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Présentation

Cette thèse a été réalisée dans le cadre d'une Convention Industrielle de Formation par la REcherche (CIFRE). Le travail présenté dans ce manuscrit est issu d'une collaboration entre le CEREMADE de l'Université Paris Dauphine (UMR 7534) et la société Citrix, spécialisée dans l'optimisation du traffic Internet. Dans ces travaux, nous nous intéressons à la problématique de l'aiguillage automatique des utilisateurs dans le Réseau Internet dans un cadre de modélisation de la latence. Cette durée, qui mesure le temps nécessaire à la transmission d'informations dans le Réseau Internet, est au centre de ce manuscrit.

Problématique

Avant de présenter les résultats de cette thèse, une présentation de l'activité de la société Citrix s'impose. Le réseau Internet se compose d'ordinateurs interconnectés capables d'échanger de l'information à distance. En première approximation, le réseau Internet a la structure d'un graphe G = (V, E). Chaque noeud x ∈ V représente un ordinateur, et chaque arrête e ∈ E, e = (u, v) ∈ V 2 , u = v, représente une connection possible entre les ordinateurs u et v, c'est à dire qu'un échange d'information est possible entre ces deux machines, appelés plus généralement serveurs.

Le contenu d'un site Internet est stocké physiquement sur un serveur, dit Origine, lequel est mis à disposition des autres utilisateurs. À cause de contraintes physiques que nous ne détaillerons pas dans ce manuscrit, la quantité maximale d'information qu'un serveur donné peut débiter par unité de temps, appelée bande passante, est finie. Ainsi, pour un serveur donné à un instant donné, la bande passante doit être partagée entre les différents utilisateurs connectés à ce serveur. Cela signifie que plus le traffic augmente sur le serveur, plus la fraction de bande passante par utilisateur diminue: le temps que chaque utilisateur doit patienter pour obtenir les ressources du site, comme le corps du texte ou les images par exemple, augmente. Au delà d'un certain nombre d'utilisateurs connectés simultanément, le serveur devient indisponible et cesse de fonctionner, on Chapter 1. Introduction 6 parle de défaillance ou de déni de service [START_REF] Banga | Measuring the capacity of a web server under realistic loads[END_REF].

Une solution pour éviter le déni de service consiste à recopier le contenu de l'Origine sur d'autres serveurs afin de réduire le nombre de connexions par serveur pour augmenter la bande passante par utilisateur. Cette opération peut s'effectuer de deux manières : soit en construisant une infrastructure capable de supporter le traffic, soit en louant cette infrastructure à un tiers. La première option pose des difficultés pratiques de par son coût et son manque de flexibilité. En effet, si un site Web voit son traffic diminuer, une partie de son infrastructure devient inutile et donc une partie de l'investissement est perdue. Au contraire, si l'affluence du site augmente, il faut agrandir en conséquence l'infrastructure existante, c'est à dire le parc de serveurs, opération généralement complexe et coûteuse. Si une partie de l'audience est délocalisée dans un autre pays par exemple, y construire une infrastructure pose également des difficultés légales, d'organisation et de gestion: on parle de manque de scalabilité. Par conséquent, une grande partie des sites Web sont hébergés sur des serveurs loués à des tiers, appelés CDN pour Content Delivery Network, littéralement réseau de distribution de contenu. Un CDN est une entreprise qui propose à la location des serveurs pour héberger du contenu. Un site Web qui ne souhaite pas bâtir son infrastructure peut avoir recours à un CDN afin de dupliquer le contenu de son Origine. Dans ce cas, le site Web loue un sous-ensemble de serveurs au CDN. Chaque serveur loué est appelé serveur Edge, et l'ensemble des serveurs Edge est appelé Map. Le site Web n'est pas totalement libre dans le choix des serveurs Edge qu'il loue, notamment en ce qui concerne leurs nombres et leurs localisations géographiques. En effet, pour des raisons 1.2. Problématique d'efficacité et de simplicité, le CDN propose à ses clients des maps pré-définies. Les différentes maps proposées par un CDN peuvent correspondre à différentes couvertures géographiques ou différents niveaux de prestation. Il existe aujourd'hui dans le monde des dizaines de CDN différents, proposant chacun des dizaines de maps différentes. Le nombre de maps proposées par un CDN étant fini, deux clients peuvent souscrire à la même map M sur un CDN C donné. Il est naturel de penser que des mesures de latence effectuées chez ces deux clients doivent avoir la même distribution. La latence est l'observable qui détermine la performance d'un réseau Internet, voir définition 1.

Definition 1. Soient x, y ∈ V tel que (x, y) ∈ E sont deux serveurs distincts connectés au réseau Internet. La latence de x vers y, notée L(x, y), est une grandeur exprimée en milli-secondes (ms) et définie comme le temps écoulé entre l'envoi du premier bit d'information d'une requête émise par x à destination de y, et la reception du premier bit d'information de la réponse envoyée par y à destination de x.

Remark 1. La latence L n'est pas symétrique: pour deux serveurs x, y, en général L(x, y) = L(y, x).

Remark 2. La latence est parfois définie comme le temps écoulé entre l'envoi du premier bit d'information d'une requête et la reception de ce bit d'information par la destination.

Dans les faits, les distributions des mesures de latence pour deux clients souscrivant à la même map M du CDN C peuvent être différentes. En effet, les CDN n'allouent pas exactement les mêmes serveurs aux clients ayant souscrits à la map M . La raison s'explique par la nature dynamique de la duplication des ressources au sein d'un CDN. Chaque ressource constitutive du site est stockée sur l'Origine. Le CDN effectue des copies de l'Origine sur différents serveurs de la map, mais cette cette copie est limitée dans le temps. Chaque ressource dupliquée possède un Time To Live, ou TTL. Le TTL est une durée généralement exprimée en secondes. Si une ressource sur un serveur du CDN n'est pas demandée pendant un laps de temps supérieur au TTL, la ressource est écrasée pour optimiser l'espace de stockage. Dès qu'un utilisateur a besoin de cette resource, le serveur doit la re-télécharger depuis l'Origine avant de la restituer à l'utilisateur. La ressource restera alors disponible pendant la durée de son TTL, puis sera de nouveau écrasée, et ainsi de suite: on parle de mise en cache temporaire. Ainsi, l'ensemble des serveurs constitutifs d'une map qui hébergent le contenu d'une page Web fluctue au cours du temps. On comprend dès lors que le terme map ne désigne pas fondamentalement un ensemble figé de serveurs, mais correspond à la garantie d'un certain niveau de prestation. Par exemple, une map premium pourra garantir un TTL plus long, et une mise en cache sur un plus grand nombre de serveurs, par exemple. Le CDN est libre d'organiser la copie et la distribution des ressources comme il le souhaite tant qu'il garantit ce niveau de prestation.

Le CDN met à disposition de son client une map afin de copier le contenu de son Origine pour réduire la charge de trafic, mais chaque utilisateur n'a besoin que d'un seul serveur pour télécharger le contenu: il est donc nécessaire de désigner un serveur spécifique pour fournir le contenu à l'utilisateur. Ce processus est appelé load-balacing, littéralement le partage de charge. On parle de routage ou d'aiguillage en français. De façon générale, le load-balacing désigne l'action de répartir les utilisateurs d'un réseau sur ses serveurs constitutifs. Cette répartition peut se faire de manière déterministe (par exemple en envoyant l'utilisateur sur le serveur géographiquement le plus proche) ou stochastique (par exemple en envoyant l'utilisateur sur un serveur sélectionné aléatoirement dans la map). Lorsqu'un utilisateur d'un site Web qui héberge son contenu sur un CDN requête le contenu d'une page Internet, le load-balacing est effectué par le CDN lui-même.

Un CDN se différencie de ses concurrents notamment grâce à l'efficacité de ses algorithmes de load-balacing. Ces derniers sont donc tenus secrets. À notre niveau, il s'agit donc d'une boîte noire à laquelle nous n'avons pas accès.

La seule chose que le client décide est la portion de son traffic qu'il fait transiter par le CDN. Beaucoup de sites Web devant gérer un grand traffic ont recours à plusieurs CDN: on parle d'architecture multi-CDN. Il existe trois raisons principales de recourir à une architecture multi-CDN: limiter le risque d'indisponibilité du site en reportant le traffic d'un CDN en panne sur l'autre, exploiter les spécificités de chaque CDN, et augmenter la couverture géographique. Dans ce cas, se pose la question de la répartition du traffic sur les différents CDN. Autrement dit, un client ayant opté pour une infrastructure multi-CDN a besoin de mettre en place un algorithme de load-balacing pour répartir optimalement son audience entre ses différents CDN. Citrix est une société spécialisée précisément dans cette activité de load-balacing sur les architectures multi-CDN, on parle alors de load-balancer.

Afin d'effectuer ce load-balacing, Citrix doit être en mesure de comparer K ∈ N CDN. Sans perte de généralités, nous nous limiterons dans cette discussion à K = 2, dans la mesure où, comme nous le verrons, le critère de comparaison des CDN est transitif: si le CDN A est meilleur que B, et B est meilleur que C, alors A est meilleur que C. Le critère de performance sur lequel nous nous attarderons jusqu'à la fin de ce manuscrit est la latence.

Nous décrivons maintenant comment Citrix procède pour évaluer la latence des différents CDN. Citrix loue aux différents CDN présents sur le marché des centaines de maps correspondant à leurs différentes offres commerciales: haute performance, entrée de gamme, map spécialisée pour le contenu vidéo, etc. Citrix déploie sur chacune de ces maps un unique objet, appelé objet test. Ces maps sont dites Publiques. Lorsqu'un utilisateur est connecté au site d'un client de Citrix, plusieurs maps Publiques sont sélectionnées aléatoirement et l'objet test qu'elles hébergent est téléchargé afin d'effectuer des mesures de latence. Ces mesures s'effectuent uniquement lorsque toutes les ressources de la page consultée par l'utilisateur sont téléchargées afin de ne pas interférer avec le chargement de la page elle-même. Citrix collecte alors ces mesures ainsi que des informations relatives à la géolocalisation de l'utilisateur et son fournisseur d'accès à Internet. De part le grand nombre de clients répartis dans le monde, Citrix peut alors mesurer en temps réel la latence des différentes maps des CDN en chaque point du globe et pour chaque fournisseur d'accès à Internet. Les maps Publiques sont ainsi nommées car tout utilisateur d'un site de tout client de Citrix peut faire une mesure sur une map Publique.

Les maps Publiques se différencient des maps Privées qui correspondent aux maps souscrites par les clients de Citrix aux CDN. Avec l'accord du client, Citrix déploie l'objet test sur les maps Privées de ses clients pour effectuer des tests de latence selon un protocole identique aux mesures effectuées sur les maps Publiques. Comme les maps Privées sont la propriété du client, seuls les visiteurs du site du client en question peuvent faire ces mesures. Elles sont dites Privées pour cette raison: un utilisateur du site A ne peut pas faire une mesure de latence du site B sans l'accord de ce dernier. On parle de mesures Publiques (resp. Privées) lorsque l'objet test est hébergé sur une map Publique (resp. Privée). Voir Table 1 d'un client possédant une infrastructure multi-CDN, Citrix identifie les maps Privées du client souscrites chez les différents CDN, dits en compétition, et utilise préférentiellement les mesures Privées effectuées sur ces maps par les autres utilisateurs du site. À l'aide de ces mesures, une prediction du CDN le plus rapide parmi ceux en compétition est effectuée. Le CDN sélectionné est celui avec la plus petite latence prédite. Dans certain cas, le site en question ne fournit pas assez de mesures, et Citrix utilise alors les mesures Publiques pour effectuer la prédiction.

Ces mesures Publiques agissent comme un proxy pour les mesures Privées du client. Lorsque l'utilisateur a chargé sa page, il peut alors commencer les tests de latence mentionnés ci-avant. Deux grandes problématiques se dégagent, et forment le coeur des deux premiers chapitres de cette thèse:

1) Les maps d'un CDN donné ne sont jamais explicitement révélées. Ainsi, les maps Publiques de Citrix peuvent ne pas coïncider exactement avec les maps Privées de ses clients. Pouvons nous caractériser la qualité de ce proxy? Nous décrivons dans le premier chapitre de cette thèse une méthode d'ajustement distributionnel afin de modéliser et estimer le lien entre les distributions de mesures Publiques et Privées.

2) Dans un second temps, nous nous intéressons à la modélisation des données de latence ellemêmes. Dans le second chapitre, nous décrivons l'objet d'intérêt dans l'industrie, à savoir le processus de latence médian à l'échelle temporelle ∆ > 0, c'est-à-dire la série temporelle régulière obtenue après le calcul de la médiane des mesures de latence obtenues sur chaque élément d'une partition régulière de taille ∆ de l'intervalle de temps [0, T ]. Nous proposons une nouvelle méthode de modélisation de ce processus, et analysons sa performance prédictive sur données réelles. L'importance de ∆ est discutée. Enfin, nous introduisons un nouvel outil de mesure de predictabilité basé sur un certain critère entropique.

Dans le troisième chapitre, nous nous intéressons à la détection de pannes dans une certaine Chapter 1. Introduction 10 sous-classe de réseaux. Pour les sites hébergés chez des CDN, les pannes sont très rares. Cela est du au nombre important de serveurs contenus dans un CDN. Lorsqu'un serveur cesse de fonctionner, le reste de l'infrastructure absorbe sans conséquences le traffic normalement assuré par le serveur défaillant. Dans le cas d'une infrastructure personnelle, c'est à dire une infrastructure physiquement possédée par le client par opposition à une infrastructure louée à un CDN, le nombre de serveur est souvent plusieurs ordres de grandeur inférieur à celui d'un CDN: l'impact d'une panne est donc plus important. Malgré sa plus grande fragilité, une infrastructure personnelle de haut de gamme fourni généralement une performance plus stable qu'un CDN. En allouant une bande passante suffisamment élevée à son infrastructure personnelle, un site Internet peut garantir une latence quasiment constante dans le temps. Ce surplus de bande passante est un luxe que le CDN ne peut généralement pas s'offrir si bien que la latence d'un CDN évolue au gré de l'affluence sur le site: un nombre élevé de connexions s'accompagne généralement d'une hausse de la latence, et réciproquement. La problématique qui nous intéresse dans ce troisième chapitre concerne ces infrastructures personnelles:

3) Dans les réseaux personnels haut de gamme, caractérisés par des mesures de latence plus stables, exposés au risque de panne, comment mettre en place un système de détection online de changement dans la distribution des mesures de latence? Dans un second temps, nous nous interrogeons sur comment exploiter cette stabilité des mesures de latence pour diminuer la taille des échantillons d'entraînement des algorithmes prédictifs sans détériorer la précision. L'intérêt est principalement économique: traiter moins de données représente un coût opérationnel plus faible.

Estimation d'un transport entre distributions de probabilités

Comme brièvement introduit dans la section 1.2, les mesures Privées et Publiques de latence d'une map donnée chez un CDN donné peuvent être différentes. Les ingénieurs au sein de l'entreprise pensent que les maps Privées et Publiques partagent des propriétés communes fortes. La caractérisation de la dépendance statistique entre mesures Privées et Publiques représente un intérêt stratégique pour Citrix. Lorsqu'une prédiction est effectuée en utilisant les mesures Publiques, la prédiction est biaisée. Pouvoir corriger ce biais représente un bon levier pour améliorer les prédictions du CDN le plus performant. Nous considérons une période de temps [0, T ] au cours de laquelle nous observons des données de latence Privées et Publiques issues d'une même map, qu'on appellera plus généralement source et proxy respectivement. La distribution des mesures de latence évolue très lentement au cours de la journée, si bien qu'il est raisonnable de considérer l'existence d'une partition (t i ) 0≤i≤K de [0, T ] où t 0 = 0, t K = T , t i+1 -t i = h > 0 ∀0 ≤ i ≤ K -1 telle que les mesures de latence du proxy et de la source peuvent être idéalisées comme des échantillons indépendents et identiquement distribués (i.i.d.) sur chaque élément de la partition ]t i , t i+1 ]. Dans ce contexte, nous nous intéressons au problème de l'inférence de la dépendance statistique entre le proxy et la source lorsqu'on observe des paires d'échantillons i.i.d.

Formellement, nous supposons l'existence d'une transformation déterministe f : R → R qui transporte la distribution du proxy vers la la distribution de la source. Soit M ∈ N, et (P i ) 1≤i≤M des lois de probabilités où les P i sont tirées aléatoirement de manière indépendante selon une mesure M à valeurs dans un certain ensemble Z. Le problème d'ajustement auquel nous nous 1.3. Estimation d'un transport entre distributions de probabilités intéressons dans ce chapitre est le suivant: trouver f tel que: Q i = f # P i ∀1 ≤ i ≤ M où f # P i désigne la mesure push-forward de P i sous f , c'est à dire que pour tout ensemble mesurable A on a f # P i (A) := P i (f -1 (A)).

Dans le cadre de ce modèle, nous supposons que les lois P i et Q i ne sont pas observées, seuls des échantillons (X 1 , Y 1 ), . . . , (X M , Y M ), où X i est un échantillon indépendant de loi P i et , indépendamment, Y i est un échantillon indépendant de loi Q i , sont observés. Chaque couple (X i , Y i ) est appelé un batch. Le choix de ce modèle repose sur le fait que les données que nous observons ne sont pas appareillées, comme ce serait le cas dans un problème de regression classique, de sorte que l'hypothèse d'un lien statistique entre les mesures ne peut être formulé qu'au niveau distributionnel. L'hypothèse d'un transport entre les distributions de la source et du proxy est alors naturelle.

Il est aisé de se convaincre que f ne peut pas être estimée raisonnablement sur tout son domaine de définition. Supposons f croissante et intéressons nous à l'estimation de f (x) avec x ∈ R. Si l'ensemble Z contient une mesure P telle que P (R) = 0 où R est un voisinage de x, alors il suit immédiatement de l'égalité Q = f # P et par croissance de f que Q(f (R)) = 0. Autrement dit, l'observation d'échantillons distribuées selon P et Q ne pourra jamais nous renseigner sur la valeur de f en x. Il est donc nécessaire d'imposer des contraintes locales et d'uniformité sur les mesures contenues dans Z autour du point d'estimation. Formellement, pour estimer f (x) avec x ∈ R, on demande que Z vérifie Z = P (du) = p(u)du|p ∈ F R (A, B, C) où F R (A, B, C) = p ∈ C 1 (R), p ≥ 0, p(u)du = 1, A ≤ p(u) ≤ B, |p (u)|≤ C, pour tout u ∈ R avec A, B, C trois réels positifs et R un intervalle contenant x. Autrement dit, F R (A, B, C) est un ensemble de densités de probabilités différentiables sur R, minorée et majorée sur R et dont la dérivée est continue et bornée sur R.

Le processus de load-balacing reposant intensivement sur l'estimation des quantiles de la distribution des mesures de latence, nous cherchons par cette représentation un moyen d'ajuster les quantiles de la source aux quantiles du proxy. On peut observer immédiatement que si f n'est pas croissante, cet objectif est irréalisable. Pour s'en convaincre, soit P ∈ Z et Q = f # P . Notons F, G les fonctions de répartition de P, Q respectivement, supposées inversibles, et soient X, Y des variables aléatoires de lois respectives P, Q. Notons que l'égalité Q = f # P implique que f (X) et Y sont identiquement distribuées. Ajuster les quantiles de F aux quantiles de G revient à trouver une fonction h vérifiant

h • F -1 (α) = G -1 (α) pour tout P ∈ Z. Autrement dit h = G -1 • F.
La fonction h recherchée est nécessairement croissante sur R et G -1 • F est indépendante du choix de P ∈ Z. Si f est strictement croissante, on pourra se convaincre aisément que h = f et que G -1 • F est bien indépendante du choix de P ∈ Z. Au contraire, si f n'est pas croissante, une telle fonction h ne peut exister en général. Supposons par exemple que f : x → |x|, et choisissons P ∈ Z symétrique. Alors pour un certain x ∈ R, nous avons par un calcul élémentaire

G(x) = 2F (x) -1.
Or les applications F et x → 2x + 1 sont inversibles et on obtient alors l'égalité:

G -1 (α) = F -1 α + 1 2 .
pour tout α ∈ (0, 1). L'ajustement des quantiles de F aux quantiles de G est alors donné par la fonction h vérifiant

h(x) = G -1 • F (x) = F -1 F (x) + 1 2 .
Clairement, cette expression dépend du choix de P , et il n'existe alors aucune fonction h vérifiant h • F -1 = G -1 pour tout P ∈ Z. Nous posons les questions suivantes:

Question 1 Sous l'hypothèse d'un transport croissant, comment estimer ponctuellement f ? En quel sens et à quelle vitesse?

Question 2 Comment vérifier en pratique que f est croissante?

Question 3 Transporter les données du proxy par notre estimateur améliore-t-il la prédiction du meilleur CDN?

La question 1 pose les bases du problème de recherche de lien entre le proxy et la source. Nous supposons f croissante. Notre estimateur pour f prend la forme:

fn,M (x) = 1 M M i=1 ( G i n ) -1 • F i n (x) (1.1)
où:

• F i n (x) = 1 n n l=1 1 {X i l ≤x} • G i n (x) = 1 n n l=1 1 {Y i l ≤x} • ( G i n ) -1 (x 0 ) = inf{x ∈ R, ( G i n )(x) ≥ x 0 } 1.
3. Estimation d'un transport entre distributions de probabilités sont respectivement les fonctions de répartitions empiriques et la fonction quantile empirique des échantillons (X i 1 , . . . , X i n ) i.i.d. P i et (Y i 1 , . . . , Y i n ) i.i.d. Q i = f # P i . La forme de cet estimateur est motivée par le théorème d'inversion: si X est une variable aléatoire réelle de distribution F , alors F -1 (X) ∼ U(0, 1), voir par exemple [START_REF] Devroye | Nonuniform random variate generation[END_REF]. Ce résultat permet de construire un exemple explicite de transport entre deux mesures de probabilités. En effet, soient X, Y deux variables aléatoires réelles de distribution F, G respectivement. Alors

Y d = G -1 • F (X), et il suit L(Y ) = f # L(X) où f = G -1 • F .
Ce couplage est souvent appelé réarrangement croissant, voir par exemple [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Nous avons le résultat principal suivant: 

R δ = [a + δ, b -δ]. Supposons f croissante, deux fois différentiables et 1/f L ∞ (R) < ∞. Si de plus E(Y 2 ) < ∞ où Y ∼ Q = f # P et P ∼ M, alors fn,M (x) -f (x) 1 √ M n + log(n) 3/2 n 3/4 + M e -nδ 2 A 2 /2 (1.2)
en probabilité, uniformément en x ∈ R δ et où est l'inégalité à une constante positive près ne dépendant que des constantes A, B, C, f

L ∞ (R) , f L ∞ (R) , 1/f L ∞ (R) et E(Y 2 ).
La croissance de la fonction f posée en question 2 est essentielle pour espérer l'estimer. Il est aisé de se convaincre que si f est croissante stricte et continue, alors pour tout P ∈ Z, G -1 • F (x) ne dépend pas du choix de P . Par contraposition, s'il existe 2 distributions P 1 , P 2 ∈ Z telles que G -1

1 • F 1 = G -1 2 • F 2 où F 1 , F 2 , G 1 , G 2 
sont les fonctions de répartition de P 1 , P 2 , f # P 1 , f # P 2 respectivement, alors f n'est pas croissante. La réciproque n'est en général pas vraie cependant. Par exemple, dans le cas où f : x → -x et Z contient uniquement des distributions symétriques alors G -1 • F est indépendante du choix de P et pourtant f n'est pas croissante. En effet dans ce cas, si F, G dénotent les fonctions de répartition de P ∈ Z et Q = f # Q et X ∼ P , Y ∼ Q alors pour tout x on a:

G(x) = P(f (X) ≤ x) = F (x)
si bien que h = G -1 • F est égale à l'identité et donc indépendante de P , mais f = h n'est pas croissante. Néanmoins nous avons la proposition suivante: Proposition 1. Soit f ∈ C 2 (R), P ∈ Z, et on note F, G les distributions de P et f # P respectivement. Si la fonction h = G -1 • F est indépendante du choix de P , alors f # P = h # P pour tout P ∈ Z et notre estimateur converge vers h comme dans le théorème (2.2).

Le fait de converger vers h au lieu de f dans ce cas est sans conséquence car dans la mesure où f # P = h # P pour tout P ∈ Z, les deux fonctions jouent des rôles indifférenciables. La Proposition 1 suggère d'introduire la relation d'équivalence ∼ sur l'ensemble des fonctions C 2 (R) vérifiant: f ∼ h si et seulement si f # P = h # P pour tout P ∈ Z.

De cette manière, s'il existe h croissante telle que h ∈ [f ] = {h ∈ C 2 (R)|h ∼ f }, alors nous garantissons que notre estimateur converge vers h, et l'existence de ce h est donnée par l'indépendance de G -1 • F en P ∈ Z où F, G sont les fonctions de répartition de P et f # P respectivement. Pour une collection P 1 , . . . , P M ∈ Z et un certain x ∈ R, nous proposons un test d'égalité des G -1 i •F i (x) qui est une adaptation du test de Wald [START_REF] Harrell | Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis[END_REF] pour l'égalité de paramètres multiples en utilisant une caractérisation appropriée de la convergence en loi du processus √ n(G n • F n (x) -G -1 • F (x)) en terme d'équicontinuité stochastique. L'objet de la proposition suivante est de tester

H x 0 : G -1 1 • F 1 (x) = • • • = G -1 M • F M (x) contre H x 1 : ∃ i = j, G -1 i • F i (x) = G -1 j • F j (x).
Proposition 2. Posons:

θ x =      G -1 1 • F 1 (x) G -1 2 • F 2 (x) . . . G -1 M • F M (x)      θ n,x =      (G 1 n ) -1 • F 1 n (x) (G 2 n ) -1 • F 2 n (x) . . . (G M n ) -1 • F M n (x)      Σ n =    σ n (F 1 ) 2 . . . σ n (F M ) 2    et R =    1 -1 . . . . . . 1 -1   
où R est une matrice (M -1) × M dont la première colonne est composée uniquement de 1 et où les autres colonnes forment une matrice carrée de taille (M -1) × (M -1) où chaque élément diagonal vaut -1 et 0 partout ailleurs. Enfin, soit

σ n (F ) 2 = 2 F n (x)(1 -F n (x)) g n • G -1 n • F n (x)
2 avec g n un estimateur à noyau de la densité de G, alors:

W n = n RΣ n R t -1/2 Rθ n,x 2 d 
-→χ 2 (M -1) sous H x 0 lorsque n → ∞, où χ 2 (M -1) désigne la distribution du χ 2 à M -1 degrés de libertés. Ainsi, pour α ∈ (0, 1)

Φ(α) = 1 R(α)
1.4. Modélisation des données de latence est un test asymptotique de niveau α de H x 0 avec zone de rejet R(α) = {W n > q Statistique du test de H x 0 contre x avec la valeur critique q χ 2 1-α (M ) en rouge. Le test rejette H x 0 sur l'intervalle [START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF][START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF], suggérant que les G -1 i • F i (x) prennent des valeurs différentes sur cet intervalle. L'hypothèse d'un transport croissant entre la distribution du proxy et de la source sur cet intervalle doit être rejetée. répondre à la question 3, l'évaluation de la qualité du transport des données du proxy vers la source à l'aide de notre estimateur est effectuée par comparaison des distances de Wasserstein entre les distributions des mesures de la source et du proxy avec et sans le transport. Le choix de la distance de Wasserstein est motivé pour son lien avec les quantiles des distributions et sa connexion avec le transport optimal [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], [START_REF] Forrow | Statistical optimal transport via factored couplings[END_REF]. L'utilisation de notre estimateur permet une réduction très importante de la distance entre la distribution du proxy et la distribution de la source, voir Figure 1.4 et Table 1.2.

χ 2 (M -1) α } où q χ 2 (M -

Modélisation des données de latence

Dans ce second chapitre, nous nous intéressons à la description des données de latence, et à la modélisation de l'objet d'intérêt dans l'industrie pour la prédiction: le processus médian. Il existe Ces CDN sont dits en concurrence.

1.4. Modélisation des données de latence L'approche individuelle repose sur l'idée de faire tester la latence des CDN C 1 . . . , C K directement à l'utilisateur I et de sélectionner le CDN ayant fourni la mesure la plus faible. Il n'est plus question ici d'utiliser des mesures d'utilisateurs proches en temps et en espace, ni d'utiliser des méthodes prédictives. Le temps nécessaire pour effectuer ces tests de latence est de l'ordre de quelques secondes, même dans le cas K = 2. Ce temps non négligeable est précisément la raison pour laquelle les tests de latence des utilisateurs sont effectués après le chargement de la page, comme décrit dans la section 1.2. L'approche individuelle peut paraître plus attractive que l'approche collective car elle garantit de toujours sélectionner le CDN le plus rapide. Néanmoins, les trois ordres de grandeurs de différence dans le temps nécessaire pour choisir un CDN entre les deux méthodes la rendent totalement inopérante en pratique. En effet, même en cas d'erreur de prédiction dans l'approche collective, il est très improbable que l'utilisateur ait chargé la page Web plus vite par la méthode individuelle. L'approche collective est donc largement privilégiée.

W 1 (X , Y) W 1 ( fn,M (X ), Y) Changement relatif W 1 ( fn,M (X ), Y) < W 1 (X , Y)
La nature intrinsèquement distributionnelle de cette approche ne permet pas de définir de manière absolue le CDN avec la plus faible latence, tout comme il est impossible de parler dans l'absolu d'un rythme cardiaque plus faible qu'un autre. Parce qu'il n'existe pas de relation d'ordre totale sur l'ensemble des mesures de probabilité, le critère doit reposer sur la comparaison d'une certaine fonctionnelle. Le choix le plus répandu dans l'industrie est la comparaison des quantiles, et plus précisément, la médiane, des mesures de latence.

Soit T > 0 et [0, T ] un intervalle de temps. Les horodatages, ou timestamps en anglais, des mesures collectées par Citrix sont arrondies à la seconde, donc une structure naturelle pour le processus générateur des données est celle d'un processus stochastique à temps discret avec l'indice de temps exprimé en secondes. Formellement, nous observons le processus Z = {Z t |t ∈ {0, . . . , T }}, où Z t est le processus empirique défini par mais une fonctionnelle de Z. Pour un certain ∆ > 0, on se donne n ∈ N, t n = n∆ et on définit la série temporelle régulière suivante:

Z t = 1 N t Nt k=1
X ∆ tn = Médiane Y t k t∈]tn-1,tn] k∈{1,...,Nt} .
X ∆ tn est la médiane de toutes les mesures reçues dans l'intervalle ]t n-1 , t n ]. (X ∆ tn ) 0≤n∆≤T est appelé le processus médian à la fréquence ∆. Dans ce contexte, nous posons le problème de la modélisation et de la prédiction du processus médian.

Le paramètre ∆ joue un rôle primordial. À mesure que ∆ diminue, la variance du processus médian explose, voir Figure 1.6. Pour des valeurs faibles, de l'ordre de la minute ou moins, les effets saisonniers et d'autocorrelation notamment diminuent voire disparaissent. Au contraire, lorsque ∆ augmente, la variance du processus médian diminue, et un signal périodique clair révélant les cycles d'activité jour/nuit sur Internet devient aisément identifiable. Cela suggère que pour de grandes valeures du paramètre ∆, le processus médian peut être prédit avec précision, alors que pour de petites valeurs du paramètre ∆, le rapport signal sur bruit est trop faible et le processus médian n'est pas prédictible. Ceci est réminiscent des phénomènes de bruit de microstructure en Le paramètre ∆ représente l'horizon de prédiction : si t n est l'instant présent, X ∆ tn représente la médiane des dernières mesures de latence reçues dans l'intervalle ]t n-1 , t n ], c'est à dire la médiane des mesures reçues au cours des dernières ∆ secondes par définition de t n . Ainsi, la prédiction du processus pour la période suivante, notée X ∆ tn+1 , représente donc une estimation de la latence des mesures qui seront reçues dans l'intervalle ]t n , t n+1 ], c'est à dire dans les ∆ prochaines secondes. Dans une optique de load-balacing, il est important de faire des prédictions avec l'horizon de temps le plus court possible. En effet, à l'instant t n , lorsqu'un utilisateur doit être aiguillé vers A ou B, savoir que A sera plus performant que B dans ∆ = 2 heures n'a généralement aucune valeur. Nous posons les questions suivantes : Ces clusters présentent des caractéristiques saisonnières qui peuvent être précisément décrites par un ARMA Seasonal-GARCH, c'est à dire un processus ARMA-GARCH avec l'ajout de composantes saisonnières dans la partie GARCH [START_REF] Shumway | Time series analysis and its applications[END_REF] [64] [START_REF] Huang | GARCH models: structure, statistical inference and financial applications[END_REF]. L'étude empirique du processus médian à travers les échelles nous conduit à adopter le modèle suivant pour X ∆ n : pour la partie variance conditionnelle dépendent implicitement de ∆. La loi Skewed-Student [START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF] centrée réduite est choisie pour les z n afin de tenir compte des queues lourdes et asymétriques des résidus. La loi Skewed-Student englobe plusieurs distributions connues comme la loi de Student, Normal ou Laplace, entre autres. Elle se caractérise par des paramètres de forme et d'asymétrie qui lui offre une grand flexibilité dans l'ajustement à de nombreuses données réelles, telles que financières [START_REF] Theodossiou | Financial data and the skewed generalized t distribution[END_REF]. Cette loi est absolument continue par rapport à la mesure de Lebesgue et admet pour densité de probabilité la fonction

X ∆ n = µ + K k=1 α k sin 2kπt n φ + K k=1 β k cos 2kπt n φ + ε n ε n = ν + κε n-1 + u n + ρu n-1 u n = σ n z n σ 2 n = ω + αu 2 n-1 + βσ 2 n-1 + R k=1 λ 1,k cos γ 1,k + kπt n φ a + λ 2,k sin γ 2,k + kπt n φ a (z n ) n≥1 i.i.d. de moyenne 0 et variance 1 où K = R = 3
f (x; m, τ, ν, ξ) = 2sσ τ (ξ + ξ -1 ) Γ( ν+1 2 ) Γ( ν 2 ) 1 √ πν 1 + s 2 ν ( x-m τ σ + µ) 2 ξ 2sign( x-m τ σ+µ) -ν+1 2 , avec m 1 = 2 √ ν -2 (ν -1)B( 1 2 , ν 2 ) , µ = m 1 (ξ -ξ -1 ), σ = (1 -m 2 1 )(ξ 2 + ξ -2 ) + 2m 2 1 -1, s = ν ν -2 , où B(a, b) = 1 0 x a-1 (1 -x) b-1 dx, a, b > 0 est la fonction Beta et Γ(x) = ∞ 0 t x-1 e -t dt, x > 0
est la fonction Gamma. Les paramètres m ∈ R and τ > 0 représentent la moyenne et l'écart-type de la distribution, tandis que les paramètres ν > 2 et ξ > 0 contrôlent la forme et l'asymétrie de la distribution. Le paramètre de forme ν contrôle l'épaisseur des queues de distributions, et le paramètre ξ contrôle l'orientation de l'asymétrie: gauche pour ξ < 1, droite pour ξ > 1, et symétrique pour ξ = 1.

Les coefficients de la décompositions de Fourier, qui caractérisent la moyenne conditionnelle, sont estimés par regression linéaire. Pour les coefficients qui caractérisent les innovations, on choisit pour l'estimation une approche par Quasi Maximum de Vraisemblance à une seule étape: les parties ARMA et Seasonal-GARCH sont estimées dans le même programme d'optimisation.

Les paramètres d'asymétrie et de forme utilisés dans les tests d'ajustement, notés désormais Sk(∆) et Sh(∆) respectivement, sont sélectionnés par apprentissage sur un jeu d'entraînement. En effet, une des propriétés remarquable du modèle est l'existence de régularités dans l'évolution de ces paramètres à travers les échelles, voir Figure 1.9. Des modèles logistique et linéaire sont utilisés Ce modèle nous apporte deux renseignements importants sur la nature du processus médian:

1. L'indépendance en ∆ des paramètres de la moyenne conditionnelle pour des petites valeurs de ∆. La performance du modèle est mesurée par la racine carrée de la moyenne quadratique (RMSE). Pour une série temporelle (x t ) t=1,...,T et des prédicteurs (x t ) t=1,...,T , la RMSE est définie par :

RMSE(x t ) = T t=1 (x t -x t ) 2
T .

La performance du modèle est comparée à celle de deux modèles basiques communément utilisés dans l'industrie : la prédiction NAIVE et AVG. On parlera de baselines à partir de maintenant.

Pour une série temporelle (y t ) t∈N , la prédiction NAIVE correspond à la dernière valeur observée :

ŷNAIV E t+1 = y t .
La prédiction AVG correspond à la moyenne des k dernières valeurs observées:

ŷAV G t+1 = 1 k k i=1 y t+1-i .
Ces deux baselines sont utilisées pour juger de l'efficacité des algorithmes prédictifs spécifiquement pour de petites valeurs de ∆, lorsque le ratio signal sur bruit est maximal. Battre ces baselines pour les plus petites valeurs de ∆ est un objectif important car cela permet de raccourcir l'horizon de la prédiction. La performance de notre modèle en terme de précision est uniformément meilleure que de la méthode sans impacter la qualité de la prédiction.

Concernant la question 3, commençons par noter qu'à mesure que ∆ diminue, notre modèle devient de moins en moins attractif relativement à des modèles plus simples. Cela peut être expliqué de deux manières: notre modèle n'exploite pas toute la structure des données, ou alors il n'y a aucune structure supplémentaire à exploiter. La question est alors de savoir s'il est possible de quantifier l'information résiduelle dans les données après avoir appliqué le modèle. Pour répondre, nous proposons une nouvelle approche basée sur un critère entropique pour évaluer la quantité d'information non captée par le modèle. Nous développons un nouveau test à cet effet basé sur la Sample Entropy (SE) [START_REF] Joshua | Physiological time-series analysis using approximate entropy and sample entropy[END_REF].

Definition 2. Soit m ∈ N, r > 0 and X = (x 1 , . . . , x N ) une série temporelle. On pose X m (i) = (x i , . . . , x i+m-1 ) et soit d = • ∞ la sup norme. Alors la Sample Entropy de X est définie par:

SE X n = -log A B où: A = #{i = j, d(X m+1 (i), X m+1 (j)) < r}, B = #{i = j, d(X m (i), X m (j)) < r}.
Comme A ≤ B, SE est toujours un nombre positif. SE est une approximation de la probabilité conditionnelle que deux séries consécutives d'observations de longueur m + 1 restent à une distance r sachant que les deux sous séries contenant les m premiers points l'étaient. Une valeur élevée de SE indique que cette probabilité est faible, suggérant ainsi une certaine non-prédictabilité de la série. Cette notion a été introduite par Richman et Moormanis [START_REF] Joshua | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] et a trouvé depuis de nombreuses applications notamment en médecine, voir par exemple [START_REF] Chen | Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early alzheimer's disease and aging[END_REF] [84] [START_REF] Douglas E Lake | Sample entropy analysis of neonatal heart rate variability[END_REF].

Dans le cas où X = (X 1 , . . . , X N ) sont des variables aléatoires i.i.d., alors -log(A/B) est la version empirique de:

-log P (d((Z 1 , . . . , Z m+1 ), (Y 1 , . . . , Y m+1 )) < r) P (d((Z 1 , . . . , Z m ), (Y 1 , . . . , Y m )) < r) = -log P max 1≤i≤m+1 |Y i -Z i |< r P max 1≤i≤m |Y i -Z i |< r = -log (P(|Z 1 -Y 1 |< r))
où les variables aléatoires (Y 1 , . . . , Y m+1 , Z 1 , . . . , Z m+1 ) sont des copies i.i.d. de X 1 . Autrement dit, dans le cas d'observations i.i.d. de loi F , SE estime la concentration de F et mesure le volume moyen d'une boule aléatoire de rayon r. On montre alors la propriété suivante:

Proposition 3. Soit θ = -log(P(|X 1 -X 2 |< r)).
Alors il existe une matrice Σ de taille 2 × 2 telle que:

SE X n P -→θ √ n(SE X n -θ) d -→N (0, ∇g(θ)Σ∇g(θ) t ) où g: (x, y) → log(x) -log(y)
Cette proposition permet alors de tester l'hypothèse que la série X est i.i.d. de loi cible F . En particulier, nous appliquons ce résultat aux résidus de notre modèle obtenons la distribution des p-valeurs en Figure 1.11, et obtenons des résultats corroborant les tests de diagnostics de notre modèle obtenus précédemment. En particulier, nous obtenons une indication empirique que notre modèle exploite bien toute la structure des données. 

Prediction et détection de panne dans les réseaux stables

À la différence du chapitre 2 où nous nous sommes intéressés à des processus médian riches en structure, dans le troisième chapitre nous nous sommes intéressés à une classe particulière de réseaux, qu'on appelle les réseaux ε-Stable, abrégé ε -SN pour ε-Stable Networks. Un tel réseau se caractérise par une absence d'effets saisonniers ou d'autocorrelation notables dans le processus X ∆ tn . Ces réseaux sont plus rares et correspondent à des infrastructures particulièrement haut de gamme. Il ne s'agit presque jamais de CDN, mais souvent d'infrastructures privées. Des entreprises comme Google par exemple n'ont pas recours aux CDN, et construisent leurs propres 1.5. Prediction et détection de panne dans les réseaux stables infrastructures. De façon heuristique, un ε -SN se caractérise par un processus median (X ∆ n ) n∈N stationnaire pour lequel des modèles sophistiqués ne permettent pas un gain significatif de précision prédictive. Plus spécifiquement, un ε -SN est défini comme un réseau produisant un processus médian purement non déterministe, voir définition 4, pour lequel le ratio des risques quadratiques des prédictions à une période des modèles AVG et du meilleur ARM A(p, q), noté X t+1 ARM A , est borné par 1 + ε:

RMSE X t+1 AV G RMSE X t+1 ARM A ≤ (1 + ε)
Afin de définir proprement les réseaux ε -SN , nous rappelons quelques faits concernant les séries temporelles, voir par exemple [START_REF] Hamilton | Time series analysis[END_REF].

