and the fact that Υ = 0 on S1 since s = 1, we have

χ = (χ′)†, χ = (χ′)†, ζ = (ζ ′)†,

which by using (2.16) also gives µ = µ′.

Using the elliptic equation for log Ω (2.18), using the hypotheses estimates (4.1) and applying Lemma 3.21,
we have

‖∇/ log Ω‖H1/2(S1) + ‖log Ω‖L2(S1) . ‖ζ‖H1/2(S1) + ‖µ− µ‖L2(S1)

. ε.

From this and relation (2.4), we deduce∥∥η∥∥
H1/2(S1)

. ‖ζ‖H1/2(S1) + ‖∇/ log Ω‖H1/2(S1) . ε.

Moreover, using Sobolev Lemmas 3.6 and 3.7, together with the previous estimates, we have

‖log Ω‖L∞(S1) . ‖log Ω‖H1/2(S1) + ‖log Ω‖L2(S1)

. ε,

which implies

‖Ω− 1‖L∞(S1) . ε.

This finishes the proof of the bound (2.42) and of Proposition 2.38.

Remark 4.1. From the Gauss equation (2.34t) and the definition of the mass aspect function (2.16), we
have on S1

K − 1 = Θ + div/ ζ,

where

Θ :=
1

2
(trχ− 2)− 1

2

(
trχ+ 2

)
− 1

4
(trχ− 2)

(
trχ+ 2

)
+ µ.

Using estimate (2.42), this implies that the 2-sphere S1 is weakly spherical with radius 1 and constants
N,C,C ′ε in the sense of Definition 3.14, where C ′ > 0 is a universal constant. This assumption is required
to apply Theorem 2.37 in Step 1 of Section 2.13.
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Chapter 4. Low regularity estimates

4.2 Uniform weak regularity and sphericality of the canonical fo-
liation

In this section, we show that under the bootstrap assumptions (4.2), the regularity of S1 is propagated to
the canonical foliation. More specifically, we show that the canonical foliation is uniformly weakly regular in
Lemma 4.2 and uniformly weakly spherical in Lemma 4.3.

Lemma 4.2 (Uniform weak regularity). Let S1 be a weakly regular 2-sphere with constants N, c. There
exists ε0 > 0 and C(N, c) > 0 such that for ε < ε0 the canonical foliation is uniformly weakly regular with
constants N,C.

Proof. The bounds (3.1) directly follow from the bootstrap assumptions (4.2). Using Gauss-Codazzi
equation (2.22m) for curlχ, we deduce that for Ψ a 3-tensor verifying equation (3.2), we have

∇/ LΨABC =Ω∇/ A(Ω−1χBC)− Ω∇/ C(Ω−1χBA)

=− Ω−1 (∇/ AΩχBC −∇/ CΩχBA)

+ ∈/ACcurlχB

=− Ω−1 (∇/ AΩχBC −∇/ CΩχBA)

+ ∈/AC
(
−ζD ∗χ̂DB +

1

2
trχ ∗ζB − ∗βB

)
.

Using the transport equation (2.22g) for ζ, we have

∗βB =
1

2
trχ(− ∗ζB + ∗η

B
) + ∗χ̂BD(η

D
− ζD)−∇/ L

∗ζB .

Therefore, we have

∇/ L (ΨABC− ∈/AC ∗ζB) =EABC ,

with

EABC :=− Ω−1 (∇/ AΩχBC −∇/ CΩχBA)

+ ∈/AC
(

trχ ∗ζB −
1

2
trχ ∗η

B
− ∗χ̂BDηD

)
.

Using the transport Lemma 3.11 (see also Remark 3.12), the bootstrap assumptions (4.2) and choosing
ΨABC :=∈/AC ∗ζB on S1, we have

‖Ψ− ∈/ ∗ζ‖L4L∞v
. ‖E‖L4L1

v

.
∥∥Ω−1

∥∥
L∞v L

∞ ‖χ‖L∞L2
v
‖∇/ Ω‖L4L2

v

+ ‖trχ‖L∞v L∞
(
‖ζ‖L4L1

v
+
∥∥η∥∥

L4L1
v

)
+ ‖χ̂‖l∞L2

v

∥∥η∥∥
L4L2

v

.Dε+ (Dε)2.

Using the bootstrap assumptions (4.2), we deduce

‖Ψ‖L4L∞v
. ‖ζ‖L4L∞v

+ (Dε) + (Dε)2

.Dε+ (Dε)2

≤C.

This finishes the proof of Lemma 4.2.

Lemma 4.3 (Uniform weak sphericality). There exists ε0 > 0, such that for ε < ε0, the canonical foliation
is uniformly weakly spherical with constants N,C,Dsph and we have Dsph < D0, where D0 is the constant
from Lemmas 3.17, 3.19, 3.20, and 3.21.
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4.2. Uniform weak regularity and sphericality of the canonical foliation

Proof. We have by the Gauss equation (2.34t) and the definition of the mass aspect function (2.16)

K − 1

v2
= Θ + div/ ζ,

where

Θ :=
1

2
v−1

(
trχ− 2

v

)
− 1

2
v−1

(
trχ+

2

v

)
− 1

4

(
trχ− 2

v

)(
trχ+

2

v

)
+ µ.

Using bootstrap assumptions (4.2), we have

‖Θ‖L∞v L2 .

∥∥∥∥trχ− 2

v

∥∥∥∥
L∞v L

∞
+

∥∥∥∥trχ+
2

v

∥∥∥∥
L∞v L

∞
+

∥∥∥∥trχ− 2

v

∥∥∥∥
L∞v L

∞

∥∥∥∥trχ+
2

v

∥∥∥∥
L∞v L

∞

+ ‖µ‖L∞v L2

.Dε+ (Dε)2.

And moreover, using bootstrap assumptions (4.2) and Lemma 3.9, we have

‖ζ‖Q1/2
v
. N1(ζ) . Dε.

Therefore

‖Θ‖L∞v L2 + ‖ζ‖Q1/2
v
. (Dε) + (Dε)2 ≤ D0,

for ε > 0 small enough. This finishes the proof of Lemma 4.3.

The next lemma will allow us to compare norms for the geodesic and the canonical foliation components.

Lemma 4.4 (Integral comparison). For all 1 ≤ p ≤ ∞, and for all Sv-tangent tensor F , we have

‖F‖Lpv([1,v∗])Lp .
∥∥F ‡∥∥

Lps([1,5/2])Lp
.

To stress this foliation independence, we shall replace all LpvL
p and LpsL

p norms by Lp(H) in the rest of the
paper.

Proof. Let (x1, x2) be local coordinates on S1. Extend (x1, x2) on H by

L(xa) = 0 on H for a = 1, 2.

The triplets (s, x1, x2) and (v, x1, x2) are local coordinates on H. Let (∂s, ∂
′
x1 , ∂′x2) and (∂v, ∂x1 , ∂x2) be the

respective corresponding coordinate vector fields. Then the following relations hold,

∂v = Ω−1∂s,

∂xa = ∂′xa − Ω−1(∂′xav)∂s for a = 1, 2.

In particular,

g/
′
ab = g(∂′xa , ∂

′
xb) = g(∂xa , ∂xb) = g/ab for a, b = 1, 2,

and

γ :=
√

det(g/
′
ab) =

√
det(g/ab),

where the indices a, b with a, b = 1, 2 correspond to evaluation with respect to the coordinate vector fields
∂xa , ∂xb . Performing a change of variable in the integrals, using the previous relations, and the bootstrap
assumption (4.2) on Ω, we therefore deduce

‖F‖pLpv([1,v∗])Lp =

∫
v

∫
Sv

|F |p dv

=

∫
s

∫
S′s

|F ‡|pΩ ds

'
∫
s

∫
S′s

|F ‡|p ds

.
∥∥F ‡∥∥

Lps([1,5/2])Lp
,

as desired.
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Chapter 4. Low regularity estimates

4.3 Bounds for the null curvature components of the canonical
foliation on H

In this section, we estimate the canonical curvature components (α, β, ρ, σ, β) and (ρ̌, σ̌, β̌) on H by comparing
them to the geodesic components.

Lemma 4.5. For ε > 0, sufficiently small, it holds that

‖α‖L2(H) + ‖β‖L2(H) + ‖ρ‖L2(H) + ‖σ‖L2(H) +
∥∥β∥∥

L2(H)
. ε. (4.3)

Proof. By Proposition 2.31, it holds schematically that

R =R′ + (Υ′)R′ + (Υ′)2R′ + (Υ′)3R′,

where

R ∈ {α, β, ρ, σ, β} and R′ ∈ {α′, β′, ρ′, σ′, β′}.

Using the above and the bootstrap assumptions (4.1), we have

‖R‖L2(H) . ‖R
′‖L2(H) + ‖Υ′‖L∞(H) ‖R

′‖L2(H) + ‖Υ′‖2L∞(H) ‖R
′‖L2(H)

+ ‖Υ′‖3L∞(H) ‖R
′‖L2(H)

. ε+ (Dε)ε+ (Dε)2ε+ (Dε)3ε

. ε.

This finishes the proof of Lemma 4.5.

Moreover, we have the following estimates for the renormalised canonical curvature components.

Lemma 4.6. We have,

‖ρ̌‖L2(H) + ‖σ̌‖L2(H) + ‖β̌‖L2(H) . ε. (4.4)

Proof. Using equation (2.8), the bootstrap assumptions (4.2) and the previous estimate (4.3), we have

‖ρ̌‖L2(H) . ‖ρ‖L2(H) + ‖χ̂‖L∞v L4

∥∥χ̂∥∥
L∞v L

4

. ‖ρ‖L2(H) +N1(χ̂)N1(χ̂)

. ε+ (Dε)2

. ε.

The estimates for σ̌ and β̌ follow analogously and are left to the reader.

4.4 Schematic notation for null connection coefficients and null
curvature components

For ease of presentation, in the following sections, we employ the next schematic notation for null connection
coefficients and null curvature components.

Notation. Let

A ∈
{

trχ− 2

v
, χ̂, ζ, η, ∇/ log Ω, trχ+

2

v

}
∪ {Ω− 1, log Ω, Ω−1 − 1},

A ∈A ∪ {χ̂},
R ∈

{
α, β, ρ, σ, β, ρ̌, σ̌, β̌

}
.

Let moreover

∇ ∈ {∇/ ,∇/ L}.

Using the above notation, the bootstrap assumptions (4.2), the bounds on S1 (2.42), the improved curvature
bounds (4.3) and (4.4), can be written as follows.
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4.5. Improvement of the estimates for Ω and A

Lemma 4.7. It holds that

‖A‖H1/2(S1) . ε,

‖R‖L2(H) . ε,

‖A‖L∞L2
v

+N1(A) + ‖A‖L4L∞v
. Dε.

Remark 4.8. To improve the bootstrap assumption for N1(A), it is enough to improve only ‖∇/ LA‖L2(H) +

‖∇/ A‖L2(H) + ‖A‖L2(H), since the H1/2(S1) norms are already controlled by Lemma 2.38.

4.5 Improvement of the estimates for Ω and A
In this section, we improve the bounds for Ω and A using the previously improved bounds for the null
curvature components.

Lemma 4.9. For ε > 0 sufficiently small, it holds that

‖µ‖L2L∞v
. ε. (4.5)

Proof. We rewrite schematically the transport equation (2.16) under the form

L(µ) + trχµ = ρ̌− 1

2
ρ̌+AR+A∇/ A+A2 +A3.

Using Lemma 3.11, the bootstrap assumptions (4.2), the bounds on S1 (2.42), and the renormalised curvature
bounds (4.3) and (4.4), we have

‖µ‖L2L∞v
. ‖µ‖L2(S1) + ‖ρ̌‖L2L1

v

+ ‖AR‖L2L1
v

+ ‖A∇/ A‖L2L1
v

+
∥∥A2

∥∥
L2L1

v
+
∥∥A3

∥∥
L2L1

v

. ‖µ‖L2(S1) + ‖ρ̌‖L2(H)

+ ‖A‖L∞L2
v

(‖R‖L2(H) + ‖∇/ A‖L2(H) + ‖A‖L2(H) + ‖A‖2L4(H))

. ε+ (Dε)2 + (Dε)3

. ε,

as desired.

Remark 4.10. From now on, we include µ in the schematic notation R.

Lemma 4.11. For ε > 0 sufficiently small, it holds that∥∥∇/ 2 log Ω
∥∥
L2(H)

+ ‖∇/ log Ω‖L2(H) + ‖log Ω‖L2(H) . ε. (4.6)

Proof. Using Lemma 3.20 on the elliptic equation (2.18) and the improved estimates (4.5) and (4.4), we get
that

‖∇/ log Ω‖L2(H) + ‖log Ω‖L2(H) . ‖µ‖L2
vL

4/3 + ‖ρ̌‖L2
vL

4/3

. ε+ ‖µ‖L2L∞v
+ ‖ρ̌‖L2(H)

. ε.

Using Lemma 3.17 on the same elliptic equation (2.18) gives∥∥∇/ 2 log Ω
∥∥
L2(H)

+ ‖∇/ log Ω‖L2(H) . ‖ρ̌‖L2(H) + ‖µ‖L2(H)

. ε,

as desired.

Lemma 4.12. For ε > 0 sufficiently small, it holds that

‖∇/ L(log Ω)‖L2(H) + ‖L(log Ω)‖L2(H) . ε, (4.7)

‖∇/ L∇/ log Ω‖L2(H) . ε. (4.8)
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Chapter 4. Low regularity estimates

Proof. Consider first (4.7). We want to derive an equation for L(log Ω) and apply Lemma 3.20. Commuting
equation (2.18) with L gives the following elliptic equation for L(log Ω)

4/
(
L(log Ω)

)
=F

with the source term F

F := L(µ) + 2L(ρ̌) + [4/ , L] log Ω− 2L(ρ̌)− L(µ).

Using commutation formula (2.14), we have

[4/ , L] log Ω =− trχ4/ (log Ω)− 2χ̂ · ∇/ 2 log Ω

+ (ζ + η) (∇/ (L log Ω) +∇/ L∇/ log Ω)

+ (trχη − div/ χ̂) · ∇/ log Ω− η · χ · ∇/ log Ω

+ (div/ ζ + div/ η)L(log Ω) + β · ∇/ log Ω

=− 2v−14/ log Ω

−
(

trχ− 2

v

)
4/ log Ω− 2χ̂ · ∇/ 2 log Ω

+ (ζ + η) (∇/ (L log Ω) +∇/ L∇/ log Ω) (4.9)

+ (trχη − div/ χ̂) · ∇/ log Ω− η · χ · ∇/ log Ω

+ (div/ ζ + div/ η)L(log Ω) + β · ∇/ log Ω.

Using Bianchi equation (2.9a) for ρ̌, and the transport equation (2.21) for µ, we obtain the formula

L(µ) + 2L(ρ̌) =− 2v−1µ− 4v−1ρ̌− v−1ρ̌+ 2div/ β

−
(

trχ− 2

v

)
µ− 2

(
trχ− 2

v

)
ρ̌

+ 4η · β + (ζ − η) · ∇/ trχ+ χ̂ · ∇/ ζ

− χ̂ · ∇/ η + trχ

(
|ζ|2 − ζ · η − 1

2
|η|2
)

+
1

4
trχ|χ̂|2 + 2χ̂ · ζ · η − 3

2
χ̂ · η · η.

(4.10)

Using Proposition 2.16 and Remark 4.10, we can moreover schematically write

L(µ) + 2L(ρ̌) =L(µ) + 2L(ρ̌) +AR. (4.11)

Using the three equations (4.9), (4.10) and (4.11) we deduce that F can be rewritten in the following
schematic form

F = FL + FNL,

with the linear source terms FL

FL = −2v−14/ log Ω− 2v−1(µ− µ)− 4v−1(ρ̌− ρ̌) + 2div/ β,

and the non-linear source terms FNL being of the form

FNL =∇/ (AL log Ω) + (A+A2)L(log Ω) +A∇/ L log Ω +AR+A∇/ A+A2 +A3.

On the one hand, it holds that

FL = div/ PL +WL,

with

PL = 2β − 2v−1∇/ log Ω,

WL = −4v−1(ρ̌− ρ̌)− 2v−1(µ− µ),

158



4.5. Improvement of the estimates for Ω and A

and using the already improved bounds (4.3), (4.4), (4.5) and (4.6), we get∥∥PL∥∥
L2(H)

+
∥∥WL

∥∥
L2
vL

4/3 . ‖β‖L2(H) + ‖∇/ log Ω‖L2(H)

+ ‖ρ̌‖L2(H) + ‖µ‖L2L∞v

. ε.

(4.12)

On the other hand, we have

FNL = ∇/ PNL +WNL,

with

PNL = AL(log Ω)

WNL = (A+A2)L(log Ω) +A∇/ L log Ω +AR+A∇/ A+A2 +A3,

and using the bootstrap assumptions (4.2) and the estimates (4.3), we get∥∥PNL∥∥
L2(H)

+
∥∥WNL

∥∥
L2
vL

4/3 . ‖A‖L∞v L4 ‖L(log Ω)‖L2
vL

4

+
(
‖A‖L∞v L2 + ‖A‖2L∞v L4

)
‖L(log Ω)‖L2

vL
4

+ ‖A‖L∞v L4

(
‖∇/ L(log Ω)‖L2(H) + ‖R‖L2(H)

+ ‖∇/ A‖L2(H) + ‖A‖L2(H) + ‖A‖2L4(H)

)
.(Dε)2 + (Dε)3

. ε.

(4.13)

Applying Lemma 3.20, using the bounds (4.12) and (4.13), we have

‖∇/ L(log Ω)‖L2(H) +
∥∥∥L(log Ω)− L(log Ω)

∥∥∥
L2(H)

.
∥∥PL∥∥

L2(H)
+
∥∥WL

∥∥
L2
vL

4/3 +
∥∥PNL∥∥

L2(H)
+
∥∥WNL

∥∥
L2
vL

4/3

. ε.

(4.14)

Using Proposition 2.16 and the equation (2.17), we have

L(log Ω) = Ω−1L(log Ω) + (1− Ω−1)L(log Ω)

= Ω−1L(log Ω)− Ω−1trχ log Ω + Ω−1trχ · log Ω + (1− Ω−1)L(log Ω)

=− Ω−1trχ log Ω + (1− Ω−1)L(log Ω).

Using the improved bound (4.6) and the bootstrap assumptions (4.2) we therefore deduce∥∥∥L(log Ω)
∥∥∥
L2(H)

. ‖log Ω‖L2(H)

∥∥Ω−1
∥∥
L∞(H)

‖trχ‖L∞(H)

+ ‖Ω− 1‖L∞(H)

∥∥Ω−1
∥∥
L∞(H)

‖L(log Ω)‖L2(H)

. ε+ (Dε)2

. ε.

Using (4.14), we finally get

‖∇/ L(log Ω)‖L2(H) + ‖L(log Ω)‖L2(H) . ε.

By the above bounds, commutation formula (2.10) and the bootstrap assumptions (4.2) we also get that

‖∇/ L∇/ log Ω‖L2(H) . ‖∇/ L(log Ω)‖L2(H) + ‖trχ‖L∞(H) ‖∇/ log Ω‖L2(H)

+ ‖χ̂‖L∞v L4 ‖∇/ log Ω‖L∞v L4

+
(
‖ζ‖L∞v L4 +

∥∥η∥∥
L∞v L

4

)
‖L(log Ω)‖L2

vL
4

. ε+ (Dε)2

. ε.

This finishes the proof of Lemma 4.12.
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Lemma 4.13. For ε > 0 sufficiently small, we have

‖log Ω‖L∞(H) + ‖Ω− 1‖L∞(H) + ‖L(log Ω)‖L2
vL

4 . ε. (4.15)

Proof. This is a consequence of estimates (4.6), (4.7), (4.8) and Sobolev embeddings from Lemma 3.8.

Lemma 4.14. For ε > 0 sufficiently small, it holds that

N1(ζ) +N1(η) . ε. (4.16)

Proof. By equations (2.16) and (2.22h), ζ satisfies the Hodge system

D/ 1

(
ζ
)

=
(
− µ− ρ̌, σ̌

)
.

Using Lemma 3.19, the improved bounds (4.4) and (4.5), we get that

‖ζ‖L2(H) + ‖∇/ ζ‖L2(H) . ‖µ‖L2(H) + ‖ρ̌‖L2(H) + ‖σ̌‖L2(H)

. ε.

By relation (2.4), the improved bounds (4.6) and the above improvement, we directly deduce∥∥η∥∥
L2(H)

+
∥∥∇/ η∥∥

L2(H)
. ε.

Using equation (2.22g), the bootstrap assumptions (4.2), the curvature bounds (4.3) and the just obtained
improved estimate for ζ and η, we have

‖∇/ Lζ‖L2(H) . ‖trχ‖L∞ (‖ζ‖L2(H) +
∥∥η∥∥

L2(H)
)

+ ‖χ̂‖L∞v L4 (‖ζ‖L∞v L4 +
∥∥η∥∥

L∞v L
4) + ‖β‖L2(H)

. ε+ (Dε)2

. ε.

By relation (2.4) and the improved bounds (4.8), we therefore also deduce∥∥∇/ Lη
∥∥
L2(H)

. ε,

and this finishes the proof of Lemma 4.14.

Lemma 4.15. For ε > 0 sufficiently small, it holds that

‖∇/ trχ‖L2L∞v
. ε, (4.17)∥∥∥∥trχ− 2

v

∥∥∥∥
L∞(H)

. ε, (4.18)

N1

(
trχ− 2

v

)
+N1(χ̂) . ε. (4.19)

Proof. Consider first (4.17). Commuting equation (2.22b) with ∇/ , we get

∇/ L(∇/ trχ) +
3

2
trχ∇/ trχ = G,

with

G = −2χ̂ · ∇/ χ̂− χ̂ · ∇/ trχ+ (ζ + η)

(
1

2
(trχ)2 + |χ̂|2

)
.

By the improved bounds (4.16) for ζ and η and the bootstrap assumptions (4.1), we have

‖G‖L2L1
v
. ‖χ̂‖L∞L2

v
‖∇/ χ̂‖L2(H) + ‖χ̂‖L∞L2

v
‖∇/ trχ‖L2(H)

+ (‖ζ‖L2(H) +
∥∥η∥∥

L2(H)
) ‖trχ‖2L∞(H)

+ (‖ζ‖L∞L2
v

+
∥∥η∥∥

L∞L2
v

) ‖χ̂‖2L4(H)

. ε+ (Dε)2

. ε.
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Therefore, we deduce from Lemma 3.11 with (4.1) that (4.17) holds.
Next, we consider (4.18). The transport equation for trχ (2.22b) can be rewritten

L

(
trχ− 2

v

)
+ trχ

(
trχ− 2

v

)
= 2v−2(Ω− 1)− |χ̂|2 +

1

2

(
trχ− 2

v

)2

. (4.20)

Using Lemma 3.11, the bootstrap assumptions (4.2), the bounds on S1 (2.42), and the improved bound
(4.15), we have∥∥∥∥trχ− 2

v

∥∥∥∥
L∞(H)

. ‖trχ− 2‖L∞(S1) + ‖Ω− 1‖L∞(H) + ‖χ̂‖2L∞L2
v

+

∥∥∥∥trχ− 2

v

∥∥∥∥2

L∞(H)

. ε+ (Dε)2

. ε,

which proves (4.18).

It remains to prove (4.19). Using transport equation (4.20) for trχ, we deduce that∥∥∥∥L(trχ− 2

v

)∥∥∥∥
L2(H)

. ε,

and therefore

N1

(
trχ− 2

v

)
. ε.

Applying Hodge Lemma 3.19 to the Codazzi equation on χ̂ (2.34q), with the curvature bounds (4.3), the
improved bound (4.16), and the bound just proven for ∇/ trχ gives

‖∇/ χ̂‖L2(H) + ‖χ̂‖L2(H) . ‖∇/ trχ‖L2L∞v
+ ‖ζ‖L4L∞v

‖χ̂‖L4L∞v

+ ‖trχ‖L∞(H) ‖ζ‖L2(H) + ‖β‖L2(H)

. ε+ (Dε)2

. ε.

Taking directly the L2(H)-norm in the transport equation for χ̂ (2.22c), we finally obtain

‖∇/ Lχ̂‖L2(H) . ε

and this finishes the proof of Lemma 4.15.

Lemma 4.16. For ε > 0 sufficiently small, it holds that∥∥∇/ trχ
∥∥
L2L∞v

. ε, (4.21)∥∥∥∥trχ+
2

v

∥∥∥∥
L∞(H)

. ε, (4.22)

N1

(
trχ+

2

v

)
+N1(χ̂) . ε. (4.23)

Proof. Consider (4.21). Commuting the transport equation for trχ (2.22e) with ∇/ , we get

∇/ L∇/ trχ+ trχ∇/ trχ =G,

with

G = 4η · ∇/ η − χ̂ · ∇/ trχ+ (ζ + η)

(
− 1

2
trχtrχ+ 4ρ̌+ 4|η|2

)
,

which can be rewritten in the schematic form

G = 2v−2(ζ + η) +A(∇A+A+A2 +R).
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Chapter 4. Low regularity estimates

Using Lemma 3.11, the bootstrap assumptions (4.2), the initial bounds (2.42) and the improved bounds
(4.7) (4.16), we have∥∥∇/ trχ

∥∥
L2L∞v

.
∥∥∇/ trχ

∥∥
L2(S1)

+ ‖G‖L2L1
v

. ε+ ‖ζ‖L2(H) +
∥∥η∥∥

L2(H)

+ ‖A‖L∞L2
v

(‖∇A‖L2(H) + ‖A‖L2(H) + ‖A‖2L4(H) + ‖R‖L2(H))

. ε+ (Dε)2 + (Dε)3

. ε.

We turn to estimate (4.22). The transport equation for trχ (2.22e) can be rewritten in the following form

L

(
trχ+

2

v

)
+

1

2
trχ

(
trχ+

2

v

)
=− 2v−2(Ω− 1) + v−1

(
trχ− 2

v

)
+ 2ρ̌+ 2|η|2.

Using Lemma 3.11, the bootstrap assumptions (4.2), the bounds on S1 (2.42) and the improved bounds
(4.18) (4.15), we have ∥∥∥∥trχ+

2

v

∥∥∥∥
L∞(H)

.
∥∥trχ+ 2

∥∥
L∞(S1)

+ ‖Ω− 1‖L∞(H)

+

∥∥∥∥trχ− 2

v

∥∥∥∥
L∞(H)

+
∥∥ρ̌∥∥

L∞L1
v

+
∥∥η∥∥2

L∞L2
v

. ε+ (Dε)2

. ε.

To prove estimate (4.23), we apply Hodge Lemma 3.19 to the Codazzi equation for χ̂ and since ∇/ trχ and trχ

have already been estimated the ∇/ -control of trχ+ 2
v and χ̂ follows. The estimates for L(trχ+ 2

v ) and ∇/ Lχ̂
are obtained by taking directly the L2(H) norm in the transport equations for trχ and χ̂ (2.22e) and (2.22f)
since all linear source terms have already been estimated. This concludes the proof of Lemma 4.16.

4.6 Improvement of Υ
In this section, we improve the estimate for ‖Υ‖L∞(H) which is the key quantity to compare the geodesic

and canonical foliations. Using the estimates proved in the previous sections, we can first improve the L∞L2
v

estimate for η.

Lemma 4.17. For ε > 0 sufficiently small, it holds that∥∥η∥∥
L∞L2

v

. ε. (4.24)

Proof. Our goal is to apply the trace estimate of Lemma 3.13. By the improved estimates (4.16) for η, it
suffices to prove that there exist P and E such that

∇/ η = ∇/ LP + E,

with

N1(P ) . ε, ‖E‖P0
v
. ε.

From the transport equation for χ (2.22d), we have

∇/ AηB =
1

2
∇/ LχAB −

1

2
ρg/AB −

1

2
σ ∈/AB +

1

2
χACχCB

=
1

2
∇/ L

(
χ
AB

+
2

v
g/AB

)
− 1

2
ρg/AB −

1

2
σ ∈/AB + EAB ,
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where

EAB :=

(
1

2
trχ

(
trχ− 2

v

)
+ 2v−2(Ω− 1) +

1

2
trχ

(
trχ+

2

v

)
+

1

2

(
trχ− 2

v

)(
trχ+

2

v

))
g/AB

+
1

4
trχχ̂AB +

1

4
trχχ̂

AB
+

1

2
χ̂AC χ̂CB .

First, using the results of Lemma 4.16, we have

N1

(
χ+

2

v
g/

)
. ε.

Second, using Lemma 3.10 and the improved bounds for Ω, χ and χ (4.15), (4.19), (4.23), we have

‖E‖P0
v
.

(
N1(Ω− 1) +N1

(
χ− 2

v
g/

)
+N1

(
χ+

2

v
g/

))
×
(

1 +N1(Ω− 1) +N1

(
χ− 2

v
g/

)
+N1

(
χ+

2

v
g/

))
. ε.

Third, we define (φ, ψ) to be the solution of the transport equation

Lφ = ρ,

Lψ = σ,

(φ, ψ)|S1 = ∗D/−1
1 β̌.

(4.25)

Using the curvature bounds (4.3), we have directly

‖Lφ‖L2(H) + ‖Lψ‖L2(H) . ε (4.26)

Using the definition of β̌ (2.8) and the Codazzi equation for χ̂ (2.22k), we have schematically

β̌ = div/ χ̂− 1

2
∇/ trχ+A+AA.

Therefore, using Lemma 3.5 and the bounds on S1 (2.42), we have∥∥β̌∥∥
H−1/2(S1)

.
∥∥χ̂∥∥

H1/2(S1)
+

∥∥∥∥trχ+
2

v

∥∥∥∥
H1/2(S1)

+ ‖AA‖L2(S1)

. ‖χ̂‖H1/2(S1) +

∥∥∥∥trχ+
2

v

∥∥∥∥
H1/2(S1)

+ ‖A‖L4(S1) ‖A‖L4(S1)

.
∥∥χ̂∥∥

H1/2(S1)
+

∥∥∥∥trχ+
2

v

∥∥∥∥
H1/2(S1)

+ ‖A‖H1/2(S1) ‖A‖H1/2(S1)

. ε.

Thus, using Lemma 3.21, we have

‖(φ, ψ)‖H1/2(S1) .
∥∥∥∗D/−1

1 β̌
∥∥∥
H1/2(S1)

.
∥∥β̌∥∥

H−1/2(S1)
. ε. (4.27)

Using the transport Lemma 3.11 with these bounds, we deduce

‖(φ, ψ)‖L2L∞v
. ‖L(φ, ψ)‖L2(H) + ‖(φ, ψ)‖H1/2(S1) . ε. (4.28)

Commuting the transport equation (4.25) by ∗D/ 1, using Bianchi equation (2.9c) for β̌ and commutation
formula (2.13) gives

∇/ L
∗D/ 1(φ, ψ) =∗D/ 1(ρ, σ) + [∇/ L,

∗D/ 1](φ, ψ)

=∇/ Lβ̌ + trχβ̌ +A
(
R+∇A+A+A2

)
+A∇(φ, ψ).
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Using Lemma 3.11, the bootstrap assumptions (4.2), the curvature bounds (4.4) and the condition (4.25)
on S1 for (φ, ψ), we have∥∥∗D/ 1(φ, ψ)− β̌

∥∥
L∞v L

2 .
∥∥∗D/ 1(φ, ψ)− β̌

∥∥
L2(S1)

+ ‖trχ‖L∞(H)

∥∥β̌∥∥
L2(H)

+ ‖A‖L∞L2
v

(‖R‖L2(H) + ‖∇A‖L2(H) + ‖A‖L2(H) + ‖A‖2L4(H))

+ ‖A‖L∞L2
v
‖∇(φ, ψ)‖L2(H)

. ε+ (Dε)2 + (Dε)N1(φ, ψ).

Using Hodge Lemma 3.19 and the curvature bound (4.4), we deduce from the above that

‖∇/ (φ, ψ)‖L2(H) . ‖
∗D/ 1(φ, ψ)‖

L2(H)

.
∥∥β̌∥∥

L2(H)
+
∥∥∗D/ 1(φ, ψ)− β̌

∥∥
L∞L2

v

. ε+DεN1(φ, ψ).

(4.29)

For ε > 0 sufficiently small, we therefore have by (4.26), (4.27), (4.28) and (4.29), that

N1(φ, ψ) . ε.

This finishes the proof of the lemma.

Lemma 4.18. We have the improved bound

‖Υ′‖L∞(H) + ‖Υ‖L∞(H) . ε. (4.30)

Proof. From Proposition 2.32, we have

∇/ ′LΥ′A = η′
A
− (η)‡A

= η′
A
− η(eA).

Integrating in s and since Υ′ = 0 on S1, we deduce

Υ′A =

∫ s

1

L (Υ′A) ds′

=

∫ s

1

(η′
A
− η(eA)) ds′

=

∫ s

1

η′
A

ds′ −
∫ v(s)

v′=1

η
A

Ω−1 dv′.

Therefore, using the assumed bound (4.1) on the geodesic connection coefficient η′ = −ζ ′ and the improved
bound for η (4.24), we obtain

‖Υ′‖L∞(H) .
∥∥η′∥∥

L∞L2
s

+
∥∥Ω−1

∥∥
L∞(H)

∥∥η∥∥
L∞L2

v

)

. ε,

which, together with Definition 2.27 proves (4.30).

4.7 Improvement of L∞L2
v estimates for A

In section 4.6, we proved L∞L2
v estimate for η. In this section, we prove the remaining L∞L2

v estimates
for χ̂, ζ,∇/ log Ω by comparing the canonical foliation to the geodesic foliation on H. This concludes the
improvement of the bootstrap assumptions (4.2), thus finishes the proof of Proposition 2.39.

Lemma 4.19. For ε > 0 sufficiently small, we have

‖χ̂‖L∞L2
v
. ε, (4.31)

‖ζ‖L∞L2
v
. ε, (4.32)

‖∇/ log Ω‖L∞L2
v
. ε. (4.33)
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Proof. From Proposition 2.32, we have

χAB =χ′AB

ζA =ζ ′A − 2Υ′Bχ
′
AB ,

Thus, the estimate (4.31) is a direct consequence of the bounds (4.1) and (4.30).

Further, by the improved bound on Υ′ (4.30) and the assumed bound (2.38) for the geodesic connection
coefficients, we get

‖ζ‖L∞L2
v
. ‖ζ ′‖L∞L2

s
+ ‖Υ′‖L∞(H) ‖χ

′‖L∞L2
s
. ε.

Estimate (4.33) then follows directly using relation (2.4). This finishes the proof of Lemma 4.19.

4.8 Additional bounds for Υ
In Section 5, we will use the following additional estimates.

Lemma 4.20. For ε > 0 sufficiently small, we have

‖∇/ LΥ‖L2(H) + ‖∇/ Υ‖L2L∞v
. ε. (4.34)

Proof. Taking the L2(H)-norm in the transport equation (2.31) for Υ, using the improved bound (4.6) for Ω
and the improved bound on Υ (4.30), we have

‖∇/ LΥ‖L2(H) . ‖trχ‖L∞(H) ‖Υ‖L∞(H) + ‖χ̂‖L2L∞v
‖Υ‖L∞(H) + ‖∇/ log Ω‖L2(H)

. ε+ ε2

. ε.

To obtain the other bound, we make the additional bootstrap assumption ‖∇/ Υ‖L2L∞v
≤ Dε. We commute

the transport equation (2.31) by ∇/

∇/ L∇/ AΥB =− 1

2
trχ∇/ AΥB −

1

2
∇/ AtrχΥB +∇/ A∇/ B log Ω

−∇/ Aχ̂BCΥC − χ̂BC∇/ AΥC + [∇/ L,∇/ ]AΥB ,
(4.35)

where by using formula (2.10) and (2.31) we have

[∇/ L,∇/ ]AΥB =− 1

2
trχ∇/ AΥB − χ̂AC∇/ CΥB − |∇/ (log Ω)|2 + χ · ∇/ log Ω ·Υ− ∗βA

∗ΥB .

Therefore, applying Lemma 3.11, using that Υ = 0 on S1, the improved bounds and the additional bootstrap
assumption, we obtain

‖∇/ Υ‖L2L∞v
.
∥∥∇/ 2 log Ω

∥∥
L2(H)

+ ‖∇/ log Ω‖2L2
vL

4

+ ‖Υ‖L∞(H) (‖∇/ χ‖L2(H) + ‖χ‖L∞L2
v
‖∇/ log Ω‖L2(H) + ‖β‖L2(H))

+ ‖∇/ Υ‖L2L∞v
‖χ̂‖L∞L2

v

. ε+ (Dε)2

. ε,

which improves the additional bootstrap assumption and hence finishes the proof of Lemma 4.20.
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5. Higher regularity estimates
This section is dedicated to the proof of Proposition 2.40 and completes Step 3 in Section 2.13. We assume
that (M,g) is a smooth spacetime and H a smooth null hypersurface foliated by a smooth geodesic foliation.
We assume moreover that the following bounds hold on [1, v∗],

‖Ω− 1‖L∞v ([1,v∗])L∞ +N v,v∗

1 (∇/ log Ω) . ε,

‖Υ‖L∞v ([1,v∗])L∞ + ‖∇/ Υ‖L2L∞v ([1,v∗]) . ε.
(5.1)

For all m ≥ 0, we will prove the following estimates∑
l≤m

(∥∥∇/ l(Ω− 1)
∥∥
L∞v ([1,v∗])L2 +

∥∥∇/ lΥ
∥∥
L∞v ([1,v∗])L2

)
≤ C

(∥∥g/′∥∥
Cm+2(H)

,m
)
. (5.2)

Moreover, we will also have the following estimates on the L-derivatives∑
l≤m

∥∥∇/ lLk(Ω)
∥∥
L∞v ([1,v∗])L2 ≤ C

(∥∥g/′∥∥
Cm+k+2(H)

,m+ k
)
, (5.3)

for all m ≥ 0 and all k ≥ 0. This will complete the proof of Proposition 2.40.

Before turning to the proof of (5.2) and (5.3), we prove the following lemma that is a rewriting of equa-
tions (2.31) and (2.17). This will also be used in the proof of the local existence Theorem 2.37.

Lemma 5.1. We have

∇/ LΥ = −(χ′)† ·Υ−∇/ log Ω, (5.4)

log Ω = 4/ −1
(
F ′1 + (F ′2)† ·Υ + (F ′3)† ·Υ ·Υ + (F ′4)† · ∇/ Υ

)
, (5.5)

where F ′1, F
′
2, F

′
3, F

′
4 are (contractions of) geodesic quantities, and u := 4/ −1f denotes the solution of the

following elliptic equation

4/ u = f −
∫
Sv

f,∫
Sv

u = 0.

Remark 5.2. As far as higher regularity is concerned, we are not interested in proving sharp estimates.
Thus, the specific structure of the terms (F ′i )

† is not needed.

Proof. Equation (5.4) is a rewriting of (2.31). Equation (5.5) is a rewriting of (2.22n). Namely, we have
using the relations from Proposition 2.32 and the derivatives relation from Proposition 2.29

div/ ζ =div/
(
(ζ ′)† + (χ′)† ·Υ

)
=div/ ′ζ ′ + (∇/ ′Lζ ′)† ·Υ + (trχ′)†(ζ ′)† ·Υ
− (χ′)† · (ζ ′)† ·Υ + (χ′)† · ∇/ Υ + (div/ ′χ′)† ·Υ
+∇/ ′Lχ′ ·Υ ·Υ + (trχ′)†(χ′)† ·Υ ·Υ− 2(χ′)† · (χ′)† ·Υ ·Υ.

Using the relations from Proposition 2.31, we have

ρ =ρ′ + (β′)† ·Υ + (α′)† ·Υ ·Υ.

Using the relations from Proposition 2.32, we have

−1

2
χ̂ · χ̂ =− 1

2
(χ̂′)† ·

(
(χ̂′)† − 4(ζ ′)† ·Υ + 2∇/ Υ− |Υ|2(χ′)†

)
.
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Therefore, using the definition of ρ̌ (2.8) and defining

F ′1 :=− div/ ′ζ ′ + ρ′ − 1

2
χ̂′ · χ̂′,

F ′2 :=−∇/ ′Lζ ′ − trχ′ζ ′ + χ′ · ζ ′ − (div/ ′χ′)† + β′ + 2χ̂′ · ζ ′,

F ′3 := + α′ +
1

2
χ̂′ · χ′ − 1

2
|χ̂′|2 − (trχ′)†(χ′)† + 2(χ′)† · (χ′)†,

F ′4 :=− trχ′g/
′ − 2χ̂′,

we have

log Ω = 4/ −1
(
F ′1 + (F ′2)† ·Υ + (F ′3)† ·Υ ·Υ + (F ′4)† · ∇/ Υ

)
.

This finishes the proof of Lemma 5.1.

Proof of (5.2) and (5.3). The proof of (5.2) goes by induction on m. The cases m = 0 and m = 1 were
already obtained in Section 4. We prove the case m = 2 and the cases m ≥ 3 are proved similarly and are
left to the reader. In what follows, we use that the quantities F ′1, F

′
2, F

′
3, F

′
4 appearing in Lemma 5.1 are

smooth in the geodesic foliation. More precisely, we are going to obtain bounds in terms of∑
k≤2

(∥∥(∇′)kF ′1
∥∥
L∞(H)

+
∥∥(∇′)kF ′2

∥∥
L∞(H)

+
∥∥(∇′)kF ′3

∥∥
L∞(H)

+
∥∥(∇′)kF ′4

∥∥
L∞(H)

)
.

For simplicity, we do not write the exact bound and this quantity shall be always implicitly included in the
constants C appearing in the following.

First, applying Lemma 3.17 to elliptic equation (5.5), we have∥∥∇/ 2 log Ω
∥∥
L∞v L

2 . ‖F ′1‖L∞(H) + ‖F ′2‖L∞(H) ‖Υ‖L∞(H)

+ ‖F ′3‖L∞(H) ‖Υ‖
2
L∞(H) + ‖F ′4‖L∞(H) ‖∇/ Υ‖L∞v L2

.C (ε) .

Second, commuting equation (5.4) by ∇/ 2, we have schematically

∇/ L∇/ 2Υ =− (χ′)† · ∇/ 2Υ +G′(Υ) · (∇/ Υ +∇/ log Ω) +∇/ 3(log Ω) + [∇/ L,∇/ 2]Υ,

where G′(Υ) denotes an arbitrary number of contractions of geodesic quantities with Υ. Using commutation
formula (2.10), the commutator can be schematically rewritten

[∇/ L,∇/ 2]Υ =∇/ [∇/ L,∇/ ]Υ + [∇/ L,∇/ ]∇/ Υ

=G′(Υ) · (∇/ Υ +∇/ log Ω)

+ (χ′)† · ∇/ 2Υ +∇/ log Ω · ∇/ 2 log Ω.

We therefore obtain the following schematic formula

∇/ L∇/ 2Υ =(χ′)† · ∇/ 2Υ +∇/ 3(log Ω) +∇/ log Ω · ∇/ 2 log Ω

+G′(Υ) · (∇/ Υ +∇/ log Ω) .

Using Lemma 3.11, the assumptions (5.1), and the above formulas, we therefore get∥∥∇/ 2Υ
∥∥
L∞v L

2 . ‖χ′‖L∞(H)

∥∥∇/ 2Υ
∥∥
L1
vL

2 +
∥∥∇/ 3 log Ω

∥∥
L1
vL

2

+ ‖∇/ log Ω‖L∞L2
v

∥∥∇/ 2 log Ω
∥∥
L2(H)

+ ‖G′(Υ)‖L∞(H)

(
‖∇/ Υ‖L∞v L2 + ‖∇/ log Ω‖L∞v L2

)
.C + C

∫
v

(∥∥∇/ 2Υ
∥∥
L2(Sv)

+
∥∥∇/ 3 log Ω

∥∥
L2(Sv)

)
dv.

(5.6)
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On the other hand, commuting elliptic equation (5.5), with ∇/ , we obtain schematically

4/ ∇/ log Ω =G′(Υ) · ∇/ Υ + (F ′4)† · ∇/ 2Υ + [4/ ,∇/ ] log Ω,

where using formula (2.15) and Propositions 2.31 and 2.32, the commutator can be rewritten

[4/ ,∇/ ] log Ω =−K∇/ log Ω

=−
(
−1

4
trχtrχ+

1

2
χ̂ · χ̂− ρ

)
∇/ log Ω

= (G′(Υ) +G′(Υ) · ∇/ Υ)∇/ log Ω.

We therefore obtain the following formula

4/ ∇/ log Ω =G′(Υ) · (∇/ Υ +∇/ log Ω) +G′(Υ) · ∇/ Υ · ∇/ log Ω + (F ′4)† · ∇/ 2Υ.

Therefore, using Lemma 3.17, assumptions (5.1) and Sobolev Lemma 3.8, we have∥∥∇/ 3 log Ω
∥∥
L2(Sv)

. ‖G′(Υ)‖L∞(H)

(
‖∇/ Υ‖L∞v L2 + ‖∇/ log Ω‖L∞v L2

)
+ ‖G′(Υ)‖L∞(H) ‖∇/ log Ω‖L∞v L4 ‖∇/ Υ‖L4(Sv)

+ ‖F ′4‖L∞(H)

∥∥∇/ 2Υ
∥∥
L2(Sv)

.C
(

1 +
∥∥∇/ 2Υ

∥∥
L2(Sv)

)
.

Plugging this estimate into (5.6), we obtain∥∥∇/ 2Υ
∥∥
L∞v L

2 . C + C

∫
v

∥∥∇/ 2Υ
∥∥
L2(Sv)

dv.

By a Grönwall argument, we deduce ∥∥∇/ 2Υ
∥∥
L∞v L

2 . C.

This finishes the proof of the Lemma in the case m = 2.

To prove estimates (5.3), we commute elliptic equation (5.5) for log Ω with L and using the formula (5.4),
the right-hand side can be expressed in terms of lower order derivatives of log Ω. Details are left to the
reader.
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6. Proof of local existence
In this section, we prove Theorem 2.37 by showing a more general local existence theorem for equations of
the type (5.4)-(5.5), where the unknown is the function

(v, ω) ∈ [1, 2]× S2 7→ s(v, ω).

This strategy is similar to writing a foliation by geometric flows as family of graphs and was already used
in [Nic04] and [Sau08].

6.1 Geometric setup and theorem
Let v0 ∈ [1, 2), and define

C :=
{

(v, ω) ∈ [v0, 2]× S2
}
, Sv := {v} × S2 ⊂ C.

Similarly, let

C′ :=
{

(s, ω) ∈ [1, 5/2]× S2
}
, S′s := {s} × S2 ⊂ C′.

Let g be a smooth degenerate metric on C′ such that the induced metric on S′s is Riemannian. Let
F ′1, F

′
2, F

′
3, F

′
4 be respectively a fixed scalar field, a fixed 1, 2 and 2 S′s-tangent tensor.

For a function s : C → [1, 5/2], we define

Φ(s) : C → C′

(v, ω) 7→ (s(v, ω), ω).

For a function s : C → [1, 5/2], we define g/(s) to be the induced Riemannian metric on Sv by Φ(s)∗g, and

Fi(s) := (Φ(s)∗F ′i )
†
, where † denotes the projection of C-tangent tensors to Sv-tangent tensors defined in

Definition 2.26.

Remark 6.1. By the degeneracy of the metric g and the definition of Φ, the metric g/(s) depends only on s
and not on derivatives of s. Similarly, since the tensors F ′i are S′s-tangent and by the definition of Φ, the
tensors Fi(s) only depend on s.

In what follows, our goal is to prove local existence for the system of quasilinear elliptic transport equations
in C

log Ω = 4/ −1
(
F1(s) + F2(s) · ∇/ s+ F3(s) · ∇/ s · ∇/ s+ F4(s) · ∇/ 2s

)
,

∂vs = Ω−1,
(6.1)

where ∇/ and 4/ are respectively the covariant derivative and the Laplacian associated to g/(s) and where for
a Riemannian 2-sphere (S, g/), u := 4/ −1f is the solution of

4/ u = f −
∫
S

f,∫
S

u = 0,

with integrals taken with respect to the metric g/.

For ease of notation, we shall define F (s,∇/ s,∇/ 2s) to denote schematically

F (s,∇/ s,∇/ 2s) := F1(s) + F2(s) · ∇/ s+ F3(s) · ∇/ s · ∇/ s+ F4(s) · ∇/ 2s.

Let s0 be a function Sv0 → [1, 5/2] and extend it to C by requiring that ∂vs0 = 0. Define (0)∇/ and (0)4/ to
be respectively the covariant derivative and Laplacian on all spheres Sv associated to g/(s0). Define log Ω0

on all spheres Sv by

log Ω0 := (0)4/
−1
(
F (s0,

(0)∇/ s0,
(0)∇/

2
s0)
)
.

We have the following result.
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Chapter 6. Proof of local existence

Theorem 6.2. Assume that s0 ∈ H5(Sv0) and that | log Ω0| ≤ 1/100. Assume moreover that (Sv0 , g/(s0))
is a weakly spherical 2-sphere of radius v0 (see Definition 3.14) with constants such that the Bochner and
Hodge estimates from Lemmas 3.17, 3.19, 3.20 hold true. There exists

δ
(∥∥(s0 − 5/2)−1

∥∥
L∞(Sv0 )

, ‖s0‖H5(Sv0 ) , ‖F
′
i‖C3

)
> 0,

and

s ∈ C0([v0, v0 + δ], H5) ∩ C1([v0, v0 + δ], H4),

such that on C the system of equations (6.1) is satisfied for s, with the initial condition s|Sv0 = s0. Moreover,
we have

| log Ω| < 1/10. (6.2)

6.2 Proof of Theorem 6.2
The proof goes by a classical Banach-Picard fixed-point theorem.

Definition of the iteration As defined previously, we have s0(v, ω) := s0(ω) and Ω0(v, ω) := Ω0(ω). For
all n ≥ 0, we define sn+1 and log Ωn+1 on C by

sn+1(v, ω) := s0(ω) +

∫ v

v∗
Ω−1
n (v′, ω) dv′, (6.3)

log(Ωn+1) := (n+1)4/
−1
(
F
(
sn+1,

(n+1)∇/ sn+1,
(n+1)∇/

2
sn+1

))
. (6.4)

We define

M0 :=
∑
l≤5

∥∥∥(0)∇/
l
s0

∥∥∥
L2(Sv0 )

,

and

Mδ
n := sup

v0≤v≤v0+δ

∑
l≤5

∥∥∥(0)∇/
l
(sn(v)− s0)

∥∥∥
L2(Sv0 )

+
∑
l≤5

∥∥∥(0)∇/
l
log Ωn(v)

∥∥∥
L2(Sv0 )

 .

Boundedness of the iteration In this section, we show that if

δ < δ
(∥∥(s0 − 5/2)−1

∥∥
L∞(Sv0 )

,M0, ‖F‖C3

)
,

then, defining M := 2M0, we have for all n ≥ 0

Mδ
n ≤M, (6.5)

sup
v0≤v≤v0+δ

sn(v) < 5/2, (6.6)

sup
v0≤v≤v0+δ

‖log Ωn‖L∞(Sv) ≤ 1/10. (6.7)

We argue by induction and assume that these assumptions hold for an arbitrary n ∈ N. First, using the
transport equation (6.3) and estimate (6.7), if δ is small enough depending on

∥∥(s0 − 5/2)−1
∥∥
L∞(Sv0 )

, we

have

sup
v0≤v≤v0+δ

sn+1(v) < 5/2,

and therefore (6.6) is proved for n+ 1.

Second, using estimate (6.5) and (6.7) at step n, we obtain that

sup
v0≤v≤v0+δ

∑
l≤5

∥∥∥(0)∇/
l
(Ω−1

n )
∥∥∥
L2(Sv0 )

≤ C(M).
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Therefore, deriving and estimating equation (6.3), we obtain

sup
v0≤v≤v0+δ

∑
l≤5

∥∥∥(0)∇/
l
(sn+1(v)− s0)

∥∥∥
L2(Sv0 )

≤ δC(M). (6.8)

Third, we can rewrite equation (6.4)

(0)4/ (log Ωn+1 − log Ω0) =
(

(0)4/ − (n+1)4/
)

(log Ωn+1 − log Ω0) + En+1, (6.9)

with

En+1 :=
(

(0)4/ − (n+1)4/
)

(log Ω0)

+ F (sn+1,
(n+1)∇/ sn+1,

(n+1)∇/
2
sn+1)− F (s0,

(0)∇/ s0,
(0)∇/

2
s0).

From the weak sphericality assumption from Theorem 6.2, we can apply the elliptic estimate from Lemma 3.20
and we therefore deduce that∥∥∥(0)∇/ (log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

+
∥∥log Ωn+1 − log Ω0 − log Ωn+1

∥∥
L2(Sv)

.
∥∥∥((0)4/ − (n+1)4/

)
(log Ωn+1 − log Ω0)

∥∥∥
L4/3(Sv)

+ ‖En+1‖L4/3(Sv) .
(6.10)

Using Remark 6.1, we have∣∣∣∣∣
∫

(Sv,g/ (s0))

log Ωn+1

∣∣∣∣∣ .
∣∣∣∣∣
∫

(Sv,g/ (s0))

log Ωn+1 −
∫

(Sv,g/ (sn+1))

log Ωn+1

∣∣∣∣∣
. C ‖sn+1 − s0‖L∞(Sv) ‖log Ωn+1‖L2(Sv)

. δC(M) ‖log Ωn+1‖L2(Sv)

. δC(M) ‖log Ωn+1 − log Ω0‖L2(Sv) + δC(M).

Moreover, we have∥∥∥((0)4/ − (n+1)4/
)

(log Ωn+1 − log Ω0)
∥∥∥
L4/3(Sv)

.C

∑
l≤5

∥∥∥(0)∇/ s0

∥∥∥
L2(Sv)

,
∑
l≤5

∥∥∥(0)∇/ sn+1

∥∥∥
L2(Sv)


×

∑
l≤5

∥∥∥(0)∇/
l
(sn+1 − s0)

∥∥∥
L2(Sv)

∑
l≤2

∥∥∥(0)∇/
l
(log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)


. δC(M)

∑
l≤2

∥∥∥(0)∇/
l
(log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

 ,

and similarly

‖En+1‖L4/3(Sv) . δC(M).

Therefore, for δC(M) small enough we can perform a standard absorption argument in the elliptic esti-
mate (6.10) and we finally deduce∥∥∥(0)∇/ (log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

+ ‖log Ωn+1 − log Ω0‖L2(Sv) . δC(M).

We now prove that we have the following bounds for the remaining higher order derivatives

5∑
l=2

∥∥∥(0)∇/
l
(log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

. δC(M).
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The proof goes by induction on l for l = 2 to l = 5. We only do the case l = 5 assuming that the bounds
for l ≤ 4 have been obtained, since it will be clear that the proof for the other cases is almost identical.

Commuting equation (6.9) with (0)∇/ 3
gives

(0)4/ (0)∇/
3

(log Ωn+1 − log Ω0) =[(0)4/ , (0)∇/
3
](log Ωn+1 − log Ω0)

+ (0)∇/
3
((

(0)4/ − (n+1)4/
)

(log Ωn+1 − log Ω0)
)

+ (0)∇/
3

(En+1) .

(6.11)

We have the following three estimates, which proofs are left to the reader∥∥∥[(0)4/ , (0)∇/
3
](log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

. δC(M),∥∥∥(0)∇/
3
En+1

∥∥∥
L2(Sv)

. δC(M),

and ∥∥∥(0)∇/
3
((

(0)4/ − (n+1)4/
)

(log Ωn+1 − log Ω0)
)∥∥∥

L2(Sv)

. δC(M)

∑
l≤5

∥∥∇/ l (log Ωn+1 − log Ω0)
∥∥
L2(Sv)

 .

Using these together with a Bochner estimate similar to Lemma 3.17 for tensors of arbitrary type applied to
equation (6.11), we deduce that∥∥∥(0)∇/

5
(log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

.
∥∥∥[(0)4/ , (0)∇/

3
](log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

+
∥∥∥(0)∇/

3
((

(0)4/ − (n+1)4/
)

(log Ωn+1 − log Ω0)
)∥∥∥

L2(Sv)

+
∥∥∥(0)∇/

3
En+1

∥∥∥
L2(Sv)

. δC(M) + δC(M)
∥∥∇/ 5 (log Ωn+1 − log Ω0)

∥∥
L2(Sv)

,

which, performing a standard absorption argument, gives the desired bound.

We therefore have proved that

Mδ
n+1 ≤M0 + δC(M) ≤M,

provided that δ has been chosen small enough.

Moreover, by Sobolev embedding, we deduce that

‖log Ωn+1 − log Ω0‖L∞(Sv) .
∑
l≤5

∥∥∥(0)∇/
l
(log Ωn+1 − log Ω0)

∥∥∥
L2(Sv)

≤ δC(M).

Therefore, for δ such that δC(M) < 1/100, and using the assumption | log Ω0| ≤ 1/100, this proves the
bound (6.7) for n+ 1. This finishes the proof of the boundedness of the sequence sn+1.

Contraction of the iteration We define

∆δ
n+1 := sup

v0≤v≤v0+δ

(∑
l≤5

∥∥∥(0)∇/
l
(sn+1 − sn)

∥∥∥
L2(Sv)

+
∑
l≤5

∥∥∥(0)∇/
l
(log Ωn+1 − log Ωn)

∥∥∥),
and we show, provided that δ has been chose small enough, that we have

∆δ
n+1 ≤ κ∆δ

n,
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with κ < 1. The proof follows the lines of the proof of the boundedness. First, we have

∑
l≤5

∥∥∥(0)∇/
l (

Ω−1
n − Ω−1

n−1

)∥∥∥
L2(Sv)

≤ C(M)

∑
l≤5

∥∥∥(0)∇/
l
(log Ωn − log Ωn−1)

∥∥∥
L2(Sv)

 .

Therefore we deduce using equation (6.3) that∑
l≤5

∥∥∥(0)∇/
l
(sn+1 − sn)

∥∥∥
L2(Sv)

≤ δC(M)∆δ
n.

Performing a similar elliptic estimate as in the proof of the boundedness of sn, we therefore deduce that∑
l≤5

∥∥∥(0)∇/
l
(log Ωn+1 − log Ωn)

∥∥∥
L2(Sv)

≤ δC(M)∆δ
n.

Thus, for δ such that δC(M) < 1, we deduce the result and this finishes the proof of the contraction and of
Theorem 6.2.

6.3 Proof of Theorem 2.37
In this section, we show how Theorem 2.37 follows from Theorem 6.2.

We define v0 := v∗ and s0 := s∗ = s|v∗ , and F ′1, F
′
2, F

′
3, F

′
4 to be the tensors defined in Lemma 5.1. By

assumptions and since the F ′i have been defined as in Lemma 5.1, the quantity log Ω0 defined in Section 6.1
coincides with log Ω|Sv0 .By assumption of Theorem 2.37, we have s0 ∈ H5(Sv0), | log Ω0| ≤ 1/100 and that
(Sv0 , g/(s0)) is a weakly spherical 2-sphere of radius v0.

Applying Theorem 6.2, there exists δ > 0 and a function s ∈ C1([v0, v0 + δ],S2), satisfying the system of
equations (6.1). Since by estimate (6.2) we have |∂vs−1| < 1/5, the map Φ(s) : [v0, v0 +δ]×S2 → [1, 5/2]×S2

admits a C1-inverse by the global inverse theorem. This defines a C1-function v in geodesic coordinates,
and therefore on H, taking values from v∗ = v0 to v∗ + δ, which, using the conclusion of Theorem 6.2, is
regular. Since equations (6.1) are satisfied and since the F ′i have been defined as in Lemma 5.1, we deduce
that (Sv)v∗≤v≤v∗+δ is a canonical foliation. In case (Sv)1≤v≤v∗ was a regular canonical foliation, using
equations (6.1), one deduces that (Sv)v∗≤v≤v∗+δ is a regular extension thereof. This finishes the proof of
Theorem 2.37.
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A. Proof of Propositions 2.31 and 2.32
In this section we prove the formulas from Proposition 2.31 and 2.32. The following computations are
standard and can be found in various forms in [AS16], [Nic04], [Sau08] for instance. In what follows, we use
the formulas from [CK93] pp. 149-150. We have

αAB = R(L, eA, L, eB) = R(L, e′A + ΥAL,L, e
′
B + ΥBL) = R(L, e′A, L, e

′
B),

and

βA =
1

2
R(eA, L, L, L)

=
1

2
R(e′A + ΥAL,L, L

′ + 2ΥAe
′
A + |Υ|2L,L)

=
1

2
R(e′A, L, L

′, L) + ΥAR(e′A, L, e
′
B , L)

=β′A + ΥBαAB ,

and

ρ =
1

4
R(L,L, L, L)

=
1

4
R(L′ + 2ΥAe

′
A + |Υ|L,L, L′ + 2ΥBe

′
B + |Υ|2L,L)

=
1

4
R(L′, L, L′, L) +

1

2
ΥAR(e′A, L, L

′, L) +
1

2
ΥBR(L′, L, e′B , L) + ΥAΥBR(e′A, L, e

′
B , L)

=ρ′ + (β′)† ·Υ + (α′)† ·Υ ·Υ.

Following the previous computation for ρ we also obtain

σ =
1

4
∗R(L,L, L, L)

=σ′ + ΥA
∗R(eA, L, L

′, L) + ΥAΥB
∗R(eA, L, eB , L)

=σ′ − ( ∗β′)
† · (Υ)− ( ∗α′)† ·Υ ·Υ.

We have

β
A

=
1

2
R(eA, L, L, L)

=
1

2
R(e′A + ΥAL, L

′ + 2ΥBe
′
B + |Υ|2L, L′ + 2ΥCe

′
C + |Υ|2L,L)

=
1

2
R(e′A, L

′, L′, L) +
1

2
ΥAR(L, L′, L′, L) + ΥBR(e′A, e

′
B , L

′, L) + ΥCR(e′A, L
′, e′C , L)

+ ΥAΥBR(L, e′B , L
′, L) + ΥAΥCR(L, L′, e′C , L) + 2ΥBΥCR(e′A, e

′
B , e

′
C , L)

+
1

2
|Υ|2R(e′A, L, L

′, L) + 2ΥAΥBΥCR(L, e′B , e
′
C , L) + |Υ|2ΥCR(e′A, L, e

′
C , L)

=β′
A
− 2ΥAρ

′ + 2 ∗ΥAσ
′ + (−ΥAρ

′ + ∗ΥAσ
′)− 2ΥAΥ · (β′)† + 2ΥAΥ · (β′)†

− 2 ∗ΥAΥ · ( ∗β′)† + |Υ|2β′A − 2ΥAΥ ·Υ · (α′)† + |Υ|2Υ · (α′)†A
=β′

A
− 3ΥAρ

′ + 3 ∗ΥAσ
′ − 2 ∗ΥAΥ · ( ∗β′)† + |Υ|2β′A − 2ΥAΥ ·Υ · (α′)† + |Υ|2Υ · (α′)†A.

This finishes the proof of Proposition 2.31. We turn to the connection coefficients. We have immediately
χAB = χ′AB . We also have

ζA =
1

2
g(DAL, L)

=
1

2
g(De′A+ΥALL, L

′ + 2ΥBe
′
B + |Υ|2L)

=
1

2
g(De′A

L, L′) + ΥBg(De′A
L, e′B)

=ζ ′A + Υ · χA,
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and

η
A

=
1

2
g(DL L, eA)

=
1

2
g(DL(L′ + 2ΥBe

′
B + |Υ|2L, e′A + ΥAL))

=
1

2
g(DL L

′, e′A) + g(DL(ΥBe
′
B), e′A)

=η′
A

+∇/ LΥA.

Finally, we have

χ
AB

=g(DA L, eB)

=g(DeA(L′ + 2ΥCeC − |Υ|2L), eB)

=2∇/ AΥB + g(DeA(L′ − |Υ|2L), eB)

=2∇/ AΥB + g(De′A+ΥAL(L′ − |Υ|2L), e′B + ΥBL)

=2∇/ AΥB + g(De′A
L′, e′B) + ΥAg(DL L

′, e′B) + ΥBg(De′A
L′, L)− |Υ|2g(De′A

L, e′B)

=2∇/ AΥB + χ′
AB

+ 2ΥAη
′
B
− 2ΥBζ

′
A − |Υ|2χ′AB .

This finishes the proof of Proposition 2.32.
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B. Proof of Lemmas 3.5 and 3.20
B.1 Proof of Lemma 3.5
This section is dedicated to the proof of Lemma 3.5.
In fact, we prove the following more general estimate

‖∇/ F‖Hs(S) . ‖F‖Hs+1(S) , (B.1)

for −1 < s < 0.

Remark B.1. As it will be clear from what follows, the proof below does not work for other ranges of
exponents s, and would require additional regularity assumptions on the 2-sphere S.

From Proposition 2.3 in [Sha14], we have the following characterisation of Hs(S) using the Littlewood-Paley
projectors defined in Section 3.2

‖F‖2Hs(S) '
∑
k≥0

22sk ‖PkF‖2L2(S) + ‖P<0F‖2L2(S) . (B.2)

From Section 2.2 and Proposition 2.1 in [Sha14], we recall the following properties of the Littlewood-Paley
projection operators defined in Section 3.2. For all k ∈ Z, we have

Pk = PkPk−1 + PkPk + PkPk+1, (B.3)

and for F an S-tangent tensor and for all k ∈ Z, we have

‖PkF‖L2(S) . ‖F‖L2(S) , ‖P<0F‖L2(S) . ‖F‖L2(S) , (B.4)

and,

‖Pk∇/ F‖L2(S) . 2k ‖F‖L2(S) , ‖∇/ PkF‖L2(S) . 2k ‖F‖L2(S) ,

‖P<0∇/ F‖L2(S) . ‖F‖L2(S) , ‖∇/ P<0F‖L2(S) . ‖F‖L2(S) .
(B.5)

We turn to the proof of estimate (B.1). Using (3.4), (B.2) and (B.5), we have

‖∇/ F‖2Hs(S) .
∑
k≥0

22sk ‖Pk∇/ F‖2L2(S) + ‖P<0∇/ F‖2L2(S)

.
∑
k≥0

22sk ‖Pk∇/ P>kF‖2L2 +
∑
k≥0

22sk ‖Pk∇/ P≤kF‖2L2(S) + ‖F‖2L2(S) .
(B.6)

The first term in the right-hand side of (B.6) can be estimated using (B.3), (B.5) and that −1 < s < 0∑
k≥0

22sk ‖Pk∇/ P>kF‖2L2(S) .
∑
k≥0

22(s+1)k ‖P>kF‖2L2(S)

.
∑
k≥0

∑
l>k

22(s+1)k ‖PlF‖2L2(S)

.
∑
l>0

22(s+1)l ‖PlF‖2L2(S)

l−1∑
k=0

22(s+1)(k−l)

.
∑
l≥0

22(s+1)l ‖PlF‖2L2(S) .

For the second term in the right-hand side of (B.6), using (B.4), we first write the following decomposition

‖∇/ P≤kF‖2L2(S) =
∑

0≤l≤k

∑
0≤l′≤k

∫
S

∇/ PlF · ∇/ Pl′F + 2
∑

0≤l≤k

∫
S

∇/ PlF · ∇/ P<0F

+

∫
S

∇/ P<0F · ∇/ P<0F.
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The first term can be estimated, using that 4/ preserves the support of the projectors Pk (see also Section
2.2 in [Sha14]) and (3.4),∑

0≤l≤k

∑
0≤l′≤k

∫
S

∇/ PlF · ∇/ Pl′F =−
∑

0≤l≤k

∑
0≤l′≤k

∫
S

PlF4/ Pl′F

=−
∑

0≤l≤k

l+1∑
l′=l−1

∫
S

PlF4/ Pl′F

.
∑

0≤l≤k

l+1∑
l′=l−1

22l ‖PlF‖L2(S) ‖Pl′F‖L2(S)

.
∑

0≤l≤k+1

22l ‖PlF‖2L2(S) ,

and similarly, we deduce for the last two terms, using (B.4) and (B.5)

2
∑

0≤l≤k

∫
S

∇/ PlF · ∇/ P<0F +

∫
S

∇/ P<0F · ∇/ P<0F . ‖F‖2L2(S) .

Using this, (B.4) and that −1 < s < 0, we therefore deduce that for the second term of (B.6) we have∑
k≥0

22sk ‖Pk∇/ P≤kF‖2L2(S) .
∑
k≥0

22sk ‖∇/ P≤kF‖2L2(S)

.
∑
k≥0

∑
0≤l≤k+1

22sk22l ‖PlF‖2L2(S) +
∑
k≥0

22sk ‖F‖2L2(S)

.
∑
l≥0

22(s+1)l ‖PlF‖2L2(S)

 ∑
k≥l−1

22s(k−l)

+ ‖F‖2L2(S)

.
∑
l≥0

22(s+1)l ‖PlF‖2L2(S) + ‖F‖2L2(S) .

Finally, plugging the above estimates into (B.6) and using (B.2), we obtain

‖∇/ F‖2Hs(S) .
∑
l≥0

22(s+1)l ‖PlF‖2L2(S) + ‖F‖2L2(S)

. ‖F‖2Hs+1(S) .

This finishes the proof of Lemma 3.5.

B.2 Proof of Lemma 3.20
This section is dedicated to the proof of Lemma 3.20. We assume that f is a scalar function satisfying the
elliptic equation (3.6)

4/ f = div/ P + h.

Multiplying equation (3.6) by f − f and integrating by part, we have

‖∇/ f‖2L2(S) ≤ ‖P‖L2(S) ‖∇/ f‖L2(S) + ‖h‖L4/3(S)

∥∥f − f∥∥
L4(S)

.

Using Lemma 3.19, we have the following Poincaré inequality∥∥f − f∥∥
L2(S)

=
∥∥(f − f, 0)

∥∥
L2(S)

=
∥∥(∗D/ 1)−1(∇/ f)

∥∥
L2(S)

. ‖∇/ f‖L2(S) .

Therefore, using Sobolev Lemma 3.8, we have

‖∇/ f‖2L2(S) +
∥∥f − f∥∥2

L2(S)
. ‖P‖L2(S) ‖∇/ f‖L2(S)

+ ‖h‖L4/3(S)

(
‖∇/ f‖L2(S) +

∥∥f − f∥∥
L2(S)

)
,

and the bound holds by a standard absorption argument. The bound on H follows by integration in v. This
finishes the proof of Lemma 3.20.
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IV The global nonlinear stability of
Minkowski space for characteristic
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1. Introduction
1.1 Einstein equations and the stability of Minkowski space
A Lorentzian 4-dimensional manifold (M,g) is called a vacuum spacetime if it solves the Einstein vacuum
equations

Ric(g) = 0, (1.1)

where Ric(g) denotes the Ricci tensor of the Lorentzian metric g. For the metric components gµν in general
coordinates, equation (1.1) writes as a system of non-linear coupled partial differential equations of order 2
for gµν . In so-called wave coordinates, it can be shown that (1.1) is a system of nonlinear wave equations. It
therefore admits a well-posed initial value formulation (or Cauchy problem).

Cauchy data for equations (1.1) are classically described by a triplet (Σ, g, k) such that

� (Σ, g) is a 3-dimensional Riemannian manifold,

� k is a symmetric covariant 2-tensor on Σ,

� (g, k) satisfy so-called constraint equations on Σ.1

The seminal well-posedness results for the Cauchy problem obtained in [Fou52, CG69] ensure that for any
smooth Cauchy data, there exists a unique smooth maximal globally hyperbolic development (M,g) solution
of Einstein equations (1.1) such that Σ ⊂ M and g, k are respectively the first and second fundamental
forms of Σ in M. We refer to [Wal84, Chapter 10] for definitions and further discussions on the Cauchy
problem in general relativity.

Remark 1.1. Here and in the rest of this paper, a smooth or C∞ manifold admits by definition an atlas
of charts such that all coordinates changes are C∞ with respect to the standard C∞-topology of Rn. As all
manifolds we consider will be smooth submanifolds of a fixed smooth 4-dimensional manifold M and as all
vector bundles we consider will be constructed upon TM and T∗M, we shall assume that such an atlas is
fixed on M, which then canonically determines the C k-topology for all tensors on all smooth submanifolds of
M in this paper.

The prime example of a vacuum spacetime is Minkowski spacetime

M = R4, g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 =: η,

for which Cauchy data are given by

Σ = R3, g = (dx1)2 + (dx2)2 + (dx3)2 =: δ, k = 0.

We have the following global stability conjecture for Minkowski space.

Conjecture (Asymptotic stability of Minkowski space). For Cauchy data (Σ, g, k) close to the Minkowski
initial data (R3, δ, 0), the maximal globally hyperbolic development is geodesically complete and is asymptotic
to Minkowski space (R4,η) in the limit along null and timelike geodesics.

The breakthrough result which solved the asymptotic stability conjecture for Minkowski space is the following
theorem. See Theorem 1.7 for a precised version.

Theorem 1.2 (Stability of Minkowski space [CK93], version 1). For Cauchy data (Σ, g, k) such that

� Σ is diffeomorphic to R3,

� (Σ, g, k) is asymptotically flat ( i.e. tends to Minkowski initial data (R3, δ, 0) when r →∞)

� (g, k) are close to Minkowski initial data (δ, 0) measured in an (weighted) L2-sense,

then its maximal globally hyperbolic development (M,g) is geodesically complete and admits global time and
optical functions t and u such that, measured in these coordinates, g is bounded and decays towards η.

1See [Wal84, equations (10.2.28), (10.2.30)].
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A localised version of Theorem 1.2 was proved for initial data posed on the exterior of a 3-disk.

Theorem 1.3 (Exterior stability of Minkowski space [KN03], rough version). For Cauchy data (Σ, g, k)
such that

� Σ is diffeomorphic to R3 \ D where D denotes the disk of R3,

� the same asymptotic flatness and closeness to Minkowski space assumptions as in Theorem 1.2 hold,

then, the maximal globally hyperbolic development (M,g) admits global optical functions u, u such that,
measured in these coordinates, g is bounded and decays towards η.

Remark 1.4. In the proof of Theorem 1.2 in [CK93], the topology assumption Σ ' R3 is crucially used to
define a global time function such that its level sets are maximal hypersurfaces with prescribed asymptotic
conditions when r → ∞. The main novelty in the proof [KN03] of Theorem 1.3 is the definition of a
double-null foliation by the level sets of two optical functions u, u. It replaces the global time function and
enables a localisation of the global nonlinear stability proof [CK93] to the exterior of a disk. See definitions
and discussions in Section 1.2 and see also discussions in [KN03, Section 2].

Figure 1: The stability of Minkowski space of Theorems 1.2, 1.3 proved in [CK93] and [KN03].

In view of Theorems 1.2 and 1.3, we have the following natural question.

Question. Can we complete the result of Theorem 1.3 to re-obtain the result of Theorem 1.2? In other
words, can we prove the global nonlinear stability of Minkowski space for initial data posed on a spacelike
disk and an outgoing null hypersurface?

Figure 2: The stability of Minkowski space of Theorem 1.5 proved in the present paper.

This paper is dedicated to the proof of the following theorem, which provides a positive answer to this
question. See Theorem 1.8 for a more precise version, and Theorem 4.2 for the exact result proved in this
paper.

Theorem 1.5 (Main theorem, rough version). Let initial data for Einstein equations (1.1) be given on

� an initial spacelike hypersurface Σ diffeomorphic to D the unit disk of R3,

� an initial outgoing null hypersurface C emanating from ∂Σ.

Assume that

� C is future geodesically complete,

� the initial data are close to the corresponding Minkowski data on Σ and C consistently with the
boundedness and decay assumptions and results of [CK93] and [KN03].

Then the maximal globally hyperbolic development (M, g) is future causally geodesically complete and admits
global time and optical functions t and u such that, measured with respect to these coordinates, g is bounded
and decays towards η when t→ +∞.

Remark 1.6. The so-called spacelike-characteristic initial data of Theorem 1.5 have to satisfy constraints.
In this paper, we do not discuss the prescription of such initial data. See [CP12] or [CN05] for discussions.
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1.2 The global nonlinear stability of Minkowski space
In this section, we give a more detailed statement of Theorem 1.2 and highlight key features of its proof
in [CK93]. We first start with preliminary definitions.

For a fixed spacetime (M,g), we consider foliations of M by the level sets Σt a time function t. We write T
the future-pointing unit normal to Σt, and we recall that the second fundamental form k and the time lapse
n of Σt ⊂M are defined by

k(X,Y ) := −g(DXT, Y ), n−2 := −g(Dt,Dt),

where X,Y ∈ TΣt and D denotes the spacetime covariant derivative. In this paper, we will consider maximal
hypersurfaces Σt, i.e. such that

trgk = 0,

where trg is the trace with respect to the induced metric g on Σ.

We also consider foliations of M by 2-spheres Su,u, intersections of the level sets two functions u, u. A null
pair (e3, e4) adapted to Su,u is a pair of vectorfields orthogonal to the 2-spheres Su,u which satisfy

g(e3, e3) = g(e4, e4) = 0, g(e3, e4) = −2.

To a null pair, we associate null connection coefficients, which are the Su,u-tangent tensors such that

χ(X,Y ) := g(DXe4, Y ), ξ(X) :=
1

2
g(D4e4, X), η(X) :=

1

2
g(D3e4, X),

ζ(X) :=
1

2
g(DXe4, e3), ω :=

1

4
g(D4e4, e3),

χ(X,Y ) := g(DXe3, Y ), ξ(X) :=
1

2
g(D3e3, X), η(X) :=

1

2
g(D4e3, X),

ζ(X) := −1

2
g(DXe3, e4), ω :=

1

4
g(D3e3, e4),

(1.2)

where X,Y ∈ TSu,u, and the null curvature components, which are the Su,u-tangent tensors such that

α(X,Y ) := R(e4, X, e4, Y ), β(X) :=
1

2
R(X, e4, e3, e4), ρ :=

1

4
R(e3, e4, e3, e4),

α(X,Y ) := R(e3, X, e3, Y ), β(X) :=
1

2
R(X, e3, e3, e4), σ :=

1

4
∗R(e3, e4, e3, e4),

(1.3)

where X,Y ∈ TSu,u and where R is the spacetime curvature tensor and ∗R denotes its Hodge dual.

We have the following precised version of the stability result of Theorem 1.2.

Theorem 1.7 (Stability of Minkoswki space [CK93], version 2). Let (Σ, g, k) be Cauchy data such that:

� Σ is maximal, diffeomorphic to R3,

� Σ is asymptotically flat, i.e. there exists coordinates (x1, x2, x3) in a neighbourhood of infinity such that

(r∂)≤4

(
gij −

(
1 +

2M

r

)
δij

)
= O(r−3/2), (1.4a)

when r →∞ and where here r :=
√∑3

i=1(xi)2 and M ≥ 0, and we have the following sup-norm bound

for the curvature of (Σ, g) ∥∥(1 + d)3Ric
∥∥
L∞(Σ)

≤ ε, (1.4b)

where Ric denotes the Ricci tensor of the metric g and d denotes the geodesic distance to a fixed point
of Σ,
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� the following bounds hold for curvature L2-fluxes through Σ∥∥∥(1 + d) ((1 + d)∇)
≤3
k
∥∥∥
L2(Σ)

+
∥∥∥(1 + d)3 ((1 + d)∇)

≤1
B
∥∥∥
L2(Σ)

≤ ε, (1.4c)

where B := curl
(
Ric− 1

3Rg
)
.

Then, there exists ε0 > 0, such that if ε < ε0, the following holds for the maximal globally hyperbolic
development (M,g) of (Σ, g, k).

� (M,g) is geodesically complete.

� There exists a global time function t on M ranging from −∞ to +∞ which foliates M by maximal
spacelike hypersurfaces Σt such that Σ0 = Σ.

� There exists a future exterior region2 Mext foliated by outgoing null hypersurfaces Cu level sets of a
global optical function u ranging from −∞ to +∞ on Mext, and a past exterior region with symmetric
constructions.

� We have the following decay in the interior region Mint :=M\Mext of the spacetime curvature tensor
R of g3

|R| . εt−7/2. (1.5a)

� We have the following differentiated decay in the exterior region Mext of the spacetime curvature tensor
R according to its null decomposition4

|α(R)| . εr−7/2, |β(R)| . εr−7/2, |ρ(R)| . εr−3,

|α(R)| . εr−1u−5/2, |β(R)| . εr−2u−3/2, |σ(R)| . εr−3u−1/2,
(1.5b)

where here r := t− u.

� The induced metric and connection coefficients adapted to the maximal foliation Σt and maximal-null
foliation Σt and Cu satisfy decay statements consistent with (1.5a) and (1.5b).

� The spacetime (M,g) admits a past/future timelike, past/future null and spacelike infinities i−, i+,
I −,I + and i0 on which one can make sense of asymptotic quantities and their evolution equations.

Remarks on Theorem 1.7

1.7a The proof of Theorem 1.7 in [CK93] is based on the vectorfield method, which proceeds in the following
two steps:

Step 1 Einstein equations (1.1) induce the following Bianchi equations

DαRαβγδ = 0. (1.6)

Multiplying and commuting (1.6) with a set of approximate conformal Killing vectorfields, wave-
type energy estimates are obtained. These estimates hold provided that the nonlinear error terms
produced by the conformal Killing approximations are controlled.

Step 2 From the boundedness of L2 fluxes for (derivatives of) R through the hypersurfaces Σt and
Cu resulting from the energy estimates of Step 1, one deduces decay estimates for R using
Klainerman-Sobolev embeddings, as well as boundedness and decay estimates for the induced
metric and connection coefficients associated to the maximal-null foliation. This is done using
structure equations which schematically read

∇Γ = R +∇Γ + Γ · Γ.

Here ∇ are derivatives in the e3, e4 and tangential directions, Γ are connection coefficients as
defined in (1.2), the terms R,∇Γ on the right-hand side are treated as linear source terms and
the terms Γ · Γ as nonlinear error terms.

2The future exterior region is of the type {u ≤ ct} with c < 1.
3Here the norm of R is taken with respect to an orthonormal frame adapted to the maximal hypersurfaces Σt. See precise

definitions in Section 3.
4Here the null pair is adapted to the 2-spheres intersections of the maximal-null foliation of Mext by Σt and Cu. See [CK93,

Introduction]
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The crux of the proof of Theorem 1.7 in [CK93] is the control of the nonlinear error terms of Step
1. Since the approximate conformal Killing vectorfields are constructed upon the geometric time and
optical functions, these nonlinear error terms can be expressed in terms of the connection coefficients Γ
for the foliations Σt and Cu, and their control thus crucially relies on the decay estimates obtained in
Step 2.

1.7b Assumption (1.4c), together with the maximal assumption on Σ guarantee that the boundary fluxes on
Σ arising when performing energy estimates for Bianchi equations commuted with a set of approximate
Killing vectorfields are controlled by ε.5

1.7c The global time function t is constructed by imposing that its level sets Σt are maximal hypersurfaces
of M, that Σ = {t = 0} and that n → 1 when r → ∞. These last conditions are equivalent to the
choice of boundary for Σt at infinity. It physically corresponds to considering a centre-of-mass frame
for the system (see the discussion in the introduction of [CK93]).

1.7d The vectorfield method of [CK93] is wrapped in an elaborate bootstrap argument. One of the main
challenge is to define the geometric constructions within this bootstrap argument to obtain sufficient
decay rates for the associated metric and connection coefficients (see Item 1.7a). In [CK93] the global
optical function u is constructed by an initialisation on the last slice, i.e. by imposing that the outgoing
null hypersurfaces Cu are backwards emanating from the 2-spheres level sets of a canonical foliation on
a last slice Σ∗ corresponding to the future boundary of the bootstrap region.

1.7e A first stability result for initial data with stronger decay assumptions was obtained in [Fri83]. A global
stability result has been obtained in [Bie10, BZ09] using the same general techniques as in [CK93] but
under relaxed assumptions for both the regularity and decay of the initial data. A global stability
result for Minkowski space has also been obtained using wave coordinates, see [LR10]. See also [HV20]
for an alternative proof.

1.3 Main theorem
This section is dedicated to the following precised version of Theorem 1.5 which is the main result of this
paper. We also refer the reader to Theorem 4.2 for the detailed assumptions and conclusions.

Theorem 1.8 (Main theorem, more precise version). Let (Σ̃1, C̃0) be smooth spacelike-characteristic initial
data, such that

� we have the following curvature fluxes bounds through Σ̃1∫
Σ̃1

∣∣D≤2R
∣∣2 ≤ ε2, (1.7a)

together with consistent bounds for a Cartesian coordinates system (xi) on Σ̃1,

� the null hypersurface C̃0 is future geodesically complete, foliated by the 2-spheres of a geodesic foliation
(S′s)1≤s<+∞, and for the associated geodesic null pair, we have the following curvature fluxes bounds∫ ∞

1

∫
S′s

( ∣∣∣∇/ ≤2
β
∣∣∣2 +

∣∣∣s∇/ ≤2
ρ
∣∣∣2 +

∣∣∣s∇/ ≤2
σ
∣∣∣2 +

∣∣∣s2∇/ ≤2
β
∣∣∣2 +

∣∣∣s2∇/ ≤2
α
∣∣∣2)ds ≤ ε2 (1.7b)

where ∇/ ∈ {(s∇/ ), (s∇/ 4),∇/ 3}, together with consistent bounds for the metric and connection coeffi-
cients.

There exists ε0 > 0 such that if ε < ε0, the following holds for the future maximal globally hyperbolic
development (M̃,g) of (Σ̃1, C̃0).

� The spacetime (M̃,g) is future geodesically complete.

� The spacetime (M̃,g) is covered by an interior and an exterior region Mint and Mext, intersecting at
a timelike transition hypersurface T =Mint ∩Mext.

5Estimates (1.4c) do not bound the boundary flux for the uncommuted Bianchi equations, which would in fact cause the
ADM mass of Σ to vanish. The control of the ADM mass is obtained from (1.4a) and (1.4b).
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� There exists a global time function t on Mint ranging up to +∞ foliating Mint by spacelike maximal
hypersurface Σt.

� There exists a global optical function u on Mext ranging up to +∞ foliating Mext by outgoing null
hypersurfaces Cu. There exists a global function u on Mext which is a geodesic affine parameter on Cu,
foliating Cu by 2-spheres Su,u. Moreover, on the transition hypersurface T , we have

u = τu, t =
1

2
(u+ u),

where 0 < τ < 1 is a fixed parameter.

� We have the following decay bounds in Mint

|R| . εt−7/2,

together with consistent bounds for the metric and connection coefficients.

� We have the following decay bounds in Mext

|α| . εu−7/2, |β| . εu−7/2, |ρ| . εu−3u−1/2,

|α| . εu−1u−5/2, |β| . εu−2u−3/2, |σ| . εu−3u−1/2,

together with consistent bounds for the metric and connection coefficients.

� The spacetime (M̃,g) admits a future timelike and future null infinity i+ and I +. The future null
infinity I + is future geodesically complete, admits well-defined notions of Bondi mass and angular
momentum for which we obtain Bondi mass loss formula and angular momentum evolution equation
along I +, and which tend to 0 at future timelike infinity i+.

Figure 3: The global nonlinear stability of Minkowski space for characteristic data.

Remarks on Theorem 1.8

1.8a The initial data assumptions (1.7) match what can be obtained for an outgoing null hypersurface
in [CK93] or [KN03]. Therefore, Theorem 1.8 provides a stability result for the complementary region
to the exterior region considered in [KN03]. Together, they amount to a stability result for initial data
posed on a spacelike hypersurface.

1.8b Theorem 1.8 was conjectured to hold true in [KN03, Tay17] and its conclusions were used in [Tay17].
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1.8c The basic scheme of proof of Theorem 1.8 is a vectorfield method wrapped in a bootstrap argument as
in [CK93]. The main novelty is the introduction and control of new geometric constructions, which
provide suitable spacetime decompositions to run these arguments.

1.8d Our constructions display the following new crucial geometric features.

� They virtually emanate from the future infinity of a (timelike) central axis. This guarantees
optimal decay rates. It replaces an asymptotically flat spacelike infinity which plays a similar
crucial role in [CK93, KN03].

� In the interior region, our constructions are build on spacelike maximal hypersurfaces with prescribed
boundaries and global harmonic coordinates. This makes any reference to null decompositions and
spherical foliations – which degenerate at the central axis – disappear in that region.

1.8e In the proof of Theorem 1.8, we match discontinuous gauge choices across the timelike interface T
without using the gluing procedure of [CK93, KS17]. Our matching features a mean value argument
which compensates regularity losses at the timelike interface. We believe that this new treatment gains
in concision and clarity.

1.8f In the appendix to this paper, we also provide new optimal estimates and control for harmonic
coordinates on a 3-dimensional Riemannian manifold, only based on elementary energy and Bochner
estimates (see Theorem 4.3 and Appendix A). We moreover give a full statement and proof for general
limits of the metric and connection coefficients and their derivatives in all directions at the vertex of a
(general family of) null cones (see Theorem 4.4 and Appendix B).

In the next section, we give an overview of the proof of Theorem 1.8. We postpone discussions/comparisons
with other results to Section 1.5.

1.4 Overview of the proof of Theorem 1.8
The proof of the global nonlinear stability result of Theorem 1.8 goes by a standard continuity argument on
the maximal parameter u∗ such that the smooth maximal globally hyperbolic development (M̃,g) admits
a subregion Mu∗ (of size u∗) which we geometrically describe next in Section 1.4.1. In this overview, we
will focus on the geometric setup of Mu∗ and the obtention of bounds for the curvature and the geometric
structures of Mu∗ . We refer the reader to Section 4 for the full setup and conclusion of the bootstrap
argument and for its consequences in the limit u∗ → +∞, from which the conclusions of Theorem 1.8 follow.

1.4.1 Geometric setup of the bootstrap region Mu∗

Let O = {xi = 0} be the centre of the initial spacelike hypersurface Σ̃1 for the Cartesian coordinates xi

given as assumption on Σ̃1. We define the central axis ø ⊂ M̃ to be the timelike geodesic parametrised by
arc-length such that ø(1) = O and ø̇(1) is future-pointing and normal to Σ̃1 at O.

For a fixed parameter u∗ ≥ 1, we define the last cone C∗ to be the ingoing null cone backwards emanating
from the point ø(u∗). The cone C∗ is foliated by the 2-spheres Su,u∗ of a canonical foliation with parameter
u which ranges from u|ø(u∗) = u∗ to 0.

We define Cu to be the outgoing null hypersurfaces backwards emanating from the 2-spheres Su,u∗ , and we
denote by u the associated optical function. We foliate the hypersurfaces Cu by the 2-spheres Su,u of the
geodesic foliation with parameter u ranging from u|C∗ = u∗ to τ−1u, where 0 < τ < 1 is a (suitably chosen)
parameter. We define the following exterior region (see Figure 4 for a graphic representation)

Mext :=
⋃

0 ≤ u ≤ τu∗

τ−1u ≤ u ≤ u∗

Su,u,

the following (timelike) transition hypersurface

T :=
⋃

0 ≤ u ≤ τu∗

u=τ−1u

Su,u,
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Figure 4: The bootstrap region Mu∗

and the following last sphere

S∗ := Sτu∗,u∗ = C∗ ∩ T .

Let Σt be the maximal hypersurfaces coinciding on the transition hypersurface with the 2-spheres Su,u, i.e.
such that the associated maximal time function t satisfies

t|T :=
1

2
(u+ u).

We define the following bottom interior region

Mint
bot :=

⋃
1≤t≤t∗

Σt

where t∗ := 1
2 (1 + τ)u∗, and we call Σt∗ the last maximal hypersurface (note that the boundary of the last

maximal hypersurface is the last sphere, i.e. ∂Σt∗ = S∗). We further define the top interior region Mint
top to

be the domain of dependence of Σt∗ . We are now able to define the full spacetime bootstrap region Mu∗

Mu∗ :=Mext ∪Mint,

where

Mint :=Mint
bot ∪Mint

top.

As it will play a key role in the control of the interior region, we also define global harmonic Cartesian
coordinates (xi) on the last slice Σt∗ to be functions such that on Σt∗

∆xi = 0,

and such that Dirichlet boundary conditions for xi at ∂Σt∗ = S∗ are fixed via (a suitable class of) conformal
isomorphism of S∗ to the Euclidean 2-sphere.
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Remarks

� The central axis and its last point in the future direction is the starting point of our initialisation from
timelike infinity procedure.

� The last cone C∗ and the last maximal hypersurface Σt∗ play a similar role as the last maximal
hypersurface in [CK93] or the last cone in [KN03].

� The canonical foliation on C∗ must provide sufficient regularity for its transverse geometric quantities
(i.e. trχ and χ̂) since this determines the regularity of the transversely emanating foliation of null
cones Cu. The canonical foliations on the last slices in [CK93, KN03] are build to satisfy the same
transverse regularity features. See also the discussions in [CG19a, CG19b].

� Considering the geodesic foliation on the outgoing cones Cu is geometrically simpler than constructing a
double null foliation which requires a second transverse hypersurface to be initialised. The counterpart
is additional difficulty in the analysis of the null structure equations to avoid regularity loss. See a
similar foliation choice and difficulties in [KS17].

� Since they are not required to emanate from one point, but are defined from 2-spheres on C∗, the
outgoing null hypersurfaces Cu may degenerate before reaching their potential vertex u→ u. We thus
restrict their definition to the exterior region τ−1u ≤ u, with 0 < τ < 1, on which they remain regular.

� In this overview, we shall assume that the initial hypersurfaces Σ̃1 and C̃0 match the geometric
constructions described above, i.e. Σ̃1 = Σ1 and C̃0 = C0. In general this does not hold. See Section 12
for the initial layer existence and comparisons arguments. In particular, in Sections 2–12, we will only
assume that u ranges up to 1 (and not to 0) and t ranges up to (1 + τ−1)/2 (and not to 1).

� That the harmonic functions xi on the last slice Σt∗ form a global coordinate system on Σt∗ is a result,
obtained as a consequence of estimates for the functions xi. These estimates are obtained using energy
and Bochner estimates for the above defined Dirichlet problem on Σt∗ . This (only) involves intrinsic
quantities (the Ricci curvature and fundamental forms of the boundary) and basic functional estimates
on Σt∗ . See Theorem 4.3.

1.4.2 Global energy estimates
The final goal is to obtain bounds on the spacetime metric evaluated on the above defined geometric
structures of Mu∗ and decay estimates to the corresponding Minkowskian quantities, in terms of the initial
data on Σ1∪C0. To that end, the spacetime curvature R is the key dynamical object since it satisfies Bianchi
equations (1.6) for which wave-type energy estimates can be obtained. We use the vectorfield method (see
Item 1.7a) for these equations in the region Mu∗ .

We first recall tools developed in [CK93] to perform energy estimates for Bianchi equations.

First, commuting Bianchi equation (1.6) with a vectorfield X gives schematically

Dα
(
L̂XR

)
αβγδ

= D≤1
(

(X)π̂
)
·D≤1R, (1.8)

where L̂ is a normalised derivative in the X direction, and where (X)π̂ is the following traceless part of the
deformation tensor of X

(X)π̂µν := DµXν + DνXµ −
1

2
(DαXα) gµν .

Remark 1.9. For a conformal Killing vectorfield X, we have (X)π̂ = 0. Thus from (1.8) we obtain that
commuting Bianchi equation by X gives

Dα
(
L̂XR

)
αβγδ

= 0.

For approximate conformal Killing vectorfields, the source terms of the commuted Bianchi equations are
nonlinear error terms.
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Second, we introduce the Bel-Robinson tensor Q(W) associated to a 4-tensor W by

Q(W)α βγδ := Wανγ µW ν µ
β δ + ∗Wανγµ

∗W ν µ
β δ ,

where ∗ denotes the Hodge dual of W. When W = R, we have the following consequence of the Bianchi
equations (1.6)

DαQ(R)αβγδ = 0.

Multiplying and commuting the Bel-Robinson tensor by vectorfields X1,X2,Y1,Y2,Y3, we similarly obtain
from (1.8) the following schematic formula

div
(
Q
(
L̂X1
L̂X2

R
)

(Y1,Y2,Y3)
)

= D≤2π̂ ·D≤2R, (1.9)

where div is the spacetime divergence for 1-tensor and where π̂ denotes the traceless deformation tensors of
X1,X2,Y1,Y2,Y3.

Remark 1.10. For exact conformal Killing vectorfields, formula (1.9) produces a spacetime divergence-free
vectorfield

Q
(
L̂X1L̂X2R

)
(Y1,Y2,Y3).

An application of Stokes theorem yields an exact identity of boundary fluxes for the above vectorfield. Provided
that the multiplier vectorfields Y1,Y2,Y3 are suitably chosen, this yields an energy estimate in M.

Remark 1.11. For approximate conformal Killing vectorfields, the same procedure using formula (1.9)
produces an energy estimate with a spacetime integral of nonlinear error terms.

Using the above tools, we can now perform global energy estimates in Mext ∪Mint
bot. These estimates are

obtained using the following set of contracted and commuted Bel-Robinson tensors

Q
(
L̂TR

)
(K,K,K), Q

(
L̂OR

)
(K,K,T),

Q
(
L̂OL̂OR

)
(K,K,T), Q

(
L̂SL̂TR

)
(K,K,K), Q

(
L̂OL̂TR

)
(K,K,T),

(1.10)

where

� T is an approximation for the time translation Killing vectorfield ∂t of Minkowski space,

� S is an approximation for the scaling conformal Killing vectorfield t∂t + r∂r of Minkowski space,

� K is an approximation for the Morawetz conformal Killing vectorfield (t2 + r2)∂t + 2tr∂r of Minkowski
space,

� O are approximations for the three rotation Killing vectorfields x1∂2−x2∂1, x2∂3−x3∂2 and x3∂1−x1∂3

of Minkowski space.

We assume for the moment that these vectorfields are given and postpone their respective definitions in the
bottom interior and exterior region to Section 1.4.4.

Applying Stokes theorem and formula (1.9) to the set of vectorfields (1.10) simultaneously in the bottom
interior region Mint

bot and the exterior region Mext, we obtain the following energy estimates (see Figure 4
for a graphic representation of these hypersurfaces)∫

Σt

+

∫
Cu

+

∫
Σext
t

+

∫
C∗∩Mext

.
∫

Σ1

+

∫
C0

+ ET + E int + Eext,

where

� the integrands are the contracted and commuted Bel-Robinson tensors (1.10),

� for all 1 ≤ t ≤ t∗ and all 0 ≤ u ≤ τu∗ (we recall that)

– Σt are the maximal hypersurfaces of Mint,
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1.4. Overview of the proof of Theorem 1.8

– Cu are the outgoing null hypersurface of Mext,

– Σext
t are the level sets of the time function 1

2 (u+ u) in Mext,

– C∗ ∩Mext is the exterior part of the last cone C∗,
– Σ1 and C0 are the initial hypersurfaces for which we have bounds for the curvature fluxes (see the

assumptions of Theorem 1.8),

� the nonlinear error term ET is the difference of boundary fluxes on the timelike transition hypersurface
T for Stokes formula applied in Mint

bot and Mext,

� the nonlinear error terms E int and Eext are spacetime integrals over Mint
bot and Mext respectively,

involving (two derivatives of) the spacetime curvature tensor R and (two derivatives of) the deformations
tensors π̂ for the approximate conformal Killing vectorfields.

The control of the error terms E int and Eext is the crux of the analysis and is obtained provided that sufficient
decay can be obtained for (null decompositions of) R and (null decompositions of) π̂, as well as sufficient
regularity can be obtained for π̂.

The control of the interface error term ET is obtained provided that the difference of the corresponding
interior/exterior approximate conformal Killing vectorfields at the interface T can be controlled with sufficient
decay and regularity. It also requires that the spacetime curvature tensor R has optimal regularity on T , i.e.
that D2R ∈ L2(T ). Since the hypersurface T is timelike, this cannot be obtained from bounds on energy
estimates boundary fluxes on T . We thus rely on a mean value argument which selects a suitable transition
parameter τ/transition hypersurface T on which such a control holds.

From these controls, we obtain∫
Σt

+

∫
Cu

+

∫
Σext
t

+

∫
C∗∩Mext

. ε2 + (Dε)3 . ε2.

Remarks

� The contracted and commuted Bel-Robinson tensors (1.10) are identical to the ones used in [CK93,
KN03].

� The decay rates obtained in this paper are similar, but slightly different to the decay rates of [CK93,
KN03] due to the difference of geometric constructions.

� In Section 5, we use systematically that the tensors R and π̂ are respectively controlled with the
following regularity in Mext

R ∈ L∞(Mext), DR ∈ L∞u,uL4(Su,u), D2R ∈ L2(Mext),

π̂ ∈ L∞(Mext), Dπ̂ ∈ L∞u,uL4(Su,u), D2π̂ ∈ L2(Mext),

and with the following regularity in Mint
bot

R ∈ L∞(Mint
bot), DR ∈ L∞t L6(Σt), D2R ∈ L2(Mint

bot),

π̂ ∈ L∞(Mint
bot), Dπ̂ ∈ L∞t L6(Σt), D2π̂ ∈ L2(Mint

bot),

which is in the spirit of the (bulk) Morawetz estimates of the rp-method (see for example [Hol10]) and
simplifies the analysis of [CK93, KN03].

� The main new feature of the global energy estimates in the region Mext ∪Mint is to avoid the gluing
procedure of [CK93, KS17] for functions/vectorfields across the interface T . This is replaced by a
treatment of transition nonlinear error terms ET which arise from the discontinuity of gauge choices.
We believe that this new procedure gains in clarity.

To obtain a control for the geometry of the cone C∗, we also need a control of the boundary fluxes through
C∗ ∩Mint

top. To this end, we perform a t∗-rescaling of the spacetime region Mint
top. The metric, connection

and curvature components scale homogeneously in that region, which thus reduces to a size-1 region. Then,
we extend the data on the last slice Σt∗ to R3 using the result of [Czi18] and apply a local (time-1) existence
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Figure 5: Energy estimates in (the rescaled) Mint
top

result for the extended (small) data. Then, we can perform energy estimates in Mint
top – which we recall

is the future domain of dependence of Σt∗ –, using Cartesian approximate Killing vectorfields (i.e. the
approximate Minkowskian time and space translations ∂µ). The error terms are controlled using the local
existence result. From a comparison argument on C∗ ∩Mint, we obtain control for the (null decomposition
of the) curvature on C∗ ∩Mint, that is, an estimate of the type∫

C∗∩Mint

.
∫

Σt∗

+ nonlinear error terms . ε2 + (Dε)3 . ε2,

where we used that the energy boundary fluxes through the last slice Σt∗ were controlled by the previous
energy estimates in Mint

bot ∩Mext.

Remarks

� Spacetime regions asMint
top with conical degeneracies and outside of spherical symmetry are not treated

as such in other works. Our procedure is in the spirit of [CG19a, CG19b].

� Energy estimates using the set of (spherical) vectorfields T,S,K,O do not provide optimal bounds and
is the cause of degeneracies – even for the wave equation in Minkowski space – in the region Mint

top.6

� Classical Sobolev estimates degenerate at the vertex of the cone, which without the extension to a
larger spacetime (artificially) complicates the control of the nonlinear terms at the vertex.

� The extension result for Σt∗ uses an optimal control for the fundamental forms of Σt∗ which can be
obtained using global harmonic Cartesian coordinates and the new optimal control for these coordinates
established in this paper (see Theorem 4.3 and Appendix A).

1.4.3 Curvature, connection and metric control
From the boundary fluxes controls obtained in Section 1.4.2, control for the spacetime curvature follows
similarly as in [CK93, KN03].

From the control of the spacetime curvature and using the structure equations, one deduces a control for the
connection and metric by

� integration of transport equations from the vertex ø(u∗) of C∗ to C∗ and elliptic estimates on the
2-spheres of the canonical foliation on C∗,

� integration of transport equations from C∗ to Mext and T , and elliptic estimates on the 2-spheres of
the geodesic foliation in Mext,

� elliptic estimates on the maximal slices Σt using mixed (implicit) Dirichlet-Neumann boundary values
on ∂Σt ⊂ T .

6At the vertex, |O| → 0 and T,S,K become colinear.
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Remarks

� We use that the spacetime is assumed to be smooth and in consequence, we establish general limits for
(all derivatives of) the metric and connection coefficients at the vertex of a cone.7 These limits are
used as initial data to integrate the transport equations on C∗.

� The main challenge in the succession of geometric constructions of Mu∗ which are build upon one
another, is to avoid the addition of loss of regularity for the connection coefficients. The regularity
must eventually be sufficient for the control of the nonlinear error terms in the energy estimates of
Section 1.4.2.

1.4.4 Approximate conformal Killing vectorfields
In the exterior region Mext, the functions u, u are associated to a null pair (e3, e4), such that

e4 = −(Du)], g(e3, e3) = 0, g(e4, e3) = −2,

and such that e3, e4 are orthogonal to the 2-spheres Su,u of the null-geodesic foliation. Here (Du)] is the
spacetime gradient of u. These vectorfields serve as approximations for the Minkowskian ∂t − ∂r and ∂t + ∂r.
Upon these we thus define the following approximate exterior conformal Killing vectorfields

Text :=
1

2
(e3 + e4), Sext :=

1

2
(ue3 + ue4), Kext :=

1

2
(u2e3 + u2e4),

and we postpone the definition of the exterior rotation vectorfields Oext to the end of this section.

In the bottom interior region Mint
bot, we define Tint to be the future-pointing unit normal to the maximal

hypersurfaces Σt. To obtain further definitions for Sint and Kint we need an approximation for the
Minkowskian vectorfield r∂r. This can be obtained by defining the vectorfield Xint on the last slice Σt∗ using
the global harmonic Cartesian coordinates

Xint :=

3∑
i=1

xi∇xi,

and by extending it on Mint
bot by parallel transport along the flow of t. Using Xint, we have the following

definitions for Sint and Kint

Sint := tTint + Xint, Kint :=
(
t2 + g(Xint,Xint)

)
Tint + 2tXint.

Similarly, we can define the interior rotation vectorfields on the last slice Σt∗ by

(1)Oint := x2∇x3 − x3∇x2, (2)Oint := x3∇x1 − x1∇x3, (3)Oint := x1∇x2 − x2∇x1,

and extend this definition on Mint
bot by parallel transport along the flow of t.

To match with the definitions of the interior rotations, the definition of the exterior rotation vectorfields is
initialised at S∗ = ∂Σt∗ using the harmonic coordinates of Σt∗ by

(1)Oext := x2∇/ x3 − x3∇/ x2, (2)Oext := x3∇/ x1 − x1∇/ x3, (3)Oext := x1∇/ x2 − x2∇/ x1.

We then define them by Lie transport along C∗ ∩Mext[
(`)Oext, e3

]
= 0,

and in Mext [
(`)Oext, e4

]
= 0,

for all ` = 1, 2, 3.

The control of the deformation tensors of

7In fact, we even establish limits in the more general setting of a foliation of cones emanating from a central axis.
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� Text,Sext,Kext is obtained from the control of the null connection coefficients associated to the null
pair (e3, e4) in Mext,

� Oext is obtained by estimates for the harmonic coordinates on S∗ and integration of transport equations
from S∗ to C∗ ∩Mext and to Mext,

� Tint is obtained from the control of the maximal connection coefficients in Mint
bot,

� Xint,Sint,Kint,Oint is obtained from estimates on Σt∗ , using the bounds on the harmonic coordinates
(xi), and by integration in t.

The control at the interface T of the difference of vectorfields

� Text −Tint is obtained by a control of the slope between the maximal hypersurfaces and the boundary
T (see a similar result in [CG19b]),

� Xext −Xint8 (and subsequently Sext − Sint and Kext −Kint) is obtained by a control on S∗ using the
harmonic coordinates and the control of the slope, and by integration along T , using that D2X ' 0,

� Oext −Oint is obtained by a control on S∗ using the harmonic coordinates control, and by integration
along T , using that D2O ' 0.

Remarks

� The rotation vectorfields in the interior region are only defined to extend the rotation vectorfields of
the exterior region. They are not used to estimate the curvature in Mint

bot.

� The rotation vectorfields in the exterior region are used to estimate the tangential derivatives of the
curvature. Thus, they have to be tangent to the 2-spheres of the canonical and geodesic foliation on C∗
and Mext respectively. This motivates their definition by Lie transport.

1.5 Comparison to previous works
In this section, we discuss the strategy and techniques of proof of Theorem 1.8 and compare them to other
works.

1. In the literature, the characteristic Cauchy problem outside of spherical symmetry is rather studied
under a local (e.g. [Ren90, CCM11, CG19b]) or semi-global perspective – i.e. in a size 1 region from
the initial null hypersurface – as in [Luk12, LZ18] or [CN05, CN10].

2. To obtain the full global result of Theorem 1.8, the spacetime geometric constructions are initialised at
timelike infinity, which corresponds in this paper to starting our construction at the last point ø(u∗)
on the central axis ø. This differs from:

� the semi-global existence results of Item 1 where the geometric constructions are initialised from
the null initial data hypersurface,

� the exterior region stability result of [KN03], where the double null foliation is constructed by
imposing that:

– the ingoing null hypersurfaces Cu emanate from the 2-spheres of a canonical foliation of the
initial spacelike hypersurface Σ,

– the outgoing null hypersurfaces Cu are backwards emanating from the 2-spheres of a canonical
foliation on the last ingoing null hypersurface C∗,

and which thus rather uses spacelike infinity to initialise the constructions,

� the original stability result of [CK93] where a global maximal time function is given, based on the
existence of an asymptotically flat spacelike infinity,

� the stability of Schwarzschild spacetime established in [KS17] (see also constructions for Kerr
spacetime in [KS19a, KS19b]), where the initialisation is performed from a last sphere corre-
sponding to timelike infinity, but which tracks the central axis of Schwarzschild/Kerr spacetime.
This is done by the construction of the last sphere as the intrinsic GCM sphere (see [KS19b,
Section 7] or [KS17]) and uses that the mass of the spacetime is non vanishing. In the case of the

8where Xext := 1
4

(u− u)(e4 − e3).
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perturbations of Minkowski space of Theorem 1.8, there is no such intrinsic choice since there is
no canonical central axis (the mass is not non-vanishing). We rather prescribe a central axis, at
the future timelike infinity of which we perform our initialisation.

3. We treat an interior region enclosing the central axis, where constructions related to spherical
coordinates degenerate (i.e. null pairs, null decompositions, etc.). This again differs from the semi-
global results of Item 1, as well as from the exterior region global stability result of [KN03] and from
the global stability of Schwarzschild spacetime9 from [KS17], which do not treat such an interior region
and rely on null projected equations. In particular, the rp-methods developed in [Hol10] for Bianchi
equations projected on null pairs (see also the seminal rp-method of [DR10]) are unsuited for such a
region.

In [CK93], the interior region is treated using the global maximal time function constructed from
spacelike infinity and an interior optical function initialised at the central axis.

In the case of Theorem 1.8, no such global time function is available, and we rely instead on a
construction of maximal hypersurfaces in the interior region, by prescribing their boundaries on
the transition hypersurface, which is the timelike boundary between the interior and the exterior
region. This is close in spirit to the proof of the spacelike-characteristic bounded L2 curvature result
from [CG19b].

We moreover get rid of the interior optical function of [CK93], and rather use (transported) Cartesian
harmonic coordinates, which virtually makes any reference to the central axis disappear in the analysis
of that region. See Section 1.4.

4. Matching the (Cartesian) setting of the interior region to the (spherical) setting of the exterior region,
is not performed following functions or frames gluing procedures as in [CK93, KS17], but is rather done
by integration by parts, allowing discontinuities for the gauge choices at the interfaces. This procedure
features a mean value argument to avoid regularity losses at the timelike interface. We believe that
this treatment – although not fundamentally different – gains in clarity with respect to previous works.

5. At the core of the proof of Theorem 1.8 are the global energy estimates obtained by performing
simultaneous energy estimates in the interior and exterior regions. Because of the different Cartesian/-
spherical setting used in each region, we choose to rely on the fully geometric framework (the spacetime
Bel-Robinson tensors, the interior/exterior approximate conformal Killing vectorfields) of [CK93] to
match these estimates across the timelike transition hypersurface.

1.6 Organisation of the paper
We outline the structure of this paper.

� The geometric set up, definitions and formulas are collected in Section 2.

� Section 3 is dedicated to collecting the definitions of the norms and bootstrap assumptions used in
Sections 5 – 12.

� Section 4 is dedicated to the statement of the main theorem as well as auxiliary theorems (global
existence of harmonic coordinates, vertex/axis limits, etc.). We also set up and prove the bootstrap
argument from which the conclusions of the main theorem follow. This relies on the improvement of
the bootstrap assumptions, which is the core of this paper and is obtained in Sections 5 – 12.

� In Section 5, we perform the global energy estimates which are split into simultaneous energy estimates
in the interior and exterior region. That is, we analyse and control the nonlinear error terms at the
timelike transition interface, in the interior and in the exterior region.

� In Sections 6 and 7, we deduce from the bounds for the boundary energy fluxes of Section 5, bounds
for the curvature in the exterior and bottom interior region.

� In Section 8, we perform local energy estimates to obtain the remaining curvature bounds. In particular
in the interior top region, we use an extension and local existence argument to obtain curvature bounds
on the last cone.

9We recall that in the case of Schwarzschild spacetime, the axis r = 0 is the Schwarzschild (spacelike) singularity and lies
inside the Schwarzschild black hole.
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� In Sections 9 and 10, we obtain bounds for the null connection and rotation coefficients on the last
cone and in the exterior region.

� In Section 11, we obtain bounds for the interior connection coefficients and approximate interior Killing
vectorfields. We also obtain the bounds for the difference of Killing fields at the interface.

� Section 12 is dedicated to the initial layer comparisons arguments.

� Appendices A and B are respectively dedicated to the obtention of global harmonic coordinates and
vertex/axis limits, which are the main, independent and general results of the auxiliary theorems stated
in Section 4.

� Appendices C and D are dedicated to the obtention of auxiliary local existence and functional results.
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2. Definitions & formulas
Let (M̃,g) be a smooth vacuum spacetime. Let Σ̃1 ⊂ M̃ be a smooth spacelike hypersurface diffeomorphic

to the unit disk of R3 and C̃0 ⊂ M̃ the outgoing null hypersurface emanating from ∂Σ̃1. We call (Σ̃1, C̃0)

spacelike-characteristic initial data and we assume that M̃ coincides with the future maximal globally
hyperbolic development of Σ̃1 ∪ C̃0.

Let O be a fixed point of Σ̃1, which we call the centre of Σ̃1.1 We note ø ⊂ M̃ the timelike geodesic
emanating from O orthogonally to Σ̃1 parametrised by arc-length and such that ø(1) = O. We call ø the

central axis of the spacetime M̃.

2.1 The bootstrap region Mu∗

In this section, we define the spacetime region Mu∗ ⊂ M̃ involved in our bootstrap argument, as well as its
foliation by geometric hypersurfaces and its decomposition into subdomains.2

The constructions of this section are graphically summarised in Figure 1.

Figure 1: The spacetime region M =Mu∗ .

The last cone C∗ and the optical function u. Let u∗ ∈ [1,∞). We define C∗ to be the incoming null
cone with vertex ø(u∗). Let u be a scalar function on C∗. We assume that the level sets of u define a foliation

1The centre O will be defined in Section 4 to be the point xi = 0, where (xi) are coordinates on Σ̃1 such that Σ̃1 is close to
the unit Euclidean disk of R3.

2The existence and regularity of the spacetime region Mu∗ ⊂ M̃ will be an assumption of the bootstrap argument of
Section 4.
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of C∗ by regular 2-spheres Su,u∗ , which will further be defined to be the 2-spheres of the so-called canonical
foliation (see Definition 2.1). We consider Cu the outgoing null hypersurface backward emanating from
the 2-sphere Su,u∗ ⊂ C∗. We define u to be the associated optical function, and L to be the (normalised)
spacetime gradient of u, i.e. L := −(Du)].

The geodesic parameter u. We define u to be the following null geodesic affine parameter of the
hypersurfaces Cu

L(u) = 2,

u|C∗ = u∗.

We assume that its level sets define a regular foliation of hypersurfaces transverse to the null hypersurfaces
Cu and that their intersections Su,u define spacelike regular 2-spheres.

Let Y := −(Du)] be the (normalised) spacetime gradient of u. By definition of u, we have

g(Y , L) = −2.

We define the optical defect of the foliation Su,u to be the scalar function y given by

g(Y , Y ) =: −2y.

We define the null pair (e3, e4) associated to the foliation Su,u to be the pair of null vectorfields orthogonal
to the 2-spheres Su,u such that

e4 = L, and g(e3, e4) = −2.

From the above definition, we have the following relations

e3(u) = y, e3(u) = 2,

e4(u) = 2, e4(u) = 0,
(2.1)

and

Y = e3 +
1

2
ye4. (2.2)

The canonical foliation on C∗. We define χ, ξ, η, ζ, ω and χ, ξ, η, ζ, ω to be the null decomposition
of the connection coefficients associated to the null pair (e3, e4), and α, β, ρ, σ, β, α to be the null decom-
position of the spacetime curvature tensor with respect to the null pair (e3, e4) (see Section 2.7 for definitions).

With respect to these null decompositions, we have the following definition, which determines the function u
on C∗.

Definition 2.1 (Canonical foliation on C∗). The scalar function u is said to be canonical on C∗ if on each
2-sphere Su,u∗ ⊂ C∗, the following condition holds

div/ η + ρ = ρ,

ω = 0,
(2.3)

where we refer to Section 2.7 for definitions, and if at the vertex ø(u∗), the function u is normalised by

u|ø(u∗) = u∗, g(e3, ø̇)|ø(u∗) = −1.

Remark 2.2. The null pair (e3, e4) is constructed to be adapted to the canonical foliation on C∗ ( e.g.
e3(u) = 2). It can be related to a geodesic null pair via a null lapse. This will only be introduce in the proof
of the existence of the canonical foliation in Appendix C. Other arguments do not require the existence or
control of a background geodesic foliation.

Remark 2.3. The canonical foliation of Definition 2.1 does not coincide with the canonical foliations
of [KN03, Nic04, CG19a], since we replaced for the conciseness of the argument the condition on the mean
value of the null lapse in that papers by the condition ω = 0. This is purely to ease the notations and does
not change anything to the motivations, its local or global existence on C∗. See Theorem 4.5.
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The exterior region Mext
u∗ . Let 0 < τ0 < 1 be a constant sufficiently close to 1, which we call the

transition constant. Its value is determined in Section 7.3 (see also Section 3.3.1 for a recapitulation of the
constants of this paper and their dependencies).

Let τ be a transition parameter, such that

τ0 ≤ τ ≤
1

2
(1 + τ0).

For a fixed transition parameter, we define the exterior region (τ)Mext
u∗ to be

(τ)Mext
u∗ := {1 ≤ u ≤ τu} ,

and we define the timelike transition hypersurface (τ)T to be

(τ)T := {u = τu}.

Remark 2.4. The freedom on the transition parameter τ is used to perform a mean value argument (see
Section 5.1.1). This mean value argument provides optimal regularity for the spacetime curvature tensor on
a well chosen timelike interface (τ)T . This enables a control of the nonlinear transition error terms. See
Remark 5.6 and Section 5.1.2.

The interior region Mint
u∗ . Let

(τ)t◦ :=
(
1 + τ−1

)
/2, (τ)t∗ := (1 + τ)u∗/2.

For all t◦ ≤ t ≤ t∗, we define (τ)Σt to be the maximal hypersurfaces, i.e. such that

trgk = 0,

where g and k are the first and second fundamental form of (τ)Σt (see Section 2.2.1 for definitions), with
prescribed boundary

∂(τ)Σt = Su=2tτ/(1+τ),u=2t/(1+τ) ⊂(τ) T ,

i.e.

(τ)t |(τ)T =
1

2
(u+ u). (2.4)

We define the bottom interior region (τ)Mint
bot,u∗ to be

(τ)Mint
bot,u∗ :=

{
(τ)t◦ ≤ (τ)t ≤ (τ)t∗

}
.

We call (τ)Σt∗ the last maximal slice and we note its boundary (τ)S∗ := ∂(τ)Σt∗ = Sτu∗,u∗ ⊂ C∗. We define

the top interior region (τ)Mint
top,u∗ to be the domain of dependence of the last maximal hypersurface (τ)Σt∗ .

Remark 2.5. Since ∂(τ)Σt∗ ⊂ C∗, the future boundary of (τ)Mint
top,u∗ is contained in the last cone C∗.

We define the interior region (τ)Mint
u∗ and the spacetime region (τ)Mu∗ by

(τ)Mint
u∗ :=(τ) Mint

bot,u∗ ∪ (τ)M
int

top,u∗ ,

(τ)Mu∗ :=(τ) Mext
u∗ ∪ (τ)M

int

u∗ .

From now on, we shall drop the labels u∗, τ in the above geometric constructions, unless that precision is
relevant.
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Chapter 2. Definitions & formulas

2.2 Maximal hypersurfaces Σt of Mint
bot

2.2.1 Fundamental forms
The first fundamental form is defined to be the induced metric g by g on Σt.

We define the time lapse n of the maximal hypersurfaces Σt by

n−2 := −g(Dt,Dt). (2.5)

We define T to be the future-oriented unit normal to Σt. It satisfies the following relations

T = −n(Dt)], DTT = n−1∇n, T (t) = n−1, (2.6)

where ∇ denotes the induced covariant derivative on Σt.

We define the second fundamental form k of Σt to be

k(X,Y ) := −g(DXT , Y ), (2.7)

for all X,Y in TΣt. From the definitions of Section 2.1, we recall that we have

trgk = 0. (2.8)

2.2.2 Electric-magnetic decompositions
The electric-magnetic decomposition of the curvature tensor R consists of the Σt tangent tensors E and H
defined by

E(X,Y ) := R(T ,X, T , Y ), H(X,Y ) := ∗R(T ,X, T , Y ), (2.9)

for all X,Y in TΣt.

Using the maximal condition (2.8), we have the following Gauss equation for the Ricci curvature tensor of Σt

Ricij = Eij + kiak
a
j . (2.10)

Using the maximal condition (2.8), we have the following Hodge-type system for k

divk = 0, curlk = H, trk = 0, (2.11)

and Laplace-type equation for n

∆n = n|k|2, (2.12)

see [CK93, p. 6].

One also has the following equation for L̂T k (see [CK93, p. 6])

nL̂T k = −∇2n+ n (E − k · k) . (2.13)

The tensors E and H satisfy the following Maxwell-type system of equations (see [CK93, pp. 144-146])

divE = k ∧H,
divH = −k ∧ E,

−L̂TH + curlE = −n−1∇n ∧ E − 1

2
k ×H,

L̂TE + curlH = −n−1∇n ∧H +
1

2
k × E,

(2.14)

where for a Σt-tangent symmetric traceless 2-tensor U , L̂TUij := LTUij + 2
3 (k · U)gij .
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2.3 Transition relations on the boundary T
In this section, we derive boundary relations between the maximal hypersurface decompositions of Sec-
tions 2.2.1 and 2.2.2 and the null decompositions of Section 2.7.

There exists ν > 0 such that on T , we have

T :=
1

2

(
ν−1e3 + νe4

)
, (2.15)

and the outward-pointing unit normal to the boundary ∂Σt writes

N :=
1

2

(
−ν−1e3 + νe4

)
. (2.16)

We define the boundary decompositions of k by

δ := kN N , εa := kNa, κab := kab. (2.17)

Lemma 2.6. We have

κab = −1

2
ν−1χ

ab
− 1

2
νχab,

εa = −∇/ a(log ν) + ζa,

δ =
1

2
ν−1D3(log ν)− 1

2
νD4(log ν) + ν−1ω + νω.

(2.18)

Proof. The first relations for κ immediately follow from (2.33) and (2.7). Using (2.16), we have

kNa = −1

4
g
(
Da

(
ν−1e3 + νe4

)
,−ν−1e3 + νe4

)
= −∇/ a(log ν) + ζa,

and

kN N = −1

8
g
(
D−ν−1e3+νe4

(
ν−1e3 + νe4

)
,−ν−1e3 + νe4

)
=

1

2
ν−1D3(log ν)− 1

2
νD4(log ν)

+
1

8
ν−1g(De3(e3 + e4),−e3 + e4)

− 1

8
νg(De4(e3 + e4),−e3 + e4)

=
1

2
ν−1D3(log ν)− 1

2
νD4(log ν) + ν−1ω + νω.

This finishes the proof of the lemma.

Lemma 2.7. We have at T

n =
τ

τ + 1

(
ν +

(
τ−1 − 1

2
y

)
ν−1

)
. (2.19)

Proof. Using relations (2.1), the future-pointing unit normal Z to Su,u in T writes

Z =
1

2

(
a−1/2e3 + a1/2e4

)
,

with

a := τ−1 − 1

2
y.

Using that we have on T

Z(t) =
1

2
Z(u+ u),
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we therefore deduce at T that

a−1/2e3(t) + a1/2e4(t) =
1

2
(a−1/2e3 + a1/2e4)(u+ u)

= a−1/2 + a1/2 +
1

2
a−1/2y.

(2.20)

Moreover from the relations (2.6) and definitions (2.15), (2.16), we have at T

1

2
ν−1e3(t) +

1

2
νe4(t) = n−1,

−1

2
ν−1e3(t) +

1

2
νe4(t) = 0,

which gives

e3(t) = νn−1, e4(t) = ν−1n−1. (2.21)

Plugging this into (2.20) gives

n =
a−1/2ν + a1/2ν−1

a−1/2 + a1/2 + 1
2a
−1/2y

,

which, after rewriting, using the expression for a, gives the desired formula.

2.4 Uniformisation of the sphere S∗ and harmonic Cartesian co-
ordinates on Σt∗

We recall the following definition from Section 2.1

S∗ := ∂Σt∗ = Su=τu∗,u∗ ,

and we note (r∗)2 := 1
4π |S

∗| its area radius.

A conformal isomorphism between S∗ and the Euclidean unit 2-sphere S is a diffeomorphism Φ : S∗ → S
such that there exists a conformal factor φ > 0 on S satisfying

Φ]g/S∗ = (r∗)2φ2g/S,

where Φ]g/S∗ is the push-forward of the metric g/ by Φ.

To a fixed conformal isomorphism of S∗, we associate the (normalised) Cartesian coordinates
(
xi

r∗

)
i=1...3

on

S∗ to be the pull-back by Φ of the standard Cartesian coordinates on S.

We say that the conformal isomorphism Φ is centred if the functions xi satisfy the following conditions on S∗∫
S∗
xi = 0, i = 1, · · · , 3.

Using these coordinates, we further define the associated harmonic Cartesian coordinates on Σt∗ to be the
solution of the following Dirichlet problem on Σt∗

∆gx
i = 0,

xi|S∗=∂Σt∗ = xi,
(2.22)

for all i = 1, 2, 3.

Remark 2.8. Further constructions and bounds in this paper will hold for all centred conformal isomorphisms.
In this paper, we will use the existence, uniqueness and control of all the centred conformal isomorphism
established in [KS19b, Theorem 3.1].
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2.5 Approximate interior Killing fields Tint, Sint, Kint and Oint in
Mint

bot
We first define the approximate Killing time translation vectorfield Tint on Mint

bot by

Tint := T .

We define Xint on Σt∗ to be the Σt∗ -tangent vectorfield given by

Xint :=

3∑
i=1

xi∇xi, (2.23)

where ∇ is the induced gradient on Σt∗ and xi are the harmonic Cartesian coordinates defined in Section 2.4.

We define Xint on Mint
bot by parallel transport, i.e.

DTXint = 0, (2.24)

We define the approximate conformal Killing scaling vectorfield Sint on Mint
bot by

Sint := tTint + Xint. (2.25)

We define the approximate conformal Killing Morawetz vectorfield Kint on Mint
bot by

Kint :=
(
t2 + g(Xint,Xint)

)
Tint + 2tXint. (2.26)

We define the approximate Killing rotation vectorfields Oint on Σt∗ by

(`)Oint :=∈`ij xi∇xj , (2.27)

for ` = 1, 2, 3, and we extend them on Mint
bot by parallel transport along T , i.e.

DT
(`)Oint = 0. (2.28)

We recall that the spacetime deformation tensor of a spacetime vectorfield X is given by

(X)πµν := DµXν + DνXµ,

and that we note π̂ its traceless part, i.e. π̂ := π − 1
4 trπg.

Using the maximal condition (2.8), we have

tr
(

(Tint)π
)

= 0, (2.29)

and using relations (2.6), we have

(Tint)πTT = 0, (Tint)πTi = n−1∇in, (Tint)πij = −2kij . (2.30)

2.6 Exterior hypersurfaces Σext
t of Mext

For all t◦ ≤ t ≤ t∗, we define the exterior spacelike hypersurfaces Σext by

Σext
t := {u+ u = 2t} ∩Mext.

From (2.1), one has the following relations for the future-pointing unit normal T
ext

to Σext
t and the

outward-pointing unit normal N
ext

to the 2-spheres Su,u ⊂ Σext
t in Σext

t

T
ext

=
1

2

(
1 +

1

2
y

)−1/2

e3 +
1

2

(
1 +

1

2
y

)1/2

e4,

N
ext

= −1

2

(
1 +

1

2
y

)−1/2

e3 +
1

2

(
1 +

1

2
y

)1/2

e4.

(2.31)

Moreover, we have the following definitions and expression of the time lapse next

next :=

(
−g

(
D

(
1

2
(u+ u)

)
,D

(
1

2
(u+ u)

)))−1/2

=

(
1 +

1

2
y

)−1/2

.

(2.32)
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2.7 Null decompositions
In this section, we recall the general null decomposition of the connection and curvature as defined in [CK93].

Let Su,u be a (local) foliation of M by spacelike 2-spheres. We note g/ the Riemannian metric induced by
g on Su,u, and we note r its area radius 4πr2 := |S|. A null pair (e4, e3) is a pair of vectorfields on M
orthogonal to the 2-spheres Su,u such that

g(e4, e3) = −2, g(e4, e4) = g(e3, e3) = 0.

We define the connection coefficients relative to a null pair (e4, e3) to be the S-tangent tensors defined by

χ(X,Y ) := g(DXe4, Y ), ξ(X) :=
1

2
g(D4e4, X), η(X) :=

1

2
g(D3e4, X),

ζ(X) :=
1

2
g(DXe4, e3), ω :=

1

4
g(D4e4, e3),

and

χ(X,Y ) := g(DXe3, Y ), ξ(X) :=
1

2
g(D3e3, X), η(X) :=

1

2
g(D4e3, X),

ζ(X) := −1

2
g(DXe3, e4), ω :=

1

4
g(D3e3, e4),

where X,Y ∈ TS.

Remark 2.9. These correspond to the same definitions as in ([CK93, p. 147]) with

χ = H, ξ = Y, η = Z, ζ = V, ω = Ω,

and

χ = H, ξ = Y , η = Z, ζ = V, ω = Ω.

For a (local) orthonormal frame (ea)a=1,2 on TS, we have the following relations for the covariant derivatives
of the orthonormal null frame (e4, e3, ea) (see [CK93, p. 147])

Dae3 = χ
ab
eb + ζae3, Dae4 = χabeb − ζae4,

D3e3 = 2ξ
a
ea − 2ωe3, D3e4 = 2ηaea + 2ωe4,

D4e3 = 2η
a
ea + 2ωe3, D4e4 = 2ξaea − 2ωe4,

D3ea = ∇/ 3ea + ηae3 + ξ
a
e4, D4ea = ∇/ 4ea + ξae3 + η

a
e4,

Daeb = ∇/ aeb +
1

2
χabe3 +

1

2
χ
ab
e4.

(2.33)

We define the curvature components relative to a null pair (e4, e3) to be the S-tangent tensors defined by

α(X,Y ) := R(e4, X, e4, Y ), β(X) :=
1

2
R(X, e4, e3, e4), ρ :=

1

4
R(e3, e4, e3, e4),

α(X,Y ) := R(e3, X, e3, Y ), β(X) :=
1

2
R(X, e3, e3, e4), σ :=

1

4
∗R(e3, e4, e3, e4),

where X,Y ∈ TS and where ∗R denotes the Hodge dual of R.

We have the following null structure relating the null connection coefficients and the null curvature compo-
nents (see [CK93, pp. 168-170]).

We have the following transport equations along e3 and e4

L/e3g/ = 2χ, L/e4g/ = 2χ, (2.34a)
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and

∇/ 3χ̂+ trχχ̂ = ∇/ ⊗̂ξ − 2ωχ̂+
(
η + η − 2ζ

)
⊗̂ξ − α, (2.34b)

∇/ 3trχ+
1

2
(trχ)2 = 2div/ ξ − 2ωtrχ+ 2ξ ·

(
η + η − 2ζ

)
− |χ̂|2, (2.34c)

∇/ 3ζ = −2∇/ ω − χ · (ζ + η) + 2ω(ζ − η) + χ · ξ + 2ωξ − β, (2.34d)

∇/ 3χ̂+
1

2
trχχ̂ = ∇/ ⊗̂η + 2ωχ̂− 1

2
trχχ̂+ ξ ⊗ ξ + η⊗̂η, (2.34e)

∇/ 3trχ+
1

2
trχtrχ = 2div/ η + 2ωtrχ− χ̂ · χ̂+ 2(ξ · ξ + |η|2) + 2ρ, (2.34f)

∇/ 3ξ −∇/ 4η = 4ωξ + χ ·
(
η − η

)
+ β, (2.34g)

∇/ 3η −∇/ 4ξ = −4ωξ − χ · (η − η) + β, (2.34h)

∇/ 3ω +∇/ 4ω = ξ · ξ + ζ · (η − η)− η · η + 4ωω + ρ. (2.34i)

∇/ 4χ̂+ trχχ̂ = ∇/ ⊗̂ξ − 2ωχ̂+
(
η + η + 2ζ

)
⊗̂ξ − α, (2.34j)

∇/ 4trχ+
1

2
(trχ)2 = 2div/ ξ − 2ωtrχ+ 2ξ ·

(
η + η + 2ζ

)
− |χ̂|2, (2.34k)

∇/ 4ζ = 2∇/ ω + χ · (−ζ + η) + 2ω(ζ + η)− χ · ξ − 2ωξ − β, (2.34l)

∇/ 4χ̂+
1

2
trχχ̂ = ∇/ ⊗̂η + 2ωχ̂− 1

2
trχχ̂+ ξ ⊗ ξ + η⊗̂η, (2.34m)

∇/ 4trχ+
1

2
trχtrχ = 2div/ η + 2ωtrχ− χ̂ · χ̂+ 2(ξ · ξ + |η|2) + 2ρ. (2.34n)

We have the following elliptic equations on the 2-spheres

curl/ η = −curl/ η =
1

2
χ̂ ∧ χ̂− ξ ∧ ξ − σ, (2.34o)

div/ χ̂ = ∇/ trχ+ χ · ζ − trχζ + β, (2.34p)

div/ χ̂ = ∇/ trχ− χ · ζ + trχζ − β, (2.34q)

curl/ ξ = ξ ∧
(
η + η + 2ζ

)
, (2.34r)

curl/ ξ = ξ ∧
(
η + η − 2ζ

)
, (2.34s)

K = −1

4
trχtrχ+

1

2
χ̂ · χ̂− ρ. (2.34t)

We have the following Bianchi equations relating the null connection coefficients and the null curvature
components (see [CK93, p. 161]).

∇/ 3α+
1

2
trχα = ∇/ ⊗̂β + 2ωα− 3(χ̂ρ+ ∗χ̂σ) + (ζ + 4η)⊗̂β, (2.35a)

∇/ 4β + 2trχβ = div/ α− 2ωβ + (2ζ + η) · α+ 3(ξρ+ ∗ξσ), (2.35b)

∇/ 3β + trχβ = ∇/ ρ+ ∗∇/ σ + 2ωβ + ξ · α+ 3(ηρ+ ∗ησ), (2.35c)

∇/ 4ρ+
3

2
trχρ = div/ β − 1

2
χ̂ · α+ ζ · β + 2(η · β − ξ · β), (2.35d)

∇/ 3ρ+
3

2
trχρ = −div/ β − 1

2
χ̂ · α+ ζ · β + 2(ξ · β − η · β), (2.35e)

∇/ 4σ +
3

2
trχσ = −curl/ β +

1

2
χ̂ · ∗α− ζ · ∗β − 2(η · ∗β + 2ξ · ∗β), (2.35f)

∇/ 3σ +
3

2
trχσ = −curl/ β − 1

2
χ̂ · ∗α+ ζ · ∗β − 2(η · ∗β + η · ∗β), (2.35g)

∇/ 4β + trχβ = −∇/ ρ+ ∗∇/ σ + 2χ̂ · β + 2ωβ − ξ · α− 3(ηρ− ∗ησ), (2.35h)

∇/ 3β + 2trχβ = −div/ α− 2ωβ − (−2ζ + η) · α+ 3(−ξρ+ ∗ξσ), (2.35i)

∇/ 4α+
1

2
trχα = −∇/ ⊗̂β + 4ωα− 3(χ̂ρ− ∗χ̂σ) + (ζ − 4η)⊗̂β. (2.35j)
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We have the following commutations formulas for the covariant derivatives ∇/ ,∇/ 4,∇/ 3 (see [CK93, p. 159])

[∇/ 4,∇/ ]F = −1

2
trχ∇/ F − χ̂ · ∇/ F + ξ∇/ 3F + (η + ζ)∇/ 4F + E(∇/ 4,∇/ ) · F, (2.36a)

[∇/ 3,∇/ ]F = −1

2
trχ∇/ F − χ̂ · ∇/ F + ξ∇/ 4F + (η − ζ)∇/ 3F + E(∇/ 3,∇/ ) · F, (2.36b)

[∇/ 3,∇/ 4]F = 2ω∇/ 3F + 2ω∇/ 4F + (η − η) · ∇/ F + E(∇/ 3,∇/ 4) · F, (2.36c)

where F is a S-tangent k-tensor and where the tensors E are given by

(E(∇/ 4,∇/ ) · F )aa1···ak :=

k∑
i=1

(
χ
aia
ξb − χabξai + χaiaηb − χabηai + εaib

∗βa

)
Fa1···b···ak ,

(E(∇/ 3,∇/ ) · F )aa1···ak :=

k∑
i=1

(
χaiaξb − χabξai + χ

aia
ηb − χabηai − εaib

∗β
a

)
Fa1···b···ak ,

(E(∇/ 3,∇/ 4) · F )a1···ak := 2

k∑
i=1

(
ξaiξb − ξbξai + η

ai
ηb − ηbηai + εaibσ

)
Fa1···b···ak .

2.8 Commutation relations for integrals and averages on Su,u
We have the following commutation relation between e3, e4-derivatives and the integral on a 2-sphere Su,u

Lemma 2.10. For all scalar function φ, we have

e3

(∫
S

φ

)
=

∫
S

(
e3(φ) + trχφ

)
on C∗,

e4

(∫
S

φ

)
=

∫
S

(e4(φ) + trχφ) on Mext.

(2.37)

Proof. Using (2.1) and defining appropriate transported spherical coordinates, we have e4 = 2∂u in Mext,
which thus commutes with

∫
Su,u

. Using (2.34a), the desired formula in Mext follows.

Since C∗ is null, Y is null and y = 0. Using (2.1), and defining appropriate transported spherical coordinates,
we have e3 = 2∂u on C∗. Using (2.34a), the desired formula follows on C∗. This finishes the proof of the
lemma.

Using (2.37), we also have the following commutation relation between e3, e4-derivatives and the mean value
on a 2-sphere Su,u

e3

(
φ
)

= e3(φ) +
(
trχ− trχ

)
φ on C∗,

e4

(
φ
)

= e4(φ) +
(
trχ− trχ

)
φ on Mext,

(2.38)

where φ is a scalar function and φ := (4πr2)−1
∫
S
φ.

Using (2.37), we also have

e3(r) =
1

2
rtrχ on C∗, (2.39)

e4(r) =
1

2
rtrχ, on Mext. (2.40)

2.9 Null decomposition of the geodesic-null foliation in Mext

In this section, we derive additional equations to the general null decompositions defined in Section 2.7, in
the case of the null pair (e3, e4) of the geodesic-null foliation defined in Section 2.1.

We have the following relations.
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Lemma 2.11. In Mext the following relations hold

ξ = 0, (2.41)

ω = 0, (2.42)

0 = η − ζ, (2.43)

0 = η + ζ, (2.44)

∇/ (y) = −2ξ, (2.45)

∇/ 4 (y) = −4ω. (2.46)

Proof. Identities (2.41) and (2.42) are a consequence of the geodesic equation DLL = 0 and the definition
e4 = L.

From the definition of η and ζ, we have

ηa =
1

2
g(D3e4, ea) = −1

2
g (e4, [e3, ea])− 1

2
g(e4,Dae3) = −1

2
g (e4, [e3, ea]) + ζa.

From the definition of e4 and the relations (2.1), we have

−1

2
g (e4, [e3, ea]) =

1

2
[e3, ea](u) = −ea (1) = 0,

and we deduce the first identity of (2.44).

From the definition of η and ζ, we have

η
a

=
1

2
g(D4e3, ea) = −1

2
g (e3, [e4, ea])− ζa.

From the definition of e3 and the relations (2.2), (2.1), we have

g (e3, [e4, ea]) = g(Y , [e4, ea])− 1

2
yg(e4, [e4, ea]),

= −[e4, ea](u) +
1

2
y[e4, ea](u)

= 0,

and we deduce the second identity of (2.44).

From the definition of ξ, we have

ξ
a

=
1

2
g(D3e3, ea) = −1

2
g(e3, [e3, ea]).

Using the definition of e3 and Y , we infer

ξ
a

= −1

2
g

(
Y − 1

2
ye4, [e3, ea]

)
=

1

2
[e3, ea](u)− 1

4
y[e3, ea](u)

= −1

2
ea (y) ,

and we deduce the identity (2.45).
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From the definition of ω, the definition of e4 and the relations (2.1), we have

ω =
1

4
g(D3e3, e4)

= −1

4
g(e3, [e3, e4])

= −1

4
g

(
Y − 1

2
ye4, [e3, e4]

)
=

1

4
[e3, e4](u)− 1

8
y[e3, e4](u)

= −1

4
e4(y),

and we deduce the identity (2.46). This finishes the proof of the lemma.

2.9.1 Averages and renormalisations
Lemma 2.12 (Average of ρ and σ). The following relations hold in Mext

∇/ 4ρ+
3

2
trχρ = Err (∇/ 4, ρ) , (2.47)

σ =
1

2
χ̂ ∧ χ̂, (2.48)

where

Err (∇/ 4, ρ) := −1

2
χ̂ · α− ζ · β − 1

2
(trχ− trχ)(ρ− ρ).

Proof. Equation (2.47) follows from taking the average in equation (2.35d) and using commutation for-
mula (2.38). Equation (2.48) follows from taking the average in equation (2.34o).

Lemma 2.13 (Average and renormalisation of trχ). We have the following transport equations in the e4

direction

∇/ 4

(
trχ− trχ

)
+ trχ

(
trχ− trχ

)
= Err

(
∇/ 4, trχ− trχ

)
, (2.49)

∇/ 4

(
trχ− 2

r

)
+

1

2
trχ

(
trχ− 2

r

)
= Err

(
∇/ 4, trχ−

2

r

)
, (2.50)

where

Err
(
∇/ 4, trχ− trχ

)
:= −|χ̂|2 − 1

2
(trχ− trχ)2 + |χ̂|2 − 1

2
(trχ− trχ)2,

Err

(
∇/ 4, trχ−

2

r

)
:= −|χ̂|2 +

1

2
(trχ− trχ)2.

Proof. Rewriting (2.34k), we have

∇/ 4trχ+
1

2
(trχ)2 = −|χ̂|2. (2.51)

Taking the mean value in (2.51), using commutation formula (2.38), we obtain

∇/ 4trχ+
1

2
trχ

2
= −|χ̂|2 +

1

2

(
trχ

2 − (trχ)2
)

+ (trχ− trχ)trχ

= −|χ̂|2 +
1

2
(trχ− trχ)2.

(2.52)

Combining equations (2.51) and (2.52) we obtain (2.49). Using equation (2.52) and relation (2.39) we
obtain (2.50) and it finishes the proof of the lemma.

Lemma 2.14 (Average and renormalisation of trχ). We have the following equations in the e4 direction

∇/ 4(trχ− trχ) +
1

2
trχ(trχ− trχ) = −1

2
trχ(trχ− trχ) + 2div/ ζ + 2(ρ− ρ) (2.53)

+ Err
(
∇/ 4, trχ− trχ

)
∇/ 4

(
trχ+

2

r

)
+

1

2
trχ

(
trχ+

2

r

)
= 2ρ+ Err

(
∇/ 4, trχ+

2

r

)
, (2.54)
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where

Err
(
∇/ 4, trχ− trχ

)
:= −χ̂ · χ̂+ 2|ζ|2 + χ̂ · χ̂− 2|ζ|2 − 1

2
(trχ− trχ)(trχ− trχ),

Err

(
∇/ 4, trχ+

2

r

)
:= −χ̂ · χ̂+ 2|ζ|2 +

1

2
(trχ− trχ)(trχ− trχ).

Proof. Equation (2.34n) together with the relations of Lemma 2.11 rewrites

∇/ 4trχ+
1

2
trχtrχ = 2div/ ζ − χ̂ · χ̂+ 2|ζ|2 + 2ρ. (2.55)

Taking the average in (2.55), using commutation formula (2.38) gives

∇/ 4trχ+
1

2
trχ trχ = −χ̂ · χ̂+ 2|ζ|2 + 2ρ+

1

2
(trχ− trχ)(trχ− trχ). (2.56)

Combining (2.55) and (2.56) directly gives (2.53). Combining (2.56) and formula (2.39) gives (2.54) and this
finishes the proof of the lemma.

Lemma 2.15 (Average and renormalisation of ω). We have the following equations in the e4 direction

∇/ 4(ω − ω) = ρ− ρ+ Err(∇/ 4, ω − ω), (2.57)

∇/ 4ω = ρ+ Err(∇/ 4, ω), (2.58)

where

Err(∇/ 4, ω − ω) := 3|ζ|2 − 3|ζ|2 − (trχ− trχ)(ω − ω),

Err(∇/ 4, ω) := 3|ζ|2 + (trχ− trχ)(ω − ω).

Proof. Using the result of Lemma 2.11, equation (2.34i) rewrites

∇/ 4ω = 3|ζ|2 + ρ.

The result of the lemma then follows from taking the average in the above equation. The details are left to
the reader.

2.9.2 The null coefficient ζ and renormalisations
The mass aspect function µ Equation (2.34l) together with the relations of Lemma 2.11 rewrites

∇/ 4ζ + trχζ = −2χ̂ · ζ − β. (2.59)

We define the mass aspect function µ by

µ := div/ ζ + ρ (2.60)

Using the relations of Lemma 2.11 and (2.60) and (2.34o), we have

D/ 1(ζ) = (−ρ+ µ, σ̌) ,

=
(
−ρ+ ρ+ µ− µ, σ̌ − σ̌

)
.

(2.61)

where for a S-tangent 1-tensor U , we have D/ 1U := (div/ U, curl/ U), and where

σ̌ := σ − 1

2
χ̂ ∧ χ̂.

We have the following transport equation in the e4 direction for µ.

Lemma 2.16. We have

∇/ 4µ+
3

2
trχµ = Err(∇/ 4, µ), (2.62)

where

Err(∇/ 4, µ) := −2∇/ χ̂ · ζ − 3χ̂ · ∇/ ζ − χ · ζ · ζ + trχ|ζ|2 − 2ζ · β −∇/ trχ · ζ − 1

2
χ̂ · α.
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Proof. Commuting the transport equation (2.59) with div/ , using commutation formula (2.36a), we have

∇/ 4div/ ζ +
3

2
trχdiv/ ζ = −div/ β + Err1, (2.63)

where

Err1 :=

(
[∇/ 4,div/ ]ζ +

1

2
trχdiv/ ζ

)
−∇/ trχ · ζ − 2∇/ χ̂ · ζ − 2χ̂ · ∇/ ζ

=
(
−χ̂ · ∇/ ζ − χ · ζ · ζ + trχ|ζ|2 − ζ · β

)
−∇/ trχ · ζ − 2∇/ χ̂ · ζ − 2χ̂ · ∇/ ζ.

From Bianchi identity (2.35d), we have

∇/ 4ρ+
3

2
ρ = div/ β + Err2, (2.64)

where

Err2 := −1

2
χ̂ · α− ζβ,

and summing (2.63) and (2.64) gives the desired formula (2.62).

We have the following transport equation for µ− µ.

Lemma 2.17 (Average and renormalisation of µ). We have

µ = ρ, (2.65)

and

∇/ 4(µ− µ) +
3

2
trχ(µ− µ) = Err (∇/ 4, µ− µ) , (2.66)

where

Err (∇/ 4, µ− µ) := Err(∇/ 4, µ)− Err(∇/ 4, µ) +
1

2
(trχ− trχ)(µ− µ) + 3/2(trχ− trχ)µ.

Proof. Equation (2.65) follows from taking the average in the definition (2.60) of µ.
Taking the average in equation (2.62) using formula (2.38), we have

∇/ 4µ+
3

2
trχµ = −1

2
(trχ− trχ)(µ− µ) + Err (∇/ 4, µ). (2.67)

Combining (2.62) and (2.67) then gives the desired (2.66).

Renormalisation of ∇/ 3ζ We define the auxiliary coefficients ωρ and ωσ to be the solution of the following
transport equations in the e4 direction

∇/ 4(rωρ) = r(ρ− ρ), ∇/ 4(rωσ) = r(σ − σ),

ωρ|C∗ = 0, ωσ|C∗ = 0.
(2.68)

We define ι to be the following S-tangent tensor

ι := ∇/ ωρ − ∗∇/ ωσ + β. (2.69)

The tensor ι satisfies the following transport equation.

Lemma 2.18. We have

∇/ 4

(
r2ι
)

= Err (∇/ 4, ι) , (2.70)

where

Err (∇/ 4, ι) := −1

2

(
trχ− trχ

)
r∇/ (rωρ)− χ̂ · (r∇/ )(rωρ)

+
1

2

(
trχ− trχ

)
(r∗∇/ )(rωσ)− χ̂ · (r∗∇/ )(rωσ)

− r2(trχ− trχ)β − 2r2χ̂ · β − 3r2 (ζρ− ∗ζσ) .
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Proof. Commuting the transport equations (2.68) by respectively r∇/ and r∗∇/ , using commutation for-
mula (2.36a), we have

∇/ 4(r2∇/ ωρ) = r2∇/ ρ+ [∇/ 4, r∇/ ](rωρ)

= r2∇/ ρ− 1

2

(
trχ− trχ

)
(r∇/ )(rωρ)− χ̂ · (r∇/ )(rωρ),

∇/ 4(r∗∇/ ωσ) = r2∗∇/ σ + ∗ ([∇/ 4, r∇/ ](rω))

= r2∗∇/ σ − 1

2

(
trχ− trχ

)
r∗∇/ (rωσ)− ∗ (χ̂ · (r∇/ )(rωσ))

= r2∗∇/ σ − 1

2

(
trχ− trχ

)
r∗∇/ (rωσ) + χ̂ · (r∗∇/ )(rωσ),

(2.71)

where we used standard Hodge dual computations. From Bianchi identity (2.35h) and (2.39) we have

−r2∇/ ρ+ r2∗∇/ σ = r2∇/ 4β + r2trχβ + 2r2χ̂ · β + 3r2 (ζρ− ∗ζσ)

= ∇/ 4(r2β) + r2(trχ− trχ)β + 2r2χ̂ · β + 3r2 (ζρ− ∗ζσ) .
(2.72)

Combining (2.71) and (2.72), then directly gives the desired formula (2.70).

We define ς to be the following renormalisation of ∇/ 3ζ

ς := ∇/ 3ζ +∇/ ωρ +∇/ ωσ. (2.73)

We have the following transport equation for ς in the e4 direction.

Lemma 2.19. We have

∇/ 4

(
r2ς
)

= r2trχβ +
1

2
r2trχtrχζ + Err (∇/ 4, ς) , (2.74)

where

Err (∇/ 4, ς) :=
(
r2trχ− r2trχ

)
∇/ 3ζ

− 2r2ωβ − r2ξ · α− 3r2(ζρ+ ∗ζσ)

− 2r2(div/ ζ)ζ − 2r2ωtrχζ + r2χ̂ · χ̂ζ − 2r2|ζ|2ζ − 2r2ρζ

− 2r2∇/ 3(χ̂ · ζ)− 2r2ω∇/ 4ζ − 2r2ζ · ∇/ ζ − 2r2∗ζσ

+
1

2
(trχ− trχ)∇/ (rωρ)− χ̂ · ∇/ (rωρ)

+
1

2
(trχ− trχ)∗∇/ (rωσ) + χ̂ · ∗∇/ (rωσ).

Proof. Using formula (2.39), commuting the transport equation (2.59) with ∇/ 3, using commutation for-
mula (2.36c), Bianchi equation (2.35c) for ∇/ 3β and the equation (2.34f) for ∇/ 3trχ together with the relations
from Lemma 2.11 gives

∇/ 4

(
r2∇/ 3ζ

)
= r2 (∇/ 4∇/ 3ζ + trχ∇/ 3ζ) + Err1

= −r2∇/ 3β − r2∇/ 3(trχ)ζ − 2r2∇/ 3(χ̂ · ζ) + r2[∇/ 4,∇/ 3]ζ + Err1

= r2trχβ − r2∇/ ρ− r2∗∇/ σ +
1

2
r2trχtrχζ + Err1 + Err2,

(2.75)

where

Err1 :=
(
r2trχ− r2trχ

)
∇/ 3ζ,

Err2 := −2r2ωβ − r2ξ · α− 3r2(ζρ+ ∗ζσ)

− 2r2(div/ ζ)ζ − 2r2ωtrχζ + r2χ̂ · χ̂ζ − 2r2|ζ|2ζ − 2r2ρζ

− 2r2∇/ 3(χ̂ · ζ)− 2r2ω∇/ 4ζ − 2r2ζ · ∇/ ζ − 2r2∗ζσ.
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From the transport equation (2.68) for the auxiliary coefficients ωρ and ωσ, using commutation formula (2.36a),
we have

−r2∇/ ρ− r2∗∇/ σ = −r∇/ ∇/ 4(rωρ)− r∗∇/ ∇/ 4(rωσ)

= −∇/ 4(r2∇/ ωρ)−∇/ 4(r2∇/ ωσ) + Err3,
(2.76)

where

Err3 := −[r∇/ ,∇/ 4](rωρ)− [r∗∇/ ,∇/ 4]ωσ

=
1

2
(trχ− trχ)∇/ (rωρ)− χ̂ · ∇/ (rωρ)

+
1

2
(trχ− trχ)∗∇/ (rωσ) + χ̂ · ∗∇/ (rωσ).

Combining (2.75) and (2.76) gives the desired formula.

2.9.3 The null coefficient ω and renormalisations
Using equation (2.34i) and the relations from Lemma 2.11, we have

∇/ 4ω = 3|ζ|2 + ρ. (2.77)

Let ∗ω be the ad hoc dual of ω, which we define as the solution of the following transport equation

∇/ 4
∗ω := σ,

∗ω|C∗ := 0.
(2.78)

We define ι to be the S-tangent tensor given by

ι := ∇/ ω − ∗∇/ ∗ω + β. (2.79)

The tensor ι satisfies the following transport equation.

Lemma 2.20. We have

∇/ 4 (rι) = −1

2
rtrχβ + Err (∇/ 4, ι) , (2.80)

where

Err (∇/ 4, ι) := 6ζ · (r∇/ )ζ

− 1

2

(
trχ− trχ

)
r∇/ ω − χ̂ · (r∇/ )ω

+
1

2

(
trχ− trχ

)
(r∗∇/ )∗ω − χ̂ · (r∗∇/ )∗ω

− r(trχ− trχ)β − 2rχ̂ · β − 3r (ζρ− ∗ζσ) .

Proof. Commuting the transport equations (2.77) and (2.78) by respectively r∇/ and r∗∇/ , using commutation
formula (2.36a), we have

∇/ 4(r∇/ ω) = 6ζ · (r∇/ )ζ + (r∇/ )ρ+ [∇/ 4, r∇/ ]ω

= 6ζ · (r∇/ )ζ + (r∇/ )ρ

− 1

2

(
trχ− trχ

)
(r∇/ )ω − χ̂ · (r∇/ )ω,

∇/ 4(r∗∇/ ∗ω) = (r∗∇/ )σ + ∗ ([∇/ 4, r∇/ ]∗ω)

= (r∗∇/ )σ − 1

2

(
trχ− trχ

)
r∗∇/ ∗ω − ∗ (χ̂ · (r∇/ )∗ω)

= (r∗∇/ )σ − 1

2

(
trχ− trχ

)
r∗∇/ ∗ω + χ̂ · (r∗∇/ )∗ω,

(2.81)

where we used standard Hodge dual computations. From Bianchi identity (2.35h) and (2.39) we have

−(r∇/ )ρ+ (r∗∇/ )σ = r∇/ 4β + rtrχβ + 2rχ̂ · β + 3r (ζρ− ∗ζσ)

= ∇/ 4(rβ) +
1

2
rtrχβ + r(trχ− trχ)β + 2rχ̂ · β + 3r (ζρ− ∗ζσ) .

(2.82)

Combining (2.81) and (2.82), then directly gives the desired formula (2.80).
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2.10 Null decomposition of the canonical foliation in C∗
Additionally to the relations of Section 2.9, we have the following relations on C∗.

Lemma 2.21. On C∗, the following relations hold

y = 0, (2.83)

ξ = 0, (2.84)

Proof. Since C∗ is null, the gradient Y of u is null and y = 0 on C∗. This proves (2.83).

We also deduce on C∗ that

ξ
a

=
1

2
g(D3e3, ea) =

1

2
g(e3, [ea, e3]) = −1

2
g(Du, [ea, e3]) = −1

2
[ea, e3](u) = 0.

This finishes the proof of the lemma.

2.10.1 Averages and renormalisations
Lemma 2.22 (Average of ρ and σ). The following relations hold on C∗

∇/ 3ρ+
3

2
trχρ = Err (∇/ 3, ρ) , (2.85)

σ =
1

2
χ̂ ∧ χ̂, (2.86)

where

Err (∇/ 3, ρ) := −1

2
χ̂ · α− ζ · β − 1

2

(
trχ− trχ

)
(ρ− ρ).

Proof. Equation (2.85) follows from taking the average in Bianchi equation (2.35e), using the relations of
Lemmas 2.11 and 2.21, and using formula (2.38).

Lemma 2.23 (Average and renormalisation of trχ). We have the following transport equation along C∗

∇/ 3

(
trχ− trχ

)
+ trχ

(
trχ− trχ

)
= −2(ω − ω)trχ+ Err

(
∇/ 3, trχ− trχ

)
, (2.87)

∇/ 3

(
trχ+

2

r

)
+

1

2
trχ

(
trχ+

2

r

)
= Err

(
∇/ 3, trχ+

2

r

)
, (2.88)

where3

Err
(
∇/ 3, trχ− trχ

)
:= −|χ̂|2 + |χ̂|2 + 2(ω − ω)(trχ− trχ)− 1

2

(
trχ− trχ

)2 − 1

2
(trχ− trχ)2,

Err

(
∇/ 3, trχ+

2

r

)
:= −2(ω − ω)(trχ− trχ)− |χ̂|2 +

1

2
(trχ− trχ)2.

Proof. Using the relations from Lemmas 2.11 and 2.21, equation (2.34c) rewrites

∇/ 3trχ+
1

2
(trχ)2 = −2(ω − ω)trχ− |χ̂|2, (2.89)

where we used that ω = 0 for the canonical foliation on C∗ (see Definition 2.1). Taking the average in (2.89),
using formula (2.38), we have

∇/ 3trχ+
1

2
(trχ)2 = −2(ω − ω)(trχ− trχ)− |χ̂|2 +

1

2
(trχ− trχ)2. (2.90)

Combining (2.89) and (2.90), we obtain (2.87). Combining (2.90) and formula (2.39) gives (2.88).

3On C∗ we have by definition of the canonical foliation ω = 0. For completeness, we keep track of the factor ω in the formulas
of this section.
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Lemma 2.24 (Average and renormalisation of trχ). We have the following transport equation along C∗

∇/ 3

(
trχ− trχ

)
+

1

2
trχ(trχ− trχ) = 2(ω − ω)trχ+ Err

(
∇/ 3, trχ− trχ

)
, (2.91)

∇/ 3

(
trχ− 2

r

)
+

1

2
trχ

(
trχ− 2

r

)
= 2ρ+ Err

(
∇/ 3, trχ−

2

r

)
, (2.92)

where

Err
(
∇/ 3, trχ− trχ

)
:= −χ̂ · χ̂+ 2|ζ|2 + χ̂ · χ̂− 2|ζ|2 − 2(ω − ω)(trχ− trχ)

− 1

2
(trχ− trχ)(trχ− trχ)− 1

2
(trχ− trχ)(trχ− trχ),

Err

(
∇/ 3, trχ−

2

r

)
:= 2(ω − ω)(trχ− trχ)− χ̂ · χ̂+ 2|ζ|2 +

1

2
(trχ− trχ)(trχ− trχ).