Definition 3 (Processus déterministes). Soit (X t ) t∈Z un processus du second ordre. Pour t ∈ Z on pose:

H t-1 = Vect{X t-1 , X t-2 , . . .} la fermeture dans L 2 de l'espace vectoriel Vect{X t-1 , X t-2 , . . .}, c'est-à-dire toutes les combi- naisons linéaires de la forme ∞ k=0 λ k X t-k qui convergent dans L 2 .
On dit alors que (X t ) t∈Z est déterministe si et seulement si:

X t ∈ H t-1 autrement dit si et seulement si X t = proj(X t , H t-1 ) où proj(X t , H t-1 ) = arg min Y ∈Ht-1 X t -Y 2
est la projection orthogonale dans L 2 de X t sur le sous espace vectoriel H t-1 .

Rappelons maintenant le théorème de Wold [3] :

Theorem 2 (Décomposition de Wold). Soit (X t ) t∈N un processus de moyenne nulle faiblement stationnaire. Alors il existe des processus aléatoire (ε t ) t∈N et (d t ) t∈N et des nombres réels (ψ t ) t∈N tel que:

X t = ∞ i=0 ψ i ε t-i + d t ∀t ∈ Z où: i) ψ 0 = 1, ∞ i=0 ψ 2 i < ∞, ii) (ε t ) t∈N est un bruit blanc, i.e. E(ε t ) = 0 et E(ε t ε s ) = σ 2 1 {s=t} . iii) (d t ) t∈N est un processus déterministe. iv) ∀s, t, E(d s ε t ) = 0.
De plus, cette décomposition est unique. Afin de vérifier empiriquement qu'un processus est purement non déterministe, nous nous reposons sur le théorème suivant, dû à Kolmogorov [START_REF] Kolmogorov | Selected works. II. Probability theory and mathematical statistics[END_REF] : Theorem 3 (Kolmogorov). Soit (X t ) t∈N un processus du second ordre de fonction d'auto-covariance γ. Alors (X t ) t∈N est purement non déterministe si et seulement si les conditions suivantes sont vérifiées:

1) F X est absolument continue par rapport à la mesure de Lebesgue 2) f X est positive presque partout 3) log f X est intégrable où F X et f X sont les distributions et densités spectrales respectivement de X = (X t ) t∈N c'est-à-dire que F X est la fonction de répartition de la mesure spectrale de (X t ) t∈N , autrement dit de la mesure de probabilité dont les coefficients de Fourier sont γ(h), h ∈ Z :

γ(h) = 1/2 -1/2 e 2πiνh F X (dν) et f X (ν) = h∈Z γ(h)e -2πiνh .
Il est aisé de voir que la condition f X > 0 partout implique que log(f X ) est intégrable. En effet dans ce cas par continuité de f X sur l'intervalle fermé [-1/2, 1/2], on a directement que f est minorée et majorée par des constantes strictement positives, donc log(f X ) est intégrable. À notre connaissance, aucun test dans la littérature n'est proposé pour le vérifier en pratique. Nous nous basons donc sur une inspection visuelle de l'estimation de la densité spectrale du processus médian, voir Figures 1.12 et 1.13. Il suit immédiatement de la décomposition de Wold que tout processus purement non déterministe peut être approché arbitrairement par un processus ARMA(p, q). Or si (X t ) t∈Z est un ARMA(p, q), c'est à dire que X t est solution de l'équation:

X t = u t + p i=1 φ i X t-i + q j=1
θ j u t-j où (u t ) t est un bruit blanc et | φ i |< 1, alors la prédiction du processus à une période donnée par 

X t+1 ARM A = p i=1 φi X t-i + q j=1 θj u t-
E(X t+1 |X s , u s , s ≤ t) = p i=1 φ i X t-i + q j=1 θ j u t-j
qui est optimale dans le sens où elle minimise l'erreur quadratique. La prédiction du modèle AVG, qui est simplement égale à la moyenne empirique des k dernières observations, est un estimateur de l'espérance. On remarque alors qu'un réseau ε -SN est tel que la prédiction optimale utilisant tout l'historique du processus n'améliore que marginalement la prédiction optimale utilisant l'historique immédiat.

Par définition, des modèles prédictifs sophistiqués ne sont donc pas pertinents pour la prédiction des ε -SN : plutôt que d'entraîner un algorithme prédictif sur un jeu de données volumineux, des modèles simples ne demandant que peu de données d'entraînement ont des performances prédictives similaires. L'intérêt est principalement économique: entraîner un modèle avec un gros volume de données nécessite plus de calculs, et s'accompagne donc de coûts supplémentaires.

Pour des raisons de confidentialité, l'algorithme prédictif dans les ε -SN que nous avons développé chez Citrix sera traité comme une boîte noire. Au temps t, notons X ∆ t CIT RIX la prédiction associée. Nous ne traiterons que la détermination de l'ensemble d'entraînement optimal. Ce prédicteur de la latence médiane utilise au plus les N dernières mesures les plus récentes à condition qu'elles aient été reçues dans les dernières M minutes, même si cela implique de considérer moins de N mesures. On notera

X ∆ t CIT RIX = X ∆ t,N,M CIT RIX
. Nous nous intéressons au problème de la calibration de (N, M ) afin de minimiser la taille du jeu d'entraînement sans dégrader la qualité de la prédiction au dela d'une certaine tolérance τ choisie par le praticien.

La valeur de ∆ sera fixée dans ce chapitre. Nous choisissons ∆ = λ, où λ est le Time To Live ou TTL. TTL est un terme générique pour quantifier la durée de vie de toute donnée stockée pendant une durée limitée dans un réseau avant d'être mises à jour ou écrasée. Un TTL est utilisé pour les prédictions de Citrix, car la mise à jour des prédictions en temps réel est trop exigeante d'un point de vue calculatoire. Cela signifie que si une prédiction est mise à jour à l'instant t, chaque nouvel utilisateur arrivant entre les instants t et t + λ utilisera la même prédiction. Ce n'est qu'au moment t + λ que la prédiction sera mise à jour. Par conséquent, une prédiction au temps t avec la durée de vie λ doit prédire la valeur médiane des mesures de latence sur l'intervalle [t, t + λ]. λ = 60 s est la valeur par défaut définie par les ingénieurs.

Parallèlement, nous nous penchons sur un problème qui touche principalement les réseaux personnels, dont les ε -SN sont une sous classe: ces derniers sont généralement plus propices aux pannes que les CDN. En effet, un CDN rassemble typiquement des dizaines voire centaines de milliers de serveurs. En cas de panne d'une partie de l'infrastructure, les serveurs restants peuvent prendre le relais. Dans un réseau personnel, qui compte généralement considérablement moins de serveurs, le risque de panne est plus grand. Nous nous intéressons donc dans ce chapitre à une méthode de détection de panne dans les ε -SN .

Question 1 Comment sélectionner le jeu d'entraînement le plus petit possible sans impacter la qualité de la prédiction? Question 2 Comment construire un algorithme de détection de panne? Afin de répondre à ces questions, la première étape consiste à identifier les réseaux ε -SN . Des routines classiques de stationnarité sont d'abord effectuées, à l'aide des tests de Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS) et Phillips-Perron (PP) [START_REF] Dickey | Likelihood ratio statistics for autoregressive time series with a unit root[END_REF], [START_REF] Fuller | Introduction to statistical time series[END_REF], [START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF], [START_REF] Ljung | On a measure of lack of fit in time series models[END_REF]. Ensuite, une inspection visuelle permet d'écarter la présence d'un zéro dans la densité spectrale. Sur les données présentées dans ce chapitre, nous étudions trois ε -SN avec une valeur du paramètre ε = 2%. Pour répondre à la question 1, les paramètres (N, M ) sont estimés par grid searching [START_REF] Claesen | Hyperparameter search in machine learning[END_REF] [8] sur un jeu d'entraînement. Pour chaque couple sélectionné, on effectue des prédictions à des instants pré-définis et l'erreur, notée E(N, M ) est calculée. On définit ensuite

(N * , M * ) = arg min N,M E(N, M ).
Le couple (N * , M * ) qui minimize l'erreur de prédiction correspond aux plus grandes valeurs testées des paramètres N et M : la prédiction X ∆ t CIT RIX est d'autant meilleure que les paramètres N, M sont grands. Or, on constate dans les ε -SN que la précision de cette prédiction a un profil particulier: l'erreur converge très rapidement vers E(N * , M * ) quand N, M augmentent. Nous proposons de limiter la taille de l'échantillon relativement à une tolérance τ > 0 de la manière suivante: soit C(τ ) l'ensemble des couples (N, M ) vérifiant

C(τ ) = (N, M )|E(N, M ) < (1 + τ )E(N * , M * ) ,
alors le couple (N, M ) = (N τ , M τ ) retenu est donné par:

M τ = min M |(N, M ) ∈ C(τ ) N τ = min N |(N, M τ ) ∈ C(τ )
autrement dit, parmi l'ensemble des couples (N, M ) vérifiant E(N, M ) < (1 + τ )E(N * , M * ), on choisit le couple (N τ , M τ ) en minimisant d'abord en M , puis en N . Cette méthodologie permet de réduire considérablement la taille des données d'entraînement. Les valeurs de (N * , M * ) sont présentées en Tables 1.5, et la sélection des paramètres (N τ , M τ ) en Table 1 Ref contient des observations du processus X ∆ n qui ont été reçues dans un passé proche durant lequel aucune panne n'a été détectée. Le fenêtre Shift ingère les nouvelles observations de ce processus en temps réel. Les deux fenêtres gardent une taille constante égale à C ∈ N. À chaque nouvelle observation reçue, la distance de Wasserstein [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] est calculée entre Ref et Shift. La distance de Wasserstein d'ordre p ≥ 1 entre deux mesures de probabilités P et Q sur l'ensemble des réels, notée W p (P, Q) est définie par:

W p (P, Q) = inf π∈Π(P,Q)
|x -y| p π(dx, dy) 

W p (P, Q) = R |F (x) -G(x)| p dx 1/p = 1 0 |F -1 (u) -G -1 (u)| p du 1/p où F, G sont les c.d.f. de P et Q respectivement, et F -1 , G -
W p,n (F, G) = W p (F n , G n ) = 1 0 |F -1 n (u) -G -1 n (u)| p du 1/p où F n (u) = n -1 n i=1 1 {Xi≤u} et G m (u) = n -1 m j=1 1 {Yj ≤u} sont les fonctions de répartition empiriques et F -1 n et G -1
n sont leurs inverses généralisés respectivement. La distance de Wasserstein empirique se réécrit: 

W p,n (F, G) = 1 n n i=1 |X (i) -Y (i) | p 1/p où (X (i) ) 1≤i≤n et (Y (i) ) 1≤i≤n sont
W p (X, Y ) = 1 0 |F -1 w X (u) -G -1 w Y (u)| p du 1/p où: F w X (u) = n i=1 w X i 1 {Xi≤u} et G w Y (u) = m j=1 w Y j 1 {Yj ≤u}
sont les fonctions de répartition empiriques pondérées de X et Y . Les poids w X et w Y vérifient:

w X i ≥ 0, w Y j ≥ 0, n i=1 w X i = 1, m i=1 w Y i = 1.
Nous choisissons des poids qui décroissent exponentiellement avec la distance à un quantile donné, typiquement la médiane dans le cas du load-balancer. On pose:

   u X π(i) =e -λ Xi-q X β u Y σ(j) =e -λ Yj -q Y β où π et σ sont des permutations de {1, . . . , n} telles que X π -1 (1) ≤ . . . ≤ X π -1 (n) et Y π -1 (1) ≤ . . . ≤ Y π -1 (n) , λ > 0 et q X β , q Y
β sont les quantiles empiriques d'ordre β ∈ (0, 1) de X et Y respectivement. Les poids sont alors définis par: 

     w X i = u X i j u X j w Y i = u Y i j u Y j 1.

Pointwise estimation of a transport between two probability distributions Abstract

Citrix is a technology company that optimizes network packets travel to accelerate the loadings of web pages. Citrix collects in real time latency measurements from a large number of interconnected servers, called CDN 's, capable of receiving and transmitting information. It is suspected by the operational engineers that the complex configuration of those networks makes it likely that certain specific subsets of servers, called maps, have overlapping infrastructures either because they are maintained by the same vendor or installed in the same data center. It is conjectured that the overlap between certain maps should be reflected in the distribution of latency measurements. Being able to characterize the statistical dependency between certain maps is of great strategic importance for Citrix because it can help overcome major issues in the load-balancing process, i.e. the action of distributing Internet users across the network to spread the audience in order to accelerate page load time, such as data scarcity. Maps that generate distributions of latency measurements that share statistical properties will be called related maps. In this chapter we are interested in mapping the distribution of latency measurements of related maps into one another. We formulate this problem as a distribution matching problem where the outputs are the transported probability distributions of the inputs under an unknown function f . Under some regularity assumptions on the densities of the input probability distributions and f in a neighborhood of some point x ∈ R, we propose an estimator of f (x) and derive uniform convergence properties in that neighborhood when the only observables are independent samples drawn from the input and output distributions. We provide empirical evidence of the existence of a deterministic transport between the distributions of latency measurements of related maps on real data and show that the numerical implementations are consistent with the theoretical rates of convergence.

Introduction

Motivation

Load balancing Internet users across the Internet is similar to road navigation. What Waze-like applications do for road networks, Citrix does it for the Internet: both estimate the optimal route in a network based on data generated by other users close in space and time. The key performance metric for load-balancing users across the network is latency: a measurement expressed in milliseconds (ms) of the time it takes to establish a connexion between two distant servers. For reasons of privacy protection, we will anonymize all data presented in this chapter.

Difficulty may arise when not enough data is collected from a specific map in the network, called the source. In such situation Citrix uses a proxy in order to estimate the source status. A proxy in this context refers to an map related to the source, meaning that it shares multiple common properties with it: typically both source and proxy are maintained by the same vendor and correspond to an equivalent requirement level in terms of performance. We will consider a period of time [0, T ] over which we will observe latency measurements collected from both channels, source and proxy. Since the distribution of latency measurements slowly evolves through time, we will assume that there exists a uniform partition (t i ) 0≤i≤K of [0, T ] where t 0 = 0, t K = T , t i+1 -t i = h > 0 ∀0 ≤ i ≤ K -1 such that latency measurements from both channels with timestamps falling in any subinterval [t i , t i+1 ] form i.i.d. samples. To determine h, we can test the hypothesis that two samples of measurements with timestamps falling in consecutive intervals of length h/2 come from the same distribution. The choice of h will be discussed in details in the numerical implementation section. In this context, we address the inference of the statistical dependency between the source and proxy when they are observed through pairs of data sets collected from both channels on uniform subintervals of the period [0, T ]. The two samples of measurements from the source and proxy falling in a sub-interval will be called a batch.

Let M ∈ N, we consider the following model of distribution adjustment:

find f : R → R such that Q i = f # P i ∀1 ≤ i ≤ M (2.1)
where the input variables P i are drawn independently from a measure M, where M belongs to a given set of probability distributions Z. In this model, the output variables Q i = f # P i are the push-forward measures of the input variables P i under a function f meaning that for all Borel set A we have

f # P i (A) := P i (f -1 (A)).
The inference of f when one only observes M batches of measurements formed by i.i.d. n-samples

X i = (X i 1 , . . . , X i n ) ∼ P i and, independently, Y i = (Y i 1 , . . . , Y i n ) ∼ Q i = f # P i
is the topic of this chapter. The main difference with a classical regression setting lies in the fact that the data samples are not paired since the pairing occurs at the probability distributions level, not at the measurement level.

Quantiles of latency measurements play an important role for load-balancing purposes because users can not be routed individually so the distributional approach using quantiles is a powerful 2.1. Introduction tool. The load-balancing industry heavily relies on the estimation of certain quantiles, hence being able to estimate f (x) for certain key values of x could lead significant improvements of the loadbalancing prediction algorithm by correcting the bias in the proxy. This approach encompasses many other real world applications. For instance since the publication of the Framingham Heart Study [START_REF] Syed S Mahmood | The framingham heart study and the epidemiology of cardiovascular disease: a historical perspective[END_REF], heart rate is known to be a major predictor for a wide variety of health complications. A lot of classical regression settings or machine learning tasks will infer mappings between finite dimension spaces, reducing a distribution to a scalar or real valued vector, despite the fact that the observed phenomenon, like heart rate, is distributional in essence.

In terms of Citrix data, P i (resp Q i ) will be the distribution of measurements of the proxy (resp source) over the interval [t i , t i+1 ]. Here f reflects the assumption of a dependency between the two channels caused by the commun physical structure of interconnected servers at the cables level in the network. In other words the distribution of measurements of one channel should be a deterministic transport of the distribution of the other.

Main results and organization of the chapter

Our estimator for f takes the form:

f n,M (x) = 1 M M i=1 ( G i n ) -1 • F i n (x) (2.2) 
where:

• F i n (x) = 1 n n l=1 1 {X i l ≤x} • G i n (x) = 1 n n l=1 1 {Y i l ≤x} • ( G i n ) -1 (x 0 ) = inf{x ∈ R, ( G i n )(x) ≥
x 0 } are the cumulative distribution functions of the samples (X i 1 , . . . , X i n ) and (Y i 1 , . . . , Y i n ) and the generalized inverse of (Y i 1 , . . . , Y i n ) respectively. The form of the estimator is motivated by the well known inverse transform theorem: if X is a random variable on R with cumulative function F , then F -1 (X) ∼ U(0, 1), see for instance [START_REF] Devroye | Nonuniform random variate generation[END_REF]. If X, Y are two independent real random variables with increasing and continuous cumulative distribution functions F and G respectively, there exists an increasing function h such that Y L = h(X), where h = G -1 • F . This coupling is often called increasing rearrangement, and has connexions to transport theory, see [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. By construction, f is a non decreasing function. This suggests that the true function f must be an increasing function in order to be estimated. It might be the case that f n,M (x) converges to f (x) when f is non increasing for some x when specific conditions are met, but we will mainly focus on increasing f in this chapter. The general case will be examined in the section 2.6. We will derive a sufficient condition on f and Z that guarantees that f n,M (x) converges to f (x), but also that in general the problem of estimating f in the non increasing case is ill-posed.

The analysis of f n,M in this chapter is strongly motivated by the fact that the computation of f n,M (x) for all reasonable values of x -mainly those inside the range of our latency measurement values -reveal a clear smooth function on real data, see 2.1, which is stable across time and batches, with good convergence properties. This is highly indicative that the source distribution of latency measurements in the network is the push forward distribution of the proxy measurements.

This function is of particular interest because it does not change over time: the estimator in (2.2) always converges to the same values. Independently of the time of the day or the state of the source or proxy when looked at separately, the distribution of the source can always be estimated by transporting the distribution of the proxy with that function. This function quantifies the missing information that is lost when one only looks at the proxy.

The Bahadur decomposition of empirical quantiles in [START_REF] Bahadur | A note on quantiles in large samples[END_REF] will be a key ingredient in establishing the rates of convergence of the estimator uniformly in the vicinity of x in probability for increasing f in Theorem 4 of Section 2.2. In Section 2.3 we numerically study the estimator on simulated data that mimic real data where f is chosen to be a function that has a similar profile as the one revealed on real data in Figure 2.1. In Section 2.4 we conduct a detailed experiment on real data and provide empirical evidence that the estimator does indeed converge on real data and can be used to correct the bias and predict accurately the source distribution.

Since we do not have the theoretical guarantee of the existence of an increasing f on real data a priori, we will observe that a sufficient condition for our estimator to converge withe rates as in Theorem 4 is that G -1 • F (x) must be constant across all P ∈ Z where F is the cumulative function of P and G is the cumulative distribution function of f # P . We propose a test for equality of G -1 i • F i (x) to gain deeper insight that Figure 2.1 does actually reveals the true transport. The test is an adaptation to the Wald test for equality of multiple parameters [START_REF] Harrell | Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis[END_REF], using an appropriate characterization of weak convergence of the stochastic process

√ n(G -1 n • F n (x) -G -1 • F (x)
) in terms of asymptotic equicontinuity [START_REF] Pollard | Convergence of stochastic processes[END_REF].

We then demonstrate that using the estimator to correct the proxy distribution leads to significant improvements in the estimation of the source quantiles. We also propose a model for the convergence in order to estimate the rates. Finally, we show adequacy between experimental 2.1. Introduction results and theoretical results.

In section 2.6 we open a discussion concerning non increasing f . We investigate the existence of sufficient conditions on f and Z that guarantee the uniqueness of f and the fact the our estimator does converge to it. One major issue with non increasing f is that for such f , if P ,Q are two probability distributions such that Q = f # P , there always exists a function h such that h = f and Q = f # P = h # P . If one observes samples from P and Q, there is no way to determine which of f or h generated the data, hence there is no guarantee that f can be estimated. In fact, we will show that in general, if f is not increasing, it cannot be estimated.

Data

Before going into the experiments and theoretical analysis, we shall provide the reader with detailed elements of contexts concerning Citrix and its data. The collection of computer files that compose a website are stored in a server that is connected to the network, called the Origin. Large audience websites typically need more than just the Origin server to handle the trafic in order to avoid high latency, poor throughput or even unavailability of the website. One solution to this problem is to use a CDN (Content Delivery network). A CDN is a company that rents to Websites systems of distributed servers that deliver the webpages to their Internet users depending, for instance, on their geographic locations. A CDN makes a copy of the Origin server on a particular subset of servers owned by the CDN, called a map. The idea is to spread the audience to avoid overloading one specific server that can not handle all the trafic at once, while avoiding building a whole infrastructure from scratch. These kind of technologies handle a large portion of the Internet traffic today.

Citrix collects data to measure the performance delivered by the CDN 's. Each time an end user has loaded a webpage of one of Citrix' customer, a javascript tag in the source code of the webpage initiates a ping test on numerous maps monitored by Citrix. Those tests consist in downloading a test object of 43 octets on some specific map and measuring several performance metrics aggregated in a report. Reports contain the latency measurement of the test object, along with the user's location, Internet provider, timestamp, identification number of the map etc. Latency measurements are expressed in ms. Those reports allow Citrix to measure in real time the performance of the numerous networks from all over the world. Two kind of measurements are possible: public and private . A private measurement, if enabled by the customer, directly measures the map of the said customer: the object is physically on the customer's map along with other assests of the website. Such maps will be called private maps. Only the audience of that customer can trigger private measurements, because they require direct connexion to the infrastructure of the customer. A public measurement differs only in the location of the test object. It consists in doing the ping test on a map that belongs to Citrix, and not one belonging to a customer. Such maps will be called public maps. Those measurements can be triggered by anyone surfing any Website of any Citrix's customer. Citrix owns hundreds of maps in order to have a global overview of the CDN market offer. Of particular interest are related public and private maps. In this case, the public map is the proxy, and the private map is the source. In this chapter, proxy and private map will by synonymous, as well as source and public map. Public data are often used in place of private data for load-balancing purposes. Public measurements are much more numerous than private measurements because the entire Citrix community, that is the sum of the audiences of all its customers can trigger them, but they are a proxy, hence potentially less accurate since they do not measure directly the infrastructure of the customer. In later sections, we will preferably use the term proxy (resp source) than private map (resp public map) for sake of generality.

Pointwise estimation of the transport 2.2.1 Presentation of the estimator

Let a, b ∈ R such that a < b and δ > 0 such that δ < (b -a)/2. Denote R = [a, b] and R δ = [a + δ, b -δ].
For A, B, C > 0 three positive reals, define:

F R (A, B, C) = p ∈ C 1 (R), p ≥ 0, p(u)du = 1, A ≤ p(u) ≤ B, |p (u)|≤ C, for all u ∈ R .
In other words F R (A, B, C) is a set of probability densities on R that are differentiable, bounded above and below and have first derivative continuous and bounded on R. Define

Z = P (du) = p(u)du|p ∈ F R (A, B, C)
the set of probability distributions whose densities are in F R (A, B, C). Let M, n ∈ N be positive integers. We place ourselves on the probability space (Ω, A, P) where

Ω = Z M × R n × R n A = B(Ω) the Borel σ-algebra on Ω and P(dω 1 , . . . , dω M , dx 1 , . . . , dx n , dy 1 , . . . , dy n ) = M i=1   n j=1 P (ω i , dx j )Q(ω i , dy j )   M(dω i )
where M is a random measure with value in Z, and P (ω, •), Q(ω, •) are probability measures on R that belong to Z. For 1 ≤ i ≤ M , abusing notation slightly, the observables of this random experiment are constructed as follows: first draw

P (ω i , dx) ∼ M(dω i ) then let Q(ω i , dx) = f # P (ω i , dx)
where

f : R → R. Q(ω i , dx) is the pushforward measure of P (ω i , dx) under f , i.e. for all Borel sets A Q(ω i , A) = P (ω i , f -1 (A)).

Pointwise estimation of the transport

Finally draw independently two samples (X i 1 , . . . , X i n ) and (Y i 1 , . . . , Y i n ) with common distributions P (ω i , dx) and Q(ω i , dy) respectively. The random samples (X i 1 , . . . , X i n ) and (Y i 1 , . . . , Y i n ) will be called a batch. When no confusion is possible, we shall write

P i := P (ω i , dx), Q i := Q(ω i , dy). Let F (ω i , •) := F i and G(ω i , •) := G i the cumulative distribution functions of X i 1 and Y i 1 respec- tively. The last notation we need is the conditional distribution Λ n (ω 1 , dx 1 , . . . , dx n , dy 1 , . . . , dy n ) = n j=1 P (ω i , dx j )Q(ω i , dy j ).
(2.3)

In other words, Λ n (ω 1 , dx 1 , . . . , dx n , dy 1 , . . . , dy n ) is the joint probability distribution of the samples

(X 1 1 , . . . , X 1 n ) and (Y 1 1 , . . . , Y 1 n ) conditional on P (ω 1 , dx).
Remark 3. It is easy to notice that f in 2.1 can not be estimated over its entire domain. Suppose for instance that f is increasing and that we want to estimate f (x) for some x ∈ R from the observation of M batches. If the set Z contains a measure P such that P (R) = 0, then it follows immediately from Q = f # P and because f is increasing that Q(f (R)) = 0. In other words, the observation of random samples distributed from P and Q respectively will give no information on the value f (x). It is necessary to impose local constraints on the measures in Z in a vicinity of x.

Suppose f is not known and that one only observes the M batches, i.e. the independent random samples (X i 1 , . . . , X i n ) and (Y i 1 , . . . , Y i n ) for all 1 ≤ i ≤ M . In this setting, we are interested in the estimation of f over the set R δ .

Assumption 1. f is strictly increasing, twice differentiable, and

1/f L ∞ (R) < ∞.
In other words, f must be bounded away from 0 on R.

Remark 4. Since f is twice differentiable, f and f are continuous. Because R is a compact set, it follows that f L ∞ (R) < ∞, f L ∞ (R) < ∞. Assumption 2. Let P ∼ M and Y ∼ Q = f # P . Then E(Y 2 ) < ∞.
Theorem 4. Let M, n ∈ N be positive integers and define f n,M (x) as in (2.2) for x ∈ R δ . Work under Assumptions 1 and 2, we have:

f n,M (x) -f (x) 1 √ M n + log(n) 3/2 n 3/4 + M e -nδ 2 A 2 /2 (2.4)
in probability, uniformly over R δ , and where means inequality up to a positive constant that depends only on

A, B, C, f L ∞ (R) , f L ∞ (R) , 1/f L ∞ (R) and E(Y 2 ).

Assessing the monotonicity of the transport

As stated in section 2.1.2, when used on real data, our estimator reveals a smooth function f , see Figure 2.1. Theorem 4 is valid for increasing functions only. Can we guarantee that our estimator converges on real data to the true transport? If a true transport f exists and is not increasing, it is possible that our estimator defined on (2.2) converges to a function h = f . To illustrate, let us give an examples where our estimator would fail to estimate the true transport, but still be converging to a smooth increasing function. Denote by U(a, b) the continuous Uniform distribution over the interval [a, b] where

a < b. Let f (x) = x 2 , A i ∼ U(1, 2), P i = U(-A i , A i ), Q i = f # P i .
In this case, f n,M will not converge towards f but, as the result of the law of large numbers, to

x → 1 4 E(x + A) 2 , see Figure 2.2. -2 -1 0 1 2 0 1 2 3 4 5 Figure 2.2: f (x) = x 2 , A i ∼ U(1, 2), P i = U(-A i , A i ) and Q i = f # P i . Red curve is f , dashed blue is x → 1 4 E(x + A) 2 , green is f N , and thin dashed lines are G -1 n,i • F n,i for all i.
In this example, f n,M converges to an increasing function: the expected value of G -1 • F (x), but typically at a rate smaller than the rate in Theorem 4. The reason for this is because in this example, each choice of distribution P i leads to a different value for G -1 i • F i (x). The convergence and rate of convergence obtained in Theorem 4 comes from aggregating terms that individually converge to 0. The increasing assumption precisely serves that purpose: it guarantees that G -1 • F is independent of the choice of P ∈ Z, see Proposition 8. Conversely, the independence of G -1 • F of the choice of P ∈ Z implies the existence of an increasing function h such that h # P = f # P for all P ∈ Z, see in Proposition 6. In this case, one can easily see that our estimator will converge towards h instead of f , and at the rate in Theorem 4. From a practical perspective it is of no consequence since h # P = f # P for all P ∈ Z implies that in our model, f and h play identical role and are perfectly indistinguishable: no experience can be conducted to determine that indeed the 2.2. Pointwise estimation of the transport estimator did not converge towards f but h. Think about symmetric distributions with respect to 0 and f = -id R for instance. In this case the estimator will converge to h = id R , and there is no way to determine that the true transport that generated the data was -id R . We can safely ignore this problem by introducing an equivalence relation on the set of functions C 2 (R) such that f ∼ g if and only if f # P = h # P for all P ∈ Z.

If f ∈ C 2 (R) is the true transport and if G -1 • F is independent of P ∈ Z where F, G are the cumulative distribution functions of P, Q = f # P respectively, then there exists an increasing h in [f ] = {g ∈ C 2 (R)|g ∼ f },
and we guarantee that the estimator converges to h at the rates in Theorem 4, this is the purpose of Proposition 6.

For 1 ≤ i ≤ M , when we observe the samples (X i 1 , . . . , X i n ) and (Y i 1 , . . . , Y i n ) drawn from P i and Q i = f # P i respectively where (P 1 , . . . , P M ) are independent with common distribution M , testing for equality of all G -1 i • F i (x) for different values of x is a reasonable way to determine whether or not f n,M is an estimate of the true transport. For x ∈ R, we want to test:

H x 0 : G -1 1 • F 1 (x) = • • • = G -1 M • F M (x) against H x 1 : ∃ i = j, G -1 i • F i (x) = G -1 j • F j (x).
In order to test those hypothesis, we will use the fact that G -1 n,i •F n,i (x) is asymptotically Gaussian. Theorem 5. Work under Assumptions 1 and 2. Let P ∼ M and Q = f # P and (X 1 , . . . , X n ) and (Y 1 , . . . , Y n ) be independent samples with common distributions P and Q respectively. Denote F, G the cumulative distributions of P, Q respectively, F n , G n their empirical counterparts and g the density of Q. We have

√ n σ(F ) (G -1 n • F n (x) -G -1 • F (x)) P -→ n→∞ N (0, 1) (2.5) 
where

σ(F ) 2 = 2 F (x)(1 -F (x)) (g • G -1 • F (x)) 2 .
If σ(F ) 2 is unknown, we show that it can be estimated and that the limiting distribution in Theorem 5 is preserved, see Proposition 4.

Proposition 4. Work under Assumptions 1 and 2. Let

P ∼ M and Q = f # P and (X 1 , . . . , X n ) and (Y 1 , . . . , Y n ) be independent samples with common distributions P and Q respectively. Denote F, G the cumulative distributions of P, Q respectively, F n , G n their empirical counterparts, and g be the density distribution of Q. Let

σ n (F ) 2 = 2 F n (x)(1 -F n (x)) g n • ( G 1 n ) -1 • F n (x)
where:

g n (t) = 1 nh n n j=1 K Y j -t h n , h n > 0
is a kernel density estimator of g [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF], [START_REF] Wand | Kernel smoothing[END_REF]. Suppose moreover that the following conditions on K and h n hold:

i) K is right continuous. ii) K is compactly supported. iii) n≤1 e -γnh 2 n < ∞ for all γ > 0.
Then σ n (F )2 converges in probability to σ(F ) 2 where

σ(F ) 2 = 2 F (x)(1 -F (x)) (g • G -1 • F (x)) 2 .
Finally, we present in Proposition 5 a test for H x 0 versus H x 1 at level α ∈ (0, 1).

Proposition 5. Let:

θ x =      G -1 1 • F 1 (x) G -1 2 • F 2 (x) . . . G -1 M • F M (x)      (2.6) θ n,x =      (G 1 n ) -1 • F 1 n (x) (G 2 n ) -1 • F 2 n (x) . . . (G M n ) -1 • F M n (x)      (2.7) Σ n =    σ n (F 1 ) 2 . . . σ n (F M ) 2    and R =    1 -1 . . . . . . 1 -1   
where R is a (M -1) × M matrix where the first column is a vector of 1's and the remaining columns is a (M -1) × (M -1) matrix with diagonal elements equal to -1 and 0 everywhere else. Then:

W n := n RΣ n R t -1/2 Rθ n,x
under H x 0 as n → ∞, where χ 2 (M -1) denotes the χ 2 distribution with M -1 degrees of freedom. Hence for α ∈ (0, 1), the decision rule

Φ(α) = 1 R(α)
is an asymptotic test of level α of the null hypothesis H x 0 with rejection zone

R(α) = {W n > q χ 2 (M -1) α }
where q

χ 2 (M -1) α
is the quantile of order α of the χ 2 (M -1) distribution.

Illustration on a toy example

We propose in this section to implement the estimator on a toy example where the samples are log normally distributed, because real latency measurements from the source and proxy can be roughly seen as log normal realizations as seen in Figure 2.3. We recall that X has a log normal distribution with parameters µ ∈ R, σ 2 > 0 if X > 0 a.s. and log(X) ∼ N (µ, σ 2 ). In this case we write X ∼ LN (µ, σ 2 ). The function f that we will consider is chosen to have similarities to the function in from f (log N (u, s)) and compute the estimator f n,m (x). To estimate the rates of convergence, we repeat this process for n ranging from 20 to 1.000. The rate of convergence is then estimated from a log-log plot of the absolute difference between f n,m (x) and f (x). Results are shown in Figures 2.5, 2.6 and 2.7. The log-log plots of the error against n shows strong evidence of a linear relation. For x = 2.5, fitting a linear model across the 200 simulations led to a median R 2 of 0.87 and median slope of -0.78. Outside this range, f n,m deviates from f because of data scarcity. 
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The experiment

Given a proxy -private map -and source -public map -we want to determine whether or not the distribution of the source is a monotonic transport of the distribution of the proxy.

Presentation of the data

The latency measurements collected by Citrix from a map are modeled as realizations of random variables whose underlying distributions may vary depending on the time of the day. In this experiment we collected 7 consecutive days of latency data from a source and proxy that were generated by Internet users located in Paris on the Orange ISP between 05/14/18 and 05/20/18. Denote this period of time [0, T ] where T = 604800 is the number of seconds in a week, and

0 = t 0 < t 1 < • • • < t K = T a partition of [0, T ] such that t i+1 -t i = h > 0 for all i.
The CDN performance varies across time, so the choice of h is important in order to obtain i.i.d. samples.

To choose h, we proceed as follows. Fix h > 0 and let S h i be the collection of all measurements with timestamps falling in the interval ]ih/2, (i + 1)h/2] for i = 0, . . . , 2T /h. We then perform a hypothesis testing that the samples S h i and S h i+1 come from the same distribution using the twosamples Kolmogorov-Smirnov test [START_REF] Marsaglia | Evaluating kolmogorov's distribution[END_REF] and let p h i be the corresponding p-value. Finally we analyze the distribution of those p-values for varying h and choose the larger h so that the distribution of the p h i is uniform, see Figure 2.8. The value h = 60 min is chosen and aligns with operational engineers recommandations.

Once the value for h is chosen, we fix the partition (t i ) 0≤i≤K of [0, T ]. Measurements with timestamps falling between times t i-1 and t i will form the samples. We then perform uniform subsampling without replacement to force the same number of observations N per sample to meet the model assumptions. The number of measurements N is chosen so that the number of batches containing at least N measurements is K = 2 √ N leading to N = 1685 and K = 82. The other samples are discarded because of too few measurements, corresponding to the middle night periods. Denote the selected samples from both mapsby (X i ) 1≤i≤82 and (Y i ) 1≤i≤82 respectively. Now let M = K /2 = 41 = √ N , and use (X i ) 1≤i≤M and (Y i ) 1≤i≤M as training data to build f N,M (x) for x = 1, . . . , 200 according to (2.2), see Figure 2.9. Since M = √ N , we shall just write f N . The remaining batches are used for testing our estimator.

Monotonicity of the true transport

As explained in Section 2.2.2, f N will converge to the true transport only if f is increasing. To assess the monotonicity of the true transport f on real data we use the test derived in Proposition 5. The test statistic For large values of h, the p-values concentrate near 0, suggesting that the samples S h i and S h i+1 containing latency measurements with timestamps falling in consecutive time intervals of length h/2 do not come from the same distribution. This suggests that over periods of time of length h/2+h/2 = h, the distribution of latency measurements changes. As h decreases, less p-values p h i concentrate near 0 and a uniform distribution is revealed.

W n = n RΣ n R t -1/2 Rθ n,x
depends of the kernel estimation of the density of the measurements of the source. We choose the triangle kernel and the Silverman rule of thumb [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] for bandwidth selection, i.e. h = h n is chosen to be 0.9n -1/5 times the minimum between the sample standard deviation and the interquartile range divided by 1.34. In order to guarantee sufficient density of points, we tested H x 0 for x ranging from 20 to 150 since there were too few data points outside that range. 17% of the tests rejected H x 0 on our data, with α = 0.05, see Figure 2.10. The values x for which the test was rejected is concentrated in a region of the real line corresponding on average to quantiles of order 0.2 to 0.4 for the proxy distribution, suggesting that the estimation of f in that region is not as reliable as it is outside that range. Denote I Reject = [START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF][START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF] this range, and

I Accept = I c
Reject . The average p-values is 0.006 for the tests where H x 0 was rejected, and 0.61 for the tests where H x 0 failed to be rejected, suggesting that

∀ x ∈ I Accept , ∀ 1 ≤ i ≤ M , G -1 i • F i (x) is independent of i.
Moreover, even for the values of x where H x 0 was rejected, the estimator still converges. Heuristi- cally, under the hypothesis that G -1 1 • F 1 (x) is integrable and if one allows n to be arbitrarily large in front of M , then f n (x) is close to the expected value of G -1 1 • F 1 (x). This suggests that the 53 2.4. Empirical results distribution of proxy and source measurements are indeed transported versions of one another by a deterministic transport, and this transport may be increasing only on I Accept . f n (x) is an estimate of that transport on I Accept , and an estimate of the average behavior of

G -1 i • F i on I Reject . As seen above, if G -1 i • F i (x)
is not independent of i, the rates of convergence in Theorem 4 should not be met. We will present empirical evidence of this fact in Section 2.4.5 about the analysis of the rates of convergence.

Performance of the estimator

The goal of the estimation of f N is to reproduce the behavior of the source when one only has access to the proxy. The estimator f N is built on the train sets (X i ) 1≤i≤M and (Y i ) 1≤i≤M . We can assess the performance of f N on the test sets

(X i ) M +1≤i≤2M and (Y i ) M +1≤i≤2M by comparing d(X i , Y i ) and d( f N (X i ), Y i ) for M + 1 ≤ i ≤ 2M
where d is a distance between distributions. As seen in section 2.1.1 load-balancers heavily rely on the quantiles of the latency distribution to route the users. Hence a natural choice for d is the Wasserstein distance because it acts as the average between the absolute difference of the quantiles of the underlying two distributions. We briefly recall the definition and some facts about this distance, see for instance [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF].

Definition 5. Let P, Q be two probability distributions on R and p ≥ 1. The Wasserstein distance of order p between P and Q is defined as:

W p (P, Q) := inf π∈Π(P,Q) |x -y| p π(dx, dy) 1/p
where Π(P, Q) is the set of probability measures with marginal P and Q respectively.

When P, Q are probability distributions over the real line, the W p has the closed form:

W p (P, Q) = R |F (x) -G(x)| p dx 1/p = 1 0 |F -1 (u) -G -1 (u)| p du 1/p
where F, G are the c.d.f. of P and Q respectively, and

F -1 , G -1 their generalized inverse. If one observes the i.i.d. samples (X 1 , . . . , X n ) with distribution F and (Y 1 , . . . , Y n ) with distribution G,
the empirical Wasserstein distance is defined defined as the Wasserstein distance between the two empirical distributions:

W p,n (F, G) := W p (F n , G n ) = 1 0 |F -1 n (u) -G -1 n (u)| p du 1/p where F n (u) = n -1 n i=1 1 {Xi≤u} and G n (u) = n -1 n j=1 1 {Yj ≤u} are the empirical cumulative distributions and F -1 n and ( G 1 n ) -1
denote their general inverse, or empirical quantile function. The empirical Wasserstein distance has the closed form:

W p,n (F, G) = 1 n n i=1 |X (i) -Y (i) | p 1/p
where (X (i) ) 1≤i≤n and (Y (i) ) 1≤i≤n are the order statistics of the two samples, ie X

(1) ≤ X (2) ≤ . . . ≤ X (n) and Y (1) ≤ Y (2) ≤ . . . ≤ Y (n) .
We choose the Wasserstein distance of order p = 1 as the criteria to assess the performance of our estimator by comparing W 

1,N (X i , Y i ) with W 1,N ( f N (X i ), Y i ) for M + 1 ≤ i ≤ 2M .
1,n (X , Y) W 1,n ( f N (X ), Y) Relative change W 1,n ( f N (X ), Y) < W 1,n (X , Y)
9.95 4.36 -56% 95% Table 2.1: Empirical Wasserstein distance between the source and proxy (column 1), empirical Wasserstein distance between the source and transported proxy using our estimator f n (column 2), relative change in the empirical Wasserstein distance resulting from transporting the proxy (colonne 3), percentage of batchs for which the empirical Wasserstein distance distance between the source and proxy was reduced by transporting the proxy.