Proof. Rewriting equation (2.34f), using the relations of Lemmas 2.11 and 2.21, and the Definition 2.1 of
the canonical foliation on C∗, we have

∇/ 3trχ+
1

2
trχtrχ = 2ρ+ 2(ω − ω)trχ− χ̂ · χ̂+ 2|ζ|2. (2.93)

Taking the average in (2.93) gives

∇/ 3trχ+
1

2
trχtrχ = 2ρ+ 2(ω − ω)(trχ− trχ)− χ̂ · χ̂+ 2|ζ|2 +

1

2
(trχ− trχ)(trχ− trχ). (2.94)

Combining (2.93) and (2.94) gives (2.91). Combining (2.94) and formula (2.39) gives (2.92).

2.11 Approximate exterior Killing vectorfields Text,Sext,Kext

Associated to the foliation Su,u and the null pair (e4, e3), we define the following approximate conformal
Killing fields in the exterior region Mext

Text :=
1

2
(e4 + e3) , Sext :=

1

2
(ue4 + ue3) ,

Kext :=
1

2

(
u2e4 + u2e3

)
.

(2.95)

We remark that we have

Kext = (u+ u)Sext − 1

4
(uu)Text. (2.96)

2.12 Approximate exterior Killing rotations Oext

2.12.1 Approximate exterior Killing rotations on C∗
For a fixed centred conformal isomorphism Φ of S∗ and for the associated Cartesian functions xi (see the
definitions of Section 2.4), we define the approximate Killing exterior rotations on S∗ by

(1)Oext := x2∇/ x3 − x3∇/ x2, (2)Oext := x3∇/ x1 − x1∇/ x3, (3)Oext := x1∇/ x2 − x2∇/ x1, (2.97)

where xi are the Cartesian functions on S∗ defined in Section 2.4.

We extend the rotations Oext by Lie transport along C∗, i.e.[
e3,

(`) Oext
]

= 0, (2.98)

for all ` = 1, 2, 3.

Lemma 2.25. The vectorfields (`)Oext are tangent to the 2-spheres Su,u of the canonical foliation on C∗.

Proof. From the definition (2.98) and relations (2.1), we have

e3

(
(`)Oext(u)

)
= (`)Oext (e3(u)) = 0, and e3

(
(`)Oext(u)

)
= (`)Oext (e3(u)) = 0.

From the definition of (`)Oext on S∗, we have (`)Oext(u)|S∗ = (`)Oext(u)|S∗ = 0, and the result follows.
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Remark 2.26. The exterior rotation vectorfields have to be exactly tangent to the 2-spheres of the foliation
Su,u since they are used to estimate the tangential derivatives of the curvature. This is the reason for the
definition of Oext by Lie transport. In contrast, the interior rotation Oint are not used to estimate the
curvature and thus can simply be defined by parallel transport. See Section 2.5.

In the rest of this section, we simply call O a rotation vectorfield (`)Oext.

Projecting equation (2.98) on S provides in particular

∇/ 3Oa = χ
ab

Ob. (2.99)

Commuting equation (2.99) with ∇/ using commutation formula (2.36b), we further have the following
transport equations,

∇/ 3∇/ aOb =
1

2
∇/ a(trχ)Ob +∇/ aχ̂bcO

c + χ̂
bc
∇/ aO

c − (χ̂ · ∇/ )aOb

+ (ζ ·O)χ
ab
− (χ ·O)aζb − ∗βa

∗Ob,
(2.100)

and the symmetrised version

∇/ 3Hab =
(
∇/ (trχ)⊗O

)
ab

+
(
(∇/ ⊗ χ̂) ·O

)
ab

+ χ̂
bc
∇/ aO

c

+ χ̂
ac
∇/ bO

c −
(
(χ̂ · ∇/ )⊗O

)
ab

+ 2(ζ ·O)χ
ab

−
(
χ ·O⊗ ζ

)
ab
− (∗β ⊗ ∗O)ab,

(2.101)

where

Hab := ∇/ aOb +∇/ bOa. (2.102)

We also define the following S-tangent 3-tensor Ψ4

Ψabc := ∇/ 2
a,bOc − r−2Obg/ac + r−2Ocg/ab. (2.103)

Lemma 2.27. We have the following transport equation for rΨ

∇/ 3 (rΨ)abc =
1

2
(r∇/ )a∇/ b(trχ)Oc + (r∇/ )a∇/ bχ̂cdOd + (r∇/ )aχ̂cd∇/ bOd − (r∇/ )aχ̂bd∇/ dOc

+ (r∇/ )aζdOdχbc − (r∇/ )aχbdOdζc − (r∇/ )a
∗β

b
∗Oc +

1

2
∇/ b(trχ)(r∇/ )aOc

+∇/ bχ̂cd(r∇/ )aOd + χ̂
cd

(r∇/ )a∇/ bOd − χ̂bd(r∇/ )a∇/ dOc + ζd(r∇/ )aOdχbc
− χ

bd
(r∇/ )aOdζb − ∗βb(r∇/ )a

∗Oc + ζdOd(r∇/ )aχbc − χbdOd(r∇/ )aζb

+
1

2
(trχ− trχ)(r∇/ )a∇/ bOc − rχ̂ad∇/ d∇/ bOc

+
(
χ
ba
ζd − χdaζb− ∈/bd

∗β
a

)
∇/ dOc

+
(
χ
ca
ζd − χdaζc− ∈/cd

∗β
a

)
∇/ bOd

− 1

2
r−1

(
trχ− trχ

)
Obg/ac − r

−1χ̂
bd

Odg/ac

+
1

2
r−1

(
trχ− trχ

)
Ocg/ab + r−1χ̂

cd
Odg/ab.

(2.104)

Proof. Using commutation formula (2.36b) and the relations of Lemmas 2.11 and 2.21, we have

∇/ 3r∇/ a∇/ bOc = (r∇/ )a∇/ 3∇/ bOc +
1

2
(trχ− trχ)(r∇/ )a∇/ bOc − rχ̂ad∇/ d∇/ bOc

+
(
χ
ba
ζd − χdaζb− ∈/bd

∗β
a

)
∇/ dOc +

(
χ
ca
ζd − χdaζc− ∈/cd

∗β
a

)
∇/ bOd.

(2.105)

4The definition of Ψ is motivated by the fact that Ψ = 0 in the Minkowskian case. See Lemma 2.30.
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Using equation (2.100), we have

(r∇/ )a∇/ 3∇/ bOc

=
1

2
(r∇/ )a∇/ b(trχ)Oc + (r∇/ )a∇/ bχ̂cdOd + (r∇/ )aχ̂cd∇/ bOd − (r∇/ )aχ̂bd∇/ dOc

+ (r∇/ )aζdOdχbc − (r∇/ )aχbdOdζc − (r∇/ )a
∗β

b
∗Oc

+
1

2
∇/ b(trχ)(r∇/ )aOc +∇/ bχ̂cd(r∇/ )aOd + χ̂

cd
(r∇/ )a∇/ bOd − χ̂bd(r∇/ )a∇/ dOc

+ ζd(r∇/ )aOdχbc − χbd(r∇/ )aOdζb − ∗βb(r∇/ )a
∗Oc

+ ζdOd(r∇/ )aχbc − χbdOd(r∇/ )aζb.

(2.106)

Using formula (2.39), we have

−∇/ 3r
−1Obg/ac = −1

2
r−1

(
trχ− trχ

)
Obg/ac − r

−1χ̂
bd

Odg/ac,

∇/ 3r
−1Ocg/ab =

1

2
r−1

(
trχ− trχ

)
Ocg/ab + r−1χ̂

cd
Odg/ab.

(2.107)

Combining (2.105), (2.106) and (2.107) gives the desired formula and finishes the proof of the lemma.

2.12.2 Approximate exterior Killing rotations in Mext

We define the vectorfields Oext in Mext by Lie transport from C∗ along e4, i.e.[
e4,

(`)Oext
]

= 0, (2.108)

Arguing as in Lemma 2.25, the vectorfields (`)Oext are tangent to the 2-spheres Su,u.

In the rest of this section, we simply call O a rotation vectorfield (`)Oext.

From (2.108), Lemma 2.25 and the relations (2.33), we have the following relations

g (D4O, e4) = 0,

g (D4O, e3) = 2ζaO
a,

g (D4O, ea) = χabO
b,

g (D3O, e3) = −2ξ
a
Oa,

g (D3O, e4) = −2ζaO
a,

g (DaO, e4) = −χabOb,

g (DaO, e3) = −χ
ab

Ob,

g (D3O, ea) = χ
ab

Ob + Ya,

(2.109)

where

Ya := g (D3O, ea)− χ
ab

Ob. (2.110)

Remark 2.28. From the definition of Oext on C∗ and the definition (2.110) of Y , we have

Y |C∗ = 0. (2.111)

We deduce the following expression for the deformation tensor π of O

(O)π44 = 0,

(O)π34 = 0,

(O)π33 = −4ξ
a
Oa,

(O)π4a = 0,

(O)π3a = Ya,

(O)πab =: Hab,

(2.112)
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and

tr(O)π = trH.

From equation (2.108), we have in particular the following transport equation for O in the e4 direction

∇/ 4Oa = χabO
b. (2.113)

We further have the following transport equations for ∇/ O, Y , H and Ψ in the e4 direction.

Lemma 2.29. We have

∇/ 4∇/ aOb =
1

2
∇/ a(trχ)Ob +∇/ aχ̂bcO

c + χ̂bc∇/ aO
c − (χ̂ · ∇/ )aOb

− (ζ ·O)χab + (χ ·O)aζb + ∗βa
∗Ob.

(2.114)

We have

∇/ 4Y −
1

2
trχY = 2(div/ ζ)O +

(
2∇/ ⊗̂ζ + χ̂ · χ̂− χ̂ · χ̂

)
·O

+ χ̂ · Y − 4ζ · ∇/ O + 2σ∗O + 2(ξ ·O)ζ,
(2.115)

We have

∇/ 4Hab = (∇/ (trχ)⊗O)ab + ((∇/ ⊗ χ̂) ·O)ab + χ̂bc∇/ aO
c

+ χ̂ac∇/ bO
c − ((χ̂ · ∇/ )⊗O)ab − 2(ζ ·O)χab

+ (χ ·O⊗ ζ)ab + (∗β ⊗ ∗O)ab.

(2.116)

We have

∇/ 4 (rΨ)abc =
1

2
(r∇/ )a∇/ b(trχ)Oc + (r∇/ )a∇/ bχ̂cdOd + (r∇/ )aχ̂cd∇/ bOd − (r∇/ )aχ̂bd∇/ dOc

− (r∇/ )aζdOdχbc + (r∇/ )aχbdOdζc + (r∇/ )a
∗βb
∗Oc +

1

2
∇/ b(trχ)(r∇/ )aOc

+∇/ bχ̂cd(r∇/ )aOd + χ̂cd(r∇/ )a∇/ bOd − χ̂bd(r∇/ )a∇/ dOc − ζd(r∇/ )aOdχbc

+ χbd(r∇/ )aOdζb + ∗βb(r∇/ )a
∗Oc − ζdOd(r∇/ )aχbc + χbdOd(r∇/ )aζb

+
1

2
(trχ− trχ)(r∇/ )a∇/ bOc − rχ̂ad∇/ d∇/ bOc

+ (−χbaζd + χdaζb+ ∈/bd∗βa)∇/ dOc

+ (−χcaζd + χdaζc+ ∈/cd∗βa)∇/ bOd

− 1

2
r−1

(
trχ− trχ

)
Obg/ac − r

−1χ̂bdOdg/ac

+
1

2
r−1

(
trχ− trχ

)
Ocg/ab + r−1χ̂cdOdg/ab.

(2.117)

Proof. Equations (2.114), (2.116) and (2.117) follow by duality from respectively (2.100), (2.101) and (2.104).

Using relations (2.109), we have

D3O = (ξ ·O)e4 + (ζ ·O)e3 + (χ ·O) + Y.

Using equation (2.108), we have

D4(D3O) = D3(D4O) + D[e4,e3]O + R(e4, e3, eb, ea)Oaeb

= D3(χ ·O) + D[e4,e3]O + R(e4, e3, eb, ea)Oaeb.

Using the above two equations and projecting on TS, this gives

∇/ 4Y = ∇/ 3(χ ·O) +∇/ [e4,e3]O− 2σ∗O + 2(ξ ·O)ζ −∇/ 4(χ ·O).

Using relations (2.33), we have

∇/ [e4,e3]O = ∇/ −4ζaea−2ωe4O

= −4ζ · ∇/ O− 2ω∇/ 4O

= −4ζ · ∇/ O− 2ω(χ ·O),
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and, using (2.109) again, we obtain

∇/ 4Y −
1

2
trχY =

(
∇/ 3χ−∇/ 4χ

)
·O +

(
χ · χ− χ · χ

)
·O + χ̂ · Y

− 4ζ · ∇/ O− 2ωχ ·O− 2σ∗O + 2(ξ ·O)ζ.
(2.118)

Using equations (2.34f) and (2.34n) together with the relations of Lemma 2.11, we have

1

2

(
∇/ 3trχ−∇/ 4trχ

)
= 2div/ ζ + ωtrχ.

Using equations (2.34e) and (2.34m) together with the relations of Lemma 2.11, we have

∇/ 3χ̂−∇/ 4χ̂ = 2∇/ ⊗̂ζ + ωχ̂.

Additionally, we also check that (
χ · χ− χ · χ

)
ab

= χacχcb − χacχcb
= χ̂acχ̂cb − χ̂acχ̂cb
=
(
χ̂ · χ̂− χ̂ · χ̂

)
ab
.

Using the above formulas, equation (2.118) directly rewrites as (2.115) as desired.

We record the following lemma, which motivates the definition of Ψ.5

Lemma 2.30. Let X be an S-tangent vectorfield. We have the following formula

D2
a,bX = ∇/ 2

a,bX − r−2Xbea +
1

2
r−1g/ab (D4 −D3)X

+
1

2
r−1 (∇/ aXb +∇/ bXa) (e3 − e4) +

(
E
(
D2,∇/ 2

)
·X
)
ab
,

(2.119)

where (
E
(
D2,∇/ 2

)
·X
)
ab

:=
1

2
Xc∇/ a

(
χ− r−1g/

)
bc
e3 +

1

2
Xc∇/ a

(
χ+ r−1g/

)
bc
e4

+
1

2
∇/ bXc

(
χca − r−1g/ca

)
e3 +

1

2
∇/ bXc

(
χ
ca

+ r−1g/ca

)
e4

+
1

2
r−1Xb

(
(χ
ac

+ r−1g/ac)ec − (χac − r−1g/ac)ec + ζae3 + ζae4

)
− 1

2
(χab − r−1g/ab)D3X −

1

2
(χ
ab

+ r−1g/ab)D4X.

Proof. We first start by recording the following formula, which follows from the relations (2.33)

DbX = ∇/ bX +
1

2
Xcχcbe3 +

1

2
Xcχcbe4

= ∇/ bX +
1

2
r−1Xb(e3 − e4) + (E(D,∇/ ) ·X)b ,

(2.120)

where

(E(D,∇/ ) ·X)b :=
1

2
Xc

(
χcb − r−1g/cb

)
e3 +

1

2
Xc

(
χ
cb

+ r−1g/cb

)
e4.

Using formula (2.120) and the relations (2.33), we have

D2
a,bX = Da(DbX)−DDeaeb

X

= Da

(
∇/ bX +

1

2
r−1Xb(e3 − e4) + (E(D,∇/ ) ·X)b

)
−D∇/ eaeb

X − 1

2
χabD3X −

1

2
χ
ab

D4X.

(2.121)

5Using that D2O = 0 in the Euclidean space, one can deduce from the formula of Lemma 2.30 that Ψ = 0 in the Euclidean
case (see Lemma 9.11). Reciprocally, from the control of the rotation coefficients Ψ, H, Y ' 0 defined in this section, one can
deduce from this formula a control of D2Oext ' 0 (see Lemma 11.20).
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Using formula (2.120), we have the following equations

Da (∇/ bX) = ∇/ a(∇/ bX) +
1

2
r−1∇/ bXa (e3 − e4) + (E(D,∇/ ) · ∇/ bX)a

= ∇/ 2
a,bX +∇/ ∇/ aebX +

1

2
r−1∇/ bXa (e3 − e4) + (E(D,∇/ ) · ∇/ bX)a ,

(2.122)

and

Da

(
1

2
r−1Xb(e3 − e4)

)
=

1

2
r−1∇/ aXb(e3 − e4) +

1

2
r−1Xc(∇/ aeb)

c(e3 − e4)

+
1

2
r−1XbDa(e3 − e4).

(2.123)

Combining the terms of (2.121), (2.122) and (2.123) containing ∇/ eaeb, we obtain

∇/ ∇/ aebX +
1

2
r−1Xc(∇/ aeb)

c(e3 − e4)−D∇/ eaeb
X

=∇/ ∇/ aebX +
1

2
r−1Xc(∇/ aeb)

c(e3 − e4)

−
(
∇/ ∇/ eaeb

X +
1

2
r−1Xc(∇/ eaeb)

c(e3 − e4) + (E(D,∇/ ) ·X)c (∇/ eaeb)
c

)
=− (E(D,∇/ ) ·X)c (∇/ eaeb)

c.

(2.124)

Thus, we rewrite (2.121) using (2.122), (2.123) and (2.124) as

D2
a,bX = ∇/ 2

a,bX +
1

2
r−1∇/ bXa (e3 − e4) +

1

2
r−1∇/ aXb(e3 − e4)

+
1

2
r−1XbDa(e3 − e4)− 1

2
χabD3X −

1

2
χ
ab

D4X + E1,

(2.125)

where

E1 := Da ((E(D,∇/ ) ·X)b) + (E(D,∇/ ) · ∇/ bX)a − (E(D,∇/ ) ·X)c (∇/ eaeb)
c.

We rewrite

1

2
r−1XbDa(e3 − e4) = −r−2Xbea + E2, (2.126)

and

−1

2
χabD3X −

1

2
χ
ab

D4X =
1

2
r−1g/ab(D4 −D3)X + E3, (2.127)

where

E2 :=
1

2
r−1Xb(Dae3 + r−1ea)− 1

2
r−1Xb(Dae4 − r−1ea),

E3 := −1

2
(χab − r−1g/ab)D3X −

1

2
(χ
ab

+ r−1g/ab)D4X.

Thus, we obtain the following rewriting of (2.125) using (2.126) and (2.127)

D2Xa,b = ∇/ 2
a,bX +

1

2
r−1(∇/ bXa +∇/ aXb) (e3 − e4)− r−2Xbea

+
1

2
r−1g/ab(D4 −D3)X + E4,

(2.128)

with

E4 := E1 + E2 + E3.
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Using formula (2.120) and (2.33), we simplify the terms composing E4 as

E1 =
1

2
Xc∇/ a

(
χ− r−1g/

)
bc
e3 +

1

2
Xc∇/ a

(
χ+ r−1g/

)
bc
e4

+
1

2
Xc

(
χcb − r−1g/cb

) (
χ
ad
ed + ζae3

)
+

1

2
Xc

(
χ
cb

+ r−1g/cb

)
(χadedζae4)

+
1

2
∇/ bXc

(
χca − r−1g/ca

)
e3 +

1

2
∇/ bXc

(
χ
ca

+ r−1g/ca

)
e4,

and

E2 =
1

2
r−1Xb

(
(χ
ac

+ r−1g/ac)ec − (χac − r−1g/ac)ec + ζae3 + ζae4

)
,

and the formula (2.119) follows. This finishes the proof of the lemma.

2.13 The last cones geodesic foliation
For all 11/4 ≤ u′ ≤ u∗, we define Cu′ to be the incoming null cones with vertex ø(u′) and we note u′ its

associated optical function. We define e3
′ by e3

′ := −(Du′)]. We define u′ to be the associated normalised
affine parameter on the cones Cu′ , i.e.

e3
′(u′) = 2,

u′|ø(u′) = u′.

This yields a foliation by 2-spheres that we note

S′ :=
(
S′u′,u′

)
11/4≤u′≤u∗, 5/4≤u′≤u∗

and that we call the last cones geodesic foliation. See Figure 2 for a graphic representation of the domain

M′ :=
⋃

11/4≤u′≤u∗, 5/4≤u′≤u∗
S′u′,u′

covered by S′.

We define e4
′ such that (e3

′, e4
′) forms a null pair orthogonal to S′. With respect to this null pair, we let

χ′, ξ′, η′, ζ ′, ω′ and χ′, ξ′, η′, ζ ′, ω′ denote the associated null connection coefficients and α′, β′, ρ′, σ′, β′, α′

the associated null curvature components (see Section 2.7).

We denote Y ′ := −(Du′)], and y′ the optical defect

g(Y ′, Y ′) =: −2y′.

From the above definitions, we have

e3
′(u′) = 2, e4

′(u′) = y′,

e3
′(u′) = 0, e4

′(u′) = 2.
(2.129)

and

Y ′ = e4
′ +

1

2
y′e3

′. (2.130)

From the geodesic equation De3′e3
′ and relations (2.33), we have

ξ′ = 0, ω′ = 0. (2.131)

From relations (2.129) and (2.130) we have (see the analogous derivations of the relations of Lemma 2.11)

ζ ′ = η′ = −η′. (2.132)

From relations (2.129) and (2.130) we have (see the analogous derivations of relations of Lemma 2.21)

e3
′(y′) = −4ω′, ∇/ ′y′ = −2ξ′. (2.133)
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Figure 2: The initial layers Lbot and Lcon.

2.14 The initial layers Lbot and Lcon

In this section, we define spacetime regions Lbot,Lcon ⊂ M̃ which we respectively call the bottom initial
layer and the conical initial layer. The construction and its overlay with the spacetime region Mu∗ defined
in Section 2.1 is graphically summarised in Figure 2.

The bottom initial layer Lbot We define a bottom initial layer Lbot ⊂ M̃ to be a spacetime region
covered by a coordinates system, which we call bottom initial layer coordinates (xµ) such that in these
coordinates Lbot ' ∪x0∈[1,5]B((x0, 0, 0, 0), x0), where B denote the coordinate balls. The region Lbot shall

be a future neighbourhood of Σ̃1 = {x0 = 1}, with boundary locally coinciding with the null hypersurface

C̃0, i.e. ∪x0∈[1,5]∂B((x0, 0, 0, 0), x0) ⊂ C̃0. We denote by Σ̃x0 the level sets of the time coordinate x0. We

denote by T
bot

the timelike future-pointing unit normal to Σ̃. We denote by N
bot

the outward-pointing unit

normal to the 2-spheres level sets of x0 and
∑3
i=1(xi)2 which is orthogonal to T

bot
.

The conical initial layer Lcon We define a conical initial layer Lcon ⊂ M̃ to be a spacetime region
covered by two optical functions ũ, ũ such that Lcon ' [0, 3/2]ũ × [3,+∞)ũ × S̃ũ,ũ. Moreover, we require

that C̃0 = {ũ = 0} .

We note r̃ the area radius of the 2-spheres S̃ũ,ũ. We define its null lapse 2(Ω̃)−2 := −g(Dũ,Dũ) and the

associated null pair (ẽ3, ẽ4) by ẽ4 := −Ω̃(Dũ)] and ẽ3 := −Ω̃(Dũ)].

We write χ̃, ξ̃, η̃, ζ̃, ω̃ and χ̃, ξ̃, η̃, ζ̃, ω̃ the associated null connection coefficients and α̃, β̃, ρ̃, σ̃, β̃, α̃ the asso-
ciated null curvature components (see Section 2.7). Note that since the functions ũ, ũ are assumed to be
optical, we have ξ̃ = ξ̃ = 0.

We moreover define the following intersections of domains

Lint
bot :=Mint ∩ Lbot,

Lext
bot :=Mext ∩ Lbot,

Lext
con :=Mext ∩ Lcon.

2.15 General change of null frames
Let S = (Su,u) and S′ = (S′u′,u′) be two (local) foliations by spacelike 2-spheres. Let (e4, e3) and (e4

′, e3
′) be

two null pairs associated to the foliations S and S′ respectively. We have the following lemma (see [KS19a,
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Lemma 3.1] for a proof).

Lemma 2.31. There exists two S-tangent vectorfields f and f and a scalar function λ such that

e4
′ = λ

(
e4 + f +

1

4
|f |2e3

)
,

e3
′ = λ−1

((
1 +

1

2
f · f +

1

16
|f |2|f |2

)
e3 + f +

1

4
|f |2f +

1

4
|f |2e4

)
.

Moreover, if (ea)a=1,2 is a (local) orthonormal null frame of TS, the pair of vectorfields (ea
′)a=1,2 defined

for a = 1, 2 by

ea
′ := ea +

1

2
f
a
f +

1

2
f
a
e4 +

(
1

2
fa +

1

8
|f |2f

a

)
e3, (2.134)

is a (local) orthonormal frame of TS′. The triplet (λ, f, f) is called the transition coefficients of the change
of frame.

We have the following definition for projections of S-tangent tensors to S′-tangent tensors.

Definition 2.32. Let (ea)a=1,2 be an orthonormal frame of TS. For φ′ an S′-tangent r-tensor, we define
its projection (φ′)† to be the S-tangent r-tensor defined by

(φ′)†a1···ar = (φ′)† (ea1 , · · · , ear ) := φ′ (ea1
′, · · · , ear ′) = φ′a1···ar ,

where the frame (ea
′)a=1,2 is associated to (ea)a=1,2 via formula (2.134).

Reciprocally, for φ an S-tangent r-tensor, we define its projection (φ)‡ to be the S′-tangent r-tensor defined
by

φ‡a1···ar = φ‡ (ea1
′, · · · , ear ′) := φ (ea1 , · · · , ear ) = φa1···ar .

Remark 2.33. In other terms, we have

(φ′)† := (φ′)aea, φ‡ := φaea
′,

where the frames ea
′ and ea are associated via formula (2.134). It can be seen from formula (2.134) that

this definition does not depend on the choice of frame on S

We have the following transition formulas for projected covariant derivatives.

Proposition 2.34. Let φ′ be an S′-tangent r-tensor. We have

∇/ 4(φ′)† = λ−1 (∇/ ′4φ′)
† − f · ∇/ (φ′)† − 1

4
|f |2∇/ 3(φ′)† + (φ′)† · Err(∇/ 4,∇/ ′4),

∇/ (φ′)† = (∇/ ′φ′)† − 1

2
ff · ∇/ (φ′)† − 1

2
f∇/ 4(φ′)† −

(
1

2
f +

1

8
|f |2f

)
∇/ 3(φ′)† + (φ′)† · Err(∇/ ,∇/ ′),

∇/ 3(φ′)† = λ (∇/ ′3φ′)
† −

(
1

2
f · f +

1

16
|f |2|f |2

)
∇/ 3(φ′)† −

(
f +

1

4
|f |2f

)
· ∇/ (φ′)†

− 1

4
|f |2∇/ 4(φ′)† + (φ′)† · Err(∇/ 3,∇/ ′3).

where the S-tangent tensors Err(∇/ 4,∇/ ′4), Err(∇/ ,∇/ ′) and Err(∇/ 3,∇/ ′3) are bilinear (or higher nonlinear) error
terms composed of f , f , their first order derivatives and null connection coefficients for the S and S′ foliations.

Reciprocally, using that for an S-tangent r-tensor φ we have
(
φ‡
)†

= φ, we obtain symmetric formulas for
∇/ ′4φ‡, ∇/ ′φ‡ and ∇/ ′3φ‡.

Proof. We compute the tensorial formulas at a point where we choose a normal frame (ea)a=1,2, i.e.
g(ea, eb) = δab and Dea = 0. We denote by (ea

′)a=1,2 the frame given by the frame transformation (2.134).6

6The frame (ea′)a=1,2 is not geodesic normal and the error terms Err will correspond to the projection of its connection
coefficients Dea′.
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We start with the first formula. We shall do the computations for φ′ an S′-tangent 1-form, and the results of
Proposition 2.34 will follow by simple generalisation. With respect to the frames (ea)a=1,2 and (ea

′)a=1,2,
we have

∇/ 4(φ′)†a = e4 (φ′a)

=

(
λ−1e4

′ − f − 1

4
|f |2e3

)
(φ′a)

= λ−1∇/ ′4φ′a + λ−1φ′bg(∇/ ′4ea′, eb′)− f · ∇/ (φ′)†a −
1

4
|f |2∇/ 3(φ′)†a.

We deduce that the S-tangent tensor Err(∇/ 4,∇/ ′4) can be expressed as

Err(∇/ 4,∇/ ′4)ba = λ−1g (∇/ ′4ea′, eb′) = g
(
λ−1De4′ea

′, eb
′) .

Using the transition formulas from Lemma 2.31, we have

g
(
λ−1De4′ea

′, eb
′) = g

(
De4+f

(
ea +

1

2
f
a
e4 +

1

2
fae3

)
, eb
′
)

+ l.o.t.

= g

(
1

2
e4(f

a
)e4 +

1

2
e4(fa)e3, eb

′
)

+ l.o.t.

= l.o.t.,

where l.o.t. denotes bilinear (or higher) error terms.

For the second formula, we have

∇/ b(φ
′)†a = eb(φ

′
a)

=

(
eb
′ − 1

2
f
b
f − 1

2
f
b
e4 −

(
1

2
fb +

1

8
|f |2f

b

)
e3

)
(φ′a)

= (∇/ ′φ′)†ba + φ′cg(Deb′ea
′, ec

′)− 1

2
f
b
f · ∇/ (φ′)†a −

1

2
f
b
∇/ 4(φ′)†a −

(
1

2
fb +

1

8
|f |2f

b

)
∇/ 3(φ′)†a.

We therefore have Err(∇/ ,∇/ ′)cba = g(Deb′ea
′, ec

′) and we check similarly as before that Err(∇/ ,∇/ ′) = l.o.t..

For the third and last formula, we have

∇/ 3(φ′)†a = e3(φ′a)

=

(
λe3
′ −
(

1

2
f · f +

1

16
|f |2|f |2

)
e3 − f −

1

4
|f |2f − 1

4
|f |2e4

)
= λ (∇/ ′3φ′)

†
a + λφ′bg(∇/ ′3ea′, eb′)−

(
1

2
f · f +

1

16
|f |2|f |2

)
∇/ 3(φ′)†a

−
(
f +

1

4
|f |2f

)
· ∇/ (φ′)†a −

1

4
|f |2∇/ 4(φ′)†a.

And thus Err(∇/ 3,∇/ ′3)ba = g(De3′ea
′, eb
′) = l.o.t. as desired.

We have the following transformation formulas for the null connection coefficients (see [KS19a, Proposition
3.3 and Appendix A]).

225



Chapter 2. Definitions & formulas

Proposition 2.35. Under the transitions formulas of Lemma 2.31, we have

λ−2ξ′ = ξ‡ +
1

2
λ−1∇/ ′4f‡ +

1

4
trχf‡ + Err(ξ, ξ′), (2.135a)

λ2ξ′ = ξ‡ +
1

2
λ∇/ ′3f

‡ +
1

4
trχf‡ + Err(ξ′, ξ), (2.135b)

λ−1χ′ = χ‡ +∇/ ′f‡ + Err(χ, χ′), (2.135c)

λχ′ = χ‡ +∇/ ′f‡ + +Err(χ, χ′), (2.135d)

ζ ′ = ζ‡ −∇/ ′(log λ)− 1

4
trχf‡ +

1

4
trχf‡ + Err(ζ, ζ ′), (2.135e)

η′ = η‡ +
1

2
λ∇/ ′3f‡ +

1

4
trχf‡ + Err(η, η′), (2.135f)

η′ = η‡ +
1

2
λ−1∇/ ′4f

‡ +
1

4
trχf‡ + Err(η, η′), (2.135g)

λ−1ω′ = ω − 1

2
λ−1e4

′(log λ) + Err(ω, ω′), (2.135h)

λω′ = ω +
1

2
λe3
′(log λ) + Err(ω, ω′), (2.135i)

where

Err(ξ, ξ′) := ωf‡ +
1

2
f · χ̂+ l.o.t.,

Err(ξ, ξ′) := ωf +
1

2
f · χ̂+ l.o.t.,

Err(χ, χ′) := f‡ ⊗ η‡ + f‡ ⊗ ζ‡ + f‡ ⊗ ξ‡ +
1

2
(f · f)χ‡ − 1

2
(f · f)χ′ +

1

2
f‡ · χ′ ⊗ f‡ − 1

4
|f2|χ+ l.o.t.,

Err(χ, χ′) := f‡ ⊗ η‡ − f‡ ⊗ ζ‡ + f‡ ⊗ ξ‡ +
1

2
(f · f)χ‡ − 1

2
(f · f)χ′ +

1

2
f‡ · χ′ ⊗ f‡ − 1

4
|f2|χ+ l.o.t.,

Err(ζ, ζ ′) := ωf − ωf − 1

2
χ̂ · f +

1

4
λ−1trχ′f‡ +

1

2
λ−1f · χ̂′ + l.o.t.,

Err(η, η′) := −ωf +
1

2
f · χ̂′ + l.o.t.,

Err(η, η′) :=
1

2
f · χ̂′ + l.o.t.,

Err(ω, ω′) :=
1

2
f · (ζ − η)− 1

8
trχ|f |2 +

1

2
λ−2f · ξ′ + l.o.t.,

Err(ω, ω′) := −1

2
f · ζ − 1

2
f‡ · η′ + 1

2
f · ξ +

1

8
(f · f)trχ+ l.o.t.,

where l.o.t. denotes trilinear (or higher nonlinear) error terms composed of a null connection coefficient and
transition coefficients.

Using the change of derivatives formulas from Proposition 2.34, the same formulas as (2.135) hold for
derivatives taken with respect to the frame (e3, e4, ea), up to additional nonlinear error terms.

We have the following transformation formulas for the null curvature components (see [KS19a, Proposition
3.3 and Appendix A]).

Proposition 2.36. Under the transitions formulas of Lemma 2.31, we have

λ−2α′ = α‡ + Err(α, α′), λ−1β′ = β‡ + Err(β, β′), ρ′ = ρ+ Err(ρ, ρ′),

λ2α′ = α‡ + Err(α, α′), λβ′ = β‡ + Err(β, β′), σ′ = σ + Err(σ, σ′),
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where

Err(α, α′) := (f‡⊗̂β‡ − ∗f‡⊗̂∗β‡) + l.o.t.,

Err(β, β′) :=
3

2
(f‡ρ+ ∗f‡σ) +

1

2
α‡ · f‡ + l.o.t.,

Err(ρ, ρ′) := f · β − f · β + l.o.t.,

Err(σ, σ′) := −f · ∗β − f · ∗β + l.o.t.,

Err(β, β′) := −3

2
(f‡ρ+ ∗f‡σ)− 1

2
α‡ · f‡ + l.o.t.,

Err(α, α′) := −(f‡⊗̂β‡ − ∗f‡⊗̂∗β‡) + l.o.t.,

where l.o.t. denotes trilinear error terms composed of a null curvature component and transition coefficients.

Remark 2.37. Although we did not present the full explicit formulas for the nonlinear error terms appearing
in Propositions 2.34, 2.35, 2.36, we claim that they satisfy a conservation of signature principle,7 which
roughly states that the transition coefficients f, λ and f are respectively paired with higher, same and lower
signature null curvature components, null connection coefficients, derivatives, etc. Since a drop of signature
corresponds at most to a drop of decay by r−1, the control of the error terms in Section 12 can be obtained
without decay assumptions on λ, f , provided that the coefficient f decays as r−1. See also [KS17, Remark
4.1.4].

7See [CK93] for further discussion on signature.
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3. Norms, bootstrap assumptions and conse-
quences

3.1 Preliminary definitions
We define the following local frame norms.

Definition 3.1 (Frame norms). For an orthonormal frame (eµ)µ=0..3, we define the following associated
frame norm

|F |2 :=
∑

i1,···il=0···3
|Fi1···il |

2
,

for all spacetime tensor F and where Fi1···il denotes the evaluation of F on the l-uplet (ei1 , · · · , eil).
In this paper, most frame norms are equivalents. We shall precise with respect to which frame the norms are
taken only when it is relevant.

Remark 3.2. For an orthonormal frame (eµ)µ=0..3, the frame norm from the above definition does not
depend on the choice of spacelike orthonormal vectors ei, and we have

|F |2 = 2 |g(e0, F )|2 + g(F, F ).

Using Definition 3.1, we define integrals, Lp and LpLq norms on the various submanifolds of this paper using
the respective (intrinsic) induced metrics. In the case of the null hypersurfaces C, the integral is defined
consistently with the coarea formulas from Lemma 3.34. In the case of the null hypersurface C∗, the integral
is defined consistently with the foliation by the 2-spheres of the canonical foliation.

Definition 3.3 (H̃1/2 norm). Let (S, g/) be a Riemannian 2-sphere with area radius r. Let F be an S-tangent
tensor. We define the (scaling homogeneous) H̃1/2 norm of F on (S, g/) to be

‖F‖H̃1/2(S) := r1/2 ‖F‖H1/2(S,r−2g/ ) ,

where for a Riemannian 2-sphere (S, γ), H1/2 (S, γ) denotes the standard fractional Sobolev space on (S, γ),
as defined in [Sha14].1

Remark 3.4. The H̃1/2 norm are schematically of the form

‖F‖H̃1/2(S) ∼ r
−1/2

∥∥∥(r∇/ )≤
1
2F
∥∥∥
L2(S)

.

Remark 3.5. Throughout this paper we will extensively use L∞H̃1/2(S) norms, which should be thought of
as an upgraded version of L∞L4(S) norms. Namely:

� They are at the same scaling level, similar Sobolev embeddings, elliptic and transport estimates hold
(see Lemmas 3.36, 3.38, 10.2),

� H̃1/2(S) embeds in L4(S) (see Lemma 3.36),

� H̃1/2(S) is a natural trace space for spacelike 3D Dirichlet/Neumann problems with boundary S.

For these reasons, most of the Bootstrap Assumptions (see Section 3.3) are formulated using L∞H̃1/2(S)
norms. For conciseness, we did not write the L∞ and L∞L4(S) norms obtained via Sobolev embeddings (see
Lemma 3.36) and shall implicitly assume that these norms are controlled as well.

Remark 3.6. Using the H̃1/2 spaces of Definition 3.3 (see also Lemma 3.35) forces us to reprove classical
(intrinsically obtained) estimates (see the Klainerman-Sobolev H̃1/2 embeddings of Lemmas 6.7, 6.6 and
their proof in Appendix D, and the transport estimates of Lemma 10.2) relying on coordinate comparison
with the Euclidean case.

1Under the regularity assumptions of this paper (see the Bootstrap Assumptions 3.25 and 3.26), these intrinsic fractional
norms are also equivalent to coordinate defined norms (see Lemma 3.35).
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3.2 Norms
In this section, we define the norms of the curvature, connection coefficients and coordinates, upon which
the bootstrap argument is constructed (see the Bootstrap Assumptions in Section 3.3).

3.2.1 Norms for the curvature in Mext and C∗
Norms on C∗. We define

q := min(r, u).

Remark 3.7. In the interior of the cone C∗ ∩Mint, we have

q ' r.

In the exterior of the cone C∗ ∩Mext, we have

q ' u.

We define

R∗≤2[R] :=
∥∥∥∇/ ≤2

R
∥∥∥
L2(C∗)

,

where ∇/ ∈ {(r∇/ ), (r∇/ 4), (q∇/ 3)}. Using this notation, we have the following definition

R∗≤2 := R∗≤2

[
u2α

]
+R∗≤2

[
uuβ

]
+R∗≤2

[
u2(ρ− ρ)

]
+R∗≤2

[
u2(σ − σ)

]
+

(
R∗≤2

[
u2β

]
+
∥∥∥u2∇/ ≤1

(r∇/ 3)β
∥∥∥
L2(C∗)

)
+

(
R∗≤2

[
u2α

]
+
∥∥∥u2∇/ ≤1

(r∇/ 3)α
∥∥∥
L2(C∗)

+
∥∥u2(r∇/ 3)2α

∥∥
L2(C∗) −

∥∥(r∇/ 4)2(u2α)
∥∥
L2(C∗)

)
.

We define

R∗≤1 :=
∥∥∥r1/2q1/2∇/ ≤1

R
∥∥∥
L∞u H̃

1/2(Su,u∗ )
,

and

R∗≤1 := R∗≤1

[
u2α

]
+ R∗≤1

[
uuβ

]
+ R∗≤1

[
u2(ρ− ρ)

]
+ R∗≤1

[
u2(σ − σ)

]
+ R∗≤1

[
q−1/2u5/2β

]
+ R∗≤1

[
q−1/2u5/2α

]
.

We define

R
∗
≤2 [ρ] :=

∥∥∥u3qu∇/ ≤2
ρ
∥∥∥
L∞(C∗)

,

R
∗
≤2 [σ] :=

∥∥∥u3qu∇/ ≤2
σ
∥∥∥
L∞(C∗)

,

and

R
∗
≤2 := R

∗
≤2 [ρ] + R

∗
≤2 [σ] .

Remark 3.8. Here, as in the rest of this section, we implicitly assume that the L∞H̃1/2 bootstrap bounds for
a tensor F come together with the corresponding L∞L4 bootstrap bounds for F (see the Sobolev embeddings
from Lemma 3.36), and that the L∞H̃1/2 bootstrap bounds for (r∇/ )≤1F come together with the corresponding
L∞L∞ bound for F .

Remark 3.9. In the exterior of the cone C∗ ∩Mext these norms provide the expected optimal decay rates
for the spacetime curvature. In the interior of the cone C∗ ∩Mint, these norms provide a suboptimal control
in terms of r, which is due to the degeneracy of the null decomposition when r → 0. See also Remark 8.2.
These norms are only used to estimate the null metric and connection coefficients on C∗. The (optimal)
curvature norms used in the treatment of the interior region are presented in Section 3.2.2.
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Norms in Mext. We define

Rext
≤2,γ :=

∥∥∥u−1/2−γu2∇/ ≤2
α
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γu2∇/ ≤2

β
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γu2∇/ ≤2

(ρ− ρ)
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γu2∇/ ≤2

(σ − σ)
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γuu∇/ ≤2

β
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γu2∇/ ≤2

α
∥∥∥
L2(Mext)

,

for all γ > 0 and where here ∇/ ∈ {(r∇/ ), (u∇/ 4), (u∇/ 3)}, since q ' u in Mext. We define

Rext
≤1 :=

∥∥∥u3∇/ ≤1
α
∥∥∥
L∞u,uH̃

1/2(Su,u)
+
∥∥∥u3∇/ ≤1

β
∥∥∥
L∞u,uH̃

1/2(Su,u)

+
∥∥∥u5/2u1/2∇/ ≤1

(ρ− ρ)
∥∥∥
L∞u,uH̃

1/2(Su,u)
+
∥∥∥u5/2u1/2∇/ ≤1

(σ − σ)
∥∥∥
L∞u,uH̃

1/2(Su,u)

+
∥∥∥u3/2u3/2∇/ ≤1

β
∥∥∥
L∞u,uH̃

1/2(Su,u)
+
∥∥∥u1/2u5/2∇/ ≤1

α
∥∥∥
L∞u,uH̃

1/2(Su,u)
.

We define

R
ext

≤2 :=
∥∥∥u3u2∇/ ≤2

ρ
∥∥∥
L∞(Mext)

+
∥∥∥u3u2∇/ ≤2

σ
∥∥∥
L∞(Mext)

.

Remark 3.10. The mean values ρ, σ of the null curvature components ρ, σ have stronger decay rates than
the other curvature components. This is a consequence of the average Bianchi equations (2.47), (2.85) and
the vertex limit r3ρ→ 0 when r → 0, and of the structure equation (2.34o) for σ. See Sections 9 and 10.

3.2.2 Norms for the curvature in Mint

We have the following definitions of the curvature boundedness norms in the interior region

Rint
≤2 := sup

t◦≤t≤t∗

∥∥t2 ∣∣(tD)≤2R
∣∣∥∥
L2(Σt)

,

where we take the norms in the maximal frame (i.e. e0 = T ).

We have the following definitions of the curvature decay norms in the interior region

Rint
≤1 := sup

t◦≤t≤t∗

(∥∥∥t7/2|R|∥∥∥
L∞(Σt)

+
∥∥t4 |DR|

∥∥
L6(Σt)

)
.

Remark 3.11. These norms only cover the bottom interior region Mint
bot. This is not an issue for the

global energy estimates in which these norms are used, since these estimates are performed in that same
region Mint

bot. The top interior region Mint
top is contained in the domain of dependence of the last maximal

hypersurface Σt∗ and is treated via a local existence argument (see Section 8.1).

3.2.3 Norms for the null connection coefficients on the cone C∗
For an S-tangent tensor Γ, we define the following L2(C∗) based norms

O∗,g≤` [Γ] :=
∥∥∥r−1u2∇/ ≤`Γ

∥∥∥
L2(C∗)

,

O∗,b≤` [Γ] :=
∥∥∥r−1uu∇/ ≤`Γ

∥∥∥
L2(C∗)

,

where ∇/ ∈ {(r∇/ ), (q∇/ 3)} and where ` ≥ 0. We also define the following norm for ω − ω

O∗,b≤2+ [ω − ω] := O∗,b≤3 [ω − ω]−
∥∥r−1uu(q∇/ 3)3(ω − ω)

∥∥
L2(C∗) .

We define

O∗≤3 := O∗,g≤3

[
trχ− trχ

]
+O∗,g≤3 [ζ] +O∗,g≤3

[
trχ− trχ

]
+O∗,g≤3 [χ̂]

+O∗,b≤3

[
χ̂
]

+O∗,b≤2+ [ω − ω] .
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We define the following norms for the mean values of trχ and trχ

O
∗
≤2

[
trχ
]

:=

∥∥∥∥uu3(q∇/ 3)≤2

(
trχ− 2

r

)∥∥∥∥
L∞(C∗)

,

O
∗
≤2

[
trχ
]

:=

∥∥∥∥u2u2(q∇/ 3)≤2

(
trχ+

2

r

)∥∥∥∥
L∞(C∗)

,

and

O
∗
≤2 := O

∗
≤2

[
trχ
]

+ O
∗
≤2

[
trχ
]
.

We define the following L∞u H̃
1/2(Su,u∗) based norms

O∗,g≤2 [Γ] :=
∥∥∥r−1/2q1/2u2∇/ ≤2

Γ
∥∥∥
L∞u H̃

1/2(Su,u∗ )
,

O∗,b≤2 [Γ] :=
∥∥∥r−1/2q1/2uu∇/ ≤2

Γ
∥∥∥
L∞u H̃

1/2(Su,u∗ )
,

O∗,b≤1+ [ω − ω] := O∗,b≤2 [ω − ω]−
∥∥∥r−1/2q1/2uu(q∇/ 3)2(ω − ω)

∥∥∥
L∞u H̃

1/2(Su,u∗ )
.

Remark 3.12. Together with the relations between the null connection coefficients from Lemmas 2.11 and
2.21, these norms provide a control for all the null connection coefficients.

Remark 3.13. These norms give optimal decay rates in the exterior of the cone C∗ ∩Mext. They give a
suboptimal control in r in the region C∗ ∩Mint. This is a consequence of the suboptimal control for the
curvature. See Remark 8.2. Except to establish their own control in Section 9, these norms are only used in
the exterior region where they are optimal.

We also have the following norms for Oext

O∗,O≤3 := O∗,g≤2

[
r−1H

]
+O∗,g≤1 [Ψ] ,

where in that case the norms are restricted to the exterior region C∗ ∩Mext where the exterior rotations are
defined. See the definitions from Section 2.12.

3.2.4 Norms for the null connection coefficients in Mext

We recall that in the exterior regionMext, we have r ' u. For an S-tangent tensor Γ, we define the following
H̃1/2 norms

Oext,g
≤1 [Γ] :=

∥∥∥r3/2u1/2(∇/ )≤1Γ
∥∥∥
L∞u,uH̃

1/2(Su,u)
,

Oext,b
≤1 [Γ] :=

∥∥∥r1/2u3/2(∇/ )≤1Γ
∥∥∥
L∞u,uH̃

1/2(Su,u)
,

where ∇/ ∈ {(r∇/ ), (u∇/ 3), (u∇/ 4)}.

For an S-tangent tensor Γ, we define the following L2(Mext) norms

Oext,g
≤2,γ [Γ] :=

∥∥∥u−1/2−γu(∇/ )≤2Γ
∥∥∥
L2(Mext)

,

Oext,b
≤2,γ [Γ] :=

∥∥∥u−1/2−γu(∇/ )≤2Γ
∥∥∥
L2(Mext)

,

for all γ > 0 and where ∇/ ∈ {(r∇/ ), (u∇/ 3), (u∇/ 4)}.

We define

Oext
≤1 := Oext,g

≤1

[
trχ− trχ

]
+ Oext,g

≤1 [χ̂] + Oext,g
≤1

[
trχ− trχ

]
+ Oext,g

≤1 [ζ]

+ Oext,b
≤1

[
χ̂
]

+ Oext,b
≤1 [ω − ω, ∗ω] + Oext,b

≤1

[
ξ
]
,

Oext
≤2 := Oext

≤1 + Oext,g
≤1

[
(r∇/ )(trχ− trχ)

]
+ Oext,g

≤1 [(r∇/ )χ̂] + Oext,g
≤1 [(r∇/ )ζ]

+ Oext,g
≤1 [(u∇/ 3)ζ] + Oext,b

≤1

[
(r∇/ )ωρ, (r∇/ )ωσ

]
+ Oext,b

≤1 [(r∇/ )ω, (r∇/ )∗ω] ,
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where we recall that ∗ω, ωρ, ωσ are defined in Section 2.9.

We define

Oext
≤2,γ := Oext,g

≤2,γ

[
trχ− trχ

]
+Oext,g

≤2,γ [χ̂] +Oext,g
≤2,γ

[
trχ− trχ

]
+Oext,g

≤2,γ [ζ]

+Oext,b
≤2,γ

[
χ̂
]

+Oext,b
≤2,γ [ω − ω, ∗ω] +Oext,b

≤2,γ

[
ξ
]
,

Oext
≤3,γ := Oext

≤2,γ +Oext,g
≤2,γ

[
(r∇/ )(trχ− trχ)

]
+Oext,g

≤2,γ [(r∇/ )χ̂] +Oext,g
≤2,γ [(r∇/ )ζ]

+Oext,g
≤2,γ [(u∇/ 3)ζ] +Oext,b

≤2,γ

[
(r∇/ )ωρ, (r∇/ )ωσ

]
+Oext,b

≤2,γ [(r∇/ )ω, (r∇/ )∗ω] .

We define

O
ext

≤1 [ω] :=
∥∥∥u2u2∇/ ≤1

ω
∥∥∥
L∞(Mext)

,

O
ext

≤1 [trχ] :=

∥∥∥∥u3u1∇/ ≤1

(
trχ− 2

r

)∥∥∥∥
L∞(Mext)

,

O
ext

≤1 [trχ] :=

∥∥∥∥u2u2∇/ ≤1

(
trχ+

2

r

)∥∥∥∥
L∞(Mext)

,

where ∇/ ∈ {(r∇/ ), (u∇/ 3), (u∇/ 4)}, and we note

O
ext

≤1 := O
ext

≤1 [ω] + O
ext

≤1 [trχ] + O
ext

≤1 [trχ].

We define

Oext

≤2,γ [ω] :=
∥∥∥u−1/2−γu3/2u∇/ ≤2

ω
∥∥∥
L2(Mext)

,

Oext

≤2,γ [trχ] :=

∥∥∥∥u−1/2−γu1/2u2∇/ ≤2

(
trχ− 2

r

)∥∥∥∥
L2(Mext)

,

Oext

≤2,γ [trχ] :=

∥∥∥∥u−1/2−γu3/2u∇/ ≤2

(
trχ+

2

r

)∥∥∥∥
L2(Mext)

,

for all γ > 0 and where ∇/ ∈ {(r∇/ ), (u∇/ 3), (u∇/ 4)}.

Remark 3.14. The absence of control for the higher derivatives of the coefficients χ and ξ is due to the
classical loss of regularity for the geodesic foliation. See Section 10.

We have the following definitions for the norms of the defect y in Mext and on T

Oext
≤1 [y] :=

∥∥∥uu2∇/ ≤1
y
∥∥∥
L∞(Mext)

+
∥∥∥r−1/2u3/2∇/ ≤1

(r∇/ )y
∥∥∥
L∞u,uH̃

1/2
,

Oext
≤2,γ [y] :=

∥∥∥u−1/2−γu3/2∇/ ≤2
y
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γu−1u∇/ ≤2

(r∇/ )y
∥∥∥
L2(Mext)

,

OT≤2,γ [y] :=
∥∥∥t3/2−γ∇/ ≤2

y
∥∥∥
L2(T )

+
∥∥∥t−γ∇/ ≤2

(r∇/ )y
∥∥∥
L2(T )

,

for all γ > 0 and where ∇/ ∈ {(r∇/ ), (u∇/ 3), (u∇/ 4)}.

We define the following norms for Oext in Mext

Oext,O
≤2 := Oext,g

≤1

[
r−1H

]
+ Oext,g

≤1

[
r−1Y

]
+ Oext,g

≤0 [Ψ] ,

Oext,O
≤3,γ := Oext,g

≤2,γ

[
r−1H

]
+Oext,g

≤2,γ

[
r−1Y

]
+Oext,g

≤1,γ [Ψ] ,

for all γ > 0.
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3.2.5 Norms for the maximal connection coefficients in Mint
bot

We have the following definitions for the norms for the time lapse in Mint
bot

Oint
≤3,γ [n] :=

∥∥(t∇)≤3(n− 1)
∥∥
L∞t L

2(Σt)
+
∥∥t(t∇)≤2T (n− 1)

∥∥
L∞t L

2(Σt)

+
∥∥∥t−1/2−γt2(t∇)≤1T

2
(n− 1)

∥∥∥
L2(Mint

bot)
,

for all γ > 0.

We have the following definitions for the boundedness norms for the plane second fundamental form in Mint

Oint
≤2 [k] :=

∥∥∥∥t(t∇, tL̂T)≤2

k

∥∥∥∥
L∞t L

2(Σt)

.

Additionally, we have the following definition for the transition factors ν at T

OT≤2 [ν] :=
∥∥∥t (t∇/ , tZ)

≤2
(ν − 1)

∥∥∥
L∞t H̃

1/2(∂Σt)
,

where Z is the future-pointing unit normal to ∂Σt in T .

Moreover, we control the following more regular norms on Σt∗

OΣt∗
≤3 [k] :=

∥∥t(t∇)3k
∥∥
L2(Σt∗ )

.

3.2.6 Norms for the approximate Killing fields in Mint
bot

We have the following definitions for the control of the derivatives and deformation tensors of Tint,Xint,Sint,Kint,Oint

Oint
≤3,γ

[
Tint

]
:=
∥∥∥t5/2DTint

∥∥∥
L∞(Mint

bot)

+
∥∥t2(tD)≤1DTint

∥∥
L∞t L

6(Σt)

+
∥∥∥t−1/2−γt(tD)≤2DTint

∥∥∥
L2(Mint

bot)
,

Oint
≤3,γ

[
Xint

]
:=
∥∥∥t3/2(DXint − g)

∥∥∥
L∞(Mint

bot)

+
∥∥t(tD)≤1(DXint − g)

∥∥
L∞t L

6(Σt)

+
∥∥∥t−1/2−γ(tD)≤2(DXint − g)

∥∥∥
L2(Mint

bot)

Oint
≤3,γ

[
Sint

]
:=
∥∥∥t3/2(DSint − g)

∥∥∥
L∞(Mint

bot)

+
∥∥t(tD)≤1(DSint − g)

∥∥
L∞t L

6(Σt)

+
∥∥∥t−1/2−γ(tD)≤2(DSint − g)

∥∥∥
L2(Mint

bot)

Oint
≤3,γ

[
Kint

]
:=
∥∥∥t1/2 ((Kint)π − 4tg

)∥∥∥
L∞(Mint

bot)

+
∥∥∥(tD)≤1

(
(Kint)π − 4tg

)∥∥∥
L∞t L

6(Σt)

+
∥∥∥t−1/2−γt−1(tD)≤2

(
(Kint)π − 4tg

)∥∥∥
L2(Mint

bot)
,

and

Oint
≤3,γ

[
Oint

]
:=
∥∥∥t3/2(Oint)π

∥∥∥
L∞(Mint

bot)

+
∥∥t2D2Oint

∥∥
L∞t L

6(Σt)

+
∥∥∥t−1/2−γt(tD)≤1D2Oint

∥∥∥
L2(Mint

bot)
,
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for all γ > 0.

3.3 The Bootstrap Assumptions
In this section, we collect the Bootstrap Assumptions which are used throughout this paper. See Section 4.4
for the description of the associated bootstrap argument.

3.3.1 The constants used in this paper
In this section, we recapitulate the constants used in this paper, and in particular the constants used in the
following bootstrap assumptions. All these constants are independent of the smallness parameter ε.

� The constant γ0 is used in the Bootstrap Assumptions of Sections 3.3.3 and is a fixed constant such that
0 < γ0 < 1/4. The bootstrap assumptions involving γ0 are improved for all γ > 0, and in particular
for γ = γ0.

� The constant C > 0 is used in the mild Bootstrap Assumptions of Section 3.3.2 and is a fixed large
constant.

� The constant D > 0 is used in the strong Bootstrap Assumptions of Section 3.3.3 and is a fixed large
constant.

� The constant 0 < ℘ < 1 is used in the elliptic estimates of Lemma 7.5 is a small constant, which
depends on C.

� The transition constant 0 < τ0 < 1 is used to determine the timelike transition hypersurface. It is a
small constant, which depends on ℘ (see Section 7.3). The transition parameter τ is allowed to range
in [τ0, (1 + τ0)/2]. This freedom is used in the mean value argument of Section 5.1.1.

Remark 3.15. The bootstrap assumptions of Sections 3.3.2 and 3.3.3 will be assumed to hold uniformly for
all transition parameter τ0 ≤ τ ≤ (1 + τ0)/2. See Section 4.4.

3.3.2 Mild bootstrap assumptions
Bootstrap Assumption 3.16 (Mild bootstrap assumptions for the rotation vectorfield in Mext). Let
C > 0 be a (large) numerical constant. We assume that∥∥r−1Oext

∥∥
L∞(Mext)

+
∥∥∇/ Oext

∥∥
L∞(Mext)

≤ C.

Moreover, we assume that for all S-tangent scalar f and for all 1-tensor or symmetric traceless 2-tensor F ,
the following bound holds ∫

Su,u

|(r∇/ )f |2 ≤ C
3∑
`=1

∫
Su,u

∣∣∣(`)Oext(f)
∣∣∣2 ,

∫
Su,u

∣∣(r∇/ )≤1F
∣∣2 ≤ C 3∑

`=1

∫
Su,u

∣∣∣L̂/(`)OextF
∣∣∣2 ,

on all 2-sphere Su,u ⊂Mext.

Bootstrap Assumption 3.17 (Mild bootstrap assumptions for the maximal hypersurfaces Σt ⊂Mint
bot).

Let C > 0 be a (large) numerical constant. We assume that on each separate maximal hypersurface Σt, for
t◦ ≤ t ≤ t∗, there exists (harmonic) global coordinates (xi) such that{(

x1
)2

+
(
x2
)2

+
(
x3
)2

=

(
1− τ
1 + τ

)2

t2

}
= ∂Σt,{(

x1
)2

+
(
x2
)2

+
(
x3
)2 ≤ (1− τ

1 + τ

)2

t2

}
= Σt,

and such that we have the following uniform bounds for the metric g in these coordinates

|gij − δij | < 1/4,

|∂kgij | ≤ C,

on each separate maximal hypersurface Σt.
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Bootstrap Assumption 3.18 (Mild bootstrap assumptions for the Killing fields in Mint
bot). Let C > 0 be

a (large) numerical constant. We assume that the norm of the vectorfields Tint,Sint, Kint,Oint satisfy the
following mild bounds in Mint

bot

|Xint| ≤ Ct, |Sint| ≤ Ct, |Kint| ≤ Ct2, |Oint| ≤ Ct, |DOint| ≤ C, (3.1)

where the norms are taken with respect to the maximal frame. We also assume that Kint is a future-pointing
timelike vectorfield in Mint

bot and that we have the following mild bounds

g(Kint,Tint) ≤ −C−1t2,
∣∣Kint + g

(
Kint,Tint

)
Tint

∣∣ ≤ (1− C−1
)
|g(
(
Kint,Tint

)
|. (3.2)

3.3.3 Strong bootstrap assumptions
Let 0 < γ0 < 1/4 be a fixed numerical constant.2 We have the following strong bootstrap assumptions in M.

Bootstrap Assumption 3.19 (Spacetime curvature in C∗). We assume that on C∗

R∗≤2 + R∗≤1 + R
∗
≤2 ≤ Dε,

and we refer to Section 3.2.1 for definitions.

Bootstrap Assumption 3.20 (Spacetime curvature in Mext). We assume that on Mext

Rext
≤2,γ0 + Rext

≤1 + R
ext

≤2 ≤ Dε,

and we refer to Section 3.2.1 for definitions.

Bootstrap Assumption 3.21 (Spacetime curvature in Mint
bot). We assume that on Mint

bot

Rint
≤2 + Rint

≤1 ≤ Dε,

and we refer to Section 3.2.2 for definitions.

Bootstrap Assumption 3.22 (Null connection in C∗). We assume that on C∗, we have

O∗≤3 + O∗≤2 + O≤2 +O∗,O≤3 ≤ Dε,

and we refer to Section 3.2.3 for definitions. Moreover, we assume that we have the following bootstrap
bound for r on C∗ ∣∣∣∣r − 1

2
(u∗ − u)

∣∣∣∣ ≤ Dεu∗−3r2u−1. (3.3)

Bootstrap Assumption 3.23 (Null connection in Mext). We assume that on Mext, we have

Oext
≤2 +Oext

≤3,γ0 +Oext

2,γ0 ≤ Dε,
Oext
≤1 [y] +Oext

2,γ0 [y] +OT≤2,γ0 [y] ≤ Dε,

Oext,O
≤2 +Oext,O

≤3,γ0
≤ Dε,

where we refer to Section 3.2.4 for definitions. Moreover, we assume that we have the following bootstrap
bound for r on Mext ∣∣∣∣r − 1

2
(u− u)

∣∣∣∣ ≤ Dεu−1u−1. (3.4)

Bootstrap Assumption 3.24 (Maximal connection in Mint
bot). We assume that on Mint

bot, we have

Oint
≤3,γ0 [n] +Oint

≤2[k] + OT≤2[ν] +OΣt∗
≤3 [k] ≤ Dε,

and we refer to Section 3.2.5 for definitions.

2Fixing the constant γ0 breaks the scaling in the norms below. However, these norms are only used in the control of the
nonlinear error terms of Section 5, which do not require a sharp control. Imposing γ0 < 1/4 is sufficient for this analysis. See
Section 5.
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Bootstrap Assumption 3.25 (Spherical coordinates in C∗). We assume that there exists (two) spherical
coordinate systems (u, ϑ, ϕ) covering C∗ \ ø(u∗) and ranging into

[1, u∗]u × [π/8, 7π/8]ϑ × [0, 2π)ϕ,

where u is the canonical parameter on C∗ as defined in Section 2.3 Moreover, we assume that for the induced
metric on the 2-spheres Su,u∗ in coordinates ϑ, ϕ, we have the following bounds∣∣∂≤1

a

(
r−2g/bc − (g/S)bc

)∣∣ ≤ Dεu∗−1u−1q1/2,

where a, b, c ∈ {ϑ, ϕ} and

g/S := dϑ2 + sin2 ϑdϕ2.

Bootstrap Assumption 3.26 (Spherical coordinates inMext). We assume that there exists (two) spherical
coordinate systems (u, u, ϑ, ϕ) covering Mext and ranging into

[1, τu∗]u × [τ−1, u∗]u × [π/8, 7π/8]ϑ × [0, 2π)ϕ,

where u and u are respectively the optical and affine parameter functions defined in Section 2, and which
coincide with the spherical coordinates system (u, ϑ, ϕ) on C∗ from the Bootstrap Assumptions 3.25.3 Moreover,
we assume that for the induced metric on the 2-spheres Su,u in coordinates ϑ, ϕ, we have the following bounds∣∣∂≤1

a

(
r−2g/bc − (g/S)bc

)∣∣ ≤ Dεu−1u−1/2,

where a, b, c ∈ {ϑ, ϕ} and

g/S := dϑ2 + sin2 ϑdϕ2.

Bootstrap Assumption 3.27 (Harmonic coordinates in Σt∗). We assume that on Σt∗ , we have

3∑
i,j=1

∥∥∥t3/2 (g(∇xi,∇xj)− δij
)∥∥∥
L∞(Σt∗ )

+

3∑
i=1

∥∥t(t∇)≤3∇2xi
∥∥
L2(Σt∗ )

≤ Dε,

3∑
i=1

∥∥∥t1/2 (r∗N(xi)− xi
)∥∥∥
L∞(S∗)

≤ Dε,

where we refer to Section 2.4 for the definition of the harmonic coordinates xi.

Bootstrap Assumption 3.28 (Interior Killing vectorfields in Mint
bot). We assume that

Oint
≤3,γ0

[
Tint,Xint,Sint,Kint,Oint

]
≤ Dε, (3.5)

and we refer to Section 3.2.6 for definitions. We also assume that

sup
t◦≤t≤t∗

t3/2

∣∣∣∣∣sup
Σt

(
t−2g

(
Xint,Xint

))
−
(

1− τ
1 + τ

)2
∣∣∣∣∣ ≤ Dε, (3.6)

and

sup
t◦≤t≤t∗

t3/2
∣∣(tD)≤1g(t−1Xint,Tint)

∣∣ ≤ (Dε). (3.7)

Bootstrap Assumption 3.29 (Killing fields at T ). We assume that at the interface T the following
bootstrap bounds hold

|Text −Tint| ≤ Dεt−3/2,

|Sext − Sint| ≤ Dεt−1/2,

|Kext −Kint| ≤ Dεt1/2,
|Oext −Oint| ≤ Dεt−1/2.

(3.8)

3 The (two) spherical coordinates patch ϑ, ϕ correspond to (two) different axis on the sphere. The choice of ranges for ϑ, ϕ
ensures that two such patches cover the full 2-spheres Su,u.
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Moreover, we assume that for the first order derivatives, we have∥∥t−γ0t2(tD)≤1
(
DText −DTint

)∥∥
L∞t L

4(∂Σt)
. ε,∥∥t−γ0t(tD)≤1(tD)≤1

(
DSext −DSint

)∥∥
L∞t L

4(∂Σt)
. ε,∥∥t−γ0t(tD)≤1

(
DOext −DOint

)∥∥
L∞t L

4(∂Σt)
. ε.

(3.9)

Bootstrap Assumption 3.30 (Last cones geodesic foliation). We assume that M′ ⊂M and that in the
exterior region M′ ∩Mext, the following bounds hold

|u− u′| ≤ Dεu′−1/2
, |u− u′| ≤ Dεu′,

and

|f ′| ≤ Dεu′−3/2
,

∣∣f ′, log λ′
∣∣ ≤ Dεu′−3/2

,

where f ′, f ′, λ′ denote the transition coefficients between the null pairs (e3, e4) and (e3
′, e4

′), i.e. the Su,u-

tangent tensors such that4

e4
′ = λ′

(
e4 + f ′ +

1

4
|f ′|2e3

)
,

e3
′ = (λ′)−1

((
1 +

1

2
f ′ · f ′ + 1

16
|f ′|2|f ′|2

)
e3 + f ′ +

1

4
|f ′|2f ′ + 1

4
|f ′|2e4

)
.

Moreover, we assume that in the interior region M′ ∩Mint
bot, the following bounds hold∣∣∣∣t− 1

2
(u′ + u′)

∣∣∣∣ ≤ Dεu′−1/2
,

and ∣∣∣∣g(T , 1

2
(e3
′ + e4

′)

)
+ 1

∣∣∣∣ ≤ Dεu′−3/2
.

Bootstrap Assumption 3.31 (Bottom initial layer). We assume that the spacetimes regions Lext
bot and

Lint
bot are not empty, and that in Lext

bot and Lint
bot, the frames of the respective regions are comparable, i.e.∣∣∣∣g(1

2
(e3 + e4), T

bot
)

+ 1

∣∣∣∣ ≤ Dε, ∣∣∣g(T , T
bot

) + 1
∣∣∣ ≤ Dε. (3.10)

We moreover assume that in the respective regions Lext
bot and Lint

bot the following comparisons between time
functions hold ∣∣∣∣x0 − 1

2
(u+ u)

∣∣∣∣ ≤ Dε, ∣∣x0 − t
∣∣ ≤ Dε. (3.11)

Bootstrap Assumption 3.32 (Conical initial layer). We assume that the spacetime region Lext
con is not

empty, and that in Lext
con, we have

|u− ũ| ≤ Dε,
|u− ũ| ≤ Dεu.

(3.12)

Let (λ̃, f̃ , f̃) be the transition coefficients associated to the null pairs (ẽ3, ẽ4) and (e3, e4), i.e. the Su,u-tangent
tensors such that

ẽ4 = λ̃

(
e4 + f̃ +

1

4
|f̃ |2ẽ3

)
,

ẽ3 = (λ̃)−1

((
1 +

1

2
f̃ · f̃ +

1

16
|f̃ |2|f̃ |2

)
e3 + f̃ +

1

4
|f̃ |2f̃ +

1

4
|f̃ |2e4

)
.

We assume that in the region Lext
con, the following bounds hold

|f̃ | ≤ Dεu−1, | log λ̃| ≤ Dε, |f̃ | ≤ Dε. (3.13)
4To avoid confusion between the transition coefficients for the different change of frames in this paper, we renamed (f ′, f ′, λ′)

the transition coefficients (f, f, λ) of Section 2.15.
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3.3.4 First consequences of the Bootstrap Assumptions
In this section, we collect lemmas which follow from the mild and strong Bootstrap Assumptions and which
are used throughout Sections 5 – 12.

Remark 3.33. Here and in the following, we write

f1 . f2,

if there exists a constant C ′ > 0, independent of ε, such that

f1 ≤ C ′f2.

We write

f1 ' f2

if

f1 . f2 and f2 . f1.

Lemma 3.34 (Coarea formulas). In this paper, we use the following coarea formulas∫
Mint

bot

f '
∫ t∗

t◦

∫
Σt

f dt, (3.14)

and ∫
Mext

f '
∫ t∗

t◦

∫
Σext
t

f dt,

∫
Σext
t

f '
∫ 2t−u∗

2t/(1+τ−1)

∫
Su,u=2t−u

f du, (3.15)

and ∫
Mext

f '
∫ u∗

τ−1

∫ τu

1

∫
Su,u

f dudu =

∫ τu∗

1

∫ u∗

τ−1u

∫
Su,u

f dudu =:

∫ τu∗

1

∫
Cu
f du, (3.16)

for all scalar function f .5

Proof. Formula (3.14) follows from the expression of
∫
Mint

bot
in coordinates∫

Mint
bot

f =

∫ t∗

t◦

∫
Σt

fndt

and the bound |n− 1| ≤ Dε from the Bootstrap Assumptions 3.24. Formulas (3.15) follow similarly from
the following control of the exterior time lapse next

|next − 1| . |y| . Dε,

and from ∣∣∣N ext
(u) + 1

∣∣∣ . |y| . Dε
where we used relations (2.32) and (2.31) and the Bootstrap Assumptions 3.23 for y.

For the spherical coordinates from the Bootstrap Assumptions 3.26, we have the following expression of the
coordinate vectorfields ∂u, ∂u

∂u =
1

2
e3 −

1

4
ye4 + baea, ∂u =

1

2
e4, (3.17)

which is a consequence of relations (2.1). Thus, the spacetime metric g writes in these coordinates

g = −1

2
dudu− 1

2
dudu+

(
1

2
y + |b|2

)
du2 + b[du+ dub[ + g/

5The constants in the above estimates do not depend on f .
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as an element of T∗M⊗ T∗M, and where [ is the canonical musical isomorphism.

In Mext, using equation (3.17) and relations (2.33) we have the following formula

∇/ 4ba = bcχca + 2ζa.

From a straight-forward Grönwall argument, using that b = 0 on C∗ and the Bootstrap Assumptions 3.23 for
χ and ζ we obtain

|b| . Dεu−1u−1/2 (3.18)

in Mext.

Expressing
∫
Mext in coordinates, using the Bootstrap Assumptions 3.23 for y and estimate (3.18) for b then

yields the desired formulas (3.16).

We have the following lemma, which follows from the Bootstrap Assumptions 3.25 and 3.26 and the results
of [Sha14].6

Lemma 3.35 (Coordinates fractional Sobolev spaces). For all 2-spheres Su,u∗ ⊂ C∗ and all 2-spheres
Su,u ⊂Mext, and for all S-tangent k-tensor F , we have

r−1/2 ‖F‖H̃1/2(Su,u) '
∑
(ϑ,ϕ)

∑
a1···ak∈{ϑ,ϕ}

∥∥r−kFa1·ak∥∥H1/2
ϑ,ϕ

,

where the sum is taken over the (two) spherical coordinates systems covering Su,u given by the Bootstrap

Assumptions 3.25 and 3.26, and where H
1/2
ϑ,ϕ denotes the standard fractional Sobolev space on [π/8, 7π/8]ϑ ×

[0, 2π)ϕ.

We have the following Sobolev estimates.

Lemma 3.36 (Sobolev estimates on 2-spheres). For all 2-spheres Su,u∗ ⊂ C∗ and all 2-spheres Su,u ⊂Mext,
we have

‖F‖L4(Su,u) . ‖F‖H̃1/2(Su,u) ,

‖F‖L∞(Su,u) . r
−1/2

∥∥(r∇/ )≤1F
∥∥
H̃1/2(Su,u)

,

for all S-tangent tensor F . Moreover, we have

r−1/2 ‖F‖L2(Su,u) . ‖F‖H̃1/2(Su,u) . r
−1/2

∥∥(r∇/ )≤1F
∥∥
L2(Su,u)

.

Proof. From the Bootstrap Assumptions 3.25 and 3.26, the 2-spheres Su,u admit weakly regular coordinates
systems in the sense of [Sha14]. The proof of the lemma then follows from the results of [Sha14].7

We have the following product estimates for H̃1/2 norms (see [Sha14, Corollary 3.4]).

Lemma 3.37 (Product estimates). For all 2-spheres Su,u∗ ⊂ C∗ and all 2-spheres Su,u ⊂Mext, we have

‖FG‖H̃1/2(S) .
(
‖F‖L∞(S) + r−1 ‖(r∇/ )F‖L2(S)

)
‖G‖H̃1/2(S) ,

‖FG‖L2(S) . ‖F‖H̃1/2(S) ‖G‖H̃1/2(S) ,

for all S-tangent tensors F,G.

We have the following elliptic estimates on 2-spheres.

6The strong sup-norm bounds from the Bootstrap Assumptions 3.25 and 3.26 imply that the assumptions of [Sha14] are
satisfied and that we can build the orthonormal frame of [Sha14] upon the coordinates vectorfields.

7It can also be obtained directly from Lemma 3.35, consistently with [Sha14].
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Lemma 3.38 (Elliptic estimates on 2-spheres). For all 2-spheres Su,u∗ ⊂ C∗ and all 2-spheres Su,u ⊂Mext

and for all S-tangent tensor U of appropriate type, we have∥∥r−1(r∇/ )≤1U
∥∥ . ‖D/ 1U‖ ,∥∥r−1(r∇/ )≤1

(
U − U

)∥∥ . ∥∥D/ ∗1U∥∥ ,∥∥r−1(r∇/ )≤1U
∥∥ . ‖D/ 2U‖ ,

(3.19)

where the norms are either L2(S) or H̃1/2(S) and where D/ correspond to the classical Hodge-type elliptic
operators (see [CK93]).8

Moreover, for all S-tangent 1-tensor U satisfying9

D/ 1U = (div/ X, curl/ Y ) ,

we have

‖U‖L2(S) . ‖X‖L2(S) + ‖Y ‖L2(S) . (3.20)

Proof. From the Bootstrap Assumptions 3.19, 3.20, 3.22, 3.23 and Gauss equation (2.34t), we have∣∣∣∣K − 1

r2

∣∣∣∣ . Dεu∗−2r−1q−1/2,

∣∣∣∣K − 1

r2

∣∣∣∣ . Dεu−3u−1/2, (3.21)

in C∗ and Mext respectively. Since K(r−2g/) = r2K(g/), we deduce from (3.21) that (S, r−2g/) is weakly
spherical in the sense of [Sha14]. Thus, the elliptic estimates (3.19) for L2(S) and H̃1/2(S) norms follow
from [Sha14] and rescaling in r. The proof of the additional estimate (3.20) follows from writing U = D/ ∗1(f, g)
with f = g = 0, and standard energy estimates for Poisson equation.

8Poincaré inequality is a consequence of the estimate for the elliptic operator D/ ∗1.
9Such system of equations are consequences of the canonical foliation choice. See Section 9.
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4. Main results
4.1 Initial layers ε-close to Minkowski space
Let (M̃,g) be a smooth vacuum spacetime, and let (Σ̃1, C̃0) be spacelike-characteristic initial data for M̃.

We say that M̃ contains a bottom initial layer Lbot and a conical initial layer Lcon which are ε-close to
Minkowski space, if it admits spacetime subregions Lbot and Lcon as defined in Section 2.14 and if the
following smallness assumptions holds on Lbot,Lcon.

The bottom initial layer Lbot With respect to the bottom initial layer coordinates (xµ) on Lbot defined
in Section 2.14, we have the following spacetime closeness requirement to the Minkowski metric η

3∑
µ,ν=0

∥∥gµν − ηµν∥∥L∞(Lbot)
≤ ε,

3∑
µ,ν=0

∥∥∥∂(≤3)
(
gµν − ηµν

)∥∥∥
L2(Lbot)

≤ ε,

(4.1a)

and for all 1 ≤ x0 ≤ 5, ∫
Σ̃x0

∣∣D≤2R
∣∣2 ≤ ε2, (4.1b)

where in the last estimate the norm is taken with respect to the frame associated to the bottom initial layer
coordinates.1

Remark 4.1. The centre ø(1) of Σ̃1 is chosen with respect to bottom initial layer coordinates, i.e. such that

xi(ø(1)) = 0,

for all 1 ≤ i ≤ 3.

The closeness to Minkowski assumptions (4.1) imply that∣∣xi(ø(t))
∣∣ . ε, ∣∣x0(ø(t))− t

∣∣ . ε,
for all 1 ≤ i ≤ 3, and

|ø̇(t)− ∂x0 | . ε,

for all t such that ø(t) ∈ Lbot.

The conical initial layer Lcon With respect to the initial layer optical functions on Lcon and the
associated null pair (see Section 2.14), we have the following closeness requirement to Minkowski spacetime

� We have the following bounds on the area radius and the null lapse in Lcon∣∣∣∣r̃(ũ, ũ)− 1

2
(ũ− ũ)

∣∣∣∣ ≤ εr̃(ũ, ũ),

|Ω̃− 1| ≤ εũ−1,

(4.2a)

� We have the following sup-norm bounds on the null connection coefficients in Lcon∣∣∣∣trχ̃− 2

r̃

∣∣∣∣ ≤ εũ−2,
∣∣∣̂̃χ∣∣∣ ≤ εũ−2, |η̃| ≤ εũ−2, |ω̃| ≤ εũ−2, |ω̃| ≤ εũ−1,∣∣∣∣trχ̃+

2

r̃

∣∣∣∣ ≤ εũ−2,
∣∣∣̂̃χ∣∣∣ ≤ εũ−1,

∣∣∣ζ̃∣∣∣ ≤ εũ−2,
∣∣η̃∣∣ ≤ εũ−2,

(4.2b)

together with ξ̃ = ξ̃ = 0.

1With the notations of Definition 3.1, this frame is defined such that e0 = T
bot

.
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� We have the following L2(Lcon) bounds for (derivatives of) the null connection coefficients∥∥∥∥ũ−1/2−γ ũ∇̃/
≤2
(

trχ̃− 2

r̃

)∥∥∥∥
L2(Lcon)

≤γ ε,
∥∥∥∥ũ−1/2−γ ũ∇̃/

≤2 ̂̃χ∥∥∥∥
L2(Lcon)

≤γ ε,∥∥∥∥ũ−1/2−γ ũ∇̃/
≤2
(

trχ̃+
2

r̃

)∥∥∥∥
L2(Lcon)

≤γ ε,
∥∥∥∥ũ−1/2−γ∇̃/

≤2 ̂̃χ∥∥∥∥
L2(Lcon)

≤γ ε,∥∥∥∥ũ−1/2−γ ũ∇̃/
≤2
ω̃

∥∥∥∥
L2(Lcon)

≤γ ε,
∥∥∥∥ũ−1/2−γ∇̃/

≤2
ω̃

∥∥∥∥
L2(Lcon)

≤γ ε,∥∥∥∥ũ−1/2−γ ũ∇̃/
≤2
η̃

∥∥∥∥
L2(Lcon)

≤γ ε,
∥∥∥∥ũ−1/2−γ ũ∇̃/

≤2
η̃

∥∥∥∥
L2(Lcon)

≤γ ε,∥∥∥∥ũ−1/2−γ ũ∇̃/
≤2
ζ̃

∥∥∥∥
L2(Lcon)

≤γ ε,

(4.2c)

where ∇̃/ ∈
{
r̃∇̃/ , r̃∇̃/ 4, ∇̃/ 3

}
and for all γ > 0.

� We have the following curvature flux bounds on the cones C̃ũ, for all 0 ≤ ũ ≤ 3/2∫ ∞
3

∫
S̃ũ,ũ

( ∣∣∣∣∇̃/ ≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(ρ̃− ρ̃)

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(σ̃ − σ̃)

∣∣∣∣2
+

∣∣∣∣ũ2∇̃/
≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
α̃

∣∣∣∣2)dũ ≤ ε2,

(4.2d)

the following curvature flux bounds for all 3 ≤ ũ < +∞∫ 3/2

0

∫
S̃ũ,ũ

( ∣∣∣∣∇̃/ ≤2
α̃

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2

(ρ̃− ρ̃)

∣∣∣∣2
+

∣∣∣∣ũ2∇̃/
≤2

(σ̃ − σ̃)

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
β̃

∣∣∣∣2)dũ ≤ ε2,

(4.2e)

and the following sup-norm estimates in Lcon for the averages ρ̃ and σ̃∣∣∣∣∇̃/ ≤2
ρ̃

∣∣∣∣ ≤ εũ−3,

∣∣∣∣∇̃/ ≤2
σ̃

∣∣∣∣ ≤ εũ−3, (4.2f)

where ∇̃/ ∈
{
r̃∇̃/ , r̃∇̃/ 4, ∇̃/ 3

}
.

The bottom and conical initial layer intersection Lbot ∩ Lcon We assume that on Lbot ∩ Lcon we
have the following frame comparison ∣∣∣∣g(T bot

,
1

2
(ẽ3 + ẽ4)

)
+ 1

∣∣∣∣ ≤ ε,∣∣∣∣g(Nbot
,

1

2
(ẽ4 − ẽ3)

)
− 1

∣∣∣∣ . ε, (4.3a)

and the following coordinates comparisons∣∣∣∣x0 − 1

2
(ũ+ ũ)

∣∣∣∣ ≤ ε,
∣∣∣∣∣∣
√√√√ 3∑

i=1

(xi)
2 − 1

2
(ũ− ũ)

∣∣∣∣∣∣ ≤ ε. (4.3b)

4.2 Main theorem
The following theorem is the main result of this paper.

Theorem 4.2 (Main theorem, version 2). Let (M̃,g) be a smooth vacuum spacetime, and let (Σ̃1, C̃0) be

smooth spacelike-characteristic initial data for M̃. Assume that M̃ contains a bottom and conical initial
layer Lbot and Lcon adapted to (Σ̃1, C̃0) which are ε-close to Minkowski space. There exists ε0 > 0 such that
if ε < ε0, the following holds.
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� The spacetime (M̃,g) is future geodesically complete.

� There exists two spacetime regions Mint
∞ ,Mext

∞ ⊂ M̃ such that

M̃ =Mint
∞ ∪Mext

∞ ∪ Lbot ∪ Lcon,

and such that

– Mint
∞ is foliated by spacelike maximal hypersurfaces Σt which are the level sets of a global time

function t on Mint
∞ ranging from t◦ = (1 + τ−1)/2 to +∞, where 0 < τ < 1 is a fixed parameter,

sufficiently close to 1.

– Mext
∞ is foliated by outgoing null hypersurfaces Cu which are the level sets of a global optical

function u on Mext
∞ ranging from 1 to +∞.

– There exists a global affine parameter u on Mext
∞ foliating the null hypersurfaces Cu ranging from

τ−1 to +∞.

– The transition hypersurface T satisfies

T :=Mint
∞ ∩Mext

∞ = {u = τu} ,

and on T , we have

t =
1

2
(u+ u).

� In Mint
∞ , the following curvature decay holds2

|R| . εt−7/2, (4.4a)

we have the following control of the time function t

|g(Dt,Dt) + 1| . εt−3/2,
∣∣D2t

∣∣ . εt−5/2, (4.4b)

and the maximal hypersurfaces Σt approach the Euclidean disks in the following (intrinsic) sense3

|Ric| . εt−7/2,

∣∣∣∣trθ − 2

t

(
1 + τ

1− τ

)∣∣∣∣ . εt−5/2, |θ̂| . εt−5/2, (4.4c)

where Ric is the Ricci curvature tensor of Σt and θ is the second fundamental form of the boundaries
∂Σt ⊂ T .

� In Mext
∞ , the following curvature decay holds

|α| . εu−7/2, |β| . εu−7/2, |ρ− ρ| . εu−3u−1/2,

|α| . εu−1u−5/2,
∣∣β∣∣ . εu−2u−5/2, |σ − σ| . εu−3u−1/2,

(4.4d)

as well as

|ρ| . ε2u−3u−2, |σ| . ε2u−3u−2, (4.4e)

and we have the following control of the optical function and affine parameter u and u

g(Du,Du) = 0, g(Du,Du) = −2, |g(Du,Du)| . εu−3/2, (4.4f)

and ∣∣∣∣trχ− 2

r

∣∣∣∣ . εu−2u−1/2, |χ̂| . εu−2u−1/2, |ζ| . εu−2u−1/2, |ω| . εu−1u−3/2,∣∣∣∣trχ+
2

r

∣∣∣∣ . εu−2u−1/2,
∣∣χ̂∣∣ . εu−1u−3/2,

∣∣ξ∣∣ . εu−1u−3/2,

(4.4g)

2 The norms are taken with respect to the frame associated to the spacelike hypersurfaces Σt.
3Using global harmonic coordinates (see Theorem 4.3), this can be alternatively formulated using coordinates.
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together with ω = |ξ| = 0 and ζ = η = −η.

Moreover, the 2-spheres Su,u level sets of u, u approach the Euclidean 2-spheres in the following
(intrinsic) sense ∣∣∣∣K − 1

r2

∣∣∣∣ . εu−3u−1/2,

∣∣∣∣r − 1

2
(u− u)

∣∣∣∣ . εu−1u−1, (4.4h)

where r denotes the area radius of Su,u.

� The spacetime M̃ admits a future timelike and future null infinity i+ and I +, and the future null
infinity I + is future geodesically complete.4 Moreover, M̃ admits well-defined Bondi mass and
angular momentum at null infinity, which satisfy respectively a Bondi mass loss formula and an angular
momentum evolution equation on I +, and which tend to 0 at timelike infinity i+.5

Remarks on Theorem 4.2

4.2a Alternatively, the spacetime region M∞ =Mint
∞ ∪Mext

∞ can also be foliated by the 2-spheres S′u′,u′ of
the geodesic foliation on the incoming null cones backward emanating from the central axis ø (see the
definitions of the optical function u′ and the geodesic parameter u′ of the so-called last cones geodesic
foliation in Section 2.13). Analogous decay estimates to (4.4) can be obtained in interior and exterior
regions with respect to the null frame adapted to u′ and u′.
Since the classical definition of future null infinity and associated asymptotic quantities involve taking
limits along the outgoing null cones, and also since the proof of Theorem 4.2 foremost relies on the
outgoing null cones level sets of u, we prefered to state Theorem 4.2 using the time, optical and geodesic
affine parameter functions t, u and u.

4.2b More specific Lp-based decay statements, or boundedness statements for L2-fluxes can be obtained for
derivatives of the curvature and connection coefficients.

4.2c The decay rates of (4.4) match the decay rates obtained in [CK93, KN03]. A notable exception to
that statement is the strong decay rate (4.4e) for the mean value ρ. This is due to the two different
spacetime regions studied in this paper and in [CK93, KN03]. In [CK93] and [KN03], the mean value
ρ satisfies a weak decay rate of the type |ρ| . εu−3. Namely, ρ is not controlled by energy estimates
and is only determined by integrating Bianchi equation along e3 from the initial spacelike hypersurface
into the spacetime. Since on the initial spacelike hypersurface ρ is related to the ADM mass M via
ρ ∼ −2M/r3, the decay rate for ρ obtained by integration is at most ρ ∼ u−3. In the present paper, we
determine ρ by integrating Bianchi equation from the central axis ø backwards in M. Since r3ρ→ 0
when r → 0, the initial value of ρ on ø is virtually 0, thus its decay rate in M is only dictated by the
nonlinear terms in Bianchi equation (2.85), from which we deduce the strong decay rate ρ ∼ u−3u−2.
This corresponds to obtaining bounds for the Bondi mass in I + integrating Bondi mass loss formula
from timelike infinity i+ backwards on I +, provided that it is known that the final Bondi mass
vanishes at i+.6

4.3 Auxiliary theorems
In this section, we state auxiliary results to the main theorem (Theorems 4.3, 4.4 and 4.5), which are
independent and of more general interest. Their respective proofs are given in Appendix A, B and C. We
also state an existence of initial layers theorem (see Theorem 4.6), which we claim can be obtained from
previous literature results.

4.3.1 Global harmonic coordinates
Theorem 4.3 (Global harmonic coordinates on Σ). Let Σ be a Riemannian manifold diffeomorphic to the
unit coordinate disk D of R3. Let ε > 0 and assume that on Σ the following L2 bounds for the Ricci curvature

4See [Wal84] and also [CK93], [KN03] for definitions and discussions.
5See Section 4.4.3 for precise definitions.
6All the statements for ρ can also be formulated in terms of the Hawking mass/average of mass aspect function.
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tensor of Σ and the second fundamental form θ of the boundary ∂Σ hold7

‖Ric‖L2(Σ) ≤ ε,

‖trθ − 2‖H1/2(∂Σ) + ‖θ̂‖H1/2(∂Σ) ≤ ε.
(4.5)

Assume moreover that a set of Sobolev embeddings, Poincaré inequality and trace estimate hold with constant
C > 0 on Σ (see the exact functional assumptions in Section A.1). Then, there exists ε0(C) > 0 such that if
ε < ε0, there exists global harmonic coordinates (xi) from Σ onto D with the following bounds

3∑
i,j=1

∥∥g (∇xi,∇xj)− δij∥∥L∞(Σ)
+

3∑
i=1

∥∥∇≤1∇2xi
∥∥
L2(Σ)

+

3∑
i=1

∥∥N(xi)− xi
∥∥
L∞(∂Σ)

. ε, (4.6)

where N denotes the outward-pointing unit normal to ∂Σ. Moreover, for all k ≥ 0, we have the following
higher regularity estimates

3∑
i=1

∥∥∇k∇3xi
∥∥
L2(Σ)

≤ Ck
(∥∥∇≤kRic

∥∥
L2(Σ)

+
∥∥∇/ ≤k(θ − g/)

∥∥
H1/2(∂Σ)

+ ε
)
. (4.7)

Remarks on Theorem 4.3

4.3a For the metric components gij in the harmonic coordinate (xi), we deduce from (4.6) and (4.7) the
following respective L2 estimates8

∥∥∂≤2 (gij − δij)
∥∥
L2(Σ)

. ε,∥∥∂≤k+2 (gij − δij)
∥∥
L2(Σ)

. Ck
(∥∥∇≤kRic

∥∥
L2(Σ)

+
∥∥∇/ ≤k(θ − g/)

∥∥
H1/2(∂Σ)

+ ε
)
.

4.3b Theorem 4.3 can be cast as an existence and control of solutions to the Dirichlet problem for harmonic
maps result with the Euclidean unit disk D of R3 as target manifold.

4.3c Theorem 4.3 improves on the results of [CG19b, Section 7] since it only uses elementary (energy and
Bochner) estimates and provides optimal quantitative bounds for the metric components.

4.3d In the context of the present paper, we use estimate (4.6) and estimate (4.7) with k = 2.

4.3e The functional hypothesis which are collected in Section A.1 are at a weak regularity level, and are in
particular satisfied if there exists weakly regular coordinates on Σ. These coordinates do not need to
be harmonic. In the present paper, the induced coordinates obtained when applying the existence of
maximal hypersurfaces result of [Cho76] are such coordinates.

4.3f Using the harmonic coordinates of Theorem 4.3 and standard analysis results, one can directly improve
on the constants in the assumed functional estimates of Section A.1 for ε > 0 sufficiently small. This
suggests that the (already weak) functional assumptions of Theorem 4.3 could be removed.

4.3g The crux of the proof of Theorem 4.3 is the obtention of a Bochner identity for the Dirichlet problem
on Σ with coercive boundary terms directly controlling Neumann data. See equation (A.12).

4.3.2 Axis limits
The following theorem provides limits for (all derivatives of) the metric, connection and curvature at the
central axis ø for the incoming null cones emanating from ø foliated by geodesic affine parameter. Its proof
is given in Appendix B.

7The second fundamental form θ of ∂Σ ⊂ Σ is defined by

θ(X,Y ) := g(∇XN,Y ),

for X,Y ∈ T∂Σ, where N is the outward-pointing unit normal to ∂Σ in Σ.
8Lp and sup-norm estimates can be deduced by Sobolev embeddings.

247



Chapter 4. Main results

Theorem 4.4 (Axis limits). Let (M,g) be a smooth Lorentzian manifold. Let ø be a timelike geodesic.
There exists coordinates xµ in a neighbourhood of ø, smooth in M\ ø, such that the level sets of

u := x0 +

√√√√ 3∑
i=1

(xi)
2

are the incoming null cones Cu emanating from the axis ø, and such that

u := x0 −

√√√√ 3∑
i=1

(xi)
2

is the null geodesic affine parameter on the cones Cu.9 We call the coordinates xµ (Cartesian) optical normal
coordinates.

Moreover, there exists (transported along Cu) spherical coordinates ϑ, ϕ on the 2-spheres Su,u such that for
the induced metric g/, we have

(
∂ku, (∂u + ∂u)l, ∂mω

)(
g/ −

(
u− u

2

)2 (
dϑ2 + sin2 ϑdϕ2

))
= O

(
|x||4−k|

)
, (4.8a)

when |x| → 0, for k, l,m ≥ 0, and where
(
∂ku, (∂u + ∂u)l, ∂mω

)
denotes all combinations of partial derivatives

containing respectively k, l,m-derivatives of u, u+ u, ω = ϑ, ϕ. In particular, for the area radius r of Su,u,
we have (

∂ku, (∂u + ∂u)l
)(

r(u, u)− u− u
2

)
= O(|x||3−k|). (4.8b)

Furthermore, the following limits hold when |x| → 0 and for k, l,m ≥ 0

� for the optical defect y := − 1
2g(Du,Du)∣∣((r∇/ 3)k, (∇/ 3 +∇/ 4)l, (r∇/ )m

)
y
∣∣ = O

(
|x|2
)
, (4.8c)

� for the null connection coefficients associated to the null pair (e3, e4) (defined such that e3 = −Du)∣∣∣∣((r∇/ 3)k, (∇/ 3 +∇/ 4)l, (r∇/ )m
)(

χ− 1

r
g/, χ+

1

r
g/, η, ζ, η, ω, ω, ξ, ξ

)∣∣∣∣ = O (|x|) , (4.8d)

� for the null curvature components∣∣((r∇/ 3)k, (∇/ 3 +∇/ 4)l, (r∇/ )m
) (
α, β, ρ, σ, β, α

)∣∣ = O (1) , (4.8e)

Remarks on Theorem 4.4

4.4a The vertex limits (4.8) are consequences of the fact that in a classical normal coordinates system, the
metric and its first derivatives are trivial at the point O. They are obtained by a change of coordinates
from classical to Cartesian and subsequently spherical optical normal coordinates and by expressing
the null coefficients in terms of the spherical optical normal coordinates. See Sections B.2 and B.3.

4.4b The vanishing of all ∇/ 3 +∇/ 4 derivatives is a consequence of the translation invariance along the axis.

4.4c The vertex limits (4.8c)–(4.8e) are sharp in terms of the asymptotic behaviour of the ∇/ 3 +∇/ 4 and
r∇/ derivatives. For the ∇/ 3 derivatives, these limits allow for a blow-up of the k derivatives of the type
∇/ k

3F ∼ r−k, which we believe is far from being optimal in most cases.

4.4d Better limits can hold for a vacuum spacetime. For example, using that trα = 0 in that case and
integrating the Raychaudhuri equation (2.34c), one can obtain better bounds for trχ.

4.4e The coordinates u, u from Theorem 4.4 correspond in the present paper to the coordinates u′, u′ of the
so-called last cones geodesic foliation. See Section 2.13.

9See also the definition of u′ in Section 2.13.
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4.3.3 Well-posedness of the canonical foliation
The following theorem ensures that the canonical foliation on C∗ defined in Section 2.1 is locally well defined
and provides vertex limits for its associated metric and null connection coefficients.

Theorem 4.5 (The canonical foliation on C∗). Let (M,g) be a smooth Lorentzian manifold. Let C∗ ⊂M be
a smooth null cone emanating from a point ø(u∗), where we also assume that a unit timelike vector ø̇(u∗) is
given. There exists a function u in a neighbourhood of ø(u∗) in C∗, smooth on C∗ \ ø(u∗), such that its level
sets Su ⊂ C∗ define a canonical foliation of C∗ in the following sense (see also the definitions of Section 2.1):

� For the null connection coefficients associated to the null pair (e3, e4) orthogonal to Su (defined such
that e3(u) = 2), the following elliptic condition is satisfied

div/ η + ρ = ρ,

ω = 0,
(4.9)

on each 2-sphere Su.

� The following limits hold at the vertex ø(u∗)

u|ø(u∗) = u∗, and g(e3, ø̇(u∗))|ø(u∗) = −1. (4.10)

Moreover, there exists (transported along C∗) spherical coordinates ϑ, ϕ such that the induced metric g/ on
Su in these coordinates satisfy the same limits at the vertex ø(u∗) as in Theorem 4.4. The limits for the
area radius, null connection coefficients associated to the canonical foliation are also identical to the ones of
Theorem 4.4.

Remarks on Theorem 4.5

4.5a Expressed using geodesic affine parameter, the system (4.9) rewrites as a coupled system of elliptic
and transport equation, with initial value given by (4.10). The proof of Theorem 4.5 then relies on a
standard Banach-Picard iteration similar to the one performed in [CG19a, Section 6]. See Appendix C.

4.5b As a byproduct of the Banach-Picard iteration – using an implicit function theorem –, one obtains that
the solutions to the above mentioned system of elliptic-transport equations are also unique and stable
under a perturbation of the background spacetime metric. This justifies the continuity argument of
Section 4.4.2.

4.5c The vertex limits for the metric and null connection coefficients are used in Section 9 as initial data to
obtain global estimates on C∗.

4.3.4 Existence and control of initial layers
We have the following theorem, which enables to relate the result of the main Theorem 4.2 proved in this
paper, to the most general Theorem 1.8 stated in the introduction.

Theorem 4.6 (Existence and control of initial layers [CG19b], [LZ18]). Let ε > 0. There exists ε′ > 0 such

that if (M̃,g) is a smooth vacuum spacetime admitting spacelike-characteristic initial data (Σ̃1, C̃0) which

are ε′-close to Minkowski space, then (M̃,g) contains a bottom initial layer Lbot and a conical initial layer
Lcon, which are ε-close to Minkowski space, as defined in Section 4.1.

Remarks on Theorem 4.6

4.6a Combining the existence and control of initial layer Theorem 4.6 and the main Theorem 4.2, we obtain
the general Theorem 1.8.

4.6b The existence and control of the bottom initial layer Lbot follows from a small data local existence result
for the spacelike-characteristic Cauchy problem. Such a result has been obtained in [CG19a, CG19b]
under regularity assumptions weaker than in the present paper, and applies in particular in the present
case.10

10It can also easily be reproved at the present regularity using the elementary techniques of this paper.
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4.6c The conical initial layer decay rates for the metric, connection and curvature from estimates (4.2)
correspond to the decay rates of [CK93, KN03]. The required regularity is also provided by [CK93,

KN03]. In particular, a last layer along an outgoing null cone C̃0 in [KN03] would be an admissible
conical initial layer in the present paper.

4.6d The existence of the conical initial layer Lcon can be obtained from the existence result of [LZ18] for
initial data posed on characteristic hypersurfaces.

4.6e The comparisons in the intersection of the initial layers Lbot ∩ Lcon can also be obtained from [LZ18].
It could also be obtained in the case of a last outgoing conical initial layer from [KN03].

4.4 Proof of the main theorem
The main part of the proof of Theorem 4.2 is a bootstrap argument. We define U∗ to be the supremum

of all u∗ such that M̃ admits subregions (τ)Mu∗ – for all τ0 ≤ τ ≤ (1 + τ0)/2 – satisfying a set of mild
and strong bootstrap assumptions which are collected in Sections 3.3.2 and 3.3.3, and which we further
call the Bootstrap Assumptions.11 We assume by contradiction that U∗ <∞. From the closedness of the

Bootstrap Assumptions and by propagation of regularity, M̃ admits smooth subregions (τ)M̃U∗ satisfying
the Bootstrap Assumptions.11

Remark 4.7. The fact that M̃ admits first subregions, say (τ)Mu∗=4, satisfying the Bootstrap Assumptions
follows from local constructions in the (domain of dependence of the) initial layer Lbot. See also the arguments
of Step 2 in Section 4.4.2.

Remark 4.8. We do not state nor prove a precise propagation of regularity/smoothness result in this paper,
which is used to guarantee the existence of the above smooth spacetime subregion MU∗ and to run the
extraction argument of Section 4.4.3. We claim that such a result can be obtained repeating the global energy
estimates and subsequent arguments of Sections 5– 12. The smooth character of the spacetime is crucially
used so that the limits of Theorem 4.4 for (derivatives of) the null connection coefficients at the vertex ø(u∗)
of the last cone C∗ hold.12 It is also used for convenience in the local existence results applied in the extension
procedure of Section 4.4.2.

In Sections 5–12, we show that under the Bootstrap Assumptions in the subregions (τ)Mu∗ and the ε-closeness
to Minkowski of the initial layers Lbot and Lcon, all the Bootstrap Assumptions from Sections 3.3.2 and 3.3.3
can be improved. We give an overview of the results obtained in these Sections in Section 4.4.1.

In Section 4.4.2, we show that provided that the Bootstrap Assumptions with improved constants hold in
(τ)Mu∗ , the spacetime region (τ)Mu∗ ∪ Lcon can be extended to a smooth spacetime (τ)Mu∗+δ ∪ Lcon for
δ > 0 such that the Bootstrap Assumptions hold. This contradicts the finitness of U∗.

In Section 4.4.3, we deduce from U∗ = +∞ the main conclusions of Theorem 4.2. This finishes the proof of
Theorem 4.2.

4.4.1 Improvement of the Bootstrap Assumptions
In this section, we give an overview of the improvement of the Bootstrap Assumptions which is performed in
Sections 5–12.

� In Section 12.1, we prove that under the Bootstrap Assumptions and the ε-closeness assumption of
the initial layers to Minkowski space (see Section 4.1), improved bounds for the energy fluxes for the
curvature through the hypersurfaces Σt◦ and C1 hold.

� In Section 5, we show by performing global energy estimates in Mext ∪Mint
bot, using the improved

initial energy fluxes, that improved energy bounds for the curvature hold on all hypersurfaces Σt,
Cu, Σext

t and C∗ ∩Mext. The global energy estimates of Section 5 are performed for one transition
parameter τ chosen by a mean value argument.

11We assume that the Bootstrap Assumptions are uniformly satisfied for all transition parameter τ0 ≤ τ ≤ (1 + τ0)/2.
12The limits of Theorem 4.4 which are actually used in this paper require to obtain limits for up to three derivatives of the

connection coefficients. This requires to control the metric in at least a C4-sense at the vertex. Given the optimal possible
regularity ∂≤4gµν ∈ L∞t L2 for the metric component, consistently with the curvature control D≤2R ∈ L∞t L2, such a control
can only be obtained under an higher regularity assumption. This is the reason for the smoothness assumption in this paper.
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� In Section 6, we show that using the improved energy bounds on C∗ ∩Mext and Cu, Σext
t , one obtains

improved control of the spacetime curvature tensor in Mext.

� In Section 7, we show that using the improved energy bounds on Σt and the improved trace bounds
for the curvature on the interface T =Mint ∩Mext from Section 6, one obtains improved curvature
bounds in Mint

bot.

� In Section 8.1, we show that using the curvature control of Section 7 on Σt∗ , applying a rescaling,
extension and local existence results and performing a local energy estimate in Mint

top, one obtains

improved curvature bounds on C∗ ∩Mint. In Section 8.2, we show by rescaling and local energy
estimates that curvature estimates are improved for all the constructions related to all transition
parameters τ .

� In Section 9, we show that using the vertex limits of Theorems 4.4 and 4.5, the Bootstrap Assumptions
and the improved curvature bounds on C∗, we obtain improved bounds for the null connection coefficients
of the canonical foliation. We moreover show that under these improved bounds, the conformal factor
and exterior rotation vectorfields satisfy improved bounds on S∗. Using the improved bounds for the
exterior rotation on S∗, we improve their bounds on C∗ ∩Mext in Section 9.14.

� In Section 10, we show that using the improved bounds for the connection and rotation coefficients on
C∗ ∩Mext, we obtain improved bounds for the connection and rotation coefficients on Mext.

� In Section 11, we show using the improved curvature estimates in Mint
bot and the improved trace

estimates for the null connection coefficients on T that the connection coefficients related to the
maximal foliation are improved, and thus the control of the time translation approximate Killing field
Tint is improved. From an application of Theorem 4.3, we obtain bounds for the harmonic coordinates
of the last slice Σt∗ . We further show using these bounds that the remaining interior Killing fields are
controlled in Mint

bot by integration from Σt∗ . Last, we show that at the interface T , the differences of
interior and exterior Killing fields is controlled.

� In Section 12, we show using the previous improvement for all connection and curvature coefficients
that the comparison of the constructions of M to the constructions of the initial layers Lbot and Lcon

are improved. This finishes the improvement of the Bootstrap Assumptions.

4.4.2 Extension of Mu∗

In this section, we assume that M̃ admits a smooth spacetime subregion (τ)Mu∗ satisfying the Bootstrap

Assumptions of Sections 3.3.2 and 3.3.3 with improved constants. We show that M̃ admits a smooth
spacetime region (τ)M̃u∗+δ for δ > 0 satisfying the Bootstrap Assumptions.

Remark 4.9. Here and in the rest of this section, the transition parameter τ is fixed. We thus omit the
label τ in the arguments below.

Step 1: Spacetime extension. We first show that there exists a smooth spacetime N containing
Mu∗ ∪ Lcon such that Mu∗ is strictly included in N .13

By a comparison argument, the null hypersurface C∗ ∩ {1 ≤ u ≤ (1 + τ)u∗/2} can be foliated by a smooth

non-degenerate geodesic foliation starting from the 2-sphere C∗ ∩ C̃3/2. Similarly, the initial layer null

hypersurface C̃3/2 can be foliated by a smooth geodesic foliation starting form C∗ ∩ C̃3/2. Applying the local
existence result of [Luk12] to the induced characteristic initial data on the hypersurfaces(

C∗ ∩ {u ≤ (1 + τ)u∗/2}
)⋃
C̃3/2,

we deduce that there exists a smooth spacetime N1 which strictly contains C∗ ∩ {u ≤ (1 + τ)u∗/2} (see also
Figure 1).

We consider the smooth null hypersurface H emanating from S∗ in N1. Applying a spacelike-characteristic
local existence result to Σt∗ ∪H (see [CG19b, Section 6]), we deduce that there exists a spacetime N2 which
contains Σt∗ ∪H in which the hypersurface Σt∗ is strictly included.

13Here and in the following, strict inclusion means that Mu∗ is composed of interior points of the manifold N .
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In particular, N2 contains a maximal spacelike hypersurface ΣN strictly in the future of Σt∗ with boundary
included in H. We define N3 to be its smooth maximal globally hyperbolic development of ΣN . By continuity,
one can assume that on ΣN , the harmonic coordinates and second fundamental form bounds from the
Bootstrap Assumptions 3.24 and 3.27 hold. From the ε-smallness of the initial data on ΣN , a rescaling to a
time-1 situation and a local existence result (see [Fou52]), one deduces that N3 is diffeomorphic and ε-close
to a subregion of Minkowski space. Thus N3 strictly contains Mint

top,u∗ ∩N3. Patching together Lcon, Mu∗ ,
N1, N2 and N3, we obtain a spacetime N strictly extending Mu∗ , as desired.

Figure 1: The spacetime N .

Step 2: Constructions of optical, affine parameters and time functions. Since in particular
ø(u∗) ∈Mu∗ ⊂ N is an interior point of N , the timelike geodesic ø can be continued past ø(u∗) and there
exists δ > 0 sufficiently small such that ø(u∗ + δ) ∈ N .

Let denote by C∗,δ the incoming null cone backward emanating from ø(u∗ + δ), which local existence,
smoothness and local foliation by geodesic affine parameter is guaranteed by the (null) geodesic equation
and Cauchy-Lipschitz theorem. Since the cone C∗ globally exists and can be foliated by a geodesic foliation
going from s = u∗ to s = 1/2, applying Cauchy-Lipschitz again provided that δ > 0 is sufficiently small, the
cone C∗,δ can be foliated by geodesic affine parameter going from s = u∗ + δ to s = 2/3 and the associated
null connection coefficients are close to the null connection coefficients associated to C∗.

Applying the well-posedness Theorem 4.5 for the canonical foliation on C∗,δ (see in particular Item 4.5b),
one deduces that for δ > 0 sufficiently small the canonical foliation exists from u = u∗ + δ to u = 1.

We denote by Cδu the outgoing null cones backward emanating from the 2-spheres of the canonical foliation
on C∗,δ. From Cauchy-Lipschitz, since the 2-spheres on C∗ and C∗,δ are close, the cones globally exist with
geodesic affine parameter u ranging from u∗ to τ−1u, and the associated null connection coefficients satisfy
the Bootstrap Assumptions.

Since the 2-spheres of the interfaces T δ and T are close, one can apply the implicit function theorem
of [Cho76] (see also a similar application in [CG19b, Section 6]) and we deduce that there exists a foliation
by maximal hypersurfaces (Σδ

t )t◦≤t≤(1+τ)(u∗+δ)/2 with boundaries ∂Σδ
t = Sδu,u ⊂ T δ, which is close to the

analogous maximal foliation of Mint
bot,u∗ .

The existence, uniqueness and control of all centred conformal isomorphism from the new sphere S∗,δ can be
obtained from the Uniformisation Theorem [KS19b, Theorem 3.1]. From induced coordinates on the new
last maximal hypersurface Σδ(1+τ)(u∗+δ)/2, the hypothesis of Theorem 4.3 are satisfied and there exists global

harmonic coordinates on Σδ(1+τ)(u∗+δ)/2 adapted to any centred conformal isomorphism on S∗,δ. From the
closeness to the constructions of the previous spacetime region, we deduce that the Bootstrap Assumptions
are satisfied and we have obtained the desired spacetime region Mu∗+δ ⊂ N ⊂ M̃.

4.4.3 Conclusions
In this section, we deduce from U∗ = +∞ the main conclusions of Theorem 4.2.14

14In this section, the transition parameter τ is fixed in [τ0, (1 + τ0)/2].
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Global time, optical and affine parameter functions First, we infer from U∗ = +∞ that the central
axis ø(t) exists for t = 1 to +∞ and there exists global functions u′, u′ such that its level sets is the last
cones geodesic foliation defined in Section 2.13.

From the Bootstrap Assumptions and propagation of regularity, the functions (u∗)u, (u
∗)u and (u∗)t and

their derivatives are bounded and equicontinuous uniformly in u∗ on each compact region {u′ ≤ C}. Thus,
applying Arzelà-Ascoli theorem, one can deduce that there exists a sequence u∗n → +∞ when n→∞ and
functions u, u, t such that

(u∗n)u→ u, (u∗n)u→ u, (u∗n)t→ t,

in C k topology in each compact region {u′ ≤ C} and for all k ≥ 0.

We define the subregions

Mext
∞ :=

{
τ−1 ≤ u < +∞, 1 ≤ u ≤ τu

}
,

Mint
∞ := {t◦ ≤ t < +∞} ,
T := {1 ≤ u < +∞, u = τu} .

Passing to the limits the definitions of u, u and t, one deduces that they are respectively affine parameter,
optical functions and maximal time function, and that on the interface T := {u = τu}, one has t = 1

2 (u+ u).
Moreover, passing to the limit the sup-norm estimates from the Bootstrap Assumptions, one deduces the
bounds (4.4) of Theorem 4.2.

Using the bounds (4.4) and taking limits along the null cones Cu, a proper notion of future null infinity I +

can be obtained (see [KN03, Section 8]). From the fact that

|De3e3| . |ω|+ |ξ| . εu−1u−3/2 → 0 when u→ 0,

that e3(u) = 2 and that u ranges from 1 to +∞, one can deduce that I + is future geodesically complete.

Hawking and Bondi mass We define the Hawking mass m in Mext
u∗ by15

m(u, u) :=
r

8π

∫
Su,u

(
−ρ+

1

2
χ̂ · χ̂

)
=
r

2
+

r

32π

∫
Su,u

trχtrχ. (4.11)

From the (improved) Bootstrap Assumptions 3.20 and 3.23, we have

|m(u, u)| . ε2u−2. (4.12)

Using the null structure equations (2.34) and the Bootstrap Assumptions, one can prove that in Mext
u∗ , the

following bound holds

|e4(m)| . εu−3u−3.

Passing to the limit in u∗, the estimate still holds in Mext
∞ and we deduce that e4(m) is integrable along e4,

and m(u, u) admits a limit M(u) when u→ +∞. We call M the Bondi mass. From (4.12), one deduces

|M(u)| . ε2u−2,

and in particular

M(u)→ 0 when u→ +∞,

that is, the final Bondi mass is 0.

15The identity is given by Gauss equation (2.34t) and Gauss-Bonnet formula.
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Bondi mass loss formula Using equation (2.85) (2.34e) and (2.34b) together with the Bootstrap As-
sumptions, we have

e3(r3ρ) = −1

2
r3χ̂ · α+O

(
u−1

)
,

∇/ 3(rχ̂) = −1

2
rtrχχ̂+O

(
u−2

)
,

∇/ 3(r2χ̂) = −r2α+O (1) ,

when u→ +∞. Thus,

e3(m) = −1

2
e3

(
r3ρ
)

+
1

4
e3

(
(rχ̂) · (r2χ̂)

)
= −r

3

8
trχ|χ̂|2 +O

(
u−1

)
,

and passing to the limit when u∗ → +∞ and taking the limit when u→ +∞, we infer the following Bondi
mass loss formula

d

du
M(u) = lim

u→+∞

(
− r

64π

∫
Su,u

trχ|χ̂|2
)
.

Angular momentum According to [Riz98], we define the following local angular momentum

(`)L(u, u) :=
1

8πr

∫
Su,u

ζ · (`)Oext, (4.13)

for ` = 1, 2, 3.16 Using the Bootstrap Assumptions, we directly obtain∣∣∣(`)L(u, u)
∣∣∣ . εu−1/2. (4.14)

Using equations (2.34g) and (2.113), we have

r2ζ = O(1), r−1Oext = O(1),

∇/ 4(r2ζ) = O
(
u−3/2

)
, ∇/ 4(r−1Oext) = O(u−2),

when u→ +∞. Thus, deriving (4.13) by e4 gives

e4(L) =
1

2
e4

(
(r2ζ) · r−1Oext

)
= O

(
u−3/2

)
,

and the bound still holds when passing to the limit u∗ → +∞. We infer that e4(L) is integrable along e4

and we define the angular momentum at null infinity (`)L(u) to be the limit of (`)L(u, u) when u → ∞.
From (4.14), we directly obtain ∣∣∣(`)L(u)

∣∣∣ . εu−1/2,

and in particular

(`)L(u)→ 0, when u→ +∞,

that is, the final angular momentum is 0.

Using equations (2.34d) and (2.109), we have

∇/ 3(r2ζ) = −2r2∇/ ω − r2β +O(u−1), ∇/ 3(r−1Oext) = O(u−1),

when u→ +∞. Arguing as previously, we infer the following angular momentum evolution equation along
null infinity

d

du
(`)L(u) = lim

u→∞

(
1

16πr

∫
Su,u

(
−2∇/ ω − β

)
· (`)Oext

)
,

for ` = 1, 2, 3. This finishes the proof of the conclusions of Theorem 4.2.
16Arguing similarly as before, one can deduce the existence of exterior rotation vectorfields in the limit u∗ → +∞.
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5. Global energy estimates in M
In this section, we perform the global energy estimates in M, which are used to estimate the curvature in
the exterior and interior bottom regions respectively in Sections 6 and 7. We prove the following proposition.

Proposition 5.1. Recall that from the initial layer results of Section 12, we have1∫
(τ)Σt◦

P · T +

∫
(τ)C1

P · e4 . ε
2, (5.1)

where P are the following Bel-Robinson tensors defined respectively in the interior and exterior region
(τ)Mint

bot and (τ)Mext by

Q
(
L̂TR

)
(K,K,K), Q

(
L̂OR

)
(K,K,T),

Q
(
L̂OL̂OR

)
(K,K,T), Q

(
L̂SL̂TR

)
(K,K,K), Q

(
L̂OL̂TR

)
(K,K,T),

(5.2)

where T,S,K,O correspond to the approximate conformal Killing vectorfields defined respectively in the
interior region in Section 2.5 and in the exterior region in Section 2.11.2

Under the Bootstrap Assumptions and for ε > 0 sufficiently small, there exists a transition parameter
τ0 ≤ τ ≤ (1 + τ0)/2 such that we have∫

(τ)Σt

P · T +

∫
Cu∩(τ)Mext

P · e4 +

∫
(τ)Σext

t

P · T ext
+

∫
C∗∩(τ)Mext

P · e3 . ε
2, (5.3)

where P denotes the Bel-Robinson tensor from (5.2).

Remark 5.2. The transition parameter τ is determined by a mean value argument in Section 5.1.1. The
control for the curvature on the hypersurfaces associated to all the transition parameters τ0 ≤ τ ≤ (1 + τ0)/2
is obtained in Section 8.2.

Figure 1: Global energy estimates in M.

The proof of Proposition 5.1 follows from the following energy estimate∫
Σt

P · T +

∫
Cu∩Mext

P · e4 +

∫
Σext
t

P · T ext
+

∫
C∗∩Mext

P · e3 .
∫

Σt◦

P · T +

∫
C1
P · e4 + ET + E int + Eext,

1These results are postponed to the initial layer Section 12 for consistency. They only use the Bootstrap Assumptions and
the ε-closeness to Minkowski space assumptions from Section 4.1.

2The bound (5.1) holds for all transition parameters τ .
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Chapter 5. Global energy estimates in M

which holds for all t◦ ≤ t ≤ t∗ and for all 1 ≤ u ≤ τu∗, for all contracted and commuted Bel-Robinson
tensors P of (5.2), and where the nonlinear error terms E are defined below.

The nonlinear error terms are decomposed as follows

ET = ET1 + ET2 , E int = E int
1 + E int

2 , Eext = Eext
1 + Eext

2 ,

where have the following definitions for each respective factor.

� We have

ET1 :=

∫
T

(
P ext ·NT − P int ·NT

)
,

where NT denotes the inward-pointing unit normal to the timelike hypersurface T and where

P ∈
{
Q
(
L̂TR

)
(K,K,K), Q

(
L̂OR

)
(K,K,T)

}
.

� We have

ET2 :=

∫
T

(
P ext ·NT − P int ·NT

)
,

where

P ∈
{
Q
(
L̂OL̂OR

)
(K,K,T), Q

(
L̂SL̂TR

)
(K,K,K), Q

(
L̂OL̂TR

)
(K,K,T)

}
.

� We have

E int
1 :=

∫
Mint

bot

div (P ) ,

where

P ∈
{
Q
(
L̂TintR

)
(Kint,Kint,Kint), Q

(
L̂OintR

)
(Kint,Kint,Tint)

}
.

� We have

E int
2 :=

∫
Mint

bot

div (P ) ,

where

P ∈
{
Q
(
L̂OintL̂OintR

)
(Kint,Kint,Tint), Q

(
L̂SintL̂TintR

)
(Kint,Kint,Kint),

Q
(
L̂OintL̂TintR

)
(Kint,Kint,Tint)

}
.

� We have

Eext
1 :=

∫
Mext

div(P ),

where

P ∈
{
Q
(
L̂TextR

)
(Kext,Kext,Kext), Q

(
L̂OextR

)
(Kext,Kext,Text)

}
.

� We have

Eext
2 :=

∫
Mext

div(P ),

where

P ∈
{
Q
(
L̂OextL̂OextR

)
(Kext,Kext,Text), Q

(
L̂SextL̂TextR

)
(Kext,Kext,Kext),

Q
(
L̂OextL̂TextR

)
(Kext,Kext,Text)

}
.
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5.1. Estimates for the interface error terms ET

This section is dedicated to proving that, under the Bootstrap Assumptions, there exists a transition
parameter τ such that we have

ET≤2 + E int
≤2 + Eext

≤2 . (Dε)3. (5.4)

The result of Proposition 5.1 then directly follows, provided that ε > 0 is sufficiently small.

To control the interior and exterior error terms in Sections 5.2 and 5.3, we make the following additional
bootstrap assumption. In view of the above, it will directly be improved by the energy estimate once the
control (5.4) of the error terms has been obtained.

Bootstrap Assumption 5.3. Assume that the above fluxes through the hypersurfaces Σt, Cu ∩Mext and
Σext
t satisfy the following additional bootstrap bounds∫

Σt

P · T +

∫
Cu∩Mext

P · e4 +

∫
Σext
t

P · T ext ≤ (Dε)2,

where P denotes the contracted Bel-Robinson tensors (5.2).

Remark 5.4 (Decay in the exterior region). From the point of view of the decay, the most difficult error
term to treat is the exterior term Eext

≤2 , whose estimate is the crux of [CK93] and [KN03]. To this end,
one has to exhibit a null structure which pairs curvature/connection coefficients (decomposed in the null
directions) with compensating decay rates. In this paper, we choose the same commutating and multiplying
vectorfields as in [CK93] and [KN03], and the structure of the error terms in the exterior region is formally
identical to the one in these books. Since our vectorfields are constructed upon a geodesic-null foliation
which is different from the maximal-null and the double-null foliations of respectively [CK93] and [KN03],
the deformation tensors of our approximate conformal Killing fields satisfy slightly different decay rates.3

We analyse in detail these differences in Sections 5.3.3, 5.3.5, 5.3.7 and show that the error terms are still
integrable in the spacetime region Mext.

5.1 Estimates for the interface error terms ET
5.1.1 The mean value argument
In this section, we obtain L2(T ) bounds for the spacetime curvature tensor and its first and second derivatives.
This is done by a mean value argument which selects a particular transition parameter τ .

We consider the spacetime region

D := {(u, u) : τ0u ≤ u ≤ (1 + τ0)u/2} ∩ J+(Σ̃3).

Figure 2: The mean value argument.

3This is due to the presence of ξ, which vanishes in the double-null setting of [KN03].
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Chapter 5. Global energy estimates in M

From the Bootstrap Assumptions 3.20 when the transition parameter is set to τ = (1 + τ0)/2, we have
the following L2(D) control for the spacetime curvature tensor (we recall that in the region D, we have
u ' u ' r ' t) ∫

D
u−1−1/2u4

∣∣(uD)≤2R
∣∣2 . (Rext

≤2,γ0

)2
. (Dε)2, (5.5)

where the norm | · | is taken with respect to the orthonormal frame associated to the null pair (e3, e4).4

The region D can be foliated as follows

D = ∪τ0≤τ≤(1+τ0)/2 {(u, u) : u = τu} ∩ J+(Σ̃3).

With respect to this foliation, we have the following coarea formula∫ (1+τ0)/2

τ0

(∫
{u=τu}∩J+(Σ̃3)

(
u−1−1/2u4

∣∣(uD)≤2R
∣∣2 )u) dτ

.
∫
D
u−1−1/2u4

∣∣(uD)≤2R
∣∣2

. (Dε)2.

Using the mean value theorem, we deduce that there exists a transition parameter τ ∈ [τ0, (1 + τ0)/2] such
that ∫

{u=τu}∩J+(Σ̃3)

u−1/2u4
∣∣(uD)≤2R

∣∣2 . (Dε)2.

This rewrites ∫
(τ)T

u−1/2u4
∣∣(uD)≤2R

∣∣2 . (Dε)2. (5.6)

Remark 5.5. The integral bound (5.6) on T ∩ J−(Σ̃3) ⊂ Lbot can be obtained using the bottom initial layer
assumptions and comparison arguments. Details are left to the reader.

Remark 5.6. One cannot obtain a control on a timelike boundary such as T for the curvature components,
without either loosing derivatives or decay. For the error terms of ET , we need to control the highest order
terms D2R in L2(T ) and are bound to use the above mean value argument which looses u1/2 decay. However,
this loss of decay is (more than) compensated by the decay rates for the difference between interior and
exterior Killing fields, see Section 5.1.2.

In the rest of this section, the transition parameter τ is fixed by the above mean value argument and we
drop its label in the notations.

5.1.2 Control of ET1 and ET2
We have

ET1 :=

∫
T

(
Q(L̂TextR)(Kext,Kext,Kext)−Q(L̂TintR)(Kint,Kint,Kint)

)
+

∫
T

(
Q(L̂OextR)(Kext,Kext,Text)−Q(L̂OintR)(Kint,Kint,Tint)

)
.

We write schematically

Q(L̂TextR)(Kext,Kext,Kext)−Q(L̂TintR)(Kint,Kint,Kint)

= L̂TextR ·
((
L̂Text − L̂Tint

)
R
)
· (Kext,Kext,Kext)

+
((
L̂Text − L̂Tint

)
R
)
· L̂TintR · (Kext,Kext,Kext)

+Q(L̂TintR)(Kext −Kint,Kext,Kext)

+Q(L̂TintR)(Kint,Kext −Kint,Kext)

+Q(L̂TintR)(Kint,Kint,Kext −Kint).

(5.7)

4With the notations of Definition 3.1, we define e0 := 1
2

(e3 + e4) and the ei to be any (local) vectorfields such that (eµ)
forms an orthonormal frame.
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5.1. Estimates for the interface error terms ET

We start with the estimates for the last three terms of (5.7). From the Bootstrap Assumptions 3.29 at T ,
we recall that we have ∣∣Text −Tint

∣∣ . Dεt−3/2,∣∣Sext − Sint
∣∣ . Dεt−1/2,∣∣Kext −Kint
∣∣ . Dεt1/2. (5.8)

Using that from the mild Bootstrap Assumptions 3.18 we have |Kint| . t2 at T and using the L2(T )
bounds (5.6) – where we recall that t ' u –, we infer∫

T

∣∣∣Q(L̂TintR)(Kint,Kint,Kext −Kint)
∣∣∣ . ∫

T

∣∣∣Q(L̂TintR)
∣∣∣ (|Kext −Kint|||Kint|2

)
. Dε

∫
T

∣∣∣Q(L̂TintR)
∣∣∣ t9/2

. Dε
∫
T
t−1t4−1/2

∣∣(tD)≤1R
∣∣2

. (Dε)3.

For the first two terms of (5.7), we have schematically(
L̂Text − L̂Tint

)
R = DText−TintR +

(
DText −DTint

)
·R.

Using (5.8) and that by the Bootstrap Assumptions 3.29 and 3.20, we respectively have∥∥DText −DTint
∥∥
L4(∂Σt)

. Dεt−2+γ0 ,

‖R‖L4(∂Σt)
. Dεt−3,

we obtain ∫
∂Σt

∣∣∣L̂TextR ·
((
L̂Text − L̂Tint

)
R
)
· (Kext,Kext,Kext)

∣∣∣
. ‖DR‖2L2(∂Σt)

∥∥Text −Tint
∥∥
L∞(∂Σt)

∥∥Kext
∥∥3

L∞(∂Σt)

+ ‖DR‖L2(∂Σt)
‖R‖L4(∂Σt)

∥∥DText −DTint
∥∥
L4(∂Σt)

∥∥Kext
∥∥3

L∞(∂Σt)

. (Dε)t6−3/2 ‖DR‖2L2(∂Σt)
+ (Dε)2t6−5+γ0 ‖DR‖L2(∂Σt)

.

Integrating on T using a coarea formula, Cauchy-Schwartz, and the estimate (5.6), one obtains∫
T

∣∣∣L̂TextR ·
((
L̂Text − L̂Tint

)
R
)
· (Kext,Kext,Kext)

∣∣∣
. (Dε)

∫ t∗

t◦
t−1t4−1/2

∥∥(tD)≤1R
∥∥2

L2(∂Σt)
dt+ (Dε)2

∫ t∗

t◦
tγ0
∥∥(tD)≤1R

∥∥
L2(∂Σt)

dt

. (Dε)3 + (Dε)2

(∫ t∗

t◦
t2
∥∥(tD)≤1R

∥∥2

L2(∂Σt)
dt

)1/2

. (Dε)3,

where from the second to third line, we used that γ0 < 1/4.

Thus, we have obtained∣∣∣∣∫
T
Q(L̂TextR)(Kext,Kext,Kext)−Q(L̂TintR)(Kint,Kint,Kint)

∣∣∣∣ . (Dε)3.

The estimates for the second term of ET1 follow similarly, using that on T by the Bootstrap Assumptions 3.29,
we have ∥∥DOext −DOint

∥∥
L4(∂Σt)

. Dεt−1+γ0 ,
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Chapter 5. Global energy estimates in M

and this finishes the estimates for ET1 .

The estimates for the highest order error term ET2 follow along the same estimates as above, using that by
the Bootstrap Assumptions 3.29, the following bounds hold on T∥∥DSext −DSint

∥∥
L4(∂Σt)

. Dεt−1+γ0 ,

and ∥∥(tD)≤1
(
DText −DTint

)∥∥
L4(∂Σt)

. Dεt−2+γ0 ,∥∥(tD)≤1
(
DOext −DOint

)∥∥
L4(∂Σt)

. Dεt−1+γ0 .

This finishes the proof of the desired estimates for ET2 .

5.2 Estimates for the interior error terms E int

5.2.1 Estimates for E int
1

We have

E int
1 :=

∫
Mint

bot

div
(
Q
(
L̂TintR

))
(Kint,Kint,Kint)

+

∫
Mint

bot

div
(
Q
(
L̂OintR

))
(Kint,Kint,Tint)

+

∫
Mint

bot

Q
(
L̂TintR

)
· (K

int)π̂ · (Kint,Kint)

+

∫
Mint

bot

Q
(
L̂OintR

)
· (K

int)π̂ ·Kint ·Tint

+

∫
Mint

bot

Q
(
L̂OintR

)
· (T

int)π̂ ·Kint ·Kint.

To treat the last three error terms, we use that from the mild Bootstrap Assumptions 3.18 and the Bootstrap
Assumptions 3.28, we have respectively∣∣Tint

∣∣ . 1,
∣∣Kint

∣∣ . t2,∣∣∣(Tint)π̂
∣∣∣ . Dεt−5/2,

∣∣∣(Kint)π̂
∣∣∣ . Dεt−1/2,

where the norms are taken with respect to the maximal frame (i.e. e0 = T ).

Using the Bootstrap Assumptions 5.3 on the flux of the contracted Bel-Robinson tensor, its positivity
properties (see [CK93, Chapter 7]), and a coarea formula, we obtain∫

Mint
bot

Q(L̂OintR) · (T
int)π̂ ·Kint ·Kint

.
∫ t∗

t◦

∫
Σt

Q(L̂OintR)
(
Tint,Tint,Kint,Kint

) ∣∣∣(Tint)π̂
∣∣∣ dt

. (Dε)3

∫ t∗

t◦
t−5/2 dt

.(Dε)3,

and the other terms follow similarly.

For the first term, we have using Bianchi equations and the formula from [CK93, p. 141]

div
(
L̂TintR

)
= (Tint)π̂ ·DR + D(Tint)π̂ ·R.
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5.2. Estimates for the interior error terms E int

Therefore, using [CK93, p. 137], we have

divQ(L̂TintR) = L̂TintR ·
(
div

(
L̂TintR

))
= L̂TintR ·DR · (T

int)π̂ + L̂TintR ·R ·D(Tint)π̂.

The first term is handled as previously. For the second term, we use that, by the Bootstrap Assumptions 5.3
on the flux of the contracted Bel-Robinson tensors, the positivity properties of the Bel-Robinson tensor, and
a coarea formula, one has

∥∥∥t−1/2−γt3L̂TintR
∥∥∥
L2(Mint

bot)
.

(∫ t∗

t◦

∫
Σt

t−1−2γt6
∣∣∣L̂TintR

∣∣∣2 dt

)1/2

.

(∫ t∗

t◦

∫
Σt

t−1−2γQ
(
L̂TintR

)
(Kint,Kint,Kint,Tint) dt

)1/2

. (Dε)

(∫ t∗

t◦
t−1−2γ dt

)1/2

.γ (Dε),

for all γ > 0. We also use that by the Bootstrap Assumptions 3.21 and the Bootstrap Assumptions 3.28, we
have respectively ∥∥∥t7/2R∥∥∥

L∞(Mint
bot)
. Dε,∥∥∥t−1/2−γ0t2D(Tint)π̂

∥∥∥
L2(Mint

bot)
. Dε.

This gives ∣∣∣∣∣
∫
Mint

bot

L̂TintR ·R ·D(Tint)π̂ · (Kint,Kint,Kint)

∣∣∣∣∣
. (Dε)

∫
Mint

bot

t5/2
∣∣∣L̂TintR

∣∣∣ ∣∣∣D(Tint)π̂
∣∣∣

. (Dε)
∥∥∥t−1/2−γt3L̂TintR

∥∥∥
L2(Mint

bot)

∥∥∥t−1/2−γ0t2D(Tint)π̂
∥∥∥
L2(Mint

bot)

. (Dε)3,

provided that γ is such that γ < 3/2− γ0.

The remaining term of E int
1 follows along the same lines, using the Bootstrap Assumptions 3.28 for D≤1(Oint)π̂.

This finishes the control of E int
1 .

5.2.2 Estimates for E int
2

We treat the following error term∫
Mint

bot

div
(
Q
(
L̂OintL̂OintR

))
· (Kint,Kint,Tint).

Using [CK93, p. 141] and that schematically L̂Oint = DOint + DOint·, we have

div
(
L̂OintL̂OintR

)
= D2(Oint)π̂ ·R ·Oint + D(Oint)π̂ ·DR ·Oint + (Oint)π̂ ·D2R ·Oint

+ D(Oint)π̂ ·R ·DOint + D(Oint)π̂ ·R ·DOint +(Oint) π̂ ·DR ·DOint

+(Oint) π̂ ·R ·D2Oint.

Using the L∞(Mint
bot) and L2(Mint

bot) of the Bootstrap Assumptions 3.21 and 3.28 for R and Oint respectively,
we check that ∥∥∥t4−γ0div

(
L̂OintL̂OintR

)∥∥∥
L2(Mint

bot)
. (Dε)2. (5.9)
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Chapter 5. Global energy estimates in M

Remark 5.7. For the second term, we use the L∞t L
6(Σt) estimates of the Bootstrap Assumptions 3.21

and 3.28 and a coarea formula as follows

∥∥∥t4−γ0D(Oint)π̂ ·DR ·Oint
∥∥∥
L2(Mint

bot)
.

(∫ t∗

t◦

∥∥∥t5−γ0D(Oint)π̂ ·DR
∥∥∥2

L2(Σt)
dt

)1/2

.

(∫ t∗

t◦

∥∥t−1−γ0
∥∥2

L6(Σt)

∥∥∥t2D(Oint)π̂
∥∥∥2

L6(Σt)

∥∥t4DR
∥∥2

L6(Σt)
dt

)1/2

. (Dε)2

(∫ t∗

(1+τ−1)/2

t−1−2γ0 dt

)1/2

. (Dε)2.

Using (5.9) and L2(Mint
bot) estimates obtained from the Bootstrap Assumptions 5.3 on the flux of the

contracted Bel-Robinson tensors, we have∣∣∣∣∣
∫
Mint

bot

div
(
Q
(
L̂OintL̂OintR

))
·
(
Kint,Kint,Tint

)∣∣∣∣∣
.
∫
Mint

bot

t4
∣∣∣L̂OintL̂OintR

∣∣∣ ∣∣∣div
(
L̂OintL̂OintR

)∣∣∣
.
∥∥∥t−1/2−γt2L̂OintL̂OintR

∥∥∥
L2(Mint

bot)

∥∥∥t4−γ0div
(
L̂OintL̂OintR

)∥∥∥
L2(Mint

bot)

. (Dε)3,

provided that γ ≤ 3/2− γ0.

The estimates for the other error terms of E int
2 are obtained either arguing as in Section 5.2.1 or as above,

using the estimates for DTint,DSint from the Bootstrap Assumptions 3.28. This finishes the control of E int
2 .

5.3 Estimates for the exterior error terms Eext

We denote by Eext
1,1 , Eext

1,2 , Eext
2,1 and Eext

2,2 the exterior error terms produced in the energy estimates, which are
defined as follows

Eext
1,1 :=

∫
Mext

(
Q(L̂TextR)(Kext,Kext) ·(K

ext) π̂ +Q(L̂OextR)(Kext,Kext) ·(T
ext) π̂

+Q(L̂OextR)(Kext,Text) ·(K
ext) π̂

)
,

Eext
1,2 :=

∫
Mext

(
divQ(L̂TextR)(Kext,Kext,Kext) + divQ(L̂OextR)(Kext,Kext,Text)

)
,

Eext
2,1 :=

∫
Mext

(
Q(L̂SextL̂TextR)(Kext,Kext) ·(K

ext) π̂ +Q(L̂2
OextR)(Kext,Text) ·(K

ext) π̂

+Q(L̂2
OextR)(Kext,Kext) ·(T

ext) π̂ +Q(L̂OextL̂TextR)(Kext,Kext) ·(K
ext) π̂,

Eext
2,2 :=

∫
Mext

(
divQ(L̂SextL̂TextR)(Kext,Kext,Kext) + divQ(L̂2

OextR)(Kext,Kext,Text)

+ divQ(L̂OextL̂TextR)(Kext,Kext,Kext)
)
.

5.3.1 Preliminary definitions and computational results
Null decompositions of π̂. We define the following null decompositions of the deformation tensor π̂

(X)iab =(X) π̂ab,
(X)j =(X) π̂34,

(X)ma =(X) π̂4a,
(X)ma =(X) π̂3a,

(X)n =(X) π̂44,
(X)n =(X) π̂33.

We have for the time translation Text = 1
2 (e4 + e3)

tr(Text)π = −2ω + trχ+ trχ,
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and

(Text)n = 0, (Text)n = −4ω,

(Text)ma = −2ζa,
(Text)ma = ξ

a
+ 2ζa,

and

(Text)j = ω +
1

2
(trχ+ trχ),

(Text)iab =
1

2
ωg/ab +

1

4
(trχ+ trχ)g/ab + χ̂ab + χ̂

ab
.

We have for the scaling vectorfield Sext = 1
2 (ue3 + ue4)

tr(Sext)π = 4− 2uω + utrχ+ utrχ,

and

(Sext)n = 0, (Sext)n = −2y− 4uω,

(Sext)ma = −2uζa,
(Sext)ma = uξ

a
+ 2uζa,

and

(Sext)j = −2 + uω +
1

2
(utrχ+ utrχ),

(Sext)iab = −g/ab +
1

2
uωg/ab +

1

4
(utrχ+ utrχ)g/ab + uχ̂ab + uχ̂

ab
.

We have for the conformal Morawetz vectorfield Kext = 1
2 (u2e3 + u2e4)

tr(Kext)π = 4(u+ u)− 2u2ω + u2trχ+ u2trχ,

and

(Kext)n = 0, (Kext)n = −4uy− 4u2ω,

(Kext)ma = −2u2ζa,
(Kext)ma = u2ξ

a
+ 2u2ζa,

and

(Kext)j = −2(u+ u) + u2ω +
1

2
(u2trχ+ u2trχ),

(Kext)iab = −(u+ u)g/ab +
1

2
u2ωg/ab +

1

4
(u2trχ+ u2trχ)g/ab + u2χ̂ab + u2χ̂

ab
.

We have for the rotations Oext

tr(Oext)π = 2ζ ·Oext + tr(i)H,

and

(Oext)n = 0, (Oext)n = −4ξ ·Oext,

(Oext)ma = 0, (Oext)ma = (i)Y a,

and

(Oext)j = −ζ ·Oext +
1

2
tr(i)H,

(Oext)iab = (i)Hab −
1

4

(
2ζ ·Oext + tr(i)H

)
g/ab.

Null decomposition of Dπ̂ We have the following definitions for (contractions of) Dπ̂

(X)pµ := div(X)π̂µ,

(X)qµνλ := D(X)
ν π̂λµ −D

(X)
λ π̂νµ −

1

3

(
(X)pλgµν −(X) pνgµλ

)
.

We note p3, p4 and p/ the null decomposition of the spacetime vectorfield p.
We note Λ(q),K(q),Ξ(q), I(q),Θ(q) and Λ(q),K(q),Ξ(q), I(q),Θ(q) the null decomposition of the spacetime
3-covariant tensor q, and we refer the reader to [CK93, p. 212] for its definition.
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The currents J We define the current J of a Weyl tensor W to be

J(W )νλγ := DµWµνλγ .

We note Λ(J),K(J),Ξ(J), I(J),Θ(J) and Λ(J),K(J),Ξ(J), I(J),Θ(J) the null decomposition of J (see [CK93]).

For a vectorfield X, and a Weyl tensor W , we note J(X,W ) the current of L̂XW .

The divergence of the Bel-Robinson tensors is related to the null decomposition of the associated Weyl field
and the null decomposition of its current. When the Weyl field is a modified Lie derivative L̂XW , its current
J(X,W ) can be expressed in terms of the null decomposition of (X)π̂, the null decomposition of D(X)π̂ and
null decompositions of W and DW . See [CK93, pp. 214–218] for the computations. We use these formulas
in the following Sections 5.3.3–5.3.8.

5.3.2 Preliminary sup-norm estimates for the deformation tensors π
We define the following decay norms for the null decompositions of the deformation tensors of Text,Sext,Kext

and Oext.

Dext
0 [Text] :=

∥∥∥u3/2u(Text)i
∥∥∥
L∞

+
∥∥∥u3/2u(Text)j

∥∥∥
L∞

+
∥∥∥u2u1/2(Text)m

∥∥∥
L∞

+
∥∥∥uu3/2(Text)m

∥∥∥
L∞

+
∥∥∥uu3/2(Text)n

∥∥∥
L∞

Dext
0 [Sext] :=

∥∥∥uu1/2(Sext)i
∥∥∥
L∞

+
∥∥∥uu1/2(Sext)j

∥∥∥
L∞

+
∥∥∥u2u1/2(Sext)m

∥∥∥
L∞

+
∥∥∥uu1/2(Sext)m

∥∥∥
L∞

+
∥∥∥u3/2(Sext)n

∥∥∥
L∞

,

Dext
0 [Kext] :=

∥∥∥u1/2(Kext)i
∥∥∥
L∞

+
∥∥∥u1/2(Kext)j

∥∥∥
L∞

+
∥∥∥u2u−3/2(Kext)m

∥∥∥
L∞

+
∥∥∥u1/2(Kext)m

∥∥∥
L∞

+
∥∥∥u3/2u−1(Kext)n

∥∥∥
L∞

,

Dext
0 [Oext] :=

∥∥∥uu1/2(Oext)i
∥∥∥
L∞

+
∥∥∥uu1/2(Oext)j

∥∥∥
L∞

+
∥∥∥uu1/2(Oext)m

∥∥∥
L∞

+
∥∥∥u3/2(Oext)n

∥∥∥
L∞

,

together with

(Text)n =(Sext) n =(Kext) n =(Oext) n = 0,

(Oext)m = 0.

From the Bootstrap Assumptions 3.23 and the formulas from Section 5.3.1 relating the null decompositions
of the deformation tensors of Text,Sext,Kext and Oext, the null connection coefficients and the rotation
coefficients (i)Y and (i)H, we have

Dext
0 [Text,Sext,Kext,Oext] . Dε. (5.10)

Remark 5.8. We detail the estimate for (Sext)j. We have

(Sext)j = −2 +
1

2
(utrχ+ utrχ) + uω

= −2 +
u− u
r

+
1

2
u

(
trχ− 2

r

)
+

1

2
u

(
trχ+

2

r

)
+ uω

=
u− u− 2r

r
+

1

2
u

(
trχ− 2

r

)
+

1

2
u

(
trχ+

2

r

)
+ uω,

and therefore ∥∥∥uu1/2(Sext)j
∥∥∥
L∞(Mext)

.

∥∥∥∥u1/2

(
r − 1

2
(u− u)

)∥∥∥∥
L∞(Mext)

+ Oext
≤1 . Dε,

where we used the bootstrap bound (3.4) for r and where we refer to Section 3.2.4 for the definition of Oext
≤1 .
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Remark 5.9. The decay rates (5.10) are different from the ones obtained in [CK93, p. 223]. They are
stronger to the ones obtained in [KN03, pp. 251-254] – in particular due to the stronger bounds (3.4) for the

area radius r that we derived in this paper–, except for (Text)m which lose uu−1 and for (Oext)m which is
non zero in our case. Both these differences are due to the presence of ξ which is vanishing in the double
null foliation of [KN03]. In the next sections we prove in particular that the control of the error terms is
still valid despite these differences.

5.3.3 Estimates for Eext
1,1 , Eext

2,1

The estimates for the error terms Eext
1,1 and Eext

2,1 are obtained exactly in the same manner and each split into
obtaining a control of the spacetime integrals in Mext of the following three integrands:

Q(W )(Kext,Kext) ·(K
ext) π̂, Q(W )(Kext,Kext) ·(T

ext) π̂, Q(W )(Kext,Text) ·(K
ext) π̂, (5.11)

where W is a Weyl tensor such that energy estimates are performed for the following contracted Bel-Robinson
tensors respectively

Q(W )(Kext,Kext,Kext), Q(W )(Kext,Kext,Text), Q(W )(Kext,Kext,Text).

Since we have same or stronger decay rates for the sup-norm of (Kext)π̂ as in [KN03], we only treat the

second term of (5.11) which involves (Text)π̂, i.e.∫
Mext

Q(W )(Kext,Kext) ·(T
ext) π̂.

Arguing as in Section 5.2.1, one can obtain from the Bootstrap Assumptions 5.3 on the boundedness
of the energy fluxes through the hypersurfaces Cu and Σext

t the following L2(Mext) bounds for the null
decomposition of W∥∥∥u−1/2−γu2α(W )

∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2β(W )

∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γu2ρ(W )
∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2σ(W )

∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γuuβ(W )
∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2α(W )

∥∥∥
L2(Mext)

.γ Dε,

(5.12)

for all γ > 0.

We now decompose Q(W )(Kext,Kext) · (Text)π̂ in terms of the null decompositions of W and (Text)π̂. We
have

Q(W )(Kext,Kext) · (T
ext)π̂ = u4Q(W )µν44

(Text)π̂µν + u2u2Q(W )µν34
(Text)π̂µν + u4Q(W )µν33

(Text)π̂µν .

Rewriting schematically the formulas (6.2.45) (6.2.46) and (6.2.47) of [KN03, p. 275] (see also [CK93, pp.
248–250]), we have

u4Q(W )µν44
(Text)π̂µν

= u4

(
|α|2n + (ρ2 + σ2)n + |β|2j + αβm + ρβm + σβm + |β|2i + ραi + σαi

)
,

u2u2Q(W )µν34
(Text)π̂µν

= u2u2

(
|β|2n + |β|2n + (ρ2 + σ2)j + ρβm + σβm + ρβm + σβm + (ρ2 + σ2)i + ββi

)
,

u4Q(W )µν33
(Text)π̂µν

= u4

(
(ρ2 + σ2)n + |α|2n + |β|2j + αβm + ρβm + σβm + |β|2i + ραi + σαi

)
,

where (α, β, ρ, σ, β, α) = null(W ) and (i, j,m,m,n,n) =
(

(Text)i,(T
ext) j,(T

ext) m,(T
ext) m,(T

ext) n,(T
ext) n

)
.
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Using the sup norm estimates (5.10) for the null decomposition (i, j,m,m,n,n) of the deformation tensor
(Text)π̂, we obtain that ∣∣∣u4Q(W )µν44

(Text)π̂µν

∣∣∣
. Dε

(
u3u−3/2|α|2 + u3u−3/2|β|2 + u3u−3/2|α||β|

+ u2u−1/2|ρ||β|+ u2u−1/2|σ||β|+ u3u−3/2|β|2 + u3u−3/2|ρ||α|

+ u3u−3/2|σ||α|
)
,

(5.13)

(5.14)∣∣∣u2u2Q(W )µν34
(Text)π̂µν

∣∣∣
. Dε

(
uu1/2|β|2 + uu1/2(ρ2 + σ2) + uu1/2|ρ||β|

+ uu1/2|σ||β|+ u3/2|ρ||β|+ u3/2|σ||β|+ uu1/2(ρ2 + σ2)

+ uu1/2|β||β|
)
,

(5.15)

(5.16)∣∣∣u4Q(W )µν33
(Text)π̂µν

∣∣∣
. Dε

(
u−1u5/2(ρ2 + σ2) + u−1u5/2|β|+ u−2u7/2|α||β|

+ u−1u5/2|ρ||β|+ u−1u5/2|σ||β|+ u−1u5/2|β|2 + u−1u5/2|ρ||α|

+ u−1u5/2|σ||α|
)
.

(5.17)

Applying Cauchy-Schwartz, one checks that the spacetime integral in Mext of all the terms from (5.13) can
be controlled by the L2(Mext) norms of (5.12), which thus gives

∣∣∣∣∫
Mext

Q(W )(Kext,Kext) · (T
ext)π̂

∣∣∣∣ . (Dε)3.

This concludes the estimate of the error terms Eext
1,1 and Eext

2,1 .

5.3.4 Preliminary L∞L4(S) estimates for Dπ
We have the following definition of the decay norms for the null decompositions of the tensors p and q

Dext
1,p [Text] :=

∥∥∥u1/2u5/2(Text)p3

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u3/2u3/2(Text)p4

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u3/2(Text)p/

∥∥∥
L∞u,uL

4(Su,u)
,

Dext
1,q [Text] :=

∥∥∥u3/2u3/2Λ((Text)q)
∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u5/2u1/2K((Text)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u5/2u1/2Ξ((Text)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u3/2u3/2I((Text)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u3/2Θ((Text)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u5/2Λ((Text)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u3/2K((Text)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u5/2Ξ((Text)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u3/2I((Text)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u5/2Θ((Text)q)

∥∥∥
L∞u,uL

4(Su,u)
,
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and

Dext
1,p [Sext] :=

∥∥∥u1/2u3/2(Sext)p3

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u3/2u1/2(Sext)p4

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2(Sext)p/

∥∥∥
L∞u,uL

4(Su,u)
,

Dext
1,q [Sext] :=

∥∥∥u3/2u1/2Λ((Sext)q)
∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u5/2u−1/2K((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u5/2u−1/2Ξ((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u3/2u1/2I((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2Θ((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Λ((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2K((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Ξ((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2I((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Θ((Sext)q)

∥∥∥
L∞u,uL

4(Su,u)
,

and

Dext
1,p [Oext] :=

∥∥∥u1/2u3/2(Oext)p3

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u3/2u1/2(Oext)p4

∥∥∥
L∞u,uL

4(Su,u)
,

+
∥∥∥u3/2u1/2(Oext)p/

∥∥∥
L∞u,uL

4(Su,u)
,

Dext
1,q [Oext] :=

∥∥∥u3/2u1/2Λ((Oext)q)
∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u5/2uK((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2I((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2Θ((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Λ((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2K((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Ξ((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)

+
∥∥∥u3/2u1/2I((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)
+
∥∥∥u1/2u3/2Θ((Oext)q)

∥∥∥
L∞u,uL

4(Su,u)
,

together with Ξ((Oext)q) = 0.

Using formulas from [CK93, pp. 231–232], the Bootstrap Assumptions 3.23 for H̃1/2 norms of (one derivative
of) the null connection coefficients inMext, the product estimate from Lemma 3.37, the Sobolev embeddings
from Lemma 3.36, we have

Dext
1,p + Dext

1,q . Oext
≤1 . Dε. (5.18)

Remark 5.10. The decay rate of each term is easily checked using that r∇/ , u∇/ 4 and u∇/ 3 preserve the
decay rates, and that the decay of the L4(S) norm loses a weight r1/2 with respect to the decay of the L∞(S)
norm.

Remark 5.11. The decay rates in the norms Dext
1 [Text], Dext

1 [Sext] and Dext
1 [Oext] are the same or better

as the ones obtained in [KN03, pp. 250-258]5 except for Ξ(T
ext

q), which loses a uu−1 factor due to the non
vanishing of ξ in the present paper.

5.3.5 Estimates for Eext
1,2

We start with the estimate for ∫
Mext

divQ(L̂TextR)(Kext,Kext,Kext).

5By a scaling consideration, we do believe that there is a typo in the estimates (6.1.53) which should be multiplied by r−1.

Moreover, we do also believe that there is a typo in the estimate for Ξ((S
ext)q) in [KN03] which should be multiplied by r−1.
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Arguing as in Section 5.2.1 using the Bootstrap Assumption 5.3, we first record the following L2(Mext)
bounds for the null decomposition of L̂TextR

∥∥∥u−1/2−γu3α
(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu3β

(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γu2uρ
(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2uσ

(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γuu2β
(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu3α

(
L̂TextR

)∥∥∥
L2(Mext)

.γ Dε,

(5.19)

for all γ > 0.

We have

divQ(L̂TextR)(Kext,Kext,Kext) = u6divQ(L̂TextR)444 + u4u2divQ(L̂TextR)443

+ u2u4divQ(L̂TextR)433 + u6divQ(L̂TextR)333.
(5.20)

From [CK93, p. 213], we have

u6divQ(L̂TextR)444 = u6α
(
L̂TextR

)
Θ(J(L̂TextR))

+ u6β
(
L̂TextR

)
Ξ(J(L̂TextR)),

u4u2divQ(L̂TextR)443 = u4u2ρ
(
L̂TextR

)
Λ(J(L̂TextR))

+ u4u2σ
(
L̂TextR

)
K(J(L̂TextR))

+ u4u2β
(
L̂TextR

)
I(J(L̂TextR)),

u2u4divQ(L̂TextR)433 = u2u4ρ
(
L̂TextR

)
Λ(J(L̂TextR))

+ u2u4σ
(
L̂TextR

)
K(J(L̂TextR))

+ u2u4β
(
L̂TextR

)
I(J(L̂TextR)),

u6divQ(L̂TextR)333 = u6α
(
L̂TextR

)
Θ(J(L̂TextR))

+ u6β
(
L̂TextR

)
Ξ(J(L̂TextR)),

(5.21)

We only examine the term

∫
Mext

u6β(L̂TextR) · Ξ(J). (5.22)

of (5.21) which is the hardest to treat due to the pairing of high weights in u with slower decaying null
components of L̂TextR.

Using the L2(Mext) estimates (5.19), our goal in what follows is to obtain the following L2(Mext) estimates
for Ξ(J)

∥∥∥u3+1/2+γΞ(J)
∥∥∥
L2(Mext)

. (Dε)2. (5.23)

Using the formulas from [CK93, p. 215], the estimates (5.10) for the sup-norm and the estimates (5.18) for

268



5.3. Estimates for the exterior error terms Eext

the L∞L4 norm of the null decompositions of π and Dπ respectively, we have∥∥∥Ξ(J1(L̂TextR))
∥∥∥
L2(Su,u)

. (Dε)

(
u−1u−3/2 ‖∇/ α(R)‖L2(Su,u)

+ u−2u−1/2 ‖∇/ 3α(R)‖L2(Su,u)

+ u−1u−3/2 ‖∇/ 4α(R)‖L2(Su,u)

+ u−2u−1/2 ‖∇/ β(R)‖L2(Su,u)

+ u−1u−3/2 ‖∇/ 4β(R)‖L2(Su,u)

+ u−2u−3/2 ‖α(R)‖L2(Su,u)

+ u−2u−3/2 ‖β(R)‖L2(Su,u)

+ u−3u−1/2 ‖(ρ(R), σ(R))‖L2(Su,u)

)
,

(5.24)

and ∥∥∥Ξ(J2(L̂TextR))
∥∥∥
L2(Su,u)

. (Dε)

(
u−3/2u−3/2 ‖α(R)‖L4(Su,u)

+ u−3/2u−3/2 ‖β(R)‖L4(Su,u)

)
,∥∥∥Ξ(J3(L̂TextR))

∥∥∥
L2(Su,u)

. (Dε)

(
u−3/2u−3/2 ‖α(R)‖L4(Su,u)

+ u−3/2u−3/2 ‖β(R)‖L4(Su,u)

+ u−5/2u−1/2 ‖(ρ(R), σ(R))‖L4(Su,u)

)
.

(5.25)

Using the Sobolev estimates on the spheres Su,u from Lemma 3.36, we further deduce from (5.25)∥∥∥Ξ(J2(L̂TextR))
∥∥∥
L2(Su,u)

. (Dε)

(
u−2u−3/2

∥∥(r∇/ )≤1α(R)
∥∥
L2(Su,u)

+ u−2u−3/2
∥∥(r∇/ )≤1β(R)

∥∥
L2(Su,u)

)
,∥∥∥Ξ(J3(L̂TextR))

∥∥∥
L2(Su,u)

. (Dε)

(
u−2u−3/2

∥∥(r∇/ )≤1α(R)
∥∥
L2(Su,u)

+ u−2u−3/2
∥∥(r∇/ )≤1β(R)

∥∥
L2(Su,u)

+ u−3u−1/2
∥∥(r∇/ )≤1(ρ(R), σ(R))

∥∥
L2(Su,u)

)
.

(5.26)

From (5.24) and (5.26), we obtain∥∥∥u3+1/2+γΞ
(
J
(
L̂TextR

))∥∥∥
L2(Mext)

. (Dε)

(∥∥∥u1+1/2+γu−3/2(r∇/ )≤1α(R)
∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−3/2(u∇/ 3)α(R)

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−3/2(u∇/ 4)α(R)

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−1/2(r∇/ )≤1β(R)

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−3/2(u∇/ 4)β(R)

∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu−1/2(r∇/ )≤1(ρ(R), σ(R))

∥∥∥
L2(Mext)

)
.

(5.27)

We check that for γ < 1/4, all the above L2(Mext) norms can be bounded by Rext
≤2,γ0

, where we recall

that γ0 < 1/4. Thus, from the Bootstrap Assumptions 3.20 on the L2(Mext) norms of the null curvature
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components, we have ∥∥∥u3+1/2+γΞ
(
J
(
L̂TextR

))∥∥∥
L2(Mext)

. (Dε)Rext
≤2,γ0 . (Dε)2,

as desired. This finishes the control of (5.22).

We now repeat the procedure to estimate∫
Mext

divQ(L̂OextR)(Kext,Kext,Text),

which is the second error term of Eext
1,2 .

We first record the following L2(Mext) bounds for the null decomposition of L̂OextR∥∥∥u−1/2−γu2α
(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2β

(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γu2ρ
(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2σ

(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γuuβ
(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2α

(
L̂OextR

)∥∥∥
L2(Mext)

.γ Dε,

(5.28)

for all γ > 0.

We have

divQ(L̂OextR)(Kext,Kext,Text) . u4divQ(L̂OextR)444 + u4divQ(L̂OextR)443

+ u2u2divQ(L̂OextR)433 + u4divQ(L̂OextR)333.
(5.29)

The most critical terms of (5.29) are u4divQ(L̂OextR)443 since it has the highest u weight and the lowest
signature.

We have

u4divQ(L̂OextR)443 = u4ρ
(
L̂OextR

)
Λ
(
J(L̂OextR)

)
+ u4σ

(
L̂OextR

)
K
(
J(L̂OextR)

)
+ u4β

(
L̂OextR

)
· I(J(L̂OextR)).

(5.30)

We only check the first error term of (5.30), the second will follow by duality and the third is easier to treat

because of the stronger decay for β
(
L̂OextR

)
.