The average distance between the source and proxy over the 42 test batches is 1 42

82 i=43 W 1,N (X i , Y i ) = 9.95
whereas the average distance between the source and the transported proxy using our estimator f n,M over the 42 test batches is 1 42

82 i=43 W 1,N ( f N (X i ), Y i ) = 4.36 55 
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hence reducing this distance on average by 56%. Moreover, for 95% of the test batches, we observed a reduction in the distance:

1 42 82 i=43 1 W 1,N ( f N (Xi),Yi)<W 1,N (Xi,Yi) = 95%
For load-balancing purposes this means that the prediction error made when estimating the quantiles of the source by using those of the proxy be cut in half by transforming the measurements from the proxy with f N beforehand, which represents a significant improvement. The correction of the proxy distribution using f N actually improves on all quantiles, not just on average, as seen in Figure 2.12. An example of output on one test batch is presented in Figure 2.13. 

Convergence rate estimation

We now focus in modeling f N and estimating rates of convergence. The problem we are facing here is that we ignore the limit f . If f were known we could perform a linear analysis in log-log scale of the error | f n -f | against n. Since f is unknown, we propose to first compute f N (x) with N as large as possible, compute successive approximation f n (x), then perform a log-log analysis of the absolute differences. We keep the grid (t i ) i such that t i+1 -t i = h = 3600s, but we All log-log plots exhibit the same pattern. A linear relation between log| f n (x) -f N (x)| and log(n) is present up until n ≈ N/2, then the decay accelerates. This acceleration is due to the fact that we are looking at log|

f n (x) -f N (x)| instead of log| f n (x) -f (x)|, hence when n approaches N , | f n (x) -f N (x)| approaches (and even reaches) 0 much faster than | f n (x) -f (x)|. On the other hand, when n is small in front of N , | f n (x) -f N (x)| and | f n (x) -f (x)|
are expected to behave similarly. Because we use only an approximation of the limit instead of the true limit, fitting a linear model and extracting the slope here will overestimate the rate. It seems natural to fit a classic linear model only for small n to estimate the rate of convergence.

To do so, we propose the following approach to have a quantitative insight on the cut off point. Using the results of Theorem 4, a linear model between log| f n (x) -f (x)| and log(n) for M = √ n is reasonable. We suppose that there exists a > 0, b ∈ R and i.i.d. centered Gaussian random variables E n with variance σ 2 such that where

log| f n (x) -f (x)|= -a log(n) + b + E n which can be rewritten f n (x) = CR n E n n -a + f (x)
C = e b > 0, R n = sign( f n (x) -f (x)
) and E n = e En are i.i.d. log-Normal with parameters (0, σ 2 ). For ease of analysis, we will assume that the variables R n are i.i.d. Rademacher with parameter p ∈ (0, 1), denoted Rad(p), i.e. P(R n = 1) = 1 -P(R n = -1) = p. We will use this model for f n (x). It follows that

log| f n (x) -f N (x)|= -a log(n) + log(C) + log(E n ) + log 1 - n N a Rn Ẽn where Rn = R N /R n ∼ Rad(2p(p -1) + 1), Ẽn = E N /E n ∼ LN (0, 2σ 2 ), and log(E n ) ∼ N (0, σ 2 ).
In other words, the term log|1 -n a /N a Rn Ẽn | is the price to pay for replacing f (x) with f N (x). If σ 2 is reasonably small, this cost is close to 0 for small n, i.e. log| f n (x) -f N (x)| behaves linearly in log(n) for values of n below a certain threshold in this model, as observed from the data. We can compute the expected value of log|1 -n a /N a Rn Ẽn | as a function of

x = n/N ∈ (0, 1). Define h : [0, 1] → R such that h(x) = E log|1 -x a RE|
where R ∼ Rad(q) and E ∼ LN (0, s 2 ) is independent of R. h is not analytical, but can be computed numerically with arbitrary precision.

Figure 2.15 provides insight that indeed for n < N/2, the cost log|1 -n a /N a Rn Ẽn | plays minimal role in average. Small values of s exhibit an accelerated decay as x goes to 1, when large values of s reveal an inflection point with abscissa getting smaller when s gets larger. This model suggests that the value of σ 2 is indeed small as all graphs of log| f n (x) -f N (x)| against log(n) exhibit this precise accelerated decay pattern. Assuming σ 2 < 0.05, we will neglect the random effects of the log-Normal distribution in h(x) = E log|1 -x a RE|. This simplification allows us to compute Our model for log| f n (x) -f N (x)| now takes the form:

log| f n (x) -f N (x)|= C -a log(n) + p log 1 - n N a + (1 -p) log 1 + n N a + N (0, σ 2 ).
Using the fact that for n < N/2, log| f n (x) -f N (x)| is approximately linear in log(n), we estimate C by Ĉ = Ĉ(x), the offset of the linear fit between log| f n (x) -f N (x)| and log(n) with slope a for n < N/2, i.e.

Ĉ(x) = N/2 n=1 (log| f n (x) -f N (x)|+a log(n))
Define the objective function:

L(a, p) = x N n=1 log| f n (x)-f N (x)|-Ĉ(x)+a log(n)-p log 1- n N a -(1-p) log 1+ n N a 2
.

Our estimator of (a, p) will be:

(â, p) = arg min p∈(0,1),a∈(0,2)

L(a, p)

Proofs

We estimate the solution by grid searching the optimal couple of parameters. For instance, numerical implementations of the above problem gives (â, p) = (0.78, 0.38) for x = 71 see Figure 2.16. n=1 log| f n (x) -f N (x)|+0.78 log(n) is the offset in the linear regression between log| f n (x) -f N (x)| and log(n). The fit of the model is shown in Figure 2.17 and shows very good adequation with real data. The average R 2 for this model across all values of x was 0.96, leading in addition uncorrelated residuals with Gaussian distribution. The values of the exponent a for x ∈ I Accept are consistent with theoretical analysis and the convergence rate obtained in Theorem 4. The estimated rate of convergence across x is presented in Figure 2.18.

Proofs

Proof of Theorem 4

What we want to do is upper bound P(| f n,M (x) -f (x)|> K) for x ∈ R δ and K > 0 and show that it decreases at a rate as in Theorem 4. One key ingredient of the proof consists in decomposing this probability using the event where

ξ n,M = M i=1 F i n (x) ∈ F i (R δ/2 )
R δ/2 = [a + δ/2, b -δ/2],
and its complementary as follows:

P(| f n,M (x) -f (x)|> K) ≤ P(| f n,M (x) -f (x)|> K, ξ n,M ) + P(ξ c n,M ). ( )
Observe that:

P(ξ c n,M ) = P M i=1 { F i n (x) ∈ F i (R δ/2 )} c = P M i=1 F i n (x) ∈ F i (R δ/2 ) ≤ M P F 1 n (x) ∈ F 1 (R δ/2 ) .
Since R δ/2 is an interval and F 1 is strictly increasing: Let us first focus on P F 1 n (x) > F 1 (b -δ/2) . Since F 1 is the cumulative distribution function of P 1 ∈ Z, it is increasing and differentiable. In particular, for any

P F 1 n (x) ∈ F 1 (R δ/2 ) = P F 1 n (x) ∈ [F 1 (a + δ/2), F 1 (b -δ/2)] = P F 1 n (x) < F 1 (a + δ/2) + P F 1 n (x) > F 1 (b -δ/2) .

Proofs

x ∈ R δ = [a + δ, b -δ] there exists τ b ∈ (b -δ, b -δ/2) ⊂ R such that: F 1 (b -δ/2) -F 1 (x) ≥ F 1 (b -δ/2) -F 1 (b -δ) = δ 2 F 1 (τ b ). Since F 1 ∈ F R (A, B, C), F 1 (τ b ) ≥ A. It follows: P F 1 n (x) > F 1 (b -δ/2) = P F 1 n (x) -F 1 (x) > F 1 (b -δ/2) -F 1 (x) ≤ P F 1 n (x) -F 1 (x) > F 1 (b -δ/2) -F 1 (b -δ) ≤ P F 1 n (x) -F 1 (x) > δA 2 .
We recall Hoeffding's Lemma [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF].

Lemma 1 (Hoeffding's Lemma). If X is a random variable on R such that there exists two real numbers a, b such that

P(a ≤ X ≤ b) = 1 then for all λ > 0 log E e λX ≤ λE(X) + λ 2 8 (b -a) 2 .
Hoeffding's Lemma can be stated in terms of conditional expectation.

Lemma 2 (Conditional Hoeffding's Lemma). If X is a random variable on R such that there exists two real numbers a, b such that P(a ≤ X ≤ b) = 1 then for all λ > 0 and σ-algebra

G log E e λX |G ≤ λE(X|G) + λ 2 8 (b -a) 2 .
The proof of the conditional Hoeffding's Lemma is identical to the proof of the unconditional Hoeffding's Lemma. Let

S n = n i=1 1 X 1 i ≤x so that F 1 n (x) = S n /n. Moreover notice F 1 (x) = E(S n |P 1 )/n. Let Z i = 1 X 1 i ≤x -E(1 X 1 i ≤x |P 1
) and observe that for any λ > 0: 

P F 1 n (x) -F 1 (x) > δA 2 |P 1 = P n F 1 n (x) -nF 1 (x) > n δA 2 |P 1 = P S n -E(S n |P 1 ) > n δA 2 |P 1 = P e λ(Sn-E(Sn|P1)) > e nλ δA 2 |P 1 ≤ e -
Z i |P 1 ) = 0 ≤ e -nδ 2 A 2 /2 . Hence P F 1 n (x) > F 1 (b -δ/2) ≤ e -nδ 2 A 2 /2 .
The proof that

P F 1 n (x) < F 1 (a + δ/2) ≤ e -nδ 2 A 2 /2
is identical. Hence

P(ξ c n,M ) ≤ 2M e -nδ 2 A 2 /2 .
(2.8)

Proofs

This completes the first part of the proof. Recall that we want to upper bound the term on the right side in ( ). Now, let us focus on

P(| f n,M (x) -f (x)|> K, ξ n,M ). Let x ∈ R δ , K > 0.
We have:

P(| f n,M (x) -f (x)|> K, ξ n,M ) = P 1 M M i=1 ( G i n ) -1 • F i n (x) -f (x) > K, ξ n,M = P 1 M M i=1 ( G i n ) -1 • F i n (x) -G -1 i • F i (x) > K, ξ n,M = P 1 M M i=1 ( G i n ) -1 • F i n (x) ± G -1 i • F i n (x) -G -1 i • F i (x) > K, ξ n,M ≤ I + II (2.9)
where:

I = P 1 M M i=1 ( G i n ) -1 • F i n (x) -G -1 i • F i n (x) > K/2, ξ n,M II = P 1 M M i=1 G -1 i • F i n (x) -G -1 i • F i (x) > K/2, ξ n,M .
• The term I.

For any ν ∈ (0, 1) define:

A n,i (ν) := ( G i n ) -1 (ν) -G -1 i (ν) - ν -G i n (G -1 i (ν)) g i (G -1 i (ν))
, so that we have:

I = P 1 M M i=1 ( G i n ) -1 • F i n (x) -G -1 i • F i n (x) > K/2, ξ n,M = P 1 M M i=1 F i n (x) -G i n (G -1 i ( F i n (x))) g i • G -1 i • F i n (x) + A n,i ( F i n (x)) > K/2, ξ n,M ≤ P 1 M M i=1 F i n (x) -G i n (G -1 i ( F i n (x))) g i • G -1 i • F i n (x) > K/4, ξ n,M + P 1 M M i=1 A n,i ( F i n (x)) > K/4, ξ n,M =: I 1 + I 2 say. (2.10) First, let us upper bound I 1 . For any u ∈ R, if X ∼ F ∈ Z, P(X ≤ u) = P(f (X) ≤ f (u)) because f is increasing. Moreover Y = f (X) is a random variable with distribution Q = f # P .
Denoting by G its c.d.f. we have:

F (u) = G • f (u) (2.11)
so for any v ∈ f (R), we have:

G(v) = F • f -1 (v) (2.12)
or equivalently for w ∈ R:

f (w) = G -1 • F (w) (2.13)
By assumption, F and f are differentiable, hence:

G (v) = F • f -1 (v) f • f -1 (v) so for v ∈ f (R), using that F ∈ F R (A, B, C
) and Assumption 2 it follows that:

0 < A f -1 L ∞ (R) ≤ G (v) ≤ B 1/f L ∞ (R) , (2.14) 
meaning that if

F i n (x) ∈ F i (R δ/2 ), it holds that g i • G -1 i • F i n (x) -1 ≤ f L ∞ (R)
A -1 by (2.14). Hence:

I 1 = P 1 M M i=1 F i n (x) -G i n (G -1 i ( F i n (x))) g i • G -1 i • F i n (x) > K/4, ξ n,M ≤ P 1 M M i=1 F i n (x) -G i n (G -1 i ( F i n (x))) > AK 4 f L ∞ (R) , ξ n,M (2.15) 
Now let:

Z n,i = F i n (x) -G i n (G -1 i ( F i n (x))).
Let A i be the σ-algebra generated by {P i , X i 1 , . . . , X i n }. We plan to condition on A i to obtain first and second moments of Z n,i and apply Markov's inequality. Note that conditioning on A i freezes all random variables except the sample (Y i 1 , . . . , Y i n ).

E(Z n,i ) = E(E(Z n,i |A i )) = E E F i n (x) -G i n (G -1 i ( F i n (x)))|A i . Since G i n is the empirical c.d.f. of (Y i 1 , . . . , Y i n ) we have E G i n (G -1 i ( F i n (x)))|A i = E 1 {Y i 1 ≤G -1 i ( F i n (x))} |A i = G i • G -1 i • F i n (x) = F i n (x)
hence we obtain:

E F i n (x) -G i n (G -1 i ( F i n (x)))|A i = 0,
i.e. :

E(Z n,i ) = 0.

Proofs

Moreover, using the well-known form for the variance of the empirical c.d.f. we obtain:

E F i n (x) -G i n (G -1 i ( F i n (x))) 2 |A i = F i n (x)(1 -F i n (x)) n ≤ 1 4n
meaning that:

E(Z 2 n,i ) = E(E(Z 2 n,i |A i )) = E E F i n (x) -G i n (G -1 i ( F i n (x))) 2 |A i ≤ 1 4n .
It follows by Markov's inequality and 2.15:

I 1 ≤ 16 f 2 L ∞ (R) A 2 K 2 E   1 M M i=1 Z n,i 2   ≤ 16 f 2 L ∞ (R) A 2 M K 2 E Z 2 n,1 ≤ 4 f 2 L ∞ (R) A 2 1 M nK 2 .
(2.16)

Now, concerning I 2 , we want to prove that for any > 0, there exists K > 0 and N ∈ N such that, for all n ≥ N :

P 1 M M i=1 |A n,i (F n,i (x))|> log(n) 3/2 n 3/4 K, ξ n,M ≤ .
To do this, first observe that using Markov's inequality and the triangle inequality we obtain:

I 2 = P 1 M M i=1 A n,i ( F i n (x)) > K 4 , ξ n,M ≤ 4 K 1 M M i=1 E |A n,i ( F i n (x))|1 ξ n,M . Now, recall that ξ n,M = M i=1 { F i n (x) ∈ F i (R δ/2 )}, hence 1 ξ n,M ≤ 1 { F j n (x)∈Fj (R δ/2 )} P-a.s. for all 1 ≤ j ≤ M . Furthermore, |A n,i ( F i n (x))|1 { F i n (x)∈Fi(R δ/2 )} 1≤i≤M
are independent and identically distributed, meaning that:

I 2 ≤ 4 K E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} .
(2.17)
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Proving that this bound is controlled by n -3/4 log(n) 3/2 uniformly in x ∈ R δ will complete the proof. Instead of directly bounding I 2 , we will instead focus on bounding the expectation conditional on the σ-algebra generated by ( F 1 n (x), P ). Observe that:

E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} = E E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} | F 1 n (x), P 1 = E h n ( F 1 n (x), P 1 ) say,
where

h n : [0, 1] × Z -→ (0, ∞) is defined by h n (ν, P ) = E |A n,1 (ν)|1 {ν∈F1(R δ/2 )} | F 1 n (x) = ν, P 1 = P .
In the definition of h n we condition on the event P 1 = P , hence the cumulative functions F 1 and G 1 are fixed. In other words, in this part of the proof, F 1 and G 1 are to be understood as the cumulative functions of the measures P and f # P respectively, where P is a fixed element of Z.

By assumption, (X 1 1 , . . . , X 1 n ) and (Y 1 1 , . . . , Y 1 n ) are independent conditional on P 1 and the variables (X 1 1 , . . . , X 1 n ) are embedded only through the measurable functional T (X 1 , . . . , X n ) = F n (x). Hence:

h n (ν, P ) = E |A n,1 (ν)|1 {ν∈F1(R δ/2 )} |P 1 = P .
If one proves that n 3/4 log(n) -3/2 h n (ν, P ) is uniformly bounded in n ∈ N, ν ∈ [0, 1] and P ∈ Z, the result will follow. For any choice of n, ν and P , observe that h n (ν, P ) = 0 if ν ∈ F 1 (R δ/2 ), and

h n (ν, P ) = E |A n,1 (ν)| |P 1 = P if ν ∈ F 1 (R δ/2 ). Let n ∈ N, ν ∈ [0, 1] and P ∈ Z such that ν ∈ F 1 (R δ/2 ). Let: J n = G -1 1 (ν) - log(n) √ n , G -1 1 (ν) + log(n) √ n , (2.18) 
and recall that:

A n,1 (ν) = ( G 1 n ) -1 (ν) -G -1 1 (ν) - ν -G 1 n (G -1 1 (ν)) g 1 (G -1 1 (ν)) . (2.19)
We will decompose the expectation on the events {(

G 1 n ) -1 (ν) ∈ J n } and {( G 1 n ) -1 (ν) ∈ J n }.
We will upper bound the former using the results provided by Bahadur in [START_REF] Bahadur | A note on quantiles in large samples[END_REF], and the latter will be easily controlled by P((

G 1 n ) -1 (ν) ∈ J n ).
We shall recall the main result of Bahadur in [START_REF] Bahadur | A note on quantiles in large samples[END_REF]. Theorem 6 (Bahadur). Let (Z n ) n≥1 be a sequence of independent real valued random variables with common distribution F . Let x ∈ R and let F (x) = p and suppose that F has two derivatives in some neighborhood of x, that F is bounded in that neighborhood and that F (x) =: f (x) > 0. These assumptions imply that F is invertible at x and 2.5. Proofs

that x = F -1 (p) with 0 < p < 1 is the unique p-quantile of F . Let F n (x) = 1 n n i=1
1 Zi≤x the empirical cumulative distribution function and for α ∈ (0, 1) let

(F n ) -1 (α) = inf{u ∈ R|F n (u) ≥ α}
be the generalized inverse of F n . Then

(F n ) -1 (p) = F -1 (p) + p -F n (F -1 (p)) f • F -1 (p) + R n where R n = O a.s. (n 3/4 log(n)). We know that ν ∈ F 1 (R δ/2 ) implies G -1 1 (ν) ∈ G -1 1 • F 1 (R δ/2 ) = f (R δ/2 ) ⊂ f (R). Moreover there exists N 1 ∈ N such that for all n ≥ N 1 , we have n -1/2 log(n) < δ/2. For such a n, observe that J n ⊂ f (R).
Choose such a n. There are 2 cases:

Case 1: ( G 1 n ) -1 (ν) ∈ J n
We follow up closely on Bahadur's ideas developed in the proof of his theorem on the almost sure representation of empirical quantiles [START_REF] Bahadur | A note on quantiles in large samples[END_REF] to derive the upper bound. By a Taylor expansion we obtain:

G 1 (( G 1 n ) -1 (ν)) = G 1 (G -1 1 (ν)) + ( G 1 n ) -1 (ν) -G -1 1 (ν) G 1 (G -1 1 (ν)) + G 1 (θ n ) 2 ( G 1 n ) -1 (ν) -G -1 1 (ν) 2 where θ n ∈ G -1 1 (ν), ( G 1 n ) -1 (ν) . Since ( G 1 n ) -1 (ν) ∈ J n , we have |G -1 1 (ν) -θ n |≤ |G -1 1 (ν) - ( G 1 n ) -1 (ν)|≤ n -1/2 log(n) using (2.18), meaning that θ n ∈ f (R) because n ≥ N 1 .
Moreover, using (2.12) and the fact that F 1 and f are twice differentiable we have:

G 1 (u) = F 1 • f -1 (u) f • f -1 (u) 2 - f • f -1 (u) f • f -1 (u) 3 • F 1 • f -1 (u),
meaning that for u ∈ f (R) it holds:

|G 1 (u)|≤ C 1/f 2 L ∞ (R) + B f L ∞ (R) 1/f 3 L ∞ (R) =: Θ 1 . (2.20)
Using (2.20), we know that |G 1 (u)|≤ Θ 1 for all u ∈ f (R), so in particular there exists

φ n,1 such that |φ n,1 |≤ 1, G 1 (θ n ) = φ n,1 Θ 1 . Moreover ( G 1 n ) -1 (ν) ∈ J n implies that there exists φ n,2 such that |φ n,2 |≤ 1, (( G 1 n ) -1 (ν) -G -1 1 (ν)) 2 = φ n,2 n -1 log(n) 2 .
So we have:

G 1 (( G 1 n ) -1 (ν)) = G 1 (G -1 1 (ν)) + ( G 1 n ) -1 (ν) -G -1 1 (ν) G 1 ((G -1 1 (ν)) + Θ 1 2 φ n,1 φ n,2 log(n) 2 n .
Let φ n = φ n,1 φ n,2 . Then:

G 1 (( G 1 n ) -1 (ν)) = G 1 (G -1 1 (ν)) + ( G 1 n ) -1 (ν) -G -1 1 (ν) G 1 (G -1 1 (ν)) + Θ 1 2 φ n log(n) 2 n (2.21)
and |φ n |≤ 1. Let:

D n (u) = G 1 n (u) -G 1 n (G -1 (ν)) -G 1 (u) -G 1 (G -1 1 (ν)) , (2.22) 
H n = sup{|D n (u)|, u ∈ J n }. (2.23) Since ( G 1 n ) -1 (ν) ∈ J n we have: D n (( G 1 n ) -1 (ν)) = ψ n H n (2.24)
where

|ψ n |≤ 1. Notice that G 1 n (( G 1 n ) -1 (ν)) = n -1 n i=1 1 {Y 1 i ≤Y 1 (kn) } = n -1 k n where k n = nν . It follows that: D n (( G 1 n ) -1 (ν)) = ψ n H n = k n n -G 1 n (G -1 1 (ν)) -G 1 (( G 1 n ) -1 (ν)) -G 1 (G -1 1 (ν)) . (2.25) 
Combining (2.21), (2.24) and (2.25):

k n n = G 1 n (G -1 1 (ν)) + G 1 (( G 1 n ) -1 (ν)) -G 1 (G -1 1 (ν)) + ψ n H n = G 1 n (G -1 1 (ν)) + ( G 1 n ) -1 (ν) -G -1 1 (ν) G 1 (G -1 1 (ν)) + Θ 1 2 φ n log(n) 2 n + ψ n H n .
Rearranging the terms:

( G 1 n ) -1 (ν) = G -1 1 (ν) + k n /n -G 1 n (G -1 1 (ν)) G 1 (G -1 1 (ν)) + 2 -1 Θ 1 φ n n -1 log(n) 2 + ψ n H n G 1 (G -1 1 (ν)) . (2.26) Since k n /n = nν /n, we have ν ≤ k n /n ≤ ν + 1/n, so there exists κ n , |κ n |≤ 1 such that k n /n = ν + κ n /n. Equation (2.26) becomes: ( G 1 n ) -1 (ν) = G -1 1 (ν) + ν -G 1 n (G -1 1 (ν)) g 1 (G -1 1 (ν)) + 2 -1 Θ 1 φ n n -1 log(n) 2 + ψ n H n + n -1 κ n g 1 (G -1 1 (ν))
.

We obtain the following explicit form for

A n,1 (ν) defined in (2.19) when ( G 1 n ) -1 (ν) ∈ J n and n ≥ N 1 : A n,1 (ν) = 2 -1 Θ 1 φ n n -1 log(n) 2 + ψ n H n + n -1 κ n g 1 (G -1 1 (ν))
.

(2.27)

We want to uniformly upper bound n 3/4 log(n) -3/2 E |A n (ν)| |P = P in n, ν and P . Since In the following, let

|ψ n |≤ 1, |φ n |≤ 1, |κ n |≤ 1 and 1/g 1 (G -1 1 (ν)) ≤ A -1 f L ∞ (R)
E n = {-n 1/4 , -n 1/4 + 1, . . . , n 1/4 -1}, η r,n = G -1 (ν) + log(n) n 3/4 r where r ∈ E n , z r,n = |G 1 (η r,n ) -G 1 (G -1 1 (ν))|, J r,n = [η r,n , η r+1,n ], α r,n = G 1 (η r+1,n ) -G 1 (η r,n ). Since G 1
n and G 1 are non decreasing, for all u ∈ J r,n :

D n (u) ≤ G 1 n (η r+1,n ) -G 1 n (G -1 1 (ν)) -G 1 (η r,n ) + G 1 (G -1 1 (ν)) = D n (η r+1,n ) + α r,n .
Similarly we have for all u ∈ J r,n :

D n (u) ≥ D n (η r,n ) -α r,n . Meaning that: H n ≤ max r∈En {|D n (η r,n )|} + max r∈En {α r,n } =: K n + β n say.
(2.28)

Let us first deal with

β n = max r∈En {α r,n }. Let r ∈ E n . Recall that α r,n = G 1 (η r+1,n ) - G 1 (η r,n
). The mean value theorem ensures that there exists γ r,n

∈ (η r,n , η r+1,n ) such that α r,n = n -3/4 log(n)G 1 (γ r,n ). Observe that γ r,n ∈ f (R), hence using (2.14), G 1 (γ r,n ) ≤ B 1/f L ∞ (R) for all r ∈ E n , meaning that β n ≤ B 1/f L ∞ (R) n -3/4 log(n)
, so that:

n 3/4 log(n) β n ≤ B 1/f L ∞ (R) . (2.29) 
Now we will focus on the term n 3/4 log(n

) -3/2 E K n |P 1 = P . Recall that K n = max r∈En {|D n (η r,n )|}. First, since z r,n = |G 1 (η r,n ) -G 1 (G -1 1 (ν))|, the mean value theorem ensures that there exists δ r,n ∈ (η r,n , G -1 1 (ν)) ⊂ f (R) such that: z r,n = g 1 (δ r,n ) log(n) n 3/4 |r| ≤ B 1/f L ∞ (R) log(n) n 3/4 |r| ≤ B 1/f L ∞ (R) log(n) n 1/2 =: z n say. Let: Γ n = n 3/4 log(n) 3/2 E K n |P 1 = P (2.30) = E n 3/4 log(n) 3/2 max r∈En |D n (η r,n )| |P 1 = P
where D n is defined by (2.22). Now it is easily seen by definition of z r,n that |D n (η r,n )|∼ 1 n |B(n, z r,n ) -nz r,n | conditional on P 1 where B(n, p) denotes the Binomial distribution with parameters n ∈ N and p ∈ (0, 1). Letting a n = n -1/4 log(n) -1/2 , we have:

Γ n = E n 3/4 log(n) 3/2 max r∈En 1 n |B(n, z r,n ) -nz r,n | |P 1 = P = 1 log(n) E max r∈En {a n |B(n, z r,n ) -nz r,n |} |P 1 = P = 1 log(n) E(T n |P 1 = P ) say. (2.31)
We now want to upper bound E(T n |P = P ) and show that it can not exceed log(n). A natural way of proceeding would be to upper bound the expectation of the maximum by the sum of the expectations, and use classic concentration inequalities on the deviation probabilities to control each expectation. The error injected by the concentration inequality adds up for each term of the sum and makes the upper bound diverges at rate precisely equal to the cardinal of the sum |E n |, which is of order n 1/4 . Using Jensen's inequality [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] beforehand directly on T n allows for exploiting the structure of the moment generating function of the Binomial distribution and bypass this issue. The following two technical results are required. See the Appendix for a proof.

Lemma 3. Let t ≥ 0, 0 ≤ z ≤ 1/2 and n ∈ N. If X ∼ B(n, z), then:

E e t(X-nz) ≥ E e -t(X-nz) . Lemma 4. Let λ = 2 -1/4 log(2) -1/2 , n ∈ N. If X ∼ B(n, z), then the mapping Φ n : [0, 1] -→ R defined by Φ n (z) = E (exp{a n (B(n, z) -nz)}) Is increasing on [0, (1 -e λ ) -1 + λ -1 ] ≈ [0, 0.42] for all n ≥ 2.
Note that there exists a fixed

N 2 ∈ N such that z r,n ≤ z n ≤ (1 -e λ ) -1 + λ -1 ≈ 0.42 for all n ≥ N 2 . Choose n ≥ N 1 ∨ N 2 .
Now, using Jensen's inequality we have:

e E(Tn|P = P ) ≤ E e Tn |P 1 = P = E max r∈En exp{a n |B(n, z r,n ) -nz r,n |}|P 1 = P ≤ r∈En E exp{a n |B(n, z r,n ) -nz r,n |}|P 1 = P ≤ 2 r∈En E exp{a n (B(n, z r,n ) -nz r,n )}|P 1 = P ≤ 4n 1/4 E (exp {a n (B(n, z n ) -nz n )}) , (2.32) 

Proofs

Where the last two inequalities are a direct consequence of Lemma 3 combined with the fact that e |x| ≤ e x + e -x and Lemma 4. The conditioning on P 1 was dropped since z n is independent of P 1 . Now we can compute the limit in (2.32). Using that the moment generating function of the Binomial distribution with parameters n and p is t → (1 + p(e t -1)) n , and a Taylor expansions we obtain:

E e an(B(n,zn)-nzn) = e -nanzn E e anB(n,zn)

= e -nanzn (1 + z n (e an -1)

) n = e nzn a 2 n 2 +o(nzna 2 n ) -→ n→∞ e B 2 1/f L ∞ (R) < ∞
hence E e an(B(n,zn)-nzn) is bounded by a constant Θ 2 say, for all n ∈ N. From (2.32)

e E(Tn|P1= P ) ≤ 4Θ 2 n 1/4 ,
hence:

E(T n |P 1 = P ) ≤ log(n 1/4 ) + log(4Θ 2 ) (2.33)
Combining (2.31) and (2.33):

Γ n = 1 log(n) E(T n |P 1 = P ) ≤ log(n 1/4 ) log(n) + log(4Θ 2 ) log(n) ≤ 1 4 + 2 log(4Θ 2 ), (2.34) 
since log(n) -1 ≤ 2. Using (2.30) and (2.34), this shows that:

n 3/4 log(n) 3/2 E(K n |P 1 = P ) ≤ 1 4 + 2 log(4Θ 2 ). (2.35)
Combining (2.28), (2.29) and (2.35), we have:

n 3/4 log(n) 3/2 E(H n |P 1 = P ) ≤ 1 4 + B 1/f L ∞ (R) + 2 log(4Θ 2 ). (2.36)
Using the form of A n,1 (ν) in (2.27) and the result in (2.36) we finally have:

n 3/4 log(n) 3/2 E(|A n,1 (ν)|1 {( G 1 n ) -1 (ν)∈Jn} |P 1 = P ) ≤ f L ∞ (R) A 9 4 + Θ 1 2 + B 1/f L ∞ (R) + 2 log(4Θ 2 ) (2.37) for all n ≥ N 1 ∨ N 2 . Case 2: ( G 1 n ) -1 (ν) ∈ J n
Using the Cauchy-Schwarz inequality we have:

E |A n,1 (ν)|1 {( G 1 n ) -1 (ν) ∈Jn} |P 1 = P ≤ E A n,1 (ν) 2 |P 1 = P P ( G 1 n ) -1 (ν) ∈ J n |P 1 = P (2.38)
We derive upper bounds for both terms in the product on the RHS of (2.38). Using (2.19) we have:

A n,1 (ν) 2 ≤ 2 ( G 1 n ) -1 (ν) -G -1 1 (ν) 2 + 2 ν -G 1 n (G -1 1 (ν)) g 1 (G -1 1 (ν)) 2 (2.39) But ν, G 1 n (G -1 1 (ν)) ∈ [0, 1] and we know that since ν ∈ F 1 (R δ/2 ), 1/g 1 (G -1 1 (ν)) ≤ A -1 f L ∞ (R) conditional on P 1 . So: E   ν -G 1 n (G -1 1 (ν)) g 1 (G -1 1 (ν)) 2 P 1 = P   ≤ A -2 f 2 L ∞ (R) (2.40)
and we are done with this term. Then:

E ( G 1 n ) -1 (ν) -G -1 1 (ν) 2 |P 1 = P = ∞ 0 tP |( G 1 n ) -1 (ν) -G -1 1 (ν)|> t|P 1 = P dt = ∞ 0 tP |Y 1 (kn) -G -1 1 (ν)|> t|P 1 = P dt ≤ n ∞ 0 tP |Y 1 1 -G -1 1 (ν)|> t|P 1 = P dt = nE (Y 1 1 -G -1 1 (ν)) 2 |P 1 = P ≤ 2n E((Y 1 1 ) 2 |P 1 = P ) + E(G -1 1 (ν) 2 |P 1 = P ) ≤ 2n E((Y 1 1 ) 2 |P 1 = P ) + f (b) 2 (2.41) because ν ∈ F (R δ/2 ) implies G -1 1 (ν) ∈ f (R) = (f (a), f (b)), meaning that G -1 1 (ν) < f (b) M-a.s. Also, note that E((Y 1 1 ) 2 |P 1 = P ) < ∞ since E((Y 1 1 )
2 ) < ∞ by hypothesis. So, combining (2.39), (2.40) and (2.41):

E A n,1 (ν) 2 |P 1 = P ≤ 2n E((Y 1 1 ) 2 |P 1 = P ) + f (b) 2 + 2A -2 f 2 L ∞ (R) (2.42) 
Now let us focus on the term

P ( G 1 n ) -1 (ν) ∈ J n |P 1 = P .
Using the definition of J n in (2.18):

P ( G 1 n ) -1 (ν) ∈ J n |P 1 = P = P |( G 1 n ) -1 (ν) -G -1 1 (ν)|> log(n) √ n |P 1 = P =: U 1 + U 2 ,
where: We will derive an upper bound for U 1 only, the case for U 2 being identical. First, recall that (

U 1 = P ( G 1 n ) -1 (ν) > log(n) √ n + G -1 1 (ν)|P 1 = P , U 2 = P ( G 1 n ) -1 (ν) < - log(n) √ n + G -1 1 (ν)|P 1 = P .
G 1 n ) -1 (ν) = Y 1 (kn)
where k n = nν . Since:

Y 1 (kn) ≥ log(n) √ n + G -1 1 (ν) = n i=1 1 Y 1 i ≥ log(n) √ n +G -1 1 (ν) ≥ n -k n + 1 ,
we have:

P ( G 1 n ) -1 (ν) > log(n) √ n + G -1 1 (ν)|P 1 = P = P n i=1 1 Y 1 i ≥ log(n) √ n +G -1 1 (ν) ≥ n -k n + 1|P 1 = P . Noting V i = 1 {Y 1 i ≥ log(n) √ n +G -1 1 (ν)} , S n = n i=1 V i and t n = n -k n + 1 -ES n , it follows: P ( G 1 n ) -1 (ν) > log(n) √ n + G -1 1 (ν)|P 1 = P = P S n -ES n ≥ t n |P 1 = P . (2.43) Since S n |P 1 ∼ B(n, p n ) where p n = 1 -G 1 (G -1 1 (ν) + log(n)/ √ n): t n = n -k n + 1 -ES n = n -k n + 1 -n 1 -G 1 G -1 1 (ν) + log(n) √ n = 1 + n G 1 G -1 1 (ν) + log(n) √ n - nν n
Notice that there exists φ n , 0 ≤ φ n ≤ 1/n, such that nν /n = ν + φ n , hence:

t n = 1 + n G 1 G -1 1 (ν) + log(n) √ n - nν n = 1 + n G 1 G -1 1 (ν) + log(n) √ n -ν -φ n = 1 -nφ n + n G 1 G -1 1 (ν) + log(n) √ n -ν .
Because G 1 is strictly increasing and nφ n ∈ [0, 1], we have t n > 0. Moreover, by a Taylor expansion we have:

t n = 1 -nφ n + n g 1 (G -1 1 (ν)) log(n) √ n + g 1 (θ n ) log(n) 2 2n = √ n log(n)g 1 (G -1 1 (ν)) + 1 -nφ n + g 1 (θ n ) log(n) 2 /2 (2.44)
where

θ n ∈ G -1 1 (ν), G -1 1 (ν) + log(n)/ √ n . In particular we have |θ n -G -1 1 (ν)|< log(n)/ √ n, meaning that for all n ≥ N 1 , θ n ∈ f (R) because ν ∈ F 1 (R δ/2
). Applying Hoeffding's inequality on (2.43): 

P(S n -ES n ≥ t n |P 1 = P ) ≤ e -2t
t n = √ n log(n)g 1 (G -1 1 (ν)) + (1 -nφ n + g (θ n ) log(n) 2 /2) = √ n log(n)g 1 (G -1 1 (ν)) + α n say. (2.46)
Combining (2.44) and (2.46):

t 2 n n = log(n) 2 g 1 (G -1 1 (ν)) 2 + α 2 n n + 2α n . log(n)g 1 (G -1 1 (ν)) √ n
Using (2.20) and (2.20), we know that

|g 1 (u)|≤ Θ 1 , g 1 (u) ≤ B 1/f L ∞ (R) and g 1 (u) ≥ A f -1 L ∞ (R) for all u ∈ f (R). Moreover since α n = 1 -nφ n + g 1 (θ n ) log(n) 2 /2
, we derive the following upper bound:

e -2t 2 n /n ≤ e Θ1B 1/f L ∞ (R) log(n) 3 / √ n e -2 log(n) 2 A 2 f -2 L ∞ (R) . (2.47)
Using that log(n) 3 / √ n ≤ 11 along with (2.43), (2.45) and (2.47) we have:

P ( G 1 n ) -1 (ν) > log(n) √ n + G -1 1 (ν)|P 1 = P ≤ Θ 3 e -Θ4 log(n) 2 where Θ 3 = e 22Θ1B 1/f L ∞ (R) , Θ 4 = A 2 f -2
L ∞ (R) are constants depending only on the parameters of the model. The same bound can be derived for P((

G 1 n ) -1 (ν) < -log(n)/ √ n + G -1 1 (ν)|P 1 = P ), finally showing that: P |( G 1 n ) -1 (ν) -G -1 1 (ν)|> log(n) √ n |P 1 = P = P ( G 1 n ) -1 (ν) ∈ J n |P 1 = P ≤ 2Θ 3 e -Θ4 log(n) 2 (2.48)
for all n ≥ N 1 . Recall (2.38):

E |A n,1 (ν)|1 {( G 1 n ) -1 (ν) ∈Jn} |P 1 = P ≤ E A n,1 (ν) 2 |P 1 = P P ( G 1 n ) -1 (ν) ∈ J n |P 1 = P ,
hence combining (2.41) and (2.48) we have, for all n ≥ N 1 :

E(|A n,1 (ν)|1 {( G 1 n ) -1 (ν) ∈Jn} |P 1 = P ) ≤ 2n[E((Y 1 1 ) 2 |P 1 = P ) + f (b) 2 ] + A -2 f 2 L ∞ (R) 2Θ 3 e -Θ4 log(n) 2 .
(2.49)

The RHS of (2.49) is in the form of C 1 n 1/2 e -C2 log(n) 2 where C 1 , C 2 are positive constants. Multiplying both sides by n 3/4 log(n) -3/2 will make the RHS of the form C 1 n 5/4 log(n) -3/2 e -C2 log(n) 2 , which goes to zero hence is bounded. Combining (2.37), (2.49) and the remark above, we obtain that there exist µ 1 , µ 2 , µ 3 > 0 that depend only on parameters of the model such that, for all n ≥ N 1 ∨ N 2 : 

n 3/4 log(n) 3/2 E |A n,1 (ν)| 1 {ν∈F1(R δ/2 )} |P 1 = P ≤ µ 1 + µ 2 E (Y 1 1 ) 2 |P 1 = P + µ 3
h n (ν, P ) = E |A n,1 (ν)|1 {ν∈F1(R δ/2 )} | F 1 n (x) = ν, P 1 = P = E |A n,1 (ν)|1 {ν∈F1(R δ/2 )} |P 1 = P ≤ log(n) 3/2 n 3/4 µ 1 + µ 2 E((Y 1 1 ) 2 |P 1 = P ) + µ 3 .
Recall that:

E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} = E E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} | F 1 n (x), P 1 = E h n ( F 1 n (x), P 1 ) ,
hence for all n ≥ N 1 ∨ N 2 , using (2.10) and (2.17), integrating over M the distribution of P 1 and using the fact that E((Y 1 1 ) 2 ) < ∞ we obtain:

I 2 = P 1 M M i=1 A n,i ( F i n (x)) > K/4, ξ n,M ≤ 4 K E |A n,1 ( F 1 n (x))|1 { F 1 n (x)∈F1(R δ/2 )} ≤ 4 K log(n) 3/2 n 3/4 µ 1 + µ 2 E((Y 1 1 ) 2 ) + µ 3
finally proving that there exist a constant Θ 5 that depends only on parameters of the model such that

I 2 ≤ 4Θ 5 K log(n) 3/2 n 3/4 . (2.50) 
• The term II.

By a Taylor expansion we obtain:

G -1 i • F i n (x) -G -1 i • F i (x) = (G -1 i ) (F i (x)) • ( F i n (x) -F i (x)) + (G -1 i ) (∆ i n ) 2 • ( F i n (x) -F i (x)) 2
where ∆ i n ∈ F i (x), F i n (x) . Letting:

II 1 = P ξ n,M 1 M M i=1 (G -1 i ) (F i (x)) • ( F i n (x) -F i (x)) > K/4 II 2 = P ξ n,M 1 M M i=1 (G -1 i ) (∆ i n ) 2 • ( F i n (x) -F i (x)) 2 > K/4
we have:

II ≤ II 1 + II 2 .
(2.51)

We will first derive an upper bound for II 1 . Using (2.12), the inverse of G is:

G -1 (u) = f • F -1 (u) ∀ u ∈ F (R).
(2.52) Differentiating (2.52) we obtain:

G -1 (u) = f • F -1 (u) F • F -1 (u) ≤ 1 A f L ∞ (R) (2.53) 
hence:

(G -1 i ) (F i (x)) ≤ 1 A f L ∞ (R) .
Using Markov's inequality:

II 1 ≤ P 1 A f L ∞ (R) 1 M M i=1 ( F i n (x) -F i (x)) > K/4, ξ n,M ≤ 1 K 2 16 A 2 f 2 L ∞ (R) E 1 M M i=1 F i n (x) -F i (x) 2 ≤ 1 M K 2 16 A 2 f 2 L ∞ (R) E F 1 n (x) -F 1 (x) 2 ≤ 1 M K 2 16 A 2 f 2 L ∞ (R) E E F 1 n (x) -F 1 (x) 2 |P 1 ≤ 1 M K 2 16 A 2 f 2 L ∞ (R) E F 1 (x)(1 -F 1 (x)) n ≤ 1 M nK 2 4 A 2 f 2 L ∞ (R) (2.54) Since F 1 (x)(1 -F 1 (x)) ≤ 1/4 M-a.s.
For II 2 , recall that we are on the event

ξ n,M = M i=1 { F i n (x) ∈ F i (R δ/2 )}. Since ∆ i n ∈ F i (x), F i n (x) , then ∆ i n ∈ F i (R)
. Using (2.12) the second derivative of the inverse of G is given by:

G -1 (u) = -(G -1 (u) ) 3 • G • G -1 (u), hence for u ∈ F (R), combining (2.53), (2.20): |G -1 (u) |≤ Θ 1 A 3 f 3 L ∞ (R) =: Θ 6 .
(2.55)

It follows that:

|(G -1 i ) (∆ i n )| ≤ Θ 6 .

Proofs

So we have:

II 2 = P ξ n,M 1 M M i=1 (G -1 i ) (∆ i n ) 2 • ( F i n (x) -F i (x)) 2 > K/4 ≤ 4Θ 2 6 K 2 E 1 M M i=1 ( F i n (x) -F i (x)) 2 2 .
(2.56)

Letting W i = F i n (x) -F i (x)
, and using the Cauchy-Schwarz inequality we have:

E 1 M M i=1 W 2 i 2 ≤ E(W 4 1 ) But L(W 1 |P 1 ) = 1 n (B(n, F 1 (x)) -nF 1 (x)
). The 4-th central moment of a Binomial distribution with parameters (n, p) is

E (B(n, p) -np) 4 = n[p(1 -p) 4 + p 4 (1 -p)] + 3n(n -1)p 2 (1 -p) 2 ≤ n 2 .
Hence:

E(W 4 1 ) = E(E(W 4 1 |P 1 )) ≤ 1 n 2
meaninig that (2.56) becomes:

II 2 ≤ 4Θ 2 6 n 2 K 2 .
(2.57)

Finally, combining (2.54) and (2.57):

II ≤ II 1 + II 2 ≤ 4 A 2 f 2 L ∞ (R) 1 M nK 2 + 4Θ 2 6 1 n 2 K 2 .
(2.58)

Combining (2.9),(2.10) and (2.51) we have:

P(| f n,M (x) -f (x)|> K, ξ n,M ) ≤ I 1 + I 2 + II 1 + II 2 ,
and combining (2.58), (2.16) and (2.50) it follows:

P(| f n,M (x) -f (x)|> K, ξ n,M ) ≤ 4 A 2 f 2 L ∞ (R) 1 M nK 2 + 4Θ 5 K log(n) 3/2 n 3/4 (2.59) + 4 A 2 f 2 L ∞ (R) 1 M nK 2 + 4Θ 2 6 1 n 2 K 2 (2.60)
Recall that we wanted to control

P(| f n,M (x) -f (x)|> K) ≤ P(| f n,M (x) -f (x)|> K, ξ n,M ) + P(ξ c n,M )
hence combining (2.8) and (2.60) achieves the proof 2.5.2 Proof of Theorem 5

We will first derive the result conditional on P ∈ Z and then conclude with the dominated convergence theorem. Let P ∼ M, denote by F the cumulative function of P and let Q = f # P and denote by G the cumulative function of Q and g its density. Recall that in this case we have

G = F • f -1 . Let (Y 1 , .
. . , Y n ) be independent random variables with common cumulative distribution function G. Let G -1 n be the generalized inverse of the empirical cumulative function

G n (x) = n -1 n i=1 1 {Yi≤x} . For α ∈ F (R) let Z n (α) = √ n(G -1 n (α) -G -1 (α)).
By definition of Z, we know that

F is differentiable on R. Since G = F • f -1 and α ∈ F (R), it follows that G is differentiable at G -1 (α) and that g • G -1 (α) > 0.
Using the well-known result on the convergence of the empirical process (see [START_REF] Cramér | Mathematical Methods of Statistics[END_REF] for instance):

Z n (α) -→ n→∞ N 0, σ 2 α (2.61) in Λ n -distribution M-a.s.
where Λ n is the distribution of the random sample (Y 1 , . . . , Y n ) conditional on P defined in (2.3), and

σ 2 α = α(1-α) G •G -1 (α) 2 . Let 0 < α 1 < α 2 < 1 and T = [α 1 , α 2 ] where α 1 , α 2 ∈ F (R).
There exists ε > 0 such that G is continuously differentiable on the interval [G -1 (α 1 ) -, G -1 (α 2 ) + ] with strictly positive derivative. Hence it holds that the process Z n weakly converges in l ∞ (T ) to B/g • G -1 where B is a standard Brownian bridge (see for instance Corollary 21.5 in Van Der Vaart, Asymptotic Statistics [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]) under Λ n . Providing that T ⊂ F (R) M-a.s. for P ∈ Z, the limiting process

Z = {B(t)/g • G -1 (t), t ∈ T } is tight since in this case 1/g • G -1 (t) ≤ f L ∞ (R) A -1 M-a.s.
uniformly for all t ∈ T , P ∈ Z. It follows that Z is uniformly bounded in L 1 over T , hence tight. To prove the existence of such T , recall that

x ∈ R δ = [a + δ, b -δ]. So there exists δ x,b ∈ [x, b] ⊂ R, F (b) -F (x) = (b -x)F (δ x,b ). Because F ∈ F R (A, B, C), we have in addition that F (δ x,b ) ≥ A. Then: F (x) = F (x) -F (b) + F (b) = F (b) -(b -x)F (δ x,b ) ≤ F (b) -δF (δ x,b ) ≤ 1 -δA.
Similarly we prove that:

F (x) ≥ δA.
This means that we have the following uniform bounds in P ∈ Z and x ∈ R δ :

δA ≤ F (x) ≤ 1 -δA.
(2.62)

Since δ is arbitrary, choose it such that 0 < 1-δA < 1, i.e. 0 < δ < A -1 . For this choice of δ, letting α 1 = δA and α 2 = 1 -δA ensures that T ⊂ F (R) M-a.s. Now, since weak convergence in l ∞ (T ) to a tight element implies stochastic equicontinuity of the converging process (see for instance 

|Z n (s) -Z n (α)|> η < 2 for all n ≥ n 1 . Since α n -→ n→∞ α in Λ n -probability M-a.s.
, there exists n 2 ∈ N such that:

λ n (|α n -α|≥ γ) <
for all n ≥ n 2 . Then notice that:

Λ n (|Z n (α n ) -Z n (α)|> η) ≤ Λ n (|Z n (α n ) -Z n (α)|> η, |α n -α|< γ) + Λ n (|α n -α|≥ γ) ≤ Λ n sup s∈T,|s-α|<γ |Z n (s) -Z n (α)|> η + Λ n (|α n -α|≥ γ) ≤ 3 for all n ≥ n 1 ∨ n 2 , meaning that Z n (α n ) -Z n (α) -→ n→∞ 0 in Λ n -probability M-a.s. Finally, writing Z n (α n ) = Z n (α n ) -Z n (α) + Z n (α)
allows us to conclude that:

Z n (α n ) -→ n→∞ Z(α) in Λ n -distribution M-a.s. Since F n (x) -→ n→∞ F (x) in Λ n -probability M-a.s.
, it holds that:

Z n (F n (x)) -→ n→∞ Z(F (x)) in Λ n -distribution M-a.s. Now, write: √ n(G -1 n • F n (x) -G -1 • F (x)) = Z n (F n (x)) + √ n(G -1 • F n (x) -G -1 • F (x)) = Z n (F n (x)) ± Z n (F (x)) + √ n(G -1 • F n (x) -G -1 • F (x)).
Stochastic equicontinuity of Z n implies that Z n (F n (x))-Z n (F (x)) -→ n→∞ 0 in Λ n -probability M-a.s. The central limit theorem and the delta method guarantee that

√ n(G -1 • F n (x) -G -1 • F (x)) -→ n→∞ N 0, τ 2
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τ 2 = F (x)(1 -F (x)) (g • G -1 • F (x)) 2 ,
and using (2.61) it follows that

Z n (F (x)) -→ n→∞ N 0, τ 2 in Λ n -distribution M-a.s. Since Z n (F (x)) and √ n(G -1 • F n (x) -G -1 • F (x)
) are independent conditional on P we conclude that:

√ n(G -1 n • F n (x) -G -1 • F (x)) -→ n→∞ N 0, σ 2 F in Λ n -distribution M-a.s. where σ 2 F = 2τ 2 , or equivalently √ n σ F (G -1 n • F n (x) -G -1 • F (x)) -→ n→∞ N (0, 1)
in Λ n -distribution M-a.s. for any P ∈ Z. We finally conclude that

√ n σ F (G -1 n • F n (x) -G -1 • F (x)) -→ n→∞ N (0, 1)
in P-distribution by proving convergence of the characteristic functions using the dominated convergence theorem.

Proof of Proposition 4

The strategy is to establish stochastic equicontinuity of the kernel density estimator conditional on the event P = P , and conclude by the dominated convergence theorem. For any η, ε > 0, we first prove that there exists γ > 0 such that:

lim sup n→∞ P    sup s,t∈f (R) |s-t|<γ |g n (s) -g n (t)|> η|P = P    < . (2.63)
We have:

P    sup s,t∈f (R) |s-t|<γ |g n (s) -g n (t)|> η|P = P    ≤P    sup s,t∈f (R) |s-t|<γ |g(s) -g(t)|> η/2|P = P    +2P    sup s,t∈f (R) |s-t|<γ |g n (t) -g(t)|> η/4|P = P    (2.64)

Proofs

The first term of the right hand side is easily handled because g is continuous on the compact set f (R) implying uniform continuity, hence there exists γ > 0 such that this term is equal to 0.

Conditioning on P = P makes g a constant with respect to the conditional distribution, so we will apply Dominik Wied and Rafael Weißbach results in [START_REF] Wied | Consistency of the kernel density estimator: a survey[END_REF].

Theorem 7 (Almost sure uniform convergence of the kernel density estimator). Let (X 1 , . . . , X n ) be independent random variables with common cumulative function F absolutely continuous with respect to the Lebesgue measure, and denote by f their density. The kernel density estimator of f is given by

f n (t) = 1 nh n n j=1 K X j -t h n
where h n > 0, h n → 0 and K is a kernel function. Suppose that the following hold

i) K is right continuous, ii) K has bounded variations, iii) lim |x|→∞ K(x) = 0, iv) n≤1 e -γnh 2 n < ∞ for all γ > 0, v) f is uniformly continuous on R,
then the kernel density estimator uniformly converges almost surely on R.

For our purposes, the choice of bandwidth and Kernel is not important so hypothesis i), ii), iii) and iv) of Theorem 7 are satisfied in Proposition 4. We do not have uniform continuity of the true density, but this is easily overcome because we do not need uniform convergence on R: uniform convergence on the compact set f (R) is enough. By the triangle inequality we have:

g n -g L ∞ (f (R)) ≤ g n -Eg n L ∞ (f (R)) + Eg n -g L ∞ (f (R)) .
(2.65)

We refer the reader to [START_REF] Wied | Consistency of the kernel density estimator: a survey[END_REF] for a proof that the first term on the RHS of equation (2.65) goes to 0. The hypothesis of uniform continuity is not necessary to establish convergence of that term, hence the proof in [START_REF] Wied | Consistency of the kernel density estimator: a survey[END_REF] can be followed step by step to obtain

sup t∈f (R) |g n (t) -Eg n (t)| -→ n→∞ 0.
To prove that the second term goes to 0, since our Kernel is compactly supported we have for any t ∈ f (R):

|Eg n (t) -g(t)| = E 1 nh n n i=1 K Y i -t h n -g(t) = +∞ -∞ K(u)g(t + uh n )du -g(t) = +∞ -∞ K(u) [g(t + uh n ) -g(t)] du
but h n → 0, g is continuous and both f (R) and the support Supp(K) of K are compact, hence:

sup t ∈f (R),u ∈Supp(K) |g(t + u h n ) -g(t )| -→ n→∞ 0 meaning that sup t∈f (R) |Eg n (t) -g(t)| -→ n→∞ 0 finally leading sup t∈f (R) |g n (t) -g(t)| -→ n→∞ 0.
So we have uniform convergence of g n on f (R), hence the two term in (2.64) go to 0 as n goes to infinity, proving (2.63).

From Theorem 5, we know that

G -1 n • F n (x) -→ n→∞ G -1 • F (x) in Λ n -probability M-a.s., hence g n • G -1 n • F n (x) -→ n→∞ g • G -1 • F (x) in Λ n -probability M-a.s.
The reason for this is a direct consequence of (2.63) and the splitting of the deviation probability on the events

{|G -1 n • F n (x) - G -1 • F (x)|> γ} and {|G -1 n • F n (x) -G -1 • F (x)|≤ γ}. It is clear that F n (x)(1 -F n (x)) converges to F (x)(1 -F (x)
) conditional on P = P . Hence one has:

P(|σ n (F ) 2 -σ(F ) 2 |> ε|P = P ) -→ 0.
We conclude by the dominated convergence theorem.

Proof of Proposition 5

The strategy here is the same as before: we prove that the convergence in distribution conditional on P 1 happens M-a.s., and conclude by the dominated convergence theorem. Using Theorem 5, we have:

√ nΣ -1/2 (θ n,x -θ x ) -→ n→∞ N (0, I M ) in Λ n -distribution M-a.s.
Using the representation theorem for weakly convergent sequences by Skorokod [START_REF] Billingsley | Convergence of probability measures[END_REF], we derive that there exists a probability space (Ω , A , P ) and random variables Z, (ξ n ) n≥1 defined on (Ω , A , P ) satisfying:

Z ∼ N (0, I M ), ξ n P -→ n→∞ 0, √ nΣ -1/2 (θ n,x -θ x ) L = Z + ξ n .
(2.66)

In (2.66), note that the equality in distribution is to be understood with respect to the conditional distribution λ n for the term on the left, and with respect to P for the term on the right. For ease 2.5. Proofs of writing, define W n = √ n(θ n,x -θ x ). Because the distributions P 1 , . . . , P M are constants with respect to Λ n , so is Σ. Multiplying on both sides (2.66) by RΣ 1/2 , we have:

RW n L = RΣ 1/2 Z + RΣ 1/2 ξ n .
Observing that RΣ 1/2 Z ∼ N (0, RΣR t ), it follows:

(RΣR t ) -1/2 RW n L = N (0, I M -1 ) + (RΣR t ) -1/2 RΣ 1/2 ξ n hence (RΣR t ) -1/2 RW n -→ n→∞ N (0, I M -1 ) in Λ n -distribution M-a.s. hence: √ n(RΣR t ) -1/2 R(θ n,x -θ x ) -→ n→∞ N (0, I M -1 ). in Λ n -distribution M-a.s. Under H x 0 , it follows that: √ n(RΣR t ) -1/2 Rθ n,x -→ n→∞ N (0, I M -1 ). (2.67) 
in Λ n -distribution M-a.s. Now observe that the matrix RΣR t is symmetric positive definite.

The symmetry and non-negativity are obvious. Let x ∈ R M -1 . Then

x t RΣR t x = Σ -1/2 R t x 2 ≥ 0. Moreover Σ 1/2 R t x 2 = 0 ⇐⇒ R t x = 0 because Σ 1/2 is invertible. Now recall that R =    1 -1 . . . . . . 1 -1   
hence R t x = 0 if and only if x = 0 hence RΣR t is definite. The inverse and square root mappings are continuous over the set of symmetric positive definite matrices. Hence by the continuous mapping theorem and Proposition 4 we have:

(RΣ n R t ) -1/2 -→ n→∞ (RΣR t ) -1/2 in Λ n -probability M-a.s. proving that √ n(RΣ n R t ) -1/2 Rθ n,x -→ n→∞ N (0, I M -1 ). (2.68)
in Λ n -probability M-a.s. under H x 0 . We conclude by the dominated convergence theorem.

The non increasing case

Until now we assumed f increasing and f ∈ C 2 (R), see Assumption 1, and proved that in this case it can be estimated. Our estimator of f is an increasing function, so clearly if f is non increasing, meaning that there exists u < v, f (u) ≥ f (v), it cannot estimate f correctly everywhere. That being said, one might wonder if it is possible that for non increasing f , there exists an increasing function h satisfying:

f # P = h # P ∀P ∈ Z.
If such h exists, then our estimator will converge to it at rates as in Theorem 4. From a practical perspective, f and h are completely indistinguishable: no experiment can be designed to determine whether the data was generated with f or h because the samples are independent and not paired, and both functions transport the probability distributions P ∈ Z in the same way. For instance, for a random variable X with symmetric distribution, X and -X will have the same distribution and are perfectly indistinguishable. This suggests the introduction of an equivalence relation on the set C 2 (R) such that f ∼ g if and only if f # P = h # P for all P ∈ Z.

Denote [f ] = {h ∈ C 2 (R)|h ∼ f } the equivalence class of f . If f ∈ C 2 (R)
is non increasing and is the true transport that generated the data, we guarantee that our estimator converges to h ∈ [f ] at rates in Theorem 4 if and only if h is increasing. The problem then boils down to the question of the existence of an increasing h ∈ [f ] when one only assumes f ∈ C 2 (R). Proof. Let P ∈ Z, Q = f # P and let X, Y be random variables with distributions P, Q respectively. Then

Y L = f (X) since L(Y ) = Q = f # P . Moreover Y L = G -1 • F (X)
by the inversion theorem. By assumption h = G -1 • F is independent of P ∈ Z, hence we conclude f # P = h # P for all P ∈ Z Proposition 7. Suppose f ∈ C 2 (R) and let P ∈ Z. Denote by F, G the cumulative functions of P and Q = f # P respectively. If there exists an increasing function h ∈ [f ], we have:

P (] -∞, x]) = P (f -1 (] -∞, h(x)])).
(2.69)

The non increasing case

Proof. Let P ∈ Z, x ∈ R, and h ∈ [f ] such that h is increasing. Let X be a random variable with distribution P . We have:

P (] -∞, x]) = P(X ≤ x) (2.70) = P(h(X) ≤ h(x))) because h is increasing on R (2.71) = P(f (X) ≤ h(x))) because h(X) L = f (X) (2.72) = P(X ∈ f -1 (] -∞, h(x)])) (2.73) = P (f -1 (] -∞, h(x)])).
(2.74)

Proposition 7 tells us that if f is non increasing, the existence of an increasing h ∈ [f ] severely constrains the family of distributions Z, making the existence of such h very unlikely in general.

Example 1. Let f ∈ C 2 (R) be a decreasing function, and assume that there exists an increasing h ∈ [f ]. There are two cases:

i) ∀x ∈ R, f (x) = h(x) Since f, h are smooth functions, ∀x ∈ R, f (x) < h(x) or ∀x ∈ R, f (x) > h(x).
Because f is decreasing and h increasing, it also holds that ∀x, y ∈ R, f (x) > h(y) or ∀x, y ∈ R, f (x) < h(y). Let P ∈ Z and X a random variable with distribution P . Let x ∈ R:

P(X ≤ x) = P(h(X) ≤ h(x)) = P(f (X) ≤ h(x))
meaning that ∀x ∈ R, P(X ≤ x) = 0 or ∀x ∈ R, P(X ≤ x) = 1, a contradiction.

ii) ∃a ∈ R, f (a) = h(a)

In this case:

P(X ≤ a) = P(f (X) ≥ f (a)) = P(h(X) ≥ f (a)) = P(h(X) ≥ h(a)) = P(X ≥ a) = 1 -P(X ≤ a) hence P(X ≤ a) = 1/2.
Meaning that if such h exists, the median of all distributions in Z must be a. For instance if all distributions P ∈ Z are symmetric with center of symmetry a, then

h = f (2a -•) is increasing and h ∈ [f ].
One checks that indeed P (] -∞, a]) = 1/2 for all P ∈ Z and f (a) = h(a) in this case.

Example 2. Consider f : x → |x| and suppose there exists an increasing h ∈ [f ]. Suppose Z contains a symmetric distribution P with strictly increasing c.d.f. on R and let X ∼ P . For y ≥ 0 we have:

P(h(X) ≤ y) = P(f (X) ≤ y) because h ∈ [f ]
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= P(-y ≤ X ≤ y) = 2(P(X ≤ y) -F (0)) because P is symmetric = 2P(X ≤ y) -1.
Since h is increasing, P(h(X) ≤ y) = P(X ≤ h -1 (y)). Noting F the c.d.f. of X, we have:

F • h -1 (y) = 2F (y) -1, ∀ y ≥ 0. The function y → 2F (y) -1 is strictly increasing on R + with image [0, 1]. Its inverse is the mapping α → F -1 ( α+1 2 ) for α ∈ [0, 1]. Since all α ∈ [0, 1] are of the form α = F (x)
for some x ∈ R we have:

h(x) = F -1 F (x) + 1 2 ∀ x ∈ R. Since h ∈ [f ],
and h is increasing, it must hold that h = G -1 • F for all P ∈ Z where F is the c.d.f. of P and G the c.d.f. of f (X). But here, h clearly depends on the choice of P . For instance

lim x→-∞ h(x) = F -1 (1/2) and h(0) = F -1 (3/4
). If Z contains another symmetric distribution for instance, then the expression for h will be different, which is impossible since h ∈ [f ], hence the contradiction.

The existence of an increasing h ∈ [f ] for non increasing f has very strong implications on the nature of Z. Even for simplistic non increasing f , we saw that it is unreasonable to consider the existence of such h. So our problem of distribution matching can not systematically be reframed in terms of increasing f . Nevertheless one might still be wondering if there are specific points at which f can still be estimated when f in non increasing and there is no increasing h ∈ [f ]. For a point x 0 ∈ R, the only thing absolutely needed in order to estimate f (x 0 ) at rates in Theorem 1 is that for any P ∈ Z we have:

P (] -∞, x 0 ]) = P (f -1 (] -∞, f (x 0 )]))
which is equivalent to saying that G -1 • F (x 0 ) = f (x 0 ) for all P ∈ Z where F, G are the c.d.f. of X and f (X) respectively. Proposition 8. Let x 0 ∈ R. If f is strictly increasing and invertible at x 0 , then:

P (] -∞, x 0 ]) = P (f -1 (] -∞, f (x 0 )])) ∀ P ∈ Z or equivalently: f (x 0 ) = G -1 • F (x 0 )
for all P ∈ Z where F, G are the c.d.f. of P and f # P respectively.

Proof. Let P ∈ Z. Since f is strictly increasing and invertible at x 0 , the sets {ω, X(ω)

≤ x 0 } = {ω, f (X(ω)) ≤ f (x 0 )} are equal. This implies P(X ≤ x 0 ) = P(f (X) ≤ f (x 0 )), meaning that P (] -∞, x 0 ]) = P (f -1 (] -∞, f (x 0 )])), or, equivalently, f (x 0 ) = G -1 • F (x 0 )
where F, G are the c.d.f. of P and f # P respectively.

Appendix

Proposition 8 gives a geometric sufficient condition on the graph of f about the points where it can be estimated. Denote

G(f ) = {(x, f (x))|x ∈ R} the graph of f , and let N W (t) = {(x, y) ∈ R 2 |x < t, y > f (t)}, SE(t) = {(x, y) ∈ R 2 |x > t, y < f (t)}. N W (t)
and SE(t) are the north-west and south-east quadrants of the plane at (t, f (t)). The sufficient condition in Proposition 8 is equivalent to saying that G(f ) ∩ [N W (x 0 ) ∪ SE(x 0 )] = ∅. The converse of Proposition 8 is false in general, but a partial converse can be stated as follows: Proposition 9. Suppose there exists x 0 ∈ R such that:

f (x 0 ) = G -1 • F (x 0 )
for all P ∈ Z where F, G are the c.d.f. of P and f # P respectively. Then either one of the following holds:

i) G(f ) ∩ N W (x 0 ) = ∅ and G(f ) ∩ SE(x 0 ) = ∅ ii) G(f ) ∩ N W (x 0 ) = ∅ and G(f ) ∩ SE(x 0 ) = ∅ Proof. By contradiction. Let P ∈ Z, X ∼ P and F the c.d.f. of X. Suppose exactly one of G(f ) ∩ N W (x 0 ) and G(f ) ∩ SE(x 0 ) is non empty. For instance, say that G(f ) ∩ N W (x 0 ) = ∅ and G(f ) ∩ SE(x 0 ) = ∅. Since G(f ) ∩ N W (x 0 ) = ∅ and f is smooth, there exists a non empty interval I ⊂ {x ∈ R |x ≤ x 0 } such that ∀ x ∈ I, f (x) > f (x 0 ). Moreover, since G(f ) ∩ SE(x 0 ) = ∅, {f (X) ≤ f (x 0 )} ⊂ {X ≤ x 0 }, meaning that P(f (X) ≤ f (x 0 )) = P(f (X) ≤ f (x 0 ), X ≤ x 0 ). But: P(X ≤ x 0 ) = P(X ≤ x 0 , f (X) ≤ f (x 0 )) + P(X ≤ x 0 , f (X) > f (x 0 )) ≥ P(f (X) ≤ f (x 0 )) + P(X ∈ I)
Since I is a non empty interval and F strictly increasing on R, P(X ∈ I) > 0, i.e. P(X ≤ x 0 ) > P(f (X) ≤ f (x 0 )), which contradicts the assumption. The other case is proven in a similar way.

Appendix

Proof of Lemma 3. Let n ≥ 2 and t n = n 1/4 log(n) -1/2 . Recall that the moment generating function of a binomial distribution B(n, z) is E(e tB(n,z) ) = (1 -z + ze t ) n . Then:

Φ n (z) = E exp{ n 1/4 log(n) 1 √ n (B(n, z) -nz)} = E exp{ t n √ n (B(n, z) -nz)} = e -tn √ nz E exp{ t n √ n B(n, z)} = e -tn √ nz (1 -z + ze tn/ √ n ) n = e zun (1 -zv n ) n
where u n = -t n √ n < 0 and v n = 1 -e tn/ √ n < 0. Φ n is differentiable and:

Φ n (z) = u n e unz (1 -v n z) n -nv n e unz (1 -v n z) n-1 Chapter 2. Transport estimation 88 = (1 -v n z) n-1 e unz (u n (1 -v n z) -nv n ).
Since (1 -v n z) n-1 e unz ≥ 0 the sign of Φ n is the sign of (u n (1 -v n z) -nv n ), solving in z it follows:

Φ n (z) ≥ 0 if and only if z ≤ 1 1 -e tn/ √ n + √ n t n . Let h : u → (1 -e u ) -1 + u -1 .
h is differentiable for all u > 0 and one easily checks

h (u) ≤ 0 if and only if u 2 + 2 ≤ 2 cosh(u).
Expanding the hyperbolic cosine in power series:

cosh(u) = ∞ i=0 u 2i (2i)! = 1 + u 2 2 + ∞ i=2 u 2i (2i)! . Since ∞ i=2 u 2i /(2i)! ≥ 0, we have that u 2 + 2 ≤ 2 cosh(u)
is true for all u > 0, so h (u) ≤ 0 for all u > 0 and h is decreasing on (0, ∞). Moreover an elementary calculations shows that 0 ≤ h(u) ≤ 1/2 for all u > 0, meaning that

Φ n (z) ≥ 0 if and only if z ≤ h(t n / √ n) = h(n -1/4 log(n) -1/2 ),
with h positive, bounded by 1/2 and decreasing. In particular, it implies that Φ n is increasing on [0, h(2 -1/4 (log 2) -1/2 )] = [0, (1 -e λ ) -1 + λ -1 ] for all n ≥ 2.

Proof of Lemma 4. Since X ∼ B(n, z), E(e t(X-nz) ) = e -tnz (1 -z + ze t ) n and E(e -t(X-nz) ) = e tnz (1 -z + ze -t ) n . So, solving in t we have:

Ee t(X-nz) ≥ Ee -t(X-nz) if and only if 0 ≤ 1 -z + ze t -e 2tz (1 -z + ze -t ) =: f z (t)
f z is differentiable and

f z (t) = ze t -2z(1 -z)e 2zt -z(2z -1)e t(2z-1)
so that:

f z (t) ze 2zt = e t(1-2z) -2(1 -z) + (1 -2z)e -t .
It follows:

f z (t) ze 2zt ≥ 0 if and only if e t(1-2z) -1 ≥ (1 -2z)(1 -e -t ).
Using twice the fact that ∀x ∈ R, e x -1 ≥ x and that ∀0 ≤ z ≤ 1/2, 1 -2z ≥ 0, we conclude that the last inequality is true, hence f z (t) ≥ 0 and f z is non decreasing. Noting that f z (0) = 0 achieves the proof.

Chapter 3

Internet Latency measurements modelling using Fourier decomposition and ARMA Seasonal-GARCH models

Abstract

Internet content of large audience websites is typically copied and stored on numerous points of presence around the world by CDN, in order to spread the audience. CDN are companies that rent Websites a system of distributed servers that deliver webpages to their Internet users depending, for instance, on their geographic locations. A multi-CDN architecture refers to a Website that uses more than one CDN. Latency measures the time in millisecond taken by a request to reach the destination server, and for the response to get back to the host server. Determining the CDN with minimal latency to route users efficiently in the Network has become a priority in the industry. We propose a simple time series approach to model and forecast the object of interest in the industry: the so-called median-process of Internet latency, obtained by aggregating measurements over regular partitions of the interval [0, T ] with varying mesh ∆ > 0. The modeling reveals strong mean and variance dynamics using Fourier series and ARMA Seasonal GARCH, namely an ARMA-GARCH process with additional deterministic seasonal components in the volatility. The parameters of the conditional mean model are estimated by ordinary least squares and the conditional variance model are estimated with a one stage quasi maximum likelihood. The importance of choice of ∆ is discussed and we show that the median latency process can not be predicted for ∆ < 120s. The forecasting performance of the model is compared against natural baselines used in the industry and a notion of predictability of time series is discussed. A new test for residual information based on a certain entropic criterion is introduced.

Introduction

Setting and motivation

The task of spreading the Internet users across the network in order to minimize page load time has increasingly become a priority in the digital market. The impact of slow page load times on attendance, online sales and conversion rates is gaining more and more attention. It has been long known that page load time plays a significant role in e-commerce [START_REF] Gehrke | Determinants of successful website design: relative importance and recommendations for effectiveness[END_REF] and it is now a global concern: the overload of a server can cause significant increase in page load time. Large audience websites can overcome this issue by duplicating the content of their servers in order to multiply the number of access points. To avoid building expensive and time consuming private infrastructures, more and more websites go through third party companies that manage the duplication, storage and delivery of content using their own infrastructure. Each of these companies, called CDN, deliver a certain performance measured by latency. Latency measures the time in millisecond taken by a request to reach the destination server, and for the response to get back to the host server. The lower the latency the faster the communication between the servers, and conversely. The market of Internet content delivery has become very competitive as websites are now increasingly concerned by page load time. Choosing the right CDN at the right time is an effective way to reduce page load time.

As seen in Chapter 2, large audience websites that duplicate their content near two or more CDN must choose which one is going to deliver the content each time a user connects to their website. This process is called load-balancing, and is operated by load-balancers (see Chapter 1 Section 1.2 for a presentation of the notion). The time a user will wait in page loadings depends on the CDN 's latency, but when two or more CDN are available, the process of selecting the CDN that will deliver the content also takes time. Hence load-balancers must face the following tradeoff: the more time spent selecting the right CDN, the less latency and vice and versa. In order to address the CDN selection problem when a new user needs to be routed, there are two main possibilities:

• Individual approach • Community approach Before describing those two possibilities, we place ourselves in the case where a user I connects to a Website whose content can be delivered by K CDN C 1 , . . . , C K . Those CDN are said in competition.

Individual approach consists in making the new user I performs latency measurements on all competing CDN and select the one with minimal latency. This procedure gives strong guarantees on the performance of the selected CDN, but this CDN selection process is time intensive: of the order of a couple seconds.

In the community approach, the load-balancer geographically partitions the surface of the globe, and produces predictions of future latency for the CDN C 1 , . . . , C K for each element of the geographic partition and Internet service provider, using latency measurements from the CDN 3.1. Introduction C 1 , . . . , C K generated by other Network users. When the new user I tries to connect to the Website, the load-balancer identifies his Internet service provider as well as its geographic location and requests in a database the latency predictions for each CDN C 1 , . . . , C K . The load-balancer then orders the latency predictions of the competing CDN in ascending order and selects the CDN having the lower predicted value. Since the predictions are made upstream, the time required to route a user in the community approach is limited to this database request, which is of the order of a few milliseconds.

The individual approach may seem more attractive than the collective approach because it guarantees that the fastest CDN is always selected. However, the three orders of magnitude of difference in the time necessary to choose a CDN between the two methods makes it totally ineffective in practice. Indeed, even in the event of a prediction error in the collective approach, it is very unlikely that the user would have loaded the Web page faster in the individual approach. The collective approach is therefore widely preferred.

Each time an Internet user is connected to a CDN and has finished loading the content, multiple other CDN monitored by Citrix are chosen randomly and latency measurement are performed on each one of them until the user tries to load new content. The latency measurement consists in downloading a small object contained in a single TCP packet through an HTTP request and is computed as the elapsed time between the sending of the first bit of the request and the receiving of the first bit of the response. Citrix collects those measurements and use them to make online latency predictions for each CDN in the Network. When a new Internet user needs to access a customer website, the CDN with the lowest predicted latency calculated with measurements triggered by users close in space and time is selected. The samples used for prediction are typically composed of latency measurements performed by thousands of different individuals at a high frequency, located in different areas with different internet offers and speed. This results in particularly irregular and noisy time series. A way around this problem is the aggregation of the latency time series by computing rolling medians over regular time intervals of length ∆, resulting in a regular time series with increased signal to noise ratio. In this context, we address the problem of modeling and predicting this so-called median latency process. As ∆ decreases, the variance explodes rapidly and, a phenomenon reminiscent of microstructure noise [START_REF] Peter | Realized variance and market microstructure noise[END_REF] [5] [75] [START_REF] Rosenbaum | A new microstructure noise index[END_REF]. Conversely, as ∆ increases, a clear, almost noise free, seasonal signal that captures diurnal and nocturnal cycles of Internet activities is revealed. This suggests that for large ∆ the median process can be accurately predicted whereas for small ∆ the signal to noise ratio is too weak and predictions are intractable. For loadbalancing purposes it is crucial to make accurate predictions with the smallest ∆ possible. At a given time t when a user needs to be directed to CDN A or B, knowing that A will perform better than B in 2 hours has no value. But if ∆ is chosen too small, then the ability to make accurate predictions is questionable.

Main results

Let T > 0 and [0, T ] be a time interval. Timestamps of measurements collected by Citrix are rounded up to the second hence a natural structure for the data generating process is that of a discrete-time stochastic process with the time index expressed in seconds. Formally, we observe the process Z = {Z t |t ∈ {0, . . . , T }}, where Z t is the empirical measure defined by:

Z t = 1 N t Nt k=1 δ Y t k
where δ x is the Dirac measure at x ∈ R, N t is the (random) number of latency measurements received at time t and (Y t k ) K∈{1,...,Nt} are the latency measurements received at time t. The object of interest for load-balancing purposes is not Z, but a certain functional of Z. For ∆ > 0, n ∈ N, let t n = n∆ and define the series:

X ∆ tn = Median Y t k t∈]tn-1,tn] k∈{1,...,Nt}
X ∆ tn is the median of all measurements with timestamps falling in the interval ]t n-1 , t n ], and the process (X ∆ tn ) 0≤n∆≤T is called the median-process at frequency ∆, see Figure 3.1. Modeling the median process instead of the underlying true data generating process is based on industry standards that rely on quantiles, especially the median, of the latency measurements. The reason is that latency measurements are generated by thousands of different users at a very high frequency, making a distributional approach that relies on the median more manageable and interpretable since the load balancer can not use the latency measurements of a single user that needs to be routed, but instead only sees the whole distribution of latency measurements across all users at once. Another reason is that latency measurements have heavy-tailed distributions. The robustness of the median to outliers makes it appealing.

The choice of the sampling frequency ∆ has important consequences on the aggregated series. Because of the very slow evolution of Network performance throughout the day, the measurements exhibit local stationarity, typically over periods of time of the order of 1 hour. In fact, we will see that over short periods of time, measurements can always be approximated as an i.i.d. sample. Hence for two sampling frequencies ∆ 1 < ∆ 2 <3600 seconds or 1 hour, the median estimates at time t will have the same expectation but ∆ 1 induces estimates computed over larger periods of time including more measurements, resulting in estimates with fewer variance. As ∆ increases, the median process exhibits strong structure both in conditional mean and variance that were mostly overshadowed by noise for smaller ∆. Users will typically stay on a webpage for a short amount of time: at most 5 minutes in the vast majority of cases [START_REF] Liu | Understanding web browsing behaviors through weibull analysis of dwell time[END_REF], hence predicting the state of each CDN in the short term is essential for load-balancing purposes. This implies that large ∆ are most likely irrelevant. But as ∆ shrinks, the median process looses its structure and accurate predictions become intractable.

In this chapter, we provide insight into both mean and variance dynamics into the formation of the median latency process. The spectral density of the aggregated series reveals strong seasonal periods at 8,12 and 24h across all ∆. A Fourier decomposition of the series with K = 3 regressors is performed and captures all seasonal components in the mean dynamic. The number of Fourier regressors is selected through AIC minimization, and the estimated parameters of the mean model are equal across 30 ≤ ∆ ≤ 10800s. The innovations from the Fourier decomposition present serial correlation and clustered volatility that is accurately described by an ARMA seasonal GARCH model, i.e. an ARMA-GARCH process with additional seasonal components in the GARCH part, fitted in one stage by quasi maximum likelihood estimation. We show that common baselines to latency prediction like the NAIVE and AVG predictions, defined in (3.10) and (3.11), that produce forecasts that are equal to the last observed value and average of the the last k observed values respectively are outperformed by our simple model uniformly over all tested ∆. Finally, through the use of certain entropic criterion, we introduce a measure of time series predictability that tests simultaneously for independence and identical distribution that we apply to the residuals of our model as a way to test for remaining information not captured by the model. Existing diagnostic tests and our new test align, and our model accurately describes latency median processes.

Organisation of the chapter

In Section 3.2, we describe the data set and structure. We build the mean and variance models for the aggregated series in Sections 3.3 and 3.4, and discuss point forecasts in Section 3.5. Finally, we propose a new test for independence and identical distribution in Section 3.6 based on a certain entropic criterion. Log transforming the data reduces the variance and help stabilize it, hence we will work on loglatency measurements hereinafter, see [START_REF] Lütkepohl | The role of the log transformation in forecasting economic variables[END_REF] and [START_REF] George | Time series analysis: forecasting and control[END_REF]. Moreover, the log-transform reduces drastically the very high skewness of the original data and will make outliers more manageable for inference purposes, see Figure 3 Daily and hourly latency measurements.

Data analysis and modeling

Because of strong persistent daily seasonality in the behaviors of Internet users, the daily descriptive statistics are consistent from day to day. In particular, perhaps surprisingly, no critical differences are to be noted between weekdays and weekends. All summary statistics are consistent, and a day of the week effect, if present, is negligible, see Table 3.3.

Rather than the day of week, the most critical effect is the time of the day as seen in Table 3.4.

The dissection of the data at the hour level reveals the daily patterns. The latency attains its minimum at around 01:00 CET then continuously increases until 06:00 CET. The day time latency is fairly stable with a very slight downward trend up until 22:00 CET, then drops to attain its minimum at 01:00 CET the next day. The kurtosis and skewness evolution also have distinct patterns following the same timestamps. The kurtosis being strongly positively correlated with the median latency, while skewness is strongly negatively correlated with median latency. The evolution of median latency also correlates with the number of person online. This is related to the fact that the available bandwidth is limited, hence the bandwidth must be shared between users. The more people online, the lesser the fraction of bandwidth each user will get. 

Number of measurements.

The timestamps are irregularly spaced, and the number of measurements N t received at time t is integer valued. The unconditional distribution of N t is geometric with parameter 0.51 (χ 2 p-value = 0.23): 44% of timestamps contained no measurements, 30% contained 1 measurement, 26% more 1 Some highly performing Networks with very high bandwidth are able to deliver constant bandwidth per user at all times. Those Networks are typically not CDN, but correspond to private infrastructures operated by companies like Google for instance. In this case, no seasonal effect is present and performance is stationary. We will focus on those Networks in the next Chapter. seen above in Section 3.1.2, the timestamps of the measurements are precise down to the second, meaning that latency can not be sampled at arbitrary frequencies. If we let η = 1 second be the accuracy on the timestamps, it means that we only observe latency measurements at times t of the form nη for some n ∈ N. η is the highest frequency available. Moreover, multiple measurements can be received on the same timestamp. Figure 3.6 is a snapshot of an 8 seconds windows of measurements. Those data can be seen as the empirical realization of a latent discrete time process taking values in a set of random probability distributions. Formally let (Ω, F, P) be some probability space and let P + the set of probability distributions on R + . We equip P + with the Wasserstein metric of order p where p ≥ 1, denoted W p [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Let η > 0, K ∈ N, T = Kη, and let t 0 ≤ t 1 ≤ . . . ≤ t K be the regular partition of the time interval [0, T ] such that for i ∈ 0, K = {0, . . . , K}, t i = iη. that characterizes this dichotomy.