In view of the bounds (5.28), our goal is to prove∥∥∥u2+1/2+γΛ
(
J
(
L̂OextR

))∥∥∥
L2(Mext)

. (Dε)2. (5.31)

Using the formulas from [CK93, p. 216], the estimates (5.10) for the sup-norm and the estimates (5.18) for
the L∞L4 norm of the null decompositions of π and Dπ respectively, we have∥∥∥Λ(J1(L̂OextR))

∥∥∥
L2(Su,u)

. (Dε)

(
u−1u−1/2 ‖∇/ β(R)‖L2(Su,u)

+ u−1u−1/2 ‖∇/ 4β(R)‖L2(Su,u)

+ u−1u−1/2 ‖(ρ4(R), σ4(R))‖L2(Su,u)

+ u−2u−1/2 ‖α(R)‖L2(Su,u)

+ u−2u−1/2 ‖β(R)‖L2(Su,u)

+ u−2u−1/2 ‖(ρ(R), σ(R))‖L2(Su,u)

)
,

(5.32)
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and

∥∥∥Λ(J2(L̂OextR))
∥∥∥
L2(Su,u)

. (Dε)

(
u−3/2u−1/2 ‖β(R)‖L4(Su,u)

+ u−3/2u−1/2 ‖(ρ(R), σ(R))‖L4(Su,u)

)
,∥∥∥Λ(J3(L̂OextR))

∥∥∥
L2(Su,u)

. (Dε)

(
u−1/2u−3/2 ‖α(R)‖L4(Su,u)

+ u−3/2u−1/2 ‖(ρ(R), σ(R))‖L4(Su,u)

)
.

(5.33)

Arguing as previously, using Sobolev estimates on the 2-spheres Su,u, we deduce from (5.32) and (5.33)

∥∥∥u2+1/2+γΛ
(
J
(
L̂OextR

))∥∥∥
L2(Mext)

. (Dε)

(∥∥∥u1/2+γu−1/2(r∇/ )β(R)
∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu−1/2(u∇/ 4)β(R)

∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu−1/2(uρ4(R), uσ4(R))

∥∥∥
L2(Mext)

+
∥∥∥u3/2+γu−3/2(r∇/ )≤1α(R)

∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu−1/2(r∇/ )≤1β(R)

∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu−3/2(r∇/ )≤1 (ρ(R), σ(R))

∥∥∥
L2(Mext)

)
.

(5.34)

We verify that from (5.34), one has

∥∥∥u2+1/2+γΛ
(
J
(
L̂OextR

))∥∥∥
L2(Mext)

. (Dε)Rext
≤2,γ0 . (Dε)2,

for 0 < γ < 1/4, and (5.31) is proved. This finishes the control of the error term Eext
1,2 .

5.3.6 Preliminary L2 (Mext) estimates for D2π

We have the following definitions for the L2(Mext) norms for derivatives of (Text)p,(T
ext) q and (Oext)p, (Oext)q

Dext
2,p,γ0 [Text] :=

∥∥∥u−1/2−γ0u2L̂X (Text)p3

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂X (Text)p4

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂X (Text)pa

∥∥∥
L2(Mext)

Dext
2,q,γ0 [Text] :=

∥∥∥u−1/2−γ0uuL̂XΛ((Text)q)
∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0u2L̂XK((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0u2L̂XΞ((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂XI((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂XΘ((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0u2L̂XΛ((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂XK((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0u2L̂XΞ((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uuL̂XI((Text)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0u2L̂XΘ((Text)q)

∥∥∥
L2(Mext)

,
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where X ∈ {Oext,Sext}, and

Dext
2,p,γ0 [Oext] :=

∥∥∥u−1/2−γ0uL̂Oext
(Oext)p3

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂Oext

(Oext)p4

∥∥∥
L2(Mext)

,

+
∥∥∥u−1/2−γ0uL̂Oext

(Oext)pa

∥∥∥
L2(Mext)

,

Dext
2,q,γ0 [Oext] :=

∥∥∥u−1/2−γ0uL̂OextΛ((Oext)q)
∥∥∥
L2(Mext))

+
∥∥∥u−1/2−γ0u2u1/2L̂OextK((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextI((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextΘ((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextΛ((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextK((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextΞ((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextI((Oext)q)

∥∥∥
L2(Mext)

+
∥∥∥u−1/2−γ0uL̂OextΘ((Oext)q)

∥∥∥
L2(Mext)

,

together with L̂OextΞ((Oext)q) = 0.

Differentiating the formulas for p, q from [CK93, pp. 231–232] and the formulas for the null decompositions

of (Text)π̂ and (Oext)π̂ from Sections 5.3.1, using the Bootstrap Assumptions 3.23 for the L2(Mext) norms of
(two derivatives) of the null connection coefficients, we obtain

Dext
2,γ0 . O

ext
≤2,γ0 . Dε, (5.35)

for all γ > 0.

Remark 5.12. The decay rates are easily checked, using that deriving with respect to Oext or Sext does not
change the asymptotic behaviour of the components.

5.3.7 Estimates for Eext
2,2

We start with the estimate for ∫
Mext

divQ(L̂2
OextR)(Kext,Kext,Text). (5.36)

We first record the following L2(Mext) bounds for the null decomposition of L̂2
OextR which are consequences

of the Bootstrap Assumptions 5.3

∥∥∥u−1/2−γu2α
(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,

∥∥∥u−1/2−γu2β
(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,∥∥∥u−1/2−γu2ρ

(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,

∥∥∥u−1/2−γu2σ
(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,∥∥∥u−1/2−γuuβ

(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,

∥∥∥u−1/2−γu2α
(
L̂2

OextR
)∥∥∥

L2(Mext)
.γ Dε,

(5.37)

for all γ > 0.

Similarly to Section 5.3.5, the decompositions on the null directions (e3, e4) gives

divQ(L̂2
OextR)(Kext,Kext,Text) . u4divQ(L̂2

OextR)444 + u4divQ(L̂2
OextR)443

+ u2u2divQ(L̂2
OextR)433 + u4divQ(L̂2

OextR)333.
(5.38)
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and

u4divQ(L̂2
OextR)444 = u4α

(
L̂2

OextR
)

Θ(J(L̂2
OextR))

+ u4β
(
L̂2

OextR
)

Ξ(J(L̂2
OextR)),

u4divQ(L̂2
OextR)443 = u4ρ

(
L̂2

OextR
)

Λ(J(L̂2
OextR))

+ u4σ
(
L̂2

OextR
)
K(J(L̂2

OextR))

+ u4β
(
L̂2

OextR
)
I(J(L̂2

OextR)),

u2u2divQ(L̂2
OextR)433 = u2u2ρ

(
L̂2

OextR
)

Λ(J(L̂2
OextR))

+ u2u2σ
(
L̂2

OextR
)
K(J(L̂2

OextR))

+ u2u2β
(
L̂2

OextR
)
I(J(L̂2

OextR)),

u4divQ(L̂2
OextR)333 = u4α

(
L̂2

OextR
)

Θ(J(L̂2
OextR))

+ u4β
(
L̂2

OextR
)

Ξ(J(L̂2
OextR)).

(5.39)

We have from the formulas [CK93, p. 206]

J(L̂2
OextR) = L̂OextJ(L̂OextR) + J i(L̂OextL̂OextR),

where the terms J i(L̂OextL̂OextR) are the same as the terms J i(L̂OextR) from Section 5.3.5 with R replaced
by L̂OextR. Therefore, the estimates of that section carry over and we only need to treat the term

L̂OextJ(L̂OextR).

This term again has the same structure as the terms treated in Section 5.3.5, although differentiated by
L̂Oext . This does not change the decay of the components, and the difference with Section 5.3.5 is that one
does not have a control for the L∞u,uL

4(Su,u) norm of the components of the type L̂OextDπ̂.

That case is actually (more) simply handled using the L2(Mext) estimates (5.37) for the null decomposition
of L̂2

OextR, the L2(Mext) estimates (5.35) for L̂OextDπ̂, the Bootstrap Assumptions 3.20 for the sup-norm
of the curvature R and Cauchy-Schwartz. As an example, we treat the first term of (5.39) containing a term
of the type D2π̂ which is

u4α
(
L̂2

OextR
)
L̂Oext

(Oext)p3 · α(R).

We have ∣∣∣∣∫
Mext

u4α
(
L̂2

OextR
)
L̂Oext

(Oext)p3 · α(R)

∣∣∣∣
. (Dε)

∫
Mext

u1/2
∣∣∣α(L̂2

OextR
)∣∣∣ ∣∣∣L̂Oext

(Oext)p3

∣∣∣
. (Dε)

∥∥∥u−1/2−γu2α
(
L̂2

OextR
)∥∥∥

L2(Mext)

∥∥∥u1/2+γu−3/2L̂Oext
(Oext)p3

∥∥∥
L2(Mext)

. (Dε)
∥∥∥u−1/2−γu2α

(
L̂2

OextR
)∥∥∥

L2(Mext)

∥∥∥u−1/2−γ0uL̂Oext
(Oext)p3

∥∥∥
L2(Mext)

. (Dε)3,

provided that 0 < γ < 1/2.

All the other terms of (5.36) follow similarly, using the analysis of the decay rates already performed in
Section 5.3.5.

To handle the last error terms of Eext
2,2 , we have the following lemma.
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Lemma 5.13. Let W be a current-free Weyl field such that the following L2(Mext) bounds hold

∥∥∥u−1/2−γu3∇/ ≤1
α (W )

∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu3∇/ ≤1

β (W )
∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γu2u∇/ ≤1
ρ (W )

∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu2u∇/ ≤1

σ (W )
∥∥∥
L2(Mext)

.γ Dε,∥∥∥u−1/2−γuu2∇/ ≤1
β (W )

∥∥∥
L2(Mext)

.γ Dε,
∥∥∥u−1/2−γu3∇/ ≤1

α (W )
∥∥∥
L2(Mext)

.γ Dε,

(5.40)

for all γ > 0 and where ∇/ ∈ {r∇/ , u∇/ 3, u∇/ 4}. Then, we have

∫
Mext

divQ(L̂OextW )(Kext,Kext,Kext) . (Dε)3,∫
Mext

divQ(L̂SextW )(Kext,Kext,Kext) . (Dε)3.

The proof of Lemma 5.13 is similar to the control of the error terms from Section 5.3.5 and consists in
checking that the integrands have the appropriate u, u decay and are integrable on Mext. It is postponed to
Section 5.3.8.

The estimates for the terms ∫
Mext

divQ(L̂OextL̂TextR)(Kext,Kext,Kext)

and ∫
Mext

divQ(L̂SextL̂TextR)(Kext,Kext,Kext)

now follow from Lemma 5.13, arguing as above, and using the decay rates analysis for∫
Mext

divQ(L̂TextR)(Kext,Kext,Kext)

performed in Section 5.3.5 to handle the terms from the non-vanishing current L̂OextJ
(
L̂TextR

)
and

L̂SextJ
(
L̂TextR

)
. This finishes the control of the error terms Eext.

5.3.8 Proof of Lemma 5.13

Since from an inspection of (5.10) and (5.18), the deformation tensors of Oext satisfy better decay estimates
than the deformation tensor of Sext, it is enough to control∫

Mext

divQ(L̂SextW )(Kext,Kext,Kext).

Decomposing the divergence on the null directions (e3, e4), the most difficult terms to treat are

∫
Mext

u6β
(
L̂SextW

)
· Ξ(J(L̂SextW )),

since it has the highest u weight and the β component satisfies a weaker control than α.

Using estimates (5.10) and (5.18) for the null decomposition of (Sext)π̂, the formulas from [CK93, p. 215–217],
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and Sobolev estimates on the 2-sphere Su,u we have∥∥∥Ξ(J1(L̂SextW ))
∥∥∥
L2(Su,u)

. (Dε)

(
u−1u−1/2 ‖∇/ α(W )‖L2(Su,u)

+ u−2u1/2 ‖∇/ 3α(W )‖L2(Su,u)

+ u−1u−1/2 ‖∇/ 4α(W )‖L2(Su,u)

+ u−2u1/2 ‖∇/ β(W )‖L2(Su,u)

+ u−1u−1/2 ‖∇/ 4β(W )‖L2(Su,u)

+ u−2u−1/2 ‖α(W )‖L2(Su,u)

+ u−2u−1/2 ‖β(W )‖L2(Su,u)

+ u−3u1/2 ‖(ρ(W ), σ(W ))‖L2(Su,u)

)
,

and ∥∥∥Ξ(J2(L̂SextR))
∥∥∥
L2(Su,u)

. (Dε)

(
u−2u−1/2

∥∥(r∇/ )≤1α(W )
∥∥
L2(Su,u)

+ u−2u−1/2
∥∥(r∇/ )≤1β(W )

∥∥
L2(Su,u)

)
,∥∥∥Ξ(J3(L̂SextR))

∥∥∥
L2(Su,u)

. (Dε)

(
u−2u−1/2

∥∥(r∇/ )≤1α(W )
∥∥
L2(Su,u)

+ u−2u−1/2
∥∥(r∇/ )≤1β(W )

∥∥
L2(Su,u)

+ u−3u1/2
∥∥(r∇/ )≤1(ρ(W ), σ(W ))

∥∥
L2(Su,u)

)
.

Thus, ∥∥∥u3+1/2+γΞ(J(L̂SextW ))
∥∥∥
L2(Mext)

. (Dε)

(∥∥∥u1+1/2+γu−1/2(r∇/ )≤1α(W )
∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−1/2(u∇/ 3)α(W )

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−1/2(u∇/ 4)α(W )

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−1/2(r∇/ )≤1β(W )

∥∥∥
L2(Mext)

+
∥∥∥u1+1/2+γu−1/2(u∇/ 4)β(W )

∥∥∥
L2(Mext)

+
∥∥∥u1/2+γu1/2(r∇/ )≤1(ρ(W ), σ(W ))

∥∥∥
L2(Mext)

)
,

and using the L2(Mext) bounds (5.40), we have∥∥∥u3+1/2+γΞ(J(L̂SextW ))
∥∥∥
L2(Mext)

. (Dε)2,

provided that 0 < γ < 1. Arguing as previously, using Cauchy-Schwartz and the L2(Mext) bounds (5.40)
gives the desired control. This finishes the proof of Lemma 5.13.
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6. Null curvature estimates in C∗ ∩ Mext and
Mext

In this section, we prove the following proposition.

Proposition 6.1. Recall that from Proposition 5.1, we have∫
(τ)Σext

t

P · T ext
+

∫
Cu∩(τ)Mext

P · e4 +

∫
C∗∩(τ)Mext

P · e3 . ε
2, (6.1)

for a fixed transition parameter τ , for all 1 ≤ u ≤ τu∗ and for all t◦ ≤ t ≤ t∗, and where P denote the
following contracted and commuted Bel-Robinson tensors

Q
(
L̂TextR

)
(Kext,Kext,Kext), Q

(
L̂OextR

)
(Kext,Kext,Text),

Q
(
L̂OextL̂OextR

)
(Kext,Kext,Text), Q

(
L̂SextL̂TextR

)
(Kext,Kext,Kext),

Q
(
L̂OextL̂TextR

)
(Kext,Kext,Text).

Under the Bootstrap Assumptions, the energy estimates (6.1), and for ε > 0 sufficiently small, we have

� the following L2 bounds on the exterior cone C∗ ∩ (τ)Mext

R∗≤2 . ε, (6.2a)

� the following L2 bounds on (τ)Mext

Rext
≤2,γ .γ ε, (6.2b)

for all γ > 0,1

� the following L∞u H̃
1/2 bounds on C∗ ∩ (τ)Mext

R∗≤1 . ε, (6.2c)

where the norms are restricted to C∗ ∩ (τ)Mext
,

� the following L∞u,uH̃
1/2 bounds in (τ)Mext

Rext
≤1 . ε. (6.2d)

We refer the reader to the norm definitions of Section 3.2.1.

Remark 6.2. Proposition 6.1 does not provide bounds for the mean value ρ, σ. These are obtained in
Sections 9 and 10. See also Remark 6.4.

The proof of the estimates (6.2) relies on the following localised control on the 2-spheres Su,u for the null
curvature tensors and their derivatives in terms of the (contracted) Bel-Robinson tensors used in Section 5.
The proof of Proposition 6.3 is provided in Section 6.3.

Proposition 6.3. On each 2-sphere Su,u of the exterior region Mext, the following control holds(
R≤1(u, u)

)2
. Q1(u, u) + (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) , (6.3a)

(R≤1(u, u))
2 . Q1(u, u) + (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) , (6.3b)(

R≤2(u, u)
)2
. Q≤2(u, u) + (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) , (6.3c)

(R≤2(u, u))
2 . Q≤2(u, u) + (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) , (6.3d)

1In particular, the bound holds with γ = γ0 where 0 < γ0 < 1/4 is the fixed numerical constant of Section 3.3.3. This
improves the bound from the Bootstrap Assumption 3.20.

277



Chapter 6. Null curvature estimates in C∗ ∩Mext and Mext

where we have the following definitions

R0[α](u, u) :=
∥∥u2α

∥∥
L2(Su,u)

, R0[β](u, u) :=
∥∥uuβ∥∥

L2(Su,u)
,

R0[ρ](u, u) :=
∥∥u2(ρ− ρ)

∥∥
L2(Su,u)

, R0[σ](u, u) :=
∥∥u2(σ − σ)

∥∥
L2(Su,u)

,

R0[β](u, u) :=
∥∥u2β

∥∥
L2(Su,u)

, Radd0 [α](u, u) :=
∥∥u2α

∥∥
L2(Su,u)

,

and

R1[α](u, u) :=
∥∥u2(r∇/ )α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)α

∥∥
L2(Su,u)

+
∥∥u2(q∇/ 3)α

∥∥
L2(Su,u)

,

R1[β](u, u) :=
∥∥uu(r∇/ )β

∥∥
L2(Su,u)

+
∥∥uu(r∇/ 4)β

∥∥
L2(Su,u)

+
∥∥uu(q∇/ 3)β

∥∥
L2(Su,u)

,

R1[ρ](u, u) :=
∥∥u2(r∇/ )ρ

∥∥
L2(Su,u)

+
∥∥u2r∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥u2q∇/ 3(ρ− ρ)

∥∥
L2(Su,u)

,

R1[σ](u, u) :=
∥∥u2(r∇/ )σ

∥∥
L2(Su,u)

+
∥∥u2r∇/ 4(σ − σ)

∥∥
L2(Su,u)

+
∥∥u2q∇/ 3(σ − σ)

∥∥
L2(Su,u)

,

R1[β](u, u) :=
∥∥u2(r∇/ )β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)β

∥∥
L2(Su,u)

,

R1[α](u, u) :=
∥∥u2(r∇/ )α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)α

∥∥
L2(Su,u)

,

Radd1 [α](u, u) :=
∥∥u2(r∇/ 4)α

∥∥
L2(Su,u)

,

and

R2[α](u, u) :=
∥∥u2r2∇/ 2α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2rq∇/ ∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2q2∇/ 3∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)α

∥∥
L2(Su,u)

,

R2[β](u, u) :=
∥∥uur2∇/ 2β

∥∥
L2(Su,u)

+
∥∥uur2∇/ ∇/ 4β

∥∥
L2(Su,u)

+
∥∥uur2∇/ 4∇/ 4β

∥∥
L2(Su,u)

+
∥∥uurq∇/ ∇/ 3β

∥∥
L2(Su,u)

+
∥∥uuq2∇/ 3∇/ 3β

∥∥
L2(Su,u)

+
∥∥uu(r∇/ 3)(r∇/ 4)β

∥∥
L2(Su,u)

,

R2[ρ](u, u) :=
∥∥u2r2∇/ 2ρ

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥u2rq∇/ ∇/ 3(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥u2q2∇/ 3∇/ 3(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)r∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

,

R2[σ](u, u) :=
∥∥u2r2∇/ 2σ

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4(σ − σ)

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4(σ − σ)

∥∥
L2(Su,u)

+
∥∥u2rq∇/ ∇/ 3(σ − σ)

∥∥
L2(Su,u)

+
∥∥u2q2∇/ 3∇/ 3(σ − σ)

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)r∇/ 4(σ − σ)

∥∥
L2(Su,u)

,

R2[β](u, u) :=
∥∥u2r2∇/ 2β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2rq∇/ 3∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)β

∥∥
L2(Su,u)

,

R2[α](u, u) :=
∥∥u2r2∇/ 2α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 3∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)α

∥∥
L2(Su,u)

.

We moreover define the dual norms

Radd0 [α](u, u) :=
∥∥u2α

∥∥
L2(Su,u)

, R0[β](u, u) :=
∥∥u2β

∥∥
L2(Su,u)

,

R0[ρ](u, u) := ‖uu(ρ− ρ)‖L2(Su,u) , R0[σ](u, u) := ‖uu(σ − σ)‖L2(Su,u) ,

R0[β](u, u) :=
∥∥u2β

∥∥
L2(Su,u)

, R0[α](u, u) :=
∥∥u2α

∥∥
L2(Su,u)

,
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and

R1[α](u, u) :=
∥∥u2(q∇/ )α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)α

∥∥
L2(Su,u)

,

Radd1 [α](u, u) :=
∥∥u2(q∇/ 3)α

∥∥
L2(Su,u)

,

R1[β](u, u) :=
∥∥u2(r∇/ )β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)β

∥∥
L2(Su,u)

+
∥∥u2(q∇/ 3)β

∥∥
L2(Su,u)

,

R1[ρ](u, u) := ‖uu(r∇/ )ρ‖L2(Su,u) + ‖uur∇/ 4(ρ− ρ)‖L2(Su,u) + ‖uuq∇/ 3(ρ− ρ)‖L2(Su,u) ,

R1[σ](u, u) := ‖uu(r∇/ )σ‖L2(Su,u) + ‖uur∇/ 4(σ − σ)‖L2(Su,u) + ‖uuq∇/ 3(σ − σ)‖L2(Su,u) ,

R1[β](u, u) :=
∥∥u2(r∇/ )β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)β

∥∥
L2(Su,u)

+
∥∥u2(q∇/ 3)β

∥∥
L2(Su,u)

,

R1[α](u, u) :=
∥∥u2(r∇/ )α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)α

∥∥
L2(Su,u)

,

and

R2[α](u, u) :=
∥∥u2qr∇/ 2α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2q2∇/ ∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2(q∇/ 3)(r∇/ 4)α

∥∥
L2(Su,u)

,

R2[β](u, u) :=
∥∥u2r2∇/ 2β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2rq∇/ ∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2q2∇/ 3∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)β

∥∥
L2(Su,u)

,

R2[ρ](u, u) :=
∥∥uur2∇/ 2ρ

∥∥
L2(Su,u)

+
∥∥uur2∇/ ∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

+
∥∥uur2∇/ 4∇/ 4(ρ− ρ)

∥∥
L2(Su,u)

+ ‖uurq∇/ ∇/ 3(ρ− ρ)‖L2(Su,u) +
∥∥uuq2∇/ 3∇/ 3(ρ− ρ)

∥∥
L2(Su,u)

+ ‖uu(r∇/ 3)r∇/ 4(ρ− ρ)‖L2(Su,u) ,

R2[σ](u, u) :=
∥∥uur2∇/ 2σ

∥∥
L2(Su,u)

+
∥∥uur2∇/ ∇/ 4(σ − σ)

∥∥
L2(Su,u)

+
∥∥uur2∇/ 4∇/ 4(σ − σ)

∥∥
L2(Su,u)

+ ‖uurq∇/ ∇/ 3(σ − σ)‖L2(Su,u) +
∥∥uuq2∇/ 3∇/ 3(σ − σ)

∥∥
L2(Su,u)

+ ‖uu(r∇/ 3)r∇/ 4(σ − σ)‖L2(Su,u) ,

R2[β](u, u) :=
∥∥u2r2∇/ 2β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 4∇/ 4β

∥∥
L2(Su,u)

+
∥∥u2rq∇/ ∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2q2∇/ 3∇/ 3β

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)β

∥∥
L2(Su,u)

,

R2[α](u, u) :=
∥∥u2r2∇/ 2α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 4α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ ∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2r2∇/ 3∇/ 3α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 3)(r∇/ 4)α

∥∥
L2(Su,u)

+
∥∥u2(r∇/ 4)2α

∥∥
L2(Su,u)

.

We define

R≤1(u, u) := R0(u, u) +Radd0 (u, u) +R1(u, u), R≤2(u, u) := R2(u, u) +Radd1 (u, u) +R≤1(u, u),

R≤1(u, u) := R0(u, u) +Radd0 (u, u) +R1(u, u), R≤2(u, u) := R2(u, u) +Radd1 (u, u) +R≤1(u, u).
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We have the following definitions for integrals of the Bel-Robinson tensors

Q1(u, u) :=

∫
Su,u

(
Q(L̂TextR)(Kext,Kext,Kext, e3) +Q(L̂OextR)(Kext,Kext,Text, e3)

)
,

Q1(u, u) :=

∫
Su,u

(
Q(L̂TextR)(Kext,Kext,Kext, e4) +Q(L̂OextR)(Kext,Kext,Text, e4)

)
,

Q2(u, u) :=

∫
Su,u

(
Q(L̂2

OextR)(Kext,Kext,Text, e3) +Q(L̂OextL̂TextR)(Kext,Kext,Kext, e3)

+Q(L̂SextL̂TextR)(Kext,Kext,Kext, e3)
)
,

Q2(u, u) :=

∫
Su,u

(
Q(L̂2

OextR)(Kext,Kext,Text, e3) +Q(L̂OextL̂TextR)(Kext,Kext,Kext, e3)

+Q(L̂SextL̂TextR)(Kext,Kext,Kext, e3)
)
,

and

Q≤2(u, u) := Q1(u, u) +Q2(u, u), Q≤2(u, u) := Q1(u, u) +Q2(u, u).

Remark 6.4. The terms ρ, σ in the right-hand side of (6.3) are not controlled in terms of the Bel-Robinson
tensors.2 However, as it will be shown in the next section, the terms ‖u(ρ, σ)‖L2(Su,u) and ‖u(ρ, σ)‖L2(Su,u)

have sufficient decay to be integrated in u or u.

6.1 Proof of the L2 bounds (6.2a) and (6.2b) on C∗∩Mext andMext

In this section, we use the control of Proposition 6.3 and the energy estimates of Section 5 to derive the
estimates (6.2a) and (6.2b).

We first have the following control of the curvature fluxes through the hypersurfaces Cu,Σext
t and C∗ ∩Mext.

Lemma 6.5. We have

� for all 1 ≤ u ≤ τu∗ ∫ u∗

τ−1u

(R≤2(u, u))
2

du . ε2, (6.4a)

� for all t◦ ≤ t ≤ t∗∫ 2t−u∗

2t/(1+τ−1)

(R≤2(u, u = 2t− u))
2

+
(
R≤2(u, u = 2t− u)

)2
du . ε2, (6.4b)

� on C∗ ∩Mext ∫ τu∗

1

(
R≤2(u, u∗)

)2
du . ε2. (6.4c)

Proof. From the bounds (6.1) through the hypersurface Cu, the Bootstrap Assumptions 3.20 on ρ and σ,
and the results of Proposition 6.3, we have for all 1 ≤ u ≤ τu∗∫ u∗

τ−1u

(R≤2(u, u))
2

du .
∫ u∗

τ−1u

Q≤2(u, u) du+

∫ u∗

τ−1u

(Dε)2 ‖u(ρ, σ)‖2L2(Su,u) du

. ε2 + (Dε)4

∫ u∗

τ−1u

u4u−6u−4 du

. ε2 + (Dε)4

. ε2,

which proves (6.4a). Estimates (6.4b) and (6.4c) follow similarly from the bounds (6.1) on the Bel-Robinson
tensors through respectively Σext

t and C∗ ∩Mext. Details are left to the reader.

2They are controlled by integrating the associated Bianchi equation (2.35e) and by using the null structure (2.34o) respectively.
See Sections 9 and 10.
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6.2. Proof of the L∞H̃1/2 estimates (6.2c) and (6.2d)

From the result of Lemma 6.5, and an inspection of the definitions of Section 3.2.1, we have on C∗ ∩Mext

R∗≤2 '

(∫ τu∗

1

(
R≤2(u, u∗)

)2
du

)1/2

. ε,

which proves the desired bound (6.2a).

From an inspection of the norms defined in Section 3.2.1 and the results of Lemma 6.5, we deduce

(
Rext
≤2,γ

)2
.
∫ τu∗

1

∫ u∗

τ−1u

(
u−1−2γ (R≤2(u, u))

2
+ u−1−2γ

(
R≤2(u, u)

)2)
dudu

.
∫ τu∗

1

u−1−2γ

∫ u∗

τ−1u

(R≤2(u, u))
2

dudu

+

∫ t∗

t◦
t−1−2γ

∫ 2t−u∗

2t/(1+τ−1)

(R≤2(u, u = 2t− u))
2

+
(
R≤2(u, u = 2t− u)

)2
dudt

. ε2

∫ τu∗

1

u−1−2γ du+ ε2

∫ t∗

t◦
t−1−2γ dt

.γ ε
2,

for all γ > 0, and where we used the coarea formulas from Lemma 3.34 and t ' u in Mext. This finishes the
proof of estimate (6.2b).

6.2 Proof of the L∞H̃1/2 estimates (6.2c) and (6.2d)
The proof of the estimates (6.2c) and (6.2d) boils down to the following two Klainerman-Sobolev estimates
on C∗ ∩Mext and Σext

t respectively. Their proof are postponed to Appendix D.

Lemma 6.6 (Klainerman-Sobolev estimates on C∗ ∩Mext). For all S-tangent tensor F on C∗ ∩Mext, we
have the following L∞u H̃

1/2
(
Su,u∗

)
estimates in C∗ ∩Mext

‖rF‖L∞
1≤u≤τu∗ H̃

1/2(Su,u∗) . ‖F‖L2(C∗∩Mext) + ‖r∇/ F‖L2(C∗∩Mext) + ‖r∇/ 3F‖L2(C∗∩Mext) ,

and ∥∥∥r1/2q1/2F
∥∥∥
L∞

1≤u≤τu∗ H̃
1/2(Su,u∗)

. ‖F‖L2(C∗∩Mext) + ‖r∇/ F‖L2(C∗∩Mext) + ‖q∇/ 3F‖L2(C∗∩Mext) .

Lemma 6.7 (Klainerman-Sobolev estimates on Σext
t ). For all S-tangent tensor F we have the following

L∞u,uH̃
1/2
(
Su,u

)
estimates in Mext

‖uF‖L∞u,uH̃1/2(Su,u) . ‖u
∗F‖L∞u H̃1/2(Su,u∗ ) + ‖F‖L∞t L2(Σext

t )

+ ‖u∇/ F‖L∞t L2(Σext
t ) + ‖u∇/ 3F‖L∞t L2(Σext

t ) + ‖u∇/ 4F‖L∞t L2(Σext
t ) ,

and ∥∥∥u1/2u1/2F
∥∥∥
L∞u,uH̃

1/2(Su,u)
.
∥∥∥u∗1/2u1/2F

∥∥∥
L∞u H̃

1/2(Su,u∗ )
+ ‖F‖L∞t L2(Σext

t )

+ ‖u∇/ F‖L∞t L2(Σext
t ) + ‖u∇/ 3F‖L∞t L2(Σext

t ) + ‖u∇/ 4F‖L∞t L2(Σext
t ) .

First, we apply the degenerate version of the Klainerman-Sobolev estimates of Lemma 6.6, with F the
following respective tensors

u2∇/ ≤1
α, uu∇/ ≤1

β, u2∇/ ≤1
(ρ− ρ), u2∇/ ≤1

(σ − σ),

and the non-degenerate version with F respectively

u2∇/ ≤1
β, u2(r∇/ )≤1α, u2(r∇/ 3)α,
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where ∇/ ∈ {(r∇/ ), (q∇/ 3)}. From an inspection of the definitions of Section 3.2.1, we deduce from the
bounds (6.4c) that

R∗≤1 . R∗≤2 . ε,

where the norms are restricted to C∗ ∩Mext. This proves (6.2c).

From an inspection of the definitions of Section 3.2.1, the Klainerman-Sobolev estimates from Lemma 6.7,
the coarea formulas from Lemma 3.34, the above bound for R∗≤1 and the bounds from Lemma 6.5, we have

Rext
≤1 . R∗≤1 + sup

t◦≤t≤t∗

(∫ 2t−u∗

2t/(1+τ−1)

(R≤2(u, u = 2t− u))
2

+
(
R≤2(u, u = 2t− u)

)2
du

)
. ε2.

This finishes the proof of (6.2d).

6.3 Proof of Proposition 6.3
6.3.1 Control of R≤1(u, u) and R≤1(u, u)
From the definition of Text,Kext, and the decomposition [CK93, p. 150] of the Bel-Robinson tensors in the
null frame (e3, e4), we have∣∣∣u2α

(
L̂OextR

)∣∣∣2 +
∣∣∣uuβ (L̂OextR

)∣∣∣2 +
∣∣∣u2ρ

(
L̂OextR

)∣∣∣2 +
∣∣∣u2σ

(
L̂OextR

)∣∣∣2 +
∣∣∣u2β

(
L̂OextR

)∣∣∣2
. Q

(
L̂OextR

) (
Kext,Kext,Text, e3

)
,

where we denote by Oext any exterior rotation vectorfield (`)Oext for ` = 1, 2, 3.

Moreover, from [CK93, pp. 152-153], we have∣∣∣u2L̂/Oextα
∣∣∣2 +

∣∣∣uuL̂/Oextβ
∣∣∣2 +

∣∣∣u2L̂/Oextρ
∣∣∣2 +

∣∣∣u2L̂/Oextσ
∣∣∣2 +

∣∣∣u2L̂/Oextβ
∣∣∣2

.
∣∣∣u2α

(
L̂OextR

)∣∣∣2 +
∣∣∣uuβ (L̂OextR

)∣∣∣2 +
∣∣∣u2ρ

(
L̂OextR

)∣∣∣2 +
∣∣∣u2σ

(
L̂OextR

)∣∣∣2 +
∣∣∣u2β

(
L̂OextR

)∣∣∣2
+ |Err1|2 ,

where Err1 is an error term, which is treated in Section (6.3.2), and for which we have∫
Su,u

|Err1|2 . (Dε)2
(
R≤1(u, u)

)2
+ (Dε)2

∫
Su,u

|u(ρ, σ)|2 .

Thus, combining these estimates and integrating on Su,u, using the definition of Q1, we obtain∫
Su,u

∣∣∣u2L̂/Oextα
∣∣∣2 +

∣∣∣uuL̂/Oextβ
∣∣∣2 +

∣∣∣u2L̂/Oextρ
∣∣∣2 +

∣∣∣u2L̂/Oextσ
∣∣∣2 +

∣∣∣u2L̂/Oextβ
∣∣∣2 . F(u, u), (6.5)

where

F(u, u) := Q1(u, u) + (Dε)2
(
R≤1(u, u)

)2
+ (Dε)2

∫
Su,u

|u(ρ, σ)|2 .

Using the estimates of the mild Bootstrap Assumptions 3.16 and the Poincaré estimates from Lemma 3.38
we deduce from (6.5) the following estimate∫

Su,u

( ∣∣u2(r∇/ )≤1α
∣∣2 +

∣∣uu(r∇/ )≤1β
∣∣2 +

∣∣u2(r∇/ )≤1(ρ− ρ)
∣∣2

+
∣∣u2(r∇/ )≤1(σ − σ)

∣∣2 +
∣∣u2(r∇/ )≤1β

∣∣2)∫
Su,u

∣∣∣u2L̂/Oextα
∣∣∣2 +

∣∣∣uuL̂/Oextβ
∣∣∣2 +

∣∣∣u2L̂/Oextρ
∣∣∣2 +

∣∣∣u2L̂/Oextσ
∣∣∣2 +

∣∣∣u2L̂/Oextβ
∣∣∣2

. F(u, u).

(6.6)
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Using the Bianchi identities (2.35), we deduce from (6.6) the following control for the ∇/ 3,∇/ 4 derivatives∫
Su,u

( ∣∣u2(r∇/ 4)α
∣∣2 +

∣∣uu(u∇/ 3)β
∣∣2 +

∣∣uu(r∇/ 4)β
∣∣2

+

∣∣∣∣u2u

(
∇/ 3ρ+

3

2
trχρ

)∣∣∣∣2 +

∣∣∣∣u2u

(
∇/ 3σ +

3

2
trχσ

)∣∣∣∣2
+

∣∣∣∣u2u

(
∇/ 4ρ+

3

2
trχρ

)∣∣∣∣2 +

∣∣∣∣u2u

(
∇/ 4σ +

3

2
trχσ

)∣∣∣∣2 +
∣∣u2u∇/ 3β

∣∣2)
. F(u, u) +

∫
Su,u

|Err2|2

. F(u, u),

(6.7)

where the control for the error term Err2 by F is postponed to Section 6.3.2. From (6.7) and the control (6.6)
for ρ− ρ, σ − σ and the mild bounds |rtrχ|+ |rtrχ| . 1, we deduce∫

Su,u

( ∣∣u2(r∇/ 4)α
∣∣2 +

∣∣uu(u∇/ 3)β
∣∣2 +

∣∣uu(r∇/ 4)β
∣∣2

+
∣∣u2u∇/ 3(ρ− ρ)

∣∣2 +
∣∣u2u∇/ 3(σ − σ)

∣∣2
+
∣∣u2u∇/ 4(ρ− ρ)

∣∣2 +
∣∣u2u∇/ 4(σ − σ)

∣∣2 +
∣∣u2u∇/ 3β

∣∣2)
. F(u, u).

(6.8)

Using the other contracted Bel-Robinson tensor of Q1, we have∫
Su,u

∣∣u2u∇/ Textα
∣∣2 +

∣∣u2u∇/ Textβ
∣∣2 . ∫

Su,u

(
Q(L̂TextR)(Kext,Kext,Kext, e3)

)
+

∫
Su,u

|Err3|2

. F(u, u),

where the control of the error term Err3 by F is postponed to Section 6.3.2. Combining with (6.8), we obtain∫
Su,u

∣∣u2u∇/ 3α
∣∣2 +

∫
Su,u

∣∣u3∇/ 4β
∣∣2 . F(u, u). (6.9)

Using Bianchi equation (2.35b), the estimates (6.6) and (6.9) respectively for β and ∇/ 4β, and the elliptic
estimates on 2-spheres from Lemma 3.38, we obtain∫

Su,u

∣∣u2(r∇/ )≤1α
∣∣2 . ∫

Su,u

u4
∣∣(r∇/ 4)≤1β

∣∣2 +

∫
Su,u

|Err4|2

. F(u, u),

where the control of the error term is obtained in Section 6.3.2. Using Bianchi equation (2.35a), one further
obtains ∫

Su,u

∣∣u2r∇/ 3α
∣∣2 . F(u, u) +

∫
Su,u

|Err5|2 . F(u, u).

Summarising the bounds obtained in this section, we have proved(
R≤1(u, u)

)2
. F(u, u) = Q1(u, u) + (Dε)2

(
R≤1(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) ,

which after an absorption argument, concludes the desired control of R≤1(u, u). The control of R≤1(u, u) is
obtained along the same lines and is left to the reader.

6.3.2 Error term estimates from Section 6.3.1
In this section, we show that, under the Bootstrap Assumptions 3.23 on the null connection and rotation
coefficients in Mext, we have for the error terms Err1, · · · ,Err5 from Section 6.3.1

‖Err‖L2(Su,u) . (Dε)R≤1(u, u) + (Dε) ‖u(ρ, σ)‖L2(Su,u) .

The error terms for the dual estimates for R are controlled similarly, and their estimate is left to the reader.

283



Chapter 6. Null curvature estimates in C∗ ∩Mext and Mext

Estimates for Err1 and Err3 We first recall from [CK93, pp. 152–153], relations (2.33) and (2.109) that
for the vectorfields Text and Oext, we have

[Text, e3] = −2ζaea − ωe4,

[Text, e4] = 2ζaea + ωe4,

[Text, ea] = Π ([T, ea]) +
1

2
ξ
a
e4,

and

[Oext, e3] = −(ζ ·Oext)e3 − (ξ ·Oext)e4 − Y,
[Oext, e4] = 0,

[Oext, ea] = Π
(
[Oext, ea]

)
,

where Π([T, ea]) and Π([Oext, ea]) are the projection on S of [T, ea] and [Oext, ea] respectively, and play no
role in the argument below.

With the notations of [CK93, pp. 152–153], we thus have

(Text)P = −2ζ, (Text)P = 2ζ,

(Text)M = 0, (Text)M = ω,

(Text)N = −ω, (Text)N = 0,

(Text)Q = ξ, (Text)Q = 0,

(6.10)

and

(Oext)P = −Y, (Oext)P = 0,

(Oext)M = −ζ ·Oext, (Oext)M = 0,

(Oext)N = −ξ ·Oext, (Oext)N = 0,

(Oext)Q = 0, (Oext)Q = 0,

(6.11)

From direct computation or from relations (2.112), we also have

tr(Text)π = −2ω +
(
trχ+ trχ

)
, (6.12)

and

tr(Oext)π = 2ζ ·Oext + trH (6.13)

and that

(T )π̂ab =
1

2
ω +

1

4
(trχ+ trχ)g/ab + χ̂ab + χ̂

ab
, (6.14)

(Oext)π̂ab = Hab −
1

4
(2ζ ·Oext + trH)g/ab. (6.15)

From the formulas of [CK93, pp. 152-153], we have

null
(
L̂XR

)
− L̂/Xnull(R) = A ·R, (6.16)

whereA are Lie coefficients P, P ,Q,Q,M,M, trπ, π̂ab from (6.10), (6.12) and (6.14) forX = Text and (6.11), (6.13)
and (6.15) for X = Oext and where R ∈ {α, · · · , α} with signature s(R) = s(null)± 1.

We first estimate ∥∥∥upuq (null
(
L̂OextR

)
− L̂/Oextnull(R)

)∥∥∥
L2(Su,u)

(6.17)
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where up, uq are the appropriate powers of u and u given in Section 3.2.1.

From the expression of the Lie coefficients A of Oext given in (6.11), (6.13) and (6.15) and the decay estimates
of the Bootstrap Assumptions 3.23, we have

‖uA‖L∞(Mext) . Dε.

From formula (6.16), we have∥∥∥upuq (null
(
L̂OextR

)
− L̂/Oextnull(R)

)∥∥∥
L2(Su,u)

. ‖uA‖L∞
∥∥upuq−1R

∥∥
L2(Su,u)

,

where R ∈ {α, · · · , α} with s(R) = s(null)± 1.

We have ∥∥upuq−1R
∥∥
L2(Su,u)

. R≤1(u, u) + ‖u(ρ, σ)‖L2(Su,u) ,

and the control of Err1 follows.

From the expression of the Lie coefficients A of Text given in (6.10), (6.12) and (6.14) and the Bootstrap
Assumptions 3.23, we have

‖uuA‖L∞(Mext) . Dε,∥∥u2 (P,Q)
∥∥
L∞(Mext)

. Dε.

and we therefore deduce from an inspection of [CK93, pp. 152–153]∥∥∥upuq (null
(
L̂TextR

)
− L̂/Textnull(R)

)∥∥∥
L2(Su,u)

. (Dε)
(
R≤1(u, u) + ‖u(ρ, σ)‖L2(Su,u)

)
.

Moreover, we have schematically for R ∈
{
α, β, β

}
L̂/TextR−∇/ TextR =

(
χ+ χ

)
·R,

and we therefore deduce, using the Bootstrap Assumptions 3.23, that∥∥∥upuq (L̂/TextR−∇/ TextR
)∥∥∥

L2(Su,u)
.
∥∥u (χ+ χ

)∥∥
L∞

∥∥upuq−1R
∥∥
L2(Su,u)

. (Dε)R≤1(u, u),

which concludes the control of Err3.

Estimates for Err2,Err4 and Err5 We shall only treat the term Err5, for the other error terms will follow
similarly.

From Bianchi equation (2.35a) and the relations of Lemma 2.11, we have

Err5 = u3 (2ωα− 3 (χ̂ρ+ ∗χ̂σ) + 5ζ ⊗ β) .

Thus, using the Bootstrap Assumptions 3.23

‖Err5‖L2(Su,u)

. (Dε)
(∥∥u2α

∥∥
L2(Su,u)

+
∥∥u2β

∥∥
L2(Su,u)

+
∥∥u2(ρ− ρ, σ − σ)

∥∥
L2(Su,u)

)
+ (Dε) ‖u(ρ, σ)‖L2(Su,u)

. (Dε)
(
R≤1(u, u) + ‖u(ρ, σ)‖L2(Su,u)

)
,

as desired. This finishes the control of the error terms Err2,Err4 and Err5.
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6.3.3 Control of R≤2(u, u) and R≤2(u, u)
In this section, we argue as in Section 6.3.1 to obtain the control of R≤2(u, u) and R≤2(u, u). The error
terms are dealt with arguing as in Section 6.3.2, using L∞(Mext) for the connection and rotation coefficients
and L∞u,uL

4(Su,u) estimates for derivatives of the connection and rotation coefficients. This treatment of the
error terms is left to the reader.

Remark 6.8. From Bianchi equations (2.35e), (2.35g), (2.35d) and (2.35f) for ∇/ 3,∇/ 4 derivatives of ρ, σ,
and the Bootstrap Assumptions 3.23 for the null connection coefficients, we have∥∥u2 (∇/ 3,∇/ 4) (ρ, σ)

∥∥
L2(Su,u)

. (Dε)R≤2(u, u) + ‖u(ρ, σ)‖L2(Su,u) .

Thus, derivatives of ρ, σ shall in the sequel directly be replaced using the above estimate.

Remark 6.9. Using the mild Bootstrap Assumptions 3.16 and the Bootstrap Assumptions 3.23 for the
rotation vectorfields Oext, one can obtain the following higher order tangential derivatives estimates∫

Su,u

∣∣(r∇/ )2F
∣∣2 . 3∑

`,`′=1

∫
Su,u

∣∣∣L̂(`)OextL̂(`′)OextF
∣∣∣2 +

∫
Su,u

∣∣(r∇/ )≤1F
∣∣2 , (6.18)

for all S-tangent tensor F and for all 2-sphere Su,u ⊂Mext.

Arguing as in Sections 6.3.1 and 6.3.2, using (6.18) we have∫
Su,u

( ∣∣u2(r∇/ )≤2α
∣∣2 +

∣∣uu(r∇/ )≤2β
∣∣2 +

∣∣u2(r∇/ )≤2(ρ− ρ)
∣∣2 +

∣∣u2(r∇/ )≤2(σ − σ)
∣∣2 +

∣∣u2(r∇/ )≤2β
∣∣2)

.
∫
Su,u

Q
(
L̂OextL̂OextR

)
(Kext,Kext,Text, e3) + (Dε)2

(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) ,

and ∫
Su,u

( ∣∣u3(r∇/ )∇/ Textα
∣∣2 +

∣∣u3(r∇/ )∇/ Textβ
∣∣2)

.
∫
Su,u

Q
(
L̂OextL̂TextR

)
(Kext,Kext,Kext, e3) + (Dε)2

(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) .

Using these two estimates with Bianchi equations (2.35) commuted with (r∇/ ) as in Section 6.3.1, we deduce∫
Su,u

( ∣∣u2(r∇/ )(u∇/ 3)α
∣∣2 +

∣∣u2(r∇/ )(r∇/ 4)α
∣∣2 +

∣∣uu(r∇/ )(u∇/ 3)β
∣∣2 +

∣∣uu(r∇/ )(r∇/ 4)β
∣∣2

+
∣∣u2u(r∇/ )∇/ 3(ρ− ρ)

∣∣2 +
∣∣u2u(r∇/ )∇/ 3(σ − σ)

∣∣2 +
∣∣u2u(r∇/ )∇/ 4(ρ− ρ)

∣∣2
+
∣∣u2u(r∇/ )∇/ 4(σ − σ)

∣∣2 +
∣∣u2u(r∇/ )∇/ 3β

∣∣2 +
∣∣u2(r∇/ )(u∇/ 4)β

∣∣2)
. Q≤2(u, u) + (Dε)2

(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) .

Taking ∇/ 3,∇/ 4 derivative in Bianchi equations (2.35), we deduce from the above estimates

(
R≤2(u, u)

)2 − ∫
Su,u

∣∣u2(u∇/ 3)2α
∣∣2 − ∫

Su,u

∣∣u2(u∇/ 4)2β
∣∣2 − ∫

Su,u

∣∣u4(∇/ ,∇/ 3)(∇/ ,∇/ 3,∇/ 4)α
∣∣2

. Q≤2(u, u) + (Dε)2
(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) .

Using the last Bel-Robinson tensor of Q≤2 and the above estimate, we have∫
Su,u

( ∣∣u4∇/ 2
3α
∣∣2 +

∣∣u4∇/ 2
4β
∣∣2)

.
∫
Su,u

Q
(
L̂SextL̂TextR

)
(Kext,Kext,Kext, e3) + (Dε)2

(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) .
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Using (commuted) Bianchi equations (2.35a) (2.35b) for ∇/ 3α and div/ α, the elliptic estimates of Lemma 3.38
and the above estimates for (derivatives of) β we deduce∫

Su,u

∣∣u4(∇/ ,∇/ 3)(∇/ ,∇/ 3,∇/ 4)α
∣∣2 . ∫

Su,u

∣∣u2(u∇/ 4, u∇/ )≤1(u∇/ , u∇/ 3, u∇/ 4)≤1β
∣∣2

. Q≤2(u, u) + (Dε)2
(
R≤2(u, u)

)2
+ (Dε)2 ‖u(ρ, σ)‖2L2(Su,u) .

Using an absorption argument, this concludes the desired control of R≤2(u, u). The control of R≤2(u, u)
follows along the same lines and this finishes the proof of Proposition 6.3.
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7. Maximal curvature estimates in Mint
bot

In this section, we prove the following proposition.

Proposition 7.1. Recall that from Proposition 5.1, we have in (τ)Mint
bot∫

(τ)Σt

Q(L̂TintR)(Kint,Kint,Kint, T ) . ε2, (7.1a)∫
(τ)Σt

Q(L̂SintL̂TintR)(Kint,Kint,Kint, T ) . ε2, (7.1b)

for a fixed transition parameter τ and for all (τ)t◦ ≤ t ≤ (τ)t∗. Recall that from Proposition 6.1, we have on
(τ)T ∥∥∥t3∇/ ≤1

R
∥∥∥
L∞t H̃

1/2(∂Σt)
. ε, (7.2)

for ∇/ ∈ {(t∇/ , t∇/ 3, t∇/ 4)} and R ∈
{
α, β, ρ, σ, β, α

}
.

Under the Bootstrap Assumptions, and the estimates (7.1) and (7.2), we have the following bound in (τ)Mint
bot

for ε > 0 sufficiently small

Rint
≤2 . ε, (7.3)

where we refer the reader to Section 3.2.2 for definitions.

Remark 7.2. Using Sobolev estimates (see Lemma 7.3), one directly deduces from (7.3) that

Rint
≤1 . ε

in (τ)Mint
bot. See Section 3.2.2 for definitions.

7.1 Preliminary results
We have the following Sobolev embeddings on the maximal hypersurfaces Σt of Mint

bot.

Lemma 7.3 (Sobolev estimates on Σt). Under the mild Bootstrap Assumptions 3.17, we have for all
t◦ ≤ t ≤ t∗ and for all Σt-tangent tensor F

‖F‖L6(Σt)
. ‖∇F‖1/2L2(Σt)

‖F‖1/2L2(Σt)
+ t−1 ‖F‖L2(Σt)

,

‖F‖L∞(Σt)
.
∥∥∇2F

∥∥3/4

L2(Σt)
‖F‖1/4L2(Σt)

+ t−3/2 ‖F‖L2(Σt)
.

Proof. A rescaling in t of the estimates of [CG19b, Section 3] gives the result.

We have the following elliptic estimates for div-curl systems on Σt.

Lemma 7.4 (Elliptic estimates for div-curl systems on Σt). Assume that the mild Bootstrap Assumptions 3.17
are satisfied and that the following bounds hold∥∥∥∥t5/2(trθ − 2

r

)∥∥∥∥
L∞(T )

. Dε,∥∥∥t5/2θ̂∥∥∥
L∞(T )

. Dε.

Then, for ε > 0 sufficiently small, we have for all symmetric traceless Σt-tangent 2-tensor F∫
Σt

∣∣(t∇)≤1F
∣∣2 . ∫

Σt

(
t2|divF |2 + t2|curlF |2

)
+ t2

∣∣∣∣∫
∂Σt

F/N · ∇/ (FNN )

∣∣∣∣ ,
where F/N is the ∂Σt-tangent 1-tensor defined by F/Na := FNa.

289



Chapter 7. Maximal curvature estimates in Mint
bot

Proof. The result of the lemma is a straight-forward generalisation of the estimates obtained for k in [CG19b,
Section 4.7] and a t-rescaling (see in particular estimate (4.32) in that paper). Details are left to the
reader.

We have the following variation of Lemma 7.4, which will be used in Section 7.3 to control L̂TE and L̂TH
(see also [CK93, pp. 104-105] for an analogous result in the case without boundary).

Lemma 7.5 (Elliptic estimates for modified div-curl systems on Σt). Assume that the hypothesis of
Lemma 7.4 hold. There exists a sufficiently small constant ℘ > 0, such that if X is a Σt-tangent vectorfield
with |X| ≤ ℘ and |(t∇)X| . 1 on Σt, then, for all symmetric traceless Σt-tangent 2-tensors F,G, we have∫

Σt

|(t∇)F |2 + |(t∇)G|2 .
∫

Σt

(
t2|divF |2 + t2|divG|2

)
+

∫
Σt

t2
(∣∣∣curlF + L̂XG

∣∣∣2 +
∣∣∣curlG− L̂XF

∣∣∣2)
+

∫
Σt

(
|F |2 + |G|2

)
+ t2

∣∣∣∣∫
∂Σt

F/N · ∇/ (FNN )

∣∣∣∣+ t2
∣∣∣∣∫
∂Σt

G/N · ∇/ (GNN )

∣∣∣∣
Proof. The result follows from a rescaling of Σt to a disk of radius 1, a generalisation of the estimates
from [CG19b] and an absorption argument, provided that |X| ≤ ℘ is sufficiently small. Details are left to
the reader.

We have the following higher order elliptic estimates for div-curl systems, which is used to control ∇2E and
∇2H in Section 7.3.

Lemma 7.6 (Higher order elliptic estimates on Σt). Under the Bootstrap Assumptions 3.17, we have for all
traceless symmetric Σt-tangent 2-tensor F∫

Σt

|(t∇)2F |2 .
∫

Σt

t4|∇divF |2 +

∫
Σt

t4|∇curlF |2 +

∫
Σt

∣∣(t∇)≤1F
∣∣2

+ t4 ‖∇/ F/‖2H̃1/2(∂Σt)
+ t4 ‖∇/ F/N‖

2
H̃1/2(∂Σt)

+ t4 ‖∇/ (FNN )‖2
H̃1/2(∂Σt)

,

where F/, F/N are respectively the projections of F and FN · as ∂Σt-tangent tensors.

Proof. The proof follows from rescaling in t and the results of [CG19b, Appendix A].

7.2 Control of Rint
≤1

Control of L̂TE, L̂TH Using (7.1a), the fact that Tint = T , and that – by the mild Bootstrap Assump-
tions 3.18 –, Kint is a future-pointing timelike vectorfield satisfying comparison bounds (3.2) with T , we
have ∫

Σt

t6
∣∣∣L̂TR

∣∣∣2 . ∫
Σt

Q(L̂TintR)(Kint,Kint,Kint, T ) . ε2.

One has schematically

L̂TE, L̂TH = L̂TR + R ·DT ,

from which, using the Bootstrap Assumptions 3.21 and 3.28 on the curvature and on DT respectively, one
deduces that ∥∥∥t3L̂TE∥∥∥

L2(Σt)
+
∥∥∥t3L̂TH∥∥∥

L2(Σt)
. ε. (7.4)
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Control of ∇≤1(E,H) From Maxwell equations (2.14), the traceless symmetric Σt-tangent 2-tensor E
satisfies schematically the following div-curl system

trE = 0,

divE = Err(div, E),

curlE = L̂TH + Err(curl, E),

(7.5)

where the error terms Err(div, E), Err(curl, E) are of the following form

Err = (∇n, k) · (E,H).

Using (7.5) and the elliptic estimate from Lemma 7.4, we have∫
Σt

t4
∣∣(t∇)≤1E

∣∣2 . ∫
Σt

t6|L̂TH|
2 + t6

∣∣∣∣∫
∂Σt

E/N · ∇/ (ENN )

∣∣∣∣+

∫
Σt

t6|Err|2

. ε2 + t6
∣∣∣∣∫
∂Σt

E/N · ∇/ (ENN )

∣∣∣∣ ,
where the error terms are estimated using the Bootstrap Assumptions 3.21 and 3.28.

From relations (2.15) and (2.16) between T ,N and e3, e4, one has

ENN = R(T ,N, T ,N)

=
1

4
R(e3, e4, e3, e4)

= ρ.

Using an H1/2 ×H−1/2 estimate on ∂Σt,
1 we have

t6
∣∣∣∣∫
∂Σt

E/N · ∇/ (ENN )

∣∣∣∣ . t6 ‖E/N‖H̃1/2(∂Σt)
‖ρ− ρ‖H̃1/2(∂Σt)

.

Using the trace estimates (7.2) for ρ− ρ and an absorption argument for E/N , we therefore conclude∫
Σt

t4
∣∣(t∇)≤1E

∣∣2 . ε2,

as desired. The estimates for ∇≤1H follow similarly. This concludes the control of Rint
≤1.

7.3 Control of Rint
2

Control of L̂SintL̂T (E,H) Using (7.1b) and the mild Bootstrap Assumptions 3.18, one has∫
Σt

(
t6
∣∣∣L̂SintL̂TE

∣∣∣2 + t6
∣∣∣L̂SintL̂TH

∣∣∣2) . ε2. (7.6)

Control of ∇L̂T (E,H) and L̂2
T

(E,H) Commuting Maxwell equations (2.14) with L̂T , one has the

following div-curl system for the symmetric traceless Σt-tangent 2-tensor L̂TE and L̂TH

trL̂TE = 0,

divL̂TE = Err(div, L̂TE),

curlL̂TE = L̂T L̂TH + Err(curl, L̂TE),

(7.7)

and

trL̂TH = 0,

divL̂TH = Err(div, L̂TH),

curlL̂TH = −L̂T L̂TE + Err(curl, L̂TH),

(7.8)

1Such an estimate can be obtained from the definitions [Sha14, pp. 834–836] and [CG19a, Appendix B].
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where the error terms are of the form

Err =

(
∇≤2(n− 1) +∇≤1L̂≤1

T
(n− 1) +

(
∇, L̂T

)≤1

k

)
· (E,H)

+
(
∇≤1(n− 1) + k

)
·
(

(∇, L̂T )≤1(E,H)
)
.

From the definition of Sint and Xint in Section 2.5, we have

L̂T L̂T (E,H) = L̂t−1SintL̂T (E,H)− L̂t−1XintL̂T (E,H). (7.9)

Using (7.4), (7.6) and the Bootstrap Assumptions 3.24 to control the derivatives of t, we have∫
Σt

t8
∣∣∣L̂t−1SintL̂T (E,H)

∣∣∣2 . ε2. (7.10)

We define X to be the projection of t−1Xint on Σt, i.e.

t−1Xint =: −g(t−1Xint, T )T +X.

From the bootstrap bound (3.7), we have∣∣(tD)≤1g(t−1Xint,Tint)
∣∣ . (Dε)t−3/2,

and the T component of Xint in (7.9) can be treated as an error term in the following rewriting of the
div-curl systems (7.7) and (7.8)

trL̂TE = 0,

divL̂TE = Err,

curlL̂TE + L̂X L̂TH = L̂t−1SintL̂TH + Err,

(7.11)

and

trL̂TH = 0,

divL̂TH = Err,

curlL̂TH − L̂X L̂TE = −L̂t−1SintL̂TE + Err.

(7.12)

From the bootstrap bound (3.6), we have∣∣∣∣sup
Σt

|X| − 1− τ
1 + τ

∣∣∣∣ . εt−3/2.

Therefore, there exists a numerical constant 0 < τ0 < 1, such that for all transition parameters τ , i.e.
τ0 ≤ τ ≥ (1 + τ0)/2, and for ε > 0 sufficiently small, we have

|X| ≤ ℘,

in Mint
bot, where ℘ is the constant from Lemma 7.5. Moreover, from the Bootstrap Assumptions 3.28 on

DXint, we have

|(t∇)X| . 1.

One can therefore apply the result of Lemma 7.5 to the modified div-curl systems (7.11) and (7.12) for L̂TE
and L̂TH, using estimate (7.10) and the estimates for the lower order terms obtained in Section 7.2 and the
Bootstrap Assumptions 3.21 and 3.24 to control the nonlinear error terms, and we have∫

Σt

t6
∣∣∣(t∇)L̂T (E,H)

∣∣∣2 . ε2 +

∣∣∣∣∫
∂Σt

L̂TEN · ∇/
(
L̂TENN

)∣∣∣∣+

∣∣∣∣∫
∂Σt

L̂THN · ∇/
(
L̂THNN

)∣∣∣∣ .
We have on ∂Σt

L̂TENN = e3(ρ) + e4(ρ) + Err.
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Therefore using the trace estimates (7.2) and H−1/2 ×H1/2 estimates as previously gives the control of the
integral boundary term for L̂TE. Arguing similarly gives the control of the integral boundary term for L̂TH,
and we finally obtain ∫

Σt

t6
∣∣∣(t∇)≤1L̂T (E,H)

∣∣∣2 . ε2. (7.13)

Using (7.9) and the above mentioned controls for Xint, we also deduce from (7.10) and (7.13) that∫
Σt

t8
∣∣∣L̂2
T

(E,H)
∣∣∣2 . ε2.

Control of ∇2(E,H) The control of ∇2E follows from an application of the higher order elliptic estimates
of Lemma 7.6 to the div-curl systems (7.5), using the estimate (7.13) for ∇L̂TH and the trace estimates (7.2).
The estimate for ∇2H follow similarly.

Control of D≤2R Using the definition (2.9) of E,H, the control of T ,DT ,D2T from the Bootstrap
Assumptions 3.28, and the Bootstrap Assumptions 3.21, one deduces from the bounds obtained for E,H that∥∥t2(tD)≤2R

∥∥
L2(Σt)

. ε,

for all t◦ ≤ t ≤ t∗, and where the norms are taken with respect to the maximal frame. This finishes the
proof of (7.3).
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8. Remaining curvature estimates
In this section, we prove that curvature estimates hold in the interior of the cone C∗ ∩(τ) Mint. We
also prove that the curvature estimates hold on all hypersurfaces associated to all transition parameter
τ0 ≤ τ ≤ (1 + τ0)/2. Both arguments go by rescaling and local energy estimates.

8.1 Null curvature estimates on C∗ ∩Mint

In this section, we prove the following proposition.

Proposition 8.1. Recall that from Proposition 7.1, we have on (τ)Σt∗∥∥∥t∗2(t∗D)≤2R
∥∥∥
L2((τ)Σt∗ )

. ε, (8.1)

for a fixed transition parameter τ .

Under the Bootstrap Assumptions and (8.1) and for ε > 0 sufficiently small, we have the following bounds

for the null curvature components on the interior of the last cone C∗ ∩ (τ)Mint

R∗≤2 . ε. (8.2)

Moreover, we also have the following L∞H̃1/2 estimates in C∗ ∩ (τ)Mint

R∗≤1 . ε. (8.3)

We refer the reader to Section 3.2.1 for definitions.

Remark 8.2. The L2-norms of (8.2) (see the definitions of Section 3.2.1) allow for a degeneracy of the type
R ∼ r−3/2 when r → 0 (see the Sobolev embeddings of Lemma 6.6). This is suboptimal by far and could be
easily improved using that we obtain independently the uniform boundedness of the spacetime curvature tensor
|R| . ε in the extended spacetime of Section 8.1.1. In this section, we could improve the L2-bounds (8.2) by
a more careful analysis of relations between Cartesian and spherical derivatives, see Remark 8.3. However –
since the null decompositions of R are multi-valued at the vertex –, there is no hope to obtain L2 norms on C∗
sufficiently regular to get boundedness of R when r → 0 via Sobolev embeddings, since continuity would follow
as well. As a consequence, we do not seek for rates in r in the L2 norms better than the (easily obtained)
ones of (8.2). Fortunately, we can still obtain a control of the null connection coefficients consistent with the
potential r−3/2 singularity of the null curvature components on the cone C∗ (see Remark 9.3 and [Wan09]).

8.1.1 r∗-rescaling, extension and local existence from Σt∗

We perform a r∗-rescaling of the last maximal hypersurface Σt∗ to a maximal hypersurface Σ1 of size 1, i.e.
such that ∂Σ1 has area radius 1.1 The bounds (8.1) rewrite as∥∥D≤2R

∥∥
L2(Σ1)

. ε1, (8.4)

where

ε1 := ε(t∗)−3/2,

and the bounds from the Bootstrap Assumptions 3.27 and 3.24 as2∥∥∂≤4 (gij − δij)
∥∥
L2(Σ1)

. Dε1,∥∥∇≤3k
∥∥
L2(Σ1)

. Dε1.
(8.5)

Using the extension theorem [Czi18, Theorem 3.1], we obtain an extension g̃ij , k̃ij of (gij , kij) defined on R3,

i.e. such that g̃ij = gij and k̃ij = kij on Σ1 ' D ⊂ R3, that satisfy the maximal constraint equations, and

1Recall that r∗ is defined to be the area radius of ∂Σt∗ = S∗ and that r∗ ' t∗.
2Bounds for harmonic coordinates are equivalent to bounds for the metric in these coordinates. See also Theorem 4.3.
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such that ∥∥∂≤4 (g̃ij − δij)
∥∥
L2(R3)

. Dε1,∥∥∥∂≤3k̃ij

∥∥∥
L2(R3)

. Dε1,

with suitable fall-off rate at infinity (see [Czi18] for precisions).

Using the local existence result for such an initial data set satisfying the maximal constraint equations on R3

(see [CK93, Theorem 10.2.2]), and provided that Dε1 is sufficiently small, there exists a spacetime Dε1-close
to [0, 3/2] × R3 ⊂ R1+3 (see [CK93] for the precise definitions). This spacetime admits a maximal time
function t̃ such that t̃ = 0 on Σ1 and we have the following control for the norms of the spacetime curvature
tensor in the maximal frame norm

‖R‖L∞ . Dε1,

‖DR‖L∞
t̃
L6(Σt̃)

. Dε1,∥∥D2R
∥∥
L∞
t̃
L2(Σt̃)

. Dε1,

(8.6)

locally in the domain of dependence of Σ1. Moreover, there exists approximate Cartesian Killing vectorfields
∂µ for µ = 0, 1, 2, 3, such that

‖D∂µ‖L∞ . Dε1,∥∥D2∂µ
∥∥
L∞
t̃
L2(Σt̃)

. Dε1,∥∥D3∂µ
∥∥
L∞
t̃
L2(Σt̃)

. Dε1,

(8.7)

and where ∂0 is defined as

∂0 :=
Dt̃

(−g(Dt̃,Dt̃))1/2
.

8.1.2 Energy estimates in Mint
top

We define the spacetime region D1 to be the future domain of dependence of Σ1.3 In this section, we apply en-
ergy estimates in the region D1 to obtain the desired curvature control on the r∗-rescaling of the cone C∗∩Mint.

More precisely, we integrate the following contracted Bel-Robinson tensors in D1

Q(R)(∂0, ∂0, ∂0), Q(L̂∂µR)(∂0, ∂0, ∂0), Q(L̂∂µL̂∂νR)(∂0, ∂0, ∂0),

where the vectorfields ∂µ are the approximate Cartesian Killing fields from Section 8.1.1.

For each estimates, the spacetime error term in D1 is controlled using the estimates (8.6) and (8.7) (see
also the treatment of the error terms in Mint

bot and Mext in Section 5). We therefore obtain the following
estimates on the future boundary C1 of D1∫

C1
Q(R)(∂0, ∂0, ∂0, e3) .

∫
Σ1

Q(R)(∂0, ∂0, ∂0, T ) + (Dε1)3,∫
C1
Q(L̂∂µR)(∂0, ∂0, ∂0, e3) .

∫
Σ1

Q(L̂∂µR)(∂0, ∂0, ∂0, T ) + (Dε1)3,∫
C1
Q(L̂∂µL̂∂νR)(∂0, ∂0, ∂0, e3) .

∫
Σ1

Q(L̂∂µL̂∂νR)(∂0, ∂0, ∂0, T ) + (Dε1)3,

where T is the future-pointing unit normal to Σ1.

3D1 corresponds to the r∗ rescaling of Mint
top.
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Using the improved curvature estimate (8.4) and the control (8.7) of the vectorfields ∂µ on Σ1, this yields∫
C1
Q(R)(∂0, ∂0, ∂0, e3) . ε2

1,∫
C1
Q(L̂∂µR)(∂0, ∂0, ∂0, e3) . ε2

1,∫
C1
Q(L̂∂µL̂∂νR)(∂0, ∂0, ∂0, e3) . ε2

1,

(8.8)

for ε1 sufficiently small.

We now compare the coordinate vectorfields ∂0 to T := 1
2 (e3 + e4) on C1. Since ∂0 = T on Σ1, we have on

∂Σ1

g(∂0, T ) = g(T , T ) = −1

2

(
ν−1 + ν

)
.

From the (rescaled) bootstrap bound on ν from the Bootstrap Assumptions 3.24, this gives on ∂Σ1

|g(∂0, T ) + 1| . Dε1.

Using the relations (2.33), we further have

|De3(g(∂0, T ))| . |D∂0||e3|+ |De3e3|+ |De3e4|
. |D∂0||e3|+ |η||ea|+ |ω|(|e3|+ |e4|),

where the norms are taken with respect to the maximal frame (i.e. e0 = ∂0 in the notations of Definition 3.1).

Using the Bootstrap Assumptions 3.22 on the null connection coefficients on C∗ and (8.7), we obtain

|De3(g(∂0, T ))| . r−1/2Dε1 (|e3|+ |e4|+ |ea|) .

From Remark 3.2, using that e3, e4 are future-pointing, we have

|e3|+ |e4| = −
√

2g(e3, ∂0)−
√

2g(e4, ∂0) = 2
√

2g(T, ∂0),∑
a=1,2

|ea|2 = 2 + 2
∑
a=1,2

|g(∂0, ea)|2 ≤ 2 +
(
|∂0|2T

)
≤ 1 + 2|g(∂0, T )|2,

where | · |T is the frame norm with respect to T .

Thus, we have

|De3(g(∂0, T ))| . r−1/2Dε1 (1 + |g(∂0, T )|) ,

and from a Grönwall argument, integrating from r = 1 to r = 0, we obtain

|g(∂0, T ) + 1| . Dε1 (8.9)

on C1, i.e. the frames adapted to ∂0 and T are comparable.

Using (8.8) and (8.9) we obtain ∫
C1
|null(R)|2 . ε2

1,∫
C1

∣∣∣null(L̂∂µR)
∣∣∣2 . ε2

1,∫
C1

∣∣∣null(L̂∂µL̂∂νR)
∣∣∣2 . ε2

1,

(8.10)
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where in that case null ∈ {α, · · · , β}. This provides in particular the first desired estimates for the L2 norms
of the curvature.

Using (8.7) and (8.4), we have∫
C1

∣∣null(D∂µR)
∣∣2 . ∫

C1

∣∣∣null(L̂∂µR)
∣∣∣2 + (Dε1)3,∫

C1

∣∣∣null(D2
∂µ,∂νR)

∣∣∣2 . ∫
C1

∣∣∣null(L̂∂µL̂∂νR)
∣∣∣2 + (Dε1)3,

which, using (8.9) and the resulting comparison between ∂µ and e3, e4, ea further gives∫
C1
|null(DXR)|2 . ε2

1,∫
C1

∣∣null(D2
X,Y R)

∣∣2 . ε2
1,

where X,Y ∈ {e3, e4, ea}.

We have schematically

∇/ Xnull(R) = null(DXR) + R · Γ,

where

Γ ∈ {trχ, trχ, χ̂, χ̂, η, ζ, η, ω}.

Multiplying by r, and since by the Bootstrap Assumptions 3.22,

|rΓ| . 1, (8.11)

we therefore infer that for X ∈ {e3, e4, ea} and since r . 1,∫
C1
|r∇/ Xnull(R)|2 .

∫
C1
r2 |null(DXR)|2 +

∫
C1
|rΓ|2|R|2

. ε2
1.

Similarly, since we have schematically

∇/ X∇/ Y null(R) = null(DX,Y R) + DR · Γ + R · Γ · Γ,

for X,Y ∈ {e3, e4, ea}, multiplying by r2 and taking the L2 norm on C1, we conclude∫
C1

∣∣r2∇/ 2
X,Y null(R)

∣∣2 . ε2
1.

Rescaling back theses estimates on the original cone C∗ ∩Mint gives the desired bounds for the curvature,
and finishes the proof of (8.2).

Remark 8.3. Estimate (8.11) is suboptimal in terms of r-weight for most of the connection coefficients.
More precise bounds together with Hardy estimates (see Lemma 9.4) would lead to improve bounds. See
Remark 8.2.

8.1.3 Proof of the decay estimate (8.3)
The proof of (8.3) boils down to the following Klainerman-Sobolev embeddings.

Lemma 8.4 (Klainerman-Sobolev estimates on C∗ ∩Mint). For all S-tangent tensor F with vertex limit

r3/2|(r∇/ )≤1F | → 0 when r → 0,

we have the following L∞u H̃
1/2
(
Su,u∗

)
estimates in C∗ ∩Mint

‖rF‖L∞
u≥τu∗ H̃

1/2(Su,u∗) . ‖F‖L2(C∗∩Mint) + ‖r∇/ F‖L2(C∗∩Mint) + ‖r∇/ 3F‖L2(C∗∩Mint) .
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The proof of Lemma 8.4 is postponed to Appendix D. We apply the Klainerman-Sobolev estimates of
Lemma 8.4, with F the following respective tensors

u2∇/ ≤1
α, uu∇/ ≤1

β, u2∇/ ≤1
(ρ− ρ), u2∇/ ≤1

(σ − σ), u2∇/ ≤1
β, u2(r∇/ )≤1α, u2(r∇/ 3)α,

where ∇/ ∈ {(r∇/ ), (q∇/ 3)}. From Theorems 4.4 and 4.5, these tensors have the asymptotic behaviour
r3/2(r∇/ )≤1R = O

(
r3/2

)
when r → 0 and satisfy in particular the required limits of Lemma 8.4. From an

inspection of the definitions of Section 3.2.1, and using that in C∗ ∩Mint we have r ' q and u ' u, we
deduce from the bounds (8.2) that

R∗≤1 . R∗≤2 . ε,

where the norms are restricted to C∗ ∩Mint. This proves (8.3).

8.2 Curvature estimates for all transition parameters
In this section, we call τ1 := τ the fixed transition parameter given by the mean value argument of
Section 5.1.1. We prove the following proposition.

Proposition 8.5. Recall that from Propositions 7.1, we have

(τ1)Rint
≤2 . ε, (8.12)

in (τ1)Mint
bot. Recall that from Lemma 6.5, we have∫ τ0

−1u

τ−1
1 u

(R≤2(u, u))
2

du . ε2, (8.13)

for all 1 ≤ u ≤ τ1u∗.

Under the Bootstrap Assumptions and estimates (8.12) and (8.13), and for ε > 0 sufficiently small, we have
the following bounds for all transition parameters τ0 ≤ τ ≤ (1 + τ0)/2

(τ)Rext
≤2,γ .γ ε, (8.14)

(τ)Rext
≤1 . ε, (8.15)

for all γ > 0 and

(τ)Rint
≤2 . ε. (8.16)

We refer to Sections 3.2.1 and 3.2.2 for the definitions of these norms. Here we indicate by (τ) the dependency
on either just the covered domain (in estimates (8.14), (8.15)) or the covered domain and the nature of the
hypersurfaces (in estimate (8.16)).

Remark 8.6. As a result of Proposition 8.5, the curvature estimates of Propositions 6.1 and 7.1 obtained
for the fixed transition parameter τ1 given by the mean value argument of Section 5.1.1, hold for all transition
parameter τ0 ≤ τ ≤ (1 + τ0)/2. In the remaining Sections 9 – 12, we shall thus assume that τ is any
parameter in [τ0, (1+τ0)/2]. This will improve the mild and strong Bootstrap Assumptions (see Sections 3.3.2
and 3.3.3) for all transition parameter τ .

The remaining L2(Mext) estimates of (8.14) not already obtained in Proposition 6.1 are directly obtained
from (8.12) and a comparison of frame argument. The decay estimates (8.15) are obtained via the Klainerman-
Sobolev embeddings of Lemma 6.7 and L2 bounds on (τ)Σext

t (see the proof of the analogous estimates in
Section 6.2). Thus Proposition 7.1 boils down to the following three lemmas.

Lemma 8.7. For all τ1 ≤ τ ≤ (1 + τ0)/2, we have∫
(τ)Σt

t4|(tD)≤2R|2 +

∫ τ−1
1 u

τ−1u

(R≤2(u, u))
2

du . ε2, (8.17)

for all (τ)t◦ ≤ t ≤(τ) t∗ and for all 1 ≤ u ≤ τu∗ and where the frame norm is adapted to (τ)T .
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Lemma 8.8. For all τ0 ≤ τ ≤ τ1, we have∫
(τ)Σt

t4|(tD)≤2R|2 . ε2, (8.18)

for all (τ)t◦ ≤ t ≤(τ) t∗ and where the frame norm is adapted to (τ)T .

Lemma 8.9. For all τ1 ≤ τ ≤ (1 + τ0)/2, we have∫
(τ)Σext

t ∩(τ1)Mint
t4|(tD)≤2R|2 . ε2, (8.19)

for all (τ)t◦ ≤ t ≤(τ) t∗ and where the frame norm is adapted to T
ext

.

8.2.1 Proof of Lemma 8.7
In this section, we assume that τ1 ≤ τ ≤ (1 + τ0)/2.

Let (τ)t◦ ≤ t ≤(τ) t∗. Let

u :=
2

1 + τ−1
t, t1 :=

1 + τ−1
1

2
u.

Remark 8.10. In the case where t1 ≥(τ1) t∗, i.e. when (τ)Σt is in the domain of dependence of the last
slice τ1Σ(τ1)t∗ the bound (8.17) follows from the arguments of Section 8.1 and a comparison of frame. In the
following, we restrict to the case t1 ≤(τ1) t∗.

Figure 1: Local energy estimates for τ ≥ τ1.

We consider the maximal hypersurface (τ1)Σt1 . We perform a t1-rescaling of the region D enclosed by
(τ)Σt ∪ Cu ∪ (τ1)Σt1 , which rescales to a size 1 region (see Figure 1).4 We call ε1 the rescaled smallness
parameter ε (see the similar definition in Section 8.1.1).

Using that by the Bootstrap Assumptions 3.21, 3.23, 3.24, we have∥∥(∇)≤1Ric
∥∥
L2((τ1)Σt1 )

. Dε1,∥∥∇/ ≤1(θ − g/)
∥∥
H1/2(∂(τ1)Σt1 )

. Dε1,

and applying the results of Theorem 4.3, there exists harmonic coordinates xi on (τ1)Σt1 (see also the
definition of Section 2.4) such that the following bounds hold on (τ1)Σt1∥∥∇≤2∇2xi

∥∥
L2((τ1)Σt1 )

. Dε1, (8.20)

4From its definition, we have t1 ' t.
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for i = 1 . . . 3. Let define the Cartesian vectorfields Xi by parallel transport of ∇xi, i.e.

D(τ1)T (Xi) = 0,

Xi|(τ1)Σt1
= ∇xi,

(8.21)

for i = 1 . . . 3. Commuting equation (8.21) by D≤3 and integrating in (τ1)T , using the Bootstrap Assump-
tions 3.21 and 3.24 in (τ1)Mint

bot, estimate (8.20) on (τ1)Σt1 and the Sobolev estimates of Lemma 7.3, we have
the following bounds in (the rescaled) region D

‖DXi‖L∞(D) . Dε1,
∥∥D2Xi

∥∥
L∞t L

6 . Dε1,
∥∥D3Xi

∥∥
L2(D)

. Dε1. (8.22)

Thus, one can apply energy estimates (see Section 5.2 or Section 8.1) in the rescaled domain D for the
following contracted and commuted Bel-Robinson tensors

Q(L̂XµR)(X0, X0, X0), Q(L̂XµL̂XνR)(X0, X0, X0)

for µ, ν = 0 . . . 3 and where X0 :=(τ1) T , and we obtain∫
(τ)Sit

Q(L̂≤1
Xµ
L̂XνR)(X0, X0, X0,

(τ)T ) +

∫
Cu∩D

Q(L̂≤1
Xµ
L̂XνR)(X0, X0, X0, e4)

.
∫

(τ1)Σt1

Q(L̂≤1
Xµ
L̂XνR)(X0, X0, X0,

(τ1)T ) + (Dε1)3

. ε1,

(8.23)

where we used the curvature bounds (8.12) and (8.22).

Performing a frame comparison argument as in Section 8.1 and scaling back in t1, we deduce from (8.23)
that estimate (8.17) holds. This finishes the proof of Lemma 8.7.

8.2.2 Proof of Lemma 8.8
In this section, we assume that τ0 ≤ τ ≤ τ1.

Figure 2: Local energy estimates for τ ≤ τ1.