Let λ be some random probability measure on R + , i.e. λ : Ω × B(R + ) -→ [0, 1] such that λ(•, B) is a random variable and λ(ω, •) is a probability measure. For ω ∈ Ω define by q λ 1/2 (ω) the median of the probability distribution λ(ω, •):

λ ω, (-∞; q λ 1/2 (ω)] ≥ 1 2 , λ ω, [q λ 1/2 (ω); +∞) ≥ 1 2 .
Now we can define recursively the median of a set of empirical probability measures. Let (X i ) i≥1 be a collection of independent random variables with distribution µ, and define:

M n = 1 n n i=1
δ Xi the associated empirical measure. Then q Mn 1/2 (ω) is the median of the discrete uniform distribution over the set {X 1 (ω), . . . , X n (ω)}, and is usually referred to as the empirical median of the sample (X 1 (ω), . . . , X n (ω)). Now consider a sequence (P i ni ) i=1,...,N of empirical measures, i.e. for all i,

P i ni = 1 ni ni j=1 δ Xi,j
, where (X i,j ) j=1,...,ni are i.i.d. P i ni . Define the normalized sum of empirical measures as:

N i=1 P i ni := N i=1 n i P i ni N i=1 n i .
For N = 2 we will simply write:

P 1 n1 ∨ P 2 n2 := 2 i=1 P i ni = 2 i=1 n i P i ni 2 i=1 n i = 1 n 1 + n 2 n1 i=1 δ X1,i + n2 i=1 δ X2,i . N i=1 P i
ni is the random probability measure of the sample (X 1,1 , . . . , X 1,n1 , X 2,1 , . . . , X N,n N ) and then q

N i=1 P i n i 1/2
is the corresponding median.

Let ∆(k) = kη ≥ η, k ∈ {1, . . . , K} be the sampling frequency of the aggregated series. For k ∈ {1, . . . , K} and n ∈ N such that there exists i ∈ {1, . . . , k}, Z (n-1)k+i = 0, define:

X ∆(k) n = q G ∆ n (k) 1/2 where G ∆ n (k) = k i=1 Z (n-1)k+i G ∆ n (k)
is the random probability measure associated with all measurements received at times = X η n is obtained by computing the median of measurements with identical timestamps, with no time aggregation. In the case where G ∆ n (k) = 0, q

t i , i ∈ E ∆(k) n = {i ∈ N|(n-1)∆ < iη ≤ n∆} = {(n-1)k +1, . . . , nk}. E ∆(k) n
G ∆ n (k) 1/2
is not defined. In this case, let 

n = inf{m ∈ N|G ∆ n (k) = 0}, - n = sup{m ∈ N|G ∆ n (k) = 0},

Local stationarity

Visual inspection of the aggregated series reveal a clear seasonal pattern with decreasing variance as ∆ increases, as seen in Figure 3.7. For small ∆ the data are heavily contaminated by noise and seem to loose structure. The Chapter 3. Internet Latency modelling 102 notion of local stationarity was first introduced by R. Dahlhaus in 1996 [START_REF] Dahlhaus | On the Kullback-Leibler information divergence of locally stationary processes[END_REF], see also [START_REF] Roueff | Prediction of weakly locally stationary processes by auto-regression[END_REF] and [START_REF] Vogt | Nonparametric regression for locally stationary time series[END_REF].

Heuristically speaking, a stochastic process is called locally stationary if it behaves approximately has a stationary process locally in time. Classic routines to assess stationarity like the Augmented Dickey-Fuller (ADF) test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and Ljung-Box test (see [START_REF] Dickey | Likelihood ratio statistics for autoregressive time series with a unit root[END_REF], [START_REF] Fuller | Introduction to statistical time series[END_REF], [START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF], [START_REF] Ljung | On a measure of lack of fit in time series models[END_REF]) performed on aggregated series with small ∆ over periods of time of the order of 1h typically fail to reject stationarity. We briefly recall those tests before presenting the results.

Augmented Dickey-Fuller Test

The augmented Dickey-Fuller (ADF) is a unit root test for stationarity. The null hypothesis is the presence of a unit root in the series, the alternative is stationarity of the series. Given a series (x t ) t the test fits the following model:

∆x t = α + βt + γx t-1 + k i=1 δ i ∆x t-i + ε t
where k is the lag order to be used and α, β, γ, (δ i ) 1≤i≤k are the parameters of the model, and the ε t 's are error terms assumed to be independently and identically distributed with zero mean. The lag is typically chosen using the Akaike Information Criteria or AIC first introduced by Akaike in 1973 (see [START_REF] Akaike | A new look at the statistical model identification[END_REF] and [START_REF] Sakamoto | Akaike information criterion statistics[END_REF]) by minimizing:

AIC = -2 log L + 2k
where L is the likelihood of the model. The test is performed under the null hypothesis that γ = 0 against γ = 0. The parameters are fitted by ordinary least squares and the test statistics γ/sd(γ) is compared against the Dickey Fuller distribution. The heuristics is that if the series is integrated, adding a term x t-1 gives no additional information in predicting ∆x t .

KPSS test

This test assumes the following model for the data:

x t = r t + ε t
with ε t a stationary non integrated process, meaning that ε t as an MA(∞) representation with square summable moving average coefficients, and r t = r t-1 + u t where u t is a Gaussian white noise with mean 0 and variance σ 2 . The null hypothesis is stationarity and is reduced to testing σ 2 = 0, corresponding in this case to:

x t = r 0 + ε t .
A linear regression of x t is then performed on a constant. The sum of squared residuals renoramalized by the Newey-West estimator of σ 2 [START_REF] Newey | Automatic Lag Selection in Covariance Matrix Estimation[END_REF] forms the test statistic and is compared to its limiting distribution.

Ljung-Box test

This test is used to test the null hypothesis that the data points are independently distributed by testing the significance of the autocorrelations. The test statistic is:

Q = n(n + 2) p k=1 ρ2 k n -k 103 3.

Data analysis and modeling

where n is the sample size, ρk is the sample autocorrelation at lag k and p is the number of lag to be tested. Under the null hypothesis H 0 that no autocorrelation is present in the series up to lag p we have Q ∼ χ 2 (p). Simulation studies [START_REF] Ruey | Analysis of financial time series[END_REF] suggest to take p ≈ log(n).

Choosing ∆ = 30s as the tradeoff between high enough frequency and low percentage of missing values in the aggregated series, see Table 3.6, we compute the percentage of times ADF, KPSS, Ljung-Box reject the hypothesis of stationarity using Monte-Carlo methods by randomly selecting 1000 timestamps (T 1 , . . . , T 1000 ) and performing the 3 tests on the sub-series (X ∆ tn ) tn∈Ei where E i is the time interval [T i , T i + L] where L is the length of the period tested. We choose four values for L, L = 30 minutes, L = 1 hour, L = 2 hours and L = 4 hours. The significance level is α = 0.05. The results are summed up in Table 3 Locally in time the aggregated series at high frequencies behave like noise. Even over 2 hours periods, the tests failed to reject stationarity of the aggregated series for ∆ = 30 more than 50% of the time. Over periods of 30 minutes, the tests almost never reject stationarity. The ACF and PACF [START_REF] George | Time series analysis[END_REF] functions can be used to assess the degree of serial correlations within a time series (x t ) t . For a lag h ∈ N, the ACF α(h) measures the correlation between x t and x t+h , i.e.: α(h) = corr(x t , x t+h ) while the PACF ρ(h) measures the direct correlation between x t and x t+h , i.e.:

ρ(h) = β h
where β h is the ordinary least squares estimation of β h in the model:

x t = β 0 + h i=1 β i x t+i + e t .
where e t is a zero-mean white noise. In other words, ACF measures the correlation between x t and x t+h while PACF measures the correlation between x t and x t+h after removing the linear dependency between intermediate observations. Results show evidence that for small ∆ the process (X ∆ n ) n is locally stationary, see Figure 3.8. 

Conditional mean model

Methodology

The aggregated series across ∆ exhibit a seasonal pattern with a fundamental period of 24h confirmed by a spectral analysis. The periodogram [START_REF] Lomb | Least-Squares Frequency Analysis of Unequally Spaced Data[END_REF] [START_REF] Scargle | Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data[END_REF], or squared modulus of the Fourier transform, of the aggregated series reveals strong periodicity at multiple frequencies, namely 24, 12 and 8 hours, see Figure 3.9 and Table 3.8. A natural way to model those seasonal time series is to perform a Fourier decomposition of the signal [START_REF] Körner | Fourier analysis[END_REF], i.e. we choose a model of the form:

X ∆ n = µ ∆ + K k=1 a ∆ k sin 2kπt ∆ n φ + K k=1 b ∆ k cos 2kπt ∆ n φ + ε ∆ n , (3.1) 
where:

• X ∆ n is the n-th observation.

• t ∆ n = (n -1/2)∆ is the corresponding timestamp.

• K is the number of Fourier regressors.

• φ is the fundamental period of the series, i.e. φ = 24h = 86400s. tn for various ∆. All series exhibit three major peaks in the power spectrum corresponding respectively to 24h, 12h and 8h periods.

• µ, (α i ) 1≤i≤K and (β i ) 1≤i≤K are the coefficients of the model and are estimated by linear regression.

• ε is an innovation.

We shall use the notation

f ∆ n = µ ∆ + K k=1 a ∆ k sin 2kπt ∆ n φ + K k=1 b ∆ k cos 2kπt ∆ n φ (3.2)
to denote the mean dynamic of our model. The number of Fourier regressors K is chosen through AIC minimization, see Table 3.9. K = 4 is the minimizer for all series with ∆ ≥ 120 and K = 7 when ∆ < 120, but in all cases the AIC significantly drops from K = 1 to K = 2 and K = 2 to K = 3, and very little improvement is noticed after. This is in good alignment with the spectral analysis in Figure 3.9 and Table 3.8. The aggregated series X ∆ tn have a fundamental period of 24h, and three peaks in the power spectrum are present at periods 24h, 12h and 8h, suggesting indeed that the signal has three modes of vibration at frequencies 2kπ/φ, k = 1, 2, 3. We choose K = 3 for all series.

Significant periods (highest to lowest power) ∆ = 30 3.8: Significant periods in the spectrums of the aggregated series X ∆ tn . All exhibit very strong power at the 24,12 and 8h periods. The Fourier decomposition allows us to accurately model the evolution of day/night cycles and is in fact strongly related to the number of measurements received, or, equivalently, the number of people connected on the Network. Across all sampling frequencies, the average correlation between the number of measurements per time interval and the corresponding value of the Fourier decomposition is 0.8. This seasonal component encapsulates the information about attendance.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 ∆ =

Results

Table 3.10 presents the important reduction of the autocorrelation in the aggregated after applying the Fourier decomposition. Figure 3.10 confirms that the Fourier decomposition correctly removes all seasonal periods in the aggregated series. Despite that the Fourier decomposition captures the seasonality and autocorrelation in the aggregated series, the residuals' volatility is clustered as suggested by the autocorrelation in |ε ∆ |, suggesting heteroscedasticity, see Table 3 3.10: Autocorrelations of the aggregated series and residuals after Fourier decomposition. r(k) is the autocorrelation at lag k. Because η = 1s, r(φ/∆), r(φ/2∆) and r(φ/3∆) correspond to the autocorrelation at 24h, 12h and 8h, i.e. the one corresponding to significant peaks in the power spectrum.

have diagonal variance Σ ∆ . Following on White's heteroscedesticity-consistent estimators [START_REF] White | A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity[END_REF], we start by rewriting our model for X ∆ n in matrix form. We have:

X ∆ = F ∆ θ ∆ + ε ∆
where F ∆ is the Fourier design matrix, i.e. the matrix containing all Fourier regressors: 

F ∆ i,j = sin(πjt ∆ i /φ) if j is even cos(π(j -1)t ∆ i /φ) if j is odd i.e: F ∆ =      1 sin 2πt ∆ 1 φ cos 2πt ∆ 1 φ sin 4πt ∆ 1 φ cos 4πt ∆ 1 φ . . . sin 2Kπt ∆ 1 φ cos 2Kπt ∆ 1 φ . . . . . . . . . . . . . . . . . . . . . . . . 1 sin 2πt ∆ N φ cos 2πt ∆ N φ sin 4πt ∆ N φ cos 4πt ∆ N φ . . . sin 2Kπt ∆ N φ cos 2Kπt ∆ N φ      , θ ∆ = (µ ∆ , a ∆ 1 , b ∆ 1 , . . . , a ∆ K , b ∆ K ),
and

ε ∆ = (ε ∆ 1 , . . . , ε ∆ N ).
F ∆ is an N × p matrix, where N is the number of rows and p = 2K + 1 is the number of columns. The analysis of the residuals suggests that V(ε ∆ ) = Σ ∆ where Σ ∆ is diagonal. The ordinary least mean dynamics across the tested ∆ are essentially equal is a consequence of the very slow evolution of performance during the day. Because the measurements locally behave like noise, computing the median over entangled sub intervals leads similar estimates.

Of course this has a limit, for ∆ = 86400, i.e. 24h, the aggregated series would simply average measurements over whole days and would display a series with constant mean dynamic. The underlying dynamic does not need be constant for the different aggregated series to display the same pattern, it is enough to have monotonous trend. In this case again, computing median on entangled intervals would lead similar results, with higher variance as the interval shrinks. The only case where one would expect different behaviors between aggregated series would be when the mean dynamic attains a local extremum. In this case, provided ∆ is large enough, aggregating the measurements should be expected to underestimate or overestimate the true value depending on whether the extremum is a maximum or minimum respectively.

As seen by the estimated mean dynamics in Figure 3.12, there are 6 equally distributed local extrema per day. Hence the measurements median changes direction every 3 hours on average. Because the median is particularly robust with a breakdown point of 0.5 (see [START_REF] Rousseeuw | Robust estimation in very small samples[END_REF]), even in those regimes where direction changes, results are expected to be consistent through scales provided ∆ is small enough. It can be seen in figure 3.12 that indeed it is around local extremums that the main differences are displayed. As ∆ increases, the mean dynamic increases in crest and decreases in peaks. The effect is marginal though.

Optimization of parameters computation

Assuming standard algorithms are used, the computational complexity of multiplying two matrices of size n × m and m × p is O(nmp), and the computational complexity of inverting a n × n matrix is O(n 3 ). Faster algorithms exist, but we will not discuss them here, see for instance [START_REF] Bini | Polynomial and Matrix Computations[END_REF]. Since

F ∆ ∈ M n×p (R), the complexity of computing F ∆ F ∆ is O(np 2
) and inverting it is O(p 3 ). Since n > p, the overall complexity for computing (F ∆ F ∆ ) -1 is O(np 2 ). This time can be cut down to O(p) by exploiting the specific structure of the Fourier design matrix.

Proposition 10. Let ∆ > η such that φ/∆ ∈ N * , N be the length of X ∆ such that N = Jφ/∆ where J ∈ N * and F ∆ be the Fourier design matrix, i.e.:

F ∆ =      1 sin 2πt ∆ 1 φ cos 2πt ∆ 1 φ sin 4πt ∆ 1 φ cos 4πt ∆ 1 φ . . . sin 2Kπt ∆ 1 φ cos 2Kπt ∆ 1 φ . . . . . . . . . . . . . . . . . . . . . . . . 1 sin 2πt ∆ N φ cos 2πt ∆ N φ sin 4πt ∆ N φ cos 4πt ∆ N φ . . . sin 2Kπt ∆ N φ cos 2Kπt ∆ N φ     
where t ∆ n = 2n-1 2 ∆ is the timestamp of the n-th element of X ∆ n . Then:

F ∆ F ∆ = N      1 1/2 . . . 1/2     
Proof. We recall the following technical result on sums of sine and cosine. Let x, y ∈ R. Then: Now for 1 ≤ i ≤ p, let F ∆ i be the i-th column of F ∆ . Then the (i, j) entry of F ∆ F ∆ is:

(F ∆ F ∆ ) (i,j) = F ∆ i , F ∆ j
It is obvious from the definition of

F ∆ that F ∆ (1,1) = N . Now let k = 2q, q ∈ N * . (F ∆ F ∆ ) (k,k) = F ∆ k 2 = N n=1 sin kπt ∆ n φ 2 = N n=1 sin ∆ φ qπ(2n -1) 2 Let τ = φ/∆ then x → sin ∆ φ qπ(2x -1) 2 is τ -periodic.
By assumption, τ is an integer, hence: But τ y/2 = 2qπ, and since q ∈ N, we finally have:

(F ∆ F ∆ ) (k,k) = Jτ 2 = N 2 
The proof for odd k is identical since cos(x) 2 , like sin(x) 2 , can also be linearized in terms of cos(2x). Now for the off diagonal elements, observe that if either i = 1 or j = 1 the result follows directly from the (3.3) and (3.4). Now, if i, j > 1 and i = j, then:

(F ∆ F ∆ ) (i,j) = F ∆ i , F ∆ j
will involve sums with general term of the forms:

• sin kπ τ (2n -1) cos lπ τ (2n -1)

• sin kπ τ (2n -1) sin lπ τ (2n -1)

• cos kπ τ (2n -1) cos lπ τ (2n -1)
where k, l ∈ N and k = l, and are potentially different from line to line. Using the product-to-sum trigonometric identities and (3.3) and (3.4) concludes the proof.

Innovation

In analogy with financial data, supported by the reminiscent microstructure effects evoked in Section 3.1.1, we shall use the term volatility to denote the innovations' variability. The reason to model the volatility of the innovations is mainly to decrease computational complexity of the prediction algorithm without impacting prediction accuracy. As seen in sections 3.1.2 and 3.3, the innovations of the Fourier regression display seasonal clustered volatility. Being able to predict volatility of the measurements may help anticipate periods of low predictability of the series. 

Naive GARCH

The residuals ε ∆ are uncorrelated and the Fourier decomposition removes seasonality of the series, but exhibit strong autocorrelation in the second moment because of clustered volatility. Figure 3.13 shows an example of fit of the model for ∆ = 600s. The seasonality is corrected by the Fourier decomposition and the autocorrelation is contained into the confidence bands. But clearly, the variance is clustered. The distribution of the residuals is locally Gaussian around the mean, but with heavier tails. In order to account for those effects, we propose to first fit a GARCH model on the residuals. GARCH models were introduced by Bollerslev [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], following on the work of Engle [START_REF] Robert | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF], to describe the variable volatility of certain time series. Let p, q ∈ N, we say that a time series ε t is GARCH(p, q) if there exists positive coefficients ω, (α i ) 1≤i≤q , (β i ) 1≤i≤p such that

ε t = σ t z t σ 2 t = ω + q i=1 α i ε 2 t-i + p j=1 β j σ 2 t-j
where the random variables z t are independent, identically distributed, with mean 0 and variance 1. Those models have been intensively used to describe real world time series, like financials series, see [START_REF] Huang | GARCH models: structure, statistical inference and financial applications[END_REF] for instance.

We fit a GARCH model on the residuals of the Fourrier decomposition with skewed Student's t distribution for the error terms. The skewed Student's t distribution [START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF] is a family of distributions that aim at accommodating the skewness and high kurtosis often present in real world data [START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF]. The skewed Student's t distribution has probability density function:

f (x; m, τ, ν, ξ) = 2sσ τ (ξ + ξ -1 ) Γ( ν+1 2 ) Γ( ν 2 ) 1 √ πν 1 + s 2 ν ( x-m τ σ + µ) 2 ξ 2sign( x-m τ σ+µ) -ν+1 2 , 3.4. Innovation with m 1 = 2 √ ν -2 (ν -1)B( 1 2 , ν 2 ) , µ = m 1 (ξ -ξ -1 ), σ = (1 -m 2 1 )(ξ 2 + ξ -2 ) + 2m 2 1 -1, s = ν ν -2 ,
where

B(a, b) = 1 0 x a-1 (1 -x) b-1 dx, a, b > 0
is the Beta function and

Γ(x) = ∞ 0 t x-1 e -t dt, x > 0
is the Gamma function. The parameters m ∈ R and τ > 0 are the mean and standard deviation of the distribution, while the parameters ν > 2 and ξ > 0 are the shape and skewness parameters respectively. The shape parameter ν controls the heaviness of the tails, whereas the skew parameter controls if the distribution is left or right skewed: for ξ < 1 the distribution is left skewed, for ξ > 1 the distribution is right skewed and for ξ = 1 the distribution is symmetric. The skewed Student's t distribution embeds several well known distributions like the Student's t, Normal or Laplace distributions, among many others. For instance, the Gaussian distribution is obtained by setting ξ = 1 and letting ν → ∞. Indeed, it is easily verified that:

lim ν→∞ f (x; m, τ, ν, 1) = 1 √ 2πτ 2 exp - 1 2 (x -m) 2 τ 2 .
The high flexibility of the distribution allows for excellent fit of various real world data, especially financial data.

The diurnal and nocturnal cycles of Internet activities are responsible for the sine-cosine like patterns in the aggregated series: people connect more on the Internet during day time than during night time. The more people on the Network, the higher the latency because of finite bandwith, hence we observe this daily cycle where latency increases rapidily at dawn, slowly decreases during the day and rapidily decreases around midnight. In addition to this pattern, we also observe cycles in the volatility of the measurements. There are potentially two competing effects here. Possibly, as less people access the Network the latency decreases and the volatility increases because there are fewer measurements. But this only marginally explains the phenomenon as those daily cycles in volatility are still present when we under-sample every time interval so that each point in the aggregated series is built with the same number of measurements. Which is precisely the reason why the aggregation is performed using the median, because of its robustness. Indeed, the sample median has the highest breakdown value possible of 0.5, when the sample mean as a breakdown value of 0 [START_REF] Rousseeuw | Robust estimation in very small samples[END_REF]. Intuitively, the breakdown value is the proportion of outliers in a sample the estimator can handle before behaving abnormally. The volatility of the measurements appear to be clustered. One way to model clustered volatility is to fit an ARMA-GARCH model on the innovations of our Fourier decomposition. The GARCH model appears to be appropriate. The weighted Ljung-Box Test on standardized and squared standardized residuals, used to evaluate the dependence of the first and second moments in the residuals with a time lag are not significant (p >5%). Sign bias tests [START_REF] Engle | Measuring and testing the impact of news on volatility[END_REF], used to verify whether previous positive and negative shocks have a different impact on heteroscedasticity, are not significant either (p >5%), suggesting good specification of the model and no asymmetric effects. Nyblom tests [START_REF] Nyblom | Testing for the constancy of parameters over time[END_REF] are not significant for all parameters (p >5%), suggesting that the parameters of the model are constant across time. Finally, the Chi-squared goodness of fit test is also not significant, suggesting that the residuals follow the target distribution. The model accurately captures the structure of the data. Our model for X ∆ n now has the form:

X ∆ n = µ ∆ + K k=1 α k sin 2kπt ∆ n φ + K k=1 β k cos 2kπt ∆ n φ + ε ∆ n (3.5) ε ∆ n = ν ∆ + κ ∆ ε n-1 + u ∆ n + ρ ∆ u n-1 u ∆ n = σ ∆ n z n σ ∆ n 2 = ω ∆ + λ ∆ u ∆ n-1 2 + γ ∆ σ ∆ n-1 2
where ε ∆ n is the innovation of the Fourier decomposition defined in Section 3.3, ν ∆ is the mean level of the innovations, κ ∆ is the autoregressive term, ρ ∆ is the moving average term, the parameters of the GARCH part satisfy ω ∆ > 0, λ ∆ > 0 and γ ∆ > 0 and the random variables z n have zero mean and variance 1.

It is worse noting that as ∆ → ∞ the conditional SD loses its structure and amplitude, and flattens, see Figure 3.17 number of measurement does play a role in the clustered variance, especially in high frequencies, but this is still persistent with equal subsampling, even in large frequencies.

Diagnostic tests

The diagnostic tests rely on Ljjung Box tests for serial correlation in the residuals and squard residuals, and Anderson Darling (see [START_REF] Anderson | Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes[END_REF]), Cramer Von Mises (see [START_REF] Richard Von | Probability, statistics and truth[END_REF], [START_REF] Cramér | On the composition of elementary errors[END_REF]) and Kolmogorov Smirnov (see [START_REF] Marsaglia | Evaluating kolmogorov's distribution[END_REF]) tests for goodness of fit. The target distribution is skewed Student's t and depends on the two unknown parameters of shape and skewness. We propose a methodology to test for relevant values. We fit our model in (3.5) on a training set of past history from the same CDN and extract the estimated shape and skewness parameters for varying ∆. We can observe a strong regularity in the evolution of those parameters as a function of ∆, see Figure 3.18. A logistic function is fitted to the skewness and a linear function is fitted to the shape, suggesting a model for the shape and skewness parameters, denoted respectively by Sh(∆) and Sk(∆): The skewness of the standardized residuals converges to 1 as ∆ increases, indicating that the distribution of the residuals gets more symmetric. The shape on the other hand has a slight downwards trend, indicating that the tails of the innovations get lighter as ∆ increases. The goodness of fit tests indicates very good fit to the theoretical skewed student distribution, with an average of 4.35% rejection rate at level α = 5%. The Ljung box tests also reveal an average of 4.35% rejection rate at lag 1 and log(n) for the standardized residuals, but jumps to 20% rejection rate for the squared residuals, suggesting that the Naive Garch failed to captured the patterns in the second moment of the residuals. The spectral analysis revealed periodicity in the squared volatility, but GARCH processes can not produce seasonal patterns, suggesting that GARCH model might not be optimal to fit those data. A way around this problem is to force deterministic seasonal lags in the volatility.

Sk(∆) = 1 1 + e -0.

Periodic GARCH

It is clear from the the previous section that the volatility of the innovations is intimately related to the seasonality of the series, which means that the volatility is periodic, which was not taken into account into the previous models. The estimated conditional volatility of the innovations are clearly periodic, but GARCH(1,1) processes are not periodic. The conditional volatility is estimated through the optimization of a quasi-likelihood that embeds the squared residuals of the model. Because those are seasonal, they contaminate the estimators and produce this seasonal pattern in the conditional volatility as seen in Figure 3.17 for instance. Indeed, the estimated conditional volatility σ2 is fitted according to the equation:

Lag = 1 Lag = log(n) ∆ =
σ2 t = ω + αu 2 t-1 + β σ2 t-1
where ω, α and β are the parameters fitted by quasi likelihood estimation. In order to initialize the recurrence, σ0 is set to the standard deviation of the innovations. It is clear that if u 2 t has a seasonal component, so will σ2 t . In this case, we need to take that seasonality into account in the modeling. In order to do that, we can simply add seasonal terms in the GARCH part, i.e. fit a model of volatility for the innovations of X ∆ tn of the form:

σ 2 t = ω + P k=1 α k u 2 t-k + Q k=1 β k σ 2 t-k + R k=1 λ 1,k cos γ 1,k + kπt φ a + λ 2,k sin γ 2,k + kπt φ a
where the parameters ω, (α k ) 1≤k≤P , (β k ) 1≤k≤Q , (λ 1,k ) 1≤k≤R and (λ 2,k ) 1≤k≤R are positive and (γ 1,k ) 1≤k≤R , (γ 2,k ) 1≤k≤R are real numbers. For ease of reading, we dropped the ∆ subscript. This model naturally incorporates the seasonality. The GARCH structure has been adjusted to integrate deterministic terms at the seasonal periods, on top of which we added a base of absolute sine and cosine functions to reflect the seasonal oscillations of the volatility of the innovations. The power term a acts as a way to sharpen the spikes, see Figure 3.19. Across ∆ we observe three significant spikes in the spectrum of u 2 at the scale ∆ at periods φ/∆, φ/2∆ and φ/3∆, corresponding to 24,12 and 8 hours periods, suggesting R = 3. In what follows we set P = Q = 1. The other parameters will be estimated via quasi likelihood optimization. The classic quasi likelihood used in GARCH estimation consists in replacing the unobserved sequence (σ t ) t with a sequence (σ t ) t that follows the same equation of evolution as σ t , with the difference that we postulate a value for σ0 , typically the unconditional standard deviation of all the innovations. Since one naturally suspects that non seasonal effects are present in the dynamic, we account for those in the modeling by specifying an autoregressive and moving average model on the innovations. Hence we propose the following model for the innovations: 

ε t = µ + ψ(ε t-1 -µ) + θu t-1 + u t u t = σ t z t σ 2 t = ω + αu 2 t-1 + βσ 2 t-1 + R k=1 λ 1,k cos γ 1,k + kπt φ a + λ 2,k sin γ 2,k + kπt φ
where ε ∆ n is the innovation of the Fourier decomposition defined in Section 3.3, µ is the mean level of the innovations, ψ is the autoregressive term, θ is the moving average term, the parameters of the GARCH part satisfy ω > 0, α > 0 and β > 0, (λ 1,k ) 1≤k≤R , (λ 2,k ) 1≤k≤R are positive, (γ 1,k ) 1≤k≤R , (γ 2,k ) 1≤k≤R are real numbers, a > 0 and the random variables z t have zero mean and variance.

We shall now discuss how this model is estimated. Denote by F the distribution of z 1 and f = F its density. F will be chosen to be the skewed Student's t distribution with shape ν and skewness ξ. Denote:

Θ = (µ, ψ, θ, ω, α, β, (λ 1,k ) 1≤k≤2 , (λ 2,k ) 1≤k≤2 , (γ 1,k ) 1≤k≤2 , (γ 2,k ) 1≤k≤2 , ν, ξ)
the vector of unknown parameters. We choose the quasi likelihood approach. Let F t = σ(ε s |s ≤ t) be the sigma algebra generated by the observations up to t. Then conditional on F t , ε t has a density with respect to the Lebesgue measure, denoted by f t given by:

f t (x) = 1 σ t f x -µ -ψ(ε t-1 -µ) -θu t-1 σ t
Now, for any random variables Y 1 , . . . , Y n the joint probability distribution can be expressed as the product of the conditional distributions:

p(Y 1 , . . . , Y n ) = n k=1 p(Y k |Y 1 , . . . , Y k-1 ) 123 
3.4. Innovation meaning that the log-likelihood of the observations is given by:

l(X|Θ) = T t=3 log f t (ε t ) = T t=3 -log(σ t ) + log f ε t -µ -ψ(ε t-1 -µ) -θu t-1 σ t (3.8) 
We drop ε 1 and ε 2 because those are defined recursively using the unobserved variables ε -1 and ε 0 . All parameters need to be estimated in one stage as estimating first the ARMA parameters on ε t using the equation:

ε t = µ + ψ(ε t-1 -µ) + θu t-1 + u t
then estimating the GARCH parameters on the residuals using the equation:

σ 2 t = ω + αu 2 t-1 + βσ 2 t-1 + R k=1 λ 1,k cos γ 1,k + kπt φ a + λ 2,k sin γ 2,k + kπt φ
a leads inconsistent estimators because ARMA models assume conditional homoscedasticity while GARCH models specifically assumes conditional heteroscedasticity. Hence, we need to solve in Θ:

arg max Θ T t=3 -log(σ t ) -log f ε t -µ -ψ(ε t-1 -µ) -θu t-1 σ t . (3.9) 
Since we do not observe the sequences u t and σ t , the likelihood in (3.8) can not be optimized directly. We chose a quasi maximum likelihood approach. The dynamics satisfied by the sequences u t and σ t are deterministic in the sense that if one observes the initial values u 1 and σ 1 , then conditional on σ(ε 1 , . . . , ε T ), the sequences σ t and u t are completely determined. Instead of solving (3.9), we solve a similar optimization problem where we replace the sequences σ t and u t by σt and ũt where the latter satisfy the same dynamics as the former and such that σ1 and ũ1 are given. The choice of the initial values is not important, and consistency and asymptotic normality of the quasi likelihood estimator can be proved (see [START_REF] Huang | GARCH models: structure, statistical inference and financial applications[END_REF]). In practice, we initialize σ1 to the unconditional standard deviation of the observations and ũ1 to 0. Then we apply the Nelder-Mead simplex search method (see [START_REF] Nelder | A simplex method for function minimization[END_REF]) to optimize the function that aims at minimizing an n dimensional function by comparing the values at the vertices of a general (n + 1)-simplex, denoted x 1 , . . . , x n+1 , such that f (x 1 ) ≤ . . . ≤ f (x n+1 ). At each step, the reflected point to x n+1 with respect to the center of mass of x 1 , . . . , x n , denoted x r , is computed and the simplex will either expand if the standardized residuals converges to 1 as ∆ increases, indicating that the distribution of the residuals gets more symmetric and the shape also has a downwards trend indicating that the tails get lighter as ∆ increases. The goodness of fit tests indicates very good fit to the theoretical skewed student distribution with parameters Sh(∆) and Sk(∆), with an average of 6.5% rejection rate at level α = 5%, see Table 3.18. The Ljung box tests reveal an average of 6% rejection rate at lag 1 and log(n) for the standardized residuals, and only 2% rejection rate for the squared residuals, resulting in a great improvement over the Naive GARCH. The model accurately captures the serial correlation in both moments, and the mean seasonal effects, again in both moments, see Tables 3.16 3.17.

f (x r ) < f (x 1 ) or contract if f (x r ) > f (x n ). Otherwise,

Point Forecast

In this section we assess the accuracy of our model for the conditional mean using the root mean squared error (RMSE) as a measure of performance, i.e. for a time series (x t ) t=1,...,T and corre- sponding predictors (x t ) t=1,...,T , RMSE [START_REF] Hyndman | Another look at measures of forecast accuracy[END_REF] is defined as:

RMSE = T t=1 (x t -x t ) 2 T
We evaluate the forecast relative to two common benchmarks: the NAIVE and the AVG models. Given a time series (y t ) t∈N , the NAIVE prediction produces forecasts that are equal to the last observed value, i.e.: ŷt+1 = y t .

The AVG prediction produces forecasts that are equal to the average of the last k observed values where k ≤ t, i.e.:

ŷt+1 = 1 k k i=1 y t+1-i . (3.11) 
AVG prediction can be used when mean reversion effect is suspected. We trained our model for f ∆ defined in (3.2) on 8 days of measurements and tested it on the following 6. Our model improves uniformly the two benchmarks, but we shall discuss some nuances. First, we shall represent more visually those results by plotting the log-log plots of the RMSE for the 3 models and the ratio of our predictive model relative to each benchmark. Relative to the AVG prediction, the Fourier decomposition improves as ∆ increases and stabilizes for ∆ = 3600 and onwards, whereas relative to the NAIVE prediction, the ratio peaks to 0.96 ∆ = 1800. The standard deviation of the differenced series, i.e. the change between consecutive observations, and RMSE of the NAIVE prediction are essentially equal. This is because the aggregated series can be assumed to be bounded in probability. Under this hypothesis the RMSE for the NAIVE prediction is indeed asymptotically equal to the standard deviation of the differenced series. For any time series (x t ) t bounded in probability, the NAIVE prediction at time t is defined as xt = x t-1 and the differenced series as z t = x t -x t-1 . Noting z N = n -1 N t=1 z t , the variance of the differenced series up to time N is:

Lag = 1 Lag = log(n) ∆ =
σ2 N = 1 N N t=1 z 2 t -z N 2 = 1 N N t=1 (x t -x t-1 ) 2 -z N 2 = 1 N N t=1 (x t -xt ) 2 -z N 2 = RMSE 2 -z N 2 but z N = n -1 (z N -z 0 ) → 0 in
probability because the series is bounded in probability. As seen earlier, the mean model for the aggregated series is independent of the choice of ∆, and ∆ is simply the elapsed time between consecutive observations. This has an important consequence: there are two competing effect that explain the U-shaped form of the NAIVE prediction's RMSE. As seen above, the NAIVE prediction's RMSE is the standard deviation of the differenced series. For small ∆, the difference between consecutive images of the mean model will contribute marginally to the the difference between consecutive observations. But as ∆ increases, the contribution becomes more significant. Because the standard deviation of the differenced innovations keep decreasing, the increase of the volatility in the differenced series after ∆ > 1800 is a consequence of the contribution of the differenced mean model, i.e. the seasonal cycle. Hence the value ∆ = 1800 for the NAIVE prediction's RMSE corresponds to a tradeoff between variance in the differenced innovations and variance in the differenced mean model. For ∆ < 1800, the volatility between consecutive observations is explained by the innovations' volatility, whereas for ∆ > 1800, the volatility between consecutive observations is explained by the seasonal cycles that overwhelm the innovations's volatility, resulting in this U-shaped form. The Fourier prediction's RMSE decrease for ∆ < 1800 is less steep than that of the NAIVE prediction: a slope of -0.32 in the power law signature for the Fourier's RMSE versus -0.41 for the NAIVE prediction's RMSE (R 2 = 0.98, p-value < 2.2 × 10 -16 and R 2 = 0.98, p-value < 2.2 × 10 -16 and R 2 = 0.99, p-value < 2.2 × 10 -16 respectively), resulting in the observed increasing ratio up to this point. The reason though is unknown.

Just like the Fourier's RMSE, the AVG prediction's RMSE displays a power law, with a significantly smaller power index of -0.17 (R 2 = 0.92, p-value < 2.2 × 10 -16 ), the quotient resulting in a power law with power index of -0.14 (R 2 = 0.98, p-value < 2.2 × 10 -16 ). For the smallest scale ∆ = 30, the ratio attains a maximum of 0.93, and continuously decreases to 0.48 for the ∆ = 10800. Because of the strong seasonality, it is not surprising that the AVG prediction's RMSE is close to the standard deviation of the aggregated series. For small ∆, the volatility of the innovations is way larger in amplitude than the range of our mean model (up to a factor 10), hence for such ∆, it is expected that the Fourier model will perform approximately as the AVG prediction.

Optimal sampling frequency

As briefly explained in Section 3.4, one reason to use GARCH model for volatility is to decrease computational complexity of the prediction algorithm without impacting prediction accuracy in case the practitioner wants to use a very small value for ∆. As seen in the previous Section 3.5, the Fourier decomposition improves the RMSE over the two baselines uniformly for ∆ = 30 to ∆ = 7200 but the benefit from using the Fourier decomposition becomes increasingly smaller. In high frequencies the edge is marginal. It is clear that and our model outperforms the baselines partly because there is transition phase in the latency measurements twice a day: a sudden increase at dawn and a sudden decrease at mid-night. The baselines will perform very poorly because of that, whereas the Fourier decomposition actually captures that pattern. So the difference in high frequencies is mainly due to a few minutes of transition twice a day. Can we identify those transition phases, and what happens RMSE-wise when we look at them individually? In high frequencies one possible way to compare the RMSE is to compute it separately on periods of high/low variability. One way to identify those periods is to use the conditional standard deviation modeled with GARCH. The conditional standard deviation of the aggregated series bursts everyday, so using our model for the volatility we can precisely predict those bursts. We can then compare the performance of the Fourier decomposition and baselines separately during periods of high and low variability. We propose to identify those periods by setting a threshold on the conditional standard deviation.

The threshold can simply be set to a quantile of the conditional standard deviation distribution.

In the following numerical experiment, the threshold we use is 70%, see Figure 3.24. In Table 3.21 we present the RMSE ratio between the NAIVE prediction and the Fourier decomposition, and the same ratio conditional on the periods of high and low variability. Figure 3.25 is a plot of the RMSE for the different models as a function of ∆. The difference between Naive and Fourier is less than 1% for ∆ ≤ 120s in periods of low variability, which represents with this threshold 70% of the measurements, meaning that in the majority of cases, for ∆ ≤ 120s, the Fourier decomposition performs equally well as the Naive prediction, suggesting that the simpler model can be used instead of the Fourier decomposition in order to gain time when producing a prediction. ∆ < 120s can be identified as the values for ∆ such that the aggregated series at higher frequencies are not predictable. Adjusting the threshold to be the 70% quantile of the conditional SD partition the horizon interval into alternating sub intervals of high and low volatility. We still observe similar patterns as when we did not split using the volatility, but split that way, it is clear that the edge of the Fourier prediction is absent for ∆ < 120s in low variability periods, the slight edge is only present in high variability periods, as expected. For ∆ < 120s, we recommend to use simpler models in periods of high variability to decrease computational 

Global error ratio

Sample entropy as a predictability measure

Richman and Moormanis introduced a tool called sample entropy to study the predictability of time series [START_REF] Joshua | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. Sample entropy (SE) is a measure of unpredictability of a time series. For a given embedding dimension m, tolerance r and number of data points N , sample entropy is the negative logarithm of the probability that if two sets of simultaneous data points of length m have distance < r then two sets of simultaneous data points of length m + 1 also have distance < r. Definition 6. Let m ∈ N, r > 0 and X = (x 1 , . . . , x N ) be a regularly spaced time series. Define X m (i) = (x i , . . . , x i+m-1 ) and let d = • ∞ be the sup norm. Then the sample entropy of X is defined as:

SE X n = -log A B (3.12) 
where:

A = #{i = j, d(X m+1 (i), X m+1 (j)) < r}, B = #{i = j, d(X m (i), X m (j)) < r}.
Since A ≤ B, SE is always a positive number. SE is an approximation of the conditional probability that two vectors remain within a distance r at the next sampled point given that they were already at distance r for the first m points. High SE indicates that this probability is low, hence suggesting unpredictability of the series.