Let (τ)t◦ ≤ t ≤(τ) t∗. Let

u :=
2

1 + τ−1
t, t1 :=

1 + τ−1
1

2
u.

Remark 8.11. In the case t ≤ 3 1+τ0
−1

1+τ−1
1

, the proof of estimate (8.18) follows from local arguments and is

left to the reader. We shall thus consider that t1 ≥ 3 (that is, the hypersurface (τ1)Σt1 is well defined).

We consider the maximal hypersurfaces (τ1)Σt1 and (τ)Σt (see Figure 2). Exchanging their roles in the proof
of Lemma 8.7 in Section 8.2.1, defining harmonic coordinates on the hypersurface (τ)Σt and running the
same procedure yields estimate (8.18), where we use the curvature bounds (8.12) through (τ1)Σt1 and the
curvature bounds (8.13) through Cu. This finishes the proof of Lemma 8.8.
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8.2.3 Proof of Lemma 8.9
In this section, we assume that τ1 ≤ τ ≤ (1 + τ0)/2.

Let (τ)t◦ ≤ t ≤(τ) t∗. Let

u :=
2

1 + τ
t, u1 :=

2

1 + τ1
t, t0 :=

1 + τ0
2

u1.

Let denote by D the domain enclosed by (τ)Σext
t , Cu1

, (τ0)Σt0 and Cu (see Figure 3).

Remark 8.12. If t0 ≥(τ0) t∗, i.e. (τ)Σext
t is in the domain of dependence of the last slice (τ0)Σ(τ0)t∗ , estimates

follow along the arguments of Section 8.1. In the following we assume that t0 ≤(τ0) t∗.

Figure 3: Local energy estimates for (τ)Σext
t .

Defining harmonic coordinates on the full slice (τ0)Σt0 , and arguing as in Section 8.2.1, one can perform
energy estimates in the (rescaled) region D, using the commutator vectorfields given by parallel transport of
the harmonic vectorfields on (τ0)Σt0 . Estimate (8.19) thus follows from the energy bound (8.18) through
(τ0)Σt0 from Lemma 8.8 and the energy bound (8.13) and (8.17) on Cu, and a comparison argument. This
finishes the proof of Lemma 8.9 and of Proposition 8.5.
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9. Null connection estimates on C∗
In this section, we prove the following proposition.

Proposition 9.1. Recall that from Propositions 6.1 and 8.1, the following estimates hold for the curvature
boundedness norms on C∗ (see the definitions of Section 3.2.1)

R∗≤2 + R∗≤1 . ε. (9.1)

Under the Bootstrap Assumptions, estimates (9.1), the limits for the null connection coefficients at the
vertex of the cone C∗ from Theorems 4.4 and 4.5, we have for ε > 0 sufficiently small (see the definitions of
Sections 3.2.1 and 3.2.3)

R
∗
≤2 +O∗≤3 + O

∗
≤2 +O∗,O≤3 . ε, (9.2)

and

O∗≤2 . ε. (9.3)

Moreover, the Bootstrap Assumptions 3.25 for the spherical coordinates on C∗ (see Section 9.16), the bootstrap
bound (3.3) on the area radius (see Section 9.15), and the mild Bootstrap Assumptions 3.16 for the rotation
vectorfields Oext on C∗ ∩Mext (see Section 9.14.1) are improved.1

Remark 9.2. The bound (9.3) will follow from (9.2) and the Klainerman-Sobolev estimates of Lemma 9.6.

Remark 9.3. The norms O∗≤2 (see the definitions of Section 3.2.3) allow for a degeneracy of the null

connection coefficients of the type Γ̌ ∼ r−1/2 when r → 0 on the cone C∗ , where Γ̌ ∈ {trχ − 2
r , trχ +

2
r , χ̂, χ̂, ζ, ω}. This is inherited from the degeneracy in r of the null curvature components (see Remark 8.2).

These degeneracies in r still allow to close the estimates for the null connection coefficients. This is consistent
with the low regularity control for the geodesic foliation on a null cone obtained in [Wan09]. In that article,
it is namely proven that one can close (low regularity) estimates for the null connection coefficients of the
geodesic foliation, only assuming an L2 control of the null curvature components on the cone. In the present
paper, such an L2 control holds and is consistent with a potential r−3/2 singularity for the curvature at the
axis, and we therefore expect that the r degeneracy is not an obstruction to close our estimates.2

9.1 Hardy estimates
We first state the following preliminary general Hardy estimates, which hold on the whole cone C∗. We recall
that q := min(r, u).

Lemma 9.4 (Hardy estimates on C∗). For all κ ∈ R, the following holds. Assume that U is an S-tangent
tensor satisfying

∇/ 3U +
κ

2
trχU = F,

with vertex limit

rκ|U | → 0, when r → 0.

We have the following Hardy inequality on C∗∥∥rλU∥∥
L2(C∗) .

∥∥rλqF∥∥
L2(C∗) . (9.4)

for all λ < κ− 3/2.

Remark 9.5. In the following, we will use the Hardy inequality, with λ = −1 for the null connection
coefficients trχ, trχ, which satisfy transport equations with κ ≥ 1. See the null structure equations (2.34).3

1This amounts to an improvement of the strong Bootstrap Assumptions 3.22.
2In view of the nonlinearities in the null structure equations, the critical degeneracy at which one cannot close (degenerate)

estimates for the null connection coefficients is given by the (scaling-critical) blow-up rate R ∼ r−2.
3The fact that the null connection coefficients intrinsic to the geometry of the cones χ, χ, ζ satisfy transport equations with

κ ≥ 1 enables the control of the intrinsic geometry of null cones at the L2 level in [Wan09].
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Chapter 9. Null connection estimates on C∗

Proof. We first prove the following two classical Hardy estimates corresponding respectively to the interior
and exterior region∫ u∗

τu∗

(
1

(u∗ − u)α

∫ u∗

u

f du′

)2

(u∗ − u)2 du .
∫ u∗

τu∗
(u∗ − u)2−2α|f |2(u∗ − u)2 du, (9.5)

∫ u0

1

(∫ u0

u

f du′
)2

du .
∫ u0

1

u2|f |2 du, (9.6)

where f is a scalar function of the variable u, and where α > 3/2. Here u0 > 0 is a parameter which will be
determined in the sequel.

To prove (9.5), using Cauchy-Schwartz we write∫ u∗

τu∗

(∫ u∗

u

f du′

)2

(u∗ − u)2−2α du

≤
∫ u∗

τu∗

(∫ u∗

u

(u∗ − u′)2γ |f |2 du′
)(∫ u∗

u

(u∗ − u′)−2γ du′
)

(u∗ − u)2−2α du,

where γ ∈ R. Provided that −2γ + 1 > 0, we have∫ u∗

u

(u∗ − u′)−2γ du′ . (u∗ − u)−2γ+1.

Using Fubini theorem, and provided that −2γ + 4− 2α < 0, we obtain∫ u∗

τu∗

(∫ u∗

u

f du′

)2

(u∗ − u)2−2α du

.
∫ u∗

τu∗
(u∗ − u′)2γ |f |2

(∫ u′

τu∗
(u∗ − u)−2γ+1+2−2α du

)
du′

.
∫ u∗

τu∗
(u∗ − u′)2γ |f |2(u∗ − u′)−2γ+4−2α du′

=

∫ u∗

τu∗
(u∗ − u′)2−2α|f |2(u∗ − u′)2 du′.

The conditions −2γ+ 1 > 0 and −2γ+ 4− 2α < 0 can both be satisfied if and only if α > 3/2, which finishes
the proof of (9.5).

To prove (9.6), we write using Cauchy-Schwartz∫ u0

1

(∫ u0

u

f du′
)2

du

≤
∫ u0

1

(∫ u0

u

(u′)2γ |f |2 du′
)(∫ u0

u

(u′)−2γ du′
)

du

.
∫ u0

1

(∫ u0

u

(u′)2γ |f |2 du′
)
u−2γ+1 du,

provided that −2γ + 1 < 0. Using Fubini theorem, we thus have∫ u0

1

(∫ u0

u

f du′
)2

du

.
∫ u0

1

(u′)2γ |f |2
(∫ u′

1

u−2γ+1 du

)
du′

.
∫ u0

1

(u′)2γ |f |2(u′)−2γ+2 du′,
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9.1. Hardy estimates

provided that −2γ + 2 > 0. Thus, choosing γ = 3/4, we obtained (9.6).

Using formula (2.39), we have

∇/ 3(rκU) = rκF +
κ

2

(
trχ− trχ

)
rκU.

Using the vertex limit rκ|U | → 0, the Bootstrap Assumptions 3.22 on trχ and a Grönwall argument, we
deduce

∥∥r−1rκ|U |
∥∥
L2(Su,u∗ )

.
∫ u∗

u

∥∥r−1rκ|F |
∥∥
L2(Su′,u∗ )

du′. (9.7)

Applying the classical Hardy estimate (9.5) with f(u) =
∥∥r−1rκF

∥∥
L2(Su,u∗ )

, using the Bootstrap Assump-

tions 3.25 on the metric in spherical coordinates and the bootstrap bounds (3.3) on the area radius, we
deduce from (9.7) in the interior region

∥∥rλU∥∥
L2(C∗∩Mint)

=
∥∥r−αrκU∥∥

L2(C∗∩Mint)
.
∥∥r1−αrκF

∥∥
L2(C∗∩Mint)

=
∥∥rλ+1F

∥∥
L2(C∗∩Mint)

,

where λ := κ− α and α > 3/2. Rewriting this estimate, using that r ' q in the interior region, we thus have∥∥rλU∥∥
L2(C∗∩Mint)

.
∥∥rλ+1F

∥∥
L2(C∗∩Mint)

.
∥∥rλqF∥∥

L2(C∗) , (9.8)

for all λ < κ− 3/2.

From a mean value argument, there exists τu∗ ≤ u0 ≤ (1 + τ)u∗/2 such that∥∥rλU∥∥
L2(Su0,u∗ )

. u∗−1/2
∥∥rλU∥∥

L2(C∗∩{τu∗≤u0≤(1+τ)u∗/2}) . u
∗−1/2

∥∥rλU∥∥
L2(C∗∩Mint)

. (9.9)

Using (9.7), we have for λ < κ− 3/2 and for u ≤ u0

∥∥r−1rλU
∥∥
L2(Su,u∗ )

.
∥∥r−1

(
rλU

)∥∥
L2(Su0,u∗ )

+

∫ u0

u

∥∥r−1rλF
∥∥
L2(Su′,u∗ )

du′.

Thus,

∥∥rλU∥∥
L2(C∗∩Mext)

.
∥∥(rλU)|u=u0

∥∥
L2(C∗∩Mext)

+

∥∥∥∥∫ u0

u

∥∥r−1rλF
∥∥
L2(Su′,u∗ )

du′
∥∥∥∥
L2(C∗∩Mext)

.

Using (9.9) and (9.8), we have for the first term∥∥(rλU)|u=u0

∥∥
L2(C∗∩Mext)

. u∗1/2
∥∥rλU∥∥

L2(Su0,u∗ )

.
∥∥rλU∥∥

L2(C∗∩Mint)

.
∥∥rλqF∥∥

L2(C∗) .

For the second term, applying the classical Hardy estimate (9.6) to f(u) =
∥∥r−1rλ|F |

∥∥
L2(Su,u∗ )

, using the

Bootstrap Assumption 3.25 on the metric in spherical coordinates and the bootstrap bounds (3.3) on the
area radius, gives ∥∥∥∥∫ u0

u

∥∥r−1rλF
∥∥
L2(Su′,u∗ )

du′
∥∥∥∥
L2(C∗∩Mext)

.
∥∥rλqF∥∥

L2(C∗) ,

where we used that q ' u in the exterior region and q ' r in the interior region. This finishes the proof of
the lemma.
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Chapter 9. Null connection estimates on C∗

9.2 Klainerman-Sobolev estimates
We have the following Klainerman-Sobolev estimates, which are used to obtain estimates (9.3). Its proof is
postponed to Appendix D.

Lemma 9.6 (Klainerman-Sobolev estimates on C∗). For all S-tangent tensor F on C∗ with vertex limit

r3/2|(r∇/ )≤1F | → 0 when r → 0,

we have the following L∞u H̃
1/2
(
Su,u∗

)
estimates in C∗

‖rF‖L∞u H̃1/2(Su,u∗) . ‖F‖L2(C∗) + ‖r∇/ F‖L2(C∗) + ‖r∇/ 3F‖L2(C∗) ,

and ∥∥∥r1/2q1/2F
∥∥∥
L∞u H̃

1/2(Su,u∗)
. ‖F‖L2(C∗) + ‖r∇/ F‖L2(C∗) + ‖q∇/ 3F‖L2(C∗) .

9.3 Control of ρ and σ
From the vertex limits of Theorems 4.4 and 4.5, we have r3ρ→ 0 when r → 0. Integrating equation (2.85)
thus gives

r3|ρ| .
∫ u∗

u

r3|Err (∇/ 3, ρ) |du′.

From the Bootstrap Assumptions 3.22 and (9.1), we have

|Err (∇/ 3, ρ)| . |χ̂| |α|+ |ζ|
∣∣β∣∣+

∣∣trχ− trχ
∣∣ |ρ− ρ|

. (Dε)q−1/2u−2 · εr−1q−1/2u−2.

Thus,

r3|ρ| . Dε2u∗−2
∫ u∗

u

r(u′, u∗)2q(u′, u∗)−1(u′)−2 du′.

In the interior region u ≥ τu∗, this yields

r3|ρ| . Dε2u∗−4
∫ u∗

u

r(u′, u∗) du′ . Dε2u∗−4r2.

In the exterior region u ≤ τu∗, this yields

r3|ρ| . u∗3|ρ||S∗ +Dε2

∫ u∗

u

(u′)−3 du′

. Dε2u−2.

Thus, we summarise the bounds on ρ as ∥∥∥uqu∗3ρ∥∥∥
L∞(C∗)

. ε.

Estimating directly the (q∇/ 3) derivatives using equation (2.85), we further obtain

R
∗
≤2[ρ] . ε. (9.10)

From equation (2.48), and the Bootstrap Assumptions 3.22, one directly deduces

R
∗
≤2[σ] . ε. (9.11)

We thus have proved the desired estimate

R
∗
≤2 . ε.
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9.4. Control of trχ+ 2
r

9.4 Control of trχ+ 2
r

Integrating the transport equation (2.88) for trχ+ 2
r , using that from Theorems 4.4 and 4.5, one has the

limit r
(
trχ+ 2

r

)
→ 0 when r → 0, we have∣∣∣∣r(trχ+

2

r

)∣∣∣∣ . ∫ u∗

u

rErr

(
∇/ 3, trχ+

2

r

)
du′

. (Dε)2

∫ u∗

u

ru∗−2u−2q−1 du′,

from which we deduce, arguing as in the previous section∥∥∥∥u∗2u2

(
trχ+

2

r

)∥∥∥∥
L∞
. ε.

Estimating directly equation (2.88) for ∇/ 3

(
trχ+ 2

r

)
, one further infers

O
∗
≤2

[
trχ
]
. ε. (9.12)

9.5 Control of trχ− 2
r

Integrating the transport equation (2.92) for trχ− 2
r , using that from Theorems 4.4 and 4.5, one has the

limit r
(
trχ− 2

r

)
→ 0 when r → 0, one has∣∣∣∣r(trχ− 2

r

)∣∣∣∣ . ∫ u∗

u

r

(
|ρ|+ |Err(∇/ 3, trχ−

2

r
)|
)

du.

Using the bound (9.10) obtained for ρ and arguing as in the previous sections, one obtains∥∥∥∥uu∗3(trχ− 2

r

)∥∥∥∥
L∞(C∗)

. ε.

Estimating directly equation (2.92) for ∇/ 3

(
trχ− 2

r

)
, one further infers

O
∗
≤2

[
trχ
]
. ε. (9.13)

This finishes the improvement of

O
∗
≤2 . ε.

9.6 Control of ζ
Using the definition (2.3) of the canonical foliation on C∗, ζ satisfies the following elliptic equation

D/ 1ζ =

(
−ρ+ ρ, σ − 1

2
χ̂ ∧ χ̂

)
. (9.14)

Using the elliptic estimates of Lemma 3.38, the estimates (9.1) for the curvature and the Bootstrap
Assumptions 3.22, one has∥∥r−1(r∇/ )≤3ζ

∥∥
L2(C∗) .

∥∥(r∇/ )≤2(ρ− ρ)
∥∥
L2(C∗) +

∥∥(r∇/ )≤2(σ − σ)
∥∥
L2(C∗) +

∥∥(r∇/ )≤2χ̂ ∧ χ̂
∥∥
L2(C∗)

. εu∗−2 + (Dε)2u∗−2

. εu∗−2.

Multiplying equation (9.14) with r and commuting with (q∇/ 3) gives

rD/ 1((q∇/ 3)ζ) =

(
(q∇/ 3) (−rρ+ rρ) , (q∇/ 3)(rσ − 1

2
rχ̂ ∧ χ̂)

)
+ Err, (9.15)

where

Err := [(q∇/ 3), (rD/ 1)] ζ.
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Applying the elliptic estimates of Lemma 3.38 gives∥∥r−1(r∇/ )≤2(q∇/ 3)ζ
∥∥
L2(C∗) . εu

∗−2.

Commuting (9.15) further with (q∇/ 3) and arguing similarly gives∥∥r−1(r∇/ )≤1(q∇/ 3)2ζ
∥∥
L2(C∗) . εu

∗−2.

Commuting (9.15) with (q∇/ 3)2 gives, using the Bianchi equations (2.35e), (2.35g) for ∇/ 3ρ and ∇/ 3σ
respectively

(rD/ 1)(q∇/ 3)3ζ =
[
r(q∇/ 3)3(−ρ+ ρ), r(q∇/ 3)3σ

]
+ l.o.t.

=
[
div/

(
−rq(q∇/ 3)2β

)
, curl/

(
rq(q∇/ 3)2β

)]
+ l.o.t.

where the lower order terms can be estimated in L2(C∗). Using the elliptic estimate (3.20) of Lemma 3.38
with X = −rq(q∇/ 3)2β and Y = rq(q∇/ 3)2β, we have∥∥r−1(q∇/ 3)3ζ

∥∥
L2(C∗) .

∥∥r−1q(q∇/ 3)2β
∥∥
L2(C∗) + ‖l.o.t.‖L2(C∗)

. εu∗−2.

We thus have proved

O∗,g≤3 [ζ] . ε. (9.16)

9.7 Control of ω − ω
Using the results of Lemmas 2.11 and 2.21, equation (2.34d) rewrites

2∇/ ω = −∇/ 3ζ − 2χ · ζ − β.

From the estimates (9.16) for ζ and the estimates (9.1) for β, one directly deduces∥∥r−1(r∇/ )≤2q∇/ ω
∥∥
L2(C∗) . εu

∗−2,∥∥r−1(r∇/ )≤1(q∇/ 3)q∇/ ω
∥∥
L2(C∗) . εu

∗−2,∥∥r−1(r∇/ )≤1(q∇/ 3)2q∇/ ω
∥∥
L2(C∗) . εu

∗−2,

which, using Poincaré estimates (see Lemma 3.38) further gives

O∗,b≤2+ [ω − ω] . ε. (9.17)

Remark 9.7. It is expected for the canonical foliation that we do not control all ∇/ 3 derivatives of the
coefficient ω, since the foliation is only defined by an elliptic equation on 2-spheres. See also the estimates
for the lapse Ω in [CG19a].

9.8 Control of trχ− trχ
Applying the Hardy estimate of Lemma 9.4 with κ = 2, λ = −1 to the transport equation (2.87) for trχ− trχ,

using that from Theorems 4.4 and 4.5 one has the vertex limit r2
(
trχ+ 2

r

)
→ 0 when r → 0, we have∥∥r−1

(
trχ− trχ

)∥∥
L2(C∗) .

∥∥r−1qtrχ(ω − ω)
∥∥
L2(C∗) +

∥∥r−1qErr
(
∇/ 3, trχ− trχ

)∥∥
L2(C∗) .

Using the improved bound (9.17) for ω and the Bootstrap Assumptions 3.22, we deduce∥∥∥∥r−1

(
trχ+

2

r

)∥∥∥∥
L2(C∗)

. εu∗−2.

Commuting equation (2.87) with (r∇/ )≤3 or directly estimating its (q∇/ 3)≤2 derivatives and arguing similarly,
we further infer

O∗,g≤3

[
trχ− trχ

]
. ε. (9.18)
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9.9. Control of χ̂

9.9 Control of χ̂
Using the elliptic equation (2.34p), the elliptic estimates from Lemma 3.38, estimates (9.16), (9.18), the
curvature estimates (9.1) and the Bootstrap Assumptions 3.22, we have∥∥r−1u(r∇/ )≤3χ̂

∥∥
L2(Cu)

.
∥∥u(r∇/ )≤2β

∥∥
L2(Cu)

+
∥∥u(r∇/ )≤2∇/ trχ

∥∥
L2(Cu)

+
∥∥u(r∇/ )≤2(trχζ)

∥∥
L2(Cu)

+ Err

. εu−1.

Using the just obtained estimate for χ̂ and directly estimating equation (2.34b) for ∇/ 3χ̂, one further has

O∗,b≤3

[
χ̂
]
. ε (9.19)

9.10 Control of trχ− trχ
Applying the Hardy estimate of Lemma 9.4 with κ = 1 and λ = −1, to the transport equation (2.91) for
trχ− trχ, using that from Theorems 4.4 and 4.5, one has the limit r

(
trχ− trχ

)
→ 0 when r → 0, we have∥∥r−1

(
trχ− trχ

)∥∥
L2(C∗) .

∥∥r−1qtrχ(ω − ω)
∥∥
L2(C∗) +

∥∥r−1qErr
(
∇/ 3, trχ− trχ

)∥∥
L2(C∗) .

Using estimate (9.17) for ω − ω and the Bootstrap Assumptions 3.22, one deduces∥∥∥∥r−1

(
trχ− 2

r

)∥∥∥∥
L2(C∗)

. εu∗−2.

Commuting the transport equation (2.91) further with (r∇/ )≤3 or directly estimating its (q∇/ 3)≤2 derivatives,
we further infer

O∗,g≤3

[
trχ− trχ

]
. ε (9.20)

9.11 Control of χ̂
Using elliptic equation (2.34q) for χ̂, the elliptic estimate from Lemma 3.38, and the bounds (9.1), (9.16)
and (9.20), one has∥∥r−1(r∇/ )≤3χ̂

∥∥
L2(C∗) .

∥∥(r∇/ )≤2β
∥∥
L2(C∗) +

∥∥(r∇/ ≤2)∇/ trχ
∥∥
L2(C∗) + l.o.t.

. εu∗−2.

Using equation (2.34e) for ∇/ 3χ̂ and estimating directly, one further infers

O∗,g≤3 [χ̂] . ε. (9.21)

This finishes the improvement of

O∗≤3 . ε,

from which, using the Klainerman-Sobolev estimates of Lemma 6.6 and the vertex limits of Theorems 4.4
and 4.5, one also deduces

O∗≤2 . ε.

Remark 9.8. Due to the choice of the canonical foliation, we have obtained the optimal tangential regularity
for χ, namely an L2(C) control of ∇/ 3χ. In view of the transport equation (2.34f), this would not have
been the case for other foliations, such as the geodesic foliation. The need of this optimal regularity in
the extension argument4 of Section 8.1 motivates the choice of the canonical foliation. See also its use
in [CG19a, CG19b, KN03] for similar tangential regularity reasons.

4We recall that optimal regularity of the last slice Σt∗ can be obtained provided that optimal regularity holds for its boundary
∂Σt∗ = S∗ = Sτu∗,u∗ ⊂ C∗, which is a 2-sphere of the canonical foliation on C∗.
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9.12 Uniformisation of S∗

We have the following lemma, which is a consequence of the Uniformisation Theorem [KS19b, Theorem 3.1].

Lemma 9.9 (Uniformisation of S∗). There exists a unique – up to isomorphisms of S – centred conformal
isomorphism Φ : S∗ → S (see the definitions in Section 2.4). The associated conformal factor φ on S∗

satisfies ∥∥t(t∇/ )≤3(φ− 1)
∥∥
H̃1/2(S∗)

. ε. (9.22)

Proof. Using the improved estimate for ρ from Sections 6 and estimate (9.10), and using the improved
estimates (9.12), (9.13), (9.18), (9.20) together with the H̃1/2 Klainerman-Sobolev embeddings of Lemma 6.6,
we have on S∗ ∥∥t3(t∇/ )≤1ρ

∥∥
H̃1/2(S∗)

. ε,∥∥∥∥t2(t∇/ )≤2

(
trχ− 2

r∗

)∥∥∥∥
H̃1/2(S∗)

. ε,∥∥∥∥t2(t∇/ )≤2

(
trχ+

2

r∗

)∥∥∥∥
H̃1/2(S∗)

. ε.

Using the above estimates, Bootstrap Assumptions 3.22 and Gauss equation (2.34t), we have∥∥∥∥t3(t∇/ )≤1

(
K − 1

r∗2

)∥∥∥∥
H̃1/2(S∗)

. ε,

from which, applying the Uniformisation Theorem [KS19b, Theorem 3.1] one deduces the existence, uniqueness
up to isometry of a centred conformal isomorphism Φ, and the estimate (9.22) for φ.

9.13 Control of the rotation vectorfields Oext on S∗

Lemma 9.10 (Mild bounds for Oext on S∗). We have the following mild bounds on S∗∥∥r−1Oext
∥∥
L∞(S∗)

. 1,∥∥r−2(r∇/ )≤3Oext
∥∥
L2(S∗)

. 1.
(9.23)

Moreover, for all S-tangent scalar f and for all 1-tensor or symmetric traceless 2-tensor F , we have

‖(r∇/ )f‖L2(S∗) .
3∑
`=1

∥∥∥(`)Oext(f)
∥∥∥
L2(S∗)

,

∥∥(r∇/ )≤1F
∥∥
L2(S∗)

.
3∑
`=1

∥∥∥L̂(`)OextF
∥∥∥
L2(S∗)

.

(9.24)

Proof. By rescaling, we shall assume that r∗ = 1. By definition (see Section 2.4), we have the following
uniform bounds on S∗ for the Cartesian coordinates xi and their derivatives with respect to the Euclidean
metric g/S ∣∣xi∣∣ . 1,∥∥∥∥(g/ S∇/

)k
xi
∥∥∥∥
g/ S

.k 1,
(9.25)

for all k ≥ 1 and all i = 1, 2, 3.

We recall the definition of (3)Oext

(3)Oext = x1g/∇/ x2 − x2g/∇/ x1 = x1g/ S∇/ x2 − x2g/ S∇/ x1.

Thus, by the definition of the conformal factor φ from Section 2.4, we deduce the following uniform bound
on S∗ ∥∥∥(3)Oext

∥∥∥
g/

= φ−1
∥∥∥(3)Oext

∥∥∥
g/ S

. 1,
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9.13. Control of the rotation vectorfields Oext on S∗

where we used that from the bounds (9.22) and the Sobolev estimates of Lemma 3.36, one has

|φ|+ |φ−1| . 1. (9.26)

We further have

g/∇/ (3)Oext = g/∇/ x1g/∇/ x2 − g/∇/ x2g/∇/ x1

+ x1g/∇/ g/∇/ x2 − x2g/∇/ g/∇/ x1.
(9.27)

From a standard computation of the Christoffel symbols for conformal metrics, we have for all scalar function
f

g/∇/ i
g/∇/ jf = g/ S∇/ i

g/ S∇/ jf + g/ S∇/ i(log φ)g/ S∇/ jf + g/ S∇/ j(log φ)g/ S∇/ if

−
(
g/ S∇/ (log φ) · g/ S∇/ f

)
(g/)ij .

(9.28)

From the bounds (9.22) for φ and arguing as previously, we have∥∥∥g/ S∇/ (log φ)
∥∥∥
L2(S∗)

. ε . 1. (9.29)

Thus, applying formula (9.28) to equation (9.27) using (9.25), (9.26) and (9.29), we have∥∥∥g/∇/ (3)Oext
∥∥∥
L2(S∗)

. 1.

Differentiating equation (9.27) further by ∇/ ≤2, generalising formula (9.28), using that by (9.22), one has∥∥∥∥(g/ S∇/
)≤3

(log φ)

∥∥∥∥
L2(S∗)

. ε . 1, (9.30)

and arguing as previously, we obtain ∥∥∥g/∇/ ≤3(3)Oext
∥∥∥
L2(S∗)

. 1,

as desired.

We turn to the proof of (9.24). From an exact computation in the Euclidean case, we have

|r∇/ f |2g/ S
.

3∑
`=1

∣∣∣(`)Oext(f)
∣∣∣2
g/ S

,

∣∣∣(rg/ S∇/ )F
∣∣∣2
g/ S

+ |F |2g/ S
.

3∑
`=1

∣∣∣L̂(`)OextF
∣∣∣2
g/ S

,

for all S-tangent scalar f and for all 1-tensor or symmetric traceless 2-tensor F . From the first bound
and (9.26), we directly deduce (9.24) for scalar functions.

From the second bounds, noting that L̂(`)Oext is invariant under conformal change and arguing as earlier,
using the control (9.29) for ∇/ log φ, one has∣∣∣(rg/∇/ )F

∣∣∣2
g/

+ |F |2g/ .
∣∣∣rg/ S∇/ F

∣∣∣2
g/ S

+ (1 + |∇/ log φ|) |F |2g/ S

.
∣∣∣rg/ S∇/ F

∣∣∣2
g/ S

+ |F |2g/ S

.
3∑
`=1

∣∣∣L̂(`)OextF
∣∣∣2
g/ S

.
3∑
`=1

∣∣∣L̂(`)OextF
∣∣∣2
g/
.

This finishes the proof of the lemma.
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Lemma 9.11 (Precise bounds for Oext on S∗). We have the following bounds∥∥r−1(r∇/ )≤2H
∥∥
L2(S∗)

. ε,∥∥(r∇/ )≤1Ψ
∥∥
L2(S∗)

. ε.
(9.31)

Proof. By a rescaling argument, we may assume that r∗ = 1. Arguing as in the proof of Lemma 9.10, using
that from (9.22), one has for the conformal factor φ, |φ|+ |φ−1| . 1 and

∥∥∇/ ≤3 log φ
∥∥
L2(S∗)

. ε, it is enough

to prove that in the Euclidean case H = 0 and Ψ = 0.

From a direct computation, one has in the Euclidean case

D2(`)O = D2
(
∈`ij xi∂xj

)
= 0. (9.32)

Using formula (2.119) in the Euclidean case where

D4O = O, D3O = −O, E(D2,∇/ 2) = 0,

and the definitions (2.102) and (2.103) of H and Ψ, we deduce that

0 = D2
a,bO

= ∇/ 2
a,bO−Obea + g/abO +

1

2
(∇/ aOb +∇/ bOa) (e3 − e4)

= Ψabcec +
1

2
Hab(e3 − e4),

from which we deduce that Ψ = 0 and H = 0 in the Euclidean case. This finishes the proof of the lemma.

9.14 Control of Oext on C∗ ∩Mext

9.14.1 Mild control of Oext

For convenience, we write O any rotation vectorfield (`)Oext. We rewrite equation (2.99) under the following
form

∇/ 3

(
r−1O

)
= r−1χ̂ ·O +

1

2
r−1(trχ− trχ)O. (9.33)

Integrating equation (9.33) from u = τu∗ –i.e. from the sphere S∗–, using that from the result of Lemma 9.10,
one has an improved mild bound

∥∥r−1O
∥∥
L∞(S∗)

. 1, we have

|r−1O| . 1 +

∫ τu∗

u

(
|r−1χ̂ ·O|+ |r−1(trχ− trχ)O|

)
du′,

and from a Grönwall argument, we infer ∥∥r−1O
∥∥
L∞(C∗∩Mext)

. 1.

Arguing similarly, using the commuted equation (2.100), and the improved mild bounds of Lemma 9.10, we
obtain ∥∥r−1(r∇/ )≤1O

∥∥
L∞(C∗∩Mext)

. 1. (9.34)

Let Su,u∗ ⊂ C∗. Let f , F be respectively an Su,u∗ -tangent scalar function and 1-tensor or symmetric traceless
2-tensor. We want to improve the bootstrap bounds∫

Su,u∗

|(r∇/ )f |2 .
3∑
`=1

∫
Su,u∗

∣∣∣(`)Oext(f)
∣∣∣2 ,

∫
Su,u∗

∣∣(r∇/ )≤1F
∣∣2 . 3∑

`=1

∫
Su,u∗

∣∣∣L̂(`)OextF
∣∣∣2 .
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Let extend f, F on C∗ as S-tangent tensors by parallel transport, i.e.

e3(f) = 0, ∇/ 3F = 0.

From the definition of (`)Oext on S∗, we obtained in Lemma 9.10 that there exists c > 0 such that∫
S∗
|(r∇/ )f |2 ≤ c

3∑
`=1

∫
S∗

∣∣∣(`)Oext(f)
∣∣∣2 ,

∫
S∗

∣∣(r∇/ )≤1F
∣∣2 ≤ c 3∑

`=1

∫
S∗

∣∣∣L̂(`)OextF
∣∣∣2 .

Let define

Ff (u) :=

∫
Su,u∗

|(r∇/ )f |2 − c
3∑
`=1

∫
Su,u∗

∣∣∣(`)Oext(f)
∣∣∣2 .

Using formula (2.37) and (2.36b), we have

e3

(∫
Su,u∗

|(r∇/ )f |2
)

=

∫
Su,u∗

trχ|r∇/ f |2 +

∫
Su,u∗

2(r∇/ f) · ∇/ 3(r∇/ )f

=

∫
Su,u∗

trχ|r∇/ f |2 + Err [(r∇/ )f ] ,

where

Err [(r∇/ )f ] :=

∫
Su,u∗

2(r∇/ f) ·
(
(trχ− trχ)(r∇/ )f + χ̂ · (r∇/ f)

)
.

Using formula (2.37) and the Lie transport of (`)Oext (2.98), we have

e3

(∫
Su,u∗

∣∣∣(`)Oext(f)
∣∣∣2) =

∫
Su,u∗

trχ
∣∣∣(`)Oext(f)

∣∣∣2 .
Thus, we deduce that

e3Ff = trχFf + Err [(r∇/ f)] . (9.35)

Integrating (9.35) along u, using that Ff (τu∗) ≤ 0 and the bounds (9.3), we have

Ff (u) .

∣∣∣∣∣r2

∫ τu∗

u

r−2
(
εr−1(u′)−3/2

)∫
Su′,u∗

|(r∇/ )f |2 du′

∣∣∣∣∣
. ε sup

u≤u′≤τu∗

∫
Su′,u∗

|(r∇/ )f |2

. ε
∫
Su,u∗

|(r∇/ )f |2,

where one obtains the last estimate by using the transport of f along e3. Using the definition of Ff , we
deduce that ∫

Su,u∗

|(r∇/ )f |2 ≤ c
3∑
`=1

∫
Su,u∗

∣∣∣(`)Oext(f)
∣∣∣2 + ε

∫
Su,u∗

|(r∇/ )f |2,

and the desired bound follows by absorption. The bounds when F is a 1-tensor or symmetric traceless
2-tensor are obtained similarly and left to the reader. This finishes the improvement of the mild Bootstrap
Assumptions 3.16 on C∗ ∩Mext.
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9.14.2 Control of H
Applying similar Hardy estimates to the ones of Lemma 9.4 with κ = 0, λ = −2 – but integrating from S∗ –

to the transport equation (2.101) for H, using that from Lemma 9.11 we have
∥∥∥u∗1/2H∥∥∥

L2(S∗)
. ε, we have

∥∥r−2H
∥∥
L2(C∗∩Mext)

. u∗1/2
∥∥r−2H

∥∥
L2(S∗)

+
∥∥r−2q∇/ 3H

∥∥
L2(C∗∩Mext)

. εu∗−2 +
∥∥r−2u∇/ 3H

∥∥
L2(C∗∩Mext)

.

From an inspection of the terms composing ∇/ 3H, we only treat the terms ∇/ χ̂ ·O and χ̂ · ∇/ O and the
remaining terms will follow similarly. We have using estimate (9.19) and the mild estimate (9.34) for O∥∥r−2q∇/ χ̂ ·O

∥∥
L2(C∗) .

∥∥r−1q∇/ χ̂
∥∥
L2(C∗)

∥∥r−1O
∥∥
L∞(C∗)

. u∗−2
∥∥r−1u∗u(r∇/ )χ̂

∥∥
L2(C∗)

. εu∗−2,

and

∥∥r−2qχ̂ · ∇/ O
∥∥2

L2(C∗) =

∫ u∗

1

∥∥r−2qχ̂ · ∇/ O
∥∥2

L2(Su,u∗ )
du

.
∫ u∗

1

∥∥r−1qχ̂
∥∥2

L∞(Su,u∗ )

∥∥r−2(r∇/ )O
∥∥2

L∞u L
2(Su,u∗ )

du

.
∫ u∗

1

(
r−1

∥∥r−1q(r∇/ )≤2χ̂
∥∥
L2(Su,u∗ )

)2

du

.
∥∥∥r−1u∗−1u(r∇/ )≤2χ̂

∥∥∥2

L2(C∗)

. ε2u∗−4,

where we used the Sobolev embeddings from Lemma 3.36 in the third line. Thus,∥∥r−2H
∥∥
L2(C∗∩Mext)

. εu∗−2.

Estimating directly equation (2.101), one also obtains∥∥r−2q∇/ 3H
∥∥
L2(C∗∩Mext)

. εu∗−2.

From the definitions (2.102) and (2.103) of H and Ψ, the higher derivative of H are controlled by Ψ and
from the results of this section we have

O∗,g≤2

[
r−1H

]
. ε+O∗,g≤1 [Ψ] . (9.36)

We thus refer to the control of Ψ in the next section to obtain the full control of H.

9.14.3 Control of Ψ
The control for Ψ follows from applying the same Hardy estimate as in the previous section to the (commuted
with r∇/ ) transport equation (2.104) for rΨ, using the initial estimates from Lemma 9.11 on S∗. Details are
left to the reader and we have

O∗,g≤1 [Ψ] . ε. (9.37)

We moreover deduce from (9.36) and (9.37)

O∗,g≤2

[
r−1H

]
. ε,

and this finishes the improvement of (9.2).
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9.15 Control of the area radius
Lemma 9.12. Under the estimates obtained in the previous sections, we have on C∗∣∣∣∣r(u, u∗)− 1

2
(u∗ − u)

∣∣∣∣ . εu∗−3r2u−1. (9.38)

Proof. Using relations (2.1) and (2.39), we have on C∗

e3

(
r(u, u∗)− 1

2
(u∗ − u)

)
=

1

2
rtrχ+ 1.

Integrating in u, using the improved estimate (9.12) for trχ+ 2
r and the limit r(u, u∗)→ 0 when u→ u∗

(see Theorems 4.4 and 4.5), we have∣∣∣∣r(u, u∗)− 1

2
(u∗ − u)

∣∣∣∣ . lim
u→u∗

∣∣∣∣r(u, u∗)− 1

2
(u∗ − u)

∣∣∣∣+

∫ u∗

u

r

∣∣∣∣trχ+
2

r

∣∣∣∣ du′

. ε
∫ u∗

u

ru∗−2(u′)−2 du′

. εu∗−3r2u−1,

as desired.

9.16 Control of spherical coordinates on C∗
For a spherical coordinate system as described in the Bootstrap Assumption 3.25, we have using (2.34a) the
following transport equation in the e3 direction

e3(g/ab) = 2χ
ab

= trχg/ab + (trχ− trχ)g/ab + 2χ̂
ab
,

where a, b ∈ {ϑ, ϕ}, which rewrites using (2.39) and the notation of the Bootstrap Assumption 3.25

e3

(
r−2g/ab − (g/S)ab

)
= (trχ− trχ)r−2g/ab + 2r−2χ̂

ab
. (9.39)

Integrating along e3 from ø(u∗), this yields∣∣r−2g/ab − (g/S)ab
∣∣ (u, ϑ, ϕ) . lim

u→u∗

(∣∣r−2g/ab − (g/S)ab
∣∣ (u, ϑ, ϕ)

)
+

∫ u∗

u

(∣∣(trχ− trχ)r−2g/ab
∣∣+ 2r−2

∣∣∣χ̂
ab

∣∣∣) du′

. ε
∫ u∗

u

(u∗)−1(u′)−1q−1/2 du′

. εu∗−1u−1q1/2,

where we used the vertex limits from Theorems 4.4 and 4.5, the improved bounds (9.18), (9.19) for trχ and
χ̂ and the Bootstrap Assumptions 3.25 for the coordinate component of g/.

Commuting (9.39) with ∂ and integrating using the sup-norm bounds for (r∇/ )(trχ− trχ) and (r∇/ )χ̂, we
further have ∣∣∂≤1

(
r−2g/ab − (g/S)ab

)∣∣ . εu∗−1u−1q1/2.

This finishes the improvement of the Bootstrap Assumptions 3.25.
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In this section, we prove the following proposition.

Proposition 10.1. Recall that from Proposition 6.1, the following estimates hold for the curvature norms
in Mext (see the definitions of Section 3.2.1)

Rext
≤1 +Rext

≤2,γ . ε, (10.1)

for all γ > 0. Recall that from Proposition 9.1 the following estimates hold for the null connection coefficient
norms on C∗ (see the definitions of Sections 3.2.1 and 3.2.3)

R
∗
≤2 +O∗≤3 + O

∗
≤2 + O∗≤2 +O∗,O≤3 . ε, (10.2)

and that the Bootstrap Assumptions 3.16, 3.22, 3.25 are improved on C∗ ∩Mext.

Under the Bootstrap Assumptions, the estimates (10.1) and (10.2), and for ε > 0 sufficiently small, we have
the following bounds for the connection coefficients (see the definitions of Section 3.2.4)

R
ext

≤2 + Oext
≤2 +Oext

≤3,γ +Oext

≤2,γ .γ ε,

Oext
≤1 [y] +Oext

2,γ [y] +OT≤2,γ [y] .γ ε,

Oext,O
≤2 +Oext,O

≤3,γ .γ ε,

(10.3)

for all γ > 0. Moreover, the Bootstrap Assumptions 3.26 for the spherical coordinates (see Section 10.15),
the bootstrap bound (3.4) on the area radius (see Section 10.14), and the mild Bootstrap Assumptions 3.16
for the rotation vectorfields Oext (see Section 10.13.1) are improved.1

10.1 Evolution estimates
Let us first recall that in the region Mext, we have

r ' u.

The following lemma provides estimates for solutions to transport equations in the e4 direction.

Lemma 10.2 (Transport estimates in Mext). For all κ ∈ R, the following holds. Assume that U is an
S-tangent tensor satisfying

∇/ 4U +
κ

2
trχU = F.

� We have the following L∞L∞ estimates

∥∥rλU∥∥
L∞(Su,u)

.
∥∥rλU∥∥

L∞(Su,u∗ )
+

∫ u∗

u

∥∥rλF∥∥
L∞(Su,u′ )

du′, (10.4)

for all Su,u ⊂Mext and for all λ ≥ κ.

� We have the following L∞H1/2 estimate

∥∥rλU∥∥
H̃1/2(Su,u)

.
∥∥rλU∥∥

H̃1/2(Su,u∗ )
+

∫ u∗

u

∥∥rλF∥∥
H̃1/2(Su′,u)

du′, (10.5)

for all Su,u ⊂Mext and for all λ ≥ κ− 1/2.

1These last bounds together with (10.3) also amount to an improvement the strong Bootstrap Assumptions 3.23.
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� We have the following L∞u L
2
uL

2(Su,u) estimate

∥∥rλU∥∥
L2
uL

2(Su,u)
.
∥∥rλU∥∥

L2(C∗) +

∫ u∗

u

∥∥rλF∥∥
L2
uL

2(Su,u′ )
du′, (10.6)

for all λ ≥ κ− 1.

Proof. We only perform the proof for the H̃1/2 estimate and for a S-tangent 1-tensor U . Rewriting the
transport equation satisfied by U , using (2.39), we have

∇/ 4(rκU) = rκF +
κ

2
(trχ− trχ)rκU. (10.7)

Using the spherical coordinates in Mext from the Bootstrap Assumptions 3.26, we have

∇/ 4(rκU)a = 2∂u (rκUa)− 2rκU bχab,

where a, b ∈ {ϑ, ϕ}. Thus, using (2.39) and equation (10.7), we infer

2∂u
(
r−1+κUa

)
= r−1∇/ 4(rκU)a + r−1+κUa(trχ− trχ) + 2r−1+κUbχ̂

b
a

= r−1+κFa + (
κ

2
− 1)(trχ− trχ)r−1+κUa + 2r−1+κUbχ̂

b
a.

Integrating the above equation, we obtain

r−1+κUa(u, u, ϑ, ϕ) = r−1+κUa(u∗, u, ϑ, ϕ)

+
1

2

∫ u∗

u

(
r−1+κFa + (

κ

2
− 1)(trχ− trχ)r−1+κUa + 2r−1+κUbχ̂

b
a

)
(u′, u, ϑ, ϕ) du′.

Taking the coordinate H
1/2
ϑ,ϕ norm in the above, we obtain∥∥r−1+κUa(u, u)

∥∥
H

1/2
ϑ,ϕ

.
∥∥r−1+κUa(u∗, u)

∥∥
H

1/2
ϑ,ϕ

+

∫ u∗

u

∥∥∥(r−1+κFa + (
κ

2
− 1)(trχ− trχ)r−1+κUa + 2r−1+κUbχ̂

b
a

)
(u′, u)

∥∥∥
H

1/2
ϑ,ϕ

du′.

Using the fractional Sobolev space comparison Lemma 3.35, we thus infer

∥∥∥r−1/2+κU
∥∥∥
H̃1/2(Su,u)

.
∥∥∥r−1/2+κU

∥∥∥
H̃1/2(Su,u∗ )

+

∫ u∗

u

∥∥∥r−1/2+κF
∥∥∥
H̃1/2(Su,u′ )

du′

+

∫ u∗

u

(∥∥∥r−1/2+κ(trχ− trχ)U
∥∥∥
H̃1/2(Su,u′ )

+
∥∥∥r−1/2+κχ̂ · U

∥∥∥
H̃1/2(Su,u′ )

)
du′.

Using the H̃1/2 product estimates from Lemma 3.37, and the Bootstrap Assumptions 3.23 for the L∞ norms
of χ and ∇/ χ, we obtain

∥∥∥r−1/2+κU
∥∥∥
H̃1/2(Su,u)

.
∥∥∥r−1/2+κU

∥∥∥
H̃1/2(Su,u)

+

∫ u∗

u

‖F‖H̃1/2(Su,u′ )
du′

+Dε

∫ u∗

u

(u′)−2u−1/2 ‖U‖H̃1/2(Su,u′ )
du′,

and the conclusion follows from a standard Grönwall argument. The result for λ ≥ κ− 1/2 follows since
r(u, u) . r(u, u′) for u ≤ u′ ≤ u∗. The remaining estimates are obtained similarly. This finishes the proof of
the lemma.

Remark 10.3. The conclusions of Lemma 10.2 also hold with trχ replaced by trχ or 2
r .
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10.2 Control of ρ and σ
Applying the L∞ estimate of Lemma 10.2, with κ = 3, λ = 3 to the transport equation (2.47), we have

∥∥r3ρ
∥∥
L∞(Su,u)

.
∥∥r3ρ

∥∥
L∞(Su,u∗ )

+

∫ u∗

u

∥∥r3Err(∇/ 4, ρ)
∥∥
L∞(Su,u′ )

du′.

Using the bounds (10.2) for ρ on C∗, the curvature bounds (10.1) and the Bootstrap Assumptions 3.23, with
the expression of Err (∇/ 4, ρ) from (2.47), we have∥∥r3ρ

∥∥
L∞(Su,u∗ )

. εu−2,∫ u∗

u

∥∥r3Err(∇/ 4, ρ)
∥∥
L∞(Su,u′ )

du′ . (Dε)2

∫ u∗

u

r3(u′)−1(u′)−7/2u−3/2 du′

. εu−2.

Thus, ∥∥r3u2ρ
∥∥
L∞(Mext)

. ε. (10.8)

Estimating directly equation (2.47) for ∇/ 4ρ, using (10.8), (10.1) and the Bootstrap Assumptions 3.23, we
have ∥∥r3u2(u∇/ 4)ρ

∥∥
L∞
. ε.

Taking the average in equation (2.35e) for ∇/ 3ρ, using the bound (10.8) for ρ, estimates (10.1) and the
Bootstrap Assumptions 3.23, one checks that∥∥r3u2(u∇/ 3)ρ

∥∥
L∞
. ε.

Taking one more derivative in the above equations, we further have

R
ext

≤2 [ρ] . ε.

Estimating directly equation (2.48) for σ, using the Bootstrap Assumptions 3.23, we have∥∥r3u2σ
∥∥
L∞
.
∥∥r3u2χ̂ ∧ χ̂

∥∥
L∞

. (Dε)2

. ε.

Taking the average and directly estimating equations (2.35g) and (2.35f) for ∇/ 3σ and ∇/ 4σ respectively, one
further has

R
ext

≤2 [σ] . ε,

and we have thus proved

R
ext

≤2 . ε. (10.9)

10.3 Control of ω
Applying the L∞ estimate of Lemma 10.2, with κ = 0, λ = 1, to the transport equation (2.58) for ω, using
the bounds (10.9) obtained for ρ and the Bootstrap Assumptions 3.23, and using that ω = 0 on C∗, we have

‖rω‖L∞(Su,u) .
∫ u∗

u

(r|ρ|+ Err (∇/ 4, ω)) du′

. εu−1u−2

Commuting (2.58) with ∇/ ≤1
and arguing similarly, we further have

O
ext

≤1 [ω] . ε. (10.10)

319



Chapter 10. Null connection estimates in Mext

Applying the L∞u L
2
uL

2(Su,u) estimate of Lemma 10.2, with κ = 0, λ = 1− γ, to the transport equation (2.58)

for ω multiplied by u3/2−γ , using the estimates (10.9) for ρ, from which one deduces
∥∥u3/2−γρ

∥∥
L2
uL

2(Su,u)
.γ

εu−2 for all γ > 0, and the Bootstrap Assumptions 3.23, we have∥∥∥u3/2−γu−γuω
∥∥∥
L2
uL

2(Su,u)
.
∫ u∗

u

(∥∥∥u3/2−γ(u′)1−γρ
∥∥∥
L2
uL

2(Su,u′ )
+
∥∥∥u−3/2−γ(u′)1−γErr(∇/ 4, ω)

∥∥∥
L2
uL

2(Su,u′ )

)
du′

. ε
∫ u∗

u

(u′)−1−γ du′

.γ ε.

Thus, arguing as in Section 5.2.1, using that u . u in Mext∥∥∥u3/2u−1/2−γuω
∥∥∥
L2(Mext)

.γ ε,

for all γ > 0. Commuting equation (2.58) with ∇/ ≤2
and arguing similarly gives

Oext

≤2,γ [ω] . ε, (10.11)

for all γ > 0.

10.4 Control of trχ− 2
r

Applying the L∞ estimate of Lemma 10.2, with κ = 1, λ = 2, to the transport equation (2.50) for trχ− 2
r ,

we have∥∥∥∥r2

(
trχ− 2

r

)∥∥∥∥
L∞(Su,u)

.

∥∥∥∥r2

(
trχ− 2

r

)∥∥∥∥
L∞(Su,u∗ )

+

∫ u∗

u

∥∥∥∥r2Err

(
∇/ 4, trχ−

2

r

)∥∥∥∥
L∞(Su,u′ )

du′.

From the bound (10.2) on C∗, and the Bootstrap Assumptions 3.23, we have∥∥∥∥r2

(
trχ− 2

r

)∥∥∥∥
L∞(Su,u∗ )

. εu∗−1u−1,

∫ u∗

u

∥∥∥∥r2Err

(
∇/ 4, trχ−

2

r

)∥∥∥∥
L∞(Su,u′ )

du′ .
∫ u∗

u

(
r2 ‖χ̂‖2L∞ + r2

∥∥trχ− trχ
∥∥2

L∞

)
du′

. (Dε)2

∫ u∗

u

r2(u′)−4u−1 du′

. εu−1u−1,

and we therefore deduce ∥∥∥∥uu3

(
trχ− 2

r

)∥∥∥∥
L∞
. ε. (10.12)

Estimating directly equation (2.50) or commuting equation (2.50) by u∇/ 3, and applying analogously the
L∞ estimates of Lemma 10.2, one obtains

O
ext

≤1 [trχ] . ε. (10.13)

Commuting with ∇/ ≤2
derivatives and applying the L∞u L

2 estimates of Lemma 10.2 as in the previous
section further gives

Oext

≤2,γ [trχ] . ε, (10.14)

for all γ > 0.

320



10.5. Control of trχ+ 2
r

10.5 Control of trχ+ 2
r

Applying the L∞ estimate of Lemma 10.2, with κ = 1, λ = 2, to the transport equation (2.54) for trχ+ 2
r ,

using the bounds (10.9) obtained for ρ and the Bootstrap Assumptions 3.23, we have

O
ext

≤1 [trχ] . ε. (10.15)

Applying the L∞u L
2 estimate of Lemma 10.2 as in the previous sections gives

Oext

≤2,γ [trχ] . ε, (10.16)

for all γ > 0.

10.6 Control of trχ− trχ
Applying the L∞H̃1/2 estimates of Lemma 10.2 with κ = 2, λ = 3/2 to the transport equation (2.49), we
have ∥∥∥r3/2(trχ− trχ)

∥∥∥
H̃1/2(Su,u)

.
∥∥∥r3/2(trχ− trχ)

∥∥∥
H̃1/2(Su,u∗ )

+

∫ u∗

u

∥∥∥r3/2Err
(
∇/ 4, trχ− trχ

)∥∥∥
H̃1/2(Su,u′ )

du′.

Using the bounds (10.2) on C∗, the H product estimates of Lemma 3.37 and the Bootstrap Assumptions 3.23,
we have ∥∥∥r3/2(trχ− trχ)

∥∥∥
H̃1/2(Su,u∗ )

. εu−1/2,

and ∫ u∗

u

∥∥∥r3/2Err
(
∇/ 4, trχ− trχ

)∥∥∥
H̃1/2(Su,u′ )

du′

.
∫ u∗

u

(∥∥∥r3/2χ̂ · χ̂
∥∥∥
H̃1/2(Su,u′ )

+
∥∥∥r3/2(trχ− trχ)2

∥∥∥
H̃1/2(Su,u′ )

)
du′

.
∫ u∗

u

((
‖χ̂‖L∞(Su,u′ )

+ r−1 ‖r∇/ χ̂‖L2(Su,u′ )

)∥∥∥r3/2χ̂
∥∥∥
H̃1/2(Su,u′ )

+
(∥∥trχ− trχ

∥∥
L∞(Su,u′ )

+ r−1
∥∥r∇/ (trχ− trχ)

∥∥
L2(Su,u′ )

)∥∥∥r3/2
(
trχ− trχ

)∥∥∥
H̃1/2(Su,u′ )

)
du′

. (Dε)2

∫ u∗

u

(
r−2u−1/2

)
u−1/2 du′

. εu−1/2.

Thus, ∥∥∥r3/2u1/2
(
trχ− trχ

)∥∥∥
L∞u,uH̃

1/2
. ε. (10.17)

Arguing similarly, commuting by (r∇/ ), (u∇/ 3) or directly estimating equation (2.49), we obtain

Oext,g
≤1 [trχ− trχ] . ε. (10.18)

Arguing similarly, commuting first by (r∇/ ), we obtain

Oext,g
≤1 [(r∇/ )trχ] . ε. (10.19)

Applying the L∞u L
2 estimates of Lemma 10.2 with κ = 2, λ = 1 to the transport equation (2.49), we obtain∥∥r (trχ− trχ

)∥∥
L2
uL

2(Su,u)
.
∥∥r(trχ− trχ)

∥∥
L2(C∗)

+

∫ u∗

u

∥∥rErr
(
∇/ 4, trχ− trχ

)∥∥
L2
uL

2(Su,u′ )
du′.
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Using the estimate (10.2) on C∗, we have∥∥r(trχ− trχ)
∥∥
L2(C∗) . ε.

We only treat the error terms involving χ̂ and the other terms follow (more easily). Using the Bootstrap
Assumptions 3.24 and Cauchy-Schwartz, gives∫ u∗

u

∥∥u′|χ̂|2∥∥
L2
uL

2(Su,u′ )
du′ .

∫ u∗

u

(Dε)(u′)−1
∥∥∥u−1/2χ̂

∥∥∥
L2
uL

2(Su,u′ )
du′

. (Dε)
∥∥∥u−1/2u−γχ̂

∥∥∥
L2(Mext)

. (Dε)
∥∥∥u−1/2−γuχ̂

∥∥∥
L2(Mext)

. (Dε)2.

Thus, ∥∥r (trχ− trχ
)∥∥
L∞u L

2
uL

2(Su,u)
. ε,

and we infer ∥∥∥u−1/2−γu
(
trχ− trχ

)∥∥∥
L2(Mext)

. ε

for all γ > 0.

Commuting equation (2.49) by (r∇/ )≤1 and then by ∇/ ≤2
and arguing similarly then gives

Oext,g
≤2,γ [trχ− trχ] . ε, Oext,g

≤2,γ [(r∇/ )trχ] . ε, (10.20)

for all γ > 0.

10.7 Control of ζ
10.7.1 Control of µ− µ and ∇/ ≤1ζ
Arguing as in the control for trχ− trχ in Section 10.6, using that µ− µ = 0 on C∗, and using the control
obtained for trχ− trχ, we obtain using the H̃1/2 estimates of Lemma 10.2 with κ = 3, λ = 5/2

Oext,g
≤1 [r(µ− µ)] . ε, (10.21)

and, using the L∞u L
2
uL

2(Su,u) estimates of Lemma 10.2 with κ = 3, λ = 5/2 and arguing a previously,

Oext,g
≤2,γ [r(µ− µ)] . ε, (10.22)

for all γ > 0.
Using the elliptic equation (2.61) and the elliptic estimates from Lemma 3.38, one obtains from the H̃1/2

estimates (10.21) for µ− µ,

Oext,g
≤1 [ζ] . ε, Oext,g

≤1 [(r∇/ )ζ] . ε, (10.23)

and from the L2(Mext) estimates (10.22) for µ− µ

Oext,g
≤2,γ [ζ] . ε, Oext,g

≤2,γ [(r∇/ )ζ] . ε, (10.24)

for all γ > 0.

10.7.2 Control of ι, ωρ, ωσ
Applying the H̃1/2 estimates of Lemma 10.2 with κ = 0, λ = −1/2 to the transport equation (2.70), we have∥∥∥r−1/2(r2ι)

∥∥∥
H̃1/2(Su,u)

.
∥∥∥r−1/2(r2ι)

∥∥∥
H̃1/2(Su,u∗ )

+

∫ u∗

u

∥∥∥r−1/2Err(∇/ 4, ι)
∥∥∥
H̃1/2(Su,u′ )

du′.
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Using that ι = β on C∗ and the estimates for the curvature (10.1), we have∥∥∥r−1/2(r2ι)
∥∥∥
H̃1/2(Su,u∗ )

.
∥∥∥r3/2β

∥∥∥
H̃1/2(Su,u∗ )

. εu−3/2.

From the error term Err(∇/ 4, ι), we only treat the term r2(trχ− trχ) and the estimates for the other terms
will follow similarly. Using the product estimates from Lemma 3.37, estimates (10.1) and the Bootstrap
Assumptions 3.23, we have∫ u∗

u

∥∥∥r−1/2r2(trχ− trχ)β
∥∥∥
H̃1/2(Su,u′ )

du′

.
∫ u∗

u

(∥∥trχ− trχ
∥∥
L∞(Su,u′ )

+ r−1 ‖(r∇/ )trχ‖L2(Su,u′ )

)∥∥∥r−1/2r2β
∥∥∥
H̃1/2(Su,u′ )

du′

.
∫ u∗

u

(Dε)u−2u−1/2(Dε)u−3/2 du′

.(Dε)2u−3/2,

Thus, ∥∥∥r3/2u3/2ι
∥∥∥
L∞u,uH̃

1/2
. ε. (10.25)

Commuting equation (2.70) by (r∇/ ), (u∇/ 3) and u∇/ 4, one further obtains

Oext,b
≤1 [rι] . ε. (10.26)

Using the L∞u L
2
uL

2(Su,u) estimates of Lemma 10.2, we have∥∥(u−1u)(r2ι)
∥∥
L2
uL

2(Su,u)
.
∥∥(u−1u)(r2ι)

∥∥
L2(C∗) +

∫ u∗

u

∥∥((u′)−1u)Err(∇/ 4, ι)
∥∥
L2
uL

2(Su,u′ )
du′.

From (10.2), we have ∥∥(u−1u)(r2ι)
∥∥
L2(C∗) . ε.

From estimates (10.1) and the Bootstrap Assumptions 3.23 and using Cauchy-Schwartz, we have∫ u∗

u

∥∥((u′)−1u)r2
(
trχ− trχ

)
β
∥∥
L2
uL

2(Su,u′ )
du′ .

∫ u∗

u

∥∥(u′)−1ur2β(trχ− trχ)
∥∥
L2
uL

2(Su,u′ )
du′

.
∫ u∗

u

(u′)−3/2+γ
∥∥∥(u′)−1/2−γu′u1/2β

∥∥∥
L2
uL

2(Su,u′ )
du′

.
∥∥∥u−1/2−γuu1/2β

∥∥∥
L2(Mext)

.
∥∥∥u−1/2−γuuβ

∥∥∥
L2(Mext)

. (Dε)2.

Thus, ∥∥(u−1u)(r2ι)
∥∥
L∞u L

2
uL

2(Su,u)
. ε.

Commuting with ∇/ ≤2
and arguing as previously, we infer

Oext,b
≤2,γ [rι] . ε, (10.27)

for all γ > 0.

Using the elliptic equation (2.69), the elliptic estimates of Lemma 3.38, the estimates for the curvature (10.1),
we have using the H̃1/2 estimates (10.26)

Oext,b
≤1

[
(r∇/ )(ωρ, ωσ)

]
. ε, (10.28)

and using the L2(Mext) estimates (10.27)

Oext,b
≤2,γ

[
(r∇/ )(ωρ, ωσ)

]
. ε, (10.29)

for all γ > 0.
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10.7.3 Control of ς and ∇/ 3ζ
Applying the estimates from Lemma 10.2 with κ = 0, λ = −1/2 to the transport equation (2.74) for ς, we
have ∥∥∥r−1/2r2ς

∥∥∥
H̃1/2(Su,u)

.
∥∥∥r−1/2r2ς

∥∥∥
H̃1/2(Su,u∗ )

+

∫ u∗

u

(∥∥∥r−1/2r2trχβ
∥∥∥
H̃1/2(Su,u′ )

+
∥∥∥r−1/2r2trχtrχζ

∥∥∥
H̃1/2(Su,u′ )

)
du′

+

∫ u∗

u

∥∥∥r−1/2Err(∇/ 4, ς)
∥∥∥
H̃1/2(Su,u′ )

du′.

From (10.2), we have ∥∥∥r−1/2r2ς
∥∥∥
H̃1/2(Su,u∗ )

=
∥∥∥r−1/2r2∇/ 3ζ

∥∥∥
H̃1/2(Su,u∗ )

. εu−3/2.

From the curvature estimates (10.1), the Bootstrap Assumptions 3.23 for trχ, trχ and the previously obtained
estimates (10.23) for ζ, we have∫ u∗

u

(∥∥∥r−1/2r2trχβ
∥∥∥
H̃1/2(Su,u′ )

+
∥∥∥r−1/2r2trχtrχζ

∥∥∥
H̃1/2(Su,u′ )

)
du′

.
∫ u∗

u

ε(u′)−5/2 + ε(u′)−2u−1/2 du′

. εu−3/2.

From the product estimates from Lemma 3.37, estimates (10.1) and the Bootstrap Assumptions 3.23 and an
inspection of the nonlinear terms composing Err(∇/ 4, ς), we have∫ u∗

u

∥∥∥r−1/2Err(∇/ 4, ς)
∥∥∥
H̃1/2(Su,u′ )

du′

.
∫ u∗

u

(Dε)2(u′)−2u−3/2 du′

. (Dε)2u−3/2.

Thus, ∥∥∥r−1/2u3/2r2ς
∥∥∥
L∞u,uH̃

1/2
. ε. (10.30)

Commuting by (r∇/ ), (u∇/ 3) and arguing similarly, or directly estimating ∇/ 4ς, we have

Oext,g
≤1 [uς] . ε. (10.31)

Applying the L∞u L
2 estimates of Lemma 10.2 with κ = 0, λ = −1 to the transport equation (2.74) multiplied

with u1−γ gives∥∥r−1u1−γr2ς
∥∥
L2
uL

2(Su,u)

.
∥∥r−1u1−γr2ς

∥∥
L2(C∗)

+

∫ u∗

u

(∥∥r−1u1−γr2(trχβ)
∥∥
L2
uL

2(Su,u′ )
+
∥∥r−1u1−γr2(trχtrχζ)

∥∥
L2
uL

2(Su,u′ )

)
du′

+

∫ u∗

u

∥∥r−1u1−γErr(∇/ 4, ς)
∥∥
L2
uL

2(Su,u′ )
du′.

From the estimates (10.2) for ∇/ 3ζ on C∗, we have∥∥r−1u1−γr2ς
∥∥
L2(C∗) =

∥∥u1−γr∇/ 3ζ
∥∥
L2(C∗) . ε.
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Using Cauchy-Schwartz, the estimates (10.24) for the L2(Mext) norm of ζ, and the Bootstrap Assump-
tions 3.23, we have∫ u∗

u

∥∥r−1u1−γr2trχtrχζ
∥∥
L2
uL

2(Su,u′ )
du′ .

∫ u∗

u

∥∥r−1u1−γζ
∥∥
L2
uL

2(Su,u′ )
du′

.
∫ u∗

u

u−1/2−γ/2
∥∥∥u−1/2−γ/2u2r−1ζ

∥∥∥
L2
uL

2(Su,u′ )
du′

.
∥∥∥u−1/2−γ/2u2r−1ζ

∥∥∥
L2(Mext)

. ε.

The linear source term β and the error term Err(∇/ 4, ς) are estimated similarly, using the curvature
estimate (10.1) and the Bootstrap Assumptions 3.23, and we have

∫ u∗

u

∥∥r−1u1−γr2trχβ
∥∥
L2
uL

2(Su,u′ )
du′ . ε.

Thus, ∥∥r−1u1−γr2ς
∥∥
L∞u L

2
uL

2(Su,u)
. ε,

for all γ > 0, from which we also deduce∥∥∥u−1/2−γu(uς)
∥∥∥
L2(Mext)

. ε,

for all γ > 0. Commuting by ∇/ ≤2
and arguing similarly further gives

Oext,g
≤2,γ [uς] . ε. (10.32)

Using equation (2.73) for ∇/ 3ζ, the H̃1/2 estimates (10.28) for ∇/ ωρ,∇/ ωσ, the H̃1/2 estimates (10.30), (10.31),
for ς, we deduce

Oext,g
≤1 [(u∇/ 3)ζ] . ε. (10.33)

From the L2(Mext) estimates (10.29) for ∇/ ωρ,∇/ ωσ, and the L2(Mext) estimates (10.32) for ς, we have

Oext,g
≤2,γ [(u∇/ 3)ζ] . ε, (10.34)

for all γ > 0.

10.8 Control of χ̂
Using the elliptic estimates of Lemma 3.38 with the elliptic equation (2.34q) for χ̂, together with the improved
estimates (10.18), (10.19), (10.20) for ∇/ trχ, the improved estimates (10.23), (10.33), for ζ, the Bootstrap
Assumptions 3.23 and the curvature estimates (10.1), we have

Oext,g
≤1 [χ̂] . ε, Oext,g

≤1 [(r∇/ )χ̂] . ε, (10.35)

and using the corresponding L2(Mext) estimates,

Oext,g
≤2,γ [χ̂] . ε, Oext,g

≤2,γ [(r∇/ )χ̂] . ε, (10.36)

for all γ > 0.
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10.9 Control of trχ− trχ and χ̂
Applying the H̃1/2 estimates of Lemma 10.2 with κ = 1, λ = 1/2 to the (commuted by ∇/ ≤1

) transport
equation (2.53) for trχ− trχ, using the improved estimates (10.23) for ∇/ ζ and the estimates (10.1) for ρ− ρ,
we have

Oext,g
≤1 [trχ− trχ] . ε, (10.37)

Using the corresponding L2(Mext) estimates, we also have

Oext,g
≤2,γ

[
trχ− trχ

]
. ε, (10.38)

for all γ > 0.

Arguing similarly, using the transport equation (2.34m) for χ̂, we have

Oext,b
≤1

[
χ̂
]
. ε, (10.39)

and

Oext,b
≤2,γ

[
χ̂
]
. ε, (10.40)

for all γ > 0.

10.10 Control of ω − ω
10.10.1 Control of ω − ω
Applying the H̃1/2 estimates of Lemma 10.2 with κ = 0, λ = −1/2 to the transport equation (2.57) for ω−ω,
we obtain

Oext,b
≤1 [ω − ω] . ε, (10.41)

and, applying the L2(Mext) estimates

Oext,b
≤2,γ [ω − ω] . ε, (10.42)

for all γ > 0.

10.10.2 Control of ι and ∇/ (ω, ∗ω)
Applying the H̃1/2 estimates of Lemma 10.2 with κ = 0, λ = −1/2 to the transport equation (2.80) for ι,

Oext,b
≤1 [rι] . ε, (10.43)

and applying the L2(Mext) estimates of Lemma 10.2, we have

Oext,b
≤2,γ [rι] . ε, (10.44)

for all γ > 0.

From the elliptic equation (2.69), the elliptic estimates of Lemma 3.38, we deduce from (10.43) and (10.44)
and the estimates (10.1) for β

Oext,b
≤1 [(r∇/ )ω] . ε, Oext,b

≤1 [(r∇/ )∗ω] . ε, (10.45)

and

Oext,b
≤2,γ [(r∇/ )ω] . ε, Oext,b

≤2,γ [(r∇/ )∗ω] . ε, (10.46)

for all γ > 0.
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10.11 Control of ξ
We rewrite equation (2.34d) together with the results of Lemma 2.11 as

1

2
trχξ = ∇/ 3ζ + β + 2∇/ ω + 2χ · ζ − χ̂ · ξ. (10.47)

Estimating directly equation (10.47) together with the H̃1/2 estimates (10.33) for ∇/ 3ζ, (10.45) for ∇/ ω, and
the estimates (10.1) for β, we have

Oext,b
≤1

[
ξ
]
. ε. (10.48)

Using the L2(Mext) estimates (10.34), (10.46) and (10.1), we further have

Oext,b
≤2,γ

[
ξ
]
. ε, (10.49)

for all γ > 0.

10.12 Control of y
10.12.1 Control of y
Applying the L∞ estimate of Lemma 10.2 with κ = 0, λ = 0, to the transport equation

∇/ 4y = −4ω + (trχ− trχ)(y− y), (10.50)

obtained by taking the average in (2.46) and using formula (2.38), we have

‖y‖L∞(Su,u) .
∫ u∗

u

(
‖ω‖L∞(Su,u′ )

+
∥∥(trχ− trχ)(y− y)

∥∥
L∞(Su,u′ )

)
du′,

where we used that y = 0 on C∗. From the bounds (10.10) for ω and from the Bootstrap Assumptions 3.23,
we have ∫ u∗

u

‖ω‖L∞(Su,u′ )
du′ . ε

∫ u∗

u

(u′)−2u−2 du′ . εu−1u−2,∫ u∗

u

∥∥(trχ− trχ)(y− y)
∥∥
L∞(Su,u′ )

du′ . (Dε)2

∫ u∗

u

(u′)−2u−1/2u−3/2 du′ . εu−1u−2.

Thus, ∥∥uu2y
∥∥
L∞(Mext)

. ε.

Commuting equation (10.50) by ∇/ ∈ {r∇/ , u∇/ 3, u∇/ 4} and arguing similarly, we obtain∥∥uu2∇/ y
∥∥
L∞(Mext)

. ε. (10.51)

Applying the L∞u L
2
uL

2(Su,u) estimate of Lemma 10.2 with κ = 0, λ = −γ to equation (10.50) multiplied by

u3/2, using Cauchy-Schwartz, the L2(Mext) estimates (10.11) for ω and the Bootstrap Assumptions 3.23, we
have∥∥∥u3/2u−γy

∥∥∥
L2
uL

2(Su,u)
.
∫ u∗

u

(∥∥∥u3/2(u′)−γω
∥∥∥
L2
uL

2(Su,u′ )
+
∥∥∥u3/2(u′)−γ(trχ− trχ)(y− y)

∥∥∥
L2
uL

2(Su,u′ )

)
du′

.
∥∥∥u3/2u−γ/2u1/2ω

∥∥∥
L2(Mext)

+ (Dε)
∥∥∥uu−3/2−γ/2(y− y)

∥∥∥
L2(Mext)

.γ ε.

Thus, ∥∥∥u−1/2−γu3/2y
∥∥∥
L2(Mext)

. ε,
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for all γ > 0. Commuting with ∇/ ≤2
and arguing similarly, we obtain∥∥∥u−1/2−γu3/2∇/ ≤2

y
∥∥∥
L2(Mext)

. ε. (10.52)

To prove the estimates on T , we write the L2(T ) norm of y of Section 3.2.4 as∫ τu∗

1

u3−2γy2u2 du .
∫ τu∗

1

u3−2γ

(∫ u∗

τ−1u

|∇/ 4y|du′
)2

u2 du

.
∫ τu∗

1

∫ u∗

τ−1u

u3−2γ(u′)−2α|∇/ 4y|2u2α+1u2 du′du,

.
∥∥u3−γ+αu−1−α∇/ 4y

∥∥2

L2(Mext)

.
∥∥∥u3/2u1/2−γ∇/ 4y

∥∥∥2

L2(Mext)
,

where we used that y = 0 on C∗ and where in the second line we chose α such that 2α+ 1 < 0 and in the
third line we chose α such that α+ 3

2 − γ > 0.

Using equation (10.50) for ∇/ 4y, the L2(Mext) bounds (10.11) for ω and the Bootstrap Assumptions, we
have ∥∥∥u3/2u1/2−γ∇/ 4y

∥∥∥
L2(Mext)

.
∥∥∥u3/2u1/2−γω

∥∥∥
L2(Mext)

+
∥∥∥u3/2u1/2−γ(trχ− trχ)(y− y)

∥∥∥
L2(Mext)

. ε+ (Dε)
∥∥∥uu−3/2−γ(y− y)

∥∥∥
L2(Mext)

. ε+ (Dε)2

. ε.

Thus, ∥∥∥u3/2−γy
∥∥∥
L2(T )

. ε,

for all γ > 0. Commuting by ∇/ ≤2
and arguing similarly further gives the desired estimate on T∥∥∥u3/2−γ∇/ ≤2

y
∥∥∥
L2(T )

. ε. (10.53)

10.12.2 Control of ∇/ y
From formula (2.45), we have ∇/ y = −2ξ. Compiling the bounds for y obtained in Section 10.12.1 and the
bounds (10.48) for ξ, one directly deduces

Oext
≤1 [y] . ε, Oext

≤2,γ [y] . ε. (10.54)

Arguing as in Section 10.12.1, we have∥∥u1−γξ
∥∥
L2(T )

.
∥∥∥uu1/2−γ∇/ 4ξ

∥∥∥
L2(Mext)

,

where we used that ξ = 0 on C∗. Rewriting equation (2.34h), we have the following equation for ∇/ 4ξ.

∇/ 4ξ = −∇/ 3ζ − β − 2χ · ζ. (10.55)

Thus, ∥∥u1−γξ
∥∥
L2(T )

.
∥∥∥uu1/2−γ∇/ 3ζ

∥∥∥
L2(Mext)

+
∥∥∥uu1/2−γβ

∥∥∥
L2(Mext)

+
∥∥∥uu−1/2−γχ · ζ

∥∥∥
L2(Mext)

.

Using the L2(Mext) bounds (10.34) for ∇/ 3ζ, the curvature bounds (10.1) for β, the bounds (10.24) for ζ
and the Bootstrap Assumptions 3.23, one infers∥∥u1−γξ

∥∥
L2(T )

. ε.

Commuting equation (10.55) by ∇/ ≤2
and arguing similarly, we finally obtain the desired L2(T ) bounds for

(derivatives of) ξ = − 1
2∇/ y, and we have

OT≤2,γ [y] . ε, (10.56)

for all γ > 0, as desired.
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10.13 Control of Oext

10.13.1 Mild control of Oext

We rewrite equation (2.113) under the following form

∇/ 4

(
r−1O

)
= r−1χ̂ ·O +

1

2
r−1(trχ− trχ)O. (10.57)

Applying the L∞ estimates of Lemma 10.2 with κ = 0, λ = 0, to the transport equation (10.57), using the
improvement of the mild Bootstrap Assumptions for Oext on C∗ ∩Mext obtained in Section 9.14.1, we obtain
the following improvement of the mild Bootstrap Assumptions 3.16 on the full domain Mext∥∥r−1(r∇/ )≤1Oext

∥∥
L∞(Mext)

. 1. (10.58)

Arguing similarly as in Section 9.14.1, one also obtains the last estimates of the Bootstrap Assumptions 3.16.
This finishes the improvement of 3.16 on Mext.

10.13.2 Control of H and Ψ
Applying the H̃1/2 estimates of Lemma 10.2 with κ = 0, λ = −1/2 to the transport equation (2.116) for H,
we have ∥∥∥r−1/2H

∥∥∥
H̃1/2(Su,u)

.
∥∥∥r−1/2H

∥∥∥
H̃1/2(Su,u∗ )

+

∫ u∗

u

∥∥∥r−1/2∇/ 3H
∥∥∥
H̃1/2(Su,u′ )

du′.

From estimates (10.2), we have ∥∥∥r−1/2H
∥∥∥
H̃1/2(Su,u∗ )

. ε.

Using the product estimates of Lemma 3.37 and the estimates (10.35), we check that∫ u∗

u

∥∥∥r−1/2∇/ χ̂ ·O
∥∥∥
H̃1/2(Su,u′ )

du′ .
∫ u∗

u

∥∥∥r−1/2(r∇/ )χ̂
∥∥∥
H̃1/2(Su,u′ )

du′ . εu−1/2u−1,

and∫ u∗

u

∥∥∥r−1/2χ̂ · ∇/ O
∥∥∥
H̃1/2(Su,u′ )

du′ . ε
∫ u∗

u

(u′)−2u−1/2
∥∥∥r−1/2∇/ O

∥∥∥
H̃1/2(Su,u′ )

du′

. ε
∫ u∗

u

(u′)−2u−1/2
(∥∥r−1O

∥∥
L∞(Su,u′ )

+ ‖∇/ O‖L∞(Su,u′ )
+ ‖Ψ‖L2(Su,u′ )

)
du′

. εu−1/2u−1,

and the control of the other terms composing ∇/ 3H follows similarly. Thus, we have∥∥∥r−1/2u1/2u2r−1H
∥∥∥
L∞u,uH̃

1/2
. ε.

Commuting equation (2.116) with (∇/ )≤2, where ∇/ ∈ {(r∇/ ), u∇/ 3} and applying the H̃1/2 estimates of
Lemma 10.2, or directly estimating the ∇/ 4 derivatives from equation (2.116) gives similar bounds and we
have

Oext,g
≤1

[
r−1H

]
. ε. (10.59)

Applying the L∞u L
2
uL

2(Su,u) estimates of Lemma 10.2 with κ = 0, λ = −γ to the transport equation (2.116)
for H gives

∥∥u−γH∥∥
L2
uL

2(Su,u)
.
∥∥u−γH∥∥

L2(C∗) +

∫ u∗

u

(∥∥u−γ∇/ 4H
∥∥
L2
uL

2(Su,u′ )

)
du′.

From estimate (10.2) on C∗, we have ∥∥u−γH∥∥
L2(C∗) . ε.
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From the L2(Mext) estimate (10.36) for χ̂ and Cauchy-Schwartz, we have∫ u∗

u

∥∥(u′)−γ∇/ χ̂ ·O
∥∥
L2
uL

2(Su,u′ )
du′ .

∫ u∗

u

∥∥(u′)−γ(r∇/ )χ̂
∥∥
L2
uL

2(Su,u′ )
du′

.
∥∥∥u1/2u−γ/2(r∇/ )χ̂

∥∥∥
L2(Mext)

. ε.

The other terms follow similarly. Thus, we deduce that∥∥∥u−1/2−γH
∥∥∥
L2(Mext)

. ε,

for all γ > 0. Commuting by (r∇/ )≤3 and arguing similarly, we obtain

Oext,g
≤2,γ

[
r−1H

]
. ε, (10.60)

for all γ > 0.