In the case where X = {x 1 , . . . , x N } is the realization of N i.i.d. random variables (X i ) 1≤i≤N , then -log(A/B) is the empirical counterpart of:

-log P (d((Z 1 , . . . , Z m+1 ), (Y 1 , . . . , Y m+1 )) < r) P (d((Z 1 , . . . , Z m ), (Y 1 , . . . , Y m )) < r) = -log P max 1≤i≤m+1 |Y i -Z i |< r P max 1≤i≤m |Y i -Z i |< r = -log (P(|Z 1 -Y 1 |< r))
where (Z i ) i , (Y i ) i are independent random variables with common distribution that of X 1 . In other words, SE for i.i.d. data drawn from F estimates the concentration of F and measures the mean volume of a random ball of radius r. For instance, the theoretical sample entropy of an i.i.d. sample is log(2π -1 r/2σ 0 e -t 2 dt) in the case N (0, σ 2 ), or -log(2r -r 2 ) in the case U(0, 1). The choice of r as a function of the standard deviation is to be scale free, while the coefficient 0.2 was motivated by empirical studies (see [START_REF] Joshua | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]). We suspect that among all distributions supported over the real line, the maximum entropy should be attained for some distribution, potentially under moment constraints. Indeed, in all generality if Z, Y are independent with common distribution F and density F , then the entropy at point r can be expressed as a fonctionnal of F :

-log (P(|Z -Y |< r)) = R (F (x + r) -F (x -r)) F (x)dx =: J r (F )

Theoretical analysis

Sample entropy was first introduced as a measure of predictability or self similarity of a time series 133 3.6. Sample entropy as a predictability measure and has been widely applied since, especially on physiological data, see for instance [START_REF] Chen | Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early alzheimer's disease and aging[END_REF] [84] [START_REF] Douglas E Lake | Sample entropy analysis of neonatal heart rate variability[END_REF].

We propose to use SE in the context of time series prediction of the median-process of Internet. After fitting a model, one is typically interested in assessing to what extent the model captured the information contained in the data. We propose a way to use SE to achieve this goal, i.e. to perform a single test to assess whether the residuals of a statistical model are independent and identically distributed according to some target distribution.

Sample Entropy or SE is closely related to the correlation integral first introduced by Grassberger and Procaccia [START_REF] Grassberger | Characterization of strange attractors[END_REF] [START_REF] Grassberger | Measuring the strangeness of strange attractors[END_REF] to study attractors of some dynamical systems. In what follows, we will first recall some facts about the correlation integrals and the convergence of U -statistics under specific conditions to set up the theoretical background for the study of SE. We will conclude this section by proving convergence properties of SE.

Let F be some distribution function over some set S. For a metric d and r > 0 define the correlation integral as

C(d, r) = S S
1 {d(x,y)<r} F (dx)F (dy).

In many cases, orbits of dynamical systems tend to accumulate in a region of the space called the attractor. Dynamical systems are deterministic, but can be studied under the scope of probability using ergodic theory. For many dynamical systems the existence of an invariant measure has an important consequence: a typical trajectory can be regarded as a outcome of a stationary sequence (W n ) n∈N equipped with its invariant measure µ with c.d.f. F . Grassberger and Procaccia showed that in many cases C(d, r) = Cste • r ν as r → 0 where ν > 0 is called the correlation exponent and is intimately related to the fractal dimension of the underlying attractor. C(d, r) is a measure of the concentration of F and represents the mean volume of a ball of radius r. Indeed if we let µ denote law of X where X ∼ F , we have:

C(d, r) = S S 1 {d(x,y)<r} F (dx)F (dy) = S µ(B(x, r))F (dx) = Eµ(B(X, r)) A natural estimator of C(d, r) is: C n (d, r) = n 2 -1 1≤i<j≤n 
1 {d(Wi,Wj )<r} .
Note that C n (d, r) is a U -statistic. It is clear that the sample entropy is the log-ratio of two correlation integrals. Before introducing rigorously the sample entropy in terms correlation integrals, we shall state the fundamental theorem concerning the convergence of U -statistics for dependent data. The basic results concerning U -statistics built on an i.i.d. sequence is due to [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] (see [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] for instance) and the introduction of the so-called Hoeffding-decomposition, but will not apply here as we will focus our attention on U -statistics based on dependent observations. Under the assumption that the process W is a Lipschitz functional of an absolutely regular stationary process with good mixing properties, Denker and Keller [START_REF] Denker | Rigorous statistical procedures for data from dynamical systems[END_REF] along with Cutler [START_REF] Cutler | A review of the theory and estimation of fractal dimension[END_REF] extended the work of Grassberger and Procaccia and proved asymptotic normality of U -statistics for this class of processes. Let us first recall the definition of U -statistics. Let W = (W n ) n≥1 a collection of R d valued random variables and h : R p × R p -→ R be a kernel, i.e. a symmetric and measurable function. The associated U -statistic is:

U n = n 2 -1 1≤i<j≤n h(W i , W j ).
The main result of Denker and Keller is asymptotic normality of U n for a large class of process W . They first introduced a class of kernels that satisfy a specific variation condition, denoted C P . For h : R p × R p -→ R, x ∈ (R p ) 2 and ε > 0, define the oscillation function of h at x:

osc(h, ε, x) = sup{|h(y) -h(y )|: y -x ∞ < ε, y -x ∞ < ε, y, y ∈ (R p ) 2 }
where • ∞ denotes the sup norm. osc(h, ε, x) is the amplitude of h in a neighborhood of x. Now with respect to a probability measure P on R p define the mean oscillation of h:

osc(h, ε) = osc(h, ε, x)dP 2 (x)
Now define the class C P that satisfy the variation condition with respect to the probability measure P :

C P = {h : R p × R p -→ R : h is a kernel and ∃s > 0, M = sup ε>0 ε -s osc(h, ε) < ∞}
Now let (W n ) n≥1 be a stationary process and (U n ) n≥1 the associated U -statistic, i.e.:

U n = n 2 -1 1≤i<j≤n h(W i , W j ).
Assume that for all n ≥ 1, W n = f (Y n , Y n+1 , . . . ) where (Y n ) n≥1 is an absolutely regular stationary process and f is measurable. We shall now state the result of Denker and Keller [START_REF] Denker | Rigorous statistical procedures for data from dynamical systems[END_REF] on the asymptotic normality of U -statistics. Suppose the following hypothesis holds:

• (H1): (Y n ) n≥1 has β-mixing coefficients satisfying:

β(n) δ/(2+δ) = O(n -2-ε )
for some δ, ε > 0.

• (H2): The function f is Lipchitz continuous in the sense that that there exists 0 ≤ α < 1:

|f (y 1 , y 2 , . . . ) -f (y 1 , y 2 , . . . )| α n if y 1 = y 1 , . . . , y n = y n .
• (H3): the kernel h is in C P , i.e. satisfy the variation condition with respect to P .

Before stating the theorem, we need one last notation. Denote by dF the marginal distribution of (W n ) n≥1 , i.e. P(W 1 ∈ A ⊂ R p ) = F (A). For x ∈ R p let: where

h 1 (x) = h(x,
θ = E F (h 1 (W 1 )) = h(x, y)dF (x)dF (y) σ 2 = 4   E F (h 1 (W 1 ) 2 ) -θ 2 + n≥2 E F (h 1 (W 1 ) -θ)(h 1 (W n ) -θ)   .
Hereinafter let (X n ) n≥1 be independent random variables with common distribution F that has a second moment. For m ∈ N, introduce the process:

Z i = (X i , . . . , X i+m )
for some m ∈ N. Let k ∈ {m, m + 1}, and define the functions

d k : R m+1 × R m+1 -→ R and h k : R m+1 × R m+1 -→ R as d k (x, y) = max 1≤i≤k |x i -y i | and h k (x, y) = 1 {d k (x,y)<r} .
Then the sample entropy of the random sample (X 1 , . . . , X n ) is:

SE X n = -log C n (d m , r) C n (d m+1 , r)
where

C n (d k , r) = n 2 -1 1≤i<j≤n 
1 {d k (Zi,Zj )<r} = n 2 -1 1≤i<j≤n h k (Z i , Z j ).
Observe that h k is a kernel, hence SE X n is the ratio of two U -statistics. We will use Theorem 8 to prove that the those two U -statistics have Gaussian asymptotic distribution. Joint asymptotic normality will be a consequence of the Cramer-Wold [START_REF] Cramér | Some Theorems on Distribution Functions[END_REF] theorem, and the final result will be a derived using the Delta method.

Proposition 11. Let m ∈ N and (X n ) n≥1 be independent random variables with common distribution F such that EX 2 1 < ∞. Then the process (Z n ) n≥1 defined as:

Z n = (X n , . . . , X n+m )
is stationary and satisfy hypothesis (H1) and (H2).

Proof. Z clearly is stationary. The fact that (Z n ) n≥1 satisfy (H1) and (H2) is immediate since (X n ) n≥1 is an i.i.d. sequence.

Proposition 12. Let k ∈ {m, m + 1}. Define h k : R m+1 × R m+1 -→ R as:

h k (x, y) = 1 {d k (x,y)<r}
where d k (x, y) = max 1≤i≤k |x i -y i |. Then h k is a kernel satisfying (H3), i.e. the variation condition, with respect to any measure P of the form P = ⊗ m+1 i=1 Q where Q is an absolutely continuous probability measure on R.

Proof. Throughout the proof we will use the following notation: for any x ∈ (R m+1 ) 2 , let x 1 , x 2 ∈ R m+1 such that x = (x 1 , x 2 ). In particular, h k (x) = h k (x 1 , x 2 ).

Let k ∈ {m, m + 1}. Observe that for x ∈ (R m+1 ) 2 , osc(h k , ε, x) ∈ {0, 1} since h k (y) ∈ {0, 1} for all y ∈ (R m+1 ) 2 . We first observe that if osc(h, ε, x) > 0 then:

r -2ε ≤ d k (x 1 , x 2 ) ≤ r + 2ε
If it were not the case, say if d k (x 1 , x 2 ) > r + 2ε, then for any y ∈ (R m+1 ) 2 such that y -x < ε we would have:

|x 1 i -y 1 i |< ε for all i ∈ {1, . . . , m + 1} |x 2
i -y 2 i |< ε for all i ∈ {1, . . . , m + 1} hence combining the two inequalities and using the triangle inequality it follows:

|y 1 i -y 2 i |> |x 1 i -x 2 i |-2ε > r
for all 1 ≤ i ≤ m + 1. Then it follows:

d k (y 1 , y 2 ) > d k (x 1 , x 2 ) -2ε > r since d k (x 1 , x 2 ) > r + 2ε
by assumption. This implies that for all y ∈ (R m+1 ) 2 such that y -x < ε, h k (y) = 0 hence osc(h k , ε, x) = 0, which is a contradiction hence d k (x 1 , x 2 ) ≤ r + 2ε. The proof that d k (x 1 , x 2 ) ≥ r -2ε is identical. Hence the following hold true:

osc(h k , ε, x) > 0 ⇒ r -2ε ≤ d k (x 1 , x 2 ) ≤ r + 2ε
Now, let P a measure on R m+1 of the form P = ⊗ m+1 i=1 Q where Q is an absolutely continuous probability measure on R. By definition, the mean oscillation of h with respect to P is:

osc(h, ε) = osc(h, ε, x)dP 2 (x) = E P osc(h, ε, X)
where X = (X 1 , X 2 ) ∼ P ⊗ P . We know that osc(h, ε, X) ∈ {0, 1} and osc(h, ε, X) > 0 ⇒ r -2ε ≤ d k (x 1 , x 2 ) ≤ r + 2ε, hence: osc(h, ε) = P P (osc(h, ε, X) = 1) Let G k be the c.d.f. of d k (X 1 , X 2 ). Then:

≤ P P (r -2ε ≤ d k (X 1 , X 2 ) ≤ r + 2ε)
osc(h, ε) ≤ G k (r + 2ε) -G k (r -2ε). The joint distribution of X = (X 1 , X 2 ) is ⊗ 2(m+1) i=1 Q, hence: G k (u) = P(d k (X 1 , X 2 ) ≤ u) = P( max 1≤i≤k |X 1 i -X 2 i |≤ u) = P(|U -V |≤ u) k
where U, V are independant with common distribution Q. Since Q is absolutely continuous with respect to the Lebesgue measure on R, |U -V | is also absolutely continuous with respect to the Lebesgue measure, hence G k is differentiable almost everywhere. Finally write:

0 < ε -1 osc(h, ε) ≤ G k (r + 2ε) -G k (r -2ε) ε .
The right hand side converges as ε → 0 since G k is differentiable. So we can conclude:

M = sup ε>0 ε -1 osc(h, ε) < ∞
i.e. h k ∈ C P , hence satisfies (H3).

Proposition 13. Let k ∈ {m, m + 1}. Let:

C n (d k , r) = n 2 -1 1≤i<j≤n 
1 {d k (Zi,Zj )<r}
Then there exists σ 2 k > 0 such that:

√ n(C n (d k , r) -θ k ) d -→N (0, σ 2 k )
where

θ k = P(|X 1 -X 2 |< r) k .
Proof. Direct application of Theorem 8 and Propositions 11 and 12.

Proposition 14. C n (d m , r) and C n (d m+1 , r) have joint asymptotic Gaussian distribution, i.e. there exists a symmetric positive definite matrix Σ of size 2 × 2 such that:

√ n C n (d m , r) C n (d m+1 , r) - θ m θ m+1 d -→N (0, Σ) where θ k = P(|X 1 -X 2 |< r) k , k ∈ {m, m + 1}.
Before proving this proposition, we will need the following lemma: Lemma 5. Let l ∈ N and P be a probability measure on R l . Suppose that h 1 : R l × R l -→ R, h 2 : R l ×R l -→ R are two kernels that satisfy (H3) with respect to P . Then any linear combination of h 1 and h 2 satisfy (H3).

Proof. Let λ 1 , λ 2 ∈ R, h = λ 1 h 1 + λ 2 h 2 and ε > 0. Recall that osc(h, ε) = osc(h, ε, x)dP 2 (x).
Let y, y ∈ (R l ) 2 . By the triangle inequality:

|h(y) -h(y )| = |λ 1 h 1 (y) + λ 2 h 2 (y) -λ 1 h 1 (y ) -λ 2 h 2 (y )| ≤ |λ 1 ||h 1 (y) -h 1 (y )|+|λ 2 ||h 2 (y) -h 2 (y )| But osc(h, ε, x) = sup{|h(y) -h(y )|: y -x < ε, y -x < ε, y, y ∈ (R l ) 2 }, hence: osc(h, ε, x) ≤ |λ 1 |osc(h 1 , ε, x) + |λ 2 |osc(h 2 , ε, x).

It follows:

osc(h, ε) ≤ |λ 1 |osc(h 1 , ε) + |λ 2 |osc(h 2 , ε)
and since h 1 , h 2 satisfy (H3), clearly h does too.

Proof of Proposition 14. Let λ = (λ m , λ m+1 ) ∈ R 2 , λ = 0. Then:

λ m C n (d m , r) + λ m+1 C n (d m+1 , r) = n 2 -1 1≤i<j≤n λ m h m (Z i , Z j ) + λ m+1 h m+1 (Z i , Z j ) =: n 2 -1 1≤i<j≤n h λ (Z i , Z j ) say.
Then clearly h λ is a kernel satisfying (H3) according to Lemma 5 and Proposition 12. Hence applying Theorem 8 with kernel function h λ and letting h λ 1 (x) = h λ (x, y)dF (y), we have that there exists σ 2 λ > 0:

√ n (λ m C n (d m , r) + λ m+1 C n (d m+1 , r) -µ λ ) d -→N (0, σ 2 λ )
where:

µ λ = h λ (x, y)dF (x)dF (y) = λ m h m (x, y)dF (x)dF (y) + λ m+1 h m+1 (x, y)dF (x)dF (y) = λ m θ m + λ m+1 θ m+1
and: 

σ 2 λ = 4 V(h λ 1 (Z 1 )) + m+1 t=1 cov(h λ 1 (Z 1 ), h λ 1 (Z 1+t )) .
Y n = √ n C n (d m , r) -θ m C n (d m+1 , r) -θ m+1 , we have λ, Y n d -→N (0, σ 2 λ
). We quickly recall the Cramer-Wold theorem. If (A n ) n≥1 is a sequence of R p valued random variables such that for all ξ ∈ R p there exists a real valued random variable B ξ such that ξ, A n d -→B ξ , then A n weakly converges to a limit A ∞ ∈ R p and B ξ = ξ, A ∞ . Moreover, by definition, a vector A ∈ R p is a Gaussian vector if for all ξ ∈ R p , ξ, A is a real valued Gaussian variable. Hence there exists Y ∞ such that:

λ, Y n d -→ λ, Y ∞
and Y ∞ has Gaussian N (0, Σ) distribution. Because Σ is a 2 × 2 covariance matrix, there exists a, b > 0 and c ∈ R such that: Σ = a c c b .

We shall now derive the exact expression for Σ using the limiting distribution of λ, Y n for specific choices of λ.

For λ = (1, 0) we have:

λ, Y n = √ n (C n (d m , r) -θ m ) d -→N (0, σ 2 (1,0)
). For λ = (0, 1) we have:

λ, Y n = √ n (C n (d m+1 , r) -θ m+1 ) d -→N (0, σ 2 (0,1)
). Finally, for λ = (1, 1) we have:

λ, Y n = √ n (C n (d m , r) + C n (d m+1 , r) -θ m -θ m+1 ) d -→N (0, σ 2 (1,1) ). By identification we have      σ 2 (1,0) = a σ 2 (0,1) = b σ 2 (1,1) = a + b + 2c hence the asymptotic covariance term c satisfies c = 1 2 (σ 2 (1,1) -σ 2 (1,0) -σ 2 (0,1) )
where

σ 2 λ = 4 m t=0 cov(h λ 1 (Z 1 ), h λ 1 (Z 1+t ))
for any λ ∈ R 2 .
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Asymptotic variance estimation

In order to estimate σ 2 λ , one needs to estimate κ λ (t) = cov(h λ 1 (Z 1 ), h λ 1 (Z 1+t )) for t = 0, 1, . . . , m+1. First let:

p λ (j) = 1 n -1 i =j h λ (Z i , Z j ) C λ n = n 2 -1 1≤i<j≤n h λ (Z i , Z j )
then the estimator for κ λ (t) is:

κλ (t) = 1 n -t n-t i=1 p λ (j)p λ (j + t) -C λ n 2 ,
and the estimator Σ for Σ easily follows. Finally we derive asymptotic normality of the sample entropy.

Proposition 15. Let θ = -log(P(|X 1 -X 2 |< r)). Then the following hold:

SE X n P -→θ √ n(SE X n -θ) d -→N (0, ∇g(θ)Σ∇g(θ) t )
where g : (x, y) → log(x) -log(y).

Proof. Direct consequence of the asymptotic normality of (C n (d m , r), C n (d m+1 , r) and the Delta method.

The reason why sample entropy is important is because under the null hypothesis that the data are i.i.d. F , then its exact behavior under H 0 is known, and will significantly shift away from H 0 under H 1 = ¬H 0 . The typical use case where one would care to apply this test procedure would be on the residuals of some statistical model to assess to what extent the model captured the information contained in the series. We performed the test at level α = 0.05 on the residuals of the Fourier seasonal-GARCH. The distribution of the residuals under H 0 was specified as the Skewed Student distribution with parameters Sk(∆) and Sh(∆) defined in (3.6) and (3.7). The results are presented in Figure 3.27, and suggest that our model successfully captured the relevant information in the aggregated series. Instead of using the test on the residuals, it can be applied directly to the aggregated series, leading a different interpretation of the results. When applied on the residuals, the test will measure how good the model captured the information within the series, but when applied directly to the original series, it measures the quantity of information that can be used to predict it.

Conclusion

In this chapter we presented an empirical analysis of Internet traffic latency using a Fourier ARMA Seasonal-GARCH model to explain both conditional mean and variance dynamics in the formation of the median process of log-latency measurements obtained after aggregating measurements over consecutive and non overlapping time intervals of length ∆ > 0. Modeling this median process instead of the underlying true data generating process is based on operational standards than rely on quantiles, and especially the median, of the latency measurements. The reason is that measurements are generated by thousands of different users at a very high frequency, making a distributional approach that relies on the quantiles more manageable and interpretable since the load balancer can not use the latency performance of a single user that needs to be routed, but instead only sees the whole distribution of latency across all users at once.

The mean dynamic displays strong persistent daily cycles, captured by a Fourier regression of the aggregated series fitted by ordinary least squares with 3 periods at 24h, 12h and 8h. A particularly important feature is the invariance of the estimates for all ∆ < 10800, i.e. 3 hours, suggesting very slow rate of conditional mean evolution. The Fourier decomposition captures the serial autocorrelation of the series and all seasonal cycles.

The squared residuals of this conditional mean model exhibit strong autocorrelation and seasonal volatility clustering. An ARMA seasonal GARCH model, i.e. an ARMA-GARCH process with additional deterministic terms in the GARCH innovations, fitted in one stage by quasi maximum likelihood on the residuals on the mean model captures all volatility features. Residuals diagnostic show excellent goodness of fit of both mean and variance model. The model allows for time series prediction and is proven to outperform common baselines in the industry like NAIVE prediction and AVG prediction.

Finally, a key problem for load-balancing purposes is that prediction should be made at the shortest time horizon possible, i.e. with the smallest ∆ possible. But as ∆ goes to 0, the volatility explodes and prediction become intractable. We proposed a way to select the optimal sampling frequency by exploiting alternating seasonal periods of low and high volatility. A new way of measuring the predictability of a time series based on sample entropy is proposed, and asymptotic properties are derived. The test is applied on the residuals of our model and shows evidence that the model accurately captures the structure of the median latency process. sonal performance reflecting attendance oscillations. For this reason, latency measurements often exhibit strong mean and variance varying patterns as described in Chapter 3. But some networks may produce latency measurements with no such statistical properties. Busy infrastructures are more likely to display those varying patterns than less busy ones because high attendance will typically limit the bandwidth available per user hence reducing latency in periods of peak attendance. Distance to the server is also a decisive factor. For instance, a server located in Tokyo may display strong statistical properties when accessed from Taipei, but will lose most of them when accessed from Paris. Finally, the quality of the infrastructure is also an important factor. Powerful companies like Google or Facebook can build highly performing infrastructures that produce extremely stable latency that does not exhibit varying patterns through time, resulting in far less structured latency measurements. In those cases, sophisticated prediction algorithms are less important for two reasons. First, the gain in accuracy compared to simpler models is negligible. Second, building sophisticated models often requires large training sets and are computationally more intensive, meaning more data processing, hence cost more money. After defining those stable networks, we describe a way to assess simultaneously the reliability of the prediction model and the stability of the measurements.

Problem formulation

In this chapter we shall focus our attention on stable networks. A stable network will be precisely defined in section 4.2.2. Heuristically, stable networks are characterized by stationary median latency (X ∆ tn ) n∈N processes with low predictability. Recall from Chapter 3 that X ∆ tn is the median of all measurements with timestamps falling in the interval ]t n-1 , t n ], where t n = n∆ and ∆ > 0. The process (X ∆ tn ) 0≤n∆≤T is called the median-process at frequency ∆.

More specifically, a stable network, hereinafter ε-stable network or ε -SN , will be defined as a network producing a purely non deterministic median process such that the ratio between the AVG 1-step ahead Root Mean Squared Error (RMSE) and the best ARMA(p, q) 1-step ahead RMSE is less than 1 + ε where ε > 0 is intended to be small and where AVG refers to a prediction model that produces forecasts that are equal to the average of the last k observed values. The AVG prediction is defined formally in Definition 11, the performance criterion RMSE is defined in Definition 10 and the Best ARMA(p, q) prediction in Definition 12. Informally we have:

AVG 1-step ahead RMSE Best ARMA(p, q) 1-step ahead RMSE ≤ (1 + ε).
For such median latency processes, sophisticated predictive models are irrelevant: instead of training a predictive algorithm with a large history of data points, basic models trained with few data points perform marginally better for small ε. The reason to favor models that can be trained with little data is economic: building a prediction with a large training set requires more data processing than building a prediction with a small training set, hence costs more money. The reason is the following: load-balancer s typically rent computing power to companies like Amazon or Google and those companies charge for each Megabyte of data processed. The natural question hence reduces to what "few" data points is enough and in what sense?

In parallel, we want the predictive algorithm to quickly detect possible outages. In stable networks, the median latency process is expected to be stationary. In case of an outage, the distribution suddenly changes: the typical situation is latency going up and variance exploding. When 4.1. Introduction outages happen, sending users on that network will deteriorate the so called user experience. We adapt the ideas of Daniel Kifer et al. [START_REF] Kifer | Detecting change in data streams[END_REF] on the detection of changes in the distribution of a data stream to our latency measurements to build a detecting change algorithm based on a comparison between two certain sliding windows of equal length N called the Ref and Shift windows, using the Wasserstein distance. The Ref window is a fixed snapshot of past performance when no outage occurred, reflecting expected normal behavior of the network, while the Shift window reflects present performance by ingesting new observations of the median process (X ∆ tn ) n online. Each time a new observation is received the algorithm tests if an outage occurred by computing the Wasserstein distance between the two windows Ref and Shift. If it exceeds a certain threshold Q, an outage is reported. The impact of Q along with the number of data points N in the sliding windows are crucial: low values of Q or N will make the algorithm more sensitive to changes hence will potentially result in a large number of false positives. On the contrary, large values of Q or N will under estimate the severity of real outages and delay the detection, if not miss it completely, resulting in a false negative. A false positive in this context is defined has a detection of change at a timestamp when no outage occurred, and a false negative is defined has an absence of detection of change at a timestamp when an outage occurred.

The change detection algorithm naturally defines time periods of confidence and suspicion in the underlying model. When no alert is triggered, we should keep confidence in the fact that the network behaves in a normal fashion and the predictive model should be considered reliable. On the other hand, when an outage is detected, the users should stop being routed to that specific network immediately until normal conditions are met again.

The mathematical problem can be stated as follows: in stable networks, how should we select the minimum training sets in order to minimize the prediction error over the periods of confidence while having as few as possible false positive and negative outages detections? In other words, we want to build a predictive/change detection algorithm with the following properties:

1. Identify the periods of time where the network behaves abnormally.

2. Select the training sets with as few data points as possible.

3. Minimize the prediction error over the periods of confidence. 4. No false negative. Little tolerance for false positive.

Main results and organisation of the chapter

In section 4.2 we present in details the notion of ε-stable networks and the requirements of the algorithm for change detection and optimal training set selection. Namely we want an algorithm that selects the minimum number of training samples without impacting the performance beyond a tolerance 1 + τ of the best model, and we want to detect the outages when they happen with no false negative and as few as possible false positives. Note that τ and ε are different parameters. ε will measure the stability of the network, while τ will measure the loss in prediction accuracy resulting from training the prediction algorithm with fewer data points. In section 4.3 we describe the algorithm itself and how it should be used on latency measurement, with a special treatment for various aspects concerning the heaviness of the survival function and the properties of the distance used to detect changes along with how it impacts inference and estimation. Numerical results on 4.2. Prediction in stable networks that have the particularity to produce median processes that have little statistical structure. For such networks, elementary models using as few training samples as possible shall perform only marginally less in terms of prediction accuracy to more sophisticated models. In the following sections, we will define mathematically the stable networks and how to optimize the training set selection.

Stable networks

Before introducing the notion of stable networks, we recall some facts about time series, see for instance [START_REF] Hamilton | Time series analysis[END_REF].

Definition 8 (Deterministic process). Let (X t ) t∈Z be a second order process. For t ∈ Z let:

H t-1 = Vect{X t-1 , X t-2 , . . .}
the closure in L 2 of the vector space Vect{X t-1 , X t-2 , . . .}, i.e. all linear combinations of the form ∞ k=0 λ k X t-k that converge in L 2 . Then we say that (X t ) t∈Z is deterministic if and only if

X t ∈ H t-1 ,
or in other words, (X t ) t∈Z is deterministic if and only if

X t = proj(X t , H t-1 )
where proj(X t , H t-1 ) = arg min

Y ∈Ht-1 X t -Y 2
is the orthogonal projection in L 2 of X t onto the sub-vector space H t-1 .

Example 3 (Deterministic process).

Let A, B two independent standard Gaussian random variables and θ ∈] -π, π[. Consider the harmonic process:

X t = A cos(θt) + B sin(θt) for all t ∈ Z.
Then (X t ) t∈Z is a deterministic process. Indeed, it can be seen that

X t = 2 cos(θ)X t-1 -X t-2 ∈ H t-1 ,
i.e. X t is a linear combination of past observations. Remark 5. For a deterministic process (X t ) t∈Z , the prediction error, measured with the Root Mean Squared Error (RMSE), of the 1-step ahead forecast X t = E(X t |H t-1 ), is always 0.

The following well-known theorem, due to Wold [START_REF] Anderson | The statistical analysis of time series[END_REF], gives a decomposition of weakly stationary processes.

Theorem 9 (Wold's Theorem). Let (X t ) t∈N be a zero mean weakly stationary process. Then there exists two random processes (ε t ) t∈N and (d t ) t∈N and real numbers (ψ t ) t∈N such that:

X t = ∞ i=0 ψ i ε t-i + d t for every t ∈ Z,
where:

i) ψ 0 = 1, ∞ i=0 ψ 2 i < ∞. ii) (ε t ) t∈N is a white noise process, i.e. E(ε t ) = 0 and E(ε t ε s ) = σ 2 1 {s=t} . iii) (d t ) t∈N is a deterministic process. iv) ∀s, t, E(d s ε t ) = 0.
Moreover, this decomposition is unique. Definition 9 (Purely non deterministic process). Assuming (X t ) t∈N is a zero mean weakly stationary process, then (X t ) t∈N is said purely non deterministic if and only if d t = 0 for all t, where (d t ) t∈N is the deterministic process in the Wold's decomposition of (X t ) t∈N .

Example 4 (Purely non deterministic process). Let (ε t ) t∈Z be a collection of i.i.d. N (0, σ 2 ), and let φ such that |φ|< 1. Consider the AR(1) process:

X t = φX t-1 + ε t .
It is well known that X t has a MA(∞) representation:

X t = ∞ j=0 φ j ε t-j .
Because Wold's decomposition is unique, it follows that X t is purely non deterministic.

It immediately follows from the Wold's decomposition that any purely non deterministic process can be arbitrarily approached with an ARMA(p, q) process. Indeed, let (X t ) t∈N be a purely non deterministic process, then by Wold's theorem we have:

X t = ∞ i=0 ψ i ε t-i = ψ(L)ε t
where L is the lag operator such that LX t = X t-1 . Then it is easily verified that there exists two polynomials θ and φ with finite degree such that 

ψ(L) ≈ θ(L) φ ( 
f (ν) = h∈Z γ(h)e -2πihν .
A necessary and sufficient condition for (X t ) t∈N to be purely non deterministic is given in the following theorem du to Kolmogorov [START_REF] Kolmogorov | Selected works. II. Probability theory and mathematical statistics[END_REF]:

Theorem 10 (Kolmogorov). Let (X t ) t∈N be a second order process with auto-covariance function γ. The process (X t ) t∈N is purely non deterministic if and only if the following conditions hold:

i) F X is absolutely continuous with respect to the Lebesgue measure,

ii) f X is positive almost everywhere, iii) log f X is integrable,
where F X and f X are the spectral distribution and density respectively of X = (X t ) t∈N , meaning that F X is the cumulative distribution function of the measure whose Fourier coefficients are γ(h), h ∈ Z, i.e. the spectral measure of (X t ) t∈N :

γ(h) = 1/2 -1/2 e 2πiνh F X (dν) and f X (ν) = h∈Z γ(h)e -2πiνh .
As we will see below in Proposition 16, f X > 0 everywhere implies log(f X ) integrable. Richard Bradley [START_REF] Bradley | On positive spectral density functions[END_REF] derived a necessary and sufficient condition for a spectral density of a weakly stationary process to be positive that involves linear dependence coefficients. The condition is technical and up to our knowledge, no statistical test is proposed in the literature for positivity of the spectral density. By visual inspection of the estimated spectral density obtained by computing the Lomb-Scargle Periodogram [START_REF] Lomb | Least-Squares Frequency Analysis of Unequally Spaced Data[END_REF], [START_REF] Scargle | Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data[END_REF] we derive good intuition on the positivity of the underlying spectral density.

If the spectral density has a zero at some frequency ω, the estimated power spectrum is be expected to show a significant drop at that frequency, see example 5 and Figure 4.2 for instance. The flatness of the estimated power of the process median-process in Figure 4.1 supports the assumption that the underlying spectral density is positive everywhere. This motivates the fact that the median latency processes can be assumed to be be purely non deterministic and accurately descried as ARMA(p, q). 

Prediction in stable networks

t = (ε t-2 + ε t-1 + ε t )/3 (solid black)
along with the true spectral density (solid red) in log scale. The frequency domains ranges from 0 to 1/2. Vertical dashed blue is the line x = 1/3. To be compared to 4.1 in order to support the assumption the our median process has positive spectral density everywhere.

Assumption 4 implies that the spectral density of (X ∆ t ) t∈Z exists, and satisfies:

f ∆ X (ν) = h∈Z γ X (h)e -2iπhν .
Proposition 16. Under Assumption 3,4,5, (X ∆ t ) t∈Z is purely non deterministic. Proof. We know that (X ∆ t ) t∈Z has a positive spectral density everywhere. In particular, the spectral density is continuous, hence there exists m > 0, f ∆

X (ν) > m for all ν ∈ [-1/2, 1/2]. In addition, since γ X is summable, there exists M > 0 such that f ∆ X (ν) < M for all ν ∈ [-1/2, 1/2]. It immediately follows that log(f X ) is integrable, hence by Kolmogorov's theorem, (X ∆ t ) t∈Z is purely non deterministic.
Definition 10 (RMSE). Let (X t ) t∈Z be a second order time series. Let X t+1 be any measurable function with respect to σ(X s |s ≤ t). The prediction error associated with X t+1 is defined as:

RM SE( X t+1 ) = E ( X t+1 -X t+1 ) 2 .
Definition 11 (AVG prediction). Let (X t ) t∈Z be a second order time series and k ∈ N. For all t ∈ Z let:

X t+1 AV G = 1 k k i=1 X t-i+1
The AVG prediction is the simple average of the last k measurements.

Let (X t ) t∈Z be a second order time series. For varying p, q ∈ N, fitting an ARMA(p, q) for (X t ) t∈Z means estimating the following model:

X t = u t + p i=1 φ i X t-i + q j=1 θ j u t-j
where (u t ) t is a Gaussian white noise.

Definition 12 (optimal ARMA prediction). Let (X t ) t∈Z be a second order time series. For varying p, q ∈ N, the following model is estimated through maximum likelihood:

X t = u t + p i=1 φ i X t-i + q j=1 θ j u t-j
where (u t ) t is a Gaussian white noise. The best model is chosen through AIC minimization [START_REF] Akaike | A new look at the statistical model identification[END_REF]. The optimal ARMA prediction is defined as the 1-step ahead prediction from that best model:

X t+1 ARM A = p i=1 φi X t-i + q j=1 θj ût-j
where the u t are the estimated residuals and the parameters φ i , θ j are estimated by minimizing the residuals some of squares.

Remark 6. X t+1 ARM A

is the natural estimator of X t+1 conditional on F t = σ(X s , u s |s ≤ t). Indeed, it is easily seen that the optimal forecast, in the sense of minimizing the mean squared error, is:

E(X t+1 |F t ) = p i=1 φ i X t-i + q j=1 θ j u t-j .
In other words, X t+1 ARM A is an estimation of the optimal predictor given all past information (conditional expectation).

We are now ready to define a notion of ε-stable network at the scale ∆ > 0.

Definition 13 (ε-stable network).

Let N be a Network. Let (X ∆ t ) t∈Z be the median process at scale ∆ > 0 produced by N . We say that N is a ε-stable network, or ε -SN , if (X ∆ t ) t∈Z is a purely non deterministic process and

RM SE X t+1 AV G ≤ (1 + ε)RM SE X t+1 ARM A
In other words, an ε-stable network generates purely non deterministic median processes with a relative error between the optimal ARMA prediction and the AVG prediction bounded by 1 + ε. Using remark 6 above, one sees in particular that an ε -SN is such that the optimal forecast using all the history of the process leads only marginal improvement over the optimal forecast using only immediate history.

Prediction in stable networks

Example 6. The existence of a ε -SN is not immediate. In particular for very small choices of ε > 0. For instance, consider an AR(1) process:

X t = φX t-1 + u t
where |φ|< 1 and u t are i.i.d. N (0, σ 2 ). This process is purely non deterministic stationary. The optimal 1-step ahead forecast is

X t+1 ARM A = E(X t+1 |F t ) = φX t . The optimal AVG prediction is E k -1 k i=1 X t-i = 0.
As a consequence we have:

RM SE X t+1 AV G 2 = E (X t+1 -0) 2 = V(X t+1 ) = σ 2 1 -φ 2 ,
and:

RM SE X t+1 ARM A 2 = E (X t+1 -φX t ) 2 = E u 2 t+1 = σ 2 So (X t ) t is ε-stable if and only if φ 2 1 -φ 2 ≤ ε.
In other words, the larger the autoregressive term, the larger ε and vice and versa. The autocorrelation structure of the process constrains the parameter ε.

Training set in ε -SN

Suppose we observe a median process (X ∆ t ) t∈Z from an ε -SN . By definition, predicting (X ∆ t ) t∈Z with sophisticated models only improves by at most ε the accuracy over the AVG prediction. The reason why load-balancers are willing to give up marginal gain in prediction accuracy is because sophisticated models need larger training sets, hence require more processing and computing, hence are more expensive. If one wants to fit an ARMA process, following on Box and Tiao rule of thumb [START_REF] George | Intervention analysis with applications to economic and environmental problems[END_REF], at least 100 data points are needed. If one is interested in the median process X ∆ tn with ∆ = 5min, by construction of the median-process, 100 × 5 minutes = 8 hours and 20 minutes of history must be considered at least. For such models, updates are needed at every new periods, in particular for calculating the estimated residuals. For networks producing measurements at a very high frequency, the problem can become computationally very intensive. The point of developing a notion of ε -SN is to identify networks in which accuracy can be traded for computational efficiency without significant loss, resulting in potential savings in computing power.

For reasons of confidentiality, the predictive algorithm for ε -SN that we developed at Citrix will be treated as a black box. At time t, denote X ∆ t Citrix the associated prediction. We will only treat the determination of the optimal training set. This predictor for the median latency uses at most the last N more recent latency measurements provided they were received within the last M minutes, even if that means ending up with less than N measurements. We shall write

X ∆ t Citrix = X ∆ t,N,M Citrix .
We will discuss the problem of tuning (N, M ) that meet the requirements of Section 4.4.3 such that we choose the smallest possible training set possible without impacting the accuracy beyond a certain threshold.

The value for ∆ will be fixed in this chapter. We choose ∆ = λ, where λ is the prediction Time To Live or TTL. A TTL is a generic term to quantify the lifespan of any data that is stored for a finite amount of time in a network before being updated. It is used to prevent the predictive algorithms to update the predictions on real time, which would be computationally too intensive. This means that if a prediction is updated at time t, every new users coming between times t and t + λ will use the same prediction. Only at time t + λ will the prediction be updated. Hence a prediction at time t with lifespan λ must predict the median value for latency measurements over the interval [t, t + λ]. λ = 60s is the default value set up by the engineers.

Detecting outages

A big source of concern for load-balancer s are outages. The reasons are numerous: failure, maintenance, system updates etc. and can not be anticipated. For load-balancing purposes it is a major concern to be able to react quickly: for as long as an outage is not detected, users can potentially be sent to a down server, failing to providing the content. The data generating process in stable networks produce measurements whose underlying distribution changes abruptly at random times when an outage occurs Outages are characterized by a sudden increase in the mean and variance of the median process (X ∆ n ) n∈N , see Figure 4.3. The goal is to be able to detect the moments where such changes occur. In this section we build an algorithm to detect changes in the distribution of the median latency process (X ∆ n ) n∈N .

Difficulties arise from the fact that the distribution of latency measurements exhibit a power law behavior with small tail index. Such distributions are known for generating catastrophic events with high probability. The task of detecting outages in this context is challenging because outliers may wrongly suggest a change in the distribution of latency measurements. Following up on the methodology developed by Kifer [START_REF] Kifer | Detecting change in data streams[END_REF], we build an algorithm based on the Wasserstein distance between two certain sliding windows, and propose to modify the W p distance by applying specific weights to reduce the number of false positives. We will intensively discuss the outliers issue and how it impacts the detection of changes when using the W p distance.

Since detection of changes in the median latency process is based on the comparison between two sliding windows, it reduces to the problem of testing whether or not two sample distributions are "close". The two sliding windows will be called Ref and Shift windows hereinafter. The Ref 

Algorithm description

Formally, let (Z t ) t∈N be a sequence of observations, typically Z t will represent the median of latency measurements at time t. For each t ∈ N, suppose Z t ∼ P t where P t is some probability distribution. In a stable network, all distributions P t are expected to be close, in the sense that there for any s, t ∈ N, W p (P t , P s ) must be bounded by a positive constant M . An outage will be said to have happened at time t if the distance W p (P t-1 , P t ) exceeds M , where W p is the Wasserstein distance of order p, see equation 4.1. In order to estimate instants when the distribution changes in the data stream, we make online comparison between the first C measurements received after the last known outage (the Ref window), and the last C measurements received in the data stream (the Shift) window. In practice, the true distribution of measurements is unobserved, the W p distance will be computed between the empirical distributions, and will be called the empirical Wasserstein distance, denoted W p,n , see equation 4.2.

The algorithm takes as input two parameters: C the number of data points in each window, and β > 0 a scaling parameter that will quantify the sensitivity of the detection. The algorithm is divided in two independent stages. First it estimates the maximum W p distance between two windows of length C via Monte-Carlo simulations by randomly selecting such windows on a training set where no outage happened. Denote by Q the resulting maximum value. The value for Q is typically computed once a day. The second stage is the online procedure for change detection. 

Detecting outages

A natural choice is β ≈ 1. In this case, changes are declared when the distance between Ref and Shift exceeds the maximum value of the W p distance between two windows of length C recorded during a period without outages. It is easily seen that small values for β will make the algorithm likely to trigger false positives, artificially increasing the time spent in the Red zone. Indeed, setting β = 0 will lead to W p,n (Ref, Shift) > βQ for all windows Ref and Shift, declaring a change at all times. On the contrary, large values of β will make it less likely to detect a change, increasing the number of false positives and the time spent in the Green zone. The parameter C is also decisive: small values will make the algorithm quicker to react to a change, but at the cost of W p distance estimates with more fluctuation, hence potential false positives. Before presenting the results, we shall discuss the choice of the distance and recall some basic facts, see for instance [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF].

The Wasserstein distance

The classical Wasserstein distance Let p ≥ 1. The W p distance between two distribution P, Q on R is defined as:

W p (P, Q) = inf π∈Π(P,Q) |x -y| p π(dx, dy) 1/p (4.1) 
where Π(P, Q) is the set of probability measures with marginal P and Q respectively and • is the Euclidean norm. When P, Q are probability distributions over the real line, W p has the closed form:

W p (P, Q) = R |F (x) -G(x)| p dx 1/p = 1 0 |F -1 (u) -G -1 (u)| p du 1/p
where F, G are the c.d.f. of P and Q respectively, and F -1 , G -1 their generalized inverse. If one observes 2 samples, (X 1 , . . . , X n ) independent with common distribution F , and (Y 1 , . . . , Y n ) independent with common distribution G, the empirical Wasserstein distance between the two samples is defined defined as the Wasserstein distance between the two empirical distributions:

W p,n (F, G) := W p (F n , G n ) = 1 0 |F -1 n (u) -G -1 n (u)| p du 1/p (4.2)
where F n (u) = n -1 n i=1 1 {Xi≤u} and G m (u) = n -1 m j=1 1 {Yj ≤u} are the empirical cumulative distributions and F -1 n and G -1 n denote their general inverse, or empirical quantile function. The empirical Wasserstein distance has the closed form:

W p,n (F, G) = 1 n n i=1 |X (i) -Y (i) | p 1/p
where (X (i) ) 1≤i≤n and (Y (i) ) 1≤i≤n are the order statistics of the two samples, ie X

(1) ≤ X (2) ≤ . . . ≤ X (n) and Y (1) ≤ Y (2) ≤ . . . ≤ Y (n) .
The Wasserstein distance is a natural candidate for change detection because compared to other classical metrics over probability distributions, this distance preserves in some sense the underlying geometry of the space. For instance, consider the collection {F a |F a ∼ U(a, a+1), a ∈ R} of uniform distributions over line segments of length 1. Then for any a, b ∈ R and p ≥ 1 we have:

W 1 (F a , F b ) = 1 0 |F -1 a (u) -F -1 b (u)|du = |a -b|.
It is easily seen that other classical metrics like TV, L 2 , Hellinger or χ 2 return a constant value for any choice of distributions F a , F b such that |a-b|> 1 while we would intuitively say that F 0 and F 2 are "closer" than F 0 and F 3 . The W p distance solves an optimal transport problem, meaning that this distance represents the effort needed to map one distribution into the other and is well adapted to measure distances from distribution to another. One drawback of the Wasserstein distance is that it is not a robust statistic [START_REF] Rousseeuw | Robust estimation in very small samples[END_REF] in the sense that its breakdown point is 0.

Definition 14. Let X n = (X 1 . . . , X n ) be a collection of random variables. Denote by P n = n -1 n i=1 X i its empirical distribution. Let Q n,k be the empirical distribution of a sample obtained from X n after replacing at most k of the X i 's with arbitrary values. For T a functional of P n , the breakdown point of the statistic T (P n ) is defined as:

BP(X n , T ) = 1 n min 1 ≤ k ≤ n, sup Q n,k |T (P n ) -T (Q n,k )|= ∞ .
BP(X n , T ) corresponds to the minimum proportion of outliers the statistic T can handle before taking arbitrarily large values.

Example 7 (Empirical Mean). Let X n = (X 1 . . . , X n ) an i.i.d sample and let P n = n -1 n i=1 X i its empirical distribution. The sample mean

T (P n ) = 1 n n i=0 X i
has a breakdown point of 1/n. Indeed, let Y n = (y, X 2 , . . . , X n ) a sample obtained from X n after replacing X 1 with an arbitrary real number y. Denote Q n,1 its empirical distribution. Then:

|T (P n ) -T (Q n,1 )|= 1 n |y -X 1 |-→ ∞ as y → ∞. Meaning that BP(X n , T ) = 1/n.
Example 8. Let X n = (X 1 . . . , X n ) an i.i.d sample and let P n = n -1 n i=1 X i its empirical distribution. The sample median

T (P n ) = X ( n/2 )
has a breakdown point of n/2 /n. Suppose n is odd, i.e. ∃q ∈ N, n = 2q + 1. Then n/2 = q + 1. Let Y n = (y 1 , y 2 , . . . , y k , X k+1 , . . . , X n ) a sample obtained from X n after replacing the first k values with a arbitrary real number y 1 , . . . , y k . Suppose k = q + 1 and that y 1 < y 2 < • • • < y q+1 . For y 1 large enough, we have:

|T (P n ) -T (Q n,1 )|= |y 1 -X ( n/2 ) |-→ ∞ as y 1 → ∞. Meaning that BP(X n , T ) ≥ (q+1)/n = n/2 /n. Now if k = q, it
is easily seen that for any choice of replacement of q values in X n , there exists i < j such that T (Q n,q ) is bounded between X (i) and X (j) , hence |T (P n ) -T (Q n,1 )| is almost surely finite. Hence BP(X n , T ) = n/2 /n. Remark 7. The breakdown point is often considered in the limit, hence we say that the mean (resp median) has a breakdown point of 0 (resp 1/2). It is easily seen that the Wasserstein distance also has a breakdown point of 0: the statistic is not robust to outliers.

Internet latency measurements have heavy tailed distributions. For heavy tailed distributions, catastrophic events occur with high probability, and statistics with low breakdown point will behave poorly in this case. We will describe in greater details those stylized facts in the next section. In order to cope with this undesirable property, we can apply weights to the Wasserstein distance.

The weighted Wasserstein distance

In the case where a small number of particularly high latency measurements would be received in a short period of time, the algorithm described above with the classic Wasserstein distance may trigger a false positive. In what follows, we will denote X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y n ) two random samples, that should be thought of as the Ref and Shift windows. One solution to handle outliers is to replace the equal wieghts 1 n in the W p distance definition by adaptive weights to emphasize on the center of the distribution. That is, we propose the weighted W p distance:

W n,p (X, Y ) = 1 0 |F -1 w X (u) -G -1 w Y (u)| p du 1/p
where:

F w X (u) = n i=1 w X i 1 {Xi≤u} and G w Y (u) = m j=1 w Y j 1 {Yj ≤u} (4.3)
are the weighted empirical cumulative distributions functions of X and Y . The weights w X and w Y satisfy:

w X i ≥ 0, w Y j ≥ 0, n i=1 w X i = 1, m i=1 w Y i = 1.
A possible choice for the weights is an exponentially decay in the distance to a given sample quantile. Let:

   u X π(i) =e -λ Xi-q X β u Y σ(j) =e -λ Yj -q Y β
where π and σ are permutations of {1, . . . , n} such that X π -1 (1) ≤ . . . ≤ X π -1 (n) and Y π -1 (1) ≤ . . . ≤ Y π -1 (n) , λ > 0 and q X β , q Y β are the empirical quantiles of order β ∈ (0, 1) of X n and Y n respectively. And define the weights as : 

     w X i = u X i j u X j w Y i = u Y i j u Y

The issue of detecting outages

Heavy-tailed distributions

As seen earlier in section 4.2.1 , the object of importance is the median process (X ∆ n ) n∈N , not the raw measurements (Y t k ) t∈N,1≤k≤Nt . Individual measurements are irrelevant on their own because the users are routed before they start generating latency measurements. The reason is two-fold: performing latency tests before routing is largely sub-optimal in average because of the time it requires before load-balancing, and because what matters most is the state of the network, not the state of the user's connectivity. The distributional approach is more relevant, and simplifies the statistical analysis because the median process is more manageable. At this point there are two choices for the data to feed the change algorithm: either the raw data, or the median process. As we will discuss in greater details in later sections, we choose to analyze changes in the distribution of the medians, not in the distribution of the raw measurements. This choice is motivated for stability reasons and coherence with the object of study, namely the median process. The stability reason is a consequence of the heavy tails of the measurements. Before presenting evidence stylized fact, we recall some facts about heavy tailed distributions. See for instance [START_REF] Foss | An introduction to heavy-tailed and subexponential distributions[END_REF]. Definition 15. Let F be the c.d.f. of a positive random variable X. F is said to be heavy tailed if:

e tx P(X > x) = e tx (1 -F (x)) -→ ∞ for all t > 0.
An important sub-class of heavy tailed distributions are the regularly varying distributions.

Detecting outages

Definition 16. Let F be the c.d.f. of a positive random variable. F is said to be regularly varying with coefficient α > 0 if:

P(X > x) = 1 -F (x) = L(x)x -α
where L : (0, ∞) -→ (0, ∞) is a slow varying function, i.e.:

lim t→∞ L(tx) L(t) = 1
for all x > 0.

It is easily seen that this definition is equivalent to the regular variation of the tail function, hence the name: Proposition 17. Let X be a positive random variable with distribution F . Then F is regularly varying with index if and only if there exists α > 0

lim t→∞ 1 -F (tx) 1 -F (t) = x -α
for all x > 0. α is called the tail index of F .

Proof. Suppose F is regularly varying, then there exists α > 0 and L slow varying such that:

1 -F (t) = L(t)t -α .

Then for any x > 0:

1 -F (tx) 1 -F (t) = L(tx)t -α x -α L(t)t -α = L(tx) L(t) x -α -→ x -α as t → ∞ because L is slow varying. Now, suppose: 1 -F (tx) 1 -F (t) -→ x -α as t → ∞. Let L such that L(t) = (1 -F (t))t α .
Then L is slow varying. Indeed:

L(tx) L(t) = (1 -F (tx))t α x α (1 -F (t))t α = 1 -F (tx) 1 -F (t) x α -→ 1 
It is noteworthy that the class of regularly varying distributions is strictly included in the class of heavy distributions. But in this chapter we will only focus on regularly varying distributions, so the two denominations will be used without distinction.

Example 9. Let X ∼ E(1) be exponentially distributed. Then Y = e X . Then the cumulative function of Y is regularly varying with coefficient 1. Indeed it immediately follows for the definition of Y that for x ≥ 1:

P(Y > x) = x -1
Then:

lim t→∞ P(Y > tx) P(Y > t) = x -1
Now we briefly recall the definition of (strict) power-law distributions. Definition 17. Let X be of a positive random variable. X is said to have a (strict) power-law distribution if there exists coefficients x min , λ, α > 0 such that:

P(X > x) = λx -α
as for all x ≥ x xmin .

The following lemmas, stated without proof, will be useful in the next section. Lemma 6. Let X be of a positive random variable with strict power law distribution, i.e. there exists x min , λ, α > 0 such that: P(X > x) = λx -α . for all x ≥ x min . Let Y be a random variable such that L(Y ) = L(X|X > x min ), then Y is Pareto distributed with parameters (x min , α), i.e.:

P(Y > y) =

x min y α for all y > x min .

Lemma 7. Let X 1 , . . . , X n be i.i.d. Pareto(x min , α). Then the maximum likelihood estimates for x min and α are given by: α M L = 1 n n i=1 log(X i / x M L min )

-1

x M L min = min 1≤i≤n X i

Clearly, power-law distributions are heavy tailed. Those distributions are of particular interest because the latency measurements often exhibit heavy tails with power-law behaviors. We now present briefly some descriptive statistics of the data used in this chapter and show evidence of the heavy distributions.

Estimating the tail index

One very important feature of the latency measurements in the ε-stable network is the stationnarity of n-samples through time. This feature is key in the estimation of the tail index because it guarantees its stability through time, hence it can be estimated on the whole data set. This Pareto-QQ plot 1 and log-log plot of the survival function suggest that the latency measurements exhibit a power-law as seen in Figure 4.10. A simple yet not foolproof way to estimate the tail index consists in performing two linear regressions: one of the survival function in log-log scale and one between the sample quantiles and the theoretical quantiles of the exponential distribution with parameter 1. Those heuristics are a direct consequence of the definition of power law distributions. If X has a strict power law distribution, then for all x > x min : P(X > x) = λx -α hence taking log on both sides it follows: log P(X > x) = log(λ) -α log(x).

Moreover, if we let q β be the quantile of order β of X, inverting the c.d.f. of X leads to: where q E(1) β is the quantile of order β of the standard exponential distribution.

q β = λ 1 -β
In practice one typically does not know where the power law behavior starts, meaning that the value x min needs to be estimated from the sample. Heuristically, x min can be estimated visually from the Pareto-QQ plot and log-log plot of the survival function by looking at the point where the the linear relationship starts. These techniques are subjective and known to lead to poor estimates, see [START_REF] Stilian | Estimating heavy-tail exponents through max self-similarity[END_REF]. Clauset and al. [START_REF] Clauset | Power-law distributions in empirical data[END_REF], [START_REF] Clauset | On the frequency of severe terrorist events[END_REF] proposed a more objective way to estimate x min . Their idea is as follows: for each value x min from a reasonable range, compute the Maximum Likelihood estimate of the tail index α M L using only data points greater than x min , and then compute the Kolmogorov-Smirnov distance between the data being fit and the theoretical Pareto(x min , α M L ). Finally, choose the value for x min that minimizes this distance. Formally, they estimate x min as:

x min = min where F (x; y) is the empirical distribution function of the data points greater than y, and F (x; α M L , y) is the theoretical distribution of the Pareto(y, α M L ). Once the parameters x min and α have been estimated, we propose a significance test following on the work of Lilliefors [START_REF] Lilliefors | On the kolmogorov-smirnov test for the exponential distribution with mean unknown[END_REF]. The idea is to compute the Kolmogorov-Smirnov test statistic on the latency measurements greater than x min and test for a Pareto(x min , α M L ) distribution. It is well known that performing the Kolmogorov-Smirnov when the parameters of the underlying distribution under the null are estimated from the sample leads far too conservative results [START_REF] Lilliefors | On the kolmogorov-smirnov test for normality with mean and variance unknown[END_REF].

To circumvent this issue, suppose X is a random variable whose distribution depends on some parameters µ, σ, and denote F µ,σ (•) its distribution function. The probability integral transformation of X is defined as the random variable Y = F µ,σ (X) and it is well known that Y ∼ U(0, 1). If µ, σ are estimated with µ n , σ n from an independent sample (X 1 , . . . , X n ) with common distribution F µ,σ (•), then Z = F µn,σn (X) no longer follows the uniform distribution. Nevertheless David and al. [START_REF] David | The probability integral transformation when parameters are estimated from the sample[END_REF] proved that the distribution of Z is independent of the choice of µ and σ as long as those parameters are location and scale. This is the basis for the so called Lilliefors' test, namely a Kolmogorov-Smirnov where the unknown parameters are estimated from the sample. When the estimated parameters are scale or location, the test statistic This gives us a way to test the null hypothesis that the distribution of the latency measurements have a power-law behavior. Indeed, under the null, conditional on the event that the measurements are greater than x min , they are Pareto(x min , α) by Lemma 6. Lemma 8 shows that the logarithm of a Pareto distributed random variable has the translated exponential distribution. Lemma 8. Suppose X ∼ Pareto(x min , α), then Y = log(X) ∼ T E(x min , α) i.e.: P(Y ≤ y) = 1 -e -α(y-xmin) 1 {y≥xmin} Since the parameters of a translated exponential are location and scale, the results of David and al. [START_REF] David | The probability integral transformation when parameters are estimated from the sample[END_REF] can be used to derive a Lilliefor's like test of the null hypothesis that the distribution of the latency measurements have a power-law behavior by simply computing the distribution of the Kolmogorov-Smirnov statistic between the log of the latency measurements greater than xmin against the true translated exponential distribution with parameters (log( x min ), α M L ) where xmin and α M L are defined in Lemma 7. The distribution of the test statistic is estimated using Monte-Carlo simulations, and a p-value can be derived. The precision of the estimation for α was calculated by Newmann [START_REF] Mej Newman | Power laws, pareto distributions and zipf's law[END_REF] and is α M L / √ n where n is the sample size. Results are presented in Figure 4.11.

The results of the estimation are presented in Table 4.2. We conclude with strong confidence that the latency measurements follow a power-law distribution with a tail index α = 2.1. The tail index α can also be estimated using the well known Hill's estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. Definition 18. Let (X n ) n≥1 be a sequence of independent and identically distributed positive random variables with c.d.f. F . Suppose F is regularly varying with coefficient α. The Hill x min α M L Confidence Bands (5%) estimator for α takes the form:

αk,n = 1 k k i=0 log(X n-i:n ) -log(X n-k:n ) -1
where (X j:n ) 1≤i≤n is the order statistics, i.e. is the permutation of (X i ) 1≤i≤n such that X 1:n < X 2:n < • • • < X n:n .

Under the hypothesis that k goes to ∞ at a rate such that k/n → ∞, then αk,n → α. The choice of the optimal number of order statistic k was debated in the literature, see for instance [START_REF] Resnick | Smoothing the hill estimator[END_REF] [31], but we'll use the infamous "Eye Balling" technique [START_REF] Resnick | Smoothing the Hill estimator[END_REF] [26] for our purposes. Figure 4.12 suggests convergence of the Hill plot to the same value of the coefficient calculated using the Lilliefors' like test exposed above.

The catastrophe principle

The issue with power-law distributions is that they tend to produce catastrophic events with high probability. The consequences of the so-called "catastrophe principle" or "principle of single big jumps" [START_REF] Smale | Book Review: Catastrophe theory: Selected papers[END_REF] [37] on detecting outages in the median process (X ∆ n ) n∈N is addressed in this section.

This "principle" is a property of sub-exponential distributions, see Definition 19. Recall that power law distributions are regularly varying distributions, and regularly varying functions are sub-exponential distributions, see for instance [START_REF] Foss | An introduction to heavy-tailed and subexponential distributions[END_REF] for a proof. This property establishes that when the sum of n independent sub-exponential random variables exceeds some large value x, it is most likely due to the fact that the maximum of those n random variables also exceeds x. As described in section 4.3.3, the distribution of latency measurements exhibit a power law behavior. This is one of the reasons why the median process is considered for running the change detection algorithm instead of the raw measurements: computing the median increases the value of the tail index, hence reducing the probability of catastrophic events. Before describing precisely how this reduction occurs, we recall the definition of sub-exponential distributions and the "catastrophe principle", see [START_REF] Foss | An introduction to heavy-tailed and subexponential distributions[END_REF] 

P(X 1 + X 2 > x) P(X 1 > x) -→ x→∞ 2
where X 1 , X 2 are i.i.d. copies of X. This is equivalent to:

P(max(X 1 , X 2 ) > x) P(X 1 + X 2 > x) -→ x→∞ 1
The definition of sub-exponential distributions implies the so-called "catastrophe principle" or "principle of single big jump". Proposition 18. Let X be a positive random variable with sub-exponential distribution. Then for all n ≥ 1:

P(max 1≤i≤n X i > x) P( n i=1 X i > x) -→ x→∞ 1
The catastrophe principle is problematic for our purposes. The distribution of latency measurements exhibit a power-law behavior hence produces catastrophic events. Using the median process will reduce the frequency of such events. We shall now prove that the median of an independent sample with a common F such that F is regularly varying with tail index α > 0 also has a regularly varying cumulative function, but with a tail index β > α. This is an important feature of the median since catastrophic events are likely to wrongly trigger an outage alert. Proposition 19. Let n ∈ N and (X 1 , . . . , X n ) an i.i.d. sample with distribution F and let (X (1) , . . . , X (n) ) the order statistics. For any k ∈ 1, . . . , n, let k n = n -k + 1. Assume that F is regularly varying, i.e. suppose there exists α > 0 and L slow varying such that:

1 -F (x) ∼ x→∞ L(x)x -α .
Then the distribution of X (k) is also regularly varying, with tail index k n α, i.e. there exists a slow varying function G such that:

P(X (k) > x) ∼ x→∞ G(x)x -knα
Proof. First, notice that we have the following equality of events:

{X (k) > x} = {Z ≥ n -k + 1}
where Z has the binomial B(n, p x ) distribution and p x = P(X 1 > x) . Then: as x → ∞. Since L is slow varying, clearly G(x) = n kn L(x) kn is also slow varying, and we have that X (k) is regularly varying with tail index k n α:

P(X (k) > x) = P(Z ≥ k n ) = n i=kn n i p i x (1 -p x ) n-i .
P(X (k) > x) ∼ G(x)x -knα .
In particular, for the median of i.i.d. n-sample (X 1 , . . . , X n ) with regularly varying distribution F with tail index α > 0, if we denote the median Y n = X n/2 we have:

P(Y n > x) ∼ G(x)x -(n-n/2 +1)α
This quantifies how the probability that the median process will produce catastrophic events decreases with the number of observations. The other advantage with utilizing the median process is because of integrability reasons. We previously showed that the tail index for the latency measurements is greater than 1 but less than 2, meaning that the variance of latency measurements is infinite, limiting a priori the Wasserstein distance of order p to p = 1. As soon as n ≥ 4, the Wasserstein of order 2 may be used. The higher the n, the higher the order possible for the Wasserstein distance. Because at this point no control is guaranteed on the sample size since n is given over every interval [t, t + λ[, we will stick to p = 1.

Empirical Results

We now present the results of the difference algorithms presented in this chapter on real data.

Data description

Three different networks were selected. Each one experienced an outage over the course of several hours. We selected 4 days of measurements so that the outage appeared in the middle of the 4th day. For the training set selection and tuning of (N, M ), only the first 3 days were considered, i.e. the period with no outage. For the change detection algorithm, the first 2 days were used to estimate the value Q for each choice of parameter C, and the next 2 days were the testing set: one day without any issue, the other with issues. For reasons of confidentiality the timestamps were initialized to 0 in all cases, and the providers will be referred to as P 1, P 2 and P 3 and their respective outages as O1, O2 and O3. O1, O2 and O3 happened respectively in the US, Europe and Asia. The outages are summarized in Table 4 

Stationarity

The hypothesis of stationarity of the median processes: is assessed with three classical routines: Augmented Dickey-Fuller Test (ADF), Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) and Phillips-Perron test (PP) . Unlike the two others, stationarity is the null hypothesis in the KPSS test. Only the KPSS test in P 1 rejects the hypothesis of stationarity, see Table 4 

Ratio between AVG and best ARMA

The largest ratio between AVG and best ARMA was for P 1, with a value of 1.019. The three networks qualify as 2% -SN , see In other words, among all pairs (N, M ) satisfying E(N, M ) < (1 + τ )E(N * , M * ), we select the pair (N τ , M τ ) that has the smallest M first, and among the remaining candidates, we chose the ones with the minimum N . See Table 4 

Change detection

We present the results of the change detection algorithm described in Algorithm 2. The parameters that need to be tuned are C, the number of data points in each window, and β, the parameter that quantifies the sensitivity to the detection with respect to the maximum value Q taken by the W p distance between any two windows of size C over periods of time when no outages occurred. C ranges from 5 to 100, and β ranges from 0.5 to 2.

For every value of C, the value of Q is computed on the first two days of measurements by computing the maximum value of the W p distance between randomly selected windows of size C. Then the algorithm for change detection is run, with parameters (C, β). The prediction algorithm is fed with the parameters (N τ , M τ ) with τ = 10%. Recall from Section 4.3.1 that the union of all instants where no outage is detected by algorithm is called the Green Zone denoted by GZ(C, β) and the union of all instants where an outage was detected and trust was lost in the model is called the Red zone, denoted by RZ(C, β). For a pair (C, β) we denote the Green Error and Red Error by GE(C, β) and RE(C, β) respectively the prediction error associated with the prediction When an outage is reported, by construction the algorithm will declare the underlying network unreliable during the time needed to rebuild the two sliding windows. Each window contains C data points, each data point arrives every 60s, hence during 2Cλ = 20 minutes after an outage is detected the network is declared unreliable, which is considered reasonable by operational engineers. The choice β = 1 is reasonable because in this case an outage is declared when when the W p distance between the Ref and Shift windows exceeds the maximum value of the W p distance between any two windows of length C recorded during a period without outages. This choice of parameters will be compared to the optimal values (C * , β * ) obtained by choosing the values that maximizes the ratio between Red Error / Green Error with and without weights: 

With weights in the Wasserstein distance

The results of the outage detection algorithm using the weights are presented in Tables 4.10, 4.11 and Figures 4.17 

Comments

The ratios GE(C, β)/RE(C, β) and GE(C, β) w /RE(C, β) w are very high for all networks, indicating that the algorithm accurately identified the outages in all cases. The choice (C, β) = (10, 1) leads similar results than the choice (C * , β * ) concerning the ratio Red Error / Green Error for all networks, again with and without using the weights. The value of β * for P 1, P 2 and P 3 is consistent with the intuition in a stable network, ranging from 0.85 to 1, while β * w ranges from 0.8 to 1.15.

Without the use of weights, 70% (resp. 73%) of the detections corresponded to the actual outages, on average over P 1 , P 2 and P 3 in the case (C, β) = (C * , β * ) (resp. (C, β) = (10, 1)). With the use of weights, 85%, resp. 100%, of the detections corresponded to the actual outages, on average over P 1 , P 2 and P 3 in the case (C, β) = (C * w , β * w ) (resp. (C, β) = (10, 1)). With and without weights, the algorithm was able to detect precisely the instants of outages: 95% of the durations of the outages were correctly identified without the weights, while 98% of the durations of the outages were correctly identified with the weights.

The best results were obtained with the use of the weights and with parameters (C, β) = (10, 1) with perfect detection of the outages with and no false positives.

Because latency measurements have heavy tailed distributions, catastrophic events occur quite often. Since those events are not necessarily the signature of an outage, the false positive rate is greater without weights. In addition, the algorithm was quicker to detect outages with the weights: on average 1.3 (resp. 1.9) observations of the median process X ∆ n were needed to correctly identify the beginning (resp. end) of the outage with the weights whereas on average 2.1 (resp. 2.5) observations of the median process X ∆ n were needed to correctly identify the beginning (resp. end) of the outage without the weights. 

RE(C

Conclusion

In this Chapter we presented a notion of ε-stable networks that are characterized by stationary median latency processes with low structure, as opposed too highly structured median latency processes described in Chapter 3.

Identifying those networks allows the use of very low computational complexity predictive algorithms, thus reducing overall computational costs. We showed how to select the minimum number of training sets for those predictive algorithms without impacting performance above a certain tolerance.

In a second step, we developed an algorithm that aims at detecting outages. Differentiating outages from outliers in the median latency process is challenging because of the power-law behavior exhibited by the distribution of the latency measurement. We described an algorithm based on a comparison using the Wasserstein distance of two sliding windows. After characterizing the power-law behavior of the distribution of latency measurements, we proposed a way to increase the robustness of the algorithm by weighting the Wasserstein distance in order to limit influence of outliers without impacting the sensitivity of the outage detection. An experiment conducted on real data gave us empirical evidence that the use of the weights allow to react quicker to outages and to decrease the number of false positives, while keeping a very high true positive rate. We suggested to implement the algorithm for detecting changes in the median latency process presented in this Chapter with the values (C, β) = (10, 1) and with the weighted W p distance.
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 11 Figure 1.1: Illustration du fonctionnement d'un CDN. Le serveur Origine duplique son contenu sur des serveurs Edge constitutifs d'une map afin de mieux répartir la charge de traffic. Source: High-Charts https: // www. highcharts. com/ blog/ news/ 50-codehighchartscom-moves-to-cdn/ .

Theorem 1 .

 1 Soient M, n ∈ N des entiers positifs et fn,M (x) définie en (1.1). Soient a < b et δ > 0 tel que δ < (b -a)/2. Posons R = [a, b],
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 12 Figure 1.2: Statistique du test de H x0 contre x avec la valeur critique q χ 2 1-α (M ) en rouge. Le test rejette H x 0 sur l'intervalle[START_REF] Fernandez | On bayesian modeling of fat tails and skewness[END_REF][START_REF] Kwiatkowski | Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root[END_REF], suggérant que les G -1 i • F i (x) prennent des valeurs différentes sur cet intervalle. L'hypothèse d'un transport croissant entre la distribution du proxy et de la source sur cet intervalle doit être rejetée.

Figure 1 . 3 :Figure 1 . 4 :

 1314 Figure 1.3: fn,M en noir plotté contre l'identité en rouge.
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 15 Figure 1.5: Réalisation du processus Z sur une fenêtre de 8 secondes.
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 416 Figure 1.6: 3 jours de données de latence consécutives agrégées à 4 niveaux différents: 1s, 30s, 1min et 1h.
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 121718214 Figure 1.7: Estimation de la densité spectrale du processus médian, ∆ = 300.

Figure 1 . 9 :

 19 Figure 1.9: Evolution des paramètres d'asymétrie et de forme des résidus du modèle sur un jeu d'entraînement en fonction de ∆.
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 110 Figure 1.10: Estimation de l'écart-type conditionnel du processus médian pour ∆ = 60.
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 111 Figure 1.11: P-valeurs des tests dérivés de la Proposition 3 pour ∆ ≤ 3600 avec seuil critique à 5% en rouge (gauche). Histogramme des p-valeurs (droite).
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 5 Prediction et détection de panne dans les réseaux stables Enfin, un modèle ARMA(p, q) est ajusté sur un jeu d'entraînement et le ratio RMSE( un échantillon de test.
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 114 Figure 1.14: Example de panne. Données de latences brutes en noir, et processus médian en rouge. Echelle logarithmique en ordonnées. La panne se traduit par une hausse soudaine de la moyenne et de la variance dans la distribution des mesures de latence.
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 115 Figure 1.15: Illustration des fenêtres Ref et Shift
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 21 Figure 2.1: Graph of f n,M (black line) plotted against the identity (red line) for x ranging from 20 to 200.
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 23 Figure 2.3: Example of normal Q-Q plot where the quantiles of a log proxy sample is compared to the theoretical quantiles of the normal distribution. Reveals a Gaussian behavior with slightly heavier tails.
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 2124 Figure 2.4: Graph of f for x ranging from 0 to 8.
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 25 Figure 2.5: log-log plot of | f n,m (x) -f (x)|, with m = √ n and n ranging from 20 to 1.000 for x = 2.5 with fitted linear model (solid red). R 2 = 0.87, Slope = -0.78.
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 26 Figure 2.6: Left: distribution of the slopes in the linear models fitted across the 200 simulations with median in red. Right: distribution of the R 2 coefficients in the linear models fitted across the 200 simulations with median in red. x = 2.5.
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 27 Figure 2.7: Graph of f and f n,m (left) and absolute differences between f and f n,m (right) for x ranging from 0 to 8. The estimation is less accurate on the edges, because of data scarcity.
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 28 Figure 2.8: Histogram of the p h i , for varying h.For large values of h, the p-values concentrate near 0, suggesting that the samples S h i and S h i+1 containing latency measurements with timestamps falling in consecutive time intervals of length h/2 do not come from the same distribution. This suggests that over periods of time of length h/2+h/2 = h, the distribution of latency measurements changes. As h decreases, less p-values p h i concentrate near 0 and a uniform distribution is revealed.
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 29 Figure 2.9: Graph of f N (black line) plotted against the identity (red line).
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 210 Figure 2.10: Test statistic for H x 0 against x with critical value q χ 2 1-α (M ) in red.
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 211 Figure 2.11: Wasserstein distances computed for the 42 test batches between X i and Y i in black, and f N (X i ) and Y i in red. Dashed lines are the respective means.
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 212 Figure 2.12: Black line: average L 1 distance between proxy and source quantiles. Red line: average L 1 distance between the transformation of the proxy under f n,M and source quantiles.
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 213 Figure 2.13: Examples of output on a test sample. Empirical distributions (left) and deciles (right) for the private and public maps, along with the modification of the public map. choose N such that the number of samples left is M = √ N . Here N = 2082 and M = 46. No train or test sets here because we only focus in the convergence properties. f n (x) is computed for x ∈ {20, . . . , 150}, n ∈ {30, . . . , N = 2082}. For each n and x, we compute the absolute difference | f n (x) -f N (x)|. For each n we randomly selected m = √ n samples among the M available, and subsample n observations in those samples among the N available. Results are presented in Figure 2.14.

Figure 2 . 14 :

 214 Figure 2.14: Example of log-log plot for x = 71, when n ranges from 30 to N .
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 215 Figure 2.15: Graphs of -a log(xN ) + h(x) against log(xN ) for different values of s and fixed q = 1/2, a = 0.75. Dashed red is s = 0, dashed black is the linear part -a log(xN ). Vertical light dashed black is log(N/2).
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 216 Figure 2.16: Surface plot of L. The minimum is attained for (a, p) = (0.78, 0.38). x = 71.
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 217 Figure 2.17: Left to right, top to bottom: fitted model, normal Q-Q plot of the residuals, ACF of the residuals and histogram of the residuals.
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 218 Figure 2.18: Estimated value for the parameter a across x. Notice that the estimated slope is greater for the values x ∈ I Reject , and consistent with the theoretical rates for x ∈ I Accept . The average estimated rate for x ∈ I Accept is -0.60, whereas the average estimated rate for x ∈ I c Accept
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 755 Proofsmeaning that we have for any ν ∈ [0, 1], P ∈ Z and n ≥ N 1 ∨ N 2 :

Proposition 6 .

 6 (Sufficient condition for the existence of an increasing function h ∈ [f ]) Suppose f ∈ C 2 (R) and let P ∈ Z, Q = f # P . Denote by F, G the cumulative functions of P and Q respectively. Suppose that the function h = G -1 • F is independent of the choice of P . Then f # P = h # P for all P ∈ Z.
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 31 Figure 3.1: 3 days of raw measurements (top), and corresponding aggregating series X ∆ n , for ∆ = 300 (down).
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 34 Figure 3.4: Distribution of N t
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 35 Figure 3.5: Hourly number of measurements.
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 36 Figure 3.6: 8 seconds window of latency measurements.
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 32 is the n-th integers run of length k, and X ∆(k) n is the then the median of all measurements falling in the interval ](n-1)∆, n∆]. Observe that for k = 1, G ∆(k) n = G η n = Z n . Hence the aggregated series at the highest frequency 101 Data analysis and modeling X ∆(1) n
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 37 Figure 3.7: 3 days of measurements aggregated at different frequencies.
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 38 Figure 3.8: Top: the process X ∆ tn over a 1 hour period, ∆ = 5s. Bottom left (resp right): ACF (resp PACF).
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 39 Figure 3.9: Periodogramm of the aggregated series X ∆ tn for various ∆. All series exhibit three major peaks in the power spectrum corresponding respectively to 24h, 12h and 8h periods.

Figure 3 . 10 :

 310 Figure 3.10: Periodogramm of the residuals of the Fourier decomposition for various ∆. All significant periods have been removed.
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 311312 Figure 3.11: Graphs of the evolution of µ ∆ , (a ∆ i ) i and (b ∆ i ) i as a function of ∆ and corresponding confidence intervals with level α = 0.05.
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  ny)where x = -2qπ/τ , y = 4qπ/τ . Using (3.3) it follows:

Figure 3 . 13 :

 313 Figure 3.13: Residuals analysis of the model fitted on 8 days, ∆ = 600. Left to right, top to bottom: aggregated series and fitted values; residuals; power spectrum; acf of the residuals; normal Q-Q plot of the residuals; histogram of the residuals.

Figure 3 . 14 :

 314 Figure 3.14: Innovations of the Fourier decomposition (errors) on a test set of 6 days. ∆ = 600.

Figure 3 .

 3 14 clearly reveals the clustered volatility. Understanding how this volatility can be modeled will give us insight on the relevant ∆ to choose. Using AIC and BIC for model selection, ARMA(1,1)-GARCH(1,1) was selected for all ∆, see examples of selection in Figures 3.15 and 3.16.

Figure 3 . 15 :

 315 Figure 3.15: Heat map of the model selection using AIC and BIC for ∆ = 600. Ranging from 1 to 10, x-axis is the number of ARCH terms, y-axis is the number of GARCH terms.

Figure 3 . 16 :

 316 Figure 3.16: Garch model of the innovations of the errors in the Fourier decomposition, ∆ = 600.

Figure 3 . 17 :

 317 Figure 3.17: Example of 4 conditional SD. Left to right, top to bottom: ∆ = 1 min, ∆ = 10 min, ∆ = 20 min, ∆ = 60 min.

Figure 3 . 18 :

 318 Figure 3.18: Evolution of the skewness and shape parameters on a training set for ∆ = 30 to 3600 and fit using a logistic (right) and linear (left) function.

aFigure 3 . 19 :

 319 Figure 3.19: Graph of x → cos 0.014 + πx 144 a for a = 1, 2, 5, 10, 20, 50.

Figure 3 . 20 :

 320 Figure 3.20: a) Original series. b) Innovations of the Fourier decomposition. c) Residuals of the seasonal GARCH. d) Residuals histogram of the seasonal GARCH with theoretical fit. e) Periodogram of the residuals. f ) Periodogram of the squared residuals. g) ACF of the residuals. h) ACF of the squared residuals.

Figure 3 . 21 :

 321 Figure 3.21: a) Original Fourier innovations. b) Simulated path of the seasonal GARCH. c) ACF of the innovations. d) ACF of the simulated path. e) ACF of the squared innovations. f ) ACF of the squared simulated path.

ΔFigure 3 . 22 :

 322 Figure 3.22: Fourier (squares), naive (circles) and mean (triangles) prediction RMSE in log-log scale.

ΔFigure 3 . 23 :

 323 Figure 3.23: RMSE ratio of Fourier model over NAIVE prediction (solid) and AVG prediction (dashed).

Figure 3 . 24 :

 324 Figure 3.24: Threshold for the conditional SD (top) and latency measurements with corresponding alternating intervals (bottom). Green intervals for low volatility, red intervals for high volatility. ∆ = 60.

Figure 3 . 25 :

 325 Figure 3.25: RMSE as a function of ∆ in low (left) and high (right) volatility regimes for the three models.

Figure 3 . 26 :

 326 Figure 3.26: Theoretical (red) and sample entropy (black) as a function of r in the normal N (0, 1) case.
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 36 y)dF (y) 135 Sample entropy as a predictability measure Theorem 8 (Denker and Keller). Assuming (H1), (H2) and (H3) hold:

137 3 . 6 .

 36 Sample entropy as a predictability measure

139 3 . 6 .

 36 Sample entropy as a predictability measureWe have established that for all λ = (λ m , λ m+1 ) ∈ R 2 , λ = 0, if

Figure 3 . 27 :

 327 Figure 3.27: P-values of all test for ∆ ≤ 3600 with horizontal line y = 0.05 in red (left). Histogram of the p-values.

Figure 4 . 2 :

 42 Figure 4.2: Estimated spectral density of X = (X t ) t∈Z where X t = (ε t-2 + ε t-1 + ε t )/3 (solid black) along with the true spectral density (solid red) in log scale. The frequency domains ranges from 0 to 1/2. Vertical dashed blue is the line x = 1/3. To be compared to 4.1 in order to support the assumption the our median process has positive spectral density everywhere.

Figure 4 . 3 :

 43 Figure 4.3: Example of an outage. Raw measurements in black and median-process in red. The consequence of the outage is a sudden increase in both mean and variance of the measurements. The y-axis is in log scale

Figure 4 . 4 :

 44 Figure 4.4: Illustration of the Ref and Shift windows.

2 :

 2 At current time t 0 , the algorithms initializes the Ref and Shift windows, and starts sliding the Shift window by 1 point. If W p (Ref, Shift) > βQ, the current time is stored and a change is said to have been detected. After a change is detected, both windows are cleared and need to be re-initialized. During this process the algorithm declares the measurements unstable and the underlying predictive model X ∆ t Citrix not trustworthy, until a new Ref and Shift windows are built and verify W p (Ref, Shift) ≤ βQ. The union of all instants such that the model should not be trusted will be referred to the Red zone. If no outage is detected, confidence in the model at current time is kept until the next comparison. The union of all instants such that the model should be trusted will be referred to the Green zone. Initialization; Ref = First C points of stream; Shift = Next C points of stream ; while not at end of stream do Slide Shift by 1 point; if W p,n (Ref, Shift) > βQ then t 0 ← current time ; Report change at t 0 ; Ref = First C points starting at t 0 ; Shift = First C points starting at t 0 + C; else t 0 ← current time ; Report confidence in model at time t 0 ; end end Algorithm Detecting change in a data stream.
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 454647 Figure 4.5: Left: plot of the weights (black) with λ = 1, β = 1/2 for a sample of n = 1e4 Cauchy C(0, 1) random variables, along uniform weights 1/n (red) against the order statistics. Right: Weighted c.d.f. (black) versus unweighted c.d.f. The weights decrease the tails, and put extra mass in the center of the distribution.

Figure 4 . 9 :

 49 Figure 4.9: Histogram of the latency measurements (top left), Normal Q-Q plot (top right), empirical cdf between 0 and μ + 2σ where μ, σ are the empirical mean and standard deviation of the sample (bottom left),empirical survival function between μ + 2σ and μ + 5σ (bottom right).
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 11 Pareto-QQ plot is a scatterplot created by plotting the empirical quantiles of the log-transformed sample against the theoretical quantiles of the standard exponential distribution.

Figure 4 .

 4 Figure 4.10: log -log plot of the survival function (left) and Pareto-QQ plot (right) of latency measurements. In both cases, a linear relationship seems to be present for large values of the quantiles, suggesting a power law.

D

  x; y) -F (x; α M L , y)|=: min y

T 1

 1 n = sup x∈R |F n (x) -F µn,σn (x)Xi≤x does not depend on the true values µ, σ. Critical values from the distribution of T n are typically estimated by Monte-Carlo simulations.

Figure 4 . 11 :

 411 Figure 4.11: Top left: the function D defined in (4.4) hits a minimum at xmin = 274. Top right: estimated distribution of the KS-Statistic with estimated parameters ( x min , α M L ). Bottom left: survival function of the latency measurements greater than xmin with Pareto fit. Bottom right: log -log plot survival function of the latency measurements greater than xmin with log -Pareto fit.

Figure 4 . 12 :

 412 Figure 4.12: Hill plot. Hill estimators for different values of k (solid black) maximum likelihood estimate α M L .
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 3 Detecting outages Definition 19. A positive random variable X is said to have a sub-exponential distribution if:

  It follows thatP(X (k) > x) n kn p kn x = (1 -p x ) n-kn + n i=kn+1 n i p i x (1 -p x ) n-i ,but the right hand side clearly converges to 1 as x → ∞. This means:P(X (k) > x) kn x -knα .