The control of Ψ follows from similar estimates as the ones performed for H, using the transport equa-
tion (2.117) for rΨ. Thus, we have

Oext,g
≤0 [Ψ] . ε, Oext,g

≤1,γ [Ψ] . ε, (10.61)

for all γ > 0.

10.13.3 Control of Y
Applying the H̃1/2 estimates of Lemma 10.2 with κ = −1, λ = −3/2 to the transport equation (2.115) for Y ,
using that Y = 0 on C∗, we have∥∥∥r−3/2Y

∥∥∥
H̃1/2(Su,u)

.
∫ u∗

u

∥∥∥∥r−3/2

(
∇/ 4Y −

1

2
trχY

)∥∥∥∥
H̃1/2(Su,u′ )

du′.

From an inspection of the terms in the right-hand side of equation (2.115) the term with slowest decay is
2(div/ ζ)O, and we have∫ u∗

u

∥∥∥r−3/2(div/ ζ)O
∥∥∥
H̃1/2(Su,u′ )

du′ .
∫ u∗

u

∥∥∥r−1/2∇/ ζ
∥∥∥
H̃1/2(su,u′ )

du′

. ε
∫ u∗

u

(u′)−3u−1/2 du′

. εu−2u−1/2,

where we used the product estimates of Lemma 3.37, the estimates (10.23) for ζ and (10.58) for O. Commuting
with (r∇/ ), (q∇/ 3) or estimating directly equation (2.115) and arguing similarly, we obtain

Oext,g
≤1

[
r−1Y

]
. ε.

Applying the L∞u L
2
uL

2(Su,u) estimates of Lemma 10.2 with κ = −1, λ = −γ to the transport equation (2.115),
using that Y = 0 on C∗, we have

∥∥r−1−γuY
∥∥
L2
uL

2(Su,u)
.
∫ u∗

u

∥∥r−1−γu′div/ ζO
∥∥
L2
uL

2(Su,u′ )
du′

.
∫ u∗

u

∥∥r−1−γu′(r∇/ )ζ
∥∥
L2
uL

2(Su,u′ )
du′

.
∥∥∥r−1/2−γ/2u(r∇/ )ζ

∥∥∥
L2(Mext)

. ε,
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where we only considered the slowest decaying term 2(div/ ζ)O of the right-hand side of (2.115). Therefore,
we obtain ∥∥∥u−1/2−γuY

∥∥∥
L2(Mext)

. ε,

for all γ > 0. Commuting with ∇/ ≤2
and arguing similarly, we have

Oext,g
≤2,γ

[
r−1Y

]
. ε,

for all γ > 0. This finishes the proof of (10.3).

10.14 Control of the area radius
Lemma 10.4. Under the improved estimates obtained in this section, we have in Mext∣∣∣∣r(u, u)− 1

2
(u− u)

∣∣∣∣ . εu−1u−1.

Proof. Using relations (2.1) and (2.39), we have

e4

(
r(u, u)− 1

2
(u− u)

)
=

1

2
rtrχ− 1.

Integrating in u, using the improved estimate for r on C∗ from Section 9.15 and using the improved
estimate (10.12) for trχ, we have∣∣∣∣r(u, u)− 1

2
(u− u)

∣∣∣∣ . ∣∣∣∣r(u, u∗)− 1

2
(u∗ − u)

∣∣∣∣+

∫ u∗

u

r

∣∣∣∣trχ− 2

r

∣∣∣∣ du′

. εu∗−1u−1 + ε

∫ u∗

u

r(u′)−3u−1 du′

. εu−1u−1,

as desired.

10.15 Control of the spherical coordinates in Mext

For a spherical coordinate system as described in the Bootstrap Assumption 3.26, we have using (2.34a), the
following transport equation in the e4 direction

e4(g/ab) = 2χab = trχg/ab + (trχ− trχ)g/ab + 2χ̂ab,

where a, b ∈ {ϑ, ϕ}, which rewrites using (2.39) and the notation of the Bootstrap Assumption 3.26

e4

(
r−2g/ab − (g/S)ab

)
= (trχ− trχ)r−2g/ab + 2r−2χ̂ab. (10.62)

Integrating along e4, this yields

∣∣r−2g/ab − (g/S)ab
∣∣ (u, u, ϑ, ϕ) .

∣∣r−2g/ab − (g/S)ab
∣∣ (u, u∗, ϑ, ϕ) +

∫ u∗

u

(∣∣(trχ− trχ)r−2g/ab
∣∣+ 2r−2 |χ̂ab|

)
du′

. ε+ ε

∫ u∗

u

(u′)−2u−1/2 du′

. εu−1u−1/2,

where we used the improved bounds for the metric in coordinates on C∗ from Section 9.16, the improved
bounds (10.18), (10.35) for trχ and χ̂ and the Bootstrap Assumptions 3.26 for the coordinate component of g/.

Commuting (10.62) with ∂ and integrating using the sup-norm bounds for (r∇/ )(trχ− trχ) and (r∇/ )χ̂, we
further have ∣∣∂≤1

(
r−2g/ab − (g/S)ab

)∣∣ . εu−1u−1/2.

This finishes the improvement of the Bootstrap Assumptions 3.26.
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In this section, we prove the following proposition.

Proposition 11.1. Recall that from Proposition 7.1 we have the following curvature control on the maximal
hypersurfaces Σt (see the definitions of Section 3.2.2)

Rint
≤2 + Rint

≤1 . ε. (11.1)

Recall that from Proposition 10.1 we have the following control of the null connection coefficients in Mext –
and in particular on the interface T –

Oext
≤1 + O

ext

≤1 + Oext
≤1 [y] +OT2,γ [y] . ε, (11.2)

for all γ > 0 (see the definitions from Section 3.2.4). Recall that from Proposition 9.1, we have on C∗ (see
the definitions of Section 3.2.3)

O∗≤2 . ε. (11.3)

Recall that from Proposition 10.1 we have the following control of the exterior rotation vectorfields in Mext –
and in particular on the interface T – (see the definitions from Section 3.2.4)

Oext,O
≤2 . ε. (11.4)

Under the Bootstrap Assumptions and estimates (11.1), (11.2), we have for ε > 0 sufficiently small the
following control on the connection coefficients of the maximal hypersurfaces (see Section 3.2.5 for definitions)

Oint
≤3,γ [n] +Oint

≤2[k] + OT≤2[ν] .γ ε, (11.5)

for all γ > 0. Moreover, under the same hypothesis and (11.3), we have the following harmonic coordinates
control on the last maximal slice Σt∗

3∑
i,j=1

∥∥∥t3/2 (g(∇xi,∇xj)− δij
)∥∥∥
L∞(Σt∗ )

+

3∑
i=1

∥∥(t∇)≤3∇2xi
∥∥
L2(Σt∗ )

. ε,

3∑
i=1

∥∥t (r∗N(xi)− xi
)∥∥
L∞(S∗)

. ε.

(11.6)

Under the same hypothesis, the respectively mild and strong Bootstrap Assumptions 3.18 and 3.28 for the
interior approximate conformal Killing fields Tint,Sint,Kint,Oint are improved. Under the same hypothesis
and using (11.4), the Bootstrap Assumptions 3.29 on the difference of the interior and exterior approximate
Killing fields on T are improved.

Remark 11.2. We do not control all 3-derivatives of n, which is a far-reaching consequence of the lack of
regularity for ξ. However, we do control all 2-derivatives of ∇n, which is enough to control D(Tint)π and

D2Tint

π in the error term estimates of Section 5 and in the curvature estimates of Section 7, where it is
used.

11.1 Elliptic estimates
In Section 11.2, we will need the following elliptic estimates for the Laplace equation on Σt.

Lemma 11.3 (Elliptic estimate for Laplace equation on Σt). Under the Bootstrap Assumptions 3.17, we
have for all 1 ≤ t ≤ t∗ and for all scalar function f

‖(t∇)f‖L2(Σt)
+ ‖f‖L2(Σt)

.
∥∥t2∆f

∥∥
L2(Σt)

+ ‖tf‖H̃1/2(∂Σt)
,

and for all k ≥ 2 ∥∥(t∇)≤kf
∥∥
L2(Σt)

.
∥∥t2(t∇)k−2(∆f)

∥∥
L2(Σt)

+
∥∥t(t∇/ )≤k−1f

∥∥
H̃1/2(∂Σt)

.

Proof. The proof follows from a rescaling in t and the results from [Czi19a] (see also [CG19b]).
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11.2 Control of the second fundamental form k and lapse n
11.2.1 Control of k,∇k on Σt

In this section, we use energy estimates for the elliptic div-curl systems (2.11) satisfied by k on Σt. The
source term for this elliptic equation is H and the boundary conditions on ∂Σt are given by mixed implicit
Dirichlet and Neumann conditions for k (see Lemma 2.6). This estimate has already been done in [CG19b,
Sections 4.7 and 4.8], where, rescaling in t these estimates, it holds that

‖t(t∇)k‖L2(Σt)
+ ‖tk‖L2(Σt)

+ t3/2 ‖k‖L2(∂Σt)

.
∥∥t2H∥∥

L2(Σt)
+

∥∥∥∥t2(trχ− 2

r

)∥∥∥∥
H̃1/2(∂Σt)

+

∥∥∥∥t2(trχ+
2

r

)∥∥∥∥
H̃1/2(∂Σt)

+
∥∥t2ζ∥∥

H̃1/2(∂Σt)
+ error terms.

Using the L2(Σt) bounds (11.1) for H and the H̃1/2(∂Σt) bounds (11.2) for trχ − 2
r , trχ + 2

r , ζ, we thus
obtain ∥∥t(t∇)≤1k

∥∥
L2(Σt)

. ε.

As a byproduct of these estimates, it is shown in [CG19b, Section 4] that we have the following control for ν∥∥t(t∇/ )≤1(ν − 1)
∥∥
H̃1/2(∂Σt)

. ε.

Remark 11.4. The H̃1/2(∂Σt) control of ν uses the first two relations of (2.18). See [CG19b, Lemma 4.9]
for the full argument.

11.2.2 Control of ∇2k on Σt

To estimate ∇2k on Σt, one cannot use the higher regularity elliptic estimates from Lemma 7.6 since the
boundary terms for k are only implicitly related to the null connection coefficients on ∂Σt. We therefore
have to show that commuting the elliptic equations (2.11) by a derivative does not change the coercive
structure of the boundary terms which appeared in the original energy estimate. This analysis has already
been carried out in [CG19b, Sections 5.1.3 and 5.2.3], and we refer the reader to that paper.

We therefore shall assume that we have the following elliptic estimate on Σt∥∥t3∇2k
∥∥
L2(Σt)

+
∥∥∥t5/2∇k∥∥∥

L2(∂Σt)

.
∥∥t3∇H∥∥

L2(Σt)
+
∥∥t2∇k∥∥

L2(Σt)
+ ‖tk‖L2(Σt)

+
∥∥t3∇/ trχ

∥∥
H̃1/2(∂Σt)

+
∥∥t3∇/ trχ

∥∥
H̃1/2(∂Σt)

+
∥∥t3∇/ ζ∥∥

H̃1/2(∂Σt)
+

∥∥∥∥t2(trχ− 2

r

)∥∥∥∥
H̃1/2(∂Σt)

+

∥∥∥∥t2(trχ+
2

r

)∥∥∥∥
H̃1/2(∂Σt)

+
∥∥t2ζ∥∥

H̃1/2(∂Σt)
.

Using the L2(Σt) bounds (11.1) for H and the H̃1/2(∂Σt) bounds (11.2) for trχ − 2
r , trχ + 2

r , ζ, we thus
obtain ∥∥t3∇2k

∥∥
L2(Σt)

. ε. (11.7)

As a byproduct of these estimates, one further has the following improved estimates for the tangential
derivatives of ν ∥∥t(t∇/ )≤2(ν − 1)

∥∥
H̃1/2(∂Σt)

. ε. (11.8)

11.2.3 Optimal control for ∇3k on the last hypersurface Σt∗

On the boundary of the last hypersurface ∂Σt∗ = S∗ ⊂ C∗, we have from O∗≤2 . ε (see the definitions in
Section 3.2.3 and the improvement in Section 9) the following additional bounds∥∥∥∥t2(t∇/ )2

(
trχ− 2

r

)∥∥∥∥
H̃1/2(S∗)

+

∥∥∥∥t2(t∇/ )2

(
trχ+

2

r

)∥∥∥∥
H̃1/2(S∗)

+
∥∥t2(t∇/ )2ζ

∥∥
H̃1/2(S∗)

. ε. (11.9)

334



11.2. Control of the second fundamental form k and lapse n

From the elliptic estimates of [CG19b, Sections 5.1.3 and 5.2.3], we have on the last slice Σt∗∥∥t4∇3k
∥∥
L2(Σt∗ )

+
∥∥∥t7/2∇2k

∥∥∥
L2(∂Σt∗ )

.
∥∥t4∇2H

∥∥
L2(Σt∗ )

+
∥∥t3∇2k

∥∥
L2(Σt∗ )

+
∥∥t2∇k∥∥

L2(Σt∗ )
+ ‖tk‖L2(Σt∗ )

+
∥∥t4∇/ 2trχ

∥∥
H̃1/2(S∗)

+
∥∥t4∇/ 2trχ

∥∥
H̃1/2(S∗)

+
∥∥t4∇/ 2ζ

∥∥
H̃1/2(S∗)

+
∥∥t3∇/ trχ

∥∥
H̃1/2(S∗)

+
∥∥t3∇/ trχ

∥∥
H̃1/2(S∗)

+
∥∥t3∇/ ζ∥∥

H̃1/2(S∗)

+

∥∥∥∥t2(trχ− 2

r

)∥∥∥∥
H̃1/2(S∗)

+

∥∥∥∥t2(trχ+
2

r

)∥∥∥∥
H̃1/2(S∗)

+
∥∥t2ζ∥∥

H̃1/2(S∗)
.

Thus, using the curvature estimates (11.1) and the additional bounds (11.9), we obtain∥∥t4∇3k
∥∥
L2(Σt∗ )

. ε.

Remark 11.5. The optimal control in regularity for k, ∇3k ∈ L2, can only be achieved provided that trχ,
trχ and ζ have optimal regularity on the boundary. The optimal regularity for these coefficients is only
obtained on the last cone C∗ and is a consequence of the choice of the canonical foliation (see Section 9).
The optimal regularity for χ in Mext \ C∗ cannot be obtained due to the classical loss of regularity for the
geodesic foliation on the cones Cu. In the present paper, this is not an issue since the optimal bounds for k
are only needed on Σt∗ to carry out the extension procedure of Σt∗ in Section 8.1.

11.2.4 Control of ∇≤3n on Σt

From relation (2.19), we have

n− 1 =
τ

τ + 1

(
(ν − 1) + τ−1(ν−1 − 1)− 1

2
yν−1

)
. (11.10)

From the assumption (11.2) (see the definitions of Section 3.2.4 and the improvements of Section 10), and
from the just obtained (11.8), we have∥∥t(t∇/ )≤2y

∥∥
H̃1/2(∂Σt)

. Oext
≤1 [y] . ε,∥∥t(t∇/ )≤2(ν − 1)

∥∥
H̃1/2(∂Σt)

. ε.

Thus, using relation (11.10) and the product estimates of Lemma 3.37, we have∥∥t(t∇/ )≤2(n− 1)
∥∥
H̃1/2(∂Σt)

. ε. (11.11)

Applying the elliptic estimates of Lemma 11.3, using Laplace equation (2.12) for n, the Bootstrap Assump-
tions 3.24 and the boundary estimate (11.11), we therefore deduce∥∥(t∇)≤3(n− 1)

∥∥
L2(Σt)

. ε, (11.12)

as desired.

11.2.5 Control of L̂Tk,∇L̂Tk on Σt

The improved estimates for L̂T k,∇L̂T k on Σt are directly obtained using equation (2.13) for L̂T k together
with the assumed estimates (11.1) for the curvature and the just improved estimates (11.12) for ∇≤3n from
Section 11.2.4, and we have ∥∥∥t2(t∇)≤1L̂T k

∥∥∥
L2(Σt)

. ε. (11.13)

11.2.6 Control of ∇≤2(T (n)) on Σt

On the boundary ∂Σt, we have

Z =
(
a1/2ν−1 + a−1/2ν

)
T +

(
a1/2ν−1 − a−1/2ν

)
N,
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where Z is the future-pointing unit normal to ∂Σt in T , defined in the proof of Lemma 2.7, where a = τ−1− 1
2y

and where we recall that N is the outward-pointing unit normal to ∂Σt in Σt.

We therefore have (
a1/2ν−1 + a−1/2ν

)
T (n) = Z(n)−

(
a1/2ν−1 − a−1/2ν

)
N(n). (11.14)

From a trace estimate, using the improved estimates from Section 11.2.4, the second term and its tangent
derivative are controlled in H1/2.

Using relation (2.19) on T , we have

Z(n) = Z

(
τ

τ + 1

(
ν + (τ−1 − 1

2
y)ν−1

))
,

and ∇/ ≤1Z(n) is schematically composed of

∇/ ≤1(∇/ 3,∇/ 4)y, ∇/ ≤1Z(ν).

From the assumption (11.2) (see the definitions of Section 3.2.4 and the improvements of Section 10), we
have ∥∥t(t∇/ )≤1(t∇/ 3)y

∥∥
H̃1/2(∂Σt)

+
∥∥t(t∇/ )≤1(t∇/ 4)y

∥∥
H̃1/2(∂Σt)

. Oext
≤1 [y] . ε. (11.15)

Using relation (2.18) for trκ, we have on T

ν−1 − ν = −rδ + r

(
trχ+

2

r

)
+ r

(
trχ− 2

r

)
+ Err,

which derived in Z gives

Z(ν) =
1

2
Z (rδ)− 1

2
Z

(
r

(
trχ+

2

r

))
− 1

2
Z

(
r

(
trχ− 2

r

))
+ Err.

Using the improved estimates (11.7), (11.13) for respectively ∇≤2k and ∇≤1L̂T k and trace estimates, one
deduces from the above formula ∥∥t2Z(ν)

∥∥
H̃1/2(∂Σt)

. ε. (11.16)

Using relations (2.18) for ε, and the improved estimates (11.7), (11.13) for k and trace estimates, we have∥∥t2(t∇/ )Z(ν)
∥∥
H̃1/2(∂Σt)

. ε. (11.17)

Thus, combining (11.15), (11.16), (11.17) and equation (11.14), we obtain∥∥t(t∇/ )≤1T (n)
∥∥
H̃1/2(∂Σt)

. ε.

Applying the elliptic estimate of Lemma 11.3, commuting Laplace equation (2.12) with T and using the
above boundary estimate, we obtain ∥∥t(t∇)≤2T (n)

∥∥
L2(Σt)

. ε, (11.18)

as desired.

11.2.7 Control of L̂2
T
k on Σt

The improved estimates for L̂2
T
k are obtained directly using equation (2.13), the estimates just obtained in

Section 11.2.6 for ∇≤2T (n) and the improved estimates for the curvature, and we have∥∥∥t3L̂2
T
k
∥∥∥
L2(Σt)

. ε. (11.19)
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11.2.8 Control of ∇≤1T
2
(n) on Σt

Arguing as in Section 11.2.6, our goal is to obtain boundary estimates for T
2
(n) on ∂Σt. As in (11.14), one

can obtain schematically obtain a formula

T
2
(n) = Z2(n) +N

2
(n) +NT (n) + lower order terms. (11.20)

The term Z2(n) is schematically composed of

Z≤2(y) Z≤2(ν).

Using the embeddings of Lemma 3.36, we have the following L2
t H̃

1/2(∂Σt) bounds for Z2(y)∥∥∥t1/2−γt2Z2(y)
∥∥∥
L2
t H̃

1/2(∂Σt)
.
∥∥t−γt2(t∇/ )≤1Z2(y)

∥∥
L2
tL

2(∂Σt)
. OT≤2,γ [y] . ε,

for all γ > 0.

As in Section 11.2.6, H̃1/2 estimates for ν can be obtained from trace estimates and the improved esti-
mates (11.7), (11.13), (11.19) for k, and we have∥∥t3Z2(ν)

∥∥
L∞t H̃

1/2(∂Σt)
. ε.

Using the above estimate, we deduce the following L2
t H̃

1/2(∂Σt) control∥∥∥t1/2−γt2Z2(ν)
∥∥∥
L2
t H̃

1/2(∂Σt)
.
∥∥t3Z2(ν)

∥∥
L∞t H̃

1/2(∂Σt)
. ε,

for all γ > 0.

For the lower order terms and the terms N
2
(n) and NT (n), one can obtain L∞t H̃

1/2(∂Σt) bounds, using
trace estimates and the previous bounds (11.12), (11.18), and these bounds can similarly be turned into
weaker L2

t H̃
1/2(∂Σt) bounds. Combining these estimates, we obtain the following boundary control∥∥∥t1/2−γt2T 2

(n)
∥∥∥
L2
t H̃

1/2(∂Σt)
. ε. (11.21)

Applying the elliptic estimates of Lemma 11.3, using that by (2.12) ∆(n) is composed of lower order terms,
we obtain on each separate slice Σt∥∥∥t−1/2−γt2(t∇)≤1T

2
(n)
∥∥∥
L2(Σt)

.
∥∥∥t1/2−γt2T 2

(n)
∥∥∥
H̃1/2(∂Σt)

.

Taking the L2
t norm in the above estimate and using the boundary bound (11.21), we obtain∥∥∥t−1/2−γt2(t∇)≤1T

2
(n)
∥∥∥
L2
tL

2(Σt)
.
∥∥∥t1/2−γt2T 2

(n)
∥∥∥
L2
t H̃

1/2(∂Σt)
. ε.

This finishes the proof of (11.5).

11.2.9 Control of DTint

From (11.5), the formula (2.30) and the Sobolev embeddings of Lemma 7.3, we directly deduce the following

control for DTint and in particular for the deformation tensor (Tint)π̂ of the interior approximate Killing
field Tint ∥∥∥t5/2DTint

∥∥∥
L∞(Mint

bot)
. ε,∥∥t2(tD)≤1DTint

∥∥
L∞t L

6(Σt)
+
∥∥t2(tD)≤1DTint

∥∥
L∞t L

4(∂Σt)
. ε,∥∥∥t−1/2−γt(tD)≤2DTint

∥∥∥
L2(Mint

bot)
. ε,

(11.22)

for all γ > 0.
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11.3 Control of the harmonic Cartesian coordinates on Σt∗

From Gauss equation (2.10) on Σt∗ , the curvature bounds (11.1) and the Bootstrap Assumptions 3.24, we
have ∥∥t2(t∇/ )≤2Ric

∥∥
L2(Σt∗ )

. ε. (11.23)

From relation (2.16) for the unit normal N to ∂Σt∗ , the assumed bounds (11.3) for χ and χ on S∗ ⊂ C∗, the
improved bounds (11.8) for ν on ∂Σt∗ , we have∥∥∥∥t2(t∇/ )≤2

(
trθ − 2

r∗

)∥∥∥∥
H̃1/2(S∗)

+
∥∥∥t2(t∇/ )≤2θ̂

∥∥∥
H̃1/2(S∗)

. ε. (11.24)

Thus, applying the (rescaled) results of Theorem 4.3, we deduce that (for all the centred conformal
isomorphisms of S∗), estimate (11.6) holds for the harmonic Cartesian coordinates of Σt∗ .

11.4 Control of the interior Killing fields Tint,Sint,Kint and Oint in
Mint

bot
In Section 11.4.3, we improve the mild Bootstrap Assumptions 3.18 on the interior approximate Killing
vectorfields Tint,Sint,Kint and on the vectorfield Xint. In Section 11.4.2, we improve the control (3.6) for
Xint from the Bootstrap Assumptions 3.28. In Section 11.4.1, we improve the bounds (3.5) and (3.7) on
(derivatives of) the deformation tensors, which finishes the improvement of the Bootstrap Assumptions 3.28.

11.4.1 Control of DXint, DSint,DKint and DOint

Lemma 11.6. The following bounds hold on Mint
bot∥∥∥t3/2 (DXint − g

)∥∥∥
L∞(Mint

bot)
. ε,∥∥t(tD)≤1

(
DXint − g

)∥∥
L∞t L

6(Σt)
. ε,∥∥∥t−1/2−γt(tD)≤2

(
DXint − g

)∥∥∥
L2(Mint

bot)
. ε,

(11.25)

for all γ > 0. We also have the following bounds on ∂Σt∥∥t−γt(tD)≤1
(
DXint − g

)∥∥
L∞t L

4(∂Σt)
, (11.26)

for all γ > 0. Moreover, we have the following control on Mint
bot∣∣(tD)≤1g(Xint,Tint)

∣∣ . εt−1/2. (11.27)

Proof. From the definition (2.23) on Σt∗ , Xint is an Σt∗ tangent vectorfield, such that

∇kXint
l =

3∑
i=1

∇kxi∇lxi +

3∑
i=1

xi∇2
k,lx

i

= gkl + (δkl − gkl) +

3∑
i=1

xi∇2
k,lx

i.

and from the bound (11.6), we deduce∥∥(t∇)≤2
(
∇Xint − g

)∥∥
L2(Σt∗ )

.
∥∥(t∇)≤2(δkl − gkl)

∥∥
L2(Σt∗ )

+
∥∥t(t∇)≤2∇2xi

∥∥
L2(Sint

t∗ )

. ε.
(11.28)

From the definition (2.24), we have schematically

DXint = ∇Xint + Xint · k,

thus, we deduce from (11.28), the bounds (11.5) for k and the mild Bootstrap Assumptions 3.18 and 3.28 for
Xint that ∥∥(tD)≤2

(
DXint − g

)∥∥
L2(Σt∗ )

. ε. (11.29)
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Commuting the transport equation (2.24) for Xint, we have

DTDµXint
ν = −DDµT

Xint
ν + XintλT

λ′

Rλνλ′µ.

Moreover, we have

DT g = DT (g + T ⊗ T ) = DTT ⊗ T + T ⊗DTT ,

and therefore DXint − 2g satisfy the following transport equation in Mint
bot

DT

(
DµXint

ν − gµν
)

= −DDµT
Xint

ν + XintλT
λ′

Rλνλ′µ −DTTµT ν + DTT νTµ. (11.30)

Commuting the transport equation (11.30) with (tD)≤2, using the estimates (11.1) for the curvature, the mild
Bootstrap Assumptions 3.18 for Tint,Xint, the bootstrap bounds (3.5) for DXint, and the bounds (11.22)
for DTint, we deduce from (11.30) that∥∥∥t−1/2−γtDT (tD)≤2

(
DXint − g

)∥∥∥
L2(Mint

bot)
. ε. (11.31)

Integrating (11.31), using the bound (11.29) on Σt∗ , we obtain∥∥t−γt(tD)≤2
(
DXint − g

)∥∥
L∞t L

2(Σt)
. ε,

for all γ > 0, from which we also deduce the desired bounds∥∥∥t−1/2−γt(tD)≤2
(
DXint − g

)∥∥∥
L2(Mint

bot)
. ε,

and, using a trace estimate on ∂Σt,∥∥t−γt(tD)≤1
(
DXint − g

)∥∥
L∞t L

4(∂Σt)
,

for all γ > 0. The L∞(Mint
bot) and L∞t L

6(Σt) estimates of (11.25) follow similarly and are left to the reader.

To obtain (11.27), we use the definition (2.24) of Xint, from which we have

T
(
g(Tint,Xint)

)
=(Tint) π

(
T ,Xint

)
,

g(Tint,Xint)|Σt∗ = 0.
(11.32)

Thus, integrating (11.32), using the mild Bootstrap Assumptions 3.18 on Xint and the bounds (11.22) on
DTint, we have

|g(Tint,Xint)| . εt−1/2. (11.33)

Using the bounds (11.22) on DTint, the bounds (11.25) on DXint and the mild Bootstrap Assumptions 3.18
on Tint,Xint, we further have∣∣tDg(Tint,Xint)

∣∣ . ∣∣tg(DTint,Xint)
∣∣+
∣∣tg(Tint,DXint)

∣∣
. εt−1/2,

as desired. This finishes the proof of the lemma.

Lemma 11.7. The following bounds hold on Mint
bot∥∥∥t3/2 (DSint − g

)∥∥∥
L∞(Mint

bot)
. ε,∥∥t(tD)≤1

(
DSint − g

)∥∥
L∞t L

6(Σt)
. ε,∥∥∥t−1/2−γt(tD)≤2

(
DSint − g

)∥∥∥
L2(Mint

bot)
. ε,∥∥t−γt(tD)≤1

(
DSint − g

)∥∥
L∞t L

4(∂Σt)
. ε,

(11.34)
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and ∥∥∥t1/2 ((Kint)π − 4tg
)∥∥∥

L∞(Mint
bot)
. ε,∥∥∥(tD)≤1

(
(Kint)π − 4tg

)∥∥∥
L∞t L

6(Σt)
. ε,∥∥∥t−1/2−γ(tD)≤2

(
(Kint)π − 4tg

)∥∥∥
L2(Mint

bot)
. ε.

(11.35)

Proof. The estimates (11.34) are a direct consequence of the definition (2.25) of Sint and the bounds (11.5)
for the maximal connection coefficients, the bounds (11.22) for DTint and the bounds (11.25) for Xint.

From the definition (2.26) of Kint, we have

DKint = 2tDt⊗Tint + 2g(DXint,Xint)⊗Tint +
(
t2 + g(Xint,Xint)

)
DTint + 2Dt⊗Xint + 2tDXint

= −2n−1tTint ⊗Tint + 2Xint ⊗Tint + 2g(DXint − g,Xint)⊗Tint +
(
t2 + g(Xint,Xint)

)
DTint

− 2n−1Tint ⊗Xint + 2tg + 2t(DXint − g)

= 2tg + 2Xint ⊗Tint − 2Tint ⊗Xint + E,

where

E := −2t(n−1 − 1)Tint ⊗Tint + 2g(DXint − g,Xint)Tint +
(
t2 + g(Xint,Xint)

)
DTint

− 2(n−1 − 1)Tint ⊗Xint + 2t(DXint − g).

From the bounds (11.5) for the maximal connection coefficients, the bounds (11.22) for DTint and the
bounds (11.25) for Xint, and the mild Bootstrap Assumptions 3.18, we have∥∥∥t1/2E

∥∥∥
L∞(Mint

bot)
. ε,∥∥(tD)≤1E

∥∥
L∞t L

6(Σt)
. ε,∥∥∥t−1/2−γ(tD)≤2E

∥∥∥
L2(Mint

bot)
. ε,

and the desired bounds (11.35) follow. This finishes the proof of the lemma.

Lemma 11.8. The following bounds hold on Mint
bot∥∥DOint

∥∥
L∞(Mint

bot)
. 1, (11.36)∥∥∥t3/2(Oint)π

∥∥∥
L∞(Mint

bot)
. ε, (11.37)∥∥t2D2Oint

∥∥
L∞t L

6(Σt)
. ε, (11.38)∥∥∥t−1/2−γt2(tD)≤1D2Oint

∥∥∥
L2(Mint

bot)
. ε, (11.39)∥∥t−γt2D2Oint

∥∥
L∞t L

4(∂Σt)
. ε (11.40)

for all γ > 0.

Proof. Commuting definition (2.28) of Oint in Mint
bot by D and arguing as in the proof of Lemma 11.6, we

have schematically

DTDOint = DT ·DOint + R ·Oint · T . (11.41)

Using the definition (2.27) of Oint on Σt∗ , Oint is a Σt∗ -tangent vectorfield and we have

∇l(`)Oint
m =∈`ij ∇lxi∇mxj+ ∈`ij xi∇2

l,mx
j ,

∇l(`)Oint
m +∇m(`)Oint

l = 2 ∈`ij xi∇2
l,mx

j .
(11.42)
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Moreover, using (2.28), we have on Σt∗

DT
(`)Oint

i = 0,

Di
(`)Oint

T = −g((`)Oint,DiT ) = kij
(`)Ointj ,

DT
(`)Oint

T = 0.

(11.43)

Thus, we deduce from (11.42) and (11.43) and the bounds (11.6) and (11.22) that∥∥DOint
∥∥
L∞(Σt∗ )

. 1,∥∥∥t3/2(Oint)π
∥∥∥
L∞(Σt∗ )

. ε.

Integrating (11.41), we obtain the desired bounds (11.36) and (11.37).

Differentiating formula (11.42), we obtain schematically on Σt∗

∇2Oint = ∇x∇2x+ x∇3x,

from which, arguing as previously, using the bounds (11.6) and (11.22), one deduces that∥∥t2D2Oint
∥∥
L6(Σt∗ )

. ε,∥∥t(tD)≤1D2Oint
∥∥
L2(Σt∗ )

. ε.

Arguing as in the proof of Lemma 11.6, integrating the transport equation (11.41) and applying a trace
estimate, estimates (11.38), (11.39) and (11.40) follow. This finishes the proof of the lemma.

11.4.2 Control of Xint

This section is dedicated to the improvement of the bound (3.6) from the Bootstrap Assumptions 3.28.

Proposition 11.9. We have for all t◦ ≤ t ≤ t∗∣∣∣∣∣sup
Σt

(
t−2g(Xint,Xint)

)
−
(

1− τ
1 + τ

)2
∣∣∣∣∣ . εt−3/2.

Before turning to the proof of Proposition 11.9, we have the following three lemmas.

Lemma 11.10. The following bound holds on Mint
bot∣∣DXintXint −Xint

∣∣ . εt−1/2,

where the norm is taken with respect to the maximal frame.

Proof. The proof is a straight-forward adaptation of the estimates of Lemma 11.6.

Lemma 11.11. For all t◦ ≤ t ≤ t∗, we have

sup
Σt

t−2g(Xint,Xint) = sup
∂Σt

t−2g(Xint,Xint). (11.44)

Proof. Let t◦ ≤ t ≤ t∗ and assume that the supremum on Σt is reached for p ∈ Σt \ ∂Σt. Since p is not on
the boundary, we have in particular, for the derivative in the (projected on Σt) Xint-direction

0 = ∇Xint+g(Xint,Tint)Tint

(
t−2g(Xint,Xint)

)
.

Using (2.24) and relations (2.6), this gives

0 = t−2g(Xint,Xint) + t−2g(DXint −Xint,Xint)

+ DXint(t−2)g(Xint,Xint) + g(Xint,Tint)DTint(t−2)g(Xint,Xint)

= t−2g(Xint,Xint) + t−2g(DXint −Xint,Xint)

+ 2t−3g(Xint, n−1Tint)g(Xint,Xint) + 2t−3g(Xint,Tint)g(Tint, n−1Tint)g(Xint,Xint)

= t−2g(Xint,Xint) + t−2g(DXint −Xint,Xint).
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Using the bound from Lemma 11.10, we thus deduce∣∣t−2g(Xint,Xint)
∣∣ . εt−3/2

(∣∣t−2g(Xint,Xint)
∣∣)1/2 ,

which we rewrite as ∣∣t−2g(Xint,Xint)
∣∣ . ε2t−3.

For ε > 0 sufficiently small, this contradicts the bootstrap bound (3.6), and (11.44) follows.

Remark 11.12. From the result of Lemma 11.11 and the bootstrap bound (3.6), we also deduce the following
mild control for g(Xint,Xint) on T

t2 . g(Xint,Xint). (11.45)

Lemma 11.13. We have the following control on T∣∣∣∣Z̃ − (T +
1− τ
1 + τ

X

)∣∣∣∣ . εt−3/2, (11.46)

where X := g(Xint,Xint)−1/2Xint and Z̃ is the T -tangent vectorfield normal to ∂Σt in T and such that
Z̃(t) = 1.

Proof. Let define

Z̃Err := Z̃ −
(
T +

1− τ
1 + τ

X

)
.

From its definition, we have the following expression for Z̃

Z̃ =

(
τ

1 + τ

)
e3 +

(
2− τy
2 + 2τ

)
e4. (11.47)

Using the Bootstrap Assumptions 3.23 and 3.24 on the exterior and interior connection coefficients, one can
therefore deduce the following mild control

|Z̃| . 1, (11.48)

and using additionally relations (2.33), ∣∣∣DZ̃Z̃
∣∣∣ . εt−5/2, (11.49)

where norms are taken in the maximal frame.

Using (11.22) and (11.48), we have ∣∣DZ̃T
∣∣ . εt−5/2. (11.50)

We have

DZ̃X = DT+ 1−τ
1+τX

X + Z̃Err ·DX. (11.51)

We have

DXX = X + g(Xint,Xint)1/2X
(
g(Xint,Xint)−1/2

)
X

=

(
1− g(DXintXint,Xint)

g(Xint,Xint)3/2

)
X.

Using the result of Lemma 11.10 and the mild control t . |Xint| . t from the Bootstrap Assumptions 3.18
and (11.45) on T , we therefore deduce ∣∣DXX

∣∣ . εt−5/2,
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which using that DTXint = 0 and (11.51) further gives on T∣∣DZ̃X
∣∣ . εt−5/2 +

∣∣∣Z̃Err
∣∣∣ ∣∣DX∣∣ . (11.52)

We deduce from the definition of Z̃Err and estimates (11.49), (11.50) and (11.52) the following estimate on T∣∣∣DZ̃Z̃
Err
∣∣∣ . εt−5/2 +

∣∣∣Z̃Err
∣∣∣ ∣∣DX∣∣ . (11.53)

Using the expression (11.47), that y = 0 on C∗ and the relations (2.15), (2.16), we have on S∗

Z̃Err =
τ

1 + τ
e3 +

1

1 + τ
e4 − T −

1− τ
1 + τ

X

=
τ

1 + τ

(
1− ν−1

)
e3 +

1

1 + τ
(1− ν) e4 −

1− τ
1 + τ

(
X −N

)
.

(11.54)

From the bound (11.6) on the harmonic coordinates on Σt∗ , we have∣∣∇xi − ∂xi∣∣ . εt∗−3/2.

Thus, from the definition (2.23) of Xint on Σt∗ , we have∣∣Xint − xi∂xi
∣∣ . εt∗−1/2.

From the bounds (11.6) on S∗, we have ∣∣r∗N(xi)− xi
∣∣ . εt∗−1/2

from which we deduce on S∗∣∣X −N ∣∣ . t∗−1
∣∣Xint − r∗N

∣∣ . t∗−1
∣∣xi∂xi − r∗N ∣∣+ εt∗−3/2 . εt∗−3/2.

Using this bound together with the estimates for ν from (11.5) in equation (11.54), we deduce that on S∗∣∣∣Z̃Err
∣∣∣ . εt−3/2. (11.55)

Integrating the estimate (11.53) for Z̃Err along Z̃, using the mild control |DX| . 1, the estimate (11.55) for
Z̃Err on S∗ and a Grönwall argument, the result of the lemma follows.

Proof of Proposition 11.9. We have

Z̃(g(Xint,Xint)) =
1− τ
1 + τ

X(g(Xint,Xint)) + Z̃Err(g(Xint,Xint)). (11.56)

From Lemma 11.10 and the mild control |Xint| . t, we have∣∣∣X(g(Xint,Xint))− 2
√

g(Xint,Xint)
∣∣∣ . εt−1/2.

Plugging this in (11.56) and using estimate (11.46) and the mild control t .
∣∣Xint

∣∣ . t and
∣∣DXint

∣∣ . 1, we
have ∣∣∣∣∣ Z̃(g(Xint,Xint))

2
√

g(Xint,Xint)
− 1− τ

1 + τ

∣∣∣∣∣ . εt−3/2. (11.57)

Integrating (11.57) from t∗ to t, we obtain∣∣∣∣[√g(Xint,Xint)
]t∗
t
− 1− τ

1 + τ
(t∗ − t)

∣∣∣∣ . εt−1/2. (11.58)

From the definition of Xint on Σt∗ , and the bounds (11.6) on the harmonic coordinates, we have on S∗

∣∣g(Xint,Xint)− (r∗)2
∣∣ =

∣∣∣∣∣∣
3∑

i,j=1

xixjgij − (r∗)2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3∑

i,j=1

xixj
(
gij − δij

)∣∣∣∣∣∣ . εt∗1/2,
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from which we deduce ∣∣∣√g(Xint,Xint)|S∗ − r∗
∣∣∣ . εt∗−1/2.

From the definition of t∗ and the area radius estimate (9.38), we have∣∣∣∣r∗ − 1− τ
1 + τ

t∗
∣∣∣∣ =

∣∣∣∣r∗ − 1

2
(1− τ)u∗

∣∣∣∣ . εt∗−2.

Thus, ∣∣∣∣√g(Xint,Xint)|S∗ −
1− τ
1 + τ

t∗
∣∣∣∣ . εt∗−1/2.

Plugging this in (11.58), we infer ∣∣∣∣√g(Xint,Xint)|∂Σt −
1− τ
1 + τ

t

∣∣∣∣ . εt−1/2.

Using the result of Lemma 11.11, the result of Proposition 11.9 follows.

11.4.3 Mild control of Xint,Sint,Kint and Oint

The following lemmas improve the mild Bootstrap Assumptions 3.18.

Lemma 11.14. We have the following mild (improved) control in Mint
bot∣∣Xint

∣∣ . t, ∣∣Sint
∣∣ . t, ∣∣Kint

∣∣ . t2, (11.59)

where the norm is taken with respect to the maximal frame.

Proof. The norm of Xint in the maximal frame can be expressed as

|Xint|2 = 2|g(Tint,Xint)|2 + g(Xint,Xint). (11.60)

Using the bootstrap bounds (3.6) and (3.7) from the Bootstrap Assumptions 3.28, we have

g(Xint,Tint) . Dεt−3/2,

g(Xint,Xint) . t2 + (Dε)t1/2 . t2,
(11.61)

for ε > 0 sufficiently small, and the first bound of (11.59) is improved,i.e.

|Xint| . t. (11.62)

Using the estimate (11.62) obtained for Xint, and the definitions (2.25) and (2.26) for Sint and Kint, we have

t−1|Sint| . |Tint|+ t−1|Xint| . 1,

and

t−2|Kint| . t−2|t2 + g(Xint,Xint)|+ t−1|Xint| . 1,

as desired.

The following estimates are used in Section 7 to show that Kint is an appropriate multiplying vectorfield.

Lemma 11.15. The following (improved) mild control holds on Mint
bot

g(Kint,Tint) ≤ −1

2
t2,

∣∣Kint + g(Kint,Tint)Tint
∣∣ ≤ 1

2
|g(Kint,Tint)|,

for 1− τ > 0 and ε > 0 sufficiently small.
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Proof. From the definition (2.26) of Kint and the estimate (11.33), we have∣∣g(Kint,Tint) + t2 + g(Xint,Xint)
∣∣ . Dεt1/2.

Using that g(Xint,Xint) ≥ 0 (this is a consequence of the definition (2.24)), we have

g(Kint,Tint) . −t2 − g(Xint,Xint) + (Dε)t1/2

. −t2 + (Dε)t1/2

≤ −1

2
t2,

provided that ε > 0 is sufficiently small.

Moreover, from the definition of Kint and the bound (3.6), we have∣∣Kint + g(Kint,Tint)Tint
∣∣ ≤ 2t|Xint|+ (Dε)t1/2

≤ 2

(
1− τ
1 + τ

)2

t2 + (Dε)t1/2

≤ 1

4
t2,

provided that 1− τ > 0 and ε > 0 are sufficiently small. This finishes the proof of the lemma.

Lemma 11.16. The following (improved) mild control holds on Mint
bot

|Oint| . t. (11.63)

Proof. Using the definition (2.28), we have

T
(
g(Tint,Oint)

)
=(Tint) π̂

(
T ,Oint

)
,

g(T ,Oint)|Σt∗ = 0.
(11.64)

Integrating (11.64), using the control (11.22) and the mild Bootstrap Assumptions 3.18, we have

|g(Tint,Oint)| . (Dε)t−1/2. (11.65)

Using the definitions (2.28), (2.27), and estimates (11.6) for the global harmonic coordinates, we have

sup
Σt

g(Oint,Oint) ≤ sup
Σt∗

g(Oint,Oint) . t2. (11.66)

Thus, combining (11.65) and (11.66), we have

|Oint|2 = 2|g(Tint,Oint)|2 + g(Oint,Oint) . t2,

which improves (11.63) as desired.

11.5 Control of the Killing fields at the interface T
This section is dedicated to the improvement of the Bootstrap Assumptions 3.29.

Lemma 11.17. The following bounds hold on T∣∣Text −Tint
∣∣ . εt−3/2, (11.67)∣∣Sext − Sint
∣∣ . εt−1/2, (11.68)∣∣Kext −Kint
∣∣ . εt1/2. (11.69)

Proof. From the transition relations (2.15), we have

Text −Tint =
1

2

(
1− ν−1

)
e3 +

1

2
(1− ν) e4,

345



Chapter 11. Maximal connection estimates in Mint
bot

and (11.67) follows from the bounds (11.5) for ν.

From the definition (2.95) for Sext, and from the definitions of Section 2.1, we have

DSext =
1

2
(Du⊗ e3 + uDe3 + Du⊗ e4 + uDe4)

= −1

2
e4 ⊗ e3 −

1

2
e3 ⊗ e4 −

1

4
ye4 ⊗ e4 +

1

2
uDe3 +

1

2
uDe4

= −1

2
e4 ⊗ e3 −

1

2
e3 ⊗ e4 + g/ + E,

where

E :=

(
−1

2

u

r
g/ +

1

2

u

r
g/ − g/

)
− 1

4
ye4 ⊗ e4 +

1

2
u

(
De3 +

1

r
g/

)
+

1

2
u

(
De4 −

1

r
g/

)
.

Using the relations (2.33) and the bounds (11.2) for the null connection coefficients in Mext, we have∥∥∥t3/2E
∥∥∥
L∞(T )

. ε.

Thus, combining this bound together with the estimate (11.34) for DSint, we have∥∥∥t3/2D (Sext − Sint
)∥∥∥
L∞(T )

.
∥∥∥t3/2 (DSext − g

)∥∥∥
L∞(T )

+
∥∥∥t3/2 (DSint − g

)∥∥∥
L∞(T )

. ε.
(11.70)

Arguing as in the proof of Lemma 11.13, we have on S∗∣∣Xint − r∗N
∣∣ . εt∗−1/2.

Thus, from the definition (2.25) of Sint, we have∣∣Sint − t∗T − r∗N
∣∣ . εt∗−1/2, (11.71)

on S∗. From the definition (2.95), relations (2.15) and (2.16) and the bounds (11.5) for ν, we have∣∣Sext − t∗T − rN
∣∣ . t∗|ν − 1| . εt∗−1/2. (11.72)

Estimate (11.68) now follows from combining (11.71), (11.72) and integrating (11.70) along T .

Estimate (11.69) follows from estimates (11.67) and (11.68) and the approximate formulas∣∣K− 2tS + (t2 − r2)T
∣∣ . εt1/2,

which we leave to the reader. This finishes the proof of the lemma.

Lemma 11.18. The following bounds hold on T∣∣∣(`)Oext − (`)Oint
∣∣∣ . εt−1/2, (11.73)

for all ` = 1, 2, 3.

Proof. We start by proving the following estimate for the covariant derivative of the interior vectorfields Oint∣∣∣DXint
(`)Oint − (`)Oint

∣∣∣ . εt−1/2, (11.74)

for all ` = 1, 2, 3.

By differentiating in T , using the transport equations (2.24) and (2.28) for Xint and Oint and the sup-norm
bounds (11.22) for DT and sup-norm bounds (11.1) for the curvature, it is enough to prove that (11.74)
holds on the last slice Σt∗ .
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From the definitions (2.23) and (2.27) of Xint and Oint on Σt∗ , we have

∇Xint
(`)Oint = xk∇∇xk

(
∈`ij xi∇xj

)
=∈`ij xk∇xkxi∇xj+ ∈`ij xkxi∇∇xk∇xj

=∈`ij xi∇xj + E,

where

E =∈`ij xk
(
∇xkxi − δki

)
∇xj+ ∈`ij xkxi∇∇xk∇xj .

From the bounds (11.6), we have

|E| . εt−1/2.

Using additionally the control (11.22) of DTint, we deduce that the estimate (11.74) holds on Σt∗ , and
thus (11.74) is proved.

Using that Xint = −tTint + 2Sint, and the bounds (11.68) obtained for Sext−Sint, the relations (2.15), (2.16)
and the bounds for ν, we have ∣∣Xint − rN

∣∣ . εt−1/2, (11.75)

on T . Thus, we deduce from (11.74) that at T

∣∣DTOint
∣∣ . εt−3/2,

∣∣∣∣DNOint − 1

r
Oint

∣∣∣∣ . εt−3/2. (11.76)

Using the definitions from Section 2.12, the bounds (10.3) on (i)Y and on χ and χ, we have for the exterior
rotation vectorfields at T ∣∣∣∣D3O

ext +
1

r
Oext

∣∣∣∣+

∣∣∣∣D4O
ext − 1

r
Oext

∣∣∣∣ . εt−3/2,

from which, using the relations (2.15) and (2.16) and the bounds on ν, we deduce

∣∣DTOext
∣∣ . εt−3/2,

∣∣∣∣DNOext − 1

r
Oext

∣∣∣∣ . εt−3/2. (11.77)

Combining (11.76) and (11.77) and estimate (11.46) for Z̃ we obtain∣∣∣∣DZ̃

(
Oext −Oint

)
− 1

r

(
1− τ
1 + τ

)(
Oext −Oint

)∣∣∣∣ . εt−3/2, (11.78)

where we recall that Z̃ was defined in Section 11.4.2 to be the T -tangent vectorfield normal to ∂Σt in T and
such that Z̃(t) = 1.

From the definitions (2.27) of Oint on Σt∗ and in particular on S∗, we have

(`)Oint =∈`ij xi∇xj

=∈`ij xi∇/ xj+ ∈`ij xiN(xj)N

=∈`ij xi∇/ xj+ ∈`ij xixjN+ ∈`ij xi
(
N(xj)− xj

)
N

=(`) Oext+ ∈`ij xi
(
N(xj)− xj

)
N.

(11.79)

Thus, using the bounds (11.6), we have on S∗∣∣∣(`)Oext − (`)Oint
∣∣∣ . ∣∣∈`ij xi (N(xj)− xj

)∣∣ . εt∗−1/2.

Integrating (11.78) along T then yields (11.73) and finishes the proof of the lemma.
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bot

Lemma 11.19. The following bounds hold on T∥∥t−γt2(tD)≤1
(
DText −DTint

)∥∥
L∞t L

4(∂Σt)
.γ ε,∥∥t−γt(tD)≤1

(
DSext −DSint

)∥∥
L∞t L

4(∂Σt)
.γ ε,

(11.80)

for all γ > 0.

Proof. The proof of the lemma follows directly from the precise control of each separate tensor already
obtained in the previous sections and is left to the reader.

Lemma 11.20. Under the same assumptions as in the previous lemma, we have∥∥t−γt(tD)≤1
(
DOext −DOint

)∥∥
L∞t L

4(∂Σt)
.γ ε, (11.81)

for all γ > 0.

Proof. The main part of the proof is to obtain the following two estimates∥∥t−γt2D2Oint
∥∥
L∞t L

4(∂Σt)
. ε, (11.82)∥∥t−γt2D2Oext

∥∥
L∞t L

4(∂Σt)
. ε. (11.83)

We first verify that we can obtain (11.81) from (11.82) and (11.83). Using these last estimates and integration
along Z̃ as in the proof of Lemma 11.18, it is enough to additionally show that∥∥t(DOext −DOint)

∥∥
L4(S∗)

. ε. (11.84)

Using formula (11.79) and the bounds (11.6) on the harmonic coordinates, we have∥∥t(∇/ Oext −∇/ Oint)
∥∥
L4(S∗)

. ε.

From this formula and the bounds (11.73) on Oext −Oint obtained previously, we deduce∥∥tDa(Oext −Oint)
∥∥
L4(S∗)

. ε. (11.85)

Using the estimates (11.76) and (11.77) already obtained in the proof of Lemma 11.18 for respectively Oint

and Oext on T , we have in particular on S∗ and for the L4 norm

∥∥tDTOint
∥∥
L4(S∗)

+

∥∥∥∥t(DNOint − 1

r
Oint

)∥∥∥∥
L4(S∗)

. ε,

∥∥tDTOext
∥∥
L4(S∗)

+

∥∥∥∥t(DNOext − 1

r
Oext

)∥∥∥∥
L4(S∗)

. ε.

These last estimates combined with (11.85) yield (11.84) as desired.

We now turn to the proof of (11.82) and (11.83), where we note that estimate (11.82) was already obtained
in Lemma 11.8. To prove (11.83), we compute that for each component of D2

µ,νO
ext, we have

D2
µ,νO

ext = E1 · F0 + E1 · E0, (11.86)

where

E1 is a linear combination of
(
D≤1Γ̌,D≤1Y,D≤1H,Ψ,R

)
,

E0 is a (nonlinear) combination of
(
Γ̌, Y,H

)
,

F0 is a (nonlinear) combination of
(
1,DOext

)
,

with

Γ̌ ∈
{

trχ− 2

r
, trχ+

2

r
, χ̂, χ̂, ζ, ω, ξ

}
.
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11.5. Control of the Killing fields at the interface T

Note that we do not precise the weights in u, u, r, t in (11.86), which are recovered by a simple scaling
consideration on T where u ' u ' r ' t. Using formula (11.86), the L∞t H̃

1/2(∂Σt) estimates of (11.2)
for Γ̌, Y,H,Ψ,R and ∇/ Oext, the H̃1/2 product estimates of Lemma 3.37 and the Sobolev embeddings of
Lemma 3.36, we obtain the desired estimate (11.83).

The rest of the proof is therefore dedicated to obtaining the formulas (11.86). For simplicity, we call O any
exterior rotation vectorfield (`)Oext. From (2.108) and relations (2.33), we have

D4O = DOe4 = χabO
bea − ζbObe4 = r−1O + E0, (11.87)

from which we also deduce

D4

(
r−1O

)
= E0. (11.88)

Similarly, using the relations (2.109), we have

D3O = −r−1O + E0,

D3(r−1O) = E0.
(11.89)

Deriving equation (11.87) by D4 and using (11.88) and relations (2.33), we obtain

D2
4,4O = D4(D4O) + E1 · F0 = D4(r−1O) + D4

(
E0
)

+ E1 · F0 = E1 · F0 + E1 · E0.

Arguing similarly using D3,D4 derivatives, we have

D2
4,4O, D2

3,4O, D2
4,3O, D2

3,3O = E1 · F0 + E1 · E0.

For D2
a,4, using equation (11.87), we have

D2
a,4O = Da(D4O)− (Dae4)µDµO

= Da(D4O)− r−1DaO + E1 · F0

= Da(r−1O)− r−1DaO + E1 · F0 + E1 · E0

= E1 · F0 + E1 · E0.

Using the above, we also obtain for D2
4,a

D2
4,aO = D2

a,4O + R = E1 · F0 + E1 · E0.

Arguing similarly for the e3 derivatives, we also obtain

D2
3,aO, D2

a,3O = E1 · F0 + E1 · E0.

We now turn to D2
a,bO. From the result of Lemma 2.30, using (11.87) and (11.89), and the definitions of H,

Y and Ψ from Section 2.12, we have

D2
a,bO = ∇/ 2

a,bO− r−2Obea +
1

2
r−1g/ab (D4 −D3) O

+
1

2
r−1 (∇/ aOb +∇/ bOa) (e3 − e4) +

(
E
(
D2,∇/ 2

)
·O
)
ab
,

= ∇/ 2
a,bO− r−2Obea + r−2g/abO +

1

2
r−1Hab(e3 − e4) + E1 · F0

= Ψabcec +
1

2
r−1Hab(e3 − e4) + E1 · F0

= E1 · F0,

where we used that from the formulas of Lemma 2.30

E
(
D2,∇/ 2

)
·O = E1 · F0.

This finishes the proof of (11.86) and concludes the proof of the lemma.
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12. The initial layers
The goal of this section is twofold.

In Section 12.1 we obtain the initial bounds (5.1) for the energy fluxes of (contracted and commuted)
Bel-Robinson tensors through Σt◦ and C1, which are used in Section 5 to obtain improved energy fluxes
bounds in M.

In Sections 12.2 and 12.3, we use the improved estimates of Sections 5–11 to improve the Bootstrap
Assumptions 3.31 and 3.32 on the comparison between the geometric constructions in M and in Lbot and
Lcon, which were used in Section 12.1. This is done in two steps: in Section 12.2 we control the intermediate
foliation by the last cones used to define the region M (see its definition in Section 2.13). In Section 12.3 we
use this intermediate control to obtain the desired comparisons in Lbot and Lcon.

12.1 Initial bounds for energy fluxes through C1 and Σt◦

In this section, we assume that the Bootstrap Assumptions hold and that the initial layers Lbot and Lcon

are ε-close to Minkowski (see the definitions of Section 4.1), and we show that∫
Σt◦

∣∣D≤2R
∣∣2 . ε2, (12.1)

and that∫
C1

( ∣∣∣∇/ ≤2
β
∣∣∣2 +

∣∣∣u∇/ ≤2
(ρ− ρ)

∣∣∣2 +
∣∣∣u∇/ ≤2

(σ − σ)
∣∣∣2 +

∣∣∣u2∇/ ≤2
β
∣∣∣2 +

∣∣∣u2∇/ ≤2
α
∣∣∣2) . ε2 (12.2)

where ∇/ ∈ {(r∇/ ), (u∇/ 4), (u∇/ 3)}.

Remark 12.1. Together with the null connection and rotation coefficients Bootstrap Assumptions 3.23 on
C1, this proves the desired bounds for the Bel-Robinson tensors (5.1) of Section 5. Details are left to the
reader.

12.1.1 Energy fluxes through Σt◦

Under the Bootstrap Assumptions 3.31, the hypersurface Σt◦ is included in Lbot. One can therefore perform
energy estimates in the past region of Σt◦ in Lbot for the following contracted and commuted Bel-Robinson
tensors

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
)
,

for µ = 0, 1, 2, 3. Arguing as in Section 5.2 to estimate the error terms using the bottom initial layer
estimates (4.1), one obtains∫

Σt◦

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
, T
)
.
∫

Σ̃1

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
, T

bot
)

+ ε3.

Using the curvature flux bound (4.1b) on Σ̃1 and the bounds (4.1), one has∫
Σ̃1

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
, T

bot
)
. ε2,

and thus ∫
Σt◦

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
, T
)
. ε2. (12.3)

Using the Bootstrap Assumptions 3.31 for the comparisons of the frames, we deduce from (12.3)∫
Σt◦

∣∣∣L̂2
∂µR

∣∣∣2 . ε2, (12.4)
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where the norm is taken with respect to the frame with respect to either T
bot

or T .

Using the bounds (4.1), one can obtain by integration along x0∥∥D≤1D∂µ
∥∥
L2(Σt◦ )

.
∥∥∂≤2

(
gαβ − ηαβ

)∥∥
L2(Σt◦ )

.
∥∥∂≤3(gαβ − ηαβ)

∥∥
L2(Lbot)

. ε. (12.5)

Using that we schematically have

D2
∂µR = L̂2

∂µR + DR ·D∂µ + R ·D2∂µ,

we deduce from (12.4) and (12.5) ∫
Σt◦

∣∣∣D≤2
∂µ

R
∣∣∣2 . ε2,

for µ = 0, 1, 2, 3, from which using (4.1) again, we deduce∫
Σt◦

∣∣D≤2R
∣∣2 . ε2,

in either the frame with respect to T
bot

or T . This finishes the proof of (12.1).

12.1.2 Energy fluxes through C1

Under the Bootstrap Assumptions 3.31 and 3.32 (see also Figure 1), we have

C1 = (C1 ∩ Lbot) ∪ (C1 ∩ Lcon) .

We first obtain bounds on the bottom initial layer part C1 ∩ Lbot, using the same contracted and commuted
Bel-Robinson tensors as in Section 12.1.1 and the bottom initial layer assumptions (4.1) to control the error
terms, and we have ∫

C1∩Lbot

Q
(
L̂≤2
∂µ

R
)(

T
bot
, T

bot
, T

bot
, e4

)
. ε2. (12.6)

Using (4.1), the Bootstrap Assumptions 3.31 in Lext
bot and arguing as in Section (12.1.1), we deduce from (12.6)

that the desired bound (12.2) holds in C1 ∩ Lbot.

Performing a mean value argument between C1 ∩ Lcon and C4/3 ∩ Lcon using the (integrated) curvature flux
bound (4.2e) (see for example Section 5.1.1), one can obtain∫

Cc∩Lcon

ũ−1−γ
∣∣∣∣∇̃/ ≤2

α̃

∣∣∣∣2 .γ ε2, (12.7)

where ∇̃/ ∈
{
ũ∇̃/ , ũ∇̃/ 4, ∇̃/ 3

}
, for γ > 0 and where 1 < c < 4/3.

Using energy estimates in the spacetime region between C̃0 ∪ {u′ = 3} and (Cc ∩ Lcon)∪ (C∗ ∩ Lcon),1 for the
null Bianchi equations satisfied by the null curvature components with respect to the null pair of the double

null foliation of the conical initial layer, commuting with ũ∇̃/ and ∇̃/ 3, ∇̃/ 4, we claim that one can obtain the
following curvature flux control on Cc (this follows from an adaptation of [LZ18])∫

Cc∩Lcon

( ∣∣∣∣∇̃/ ≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(ρ̃− ρ̃)

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(σ̃ − σ̃)

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
α̃

∣∣∣∣2)
. ε2 +

∫
Cc∩Lcon

(Dε)2ũ−2

( ∣∣∣∣∇̃/ ≤2
α̃

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2

(ρ̃− ρ̃)

∣∣∣∣2
+

∣∣∣∣ũ2∇̃/
≤2

(σ̃ − σ̃)

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
β̃

∣∣∣∣2)
(12.8)

where ∇̃/ ∈
{
ũ∇̃/ , ũ∇̃/ 4, ∇̃/ 3

}
.

1To obtain no uncontrolled error terms on C∗, we would rather perform en energy estimate replacing C∗ ∩Lcon by a spacelike
boundary hypersurface which can be obtained by extension above C∗ in Lcon.
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12.1. Initial bounds for energy fluxes through C1 and Σt◦

Figure 1: Energy flux through C1

Remark 12.2. The (Dε)2ũ−2 term comes from the fact that using the relation from Lemma 2.31, the
normal e4 to Cc can be expressed (at first orders) as e4 = λ−1ẽ4− λ−1f̃aẽa− 1

4 |f̃ |
2ẽ3, and thus the difference

between e4 and e4
′ yields the presence of |f̃ |2|α̃|2, which justifies the claim.

Thus, we deduce from (12.7) and (12.8) that∫
Cc∩Lcon

∣∣∣∣∇̃/ ≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(ρ̃− ρ̃)

∣∣∣∣2 +

∣∣∣∣ũ∇̃/ ≤2
(σ̃ − σ̃)

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
β̃

∣∣∣∣2 +

∣∣∣∣ũ2∇̃/
≤2
α̃

∣∣∣∣2 . ε2. (12.9)

Using the transition relations from Propositions 2.34, 2.35 and 2.36 and the Bootstrap Assumptions 3.32 on
the transition coefficients f̃ , f̃ , λ̃, one can deduce from (12.9)∫

Cc∩Lcon

∣∣∣∇/ ≤2
β
∣∣∣2 +

∣∣∣u∇/ ≤2
(ρ− ρ)

∣∣∣2 +
∣∣∣u∇/ ≤2

(σ − σ)
∣∣∣2 +

∣∣∣u2∇/ ≤2
β
∣∣∣2 +

∣∣∣u2∇/ ≤2
α
∣∣∣2 . ε2 (12.10)

where ∇/ ∈ {(r∇/ ), (u∇/ 4),∇/ 3}.
Remark 12.3. From an inspection of the relations from Propositions 2.35 and 2.36, the bootstrap bounds
|f̃ | . Dεu−1, |f̃ |, | log λ̃| . Dε are sufficient due to a conservation of signature principle, i.e. λ̃, f̃ are only
paired with lower signature null curvature component hence are not required to decay, while the transition
coefficient f̃ which is paired with higher signature components satisfies the sufficient decay u−1. See also [KS17,
Remark 4.1.4] for further discussion.

Remark 12.4. We use the relations of Proposition 2.35 to obtain the control of all derivatives of f̃ , f̃ , λ̃, from
the Bootstrap Assumptions 3.23 on the null connection coefficients of Mext, the Bootstrap Assumptions 3.32
on f̃ , f̃ , λ̃ and the conical initial layer assumptions (4.2) on the connection coefficients.2

To obtain the desired bound on C1 ∩ Lcon from the bound (12.10) on Cc ∩ Lcon, we first obtain an energy
bound on the spacelike hypersurface Σext

(1+u∗)/2 ∩ Lcon, arguing similarly as for (12.10), except that no mean
value argument is required to control the error terms. Then performing an energy estimate as in Section 5 in

the spacetime region comprised between (C1 ∩ Lcon) ∪ {u′ = 3} and (Cc ∩ Lcon) ∪
(

Σext
(1+u∗)/2 ∩ Lcon

)
, one

deduces the desired estimate (12.2) in C1 ∩ Lcon, which combined with the bound obtained in C1 ∩ Lbot

finishes the proof of (12.2).

2L2(Cc) bounds for (one derivative of) the initial conical layer null connection coefficients can be obtained by integration
from Lcon to Cc of the L2(Lcon) estimates of (4.2), as in the bottom initial layer case. See Section 12.1.1.

353



Chapter 12. The initial layers

12.2 Control of the last cones geodesic foliation
This section is dedicated to the independent control of the last cones geodesic foliation. The final goal of
these results is the improvement of the Bootstrap Assumptions 3.30, which will be obtained in Section 12.3.

We have the following bounds for the null curvature components of the last cones geodesic foliation.

Lemma 12.5. For all 11/4 ≤ u′ ≤ u∗, 5/4 ≤ u′ ≤ u∗, the following bounds hold

|α′| . εu′−7/2
, |β′| . εu′−7/2

,

|ρ′| . εu′−3
u′
−1/2

, |σ′| . εu′−3
u′
−1/2

,

|β′| . εu′−2
u′
−3/2

, |α′| . εu′−1
u′
−5/2

.

(12.11)

Proof. In the exterior region, these bounds follow from the improved curvature bounds Rext
≤1 . ε, the

Bootstrap Assumptions 3.30 and the transition formulas from Proposition 2.36. In the bottom interior
region, these bounds follow from the the improved bounds in the maximal frame Rint

≤1 . ε and the Bootstrap
Assumptions 3.30. In the top interior region, these bounds follow from the following pointwise bound on the
spacetime curvature tensor (where the norm is taken with respect to the frame (e3

′, e4
′))

|R| . εt∗−7/2.

This bound holds by a t∗-rescaling, extension and local existence as in Section 6, and comparison between the
frames given by the local existence and the frame (e3

′, e4
′). See Section 8.1.1 and in particular estimate (8.6).

This finishes the proof of the lemma.

We have the following control for the null connection coefficients of the last cones geodesic foliation.

Lemma 12.6. For all 11/4 ≤ u′ ≤ u∗, 5/4 ≤ u′ ≤ u∗, the following bounds hold∣∣∣∣trχ′ + 2

r′

∣∣∣∣ . εu′−2
u′
−1/2

,
∣∣χ̂′∣∣ . εu′−1

u′
−3/2

,

|ζ ′| . εu′−2
u′
−1/2

, |ω′| . εu′−2
u′
−1/2

,

(12.12)

and∥∥∥∥r′−1/2
(r∇/ )≤1

(
trχ′ +

2

r′

)∥∥∥∥
L∞L4(S′)

. εu′
−2
u′
−1/2

,
∥∥∥r′−1/2

(r∇/ )≤1χ̂′
∥∥∥
L∞L4(S′)

. εu′
−1
u′
−3/2

,∥∥∥r′−1/2
(r∇/ )≤1ζ ′

∥∥∥
L∞L4(S′)

. εu′
−2
u′
−1/2

,
∥∥∥r′−1/2

(r∇/ )≤1ω′
∥∥∥
L∞L4(S′)

. εu′
−2
u′
−1/2

,

(12.13)

and ∥∥∥∥r′−1/2
(

trχ′ − 2

r′

)∥∥∥∥
L∞L4(S′)

. εu′
−2
u′
−1/2

,
∥∥∥r′−1/2

χ̂′
∥∥∥
L∞L4(S′)

. εu′
−2
u′
−1/2

,∥∥∥r′−1/2
ξ′
∥∥∥
L∞L4(S′)

. εu′
−5/2

,

(12.14)

together with the additional relations (see (2.131) and (2.132))

ξ′ = 0, ω′ = 0, η′ = ζ ′ = −η′, (12.15)

and where we denoted by r′ the area radius of the 2-spheres S′.

Moreover, we have the following control for the area radius r′∣∣∣∣r′ − 1

2
(u′ − u′)

∣∣∣∣ . εr′u′−2
u′
−1/2

, (12.16)

and for the optical defect y′

|y′| . εu′−3/2
. (12.17)
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Proof. We first note that relations (12.15) are consequences of the definitions of Section 2.13.

The proof of the sup-norm estimates (12.12) are obtained by integration of the – rewritten using rela-
tions (12.15) – respective null transport equations (2.34c), (2.34b), (2.34d), (2.34i), using the sup-norm
curvature bounds from Lemma 12.5 and the axis limits when r → 0 from Theorem 4.4 (the last cones
geodesic foliation coincides with the foliation of Theorem 4.4).

The proof of the L∞L4 estimates (12.13) are obtained by

� Commuting by (r∇/ ) and integrating equation (2.34c) for ∇/ ′3trχ′,

� L4(S) elliptic estimates3 for equation (2.34p) for div/ ′χ̂′,

� Commuting by div/ ′ and integrating equation (2.34d) for ∇/ ′3ζ ′ renormalised using a mass aspect
function µ′, and using L4(S) elliptic estimates,

� Commuting by (r∇/ ′) and integrating equation (2.34i) for ∇/ ′3ω′ renormalised using an auxiliary tensor
ι′ (see the definition (2.69) of a similar tensor).

The proof of the L∞L4 estimates (12.14) then follow using (12.13) and integrating respectively equa-
tions (2.34f) and (2.34e) for trχ′ and χ̂′, and equation (2.34g) that we rewrite using (2.34l) as

∇/ ′3ξ′ +
1

2
trχ′ξ′ = 2∇/ ′ω′ − χ̂′ · ξ′ + 4ω′ξ′.

The proof of the area radius estimate (12.16) is obtained from integrating the bounds (12.12) on trχ′ from
the axis r = 0.

The proof of the optical defect estimate (12.17) follows from equations (2.133) and the limit y′ → 0 when
r′ → 0 (see Theorem 4.4). This finishes the proof of the lemma.

12.3 Control of transition coefficients and comparison of foliations
In this section, we recall that the Bootstrap Assumptions hold, that we have the following improved bounds
for the null connection coefficients (see the definitions of Section 3.2.4)

Oext
≤1 + O

ext

≤1 . ε, (12.18)

and for the interior connection coefficients (see the definitions of Section 3.2.5)

Oint
≤3,γ [n] +Oint

≤2[k] + OT≤2[ν] . ε, (12.19)

that the results of Lemma 12.6 hold and that the bottom and conical initial layer are ε-close to Minkowski
(see the definitions of Section 4.1).

We prove in Section 12.3.1 that under these assumptions, the following bounds hold on the last cones geodesic
foliation in M′ ∩Mext

|f ′| . εu−3/2,
∣∣f ′, log λ′

∣∣ . εu′−3/2
, (12.20)

and

|u− u′| . εu′−1/2
, |u− u′| . εu′, (12.21)

and in M′ ∩Mint
bot ∣∣∣∣g(T , 1

2
(e3
′ + e4

′)

)
+ 1

∣∣∣∣ . εu′−3/2
, (12.22)

3We refer to [CK93, pp. 43–47] for statement and proof of L4(S) elliptic estimates using Calderon-Zygmund theory.
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and ∣∣∣∣t− 1

2
(u′ + u′)

∣∣∣∣ . εu′−1/2
. (12.23)

We also prove that the following bounds hold in the conical initial layer Lext
con∣∣∣f̃ ∣∣∣ . εu−1,

∣∣∣f̃ , log λ̃
∣∣∣ . ε, (12.24)

and

|u− ũ| . ε, |u− ũ| . εu, (12.25)

and that the following bounds hold in the bottom initial layer:∣∣∣∣g(1

2
(e3 + e4), T

bot
)

+ 1

∣∣∣∣ . ε, (12.26)

and ∣∣∣∣x0 − 1

2
(u+ u)

∣∣∣∣ . ε, (12.27)

in Lext
bot, and ∣∣∣g(T , T

bot
) + 1

∣∣∣ . ε, (12.28)

and ∣∣t− x0
∣∣ . ε (12.29)

in Lint
bot.

Figure 2: The last cones geodesic foliation and the initial layers.4

Remark 12.7. The bounds (12.20)–(12.23) improve the Bootstrap Assumptions 3.30 for the comparison to
the last cones geodesic foliation. The bounds (12.24) and (12.25) improve the Bootstrap Assumptions 3.32
for the comparison to the double null conical initial layer foliation. The bounds (12.26)–(12.29) improve the
Bootstrap Assumptions 3.31 for the comparison to the bottom initial layer coordinates.

4In red the 2-sphere {ũ = 3/2, ũ = 3} used in Sections 12.3.2 and 12.3.3.
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12.3. Control of transition coefficients and comparison of foliations

12.3.1 Last cones geodesic foliation comparisons
From the definition of the last cone geodesic foliation, we have at the tip of the axis ø(u∗)

|f ′| = |f ′| = log λ′ = 0. (12.30)

Moreover, since C∗ = C′u′=u∗ , we have (see the relations of Lemma 2.31)

f ′ = 0 (12.31)

on C∗.

Integrating equation (2.135f) on C∗, using the limits (12.30) and (12.31), the sup-norm estimates (12.18) for
the null connection coefficients and the estimates from Lemma 12.6, we have∥∥∥r′−1/2

f ′
∥∥∥
L∞
u′,u∗L

4(S′)
. εu′

−3/2
. (12.32)

Integrating equation (2.135i), we also obtain on C∗∥∥∥r′−1/2
log λ′

∥∥∥
L∞
u′,u∗L

4(S′)
. εu′

−1
u′
−1/2

. (12.33)

We now integrate equation (2.135a) in the e4
′ direction along the last cones geodesic foliation from C∗ to T 5,

using the estimates (12.32) for f ′ on C∗, the estimate ξ′ ∼ εu′−5/2
from Lemma 12.6, and we have∥∥∥r′−1/2

f ′
∥∥∥
L∞L4(S′)

. εu′
−3/2

. (12.34)

Integrating (2.135g), using (12.34) and (12.31), we have∥∥∥r′−1/2
f ′
∥∥∥
L∞L4(S′)

. εu′
−1
u′
−1/2

. (12.35)

Integrating (2.135h), using (12.33), we have∥∥∥r′−1/2
log λ′

∥∥∥
L∞L4(S′)

. εu′
−1
u′
−1/2

. (12.36)

Using moreover the equations (2.135c), (2.135d) and (2.135e) to obtain L∞L4(S′) control for tangential
derivatives of f ′, f ′, log λ′, together with Sobolev estimates, we further deduce that in M′ ∩Mext, the

following sup-norm bounds hold6

|f ′| . εu−3/2, |f ′| . εu′−3/2
, | log λ′| . εu′−3/2

. (12.37)

Let define

φ := g

(
T ,

1

2
(e3
′ + e4

′)

)
.

Using the bounds (12.37) on T , relations (2.15) and estimates (12.19) for ν, we obtain on T

|φ+ 1| . εu′−3/2
. (12.38)

Differentiating φ by e3
′ and integrating up to the central axis, using the bounds (12.19) and the estimates

from Lemma 12.6, one obtains L∞L4(S′) estimates inMint
bot for φ. Differentiating by ∇/ ′, one further obtains

L∞L4(S′) estimates for ∇/ ′φ, which together with Sobolev embeddings on the 2-spheres S′ gives

|φ+ 1| . εu′−3/2
(12.39)

5In order to obtain the desired L4(S′) estimates for f, f, λ in a region covering T , one actually integrates from C∗ to the last

sphere of S′ touching T . This requires to extend the double null foliation in a neighbourhood interior to T , which can be easily
achieved.

6Note that since ∇/ f is related to χ which only decays as u−1u−3/2, we lose the decay weight u′−1 from (12.35). A similar

loss occurs for log λ′.
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in M′ ∩Mint
bot.

We now turn to the improvement of (12.21). At the tip of the central axis ø(u∗), we have

u = u′ = u′ = u. (12.40)

On C∗ = C′u′=u∗ , we have

u′ = u. (12.41)

Using relations (2.1) and (2.129), that f ′ = 0 on C∗, and the definitions of the transitions coefficients from
Lemma 2.31, we have

e3
′(u′ − u) = −(e3

′ − e3)(u) = 2
(

1− λ′−1
)
. (12.42)

Integrating the last equation, using (12.40) and the bounds (12.37) for λ′, we obtain on C∗

|u′ − u| . εu′−1/2
. (12.43)

From relations (2.1), (2.129) and the relations of Lemma 2.31, we have

e4
′(u′ − u) = y′ − e4

′(u) = y′ − 1

2
λ|f ′|2.

Integrating the above equation, using that |y′| . εu′−3/2
and |f ′|2 . ε2u′

−3
, and estimate (12.43) on C∗, we

deduce that in M′ ∩Mext

|u′ − u| . εu′−1/2
. (12.44)

Let Z be defined on T by

Z :=
1

2
τe3 +

1

2

(
1− 1

2
τy

)
e4,

such that Z(u) = 1. Using the relations of Lemma 2.31 and the bounds |y| . εu−3/2, |y′| . εu−3/2,
|f ′|, |f ′|, | log λ′| . εu−3/2 on M′ ∩ T , we have

|Z(u′ − u)| . εu−3/2,

on M′ ∩ T , and we infer by integration from S∗ along Z

|u′ − u| . εu−1/2, (12.45)

on M′ ∩ T . Using (2.1), (2.129) and the relations of Lemma 2.31, we have

e4
′(u′ − u) = 2(1− λ′)− 1

4
λ′|f ′|2y.

Integrating the above equation fromM′∩T to C∗, using the bounds (12.37) for λ′ and f ′, the bounds (12.18)
for y, and the bounds (12.45) on T we infer

|u′ − u| . εu′ (12.46)

on M′ ∩Mext.

We now turn to the proof of (12.23). From the definition of t on T and the bounds obtained for u′ − u and
u′ − u in M′ ∩Mext and on M′ ∩ T , we have on M′ ∩ T∣∣∣∣t− 1

2
(u′ + u′)

∣∣∣∣ . εu′−1/2
, (12.47)

On Mint
bot, using relations (2.6) and (2.130), we have

−D

(
t− 1

2
(u′ + u′)

)
= n−1T − 1

2
(e3
′ + Y ′) = n−1T − 1

2
(e3
′ + e4

′)− 1

4
y′e3

′.

Using the bounds |y′| . εu′−3/2
, (12.18), and the bounds (12.39) obtained for φ, we deduce∣∣∣∣D(t− 1

2
(u′ + u′)

)∣∣∣∣ . εu′−3/2
,

which combined with (12.47) on T gives (12.23) as desired.
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12.3. Control of transition coefficients and comparison of foliations

12.3.2 Conical initial layer comparisons
We first have the following lemma, which is a consequence of the ε-closeness of the bottom initial layer to
Minkowski (see the definitions from Section 4.1) and the (local) definition of the last cones geodesic foliation.

Lemma 12.8. In M′ ∩ Lbot, the following comparison bounds hold between the last cones geodesic foliation
and the bottom initial layer spacetime coordinates∣∣∣∣x0 − 1

2
(u′ + u′)

∣∣∣∣ . ε,∣∣∣∣∣∣
√√√√ 3∑

i=1

(xi)2 − 1

2
(u′ − u′)

∣∣∣∣∣∣ . ε.
(12.48)

Moreover, we have in M′ ∩ Lbot ∣∣∣∣g(T bot
,

1

2
(e3
′ + e4

′)

)
+ 1

∣∣∣∣ . ε, (12.49)

and in M′ ∩ Lext
bot ∣∣∣∣g(Nbot

,
1

2
(e4
′ − e3

′)

)
− 1

∣∣∣∣ . ε. (12.50)

Proof. The centre ø(1) of Σ̃1 is chosen such that xi(ø(1)) = 0 (see also Remark 4.1). The proof then follows
form a local control of the null geodesic equation using sup-norm estimates in Lbot. Details are left to the
reader.

From the estimates (12.21) for u′, u′, one deduces that for ε sufficiently small, we have the following inclusion
(see also Figure 2)

{ũ = 3/2, ũ = 3} ⊂ Lbot ∩ Lcon ∩Mext ∩M′.