Figure 4 . 13 :

 413 Figure 4.13: Top to bottom: P 1, P 2 and P 3 media-processes over day 4 where the outages occurred. Red vertical dashed lines frame the outages. The outages O 1 and O 3 occurred in two consecutive episodes.
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Figure 4 . 14 :

 414 Figure 4.14: Surface plot of the prediction error associated to X ∆ t

2

 2 We will also look the time spent in Green zone, denoted byGT(C, β) = #GZ(C, β) #GZ(C, β) + #RZ(C, β)4.4. Empirical Resultsthat is the percentage of timestamps in the Green zone. Finally the ratio Red Error over Green Error GE(C, β)/RE(C, β) will be considered.Finally if the weights introduced in 4.3.2 were used for the detection of outages, we shall write RE(C, β) w , GE(C, β) w and GT (C, β) w .The rule of thumb for the choice of the parameters is (C, β) = (10, 1). Because we are working with the median process at scale ∆ = λ = 60s where λ is the prediction TTL (see Section 4.4.3) the choice C = 10 implies that the windows Ref and Shift span intervals of length Cλ = 10 minutes.

(

  C * , β * ) ∈ arg max (C,β) RE(C, β) GE(C, β) (C * w , β * w ) ∈ arg max (C,β) RE(C, β) w GE(C, β) wWithout weights in the Wasserstein distanceThe results of the outage detection algorithm without using the weights are presented in Tables4.8, 4.9 and Figures 4.15 and 4.16.

  and 4.18.

Figure 4 . 15 :Table 4 . 11 :

 415411 Figure 4.15: Top to bottom: P 1, P 2 and P 3 change detection output for C * , β * . No weights were used in the W p distance. Each vertical red line corresponds to an instant where the algorithm triggered an alert.

Chapter 4 .Figure 4 . 16 :

 4416 Figure 4.16: Top to bottom: P 1, P 2 and P 3 change detection output for C = 10, β = 1. No weights were used in the W p distance. Each vertical red line corresponds to an instant where the algorithm triggered an alert.

Figure 4 . 17 :

 417 Figure 4.17: Top to bottom: P 1, P 2 and P 3 change detection output for C * w , β * w . Weights were used in the W p distance. Each vertical red line corresponds to an instant where the algorithm triggered an alert.
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 4418 Figure 4.18: Top to bottom: P 1, P 2 and P 3 change detection output for C = 10, β = 1. Weights were used in the W p distance. Each vertical red line corresponds to an instant where the algorithm triggered an alert.

Table 1 .

 1 .1.Pour les raisons expliquées au début de cette introduction, des différences peuvent exister dans la distribution des mesures Publiques et Privées. Lorsqu'un utilisateur cherche à accéder au site

	1.2. Problématique

1: Différences entre maps Publiques et maps Privées.

Table 1 . 2 :

 12 Distance de Wasserstein empirique entre la source et le proxy (colonne 1), Distance de Wasserstein empirique entre la source et le proxy transporté par notre estimateur fn (colonne 2), réduction relative due au transport du proxy (colonne 3) et pourcentage de batchs pour lesquels une réduction absolue a été reportée (colonne 4).Dans l'approche collective le load-balancer partitionne géographiquement la surface du globe, et génère des prédictions de la latence à venir des CDN C 1 , . . . C K en fonction de la localisation et du fournisseur d'accès à Internet, en utilisant les données de latence des CDN C 1 , . . . C K générées par les autres utilisateurs du réseau. Lorsque le nouvel individu I se présente, le load-balancer identifie son fournisseur d'accès à Internet ainsi qu'un voisinage géographique pour lequel il a en base de données des prédictions pour les CDN C 1 , . . . C K . Le load-balancer classe alors par ordre croissant les prédictions de latence des CDN en concurrence et sélectionne le CDN ayant la valeur prédite la plus faible. Les prédictions étant effectuées en amont, le temps nécessaire pour aiguiller un utilisateur dans l'approche collective se limite à cette requête des prédictions pour chaque CDN, qui est de l'ordre de quelques millisecondes.

	9.95	4.36	-56%	95%

  où δ x est la mesure de Dirac en x ∈ R, N t est le nombre (aléatoire) de mesures de latence collectées à l'instant t et (Y t k ) K∈{1,...,Nt} sont les mesures de latence reçues à l'instant t. Un exemple de données récoltées sur 8 secondes est présenté en Figure1.5. L'objet d'intérêt dans l'industrie n'est pas Z,

						δ Y t k		
		5						
	log latency	4						
		3						
		2						
		220732	220733	220734	220735	220736	220737	220738	220739
					timestamp		

Table 1 . 3 :

 13 RMSE de notre modèle, ici abrégé f ∆ , et des deux baselines. En colonne, de gauche à droite: RMSE associée à notre modèle, à la prediction NAIVE et la prédiction AVG, en fonction de ∆. les baselines à travers toutes les valeurs de ∆ testées, bien que faible pour les plus petites valeurs de ∆, voir Table1.3. Le gain marginal de précision en haute fréquence couplé aux hausses de volatilités mis en évidence par la modélisation de la variance conditionnelle exhibée en Figure1.10 nous permet d'envisager une stratégie prédictive plus efficace combinant notre modèle au modèle AVG. L'identification des plages horaires de haute volatilité peut se réaliser à l'aide d'un seuil sur l'écart-type conditionnel. Pour une valeur du seuil donné, on constate que le gain relatif de notre modèle sur la prédiction AVG en haute fréquence est réalisé uniquement dans les périodes de haute volatilité, voir Table1.4. Cette observation, couplée au très bon ajustement de notre modèle aux données, nous fait penser qu'il existe un horizon infranchissable pour la prédiction en haute fréquence, particulièrement lors des épisodes journaliers de basse volatilité. En haute fréquence, nous recommandons donc de n'utiliser le modèle que sur les période de haute fréquence, et d'utiliser un modèle AVG pour les périodes de basse volatilité, afin de réduire le coût computationnel global 1.4. Modélisation des données de latence

		f ∆ prédiction NAIVE prédiction AVG
	∆ = 30	0.42	0.57	0.43
	∆ = 60	0.32	0.43	0.34
	∆ = 120	0.25	0.32	0.27
	∆ = 180	0.21	0.27	0.23
	∆ = 240	0.19	0.24	0.21
	∆ = 300	0.18	0.22	0.22
	∆ = 360	0.16	0.2	0.23
	∆ = 480	0.14	0.17	0.21
	∆ = 540	0.14	0.16	0.21
	∆ = 600	0.13	0.15	0.2
	∆ = 720	0.13	0.15	0.2
	∆ = 900	0.12	0.14	0.2
	∆ = 960	0.12	0.13	0.19
	∆ = 1080 0.12	0.13	0.19
	∆ = 1200 0.11	0.12	0.19

Table 1 . 4 :

 14 Ratio d'erreur de prédiction entre notre modèle et la prédiction en AVG globale (gauche), sur les période de haute variabilité (milieu) et basse volatilité (droite).

  Definition 4 (Processus purement non déterministe). Soit (X t ) t∈N un processus de moyenne nulle faiblement stationnaire, alors (X t ) t∈N est dit purement non déterministe si et seulement si d t = 0 pour tout t, où (d t ) t∈N est le processus déterministe qui apparait dans la décomposition de Wold de (X t ) t∈N .

Table 1 . 6

 16 .6.

	N *	M *	E(N * , M * )
	P 1 940 9min	1.27
	P 2 950 57min	2.34
	P 3 850 45min	4.62
	Table 1.5: Résultats du calibrage des paramètres optimaux (N * , M * ) pour trois réseaux personnels
	P 1, P 2 et P 3.		
	Concernant la question 2 et la détection de panne, nous proposons un algorithme basé sur
	une comparaison online de deux fenêtres glissantes. Une panne est caractérisée par une explosion
	soudaine de la variance dans les mesures et d'une hausse du niveau de ces dernières comme illustré
	en Figure 1.14. La détection de panne se réduit alors à un problème de comparaison de deux
	distributions empiriques. Les deux fenêtres glissantes seront dénommées Ref et Shift. La fenêtre

: (N τ , M τ ) pour différentes valeurs du paramètre de tolérance τ pour trois réseaux personnels P 1, P 2 et P 3.

  1 leurs inverses généralisés. Pour des échantillons X = (X 1 , . . . , X n ), Y = (Y 1 , . . . , Y n ) de loi respective F et G, la distance de Wasserstein empirique est définie comme la distance de Wasserstein entre les distributions empiriques:

  les statistiques d'ordre des deux échantillons.

	Dès que la distance de Wasserstein entre les échantillons Ref et Shift excède un certain seuil
	Q, une panne est déclarée. L'ensemble des instants où aucune panne n'est déclarée constitue la
	zone Verte. Au contraire, l'ensemble des instants où une panne est déclarée constitue la zone
	Rouge: durant ces périodes, la confiance dans le modèle est perdue, le client doit être notifié
	instantanément, et le traffic transitant vers ce réseau doit, si possible, être aiguillé sur un autre
	réseau pouvant livrer le contenu. L'algorithme est décrit en 1 et illustré en Figure 1.15.
	Initialization;
	Ref = First C points of stream;
	Shift = Next C points of stream ;
	while not at end of stream do
	Slide Shift by 1 point;
	if W p,n (Ref, Shift) > Q then
	t 0 ← current time ;
	Report change at t 0 ;
	Ref = First C points starting at t 0 ;
	Shift = First C points starting at t 0 + C;
	else
	t 0 ← current time ;
	Report confidence in model at time t 0 ;
	end
	end
	Algorithm 1: Algorithme de détection de changement.
	Un problème important se pose: les données de latence sont très hétérogènes et présentent
	une distribution en loi de puissance. Cette propriété rend fréquente l'apparition d'événements

16: De haut en bas: trois réseaux P 1 , P 2 et P 3 qui ont expérimenté une panne. Le processus médian est en noir, et les droites verticales rouges représentent les instants de detection de changement dans la distribution des observations. Tous ces instants sont correctement associés

  [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF]. Prediction et détection de panne dans les réseaux stables à la panne réelle. La distribution en loi de puissance des mesures de latences se manifeste au travers d'observations particulièrement élevées, notamment autour des instants t = 250000 et t = 330000 pour P 3 et t = 340000 pour P 2 , sans que ces mesures ne soient pour autant le résultat d'une panne. L'algorithme utilise la distance de Wasserstein pondérée et permet de ne déclarer aucun faux positifs, tout en identifiant correctement chaque panne.

	Ces poids pénalisent les observations dans l'échantillon qui sont trop éloignés d'un quantile donné.
	Notre algorithme est testé sur données réelles, en le back-testant sur des réseaux dont on a pu
	identifier des pannes. Notre algorithme se montre particulièrement efficace dans la détection de
	panne, voir Figure 1.16. La version pondérée permet de limiter grandement le taux de faux positifs
	tout en gardant un taux de vrais positifs proche de 100%.
	200000 200000 200000 Figure 1.Chapter 2 250000 300000 350000 0 50 100 150 200 250 latency 250000 300000 350000 0 100 200 300 latency 250000 300000 350000 50 100 200 300 latency

  Results are presented in Figure 2.11 and Table 2.1.
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  Let α ∈ T . Stochastic equicontinuity guarantees that for any sequence (α n ) such that α n -→

					2.5. Proofs
	Theorem 18.14 in Van Der Vaart, Asymptotic Statistics [89]), {Z n (α), α ∈ T } is asymptotically
	equicontinuous, meaning that for all η, > 0, ∃γ > 0:
	lim sup n→∞	Λ n	sup s,t∈T,|s-t|<γ	|Z n→∞	α in
	Λ n -probability M-a.s. we have Z n (α n ) -→ n→∞	Z(α) in Λ n -probability M-a.s. Indeed, let η, > 0.
	Choose γ > 0 such that:				
	lim sup	Λ n	sup	|Z
	n→∞		s∈T,|s-α|<γ	

n (s) -Z n (t)|> η < . n (s) -Z n (α)|> η < using equicontinuity. Then there exists n 1 ∈ N such that:

Λ n sup s∈T,|s-α|<γ

Table 3 . 1 :

 31 The data presented in this chapter are from Google CDN, Paris, ISP Orange, from October 13 to 26, 2018. During that period 1.145.077 data points were collected. Figure 3.2 and Table3.1 present summary statistics of the data set. Summary statistics of latency measurements.

	3.2.1 Latency measurements.
	Overall data.

Table 3 . 2

 32 .3 and Table 3.2.

	95

Figure 3.3: Distribution of log-latency measurements over the 2 weeks period (left), normal Q-Q plot (right). : Summary statistics of log-latency measurements.

Table 3 .
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	Day	Min 1st Qu. Median 3rd Qu. Max Mean	SD	Kurtosis Skweness
	13/10/18 0.000	2.197	3.466	3.912	8.198 3.171 1.150	2.905	-0.080
	14/10/18 0.000	2.197	3.466	3.932	9.003 3.167 1.172	2.832	-0.037
	15/10/18 0.000	2.398	3.434	3.932	8.342 3.214 1.135	3.012	-0.059
	16/10/18 0.000	2.398	3.466	3.932	9.099 3.240 1.123	3.084	-0.061
	17/10/18 0.000	2.303	3.434	3.912	8.337 3.204 1.143	3.020	-0.041
	18/10/18 0.000	2.398	3.434	3.912	8.595 3.203 1.137	3.035	-0.055
	19/10/18 0.000	2.398	3.434	3.932	8.284 3.214 1.133	3.011	-0.079
	20/10/18 0.000	2.197	3.434	3.892	8.567 3.152 1.161	2.856	-0.016
	21/10/18 0.000	2.079	3.401	3.912	8.383 3.123 1.176	2.778	-0.007
	22/10/18 0.000	2.398	3.401	3.912	9.412 3.206 1.128	3.086	-0.027
	23/10/18 0.000	2.485	3.466	3.932	8.706 3.246 1.091	3.161	-0.082
	24/10/18 0.000	2.398	3.401	3.892	8.481 3.189 1.117	3.050	-0.056
	25/10/18 0.000	2.303	3.367	3.892	8.256 3.150 1.134	2.977	-0.019
	26/10/18 0.000	2.303	3.401	3.892	8.319 3.174 1.129	2.999	-0.062

Hence the minimum latency, i.e. best performance, coincide with the moment where less people are connected to the 3: Summary statistics of log-latency measurements aggregated per day. network, and vice and versa, explaining in part the day/night cycle of Internet performances 1 .

Table 3 . 4

 34 

	3.2. Data analysis and modeling

: Summary statistics of log-latency measurements aggregated per hour. than 1 measurements, with an average value of 0.99, i.e. ≈ 1 measurement is received per second on average. Of course, due to nocturnal and diurnal cycles, N t strongly depends on t. Table

3

.5 presents the summary statistics of the distribution of the elapsed time in seconds between two consecutive latency measurements, and Figure

3

.5 is a plot of the hourly number of measurements.

Table 3 . 5 :

 35 Summary statistics of the distribution of the elapsed time in seconds between two consecutive timestamps in the sample.

	3.2.3 Underlying generating process and aggregated time series.

Before introducing the aggregated process, we propose a model for the data generating process. As

Table 3 . 6 :

 36 and let X Percentage of missing values in the aggregated series for different ∆.

	∆(k) n	be the linear interpolation

Table 3 . 7 :

 37 Percentage of times stationarity of the aggregated series X ∆ tn was rejected for ∆ = 30 over randomly selected time intervals of length 30 minutes, 1 hour, 2 hours and 4 hours.

	.7.			
		ADF KPSS Ljung-Box
	L = 30 min 0.096 0.062	0.032
	L = 1 hour	0.13	0.15	0.081
	L = 2 hour	0.49	0.45	0.19
	L = 4 hour	0.81	0.70	0.53

Table 3 . 9
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	30	26527.29 26441.66 26373.94 26370.37 26365.13 26367.01 26363.40 26366.96
	∆ = 60	6898.97	6821.88	6756.72	6747.88	6745.22	6748.13	6741.64	6744.28
	∆ = 120	367.72	294.84	229.13	214.98	215.04	218.43	213.56	216.93
	∆ = 180	-1164.37 -1230.15 -1290.72 -1301.78 -1300.91 -1297.47 -1300.12 -1296.70
	∆ = 300	-1624.17 -1688.21 -1747.09 -1759.76 -1757.72 -1754.29 -1755.89 -1752.45
	∆ = 600	-1374.07 -1435.27 -1491.46 -1502.15 -1499.86 -1496.33 -1496.86 -1493.36
	∆ = 1200	-803.58	-865.42	-926.26	-937.69	-936.01	-932.70	-934.82	-931.68
	∆ = 1800	-544.30	-605.35	-664.03	-673.79	-671.89	-668.22	-669.02	-667.00
	∆ = 3600	-264.11	-320.62	-379.26	-393.13	-389.98	-386.77	-388.91	-388.71

: AIC of the Fourier model for varying ∆ and K.

  .10. The coefficients (a ∆ k ) k , (b ∆ k ) k of equation (3.1) are computed via ordinary least squares. Since the residuals violate the homoscedasticity assumption of the classical linear model, we cannot compute standard confidence intervals. Using the fact that the residuals of the Fourier decomposition are uncorrelated, we may assume that they

						3.3. Conditional mean model
		r(1) r(φ/∆) r(φ/2∆) r(φ/3∆) Significance level
	∆ = 30					
	X ∆ ε ∆ |ε ∆ |	0.090 0.038 0.298	0.160 0.009 0.261	-0.054 0.006 -0.144	-0.058 0.004 -0.109	(0.013)
	∆ = 60					
	X ∆ ε ∆ |ε ∆ |	0.315 0.051 0.356	0.256 0.020 0.283	-0.083 -0.001 -0.156	-0.085 0.001 -0.127	(0.020)
	∆ = 120					
	X ∆ ε ∆ |ε ∆ |	0.451 0.106 0.364	0.364 0.029 0.296	0.093 0.018 -0.156	-0.121 -0.008 -0.138	(0.026)
	∆ = 180					
	X ∆ ε ∆ |ε ∆ |	0.547 0.144 0.351	0.439 0.051 0.289	-0.114 0.031 -0.158	-0.133 0.001 -0.118	(0.032)
	∆ = 300					
	X ∆ ε ∆ |ε ∆ |	0.652 0.205 0.358	0.520 0.051 0.289	-0.126 0.047 -0.144	-0.159 -0.005 -0.133	(0.041)
	∆ = 600					
	X ∆ ε ∆ |ε ∆ |	0.772 0.323 0.392	0.604 0.080 0.310	-0.154 0.055 -0.157	-0.188 -0.002 -0.135	(0.058)
	∆ = 1200					
	X ∆ ε ∆ |ε ∆ |	0.816 0.332 0.463	0.691 0.128 0.285	-0.173 0.070 -0.112	-0.212 0.003 -0.114	(0.082)
	∆ = 1800					
	X ∆ ε ∆ |ε ∆ |	0.817 0.314 0.480	0.712 0.086 0.252	-0.175 0.095 -0.136	-0.233 -0.010 -0.112	(0.10)
	∆ = 3600					
	X ∆ ε ∆ |ε ∆ |	0.782 0.208 0.365	0.662 0.031 0.248	-0.184 0.051 -0.121	-0.256 0.058 -0.054	(0.141)
	Table					

Table 3 .

 3 13: Standardized residuals Ljung-Box tests pvalues.

					Lag = 1 Lag = log(n)
	30	0.138	0.245	∆ = 30	0.104	0.175
	∆ = 60	0.531	0.151	∆ = 60	0.022	0.036
	∆ =	0.149	0.084	∆ = 120	0.116	0.286
	∆ =	0.836	0.289	∆ = 180	0.03	0.25
	∆ =	0.544	0.237	∆ = 240	0.077	0.09
	∆ =	0.866	0.252	∆ = 300	0.06	0.199
	∆ =	0.419	0.427	∆ = 360	0.033	0.455
	∆ =	0.492	0.354	∆ = 480	0.676	0.612
	∆ =	0.609	0.812	∆ = 540	0.639	0.727
	∆ =	0.335	0.651	∆ = 600	0.276	0.659
	∆ =	0.47	0.862	∆ = 720	0.247	0.441
	∆ =	0.659	0.552	∆ = 900	0.699	0.912
	∆ =	0.481	0.416	∆ = 960	0.96	0.823
	∆ = 1080	0.738	0.546	∆ = 1080	0.434	0.234
	∆ = 1200	0.529	0.85	∆ = 1200	0.956	0.986
	∆ = 1440	0.223	0.536	∆ = 1440	0.681	0.757
	∆ = 1800	0.456	0.593	∆ = 1800	0.92	0.737
	∆ = 1920	0.561	0.448	∆ = 1920	0.958	0.556
	∆ = 2160	0.62	0.058	∆ = 2160	0.409	0.912
	∆ = 2400	0.5	0.196	∆ = 2400	0.41	0.734
	∆ = 2700	0.715	0.072	∆ = 2700	0.588	0.918
	∆ = 2880	0.479	0.165	∆ = 2880	0	0
	∆ = 3600	0.02	0.04	∆ = 3600	0	0

Table 3 .

 3 

14: Squared standardized residuals Ljung-Box tests p-values.

Table 3 .

 3 
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15: Goodness of fit tests p-values.

Table 3 .

 3 16: Residuals LB tests p-values.

					Lag = 1 Lag = log(n)
	30	0.138	0.245	∆ = 30	0.66	0.561
	∆ = 60	0.531	0.151	∆ = 60	0.215	0.222
	∆ = 120	0.149	0.084	∆ = 120	0.977	0.384
	∆ = 180	0.255	0.174	∆ = 180	0.276	0.844
	∆ = 240	0.606	0.542	∆ = 240	0.522	0.27
	∆ = 300	0.726	0.561	∆ = 300	0.334	0.16
	∆ = 360	0.275	0.054	∆ = 360	0.094	0.093
	∆ = 480	0.589	0.523	∆ = 480	0.318	0.307
	∆ = 540	0.067	0.002	∆ = 540	0.358	0.07
	∆ = 600	0.649	0.262	∆ = 600	0.078	0.945
	∆ = 900	0.238	0.709	∆ = 900	0.512	0.167
	∆ = 1080	0.958	0.152	∆ = 1080	0.346	0.529
	∆ = 1200	0.336	0.888	∆ = 1200	0.153	0.582
	∆ = 1800	0.547	0.261	∆ = 1800	0.622	0.321
	∆ = 1920	0.283	0.417	∆ = 1920	0.086	0.225
	∆ = 2400	0.498	0.166	∆ = 2400	0.891	0.602
	∆ = 2700	0.453	0.835	∆ = 2700	0.943	0
	∆ = 3600	0.967	0.012	∆ = 3600	0.796	0.63

Table 3 .

 3 

17: Squared residuals LB tests p-values.

Table 3 .

 3 18: Goodness of fit tests of the model across ∆.

			Anderson Darling Cramer-Von Mises Kolmogorov Smirnov	
		∆ =	0.005		0.013	0.004	
		∆ =	0.125		0.127	0.105	
		∆ =	0.543		0.502	0.616	
		∆ =	0		0.023	0.007	
		∆ =	0.825		0.88	0.797	
		∆ =	0.069		0.246	0.293	
		∆ =	0.375		0.345	0.489	
		∆ =	0.313		0.329	0.227	
		∆ =	0.375		0.286	0.305	
		∆ =	0.342		0.279	0.332	
		∆ =	0.987		0.972	0.907	
		∆ =	0.906		0.825	0.8	
		∆ =	0.804		0.801	0.805	
		∆ =	0.869		0.876	0.872	
		∆ =	0.104		0.1	0.081	
		∆ =	0.786		0.697	0.68	
		∆ =	0.956		0.915	0.923	
		∆ =	0.574		0.54	0.198	
		f ∆ Naive prediction Mean prediction	f ∆ Naive prediction Mean prediction
	∆ = 30	0.42	0.57	0.43	∆ = 1440 0.1	0.11	0.18
	∆ = 60	0.32	0.43	0.34	∆ = 1800 0.1	0.1	0.17
	∆ = 120	0.25	0.32	0.27	∆ = 1920 0.1	0.11	0.18
	∆ = 180	0.21	0.27	0.23	∆ = 2160 0.1	0.11	0.18
	∆ = 240	0.19	0.24	0.21	∆ = 2400 0.1	0.11	0.18
	∆ = 300	0.18	0.22	0.22	∆ = 2700 0.09	0.11	0.17
	∆ = 360	0.16	0.2	0.23	∆ = 2880 0.09	0.11	0.17
	∆ = 480	0.14	0.17	0.21	∆ = 3600 0.09	0.12	0.17
	∆ = 540	0.14	0.16	0.21	∆ = 4320 0.08	0.12	0.17
	∆ = 600	0.13	0.15	0.2	∆ = 4800 0.08	0.14	0.17
	∆ = 720	0.13	0.15	0.2	∆ = 5400 0.08	0.14	0.16
	∆ = 900	0.12	0.14	0.2	∆ = 5760 0.07	0.14	0.16
	∆ = 960	0.12	0.13	0.19	∆ = 7200 0.07	0.15	0.16
	∆ = 1080 0.12	0.13	0.19	∆ = 8640 0.07	0.17	0.15
	∆ = 1200 0.11	0.12	0.19	∆ = 9600 0.08	0.18	0.15
	Table 3.19: RMSE for the 3 models as a function of ∆.			

Table 3 .

 3 20: RMSE for the 3 models as a function of ∆.

at ∆ = 1800 and continuously decreases onwards. The NAIVE prediction's RMSE is U-shaped and attains its minimum at ∆ = 1800, whereas the Fourier's RMSE is decreasing. For ∆ < 1800, the NAIVE prediction's RMSE decrease is steeper and both RMSE are approximately equal at

Table 3 .

 3 High variability error Ratio Low variability error ratio 21:Error ratio between Naive prediction and Fourier decomposition.

	∆ = 30s	1.020	1.032	0.99
	∆ = 60s	1.039	1.057	1.007
	∆ = 120s	1.067	1.092	1.015
	∆ = 180s	1.089	1.115	1.024
	∆ = 240s	1.109	1.159	1.056

Table 4 . 2 :

 42 Tail index estimation for the latency measurements.

	Test Statistic P-value

Table 4 . 3 :

 43 .3 and Figure 4.13.4.4.2 Assessing stability of the networks 4.4. Empirical Results Out. Dur. Out. Var ∅ Out. Var Out. Mean ∅ Out. Mean Descriptive statistics of the 3 outages. Out. Dur. is the total amount of time the outage lasted, Out. Var. and ∅ Out. Var. are respectively the variance of latency measurements during the outage and outside the outage, Out. Mean and ∅ Out. Mean are respectively the mean of latency measurements during the outage and outside the outage.

		O1	4.1h	41.6	1.55	34.5	8.2
		O2	1.8h	62.6	3.4	77.3	42.4
		O3	7.3h	53.7	6.3	67.9	54.1
	latency	100 150 200 250				
		50				
		0				
		260000	280000		300000	320000	340000
		300				
	latency	200				
		100				
		0				
		260000	280000		300000	320000	340000
	latency	50 100 150 200 250 300				
		260000	280000		300000	320000	340000

Table 4 .

 4 

	5.

Table 4 .

 4 6: Results of the (N, M ) grid search.

Table 4 .

 4 .7 for the results for varying τ . 7: (N τ , M τ ) for different values of τ .

	τ	N τ	M τ	E(N τ , M τ )/E(N * , M * )
	10% 300 3min	1.093
	P 1 5% 400 4min	1.048
	1% 820 6min	1.009
	10% 150 3min	1.087
	P 2 5% 300 4min	1.049
	1% 600 17min	1.009
	10% 45	2min	1.099
	P 3 5% 100 6min	1.049
	1% 500 20min	1.009

Table 4 . 8 :

 48 Optimal values (C * , β * ) that maximize the ratio Red Error / Green Error. No weights were used in the W p distance.

	P 1	23.8	7	0.9	90.1%
	P 2	18.0	8	1	92.0 %
	P 3	8.39	17 0.85	71.2%
		RE(C, β)/GE(C, β) GT(C, β)	
	P 1	21.1		89.2%	
	P 2	14.2		93.3 %	
	P 3	5.9		83.8 %	

* , β * )/GE(C * , β * ) C * β * GT(C * , β * )

Table 4 . 9 :

 49 Ratio Red Error / Green Error and Time spent in Green zone for C = 10 and β = 1. No weights were used in the W p distance. RE(C * , β * ) w /GE(C * , β * ) w C *

	w	β * w	GT(C

* , β * ) w

Table 4 .

 4 10: Optimal values (C * , β * ) that maximize the ratio Red Error / Green Error. Weights were used in the W p distance.

d -→χ 2 (M -1)

Remerciements

Data analysis and modeling

Consider the following process: P : Ω × 0, K -→ P + .

P is a stochastic discrete process taking values in P + . In particular, for any i ∈ 0, K , P (•, t i ) is a Markov kernel i.e. for all ω ∈ Ω, P (ω, t i )(•) is a probability measure on (R + , B(R + )) and for all B ∈ B(R + ), P (•, t)(B) is measurable from (Ω, F) to (R + , B(R + )). P ti := P (•, t i ) is the (random) probability distribution of latency at time t i . One typically never have access to P , the underlying generating process of our data. Instead, at a given time t i , one only observes an empirical measure associated with P ti with random number of points. Define:

the process that counts the number of measurements received at each timestamp t i . What we observe is the empirical measure:

where δ x is the Dirac measure at x ∈ R and zero elsewhere, and for (ω, t i ) ∈ Ω × 0, K , (X k (ω, t i )) k∈{1,•••,N (ω,ti)} are i.i.d. P (ω, t i ) random variables, i.e. :

such that for all B ∈ B(R + ), P(X 1 (ω, t i ) ∈ B) = P({ω ∈ Ω|X 1 (ω, t i )(ω ) ∈ B}) = P (ω, t i )(B). For ease of reading, we will drop the ω dependency and simply write:

where N i := N (•, t i ). Z i (resp. N i ) is the empirical measure received at time t i (resp. number of points in the sample) for i ∈ {0, . . . , K}. Because it is possible that at time t i no measurement is received, the following convention is used:

Because of the intrinsic structure of the data, and the high noise contamination, it is unreasonable to try to predict Z t . The operational engineers reduce the problem by aggregating the measurements on non overlapping time intervals of length ∆ and then compute the median. The resulting object is much more manageable in the sense that it is a regularly spaced time series on which classical forecast routines may be applied. The tradeoff is the following: empirically it has been observed that as ∆ gets larger, the resulting time series exhibit a clear sine wave like pattern with decreasing variance in the noise. But large ∆ are not appealing because at a given time t, a user needs ideally to be load balanced based on the real time state of the competing CDN, and not their state in 2h, which is in general irrelevant. We would like to choose the smallest ∆ possible. Unfortunately, as ∆ decreases towards η, the aggregated series gets heavily contaminated by noise, in the sense that the series stops exhibiting any distinct signal and starts behaving like white noise, hence prediction is irrelevant either. We are interested in determining the value ∆ 3.3. Conditional mean model squares estimate for θ ∆ gives:

Assuming normality, we have a limiting distribution:

where

Σ ∆ is unknown but can be estimated from the residuals as:

Confidence bands for the parameters θ∆ are then easily derived. We present below in Tables 3.11 and 3.12 and Figure 3.11 the summary of the fit for f ∆ defined in equation (3.2). Except for b ∆ 1 , and µ ∆ , ∆ = 30, 60, there is a strong stability in the estimates of the coefficients, suggesting that f ∆ is independent of ∆ as seen in Figure 3.12.

Discussion

Perhaps surprisingly, for ∆ ranging from 30 to 10800, the estimators are within the same margin of error, suggesting that the mean dynamic is independent of the choice of such ∆. The fact that all 

Detecting changes and training set selection in stable networks

Abstract

In computer engineering, latency measures the time in millisecond necessary for a request to reach the destination server, and for the response to get back to the host server. For load-balancers (see Chapter 1 Section 1.2 for a presentation of the notion) latency plays a central role: low latency implies low page load time. The other main concern for load-balancers is availability, which quantifies the degree to which a server functions normally. In rare cases, a server may experience an outage. Informally, an outage occurs when some servers in the network are no longer in good functioning condition and sending traffic to those server will significantly deteriorate the so-called user experience. During an outage, both mean and variance of the distribution of latency measurements increase. Prediction accuracy of Internet latency and the ability to detect outages are the most important matters of concern for load-balancer s because optimal performance is necessarily a consequence of the two combined. In this chapter, we address the problem of optimizing the training data selection in a class of networks with a certain stability property that we call ε-stable networks, or ε -SN , and we adapt the result of Daniel Kifer et al. [START_REF] Kifer | Detecting change in data streams[END_REF] on the detection of changes in the distribution of a data stream to detect outages. We demonstrate how to effectively tune the predictive algorithm that Citrix uses in those special networks to decrease the computational time without impacting accuracy. In a second step we show that the distribution of latency measurements exhibit a power law behavior, meaning that the survival function of latency measurements decreases as x -α for some α > 0, and show how our change detection algorithm can be adapted to limit the impact of catastrophic events. We demonstrate a reduction in the false positive detection rate by using weighted empirical distributions of latency measurements that penalize outliers.

Introduction

Attendance on the Internet is cyclical: more people connect during daytime than during night time. Any server is bandwidth limited, hence very busy Internet infrastructures often produce sea-real data are presented in section 4.4. The algorithm is tested on three different stable networks and is proven to perform extremely well: all outages are quickly detected and no false positive are triggered. We show that the predictive algorithm used by Citrix may be fed with much fewer data points with very little accuracy loss.

Prediction in stable networks

The median process

Let T > 0 and [0, T ] be a time interval. Timestamps of measurements collected by Citrix are rounded up to the second hence a natural structure for the data generating process is that of a discrete-time stochastic process with the time index expressed in seconds. Formally, we observe the process Z = {Z t |t ∈ {0, . . . , T }}, where Z t is the empirical measure defined by:

where δ x is the Dirac measure at x ∈ R, N t is the (random) number of data points collected at time t and (Y t k ) K∈{1,...,Nt} are the observed latency measurements at time t. The specificity of the process Z is that a random number of measurements N t is received at time t. Z is a process that outputs an empirical distribution at each time, instead of a single observation. The object of interest in the industry is the median process, not the raw measurements directly. We briefly recall the definition of the median process.

Definition 7 (Median latency process). Let ∆ > 0, n ∈ N, t n = n∆ and define the series:

n is the median of all measurements with timestamps in the interval ]t n-1 , t n ]. the process (X ∆ n ) 0≤n≤T /∆ is called the median process at frequency ∆.

The median process (X ∆ n ) 0≤n≤T /∆ was formally introduced in Section 3.2.3 of Chapter 3 and is illustrated in Figure 3.7 for different values of the parameter ∆. In this Chapter, we will focus on less structured processes. Predicting the median process instead of the underlying true data generating process is based on operational standards than rely on quantiles, especially the median, of the latency measurements. The reason is that latency measurements are generated by thousands of different users at a very high frequency, making a distributional approach that relies on the median more manageable and interpretable since the load-balancer can not use the latency measurements of a single user that needs to be routed, but instead only sees the whole distribution of latency measurements across all users at once, and the median is robust to outliers. We will tackle the problem of outliers in great details in section 4.3.3.

A major source of concern for load-balancer s is the ability to predict the median process in order to efficiently route the end users to the fastest network available. Any predictive model for the median process has a certain complexity which roughly corresponds to the number of computational operations needed to output a prediction, meaning that the underlying algorithm takes some time to output the said prediction. We are interested in this Chapter in networks Example 5. Suppose X = (X t ) t∈Z is a moving average process that satisfies:

where (ε t ) t∈Z is a Gaussian white noise with mean 0 and variance σ 2 . It is easily seen that the auto-covariance function of X satisfies:

(3 -|h|) for |h|≤ 2, and 0 otherwise.

The auto-covariance function is summable, hence it follows that the spectral density f X exists and satisfies:

On the interval [0, 1/2], f X has exactly 1 zero, at ν = 1/3. See Figure 4.2.

We will make the following assumptions regarding (X ∆ t ) t∈Z . Assumption 3. The median process (X ∆ t ) t∈Z is stationary. Assumption 4. The auto-covariance function of (X ∆ t ) t∈Z , denoted γ X , is summable, i.e.:

Those weights penalize observations in the samples that are too far from a given sample quantile.

Remark 8. In the case where w i /min j w j ∈ N for all 1 ≤ i ≤ n, by factoring out by min j w j in Eq 4.3 it can be observed that the weighted c.d.f. coincides exactly with the unweighted c.d.f. of a sample of size 1/min j w j that is obtained after duplicating the i-th order statistic from the original sample w i /min j w j times. Indeed, let (X 1 , . . . , X n ) be an i.i.d. sample with cumulative distribution F . The unweighted empirical c.d.f. is:

Now suppose we are given weights w i ≥ 0 for all 1 ≤ i ≤ n such that i w i = 1. the weighted empirical c.d.f. is defined as:

Now let λ i = w i /min j w j and suppose λ i ∈ N for all 1 ≤ i ≤ n. Let N = i λ i . Because the weights sum to 1 we have:

Now rewrite the empirical weighted c.d.f.:

Now let Y N = (Y 1 , . . . , Y N ) be a sample obtained after duplicating each X i λ i times. Its empirical c.d.f. G N satisfies:

by definition of the sample Y N . This is the heuristic behind the weighted W p distance: observations closer to a given quantile will weight more than outliers, hence reducing the influence of the latter.

Let us analyze the effect of weights on a toy example for the estimation of the Wasserstein distance. See Figures 4.5 Using a Monte-Carlo simulation we estimated the distribution of the empirical W p distance between two samples i.i.d. log-normal LN (0, 1) of size n = 100 by computing it K = 10.000 times with and without weights, wee Figure 4.7. Recall that if X has a log-normal LN (0, 1) distribution, then Y = log(X) has the standard normal distribution N (0, 1). Applying the weights on a right skewed distribution to emphasize on the median has the effect to reduce the empirical distance: the right tail is more penalized than the left tail because of the skewness, hence reducing the median. The weights are designed as to give flexibility for operational teams along with robustness because latency measurements are contaminated by outliers. The distribution of latency measurements in stable networks can be modeled with regularly varying tails. For such distributions, using weights in the Wasserstein distance may help reduce the number of false positive when detecting outages.

Detecting outages

property can be assessed by Monte Carlo simulations. Let K = 10000 be the number of simulations. Let (t 1,i ) 1≤i≤K ,(t 2,i ) 1≤i≤K be uniformly distributed timestamps over the time period [0, T ], and (X n 1,i ) 1≤i≤K , (X n 2,i ) 1≤i≤K be 2 collections of n-samples such that X n 1,i contains the first n latency measurements received after time t 1,i and X n 2,i contains the first n latency measurements received after time t 2,i . For all 1 ≤ i ≤ K, perform a 2 samples χ 2 -test between X n 1,i and X n 2,i . The distribution of p-values is then compared to the standard Uniform distribution using the Kolmogorov-Smirnov test. We do this test 200 times for varying n ranging from 50 to 1.000. The results of this procedure is 200 p-values, each resulting from a test that aims at determining if the distribution of n-samples is identical trough time. The distribution of those p-values is given in Figure 4.8. 

We obtain again a uniform distribution, which is consistent with what would be obtained if the null hypothesis was true in all cases. We now assumes that the latency measurements in the ε-SN come from the same distribution. Using 4 days of measurements, with sample size n = 226620, descriptive statistics are given in Table 4 

Training set selection

The goal in this section is determine the minimum training set that does not impact accuracy more than a given tolerance τ > 0. For reasons of business confidentiality, the actual predictive algorithm used by Citrix will be treated as a black box. Only will we treat the determination of the optimal training set. In order to produce a prediction in stable networks, Citrix uses at most the last N more recent measurements provided they were received within the last M minutes, even if that means ending up with less than N measurements. We propose a simple approach by grid searching to tune the optimal parameters (N, M ). We first define timestamps (t k ) k=1,...,K at which predictions will be made, such that t i+1 -t i = λ, where λ = 60s is the prediction TTL. Only the first three days are considered. For each pair (N, M ), let E(N, M ) be the prediction error over the timestamps (t k ) k , that is:

N will vary from 5 to 1000, and M from 1min to 1h. Denote (N * , M * ) the minimizer of the prediction error, i.e.

(N * , M * ) ∈ arg min

The results are presented in Table 4.6. The value (N * , M * ) that minimizes the prediction error corresponds to the largest tested values for the parameters N et M : the error associated with the prediction X ∆ t Citrix decreases as N, M increase. But the error has a particular profile: it rapidly converges to E(N * , M * ) as N, M increase, see Figure 4.14. We propose to limit the size of the training set relatively to a tolerance τ > 0: let C(τ ) be the set of containing all pairs (N, M ) satisfying: 

MOTS CL ÉS

ABSTRACT

Information exchange speed on the Internet is measured with latency: the duration of the elapsed time between the sending of the first bit of a request and the reception of the first bit of the response. In this thesis carried out in collaboration with the company Citrix, we are interested in the analysis and modeling of latency data in a context of Internet traffic optimization. Citrix collects data through two different channels generating latency measurements suspected to share common properties. First, we study a probability distribution matching problem where the outputs are the transported probability distributions of the inputs under an unknown deterministic transport, and where the observables are independent samples drawn according to these probability distributions. We study an estimator of this transport and prove its convergence properties. We show that our estimator can be used to match the distributions of latency measurements from the two channels. Then, we propose a modeling strategy to predict the process obtained by calculating the moving median of latency measurements on regular partitions of the interval [0, T ] with mesh ∆ > 0. We show that the conditional mean of this process, which plays a major role in Internet traffic optimization, is correctly described by a decomposition into Fourier series and that its conditional variance forms clusters which are modeled using an ARMA Seasonal-GARCH process, i.e. an ARMA-GARCH process with additional deterministic seasonal terms. The predictive performance of this model is compared to benchmark models used in the industry. A new measure of the amount of residual information not captured by the model based on a certain entropy criterion is introduced.

We then address the problem of outage detection in the Internet. We propose a change detection algorithm in the distribution of a latency data stream based on the comparison of two sliding windows using a certain weighted Wasserstein distance. Finally, we describe how to minimize the size of the training data sets used by the predictive algorithms to limit the calculation costs without impacting accuracy.

KEYWORDS

Probability distribution matching, Time series, ARMA-GARCH process, Forecasting, Change detection, Wasserstein distance, Internet latency