From the comparison bounds (12.37) for the null frames (e3
′, e4

′) and (e3, e4), and from the initial
bounds (12.49) and (12.50), we deduce∣∣∣∣g(T bot

,
1

2
(e3 + e4)

)
+ 1

∣∣∣∣ . ε,∣∣∣∣g(Nbot
,

1

2
(e4 − e3)

)
− 1

∣∣∣∣ . ε, (12.51)

on {ũ = 3/2, ũ = 3}. Combining (12.51) and the compatibility assumptions (4.3a) between the bottom
initial layer and the conical initial layer frames, we deduce the following bounds for the transition coefficients
(f̃ , f̃ , λ̃) between the null frames (ẽ3, ẽ4) and (e3, e4) on {ũ = 3/2, ũ = 3}∣∣∣f̃ , f̃ , log λ̃

∣∣∣ . ε. (12.52)

Integrating successively equations (2.135b), (2.135f), (2.135i) along ẽ3 from {ũ = 3/2, ũ = 3} to C1 ∩ {ũ = 3},
using the bounds (12.18) and (4.2b) for the null connection coefficients of each foliation, and the bounds (12.52)
on {ũ = 3/2, ũ = 3}, we infer that the bound ∣∣∣f̃ , f̃ , log λ̃

∣∣∣ . ε (12.53)

holds on Mext ∩ {ũ = 3}. We rewrite (2.135a) schematically as

∇/ 4f̃ +
1

2
trχf̃ = Err,

which integrated along e4, from {ũ = 3} ∩Mext into the region Lext
con, using the Bootstrap Assumptions 3.32,

the bounds (12.18) and (4.2b) for the null connection coefficients in Lext
con and the bounds (12.53) on {ũ = 3}

gives

u|f̃ | . ε, (12.54)
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Chapter 12. The initial layers

on Lext
con. Integrating equations (2.135g) and (2.135h) from {ũ = 3} ∩Mext into Lext

con yields∣∣∣f̃ , log λ̃
∣∣∣ . ε, (12.55)

as desired. This finishes the proof of (12.24).

We turn to the proof of (12.25). We deduce from the bounds (12.21), (12.48) and the compatibility
assumption (4.3b) between the bottom and conical initial layers that

|u− ũ| . ε, |u− ũ| . ε,

at the 2-sphere {ũ = 3/2, ũ = 3}. Differentiating by ẽ3 and integrating from {ũ = 3/2, ũ = 3} to C1∩{ũ = 3},
we further obtain

|u− ũ| . ε, |u− ũ| . ε, (12.56)

on {ũ = 3} ∩ Mext. Using relations (2.1) and the definitions from Section 2.14 we have the following
equations

e4 (u− ũ) = −1

4
|f̃ |2ẽ3(ũ) = −1

2
|f̃ |2Ω̃−1,

e4 (u− ũ) = 2(1− λ̃).

Integrating the above equations along e4 from {ũ = 3}∩Mext into Lext
con, using the bounds (12.56) on {ũ = 3}

and (12.54), (12.55), (4.2b) we deduce

|u− ũ| . ε, |u− ũ| . εu,

as desired. This finishes the proof of (12.25).

12.3.3 Bottom initial layer comparisons
In this section, we prove the comparison estimates (12.26), (12.27), (12.28), (12.29) for the bottom initial
layer. Following similar arguments as previously, one has∣∣∣∣D(g

(
T

bot
,

1

2
(e3 + e4)

))∣∣∣∣ . ε
in Lbot ∩Mext, and we thus deduce from the bound (12.51) on the 2-sphere {ũ = 3/2, ũ = 3} ⊂ Lext

bot

by integration in Lext
bot that (12.26) holds in Lext

bot. Further integration in Lint
bot also gives (12.28). The

bounds (12.27) and (12.29) are then also deduced by integration, using the just obtained bounds (12.51)
and (12.28) and the bounds (12.21), (12.48) on {ũ = 3/2, ũ = 3}.
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A. Global harmonic coordinates
This section is dedicated to the proof of Theorem 4.3.

A.1 Assumptions
Let Σ be a Riemannian manifold diffeomorphic to D the unit coordinate disk of R3. Let C > 0 be a (large)
constant. We assume that the following Sobolev embeddings hold on Σ

‖F‖L6(Σ) ≤ C
∥∥∇≤1F

∥∥
L2(Σ)

,

‖F‖L∞(Σ) ≤ C
∥∥∇≤2F

∥∥
L2(Σ)

,
(A.1)

for all Σ-tangent tensors F .

Assume that we have the following L3/2(Σ)− L1(∂Σ)-Poincaré inequality

‖F‖L2(Σ) ≤ C
(
‖∇F‖L3/2(Σ) + ‖F‖L1(∂Σ)

)
. (A.2)

for all tensors F .

Assume that we have the following trace estimate from Σ on ∂Σ

‖F‖H1/2(∂Σ) ≤ C
∥∥∇≤1F

∥∥
L2(Σ)

, (A.3)

for all tensors F .

Remark A.1. To obtain Poincaré estimate (A.2), we can rely on the following sequence of more standard
Poincaré and Sobolev embeddings which hold true in the Euclidean disk case

‖F‖L1(Σ) . ‖∇F‖L1(Σ) + ‖F‖L1(∂Σ) ,

‖F‖L3/2(Σ) .
∥∥∇≤1F

∥∥
L1(Σ)

,

‖F‖L2(Σ) .
∥∥∇≤1F

∥∥
L3/2(Σ)

.

A.2 Definitions and preliminary results
In this section, we recall definitions from Section 2 and state preliminary (known) results.

A.2.1 Definitions and identities on ∂Σ
Definition A.2 (Conformal isomorphism and xi on ∂Σ). A conformal isomorphism Φ is a diffeomorphism
from ∂Σ onto the Euclidean unit 2-sphere S, such that there exists a conformal factor φ > 0 satisfying

Φ]g/∂Σ = φ2g/S,

where Φ] denotes the push-forward by Φ.

To a fixed conformal isomorphism, we associate a triplet of function (xi)i=1,2,3 on ∂Σ to be the pull-back by
Φ of the standard Cartesian coordinates restricted on S.

We moreover say that Φ is centred if the following conditions hold for the functions xi∫
∂Σ

xi = 0, i = 1, · · · , 3.

We have the following identities on ∂Σ.

Lemma A.3 (Conformal identities on ∂Σ). On ∂Σ, we have the following identities

3∑
i=1

(xi)2 = 1, (A.4)

and

4/ g/ x
i + 2xi = 2xi

(
1− φ−2

)
. (A.5)
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Appendix A. Global harmonic coordinates

Proof. The first identity (A.4) is a direct consequence of Definition A.2. For the second identity (A.5), we
have using the Euclidean Laplacian in spherical coordinates that

4/ g/ S
xi + 2xi = 0.

From the conformal invariance of the Laplacian, we have

4/ g/ S
xi = φ24/ g/x

i,

and the desired formula follows.

A.2.2 Uniformisation theorem on ∂Σ
Lemma A.4 (Uniformisation Theorem on ∂Σ). Under the assumptions of Theorem 4.3, there exists a
unique – up to isomorphisms of S – centred conformal isomorphism of the boundary (∂Σ, g/) to the Euclidean
sphere S and we have the following quantitative bounds for the conformal factor φ∥∥∇/ ≤1 (φ− 1)

∥∥
H1/2(∂Σ)

. ε. (A.6)

Moreover, for all k ≥ 0, we have the following higher regularity estimates∥∥∇/ ≤k+1 (φ− 1)
∥∥
H1/2(∂Σ)

. Ck
(∥∥∇≤kRic

∥∥
L2(Σ)

+
∥∥∇/ ≤k(θ − g/)

∥∥
H1/2(∂Σ)

+ ε
)
. (A.7)

Proof. Arguing as in [Czi19a], one can obtain from the L2(Σ) and H1/2(∂Σ) bounds (4.5) that

‖K − 1‖H−1/2(∂Σ) . ε,

where H−1/2(∂Σ) is an (appropriately defined) fractional Sobolev space on ∂Σ (see [Czi19a]). The lemma
then follows from an adaptation of Theorem [KS19b, Theorem 3.1] (or from adaptations of the argument
of [Sha14, Section 6]).

A.2.3 Definitions and identities on Σ
We now have the following definition for xi on Σ.

Definition A.5 (xi on Σ). We define the xi on Σ to be the solutions of the following Dirichlet problem

∆gx
i = 0,

xi|∂Σ = xi.
(A.8)

Remark A.6. From the maximum principle, one has on Σ∣∣xi∣∣ ≤ 1. (A.9)

We have the following energy and Bochner identities in Σ.

Lemma A.7 (Energy and Bochner identities in Σ). We have the following energy identity on Σ∥∥∇xi∥∥2

L2(Σ)
=

∫
∂Σ

xiN(xi), (A.10)

and the following Bochner identity on Σ∥∥∇2xi
∥∥2

L2(Σ)
= −

∫
Σ

Ric · ∇xi · ∇xi +

∫
∂Σ

∇xi · ∇N∇xi, (A.11)

for all i = 1, 2, 3 and where here and in the following, N denotes the outward-pointing unit normal to ∂Σ.

Proof. The energy identity (A.10) is obtained by multiplying Laplace equation (A.8) by xi and integrating
by part.

Bochner identity (A.11) is obtained by using the following commutation formula

∆∇xi = Ric · ∇xi,

contracted with ∇xi and integrating by part.
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A.3. A refined Bochner identity

A.3 A refined Bochner identity
This section is dedicated to the proof of the following refined Bochner identity, which is at the centre of the
proof of Theorem 4.3

3∑
i=1

∥∥∇2xi
∥∥2

L2(Σ)
+ 2

3∑
i=1

∫
∂Σ

(
N(xi)− xi

)2
= −3

3∑
i=1

∫
Σ

(
Ric− 1

3
Rg

)
· ∇xi · ∇xi + G, (A.12)

where

G :=

3∑
i=1

∫
∂Σ

(
(θab − g/ab)x

i(∇/ a∇/ bx
i + 2xig/ab)

− (N(xi)− xi)
(
2(4/ xi + 2xi)− (trθ − 2)(N(xi) + xi)

))
+

1

2

∫
∂Σ

(trθ − 2)2 −
∫
∂Σ

|θ̂|2 + 2

3∑
i=1

∫
∂Σ

(
RicNN −

1

2
R

)
xi(N(xi)− xi)

− 2

3∑
i=1

∫
Σ

xi
(

Ric− 1

2
Rg

)
· ∇2xi.

Identity (A.12) is obtained by further computation starting from the original Bochner identity (A.11). Its
proof is postponed to the end of this section and uses the following two lemmas.

Lemma A.8. We have

3∑
i=1

∫
∂Σ

∇xi · ∇N∇xi = 2

∫
∂Σ

(φ−2 − 1)− 2

∫
∂Σ

(trθ − 2)− 2

3∑
i=1

∫
∂Σ

(N(xi)− xi)2 + E, (A.13)

where

E :=

3∑
i=1

∫
∂Σ

(
(θab − g/ab)x

i(∇/ a∇/ bx
i + 2xig/ab)

− (N(xi)− xi)
(
2(4/ xi + 2xi)− (trθ − 2)(N(xi) + xi)

))
.

Proof. We decompose the integrand in two parts as follows

∇xi · ∇N∇xi = ∇axi∇N∇axi +∇Nxi∇N∇Nxi. (A.14)

For the first term of (A.14), we have1

∇axi∇N∇axi = ∇/ ax
i∇a∇Nxi

= ∇/ ax
i
(
∇/ aN(xi)− θab∇/ bx

i
)

= ∇/ ax
i
(
∇/ a

(
N(xi)− xi

)
− (θab − g/ab)∇/ bx

i
)
.

Integrating that relation on ∂Σ and integrating by part gives∫
∂Σ

∇axi∇N∇axi

=

∫
∂Σ

∇/ ax
i
(
∇/ a

(
N(xi)− xi

)
− (θab − g/ab)∇/ bx

i
)

=

∫
∂Σ

(−2xi −4/ xi)
(
N(xi)− xi

)
−
∫
∂Σ

(θab − g/ab)∇/ ax
i∇/ bx

i

+

∫
∂Σ

2xi
(
N(xi)− xi

)
.

1We recall that θab = ∇aNb (see the definition in Theorem 4.3).
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Integrating by part and using relation (A.4), we have

3∑
i=1

−
∫
∂Σ

(θab − g/ab)∇/ ax
i∇/ bx

i

=

3∑
i=1

(∫
∂Σ

1

2
∇/ aθab∇/ b(x

i)2 +

∫
∂Σ

(θab − g/ab)x
i∇/ a∇/ bx

i

)

=−
∫
∂Σ

(trθ − 2) +

3∑
i=1

∫
∂Σ

(θab − g/ab)x
i(∇/ a∇/ bx

i + xig/ab).

Summing for i from 1 to 3, we therefore infer

3∑
i=1

∫
∂Σ

∇axi∇N∇axi

=

3∑
i=1

∫
∂Σ

(−2xi −4/ xi)
(
N(xi)− xi

)
+

3∑
i=1

∫
∂Σ

(θab − g/ab)x
i(∇/ a∇/ bx

i + xig/ab)

+

3∑
i=1

∫
∂Σ

2xi
(
N(xi)− xi

)
−
∫
∂Σ

(trθ − 2).

(A.15)

Let turn to the second term of (A.14). We first recall that Laplace equation (A.8) can be rewritten as

∇N∇Nxi +4/ g/x
i + trθN(xi) = 0.

Using this, we compute

∇Nxi∇N∇Nxi = −N(xi)
(
4/ xi + trθN(xi)

)
= −N(xi)

(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)N(xi)

)
= −xi

(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)N(xi)

)
− (N(xi)− xi)

(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)N(xi)

)
= −xi(4/ xi + 2xi)− 2xi(N(xi)− xi)− (xi)2(trθ − 2)

− (N(xi)− xi)
(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)(N(xi) + xi)

)
Integrating this relation on ∂Σ, gives∫

∂Σ

∇Nxi∇N∇Nxi

=

∫
∂Σ

−xi(4/ xi + 2xi)−
∫
∂Σ

(xi)2(trθ − 2) +

∫
∂Σ

−2xi(N(xi)− xi)

−
∫
∂Σ

(N(xi)− xi)
(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)(N(xi) + xi)

)
.

Using relations (A.5), (A.4), we have

3∑
i=1

−
∫
∂Σ

xi(4/ xi + 2xi) = −
3∑
i=1

2

∫
∂Σ

(xi)2
(
1− φ−2

)
= 2

∫
∂Σ

(φ−2 − 1).

Summing over i and using this relation and (A.4), we infer

3∑
i=1

∫
∂Σ

∇Nxi∇N∇Nxi

= 2

∫
∂Σ

(φ−2 − 1)−
∫
∂Σ

(trθ − 2)− 2

3∑
i=1

∫
∂Σ

xi(N(xi)− xi)

−
3∑
i=1

∫
∂Σ

(N(xi)− xi)
(
(4/ xi + 2xi) + 2(N(xi)− xi) + (trθ − 2)(N(xi) + xi)

)
.

(A.16)
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Summing (A.15) and (A.16), we have

3∑
i=1

∫
∂Σ

∇xi · ∇N∇xi = 2

∫
∂Σ

(φ−2 − 1)− 2

∫
∂Σ

(trθ − 2)− 2

3∑
i=1

∫
∂Σ

(N(xi)− xi)2

+

3∑
i=1

∫
∂Σ

(θAB − g/AB)xi(∇/ A∇/ Bx
i + 2xig/AB)

−
3∑
i=1

∫
∂Σ

(N(xi)− xi)
(
2(4/ xi + 2xi) + (trθ − 2)(N(xi) + xi)

)
,

which finishes the proof of the lemma.

We have the following lemma, which treats the linear boundary term of Lemma A.8.

Lemma A.9. We have

2

∫
∂Σ

(φ−2 − 1)− 2

∫
∂Σ

(trθ − 2) = −2

3∑
i=1

∫
Σ

(
Ric− 1

2
Rg

)
· ∇xi · ∇xi + F, (A.17)

where

F :=
1

2

∫
∂Σ

(trθ − 2)2 −
∫
∂Σ

|θ̂|2 + 2

3∑
i=1

∫
∂Σ

(
RicNN −

1

2
R

)
xi(N(xi)− xi)

− 2

3∑
i=1

∫
Σ

xi
(

Ric− 1

2
Rg

)
· ∇2xi.

Proof. We define the following Einstein tensor on Σ

G := Ric− 1

2
Rg.

Using Gauss equation (see [CK93, equation 5.0.5d]), we obtain

GNN = −K +
1

4
trθ2 − 1

2
|θ̂|2,

on ∂Σ. Integrating the above on ∂Σ, using Gauss-Bonnet formula, we infer∫
∂Σ

GNN = −4π +

∫
∂Σ

1 +

∫
∂Σ

(trθ − 2) +
1

4

∫
∂Σ

(trθ − 2)2 − 1

2

∫
∂Σ

|θ̂|2,

= −
∫
∂Σ

(φ−2 − 1) +

∫
∂Σ

(trθ − 2) +
1

4

∫
∂Σ

(trθ − 2)2 − 1

2

∫
∂Σ

|θ̂|2.

We thus deduce that

2

∫
∂Σ

(φ−2 − 1)− 2

∫
∂Σ

(trθ − 2) = −2

∫
∂Σ

GNN + F1, (A.18)

where

F1 :=
1

2

∫
∂Σ

(trθ − 2)2 −
∫
∂Σ

|θ̂|2.

Using Bianchi identity on Σ

divG = 0,

and applying Stokes formula, we have∫
Σ

G · ∇xi · ∇xi =

∫
∂Σ

GlNx
i∇lxi −

∫
Σ

xiG · ∇2xi. (A.19)
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Summing over i and using (A.4), we have

3∑
i=1

∫
∂Σ

GNlx
i∇lxi =

3∑
i=1

∫
∂Σ

GNNx
iN(xi) +

1

2

∫
∂Σ

GNa∇/ a

(
3∑
i=1

(xi)2

)

=

∫
∂Σ

GNN +

3∑
i=1

∫
∂Σ

GNNx
i(N(xi)− xi).

(A.20)

Combining (A.19) and (A.20), we infer

−2

∫
∂Σ

GNN = −2

3∑
i=1

∫
Σ

G · ∇xi · ∇xi + F2, (A.21)

where

F2 := 2

3∑
i=1

∫
∂Σ

GNNx
i(N(xi)− xi)− 2

3∑
i=1

∫
Σ

xiG · ∇2xi.

Combining (A.18) and (A.21) then gives the desired result.

Proof of (A.12). Using the results of Lemmas A.8 and A.9, and Bochner identity (A.11), we have

3∑
i=1

∥∥∇2xi
∥∥2

L2(Σ)
= −

3∑
i=1

∫
Σ

Ric · ∇xi · ∇xi +

3∑
i=1

∫
∂Σ

∇xi · ∇N∇xi

= −
3∑
i=1

∫
Σ

Ric · ∇xi · ∇xi − 2

3∑
i=1

∫
Σ

(
Ric− 1

2
Rg

)
· ∇xi · ∇xi

− 2

3∑
i=1

∫
∂Σ

(N(xi)− xi)2 + E + F

= −3

3∑
i=1

∫
Σ

(
Ric− 1

3
Rg

)
· ∇xi · ∇xi − 2

3∑
i=1

∫
∂Σ

(N(xi)− xi)2 + E + F,

and using the expressions of E,F this concludes the proof of (A.12).

A.4 Refined Bochner estimate
This section is dedicated to show that, using the refined Bochner identity (A.12) together with the assump-
tions (4.5) of Theorem 4.3 one has the following estimate

3∑
i=1

∥∥∇2xi
∥∥2

L2(Σ)
+

3∑
i=1

∫
∂Σ

(N(xi)− xi)2 + ‖B‖2L2(Σ) . ε
2, (A.22)

where B is the following 2-tensor on Σ

B :=

3∑
i=1

∇xi ⊗∇xi − g,

where ⊗ denotes the standard tensorial product on TΣ. As a consequence, we will also obtain the following
estimates ∥∥∇xi∥∥

L2(Σ)
+
∥∥∇xi∥∥

L6(Σ)
. 1. (A.23)

The proof of (A.22) and (A.23) is postponed to the end of this section. It relies on the following three
lemmas.

Lemma A.10. We have

3∑
i=1

(∥∥∇2xi
∥∥2

L2(Σ)
+
∥∥N(xi)− xi

∥∥2

L2(∂Σ)

)
. ε

(∥∥∇2xi
∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)(
1 +

∥∥∇≤2xi
∥∥
L2(Σ)

)
+ ε ‖B‖L2(Σ) + ε2.

(A.24)
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Proof. Using the assumptions (4.5), we have

−3

3∑
i=1

∫
Σ

(
Ric− 1

3
Rg

)
· ∇xi · ∇xi = −3

∫
Σ

(
Ric− 1

3
Rg

)
· B

. ‖Ric‖L2(Σ) ‖B‖L2(Σ)

. ε ‖B‖L2(Σ) .

(A.25)

Using a trace estimate and Bianchi identity for Einstein tensor divG = 0, we claim that the following bilinear
estimate holds for all scalar functions f on ∂Σ2∣∣∣∣∫

∂Σ

GNNf

∣∣∣∣ . ‖G‖L2(Σ) ‖f‖H1/2(∂Σ) . (A.26)

Using (A.26) and the trace estimate of Section A.1, Laplace equation (A.5) for xi on ∂Σ, and (A.9), we have
the following estimates for the terms composing G∣∣∣∣∫

∂Σ

(
RicNN −

1

2
R

)
xi(N(xi)− xi)

∣∣∣∣ . ‖Ric‖L2(Σ)

∥∥∇2xi
∥∥
L2(Σ)

,∣∣∣∣∫
Σ

xi
(

Ric− 1

2
Rg

)
· ∇2xi

∣∣∣∣ . ‖Ric‖L2(Σ)

∥∥∇2xi
∥∥
L2(Σ)

,∫
∂Σ

(trθ − 2)2 +

∫
∂Σ

|θ̂|2 . ‖θ − g/‖2L4(∂Σ) ,∣∣∣∣∫
∂Σ

(θab − g/ab)x
i(∇/ a∇/ bx

i + 2xig/ab)

∣∣∣∣ . ‖θ − g/‖L4(∂Σ)

∥∥∇/ ≤1(φ− 1)
∥∥
H1/2(S)

,∣∣∣∣∫
∂Σ

(N(xi)− xi)(4/ xi + 2xi)

∣∣∣∣ . ∥∥N(xi)− xi
∥∥
L2(∂Σ)

∥∥φ−2 − 1
∥∥
L2(∂Σ)∣∣∣∣∫

∂Σ

(N(xi)− xi)(trθ − 2)(N(xi) + xi)

∣∣∣∣ . ∥∥N(xi)− xi
∥∥
L2(∂Σ)

‖trθ − 2‖L4(∂Σ)

∥∥∇≤1xi
∥∥
L4(∂Σ)

.
∥∥N(xi)− xi

∥∥
L2(∂Σ)

‖trθ − 2‖L4(∂Σ)

∥∥∇≤2xi
∥∥
L2(Σ)

.

Thus, using estimates (4.5), (A.6) and (A.9), we obtain that

|G| . ε
(∥∥∇2xi

∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)(
1 +

∥∥∇≤2xi
∥∥
L2(Σ)

)
+ ε2. (A.27)

Combining (A.25) and (A.27) and the refined Bochner identity (A.12), we have

3∑
i=1

(∥∥∇2xi
∥∥2

L2(Σ)
+
∥∥N(xi)− xi

∥∥2

L2(∂Σ)

)
. ε

(∥∥∇2xi
∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)(
1 +

∥∥∇≤2xi
∥∥
L2(Σ)

)
+ ε ‖B‖L2(Σ) + ε2,

as desired

Lemma A.11. We have

∥∥∇xi∥∥
L2(Σ)

.

(
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

,

and

∥∥∇xi∥∥
L6(Σ)

.

(
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

+
∥∥∇2xi

∥∥
L2(Σ)

.

Proof. The first estimate follows from the energy identity (A.10) and (A.9). The second follows from the
first and the Sobolev embeddings of Section A.1.

2This can be obtained by obtaining locally a geodesic foliation by 2-spheres extending the boundary ∂Σ, extending f ,
integrating along the normal direction using Bianchi identity and integration by part. See [Sze18] for similar ideas.
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Lemma A.12. We have

‖B‖L2(Σ) .

((
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

+
∥∥∇2xi

∥∥
L2(Σ)

)∥∥∇2xi
∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

+
∥∥N(xi)− xi

∥∥2

L2(∂Σ)
.

(A.28)

Proof. From Hölder estimate and the estimates of Lemma A.11, we first have

‖∇B‖L3/2(Σ) .
∥∥∇xi∥∥

L6(Σ)

∥∥∇2xi
∥∥
L2(Σ)

.

((
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

+
∥∥∇2xi

∥∥
L2(Σ)

)∥∥∇2xi
∥∥
L2(Σ)

.
(A.29)

Using (A.4), we have at the boundary ∂Σ

BNN =

3∑
i=1

N(xi)N(xi)− 1 = 2

3∑
i=1

xi(N(xi)− xi) +

3∑
i=1

(N(xi)− xi)2,

BNa =

3∑
i=1

N(xi)∇/ a(xi) =

3∑
i=1

(N(xi)− xi)∇/ a(xi),

Bab =

3∑
i=1

∇/ a(xi)∇/ b(x
i)− g/ab = 0.

where in the last line we used the conformal invariance and the fact that the corresponding identity holds
true in the Euclidean case. Thus, using estimates (A.6), (A.9), we deduce

‖B‖L1(∂Σ) .
∥∥N(xi)− xi

∥∥
L2(∂Σ)

+
∥∥N(xi)− xi

∥∥2

L2(∂Σ)
. (A.30)

Combining (A.29) and (A.30) and the Poincaré-type estimate (A.2), the desired result follows.

Proof of (A.22) and (A.23). Combining the results of Lemmas A.10, A.11, A.12, we obtain the following
estimate

3∑
i=1

∥∥∇2xi
∥∥2

L2(Σ)
+

3∑
i=1

∥∥N(xi)− xi
∥∥2

L2(∂Σ)

. ε
(∥∥∇2xi

∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)(
1 +

∥∥∇≤2xi
∥∥
L2(Σ)

)
+ ε ‖B‖L2(Σ) + ε2

. ε
(∥∥∇2xi

∥∥
L2(Σ)

+
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)(
1 +

(
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

+
∥∥∇2xi

∥∥
L2(Σ)

)

+ ε

((
(

∫
∂Σ

1) +
∥∥N(xi)− xi

∥∥
L2(∂Σ)

)1/2

+
∥∥∇2xi

∥∥
L2(Σ)

)∥∥∇2xi
∥∥
L2(Σ)

+ ε
∥∥N(xi)− xi

∥∥
L2(∂Σ)

+ ε
∥∥N(xi)− xi

∥∥2

L2(∂Σ)
+ ε2.

Using Young’s inequality and absorption or direct absorption for ε > 0 sufficiently small, we obtain from the
above estimate that

3∑
i=1

∥∥∇2xi
∥∥2

L2(Σ)
+

3∑
i=1

∥∥N(xi)− xi
∥∥2

L2(∂Σ)
. ε2.

Using this estimate and Lemmas A.11, A.12, we further obtain

‖B‖L2(Σ) . ε,
∥∥∇xi∥∥

L2(Σ)
+
∥∥∇xi∥∥

L6(Σ)
. 1.

This finishes the proof of (A.22) and (A.23).
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A.5 Higher order estimates
In this section, we prove the following higher order estimate for ∇3xi. Estimates for higher derivatives will
follow similarly (see Lemma A.13) and are left to the reader.∥∥∇3xi

∥∥
L2(Σ)

. ‖Ric‖L2(Σ) + ‖θ − g/‖H1/2(∂Σ) +
∥∥∇/ ≤1(φ− 1)

∥∥
H1/2(∂Σ)

+ ε. (A.31)

As a consequence, using the L2 assumptions (4.5), we will have∥∥∇3xi
∥∥
L2(Σ)

. ε. (A.32)

We turn to the proof of (A.31). First, the commuted Laplace equation for ∇2xi takes the following schematic
form

∆∇2xi = ∇Ric · ∇xi + Ric · ∇2xi. (A.33)

for all i = 1, 2, 3.

Since we have obtained L2 smallness estimates for ∇2xi in the previous section, estimates for derivatives of
∇2xi will follow from (A.33) and from the following standard higher order elliptic estimates.

Lemma A.13. For any Σ-tangent tensor F satisfying

∆F = ∇G+H,

we have

‖∇F‖L2(Σ) . ‖G‖L2(Σ) + ‖H‖L4/3(Σ) + ‖F‖L2(Σ) + ‖F/‖H1/2(∂Σ) ,

where F/ denotes the projection of F as a ∂Σ-tangent tensor. Moreover, we have∥∥∇2F
∥∥
L2(Σ)

. ‖∆F‖L2(Σ) +
∥∥∇≤1F

∥∥
L2(Σ)

+
∥∥∇/ ≤1F/

∥∥
H1/2(∂Σ)

.

Remark A.14. The elliptic estimates from Lemma A.13 can either be taken as assumptions additional to
the functional assumptions of Section A.1, or proved using the L2 bounds (4.5), Stokes formula, the trace
estimates from Section A.1 and H−1/2 ×H1/2 estimates on the boundary ∂Σ.

Using the results of Lemma A.13, Sobolev embeddings from Section A.1, we have∥∥∇3xi
∥∥
L2(Σ)

.
∥∥Ric · ∇xi

∥∥
L2(Σ)

+
∥∥Ric · ∇2xi

∥∥
L4/3 +

∥∥∇2
a,bx

i
∥∥
H1/2(∂Σ)

. ‖Ric‖L2(Σ)

(∥∥∇≤3xi
∥∥
L2(Σ)

)
+
∥∥∇2

a,bx
i
∥∥
H1/2(∂Σ)

.
(A.34)

We have

∇2
a,bx

i = ∇/ 2
a,bx

i + θabN(xi) =
(
∇/ 2
a,bx

i + xig/ab
)

+ xi(θab − g/ab) + (N(xi)− xi)θab.

Thus, we deduce using standard H1/2 product estimates (see [Sha14])∥∥∇2
a,bx

i
∥∥
H1/2(∂Σ)

.
∥∥∇/ ≤1(φ− 1)

∥∥
H1/2(∂Σ)

+ ‖θ − g/‖H1/2(∂Σ)

+
(∥∥N(xi)− xi

∥∥
L∞(∂Σ)

+
∥∥∇/ (N(xi)− xi)

∥∥
L2(∂Σ)

)
‖θ‖H1/2(∂Σ) .

By Sobolev embeddings on ∂Σ, we have for the last terms∥∥N(xi)− xi
∥∥
L∞(∂Σ)

+
∥∥∇/ (N(xi)− xi)

∥∥
L2(∂Σ)

.
∥∥∇/ (N(xi)− xi)

∥∥1/2

H1/2(∂Σ)

∥∥N(xi)− xi
∥∥1/2

H1/2(∂Σ)
+
∥∥N(xi)− xi

∥∥
H1/2(∂Σ)

,

thus from Young’s inequality and the trace estimates of Section A.1, we finally obtain∥∥∇2
a,bx

i
∥∥
H1/2(∂Σ)

− c
∥∥∇/ (N(xi)− xi)

∥∥
H1/2(∂Σ)

.
∥∥∇/ ≤1(φ− 1)

∥∥
H1/2(∂Σ)

+ ‖θ − g/‖H1/2(∂Σ) +
∥∥N(xi)− xi

∥∥
H1/2(∂Σ)

.
(A.35)

Combining (A.34) and (A.35) with an absorption argument yields (A.31) as desired.
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A.6 The xi are local coordinates on Σ
In this section, we prove that the following estimate holds

3∑
i,j=1

∣∣g(∇xi,∇xj)− δij
∣∣ . ε, (A.36)

uniformly on Σ. As a consequence, using the local inverse theorem we deduce that the xi form a local
coordinate system on Σ.

We turn to the proof of (A.36). Using the Sobolev embeddings from Section A.1, the estimates A.32, A.22

and A.23, we obtain for the tensor B =
∑3
i=1∇xi ⊗∇xi − g defined in Section A.4

‖B‖L∞(Σ) . ε. (A.37)

We now have the following geometric lemma, which achieves the proof of (A.36).

Lemma A.15. Assume that |B| . ε. Then, for ε > 0 sufficiently small, we have

3∑
i,j=1

∣∣g(∇xi,∇xj)− δij
∣∣ . ε.

Proof. Taking the trace in B, we first have ∣∣∣∣∣
3∑
i=1

|∇xi|2 − 3

∣∣∣∣∣ . ε. (A.38)

Assume that ∇x1 has the maximal norm among the ∇xi. Contracting B with ∇x1 gives∣∣|∇x1|4 + |∇x1 · ∇x2|2 + |∇x1 · ∇x3|2 − |∇x1|2
∣∣ . ε|∇x1|2.

Dividing by |∇x1|2 > 0, we deduce∣∣|∇x1|2 + |∇x1|−2|∇x1 · ∇x2|2 + |∇x1|−2|∇x1 · ∇x3|2 − 1
∣∣ . ε. (A.39)

We first infer from (A.39) that

|∇x1|2 − 1 . ε,

which using (A.38) further impose that∣∣|∇xi|2 − 1
∣∣ . ε, and

∣∣|∇xi| − 1
∣∣ . ε, (A.40)

for all i = 1, 2, 3. Injecting the above bounds in (A.39), we obtain

|∇x1 · ∇x2|2 + |∇x1 · ∇x3|2 . ε. (A.41)

Contracting B with ∇x2 ⊗∇x3 gives∣∣∣∣∣∇x2 · ∇x3 −
3∑
i=1

(∇x2 · ∇xi)(∇x3 · ∇xi)

∣∣∣∣∣ . ε
which using (A.40) and (A.41) gives ∣∣∇x2 · ∇x3 − 2(∇x2 · ∇x3)

∣∣ . ε,
and the result of the lemma follows.
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A.7 The xi are global coordinates from Σ onto D
We want to improve the result of Section A.6 and show that the map

Φ : x 7→ (xi(x))

is a global diffeomorphism from Σ onto D. This follows from the following two lemmas.

Lemma A.16. We have that

Φ (Σ) = D.

Lemma A.17. We have that

∀p ∈ Φ (Σ) , #
{

Φ−1(p)
}

= 1.

Proof of Lemma A.16. Let first prove that Φ(Σ) ⊂ D. We argue by contradiction and suppose that there
exists p ∈ Σ such that |Φ(p)| > 1. Let define the function X on Σ by

X :=
1

|Φ(p)|

n∑
i=1

xi(p)xi.

From the definitions of the xi, the function X is harmonic, |X| ≤ 1 on ∂Σ and |X(p)| = |Φ(p)|2 > 1, which
contradicts the maximum principle.

We then show that Φ(Σ) = D. Since Φ(Σ) is closed in D and D is connected, the result will follow provided
that we can prove that Φ(Σ) is an open subset of D. Applying the maximum principle, we can obtain that
Φ−1 (∂D) = ∂Σ. Applying the local inverse theorem then ensures that Φ (Σ) is open in D. This finishes the
proof of Lemma A.16.

Proof of Lemma A.17. By the local inverse theorem applied at all points p ∈ Φ (Σ), one has that

C(p) := #
{

Φ−1(p)
}

is locally constant at each point p ∈ Φ (Σ) (see [Mil97] and Remark A.19). Since Φ (Σ) is connected, this
implies that C is constant on Φ (Σ).

It therefore suffices to compute C at (1, 0, · · · , 0) ∈ Φ (Σ). By the maximum principle, one easily obtains
that Φ−1(1, 0, · · · , 0) = {(1, 0, · · · , 0)}, which finishes the proof of Lemma A.17.

Remark A.18. If one is concerned with the applicability of the local inverse theorem at the boundary, one
can just extend the smooth function by Borel’s lemma and then apply the classical local inverse theorem.

Remark A.19. The proof in [Mil97] is for manifold without boundaries, but extends directly to the case
with boundary by considering the map Φ corestricted to its image (which is a manifold with boundary). Note
that this is the reason why we apply this result only for points p ∈ Φ (Σ).
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B. Axis limits
This section is dedicated to the proof of Theorem 4.4. In Section B.1 we define the Cartesian optical normal
coordinates, and show that they form a local (smooth outside of the axis) coordinate system. We then
perform a Cartesian to spherical coordinate change of coordinates and derive limits at the axis for the metric
components and its derivatives. These limits are the key to obtain the limits for the metric, null connection,
curvature tensors in Section B.3 using the expression of these tensors in spherical coordinates.

B.1 Optical normal coordinates
Let (M,g) be a smooth Lorentzian manifold. Let ø be a timelike geodesic of M. We assume that ø is
parametrised by its geodesic affine parameter, i.e. g(ø̇, ø̇) = −1 and that a parallel transported orthonormal
frame (e0 := ø̇, e1, e2, e3) along ø is given. We assume that the frame eµ is smoothly extended outside of ø,
and that its extension satisfies D(eµ)|ø = 0.1 We define the map Ψ : M× R4 →M, by

Ψ (p, ṗν) := expp (ṗνeν(p)) .

Let O ∈ ø. There exists a neighbourhood of O covered by smooth normal coordinates which we call (zµ),
such that O = {z = 0} and ∂zµ |O = eµ(O). In this coordinate system the metric and its first derivatives are
trivial at O (see [GHL90]), i.e.

gµν(O) = ηµν ,

∂gµν(O) = 0,

where ηµν denotes the Cartesian coordinates components of the Minkowskian metric.

We define the map Ψ := ΨO : R4 × R4 → R4 by identifying M to (a neighbourhood of 0 in) R4 using the
normal coordinates (zµ) at O.

Remark B.1. In the Minkowskian case M = R4, we have ΨMink(z, ż) = z + ż.

The map Ψ satisfies the following properties.

Lemma B.2. The map Ψ is a smooth map from R4 × R4 → R4. Moreover, the following identities hold

Ψ|R4×{0} = IdR4 ,

Ψ|{0}×R4 = IdR4 ,
(B.1)

and

dΨ(z, 0) · (v, 0) = v,

dΨ(0, ż) · (0, v̇) = v̇,
(B.2)

and

dΨ(z, 0) · (0, v̇) = v̇νeν(z). (B.3)

and

d2Ψ(0, 0) = 0, (B.4)

as a bilinear map from
(
R4 × R4

)2 → R4.

Proof. The smoothness of Ψ is a consequence of the smoothness of the exponential map (see [GHL90, p.
86]) and of the vectorfields eµ.

Identities (B.1) are straight-forward consequences of the definition of normal coordinates and the exponential
map. Identities (B.2) then follow from identities (B.1).

1Using normal coordinates vectorfields, it is always possible to obtain such an extension.
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Identity (B.3) is a consequence of the definition of the exponential map.

To derive the last identity (B.4) we first rewrite (B.3) as

∂żνΨλ(z, 0) = (eν(z))λ,

which deriving along zµ and evaluating at 0 gives

∂zµ∂żνΨλ(0, 0) =
(
∂zµ(eν(z))λ

)
|z=0

= D∂zµ (eν)λ|z=0 + Γλµδ(eν(z))δ|z=0

= 0,

by definition of the extension of eν and since the Christoffel symbols Γ for the normal coordinates vanish at
z = 0.

Deriving the identities of (B.2) also gives

∂zµ∂zνΨλ(0, 0) = 0,

∂żµ∂żνΨλ(0, 0) = 0.

Using Schwarz theorem, since Ψ is smooth, all second order partial derivatives vanish at (0, 0) and iden-
tity (B.4) follows. This finishes the proof of the lemma.

We define the map Φ : R4 → R4 × R4 by

Φ
(
x0, x1, x2, x3

)
:=

x0 +

√√√√ 3∑
i=1

(xi)
2
, 0, 0, 0

 ,

−
√√√√ 3∑

i=1

(xi)
2
, x1, x2, x3

 ,
and we define the map Θ : R4 → R4 by

Θ := Ψ ◦ Φ.

Remark B.3. In the Minkowskian case, we have

ΘMink = IdR4 .

However, for a general Lorentzian manifold, the map Θ is not smooth at the axis {xi = 0}. See Lemma B.4.

Lemma B.4. The map Θ is a C 1,1 diffeomorphism from a neighbourhood U of 0 ∈ R4 onto a neighbourhood
V of 0 ∈ R4. Moreover Θ is smooth on U \ {xi = 0}. We call (Cartesian) optical normal coordinates the
induced local coordinates (xµ) by Θ in M.

Proof. From the explicit definition of Φ and the smoothness of Ψ obtained in Lemma B.2, the map Θ is
smooth on R4 \ {xi = 0}.

To obtain that Θ is a C 1,1 map at {xi = 0}, and also that dΘ((0, xi)) = IdR4 , it is enough to show that

‖dΘ(x)− IdR4‖ = O


√√√√ 3∑

i=1

(xi)
2

 ,

when
√∑3

i=1 (xi)
2 → 0.

From the chain rule we have

dΘ(x)− IdR4 = dΨ(Φ(x)) · dΦ(x)− IdR4

=
(
dΨ(Φ(x))− dΨ

[(
x0, 0, 0, 0

)
, 0
])
· dΦ(x)

+ dΨ
[(
x0, 0, 0, 0

)
, 0
]
· dΦ(x)− IdR4 .
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B.1. Optical normal coordinates

From properties (B.2) and (B.3) of Lemma B.2, and the explicit expression of Φ, we have

dΨ
[(
x0, 0, 0, 0

)
, 0
]
· dΦ(x) · h

= dΨ
[(
x0, 0, 0, 0

)
, 0
]
·

h0 +

(
3∑
i=1

(xi)2

)−1/2 3∑
j=1

xjhj , 0, 0, 0

 ,

−( 3∑
i=1

(xi)2

)−1/2 3∑
j=1

xjhj , h1, h2, h3


= IdR4 · h.

From the explicit expression of Φ, we have

Φ(x)−
[(
x0, 0, 0, 0

)
, 0
]

= O


√√√√ 3∑

i=1

(xi)2

 ,

‖dΦ(x)‖ = O (1) ,

when
√∑3

i=1(xi)2 → 0. From the smoothness of Ψ, we thus deduce

∥∥(dΨ(Φ(x))− dΨ
[
(x0, 0, 0, 0), 0

])
· dΦ(x)

∥∥ = O


√√√√ 3∑

i=1

(xi)
2

 ,

as desired.

We thus have obtained that Θ is a C 1,1 map, and that dΘ(x) is invertible in a neighbourhood U of 0 ∈ R4

(and more generally of {xi = 0}). The result of the lemma then follows from an application of the local
inverse theorem.

The following lemma is a direct consequence of the definition of Θ.

Lemma B.5. The level sets of the function

x0 +

√√√√ 3∑
i=1

(xi)
2

are the ingoing null cones C emanating from ø. The level sets of the function

x0 −

√√√√ 3∑
i=1

(xi)
2

intersect C at the 2-spheres of the geodesic foliation on C.

Lemma B.6. The coordinate functions x0 + t and xi are independent of the choice of point O = ø(t). In
the following, we redefine x0 := x0 + t.

Proof. Let p =
(
x0

1, x
i
1

)
O(t1)

=
(
x0

2, x
i
2

)
O(t2)

. Since p belongs to the same cone emanating from ø, we have

ø

t1 + x0
1 −

√√√√ 3∑
j=1

(
xj1

)2

 = ø

t2 + x0
2 −

√√√√ 3∑
j=1

(
xj2

)2

 .

By injectivity of the exponential map and since the eµ are independent, we further have

−

√√√√ 3∑
j=1

(
xj1

)2

= −

√√√√ 3∑
j=1

(
xj2

)2

,

xi1 = xi2,

for all i = 1, 2, 3, from which we also infer t1 + x0
1 = t2 + x0

2.
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We define the spherical optical normal coordinates (u, u, ϑ, ϕ) on M, to be

(u, u, ϑ, ϕ) := Ξ−1
(
x0, x1, x2, x3

)
,

where Ξ : Ru × Ru × (0, π)ϑ × (0, 2π)ϕ → R4 is the following spherical-to-Cartesian coordinates map

Ξ(u, u, ϑ, ϕ) :=

(
u+ u

2
,
u− u

2
sinϑ cosϕ,

u− u
2

sinϑ sinϕ,
u− u

2
cosϑ

)
.

B.2 Axis limits for the metric g in optical normal coordinates
Let O ∈ ø. By invariance in t, we shall assume that O = ø(t = 0). In this section, we use the classical normal
coordinates z at O defined in Section B.1 and the change of coordinates Θ from the classical z to the optical
x normal coordinates to derive limits at O for (derivatives of) the optical normal coordinates components of
the metric g (see Lemma B.8). Since it will be shown that the metric and its first derivatives are trivial
at O and therefore everywhere on the axis ø, we will additionally infer strong limits for derivatives of the
metric in the axis direction (see Lemma B.9).

We have the following limits when |x| → 0 for the (u, u, ϑ, ϕ)-derivatives of Θ.

Lemma B.7. We have (
∂ku, ∂

l
u, ∂

m
a

)
Θ ◦ Ξ(u, u, ϑ, ϕ) = O

(
|x||1−k−l|

)
, (B.5)(

∂ku, ∂
l
u, ∂

m
a

)
((dΘ) ◦ Ξ(u, u, ϑ, ϕ)− IdR4) = O

(
|x||2−k−l|

)
(B.6)

when |x| → 0, for all k, l,m ≥ 0, and where here and in the following(
∂ku, ∂

l
u, ∂

m
a

)
denotes all combinations of partial derivatives containing respectively k, l,m-derivatives of u, u and a = ϑ, ϕ.

Proof. We have

Θ(Ξ(u, u, ϑ, ϕ)) = Ψ

[
(u, 0, 0, 0) ,

(
−u− u

2
,
u− u

2
sinϑ cosϕ,

u− u
2

sinϑ sinϕ,
u− u

2
cosϑ

)]
,

and the limits (B.5) follow from Ψ(z, ż) = O(z, ż) and the smoothness of Ψ.

We have

(dΘ(Ξ(u, u, ϑ, ϕ))− IdR4) · (hµ)

= (dΨ(Θ(Ξ(u, u, ϑ, ϕ)))− dΨ(0, 0)) ·
[ (
h0 + sinϑ cosϕh1 + sinϑ sinϕh2 + cosϑh3, 0, 0, 0

)
,(

− sinϑ cosϕh1 − sinϑ sinϕh2 − cosϑh3, hi
) ]
,

and the second limits follow from ‖dΨ(z, ż)− dΨ(0, 0)‖ = O((z, ż)2),
∥∥d2Ψ(z, ż)

∥∥ = O((z, ż)) which are
consequences of Lemma B.2, the smoothness of Ψ, and the previously obtained (B.5). This finishes the proof
of the lemma.

As a consequence of Lemma B.7, we have the following limits for the metric g in the Cartesian optical
normal coordinates.

Lemma B.8. We have (
∂ku, ∂

l
u, ∂

m
a

) (
gµν − ηµν

)
= O

(
|x||2−k−l|

)
, (B.7)

when |x| → 0, for all k, l,m ≥ 0, and where gµν denotes the components of the metric g in the coordinates
xµ.
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Proof. We have the formula

gxµν(x) = gzµ′ν′ (Θ(x)) ∂xµΘµ′∂xνΘν′ ,

which we rewrite as

gxµν(x)− ηµν =
(
gzµν(Θ(x))− ηµν

)
+ gzµ′ν′(Θ(x))

(
∂xµΘµ′ − δµ

′

µ

)
∂xνΘν′

+ gzµ′ν′(Θ(x))∂xµΘµ′
(
∂xνΘν′ − δν

′

ν

)
.

(B.8)

The metric components of the normal coordinates gzµν(z) are smooth and we have

gzµν(z)− ηµν = O(|z|2),

∂zg
z
µν(z) = O(|z|),

∂≥2
z gzµν(z) = O(1),

(B.9)

when z → 0. The proof of (B.7) then follows from formula (B.8) and the limits given by (B.5), (B.6) and
(B.9). This finishes the proof of the lemma.

We have the following stronger limits derivatives along the axis.

Lemma B.9. We have (
∂u + ∂u

)n (
∂ku, ∂

l
u, ∂

m
a

) (
gµν − ηµν

)
= O

(
|x||2−k−l|

)
, (B.10)

when |x| → 0 and for all n ≥ 0 and all k, l,m ≥ 0.

Proof. The lemma follows from the smoothness in (u, u, ϑ, ϕ) and the fact that the limits (B.7) hold uniformly
along the axis {u = u}.

In the following we combine (B.7) and (B.10) into the following equivalent limits(
∂ku,
(
∂u + ∂u

)l
, ∂ma

) (
gµν − ηµν

)
= O

(
|x||2−k|

)
, (B.11)

when |x| → 0 and for all k, l,m ≥ 0.

Since our goal is to obtain vertex limits for the null connection coefficients and rotation vectorfields which
are naturally expressed in terms of the metric components in spherical coordinates, we infer the following
equivalent of (B.11) for the metric in spherical coordinates.

Lemma B.10. We have (
∂ku, (∂u + ∂u)l, ∂ma

) (
gµ̃ν̃ − ηµ̃ν̃

)
= O

(
|x||2−k|

)
, (B.12)

when |x| → 0, for all k, l,m ≥ 0, and where from now on indices µ, ν (resp. a, b) refer to evaluation of
a tensor with respect to the coordinate vectorfields (∂u, ∂u, ∂ϑ, ∂ϕ) (resp. (∂ϑ, ∂ϕ)), whereas tilde indices

µ̃ν̃ (resp. ã, b̃) refer to evaluation with respect to the normalised coordinate vectorfields (∂̃u := ∂u, ∂̃u :=

∂u, ∂̃ϑ := 2
u−u∂ϑ, ∂̃ϕ := 2

u−u∂ϕ) (resp. (∂̃ϑ, ∂̃ϕ)). The tensor η denotes the Minkowski metric, which writes

in (u, u, ϑ, ϕ) coordinates

η = −dudu+

(
u− u

2

)2

dϑ2 +

(
u− u

2

)2

sin2 ϑdϕ2.

We also have (
∂ku, (∂u + ∂u)l, ∂ma

) (
gµ̃ν̃ − ηµ̃ν̃

)
= O

(
|x||2−k|

)
,

where gµ̃ν̃ := (gµ̃ν̃)−1 and also coincides with the renormalisation of (gµν)−1.
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Proof. We have

gµ̃ν̃ = (J1)µ
′

µ gxµ′ν′(J1)ν
′

ν ,

where J1 is the normalised Jacobian matrix of the spherical to Cartesian coordinates change

J1 =


1/2 1/2 0 0

1/2 sinϑ cosϕ −1/2 sinϑ cosϕ cosϑ cosϕ − sinϑ cosϕ
1/2 sinϑ sinϕ −1/2 sinϑ sinϕ cosϑ sinϕ sinϑ cosϕ

1/2 cosϑ −1/2 cosϑ − sinϑ 0


and (B.12) follows from (B.11). The limits for the inverse matrix follows by inverting the same formula.

Corollary B.11. We have (
∂ku, (∂u + ∂u)l, ∂mω

)
(g/ab − η/ab) = O

(
|x||4−k|

)
,

when |x| → 0, and for all k, l,m ≥ 0. As a consequence, we have for the area radius r of Su,u

(
∂ku, (∂u + ∂u)l

)(
r(u, u)− u− u

2

)
= O

(
|x||3−k|

)
. (B.13)

Remark B.12. The limits for the null connection coefficients and the rotation vectorfields are performed in
the coordinate chart (u, u, ϑ, ϕ), in a domain where these chart remains regular, e.g. π/10 < ϑ < 9π/10. By
changing the axis of the spherical coordinates and performing the same computations, one obtains the same
limits in the regions 0 ≤ ϑ ≤ π/10, 9π/10 ≤ ϑ ≤ π.

Lemma B.13. Let F be a k-tensor. We say that F = O (|x|γ) if for all k, l,m ≥ 0, we have∑
(µ1,··· ,µk)∈{u,u,ϑ,ϕ}

∣∣∣(((u− u)∂u)
k
,
(
∂u + ∂u

)l
, ∂ma

)
(Fµ̃1···µ̃k)

∣∣∣ = O (|x|γ) ,

when |x| → 0. With this definition, we have

g − η = O
(
|x|2
)
, (B.14a)

Γ(g)− Γ(η) = O (|x|) , (B.14b)

R = O (1) , (B.14c)

when |x| → 0, where we consider the Christoffel symbols Γ as 3-tensors.

Proof. The limits (B.14a) are direct consequences of (B.12). The limits (B.14b) follow from the definition
of the Christoffel symbols and limits (B.14a). The limits (B.14c) follow from the expression of R in terms of
the (derivatives of) the Christoffel symbols and the limits (B.14b).

Remark B.14. The limits (B.12) are stronger than (B.14) for g. But necessary for Γ(g) and R.

B.3 Axis limits for the null connection coefficients
We recall that the null pair (e3, e4) for the optical normal coordinates is defined by e3 := −Du. By
construction of the optical normal spherical coordinates in Section B.1, the null pair (e3, e4) writes

e3 = 2∂u, e4 = −guν∂ν −
1

2
guu∂u, (B.15)

which we also rewrite as

e4 = 2∂u − (guν − ηuν) ∂ν −
1

2
(guu − ηuu) ∂u. (B.16)

From the above formulas, we deduce the following expressions of the null connection coefficients associated
to the null pair (e3, e4) in terms of gµ̃ν̃ and ∂gµ̃ν̃ .
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Lemma B.15. We have

χ
ab

= − 2

u− u
gab +

1

4
(u− u)2∂u(gãb̃ − ηãb̃),

ζa = ∂aguũ +
1

2
∂u((u− u)gãb̃)−

1

2
(gũũ − ηũũ)

(
∂agũũ +

1

2
∂u((u− u)gãũ)

)
− (u− u)−1(gũb̃ − ηũb̃)

(
1

4
∂u((u− u)2gãb̃)

)
,

y = −1

2

(
gũũ − ηũũ

)
,

χab =
2

u− u
gab +

1

4
(u− u)2∂u

(
gãb̃ − ηãb̃

)
− 1

4
(u− u)gν̃b̃∂a

(
gũν̃ − ηũν̃

)
− 1

4
(u− u)gν̃ã∂b

(
gũν̃ − ηũν̃

)
− 1

8
(gũũ − ηũũ)∂u((u− u)2gãb̃)

− 1

2
(gũũ − ηũũ)

(
1

2
∂a((u− u)gũb̃) +

1

4
∂u((u− u)2gãb̃)−

1

2
∂b((u− u)gãũ)

)
− 1

4
(u− u)(gũc̃ − ηũc̃)

(
∂agc̃b̃ + ∂cgãb̃ − ∂bgãc̃

)
,

together with η = −η = ζ, ω = |ξ| = 0 and ω = − 1
4e3(y), ξ = − 1

2∇/ y.

Proof. Using (B.15), we have

χ
ab

= χ(∂a, ∂b) = g(D∂a2∂u, ∂b) = 2g(D∂u∂a, ∂b) = g(D∂u∂a, ∂b) + g(D∂u∂b, ∂a) = ∂u(gab),

where we used the symmetry of χ. We further have

∂u(gab) = ∂u

((
u− u

2

)2

gãb̃

)
,

and the desired formula follows.

Using (B.15), we have

ζa = g

(
D∂a∂u,−guν∂ν −

1

2
guu∂u

)
= −guνgµνΓµau(g)

= −Γuau(g).

Using that guu = gau = 0, we further have

−Γuau(g) = −1

2
guµ (∂agµu + ∂ugaµ − ∂µgau)

= −1

2
gũũ

(
∂agũũ +

1

2
∂u((u− u)gãũ)

)
− (u− u)−1gũb̃

(
1

4
∂u((u− u)2gãb̃)

)
= ∂aguũ +

1

2
∂u((u− u)gãb̃)−

1

2
(gũũ − ηũũ)

(
∂agũũ +

1

2
∂u((u− u)gãũ)

)
− (u− u)−1(gũb̃ − ηũb̃)

(
1

4
∂u((u− u)2gãb̃)

)
,
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as desired.

By definition of y, we have

y = −1

2
gµν∂µu∂νu = −1

2
guu = −1

2
(gũũ − ηũũ),

as desired.

Using (B.15) and (B.16), we have

χab = 2g(D∂a∂u, ∂b) + g

(
D∂a

(
−(guν − ηuν)∂ν −

1

2
(guu − ηuu) ∂u

)
, ∂b

)
= 2g(D∂a∂u, ∂b)− gνb∂a ((g − η)uν)− gµb(g

uν − ηuν)Γµaν(g)− 1

4
(guu − ηuu)χ

ab
,

which by symmetrising in a, b gives

χab = g(D∂a∂u, ∂b) + g(D∂b∂u, ∂a)

− 1

2
gνb∂a ((g − η)uν)− 1

2
gνa∂b ((g − η)uν)

− 1

2
gµb(g

uν − ηuν)Γµaν(g)− 1

2
gµa(guν − ηuν)Γµbν(g)

− 1

4
(guu − ηuu)χ

ab
.

We further have

∂u(gab) =
2

u− u
gab +

1

4
(u− u)2∂u(gãb̃ − ηãb̃),

−1

2
gνb∂a ((g − η)uν) = −1

4
(u− u)gν̃b̃∂a

(
gũν̃ − ηũν̃

)
,

−1

2
gµb(g

uν − ηuν)Γµaν(g) = −1

4
(guν − ηuν) (∂agνb + ∂νgab − ∂bgaν)

= −1

4
(gũũ − ηũũ)∂u(gab)

− 1

4
(gũũ − ηũũ)

(
1

2
∂a((u− u)gũb̃) +

1

4
∂u((u− u)2gãb̃)−

1

2
∂b((u− u)gãũ)

)
− 1

8
(u− u)(gũc̃ − ηũc̃)

(
∂agc̃b̃ + ∂cgãb̃ − ∂bgãc̃

)
,

and by symmetrising in a, b, the desired formula follows. This finishes the proof of the lemma.

The following lemma directly follows from the limits from Lemma B.10 and from the formulas from
Lemma B.15.

Lemma B.16. We have

χ+
2

u− u
g/, ζ, χ− 2

u− u
g/ = O (|x|) ,

y = O
(
|x|2
)
,

(B.17)

when |x| → 0.

Lemma B.17. Let F be an Su,u-tangent tensor such that

F = O(|x|γ),

when |x| → 0. Then, the following limits hold∣∣∣((u− u)∇/ 3)
k
, (∇/ 3 +∇/ 4)

l
, ((u− u)∇/ )

m
F
∣∣∣ = O(|x|γ),

when |x| → 0 and for all k, l,m ≥ 0.
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Proof. We have the following formulas relating covariant to partial derivatives

∇/ aFb = ∂a (Fb)− Γcab(g/)Fc,

(u− u)∇/ 3Fa = 2(u− u)∂u (Fa)− (u− u)χb
a
Fb,

(∇/ 3 +∇/ 4)Fa = 2(∂u + ∂u)(Fa)− (χ+ χ)baFb

− (guν − ηuν) ∂ν (Fa)− 1

2

(
gũũ − ηũũ

)
∂u (Fa) .

Using (B.14), (B.17), we obtain that

(u− u)∇/ F, (u− u)∇/ 3F, (∇/ 3 +∇/ 4)F = O(|x|γ),

when |x| → 0, and the result follows by iteration.

From the limits (B.17) and Lemma B.17, we deduce the following lemma.

Lemma B.18. We have∣∣∣∣((u− u)∇/ 3)
k
, (∇/ 3 +∇/ 4)

l
, ((u− u)∇/ )

m

(
χ+

2

u− u
g/, ζ, χ− 2

u− u
g/

)∣∣∣∣ = O (|x|) ,∣∣∣((u− u)∇/ 3)
k
, (∇/ 3 +∇/ 4)

l
, ((u− u)∇/ )

m
y
∣∣∣ = O

(
|x|2
)
,

(B.18)

and ∣∣∣((u− u)∇/ 3)
k
, (∇/ 3 +∇/ 4)

l
, ((u− u)∇/ )

m
(ω, ξ)

∣∣∣ = O (|x|) , (B.19)

when |x| → 0, and for all k, l,m ≥ 0.

Proof. The limits (B.18) follow directly from (B.17) and Lemma B.17. The limits (B.19) are obtained from
the limits for y and the relations of Lemma B.15.

We also have the following limits for the null decomposition of the spacetime curvature tensor.

Lemma B.19. We have∣∣∣(((u− u)∇/ 3)
k
, (∇/ 3 +∇/ 4)

l
, ((u− u)∇/ )m

) (
α, β, ρ, σ, β, α

)∣∣∣ = O (1) , (B.20)

when |x| → 0, for all k, l,m ≥ 0.

Proof. By definition of the null decomposition of R and using the expressions (B.15) for e4, e3 in terms of
the coordinate vectorfields, we have

αab = R(e4, ∂a, e4, ∂b)

= guνguν
′
Rνaν′b +

1

2
guνRνaub +

1

2
guν

′
Ruaν′b +

1

4
guuRuaub.

We therefore deduce from the limits (B.14) for g and R that

α = O(1),

and using the result of Lemma B.17 the result follows. The other components of the null decomposition of
R are treated similarly.

Remark B.20. Using (B.13), one can replace (u− u)/2 by the area radius r of the 2-spheres Su,u in the
limits (B.18), (B.19) and (B.20).
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C. The canonical foliation
In this section we provide a proof Theorem 4.5, which goes along the same lines as the local existence result
for the canonical foliation in [CG19a, Section 6]. We only resketch the argument, pointing out the slight
modifications which are due to the difference of definition and to the vertex setting.

By translation invariance, we assume that u∗ = 0 and we note zµ the normal coordinates at ø(0) such that
zµ|ø(0) = 0 for all µ = 0, 1, 2, 3 and ∂z0 = ø̇(0). The normal coordinates are well defined in a coordinate ball
of radius ε > 0 and for all fixed integer k ≥ 5, we have∣∣∂≤k+1

(
gµν − ηµν

)∣∣ . 1. (C.1)

We denote by s := z0 −
√∑3

i=1(zi)2 the geodesic affine parameter on C∗ = {z0 +
√∑3

i=1(zi)2 = 0} and by

(e3
′, e4

′) its associated null pair (such that e3
′(s) = 2).

Our goal is to obtain a function (u, ω) ∈ [0, δ]× S2 7→ (s(u, ω), ω) ∈ C∗ such that {s = s(u)} defines the level
sets of the canonical foliation of Theorem 4.5 on C∗ (see the detailed geometric set up of [CG19a, Section 6]).

For u a function on C∗, we define the null lapse Ω as

Ω−1 := ∂su =
1

2
e3
′(u),

Assume that u defines a regular foliation on C∗ and let (λ, f, f) be the transition coefficients between the
null frames (e3, e4) and (e3

′, e4
′) as defined in Section 2.15. From the relations of Lemma 2.31, we have

λ = Ω, f = −Ω−1∇/ s, f = 0, (C.2)

where we recall that λ, f, f are Su-tangent tensors. From a simple exact recomputation of the relations of
Proposition 2.35, we have

ζa =
1

2
g(Deae4, e3)

=
1

2
Ωg(Dea(Ω−1e4

′ − f − 1

4
|f |2e3), e3

′)

= ζ ′a − Ωea(Ω−1)− 1

2
Ωg(Deaf, e3

′)

= (ζ ′)†a +∇/ a(log Ω) +
1

2
f · χ,

(C.3)

and

ω = −2e3(log Ω). (C.4)

Thus, we rewrite equations

div/ ζ + ρ = ρ, ω = 0,

defining the canonical foliation as

4/ (log Ω) = −div/ (ζ ′)† + (ρ− ρ)− 1

2
∇/ f · χ,∫

Su

∂u(log Ω) = 0.
(C.5)

Using relations (C.2) and the relations of Proposition 2.34, we further rewrite the first equation of (C.5) as
(see also [CG19a, Section 5])

4/ g/ (s)(log Ω) = F
(
s,∇/ s,∇/ 2s

)
,
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with

F (s,∇/ s,∇/ 2s) = F1(s) + F2(s) · ∇/ s+ F3(s) · ∇/ s · ∇/ s+ F4(s) · ∇/ 2s,

for which using (C.1), we claim that

|(s∇/ )≤kF1(s)| . 1,
∣∣(s∇/ )≤kF2(s)

∣∣ . s−2,∣∣(s∇/ )≤kF3(s)
∣∣ . s−4,

∣∣(s∇/ )≤kF4(s)
∣∣ . s−1.

(C.6)

Using the initial conditions (4.10) for the canonical foliation, and the definition of the geodesic foliation s,
we have the initial conditions at the vertex ø(0)

Ω = 1, s = u = 0.

Thus using additionally (2.39), equations (C.5) finally rewrite as the following system of quasilinear elliptic-
transport equations

s =

∫ u

0

Ω du′,

4/ g/ (s)(log Ω) = F
(
s,∇/ s,∇/ 2s

)
,

log Ω(u) =

∫ u

0

(trχ− trχ) log Ω(u′), du′.

(C.7)

To prove local existence for this system, we apply a Banach-Picard fixed point argument as in [CG19a] by
defining similarly

s0 = u, Ω0 = 1,

and the iteration

sn+1 :=

∫ u

0

Ωn du′,

4/ n+1(log Ωn+1) := F (sn+1,∇/ sn+1,∇/ 2sn+1),

log Ωn+1 :=

∫ u

0

(trχ
n
− trχ

n
) log Ωn(u′), du′.

We leave to the reader to check that for δ > 0 sufficiently small, using the bounds (C.6), the following
boundedness holds (see the argument for non-weighted norms in [CG19a, Section 6])

∀u ∈ (0, δ), 0 < sn < ε,

and ∥∥u−4(u∇/ )≤k(sn − u)
∥∥
L∞u ([0,δ])L2(Su)

+
∥∥u−3(u∇/ )≤k log Ωn

∥∥
L∞u ([0,δ])L2(Su)

. 1,

and the following contraction holds∥∥u−4(u∇/ )≤k(sn+1 − sn)
∥∥
L∞u ([0,δ])L2(Su)

+
∥∥u−3(u∇/ )≤k(log Ωn+1 − log Ωn)

∥∥
L∞u ([0,δ])L2(Su)

≤ κ
(∥∥u−4(u∇/ )≤k(sn − sn−1)

∥∥
L∞u ([0,δ])L2(Su)

+
∥∥u−3(u∇/ )≤k(log Ωn − log Ωn−1)

∥∥
L∞u ([0,δ])L2(Su)

)
,

with κ < 1. The limit defines the desired canonical foliation, and moreover we have∥∥u−4(u∇/ )≤k(s− u)
∥∥
L∞u ([0,δ])L2(Su)

+
∥∥u−3(u∇/ )≤k log Ω

∥∥
L∞u ([0,δ])L2(Su)

<∞. (C.8)

For all k ≥ 5, estimates (C.8) holds true at the vertex, and thus from Sobolev embeddings we deduce that∣∣(u∇/ )ks
∣∣ = O(u3),

∣∣(u∇/ )k log Ω
∣∣ = O(u2),

when u→ 0 and for all k ≥ 0. Commuting equation (C.7) by ∇/ 3, one can further obtain∣∣(u∇/ )≤k(u∇/ 3)ls
∣∣ = O(u3),

∣∣(u∇/ )≤k(u∇/ 3)l log Ω
∣∣ = O(u2), (C.9)

for all k, l ≥ 0. Using the relations of Lemma 2.35 between null connection coefficients, relations (C.2) and
the limits (C.9), we deduce that the limits of Theorem 4.4 also hold for the null connection coefficients of
the canonical foliation. The spherical coordinates (s, ϑ, ϕ) for the geodesic foliation from Theorem 4.4 also
generate spherical coordinates (u, ϑ, ϕ) for the canonical foliation. Moreover, since the coordinate vectorfields
for ϑ, ϕ only differ by null vectors, we have g/

′
ab = g/ab, where a, b ∈ {ϑ, ϕ}. Thus the limits for the induced

metric from Theorem 4.4 also holds for the canonical foliation. This finishes the proof of Theorem 4.5.
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D. Klainerman-Sobolev estimates
This section is dedicated to the proof of the Klainerman-Sobolev H̃1/2 estimates of Lemmas 6.6, 6.7, 8.4
and 9.6. In all cases we only treat the degenerate versions involving respectively u and q weights. The
non-degenerate cases follow similarly, or by rescaling of standard H1 to H1/2 trace estimate.

We first prove the following Klainerman-Sobolev H1/2 estimates in the Euclidean case. The proofs of
Lemmas 6.6, 6.7, 8.4 and 9.6 are deduced from Lemma D.1 at the end of this section.

Lemma D.1 (Euclidean Klainerman-Sobolev H1/2 estimate). Let Sr denote the Euclidean sphere of radius
r, and let H̃1/2(Sr) denote the scaling homogeneous fractional Sobolev space on Sr, Euclidean analogous to
the definition of H̃1/2 from Definition 3.3. Let q(r) be a scalar function of r such that |q| . r and |∂rq| . 1.
For all r, r′ > 0 and for all scalar function f , we have∥∥∥r1/2

2 q(r2)1/2f
∥∥∥
H̃1/2(Sr2 )

.
∥∥∥(r1)1/2q(r1)1/2f

∥∥∥
H̃1/2(Sr1 )

+ ‖q(r)∂rf‖L2(Ar1,r2 ) +
∥∥(r∇/ )≤1f

∥∥
L2(Ar1,r2 )

,

where Ar1,r2 denotes the annulus region comprised between Sr1 and Sr2 .

Proof. For simplicity, we use the following characterisation of the fractional Sobolev space H̃1/2(Sr)(
r−1/2 ‖f‖H̃1/2(Sr)

)2

'
∫ ∣∣∣(Id−4/ ϑ,ϕ)1/4f

∣∣∣2 dϑdϕ. (D.1)

Deriving (D.1) in r and integrating from r1 to r2, we infer(
r
−1/2
2

∥∥∥r2q(r2)1/2f
∥∥∥
H̃1/2(Sr2 )

)2

.

(
(r1)−1/2

∥∥∥r1q(r1)1/2f
∥∥∥
H̃1/2(Sr1 )

)2

+

∣∣∣∣∫ r2

r1

∫
(Id−4/ ϑ,ϕ)1/4(rq1/2f)(Id−4/ ϑ,ϕ)1/4(∂r(rq

1/2f)) drdϑdϕ

∣∣∣∣ .
Using the assumptions |q| . r and |∂rq| . 1, integrating by part and using Cauchy-Schwartz, we have∣∣∣∣∫ r2

r1

∫ ∣∣∣(Id−4/ ϑ,ϕ)1/4f
∣∣∣2 (rq1/2∂r(rq

1/2)) drdϑdϕ

∣∣∣∣
.

∣∣∣∣∫ r2

r1

∫ ∣∣∣(Id−4/ ϑ,ϕ)1/4f
∣∣∣2 r2 drdϑdϕ

∣∣∣∣
.
∥∥(r∇/ )≤1f

∥∥
L2(Ar1,r2 )

‖f‖L2(Ar1,r2 ) .

Integrating by part and applying Cauchy-Schwartz, we also have∣∣∣∣∫ r2

r1

∫
(Id−4/ ϑ,ϕ)1/4(rq1/2f)(Id−4/ ϑ,ϕ)1/4(rq1/2∂rf) drdϑdϕ

∣∣∣∣
.

∣∣∣∣∫ r2

r1

∫ (
(Id−4/ ϑ,ϕ)1/2f

)
(q∂rf)r2 drdϑdϕ

∣∣∣∣
.
∥∥(r∇/ )≤1f

∥∥
L2(Ar1,r2 )

‖q∂rf‖L2(Ar1,r2 ) .

Combining the above estimates finishes the proof of the lemma.

Proof of Lemma 6.7. Let F be an S-tangent 1-tensor in Mext. Using the comparison between fractional
Sobolev spaces of Lemma 3.35, we have for all 2-spheres Su,u ⊂ Σext

t∥∥∥u1/2u1/2F
∥∥∥
H̃1/2(Su,u)

'
∑
(ϑ,ϕ)

∑
a∈{ϑ,ϕ}

∥∥∥ru1/2(r−1F )a

∥∥∥
H

1/2
ϑ,ϕ

'
∑

a∈{ϑ,ϕ}

∥∥∥r1/2q(r)1/2(r−1F )a

∥∥∥
H̃1/2(Sr=(u−u)/2)

,

where here q(r) = u. Using the Klainerman-Sobolev Euclidean estimates of Lemma D.1 between the 2-spheres
Su,u and Su+u−u∗,u∗ in coordinates, we thus infer∥∥∥u1/2u1/2F

∥∥∥
H̃1/2(Su,u)

.
∥∥∥u∗1/2u1/2F

∥∥∥
H̃1/2(Su+u−u∗,u∗ )

+
∑
a∈ϑ,ϕ

(∥∥u(∂u − ∂u)(r−1Fa)
∥∥
L2(Σext

t )
+
∥∥(r∇/ )≤1(r−1Fa)

∥∥
L2(Σext

t )

)
.

(D.2)
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We have ∂u − ∂u = 1
2 (1 + 1

2y)e4 − 1
2e3. Therefore, using the bootstrap bound |y| . Dε, we infer

|(∂u − ∂u)(Fa)| . |∇/ 4Fa|+ |∇/ 3Fa|+ |F · χa|+ |F · χa|

. r
(
|∇/ 4F |+ |∇/ 3F |+ r−1|F |

)
.

(D.3)

Similarly, we have

|(r∇/ )(Fa)| . |(r∇/ )Fa|+ |F · Γa|,

where Γ are the Christoffel symbols for the metric g/ in coordinates ϑ, ϕ. Using the Bootstrap Assumptions 3.26,
we have |Γ| . 1, thus

|(r∇/ )(Fa)| . r|(r∇/ )≤1F |. (D.4)

Combining (D.2), (D.3) and (D.4), and that r−1u . 1 in Mext, this concludes the proof of Lemma 6.7.

Proof of Lemmas 8.4 and 9.6. Arguing similarly as in the proof of Lemma 6.7, we obtain for all 2-spheres
Su1,u∗ and Su2,u∗ of C∗∥∥∥r1/2q1/2F

∥∥∥
H̃1/2(Su2,u∗ )

.
∥∥∥r1/2q1/2F

∥∥∥
H̃1/2(Su1,u∗ )

+
∥∥r−1qF

∥∥
L2(C∗)

+ ‖(r∇/ )F‖L2(C∗) + ‖q∇/ 3F‖L2(C∗) ,
(D.5)

for q = min(u, r). Using the estimates of Lemma 3.36 we have∥∥∥r1/2q1/2F
∥∥∥
H̃1/2(Su1,u∗ )

. r−1/2
∥∥∥r1/2q1/2(r∇/ )≤1F

∥∥∥
L2(Su1,u∗ )

. rq1/2
∥∥(r∇/ )≤1F

∥∥
L∞(Su1,u∗ )

,

which by assumption tends to 0 when u1 → u∗. Passing to the limit in (D.5), using additionally that
r−1q . 1 on C∗, this finishes the proof of Lemma 9.6. The proof of Lemma 8.4 is obtained along the same
lines, restricting the argument to the top region C∗ ∩Mint

bot.

Proof of Lemma 6.6. Arguing as in the proof of Lemma 6.7, we obtain for all 2-spheres Su1,u∗ and Su2,u∗ of
C∗ ∩Mext ∥∥∥r1/2u1/2F

∥∥∥
H̃1/2(Su2,u∗ )

.
∥∥∥r1/2u1/2F

∥∥∥
H̃1/2(Su1,u∗ )

+
∥∥r−1uF

∥∥
L2(C∗∩Mext)

+ ‖(r∇/ )F‖L2(C∗∩Mext) + ‖u∇/ 3F‖L2(C∗∩Mext) ,
(D.6)

for all S-tangent tensor F .

Let φ : [0, 1] → [0, 1] be a standard cut-off function such that φ|[0,1/4] = 0 and φ|[3/4,1] = 1 and let

φ̃(u) := φ
(

u−1
τu∗−1

)
. Applying (D.6) to F̃ , where F̃ := φ̃F , with u2 = τu∗ and u1 = 1, we obtain∥∥∥r1/2u1/2F

∥∥∥
H̃1/2(Sτu∗,u∗ )

.
∥∥r−1uF

∥∥
L2(C∗∩Mext)

+ ‖(r∇/ )F‖L2(C∗∩Mext) + ‖u∇/ 3F‖L2(C∗∩Mext) (D.7)

where we used that |φ̃| . 1 and |u∇/ 3φ̃| . 1.1 Using (D.6) with u2 = u and u1 = τu∗ and using (D.7), we
obtain the desired result. This finishes the proof of Lemma 6.6.

1The same argument holds for the non-degenerate estimate since we also have |r∇/ 3φ̃| . 1.

386



Bibliography
[ADM62] R. Arnowitt, S. Deser, C. W. Misner, The Dynamics of General Relativity, Gravitation: an

introduction to current research 7 (1962), 227–264.

[AF08] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, number 140 in Pure and Applied Mathematics,
Acad. Press, Amsterdam, 2. ed., reprinted edition (2008).

[AL17] X. An, J. Luk, Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv.
Theor. Math. Phys. 21 (2017), no. 1, 1–120.

[AS14] S. Alexakis, A. Shao, On the geometry of null cones to infinity under curvature flux bounds, Class.
Quantum Grav. 31 (2014), no. 19, 62 pp.

[AS16] S. Alexakis, A. Shao, Bounds on the Bondi energy by a flux of curvature, J. Eur. Math. Soc. 18
(2016), no. 9, 2045–2106.

[Bar84] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys. 94
(1984), no. 2, 155–175.

[Bar86] R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 39 (1986),
no. 5, 661–693.

[Bie10] L. Bieri, An extension of the stability theorem of the Minkowski space in general relativity, J.
Differential Geom. 86 (2010), no. 1, 17–70.

[BL23] G. D. Birkhoff, R. E. Langer, Relativity and modern physics, Harvard University Press (1923).

[BZ09] L. Bieri, N. Zipser, Extensions of the stability theorem of the Minkowski space in general relativity,
Am. Math. Soc. 45 (2009), xxiv+491 pp.
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[KN99] S. Klainerman, F. Nicolò, On local and global aspects of the Cauchy problem in general relativity,
Class. Quantum Grav. 16 (1999), no. 8, R73–R157.
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Le problème d’évolution en relativité générale

Résumé

Cette thèse est consacrée à l’étude du problème de Cauchy pour les équations d’Einstein dans le vide de la relativité
générale. On s’intéresse plus particulièrement à l’étude locale et globale en temps des solutions pour des données
initiales prescrites sur une hypersurface de genre espace et une hypersurface de genre lumière/caractéristique. Nous
obtenons pour ce problème de Cauchy spatial-caractéristique une généralisation du théorème de courbure L2 de
Klainerman-Rodnianski-Szeftel. Nous obtenons également une généralisation du théorème de la stabilité asymptotique
non-linéaire de l’espace-temps de Minkowski de Christodoulou-Klainerman. Le point commun entre ces deux
généralisations est l’introduction de nouveaux choix de jauges, consistant en des feuilletages de l’espace-temps adaptés
au problème de Cauchy spatial-caractéristique. Ceux-ci permettent de localiser et d’appliquer (en bôıte noire ou à
quelques modifications près) les théorèmes originaux correspondant à nos résultats. En particulier, nous introduisons
ou généralisons l’étude de feuilletages par des cônes de lumière à sommets ou sections sphériques prescrits, par des
hypersurfaces spatiales maximales à bord prescrits, ainsi que l’étude de coordonnées (canoniques, géodésiques ou
harmoniques) sur ces hypersurfaces. Ces choix de jauge et l’analyse des équations d’Einstein sous ces conditions
constituent le point central de cette thèse.

Mots clés: Relativité générale, problème de Cauchy, espace de Minkowski, faible régularité, stabilité asymptotique,
hypersurfaces maximales et caractéristiques.

The evolution problem in general relativity

Abstract

This thesis is devoted to study the Cauchy problem for Einstein vacuum equations of general relativity. More
precisely, we investigate local and global existence of solutions when initial data are prescribed on a spacelike and on
a characteristic/null hypersurface. For this spacelike-characteristic Cauchy problem, we obtain a generalisation of
the bounded L2 curvature theorem of Klainerman-Rodnianski-Szeftel. We also obtain a generalisation of the global
nonlinear stability of Minkowski space of Christodoulou-Klainerman. The common feature to these two generalisations
is the introduction of new gauge choices which consist in spacetime foliations adapted to the spacelike-characteristic
setting. This enables to apply (as a black box or up to some modification) the original theorems corresponding to
our results. In particular, we introduce or generalise the study of foliations by null cones with prescribed vertices or
prescribed spherical sections, maximal spacelike hypersurfaces with prescribed boundaries, as well as the study of
coordinates (canonical, geodesic or harmonic) on these hypersurfaces. These gauge choices and the analysis of the
Einstein equations under these conditions are the centre of this thesis.

Keywords: General relativity, Cauchy problem, Minkowski space, low regularity, asymptotic stability, maximal and
characteristic hypersurfaces.
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